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ISS DESIGN SURVEY

Section I

INTRODUCTION

The Design Survey of the Apollo Inertial Subsystem was funded by NASA
under Contract NAS-12-642, This contract was administered by the NASA Electro-
nics Research Center of Cambridge, Massachusetts. The purpose of this document
is to record the history of the Apollo Inertial Subsystem design and development
(CSM and LM) in order to provide a source document for subsequent design criteria

monographs.

The record provided by this document covers the design, development, and
testing of an inertial subsystem intended for manned spaceflight beyond earth orbits.
In addition, it highlights the experience and knowledge accumulated by this portion
of the Apollo program. Finally, technical and program-oriented recommendations
have evolved naturally from the experience documented and such recommendations

are given as an important part of this Design Survey.

The text is structured to present certain sections with a narrative treatment
of the entire topic. Section II, the Apollo Mission, introduces the reader to the
overall mission plan within which the Apollo Inertial Subsystem is utilized. A de-
scription of how the inertial subsystem requirements evolvedout of the overall mis-
sion plan follows. The reader who is familiar with Apollo may wish to omit the de-

tailed mission description.

Section III, The Apollo Inertial Subsystem, an Overview, comprises one
section wherein the present design and its evolution, a description of Inertial Sub-
system Problems and Solutions, Assembly and Test Highlights, the Inertial Sub-
system Reliability Assessment, and finally, Checkout and Flight Experience are
presented. This section provides enough technical detail to be meaningful yet is
general enough to be comprehended without requiring a specific background in the

Apollo Program.

Section IV, Inertial Subsystem (ISS) Components, presents a more detailed
treatment of individual components and can be used as a reference section to follow

up on problems discussed in Section IIL



Section V, System Flight Experience, reviews the salient features of the

early manned flights,

Section VI, Conclusions, summarizes all of the material of the ISS Design

Survey with regard to the lessons learned and implications for the future.
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Section II

THE APOLLO MISSION

2.1 Apollo Configuration

The goal of the Apollo Project is to place human exploration teams onto the
moon and return them safely to earth, A spaceship consisting of three modules is
launched on a trajectory to the moonby a Saturn V launch vehicle. The Command
Module (CM) is designed for atmospheric re-entry and is to be the home for the
three-man crew during most of the trip. The Service Module (SM) provides maneu-
ver propulsion, power and expendable supplies, The Lunar Module (LLM) is the
vehicle which actually makes the lunar descent. It carries two of the three-man
crew to the lunar surface while the other two modules remain in lunar orbit. The
Apollo Guidance and Navigation System is the primary onboard equipment used for
determination of the position and velocity of the lunar module and for control of its
maneuvers. Similar guidance equipment is contained in both the Command Module
and the Lunar Module. Each vehicle is equipped witha device for remembering
spatial orientation and measuring acceleration, an optical angle device for angle
measurements, displays and controls, means to interface with a spacecraft control

system and indicators, and a central digital data processor.

To facilitate a greater understanding of the part played by the Apollo Inertial
Subsystem, a description of the Apollo mission follows.

2.2 Mission Phases

The overall Apollo mission trajectory is summarized in Figure 2-1. The
heavy lines in the figure correspond to the short thrusting maneuvers which are
separated by the much longer free-coasting phases. The trajectory shown in

Figufe 2-1 is purposefully distorted to show the features of each phase more clearly.

Lunar Orbit
unar Orbi lnsertlon(lm} Lunar Orbit (11)

Ascent and
Rendezvous
(18, 19, 20

Transearth
Injection {12}

Descent

Transearth {22)
b Injaction{21)

Earth Atmospheric
Entry and

Descent and
Landing {23}

Landing
(13, 14, 15, 16, 11

Earth Orbit (5}

" Translunar {7,8,9)

Prelaunch
{n
Earth Launch

12,3,4) Transtunar Injection (6}

Fig. 2-1 The Overall Apollo Mission
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The numbers relate to the mission-phase subdivisions which are discussed in detail

in the following paragraphs.

2.2.1 Phase 1 -~ Prelaunch
The prelaunch phase includes a schedule of activity to prepare and verify all
equipment for flight. Automatic programmed checkout equipment is utilized to per-~

form exhaustive tests of the major subassemblies.

Ground support equipment communicates directly with the Saturn and Apollo
CM guidance computers to read in initial conditions and mission and trajectory con-
stants as these parameters vary as a function of countdown status. Both sets of
inertial guidance sensors are aligned to a common vertical and launch azimuth
framework. The vertical is achieved in both cases by erection loops sensing grav-
ity. Azimuth in Saturn is measured optically from the ground and controlled by
means of an adjustable prism mounted on the stable member. Azimuth in Apollo is
verified optically onboard by the astronauts and held by gyrocompassing action.
During countdown, both systems are tied to an earth frame reference. Just before
liftoff, both systems respond to signals to release the coordinate frames simul-
taneously from the earth reference to the nonrotating inertial reference to be used
during boost flight. A third set of guidance equipment located in the Lunar Module

(LLM) is used near to the moon.

2. 2.2 Phase 2 -- Earth Launch, First Stage

During first stage flight, the Saturn guidance system controls the vehicle by
swiveling the outer four rocket engines. During the initial vertical flight, the ve-
hicle is rolled from its launch azimuth to the flight path azimuth. Following this
maneuver, the Saturn guidance system controls the vehicle in an open-loop pre-
programmed pitch maneuver which is designed to pass safely through the period of
high aerodynamic loading. Inertially-sensed acceleration signals are not used
during this phase to guide the vehicle to the desired flight path, but rather lateral
accelerometers aid in controlling the vehicle to stay within the maximum allowable
angle of attack, Stable control is achieved in overcoming the effects of flexure
bending, fuel slosh, and aerodynamic loading by the use of properly located sensors

and control networks.

Both the Saturn and Apollo Command Module guidance systems continuously
measure vehicle motion and compute position and velocity. In addition, the Apcllo
system compares the actual motion history with that to be expected from the Saturn
control equations and generates an error display to the crew. This and many other

sensing and display arrangements monitor the flight. If abort criteria are exceeded,




the crew can fire the launch escape system., This escape system consists of a
rocket on a tower attached to the top of the Command Module,whichhasthe capability
of lifting the crew rapidly away from the rest of the vehicle. Parachutes would be

later deployed for landing.

In a normal flight, the first stage is allowed to burn to nearly complete fuel
depletion as sensed by fuel level meters before first stage engine shutdown is

commanded.

2.2.3 Phase 3 -- Earth Launch, Second Stage

Shortly after the initial fuel settling ullage and the firing of second stage
thrust, the aerodynamic pressure decreases 1o zero as the vehicle passes out of the
atmosphere. At this time the launch escape system is jettisoned. Aborts at this
time, if necessary, would normally be accomplished using the Apollo Service Mod-

ule propulsion to accelerate the Command Module away from the rest of the vehicle.

Since the problems of aerodynamic structure loading are unimportant in
second stage flight, the Saturn guidance system steers the vehicle towards the de-
sired orbital insertion conditions using propellant-optimizing guidance equations.

Thrust control is achieved by swiveling the outer four engines of the second stage.

During second-stage flight, the Apollo Command Module guidance system
continues to compute vehicle position and velocity. Also, this system computes any
of several other possible parameters of the flight to be displayed to the crew for
monitoring purposes. In addition, the free-fall time to atmospheric entry and the
corresponding entry-peak acceleration are displayed to allow the crew to judge the

abort conditions existing.

2.2.4 Phase 4 -- Earth Launch, Third Stage
The third Saturn stage or SIVB has a single engine for main propulsion which
is gimballed for thrust-vector contrel. Roll control is achieved by use of the SIVB

roll-attitude control thrusters.

The Saturn guidance system continues to steer the vehicle to orbital altitude

and speed. When orbit is achieved, the main SIVB propulsion is shut down.

During second and third stage boost flight, the Apollo Command Module has
the capability, on astronaut option, to take over the SIVB stage guidance function if
the Saturn guidance system indicates failure. If this switchover occurs, the mis-

sion presumably could be continued. More drastic failures would require an abort



using the Service Module propulsion. In such a case, the Apollo guidance computer
would be programmed to provide a number of abort trajectories: (1) immediate safe
return to earth, (2) return to a designated landing site, or (3) orbit for later return

to earth.

SIVB engine shutdown occurs about 12 minutes after liftoff at 100 n. mi.

altitude near circular orbit.

2.2.5 Phase 5 -- Earth Orbit

The Apollo spacecraft configuration remains attached to the Saturn SIVB
stage in earth orbit. The Saturn system controls attitude by on-off commands to
two of the small fixed attitude thrusters for pitch and to four more shared for yaw
and roll.

Ground tracking navigation data telemetered from the Manned Space Flight
Network (MSFN) stations are available to correct the position and velocity of the
Saturn navigation system and provide navigation data for the Apollo navigation
system. In Apollo, the crew can also make navigation measurements for onboard
determination of the ephemeris by making landmark or horizon direction sightings
using a special optical system., The Apollo inertial equipment alignment is updated
by star sightings with the same optical system. For these measurements the crew
has manual command-control of attitude through the Saturn system. WNormally,
limited roll maneuvers are requiredto provide optical system visibility to both stars

and earth,

Typically, the earth-orbital phase lasts for several hours before the crew

signals the Saturn system to initiate the translunar injection.

2.2.6 Phase 6 -- Translunar Injection

Translunar injection is performed using a second burn of the Saturn SIVB
propulsion, preceded by ar ullage maneuver using the small thrusters. Saturn
guidance and control systems again provide the necessary steering and thrust vec-
tor control to the near parabolic velocity which, for crew safety considerations,
put the vehicle on a so-called "free return' trajectory to the moon. The system
aims to this trajectory which ideally is constrained to pass in back of the moon and

return to earth-entry conditions without additional propulsion.

~As before, the Apollo guidance system independently generates appropriate
parameters for display to the crew for monitoring purposes., If the Saturn guid-
ance system indicates failure, steering takeover by the Apollo crew is possible

without need for aborting the mission.
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2.2.7 Phase 7 -- Transposition and Docking
The spacecraft configuration injected onto the translunar free-fall path must

be reassembled for the remaining operations.

The astronaut pilot separates the Command and Service Modules {CSM) from
the SIVB. He then turns the CSM around for docking to the LM which is housed in-
side the adapter in front of the SIVB stage. To accomplish this, the pilot has a
three-axis, left-hand translational controller and a three-axis, right-hand rota-
tional controller. For the maneuver, output signals from these controllers are
processed to appropriately modulate the firing of the sixteen low-thrust reaction
control jets of the Service Module. The normal response from the translational con-
troller is proportional vehicle acceleration in the indicated direction. The normal
response from the rotational controller is proportional vehicle angular velocity

about the indicated axis.

During the separation and turnaround maneuver of the CSM, the SIVB con-
trol system holds the LM attitude stationary to permit a simple docking maneuver
of the command module to the LM docking hatch. The SIVB, Saturn instrument unit
and LM adapter are staged to leave the Apollo spacecraft in the translunar config-

uration. Final docking is completed less than 6. 5 hours from liftoff.

2. 2.8 Phase 8 -- Translunar Coast

Soon after injection into the translunar free-fall coast phase, navigation
measurements are made and processed to examine the acceptability of the trajec-
tory. If these data indicate the need, an early midcourse maneuver corrects the
flight path error before it propagates with time into larger values which would

needlessly waste correction-maneuver fuel.

Once this first correction is made -- perhaps a couple of hours from injec-
tion -- the navigation activity on board proceeds at a more leisurely pace. Ground
tracking data can be telemetered to the craft when available. Using these ground
data and/or onboard sextant-type landmark-to-star angle measurements, the on-
board computer corrects the spacecraft state vector position and velocity infor-

mation,

The astronaut navigator can examine, with the aid of the computer, each
datum input available -- whether from ground tracking telemetered to the craft or
taken onboard -- to see how it could change the indicated position and velocity be-
fore it is accepted into the computer state vector correction program. In this way,

the effects of mistakes in data gathering or transmission can be minimized.



2.2.9 Phase 9 -- Midcourse Corrections

The navigator periodically examines the computer estimate of indicated
uncertainty in position and velocity and the estimate of indicated velocity correction
required to improve the present trajectory. If the indicated position and velocity
uncertainty is suitably small and the indicated correction is large enough to be
worth the effort in making, then the crew prepares for the indicated midcourse
correction. Each midcourse velocity correction requires initial spacecraft orienta-
tion to put the estimated direction of the thrust axis along the desired acceleration
direction. Once thrust direction is attained, the propulsion system is fired under
the measurement and control of the guidance system. Use of the guidance system
requires that the inertial measurement system be aligned by optical star-direction
sightings.

Typical midcourse corrections are expected to be of the order of 30 feet per
second. If the required correction happens to be very small, it is made by using
the small reaction control thrusters. Larger corrections are made with a short
burn of the main service propulsion engine. About three such midcourse velocity
corrections are required on a trip to the moon. The direction and magnitude of
each correction adjust the trajectory so that the moon is finally approached near
a desired plane and pericynthian altitude which provides for satisfactory conditions

for the lunar orbit insertion.

2.2.10 Phase 10 -- Lunar Orbit Insertion

For lunar orbit insertion, as in all normal thrusting maneuvers with the
service propulsion engine, the inertial guidance system is first aligned using star
sightings. Then the system generates initial conditions and steering parameters
based upon the navigation measure of position and velocity and the requirements of
the maneuver. The guidance initiates engine turn-on, appropriately controls the
direction of the acceleration, and signals engine shut-down when the maneuver is

complete.

The lunar orbit insertion maneuver is intended to put the spacecraft in a
near-circular orbit of approximately 80 n. mi. altitude. The plane of the orbit is

selected to pass over the landing region on the front of the moon.

2.2.11 Phase 1l -- Lunar Orbit

In lunar orbit, navigation measurements are made to update the actual
orbital motion information. The navigation measurement data are processed in the
computer using much of the same program used in the translunar phase. Several

gsources of data are possible. Direction measurement to lunar landmarks or



horizons and earth-based radio tracking telemetered data are similar to the mea-
surements used earlier in the flight in earth orbit. Because of the lack of lunar
atmosphere, the times of selected star occultations by the lunar limb can conven-
iently be measured. Orbital period measurements are available by timing success-
ive passages over the same terrain feature or successive occultations of the same
star. Enough measurements must be made to provide accurate initial conditions
for the guidance system in the LM for its controlled descent to the lunar surface.
Before separation of the LM, the landing area is examined by the crew using the
magnifying optics in the command module. At this time. direction measurements
to a particular surface feature can relate a desired landing site or area to the
existing indicated orbital ephemeris in the computer. These particular landing
coordinates become part of the LM guidance system initial conditions received
from the command module.

After two of the crew transfer to the LM and separate from the Command
and Service Module (CSM), the remaining man in the CSM continues orbital navi-
gation as necessary to maintain an accurate knowledge of the CSM position and

velocity.

2.2.12 Phase 12 -- LM Descent Orbital Insertion

The LM guidance system is turned on and checked out earlier in lunar orbit
before separation and before initial conditions are received from the CSM. About
twenty minutes before initiation of the LLM descent injection maneuver, the vehicles
are separated, the LM guidance system receives final alignment from star sightings,
and the attitude for the maneuver is assumed. The maneuver is made using the LM
descent stage propulsion under control of the LM guidance system. The throttling
capability of the descent engine is exercised as a check of its operation during the
short burn. The maneuver is a 100 ft. per second velocity change to reduce the
5250 ft. per second orbital velocity for a near-Hohmann transfer to 8 n. mi. altitude
pericynthian which is timed to occur at a range of about 200 n. mi. short of the

final landing area.

2.2.13 Phase 13 -- LM Descent Orbit Coast

During the free-fall phases of the LM descent, the CSM can make tracking
measurements of the LM direction to confirm the LM orbit with respect to the CM,
For that part of the trajectory in the front of the moon, earth tracking provides an
independent check, The LM, during appropriate intervals in the coasting orbit,
checks the operation of its radar equipment. The directional tracking and ranging
operation of the rendezvous radar is checked against the radar transponder on the

CSM. These data provide the LM computer with added information for a descent



orbit check. At lower altitudes, the LLM landing radar on the descent stage is oper-
ated for checks using the moon surface return. Alignment updating of the IL.M
guidance system is performed if desired. The CM from its orbit, using the tracking
systems and onboard computer, can monitor this phase of the LM descent. As
pericynthian is approached, the correct LM attitude for the powered descent phase

is achieved by signals from the guidance system.

2. 2.14 Phase 14 -- LM Powered Descent Braking Phase
This phase starts at the 8 n, mi. altitude pericynthian of the descent coast
phase. The descent engine is reignited, and the velocity and altitude-reducing

maneuver is controlled by the I.M inertial guidance and control system.

The descent stage engine is capable of thrust level throttling over the range
necessary to provide initial braking and controlled hover above the lunar surface.
Engine throttle setting is commanded by the guidance and control system to achieve

proper path control, although the pilot can override this signal if desired.

Thrust vector direction control of the descent stage is achieved by a combin-
ation of body-fixed reaction jets and limited gimballing of the engine. The engine
gimbal angles follow guidance commands in a slow loop so as to cause the thrust
direction to pass through the vehicle center of gravity, thus minimizing the need
for continuous fuel-wasting torques from the reaction jets. During all phases of the
descent, the operations of the various systems are monitored. The mission could
be aborted for a number of reasons. If the primary guidance and control system
performing the descent control ig still operating satisfactorily, it would control the
abort back to rendezvous with the CSM. If the primary system has failed, a simple
independent abort guidance system can steer the vehicle back to conditions for ren-
dezvous. For a normal mission, however, the braking phase continues until the
altitude drops to about 4 n, mi. Then guidance control and trajectory enter the final

approach operation.

2.2.15 Phase 15 -- LM Powered Descent Final Approach

One significant feature of this phase is that the controlled trajectory is se~
lected to provide visibility of the landing area to the LM crew. The vehicle attitude,
descent rate, and direction of flight are controlled by the guidance so that the land-
ing site appears fixed with relation to the window. A simple reticle pattern in the
window gives anindication of whether the landing point is aligned with the number
indicated by the computer display. The pilot may observe that the landing point indi-
cated, with relation to other areas nearby, is in an area of unsatisfactory features.
The pilot can then elect to select a new landing point for the computer control by
turning the vehicle about the thrust axis until the reticle intersects the better

area. He then hits a "mark' button to signal the computer, reads the reticle
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number which is in line with this area into the computer and then the guidance
gystem appropriately redirects the path. This capability allows early change of
landing area and efficient fuel control during acquisition of the new area which

otherwise might have to be performed wastefully later during hover.

Automatic guidance control during the terminal phase uses weighted combin-
ations of inertial sensing and landing radar data. The weighting depends upon
expected uncertainties in the measurements. The landing radar includes altitude
measurement and a three-beam Doppler measurement of three components of LM

velocity with respect to the lunar surface.

2. 2.16 Phase 16 -- Landing and Touchdown

At any point in the landing, the pilot can elect to take over partial or com-
plete control of the vehicle. For instance, one logical mixed mode would have
altitude descent rate controlled automatically by modulation of the thrust magni-

tude and pilot manual control of attitude for maneuvering horizontally.

The final approach phase ends near the lunar surface, and the spacecraft
enters d hover phase. This phase can have various possibilities of initial akitude
and forward velocity depending upon mission ground rules, pilot option and observed
local terrain features. Descent stage fuelallowance provides for approx-
imately two minutes of hover before touchdown. This must be accomplished in the
time allotted or abort on the ascent stage is initiated. The crew will make final
selection of the landing point and maneuver to it either by tilting the vehicle or by
operating the reaction jets for translation acceleration. Inasmuch as the flying
dust and debris resulting from rocket exhaust degrades radar and visual information,
the inertial system altitude and velocity computation is updated by the landing radar
so that, as touchdown is approached, good data are available from the inertial sen-
sors. Touchdown must be made with the craft near vertical and at sufficiently low

velocity.

2.2.17 Phase 17 -- Lunar Surface Operations

Time spent on the moon includes considerable exploration, experimentation
and gathering of soil samples. Also, during the stay time, the LM spacecraft sys-
tems are checked and prepared for the return voyage. The ephemeris of the CSM
in orbit is continually updated and the information relayed to the LM crew and
computer. The LM rendezvous radar also can track the CSM as it passes overhead
to provide further data upon which to base the ascent guidance parameters. The
inertial guidance system receives final alignment utilizing optical star-direction

sightings prior to the start of ascent. The vertical components of this alignment



could also be achieved by accelerometer sensing of lunar gravity in a vertical erec-
tion loop. Liftoff is timed to achieve the desired trajectory for rendezvous with the
CSM.

2.2,18 Phase 18 -- LM Ascent

LM powered ascent is accomplished with the LM ascent engine, The ascent
engine, which has a fixed mounted nozzle, is under control of the LLM inertial
guidance and control system. Thrust vector is achieved by operation of the sixteen
reaction jets that are mounted on the ascent stage. The engine cannot be throttled,
but the necessary signals from guidance will terminate the burning when a suitable

trajectory is achieved.

The initial part of the ascent trajectory is a vertical rise followed by a pitch-
over as commanded by the guidance equations., During the pitchover maneuver, the
guidance system also commands roll steering such that the LM maneuvers into an

elliptical orbit coplanar with the CSM plane.

2.2.19 Phase 19 -~ LM Midcourse Maneuvers

A constant delta height maneuver is initiated at the apocynthion . of the LM
concentric elliptical orbit that places the LM in a circular orbit which is predeter-
mined such that the LM arrives at a required position with respect to the CSM at
the terminal phase initiation time. During this phase, the crew verifies LM trajec-
tory parameters as computed by the LM guidance computer with the parameters

computed by the command module computer.

2. 2. 20 Phase 20 -~ Terminal Rendezvous and Docking

The terminal rendezvous phase consists of a series of braking thrust maneu-
vers under control of the LM guidance system which uses data from its inertial
sensors and the rendezvous radar. The objective of these operations is to reduce
the velocity of the LM relative to the CSM to zero at a point near the CSM. This
leaves the pilot in the LM in a position to initiate a manual docking maneuver with
the CSM using the translation and rotation control of the LM reaction jets. Although
these maneuvers would normally be done with the LM, propulsion or control prob-
lems in the LM could require the CSM to take the active role.

After final docking, the LM crew transfers to the CSM. The LM is then

jettisoned and abandoned,

2. 2,21 Phase 21 -- Transearth Injection

Navigation measurements made while in lunar orbit determine the proper




initial conditions for transearth injection. These are performed as before using

onboard and ground-based tracking data as available.

The guided transearth injection maneuver is made normally under the con-
trol of the primary inertial guidance system. Several backup means are available
to cover possible failures in the primary system. The injection maneuver is con-
trolled to put the spacecraft on a free-fall coast to satisfactory entry conditions
near earth, The time of midcourse transearth coast must be adjusted by this in-
jection maneuver to account for earth's rotation motion of the recovery area and as

limited by the entry maneuver capability.

2.2.22 Phase 22 -- Transearth Coast

The transearth coast is very similar to the translunar coast phase: During
the long coasting phases going to and from the moon, the systems and crew must
control the spacecraft orientation as required. Typical midcourse orientation con-
straints are those necessary to assure that the high-gain communication antenna is
within its gimbal limits to point to earth, or that the spacecraft attitude is not held

fixed to the local heating effect of the sun for too long a period.

During the long periods of free-fall flight to and from the moon, whenthe inertial
measurement system isnot being used for controlling velocity corrections, the inertial

System is turned off to conserve power supply energy.

Onboard and ground-based measurements provide for navigation upon which
is based a series (normally three) of midcourse correction maneuvers during trans-
earth flight. The aim point of these corrections is the center of the safe earth
entry corridor suitable for the desired landing area. This safe corridor is ex-
pressed as a variation of approximately 17 n. mi. in the vacuum perigee. A too-
high entry might lead to an uncontrolled skip out of the atmosphere. A too-low
entry might lead to atmospheric drag accelerations exceeding the tolerance of the

crew.

After final safe entry conditions are confirmed by the navigation system
prior to the entry phase, the inertial guidance system is aligned, the Service Mod-

ule is jettisoned and the initial entry attitude of the Command Module is attained.

2. 2. 23 Phase 23 -~ Earth Atmospheric Entry

Initial control of entry attitudes is achieved by guidance system commands
to the twelve reaction jets on the command module surface. Ags the atmosphere is
entered, aerodynamic forces create torques determined by the shape of the CM and

center-of-mass location. If initial orientation was correct, these torques are in a



direction towards a stable trim orientation with heat shield forward and flight path
nearly parallel to one edge of the conical surface. The control system now oper-
ates the reaction jets to damp out oscillation about this trim orientation. The
resulting angle of attack of the entry shape causes an aerodynamic lift force which
can be used for entry path control by rolling the vehicle about the wind axis under
control of the guidance system. Range control is achieved by rolling so that an ap-
propriate component of that 1ift is either up or down as required. Track or across
range control is achieved by alternately choosing as required the side on which the

horizontal lift component appears.

The early part of the entry guidance is concerned with the safe reduction of
the high velocity through the energy dissipation effect of drag forces. Later, at
lower velocity, the objective of controlling the vehicle to the earth recovery landing
area is included in the guidance programming. This control continues until the ve-
locity is reduced and a suitable position is achieved for the deployment of a drogue
parachute. Final letdown to a water landing is normally achieved by three para-
chutes.



Section III

THE APOLLO INERTIAL SUBSYSTEM, AN OVERVIEW

3.1 Early Decisions --Block I

During 1957 through 1959, MIT/IL performed a study which led to the publi-
cation of a report in June of 1959 entitled '"Recoverable Interplanetary Space Probe, "
In September 1959, under a NASA contract, MIT/IL undertook a study of the
guidance and control design for a variety of space missions. The study report was
issued in April 1960 and showed the onboard sensor capability which could support
Navigation and Guidance for manned or unmanned spacecraft, During this period,
NASA was defining its advanced manned space flight program which would follow
Mercury and Gemini and which was named "Apollo" in July of 1960 by the NASA

Administrator, The program was to lead, eventually, to a manned lunar landing.

In November 1960, a six-month contract with MIT to conduct preliminary
design work for the navigation and guidance support for project Apollo was
proposed by NASA, The manned lunar landing was made a national goal by
President Kennedy in May 1961, In August of 1961, NASA awarded its
first major Apollo contract to MIT/IL to develop the guidance and navigation system.
It is important at the outset to understand the factors governing the design of the
Apollo G&N in its initial phases, In late 1961, plans were to fly an Apollo space-
craft in the fall of 1963 with an MIT G&N system on board, The NASA direction
to support this schedule was to (a) build that which we knew how to build in the time
allotted, and (b) to use only components proven by production and operational

experience,

Numerous fundamental and far reaching decisions were made quickly in the
early days of the contract. The IMU gimbal question was one of the most funda-
mental, It was reasoned that IMU in-flight alignment would be a necessity, No
gyro would be able to maintain adequate inertial reference for a period of twelve
days to cover all the necessary maneuvers, With a realignment concept and
recognition that all maneuvers where the IMU was required were in-plane maneuvers
with little or no out~of-plane steering, it was reasoned that a 3 gimbal system could
be used. This had several advantages over a 4 gimbal IMU in terms of system

complexity, weight, power, reliability and cost.




3.1.1 Gimbal System Arrangement

Although a strapdown or body-mounted inertial subsystem configuration was
briefly examined at the start of the program, no serious consideration was given
to this technique. The small development time that the schedule allowed and the
fact that no such body~mounted system was yet out of the laboratory experimental
stage precluded its use, Moreover, it was clear that schedules could be met by
the existing development team by utilizing past experience with the design of the

gimballed inertial measurement unit of the Polaris Mark 2 guidance system.

At the time the decision was made in 1961, there appeared to be no doubt
that a three degree-of-freedom gimbal system would be the optimum choice for the
inertial measurement unit. To simplify hardware design, the various ground rules
mentioned earlier emphasized simplicity, light weight, optimum performance and
utilization of crew capability. These ground rules all indicated that,for the Apollo
mission, a three degree-of~freedom gimbal arrangement was to be preferred over

the four degree-of-freedom configuration,

The function of the gimbal system arrangement was to support the gyros
and accelerometers on a structure that would be kept nonrotating in space in spite
of rotations of the spacecraft, The only motivation for a four degree-~of~freedom
gimbal system was that such a configuration could be made and operated so that
all attitudes of the spacecraft would be accommodated without the problem associated
with gimbal lock that could possibly occur with a three degree-of-freedom system.
The question posed in 1961 and 1962 was: Could the simpler three degree-of- freedom
IMU meet all the requirements Apollo would ask of it without danger of approaching;
gimbal lock and loss of stable member alignment? The answer in brief was that :
all usual Apollo maneuvers would naturally be such that gimbal lock would be
avoidable by a sufficiently wide margin to be easily accommodated by the three
degree-of-freedom candidate IMU under consideration, In unusual situations the
operation near gimbal lock in nonemergency maneuvers could be simply avoided. ;
Direct means were available to warn of approaching difficulty so that corrective
action could be taken, And finally, the procedure for recovery from loss of
alignment, if it occurred--even in emergency situations--seemed straightforward,
The discussions that were relevant to IMU selection are included in the following

sections,

3.1.2 Pertinent IMU Design Characteristics
The IMU design under consideration borrowed heavily from that of the

Polaris Mark 2. The capability of this class of design to maintain stable member



orientation in spite of base motion angles and rotational rates was well known,
The Polaris IMU was a three degree-of-freedom gimballed structure such as
shown in the ''stick and wire'' schematic form in Figure 3-1, and the proposed
Apollo IMU was to be the same, Structural features of the gimbals that were
developed for Apollo can be seen in Figure 3-2,
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Fig. 3-1 Schematic of Inertial Measurement Unit
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Fig. 3-2 Inertial Measurement Unit

Each gimbal axis of the proposed IMU had the servo torque motors and
electromagnetic data transducers directly coupled to the two adjacent members
without operating through a gear train such as is common in many gimbal designs.
This operation without gears had a multifold advantage. Most obvious was the
elimination of concern about gear wear and accuracy of mesh which were critical
factors in making a reliable servo of the necessary high performance. KEqually
important was elimination of the requirement for the servo to provide torque to
accelerate gear train inertia when no angular velocity was desired of the driven
gimbal, Without gear trains the inertia of the stable member would tend to hold
itself stationary without any help from the servo against any magnitude of base
rotation motion except for the effects of (1) bearing friction, (2) motor 'back emf"
and (3) outer gimbal inertia, Discounting these last two effects for the moment,
the servo would need to overcome only the small bearing friction of the Apollo IMU
gimbals, even for extremely violent base or vehicle rotations. There are none of

the limitations resulting from high angular rates or accelerations of the vehicle

3-4



imposed by the usual gimbal axis gear trains,

The second effect mentioned above, back emf, concerns the voliage
generator action of the motor, the servo amplifier drive impedance, a corresponding
lag term in the servo loop, and a base motion coupling, The level of the output
current feedback under consideration in the Apollo IMU servo would control these
effects adequately so that any concern of base motion angular velocity coupling as
a result of motor voltage would be trivial within any conceivable uncontrolled

vehicle maneuvers from which recovery is possible,

The third effect, resulting from outer gimbal inertia, comes into play only
with large middle gimbal angles away from the zero orientation. See Figure 3-1,
In the extreme situation, large middle gimbal angles cause the effect called
"gimbal' lock. This subject is so extensive that the ensuing section has been

devoted to its exposition.

3.1,2,1 The Problem of Gimbal Lock, Gimbal lock occurs when the outer gimbal

axis is carried around by vehicle motion to be parallel to the inner gimbal axis.

At this point the three gimbal axes lie in a single plane. No gimbal freedom now
exists to "unwind' base motion about an axis normal to this plane. Even though
any vehicle orientation with respect to the stable member can be accommodated by
particular sets of the three gimbal angles, the condition at gimbal lock prevents
accommodation of a particular orientation change from the locked condition without

exceedingly high outer gimbal acceleration.

Problems with a three degree-of-freedom system like the Apollo IMU
which was being considered could occur under circumstances other than the gimbal
locked situation. For instance, when the locked configuration is approached, as
manifested when middle gimbal angles approach 900, the stabilization capabilities
of the assembly become more and more marginal depending on design. With
proper gyro error signal resolution and gain control, the locked configuration can
be very closely approached without undesirable effects. However, as gimbal lock
is approached more closely, higher and higher angular accelerations are required
of the outer gimbal to hold the inner member fixed against particular components
of base angular velocity. By an inherent tendency to stay fixed, the inertias of the
inner gimbals can generate much of the necessary reaction torque to help provide
the required acceleration of the outer gimbal over a limited range. This would be
perfect without the accelerating torque from the outer servo motor if either the

inner structures were of infinite inertia or the outer structure were zero inertia,
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I.acking an infinite ratio of the two, the remaining burden of providing the accel-

erating torque must be taken by the servo and outer gimbal motor.

In Apollo, the outer gimbal structure achieved necessary structural stiff-
ness through the thin section spherical shape with a relatively small inertia, The
inner stable member carried all the mass of the inertial components and necessary

thermal sink mounting block.

Besides favorable inertia ratios, much of the capability of the Apollo IMU
to handle near gimbal lock conditions was at first attributed to the use of a small
angular accelerometer on each axis (ADA) as a servo stabilization feedback
element. This device permits very high torque gains with low servo noise problems
over all frequencies and allows specification operation over a wide margin of gain
change, No critical adjustments are necessary. The Block I IMU utilized this ADA
as the high frequency feedback device with good success, Later in the studies for
the Block II IMU, the gyro noise inserted into the loop resulting from the necessary

high frequency gain was found tolerable and the ADA was eliminated.

Moreover, it was argued that transient loss of attitude resulting from
gimbal lock effects, or any other disturbance for that matter, did not necessarily
mean a permanent loss of orientation indication of the IMU, unless the gyro gimbal
output axis limit stops were reached, Within the integration range of the gyro, the
attitude is recovered as the gyro error is brought back to zero. In effect, the
orientation is memorized in the gyro output axis angle and angular velocity until

the servo can recover,

Firm ground rules on how close to gimbal lock the Apollo IMU could operate
satisfactorily depended upon experimental results with the actual flight configuration
IMU, Data, using IMU #3 with breadboard electronics, were collected. From this
information, it appeared that gimbal lock could be approached as closely as 10
degrees without risk and even much closer with some possibility of loss of stable
member attitude. Stated more graphically, a test was conducted where the inner
axis of the system was aligned within 10 degrees of a base motion axis perpen-
dicular to the output axis, Base motion angular velocity then caused gimbal lock
to be passed within 10 degrees. Stable member attitude was held consistently for
this configuration with base angular velocities of 60 degrees per second, A tentative
and conservative listing of acceptable vehicle rates and accelerations was then

generated:



Vehicle Angular Velocity Allowable

About inner gimbal axis (continuous) 720 deg/sec
About middle gimbal axis (+80°) 720 deg/sec’
About outer gimbal axis (continuous) 720 deg/sec’

About any arbitrary body or inertial axis
resulting in passing up to 10~ of gimbal lock (continuous) 60 deg/sec

Vehicle Angular Acceleration Allowable

About any axis and within above rate limits 360 deg/seczti

“Values marked with an asterisk have much higher limits,
but were as yet undetermined,

3.1.2,.2 IMU Operation to Avoid Gimbal Lock, Although the allowable vehicle

motions described above to avoid effects near gimbal lock were less constricting

than might be expected, the argument had to be made that the area near gimbal

lock could be avoided in practical operation,

It was proposed that the Apollo IMU would normally be shut down during all
long periods not requiring its use., This would be done primarily to save power
and corresponding fuel cell battery reactant ‘estimated saving of 43 pounds of
reactant in a 200 hour command module lunar landing mission), For this reason,
and because of unavoidable angle drift over long time intervals resulting from
imperfect performance of the gyros, the guidance system would provide for
inflight IMU alignment against star references before the start of each accelerated
phase of the mission, This allowed the IMU stable member alignment to be chosen

for each use to the most logical orientation,

The decision to utilize only three degrees of IMU gimbal freedom did not
elicit any counter arguments within NASA or from other contractors. The
configuration was, for the most part, frozen long before the techniques called the
"concentric flight plan'' were developed from the rendezvous experience of Gemini
where maneuvers were designed not for efficiency but for conceptual simplicity
and ease of monitoring. Correspondingly, later planning, without a view to greater

efficiency, identified pure plane changing maneuvers with an in-plane burn component,
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Thus, the possibility of exactly out-of-plane burns became far more probable than

was thought earlier to be the case,

Currently, the out-of-plane burns during rendezvous are accomplished with
the RCS thrusters in a low acceleration translation. In this way, the vehicle can be
accelerated sideways without changing spacecraft orientation to gimbal lock
attitudes, This method also allowed for a maneuver which did not break radar lock
or astronaut line of sight on the CSM, Avoidance of any gimbal lock problem during

the actual thrusting and entry phases of Apollo offers no difficulty.

For the majority of mission aborts, the IMU gimbal lock situation was seen
to put no more constraint on successful abort than on normal mission phagses. Two
mission phases were identified, however, which would require critical dependence
upon the IMU indicated attitude to cope successfully with the emergency, The first
of these was high altitude abort prior to launch escape tower jettison. If the
command module tumbles during this operation there is a possibility that the
outer axis might pass through the critical areas near gimbal lock causing the loss
of IMU attitude information., If correct entry attitude is not assumed early enough,
the reaction jets might not be able to overcome and correct the improper but stable
attitude of having the conical end point forward as contrasted with the proper blunt
end forward entiry orientation, In view of the rate limitations of the backup
attitude system and the problems of getting attitude cues through the windows,
dependency on IMU attitude information might be necessary. The probability
of exceeding crew stress limits by a conical end forward entry in the situation
described is the product of: (1) the probability that abort is initiated at the
critical altitude, (2) the probability that the abort initiates an uncontrolled tumble,
(3) the probability that the tumble causes the IMU to pass through its critical gim=-
bal lock areas, and (4) the probability that the pilot cannot sense the direction of
drag early enough to correct attitude or that the command module enters conical
end first, Tt was conjectured but not proven that the resulting probability was an

extremely small number,

The second mission phase, which was identified as being critical with
respect to IMU gimbal lock limitations, was during the LM lunar landing. A hard
over LM descent engine gimbal failure in the yaw direction would require positive
pilot action almost immediately to avoid gimbal lock. From a vertical hover
orientation, a random tumble from the vertical has an 11% chance of passing within
10 degrees of the lock orientation if not stopped before 90 degrees, If the attitude

information was lost by such a maneuver, the vehicle would be thrusting nearly



horizontally and probably downward unless the engine was immediately shut down

which, of course, would be the proper first action during this emergency.

3.1.3 Considerations of a Four Degree-of-Freedom IMU

Difficulties near gimbal lock can be avoided by the addition of a fourth
gimbal to the IMU, This additional gimbal is called the redundant gimbal since it
provides more degrees of freedom than theoretically necessary on ageometric basis,
This redundant gimbal, if used, would have been mounted outside the normal outer
gimbal, The order would have been: inner, middle, outer, and redundant. See
Figure 3-3, The most likely operation would use the inner three gimbals to drive
the stabilizing gyro error signals to zero while the fourth gimbal would be driven so
as to keep the middle gimbal near zero and away from the gimbal lock orientation,
This could be done by generating a redundant gimbal rate command by expressions
similar to

ksin A i gdte)

A(re dundant)
cos
(outer)

so that a negative feedback occurs to drive the middle angle towards zero, 1 It
should be possible to make the inner three gimbals have the same dynamic per-
formance as the simpler three degree-of-freedom system, Any base motion
coupling, though, avoided in the Apollo system as described earlier, would make
redundant gimbal motions appear as disturbances on the middle or inner servos,
thus requiring special attention in loop responses. The redundant gimbal must be
accelerated if it is to do its job, even when the middle gimbal angle is near zero.
In fact, a situation like gimbal lock occurs for outer angles near 90 degrees as can
be seen in the above equation. Close to 90 degrees outer gimbal angle, the
redundant gimbal must be driven at a very fast rate to hold the middle gimbal
angle at zero. In practice, this offers no real difficulty as long as the vehicle body

rates are within certain limits.

With the four degree-of-freedom gimbal system, there are no constraints
on vehicle attitude although rate limits do still exist for certain paths of attitude

motion.

lA Nonlocking Four-gimbal Method of Isolating a Platform From a Rotating Vehicle,
by Richard C. Hutchinson, MIT/IL Report R-285, April 1961, Chapter 8,
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The disadvantages of using a four degree-of-freedom IMU were considered
significant. To execute the fourth gimbal would have required an extra servo
different from the other three servos in dynamic design., Extra data transducers,
or the equivalent, on the middle and outer axes to determine the redundant gimbal

commands would have also been required,

The expense involved in having to add the fourth gimbal depended upon a
number of factors. In order to achieve the required guidance system performance
demanded of the lunar mission, the desired IMU alignment accuracy stood out as a
critical design factor. This meant gimbal data transducers having peak errors no
worse than 20 seconds of arc would be required in order to use the optics system
for star alignment references. The addition of a fourth gimbal to achieve the
alignment would have compounded the problem in the IMU structure, in the computer

interface, and in the flight computer program,

At the time, the 20 arc second accuracy data transducers determined the
size of the Apollo IMU, Without these large units the IMU would have been several
inches smaller in diameter, It was estimated that a fourth gimbal using these same
proven transducers would have raised IMU structure weight by 15 pounds and

increased the volume by 725 cubic inches.

The Polaris advanced guidance system in a four degree-of-freedom con-
figuration was estimated to weigh only 2/3 the Apollo three degree-of-freedom unit
and would have had equivalent performance except for the accuracy of the axis data
transducers, Advances in small accurate data transducers were being studied with
the goal of direct digital encoding of gimbal angles. This could have led to simpli-
fication of the CDU's,but the interface with the existing "eight ball" attitude display

would have been much more difficult,

Additional complexity would have resulted in making full use of a four
degree-of-freedom system. An additional CDU (3 pounds plus electronics for
Block I hardware) would be required for flexible operation with the computer. The
additional gimbal would have required a longer resolution chain to generate autopilot
attitude error for pilot display. This chain was already difficult to achieve under
the requirements imposed by the existing autopilot interface. Also, the computer
would have had to assume the burden of providing the real time resolutions required
to convert steering angles in accelerometer coordinates into proper CDU commands,
Although this was done anyway in the more capable BlockIl flight computer, it was

not realistic to do so in the Block I computer,
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The addition of a fourth gimbal, other things being equal, would necessarily
have increased the power drain on the main fuel cell batteries, besides having
required an extra set of servo electronics., Heat transfer from the gyros inside
to the heat sink on the housing would have been made much more difficult by the
addition of the fourth gimbal. The redundant axis would have had to have slip rings
to be useful and would have had to carry all signals on the outer axis rings plus

those of the redundant axis instrumentation.

One problem considered was generating three degree-of-freedom attitude
ball commands from a redundant four degree-of-freedom IMU, This could have
been solved by the development of a compatible four degree-of-freedom bhall, but
the size penalty on the panel would have been prohibitive, The electrical resolution
conversion from four degrees of freedom to the necessary three degrees becomes
bound up in the equivalence of gimbal lock for which the redundant gimbal was to
have prevented, Although the four degree~of-freedom IMU avoids gimbal lock and
loss of attitude, the attitude information is difficult to display.

The advantages of the redundant gimbal seemed to have been outweighed by
equipment simplicity, size advantages, and corresponding implied hardware
reliability of the direct three degree-of-freedom unit. Since no operational
difficulty of significance could be imagined with the three degree-of-freedom gimbal

system, the decision to avoid the fourth gimbal was made.

In retrospect, some hesitation about the wisdom of the decision might be
expressed, As stated earlier, the orbital operations during rendezvous with the
"concentric flight plan' made the probability of desired orientations near gimbal
lock much higher than the more efficient direct rendezvous originally envisioned
where needed orbital plane changes were combined with the needed in-plane transfer
orbit burns, There is no doubt that with present technology, a four degree-of-freedom
all-attitude IMU could be produced with no more total weight, volume, power, or
failure rate than the present three degree-of-freedom unit of 1964 vintage, But for
that matter, the three degree-of-freedom unit would also correspondingly benefit

from present technology.

3,1.4 Component Section

3.1.4.1 Gyroscopes, The first step in selecting a gyro was to perform an error
analysis of the expected trajectories to determine the criticality of performance,

With the realignment capability and with position errors for landing of less than 10



nautical miles, a 10 meru* gyro appeared feasible. Several candidate gyros were
considered. A modification of the type of gyro used for Polaris was chosen for the
Apollo application. The production records were impressive andits performance
was satisfactory. Moreover, the designers were familiar with the instrument.

A decision was made to have separate NASA inertial component procurement and

to have only one source for each component, The flight schedule was somewhat
uncertain, however, and it was decided to allow as much time as possible for that
contingency. The expected wheel hours in operation were to be about 2000 for early
flight systems and about 1200 for later flights, This assumption has since been
proven too low by a factor of about 50%.,

Some design changes were made to the gyro which made it different from
the Polaris instrument. The torque generator was changed from a two winding
current product torque to a single winding current squared torque. This was done
to provide the most efficient interface between the computer and the IMU, principally
for alignment. The suspension frequency and signal generator frequency were
changed from 4800 Hz and 800 Hz, respectively, to 3200 Hz. The change was
dictated by the available computer timing pulses, 6400 Hz could have been

selected but experience with higher frequencies was lacking,

To assure a quality gyro, acceptance specifications were tightened, and a
reliability program was started which would provide reliability data and failure

prediction methods applicable to production line gyros.

3.1.4.2 Accelerometers. The accelerometer selected was a modified Polaris

16 PIP, This selection was based primarily upon the simplicity of the PIP over the

16 PIGA (the other possible MIT/IL choice) and the inherent reliability believed
possible, The performance requirements were not extensive, but were difficult

for the PIPA to fulfill, Apollo asked for about 100 parts per million accuracy and an
acceleration range of £ 16 g. The knowledge of torque generators and electronics being
what it was dictated the choice of reducing the pendulosity from 1 gm ¢cm to 1/4 gm cm,
which had the obvious effect of magnifying bias instability. To achieve better

scale factor stability, the tapered suspension was added to the design. A significant

number of design changes were incorporated throughout the life of the program,

*1 meru is a Milliearth Rate Unit equal to 0. 015 degree per hour.



The initial conception for the accelerometer was that of a ternary or three
state torqued accelerometer because the computer would not be able to handle the
limit cycle operation of a binary +3 A V pulse-input. It was further decided to have
a three scale factor accelerometer, A nominal scale factor with a capability of
about 16 g's was the primary mode., There was to be a low g capability where the
AV scaling was to be decreased by a factor of four, This was primarily done to
abet performance during the early phases of entry, particularly during the skip
out portion. In the event of a steep entry provision, the accelerometer was
subjected to the maximum acceleration capability by reverting it to a binary mode
that increased the AV by a factor of approximately 2, These decisions, in view
of the fact that many requirements were then unknown, represented the best
engineering judgment available. Later, the accelerometer was changed to a
binary torqued single scale factor device which permitted considerable system

simplification.

3.1.4.3 Component Data Management, Both inertial components were to have

common test equipment at the factory of the inertial component manufacturer, MIT
and the Inertial Subsystem contractor, This communality of test equipment was in
line with maintaining transfer of inertial performance from location to location,
MIT thus maintained configuration control over both the PIP and IRIG test
consoles. In the case of the gyro test console, the design work of the analog equip-
ment was done by AC Electronics, and MIT designed the digital portion, MIT
designed the final test consoles for the 16 PIP Mod D,

It was decided early in the program that MIT would maintain inertial
performance parameters for all components, This early decision and its
execution set up the now existing gyro and PIP performance parameter tabulation
and distribution system. Initially, MIT set up the system and maintained records.
Later, Dynamics Research was brought in to do the job which had grown considerably.
The possibility now existed for comparing the Apollo gyro with the very similar
Polaris gyro. Such comparisons were infrequent, however, and not of much value.
Later, for other reasons, the entire job was transferred to AC Electronics, The
data system improved with each transfer and, because of the renewed interest,

is now a good up-to-date operating system.

3.1.,5 IMU Design
The IMU stable member was made of beryllium to save weight and give
better dimensional stability to the inertial component orientation, There were

no gimbal stops on any axis, thus permitting any stable orientation. A decision



was made to provide a hermetically sealed IMU based on the requirement of
operation in a vacuum, The enclosed air in the IMU was necessary to provide a

medium for conducting heat from the stable member to the coolant.

Several components in the IMU such as torque motors, resolvers and slip
rings needed further development., MIT developed and qualified two sources for
each component; and AC Electronics, as the IMU manufacturer, made the
independent supplier choice for production. The torque motor and slip ring
developments were straightforward and proceeded smoothly. One slip ring vendor,
however, was subsequently disqualified because of failure to deliver an adequate

product,

3.1,5,1 IMU Angle Resolvers, The resolver development proceeded along the

same general guidelines outlined above, but more elements, requiring more
advanced state-of-the-art technology, needed developing. The resolver development
was intimately tied to the method of angle interface between the IMU, optics, and
computer, The method of angle interfacing with the CDU is described in Sec. 4.5. The
system required 1 and 16 speed resolvers for the IMU, and size 8-and 11 one speed
resolvers for the CDU. The required precision was about 20 s,:e\c for the 16 speed
resolver. Development started on these configurations with two vendors, The
competition engendered between the two vendors was very beneficial to the program,
both from a technical development and a cost standpoint, There were at the start

of the program several groups at MIT involved in resolver development, but later
were centralized into one group for greater efficiency and competency. Later
developments dictated the need for more resolvers for the sextant, scanning

telescope and CDU. This development followed the pattern set initially,

3.1.5,2 Temperature Control. There was a serious attempt from the beginning

to provide the temperature control system with all the reliability and flexibility

of the original design requirements. Early attempts to use thermal heat of fusion
salts were tried. This idea was sound but proved to be unworkable based upon
mission time lines for IMU operation. The study was one of the first to definitize
system operation on a lunar landing mission. The Block I configuration temperature
control system provided a flexible,reliable system for manned flight. It was, in
fact, over designed and, as such, was simplified considerably for Block II. Test

and flight results to date have justified this simplification.

The thermal interface for the IMU and the G&N system in general was a
difficult negotiation, It was decided early that the IMU should have integral cooling



in the spacecraft., This decision was based on substantial technical data provided
by MIT and proved to be a sound one inasmuch as no leak problems developed.
Later, when integral cooling for all electronics packages in the G&N was to be
actually implemented, it could not be negotiated. To provide integral coolant in
the IMU, a roll bonding and passage inflation technique was decided upon, First
attempts were promising, but the design was not ready for initial releases, A
welded coolant passage was designed, but fabrication problems with the design lent
impetus to the roll bonding technique which became incorporated at an early point

in Block I production.

3,1.6 ISS System Design

Considerable effort was spent in making available as many backup modes as
possible. Usage of segments of the system with other segments currently operating
wasa groundrule. The use of the IMU as an attitude reference without the computer

was also incorporated.

An early attempt was made to put in manual AV steering by a visual
monitoring of the Y and Z PIPA outputs. The astronaut would manually align the
IMU with the X PIPA along the direction of thrust, then manually start and stop the
engine, steer to maintain zero AV along Y and Z, and time the burn for the net
AV gained., There were, however, operational problems with the design and
associated with production, In the middle of Block I production, the above mentioned
backup mode was dropped and the design was changed to reflect it, Other backup
modes were retained but never utilized, All Block I flights were unmanned and no
ability to utilize backup modes was available, The decision, at the advent of Block
II, was to remove many of these modes of operation and concentrate on the primary

mode of operation,

The test and checkout of the ISS were carefully controlled from a number of
standpoints., Commonality of test equipment wherever possible was incorporated.
Care was taken to have the system as close to its operating configuration as
possible, It was not possible, however, to attain exactly that configuration, Later
testing of the complete G&N system was to be in the spacecraft configuration, a
decision which was difficult to implement in the beginning but was well worth the

effort in the end.
In order to check for adequate mechanical and thermal design, electrical

system functioning, and overall system performance, several IMUs were

constructed, which included an engineering functional model and a production model.
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Such multiple model construction permitted evaluation of various design phases to

proceed simultaneously.

The performance requirements for the Inertial Subsystem and the G&N
system were not clearly specified by NASA, The error analysis of the trajectories
and early mission studies were conducted by MIT, and reasonable specifications

were applied,

There was no target to hit as with an ICBM. For entry, the ships moved
to pick up the spacecraft,or there was a little extra fuel to correct for steering
errors resulting from inertial performance. This proved to be both a help and a
hindrance.  The hindrance, of course, was that MIT had to make decisions
without all the program information available when necessary. It helped in that
items could speedily be decided upon, and, of course, MIT gave more consideration
to the detailed mission requirements. From an inertial performance standpoint, an
analysis of the errors resulting from the IMU revealed that moderate performance
could be retjuired for manned missions. The most critical parameter was the
gyro bias-drift, and that was the result of the long time lapse between alignment
and the thrust termination. Rather large errors in acceleration sensitive gyro
drifts could easily be tolerated as well as moderately large PIPA scale factor
errors. Moderate accelerometer bias errors could also be tolerated., A decision
was made to hold a moderately tight inertial performance specification because of
two factors: (1) the early flights were to be unmanned, and it was not known when
nor what mission would be flown, and (2) the tighter performance was more
conducive to higher reliability, Indeed, experience showed that on the unmanned
flights, because of the variety of missions, a different error component was
predominant for each unmanned mission. Many early decisions made during Block I
production was possible based upon knowing the mission for which the system was
scheduled, It was possible to avoid retrofit costs and speed up the deliverable
hardware when the mission was known, For example, the backup AV lights were
eliminated rather than retrofitted because of the unmanned first flight with the G&N.
The requirement for maintaining the IMU at operating temperature all of the time
was examined both early and late in the program. Because of the various opera-
tional and handling requirements, it was burdensome to keep the IMU always at
operating temperature, There were two reasons for this requirement., The first
was one of not knowing the performance effects of cooldown and warmup. Subsequent
tests showed that the IMU could probably survive if the temperature did not go
below 700F. However, there were some detrimental effects from gas generation in

PIPs as a result of lowered temperature, but these were corrected by subsequent




design changes, Based on this reason alone, constant maintenance of IMU
operating temperature seemed a good decision but no longer is considered so.
The second reason for this requirement was the lower volume compensation
limit of the PIP and IRIG bellows, Temperatures outside of the operating range
tended to damage the component, This temperature limit for the PIP, the higher
of the two, was about 65°F., A study of the environmental conditions showed that
it was possible to go below this temperature. Since protection to stay above this
temperature was more difficult to obtain than maintaining operating temperature,

the latter method prevailed.

Selecting the basic timing signals to be available from the computer and the
resultant frequencies of operation for the synchronized power supplies was an
early fundamental decision; once made, changes could not be accepted without
serious consequences, The decision was to have an 800 Hz gyro wheel; all else
was to be a binary multiple of that, The suspension signals for the IRIG and PIP
then would be either 3200 Hz or 6400 Hz as in the previous Air Force and Navy
work, However, this decision in any future program should be carefully weighed

prior to commitment.

The design and release to manufacture of the signal conditioners to be used
for system checkout and telemetry considerably lagged the remainder of the G&N,
This caused the late release of the harnesses and "work arounds' to compensate

for lack of telemetry measurements during G&N factory checkout.

3.2 Block I 1SS Development
3.2.1 General Chronology
During the Fall and Winter of 1961 - 1962, the IS5 concepts described in

Section 3, 1.6 gradually evolved into design requirements. Preliminary design

information from North American Aircraft Corporation (who was selected in
November 1961 to design and build the Apollo Spacecraft) concerning interfaces

and environment was made available, Material in this category was distributed in
MIT/IL's in-house Apollo document, AGANI*, during October, November, January,
and February. At the same time, NASA's Langley Space Task Group was making
available early reference trajectories for Saturn I flights SA-7 through SA-11, It
is of interest to note that plans then called for MIT/IL's System No. 5 to fly as a
passenger on Mission SA~9 in 1964, System No. 6, also in 1964, was to be flown

on Mission SA-10 as a 7-day manned orbital flight.

“Apollo Guidance and Navigation Information,



Once the basic accelerometer and gyro designs were chosen and the three-
gimbal IMU configuration decided upon, the design effort in specialized areas could
proceed., Although much of the basic inertial subsystem was derived from the
Polaris Guidance System design, the Apollo requirements differed from the very
beginning because of the interface with the astronauts. Therefore, much conceptual
work had to be done during 1962 to define the system modes and the display and
control means available to the astronauts.

Iﬁ the Block I system, the electromechanical CDUs were a basic element
in displaying IMU gimbal angles to the crew and in commanding gimbal angles in a
coarse align mode, Design work on the CDUs and the related mode switching
resulted in initial definition in November 1962. At that time, the three ISS CDUs
were still interchangeable with the two optics CDUs. Later on, the two designs
became different because of special optics requirements and because the inflight

repair policy was deleted,

The early ISS development models, in accordance with the development
plan, included a Thermal Model, a Mechanical Integrity Model, a Vibration Model,
and a Subsystem Prototype, ISS #4. Around this framework of developmental
models, the design and fabrication effort moved forward during 1962, This section
includes some of the highlights of the Block I design phase. An overall pattern of

progress is visible from the general concept to the specific design,

In October 1961, the overall system was identified as having an inertial
measuring unit (IMU), a sextant (SXT), an Apollo guidance computer (AGC), a
power and servo assembly (PSA), a sun finder assembly (SFA), final approach
equipment (FAE), an angular momentum wheel (AMW), and communications (CMM).
The SFA, FAE, AMW, and CMM did not survive the initial system concept. In
January of 1962, an initial procedure was identified for alignment of the IMU during
prelaunch, inflight, and lunar countdown phases (at this early stage, the Apollo
program had not yet settled on the lunar orbit rendezvous mission mode). The five
Block I ISS modes of coarse align, fine align, CDU zero, attitude control and
entry were well-defined in mid-1962, and in November of that year a first proposal
for a switch configuration was published. Further consideration of switch design
and moding considerations led to a final mode-switching circuit design in November
1963, The Block I ISS block diagram evolved gradually from an initial version in
December of 1962 to a well-defined concept by May 1963, A master layout wiring
diagram for the IMU was initiated in July 1862 and was the basis for IMU harness

design, slip-ring wire assignment, and IMU connector selection,




The analytical work involving the relationship between inertial component
performance and position and velocity dispersions could not get underway until
NASA mission and trajectory designs were made firm. As early as July 1961, a
preliminary estimate suggested that the then existing inertial state of the art
would probably meet general Apollo mission requirements, Unfortunately, the
initial pressure and ground rule did not permit careful consideration of technological
gains in inertial components which were then available and could have been

incorporated,

In November 1961, preliminary gyro performance specifications had been
agreed upon, Actual error studies began early in 1962, The entry maneuver
was studied first because its general nature was predefined and it would be the
most critical for Apollo inertial subsystem performance. Results for this mission
phase were published in June 1962 followed by a study of lunar orbit injection
performance brought out in July. By early 1963, the Apollo mission definition was
in a state which permitted analysis of other mission phases, such as translunar
injection, lunar landing, and lunar take-off, These results were made available
in March, At the same time, the errors involved in the process of fine aligning
the IMU in space with the optics had been scrutinized, An error budget applicable
to this process and including both IMU and optical errors was published in February
1963,

Consideration of the attitude reference system between the Guidance and
Navigation system and the spacecraft began early in the program, Only in Block II
did NASA call for direct control of reaction control system jets and the service
module propulsion system by the G&N system, which then became the primary
Navigation, Guidance and Control System or PNGCS, Actually, early in Block I
there were some abortive studies of direct links between the G&N system and the
spacecraft attitude and propulsion systems, but finally the Block I attitude error
signals went only to the Command Module Stabilization and Control System (SCS),

By August 1962, this attitude error interface was defined as using the
G&N carrier frequency of 800 Hz. The basic configuration of the resolver chain,
which generated steering error signals from the IMU and CDU resolvers, was
defined by September of that year. A preliminary design of the complete attitude

error network was available in March 1963.

A specification of the IRIG performance requirements was identified as

early as November 18961, The adoption of the Polaris 25 IRIG design for Apollo




enabled specification work to begin on the pulse-torquing requirements which were
crucial in the mission because of the multiple in-flight alignments. Specifications
were firmed up for the pulse~torquing electronics by May of 18962, In March 1963,
pulse-torquing tests of the Apollo IRIG indicated that there would be a problem of a
bias shift depending on the sign (positive or negative) of the last pulse command, A
requirement was generated for a computer pulse sequence that would always end

with two positive pulses for bias reset, even for a negative command,

Turning now to a consideration of the IMU, the transition from the Polaris
design to Apollo requirements proceeded quite rapidly. An inventory of required
gimbal mounted electronics was published in December 1961 followed by an IMU
wiring diagram in July 1962 and detailed specification of IMU/GME connectors in
October of that year, Estimates of gimbal friction torque in January 1962 and of
IMU gimbal moments of inertia in August helped with the design of the stabilization
amplifier circuits. Bode plots of the stabilization loop dynamics were published in

preliminary form in September 1962 and in final form, July 1963,

During the same period, negotiations were underway with vendors for the
design, development and procurement of torque motors, single and multi-speed
resolvers, and sliprings for the Apollo IMU. The procurement effort involved
agreement on implementation of NASA's stringent quality assurance requirements
for manned spaceflight hardware, In this connection, concern arose about the slip
rings to be used in the IMU, These critical elements were extremely compact and
yet had to carry 45 to 50 conductors in a noise-free, low-resistance manner. One
vendor had a product submitted for Apollo consideration which had a history on other
programs of unidentified contaminant growth, After review of the situation, this

particular vendor's component was disqualified for Apollo use,

In December 1962, work on the temperature control of the Apollo IMU began
with a general examination of the duty cycle and heat balance, The following
April, specifications based on the IRIG and PIP requirements were made available
to the temperature control designers, Electronic design of the redundant termperature
control system then proceeded, There was a one-wire mechanization diagram avail-
able in October 1962, followed by the release of individual circuit design proposals

and specifications the following January and February,

Packaging considerations for the ISS electronics, as contained in the PSA, had
to follow the availability of overall circuit concepts. First estimates in this area
were made available in March of 1962. In November of that year, a preliminary
PSA envelope size was published along with a breakdown of this volume into

eight ''blocks', Concepts changed as more of the interface with the North




American Command Module was identified. By April 1963, the Block I PSA had
assumed its final form factor of 10 trays,which were removable in space for in-

flight repair.

3.2.,2 1SS Development Problems

Details about the early subsystem integration and test operations involving
the Block I Inertial Subsystem are included in this section. The material presented
is indicative of the kind of problems that emerged during developmental testing.
Although these specific problems were unique to the Apollo Block I ISS, their

general nature provides worthwhile guidelines to other developmental programs,

A breadboard version of the GSE (Ground Support Equipment) was partially
built by AC Electronics (then known as AC Spark Plug) in Milwaukee and given
final form at the MIT Instrumentation Laboratory. Test cables were constructed and
a prototype computer simulator for providing clock pulse generation and output

pulse shaping was fabricated by the Raytheon Company.

System testing of inertial subsystems was conducted to evaluate the
fundamental soundness of the system design, evaluate preliminary test methods,
train engineers, uncover problem areas, and evaluate design changes, The

following problems were encountered and corrective programs initiated:

(1) Torque pulses in one Pulsed Integrating Pendulum Accelerometer
(PIPA) loop were observed to couple into other PIPA loops, This problem was
substantially reduced by shielding the PIP torquer lines within the IMU between

interaxis slip rings and by changing certain slip ring assignments,

(2) The PIPA loop moding was found to be bistable, oscillating between its
design value of 3:3 and a value of 4:4. An increase in PIPA damping coefficient

from 80, 000 to 120, 000 dyne-cm/rad/sec was initiated to insure solid 3:3 moding.

(3) The 3200 Hz pulse width modulated temperature control system,
carrying substantial power, was observed to generate 6400 Hz spikes

which could be observed throughout the system,

(4) The alignment and calibration of the gyros required modification of the
original tests so that large error signals from the two gyros not under test would
not couple through a common IRIG preamp output to bias the values measured on

the particular gyro being tested. Appropriate hardware changes were requested for




the production Apollo Ground Support Equipment (GSE) to provide gyro caging

capability to maintain low gyro error signals on those instruments not under test.

(5) Attention was given to noise levels on the torque motor voltages, With
the long ISS test cable runs, the levels were typically 10 to 12 Volts peak-to-peak.
300 k Hz oscillation on the IRIG error outputs was reduced to an acceptable low level
by floating the individual shields along the interconnect cables to reduce existing

cable line capacitance,

(6) Gimbal frequency response plots displayed secondary resonances by the
middle and outer gimbals at 40 and 35 Hz which were not predicted by the linear

transfer function for IRIG error response to a test input.

This transfer function had a first order lead term in the numerator at 161
rad/sec and a second order denominator term at 278 rad/sec with a damping
ratio of 0.8, Although it is not now possible to determine the exact test conditions,
these data do show an effect which, in Block II, was established as an OA coupling

phenomenon,

(7) A synchronizing transient was found when going from the coarse align to
fine align mode which is in excess of the expected transient resulting from coarse
align loop standoff and IRIG float stops. This transient caused up to 10° of gimbal
angle offset and was attributed to a capacitor charge at the torque drive amplifier
input of the servo amplifier. This capacitor charged up in the coarse align mode
from the demodulated IRIG error signal and discharged upon entering the fine align
mode, To prevent this large coarse-to-fine align synchronization transient from
taking place, back-to-back diodes were used that dissipated the residual capacitor

charge at the time of transfer.

(8) It was found that the middle and outer servo loops could be forced into a
6 Hz oscillation, depending upon the magnitude and phase of the IRIG error prevailing
at synchronization, This problem was solved by the separation of power and signal

grounds within the servo amplifier modules.

(9) In early closed loop PIP performance checks, it was discovered that the
breadboard three axis loop, which was packaged in a single drawer, produced dc
loop crosscoupling, which was almost entirely eliminated after "prototype' packaging

was incorporated,




(10) The suspension power supply required a higher output voltage which was
provided by increasing the output transformer turns ratio, This kept the suspension
loop in the linear operating range after allowing for additional cable and slip ring

resistance in the forward and feedback lines.

(11) Angular Differentiating Accelerometer (ADA)-~The ADA is a damped
torsional mass that senses inertial rotation under its own dynamics., The device
has a low pendulosity, preferably zero, The problem cited arose during the
acceleration phase of the IMU qualification program., The IMU was on a centrifuge
mounted rigidly to the arm., During centrifuge testing, the gimbals oscillated with
a frequency equal to the rotational frequency of the centrifuge. It became apparent
that the ADA mounted to the gimbal was nonrotating and as such was under the
influence of a rotating acceleration. With its pendulosity, the response was as if
it were in inertial rotation with attendant stable member misalignments. A quick
check revealed that there were no rotating accelerations for any missions that, with

the specified allowable ADA pendulosities, would give any problem.

(12) Testing done in backup mode showed that the suspension frequency
was not held closely enough to maintain instrument centering as shown by excessive
instrument quadrature levels and PIP timing pulses not compatible with loop
operation., This backup mode was dropped from the system about February 1964

before further circuit evaluation was continued,

(13) Tuning capacitors were required at the encoder outputs to make them
less sensitive to cable impedance matching effects which resulted in double~-pulsing

of the encoder.

(14) A great reduction of 6400 pps noise was attained by putting 0.1 uf
across the temperature loop proportional control transistor and had the effect of
increasing the temperature current rise time, The improvement in noise at the
PSA was by a factor of six with little improvement found within the IMU,

(15) A capacitor was required across the suspension supply line at the stable
member to tune the 2V 3200 Hz suspension input and permitted the suspension line
to be phase~adjusted to the computer generated interrogate pulse train timing, This

change resulted in more optimum timing within the torque-to-balance loops.

*The backup mode for the ISS assumed that the Apollo Guidance Computer had failed
and all power supplies were free-running,




(16) A modified stable member harness featured shortened and twisted
emergency and control heater lines, paralleled slip ring assignments on the
ducosyn excitation, a changed suspension feedback location to permit better
balance of the individual component suspension voltages, and PIP and
IRIG torquer lines as twisted pairs. After an evaluation of these changes, a
large reduction of the:6400 pps noise within the IMU was made by additional

shielding incorporated at the intergimbal axis assemblies,

(17) An evaluation was made of additional stable member mounted heaters
in which individual inertial component temperature gradients were measured with
respect to the stable member orientation. First runs were made at high and low
power conditions using the normal average IRIG sensor controller without the
stable member heaters. Then both average IRIG and average PIP temperature
control was evaluated at both extreme power conditions using the stable member
heaters, The test results showed that by using the additional stable member heaters,
average deviations of instrument temperatures versus stable member orientations
were reduced from 1.5°F to less than 0.5°F. This testing was mainly concerned
with the scale factor sensitivity of the PIPA loop to temperature, showing a
difference between earth component calibration and the units performance in a zero

gravity environment,

(18) The PIPA torquing loop was found to display an effect that caused the
appearance of a deadzone about null during the issuance of torquing commands.
The effect resulted from the interrogator which was a three state logic device with
a binary switch maintaining the torquing current in the direction consistent with the
last directional interrogator switch command. The problem arose when a small
cross coupling of the interrogator switch output with the torquing pulse line
occurred, Thus the resultant torquer current, applied during an interval when the
interrogator was commanding, differed slightly from the torquer current applied
during an interval that the interrogator was not commanding, but the binary switch
was maintaining the direction of the last interrogator command., This effect
called AKO (Alternating Kickoff) presented considerable problems in using the
instrument for detecting the gravity perpendicular plane required for PIPA bias

and alignment measurements, Design changes were made to correct this problem.

(19) An evaluation was made using a two level PIPA loop turn-on involving
an initial low torquing current turn-on before the normal loop turn-on (See
Section 3.3.2). This change had the effect of centering the float before applying
full torquer current thus reducing the normal closure current hysteresis effects in the

torquer until float-to-case alignment or torquer pole alignment was obtained.




Further, this change introduced significant PIPA loop bias performance

improvement and was incorporated into Block I design,

By the spring of 1964, NASA's Apollo Program plans had matured,
practical results from the Mercury program were available, and the final
requirements on the PGNCS were being released, It was during this period that
NASA and MIT/IL initiated discussions about a Block II version of the Apollo ISS.
The genesis and direction of the Block II effort are discussed in Section 3. 3,

This section completes a brief chronological review of Block I Apollo ISS
design and development milestones, In March 1964, nearly all ISS production
drawings, procurement specifications and test procedures were released, Block I
entered its production phase during 1964 as AC Electronics Corporation and the
MIT/IL design team turned primarily to the Block II design and development effort.
However, continued support of the Apollo industrial contractors, Sperry, and AC
Electronics was provided in the process manufacture, assembly, final test,
reliability test, and qualification test, Similarly, as the Block I systems moved
into an installation phase at the North American plant at Downey, California, and a
checkout, countdown, and launch phase at the Kennedy Space Center, MIT/IL
design staff members assumed temporary or long-term responsibilities in support

of systems in the field,

3.3 Block II ISS Development

As the Apollo development became more advanced, a number of factors
made a block change of design desirable, From the beginning,a block change
concept was visualized as being inevitable, since the Block I design was created in
the absence of many necessary guidelines and specifications, In July 1962, NASA
changed the lunar landing concept from the earth orbital rendezvous to the lunar
orbital rendezvous technique, Accordingly, in November 1962, Grumman
Aircraft Engineering Corporation was selected to build the lunar module (LM). The
MIT/IL system would provide navigation, guidance, and control., Thus, the LM
concept made an obvious block change point for NASA's Apollo Program,

In June 1964, MIT/IL was asked to proceed with a Block II design for the
command module as well as the LM, For both vehicles, the system was given
direct interfaces with the gimballed primary propulsion systems, as well as the

reaction control jet clusters,
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3.3.1 Changes from Block I to Block II

3.3.1.1 IMU Design MIT proceeded to make suggestions as to possibilities for
incorporating into the Block II package certain significant changes. NASA at the
same time was viewing what they saw as possibilities for changes. NASA asked
that MIT build a smaller, lighter IMU, After studying the possibilities, MIT
recommended that by keeping the same stable member, the IMU could be reduced
by about 1/3 in weight with a corresponding reduction in diameter of 14 inches

to 12 inches. The resolver chain simplification that came with the CDU changes
permitted a reduced number of resolvers. The combining of 1 and 16 speed
regolvers onto the same rim reduced by three the number of resolvers, leaving
only one resolution and three angle measuring units in the IMU, The removal

of three torque motors and the ADA's (Angular Differentiating Accelerometers)
and ADA amplifiers made possible the shrinkage of the intergimbal assemblies to
reduce the overall IMU weight and size, The temperature control system was
simplified thus reducing the amount of gimbal-mounted electronics. The IRIG was
to have more compact prealignment hardware by incorporating the preamp design
into the end cap hardware, The PIP suspension module was redesigned to have an
integral assembly with a connector which would allow easy assembly of the PIP
into the IMU,

3.3.1.2 PEA/PTA Design The LM installation presented significant problems for

the accelerometer in view of the seventeen feet of cable between the IMU and PSA
or prepared PIPA electronics location. What was desired was a location close to
the IMU and on a cold plate with better temperature control, Discussions with
GAEC revealed that it was possible to put the PIPA electronics in an assembly in
the vicinity of the IMU and also have its cold plate in series following the IMU,

thus achieving a lower cold plate temperature and a lower temperature deviation of
the heat sink. The possibility of doing the same thing in the command module, was
of course, also considered., The electronic CDU was approved for incorporation
leaving the old CDU cold plate available which was in series right after the IMU in
the coolant loop and as such provided a colder, better controlled heat sink, Since the
Block II design was to be humidity~proof, the concept of a sealed assembly was
introduced necessitating several changes in philosophy with respect to the

"~ accelerometers, There would be no further requirement for module interchange-
ability. Because the sealed electronics package precluded final adjustment of
accelerometer bias and scale factor at the ISS or G&N level, the computer

compensation range was increased,




3.3.1.3 Block I Gyro. The most sensitive parameter for the gyro was bias drift,
Several changes,which were aimed towards reducing this term, were incorporated
into the Block II gyro design, Axial suspension was added, and radial suspension
stiffeners were tripled to reduce float displacement with respect to the case, A
reset winding was added to the torque generator, which, when excited with
alternating current, was effective in reducing the residual magnetism of pulse
torquing to a very low level, This residual effect was a source of inconvenience
in the Block I instrument, for it required two additional pulses, a plus and a minus
that provided no net torque on the float, but always left the torque in a standard
state with a known fixed component of bias, Finally, a bias compensation winding
was added to neutralize the net total fixed bias and to compensate for reaction
torque changes resulting from voltage fluctuation of the signal generator and

magnetic suspension excitation,

Other changes included a more efficient signal generator, and a redesign

of the gyro prealignment hardware. The gyro wheel package was not changed.

3.3.1.4 PSA Design. The Block II PSA packaging was changed drastically from
the Block I. All CDU electronics was removed from the PSA and much of the PIPA
electronics. Since the Block II PSA was not constrained by the requirement for an
in-flight module replacement capability, it was designed as a hermetically sealed
assembly, The LM PSA was similar to the command module Block II PSA,

except that it was smaller since it did not contain optical subsystem electronics.

3,3,1.5 Block II CDU, In 1963, an effort to replace the CDU gear boxes with an

all electronics CDU was started., This resolver reading system was breadboarded
and demonstrated to NASA. A weight estimate of about 18 pounds was given for the
configuration devised to duplicate the electromechanical CDUs. This estimate was
regarded as a significant weight savings, The system looked promising and NASA
approved the concept for incorporation, Subsequently, a NASA decision to have a
digital autopilot in both the LM and the CM resulted in numerous changes to the CDU,
This and other decisions increased the CDU weight to its present 37 lbs.

3.3.1,6 Moding Capabilities. The new CDU and Apollo Guidance Computer (AGC)

made numerous moding changes necessary and desirable, IMU Cage was to be the

only manual mode except for system turn-on and coarse alignment. Everything
else was to be moded by the AGC.



3.3.2 Block IT ISS Development Problems

The breadboard Ground Support Equipment used for early Block I testing
was modified, and additional test equipment and interconnect cabling were assembled
to meet the new requirement of Block IT testing, The second GSE utilized was with
Class A Ground Support Equipment which was furnished by AC Electronics and
officially modified for the Block II and LLM systems,

A breadboard LM ISS was assembled and used to perform a series of
investigatory engineering tests,

Thermal tests were conducted to investigate required thermal padding
methods and to determine the location of the stable member thermostat such that

the individual component had minimum sensitivities to gimbal position,

Experimental data of accelerometer bias changes were taken after closing
the loops both from the null position and after storage in the plus and minus one
gravity position, Similardata weretaken by closing the loop with reduced torquing
current for a one minute period and then returning to the normal torquer current
using the same closed loop positions, Results of this testing showed that the low
current closed loop position had improved bias stability, This change was
incorporated into both Block I and Block II PIPA loops. The reason for this
improvement is believed to have resulted from acquiring torquer pole alignment
during the period of operation using reduced torquing current thus producing lower
hysteresis effects.

To save IMU power throughout the translunar phase of the mission, the LM
system was mechanized such that the suspension was shut off until 90 seconds
before PIPA loop closure, The effect of this turn-on was studied and it was
determined that the sensitivity of PIPA loop bias to this type of turn-on was not

significant.

Block II and LM G&N testing began in October 1965 and continued until

July 1966, Some of the more significant results of that testing are listed below:

(1) Expected high and low +28 Volt dc bus ISS variation in the LM was
24.5Vdc to 32.5 V dc at the Grumman G&N interface, This bus tolerance
compares to a 25,8V dc to 31,8V dc ISS bus  voltage variation at the C/M interface.
Because the LM buss tolerances were changed during the ISS design phase, and the

voltage available at a particular power supply was about one volt lower than was




available at the G & N interface, the PIPA loop pulsed torque power supply (PTPS)
required redesign to maintain voltage regulation over the limits of the expected
LM bus tolerance. Loss of voltage regulation on the PTPS would have resulted

in significant PIPA loop bias and scale factor performance degradation.

(2) The PIPA loop quadrature levels could not be verified in the system from
PIP station calibration. Further checks showed that the stable member wiring
and slip ring reassignments between the suspension lines and the instrument

error signals reduced the quadrature levels in the system.

(3) The reset coil of the PIP was removed to reduce the effects on the

deviation of scale factor as a result of excitation suspension overvoltage.

(4) During this period, PIP and IRIG performance data were accumulated.
Alignment transfer measurements from the test area into the system were also
made of the PIPs.

(5) A servo loop oscillation problem was found during coarse-to-fine
align moding on the middle gimbal. It was later determined that loop oscillation
could be induced on all axes with gyro float angles of from 100 sec to about 600
sec and, further, was sensitive to gyro temperature which caused a 5%/OF change
in the gain of the transfer function. After the problem area was identified, it

could be induced on all Block II systems tested.

To provide stable operation for large input signals, nonlinear compensation
was provided by parallel signal diodes in the forward path of the servo amplifiers,
The breakdown voltage of these diodes was about 40C mV. This voltage permitted
the servo to be driven well into saturation before diode breakdown reduced the

amplifier gain resulting in a sustained gimbal oscillation.

Bringing the breakdown level of the diodes down to 250 mV resulted in good
loop performance at synchronization, yet the breakdown point was high enough
to insure an adequate linear region of operation when considering both possible
demodulator imbalance and the variations of the diode breakdown point with

temperature.



(6) A comparison of the ability to obtain servo loop frequency response
results using the normal GSE recorder to that of a Boonshaft and Fuchs servo

analyzer was made. The results indicated a favorable comparison.

(7) Tests were performed which determined that IMU gimbal rates up to
12.5 radians per second could be attained from an IMU cage command. The rate

limitation of the servo loop resulted from the torque motor back EMF.

(8) It was discovered that both the middle gimbal and outer gimbal torque
motor voltage noise levels and the associated loop frequency response varied as a
function of the position of the inner gimbal. A study of the gyro orientation and the
gyro output equations, which were combined in the gyro error resolver on the
inner gimbal, revealed that the error voltage applied to the middle gimbal and outer
gimbal torque motors was a function of twice the inner gimbal angle. The other
error term always present in the gyro output equation was the OA coupling term
which will always appear and could cause this type of trouble in any system if
careful-consideration isn't given to gyro output axis inertia. To eliminate the
sensitivity of the gyro loop transfer function gain to inner gimbal angle, the Z
gyro was physically rotated about its output axis by 180°. Mechanically, this change
necessitated installing a new set of alignment pins, displaced 180° from the old ones,
at the stable member, To maintain loop phasing, the Z gyro suspension voltage
input was reversed, and the torquer lines were reversed at the Z gyro harness

connector of the stable member.

(9) Problems were experienced with the IMU mounting bolts as a result of
binding of the mounting screw at the IMU mounting hole. Alignment bushings were
added to effect accurate IMU-to-navigation base alignment, and to preclude binding,

sufficient clearance between the mounting bolts and the bushings was maintained.

3.4 Reliability
3.4.1 Scope

MIT organized an effective Apollo Reliability program that utilized accepted
practices and controls to ensure that the reliability inherent in the system design
was of the highest attainable, Furthermore, every effort was taken to assure

that the reliability initially achieved would not become degraded during development



and production. The first steps taken to provide NASA with system reliability
commensurate with mission success and crew safety requirements was the
preparation of the Guidance and Na‘}iga'tion Reliability Program (R~349), This
document defined the specific levels of effort, MIT responsibilities, and the role
of the participating contractors in the Apollo reliability program, In short, R-349
established the program in which MIT was responsible for administering and
controlling the design, development, production, shipment and field use of G&N
systems. It was shown therein that the participating contractor's function was to
provide MIT with reliability support from their facilities within the scope of their
negotiated contracts with NASA,

The scope of the G&N reliability program was established by NASA in NCP
250~1 (Reliability Program Provisions for Space System Contractors) and was
implemented by MIT, the G&N industrial contractor, AC Electronics Division of
General Motors and directed subcontractors, Raytheon Company and
Kollsman Instrument Corporation, All aspects of this program were applicable to
all elements of Apollo airborne hardware and mission essential ground support

equipment.

3.4.2 Design Review

To assure that the potential for reliability existed in the design, and to
achieve early maturity in design, considerable emphasis was placed on the design
review aspect of the program. The Design Review Board (DRB) consisted of the
G&N Technical Director and his designated design group heads. Each design
group head in turn called upon design engineers and contractor personnel in his
area of responsibility to cover the design being reviewed. The membership of the
board was of personnel capable of providing a total assessment of the design under
consideration, An MIT reliability group representative and a systems group
representative were always present at DRB meetings, In addition to the technical
aspects of the design, other items considered were interface compatibility,

logistics, suitability for fabrication, assembly test or use, and reliability.

All documents describing or applicable to guidance and navigation hardware
including layouts, engineering drawings, specification control drawings, procure-
ment specifications, process specifications, assembly and test procedures, circuit
schematics, and wiring and logic diagrams were subjected to a design review prior
to the time of release or change., Essential reliability factors and principles of

design considered in the Design Reviews were as follows:
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(1) Tailure modes, probable cause and effect.

(2} Protection against human initiated failure or induced failure from other

causes,

(3) Standardization of design and parts,

(4) The elimination of inherently unreliable components.

(6) Use of known materials and processes,

(6) Component part application and derating.

(7) Producibility

(8) Maintainability

(9) Simplicity

(10) Safety and human engineering,
(11) Conformity to environmental specifications,

The complete details and operating procedures of the MIT Design Review
Board are contained in MIT Report R-496 (Design Review Procedures). Included
therein are mechanical and electronic design review check list forms, electronic
component stress analysis form, and DRB report form,

The contractors augmented the MIT effort described above by reviewing all
designs for considerations of producibility, optimization, standardization and
additional reliability of quality assurance and elements, They conducted design
reviews to great depth on elements of the system for which they were delegated
design responsibility, Recommendations stemming from contractors' reviews
were processed by them through the MIT engineering groups and then through the
MIT DRB.

All design releases, drawings, specifications, and documents associated

with manufacture fabrication, and test of Apollo Guidance and Navigation equipment,

and all changes thatwere made on these documents issued from the formal
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procedures of the Change Control Board., Configuration management, control and
identification requirements were defined by NASA in document NPC 500~1, The
procedures used by MIT to implement those requirements were defined in MIT
report E-1087,

3.4.,3 Reliability Testing

The design environment within which the Guidance and Navigation was
required to operate was defined in Interface Control Documents (ICD) negotiated
between MIT and the spacecraft contractors, North American Rockwell Corporation
and Grumman Aircraft and Engineering Corporation. North American was
responsible for the Command Module and Grumman Aircraft & Engineering for
the Lunar Module, The design environments included such things as acceleration,
vibration, shock, temperatures, humidity, pure oxygen environment, electrical
input power, and pressures. Since these were negotiated early in the program when
the anticipated environments were largely unknown, the ICD design limits were

generally conservative,

Design evaluation testing was conducted early in the design phase on
mockups, prototypes and first article development hardware to assure that the
equipment as designed did indeed possess the integrity and have the capability to
meet and exceed performance requirements, and to determine and define margins
and limitations of the design in excess of requirements. The design of each
element was rigorously examined with regard to thermal evaluation, mechanical
integrity, marginal voltages, vacuum, functional and operating characteristics,
stability, alignment, system integration and interface, and other peculiar
characteristics or environments such as humidity, salt, contaminants, and

electromagnetic interference to which a particular element is sensitive,

A formal Qualification Test Program was established to provide maximum
assurance that the G&N equipment performed its required functions under the
environmental conditions for the Apollo Mission. ND 1002037 (Apollo Airborne
Guidance and Navigation Qualification Specification) identifies the elements of the
G&N system and the block configuration to be qualified to each type of environmental
stress level. In general, the total G&N system was qualified to nominal mission
levels, and the subsystems and subassemblies were qualified to design levels with
overstress in critical environments. Parts were gualified to a design level with
emphasis on ability to determine part quality. The qualification criteria for parts
were established by: (1) the expected maximum stress level anticipated in the worst

case system application, (2) and adequate margin of safety, and (3) the degree to



which a measure of guality in the manufacturing techniques was desired,

Separate reliability programs were conducted for the IRIG and PIP, They

are discussed in the IRIG and PIP sections of this survey.

3.4.4 Reliability Analysis

During the conceptual phases of the MIT design effort, considerable
reliability analyses were performed on the Apollo mission and various design
approaches or system configurations to estimate mission success probabilities,
Techniques of redundant computers, IMUs, and inflight maintenance were
considered, As a result of these studies, it became readily apparent that mission
reliability requirements for guidance could be attained without either major
redundancy within the system or inflight maintenance if the reliability of two system
elements could be significantly improved over current experience, namely, the

computer micrologic and the gyros used in the IMU,

The micrologic problem was attacked by a searching test activity leading to
an understanding of the various failure mechanisms prevalent in the devices,
Correction methods and control of supplier processes incidental to the fabrication
of these devices were instituted followed with special screening tests on a lot basis
where dropouts were classified and special criteria imposed to allow judgment on

the acceptability of each lot for Apollo flight hardware,

MIT's analysis of the Apollo mission and experience with gyros in
ballistic missile guidance systems clearly indicated a positive technique of
assuring that each flight gyro would have an MTBF inflight in excess of 100, 000
hours. An exhaustive test program was conducted to study the effects of turn-on
and turn-off versus continuous running on performance parameter degradation and,
in addition, develop a technique of predicting impending failures, Using this test
data as a basis for selection, the performance data on the total population of Apollo
gyros were evaluated and criteria evolved for comparing the performance history
of a specific instrument against the entire population thus allowing a highly confident
assessment of a specific gyro's reliability over the next several hundred hours of
operation, Such an assessment was made periodically on each gyro in service and

shortly before committing any gyro to a flight mission.
3.4.5 Materials

During the hardware design phase, MIT established a '""Material Review

Board' very similar in nature to the Design Review Board previously mentioned.
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This board, comprised of qualified engineers, chemists, metallurgists, and
reliability experts, functioned to review all materials selected for use in the
guidance system design. All material was considered for its potential effect
upon the vehicle environment, i.e., outgassing, toxicity, flammability, com-
bustibility, and interface compatibility with other materials, Areas of question
as to suitability in the design were resolved by test and experiment, As a result,
materials having undesirable characteristics were eliminated from the design,

thus generating the highest confidence in acceptability of remaining materials,

3.4.6 Component Parts

During initial design stages of the guidance system, MIT employed a
specialized team of reliability engineers to work directly with design engineers
in the selection and application of parts, Parts were procured only from approved
and qualified vendors, Throughout the Apollo program, all sources of supply for
parts were strictly controlled by MIT, New parts as required were extensively
evaluated and ultimately qualified for Apollo usage. This effort included the
preparation and release of very strict specifications of each part for use in

fabrication of flight systems,

In addition, MIT established and implemented, with the support of
participating contractors, a system for controlling the processes and fabrication
techniques employed by suppliers of all parts having a critical application within
the Apollo guidance system. This effort, which was largely successful, has been
responsible for assuring uniform quality levels of purchased piece parts and
components procured from time to time throughout the duration of the Apollo

program.

There were two basic sources of information to assist the designer in the
selection of a purchased part, The first was the Qualification Status List, (QSL.),

ND 1002034 which provided part identification and status of qualification,

The second source of information was the Standard Parts Manual. This
manual contained the procurement specification control drawings (SCD) on all
parts listed in the Qualification Status List as well as other nonpreferred items
that were being used on other projects, Before any nonpreferred part could be
used, it had to be added to the project QSIL.

In the event a designer could not find an appropriate part, desired

additional interpretation on information found in the two documents mentioned above,




or wished to use a nonpreferred part, he had to seek assistance from the
Reliability Parts and Materials Group., This group consisted of parts specialists
whose job was to control the qualified suppliers list and be aware of the capability,
quality and availability of parts in their particular field, This awareness included
"state of the art'' exotic devices as well as time-honored, standard military parts.
An individual of this group worked with the designer in the identification and
selection of the required parts and many times could offer assistance in vendor
contact and expedite sample procurement. This same individual, upon agreement
of the designers that the part was indeed suitable, would initiate the request for

documentation.

The program Quality Assurance requirements for suppliers of parts and
materials was delineated in Apollo G&N document, 1015404,which imposed rigid
configuration, process and Quality Control requirements, These requirements
were divided into three categories: class 1 (critical), class 2 (semi-critical), and
class 3 (noncritical), Class 1 was invoked for parts that contributed greatly to
mission reliability or had widespread usage, Class 2 was specified for parts that
were potential contributors to mission failure but were not used extensively. Class
3 was usually reserved for noncritical mechanical hardware items. Documented
and enforced supplier control was required for parts in class 1 and 2, which had to
be negotiated, The contractors implemented this aspect of the program and assumed
the responsibility for monitoring supplier quality by means of surveys, inspection
data and documentation control, Included in documentation control was traceability,
material lot and/or age control, and process controls, The category of each pur-

chased item was identified on its specification control drawing,

3.4.7 Failure Reporting and Corrective Action

The Apollo Guidance and Navigation Failure Reporting and Corrective
Action System is described in great detail, complete with forms and implementation
procedures in MIT report E-1322, For this reason, just a short summarization
with an accompanying flow chart is presented in this document. The requirements
of E-1322 were effective for MIT and each of the contractors beginning with
acceptance tests at the assembly level and continuing throughout equipment life,
Regardless of location, the current failure reports were given appropriate
dissemination to MIT and the contractor whose hardware may be involved, The
original copies of the failure reports were collected and correlated at the Guidance
and Navigation Data Center, Failure analysis and corrective action responsibilities
were assigned by the respective contractors and effectiveness monitored by cross

correlation to individual failure reports. Any item that had not received appropriate




analysis or corrective action remained a problem area and was periodically
reviewed, E-1322 also contained information relative to how the accumulated data
were handled and analyzed in order to present meaningful failure information and

trend indications.

As the flow chart in Tig., 3-4 also indicates, failures or discrepancies
occurring during in-process fabrication, assembly, or test within the contractors'
organizations were handled with the individual contractor's internal reliability
procedures unless they were of sufficient import to warrant consideration under the
plan described in this document, The detailed implementation procedures and a

definition of this activity were contained in the contractor's quality plans.

Failures occurring during the design and development phase at MIT were
reported to the MIT reliability group on the short form ‘see Fig., 3-5) for cataloging
and following proper corrective action, Information pertaining to significant
development failures was transposed by the Reliability Group to the G&N failure
form as required by the G&N failure reporting and corrective action system (E-1322)
and transmitted to the G&N data center for processing as part of that system. As a
result, all significant failures occurring during design verification tests, qualifi-
cation tests, and tests on deliverable end items or spares were included in this
system, Not necessarily included, unless of special importance, were data from

breadboard evaluation, and part and material design evaluation.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
APOLLO GUIDANCE AND NAVIGATION

MALFUNCTION REPORT FORM

Sub-assembly Name

Failed Part

Part Operate Hours

Serial No.

Value

Location

Manufacturer

Date

Mfg Part No.

Description of Oper. Conditions

Description of Trouble:

Cause:

Action Taken:

Submitted by

Group

Figure 3-5




Section IV

INERTIAL SUBSYSTEM (ISS) COMPONENTS

4.1 Pulsed Integrating Pendulous Accelerometer (PIPA)

4.1.1 General Description.

The PIPA (Pulsed Integrating Pendulous Accelerometer) used in the Apollo
Inertial Measurement Unit was a single degree-of-freedom specific force integrating
receiver, which operated closed loop as a torque-restrained pendulum. The instru-
ment consisted of a pendulous float magnetically suspended in a viscous fluid, sig-
nal generator and torque generator microsyns, and associated electronics and cal-
ibration modules. Figure 4-1is a schematic diagram of the Pulsed Integrating
Pendulum (PIP).

The pendulous float was a hollow beryllium cylinder with built-in mass imbal-
ance. Ferrite rotors were mounted at each end of the float and supported the mag-
netic suspension and microsyn functions. The float was surrounded by heavy fluid

that provided both a buoyant support and viscous damping.

An applied specific force along the input axis of the pendulum caused a ro-
tation about the output axis. This rotation was sensed by the signal generator and

used as an error signal to initiate a response from the torque generator.

A cutaway view of the complete pendulum is shown in Figure 4-2. The pendu-
lous mass was mounted on the periphery of the float and extended into a small
groove in the damping block. The width of the groove allowed a maximum float
rotation of + 1° of arc. The magnetic suspension stators were positioned opposite
the inside portions of the rotors and formed part of a coaxial structure with the
torque generator on one end of the instrument and the signal generator on the oppo-
site end. Four bellows provided for volumetric compensation of the damping fluid
between 10°C - 71°C. Two alignment rings on the end of the instrument permitted
accurate positioning of the input axis of the PIPA relative to the mounting surface.

The instrument was aligned to the mounting ring before incorporation in the IMU.

The overall block diagram showing the pendulum within its control loop is
presented in Figure 4-3. The signal from the signal generator was amplified and
used as an input to a sampler (called the interrogator) which sampled the signal at
discrete times determined by the guidance computer. If the signal exceeded either
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Fig. 4-1 Pulsed Integrating Pendulum Schematic
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the positive or negative threshold of the interrogator, a command pulse was sent to
the torque generator switch. The switch, in turn, commanded the proper polarity
current to the torque generator of the instrument and nulled out the error signal
from the signal generator. The switching times were precisely controlled by the
switching pulse train, The torquer current magnitude was controlled by an ultra-
stable dc current loop. Torque was applied to the float in discrete increments, and
for each increment, a pulse was generated and sent to the computer to provide a

continuous monitoring of the total torque applied to the instruments.

4.1.2 Operation.

4.1.2,1 Magnetic Suspension. The PIPA made use of two quasi-elastic magnetic

supports to properly position the neutrally buoyant float within the case. A cross
section of the magnetic structure used is shown in Figure 4-4. This figure depicts
the unique feature of separated suspension and transducer functions using a single
coaxial structure. Radial and axial centering was produced by action of the suspen-

sion magnetic field on the inner surface of the tapered rotor.

4,1.2,2 Signal Generator, Float rotations were sensed by an angle-to-voltage trans-

ducer called a signal generator. A cross sectional view of the signal generator
stator and rotor is shown in Figure 4-5. The primary coil of the signal generator
(SG) was wound in series around each of the eight stator poles. The flux paths set
up by these poles were typified by the flux paths shown in the figure. The 5G secon-
dary coils were wound such that the even-numbered poles were 180° out of phase.

If the contoured outside diameter of the rotor was perfectly centered and at zero ro-
tation relative to the stator (as shown in Figure 4-5), the total signal induced in the
secondary of the SG would be zero. If a rotor (float) rotation occurred in either the
positive or negative direction, a corresponding in-phase or out-of-phase output was
obtained across the SG secondary, since the reluctance seen by the positive second-

ary poles was no longer equal to that seen by the negative poles.

4.1,2,.3 Torque Generator. Except for the way the coils were wound, the torque

generator (TG) cross section was identical to that of the SG. The position of the TG
coils and resultant flux paths for positive torque are shown in Figure 4-6, Since

only one torquer was on at any time, there were two minimum-energy rotor positions:
one for positive torque, and one for negative torque. The rotor always tended to

line up at the minimum -energy position opposite the working poles. However, the
frequency of switching allowed only a minute oscillation about a center point midway
between the minimum energy points. The torque produced was proportional to the
square of the flux linking the rotor poles and thus was a function of the square of the

torquer current.
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Fig. 4-4 Apollo PIP Magnetic Suspension Cross Section




TYPICAL PRIMARY FLUX PATHS

STATOR

Fig. 4-5 Apollo PIP Signal Generator Cross Section




TORQUE CURRENT

RETURN TORQUE CURRENT

O/

@

TORQUE CURRENT STATOR
+

@ FLUX PATHS FOR POSITIVE
TORQUE
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The resulting torquing loop was a two-state or binary loop with torque
applied continuously in either positive or negative directions. The mode of
oscillation of the float was determined by the design parameters of the instrument.
If m pulses occurred alternately in each direction, an m:m mode was declared to

exist,

The velocity equivalent of one torque pulse was defined as the scale factor
of the instrument having the units of cm/sec/pulse. Inequalities in the positive and
negative torquing circuits caused an imbalance in the resulting output pulse train
(with no input). The measure of this imbalance was defined as the bias, Bias was
usually defined in terms of an equivalent acceleration applied to the float; e. g.,

a bias of 1 dyne cm is equivalent fo an acceleration of 4 cm/sec2 applied to a

floalt having a pendulosity of 0.25 gm cm.

4.1.2.4 Ducosyn Flux Patterns. Figure 4-7 shows the flux pattern present in the

ducosyn. The heavy lines represent the flux paths for the odd poles (+ torque) and
the dashed lines represent the flux paths for the even poles (- torque). Also shown
are the flux paths for the magnetic suspension. Since the rotor was a single ferrite
piece, these fluxes were all superimposed in the rotor. The single piece ferrite
rotor used in the Apollo PIP allowed interaction of the suspension and torquer
fluxes. Assymmetries in the superposition of these fluxes in the rotor could have
caused variations in PIPA bias which were dependent upon the phase relationship

of the fluxes. Operation in the reverse torquer configuration (reversal of current
flow in one torque winding) brought about a symmetric superposition of fluxes which
would be almost independent of phase and would have reduced any bias changes to

second order.

Three different conditions of flux were present in the stator. The flux
existing in the poles was the on-off type, as shown. The flux in the back iron
section, b, d, fand h, reached a dc level once the unit was turned on. (This
condition remained constant except for a slight transient that occurred at switching
intervals.) The flux in sections a, ¢, e and g was an alternating one. The stator
flux magnitude should not have changed regardless of the torquer winding that was
being energized; only the duty cycle of the positive and negative pulses should
have changed. Changes in the permeability of the ducosyn materials would cause
variations in the flux magnitude resulting in changes to the scale factor and bias,
Permeability changes could have occurred as a result of transient overshoots in the
torquer or suspension currents at system turn-on and by stresses incurred as a

result of slow curing of microsyn encapsulating materials,
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4,1.2.5 Electronics. A functional description of the electronics involved with PIPA
operation is depicted in the control-loop block diagram, Figure 4-3. The filtered
SG signal was amplified by the preamplifier and ac differential amplifier and sent

to the interrogator. The interrogator utilized a dual channel peak detector that was
synchronized by the interrogator pulse train from the computer or system clock to
determine the polarity of the signal from the ac amplifier. The outputs from the
peak detector controlled the state of two multivibrators that commanded either

positive or negative torque from the switch.

The binary current switch controlled the direction of the current flow from
the current source in accordance with the commands received from the interrogator.
A switch pulse-train synchronized the switching of the second multivibrator stage in
the interrogator such that the pulses of current sent through the torque windings

were of equal width,

The current loop is expanded in Figure 4-8. The output of the switch was
sent to the calibration module, This module provided the necessary passive com-
ponents to make the torquer coils of the PIP appear purely resistive thus controlling
switching transients-and optimizing current stability. Bias adjustment was obtained
by use of the resistive shunting circuit, Fine padding of the resistive loads, Rl’ in
series with the torque windings, allowed equalization of the time constants, T1 and
T2.

The voltage drop across the scale factor (SF) resistor was compared with a
precision voltage reference (PVR). The error voltage was amplified by a high-gain

dc differential amplifier and used to control the current magnitude in the loop.

4,1.2.6 Mode of Operation. Initially, the Block I Apollo torquing loop was designed

as a three-state or ternary loop with no torquing pulses applied to the float if the
output of the ac amplifier was less than the interrogator threshold. This approach
was taken to conserve spacecraft power. Testing of the early PIPAs revealed that,
as a result of the magnetic hysteresis of the torquer stator and rotor material, a
significant residual flux remained in the core when the torquing current was removed
and caused the instrument to show large bias variations that were dependent on the
polarity of the last applied torquing pulse. It was further determined that the resi-
dual effects could be largely eliminated if alternate torquing were imposed contin-
uously on the torquers thus creating a nearly constant average magnetic state in the
materials, Consequently, a decision was made to establish a binary loop to neutra-

lize the effects of the hysteresis.
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4,1, 3 Problems and Solutions,

4.1.3.1 Scale Factor Ingtabilities, (1) Torque Current Overshoot -- Torque current
transients in excess of normal operating current levels will change the permeability
of ducosyn magnetic materials by raising the operating level on the B-H curve. This
phenomenon was identified early in the program. It resulted from the finite time
required for the torquing electronics to stabilize during turn-on and also because of
the decay characteristics of the electronics during turn-off. Design changes were

made in the electronics which limited these transients to acceptable levels.

(2) Excitation Overshoot -- Superposition of torquer and suspension fluxes in
the ferrite rotor can result in portions of the rotor being pushed far into saturation
if an excitation overshoot occurs at the time one torquer is full-on. This phenomen-
on was demonstrated at both the microsyn and completed instrument levels, The
complexities of the IMU circuitry thus far has not permitted the demonstration of
this phenomenon at the system level. However, data analysis plus experimental
evidence that large scale factor and bias shifts occurred frequently across IMU turn-
off and turn-on, gave indications that excitation overshoot effects were a definite

possibility.

(3) Long Term Drift -- Long term curing of the torquer microsyn encapsu-
lating material caused variations in the siresses exerted on the torquer stator by the
encapsulant. The permeability of the torquer stator varied as a function of the

change in stresses with a resulting change in the scale factor of the instrument. The
scale factor change was initially about -150/ppm/month but exponentially decayed to
nearly zero in 12 to 18 months, The magnitude of the scale factor change was pre-
dictable once a history of scale factor measurements of the unit was established

and accounted for.

(4) Pendulosity Change -- On several early Block II units, the hollow float
used in the PIP was not adequately sealed and damping fluid leaked into its interior.
The presence of damping fluid in the float produced a variable additive component
of pendulosity. Since scale factor is inversely proportional to pendulosity, a large
and unstable change in scale factor resulted. The sealing technique used with
these units was devised for a less viscous adhesive than was actually used resulting
in an improper adhesive flow and a poor bond, An improved sealing technique was

developed, however, which corrected this problem.

4.1. 3.2 Bias Instabilities.(l) Excitation Overshoot -- As discussed in the previous

section, excitation overshoots could have occurred in the Apollo IMU. I the rotor
saturation caused by the overshoot affected both torquers equally, only a scale factor
shift would have occurred, To the extent that the saturation effects were asymmet-

rical, a bias shift would result,
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(2} Ac Hysteresis -- The term ac hysteresis is applied to bias variations
caused by suspension fluxes coupling through fringe portions of the rotor when the
. float is allowed to rotate to an angular stop. This effect was controlled by adequate

specification of the magnetic properties of the rotor material,

(3) Position Memory -- Position memory was an acceleration bias exhibited
by the PIPAs, Position memory caused a bias change of 0.1 cm/sec:2 for an accel-
erometer input ranging from 0 to + 1 g. The change in position memory bias as a
function of imput acceleration was predictable and thus was compensated for since
the expected acceleration profile was known, It was thought that eddy currents in
the stator were a contributing factor to position memory, The eddy currents caused
the flux levels in the stator to be frequency dependent, In the presence of an accel-
eration, the frequency of the binary torquing (either plus or minus) would vary and,
as a result, the average flux levels would likewise vary, The net result was an ac-
celeration dependent imbalance between the plus and minus torquing loops., A possible
cure for this phenomenon is currently under investigation and involves using a torque
generator stator material of higher resistivity thus reducing the magnitude of the
induced eddy currents. Preliminary tests indicated that this approach has some

merit,

(4) Reversal of Torque Location -- The original PIP design had the torque
generator located at the end of the instrument that contained the mounting arrange-
ment, It was noted that bias changes were affected by stresses applied to the torquer
by the clamping forces used during PIP alignment, The torquer was placed on the

outboard end of the PIP, and a major source of bias changes was removed,

(5) Fluid Impurities -- Contaminants or gas bubbles within the damping fluid
can become positioned between the float and the case of the PIPA exerting error
torques on the float, Proper filling techniques would minimize the possibility of
foreign particles in the fluid at the time of manufacture. Gas bubbles could result
from air leaking into the instrument from outside or from helium gas leaking into

the fluid from the hollow float or from the bellows,

A cemented metal band was used to seal the joint between the two end housings
of the PIP. This joint, as well as the float and bellows seals, was carefully checked
before filling the unit with damping fluid, Filling the instrument was accomplished
through small fill holes at either end of the case, Once filled these holes were sealed

using metallic compression seals,



By use of the above technique, the possibility of air leaking into the instru-
ment was virtually eliminated. Slow leakage from the float could easily be kept to

acceptable levels with known cementing and fabrication techniques,

The bellows remained one of the most critical elements in the design. Rigid
screening tests on the bellows and careful inspection by X-ray techniques alter

completion resulted in bellows failures becoming rare occurrences,

4.1,3.3 Input Axis Instabilities. (1) Fluid in the Float -- As discussed in the above

section on scale factor instabilities, some Block II units leaked damping fluid into

the hollow float resulting in pendulosity changes., The pendulosity changes were both
in magnitude and direction, the directional changes causing an IA shift within the
unit. In the case of these units, the IA shifts obtained were large (>10 ﬁi\n).

(2) Fluid Behind Rotors -- During the Block II program, a minor IA shift
problem was discovered on some units, The rate of IA shift was in most cases less
than 20 s/(;/ day. The cause of the shift was traced to the existence of small crevi-
ces behind the rotor which became only partially filled with damping fluid at the time
of fill, The fluid within these crevices was then free to move within a limited channel
behind the rotor as a function of the position of the instrument relative to the gravity
vector, Recent changes in the rotor assembly technique were expected to eliminate

this problem,

( 3) Suspension Hang-Up -- Suspension hang-up is caused by the air gap be-
tween the suspension stator and rotor on a given suspension becoming large enough
to cause the unit to operate at, or slightly beyond, resonance, Because of build
tolerances which cannot be easily tightened, a small possibility exists that an Apollo
pendulum may hang-up if the float is allowed to settle into an axial extreme, As a
precautionary measure, all PIPs were required to pass a suspension hang-up test

which insured that the float would re-center from any possible rest position,

(4) Temperature Sensor -- After several failures with the original sensor,
it became apparent that the sensor leads should have been attached to the flat wire
sensor on the PIP with a strain loop. This design change was complied with early
in production, A resistance check using a megohmmeter was introduced in order to
eliminate any unit which might have suffered a shorting-type failure resulting from

assembly pressures,

(5) Moding Change -- Utilization of the binary torquing loop in the Apollo

PIPA resulted in a stable oscillation of the float about its null, or minimum TG




output signal. The number of torque pulses occurring during each positive or
negative going half-cycle was an indication of the operational mode; i.e., two pulses
. alternately in each direction was defined as a 2:2 mode, The mode actually obtained
for a given instrument was dependent on a number of parameters, including the
angular moment-of -inertia of the float, the TG sensitivity, the magnitude of the

torque pulse, and the viscous damping,

Early Block I units moded a mixed 3:3 plus 4:4, The presence of the 4:4
mode required additional computer time, Accordingly, the viscous damping in the

PIPA was increased to a value which would insure the elimination of the 4:4 mode,

(6) Gaussing -- Gaussing is a term used to describe bias changes resulting
from variations in the magnetic state of the TG rotor [ stator pair. The rotor operates
as part of the suspension and torquer magnetic circuits, Current overshoots in
either of these two circuits would have produced non-reversible changes in the mag-
netic operating point of the rotor material. Furthermore, large changes in rotor
orientation such as torquing of the rotor to a rotary stop because of a malfunction
in the torquing circuit would have caused changes in the magnetic state as a result

of disaccommeodation. *

In an adequately controlled environment, gaussing would not constitute a
problem., However, the Apollo system was not immune to transients (particularly

during turn-on, turn-off sequences), and gaussing did occasionally occur,

Theoretically, degaussing is the elimination of a gaussed condition by the
application of a high level ac flux to the torquing circuit, The flux level is reduced
gradually to zero and in theory should result in no magnetic hysteresis in the material,
In practice, however, the material was found to exhibit some residual hysteresis
after degaussing., If the degaussing operation was always performed in an identical
manner, a fixed residual was obtained, with a corresponding repeatable bias level,
However, some variations normally occurred in the manual degauss cycles with
resultant bias variations., The use of an automatic degausser optimized the degauss

cycle repeatability and normally resulted in a stable reference bias level.

4,1.4 PIP Repair/Redesign Program.
An improved configuration was developed for the PIP repair program. The
redesign was instituted in an effort to eliminate failures resulting from bubbles and

accumulations of fluid in or around the float. Sample instruments were built and

*Disaccommodation is a time~dependent variation in the permeability of a magnetic
material following a change in the magnetic field within the material.

>
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the design was verified. NASA then contracted with Sperry to do failure analysis
and verification, rebuilding and testing of 50 PIPs, the majority of which were

internal repair units.

4,1.5 Conclusions
With the experience of seven years, numerous conclusions may be drawn

regarding the good and bad features of the program.

(1) Since the basic PIP represented a more sophisticated version of the
Polaris PIP, which had been in production for some time, most technical problems
occurred in external areas of the new instrument such as modules, cabling, con-

nectors and alignment rings.

(2) The importance of a reasonable degree of personnel and organizational
stability cannot be overemphasized. MIT maintained a constant group on the task,
whereas the Sperry engineering and production groups experienced some shifting of
personnel. The program by and large was a successful one, certainly to the extent
that changes, improvements, and corrections, where required, were integrated into
production with a minimum of impact to an uninterrupted delivery of PIPs to the

program.

(3) Monitoring of instrument performance in the field, coupled with an active
failure analysis and corrective action program, provided the means for revealing
any deficiencies in the design or construction of the instrument. As the quantity of
occurrences of each recognized example of degraded performance or field failure
reached a statistically meaningful total, analytical and correlative techniques be-
came effective in diagnosing the basic cause of the problem thus permitting appropri-

ate corrective action.

(4) Any reliability test program aimed at determining the life characteris-
tics of a component such as the Apollo accelerometer must be most carefully planne:
and executed if meaningful results are to be achieved, The 16 PIP life test program
was initiated with the purpose of determinimg an MTBF for this component of the
Apollo guidance system.

The planning of this test program proved difficult from the very beginning.
First, there were no recognized normal field failure modes for the 16 PIP, The
build process and the acceptance test cycle was designed to eliminate the likelihoc
of electrical shorts or opens and particulate matter in the damping gaps, these bei
the only recognized failure modes. With only nine units assigned to the program,

it was recognized that thousands of hours of operation might well generate no failures



at all, This turned out to be the case, Performance limits were therefore set up,
more or less arbitrarily, to provide some measure of the operational reliability of
. the instrument, Some attempts were made to determine environmental effects but,
because of the limited number of sample units available, no definitive results could
be obtained, Because of the unavailability of a sufficient number of regular test

consoles and the desire to avoid impacting the acceptance testing schedule, special,

relatively inexpensive, electronic run-in equipment was designed and constructed,

The instruments were operated on a long term, continuous basis on this set-
up and transferred to a regular test station at periodic intervals for official data
checks, Puzzling performance differences were noted when comparing results ob-
tained at the electronic run-in station versus those secured at the console test
station, The inconsistencies in the data could not be explained by the test and
engineering information then available. Eventually, the reasons for these inconsis-
tencies were learned, and it was then apparent that the life test setup was not suitable

for evaluating the instrument performance. The effort was therefore terminated,

4,1,6 Recommendations

The results of seven years of experience with the 16 PIP MOD D, as used in
the Apollo guidance system, have shown the instrument to be basically an excellent
one for the intended purpose. The effect of system interfaces on performance have
been throughly studied. The deficiencies of the instrument have, to a great extent,

been revealed and corrective action taken to eliminate or minimize them,

A limited number of conditions still remain for which an explanation and

effective corrective action have not yet been developed,

(1) Analysis of repair unit failure data revealed that a sizable percentage of
units experienced a shift in uncompensated bias in excess of that which could be
ascribed to test equipment variation, Investigation into the cause of this shift should
determine whether the shift is stable, thus permitting the use of these instruments

and eventually allowing development of corrective action fo eliminate this condition,

(2) Certain anomalies in the bias performance characteristics have been
identified as resulting from disaccommodation in the ferrite material or the PIP rotor.
Work is underway to improve the magnetic structure of the ferrite in order to mini-

mize the disaccommodation.

( 3) Certain other anomalies in the bias performance characteristics do not
appear to be related to the disaccommodation phenomenon, and the cause is as yet
undetermined, This anomaly is identified as position memory,



(4) There is another magnetic effect associated with gaussing which causes
both bias and scale factor variations in performance, An effort to make use of an
ultra-sensitive airbearing torque-to-balance loop in an attempt to identify and quan-

tify this effect is underway.

4,2 Inertial Reference Integrating Gyro (IRIG)

4,2,1 General Description

The Apollo Block I IRIG was basically a modification of the type of gyro
used in Polaris, that is, a single degree of freedom, floated integrated instrument.
Its wheel assembly was supported by a pair of preloaded angular contact ball bear-
ings adjusted to give an isoelastic structure having equal compliance along the spin
and output axes. It was enclosed in a sealed, spherical beryllium float., The wheel
assembly was driven by a hysteresis synchronous motor in an atmosphere of helium
which prevented corrosion of the ferrous parts and also provided good heat trans-
fer within the float, The filoat assembly was suspended in a brominated fluorocarbon
flotation fluid which provided flotation and damping. The fluid was fractionally
distilled to yield polymers of approximately the same length and nearly the same
viscosity. This minimized fluid stratification under operating and storage conditions,
A ducosyn at each end of the unit performed the task of signal and torque genera-

tion,

A ducosyn consists of a separate magnetic suspension assembly, a separate
transducer microsyn mounted as a single coaxial-coplanar unit, and contains two
separate stators mounted to the case and two separate rotors mounted on a common
ring on the float assembly. The signal generator ducosyn was mounted on the posi-
tive output axis end of the float to provide magnetic suspension and serve as a
transducer to provide an electrical analog signal proportional to the position of the
float, A torque generator ducosyn was mounted on the negative output axis end of
the float to provide magnetic suspension and serve as a transducer to convert an

electrical error signal into a torque about the output axis,
The IRIG characteristics are summarized in the following table,

ELEMENT TYPE SPECIFICATIONS

Wheel assembly 28 Volt, 2 phase, 800 Hz Angular momentum:
0.434 x 10° gm cmz/sec
at 24,000 rpm




ELEMENT TYPE SPECIFICATIONS

Damper Brominated Fluorocarbon Damping coefficients:
Density 2.385 gm/cc at about OA: 4,75 X 10° dyne
137°F em /[ rad/ sec

about IA: 1.5X 109 dyne
cm/ rad/ sec

about SRA: 1.5 X 109dyne

cm/ rad/ sec

Signal generator 8 pole E-connected micro- Angle sensitivity;
syn 4V, 3200 Hz 10mV / mr
Torque generator 12 pole modified E - torque sensitivity T (+)
connection with reset or T 7 to common:
and bias compensation 0.6 dyne cm / ma?
windings,
Magnetic suspension Tapered, 20° included Radial stiffness 6 gm /
angle 0. 0001 inch
Axial stiffness 0,8 gm/
0.0001 inch
Temperature Sensors Two thermistors on Resistance:
each end housing 345 ohms at 137° F
suspended in fluid Resistance gradient:

6 ohms /° F / thermistor

Mechanical Character- (1) Shroud jacket: provides magnetic shielding and
istics vacuum envelope for the gyro.
Prealignment unit (2) Size: 2,810 dia X 5,10 in,

(3) Weight: 1,97 lbs,

Figure 4-9 is an illustration showing the main features of the gyro instrument,
During final IRIG assembly, a prealignment package was added to the signal genera-
tor end of the gyro case, Addition of this package.made the gyro a prealigned unit,
The package contained the following components:

(1) Suspension capacitors for ducosyn suspension,

(2) Temperature sensor normalization,
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(3) End mount heater prealigned to the gyro input axis,
(4) Torque generator normalization,

(5) Signal generator preamplifier with normalized gain,

The gyro was prealigned on a test stand with the input axis aligned to a slot
in the mounting ring. The alignment was carried over to the IMU stable member
where a pin was precisely located to pick up the slot, The use of prealigned com-
ponents made assembly techniques simpler, and brought about excellent correlation

between component and system performance of the gyroscope,

The prealignment hardware consisted of a heater and end mount assembly,
signal generator preamplifier, and normalization networks (See Figure 4-10). The
heater and end mount assembly maintained the gyro at proper operating temperature
and performed the task of accurately maintaining input axis alignment with re-
spect to the IMU stable member or test stand. The preamplifier amplified the
signal generator output and normalized the signal generator -preamplifier gain pro-

duct for the instrument,

The normalization networks adjusted the suspension current, torque generator
sensitivity, bias compensation current, and temperature sensing resistance, The

prealigned gyro constants were:

(1) Suspension current phase : -45° + 3°

(2) Temperature indication at 137° F: 769.6 ohm + 1.0
(3) Bias drift adjustment: 0 +5 meru*

(4) Gyro transfer function: 1200 + 30 mV/mr, .

(5) Pulse torque scale factor: 7r/220 +500 ppm rad/ pulse

4,2,2 Apollo I Gyro Problems
The Apollo I gyro problems were related for the most part to magnetic

suspension, the torque generator, and manufacturing,

(1) The gyro bias drift was different depending on which torquer winding
was excited last (positive or negative). This was the result of residual magnetism
left in the torquer core after torquing current was removed. To compensgate for
this drift component, the torquing was programmed to always end a torquing se-
quence in the same direction, that is, the last pulse was always a T+. This left the
bias torque resulting from the residual magnetism phenomenon always in the same
direction, The magnitude of this term remained constant within reasonable bounds

and was compensated for by the Apollo Guidance Computer,

*1 meru = 1 milliearth rate unit = 0,015 degree/hr.
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{2) The gyro floats displaced radially when the torquer was energized,
This displacement regulted from asymmetries that were attributable fo manufactur-
ing tolerance buildup, and to tolerances associated with how closely the magnetic
suspension centering could be achieved. Some units that were displaced to their
jewel extremes during torquing resulted in up to 2% pulse torque scale factor un-
certainty (The required stability was 0,1%.) The value of the magnetic suspension
damping resistor was correspondingly decreased to stiffen up the magnetic suspen-

sion thus reducing the radial displacement when the torquer was energized,

(3) Some of the first units developed acquired suspension shorts to the gyro
end housing. These shorts were caused by insufficient insulation between the end
housing printed circuit boards and the mu-metal shields. This problem was recog-
nized and corrected by providing more clearance between the printed circuit pins
and the mu-metal shield, and by increasing the thickness of insulation between the

printed circuit board and the shield,

(4) A design improvement increased the efficiency of the gyro motor by
changing the hysteresis ring material from Graphmo to Simonds 73, Because of
scheduling problems, this change cou.ld not be incorporated into all units and re-
sulted in gyro units utilizing both materials., The system wheel supply compensation
had to be selected depending on the distribution of gyros in the system using Graphmo/
Simonds hysteresis ring material, For this reason, a gyro change in an IMU could
require a wheel supply compensation change, hence causing a program impact by

not supplying true gyro interchangeability.

4,2,3 Block II Changes
4.2.3,1 Reset Winding During the Block I phase, it became evident that significant

improvements could be made in gyro design, Further improvements in the gyro
ushered in the second generation or Apollo II instrument., The Apollo II gyro main-
tained the features of the Apollo I with the exception of ducosyn design, In
redesigning the ducosyns, both the signal generator core and torque generator core
were changed from 8 poles to 12 poles, and a reset winding and bias winding were
added to the torque generator, The introduction of the 12 pole core made possible
the incorporation of the reset or wash winding as it is sometimes known, This
winding was excited with 3200 Hz, positioned on the poles in such a manner as to
provide no net torque to the output axis, and was most effective in washing out the
residual magnetism following a torquing pulse command., The reset winding per-
mitted simplification of the torquing logic and eliminated the need for guidance
computer programming to account for the bias term ordinarily present. The bias

adjust winding made possible the nulling of all non-g sensitive terms within the

gyro proper,
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4,2,3.2 NMu-Metal Shield. The 12 pole torquer did introduce a torquing rate sensi-

tivity to external magnetic fields that required incorporation of a magnetic shield
in the form of a mu-metal shroud end cover, Installation of this shield was required

as a retrofit to some of the Apollo II gyros.

4,2.3.3 Configuration Design. The magnetic suspension was redesigned to provide

axial as well as radial support for the float while increasing the radial restoring
force.

Redesign of the end housing to accommodate the 12 pole ducosyn also included
two other significant changes: The end housing was designed as a single piece
providing (1) better control on the concentricities of the suspension and microsyn,
and (2) micro-inch fit of the pivot, thus eliminating a radial centering problem that

had limited the final assembly process yields of the Apollo I gyros.

A comparison of the Apollo1 and II gyros is shown below.

APOLLOI APOLLOII
Wheel Package g Same -
3200 Hz 2 Volts 4 Volts
Excitation ~100 ma ~250
Signal Generator Single Ended Center Tap Sec
No Quadrature Tap Quadrature Taps
8 Poles 12 Poles
Suspension No Axial Axial 0.8 gm/0.0001"
Radial 2 gm/0.0001" Radial 6 gm/0.0001"
Reset Two Positive Pulses Reset Winding
After Torquing Negative 4V, 3200 Hz, 50 ma
Winding Continuously Demag-
netizes Torquer
Bias Winding No Bias Adj. ‘Bias Adjustment Bias.
Bias < 30 meru <5 meru Accep, Test
< Uncertainty Level
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APOLLO1 APOLLO 11

Torque Generator 8 Pole V 12 Pole Y
+ B + -
T ™ SEC SEC
(SEC) (SEC) PRI
Prealignment g Normalized Torque Normalized
Preamp on S. M H

& K Normalized

Preamp with Gyro
Bias adjusted

4,2,4 Apollo Il Gyro Problems

(1) The first Apollo II instruments showed a torquer sensitivity which was
influenced by external magnetic fields. The incorporation of a mu-metal end bell
on the torque generator end housing reduced this magnetic field sensitivity to a
negligible level.

(2) Prealignment hardware, initially, had a high incidence of solder joint
failures. The problem was caused by stresses in the solder joints resulting from
flexure of a printed circuit board as it was mounted in the prealignment case. Con-
sequently, the printed circuit board was made thicker, and the method of mounting
was changed to minimize flexure. These measures effectively eliminated the
problem.

(3) The gyro preamplifiers were susceptible to high frequency noise. A

capacitor placed at the preamplifier input eliminated this problem.

(4) A large number of float freedom failures, resulting from particle con-
tamination within the units, appeared in the early phases of Apollo II. Improved
control over the cleanliness of the assembly area, tighter control over assembly
procedures and a general improvement in workmanship and quality control made a

significant improvement.

(5) Approximately 50% of early gyro failures were the result of bearing
failures (<1000 hours)., This failure rate caused such a shortage of gyros that the
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use of workhorse or nonflight status instruments to complete system checkout and
selloff were required, A repair program featuring a new bearing design was intro-
duced, However, as a result of startup delays and somewhat modified manufacturing
procedures, the output of repaired gyros was too low to significantly reduce the

severe gyro shortage,

The reason for bearing failures continues to be under investigation. To
date, however, the principal reason for an increased failure rate relative to the
Block I bearing has not been discovered. The wheel package was unchanged from
that of the Apollo I gyros which exhibited a much better bearing life history,
Various cleaning procedures, lapping methods, and retainer redesigns were at-
tempted without conclusive results (See Section 4, 2,7 for a more detailed presen-

tation),

4,2,5 Failure Prediction
4.2.5.1 Reliability Test Program. At the start of Apollo system design, a gyro

reliability test program was initiated, Two aims of the test program were: (1) to
obtain a failure model for predicting impending system failures, and (2) to determine
whether intermittent operation, as planned for the Apollo guidance system to save
power, was any less desirable than continuous operation, A total of 10 gyros was
divided into two groups: six were operated continuously for 200 hours followed by
servo performance for 24 hours, ‘Four were operated intermittently, i.e,, with
wheels operating for 3 hours and off for 12 hours for a total of 210 hours followed

by servo performance for 24 hours., Except for servo runs, all running hours were
accumulated on a torque-to-balance loop, More than 52, 000 wheel hours were
accumulated on the 10 gyro units, Four wheel bearing failures occurred during

the accumulated running time,

Figure 4-11 compares the acceleration sensitive drift about the input axis
( ADIA) data for units that were run continuously with units that were run intermit-
tently, For the same operating time, the intermittently operated units resulted in
the more stable performance. Therefore, the intermittent mode of operation in
the system did not result in a performance penalty., There were no differences in
the BD and ADSRA terms for the two modes of operation,

4,2,5,2 Data Flow, Data on all the significant parameters of gyro performance
were collected for all units from the first component tests through all ISS and

G & N tests, These data were evaluated and formed the basis for failure prediction,
Moreover, procedure was established for centralized assessment of all gyro and
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accelerometer data. The checkout procedures required that a copy of each data
record be sent to MIT. The flow diagram for data from a single gyro acceptance
test through flight is shown in Figure 4-12, The collected data were converted to
punch cards and magnetic tape in formats suitable for electronic data processing
and printing. Additionally, a monthly listing was printed both as an inventory and

as data tabulation.

4.2,5.3 Gyro Acceptance Plan. The gyro acceptance plan was based on the design-

reference lunar landing mission (DRM) of 200 hours total flight time. Of this

time, the gyro wheel was operated 20 hours including the operational time required
to initialize the GN & C system and to perform an inflight or ground alignment of
the inertial measurement unit (IMU) and, also, operation during thrusting periods.
The maximum cumulative wheel operating time, including the final ground checkout
operation and a margin of safety, approached 300 hours. This value was therefore
chosen as an upper limit on the time of operation for maintenance of angular mo-

mentum.

Another constraint on gyro acceptance was the performance necessary to
insure a successful mission, Figure 4-13 shows the probabilities that gyro per-
formance changes would result in marginal mission performance. For example,
changes in IA acceleration sensitive drift of less than 1000 meru/g among any of
the three gyros would not create errors equal to those listed in Figure 4-13, thus
1000 meru/g was the upper boundary for change in gyro performance. Unless drift
rate curves for a flight gyro lie to the left of the appropriate curve, a marginal

mission is indicated.

Inflight measurement of gyro performance, to correlate gyro performance
with mission performance, was considered, but measurement of the acceleration
sensitive drift along the input axis (ADIA) and acceleration sensitive drift along
the spin reference axis (ADSRA) appeared impractical. One possible method would
have been to make a position and velocity error comparison between ground and
onboard state vectors, and then to have inferred the specific gyro terms that
caused the deviation. The bias drift (BD) terms could have been measured in free
fall, Then, after successive IMU alignment, the changes in angular errors measur-
ed during a time interval would yield BD. Two important aspects of the gyro
acceptance plan included drift performance and system tests, and performance

indicators.

(1) Drift Performance Tests & System Tests -- Drift performance data were
generally obtained utilizing an inertially stabilized loop (See Figure 4-14). The

gyro instrument was mounted on a test table such that the input axis was parallel
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to the table axis. The gyro signal generator output was amplified and fed to a
table servo loop., 'The output of the table servo loop drove the table torque motor
and rotated the gyro about its input axis. In this loop, an ideal gyro would have
maintained its input axis fixed in inertial space. As viewed from the earth, the
test table would have rotated by an amount equal to the component of earth rate
sensed along the gyro input axis, Drifts (deviations from earth rate measured in
meru) would occur as a result of torques that act about the gyro output axis, Since
the magnitudes of these drift rates can be compensated, the drift rate stabilities
provided a measure of the performance of the gyro instrument. A table rate,
determined from the time required for the table to rotate through a prescribed
angle (e, g., 1°), gave the average drift rate over a period of time. By consecu-
tively positioning the table axis so that gravity acted along three gyro axes, the
ADSRA, ADIA, and BD drift terms could be determined by solving simultaneous
equations, The stabilities of these drift terms were determined by repeated
measurements after periods of storage time or by a continuous measurement of

table drift rate for a fixed orientation with respect to earth rate,

The design and operational goal for mean time between failures (MTBF')
was 100, 000 hours. That is, for a group of 500 gyros that passed the performance-
prediction criterion during preflight operations (with a probability of 67 percent),
not more than one failure was expected among the 500 during the ensuing 200 hours
of wheel operation of each gyro. The performance tests measured the torques on
the float and the float pendulosity about the output axis, Other tests measured
parameters that were performance indicators, e.g., the retainer beat frequency

and the stability of the required driving power,

(2) Performance Indicators -- The rotating ball-bearing retainers pro-
duced a sinusoidal torque about the gyro output axis at a frequency corresponding
to the rotational velocity of the retainer, but since the average value of this sinu-
soidal torque was zero, there was no resulting drift error, The torque was
detectable at the gyro signal output as a sideband of the signal generator frequency
(3200 HZ ) and the retainer frequency (243 Hz). The magnitude of this signal
varied periodically as one retainer lapped or passed the other retainer, A change
in the lap frequency was caused by a change in speed of one of the retainers., This
frequency stability was found to be related to the ADIA stability, Figure 4-15
shows data for ADIA deviation versus retainer beat frequency for 25 gyro units,
The data for each unit were obtained from 12 hour inertially stabilized drift runs
with the gyro input axis vertical, Data points for most units fell close to a linear
relationship line, This technique was developed during the Apollo gyro production
program, Evaluation of this technique indicated significant advantages over many

methods now in use; ii's simple and easily implemented.
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The stability of the power required to operate the gyro motor indicated its
condition relative to such variables as frictional torques and gyro wheel bearings.
A pood power trace has excursions of 5 mW, or about 0. 1% of total wheel power.
Figure 4-16 shows traces taken at two times during the life of a gyro. At time A,
the power excursions were low, but at time B, a significant decrease appeared in
the stability of bearing torques. Finally, the wheel failed to reach synchronous
speed and bearing failure occurred. The milliwattmeter was used both to screen
bearings before they were installed in gyros and to determine whether there was
bearing deterioration on completed instruments. Power monitoring was performed

at component-level testing and on gyros installed in the IMU.

System tests of gyro performance measured gimbal angles or changes in
angle, One method used was to orient the gyro input axis in a direction as to have
zero drift, then, finding the gyro orientation with respect to the earth, the drift
performance was calculated. A second method was to measure an angular velocity
by the use of the gimbal angle transducers in the IMU. The base was assumed to

be non-rotating with respect to the earth.

4,2,6 Failure Criteria

The failure prediction technique had to have a high probability of rejecting
bad gyros and still had to be reasonably easy to implement. If at all possible, the
technique was to use parameters that also had a direct bearing on mission perform-

ance.

4.2.6.1 Delta-25 Criterion. From a study of the long term drift characteristics

of the gyro population, it was found that the ADIA term for 90 percent of the popula-
tion was stable to better than 25 meru/g. Since wheel bearing deterioration was the
principal failure mode for this instrument, a failure criterion related to a 25-meru/g
shift in the ADIA term appeared to offer a promising prediction device. This cri-
terion (Delta 25) required that the 25-meru/g shift occur at a single test location

to avoid shifts caused by test equipment variability, that is be verified by a second
data point to eliminate bad data, and that it occur across a storage period of less

than four months because shifts during long storage were noted in this instrument.

Figure 4-17 is a plot for unit, serial no. 3A16. The bearings of this parti-
cular unit failed in the reliability program. At approximately 2100 wheel hours, the
ADIA changed by more than 25 meru/g. The gyro was in the same location, and the
performance change was verified by a second test. At this point, it was predicted
that this gyro would fail. For the next 1500 hours, its performance was very respecta-

ble in that the total acceleration-sensitive drift along the input axis was less than
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30 meru/g. At about 3600 hours, the ADIA changed by more than 25 meru/g, and
after another 1800 wheel hours the gyro failed completely. After each Delta-25
indication, the total change in ADIA for the ensuing 300 hours was less than 28 meru/g,
providing a long lead time before the unit failed, During this lead time, gyro per-
formance was still suitable for an Apollo mission, Note that the bias drift (BD) was
very stable, and the acceleration-sensitive drift along the spin-reference axis
(ADSRA) changed very slowly during the life of this gyro. Small or gradual changes
in BD and ADSRA were characteristic for all wheels that failed,

Figure 4-18 is an example of prediction of system performance for a gyro
installed in the guidance system, The ADSRA term changed by more than 25 meru/g
at the time of installation into the system, Subsequent tests verified this change.
The Delta-25 criterion would not have picked up this parameter on that instrument
since it changed location, After installation in the system, a subsequent ADIA
change of more than 25 meru/g occurred and was verified. Upon this indication of
a potential failure, the gyro was removed from the guidance system and was tested
until the wheel failed, The wheel time accumulated after the Delta-25 criterion was
equivalent to 80 lunar missions, Again, the BD and ADSRA terms remained stable
until the gyro failed completely.

The Delta-25 criterion is now used for all gyros. To implement its use fully,
the performance of each gyro was measured periodically, Units that exceeded the
criterion were either removed as failures from the system to be verified or were

requalified. The requalification test was a rerun of the unit acceptance test,

4,2.6.2 The F Criterion. Since there was a correlation between ADIA instability

and impending wheel failure, any parameter that measured ADIA stability could have
provided a basis for failure prediction, There were three criteria that could be
applied: (1) a magnitude change in ADIA exceeding some level, e, g., the Delta-25
criterion; (2) the standard deviation of the ADIA exceeding some level; and (3)

the exceeding of some level by the rms value of successive ADJIA differences (rmssd).
All of these methods were found to obtain large magnitudes for a situation that oc-
curred frequently but was not an incipient failure, For example, a change in drift
could have occurred from dimensional changes in the float structure, with the drift
then becoming stable at a new level, It was difficult to find a standard magnitude-
or-deviation criterion that would account for a stable level change. The F criterion,
however, which was based on method 3, served this purpose, By the F criterion,

a failure was predicted if the rmssd of the last 11 ADIA data points exceeded

10 meru/g. A unit requalified if its rmssd later dropped below 10 meru/g. The re-
qualification indicated a unit that shifted in ADIA drift but was later stabilized. The
rmssd was defined by the following equation:
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1N 9 1/2
rmssd =| = 2 (x. - x. ,)
N 1 i-1
i=1

where X, was the present value of ADIA, and N was 11 for the ¥ criterion,

Figure 4-19 shows rmssd versus wheel hours for unit 2A5, which exceeded
the F criterion at 1500 wheel hours, 500 hours later it failed to start at the appli-
cation of wheel voltage, These hours would have been sufficient time to complete
two preflight tests and missions. Gyro 2A1l1 (Fig. 4-20) exceeded the ¥ criterion
during acceptance testing (300 wheel hours), later was requalified, then exceeded
the F criterion again at 1200 hours. It had stable ADSRA and BD performance even
after it had exceeded the F criterion for ADIA data. It was run intermittently for
another 800 hours before failure; again, there was adequate warning to have allowed

a successful completion of the mission,

4.2.6.3 Usefulness and Efficiency Indices for the Criterion. Usefulness and efficiency

indices are defined in Figure 4-21, The usefulness of a failure-prediction method
was considered as the percentage of gyros that were predicted good and, infact,
remained good. The efficiency of the prediction technique rested in the percentage

of gyros not rejected, For example, if 5 percent of the good gyros had been rejected,
prediction efficiency would have been 95 percent, For the Delta-25 criterion, the
calculated usefulness indices for the Apollo Block I and Block II gyros were 89 and

98 percent, respectively, The efficiency indices were 89 and 98 percent,

For the F criterion, all but one of the Apollo Block I bearing failures were
predicted. However, 23 units were predicted to fail but did not. This yielded a use-
fulness index of 99 percent and an efficiency index of 80 percent, For Block II, the

F criterion's usefulness index was 99 percent and its efficiency index was 96 percent,

4.2 6.4 Failure Criteria Summary. Failures were grouped into major categories and

were as follows:

(1) Bearing Failures -- This group contained non-start wheel units with
ADIA instability, decreasing wheel run-down time, and erratic wattmeter data in-
dicating an impending wheel failure, The group also included units that failed from
other causes, such as contamination, that is, when failure analysis showed the
wheel bearings to be badly deteriorated and imminently susceptible to failure from

this cause,.
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T = TOTAL GYRO POPULATION
P = PREDICTED FAILURES
F = FAILED GYROS

PF = PREDICTED UNITS
THAT DID NOT FAIL

PF = PREDICTED UNITS
THAT-FAILED

PF=FAILED GYROS THAT
WERE NOT PREDICTED

USEFULLNESS INDEX = —=EFE x 100
EFFICIENCY INDEX = T’TP_FP‘F"‘ X 100

Fig. 4-21 Usefulness and Efficiency
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(2) Float-Freedom Failures -- This group contained instruments failing the
float-freedom test., This test identified units containing foreign fluids or particulate
matter in the damping fluid, Most units, which had been identified for the repair
program as Category III repairs, evidenced this problem. Other items in Category
III were gyro flexlead and ducosyns, i.e,, problems associated with the internal

gyro but not with the bearings and internal float assembly,

(3) Flex-lead Failures on Centrifuge Testing -- This group consisted of two
units that had failed during centrifuge testing at NASA/MSC, Failure analysis had
indicated an open wheel lead. Because of this environment testing, these units were

not candidates for repair,

(4) Electrical Failures -- This group included typical shorts or opens in the
gyro external electrical circuitry and prealignment components, It represented all

units grouped in the repair program as Category II repairs,

(5) Delta-25 Predicted Failures -- This group consisted of units predicted
to fail by the Delta-25 failure criterion, i,e,, a gyro exhibiting a shift in drift terms
of more than 25 meru/g was suspect and subjected to further testing and analysis
before being committed to flight, The criterion was qualified in that only shifis of
25 meru/ g or more occurring at a single test location were considered. Shifts had
to be verified by a second datum point, and must have occurred across a storage
period of less than four months, The single test location minimized any data shifts
caused by test equipment variability, The verification by a second datum point was
necessary to eliminate the likelihood of bad data, The restriction of the storage
period between tests limited the storage-sensitive shifts that were noted in this in-

strument,

4,2,7 Failure & Reliability Summary

The Apollo I gyros were subdivided during manufacture into five groups ac-
cording to the date of manufacture, Most of the discrepancies in drawings and
procedures were corrected during the construction of the first two groups. The
failure rate for each failure cause was plotted for each group (see Figure 4-22),
Induced failures were not included as failures in this plot, The large number of
failures, 73 percent in Group I, was attributed to the changes required and to start-
up problems. Groups II to IV show a continuing improvement in the percentage of
failures, a low of 13 percent for Group IV, Figure 4-23,a plot of the average wheel
hours for each group, shows that the average operating hours for the last four groups
had decreased slightly, This could partly explain the decreasing number of failures
for Groups IIl and IV and should have resulted in fewer failures for Group V,
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Fig. 4-23 Average Wheel Hours of Apollo I IRIGs by Build Groups
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However, the percentage of failures for Group V made a drastic jump fo 33 percent,
No evident explanation was available to account for this trend reversal., Since the
increase was almost entirely the result of an increase in the bearing failures, it
was likely that the problem was a wheel-build deterioration, either in the choice of

bearings or in the performance of the wheel-build procedures,

A similar study of Apollo II assembly results was made and plotted as shown
in Figure 4-24, The groups were determined by dividing the total Block II build
program into eight groups of about 30 units per group according to their acceptance
date, The results compared to the Block I experience were startling, The failure
rate in the first group was 60 percent and succeeding groups varied from that rate
by only 20 percent, Bearing failures were a consistent percentage, 25 percent of
each total; and float-freedom failures, which were almost negligible in Block I,
were a steady contributing factor at about a 20 percent failure rate, Even the first
group, which was expected to be of lower quality because of production start up

effects, was typical of the entire production run,

Again, the results in the last group were atypical, The float-freedom fail-
ures rose to 40 percent, double the incidence in the earlier groups, while bearing
failures were drastically lower, The lower bearing failure rate for this last group
could have been caused by a lower average operating time for that group, As in the
Apollo I analysis, the average wheel hours per group were plotted. The result,
shown in Figure 4-25, indicates that the wheel hours for Group 8 were lower than
for the other groups. If this was the cause of the improvement in Group 8, bearing
failure rather than operating hours, could result in the last group being the worst

of Apollo II gyros,

From an analysis of the failures, several interesting observations were
made, Failures were uniformly distributed over the range of time from acceptance
and were therefore not time-dependent, The majority of the failures occurred in
the first 1200 wheel operating hours, but no particular failure mode was completely
screened out at this early interval, Any unit that was removed from a system for

a problem but not verified as a failure was classified a good unit for this analysis.

An increasing failure rate trend starting at 2100 total wheel hours was
observed. The small population of units in these life intervals (less than 20 units)
provided a low confidence level, Moreover, it was not possible to define a "'wear
out" point with the data available, Therefore, the following conclusions were ap-
plicable:
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(1) The failure rate per wheel life was consistent at 20 percent per 300
wheel hours and at 14 percent per 5 months, The difference in these two failure
rates indicated that the gyro population was not being subjected to an average ac-

cumulation of 300 hours over five month intervals,

(2) Sixty-nine percent of the failures were identified in the first 1200 wheel
hours after assembly. This was the result of classifying all Apollo II units soon
after acceptance as either potential failures or flight-quality units, For these units,
a longer acceptance cycle (1200 wheel hours ) would have been very effective in

screening a majority of the failures,

(3) It was estimated that 14 failures would have occurred if all the Apollo I
gyros were operated an additional 300 hours, and 12 of those failures would have

occurred in the ensuing five months,

(4) Inasmuch as catastrophic failures resulting from poor solder connections
or contaminant in the damping fluid could not have been predicted, such failure modes

were eliminated or held very low.

Although the remaining failure mechanisms for the Apollo gyro were quite
complex, the reliability study program yielded two useful criteria for the primary
failure mode or wheel failure, The Delta-25 failure criterion was not 100 percent
effective because it predicted failure for some units that were not about to fail and,
conversely, it missed some that did fail, Further, it required elimination of data
that occurred across location changes, even though data were shown to correlate
very well at all locations, As more data were accumulated, more refined prediction
criteria were established. The F criterion was one such promising refinement,
Indices both of its usefulness and efficiency were high for the Apollo Block II gyros,
and it was easier to apply than was the Delta-25 criterion, since the F criterion
could be applied to all test data regardless of storage period or of test location
changes., The parameter monitored both for the Delta-25 and the F criteria was
ADIA., Neither BD nor ADSRA showed significant changes that could be correlated

with wheel failure,

As of January 1, 1967, 361 production gyros had run a total of 380, 771 wheel
hours, Excluding the wheel hours on any units after failures were predicted by the
Delta-25 criterion, the total wheel operating hours were 346, 175, which yiélded
an MTBF of 100,000 hours with 70 percent confidence,




Another analysis of failure data related bearing-failure rate as a function
of wheel hours for Block I and Block II, This analysis was aimed at determining
if a wear-out time was evidenced for the gyro bearing., A rise in the Apolle II
bearing-failure rate at about 2100 wheel hours seems to have been indicated, How-
ever, the population was too small, that is, the confidence level was low as a
result of the large effect of a single failure in these groups to have allowed this
conclusion., As the population operating hours increased, however, a more defini-

tive conclusion became possible,

One very interesting finding was that the average bearing failure rate for
Apollo II was 10, 4 percent for 300 wheel hours, which was three times the bearing-
failure rate for Apollo I (3.1 percent). The cause of the higher bearing failure
rate for the Apollo II gyro could have only been caused by a change in assembly,
material lots or processing, or quality control monitoring beiween these two gyros,
since there was no design change to the wheel package between these two instrument
builds. By every failure criteria presented, Apollo I gyros operated within accep-
table performance requirements far longer than Apollo IT instruments, The
difference in life characteristics between the two groups had not changed substantially
with usage and the passage of time,

There were some assembly and test changes that occurred between the
Apollo I and Apollo II build effort, It was not possible to tell whether any of these
contributed to the poorer reliability obtained for Apollo II units. However, some

of these differences are included here for clarification,

(1) The bearings were directly assembled into the float for most of the
Apollo @I build, whereas the Apollo I bearings were first tested in a dynamometer
and then disassembled, cleaned, inspected, and assembled into the float.

(2) The GSE torque-to-balance loop and ramp generator were changed be-
tween the Apollo I and Apollo II build, The quantity of ramps required for Apollo II
float freedom test was decreased from that required for Apollo I,

(3) There was a significant change in the reliability documentation required
for Block II. This configuration required documentation.and traceability for each
component in the build, The large documentation requirement may have created a
false sense of security and resulted in a reduced monitoring effort in the important

areas of assembly and test,
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{(4) The Apollo I gyro contract changed from a cost-plus, fixed-fee bagis
in the middle of its build to a fixed-price plus incentive for the remainder of the

Apolio I build, The Apollo II contract was a cost-plus incentive contract,

(5) Apollo I was built while the Polaris production contract was in-house at
ACE, using the same assembly personnel and area. The higher level of available

Navy quality control monitoring may have helped Apollo reliability.

(6) As a result of phasing out of Polaris and other programs at ACE, there
was a reassignment of the assembly and test technicians working on the Apollo
program, A higher level of personnel reassignments appeared to have occurred

during the entire Apollo II program which resulted in a continuous retraining effort,

The large Apollo II failure rate strongly points out the inadequacy of the
acceptance test as a fully effective reliability screen, A more meaningful series
of specifications for assembly, inspection and test to achieve an effective accep-

tance screening, appears to have been required,

4,3 Power and Servo Assembly (PSA)

4,3,1 Description
The Power and Servo Assembly (PSA) comprised the electronics that sup-
ported the operation of the inertial and optical subsystems and was located in a

common module for convenience in packaging and spacecraft installation,

4,3,1.1 Block I PSA. The Block I PSA contained most of the electronics associated
with the inertial subsystem, including the IMU servo electronics, IRIG and PIP

pulse torque electronics, CDU electronics, power supplies, and mode switching
electronics, Some of the ISS electronics were located on the IMU and included IRIG
and PIP microsyn suspension networks, signal generator preamplifiers, tempera-
ture control sensors, and resolver adjustment networks, Phase correction capacitors
were located on the CDUs. The Block I PSA also contained most of the electronics
for the optical subsystem.

The design of the Block I PSA was influenced largely by the concept of in-
flight malfunction diagnosis and repair. Repair was to be done by direct replacement
of failed subassemblies with on-board spares, The Block I PSA was designed with
this concept as a ground rule. To this extent, the PSA electronics were packaged
in small, replaceable modules that plugged into a wired tray, Where possible,




functional subassemblies having similar requirements were packaged as identical
modules, Thus, all three IMU gimbal servo amplifiers were packaged as identical
modules, and each contained three values of a feedback element appropriate fo the

gain requirements of the inner, middle, and outer gimbal serovs.

Selection of the proper feedback was effected by tray wiring when the servo
amplifiers were plugged into the inner, middle, or outer gimbal positions in the
tray. Thus, one spare gimbal servo amplifier could function as the repair module
for any of the three locations, Similarly, identical 1% and 5% 800 Hz power supplies

were used for the inertial and optical subsystems,

The modules were plugged into ten individual trays and appropriately inter-
connected by tray wiring. The trays, in turn, were plugged into a tray connector
and interconnect harness assembly for further power and signal interfacing with the
rest of the G& N system and the spacecraft, To aid in inflight malfunction diagnosis,
a connector at the front of each tray provided selected test points that were then
available to the inflight monitoring test set, The inflight maintenance concept was
abandoned after the PSA design was released for manufacture and subsequently was

never used,

The electrical problems experienced in theBlock I PSA fell into two general
categories: those identified from engineering evaluation and qualification testing and
reliability analysis, and those identified from System Testing, The schedule for
delivery of hardware had not permitted the luxury of an exhaustive evaluation phase
prior to manufacturing release, Consequently, designs were being released for
manufacture concurrent with breadboard and engineering evaluation testing, As
circuit parameters became better defined, component values were altered to place
them closer to design centers, Reliability analysis of component failures during
the engineering evaluation and parts qualification phases required replacement of
some components with more reliable ones, These problems were not considered
inherent design deficiencies but reflected a normal refinement of the designs with

the passage of time,

System testing exposed design deficiencies that required PSA modifications,
They are listed below:

(1) A filtering or decoupling capacitor was added to the ADA preamp to pre-
vent the 102, 4 Kpps signal of the fail circuit from being coupled into the servo loop.
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(2) A parallel diode circuit was added from the summing junction of the
gimbal servo amplifier to complementary side of the input differential amplifier in
order to reduce the gain for large saturable signals at the summing junction, This
modification resulted because a large charge was trapped on a capacitor in the ADA

filter when moding between coarse align and fine align took place,

(3) Capacitors were added to the output stage of the CDU motor drive
amplifier to form a high-frequency break in the response of the amplifier, These
capacitors corrected a problem that had resulted because of variations in the gain-

bandwidth product of the output transistors.

(4) The bandwidth of the demodulator filter in the encoder electronics was
reduced by changing the value of the {ilter capacitors. This was considered neces-
sary to reduce the 6400 pps noise that was being generated by the IMU heater
controls and coupled into the encoder, The bandwidth was reduced to approximately
3400 Hz.

(5) The ternary mode of PIP pulse torquing resulted in intolerable acceler-
ometer biag instabilities., The decision to change to binary torquing required a
redesign of much of the PIP electronics,

4.3.1,2 Block Il and LM PSA, The designs of both PSAs were essentially

the same, Since the LM did not have an optical subsystem that required electronics
within the PSA, the LM PSA was physically smaller, The basic ISS portions of the

CM and LM PSAs were identical, however, The inflight maintenance concept was

dropped for the Block II CM and LM. This permitted a more efficient packaging
scheme and allowed for hermetic sealing of the PSA., There were, however, certain
calibration modules that were matched to a particular IMU, It was necessary to
open up the PSA and change these modules in the event that an IMU was replaced,
unfortunately with the consequence of compromising the integrity of the PSA hermetic
seal, The decision, therefore, was to incorporate portions of the IRIG and PIP
pulse torque electronics into separate packages, For the LM, the Pulse Torquing
Assembly (PTA), as the package was called, was located close to the IMU and ex-
ternal to the cabin, which was physically separated from the PSA by long cable runs.
This location minimized problems associated with long leads. For the CM, the
PIPA Electronics Assembly (PEA) was located in the space formerly occupied by
the Block I CDUs. The PEA and the PTA were functionally parts of the PSA, but
were packaged separately for operational convenience,




The Block IT and LM PSA electronics were basically the same as Block L.
Changes that were made were to accommodate wider variations in spacecraft
supplied prime power voltage, or were refinements of the circuitry based on

experience or the result of improved components that became available,

Block I experience showed that the added margin in IMU stablization stability
provided by the IMU Angular Differentiating Accelerometers (ADA) was not re-
quired, The ADAs and associated electronics were deleted from the Block II
design, The CDU was changed to an all electronic device and packaged separately,
thus removing the CDU electronics from the PSA, The IMU temperature control
was changed from a sophisticated proportional temperature control scheme employing
magnetic amplifiers and pulse-width modulation techniques to a much simpler
thermostatically controlled on-off type, Thus, all the temperature control electron-
ics from the PSA were eliminated, As with Block I, functional subassemblies were
packaged as small modules that plugged into a prewired PSA header, Where pos-
sible, functionally similar subassemblies were again packaged as identical modules,
The final Block Il modules evolved satisfactorily after several component value
changes brought about circuitry optimization, TheBlock Il PSA encountered few

component -associated problems during the manufacturing period,

Two capacitor failures did occur, One capacitor failed "open" because of
inadequate metallizaticn on the end of the roll, Since only one part out of 8000 pur-
chased exhibited this failure mode, it was concluded that nopart problem was
evidenced by this one failure, Another capacitor 'open'" was found to be an inadequate
internal lead solder connection, The vendor instituted corrective action by using a
number of loops for the solder termination to replace the single loop of the original
design, A resistor failure was attributed to a fracture of the glass substrate on
which the resistance element was formed, After considering the number of devices
used versus the one failure encountered, it was concluded that no part problem

existed with this type of component,

Two instances of parts-oriented transistor failures were encountered, First,
a gimbal servo exhibited a high offset null during module testing. The cause was
found to be unstable, long term drift characteristics of the transistor P/N 1010252-1,
The corrective action was to add a high temperature bias screen test requirement
to the Specification Control Drawing., This screening enhanced the detection of
surface contamination of the part, Two instances of cracked dies were discovered
in transistors of the 800 Hz amplifier, The transistors were changed to another
type; no other corrective action was taken, A design oriented diode problem occur-
red when diodes P/N 1010385 were found to exhibit a lowering of forward breakdown




voltage. This anomaly occurred as the parts were procured later in the program,
This condition is generally recognized as an improvement of diode characteristics,
but not when used in a voltage-dependent bias circuit such as was the case, A
change in resistor value was incorporated in the design to compensate for the

change in breakdown voltage,

Changes and modifications to the PSA electronics resulted because of system
test results, the inability to procure specified parts over the life of the contract,
and the variation of component parameters for large numbers of components, The
gimbal servo amplifier required a change in output transistors as a result of dis-
continuance of manufacture of the originally specified part., Feedback diodes of the
servo amplifier had to be tightly specified as the program developed because of
parts parameter variations, A design change was incorporated in the 3200 Hz, 1%
supply to prevent overshoot of the supply output at turn-on, System tests had shown
the overshoot to be a factor in gaussing of the PIP,

4,4 Inertial Measurement Unit (IMU)

4.4, 1 ' Mechanical Design

The IMU consisted of three single degree-of -freedom gyros (IRIGs) and
three single degree-of -freedom accelerometers (PIPAs) mounted on a stable
member which was isolated from vehicle orientation by a servo-driven three degree-
of -freedom gimbal system, The IMU gimbal system consisted of an outer gimbal
mounted to the case, a middle gimbal mounted to the outer gimbal, and the stable
member, which served as the inner gimbal, mounted to the middle gimbal, The
gimbal arrangement was compatible with the spacecraft's Flight Director Attitude
Indicators (FDAI) and had the following defined axes:

(1) The outer axis was fixed to the vehicle and was parallel to, and in the

same direction as, the vehicle X-axis,

(2) The middle axis was parallel to, and in the same direction as, the

vehicle Z ~axis when the outer gimbal angle was zero,

{( 3) The inner axis was parallel o, and in the same direction as, the vehicle

Y -axis when the outer and middle gimbal angles were zero,
The IMU was secured to a navigation base and aligned to the Optical Unit

Agssembly (OUA) axes within 0, 1 milliradian, Figure 3-1 schematically depicts

the general gimbal configuration and axis definitions.
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The following is a description of the IMU components starting with the stable
member and proceeding outwards to the case (Refer to Figure 3-2),

4,4,1,1 Stable Member Components, The stable member was a sintered block of

beryllium, machined to accurately locate the inertial sensors and other components,
The inertial components were prealigned and electrically normalized on a test stand
before they were assembled into the stable member, This saved considerable align-
ment adjustment at later stages of testing,

The components on the stable member were:

(1) Three size 25 single degree-of -freedom Inertial Reference Integrating
Gyro (IRIG) units, These were prealigned with respect to slots in the mounting
hardware, They were accurately positioned by means of locating pins precisely
located on the stable member, The gyro end-mount supported the necessary elec-
tronics résulting in component interchangeability, The electronics included:
microsyn suspension networks, temperature sensor normalization networks, temp-
erature control heaters, forque generator normalization networks, and a signal

generator preamplifier with normalized gain,

(2) Three size 16 single degree-of-freedom Pulsed Integrating Pendulums
(PIPAS). They were also prealigned with respect to the mounting hardware and
accurately positioned on the stable member by means of locating pins, Each PIP

was provided with an end-mount heater,

(3) Gimbal-mounted electronics which were necessary to service suspension

and output signals from the pendulous accelerometers,

(4) Temperature control heaters and sensors which maintained the inertial

components at proper temperatures,
(5) A prewired harness -assembly which interconnected the stable member
electrical components and also mated with the slip rings on the inter-gimbal assem-

blies,

4,4,1.2 Components on the Inner Axis, The stable member was supported on the

middle gimbal by a pair of preassembled inter-gimbal assemblies, one on each end

of the axis, Figure 4-26 depicts typical inter-gimbal assemblies,
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One inter-gimbal assembly contained a pancake-type dc servo-torque motor
having a 3.8 inch diameter air gap (1,12 ft, -1bs. /amp), a 40 circuit slip ring as-
sembly, and a duplex pair of ball bearings preloaded to provide a predetermined
axial yield rate of 7 micro-inches per pound. The inter-gimbal assembly housing
and stub shaft were made of beryllium, The stub shaft supported the torque motor
rotor and slip ring assembly., The slip rings were terminated in connectors which
interfaced with the stable member harness and the middle axis slip rings. The
slip ring wires were clamped to the housing a few inches away from the slip ring
assembly so that they flexed with slight oscillations of the gimbal without the slip
rings and brushes moving in relation to one other, This eliminated slip ring wear
under most operating conditions, The bearings were floated axially to allow for

manufacturing tolerances and thermal expansion,

The other inter-gimbal assembly contained a combination 1 speed-16 speed
resolver transmitter, a 1 speed gyro error signal resolver, a 40 circuit slip ring
assembly, and a duplex pair of ball bearings preloaded the same as those on the
other end of the axis, The stub shaft supported the resolver rotors and slip ring
assembly., The resolvers were accurately aligned, by the resolver manufacturer,
with respect to alignment slots-on the stub shaft-and housing, These slots engaged
pins on the stable member and middle gimbal, The bearings of this assembly were
fixed and therefore provided axial support for the stable member, The axis of ro-
tation, as determined by the bearings, defined the inner axis, which had unlimited

rotation,

4.4.1.3 Components on the Middle Gimbal, There were no electrical components on

the middle gimbal, The middle gimbal was made up of two hydroformed 0. 040 inch
thick aluminum hemispheres pinned and bolted together at brazed aluminum flanges,
There were four additional flanges to which were attached the inner and middle axis -
inter-gimbal assemblies, Pins on these flanges picked up the alignment slots of

the resolver inter-gimbal assemblies,

4.4,1,4 Components on the Middle Axis. The middle gimbal was supported in the

outer gimbal by a pair of pre-assembled inter-gimbal assemblies, one on each end
of the middle axis. They were similar to the inner axis inter-gimbal assemblies,
One assembly contained a pancake type dc servo torque motor having a 3, 8 diameter
air gap, a 40 circuit slip ring assembly, and a preloaded duplex pair of bearings,
The bearings were floated axially, The other inter-gimbal assembly contained a
combination 1 speed and 16 speed resolver, a 40 circuit slip ring assembly, and a
fixed (not floating) duplex pair of preloaded ball bearings. The axis of rotation as
determined by the bearings defined the middle gimbal axis, The middle gimbal had

unlimited rotational freedom about this axis,




4.4.1.5 Components on the Quter Gimbal, The outer gimbal was made up of two

hydroformed 0. 040 inchthick aluminum hemispheres pinned and bolted together at
brazed aluminum flanges, There were four additional flanges to which were attached
the middle and outer inter-gimbal assemblies. Pins on these flanges picked up the
alignment slots of the resolver inter-gimbal assemblies. The outer gimbal had

slots in it to permit forced convection of heated air between the middle gimbal and
the case, This was provided by two axial-flow blowers mounted on the outer gimbal,

The slots also permitted assembly of the outer gimbal since the flanges were internal,

4.4.1,6 Components on the Quter Axis, The outer gimbal was supported in the IMU

case by a pair of outer axis inter-gimbal assemblies, one at each end, They were
also similar to the inner axis inter- gimbal assemblies. One assembly contained

a pancake-type dc servo-torque motor having a 3, 125 inch diameter air gap, a 50
circuit slip ring assembly, and a preloaded axially floating duplex pair of ball bear-
ings., The other inter-gimbal assembly contained a combination 1 speed and 16
speed resolver, a 50 circuit slip ring assembly and a fixed duplex pair of preloaded
ball bearings. The axis of rotation determined by the bearings defined the outer
axis, The outer gimbal had unlimited rotational freedom about this axis,

4.4.1,7 Components on the IMU Case, The IMU case was made from 0, 060 inch
thick aluminum hydroformed spherical sections with integral roll-bonded, inflated,

coolant passages., Two Seaton-Wilson hydraulic quick-disconnect fittings were at-
tached for connection to the spacecraft water-glycol coolant system,

Mounting pads for mounting the IMU to the navigation base were accurately
machined to locate and align the IMU in two axes, The third axis was defined by
dowel bushings which engaged accurate holes on slots in the IMU case and navigation
base.

Two 61 pin electrical connectors interfaced with the G & N harness; they were
keyed to prevent incorrect mating, An electrical sixteen speed resolver adjustment
module and a blower control relay were located inside one of the end covers that
sealed each end of the outer axis,

The case covers were sealed by the use of o- rings to effect a hermetic
seal of the IMU, This insured that the thermal transport medium (air) within the
IMU would not leak out during vacuum operation, Another benefit of hermetic seal-
ing was that a greater choice of engineering materials would be available inasmuch
as the constraint on the use of toxic or odorous materials and lubricants, and the

seizing of bearings in vacuum would be minimized,
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4,4,1.8 5ize and Weight, The IMU case diameter was 12,5 inches; it was 14 inches

across the end covers on the outer axis., The volume of the IMU was approximately

1100 cubic inches, and it weighed about 42, 5 pounds,

4,4,2 Thermal Design

4,4.2,1 General, The IMU temperature control systems were designed to maintain
the gyroscope and accelerometer operating temperature within narrow limits.

Thermally, the IMU could have been viewed as three concentric aluminum spheres,
the inner sphere as the middle gimbal, the next sphere as the outer gimbal and the

external one as the case,

A liquid-to-air heat exchanger covered part of the surface area of the case,
Between the middle gimbal and case was an air circuit that used two blowers
mounted on the outer gimbal to force air from the area of the middle gimbal towards

the case heat exchanger, The IMU heat transfer is shown in Figure 4-27,

The Block 1and Block II IMU's-were thermally similar, The respective
temperature control schemes were also very similar, In both instances tempera-
ture deviations from a fixed absolute temperature were detected., These temper-
ature deviations were used to control heater power to the stable member, The

implementation of the control schemes was, however, different,

4,4,2.2 Block I Thermal Design. The Block I IMU temperature control design was

hampered from the start by an inadequate definition of the environment within which
the IMU was expected to perform, In particular, the spacecraft thermal environ-
ment, primary coolant loop characteristics, and prime power voltage excursions
were unknown, For these reasons, an attempt was made to include much flexibility
into the design in order to be able to adjust to the actual environments as they be-

came better defined,

The use of thermal heat of fusion materials to serve as a heat reservoir was
considered early in the design, This approach was taken to conserve electrical
power, A thermal study, one of the first to define system operation for a lunar
landing mission, showed that though this concept was sound, the use of these ma-
terials was unworkable based on IMU time line usage. This approach was abandoned

and an electronic temperature control system was designed,
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Fig., 4-27 IMU Heat Transfer Diagram
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The temperature control scheme utilized resistance wire temperature
sensing elemenis located in the IRIG end mounts. These seunsing elements connected
in series, measured the average temperature of the three gyroscopes. They
formed one arm of a four arm resistance bridge., The remainder of the bridge was
located in the PSA, The bridge error signal, proportional to the temperature dif-
ference between the actual average gyroscope temperature and the desired tempera-
ture, controlled the operation of magnetic amplifiers in the power servo assembly
(PSA). These, in turn, provided power proportional to temperature deviation,

The power was in the form of a 20V, 3200 pps pulse-width modulated square-wave
voltage to the stable member heaters,

An additional set of heaters, controlled by a thermostat on the stable
mémber and powered directly from spacecraft prime power to the G& N system,
comprised a redundant temperature control system, This did not provide the pre-
cise control of the primary system but was adequate to satisfy the crew safety and

mission success requirements,

Temperature sensing thermistors within the gyroscopes were used to moni-
tor the gyroscope temperature, They were connected in series and formed one
arm of a four arm resistance bridge, The other elements of the bridge were
located in the PSA., The error signal output of this bridge controlled another mag-
netic amplifier which turned on an alarm light if the gyro temperature exceeded
specified limitg, It also provided an output for telemetry of IRIG temperature and
an output to the front of the PSA tray for use by the in-flight failure monitor.

The temperature sensing resistance elements of the accelerometers were
used to monitor PIP temperature in a manner similar to the gyroscope monitoring

scheme,
The two blowers on the middle gimbal were used to vary the thermal re-
sistance between the inner gimbal and the case, Saturable reactors on the outer

gimbal varied the blower speed as a function of stable member heater power,

4.4.2.3 Block II Thermal Design. The Block II IMU temperature control design

effort was undertaken to develop a smaller, lighter, simpler, more reliable temp-
erature control system for the Block II IMU, Advantage was taken of the knowledge
and experience gained from the Block I IMU., The Block II spacecraft was essen-
tially identical to the Block I vehicle; therefore, the IMU environment was well
known, A good thermal model of the IMU was developed fromBlock I experience.
The uncontrolled IMU heat sources, e,g,, inertial components, torquers, re-

solvers, and gimbal mounted electronics, were well defined,
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Temperature control of the Block II was accomplished by using & mercury
thermostat as the temperature sensing element in bistable temperature control
system, Additional mercury thermostats were used to provide an out-of -limits
temperature alarm indication and for control of the two blowers, A sensor
of this type was used in the Block I IMU for emergency control. It proved to be
accurate, stable, extremely reliable and had a very small dead band, Figure 4-28

is an electrical schematic diagram of the Block II temperature control system,

As with Block I, heaters were located on each end of the gyroscopes and on
one end of each accelerometer, Two additional cariridge heaters were embedded
within the stable member, Each of the four thermostat modules contained one
control, or anticipatoryheater, and one bias heater, Padding resistors were placed
in series with the heaters to adjust the power in each heater, The temperature
difference between the IRIGs and the PIPs was adjusted by properly proportioning

the amount of power in each heater,

The temperature control power required to keep the control thermostat
within its limit cycle operating range varied in response to environmental and
power changes within the IMU, The effect of control power variations on inertial
component temperature was minimized by adjusting appropriate PIP control heater
and control thermostat anticipatory heater padding resistors, Fixed bias heat was
applied to the PIPs to bring them to proper operating temperature whenever the
ISS was in the operate mode., The stable member temperature was affected by
fluctuations in gyro wheel power, As wheel power increased, for example, because
of an increase in wheel voltage, the control power and therefore the stable member
temperature decreased, To keep the PIP temperature from decreasing along with
the stable member, it was necessary to add more heat to the PIPs, This was ac-
complished by energizing the PIP fixed bias heaters with gyro wheel supply voltage.

The performance characteristics of the temperature control system are
shown in Fig, 4-29, The thermostat cycle of operation at 50% duty cycle was 0,3
while at the same time the gyroscope limit cycle was attenuated to 0. 00065 degree
F and that of the accelerometers to 0. 009 degree F. | The stable member temp-
erature continued to drop as the control power was increased, as one might expect,
but the inertial component temperature remained constant throughout the power
/range. The blower extended the dynamic range of operation, was infrequently used
and was limit-cycled by a thermostat, There were two separate sensors to detect
temperature exiremes and alert the astronauts. In addition, high limit mechanical
thermostats were used in every heater power line to prevent an over heated condi-
tion, 'These were set to open the heater power at a temperature of about 10°F over
the normal control temperature, These were rarely used but when necessary pre-

vented damage to valuable equipment,
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4,4,3 Mechanical Tests
4,4,3.1 Acceleration, The Block I and Block II mechanical integrity IMUs were
accelerated at 10, 20, and 30 g's along their outer axis., These tests were run to

determine the torque motor capabilities,

Torque (% of max, ) IA MA OA
B1,1I |IBL. I Bi,I |B1l,1I Bl.1 |B1.11
lg 17 | - 13 | - 13 -
10 g's 20 - 18 - 27 -
20 g's 20 - 19 - 50 -
30 g's 20 10 27 16.5 85 26

The gimbal breakaway torques were measured before and after these tests with no

significant change measured,

4.4,3.2 Vibration & Shock,

(1) General -- Two mechanical evaluation IMUs were built for both Block I
and Block II: a Vibration Model (IMU-VM and IMU 200-VM) and a Mechanical
Integrity Model (IMU-2 and IMU-200-2). The vibration models contained a dummy

mass to simulate the stabilized member, and contained aluminum stub shafts and

bearing mounts sized to simulate the stiffness of the final IMU design, Tolerances
were loose and no torque motors or resolvers were installed. This model was

used to determine resonant frequencies and transmissibilities,

The mechanical integrity IMUs were identical to functional IMUs with
dummy inertial components that contained the vibration and acceleration pickups.
These IMUs were used for vibration, acceleration, and shock tests to evaluate

the adequacy of the mechanical design,

(2) Vibration Tests -- The IMU models were vibrated at 1, 2, & 3 g's (rms)
sinusoidal input with a logarithmic frequency sweep from 20-2000-20 Hz' in 16
minutes along each axis, Each IMU was also vibrated with a 5 g (rms) random
noise input, per the NAA specification, along each axis. The results of these tests
indicated resonant frequencies varying from 110 to 170 Hz. with transmissibilities
of 710 22, A problem developed during the initial vibration tests of the Block I IMU
and dampers were added, This is discussed in Section 4,4.4.2. The Block II IMU
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vibration tests verified that the design was adequate. A Block II IMU was vibrated
on the CM and LM navigation bases., The vibration input to the navigation base was
in accordance with either the NAA or the GAEC random vibration specification, In
each case, the input to the IMU was much less severe than the sinusoidal inputs

used during the design evaluation tests,

(3) Shock Tests -- The Block II IMU was subjected to 20 g peak, sawtooth,
6 ms rise, and 1 ms decay time shocks twice along each axis with no problems de-

veloping.

4,4.3,3 Leak Tests, All IMU case parts were helium leak-checked prior to assembly.
IMUs were pressurized to 24, 7 psia for varying lengths of time and during the

shock and vibration tests with no measurable change in pressure,

4,4.4 Design Problems

4.4.4,1 Changes in Materials, A brief review of the materials incorporated in the
Block I and Block II Apollo IMUs showed that there were two that were new and
different to this type of system, These were: (1) the friction material that was

used in the vibration dampers of the Block I-1C0 systems, and (2) the Roll-Bond
material used for both the Block I and Block II water glycol case heat exchangers,

Vibration dampers were added to the Block I IMUs when a high vibration
transmissibility was discovered during early tests, The selection of the type of
damper and material was greatly influenced by the limited space available in the
IMU, Some important characteristics that the damper material had to possess
were (1) large dynamic coefficient of friction, (2) good wear resistance, (3) be

very rigid, (4) stable under high temperatures, and (5) be machineable,

Johns Manville friction material style #230 was determined to be the optimum
available material for this application, Final inspection of IMU-2, after vibration
tests, revealed that the dampers and friction material had not degraded system

performance,

An initial requirement for the Apollo IMU was that the fluid heat exchanger
should be an integral part of the IMU. This led to the idea of using a roll- bond
material ( similar to that used in refrigerators) which had many advantages such
as light weight, low thermal resistance, and required minimum volume in the CM
and LM,




Techniques for roll-bonding of flat panels were well established. However,
it was necessary to develop techniques to hydroform these panels into hemispheres,
inflate the passages after hydroforming, and then machine and braze the parts to
form the spherical IMU case, The material for the roll- bond parts was #6061
aluminum clad with #1100 aluminum to insure a good bond, During fabrication of
the IMU case, a hydrostatic proof test was performed at 90 psig to insure that the

parts were structurally sound.

4.4.4.2 Vibration Problems, As a result of high vibration magnification seen at

the resonant frequency on the Block I IMU,. fatigue cracks developed in the middle
and outer axis stub shafts, Consequently, the stub shafts had to be redesigned and
vibration dampers added to each axis in the torque motor inter-gimbal assemblies.
Strain gage tests then indicated a reduction in the stub shaft stresses by a factor
of 3. This, with the reduction of the transmissibility by the addition of dampers,
resulted in a reduction of the stresses in the stub shafts to a level well below the

fatigue limit of the material,

Various types of dampers were tested and a friction damper, which was the

best for the space available; was added at the {loated bearings,

4,4.4.3 Thermal Problems. The Block I temperature control system proved to be

very reliable and presented very few problems after the design was completed,
Considerable effort was expended in developing the magnetic amplifiers, Because
weight was a major consideration in the overall G & N design, the early magnetic
amplifiers were designed to be as compact as possible, This led to the use of very
small wire sizes and resulted in failures from wire breakage, The amplifiers
were redesigned in somewhat larger packages with heavier wire; consequently, no

further failures occurred,

Another system problem was discovered during early system tests, The
3200 pps pulse-width modulated temperature control power was observed to generate
6400 pps spikes which could be seen throughout the system. An IMU wiring harness

change reduced these spikes to tolerable levels,

The Block II system initially had several mercury thermostat failures, All
of these failures indicated handling in excess of the specified 100 g's. A design
change was made to incorporate a mercury thermostat with a 500 g, 2 millisecond

duration specification, thus solving all breakage problems,
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4.4.4.4 Intergimbal Component Problems, Four fypes of components were clustered

about the bearings of the IMU: one gimbal-angle resolver transmitter, one torque
motor, two slip-ring assemblies per axis, plus a single gyro-error resolver on the
inner axis, The torque motors were completely trouble-free and need not

be discussed further, The resolvers were subjected to minor changes in design,
Only the slip-ring assemblies caused significant problems prior to qualification,
but these had been well defined by the Block I experience; hence, Block II procure-
ment was able to proceed with reasonable confidence, A more detailed study of the

resolvers and slip-ring assemblies follows,

(1) Gimbal-Angle Resolver Transmitters -- The Block II gimbal-angle re-
solver was a dual pancake unit consisting of one-speed and sixteen-speed resolver
transmitters wound on the same iron core, The two resolvers were wound as to
have no mutual coupling; thus they functioned as separate resolvers while occupying

little more space than a comparable sixteen-speed unit alone,

The principal problem in applying this resolver was attributed to the require-
ment imposed by the Block II CDU that the low side of the 16X sine and cosine winding
be made common to ground,. There was a distributed stray capacitance between the
two secondary phases that caused a circulating current via the common low, A
suitable equivalent circuit to illustrate the effects of the stray capacitance at 800 Hz

is shown in Figure 4-30,

Fr-——---

Zss '—_—% 4 I 0
cos (164A) ("u Ec : cou
|
|
x -
¢ | Z
Es '
gin (164) ("u :
v |

Zss — O

Lo - - =

Fig. 4-30 Effects of Stray Capacitance
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ZSS is the short -circuit output impedance of the resolver, and C is one-half
the total capacitance between the secondary phases, Both an error in indicated

angle and an additional quadrature voltage were impressed on the CDU input voltages
by current flowing through capacitance C and the equivalent output impedances,

Within a close approximation, both the error and the gquadrature had the form cos
(32A). Whereas errors of this form are usually corrected in high accuracy resolvers,
there was no simple method to suppress this quadrature, As a result, a decision

to wind the 16X secondaries for a step-down voltage ratio was made. The output

impedance was greatly reduced and the stray capacitance reduced as well,

The other problematical feature of the Block II gimbal-angle resolver was
increased errors as compared with the Block I design, This was essentially caused
by the rather poor shape of the iron core required to minimize the IMU size,
Another factor was less accurate (although within tolerance) grinding of the beryl-
lium parts that mount the resolver as compared to the Block I parts ( which had
been subcontracted to a beryllium specialty house), In order to get reasonable
yield, the vendor altered the winding pattern to further cancel some slot harmonics

in the errors, and the specified maximum error was raised from 20 to 25 arc seconds,

(2) Gyro-Error Resolver -~ The gyro error resolver was mounted on the
inner axis, adjacent to the gimbal angle resolver, The error signals of the X and
Z gyroscopes were rotated by this resolver into middle-gimbal coordinates, mak-

ing the operation of the gimbal servos independent of the inner gimbal angle,

The principal constraints on the design of this resolver were:

a. It had to function with small signals when the gyros were near null and
yet not saturate before the gyro preamplifiers did, This requirement necessitated

an iron core with excellent linearity,
b, It had to be shielded from the adjacent gimbal-angle resolver,

¢, Its axial width including the shields had to be small to conserve space

and weight,

d, Its impedance levelhadto be a reasonable compromise between loading
effects on the gyro preamplifiers, and its contribution to source impedance for the
wiring capacitance and demodulator loading., In this regard, one must note that
the demodulator load was a function of applied voltage. Also observe that both

signal phase shift as well as magnitude had to be maintained across the resolver,




e, An 0,003 inch minimum air gap was specified for the resolver to insure
against mechanical interference resulting from tolerance accumulation and stress

effects.

f, The shields influenced the performance of both the gyro error and the

gimbal angle resolver,

The difficult design problem of the inner-axis resolvers was attenuating the
3200 Hz cross-coupling between them. Only one vendor achieved the specifications
and qualified as a source, Because the shield design would be much easier with
more axial space, this problem interacted strongly with other parameters which
could have been improved with more space, In the meantime, those responsible
for stabilization loop design were evaluating the gyro error resolver design based
on a '"figure of merit" consisting of the ratio of tuned open circuit input impedance
to the magnitude of the short-circuit output impedance, Such a figure, being based
on effects in the stabilization loop circuits only, did not weigh the more complex

aspects of space and cross-coupling,

Although prototype gyro error resolvers successfully met all the specifica-
tions, a difficulty developed in production, Impedances and the 'figure of merit"
were highly sensitive to both air gap length and lamination magnetic properties. In
early 1966, a position was reached where almost no yield was obtained that met the
minimum air gap and also the required impedance, To keep on schedule, a few units
were accepted to a revision of the specification calling for a minimum air gap of
2,2 rather than 3.0 mils, This was made possible without reducing the minimum
running clearance by performing the final grinds with the laminations already mounted
in the stub shaft and bearing mount, Meanwhile, a new winding was designed which,

with a 3-mil air gap, achieved rather different but quite acceptable impedances.

( 3) Slip-Ring Assemblies -- The Block II slip-ring assemblies never actually
caused significant problems, This was true, however, only because a number of
steps taken to achieve qualification of the Block I assemblies paved the way for
Block II., The ensuing discussion will therefore be a short review of Block Iprob-

lems, solutions, and resulting effects on Block II.

The early Apollo experience with slip rings was based on assemblies from
Electro-Tec, Poly Scientific, and Collectron Corporations. Between experience in
prototype IMUs and attempts to qualify all three sources, an impressive list of
failures was accumulated, Contamination, bearing failures, high noise, i.e.,, re-

sistance variation with rotation, and various minor mechanical problems were




experienced, Poly Scientific Corporation was eliminated when they were unable to
cure g contamination problem after many attempts, Collectron had trouble main-
taining bearing preload but was eliminated mainly because of high wear and noise
early in all life tests, This left Electro Tec, who had experienced numerous small
bearing failures caused by contamination after exposure to a severe humidity cycle.
Electro Tec also had some out-of-tolerance noise at the conclusion of the life

test.

The prospects of the Electro Tec units actually were found to be good, They
had experienced difficulty only with the smaller bearing., Their Block II design
used two of the larger size, however, Furthermore, on teardown, most bearing
failures were found to be the result of improper lubrication, Consequently, Electro
T-ec began buying the bearing pre-lubricated with good results, Next, a humidity
cycle was gpecified which more realistically represented the actual conditions of
storage and use, and the contamination failures ceased, Finally it was recognized
that the life test, or, officially, Extended Performance Test, was conducted with
oscillations and slews which gave rotational rates up to three times those in an
IMU under a locked-gimbal tumble, After changing to a more realistic activity
level during the test, Electro Tec slip ring assemblies completed life testing within
the specified noise limits, (The 10 cpm + 3600/ -360° oscillation was changed to

2 cps, 3° ilo double amplitude dither, superimposed over a 1/2 to 2 rpm rotation, )

These noise limits, more nearly,although still severe, simulated the con-
ditions expected in testing and operation of the IMU, The actual slip ring motions
in an IMU were impossible to duplicate exactly since they depended on test or flight
conditions, For a large percent of the time during tests or flight the brushes were
not moving over the rings since the IMU was stabilized or was moving at meru
rates as a result of gyro drift, Periodically, the brushes were rotated to a new
position when the IMU was rotated to a new position by the test fixture or the space-
craft, As the axes arrived at a new orientation, there were some minute (seconds of
arc) random oscillations as the IMU nulled itself at the new location, The normal
wear of the slip ring in the IMU was caused by random oscillations, The slow rpm
was supefimposed so that all areas of the ring were checked since the location of
the brushes on the ring varied from slip ring to slip ring in the IMU, A relatively
high rpm test was included every 100 hours to simulate the condition during tests
where a malfunction in the system would cause a gimbal axis to rotate with full
torque from the torque motors. The 600 rpm requirement in the original test was
in error and was changed to 200 rpm since the IMU was limited to less than this

rate because of friction and motor back emf,
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The results were that Eleciro Tec Corporation was the only qualified sup-
plier of Block I slip ring assemblies and became the principal supplier for Block II
while other manufacturers attempted to cure their difficulties and qualify for
Block II.

4,5 Coupling Display Unit (CDU)

4,5,1 Block ICDU

The Block I coupling display units provided a coupling between the Apollo
Guidance Computer (AGC) or the astronaut and the IMU and the optics, Either
the AGC or the astronaut could have transmitted angular data to the IMU, The CDU
also provided the astronaut with a visual readout of the IMU and optics angular data
during the coarse align, fine align, and manual CDU modes of operation, Desired
angles were transmitted by the CDU loop to the IMU in analog form during the coarse
align and manual CDU modes, The CDU loop was also capable of repeating the IMU
gimbal angles and the optics angles, and transmitting this angular data to the AGC
in digital form in the fine align mode, The CDUs in the ISS could also have been
used to provide a coupling between the astronaut or AGC and the spacecraft autopilot,
Five CDUs were required by the G& N system, three in the ISS, and two in'the
optical subsystem (0OSS). Each CDU contained a servo motor-tachometer, four
resolvers, a digital encoder, three display dials, and a thumbwheel; all were inter-
connected by a stainless steel gear train, Each CDU also contained a slew switch,
which was not utilized in the OSS CDU loop application. The gear train was driven
by either the thumbwheel or the servo motor-tachometer, The servo motor-
tachometer was an 800 cps unit that drove the CDU gear train and produced a feed-
back signal proportional to the output shaft rate, The motor was driven by the
Motor Drive Amplifier (MDA in the PSA, Input signals to the MDA were received
from the CDU resolvers, the digital-to-analog converter in the PSA, and the slew
switch, all of which represented CDU loop errors. The motor converted the various
CDU loop error signals into the appropriate output shaft angle and velocity, The
tachometer provided a negative feedback signal proportional to the motor shaft
speed to the MDA, The slew switch provided a 6, 25 Volt, 800 Hz signal of zero
or pi phase to the MDA to position the ISS CDUs during the manual CDU mode of
operation, The four resolvers were utilized either for angular data transmission
or angular error resolution., The specific resolvers utilized and their functions
depend on the CDU application, The digital encoder (Figure 4-31) converted the
angular motion of the CDU output shaft into a digital signal which could be used by
the AGC.,
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Fig. 4-31 Digital Encoder, Functional Diagram

The digital encoder consisted of a digital pickoff gear, two U-shaped digital
pickoff heads, and the encoder electronics, Primary and secondary coils were
wound.on each of the two legs of each pickoff head, The primary coil was excited
with 25, 6 k Hz. The secondary coils were connected in opposition, When the
movable armature ( pickoff gear) was symmetrically located between each of the
two legs, the mutual inductance beitween the two legs was the same, Since the
secondaries were wound in opposition, no output voltage resulted, This position of
the gear was referred to as the null position, If the armature was displaced from
the null position, a greater voltage was induced in one of the coils. Motion of the
gear tooth in the opposite direction similarly produced a greater output voltage in
the other coil, The output voltage varied sinusoidally with the displacement of the
gear teeth, Thus, this device modulated the excitation at a frequency proportional
to the velocity of the armature, The second pickoff head was located so that its
output voltage would be displaced from the first output voltage by 90 degrees, The

relative phasing between the two outputs indicated the direction of shaft movement,




The first portion of the digital encoder electronics was a preamplifier which
was followed by a synchronous demodulator, The output of the demodulator was
converted into square waves by the Schmitt trigger, The square wave outputs were
then fed into a logic network which identified the direction of rotation and produced
voliage spikes on one output line {+ Ad) for clockwise rotation of shaft and on the
other line ( -A $) for counterclockwise rotation, These spikes were then converted
to the proper logic level for the AGC by pulse shaping networks, Each pulse
presented to the AGC represented 40 arc-seconds of shaft travel when used with the
ISS, or 20 arc-seconds when used with the optics, The logic of the encoder elec-
tronics provided two distinct encoder modes of operation, either one pulse per gear
tooth or two pulses per gear tooth, Again, the modes of operation depended on

subsystem mechanization,

While the digital encoder was providing the AGC with information about the
position of the CDU, the AGC had also to be provided with a means of controlling
the movement of the CDU. This was accomplished by the digital-to-analog converter
(DAC). The DAC received commands from the AGC and converted these commands
to an electrical output usable in the MDA, The inputs from the AGC were pulses of
approximately 3 microseconds duration with a repetition rate of 3,200 pps. These
pulses were not applied continuously but were supplied in bursts from the AGC,
The feedback signal from the encoder also consisted of pulses, but the repetition
rate varied according to the speed of encoder pickoff gear rotation, The AGC inputs
caused a capacitor in the DAC to be charged., The charge on this capacitor was
reflected into the DAC output stage by two integrated choppers operating at 800 Hz
The output of the DAC was an 800 Hz square wave with a maximum amplitude of
approximately 10 Volts peak-to-peak, This output was utilized by the motor drive
amplifier to position the CDU, The negative feedback from the encoder was required
to insure that only a defined amount of CDU movement per pulse would occur from
the AGC. The encoder input discharged the capacitor that had previously been
charged by the AGC input, therebyshutting off the DAC,

4,5.2 Block II

The Block II coupling data unit comprised the central angle junction box
between the IMU, optics, computer and the certain portions of the spacecraft analog
electrical interfaces, There were three basic portions of the CDU: the angle read
system or analog-to-digital conversion process, the digital-fo-analog conversion
process, and a portion of the moding controls for the guidance system, The
analog-to-digital system is covered in some detail while the other portions are only

briefly described,




4,5,2.1 Analog-to-digital Conversion. Angle information was stored in a two-speed

resolver system of a control member, for example, a gimbal axis or an optical
axis (see Figure 4-32), The output of the resolver was proportional to sin 8,

cos 8, cos B, sinnf, cos nh, where n was a binary number, It was a common tech-
nique to have both the single speed and multiple speed resolver use the same iron
and utilize a single excitation winding, The second excitation winding space, phased
90° with respect to the primary excitation, was used for electrical zero adjustment,
The elements of the angle read system were an analog multiplication of the resolver
output, an analog summation, a sampler and quantizer, a storage counter to control
the analog multiplication, and ac switches controlled by the counter to gate inputs

to the analog multiplier,

The equation mechanized was:

i

sinf cosy¢ - cos 8 siny sin 6 -~y)

cosf cosy + sin 6 siny cos (6 -y )

1

where ¢ is a quantized angle in increments of 22-1/2 electrical degrees, and 8§ is

the angle of the control member,

As shown in Figure 4-33, this output was summed with a quantized linear
interpolation of difference between sin (6 -¢ ) andf ., The selection of the quantized
angle and the quantized linear interpolation angle ¢, was based upon the contents
of an angle counter register, The angle counter inputs were gated by the phase of
the summed voltages, Thus when the contents of the counter were equal to the

control member angle;
sin (g -y ) + Kcos (8 -¢) =0

The inputs to the counter were angle increments of the control member and these
were parallel<fed to the computer where the same control member angle information

was stored,

Analog multiplication of the resolver sin 8 and cosf voltage was accomplished
by the use of an ac operational amplifier with the ratio of the feedback resistor to
the input registor equal to the cosine of the angley 1 S was an ac transistorized
switch gated closed or opened by contents of the angle counter resistor. The switch
was in series with the feedback resistor to take advantage of the high impedance

open condition and low impedance closed condition which made the impedance
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Acosy,

AAA —O sin 8 cos ¥,
A S
sin@
°
AN —6—0 0

equivalent to a portion of the amplifier gain, K. Since the switch was effectively

a single-pole double-throw switch, the output of the open side differed from zero
only by the input signal divided by the amplifier gain, Using the technique of tran-
sistorized ac switches and operational amplifiers, the read system was mechanized,
The read counter contained 16 bits, The lowest order bit was used to eliminate
transmitting any limit cycle operation to the computer and thus avoided creating
unnecessary activity. The four highest order bits were used for quadrant selection -
and multiplication of the single speed resolver (¥ 1 ). In addition, the bits 29 - 211
were used as an approximate linear interpolation of the single speed resolver to
within 2. 81° of the actual angle, The multiple speed resolver (sixteen speed) was
the precision angle transmitting device, The zero-to-peak errors of this resolver
were less than 10 seconds of arc., There was crossover between the gixteen speed
and the single speed resolvers to assure synchronization of the reading of sixteen
speed resolver within the proper cycle, The lowest order bits were a linear inter-
polation of error using the voltage of the cos (§ -y ) as a source, This voltage had
the same phase relation as the sin (8 -y ) of the sixteen speed resolver and was

scaled correctly by the resolver attenuation,

Referring to Figure 4-34, the input to the error detector was the sum of
the single speed multiplication, the sixteen speed multiplication and the linear
interpolation, There was a coarse-fine mixing network to assure synchronization
and angle measurement using the precision resolver, The error detector contained
an active feedback quadrature rejector network which for large error signails

would not introduce dynamic errors for reading the angle, but for small errors




would yield the proper precision, The output of the error detector was fed to both
the rate selection logic and up-down counter logic, The contents of the counter
were used to control the ac switches for the multiplication of the resolver voltages

and the linear interpolator,

The error detector had three-state or ternary logic. The lowest order
pulse rate command to the counter was 800 pulses per second. Using this as the
lowest order assured switching of equal multiples of the resolver carrier frequency,
800 Hz, which prevented rectification of the switched signal and altering of the

dynamic operation of the read system,

PPS
A
400 + s
&oo T
i L6 [ { ANGLE
1
-20486 ]-«-{'\-goo sone ERROR
+-6400

The high speed rate following command reduced dynamic error for high
angular velocity inputs and the low speed command rate reduced the limit cycle

error,

The linear interpolation constant K was adjusted to minimize the peak error

E =sin(f -¢)-Kcos (g -y )

By suitably choosing K, the error for the speed resolver system could be reduced
to less than 10 arcseconds. For a 64 speed system as used on the optics trunnion,

this error was reduced o less than 2 arcseconds.
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In addition, a bias was added to further reduce the errors over the range
of linear interpolation, This resulted in a system with errors within the range of

predicted errors,

All digital functions including the memory were mechanized with a three in-
put NOR gate, a silicon semiconductor micro-integrated circuit, This was the
same element used in the computer; Direct-coupled transistorized logic was used
throughout, A multiple phase clock system, generated within the CDU and syn-

chronized to the guidance computer, was used to control all functions,

4,5.2.2 Moding and Digital-to-analog Conversion, The guidance computer served

as the important link between the spacecraft and the sensing device, All angle
transformations were made by the guidance computer based upon IMU gimbal angles
or optics angles, For any steering function utilizing the IMU, the computer through
the use of knowledge of the gimbal angles provided steering and attitude commands
to the spacecraft via the digital-to-analog converter, The angle information was
always stored in the resolvers, and no mechanical rezeroing of the IMU was neces-
sary to establish within the counter the IMU gimbal angle within the uncertainty of
the resolver, the error of the read system and the bit size of the analog-to-digital

converter,




The digital-to-analog converter system was required to accept digital com-
mands from the guidance computer and generate analog voltages (ac and dc)
proportional to these commands, The error angle counter was an eight bit up-down
counter, Computer commands were stored in this counter. The counter was
logically controlled to prevent it from being reset to zero in the event it was com-
manded to more than 109 increments, The analog error signals were developed by
an 800-Hz source gated by the counter contents through a resistance ladder to the
input of an operational amplifier, For polarity, reversal by switching was used to
command the 0 phase or = phase 800~Hz input to the ladder, All analog voltages
used as steering commands to the LEM, Spacecraft or other portions of the Apollo
launch vehicle were dc-isolated from the guidance system, either by transformers

or an isolated demodulator,

The moding of the system was almost entirely controlled by the computer,
Provision was made for two modes to be controlled by the astronaut, One mode was
the cage function, In the event of a spacecraft tumble and loss of attitude, provision
was made for the astronaut to cage the IMU gimbals with respect to the spacecraft
after he has first stabilized the craft, This then gave him a means of obtaining a
new reference in-a very shorttime, The other manual mode was similar in that
with the computer not operating he could use the same switch to cage the IMU with

respect to the spacecraft, release it, and again use the IMU as an attitude reference,

In all other inertial subsystems, moding was controlled by the computer,
There were a number of interesting modes possible because of the flexibility of the
CDU. The Coarse Align Mode, that of commanding the IMU gimbal angles by the
resolvers, was rate controlled to limit angular velocity input to the gyroscopes.
The input to the error detector was summed with the analog command from the
computer to provide stable operation, The gimbal angle pulse increments from the

read system were used as feedback pulses to the error angle counter,

4,5,3 CDU Problems
4.5,3.1 Block I Problems. The problems associated with the Block I CDU were of

a mechanical nature, The gear trains used with the CDU exhibited excessive wear,
and a few units 'froze' in operation, To correct this failure mode, a carefully
selected lubricant was added to the gears, Another gear box associated failure was
with the motor tachometer supplied by one of the two vendors of this component,
Because of mechanical tolerances, it "froze' at elevated temperatures, The cor-
rective action for this failure was to select the motor-tachometer from the vendor

whose product did not exhibit this failure mode,
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4.5.3.2 Block II Problems The operation of the CDU, in a system configuration,

disclosed two problems that required design changes,

(1) The coarse-fine crossover for the CDU was originally designed to take
place at a maximum coarse error of 9 degrees, System tests showed that under
certain conditions an oscillatory limit cycle condition developed between the coarse
and fine systems, A design change was made to reduce the crossover point to

7.5 degrees from null, This solved the problem,

(2) The CDU contained capacitor-coupled transistor switches as shown,
Immediately following power application or after long periods of inactivity, the dc
charge that would normally accumulate on the capacitor would not be present or

would have "leaked off."
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When switching action was initiated, the charging action of the coupling
capacitor in conjunction with the frequency response of the operational amplifier
would create a low frequency ''bounce' on the output of the switch, The cumulative
effect of several switches being activated during coarse alignment of the IMU would
cause the input limiting diodes of the error amplifier to be driven into the active

region and effectively short out the ac error signal to the amplifier, See following

illustration.
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With the loss of this error signal, the read counter would not increment and
the feedback pulses to the DAC error counter would not be present, The AGC would
"load' the DAC error counter to perform the coarse alignment, and in the absence
of the feedback pulses to subtract the "loaded" angle, when the gimbals moved, the
error counter would overflow on subsequent computer commands producing a loss

of information to the CDU and a failure to achieve the commanded CDU angle.

The diodes were removed and the error amplifier modified to improve its

saturation characteristics thus producing a larger linear operational region.

(3) The Block II CDU encountered several component associated problems
during the manufacturing period of the Apollo program. The part types that exhibited
failure modes were (1) RTIL micrologic, (2)transistors, (3) {ransformers,

(4) capacitor, (5) relays, and (6) resistors.

a. The micrologic NOR gates used in the digital modules of the CDU
exhibited both "open' gate failures and 'shorted" gate failures during subassembly
testing at AC Electronics Corporation. The majority of the failures occurred during
vibration tests. A minority of the failures were attributed to over-voltage stress ap-

plied by the test fixture during the early stages of the program,

The failures induced by the vibration of the modules were attributed to con-

taminants within the flatpack of the micrologic. A "screening' vibration test was




conducted at the module manufacturer to remove this mode of failure. The vibration

"screening' vibrated the micrologic flatpacks along three perpendicular axes.

b. The transistor used in the CDU ac switches was a 2N2351 device.
During the program this transistor exhibited failure modes that were attributed to
the ""purple plague' and to internal contamination, The corrective action taken was
to institute a centrifuge and X-ray inspection for incoming transistors at AC Elec-
tronics and to improve cleaning procedures at the manufacturer's facility., A second

source of supply was also obtained for parts procurement.

c. Transformer failures occurred via two different modes, The Bush
transformer (1010724) used in the main summing amplifier exhibited inductance shifts
after potting the module. The inductance shift was found to be the result of lamina-
tion shifts within the transformer, This condition was corrected by an improved

method of sealing the laminations,

The other mode of transformer failure was associated with wire breakage in-
ternal to the UTC transformer, The wire size used to wind these transformers was .
#50 AWG. The internal stresses placed upon the wire terminations and the fine wire
used to wind the transformer werebelieved to be caused by the hard potting compound
used in the transformer. The corrective action was to replace the transformer with

a compatible unit wound with larger wire,

d. Failure modes of the capacitors used in the CDU were associated
with two types of capacitors. One capacitor exhibited high leakage characteristics
after potting in a module and after being subjected to vibration testing. This failure
mode was found to be predominantly associated with a capacitor from one manufac-
turer (Kemet). The corrective action was not to use this product in the construction
of the CDU. The other capacitor was a polystyrene film unit. This capacitor ex-
hibited film rupture resulting in shorted units and poor connections to the film for
external leads. The corrective action was to replace the polystyrene unit with a
Mylar capacitor.

e. The relays used in the CDU for DAC output transfers were type
SCD1010353-7. Contamination of the relay by solder balls produced failures of these
units in the initial stages of CDU manufacturing, Subsequent tightening of the inspec-

tion procedure by the manufacturer removed this failure mode as a problem.

f. Failures associated with resistors were confined to the high resis-
tance value metal films and the carbon resistors used in the main summing ampli-

fiers. The metal film resistors were found to be changing values under module




rework. It was concluded that the abrasive material used during depotting was
establishing a high electrostatic voltage on the resistors and in turn punching through
and/or changing its metal film characteristics. The corrective action was to change

the type of abrasive material used during the depotting process,

The carbon resistors, of which there were only two in each CDU axis, ex-
hibited a drift characteristic upon potting that forced the associated resistance value
to fall outside the specified limits. The corrective action for this phenomenum was
to change the specification to accommodate the drift, These resistors occupied a
noncritical position in the function of the CDU; hence, the specification variance

could be tolerated.

4.6 Electronics Packaging

4.6.1 Constraints on Packaging Design

The G&N electronic packaging design evolved as the result of compromises
among conflicting constraints. Besides the principal goal of achieving required
performance within the operational environment, the impact of schedule, weight,
reliability, cost, power.drain, producibility, and logistics were all considered.

The constraint of schedule affected both design and design evaluation, Schedule re-
quirements dictated the early release of the design to production. Functional, me-
chanical and thermal design evaluation of prototype hardware in the expected environ-
ment occurred simultaneously with early production. Necessary design modifications

resulting from the evaluation were sometimes incorporated as repair fixes,

Factors which had primary influence in the packaging design were the space-
craft environment and interface constraints, and for Block I, the requirement for in-

flight diagnosis and module replacement.

4.6,2 Interface Control Documents

Spacecraft constraints were defined in Interface Control Documents (ICD).
The ICDs affecting the package design defined volume envelopes, weight require-
ments, thermal interfaces, mounting arrangements, acceleration, vibration and
shock environments, material compatibility, and color and markings. The ICDs
developed as the G&N and spacecraft designs matured. Early gross interface defi-
nitions were refined with occasional design modifications on both sides of the inter-

faces to accommodate other associated designs.
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4,6.3 Inflight Maintenance

The requirement for inflight maintenance was a consequence of the high re-
liability requirements imposed by NASA on all the Apollo contractors. Since the
failure rates of the high reliability componernts for Apollo had yet to be determined,

the conservative approach was to provide for inflight maintenance.

Block I experience, however, showed that the required overall reliability
could indeed be realized without resorting to imflight maintenance. This require-

ment was therefore removed for the Block II command module and LM G&N systems,

4.6.4 Materials Testing

NASA and all contractors had been doing extensive flammability, toxicity, out-
gassing, and odor testing of materials in accordance with NASA "Procedures and Re-
quirements for the Evaluation of Space Nonmetallic Materials' MSC-A-D-66-3, As
a result of these tests, many engineering materials were banned from use within the
gpacecraft if they were to interface with the cabin atmosphere, Also, in Block II, a
great emphasis was placed on avoiding the use of flammable materials, These con-
siderations led to the décisionto package the equipment, whenever possible, into
sealed metal containers. Because the Block II and ILM inertial subsystems were
functionally identical, an attempt was made to use common equipment wherever pos-

sible in the two systems.

4.6.4.1 Corrosion Protection & Associated Design Restraints, The extensive use of

magnesium in the structural members of the Apollo airborne electronic assemblies
introduced the possibility of serious corrosion problems that required solution.
There were certain parameters common to all the assemblies that tended to com-
pound the problem when considering methods of protecting the equipment against
corrosion. In addition to basic protection, the requirements for both the Block IT
CM and LM finish systems were: (1) electrical grounding, (2) thermal transfer, and

{3) outgassing. A fourth consideration, for LM assemblies only, was emissivity.

Hard vacuum [vacuum below the level of 10-6 mm Hg (torr)] affects materials
in two general ways: First, the material contains adsorbed and absorbed gasses
which may be removed by outgassing. Secondly, vaporization or sublimation of the
material or of a volatile (or toxic) component of the material may occur. The rates
of these reactions can be radically affected by temperature. The amount and nature
of potentially toxic and objectionable products outgassing from crew bay materials
were evaluatedand analyzed to insure astronaut safety and well-being for optimum

mission performance. The outgassing concentration of individual contaminants was




related to the effective habitable spacecraft volume. In general, materials that
outgassed organic substances in excess of 100 ppm per weight of sample was con-

sidered unacceptable for use in manned spacecraft crew bay areas,

The selection of organic materials for corrosion protection was evaluated

and considered acceptable in terms of outgassing characteristics.

Outgassing products from the modules were entrapped in the hermetically
sealed containers. Outgassing contaminants from the wire-wrap side of the headers
were minimized since this was the side that mounted directly to a coldplate and/or

spacecraft structure.

4.6.4.2 Required Surface Treatments. Electrical bonding of the PSA, PEA, PTA,

and CDU to spacecraft structure was accomplished by using a spotface under mounting
screw heads as an electrical conductive path. The engaged threaded section of the
mounting screw completed the path to the spacecraft structure ground. Thus elec-
trical currents were flowing through the case to the S/C structurevia a dissimilar
metal path, The total number of electronic assembly mounting screw fasteners was
analogous to a parallel grounding circuit for a given assembly. Each assembly-to-
structure electrical resistance was to be less than ten milliochms. Dissimilar metals
were an inherent part of the design, and the only means of controlling galvanic cor-
rosion was to exclude moisture from the mated metal surfaces. The solutions for

the various assemblies were as follows:

(1) CM PIPA Electronics Assembly (PEA) -- A stepped, rubber gasketed
iridite aluminum washer was used under the cover screws, or as an alternate,
the DOW 18 spotface was coated with an RTV~108 after assembly of the cover-

to-header screws.

(2) CM Power and Servo Assembly (PSA) -- The counterbores in the cover
were filledwith an RTV-108 after assembly.

(3) CM and LM Coupling Data Unit (CDU) =~- (a) The cover screws and nuts,
after assembly of the two halves, were coated with RTV-108; (b) the lower

washer, which was under the captivated header-to-structure mounting screw
head, was bonded in place. The adhesive surrounded the washer periphery,

masking the Dow- 19 magnesium surface. Epon 919 was used as an adhesive,

(4) LM Power Servo Assembly (PSA) -- (a) A stepped, rubber gasketed
iridite aluminum washer was used under the cover screws; (b) a thin bushing

sleeve was bonded to the magnesium in the precessed wells,




(5) LM Pulse Torquing Assembly (PTA) ~- Same as item (4),

The electronic assemblies required a means of dissipating generated heat.
The modules transferred heat to the assembly header which in turn transmitted heat
to a coldplate heat exchanger or the spacecraft structure. The assembly-to-coldplate
or structure interface surfaces were Dow-17 magnesium with zinc chromate primer
(MIL~-P-8585) and 3M 400 polyurethane paint (SCD 1012543) (per ND1002291),

Total primer and paint thickness was 2 mils maximum, A coating was re-
quired on these magnesium surfaces, for the mating surface was alodine aluminum.
This meant that thermal hot and cold spots would have condensed water, creating a
corrosive galvanic couple. This coating reduced the thermal transfer efficiency
when compared to an unpainted interface, but it was within the limits to maintain
sufficient cooling even in a vacuum environment, This was partially accounted for
by the application of DC-340 thermal grease to the assembly mounting interface for
the CM and the application of alumina-filled RTV-801 for the LLM.

External surfaces, with the exception of heatsink surfaces of actively cooled |
electronic assemblies in the LM, possessed an infrared emittance of 0, 40 or less
in the region of the electromagnetic spectrum between 5 microns and 35 microns,
This was a requirement for thermodynamic equilibrium in the LLM. A number of
finishes were evaluated using an emissometer, and it was determined that an alumi-
num filled epoxy paint developed by MIT/IL provided an emittance value around 0. 30

when applied on Dow-17 magnesium.

The specific requirements for Apollo electronic equipment with regard to low
emissivity, outgassing, thermal conductivity, EMI shielding and corrosive environ-
ments led to studies in these specific areas, It is beyond the scope of this report
to describe all the surface treatments, conversion coatings, organic coatings, or
any combination of these treatments that were tested. The selection of the combination
of treatments and coatings as detailed in preceding paragraphs was the most compat-

ible with the exposure medium.

4,6.5 Block I PSA Design

The Block I Power and Servo Assembly (PSA) contained all the electronics
for the ISS except for a few modules located in the IMU and CDUs. The PSA also
contained most of the electronics for the optical subsystem. It consisted of ten
nickel-plated magnesium alloy trays, each containing a number of replaceable mo-
dules. There were a total of ninety modules in the ten trays. Each tray had a lo-

cating tongue that fitted into a groove in the PSA end connector assembly to insure




proper alignment of electrical connectors. The tapered tongue also helped to main-
tain physical contact between the base of the tray and the thermal interface material
which transmitted heat to the spacecraft coldplate. On the front of each tray was a
test connector, guide pins to locate the tray and a captive fastening screw used to
jack the PSA into place. A stiff metal strip, called a toe plate was fastened to the
spacecraft structure and provided support for the front end of the trays. The fas-
tening screws bolted into the toe plate. The modules plugged into feedthrough con-

nectors on the vertical wall of the tray and were held in place with mounting screws.

Intra-tray wiring was done on the other side of the vertical wall. The wiring
was encapsulated with polyurethane, Moisture protection of the test connectors was
provided by individual gaskets and connector covers. Figure 4-35 shows a typical

tray.

The PIPA and IRIG calibration modules contained selected components which
were matched specifically to a single IMU. It therefore appeared advisable to pack-
age these electronics in a separate sealed PSA when the IMU was changed. This as-
sembly was called the PIPA Electronics Assembly (PEA) in the command module
and the Pulse Torque Electronics (PTE) in the LLM. The Block II and LM electronics
CDUs were identical except that two coarse align modules were not needed in the

CM CDU and therefore were not plugged in.

4.6.6 Block II and LM Electronics

The Block II and LLM electronics consisted of one CDU, one PEA or PTE,
and one PSA. The PSA for the command module also contained the electronics for

the optical subsystem. There were no OSS electronics in the LM PSA.

The Block II and LM PSAs, PEA, and PTE were all basically similar in
package design. FEach contained a machined header to which the modules were at-
tached on one side, while the reverse side contained the inter-module wiring and
output harnessing. A structural cover and gasket were bolted to the header on the
module side to provide a hermetic seal. All electrical connections to these assem-
blies were through sealed connectors. FEach assembly contained a slight positive
pressure using an inert gas with a helium trace. The wiring was sealed by a solid

polyurethane encapsulant,
The CDU for Block II and LM contained two separate header assemblies.

The long modules mounted across the width and bolted into the header. The two

headers were bolted together with modules back to back. A gasket between the
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headers provided a hermetic seal. In this configuration, the wiring planes were on
the outside and sealing was provided by a solid polyurethane encapsulant. ILight
sheet metal covers provided mechanical protection for the encapsulation, The CDU
was pressurized slightly above one atmosphere using an inert gas with a slight helium

trace,

The gasket seals provided a near hermetic seal for the electronic packages
and prevented leakage to levels below 10-4 standard cc/sec of helium across a one
atmosphere pressure differential. A seal of this quality significantly limited the
outgassing of toxic and malodorous materials from inside the sealed assembly and
offered positive protection of the unit from moisture environment. The integrity of
the seal could be 100% tested at the factory or in the field.

4,.6.7 Module Design

Module design remained essentially similar between Block I and Block II.
The module was the lowest order replaceable unit., In order to obtain the utmost
in reliability, the proven welded cordwood module was utilized. This configuration
was used throughout the ISS in the Gimbal Mounted Electronics, the Power and Servo
Assemblies, and the PIPA Elecironics.

In lower heat dissipating circuits, the cordwood components were mounted
between two epoxy fiberglass wafer boards and interconnected by welding, This as-
sembly was then mounted in an aluminum (Block I} or magnesium (Block II) frame,

welded to the output pins and foam-encapsulated.

Generally, any module over 10 Watts heat dissipation utilized an aluminum or
magnesium heatsink. These were tape control machined to receive component parts
and output connectors in cordwood fashion. Point-to~point welded interconnections
were made on both sides of the module, After the module was tested electrically and

inspected, the module was then encapsulated with foam potting.

The design of the CDU digital modules was dictated by the large number of
integrated circuit flatpacks in this assembly. The CDU modules were long and nar-
row consisting of two fabricated interconnection matrices to which the flatpacks were
bonded., The interconnection matrices were in turn bonded to a rib in the magnesium
module header and connected to the output pins. Each matrix was built up of layers
of etched metal conductors and Mylar insulators. The flatpacks were then welded to
the conductors. CDU modules with analog components were of the same shape as

above but with the heatsink machined to receive cordwood components.




Module geometry was derived by evaluating the following considerations:
(1) function, (2) reliability, (3) repairability, and (4) producibility. Experience in=
dicated that the functional circuit, as breadboardéd and schematically drawn by the
circuit designers, was very often the best compromise. Normally, package design

affects the initial schematic only when the available volume is too small.

Depending upon the geometry of the module, two, three, or four screws in
the frame held the module in place. These mounting screws were usually captivated
screws that allowed the module to be mounted into place or dejacked. The CDU

modules had two mounting and dejacking screws, one at either end.

Insertion of the module into the header connector was blind. Since there was
some danger that the pins would be slightly bent or broken, hard metal alignment
pins were used to guide the insertion of the module with proper connector pin align-
ment. When the module was not inserted in a header, a shielding skirt was provided

to protect the male connector pins.

EMI bonding of all analog modules in the electronic packages was provided by
a structural ground on the modules that consisted of a stainless steel pin mounted in

a spotfaced-tapped hole in the module frame connected to an output pin,

4,6,8 Connector Design

The Apollo system connector was the Malco '"Mini Wasp. "

It was a tuning fork
friction connector with a nylon insulator and mounted on 0, 125’ centers, The electronic
modules of all the packaged hardware were interconnected by means of Malco pins that
were set into the module housing and mated with pins in the header structure., In gen-
eral, the module was fitted with a male connector pin and the header or tray used the
female pin. The male pin had a nickel base with a 0. 000050 inch minimum gold-
plating, This metallurgy was selected because it offered the best combination of
desirable characteristics, namely: (1) corrosion resistance, (2) low surface resis-
tance, and (3) compatibility with resistance welding. The female connector could be
described as a wrappost with a beryllium=-copper base, 0.000200 silver plate, and a
final plate of 0,000050 minimum gold. The female wrappost was compatible with the

mechanical wirewrap process.

The criteria used for evaluation of terminations, i.e., soldering welding,
wirewrapping, or crimping were: (1) reliability, including joint life with respect to
mechanical integrity and contact resistance, (2) compatibility with structure and its
dynamic environment, (3) interconnection density required, (4) ease of repairability,

and (5) time, skill and tooling required to make the termination.




In Block I, the module=to=tray connectors were envircnmentally sealed by
individual module gaskets, When the inflight module replacement requirement was
dropped, the environmental seal was supplemented by the application of Dow Corning
DC-4 silicone grease around the connector pins. In Block II and LM the module-to-
header interfaces were wholly within the sealed packages and required no additional
environmental protection. During system installation into the spacecraft, all G&N
external interface connectors had a liberal amount of DC-4 grease applied to the pins

to aid in excluding moisture.

4.6.9 Thermal Design

4.6.9.1 General Considerations. The thermal aspects of the electronics packaging

were concerned with the removal of heat from the modules, This was accomplished
by providing a thermal conductive path from the modules to spacecraft-supplied cold -
plates, The coldplates were of an internal pin design sandwiched between two 0, 020
inch thick plates. A water glycol solution, maintained between 32°F and 55°F, was
circulated through the coldplates, Typical thermal resistances from coldplates to

coolant were on the order of 3, SOF/Watt/inz.

4.6.9,2 Block I Thermal Design, The Block I PSA design consisted of removable

modules mounted to a vertical member of a removable tray, The requirement for

inflight maintenance, with the requirement of handling the modules and trays, pre-
cluded the use of thermal conductive grease between the PSA trays, and the coldplate,
Consequently, North American developed a thermal interface material consisting of

a rubber-like tubing (1/8 inch OD) with a copper foil helically wound on the outside.
This material was laid side by side to form a mat and was placed between the cold-
plate and the PSA. Late in the Block I program, the inflight maintenance require-
ment was abandoned and a thermally conductive grease, Dow Corning DC-340, was

used in conjunction with the thermal interface material to effect a better heat transfer.

Figure 4-36 shows a typical component mounting method and the resistances
considered in the thermal analog. A nodal network was written for each tray, which
included spreading within the tray down to the coolant. Solving this network gave the
component temperature, For high component reliability, junction of silicon devices
were not allowed to exceed 105°C. These measures insured control of the interface
temperature at the tray base with NAA to not exceed certain temperature limits.
These limits varied from 90°F to 120°F for the ten trays that comprised the Block I
PSA.
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4.6.9.3 Block Il Thermal Design., The Block II thermal design had the modules

mounted directly to a header which in turn was mounted to the coldplate. Figure

4-37 shows the typical packaging arrangement used and the heat flow paths from
components in the modules to the coldplate. Header contact with the coldplate was
through thermal islands. The cutaway material between islands was used for module=
to~-module interconnecting wire runs and power lines as well as for weight reduction,
Sizing of the islands was based on a heat density not to have exceeded 3 Watt/in. 2 in
order not to have excessive AT's into the coolant from the header so that high coolant

inlet temperatures could be used.

Module packaging is shown in Figure 4~38, Two different modules were used:
a metal heat sink type to package high power dissipating components, and an open
frame type for low power dissipating components. For equal volumes, the open
frame type was considerably lighter, but the thermal resistance through foam was

two orders of magnitude greater than that of a metal heat sink.

A thermal analog was assembled which coupled together the components,
modules, header and cover to the coolant and surrounding environment. Control of
the interface temperature at the thermal islands insured that the silicon devices
would not exceed reliability limits., The temperature limit for the thermal islands
was 120°F.

4.6.9.4 CDU Thermal Design. The CDU heat flow paths are shown in Figure 4-39,

This design had two tiers of logic and analog modules. The heat flows from each

module into the trays, down to the thermal rails and into the coldplate,

The logic flatpacks were of a low power type such that thermal straps to
transport away the heat within the modules were not necessary. Analysis showed
that the multilayer boards bonded to a metal frame were sufficient to remove the
heat from the flatpack junction to the module/frame interface at a AT of 18°F. The

junction of the logic elements was not allowed to exceed 70°C,

A thermal analog was assembled that coupled the modules and trays to the
coldplate and local thermal environment., The indications were that the thermal rail
temperature was not to exceed 110°F if the logic element junction of 158°F (70°C) was

not to be exceeded.

It is important to note that the CDU was designed to be interchangeable be-
tween the LM and CM vehicles.
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The automatic wirewrap process was utilized for the single plane header.
Because of wire densities, the high reliability automatic interconnection scheme was
suited to producibility and repairability. The lengths of the wires in each header
caused some concern since they were a source of coupled noise where wires ran
parallel for a finite length. The lengths and routing of the wires were determined
by a computer program. The only restrictions placed on the program were those

inherent in the wiring patterns available with the Gardner-Denver automatic machine,

4,6.10 Packaging Problem

(I) A major mechanical difficulty in the Block T PSA was to achieve an ade-
quate thermal interface between the PSA trays and the spacecraft coldplate. Tests
of the thermal interface material showed that thermal conductance varied in direct
proportion to the depth of its compression., Other tests indicated that the pressures
required to deflect the material to achieve the desired conductance (100 BTU/hr/oF/ftZ)
were much higher than originally anticipated. These forces caused bowing at the
trays and plate, thereby reducing conductivity across local areas on the interface,
Closer tolerances for the tray locating tongues, stiffening of the trays, and changing
the toe plate from aluminum to beryllium produced an adequate but marginal design.
However, it was not until the inflight maintenance concept was dropped thus per-
mitting the use of conductive grease on the thermal interface material, was the prob-

lem adequately solved.

(2) The module designs were plagued by numerous modifications required by
circuit and component changes. As was pointed out previously, scheduling constraints
dictated a release to production concurrent with engineering evaluation testing.

Nearly all the modifications resulted from circuit changes determined by this testing.
Component changes were made to bring circuit parameters to optimum design centers,
or because reliability determined that a particular component was unreliable. Wiring
changes and component placement was altered to minimize electromagnetic coupling
between circuits. Circuit changes were made when the original design was found to
be marginal under adverse operating conditions. In some instances, high power
dissipation components were relocated to remove local hot spots. Where possible,
the changes were made as a ''repair fix'" by depotting or rework of manufactured
modules, and the necessary changes being incorporated into forward production.
Where changes were too extensive, modules were scrapped and replaced with new
designs, the change from ternary to binary torquing of the PIPAs required new

module design.

(3) The Block I inflight module replacement feature required that the mo-

dules be removed using only a number 10 Allen wrench. The modules were fastened
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to the trays with number 10 captive Allen head bolts, and necked down near the bolt
head to provide clearance through a threaded portion of the module, There were
numerous bolt failures in the early systems caused by shearing of the bolt heads.
Necking down the bolts left an insufficient wall thickness in the region between the
bolt shank and the Allen head recess. A bolt configuration change to increase the
material thickness in that region plus a material change to a stronger bolt

solved that problem.

(4) When the IMU gimbal mounted electronic packages were designated, it
was felt that an added measure of quality control could be achieved if the modules
were encapsulated in clear potting. It was reasoned that if one could see inside the
module, greater care would be taken in the assembly of the module, and that fact
would add to the reliability of the assembly. The cordwood assembly was packaged
inside a transparent Lexan case then potted with a transparent potting material.

The Lexan cases exhibited a high incidence of cracking and crazing. Numerous at-
tempts to solve the crazing problem proved futile. Finally, a drawn aluminum case
was designed for the gimbal mounted electronics, and the visual inspection feature

was abandoned.

(5) A potential structural problem appeared during the environmental design
evaluation of the Block IT CDU. The response of the modules within the headers to
vibration or shock inputs from the spacecraft structure was higher than anticipated,
Although not a critical problem, the condition was not desirable. A corrugated metal
damper plate was placed between the two arrays of modules to help restrain the
modular response, This decreased the module resonance peaks to reasonable levels

with a sufficient margin of safety.

(6) The CDU was fastened to the LM spacecraft with bolts that passed through
clearance holes in the CDU flange, coldplate, and coldplate support structure and en-
gaged nut plate fasteners on the far side of the support structure. The mounting bolts
were chosen such that the bolt shank would pass completely through the clearance
holes, Proper account was not taken of the imperfect lead in threads and resulted in
bolts with too long a grip length. As a result, the bolis could not be screwed far
enough into the fasteners to assure proper CDU mounting. This condition was dis-
covered after the CDU was installed into the spacecraft. The bolts were then re-
moved and replaced with correct size bolts. An investigation disclosed that a similar
condition existed for the mounting bolts of the PSA, CDU and computer in both the
Block II command module and the LLM. Appropriate action was taken to correct the

problem.
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(7) Block I PSA modules utilized a block anodized aluminum housing and two
types of encapsulation materials. The bottom end of the module was encapsulated
with Stycast 1090, and the remainder of the module was encapsulated with polyurethane
foam., After encapsulation, the bottom of the module was machined to obtain the re-
quired dimension from the bottom of the module to the bottom of the connector. An
examination of several modules that failed during humidity qualification testing dis-
closed that the Stycast 1090 had separated fromthe housing and allowed moisture to
penetrate the module. An engineering investigation determined that the adhesion of
Stycast 1090 to black anodized aluminum was at best marginal. Silicone and hydro-
carbon oils, acting as contaminates were found on the separated surfaces of one mo-
dule. These contaminating agents were present in sufficient guantities to prevent
adhesion. The forces imparted by the milling cutter during the machining operations

were found to cause separation where low peel strength existed.

Satisfactory adhesion was obtained by first priming the aluminum housing
with a thin coating of C7 epoxy adhesive. This change was incorporated in all for-
ward production modules. In addition, measures were taken to insure that module
components were free of contamination. The module machinery technique was re-
vised to prevent the milling operation from imparting abnormal peel forces to the

assembly.

Modules which had already been constructed, were repaired by mechanically
removing a groove of Stycast 1090 around the periphery of the encapsulated region
where it interfaced with the housing and filling it with C7 epoxy adhesive, There

were no further module failures,

(8) Block I hardware developed shorts in the PSA tray header wire resulting
from cold flow of the wire insulation. This phenomenon occurs when a Teflon-
insulated wire is subjected to small but constant pressure against a sharp corner
such as another Malco pin, mounting boss, or thermal island. The continuous pres-
sure does not result in immediate cutting of the insulation but rather in gradual re-
gression of the insulation. Proper selection of new wire insulations, such as Mylar
and polyamides which are more resistant to cold flow and still compatible with the

encapsulant material in the wirewrap plane, alleviated the problem.
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Section V

SYSTEM FLIGHT EXPERIENCE

5,1 Synopsis

The Apollo GN& C system had successfully flown in seven flights as of 12
March 1969, This experience provided data for an identification of the elements of
system design, prelaunch and flight activities that were most influential in achiev-

ing success,

The prelaunch, flight activities and data reviewed included four unmanned
Apollo launches (three command modules and one lunar module) and three manned
missions, Comparisons were made between ground measured data and measure-
ments made during missions, The calculated system performance for some guidance
phases of the mission were based upon ground measurements and compared to actual

inflight performances and to system specified performance,

The review of the experience indicated that the significant factors enabling
the Apollo GN& C system to successfully perform its function were the early recog-
nition of necessary design changes for stable performance, the ability to predict
the expected system performance, the discipline imposed by the policy of allowing

no unexplained failures and the ability to diagnose flight operational anomalies,

The elapsed time of major items from the design inception to the first flight

was less than five years,
Brief Time Schedule

System Design Start at MIT October 1961

GN & C Installation in First Flight

Spacecraft September 25, 1965
First Flight Program Release January 1966

First Flight August 25, 1966

During this period of time, concepts of the lunar landing mission operations
were changing and GN & C system requirements were added, subtracted, and modi-

fied, The system was designed to be fully integrated with the astronaut as well as




to have an automatic capability, The first four flights were unmanned and required
the automatic system, The original design intent was to have a completely self -
contained navigation system. During the program, it was stipulated that primary
navigation would be the function of the ground-based tracking network, Both means

of navigation were accomodated as ground-transmitted spacecraft state vectors,

5,2 Prelaunch Operation

The Apollo GN & C system on the launch pad at KSC was subjected to approx-
imately 12 months of system testing, Then a final test for verification of flight
readiness was performed, When the flight readiness test was successfully completed,

the GN & C system was ready for the mission, The countdown operations followed,

The average lunar module GN & C system was checked out for several weeks
prior to the scheduled flight, The computer erasable memory was then loaded for
flight operations and the system turned off, except for IMU temperature control,
The system was not activated again until it was in space, The average CM GN& C
system was operated fifty hours in support of the countdown, The system was ex-

ercised through automatic operational checks and a final calibration test, The

initial conditions for the mission were loaded into the computer erasable memory
and, by gyro compassing, the inertial measurement unit was commanded to start
the automatic platform alignment, About two weeks prior to launch, the alignment
of the inertial measurement unit was verified by the astronaut using the optical
system space sextant to sight on illuminated targets two miles from the launch
vehicle, The launch vehicle had demonstrated enough stability so that optical veri-

fication was not required in the final countdown,

The control room for the spacecraft checkout and launch was located twelve
miles from the launch site in the MSOB ( Manned Spacecraft Operations Building
Figure 5-1), In the control room, the serial digital data from the spacecraft was
processed by the ACE (Acceptance Checkout Equipment) computers which in turn
displayed the information to the test engineers as meter and oscillograph readings,
event lights or CRT (cathode ray tube) displays. In addition to standard data the
telemetry transmitted from the flight computer to the ground was processed to pro-
duce a CRT display analogous to the onboard DSKY display that the astronauts were
monitoring, The K-START (Keyboard Sequence to Activate Random Testing) com-
mand system duplicated the keyboard section of the onboard computer DSKY. The
keyboard entry was paralleled with a tape reader allowing for automatic, rapid,

error-free command sequences from the control room to the onboard computer,




The capability for remotely monitoring and commanding the GN& C system was ex-
ploited in the design of the prelaunch test procedures to enable paralleled testing of

spacecraft subsystems,
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Fig. 5-1 Apollo Prelaunch Operations

5,2.1 Prelaunch Checkout Design Objectives

The Apollo guidance computer was programmed to compensate the system
for the predominant instrument errors, The objective of the prelaunch calibration
testing was to provide test estimates of the present values of the error coefficients
for use as compensation and to provide data for determining the uncertainties to be

expected,
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The unique characteristics of an inertial system utilizing a general purpose
digital computer with a remote control capabilily were exploited in the design of the
prelaunch calibration tests, The guidance system calibration test requirements
were designed to minimize the launch preparation time, The test method utilized
gravity to eliminate the need for external references, The known amplitude of
gravity was used to calibrate the accelerometers, The gyro drift calibration was
based on the detection of the vector rotation of gravity by the accelerometers, The
drift information had to be separated from accelerations caused by launch vehicle
acceleration resulting from sway and from noise as a result of quantization in the
pulsed integrating pendulous accelerometer, The velocity quanta size for the CM
was 5,85 cm/s and for the LM, 1 cm/ s, The information was separated from
the noise by a simplified optimum linear filter, which included in its state vector,

estimates of launch vehicle disturbances,

The measurements made on the launch pad were usually used as reconfirma-
tions of the selected compensation values, The compensation parameters were
accelerometer bias and scale-factor errors for the three accelerometers, and gyro

bias drift and two acceleration-sensitive drift terms for the three gyros, for a total

of fifteen terms,

5.2.,2 Error Analysis for Prelaunch System Flight Worthiness Demonstration

The measurements made prior to launch were used as indications of uncer-
tainties to be expected during a mission, The prelaunch system performance data
had specified tolerances, In the cases where the specified tolerances were exceeded,
the flight worthiness of the system was evaluated on the basis of the probable mis-
sion effect of the deviating parameter, As an example, shifts of gyro drift parame-
ters beyond specified limits during prelaunch tests occurred on Apollo 3, 4, 5, 6,
Decisions about the flight worthiness of those systems were made by first classifying
the problem as indicating possible catastrophic failure in flight or one indicating
performance degradation, In cases where reliability problems were suspected, the
Inertial Measurements Unit was replaced (Apollo 6), In the other cases, where
the test data showed a performance degradation, determination of the mission effect
was required, This determination required the development of error analyses that

related variations of each of the measurable parameters to the mission,

Each mission in the Apollo program is unique, A separate error analysis is
to be performed for each, The mission performance requirements, based upon a
typical lunar landing, were defined early in the Apollo program, Because of the

variety of missions and mission objectives, it was necessary to have a separate




error analysis for each mission, For all missions except Apollo 5, the segmented

mission phase approach to error analysis using a linearization technique was entirely

adequate and was pursued, An error analysis was conducted using both the speci-

fication values, as well as the demonstrated values, for the GN& C system,

A

comparison of specification, actual ground measurement, and flight results for

selected mission phases is presented in the following table and Figures 5-2 through

5-6,

1-o Uncertainty Based on Best
. Specified Actual Pre- Estimate
Mission and Parameters Perfcrmance Flight Data Error
Apollo 4 (SA501)
1, Position error at re-entry start 2,75 nm 3.15 nm 7.5 nm*
2. Velocity error at re-entry start 26.6 ft/s 51,5 ft/s 140 ft/s*
3. Position error at splash 22,5 nm 18,6 nm 7.4 nm*
Note: *NASA-5-68-454
Apollo 5 (LM1)
1, Altitude uncertainty at perigee after APS cutoff  100,890,2 ft 109,079,7 ft Unavailable
2. Position error indicated at SIVB cutoff 5.6 nm 4,22 nm 0.0 nm
3, Velocity error indicated at SIVB cutoff 132.5 ft/s 100 ft/s 2 ft/s
Apollo 6 (AS502) i
1, Position error at re-entry start 2.8 nm 2,75 nm 2. 7nm*
2, Velocity error at re-entry start 58 ft/s 57 ft/s 10.2 ft/s*
3. Position error at re-entry end 14.2 nm 7.2 nm %
Notes:
*MSC-PA-R-68-9
**Due to failure of the SIVB to re-ignite, the
re-entry trajectory was not as planned; there-
fore, the entry error is meaningless,
Apollo 7 (AS205)
1, EOI cutoff position uncertainty 3.1 nm 1.8 nm 2,6 nm
2, EOI cutoff velocity uncertainty 73 ft/s 43 ft/s 60 ft/s
3, Rendezvous TPI burn position uncertainty 1.95 nm 0.7 nm 0,51 nm
4. Rendezvous TPI burn velocity uncertainty 13.7 ft/s 5 ft/s Unavailable
5, Position uncertainty at drogue deploy 2.8 nm 1.4 nm 2.2 nm
6, Velocity uncertainty at drogue deploy 56 ft/s 33,7 ft/s Unavailable
Apollo 8 (AS503)
1, EOI cutoff position uncertainty 4,3 nm 3.9 nm 0.016 nm
2. EOI cutoff velocity uncertainty 70.7 ft/s 66 ft/s 1ft/s
3. TLI cutoff position uncertainty 1,25 nm 1.1 nm .9 nm
4, TLI cutoff velocity uncertainty 12.2 ft/s 10 ft/s 18 ft/s
5, Perilune uncertainty following LOI (3 ) 0.31 nm 0.23 nm 0.15 nm
6. Apolune uncertainty following LOI (3 ) 4,7 nm 2,2 nm 1,46 nm
7. Position uncertainty at drogue deploy (CEP) 1,92 nm 0.96 nm 0,815 nm
TABLE 5-1
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The unmanned Apollo 5 flight was such that known initial conditions for each
thrusting phase were not available, As the system guided the vehicle based upon
its actual set of initial conditions, the guidance errors could not be treated with
linearized perturbations, The resulting position and velocity errors became more
nonlinear as the mission progressed, The mission was scheduled for nine earth
orbits, and the small-angle assumptions usually used with gyro drift were no longer
applicable, The only solution was to conduct a large number of Monte Carlo error

analyses of the complete mission,

Some interesting examples of how error analysis helped resolve operational
problems that occurred on the early flights are included here for the reader's evalu-
ation, The flight plan for AS-202 called for a sub-orbital flight of approximately 3/4
of an orbit with a maximum entry range coupled with a maximum heat -rate input to
the heat shield, The original requirements called for an entry-angle uncertainty
specification of 1/20. This was an easy achievement with the ground giving a state-
vector update, During the checkout phases of the vehicle, it was learned that there

were phases in the mission program when an update should not be sent
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because of onboard software deficiencies, This resulted in a condition where a
backup gystem would be required for guidance, As checkout proceeded, it was
clear that inertial performance could, with a 3¢ uncertainty, not exceed 1/30,,
However, near the flight readiness test, the performance requirement was stated
to be 0, 05° with a 3¢ uncertainty, The system would not have made it without up-
date and might not have even with update, However, near launch the requirement
of 1/2o was reimposed and no update was attempted, Post-flight analysis showed

the entry angle error to be 0, 12°,

Another operational consideration where the error analysis was used con-
cerned notification to the GN & C system that launch vehicle lift-off had occurred,
This discrete command given to the spacecraft guidance computer was to change the
mode of operation from gyrocompass to boost monitor, Three methods were used
to achieve this: (1) At a time about five seconds before lift-off, a discrete command
called Guidance Reference Release (GRR ) was given; (2) At lift-off, the same
hardwire discrete that went to the launch vehicle guidance system was also sent to
the Apollo GN & C system when the vehicle actually lifted off; and (3) A backup lift-
off command could have been sent to the computer either by the Astronaut or by an
uplink command from the Mission Control Center at Houston,

At T-15 seconds, monitored and progressed by a digital computer, the
Saturn vehicle countdown proceeds automatically, Holds had occurred after T-5
seconds and it was common practice to recycle back to T-15 minutes thus creating
a possible problem, Should a sequence like this occur, the guidance system would
be released and proceed to monitor the boost, Should recycle occur, there would
be insufficient settling time to re-establish orientation of the GN & C system by gyro-
compassing, The error analysis results indicated that the GN& C system would
navigate and monitor boost properly even if it were released well ahead of lift-off,
Because of program considerations, it was decided to remove the GRR signal and

to launch with only two methods of indicating lift-off,

5,2,3 Checkout History and Experience

The Apollo system spends a majority of its life in checkout. The following
table summarizes the history of systems to date, The average number of operating
hours accumulated in checkout was 2460 hours during an average 10, 45-month

spacecraft testing period,
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Spacecraft Contractorts Plant Kennedy Space Center G&N System

Installation. System Removed/ Shipped System Removed/ Launch Months in  Operation

System  Completed Reinstalled to K8C Reinstalled Date Spacecraft Hours

Apollo 3

A§202 1/ 6/66 None 4/16/66 None 8/25/66 8.7 2192

G&N 17

Apollo ¢

A§501 8/29/66 None 12/22/66 None 11/ 8/67 14,3 2907
. G&N122

ollo 5
ﬁ?ﬁl 11/12/66 IMU replaced 6/23/67 Replaced 1/22/68 14.3 2626
G&N603 12/66 . Computer 68/67
IMU 7/67

Apollo 6

A§502 1/ 3/61 6/67 11/23/67 Replaced IMU 4/ 4/68 8.6 2669

G&N123

Apollo 7

Ag205 12/16/67 None 5/30/68 None 10/11/68 10.0 2345

G&N204

Apolio 8

A§503 4/ 1/68 None 8/12/68 None 12/21/68 8.6 1905

G&N208

Apollo 8 )

A§504 5/ 2/68 Replaced DSKY 10/ 5/68 Replaced IMU 10,0 Unavailable

CM104

G&N209 3] 3/69 |

M3 10/ 7/68 None 6/14/68 Replaced 17.0  Unavailable

G&N6Q5 MU twice

TABLE 5-2

The success in meeting schedules and establishing the flight worthiness of all
the hardware was attributed to early recognition of the importance of considering
checkout problems in the design, to minimization of equipment removals by carefully
reviewing all anomalies for flight impact, and to the discipline imposed by allowing
no unexplained failures,

Spacecraft testing revealed that there was a high probability of applying and/
or removing spacecraft power to the GN& C system in an incorrect sequence, The
first system design did not incorporate protective features for making the system
tolerant of incorrect power sequencing, Incorrect power sequencing resulted in
performance shifts of inertial componenis, Conseguently, the design was changed
to provide internal protection against such an occurrence which, subsequently, saved

many hours of retest and stabilized the performance data obtained in spacecraft




testing, Another example involved ground potential changes in docked test configur-
ation. The possibility of reverse potential on the system was not considered in the
initial design, When spacecraft tests indicated that reverse voltages could exist as
a result of grounding configurations, the GN& C system electronics design was

changed to tolerate reverse voltages,

The prelaunch checkout had to guarantee that the equipment would operate
during the mission, When any discrepancy existed, positive action was taken io
eliminate possibility of failure in flight, An example of this was the failure of the
GN& C system to accept an entry mode change command once during checkout of
the AS-202 system, Even though the problem was never duplicated, the relays that
could have caused this single malfunction were replaced. Another example involved
the computer in the same mission, While one of the computers was undergoing in-
spection at the factory, it was discovered that one of the vibration isolation pads
was missing from the oscillator module, Subsequent examination of other available
modules revealed that, on the basis of the sample examined, there was about a 20%
chance that one of the vibration isolation pads was missing in the computer in the
spacecraft, The decision taken 30 days prior to flight was to remove the computer

and inspect, It was rapidly done and verified that the pad had been installed,

The early GN & C system operations were plagued by the occurrence of un-
explained restart*, The concept of NO unexplained failures required that each
restart be explained, The computer restarts were frequent early in the program
but as effort was applied to explain each one they were reduced to zero, Noise
susceptibility in test connectors was discovered and corrected by a computer short-

ing plug, Software errors were discovered and corrected by new software, Pro-

cedural errors were discovered by means of ACE playbacks and laboratory verification,

The solution therefore involved hardware changes, software changes, procedural
changes and, above all, education and understanding on the part of all GN& C system
operation personnel, The successful operation of the hardware during the Apollo
flights was, primarily, the result of this careful disciplined engineering that ex-

amined all facets of the situation and left no area uncorrected,

5,3 Flight Operations

During a mission the GN & C operation was monitored by computers in the
Real Time Control Center (RTCC) in Houston, The digital data generated by the

>::A restart is an internal protective mechanism that enables the computer to recover
from random program errors, operator errors, and from environmental disturb -
ances, Restartattemptstopreventthe loss of any operating functions,




onboard computer consisted of lists of two hundred 14-bit computer words {rans-
mitted once every two seconds, The contents of the lists were designed to provide
information relevant to the mission activity, The data were used to drive displays
on the guidance officer's console and numerous other support consoles, The amount
of data from the guidance computer was limited by the word size and transmission
rate, The program design, however, allowed the program to select the quantities
to be transmitted and thus compensated for this deficiency, The data used for the
real-time displays were selected priorto the mission and werebased onthe flight
controller's experience and operational requirements, In real time, the data format

was quite inflexible,

The control of the system was accomplished in the same computer complex,
The data transmission paralleled the onboard keyboard-entry capability, The data
transmitted consisted for the most part of an update of the spacecraft position and
velocity, which was determined by ground tracking stations and converted into the
proper format by the Houston RTCC, The controller had the capability of commanding
the spacecraft computer through an analogous keyboard with the same codes as those
of the astronauts,

Review of the data obtained from flight monitoring indicated that the ground
calibration enabled accurate error compensation, Review of the anomalies in flight
operations indicated that there was a reasonable amount of time available during
the mission for troubleshooting and diagnosis of problems, The only cases that

could not be diagnosed in real time involved inadequate real-time data.

5.,3.1 Guidance System Monitoring During a Mission

The monitoring of the guidance system performance during the mission con-
sisted of comparing navigation data f{rom other sources (ground tracking, Saturn V
guidance, LM backup for CM, CM backup for LM), computing accelerometer out-
put with no input at zero gravity, and determination of the quality of the inertial
reference by successive inflight optical realignments of the IMU, These successive
realignments were performed several hours apart so that the rotations of the IMU
stable member required to realign it were mostly the result of gyro drift with the
fixed errors reduced inversely proportional to this time interval, There were also
operational techniques utilizing star and planet horizons for checking the commanded

attitude prior to a velocity-change maneuver,




The onboard measurement of the available IMU performance parameters
could have been used to further improve the performance, The compensation para-
meters could be modified through the keyboard, either onboard or from the guidance

officer's console in Houston,

The guidance system monitoring was designed to provide the flight controllers
with data upon which a prediction of the future operation of the system could be made,
The flight controllers had pre-programmed decision points that enabled the mission
to continue with a backup system in control, or with a new mission plan if their data
indicated that the primary system might not perform adequately during the ensuing

critical mission phase,

The data telemetry from the spacecraft was limited; hence, the ability to
predict future operation was difficult, The limits set for the various parameters
were selected on the basis of the worst performance experienced during design

evaluation tests and prelaunch tests, excluding catastrophic failures,

Onboard measurements to date have indicated excellent performance, The

only onboard measurement available for the unmanned missions (Apollo 4, 5, 6)
was accelerometer output at zero gravity (ab). The manned missions also included
inertial platform drift at zero gravity (NBD ), The inertial component data are pre-

sented in the following table and in Figure 5-7,

Figure 5-8 shows the monitoring of the IMU over a long period of continuous
operation, The data indicate that stability of inertial operation was achieved in

the design, The entire component data history is presented in Figures 5-8 and 5-9,

5.3.2 Mission Diagnosis

The adequacy of all subsystems to continue into the next phase and to complete
the mission was reviewed continuously by the flight controllers. It was important
therefore to diagnose problems in real time in support of the GO/ NO-GO decisions,
The flight experience showed that there was adequate time available for problem
diagnosis and that there was a capability for real-time troubleshooting, There were
two types of problems where real-time troubleshooting was of no value, These were
problems involving actual hardware failures and involving incompatibilities resulting

from inaccurate models of the spacecraft used in the control programs,




Gyro Bias Drift

Accelerometer Bias Less Compensation
Ab Aby Ab NBDX NBDY NBDZ
tem/s?)  tem/sD)  fem/shH  (merwt  (merw {meru)
Apollo 4
In-flight measurement 0.304 0.23 -0.39
Compensation 0.41 0.21 -0.28
Apollo 5
In-flight measurement 0.1 -0.3% 0.0
Compensation 0.14 -0.22 0.12
Apollo 6
In-flight measurement -0.83 2,77 1.83
Compensation 0.64 2.9 2.1
Apolio 7
During the Apollo 7 mission the crew removed power from
the guidance system during inactive periods. Data was
gathered on gyro drift and accelerometer bias.
Last prelaunch measurement 0.2 0.24 0.16 1.8 0.4 -0.8
a. Accelerometer and gyro data following boost.
In-flight measurement 0.275 0.0 0.215 2.2 0.2 0.15
b. Accelerometer and gyro data at 145 hours following
several on-board removzis and re-applications.
in-flight measurement 0.308 0.0 0,208 1.4 -0.63 0.0
Apollo 8
The Apollo 8 mission was flown with the guidance system
continuously operating. The monitoring of the inertial
reference and accelerometer errors providesus witha large
set of data on Apollo inertial system performance in space
environment,
Expected value from last ground measurement 0.0 0.845 0,615 0,83 2.2 1.3
a. Accelerometer and gyro data following boost
In-flight measurement 0.0 0.83 0.62 1,5 0.62 1.8
b. Accelerometer and gyro data during translunar coast
In-flight measurement N 0.0 0.83 0.605 1.51 -0.13 1.84
¢. Accelerometer and gyro data in lunar orbit
In-flight measurement 0.0 0.83 0.60 1.6 0.03 1.817
d. Accelerometer and gyro data during transearth coast
In-flight measurement 0.0 0.82 0.59 1.38 0.16 1.6
Apollo 9
Expected value based on ground measurements 0.38 -0.004 0.002 -1.6 -0.4 2.7
a. LM system after turn-on in orbit
In-flight measurement 0.32 0.013 -0.008 -3.6 -0.1 3.3
b. CM system after turn-on in orbit
In-flight measurement (2) -0.53 -0,34 0.38 -2.3 -0.5 -1,8
Expected value based on ground measurements 0.64% -0.10% 0.36 -1.2 ~0.2 -2.4

Notes:
(1) One meru is 0.015 degree per hour.
{2) The compensation value was changed in orbit.

TABLE 5-3
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The following examples of problems involving the GN& C system that have

been explained in real time illustrate the capability that does exist:

(1) APOLLO 4 (AS501). During the misgion, it was reported that a large
difference existed between the 4 indicated by the onboard computer and the v as
compared from radar tracking data, <« is the angle between the position vector and
the velocity vector, Real-time measurement of accelerometers indicated the GN& C
system was operating properly. The difference was found to be a ground computa-

tion error, The guidance system was allowed to continue in control of the mission,

(2) APOLLO 6 (AS502), During the mission, a divergence was observed
between the attitude information supplied by the GN& C inertial reference and the
backup body-mounted attitude gyros., The divergence was first attributed to GN& C
malfunction, Real-time review of prelaunch data for the backup system indicated
that the drift rates measured on the ground accounted for the divergence, The

GN & C system remained in primary control for a successful mission,

(3) APOLLO 7 During the mission, a procedure for using the landmark-
tracking navigation program for navigation sightings on the horizon was determined,
The procedure, however, did not work in the spacecraft, The computer was pro-
grammed with a reasonable assumption that landmarks would be on the surface of
the earth, The attempt to use the program for horizon sightings above the surface
of the earth rather than the landmarks resulted:in the attempt to compute the square
root of a negative number, This resulted in a restart, The error in the procedure

was quickly determined by ground tests,

a, Computer Restart--The Apollo computer had a catalog of navigation
stars identified by numbers, The astronaut, by keying in a numerical code, told
the computer the star to be used, The restart was the result of the astronaut not
selecting any star when the computer requested a star selection, The computer
interpreted the selection of "no" star as star number 0; the catalog, however, started
with star number 1, The result was a computer restart resulting from accessing a
memory location address that did not "exist. " The restart was diagnosed from real-

time displays.

b, Mark Button "Failure'--The computer assimilated line-of-sight
data from the optics only upon astronaut command, which consisted of an interrupt
caused by depressing the "mark' button on the navigator's control panel, The line-

of -gight information was used for rendezvous navigation as well as for inertial



platform realignment, To protect the rendezvous navigation information from being
modified by platform alignment sighting data, the computer programmers prevented
the processing of alignment "marks" during rendezvous navigation, The problem
occurred when the Astronaut ferminated the rendezvous navigation program in a
fashion not expected by the programmers, This termination left the computer with
the information that no alignment ""marks' were to be processed, The next attempt
at realignment failed as a result of an apparent failure in the "mark" interface to
the computer, Ground troubleshooting uncovered the cause and a reselection and

proper termination of the navigation program eliminated the problem,

c. Accelerometer Bias Change--The accelerometers in the Apollo
inertial measurement unit were Pulsed Integrating Pendulous Accelerometers,
PIPAs., The accelerometer used a pendulous mass as a torque summing element,
The accelerometer bias (output with no input) resulted from the residual torques
in the instrument, During a mission, at zero gravity, the accelerometer was cal-
ibrated by monitoring its output, During Apollo 7, the flight controllers noticed
that the expected low output at zero gravity decreased to zero, This was interpreted
as a possible hardware failure and an inflight test was conducted to determine if
the instrument was operating properly, The test consisted of a maneuver to thrust
along both directions of the accelerometer input axes, The results showed that the
instrument was operating properly. The cause for the lack of any output was simply
the PIPA reaching an operating region in free-fall where the torque generated by
electronic nonlinearities was equal and opposite to the residual electromagnetic

torques, and this yielded zero bias,

(4) APOLLO 8 (Prelaunch Alignment during the Transearth Coast) The
commanding of the Apollo guidance computer consisted mainly in selecting numeri-
cally coded programs and loading the desired number at the time the computer re-
quested the information, The loaded information was redisplayed for confirmation
by the Astronautprior to being acted upon by the computer, The astronaut confirmed
that he indeed wanted the displayed program to be executed by depressing a key on
the keyboard,

The prelaunch alignment program was coded 01, It was inadvertently selec-
ted by the astronaut during the transearth coast. The problem that arose resulted
mainly from the fact that the erasable portion of the computer memory was time-
shared, The effect on the contents of the erasable memory of starting program 01
at that time was unknown, The problem was quickly dealt with by the crew and the

contents of the memory verified by the ground to be correct,



The problems involving the GN& C system in the Apollo flights were minor,
They provided an object lesson of the types of problems to be expected in a large

program with many opportunities for error in design and operation,

The operational problems can be categorized to indicate where the operational
system is most susceptible to error, The types of problems to date have been the

following:

, a. Ground Errors--The problems that can be categorized as ground
errors included only those that arose in real time, These types of errors can be

dealt with by real-time troubleshooting, Some examples have been already described,

b, Operator Errors--Although the interface between the astronauts
and the guidance system had been carefully engineered during manned missions,
the deficiencies of the system showed up very clearly in the examples described,
The selected major real-time problems, categorized below as operator errors,
clearly reflect difficulties in the design of the interactive computer programs and
their use under mission conditions, These types of problems also can be easily

diagnosed and corrected,

¢, Misinterpretation of Design Data--The attitude and thrust-vector
control systems incorporated in the Apollo guidance computer memory depend on
accurate models of the spacecraft, Problems arise when the spacecraft responds
to commands different from those that the computer program expects, The result
can be a performance degradation resulting from either a logical error or incorrect

information in the computer; both have occurred:

AS202 L/D Problem--The otherwise successful suborbital mission
missed the target by 200 miles, The major cause was the lift-to-drag ratio, L/D, of
of an expected 0, 35 versus an actual 0, 25 with the result that the vehicle had insuf-

ficient lift to attain the targeted range,

APOLLO 6 DPS Engine Shutdown--The control program for guidance
during LM descent propulsion system engine operation monitored the thrust build-up
after the engine had been commanded to fire, If the thrust build-up had not occurred,
the program was designed to turn off the engine and generate an alarm, During the
flight, the engine thrust build-up, for the first descent engine burn, did not occur
at the rate expected by the program, and the computer turned off the engine, The
program was designed so that appropriate real-time commands could have restarted
the control program but, because of ground tracking considerations, the mission was

flown with backup procedures,



d. Misinterpretation of Flight Telemetry Data~-The spacecraft tele-
metry data are processedby a computer complex at Houston to provide real-time
displays for the flight controllers, The limitations of that system require that some
data not be displayed, The display, therefore, does not give an exact picture of
the spacecraft status, The prime example of how the selected displays caused mis-

interpretation occurred on Apollo 8,

The flight plan of Apollo 8 called for the power to the GN & C optical
subsystem to be left ON throughout the mission, The telemetry for the state of that
power was not selected for real-time display, The computer monitored the sextant
articulating line-of-sight angles, and this information was transmitted as part of
the computer down-telemetry, Several times during the mission, the computer data
indicated that the "trunnion'' angle, one of the two data encoded optics system angles,
changed from the expected 0° to an unexpected 45°, This change was unexplainable
from the available data, The system operation, however, indicated that by recycl-
ing normal optics operating procedures the system was not affected, The decision
to continue to the moon was based on that fact., Several failure models were invented
during the mission to explain the problem, ILater, during astronaut debriefing, it
became apparent that the problem was attributed to the switching OFF of optics
power, With power removed, the change in angle was to be expected each time the
power was reapplied, A search through the data, which was not processed in real

time, confirmed that explanation,

e, New Phenomena--To date, there have been very few surprises in
the flight operations of the Apollo GN & C system, The following observations will
have an effect on future GN & C design:

Visibility - -Navigation in cislunar space and alignment of the iner-
tial platform depend on the astronaut's identification of navigation stars, The debris
generated by the spacecraft can appear in the optics as stars to make true star
identification difficult, The Apollo missions, therefore, have made extensive use
of the computer-inertial measurement unit combination to direct the optical line-of-

sight to aid star identification,

Perigee Torquing--The size of the Apollo spacecraft resulted in
considerable attitude changes in earth orbit as a result of atmospheric drag at peri-

gee, This could be costly in fuel for large space stations,



f, Hardware Problems~-There were very few G & N related hardware
problems in the Apollo missions, The careful ground test and review of test results
were the main reasons for the inflight success, Hardware problems that occurred

in flight resulted in use of backup systems,

The major problem that involved the G & N was the Apollo 6 ground update
procedure, The unmanned Apollo missions were dependent on ground tracking navi-
gation data to a much greater extent than the manned missions, Several navigation
updates were planned for Apollo 6, The navigation data or other remote commands
to the computer were transmitted in a triple-redundant code, KKK, The computer

would not accept data that did not conform to this code,

During the Apollo 6 mission, several attempts to send navigation updates
were rejected by the computer, The most likely cause for rejecting the data was
electromagnetic interference, Review of the interface did indicate a possible prob-
lem resulting from ground command lines left disconnected at launch and untermin-

ated, These wires were acting as the probable antenna for picking up the noise,

The source of the interference was later determined to be an ion pump as-
sociated with the fuel cells, The ion pump in the Apollo 7 spacecraft generated the
same problem during a ground test in the altitude chamber, The Apollo 6 ion pump
had not been ground tested in the altitude chamber, Wiring changes were also made
in subsequent spacecraft to eliminate the possible noise pickup in the ground com -

mand lines,

5.4 Conclusions

(1) Flight performance indicated that the system error mode contained in
the specification was a good representation of the actual system errors during a
mission, There was excellent agreement between the ground and the free-tall inertial

parameter measurements,
(2) The quality and reliability was designed and built into the equipment,
With a well planned and well designed prelaunch checkout, inflight hardware pro-

blems were minimized,

(3) Operational experience showed that automatic prelaunch checkout of

space guidance, navigation, andcontrol systems proved to be the best approach,
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(4) The mission techniques were designed affer the bardware was builf,
Therefore, the hardware had to be flexible to accommodate different mission appli-

cations,

(5) The complexity of the GN& C system, as well as of the total spacecraft,
dictated that emphasis be placed on simulation for verification and training,

(8) There was reasonable time available for inflight problem diagnosis,
and there existed an ability for troubleshooting and diagnosis both in flight and on

the ground,

(7) Any problem found must be related (by the use of strict build control)
to all possible systems, and the effects evaluated based upon requirements,

(8) The concept of no unexplained failure was additional assurance of
achieving success during the complex Apollo effort,




Section VI

CONCI.USIONS

The Guidance and Navigation (G & N) design and manufacturing effort was
managed by the Guidance and Control Division of the NASA Manned Spacecraft Center,
and MIT was assigned prime responsibility for all phases of the G& N design, MIT's
responsibility included determination of the G & N configuration, design concepts,
performance manufacturing methods and techniques, reliability and quality assurance,
operation performance, computer programming, crew procedures, ground support
equipment, configuration control, negotiations with the spacecraft contractors for
G & N integration with the spacecraft, and technical direction to the G & N manufac-

turing contractors,

Soon after the design phase was initiated, MSC let out contracts to partici-
pating contractors for the manufacture of the G & N under MIT supervision,
Raytheon Corporation was selected to build the computer group, Kollsman Instrument
Corporation the optical units, and AC Electronics Division (formerly called AC
Spark Plug Division of General Motors Corporation) was selected to build the re-
mainder of the G & N system including the inertial subsystem, Displays and Controls,
PSA, CDU, interconnecting harnesses, signal conditioning equipment, navigation
base, eyepiece, and storage unit, AC Electronics Corporation was also given the
task to assemble and test the complete G & N System, Separate contracts were
awarded to AC Electronics Corporation and Sperry Gyroscope Corporation for the
manufacture of the IRIGs and PIPAs,

Engineering personnel from these participating contractors were brought in
as temporary resident engineers to assist in the design, This gave the manufacturing
organizations the opportunity to become intimately familiar with the design as it
developed, and to develop an awareness of the philosophies, design concepts, trade-
offs and compromises that are an integral part of any development effort, The

contractors in general sent well qualified senior personnel to assist in the task,

The successful design of the Apollo G & N system was dramatically demon-
strated by the spectacular G & N performance evidenced throughout the Apollo flights,



Most design changes evolved from schedule consiraints that demanded early
releases of design to production, The schedule did not permit the luxury of testing
breadboards and prototype models in the expected environments prior to design re-
lease, Much of the testing occurred after production was too far along to make
indicated design changes without prohibitive expense, For this reason, changes
were not made unless it could be demonstrated that the existing design simply would
not suffice for the intended task, Designs were released for production before inter-
face constraints were formalized with the spacecraft contractors, a situation that
made Interface Control Document (ICD) negotiations troublesome, resulting in
additional design changes and compromises, and in some instances, leading fo less

than optimum spacecraft configuration,

NASA, evoking the Apollo Configuration Management Manual NPC 500-1,
imposed strict configuration control requirements on all Apollo contractors, Im-
plementation of these requirements required a major documentation effort, Early
designs were released with class B documentation and were not subject to formal
configuration controls but were used mainly for information, system integration,
and production planning, Design changes were readily made and documented as
simple revisions to the drawings and specifications, With the release to manufac-
turing, the documentation was formalized as class A, and subject to all rigid con-

figuration control and configuration identification restrictions,

Correspondingly, every change resulting in a piece part that was not
throughly interchangeable in forward or backward production required a new part
number, and additionally, part numbers were required for all related higher as-
semblies, This procedure led to a major documentation effort on the part of the
design groups who maintained their own drawings, Moreover, complaints were

registered that the design effort was being diluted by documentation,

The many changes that were made was a consequence of designs being re-
leased prior to adequate testing evaluation, The complaints notwithstanding,
configuration documentation difficulties did have a stabilizing influence in the design
areas, In any case, changes that were not mandatory simply were not made unless
a significant benefit in cost, schedule and reliability was evident, The ultimate
configuration control was effected through formal design review and change control

boards,




As previously indicated, interface agreements with the spacecraft contrac-
tors were troublesome and at times difficult, NASA had labored with the contrac-
tors to establish formal interface negotiating procedures and had assisted in defining
the interface areas, reliminary information was exchanged and preliminary inter-
face control documents were prepared, NASA then left it to the contractors to work
out interface details and to document the agreed upon interfaces in approved ICDs.
Dialogue was maintained between the contractor and MIT, and design information
was being exchanged, but no real progress in defining the interfaces was being made
at that time, Each G & N and spacecraft contractor had a constricted schedule to
meet and was not willing to invalidate that schedule to accommodate another associa-

te's design.

During the spring of 1965, very few ICDs were approved, It was becoming
increasingly evident that a number of interfaces were incompatible, In the summer
of 1965, NASA assembled a task force to resolve all of the interface differences,
Within the span of a few weeks, all interfaces were negotiated and ICDs signed,
Where design changes were indicated, implementation directives were received

from NASA, Where design data were insufficient, supplements were issued,

Henceforth, NASA closely scrutinized all ICDs. Changes, as required,
were promptly negotiated, thus keeping cost and schedule impacts to a minimum,
The lesson to be learned from the foregoing experience is that contractors, left
to their own devices, will invariably procrastinate and belabor details in defense of
their own designs, What is needed is an objective arbiter to provide a continuing

impetus to the program by resolving all design contentions,

The ICDs that caused the most trouble for the ISS were the prime dc power
ICDs, the thermal ICDs and the ICDs that define the mechanical attachment of the
G & N equipment to the vehicles,

The G & N electronics, which was designed to operate from 28 Volt + 5%
spacecraft-supplied power source, manifested problems when some circuits operated
above the prescribed level and were thermally overstressed, Below that level, the
circuits would be operating outside of their dynamic range, and performance would
be accordingly degraded, After the design release to the manufacturer, both space-
craft contractors revealed that they could not meet the 28 V + 5%, The problem
was finally resolved by NASA when the spacecraft power systems were modified to
maintain the voltage to 28.5 V + 14%, Some G & N circuitry was also redesigned to

accommodate these levels, Problems with the thermal ICDs were caused by the
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fact that thermal conductance between the electronic packages was less than originally
designed for, This predicament necessitated relocating some of the modules in the
command module PSA to reduce local hot spots, Module relocation, in turn, af-
fected the PSA bolt mounting pattern, and as a result, the spacecraft coldplate re-

quired redesigning,

In summation, the Apollo experience has shown that MIT design capabilities
in collaboration with the participating contractor manufacturing function, were a
most effective means of developing the Guidance and Navigation System, Unhampered
by the myriad details associated with production tooling and logistics, MIT was able
to concentrate its resources of talent to produce a relatively small, effective design
team. As such, MIT, unlike larger organizations, was notplagued by internal com-
munication problems and design control bureaucracies, Moreover, because of its
unique nature, MIT was in a position to monitor the activities of the participating
contractors without being influenced by profit motives, thus virtually insuring a
quality end item,
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