@ https://ntrs.nasa.gov/search.jsp?R=19720013551 2018-02-05T23:39:31+00:00Z

Report No. 72-0005
Contract NAS8-26990

FLIGHT PROGRAM LANGUAGE REQUIREMENTS
VOLUME III

APPENDICES

CR-1235€7
(NASA-CR-123569) FLIGHT PROGRAM LANGUAGE N72-21201
REQUIREMENTS. VOLUME 3: APPENDICES (MES
. Computing, Inc.) 7 Mar. 1972 262 p
CSCL 09B Unclas
G3/08 15214

March 7, 1972

Prepared for:
NATIONAL AERONAUTICS AND SPACE ADMINISTRA TION

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Reproduced by

P WP 2
ﬂﬁ’ NATIONAL TECHNICAL
lNFORMATlON SERVICE

U S Department of C
Springfield VA 202"‘"5“]9'(6 0 g
Cﬂ / '

PREFACE

This report summarizes the efforts and results of a study to
establish requirements for a flight programming language for future
onboard computer applications. This study was performed by M&S
Computing under contract NAS8-26990 from the Marshall Space Flight
Center of NASA. The technical monitor was Mr. Richard Jenke,
S&E-CSE-LI.

Several government-sponsored study and development efforts
have been directed toward design and implementation of high level
programming languages suitable for future aerospace applications.

As a result, several different languages were available as potential
candidates for future NASA flight programming efforts. The study
centered around an evaluation of the four most pertinent existing aero-
space languages. Evaluation criteria were established and selected
kernels from the current Saturn V and Skylab Flight Programs were
used as benchmark problems for sample coding. An independent re-
view of the language specifications incorporated anticipated future pro-
gramming requirements into the evaluation. A set of detailed language
requirements was synthesized from these activities.

This report is the final report of the study and is provided in
three volumes. This third volume contains the report appendices, which
describe the benchmark problems coded and provide listings of the bench-~
mark coding.

Distribution of this report is provided in the interest of informa-
tion exchange and should not be construed as endorsement by NASA of
the material presented. Responsibility for the contents resides with
the organization that prepared it.

Participating personnel were:
T. T. Schansman
R. E. Thurber

L. C. Keller
W. M. Rogers

Approved by:

TABLE OF CONTENTS

Appendix Page No.
Appendix Lage No.
A Flight Program Kernel Descriptions 1

B | Flight Program Kernel Coding 81

APPENDIX A

FLIGHT PROGRAM KERNEL DESCRIPTIONS

This appendix contains flowcharts and narrative descriptions
of the flight program kernels which were coded. The descriptions
also discuss certain assumptions made during coding of the kernels
and the unique language requirements imposed by each kernel. The
actual coding of the kernels is found in Appendix B.

Each kernel description is a separate paragraph of this
appendix, and a kernel flowchart is included as a figure at the end
of the paragraph. Kernel names and associated paragraph and flow-
chart figure numbers are listed below:

Paragraph Kernel Name Flowchart Figure
A.l Initialization A-1 (a-b)
A.2 Interrupt Processor A-2 (a-d)
A.3 Non-Interrupt Sequencer A-3
A.4 Periodic Processor A-4
A.5 Events Processor A-5
A.6 Iterative Guidance Mode A-6 (a-d)
A7 Digital Command System A-7 (a-c)
A.8 Accelerometer Processing A-8 (a-d)
A.9 Minor Loop A-9 (a-d)
A.10 Switch Selector Processor A-10 (a-n)
A.ll ATM Task Keying A-11

Separate pages of multiple-page flowcharts are designated by lower
case letters appended to the figure numbers. These are indicated
above.

. As a documentation aid, paragraph A. 12 contains glossaries
of the names used in the program listings of Appendix B, The glos-
saries include brief explanations of each name.

Special flowchart symbology has been used to identify and
cross-reference program kernels and the various types of partition-
ing within kernels. The following depicts and explains this symbology.
The "Entry Point' column shows the symbol used for entry into each
type of program block, and the corresponding '"Calling Symbol' indi-
cates how that type of program block is called from some other flow-
chart, - The label "A-xx'' references the flowchart where the 'called"
program block is described. If there is no label, the program block
was not coded and no flowchart is provided,

Entry Point Calling Symbol Type of Program Block
A'XX External entry point to
a program kernel., Called
from some other kernel.

A Internal entry point to
a subprogram within a
kernel., Called only from
- within the kernel,

Indicates a program block
A-xx which is coded in-line on

NAME the coding sheets but is
NAME shown on a separate flow-
chart solely for clarity of

documentation. It is not
a separate subprogram.,

Entry to logic which is
(None) . executed on occurence of
the interrupt NAME.

Entry

NAME
Interrupt

Flowchart symbols internal to a program block have con-
ventional interpretations as follows:

Process

Decision

Input/Output

On-Page Connector

Return Return to calling
program at point of

call

The term '"Note x'' on a flowchart identifies a note at the end of the
kernel descriptions.

A.l Initialization

A,.1l.1 Description of Operation

A certain amount of initialization must be performed for any
type of computing system. For a flight program, initialization in-
volves setting up both program data storage areas and hardware
registers, For example, data variables for an integration scheme
must be assigned initial values and program switches must be setup
to properly control program execution. Certain hardware registers
such as accelerometers and the real time clock must be read to obtain
initial values while others such as program controlled timers must
be loaded with an initial value,

While it is true that program data storage areas could be
initialized at program generation time, it is usually desirable to
perform the initialization in real time under program control to
eliminate the need for reloading the program each time it is to be
restarted. In addition, a certain amount of reinitialization must be
performed dynamically as the transition is made from one mission
phase to another,

Two entry points exist for the Initialization kernel. The first
is used when the program is entered from Prepare-to-Launch and
performs overall system initialization. The second is used at the end
of each mission phase to perform the initialization for the next phase.

A.1l.2 Unique Language Characteristics Required

The manner in which initialization is performed depends
greatly upon the organization of the data base. - Data which is defined
as '"local' and is contained within an application module would require
an initialization pass to be made through the module unless special
techniques were provided by the language to enable such data to be
externally referenced by a centralized initialization program. A
separate initialization pass through each module forces an undesirable
decentralization of the function, so the best choice within the capa-
bilities of the selected languages is to put all data which must be initial-
ized into a common data pool (Compool), so it can bé accessed by the
Initialization module. However, since almost all of the Saturn flight
program data gets 'initialize_d, this design would leave very little data
local to the modules and would reduce the opportunities to describe
local and global data in the languages. Therefore, some of this data

remains local to the module and the details of the application module
data initialization were not coded, This decision was influenced by
the fact that the detailed coding is primarily restricted to a set of
assignment statements, and data item assignment capabilities in the
languages are well exercised in other kernels.

A.1l,3 Flowchart Notes

Note 1

For HAL and CLASP the phase control logic beginning
at GP002 had to be made a separate program module
since it was common to both EGP0 and MPAQO. This
was necessitated by language restrictions which limit
a program module to a single entry point,

Ext, Entry
EGPO

-
Inbibit all
interrupts

INITIALIZATION

®
1

Initialize
minor loop
and switch
selector
times

first timer’
1 function

clogck

Force timer

1 interruptto
| synchronize

real time

Set phase
selector for
phase 1

Initialize
time
related
variables

A-2a

Initialize
interrupt
rocessor

Enable
TLC
\interrup

Reset Gand
C steering
flag '

Advance
to next
phase

l

Ext., Entry
MPAOO

Set phase

change in

progress
flag

Inhibit all
interrunts

Load timer

Set inter-
rupt level2
in prog.
‘indicator

INP13
Perform
initialization
for phase lor3

Figure A-la

_6-

A-1p

INP24

Perform
kitialization

fo h.
2 B2k

- Y A-3

Exit to
NONINTSEQZ

‘ INPI13 ’

INP13
Set initial
status of

non-int,
seq. tasks

Set initial
time, status
of periodic
proc, tasks

i
Set initial
status of

timer 2
tasks

Perform
application

e
next timer 2
function

Reset all
interrupt
level in

hl;(é%r ess

Reset
phase change
in progress
flag

Release)
previously
enabled

‘ Return ,

INITIALIZATION
(continued)

‘ INP24 ’

INP24
Set initial
status of
non-int
seq, tasks

Set initial
time, status
of periodic
proc. tasks

Set initial
status of
timer 2
tasks

application

initializa-
tion

Schedule
ext timer 2
function

Reset all

interrupt

level in
rogress
ags

Reset
phase chang
in progress
flag

Return

Figure A-1b

-7-

A.2 Interrupt Processor

A.2.1 Description of Operation

In most present-day computing systems and, in all likelihood,
those of the future, hardware interrupts are used to signal both the
occurrence of external events and/or the expiration of a program-
specified time period, Direct handling of interrupts is performed
by a task called the Interrupt Processor which is usually a part of
an operating system. The Interrupt Processor determines the cause
of the interrupt and makes provision for initiating the task associated
with the interrupt. In a system where tasks are invoked according
to priority, the task to be executed in response to the interrupt may
or may not be executed before control is returned to the interrupted
task, depending on relative priority of the two tasks. In non-priority
systems, the interrupt task is executed before control is returned to
the interrupted task.

The Saturn Flight Program has provision for five effective
levels of priority., Listed in order of priority they are:

Level 4 - Computer memory failure (TLC)
Level 3 - Timer 1

Level 2 - External interrupts

Level 1 - Timer 2

Level 0 - Background (non-interrupt level)

The two timers are program loadable and are used internally for
scheduling of time dependent tasks.

Included in the Ihterrupt Processor kernel are the Timer
Scheduler subroutines to illustrate capabilities for scheduling pro-
gram controllable interrupts. Timer 1 Scheduler is dedicated to the
Minor Loop and Switch Selector Tasks and schedules whichever is
due next by loading the time-to-go into Timer 1, The Timer 2 Sched-
uler is assigned all remaining tasks which must be activated via a
time-dependent interrupt. All Timer 2 tasks can be enabled or dis-
abled under program control, and, when enabled, must have an activa-
tion time specified. The Timer 2 Scheduler selects the enabled tasks
next due for execution and loads Timer 2 with the required time-to-go.
Since Timer 2 can hold only a maximum of four seconds, the Timer 2

Scheduler schedules itself if no other task is due within the next four
seconds.

Also included in the kernel is the system time update sub-
routine which maintains mission elapsed time by accumulating read-
ings from a hardware real time clock,

A.2.2 Unique Language Characteristics Required

The Interrupt Processor requires facilities for responding
to hardware interrupts and for controlling (inhibiting/enabling) them.
Part of this control includes knowing which interrupts have been in-
hibited by other modules and, therefore, should not be enabled by
this module. Since this capability was not readily available, com-
ments were appended to the logic to indicate that only ""previously
enabled interrupts' are being enabled.

Interrupt control capabilities are often considered privileged
functions which should be relegated to the operating system. In the
Saturn Flight Program, however, application programs occasionally
require direct interface with external hardware. For protection from
other activities, they need control of interrupts, making it desirable
to be able to perform such control in a high-level language., Interrupt
control requirements are also demonstrated by several other kernels.
Accelerometer Processing (Paragraph A.8.1) is a good example.

The Interrupt Processor also requires the ability to select
the proper task (subprogram) for execution in response to a given
interrupt since the task assignment varies in real time for the timer
interrupts. Timing efficiency is highly important for selection and
transfer of control.

A.2.3 Assumptions Made During Coding

It was assumed that certain functions were performed auto-
matically by compiler-generated code or by the system under which
the object programs execute. In particular, the saving and restoring
of program status for the interrupted task as well as resetting the
hardware interrupt indication were assumed to be automatic. -

Symbolic names were assumed for each of the hardware inter-
rupts of the Saturn Launch Vehicle Digital Computer. These names
were then used in any kernel where direct reference was made to
interrupts. Paragraph A.12 contains a glossary of these names.

A.2.4 Flowchart Notes

Note 1

The program entry point EGPI is utilized to activate
the interrupt handling routines for SPL and CLASP.
The statements within it are not executed during the
activation process but are merely armed (readied)
for execution in response to the associated interrupts,
For HAL the entry is used to schedule the interrupt
handling tasks.

Note 2

The Timer 1 interrupt handler for CLASP and HAL
does not determine which of the Switch Selector
modules is to receive control. Since these languages
restrict a program module to a single entry point,
control is passed to a common entry point of the

switch Selector Processor which then internally decides
which function is to be performed.

-10-

Ext.Entry
EGPI

Activate
TLC
interrupt

Activate
timer 1
interrupt

Activate
timer 2
interrupt

o

Activate
external 2
interrupt

Activate
external 4
interrupt

Activate
‘external 5
interrupt

)

Activate
external 6
interrupt

Note 1

Activate
external 8
interrupt

INTERRUPT PROCESSOR

Entr
G
Interrupt

Inhibit all
interrupts
except
TLC

1

Read real
time
clock

Set interrupt

levels 2 & 3

in progress
flags

MTS00
TLC
application
module

Recovery
return

Figure A-2a

=11~

Inhibit all

Read real
time
clock

Set interrupt
level 3 in

progress
flag

cheduled
timer 1

application
module

next timer
1 function

Note 2

MMLOO
MMLZ20
MSS05
MSS30
MSS40
MSS50
MSS55
MSS60
MSS70

Reset inter-
rupt level 3
Jin progress
flag

Release
reviously
enabled

‘ Return ﬁ

MSS80

ntr

TIMER 2

Interrupt

Set interrupt
level 1 in
progress.

Schedule
next timer
2 function

Reset
{interrupt
level 1 in
progress flag

Release
timer 2
interru

< Return '

INTERRUPT PROCESSOR
(continued)

MUMOO
MIR10
MEPO00
MTT10
MNUO00O
MEEO00
MCMO00
MCMI10
MCM20
MEPWM

[MER 00

Figure A-2b

-12-

ntry
" EXTERNA
Interrupt N/’

Read real
time
clock

"

Set interrupt
levels 2 & 3
in progress
flags

pplicatio
meodule for
general

nt?\}- rupt

Reset
interrupt
levels 2 & 3

'Hlagzogres s

Return

MDP28
MTB50
MTB 30
MTB40
MDS00

INTERRUPT PROCESSOR

(continued)

Ext. Entry
EGPI15

\

Calculate
current
time in
mission

Select higher
priority

X =4 module for
a time of -
1/2 MS

Is
higher priority
priori%ymodub 4 odule for

Read real
time
clock

required the required

irst

Select lower
priority

Update
mission
time

module for a

time of 1 /I\iS

Select lower
priority
module for
the required
time i

Update
lelapsed time

in current
reference

Load timer
1 with the
selected
time

< Return ’

Figure A-2c

-13-

Release
interrupts

INTERRUPT PROCESSOR
(continued)

Ext. Entry
EGPI18

i

Select T2

scheduler to
use interrupt
in 4 seconds

.

Select

module 1
and its q
Egggeste

]

Selecf
module 2 and

its requested
time

Select
module N &
its requested

time

Use a time
oi 1/2 MS.

Load timer,

‘ Return ’ '
Figure A-2d

-14-

A.3 Non-Interrupt Sequencer

A.3.1 Description of Operation

The bulk of the Saturn Flight Program computations are per-
formed on a non-interrupt basis. That is, the basic mode of execu-
tion consists of cycling a series of computational tasks on the lowest
system priority level (lower than all of the interrupt levels). This
is performed by the Non-Interrupt Sequencer which is a part of the
operating system. Actually there are two Non-Interrupt Sequencers,
one for the powered phases of a mission and one for the coast phases.
Two sequencers areused because the computations performed differ
considerably between the two phase types and require different groups
of application tasks.

Tasks to be executed by the Non-Interrupt Sequencer have
associated status indicators which can be used to enable or disable
"each individual task., During system initialization for a given mis-
sion phase, the status indicators for the tasks to be cycled during
that phase are set to a predefined state. After initialization is com-
pleted, control is transferred to the appropriate sequencer.

The Non-Interrupt Sequencer for a given phase examines the
status indicators assigned to it in the order in which the associated
tasks are to be executed. If an indicator is enabled, the task is in-
voked., Otherwise the next indicator in the sequence is tested., When
control is returned from an enabled application task, the sequencer
calls the Periodic Processor (paragraph A.4) before stepping to the
next indicator. After all indicators have been tested, the Non-Inter-
rupt Sequencer returns to the first indicator in the group and repeats
the cycle continuously until the end of the phase.

The status indicators are set as required by application tasks
in response to the occurrence of external events (interrupts or dis-
cretes), on the basis of elapsed time, or as a result of internally
programmed decisions. In this manner, the basic sequence of com-
putations for a given mission phase can be modified as required.

A. 3.2 Unique Language Characteristics Required
The Non-Interrupt Sequencer existed in the Saturn Flight Pro-
gram as executable tables consisting of modifiable instructions which

were used to invoke enabled application tasks and to bypass disabled
tasks, Rather than using status indicators to enable/disable, the

-15-

instructions in the sequencer control tables were simply modified as
required,

Since programming in a higher level language makes it im-
practical, if not impossible, to '"execute'' a table or to modify in-
structions, the sample coding of the Non-Interrupt Sequencer was
implemented through testing of status indicators as described in the
preceding paragraph (A.3.1).

A.3,3 Flowchart Notes
Note 1
The Non-Interrupt Sequencer flowchart is general in
the sense that it applies to any mission phase. Actually

the kernel, as coded, contains two separate programs
for the boost and coast mission phases.

~16-

NON-INTERRUPT SEQUENCER

xt. Entry
ONINTSEQ

Note 1

ena?

Periodic

v

ask Y

processor

enab?

Periodic

processor

fApplication

\
B2
Task

éy
!»N

Periodic

Figure A-3

processor

A.4 Periodic Processor

A.4.1 Description of Operation

Certain tasks in the Saturn Flight Program must be executed
repetitively at a fixed frequency but require neither stringent timing
accuracy nor synchronization with other tasks. An example is a task
which compresses data as a function of time. The scheduling of
such tasks is performed by the Periodic Processor as a function of
the operating system.

The Periodic Processor is invoked by the Non-Interrupt
Sequencer following the execution of each enabled application task.
Consequently, the timing accuracy with which it is capable of sched-
uling tasks is no better than the execution time required by the long-
est Non-Interrupt Sequencer subtask. Since this time resolution is
relatively low, tasks with execution frequencies exceeding five times
per second or with stringent timing accuracy requirements should be
scheduled by the Interrupt Processor, through the Timer 1 and Timer
2 schedulers.

The Periodic Processor utilizes control tables containing
timing information for each periodic application task and status in-
dicators similar to those of the Non-Interrupt Sequencer (paragraph
A.3). The Periodic Processor first examines the status indicator
for an entry and then, if the task is enabled, it compares the task
execution interval with the time elapsed since its last execution., If
the task is enabled and is due to execute, it is invoked by the Periodic
Processor. When the task completes execution and returns control,
or when the task for a given entry is not invoked, the Periodic Pro-
cessor continues on to the next table entry. Upon reaching the end
of the table, control is returned to the Non-Interrupt Sequencer.

A.4.2 Unique Language Characteristics Required

The Periodic Processor requires the capability to access
data from control tables.

-18-~

PERIODIC PROCESSOR

t. Entry
ERPROC

\
Calculate

time since
last entry

ask 1
enat? odlule
Update time
-— —] for next exec
of this
module

Y

Tasb\ Y

enabled

X

Update time
for next

exec, of this
module

pplication
module N

Update time
< ¥ for next
i exec. of this
module
Return .
Figure A-4

-19-

A.5 Events Processor

A.5.1 Description of Operation

Non-repetitive tasks to be executed at a given time are sched-
uied for execution by the Events Processor in coordination with the
Interrupt Processor, The Events Processor utilizes a predefined
table of task identifiers with associated execution times. An example
of such a task is one which sets accelerometer reasonableness test
constants at a given time during the mission, '

The Events Processor selects one entry at a time from the
table and schedules the entries in the sequence in which they exist
in the table. The execution time for a given table entry is used by
the Events Processor to reschedule itself via the low priority timer
of the Interrupt Processor. Then when it is reactivated at the speci-
fied time, it executes the associated task and selects the next entry
from the table. When it reaches the end of a table, it disables itself
and remains dormant until it is re-enabled at a later time.

Two special entry points are required in addition to the normal
entry from the Interrupt Processor. The first is used at the start
of each mission time base (time reference frame) to initialize pointers
to the beginning of the corresponding Event Table. The second entry
is utilized to enable and reschedule the Events Processor as required
following periods when it has been disabled.

A.5.2 Unique Language Characteristics Required

. The Events Processor is responsible for invoking a relatively
large group of tasks (one at a time) using the identifiers obtained
from the Events Processor Table. Language capabilities permitting
a call to one of several tasks depending on the value of the identifier
would significantly improve efficiency. Lacking such capabilities the
programmer is forced to code a call for each task and then use the
identifier as an index for a '"computed GOTQ" in order to pass con-
trol to the tasks. ' '

As implied in the preceding discussions, the Events Processor
also requires means for accessing data tables.

-20-

A.5.3 Flowchart Notes
Note 1
Since CLASP and HAL do not permit multiple entry
points for a module, the MEP0O5 module must call the

MEPI10 module for these languages rather than trans-
fer control to it as shown in the flowchart,

. Entry
MEPO0

a ti me
#se cC g(f

occurre

equired
application
module

Inhibit all

EVENTS PROCESSOR

xt. kntry
MEPO5

) Note 1

Set event
table index
for new
time base

Advance to
next event
table entry

Reset time
base chang
indicator

entry time
ame as
prev

Relea.1
revious

penabled Y
inter -

Disable
events
processor

Schedule
next event
at required
time

reviously
enabled

< Return ’

Figure A5

22~

Advance
event table

index to
next entry

End
of table

EPO8

Schedule
next event

Enable
events
processor

Return

Disable
events
processor

¥

< Return >

A.6 Iterative Guidance Mode

A.6.1 Description of Operation

Iterative Guidance Mode (IGM) is a path-adaptive guidance
program which steers along a nearly optimum trajectory toward a
predefined target. It is path-adaptive in the sense that it is designed
to adjust to perturbations to nominal vehicle performance, For
example, if one of the upper stage engines fails to develop full thrust,
IGM will adapt the steering computations to still achieve terminal
position and velocity with sufficient accuracy. The steering program
is based on the calculus of variations and is derived from a simpli-
fied set of differential equations of motion. It is designed for powered
flight in a vacuum with multiple distinct thrust levels and short coast-
ing periods,

IGM is executed once each iteration of the flight program back~.
ground loop (Non-Interrupt Sequencer, paragraph A. 3) during the
periods when it is active. It performs two basic functions:

o Guidance computations
o Phasing

Guidance computations generate vehicle steering commands
(desired attitude angles) using navigation data, vehicle performance
dafa, time, and desired terminal conditions. Calculations are per-
formed in the target plane and injection coordinate systems and then
rotated into the plumbline coordinate system for attitude control.

Phasing evaluates vehicle performance data and estimates the
times to go until the expected thrust level changes occur. For the
Saturn V vehicle and missions, there are two distinct thrust level
changes for the translunar injection boost period.

Due to the large size of IGM, it is neither informative nor
practical to code all of it in each of the languages. Therefore, only
the portion .containing the guidance computations is coded. The opera-
tions performed by the phasing segment are similar to those contained
in other kernels so coding them would be redundant.

A.6,2 Unique Language Characteristics Required

The IGM kernel contains the majority of the numerical com-
putations performed by the selected kernels. In addition to the common

- -23-

mathematical expressions including built-in functions (LOG, SQRT,
SIN, ATAN, etc.), it also demonstrates vector and matrix opera-
tions. It requires capabilities for coding vector expressions and
for performing such functions as dot product and vector rotation,

A.6.3 Flowchart Notes
Note 1
The dashed connector from the entry point to the first

block indicates the omission of the phasing portion of
IGM which was not coded.

-24-

vxt. Entry
MIGO0

!
. ¥ A-6¢

1G253

Rotate pos
and vel into
target plane

¥ A-6bc

1G254

Cal range
angle meas,
in orbit plane

1G262
Calculate
terminal
conditions

4§Cal interme
parameters

Telemeter
range
angle

A-6d
1G291

Rotate pos,
vel & grav
to injection
system

1G314
Calculate
time-to-go

Figure A-6a

-25-

ITERATIVE GUIDANCE MODE

Reset
] reiteration
pass flag

- 1G324

Comp corr
velocities to
be&i\ined

1G326

Cal desired

pitch and
yaw

1G330

Perform
steering
computations

‘ Return)

Set iteration

4 flag, update

reiteration
table

A-6b

ITERATIVE GUIDANCE MODE
(contirfued)

HI bar

steering in
progress

Set bit in
MC25 to ind

[init of CHI

bar steering

1G350 1G360 1G330 ’
1G361 Set bit in Change minor]
Zero yaw, Compute MC26 to ind loop support
pitch rate & intermediate init of CHI ¢
: - parameters
attitude parameters bar steering
terms
Change
Telemeter minor loop
T31 i support
parameters
\
1G446 Set CHI bar .
Compute t i
pitch & yaw y ?lemng > @
in 4-system ag

f Cal
rin,
migaifgnn'%ent Compute
terms SMC
terms

Enable
external
interrupt

interrupt 2
be enabled

‘ Return ’
1

Figure A-6b

-26-

‘ 1G253 ’

Rotate
positions
into 4-

system

Telemeter
X positionin

Rotate
| velocities
into 4-
] system

Return

O

I1IG259 %

ITERATIVE GUIDANCE MODE
(tontinued)

1 1G254

Calculate
T1I
intermediate

parameters

Set T2I
parameters
to zero

Set T1I
parameters
to zero

1G258 ¥

Calculate T2I
intermediate
jparameters

Calculate T3I
intermediate
parameters

< Return b

Figure A-6éc

-27-

‘ 1G291 ’

Rotate
positioninto
the injection
system

ITERATIVE GUIDANCE MODE

(continued)

Cal velocities
to-be-gained
in inj. systen]

Rotate
velocities
into the
injection

elemeter
Z- compon-
ent of .
velocity

Rotate grav
accel into
inj. system

y

Cal average V.
grav. accel ——@

Return

< 1G262)

-

Range
angle
calculations

calculating
terminal
parame-

vel, flight
angle

|

1G269

Estimate
terminal

Compute
terminal
grav, pos
vector

e
terminal
gravity

vector

Figure A-6d

ranfe
angle

)

< Return >

A.7 Digital Command System (DCS)

A.7.1 Description of Operation

The Digital Command System provides communication facili-
ties for receiving commands and data transmitted from ground sta-
tions. Capabilities exist for controlling flight program timing,
navigation, guidance, targeting, and sequencing functions from the
ground and for requesting specific program data to be telemetered
to the ground.

Each DCS function, as received by the DCS software task,
consists of a mode command to identify the function, followed by a
variable number of data commands depending on the requirements of
each function. The DCS task is initiated by the Interrupt Processor
in response to the hardware indication that input data has been re-
ceived. When a mode command is received it is tested for validity
and legality and then analyzed to determine whether or not data words
are required to perform the associated function, If data is required,
the DCS task returns control to the operating system and is reinitiated
as each data command is received. Each data word is also tested for
validity and legality as it is received. When all data for a given func-
tion has been received, or if a function does not require data, the
appropriate module is activated to process the function. Upon the
detection of errors in the DCS inputs, error messages are formulated
and transmitted back to the ground and the function is not activated.

The coded kernel does not include the various application mod-
ules which are invoked to perform the requested functions. Only the
central, coordinating portion of the overall DCS is demonstrated.

The format of DCS input data is shown in Table A-1 along with
a list of functions in Table A-2 and error codes in Table A-3.

A,7.2 Unique Language Characteristics Required

The Digital Command System has requirements to perform
real time I/O. It reads the DCS Input Register to obtain the incom-
ing data and the Discrete Input Register to examine the bit which
stipulates whether the DCS input data is a mode command or a data
word for a previous mode command, It also writes to the Discrete
Output Register to issue the command reset pulse for the Command
Receiver.

-29-

DCS INPUT FORMAT

DID|D|D|D|DIS|C|C|C|C|C|C|C

S 1 23 4 5 6 7 8 9 10111213

LVDC
Bit Position Significance
S-5 DCS mode or data command
6 Sequence bit
7 -13 Complement of bits S-6
14 -25 Unused
Table A-1

-30-

DCS FUNCTIONS

Mode Status No. Data
Comm, | Code Words Function
05 05 0 Maneuver inhibit
10 10 1 Time base update
11 11 35 Navigation update
12 12 2 Generalized switch selector
13 13 2 Sector dump
14 14 3 Telemeter single memory location
17 17 0 Time base 8 enable
20 20 0 Terminate
22 | 22 1 Maneuver update
25 25 0 Execute alternate sequence 6D
31 31 35 Target update
33 33 0 Execute communication maneuver
34 34 0 Execute evasive maneuver
45 45 0 Inhibit coolant control valve
52 52 6 S-1VB/IU lunar impact
53 77 0 Switch CCS antenna system to omni
54 7 0 Switch CCS antenna system to low gain
55 77 0 Switch CCS antenna system to high gain
60 60 0 Transposition, docking, and extrac-
tion enable
Note: Thé Mode Command comes from bits S-5 of the input command.

The Status Code is the telemetered status word. Both are
represented in octal.
Table A-2

-31-

DCS ERROR CODES

Error Code
(Octal)

Description

04

10

14

20

24

34

44

54

60

64

74

Orbital Mode/Data bit is invalid; data command was
received when a mode command was expected,

True complement test failed for mode command;
information bits 7-13 are not the complement of
bitS S—6-

Mode command invalid; the mode command received
is not defined for this mission.

Orbital Mode/Data bit is invalid; mode command
was received when expecting a data command,

Mode command sequence bit incorrect; the sequence
bit received was 1 instead of 0.

Unable to issue generalized switch selector com-
mand function at this time; the last requested
generalized switch selector command function has
not been issued,

True complement test failed for data command; in-
formation bits 7-13 are not the complement of bits S-6.

The time of implementation of a navigation update or
target update command is less than 10 seconds in the
future,

Data command sequence bit incorrect; the sequence
bit must begin with 1 and alternate from 1 to 0 in
each sequential data command of a set.

A DCS program is in progress at this time; however,
no more data is required; only a terminate mode
command can be processed at this time.

The mode command received is defined for this mis-
sion but is not acceptable in the present time frame.

Table A-3

-32-

The kernel also requires capabilities for unpacking the input
data and performing validity and legality tests on the data. When an
error is detected, the data must be formatted for an error message.
Table accessing facilities are also required since information con-
cerning each mode command is stored in tables, The information
includes:

o Number of data words required
o Command activity status (enabled/disabled)
o Status code (for telemetry)

Since a variety of functions must be invoked by DCS, a
variable call facility as discussed in paragraph A.5.2 would be use-
- ful.

A.7.3 Assumptions Made During Coding

The DCS kernel was not coded as it exists in the Saturn
Flight Program, It was reorganized to simplify program logic while
retaining all of the necessary functions. Reorganization primarily
involved the centralization of certain functions within the DCS kernel
which, in the original flight program, were performed in the various
DCS application sub-task modules. In particular, each application
module previously was required to determine whether or not it was
active, to issue status telemetry, and to make provision for obtain-
ing any needed input data. In the coding of the DCS kernel these
functions were performed in the DCS task itself to eliminate dupli-
cation and greatly simplify the operation of the application modules.

~-33-

DIGITAL COMMAND SYSTEM

Read
discrete
input

R A-Ta
DS60
Process
DCS
data word
DS09
Process
DCS mode
command
Return

Figure A-7a

-34.

Telemeter
data status

word
twice

A-Tc

Store input
in input data
table

y

Update
sequence bit
for next
input

Update
data count

1 A-Tc

DS100

Check for
additional
data

Return

Set error
code = 04

Set error
code = 44

Set error
code = 60

Y A-7c
DS220
Process
error
condition

\

< Returrn >

DS20

DIGITAL COMMAND SYSTEM

{continued)

Set error
| ‘code = 10

Set error
. code = 24

Set error
code = 20

Set error

code = 64

Set DCS
in progress
flag

Figure A-Tb

-35.

DS25

Use mode
command to
obtain a
mode index

{ UTROO \

elemeter
DCS status
code twice

Reset data
count and

sequence bit
indicator

vy A-Tc

DS100
Check for
additional
data

‘ Return b

1 code = 74

. ¥ A-Tc

Set error

DS220
Process

error
condition

‘ Return ’

DS100

Mode

command have
application

MOD

Execute
DCS
application
module

O DS530

Reset DCS
error count

and in
rogress
1ndicator

Set flag to
indicate a
mode comm-

and is
expected

\

Return

DIGITAL COMMAND SYSTEM

(continued)

DS220

Set error
| code = 14

Set DCS
terminate
indicator

l

Increment
DCS error
count

Does
error count

Reset DCS
terminate
indicator

Format
DCS error
message

Telemeter
DCS error
message
twice

indicator
set

Figure A-7c

-36-

Inhibit all
interrupts

except
TLC

\
Delay 4. 13

milliseconds

Turn off
CRP

A.8 Accelerometer Processing

A.8.1 Descriptions of Operation

The accelerometers attached to the inertial platform of the
vehicle provide data which serve as the basis for performing naviga-
tion during boost phases of a mission. Accelerometer Processing,
as its name implies, reads the accelerometers and refines the data
into a form suitable for updating vehicle position and velocity.

During periods when it is enabled, Accelerometer Processing
is executed once each iteration of the flight program background loop
by the Non-Interrupt Sequencer (paragraph A.3). It first inhibits
interrupts, reads the accelerometers for all three platform axes,
reads the real time clock, and then releases the interrupts. Inter-
rupts are inhibited to insure that the input data are all obtained at a
given point in time rather than separated in time by the execution of
an interrupt-driven task.

Before the input data can be used for navigation, each acceler-
ometer reading is subjected to three tests. FKEach reading provides two
pulse counts for redundancy. These pulse counts are subtracted from
the pulse counts of the previous computation cycle to obtain two delta
readings which represent the change in vehicle velocity along that
axis during the previous computation cycle. The two delta readings
are then compared and if they disagree by more than two pulses, an
error indication is set. The delta closest to a predicted value is
selected for further processing.

A zero test is performed next to detect an unchanging acceler-
ometer. Finally, a reasonableness test is performed in which the
actual delta is required to fall within a band of plus or minus fifty
percent of the predicted value enlarged by a reasonableness constant.
If a3 reading does not pass the reasonableness test, it is replaced by
a backup value derived from an internally calculated acceleration
profile. Error indications are set to indicate failure to pass any of
the tests,

After the tests are performed, the readings are used to calcu-
late vehicle acceleration and to update vehicle velocity.

An additional function performed by the Accelerometer Proces-

sing kernel is the calculation of mission time at the time the acceler-
ometers are read,

-37-

A.8.2 Unique Lanugage Characteristics Required

Accelerometer Processing requires facilities for reading
real time data (acceleration and time) and for converting the data to
an internally usable form. The need also exists for controlling in-
terrupts via a momentary inhibit as discussed in paragraph A. 8. 1.

A.8.3 Flowchart Notes

Note 1

The computation of the average CHIs for the SMC
calculations (see A-8b) is shown in the flowcharts as
coded for SPL, and CLLASP, where PIRADS were used.
In HAL, PIRADS were not used so the special test
shown for the averaging of the pitch commanded CHI
was unnecessary.

Note 2
Likewise, for the computation of the expected velocity
changes (see A-8b), usage of the special SIN/COS

routine (USCO00) for PIRADS was replaced by the usage
of the built-in SIN/COS functions in HAL.

-38-

Ext. Entry

Compute
time in
mission at
accel read

Compute
time in time
base at
accel resd {

Compute
time since
last accel-

erometer
read

ACCELEROMETER PROCESSING

Resetaccel-
erometer
bits for
MC24

accelero-
meter

Y accelero-
meter

Compute
mass of the

vehicle at
accel read

|

'Calc. (F/M)C

as neg, of X Calculate
component of § (F/M)C
gravity acc.
]
y A-8b
AR41 i
ompute i
aver CHI's

for SM.C

Figure A-8a

-39-

AR100
Compute
A&B accel
CHG for X,
HG for

elem
reading at
accel read

A-8b

ART1
Compute
] expected vel
changes

Return

‘ AR41 ’

Calculate
average yaw
command
CHI

Reset yaw
command
CHI for
next pass

Calculate
average
pitch

&(}_ﬁlﬁTand

Add 180 DE
to the aver,
pitch com-
mand CHI

Reset past
pitch com-

mand CHI
for next

‘ Return ’

ACCELEROMETER PROCESSING
(continued)

< ART71)

Compute
SIN /COS of
Z gimbal

ompute
SIN/COS of
Y gimbal

Compute
intermediate
velocity
{change
parameter

Compute
| expected
velocity
change

‘ Return >

Figure A-8b

-40-

Note 2

< AR100 ’

Compute
channel A
accelero-
meter
change

- Compute
channel B
accelero-
meter
change

Replace old
accel. data
with new

accel, data

¢

‘ Return ’

or: ntry
MAPOO

Y
JSet previous
‘Jdelta velocity

sum to
zero

\

Est. thrust]
miealign

error in
{ comp of F/

C‘ - A-8d

AP400

Select Aor B
X accel,
change

delta

pass
oty

Set mode
code 24

A-8d

l AP500 "
ake !

test on. X
accel. chg.

accel, zero
failure

AP530

Set MC
24 X accel.
reads

Junreasonable].

Figure A-8c

_41-

ACCELEROMETER PROCESSING
(continued)

Set steering
Imisalignment
flag

AP510

Accumulate
square of
accel,

L changes . |

Use X backup
velocity
change for
velocity calc

AP520j

Calculate X
velocity

i

Calculate
measured X
velocity for
F/M calc.

X measured
veloed

ACCELEROMETER PROCESSING

Set bit in
mode code
24 using
AB

Use AB

as delta

AP440

{continued)

Set bit in
mode code
24 using
AA

—

AP450

Use B8A
as delta

ecte
chfngekghrus
misalign
error

Return
AP470

Return Y
AP530

U

Figure A-8d

-42-

A.9 Minor Loop

A.9.1 Description of Qperation

Vehicle attitude control is performed by the Minor Loop. In
general terms, attitude control consists of determining actual attitude
as indicated by vehicle sensors, calculating the attitude correction
required to achieve the desired attitude specified by a guidance task,
limiting the correction command, and issuing properly formatted
attitude control commands to the vehicle control system.

To maintain vehicle stability, the Minor Loop is executed
twenty-five times per second during boost phases and ten times per
second in orbit. These high frequencies require the Minor Loop to be
scheduled via the high-priority timer of the Interrupt Processor.

Vehicle attitude angles for yaw, pitch, and roll are sensed
by inertial platform resolvers which measure the angles between
the platform gimbals and the mounting frame. A fine and a coarse
(backup) resolver are provided for each gimbal., The fine resolvers
are selected until repeated errors cause a switch to be made to the
backup resolvers, Each resolver contains redundant counter read-
ings and a disagreement indicator which are used by the Minor Loop
for wvalidity checking.

After reading a resolver, the Minor Loop performs disagree-
ment processing to select the proper counter. Reasonableness tests
are then performed to detect invalid zero readings or an unreasonably
large change from the previous reading. In the event that both counters
of a resolver are bad, or if the selected counter fails the reasonable-
ness tests, the corresponding vehicle attitude angle is not updated
and the previous attitude control command is reissued. Error indica-
tors are set to identify the type of failure. If the occurrence of re-
solver failures exceeds predefined frequencieg, a switch is made to
the corresponding backup resolver. Backup failures result in guid-
ance reference failure indications and the last valid attitude command
is issued repeatedly for the remainder of the mission.

Resolver readings which have been determined to be valid
are converted to internal units and used to determine actual vehicle
attitude. The actual attitude is then compared with the desired atti-
tude and the difference is used to calculate attitude error commands
to be issued to the attitude control system. Before the commands

- -43-

are issued, however, they are limited to not exceed rate and magni-
tude tolerances.

A special entry point in the Minor Loop is provided for flight
simulation tests so that ladder profiles may be generated.

A.9.2 Unique Language Characteristics Required

While not specifically required, an indirect I/O capability
would be useful, In the Minor Loop it may be desirable to read
either fine or backup gimbals depending upon whether or not pre-
vious gimbal failures have occurred, or it may be desirable to not
issue a read command at all as in a repeatable flight simulation test
run. An indirect I/0O capability is not mandatory since tests could
be made to determine the type of I/O required. However, in a pro-
gram such as the Minor Loop where time is of utmost importance,
such tests would impose timing penalties.

Techniques are required for insuring that a given amount of
time has elapsed between the issuance of gimbal read commands.
Since the programmer loses sight of execution time in a high level
language, the language should provide a means for determining such
delta times and for specifying required time delays,

The relatively high execution frequencies of the Minor Loop
(25/second in boost and 10/second in orbit) make minimizing execu-
tion time particularly desirable for this kernel., The ability to direct
the compiler to minimize execution time, even at some cost in in-
creased memory requirements, would be useful if the flight computer
processing time capacity was near saturation. ‘

A.9.3 Flowchart Notes
Note 1

The Flight Simulation entry to the Minor Loop (MML00)
is coded as a separate subroutine in CLLASP, CMS-2, and
HAL since these languages restrict a program module

to a single entry point. It then calls the normal Minor
Loop (MML20) rather than transferring control to a point
within it as shown in the flowchart,

-44-

MINOR LOOP

Ext. Entry
MML20
—_—

Updata comm]
CHI's by’
delta CHI's

Ext. Entry
MML.OO

ML.160
Issue pitch

Has
converter
B been sel-
ected

command
ramp being

comman-

MIL.201
Decrement Set ICR to UsedEMR
. reading to
counter for select update EMR
CHI converte)
status word
updates
\ ML500 Reschedule
Alter gimbal minor loop
RTC's check

ML101 YA-9b
Read EMR ML004
i ster Process
registe roll (X)
axis
A-9b
| A-9 \ ML260
MLOQO04 Set ladder Start DOM
Process ’ B indication backup
yaw (Z) for EMR gimbal
axis

) ‘ ssue
imbal (fin yaw
o omman
\ A-9b
ML004 Issue
Process roll
pitch (Y) comman
axis g

Return

[

Figure A-9a

-45-

MINOR LOOP

process
disagreemert

Is
gimhal
zZero

ABS (delta
pass zero
test

A-9c

MLo31
Telemeter
zero test
failure

(continued)
MLO0Z20
Is Save A
disa- N] counter
gigtient gimbal

MLO030

T

Alter high
order gimbal

to compen-
|sate for
QYL h*.44

Compare
present
gimbal with
previous

reéasonable

ML630

Telemeter
reasonable-

ness test
failure

A-9d
ML637

Inhibit
steering
misalignment
calculation

ML040

Compute
THETA

Store present
gimbal for
next minor

loop

Comp diff,
between
actual and

computed
attitudes

Reset
multiplexer
failure
indication

Compute
attitude
command

A-9d

ML 730
Max & rate
limit attitude
command

ML 760

< Return >

Figure A-9b

-46-

< ML631 >

Use tag for
gimbal zero

test failure

MINOR LOOP
(continued)

‘ ML630 ,

Use tag for
gimbal
reasonable-

o T

]

ML632

Form error
telemetry
word

reference

failureoccu

Telemeter
error
word

Possible
multiplexer
test

A-9d

ML635

Multiplexer
failure test

Increment
gimbal

failure count

for gimbal

backup

failure rate on

Guidance
r,ife rence
failure occu

red

2ference
failure
discretes

Form error
telemetry
word

Set gimbal
1/0 flag for
backup

Alter course
gimbal 180
deg. over-
flows

Set gimbal
overflow

180

4

Reset old
gimbal to

backu
gimba

resolution to

Backup
conversion
factor

Set ICR to

Figure A-9c

-47-

Maintain
ICR status
word

Set flag
for test on
gimbal RTC

Set gimbal
to switch to

2nd pass

Set RSBLNS
limit = 1st
pass BU gim
RTC

reference
ailure occur

Telemeter
error
word

A-9d

ML 637
Inhibit
steering

misalign cal

< Return ’

Decrement B
multiplexer
failure rate

I;n Set
ultiplexer

failure flag
to NO

Increment A
multiplexer
failure rate

multiplexer
failed

Set ICR to

switch
gimbal
order

Maintain ICR
status
word

Set A

multiplexer
failure in
MCz24

Lock off
DG
processor

(Return ,

Chang?
backu

MINOR LOOP
(continued)

Reset

gimbal

backup

flag

\

ablenes
limit to
pass ba

imbal

Set reason-

s

2nd
cku
RT

< ML637 >

y

Delay as .
required
for gimbal

read

Lock off

steering
misalignment

calculation

ML520 ¥

Set backup
gimbal flag
to alter RTC

|

test

gimbal RTC

y

‘ Return >

Figure A-9d

-48-~

Repeat for
next axis

ML730 -

Set command|
to maximum
level

|Set command
to previous
command +
limit

Save
present
command

Y

Form and
save actual
command

%

(Return "

A.10 Switch Selector Processor

A.10.1 Description of Operation

Certain hardware functions of the Saturn vehicle are activated
by the flight program via the issuance of switch selector output com-
mands. The Switch Selector Processing task functions in much the
same way as the Events Processor, in that it utilizes a predefined
table containing the switch selector commands and their associated
times for issuance. The time of activation for a given entry is used
to schedule the Switch Selector Processor via the high-priority timer
of the Interrupt Processor.

However, the process of issuing a switch selector is more
involved than the function of initiating tasks performed by the Events
Processor, The issuance of a single switch selector function requires
at least five I/0O operations to be performed:

o Hung stage test

o Issue stage and address
o] Verify address

o Issue read command

o Reset read command

In addition, if the hung stage test fails, a forced reset must be issued
before the stage and address is issued. Also, if an address verifica-
tion fails, a forced reset must be issued followed by the issuance of
the stage and complemented address, Depending on the type of veri-
fication error, the system may be reconfigured to issue future switch
selectors via different circuitry.

Hardware restrictions require timing delays between com-
mand issuance, Since the switch selector delays are on the order
of ten to twenty-five milliseconds, the Switch Selector Processor re-
schedules itgelf for execution at the proper time and returns control
to the operating system. The interval is too long to be accomplished
through an in-line delay.

In addition to the nominal sequence of switch selector functions,

-49-

provision is made for alternate sequences which can be activated as
specified by other application tasks. Depending on the type of alter-
nate sequence, the alternate switch selector functions will be issued
jinstead of, or intermixed with, those of the nominal sequence.

Numerous entry points exist for the Switch Selector Proces-
sing kernel. Most of the entires are used for scheduling its various
functions via the Timer 1 Scheduler as discussed above. Three ad-
ditional entries are used to request an alternate sequence, to issue
a forced reset, or to initialize Switch Selector Table pointers for a
new time base.

A.10.2 Unique Language Characteristics Required

Requirements for an indirect I/O capability and for measur-
ing short time periods are similar to those discussed for the Minor
Loop (see paragraph A. 9, 3).

Although the decision-making statements are a commeon
feature of nearly all programming languages, special emphasis on
them here is warranted due to the unusually large number of decisions
made in the Switch Selector Processor. This kernel places a pre-
mium on language capabilities which enable the programmer to ex-
press complex decision sequences in a logical and concise manner,
The extent to which a language provides such capabilities contributes
directly to the elimination of program logic errors and to an improve-
ment in readability. Decision tables are particularly useful in this
environment.

Another relatively common characteristic of the Switch
Selector Processor is the manipulation of data at the bit level. It
utilizes features for setting, resetting, and testing bits in status/
control words and also for formatting and analyzing I/0O data words,
These functions require a language to provide bit-string handling
facilities. ‘

- Also required is the ability to access data from tables. A
subroutine is utilized to select the next switch selector command to
be issued from one of a number of tables, Since alternate sequences
can be interspersed and/or interleaved with switch selectors from
the nominal sequence, the subroutine must be able to jump from table
to table based on sequence decisions made by other programs.

- -50-

A.10.3 Flowchart Notes

Note 1

Switch Selector Processing consists of a number of
interrelated functions, some of which use common
program logic. In order to minimize program dupli-
cation, the functions were all combined into a single
program module and invoked via multiple entry points
as shown in the flowcharts, The kernel was actually
coded that way in SPL.. However, for the other three
languages, where multiple entry points are not allowed,
a common entry point (MSS00) was utilized wherein con-
trol was transferred to the appropriate function. The
decision logic for this transfer of control is not shown
on the flowcharts but in each of the three languages
(CLASP, CMS-2, and HAL) it consisted of a com-
puted GOTO.

-51-

Inhibit all
interrupts

Set alternate
sequence
entry flag

_S5S0060

I Restore -
interrupt

inhibit status |

-y

Reset all SS
requests ‘
| except water

valve

SWITCH SELECTOR PROCESSOR

{progress

Ext. Entry
MSS10

\

Zero alt,
sequence in

indicator

[

Zero alt.
sequence
start time

|
Reset class
4 sequence
flag

[

Return

‘ Figure A-10a

-52-

SS0081 .
Process Reset all §S
SIVB cutoff requests
request except water
. valve
A-10c))
§S0101 L4
Process EGP08
pump purge Reschedule
) A-10d &)
$S0270 | Set up to use
Process alt.] normal
time base - table
6C request advance
A-10d Y
550241 Initialize SS
Process a table pointed
| class 1 alt. . for new
sequence time base
request
1
A-10Db A=10c
$S0000 §S1050
‘| Schedule Initiate next
[next switch switch '
selector selector

Ext. Entry
MSS05

\
Reset switch
selector
active flag

SWITCH SELECTOR PROCFSSOR
(continued)

‘ SS0000 ’

550010

Switch
selector
time upda

Save time-~

to-go to
next SS

: '~ SSs0170

550015 Is 2
. class 3
sequence alt, sequence
equeste requested
Y
s
an alt,
sequence
equested
(MSS05)
; Y

A-10i

MSS30

Implefnent
ground bias
time

Zero time
update
waiting flag |

Set ground
bias time =
amount not
uded

Hung stage .

Is an
alternate
sequence re-
quested

Compute
time for
hung stage
test

v A-10n

Schedule
hung stage

Ea0)

)

A-10
SS0060
Restore
interrupt
inhjbit
status
J Figure A-10b

-53-

N

N

A-10e

SS0191

: seguence re-
uest

Process a

class 4 alt,

A-10f

S$50221

Process a

class 3 alt.
SEQ request

S$S1050

Y A-1l0g

Set bias for
verify -
address
scheduling

Set flag to

make hung
stage test

Y A-10b

SWITCH SELECTOR PROCESSOR

A-10i
SS0000 MSS20
Schedule Switch
next switch selector
selector forced reset

< Return >

{continued)

S50060

gntry flag

sequence

Reset
alternate
sequence
entry flag

550081

timer 1

Enable
interrupts

Set alt. seq,
in prog. ind.
forSIVB
cutoff

Set current

SS table in
progress

pointers

Return

Figure A-10c

~54-

Reset allSS
requests
except

water valve

Return

SS0101

EGP08 '
Reschedule
timer 1

Set alt, seq.
in prog. ind.
for pump
purge SS

Set current
SS table in
| progress
pointers

Reset all SS
requests
except
water valve

‘ Return ’

‘ 550270 ’

Reset time
base 6C
request bit

Set SS table
ptrs for TB
6C alt, seq.

Set bit in
mode code
26 for TB 6

Set alt. seq|
in progress
ind for TB
6C

selector
time -
ciate UP

< Return)

SWITCH SELECTOR PROCESSOR

(continued)

‘ S50241 ’

Save
current table
in prog ptrs
in class 1

Save current
alt. seq. in
prog
indicator

Set alt., seq.
in prog ind
for class 1

Save time in
TB at start
of alt, seq.

A-10n

SSTUPD
Switc
selector

tne up-

\

Set table
advance
route for
class 1 alt,
s€q.

Figure A-10d

~55

Reset time
base 6B

.request bit

|

Reset special
S4B cutoff
bit

Set SS table
ptrs for TB
6B alt. seq.

Set SS table

ptrs for S4B
cutoff

Set bit in
mode code
26 for TB 6B

J

‘ Return >

Reset time
base 6A

request bit

%

Set SS table
ptrs for TB
6A alt. seq.

Set bit in

mode code
26 for TB
6A

SWITCH SELECTOR PROCESSOR
(continued)

‘ SS0191 ’

Set class 4
in progress
flag

Acquisitio M Reset lunax
-4 N ¢ base 6D impact
gain request equest- .

ed ed request bit
Y
Reset Ig\eset TB Set table
acquisition D request ’ for lunar
gain request bit impact
bit sequence
t tab
Sfrs aiolre Set table Set class 4
1 acquisition ptrs for alt, seq.
gain TB 6D time
reference

J

selector
time update,

SS0201

Set table
advance flag

for class 4
alt. seq.

%

Set flag to
make hung
stage test

A-10g

Set up

next SS

Return
C : 3 Figure A-10e

-56-

< S$s0221 ’

A

Store SS ptr
for class 3
in progress

Save currernt
alt. seq. in
progress
indicator

SWITCH SEL

ECTOR PROCFSSOR

(continued)

open request-
ed

Set alt, seq.
in progress

indicator for
class 3

Reset T3A
switch
selector
sequence
request bit

Save time in
TB at start
of alt. seq.

Set SS table
ptrs to issue

Set table
ptrs for ECS
water valve
close ’

SS0230 A-10n

Switch

Set table
ptrs for
ECS water
valve open

T3A alt.
seq.

antenna to
low request-

antenna to
high requeg
ed

S~
band
antenna to
omni re-

Set SS table Reset

. generalized
to 1ssue' SS request
gsesnerahzed bit

Set SS table
ptrs to

Reset S-band
J antenna low

S-band
antenna low

request bit

Set SS table
ptrs to S-

Reset S-
band antenna

band antenna
high

bit

Set SS table
ptrs to S-

Reset S--bana

antenna

band antenna

high request

omni .
request bit

omnil

Figure A-10f

-57-

selector
time
u rélaf:e

Set table
advance
rout, for
class 3

alt, seq,

Set flag to
make hung
stage test

A-10g

Set up next

SS

< Return ’

SWITCH SELECTOR PROCESSOR

Advance SS
table
pointer

Advance
class 4
table
pointer

Set up next

SS

< Return ’

(continued)

GD

A-10h
SS0111 Reset class
Process 4 in pro-
return from
alt. seq. gress flag

Reset lunar
impact bit

Figure A-10g

;58_

SS next in mode
code 26
lY
Set up SS Reset TB
from class 6D bit in
4 table mode code
® s
S$S2040 .. 552090
Set up SS Set table Set table
from normal advance flag advance flag
sequence for class 4 for mormal -
SS
l
Save new e
stage
select bit
Return

SS0111

SWITCH SELECTOR PROCESSOR
(continued)

Reset all

Set alt., seq. Set table in
in prog. ind. rog ptrs Ssxl;;cg:ests
: for S4B or S4B CO
in progres cutoff alt. seq. water valve
Class E;.?bslgofrsprog. R:Stoi;e alt, Restore
alternate ptrs. from ;rg.gress time in TB
sequence in t start of
progresgs class 3 indicator zltos :eq.o
Resto-re Restore alt. Restore
alternate table in seq. in time in TB
sequence in rog. Pltrs I progress at start of
progress rom class indicator alt, seq,

Reset
alternate
time base
reference

Reset alt.

seq. in
rogress

indicator

Set up to
return to
T5 SS table
{lst opp)
Set up to
return to T5 isrfdtif:l:tge t']?'()
SS table second
(2nd opp) pass
M

‘ Return ’

Figure A-10h

-59-

Ext. Entry
MSS20

Issue
forced
reset

Set flag to
bypass hung
stage test

Set bias for
verify
address
scheduling

A-10c
550060

Restore
interrupt 4

inhibit statu

{ Return)

SWITCH SELECTOR PROCESSOR
(continued)

Ext. Entry)
MSS30 '

Set switch
selector
active

flag

Reformat
SS for read
command

Reset switch|
selector
active flag

A-10g

Advance
SS table

Y A-10b
SS0000
Schedule

next switch
selector

Return

Set flag to

not issue SS
1/0

Set flag to
issue SS
1/0

\ selector

A-10n

SSTUPQ

Schedule

i t
\andaddrésg
MSS40

A-10c

SS0060
Restore
interrupt
inhibit
status

Return

Set bias for
verify
address
scheduling

Figure A-10i

-60-

A-10j

SS4000

Issue stage

and
address

‘ Return }

xt. Entry
MSS40

Delay

SWITCH SELECTOR. PROCESSOR

‘ 554000 }

ssue switch
selector
stage and
address

Delay for
DOM
telemetry

Output SS
and DO

A-10c

SS0060
Restore
interrupt
inhibit
status

< Return ’

Use
computed
feedback

(continued)

Ext. Entry
MSS50

Store
complement
stage and
address
word

Save the

computed
feedback
word

selector
feedback

egister

feedback

feedback
Zero

A-10k

MSS55

SS read
time check

< Return)

Issue
forced
reset

Figure A-10j

-61-

complement
Sti/%e & add
(MSS80)

ore
than 1 bit

ailure

¢Y
Set bit in
MC24 SS

channel B
selected

Is
this first
feedback
failure

Set ICR to
select SS
channel
B

y

Set flag
for no
condition

!

Maintain
ICR status -
word SS
channel B

Telemeter
feedback

(Return)

Ext. Entry
MSS70

Reset
read bit

_A-10n

Schedule
hung stage
te s{MSS05

A-10g

Advance
SS table

Set bias for
verify
address

scheduling

\
Set or reset
hung stage

bypass flag

Open
water valve
SS issued

Close
water valve
SS issued

) Enable
S/C control o
saturn SS

SWITCH SELECTOR PROCESSOR

S-I1VB
cutoff SS re-
quested

Ext, Entry
MSS55

(continued)

Time
to issue

Enable DIN
9 in the DI
mask

3y

‘ Return >

Figure A-10k

-62-

Set status SSTUPD
flag to ind.
SIVB CO SS
is set up
Set SS time
to a large bias time Y -
value of read
A-10m
Schedule MSS60
read Issue switch
command selector
read
T
‘ Return '
Reset ECS 'Set'flag to
indicate
water valve open water
open request valve
bit
Reset ECS Set flag to
water valve indicate
close) closed
request bit water valve

Ext. Entry
MSS60

Issue read
command
nd stage
selecte

Read real
time
clock

Schedule
reset read
(MSS70)

Form SS
telemetry
word

sta
address with
time o
read

ompress
SS stage and]
address

and time

SWITCH SELECTOR PROCESSOR

{continued)

SIVR
cutoff SS in

rogy

N

Set SIVB
cutoff read

command
issued

/

Zero alt.
seq. in pro-
gress
indicator

CC\ '
to high gai Y

command

Set CCS
high gain bit
in mode
code 27

Set CCS
low gain bit
in mode
code 27

Set CCS
omni bit in
mode code
27

as
this first

SIVB bur

Set bit in

mode code
26 for 2nd
SIVB burn

Set bit in
mode code 25
for 1stSIVB
burn

i/

Figure A-10m

-63-

Ext. Entry
MSS80

Delay for
DOM
telemetry

Output SS

and DO

regs via
DOM

Return

SWITCH SELECTOR PR OCESSOR

(continued)

‘ SSTUPD ’

\Read real
time
clock

3

Update time
in time basé
biased

' Return ’

Figure A-10n

-64-

SSTUPQ

Read real
time
clock

Update time

in time
base biased

Schedule
requested
function

‘ Return ,

A.1ll1 Task Keying (ATMDC)

A.1ll.1 Description of Operation

Task Keying is an operating system function associated with
priority task scheduling; it is the process of entering information
concerning a task into a Priority Control Table to enable the task
to be dispatched (initiated) on a priority basis. The information in-
cludes such items as task priority level, the in-core address of the
task, and initial register contents for the task.

Since multiple tasks can usually be keyed for execution on a
given priority level, various techniques are used for stacking the
additional entries. In the ATMDC operating system, the Priority
Control Table (Table A-4) holds a single entry for each priority level.
Additional entries are stored in a Priority Overflow Table (Table A-5)
with all entries for a given priority level chained together.

Requirements for task keying vary with the design of the opera-
ting system. For the ATMDC Flight Program, tasks are keyed in
response to events (interrupts or discretes), based on time, or as
requested by another application task.

A.11.2 Unique Language Characteristics Required

The Task Keying kernel requires facilities for formatting and
accessing tables. Techniques for linking the overflow entries together
in an efficient manner are also desirable,

The kernel also implies a requirement for the capability to
identify the task to be keyed. The keying process itself does not re-
quire it since the Task ID is simply stored into a table, However,
since this is done for the express purpose of dispatching the task (pas-
sing control to it) at a later time, the Task ID must provide the means
by which the task can be located in core,

A.11.3 Assumptions Made During Coding

Several assumptions were made for the purpose of organizing
the control tables. It was assumed that there were ten priority levels
in the operating system and that twenty-five entries in the overflow
table would suffice. Also, it was assumed that three hardware registers
required saving for each task. These assumptions affect only the size
of the control tables and could be easily adjusted.

-65-

PRIORITY CONTROL TABLE

Reg 1 Reg 2 Reg 3 Overflow
Task ID | Contents | Contents | Contents {Chain Link

Level O
Level 1
Level 2

1

1

1

1

1

1
Level N-1

Notes:

1) Number of priority levels (N) depends on system requirements.

Ten levels were assumed for the kernel.
2) During the keying process, the Task ID is either the memory

3)

4)

address of the task entry point or some other indicator which
can be used to locate the task in memory. After a task has
been initiated, this word is used to store the address where
task execution is to resume following an interruption. A value
of zero for a Task ID indicates that no tasks are currently as-
signed to that priority level,

Register storage words are used to save task registers when a
task is interrupted. They are initialized to zero when a task
first receives control. The number saved depends on system
requirements and was arbitrarily chosen as three for the kernel.

The Overflow Chain Link is either a pointer or an index used to
chain task entries together whenever more than one task has
been assigned to a given priority level., The additional entries
are stored in the Priority Overflow Table. A value of zero indi-
cates no overflow entries exist for that priority level,

Table A-4

—66-

Notes:

1)

2)

PRICRITY OVERFLOW TABLE

Qverflow

Chain Link Task ID

The Overflow Chain Link has the same meaning as its counter-
part in the Priority Control Table. A value of zero indicates
end of chain.

The Task ID also has the same meaning as its counterpart in
the Priority Control Table. A value of zero indicates that the
entry is not currently assigned.

Table A-5

-67-

ATM TASK KEYING

Ext. Entry Is d
TASK KEY this entry O S flowsQ

occupied

4

Inhibit Attach this

interrupts entry to
end of
chain

\

Use task Store task

priority as data in

control table overflow

index entry
Store task Release

| data in interrupts

control " \
table '

Initialize
chain . Return
pointer
Step to
next
1 element
in chain

Initialize
PTR to start
of overflow
Jtable

Figure A-11

-68-

-

Step to
next entry
in overflow
table

A.12 Glossaries

The Glossary Tables provided in this paragraph document
most of the names declared in the flight program coding. These
glossaries are provided as an assistance to reading the flight pro-
gram listings in Appendix B. It also documents assumptions made
about system-defined names.

A.12,1 Input/Output Glossary

Table A-6 contains names and brief descripticns of external
devices accessed by the flight program kernels. The File Names
are the names used in the actual Input/Output statements. In the HAL
coding it is assumed that these names are assigned by the system and
are known to the compiler, because of HAL's device-oriented input/
output. In SPL the names assigned by the system cannot be used
directly in Input/Qutput statements; a FILE statement must be used
tqg define input/output arguments in terms of system-assigned names,
Therefore, for SPL the Device Names of Table A-6 were assumed to
be assigned by the system, and the File Names were declared through
the FILE statement, In CLASP and CMS-2 input/output is indicated
by comments rather than statements of the language.

- A, 12,2 Interrupt Glossary

Table A-7 contains names of computer interrupts which were
assumed to be assigned by the system. The Description identifies
the LVDC interrupt corresponding to the Interrupt Name.

A.12,3 Data Glossary

Table A-8 contains names and brief descriptions of common
data items declared in the kernel coding. Minor deviations appear
in the listings such as break characters in HAL names, and trunca-
tion of some names to meet CLASP's eight-character limitation.
However, these deviations are easily as soc1ated with the correspond-
ing names listed in the Data Glossary.

=69~

File Name

CLOCK
DBG
DCs
DIR
DOM
DOR
DOS
EMR
ICR

SS

- SSFB
TIM1
TIM2
XACC
XBGIM
XGIM
XLAB
YACC
YBGIM
YGIM
YLAD
ZACC
ZBGIM
ZGIM
ZLAD

INPUT/OUTPUT GLOSSARY

Device Name

TIMER
DOMBUGIM
DCSINREG
DISINREG
SSDOM
DISOUTRES
DISOUTSET
EMREG
ICREG
SSREG
SSFDBK
TIMER1
TIMER?2
XACCEL
XBACKUP
XGIMBAL
XLADDER
YACCEL
YBACKUP
YGIMBAL
YLADDER
ZACCEL
ZBACKUP
ZGIMBAL
ZLADDER

Table A-6

-70-

Description

Real time clock

DOM backup gimbal

Digital command system input
Discrete input register

Switch selector DOM output
Reset discrete output register
Set discrete output register
Error monitor register
Internal control register

Switch selector command output

"Switch s‘el‘ector feedback

Timer 1 counter
Timer 2 counter
X-axis accelerometer
X-axis backup gimbal
X-axis fine gimbal
X-axis ladder

Y-axis accelerometer
Y-axis backup gimbal
Y-axis fine gimbal
Y-axis ladder

Z-axis accelerometer
Z-axis backup gimbal
Z-axis fine gimbal
Z-axis ladder

INTERRUPT GLOSSARY

Interrupt Names Description
TI1INT Timer 1 interrupt
T2INT Timer 2 interrupt
TLCINT TLC interrupt
EX1IINT External 1 interrupt
EX2INT External 2 interrupt
EX3INT External 3 interrupt
EX4INT External 4 interrupt
EX5INT External 5 interrupt
EX6INT External 6 interrupt
EX7INT External 7 interrupt
EXSINT External 8 interrupt
EX9INT External 9 interrupt
Table A-7

-71-

Data Name

CHIBARSTEER

COSTHETA

DCSDATACOUNT

DCSDATCT
DCSERLIM
DCSERmm
DCSINDX
DCSMODE
DCSMSTAT
DCSSTCOD
DELTAL3
DELTAVVP
DELTAZ2
DFACQ
DFDBF
DFDTL
DFILE
DFIL1
DFIL2
DFIL3
DFLT
DFMDI
DFSMC
DFTBCEP

DFTUP
DFWV

DFZER
DGSSM
DGST2
DKAPI
DKMIR
DKT1
DLPRL
DLPTL

DATA GLOSSARY

DescriEtion

CHI bar steering in progress flag

Cosine of angle between pseudo-nodal
vector and descending node

Input data word count

Table of function data word requirements

Limit on errors for a given function

Error tags

Table index derived from mode command

Mode command table

Function status table

Function telemetry status code table

Correction to velocity-to-be gained

Estimated velocity to be gained

IGM intermediate parameter

Acquisition gain indicator

Disagreement multiplexer failure flag

Sector dump in progress flag

Flight program status word

Timer 2 interrupt level in progress indicator

External interrupt level in progress indicator

Timer 1 interrupt level in progress indicator

Flight/sim flight indicator word

Flight mode indicator

Steering misalignment flag

Time base change indicator for events
processor

Time update waiting indicator

Flag which indicates state of water valve
(open or close)

Zero test enable flag

Switch selector function to be scheduled

Timer 2 function to be scheduled

Flight phase status table

Minor loop initial rate

Timer from GRR when time base 1 was set

Periodic processor task rate table

Periodic processor task delta T table

Table A-8

-72-

DATA GLOSSARY

(continued)

Data Name Description

DLTTL Timer 2 task execution time table

DPHII Rate of change of range angle

DPHIT Rate of change of predicted terminal
range angle

DQST2 Timer 2 function to be en queued

DTBID Time base indicator

DVAC Accelerometer reading

DVACT Real time clock (RTC) reading associated
with DVTAS

DVASW Switch Selector Request status

DVAl

DVAZ2 Coefficients used to convert the attitude

DVA3 ' corrections from the inertial platform

DVA4 frame to the body frame

DVA5

DVAGb

DvVCA Average of present and past Minor Loop
commanded CHI at the time of major

A computer cycle accelerometer read

DVCC Commanded CHI used in Minor Loop

DVD Intermediate velocity change parameter

DVDA Optisyn A change in velocity

‘DVDB Optisyn B change in velocity

DVDC Delta CHI

DVDGS Count of disagreement bit hardware
failures

DVDM Measured velocity of platform

DVDPM Mask word that specifies which DIN's are
to be.processed when they change from
OFF to ON

DVDT Elapsed time between current and previous
major computer cycle accelerometer
readings in seconds

DVEMR Error Monitor Register

DVEOF Engine out multiplication factor for backup

F/M calculation

Table A-8
(continued)

-73-

DATA GLOSSARY

(continued)

Data Name Description

DVERT Time error associated with time update

DVF Expected platform velocity change

DVFMC Generated acceleration (backup)

DVFOM Total vehicle acceleration determined
from accelerometer readings

DVFOR Thrust of vehicle (backup)

DVG Gravity acceleration

DVHDA Count of A multiplexer failures

DVHDB Count of B multiplexer failures

DVIAS Temporary storage

DVICR Internal Control Register

DVIH Interrupt inhibit image

DVLDB Ladder converter B selection rate per

' second

DVLRC Ladder ramp commanded CHI update
counter

DVMAS Mass of vehicle (backup)

DVMC4 Mode Code 24

DVMC5 Mode Code 25

DVMC6 Mode Code 26

DVMC7 Mode Code 27

DVMFR Mass flow rate of vehicle (backup)

DVMLD Minor Loop

DVMLR Number of minor loops per computation
cycle

DVMLT Execution time for next minor loop

DVMO05 Rate limit for ladders in Minor Loop

DVMO06 Magnitude limit for ladders in Minor Loop

DVP Flight phase indicator

DVPTG - Previous periodic processor execution

) time

DVRC Accelerometer reasonableness test
constant

DVRE Gimbal failure count

DVRTC Real time clock at last time update

DVSST Switch selector execution time.

DVTAS Mission time at major computer cycle

accelerometer read in seconds

Table A-8
(continued)

74

Data Name

FSSAC

FSSIO
FTADV
FTGOP
GS
GSTIM
GT

GV

GVSTAR

GVT
J1

J12

J2

73
J3P
KCCT4

KCCT8

KMU
KT
Kl
K2
K3
K4
LYP
L1
12
L2
L3
L3P
MS4
M4V

DATA GIL.OSSARY

(continued)

Description

Switch selector processing in progress
flag _

Flag for issuing or bypassing SSI/0

Normal or class 4 table advance flag

Time base 6 second opportunity flag

Gravity acceleration in plumbline system

Timer 1 function to be scheduled

Terminal gravity acceleration magnitude

Gravity acceleration in injection plane
system

Estimated average gravity acceleration
for remaining boost flight path

Terminal gravity acceleration vector

IGM intermediate parameter

IGM intermediate parameter

IGM intermediate parameter

IGM intermediate parameter

IGM intermediate parameter

Nominal computation cycle length during
first S4B CHI bar steering

Nominal computation cycle length during
second S4B CHI bar steering

Gravitational constant

Cosine (THETAT)/RT

Coefficient of IGM steering equation

Coefficient of IGM steering equation

Coefficient of IGM steering equation

Coefficient of IGM steering equation

IGM intermediate parameter

IGM intermediate parameter

IGM intermediate parameter

- IGM intermedidte parameter

IGM intermediate parameter
IGM intermediate parameter

Rotation matrix from S-system to 4-system
Rotation matrix from 4-system to V-system

Table A-8
{continued)

_75-

Data Name

DVTB

DVTEX
DVTGB
DVTH
DVTI

DVTMM

DVTMR
DVTRB

DVTRR
DVTRS

DVVSQ

DVIMR
DV2TG
EPSILON2

EPSILON3
EPTINDX
EPTPTR

EPTTBINDX

EPTTIM
FASE
FBRNI
FBUG
FBUGS
FCLS4
FDSEN
FDSPG
FDSRE
FFBCH
FGNC
FHST

DATA GLOSSARY

(continued)

De scrip_tion

Time in time base at major computer
cycle accelerometer read in seconds

Real time clock reading at last interrupt

Accumulated ground bias time update

Total gimbal angle

Time from GRR that the current time base
was set

Elapsed time in mission from GRR at
last time update

Mission time at start of reference

Elapsed time in current time base includ-
ing ground bias time updates

Elapsed total time in current reference

Real time clock recording at start of
reference

Sum of the squares of X, Y and Z acceler-
ometer changes

Computation cycles per minor loop

Time for next timer 2 function _

Time to begin CHI bar steering for first
S4B burn

Time to stop calculating terminal conditions

Events processor table index

Pointer to task for processing an event

Table of index values at beginning of time
bases

Time of execution for an event

Alternate sequence in progress flag

S4B first/second burn flag

Backup gimbal active, alter RTC

RTC conditions flag for gimbals

Class 4 SS sequence in progress flag

Mode or data acceptable flag

DCS function in progress flag

DCS function termination required

Switch selector feedback channel flag

G and C steering in progress flag

Hung stage test flag

Table A-8
(continued)

76 -

Data Name

PHASE
PHII

PHIIT
PHIT

Pl

P12

P2
PPSTAT
Q1

Q12

Q2

R
REITERATE
ROVEX3

RS
RT
RV

RVT
R4
SINTHETA

SMCFLAG
SSTTBPTR

SST1PTR
SST2PTR
Sl

Sl2

S2
S4BURN
TAUlL
TAU2

TAU3

DATA GLOSSARY

(continued)

Des criEtion

IGM first/second burn indicator
Range angle traveled since liftoff
Predicted range angle-to-go
Predicted terminal range angle

_ IGM intermediate parameter

IGM intermediate parameter

IGM intermediate parameter

Periodic processor task status table

IGM intermediate parameter

IGM intermediate parameter

IGM intermediate parameter

Position magnitude

Alteration flag

Biased reciprocal of third phase IGM
exhaust velocity

Position in plumbline coordinate system

Terminal radius magnitude

Position in injection plane coordinate
system A

Terminal position vector

Position in 4-system

Sine of angle between pseudo-nodal vector
and descending node

Steering misalignment corrections flag

Table of pointers to switch selector table
for each time base

Normal switch selector table pointer

Class 4 switch selector tablé pointer

IGM intermediate parameter

IGM intermediate parameter

IGM intermediate parameter

S4B first/second burn flag

First phase IGM ideal burn time

Second or fourth phase IGM ideal burn
time ’

Third or fifth phase IGM ideal burn
time

Table A-8
(continued)

-77-

Data Name

TCI
THETAT
TSTAR
T1C

T1I

T21
T2STAT
T3I

Ul

Ulz

(o)

v

VASPI

VATRR
VATR4
VBUB .
VCCYA
VCCZA
VCG

VCGO
VCGl1
VvCG10
VCG1l1
VCMND
VCMNDI1
VCMND2
VCOD
VDEL

VDSBL

DATA GLOSSARY

(continued)

DescriEtion

Time remaining in S4B coast

Desired terminal path angle

Predicted IGM total time-to-go

Time-to-go to IGM initiation in third phase

First phase IGM time-~to-go

Second or fourth phase IGM time-to-go

Timer 2 task status table

Third or fifth phase IGM time-to-go

IGM intermediate parameter

IGM intermediate parameter

IGM intermediate parameter

Velocity magnitude

Alternate sequence in progress status
‘word

Alternate SS sequence time start

Class 4 SS sequence time start

Gimbal backup bias error

Previous pitch command CHI

Previous yaw command CHI

High order gimbal, coarse or backup
resolution

Gimbal reasonableness rate limit constant
(backup 2nd pass)

Gimbal reasonableness rate limit constant
(backup 2nd pass) (crossover)

First pass gimbal reasonableness test
constant :

First pass gimbal reasonableness test
constant

Present attitude command

Previous attitude command

Actual attitude command

Platform gimbal used to compute attitude

Difference between actual and commanded
attitude

Storage table for input data

Table A-8
(continued)

-78-

Data Name

VDSER
VDSRC
VDSSB
VDSO01
VEXI1
VEX?2

VEX3
VF10
VGBIA
VGR
VHSTW
VIRE
VMEMR
VMLET
VML,0
VML1

VMLZ
VOAC
VOACT

VOLD
VPOV
VPPOT
VPSTG
VS
VSCCA
VSCl

VSC3

VSF
VSNA
VSNAI
VSSCA
VSSFB

DATA GLOSSARY

(continued)

Description

Temporary storage for error telemetry

Error count

Sequence bit indicator

Temporary storage for error input data

First phase IGM exhaust velocity

Second or fourth phase IGM exhaust
velocity

Third or fifth phase IGM exhaust velocity

1/0 flag for fine or backup gimbals

Time base bias to be implemented

Gimbal angle reading

Previous stage and address

Resalver failure limit _

Temporary storage for EMR reading

Temporary storage for error telemetry

Gimbal reasonableness test limits

Gimbal reasonableness test limits
(crossover) -

Low order gimbal resolution -

Previous accelerometer readings

Mission time (in RTC units) at acceler-
ometer read

Previous platform gimbal

Previous measured velocity

Periodic processor current mission time

Powered stage indicators

Velocity in plumbline coordinate system

Complimented address

Class 1 temporary storage for SSTIPTR,
VASPI, VATRR

Class 3 temporary storage for SSTIPTR,
VASPI, VATRR

Conversion factor for gimbal angles

Stage and address word

Stage and address in true form

Computed feedback

Switch selector feedback in error

Table A-8
(continued)

-79+-

DATA GLOSSARY

(continued)

Data Name Description
VSSRT Switch selector time of issuance
VSSTM Temporary SS time storage .
VSSW Bias time
VSTG Powered stage temporary storage
VSTGO Time-to-go to next SS function
VT Terminal velocity magnitude
vVTD Elapsed time into launch window
VTOLD Events processor previous event time
Vv Velocity in injection plane coordinate
system
VVT o Terminal velocity vector
VOCK Gimbal angle zero test constant
V4 Velocity in 4-system

Table A-8

(continued)

-80-

APPENDIX B

FLIGHT PROGRAM KERNEL CODING

Each of the four major paragraphs of this Appendix contains
all of the coding for one language., The following table indicates on
which page the coding of a given kernel (table row) in a given language
(table column) begins. : ‘

Descriptions and flowcharts of these kernels gan be found in
Appendix A. The blank entries in the table indicate kernels which were
not coded in CMS-2.

Kernels lfahg,ﬁages ; SPL lcLasp 7HAL CMs-2
Common Data Pool o | 83 129 ,175 | 229
1. Initialization . , 92 135 181
2. Interrupt Processor | 94 137 184
3. Non-Interrupt Sequeﬁcer 98 141 188
4. Periodic Processor 100 142 190
5. Events Processor , 101 143 191
6. Iterative Guidance Mode 103|146 |194 234
7. Digital Command System 107 150 199 238
8. Accelerometer Processing 110 154 204
9. Minor Loop 113 157 -} 207 . 244
10. Switch Selector Processor 117 162 213 249
11. ATM Task Keying 126 172. 226 258

-81-

KBLANK)

-82-

SPL COMMON DATA DECLARATIONS

START .COMPOOL t+ SPIL COMMON DATA AND UTILITY ROUTINES *!

DECLARE CONTEXTUAL,
TEMP,
TEMPY

DECLARE FLOATING R,
DKT1 »
DvDT »
DVEQGF ,
DVFMC ,
DVFOM .
DVFOR »
DVMAS s
DVMFR ,
DVMLR »
DVTAS 27,
DVTB ,
DVTI »
DVVSA .
DVIMR

DECLARE ARRAY (3) FLOATING R,
DvVD »
DVDM »
DVFM .
pVGM ,
DVRC

DECLARE FIXED,
DKMIR 0 CONSTANT = 162,53968 ,''40 MILLI-SEC'!
DkTD 0 CONSTANT = 13,676,
DVACT 0,
DVA1 4,
DVA2 4,
DVA3 4,
DVA4 4,
pvas. 4,
DVAG 4,
DVERT o,
DVMLD 0,
DVMLT '2'
DVMOS 0,
DVMO6 0,
DVPTG =2,
DVRTC 0,
DVSST =2,
DVTD 0,
DVTEX o,
DVTG8 | =2,

" DVTMM =2,
DVTMR -2,
DVTRB -2,
DVTRR =2,
DVTRS -2,
DVTTHL 0,
DV2TG -2

DECLARE ARRAY (3) FIXED,
DLPRL =2 CONSTANT =(203174, 243809, 406349,),

-83.

SPL COMMON DATA DECLARATIONS

DLPTL -2,

DLTTL (12) =2 ,
DVCA 25 R,
pvee 25 R,
DVDA 7
DVDB 7 .
DVDC 25 R,
DVTH .25 R
DECLARE INTEGER,
DTBID ,
OVDGS .
DVHDA ,
DVHDR ,
DVLRC .
DVP

ARRAY DVRE (3) INTEGER
DECLARE STATUS,
DFaACQ (LO8S,BAIN)

1]

DFDAF (GNOD,FAILED) .

DFDTL (INPROG,NOTINPROG) ,

DFLT (FLIGHT,SIM,REP) .

DFPHC (NOTCHANGE ,CHANGE)

DFSMC (ENABLE,DISABLE) .

DFTBCEP (CHANGE,NOCHANBGE)

DFTUP (NO,YES) .

DF WV (CLOSE, OPEN) ,
 DFZER (ENABLE,DISABLE) ,

DGMLM (MLFS, MLNORM)

DGSSM(MLFS, MLNORM, SS05, 3530, 5540, 5550, 5355,5560,8870,8SR0),
DBST2 (T28,UM00,LR10,EP00,TT10,NUO0,EEND,CMO0,CM10,
: CM20, EPWM,ER00),

DAST2 (T28,UM00,LR10,EP00,TT10,NU0OC,EEN0,CM00,CM10,

CM20,EPWM,ERQ0),
GST1M(MLFS,MLNORM,8505,8530,3540,8550,5855,5560,5570, ,5580)
DECLARE STATUS CIN,OUT), ARSTAT .,

SASTAT ,
APSTAT ,
DVSTAT ,
DPSTAT ,
NESTAT ,
TCSTAT ,
PASTAT
TTSTAT ,
IGSTAT ,
HSSTAT ,
UGSTAT ,
TGSTAT ,
RSSTAT ,
CSSTAT -,
MSSTAT ,
PGSTAT ,
EBSTAT
CC1STAT ,
TBISTAT ,
TBS78TAT,

 Z84-

SPL COMMON DATA DECLARATIONS

CTSTAT ,
DTSTATY

ARRAY DKAPI (4) STATUS (ACTIVE,INACTIVE)
DECLARE ARRAY STATUS (IN,OUT),

DECLA

ARRAY
DECLA

PPSTAT 1),

T28TAT (12
RE LOGICAL, .
DFILE .

DFIL1
DFIL2
DFIL3
DVASW
DVDPM
DVEMR
DVICR
DVIH

DVLDR
DVMC4
DVMCS
DVMCH
pvme7y

W % % w v % % ® w v W w

DVAC (3) LOGICAL
RE LOGICAL CONSTANT,

MSKARSLADDER
MSKACCELA
MSKACCELSB
MSKDCSCOMP
MSKDCSDO
MSKDCSER
MSKDCSMC
MSKDCSMODE
MSKDCSSH
MSKDCSTERM
MSKDINS9
MSKEMRLADB
MSKERRORTAG
MSKFMDREP
MSKFPSCORD
MSKFPSINT2
MSKFPSISSA
MSKGIMBALA
MSKICRBG
MSKICRCA
MSKICRSSCHB
MSKICRSWG
MSKINT

" MSKMOD1BODEG

MSKRTC
MSKRTCRESET
M8KSCCO
MSKSSCLS1
MSKSSCLS3
MSKSSDCS
MSKSSOCT
MSKSSHIG

*0CT'000001000°,
sQCT!777700000°,
=0CT'000017776",
20CT 774000000,
=0CT'000040000°,
s0CT'000077776°,
=0CT'770000000",
=0CT'000000020",
*0CT'004000000°,
=0CT 1200000000,
=0CT'000004000°",
=0CT!000001000°,
=0CT'000070000°",
=0CT'000100000°",
=0CT'100000000",
=0CT'000040000",
=0CT'001000000°",
=0CT'377700000",
=0CT'000000020°,
=0CT'000040000°,
®0CT'000010000°",
=0CT'000002000°,
=0CT'157740000",
s0CT'377777776",
20CT'000037776°,
=0CT!0077775401,
=0CT'000100000°",
=0CT'000003770",
=0CT'077774000",
20CT'500000000°,
=0CT'405400000°,
=0CT'100720000°,

-85-

MC24,

MC2&,

NECLA

NECLARE,

SPL

MSKSSHS
MSKSSLOR
MSKSSNSEND
MSKSSOMG
MSKSSKEAD
MSKSSRESET
MSKSSSCC
MSKSSSIVR
MSKSSSNA
MSKSSSSR
MSKSSwWV
MSKSSwVC
MSKSSWVD
MSKSSZFSF
MSKTMCO
MSKTM(C
MSKTMC2
MSKTMCJ3
MSKTHC4
MSKT2INT
MSKIHBUDEG
RFE, MSKO
MSK 1§
MSK2
MSK3
MSK 4
M8KH
MSK6
MSK7
MSK8
MSKQ
MSK10
MSK11
MSK12
MSK13
MSK14
MSK15
MSK16
MSKHMG 4
MSK1&
MSK19
MSKMC4
MSK21
M8K22
MSk23
MSK24
MSK25
MSKQ
MSK
MSK?2
MSK3
MSk4
MSK5
MSK6
MSK?7

COMMON DATA DECLARATIONS

sOCT'003770000!
=0CT'100520000"
s0CT'377777776"
s0CT*100070000°
z0CT*40Nn0NON0CO"
=0CT'200000000°
s0CT*100310000"
=QCT'02n230000"
=0CT'135770000"

20CT*003NN000O"
20CTr101050000°
20CT*101450000°
=QCT'002000000°
sOCT¢70N000N000"
s0CT*710000000"
s0CT'720000000°
s0CT¢730000000°
sQCT'740000000"
20CT'10N000000"
s0CTr4agnQnnoune

LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL

LOGICAL-

LOGICAL
LOGTCAL
LaGICAL
LOGICAL
LOGTICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LoGICAL
LOGICAL
LNGICAL
LOGICAL
LOGICAL
LOGICAL
LNGICAL
LOGICAL
LOGICAL
LOGICAL

SSCH

AMF

- -86-

»
»
’
’
»
»
»
»
s
=0CT*i74000000"',
»
»
»
s
s
»
E]
»
)
»

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CNNSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANTY
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

=0CT*400000000°
s()CT+200000000°
aCvrionnoooono!
=0CT* 040000000
=0CT 020000000
=NCTt010000000
20CY' 004000000
=0CT 002000000
=NCT*001000000°
sQCT'000400000"
sNCY 000200000
=0CT'000100000°"
®0CT1000040000"
s0CT*000020000"
=0CT1000010000"*
s0CT+000004000"
=0CT 000002000
=NCT*+00000100Q0"
sCT000000400°
0CT*0N0000200"
=0CT*000000100"
=QCT'000000040"
=0CT*000000020"
=0CT'000000NL0!
z0CT' 000000004
=0CT*000000002"
=0CT'400000000"
s0CT'200000000°
=0CT*100000000°
a0CT' 040000000
a0CT020000000°
s0CT1010000000°
e0CT°004000000°
2007002000000

2
]
]
2
?
]
»
]
0
»
8
»
’
»
2
»
»
2
]
»
]
»
]
[
»

s
L]
4
1
2
o
o
4

MC26,

Mc27.

DECLARE,

DECLARE,

SPL COMMON DATA DECLARATIONS

MSK8

MSK9

MSK10
MSK11
MSK12
M8K13
MSK14
MSK15
MSK16
MSK17
MSK18
MSK19
MSKMC54B1T
MSK21
M8K22
MSK23
MSK24
M8K25
MSKMC68RRT
MSK 1

MSK2

MSK3

MSK4

MSK5

M3SK6

MSK7

MSK8

MSK9

MSK10
MSK11
MSK12
MSK13
MSKMC6ELUL
MSK15
MSKMCE6TR6EA
MSK17
MSKMC6D04
MSK19
MSK20
MSKMC6TR6EC
MSK22
MSKMCE6TRESR
MSK24
MSK25

MSKO

MSK1
MSKMC7T6D
MSK3
MSKMC70MB

'MSKMC7L0G

MSKMC7HIG
MSK7

M3SK8

MSK9
MSK10

LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOBICAL
LOBICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOBICAL
LOGICAL
LOGICAL
LNGICAL
LOGICAL
LOGICAL
LOGICAL
LOBICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL

- .87-

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CNNSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

=0CT'001000000°,
=0CT'000400000",
=0CT+000200000°,
=0CT'000100000°,
=0CT 000040000,
«0CT1000020000°,
=0CT'000010000¢,
=0CT'000004000°,
=0CT1000002000°,
s0CT 1000001000,
=0CT 1000000400,
#nCT*000000200°,
=0CT 1000000100,
20CT 1000000040,
=0CT1000000020°,
*0CT'000000010",
=0CT'000000004",
20CT' 000000002

*0CT'400000000°,
=0CT'200000000°,
20CT1100000000°',
20CT 1040000000,
s0CT1020000000°,
20CT'010000000°,
=0CT'004000000°',
=0CT 1002000000,
=0CT1001000000",-
20CT*000400000°,
20CT1000200000°,
=0CT*000100000°,
=0CT 1000040000,
=0CT'000020000°,
=0CT+000010000°,
=0CT1000004000°¢,
=0CT1000002000°,
=0CT 1000001000,
=0CT'000000400°',
=0CT'000000200°,
=0CT1000000100¢",
=0CT'000000040",
=0CT'000000020°",
=0CT'000000010°,
=0CT 000000004,
=0CT' 000000002

=0CT 14000000001,
=0CT 1200000000,
=0CT*100000000°,
=0CT 1040000000,
=0CT'020000000",
s0CT+010000000°",
=0CT'004000000°,
=0CT 10020000007,
s0CT*001000000°,
=0CT 1000400000,
=0CT'000200000°,

SsShvaSk,

SSVASPI,

DECLARE,

NDECLARE,

SPL CNMMON DATA DECLARATIONS

MSK11
MSK12
MSK13
MSK14
MSK15
MSK16
MSK17
MSK1&
MSK19
MSK2 M
MSK21
MSK22
MSK23
MSK24
MSK?25
MSK8S534C0
MSKSSSPFC
MSKSSTR6EC
MSKSSHANSS
MSKSSSRHLD
MSKSSSRHI
MSKSSSHRNM
MSKSSECSY
MSKSSFCS1
MSKSST3A
MSKSSTR6ED
MSK11
MSK12
MSK13
MSK14
MSK15
MSKSSTHEA
MSKSSTRAB
MSKSS8354C1
MSK19
MSK20
MSK21
MSK22
MSK23
MSKSSACHU
MSKSSLI
M8KSSS4CO
MSKSSSPEC
MSKSSCL1.3
MSKSSCL.)
MSK4

MSKS
MSKSST6EC
MSK7

MSKR

MSK9
MSK1 0
MSK11
MSK12
MSK13

LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGTICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LNGICAL
LOGICAL
LOGICAL
LOGICAL
LOGTCAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LNGICAL
LOGICAL
LOGICAL

-88-

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CNANSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

=0CT' 000100000
=0CY 000040000
s1CT'1000020000°
=nNCT'000N010000"
=Q0CT*'0D0ND400N"
=20CT+0n0002000Q"
=0CT'000001N0O!
=0CT1 000000400
=0CT'000000200°
=0CT:0N000GIOOY
=0CT000N000NANt
=0CT*000NDON2D!
=0CTr'0n0O0OON1IO"
=0CT'000000004¢
=0CTO0NONO0ND2!
=0CT*400000000°
sNCT'200000000"
=0CTri0000000ND"
=20CT7'040000000"
=0CT020n00000°
=0CTr01000000Q"
=0CT*004000000°
s0CT'00200000N
=20CT*001000000°
20CT+000400000"
=0CT'000200000°
=QCT 00010000
=QCT+0000N40000"
s0CT' 000020000
=QCT'O0N00NLOONO!
=0CT*000004000°
s0CT000ONO200N0"
s0CT*'00060100D"
=0CT'000NNDAQ0?
=0CT' 000000200
=0CT'000000100"
=0CT1 000000040
20CT+000000N20"
=0CT'00000001N?
=0CT+000000004"
=0CT 000000002
=0CT'400000000"
=0CT 200000000
=0CT'100000000"
aQCT1040000000°
20CT*020000000"
=0CY' 010000000
s0CT'004000000°"
=0CT'002000000°
=0CT'001000000¢
=0CT' 000400000
=0CT'0n0200000°¢
s0CT*000100000°
20CT 000040000
=0CT*000020000°¢

2
L
»
P
D
9
H]
-]
»
L]
9
2
»
2
2
B
o
b
]
s
14
9
»
»
2
?
?
»
2
3
14
2
1
1]
8
9
H
L]
]

-4
®
8
»
L]
14
’
]
14
?
2
9
0
]

SPL

MSK14
MSK15
MSK16
MSK17
MSK18
MSK19
MSK20
MSK21
MSK22
MSK23
MSK24
M8K25

OVERLAY MC24 =

DECLARE

FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE

" FILE

FILE
FILE
FILE
FILE

COMMON DATA DECLARATIONS

CLOCK
DHG

NCS

DIR

DOM

DOR

nos

EMR

ICR
MODREG
88

S8FB
TELDCSD
TELDCSE
TELDCSS
TELGT
TELMLER
TELPHIT
TELRTC
TELSSFB
TELSSSA
TELTAS
TELTB
TELTI
TELT3I
TELXAC
TELXDM
TELX4
TELYAC
TELYDM
TELYDA
TELYA4
TELZAC
TELZOM
TELZ4
TIM}
TIM2
XACC
XBGIM
XGIM
XLAD
YACC

LOGICAL CONSTANT
LOGICAL CONSTANT
LOGICAL CONSTANT
LOGICAL CONSTANT
LOGICAL CONSTANT
LOGICAL CONSTANT
LOGICAL CONSTANT
LOGICAL CONSTANT
LOGICAL CONSTANT
LOGICAL CONSTANT
LOGICAL CONSTANT
LOGICAL CONSTANT
MC25 = MC26 = MC27 = SSDVASW

DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
PEVICE
DEVICE
DEVICE
PEVICE
DEVICE
DEVICE
DEVICE

W DEVICE

C DEVICE

C DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
PEVICE
DEVICE
DEVICE
PEVICE
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE

 DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE

-89-

TIMER
DOMBUBIM
DCSINREG
DISINREG
SSDOM
DISOUTRES
DISOUTSET
ERRMONREG
INTCONREG
MODEREG
SSREG
SSFDBK
PI0574
PI0055
PI0030
PI0S574
P10570
PI0414
PI0174
PI0500
PICO75
PIO00O
PI0031t
PI0561
PIC464
PICOO10
PI0024
PI0444
PI0014
PI0030
PI0450
PI0450
PIO004
PIDO020
PIG434
TIMER]
TIMER2
XACCEL
XBACKUP
XGIMRAL
XLADDER
YACCEL

=0CTt000010000"
=QCT'000004000"
sQCT'000002000"
=0CT*000001000"
s0CT'000000400°
=0CT*000000200"
=0CT*000000100°
=0CT'000000040"
=0CT*000000020"
s0CT000000010!
=0CT'000000004"
s0CT'000000002"
= SSVASPI

2
’
L4
’
L
’
»
»
»
?
»
2
»
»
’
»
1)
s
»
L
»
’
»
]
»
»
»
»
L
’
’
1]
’
»
»
»
»
14
L
»
1

»
2
»
’
2
»
’
»
14
»
1

SPL

FILE
FILE
FILE
FILE
FILE
FILE
FILE

COMMON DATA DECLARATIONS

YBGIM
YGIM
YLAD
ZACC
ZBGIM
IGIM
ZLAD

-90-

DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
PEVICE
NDEVICE

YBACKUP

YGIMBAL -

YLAODER
ZACCEL

ZBACKUP
ZGIMRAL
ZLADDER

.- v W ® ®w w

SPL UTILITY ROUTINES

PROC «UTROC " 'TELEMETRY DELAY FOR MODE REB SETTING OF
ENTRANCE LUTRO1 " 'TELEMETRY DELAY FOR MODE REG SETTING OF
FNTRANCE LUTROZ2 t Y TELEMETRY DELAY FOR MODE REG SETTING OF
ENTRANCE LJUTRO3 " 'TELEMETRY DELAY FOR MQODE REG SETTING OF
ENTRANCE LUTRO4 ‘' TELEMETRY DELAY FOR MODE REG SETTING OF

ITEM KTELBIAS FIXED O CONSTANT = 2,
ITEM VTIM FIXED O
ITEM VTMC LOGICAL

FNDDATA
VTMC = MSKTMCO
G070 TROO
UTROY, VIMC = MSKTMC1
G60T0 TROO
UTR0O2, VIMC = MSKTMCZ2
G0TO TROO
UTRN3J, VIMC = MSKTMC3
G0TO TROO
UTkRo4, VIMC = MSKTMC4
TROND , L OCK T1INT,TQINT.ExtINT,EXZINT,EXBINT,EXAINT,EXSINT,EXéINT,
: EX7IMT ,FEX8INT,EXQINT
READ CLOCK,VTIM
IF VTIM = DVID LAND MSKRTC GQG DKTD A0T0 TRUS
UNLOCK ''RELFASF PREVIOQOUSLY ENABLED INTERRUPTS'!
tYALLOW HIGH PRIURITY TASKS TO INTERRUPT!?
GOTO TROO
TROS WRITE MODREG,VTMC
DVTD a3 VTIM + KTELBIAS
EXIT tICOMMON TELEMETRY DELAY RETURN?'?
PROC +UTR30 " *TELEMETRY DELAY FOR INTERRUPT LEVEL 3*!
ITEM KTELBIAS FIXED 0 CUNSTANT = 2,
ITEM VTIM FIXED O
FNDDATA
TR3%, READ CLOCK,VTIM
IF VTIM = DVTD LAND MSKRTC LS DKTD GOTO TR35
WRITE MODREG,MSKTMCO
DVTD = VTIM + KTELBIAS
EXIT 1IUTR30 ! .
PROC LUTR24 "'TELEMETRY DELAY FOR INTERRUPT LEVEL 2'!
: ITEM KTELBIAS FIXED O CONSTANT = 2,
ITEM VTIM FIXED O
EMDNATA .
TR20 LOCK TLINT,T2INT,EXL1INT,EX2INT ,EXIINT,EX4INT EXSINT EXEINT,
EX7ZINT,EX8IMNT,EXQINT .
READ CLOCK,VTIM
IF VTIM = DVTD LAND MSKRTC GG DKTD B0TO TR25
UNLOCK TI1INT
GOT0 TR20
TR2K WRITE MODREG,M3KTMC4
DVTD = VTIM + KTELRIAS
EXIT tUTR24 !
TERM)

-91-

701!
710
721
7300
7400

SPL KERNEL 1 INITIALIZATION

START <EGPO *IMISSION INITIALIZATION®?
ENTRANCE .MPAOO ' 1PHASE TERMINATION' Y
ITEM VTD FLOATING
ITEM FGNC STATUS (INACTIVE,ACTIVE)
ENDDATA :
LOCK TLCINT,TLINT,T2INT,EXLIINT, EX2INT,EXIINT,EX4INT, EXSINT,
EX6INT ,EX7INT,EXBINT,EXQINT
READ XACC,VOAC(O0)
REAR YACC,VOAC(1)
READ ZACC,V0AC(2)
READ CLOCK,DVACT
IF DFMDI LAND MSKFMDREP NQ O
THEN ON THLINT
READ CLOCK,DVACT
LOCK TLINT
TEMP = 0O
END
TEMP = 1
WRITE TIM{,TEMP
UNLOCK TI1INT _
, IF TEMP FER 1 WAIT
END
DFILY, DFIL2, DFIL3 = 'ACTIVE!
DVRTC,DVTEX,VFPNAT = DVACT .
NVTMM,DVTRR,DVERT ,DVTGR,DVTRS,DVTMR,DTBID,VTD = O,
LEGP1 *PACTIVATE INTERRUPT PROCESSOR CHRONIC STATEMENTS'!
UNLOCK TLCINT
FGNC = 'INACTIVE'
DVSST = 1,E10
DVMLT = DVMLD = DKMIR
LEGP15 * *SCHEDULE FIRST TIMER 1 FUNCTION®!
DVP = 1|
tPO02. IF DVP GR 4 WAIT
IF DKAPI(DVP=1) EQ 'ACTIVE!
THEN LEGP20 t'START PHASFE TIME REFERENCE?!
GOTO (INP13, INP24, INP13, INP24, *) DVP = {
ELSE DVP = DVP +
: GOTO GPOO2
END
MPANQ., DFPHC = 'CHANGE!
"LOCK TLCINT,TLINT,T2INT,EXIINT,EX2INT,EXIINT,EX4INT ,EXSINT,
EX6INT,EXZINT,EXB8INT,EXQINT
WRITE TIM2,MSKRTC t'LOAD TIMER 2 WITH A LARGE VALUE TO PREVENT
. TIMER 2 INTERRUPTS FROM OCCURRING!'!
WRITE ISR,MSKT2INT ''RESET ANY PENDING TIMER 2 INTERRUPT'!
DFIL1, DFIL2 = 'ACTIVE!
UNLOCK TLCINT,T1INT
GOTO GPOO2
INPL 3, ARSTAT = ¢IN?
SASTAT '"ouT
APSTAT CIN?
DVSTAT ouT!
DPSTAT CINY
NESTAT tIN?
TCSTAT touT!

=92-

SPL KERNEL 1 INITIALIZATION

PASTAT = 10UT!
TTSTAT = 'QUT!
CCISTAT = 'IN!

IGSTAT = '10QUT!
HSSTAT = 'QUT!
OGSTAT = '0UT!
TGSTAT = '0QUT!
RSSTAT s tQUT!
CSSTAT a 'QuUT!

TBISTAT = ‘'OUT!

TB578TAT = 'OUT!

MSSTAT = 'IN!

PGSTAT = *QuUT!

EBSTAT = IN?

DLPTL = O,

PPSTAT a '0UT!

T2STAT = tQUT', 'IN', $0QUT!

JMINCO 1 'PERFORM PHASE 1/3 APPLIC PGM INIT (NOT CODED) !

LEGP18 ' *SCHEDULE NEXT TIMER 2 FUNCTION'!

DFILY, DFIL2, DFIL3 = 'INACTIVE!

DFPHC = *NOTCHANGE!

UNLOCK *'UNLOCK PREVIOUSLY ENABLED INTERRUPTS'!

LNONINTSEG]1 ''PASS CONTROL TO PHASE 1/3 NON=INTERRUPT SEQ'!
INP24, CTSTAT s QUT!

" DTSTAT s '0OUT!

DLPTL = 0,

PPSTAT = 1IN

T2STAT = *QUT!, 'OUT', *IN', PIN', *IN', *'OUT*, 'OUT', ¢IN!'

JMINIO 'IPERFORM PHASE 2/4 APPLIC PGM INIT (NOT CODED) !

.EGP18 t 'SCHEDULE NEXT TIMER 2 FUNCTION!'!

DFIL1, OFIL2, DFIL3 = tINACTIVE!

DFPHC = 'NOYCHANGE!

UNLOCK ' 'RELEASE PREVIOUSLY ENABLED INTERRUPTSH!

.NONINTSEQ2 ''PASS CONTROL TO PHASE 2/4 NON=INTERRUPT SEQ'!

PROC LEGP1 EXTERNAL EXIT
PROC +EGP15 EXTERNAL EXIT
PROC .EGP20 EXTERNAL EXIT
PROC .EGP18 EXTERNAL EXIT
PROC +MINOO ' EXTERNAL EXIT
PROC «MINLO EXTERNAL EXIT
PROC «NONINTSER1 EXTERNAL EXIT
PROC «NONINTSEQ2 EXTERNAL EXIT
TERM C1EGPO* Y

-93-

SPL KERNEL 2 INTERRUPT PROCESSING

START .EGP1 **INTERRUPT PROCESSCR!'!
ENTRANCE LEGP1S *YTIMER 1 SCHEDULER'!

ENTRANCE LEGP18 t'TIMER 2 SCHEDULER!'!

FNTRANCE LEGP2C "'SYSTEM TIME UPDATE ROUTINE'!

DECLARE FIXED COMSTANT,
KT{BIAS 0 = 9,,
KT2BIAS 0 = 12.'
K43EC =2 ® 16253,968
ENDDATA

t'RESPONSE FOR TLC INTERRUPT
'
ON TLCINT
LOCK T1INT,T2INT,EX1IINT,EX2INT,EXIINT,EXAINT ,EXSIN
EX7INT ,EXBINT,EXQINT
READ CLOCK,DVTEX
NFIL2,DFIL3 = 'ACTIVF!

«MTSO00 *1PROCESS TLC INTERRUPT (
"YTHE TLC APPLICATION PROGRAM DOES NOT RETURN CONTRUL
END

(3}
1 'RESPONSE FOR TIMER 1 INTERRUPT
] ‘
ON TLINT
LOCK T1INT,T2INT,EX1INT,EX2INT,EX3INT,EX4INT,EXSIN
EX7INT,EXRINT,EX9INT
READ CLOCK,DVTT1
DFIL3 = 'ACTIVE!
6070 ¢ ,GP11,6P12,6P13,6P14,6P15,0P16,6P17,GP18,6P
JMMLNO "'FLIGHT SIMULATION MINOR LOQP'!

GP11, JMML20 *NORMAL MINOR LOOQP*!

GP12, .M5805 *SWITCH SELECTOR CHECK!'!

GP13, «MS830 'SWITCH SELECTOR HUNG STAGE TEST*!
GF1la, .MS8S40 *SWITCH SELECTOR STAGE,ADNRESS ISSUE!'!

GP16. «M8855 'SWITCH SELECTOR READ TIME CHECK?'!
GP17, .MS860 'SWITCH SELECTOR READ ISSUANCE'!
GP18, .MS8S870 '*'SWITCH SELECTOR RESET!!

[}
L]
t
!
GP16, .MSS50 "*SWITCH SELECTOR VERIFY ADDRESS!!
'
¢
[}
1

GP1g, .M8SS80 'SWITCH SELECTOR COMPLEMENT STAGE,ADD!!
FGP1L1, +EGP15 ''SCHEDULE NEXT TIMER 1 FUNCTION®'!
DFIL3 = ¢INACTIVE!
~HINLOCK ''RELEASE PREVIOUSLY ENABLED INTERRUPTS'!
END

" 'RESPONSE FOR TIMER 2 INTERRUPT
o
ON T2INT
LOCK T2INT
DFILL = 'ACTIVE® '
80 TO (EGP12,6P21,6P22,8P23,6P24,6P25,6P26,GP27,6P
6P30,6P31) DGST2

GP21, «MUMDO **TIME UPDATE (NOT CODED) t¢
GP22, «MLR10O '*LADDER RAMP PROCESSOR (NOY CODED) "
GP23. «MEPOO Y1TEVENTS PROCESSOR!'!

GP24, .MTT10 ''TIME TILY GUIDANCE (NOT CODED) ¢

-94-

T,EXSINT,

NOT CODED)

T,EX6INT,

19) GSTIM
G0TO EGP11
80TO EGP11
BOTO EGP11
GOTO EGPI1
GOTO EGP11
8070 EGP11
GOTO EGP11
GOTO EGPi1
80TH EGP11

28,GP29,

GOTO EGP12
GOTO EGP1Z
G070 EGPi2
GOTO EGPi2

GP25,
GP26.
GP27,
GP28,
GP29,
GP30,
GP31.,
EGP12,

t

SPL KERNEL 2 INTERRUPT PROCESSING

INAVIGATION UPDATE IMPL (NOT CODED)

MNUO0O ' "+ GOTO EGP12
.MEEOO 11 TIME BASE 8 ENABLE (NOT CODED) '' GOTO EGP12
JMCMOO " 'PHASE 2/4 CONTROL MOD (NOT CODED) '* GOTO EGP12
MCM10 *'PHASE 2/4 CONTROL MOD (NOT CODED) '! GOTD EGP12
JMCM20 ' 'PHASE 2/4 CONTROL MOD (NOT CODED) ‘! BOTO EGP12
MEPWM ' "WATER METHANOL ACTIVATE(NOT CODED) *!' GOTO EGP12
+MEROO ' 'EXTRA ACCELEROMETER RD (NOT CODED) *!
.EGP18 ' 'SCHEPULE NEXT TIMER 2 FUNCTION'!
DFIL1 = 'INACTIVE'
UNLOCK T2INT
END
[}
'RESPONSE FOR EXTERNAL 2 INTERRUPT X
1t
ON EX2INT
LOCK T1INT,T2INT,EX{INT,EX2INT,EX3INT,EX4INT,EXSINT,EX6INT,
EX7INT,EXBINT,EXQINT
READ CLOCK,DVTEX *'READ REAL TIME CLOCK'!
DFIL2 = DFIL3 = tACTIVE!
.MDP28 *7'SC INITIATION OF S2/S4B SEPARATION (NOT CODED)''
DFIL2 = DFIL3 = 'INACTIVE!
UNLOCK ''RELEASE PREVIOUSLY ENABLED INTERRUPTS!!
ND
E e
'RESPONSE FOR EXTERNAL 4 INTERRUPT 0
[
ON EX4INT
LOCK T1INT,T2INT,EX1INT,EX2INT,EX3INT,EX4INT,EXSINT,EX6INT,
EX7INT,EX8INT,EXQINT
READ CLOCK,DVTEX ' 'READ REAL TIME CLOCK!'!
DFIL? = DFIL3 = 'ACTIVE!'
MTBS0 11848 ENGINE OUT (NOT CODED) !
DFIL2 = DFIL3 = 'INACTIVE!
UNLOCK ''RELEASE PREVIOUSLY ENABLED INTERRUPTS!!
END
[]
'RESPONSE FOR EXTERNAL 5 INTERRUPT '
. "
ON EXSINT
LOCK T1INT,T2INT,EXLINT,EX2INT,EXIINT,EX4INT,EXSINT,EX6INT,
EX7INT,EX8INT,EXQINT
READ CLOCK,DVTEX **READ REAL TIME CLOCK'!
DFIL2 = DFIL3 = ¢ACTIVE! ‘
MTB30 t+SIC OUTBOARD ENGINE OUT (NOT CODED)*!
DFIL2 = DFIL3 = 'INACTIVE'
UNLOCK ''RELEASE PREVIOUSLY ENABLED INTERRUPTS'!
END »
"
'RESPONSE FOR EXTERNAL 6 INTERRUPT "
1
ON EX6INT
LOCK TLINT,T2INT,EXIINT,EX2INT,EX3INT,EX4INT,EXSINT,EX6INT,
EX7INT,EX8INT,EXQINT
READ CLOCK,DVTEX t*READ REAL TIME CLOCK®!'

DFIL2 = DFIL3 = 'ACTIVE!

-95.

SPL KERNEL 2 INTERRUPT PROCESSING

+MTB40 ' 182 PROPELLANT DEPLETION (NOT CODEN) +
DFIL2 = DFIL3 = 'INACTIVE! .
UNLOCK '*RELEASE PREVIOUSLY ENABLED INTERRUPTS!'!

END

e 't

Y tRESPONSE FOR EXTERNAL 8 INTERRUPT e
[[N

ON EXBINT .

LOCK T1INT, TZINT EX1INT,EX2INT,EX3INT,EX4INT ,EXS5INT,EX6INT,

EX7INT ,EXBINT,EXQINT

READ CLOCK,DVTEX *'READ REAL TIME CLOCK'!

DFIL2 = DFIL3 = '"ACTIVE!

+MDS00 *'PROCFESS DCS INPUT!!?

DFIL2 = DFIL3 = *INACTIVE!

UNLOCK **RELEASE PREVIOUSLY ENABLED INTERRUPTS*!

END
RETURN VIEGPL Y
EGP15, READ CLOCK,TEMP
TEMPL = DVTMM + (TEMP = DVRTC LAND M8KRTC) SCL O + KTIBIAS
CONDITIONS
DVMLT LG TEMPI . » (Y, s)
DVMLT LG DVSST 20 0 Yy, 4)
DVSST LR TEMP1 50 s 5, Y, N)
ACTIONS .
TEMP = 1 LYy, 5 Y,)
TEMP a (DVMLT = TEMP1) LSH 1 ,(, ¥, ,)
TEMP = (DVSST = TEMP1) LSH § ,(, , , Y)
GSTIM = DBMLM b (Ys Y, o)
GSTIM = DGSSM s C s 5 YY)

ELSE GOTO EGP150 '!'THIS POINT SHOULD NEVER BE REACHED LOGICALLY*!
END
WRITE TIM1,TEMP ''LOAD TIMER 1 WITH TIME=~TO=GO FOR FUNCTION'!
FGP150, RETURN VIEGP1S
EGPLR. PGST2 = 728!
DV2TG = DVIMM + KA4SEC
FOR I = 1 BY 1 UNTIL 12

IF T2STAT(I) EQ '0OUT! GOTO T2310
IF DLTTL(I) GR DV2TG 80Y0 72810
DGST2 = 1
DV2TG = DLTTL(I)
T2S10. EMD

LOCK TI1INT,EXIINT,EX2INT,EX3INT,EXAINT EXSINT ,EXSINT ,EXZINT
EXBINT,EXQINT

IF DV2TG LQ DVTMM GOTO T2320

READ CLOCK,TEMP "'"READ REAL TIME CLOCK?'!

TEMP = ((DV2TG = DVTMM) SCL 0 + DVERT = (TEMP = DVRTC LAND
MSKRTC) = KT2RIAS) SCL =1
IF TEMP LQ 0 ° :

T2820. TEMP = 1 ‘
WRITE TIM2,TEMP t*LOAD TIMER 2¢¢
UNLOCK *'RELEASE PREVIQUSLY ENABLED INTERRUPTS*?
RETURN YIEGPIRY

EGP20, LOCK T1INT,T2INT,EX1INT,EX2INT EXIINT,EX4INT,EXSINT EXBINT,
EX7INT EXSINT EXGINT
READ CLOCK,TEMP1

-96-

PROC
PROC
PROC
PROC
PROC
PROC
PROC
PROC
PROC
PROC
PRNOC
PRON
PROC
PROC
PROR
PROC
PROC
PROC
PROG
PROR
PROC
PROC
PROC
PROC
PROC
PROC
PROC
TERM

DVERT = TEMP1 = DVRTC LAND 3
DVIMM s DVTMM + (TEMP1
DVRTC = TEMP1 = DVERT
DVTRR = DVTMM = DVTMR
CONDITIONS

DFIL3 EQ 'ACTIVE®

DFIL2 EQ 'ACTIVE®

DFILY1 EG 'ARTIVE!
ACTIONS

UNLOCK T1INT

UNLOCK ''RELEASE PREVIOUSLY ENARLED

RETURN tv FXIT EGP20'!
ELSE UNLOCK
END
RETURN PVEGP20 ¢
.MTS00 FXTERNAL EXIT
JMMLOO EXTERNAL EXIT
MML20 EXTERNAL EXIT
.MSS05 EXTERNAL EXIT
.MS§30 EXTERNAL EXIT
. MS840 EXTERNAL EXIT
.MS8S50 EXTERNAL EXIT
.MS555 EXTERNAL EXIT
.MSS60 EXTERNAL EXIT
.M5870 EXTERNAL EXIT
+.MSSRQ EXTERNAL EXIT
MUMOO EXTERNAL EXIT
MLR10 EXTERNAL EXIT
MEPOO EXTERNAL EXIT
MTT10 EXTERNAL EXIT
JMNUODD EXTERNAL EXIT
MEEODO EXTERNAL EXIT
MCMOO EXTERNAL EXIT
MCM10 EXTERNAL EXIT
MCM20 EXTERNAL EXIT
MEPWM EXTERNAL EXIT
MEROD EXTERNAL EXIT
.MDP28 EXTERNAL EXIT
MTRS50 EXTERNAL EXIT
JMTB30 EXTERNAL EXIT
MTR40 EXTERNAL EXIT
.MDS00 EXTERNAL EXIT
O'E(;Plll :

SPL KERNEL

INTERRUPTS EXCEPT TIMER 2'!

2

-97-

INTERRUPT PROCESSING

= DVRTC LAND MSKRTC) RSH 2

D(» H

» (Y, Y,

Y)
Yl

" 'RELEASE PREVIOUSLY ENABLED INTERRUPTS*!

START
ENTRANCE
NIS1,

SPL KERNEL

3 NON=INTERRUPT SEQUENCER

.NONINTSEQ1 ' 'NON=INTERRUPT SEGUENCER FOR PHASES 1
NONINTSEQG2 * INON=INTERRUPT SEQUENCER FOR PHASES 2
IF ARSTAT EG 'INY THEN ,MAROO PERPROC
' "ACCELEROMETER READ 'Y
IF SASTAT EQ *IN? THEN ,MSAOQOQ +PERPROC
"1STMULATED ACCEL (NOT
IF APSTAT EQ 'INY THEN ,MAPOO LPERPRGC
' 1ACCELEROMETER PROCESSING!?
IF NDVSTAT EG *INY THEN ,MDVOO +PERPROC
11F/M CALCULATIONS (NOT
IF DPSTAT EW "IN THEN .MDPOO .PERPROC
" 'DISCRETE PROCESSOR (NOT
TF NESTAT EG "IN THEN .MNEOO .PERPROC
1 1BOOST NAVIGATION (NOT
IF TCSTAT EG 'INY THEN .MTCOO .PERPROC
YIRESTART CALCULATIONS (NDT
IF PASTAT EGL 'IN? THEN .MPAOO .PERPROC
" TPHASE ACTIVATOR'!
IF TTSTAT EG 'INY THEN MTTNO .PERPROC
"OTIME TILY GUIDANCE (NOT
IF CC1STAT EG 'IN® THEN .MCC10 .PFRPROC
11CHI COMPUTATIONS (NOT
IF IGSTAT EG *ING THEN .MIGO0O FPERPRGC
"VITERATIVE GUIDANCE MODE'!
IF HSSTAT EG "IN THEN ,MHS00 .PERPROC
11348 CUTOFF PREDICTION (NOT
IF OGSTAT FQ *TN? THEN ,MOGOO +PERPRNOC
'*ORBITAL GUIDANCE (NOT
IF TGSTAT EQ *IN! THEN ,MTG00 .PERPROC
" 'TARGET UPDATE (NOT
IF RSSTAT EG 'INY THEN LMRSOO .PERPRNC
) "'"TIME=TO=GN TO RESTART (NOT
TF CSSTAT EG 'IN® THEN .MCS00 .PERPROC
' *TIME RASE 6 CHECK (NOT
IF TBISTAT EG CINY THEN MTHB10 .PERPROC
"ITIME BASE 1 (NOT
TF TR57STAT EQG 'INY THEN MTBS7 PERPROC
"ITIME BASE 5/7 (NOT
IF MSSTAT EG 'IN THEN ,MMSD0 .PERPROC
'*MINOR LOOP SUPPORT (NOT
IF PGSTAT EG "IN THEN ,MPGOO .PERPROC
'1SIM PLATFORM GIM ANGLE(NOT
IF ERSTAT EQ "IN THEN ,MEBOO .PERPROC
VTETC/BTC (NOT
GOTOD NISt
IF CTSTAT EW 'INY THEN ,MCT00 - L PERPROC

MONTNTSEQ2,

PROC
PROC
PROC
PROC

1

IF DTSTAT EU *INY

''DATA COMPRESSION TELEM(NOT
THEN ,MDT0O
'YSECTOR DUMP TELEMETRY (NOT

AND 3¢
AND a4t
END

END
CODED)
END

END
CODED) !
END
CODED) !
END
CODED)*
END
CODED) ¢
END

END
CODED) !
END
CODEN) !

END

END
CODED)!
END
CODED)!
END
CODED)*
END
CODED)
END
CODED) !
END
CODED) ¢
END
CODEN) !
END
CnDEDR) !
END
CODED) !
END
CODED) ¢

" END

CODED) !
END
CODED) !

"INSURE PERICOIC PROCESSOR GETS EXECUTED!'!

«PERPROC

GOTO NONINTSER2
LMCTO0O EXTERNAL
.MDT00 EXTERNAL
«MAROD EXTERNAL
«MSADOD

EXTERNAL

EXIT
EXIT
EXIT
EXIT

~98-

SPL KERNEL 3 NON=INTERRUPT SERUENCER

PROC MAPOO EXTERNAL EXIT
PROC .MDVOO EXTERNAL EXIT
PROC .MDPOD EXTERNAL EXIT
PROC +MNEOD EXTERNAL EXIT
PROC MTCO0 EXTERNAL EXIT
PROC JMPADO EXTERNAL EXIT
PROC MTTOO EXTERNAL EXIT
PROG LMCC10 EXTERNAL EXIT
PROC LMTGOO EXTERNAL EXIT
PROC JMHS00 EXTERNAL EXIT
PROC .MOGOO EXTERNAL EXIT
PROC LMTGO0O EXTERNAL EXIT
PROC .MRS00 EXTERNAL EXIT
PROC .MCS00 EXTERNAL EXIT
PROG .MTR10 EXTERNAL EXIT
PROM JMTR57 EXTERNAL EXIT
PROC LMMS00 EXTERNAL EXIT
PROC .MPGOO EXTERNAL EXIT
PROC .MEBOO EXTERNAL EXIT
PROC LPERPROC EXTERNAL EXIT

TERM *ENONINTSERL! !

-99-

START

ENDDATA

PP1,
PP2,

PP1M,
PP20,

PROC
PROC
PROC
TERM

SPL KERNEL 4 PERIODIC PROCESSOR

«PERPROC ' 'PERIODIC PROCESSOR*!?

ITEM VPPOT FIXED O

READ CLOCK,TEMP '"'READ REAL TIME CLOCK!'!

DVPTG = (TEMP « VPPOT LAND MSKRTC) RSH 2

VPPOT = TEMP

FOR I = 0 BY 1 UNTIL 3
IF PPSTAT(I) EG 'OUT!
DLPTL(I) = DLPTL(I) + DVPTG
IF DLPTLC(I) LS DLPRL(I)
GoT0 (, PP1, PP2, *) I

«MPC50 't 50 SEC DATA COMP
«MPC60 *' 60 SEC DATA COMP
«MPC99 *1100 SEC DATA COMP
DLPTL(I) = 0

END

RETURN Y 'PERPROC!t

.MPC50 EXTERNAL EXIT
MPC60 EXTERNAL EXIT
.MPC99 EXTERNAL EXIT
' tPERPROC ! !

-100-

GOTO
GOTO
(NOT

(NOT
(NOT

PP20
PP20
CODED) * !

CODED) ?
CODED) ¢t

GOT0 PP10O
8070 PP1O

SPL KERNEL 5 EVENTS PROGCESSOR

YYEVENTS PROCESSQR TIMER 2 ENTRY'®!
t1EVENTS PROCESSOR TIME BASE CHANGE ENTRY!!
*YEVENTS PROCESSOR RESCHEDULE ENTRY!'!

START

ENTRANCE

ENTRANCE
'

«MEPOO
+MEPOS
JMEP10

EVENTS PROCESSOR TABLE (THROUGH THE END OF TIME BASE 3)
THE POINTERS WITH A VALUE OF ZERO ARE TO BE SET DURING
PROGRAM EXECUTION OR ARE USED TO DISABLE THE EXECUTION
OF THE EVENTS PROCESSOR FOR THE REMAINDER OF A TIME BASE.

- - e o w = =

FIXED 13)
UF T8O TABLE'!

EPTTIM
' *3TART

TABLE EPTABLE 131 S 2 (EPTPTR LOCATION,
PRESET EPTABLE = (LOC'LE28S,! 0.0
0 16.0
0 17,0
0
0
LOC'LE25.!
LOC'LE3OD.!
0
LOC*'LE3S.!
LOC'LE4O,!
0
LOC'LESO.?
0
LOC'LESS. !
0
N
0
0
LOC'LE7S5.!
LOC'LE70,!
LOC'LE250,!
0
LOC'LEJ355,
LLOC'LE365,!
LOC'LE82,.!'.
LOC'LELOO,
LOC'LE9S.!
LOC'LEQO, !
0
LOC'LES6,!
LOC*LEL105,!
LOC'LE115,"
LOC'LELLL, v
LOC'LEL10,!

-
~

'**START OF TBY TABLE'!

-
[

*1START UF TB2 TABLE'!

LV

**START OF TB3 TABLE'!

OO0 DO0OO0OOQO0OOCONIODOOLBLBBOO—OCOC
8 &6 ® & o o &8 5 % 6 ® ¢ 8 © 0 % & s * e 5 & &8 s * »

DA ONNNLEDLDDLDODOODODOODUDMNMNOOCNDODOOODODO WM

(& B N -
™ O
. o

60.6

- .- w = w - -

0
0
0

299,0
355.0
388,5

0 0,0)
ITEM VTOLD FIXED 13
ITEM EPTINDX INTEGER
ARRAY EPTTBINDX(10) INTEGER CONSTANT = (0 5 13 18 38 55 71 93
107 110)
ENDDATA
EPOO,

IF DFTBCEP EQ 'CHANGE'

-101-

EPO4A,

FPRET .

EPQ2,

FPO3,

MEPNS,

MEP10.

FP20,

FEPOSR,

PROP
TERM

SPL KERNEL 5 FVENTS PROCESSOR

THEN DFTBCEP = !NOCHANGE!
GOTO EPO2
END .
GOTO EPTPTR(EPTINDX) *'EXECUTE REQUIRED MODULE (NONE CODED)?®?
LOCK TIINT,T2INT,EXLIINT,EX2INT,EX3INT,EX4INT EXSINT ,EX6INT,
EX7INT,EXBINT,EXQINT
IF DFTRBCEP ER 'CHANGE' G0TO EPU4A
EPTINDX = EPTINDX + |
DAST2 = 'EPOC!?
IF FPTPTR(EPTINDX) NG O GOTO EPO3
T2STAT(DGST2) = 'OUT!

IF DFILY EQ 'INACTIVE' L,EGPO7 ''RESCHEDULE TIMER2(NOT CODED)‘*¢

UNLOCK *'RELEASE PREVIOUSLY ENABLED INTERRUPTS*!
RETURN tYMEPOO
IF EPTTIM(EPTINDX) E@ VTOLD
THEN UNLOGCK ''REL PREV ENABLED INTERRUPTS!®
GOTU EPOO

END

VIOLD = EPTTIM(EPTINDX)

DLTTL(DEST2) = OVIMR + VTOLD*4063,492A10
G0TO EPOZ

EPTINDX = EPTTHBINDX(DTBID) = 1

EPTINDX = EPTINDX + |

DAST2 = ‘'EPOO!

IF EPTPTR(EPTINDX) NG O 60TO EPOB

‘T2STAT(DBST2) = '0UT"

IF DFILY EQ 'INACTIVE' (EGPO7 *'RESCHEDULE TIMER2(NOT CODED)'?
RETURN tIMEPQS, MEPLO'!

VTIOLD s EPTTIMCEPTINDX)

DLTTL(DUST2) = DVIMR + VTOLD#*4063,.492A10

T2STAT(DQST2) = ¢IN!

GOTN EP20

LEGPO7 EXTERMNAL EXIT

tYMERPQO

-102-

START

ENRNATA

162583,

SPL KERNEL 6

*'"ITERATIVE GUIDANCE
ONLY A 8

«MI1GO0O0
'DUE TO THE SIZE OF 1IGM,

ITERATIVE GUIDANCE MODE

MODE * ¢
ECTION OF 1T HAS BEEN CODED.

'PART OF THE GUIUCANCE COMPUTATIONS HAVE BEEN SELFCTED TO DEMOUN=-!

'"STRATE MATHEMATICAL OPERATIONS,
'*HAS NOT BEEN CODED SINCE SIMILAR
'8Y OTHER KERNELS,

DECLARE ARRAY (3) FLOATING R,

CHIBARSTEER (I
PHASE (BURN1,
REITERATE (YES
SMCFLAG (CALCU
S4HURN (BURN1,
PECLARE FLOATING R, L1, L2, L1
Ji, J2, Jt
Q1, 082, o1
P1, P2, PI
s1, S2, Si
UL, U2, Ul
Ti1, 721,
TAUL, Tau2
VEX1i, VEX2
K1, K2, K3
PHII, PHIT
DELTA2, EP
SINTHETA,
8T, R, RT,
DECLARE FLOATING CONSTANT, KT
KMU
KCC
KCC

DECLARE STATUS,

1
' 16251 ~ IGM GUIDANCE PARAMETERS
' .

'

]

R4 = MS4*RS

LUTROO "IDELAY FOR TELEMETR
WRITE TELX4,R4(0) "ITELEMETE
LUTROO "IDELAY FOR TELEMETR
WRITE TELY4,R4(1) "ITELEMETE
UNLOCK ''RELEASE INTERRUPTS NI
V4 = MS4*VS

+UTROO VIDELAY FOR TELEMETR
WRITE TELZ4,R4(2) "'TELEMETE
«UTRO2 '"IDELAY FOR TELEMETR

WRITE TELYD4,V4(1) *'TELEMETE
UNLOCK *'RELEASE INTERRUPTS DI

-103-

THE PHASING PORTION OF IGM
CAPABILITIES ARE ILLUSTRATED

6S, GV, GVT, GVSTAR,
RS, RV, R4, RVT,

V8, VV, V4, VVT, DELTAVVP,
MS4 (3,3), MAV (3,3)
NPROG, NOTINPROG),

RURN2),

» NO),

LATE, NOCALC),

BURN2)
2, L3,
2, J3,
2,

2,

2,

2,

131, TiC,
s TAUZ,

. VEX3,

,» K4,

. PHIIT,
SILON2,

COSTHETA,

V, VT
.4B497964E=7,
-.39860320E185,
1,53,

1,55

L3p,
J3p,

LYP, DELTAL3,

TCI, TSTAR,

ROVEX3,
DPHII, DPHIT,

EPSTLUN3,
THETAT,

T4
T8

COMPUTATIONS

ROTATE POSITION AND VELOCITY INTO TARBET PLANE

Y
R

AS REQUIRED!!
X POGSITION IN
Y AS REQUIRED'"!
R Y POSITION IN
SARLED BY TELEM

4 SYSTEMY!

4 SYSYEM !
DELAY ROUTINE'

Y
R

AS REGUIRED'!
Z POSITION IN
Y AS REQUIRED"!
R Y VELUCITY IN
SABRLED BY TELEM

4 SYSTEM!

4 SYSTEM!!
DELAY ROUTINE!

¢t CALCULATE RANGE ANGLE MEASURED IN ORBIT PLANE

- = - - -

- - - .- - -

16254,

16258,

13259,

16260,
1G262,

16269,

IF T2

END
IF 11

END
L1
J1
S1
Q1
P1

-
N
"N UN NN O 8NN

512
Q12
P12
u12
L3P
Lye
J3P
T1C
TSTAR
PHII

" 'DETERMI

IF PH

SPL KERNEL 6 ITERATIVE GUIDANCE MODE

I EQ 0,
THEN L12,J12,812,Q12,P12,U12 = Q.
GOTO 10259

1 EG O,
THEN L1,J1,51,Q1,P1,Ut = 0,
GOTO IG258

VEX1*,LO0G(TAULI/(TAUL = TiI))
L1*TAUL = VFEX1%T1]
L1*T{I - J1
S1%®TAUL = ,S*VEX1%*T1]I*%2
JIXTAUL = SXVEX1#T|]*%2
Qi{*TAUL = VEX1%T11%%3/6,
VEX2% LOG(TAU2/(TAU2 = T21))
L2*TAU2 = VEX2%T21
L2%T2I = J2
S2%¥TAU2 = SHVEX2*T2I%%*2
J2RTAU2 = SRVEX2*T2I*%*2
Q2%TAU2 = VEX2%T21*%3/6,
L1 + L2
J1 Je2
S1 J2

+ L2*T11
- L12x(T2I + TCI)
0t + Q2 S2%T1I + J1x*T21
P1 + P2 TLI*(2,%J2 + L2%T11)
Ul + U2 + T1I%(2,%02 + S2*%T1I) + T2I*p}
VEX3*,LOG(TAUI/(TAU3 - T3I1))
lL12 + L3P
L3P*TAU3 =~ VEX3*TJ3]
T11 + T21 + TCI
s T1C + T3t
= ,ATAN(R4(2),R4(0))

+ e

NE PHASE

ASE €EQ 'BURN2' ''QUT OF ORBIT'!'
THEN ''CALCULATE TERMINAL CONDITIONS'!
SINTHETA = RS*VS/(R*V) .
COSTHETA a ,8QRT(1, = SINTHETA**2)
DPHII = V/R*COSTHETA
DPHIT = VT/RT*,COS(THETAT)
PHIIT = ,5%(DPHII + DPHIT)*TSTAR
PHIT = PHIT + PHIIT
«UTRD2 *'DELAY FOR TELEMETRY AS REGUIRED!'!

WRITE TELPHIT,PHIT t'TELEMETER TERMINAL RANGE ANGLE'!?
UNLOCK ''RELEASE INT LOCKED RY TELEM DELAY ROUTINE !

IF TSTAR LQ EPSILON3 G0T0 16269

+MIG30 ''CALC TERM RAD, VEL, FLT ANGLE (NQT CODED)'!'

GT2 «KMU/RT**2
«UTROO *'"DELAY FOR TELEMETRY A8 REGUIRED'!

KRITE TELGT,GT "'TELEMETER TERMINAL GRAVITY VECT'!
UNLOCK ''RELEASE INT LOCKED BY TELEM DELAY ROUTINE®!

GVT = GT*,CUS(THETAT), 0, GT*,SIN(THETAT)
RVT = RT*,COS(THETAT), 0, O
PHIT = PHIT = THETAT

-104-

SPL KERNEL 6 ITERATIVE GUIDANCE MODE

ELSE ''CALCULATE INTERMEDIATE PARAMETERS'!
DELTA2 = V*TSTAR = J3P + LYP*T31 = ROVEX3*((TAUL =~
TII)*L1 + (TAU2 = T2I)*L2 + (TAU3 = T3I)
L . 3P)(LYP + V = VT)

PHIIT = KT*(812 + DELTA2) ''KT = COSTHETAT/RT*!
PHIT s PHII + PHIIT
«UTRO2 *'DELAY FOR TELEMETRY AS REQUIRED'!'

WRITE TELPHIT,PHIT ''TELEMETER TERMINAL RANGE ANGLE''
UNLUCK 'YRELEASE INT LOCKED BY TELEM DELAY ROUTINE'!
END
() .
" Y{ROTATE POSITION, VELOCITY, GRAVITY TO INJECTION SYSTEM e
e s
16291, M4V = _COS(PHIT), 0., .SINC(PHIT),
0., 1as 0.,
~=.SIN(PHLT), 0,, .COS(PHIT)
RV = M4V*R4
VV = Mav#vd
GV = MAVEMSA*GS
BVSTAR 2 ,5%(GVT + GV)
DELTAVVP 3 VVT = VV = TSTAR*GVSTAR

] t

' 16314 - CALCULATE TIME TO GO (NOT CODED) !
' '
IF REITERATE EQ 'YES!
THEN REITERATE = !NO'

L3P = L3

J3P = J3

LYF = LYP + DELTAL3
G0T0 16260

END
REITERATE = 'YES!

14

16324 = COMPUTE CORRECTED VELOCITIES TO BE GAINED (NOT CODEN)*!

18326 = CALCULATE DESIRED PITCH AND YaAW (NOT CODED)'!
: "

IF CHIBARSTEEK EQ tINPROG! GOTO 16350

IF TSTAR 6@ EPSILON2 G070 IG360

IF S4BURN EG *'BURN1?
THEN DVMCS5 = DVMCS5 LXOR MSKMC5CBS

DVMLR = 25,%KCCT4
DVIMR = ,04/KCCT4
ELSE DVMC6 = DVMC6 LXOR MSKMC6CRS
DVMLR = 25,%KCCT8
DVIMR = ,04/KCCY8
END
16340. CHIBARSTEER = 'INPROG!
16350, K1,K2,K3,K4 3 0
GOTO 16440
" "
16360, 116361 = COMPUTE INTERMEDIATE PARAMETERS (NOT CODED) '
" []
16440, LUTROO "'DELAY FOR TELEMETRY AS REGUIRED''
WRITE TELT3I,T3I - **TELEMETER T3I¢!

-105-

PrOC
PROC
PROC

EXIY
TERM

SPL KERNEL 6 ITERATIVE

UNLOCK '*RELEASE INTERRUPTS DISABLED BY

1116446 = COMPUTE PITCH AND YAW IN 4«~8SYSTEM

IF SMCFLAG EG 'CALCULATE' ,MSMOO0 ''COMP

+MCCO0 ¢ 'PERFORM CHI COMPUTATIONS

IF DFILE LAND MSKFPSINTZ2
+EGP32(MSKSCCO) *''ENABLE INTERRUPY

RETURN *tMIGOD*?

«MSMOO EXTERNAL EXIT

+MCCOO EXTERNAL EXIT

JEXP32 (MASK) EXTERNAL

ITEM MASK LOGICAL

CEMTIGQOO Y

-106-

GUIDANCE MODE

TELEM DELAY ROUTINE'!

(NOT CODED)?

SMC TERMS(NOT CODED)!
(NOT CODED)!

2 (NOT CODED)'

SPL KERNEL 7 DIGITAL. COMMAND SYSTEM

START .MDSO00 "*DIGITAL COMMAND SYSTEM!!
DECLARE INTEGER, DCSDATACOUNT,
DCSERLIM CONSTANT = 7,
VDSRC
DECLARE LOGICAL, VDSO1,
VDSER,
Vnsse
DECLARF LOGICAL CONSTANT, DCSER04 =0'040000000°,
DCSERLOD =nt100000000",
DCSER{4 =0'140000000"',
DCSER20 =0'200000000°,
DCSER24 =0'240000000°',
DCSER44 =0'440000000°,
DCSER60 =80'600000000°',
DCSER64 =0'640000000°,
DCSER74 =0'740000000°
NDECLARE STATUS, FDSEN (MODE,DATA),
FDSPG (INPROG,NOCTINPROG),
FDSRE (TERM,NOTERM),
DCSINNDX (ILLEGAL,TRUP,NAVUP,GENSS,SECDMP,
TELSML, TERM,M5UP,M5IN, TARGUP, SWANOD,
SWANLO,SWANHI, INWCVL,TBBEN,EXMANA,
TDEEN,EXMANB,S4L.1,ALTSEGED)
DECLARE ARRAY (20), DCSMSTAT STATUS (ACTIVE,INACTIVE),
: DCSSTCOD LOGICAL CONSTANT,
DCSDATCT INTEGER CONSTANT,
DCSMODE (64) INTEGER CONSTANT,
VDSBL (35) LOGICAL
PRESET DLSSTCCN=(0'0N00N0000! 0'100000000¢ 0'110000000°
01120000000 0'130000000! 0'140000000°*
01200000000 0'220000000' 0'050000000
0'310000000' 0¢770000000' 0!770000000"
6'770000000' 0'450000000' 0'170000000"
0+330000000' G'600000N00' 0'340000000"
01520000000 0'250000000'),
DCSDATCT=(0 1 35 2 2 3 3(0) 35 B(0) 6 0),
DCSMODE =(5(0) 8 2(0) 1 2 3 4 5 2(0) 14 6 0 7 2(0) 19
3(0) 9 0 15 17 8(0) 13 4(0) 18 10 11 12 2(0)

16 15(0))
FNDDATA
UNLOCK *'RELEASE PREVIOUSLY FNABLED INTERRUPTS!!
READ DIR,TEMP * \READ DISCRETE INPUT REGISTER'!
READ DCS,VDSO1 ' 1READ DCS INPUT REGISTER'!
IF TEMP LAND MSKDCSMODE EQ O - GOTO DY60
[] L]
vt PROCESS DCS MODE COMMAND '
[I) '
nsog, CONDITIONS
: (VDSO01 LSH 7 LXOR VDSO01) LAND MSKDCSCOMP
EQ MSKDCSCOMP b Ys Ny, .,)
VDSO01 LAND MSKDCSSB EQ 0 WY, SN,)
VDS0t LLAND MSKDCSMC EQ@ MSKDCSTERM (N, 5, 4,)
FDSENM EQ *MODE! .(Y’ » » N,)
DFDTL NQ 'INPROGB' AND FDSPG NO *INPROG', (Y, , , , N)
ACTIONS

-107-

SPL KERNEL 7 DIGITAL COMMAND SYSTEM

VDSER = DCSER10 2 Ca Yo 4 4)
VDSER = DCSER24 2O 2 Yy ,)
VDSER 3 DCSER20 s s s 5 Yy)
VDSER = DCSERG64 b Cn s)
60TO DS220 W Cs Y, Y, Y,)
80TO DS20 3 70
ELSE 60TO0 DS25
END :
ns20, FDSPG s 'INPROUG! :
ns2s, DCSINDX = DCSMODE(VDSO1 RSH 20)

IF DCSMSTAT(DCSINDX) EQ 'INACTIVE!
i THEN FDSPG = 'NOTINPROG!
VDSER = DCSER74
G0TO DS220
END
TYTELLEMETER STATUS CNDE TWICEY!
«UTR24 ''DELAY FOR TELEMETRY AS REQUIRED!'?
WRITE TELNDCSSC,DCSSTCOD(DCSINDX)
«UTR24 ''DELAY FOR TELEMETRY A8 REGUIRED!'?
WRITE TELDCSSC,DCSSTCOD(DCSINDX)
UNLOCK '*'RELEASF INTERRUPTS DISABLED BY TELEM DELAY ROUTINE'!
f0T0. DS200 t'ISSUE CRP'!
PCSPATACOUNT, VDSSR = 0
GNTO DS100

"' PROCESS DCS DATA WORD '
[} [
nSAN, CONDITIONS
FDSEN EQ 'DATAY LY, N,)
(VDSO1 LSH 7 LXOR VDS01) LAND MSKDCSCOMP .
EQ MSKDCSCOMP LY, , N
VDSO1 LAND MSKDCSSB EQ VDSSB L,)
ACTIONS ‘

. GOTO DS110 LY,)

VDSER = DCSERO4 WU, Y,)

VDSER = DCSER44 WUy 5 Y1)

ELSE VDSER = DCSERG60
END GOTO DS220
PST10.''TELEMFTER DATA WURD TWICE"!

LUTR24 '*'DELAY FOR TELEMETRY AS REGQUIRED*!
WRITE TELDCSDW,VDSO01 '
.UTR24 *'DELAY FOR TELEMETRY A8 REQUIRED'!

WRITE TELDCSDW,VDSO01
UNLOCK *'RELEASE INTERRUPTS DISABLED BY TELEM DELAY ROUTINE":!
GOTO DS200 **ISSUE CRP!!
VDSRL(DCSDATACOUNT) = VDSOY{ LAND MSKDCSMC
vVD8SB = VDSSA LXOR MSKDCSSB
DCSDATACOUNT = DCSDATACOUNT + 1
ns1po, IF DCSDATACOUNT L8 DCSDATCT(DCSINDX)
RETURN t'MDSOO, MORE DATA 18 TO BE RECEIVED!''
8070 (,DSO1,DS02,D803,D804,D805,D0806,0807,03808,D0S09A,D810,D811,
0s12,0813,D0814,0815,0516,0817,0818,DS19) DCSINDX
FNSPR = 'NOTINPROG!?
VDSER = DCSER14
80TN DS220

-108-

psog,
pso2,
pso3,
nsSoa4,
nsos,
N8SO6,
nsaoz.
nsos,
nsnNaa
psSi1c,.
nsit,
npst2,
Ns13,
ns14,
ns1s,
ns16,
nsS17,
nsia,
nst19,

PS220

N8235

DS530

CLOSE

EXIT
TERM

SPL KERNEL 7
DS8260 **TIME BASE UPDATE (NOT
.DS330 (= DS235.) 'I'NAVIGATION UPDATE (NOT
.DS380 (= DS220,) ''GENERALIZED S8 (NOT
«D8430 **SECTOR DUMP (NOT
.D8470 " tSINGLE MEM LOC TEL(NOT
.08510 **TERMINATE (NOT
.DS8540 * TMANEUVER UPDATE (NOT
.D8550 - VAMANEUVER INHIBIT (NOT
. .D8670 (= .DS235,) '!TARGET UPDATE (NOT
.DS700 P CANTENNA TO OMNI (NOT
.D8720 Y YANTENNA TO LOW (NOT
.D8740 tUANTENNA TO HIGH (NOT
.D8770 VIINHIBIT WATER CONT(NOT
.D8790 ttTIME BASE 8 ENABLE(NOT
.NS810 tPEXECUTE MANEUVER A(CNOT
.D8R4D **TD AND E ENABLE (NNT
.DSBAD VIEXECUTE MANEUVER B(NOT
.D8900 t184B/IU LUNAR IMPCT(NOT
.N8960 VIENABLE TBR6D ALT SQ(NOT
‘e
t* PROCESS DCS ERROK CONDITION
'
. VDSRC = VDSKRC + 1
IF VDSRC LS DCSERLIM
THEN FDSKE 3 *NOTERM!
ELSE FDSKE = !'TERM!
END
VIISFR = VDSER + VDSRC + (VDSO1 RSH {2 LAND MSKDCSER)
J''TELEMETER ERROR CODE TWICE!'!

«UTR24

JUTR24

ns200

DIGITAL COMMAND SYSTEM

CODED)
CODED) !
CODED)?
CODED)?
CODED)?
CODED) ¢
CODED) !
CONED)?
CONEDL)!
CONED)!
CODED)!
CODED)?
CODED) !
CODED)!
CONED)?
CODED) !
CONED)
CODED)!
CONFL)?

' 'DELAY FOR TELEMETRY AS REQUIRED'!
WRITE TELDCSEC,VDSER
'*'DELAY FOR TELEMETRY A8 REQUIRED!!
WRITE TELDCSEC,VDPSER
*'RELEASF INTERRUPTS DISABLED BY TELEM NDELAY ROUTINE'!

t+ISSUFE DCS CUMMAND RESET PUILSE'!

UNLOCK
IF FDSRE EQ 'WNOTERM?
RETURN t*MDSOC !
. VDSRC = 0
FDSEN = 'MODE!
FDSPG = 'NOTINPROG!
RETURN teMpSoQ e

- .- e m e @ e o @ @ o owm W e = o

G070
GOTO
GOTO
GOTO
GOTO
GOTO
GOTO
G070
GOTO
GOTO
G070
G0OTO
G0TO
807G
GOTO
GOTO
B0TO
G070
GOTC

D8530
D8530
8530
D8530
08530
DS530
D38530
D8530
D8530
D38530
D8530
DS530
D8530
D853¢0
DS530
PS530
DSH30
D8530

DS530
)

LOCK T1INT,T2INT,EX1INT,EX2INT,EX3INT,EXAINT,EXSINT,EX6INT,
EX7INT,EXBINT,EXQINT

WRITE DOS,MSKGSCDO

FOR I = 35 WHILE I GR 0

I
END

1

1

WRITE DOR,MSKLGSDO

IINLOCK

' 'RESET COMMAND RECEIVER!'!

YYDELAY 4,13

M8t

*YRESET THE RESET COMMAND'!
VtRELEASF PREVIOUSLY ENABLED INTERRUPTS!!
t'Ds200¢*!
OansOnll

-109-

SPL KERNEL 8 ACCELEROMETER PROCESSING

START LMAROO ' 'ACCELEROMETER READ ROUTINE!!
ENTRANCE ,MAPOO " ' ACCELEROMETER PROCESSING ROUTINE!!
DECLARE FLOATING R, KSN2D CONSTANT =,0348994697,''SIN 2 DEG'!
COSTHY,
COSTHZ,
SINTHY,
SINTHZ,
VACZR
ARRAY VPOV (3) FIXED 7
NECLARE FIXED, DFLTA 7 .,
VCCYA 25 R,
VCCYZ 25 R,
VOACT 28 =2
DECLARE ARRAY (3) LOGICAL, VOAC,

MSKAPDG CONSTANT a(0CT'040000000°
0CT1010000000"
0CT*200000000'),

MSKAPOF CONSTANT =(0CT'000000010"
0CT$000000200"
0CT*000000020")

ENDDATA
LOCK TIINT,T2INT,EX1INT, EX2INT ,EXIINT,EX4INT,EXSINT,EX6INT,
CEXZINT,,EXB8INT,EX9INT

READ XACC,DVAC(O0) ' *READ X ACCELEROMETER'!

READ YACC,DVAC(1) t'READ Y ACCELEROMETER'!

READ ZACC,DVAC(2) V'READ Z ACCELEROMETER!'!

READ CLOCK,DVACT **READ REAL TIME CLOCK!'!

+UTROO YIDELAY FOR TELEMETRY AS REQUIRED"!

WRITE TELTI,DVTI **TELEMETER START TIME OF CURRENT TIME RASF 1!

TEMP = DVTAS

VOACT = DVTMM + (DVACT = DVRTC = DVERT LAND MSKRTC) SCL O
NDVTAS = ,24609375E~3 * VOACT

DVTR 2 DVTAS « DVT1

DVDOT = DVTAS = TEMP

«UTROO t1DELAY FOR TELEMETRY AS REQUIRED'!

WRITE TELTB,DVTSB 'YTELEMETER TIME IN CURRENT TIME BASE!
DVMC4 = DVMC4 LAND MSKRTCRESET

UNLOCK ''RELEASE PREVIOUSLY ENABLED INTERRUPTS!!

«UTROO *'DELAY FOR TELEMETRY AS REQUIRED'!
WRITE TELXAC,DVAC(0) ‘''TELEMETER X ACCELEROMETER READING'!
LUTROO '*'DELAY FOR TELEMETRY AS REQUIRED'?

WRITE TELYAC,DVAC(1) *'TELEMETER Y ACCELEROMETER READING!!
UNLOCK ''RELEASE INTERRUPTS DISABLED BY TELEM DELAY ROUTINE®!
IF ''TIME BASE 1'' DKT1 EG 0. ''NOT SET'!
THEN DVFMC = = DVG(0)
ELSE DVMAS = DVMAS = DVEOF*DVMFR*DVDT
DVFMC = DVEOF*DVFOR/DVMAS
F.-ND t
"t s
" 'COMPUTE AVERAGE CHI'S FOR SMC CALCULATIONS '
L) "t
AR4Y, DVCA(2) = DVCC(2) RSH 1 + VCCZA RSH 1
VCGZA = DVCC(2) '
DVCA(1) = DVCC(1) RSH 1 + VCCYA RSH 1
IF ABS(DVCC(1) = VCCYA) GG ,5A25

-110-

SPL KERNEL 8 ACCELERUMFTER PROCESSING

DVCA(1) = DVCA(1) + MSK1BODEG
VCCYA = DVCC(1)
LUTROO ' \DELAY FOR TELEMETRY AS REQUIRED'!
WRITE TELZAC,DVAC(2) ''TELEMETER Z ACCELEROMETER READING'!
UNLOCK ''RELEASE IMTERRUPTS DISARLED BY TELEM DELAY ROUTINE!!
] 1t
*COMPUTE CHANGES BETWEEN CURRENT AND PREVIOUS ACCELEROMETER '
'READINGS "
1 [}
AR100, DVDA = ((DVAC LAND MSKAGCELA) = (VOAC LAND MSKACCELA)) RSH 7
DVDR = ((DVAC LAND MSKACCELB) = (VOAC LAND MSKACCELB)) LSH 14)
‘ RSH 7
VOAC = DVAC
LUTROO "IDELAY FOR TELEMETRY AS REGQUIRED'!
WRITE TELRTC,DVACT *'TELEMETER REAL TIME CLOCK AT ACCEL READ'!
UNLOCK *'RELFASE INTERRUPTS DISABLED BY TELEM DELAY ROUTINE'!

" 'K

1 {COMPUTE THE EXPECTED VELOCITY CHANGES '

e "o

ARTY, LUSCO0 (DVTH(2) = SINTHZ COSTHZ) ''SIN/COS (NOT CODED) *!
LUTROO VADELAY FOR TELEMETRY AS REQUIRED'!

 WRITE TELTAS,DVIAS **TELEMETFR MISSION ELAPSED TIME'!
UNLOCK ' *RELEASE INTERRUPTS DISABLED BY TELEM DELAY ROUTINE'!
LUSCO0 (DVTH(1) = SINTHY,COSTHY) '*SIN/COS (NOT CODEN) "¢

DVD = 20.%DVDT*(COSTHY*COSTHZ, SINTHZ, =SINTHY®COSTHZ)
DVF = DVFOM%XDVD
RETURN YIMARDO Y
MaPQN, DVVS4 = 0,
VACZR = 20.*DVFOMXDVDT¥KSN2D
FOR I = 0 BY 1 UNTIL 3
AP4AOD, IF ABS(DVDA(I) - DVDB(I)) LQ 2,A7 G60OTO AP4S0
IF ARS(PDVDAC(I) = DVF(I)) LS ABS(DVDB(I) = DVF(I))
GOTO AP440
DVMC4 = DVMC4 LOR MSKAPDG(I) LSH 1
DELTA = LVPR(I)

GOTO AP460Q
AP440, pVvMC4 = DVMC4 LOR MSKAPDG(I)
AP45K0, DELTA = DVDA(Y)
AFPARD, IF ARS(DELTA) GR 1,A7 60T0 APHOO
IF DFZER EG 'DISABLE' GOTO APSNO
IF ABS(DVF(T)) LS VACZR GOTO APS500
AR47(0, DVMC4 = DVMC4 LOR MSKAPOF(I)
APS30, DVMC4 = DVMC4 LOR MSKAPDG(I) LOR MSKAPDG(I) LSH 1

DFSMC = 'DISABLE"
DELTA = DVFMC*DVD(I)

GOTO APS20
APSDO, IF DVF(IJ) LS 0,
THEN IF DELTA LS 1,5%DVF(I) = DVRC(I)*DVDT
OR DELTA GR ,5%DVF(I) + DVRC(I)*DVDT GOTO AP530
ELSE IF DELTA GR 1,.,5%DVF(I) + DVRC(I)*DVDT
OR DELTA LS ,5*DVF(I) = DVRC(I)*DVDT GOTO APDS30

END
AP510, DVVSG =-DVVSA + DELTAX¥2
AP520, VPOV(I) = VPOV(I) + DFLTA
DvDM(I) = ,05%VPOV(I)

-111-

APS521,
APS522.

AP523.
APS24,

TERM

SPL KERNEL 8 ACCELEROMETER PROCESSING

+UTRO1 ''DELAY FOR TELEMETRY AS REQUIRED'!

GOTO (APS521, AP522, APS23, *) I

WRITE TELXDM,DVDM(O) 'TELEMETER X MEASURED

GOTO AP524 :

WRITE TELYDM,DVDM(1) *'TELEMETER Y MEASURED

GOTO APS524

WRITE TELZDM,DVDM(2) !''TELEMETER Z MEASURED

UNLOCK ¢ 'RELEASE INTERRUPTS LOCKED BY TELEM

END :

RETURN Y YMARPOQ1
VIMARQD Y

-112-

VELOCITY'?
VELOCITY!'

VELOCITY !
DELAY ROUT®!

SPL KERNEL 9 MINOR LOOP

STARY «MMLOO "IFLIGHT SIM ENTRY TO MINOR LOOP'!
ENTRACE - ,MML20 *'NORMAL MINOR LOOP ENTRY?'?
. DECLARE ARRAY (3) FIXED, VMLO {4,
VML1 14,
VML2 25,
VCGO 14,
VvVCGB1 14,
vCcoD 14,
vOoLD 14,
VDEL 25,
VvC3 25,
VSF 35 R,
vBuB 25,
VCMND O R,
VCMNDY 0O R,
VCMND2 0 R
DECLARE FIXFED,
KCPBG 14 CONSTANT = 2016,,
VOCK 25,
VCG10 14,
VCG11 14
DFCLARE INTFGFR, VIRE
DECLARE ARRAY (3) STATUS, FBUG (NONE,PASSt,PASS2),
VFIO (NORMAL,BACKUP,DUMMY)
DECLARE STATUS FBUGS (NONE,PASS{,PASS2)
DECLARE ARRAY (3) LOGICAL, VGR, VPGR
DECLARE LOGICAL, VMEMR, VMLET
ITEM J INTEGER
ENDDATA
IF DVLRC EM 0 GOTO MLOY
DVLRC = DVLRC = 1
mmg2n, pvcC = DvecC + DVDC
¥L01, IF FRUGS NG 'NONE' GOTO MLSO0O0
MLOOT . FOR I = 2 BY =1 WHILE I GQ O
GOTO (ML20%, MLiOt1, , *) I
IF VFIO(2) EQ 'NORMAL! THEN READ ZGIM,VGR(2)
ORIF VFIO(2) EQ *BACKUP' THEN READ ZBGIM,VGR(2)
ELSE VBR(2) = VPGR(2)
END
GOTO MLOUA4
L1011, READ EMR,VMEMR 1 TREAD ERROR MONITOR REG'!
DVLDB = OVLDR « (VMEMR LAND MSKEMRLADB)
IF VFIO(1) EQ 'NORMAL? THEN READ YGIM,VGR(1)
ORIF VFIN(1) EQ !'BACKUP!' THEN READ YHBGIM,VBR(1)
ELSE VGBR(1) = VPGR(1)
END
GOTN MLNOA4
ML201, DVEMR = DVEMR LOR VMEMR
IF VFIQ(0) EW 'NORMAL!) THEN READ XGIM,VGR(O0)
ORIF VFIO(0) E£EQ 'BACKUP!' THEN READ XBGIM,VGR(0)
ELSE VGR(N) = VPGR(O)
END
mL0oO04, IF VGR(I) GQ O GOTO MLO20
ML430, IF DVDBS LS O GOTO ML432
IF NVDGS €0 O BOTO ML020

-113-

ML432.

'"'DISAGREEMENT BIT IS8 FOUND TO BE INVALID,

SPL KERNEL 9 MINOR LOOP

GOTO ML637

+MDGOO (= J, ML434.)''PROCESS DISAGREEMENT BIT(UNCODED) '
1'DISAGREEMENT BIT PROCESSING WILL TAKE A NORMAL RETURN IF THE '

OTHERWISE IT WILL v

' 'TAKE THE ERROR EXIT TO ML434 AND SET J = 0 IF THE GIMBAL IS "
VIVALID OR J = 1 IF THE GIMBAL IS NOT VALID, '

ML434,
ML4350,

mML4351,

ML4352,

MLO20,

L0040,

MLO4S5,
ML145,
ML245,
ML630,

MLAJ1,
ML 632,

GOTO ML0D20 .

GOTO (ML4352, ML4351, ML4350, *) 1

IF VFIO(2) EQ 'NORMAL!
THEN READ ZGIM,TEMP
ELSE READ ZBGIM,TEMP

END

GOTO (MLO20, ML637, *) J

IF VFIO(C1) EG 'NORMAL!
THEN READ YGIM,TEMP
ELSE READ YBGIM,TEMP

END

GOTO (MLO20, ML637, *) J

IF VFIO(O0) EQ 'NORMAL'®
THEN READ XGIM,TEMP
ELSE READ XBGIM, TEMP

END

GOTO (MLU20, ML637, *) J
VCOD(I) = VGR(I) LAND MSKGIMBA{A
CONDITIONS

*'RESTART COD COUNTER'!
"*RESTART COD COUNTER!'!

**RESTART COU COUNTER*!
t*RESTART COD COUNTER*!

V'RESTART COD COUNTER!'?
**RESTART COD COUNTER*!

VCOU(I) EQ O 2 Yy 5 5)
voLD(I) EQ O s Yy, 4 4)
ABS(VDEL(I)) GQ vOCK 2 (Yy 4 45)
ABS(VCON(I) = VOLD(I))+ VMLOCI) 6QG VMLI(I),C , ,Y,Y)
VCOD(I) = VOLD(I) LS O 20 5 5Y,N)
ACTIONS
GOTO ML6A31 2 (Y 5 5)
VCB(I) s VvCB(I) + VML2(I) 50 5 Y,)
VCG(I) = VCG(I) = VML2(1) sC o 0 »Y)
GOTO MLO40 20 5Y,Y,Y)
ESLE GOTC ML630

END

DVTH(I) = VSF(I)*VCOD(I) + VvCG(1)
VOLD(I) = vCOD(I)

VDEL(I) = DVTH(I) = DVCC(I)

DFDBF = 'GOOD!

GOTO (ML245, ML145, MLO4S, *) 1
VCMND(2) = DVAS*VDEL(2) = DVA4*VDEL(1)
GOTO ML730

VCMND (1) s DVAL®VDEL(1) + DVA2%VDEL(2)
GOTO ML730 '
VCMND(0) = DVAG®(VDEL(O) ¢+ DVA3*VDEL (1))
GOTO ML730

VMLET s 1 + 3

GOTO ML632

VMLET = 1

VMLET = VMLET LSH 1i + VCOD(I) RSH 14 + VOLD(I)
IF DVMC6 LAND MSKMC6D004 EQ 0O THEN

~114-

SPL, KERNEL 9 MINOR LOOP

2UTR3O " 'DELAY FOR TELEMETRY AS REWUIRED'!
WRITE TELMLER,VMLET '!TELEM MINOR LUOP ERROR MESSAGE''
END
IF DFDBF EG ‘'FAILED! GOTO ML635
DVRE(I) = DVRE(I) + 1
IF DVRE(I) LS O BOUTO ML637
IF DVRE(I) GR O GOTO ML636

VMLET = vCOD(I) RSH 14 + VOLD(I) + MSKERRORTAG
VFIO(I) = *'RACKUP!
VCG(I) = (VOG(I) LAND MSK{BODEG) = VRUB(I)
VML2(I) = MSK180DEG
VOLD(I) = (DVTH(I) LAND MSKMOD1RODEG)*KCPRG
LAND MSKGIMBALA
VSF(I) = 1./KCPRG
IF 1T EQ 2
THEN WRITE ICR,MSKTCRBG VISET INTERNAL CON REG'!
PVICR = DVICR LXOR MSKICRBG
END
FBUGS = FRUG(I) = 'PASSt!
VMLO(I) = VCG10

VMILI(T) VEG 1
IF DVMCA LAND MSKMCEDO4 EQ 0O THEN
JUTR3O0 tIDELAY FOR TELEMETRY AS REQUIRED'!
WRITE TELMLER,VMLETY **'TELEM MINOR LOOP ERROR MESSAGE!!
END
GOTO ML6E637
HLAZS, DVHDR = DVHDB = 1
' DFNBF = '30QND!
DVHDA = DVHDA + 1
IF DVHDA LS © BOTO ML636
WRITE ICR,MSKICRSHWG VISET TNTERNAL CONTROL REG,!'?
DVICR = DVICR LXOR MSKICRSwG
DVMC4 = DVMC4 LOR MSKMC4AMF
pvDpDGS = UL
MLAZA, IF DVRE(I) LS VIRE GOT0 ML637
- IF DVMC6 LAND MSKMC6D04 EG 0 L,ULDOOO(MSKGRF) '!'SET
’ GUIDANCE RFFERENCE FAILURE DISCRETES (NOT CODED) !
MLE6E37 . DFSMC = 'DISABLE!
GOTO ML76N0
MIL730, IF ARS(VCMND(I)) GR DVMO6 VCMND(I) = DPVMOS6

IF ABS(VCMND(I) = VCMND1I(T)) GBR DVMOS
VCMND(I) = VCMND1(I) + DVMOS
VCMNDI(I) = VCMND(I)
IF VCMND(I) LS O
THEN VCMND2(I) = MSKABSLADNPER = VCMND(I)
£LSE VCMND2(I) = VCMND(I)

v END
ML760, GOTD (ML2A0, M{L160, MLO60, *) I
MLNAD, WRITE ZI.AD,VCMND2(2) - "*ISSUE YAW COMMAND®

IF DVLDB LS 0 WRITE ICR,MSKICRCA
DVMLT = DVTMM + DVMLD + (DVTT! ~ DVRTC LAND MSKRTC) RSH 2
GOTO LOOKEND

ML160. WRITE YLAD,VCMND2(1) **ISSUE PITCH COMMAND®*!
GNTO LOOPEND
ML260. READ DBG,TEMP '*START SPECIAL DOM BACKUP GIMBAL'!

-115-

LOOPEND,
MLE0NO,
ML520.

MLL540,

MLE30,

PROC
EXIT
TERM

SPL KERNEL

9

WRITE ZLAD,VCMND2(2)
WRITE XLAD,VCMND2(O)

END
RETURN v
FOR I=0 BY 1

GOTO (MLS530,

FRUB(I)

MINOR LOOP

*'ISSUE YAW COMMAND!
'*ISSUE ROLL COMMAND'!

MMLOO, MML20?!

UNITL 3

= 1PASS2!

GOTO MLSB30.

FRUGCI)

VMLO(CI)

VML1(I)
END

'NONE!
VCBO(I)
VCG1(1)

ML520, MLS540, *) FBUG(1)

FBUBS = FBUG(D) LOR FBUB(1) LOR FBUG(2)

GOTO MLOO1,
«MDGBOO (= J,

teMMLOD

EREXIT,)

EXTERNAL

-116-

START

FNTRANCE
ENTRANCE
ENTRANCE
FNTRANCE
ENTRANCE
FNTRANCE
ENTRANCE
ENMTRANCE
FNTRANCE
ENTRANCE

- - - . - -

SPL
«MS§S00 VISWIT
«MS805 *'NGRM
.M8510 VISWIT
.M8820 VISKWIT
«M8S30 VISWIT
.M8840 YISWIT
+M8850 VOSKIT
.MS8S55 'ESKIT
«M8S60 YISKWIT
«MSS70 YISWIT

.M8580 YISKIT

SWITCH SELECTUR

S8TTR1 IS THE SS TABLE FOR TIME BASE 1.
FOURMATS wOULD BE PROVIDED FOR THE OTHER
TIME BASES AND THE ALTERNATE SEFGUENCES,

WITH INDENTICAL

KERNEL

CH SELECTOR CHECK FOR ALTERNATE SEQUENCE'!

10

SWITCH SELECTOR PROCESSING

AL SWITCH SELECTOR CHECK"!'

CH SELECTOR
CH SELECTOR
CH SELECTOR
CH SELECTOR
CH SELECTOR
CH SELECTOR
CH SELECTOR

CH SELECTOR RESET!!

CH SELECTOR

TABLE

TABLE SSTTH! 28 SERIAL 2 CONSTANT

(TIME FI
STAGE Lo
ADDRESS LO

s(5.0

6.0
14,0
19.8
20,0
20,2
24,0
27.0
29.0
30,0
32.0
49.5
75.0
90.0
95,0
95,3

105.0
116.1
119.8
120,0
120.1
130,0
132.4
133.6
133.8
134,4
134,6
0CT377777776!

XED 10
SICAL 5
GICAL 8
ncT+oo0!
0CcT'04!

ocTe0LY

ncr+20!
ncT200
0CcT 20!
ncTng!
ncy20!
ocTot!
ocvyr20!
acyr20!
ocyro1!
nCcTY'00!
0cTr20!
ocye20!
0CcT'01!
NCY 20!
ncry+«ot!
ncyr20!
0CT20!
ocyro1!
ocT*+20!
acrr01
ocrr20!
ncyr20!

- 0cYro1!

ocT01?
ocvo00!

0o,
10,
15)
ocTIoone
0CT*152¢
QCT'142¢
OCT'151°
OCT'131"
OCT' 1471
0cT 137"
OCT1042°
acT1177
0CTINGY
0CcT!0221
0CT'002"
OCT'000!
0CT' 0421
0CT 022!
OCT'055¢
OCT!175¢
0cTr137°
0CT!157°
0CT 137
0CT'177°
ocT 101"
0CT'035!
OCT'016"
0CT' 036"
0CT'037"
0CT077¢
0CT'0001)

DECLARE FIXED =2 CONSTANT, KSS500MS

KSS500SEC
KCSSK
KSS8B1
KSSB2

-117-

COMPLEMENT STAGE AND ADDRESS'!

OTHER TABLES

2031.7460,
2031746,0,
812,69840,
70.142856,
103,58730,

INITIALIZATION FOR TIME BASE SET!
FORCED RESET''

HUNG STAGE TEST'!
STAGE AND ADDRESS ISSUANCE"!
VERIFY ADDRESS'!
READ TIME CHFCK'!
READ ISSUANCE'!

ENDDATA

10 SWITCH SELECTOR PROCESSING

3 = 66.206348,
4 s 35,825396,
5 s 102,65079,
6 a 50,R25396,
7 s 87.460316,
8 5 43,825396,
K s 2031.,7460,
B = 201,17460,
13 = 4063,492

Loc'8sTTBR!
LOC'8S8TTB]!
LOC'SSTTB4!
LOC*SSTTBS!
0
LOC*838778B7!
LOC'SS8TTBA!

L

LTERNATE),
COND),
G, INPROG),
ANB),
EST),

LASS4),
582)

)

LOCK TLINT,T2INT,EX1INT,EX2INT,EXIINT,EX4INT,EXSINT,EX6INT,

SPL KERNEL
K388
KSSB
KSSR
KSSB
KSSR
KSSB
KSSC
KSSR
KCSR
DECLARE FIXED =2, VATRR,
VATR4,
VGBIA,
VSSRT,
VSSTM,
VSSW,
VSTB0
NDECLARE LOCATION, SST1PTR,
S3T2PTR
ARRAY (8) SSTVTHPTR LOCATION =(LOC'SSTTB1!
DECLARE ARRAY (3) LOGICAL, VSC1
vsc3
DECLARE LOGICAL, VASPI,
VHSTHW,
VPSTO,
VSCCA,
VSNA,
VSNAL,
VSSCA,
VSSFB,
VSTG
DECLARE STATUS, FASE (NORMAL,A
. FBRNI (FIRST,SE
FCLS4 (NOTINPRO
FFBCH (CHANA,CH
FHST (NOTEST,T
FSSAC (INACTIVE
FSSI10 (YES,ND),
FTADV (NORMAL,C
FT60P (PASS1,PA
EX7INT,EXBINT,EXQINT
FASE = 1ALTERNATE!
CONDITIONS
DVASW LAND MSKSSS4CO N@ O
DVASW LAND MSKSSSPEC NG 0
DVASW LAND MSKSSTR6C NQ@ O
DVASW LAND MSKSSCLS! NG O

-118-

[R a ol ol
- 8 W
- ® w e

w ® W W

et Nt

SPL. KERNEL 10 SWITCH SELECTOR PROCESSING
DVASW LAND MSKSSTB6A NQ 0 20 s s 9 5 Yy Ny N,)
DVASW LAND MSKSSS4Ci1 NG O s 0 » ’ , » Yy N,)
VASPI LAND MSKSSS4CO NQ O , (Y, N, » ’ » » ’)
FSSAC EQ 'ACTIVE! 20 s » » » » » » Y)
ACTIONS
VSCl(O) = SSTIPTR .(2 » » » Y.l Yl Yl)
VSC1(1) = VASPI P G » ’ s Ya Y, ¥,)
VSC1(2) = VATRR PR G » » s Y, Y, Yy,)
DVASW = DVASW LAND MSKSSWV 2 (Y, Y, Y, » s » »)
DVASW = DVASW |_XOR M38KSSTB6C ,(, » s Y, N » »)
DVASW = DVASW | XOR M8KSSTB6A ,(, » » , Y, » »)
DVASW = DVASW LLXOR MSKSSS4Ct ,(» ’ ’ s Y, »)
DVASW = DVASW LXOR MSKSSTB6B ,(» , » o, » 2 Ys)
EGPOB''RESCHED TL{(UNCODED) ', (, Y, Y, . ’ » »)
VASPI = MSKSSS4C0 20 s Yy s s s s s)
VASPI = MSKSSSPEC LU s o Y s)
VASP] = VASPI [OR MS8KSST6C » O » s Y, » ’ »)
VASPI = MSKSSCL1 s 0 » . s Y, Y, ¥,)
DVMC6 = DVMCH LOR MSKMCH6TBEC ,(, ’ » Y, » » .)
pDVMC6 = DVMCH LOR MSKMC6TR6A ,(, ’ » s Y, » »)
DVMC6 = DVMC6& LOR MSKMCATBBR ,(, ’ » , » s Y,)
SSTIPTR = LOC*SSTSIVB! 0 0 Y, N ’ » » ’)
SSTIPTR = LOC'SSTSIVA! 2 C , Y, R ’ » »)
SST1PTR = LOC'SSTTBEC! s 0 » » Y, » » ’)
SSTIPTR = LOC'SSTTB6A! N PR T |
SSTIPTR = L OC*SSTS4C1! » 0 » » » s » Y, ’)
S8T1PTR = LOC!SSTTB6B! 20 s » » ’ . s Y,)
«SSTUPD (= VATRR) 2 U . s Y, Y, Y, ¥,)
VYUPDATE SS TIME'!
FTANY = INORMAL! s s s s 5 Yy Y, X,)
GOTOD SS0060 Ys s s s s s a2 M
GOTO SS1050 s0 5 Yy Yo Y, X, Y, ¥,)
FELSE GOTO SS0UNG
END
M83ns, FSSAC = 'INACTIVE!
ssongo, IF IND(SSTIPTR) NG MSKSSNSEND
s$o0010, THEN ,SSTUPD (= VSTGO) "IIPDATE SS TIME*!
VSTGN = VSSRT = V8TGO
IF vSTGD LS KSSH00MS GNTO MS8S30
IF DFTUP EQ 'YES!
THEN DVTGB = DVTGR + VGRIA
VGBIA = 0
DFTUP = INO!
GOTO 880010
ELLSE IF DVASW NQ 0O GOTO S80170
VSSTM = VSTGO + DVTRB = DVTGB = KCSSK
PDVSST = VSSTM + DVTMR
NDGSSM = 18830
IF DFIL3 EQ 'INACTIVE' ,EGPUB ''RESCHEDT1'!
END
GOTO SS0060
END
§80ni5, IF DVASwW NG O GOTO SS0170

READ CLOCK,TEMP t'"READ REAL TIME CLOCK''
NYSST = DVIMM + KSS500SEC + (TEMP = DVRTC LAND MSKRTC) SCL 0

-119-

SPL KERNEL 10 SWITCH SELECTOR PROCESSING

DGSSM = 13805
IF DFIL3 EG 'INACTIVE' ,EGPO8 !''RESCHED TIMER i (NOT CODED)!''
B0TO SS0060
$S0170. CONDITIONS
DVASW LAND MSKSSCLS3 EQ
DVASW LAND MSKSSACQU NQ
DVASW LAND MSKSSTB6D NQ
VASPI EQ O
DVASW LAND MSKSSBNSS NG
DVASW LAND MSKSSSBLO NG
DVASW LAND MSKSSSBHI MG
DVASW LAND MSKSSSBOM NQ
DVASW LAND MSKSSECSV N@
DVASW LAND MSKSSECS1 NQ
ACTIONS
VSC3(0) = SSTIPTR , (
VSC3(1) = VASPI . C
VSC3(2) = VATRR s (
DVASW = DVASW LXDOR MSKSSACQU, (Y
DVASwH DVASW |XOR MSKSSTB6D, (
DVASHW DVASW LXOR MSKSSLI ,(
DVASW DVASW [XOR MSKSSGNSS,(
DVASW DVASW LXOR MSKSSSBLO, (
DVASW DVASW LXOR MSKSSSRHI, (
DVASW DVASW LLXOR MSKSSSROM, (
DVASW 3 DVASW LLXOR MSKSST3A ,(
SST2PTR = LOC*SSTGAIN! .
SST2PTR LOC*SSTTBED! R
SST2PTR LOC'SSTALY! .
SST1PTR LOC*'S8TBSS! s
SSTLPTR LOC'SSTSBLO! .
SSTIPTR LOC*SSTSBHI! ,
SSTIPTR LDC'SSTSBOM! .
»
»
»
»
)
»

[o B oo]
- w
”~
- <
» w

<
-
-

Y aNala el
-
<

w» W W W w B W » B @

—<

—<
% W W W % ® W W w e

<
~

- 8 W @ w W e e
w w W ®w w ® w
-
- <
» ® W W Vv & @ W e e
<
» ® ® B % % 8 w w ®
-<
T B W W e ®W e w w W
-

[M=o I o o Il oo R o

<
-
- € -

" W W e % % Y B e W W e " e W W e W W W W w ®w

-« < <
» % W
<
-
- < <
< < <

¥ ® W ¥ W VU B W W % W B B B W W B b e B w e

< < =<

-
»

Y

w N U
-

<
<
<

Y

<

~

_ SSTIPTR = LOC'SSTECSV!
SSTIPTR = LOC'SSTECS1!
SSTIPTR ® LOC'SSTTB3A!
VATR4 3 0
+SSTUPD (= VATR4)'185 T UP'?
GOTO SS0201
GOTO SS80230 . s s Y Y, ¥
ELSE GOTO SSC060 ''THIS POINT SHOULD NEVER BE REACHED
END
$S0201., FCLS4 s ¢INPRUG!
FTADV = 1CLASS4!
GOTO S50235
$50230, VASPI = MSKSSCL3
.SSTUPD (= VATRR) ''UPDATE 8§ TIME!'!
FTADV s 'NGRMAL'
880235, .88210 "1SET UP NEXT 88'!
- FHST = 'TEST!
GOTO SS0000
850060, IF FASE EG 'ALTERNATE!
THEN FASE = *NORMAL®
UNLOGCK ''RELEASE PREVIOUSLY ENABLED INTERRUPTS?!

R
<
<
et N Nl Nt Nd N N Nd Nud At N N Nt N N Nad Nd N Nt N Nl N\ S

<

W W W W W W % T W W W W W W W w e W W w w® W O

Y
Y

< <

M W W W W % W W w e W W W W W W B W %% w W w® W w

<

w W % % W ® % & B B B " W B v ® W W W W W

»
’
’
’
»
’
’
»
’
»
»
L
1]
»
14
L
’
l
[
»
’
’
-
’

® % W B W % W W ®w w W e Y B W e ®w % ww
w % W W ® W W e W W W W ® B e " e ww

»
Y,Y,Y)
OGICALLY!!

(
(
(
(
(
(
(
(
(
(
(
(
(
(

-
<

% % ® » ¥ »¥ © U © 2 » » & % &« » % » & » &

END

-120-

SPL KERNEL 10 SWITCH SELECTOR PROCESSING

RETURN ' *SWITCH SELECTOR COMMON RETURN!'!
mM8810, VASPI = O
VATRR = 0
FCLS4 = 'NOTINPROG!
DVASW = DVASW LAND MSKSSWV
.EGPO8 ' T1RESCHEDULE TIMER 1 (NOT CODED)*!
FTADV = tINORMAL!
SSTIPTR = SSTTBRPTR(DTBID =~ 1)
sSins0. .88210 tISET UP NEXT §81¢
IF FSSAC EW 'ACTIVE! BOTO MSS20
VSSW = KSS§H1
GOTO S8S0235
M3520, IF FSSIO EQ 'YES! WRITE SS,MSKSSRESET *tISSUE FORCED RESET"!
FHST s *NOTEST!
NDGSSM = 'SSC5!
.SSTUPR (KSSB8) ''SCHEDULE SWITCH SELECTOR CHECK*!
VSSW = K8SRH .
GOTO 850060
M§8530, FSSAC = 'ACTIVE!
VSNA, VSNAL = VSMA RSH 2 LAND MSKSSSNA
IF VSNA EG 0
THEN FS8SAC = *INACTIVE!
.85201 **ADVAMCE SS TABLE, SET UP NEXT 88!
GOTC SS0000
END
VSTG = VSNA LAND VPSTG
IF VSTG EG O

THEN F8810 = 'NO!
ELSE FSSIU = 'YES!
END
IF FHST ERQ 'NUTEST! GOTO 884000
IF OFLT EQ fREP! ' B0T0 S84000
READ SSFB,TEMP ''READ S8 FEEDRACK REGBISTER'!
IF TEMP LAND MSKSSHS EG 0 GOTO §84000
IF FSSIO EG 'YES! WRITE SS,MSKSSRESET ''ISSUE RESET!'!

DGSSM = 'SS40!
.SSTUPG (KSSR4) ¢tSCHEDULE STAGE AND ADDRESS ISSUANCE!'!
VSSW = KS8B8S
GOTD $S50060

M8san, FOR 1T = 22 wHILE 1 BR 0 ''DELAY BEFORE ISSUING STAGE,ADDR'!

I1=1-=1 '

END

§$4000, IF FSSIO ERG 'YES! WRITE SS,VSNA ttISSUE STAGE AND ADDRESS'!
DGSSM = *8850! : '
LSSTUPR (vSSW) ' *'SCHEDULE ADDRESS VERIFICATION®!
FOR I = 17 WHILE I GR O '*DELAY FOR DOM TELEMETRY'!

1=1-1
END : '
WRITE DOM *YQUTPUT S8S AND DO REGS VIA DOM TELEMETRY !
G0TO §50060 :
H8850, VSCCA = VSNA LXCR M3KSSHS

VSSCA = VSCCA LAND MSKSSHS
IF VSTG M@ O
THEN READ SSFB,TEMP ' 'READ SS FEEDBACK REBISTER'!
VSSFB = TEMP LAND MSKSSHS

-121-

SPL KERNEL 10 SWITCH SELECTOR PROCESSING

ELSE VSSFB a VSSCA

END
IF VSSFB NGO VSSCA 8070 SS5540
M8555. IF VASPI LAND MSKSSS4CO NQ O
THEN DFILE = DFILE LOR MSKFPSISSA
DVSST = 1,.E10
RETURN 1 *M8850, MSS55!!
END ' .
IF VSSRT Euw O GOTO MSS60
+SSTUPD (= DVIRB) '*UPDATE S8 TIME
IF VS8SRT - DVTRR LQ KSSRB GNTO M8860

VSSTM = VSSRT = DVTGB = K8SSRA
DVSST = VSSTM + DVTMR
DGSSM = 'S5860"
IF DFIL3 EN 'INACTIVE!' ,EGPOS8 ''RESCHED TIMER 1 (NOT CODED) ‘!
RETURN 1em§8350, M8S55¢!
586540, IF vSSFB EQ 0 AND VSSCA NGO MSKSSZFSF B0TQ MS855
IF FSSIO EG 'YES' WRITE 8S,MSKSSRESET *''ISSUE RESET'!
DGSSM = 'SSKRO!

.8STUPQ (KSSB6) ' 'SCHEDULE COMPLEMENTED STAGE AND ADDRESS!!
TEMP = (VSSCA LXOR VSSFB) LSH 7 _
885670, IF TEMP LS O GOTO §85580

TEMP = TEMP |SH 1
60T0 585570
SS5580, TEMP = TEMP LSH {
IF TEMP EO O RETURN ' ¥M88501!¢
DVMC4 = DVMC4 LOR MSKMC4SSCB
IF FFBCH EJ *CHANAY
THEN FFBCH =2 'CHANB!
WRITE ICR,MSKICRSSCB '*SWITCH TO CHANNEL B!'!
DVICR = DVICR LOR MSKICRSSCB
END
LUTR30 **NELAY FOR TELEMETRY AS REQUIRED*!
WRITE TELSSFbB,VSSFB ''TELEMETER SS FEEDBACK?!
RETURN 1 1M8S50, MSS551!
MSSAO. TEMP = VSTG LXNR MSKSSREAD
IF FSSIO EQ 'YES' WRITE SS,TEMP ' 1ISSUE READ COMMAND'!
READ CLOCK,TEMP " 1READ REAL TIME CLOCK FOR SS TELEMETRY!'!
DBSSM = 18570
«3STUPB (KSSB2) ‘+'SCHEDULE READ RESET!!
TEMP = VSNA |.SH 2 LLOR TEMP LAND MSKRTC
+UTR30 "'DELAY FOR TELEMETRY AS REGUIRED'!
WRITE TELSSSA,TEMP ''TELEMETER STAGE/ADDRESS AND READ TIME'!
IF DFACG NQ@ 'GAIN' ''COMPRESS DATA BETWEEN STA, (NOT CODED)*!
THEN .MPCRO (DVYDCT + MSKKSDCT) ''COMP TIME AND TAG*!
+MPCAO (VSNA RSH 3 + MSKSSDCS) ''COMP STAGE,ADD!'!
END '
IF VASPI LAND 'MSKSS4CO NG O
THEN VASPI = 0
DFILE = DFILE LOR MSKFPSCORD
END
CONDITIONS

VSNA1 EQ MSKSSHIG Yo s,)
VSNA1 EQ MSKSSLOG 20 0 Yo s o)
VSNA1 EQ MSKSSOMBG e o s Yo 5)

c-122-

MSS870,

.”SSR(‘».

PkOC

FrTRANCE

56210,
582160,

882020,

SPL KERNEL 10 SWITCH SELECTOR PROCESSING

VSNAt EQ MSKSSSIVR

» C » s Y, V)
FBRNT EQ 'FIRST! » 0 ’ s, Y, N)
ACTIONS
DVMC7 = LVMC7 LOR MSKMC7HIG , (Y, » » N)
DVMC7 = DVMC7 LOR MSKMC7LO0G ,(, Y, » »)
DVMC7 = DVMC7 LOR MSKMC7OMG ,C , , Y, ,)
DVMCS = DVMCS LOR MSKMCS54BLITI ,(, , o, Y,)
DVMC6 = DVMC6 LOR MSKMC68BRI ,(, ’ » s Y)
ELSE RETURM
END
RETURN tIM8SB0 Y
IF FFSIC EQ 'YES! WRITE S$S8,0 ''RESET READ COMMAND!!

DGSSM = tSS(Q56!
.SSTUPQ (KSSR3) *1SCHEDULE HUNG STAGE TEST'!
.38201 **ADVANCE S8 TABLE, SET UP NEXT SS*°!
VvSSw = KSSBH1
IF VHSTw LANU VSTG ER VSTG

THEN FHST = tNQTEST!

ELSE FHST = 'TEST!

END

CONDITIONS

’ VENAL Ely “SKSSWVOD , (Y, »)
VSNAY Efy MSKSSWVC L0 5 Y,)
VSNAY1 EU MSKKSSSCC 2O oY)

ACTIONS
DVASW = DVASW LXOR MSKSSECSt1 , (Y, »)
DVASW = DVASW LLXOR MSKSSECSV ,(, Y,)
DFKY = VURPEN? (Y, 4)
DFwv = 'CLOSE! 20 2 Y,)
pvpPM = DVDPM L OR MSKDING s U s YY)

ELSE RETURN tiM88701 ¢

END

RETURN Y EMSST70

VSNA = VSCCA

IF FSSIO FQ 'YFS! WRITE S§,VSNA "' ISSUE STAGE/COMP, ADDR,'!

NGSSM = 18555

.SSTUPH (KSSR7) '"SCHEDULE THE READ COMMAND!®!
FOR I = 41 WHILE I GR 0 ''DELAY FOR DOM TELEMETRY!!

I1 =1-1
END
WRITE DOM tTQUTPUT SS AND DO REGS VIA DOM TELEMETRY'!
RETURN t1M8880" !
.85201 *185 TABLE ADVANCE ROUTINE'!
.58210 '188 SETUP ROUTINE*!
IF FTADV EQ ¢NORMAL!
THEN SST1PTR = SSTIPTR + 2 GOTO $S2020
ELSE SST2PTR = SST2PTR + 2 GOTN 882160
END '
IF FTADV €4 'NORMALY GOTO §82020
IF IND(SST2PTR) GU O GOTO $82070

FCLS4 = 'NOTINPROG?

NDVMCA = DVMCA LXOR MSKMCHLUI

NPVMC7 = DVMC7 LXOR MSKMC7T&D

G0TO 882090

IF IND(SSTIPTR) GR O GOT0O S$82030

-123-

SPL KERNEL 10 SWITCH SELECTOR PROCESSING

CONDITIONS
VASPTI LAND MSKSSSPEC NQ O Yy w0 s)
VASPI LAND MSKSSCL3 NG O 20 Yy)
VASPI LAND MSKSSCLYI NG O 20 s 5 Yy 4)
FT60P EQ 'PASSY!? 00 5 5 Y, N

ACTIONS
VASPI = MSKSS8S4CO s Yy s,)
VASPI = VvSC3(1) s o Y 5)
VASPI = VSC1(1) s0 0 5 Yy 4)
VASPI = U 20 0 s Y, Y)
VATRR = VvSC3(2) ,(» Yp » N)
VATRR = VSC1(2) sC s 5 Yy 0)
VATRR = { » 0 ’ s Yo ¥)
DVASW = DVASW LAND M3SKSSWV PG 2
FT60P = 'PASS2! 20 s 2 Y,)
SSTIPTR = t0OC’S8TSIVE! fYs s)
SSTIPTR = VSC3(0) sC 5 Yy 5,)
8SSTIPTR = VSC1(0) 20 5 Yy 4)
SSTIPTR = LOC'SSTTB5A! P G S |
SSTIPTR = L0OC'S8STTBSB! sC s w5 5 Y)

ELSE GOTO SS2020 '*THIS POINT SHOULD NEVER BE REACHED LOGICALLY'?

END

G0TO 882020

852030, IF FCLS4 EQ 'INPROG!? GOTO S$82070

§S2n40, . VSSRT s IND(SSTIPTR)*KCSR + VATRR
VSNA = TIND(SSTIPTR,1)
§s2ns50, VHSTwW = VSNA KSH 2 LAND MSKSSSSB
RETURN t155201, 88210, SS2110, SS2160'!
8s82070, IF IND(SSTIPTR)*KCSR+VATRR=KSSCK GQ TND(SST2PTRI*KCSR+VATR4
THEN FTADV = ¢CLASS4!
VSSRT = IND(SST2PTR)I®KCSR + VATRA4
VSNA = IMD(SST2PTR,1)
GOTU S82050
§52090, - ELSE FTADvV = 'NORMAL®
GOTU SS2040

END
EXIT t158201,88210¢*¢
PRGC «SSTUPD (= TIME) ' 'UPDATE SWITCH SELECTOR TIME'!

ITEM TIME FIXED =2
ELDNATA
READ CLOCK,TEMP *VREAD REAL TIME CLOCK!'®
TIME, DVTRR = DVTGR + DVTRR + (TEMP = DVRTC LAND MSKRTC) RSH 2
EXIT 11SSTUPD "+ _
PROC .SSTUPQ (BIAS) ' *UPDATE SS TIME AND SCHEDULE S8 FUNCT,'!
ITEM BIAS FIXED =2 ‘
ENDPATA
READ CLOCK,TEMP 1 *READ REAL TIME CLOCK!'!
PVTRB = DVTGR' 4+ DVYRR + (TEMP = DVRTC LAND MSKRTC) RSH 2
VSSTM = BIAS + DVTRR + (TEMP = DVRTC LAND MSKRTC) RSH 2
NVSST = VSSTM + DVTMR
IF DFIL3 EQ 'IMACTIVE' ,EBPOB ''RESCHED TIMER 1 (NOT CODED)!!
EXTT CrSSTUPQ !

PrOC .EGPOB EXTERNAL EXIT
PrOC +MPC80O EXTERNAL EXIT
TERM t1MS3800

-124-

START

'
'
'
[
'
'
'
'
'
'
'
'
'
t

- - - e m e e ww e w e = o=

ENDDATA

PRICEDING PAGE BLANE, NOT FII.MED |

SPL KERNEL 11 ATM TASK KEYING

LTASKKEY (PRIORITY,TSKPTR) !''ATM TASK KEYING ROUTINE!!
ITEM PRIODRITY INTEGER '*PRIORITY LEVEL OF TASK BEING KEYED!'®
ITEM TSKPTR LGCATION *'POINTER TO TASK BEING KEYED!!
ITEM CHAIN LGGATION ''OVERFLOW CHAIN POINTER!!
ITEM SLOT LOCATION CONSTANT = LOC'ATMPOVFT!
1
'PRIORITY CONTROL TABLE CONTAINS ONE ENTRY FOR EACH SYSTEM
'PRIORITY LEVEL. FOR EACH ENTRY THERE ARE FIVE ITEMS,
' 1. LOCATION POINTER TO THE NEXT EXECUTABLE INSTRUCTION
' OF THE TASK CURRENTLY ASSIGNED TO THAT PRIORITY LEVEL
' OR ZERO IF NO TASK I8 CURRENTLY ASSIGMED,
' 2.)
' 3.) TASK KEGISTER CONTENTS (INITIALLY SET TO ZERO),
' 4,)
' 5. POINTER TO THE BEGINNING OF THE PRTIORITY OVERFLOW
' TABLE CHAIN FOR THAT PRIORITY LEVEL. A VALUE OF ZERO
' INDICATES END OF CHAIN,
[}
]
]
1

NOTE THE NUMBRER OF REGISTERS SAVED FOR A TASK WAS ARBITRARI=

LY CHOSEN FOR THIS EXAMPLE AND MAY BE ADJUSTED AS
REQUIRED,

TABLE ATMPCT 10 SERIAL 5

(ATMTSKPTR LOCATION,

ATMTSKREGY LOGICAL,

ATMTSKREG2 LOGICAL,

ATMTSKREG3 LOGICAL,

ATMUVFPTR LOCATION)
]
*THE PRIORTITY OVERFLOW TABLE IS USED FOR KEYING TASKS ON A
'"PRTIORITY LEVEL WHICH IS CURRENTLY ASSIGNED TO ANOYHER TASK,
*THE ENTRIES ARE NOT ALLOCATED TO A FIXED PRIORITY BUT ARE
"ASSIGNED DYMAMICALLY AS REQUIRED, ALL UOVEFFLOW ENTRIES FOR
'EACH PRIORITY LEVEL ARE CHAINED TOBETHER SUCH THAT THE TASKS
'CAN BE EXECUTED 00 A FIRST=IN=FIRST=0UT BASIS., EACH ENTRY
'CONSISTS OF TwO ITEMS,
' 1. POINTER TO NEXT ENTRY IN THE CHAIN. A VALUE OF ZERO
! INDICATES END OF CHAIN,
! 2. LOCATION POINTER TO THE BEGINNING OF THE TASK FOR
¢ THAT ENTRY, A VALUE OF ZERO INDICATES THAT THE ENTRY
! IS CURREMTLY MOT ASSIGNED TO AMY TASK,
]

TABLE ATMPOVFT 25 SERIAL 2
(ATMOVFPTR LOCATION,
ATMTSKPTR LOCATION)

LOCK ' *'INHIBIT ALL INTERRUPTS!!
, ,
*IF THE REQUESTED PRIORITY LEVEL IS NOT CURRENTLY ASSIGNED,
VINITIALIZE THE ENTRY FOR THIS TASK,
)
IF ATMPCTIATMISKFTR(PRIORITY) EQ 0
THEN ATMPCT'ATMTSKPTR(PRIORITY) = TSKPTR
ATMTSKREGY (PRIORITY) ,
ATMTSKREB2(PRIORITY) ,

-126-

- . e wm W m e wm om @ w om W w @ e -

L I

SPL KERNEL 11 ATM TASK KEYING

ATMTSKREG3(PRIORITY) = O

VIDTHERWISE, SEARCH FOR THE END OF THE OVERFLOW POINTER CHAIN, !
[] !
ELSE CHAIN = LOCYATMPCT'ATMOVFPTR(0) '+ S5*PRIORITY
CHNSRCH, IF IND(CHAIN) NG 0
THEN CHAIN = IND(CHAIN)
GOTO CHNSRCH
t !
Y'WHEN THE END OF THE OVERFLOW POINTER CHAIN HAS BEEN '
"'FOUND, SEARCH FOR AN EMPTY SLOT IN THE UVERFLOW TABLE, '
" . '

- - - -

ELSF FOR I = 0 BY 2 UNTIL 50
IF IND(SLOT, I+1) E@ 0 GOTO SLTFND
END WAIT '+STOP IF OVERFLOW TABLE FULL''
t
*1ADP THIS EMTRY 10 THE END OF THE OVERFLOW POINTER CHAIN AND
1 *STORE THE TASK POINTER IN IT,
"
SLTFND, IND(CHAIN) = SLOT + I
IND(SLOT, 1) = 0O
IND(SLOT, T+1) = TSKPTR

- - - -

END
END
UNLQOCK
RETURN VITASKKEY !
TERM VETASKKEY ¢!

-127-

PRF:C@ING P

ED
AGE BL ANK NOT ’FILM

CLASP COMMON DATA DECLARATIONS

START tv CLASP KERNELS *!
DECLARE FIXED,

DKRTCSEC 10 CONSTANT = 4063,492,
DKMIR U CONSTANT = ,040%DKRTCSEC,
DKTD 0 CONSTANT = ,00413*%DKRTCSEC,
NKT1 10 ,
NDLPRL(3) =2 CONSTANT=(50,%DKRTCSEC, 60N ,*DKRTCSEC,100,%DKRTCSEC)

» DLPTL (3) =2 ,
DLTTL (12) =2 ,
DVACT o,
Dvat 4 ,
DVA2 4,
DVA3J 4 ,
DVA4 4 ,
DVAS 4,
DVAE a ,
DvCaA (3) 2b,
bDVvCC (3) 25,
pvpc (3 15,
pvDaA (3) 7
DVDR (3) 7
pvDC (3) 25,
NDVDM (3) 11,
DVDT 23 ,
DVEOF 25 ,
DVERT o,
DVF 3 7
NVFMC 19 ,
NVFOM 19 ,
DVFOR -1,
Dve (3) 21,
DVMAS 3,
DVMFR 5 ,
pVMLD U,
DVMLR 19 ,
DVMLT -2 ,
nvM05S 0,
DVMO6 6 ,
DVPTG -z ,
PVRC (3 7
DVRTC 0o,
DVSST -2,
DVTAS 10 ,
DVTB 10 ,
pvVTD o,
NVTEX o,
DVTGH -2 ,
DVTH (3) 25,
DVTI 10 ,
DVTMM -2 ,
NVTMR -2 ,
NPVIRRB -2 ,
DVTRR -2 ,
PVTRS -2 ,
DVITHL o,

-129-

I I I I I I I I I I K I I DI I I I IO I MM I KK I K XM I I I DI XK I XK XX XXX X DX X XX

CLASP COMMON DATA DECLARATIONS

DVVSQ
DVIMR
DV2TG
YEMP TEMP
TEMP1 TEMP
DECLARE INTEGER,
DFLY ,
DGMLM .,
DBSSM .
DGST2 .
DAST2 ,
NTBID .
PVDGS ,
DVHDA .
DVHDB ,
DVLRC .
DVP .
DVRE (3) ,
EPTINDX
GSTIM
DECLARE BOOLEAN
APSTAT .
ARSTAT .,
CCI1STAT
CSSTAT ,
CTSTAT ,
DFACG ,
PFDBF .
PFDTL ,
DFILY .
DFIL2 ,
DFIL3 .
DFPHC .
DFSMC .
DFTBCER
DFTUP ,
DFWV .
DFZER .
DKAPI (4) ,
DTSTAT .
DPSTAT .
DVSTAT .
EBSTAT .
HSSTAT .
IGSTAT ,
MSSTAT .
NESTAT .
0GSTAT .
PASTAT .
PGSTAT ’
PPSTAT (3),
RSSTAT ,
SASTAT .
TB1STAT
TBS57STAT

3
25
-2

»* W @ ®»

' 'NUMERIC INTEGER DATA'!

-130-

> » X X

X X X X X X 3 X X XK X X X

- b I 3 b b g b b db 4> db db 45 b 4B db db 4 Jb db db db Jb Jb b 45 b db b g (4

CLASP COMMNON DATA DECLARATIONS

TCSTAT R
TGSTAT .
TTSTAT R
T2STAT (11)
DECLARE INTEGER
NDFILE
NDFMDI
DVAC (3)
NVASW
NnvDPM
DVEMR
PVICR
DVIH
PDVLDB
NDVMC4
DVMCS
DVMC6
pvMc7
MSKABLAD
MSKACCA
MSKACGR
MSKDINO
MSKDCSCM™
MSKDCSNO
MSKDCSER
MSKDCSMC
MSKNDCSMD
MSKNDCSSAB
MSKDCSTR
MSKEMRLB
MSKERTAG
MSKFMREP
MSKFPSCR
MSKFPS12
MSKFPSIS
MSKGIMA
MSKICRRG
MSKICRCA
MSKICRSH
MSKICKSG
MSKINT
MSKMI8ND
MSKM4AMF
MSKM4SSH
MSKM54R 1
MSKM6D0O4
MSKM6L UL
MSKMET6A
MSKM6T6B
MSKM6T6EC
MSKM6BBK
MSKMZ7HTG
MSKM7LOG
MSKM70MG
MSKM7T6D

" W e ®W ®w 5 8w W %W w ®w e

*1LOGICAL INTEGER DATA'!

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CNNSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CNONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

"CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

=0' 000001000,
=0!'7777000NQ",
=0'000017776",
x01000004000",
201774000000°",
20'000040000°',
201000077776,
=0'770000000",
=01000000020°,
=0'004000000°,
=0+t200000000",
201000001000",
=0'000070000",
=0'000100000",
201100000000,
=0'000040000",
=0'001000000",
01377700000,
01000000020,
=0+000040000",
01000010000,
=0'000002000°',
30'157740000",
201377777776,
=01000000100",
=01000001000°",
=01'000000100",
=0'0N000N400",
=0'000010000",
201000002000,
20'000000010°',
20'000000040",
=01400000000°,
=0'004000000°,
=01'010000000",
=0'020000000°,
201100000000,

-131-

DI D I DI I I I I I I I XK I XK XK I I XK XK M I I I I I I I I I I XK DI X XK X I XX XXX

> >

x

MSKRTC
MSKRTCRS
MSKSCCO
MSKSSACOH
MSKSSCL1
M8KSSCL3
MSKSSCS1
MSKSSCS3
MSKSSDCS
MSKSSDCT
MSKSSECV
M3KSSEC1
MSKSSEND
MSKSSGMS
MSKSSHIG
MSKSSHS
MSKSSLI
MSKSSLOG
MSKSSOMG
MSKSSRD
MSKSSRS
MSKSSSBH
MSKSSSBL
MSK8SSBO
MSKSSSCC
MSKSSSNA
MSKSSSPC
MSKSS8SS8B
MSKS8S48B
MSKSSS4C
MSKSSS841
MSKSST3A
MSKSST6
M8KSST6A
MSKSST6R
MSKSST6C
MSKSST6D
MSKSSWV
MSKSSWVC
MSKSSWVO
MSKSSZFS
MSKTMCO
MSKTMC1Y
MSKTMC2
MSKTMC3
MSKTMC4
MSKT2INT
MSK180DG
VTMC
vTOoLD

CLASP COMMON DATA DECLARATIOUNS

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

01000037776,
=0'007777540",
204000100000°,
=0'000000004",
501040000000,
201100000000,
20'000003770",
=01077774000",
50'500000000°,
x01405400000°",
=01002000000",
=01001000000",
801377777776,
201040000000,
201100720000°,
=0'003770000",
=01000000002°,
£0'100520000°,
20'100070000",
=01400000000°,
501200000000°,
=01010000000",
201020000600,
=0'004000000°,
501100310000°,
=0'135770000°,
=01200000000°,
£01174000000°,
201020230000°,
®01400000000°,
=0'000000400°,
=0'000400000",
201004060000,
201000002000°,
=0'000001000°",
=01100000000°,
=010002000N0",
201003000000,
201101050000,
20'10145n0000",
=0'002000000°,
=0'700000000°,
201710000000°,
301720000000°,
201730000000°,
=0'740000000°',
=01100000000°,
£0'400000000",

-132-

G S b A b db b 4 I a5 45 _db b b db b 45) Jb b Jb b J0 D b 45 3 db db 4B db_db db_db_ db db b _db g db b b db gb 45 I b 4 4

CLASP HTILITY ROUTINES

PROC LUTROO " YTELEMETRY DELAY FOR MUDE REG SETTING OF 70'!
VTMC = MSKTMCO
+UTRO ' 'PERFORM NDELAY AS RFGQUIRED!''
EXIT VHAUTROOQ !
PROC .UTRO1L ‘YTELEMETYRY DELAY FUR MODE REG SETTING OF 71!
VIMC = MSKTMC1L
LUTRO "YPERFORM DELAY AS REQUIRED''
FXIT YAUTROY :
PRCC LLTRO2 " ITELEMETRY DELAY FOR MODE REG SETTING OF 72!
VTMC = MSKTMC?Z .
LUTRO CYPERFNRM DELAY AS REGUIRER'!
EXIT tTUTRQ2 !
PROC LUTRO3 " 'TELEMETRY DELAY FOR MODE REG SETTING OF 73"
VIMC = MSKTMC3
LUTRO YYPERFORM DELAY AS REQUIRED!'!
FXIT tYUTRO3
FrOC JUTKO4 ¢ 'TELEMETRY DELAY FOR MODE REG SETTING OF 74*'!
" VIMC & MSKTMCA4
+UTRO *'PERFORM DELAY AS REQUIREN!'?
EXIT *tUTRO4 !
PRQC LUTRD "OTELEMETRY DELAY FOR LEVEL 0!
DECLARE FIXED 0,
VTIHM,
KTELBIAS COMSTANT = 2,
TrOO, LOCK THINT,T2INT,EX1INT,EX2INT,EX3INT,EX4INT,EXSINT ,EX6INT, X
EX7INT,EXBINT,EXQINT
DIRECT
CYREAD CLOCK INTO VTIM®:
END v
IF VIIM « DVTD LAND MSKRTC GG DKTD THEN GOTO TROS END

UNLOCK *'RELEASE PREVIOUSLY ENABLED INTERRUPTSH!
CCAILLOW HIGH PRIGRITY TASKS TO INTERRUPT'!

GOTO TRON
TROS, DIRECT
'1SET MODE REG WITH CONTENTS OF vImMCt!
END
DVTD = VTIm + KTELRIAS
FXIT tYJTRO
PrROC +UTR30 '"'TELEMETRY DELAY FOR INTERRUPT LEVEL 3*!

PECLARE FIXED 0,
KTELBIAS CONSTANT = 2, ,

VTIM
TK3S, PIRECT
*YREAD CLOCK INTO VTIM!!
END v
IF VTIM = DVTD LAND MSKRTC LS DKTD THEN GOTO TR35 END
DIRECT
11SET MODE REG WITH MSKTMCO!!
END
DVID = VTIM + KTELBIAS
EXTT VIUTR30 !
PROC .UTR24 " 'TELEMETRY DELAY FOR INTERRUPT LEVEL 2!

DECLARE FIXED O,
KTELLBIAS CONSTANT = 2, ,
VTIM

-133-

CLASP UTILITY ROUTINES

TR20, LOCK TLINT,T2INT,EX1INT,EX2INT,EXIINT,EX4INT,EXSINT ,EX6INT, X
EXZINT ,EXBINT,EXQINT
DIRECT
YYREAD CLOCK INTO VTIMt¢
END -
IF VTIM =« DVTD LAND MSKRTC GG DKTD THEN BGOTO TR25 END
UNLOCK TI1INT
80T0 TR20
TR2S, NIRECT :
'*SET MODE REG WITH MSKTMC4!'
END
PVTD = VTIM + KTELBIAS
EXIT 1rUTR24 !

-134-

CLASP KERNEL 1 INITIALIZATION

1 1SYSTEM INITIALTIZATION®?
FEGPO, LOCK TLCINT TlINT,TZINT,EX1INT,EX21NT,EXSINT,EXdINT,EX5INT,
EX6IMNT,EX7INT,EX8INT,EXQINT
DIRECT
TYTREAD X AGCELEROMETER INTO vOAC(O) !
"IREAD Y ACCELEROMETER INTO vOaAC(1)*!?
tY*READ Z ACCELERQMETER INTO vOAC(2)*?
t"READ REAL TIME CLOCK INTO DVACT'¢
END
IF DFMDI LAND MSKFMREP
THEN ON TLINT
DIRECT
"tREAD REAL TIME CLOCK INTO DVaACT'!!
END
LOCK TH1INT
TEMP = 0
END
TEMP =
DIRECT
v nAD TIMER t WITH 1 BIT'!
EnD
UNLUCK