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A CLASS OF UNIFIED EXPLICIT METHODS
FOR STEERING THROTTLEABLE AND

FIXED-THRUST ROCKETS

*
George W. Cherry

Massachusetts Institute of Technology,
Cambridge, Mass.

Abstract

This paper deals with the generation of a class of explic-
it guidance laws for computing rocket steering and throttling
commands. The steering laws provide control of final com-
ponents of the velocity vector, as well as, when it is appro -
priate, control of final coordinates of position. The view-
point taken in the paper is that the commanded thrust vector
can be computed in-flight as the explicit solution to a two-
point boundary-value problem. Thus, the commanded thrust
vector is found by a direct solution of the appropriate equa-
tions of motion subject to the initial boundary condition of the
vehicle's instantaneous measured state and final boundary
condition of the vehicle's desired state. Three goals moti-
vate the synthesis of the guidance equations: 1), simplicity
of the algorithms which must be programmed on the vehicle-
borne computer; 2), fuel economy in traveling from the in-
itial boundary condition to the final boundary condition; 3),
independence of the steering laws from standard conditions
and nominal trajectories. To illustrate the guidance method,
the paper discusses three principal thrusting phases of a
lunar reconnaissance and landing mission. Programming
and simulation of the guidance laws for the lunar landing mis-
sion has shown them to achieve the three design goals in
good measure.

Introduction

Crucial to the success and safety of manned exploration
of the moon is the problem of furnishing the spacecraft com-

Presented as Preprint 63-335, at the AIAA Guidance and
Control Conference, Cambridge, Mass., August 12-14, 1963.

#Staff Member, Space Guidance Analysis Division, In-
strumentation Laboratory.



puter with simple and explicit, economical and accurate,
rocket-steering algorithms. We will discuss the need for
explicit guidance in this paragraph. Consider the problem
of guiding the spacecraft during the lunar landing. As the
vehicle descends toward a chosen landing site, the events of
new information, mishaps and other contingencies may inter-
vene to change the boundary-value problem which the guid-
ance system must solve. For example, when the altitude of
the spacecraft becomes low enough, a small doppler radar
may be used to improve the navigation system's estimate of
important components of the vehicle's velocity vector. An
updating of the spacecraft's velocity vector changes the in-
itial boundary-point, the vehicle's instantaneous measured
state. Thus, it is desirable to synthesize guidance equa-
tions which compute the control variable (the thrust vector)
as an explicit function of the initial boundary conditions.
For then, the thrust vector command can naturally, and al-
most instantaneously, reflect the appropriate steering res-
ponse to the new initial boundary conditions. The boundary-
value problem could also be changed by a re-specification of
the final boundary conditions. Suppose that the astronaut ob-
serves the lunar terrain and perceives conditions at the
specified landing point that make that site unattractive, or
even dangerous. The astronaut may then specify a suitable
landing site. His re-designation of the terminal position
vector alters the final boundary conditions. Thus, it is de-
sirable to compute the thrust vector command as an explicit
function of the final boundary conditions. Consider, finally,
the case of a mishap occurring sometime during the landing
maneuver. Suppose that the spacecraft has an altitude of
about 15, 000 feet and a speed of about 1, 000 feet/second,
and that at this instant the throttleable landing engine fails.
This failure necessitates the immediate staging of the land-
ing engine, ignition of the ascent engine and guidance of the
spacecraft to either a waiting orbit, or an immediate rendez-
vous with the parent spacecraft. The initial conditions for
this "abort" ascent are far different from the initial condi-
tions for the nominal ascent from the lunar surface following
a normal lunar landing and surface exploration. Neverthe-
less, the same steering program used for the normal ascent
can be used for the abort as cent-provided that the steering
program is truly an explicit solution. Many other kinds of
new information, contingencies and mishaps can be imagined.
Most of them lead to a modification, perhaps a substantial
modification, of the standard two-point boundary-value pro-
blems which are envisioned and planned for the nominal
mission. It is hardly practical to try to anticipate each and
every two-point boundary-value problem which might arise,



and then equip the spacecraft computer with an ad hoc steer-
ing program for each possibility. It seems far "more reason-
able to find general explicit solutions to the two -point boun-
dary-value problems of guided powered trajectories.

To possess the range of flexibility to which we alluded
in the preceding paragraph, the guidance equations must be
truly explicit. They must be direct solutions to the equa-
tions of motion subject to the initial boundary conditions of
the vehicle's instantaneous measured state, and the final
boundary conditions of the vehicle's required state. It is not
satisfactory for the equations merely to give the appearance
of being explicit. Some final -value control equations give
the appearance of being explicit equations; however, they
are precomputed solutions valid in only a small region about
the nominal trajectory for which the equations were designed.
Consider the following landing control equations in which the
p 's are pre -computed and stored functions of time.

a = pl(xD " x) + P2(XD " x) + p3(yD " y) + p4(yD " y)

T = P5(XD " x) + P6(XD " x) + p7(yD " y) + p8(yD " y)

The first equation yields the thrust angle, the second equa-
tion yields the thrust magnitude. The D-subscripted quanti-
ties are the desired final values of the components of posi-
tion and velocity; their unsubscripted counterparts are the
present values of the components of position and velocity.
Thus, the equations for the control variables appear to ex-
press the thrust angle and thrust magnitude as explicit func-
tions of the initial and final boundary conditions. Significant
changes in the terminal components of position x_. and y_.

would require a change in the time -varying coefficients p .

Thus, there is an implicit dependence of a and T on x-p. and

yD through the p !s. Because this dependence has not been

stated explicitly, only small changes in x^. and yn would be

allowable. We might call the equations for a and T pseudo-
explicit. A test for explicit steering equations is to ask
whether it is possible to insert any values of initial and final
boundary conditions into the equations and have them remain
valid. If the answer is yes, then the equations are genuinely
explicit. This criterion requires, of course, that the steer-
ing equations be direct solutions to the equations of motion.

For the mechanization of our guidance schemes, we as-
sume a vehicle -borne digital computer and navigation system.



The navigation system determines for the computer the in-
stantaneous position and velocity of the spacecraft, the in-
itial "point" of the two-point boundary value problem. The
final "point" is the terminal or burnout point, at which some
or all coordinates of position and components of velocity are
specified. These terminal conditions can be determined be-
fore launch and stored in the computer, computed in flight
by subroutines in the computer, or placed into the computer
by an astronaut.

Orbital Plane-Control Guidance Law

The first guidance law we derive is a simple one. The
more complicated guidance laws we present later are derived
in essentially the same way.

One reason for treating the plane control guidance law
first is that three-dimensional trajectory control problems
can be analysed into two problems: a one-dimensional pro-
blem of establishing a vehicle in a desired plane, and a two-
dimensional problem of establishing a desired position and
velocity within that plane. By deriving the plane-control
steering law at the outset, we may treat each subsequent
three-dimensional problem as a two-dimensional problem.

The plane-control boundary value problem is illustrated
in Figs. 1 and 2. The desired orbital plane passes through
the center of the planet around which the powered maneuver
is being performed. A coordinate axis, Y, normal to the de-
sired plane, measures the deviation of the spacecraft from
the plane. At any instant before rocket burnout, the space-
craft may have a displacement from the plane and component
of velocity normal to the plane. By the terminal time, the
rocket burnout time, the displacement from the plane and
the component of velocity normal to the plane must be zero.
We take the viewpoint that the origin of the computation time
axis is located at the instant of the desired thrust vector
computation. That is, when we compute the desired thrust
vector, we take the viewpoint that we are just initiating the
problem, that we have no concern with time past, and that
t = 0. With this convention in mind, the statement of the
boundary-value problem is the following: given any instan-
taneous values of deviation from, and velocity normal to, the
plane, y(0) and y(0) respectively, find the thrust angle regime
Q' which will ensure that y(t) and y(t) will be zero by the ter-

minal time t = T. Thus, the objective is to ensure that

y(T) = 0 (1)

y(T) = 0 (2)



where T is the terminal time. Note that because the origin
of the time-axis is located at the present instant, T is the
time-to-go until the terminal boundary-point constraints are
satisfied. Thus

T = TgQ (3)

We shall use the equivalent symbols in (3) interchangeably.
The differential equation of y motion is

y = a™ sinffv + g • yn (4)
JL

where y1 is a unit vector normal to the plane. The last term

on the right-hand side of (4) is the component of gravitational
acceleration along the Y axis, g being the total gravitational
acceleration vector. The gravitational acceleration normal
to the desired plane is usually very small, is toward the de-
sired plane, and approaches zero as the vehicle approaches
the desired plane. This acceleration is of little dynamic con-
sequence, and could be ignored. We shall include the effect
of this acceleration in our guidance law in order to illustrate
how such terms, which usually make the differential equa-
tions nonlinear, can be handled.

Equation (4) can be integrated, at least symbolically, be-
tween t = 0 and t = T, yielding

T

y(T) - y(0) = J (aTsinorY+ g . y ^ d t (5)

Another integration yields

T r t
y(T) - y(0) - y(0) T = \ f (a. sin a + g • y )ds

J0 J0
dt (6)

Equations (5) and (6), with y (T) and y(T) replaced with zeros,
are the two equations of constraint which our choice of tty-(t)

must satisfy. There are many choices of a (t) which satisfy

(5) and (6). We desire an a* (t) which moves the vehicle into

the desired plane by the terminal time in a nearly optimum
manner. What we mean by optimum, requires a discussion.
We want to perform the plane control maneuver with as little
rocket AV deflected from the X-Z plane as possible. Con-
trolling the orbital plane requires a component of thrust ac-
celeration parallel to the Y axis, reducing the thrust acceler-



ation parallel to the X-Z plane. If we can perform the plane -
control maneuver and maximize the integral of thrust accel-
eration remaining parallel to the X-Z plane, that is, maxi-
mize the AV parallel to the X-Z plane, we optimize the
plane-control maneuver. By means of the calculus of varia-
tions, it can be shown that

tanay(t) = C + Dt (7)

prescribes the form of o!^.(t) which optimizes the plane-con-
trol maneuver.' The constants C and D must be chosen to
satisfy (5) and (6). If we choose

<*y(t) = tan~1(C + Dt) (8)

in accordance with the calculus of variation's prescription,
we must then substitute this choice of a (t) into Eqs. (5) and

(6) and attempt to determine C and D to satisfy the two equa-
tions of constraint. The determination of C and D is not a
simple task, and would involve disagreeable numerical inter-
ation procedures. We make an approximation to the pres-
cription of the calculus of variations, which compromises,
to an extent we discuss later, the optimality of the solution,
but which allows us to obtain a closed-form solution to the
boundary value problem and satisfy exactly Eqs. (1, 2, 5 and
6). We postulate that

sinoy = A+ Bt - (g • y1)/aT (9)

We note that the second term in Eq. (9) is small since we di-
vide the small component of gravitational acceleration along
the Y axis by the total thrust acceleration of the rocket en-
gine. For moderate angles, the sine and tangent of an angle
are nearly equal. Consequently, Eq. (9) is quite close to
satisfying the calculus of variations prescription. Substitu-
ting Eq. (9) into the differential equation of y motion, Eq. (4)
yields

y = AaT + BaTt (10)

It should be evident that the motivation for defining sinay as

in Eq. (9) was to cancel the gravitational acceleration from
Eq. (4) and produce the simple linear differential Eq. (10).
The next step in the derivation of the plane-control steering
law is to integrate Eq. (10) to obtain the two equations of
•f For a constant g» y1 or zero g • y1 case, which is ap-
proximately the case we have.



constraint which A and B must satisfy. Note that A and B
multiply linearly independent functions of time. (This is
true of course if a™ is not identically zero. ) We must deter-

mine A and B so that the right-hand side of Eq. (9) can be
evaluated to yield the sine of the required thrust angle. We
may look upon the determination of A and B, as the problem
of determining how much a™ and how much a—t must be added

to ~(g • y.. ) to give the required total allocation of thrust ac-

celeration along the Y axis. Since AaT and Ba^t are linearly

independent, we see that A and B constitute two independent
control parameters. It is appropriate that we should have
two independent control parameters since we have two equa-
tions of constraint to satisfy.

Integrating Eq. (10) between the present time t = 0 and
t yields

t t

y(t) - y(0) = A f arr(s) ds + B f a (s) s ds (11)
J0 J0

We have introduced the dummy variable of intergration s to
avoid confusion between the upper limit of integration and
the variable of integration. Substituting T for t in (11) yields

y(T) - y(0) = A f & (s) ds + B f aT(s) s ds (12)
JQ I ^Q

Integrating (11) between t = 0 and t = T yields

T T

y(T) - y(0) - y(0)T = A f f(t) dt + B f g(t) dt (13)
Jn >'n

where
I

= J aT(s)ds (14)
'0

t

g(t) = f arr(s)sds (15)
J0 i

Now the solution to the boundary value problem is near at
hand. Substituting y(T) = 0 and y(T) = 0 into (12) and (13)
produces the two equations of constraint which A and B must
satisfy. These equations constitute a pair of simultaneous



linear algebraic equations in the two unknowns, A and B.
Solving for A and B is consequently simple. Obtaining A and
B from (12) and (13), we then compute the desired thrust
angle a from Eq. (9).

The reader, no doubt, wonders how we evaluate the inte-
trals which are the coefficients of A and B in Eqs. (12) and
(13). The solutions for A and B from Eqs. (12) and (13) are
in terms of the left-hand sides of these equations and the co-
efficients of A and B. If we assume the thrust acceleration
a™ is constant, the evaluation of the integrals is trivial. But

we are interested in obtaining the solution for large thrust,
chemical rocket engines. Such engines typically have con-
stant thrust and mass flow, and consequently, linearly de-
creasing mass and increasing thrust acceleration. A math-
ematical expression for the thrust acceleration of such an
engine is

aT(t) = Ve/(T - t) (16)

where

r = Ve/aT(0) (17)

(The reader who is not familiar with this expression for the
thrust acceleration of a constant thrust, constant mass flow
engine may turn to the Appendix for a derivation. He will
also find there a simple scheme for smoothing the thrust ac-
celeration a™ and estimating the effective exhaust velocity
ve.)

 T

By using the expression for the thrust acceleration given
in Eq. (16), we can evaluate all the integrals in Eqs. (12) and
(13) and frame A and B in closed-form expressions involving
only known or measurable quantities. The evaluation of the
integrals yields

Tc g°
a = \ a (t)dt = - V ln(l - T I r) = AV (18)

-L 1 JQ 1 C gO

T
g°

(20)



With the symbols we have just introduced, we reexpress the
equations of constraint (12) and (13) as

y(T) - y(0) = aA+ a B (22)

y(T) - y(0) - y(0) T = a A + a B (23)
gO £1 £, 6

In terms of the following symbols

A = a t a99 - a19a91 (24)
JL -L && \. & £ j.

bll = a22 /A (25)

b!2 = " a!2/A (26)

b2]_ = - a21/A (27)

b99 = a t 1 / A (28)
£t£i 11

we may finally formulate the expressions for A and B

A = bn[y(T) - y(0)] + b12[y(T) - y(0) - y(0) Tgo] (29)

B = b21[y(T) - y(0)j + b^yCT) - y(0) - y(0)TgQl (30)

To summarize our results, we describe the sequence of
events which occur in the guidance computer.

1) The posrtion_vector, velocity vector and gravity
acceleration vector R, V and g, respectively, are deter-
mined by the navigation subsystem.

2) The thrust acceleration magnitude and effective
exhaust velocity a™ and V , respectively, are estimated by

the filtering process described in the Appendix.
3) The displacement from, and velocity normal to,

the desired orbital plane, y(0) and y(0), respectively, _are
computed by forming the dot product of R and V with y1.

4) The a 's are computed from the expressions on

the right-hand side of Eqs. (18-21).



5) The b 's are computed from Eqs. (25-28).
J

6) The quantities A and B are computed from (29)
and (30), it being understood, of course, that y(T) and y(T)
are identically zero in these equations.

7) Finally, the thrust vector orientation command
is computed so that the following component of thrust accel-
eration lies along the Y axis

y = aT(A + Bt) - g • y1 (31)

In Eq. (31), t is the time that has elapsed since the cal-
culation of A and B. Since A and B are nearly constant (they
change only because of thrust perturbations, navigation sen-
sor errors, autopilot errors, etc. ), Eq. (31) can be used for
many seconds without recomputation of A and B. Thus, it is
possible to establish major and minor computation loops.
During the major computation loop, A and B are computed.
During the much faster minor computation loop, the required
component of thrust acceleration along y1 is computed from
Eq. (31). L

The b 's in Eqs. (29) and (30) are the sensitivities of

the y component of the commanded thrust acceleration to the
y velocity error and effective y displacement error. The
quantity A is the determinant of Eqs. (22) and (23), the sys-
tem of equations which we solved for A and B. The deter-
minant A approaches zero as T approaches zero, causing

o

the b 's to increase without bound. This infinite sensitivity
J

to out-of-plane position and velocity components, when T
O

approaches zero, reflects the fact that as the time remaining
to make corrections becomes vamshmgly small, the control
action required to correct nonvamshmg errors becomes ex-
cessively large. Therefore, recomputation of A and B must
be avoided during the last few seconds of powered flight.
Only the minor loop computation is performed when T is
very small. °

Additional insight may be gained into the definition of
sin a in Eq. (9). The second term in Eq. (31) represents a

small component of commanded thrust acceleration which
cancels the gravitational acceleration along the Y axis [We
canceled the gravitational acceleration to obtain the tractable
differential equation Eq. (10)J The first component on the
right-hand side of (31) represents the additional thrust accel-
eration required along the Y axis to satisfy the terminal boun-
dary-point constraint.

10



Summarizing the solution for the orbital plane-control
problem: we have found an exact, nomterative procedure for
solving the boundary-value problem; we have not followed
exactly the prescription of the calculus of variations for ob-
taining an optimum solution; but simulations have shown that
the mass of propellant used with our solution is negligibly
different from that used by a rigorously optimum solution.

Radial Position and Velocity Vector Control

Preliminary Discussion

Having developed a guidance law for establishing the ve-
hicle in the desired plane, we next develop guidance equations
for obtaining desired values of the vehicle's velocity vector
and radial position within the plane. We shall break this re-
maining problem, which is a problem in the plane and hence
two-dimensional, into two one-dimensional problems^. The
first one-dimensional problem is controlling the vehicle's
component of velocity and displacement along the radius vec-
tor. The second one-dimensional problem is controlling the
vehicle's component of velocity normal to the radius vector,
i. e., the vehicle's horizontal component of velocity. Con-
trolling the vehicle's radial position arid its radial and hori-
zontal components of velocity, is sufficient to control the
size and shape of the attained orbit. It should be pointed out,
that the equations we now develop, can perform more capable
guidance roles than merely attaining an orbit of specified
size and shape. The equations can be used to obtain a speci-
fied velocity vector at a controlled radius, and an uncontrol-
led - but predictable - planetary central angle measured
from some radial reference line. Thus, the equations can
be used to insert a spacecraft into a coasting trajectory
which impacts a given target vector. To play this role, the
equations must be used in conjunction with a subroutine
which computes the velocity vector which is required at the
burnout position to establish the coasting trajectory to the
impact point.

The equations of constraint; i e. , the final boundary con-
ditions which the guidance method must satisfy are

R(T) = RD (32)

R(T) = RD (33)

VH(T) = VHD (34)

We may specify the magnitude of the terminal value of spe-
cific angular momentum rather then the terminal value of

11



the horizontal component of velocity Thus, we can replace
Eq. (34) with

h(T) = h = IV (35)

We now have a boundary -value problem involving the pre-
specification of the terminal values of three independent quan-
tities. We need, therefore, at our disposal, three indepen-
dent control quantities which we must regulate to satisfy Eqs.
(32, 33 and 35). Our approach will be to solve the radius and
radial rate control problem; i. e. , satisfy (32) and (33), in the
the same manner we solved the plane-control problem. (Re-
member that in the plane -control problem, we had two inde-
pendent control parameters A and B which we used to satisfy
the terminal constraints y(T) = 0 and y(T) = 0. ) We shall
have remaining then the requirement to satisfy the final boun-
dary condition (35). Since we have at our disposal the time
of powered flight remaining at any instant, we shall use this
variable as our third control quantity; i. e. , T is chosen to
ensure that equation (35) is satisfied. &

The Radius and Radial Rate Control Law

The differential equation of radial motion is
2

^-S = (-ju/R2 + V 2 /R) + a^sm^ (36)
dt2 H T R

Figure 3 defines the angle <*_. Note that the parenthesized
XX

term is simply the sum of attractive gravitational accelera-
tion and repulsive centrifugal acceleration. The boundary-
value problem is: Given ^y instantaneous values of radius
and radial rate R(0) and R(0), respectively, find the required
thrust angle regime «R(t) such that Eqs. (32) and (33) are

satisfied. The reader may already suspect that we will solve
the radius and radial rate control problem by specifying that

smaR = - (-M/R2 + V2
i/R)/aT + C + Dt (37)

Substituting this expression for sinajj into equation (36)
yields the following linear differential equation.

™ + Da™t (38)
T L

12



Noting the similarity between this equation and Eq (10)
for the orbital plane control problem, we immediately write
the solution for C and D

C = bn[RD - R(0)] + b JR - R(0) - R(0)T j (39)
o

D = b21JRD - R(0)] + b22|RD - R(0) - R(0) T ] (40)

Rewriting Eq. (37) as

a T smfl r R = - ( - ^ / R + V / R ) + aT(C + Dt) (41)

we note that the component of thrust acceleration required
along the radius vector is composed of two parts. One part
cancels the sum of gravitational and centrifugal acceleration.
The other part represents the additional thrust acceleration
required along the radius vector to ensure that the final ra-
dius and radial rate boundary conditions are satisfied.
(What we have done here is analogous to the atmospheric en-
try procedure of cancelling the effective gravitational force
with vehicle lift in order to obtain an integrable differential
equation from which landing range can be predicted. )

Note that the b 's used to solve the orbital plane -control
J

problem are also used to solve the radius and radial-rate
control problem.

Simulation of this control law has shown it to be remark-
ably close to optimum. In fact, it has frequently solved the
typical boundary -value problems of space flight with less fuel
than a steepest descent numerical optimization program.

The Specific Angular Momentum Control Law

We proceed now to develop the method which is used to
control the specific angular momentum. Remember that in
the development of both the plane -control steering law and
the radius and radial rate control steering law, we left open
for our later disposal the matter of how to choose T . At

o

any given instant, we can choose T from an interval of per-

missible values. For each T chosen from this interval, we
g°

can compute, by means of the previously derived laws, thrust
angle regimes which satisfy the plane and radius and radial
rate final boundary conditions. To make more lucid the dis-
cussion which follows, we shall consider controlling final
specific angular momentum when no plane change is required.

13



For the problem of planar guidance, the left-hand end of
the interval of permissible T 's is set by the limited ratio

o

of the component of thrust acceleration along the radius vec-
tor to the total thrust accleration. The absolute value of this
ratio must not exceed one which is equivalent to stating that
the absolute value of sinQ'T, must not exeed one. There is a

rt
converse way of stating this limitation: for any given T ,

o

there is a limit to the change in radius or radial rate which
can be accomplished.

The right-hand end of the interval of permissible T 's

is set, mathematically, by the requirement that T be less
&

than the burnup time of the spacecraft. The burnup time of
the spacecraft is T. Note that the argument of the natural
logarithm in Eq. (18) is negative, if T exceeds r. Of

o

course, the practical right-hand end of the interval is to the
left of r.

We must assume that the boundary-value problems to
be solved are such that the desired specific angular momen-
tum can be attained by choice of a T from within the inter-J go
val of permissible T 's. Tests could be incorporated into the

computer program to provide an alternative action if too
short a T is chosen (which would result in an arcsine error)

o

or too long a T (which would result in a logarithm error).
o

In practice, the boundary-value problems most often encoun-
tered offer no difficulty in respect to the limited range of
T . In fact, if a T outside the permissible interval ap-

& o

pears to be required to attain the specified final value of an-
gular momentum, then the boundary-value problem is very
probably unfeasible for some reason other than the limitation
of the guidance laws.

The differential equation for the magnitude of the spe-
cific angular momentum is

dh/dt = Ra~ cos a (42)
1 rt

The principle of determining T from this equation is the
o

following: first, integrate the differential equation from the
current time t = 0 to the terminal time t = T; and second,
solve the resulting equation for T . The result of integrating

o

the differential equation is
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T

h(T) - h(0) = \ (RarrcosaT3)dt (43)yo" i

Recalling that a final boundary condition is

h(T) = hD (44)

and that

T = Tgo (45)

and denoting h(0) hereafter as

h(0) = h0 (46)

Eq. (43) becomes „
f go

h - h = \ (Rp rn=! a \ Ht (4.7\^D nO J0 <ttaT cos ofRJ dt (47)

We may recall that the derivation of the radius and ra-
dial rate control law was made simple by the definition of
smovj given in Eq. (37). The computation of the parenthe-

sized term in Eq. (37) offers no difficulty. (Vector position
and velocity are available from the navigation system. ) But
the presence of this term is now awkward because cos <*R

appears under an integral, an integral which we must eval-
uate in order to solve for T . Recalling that

o

cos a- = \i 1 - sin QV, (48)

and that smorR is defined as in Eq. (37), we see that the inte-

grand in Eq. (47) is very complicated indeed. It is not sur-
prising that the difficulties which we suppressed while syn-
thesizing the radius and radial rate control equations, should
now reappear in another form and greatly magnified. We
proceed for the time-being by evading the difficult integration
in Eq. (47).

Let us express the specific torque, the right-hand side
of Eq. (42), as the difference of two terms

Rarpcosov. = R-^a- - M (49)
X -tx ±J J. C-
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The term R^a™ is easily integrated. The second specific

torque term M is a correction term. The purpose of writ-

ing the specific torque, as in Eq. (49), is to permit a partial
integration of the differential equation for angular momentum.
This differential equation is now

dh/dt = RDaT - Mc (50)

Integrating Eq. (50) between t = 0, the current time, and
t = T, the terminal time, yields

hD - hO = - RDVeln(1 - Tgo/T> - Mc dt

We define h as followsc j

JQ
h = \ M dt (52)c J0 c

and solve Eq. (51) for the T which appears in the argument
o

of the natural logarithm.

- r ( -Tgo = ̂  - e*P I - (hD - hO + hc'/RDvej) (53)

It is convenient to rewrite the exponential function in Eq. (53)
as the product of a exponential factor containing the unknown
correction term h and an exponential factor containing the
known angular momentum to-be gained (hD - hQ) The re-

sult is
I

-h0)/RDv e] .exp(-h c /RDv e)j(54)

Since the first exponential factor in Eq. (54) can be directly
and simply computed, the problem of computing T is now

o

focused on estimating the second exponential factor»
exp(-h /RT^V ). This latter exponential expression is a cor-

\^i J-J t,

rection factor which appears in Eq. (54) because we derived
Eq. (54) by assuming that the specific torque was equal to
R a plus a correction term M . The term h arose from

integration of M .
\~r
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The direct computation of exp(-h /Rnv ) is just as
*-• J-J C

difficult as the evaluation of the right-hand side of (43), the
equation containing the difficult integration which we tried to
avoid by introducing M and h . However, an indirect esti-

\-r \*r

mate of h is convenient, and the ensuing paragraphs deal
V-.

with an indirect approach.
The strategy of the approach is the following: suppose

that we have an estimate for h , call it h , (we could start
~ rS^ C

with h = 0), and that we use h in Eq. (54) to obtain an esti-
f+s

mate of T , call it T . Now, suppose that we use this es -
o o

timate for T to determine the thrust angle regime which
o

satisfies the radius and radial rate boundary conditions.
Suppose further that we fly the spacecraft (hypothetically) for
T seconds according to the calculated thrust angle regime,

O

and then observe the resultant final specific angular momen-
tum hp. If h,, is not equal to h~ then it is evident that hI i ^ D c
should be modified to obtain a better estimate of h . A logi-

r+t

cal equation for computing an improved h is the following.
\^

h . , = h~ - h- + h (55)c, n+1 D f, n c, n

With the improved estimate of h obtained from Eq (55), a

new estimate of T can be obtained from Eq. (54) and then
o

a new thrust angle regime computed from the radius and ra-
dial rate control equations. After another hypothetical flight
of the spacecraft and observation of its terminal specific ang-
ular momentum, a still better estimate of h can be obtained

(_•

from Eq. (55). Although the following development is along
the lines summarized here, the computation of h is not as

\^t

direct as shown in Eq. (55). The following development is
organized to take advantage of the near linearity of a certain
dynamical quantity which is a function of the specific angular
momentum. An important feature of the following treatment
is that no matter how many times the estimates of K and

T are iterated and improved, only one evaluation of an ex-
&

ponential function is required.
It is possible to present a strong analytic argument,

and provide empirical data to verify, that the following dy-
namical quantity is very nearly a linear function of time.
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H[h(t)] = exp[- h(t)/RDve] (56)

A plot of H for an ascent from the surface of the moon into a
circular orbit is given in Fig. 4.

As a result of the definition of H and the laws of arith-
metic for exponents, we have the following useful identities

H(x) H(y) = H(x + y) (57)

H(x)/H(y) = H(x - y) (58)

As an example of this notation, Eq. (54) can be rewritten as

Tgo = ri1 -H(h D -h 0 )H(h c ) ] (59)

or as

TgQ = r[l - H(hD)H(-h0)H(hc)j (60)

Another example of the notation is

H(*c, n+l> = H(hD - hO + Sc. n)/H<hf, n ' V (61>

where we have used Eq. (55) as well as Eq. (58). Equation
61 is a key formula in the procedure for computing time-to-
go. Equation 61 is the expression used to compute an im-
proved estimate of H(h ), given a previous estimate and its

Vtx

corresponding H(hf - hu). We can always produce a suit-

able first estimate h , of h , since the final estimate of hc, 1 c c
obtained from iterating Eq. (61) is independent of the first
estimate of h . The problem then is to find, given any

,~ c
H(h ), the actual H(hf - hn) which would result if thev^j xi if n \j /^
spacecraft were flown with the corresponding T ; for

then better estimates of H(h ) and T could be provided by

use of first Eq. (61) and then Eq. (60). Equation 60 tells us
that having possession of H(h ) is equivalent to possessing
~ c „„
T : and Eq. (61) tells us that having possession of H(h ) and

the H(hp - h») which would result if the vehicle were flown

with the T corresponding to H(h ), is sufficient to produce

a better H(H ). We need, therefore, only to provide the link

18



for computing H(hf - hQ) from T in order to complete the

iterative chain. This link is forged on the basis of the near
time linearity of H[h(t)].

The function H is a composite function of time. To em-
phasize H's time dependence, we suppress the reference to
the intermediate variable h as follows.

Q(t) = H[h(t)j (62)

Because of the near linearity of Q(t), it is reasonable and
quite accurate to represent Q(t) by an abruptly truncated
Taylor's series, as follows

Q(t) = Q(0) + Q(0)t + Q(0)t2/2 (63)
2

The coefficients of t and t in Eq. (63) are found by differen-
tiating Eq. (56) with respect to t. The Taylor's series coef-
ficients are

Q(0) = H(hQ) (64)

Q(0) = - H(h0)h0/RDve (65)

Q(0) = + H(hn)(h2/R2 v2 - hn /R_v J (66)

as may be easily verified. Defining

H0 = 1 (67)

e (68)

- VRDve (69)

and using Eq. (62), we rewrite Eq. (63) as

HJh(t)] = H(hQ) (nfl + r?^ + r]2t2/2) (70)

(Expressions for the first and second derivatives of specific
angular momentum and the variables defined in Eqs. (67-69)
are derived in Appendix B. ) From Eq. (70), we obtain the
final link for completing the iteration chain. Dividing each
side of Eq. (70) by H(hn), and replacing t with T yields

u §®> "•
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Summary of Method For Controlling Final Velocity Vector
and Radial Position

We now summarize the guidance law derived in this
section. We will assume that the final values of radius, ra-
dial rate and specific angular momentum are somehow speci-
fied. If the guidance problem is to insert a one stage vehicle
into a circular orbit around the moon, the appropriate speci-
fied final boundary conditions are

= desired orbital radius (72)

RD = 0 (73)

hD = ' <74)

If the guidance problem is a soft landing on the sur-
face of the moon without any longitudinal range constraint,
then the equations of this section are applicable, and the ap-
propriate specified final boundary conditions are

R.p. = radius of the moon (75)

RD = 0 (76)

hD = 0 (77)

(When the actual touchdown point is constrained-as, for ex-
ample, in the case of landing next to a lunar logistics vehicle
or a radio beacon or transponder-the equations of the next
section are more appropriate )

We assume that the position vector and velocity vec-
tor of the vehicle are available from the navigation equations.
Appendix C gives an algorithm for computing present position
and velocity from accelerometer outputs, and initial position
and velocity. The present radial position, vehicle radial
rate and specific angular momentum are obtained from oper-
ations on the current vehicle position and velocity vectors,
as shown below.

R(0) = |R(0) (78)

IQ = h(0) = J R ( 0 ) X V(0)| (79)

R(0) = R(0) - V(0)/R(0) (80)
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We now will give a summary of the computation
steps in the vehicle-borne computer program. The purpose
of the program is, of course, to compute the thrust angle
profile and T required to attain some set of desired final

boundary conditions .[such as Eqs. (72-74) or Eqs. (75-77D
given some initial set of boundary conditions, Eqs. (78-80).

The first step, done at the beginning of the powered
flight regime, is to compute and store away the H function of

H(hD) = exp(- hD/RDve) (81)

Every few seconds, or so, after the engine is ignited, a new
thrust angle regime and T are computed. Thus, thrust

O

angle regime and T errors resulting from the effects of
o

thrust magnitude perturbations, autopilot execution errors
and approximations in the gravity model, are compensated by
a closed loop control in which current boundary conditions
are the input. The calculations performed are the following.
Calculate the H function of - h^..

H(-hQ) = exp(h0/RDve) (82)

Then estimate the current time-to-go by decrementing the
last T by the time that has elapsed since its calculation.

(If this is 1st time-to-go calculation, choose any reasonable
value. ) Next, calculate an estimate for the H function of the
correction term h .

H(hc) = (1 - Tgo/T)/H(hD)H(-h0) (83)

(We use a tilde over the trial variables T and h ; but we

will not always use an iteration subscript. It is to be under-
stood that these variables are only approximate until we have
cycled the equations a few times to obtain accurate values. )
The next step in the calculation is to compute the thrust angle
regime required to satisfy the final radius and radia^rate
boundary conditions. The approximate time-to-go, T , is

o

used at this time. (A better estimate is not yet available. )
The equations which must be calculated are the following:
first, Eqs. (18-21); second, Eqs. (24-28); and third, Eqs.
(39-41). At this point in the calculations, we have a thrust
angle regime which would satisfy the final radius and radial
rate boundary conditions. However, we have chosen an ap-
proximate time-to-go which may not succeed in satisfying
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the final boundary condition on the specific angular momen-
tum. The next calculation is equivalent to finding out how
much specific angular momentum would be gained with the
calculated thrust angle regime and the approximate time -to -

SO. V

- ^ ^ T + ' 2 (84)

The next step is equivalent to comparing the actual in
crease in specific angular momentum with the increase de-
sired, and then incrementing or decrementing the correction
term so that the boundary condition on specific angular mo-
mentum is better satisfied.

H(Sc, n+l> = H(hD)H(-h0)H(hCj n)/H(hf j n - hQ) (85)

It is illuminating to rewrite Eq. (85) as follows

- h + ) (86)

Equation (86) tells us that the new value of the correction
term, h , -,, is obtained by adding to the old value the

amount by which the final boundary condition on specific angu-
lar momentum was missed. Our next computation step is to
compute a better estimate of time-to-go from the latest esti-
mate of h .

- H(hD)H( - h0)H(hc) (87)

A new thrust angle regime, corresponding to the new estimate
of time-to-go, can now be determined, and the whole pro-
cess we described can be repeated.

Simulations have shown that this computation process
converges very rapidly. In fact, except for the very first
calculation when only a crude estimate of time-to-go is avail-
able, the process converges in one or two passes through the
calculations. The time-to-go estimate is only fairly accurate
early in flight when the time-to-go is large; but the calcula-
tion becomes more and more accurate as T shrinks. A

go
more accurate estimate may be obtained for large time-to-go
by including higher order derivatives in the expansion of
Q(t) in Eq. (63). A more accurate time-to-go prediction is
not necessary for the guidance process; but it might be use-
ful as a basis for monitoring and decision-making. For ex-
ample, a precision time-to-go prediction early in a powered
flight maneuver could warn an astronaut that he is coming
dangerously close to depleting his estimated fuel supply.
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Another possible use of the accurate long-range time -to -go
prediction is in the optimization of engine ignition time. For
example, imagine a spacecraft approaching a planet on a
high-energy trajectory. Suppose the mission objective is
insertion into a reconnaissance orbit around the planet. By
human or computer monitoring of the predicted time -to -go
for the maneuver, the engine ignition time could be chosen
when the time required for the orbital insertion passes
through a minimum.

The fuel economy of the guidance laws presented in
this section is, in general, very good. In fact, this guidance
method has, on several occasions, surpassed the results ob-
tained from a steepest descent numerical optimization pro-
gram.

Guidance Law For Throttleable Rockets

The Rendezvous Problem

We shall now derive a guidance law, suitable for con-
tinuously throttleable rockets, which can steer a spacecraft
to a specified state vector at a specified time. Thus, we
solve the rendezvous problem for continuously throttleable
rockets.

In cases where the terminal time can be left open, as
in the lunar landing problem, we have a certain freedom in
the choice of time-to-go. The next section of this paper
deals with the calculation of time -to -go when the terminal
time is unconstrained. For the purposes of the present sec-
tion, we regard the terminal time as fixed.

The mathematical statement of the rendezvous pro-
blem is: given the state vector, of a vehicle at t = t~

R(tQ) = x(tQ)I+ y(tQ) j + z(tQ)k (88)

V(tQ) = x(t0)I + y(t0)"j~ + z(t0)k (89)

and assuming that the vehicle is subject to the equations of
motion of a body undergoing thrust in a central force field in
vacuum

JZ- - -/ux/R3 + aTx (90)

(91)

HF + a (92)
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find a control vector for tQ < t < T

a"T(t) = aTx(t)i+ a (t)J + aTz(t)k (93)

such that the vehicle will have a desired state by t = T

R(T) = xDI + yDJ + zDk (94)

V(T) = x i + y J + z k (95)

The strategy of the solution is the same as in the first
section of the paper. Define the components of the thrust ac-
celeration vector as follows

aTx = /Ltx/R + Clf(t) + C2g(t) (96)

+ C3m(t) + C4n(t) (97)

+ C5p(t) + C6q(t) (98)

The functions, f(t), g(t) m(t), n(t), p(t), q(t), are specified
functions of time. We require only that each pair of these
functions in each of Eqs. (96-98) be linearly independent.
The actual choice of the functions is predicated on the basis
of engineering goals such as simplicity, fuel optimization,
etc. We shall particularize these functions later, and obtain
a useful steering law. For the time -being, we continue in a
general way.

Substitution of Eqs. (96-98) into Eqs. (90-92) yields

C2g(t) (99)

= C3m(t) + C4n(t) (100)

jjf-= C5p(t) + C6q(t) (101)

We note that Eqs. (99-101) are linear and decoupled, a tre-
mendous advantage in our derivation because we must find
expressions for the C.'s in terms of the errors in the bound-

ary conditions and the time -to -go. Note that the price of ob-
taining convenient tractable Eqs. (99-101) is a constraint
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between the three expressions in Eqs. (96-98). However,
this constraint is readily satisfied: we merely calculate the
right-sides of Eqs. (96-98) and then command

aT = + a
Ty Tz (102)

The throttleable engine solves, so to speak, the constraint be-
tween Eqs. (96-98). We must now calculate the constants
in Eqs. (96-98) by integration and solution of Eqs. (99 101).
We shall demonstrate the method of solution for the C 's by

carrying out the derivation for the x coordinate only. The
C 's for the other coordinates are solved in the same manner.

We use Eq. (99) to obtain two linear algebraic equa-
tions in C-, and C0. The two equations are precisely the equa-

J. u

tions of constraint demanded by the initial and final boundary
conditions, Eqs. (88-89) and Eqs. (94-95). Integration of
Eq. (99) between t = tQ and variable time t yields

- *<v = f(s)ds g(s)ds (103)

Substitution of the terminal time T for t yields

T T

x(T) - x(tQ) = Cj_ ̂  f(t)dt + C2 J g(t)dt

' iO tO

Integration of Eq. (103) between t = tQ and t = T yields
*" t ~~"

(104)

x(T) - x(tQ) - x(tQ)Tgo

where

O

f(s)ds

0

dt

(105)

'2.

Tgo = T - *0

t

\ g(s)ds dt

(106)
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Now, assuming that f(t) and g(t) are integrable functions, the
coefficients of C, and C2 in Eq. (104) and Eq. (105) are merely

algebraic functions of T and t^.; they may therefore be evalu-
ated. Furthermore, the left-nand sides of Eqs. (104-105) are
easily computed; for, x(t) and x(t) at the terminal time T are
specified, and x(t) and x(t) at the current time tQ are meas-

ured. Therefore, C, and C2 can be solved from Eqs. (104-

105) in terms of the boundary conditions and T and tQ. In a

corresponding manner, we may develop expressions for the
C 's in the other axes. Now, in possession of all the C 's,

we compute the components of the required thrust accelera-
tion vector from Eqs. (96-98). We are now in full posses-
sion of the solution to the boundary -value problem; for we
have an algorithm for Eq. (93) which satisfies Eq. (88-89),
Eqs. (90-92) and Eqs. (94-95).

We shall now choose specific functions for f(t), g(t),
m(t), n(t), p(t) and q(t); evaluate the integrals in Eqs. (104-
105) and the similar equations for the y and z axes; solve for
the C 's and produce expressions for the three components
of the1 solution thrust acceleration vector. If we choose

f(t) = m(t) = p(t) = 1 (107)

g(t) = n(t) = q(t) = t - t0 (108)

and, if the magnitudes of the components of the gravitational
acceleration along the coordinate axes change only slightly,
(as when the spacecraft travels through a small planetary
angle, and changes altitude by a small amount compared to
the planetary radius), then it may be shown that the steering
law developed by using these functions minimizes the integral
of the square of the thrust acceleration. Substituting for f(t)
and g(t) in Eqs. (104-105) in accordance with the definitions
in Eqs. (107-108) yields

cl
C2

and, of

= <4/TgoMxD - i> + <6/T|o><xD - x - XDV

= <-6/TgoX*D - X) + <-12/Tgo>^xD - x - xDTgo)

course, from Eq. (96), we have

aTx = / ix /R 3 +C 1 + C 2 ( t - t 0 )

(109)

(110)

(111)

with similar equations for the y and z components of the
thrust acceleration vector.
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Summary of Equations and Order of Computation

In this section, we describe a few considerations for
programming the equations. In particular, we describe
order of computation, handling of computation lags and avoid-
ance of excessive commands when time -to -go is very small.
The computation steps are:

1) Calculate the lastest spacecraft position and ve-
locity vectors, R(tQ) and V(tQ).

2) Calculate the time -to -go

Tgo = T - t0 (112)

3) Calculate the C 's by first calculating

en = 4/Tgo (113)

e12 = 6/T|o (114)

e21 = -6/T|o (115)

e22 = -12/T^ (116)

and then

Cl = ell(xD - x) + G12(XD - x - xDTgo)

C2 = 621(XD - x) + 622(XD ' x - xDTgo}

(120)

C5 = ellCzD - 'Z) + e!2(zD - Z - ZDTgo)

4) Calculate the components of the desired thrust ac-
celeration vector

aTx(t) - /nx(t)/R(t)3 + C^ + C2(t - t0) (123)
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a (t) = Aiy(t)/R(t)3 + C3 + C4(t - tQ) (124)

aTz(t) = |uz(t)/R(t)3 + C5 + C6(t - tQ) (125)

From Eqs. (123-125), the magnitude and direction of the de-
sired thrust acceleration vectory may be computed. On the
basis of the magnitude of the thrust acceleration vector a
command for the engine throttle servo is computed.

Equations (123-125) are written in a form which em-
phasizes that although the C 's are computed for the values
of the state vector and time-to-go at a particular instant,
t = t~; the components of the thrust acceleration vector may

be computed from Eqs. (123-125) for times t > t~ without re-

calculation of the C^s. The form of Eqs. (123-125) makes

compensation of lags in the guidance system simple. By set-
ting t in Eqs. (123-125) to the time of transmission of the
commands, or even to a later time to compensate for auto-
pilot and throttle servo lags, the commands may be appro-
priately timed. Of course, the effects of control subsystem
execution errors finally necessitate computation of fresh
C 's. Note that the coefficients in Eqs. ( 113-116 ) "blow up"

as time-to-go approaches zero Excessive commands are
avoided for vamshmgly small time-to-go by use of Eqs. (123-
125) without recalculation of the quantities in Eqs. (113-122)

The Landing Problem

The primary guidance distinction between the rendez-
vous and landing problem is that for the latter problem, the
achievement of the final boundary conditions need not occur
at any particular time. Consequently, we have the liberty
of choosing time-to-go from within an interval of physically
feasible values. In this section, we shall discuss a method
of choosing time-to-go which simulation has proven very
useful. Our discussion will also provide a great deal of in-
sight into the behaviour of the throttleable rocket steering
law.

Imagine that the vehicle is at the phase of its free-
fall trajectory where it is desirable to ignite the descent
engine for the landing maneuver. We may imagine that the
spacecraft is in a very low altitude circular orbit, or at the
perilune of a transfer trajectory from a higher altitude orbit.
Notice, from Eqs. (113-125) that the magnitudes of the com-
ponents of the thrust acceleration vector are functions of
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time-to-go. Thus, as initial time-to go is varied, both the
magnitude and direction of the initial thrust vector change
Since the thrust magnitude of the spacecraft is limited, we
shall be particularly interested in the behaviour of the initial
thrust magnitude as a function of the initial choice of time-
to-go. Figure 5 is a typical plot of initial thrust magnitude
as a function of time-to-go.

Since the specified landing site for this data was about
200 miles downrange from the engine ignition point, the very
short times-to-go are highly unrealistic. We shall discuss
these cases, however, for they afford a great deal of insight
into the nature of the steering law. We may notice in Fig. 5
that the thrust magnitude increases rapidly toward infinity
as time-to-go decreases below 140 seconds. For such very
short times-to-go, the vehicle must initially be accelerated
toward the landing site to speed its arrival there. For very,
very short time-to-go, this acceleration toward the landing
site must be immense. (We have not indicated the thrust
vector orientation in the figures, but we shall discuss the
thrust direction, as we discuss Fig. 5. ) As the vehicle
moves rapidly toward the site, this prodigious and ever-
growing thrust vector must be rotated at a very high angular
rate to point finally away from the landing site, causing de-
celeration and shrinking of the velocity vectory just before
the landing site is reached. Obviously, such trajectories
are very uneconomical since the vehicle must be accelerated
and then decelerated. Furthermore, they are usually quite
unrealizable since the thrust magnitudes called for eventually,
if not immediately, exceed the engine output limit. Point (1)
on the plot, though initially yielding a thrust magnitude with-
in the capacity of the engine, would be the type of trajectory
we have just discussed. Therefore, the time-to-go corres-
ponding to this point should not be chosen.

The trajectory corresponding to point (3) of Fig. 5 is
very peculiar, not to say ridiculous. Specification of too
short a time-to-go caused the situation in trajectory (1)
where the vehicle is initially accelerated toward the site in
order to speed its arrival and in the terminal seconds tre-
mendously decelerated to kill its arrival speed. Trajectory
(3) is the opposite side of the coin: how to spend a very long
time in traveling from the initial boundary conditions to the
final boundary conditions. Where and how does the space-
craft spend all this time? It climbs at first instead of des-
cending, although continuously decelerating its speed, flies
over and past the landing site, continues to decelerate,
stops, heads back toward the landing site, passes the site
.again, decelerates, stops, and finally, approaches and stops
at the landing site. Obviously, trajectory (3) is to be avoided
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from the viewpoint of fuel expenditure, as well as, astronaut
sanity.

The trajectory corresponding to point (2) on the plot
is workable and, fortunately, quite reasonable. For this
trajectory, the range from the spacecraft to the landing site
monotomcally shrinks to zero as the vehicle is continually
decelerated. For a certain band of initial ranges from the
landing site, the trajectory steered closely approximates an
optimum landing.

Even point (2) on the plot in Fig. 5 is unsuitable if the
spacecraft is very close to the landing site when the engine is
ignited. If the vehicle is very close to the landing site, and
its speed is high, the decelerative thrust must eventually be
very large; for the spacecraft must lose its speed before the
site is reached. Thus, if the range-to-go is short when the
engine is ignited, the guidance system may call for a growing
thrust magnitude. This is not a fault of the guidance method
so much as a result of the basic dynamics of the boundary-
value problem. For example, if the site is approached very
closely before engine ignition, it may be quite impossible to
slow up sufficiently before reaching the landing site no matter
what steering law is used. On the other hand, the engine
should not be ignited when the vehicle is excessively far from
the landing site; for then, the guidance law will call for a
rapidly decaying thrust magnitude, operate the engine at a
less efficient lower thrust setting, take a long time to land,
and use, as the result of all these effects, a great deal of
fuel.

Figure 6 is a plot of AV required to achieve the final
boundary conditions versus initial range-to-go. The points
for this plot were generated by repeatedly flying a spacecraft
from some initial velocity vector and altitude to some termi-
nal velocity vector and altitude, varying, for each flight,
only the range-to-go at engine ignition. For each case, the
time-to-go was initially chosen to make the initial thrust ac-
celeration magnitude maximum. The time-to-go during each
flight was then simply decremented by the time elapsed since
engine ignition. Of course, time-to-go corresponding to
point (2) of Fig. 5 was chosen in each case. A Newton-
Raphson technique was chosen to solve the following expres-
sion

aTMAX = aT(Tgo)

for the initial time-to-go which yields an initial maximum
thrust acceleration. Points (1 and 3) are easily distinguished
from the desired solution (2) because of the difference in the
sign of the derivative of thrust with respect to time-to-go at
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these points. This derivative must be computed for the
Newton- Rap hs on procedure, and also serves as a check that
the correct root (2) has been obtained. The vertical dotted
line in Fig. 6 indicates a critical range -to -go for engine ig-
nition. If the vehicle approaches the landing site closer than
this range before the engine is ignited, then the guidance
program commands a thrust magnitude profile which would
require a higher than maximum thrust at some point. If the
engine is ignited before the critical range -to -go is reached,
then the thrust magnitude subsequently decays. It is seen in
Fig. 6 that the fuel optimum point for engine ignition is the
critical range-to-go; that is, the spacecraft should come as
close to the landing site as possible before engine ignition.
On the other hand, choosing a standard engine ignition point
of 12. 2 degrees range-to-go incurs a AV penalty of only 17
ft/sec and provides an engine igntion "window of about 8
seconds.

Appendices

Appendix A: Development of Thrust Acceleration and Esti-
mation of Effective Exhaust Velocity

In this appendix, we derive an expression for thrust
acceleration, a,-p(t), which was very useful for the develop-

ment of the algorithms in the text of the paper. We also
suggest a simple and accurate means of smoothing the thrust
acceleration, aT(t). Simulation oi the guidance laws devel-

oped in the paper was undertaken w ith random noise added to
the measured thrust acceleration. Although the attainment
of the desired terminal boundary conditions was not serious-
ly affected, the steering commands tended to be undesirably
erratic. (One source of the noise is quantisation, which is
exacerbated if the specified force units are integrating ac-
celerometers since in that event their outputs must be dif-
ferentiated. ) We also show how the vacuum specific im-
pulse lop; an important parameter in many of our guidance

laws, can be estimated on board the spacecraft. We remind
the reader that

Ve = glgp (Al)

The fundamental scalar law of motion of a rocket -
propelled vehicle is

(A2)
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where

m > 0 (A3)

If the massflow m of the rocket is constant

and

m = mQ - mt (A4)

aT = Vem/(m0 - mt) (A5)

Dividing ̂ numerator and denominator of the right-hand side of
(A5) by m, we obtain

aT = Ve/(m0/m - t) (A6)

It is undesirable to have the original mass of the vehicle in
our expression for aT because that quantity is difficult to

measure. Also, although we assume m is constant, we do
not wish to use its magnitude because of the difficulty of meas-
uring the massflow. . The offensive quotient can be eliminated
from (A6) by appealing to (A2). Evaluating (A2) for t = 0, we
obtain

m0aT(0) = Vem (A7)

from which we obtain

m0/m = Ve/aT(0) (A8)

We now define

r= Ve/aT(0) = m0/m (A9)

so that (A6) becomes

aT = Ve/(T -t) (A10)

The quantity r is the "burnup time'-', the time required for a
vehicle that is all fuel to consume itself completely. Natur-
ally, we must always have

T < r (All)
go

It is seen from Eq. (A10) that aT(t) is inversely pro-

portional to a linear function of time. Consequently, the re-
ciprocal of ar( t ) is a linear function of time. Therefore, a
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convenient quantity to smooth is

l / a T = T + | 3 t (A12)

Since the reciprocal of a™ is required for (A9), there

is no extra division incurred by forming I/a™ after taking

each accelerometer reading. The procedure then is to fit the
reciprocals of the a™ measurements to a straight line, i. e. ,

estimate the parameters 7 and j3 from a multitude of I/a™
measurements.

Since

13 = -1/V (A13)

we can estimate V by taking the negative reciprocal of the

slope of the fitted straight line.

Appendix B: Formulae for First and Second Derivatives of
Specific Angular Momentum

To evaluate r), and r}- of Eqs (68-69), we require a

formula for the second derivative of specific angular momen-
tum. This is developed below

dh/dt = Ra~ cos a-. (Bl)
1 rt

2 2 * 2
d h/dt = Ra™ cos a- + Ra^ cos a0 /VT R T R e (B2)

RaT( sm

We see in Eq. (B2) that we require the first derivative of
off-,, which is derived next. We recall thatK

sin £ * „ = - ( -/u /R2 + h2/R3)/a rp + C + Dt (B3)
it 1

Taking the first derivative of each side of (B3) yields

(B4)
- 3Rh*/lTt + 2hh/Ru) /aT+ C

Also

(cos aR)aR = (-Ai/R2 + h2 /R3)/Ve - (+ 2/uR/R3

- 3Rh2 /R4+ 2hh/R3)/aT+ C
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I 2 'cos orR = Ml - sin orR (B5)

An expression for orR can be found from Eqs (B4-B5)

It is evident that we can develop higher order deriva-
tives of specific angular momentum, and thus include higher
order derivatives of Q(t) in Eq. (63) It is advisable to in
elude higher-order derivatives of Q(t) in Eq. (63); for, in
cases where the thrust vector rotates from one side of the
local horizontal to the other side during the powered flight,
the representation in Eq. (63) may be inaccurate , and even,
under some conditions, diverge.

Appendix C: Equations for Updating Position and Velocity

The following equations for updating the vehicle posi-
tion and velocity vectors were developed by Dr. James Potter
of the MIT Instrumentation Laboratory. The purpose of these
equations is to compute the current state (position and veloci-
ty) of the spacecraft, given the last computed state and the
AV which is measured between the time of computation of
the last state and the current time. We assume that AV is
the output of the three integrating accelerometers of an iner-
tia! measuring unit. Suppose that the current time is t~ and

that the time elapsed since the calculation of the last state is
At. Then, the last state is

R(t0 - At), V(tQ - At)

\vhich is a quantity available in storage. Also available is
G(tQ - At)At/2 which, of course, may be computed, the first

time, from R(tQ - At) and the gravity model. Then, the equa-

tions for updating the state to the present time, tQ, are:

R(tn) = R(tn - At) + V(tn - At)At + G(tn - At)(At)2/2
0 JL ° ° (CD

+ AV At/2

R2 = R(tfl) • R(tQ) ' (C2)

G(t0)At/2 = - Oi/R • R2) R(tQ)At/2 (C3)

V(tQ) = V(tQ - At) + AV + G(tQ - At)At/2+G(tQ)At/2 (C4)
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These efficient equations have been called the average G
equations", because the current velocity vector is computed
using an average of the old and new gravity vectors.

It has sometimes been said that implicit steering
equations are computationally convenient because they avoid
the necessity of computing the gravitational acceleration and
integrating the outputs of accelerometers to obtain position.
The equations derived in this paper require, of course, ex-
plicit knowledge of position and velocity. The "average G"
equations illustrate how little computational burden_ is_ac-
tually incurred by requiring explicit knowledge of G, R and
V.
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