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ABSTRACT

Large oscillations occurred in the commanded thrust
during the P66 (final) phase of LM descent in the Apollo 11
and 12 flights. A linear stability analysis of the governing
guidance equations shows that the problem was partially due to

a smaller in-flight value of the descent engine time constant

than was originally assumed. Possible solutions are obtained
by lowering the values of two guidance constants which affect

the roots of the system characteristic equation.
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INTRODUCTION

It was observed from the Apollo 11 and 12 Descent
Engine Control Assembly data that large commanded-thrust
oscillations occurred during the P66 (rate-of-descent - ROD)
phase of the flights. During Apollo 12 descent, these oscil-
lations reached peak-to-peak values of 2000 1lb, and the commanded
oscillations continued after the engine was shut off.

A study was made of the basic stability of the gui-
dance equations governing P66. The equations were examined by
placing them and the associated dynamics into a set of linear,
constant first-order difference equations. The degree of sta-
bility was determined by observing the root locations of the
resulting characteristic equation on the Z-plane. (Z-plane
analysis is briefly reviewed in Appendix A.) Various parameters

in the equations were varied to determine their effect upon
stability.

THE SYSTEM CHARACTERISTIC EQUATIONS

The linearized difference equations governing P66

are derived in Appendix B, and are summarized in a matrix
equation:

- - _ - - _ -
a 1 0 1 0 a 0 0
“n-1 “n-2
AHn+l -1 1 —Cl -C2 AHn 1 -1 u
= + . (1)
Aa 0 0 0 1 ba, _4 0 0 w
Aan+l -d K3 —Cld -e Aan K3 —K3
L - L . L - L .

Here, a, is the commanded acceleration, AH is the desired

minus the actual value of vertical rate, and Aa is the throttle-
command acceleration increment issued to the engine. The terms
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u and w are the astronaut input and random driving distur-

bance, respectively. The coefficients Cl’ C2, d, e, and K3

are defined in Appendix B.

Equations (1) can be described in the form

LR s

- >
n+l F x, 0t Gun. (2)

The characteristic equation is

|z - F| = 0, (3)

where I is the identity matrix. From (1), this is

4 3 2
z  + (e-2) 27 + (l—2e+Cld+C2K3) z

(4)

+ (e-2C d+clK -C K3+d) z + (cld—clK

37C, +K,-d) = 0.

1 3 73

ANALYSIS RESULTS

The effects of the erasable guidance gain (Lag/
TAUROD) , the engine time constant Tar the computational

delay Agr and the fixed-memory constant =t on the roots of

th
Eq. (4) were parametrically examined. Each of these terms is
used in deriving Egs. (1) or Egs. (B.19) of Appendix B.
Previously used nominal values for the various equation para-
meters have been approximately:
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TAUROD = 1.5 sec,
Lag/TAUROD = 0.4133,
Ad'= 0.3 sec,

T = 0.2 sec,

th

T = 0.3 sec.
e

First, each of these terms was held constant except
Lag/TAUROD which was varied from ~-1.5 to +1.5 in steps of 0.05.
Stable portions of the resulting root loci of Eg. (4) are
shown on the Z-plane of Fig. 1. The system is stable for
Lag/TAUROD varied from -0.6 to +1.0.

The "best" value of Lag/TAUROD is defined here to
be that which causes the larger magnitude of the roots on
loci coming out from the origin to equal the magnitude of
each root on loci approaching the origin as Lag/TAUROD is
increased. This corresponds to these roots having equal
damping (see Appendix A). For this first case, the best
value was Lag/TAUROD is 0.4, i.e., nearly the nominal value
stated above and used on Apollo 11 and 12. It produces a
maximum root magnitude of about 0.5.

The telemetry data indicated that the engine time
constants T, Were more like 0.075 sec rather than 0.3 sec so

the effect of this value was next examined. Again, Lag/
TAUROD was varied with the stable portions of the root loci
presented in the Z-plane of Fig. 2. For stability, Lag/
TAUROD ranged from about -0.8 to +0.55. The best value was
found to be lowered to +0.15. For Lag/TAUROD = 0.4, the root
location along the negative real axis has a magnitude of 0.83.
(i.e., approaching instability.)

This case was further examined by determining what
effect a decrease in the computational delay time Ay had on

stability. Values of 0, 0.1 and 0.2 sec were studied with
results presented in Table 1. It is seen that decreasing the
delay time shifts both the range of stability of Lag/TAUROD
and the best value in the negative direction. Less than 0.1
sec delay causes the Lag/TAUROD = 0.4133 point to become un-
stable. The actual root loci shapes did not significantly
vary with the changed delay time.
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I conclude, therefore, that the apparent oscillation
problem of Apollo 11 and 12 was due to a system with weakly
dampened roots exciting by some external driving force. The
root shift was probably due to a combination of the decreased
engine time constant, a decreased computational delay time,
and various nonlinear effects.

One suggested solution to this problem has been to
change the guidance equation constant Teh from 0.2 sec. to 0.

This possibility was examined by again varying Lag/TAUROD,
and the resulting root loci are plotted in Fig. 3. The sta-
bility range is from -0.8 to +1.3. The best value of Lag/
TAUROD is 0.2 when the delay time Ad is 0.3 sec. A decrease

in 44 again shifted the range of stable values of Lag/TAUROD

negatively. However, the range is wide enough such that no
potential problem appears. The dashed line of Fig. 3 indicates
a small change in the locus shape for a decrease in Age The

change in 1 definitely improves the stability of the system.

th
CONCLUSIONS

The oscillatory character of the P66 throttle command
was apparently due to the actual value of the LM descent
engine time constant being smaller than that assumed. This,
coupled with a decreased computational lag time, causes a root
of the system characteristic equation to approach the unit
circle (and produce marginal stability) for the nominal gains
previously used.

The problem can be eliminated by changing the para-

meter Teh and the gain (Lag/TAUROD) to smaller values. Actual

magnitudes should be based on the handling quality of the

2014-JAS-ksc J. A. Sorensen
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APPENDIX A

Z-TRANSFORM METHOD

The Laplace transform of a delayed impulse A§(t-T)
is given as

L {Aé(t—T)} = ae TS (A.1)

In a system containing many delayed pulses (like a sampled
data system), it is convenient (Ref. 1) to approximate the
pulses as impulses (ideal pulses) and make the change of

variables z = eTS or s = (1/T) 1ln z. The Laplace transform

of a sampled signal with this change of variable is called the
Z-transform. Thus, the Z-transform of the delayed impulse
AS(t~T) 1is

Z {AG(t—T)} = z71a (A.2)

Suppose the transformed function (i.e., impulse
equation) is expressed as a ratio of polynomials in z, that is
Q(z) /P(z), where each polynomial has positive exponents in
z and the degree of P(z) is greater than the degree of Q(z),
and P(z) has no repeated roots. Then, by partial fraction
expansion,

K K
Q(z) 1 2 n
- — + — + . . . + - L] (Aa3)
P(z) Z Zl z 22 z Zn
K. n_-(n+l)
i -1 -2 Z
Z_Z-Ki{z + 2,2 to.. .+ 2 + . . .1« (A.4)

Because the inverse transform of z to a negative power is a
delayed impulse, Eq. (A.4) has the inverse transform
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1) 5
z-7.
1

L

(A.5)

This is a train of ideal pulses of strength Kizin' where n is

the pulse number associated with the pulse occurring at (n+l1l)T
seconds.

From Eq. (A.5), the stability requirement is seen to
be |Zi| < 1. This also can be seen by noting that the change

of variable z = eST maps the entire left half of the s-plane
into the interior of the circle |z| = 1. The imaginary axis
maps onto the unit circle and the right half plane maps into
the exterior of this circle.

If the Zi in (A.5) is positive, real, and less than

one, the terms in (A.5) will monotonically decrease as n
becomes large. For Zi negative and real, the terms will

alternate in sign. Complex values of Zi(=ZR + jZI) will always

occur in conjugate pairs (for a realizable system), and the
inverse transform of

-1

K{z + (2 2

. - . n -(n+1)
+ jZI)z + . . . + (ZR + jZI) z

R + . . .}

1 2 sz )P . L2 (n+l) oy

+ K{z + (ZR - jZI)z + . . .+ (ZR - 32

(where K is the complex conjugate of K) is the expression

2|K|{cos(<K)§(t-T) + |2; [cos (<K + |2, [) s(t-2T) + . . .
(A.6)

+ |Zi|ncos(<K + nl<z )8 (t-(nt1)T) + . . .}

where <K indicates the phase angle of the complex quantity K.
This is an ideal pulse train multiplied by a damped cosine

- — —-— n -
= Ki {8 (t-T) + Zié(t 2T) + ... + Zi §(t-(n+l)T) + ...}
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wave. The frequency of the cosine wave is seen to depend on
the angle of Zi -- the larger the angle of Zi' the greater the

frequency of oscillation.

The responses for different locations of the roots
of P(z) = 0 can be thought of as the response to a unit impulse
at t = 0. A summary of these responses appears in Fig. 4.
If Q(z)/P(z) represents the transfer function of a system,
the equation P(z) = 0 is its characteristic equation.

Consider a system represented by the linear, first-
order matrix difference equation

>

= FX_ + GU (A.7)
*n¢l T “*p Yn .

Here, §n in the state at time nT, §n+l is the state at (n+l)T,
Gn is the system input, F is the system matrix, and G is the

distribution matrix. The system characteristic equation is
|zI - F| =0 A.8)

where I is the identity matrix.
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APPENDIX B

DERIVATION OF THE DIFFERENCE EQUATIONS

The following equations govern the rate of descent
during P66. They are taken from pages 5.3 - 96, 5.3 - 97,
and 5.3 - 114 of Ref. 2 and are stated approximately as

they appear. Definitions of individual terms are found in
Ref. 2.

Measured Rate-of-Descent

H = UNIT [;(PIPTIME)p] -[\_I(PIPTIME)p + Ay(AT)p + (gp—YBIASP)AT]
(B.1)
Commanded Rate-of-Descent

}'ID = r'ID + RODCOUNT + RODSCALE (B.2)

Commanded Acceleration

ERU_ROII; + gl
IAFCIraw = cos (&) (B.3)

| APipa(at )+ V |
- -BIASP
|aF| = o 5 (B.4)
comp
| £

= - law! _ _ D .
c = TAUROD Lcos(g) il MASSJ (B.5)
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|arc|

new = |AFc|c + |AFC| (B.6)

raw

s = |AFC| limited between ACC and ACC_. (B.7)
max m

new in

Corrected Measured Thrust

4V
£f=|aF| «m + dfp (B.8)

Commanded Thrust

f=m+.s (B.9)

Afth =f - £ (B.10)
Measurement Correction for Next Cycle
ot =25 |Sfc ', Ttn [0 ¢y | /FRATE (B.11)
P th At At 2pat :

To linearize these equations the following assumptions are made:

a. Gravity is constant so gp can be ignored.

.
b. Vchicle ma

ass {m and MASS above) i1s constant so
that accel

eration terms can be worked with directly.

c. Descent is vertical so cos(g) = 1.
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d. The difference between the actual and measured
H is due to some random driving force w. The

VBRIASP term is dropped.
e. The throttle command increment Afth is small
so that the final term in Eq. (B.1ll) can be

dropped.

f. The time lag between when the PIPAs (accelerometers)
are read, and the throttle command is issued (repre-
sented by (tfc - tn) in Eq. (B.ll) is constant.

The command sequence occurs every computational
period of At = 1 sec.

The following definitions are made:

g A tee " En Y Ten
1 At
K, & Lag/TAUROD

>

1/TAUROD

Aa Afth/m

The command acceleration at time n is

a = a + Aan (B.12)

where the subscripts n and n-1 refer to the sample times which

DVO A s e e P

are one second apart. The computational process can be repre-
sented by the time line:
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< 1 sec >
P — Ad l—Ad —>
* 4 4 4 +
PIPA Throttle PIPA Throttle PIPA
read Command read Command read
Hn—l Aan—l Hn Aan Hn+l

The throttle command is issued Ad sec. after the PIPAs

are read. The throttle command voltage to the engine changes

in a constant ramped manner rather than as a step change due to
Aa. This also produces a variable lag dependent upon Aa's
magnitude but is ignored here. The engine has the dynamic delay
represented by the transfer function l/(TeS + 1). Therefore,

the change in acceleration due to a step change Aa at time zero
is

-t/

pa, = sa(l - e € (B.13)

Actually,  the entire past Aa sequence must be accounted
for in determining H. However, it is assumed here that Te is

small enough so that the average acceleration from n to n+l is

2-0d 1-8d

e e
a1 c (1-e ydat + Aanl[ (l-e ydt,

(B ]
(68-2) /1 (Ad—l)/re,J
= a, + da [1 t1g (e - e

(Ad—l)/re
+ Aan [1 - Ad + re(e - l)J ’
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Since the bracketed quantities are constants, a
rewritten as

an
n+l ¢

= a + C
n-2

lAan-l + C2Aan .

Equations (B.l) and (B.2) can be rewritten as

These can be combined by defining

>
e
\
o

so that

From Egs. (B.3) through (B.1ll), the commanded acceleration

increment at time n+l is

Aan+l = K3AHn+l + KZ(_an K

+1 - Kyda)) - oa ) - Kjhay

1

be

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

Equation (B.14) is substituted into Egs. (B.17) and (B.18), and
these are used with Egq. (B.1l2) to produce the difference

equations:
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Aa

Here,

and

n+1.

e = C2(l + K2 + K3) + Kl(K2+l).

1 0
¢ G
0 1
-Cld -e
=1 +K

+ K

3’

(B.19)
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Table 1. Effect on stability of decreasing the time delay
between PIPA readings and throttle command during
P66. The engine time constant is 0.075 sec. and
Tth is 0.2 sec.

Time delay Range of stable Best value of Magnitude of largest
A, sec. Lag/TAUROD Lag/TAUROD root when Lag/TAUROD
d
equals 0.4.
0.3 -0.75 to +0.50 +0.15 0.838
0.2 -0.80 to +0.45 +0.05 0.902
0.1 -0.85 to 0.40 0 0.967
0 -0.95 to 0.35 -0.05 1.033
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