MSC INTERNAL NOTE NO. 68-FM-222

September 11, 1968

PRELIMINARY CONTINGENCY PROCEDURES FOR

THE TRANSLUNAR COAST

PROJECT APOLLO

PRELIMINARY CONTINGENCY PROCEDURES FOR THE TRANSLUNAR COAST

By Bobbie D. Weber, Flight Analysis Branch and
Jerry D. Fuller, Contingency Operations Section, TRW Systems Group

September 11, 1968

MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

CONTENTS

Section Page

1. INPRODUCTION AND SUMMARY 1
2. NOMENCIATURE 2
3. GENERAL TNFORMATION 5
3.1 Nominal Free-Return Circumlunar Trajectory 5
3.2 Abort Targeting 5
3.3 Abort Trajectory Analysis 8
3.3.1 Unspecifiied-area aborts 8
3.3.2 Landing site control 8
4. RETURN TO EARTH ABORT PROCESSORS 25
4.1 RTCC Program 25
4.2 Onboard Program 26
5. SPACECRAFT SYSTEMS AND EQUIPMENT CAPABIIITIES 32
5.1 CSM Subsystems 32
5.1.1 Propulsion 32
5.1.2 Thrust vector alignment 33
5.1.3 Guidance 34
5.2 LM Subsystems 36
5.2.1 Descent propulsion system 36
5.2.2 Thrust vector alignment 37
5.2.3 LGC guidance 37
6. TRANSLUNAR COAST ABORT PROCEDURES 42
6.1 Ground Rules 42
6.2 Procedures 43
G"2.1 Logical flow charts for ground cormunications case 46
Section Page
6.2.2 Logical flow charts for no ground communications case 46
APPENDIX 57
REFERENCES 78
Table Page
IIITotal Flight Times for CLA Aborts10
III Total Flight Times for PLA Aborts 10
IV
V
VI VI
VIIBlock Data Information for Translunar Coast
44
Schedule of Block Data Abort Solutions for Translunar Coast
Input Quantities for the AST Fuel-Critical Unspecified-Area Option 28
Input Quantities for the AST Time-Critical: Unspecified-Area Option 2748
VIII Return to Earth Maneuver Pad Message 49

FIGURES

Figure Page
3.1-1 Variation of Trajectory Parameters During Translunar Coast 11
3.1-2 Relative Positions of Earth, Moon, and Space- craft During Translunar Coast 12
3.1-3 Schematic Representation of Free-Return Circumlunar Trajectory Showing Approximate Time Scale 13
3.2-1 Entry Corridor and Target Line Definition 14
3.3-1 Land-Water Boundaries and Contingency Lines 15
3.3-2 Abort Trajectories from Early Translunar Coast - With a ΔV of 1900 Feet per Second 16
3.3-3 Unspecified-area Abort Analysis During Normal Translunar Coast 17
3.3-4 Postabort Return Time Versus Preabort Delay Time for Unspecified-Area Aborts from Trans- lunar Coast 18
3.3-5 Abort Delta Velocity and Flight Time Required for Contingency Landing Area A, CLA A 19
3.3-6 Abort Delta Velocity and Flight Time Required for Gontingency Landing Area B, CLA B 20
3.3-7 Abort Delta Velocity and Flight Time Required for Contingency Landing Area C, CLA G 21
3.3-8 Abort Delta Velocity and Flight Time Required for Contingency Landing Area D, GLA D 22
3.3-9 Summary of Abort Delta Velocity and Flight Time Required for Minimum Time Returns to Contingency Landing Area During Nominal Translunar Coast 23
3.3-10 Primary Landing Areas and Contingency Landing Areas for AS-504 24

PRELIMINARY CONTTNGENCY PROCEDURES FOR THE TRANSLUNAR COAST

By Bobbie D. Weber, Flight Analysis Branch, and Jerry D. Fuller, Contingency Operations Section, TRW Systems Group

INTRODUCTION AND SUMMARY

This paper presents detailed procedures to be used in the event of contingencies identified during or after the transposition and docking (T and D) maneuver. This does not include contingencies identified during any malfunction checks made immediately following translunar injection (TLI) cutoff. Procedures for contingencies arising during the TLI burn or the malfunction checks are documented in reference 1 . The general ground rules and suggested contingency procedures described below are substantiated by discussion of (1) abort targeting and abort trajectory analysis, (2) ground and onboard return-to-earth programs, and (3) spacecraft systems and equipment capabilities.

The term contingency will be used to specify all those possible problems requiring a spacecraft abort at any time after the block-data abort point at TLI cutoff plus 90 minutes. Conditions resulting in alternate missions are discussed in reference 2 and are omitted here. Reference 3 indicates possible alternate lunar missions that can result from various dispersed TII trajectories.

The procedures presented in this document are of a preliminary nature. Final procedures will be included in an Apollo Mission contingency procedures document to be published by the Contingency Analysis Section, Flight Analysis Branch.

2. NOMENCLATURE

AAWG	Apollo aboxt working group
AOT	Alignment optical telescope
AST	Abort scan table
BMAG	Body-mounted attitude gyro
c	Steering constant
CLA	Contingency landing area
CMC	Command module computer
COAS	Grew optical alignment sight
CSM	Cormand service module
DAP	Digital autopilot
DPS	Descent propulsion system
EMS	Entry monitoring system
Fcua	Fuel-critical unspecified-area
FDAI	Flight director attitude indicator
fps	feet per second
FTP	Full throttle point
g.e.t.	Ground elapsed time
IMU	Inertial measurement unit
ISS	Inertial subsystem
LGC	LM guidance computer
LILM	Lunar landing mission
LM	Iunar module
LOI	Lunar orbit insertion

MCC	Midcourse correction
MGA	Middle gimbal angle
MSFN	Manned spaceflight network
MSI	Moon's sphere of influence
PGNCS	Primary guidance, navigation and control subsystem
PIPA	Pulsed-integrating pendulous accelerometer
PLA	Planned landing area
RCS	Reaction control subsystem
RTCC	Real-time computer complex
RTEAP	Return-to-earth abort processor
RTED	Return-to-earth digitals
SCS	Stabilization and control subsystem
SCT	Scanning telescope
SHe	Supercritical helium
SM	Service module (when used as a subscript: Stable member)
SPS	Service propulsion subsystem
SXT	Sextant
T and D	Transposition and docking
T ar	Time from abort to entry
TCUA	Time-critical unspecified-area
${ }^{\text {t }}$ d	Delay time from some epoch, e.g. TLI cutoff
TEI	Transearth injection
TF'T	Total flight time
$t_{\text {go }}$	Time to go (before thrust cutoff)

$\mathrm{t}_{\text {ig }}$	Time of ignition
TLC	Translunar coast
TLI	Translunar injection
TVC	Thrust vector control
$\mathrm{V}_{\text {EI }}$	Inertial velocity magnitude
\vec{V}_{g}	Velocity to be gained vector for Lambert aim point guidanc
\vec{V}_{r}	Velocity required vector
$\overrightarrow{\Delta v}$	Velocity change vector
$\Delta v \text { or } \Delta V V_{c}$	Change in velocity magnitude
$\gamma_{\text {EI }}$	Inertial flight path angle, measured from the local horizontal

3. GENERAL INFORMATION

3.1 Nominal Free-Return Gircumilunar Trajectory

The sequence of events for a nominal free-return circumlunar trajectory can be described in terms of a typical lunar landing mission (LLM). Table I gives the ground elapsed time (g.e.t.) for events during the free-return trajectory following a 1 February 1968 launch. The times in table I are taken from reference 4 and correspond to a Pacific injection on the second revolution in earth parking orbit. In this particular example, translunar injection occurs at latitude 0.7 degree S, longitude 1.79 .8 degrees E, and places the spacecraft on an ellipse inclined 54 degrees above the earth-moon plane. Figures 3.1-1 and 3.1-2 show time histories of several trajectory parameters during translunar coast (TLC).

From table I, the flight time from free-return pericynthion to entry is about 72.5 hours, compared with a nominal 106.7 hours from transearth injection (TEI) to entry on the complete LLM. Total flight time (TFT) for the free-return circumlunar trajectory, measured from TLI to entry interface, has a range from approximately 126 hours to 148 hours over an entire yearly launch window. This variation can be inferred from the data of reference 5 and is almost entirely due to variation in the earth-moon distance. A, launch azimuth range of 72 degrees through 108 degrees accounts for less than 2 hours variation in this TFT.

Figure 3.1-3 is a schematic diagram of the free-return circumiunar trajectory, as viewed in the rotating earth-moon system. The approximate longitudinal position of Houston at the time of translunar injection is shown on the figure, as well as time ticks indicating the approximate positions of the spacecraft at 24 -hour intervals following injection.

3.2 Abort Targeting

The targeting scheme for an abort maneuver must, of prime importance, place the spacecraft on a trajectory which will enter the earth's atmosphere with a flight path angle lying within the entry corridor limits. A secondary objective is the coordination of the spacecraft landing point with available recovery forces.

Targeting parameters may be classified as direct and indirect, where direct parameters are defined to be orbital elements associated with the desired postabort orbit. Components of a desired target vector, e.g. the unit vector in the desired plane for lunar orbit insertion (LOI) circularization guidance, are direct targeting parameters. In general Lambert targeting, the direct parameters are a desired target vector and the time of arrival at that vector. To detemine a unique postabort orbit, other, indirect targeting parameters are required. The time of ignition and the cross-product steering constant c are examples of these.

TABLE I. TTME SEQUENCE FOR A FREE-RETURN CIRCUMLUNAR TRAJECTORY - LAUNCH ON 1 FEBRUARY 1968

Event	Ground Elapsed Time hr:min:sec	Approximate Time Difference hr:min
Launch	$00: 00: 00$	$00: 11$
Earth Parking		
Orbit Insertion	$00: 10: 58.4$	$02: 29$
TLI Burn Initiation	$02: 39: 54$	
(Pacific Injection)	$02: 45: 23.4$	$00: 5.5$
TLI Cutoff	$09: 45: 23$	$07: 00$
Translunar Midcourse	$26: 45: 23$	$17: 00$
Correction (TLMC) No. 1	$53: 18: 11$	$26: 33$
TLMC No. 2	$69: 18: 11$	$16: 00$
TLMC No. 3		$8: 04$
TLMC No. 4	$77: 21: 44.7$	$72: 27.5$
Free-Return	$149: 49: 14.8$	

For a guided burn the vector velocity to be gained at any instant (\vec{V}_{g}) is found by differencing the required velocity at that instant, \vec{V}_{r}, and the present spacecraft velocity; \vec{V}. The required velocity vector $\left(\vec{V}_{r}\right)$ is a function of the particular set of direct targeting parameters being used. The ultimate objective is to apply the thrust acceleration so as to zero the velocity to be gained (\vec{V}_{Q}). In Lambert targeting the direction of \vec{V} is allowed to change during $g_{\text {the }}$ burn, under the control of the steering ${ }^{\text {constant }}$ c. Typical values of c are 0 to 1 . An operationally simpler guidance scheme is one in which $\overrightarrow{\mathrm{V}}_{\mathrm{g}}$ is calculated once and the abort thrust vector is fixed in this inertial direction. When the magnitude of $\overrightarrow{\mathrm{V}} \mathrm{g}$ reaches zero, thrust is terminated. This latter method is called external ΔV maneuver guidance.

Whenever ground/spacecraft communications are available, abort targeting parameters will be uplinked from the ground to the GMC. In the case of Lambert targeting, these parameters will consist of:
(1) Time of abort burn ignition, $t_{i g}$
(2) Steering constant, c
(3) Components of the target vector
(4) Time from $t_{i g}$ until the target vector is reached.

For external ΔV maneuvers, the uplinked parameters are the time of ignition ($t_{i g}$) and the components of the required ΔV expressed in local vertical coordinates.

More detailed information on targeting schemes is contained in reference 14, from which part of the foregoing discussion was taken.

Spacecraft aborts from the TLC, performed at 5 hours or more after TLI cutoff, result in inertial entry velocities within the approximate range of 34,500 to 36,300 feet per second. This range of inertial velocities corresponds to the shaded region of figure $3.2-1$, which is a plot of inertial flight path angle $\left(\gamma_{\text {EI }}\right)$ versus inertial velocity $\left(V_{E I}\right)$ at the entry interface
(400-000 ft altitude). Figure 3.2-1 shows the 10 g full-Iift undershoot boundary, the zero-lift overshoot boundary, and two entry target lines. Both the manned spaceflight network (MSFN) target line and the contingency target line are used by the ground-based return-to-earth abort processor (RTEAP), while the onboard return-to-earth program (COLLOSSUS P37) contains only the contingency target line. The onboard target line is defined to be at the geometric center of the most restrictive entry corridor (reference 6), which is bounded by the zero-lift overshoot boundary and the 12 g undershoot boundary.

In addition to those built-in target lines, there exists, in each of these programs, the capability to accept a manually-entered value for $\gamma_{E I}$. This $\gamma_{E I}$ override capability might be used, for example, to increase the probability of capture following a time-critical high- ΔV abort maneuver performed without a current navigation update.

3.3 Abort Trajectory Analysis

3.3.1 Unspecified-area abort- This is the least restrictive abort solution available for any given situation, since there are no landing constraints whatever. The solution is constrained to be inplane unless a plane change is required to satisfy the constraint on maximum return inclination (typically 40 degrees). If the preabort plane of motion does not require a plane change, the solution is generated using either minimum time or minimun fuel. The minimum-time solution uses all the available ΔV to obtain the shortest possible postabort flight time, within the maximum entry speed and minimum return time restrictions imposed. If either of these constraints is encountered, a smaller ΔV is used, viz., that ΔV corresponding to either one or both of these limiting values. The minimum-fuel solution employs the least ΔV possible to obtain a return trajectory within the constraints imposed on maximum and minimun return time and maximum entry speed.

In practice, all ground-computed abort solutions are constrained to land on water, to maximize the probability of a safe landing and quick recovery. This constraint may be imposed by approximating the earth ${ }^{1}$ s land mass boundarjes by straight line segments and requiring that at least part of the available landing footprint lies outside these boundaries. Figure 3.3-1 is a typical representation of land masses taken from section 4 of reference 15 , which also contains a complete discussion of the methods of abort solutions.

Representative abort trajectories from TLC are schematically illustrated in figure 3.3-2. The trajectories correspond roughly to an abort ΔV of 1900 feet per second in order to simulate marieuvers limited to the LM descent propulsion system (DPS) ΔV capability. At a fixed abort ΔV of this magnitude, the total flight time (TFT) from TLI cutoff to entry increases rapidly with preabort delay time (t_{d}). This increase is shown in figure 3.3-3, taken from reference 6. In figure $3.3-4$ postabort fiight time ($T_{a r}$) is shown versus t_{d} over the first
20 hours of TLC, including the 1900 fps abort case. With this ΔV, and td between 18 and 25 hours following TLI cutoff, the abort TFT reaches a value equal to the free-return circumlunar TFT. This 7 -hour range of t_{d} is due to the earth-moon distance variation mentioned in the previous section. For delay times longer than $18-25$ hours, direct-return aborts using 1900 fps result in longer TFT's than those performed post-pericynthion on the circumlunar trajectory.
3.3.2 Landing Site Control- Though not the least restrictive abort solutions, aborts restricted only to water landings are in general too demanding from the point of view of recovery. Increased landing site control is exercised in one of two ways: by constraining the center of the landing footprint to a specific longitude, i.e., to a contingency landing area (CLA); or by constraining the center of the landing footprint to be within a given radius about a specific longitude and latitude (planned landing area, PLA). A PLA solution with a zero allowable miss is the most restrictive abort solution possible. Restrictions on maximum and minimum return times, maximum entry speed, and maximum entry inclination apply also to CLA and PLA solutions.

Landing site analysis for TLG abort maneuvers is reported in detail in reference 7 , and the following discussion is partially abstracted from that document. The TLC is a portion of an ellipse having a very large period and a high apogee altitude. This ellipse is relatively fixed in inertial space, with its apogee direction tilted 6 to 11 degrees from the earth-moon line at the time of free-return pericynthion. As a result, the geocentric inertial entry point following abort maneuvers from TLC is relatively, fixed, i.e., insensitive to abort delay time and, to a lesser extent, to abort ΔV. An abort to a specific contingency landing area (GLA) therefore requires a trajectory which reaches this fixed inertial entry point simultaneously with the longitude of the CLA. A wide choice of solutions results from the tradeoff between abort ΔV and TFT as the abort is delayed along the TLC. Figures 3.3-5 through 3.3-9 are taken from reference 6 and show the relationships among abort $\Delta V, T F T$ and t_{d} for four different CLA lines (figure 3.3-10). These figures also show the 24 -hour breaks in TFT for a specific CLA, due to the fixed inertial entry position of the postabort trajectories. Minimumtime returns to the four CLA lines are summarized in figure 3.3-9. Note that none of the minimum-time solutions are available for an abort ΔV of 1900 fps.

Aborts to a PLA differ from CLA aborts primarily in the required plane change to reach a specific latitude. The tradeoff involved between abort ΔV and TFT is similar to that for CLA maneuvers, but the ΔV requirements are higher. Delta velocity difference between PLA and CLA aborts to a common longitude is a sensitive function of the latitude of the PLA, being zero for a PLA lying in the preabort plane. For example, a CLA abort at TLI cutoff plus 5 hours uses a ΔV of 1757 fps to reach a landing point at longitude 65 degrees E . The associated total flight time is 78.8 hours and the landing point latitude is 4.86 degrees S. A typical corresponding PLA differs only by 7.64 degrees in latitude, being located at latitude 12.5 degrees S. To reach this PLA requires a ΔV of 1897 fps and a TFT of 74.0 hours.

The tradeoff between delay time and total flight time can be used to reach any desired CLA with a fixed ΔV expenditure. The resulting spread in TFT is approximately 16 to 19 hours. Table II gives TFTs to the four CLA lines defined in reference 7 for the indicated ΔV values and intervals of t_{d}. Similar information for three PLAs is shown in table III.

Midcourse ΔV requirements following perturbed abort maneuvers are discussed in reference 8. One-degree thrust vector misalignments were simulated in unspecified-area and PLA-type aborts from the TLG. The minimum required ΔV for a postabort midcourse correction (MCC) is, in general, a parabolic appearing function of postabort orbital position, with a minimum at or near postabort apogee. This behavior alters as the spacecraft approaches the earth, and the MGG ΔV increases sharply. Following perturbed aborts from TLC, the original abort landing point can in most cases be maintained to within $50 \mathrm{n} . \mathrm{mi}$. with a MCC ΔV budget of 150 fps , applied in a minimum-fuel unspecified-area mode.

TABLE IT. TOTAL FLIGHT TIMES FOR CLA ABORTS

$\begin{gathered} \text { Abort } \Delta V \\ (\mathrm{fps}) \end{gathered}$	Minimum Delay from Cutoff (hrs)	TFT (hrs)				TFT
						Spread (hrs)
		$\begin{array}{r} \text { CLA A } \\ 20^{\circ} \mathrm{W} \end{array}$	$\begin{array}{r} \text { CLA } B \\ 65^{\circ} \mathrm{E} \end{array}$	$\begin{aligned} & \text { GLA C } \\ & 176^{\circ} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { CLA D } \\ & 100^{\circ} \mathrm{W} \end{aligned}$	
1900	[5	85	79	95	90	16
	10	109	103	119	114	16
	15	133	127	119	138	19
	20	133	151	143	138	18
4000	[30	109	103	119	114	16
	40	133	127	119	138	19

TABLE III. TOTAL FLIGHT TIMES FOR PLA ABORTS

$\begin{aligned} & \text { Abort } \Delta V \\ & (\mathrm{fps}) \end{aligned}$	Minimum Delay from Gutoff (hrs)	$176^{\mathrm{P} L \mathrm{~W}, 11}{ }^{\mathrm{P}} \mathrm{o}_{\mathrm{S}}$		$\stackrel{\text { PLA }}{ } 65^{\circ} \mathrm{E}, 15^{\circ} \mathrm{S}$	$\begin{gathered} \text { TFT } \\ \text { Spread (hrs) } \end{gathered}$
1900	[5	95	109	103	14
	10	119	109	127	18
	15	119	133	127	14
	20	143	133	151	18
4000	30	1-19	107	103	16
	40	119	133	127	14

Figure 3.1-1.- Variation of trajectory parameters during translunar coast.

Figure 3.1-2.- Relative positions of earth, moon, and spacecraft during translunar coast

Pigure 3.1-3.- Schematic representation of free-return circumlunar trajectory showing approximate time scale.

Figure 3.2-1.- Entry corridor and target line definition.

Figure 3.3-1.- Land-Water Boundaries and Contingency Lines

Figure 3.3-2.- Abort trajectories from early translunar coast - with a ΔV of 1900 feet per second.

(Reference 7)

Figure 3.3-3.- Unspecified-area abort analysis during nominal translunar coast.

Figure 3.3-4. - Postabort return time versus preabort delay time for unspecified-area aborts from translunar coast.

Figure 3.3-5. - Abort delta velocity and fight time required for contingency landing area A, CLA A.

Figure 3.3-6. - Abort delta velocity and flight time required for contingency landing area B, GLA B.

Figure 3.3-7. Abort delta velocity and flight time required for contingency índing area C, CLA C.

Figure 3.3-8. - Abort delta velocity and flight time required for contingency landing area D, CLA D.

(Reference 7)

Figure 3.3-9. - Summary of abort delta velocity and flight time required for minimum time returns to contingency landing area during nominal translunar coast.

(Reference 7)
Figure 3.3-10. - Primary landing areas and contingency landing areas for AS-504.
4. RETURN-TO-EARTH ABORT PROGESSORS

4.1 Real-Time Gomputer Complex Program

The return-to-earth abort processor (RTEAP) is the real-time computer complex (RTCC) logic that provides return-to-earth trajectories for high ellipse earth orbital and lunar missions. The RTEAP has complete return-to-earth abort capabilities, with the following exceptions. It cannot determine:

1. a TLC midcourse maneuver performed in earth reference
2. a circumlunar abort maneuver performed in earth reference

Analytic trajectories are computed for the abort trade-off display, which presents graphical data used by the flight controller to select an optimum abort solution. This analytic data also provides initial estimates for the impulsive precision solutions generated for the abort scan table (AST) display. The trade-off display is basically a plot of abort ΔV versus time of abort, with multiple curves to indicate different times of landing. For PLA aborts, landing miss distance also can be shown as a parameter. The curves are generated by scanning the desired region of abort time, using a time increment (between solutions) which is determined by the program logic. Furthermore, scale values for the graphs are generated internally by the program, and are functions of the solutions. In the event that a flight controller desires to see a specific region of the graph expanded, this is accomplished by regenerating data for the desired region with a finer scan interval. The necessary changes in scaling are made automatically since, as stated above, the scaling is driven by the abort solutions.

Two options are available in the RTEAP trade-off display, the PLA/CLA nearearth option and the PLA/CLA remote-earth option. The latter option is designed for flight regions where the inertial entry point is approximately fixed, i.e., for earth-focused eccentricities greater than about 0.8. Thus, the remote-earth option is applicable to TLG abort situations. Figure 4.1-1 (taken from Reference 9) is an example of a remote-earth trade-off for PLA data. Trade-off displays of CLA data have the same general form.

The abort scan table is a digital summary of several abort trajectories generated in the following three steps. First, an analytic solution is obtained using an impulsive thrust maneuver, a conic coast, and a curvefit entry. Next, the generalized iterator program produces an impulsiveprecision trajectory by integrating from the postabort state to the entry state. Thirdly, either a curve-fit or a precision entry simulation produces the landing state. The following options are available in the AST:

```
Time-critical unspecified-area (TGUA)
Fuel-critical unspecified-area (FCUA)
PLA/CLA discrete
PLA/GLA fuel-critical search
PLA/CLA time-critical search.
```

Aborts generated under the first two of these options are constrained to the preabort plane of motion, subject to the return inclination constraint. As a further restriction, the AST is incapable of generating abort solutions having a specified ΔV alignment with respect to visual references. Thus, horizon reference aborts, for example, could be computed only by manual iteration to achieve the desired abort $\overrightarrow{\Delta V}$ alignment. Tables IV and V give the input quantities for the TCUA and FCUA options. The information in these tables'is taken from References 10 and 11 , which constitute complete documentation of the RTEAP logic.

The final abort solution is a fully integrated trajectory which is generated in the return-to-earth digital (RTED) display. The.AST solution is' nominally used as input to the RTED, but the option exists to manually input an external solution. Information from the RTED.display is.transmitted to the command module computer (CMC) for subsequent use in execution of the abort maneuver. Reference 11 gives the complete input required for the RTED display.

4.2 Onboard Return-to-Earth Abort Program

The command module computer (CMC) program 37 (COLOSSUS P37) provides onboard-capability for computing a safe earth-return trajectory, providing the command service module (CSM) is outside the moon's sphere of in-. fluence (MSI) at the time of ignition. COLOSSUS P37 is primarily a backup in the event of communication or ground system failure and is self-contained in that it operates without the use of the ${ }^{\circ} \mathrm{CSM}$ inertial subsystem (ISS) and without ground communication. Minimum-time and minimum-fuel modes are available, with all return trajectories constrained to lie within the preabort plane. The computation includes a conic two-body solution followed by an impulsivemprecision integrated trajectory. A complete description of the program can be found in Rëference 12.

After calling P 37 , the astronaut is required to manually input the following information:

1. Delta-velocity to be used in the maneuver, ΔV
2. Time of ignition, $t_{i g}$
3. Inertial flight path angle at entry, $Y_{E I}$ (if desired to target to any $\gamma_{E I}$ other than built in target line)

TABLE IV. INPUT QUANTITIES FOR THE AST TIMECRITICAL UNSPECIFIED-AREA OPTION

Required Quantities

$\Delta V_{\text {max }}$	The maximum ΔV to be used for the abort maneuver
T_{0} min	The time at which the maneuver is to be computed
$T_{\text {vect }}$	The state vector time in the mission plan table
(MPT) ephemeris	A flag specifying reentry simulation mode

Optional Quantities
$I_{R \max }$
$\mathrm{V}_{\mathrm{R} \text { max }}$
RRBIAS

TGLN

Maximum entry inclination
Maximum entry speed
An entry down-range bias added to the value obtained from the entry curve fits

A flag selecting the entry target line (if other than 'the nominal')

TABLE V. INPUT QUANTITIES FOR THE AST FUELCRITIGAL UNSPEGIFIED-AREA OPTION

Required Quantities
To min The minimum time at which maneuvers will be computed Tvect The state vector time in the mission plan table (MPT) ephemeris

EP A flag selecting the entry mode

Optional Quantities

T_{0} max	The maximum abort time
T_{2} max	The maximum landing time
CIRI	The direction of motion flag for lunar phase aborts (see reference 10)
$h_{p c} \min$	Minimum pericynthion altitude
$\mathrm{I}_{\text {Rmax }} \dot{\text { a }}$	Maxinum entry inclination
$\mathrm{V}_{\text {Rmax }}$	Maximum entry speed
TGLN	Aflag selecting the entry target line (if other than the nominal)
RRBIAS	Entry downrange bias added to the entry curve-fit value.

The minimum-fuel option generates a return trajectory satisfying the contingency target line at entry (built into the program), and minimizes the required ΔV. To insure a minimum-fuel solution, the input ΔV should be zero. If the ΔV input is not zero; the program will, if possible, use the indicated value of ΔV to compute a minimum-time solution; i.e., a trajectory satisfying the entry target line and returning as soon as possible. If the input ΔV is insufficient to ensure a safe return, a minimumfuel solution is obtained. In any event the generation of a minimum-fuel solution is accompanied by an output giving the magnitude of the required ΔV. The value of $\gamma_{E I}$ is normally input as zero requiring P37 to calculate $\gamma_{E I}$ internally using the built in target line.

At the completion of the conic trajectory calculation, and again following the precision integrated solution, the program displays values of the following parameters:

1. Landing point latitude
2. Landing point longitude
3. Required $\Delta \vec{V}$ vector
4. Velocity magnitude at 400,000 feet
5. Flight-path angle at 400,000 feet
6. Time from abort ignition to 400,000 feet

When a propulsion system has been chosen for the maneuver, three additional parameters are displayed: middle gimbal angle at ignition, ground elapsed time of ignition (including computed ignition backup time), and time from ignition. The program has a recycle capability by which the astronaut can adjust input quantities and thus exercise control over the longitude of the abort landing site. It should be noted that P37 does not contain built-in constraints on return inclination, entry speed, or minimum or maximum return time. Since all solutions are inplane, no inclination control is available. The program outputs, however, do enable the astronaut to adjust the remaining parameters by manual iteration. The only P37 constraint on the abort point is that although the program will integrate the CSM state vector through the moon's sphere of influence (MSI), it will not reliably compute a return-toearth trajectory for an ignition time within the MSI. Thus it will generate a postpericynthion abort solution with a $t_{i g}$ following MSI exit.

Execution of $P 37$ causes the storing of return-to-earth target parameters for later use by COLOSSUS P40 or P4I, which are service propulsion subsystem (SPS) and reaction control subsystem (RCS) thrusting programs, respectively. The cross product steering constant is set equal to unity for use by the Lambert aim point maneuver guidance.

The appendix is extracted from References 12 and 13 and contains the simplified logic diagram of the return-to-earth targeting, as well as the CMC logic/astronaut checklist interface for COLOSSUS P37.

Figure 4.1-1. - Trade-off display PLA/CLA remote-earth option (PLA data, earth centered)

5. SPACECRAFT SYSTEMS AND EQUIPMENT CAPABILITIES

CSM Subsystems

5.1.1 Propulsion.- The service propulsion subsystem (SPS) is the primary thrust system for abort maneuvers executed during the LLM. It is contained in the service module and is nominally used during a lunar mission for lunar, transearth, and orbital maneuvers. The major components of the SPS are a helium pressurization system, a propellant feed system, a propellant gauging and utilization system, and a rocket engine. Service life for the SPS engine is about 750 seconds, and the engine will support 50 starts and shutdowns. The SPS thrust. chamber is gimbaled to enable trim alignment of the thrust vector, which passes through the intersection of Y_{A} and Z_{A} axes (of the CSM coordinate system) at $X_{A}=833.2$ inches (reference 17). At the null offset position', the thrust vector is offset from the X_{A} axis +0.95 degrees in yaw and -2.15 degrees in pitch. These null offsets compensate for differences between the CSM center of mass and its geometrical center. The gimbaling mechanism can provide ± 4.5 degree inclinations from the null offset position, measured about the. Y_{A} (pitch motion) and z_{A} (yaw motion) axes.
Propellant and burn time requirements for ΔV maneuvers are functions of spacecraft weight, engine performance parameters, and the desired ΔV. Nominal block II SPS thrust is 20,000 pounds, resulting from a specific impulse of 315.2 seconds and a mass flow rate of 63.5 pounds mass per second. Figures 5.1-1 and 5.1-2, taken from reference 18, are nomographs of block II SPS performance for the CSM and the CSM/LM configurations, respectively. Two examples of the use of the nomographs are shown in figure 5.1-2. A line joining $W_{S C}=96,000$ pounds (spacecraft' weight) with $\Delta V=1900 \mathrm{fps}$ intersects the propellant weight/burn time axis' at 16,400 pounds and about 258 seconds, thus showing the maneuver expendables for this specific ΔV. For the same spacecraft configurations: (same $W_{S C}$), the maximum available ΔV (5450 fps) is found by drawing a line through an assumed maximum propellant weight of 40,000 pounds.

The service module reaction control subsystem (SM RCS) consists of four clusters (quads) of four thrust chambers each, located 90 degrees apart around the forward portion of the SM periphery. Each RCS quad incorporates a pulse-modulated, bipropellant system to provide thrust.for separation, docking, propellant-settling (for the: SPS.), and attitude maneuvers. Although nominal operations of the $S M$ RCS are in a pulsed mode; the performance parameters for a single RCS jet are given in terms of steadystate operation. For a single jet the specific impulse is 276.0 seconds and the propellant flow rate is 0.361 pounds per second, yielding a thrust of 99.8 pounds.

As a backup system. the SM RCS is extremely ΔV limited. At a spacecraft weight of about 96,000 pounds (loaded CSM/LM), four RCS jets firing (in the same direction) for an assumed maximum operating time of 500 seconds provide an impulse velocity of about 67 fps . An equivalent burn results in a ΔV of approximately 300 fps when applied to an empty CSM without the LM
attached. Nominal SM RCS translational maneuvers; i.e., SPS propellant settling and small trajectory adjustments, involve ΔV values less than 10 fps. Performance characteristics in this ΔV range are shown in figure 5.1-3, taken from reference 18.
5.1.2 Thrust vector alignment.- Alignment of the SPS thrust vector for a ΔV maneuver, e.g. an abort maneuver, consists essentially of two steps. First, the spacecraft is maneuvered to the desired thrusting attitude supplied from the ground or by the CMC pre-thrusting program. Once this attitude has been established, the SPS engine bell is trimmed in the pitch and yaw planes such that the thrust vector passes through the current spacecraft center of mass. Nominally both of these steps are performed automatically, but manual capability is provided for those cases where inoperable subsystems require it.

In the primary guidance, navigation and control subsystem. (PGNGS) automatic mode, thrust vector alignment may be accomplished as follows. Each of the pre-thrusting programs of the CMC (COLOSSUS P30, P31, and P37) computes and stores the components of the ΔV vector for the desired thrusting maneuver, as well as the initial thrust direction. These programs also display the middle gimbal angle (MGA) that would result if the maneuver were performed with the existing inertial measurement unit (IMU) orientation. Should the resulting MGA be larger than 45 degrees, gimbal lock and loss of inertial reference is likely. In this case it is desirable to realign the IMU stable member to a preferred alignment.for the impending maneuver; i.e., arbitrarily force the stable member (SM) axes to the following directions:

$$
\begin{aligned}
& \overrightarrow{\mathrm{X}}_{\mathrm{SM}}=\operatorname{UNIT}\left(\overrightarrow{\mathrm{X}}_{\mathrm{B}}\right) \\
& \overrightarrow{\mathrm{Y}}_{\mathrm{SM}}=\operatorname{UNIT}\left(\overrightarrow{\mathrm{X}}_{\mathrm{SM}} \times \overrightarrow{\mathrm{r}}\right) \\
& \overrightarrow{\mathrm{Z}}_{\mathrm{SM}}=\overrightarrow{\mathrm{X}}_{\mathrm{SM}} \times \overrightarrow{\mathrm{Y}}_{\mathrm{SM}}
\end{aligned}
$$

where \vec{X}_{B} is the vehicle X-axis at the preferred vehicle attitude for ignition and \vec{r} is the spacecraft position vector at ignition. This realignment is accomplished by calling P52, a program which provides the option of realigning the IMU to any one of four orientations, including the preferred orientation. (The astronaut may at this point choose to manually maneuver the spacecraft to the desired burn attitude. . Following execution of P52 with the preferred alignment option, this is simply a matter of maneuvering so as to zero the angles on the flight director's attitude indicator (FDAI) ball). Prior to use of the SPS thrusting program (P40), the CMC digital autopilot (DAP) loading routine, COLOSSUS R03, must be executed. In routine 03 the DAP spacecraft configuration and weights are verified (updated by astronaut if incorrect), and the SPS
engine trim angles are calculated and displayed for verification. Upon completing the DAP routine, the astronaut keys in verb 46 ENTER to establish automatic guidance and navigation control, which includes activation of the appropriate section of the DAP. The next step is selection of P40, the SPS thrusting program, for the monitoring of the thrusting maneuver. One of the early steps of this program is the calling of CMC routine 60 , which automatically maneuvers the spacecraft to the initial thrust attitude, by use of the DAP. Finally the pitch and yaw trim maneuvers are executed -- also under automatic control of the DAP -- and the ΔV thrust alignment is complete,

If the PGNCS is inoperative, some of the above operations must be performed manually by the crew with ground assistance. To establish reference the pilot will sight on a star (or other visual object) designated by ground control. Visual acquisition can be made with the sextant (SXT), the scanning telescope (SCT), or the crew optical alignment sight (COAS). The SXT is a 28 power, dual line-of-sight instrument, with each line of sight having a 1.8 -degree field of view. The SCT is of unit optical power, but has a 60-degree field of view. Instrument limitations restrict the effective optical coverage of the SXT and SGT to a 45-degree half-cone centered about the optical shaft drive axis. The COAS is a lighted collimator device with a reticle consisting of a 10 -degree circle, vertical and horizontal crosshairs with l-degree marks, and an elevation scale. Upon acquiring the star, the pilot will uncage one set of the bodymounted attitude gyros (BMAGS), thus changing its function from that of an attitude rate indicator to an inertial reference indicator. The BMAGS are part of the stablization and control subsystem (SCS), which is a backup to the PGNCS. Inertial drift rate for the BMAG system is several orders of magnitude greater than that of the IMU. After establishing an inertial reference with the BMAGS, the pilot can reorient the vehicle to the desired thrust attitude using pitch and yaw angles supplied by ground control. An alternative method for establishing attitude reference involves observation of the earth's terminator. By obtaining a pre-determined attitude with respect to the earth's terminator at a specific time, the crew enables ground control to compute their present inertial attitude, and thus the required pitch and yaw maneuvers to reach the proper ΔV attitude. Earth terminator alignment is discussed further in reference 18. With flight charts of SPS trim angles versus weight, or information supplied from the ground, the SPS engine can be trimmed through the vehicle center of mass. These small maneuvers are performed with the SM RCS under astronaut control, by manual input to the trim wheels.
5.1.3 Guidance. - After a ΔV maneuver has been computed and the spacecraft has been aligned to the initial thrust attitude, it is the function of a guidance system to properly direct the thrust vector for the duration of the burn, insuring the targeted objectives of the maneuver. Powered-flight guidance may be accomplished in one of several ways, as discussed in the following paragraphs.

With all spacecraft subsystems operable, guidance is under PGNCS control and is automatic. Pre-thrusting maneuvers, active engine on/off commands, and continuous thrust-vector control are provided by the CMC DAP for SPS maneuvers (using COLOSSUS P40). There are two available submodes, to accomodate Lambert aim point maneuvers and external ΔV (fixed inertial attitude) maneuvers. In either case, cross-product steering (reference 14) is employed with a basic guidance cycle time of 2 seconds. Each computation cycle is triggered by reading of the pulsed integrating pendulous accelerometer (PIPA) ΔV counters, and contains the following steps.

1. Updating of the spacecraft state vector in the average-g subroutine, including effects of thrust acceleration and gravity
2. Computation of the time to go ($t_{g o}$) before engine shut-off
3. Generation of steering commands for the DAP; i.e., an attitude rate (ω_{CNB}) tending to satisfy the cross-product steering law
4. Updating of the velocity to be gained vector ($\overrightarrow{\mathrm{V}}_{\mathrm{g}}$) by solution of the Lambert intercept problem (This step is omitted in the external ΔV submode.)

In step 4 above, the magnitude and direction of \vec{V} are changed, resulting in rotation of the thrust vector during the burn. ${ }^{\text {g }}$ When external ΔV guidance is being used, $\overrightarrow{\mathrm{V}}_{\mathrm{g}}$ is calculated only one time and subsequent steering commands to the DAP serve only to maintain the thrust at a constant inertial attitude. In both guidance submodes the cyclic process of PIPA ΔV measurement, steering computations, and DAP rate commands continues until the value of $\mathrm{t}_{\text {go }}$ reaches zero, when the engine is automatically commanded off. Thee engine-off comand actually results when \vec{V}_{g} reaches zero, since $t_{g o}$ is proportional to $\left|\vec{V}_{g}\right|$. A complete discussion of PGNGS guidance can be found in reference 12. Figure 5.1-4, taken from this reference, shows the guidance seqqence for a Lambert aim point maneuver.

If the IMU is not on or is not aligned, or if for any other reason the primary system cannot be used, a ΔV maneuver can be performed with SCS thrust vector control (TVC). Such maneuvers are limited to the fixed inertial attitude mode and the spacecraft must be manually oriented to the desired thrusting attitude. Control of this type of maneuver consists only of holding the thrust vector inertially fixed (SCS auto), which is the function of the SCS trim follower integrator. In addition to controlling the direction of $\overrightarrow{\Delta V}$, the SCS also commands the SPS engine off when the entry monitoring system (EMS) ΔV counter has counted down to zero. The EMS ΔV counter must be manually set at the desired value prior to an SCS maneuver.

In severe contingencies the abort maneuver may have to be controlled manually. Without ground communication, a $\overrightarrow{\Delta V}$ attitude must be'determined by astronaut reference to the earth's horizon or terminator, or to the moon's horizon or terminator. In addition, the astronaut must maintain this
attitude during the burn by continuous visual observation of his out-of-thewindow reference. For a constant-attitude, inplane maneuver, the procedure involves:

1. Determining the orbital plane and aligning the spacecraft's pitch plane (X-Z plane) with it
2. Lining up an appropriate horizontal line of the COAS reticle with (for example) the far earth horizon
3. With the rotational hand controller (of the SM RGS jets), maintaining the required pitch angle with respect to the horizon
4. Manually commanding thrust on and off, assuming the ΔV (as well as horizon reference angle) has been determined from prepared crew charts

5.2 LM Subsystems

5.2.1 Descent Propulsion System (DPS).- The LM DPS is the prime backup system in case of SPS engine failures for TLC aborts. Accordingly, it is appropriate to describe the DPS in terms of the major operational differences between the two propulsion systems.

The DPS is physically smaller and carries less fuel, about 18,000 pounds compared with 40,000 pounds in the SPS. In order to provide hover and lunar soft-landing capability, the DPS engine is throttleable between 65% and 10% of its full throttle point (FTP) thrust of 10,500 pounds. This FTP' thrust is approximately half the constant 20,000 pound thrust level of the SPS. Thrust level uncertainties for the DPS are relatively large due to variable erosion of the engine throat.

The fuel-pressurization system for the DPS contains supercritical helium (SHe), which will be loaded about 18 hours prior to nominal liftoff. Due to transfer, of heat from the surroundings, the SHe tank pressure increases by about 10 psia per hour until the DPS engine is fired. Safe operation of the engine at FTP requires a SHe pressure range from 450 to 1400 psia, which corresponds to a time range from 37 to 132 hours following she loading. The disadvantages of accommodating DPS maneuvers (especially abort maneuvers) to the helium pressure timeline are offset by the obvious advantage of accomplishing fuel pressurization with a lighter, more compact system.

The start sequence for the DPS engine requires that the throttle be held at 10% of full thrust for at least 15 seconds. Under the control of a LM guidance computer (LGC) thrusting program, the 10% period is 26 seconds. This low-thrust period is required for the engine gimbal, which is a slowresponse mechanism, to center the thrust vector through the center of mass.

Instantaneous high-thrust operation of the DPS could (with an initial gimbal offset) produce large torques about the center of mass and require excessive LM RGS fuel to maintain stability,

In the event of an SPS failure on an early TLC abort maneuver, the LM DPS could provide a ΔV of 1900 fps to the loaded CSM/LM, by using fullthrust for about 590 seconds.
5.2.2 Thrust Vector Alignment. - The establishment of a $\vec{\Delta} V$ attitude under LM primary guidance and navigation control is similar to the procedure used for SPS maneuvers. LUMINARY program 40 in the LM guidance computer (LGC), contains logic for control of DPS burns (corresponding to COLOSSUS P40). Prior to calling P40, routine 03 is executed in order to verify vehicle weight and inertia data in the DAP. Routine 03 in the LGC also computes and (upon astronaut option) performs the DPS engine trim maneuvers. Following routine 03 , verb 46 ENTER is used to activate the DAP. Program 40 includes the execution of routine 60 , which maneuvers to the initial thrust attitude specified by the pre-thrusting program (LUMINARY P30 or P3I).

Without the primary LM inertial subsystem (IMU), $\vec{\Delta} V$ alignment must be obtained manually using optical measurements to establish inertial reference. This is a difficult procedure because of mechanical limitations on the LM alignment optical telescope (AOT). If the spacecraft can be placed in the plane of two known stars, attitude reference can be established with the aid of ground control, and gimbal settings for the desired maneuver attitude can be supplied.

The above considerations refer to the LM only. For abort situations arising after the post-TLI malfunction checks, the LM will be in a docked configuration with the GSM. The use of the LMM DPS as a thrust backup to the SPS presents no particular problems of $\overrightarrow{\Delta V}$ alignment, except in the extreme case of complete loss of voice communications in both vehicles. In such a situation a block-data abort solution or abort parameters generated by the CMC return-to-earth program (CMC P37) could be manually input to LGC program 30 , and the maneuver subsequently performed with LGG program 40.
5.2.3 LGC Guidance.- Powered-flight guidance with LGC program 40 provides the same two modes as GMG program 40: Lambert aim point guidance and external ΔV (constant inertial attitude) guidance. The LGG guidance computation sequence is described in detail in reference 20 , and is virtually identical to that in the GMC program 40 (see section 5.1.3). The LM PGNCS also provides an attitude-hold mode which can be used for a ΔV maneu. ver in a CSM/LM docked configuration.

Figure 5.1-1. SPS performance nomograph (CSM)

(Reference 18)
Figure 5.1-2. SPS performance nomograph (CSM/LM)

(Reference i8)
Figure 5.1-3. Service module RCS translation performance nomograph

$$
\text { Seconds from Nominal Ignition Time }-t_{\text {IG }}
$$

(Reference 12)

Figure 5.1-4. Normal Lambert Aim Point Subroutine Sequencing (Maneuver time greater than 6 sec) for SPS Maneuvers

6. TRANSLUNAR COAST ABORT PROCEDURES

6.1 Ground Rules

Following is a list of ground rules to be used in the establishment of TLC abort procedures. It should be emphasized that these are not mission rules, but do constitute the current rationale for the eventual formation of mission rules concerning abort procedures. These ground rules, as well as the procedural flow charts to follow, will be reviewed initially by the Apollo Abort Working Group.

1. The SPS is the prime propulsion system for all abort situations, and the DPS will be used only to backup an SPS failure.
2. Initial abort attempts will use the SPS in the CSM/LM docked configuration, retaining the DPS for its SPS backup capability.
3. Minimum time for abort maneuver preparation when using the LM DPS is assumed to be 2 hours.
4. If possible the LM should be kept as a communications backup, to provide entry data as close as possible to entry interface.
5. Upon total loss of ground/spacecraft communications, an abort will be performed at the next time point for which ground control has previously supplied an abort solution. In such a case ground control will have the predicted CM landing point.
6. Block-data abort solutions for the SPS will be'proivided following each GO/NO GO decision point.
7. Block-data abort solutions will be used only in the event of complete communications loss.
8. Block data will be provided in a form and quantity such that the crew will have sufficient information to perform an SCS auto abort (to backup ISS or CMC failures).

8a. The data will be compatible with outputs from the onboard return-to-earth program (P37).

8b. The block-data solutions will involve inplane aborts only.

8c. Table VI is a schedule of block-data abort solutions, showing the time at which ground control provides the data, the approximate time of ignition, and the rationale for the solution.

8d. Table VII presents the information required for block data.
9. In the event that circumlunar, post-pericynthion aborts result in a shorter total flight time than direct-return aborts, the former will be used.

6.2 Procedures

In general terms, TLC abort situations can arise in two different ways: degradation of a life-support system at a rate too rapid to permit continuation of the mission, or loss of a spacecraft subsystem so as to preclude one or more mandatory mission objectives. Loss of ground/spacecraft communications constitutes a severe contingency of the second type, and procedures for the no-communications case will be presented in a separate logical flow diagram.

The logical flow charts presented in figure 6.2-1 and 6.2-2 are predicated on the assumption that no major trajectory dispersion or subsystem failure has been identified during translunar injection, the subsequent malfunction checks, or the transposition and docking (T and D) maneuvers. Immediately following T and D, the crew will have as a minimum an abort solution for TLI cutoff +5 hours, provided to cover SPS failures occurring during TLI and T and D. Between T and D and the first midcourse correction (MCC 1) this 5 -hour solution will be updated to include TLI dispersions, and a 10 -hour solution will be provided for earth return in case of an SPS failure at MCC 1. The schedule for providing and updating block-data solutions continues as indicated in table VII. Rationale for the solution schedule is as follows:

Return-to-earth solutions should be provided a few hours 'after each GO/NO GO decision time. These GO/NO GO points are:

1a. Immediately following MCC 1.
1b. Following the first two crew sleep periods.
1c. The point at which the spacecraft must be committed beyond the switchover time for direct versus circumlunar aborts using DPS $\triangle V$ capability. This latter decision point is variable, depending on earth/moon distance, i.e. launch date (see section 3.3.1).
2. Following each ΔV maneuver, solutions for later abort ignition times should be updated to incorporate the trajectory effects of the maneuver.

Table VI. SCHEDULE OF BLOCK DATA ABORT SOLUTIONS FOR TRANSLUNAR COAST
Time at Which
Ground Control
Supplies Data

1. During earth parking orbit (Pre-TLI)
2. Between T and D
and MCC I (MCC at
TLI cutoff +7 hrs)
3. Following MCC 1 . 10

15

20

86

Rationale for Providing Abort Solution at This Time

Approximate Abort Ignition Time (Hrs after TLI cutoff).

1. To provide data for SPS failures detected during TLI or T and D CSM/LM configuration - abort ΔV within LM DPS capability including 200 fps reserve for MCC

2a. Refine solution No. 1 by incorporation of TLI dispersions DPS ΔV capability

2 b . To provide a return-to-earth solution in the event the SPS. fails at MCC - solution includes no effects of a MCC ΔV

3a. Supply solution incorporating effects of MCC $\triangle V$ - DPS ΔV capability

3b. Provide abort solution for SPS failure at 10 -hr abort - for all later ignition times, a postpericynthion abort within the LM DPS capability returns faster than a direct-return abort

3c. Solution provided at $\sim 2 \mathrm{hrs}$ following crew sleep period abort ΔV within SPS capability in CSM/LM docked configuration

3d. A postpericynthion solution within DPS capability, providing backup for SPS failures occurring during remainder of TLC - $\mathrm{t}_{\text {ig }}$ is 2 hrs outside MSI on transearth leg of free-return trajectory (solution to be updated following subsequent MCCs)
Time at Which
Ground Control
Supplies Data
4. TLI cutoff
$+19 \mathrm{hrs}$

Approximate Abort Ignition Time (Hrs after TLI cutoff)

44
 44

Upon confirmation of an abort situation, the crew, with ground support, must establish a safe maximum return time and the ΔV required to achieve it. In the CSM/LM docked configuration the available ΔV for abort situations is approximately 5000 fps (SPS) or approximately 1900 fps (LM DPS). The SPS can provide $10,000 \mathrm{fps}$ to the CSM only. This ΔV value determines whether the LM can be retained for backup capability. A. minimum return time can be found for both the CSM and CSM/LM configurations, and the landing site control (if any) allowed by the maximum and minimum return times can be established. A real-time choice may have to be made between increased landing site control and the advantages of retaining the LM. For abort situations occurring between the direct/postpericynthion switchover time with DPS capability (TLI + 18 to 25 hrs) and the direct/ postpericynthion switchover time with SPS capability (TLI $+\sim 50 \mathrm{hrs}$), the SPS is the only means for decreasing return time below the postpericynthion value. Thus, during this interval, time-critical aborts will use the SPS.
6.2.1 Logical flow charts for ground communications case.- After the decision to abort has been made, and the return time/landing site tradeoffs have been made, ground control will send the abort solution via voice and computer uplink. In the voice-communication mode, the message would contain the information listed in table VIII which includes the external ΔV targeting parameters sent by telemetry uplink.

An abort solution via CMC uplink is accomplished through COLOSSUS program 27, which can be called from the ground or at astronaut option. Verification of receipt of the uplinked parameters is performed by calling P30 and subsequently P4O following an IMU alignment.

If the computer is inoperable, the abort maneuver will be performed in the SCS auto mode using the ΔV value supplied by ground control. The $\Delta \vec{V}$ alignment can be obtained fy using the supplied gimbal angles, provided the IMU is found to be properly aligned. If not, $\Delta \vec{V}$ alignment may be established in one of two ways. If the IMU and one of the BMAG systems were known to be properly aligned within the previous three hours, the ground-supplied gimbal angles can be used in conjunction with the BMAG system to achieve the required alignment. Otherwise, $\Delta \vec{V}$ alignment must be obtained by use of the visual references for SPS ignition attitude. The logical flow diagram for abort cases with ground communcation is shown in figure 6.2-1. A postabort MCC will be planned following all aborts from TLC. With good communications, MCC procedures will follow the procedures used for the abort maneuvers. Should communications be lost following the abort maneuver, any required MCC will follow the procedures outlined in section 6.2.2, with the exception that no block-data solution will be available.
6.2.2 Logical flow charts for no ground communications case.- If there is a failure of ground/spacecraft communications, the crew will perform an abort at the next time for which ground control has supplied
a block-data solution. The block data will consist of the parameters shown in table VII. Program 37 will be called and an onboard solution will be generated using the block data solution (using the block data ΔV and GETI). Figure 6.2-2 is a detailed logical flow chart of theprocedures to be followed for a $T L \dot{C}$ abort with no ground communications.

TABLEE VII.- BLOCK DATA INFORMATION FOR TRANSLUNAR COAST :

Parameter	Description
GETI	Ground elapsed time of abort maneuver ignition, hr:min:sec
$\mathrm{T}_{\mathbf{i g}}$	Impulsive ignition time for P37 input
ΔV_{c}	Change in velocity magnitude, fps
ϕ_{L}	Latitude of resultant landing point, + north, deg
$\lambda_{\text {L }}$	Longitude of resultant landing pointing, + east, deg
T_{FF}	Transit time from GEPI to 400 000-ft altitude, hr :min:sec
$\mathrm{V}_{\text {EI }}$	Inertial velocity at 400 000-ft altitude, fps
$\gamma_{\text {EI }}$	Inertial flight path angle at 400 000-ft altitude, deg
P, Y, R	IMU gimbal angles at SPS ignition attitude based on current REFSMMAT, deg
STAR/S	Identification of known STAR/S at ignition attitude to be used for BMAG alignment for SCS auto abort maneuver (for IMU fail) and IMU alignment verification
$\left.\begin{array}{l} \text { SHAFT } \\ \text { TRUNNIONS } \end{array}\right\}$	SHAFT and TRUNNION angles for BMAG alignment (for IMU fail) and IMU alignment verification

49
TABLE VIII.- RETURN TO EARTH MANEUVER PAD MESSAGE

Parameter
Propulsion system
Guidance
GETI
$\left.\begin{array}{c}\Delta V \\ \Delta V_{y} \\ \Delta V_{z}\end{array}\right\}$
ΔV_{T}
ΔT_{B}
V_{C}
$\left.\begin{array}{l}\mathrm{R} \\ \mathrm{P} \\ \mathrm{Y}\end{array}\right\}$
$\left.\begin{array}{l}h_{a} \\ h_{p}\end{array}\right\}$
SXTS

SFT
TRN
GET
LAT
LONG
ALT
WGT
PTRM
YTRM

Description
Propulsion system to be used
Normally external ΔV
Ground elapsed time of main engine ignition

Three components of impulsive ΔV along local vertical axis

Total characteristic velocity change for the maneuver including ullage and tailoff

Main engine on time
Characteristic velocity measured along X_{b}

IMU gimbal angles at burn attitude

Post abort apogee and perigee altitudes

Star identification for sextant for backup attitude and IMU check

Shaft angle of SXTS
Trunnion angle of SXIS

Time and position for preburn state vector check

Vehicle weight engine trim angles

TABLE VIII.- RETURN TO EARTH MANEUVER PAD MESSAGE - Concluded In addition to the maneuver pad, preburn entry data will be provided:

Parameter
Description
Area
$\left.\begin{array}{l}V_{400 \mathrm{~K}} \\ \gamma_{400 \mathrm{~K}}\end{array}\right\}$
L.V.
$\mathrm{R}_{400 \mathrm{~K}}$
$P_{400 \mathrm{~K}}$
$Y_{400 K}$
$\mathrm{R}_{\text {tgo }} .05 \mathrm{~g}$
$\mathrm{V}_{I 0} .05 \mathrm{~g}$
RET . 05 g

IAT
LONG
V_{L}

CONST G
MAX G
RETBBO
RETEBO
RETDROG
REIGI
CLA identification inertial entry vector

Lift vector orientation at $400000-\mathrm{ft}$ altitude

IMU gimbal angles at 400 000-ft altitude

Range to go to landing target at .05 g
Inertial velocity at .05 g
Time from beginning of main engine on to . 05 g

Geographic position of landing target
Skip velocity-inertial velocity at the point where g level falls below 0.2 g

Entry g level for backup entry
Maximum load factor during entry
Time from GETI to beginning of blackout
Time from GETI to end of blackout
Time from GEII to drogue chute deployment
Time from GEII to entry guidance initiation

Figure 6.2-1.- Continued

Figure 6.2-1.- Continued

Figure 6.2-1.- Concluded ONBOMn

Figure 6.2-2.- Logical flow diagrams for TLC contingency procedures with no ground to spacecraft communications.

CMC
or $L G C$
0 NBOARD

APPENDIX

Figure A-1 shows the simplified logic diagram for the COLOSSUS return-to-earth targeting routine (P37), taken from reference 12. Figure A-1 is accompanied by a nomenclature list. The remainder of the Appendix is a listing of the operational interface between the CMC logic for P37 and the astronaut check list. This listing is reprinted from reference 13.

NOMENCLATURE for Figure A-1

t_{0}	Any CSM state-vector time during non-thrusting flight, as recorded by the CMC clock
t_{1}	Abort ignition time
n_{1}	Counter
f_{1}	$\text { Flag set to }\left\{\begin{array}{l} 0 \text { initial conic phase } \\ 1 \text { precision trajectory phase } \end{array}\right.$
R_{RC}	Conic entry radius magnitude
$\gamma_{\text {RC }}$	Conic entry flight path arigle
R_{RD}	Desired final entry radius magnitude
$\gamma \mathrm{RD}$	Desired final entry flight path angle
$\mathrm{R}_{\mathrm{R} P}$	Final entry radius magnitude of a precision trajectory
$\vec{r}_{R P}$	Entry radius vector of a precision trajectory
$X\left(t_{1}\right)$	Cotangent of the flight path angle at abort cutoff
$\Delta \mathrm{V}$	Impulsive velocity change
$\overrightarrow{\mathrm{V}}$	Velocity vector
$\Delta \mathrm{v}_{\mathrm{D}}$	Desired velocity change

RETURN TO EARTH (P37) LOGIC REV 20 04/09/68

```
PURPOSE: (I) THIS PROURAM WILL COMPUTE A RETURN TO EARTH TRAJECTORY PROVIDING THE CSM IS OUTSIDE THE LUNAR SPHERE OF INFLUENCE
I THE YIME JF IGNITION
(2) THIS PROSRAM COMPUTES AND DISPLAYS A PRELIMINARY SERIES OF PARAMETERS EASED ON A CONIC TRAJECTORY AND;
    A. ASTRONAUY SPECIFIED TIME OF IGNITION.
    B. AStronaut spECIFIED mAXImuM CHANGE IN vEloCITY.
    C. ASTRONAUT SPECIFIED RE-ENTRY ANGLE.
    THESE PARAMEIERS ARE:
(A) TIME FROM IGNITION TO REFNTRY.
(3) REENTRY INERIIAL VELOCITY.
() REENTRY FLIGHT PATH AVGLE.
J) LATITUDE JF SPLASH.
(E) LONGITUDE OF SPLASH.
(F) DELTA V (LV)
F) DELTA V (LV)
(3) WHEN THE INITIAL DISPLAY IS SATISFACTORY TO THE ASTRJNAUT THE PROGRAM REGOMPUTES THE SAME DATA USING APPLICABLE PERTURBATIONS.TO THE CONIC TRAJECTORY. AND DISPLAYS THE NEW VALUES.
(4) UPON FINAL. ACCEPTANCE BY THE ASTRONAUT, THE PROGRAM CJMPUTES AND SIORES THE TARGET PARAMETERS FOR RETURN TO EARTH FJR USE BY SPS PROGRAM (P4O) OR RCS PROGRAM (P41).
(5) BASEU UPON SPECIFIED PROPULSION SYSTEM THE FOLLOWING ARE DISPLAYEO:
(A) MIDDLE GIMBAL ANGLE AT IGNITION.
(B) TIME OF IGNITIJN. (TIG).
(C) TIME FROM IGNIIION (TFI).
ASSUMPTIONS: (1) THIS PROGRAM ASSUMES THAT CONTACT WITH THE GROUND IS JNAVAILABLE, AND IS COMPLETELY SELF CUNTAINED.
(2) THE IS¢ NEEU NOT BE JN TO COMPLETE THIS PROGKAM.
```



```
+ EARTH THEN T-TE ASTRONAUT JESIRED VALUF WILL BE USLD TO COMPUTE THE DEI IA V REUUIRED VECTOR THE COMPUTEU DELTA \(V\) ZEJUIKED VECIJR wILL BE DISPLAYED IN NOUN 81.
(4) THE UAP JATA LJAU ROJTINF SHOULD BE PERFORMED PRIUR TJ CJMPLEIION UF THIS PKOGRAM (SEE CREW COLUMN BELUK).
```

(5) THIS PRJGRAM IS SELECTED BY THE ASTRONAUT BY DSKY ENTRY.

TERMI VATE FLASH JPON
RECEIPT OF PROCEED OR NEN DATA

VPRE J-MAXIMUM ALLJWABLE こHANGE IN VELOCITY TN FPS TO NEAREST FPS

GAMMI EI-FLIGHT PATH ANGLE BETYEEN INERFIAL VELOCITY VECTOR AND THE LOCAL HOPIZONTAL AY THE FVTRY INTERFACE ALTITUJE AT 400,000 FT. IV DE-. GREES TO THE NEAR-
EST . 21 DEG. MINJS
INDICAIES FLIGHT
PATH IS BELOW THE HORIZJNTAL PLANE NOTE: IF ZERO I NOTE: IF ZERO IS WILL BE SOLVED TJ WILL BE SOLVED TJ HIT EENTER OF ENTRY CORRIJJR, OTHERWISE COMP JTATION WILL BE SOLVEJ TO HIT ANJLE ENTERED.

:

\qquad

BASES JN ASTRONAJT
INPUTS USE CONIC
SECTI JN METHOD TJ
COMPJTE NECESSARY
DEPENDENT VARIABLES
FOR EVALUATION OF
THRUSIING MANEUVER
IHRUSIING MANEUVER
INCLJJING ENTRY LAY．
INCLJJING ENTRY LAT
LONG F FLIGHT PAT
ANG TIME
ESTABLISH ALAZM
IF－
（a）STATE VECTOR
AT TFS IS IN MOOV＇S AT IFS IS IN MOOV＇S STORE ALARM CODE 612.

（3）SOLUTION JJES NOT EJUVERGE DUE IO EXCESSIVE ITERATIONS．

 STORE ALARM CODE 605.:

HOLD . -BAAP**

RECOMPUTE
NECESSARY

- DEPENDEN

FOR PERFJRM
ING THRUST-
ING MANEJVER
USING PRECI
RATION
ESTABLISH
ALARM IF
SOLUT ION
DOES NOT
CONVERGE DUE
TO EXCESSIVE ITERATIOYS.

EXPECTED ALARM

RETURN TO
START OF PRO-
GRAM AND AD
JUST INPUT
JUST INPUT
PARAME TERS.
KEY IN RECYCLE

MONITOR DSKY:
OBSERVE VERB-NOUN
HOLD •
cJJe al This
TIME IS AS DEFINED ABOVE.

WAIT FOR KEY-
BJARD ENTRY

TEZMINATE

FLASH UPON

 RECEIPT OF REEYCLE: \quad - \quad -
......... FLASH VERE-NOUN TJ REQUEST RESPONSE AND displar computed dÁTA

VOS N61
RI-IMPACT LAT R2-IMPACT LONG R3-BLANK

IMPACT LAT-LATITJDE OF CALCULATED IMPACT POINT. IN DEGRELS TO NEAREST . 01 DEG * * IS NJPTH

IMPACT LONG-LONGITUDE JF CALCULATED IMPACT POINT. IN DEGREES FO NEARZST
.01 JEG. + IS EAST

EAIT FOR KEYBOARD ENTRY
 ENTRY

TERMI VATE FLASH JPON RECEIPI OF PROCEED DR REEYCLE

P。	-R
R。	-t
3.	- C
C.	-Y
E.	- C
E.	- L
D.	-t
*	-
-	\therefore
-	-**
-	G0 TJ
-	${ }^{* A *}{ }^{\text {a }}$
-	ABOVE

-

\square -

AM I SATISFIED

KEY IN PROCEED

RETURN TO START
OF PROGRAM AND
ADJUST INPUT
PARAMETERS KEY
IN RECYCLE
V32E

-
\bullet
GO TO
ABOVE

3320

TERMIVATE FLASH JPON RECEIPT OF PROCEED
OR RECYCLE

ρ.	- R
२.	-t
J.	- 6
C.	- Y
E.	- C
E.	-6
D.	-t
-	-
-	-
-	-*
*	GO.TJ
-	"Å"

FLASH VERB-NOUN TJ SNAP** REQUEST RESPONSE AND

COMPJNENTS OF
DELTA V(LV)
VOG NBI
R1-DELTA VX(Lv).
R2-DELTA VY(LV)
R3-DELTA VZ(LV)
DELTA VX(LV)-COMPJ-
NENT JF IMPULSIVE
DELTA V AT TIG ALJNG
(RXV)X2. EN FPS T'J
NEAREST II FPS
DELTA VY(LV)-COMP)
NENT JF IMPULSIVE
DELTA V AT TIG ALONG
VXR. IN FPS TO NEAR -
EST. 1 FPS
DELTA VZ(LV)-COMPJ-
NENT JF IMPULSIVE
DELTA V AT TIG ALJNG
-R. IN FPS TO NLAR-
-R. IV FPS
EST 1 FPS

- MONITOR DSKY:
*490
.. OBSERVE VERE-NOUN
- FLASH TO REGUEST RE SPONSE AND DISPLAY OF THREE STORED COMPONENTS OF IMPUL SIVE DELTA V ALÕ̃NG CSM LOCAL VERIICAL AXES AT TIG
* 470


``` KEY IN PROCEED
```

TERMIVATE FLASH JPON RECEIPT OF PROCEED

WAS THIS THE FIRS
PASS THROUGH THE PROGZA M?

WAS THIS THE FIRST
PASS THROUGH THE

CEEDING ON THIS DISPLAY THE DAP data load rous-

INE (RO3)
SHOULD HAVE
BEEN COMPLETED
BEEN COMPLETED
IN ORDER THAT
THIS PROGRAM
USE THE CORKECT
VALUES FOR
WEIGHT AND, IN WEIGRT AND,
THE CASE OF
RCS. NUMBER OF
RCS. NUMBER OF
JETS TO BE USED
JETS TO BE USED DURING COMPUTATION OF TIME OF BURN.

KEY IN
PROCEED

TERMIVATE FLASH JPON RECEIPT OF PROCEED

TFI - IIME FROM TIG.
IN MIV AND SEC TJ
NEAREST SEC.
HAXIMJY READING 15
59857 (- BEFORE -
AFTEP TIG)
MGA: MIDDLE GIMEAL
ANGLE AT TIG IF
$+X$ CSM AXIS IS
ALIGVED WITH INITIAL
THRUSI DIRECTION.
SIGN IS ALWAYS *
EXCEPT WHEN THE IM
IS NJT ALIGNED T HE
VALUE IS -00002. IN DEGREES TO NEAREST
.01 JEGREE

WAIT FJR KEYBOARJ
ENJRY
KEY IN PROCEED

TERMIVATE FLASH JPON RECEIPT OF PROCEED

RESET EXTERNAL DELTA
\checkmark FLAS

DO ROUTINE KOO
SELECT PROGKAM
CORRESPONDING TO
SELECTED PREVIOUSLY

CHANGE CONTROL VJTES:
$\begin{array}{llll}\text { LOGIC REV } 19 & \text { PCR NASA } \\ \text { PCR NASSA } \\ 109\end{array}$
LOGIC REV $20 \quad$ PCR NASA 107

REFERENGES

1. Weber, Bobbie D.: Preliminary Contingency Procedures for the Translunar Injection Maneuver. MSC IN 68-FM-122, May 23, 1968.
2. Duncan, Rocky D.; et al: Spacecraft Preliminary Abort and Alternate Mission Studies for AS-504A, Volume I - Alternate Mission Studies. MSC IN 67-FM-4, January 6, 1967.
3. Lunar Mission Analysis Branch: Lunar Missions resulting from IV drifts About the Pitch Axes during TLI. MSC Memorandum 68-FM52-245, July 26, 1968.
4. Lunar Mission Analysis Branch: Preflight Data for a Lunar Landing Mission, Volume If - Mission Profile. MSC IN 68-FM-41, February 16, 1968.
5. Hansen, R. H.: Launch Window Summary, Geographic Loci of Apollo Translunar Injection Burns, and Free Return Touchdown Positions for January - June 1970. TRW Note No. 68-FMT-658, June 24, 1968.
6. Adams, James C.: Preliminary V - γ Target Lines for the E and F Missions. MSG Memorandum 68-FM-53-180, May 13, 1968.
7. Foggatt, Charles E.; et al: AS-504A Preliminary Abort and Alternate Mission Studies Volume II - Return-to-Earth Abort Studies. MSC IN 67-FM-91, June 30, 1967.
8. Fuller, Jerry D.: Apollo Lunar Landing Mission Delta-Velocity Budget Study for Earth-Phase Postabort Midcourse Maneuvers. TRW Note 68-FMT-630, April 28, 1968.
9. Davis, Robert S.; Gafford, D. W. ; and Lee, W. R.: AS 503/504 Requirements for the RTCC: The Return-to-Earth Abort Processor. MSC IN 67-FM-134, September 25, 1967.
10. Davis, Robert S. and Lee, W. R.: AS 503/504 Requirements for the RTCG: The Return-to-Earth Abort Processor Volume I - Earth-Centered Logic. MSC IN 67-FM-1.99, December 15, 1967.
11. Daxis, Robert S. and Gafford, D. W.: RTGC Requirements for Mission E and G: The Return-to-Earth Abort Processor Volume II - Moon-Centered Logic. MSC IN 68-FM-33, February 1, 1968.
12. MIT: Guidance System Operations Plan for Manned CM Earth Orbital and Lunar Missions Using Program COLOSSUS. Section 5, Guidance Equations Rev. 1, MIT Instrumentation Laboratory, R577, May, 1968.
13. MIT: Guidance System Operations Plan for Manned CM Earth Orbital and Lunar Missions Using Program COLOSSUS, Section 4, GNCS Operational Modes Rev. 1, MIT Instrumentation Laboratory, R577, April, 1968.
14. Niley, Robert F.: The Cross-Product Steering Constant and Its Operational Use for the Lunar Landing Mission. MSC IN 67-FM-59, April 26, 1967.
15. Gerbracht, R. J.; et al: Program Guide for the TERRA Earth Abort Program. -TRW Document 05952-6080-R0-01, May 15, 1967.
16. Lunar Mission Analysis Branch: Guidelines to be Used on the Attitude Timeline for Lunar Landing Missions. LMAB memo 68-FM55-252, July 23, 1968.
17. North American Rockwell: CSM/IM Spacecraft Operational Data Book, Volume I CSM Data Book. SNA-8-D-027, May, 1968.
18. North American Aviation: Performance Data Supplement to Mission Modular Data Book. SID 66-1501 A, Part 3, Revised March 15, 1968.
19. Davis, R. A. and Serrell, M. A.: Determination of the Earth's Terminator As Viewed 90 Minutes After Translunar Injection. TRW IOC 3423.6-352, June 28, 1968.
20. MIT: Guidance System Operations Plan for Manned LM Earth Orbital and Lunar Missions Using Program LUMINARY. Section 5, Guidance Equations, MIT Instrumentation Laboratory, R567, January, 1968.
