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PARTIAL DERIVA'PIvEs OF MATRICES REPRES-'NTING RTGID BODY ROTATIONS

By Samuel Pines, AMA, and B. F. Cockrell

SUMMARY AND IIITRODUCTION

The method presented for computing the partial derivatives of
matrices representing rigid body rotations is applied heri to the
formulation of an RTCC F-,ocessor presently under development fc , the
lunar larding mission. This processor will determine the lunar moduli
attitude with respect to the local vertical coordinate system by processing
rendezvous radar shaft and trunnion angles with a weighted least squares
filter. As will be seen, the necessary partials in final form are rather
simple, but derivation would be cumbersome without the method derived
here.

In fact, to derive the required partials for the above mentioned
processor with the standard method would require inversion of three
3-by-3 matrices, the partial derivative of a 3-by-3 matrix with respect
to its rotation angle, the multiplications of six 3-by-3 matrices, and
a vector dot product.

With the method given here, the derivation requires the definition
of two unit vectors, a multipi..{^ation of one 3-by-;, matrix by a vector,
and a dot product.

The procedure described in this note can have wide application in
all areas of dynamics involving rigid body rotations both inside and
outside the realm of space technology. Examples include solving for
tracking station location errors by processing angles, determining
the final position of a rigid body after undergoing a finite rotation,
determining inertial platform alignment errors with angle data, and
determining any angular state which is a function of some angular
observation.
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RIGID ROTATION MATRICES IN THREE SPACE

The differential equation for a rotation of a vector R, with

respect to the variable a , about a unit vector, N, is given in any
text on physics as

aRas = N x R
 

(1)

The integration of this equation for a finite a will. represent the rigid

rotation of the vector R about the fixed unit vector N through the angle a.

The vector cross product, in three space, is equivalent to a matrix
transformation. If we take

.1
n1

N = n2 IN; = 1

n3

(2)

Ir1

h = r2
3

r3

then

n2 r 3 -n3 r2

N x R = n3 r, - n1 r3

n1 r 2 - n2 r1

This may also be written as

0 -n n r

 

3 2 1

N x = n3 0 -n1 r2 (3)

-n2 n1 0 r3

F,



F
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If we write

N x R - AMR (3a)

then we can define the rotation

N x = A(N) (4)

where the matrix A is given by

;`. 0 -n^ n2

AM = n3 0 -n1 (4a)

-n2 nl 0

Using this notation, the differential equation for the rotating
vector may be written as

aR
aQ 

= A(N)R

This is a linear differential equation, and a solution may be
obtained in terms of the unit characteristic solution

R = C(N, o) R  (6)

where the matrix C(N, a) satisfies the following conditions:

aC(N, Q)
ac 

= A(N) C(N, a) (7)

with the initial conditions given by the unit matrix in three space, i.e.,

C(N, 0) = I 3 (7a)

The solution of equation (7) is given by

C(N, a) _ eQA(N)I
3 

(8)

Expanding the exponential matrix function, we have

' 2 k
C(N, c) = I 3 + oA(N) + 2: A2 (N) + ... + k: Ak (N) ...

(9)

(5)

t
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It can be shown that the matrix AM satisfies the following
characteristic matrix equation

A 3 (N) = -A(N) (lu)

The ;volution of NN, a ) may be written as

 

C(N, a) = I 3 + (1 - ros a)A 2 (N) + sin a A(N) (11)

This may also be written as

 

C(N, o) = I ? + (1 - cos a) (N x) (N x ) + sin a N x (lla)
J

The inverse of C(N, a) is given by changing a to -a.

C -1 01, I) - C(rJ, -a)

It can be easily shown that this matrix is invertable by the
following discussion:

From equation (8),
t

 C(N, a) = ea AM = I + a AM +[°  
^(N) ]2 + ... + a A(NN) n ] (8a)

3 n.

} If we write AM in the classical diagonal canonical form

T-1 A(N)T = A

or

A(N) = T A T-1

then (A(N)] 2 = (T A T -1 ) (T A T -1 ) = T A 2 T-1

In general [A(N)]n = T A n T-1

We now rewrite equation (8a)

C(N, a) = 
ea T A T-1 = I + o(T A T 1 ) + a T 2 T/ T-1 + ... + a n -1! 

(8b)
Pre-and postmultiplying by T -1 and t, respectively

 

2 n
T-1 C(N, a) T = I + aA + ° ^

 

 CAI + ... +

 

L. n.
,

or

T-1 C(N, a)T = eaA



t

S

A

Now this is the classical canonical form of the matrix C(N. a).

Therefore, the eigenvalues of C(N, v) are e cA , where A are the eigenvalues

of A(N). It is easil,' seen that the eigenvalues of A(N) are 0, t i.
[see equation (10)]

The determinant of C(N, v) is then (e o ) ( e ic ) ( e-ic = 1 and the
matrix is invertable.

We now prove that C(N, a) is an orthogonal transformation. We have

ac  = (4T AT (12)
aQ

But AT is skew symmetric and AT = -A where the superscript T denotes
the transpose. It follows that

a C T = -C
T A

aQ

We also have

C-1 C = I

The derivative of equation (14) yields

ao C-1 C = —C-1 aQ
DC

= -C-1 AC

or

aQ C- 1 = C - ' A

It follows that

C-1 = CT

which proves that C is orthogonal.

An interesting and useful consequence of equation (7) is

(18)aC(a
yQ Q) C-1 (N, Q) = A(i1) = I1 x

(13)

(1^)

(15)

(lb)

(17)



Moreover, if we have a product of two transformations, such as,
E = D(M, B) C(N, °) (19)

the partial derivative of E with respect to the generic variable y is
given by

aE _ aD M 6)
3Y aY

C(N, ° ) + D(M, 
B)

aC N °
(20)

aY

r Postmultiplying with the transpose of E, we have

^E
ET = 

ds
B(M) +

ay D(M, B) A(N) DT (M, B) (21)

•,rhere A(M) = M x (21a)

We now prove that

D(14, B) A(N) DT (M, B) = A(L) = L (22)

where

L = D(M, S) N (22a)

The triple matrix product DAD  is given by

311 312 d13 -1'3 n:_ dll d21 '1

d 21 d22 d23 n3 0 -nl d12 d22 d32 (23)

d 31 d3^_ d 33 n2 nl 0 d13 d23 d33

Carrying out the multiplication fot the first row of B we have
b11 - n1%d12 d13 d12 d13 ) + n2 (d11 d13 d11 d13)

+ n3 (d11 d12 d11 d12)
b1? - nI(d13 d22 - d13 d23 ) + n2 (d11 d23 d21 d13) (24)

+ n3 (d12 d21 d11 d22)
b13 = 

n1 (d13 3 32 d12 d 33 ) + n2 (d11 d33 - di3 d31)
+ n 3 (d12 d-1 - dll d32)

s •
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Since the matrix D(M, 8) is orthogonal we have that

31 d 12 do d13 d22

d 32 d 21 d13 d11 d23

d33 
a

d11 d22 d12 d21

d21, : d13 d 32 d12 d33

d 22 d11 d 33 d13 d31

d 23 d12 d 31 d11 d32

(25)

Consequently,

b11=0
b12 = -d31 rA 1 - d32 n2 - d7)3 n3 = -^3 

(26)
b13 = d 21 n1 + d22 n2 : d 2 n 3 = R2

Similarly we may show
b21 = Q3

b22 = 0

b 23 -z 1 (27)

b  = -R,,

b 32 ̂1

b33 = 0

It follows that

D(M, 8) A M Dr1, (M, 8) = L x (`,$)

where 
D(M, B) N = L
 

(28a)
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The final result for the product transformation is given by

aE ET s ae . +ao 
LxaY aY ay

APPLICATION

The utility of this formulation may be seer in the discussion below
which derives the partial derivatives to be used in an Apollo RTCC
processor.

Just after the lunar landing, the orientation of the LM is recorded
with respect to a mean fixed coordinate system. If this stored alignment
changes (due to LM settling) and realignment cannot be made with the
a.lignment optical telescope; a separate method for LM altitude
determination must be available. The reference presents a method in
which the LM body attitude with respect to the local vertical coordinate

i system is determined by processing rendezvous radar (RF) shaft and trunnion
angles with a ;weighted least squares filter. This method requires the
partial derivatives of the observations with respect to a set of state
elements. This state will be defined as three positive rotations about
the LM local vertical system axes. The three rotations are ordered as

* follows:

1. About the local vertical, al.

2. About the displaced east, a2.

3. About the displaced north, a3.

The transformation from local vertical to IN body coordinates is
then defined:

cos a 3 sin a 3 0 cos a 2 0 -sin a,, 1 0 0

R = 
-sin a 3

9
cos a 03 u 1 0 0 cos a l sin a 1 RLV

0 0 1 sin a2 0 cos at 0 -sin a 1 cos al

(30)

where R  is a vector in the body coordinates and RLV is the same -rector

in the local vertical. system.

r

(29)
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From the body vector the observations may be written as

sin(T) _ -YB

XB
tan(S) = Z

B
where S and T are RR shaft and trunnion angles.

Given the above definition, the least squares method requires the
following partia' derivatives

aoB

 

a' ^— ( 31)

where 0B is S or T and i = 1, 2, 3.

This may be written as

a0B a0B aRB
(32)7o 7, aR  —acti

B

The partialc of 0B with respect to RB follow from the definition in

equation (31). They are

as _ 1

3R 

 

cos T [cos S, 0, -sin S] (33)

am [-sin T sin S, -cos T, -sin T cos S] (34)
aRB

Now by application of equation ;5),

 

aaB = A(N i ) R B (35)
„ 1

Here N i is a unit vector about which R  is rotated through

Fr

 

 a ( i - 1, 2, 3)i

(30)
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Inspection of the vector columns in the matrices of equation (30)
define the N i 's. They are

N1 [-cos a2 cos a 3 , sin a 3 cos a 2 , - sin a2]

N,, _ [-sin a 3 , -cos a 31 01
 

(36)

N 3 = [ 0, 0, -1

From the geometry of the LM body axes, R  may be written as:

cos T sin S

R  = -sin T
 

(37)

c:os T cos S

using the definition (equation 4a) for A(N i ) and applying equations

( 36) and (37) to equation (35)

-sin a 2 sin T + sin a 3 cos a 2 cos T cos S
3R 

= A(N1 ) RB = -sin a 2 cos T sin S + cos a 2 cos T cos
as

cos a 3
1

-sin a 3 cos a 2 cos T sin S + cos a 2 cos a 3 sin T

(38)

-cos a 3 cos T cos S
aRB

as A(N2) R  sin a 3 cos T cos S (39)
2

L cos a 3 cos T sin S + sin a 3 sin T

r sin T
dR B _

A(N3) R  = -cos T sin S (40)as 3 .. 0



II

'he dot products of these
the vectors (equations 33 and
the required six partial deri

as _ as 3R 
ao = as = sin a 3 cos a2

1 aR 1

vectors (equations 38, 39, and 40) with
34) as defined by equation (32) forms

vat i ve s .

-sin a 2 cos S tan T -cos a 2 cos a 3 sin S tar, T

B 
(41)

as
 as aa8 

-cos a -sin S sin a 3 tar. T
2 

3R 
 2 3

as _ as 
aRB= -tan T cos S

aa 3 a  B aa3

as ̂
T aa8 = sin a 2 sin S -cos a cos a 3 cos S

1 aRB 1 2

aT
as 

aT aaB = -sin a 3 cos S
2 9R  2

aT  3  aRB
aa3 a sin S

3a  3R 

(42)

(43)

(44)

(45)

( 46)
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