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RTCC REQUIREMENTS FOR APOLLO lit: TRAJECTORY COMPUTERS 

FOR TLI AND MCC PROCESSORS 

By Brody 0. McCaffety, William E. Moore, and Quentin A. Holmes 

1.0 SUMMARY AND INTRODUCTION 

used SiS°SccSt^an^aS'S °f ? S!riSS documenting the Generalized Iterator 
for Anollo if T^r +rar+-nJe n and midcourse correction processors 

JUl 1 f • .fHi mathematical formulation of the iterator itself is 
general and is documented in reference 1; the programs for the various 

references 2°^dP3°V1?hd ^ £1 ?r°CeSsors haYe been documented in 

progr- - sup.rviso”1toatctoytOTpSLr!ei,5e”»2"! '2j.e2t2ator is 

soSt°i» of "“latl°” th>t *PPl1'' tP i W. ViS iMS 

mpa^sss sysstsfes 
EKS* "Tnl to g.Lr.te t£ d‘s"2 t,._ 
the trai.ff fves the Actional and detailed information about 
t^y =°T r’ ^ thS su^routines used to construct a tra¬ 

jectory, their function, and their algorithms. 

and M22'o22o‘20all!r °f te*J"tori,s generated by the TLI 

amp*;, 2d‘SS Bp?.°fe* g”"‘tea of e“th orMt (1"" *-*«■« 

treasLi2’c2st' *”a * return-to-n<Minal trajectories generated daring 

Free-return trajectories generated from EPO translunar 



d. Free-return, EAP reoptimized trajectories generated during trans- 
lunar coast 

e. Non-free-return, BAP reoptimized trajectories generated during 
translunar coast 

These possibilities are shown in flow chart 3. 

The calculation of each type involves the use of analytical and 
integrated computations. Conic, or analytical, trajectories are used 
in first guess routines to generate initial conditions and in optimizations 
to shorted computation time. Integrated calculations are necessary to 
provide precision target conditions. An explanation of the ways these com¬ 
putation modes are used together is contained in references 2, 3, It, and 5. 

1.1 The Trajectory Computers 

Separate trajectory computers are used to provide first guesses 
for the midcourse correction, for the conic, and for the precision 
trajectory computations. 

The MCC first guess trajectory computer solves Lambert's problem. 
Subroutine TLMC computes the first guess trajectory for the MCC. The 
flow diagram is shown in flow chart k. 

A functional flow diagram of the analytic trajectory computer for 
conic mission calculations is given in flow chart 5. This flow chart shows 
the general flow indicating the sequence of state vector calculations, 
the entry of the appropriate independent variables, the calculation of the 
dependent variables, and the sequence of the mass history calculations. 

The precision propagation of an arc is done using the Herrick-Beta 
technique documented in the appendix of reference 5. Flow chart 5 shows 
the functional flow of the precision trajectory computer. 

1.2 Variables, Stopping Conditions 

Independent and dependent variables for the different trajectory 
computers are shown in tables I and II. 

The stopping conditions for the computers are indicated in the 
flow diagrams but are also discussed here. Integrated trajectories that 
return to the nominal x, y, and z of the LOI node stop at the time of the 
node; the non-free-return BAP options also integrate the same arc and 
stop on the time of the node obtained from the conic optimization. 
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However, the precision transearth trajectory used in the lunar flyby 
stops on an entry flight-path angle. Finally, during the iteration 
process, before the height of LOI is completely correct, the position an< 
ve ocity vectors at the start of LPO are scaled to circular conditions. 
These vectors are used to compute the rest of the trajectory; thus, the 
integrity of those independent variables based on the desired height of 
the orbit is retained; for example, AT AT 

lo’ 11s 

1.3 Lunar Orbits 

The initial lunar orbit may be either an ellipse or a circle 
Subroutine PRCOMP is used with the LOI and DOI maneuvers. This subroutine 
integrates backward from the lunar landing site in an approximation to the 
initial LPO to obtain orbital elements at LOI and DOI times. This routine 
provides the link between the state vector at the start of LOI and the 
state vector at first pass over the lunar landing site. 

2.0 ABBREVIATIONS 

BAP 

EOI 

LLM 

LOI 

LOPC 

LPO 

MCC 

RTCC 

TEI 

TLI 

best adaptive path 

earth orbit insertion 

earth-moon plane 

earth parking orbit 

lunar landing mission 

lunar orbit insertion 

lunar orbit plane change prior to lunar module ascent 

lunar parking orbit 

midcourse correction 

Real-Time Computer Complex 

transearth injection 

translunar injection 
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3.0 SUBROUTINES 

The subroutines and computation modules used in the trajectory 
computers are listed in table III. The following subroutines are involved. 

a. BURN - simulates impulsive thrusting for application of a 
delta velocity magnitude, delta azimuth, and delta flight-path angle 
in the topocentric reference frame. 

,b; CTBODY - used for propagation of a conic state vector for a 
specified time interval. 

c. DGAMMA - determines the universal conic variable from periapsis 
to the nearest specified flight-path angle. 

d. EBETA - determines the interval in the universal conic variable 
irom a given state vector to periapsis. 

v *• +™T ~ '^l^tes a set of orbital elements from a given state 
vector, time, and central body constant. 

f. EPHM - obtains earth and moon states vectors relative to each 

S0^ P°siti°n> and a precession-nutation-libration direction 
cosine matrix from the magnetic tape ephemeris. 

value^of f°- * 

. r.te.ncfteLtfS™™.11'”'**1"5 "P0“ " 1”I“t stat» 
COmPUt“ thS ’iZ‘ “d °f tha °S>>“ 

EA^CIi I accomplishes patching of the geocentric and selenocentric 
vehicle state vectors at the sphere of action of the moon. 

k. RBETA 
propagate from 

determines the value of the universal conic variable to 
given state vector to a specified radial magnitude. 

1. RNTSIM - determines the landing conditions. 

RTASC - determines right ascension of the Greenwich meridian. 

n. RVIO - transforms a given set of 
spherical form to the other form. 

coordinates in Cartesian or 
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o. TLIBRN - simulates the translunar injection thrusting 
by evaluation precomputed polynomials 

p. TLMC - in control when first 
velocity, and delta flight-path angle 
abort of midcourse maneuvers. 

guesses for delta azimuth, delta 
are determined for translunar 

q. XBETA - propagates a given state vector through 
universal conic g to a desired state vector. The 6 
condition for XBETA. 

a specified 
is the stopping 

L' r• RRC0MP - simulates lunar parking orbits from the start of LOI 
through first pass over the lunar landing site by integrating backwards 
in time in an approximation to the initial LPO. 

s. MCOMP - computes the mass after each maneuver (accounting for 

SefirS the SPS °r DPS) and retUrnS 311 err°r messase if all DPS 

t. PPC - computes AV for plane changes 
orbits using conic propagation. 

circular lunar parking 

The remaining text of this internal note will be devoted to a detailed 
description of the input, output, and the mathematics needed for each of 
the subroutines listed above. All lunar orbit computations will be 

r,aius ** 1"41”e ■« 

3.1 Subroutine BURN 

3.1.1 
the vehicle, 
consumption, 
burns. 

Subroutine BURN simulates impulsive thrusting 
velocity equation is used to determine 

This subroutine is used for the MCC, LOI, LOPC, 
■ propellant 
and TEI 

Function.- 
The ideal 

3.1.2 Nomenclature.- 

Symbol InPut pj > 
Output (0) 

Vc 0 

Avr 0 

Definition 

circular velocity 

characteristic delta velocity 
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Symbol 

Av 

Vpl 

Ay 

A ill 

I 
sp 

Input (I), 
output (0) 

change 
burn 

Definition 

1 scalar velocity during 

velocity at perilune of the desired 
ellipse (if ellipse is required) 

.change in flight-path angle 
during burn 

change in azimuth during burn 

specific impulse 

ratio of mass after burn to mass 
before burn 

constant used to convert pounds 
force to pounds mass 

gravitational constant of current 
reference body 

initial position vector 

initial velocity vector 

initial flight-path angle 

intermediate velocity vectors 

final position vector 

final velocity vector 

3.1.3 Method.- The vector Rf is the same as R; that is, the 

assures that the position does not change during the maneuver. 
Compute the values for r and v according to equations (l) and (2) 



If a circular state vector after the burn i: specified, enter 

vVf 

If an elliptical state vector is specified, enter 

Av 

In the other more general option, Av, Ay, and Ai|i 
input. Compute equations (3) through (7) 

are entered as 

d = R-R 

h = |R x r| • (k) 

= R cos Ay + -R - dR 
sin Ay (5) 
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aUK • R1J . R X R 

R2 = -2- sin2 g + R cos Ai|i--- sin Ai/i (6) 

*r -h(l* ¥} m 

Equation (7) represents the velocity vector part of the state Sf after 

the burn. The characteristic velocity can be determined from equation (8). 

(AVr)2 = Av2 + W(v + Av) ^sin2 J —°S2A^ ~ M Sin Ay sin2 mj (8) 

The mass ratio is represented by equation (9). 

(9) 

3.2 Subroutine CTBODY 

3.2.1 Function.- Subroutine CTBODY determines the propagated state 
vector at a specified time, At, from a given epoch state vector. This 
is the classical problem of Kepler and must be solved iteratively because 
of the transcendental relationship between time and the anomalies. 

3.2.2 Nomenclature.- 

Symbols Input(I), 
output (0) Definition 

central body indicator 

position vector magnitude 
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Symbols Input (I), 
output (0) Definition 

I velocity vector magnitude 

Fl’ F2’j 

I gravity constant 

0 square of universal variable 
divided by semimajor axis 

0 functions of the universal 

F3’ F4 1 variable 

R 

semimajor axis 

I initial position vector 

R 
o 1 initial velocity vector 

t I initial time 

Rf 0 final position vector 

Rf 0 final velocity vector 

radius of moon 

■. 3/2 J2, second harmonic of 

moon's gravity 

> I final time 

3.2.3 Method.- - Determine the interval of propagation with equation (10) 

At = t, (10) 
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|At I < 10 12, the final state vector is the initial state vector, 
the operation is complete; if not |At| < 10-12 equations (ll 
U2) result 

(11) 

D = R (12) 

A first guess of the universal variable for the 
is made from equations (13) and (ll*). 

Kewton-Baphson iteration 

At 
(13) 

Subroutine PCOMP is entered to obtain F and F,; and the 

time equation is evaluated according to equations (15) and (l6). 

(15) 

(16) 
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Increment g as defined by equation (17) 

B = 6 + (At - t (17) 

Equation (15) is evaluated with the new value of g, and the Newton- 
Raphson iteration [eq. (17)] continues until the covergence tolerance 
of 1 x io is met. 

10-12 (18) 

Exit with an error message if no convergence is obtained after, for 
example, 10 iterations. 

.. . As the iterations proceed, g will move in the same direction until 
it is very close to the answer. To protect against the tolerance of 10“12 

m equation (18) being too small, the signs of successive values of At - t 
are compared. If two successive iterations should have different signs 
before equation (l8) is satisfied, g is replaced by the average of the 
two values associated with these iterations, and the process is repeated 

thS110-l2r 1VS dlfference between two values being averaged is less 

S ?he uni^sal variable determined, the state vector at the final 
time is determined from equations (19) through (24). 
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41 eF- 

f = (21) 

62F 
g = 1 - -7— (22) 

Rf = fRo + gRo (23) 

Rf = fEo + gRQ (2*0 

Cheak to see whether the ascending node is to be precessed. If 

not,. R, R are produced as output. Otherwise (at time t^), rotate 

R, R to stenographic, coordinates Gq, Gq. The components of G and 

Gq will be x, y, z and x, y, z, respectively. 

Compute n^', n2, and n with equation (25) through (27). 

n2 = zy - zy 

n =V^ + n2 

(25) 

(26) 

(27) 
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If n £ 10 12 return without precessing the node. Otherwise, 
compute equations (28), (29), and (30). 

cos ft = — (28) 

1° X Gol 

The components of H will be h^ hg, ly Then cos i = h3, ? 

sin i = + h2 

Compute equations (3l) through (38) 

Aft = -Jr_ 24T cos i ^ ^ / At (31) 

= R2 = G (33) 



lU 

(3U) 

cos fi cos Ml - sin ft sin Aft 

sin ft cos Aft + cos ft sin Aft 

L 0 

M = 

i (sin ft cos Aft + cos ft sin Aft 

i (cos ft cos Aft - sin ft sin Ml 

(35) 

(36) 

G 
n 

M (37) 

*K x Gj 

With the time tf, rotate G, G hack into selenocentric coordinates 

3.3 Subroutine DGAMMA 

3.3.1 Function.- Subroutine DGAMMA determines the value of the 
universal variable necessary to obtain a state vector at a desired flight- 
path angle, with a specific initial position magnitude and the reciprocal 
of the semimajor axis. 
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3.3.2 Nomenclature.- 

Input (I), 
output (0) Definition 

vector at o 1 magnitude of positi 
periapsis 

1//a 1 . reciprocal of semimajor axis 

^ 1 flight-path angle 

^ 0 hyperbolic eccentric anomaly 

® ^ elliptic eccentric anomaly 

6 0 universal variable 

eccentricity 

3.3.3 Method.- Because the given state vector is computed at periapsis 
equations (39) and (bo) are satisfied. 

■m 
If a < °> the orbit is hyperbolic. 

: tan y + 

; 
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If 0, the orbit is elliptic. 

sin E = 

(where -y; 

6 = E/a 

the orbit is parabolic. 

3 = (sin y/cos y) 

... 3,3,i| .-fnarks,~ 0n an ellipse, the eccentric anomaly is double-valued 
foJ TIZl II ? flifkt-Patk angle. It is apparent from the equation 
for E that the algorithm always given the solution nearer periapsis. 

This 
trajectory 
energy. 

formulation does not provide for optimization of the same 
arc from a hyperbolic energy through parabolic to an elliptical 

For the elliptic case, y may be such that I sin El 
instance, y cannot be achieved, and there is an error. 

In this 

3.U Subroutine EBETA 

~Uti0n;: Subroutine EBETA determines the universal variable 
necessary to obtain the state vector at periapsis. 



IT 

3.^.2 Nomenclature.- 

Symbol Input (I), 
output (0) 

1//a 0 reciprocal of the semimajor axis 

Ro 1 initial position vector 

Ro T initial velocity vector 

ro magnitude of initial position vector 

Yo magnitude of initial velocity vector 

® 0 universal variable 

w 1 gravitational constant 

elliptical eccentric anomaly 

R hyperbolic eccentric anomaly 

eccentricity 

. M*3 Method.- The universal variable and the state vector at 
per laps is are determined by equations (In) and (1»2). 

D0 = R0• Ro (mi 

l/a = 2/ro - vq2/p (42) 

If a > 0, the orbit is elliptic. 

e cos E = 1 - -2. 

e sin E = D //pT 
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E = tan-1(e sin E/e cos E) 

If 1/a = 0, the orbit is parabolic. 

D 
6 = - — 

4T 

If a < 0, the orbit is hyperbolic. 

e cosh H = 1 - r /a 

e sinh H = D /p | a| 

H = In I e cosh H + 

cosh H)2 - 

e sinh H_ 

(e sinh H)2|1 

6 = -h/| a | 

3.5 Subroutine EPHM 

and sub”ut““ locate, transmit into tor., 

.oon SwSoS ;.2Svft?^“r1t\tape- Fr" “=*• «*«b «* 

nutation-libration tSSSk ^SSSf* “4 * 

ajsttm'^broSS:" eph“"ls -tontines uses in th, HTCC »1U b. 

3.6 Subroutine ELEMT 

3.6.1 Function.- Subroutine ELEMT 
elements from a given state vector, time 

calculates a s 
, and central 

set of orbital 
body constant. 
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3.6.2 Nomenclature.- 

Symbol Input (I), 
output (0) Definition 

I I position vector 

R I velocity vector 

H •> ■ . '.0! angular momentum vector per unit 

1 I gravity constant 

a 0 semimajor axis 

e 0 eccentricity 

i 0 inclination of conic 

n 0 mean motion 

P I period 

n 0 true anomaly 

3.6.3 Method.- With R, R, t 
quantities are calculated. 

, y specified, the following seven 

1 _ ( 2 

a ~ \W" 
■ 

^ / (43) 

"\IM (R • R)2 
ya (44) 

H = R x R (45) 

1' “s‘‘ (w) (46) 
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n = tan 1 /1H| (R • R) \ 

\ IHI 2 - V> | R1/ 

2u&/a p = —n- 

(18) 

(19) 

Equations (1*3) through (1*7) apply for all conics; equation (1*8) 
does not apply to circular orbits, and equation (1*9) does not apply to 
parabolas and hyperbolas. 

3.7 Subroutine FCOMP 

3.7.1 Function.- Subroutine FCOMP determines the functions of 
the universal variable necessary to express two-body state vector 
quantities with a specific epoch state vector. The functions are well 
efined by circular and hyperbolic functions except as the universal 

variable approaches zero. To avoid numerical difficulty, the same series 
expansion is always used. FCOMP is used by XBETA and CTBODY to evaluate 
the functions of the universal constant. 

3.7.2 Nomenclature.- 

Symbol InPut (i), 
output (o) Definition 

F 

3.7 

functions of the universal variable 

parameter needed to obtain F 

Fj S (2i + 4 - j); <3 = 1>2 (50) 

Equation (50) is used to compute F and F • F v 
p rl ana nd Fh 81-6 computed 

from equations (51) and (52). 
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3 ~ uri T x 151; 

F4 = aF2 + 1 (52) 

Determine n (the number of terms to be used in the series) as 
follows: For |a| < x, n = y. 

y 

2-5 6 

2-3 
7 

2-2 
8 

2-1 9 

10 

>>•'•2-, ' 11 

k 13 

8 
15 

16 18 

32 21 

6k 
25 

128 30 

256 38 

512 46 
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3.8 Subroutine LIBRAT 

3.8.1 Function.- Subroutine LIBRAT obtains an appropriate trans¬ 
formation matrix and transforms input state vectors from selenographic 
coordinates to other coordinate systems. 

3.8.2 nomenclature.- 

Symbol 

R 

R 

t 

K 

Input (i), 
output (0) 

I and 0 

I and 0 

3.8.3 Method.- Six options exist 
to different coordinate systems. 

Definition 

position vector 

velocity vector 

time of state vector 

indicator 

moon with respect to earth 

fron conversion of state vectors 

K 1 - Earth-moon plane to selenographic 

K = 2 - Selenographic to earth-moon plane 

^ — 3 - Earth—moon plane to selenocentric 

K = 4 - Selenocentric to earth-moon plane 

K = 5 - Selenocentric to selenographic 

K = 6 - Selenographic to selenocentric 

?lane is inVolved’ a matrix is used to convert either 
to or from this coordinate system. This matrix is formed as follows. 

With the specified position R 
ME 

respect to the earth at each given time 
from equations (53), (54), and (55). 

and velocity 

, 1, j, and 

3® of the moon with 

k can be determined 
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= 
(53) 

k = ^ * RME 

x (51*) 

j = k x T (55) 

Set At= J’ ^ and n°te that 1, }, t are taken as column vectors. 

Let A denote the transpose of [A. Then if the selenocentric coordinates 

in the equatorial system are R, R, EMP coordinates are defined by 
equations (56a) and (56b). J 

R' = ATR (56a) 

S' = ATR (56b) 

or, equivalently, R = AR' 
(57a) 

+n ^Wh6n1a conve^io^ is made from the selenocentric coordinate system 
matrix i^j^aphle (moon-flxed) coordinate system, the libration 

With the precession-nutation-libration matrix, B at each given 

time and the selenocentric coordinates R, R, transform to the seleno- 

graphic coordinates R', R" by equations (58a) and (58b). 



(58a) 

2k 

conversely. 

R = 

(58b) 

(59a) 

(59b) 

A combination of the two preceding techniques can be used to 
transform vectors from moon orbit plane to selenographic coordinates 
and the reverse. 

3.9 Subroutine LOPC 

3-9-1 Function.- Subroutine LOPC determines the size and effect 
of the lunar orbit plane change maneuver (CSM2). 

3.9.2 Nomenclature.- 

Symbol Input (I), 
output (0) Definition 

I number of revolutions from first 
pass over lunar landing site 
(LLS) to (CSM2+ 1/U) 

I number of revolutions from 
(CSM2 + 1/U) to second pass 
over LLS 

I period of orbit adjusted by the 
rotational rate of the moon 

So 1 state vector at lunar landing 

time at lunar landing 
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Symbol Input (I), 
output (0) 

L . ■ ^ v" - ' •- j.' \ 

3.9.3 Method.- Compute equation 

Definition 

time from first pass over LLS to 
CSM2 

state vector before CSM2 

time from first pass over LLS to 
second pass over LLS 

predicted state vector at second 
pass over LLS 

time of second pass over LLS if 
no CSM2 

state vector after CSM2 

mass ratio of CSM2 maneuver 

position vector at second pass 
over LLS in selenographic 
coordinates 

velocity vector at second pass 
over LLS in selenographic 
coordinates 

selenographic components of unit 
vector pointing to the LLS 

(60) 

Use CTBODY (regressed) to propagate Sq from tQ to (t + At ) to 

obtain S^ Then compute equation (6l). 

\ = t0 + At2 = *0 + + n)p (61) 
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Use CTBODY (regressed) to propagate SQ to tL to obtain S^. 

Call LIBRAT at time t^ to transform Sg to selenographic coordinates 

Call BURN to obtain using S, , Ai|i, and I . 
1 sp 

3.10 Subroutine PATCH 

3.10.1 Function.- Subroutine PATCH finds a point at which there is 
a specific ratio between the spacecraft and the earth and the moon, and 
the spacecraft changes reference bodies at that point. 

3.10.2 Nomenclature.- 

Symbol Input (I), 
output (0) Definition 

R I and 0 position vector 

R I and 0 velocity vector 

t I and 0 time of vector 

r magnitude of position vector 

. i reference body subscript: 
i = 1, primary body 
i = 2, secondary body 

Q 'i ; 1 direction of patch in time 

ERROR error return 

i gravitational constant 

a i acceleration with respect to 
body i 

universal variable 
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Symbol Input (I), 
output (0) Definition 

primary reference indicator 

position of the secondary body 
with respect to the primary 
body 

magnitude of R21 

innut?'1?;3 •" In thS followinS> if = 1 (earth reference 
secoJSI b rrthTf £;ferred to as the primary body and the moon as the 

««> 2 (”on lnrat)'tie -°°»is ?>■““> 

Subscripts 1 and 2 indicate primary and 
The ratio is defined as follows. 

secondary bodies, respectively. 

Ratio = r _ distance of spacecraft from secondary body 
1 distance of spacecraft from primary body 

Therefore, for a specific two-body orbit. Ratio is a function of the 
&tal Parameters, the universal variable 6, and the moon-earth ephemeris 

KiSne Ratio1’°C<tUre 13 to calculate a second order Taylor's expansion 
giving Ratio in tern, of the folloving fc and second partial derivatives. 

d Ratio d2Ratio 
d6 and ~dF- 

®ln Wxth an x“ffial value of 6, a corresponding initial value of Ratio 

vlr0r=rrnt’ nto e> set Rati°(e + ab) equai to the Paired 
tT+T L Rtl°’ and SOlVe the resulting quadratic equation for AB. 
If the discriminant is less than zero, set d2Ratio/dB2 = 0 and solve the 

ihr“-tTf \°VnStead- -Wlth M inltial Sues3ed value 6, propagate 
Sth resnectSt tv,VeCt°r ^ XBETA) t0 a final State vector at the pStch 
SSJ with't ™ry reference body. The position of the secondary 

chaLrl mdf ! Pr'mary b°dy 13 obtained EPHM. A reference change is made, and r2 and dg are calculated. 
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ARatio = R - Ratio (62) 

(1, 

0,275 ^ moon is 'the primary body 

0.275 if the earth is the primary body 

A. Ratio 1 ( r22dl\ 

dg =r2^ V2'^7 (63) 

where d = R. • R., i = 1,2 

=Il . V + R2 ' A2 dld2 

.^i_!£i!+r2 , 2di2r2 

yir2 riyl ^ yirld 

where v 2 = R • R i =1,2 and A„ = || 
ill 2 r. 

- (>i + "?> „ 
r 3 R91 

tsgi*♦ ,lg„ ii-gasl ySj|tioE + 2 Mo idfip: 
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Replace 6 by g + i 

1 x 10-12. 

and repeat the process until ARatio 

primary bodies 
10 e.r., respect- 

The last state vector and time with respect to the secondary 
body are the output state and time. 

The initial first guesses for the earth and moon e 
are the values of g needed to propagate to 1(0 e.r. ar 
ively. 

Upon further reference to the routine using a given primary body, 
the last value of distance in that particular primary body is used to 
derive a first guess for g. This method implies that two distances 
are saved, one for each primary body; the maximum distance will be 
60 e.r. if the earth is the primary body, and the maximum distance will 
be 15 e.r. if the moon is the primary body. 

3.10.1( Remarks.- The last variable in the calling sequence is an 
error indicator which is a logical variable and which will return a 
value of .TRUE, when an error has occurred in the routine. There are 
four situations in which .TRUE, will be set up on the error indicator. 

a. If the patch iterative procedure fails to converge within 10 
iterations. 

b. If the.ephemeris data table has not been initialized or the time 
calculated within the routine is outside the range of the ephemeris data. 

c. If the magnitude of the input position vector is greater than 
40 e.r. when the earth is the primary body or 10 e.r. when the moon is 
the primary body and if the conic defined by the input state vector is 
such that the radius of periapsis is greater than 40 e.r. when the earth 
is the primary body or 10 e.r. when the moon is the primary body. 

d. Any error indicator from subroutine RBETA. 

3.11 Subroutine RBETA 

3.11.1 Function.- Subroutine RBETA determines the universal 
necessary to obtain a state vector at a desired radial magnitude, 
an initial state vector 
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3.11.2 Nomenclature.- 

Symbol Input (I), 
output (0) Definition 

R 

R 

E 

H 

initial position state vector 

initial velocity state vector 

magnitude of initial position • 
vector 

magnitude of initial velocity 
vector 

direction indicator 

universal variable 

elliptic eccentric anomaly 

hyperbolic eccentric anomaly 

indicator of error return 

gravity constant of reference 
body 

desired radius magnitude 

semimajor axis 

eccentricity 

KBI- Subr°utine RBETA is restricted to cases in which 

an orbii is cirmi mag^tude is greater than the initial magnitude. If 
indica^r set SUbroutine ^es a return with the error 1-ftzzzsnr 
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Determine the dot produce of Rq and Rq, the semimajor axis, and 

the eccentricity with equations (65) through (67). 

D^ = R^ • R (65) 

•■vfW 
If 1/a < 05 the orbit is hyperbolic. 

cosh H = - (l - -2.) 

0 eV a/ 
cosh H = i ^1 _ 

Ho = ±ln ^c°sh Ho + ycosh2HQ - 1^ 

where the sign is chosen to he the sign of D 

(67) 

1 ^cosh H + ycosh2H?--1 ^ . 

9 = Ho - QH 

8 = Q|e|/M 
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If 1/a > 0, the orbit is elliptic. 

where the sign is chosen to be ths sign of D . 

-1 V1 - cos2E 

6 = Q| 6 | /a 

If 1/a = 0, the orbit is parabolic. 

Do JW- ■ 

3.11.U Remarks.- If any of the radicands 
than zero, the distance r is impossible, and 
with error indicator set .TRUE. 

involving r is less 
the calculation is suspended 
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3.12 Subroutine RNTSIM 

„* ,.+ :12,1 gHP-gtion- Subroutine RNTSIM determines the landing conditions 
conditions of delta time from entry to landing and longitude oflanding ’ 

3.12.2 Nomenclature.- 

Symbol 

A 

XL 

AX 

R 

R 

Y 

e 

Input (I), 
output (0) Definition 

0 computed longitude of landing 

I longitude of landing 

error in longitude of landing 

I position vector at reentry 

velocity vector at reentry 

1 magnitude of position vector 
at reentry 

1 magnitude of velocity vector 
at reentry 

I time of entry 

I entry range, n. mi. 

1 time from reentry to landing 

latitude at landing 

right ascension at landing 

Greenwich right ascension at 
time of landing 

flight-path angle at reentry 

central angle between reentry 
and landing 
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3. 
0, S, 

.12.3 Method.-With R, R, and RR specified, the values of p 

V and “l can be determined with equation (68) through (72) 

0 = RR/3443.933585 

where S is the position at landing. 

<f>T = tan-1- — 

(68) 

(69) 

(70) 

(71) 

(72) 

Call RTASC at time t + At to obtain c^. Then 

AX 

X 
aL I aG 

Reduce 
than tt, 
add 2tt. 

AX by any excess multiples of 2tt. If the 
subtract 2n; if the result is less than or 
Thus, -tt < AX > IT. 

result is greater 
equal to -tt. 
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To allow partial derivatives to be obtained correctly despite the 

S::°^ies.nh:rent in this scheme’the quoins lit* 
After each n^in l6 involved in partial derivative calculations. 

“ ^ trajectory computation, the value of AX is retained 
During the perturbed trajectory computations, this value, called AA 

is compared with the current value of AX. If (AA - AAJ < -ir, then 

AA is replaced by AA + 2ir; if (AA - AA ) > 

AA - 2ir. 
is replaced by 

3.13 Subroutine RTASC 

of SUb”Jtlr‘e RTASC a««"«lnes the right .scansion 
sp.=i?iS"“e?e"LleT' computation for the right a.coneion i. 

3.l4 Subroutine RVIO 

3.14.1 
coordinates 

Function.- Subroutine RVIO transforms a given set of 
Ln Cartesian or spherical form to the other form. 

3-14.2 Nomenclature.- 

Symbol Input (i), 
output (0) 

R I and 0 

R I and 0 

r I and 0 

v I and 0 

x I and 0 

y I and 0 

z I and 0 

x I and 0 

y I and 0 

z I and 0 

Definition 

position vector 

velocity vector 

position magnitude 

velocity magnitude 

x component of position vector 

y component of position vector 

z component of position vector 

x component of position vector 

y component of position vector 

z component of position vector 
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Input (I), 
output (0) 

I and 0 

I and 0 

I and 0 

I and 0 

Definition 

latitude 

right ascension angle 

flight-path angle 

azimuth angle 

3.14.3 Method.- To transform spherical coordinates to Cartesis 
coordinates, use equations (73) through (76) 

x = r cos <J> cos 0 

y = r cos if> sin 0 

(73) 

(74) 

(75) 

COS (j) cos 0 

cos ij> sin 0 

sin <(> 

-sin 0 -sin <{> cos 0 

cos 0 -sin <(> sin 0 cos y sin ip 

cos y cos 

(76) 

To transform Cartesian coordinates to spherical coordinates, use 
equations (77) through (82). 

(77) 

(78) 

(79) 
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r =Vx2 + ^ + s 

. = Bln-]R • R 

(80) 

(81) 

3.15 Subroutine TLIBRN 

3.15.1 Function.- Subroutine TLIBRN simulates the translunar 
injection thrusting maneuver by use of a precomputed polynominal. 

3.15.2 Remarks.- The method of this subroutine is contained in 
references 7 and 8. 

3.16 Subroutine TLMC 

3-16.1 Function■- Subroutine 
delta azimuth, delta velocity, and 
lunar state at abort or midcourse. 

TLMC determines the first guesses for 
delta flight-path angle for a trans- 

3.16.2 Nomenclature.— 

Symbol 

t 

t 
I 

x 

y 

Input (I), 
output (0) Definition 

I and 0 state vector 

1 time of state vector S 

1 nominal time of node 

1 x component of position vector 

1 y component of position vector 

z component of position vector 



Symbol Input (I), 
output (0) Definition 

\ 

Y 

f 

At 

ERROR 

AV 

Ay 

A<p 

I desired radius at the perilune 

longitude of perilune in earth- 
moon plane system 

velocity magnitude at perilune 

flight-path angle at perilune 

I latitude of perilune in earth- 
moon plane system 

azimuth of perilune in earth- 
moon system 

I amount of change in t (for 

non-free-return) 

adjusted time of node 

0 flight indicating an error in 
TLMC 

0 change in scalar velocity for 
MCC 

0 change in flight-path angle for 
MCC 

0 change in azimuth for MCC 

3.16.3 Method.- Compute the adjusted time of node: t = t + 

The earth-moon plane (EMP) matrix is obtained by subroutine LIBRAT s 
the time tn for use in transforming the EMP coordinates at the 
node to the selenocentric system. 

• Jhe ?6Xt ®^ep sets the dePendent variable limits, weights, and 
weight cuts. Three dependent variables, x, y, z, are defined as the 
components of the position vector at abort or midcourse. They are designated 
class 1 variables. The minimum and maximum required values of the 
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position components are found by addition and subtraction of a small 

tolerance (10 e.r.) to the abort position components. Flight-path angle 
at time of abort is a class two dependent variable with limits of 90-182°. 

After the dependent variables have been described, the independent 
variables are set up and given a first guess. The first independent 
variable is the longitude of perilune, and the second independent variable 
is the velocity of perilune. First guesses for these two variables are 
obtained from the empirical equations given in reference 3. The third 
independent variable is the azimuth at the perilune, and the first guess 

is % to obtain a retrograde lunar approach hyperbola. 

With the perilune forced to lie at the required EMP latitude and 
to have the required height and flight-path angle, the above independent 
variables determine the state vector at perilune in the FMP. tm«, 

3.17 Subroutine XBETA 

3.17.1 Function.- Subroutine XBETA determines the state vector 

variable ^ p ^ initial state vector for a desired value of the universal 

3.17.2 Uomenclature.- 

Symbols Input (I) 
output (o) Definition 

I universal variable 

K I central body indicator 

F. 
functions of the universal 

variable 

gravity constant 



Symbols 
Input (i), 
output (0) 

Definition 

I initial position vector 

I initial velocity vector 

I magnitude of initial position 
vector 

I magnitude of initial velocity 
vector 

I initial time 

0 fixed position vector 

0 fixed velocity vector 

0 final time 

3.17.3 Method.- From the initial state vector, the final state 
vector is determined as a function of B with equation (83) through (85). 

Do = Ro ’ Ro (83) 

1/a = 2/r - vq2/u (8U) 

a = -32/a (85) 

Call subroutine FCOMP and determine the functions of the universal 
variable. Use equations (86) through (,9k). 

(Dn6F? \ 8 'i * * *„»,j > 
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tf = tQ + t (87) 

ft+ft6t,I (88) 

p£ 
f = 1-- 

O (89) 

g = t - 63F1u (90) 

f = -Vv 3F3/ror (91) 

g = 1 - ^Fj/r (92) 

R = fRQ + gR (93) 

R = fRQ + gR (91*) 

3.18 Subroutine PRCOMP 

.ft ft1 ?unction,~ Subroutine PRCOMP constructs state vectors at LOI 
and DOI based upon the coordinates of the lunar landing site and the 
orientation and shapes of the LOI and DOI ellipses. This routine is 

twi<;e duftng a real-time RAP computation: at the start of the 
first select mode and again at the beginning of the optimize mode. 

3.18.2 Nomenclature.- 

Symbol Input (I), 
output (0) Definition 

iJ/LLS 
selenographic approach azimuth 

to the lunar landing site 

<t>LLS 
selenographic latitude of the 

lunar landing site 
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Symbol 
Input (I), 
output (0) Definition 

ILLS 

rils 

selenographic longitude of the 
lunar landing site 

radius of the lunar landing site 

h „ 
alls 

h m plls 

I apolune altitude of DOI ellipse 
during landing rev 

I perilune altitude of DOI ellipse 
during landing rev 

I central angle between perilune 
of DOI ellipse and lunar land¬ 
ing site during the landing rev 

I estimate of true anomaly of LOI 
(on ellipse) 

“lpoi I apolune altitude of LOI ellipse 

I perilune altitude of LOI ellipse 

“am 

I number of complete revs spent in 
the DOI ellipse 

I total number of revs spent in 
the LOI ellipse (a non-integer) 

integer part of RVS1 

decimal part of RVS1 converted 
to radiams 

0 radius of apolune on the LOI 
ellipse 

radius of perilune on the LOI 
ellipse 

alls semimajor axis on the DOI ellipse 

T 
nd time of the nodal state on the 

approach hyperbola 



Symbol Input (I), 
output (0) Definition 

r)2 

W2,X25R2| 

(V2 jY2,i(/2) 

el 

estimated time of first pass 
over the landing site 

increment of time required for 
a conic trajectory to propagate 
from a true anomaly of nl 
forward through DR1 radians 
along the LOI ellipse 

true anomaly on the LOI ellipse 
at the position of DOI 

selenocentric unit position vector 
of the landing site 

selenocentric unit position vector 
to the hyperbolic perilune 

fraction of a rev (in radians) 
traveled in the DOI ellipse 

polar components of a selenor 
graphic state vector over the 
lunar landing site at time TLLg 

approximate time of DOI obtained 
by backward integration 

semimajor axis of the DOI ellipse 
at time 

eccentricity of the DOI ellipse 
at time 

unit selenocentric perilune 
position vector of the LOI 
ellipse at time T 

RA2 
apolune radius associated with 

the DOI ellipse at time T 



Symbol 
Definition 

1A 

Input (I), 
output (0) 

RP2 

<M,Rj 

R1I 

VII 

Upl 

RA1 

RP1 

Ah 
P 

Perilune radius associated with 
the DOI ellipse at time 

polar components of a selen- 
ocentric state at the start 
of DOI 

position vector on the LOI 
ellipse obtained by backward 
integration to time T 

nd 

velocity vector on the LOI 
ellipse obtained by backward 
integration to time T 

nd 

unit perilune position vector 
associated with R1I, VII 

radius of apolune associated 
with Til, VII 

radius of perilune associated 
with Rll, VII 

change in perilune position of 
the LOI ellipse because of 
propagation 

change in apolune altitude of 
the LOI ellipse because of 
propagation 

change in perilune altitude of 
the LOI ellipse because of 
propagation 

time increment from LOI to DOI 

selenographic state vector at 
the end of LOI 

selenographic unit position 
vector of perilune on the DOI 
ellipse at time 
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3.18.3 Method.- Input provides a nodal state on the approach hyperbola 
from the trajectory computer; the lunar landing site coordinates and the 
stenographic approach azimuth are taken from preflight data, while the 
size, orientation, and duration of the LOI and DOI ellipses are specified 

Vis’ Vis’ n1’ PlPOl “W RVS1, and RVS2, 
by MED quantities 

and Aw. 
1 ’ 

“lpoi - “lpoi * rll,’ RPLP01 ■ “PtP01 * rlls’ “* 

llls “ rlls + ^halls + hplls^^"^’ ^en use equation (95) to compute 

in estimate of the time of first pass over the lunar landing site. 

vi 
where Atg is the time increment required for a conic to propagate from a 

true anomaly of nl on the LOI ellipse forward through DR1 radians. (The 
true anomaly at the end of this conic prapogation is saved as n2). 

Next, form a unit position vector to the landing site, transform it 

and call it u,,_. Let to selenocentric coordinates at time T 

) and assume Act to be = arc cos(u 
11s' 

■“Us ' upc' ana assume Aa to be Act' or 2ir - Act' 

according to whether landing site passage occurs after or prior to -u 

on the DOI ellipse, that is, if gV x UpJ . RXV 0f hyperbola >0, ^ 
A“ V* W Form. DA' = Aa = DR1 &nd then use DA .equal to DA' 
or it + DA according to whether DA' is positive or negative. Increment 
^LLS by the conlc time required to travel DA radians from the landing 

site back along the DOI ellipse. Recompute a selenocentric unit position 
vector to the landing site with this updated time, and redetermine DA. 

A selenographic state vector over the lunar landing site can be 
constructed in polar form according to $2 = <t> , \2 = X ip2 = \p 

with equations (96) through (98). LLS LLS LLS 

:2)/[l - ! (Awx)] 
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where e - -1 + (hallg + rns^/ans' Convert this state vector to 

Cartesian form, then transform to selenocentric form at time T 
LLS 

and integrate backward through 2tt • RVS2 + DA radians. The time of 
resultant state vector will be used as T^> the approximate time of 

DOI. Calculate the associated semimajor axis, A^, eccentricity E , 

and unit perilune position vector Compute the radius at apolune 

RA2, and the radius at perilune RP2. 

A state vector at the end of the LOI ellipse can be constructed 
in polar form by noting that no plane change occurs during the DOI 

maneuver. With the abbreviations A = \ (RATDnl + ) and 
2, . J-iirOJ. LP 01 

E = -1 + a (RALP01^ e<luations (99) through (lOl) can be evaluated. 

R = A(1 - E2)/[l + E cos (n2)] (99) 

v = u(|_I)1/2 (100) 

Y = sign(n2) arc cos E2)j (lOl) 

with 4>, X, ip, and time equal to their values at the start of the DOI 
ellipse (l.e., at the end of the backward propagation). Integrate this 

state vector backward in time to Tnd to obtain R1I, VII. Compute the 

associated unit perilune position vector, u radius at apolune, RA1 
and radius at perilune RP1. P1 ’’ 
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• (R1I X VII)] Evaluate % . „c co. („pl • u^) sign » 

and form the differences Ah = RA2 - RA1, Ah = RP2 - RP1 Form 
a p 

AT = T - T ; set the independent variable AT = T m 
L nd 1st pass XLLS nd: 

and return to the main program. 

3.19 Subroutine MCOMP 

3.19.1 Function.- Subroutine MCOMP computes the mass of the space- 
craft after each maneuver. The maneuver may be performed with either the 
SPS or the DPS. After the LM is undocked from the CSM, only SPS maneuvers 
are performed. An error message is returned if the LM fuel has been 
completely expended. 

3.19.2 Method.- The subroutine is called with the maneuver AV a 
docked or undocked indicator, a DPS or SPS indicator, the present space¬ 
craft mass, the available LM fuel, the LM fuel spent in previous 
maneuvers, and the specific impulses of the SPS and DPS full throttle- 
and returns the mass after the maneuver. 

An initial test is made to see whether the LM is still docked. If 

. -AV/g I of SPS. 
it is not docked, the final mass is computed as m e 0 SP 

If it is still docked, a test is made to see whether the maneuver is to 
be performed with the DPS. If it is not to be performed with the DPS, 
_ ~AV/g I of SPS 
the final mass is computed as m e ° sp . If it is to be 

performed with the DPS, the mass expended on the maneuver is computed as 
-AV/g I of DPS 

mof?i 6 ). If the sum of this delta mass and any previous 

LM mass expended is greater than the LM fuel available for a maneuver, 
an error message is to be displayed which will indicate that this plan of 
maneuvers cannot be performed. If the sum of this delta mass and any 
previous expended LM fuel is less than the LM fuel available for maneuvers 
atest^smade to see whether the LM is to be dropped after this maneuver. 
If it is to be dropped, the final mass is computed as m - (m - Am ) 
x, .. . 1 . , o LM total 
If it is not to be dropped, the final mass 
the maneuver. 

i computed £ 



3.20 Subroutine PPC 

3.20.1 Function.- Subroutine PPC accepts a selenocentric LPO state 
vector and computes the delta V required to make a plane change which 
will place the spacecraft over a given photographic site revs later. 

The selenographic state vector at passage over the photographic site 
is output. Several plane changes can be handled sequentially. 

3.20.2 Nomenclature.- 

Symbol 

D 

D1 

DL 

DT 

DV 

DVS 

GMT 

H 

H' 

HSMA 

INTL 

IMAX 

K 

ND1 

PP 

sa 

SIN 

Definition 

time from SMA to ND1 

angle between ND1 and S used for first guess computation 

angle between SLLG and SG used for first guess computation 

time from ND1 and SMB 

total accumulated velocity required 

stored total velocity required (use for INTL ^ 0) 

stored time from base time of original input state vector 
(used for INTL ^ 0) 

unit angular momentum vector associated with SMB 

unit angular momentum vector associated with SMA 

negative angular momentum associated with SMA 

counter for lunar photographic sites 

initialization flag (INTL = 0 Iterate, INTL j 0 transform 
previous iterated result) 

maximum number of photographic sites 

iteration counter 

unit nodal vector of parking orbits defined by SMA and SMB 

period of LPO 

unit projection of SMB into plane defined by SMA 

number of passages over each photographic site 

current selenocentric base state vector (input state 
vector or previous site) 

input selenocentric LPO state vector 

. . ^11 state vectors are of dimension 13 and contain X, Y, Z, r, r2, i 

V’ I2’ ?3’ and time from base time- Thus> S(7) represents the 
velocity vector associated with the state vector S, and so on. 



SMA 

SMB 

TSMB 

selenographic state corresponding to S 

selenographic state vector associated with current 
Xi’ ^i ’ ^i (This state vector is saved for 

INTL = 0 execution.) 

selenocentric state vector after the current maneuver 

selenocentric state vector before the current maneuver 

HSMA x SMB 

AAZ required plane change 

Xi selenographic longitude of photographic sites 

*LLS selenocentric longitude associated with SLLS 

*ND selenocentric longitude associated with ND1 

h gravitational constant of the moon 

't’i selenographic latitude of photographic sites 

^i selenographic approach azimuth of photographic sites 
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Flow chart 1.- Subroutine PPC - Continued. 



-© 
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TABLE I.- INDEPENDENT VARIABLES FOR 

THE TRAJECTORY COMPUTERS 
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TABLE II.- DEPENDENT VARIABLES FOR 

THE TRAJECTORY COMPUTERS 

Use 

Variable Reference Analytic 
MCC 

first guess 

Analytic 
traj ectory 
computer 

Integrating 
trajectory 
computer 

Xmcpt 
GC dr SC / 

ymcpt 
GC dr SC / 

Zmcpt 
GC or SC / 

n^TLi / / 

AtTL Coast / 

H 
ap wm? / 

H pc / / 

I 
pc EMP / / 

PC 
EMP / / 

Hfr-rtny I / 

Xfr EEP / / 

Hnd / / 

^nd EMP / / 

Xnd EMP / / 

^O / 

Ah / 

6 / 

LOI / 

avdoi / 
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TABLE II.- DEPENDENT VABIABLES FOR 

THE TRAJECTORY COMPUTERS - Concluded 

Variable 
Reference 

frame 

Use 
Analytic 

MCC 
first guess 

Analytic 
trajectory 
computer 

Integrating 
trajectory 
computer 

^LLS SG / 

XLLS SG / 

^LLS SG / 

^TEI / 

^TE Coast / 
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TABLE III.- BASIC MODULES USED IK TRAJECTORY COMPUTERS 

MCC first guess 
trajectory computer 

TLI/MCC analytic 
trajectory computer 

TLI/MCC 
integrated trajectory 

EPHM (ephemeris) DGAMMA Integrator 

RVIO (Cartesian to 
spherical, etc.) 

XBETA (BETA 

mation) 

Forcing function 

PATCH (both ways) BURN-impulsive Runge Kutta 

EBETA PATCH (both ways) Predictor-corrector 

RBETA EBETA Editor 

XBETA (BETA series sum¬ 
mation) 

XBETA (BETA 
series sum¬ 
mation) 

EPHM 

EPHM i RBETA BETA series summation 

CTBODY (BETA series 
summation) 

EPHM (ephemeris) RTASC 

LIBRAT CTBODY TLIBRH 

FCOMP LIBRAT 

EPHM 

TLIBRN (cal¬ 
ibrated) 

LIBRAT 

ELEMT (orbital) ELEMT (orbital) 

CTBODY (BETA 
series sum¬ 
mation) 

RVIO (Cartesian to spher¬ 
ical, etc.) 

EBETA 

RTASC 

RVIO (Cartesian 
to spherical, 
etc.) 

FCOMP 
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I CALCULATE DEPENDENT VARIABLES! 
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CHANGE HISTORY FOR 70-FM-26 

Date 

5/25/70 

11/12/71 

Description 

Page 6k: Pen-and-ink change to correct 
typographical error. 

Page 66: Pen-and-ink changes to eliminate 
redundant computation. 

Page 67: Deleted page because computation 
is no longer needed. 

Page 68: Pen-and-ink changes to eliminate 
redundant computation of mass ratios. 

Replace page 72: Added a call to MCOMP 
for computation of mass ratios. 

These changes reflect the logic by which 
LPO-1 and LPO-2 are matched in the RTCC 
MCC processor. 



Symbol Input (i), 
output (0) Definition 

n2 

DA 

U2,X2,R2) 

|v2,Y2,ij;2) 

*L 

V 

RA2 

estimated time of first pass 
over the landing site 

increment of time required for 
a conic trajectory to propagate 
from a true anomaly of nl 
forward through DR1 radians 
along the LOI ellipse 

true anomaly on the LOI ellipse 
at the position of DOI 

selenocentric unit position vector 
of the landing site 

selenocentric unit position vector 
to the node on the approach 
hyperbola 

fraction of a rev (in radians) 
traveled in the DOI ellipse 

polar components of a seleno^ 
graphic state vector over the 
lunar landing site at time TTJR 

approximate time of DOI obtained 
by backward integration 

semimajor axis of the DOI ellipse 
at time 

eccentricity of the DOI ellipse 
at time TL 

unit selenocentric perilune 
position vector of the LOI 
ellipse at time 

apolune radius associated with 
the DOI ellipse at time 

Change 2, November 12, 1971 



Symbol Input (I), 
output (0) Definition 

RP2 

U,XSR) 

R1I 

vii 

upi 

RAl 

RP1 

Ah 

Ah 
P 

AT 

SGSLOI 

UL 

Perilune radius associated with 
the DOI ellipse at time 

polar components of a selenr- 
ocentric state at the start 
of DOI 

position vector on the LOI ' 
ellipse obtained by backward 
integration to time T , 

nd 

velocity vector on the LOI 
ellipse obtained by backward 
integration to time T^ 

unit perilune position vector 
associated with R1I, VII 

radius of apolune associated 
with Til, VII 

radius of perilune associated 
with R1I, VII 

change in perilune position of 
the LOI ellipse because of 
propagation 

change in apolune altitude of 
the LOI ellipse because of 
propagation 

change in perilune altitude of 
the LOI ellipse because of 
propagation 

time increment from LOI to DOI 

selenographic state vector at 
the end of LOI 

selenographic unit position 
vector of perilune on the DOI 
ellipse at time T 

Change 2, November 12, 1971 



3.18.3 Method.- Input provides a nodal state on the approach hyperbola 
from the trajectory computer; the lunar landing site coordinates and the 
selenographic approach azimuth are taken from preflight data, while the 
size, orientation, and duration of the LOI and DOI ellipses are specified 
by MED quantities h^, , nl, HA^ HP^, RVS1, and RVS2, 

and A to^. 

Set “lpoi = n^oi + riis’ rplpoi = “lpoi + rils’ and 

alls " ri]_s + (halls + hplls)/2-0; then use e4uation (95) to compute 

an estimate of the time of first pass over the lunar landing site. 

|{m[-H:S.o’gLP01] 3/2 OTS2[*llJ3/1*at2 (55) 

where Atg is the time increment required for a conic to propagate from a 

true anomaly of nl on the LOI ellipse forward through DR1 radians. (The 
true anomaly at the end of this conic prapogation is saved as n2). 

Next, form a unit position vector to the landing site, transform it 

to selenocentric coordinates at' time Ttt„, and call it u . Let 
LLS Us 

Aa - arc cosiullg • u^J and assume Aa to be Act’ or 2-n - Act' 

according to whether landing site passage occurs after or prior to -u 

on the DOI ellipse, that is, if (u^ x u^) • RXV of hyperbola >0, PC 

Aa = 2tt - DA'. Form DA' = Aa = DR1 and then use DA ;equal to DA' 
or 2-n + DA' according to whether DA' is positive or negative. Increment 

TLLS by the conic time re<3.uired to travel DA radians from the landing 

site back along the DOI ellipse. Recompute a selenocentric unit position 
vector to the landing site with this updated time, and redetermine DA. 

A selenographic state vector over the lunar landing site can be 
constructed in polar form according to $2 = <fiTT„, A2 =■ \ ,il> \h2 s ib 

LLS T.T.fl9 Y LLS 
with equations (96) through (98). 

R2 “ aiis(! - e2)/[l + e cos (Au^)] (96) 

Change 2, November 12, 1971 



U6 

where e = -1 + (h ,, + r,, )/a,, . Convert this state vector to Cartesian form, alls 11s 11s 
then transform to selenocentric coordinates at time TLLg and integrate backward 

in time through 2n • RVS2 + DA radians. The time of the resulting state vector 

will be used as T^, the approximate time of DOI. Calculate the associated semi¬ 

major axis, Al> eccentricity , and radius R^. Compute the radius at apolune, 

RA2, the radius at perilune, RP2, flight-path angle y^, and velocity 

A state vector at the start of DOI can be constructed in polar form by noting 
that no plane change occurs during the DOI maneuver, that the true anomaly on LP01 
is n2 at the impulsive position of DOI and that the altitude on LP01 and LP02 
differ by 6(Ah). We have 

E = (RAlpol - [RL - 6(Ah)]}/{RAlp01 + [RL - 6(Ah)] cos (n2)} (99a) 

A = RA^^/d + E) (99b) 

V1^{tR-6(Ah)]-|}1/2 (1°0) 

II = sign (n2) arc cos (lOl) 

with if, 1, and time equal to their values at the start of the DOI ellipse 
(i.e., at the end of the backward integration). _Integrate this new state vector 
backward in time to I to obtain R1I, and VII. Store R1I, vn in seleno- 

nd 
graphic coordinates and compute the associated true anomaly n, unit perilune 

position vector u^, radius at apolune RA1, radius at perilune RP1, semimajor 

axis Al, and eccentricity El. Project upc onto the LP01 plane and compute 

the angle An' between it and R1I. Use subroutine DELTAT to compute the time 
increment, DTCORR, required to travel from n to n + An' on the LOI ellipse. 

Transform to selenographic coordinates update TTTf. by DTCORR and repeat 

the backward integration of LP02 and LP01 just once. 

Change 2, November 12, 1971 
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Mission Planning and Analysis Division 
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

MANNED SPACECRAFT CENTER 
Houston, Texas 77058 

REPLY REFER TO: 70-FM54-123 
J5 1970 

MEMORANDUM TO: See attached list 

FROM : FM5/Chief, Lunar Mission Analysis Branch 

SUBJECT : RTCC requirements for Apollo l4 (H-3): Trajectory 
computers for TLI and MCC processors - Change 1 

Enclosed is Change 1 to MSC Internal Note No. 70-FM-26. This changP 

reflects elimination of some redundant paths in the trajectory computers 

and some minor corrections to the original logic. 

Johnsj1. Mayer 
Chief, Mission Planning 
and Analysis Division 

The Flight Software Branch concurs with the above recommendations. 

o_ cM 
James C. Stokes, Jr., Chief 

!y Flight Software Branch 

Enclosure 



CHANGE HISTORY FOR 70-FM-26 

Date 

5/25/70 

Description 

Page 6k: Pen-and-ink change to correct typographical 
error. 

Page 66: Pen-and-ink changes to eliminate redundant 
computation. 

Page 67: Deleted page because computation is no longer 
needed. 

Page 68: Pen-and-ink changes to eliminate redundant 
computation of mass ratios. 

Replace page 72: Added a call to MCOMP for computa¬ 
tion of mass ratios. 



CHANGE SHEET 

FOR 

MSC INTERNAL NOTE 70-FM-26 DATED FEBRUARY 26, 1970 

RTCC REQUIREMENTS FOR APOLLO lit: TRAJECTORY COMPUTERS 

FOR TLI AND MCC PROCESSORS 

By Brody 0. McCaffety, William E. Moore, and Quentin A. Holmes 

Change 1 

May 25, 1970 

Ronald L. Berry, Chief 
Lunar Mission Analysis Branch^'^ 

John P. Mayer, Chief 
Mission Planning and Analysis Division 

Page 1 of 3 
(with enclosures) 

NOTE: A black bar in the margin indicates the area of change. 

After the attached enclosures, which are replacement pages, have 
been inserted and after the following pen-and-ink changes have been 
made, place this CHANGE SHEET between the cover and title page and 
write on the cover, "CHANGE 1 inserted". 

1. Page 61*: reverse the direction of the arrow to ■ W it points toward^ 

0 that 

2.. Page 66: delete the block which reads 
using either SPS thrust parameters or DPS thrust 
bined AV of LOI and DOI". 

"Compute the mass ratio 
parameters for the com- 

3. Page 66: replace (3/c) with ® • 

k. 
with "A) 

Page 68: 
LOI MASS 

delete the topmost block on page 68 
RATIO: WHERE MQ IS MASS BEFORE...". 

which begins 
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/ IS THIS \nO 
\ AcaseonlyL /- v3y 

CALL BETA-TIf 

W§g 
dE INTEGRATOR 

-0 

| CALL MC0MP~1 


