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EQUATIONS OF MOTION FOR THE VARIABLE MASS
FLOW-VARIABLE EXHAUST VELOCITY ROCKET

Wayne H. Tempelman

Charles Stark Draper Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract

An equation of motion for a one dimensional
rocket is derived as a function of f(t), the mass
flow rate into the acceleration chamber and v(x,t),
the velocity distribution along the chamber, thereby
including the transient flow changes in the chamber
which have not been explicitly contained in other
papers. The derivation of the mass density requires
the introduction of the special time coordinate r,
which satisfies the equation 0= 1-ar/at-var/ax. The
mass density expression is f(t-r)ar/ax. The
equation of motion is derived from both classical
force and momentum approaches and is shown to
be consistent with the standard equation expressed
in terms of flow parameters at the exit to the
acceleration chamber.

Introduction

As propulsion systems become more advanced
and sophisticated there is a tendency toward
exercising more exact control over the mass flow
rate into the engine and the acceleration imparted
to the mass as it flows through the engine. Hence,
the derivation of rocket equations of motion for
advanced propulsion systems will have to be based
on a rocket model that allows for the mass flow
rate into the engine and the velocity distribution
along the engine to vary with time.

The objective of the analysis undertaken herein
is the acceleration of the rocket expressed in the
form:

du/dt = F[M, xs, Xe(t), v(x, t), f(t), xcp(t)] (1.1)

where:

M - Initial mass of the rocket.
xs - Location of the inlet of the acceleration
chamber.
xe(t) - Location of the end of the acceleration
chamber.
v(x,t) - Velocity of the mass in the ac-
celeration chamber with respect to the
chamber.
f(t) - Mass flow rate into the acceleration
chamber.
xcp(t) - Location of the center of mass of
the rocket proper (the rocket minus the ac-
celeration chamber).

in the literature is to treat the rocket as one entity,
without separating the mass in the acceleration
chamber from the rocket proper.

The equations of motion which apply to a variable
mass system have been a subject of debate among
physicists, resulting in no less than eight
articles1 2 -1 9 published inthe American Journal of
Physics during the period 1964-1966 alone. The
author finds the following two approaches to be
equivalent and applicable to the variable mass
problem considered herein.

1. The "momentum" approach: The time rate
of change of momentum of all the particles
involved must equal zero.

2. The "force" approach: The sum of the forces
acting on all the particles involved must equal
zero.

II. Derivation of the Mass Density
in the Acceleration Chamber

An analysis of the flow in the acceleration
chamber (see Fig. 1) is required before the equation
of motion can be obtained in the form of Eq. (1.1).
The acceleration chamber in the rocket is used to
accelerate the mass inserted into the chamber to
the velocity at which it leaves the chamber. It is
a ssumed that the mass enters the chamber with zero
relative velocity. The velocity distribution along
the chamber is

dx/dt = v = v(x, t) (2.1)

where v is a specified function of both distance along
the chamber and time. The acceleration of the mass
within the chamber can be obtained from this velocity
distribution.

I ParticleA/M I
Xs x

-= Time for particle A to move from xs to x

AT = Difference in times that particles t-: and d
entered chamber

Figure 1. Acceleration chamber notation

The above quantities completely define the rocket
herein considered and must be initially specified.
The acceleration is derived for the time period
before the acceleration chamber is full as well as
for the period after mass has stopped entering the
chamber. The extensive literature1

-
1 1 which

considers the variable mass flow-variable exhaust
velocity rocket does not contain an equation of motion
in the form of Eq. (1.1), which would be the
parameters normally specified. The approach taken

The amount of time r that the particle at point
xo at time to has been in the acceleration chamber
can be found by num erically integrating the equation

dt/dx = 1/v (2.2)

between the limits of x=xo, t=t0 and x=xs, t=t0 -i .
r is then obtained from

r= t - t = '(xo, to)

(2.3)

1

i fI II, ( x, t)



If the variables in Eq.(2.1) are separable, the
following equation defines r

t0 . xO

f adt.f J 4-b

t
o

- 7

(2.4)
XS

where a and b are defined by

(2.5)v = ab = a(t) b(x)

As x0 and t 0 are completely arbitrary, the general
expression for r is

As time elapses, this particle moves down the
chamber. r increases uniformly with t. Hence,
the total differential of T equals zero.

dT = 0- = a8T dx + -at dtax at

Substituting Eq. (2.14) into Eq. (2.15) gives

at x0 =1I- at-v ax

(2.15)

(2.16)

As Eq. (2.13) was for an arbitrary x, the partial
differential of Eq. (2.16) with respect to x must equal
zero.

r= r(x, t) (2.6)

The mass flow rate into the acceleration chamber
is given by f, a specified function of time. This
function, along with the velocity distribution,
determines the mass density in the -chamber.
Consider themass Am that occupies a small length
Ax centered at x. An expression for this mass is
obtained by multiplying the mass flow at the time
that the particle at x left the inlet of the chamber
by an interval of time Ar.

Am = f Ar (2.7)

The functions f and df/dt when starred should be
mogdified by substituting t- rfor t. For exanrple, if
t=t ,df/dt=3t ,then f*=(t-r)3, (df/dt)*=3(t-r) . The
time interval Ar is the difference in times that the
particles on the right and left sides of Ax entered
the inlet of the acceleration chamber and is given
by (see Fig. 1)

-r =-ar Axax (2.8)

=2r_ ax ar a2 r
I0 = at a +vo ax at ax ax ax2 (2.17)

Considering Eq. (2.16) and Eq. (2.17) it is apparent
that Eq. (2.12) is valid.

III. Derivation of Equation of Motion When
Acceleration Chamber is Full

This section contains a derivation of the equation
of motion for the variable mass flow-variable
exhaust velocity rocket for the time period when
the chamber is full. Figure 2 shows the rocket
nomenclature. All distances measured relative to
the rocket are measured from a frontal position
so that an x coordinate will always be positive in a
rearward direction.

ROCKET PROPER

UCr ~i
'

,ACCELERATION CHAMBER

u

Themass density p is defined as the mass per unit
length, yielding

p=dm= lim Amf_ f* a?
dx Ax O Ax ax (2.9)

Equation (2.9) may be demonstrated to be valid
by using the equation of continuity

ap+ a(pv) = 0

Differentiating Eq. (2.9):

at = f* a + (- _ a )xf dt*

at &- at at Ox dt)

(2.10)

(2.11)
I p - f* 82 r - (3x)2 (dL)*
ax x2 ax

Inserting Eq. (2.11) into the equation of continuity
gives

ar ar a0( df) r av ao a2r, *° = 0(l'E- v 8 a ) +(T. + a- -F+ V fxat - 6X xd xt x x x_ (2.12)

The easiest way to show that Eq.(2.12) is valid
is to introduce a variable T.

T = t -r (2.13)

1 C'
CPI CrI

_xC

Xs

~~~~I I dx
|dt

X e

cp - Position of center of mass of the rocket
proper

cr - Position of center of mass of the whole
rocket

u, u cr - Absolute velocities
v, ve - Velocities relative to rocket

Figure 2. Rocket nomenclature

Themass of the rocket mr consists of the mass
in the rocket proper plus the mass in the ac-
celeration chamber

m
r =m 

x

Xe

mr m +fP dx (3.1)

X s

where x s and xe denote the start and end of the
acceleration chamber. The distance xe is assumed
to vary with time. Differentiating Eq. (3.1) using
Leibniz's rule2 0 and considering x s to be constant
results in

T is assumed to be associated with the particle that
occupies x at time t. Partial differentiation of T
r e sult s in

aT ar a r Or
ax ax' at = at

x e
dm dm dxe e dx

dt dt e d ; dx

Xs

(3.2)

where Pe is the density at xe. Using the equation
(2.14) of continuity (Eq. (2.10))

2

J1



Xe

dx - PeVe dt (3.3

xs

where ve is the velocity of the mass in the ac-
celeration chamber atx and p v s has been set equal
to-dm /dt. Combining Eq. (3.2) and Eq. (3.3) gives
the mass flow rate leaving the rocket

Simplifying the above equation using Eqs. (3.1) and
(3.3) gives

du d2 m x d 2 m Xe
0= m -ud ± - 2- _fo = mr dt -' + Xs zE d_ p ve 2 _

r d dt' dt

XS

x dx
(3.10)

The mass of the rocket equals the mass of the rocket
at time t s minus what has left the rocket

tdm dx

dt dt = e ( _ ve) (3.4)

The momentum p of the system (ie: the
momentum of all the particles that were initially
in the rocket) can be expressed as the sum of the
m omentum of the particles in the rocket proper plus
the particles in the acceleration chamber plus the
particles that have already left the rocket. The
momentum shall be expressed in an inertial
coordinate system which was at rest with respect
to the rocket before it started to move.

The rocket proper, denoted with subscript p,
consists of a group of particles which are loosing
mass at point x

s . The center of mass xc of the
rocket proper varies with time and is assumed to
be specified. Appendix A contains a derivation
(Eq.(A.9)) of the momentum of this body

dm x dm
pp = Ump - Pt + (3.5)

where u is the velocity of a point fixed to the
acceleration chamber of the rocket. Using the mass
density expression (Eq.(2.9)), the momentum of the
mass in the acceleration chamber is

e

Pac =|p (u - v) dx (3.6)

X s

Using the mass flow rate(Eq. (3.4)) out of the rocket,
the momentum Pe of the mass which has left the
rocket can be expressed as

t

Pc: f "e (re ' dt ) ( u - v e ) d t (37)

t s

where t
s

is the time at which mass first starts to
leave the rocket. Combining Eqs. (3.5), (3.6) and
(3.7) results in the total momentum of the original
mass of the rocket.

dm x dm
p= um- Pt c+ Xs dtF

e dx (3.8)
+ u - v) dx + ee d ) u - v dt

xSS t

As the total momentum of the system is
conserved, Eq. (3.8) may be differentiated and set
equal to zero. The result is

dx
mr= M- f Pe (Ve -- t) dt

ts

The mass of the rocket proper equals

mP = M - f fdt

(3.11)

(3.12)

The following equation reduces to the continuity
equation when expanded

apv av av ' av 2 dv apv2

a / ax dt - ax
(3.13)

Combining Eqs. (3.10)-(3.13) and (2.9) yields the
equation of motion for the variable mass flow-
variable exhaust velocity rocket

L x(e d -rdt dt

t s

+ Pt - (M - | f dt) dt _

Xe

Xs

fax at v a dx

(3. 14)

where fe and (ar/ax)e are computed at x=x e . This
is the nearest one can come to deriving a general
expression in the form of Eq. (1.1). The onlyquantity
in the above equation which is not contained in Eq.
(1.1) is r, which can be explicitly obtained only for
certain functions of v (see Section VIII for an
example).

The above analysis is consistent with the results
obtained by those who treat the variable mass
flow-variable exhaust velocity rocket as a variable
mass problem in which the center of mass of the
whole rocket plays the leading role. The main result
of these approaches is equation B-10, which can
be expressed in terms of the nomenclature of Fig.
2.

du d2 mdr cr +

dx dx dm (3.15)
+ (v

e
+de 2 .cr r

e + dt 2dt dt

dm d2 m x
p dt dt dt-

d2 m dx dx

5x s + p (u- v e ) e+ e(Ve - ) (u v

e)

dt ee t

e e e
du f - a 8 Pvd

+~-¥f pdxru J .dx-fdt dx + u j at dx - at dx

xs X s X
s

where mr=m, Ucr=Uc, Xcr=xc, Xe=xl, and ve=v1 .

ducr/dt is the acceleration of the center of mass
of the rocket in an inertial coordinate system and
xcr is the position of the center of mass of the rocket
(see Fig.2).

It will now be shown that Eq. (3.10) is equivalent
(3.9) to Eq.(3.15). The center of mass of the rocket is

obtained from

3
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x e

m xC mx + I xpdx
mr Xcr =mp Xcp + xS

x s

Differentiating results in

(3.16)

in the rocket proper and an integral of the mass in
the acceleration chamber results in

du j
mr dt

xe xS x

f dvt dx- f p d- dx- f

X s

Xe

pd dx
P- d (3.24)

x
S

dm x dm x dx

dt P cp +Xe de - dt

x e

x ap dx

x
S

The following identity can be established by
integration by parts using the continuity equation.

x 2 x2

f x a dx = xl Pl - x2 52 v 2 + f pvdx

x 1

(3.18)

xl

Combining Eqs. (3.4), (3.17) and (3.18) and setting

dmp/dt=- Psvs gives
x

dm x dm x dm dm e

dt d~t P + e xs-dt _xP + | v d x (3.19)

X
S

Differentiating the above equation results in

d2 mr Xcr d2rm x dx
e

dm r d2m

dt 2 dt dt - xdt

in terms of the notation in Fig. 1 and where PD is
(3.17) the density in the rocket proper (for O<x<xe).

Appendix A contains a derivation of the equation

dm x ddm

--&U= xs -d f

Xe

Pp vdx + /f Pp vdx (3.25)

u 1~xs

Differentiating, setting PpeVe dxe/dt = 0, and using
Eq. (3.13) gives

d2 m x d2 m 
=p s = + f

dl dt

x
ee

dv d v
P% dx+ f % dx (3.26)

where it has been assumed that ppv2 is equal to
zero atx equalto 0, x s and xe. Equation (3.24) can
be obtained by combining Eqs. (3.10), (3.13), and
(3.26).

d2m dx Xe
- e e d f+ xe t2 + ee dt± 2

(3.20)
ap dx
-- dx

IV. Derivation of Equation of Motion Before Mass
Leaves the Acceleration Chamber

xS

Combining Eqs. (3.4), (3.10) and (3.20) gives

du d2x d2m
O = m r dt ---- + ( x

e
-

x c r
) dt2

C dt dt d
2

dx - dXc dm
+ (v

e
+- dt 2-- ) dtdt dt dt

The inertial acceleration (ducr/dt) of the center of
mass of the rocket is

ducr_ du d2xcr
dt dt dt 2 (3.22)

Combining Eqs. (3.21) and (3.22) yields the desired
result, Eq. (3.15).

Equation (3.10) is also consistent with the ap-
proach taken in references 5 and 6. Miele applies
Newton's Second Law of Motion to the rocket
regarded as a continuum in the following manner.

F = (dut d m ) m=
r

-

m mr

dt dm
dt (3.23)

where F is the external force, du/dt is the ac-
celeration of the origin (point fixed on the rocket),
dv/dt is the relative acceleration with respect to
the origin and the integral is to be summed over
the mass of the rocket. Although Miele extends
his approach further, it is easiest to derive Eq.
(3.10) directly from Eq. (3.23).

Setting the external force equal to zero and
separating the integral into an integral of the mass

The equation of motion for the time interval
before the mass starts to leave from the acceleration
chamber is found in a similar manner as was the
main equation of motion (Eq.(3.14)). Themomentum

(3.21) expression can be obtained from Eq. (3.8) after
eliminating the term representing the expelled mass

dm x dm 
p = Ump f .p Cp Xf P (u v) dx

x
s

(4.1)

where x1 is the point reached by the first particle
that entered the acceleration chamber. X1 is
obtained by integrating Eq.(2.1). The mass of the
rocket proper is given by Eq.(3.12). Differentiating
Eq.(4.1), setting equal to zero and using Eq.(2.10)
and the derivative of Eq.(3.12) results in

d u d2m X df 1pv
0 -- MCP - - dx t- 'IV

1
2 - / -j- dxrdt- P-d - (4.2)

S

where v 1 is the velocity at xl . Combining Eqs.(3.12)
(3.13) and (4.2) gives

0 = M du + (xCP -xS) df dx
dtE -w + 2 f dt

- (M - J fdt ) 2 |
Xsdt

0 x1

dS
f* ar (v a )dx (4.3)

4



The only difference between Eq. (3.14) and the
above equation besides the obvious ones of
interchanging x1 for xe and the dropping of the
integral in the first term is that in the above equation
the derivative of x1 with respect to time is vl,
whereas in Eq. (3.14) Xe is a specified function of
time.

V. Derivation of Equation of Motion After
Mass Stops Entering The Acceleration Chamber

Once the mass stops entering the acceleration
chamber, the mass remaining in the rocket proper
remains constant. If t1 represents the time that
the last particle entered the chamber, at time t it
would have reached point x 2 found by integrating
Eq. (2.1). The integral representing the momentum
in the chamber need cover only the range from x

2
to xe. Equation (3.8) for this case becomes

x t
dx ) + dx

p= mp(U -d) + f p(u-v)dx+f Pe(Ve----e)(u-ve)dt

X2 t s

(5. 1)

where: m r = M if no mass has left the rocket.
Otherwise

m |/M*- a
r' (ve )dtmr . J * - (ve dt (6.2)

t

Xa equals x if mass is currently entering
the accelerAtion chamber. Otherwise it is
the point occupied by the mass in the chamber
closest to the inlet.

Xb equals Xe if mass is currently leaving the
acceleration chamber. Otherwise it is the
point occupied by the mass in the chamber
closest to the exit.

ta equals t if t< tl; otherwise ta = tl.

The points Xa and xb when not equal to x s or Xe
respectively, are functions of time; they move with
a velocity equal to the velocity in the acceleration
chamber at that point.

VII. Special Cases

The mass of the rocket can be expressed Several rocket models lead to simplified density
xe expressions and corresponding simplified equations

= m + f p dx of motion. In the following examples both xcp and
(5.2) Xe are assumed to be independent of time and x s

x2 is assumeto occur at Xcp. In addition, the reference
point in the rocket is assumed to coincide with x s .

Differentiating Eq. (5.1), setting equal to zero and Attention is restricted to the full acceleration
using Eqs. (2.10) and (5.2) results in chamber situation.

du d
2

x 2 2 Xe

=mr-d- mp dt- 2+2v -eVe at
X 2

(5.3)

A. Exhaust Velocity that Allows Separation of
Variables

Assume that v is given by

v = ab = a(t) b(x)

Combining Eqs. (3.11), (3.12), (3.13) and (5.3) gives

O[M( f=e -(x)e (e )dt dt

tl d 2 x X
-(M- f fdt) d- c - f f*X- ( + v By) dx

0
x2

(7.1)

Differentiating Eq. (2.4) and using Eq. (2.9) gives

ar/ax = I/a'b, p = f*/a*b (7.2)

Equation (3.14) reduces to

afd
a* - dt ~ I a It

ts
(5.4)

Xe 

f f' (d a - i db dx (7.3)
a* ( t T.)

Assuming further that f=a, the density p = 1/b and
Eq. (7.3) reduces to

The differences between Eqs. (3.14) and (5.4) are
the changes in the limits on the integrals and the
dropping of the terms containing x

s
and f.

VI. General Equation Of Motion

By comparing the equations of motion (Eqs.
(3.14), (4.4) and (5.4)) for thedifferent time periods
considered in the previous three sections, the-fol-
lowing general equation of motion for the variable
mass flow-variable exhaust velocity rocket can be
obtained

dx
0 = m

r
du -X - f dx

O mrnf~r ep a dt dt

t 
a d 2 x b

r d2 X cp - _ , ar -yv av
-(M- fdt) 2 - f f*'x (-t-+ v-- dx

dt 

0 X a

(6.1)

0 = (M - f a dt) du da 2at dt xe
-

-

(7.4)

B. Constant Exhaust Velocity Rocket

The constant exhaust velocity rocket implies that
the exhaust velocity does not change with tim e while
the mass flow is variable. Hence,

Differentiating Eq. (2.4) with a equal to one gives

ar/x = l/b (7.6)

5

(7.5)v = b = b(x)



Eqs. (2.9) and (3.14) reduce to
(8.3)

r = t - -
2 xl-n/ (i-n ] 1/2

= f*/b

t x
e

= (M J dt fE dxf·s ,-d-_ f ~~xx dx

t
s

x

where r= dx
b

(7.7)
Eliminating x between Eqs. (8.2) and (8.3) gives

0

dv || n +2 nt1 1n [ i- 0 i 1 84] 2n-12v= -i' +nt2 - t 2 t -] - (8.4)dvII 2 2 .

C. Constant Mass Flow Rate Rocket

The constant mass flow rate rocket implies that
the mass flow into the acceleration chamber does
not change with time while the exhaust velocity does
change with time. Hence,

f = c (7.8)

where c is a constant. Eqs. (2.9) and (3.14) reduce
to

Hence, to avoid infinite accelerations at the inlet
(i.e.: when T goes to zero), n must lie in the range
1/2<n<l.

Differentiating Eq. (8.3) yields

a = xn (t 2 2 xl-n -1/2(8.5)

The density (Eq. (2.9) and mass flow rate are

(8.6)

P = c ar/ax

t X

o[M-c J dt I -C f
"x~e e] dtI·- · i a3x e Vedt -c

t s

ar av v x
a ~t a.)d

(7.9)
Equation (4.4) reduces to

d0 = M - x
1

_xlnt2
X s

D. Steady State Rocket

Both the mass flow rate and exhaust velocity are
independent of time for the steady state rocket. If

(7.10)f = c, v = b = b(x)

then Eqs. (2.9) and (3.14) reduce to

P = c/b

0 = [ M - c (t - ts) ] d - c bdt e

where be is based on x = xe. Integration of
Tsiolkovskii's equation gives

Integrating the velocity to get the time-position
history of the first particle that enters the chamber
results in

Xl = [i-n) t 2 /2]1/2 (8.8)

Inserting into Eq. (8.7) and integrating gives

(8.9)
(7.11)

This equation is valid until the chamber is full at
time t This time is found by solving Eq. (8.8)
for t after substituting Xe for xl.

u - Us = be log {M/ -c(t-t (7.12) (8.10)ts = [2xel n (1-n)]1 /2

where u s is the velocity at time t s .

VIII. Numerical Example

This section contains an example of when the
variablesinv are separable and such that Eq. (2.4)
can be integrated. The same assumptions
concerning xcP and x are made as was assumed
in Section VI . Let fhe mass flow rate into the
acceleration chamber and the velocity be specified
by

f = t, v = tx n (8.1)

The acceleration of the mass in the acceleration
chamber is given by

For times in excess of ts, Eq. (3.14) reduces to

du n 2 (8.11)
0 = (M - t2/2 + t2s/2) t (8.11)

Integrating

u - u
s

= xe (a - b)/c + 2xe (-t + ac/2 + t
s

- bc/2)

(8.12)

where

c = (2M + ts2)2 a = log [(c + t)/(c -t)]

b = log [(c + ts)/(c - ts)]

dv= = n + nt 2 2n-
Ct -6t VX +t x

(8.2)

Carrying out the integration of Eq. (2.4) results in r
This equation is valid until mass stops entering

the chamber at time tl. For greater times the
equation of motion is found using Eq.(5.4)

6

(8.7)

= 1/xn; PV = t

3-n r -n - I
u= l1-n Tl-n (-n) -n -n -n_R 3--n t) +( )

3-nt 



0 ( - t'/2 + t 2/2) - xn t
2 2x+ 2 t2 + 

where x 2 is obtained by integrating the veloc

x2= [I-n) (,27_ -t,
2

) /2 ]'

As Eq. (8.13) is not readily integrable,
be solved numerically on a computer. Figur
a plot of u verses t for the following conditio

v = x n t, f = t. n . 6, M = 1

mp at t
s

= .75, mp at tl = .25

The following times are
(3.12): ts/=5, =l1

10-1 I- I I

In-

then derived fror

0.2 0.4 0.6 0.8 1.0 1.2 1 1.6
TIME

Figure 3. Velocity and distance versus time
rocket defined in Eq. (8. 15)

The length of the acceleration chamber E
.00316 and is found by setting x1 and t equal
and ts in Eq. (8.8). The time that the last pa
leaves the acceleration chamber equals v2a
determined by setting x2 and t equal to x e a
in Eq. (8.14). The distance the rocket has r
is found by numerically integrating the eql
dy/dt = u and is also shown in Fig. 3.
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to Xe Appendix A

.rticle Deprivation of the Momentum of
and is A VariableMass Body In Term s
and t_ _ __and t Of Its Center Of Mass
movea
uation The derivation of the momentum of a variable

mass body in terms of its center of mass can be
based on a discontinuous medium 2 or on a continuous
mediuml,9 . To be consistant with the general
approach taken in this paper, a body with a continuous

iation medium will be used. The body is assumed to lose
ensity mass at both point x 1 and x with x1 and x 2 moving

with time (see Fig. 4). The mass leaves with the
local velocity v of the mass in the medium.

The location xc of the center of mass is given by
oI tne
Phil.

49).

rocket
L1-147

X1 x 2

m- fo x p x I Xdx+f. fX~~~~1 (A.1)
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of Fig. 1 and Eq. (A.5) with Pe (dx2 /dt-v2 ) set equal
to zero, Eqs. (A.6) and (A.8) reduce to

Xs xedd
-a C . dm +( - x v dx+ P v dx

c - Position of center of mass
u - Absolute velocity
v - Velocity relative to body

Figure 4. Variable mass body notation

There is a discontinuity in the mass density at xl
due to the mass leaving at that point. If ol01 and
P1 2 refer to the mass densities on the left and right
sides of xl, differentiating Eq. (A.1) results in

(A.2)

dx d
p : um - m + (x - xd) d-

Appendix B.
Equation of Motion For A Variable Mass Body

In Terms Of Its Center Of Mass

This appendix contains a derivation of an equation
which has been frequently mentioned in the
literatureI '

4 as the equation of motion of a variable
mass body (of which the rocket is one example).
The derivation follows the approach taken in the
main section of this paper (differentiating the
momentum of the system and setting the resulting
expression equal to zero). The body considered is
illustrated in Fig. 5. ]

Using Eq. (3.18) the above equation can be reduced
to

dmxc : /x d _x

dt X2 P2 ("- v2 + xl ( 01 ' P1
2 ) (- dt v1 )

xI x 2

+ p vdx + pvdx

The mass in the body equals

x + x 2

m= f Pdx+ fx p dx

(A.3)

(A.4)

Differentiating and using the continuity equation
gives

dm=i dx2 2+dx 1

dmt 2 v2 ~O+ ( +01- P1 2 dt-- 1) (A.5)

The first term on the right hand side of the equation
represents the mass flow leaving point 2 and the
second term the mass flow leaving point 1.
Combining Eqs. (A.3) and (A.5) results in

dx dx
m dt + P2 ( dt 2) (x - x2 )

d m / d - M s fl w d , t a ,
d dx,

c - Position of center of mass
u - Absolute velocity (=dr/dt)
v - Velocity relative to body

dm/dt - Mass flow rate at xl

Figure 5. Variable mass body notation

The mass within the body is

m= f p dx (B.1)

Assuming that the body loses mass at point x1 which
varies with time, Eq. (B.1) can be differentiated
using Eq. (2.10). resulting in

dn P ( dx ) (B.2)

where v1 is the velocity of the mass being exhausted.

The momentum of the body plus the momentum
of the mass that has left the body equals

xl t

xI xo (A.6)

+ dt( v 1 ) (P01 - P1
2

) (x 2 - xl) = f p v dx + f v dx

The momentum of the body is defined to be

xl x 2

(A.7)P= p (u - v) dx+ f p (u - v) dx
0, I

whereu is the velocity of a point fixed on the body.
Comparing Eqs. (A.6) and (A.7) gives

X2
dxpu p dx+u J p dx -rn - -

X dt
,;~, dx 2 i~ dr x

1

dx 2 v dx1

2 ( dt 2) (x2 -) + ( 2 -xv 1 ) (Pl 01 P12)(Xl - Xc)

Equations (A.6) and (A.8) can be applied to the
rocket proper section of Fig. 1. Using the notation

(B.3)
dx 1

P = P (u - v) dx + f (Vl - dt) (U - Vl)dt

0 t s

where u is the velocity of the body and t s is the
time that the body started to lose mass.
Differentiating Eq. (B.3) using Eqs. (2.10) and (B.2)
gives

x 1

I=0 = m - APl _ J t
v

* dx0t (B.4)

The location xc of the center of mass is given by
xi

mx = f x P dx

(A.8) Differentiating gives
x 1

drncx Pa
-d-ft:'- I x" d dx

(B.5)

(B.6)

where dxc/dt is the velocity of the center of mass
with respect to the body. Using Eqs. (3.18), (B.2)
and (B.6) results in

8

(A.9)

dmx, c dx 1 dx 2

dt x1 01 dt '2X 2 2 t

-Xl P12 + x dx+ X t dx
12 dt at~~~~~

x 1



dmx x1 (B.7)
-- xdmn+ f-d- 

c

= x
I

-+ p v dx
0

Differentiating once more gives

d2mxc d 2 + dm d (B.8): x - ( -2Pi' dt d (fB.8)

The acceleration of the center of mass point is

duc du a2Xc (B.9)
ddt 2

Combining Eqs. (B.2), (B.4), (B.8) and (B.9) results
in

du d2 dxl dx

0d=m- + (Xl -Xc) + (Vl + d- - 2 c~ ) dm (B.10)

Introducing the notation rc, re and v (absolute
velocity) with the following equations (see Fig. 5)

x 1 - Xc = r c - re, v 1 = dr/dt - v

dxl dr dre dxc dr dr (B.1)
dt dt dt ' dt = t dt.11)

results in the equation of motion as usually specified.

du d2 dr dr
e0 = m+u(r - e- d (2 - -e v) dm

dl m+('c-') d- r (B.12)

9
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