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EQUATIONS OF MOTION FOR THE VARIABLE MASS
FLOW-VARIABLE EXHAUST VELOCITY ROCKET

Wayne H. Tempelman

Charles Stark Draper Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract _

An equation of motion for a one dimensional
rocket -is derived as a function of f(t), the mass
flow rate into the acceleration chamber and v(x,t),
the velocity distribution along the chamber, thereby

including the transient flow changesin the chamber .

which have not been explicitly contained in other

papers, Thederivation of the massdensityrequires

the introduction of the special time coordinate 7,
which satisfies the equation 0=1-37/3t-v37/9x. The
mass density expression is f(t-7)37/9x. The
equation of motion is derived from both classical
force and momentum approaches and is shown to
be consistent with the standard equation expressed
in terms of flow parameters at the exit to the
acceleration chamber, '

Introduction

As propulsion systems become more advanced
and sophisticated there is a tendency toward
exercising more exact control over the mass flow
rate into the engine and the acceleration imparted
to the mass as it flows through the engine, Hence,
the derivation of rocket equations of motion for
advanced propulsion systems will have to be based
on a rocket model that allows for the mass flow
rate into the engine and the velocity distribution
along the engine to vary with time.

The objective of the analysis undertaken herein
is the acceleration of the rocket expressed in the
form: i

(1.1)

du/dt = F[M, x, % (t), v(x, 1), f(t), xcp(;)]

where:

M — Initial mass of the rocket, »
xg — Locationof the inlet of the acceleration

chamber,
Xg(t) — Location of the end of the acceleration
chamber,
v(x,t) =— Velocity of the mass in the ac-
celeration chamber with respect to the
chamber,
f(t) =— Mass flow rate into the acceleration
chamber,

Xeoplt) — Location of the center of mass of
thé rocket proper (the rocket minus the ac-
celeration chamber).

The above quantities completely define the rocket
herein considered and must be initially specified,
The acceleration is derived for the time period
before the acceleration chamber is full as well as
for the period after mass has stopped entering the
chamber, .The extensive literaturel=11l which
considers the variable mass flow-variable exhaust
velocity rocketdoesnot contain an equation of motion
in the form of Eq. (1.1), which would be the

parametersnormally specified. The approach taken

. in the literatureis to treat therocket asone entity,

without separating -the mass in the acceleration
chamber from the rocket proper,

The equations of motion which apply toa variable
mass system have been a subject of debate among
physicists, resulting in no less than eight
articles12- published inthe American Journal of
Physics during the period 1964-1966 alone., The
author finds the following two approaches to be
equivalent and applicable to the variable mass
problem considered herein,

1. The "momentum'' approach: The time rate
of change of momentum of all the particles
involved must equal zero.

2, The''force' approach: The sum of the forces
actingonall the particlesinvolved must equal
zero,

II, Derivation of the Mass Density
in the Acceleration Chamber

An analysis of the flow in the acceleration
chamber (see Fig, 1) isrequired before the equation
of motion can be obtained in the form of Eq. (1.1).
The acceleration chamber in the rocket is used to
accelerate the mass inserted into the chamber to
the velocity at which it leaves the chamber, It is
assumed that themass entersthe chamber with zero
relative velocity, The velocity distribution along
the chamber is :

dx/dt = v = v(x, t) (2.1)
where vis a specified function of both distance along
the chamber and time, Theaccelerationof the mass
within the chamber can be obtained from this velocity
distribution. :

E.i I:.dAx

1]
i
]

v(x,t)

!
L
)I(s Particle A L
7 = Time for particle A to move from X, tox
Ar = Difference in times that particles ..t b and d
entered chamber
Figure 1. Acceleration chamber notation

The amount of time 7 that the particle at point
xg at time tg has been in the acceleration chamber
can be found by numerically integrating the equation

dt/dx = 1/v (2.2)
between the limits of x=xg, t=tg and x=xg, t=tgp-/,
7 is then obtained from

TEtg-t= "(xo, to)

(2.3)



If the variables in Eq.(2.1) are separable, the
following equation defines 7

o (2.4)

‘where a and b are defined by

v = ab = a(t) bx) (2.5)
As xg and tg are completely arbitrary, the general
expression for 7 is
™= Tt (2.6)
Themass flow rate into theacceleration chamber
is given by f, a specified function of time, This
function, along with the velocity distribution,
determines the mass density in the -chamber,
Consider themass Am that occupies a small length
Ax centered at x. An expression for this mass is
obtained by multiplying the mass flow at the time
that the particle at x left the inlet of the chamber
by an interval of time AT,
Am = f*A‘r (2-7)
The functions f and df/dt when starred should be
éilfled by ubstituting t- 7:'3for t. For exarrbple, if
,df/dt=3 then fr=(t-7)", (df/dt)* 3(t-7)4, The
t1me 1nterva1 A'r is the dlfference in times that the
particles on the right and left sides of Ax entered
the inlet of the acceleration chamber and is given
by (see Fig. 1)

ar = 9% ax (2.8)

Themass density p is defined as the mass per unit
length, yielding

p=dm . lim Am _ g*

dx Ax-40 Ax

& , (2.9)

Equation (2,9) may be demonstrated to be valid
by using the equation of continuity

8(57;')_0 (2.10)

91\

Differentiating Eq. (2.9):

* 3%r _ 97y ar (dhy*
oo g0 R
’ (2.11)
3% ar.2 dfy*
_a—;-=f sk (5207 G

Inserting Eq. (2.11) into the equation of continuity
gives

ar, or (dfy*

9y @ 32
0—(1-?’7-V5§)3— )+(T‘5' SX-BT:*'V z)f (2012)

The easiest way to show that Eq.(2.12) is valid

is to introduce a variable T,
Tetor (2.13)

T isassumed to be associated with the particle that

occupies x at time t, Partial differentiation of T
results in

T . _ 37

3% 'g.gtl=1-a%r (2.14)

- As time elapses,

this particle moves down the

chamber. r increases uniformly with t, Hence, _
the total differential of T equals zero.
re0-L o Lo (2.15)
~ Substituting Eq. (2.14) into Eq, (2.15) gives
| 0o-1-2 v (2.16)

As Eq, (2,13) was for an arbitrary x, the partial
differential of Eq.(2,16) with respect to x must equal
zero. .

2.
Lo i
"0 Bxme tBax ax TV 2 (2.17)

Considering Eq. (2.16) and Eq, (2,17) it isapparent
that Eq, (2,12) is valid,

III, Derivation of Equation of Motion When
Acceleration Chamber is Full

This section containsa derivation of the equation
of motion for the variable mass flow-variable
exhaust velocity rocket for the time period when
the chamber is full. Figure 2 shows the rocket
nomenclature, All distances measured relative to
the rocket are measured from a frontal position
so that an x coordinate will always be positive in a
rearward direction,

ROCKET PROPER

Yer %CELERAT!ON CHAMBER
o T < ]
- f —V —
X

28 ==
__xcp.|_-‘
I “er
Xs
e

dxe
t

cp - Position of center of mass of the rocket
proper

cr = Position of center of mass of the whole
rocket

Uy - Absolute velocities
v, Ve = Velocities relative to rocket

Q.

Figure 2. Rocket nomenclature

Themass of the rocket m, consists of the mass
in the rocket proper plus the mass in the ac-
celeration chamber

mr=mp+fp dx (3.1)
x5

where xg and Xe denote the start and end of the

acceleration chamber, The distance x is assumed

to vary with time, Differentiating Eq, (3.1) using

Leibniz's rule4Y and considering xg to be constant

results in
x
dm dm dx 3
r _ e o
i *f Bt 9% (3.2)

where pg is the density at xg. Using the equation

of continuity (Eq, (2,10))



x
€ dm

- Op B P
I En dx = = PV, =g

Xs

(3.3:

is the velocity of the mass in the ac-
celeration chamberatx_and o v has been set equal
to -dm_/dt, Combining Eq. (3,
the ma'ss flow rate leaving the rocket

where Ve

dm
5T (3.4)

The momentum p of the system (ie: the
momentum of all the particles that were initially
in the rocket) can be expressed as the sum of the
momentum of the particles in therocket proper plus
the particles in the acceleration chamber plus the
particles that have already left the rocket, The
momentum shall be expressed in .an inertial
coordinate system which was at rest with respect
to the rocket before it started to move.

x
- e _
—/ze( s ve)

The rocket proper, denoted with subscript p,
consists of a group of particles which are loosing
mass at point xg. The center of mass x¢ of the
rocket proper varies with time and is assumed to
be specified, Appendix A contains a derivation
(Eq.(A,9)) of the momentum of this body

dmp
B

dm
s um_ -
Pp p

p Xep x, (3.5)
where u is the velocity of a point fixed to the
acceleration chamber of therocket. Using the mass
density expression (Eq.(2.9)), the momentum of the
mass in the acceleration chamber is

X
e

(3.6)

Pac=f p (u-v)dx

X
s

Using the mass flow rate (Eq, (3,4)) out of the rocket,
the momentum P of the mass which has left the
rocket can be expressed as

t
d:

fp(v-xe

e e dt

t
8

P, = ) (u-v,)dt (3.7)

where tg is the time at which mass first starts to
leave the rocket, Combining Eqs. (3.5), (3.6) and
(3.7) results in the total momentum of the original
mass of -the rocket,

dm_x dm
p= “mp __st_cg,r xs?rp'

x, z (3.8)

dx
v [ s w-vaxs [ P (Vg =) (u=v) dt

X t
S 5

As the total momentum of the system is
conserved, Eq, (3.8) may be differentiated and set
equal to zero, The result is

2

4 dm d" m_x
o m, Frugh - :
P dt
2
d®m dx dx
e e
+ xg __2.Edt + pe(u - ve) I + ﬂe(ve - T) (u - Ve)
x ° x X
e e
du B %y
i paxtu [ dx- f at dx (3.9)
x x X

s S 8

) and Eq, (3,3) gives

w

Simplifying the above equation using Eqs, (3.1) and
(3.3) gives : :

d®m x 2

~;E_°E+xs_;2fl- pevez- f

(3.10)

-Themass of the rocket equals the mass of therocket

at time tg minus what has left the rocket

t
N VO e YN (3.11)
. tS
The mass of the rocket proper equals
t
my=M- [ foa (3.12)

The following equation reduces to the continuity
equation when expanded

dov dv dv _&_,_vz _ o,dv dv? 3.13
at"’<at+"'a?>'ax A ax (3.13)

Combining Eqs, (3,10)-(3,13) and (2.9) yieldsthe
equation of motion for the variable mass flow-
variable exhaust velocity rocket

t
= (37 dx, du df
O-I:M-f £ (E()e(ve-—dt)dt] &
tg )

+(xcp-xs)—dt—
t X
2 e
dx d"x
c c * 9r [ dv ov.
+of P -(M-vf fdt>—2dt S 3;<5E-+vax>dx
0
" (3. 14)

where fg and (87/9%)g are computed at x=xe, This
is the nearest one can come to deriving a general
expressioninthe form of Eq,(1,1). The only quantity
in the above equation which is not contained in Eq,
(1.1) is 7, which can be explicitly obtained only for
certain functions of v (see Section VIII for an
example), : '

The above analysisis consistent with the results
obtained by those who treat the variable mass
flow=-variable exhaust velocity rocket as a variable
mass problem in which the center of mass of the
whole rocket playstheleadingrole, The mainresult
of these approaches is equation B-~10, which can
be expressed in terms of the nomenclature of Fig,
2. : Co.

) d2m

du .
- cr r
0= me gt (e - Xer) T3

(3.15)

dx

et "2

dxcr ) dmr

+ (v dt dt

where mp,=m, U,p"U,, Xopr~Xas, Xo=X1, and v =v7,
ducp/dt is the acceloration of the camter of Shass
of the rocket in an inertial coordinate system and
Xcr is the position of the center of mass of the rocket
(see Fig.2),

It will now be shown that Eq, (3.10) is equivalent
to Eq.(3.15). The center of mass of the rocket is
obtained from



mr Xcr = mp cp + l xp dx (3-16)
xS
Differentiating results in
xe
dm_ x dm_x dx 3 (3 17)
r cr _ c e P .
—ar R s gt [ % . :

Xs

The following identity can be established by
integration by parts using the continuity equation.

*2 N *2
B 4 . .
f X ge dx =X pyvy = xp0pv, +

X

(3.18)

pv dx
1 xl .
Combining Eqgs, (3.4), (3.17) and (3.18) and setting

dmp/dt=- PV gives

dmrxcr B dmpxcp . . d

m dm *e
& " da -t *e —at -xs_dT? + [ vex  (3,19)
xS

Differentiating the above equation results in

d 2
myx,. d mp xcp . dxe dmr oy d®m
a2 at? B (- 3 s —‘zEdt
2 x (3.20)
d m_ dx oy
* %o 7 %eVe 7@t / 3t dx

Combining Eqs. (3.4), (3.10) and (3.20) gives

dzx 2

- du cr d m,
O=m F M dt§ *x - Xop) at?
(3.21)
% dx dm
+lv, +—EL - 2L, _r
e dt dt dt

The inertial acceleration (dug,./dt) of the center of
mass of the rocket is

2
ducr - du d *er

dt dt 2

(3.22)

Combining Eqs, (3.21) and (3.22) yields the desired
result, Eq, (3.15),

Equation (3,10) is also consistent with the ap-
proach taken in references 5 and 6, Miele applies
Newton's Second Law of Motion to the rocket
regarded as a continuum in the following manner,

Fe | <%-%>dm=mrg_\;-f £oam  (3.23)
m

where F is the external force, du/dt is the ac-
celeration of the origin (point fixed on the rocket),
dv/dt is the relative acceleration with respect to
the origin and the integral is to be summed over
the mass of the rocket, Although Miele extends
his approach further, it is easiest to derive Eq.
(3.10) directly from Eq. (3.23).

Setting the external force equal to zero and
separating the integral into an integral of the mass

in the rocket proper and an integral of the mass in
"the acceleration chamber results in

g *e . *s Xe
- qu dv dv ’
U me Gt f e dt dx - f pp at dx - f

x 0 X

oS % (3.24)

in terms of the notation in Fig. 1 and where sy, is
the density in the rocket proper (for 0<x<%g).
Appendix A contains a derivation of the equation

X X

_SI—E=XSTE+[ pp vdx+[ pp vdx

0 .
%5

(3.25)

Differentiating, setting #,o ve dx,/dt = 0, and using
Eq. (3.13) gives

2

2 * X
d my Xe, d°m s B e
—y— = x ——2E + oy
dt 5 & f p
0

dv
d. o
x + f pp at dx

X
5

(3.26)

where it has been assumed that s.v2 is equal to
zero atx equalto 0, xg and x,. Equation (3.24) can
be obtained by combining Eqs. (3,10), (3.13), and
(3.26).

IV, Derivation of Equation of Motion Before Mass
Leaves the Acceleration Chamber

The equation of motion for the time interval
beforethemass startstoleave from the acceleration
chamber is found in a similar manner as was the
main equation of motion (Eq.(3.14)). Themomentum
expression can be obtained from Eq. (3.8) after
eliminating the term representing the expelled mass

*1

dm
—EE*'I P (u=-v) dx

*s

(4.1)

where xy is the point reached by the first particle
that entered the acceleration chamber, X is
obtained by integrating Eq,(2,1), The mass of the
rocket properis given by Eq.(3.12), Differentiating
Eq.(4.1), setting equal to zero and using Eq.(2.10)
and the derivative of £Eq.(3.12) results in

d2m x

X

1

-y Su cp _ af 2. 3 .

0= MF _%z—p‘ I 1 V1 ‘/ Br- dx (4.2)
X

s

where vy is the velocity at x;. Combining Eqs,(3,12)
(3.13) and (4.2) gives

0=M %%_ * gy - xg) g% t2f %B
t X

1
‘ d'x *3r dv, Bv
- (M - _/ fdt ) _d_th - f 3% Bt +vas) dx (4.3)

0 Xy



The only difference between Eq. (3,14) and the
above equation besides
interchanging =3 for x, and the dropping of the
integral inthe first termisthat in the above equation
the derivative of xy with respect to time is vy,
whereas in' Eq. (3,14) xg is a specified function of
time,

V., Derivation of Equation of Motion After
Masgs Stops Entering The Acceleration Chamber

Once the mass stops entering the acceleration
chamber, the mass remaining in the rocket proper
remains constant, If t| represents the time that
the last particle entered the chamber, at time t it
would have reached point x9 found by integrating
Eq. (2,1), Theintegral representing the momentum

in the chamber need cover only the range from x5 -

to Xe. Equation (3.8) for this case becomes

X t

dx e ax
prm e+ [ pweviaxt [ oa v - o) a
) ts
(5.1)
The mass of the rocket can be expressed
X
e
mr:mp+ f p dx (5.2)

)

Differentiating Eq. (5.1), setting equal to zero and
using Eqs, (2,10) and (5.2) results in
2 *e s
*c 2 v
A0=mr%‘:—-mp—d:2—dp-+ pzvzz-peve - f a%'dx (5.3)

*3

Combining Eqs, (3.11),(3.12), (3.13) and (5.3) gives

t
" dx
0= {M- |, (ve-d—te)dt] du
, .

s

tl. dzx Xe
- [ fan —jﬂd: - ¢ & & v By gy (5.4)
0 ' x

2

The differences between Eqgs, (3.14) and (5.4) are
the changes in the limits on the integrals and the
dropping of the terms containing x4 and f,

VI, General Equation Of Motion

By comparing the equations of motion (Eqgs.
(3.14),(4.4) and (5.4)) for thedifferent time periods
considered in the previous three sections, the-fol-
lowing general equation of motion for the variable
mass flow-variable exhaust velocity rocket can be
obtained

d:
O:mr %ltl+(xcp_xs)%+ Zf—_’fdst
ta d2x *» M
STV QR - Y R L R
dt

0 X,

(6.1)

the obvious ones of -

where: m, = M if no mass has left the rocket,
Otherwise :

(6.2)

X, equals x_ if mass is currently entering
the accelerdtion chamber, Otherwise it is’
the pointoccupied by the massin the chamber
closest to the inlet,

xp equals x if mass is currently leaving the
acceleration chamber, Otherwise it is the
point occupied by the mass in the chamber
closest to the exit,

ta equals t if t< t;; otherwise t; = t;.

The points x5 and xp when not equal to xg or Xg
respectively, are functions of time; they move with
a velocity equal to the velocity in the acceleration
chamber at that point. .

VII. Special Cases

Several rocketmodels lead to simplified density
expressions and corresponding simplified equations
of motion. In the following examples both x¢p and
Xe are assumed to be independent of time and xg
isassumetooccurat x.,, Inaddition, the reference
point in the rocket is assumed to coincide with xg.
Attention is restricted to the full acceleration
chamber situation,
A, Exhaust Velocity that Allows Separation of
Variables

Assume that v is given by
v = ab = alt) b(x) (7.1)

Differentiating Eq, (2.4) and using Eq, (2,9) gives

(7.2)

87/ax=1/a'b, o=1 /a'b

Equation (3,14) reduces to

t *
af €
o-[u- S ealw ST
a a

()

%3) dx (7.3)

t 0
Assuming further that f=a, the density »# = 1/b and
Eq. (7.3) reduces to
t
0=(M-f adt)%‘%-x d_a_azb (7.4)

e dt 7 "x
e

ts

B. Constant Exhaust Velocity Rocket

The constant exhaust velbcity rocket implies that
the exhaust velocity doesnot change with time while
the mass flow is variable, Hence,

v=b=bx} (7.5)
Differentiating Eq. (2.4) with a equal to one gives

3r/dx = 1/b (7.6)



Eqs. (2.9) and (3.14) reduce to

p=1/b
t Xy
o-m- [ Fapdi [ 8y g

"s 0

(7.7)

X

where r. [ dx
0 b

C. Constant Mass Flow Rate Rocket

The constant mass flow rate rocket implies that
the mass flow into the acceleration chamber does
not change with time while the exhaust velocity does
change with time. Hence,

(7.8)

f=rc

wherec is a constant, Eqs, (2.9) and (3.14) reduce

to

p=c B8r/8x

t
Oz[M-C] dx'e ‘e dt

ts Xg

x
e
ar du 87 v 3v (7.9)
(=) v dt] = -c f ax(—8t+v6x) dx

D. Steady State Rocket

Both themass flow rate and exhaust velocity are
independent of time for the steady state rocket, If

f=(:,v=b=b(x) (7.10)
then Eqs, (2.9) and (3.14) reduce to
p=c/b
(7.11)

- - . du
0 [M et ts):l a - cbg

where b, is based on X = x_,
Tsiolkovskii's equation gives

Integration of

u-u =b_ log [M/[M-c(t-ts)]} (7_]_2)

where ug is the velocity at time tg,

‘ VIII, Numerical Example

This section contains an example of when the
variablesinv are separable and such that Eq, (2.4)
can be integrated, The same assumptions
concerning x.p, and x_, are made as was assumed
in Section VII, Let fhe mass flow rate into the
acceleration chamber and the velocity be specified
by ' ’

f=1t, v=tx

(8.1)

The acceleration of the mass in the acceleration
chamber is given by

] -
v 2nel

(8.2)

dv_ ov |
dt ~ 3t *

Carrying out the integration of Eq, (2.4) resultsin r

1/2
rot. [tZ . 2xl-n/ (l-n)] (8-3)

Eliminating x between Eqgs, (8,2) and (8,3) gives

n

>%= [%n"[‘z‘“"’z]lﬁ +ntzl-l—ﬂ[t2- (t-r)z]]zln‘—-“l (8.4)
3

Hence, to avoid infinite accelerations at the inlet
(i,e.: when 7 goes to zero), n must lie in the range
1/2<n<1,

Differentiating Eq, (8.3) yields

Loy (2 - 2o ylony -1/2 (8.5)
The density (Eq. (2.9) and mass flow rate are

s (8.6)
Equation (4,4) reduces to

o-mdu _, _ .n2 (8.7

dt 1771

Integrating the velocity to get the time-position
history of the first particle that enters the chamber
results in

x = [ t2/2]1/2 (8.8)

Inserting into Eq. (8.7) and integrating gives

w

-n

n 1
-n len, 1=n l=n, l-n
[‘T’ MR ]

(8.9)

|

u=

a .t

1-n
3=n

=

This equation is valid until the chamber is full at
time t;. This time is found by solving Eq. (8,8)
for t after substituting x¢ for x1,

t = [2xel'"/ (1-,1)]1/2 (8,10)

8

For times in excess of tg, Eq, (3,14) reduces to

0=m-tPr2ei? ) Boax ox PP (8.11)
Integrating
u-u =x (a-b/c+ 2xe" (-t+ac/2 + tg = be/2)
(8.12)
where
c= M+t B2 az10g [+ /(e -]

b = log [{c + ts)/(c - ts)]

This equation is valid until mass stops entering
the chamber at time tj. For greater times the
equation of motion is found using Eq.(5.4)



ey 2 2, du _.n 2 n 2
0 < (M l/2+ts /Z)W'Xel <Xt Xy tT 4+ x, (8_13)

where xq is obtained by integfating the velocity.

. 1/{1-n)
xy = [em a? -1 2]

As Eq, (8.13) is not readily integrable, it can
be solved numerically on a computer, Figure 3 is
a plot of u verses t for the following conditions

vex t,f=t,n=.6, M=1 (8.15)
mp atts = ,75, mp atv.l =
The following times are then derived

(3.12): t =[5, t1=‘/1.5.
10-1

/'i

el
Velocityu / /
10_3 / Distance vy

-4
10 7

1079
/ Mass Stops

Acceleration Entering Chamber
g\homber Full‘\ Chamber
L1y, ey

06 08 1.0 1.2 14 16
TIME
Figure 3. Velocity and distance versus time for
rocket defined in Eq. (8. 15)

The length of the acceleration chamber equals
.00316 and is found by setting x; and t equal to xg
and tg in Eq, (8.8), The time that the last particle
leaves the acceleration chamber equals y2 and is
determined by setting x5 and 1 equal to xg and t
in Eq, (8.14), The distance the rocket has moveg
is found by numerically integrating the equation
dy/dt = u and is also shown in Fig, 3,
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Appendix A
Deprivation of the Momentum of
A Variable Mass Body In Terms

Qf Its Center Of Mass

The derivation of the momentum of a vafiable

-mass body in terms of its center of mass can be

based onadiscontinuous medium ¢ or on a continuous
medium1,9, To be consistant with the general
approach taken in this paper, a body with a continuous
medium will be used, The body is assumed to lose
mass at both point x; and x,, with x4 and x9 moving
with time (see Fig. 4), e mass leaves with the
local velocity v of the mass in the medium,

The location x; of the center of mass is given by

(A.1)



v o———-bvl e 2
7 ec | ——e-dx,/dt l—> d x9
— X dt

—]

¢ - Position of center of mass
u - Absolute velocity
v - Velocity relative to body

Figure 4. - Variable mass body notation

There is a discontinuity in the mass density at x1

due to the mass leaving at that point, If 01 and
P refer to the mass densities on the left and right
sides of x1, differentiating Eq. (A,1) results in .

e e L, 9
t 1 701 dt 2 "2 dt
< (A.2)
dx, 1 X9

- 1 dp 3p
xlpl2dt+[0 x—ade+/); x—a—tdx

1

Using Eq, (3,18) the above equation can be reduced
to

dmx dx2 . dxl
at T ¥afa\Tar v Ve txy (egy - ey v
x X
2 (A.3)
+ _/;] P vdx + jxlApvdx

The mass in the body equals

*, X,
m = fO p dx + _/;{1 p dx

(A.49)

Differentiating and using the continuity equation
gives '

o

m dX2 dx
t

dm _ , 2 . 1
e Rl vt Cegy = ) (- v

(A.5)

The first term on the right hand side of the equation
represents the mass flow leaving point 2 and the
second term the mass flow leaving point 1,
Combining Eqs, (A,3) and (A,5) results in

dx x,
Mgt P - vp) (x - xy)
x, % (A.6)
*1
+(d—t-v1)(P01-P12) (xz-x1)= ];) pvdx+[x p v dx
1
The momentum of the body is defined to be
xl x2
P‘/ p(u-v)dx+_[ o (u-v)dx (A7)
0 x

1

whereu is the velocity of a point fixed on the body,
Comparing Eqs, (A,6) and (A,7) gives

“ 'x2 dx
p=u[0 pdx+u_l p dx ~ m —S
dx,

X @ (A.8)

+ o, ( 2 dxl
2l vy (x, - xJ) o+ (—dt—-vl)(l’m -2 xg - x)

Equations (A.6) and (A.8) can be applied to the
rocket proper section of Fig, 1. Using the notation

of Fig.1 and Eq, (A.5) with se (dxa/dt-vy) setequal
to zero, Eqs, (A,6) and (A.8) reduce to
. X X
dx s e
mS4x -y ) dm vd v
- y W& o e
P’Um-m%w“ (xs-xc) dd_r;x
Appendix B,
Equation of Motion For A Variable Mass Body -
In Terms Of Its Center Of Mass

This appendix contains a derivation of an equation
which hals been frequently mentioned in the
literaturel-4as the equation of motion of a variable
mass body (of which the rocket is one example).
The derivation follows the approach taken in the
main section of this paper (differentiating the
momentum of the system and setting the resulting
expression equal to zero). The body considered is

illustrated in Fig, 5, i
4
|
e e i
U - d_m —"i 1
it Ll s
t
e !
x) > l

¢ - Position of center of mass

u - Absolute velocity (=dr/dt)

v = Velocity relative to body
dm/dt - Mass flow rate at x

Figure 5. Variable mass body notation
The mass within the body is

-
*1

m=fpdx

0
Assuming thatthe body loses mass at point x which
varies with time, Eq, (B.1) can be differentiated
using Eq. (2,10), resulting in

dm dx

1
q® e vp

(B.1)

(B.2)
where vy is the velocity of the mass being exhausted,

The momentum of the body plus the momentum
of the mass that has left the body equals

xl t

- dx
= - 1 .
p [0 o {u-v)dx+ /t pl(vl'W)(“"’l)dt
s

(B.3)

where u is the velocity of the body and tg is the
time that the body started to lose mass,
Differentiating Eq. (B.3) using Eqs, (2.10) and (B.2)
gives

(B.4)

The location x, of the center of mass is given by

¥

mx, = Ifo X p dx (B-S)
Differentiating gives
X
. 1
P DU T (B.6)
0

where dx./dt is the velocity of the center of mass
with respect to the body. Using Egs, (3.18), (B.2)
and (B.6) results in



X

dmic . dm /‘ ! (B.7)
_clt"xl‘dr*’o PV odx .
Differentiating once more gives
X
2 1
d"mx 2 dx - 3
d”m dm 1 PV
2o SRR e [ e (B.B)
dat” dt 0
The acceleration of the center of mass point is
du d2x
_¢._du c
dt " dt at2 (B.9)

Combining Eqs, (B.2), (B.4), (B.8) and (B.9) results’
in : :
o due  dm dx, ¥ | dm
0'"‘?”"1'%’?”"1*?'2?)? (B.].O)
Introducing the notation r¢, rg, and v (absolute
velocity) with the following equations (see Fig, 5) .

X, =X =r_ -
17X ™"

er V17 dr/dt - v

_1_dr __ e c _dr c _ .
dt  dt”"dt’ dat at " su - (B.11)

results inthe equation of motion asusually specified,

du 2 dr_ dr
. yd'm « d
R M- S L (B.12)
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