
r

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMRINT OF AERONAUTICS AND ASTRONAUTICS

INSTRUMENTATION LABORATORY

CAMBRIDGE. MASS. 02139

AG# 370-69
* August 4, 1969

National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas 77058

Mr. W. Kelly
Project Office PP7
Guidance and Navigation

Mr. Christopher Kraft, Jr. FA

NASA/RASPO at MIT/IL

Exegesis of the 1201 and 1202 Alarms Which Occurred

During the Mission G Lunar Landing

During the mission G lunar landing five LGC Executive overflow

alarms occurred. They were with approximate times of occurrence,

1202 at PDI + 316 seconds

1202 at PDI + 356 seconds

1201 at PDI + 552 seconds

1202 at PDI + 578 seconds

1202 at PDI + 594 seconds

The first two alarms occurred in P63; the last three occurred in P64. A

later section of this letter gives more detail on the other DSKY activity

during landing.

• These alarms arose because of a computer overload caused by a

high frequency train of "counter increment requests" from the RR ECDUs

Each "counter increment request" requires one LGC central processor

memory cycle. Consequently, the other computational tasks and jobs of

Attention:

Through:

Subject:

Gentlemen:

Background

V -

^ /
I

I

C. S. DRAPER
DIRECTOR

ADDRESS ALL REPLIES TO INSTRUMENTATION LABORATORY. 68 ALBANY STREET. CAMBRIDGE. MASSACHUSETTS. 02139



the LGC are effectively slowed down. The slow-down was ‘s‘6 bad at times

that some repetitively scheduled jobs (like SERVICER, the navigation and

guidance job which is done every two seconds) were still running when the

time arrived for their succeeding cycle of computations to begin.

I'

This phenomenon (requesting the EXECUTIVE program to start .*

some particular job before the previous request of the same job has been

completed) is a feature of the way the LGC guidance cycle is structured

and the way sucessive repetitive jobs are scheduled. The execution of jobs
I

may be slowed down by RR ECDU memory cycle robbery but the clock which

schedules jobs like SERVICER and LRHJOB (the job which reads LR range)

is scarcely affected. The clock (TIMES, the WAITLIST clock) we use to

schedule these jobs ineluctably counts down to the time for the next repetition

of a job to begin whether the previous repetition is complete or not. This

is not the only way to structure our programs but it is the simplest and most

natural way. There is, of course, danger in this structure, a danger well

understood and, we thought, provided against. Some computations may
never be finished if the basic cycle period is to short for the load on the

central processor. Worse yet, the EXECUTIVE program may be deluged

with requests for jobs - the new ones and the old still unfinished ones.

The EXECUTIVE must supply a unshared set of erasables for each job's

execution from the moment it is started until the moment it is completed.

The EXECUTIVE has only so many sets of these erasables at its disposal.

After it has allocated all its sets the next requestor of a job asks for the

impossible. The EXECUTIVE responds to the impossible request by

turning on the PROG light (program alarm), storing the 1201 or 1202 alarm

code, and transferring control to the BAILOUT routine which tries to bail

the program out of trouble by stopping all jobs and tasks and restarting only

the absolutely required (in the programmer's limited fallible viewpoint) jobs

and tasks. Thus, certain astronaut requested activity like extended verbs
%

and monitor displays are preemptively terminated (he can call them back).

This cleaning out of the temporarily dispensable can cure a temporary over-

load. A permanent overload is the very dangerous situation.



If there is a danger in this simple natural philosophy the danger can

be reduced to an acceptable level. We try to do this by simulating all the

known sources of coinputer load and then to be safe impose a safety margin.

We simulate an unknown source or sources of memory cycle loss (we call

it TLOSS) and insist that a certain TLOSS be tolerable (no 1201's, no 1202's).

The margin has a price - it can be obtained by lengthening the navigation,

guidance and display period and by trading off execution speed against

storage in the coding technique. We insisted on a tolerable TLOSS of about

10% during landing. The coding and the guidance period were therefore

massaged until 10% TLOSS was tolerable (with a monitor verb running).

Unfortunately, the RR ECDU's stole about 15% (most of the time).

T he balance of this letter gives a simple explanation of the

EXECUTIVE program and the job structure during landing, the interesting

hardware interface between the RR shaft and .trunnion angle resolvers and

the LGC when the RR switch is in AUTO TRACK or SLEW, and also what

we are doing in LUMINARY IB about this interface. Finally, it is not this

specific problem which we thoroughly understand and have several ways

of avoiding that really concerns us now. As you asked me in your office

last Thursday, how can we prevent a similar presently unknown thing from

happening? The last part of this letter explains some precautions we are

taking and some disciplines we are invoking..

The Executive Program and How 1201 and 1202 Alarms Can Arise

The job scheduling and job supervising program in the LGC is called

the EXECUTIVE. When the landing programs must schedule a job they call

tbe EXECUTIVE program and give it the address of the job to be run and

the priority for running it. Examples of jobs which arp scheduled repetitively

during landing are SERVICER, LRHJOB, and LRVJOB (the job which reads

the velocity measurement from the LR). An example of a one shot job

scheduled at HI- GATE and therefore called HIGATJOB, is the LR antenna

re -positioning program.

People sometimes talk about jobs running "simultaneously”. This

cannot literally happen since there is only one central processor in the LGC
and only one job's computations can be done at a time. However, jobs can •

be simultaneously waiting to be run, and these jobs can be waiting in various



Page 4

stages of completion.

How does the EXECUTIVE decide which one of a group of waiting

jobs actually gets control of the central processor? That is the purpose

of the job priority rating which the caller of the EXECUTIVE program

must specify along with the address of the job. If a priority 20 job is

running and a priority 32 job request is made to the EXECUTIVE, the

EXECUTIVE will temporarily suspend (put to sleep) the priority 20 job

(at a convenient point of suspension of the suspended job) and initiate the

priority 32 job. Evidently, there must be an inviolate unshared set of

erasable registers for each suspended (sleeping) job where its inter-

mediate results are stored until it oan be re-awakened to finish its

computaitions. Even the simplest job requires a certain minimum set

of erasables - this is called a coreset (twelve erasable registers per

coreset). More sophisticated programming jobs, which perform matrix

and vector computations and therefore use the INTERPRETER, need an

additional set of erasables called a VAC area (43 erasable memory cells

per vac area). (VAC stands for vector accumulation).

Therefore, every job needs a coreset and some jobs need a VAC

area. Furthermore, every job must be allocated its required set of un-

shared erasable registers from the time it begins its computations until

the time its concludes its computations and does an ENDOFJOB - even

if it is temporarily suspended and waiting to be awakened in order to

finish its computations. Jobs which use coreset storage only are called

NOVAC jobs; those which require a "vector accumulator area" also, are

called VAC jobs. A table of the jobs which may run during landing, their

priority, and their type (VAC or NOVAC) is given below.

Obviously, the EXECUTIVE program cannot respond to an arbitrarily

large number of requests to schedule jobs. For that would require an

arbitrarily large number of erasable registers. The LUMINARY IB

EXECUTIVE program has enough erasable memory to provide 8 coresets

and 5 VAC areas. ^(COLOSSUS only has 7 coresets.) If the EXECUTIVE

is requested to schedule more than eight jobs altogether or more than



Page 5

five VAC type jobs it cannot comply. There are several actions which

the ES^ECUTIVE could take in this overload condition. One possible

action would be for the EXECUTIVE to terminate abruptly the lowest

priority waiting job and pre-empt its erasables for the newly requested

job (or ignoring the request for a new job if its priority is lower than

the priorities of the already waiting job). Of course, in this kind of

scheme, a NOVAC job could not be preemptively "de-scheduled" to

accomodate a VAC job. This philosophy is not really realistic. The

EXECUTIVE program, then might be making mission affecting decisions.

It could conceivably ignoi'e the execution of a low-priority but nonetheless

crucial job. The EXECUTIVE, then, should not make a decision to abort

or kill a job.

How, then, can an EXECUTIVE overload reasonably be handled?

To understand how we handle EXECUTIVE overloads we have to under-

stand how the computer handles software or hardware restarts. A
restart causes, among other things, a cleaning out of the EXECUTIVE
program's queue (and also the WAITLIST program's queue). The

RESTART program then consults "phase tables" to see what jobs and

tasks should be restarted. The phase tables are updated^ the mission

programs as the computations proceed. The phase tables do not necessarily

start a given job over at its beginning; they are more likely to restart the

cleaned-out program at some point conveniently prior to the point at which

the restart interruption occurred. If we think of the programming job

as being composed of blocks or chunks of functional coding, operations

and computations, then we see that logical points for a restart to begin (that

is, a logical place to insert a phase change) would be at the beginning of

the logical block or chunk which the computer is currently executing.

Note that the advantages of causing a software restart following an

EXECUTIVE overload are twofold.

1) Old jobs which were not finished before their successors were

requested are cleaned-out; i. e. , the backlog, the logjam, is



I
Page 6

cleaned up. Because SERVICER does its navigation first

in its cycle and then its guidance computations and then its

DAP output computations, the state vector maintenance is
I

not likely to degrade but the DAP outputs may be old if the

SERVICERs begin to accumulate. The philosophy of cleaning

•out the old unfinished SERVICERs and restarting the current

one is therefore a good idea.

2) When a restart is executed only the programs, jobs, and

tasks which the programmers provided for in the "phase

tables" are restarted. (This, of course, is a two-edged

sword for the programmer may forget to provide for a

crucial job or task. ) Temporarily dispensable items like

astronaut requested monitor verbs or extended verbs are

not automatically restarted. Thus, there is likely to be an

immediate reduction in the computer load. The astronaut

may subsequently re-request his preemptively terminated

monitor or extended verb.

Reference to the Table of Jobs and Priorities below shows that

there are only 8 jobs which can run during lunar landing and that only

three of these are jobs which use a VAC area. Furthermore, some of

these jobs, like HIGATJOB and LRHJOB (or LRVJOB) cannot run

simultaneously. Therefore the 1201 alar'm (not enough VAC areas

available) and the 1202 alarms (not enough coresets available) must have

occurred because of multiple scheduling of the same job. Obviously,

then, if there was a 1201 EXECUTIVE overflow some job like SERVICER
was scheduled two and possibly three or four times. In effect, the tail

end of SERVICER v/as not being finished before a new SERVICER was

scheduled.

The software restarts which accompanied the 1201 and 1202 alarm

kept the program from becoming hopelessly snarled up. However, the



Page 7

unusually high frequency of unanticipated "counter increment requests"

caused the prograin to require three software restarts within about 40

seconds in P64.
I

Long-Range Safer and More Flexible Software

It ha's been proposed by several people at MIT/IL (Peter Adler and

Don Eyles) to provide a variable DT SERVICER program which starts a

new cycle of computations as soon as the old cycle is finished. Our

present SERVICER has a fixed DT of two seconds and the AVERAGE G,

FINDCDUW and PIPA and GYRO compensation routines take advantage

of this value of fixed integral number of seconds chosen for DT. Therefore,

this programming change is not trivial. Such a mechanization has

tremendous advantages however. By running all non-SERVICER jobs

(like extended verbs and monitor verbs) at a higher priority than

SERVICER, we can get every job done that is requested in one SERVICER
cycle by making the end of one SERVICER cycle schedule the next SERVICER
cycle. The computer is continually busy this way but the programs never

overburden the EXECUTIVE job scheduling capacity. In effect, you have

the shortest DT possible for the number of tasks and jobs you are trying to

do. This also allows new computations (PCRs) to be inserted with the

simple consequence of increasing the average DT. The undesirable effects

are that the DT varies and verification of stability due to sampling frequency

Of PIPA reading and output command frequency to the DAP is more

difficult.

How the RR Can Rob 15% of the LGC

The 1201 and 1202 program alarms which occurred during the mission

G landing were due to a computer overload caused by high frequency shaft and

trunnion angle "counter" incrementing from the RR ECDU's. The spurious

erratic high frequency output from the RR ECDUs can occur whenever the

rendezvous radar control switch is in SLEW or AUTO TRACK (rather than

LGC) because then the ATCA provides a 15 volt 800 cps signal to the angle



Page 8

resolver primaries which has a random phase relationship to the 800 cps

which the PSA provides for a reference to the RPi. ECDUs. The consequence

is. that the ECDUs may count at their maximum rate, 6400 cps, in their

futile attempts to null the ECDCJ ''ei''ror's". The loss of computation time

for the two ECDUs counting at maximum rate is 12, 8 X 10^ X 11. 72 X lO"®

= 0. 15 seconds/ second or 15% of the LGC time since each involuntary

"counter" increment takes a memory cycle (one memory cycle = 11, 72

microseconds).

The Apollo 11 crew checklist specified that the R.R switch be in

AUTO TRACK immediately before calling P63. We were unaware of the

effect this w'ould have on the compujer execution time load.

Preventing Future LGC Memory Cycle Robbery by the RR ECDUs

When the RR mode switch is in either the AUTO TRACK or SLEW
positions the RR ECDUs obviously cannot digitize the signal transformed

from the shaft and trunnion angle resolver primaries to the input to the

ECDUs. The only time the LGC is interested in the ECDU signal is when
the RR mode switch is in LGC. Therefore, a PCR has been written,

approved, and implemented in LUMIMARY IB to monitor the discrete

(the RR Power On/LGC Mode discrete) which the LGC receives when the

RR switch is in the LGC position. When the LGC does not receive this

discrete, it sets the RR. ECDU zero command which stops the ECDUs'
attempt to digitize the analog voltage from the resolvers. This action

effectively prevents "counter increment requests" from the ECDUs and

prevents central processor execution of these meaningless interrupts.

It should be mentioned that if the RR DC circuit breaker is pulled

the LGC does not receive the RR Power On/ LGC Mode discrete, and

therefore the LGC ^yill'zero the RR ECDUs. This action is correct since

the LGC is not interested in the shaft and trunnion angle of the RR when
its circuit breakers are pulled.



Page 9

We may modify our all-digital simulator to send 6400 pps from

each RR ECDU to the LGC if the RR switch is not in LGC and the LGC
has not set the RR CDU ZERO bit. Of course, if the simulator had this

feature for our software verification tests we wt»uld have detected the

computer overload during our testing.

In addition to the above PGR, other actions have been taken.

PGR 81-4 for example, provides for a modified V57 which incorporates a

display of N68 and avoids the need for a monitor verb and job (MONDO).

The sepai’ate call of MAKEPLAY has been eliminated by incorpor-

ating this job into SERVICER.

A Program to Keep Similar Events From Occurring in the Future.

There were folks who knew about the RR resolver/ECDU/LGC
interface mechanization. There were also a great many people who knew
the effect v/hich a 15% TLOSS would have on the landing program’s operation.

These folks never got together on the subject. Therefore we need to improve
communications.

There are various simulations throughout the country which might

have detected this problem if they had simulated the RR resolver/ECDU/LGC
interface with enough fidelity. Therefore, we might look at our various

simulator configurations to see whether we are leaving anything significant

out. We have just started a new Simulator Configuration Control Board at

MIT/IL which will function like your own Apollo Software Configuration

Control Board. This board v/ill adjudicate the approval of SCRs (simulator

change requests). We will encourage the writing of SCRs which can

increase the fidelity of the simulator in significant ways. I hope to con-

stitute this board with hardware personnel as well as software personnel

so that important hardware/softw'are interface features are not overlooked.

Our anomaly prevention plan includes the following steps:

1. "What if” sessions between hardware and software personnel.



Page 10

2. Orientation lectures by hardware personnel for the benefit

of software personnel so that programmers and mission

support personnel better understand the hardware.

3. A review of the adequacy of tlie sitnulator we use for mission

verification. Perhaps we can get hardware personnel from

.
GAEC, MSC and MIT/IL to review our current models.

4. Scrutiny of the crew checklist by the hardware personnel.

(This could have prevented the alarms.

)

5. An insistence that anyone who knows anything peculiar about

the hardware, the hardware/software interface, or the software

document his inforination in the appropriate place (AOH, GSOP,

Program Note, etc. ) and tell the appropriate personnel.

Very truly yours

George W. Cherry
Luminary Project Director

R. Ragan
D. Floag
L. Larson
R. Battin
N. Sears
F. Martin
A. Laats
G. Silver

K. Glick
T. Fitzgibbon
B. McCoy
C. Schulenberg
R. Covelli
D. Eyles
P. Adler
K. Greene
L. Dunseith, FS
T. Gibson, FS 5

T. Price, FS 5

N, Armstrong, CB
A. Aldrin, CB

W. North, CF
D. Cheathan, EG 2

W. Goeckler, PD 8

E. Kranz, FC
H. Tindall, FM
S. Bales, FC
R. Gardiner, EG
F. Bennett, FM 2

J. E[anavv''ay, EG 412

R. Chilton, EG
W. Heffron (Bellcomm)
C. Tillman GAEC
G. Cherry (20)

P. Felleman
R. Larson
J. Nevins
W. Marscher
M. Hamilton
A. Kosinala



*s

TABLE OF JOBS AND PRIORITIES

Name of Job
and Type Description of Job Prior;ity of Job

SERVICER
(VAC)

Performs Navigation, Mass Updating,
Guidance Computations, and Throttle
and DAP Command Functions

i

20 but does a priority change !

(PRIOCHNG) to 24 while using
|

subroutine to keep HIGATJOB /\J
from interferring (potential

erasable conflict) ”i

1

MAKEPLAY 1

(VAC)
.

1

Display job set up by SERVICER 20
j

1

1/GYRO
(NOVAC)

1

1

1

IMU compensation job. Compensates
gyros

.

21
1

i

LRHJOB
i

(NOVAC)
1

1

1

Reads the LR range
i

1

32 but they only run for a milli-
second or so and then sleep for
about 80 millisecond-s while the

. LR syne pulses are sent out. They
are awakened when LR reading is

completed and then run for another
millisecond or so.

LRVJOB
(NOVAC)

i

1

Reads the LR velocities
i

1

i

CHARIN
(NOVAC)

i

1

I
Started at each DSKY keystroke entry

1

for interpretation of keystroke.
30

1



I

TABLE OF JOBS AND PROBITIES (CONT.

)

Name of Job
and Type Description of Job

!

,
1

Priority of Job
|

r T-- . ;

’

HIGATJOB Commands the LR antenna to re- Runs at 32 for a millisecond i

(VAC) position to position #2 and sets up or two. Sleeps until position
1

!

j

a waitlist task to check for appear-
ance of the position #2 discrete.

#2 discrete is received. Is

awakene^ at priority 32 but
j

j

I

i

{

{

1

i

j

»

i

i

1

1

i

Sleeps during monitor. Is awakened
after monitor finds position #2 discrete
and computes, position #2 beam vectors
for LR Read Routine.

changes\o priority 23 before 1

calling si^ro^tine TRG'''SMNB
j

Note that r^ERVICER is
}

using QUIOTRIG, HIGATJOB i

cannot ii^r^re because
\

.SERVICER isN^^a higher
{

priorit-/ then. Notice that if
1

HIGATJOB is using TRG-SMNB !

SERVICER 'cannot make its
|

priority change to 24 and hence
j

cannot interfere.' j

.

J

{

i

!

' HONDO Monitor Verb Job. Runs during CO o

i
(NOVAC)

! . 1

V16N68.
I

Note: Both TRG=':<SMNB and QUICTRIG wse tl^CDUSPOT registers. Hence a potential

erasable conflict exists if TRG-SMl^^is called while QUICTRIG is executing or

vice versa. / x



IMPORTANT EVENTS OCCURRING

DURING LUNAR LANDING (Continued)

M IT. INSTRUMENTATION LABORATORY . Cambridge, Massachusetts •
8

.



IMPORTANT EVENTS OCCURRING

DURING LUNAR LANDING

TFI . H HDOT CDUY ah V
Time From
Ignition

. (seconds) (feet) (ft/ sec) (degrees) (feet) (ft/ sec)
DSKY or

Special Activity

2 49971 - 2.2 .. lOJ. 25 5559.7

232 42426. - 78.7 80 3366.4 Begin Yaw Windows Up

262-286 LR Data Good

286 37672 -104.

3

79 2745.4

304 35706 -113.

6

77 -2884 2521. 7 V.16N68

316 77 -2570 Program Alarm

322 76 -2354 V P5N09E (R1 = 1202)

338 31566 -128.8 75 -2655 2086.

1

V57E

344 30772 73 -1785 X Axis Over-ride Denied

346 73 . -1772 V16N68E

358 71 -1826 Program Alarm (1202)

372 24703 .-113.3 66 - 26 1640.2

374
.

66
.

- 78 V16N68E

380 68 - 98 Key Release

384 23393 .- 96.7 67 - 86 1481. 1 Throttle Down

396 22233 -102.

1

65 - 75 1367.

0

ENTER

450 15273 -136.

9

57 - 48 961. 0 ENTER
,

506 7380 -125.7 . 55 526. 2 P64

512 6636 -121.4 47 LPD 66 LPD in degrees, LRin Pos #2

528 4772 - 98.2 43 - 30 59 ATT HOLD

M.iT. INSTRUMENTATION LABORATORY . Cambridge, Massachusefts • •


