2\
il

9B2-8497-2

GEMINI

PROGRAMMING

MANUAL

Originated By: C. A, Leist
J. C. Condell

IBM NO §6-542-01 A

ORIGINATING GROUP

CONTENT APPROVED BY

CONTRACT NO

DATE Mav 24, 1946

NOTE: Please inform the authors of any corrections or additions.

FEDERAL SYSTEMS DIVISION
B ELECTRONICS SYSTEMS CENTER
' OWEGO NEW YORK

TABLE OF CONTENTS

Section Description _Page
1 Scope ' 1
2 Applicable Documents ' 1
3 Gemini Instruction List : ;|
4 Programming Restrictions 4
5 ATM Programming Requirements 7
6 Gemiﬁi IGS Program iiesig 12
T TCCS Punch Tapes | 13
8 ATM/AGE Punch Tape Verification Process 14
9 Gemini Programming DO'S and DONT'S 16
Tables
1 Module I Time Sharing Candidates
2 Data (26 Bit) Breakdown of Module I
3 Instruction Breakdownof Module 1
4 Gemini Subroutine Input and Output Arguments
5 Gemini Operational Program MF-6
6 Description of Flow in Figure 1
Figures
1 AGE/ATM PUnch Tape Verification Block Diagram
2 TCCS Pijnch Tape Flow Chart

3 IGS Program Design and Verification Flow Chart

GEMINI PROGRAMMING MANUAL

1.0 SCOPE

1.1 This document contains a brief description of the Gemini Instruc-
tions and their use as defined by hardware restrictions, assembler limita-
tions and programming experience.

1.2 It is assumed the reader has a basic computer programming
understanding and is somewhat familiar with the Gemini Computer Memory
organization. The documents listed in paragraph 2.1 are a good starting
point for the Gemini novice. :

2. APPLICABLE DOCUMENTS

2.1 The applicable documents were used to obtain detail information
on subject matter discussed in this manual and/or are mentioned herein for
using this manual as a handy compilation of documents available relating te
Gemini Programming.

IBM Documents

65-554-0089 Description of Gemini Digital Computer
66-538-01 IBM 7090 DPS Gemini Assembly and Punch
Program

64-542-011 B The Gemini Simulation Reference Manual

65-538-03 ATM Simulator Reference Manual

63-542-01 A Description of Gemini Input/Output Information
Relative to the Operational Program

65-542-11 Gemini Simulator Flow Diagfa.m

64-547-002 Gemini TCCS Tape Preparation Procedure.

3.0 GEMINI INSTRUCTION LIST

3.1 This section briefly describes the sixteen (16) Gemini instruc-
tions. A more detail description is contained in document IBM no. 63-554-,
0011.

Iy iuiin ry/
byrobel o Octal Code Desceription
HOP 0000 The contents of the memory address specified by
(00)g the operand address are used as a HOPC (liop
Constant) to change the next instiuction address.
A HOP must be used to change Syllable or Sector.
The contents of the accumulator are unaffected.
DIV 0001 The contents of the memory location specified by
(0l)g the operand address are divided by the contents
of the accumulator. The 24 bit quotient is in the
quotient delay line (not the accumulator) and
available at only 4 instruction cycles later by the
SPQ instructions. The contents of the accumula-
tor are unaffected.
PRO 0010 Process input or output. The input/output channel
(02)g specified by the opcrand address is read into or
loaded from the accumulator. The accumulator
will be cleared before loading if bit "A9'" equals
a !l]‘ll.
RSU 0011 Reverse subtract. The contents of the accumu-
(03)g lator are subtracted from the contents of the
memory location specified by the operand address.
The resultant remains in the accumulator.
ADD 0100 The contents of the memory location specified by
' (04)g the operand address are added to the contents of
the accumulator.
SUB 0101 The contents of the memory location specified by
(05)8 the operand address are subtracted from the con-
' tents of the accumulator.
CLA 0110 The contents of the memory location specified by
_(()6)8 the operand address arc transferred to the accu-
mulator,
AND 0111 The contents of the memory location specilicd by
(07), the operand address are lopically AND'ed, bit-

by-bit, with the contents of the accumulator.
(T3it positions which are "1'" in memory and ac-
cunulator, remain "I if either is "0" the bit
becomes "0" in accumulator.

* The last two bits of the product delay line are zero.

—-lim

e N < g ki e it

Binary/

Symbol Octal Code
*MPY 1000
(10)g
TRA 1001
A (11)g
SHF 1010
(12)g
TMI 1011
' (13)g
STO 1100
(14)4

Description

The contents of the memory location specified by
the operand address are multiplied by the con-
tents of the accumulator. The product is in the
quotient delay line (not the accumulator) and
available at 2 instruction cycles later by the SPQ
instruction. The contents of the accumulator are
unaffected.

The next instruction is obtained from the memory
location specified by the operand address within
the same sector and syllable. The contents of
the accumulator are unaffected.

The contents of the accumulator are shifted as
specified by the operand address according to
the following table:

Operand
Command Address
Shift Left One Place 030 See Gemini
Shift Left Two Places 0401 Assembler
Shift Right One Place 021 Document
Shift Right Two Places 020 IBM #66-
i 538-01

Note: If an improper address code is given, the
accumulator will be cleared to zero, While shifting
left, ''zeros'' are shifted into the low order posi-
tions; on right shifts, the sign bit condition is
shifted into the high order positions.

Transfer on minus accumulator sign. If the ac-
cumulator sign is positive (0), the next instruction
in sequence is executed (no branch), if the sign

is negative (1), the instruction in memory loca-
tion specified by the operand address is executed.
Syllable and sector remain unchanged. The con-
tents of the accumulator are unaffected.

The contents of the accumulator are stored in
memory at the location specified by the operand
address. The contents of the accumulator are
unaffected.

*The multiplicr and multiplicant arc trunciated to 24 bits prior to a multiply

operation,

The last two bits in the product delay line are zero.

-3- .

Binary/

Symbol Octal Code Description
SPQ 1101 Store product or quotient. The product or quotient
(15)g is stored in memory at the location specified by

the operand address. The contents of the accumulator
are unaffected.

CLD 1110 The state of the discrete input, selected by the
(16)8 operand address, is read into all accumulator

bits. Normally an "ON'' condition loads all '"1's"

into accumulator and "OFF'" results in all ""0's'",

TNZ 1111 Transfer on accumulator non-zero. If the con-
(17)g tents of the accumulator is zero, the next instruc-
tion in sequence is executed (no branch); if the
contents is non-zero, the instruction in memory
location specified by the operand address is
executed. Syllable and sector remain unchanged.
The contents of the accumulator are unaffected.

4.0 PROGRAMMING RESTRICTIONS. - The Gemini hardware places
certain restrictions or limitations upon the use of the instructions defined
in section 3. In addition tothe hardware restrictions, the 7090 Gemini
assembler introduces restrictions due to the manner in which the symbolic
codes are handled and the manner in which abnormal conditions are taken
care of,

4.1 Hardware Restrictions. - The Gemini Computer has undergone
changes during incorporation of the ATM (Auxiliary Tape Memory) program.
Where these changes affect the programming technique, both computer con-
figurations will be defined as applicable to programming.

4,1.1 Power On

A) Gemini. - Power On causes the instruction located at
00-0-000 (Sector 00, Syllable 0 and Word Time 000) to
be executed, therefore, the program must start at this
location. '

B) Gemini/ATM. - Power On starts at 00-2-000 (Syllable 2)
and in HWM (Half Word Mode). This forces the first
instruction to be located at 00..2-000 and starting in HWM
implies any data or HOPC will be fetched from Syllable
2 (13 bits) rather than from Syllable 0 and 1 (26 bits).

-4 -

4.1.2 HWM (Half Word Mode) Operation

4.1.2.1 STO or SPQ

A) Gemini. - A store in HWM will store the 10 low order
bits of the accumulator br MQ delay line into the loca-
tion specified by the operand address and cause the re-
maining 16 bits to be zero.

B) Gemini/ATM. - A store in HWM will store all 26 accu-
mulator or MQ delay line bits in memory location speci-
fied.

4.1.2.2 Arithmetic Operations (ADD, SUB, RSU, CLA, AND). - The
memory location specified by the operand will be "fetched'' from Syllable 2
(13 bits) rather than Syllable 0 and 1 (26 bits).

4.1.2.3 HOP. - The HOPC (Hop Constant) specified by the operand
will be fetched from Syllable 2. This HOPC (contained in Syllable 2) must
be generated and positioned by the programmer. The 13 bits of the HOPC
contain only the sector and word time (4 bits for sector plus 9 for the word
time) desired and hardware resets the syllable to 0. Therefore, a HOP
while in HWM will always be forced to syllable 0 and operation will be in
FWM (Full Word Mode).

4.1.2.4 The remaining instructions are unaffected by the HWM opera-
tion.

4.1.3 Power Dissipation. - The Gemini memory, when exercised,
dissipates power. The following formula has been devised to ensure that
the designed power limits are not exceeded by the improper use of instruc-
tions.

Ng - 4.1+NR- 2.7 + Ny

[N

] N << 3.2
where:
Ng = Number of STORES (STO, SPQ)
Np = Number of READS (CLA, SUB, ETC)
NN = Number of MEMORY NO OPS (CLD, PRO,
TRA, TNZ, HOP)
N = 35

This naturally imposes somewhat of a restriction on the programmer.
Especially in initialization areas where many quantities are to be set to a
value. These blocks must have *NO OPS interspersed to ensure that the
above power formula is met.

4.1.4 The SPQ following a DIV must be separated from the next
MPY by one or more instructions.

4.1.5 The PRO address X = 6 may be used only to read gimbal
angles. The contents of the gimbal angle counter enters the accumulator
regardless of the Y address.

4.1.7 MPY
A multiplicand that has not been read between its store and first use as
the MPY operand will frovide low amplitude 1's in the two low order
positions (?.‘23 and 27 2) These two bits may fail to be recognized as
‘1's.

4.1.8 SPQ
Use of the SPQ other than following a MPY or DIV stores zeros in the operand
location. (Assembler STZ (store zeros) is interpreted into an SPQ).

i 5.0 GEMINI ATM PROGRAMMING REQUIREMENTS

5.1 Prior to coding any Gemini module '""N'' assembly (where N

" is any module assembled around Module I), the detail math flow must be

designed. (Equations scaled for fixed point arithmetic, necessary logic
added to the system math flow for meeting interface requirements and
define a constant and variable 11st) The following rules apply for the

: ,detall math flow design:

5.1.1 Each column is to start with a letter repr'esen'ting the

, mbdule's mode. For example, R1l.1 stands for the Re-entry mode, column

one and block number 1.

i

5.1.2 Each block in a column is to have a number and each
equation type block is to show the equivalent units on the bottom right-

- hand corner.

5.1.3 The dependent variable scaling is to be shown in the upper
right-hand corner of each detail block.

5.1.4 Every constant used on a detail math flow sheet is to be
defined and all constants per page are to be placed in one group.

5.1.5 Every left-hand symbol (LHS) referenced by the operational
program is to be shown on the detail math flow.

5.1.6 =~ AllI/O's are to show a reference beside them for a cross-
checking between the program listing and detail math flow.

5.1.7 All subroutine entries are to be standardized. (See
"Module IV detail math flow for the correct examples.)

5.1.8 All variables are to be subscripted properly in all detail
equations. R :
5.1.9 All detail math flow symbols and program symbols are to

be exphcitly deflned in the letters and symbols specifications.

“'%Pro 70 instruction or a timing loop.

5.2 One of the main items to consider when programming the Gemini
computer is the power interrupt (Computer Off or Halt). If either one of
these signals occur, the program is brought instantaneously to 00, 2, 000 ana
the program begins its next instruction from this point. In other words,
all counters, address modification and logical choices must be reset to a
known state. Remember the GT6, LC2R=0 problem. All fast loop (I/0)
entries are to be inserted after dependent variable calculations so that the
program is not left "hanging'. This prevents a subroutine within the I/O
from ''blasting'' the previous slow loop calculation.

5.3 Each Module ''N'' assembly must initialize the six mode HOP
constants to either the first instruction in modified prelaunch (unused
mode switch positions) or the first instruction of the respective modes with
in module '"N'.

5.4 When coding the Module ''N'"" program assembly relative address-
ing (TRA*x2) is to be restricted to Module I only.

5.5 All DCS and MDIU variables are to be insertable at any time
(during a Gemini flight) regardless of the module loaded in the Gemini com-
puter. As a result, none of these addresses are to be time shared in any
module ""N' assembly. In other words, these memory locations are not
variable time sharing candidates.

5.6 Module I variables are prime candidates for variable time
sharing and a reference list of these quanties is given in Table I.

5.7 All module "N' assemblies must make the following memory
addresses equal to all zeroes:

Sector Syllable Address OP Code Operand Address
05 1 000 00 000
05 0 000 00 000

This shall be accomplished by using set instructions. The reason for this
is to cause the Gemini operational program to remain in a one instruction
loop in case the MVR program is not loaded.

5.8 The only type of constant that can be defined as zero in any
module '""N'" agsembly is KZERO (Gemini symbolic name). The reason for
this is that the ATM convert program ignores all zero Gemini locations and
will not prepare them for the AGE/ATM punched tapes. KKERO and set
zero instructions are the only exceptions. They contain a bit 34 for identity
in the ATM convert program. Therefore, do not define any zero constant
(including a HOP constant to 00-0-000). in a module '""N'' assembly, but use

the constant KZERO when the need arises.

- 8.

5.9 The Module T (Gard core) constants may bhe used in any inodule
U assembly by referring to the associated symbolic niome. All of the
Moduie T constants are to be defined in each Module "N assembly. Do not
redefine any of these constants, Failure to adhere to this iron-clad rule
will cause a Module I non-verify error. (Six module I non-verify errors
arc legal becituse of the mode TIOP constant definition process).

5.10 Iast loops (I /O) must be inserted in the operational program
approximately every 50 ms, ‘There is no minimum timing requirement but
the maximuim timing requirement is 60 ms. The recommended 1/0 design
is 55 + 5 ms. kxceeding the above 60 ms timing requirement shall cause
the ladder outputs to decay. In certain cases (SITCO countdown, radar
sampling and A'TM rcad) this rule is broken. When done so it must be
rememnbered thit the DCS and DAS requests remain up for only 75 ms. If
the fast loops exceed this value (75 1ms), a DAS or DCS request will not be
honored. .

5. 01 The gimbal angles have a4 minimum and maximum sampling
T . A . .
rate that must be niet, That is, a minimum of 5 g1s between samples and
a maximnuin of 30 rns for sampling all three gimbal angles.

5.12 . Fach slow loop must not excceed the excessive time counter
(clock subroutine) which is 1.376 088 secs. The maximum computer cycle
time should not exceed 1,200 000 sces with DAS and DCS off in order to meet
this timing requirement.

'

5.13 Fach Gemini computer interface (AGLE, DCS, DAS, TRS,
LADDERS, CLOCK) has certain timing requirements that muast be met.
These are defined in the following documents: Doscription of Gemind
Luput/Outpnit iuformation Relative to the Operational Program. L1i3M no,
LCH=-510-01A

5,14 The MDIU scaling logic is conmtained in cach module in order to
permoit tlexibility in displivying cach MDIU quantity, As a result, the
177

system math flow LIDMU/DCES list is to be referenced for cach MDIU address

displaying characteristics,

5. 15 Once the operational program module has bheen coded and
asscimbled an audit process ig to be implemented, " The auditting teaim is
tobe coniposed of two people. One of these should be the programmer
responsible for the module and the other one should be familiar with Germning
programuaning. - ‘T'his team is to do the following:

5.15.1 The system diagram is to be checked, block by block, with
the detail diagram to make sure that they agree.

B 152 The detailed diagram is to be checked with the program list-
ing coding for correctness.

5.15. 3 Each equation in the detail math flow diagram is to be checked
for scaling and proper unit assignment.

5.15.4 All constants are to be cross-checked between the system
flight constant list and the program listing and also between the program
listing and the detail math flow.

5. 15.5B The system flight constant list is to be cross referenced in
the letters and symbol specification. Thus, it, too, is to be checked for
correctness.

5.15.6 The synonymous (variable time sharing) is to be very
thoroughly checked for correctness.

5.15.7 The fast loop entries are to be checked to see that they
do not exceed 60 ms.

5, 15.8 The gimbal angles readings are to be checked to see that
a minimum of 5 ms is delayed between each sampling and the maximum
sample time for all three angles does not exceed 30 ms.

5: 15,9 Each slow loop is to be checked to see that it does not
exceed the excessive time counter (1.376 seconds) (consider worst case).

5.15.10 Check all variable single point references for validity by
use of the ''variable and assigned addresses' list in the program listing.

5.15.11 Check to see that all variables are properly initialized or
computed prior to their usage.

5.16 Address modification must be done in such a manner that
instructions or constants do not vary in the ATM tape (that is, the Gemini
Memory must be verified at any time without errors generated by address
modification). See examples of address modification in:

[}

-10-

1s P/L Checksum Logic
Lis Frame Change 1 and 2
3. Re-entry Table Look
4. Re-entry Accelerometer Smoothing
5. Radar Table in Rendezvous
Bad Do not put any comments on a syn card because the assembler

searches the entire card for variables to be syn. It has been found that if a
comment is included, the entire syn card will be ignored.

5.18 LADDERS
The ladders are a capacitor-type storage which requires periodic updating
to prevent decay. This updating should be done at a 50 ms. rate. It has been
determined that the 3 §~ error of the ladder output at a 50 ms. sample rate is
43 ms. An increased sample time beyond 50 ms. will introduce a linear
36" error. The upper bound on this linearity holds for sample times within
60 ms.

An example of the 36" error for a sample rate exceeding
50 ms: (assume sample rate of 55 ms.)

55
50x.043V = .0476V

The ladder resolution is .12V /quanta; therefore, theoretically
a sample rate greater than 50 ms. would not seriously affect the ladders.
The recommended rule for sample rate, as previously mentioned, is 50 ms.
+5 ms.

(Refer to Figure 4 for a typical timing chart for programming
the ladders. This chart was generated from Math Flow 4.)

| ' -11-

6.0 Gemini IGS Program Design

6.1 The Gemini Computer has an Inertial Guidance System (IGS) built by
Honeywell Corporation that interfaces with the Gemini Computer to provide
Platform Gimbal Angles and Accelerometer Delta Velocity increments from the
Inertial Measuring Unit (IMU). The Gemini Computer uses the PRO (Process Input or
Output) instruction to input or output I/O data into or from the accumulator location
specified by the operand address. The accumulator is cleared before loading if bit
“A9”equals a “1”.

6.2 The Gimbal Angle readings by the Gemini Computer require a minimum of 5
ms delay between each sampling. The maximum sample time for all three angles
(pitch, roll, and yaw) is 30 ms.

The GIMBAL subroutine (left hand symbol in program listing) processes the three
gimbal angles. The Input instructions and Output arguments for the 3 three angles
are:

INPUT INSTRUCTION OUTPUT ARGUMENTS
PRO 436 PHBC, THBC, PSBC
PRO 446 EPY, EPR, EPP

PRO 456 DPHSC, DTHSC, DPSSC

The ACLMTI subroutine (left hand symbol in program listing) processes the three
accelerometer values. The Input instruction and its three output arguments are:

INPUT INSTRUCTION OUTPUT ARGUMENTS
PRO 445 FX, FY, FZ

6.3 One PRO 445 is used to read the velocity changes from all three axes of the
platform electronics into the accumulator location, and to zero the reference
velocity for the next set of readings.

The time required to execute the Accelerometer subroutine is 20.02 ms.

All Gemini subroutines are located in Module 1 (called hard core). The Gimbal Angle
subroutine uses 138, 13 bit memory locations and the Accelerometer subroutine
uses 135, 13 bit memory locations.

6.4 Figure 3, a simplified diagram showing the Gemini Computer and Inertial
Measuring Unit, provides information to assist the programmer in designing the IGS
software and in developing and verifying the Gimbal and Accelerometer
subroutines.

This reconstructed text was written by Charlie Leist and edited by Eugene Mertz in
September 2011 to replace the missing page 12 of the original document.

-12-

7.0 TCCS PUNCHED TAPES GENERATION

7.1 The TCCS punched tapes are mylar punched tapes containing
information which is used to check the contents of Gemini memory
throughout ccrtain periods of testing prior to lift-off.

' 7.2 The generation of these tapes is shown by the Flow Chart in
Figure 2 and detail description is contained in IBM Report #64-547-002.

_i5a

8.0 ATM/AGE PUNCH TAPE VERIFICATION PROCESS
AND MEMORY LOADER TAPES

8.1 The Gemini Computer/ATM System requires two types
of punched mylar tapes in order to load the Gemini memory and the ATM
tape. Namely:
1. Memory Loader Tapes
B AGE/ATM Loader Tapes
8.2 The Memory Load Tapes and their respective functions are

tabulated below:

Memory Loader Tapes

Type Function
Module I

Load and Verify Load all 4096 39 bit Gemini words
(Syllable 2, 1, 0).

Verifies (after load) all 4096 39 bit
Gemini words except those addresses
that have all 39 bits equal to zero.

Verify After Run Verifies (after execution) Syllable 2
and all instructions and constants in
Syllables 0, 1 which are unique to

Module I.
Module '"N'' (where N is any
module assembled around
Module I)
Verify Aftecr Run A Verifics all 4096 39 bit words that arc

non-zecro, Thatis, it verifies all of
Module I and Module N memory locations
that are not variables. (Instructions and
constants.)

The AGE/ATM loader tapes contain Module '"N'" core map
information (constants and instructions) obtained from the assembler
output tape (first file).

The purposc of this list is to demonstrate that the cross
verification process which ensures AGE/ATM tapes have been punched
without errors and that the data has been loaded correctly by the AGE/
ATM tape loader. See the verification block diagram in Figure 1 for this
process.

The steps required to go from the output of the assembler
for Module '"N'' to subsequent computer memory load involves a serics of
tape conversion and punching and is quite subject to errors.

It is the purpose of this report to demonstrate that an "end-to-
end" check is made such that complete confidence is gained in the resultant

ATM memory load and computer memory load.

Discussion of Flow Chart

Each block in the Flow Chart is described in terms of sequence
of events, block description and applicable documents.

See Table 6.

-15-

9.0 Gemini Programming Do's and Dont's

9.1 Do’s‘

9.1.1 Assemblies

1. Use end card when editing an assembly.

2. Initialize all variables probably prior to usage.

3. Set up six mode pointer constants properly in each
Module '"N'' Assembly.

4, Put EQU, SYN and Constants in common tables
(At end of assembly)

5. Rotate assembly tapes or a three cyclic bias in
order to recover in the event of a ""bad'' tape.

6. On an assembly from cards place one blank in the
beginning of card deck (no "'end' card)

7. Place parentheses around referenced HOP constants

(CLA (HOPC) or STO {HOPQ))

e i 2 Punch Tapes

1. Verify all AGE/ATM tapes
2. Calibrate all TCCS tapes sent to Cape

3. Verify all memory loader tapes with CCTS master copy

9.1.3 Simulation
1. Always use latest assembly

- 2. Use symbolic setup where necessary

-16 -

9.2 Dont's

9,2.1 Assemblies

1. Do not put an "End'" card at the end of the source
deck when doing an assembly from cards.

2. Do not time share DCS or MDIU variables

3. Do not redefine Module I constants in Module "N"
assemblies,

4. Do not define any constant to zcero other than "KZERO"

5. Do not use set instructions unless they are bracketed
by comments cards of all asterisks.

6. Don't use an ORB'' operation unless it is preceeded

by a TRA or HOP instruction.

TABLE I

Module I Time Sharing Candidates

Subroutine or

Sector Math Flow Symbols Variable Mode Usage
17 ADRS _ADRS ATM Read
17 CKSUM CKSUM P/L
17 O twND DTWND ATM Read
17 AVxT DVXT ATM Read
17 Avyr DVYT ATM Read
17 151,21 H51P21 (Mod-Addr) ATM Read
17 H51. 22 H51P22 (Mod-Addr) ATM Read
17 H7A. 11 H7AP11 (Mod-Addr) /1,

17 HTA. 12 H7AP12 (Mod-Addr) P/L

17 LCAT 1 LCATI ATM Read
17 LGB 2 LG8 TR ATM Read
17 LCAT B LCATS3 ATM Read
17 LCAT & LCAT4 ATM Read
17 LCAT 5 LCATS ATM Read
17 LCAT 6 LCAT6 ATM Read
17 LCAT 7 LCAT7? ATM Read
17 PGW PGW ATM Read
17 tp TD NTM Read
17 WORD WORD ATM Read
15 4swnD TSWND ATM Read

14 Atpy DT PN ATM Read
14 Atpwp DTRWD ATM Read
14 LCATD2 LCATD2 ATM Read

14 TPN TEN ATM Read
14 ESRWD TSRWD ATM Read

~1§-

13
13
13
13
13
13
12
06
06
06
06
06
06
06
06

Scotor

(Cont'd)

Mocdule L 'Uime Shaving Candidates

Math low Symbols Variable
DATA " DATA
DBLK DBLK (11 locations)
PARI PAR]1
PAR2 PAR2
PAR3 PAR3
PAR4 PAR4
TDD TDD
Cpi1s81 Cpisl
Cp182 Cp182
Cp183 Cp183
H7AP1 H7API1
H7APIC H7APLC
SERLKI1-6 SBBLK 1-6
H7API1 H7API1
H7API12 H7API12

e s

Page 2

Subroutine or

Mode U!i.‘l.;_‘_(_',

ATM Read
ATM Read

ATM Read .

ATM Read
ATM Read
ATM Rcad
ATM Read
P/ L
P/L
P/L
P/L
P/L
ATM Read
ATM Read
ATM Read

e i e

TABLE 2

DATA (26 BIT) BREAKDOWN OF MODULE I

TYPE OF DATA : ' 26 BIT LOCATIONS

‘

K'B(Constants)............_...‘.....,...231
HOPC (HOP Constants) « « « + + & + & P 1 X
VARIABLES o‘ ¢ o o v's o o & o -. © € ® 8 6 s s e o s & e .468

TOTAL 842

NOTE: The variables count includes not only variables used by
‘Module I but also variables used by the other Modules.

26

DAS ----- .oootoovoonov-o.-.-olco-

thirnbalAngle..._...l‘. T

CUTRSENT L i e e e e e

- Accelerometer ., 0 e e e e e e e e e e e ..
Age v e et e e e e e e e e e e e e e e e e e e

2
ATMRead, . . . v 4 v s v v o e o e o tie oo o n e v
BHAK | | o 2'6 5 55 8 5 & 5.6 0 0 6 o = 5.5 0w

BOOtStrap e o o o '0 e s e L) ¢ o . ® » e e o e o s » o
ClOCk e o o e o o & e 3 & ® B e 82 o 6 e e ® ® s s e e »

,DASPolnters....'..,..‘....._..........
CDGESI e .‘...’...v......'......
"DCS Extended Pointers. « .« « « « ¢ ¢« ¢« ¢ + ¢ ¢ o o s s s o s
Error Angle . . . v o v v v o wiie v oo e e .
" Framechangeland 2. . « « . v ¢ . ¢ o v 0 v 0 0L

TGO-NOGO + v v vre v v e e e e e
R ¥ o R T I L T S A,
INBOOT . « « v v v v o v v et e o oo ot oo o oo
IVI Drive
LOG. « « v v v o . .
MDBIU o ol o olis o ole o o b sl el s e el e 4 e el el e e e s e e s
" MDIU Pointers .« « « « «
MDIU Scaling Polnters . « =« « o ¢ ¢« ¢ ¢« ¢ ¢ 4 o o
- MDKSTD, MDRGET,DCSSTO . « « ¢« ¢ ¢« ¢« ¢ o o o« &
Mode Switch |, , ., @i v v ...
L Power On . 0l 0 w0 iy e b se E s e e e
“Prelaunch, . ., . v i v v v i s e e e
Reset.......,.-....'...'.-.‘.........
RESTOR . i v 0 e v e o e o o e o e v v e oo o v e
CROOESUM . v e e e e e e e e e e e e e e e
Square ROOt. . . v v v s v o e v o o o o o o o v o o
SIn €08 &4 & L i i i e e te e e e e e e e e e e

‘ZeroI‘VI_,_,;“_‘,'_,,,,',,‘.,v,,,,",,.,,,,,
“ " . Total Instructions

‘ SYL 2

SYL 0 & ;

-2

SUBROUTINE INPUT OUTPUT LHS
ROOTSUM CP15, CP16 | CP20 ROTSUM
SQUARE ROOT - ALPHA 1, ALPHA 2 ALPHA 3 SQROOT
ARC TANGENT GAMMA 1, GAMMA 2 TANGAM ATANGM
CLOCK CLD 30 DTC, T, TDAS CLOCK
, PRO 55

SIN COS RHO SINRHO, COSRHO SIN COS
GIMBAL PRO - 36 PHBC, THBC, PSBC GIMBAL

PRO 46 EPY, EPR, EPP

PRO 56 DPHSC, DTHSC, DPSSC
ERROR DPHSC, DTHSC, DPSSC | DPHBO, DTHBO, DPSBO | ERROR
LIMIT CP190 CP190 LIMIT
ACCELEROMETER [PRO 45 FX, FY, FZ ACLMTR
IVI DRIVE DVXB, DVYB, DVZB IVI HARDWARE IVI OUT

' DISPLAY
LOG ETA LOG ETA LOG
TRS LC2W (+) COMP TO TRS TRS
(STORE)
_ (-) TRS TO COMP
LC2X +,0 TX CP187
+,#0 TR
- TE

—22A-

TABLE 5

GIEMINI OPERATIONAL PROGRA M
MF -t

subroutine Faxecution Ingtruction Count
(Counts are maxirnum unless specified otherwige)

| - Time
Shienlie FURCBNRE: S S llEcRons
Accelerometer - B "14.’1 C P | 20,02
Arcton : 82 _' o 11.4%
Clock 49 t.H8b
DAS 18 (Request, nu 2. 5id
gync)
DAS 24 (Ruquést. 'andv 3.3
sync)
Nnes 18 (Shortesl path) 2.52
-GS ' .24 (Longest path - 3. 30
' ' Adr. > 28)
DCSSTO - | 77 (Adp. =21y 10,78
. 3 |
DCSSTO 53 (Adv < 21 7 42
DCSSTO e 56 (Ady >;,21) : 84,
ErroaAngle 1177 . X ., 38 h
FRCHI 150 o 21.00 ',
FRCHZ , 196 : . S 277 44 | ‘.

P R N | z - oo o niney

- \\ g wEE e B ey ’ ' ’ JERN
Gimbal Avple 5 (I/O) 34 %Aimitlg 39 Limit 1 8;‘ 59 f.l.h;n't.tl 8 9 {I(’ O,
TR el) L P & .

a
TR | st B
Go - No Go ‘ 70 , Q. 80 =
. . | r"““"“" —_— JESETR - e { R }
IDAUD n ¢ umb \IJ { ..':.21.3.& L‘i} o i;l M m1‘(!j 6 P,T,Ot K 2 @
o 1|)054]' LDA'%, B 1M1’>‘ﬁ3}},} 3

NOTE:

Table 5 continued

PR ERRER

f.oyg

Root Sum
Shift

R IR R WA
Square Root
TR

TROENT

n = Number of iterations.

Clonn

—t mems o

1H

47

108 v

24412 (n-1)s
134

51

no DCS, DAS or MIDIU entries.

i b ambe b b g

Thime

mithsceonds

P L L SO TS

/
|onh l')(',‘.hi‘1 Wl lo9g

13.08

t. 58

5. 1

(4. 7TH

Numbers inside the blocks indicate instructions executed with

R

TABLE 6

SEQUENCE BLOCK APPLICABLE
OF EVENTS DESCRIPTION DOCUMENTS
1 The Module '"N'"' edit cards or source IBM 7090 DPS
deck 1s generated by the programmer. Geminl Assembly
and punch pro-
gram. IBM
No. 66-538~01
2 The Module I program (hardcore) See 1.
placed on magnetic tape (9 files) is fed,
along with Module '"N'"' edit cards or
source deck, into the 7090 Gemini
Assembler.
3 The 7090 Assembler builds a Gemini See 1.
Core Map by assigning address to
Module '""N'" instructions, constants
and variables that have not previously
been assigned to Module I.
4 The output of assembly process is a See 1.
magnetic tape that contains 9 files of.
information. The first flle contains
a Geminl Core Map configuration for
Module '""N'" only. See documents for
detalls of the remaining files.
5 The Module '""N'" Core Map i8 con- Currently being
verted from Gemini format to ATM drafted.by Homer
- format by a 7090 convert program. Middleton (538,
See: Geminl Computer/ATM-Pro- 101-1)
gram Module assignment and ATM
tape layout specification (IBM No.
644987 3) for details on ATM word
order.
6 The output of the 7090 convert program [See 5.

is a magnetic tape which contains one
file of information, this tape is used to
generate ATM/AGE punch tapes and as
an input for the ATM Simulator.

SEQUENCE BLOCK APPLICABLE
OF EVENTS DESCRIPTION DOCUMENTS
7 The purpose of the 7090 ATM Simu- The Gemini
lator is to execute the ATM read pro- Simulator ref-
gram contained in the Module I assembly|erence manual
8. The ATM Simulator forces the ATM (IBM No. 64-
read program (auto and manual) to ex~ 542-011A.
tract ATM words from tape 6 and buildsal
merged core map 9 exactly as the Gemin} ATM Simula-
computer reads the ATM tape 23 in step |tor reference
26. manual IBM
No. 65-538-03.
8 Tape 8 and 2 are identical. It contains |See l.
the Module 1 assembly information. ‘
9 The output of the ATM Simulator is a See 7.
merged core map of Modules I and "N''.
(The ATM read variables are non-zero
because of executing this program.)
9A The 7090 ATM Simulator merge pro- See 7.
gram instantaneously superimposes
Module '""N'"' Core Map. (The ATM read
variables are zero because this program
is not executed.)
9B The output of the ATM Simulator merge |See 7.
program is the resultant core map of
Module I and "N', (7090 word bits 34
and 35 are zeroed out and as a result the
TCCS program must use another merge
program for a dump O function), Itis
worth noting that the simulator puts a bit
35 in the simulator stop location specifiefd
on each CON card.
10 The purpose of the 7090 Core Map com-~ | None

pare program is to identify any location
in the Gemini memory that is different
between tape 9B and 9.

AGE/ATM Module "N" punch tape in-
formation from the 1012 machine and
compares this data with Module '""N"
magnetlc tape 6. It is worth noting that
the only information punched on the
AGE/ATM tape that 18 not on convert
magnetic tape is the following:

.,-27_

Table 6 continued 3
- SEQUENCE BLOCK APPLICABLE
OF EVENTS DESCRIPTION DOCUMENTS

11 The compare is made manually by None
masking out ATM read variables and
simulator correction cards (if any
exists). Any resultant other than zero
would be a "NO'" and step 13 would be
followed. A complete compare after
masking would indicate a "YES' and the
next step would be 12.

12 The conversion, merging and reading None
has been successfully accomplished.

Continue to step 14,

13 An error has been made. Identify the None
source and repeat the necessary steps,

14 The 1401/1012 punch program (A) is See 1. 1401/1012
used to generate Module '""N'"' verify program for punch-
after run memory loader tapes. The ing Geminl Compute
1401 program for steps 14 and 24 are tapes. Job #5966,
identical but the data cards are differ-
ent,

15 The Module '"N'" verify after run tape See 1.
verifies all instructions and constants
associated with module ""N'" and module
I. Variable locations are skipped.

16 The 1401/1012 punch program (B) is See 5. 1401/1012
used to generate Module "N AGE/ATM |program for punch-
punch tapes for the AGE/ATM Loader ing Geminl AGE/
22, ATM Tapes. Job

#7420,

17 The Module "N'" AGE/ATM Loader Tape |See 16.
contains instructions and constants for
Module "N", Variable and unused loca-
tions are not punched on this tape.

18 The 1401 compare program reads the See 6.

SEQUENCE BLOCK APPLICABLE

/ 20 The punching has been performed cor- [None

OF EVENTS DESCRIPTION DOCUMENTS
18 1. AGE/ATM Loader three bit code
continued in frame eleven of the last tape

position word.

2. The 13 frames of data (good parity)
at the end of each punched AGE/ATM
Tape.

The reason for not comparing this infor-
matlon is because these punches are genef-
ated by the 1401/1012 punch program and
not the 7090 convert program. The solu/
tion to these potentlal problem areas are
always checked by the following means:

1. The 1401 punch program prints on
line the type of three bit code and
the tape position word that this code
was punched in at the time of punch-

~ ing on the 1012.

2. The good parity data is checked by
counting these frames at the end of
the punched AGE/ATM Tape.

19 If the ATM convert magnetic tape and None
AGE/ATM punched tape agree, then the
g exit is to step 20.

rectly and continue to step 22.

21 An error has been made. Identify the
source and repeat the necessary steps.

22 The AGE/ATM punch tapes are loaded Gemini Com-

on the ATM tape by this loader. puter/ATM

program module
pssignment and
"IATM tape layout .
specification.

[BM #6449873.

23 This tape contains the flight modules. Eee 22
The information content is instructions
and constants only. Variables and un-
used locations are not allowed.

SEQUENCE BLOCK ' APPLICABLE
OF EVENTS DESCRIPTION A DOCUMENTS

24 | The 1401/1012 punch program (A) is See 1, 14.
used to generate a module I memory
load and verify tape for step 25.

25 The Module I load and verify memory See 1, 14.
loader tape contains all 4096 - 39 bit
Gemini words (includes all variables
and unused locations).

26 The Gemini Computer memory is first [None
loaded and verified with Module I via
the memory loader. The Module '"N"
is next loaded into Gemini memory by
executing the read program (auto or
manual). Upon completion of loading
the Gemini memory with Modules I
and ""N" transfer is to step 27.

27 : The memory loader is used to intero- None
gate the Gemini Computer memory in
order to see if it contains the correct
assembly information. (Module I and '""N'"'}

28 If the comparison is established "YES', |None
‘ then exit to step 29. If an error is
detected, transfer is to the '"NO'" exit
step 30. . ‘

29 The Gemini Computer memory is None
loaded with the correct Module I and
"N' information. TheAGE/ATM loader,
ATM unit and Module I ATM read pro-
gram have all worked properly.

30 An error has been made. Identify the None
source and repeat the necessary steps.

e

yun 2del W1V Ped,

adel uny 1333y AJ[I9A ,\Nu 2I0PON PEL, _
‘uopew zojut Ajquasse tadoxd A1aadoadwy Supiiop I9peoT AIowap,
Aj1adoadwy Supjiop 19indwic) jUiwWLan,

gulBjU0D Alowaw uiwan pue ‘Ajxadoad fraodoidiut 8 1ope od
—_ 1adox upfIo apeo :
papeo] usaq sey wexdoxd N, 2[PPON (D I [SuUp{Iom 19pEoT 2H<\mo<uwomuu Mwwuwﬂﬂmvwﬂwmumw =

*Ataadoad

podIom 2101/10¥%1 24l pue spIiom

ALV P21I3AUOCD JUWAN) 3231300 3y}
sujejuod ade] yound WIV/IDV 24l (€

wexfoid L5119 A ped, +f1a1ado1d Bujuoyouny sy

ade] j119Au0c) peq
° 3
s10y paydund I ?InpoW u} weadold peaY WLV UL

e dn payyo1d 10

13peoct
Aiowaw

‘ucjleuwrIcyuy 3331100 BR®Y
paddoaq Z101/10%1, = : adey KFIT5A
»ucnvqnvom\uamha odel opeuBEN WLV pati2auod 24l (v Aiowaw pu® pEOT
syowyd A1dIissod * 19peo] a1andwo Kiowapy
WLV/JDV jupwao | s[mpowx
jeadal pue
3nq puyy = (44 %4

1¢ adey uny

1333y AFpIe
CEYS odej 19peEO] Ny, d[npou
WIV/3ADV
:Z—- Qﬂggs

sxedwod

L1 ‘
' d \4
2101 2101 f
saedwod yound yound und
1091 91 1091 1091 - 1¥
v ¥1 =
- TR L 211 ¥e
T# 11
dewr 2102
z: 4
TUTWLD | Nt v P
s[npowt uj jJndino g 5 g
Alquiasse N, >3¢uummm\~
6 anpowr a[npow
9
adey 11241 891U
mming Ajquiessy ped, sdo; # 10jE[WS rE= ade3
EﬂwMum JESATOD Mmmn indjno WLV L i 33I9AU0D I9[qUISSEE ndjno
o:mvnsvﬂm “ MHD - Alquasse 060L 060L 060L Aquasse
. 9anpadoidg [snpows 5 s[npowy,
paed joxjuod 060L, S 3 o 2
Ay1suaqg adey, 8 1# 211 I0 3P
sEaen) eje(] Io0jeInuwig, ADYIAN WNn
S¥Y0¥¥d ATLISSOd sxedwos Tojenuils 1% o11 s[npow
v] WL oco:
— jeadaa pue 3nq vcﬁ_ dew a102 1
t1 &5 21 060L V6 weaxdeiq yoo1d
sxedwod o1 uopIedFII3A ddel yound IDV/WILV

ocu

1 I9NOI4

—3BE—

b Nl BN

- ¥ 3%\

AN LOQY Jmoo ¥\ - oz??. -
mus,..v _rEr w.waoi ¥W3IHLQ ..3& AL :
e Al . i ~eq R 2o e
s o ST e swbr = b RN
) « * b Q¥4
L ILLR VR TONN I B oﬁ?.?L S0 P WU P RN
- fweet 'y R 'y ey amu.a%.,
- : 1 QW4 _ 5 Odd ‘ L\ Nd WS
Sl (TR SW LT i T\i e JT aMMw
U T et . ¢¢ Qdd |
<t @f nz oS !_
5 o . [Wk - .rZ ER o S e
- - —- - . P B T a.i‘ B wF ,
) swy o T swerof o MW e NG
i e ! s W
- \ L o4 L\ Q¥d e
.\.ﬂ (KIy sw L1 1+ WETL Tﬂﬂf + T M,;zH _
u%ﬂwuc\d . T n., e e, T b Oud Q¥s
_ ew) SW QS
= Wiy 3R A

-%/-

" Source |\ A‘,"!.!.'-‘
00cumvnt (

Unod if
Upd'\(ln(z
“Tape

———

TCCS

1457
8 l"'

Yo
vy
) \., v

Priﬁhmt
| Program

e Wby ad . s

\mcﬁlnd
‘Brogtam..

'f".i“ e
13 iy s

i .}; oy
'- P

'P:‘ cpn’rn

)

XL :s‘rt rm» 'l‘ape

.

.
S dodesing oy

"r -
I
¢!

& .—\’.'

P pEe S o

)

-~
=

-
b
‘ .
@
OIS | N %
‘e
o J > v
¢ et &
% RN Y !
, HERI
k i /
. . ’
N ‘. ”L, ;.L >
B PR vegll
2 ,
i Y i« .
& DFR) |
. ;!“, ’?_.‘ Y_’l
f St L
. .»})."‘ e
. Aty
.. 1S58
A
1
N
AR
. '
5 .
» N
i’)

T.CN.

-
P

FICA

-
IS

y
-
4 .
]
=
L
S iR
-
RN
fas
udd
AT ‘ &
Loty 8‘90.
5 * ‘». L el
€ "\!",,..‘ '
II‘. 1
IR 7z M
" : ' 5 . e L e
v % "'“-‘\“;‘.:“.’} !

i

--v FoR

2090
SN
PROGRAM

MATH gt MATH |
. ‘-‘\-: :~‘ -8 - . r
- P e oA

- FLOW

CFLOW

- -N
DS
A FUGKT

SYSTEINM

L% CONSIDERS

-
]

7" Fs
1CS REPCRT O

1CH CCRE
<O THE RELEASE OF.

“TAPL BY IEM. ~

.

_AROUND TIME TC THIS %

DANCE

4

e

Y

ge e TR]

ol
',:'J ‘ !'\35 ‘t:;'n-' ; .14‘&‘
R .”Hg |« o ‘.':‘ p * L

e 0t LR ‘ .

