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Introduction

LUMINARY Memo #62 exhibited a set of lunar landing guidance equations

which compensate for computation, throttle, and attitude control lags by

projecting the guidance commands forward from the state vector time. This

memo gives a straight forward derivation of these equations. It also casts

them in two different forms in order to emphasize a trade-off between com-

putational simplicity and speed (very desirable) and certain dynamical advan-

tages. The simpler equations result from the combination and cancelling of

terms, yielding a computer execution time savings but a loss of certain

dynamical advantages. However, the main advantage, the projection of the

guidance command forward, is retained. Re-arrangement of this simplified

equation, Eq. (15) below, yields exactly the same formulation Bill Widnail

and Allan Klumpp have independently derived. Naturally, all the solutions

are equivalent since the quadratic acceleration solution to the lunar landing

two point boundary valued problem is unique.

The more complicated form of the equations are expressed in a way

which permits all the following:

1, Projection of the throttle command forward seconds and the

attitude command forward seconds in order to account for

the different time constants in the throttle response and the

DAP response.

2. Expression of the solution acceleration regime in terms which

can be projected foward to any time without measuring the state



near that time or recomputing new parameters. It is hard to

explain this advantage before the derivation itself is explained.

3. Expression of the equations in a form which allows "freezing"

the position constraint parameter independently of the velocity

constraint parameter. (There is a distinct difference between

"freezing" the position constraint parameter and abandoning

position control. When the position, or velocity, constraint

is frozen, position, or velocity, control is not abandoned; but

new state information is not processed. )

4. The solution thrust orientation profile is not, of course, a con-

stant direction in space. The solution thrust vector turns in

inertial space. The present interface between the guidance

equations and the attitude control system do not take this

desired turning rate analytically and explicitly into account.

The more complex form of the equations below show how this

desired turning rate can be exactly computed.

This memo has three main purposes:

i. A tutorial one: to let interested people understand the basic

guidance equations and their modification to combat the attitude

oscillation problem referred to in LUMINARY Memo #62 and

Apollo Project Memo #7-69.

ii. To show that there is a tradeoff in the expression of the guidance

equations between a formulation retaining the four advantages

above and the very important advantage of reduced computer

execution time.

iii. To prepare the groundwork for a Program Change Notice to

change the equations in the GSOP and the LUMINARY lA program.
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Derivation

The definitions given in LUMINARY Memo #62 are applicable here

also.

The lunar landing guidance equations are frequently called a quadratic

guidance law. The term "quadratic" refers to the fact that the solution total

acceleration components are expressed as quadratic functions of time.

Expressed as a vector, then, the total acceleration will have the following

form.

r(t) = a + (T - t)b + (T - t)^c (1)

To derive the quidance law, we simply have to determine a, b and c in such

a way that the following five equations are satisfied.

!<’> = Id = a,j,j^{T) + £(T) (2)

2<t) lo (3)

£<" £d
T

(4)

v(T) - + 1 r(t)dt (5)

1L

r(T) - r^ + TgoXo+l (T-t)'r(t)dt (6)

t
o

Equations (5) and (6) are integrals of the equations of motion; they

relate the state at t = t^ and the total kinematic acceleration profile r(t)

between t^ and T^ to the terminal state at t = T. They are often called the

final value equations. (The factor multiplying the total acceleration under

the integral sign in Eq. (6) is the influence function of acceleration on

terminal position.

)

The strategy now is straight forward: generate three vector equations

in the three unknowns a, b and c by
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1. substituting Eq, (2) into Eq. (1) in order to satisfy the final

desired thrust vector constraint and

2. substituting Eqs. (1) and (3) into Eq. (5) in order to satisfy

the final desired velocity vector constraint and

3. substituting Eqs. (1) and (4) into Eq. (6) in order to satisfy

the final desired position vector constraint.

In performing the integrations of Eq. (1) and its product with

(T - t), it is necessary only to know the following formula

T
r n+l

J
(T - t)"dt = / (n+ 1)

t

( 6 )

The results of the three substitutions are, respectively,

£d " £

Xd-^o ™

Equation (7) determines a. We are going to determine b in such

a way that given any a and c, the velocity constraint equation is satisfied.

This will lead to advantage 3. referred to in the introduction. Solving

Eq. (8) for b yields

ii ly-rJXlD - rn - (2Tg„/3)c (10)

Given any r^^ and c, determination of b from Eq. (10) and commanding

thrust acceleration satisfying Eq. (1) will result in satisfaction of the

velocity constraint problem.

Now c must be determined to satisfy Eq. (9), the position constraint

problem. This is done by substituting Eq. (7) and Eq. (10) into Eq. (9) and
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then solving for c. The result of this operation is

= (36/T^^^)[
-D

- (r +— o
T V )Jgo-o

- (24/T
go

Note the first term in Eq. (11); it is the product of two factors. The first

factor, which has the fourth power of time-to-go in the denominator, is a

kind of gain factor; it multiplies the final position error which would result

if the acceleration were turned completely off. Because the influence

function for final position (see Eq. (6)) is (T - t), the effectiveness of

acceleration to control final position is infinitesimally small at T - e.

Therefore, the gain multiplying any predicted final errors must approach

infinity very rapidly as time-to-go approaches zero. For this reason,

unrelinquishing position control, for practical reasons, is usually dropped

before the velocity control. This can conveniently be done by "freezing"

c (not recomputing it from Eq. (11)) and continuing to compute b from

Eq. (10).

Expression of the Equations in Simple Form

Before we cast the equations in the form which maintains the

advantages referred to in the introduction, we will cast them in the form

which emphasizes computer storage and execution time economies.

Remember, we want to project the guidance commands forward

from t^, the state vector time, to compensate for computation and control

system lags. So we advance the command acceleration forward r seconds

to t where

t = t + T
o

go
= T - r

go

Then Eq. (1) becomes

• • .i! ^|< o
r (t = a + T b + (T ) c—C — go — go —

( 12 )

(13)

(14)

( 11 )
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Substituting the expressions for a, b and c (which are found in Eqs. (7),

(10), and (11)) into Eq. (14) and combining terms yields the following

simplified guidance law.

r-y) = R(3R-2)(12/Ty |r^-(r„ + T^„v^))

- R(4R - 3) (6/T^^) - v^) + [ 1 + 6R(R - 1)J ( 15 )

where

R = T
go ' go (16)

the ratio of the diminished time-to-go to the time-to-go from state vector

time. Note that if guidance command projection is not used the command
acceleration is simply

• •

r—

c

"2/V’ - to + VXo'l - V - V * Id <>’>

There fore the effect of the guidance command projection is to

multiply each normal gain factor on the predicted position and velocity

error by another factor. The behavior of these factors is very interesting.

The factor for position is sketched in Figure 1; i. e. , the function R(3R - 2)

is plotted versus R. Note the change of sign when R is less than 2/3!

(The factor for velocity is also a parabola which is concave upward but its

roots are at R = 0 and R = 3/ 4; its minimum occurs at (3/8, 9/l6).) The

change in sign is due to the predicted flip in sign of the predicted final

error. As an example, if r = 3, the sign change at R = 2/3 will occur

at T^^ = 9. This means that at six seconds before T the sign of the predicted

final position error will change. The factor R(3R - 2) predicts or projects

this sign change.

Equation (15) is valid until R = 0; i. e. , until the diminished time-

to-go is zero. These equations are nearly in the form derived by Allan

Klumpp and Bill Widnall.
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Expression of the Equations in a Dynamically Superior But Computationally

More Complex Form

We will now express the equations in a form which preserves the

four additional advantages referred to in the introduction. All the pro^fram

steps are suggested here:

1. Determine r^, v^, t^ and That is, read the computer

clock, the PIPAS, perform the navigation equations and cal-

culate T .

2 . Compute the guidance parameter c if is greater than,

ten seconds; otherwise, use the last computed value of c

say.

c = Eq. (11) if > 10

c = last computed c if T <10^ - go-

3. Compute the guidance parameter b

b = Eq. (10)

4. Compute the projected throttle command

= abval [ a + (T^^- r^)b + - r/ c -
5 ]

5.

6 .

Compute the projected attitude control system command

^
<^go "^2>^ ^

(^go
‘ ^2> ^ Sgo

Compute the desired thrust attitude turning rate

—

— D [ axiS j^(t2) ^ ^XD^^l^

where

-TD^^ 2
^ -b - 2 (T^^ - Tp) c - ^go '2'
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Note that at no time is it necessary to change the form of the equations -

to change to linear guidance or velocity nulling guidance, etc. The par-

ameters a, b and c can be used in steps 4 through 6 right up to the

time when the diminished time-to-go equals zero even if steps 2 and 3

are skipped. Furthermore, these parameters will solve the boundary-

valued problem as it is understood at the last computation of a, b and c.

Summary

Two forms of the lead lunar landing guidance equations have been

derived - a complicated form which permits certain advantages and a

simple form whose simplicity speaks for itself.

If the main or only advantage of the complicated form is projecting

by a different time for throttle and the DAP, then the simpler form is still

to be preferred since Eq. (15) can be computed twice (saving from the first

computation, of course, the common factors) with a different R each time.

The use of signal with the present guidance/control interface is anything

but straight forward.

Conclusion

A PCN should be generated to mechanize Eq. (15) if all the analysis

and simulations verify the hypothesis that this will materially reduce the

attitude oscillation problem without introducing a new problem. At some

value of T^^ (TBD), the guidance law can be changed from Eq. (15) to a

simple velocity-nulling law.

^TC
=

thereby relaxing the positional constraint when it becomes impractical to

maintain it. This modification, then, represents a minimum change from

the current program design.
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Fig. 1 Plot of Position Constraint Projection Factor.


