
TiUE OF TECHNOLOGY
I AN EXECUTIVE PROGRAM FOR
AN AEROSPACE MULTI PROCESSOR

by-

Sumner Curtis Rosenberg

September 1971

Degree of Master of Science

T-552

PREIPARED AT

CHARLES STARK DRAPER LABORATORY
MASSACHUSETTS INSTITUTE OF TIZCHNOLCGY

Cambridge, Massachusetts, 02139

REPRODUCEDBY
NATIONAL TECHNICAL

INFORMATION SERVICE
U S DEPARTMENT OFCOMMERCE

SPRINGFIELD, VA. 22161

/1/0-'

AN EXECUTIVE PROGRAM FOR 44 AEROSPACE MULTIPROCESSOR
bg

Sumner Curtis Rosenberg

S.B., Massachusetts itnstitute of TechoiogY

(1969)

Submitted in PartiaJ Fulfillment of the

Requirements for the Degree of

Master 9f Science

- at lhe

MASSACHUSETTS INSTTUTE OF TECHNOLOGY

Septeriher, 1971

(, Z "zn-"- =J ,n ,Signature of Author

]D5partment of]lectrical Engineaig August 16, 1271

Certified by 4 2 /6/' - ' hsi---- '"i4 7
,, ,-Thesis R pervisor

Accepted by
Chairman, De a~tn' enta]_Committet, on Graduate Students

(ItASI-C3-151 1S2) EXEdU-Ta- ECC- P O Ef7756

AN A1EQSFIC1, 1(U1IPC!SSCE E.S. Thesis-,
Ul (trajer (Charles Stark) lat., Ic.)

' Umclas

00/61 1152

AN EXECUTIVE PROGRAM FOR AN AEROSPACE MULTIPROCESSOR

by

Sumner Curtis Rosenberg

Submitted to the Department of Electrical Engineering on August 8,
1971 in partial fulfillment of the requirements for the Degree of Master of

Science.

ABSTRACT

In this thesis an organization for an aerospace multiprocessor
computer control system is described, and an executive program for this.
multiprocessor is developed. The executive program consists of several
routines which carry out specific executive functions. These routines are
designed to be simple and as independent of each other as possible for the
sake of system efficiency.

A simulation was written for the proposed multiprocessor system.
A set of jobs based on the Lunar Landing programs of the Apollo Guidance
Computer were run on this simulation, and a 5 processor system was found
to be adequate for efficient performance of the job set. 'The jobs in this
set were then divided into short segments 'to insure good system response.
System performance was then studied using thiso-job set as input to the
simulation and increasing the system load by slowing down the instruction
execution time. As the system load increased, so did the delays in scheduling
jobs. The cause of excessive delays was attributed to the length of time
that must be spent ordering a timed job queue.

The simulations showed that the performance of the proposed multipro­
cessor broke down when job computation loads were more than about 40%;
Whether this is a general phenomenon for multiprocessors, and whether
ways can be found to circumvent this, problem, remain areas for further
research.

Thesis Supervisor: Albert L. Hopkins, Jr.

Title: Associate Professor of Aeronautics and Astronautics

2

ACKNOWLEDGEMENT

The author would first like to express his gratitude to Dr. Albert
L. Hopkins for the guidance and motivation he provided throughout the
course of this thesis. Second, he would like to acknowledge the assistance
of the Technical Documentation Group in the final preparation of this
document. Finally, the author would like to express his gratitude to

his wife, Pamela, for her understanding and encouragement during the
course of this work, and for her assistance in typing the text of the

thesis.

This document was prepared using the facilities of PUBLISHER.

This report was prepared under DSR Project 55-23890 sponsored
by the Manned Spacecraft Center of the National Aeronautics and Space
Administration through Contract NAS 9-4065.

The publication of this report does not constitute approval by the
C. S. Draper Laboratory or the National Aeronautics and Space Adminis­
tration of the findings or conclusions contained therein. It is published

only for the exchange and stimulation of ideas.

3

TABLE 	OF CONTENTS

Page

CHAPTER 1 	 MULTIPROCESSORS 6.............6

1.1 Introduction 	 6

1.2 	 Multiprocessing Defined 6

1.3 Motivations 	for Multiprocessing 7............7

1.4 	 Organization of Multiprocessors 0...........10

1.5 	 Executive Organizations 11

CHAPTER 2 	 PROPOSED MULTIPROCESSOR SYSTEM

ORGANIZATION 14

2.1 Introduction 	 14

2.2 Hardware Organization 	 14

2.3 Software Organization 	 17

2.4 Conclusion 	 20

CHAPTER 3 	 THE MULTIPROCESSOR EXECUTIVE 21

3.1 Introduction 21

3.2 Structure of the Executive	 21

3.3 Assumptions 	 24

3.4 Strategies 	 25

3.5 JOBIN 	 27

3.6 WTIN 32

3.7 	 GETDYN 39e

3.8 	 FREDYN 41

3.9 	 END OF JOB 41

3.10 	 A Simple Solution to the

Clock Overflow Problem 52

3.11 Conclusion 	 55

4

Page

CHAPTER 4 	 DIGITAL SIMULATION OF THE

MULTIPROCESSOR EXECUTIVE 56

4.1 	 Introduction 56

4.2 	 Model of the Executive Routines 56

4.3 	 Model of the Job Set 57

4.4 	 FORTRAN Simulation of the Multiprocessor ... 59

CHAPTER 5 	 RESULTS OF THE SIMULATION 62

5.1 	 Introduction 62

5.2 	 Simulation of the Full-Length Job Set 63

5.3 	 Simulation of the Short Job Set 65

5.4 Loading the 	Multiprocessor 67

5.5 	 Effect of Reducing WTIN Time 74

5.6 	 Summation and Suggestions for

Further Research 76

APPENDIX 	 BAL PROGRAMS FOR THE EXECUTIVE

ROUTINES 79

REFERENCES 84

5

CHAPTER i

MULTIPROCESSORS

1.1 Introduction

The use of comuters for control and navigation has made
possible space travel as we now know it. But as space missions

have become more complex, so have their computer systems.

The Apollo Guidance Computer is a single processor computer

which is responsible for controlling all systems during a space

flight. To be able to handle its varied tasks, this computer had

to be multiprogrammed; that is, it had to do the computation for

many tasks, but at any instant could be computing only one task.

For the NASA Space Shuttle design, the M.I.T.-C.S. Draper
Laboratory has proposed the use of a multiprocessor computer.

The justification for this proposal is that a single processor
computer has become too costly in terms of programming, testing,

and lack of flexibility. The proposed multiprocessor design will

enable the applications programmer to be much less concerned
with the operating system design consequently, the testing of

programswill be considerably simpler. Finally, the basic design

allows for system changes simply and directly, due to its modu­

larity.

1.2 Multiprocessing Defined

Basically, a multiprocessor computer system is a system

where two or more processing units (or processors) share a central
memory, where each processor may be executing a distinct task

concurrent with other processors. Tasks may communicate with

a

each other, and receive input and send output through the central

memory (see Figure 1.1).

The multiprocessor has an operating system which manages

the input and the output (I/O), and schedules the work for each

processor. This thesis is especially interested with the portion

of the operating system which schedules and assigns the various

tasks that each processor must execute. This "scheduler" is

commonly referred to as an executive program, or executive.

The executive usually consists of executive routines and executive

data bases. Based on the information found in the data bases, the

executive routines dispatch tasks to each processor; either di­

rectly, or indirectly, through the central memory.

1.3 Motivations for Multiprocessing

The use of multiprocessing is motivated by two distinct

factors. One factor is the need for extremely fast computation.

The other factor is a need for high reliability of the system.

Both factors require more performance than an ordinary computer

system can provide.

Speed requirements of computers are sometimes greater

than some computer systems can provide. Real time simulations

and control systems are prime examples of this problem. It may

not be possible to complete required computation in the desired

time. Computation speed is limited by the available electronic

circuitry, and is rapidly approaching physical limitations. A new

strategy is to divide the computation into semi-independent seg­

ments that can be run in parallel. The parallel processes may

then be run concurrently on several processors inamnultiprocessor

system.

7

MAIN PROGRAM AND

DATA MEMORY

INSTRUCTION AND
DATA BUS

CPU CPU C-PU

110 BUS

Figure-1.1 Multiprocessor Configuration

8

It may seem that no matter how fast we can make computers

execute a job, the neeed will arise for an even faster system. The

concept of multiprocessing opens new frontiers for achieving such

goals. The new limiting factors are the number of processors in

the system, and the ability of the programmer to divide a job into

many parallel operations.

The need for high reliablity computer systems is also served

by multiprocessing. In most computer systems the philosophy of

reliability is that the components be quite reliable; aside from

that, failures will be repaired after the fact. This philosphy is

not adequate for vital systems where neither the materials nor

the expertise to repair such a system is accessible; most notably

on a manned space flight. In such situations individual component

reliabilitywill never be sufficient. Consequently, components are

duplicated or triplicated, and many strategies may be used to ensure

extreme reliablity.

A multiprocessor system lends itself very well to high

reliability needs. First, duplication (or more) of computations at

the program level can be used to verify that the system is healthy.

Second, if there is a failure in one processing unit, the system

can still operate on the remaining processing units.

This thesis is concerned with aerospace computing systems,

and specifically considers a computer system which was at one

time proposed for the NASA Space Shuttle Vehicle. Both of the

above - speed and reliability - may be important considerations.

For example, a monitoring cycle that must repeat in less time

than it takes to finish its computation could possibly be implemented

quite easily as parallel procecsses in amultiprocessor. Certainly,
it is obvious that reliability is most important in such a vehicle,

and thus, fault tolerance allowed by a rpultiprocessmg system is

quite valuable.

9

1.4 Organization of Multiprocessors

Although all multiprocessor systems share certain basic
characteristics, the details of each system may differ according

to the context in which it is used.

A large time sharing system, for instance, must make most

of the decisions independent of the user. That is, the system cannot

allow each user to tell it what to do; it must protect itself from

selfish or malicious users. The system is designed to be fully

loaded, and it must therefore use all of its resources efficiently.

These considerations imply that the system must have a large

interrupt structure; to handle i/O messages and time interruptions,

for instance, Futhermore, to accomplish these objectives, the

operating system must be running continuously, acting as a.monitor

of the rest of the system.

A small aerospace computer system, on the other hand, does

not have to concern itself with the problems caused by unknown

users. The programs in such a system must be specified and

tested beforehand, to see that they have the desired effect. Thus,

much of the operating system may be dependent upon the individual

programs for control. Also, the system will not usually be designed

,to run at full load. Instead, spare processors will usually be
availiable for 1/0 handling or as backups in case of processor

failure. Consequently, it may be possible to eliminate many types

of interrupts from the operating system.

As aresult, such a system will be quite deterministic. This

has become increasingly important ni space applications as testing

costs begin to surpass hardware and development costs. An
engineer can tell more precisely at the programming phase exactly

what effect his program will have on the rest of the system. Other

aspects of multiprocessor systems maybe independent of the nature

10

of the system and even of the fact that it is a multiprocessor.

Such aspects include handling of hardware and software failures,

handling of storage allocation, priority arrangements, and memory

protection.

The operating system of a multiprocessor must be designed

with regard to many considerations. Most design decisions must
be made before a detailed operating system may be developed.

1.5 Executive Organizations

The purpose of this thesis is to develop a detailed executive
program for an aerospace multiprocessor system. It is therefore

valuable to consider alternative organizations of multiprocessor

executives.

One straight-forward way to design an executive system is
to have it be a fixed program which monitors all processors.

When a change in-status of a processor occurs, the executive carries

out some action based on the state of the whole system. Such an

executive program may reside in a processor specifically designed

for executive use, or it may reside in one of the processors of

the system. If one processor is specifically designated as the
executive processor, the executive is said to be "dedicated." If

the executive programs are able to reside in any processor, it is

known as "semi-dedicated." The data bases associated with the

executive may reside in the executive processor or in the common

memory.

The advantage of this type of executive is that most decisions
are made within a central operating system, and it can control

all processors. Some disadvantages are that such an executive

tends to be slow; and that it tends to underuse a processor unit,

11

since the programs must cycleon one processor even if they have

no work.

One solution to the problem of slowness of the executive is

discussed by Butler Lampson (Ref. 1). He, suggests implementing

the executive as a system of hardware modules "which would

eliminate interrupts and drastically speed up the software

schedule."

Other executive systems fall into the class of "floating"

executives. A floating executive system allows any processor to

call executive programs to run on that processor. The advantage

of this organization is that the individual programs now call the

executive as needed, and therefore the system control resides to

a large degree within the jobs running on the system. Thus,

computing time is spent on running the executive only when

necessary. This organization assumes that the jobs being run

act responsibly, and therfore lends itself to a closed computer

system such as an aerospace control system.

Jack Pariser describes such an executive organization as

usedon a Hughes H-3118 multiprocessor (Ref. 2). This particular

organization allows only one processor to have executive control

at atime. That is, if other processors require use of the executive,

they must be delayed until the processor having control releases

that executive.

This is not a very sophisticated approch to the design of

floating executives. The reason for such an approach is to prevent

more than one processor from using the executive data base at a

time, thereby preventing errors due to memory sharing overwrites.

But, at the time that two or more processors are interested in

using the executive, theymay be concerned with different portions

of the data base. Thus it would be advantageous if they are allowed

to run simultaneously.

12

Consequently, the approach taken by M.I.T. in its proposal

for a design of a space shuttle multiprocessor is to divide the

executive into integrated parts. The executive is now composed

of several subroutines to carry out the different functions of the

executive. Data bases residing in common memory now reflect

the total state of the system. Locks are supplied for independant

portions of the data base, and subroutines use these locks to gain

control of that portion of memory. This is the basis for the

executive design presented in this thesis.

13

CHAPTER 2

PROPOSED MULTIPROCESSOR SYSTEM ORGANIZATION

2.1 Introduction

In order to develop the detailed executive, the system in

which it will be used must first be roughly defined. The executive

must reflect those characteristics of the system that affect it.

These characteristics, include hardware related aspects, such as:

processor architecture, memory organization and allocation, com­

munication between subsystems, available operations, and error

detection. Also important are software considerations such as:

different priorities and types of jobs, I/O requests, subroutine

calls, and memory protection. The proposed NASA Space Shuttle

multiprocessor organization is developed in References 3 and 4
and those areas which are related to the executive development

are presented below.

2.2 Hardware Organization

Many areas of the hardware organization of a computer

system affect the structure of the executive. The processors define

the working areaof the executive programs. The memory defines

the size and limits for data transfer and storage allocation. The

speed and methods of subsystem communication may indicate what

possible tradeoffs may be made. The system operations also define

the operation set allowable in the executive programs. Finally,

hardware failures may necessitate certain executive actions.

14

Each processing unit of the multiprocessor under discussion

is made up of three structures; a processing element, a scratchpad

memory, and interface and error detection logic. The processing

element contains an arithmetic unit and operating registers. The

scratchpad memory is high speed memory, addressable only by

the individual processor, and used to store intermediate results

of separate tasks. Three scratchpads and two processing elements

are redundantly tied together with the error detection logic. When

an error is detected by this logic, the error handling mechanism

is signaled. The operation and impact of this mechanism is

described later on in this section.

In the design of the executive, we are certainly interested

in the register capacity of the processing unit. Implementation

of executive programs using only operating registers is desirable

for both the speed and the size of the executive programs. For

the executive described in the following chapter it was assumed

that as many registers were available as were needed. This proved

to be reasonable; eight registers in each processor were sufficient.

The programs and data of the system reside in main memory.

A 64 K memory is felt to be more than adequate for future uses

based on the experience gained from Apollo,. Whatever space

remains after memory is assigned to programs and data may be

used as dynamically allocated erasable storage. Such areas, are

useful to store temporary variables or arguments to be sent by

one job to another. This allows memory to be shared among

differentjobs as it becomes needed. The responsibility of allocating

dynamic storage areas falls on the executive. Itbmust provide

the means to find an unused dynamic area, tell a process where

that area is, and then return that area to a free pool when it is no

longer needed.

15

Communication between the processors and main memory
is here accomplished via a data bus. When an address in main

memory is referenced by a processor, a microprogram m the
processor signals that it wants to use the data bus. When the

processor has been signaled that it has control, it then sends the

required code along the bus to accomplish the operation on the
memory. The processor retains control of the bus until it decides

to release that control. The length of control is usually only for

one operation, but it proves valuable for a processor to be able

to "hog" the bus when correlated data must be updated as a set

or when flagbits must be tested and set without interference from

other processors. For the purpose of this study, it will be assumed

that the bus is capable of handling all data traffic with negligible

delay. A study of bus requirements and associated delays has

been done by Efrem Mallach (Ref. 5).

As yet, no operation repertoire has been established for these
processors. It would be advantageous, however, for the processing

units to have a large set of operations to enable the programs to
be written concisely and carried out quickly. Most important to

the executive are the availability of flagbit operations that can

test the condition of a particular flagbit and operate on it in the

same instruction, without interruption. This is accomplished by

means of a bus hog as described above. It will be assumed in the
design of the executive that such operations exist.

To release the programmer from the concern of what might

happen if there should be a hardware failure during execution of

his program, a recent concept called Single Instruction Restart

(SIR) was embodied in the design. Simply stated, the SIR is used

to detect a hardware failure within the instruction that it first

occurs. This prevents an error from propagating throughout the

rest of the system. When an error is detected, the state of the
processor and the contents of the registers and the scratchpad of

16

the failed processor are dumped into main memory, and a signal

is set. The next freed processor will then respond to the signal

by reading in the memory dump and acquiring the state of the

freed processor. Computation is then continued at the point of

failure.

That portion of the executive that is called when a task

releases a processor has the responsibility to first check to see

if any failure signals have occured. If so, the executive must

transfer to a program that accomplishes the restart as described

above. Since such a restart program is intimately linked to the

details of the SIR, it will be considered part of a class of corrective

programs and will not be developed in this study. Also included

in this class will be those programs that decide what actions to

take on the failed processor.

One interesting result of the SIR should be pointed out. If a

processor suffers a hardware failure while it is operating an

executive scheduling program the SIR causes the processor to halt.

Thenext freed processor will restart the executive from the point
of failure. This prevents system deadlocks due to permanently

locked data sets.

2.3 Software Organization

The design of the executive programs is also closely tied

to the software structure proposed for the system. The executive

must handle different job types and priorities, it must be able to

interact with the system's 1/0, and it may allow for subroutine

calls and parallel processing.

The Space Shuttle must be able to schedule events at a specific

times and delays, and it must allow certain events to be contingent

17

upon the occurrence of other events or conditions. The executive

must reflect these requirements, scheduling jobs contingent upon

a certain time of arrival or a specific event occtring. As long

as it-has an acceptable response time, the oxecutive is in the best

position to decide that a timed job is due, and thus schedule it.

Ofi the other hand, if a job is waiting for some external event to

occur, it would be inefficient and complicated for the executive to

decide if such an event had occured. This task is handled better

in I/O and is discussed below. It is also desirable for one'job to

be able to request another job to be run as soon as the system is

able to schedule the new job. Consequently, the executive will

schedule such a job run on the next freed processor, if it decides

that the job should run next.

A problem arises over which job to schedule if more than

one job is ready to run. A system of priorities must be implicit

in the executive structure. Such decisions must be made consid­

ering both system and executive performance. One clear fact is­

that the priority system need not be extremely complex since there

are many processors and the job structure will provide a high

job turnover, as discussed at the end of this section. A simple

way to implement a limited priority structure is to have one job

queue of non-timed job requests for each priority, and atime queue

for timed jobs. The executive scheduler checks the queues in a

predetermined order to find a job to schedule. Jobs within the

non-timed job queues are handled on a first-in, first-out basis.

A job request is given an implicit priority on the basis of the

queue into which the job request is inserted.

It is desirable, when one job schedules another, that data

may be passed on as arguments or intermediate data. This is

done through the use of dynamic areas, as follows: one job acquires

a dynamic area, stores the data to be passed in the dynamic area,

and then schedules the object job, associating with it the address

18

of the dynamic area. Each queue. entry must therefore include

the address of a dynamic area, if any, along with the job identifica­

tion, and the time to be scheduled for wait jobs.

Consequently, a task may be distinguished from its corre­

sponding program by the task's asspciated data. This allows much

flexibility in the types of tasks allowed. For instance, one program

may run concurrently on two processors, with each processor using

a different set of data. Also a job may call itself recursively,

passing the same dynamic area on each call, "or continually
acquiring new dynamic areas. But, perhaps most significant is

the ease with which subroutine calls and parallel branching may

be used. A subroutine call may be made by having the calling

routine, schedule the subroutine and pass a return address in the

dynamic area. When the subroutine is finished it schedules the

calling routine to begin at the return address that was passed.

Parallel branching may be considered to be many subroutine calls,

one for each branch. As each branch is completed, it tests and

sets a flagword to see if all other branches are finished. The

last branch to be completed then schedules the calling job.

The individual tasks request other tasks, and in the case of

parallel branching they test for themselves whether the branches

are ready to join. Such decisions are contained within the tasks,

since they are in the position to make the decisions efficiently.

On theother hand, such mechanical procedures as choosing the

task to be run next or the handling and passing of dynamic areas,
are handled best by the executive programs.

The organization of T/O handling is an especially important

consideration in the design of the executive, since 1/0 handling is

also an integral part of the operating system. Since input and

output data for space missions are both important and voluminous,

it is necessary that 1/0 be handled quickly. Therefore, it is

19

necessary that the 110 control act as anifbnitor of the i/O devices.

Consequently, the i/O monitor will be continually running on one

processor, but since the processors are identical it can run on

anyprocessor. Thus, the I/0 monitor is asemi-dedicated program

which communicates with 1/0 devices on a separate bus, and With

the other processors via main memory.

The [/0 processor maintains a list of events and associated

jobs. When an event in the queue occurs, the I/O monitor inserts

a request for the associated job in the executive queues. In this

way, 1/O6nter1upts: nan be eliminated, greatly simplifying the

programmer'sijb.-, TAis method is valid only if the executive

response time is sufficiently small to meet system requirements.

The response time is the delay between the time the .i/O monitor

requests the job to be run and the time it is actually run. In the

Apollo Guidance Computer, the [/0 response time was 10 millisec­

onds. Therefore, it is proposed that tasks be divided into jobs of

lessfthan i0milliseconds, to be certain that a processor becomes

free every 10 milliseconds to schedule the new jobs. This idea

will be considered in detail later in this thesis. The mechanics

of dividing programs into jobs of the desired length is not consid­

ered herein, but will probably be accomplished by a compiler

automatically inserting breakpoints in long programs.

2.4 Conclusion

The preceding discussion has been a brief summary of the

proposed structure of an aerospace multiprocessor system, with
emphasis on the requirements of the executive -for that system.

An executive design based upon these hypotheses is presented in

detail in the next chapter.

20

CHAPTER 3

THE MULTIPROCESSOR EXECUTIVE

3.1 Introduction

In this chapter, a detailed presentation of an executive for

the proposed multiprocessor is given. The functions of this

executive are designed to carry out the requirements presented

to it by the system organization proposed in Chapter 2. The

executive consists of several routines which are presented here

in detailed flow chart form. Many assumptions and arbitrary

decisions had to be made in designing these routines, so that the
executive presented cannot be precisely correct for all conditions.

It is rather a model which can be studied and built upon. It is

felt, however, that the model presented herein represents a

reasonably optimal design under the assumptions made below.

3.2 Structure of the Executive

The executive program is actually a group of routines called

by individual jobs to handle executive activities. These executive

routines manage a set of memory locations, known as the executive

databases. The databases containthe information presentlyneeded

by the executive subroutines to carry out the desired actions.

What are the actions that must be performed by the executive

subroutines? As presented in the system proposal, the desirable

actions are:
Request an immediate job

Request a timed job

21

Acquire a dynamic area

Return a dynamic area

Dispatch the next job to be run

Each of the above actions will be carried out by a distinct executive

routine. A routine will be called by ajob with necessary information

in predescribed registers, and the routine will return information

to registers, if necessary. It will be the responsibility of the
programmer to see that the interface between jobs and executive

routines is handled correctly, although some enforcement of

interfacing rules can probably be accomplished in an assembly

program prior to run time,

The data bases consist of job queues, pointers, and flagbits.

One job queue is required for each priority level, and one job

queue will be used for timed jobs (commonly called a waitlist).

Three job priorities will be assumed in this model, which should

prove to be sufficient in amultiprocessor environment. The entries

in the job queues may be more than one word long, and will contain

the starting address of a job to be run along with the address of

the head of an associated dynamic memory area. In the wait queue

the entrymust also containthetime that the job is to be dispatched.

A series of pointer locations is used to indicate which location

contains the first job entry in each queue, to indicate the next
free entry in a queue, and to indicate the next available dynamic

area. Because the processors of the multiprocessor behave

asynchronously, flagbits are necessary to lock portions of the data

bases when they are in use. Thus, a processor must gain access

to a data base through its flagbit, and then unlock the flagbit when

it is finished.

Job queues should be long enough to insure that they will

not be filled during normal operation. Although the precise length

can only be decided upon by extensive simulation of the actual
system programs, it is felt that a length of five times the number

22

of processors for the job queues and ten times the number of

processors for the wait queue is more than sufficient undernormal

operating conditions, based on results of simulations in this thesis

and in Mallach's thesis (Ref. 5).

Five executive routines have been written .to perform the

actions described above. To request an immediate job, the routine

JOBIN is called as a subroutine with the address of the job to be

scheduled, the address of the associated dynamic area, the priority

of thenew job, and the return address to the calling job in specified

processor registers. JOBIN inserts the necessary information

in a free entry in the specified queue, and then returns to the

calling job.

Timed job requests will be handled byaroutine called WTIN

(for wait insert). The call will be similar to JOBIN, except an

absolute time or time delaywill replace the priorityin a register.

WTIN will have two calling points to distinguish between an absolute

time and a delay. If the call is a delay time insert, WTIN will

first compute the absolute time, since all wait queue entries contain

absolute time. Typically,, most wait inserts use delay times.

Two routines will manage dynamic area allocation. ,The

names of the routines that allocate and return dynamic storage

are GETDYN and FREDYN. They both require two processor

registers to pass the dynamic area address and the return address

to the calling job. Dynamic areas will be identical blocks of a

specific length.

Finally, the routine that dispatches the next job to be run is

called END OF JOB, since it must be called at the end of every

job. END OF JOB is the most complex of the executive routines.

Its sole purpose is to find the next job to be run, and then transfer

processor control to the start of that job. END OF JOB first

tests the restart flag to see if any jobs are to be restarted due to

23

processor failures. Otherwise, the program tests the job queues

in order of priority to find a job to run. If no jobs are available

to run, END OF JOB enters a delay loop and then starts over

again on the same processor.

The flow charts for these routines along with a detailed

discussion of their operation is presented in Section 3.4.

3.3 Assumptions

In this section some basic assumptions will be made which

arenecessary in order to develop the detailed executive routines.

As mentioned in Chapter 2, the size of main memory will

be approximately 64 K words. The basic word size will be assumed

to be 32 bits. This word size allows for much more precision

than the 16 bit word used in the Apollo Guidance Computer.

Conveniently, the word size also is twice the length necessary to

specify any address absolutely. This fact indicates the desirability

of half word operations.. Finally, the word size makes it possible

to use absolute time in wait job requests and wait queue entries.

If the 32 bit word is used to represent milliseconds, the maximum

time that can be represented by one word is about 50 days. This

is certainly sufficient for present space missions, although future

missions will probably be of longer duration. Handling of the wait

queue is much simpler using absolute times, so it would be desirable

to present a solution to the problems presented by clock overflow.

This will'be discussed in Section 3.10.

The processing units will have at least eight working regis­

ters of basic word length. The instruction set will consist, of

register-to-register and register- to-memory basic instructions.

These will include the usual instructions to carry out load, store,

24

arithmetic, logical, shifting, testing, and conditional branching

operations. Also, there will be flagbit operations, including an

operation that tests and sets a flagbit in one bus hog. Finally, to

save memory space and bus transmission time, halfword operations

for loading and storing in main memory will be assumed to be

available.

3.4 Strategies

General strategy and tradeoff decisions must be made before

the detailed executive programs are designed. For example, it

was previously stated that it is desirable to break up the executive

data base into independent sections so that there is as much

parallelism as possible in the executive routines. This division

of the data base is accomplished by means of locks which are

tested by the executive routines before accessing the associated

portion of the data base. Strategy decisions must be made on

how to divide up the data bases, how many locks to use, and where

they should be tested in the executive routines. Certainly awaitlist

insert-can occur in parallel with anormal job insert and a dynamic

area allocation. Thus, there should be seperate locks on each

area of the data base, to allow WTIN, JOBIN, and GETDYN to run

in parallel.

The question is how far we should carry out such strategies;

and to answer this we must consider the tradeoffs. The three

criteria for making these decisions are the total running length

of the executive routines, the running length of instruction se­

quences during which locks are set in the executive routines, and

the amount of memory taken by the executive programs and their

data bases.

25

The last criterion will consistently be the least important

in design decisions. Certainly, to allocate one bit in memory for

an extra flag to allow two routines to run in parallel is a profitable

choice. In fact, since executive programs are vital and run so

often, it seems desirable to use any reason able amount of memory

to save even a small amount of running time in an executive routine.

On the other hand, the length of time that the data bases

are locked is extremely important, especially as more processors

are added to the system. Indeed, as is pointed out in a paper by

Madnick (Ref. 6), this value is the limiting factor in the number

of processors that can run on a multiprocessor system. Conse­

quently, as more of the data base is divided into independent

sections, less conflict will arise. However, to break up some

portion of the data base, some additional instructions may be

necessary. An example of this possibility is presented in the

executive routines herein. Although END OF JOB and JOBIN use

the job queues, the executive routines allow END OF JOB to remove

an entry from a job queue in parallel with JOBIN inserting an

entry in the same queue.

The decision in this example is whether the few additional

instructions necessary are worth the additional lessening of con­

flict. Obviously, it would be good if the additional instructions do

not add lock time to another data base. But perhaps more important

is the addition to the total execution time of the executive routine.

In a single processor computer this factor would certainly decrease

the efficiency of the executive. But, in a multiprocessor, conflict

can be more damaging to efficiency than the addition of total

execution time, and can certainly lower executive response time.

With this in mind, the executive routines presented try to attain

maximum parallelism.

26

Another point in favor of this choice is that it is especially

desirable to separate the locks associated with END OF JOB from

the other routines as much as possible. Since many END OF JOBS

may be cycling in idle loops, it is possible that they might monopolize

a lock, causing great delay to a routine trying to do useful work.

Related to the minimization of lock time are the delays taken

by other routines (which usually means another incarnation of the

same routine) waiting for access to a lock. Considering only the

executive efficiency it would be best if the routines had no delay

and simply looped on the test instruction until gaining access.

But this method may cause excessive data bus traffic, thereby

slowing down other processors. It would therefore probably be

desirable to have a delay of about 1/4 to 1/2 the average lock

time. Since this problem is beyond the scope of this study, the

p6sitions of possible delays will be presented in the flow charts,

but no actual delays will be recommended.

Detailed flow charts of the executive routines will be pre­

sented in the next five sections along with a narrative of what is

actually being done and what decisions, tradeoffs, and methods

are being used.

3.5 JOBIN

JOBIN is the routine called by a job to insert a job request

into one of the immediate dispatch queues. The flow charts for

JOBIN are presented in Figure 3.1. Tn the discussion below,

parenthesized numbers refer to like numbered portions of the flow

chart. The eight registers are signified by the notations RO 'through

R7. A register notation contained within square brackets in the

flow charts signifies the contents of the location whose address

is in that register.

27

Main Entry (1)

Shift Left (2)
R3 16 Bits

Add
RS To R2

Entry With No(4
Dynamic Area (4)

Was Set
Test

and Set ()

Load 2nd
Halfword [R4]

Into R6
(6)

R3 -R4 + QSIZE

SI
(7)

Figure 3. 1 JOBLN

28

=6 - QSIZE YSR6 >

Z e r pull o and Test

E[RB] Into

Zero

Store R2
In ERB]

Add I To
R6

Store R6 Into
2nd Halfword

Of [R4]

Reset Lock
Bit R5

Return To
Location In

Ri

Figure 3.1 (Continued)
29

(8)

(9)

(10)

(11)

(12)

(13)

(14)

By convention, the routine will be called with the return

address in RI, the address of the job to be scheduled m R2, the

address of the associated dynamic area in R3, the address of the

head of the correct priority queue in R4, and a flagbit code for

the corresponding queue lock in R5. Thus, each priority queue

has a lock to prevent another processor from entering a job in

that queue at the same time. Actually, a few instructions could

be eliminated in the execution time of any such call of JOBIN by

duplicating the subroutine for each priority queue and eliminating

a few decision points as well as input registers required. The

information found m R4 and R5 would be implicit in the routine

called. Such duplication would probably be worthwhile if the number

of priorities is small and memory space is not at a premium.

But, for ease of presentation, JOBIN is presented here as one

routine. Finally, if the job insertion is the last action of a job, it

is more efficient to load Rl with the address of END OF JOB

rather than a return address.

The main entry of JOBIN is for jobs with associated dynamic

areas (1). The routine then changes the contents of R2 into a

dynamic/job address pair by shifting the dynamic- area address

in R3 left 16 bits, and adding it to the job address in R2 (2, 3). If

there is to be no associated dynamic area, these actions can be,

bypassed by a secondary entrance (4). Then the flagbit indicated

in R5 is tested and set (5). There is a lock bit for each queue

which allows only one job to be entered in a queue at any time.

Jobs may be entered in other queues concurrently. If the lock

was already set, the instruction is repeated, possibly after a delay

(as discussed above).

Each job queue will allow a specific number of entries, each

one word long. This number will be called QSIZE. The length of

the queue will then be QSIZE +1, with the first word containing a

pairof addresses used as pointers (See Figure 3.2). The address

30

PO INTER TO PO INTER TO
HEAD JOB FIRST FREE

ENTRY

FREE ENTRY

DYNAMIC/ JOB ADDRESS PAIR

f
FREE ENTRY

FREE ENTRY

FREE ENTRY

Figure 3.2 Job Queue

31

of this word will be the base address of the queue. The job queue

will be handled as an unordered ring of entries. The first half of

the base word will point tothe head job mnthe queue, and the second

half word will point to the first free entry m the queue. Therefore,

the routine next loads into R6 the free pointer of the queue whose

base address is in R4 (6). R4 + QSIZE is put in R6 to indicate

the maximum address of the queue (7). If the free pointer (R6) is

larger than the value in R3, the next free entry is the first address

of the queue, and R6 should be decremented by QSIZE (B).

The routine must next be sure that the queue is not full. If

the locationpointed to by R6 is non-zero, there is still ajob request

inthat entry- infactitisthe head entryof the queue (9). Hopefully,

the queue will be long enough for this never to happen, but it must

be tested to prevent overwriting of necessary data. A loop may

be suggested here if the queue is full, but this would probably

lead to deadly embrace and should not be done. A full queue

probablyindicates system trouble, and the program should there­

fore branch to an error routine and give an alarm. The details

of such actions are beyond the scope of this thesis.

When a free entry is found, the dynamic/job address pair

in R2 is stored in the entry pointed to by R6 (10). Next R6 is

incremented by one word and stored in the free pointer in the

second half of the word whose address is in R4 (11, 12). Finally,

the lock bit is cleared and the routine transfers to the return

address found in RI (13, 14).

3.6 WTIN

Executive routine WTIN is called to insert a job request

into the wait queue along with the time that it is scheduled to run.

The flow charts for WTIN are presented in Figure 3.3.

32

(Reative Tirne (1)

Add TNOW (2)
To R6

(Absolute Time (3)

",yWas Set
lay?

Shift R3 Left
By 16 Bits

(4)

Add R3
To R2

(5)

and Set
Wait Lock/'()

Was Not Set

(6)

Load and Test
Free Entry

Pointer Into R3
(7)

Figure 3.3 WTIN

33

YES) 8

, [(9)

Store R4
In Free

Entry Pointer
(10)

Load R5 With
Job Head
Pointer

(ii)

Load R4 With,
Address Of

Head Pointer
(12)

YS R(13)

YES 6 [
>4)

)

Figure 3. 3 (Continued)
34

B T D

Load R4
With
R5

(15)

Load R5

With (16)

Store R5 (17)
In [R3]

ttore R,3I[R4]
(18)

Store R6
In [113]1+1

(19)

Store R2 (20)
In [R3] +2

Reset Wait (21)
Lock Bit

Return To
Address In (22)

RI

Figure 3. 3 (Continued)
35

WTIN is called by a job with the return address in RI, the

address of the job to be scheduled in R2, the address of the

associated dynamic area in R3, and a value for time in R6. The

time value is treated as either an absolute time or as a relative

delay, depending upon where the routine is entered. The return

value in RI should be the address of END OF JOB if the wait

insert is the last action taken by the calling job.

The main entry of WTIN is for jobs being requested after a

delay relative to the present time (1). We will assume that a

register called TNOW exists as a common read-only register to

all processors, which acts as a clock. Thus, the routine will add

TNOW to R6, so that R6 now contains the absolute time the job is

to be scheduled (2). A job requested with absolute time already

in R6 will enter after that point (3). Next, as was done in JOBIN,

the routine will now put the dynamic/job address pair in R2 (4,

5).

The wait queue must be ordered in some manner so that

the job dispatch routine need not go through the whole list on each

cycle to find the entry with the smallest time. Therefore, the

list will be ordered as each entry is added, thereby insuring the

minimum number of sorts of the wait queue. The most efficient

way to order such a list is by the use of "threaded lists." That

is, each entry in the list includes a pointer to the entry that comes

next in order. Also, since unused, or free, entries will be scattered

throughout the memory area, a thread of free entries will also be

used. Originally, this free listmust be initialized so that all entries

of the queue are in the free thread. Thus, the first half word of

the head of the wait queue will contain a pointer address of the

first entry of the ordered thread. The second half word will contain

a pointer to a free entry which acts as the head of the free list.

Consequently, each wait queue must contain three words: a pointer

word, a dynamic/job address word, and an absolute time word

(See Figure 3.4).

36

HEAD OF QUEUE
L Job Free

Pointer Entry
Pointer

Forward Pointer Dynamic/ Job Time the Job
Address Pair is Due to Start

IS

Word Boundaries

Figure 3.4 Wait Queue

37

Because the wait queue is an ordered list, its use is more

complex than the use of the non-timed job queues. Therefore,

the wait queue has one associated flagbit that locks out all other

users of the queue, when one routine is using it. This flagbit is

now tested and set by the routine (6). If the bit was previously

set, WTIN loops back to try the test again, possibly after a delay.

When WTIN gains access to the wait queue it first looks for a

free entry in the queue in which to put data. It gets the address

for an entry by loading the free entry pointer in R3 (7). By

convention, if the value in R3 is zero, that queue is full; and a

program alarm is sent out (8). Otherwise, the value in R3 points

to the pointer word of the first free entry. The pointer word of

this entry points to the next free entry, and must therfore be stored

in the queue free pointer location (9, 10).

The next problem is to find where in the threaded list of

requests the new entry must be placed. The routine loads R4

with the address of the queue head (11), and then loads R5 with

the contents of the first halfword of the queue head, which is the

pointer to the first member of the ordered list (12). It may be

that no entries are present in the list, in which case the head

pointer will have zero value (13). Then the routine can simply

insert the new request as the first member of the list. On the
other hand, the queue may have one or more entries. Then the

value of the time of the job to be entered must be compared to

the time of each entry in the ordered list until either the time of

the new entry is less than that of an item in the list, or until the

end of the ordered listis reached, m which casethe forward pointer

of the last word will be zero (14, 15, 16). The address of the

entry that will immediately precede the new entry in the ordered

list is left in R4, and the address of the entry that will immediately

succeed the new entry is left in R5. The routine then stores the

contents of R5 into the first word of the new entry, pointed to by

R3 (17). Then the value in R3 is placed in the address pointed to

38

by R4; that is, in the forward pointer of the preceding entry (18).

Thus, the list remains ordered by its time entries.

Finally, the time the new entry is to be run and the dynamic/

job address pair are put into the second and third words of the

new entry, whose first word is pointed to by R3 (19, 20). The

wait queue lock bit is then reset (21), and WTIN transfers to the

return address found in Ri (22).

3.7 GETDYN

The dynamic area handling routines are very simple.

Basically, they manipulate a thread of free dynamic areas in much

the same way as WTIN handles the free entry thread,

GETDYN is called with areturn address in Pl. The routine

returns the address of the head of a dynamic storage area in R3.

The flowchart for GETDYN is presented in Figure 3.5. GETDYN

utilizes the first word of a dynamic area as the forward pointer

to the next free dynamic area. These entries must be initialized

so that all dynamic areas are in the free thread. Also there is a

word in the executive data base which is used as the head of the

free list pointer. Associated with this word is a flagbit, which

allows only one processor at a time to work on the thread to get

a dynamic area.

When called, GETDYN first tests and sets the associated

flagbit (1). If the bit was previously set, the routine loops on the'

test instruction until the processor gets access to the head pointer.

R3 is loaded with the value in the head pointer of a free dynamic

area (2). R2 is then loaded and tested with the,value in the first

word of the new dynamic area pointed to by R3 (3). If this value

is zero, there are no more dynamic areas left, and a program

39

Wa et and Set
Q

Area Top/

~Was

Dynmic

Not Set

(1)

Load R3 With
Pointer To First
Dynamic Area

(2)

Lef

Load and
Test [H31

Into R2

Da Areas
YES R2 = 09(4)

(3)

iuStore R2
In

Head Pointer
(5)

Unlock
Dynamic Area

Top Flag

(6)

Return To

Address In (7)

Figure 3.5 GETDYN

40

alarm is given (4). Otherwise, this value is the pointer to the

next free area and is loaded into the head pointer (5). The flagbit

is reset (6), and control is transfered to the return address found
in RI (7).

3.8 FREDYN

Freeing a dynamic area is almost the reverse of getting

one, except that in FREDYN, the free area is added to the end of
the threaded list. This method allows areas to be fetched and

freed simultaneously. It requires one word to be used as a tail
pointer, and an associated flagbit to lockout other users of FREDYN.

The flow chart for FREDYN is presented in Figure 3.6.

FREDYN is called with the return address in il, and the
address of the dynamic area to be freed in R7. The first action

of the routine is to zero the first word of the dynamnic area pointed

to by R7, since that word will, be the forward pointer of the, last
entry of the list of free dynamic areas (1). Next, the flagbit is

tested and set, looping back if the bit was previously set (2). The
value of the tail pointer is then loaded in R2 (3). The address in

R7 is now stored into both the first word of the area pointed to by

R2 and the tail pointer (4, 5). Finally, the flagbit is reset and

FREDYN returns control to the , address in RI (6, 7).

3.9 END OF JOB

END OF JOB is the longest and most complicated of the

executive routines. It must make the decision of which job to run

next from all the various possibilities. Implicit m the routine's

design must be a priority structure, based upon the order by which

END OF JOB considers the various queues. It was decided in the

41

FREDYN

R7- 0

DynamicTesttArea

Load T ail

Pointer Into

R%2

Store R7
In [R12]

Store R7

In Tail

Pointer

Reset Dynamic

Area Bottom

Lock

Return

To Address

In R1

Figure 3.6 FREDYN

42

(1)

(2)

(3)

(5)

(6)

(7)

presented routine that the wait queue will be considered first, since

by their nature, timed requests should have good response time.

Then the remaining job queues are scanned in order of prescribed

priority, if there was no job to be dispatched from the, wait queue .

This design is by no means hard and fast, but was chosen because

of the simplicity of considering like queues&as a group. Conse­

quently the highest priority is accorded to jobs made via WTIN

with a near zero absolute time. The flow charts for END OF

JOB are presented in Figure 3.7.

END OF JOB is called at the end of every job, and when it

finds the next job to run it transfers control to the start of that

job, placing the address of an associated, dynamic area in R7.

When entered, the first thing END OF JOB does is to test and

reset the restart flag (1). If this flagbit was set,.there is a job

on a failed processor that has signaled to be restarted by means

of the Single Instruction Restart as discussed in Chapter 2. The

routine branches to a special program that handles restarts. The
details of such a program are beyond the scope of this study. - If

the flag was reset, END OF JOB then tests and sets the executive

lock flagbit (2). The purpose of this lock is to prevent other END

OF JOB routines from beginning until the flag is reset. If the

flag was previously set, END OF JOB loops back to its entry point,

after a possible delay (3).

When END OF JOB gains access to the queues, it first looks

to see if there are any entries in the wait queue, by loading the

value of the wait queue head pointer in R1 (4). This value will be

zero if there are no entries, in which case END OF JOB branches

to check the job queues (5). If there are entries in the wait queue,

END OF JOB need only compare the time of the first entry with

TNOW (6, 7). If TNOW is less than the first job time, no wait

jobs are due to run, and END OF JOB branches to check the job

queues for entries. Otherwise, TNOW will be greater than the

"1
 43

End of Job

Flag)

Was Reset
R~~e str~s e e i

Was Not Set ad Set (2)

Delay? e(3)

.. ILoad H-e ad

Do Pointer Of (4)
Waitlist Queue

E(5)

Figure 3.7 END OF JOB

44

A

Load [R1±1+1 (6)
Into R2

R2>TNOW? (7E YES > (7)

and Set Was Set Delay? (8)

~Was Reset

SLoad RI With

Head Pointer (9)
Of Waitlist

Queue

[, Store [R1]

In The (10)
Head Pointer]

Figure 3. 7 (Continued)

45

T|

Reset Exec (11)
Lock Bit

Load Second
HaIf Of Word (12)

[R11] +2
Into R2

Load First
Half Of Word (13)

[Ri] +2
Into R7

Load Wait Queue
Free Entry (14)
Pointer Into

R3

Store R3 (15)
In [R1]

Store RI
In Wait Queue (16)

Free Entry

Pointer

Figure 3.7 (Continued)

46

Reset Wait
Lock Bit (17)

Transfer
To Address

In R2
(18)

To Head Of

High Prio Queue
In R1

(9

(10)

SLoadone

Normal Prio

Queue Int FR10

(21)

" (22)

Figure 3.7 (Continued)

47

Load Pointer
To Head Of (23)

Low Prio Queue

an/eti 24)

Unlock Exec (25)Lock Bit

Delay 1 (26)

S(27)

Figure 3. 7 (Continued)

48

NO

R4-R+1

R4

R6 - QSIZE +
High Prio

Queue Base
Address

R4>RV

YES

R4 - R4- QSIZE

R4-1R+ 1

R6 '- QSIZE +
Normal Prio
Queue Base
Address

NO R4>R69

YES

R4 , R4 - QSIZE

R4- R1 + 1 (28)

4.R+

RG - QSIZE + (29)
Low Prio

Queue Base
Address

NO R4>R69 (30)

YES

R4 - R4 - QSIZE (31)

Store R4 In
High Prio

Queue Pointer

Store R4 In
Normal Prio

Queue Pointer

Store R4 In
Low Prio

Queue Pointer
(32)

Figure S.7 (Continued)
49

I

Reset Exec (33)
Lock Bit

Load 2nd Half
Of Word [RI] (34)

Into R2

[Ri] -0 (35)

Shift R7 (36)
Right 16 Bits

Transfer
To Address (37)

In R2

Figure 3. 7 (Continued)

50

time of the first wait entry, and END OF JOB will therefore call

a wait job to be run on its processor. But, before the routine is

allowed to manipulate the wait queue, it must test and set the wait

queue flagbit (8). This is done to prevent WTIN from also using
the wait queue at the same time. If the flagbit was previously

set, the routine loops onthe test and set instruction, with a possible

delay, until it gains access to the wait queue.

END OF JOB then reloads Ri with the contents of the head

pointer in case a new head job was inserted into the wait queue

before it was locked (9). Next, the forward pointer of the job to

be run is stored in the head pointer (10). At this point the END

OF JOB may allow other END OF JOBS to run without any danger,

so it resets the, executive lock bit (11).

Now END OF JOB is able to dispatch the job in the entry

pointed to by RI. The second half of the entry's 'dynanic/job

address pair is loaded in R2 (12), and the first half is loaded in

R7 (13). Next the entry is returned to the free thread. The wait

queue free pointer is loaded in R3 (14). The address in R3 is

stored in the forward pointer of the newly-freed entry (15), and

the address of this entry, which is still in R, is stored in the

wait queue free pointer (16). The wait lock bit is then reset (17),
and the END OF JOB transfers control to the new job, whose

starting address is in-R2 (18).

If END OF JOB finds notimed jobs due to be run, it branches

to the part of the routine that checks the regular job queues.

This section tests each queue in order of queue priority for an

entry., The pointer to the head of the high priority queue is loaded

in Ri (19). Then the entry pointed to by RI is loaded and tested

in R'7 (20). This value could be zero, in which case the queue is

empty and the remaining queues are snmilarily tested (21-24). If

the three job queues are empty, then there are no jobs to be

dispatched. The routine will then unlock the executive lock bit

51

(25), and go into a delay loop (26). After this delay, it transfers

to the beginning of END OF JOB (27), repeating the routine until

a job is found for the processor.

If the value loaded into R7 above is non-zero for some queue,

that value represents the dynamic/job address pair for the next

job to be run. The forward pointervalue in R1 is then incremented

and put in R4 (28). END OF JOB then loads R6 with a constant
representing the maximum address for any entry in the associated

queue (29), and compares this with the value in R4 (30). If R4 is
longer, it must be decrement by QSIZE, the size of the job queue,

so that it will point to the top entry word in the queue (31). In
either case, the value in R4 is then stored in the head pointer of

the associated queue (32).

At this point, the executive lock bit can be reset, to allow

other END OF JOB routines to run (33). The second half of the

entry pointed to by R1 is then loaded into R2 (34). This is the
starting address of the next job. Then the entry pointed to by R1

must be zeroed (35). Next, the contents of R7 are shifted right
byhalf aword, leaving R7 with the address of thenewjob's dynamic

area (36). Finally, the routine branches to the address in R2,

and the processor begins the new job (37).

This completes the presentation of the five executive rou­

tines. The use of registers by these routines is summarized in

Table 3.1.

3.10 A Simple Solution To The Clock Overflow Problem

It is desirable that all times be absolute in the waitlist queue
so that a threaded list may be used. The proposed clock word
will be 32 bits (or 31 bits, depending on whether a sign bit is

52

Call With:

Return Address In:

New Job Address In:

Dynamic Area Address In:

Prio Queue Base Address In:

Queue Lock Bit Code In:

Time Delay or Absolute Time In:

Routine Returns:

Dynamic Area Address In:

Routine Also Users These Registers:

JOBIN WTIN GETDYN FREDYN END OF JOB

R1 Ri R1 R1

R2 R2

R3 R3 R7

R4

R5

R6

R3 R7

R6 R4,R5 R2 R2 R1,R2,R3,R4,R6

Table 3.1 Fixed Register Conventions for Executive Routines

used). If the smallest bit indicates a millisecond, 32 bits will

allow a 50 day clock. If the mission is longer than the maximum

time of the clock word, overflow problems result when the clock

passes the maximum time and entries still in waitlist queue have

a lead bit equal to 1. These jobs will now not be run for up to 50

days!

A simple solution to this problem is to initialize the wait

queue with arequest for a "cleanup" job when TNOW is 1000 ... 0,

that is, one half the maximum expressible time. When this job is

scheduled in 25 (or 12) days, we know that TNOW will be greater

than 1000... 0. A special instruction will be included for use by

the cleanup job to kick the lead bit of the TNOW clock to zero,

and increment a high order clock word. After the cleanup job

carries out this instruction, it must make certain that all pending

inserts via WTIN with leading bit values of one are completed.

This can be accomplished in two ways.

The first way to make certain that all such jobs are inserted

in the wait queue is to delay the cleanup routine after it sets the

lead bit of TNOW to zero. To do this cleanup may test and set

the executive bit to prevent interference from END OF JOB. Then

a delay, possibly equal to the number of processors times the

time it takes to insert a job via WTIN, will be taken. This delay

could be made long enough so that all wait job inserts that have

leading bits of value one in their time entry have a high statistical

certainty of being inserted within the delay. But there is always

a small possibility of an error using this method. Probably, a

reasonable delay could make this possibility less likely than the

possibility of the failure of the whole computer.

0

When the delay is finished, the cleanup job tests and sets

the wait queue bit. The executive lock bit may now be reset. All

time entries in the wait list now have their load bits "ANDED"

54

with zero. The wait list thread must now be reordered, since

some entries with leading time bits of zero may have been inserted

already. Finally, the cleaup job reschedules itself for absolute

time 1000... 0. It then unlocks the wait queue bit and calls END

OF JOB.

Alternately, the solution following is completely safe. Let

thewait queue bit be tested and set in WTIN before TNOW is added

to R6 (See Figure 3.3 (2)). Then the cleanup job will also test

and set the wait queue bit before setting the lead bit of TNOW to

zero. No delay is necessary now, nor must the executive bit be

used. All else remains as above. The cost of this method is that

two or three instructions are added to the lock time of WTIN each

time it is called. Thus, it must be decided whether this cost is

worth the certainty it gives, or if it is better to allow a long enough

delay every 25 days.

3.11 Conclusion

The executive routines presented here represent the main

body of an executive system designed for the multiprocessor

proposed in Chapter 2. Other routines may be added, or these

rbutines may be altered, to achieve other objectives. For instance,

it may be desirable to design a routine which will get more than

one dynamic area in one call; or another routine that will release

all dynamic areas assigned to a job. But these can be designed

easily by building on the concepts presented in this chapter.

55

CHAPTER 4

DIGITAL SIMULATION OF THE MULTIPROCESSOR EXECUTIVE

4.1 Introduction

Once the executive proposed in Chapter 3 was developed,

the next step was to design a digital simulation; first, to verify

that the executive operated as desired, and second, to study the
performance of amultiprocessor system incoporating the proposed

executive. The simulation did indeed turn up some, errors in the

earlier executive routine designs before finally arriving at the.'

design presented in Chapter 3. With the executive in final form,

the simulation was then used to produce data on the performance

of the proposed system under various conditions. The data and

their interpretation are presented in Chapter 5.

This chapter presents the considerations that weAt into the
development of the simulation. It was first necessary to program

the executive routines to obtain a precise measure of the length

of instructions for each of the executive routines. Second, a job
set had tobe described to represent the jobs running onthe system.

Finally, a FORTRAN simulation of the multiprocessor system was

written based on the operation of the executive.

4.2 Model of the Executive Routines

Once the executive routines were designed, it was desirable
to write actual programs that could implement these routines to

give an indication of how large these programs would be. For

the simulation, it was decided to use these programs to give an

actual instruction count for various phases of the executive.

56

The executive routines were written in IBM 360 Basic

Assembly Language (BAL). BAL was chosen because it is a machine

language that largely satisfies the requirements of the proposed

multiprocessor. BAL allows register-to-register and register-to­

memory instructions; and it has a large set of desirable operations,

including a test and set operation. The executive routines pro­

grammed in BAL are presented in the Appendix to this thesis.

The executive BAL programs were used to give an exact

instruction count of various phases of each executive routine.

For example, on the basis of the BAL programs, the executive

routine JOBIN carries out two instructions before it sets the job

queue lock, nine more instructions before the job information is

stored in the queue, four more instructions until it resets the queue

lock, and finally, one more instruction to return to the calling

program.

The BAL programs were also used to give a measure of

data bus use by the executive routines. It was assumed that any

register-to-memory instruction included two bus calls; one to

identify the memory location and one to send the desired value

along the bus. Thus, JOBIN makes a total of fourteen bus calls

each time it is called.

In the FORTRAN simulation presentedin Section 4.4, instruc­

tion counts based upon the BAL programs are used to compute

the running times between *thevarious executive actions; such as
the amount of time a job queue will be locked by a call to JOBIN.

4.3 Model of the Job Set

In order to simulate the multiprocessor it is necessary to

define a set of jobs that will be running on the system. Only the

57

information pertinent to the simulation need be defined. Since

the objective of the simulation is to study the performance of the
executive, the information desired for any job is its instruction
length, its bus use, its use of the executive routines, and what
jobs it calls. The actual functions carried out by individual jobs

are of no interest in this study.

The job set used in the simulation of the multiprocessor is
based on analysis of the Lunar Landing Jobs carried out by Mallach
(Ref. 5). The data used to describe this job set were based on
the information presented in Appendix A of Mallach's thesis. A
set of 43 jobs is described, with an explanation of the general
purpose of each job. The description includes the jobs called by
each job along with any time delay associated with the scheduling
of a job. Finally, a table is given listing the number of basic

instructions in each job, the bus calls by each job, and the
interpretive time taken by each job. Interpretive time is that time
the program spends doing interpretive instructions in the Apollo

Guidance Computer (AGC). These instructions are basically calls
to subroutines that carry out high powered instructions not included

in the basic language, such as matrix operations. It was decided
for the purpose of this simulation to divide interpretive time by
four times the AGC basic instruction time to obtain the number

of instructions that the interpretive time would represeht. The
factor of four was chosen rather arbitrarily to reflect that the
savings on instructions that may result from a more powerful
instruction set in the multiprocessor.

Each job is therefore represented by a set ofnumbers defining
the number of instructions and the number of bus cycles it uses.
Any calls to executive subroutines are made within the jobs, so,
for the purpose of the simulation, each job is totally described by
a table of numbers dividing each job into the number of steps equal
to the number of executive subroutine calls it makes (including

58

END OF JOB). Each column of the table contains information

defining the portion of a job from the last executive call until, the

next executive call. The rows of the table are:, the number of

basic instructions; the number of bus calls; a number specifing

thenext executive routine to be called; the number of the job being

scheduled by this routine, if any; and the relative time delay if

the next executive routine to be run by the job is WTIN. in many
cases, the location of executive subroutine calls within a job and

the distribution of bus calls among the steps was arbitrarily

decided. In all jobs, the last step must terminate with a call to

END OF JOB.

In Chapter 2 the desirability of dividing long jobs into shorter

jobs was discussed. It was suggested that no segment of any job

take longer than 10 milliseconds to execute. On the basis of the

assumption of a basic instruction length of 25 microseconds in

this simulation, no jobs would then be allowed to be more than

500 instructions long. Therefore, a job set was obtained from

the set described above by dividing long jobs into segments of

500 instructions each. After initial control runs using the full­

length job set, this short job set was used as input to most of the

simulation studies.

4.4 FORTRAN Simulation of the Multiprocessor

The actual programming of the simulation was done in

FORTRAN. The basic objectives of the simulation were to act as

the operating system of the multiprocessor, to run the input job

set-on simulated processors, and to keep track of desired informa­

tion about the system.

The main difficulty in designing the simulation was to

simulate the activities of many processors on a single processor

59

computer. A state approach was taken to handle the activities of

the processor. That is, atable is used by the simulation to describe

the present state of each processor, including the next time that

state is due to change. There is one column in the table for each

processor, and the rows of the table include such information as

when the processor will next change its state, what action will be
carried out at the time of the next state change, what job is presently

running on the processor, and what step of the job is the processor

carrying out.

The control loop of the simulation searches the processor

state table for the next time that any processor is due to change

states, updates the system clock to that value, and then carries

out the activity specified by that processor's table entries. After

the activity is completed, the state of that processor is updated,

including the time that it is next due tochange state, and the cycle

is repeated. Each activity must make certain to stop just before

any change in system status that will affect other processors.

The status change will then take place when that processor's next

state change occurs. For example, if the beginning of JOBIN is

the next activity to take place on a processor, it may proceed

until the point where it has to test and lock the job queue flagbit.

The time for the next state change is updated to the time when

that operation will occur, and the test and set will be done the

next time the processor becomes active.

The simulation must keep tables corresponding to the execu­

tive data bases and must simulate the executive routines when
they are called. The FORTRAN simulation of the executive routines

carries out operations on its tables corresponding to the operations

the routines carry out on their data bases. The processor state

time is then incremented based on the instruction and bus cycle

count obtained fron the BAL program described in Section 4.2.

The bus and instruction counts are multiplied by the single

60

instruction time and bus cycle time respectively, as input to the

simulation, and their sum is the increment to the processor state

time.

The major input to the simulation is the job set described

in Section 4.3. Other direct inputs to the simulation are the single

instruction time, the bus cycle time, and the delay taken by END

OF JOB if it finds no jobs to schedule. The simulation tables and

state table are initialized for the starting job assignments. Other

system changes may be made by altering associated portions of

the simulation routines. Such changes include varying the number

of processors, changing the length of specific loop delays due to

failure to access a data base, or alterations of the length of an

executive delay.

Desired information can be collected for individual proces­

sors or for the whole system by inserting statements within the

simulation to save and update specific values whenever the state­

ments are reached. Data computed by the system is stored in
tables which are updated as the simulation progresses. Examples

of such data are the time each processor spends doing computation

of ajob, the time each processor spends running executiveroutines,

the amount of time that all processors were busy, and the delay

between the time jobs are requested and the time they are

dispatched. System data can be output at specific time intervals,

at the occurence of a specified event, or when the run is completed.

61

CHAPTER 5

RESULTS OF THE SIMULATION

51 Introduction

The simulation described in Chapter 4 was written for the
purpose of measuring the performance of a multiprocessor system

using the executive program described in Chapter 3. Simulations

were first run using the full-length job set and then using the
segmented job set described in Chapter 4. Finally, simulations

were run with the basic instruction time lengthened; effectively

loading the system, and the resulting system performance was

studied.

To limit the scope of this study, certain system attributes
were held constant throughout the simulations. First, the multipro­

cessor system studied consisted of five processors. Second, the

three non-timed job queues were simplified to one qtLeue of 40
entries, and the wait queue allowed 100 entries. Third, all artificial

delay times in the executive due to locked queues were'made zero.
Thus, test and set instructions were repeated without delay until

the queue in question could be accessed. This decision neglects

the possibility that excessive bus use may result from the constant
reading and writing of the flagbit. Finally, when the instruction
time was changed, the bus cycle time was changed proportionately,
eliminating considerations due to the relative importance of 'in­

struction time and bus time.

Certain concepts used throughout the simulation studies will

now be defined. Job load is the fraction of the total processor
running time that the processors of the system were actually doing

62

job related computations. A system is fully loaded when all
processors have work to do; that is, when the job queues always
have at least five jobs due. Thus, even when the system is fully

loaded the job load will not be 100%, because some time must be
spent on overhead due to the executive routines. Another system
overhead is the processor lockout time. This is the time aproces sor
spends waiting to access a locked data base. This time is not
included in executive overhead because it is more closely related
to the number of processors in the system. Finally, when a
processor is not busy, it will cycle in END OF JOB until a job is

found to be run on that processor. This time spent in END OF
JOB without scheduling a job will be considered null time, rather

than executive overhead time.­

5.2 Simulation of the Full-Length Job Set

Simulations with the full-length job set were first run to

test that the executive routines functioned as desired. Then a
simulation was run assuming a 25 microsecond instruction time
to see what the system performance with the long job set would
be like. This performance is summarized in Table 5.1.

It canbe seen from Table 5.1 that the systemis lightly loaded

when run with the full-length job set and with a 25 microsecond

instruction time. The job load is 10.35%, and over half the time
no processors are busy. Thus, the multiprocessor can easily handle
the long job set. But, even though all processors are busy only
.04% of the time, the longest single time span that all processors
were busy was 4.07 milliseconds. This number suggests that at
one time at least during this simulation, a job waiting to run might
have to wait at least 4.07 milliseconds to be dispatched. This
time falls within the 10 millisecond response time desired. But

if the system becomes more loaded, the worst case response time

could get quite large.

63

Basic Instruction Time: 25 microseconds

Job Load: 10.35%

Executive Overhead: 3.11%

Executive/Job Load Ratio: 30.1%

Processors Busy Percentage of Time

0 54.55

1 31.93

2 10.50

3 2.65.

4 .33

5 .04

Longest Time All Processors Were Busy: 4.07 milliseconds

Table 5.1 Simulation of Full-Length Job Set

64

5.3 Simulation of the Short Job Set

The remainder of the simulations of this chapter were made

using the short job set. The short job set was devised from the
long job set by breaking up long jobs'into 500-instruction segments.

The purpose of this segmentation was to insure good system

response time by preventing a few long jobs from monopolizing

the system. Therefore, included in the data output of the simulation

is data on the response time; that is, the time it takes to dispatch,

a job once it is requested. The performance of the short job set
including data on response time, when run for a multiprocessor

with 25 microsecond instruction time, is summarized in Table.

5.2.

The job load of this simulation is much less than in the
full-length job set simulation. This is due to the reduction of the
interpretive instruction impact, as discussed in Chapter 4. But

the executive time has actually increased since more scheduling

and dispatching must be done to accommodate many short jobs.

The total number of jobs in the short job set is almost three times

the number of jobs in the full length job set. Consequently, the
ratio of the executive time to the job computation time is 55.7%.

Thus, even if the system could be fully loaded without delays and
lockouts, the job load cannot exceed 64% if the executive/job load

ratio remains unchanged or becomes smaller. The simulation

results, however, show that as the job load increases this ratio
will-increase, and the job load never in fact exceeds 51%.

The average delay in dispatching a job is 1.115 milliseconds.

99% of all jobs were dispatched within 3.1 milliseconds of the time

they were scheduled. But the longest delay in scheduling a job
was 7.87 milliseconds, -which is nearly three times the maximum

single time all processors were busy. Although this number is
still within the i0 millisecond bound discussed earlier,the question

65

Basic Instruction Time. 25 microseconds

Job Load: 6.51%

Executive Overhead. 3.63%

Executive/Job Load Ratio: 55.7%

Processors Busy, Percentage of Time

0 66.53
1 24.50

2 7.20

3 1.42

4 .23

5 .02

Longest Time All Processors Busy: 2.822 milliseconds

Mean Average Job Delay: 1. 115, milliseconds

Delay of 99%ile: 3.100 milliseconds

Maximum Job Delay: 7.870 milliseconds

Table 5.2 Simulation of Short Job Set

66

is: why should this delay be so much longer than the longest time

that all processors are busy? This result certainly suggests that

other factors are more important than just the fact that processors

are free. Another question is how the job load affects the response

time; especially the maximum delay. These are the subjects of

the next section.

A histogram of job scheduling delays is presented in Figure

5.1. A point was plotted every half millisecond to represent the

number of job delays which fall within the previous half millisecond.

The points are connected by lines for clarity.

5.4 Loading the Multiprocessor

The question of what effect increasing the load of the

multiprocessor would have on system response was posed in the
last section. In order to examine this question, a way must be

found to increase the job load. This was done by simply increasing

the instruction and bus times. For instance, doubling the instruc­

tion and bus times should have nearly the same effect as having

twice as many jobs on the system with the original instruction

time. The truth of this statement is not investigated in this thesis

since the real objective is to make the system busier. Slowing
down the multiprocessor certainly accomplishes this objective.

But doubling instruction time obviously means that it will take

twice as long to run END OF JOB, and delay times cannot be

compared directly. Thus, delay results will be normalized by

expressing delays (and other time measured results) in terms of

basic instruction times. For example, if a delay is 10 milliseconds

and the basic instruction time'is 25 microseconds, the delay is a

400-instruction delay.

67

2600

2000

1500

.1~

-­100z

rn

0

-500

0

0 2

JOB DELAY

"1

(MILLISECONDS)

6 8 10

Figure 5. 1 Histogram of Short Job Set

68

A simulation was then run with the original instruction time

doubled. The job load went up to 12.84% and the executive/job

load ratio remained nearly constant in comparison to the first

run as expected. The longest time all processors were busy went

up 66% to 200 instructions (using the normalized measure of time),

which is reasonable, considering that the load has doubled. But

now the maximum job dispatch delaywas 520 instructions, a large

increase from the maximum of 310 instructions of the first run.

This delay also exceeds the 500 instruction maximum length of

job segments, which is exactly what was to be avoided.

Consequently, it was decided to trace the history of this job

dispatch delay to discover its origins. The sequence of events

involved in the delay are presented in Table 5.3. From this table,

it is seen that there are two major factors of the delay. The

first factor is that a number of timed jobs are due before the job

in question, which is a non-timed job, can be scheduled. While

these jobs are all waiting to be scheduled, other timed jobs become

due. The second factor is that while WTIN is running, it locks

out END OF JOB -from scheduling wait jobs. Since a non-timed

job will not be dispatched until all timed jobs are dispatched, END

OF JOB cycles until it can schedule a timed job.

The original decision to schedule timed jobs first failed to

make provision for the present delay problems. One obvious

suggestion is to allow END OF JOB to schedule a non-timed job

if the wait queue is locked, although this solution does not solve

the delays of timed jobs, some of which were also quite large.

The true problem stens from the fact that WTIN and END

OF JOB must necessarily lock each other out fromthe wait queues.

WTIN times can be substantial (124 instructions in one case of

the present example), and if, as in this example, a number of

processors gain accesses to the wait queue for WTIN before others

69

Relative Time

(Instructions)

0

54

81

191

226

350

429

457

483

520

FIGURE 5.3

Events

Job 93 entered in normal job queue;

Wait queue m use by a processor in WTIN;

2 processors are free;

Jobs 2 and 7 due in wait queue.

WTIN releases queues;

Job 2 scheduled on a free processor.

Job 7 scheduled on last free processor;

Jobs 1 and 26 now are due in wait queue.

A processor is freed;

But a processor is in WTIN using wait queue;

Thus, END OF JOB cannot run.

Processor in WTIN releases wait queue;

Anothei WTIN gains access to queue.

Processor in WT1N releases wait queue;

Another WTIN gains access to queue.

Now 4 processors are free;

Job I is dispatched;

Jobs 26 and 42 are due in wait queue.

Job 26 is dispatched.

Job 42 is dispatched.

Job 93 is dispatched.

Trace of a 520 Instruction Job Dispatch Delay

70

wanting to run END O-F JOB, major delays occur. Thus, it can
be seen that WTIN represents a bottleneck in the proposed executive

scheme. This is one areawhere further investigation is desirable.

One suggestion is to find some way to allow END OF JOB and

WTIN to run in parallel. Such a solution is not immediately obvious;

the wait queue must be ordered at some point, and when it is,
other jobs cannot be allowed to access the data base. Any possible

solution would certainly add complexity to the executive. Another

suggestion is to implement the wait queue in hardware, along with

a device which automatically orders the queue. The methods of

accomplishing this are beyond the bounds of this thesis, but such
a device may do much to improve the proposed multiprocessor.

WTIN time grows as the number of queue entries increases, causing

not only the lockout discussed here; but also excessive executive

time, which also lowers system performance.

The simulation was run with increasing loads until the

multiprocessor's job queues began to overflow. Information derived
from these runs is summarized in Table 5.4. Figure 5.2 shows

the histrograms of the job delays associated with the job loads.
It can be seen from the table that the highest job load attained

was 39.93%. A further increase m system load caused the job

queues to overflow. Actually, the simulation which resulted in

the 39.93% job load had higher job loads during the final portion

of the run. During the time the processors were constantly busy

and no additions were made to null time, the job load reached

51%. This value may be considered an upper bound for the job

load with the present system configuration.

The maximum job dispatch delayinthe 39.93% load simulation

jumped to 3967 instructions, which is almost eight times the

segment size. Even the 99th percentile delay - that delay which

is larger than 99% of all job dispatch delays - has increased to

nearly 4000 instructions. Moreover, nearly 20% of all job dispatch

71

Job Load (per cent): 6.51 12.84 18.77 24.59
Percentage of Time N Processors Busy

N=0 66.53 42.51 27.93 16.73

N=1 24.50 34.27 31.35 26.43

N=2 7.20 16.81 25.38 31.26

N=3 1.42 5.20 12.00 18.74

N=4 .23 1.06 2.94 6.06

N=5 .02 .15 .40 .79

Longest Time All Processors Busy (Instructions): 113 200 190 171

Mean Average Delay (Instructions): 45 44 49 54

99th Percentile Delay (Instructions): 124 146 200 213

Maximum Job Delay (Instructions): 315 520 616 447

Table 5.4 Results from Simulations of Increasing Loads

34.66 39.93

10.41 8.35

12.20 10.03

21.28 14.40

30.87 21.12

20.23 25.75

5.02 20.36

227 336

75 389

371 2600

826 3967

ZSOO

2000

sOo
m
o

X

+

0

o

O

6.51m JOB

12.81 JOB

18.77x JOB

2 5.9x JOB

34. 66XT 0

39-93 JOB

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

1000

m
S

z

6500

.0
JOB DELAYS (INSTRUCTIONS)

0',I ,I I I 80',I I I 160', 240I ', I I I 320I I I 400I I I I I I

Figure 5. 2 Histograms of Short Job Set for Various Loads

73

delays-were larger than 500 instructions, so that substantial delays

are quite common.

These simulations present an indication of the limits of the
proposed multiprocessor system. They seem to demonstrate that

the multiprocessor is limited m its ability to acheive greater

throughput than a single processor computer. Of course, there

are no best answers as to howthe system should be used. Tradeoffs
will be made on the basis of system requirements. Also, other

steps may be taken to increase the system's capacity; such as
increasing instruction speed or adding more processors.

5.5 Effect of Reducing WTIN Time

In the last section WTIN was found to bethe major source

of the large job delays. Therefore, it was decided to see what

effect reducing the length of time of WTINwould have on job delays.
The reason WTIN may run for such relatively long times is that

itmustinsert a job m the correct position of the wait queue thread.
Thus, if job delay times are random, WTIN will look at half the
entries in the thread, on the average, before inserting the new

entry.

The graph m Figure 5.3 presents some results of reducing

the length of time of each cycle of the loop in WTIN that searches

through the thread of wait queue entries. These simulations were

'runwith the system load that resulted in a 39.93% job load when
run with full WTIN time. It can be seen from the graph that the

job load increases as WTIN timeis decreased. This results from
the fact that jobs are delayed less and, therefore, more jobs are

run in the same period of time.

74

_ _

- -

5600.

4000,
.o

C-4 3500-

W 3000­

2 .50­

40 o"

m> 2000­o
N' PO­

-500--I 000­

______ -- _ _oo0

--] O

_ _

30

WTIN TIME (x OF ACTUAL)

-500

0 20 1 I I 40 I I I 601 I I [80I I- --,100 . ', . ', I I t I I

X JOB DELAY

+ JOB LOAD

Figure 5.3 Effects of Reducing WTIN Time

75

The most striking- result is that the maximum job delay

decreases from 3967 instructions to 1648 instructions with only a

12 1/2% decrease in WTIN time. Even if WTIN took no time, the

largest job delay would drop only to 741 instructions. This implies

that the sharp rise in job delays at a certain point is due almost

entirely to WTIN. WTIN seems to be able to handle its queue

reasonably well until the system load becomes high enough that

WTIN regularly delays the rest of the system. Because the system

is delayed, there will be delays in dispatching remaining jobs from

the wait queue, thus making the wait queue more full and slowing

down WTIN even more. This vicious circle effect seems to account

for the rapid rise in job delays.

With reduced WTIN time the system is running more effi­

ciently. Therefore, the system load can again be increased to

see what the limit of the job load will now be. This was done

using a WTIN time 50% of the original. The simulations reached

a job load of 48.4% for a run when the instruction execution time

was increased 25%. But, during the time the system was fully

loaded, it was running a 62% job load. This compares with the

51% job load with full WTIN time discussed in the last section.

Consequently, one way to increase system capacity is to find a

way to speed up WTIN.

5.6 Summation and Suggestions for Further Research

In this thesis an organization for-an aerospace multiprocessor

systemwas described, and an executive programfor this multipro­

cessor was developed. The executive program consists of several

routines which carry out specific executive functions. These

routines were designed to be simple and as independent as possible

for the sake of system efficiency.

76

A simulation was written for the proposed multiprocessor,

and results of many simulations were presented in this chapter.

Although no broad conclusions can be drawn from these results,

some specific observations can be made for the specific configura­

tion studied. First, afive processor systemwith a 25 microsecond

instruction speed is capable of handling efficientlythe job set based

on the Lunar Landing program, either in long or segmented form.

Second, as system load increases, job dispatch delays become

larger. On the system studied, job delays became quite high at

job loads higher than 35% of system time. The upper limit for

the job load appeared to be 51%. The wait queue and its associated

routine, WTIN, seemed to be the major cause of large delays.

When WTIN running time was cut in half, the system response

improved for equivalent job loads, and the upper limit for the job

load reached 62%.

The results of this thesis indicate that a breakdown of system

performance is inherent in the proposed multiprocessor as loads

approach a certain limit. In this study, the limits of the job load

for good performance appeared tobe between 1/3 and 1/2 of system

computation time. A similar limitation appears in Mallach's study

of databus allocation (Ref. 5). Whether such breakdowns are basic
to multiprocessing structures is a subject which should be investi­

gated further.

Some changes to the executive presented may show improve­

ments in system performance. One such change is to allow END

OF JOB to schedule a non-timed job if the wait queue is locked.
Another suggestion is to allow segmented jobs to continue running

uninterrupted if there are no jobs of higher priority waiting to be

scheduled. Finally, a method of allowing WTIN and END OF JOB

to run concurrently may improve job response. The design and
effects of these suggestions are areas for further research.

77

These simulations studied one specific system configuration.

Further studies may be made considering different numbers of
processors, different priority structures of queues, and different

job sets. Also, it may prove desirable to see how the system
functions when other aspects of the system, such as bus use or
1/O calls, are included in the simulation.

Finally, it was suggested in this chapter that an implementa­

tion in hardware of the wait queue and a device for ordering the
queue would improve system performance. Hardware implementa­

tion of other aspects of the executive may also prove beneficial.
The improvements, methods, and costs of hardware implementation
represent other areas which should be studied.

78

APPENDIX

BAL PROGRAMS FOR THE EXECUTIVE ROUTINES

This appendix presents IBM Basic Assembly Language implementa­
tions of the executive routines developed in Chapter 3.

1. JOBIN

JOBIN SLL
AR

ENT2 TS

BC

LH

LA

CR

BC

LA

OK L

LTR

BC

ST

LA

STH

NI

BCR

3,16(0)
2,3

0(,5)

4,ENT2

6,2(,4)

3, 'QSIZE'(,4)

6,3

12,OK

6,4(,4)

0,0(,6)

0,0

8,FULARM

2,0(,6)

6,4(,6)

6,2(,4)

0(5),0

15,1

79,

2. WTIN

RELWTIN

ABWTIN

LOK

LOOP

BRANCH

A

SLL

AR

TS

BC

L

LTR

BC

L

ST

LA

L

LT

BC

C

BC

LR
L

BC

ST

ST

ST

ST

NI

BCR

6,TNOW

3,16(0)

2,3

WTFLG

4,LOK

3,WAITFREE

3,3

8,WAITALRM

4,0(,3)

4,WAITFREE

4,WAITQUE

5,0(,4)

5,5

8,BRANCH

6,4(,5)

12,BRANCH

4,5

5,0(,4)

15,LOOP

5,0(,3)

3,0(,4)

6,4(,3)

2,8(,3)

WAITFLG,O

15,1

80

3. GETDYN

GETDYN

4. FREDYN

FREDYN

TS

BC

LH

L
LTR

BC

STH

NI

BCR

SR

ST

TS

BC

LH

ST

STH

NI

BCR

DYNFLG

4,GETDYN

3,DYNQUE

2,0(,3)
2,2

8,DYNLARM

2,DYNQUE

DYNFLGO

15,L

0,0

0,0(,7)

DYNBOT

4,FREEDYN

2,DYNQU]E+2

7,0(,2)

7,DYNQUE+2

DYNBOT,0

15,1

81

5. ENDOFJOB
ENDOFJOB TS RESFLG

BC 8,RES2 ART

BAK TS ENDFLG

BC 4,BAK

L 1,WAITQUE

LT i,1 -

BC 8,SKIPWT

L 2,4(,l)

C 2,TNOW

BC 10,SKIPWT

WAIT TS WTFLG

BC 8,WAIT

L 1,WAITQUE

L 2,0(,1)

ST 2,WAITQUE

NI ENDFLG,0

LH 2,10(,l)

LH 7,8(,l)

L 3,WAITFREE

ST 3,0(,i)

ST 1,WAITFREE

NI WTFLG,0

BCR 15,2

SKIPWT L 1,PRIOHD

L 7,0(,1)

LTR 7,7

BC 6,D1

L I,NORMHD

A 7,0(,)

BC 6,02

L 1,LOWHD

82

A 7,0(,1)

BC 6,03

DEL NI ENDFLG,0

LA 'r,N(,O)

BCT 7,DEL

BC 15,ENDOFJOB

Dl LA 4,4(,1)

LA 6,QSIZE+PRIOHD

CR 4,6

BC 4,El

LA - 6,PRIOHD+4

El ST 4,PRIOHD

NI ENDFLG,0

ORF LH 2,2(,l)

SR 3,3

" ST 3,0(,l)

SRL 7,16(0)

BCR 15,2

D2 LA 4,4(,l)

LA 6,QSIZE+NORMHD

CR 4,6
BC 4,E2

LA 6,NORMHD+4

E 2 ST 4,NORMHD

NI ENDFLG,0

BC 15,ORF

D3 LA 4,4(,1)

LA 6,QSIZE+LOWHD

CR 4,6

BC 4,E3

LA 6,LOWHD+4

E3 ST 4,LOWHD

NI ENDFLG,0

BC 15,ORF

83

REFERENCES

1. 	 Lampson, Butler W., "A Scheduling Philosophy for Multiprocessing

Systems," Communications of the ACM, Vol. 11, No. 5, pp. 347-360,

May, 1968.

2. 	 Pariser, Jack J., "Multiprocessing with Floating Executive Control,"

1965 IEEE International Convention Record, pp. 266-275.

3. 	 MIT C.S. Draper Laboratory, STS Data Management System Design,

Report E-2529, Cambridge, Mass. June, 1970.

4. 	 MIT C.S. Draper Laboratory, STS Software Development, Report

E-2519, Cambridge, Mass., July, 1970.

5. 	 Mallach, Efrem G., Analysis of a Multiprocessor Guidance.Computer,

Ph.D. Thesis, M.I.T., Cambridge, Mass., June, 1969.

6. 	 Madnick, Stuart E., "Multiprocessor Software Lockout," Proceedings

- 1968 ACM National Conference, pp. 19-24.

84

