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ABSTRACT 

In this thesis an organization for an aerospace multiprocessor 
computer control system is described, and an executive program for this. 
multiprocessor is developed. The executive program consists of several 
routines which carry out specific executive functions. These routines are 
designed to be simple and as independent of each other as possible for the 
sake of system efficiency. 

A simulation was written for the proposed multiprocessor system.
A set of jobs based on the Lunar Landing programs of the Apollo Guidance 
Computer were run on this simulation, and a 5 processor system was found 
to be adequate for efficient performance of the job set. 'The jobs in this 
set were then divided into short segments 'to insure good system response. 
System performance was then studied using thiso-job set as input to the 
simulation and increasing the system load by slowing down the instruction 
execution time. As the system load increased, so did the delays in scheduling 
jobs. The cause of excessive delays was attributed to the length of time 
that must be spent ordering a timed job queue. 

The simulations showed that the performance of the proposed multipro­
cessor broke down when job computation loads were more than about 40%; 
Whether this is a general phenomenon for multiprocessors, and whether 
ways can be found to circumvent this, problem, remain areas for further 
research.
 

Thesis Supervisor: Albert L. Hopkins, Jr.
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CHAPTER i 

MULTIPROCESSORS
 

1.1 Introduction 

The use of comuters for control and navigation has made 
possible space travel as we now know it. But as space missions 

have become more complex, so have their computer systems. 

The Apollo Guidance Computer is a single processor computer 

which is responsible for controlling all systems during a space 

flight. To be able to handle its varied tasks, this computer had 

to be multiprogrammed; that is, it had to do the computation for 

many tasks, but at any instant could be computing only one task. 

For the NASA Space Shuttle design, the M.I.T.-C.S. Draper 
Laboratory has proposed the use of a multiprocessor computer. 

The justification for this proposal is that a single processor 
computer has become too costly in terms of programming, testing, 

and lack of flexibility. The proposed multiprocessor design will 

enable the applications programmer to be much less concerned 
with the operating system design consequently, the testing of 

programswill be considerably simpler. Finally, the basic design 

allows for system changes simply and directly, due to its modu­

larity. 

1.2 Multiprocessing Defined 

Basically, a multiprocessor computer system is a system 

where two or more processing units (or processors) share a central 
memory, where each processor may be executing a distinct task 

concurrent with other processors. Tasks may communicate with 
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each other, and receive input and send output through the central 

memory (see Figure 1.1). 

The multiprocessor has an operating system which manages 

the input and the output (I/O), and schedules the work for each 

processor. This thesis is especially interested with the portion 

of the operating system which schedules and assigns the various 

tasks that each processor must execute. This "scheduler" is 

commonly referred to as an executive program, or executive. 

The executive usually consists of executive routines and executive 

data bases. Based on the information found in the data bases, the 

executive routines dispatch tasks to each processor; either di­

rectly, or indirectly, through the central memory. 

1.3 Motivations for Multiprocessing 

The use of multiprocessing is motivated by two distinct 

factors. One factor is the need for extremely fast computation. 

The other factor is a need for high reliability of the system. 

Both factors require more performance than an ordinary computer 

system can provide. 

Speed requirements of computers are sometimes greater 

than some computer systems can provide. Real time simulations 

and control systems are prime examples of this problem. It may 

not be possible to complete required computation in the desired 

time. Computation speed is limited by the available electronic 

circuitry, and is rapidly approaching physical limitations. A new 

strategy is to divide the computation into semi-independent seg­

ments that can be run in parallel. The parallel processes may 

then be run concurrently on several processors inamnultiprocessor 

system.
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It may seem that no matter how fast we can make computers 

execute a job, the neeed will arise for an even faster system. The 

concept of multiprocessing opens new frontiers for achieving such 

goals. The new limiting factors are the number of processors in 

the system, and the ability of the programmer to divide a job into 

many parallel operations. 

The need for high reliablity computer systems is also served 

by multiprocessing. In most computer systems the philosophy of 

reliability is that the components be quite reliable; aside from 

that, failures will be repaired after the fact. This philosphy is 

not adequate for vital systems where neither the materials nor 

the expertise to repair such a system is accessible; most notably 

on a manned space flight. In such situations individual component 

reliabilitywill never be sufficient. Consequently, components are 

duplicated or triplicated, and many strategies may be used to ensure 

extreme reliablity. 

A multiprocessor system lends itself very well to high 

reliability needs. First, duplication (or more) of computations at 

the program level can be used to verify that the system is healthy. 

Second, if there is a failure in one processing unit, the system 

can still operate on the remaining processing units. 

This thesis is concerned with aerospace computing systems, 

and specifically considers a computer system which was at one 

time proposed for the NASA Space Shuttle Vehicle. Both of the 

above - speed and reliability - may be important considerations. 

For example, a monitoring cycle that must repeat in less time 

than it takes to finish its computation could possibly be implemented 

quite easily as parallel procecsses in amultiprocessor. Certainly, 
it is obvious that reliability is most important in such a vehicle, 

and thus, fault tolerance allowed by a rpultiprocessmg system is 

quite valuable. 
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1.4 Organization of Multiprocessors 

Although all multiprocessor systems share certain basic 
characteristics, the details of each system may differ according 

to the context in which it is used. 

A large time sharing system, for instance, must make most 

of the decisions independent of the user. That is, the system cannot 

allow each user to tell it what to do; it must protect itself from 

selfish or malicious users. The system is designed to be fully 

loaded, and it must therefore use all of its resources efficiently. 

These considerations imply that the system must have a large 

interrupt structure; to handle i/O messages and time interruptions, 

for instance, Futhermore, to accomplish these objectives, the 

operating system must be running continuously, acting as a.monitor 

of the rest of the system. 

A small aerospace computer system, on the other hand, does 

not have to concern itself with the problems caused by unknown 

users. The programs in such a system must be specified and 

tested beforehand, to see that they have the desired effect. Thus, 

much of the operating system may be dependent upon the individual 

programs for control. Also, the system will not usually be designed 

,to run at full load. Instead, spare processors will usually be 
availiable for 1/0 handling or as backups in case of processor 

failure. Consequently, it may be possible to eliminate many types 

of interrupts from the operating system. 

As aresult, such a system will be quite deterministic. This 

has become increasingly important ni space applications as testing 

costs begin to surpass hardware and development costs. An 
engineer can tell more precisely at the programming phase exactly 

what effect his program will have on the rest of the system. Other 

aspects of multiprocessor systems maybe independent of the nature 
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of the system and even of the fact that it is a multiprocessor. 

Such aspects include handling of hardware and software failures, 

handling of storage allocation, priority arrangements, and memory 

protection. 

The operating system of a multiprocessor must be designed 

with regard to many considerations. Most design decisions must 
be made before a detailed operating system may be developed. 

1.5 Executive Organizations 

The purpose of this thesis is to develop a detailed executive 
program for an aerospace multiprocessor system. It is therefore 

valuable to consider alternative organizations of multiprocessor 

executives. 

One straight-forward way to design an executive system is 
to have it be a fixed program which monitors all processors. 

When a change in-status of a processor occurs, the executive carries 

out some action based on the state of the whole system. Such an 

executive program may reside in a processor specifically designed 

for executive use, or it may reside in one of the processors of 

the system. If one processor is specifically designated as the 
executive processor, the executive is said to be "dedicated." If 

the executive programs are able to reside in any processor, it is 

known as "semi-dedicated." The data bases associated with the 

executive may reside in the executive processor or in the common 

memory. 

The advantage of this type of executive is that most decisions 
are made within a central operating system, and it can control 

all processors. Some disadvantages are that such an executive 

tends to be slow; and that it tends to underuse a processor unit, 
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since the programs must cycleon one processor even if they have 

no work. 

One solution to the problem of slowness of the executive is 

discussed by Butler Lampson (Ref. 1). He, suggests implementing 

the executive as a system of hardware modules "which would 

eliminate interrupts and drastically speed up the software 

schedule." 

Other executive systems fall into the class of "floating" 

executives. A floating executive system allows any processor to 

call executive programs to run on that processor. The advantage 

of this organization is that the individual programs now call the 

executive as needed, and therefore the system control resides to 

a large degree within the jobs running on the system. Thus, 

computing time is spent on running the executive only when 

necessary. This organization assumes that the jobs being run 

act responsibly, and therfore lends itself to a closed computer 

system such as an aerospace control system. 

Jack Pariser describes such an executive organization as 

usedon a Hughes H-3118 multiprocessor (Ref. 2). This particular 

organization allows only one processor to have executive control 

at atime. That is, if other processors require use of the executive, 

they must be delayed until the processor having control releases 

that executive. 

This is not a very sophisticated approch to the design of 

floating executives. The reason for such an approach is to prevent 

more than one processor from using the executive data base at a 

time, thereby preventing errors due to memory sharing overwrites. 

But, at the time that two or more processors are interested in 

using the executive, theymay be concerned with different portions 

of the data base. Thus it would be advantageous if they are allowed 

to run simultaneously. 
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Consequently, the approach taken by M.I.T. in its proposal 

for a design of a space shuttle multiprocessor is to divide the 

executive into integrated parts. The executive is now composed 

of several subroutines to carry out the different functions of the 

executive. Data bases residing in common memory now reflect 

the total state of the system. Locks are supplied for independant 

portions of the data base, and subroutines use these locks to gain 

control of that portion of memory. This is the basis for the 

executive design presented in this thesis. 
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CHAPTER 2 

PROPOSED MULTIPROCESSOR SYSTEM ORGANIZATION 

2.1 Introduction 

In order to develop the detailed executive, the system in 

which it will be used must first be roughly defined. The executive 

must reflect those characteristics of the system that affect it. 

These characteristics, include hardware related aspects, such as: 

processor architecture, memory organization and allocation, com­

munication between subsystems, available operations, and error 

detection. Also important are software considerations such as: 

different priorities and types of jobs, I/O requests, subroutine 

calls, and memory protection. The proposed NASA Space Shuttle 

multiprocessor organization is developed in References 3 and 4 
and those areas which are related to the executive development 

are presented below. 

2.2 Hardware Organization 

Many areas of the hardware organization of a computer 

system affect the structure of the executive. The processors define 

the working areaof the executive programs. The memory defines 

the size and limits for data transfer and storage allocation. The 

speed and methods of subsystem communication may indicate what 

possible tradeoffs may be made. The system operations also define 

the operation set allowable in the executive programs. Finally, 

hardware failures may necessitate certain executive actions. 
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Each processing unit of the multiprocessor under discussion 

is made up of three structures; a processing element, a scratchpad 

memory, and interface and error detection logic. The processing 

element contains an arithmetic unit and operating registers. The 

scratchpad memory is high speed memory, addressable only by 

the individual processor, and used to store intermediate results 

of separate tasks. Three scratchpads and two processing elements 

are redundantly tied together with the error detection logic. When 

an error is detected by this logic, the error handling mechanism 

is signaled. The operation and impact of this mechanism is 

described later on in this section. 

In the design of the executive, we are certainly interested 

in the register capacity of the processing unit. Implementation 

of executive programs using only operating registers is desirable 

for both the speed and the size of the executive programs. For 

the executive described in the following chapter it was assumed 

that as many registers were available as were needed. This proved 

to be reasonable; eight registers in each processor were sufficient. 

The programs and data of the system reside in main memory. 

A 64 K memory is felt to be more than adequate for future uses 

based on the experience gained from Apollo,. Whatever space 

remains after memory is assigned to programs and data may be 

used as dynamically allocated erasable storage. Such areas, are 

useful to store temporary variables or arguments to be sent by 

one job to another. This allows memory to be shared among 

differentjobs as it becomes needed. The responsibility of allocating 

dynamic storage areas falls on the executive. Itbmust provide 

the means to find an unused dynamic area, tell a process where 

that area is, and then return that area to a free pool when it is no 

longer needed. 
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Communication between the processors and main memory 
is here accomplished via a data bus. When an address in main 

memory is referenced by a processor, a microprogram m the 
processor signals that it wants to use the data bus. When the 

processor has been signaled that it has control, it then sends the 

required code along the bus to accomplish the operation on the 
memory. The processor retains control of the bus until it decides 

to release that control. The length of control is usually only for 

one operation, but it proves valuable for a processor to be able 

to "hog" the bus when correlated data must be updated as a set 

or when flagbits must be tested and set without interference from 

other processors. For the purpose of this study, it will be assumed 

that the bus is capable of handling all data traffic with negligible 

delay. A study of bus requirements and associated delays has 

been done by Efrem Mallach (Ref. 5). 

As yet, no operation repertoire has been established for these 
processors. It would be advantageous, however, for the processing 

units to have a large set of operations to enable the programs to 
be written concisely and carried out quickly. Most important to 

the executive are the availability of flagbit operations that can 

test the condition of a particular flagbit and operate on it in the 

same instruction, without interruption. This is accomplished by 

means of a bus hog as described above. It will be assumed in the 
design of the executive that such operations exist. 

To release the programmer from the concern of what might 

happen if there should be a hardware failure during execution of 

his program, a recent concept called Single Instruction Restart 

(SIR) was embodied in the design. Simply stated, the SIR is used 

to detect a hardware failure within the instruction that it first 

occurs. This prevents an error from propagating throughout the 

rest of the system. When an error is detected, the state of the 
processor and the contents of the registers and the scratchpad of 
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the failed processor are dumped into main memory, and a signal 

is set. The next freed processor will then respond to the signal 

by reading in the memory dump and acquiring the state of the 

freed processor. Computation is then continued at the point of 

failure. 

That portion of the executive that is called when a task 

releases a processor has the responsibility to first check to see 

if any failure signals have occured. If so, the executive must 

transfer to a program that accomplishes the restart as described 

above. Since such a restart program is intimately linked to the 

details of the SIR, it will be considered part of a class of corrective 

programs and will not be developed in this study. Also included 

in this class will be those programs that decide what actions to 

take on the failed processor. 

One interesting result of the SIR should be pointed out. If a 

processor suffers a hardware failure while it is operating an 

executive scheduling program the SIR causes the processor to halt. 

Thenext freed processor will restart the executive from the point 
of failure. This prevents system deadlocks due to permanently 

locked data sets. 

2.3 Software Organization 

The design of the executive programs is also closely tied 

to the software structure proposed for the system. The executive 

must handle different job types and priorities, it must be able to 

interact with the system's 1/0, and it may allow for subroutine 

calls and parallel processing. 

The Space Shuttle must be able to schedule events at a specific 

times and delays, and it must allow certain events to be contingent 
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upon the occurrence of other events or conditions. The executive 

must reflect these requirements, scheduling jobs contingent upon 

a certain time of arrival or a specific event occtring. As long 

as it-has an acceptable response time, the oxecutive is in the best 

position to decide that a timed job is due, and thus schedule it. 

Ofi the other hand, if a job is waiting for some external event to 

occur, it would be inefficient and complicated for the executive to 

decide if such an event had occured. This task is handled better 

in I/O and is discussed below. It is also desirable for one'job to 

be able to request another job to be run as soon as the system is 

able to schedule the new job. Consequently, the executive will 

schedule such a job run on the next freed processor, if it decides 

that the job should run next. 

A problem arises over which job to schedule if more than 

one job is ready to run. A system of priorities must be implicit 

in the executive structure. Such decisions must be made consid­

ering both system and executive performance. One clear fact is­

that the priority system need not be extremely complex since there 

are many processors and the job structure will provide a high 

job turnover, as discussed at the end of this section. A simple 

way to implement a limited priority structure is to have one job 

queue of non-timed job requests for each priority, and atime queue 

for timed jobs. The executive scheduler checks the queues in a 

predetermined order to find a job to schedule. Jobs within the 

non-timed job queues are handled on a first-in, first-out basis. 

A job request is given an implicit priority on the basis of the 

queue into which the job request is inserted. 

It is desirable, when one job schedules another, that data 

may be passed on as arguments or intermediate data. This is 

done through the use of dynamic areas, as follows: one job acquires 

a dynamic area, stores the data to be passed in the dynamic area, 

and then schedules the object job, associating with it the address 
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of the dynamic area. Each queue. entry must therefore include 

the address of a dynamic area, if any, along with the job identifica­

tion, and the time to be scheduled for wait jobs. 

Consequently, a task may be distinguished from its corre­

sponding program by the task's asspciated data. This allows much 

flexibility in the types of tasks allowed. For instance, one program 

may run concurrently on two processors, with each processor using 

a different set of data. Also a job may call itself recursively, 

passing the same dynamic area on each call, "or continually 
acquiring new dynamic areas. But, perhaps most significant is 

the ease with which subroutine calls and parallel branching may 

be used. A subroutine call may be made by having the calling 

routine, schedule the subroutine and pass a return address in the 

dynamic area. When the subroutine is finished it schedules the 

calling routine to begin at the return address that was passed. 

Parallel branching may be considered to be many subroutine calls, 

one for each branch. As each branch is completed, it tests and 

sets a flagword to see if all other branches are finished. The 

last branch to be completed then schedules the calling job. 

The individual tasks request other tasks, and in the case of 

parallel branching they test for themselves whether the branches 

are ready to join. Such decisions are contained within the tasks, 

since they are in the position to make the decisions efficiently. 

On theother hand, such mechanical procedures as choosing the 

task to be run next or the handling and passing of dynamic areas, 
are handled best by the executive programs. 

The organization of T/O handling is an especially important 

consideration in the design of the executive, since 1/0 handling is 

also an integral part of the operating system. Since input and 

output data for space missions are both important and voluminous, 

it is necessary that 1/0 be handled quickly. Therefore, it is 
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necessary that the 110 control act as anifbnitor of the i/O devices. 

Consequently, the i/O monitor will be continually running on one 

processor, but since the processors are identical it can run on 

anyprocessor. Thus, the I/0 monitor is asemi-dedicated program 

which communicates with 1/0 devices on a separate bus, and With 

the other processors via main memory. 

The [/0 processor maintains a list of events and associated 

jobs. When an event in the queue occurs, the I/O monitor inserts 

a request for the associated job in the executive queues. In this 

way, 1/O6nter1upts: nan be eliminated, greatly simplifying the 

programmer'sijb.-, TAis method is valid only if the executive 

response time is sufficiently small to meet system requirements. 

The response time is the delay between the time the .i/O monitor 

requests the job to be run and the time it is actually run. In the 

Apollo Guidance Computer, the [/0 response time was 10 millisec­

onds. Therefore, it is proposed that tasks be divided into jobs of 

lessfthan i0milliseconds, to be certain that a processor becomes 

free every 10 milliseconds to schedule the new jobs. This idea 

will be considered in detail later in this thesis. The mechanics 

of dividing programs into jobs of the desired length is not consid­

ered herein, but will probably be accomplished by a compiler 

automatically inserting breakpoints in long programs. 

2.4 Conclusion 

The preceding discussion has been a brief summary of the 

proposed structure of an aerospace multiprocessor system, with 
emphasis on the requirements of the executive -for that system. 

An executive design based upon these hypotheses is presented in 

detail in the next chapter. 
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CHAPTER 3 

THE MULTIPROCESSOR EXECUTIVE 

3.1 Introduction 

In this chapter, a detailed presentation of an executive for 

the proposed multiprocessor is given. The functions of this 

executive are designed to carry out the requirements presented 

to it by the system organization proposed in Chapter 2. The 

executive consists of several routines which are presented here 

in detailed flow chart form. Many assumptions and arbitrary 

decisions had to be made in designing these routines, so that the 
executive presented cannot be precisely correct for all conditions. 

It is rather a model which can be studied and built upon. It is 

felt, however, that the model presented herein represents a 

reasonably optimal design under the assumptions made below. 

3.2 Structure of the Executive 

The executive program is actually a group of routines called 

by individual jobs to handle executive activities. These executive 

routines manage a set of memory locations, known as the executive 

databases. The databases containthe information presentlyneeded 

by the executive subroutines to carry out the desired actions. 

What are the actions that must be performed by the executive 

subroutines? As presented in the system proposal, the desirable 

actions are: 
Request an immediate job
 

Request a timed job
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Acquire a dynamic area 

Return a dynamic area 

Dispatch the next job to be run 

Each of the above actions will be carried out by a distinct executive 

routine. A routine will be called by ajob with necessary information 

in predescribed registers, and the routine will return information 

to registers, if necessary. It will be the responsibility of the 
programmer to see that the interface between jobs and executive 

routines is handled correctly, although some enforcement of 

interfacing rules can probably be accomplished in an assembly 

program prior to run time, 

The data bases consist of job queues, pointers, and flagbits. 

One job queue is required for each priority level, and one job 

queue will be used for timed jobs (commonly called a waitlist). 

Three job priorities will be assumed in this model, which should 

prove to be sufficient in amultiprocessor environment. The entries 

in the job queues may be more than one word long, and will contain 

the starting address of a job to be run along with the address of 

the head of an associated dynamic memory area. In the wait queue 

the entrymust also containthetime that the job is to be dispatched. 

A series of pointer locations is used to indicate which location 

contains the first job entry in each queue, to indicate the next 
free entry in a queue, and to indicate the next available dynamic 

area. Because the processors of the multiprocessor behave 

asynchronously, flagbits are necessary to lock portions of the data 

bases when they are in use. Thus, a processor must gain access 

to a data base through its flagbit, and then unlock the flagbit when 

it is finished. 

Job queues should be long enough to insure that they will 

not be filled during normal operation. Although the precise length 

can only be decided upon by extensive simulation of the actual 
system programs, it is felt that a length of five times the number 
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of processors for the job queues and ten times the number of 

processors for the wait queue is more than sufficient undernormal 

operating conditions, based on results of simulations in this thesis 

and in Mallach's thesis (Ref. 5). 

Five executive routines have been written .to perform the 

actions described above. To request an immediate job, the routine 

JOBIN is called as a subroutine with the address of the job to be 

scheduled, the address of the associated dynamic area, the priority 

of thenew job, and the return address to the calling job in specified 

processor registers. JOBIN inserts the necessary information 

in a free entry in the specified queue, and then returns to the 

calling job. 

Timed job requests will be handled byaroutine called WTIN 

(for wait insert). The call will be similar to JOBIN, except an 

absolute time or time delaywill replace the priorityin a register. 

WTIN will have two calling points to distinguish between an absolute 

time and a delay. If the call is a delay time insert, WTIN will 

first compute the absolute time, since all wait queue entries contain 

absolute time. Typically,, most wait inserts use delay times. 

Two routines will manage dynamic area allocation. ,The 

names of the routines that allocate and return dynamic storage 

are GETDYN and FREDYN. They both require two processor 

registers to pass the dynamic area address and the return address 

to the calling job. Dynamic areas will be identical blocks of a 

specific length. 

Finally, the routine that dispatches the next job to be run is 

called END OF JOB, since it must be called at the end of every 

job. END OF JOB is the most complex of the executive routines. 

Its sole purpose is to find the next job to be run, and then transfer 

processor control to the start of that job. END OF JOB first 

tests the restart flag to see if any jobs are to be restarted due to 
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processor failures. Otherwise, the program tests the job queues 

in order of priority to find a job to run. If no jobs are available 

to run, END OF JOB enters a delay loop and then starts over 

again on the same processor. 

The flow charts for these routines along with a detailed 

discussion of their operation is presented in Section 3.4. 

3.3 Assumptions 

In this section some basic assumptions will be made which 

arenecessary in order to develop the detailed executive routines. 

As mentioned in Chapter 2, the size of main memory will 

be approximately 64 K words. The basic word size will be assumed 

to be 32 bits. This word size allows for much more precision 

than the 16 bit word used in the Apollo Guidance Computer. 

Conveniently, the word size also is twice the length necessary to 

specify any address absolutely. This fact indicates the desirability 

of half word operations.. Finally, the word size makes it possible 

to use absolute time in wait job requests and wait queue entries. 

If the 32 bit word is used to represent milliseconds, the maximum 

time that can be represented by one word is about 50 days. This 

is certainly sufficient for present space missions, although future 

missions will probably be of longer duration. Handling of the wait 

queue is much simpler using absolute times, so it would be desirable 

to present a solution to the problems presented by clock overflow. 

This will'be discussed in Section 3.10. 

The processing units will have at least eight working regis­

ters of basic word length. The instruction set will consist, of 

register-to-register and register- to-memory basic instructions. 

These will include the usual instructions to carry out load, store, 
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arithmetic, logical, shifting, testing, and conditional branching 

operations. Also, there will be flagbit operations, including an 

operation that tests and sets a flagbit in one bus hog. Finally, to 

save memory space and bus transmission time, halfword operations 

for loading and storing in main memory will be assumed to be 

available. 

3.4 Strategies 

General strategy and tradeoff decisions must be made before 

the detailed executive programs are designed. For example, it 

was previously stated that it is desirable to break up the executive 

data base into independent sections so that there is as much 

parallelism as possible in the executive routines. This division 

of the data base is accomplished by means of locks which are 

tested by the executive routines before accessing the associated 

portion of the data base. Strategy decisions must be made on 

how to divide up the data bases, how many locks to use, and where 

they should be tested in the executive routines. Certainly awaitlist 

insert-can occur in parallel with anormal job insert and a dynamic 

area allocation. Thus, there should be seperate locks on each 

area of the data base, to allow WTIN, JOBIN, and GETDYN to run 

in parallel. 

The question is how far we should carry out such strategies; 

and to answer this we must consider the tradeoffs. The three 

criteria for making these decisions are the total running length 

of the executive routines, the running length of instruction se­

quences during which locks are set in the executive routines, and 

the amount of memory taken by the executive programs and their 

data bases. 
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The last criterion will consistently be the least important 

in design decisions. Certainly, to allocate one bit in memory for 

an extra flag to allow two routines to run in parallel is a profitable 

choice. In fact, since executive programs are vital and run so 

often, it seems desirable to use any reason able amount of memory 

to save even a small amount of running time in an executive routine. 

On the other hand, the length of time that the data bases 

are locked is extremely important, especially as more processors 

are added to the system. Indeed, as is pointed out in a paper by 

Madnick (Ref. 6), this value is the limiting factor in the number 

of processors that can run on a multiprocessor system. Conse­

quently, as more of the data base is divided into independent 

sections, less conflict will arise. However, to break up some 

portion of the data base, some additional instructions may be 

necessary. An example of this possibility is presented in the 

executive routines herein. Although END OF JOB and JOBIN use 

the job queues, the executive routines allow END OF JOB to remove 

an entry from a job queue in parallel with JOBIN inserting an 

entry in the same queue. 

The decision in this example is whether the few additional 

instructions necessary are worth the additional lessening of con­

flict. Obviously, it would be good if the additional instructions do 

not add lock time to another data base. But perhaps more important 

is the addition to the total execution time of the executive routine. 

In a single processor computer this factor would certainly decrease 

the efficiency of the executive. But, in a multiprocessor, conflict 

can be more damaging to efficiency than the addition of total 

execution time, and can certainly lower executive response time. 

With this in mind, the executive routines presented try to attain 

maximum parallelism. 
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Another point in favor of this choice is that it is especially 

desirable to separate the locks associated with END OF JOB from 

the other routines as much as possible. Since many END OF JOBS 

may be cycling in idle loops, it is possible that they might monopolize 

a lock, causing great delay to a routine trying to do useful work. 

Related to the minimization of lock time are the delays taken 

by other routines (which usually means another incarnation of the 

same routine) waiting for access to a lock. Considering only the 

executive efficiency it would be best if the routines had no delay 

and simply looped on the test instruction until gaining access. 

But this method may cause excessive data bus traffic, thereby 

slowing down other processors. It would therefore probably be 

desirable to have a delay of about 1/4 to 1/2 the average lock 

time. Since this problem is beyond the scope of this study, the 

p6sitions of possible delays will be presented in the flow charts, 

but no actual delays will be recommended. 

Detailed flow charts of the executive routines will be pre­

sented in the next five sections along with a narrative of what is 

actually being done and what decisions, tradeoffs, and methods 

are being used. 

3.5 JOBIN 

JOBIN is the routine called by a job to insert a job request 

into one of the immediate dispatch queues. The flow charts for 

JOBIN are presented in Figure 3.1. Tn the discussion below, 

parenthesized numbers refer to like numbered portions of the flow 

chart. The eight registers are signified by the notations RO 'through 

R7. A register notation contained within square brackets in the 

flow charts signifies the contents of the location whose address 

is in that register. 
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By convention, the routine will be called with the return 

address in RI, the address of the job to be scheduled m R2, the 

address of the associated dynamic area in R3, the address of the 

head of the correct priority queue in R4, and a flagbit code for 

the corresponding queue lock in R5. Thus, each priority queue 

has a lock to prevent another processor from entering a job in 

that queue at the same time. Actually, a few instructions could 

be eliminated in the execution time of any such call of JOBIN by 

duplicating the subroutine for each priority queue and eliminating 

a few decision points as well as input registers required. The 

information found m R4 and R5 would be implicit in the routine 

called. Such duplication would probably be worthwhile if the number 

of priorities is small and memory space is not at a premium. 

But, for ease of presentation, JOBIN is presented here as one 

routine. Finally, if the job insertion is the last action of a job, it 

is more efficient to load Rl with the address of END OF JOB 

rather than a return address. 

The main entry of JOBIN is for jobs with associated dynamic 

areas (1). The routine then changes the contents of R2 into a 

dynamic/job address pair by shifting the dynamic- area address 

in R3 left 16 bits, and adding it to the job address in R2 (2, 3). If 

there is to be no associated dynamic area, these actions can be, 

bypassed by a secondary entrance (4). Then the flagbit indicated 

in R5 is tested and set (5). There is a lock bit for each queue 

which allows only one job to be entered in a queue at any time. 

Jobs may be entered in other queues concurrently. If the lock 

was already set, the instruction is repeated, possibly after a delay 

(as discussed above). 

Each job queue will allow a specific number of entries, each 

one word long. This number will be called QSIZE. The length of 

the queue will then be QSIZE +1, with the first word containing a 

pairof addresses used as pointers (See Figure 3.2). The address 
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of this word will be the base address of the queue. The job queue 

will be handled as an unordered ring of entries. The first half of 

the base word will point tothe head job mnthe queue, and the second 

half word will point to the first free entry m the queue. Therefore, 

the routine next loads into R6 the free pointer of the queue whose 

base address is in R4 (6). R4 + QSIZE is put in R6 to indicate 

the maximum address of the queue (7). If the free pointer (R6) is 

larger than the value in R3, the next free entry is the first address 

of the queue, and R6 should be decremented by QSIZE (B). 

The routine must next be sure that the queue is not full. If 

the locationpointed to by R6 is non-zero, there is still ajob request 

inthat entry- infactitisthe head entryof the queue (9). Hopefully, 

the queue will be long enough for this never to happen, but it must 

be tested to prevent overwriting of necessary data. A loop may 

be suggested here if the queue is full, but this would probably 

lead to deadly embrace and should not be done. A full queue 

probablyindicates system trouble, and the program should there­

fore branch to an error routine and give an alarm. The details 

of such actions are beyond the scope of this thesis. 

When a free entry is found, the dynamic/job address pair 

in R2 is stored in the entry pointed to by R6 (10). Next R6 is 

incremented by one word and stored in the free pointer in the 

second half of the word whose address is in R4 (11, 12). Finally, 

the lock bit is cleared and the routine transfers to the return 

address found in RI (13, 14). 

3.6 WTIN 

Executive routine WTIN is called to insert a job request 

into the wait queue along with the time that it is scheduled to run. 

The flow charts for WTIN are presented in Figure 3.3. 

32 



(Reative Tirne (1) 

Add TNOW (2) 
To R6 

(Absolute Time (3) 

",yWas Set
lay? 

Shift R3 Left 
By 16 Bits 

(4) 

Add R3 
To R2 

(5) 

and Set
Wait Lock/'() 

Was Not Set 

(6) 

Load and Test 
Free Entry 

Pointer Into R3 
(7) 

Figure 3.3 WTIN 

33 



YES) 8 

, [(9) 

Store R4 
In Free 

Entry Pointer 
(10) 

Load R5 With 
Job Head 
Pointer 

(ii) 

Load R4 With, 
Address Of 

Head Pointer 
(12) 

YS R(13) 

YES 6 [ 
>4) 

) 

Figure 3. 3 (Continued) 
34 



B T D
 

Load R4 
With 
R5 

(15) 

Load R5 

With (16) 

Store R5 (17) 
In [R3] 

ttore R,3I[R4] 
(18) 

Store R6 
In [113]1+1 

(19) 

Store R2 (20) 
In [R3] +2 

Reset Wait (21) 
Lock Bit 

Return To 
Address In (22) 

RI 

Figure 3. 3 (Continued) 
35 



WTIN is called by a job with the return address in RI, the 

address of the job to be scheduled in R2, the address of the 

associated dynamic area in R3, and a value for time in R6. The 

time value is treated as either an absolute time or as a relative 

delay, depending upon where the routine is entered. The return 

value in RI should be the address of END OF JOB if the wait 

insert is the last action taken by the calling job. 

The main entry of WTIN is for jobs being requested after a 

delay relative to the present time (1). We will assume that a 

register called TNOW exists as a common read-only register to 

all processors, which acts as a clock. Thus, the routine will add 

TNOW to R6, so that R6 now contains the absolute time the job is 

to be scheduled (2). A job requested with absolute time already 

in R6 will enter after that point (3). Next, as was done in JOBIN, 

the routine will now put the dynamic/job address pair in R2 (4, 

5). 

The wait queue must be ordered in some manner so that 

the job dispatch routine need not go through the whole list on each 

cycle to find the entry with the smallest time. Therefore, the 

list will be ordered as each entry is added, thereby insuring the 

minimum number of sorts of the wait queue. The most efficient 

way to order such a list is by the use of "threaded lists." That 

is, each entry in the list includes a pointer to the entry that comes 

next in order. Also, since unused, or free, entries will be scattered 

throughout the memory area, a thread of free entries will also be 

used. Originally, this free listmust be initialized so that all entries 

of the queue are in the free thread. Thus, the first half word of 

the head of the wait queue will contain a pointer address of the 

first entry of the ordered thread. The second half word will contain 

a pointer to a free entry which acts as the head of the free list. 

Consequently, each wait queue must contain three words: a pointer 

word, a dynamic/job address word, and an absolute time word 

(See Figure 3.4). 
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Because the wait queue is an ordered list, its use is more 

complex than the use of the non-timed job queues. Therefore, 

the wait queue has one associated flagbit that locks out all other 

users of the queue, when one routine is using it. This flagbit is 

now tested and set by the routine (6). If the bit was previously 

set, WTIN loops back to try the test again, possibly after a delay. 

When WTIN gains access to the wait queue it first looks for a 

free entry in the queue in which to put data. It gets the address 

for an entry by loading the free entry pointer in R3 (7). By 

convention, if the value in R3 is zero, that queue is full; and a 

program alarm is sent out (8). Otherwise, the value in R3 points 

to the pointer word of the first free entry. The pointer word of 

this entry points to the next free entry, and must therfore be stored 

in the queue free pointer location (9, 10). 

The next problem is to find where in the threaded list of 

requests the new entry must be placed. The routine loads R4 

with the address of the queue head (11), and then loads R5 with 

the contents of the first halfword of the queue head, which is the 

pointer to the first member of the ordered list (12). It may be 

that no entries are present in the list, in which case the head 

pointer will have zero value (13). Then the routine can simply 

insert the new request as the first member of the list. On the 
other hand, the queue may have one or more entries. Then the 

value of the time of the job to be entered must be compared to 

the time of each entry in the ordered list until either the time of 

the new entry is less than that of an item in the list, or until the 

end of the ordered listis reached, m which casethe forward pointer 

of the last word will be zero (14, 15, 16). The address of the 

entry that will immediately precede the new entry in the ordered 

list is left in R4, and the address of the entry that will immediately 

succeed the new entry is left in R5. The routine then stores the 

contents of R5 into the first word of the new entry, pointed to by 

R3 (17). Then the value in R3 is placed in the address pointed to 
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by R4; that is, in the forward pointer of the preceding entry (18). 

Thus, the list remains ordered by its time entries. 

Finally, the time the new entry is to be run and the dynamic/ 

job address pair are put into the second and third words of the 

new entry, whose first word is pointed to by R3 (19, 20). The 

wait queue lock bit is then reset (21), and WTIN transfers to the 

return address found in Ri (22). 

3.7 GETDYN 

The dynamic area handling routines are very simple. 

Basically, they manipulate a thread of free dynamic areas in much 

the same way as WTIN handles the free entry thread, 

GETDYN is called with areturn address in Pl. The routine 

returns the address of the head of a dynamic storage area in R3. 

The flowchart for GETDYN is presented in Figure 3.5. GETDYN 

utilizes the first word of a dynamic area as the forward pointer 

to the next free dynamic area. These entries must be initialized 

so that all dynamic areas are in the free thread. Also there is a 

word in the executive data base which is used as the head of the 

free list pointer. Associated with this word is a flagbit, which 

allows only one processor at a time to work on the thread to get 

a dynamic area. 

When called, GETDYN first tests and sets the associated 

flagbit (1). If the bit was previously set, the routine loops on the' 

test instruction until the processor gets access to the head pointer. 

R3 is loaded with the value in the head pointer of a free dynamic 

area (2). R2 is then loaded and tested with the,value in the first 

word of the new dynamic area pointed to by R3 (3). If this value 

is zero, there are no more dynamic areas left, and a program 
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alarm is given (4). Otherwise, this value is the pointer to the 

next free area and is loaded into the head pointer (5). The flagbit 

is reset (6), and control is transfered to the return address found 
in RI (7). 

3.8 FREDYN 

Freeing a dynamic area is almost the reverse of getting 

one, except that in FREDYN, the free area is added to the end of 
the threaded list. This method allows areas to be fetched and 

freed simultaneously. It requires one word to be used as a tail 
pointer, and an associated flagbit to lockout other users of FREDYN. 

The flow chart for FREDYN is presented in Figure 3.6. 

FREDYN is called with the return address in il, and the 
address of the dynamic area to be freed in R7. The first action 

of the routine is to zero the first word of the dynamnic area pointed 

to by R7, since that word will, be the forward pointer of the, last 
entry of the list of free dynamic areas (1). Next, the flagbit is 

tested and set, looping back if the bit was previously set (2). The 
value of the tail pointer is then loaded in R2 (3). The address in 

R7 is now stored into both the first word of the area pointed to by 

R2 and the tail pointer (4, 5). Finally, the flagbit is reset and 

FREDYN returns control to the , address in RI (6, 7). 

3.9 END OF JOB 

END OF JOB is the longest and most complicated of the 

executive routines. It must make the decision of which job to run 

next from all the various possibilities. Implicit m the routine's 

design must be a priority structure, based upon the order by which 

END OF JOB considers the various queues. It was decided in the 
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presented routine that the wait queue will be considered first, since 

by their nature, timed requests should have good response time. 

Then the remaining job queues are scanned in order of prescribed 

priority, if there was no job to be dispatched from the, wait queue . 

This design is by no means hard and fast, but was chosen because 

of the simplicity of considering like queues&as a group. Conse­

quently the highest priority is accorded to jobs made via WTIN 

with a near zero absolute time. The flow charts for END OF 

JOB are presented in Figure 3.7. 

END OF JOB is called at the end of every job, and when it 

finds the next job to run it transfers control to the start of that 

job, placing the address of an associated, dynamic area in R7. 

When entered, the first thing END OF JOB does is to test and 

reset the restart flag (1). If this flagbit was set,.there is a job 

on a failed processor that has signaled to be restarted by means 

of the Single Instruction Restart as discussed in Chapter 2. The 

routine branches to a special program that handles restarts. The 
details of such a program are beyond the scope of this study. - If 

the flag was reset, END OF JOB then tests and sets the executive 

lock flagbit (2). The purpose of this lock is to prevent other END 

OF JOB routines from beginning until the flag is reset. If the 

flag was previously set, END OF JOB loops back to its entry point, 

after a possible delay (3). 

When END OF JOB gains access to the queues, it first looks 

to see if there are any entries in the wait queue, by loading the 

value of the wait queue head pointer in R1 (4). This value will be 

zero if there are no entries, in which case END OF JOB branches 

to check the job queues (5). If there are entries in the wait queue, 

END OF JOB need only compare the time of the first entry with 

TNOW (6, 7). If TNOW is less than the first job time, no wait 

jobs are due to run, and END OF JOB branches to check the job 

queues for entries. Otherwise, TNOW will be greater than the 
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time of the first wait entry, and END OF JOB will therefore call 

a wait job to be run on its processor. But, before the routine is 

allowed to manipulate the wait queue, it must test and set the wait 

queue flagbit (8). This is done to prevent WTIN from also using 
the wait queue at the same time. If the flagbit was previously 

set, the routine loops onthe test and set instruction, with a possible 

delay, until it gains access to the wait queue. 

END OF JOB then reloads Ri with the contents of the head 

pointer in case a new head job was inserted into the wait queue 

before it was locked (9). Next, the forward pointer of the job to 

be run is stored in the head pointer (10). At this point the END 

OF JOB may allow other END OF JOBS to run without any danger, 

so it resets the, executive lock bit (11). 

Now END OF JOB is able to dispatch the job in the entry 

pointed to by RI. The second half of the entry's 'dynanic/job 

address pair is loaded in R2 (12), and the first half is loaded in 

R7 (13). Next the entry is returned to the free thread. The wait 

queue free pointer is loaded in R3 (14). The address in R3 is 

stored in the forward pointer of the newly-freed entry (15), and 

the address of this entry, which is still in R, is stored in the 

wait queue free pointer (16). The wait lock bit is then reset (17), 
and the END OF JOB transfers control to the new job, whose 

starting address is in-R2 (18). 

If END OF JOB finds notimed jobs due to be run, it branches 

to the part of the routine that checks the regular job queues. 

This section tests each queue in order of queue priority for an 

entry., The pointer to the head of the high priority queue is loaded 

in Ri (19). Then the entry pointed to by RI is loaded and tested 

in R'7 (20). This value could be zero, in which case the queue is 

empty and the remaining queues are snmilarily tested (21-24). If 

the three job queues are empty, then there are no jobs to be 

dispatched. The routine will then unlock the executive lock bit 
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(25), and go into a delay loop (26). After this delay, it transfers 

to the beginning of END OF JOB (27), repeating the routine until 

a job is found for the processor. 

If the value loaded into R7 above is non-zero for some queue, 

that value represents the dynamic/job address pair for the next 

job to be run. The forward pointervalue in R1 is then incremented 

and put in R4 (28). END OF JOB then loads R6 with a constant 
representing the maximum address for any entry in the associated 

queue (29), and compares this with the value in R4 (30). If R4 is 
longer, it must be decrement by QSIZE, the size of the job queue, 

so that it will point to the top entry word in the queue (31). In 
either case, the value in R4 is then stored in the head pointer of 

the associated queue (32). 

At this point, the executive lock bit can be reset, to allow 

other END OF JOB routines to run (33). The second half of the 

entry pointed to by R1 is then loaded into R2 (34). This is the 
starting address of the next job. Then the entry pointed to by R1 

must be zeroed (35). Next, the contents of R7 are shifted right 
byhalf aword, leaving R7 with the address of thenewjob's dynamic 

area (36). Finally, the routine branches to the address in R2, 

and the processor begins the new job (37). 

This completes the presentation of the five executive rou­

tines. The use of registers by these routines is summarized in 

Table 3.1. 

3.10 A Simple Solution To The Clock Overflow Problem 

It is desirable that all times be absolute in the waitlist queue 
so that a threaded list may be used. The proposed clock word 
will be 32 bits (or 31 bits, depending on whether a sign bit is 
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Call With:
 

Return Address In: 


New Job Address In: 


Dynamic Area Address In: 


Prio Queue Base Address In: 


Queue Lock Bit Code In: 


Time Delay or Absolute Time In: 


Routine Returns:
 

Dynamic Area Address In: 


Routine Also Users These Registers: 


JOBIN WTIN GETDYN FREDYN END OF JOB 

R1 Ri R1 R1 

R2 R2 

R3 R3 R7 

R4 

R5 

R6 

R3 R7 

R6 R4,R5 R2 R2 R1,R2,R3,R4,R6 

Table 3.1 Fixed Register Conventions for Executive Routines 



used). If the smallest bit indicates a millisecond, 32 bits will 

allow a 50 day clock. If the mission is longer than the maximum 

time of the clock word, overflow problems result when the clock 

passes the maximum time and entries still in waitlist queue have 

a lead bit equal to 1. These jobs will now not be run for up to 50 

days! 

A simple solution to this problem is to initialize the wait 

queue with arequest for a "cleanup" job when TNOW is 1000 ... 0, 

that is, one half the maximum expressible time. When this job is 

scheduled in 25 (or 12) days, we know that TNOW will be greater 

than 1000... 0. A special instruction will be included for use by 

the cleanup job to kick the lead bit of the TNOW clock to zero, 

and increment a high order clock word. After the cleanup job 

carries out this instruction, it must make certain that all pending 

inserts via WTIN with leading bit values of one are completed. 

This can be accomplished in two ways. 

The first way to make certain that all such jobs are inserted 

in the wait queue is to delay the cleanup routine after it sets the 

lead bit of TNOW to zero. To do this cleanup may test and set 

the executive bit to prevent interference from END OF JOB. Then 

a delay, possibly equal to the number of processors times the 

time it takes to insert a job via WTIN, will be taken. This delay 

could be made long enough so that all wait job inserts that have 

leading bits of value one in their time entry have a high statistical 

certainty of being inserted within the delay. But there is always 

a small possibility of an error using this method. Probably, a 

reasonable delay could make this possibility less likely than the 

possibility of the failure of the whole computer. 

0 

When the delay is finished, the cleanup job tests and sets 

the wait queue bit. The executive lock bit may now be reset. All 

time entries in the wait list now have their load bits "ANDED" 
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with zero. The wait list thread must now be reordered, since 

some entries with leading time bits of zero may have been inserted 

already. Finally, the cleaup job reschedules itself for absolute 

time 1000... 0. It then unlocks the wait queue bit and calls END 

OF JOB. 

Alternately, the solution following is completely safe. Let 

thewait queue bit be tested and set in WTIN before TNOW is added 

to R6 (See Figure 3.3 (2)). Then the cleanup job will also test 

and set the wait queue bit before setting the lead bit of TNOW to 

zero. No delay is necessary now, nor must the executive bit be 

used. All else remains as above. The cost of this method is that 

two or three instructions are added to the lock time of WTIN each 

time it is called. Thus, it must be decided whether this cost is 

worth the certainty it gives, or if it is better to allow a long enough 

delay every 25 days. 

3.11 Conclusion 

The executive routines presented here represent the main 

body of an executive system designed for the multiprocessor 

proposed in Chapter 2. Other routines may be added, or these 

rbutines may be altered, to achieve other objectives. For instance, 

it may be desirable to design a routine which will get more than 

one dynamic area in one call; or another routine that will release 

all dynamic areas assigned to a job. But these can be designed 

easily by building on the concepts presented in this chapter. 
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CHAPTER 4 

DIGITAL SIMULATION OF THE MULTIPROCESSOR EXECUTIVE 

4.1 Introduction 

Once the executive proposed in Chapter 3 was developed, 

the next step was to design a digital simulation; first, to verify 

that the executive operated as desired, and second, to study the 
performance of amultiprocessor system incoporating the proposed 

executive. The simulation did indeed turn up some, errors in the 

earlier executive routine designs before finally arriving at the.' 

design presented in Chapter 3. With the executive in final form, 

the simulation was then used to produce data on the performance 

of the proposed system under various conditions. The data and 

their interpretation are presented in Chapter 5. 

This chapter presents the considerations that weAt into the 
development of the simulation. It was first necessary to program 

the executive routines to obtain a precise measure of the length 

of instructions for each of the executive routines. Second, a job 
set had tobe described to represent the jobs running onthe system. 

Finally, a FORTRAN simulation of the multiprocessor system was 

written based on the operation of the executive. 

4.2 Model of the Executive Routines 

Once the executive routines were designed, it was desirable 
to write actual programs that could implement these routines to 

give an indication of how large these programs would be. For 

the simulation, it was decided to use these programs to give an 

actual instruction count for various phases of the executive. 
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The executive routines were written in IBM 360 Basic 

Assembly Language (BAL). BAL was chosen because it is a machine 

language that largely satisfies the requirements of the proposed 

multiprocessor. BAL allows register-to-register and register-to­

memory instructions; and it has a large set of desirable operations, 

including a test and set operation. The executive routines pro­

grammed in BAL are presented in the Appendix to this thesis. 

The executive BAL programs were used to give an exact 

instruction count of various phases of each executive routine. 

For example, on the basis of the BAL programs, the executive 

routine JOBIN carries out two instructions before it sets the job 

queue lock, nine more instructions before the job information is 

stored in the queue, four more instructions until it resets the queue 

lock, and finally, one more instruction to return to the calling 

program. 

The BAL programs were also used to give a measure of 

data bus use by the executive routines. It was assumed that any 

register-to-memory instruction included two bus calls; one to 

identify the memory location and one to send the desired value 

along the bus. Thus, JOBIN makes a total of fourteen bus calls 

each time it is called. 

In the FORTRAN simulation presentedin Section 4.4, instruc­

tion counts based upon the BAL programs are used to compute 

the running times between *thevarious executive actions; such as 
the amount of time a job queue will be locked by a call to JOBIN. 

4.3 Model of the Job Set 

In order to simulate the multiprocessor it is necessary to 

define a set of jobs that will be running on the system. Only the 
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information pertinent to the simulation need be defined. Since 

the objective of the simulation is to study the performance of the 
executive, the information desired for any job is its instruction 
length, its bus use, its use of the executive routines, and what 
jobs it calls. The actual functions carried out by individual jobs 

are of no interest in this study. 

The job set used in the simulation of the multiprocessor is 
based on analysis of the Lunar Landing Jobs carried out by Mallach 
(Ref. 5). The data used to describe this job set were based on 
the information presented in Appendix A of Mallach's thesis. A 
set of 43 jobs is described, with an explanation of the general 
purpose of each job. The description includes the jobs called by 
each job along with any time delay associated with the scheduling 
of a job. Finally, a table is given listing the number of basic 

instructions in each job, the bus calls by each job, and the 
interpretive time taken by each job. Interpretive time is that time 
the program spends doing interpretive instructions in the Apollo 

Guidance Computer (AGC). These instructions are basically calls 
to subroutines that carry out high powered instructions not included 

in the basic language, such as matrix operations. It was decided 
for the purpose of this simulation to divide interpretive time by 
four times the AGC basic instruction time to obtain the number 

of instructions that the interpretive time would represeht. The 
factor of four was chosen rather arbitrarily to reflect that the 
savings on instructions that may result from a more powerful 
instruction set in the multiprocessor. 

Each job is therefore represented by a set ofnumbers defining 
the number of instructions and the number of bus cycles it uses. 
Any calls to executive subroutines are made within the jobs, so, 
for the purpose of the simulation, each job is totally described by 
a table of numbers dividing each job into the number of steps equal 
to the number of executive subroutine calls it makes (including 
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END OF JOB). Each column of the table contains information 

defining the portion of a job from the last executive call until, the 

next executive call. The rows of the table are:, the number of 

basic instructions; the number of bus calls; a number specifing 

thenext executive routine to be called; the number of the job being 

scheduled by this routine, if any; and the relative time delay if 

the next executive routine to be run by the job is WTIN. in many 
cases, the location of executive subroutine calls within a job and 

the distribution of bus calls among the steps was arbitrarily 

decided. In all jobs, the last step must terminate with a call to 

END OF JOB. 

In Chapter 2 the desirability of dividing long jobs into shorter 

jobs was discussed. It was suggested that no segment of any job 

take longer than 10 milliseconds to execute. On the basis of the 

assumption of a basic instruction length of 25 microseconds in 

this simulation, no jobs would then be allowed to be more than 

500 instructions long. Therefore, a job set was obtained from 

the set described above by dividing long jobs into segments of 

500 instructions each. After initial control runs using the full­

length job set, this short job set was used as input to most of the 

simulation studies. 

4.4 FORTRAN Simulation of the Multiprocessor 

The actual programming of the simulation was done in 

FORTRAN. The basic objectives of the simulation were to act as 

the operating system of the multiprocessor, to run the input job 

set-on simulated processors, and to keep track of desired informa­

tion about the system. 

The main difficulty in designing the simulation was to 

simulate the activities of many processors on a single processor 
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computer. A state approach was taken to handle the activities of 

the processor. That is, atable is used by the simulation to describe 

the present state of each processor, including the next time that 

state is due to change. There is one column in the table for each 

processor, and the rows of the table include such information as 

when the processor will next change its state, what action will be 
carried out at the time of the next state change, what job is presently 

running on the processor, and what step of the job is the processor 

carrying out. 

The control loop of the simulation searches the processor 

state table for the next time that any processor is due to change 

states, updates the system clock to that value, and then carries 

out the activity specified by that processor's table entries. After 

the activity is completed, the state of that processor is updated, 

including the time that it is next due tochange state, and the cycle 

is repeated. Each activity must make certain to stop just before 

any change in system status that will affect other processors. 

The status change will then take place when that processor's next 

state change occurs. For example, if the beginning of JOBIN is 

the next activity to take place on a processor, it may proceed 

until the point where it has to test and lock the job queue flagbit. 

The time for the next state change is updated to the time when 

that operation will occur, and the test and set will be done the 

next time the processor becomes active. 

The simulation must keep tables corresponding to the execu­

tive data bases and must simulate the executive routines when 
they are called. The FORTRAN simulation of the executive routines 

carries out operations on its tables corresponding to the operations 

the routines carry out on their data bases. The processor state 

time is then incremented based on the instruction and bus cycle 

count obtained fron the BAL program described in Section 4.2. 

The bus and instruction counts are multiplied by the single 
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instruction time and bus cycle time respectively, as input to the 

simulation, and their sum is the increment to the processor state 

time. 

The major input to the simulation is the job set described 

in Section 4.3. Other direct inputs to the simulation are the single 

instruction time, the bus cycle time, and the delay taken by END 

OF JOB if it finds no jobs to schedule. The simulation tables and 

state table are initialized for the starting job assignments. Other 

system changes may be made by altering associated portions of 

the simulation routines. Such changes include varying the number 

of processors, changing the length of specific loop delays due to 

failure to access a data base, or alterations of the length of an 

executive delay. 

Desired information can be collected for individual proces­

sors or for the whole system by inserting statements within the 

simulation to save and update specific values whenever the state­

ments are reached. Data computed by the system is stored in 
tables which are updated as the simulation progresses. Examples 

of such data are the time each processor spends doing computation 

of ajob, the time each processor spends running executiveroutines, 

the amount of time that all processors were busy, and the delay 

between the time jobs are requested and the time they are 

dispatched. System data can be output at specific time intervals, 

at the occurence of a specified event, or when the run is completed. 

61
 



CHAPTER 5
 

RESULTS OF THE SIMULATION
 

51 Introduction 

The simulation described in Chapter 4 was written for the 
purpose of measuring the performance of a multiprocessor system 

using the executive program described in Chapter 3. Simulations 

were first run using the full-length job set and then using the 
segmented job set described in Chapter 4. Finally, simulations 

were run with the basic instruction time lengthened; effectively 

loading the system, and the resulting system performance was 

studied. 

To limit the scope of this study, certain system attributes 
were held constant throughout the simulations. First, the multipro­

cessor system studied consisted of five processors. Second, the 

three non-timed job queues were simplified to one qtLeue of 40 
entries, and the wait queue allowed 100 entries. Third, all artificial 

delay times in the executive due to locked queues were'made zero. 
Thus, test and set instructions were repeated without delay until 

the queue in question could be accessed. This decision neglects 

the possibility that excessive bus use may result from the constant 
reading and writing of the flagbit. Finally, when the instruction 
time was changed, the bus cycle time was changed proportionately, 
eliminating considerations due to the relative importance of 'in­

struction time and bus time. 

Certain concepts used throughout the simulation studies will 

now be defined. Job load is the fraction of the total processor 
running time that the processors of the system were actually doing 
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job related computations. A system is fully loaded when all 
processors have work to do; that is, when the job queues always 
have at least five jobs due. Thus, even when the system is fully 

loaded the job load will not be 100%, because some time must be 
spent on overhead due to the executive routines. Another system 
overhead is the processor lockout time. This is the time aproces sor 
spends waiting to access a locked data base. This time is not 
included in executive overhead because it is more closely related 
to the number of processors in the system. Finally, when a 
processor is not busy, it will cycle in END OF JOB until a job is 

found to be run on that processor. This time spent in END OF 
JOB without scheduling a job will be considered null time, rather 

than executive overhead time.­

5.2 Simulation of the Full-Length Job Set 

Simulations with the full-length job set were first run to 

test that the executive routines functioned as desired. Then a 
simulation was run assuming a 25 microsecond instruction time 
to see what the system performance with the long job set would 
be like. This performance is summarized in Table 5.1. 

It canbe seen from Table 5.1 that the systemis lightly loaded 

when run with the full-length job set and with a 25 microsecond 

instruction time. The job load is 10.35%, and over half the time 
no processors are busy. Thus, the multiprocessor can easily handle 
the long job set. But, even though all processors are busy only 
.04% of the time, the longest single time span that all processors 
were busy was 4.07 milliseconds. This number suggests that at 
one time at least during this simulation, a job waiting to run might 
have to wait at least 4.07 milliseconds to be dispatched. This 
time falls within the 10 millisecond response time desired. But 

if the system becomes more loaded, the worst case response time 

could get quite large. 
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Basic Instruction Time: 25 microseconds 

Job Load: 10.35% 

Executive Overhead: 3.11% 

Executive/Job Load Ratio: 30.1% 

Processors Busy Percentage of Time 

0 54.55 

1 31.93 

2 10.50 

3 2.65. 

4 .33
 

5 .04
 

Longest Time All Processors Were Busy: 4.07 milliseconds 

Table 5.1 Simulation of Full-Length Job Set 
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5.3 Simulation of the Short Job Set 

The remainder of the simulations of this chapter were made 

using the short job set. The short job set was devised from the 
long job set by breaking up long jobs'into 500-instruction segments. 

The purpose of this segmentation was to insure good system 

response time by preventing a few long jobs from monopolizing 

the system. Therefore, included in the data output of the simulation 

is data on the response time; that is, the time it takes to dispatch, 

a job once it is requested. The performance of the short job set 
including data on response time, when run for a multiprocessor 

with 25 microsecond instruction time, is summarized in Table. 

5.2. 

The job load of this simulation is much less than in the 
full-length job set simulation. This is due to the reduction of the 
interpretive instruction impact, as discussed in Chapter 4. But 

the executive time has actually increased since more scheduling 

and dispatching must be done to accommodate many short jobs. 

The total number of jobs in the short job set is almost three times 

the number of jobs in the full length job set. Consequently, the 
ratio of the executive time to the job computation time is 55.7%. 

Thus, even if the system could be fully loaded without delays and 
lockouts, the job load cannot exceed 64% if the executive/job load 

ratio remains unchanged or becomes smaller. The simulation 

results, however, show that as the job load increases this ratio 
will-increase, and the job load never in fact exceeds 51%. 

The average delay in dispatching a job is 1.115 milliseconds. 

99% of all jobs were dispatched within 3.1 milliseconds of the time 

they were scheduled. But the longest delay in scheduling a job 
was 7.87 milliseconds, -which is nearly three times the maximum 

single time all processors were busy. Although this number is 
still within the i0 millisecond bound discussed earlier,the question 
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Basic Instruction Time. 25 microseconds
 

Job Load: 6.51%
 

Executive Overhead. 3.63%
 

Executive/Job Load Ratio: 55.7%
 

Processors Busy, Percentage of Time 

0 66.53 
1 24.50 

2 7.20 

3 1.42 

4 .23
 

5 .02
 

Longest Time All Processors Busy: 2.822 milliseconds
 

Mean Average Job Delay: 1. 115, milliseconds
 

Delay of 99%ile: 3.100 milliseconds
 

Maximum Job Delay: 7.870 milliseconds
 

Table 5.2 Simulation of Short Job Set
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is: why should this delay be so much longer than the longest time 

that all processors are busy? This result certainly suggests that 

other factors are more important than just the fact that processors 

are free. Another question is how the job load affects the response 

time; especially the maximum delay. These are the subjects of 

the next section. 

A histogram of job scheduling delays is presented in Figure 

5.1. A point was plotted every half millisecond to represent the 

number of job delays which fall within the previous half millisecond. 

The points are connected by lines for clarity. 

5.4 Loading the Multiprocessor 

The question of what effect increasing the load of the 

multiprocessor would have on system response was posed in the 
last section. In order to examine this question, a way must be 

found to increase the job load. This was done by simply increasing 

the instruction and bus times. For instance, doubling the instruc­

tion and bus times should have nearly the same effect as having 

twice as many jobs on the system with the original instruction 

time. The truth of this statement is not investigated in this thesis 

since the real objective is to make the system busier. Slowing 
down the multiprocessor certainly accomplishes this objective. 

But doubling instruction time obviously means that it will take 

twice as long to run END OF JOB, and delay times cannot be 

compared directly. Thus, delay results will be normalized by 

expressing delays (and other time measured results) in terms of 

basic instruction times. For example, if a delay is 10 milliseconds 

and the basic instruction time'is 25 microseconds, the delay is a 

400-instruction delay. 
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A simulation was then run with the original instruction time 

doubled. The job load went up to 12.84% and the executive/job 

load ratio remained nearly constant in comparison to the first 

run as expected. The longest time all processors were busy went 

up 66% to 200 instructions (using the normalized measure of time), 

which is reasonable, considering that the load has doubled. But 

now the maximum job dispatch delaywas 520 instructions, a large 

increase from the maximum of 310 instructions of the first run. 

This delay also exceeds the 500 instruction maximum length of 

job segments, which is exactly what was to be avoided. 

Consequently, it was decided to trace the history of this job 

dispatch delay to discover its origins. The sequence of events 

involved in the delay are presented in Table 5.3. From this table, 

it is seen that there are two major factors of the delay. The 

first factor is that a number of timed jobs are due before the job 

in question, which is a non-timed job, can be scheduled. While 

these jobs are all waiting to be scheduled, other timed jobs become 

due. The second factor is that while WTIN is running, it locks 

out END OF JOB -from scheduling wait jobs. Since a non-timed 

job will not be dispatched until all timed jobs are dispatched, END 

OF JOB cycles until it can schedule a timed job. 

The original decision to schedule timed jobs first failed to 

make provision for the present delay problems. One obvious 

suggestion is to allow END OF JOB to schedule a non-timed job 

if the wait queue is locked, although this solution does not solve 

the delays of timed jobs, some of which were also quite large. 

The true problem stens from the fact that WTIN and END 

OF JOB must necessarily lock each other out fromthe wait queues. 

WTIN times can be substantial (124 instructions in one case of 

the present example), and if, as in this example, a number of 

processors gain accesses to the wait queue for WTIN before others 
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Relative Time 

(Instructions) 

0 

54 

81 

191 

226 

350 

429 

457 

483 

520 

FIGURE 5.3 

Events 

Job 93 entered in normal job queue;
 

Wait queue m use by a processor in WTIN;
 

2 processors are free;
 

Jobs 2 and 7 due in wait queue.
 

WTIN releases queues;
 

Job 2 scheduled on a free processor.
 

Job 7 scheduled on last free processor;
 
Jobs 1 and 26 now are due in wait queue.
 

A processor is freed;
 

But a processor is in WTIN using wait queue;
 

Thus, END OF JOB cannot run.
 

Processor in WTIN releases wait queue;
 

Anothei WTIN gains access to queue.
 

Processor in WT1N releases wait queue;
 

Another WTIN gains access to queue.
 

Now 4 processors are free;
 

Job I is dispatched;
 

Jobs 26 and 42 are due in wait queue.
 

Job 26 is dispatched.
 

Job 42 is dispatched.
 

Job 93 is dispatched.
 

Trace of a 520 Instruction Job Dispatch Delay 
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wanting to run END O-F JOB, major delays occur. Thus, it can 
be seen that WTIN represents a bottleneck in the proposed executive 

scheme. This is one areawhere further investigation is desirable. 

One suggestion is to find some way to allow END OF JOB and 

WTIN to run in parallel. Such a solution is not immediately obvious; 

the wait queue must be ordered at some point, and when it is, 
other jobs cannot be allowed to access the data base. Any possible 

solution would certainly add complexity to the executive. Another 

suggestion is to implement the wait queue in hardware, along with 

a device which automatically orders the queue. The methods of 

accomplishing this are beyond the bounds of this thesis, but such 
a device may do much to improve the proposed multiprocessor. 

WTIN time grows as the number of queue entries increases, causing 

not only the lockout discussed here; but also excessive executive 

time, which also lowers system performance. 

The simulation was run with increasing loads until the 

multiprocessor's job queues began to overflow. Information derived 
from these runs is summarized in Table 5.4. Figure 5.2 shows 

the histrograms of the job delays associated with the job loads. 
It can be seen from the table that the highest job load attained 

was 39.93%. A further increase m system load caused the job 

queues to overflow. Actually, the simulation which resulted in 

the 39.93% job load had higher job loads during the final portion 

of the run. During the time the processors were constantly busy 

and no additions were made to null time, the job load reached 

51%. This value may be considered an upper bound for the job 

load with the present system configuration. 

The maximum job dispatch delayinthe 39.93% load simulation 

jumped to 3967 instructions, which is almost eight times the 

segment size. Even the 99th percentile delay - that delay which 

is larger than 99% of all job dispatch delays - has increased to 

nearly 4000 instructions. Moreover, nearly 20% of all job dispatch 
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Job Load (per cent): 6.51 12.84 18.77 24.59 
Percentage of Time N Processors Busy
 

N=0 66.53 42.51 27.93 16.73 


N=1 24.50 34.27 31.35 26.43 

N=2 7.20 16.81 25.38 31.26 


N=3 1.42 5.20 12.00 18.74 


N=4 .23 1.06 2.94 6.06 


N=5 .02 .15 .40 .79 


Longest Time All Processors Busy (Instructions): 113 200 190 171 


Mean Average Delay (Instructions): 45 44 49 54 


99th Percentile Delay (Instructions): 124 146 200 213 


Maximum Job Delay (Instructions): 315 520 616 447 


Table 5.4 Results from Simulations of Increasing Loads 

34.66 39.93 

10.41 8.35 

12.20 10.03 

21.28 14.40 

30.87 21.12 

20.23 25.75 

5.02 20.36
 

227 336
 

75 389
 

371 2600
 

826 3967
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delays-were larger than 500 instructions, so that substantial delays 

are quite common. 

These simulations present an indication of the limits of the 
proposed multiprocessor system. They seem to demonstrate that 

the multiprocessor is limited m its ability to acheive greater 

throughput than a single processor computer. Of course, there 

are no best answers as to howthe system should be used. Tradeoffs 
will be made on the basis of system requirements. Also, other 

steps may be taken to increase the system's capacity; such as 
increasing instruction speed or adding more processors. 

5.5 Effect of Reducing WTIN Time 

In the last section WTIN was found to bethe major source 

of the large job delays. Therefore, it was decided to see what 

effect reducing the length of time of WTINwould have on job delays. 
The reason WTIN may run for such relatively long times is that 

itmustinsert a job m the correct position of the wait queue thread. 
Thus, if job delay times are random, WTIN will look at half the 
entries in the thread, on the average, before inserting the new 

entry. 

The graph m Figure 5.3 presents some results of reducing 

the length of time of each cycle of the loop in WTIN that searches 

through the thread of wait queue entries. These simulations were 

'runwith the system load that resulted in a 39.93% job load when 
run with full WTIN time. It can be seen from the graph that the 

job load increases as WTIN timeis decreased. This results from 
the fact that jobs are delayed less and, therefore, more jobs are 

run in the same period of time. 
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Figure 5.3 Effects of Reducing WTIN Time 
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The most striking- result is that the maximum job delay 

decreases from 3967 instructions to 1648 instructions with only a 

12 1/2% decrease in WTIN time. Even if WTIN took no time, the 

largest job delay would drop only to 741 instructions. This implies 

that the sharp rise in job delays at a certain point is due almost 

entirely to WTIN. WTIN seems to be able to handle its queue 

reasonably well until the system load becomes high enough that 

WTIN regularly delays the rest of the system. Because the system 

is delayed, there will be delays in dispatching remaining jobs from 

the wait queue, thus making the wait queue more full and slowing 

down WTIN even more. This vicious circle effect seems to account 

for the rapid rise in job delays. 

With reduced WTIN time the system is running more effi­

ciently. Therefore, the system load can again be increased to 

see what the limit of the job load will now be. This was done 

using a WTIN time 50% of the original. The simulations reached 

a job load of 48.4% for a run when the instruction execution time 

was increased 25%. But, during the time the system was fully 

loaded, it was running a 62% job load. This compares with the 

51% job load with full WTIN time discussed in the last section. 

Consequently, one way to increase system capacity is to find a 

way to speed up WTIN. 

5.6 Summation and Suggestions for Further Research 

In this thesis an organization for-an aerospace multiprocessor 

systemwas described, and an executive programfor this multipro­

cessor was developed. The executive program consists of several 

routines which carry out specific executive functions. These 

routines were designed to be simple and as independent as possible 

for the sake of system efficiency. 
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A simulation was written for the proposed multiprocessor, 

and results of many simulations were presented in this chapter. 

Although no broad conclusions can be drawn from these results, 

some specific observations can be made for the specific configura­

tion studied. First, afive processor systemwith a 25 microsecond 

instruction speed is capable of handling efficientlythe job set based 

on the Lunar Landing program, either in long or segmented form. 

Second, as system load increases, job dispatch delays become 

larger. On the system studied, job delays became quite high at 

job loads higher than 35% of system time. The upper limit for 

the job load appeared to be 51%. The wait queue and its associated 

routine, WTIN, seemed to be the major cause of large delays. 

When WTIN running time was cut in half, the system response 

improved for equivalent job loads, and the upper limit for the job 

load reached 62%. 

The results of this thesis indicate that a breakdown of system 

performance is inherent in the proposed multiprocessor as loads 

approach a certain limit. In this study, the limits of the job load 

for good performance appeared tobe between 1/3 and 1/2 of system 

computation time. A similar limitation appears in Mallach's study 

of databus allocation (Ref. 5). Whether such breakdowns are basic 
to multiprocessing structures is a subject which should be investi­

gated further. 

Some changes to the executive presented may show improve­

ments in system performance. One such change is to allow END 

OF JOB to schedule a non-timed job if the wait queue is locked. 
Another suggestion is to allow segmented jobs to continue running 

uninterrupted if there are no jobs of higher priority waiting to be 

scheduled. Finally, a method of allowing WTIN and END OF JOB 

to run concurrently may improve job response. The design and 
effects of these suggestions are areas for further research. 
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These simulations studied one specific system configuration. 

Further studies may be made considering different numbers of 
processors, different priority structures of queues, and different 

job sets. Also, it may prove desirable to see how the system 
functions when other aspects of the system, such as bus use or 
1/O calls, are included in the simulation. 

Finally, it was suggested in this chapter that an implementa­

tion in hardware of the wait queue and a device for ordering the 
queue would improve system performance. Hardware implementa­

tion of other aspects of the executive may also prove beneficial. 
The improvements, methods, and costs of hardware implementation 
represent other areas which should be studied. 
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APPENDIX
 

BAL PROGRAMS FOR THE EXECUTIVE ROUTINES
 

This appendix presents IBM Basic Assembly Language implementa­
tions of the executive routines developed in Chapter 3. 

1. JOBIN 

JOBIN SLL 
AR 

ENT2 TS 

BC 

LH 

LA 

CR 

BC 

LA 

OK L 

LTR 

BC 

ST 

LA 

STH 

NI 

BCR 

3,16(0) 
2,3 

0(,5) 

4,ENT2
 

6,2(,4)
 

3, 'QSIZE'(,4)
 

6,3
 

12,OK
 

6,4(,4)
 

0,0(,6)
 

0,0
 

8,FULARM
 

2,0(,6)
 

6,4(,6)
 

6,2(,4)
 

0(5),0
 

15,1 

79,
 



2. WTIN 

RELWTIN 

ABWTIN 

LOK 

LOOP 

BRANCH 

A 

SLL 

AR 

TS 

BC 

L 

LTR 

BC 

L 

ST 

LA 

L 

LT 


BC 

C 

BC 

LR 
L 

BC 

ST 

ST 

ST 

ST 

NI 

BCR 

6,TNOW 

3,16(0) 

2,3 

WTFLG 

4,LOK 

3,WAITFREE 

3,3 

8,WAITALRM 

4,0(,3) 

4,WAITFREE 

4,WAITQUE 

5,0(,4) 

5,5 

8,BRANCH 

6,4(,5)
 

12,BRANCH
 

4,5
 
5,0(,4)
 

15,LOOP
 

5,0(,3)
 

3,0(,4)
 

6,4(,3)
 

2,8(,3) 

WAITFLG,O 

15,1 
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3. GETDYN
 

GETDYN 


4. FREDYN 

FREDYN 

TS 


BC 

LH 

L 
LTR 

BC 

STH 


NI 

BCR 

SR 

ST 

TS 

BC 

LH 

ST 

STH 

NI 

BCR 

DYNFLG
 

4,GETDYN 

3,DYNQUE 

2,0(,3) 
2,2 

8,DYNLARM 

2,DYNQUE 

DYNFLGO 

15,L 

0,0 

0,0(,7) 

DYNBOT 

4,FREEDYN 

2,DYNQU]E+2 

7,0(,2) 

7,DYNQUE+2 

DYNBOT,0 

15,1 
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5. ENDOFJOB 
ENDOFJOB TS RESFLG 

BC 8,RES2 ART 

BAK TS ENDFLG 

BC 4,BAK 

L 1,WAITQUE 

LT i,1 -

BC 8,SKIPWT 

L 2,4(,l) 

C 2,TNOW 

BC 10,SKIPWT 

WAIT TS WTFLG 

BC 8,WAIT 

L 1,WAITQUE 

L 2,0(,1) 

ST 2,WAITQUE 

NI ENDFLG,0 

LH 2,10(,l) 

LH 7,8(,l) 

L 3,WAITFREE 

ST 3,0(,i) 

ST 1,WAITFREE 

NI WTFLG,0 

BCR 15,2 

SKIPWT L 1,PRIOHD 

L 7,0(,1) 

LTR 7,7 

BC 6,D1 

L I,NORMHD 

A 7,0(,) 

BC 6,02 

L 1,LOWHD 

82
 



A 7,0(,1) 

BC 6,03 

DEL NI ENDFLG,0 

LA 'r,N(,O) 

BCT 7,DEL 

BC 15,ENDOFJOB 

Dl LA 4,4(,1) 

LA 6,QSIZE+PRIOHD 

CR 4,6 

BC 4,El 

LA - 6,PRIOHD+4 

El ST 4,PRIOHD 

NI ENDFLG,0 

ORF LH 2,2(,l) 

SR 3,3 

" ST 3,0(,l) 

SRL 7,16(0) 

BCR 15,2 

D2 LA 4,4(,l) 

LA 6,QSIZE+NORMHD 

CR 4,6 
BC 4,E2 

LA 6,NORMHD+4 

E 2 ST 4,NORMHD 

NI ENDFLG,0 

BC 15,ORF 

D3 LA 4,4(,1) 

LA 6,QSIZE+LOWHD 

CR 4,6 

BC 4,E3 

LA 6,LOWHD+4 

E3 ST 4,LOWHD 

NI ENDFLG,0 

BC 15,ORF 
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