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Summary  

A general solution is obtained to the impulsive guidance problem 

valid for constraints expressed as functions of the perturbations in the initial 

and final state vectors and in the time of flight. Two special problems are 

discussed to illustrate the variety of guidance laws which may be solved with 

the general solution. One is a reentry problem where the constraints are 

that the reentry angle, altitude and velocity are maintained while minimizing 

the distance from the nominal reentry point. The other is an entry into 

circular orbit problem where the nominal flight time, the impulse to enter 

the circular orbit and the plane normal to the orbit containing the terminal 

position vector are maintained while minimizing the velocity correction. 

I, Introduction 

Impulsive guidance corrections serve to nullify the effects of init-

ial position and velocity errors under specified mission constraints, Ex-

amples are fixed and variable arrival time guidance laws, The mission 

constraints can be generalized and a general solution obtained to the impul-

sive guidance problem, 

The specification of the nominal trajectory and the initial position 

perturbation leaves three conditions to be determined to define a new tra-

jectory and one condition to determine the terminal point. There are thus 

four constraints which must be imposed, Two situations will be considered: 

the case of four independent constraints and the case of minimizing a spec-

ified function while satisfying three independent constraints, 



II. Four Independent Constraints  

Four independent scalar constraints can be imposed which are 

functions of the perturbations in the initial (subscript 1) and final (no sub-

script) state vectors and in the time of flight (perturbations in other vari-

ables can be converted to perturbations in time of flight). 

	

A6R.
1  + BSV.1  +COR +D6V +E St = [0] 

	
(1) 

where A, B, C and D are 4 X 3 guidance constraint matrices, E is a 4 X 1 

guidance constraint vector, [0] is a null vector and 6V i  is the velocity 'error 

after the correction 6V c  has been applied (SV c  = SV. -°Vi 
.nitial) . The final 

state error is related to the initial state error through the (partitioned) 

time transition matrix P. 

SR= P 1  6R. + P21  6V. + V r St 	
(2) 

SV = P3 	1  OR. + P4 	i 6 V. + Ar  at 

where Vr and A r 
are the differences in the velocity and acceleration between 

the nominal and target trajectories at the terminal point. If there is no target 

trajectory Vr  and Ar  become the velocity V n  and acceleration A n  of the nom- 

inal trajectory. 	Inserting Eq. 

A + CP
1 
 + DP

3
] SR. + 1B 

Solving for SVi  and at 

where N and M are 4 X 4 and 

N = [B + 

M = [A + 

(2) 

+CP2  

6V. 1 

at 

4 X 

CP2 

CP 1  

into (1) results in 

+DP4 ) 6V. + f CVr  + DA r + El at = 	[0] 

= N -1 M SR. 

3 matrices equal to 

+ DP4 	CVr + DA r 
 +E ] 

+ DP 3 ] 

(3)  

(4)  

(5)  

Partitioning N
-  1M into a 3 X 3 matrix F and a 1 X 3 row vector G results in 

the fundamental guidance matrix and the corresponding time guidance vector. 

* The use of St as a variable and the corresponding use of the time transi-
tion matrix is arbitrary. For example, range angle and the corresponding 
angle transition matrix could have been used. 
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6V. = F bR. 1 	1 

at = GOB. 
1 

[ where N -1 M = F  
G 

III. Three Independent Constraints and a Function to be Minimized 

In some cases it is desired to minimize a quantity Q while satisfying 

three independent scalar constraints. The quantity Q can be generally ex-

pressed 

	

Q = f ( SVi , SR, 6V, St) 	 (7) 

The perturbations in SR and 6V can be expressed as functions of 

SV. and St using Eq. (2). 

The three independent constraints can be expressed as in Eq. (1) 

and combined with Eq. (2) to obtain (see Eq. (3)) 

LH6R.
1 
 +KSV.

1 
 + St = [0] 

-6V. = 	 - K -1 L6t 1 	 1 

where H and K are 3 X 3 matrices and L is a column vector. Upon substi-

tuting Eq. (8) into Eq. (7), Q is obtained as a function of St. The derivative 

of Q with respect to St defines the value of St which minimizes Q. If this 

derivative fails to yield a value for St, no linear solution exists. 

Frequently, the magnitude of a vector is to be minimized and the 

solution is known to exist. In this case it is more convenient to differentiate 

the quantity before carrying out the above mentioned substitutions. Differ-

entiating Q with respect to St results in 

- S 	 
d ( 	) 

+ T 	+ U 
d(6R) 	d(6V)  

co  
d(6 -1) 	d ( 6t ) 	d ( 6t ) 

(9) 

where S, T and U are row vectors and w is a scalar. 

Eq. (8) can be differentiated to obtain 

d( (5 V ) 
1 	 - K

-1
L 	 (10) 

d( t ) 

( 6 ) 

(8) 



Using Eq. (2) 

d(SV.) 
d (SR)  - p 	1  + V 
d (at) 	2  d (St) 	r  

d (SV)  _ 

d (St) 

Combining Eqs. (9), (10) and (11) 

d(SV.) 
	1  +A 
d (at) 	r  

= - SK -1 L +T(-P2K -1 L +V
r )+U(-P

4
K -1 L +A

r
) 
	

(12) 

The above equation can be directly solved for St which can be then inserted into 

Eq. (9). 

IV. Examples of Constraints 

The following examples of independent constraints lead to the co-

efficients in Eq. (1) by direct comparison. 

a) Terminal position velocity (representing three independent 

constraints). 

SR = 0 	 (13) 

b) Terminal velocity vector (representing three independent con-

straints). 

6V = 0 	 (14) 

c) Terminal position vector that lies in a specified plane. 

To obtain a position vector that lies in a specified plane, the compon-

ent of the final position vector perpendicular to the plane must equal zero. 

If I is the unit normal to the plane 

d(ITR) = 0, ITSR = 0 
	

(15) 

Note that I need not be a unit vector 

d) Terminal velocity vector that lies in a specified plane. 

If I is the unit normal to the plane 

d(ITV) = 0, I 6V = 0 
	

(16) 



e) Time of flight . 

St= 0 

f) Terminal flight path angle 

d (7) = d(cos -1 (r -1
v

-1
R

T
V)), 

(V_r-2RTvR)T SR 
(R

_ v 2 R Tvv) T ov = 0 

g) Flight through constant radial distance. 

d(r-r i ) = 0, 

-r 	- r. 1 T
SR. = 0 1 	1 	1 

h) Period 

Maintaining the period of the orbit requires that the 

differential of the semimajor axis equals zero 

d (a ) = d ( r. ( 2 pi - v i 2 ri  ) -1 ) = 

	

R. 	3V. . + r. V. SV. = 0 

	

1 	1 	1 	1 	1 

V.  Example of a Reentry Problem  

The following constraints are typical of those which might be im-

posed in deriving guidance laws for reentry problems: maintain the reentry 

angle, altitude and velocity while minimizing the distance from the nominal 

reentry point. First, the guidance constraint matrices (redefining them as 

3 X 3 matrices) in Eq. (1) are derived using the independent constraints, 

The re entry angle constraint leads to Eq. (18). 

E = 0
, 

A l .A . = B.. = ro 0 0 ]L-- [0] 

C 1 . (V - r -2 R TVR)T 

D1 . = (R - v
-2

R
T 

)
T 

(17)  

(18)  

(19)  

(20)  

where j = 1,2,3 	 (21) 



The reentry altitude constraint utilizes a vector normal to the hori-

zontal plane equal to R in Eq. (15). The result is 

E 2  =0' A2. 23 = D2 
.= [95 

(22) 

C
2j 

. = R
T 

The reentry velocity constraint utilizes a unit vector colinear with 

the velocity vector in Eq. (16). 

E
3 
 =0

'  A 33 .=B 33 .=C33 .= [O,  

(23) 

D
3j 

. = V
T 

Using Eqs. (3) and (8) 

K = C P
2 

+ D P
4 

L = CV 
n 

+ DA
n 

The distance from the normal reentry point is represented by Sr. 

Differentiating with respect to 6t, setting equal to zero and comparing with 

Eq. (7) gives 

= 0, S = U = 	] 

T= 6R
T 
	 (24) 

From Eq. (12) 

0 = 6R
T 

(-P
2
K

-1
L + V

n 
) 
	

(25) 

Using Eq. (2) 

at = - P 611. + P
2 
 6V. )

T 
(-P2 K

-1
L + V ) 	

(26) 

V
n

T (-P
2

K
-1 

 L + Vn) 

Inserting into Eq. (9) results in 6Vi  and the velocity correction. 



VI. Example of an Entry into Circular Orbit Problem  

The following constraints might be imposed for attaining a circular 
orbit about the primary body: maintain the nominal flight time, the impulse 

to enter the circular orbit and the plane normal to the orbit containing the 

terminal position vector while minimizing the velocity correction. 

To maintain the impulse to enter the circular orbit the differential 

of the difference in the circular velocity V c  and the final velocity must equal 

zero. 

d(( Vc  - 	
c - V ))

1 / 2 
 = 

(Vc - V)
T

( (SVc - (5V)= 0 

where 

1/2 -9 2 - 6V = 	r R X(VX 	R 6R 

Comparing with Eq. (1) 

E 1  = 0, A 13 .= 
B1. 
	[95] 

-9/2 	
)T 
	 T C 	5/.412  r 	

v-1 
) RX(VXIMR 

D1j = - (Vc - 

The constraint of maintaining the terminal plane utilizes a normal 

to that plane given by RX(VXR ). Noting Eq. (15) 

E2 = 0, A 2j = B = 	= [0] 
(29) 

C 2i  = [RX(VXR)]  

Maintaining the time of flight requires that 6t equal zero. Hence, 

A3j = B
3j C3j = 

(27)  

(28)  

( 3 0) 



Using Eq. (3) and (8) 

H = C P
1 
 +D P

3 

K =CP +D P
4 
	

(31) 

L =- C V
n 

+ DA
n 

+E 

Minimizing the velocity correction with respect to at results in 

(6V. - 6 . . . 	) 
 d (6V. ) 

(32) 
d (at ) 

Comparing with Eq. (9) 

= 0, T = U = [01 	

(33) 

(S 	- 6 . 1 	initial 

From Eq. (12) 

0 = - SK -1 L 
	

(34) 

Using Eqs. (8), (31) and (33) 

)T( K - lip 
"11 

(K -1 L )T K -1 L  
St - 

1L' ) T 6V. 
initial (35) 

Variable arrival time guidance utilizes the terminal position vector 

constraint given in Eq. (13) along with the constraint of minimizing the vel-

ocity correction. Hence C is a unity matrix, H, K, and L equal P 1 , P
2  and 

V
t 

(assuming a target trajectory), respectively, and (St is obtained from 

Eq. (35). 

Note that coplanar problems leave only three constraints to be im- 

posed. 


