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This memo presents a discussion of the problem of generating a 

conic trajectory which returns a spacecraft to re-entry with a specified 

flight-path angle from a point within the earth's sphere of influence (but 

outside the moon's sphere), under the constraint of minimizing the im-

pulsive delta-velocity required to achieve the trajectory. 

CONCLUSIONS 

In developing a closed-form solution to the minimum-fuel return 

problem, it was shown that a fourth-order polynomial must be solved. 

Logic is required to determine the desired root, eliminating extraneous 

and often non-existant roots. Disregarding roots which require that the 

spacecraft return on a trajectory retrograde to the initial trajectory, only 

one root exists for most initial states. This is always true if the space-

craft is greater than 6500 miles from the earth. If the initial velocity is 

less than 25,000 miles per hour, the criterion that only one solution 

exists is that the spacecraft be greater than 5400 miles from the earth. 

Under some conditions, the root implying minimum fuel requires a physi-

cally impossible return trajectory. If the initial radial velocity is nega-

tive, this problem does not exist, but the root implying minimum fuel may 

require a trajectory which violates the maximum re-entry velocity con-

straint. 

It was concluded that a direct iteration search, using the cotangent 

of the post-abort flight-path angle as an independent parameter would be 

a better approach to solving the problem. This approach always converges 

on a physically realizable solution, requires few iterations to converge, 

and greatly simplifies the equations. More important, for all feasible pre-

abort states, the resulting AV required to achieve the return trajectory 

which satisfies all constraints is the absolute minimum. 



DEVELOPMENT 

Since the re-entry conditions do not constrain the trajectory plane, 

the minimum AV will result from a coplanar return, reducing the 

problem to two dimensions. Then the specified flight-path angle, 7 R 

 (measured from local vertical), at the re-entry radius, RR, allows the 

semilatus rectum, p, to be expressed as a function of only the post-

impulse flight-path angle, 7 : 
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where 	RO = initial radial distance of the spacecraft 

R = RO/RR, 

Now 	
VT2  =, p p/R0 2  and cot 7 = VR/VT, 	 (2) 

where 

VT = post-impulse tangential velocity component 

VR = post-impulse radial velocity component 

p = product of universal gravitational constant and 
mass of earth, 

Combining Eqs. (1) and (2), 
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or, in a more illustrative form, 
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Thus, the locus of post-impulse velocity 

vectors which meet the re-entry constraints 

traces a hyperbola in the hodograph plane 

which is symmetric about each axis, as 

shown in the sketch. 

- VT 

-VR 

Let the initial velocity be defined by VO = VTO i +VRO j . Then 

AV is the distance between the point (VTO, VRO) and any point on the 

hyperbola. But the extrema of AV occur when AV is perpendicular to 

the hyperbola at the point of intersection. Since orthogonality between 

two curves is guaranteed when their slopes are the negative inverses 

of each other at the points of intersection, the equation of the straight 

line along the extremum AV through (VTO, VRO) is 

-1 

	

(ddVvRT 	
VR - VRO = - 	 (VT - VTO), 
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dVT [ R
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Since this slope is itself a function of the velocity components, a second 

order equation results: 

VR - VRO VR 
	VT - VTO 

A more familiar form is 2(VT -A) (VR - B) = K
2 , 

where A, B, and K
2 are constants defined by 
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This is the equation of a hyperbola in the hodograph plane centered at 

(A, B), whose axes are rotated 45 o 
CCW, as shown in the sketch. 
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- VR 

This sketch is valid for all positive VTO and VRO. A corresponding nega-

tive VRO results in the mirror image of the above sketch about the VT axis. 

Similarly, a corresponding negative VTO results in the mirror image of 

the above sketch about the VR axis. Therefore, analysis of positive VTO 

and VRO will suffice. Comments concerning the extrema AV for negative 

VTO and/or VRO will be presented later in the memo. 

The intersections of this hyperbola with the locus-of-solutions 

hyperbola determine the extrema AV. Note that the straight-line distance, 

AV, from the point (VTO, VRO) to any intersection of the two hyperbolas 

is perpendicular to the locus of return-velocity solutions, but that the hyper-

bolas themselves are not orthogonal. 

Combining Eqs. (3) and (5) results in a closed form for finding the 

post-impulse velocities which yield extrema in AV. Unfortunately the closed 

form is a fourth-order polynomial: 

X
4 

+ C 3 X
3 

+ C 2 X
2 

+ X + Co = 0 

(X being either VR or VT), where the coefficients are non-zero functions 

of the initial conditions and re-entry constraints. In general, then, there 

are four extrema, making it necessary to determine which results in the 

absolute minimum AV. 
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Once the VT, VR pair is found, cot -y is known and AV can be 

calculated from 

AV = I V - VO , 	 (7) 

where 	 1 

V -  p)2  cot -y UNIT[ RO] + UNIT [ (RO VO) * RO ), 	(8) 
RO 

and p is calculated by Eq. (1). 

Much can be learned from the hodograph plots without having to 

solve the polynomial. For VTO > 0, one extremum AV appears in the 

negative - VT half-plane of the hodograph, thereby requiring a retrograde 

impulse. This solution, though a relative minimum, always requires more 

AV than a solution in the positive- VT half-plane. Thus, this solution 

can be discarded, and only roots in the right half-plane need be examined. 

If the vertical asymptote of the hyperbola of Eq. (6) does not inter-

sect the locus-of-solution hyperbola, two more roots are eliminated, 

leaving only one AV extremum, the absolute minimum. Since this asymp-

tote is located at 

and the 	 VR = 0 

crossing of the first hyperbola is at VT = + a, the criterion that only one 

minimum exists is: 

V a > 	VTO  

R2 ( 1 + cot
2 
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Since -yR  is near 900 , cot
2 

TR  can be neglected with respect to 1, reduc-

ing the criterion to 
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Using parabolic velocity as an approximate upper bound for an accept-

able re-entry velocity, the criterion reduces to R 2 
- R - 1 > 0. Thus 

a sufficient, but not necessary condition that only one extremum exists is 

that the ratio of initial radius to re-entry radius be greater than the solu-

tion to this quadratic (which, coincidentally, is the Golden Ratio). 

Therefore, under all conditions, when RO is greater than approximately  

6500 miles, there is only one extremum.  

Figure 1 is a section of the right half of a hodograph plane with the 

above hyperbolas plotted for a set of conditions for which all three ex-

trema exist. VRO is positive. The absolute minimum AV is always the 

vector from the point (VTO, VRO) to the point where the upper branch of 

the hyperbola of Eq. (6) intersects the locus-of-solutions hyperbola. The 

other two extrema, when they exist, are produced by the intersections 

of the lower branch of the hyperbola of Eq. (6) and the VT > 0 branch of 

the locus-of-solutions hyperbola. The intersection point which results in 

the smaller I VR I produces a local maximum AV, while the other pro-

duces a local minimum. If the lower branch were tangent to the locus-of-

solutions hyperbola, an inflection point in a AV vs. cot y curve would be 

produced. Therefore, the necessary and sufficient condition that only 

one extremum, the absolute minimum, exists is that this point of tangency 

not be reached. This point is a function of RO, VO, and VRO. Loci of 

this point with constant RO were plotted in Fig. 2. Only the initial velo-

city conditions below the line of constant RO have multiple AV extrema 

in the positive - VT half of the hodograph plane. Thus for FEASIBLE  

initial velocity, only one extrema exists above RO = 5400 miles. 

Physically, the absolute minimum AV solution results in a return 

trajectory which leaves RO with a positive flight-path angle, goes out to 

apogee, and then returns to re-entry. The local minimum AV solution, 

due to the negative path angle at RO, returns the spacecraft to re-entry 

altitude directly. There are two serious problems associated with the 
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absolute minimum solution in some cases. Since the locus-of-solutions 

equation was derived from purely geometric considerations of conics, 

closure of parabolas and hyperbolas through infinity were not ruled out. 

Therefore, it is possible for the absolute minimum solution to result in 

an escape trajectory which would not return to re-entry. This is the case 

whenever cot 1/ > [ R( 1 +cot 2  7R) - 112 1  The other problem involves a 

negative VR solution. If the resulting path angle at RO is less than a 

prescribed negative bound, the maximum re-entry velocity constraint is 

violated. 

ITERATIVE SEARCH APPROACH  

It appears that an iterative search would be a better approach in 

finding the minimum AV. The obvious independent parameter for the 

iteration is cot 7 . The only equations in the iteration loop are (7), (8), 

and (1). 

POSITIVE VTO AND VRO CASE 

There are two advantages for using cot -y as the independent para-

meter: a) it is used directly in the equations, and b) its upper bound, 

[ R(1 +cot
2

-y R) - 1 ] 	serves as the starting point for the iteration. 

Since the absolute minimum AV solution comes from a cot -y which is 

very near this value, the number of iterations required for convergence 

is small. Also, for feasible initial velocities, if the absolute minimum 

solution requires that the return trajectory close through infinity, the 

iteration method will converge on the physically realizable solution which 

is closest to this analytic minimum. This solution lies just within the 

upper bound of cot y , thereby requiring only one iteration to find it. 

NEGATIVE VRO CASE  

If VRO is negative, the roots are the same as those generated by 

the corresponding positive VRO except that the sign of VR is reversed. 

The magnitudes of the AV extrema are unchanged. The absolute minimum 

solution always results in a direct return trajectory and therefore is always 

1. Marscher, W. F. , "A Unified Method of Generating Conic Sections, "R-479, 

MIT Instrumentation Laboratory, Cambridge, Mass. February 1965, 

pp. 16-17. 
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physically realizable. The local minimum solution, when it exists 

(again disregarding the extraneous root in the left-half plane), results 
in the "return-through-apogee" trajectory. The starting cot y for the 

iteration is governed by the maximum re-entry velocity constraint. With 

this exception, the iteration procedure is identical to the positive VRO 

case. 

NEGATIVE VTO CASE  

Since positive VTO is the direction of the nominal tangential velocity 

of the spacecraft, the occurrence of negative VTO, although possible after 

lunar encounter and erroneous thrust steering, is rare. The roots are 

the same as those generated by the corresponding positive VTO except that 

the sign of VT is reversed. The iteration procedure is identical to that 

for the positive VTO case. The only physical difference is that the absolute 

minimum AV results in a re-entry velocity component opposite to the di-

rection of the earth's air mass velocity. If this is undesirable, the sign 

of the second unit vector in Eq. (8) must be changed. This will cause the 

iteration to converge on the only extremum along the positive - VT branch 

of the locus-of-solution hyperbola. This extremum is the minimum AV 

which will produce a re-entry velocity component along the direction of 

motion of the earth's air mass. 
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APPENDIX 

A Proposed Iteration Scheme 

The flow diagram of Fig. A-1 illustrates an initialization procedure nec-

essary for implementing the iteration technique. "START" represents the 

initial cot y to be used in the iteration loop encompassing Eqs. (1), (7), and 

(8). "LIMIT" is determined by the maximum re-entry velocity constraint. 

"MAX" is the upper bound of cot y. In the memo this was the parabolic 

limit. If it is not desirable for the trajectory to enter the moon's sphere 

of influence, "MAX" is determined by the distance of the sphere's edge 

from the earth. Eq. (8) must be modified to contain the factor "SIGN" pre-

ceding the second term of the paranthetic expression. This provides for a 

retrograde return velocity if negative VT at re-entry is undersirable. 

If VRO is positive at low altitudes, a option is provided to search for 

a solution which returns the spacecraft directly to re-entry. Although this 

requires more fuel than the solution which returns the spacecraft through 

apogee, the shorter time-of-flight may warrant the extra usage of fuel. It 

is possible that this direct-return, relative minimum solution may not exist, 

in which case the iteration will automatically converge on the absolute mini-

mum solution. 
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