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ABSTRACT 

A method of determining the drift coefficients of the gyroscopes in  
the Apollo Guidance and Navigation System is presented. The technique 
requires the guidance computer to perform optimum statistical filtering 
on the east  accelerometer output for a f reely drifting stable platform. By 
using computer simulations of the Apollo System coupled with the test  pro- 
cedure, it  is shown that the drift of the south gyro can be determined under 
both laboratory and launch pad environments with a significant improvement 
over existing test  procedures. The d r i f t  coefficients of each gyro a re  found 
from a se r i e s  of platform positions. 
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GENERAL NOTATION 

Underlining a symbol indicates a column vector. 

A bar  over a symbol is the average value of the 
quantity. 

An aster isk over a capital letter denotes a matrix. 

Superscript T following a vector or  matrix indicates 
the transpose of the vector o r  matrix. 

Superscript -1  following a square matrix indicates 
the inverse. 

Aover a quantity indicates an estimate of the quantity. 

-over a quantity i s  the measured value of the quantity. 

ERRATA 

Throughout this thesis the author uses weighing vector 
in place of the more common usage of weighting vector. 
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CHAPTER 1 

INTRODUCTION 

1 . 1  Statement of the Problem 

Numerous methods a r e  available for  the calibration of high 

quality gyroscopes to be used in inertial navigation systems. 

of the gyroscope at  the component level i s  generally able to achieve an 

accuracy of at least  one meru (one-thousandth of earth rate) in deter-  

mining the average value of gyro drift during the testing period. 

However, once the gyro has been installed on an inertial platform in 

a system, the calibration problem involves an attempt to correlate 

inertial  system performance with the accuracy of a specific component. 

At present, methods do exist which a r e  able to determine to an accuracy 

of two meru the gyro drift when the Apollo System is  in the laboratory. 

However, once the system is installed in the Apollo Command Module 

atop the Saturn launch vehicle, the present test  i s  subject to e r r o r s  due 

to wind induced vehicle sway and the accuracy of the test  i s  estimated 

a s  f 50 meru. (reference 9)  An accurate test  method is needed that 

wi l l  measure gyro drift in an inertial system in a hostile environment. 

Testing 

This thesis will consider in detail the question of determining 

the drift of the gyros in the MIT  Apollo G&N System while the system 



i s  in the laboratory o r  installed in the command module atop a Saturn 

booster pr ior  to launch. 

be applicable to a wider variety of inertial systems than the Apollo 

G&N System. 

It i s  hoped that the drift test  developed wi l l  

1.  2 General DescriDtion of the A ~ o l l o  IMU 

This section will briefly describe the mechanization and 

instrumentation of the Apollo inertial measurement unit (IMV). The 

description of the gyroscopes and accelerometers in  the system will 

be somewhat detailed since this thesis wi l l  propose the measurement 

of gyro drift by use of the accelerometers. 

The IMU i s  a three-degree-of-freedom stabilized platform 

consisting of the stable member (SM), three gimbals, gimbal-mounted 

electronics , and six inter-gimbal assemblies which house torque 

motors and angular resolvers.  

inertial space reference for the stable member regardless of space- 

craft motion. A n  inertial reference integrating gyroscope (IRIG) and 

a pulsed integrating pendulous accelerometer ( P I P A )  a r e  mounted 

along each of three orthogonal stable member axes. 

of gimbal angles and stable member axes a r e  given in Figure 1-1. 

At zero gimbal angles the three gimbals a r e  orthogonal. 

The IMU i s  designed to provide an 

The definitions 
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Figure 1 - 1 Axes Definitinn 

Three stabilization loops maintain the orientation of the three 

P I P A s  fixed with respect to inertial space within l imits under all specified 

external disturbances. 

drift o r  other e r ro r s ) ,  then the SM axes would always maintain the same 

inertial attitude. The stabilization loops operate as follows: the three 

IRIGs  and three angular differentiating accelerometers (one on the stable 

member, two on the middle gimbal) generate e r r o r  signals whenever the 

SM is rotated with respect to inertial space. 

amplified, resolved if necessary, and  supplied to the gimbal torque motors 

which drive the stable member back to i ts  original position to reduce the 

e r r o r  signals to zero.  

IRIGs  and terminating at  the torque motors is shown in Figure 1 - 2 .  

If the SM were perfectly instrumented (no gyro 

The e r r o r  signals a r e  

The path of the e r r o r  signals originating a t  the 

3 
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Figure 1 - 2 Stabilization Loops 

The stabilization gyros used in the IMU a r e  25 IRIGs (25  denoting 

the case diameter in tenths of inches). This gyro is a fluid and mag- 

netically suspended, single-degree-of-freedom gyro. It uses ducosyns 

for signal and torque generation. The wheel assembly is driven as an 

hysteresis synchronous motor in an atmosphere of helium to prevent rusting 

of the ferrous parts. 

the instrument and define the IRIG axes. 

Figures 1-3 and 1-4 illustrate the components within 
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A positive rotation of the wheel assembly about the gyro 

output axis develops a signal generator secondary voltage that is in- 

phase with the primary exitation voltage. A negative rotation produces 

a 180 degree out of phase signal. This defines the output axis polarity. 

A positive rotation of the gyro case about the input axis (IA) w i l l  

produce an in-phase signal generator voltage. The gyro drift 

coefficients that must be determined a re  defined a s  follows: 

NBD - The normal exitation bias drift is defined as 
positive if it causes a negative torque about the output 
axis. It is non-acceleration sensitive. 

ADSRA - The acceleration sensitive drift due to a 
case acceleration of one gravity along the positive 
spin reference axis (or  gravity along the minus 
spin reference axis). It is positive if it causes 
a negative torque about the output axis. Internally, 
this  t e rm is caused by a displacement of the center 
of gravity with respect to the center of buoyancy of 
the float along the minus input axis. 

ADIA - The acceleration sensitive drift due to a case 
acceleration of one gravity along the positive gyro 
input axis. This t e r m  is due to a displacement of 
the center of gravity with respect to the center of 
buoyancy along the positive spin reference axis. 

Drift coefficients which depend on higher powers of the 

case acceleration a re  neglected for system test purposes. In general 

the drift coefficients experience only long t e r m  variations; for the purpose 

of this thesis, the dr i f t  coefficients a r e  assumed to  be constant during any 

test  (six minutes). 

6 



This description of the IRIG and i ts  operation is sufficient for 

our needs. W e  wi l l  now consider the PIPA. 

The 1 6  P IP  is a pulsed pendulum type of accelerometer.  A n  

acceleration along the sensitive axis is  sensed, integrated, quantized 

and sent to  the Apollo Guidance Computer (AGC) a s  an increment of 

velocity. 

float) pivoted with respect to  the case. The axis of the case  defines 

the output axis. A 2-volt rms, 3200 cps, single-phase exitation is 

supplied by the AGC for  the PIPA magnetic suspension and pr imary 

of the signal generator. 

input axis, the float rotates from the null position, the rotation is sensed 

by the signal generator ducosyn and a signal proportional t o  the rotation 

is developed. 

back to  null. 

may be represented by the following equation: 

The 1 6  PIP consists of a pendulous m a s s  unbalance (pendulous 

With an  acceleration being sensed along the 

Through various torquing networks the float is torqued 

F o r  our purposes the operation of the accelerometer loop 

dN/dt = - -  a .  i/H 

where 

dN/dt = average PIPA pulse rate output 

- a = acceleration vector 

- i = unit vector in direction of input axis 

-- a. i = component of acceleration along the input axis 

H = nominal scale factor 5. 85 cm/sec/pulse  

The pulses are counted by the AGC in a special register; at 

any time a measure of the total velocity increment during a period of t ime 

7 
t 
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is available in this register.  The effect  of quantization on the signal 

can be eliminated by programming the AGC to s tore  the time that the 

velocity register changed from one state to the next state and storing 

the n e w  state. 

a source of error that would be large in the gyro drift  tests.  

Throughout this thesis this method is used to eliminate 

These descriptions of the inertial components and the stabili- 

zation loops a r e  sufficient for our purposes. The next two figures show 

the P I P A  and the position of the IRIGs and PIPAs on the stable member.  

Section 1 -3  wi l l  then serve  a s  a general introduction to the gyro d r i f t  

test  niethod proposed in Chapter 2. 

1. 3 Description of the Thesis 

The goal of the thesis is a gyro drift coefficient tes t  accuracy 

of one meru under conditions of both laboratory testing and launch 

\.chicle base motion. 

considered of secondary importance. The test  should be capable of full 

automation by the AGC and should be independent of any external re fer -  

ence for the stable member. Since the available computer storage and 

program files a r e  at a minimum, the test procedure should be accom- 

plished wi th  the minimum of implementation. With these considerations 

in  mind, the proposed solution should be the simplest one that will meet 

the accuracy requirements. 

The length of time required for the test  has been 

The author considered a number of different methods for 

solution of the problem with the use of accelerometer information only. 

In this procedure, the gyro drift  i s  measured while the stable member 

i s  attempting, by means of the stabilization loops, to maintain a fixed 

8 
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orientation in inertial space. 

f rom its desired orientation and the PIPA outputs contain information 

about the drift of the platform in the gravity field. Once the relation- 

ships between accelerometer outputs and gyro dr i f ts  a r e  determined, it 

becomes a question of how to use this information in the best (the optimum 

from a mean squared e r r o r  criterion) way. For  laboratory testing an 

assumption of normally distributed e r r o r s  is valid and the least  

squares estimate of the drift obtained from curve fitting is the 

maximum liklihood estimate. 

for launch pad testing; then the optimum solution to the problem can 

be formulated a s  the so-called "Kalman Filter" in which the PIPA 

data is processed as it is measured to form a new estimate of gyro 

drift and four other variables which describe the problem. 

Because of gyro dr i f t  the platform drifts 

This assumption is shown not valid 

Chapter 2 of the thesis is concerned with the analytical 

derivations of the drift test; Chapter 3 describes the computer simulations 

that were made in the computation center of the Instrumentation Laboratory. 

The resul ts  of these simulations indicate that the test  procedure w i l l  be an 

effective method under all expected environments. 

11 



CHAPTER 2 

ANALYTICAL DERIVATIONS 

In this chapter the analytical developments leading to the 

proposed gyro drift coefficient test w i l l  be derived. 

relationships among platform motion, accelerometer output, and 

gyro drift a r e  derived. 

for  use when the launch vehicle is subject to  wind induced sway. 

After determining that the method of least  squares curve fitting w i l l  

not prove effective, the final test procedure is derived from statistical 

filtering theory. The test  method processes the data ( P I P A  pulse 

counts) recursively to form a new estimate of the state vector and the 

correlation matrix of the e r r o r s  in the estimate after each piece of 

data is received. The state vector has as its components the variables 

and constants that must be estimated if we a r e  to  determine gyro drift. 

The chapter concludes with an estimate of the computer storage that would 

be required to implement the test. 

First, the 

Then the existing test methods are rejected 

12 



2.  1 Linearized Platform Dynamics 

In order  to relate P I P A  outputs to IRIG drifts, we must 

f i r s t  determine the motion of the platform in the gravity field as 

the stable member attempts to  maintain a constant inertial attitude. 

Consider f i rs t  that the platform is aligned to some known 

initial orientation. The only constraint on this initial alignment is 

that the platform is not near a position of gimbal lock (the Y stable 

member axis vertical). 

l a te r  time the platform wi l l  have rotated from i ts  initial orientation 

in the gravity field because of gyro drift, earth rate,  and e r r o r s  in 

the stabilization loops. 

rotation is earth rate; the problem i s  to separate the effects of gyro 

drift from the e r r o r  sources.  

short  duration of the test; hence, a l inear analysis of the platform 

dynamics seems possible. 

forms components of a vector in the initial orientation coordinates to 

The platform then goes inertial; a t  some 

To be sure,  the main contributor to the 

The rotations wil l  be small  for the 

The transformation matrix that t rans-  

the stable member coordinates is given by 

Vsm = 0 cosAx sinAx 
0 -sinAx cosAx I - 

- - 
cosAz sinAz 0 

-sinAz cosAz 0 

0 0 1 
- - 

- 
cosAy 0 -sinAy 

0 1 - Vref  (2.1) 
sinAy 0 cosAy 

- 

where the rotations a r e  made about the stable member axes (y, z, x) in  

that order  by angles Ay, Az ,  and Ax. 

For small  angles 

1 3  
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- 
r l  

A z  -Ay i Vref 
I 

- Vsm = I  - A Z  1 Ax - 

L A y  -Ax 1 i ' 

or  
.II -4- 

Vsm = Arot Vre f  - - 

In an ideal platform each IRIG will have i ts  input axis along 

a stable member axis. In general, however, a set of misalignment 

vectors ex i s t  which define the actual direction of the IRIG axes with 

respect to the stable member axes. Then a vector in stable member 

coordinates would transform into one in the IRIG input axis coordinate 

system by the IRIG misalignment matrix Y mis 
* 

7 i 1 yxz -YXy ! 

L-yzy - y z x  

i 
1 Y Y X  1 _vsm 

I 
- Virig 7 -yyz 

! 

or  

y i j  is the rotation of the i IRIG about the j stable member axis. 

The y i j s  a r e  small  ( .  001 radians). 

Each IRIG indicates an angular velocity which is the sum of 

ear th  rate along that axis and drift of that gyro1 This indicated angular 

velocity is transformed into rotations of the stable member axes by the 

stabilization loops and because the platform i s  inertial the angular veloc- 

ity of the stable member i s  
d, 1- 

-1 . Wsm = -  Y mis  Wirig - - 

1 - Angular velocity with respect to  inertial space. 
14 
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c 

The angular velocity indicated by the IRIGs is given by 
* W i r i g  = y mis L o t  W r e f  - D - - - 

where W is the ear th  ra te  vector in the desired initial 
orientation of the platform 

4 

and - D is the drift vector representing the drift of 
of each gyro. 

F rom equation (2.6) the angular velocity of the stable member 

axes becomes 
4- 1 

W s m =  - X r o t ~  + y m i s ~  - - - 
Thus it can be seen that the only effect of the IRIG misalignments 

is to cross-couple the drifts  between the axes; the effect of cross-  

coupling of earth ra te  by the misalignment of the gyros is canceled 

out by the stabilization loops. 

Writing out equation (2.8) and neglecting the IRIG mis- 

alignments a s  insignificant 

Wxsm = -Wx + Dx -AzWy + AyWz 

Wysm = -Wy +Dy -&WZ +AzWX 

W Z S ~  = -WZ +Dz -AYWX + k W y  

Equation (2.9) is a set  of coupled linear first order  

differential equations that can easily be solved by means of 

the Laplace transform. 

and sine and cosine functions of (earth rate) (t). 

cosine functions a re  expanded in power ser ies  and the t and 

The general solution involves constants 

The sine and 

2 

(2.7) 

(2 .8)  

(2.9) 

higher t e rms  a re  neglected to get the following set  of equations: 

15 .I. 



(2.10) 

where Axo, Ayo, and Azo are the initial e r r o r s  in aligning the platform 

to the desired orientation. 

The "standard model" that is examined in this thesis has  the 

platform axes (x, y, z) initially oriented vertical, south and east. Wh 

and Wv w i l l  denote the orizontal and vertical components of earth rate 

at  the latitude of the test  site; hence, Wx = Wv, Wy = -Wh and Wz = 0. 

g will denote local gravity. 
- 3  maximum value of 7 x 10  

e r r o r s  ( 4  x rad, maximum). 

Axo is the gyrocompassing e r r o r  (with a 

rad); Ayo and Azo are the vertical erection 

With this definition of the standard model, the platform rotation 

angles become 

Ax(t) = Ax0 + (Dx - WV + Wh Azo)t 

Ay(t) = Ayo + (Dy + Wh + WV Az0)t 

Az(t) = A Z O  + (Dz - WVAYO - WhAx0)t (2.11) 

Now it remains to determine the relationship betweeen PIPA 

output and gyro drift. 

1 6  



2 . 2  PIPA Outputs 

Now that the relationship between platform motion and 

IRIG drift  is known, this motion must be measured i f  we a re  

to determine the drift. The average PIPA pulse ra te  output 

is a function of the acceleration along its input axis. 

the moment w e  shall neglect PIPA outputs due to  launch 

For  

vehicle sway. 

First, it is obvious that the vertical  (XI PIPA does 

not contain extractable information about the drift since any 

angular deviation of the PIPA from the vertical  w i l l  always 

result  in l e s s  of a pulse rate.  The horizontal PIPAs may be 

of use. 

east  PIPA output? For  small  angles 

Consider an initial misalignment Azo - what is the 

where A is the angle that the PIPA makes with the horizontal plane. 

From the following diagram w e  may determine A 

A x = A x o  #y 1 - 9  
+(Dx- WV + WhAzo 

(2.12) 

H z  P IPA 

17 



The angle A is given by the vector sum of the small  angles Ax and Ay: 

A(t) = AYO +(Dy + Wh + WvAz0)t +(Ax0 +(Dx - WV + WhAz0)t)AzO 

Neglecting the insignificant t e rms  in ( 2 . 1 3 )  w e  have 

( 2 . 1 3 )  

A(t) = Ayo + AxoAzo + (Dy + Wh)t (2.14) 

If we can determine the coefficient of the (t) t e rm we have a 

measurement of the drift of the south gyro. What has helped 

us  in the cancellation of the te rm WvAzo. N o  such cancellation 

w i l l  occur if a similar analysis is done on the south PIPA and 

that accelerometer's output is useless. 

rate is 

The east PIPA output 

ZF dN = (Ayo + AxoAzo) 6 + B + (Dy + Wh) & t 

where B is the uncompensated PIPA bias. 

Integrating this equation w i l l  determine the PIPA pulse count a s  

a function of time. 

first pulse is measured and (t = 0) denote the time that the first 

Let N equal the pulse increment after the 

pulse is measured after the platform goes inertial; then 

N(t )  = c 6 t + (Dy + Wh) gt2/(2H) 

is the equation that is to  be solved for the drift of the south 

gyro. Clearly, the expression is parabolic and fitting a 

parabola to the pulse count at two times would determine 

the coefficient of the t2 term. A number of similar platform 

positions are required if we a re  to determine the drift 

coefficients of each gyro. 

the e r ro r  sources in any test  configuration, then the following 

section will describe some simulated tes ts  which proved that 

parabolic curve fitting is not an acceptable solution under conditions 

The next section w i l l  introduce 

of base motion. 
i a  

(2.15) 

( 2 . 1 6 )  



2. 3 E r r o r  Sources 

This section wi l l  consider all  of the possible e r r o r  sources 

in a drift coefficient test  as was proposed in the previous section. 

PIPA Quantization. The maximum velocity storage in each 

PIPA i s  the amount contained in one pulse. This quantization effect 

is due to the counting of a PIPA register at some time other than when 

the PIPA register actually changed. The resulting e r r o r  can be elimi- 

nated by programming the AGC to store the actual time a register 

changed and i ts  new reading. This i s  the only method of measurement 

considered in this thesis. 

PIPA Scale Factor. The PIPA scale factor can have a maxi- 

mum variation of 100 parts per million when an acceleration is being 

sensed. This e r r o r  is due to variations in  resistors,  temperature, 

voltages, calibration e r ror ,  and variation in torque pulse character - 

istics. The e r r o r  w i l l  be assumed normally distributed about some 

bias point which is due to the temperature effect. 

Timing Errors. Since there may be possible advantages in 

computer speed and storage if  w e  do not require an extremely accurate 

reading of time, a maximum e r r o r  of one millisecond in the measure- 

ment of time wil l  be considered a s  the e r r o r  in  a reading. 

PIPA Bias. A l l  of the uncompensated accelerometer e r r o r s  

A s  a r e  combined into a maximum PIPA bias e r r o r  of . 2  cm/sec/sec.  

was shown in the previous section, PIPA bias has a negligible effect on 

the tes t  method. 

19 



Mechanical Misalignment Errors. The gyro and acceler- 

ometer sensing axes a r e  misaligned from an ideal orthogonal set  

because of e r r o r s  in machining the platform faces, mounting e r ro r s ,  

and e r ro r s  in the inertial components themselves. Additional e r r o r s  

result from nonorthogonality of the gimbals and sensing resolver mis  - 

alignments. 

procedure since they a r e  of a bias nature. 

Stabilization Loop Errors.  

These effects a r e  negligible on the accuracy of the tes t  

The stabilization loop e r r o r s  

consist of steady state and dynamic e r r o r s  i n  the stable platform 

orientation due to gimbal unbalances and stiction, amplifier nulls, and 

the stabilization amplifier bias. Even with these e r r o r s  the loops can 

maintain the platform at the same inertial attitude within a five a r c  

second tolerance. Since the loops a r e  practically perfect, the 

assumption of a dynamically exact platform i s  a good one. 

Nonlinear Terms. The assumption of a linearized model is 

good only for small  initial misalignments of the platform and short  test  

times. A s  an estimate only, we could expect the linearized analysis to 

be good (one meru accuracy in determining drift) for about ten minutes. 

This conclusion i s  based on an examination of the possible e r r o r s  involved 

due to the simplification of the transformation matrix and the dropping of 

higher order terms in the linear model. 

Wind Induced Missile Sway. The total PIPA pulse count a t  any 

instant of time i s  also dependent on the total velocity increment of the 

base during the period of the test. 

N(t) = cgt/H + (Dy + Wh)gt2/(2H) + v/H 
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where v = the velocity increment in  the direction of the east PIPA. 

the effects of velocity a re  not included in equation (2.17) then an 

additional e r r o r  is introduced. Since the missile remains on the 

launch pad, a reasonable first attempt at a solution of the problem 

is to consider the velocity effect to be a random measurement 

e r ro r ;  this w i l l  be considered in Section 2.4. 

If 

The maximum expected root mean squared displacement 

of the Apollo command module due to pad winds is about 10 cm. 

(ref. 4). This figure, of course, is based on a number of factors  

which a re  not yet well defined. In particular, the resonant frequency 

of the launch vehicle (Saturn 5) is estimated as . 3 3  cycle/sec when 

fueled, . 8  cycle/sec unfueled. If the dynamics of the missile a r e  

approximated by a second order system, a damping ratio of . 1 in 

response to wind accelerations has been considered a s  typical. 

The characterist ics of the wind a re  important too; the 10 cm. r m s  

sway is for 957'0 probable winds at Cape Kennedy. 

All  of the preceding factors must be taken into consideration 

in determining a gyro drift tes t  method. 

some experiments that were performed to see if we could neglect the 

velocity component dong the east  stable member axis. 

The next section w i l l  describe 
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2.4 Least Squares Curve Fitting 

N(t) = cgt/H + (Dy + Wh)gt2/(2H) (2.18) 

From this equation i t  is possible to measure the drift deter- 

Consider the platform to go inertial at  ( t  = 0) and the ministically. 

PIPA registers set  equal to  zero. 

pulse counts are recorded which is a sufficient condition to 

determine the drift. How would base motion affect the t e s t ?  

At two la ter  t imes ( t l J  t2) two 

The maximum pulse count due to a sinusoidal sway of 

amplitude 14 cm. is given by 

= (14)(2a/3 H)Z 5 pulses ANmax 
An e r r o r  in N is related to an e r r o r  in determining Dy as 

ANmax = ADyt2 g/(2H) 
2 Assuming t = 360 sec, g = 980 cm/sec 

we find that 

H = 5. 85 cm/sec/pulse,  

ADy 10 meru  

A deterministic drift test wi l l  not work under conditions of missile sway. 

This method is the only one that has been previously considered for  use 

in the Apollo System. W e  should mention that the tes t  is fairly 

effective in the laboratory. 

The first attempt at finding an improved drift test method is to 

apply the method of least squares curve fitting to equation (2.18). The 

maximum likelihood estimate of the drift is the least  squares  estimate 

for the case of normally distributed e r r o r s  with no previous information 

about the drift. 
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8 *- - 

Let u s  rewrite equation (2.18) as 

0 
N = a t + a l t  2 

where our particular problem is to  find the "best" value of al. In 

particular, choose al so  that 

2 2  n 
Z (Nj - aOtj - a l t j  ) 
j = 1  

is least. 

Differentiating partially with respect to a and al we  obtain 0 
2 Z (Nj  - a t - a t . ) t  = 0 

03 1 3  j 

z ( N ~  - aotj - a t?)t? = o 
1 3  J 

The set of equations that is to  be solved for  al is 

a Zt2 + a Zt3 = ZN.t 
O j  1 j  i j  

3 2 
O j  1 j  J j  

a E t  + a  zt4 = z N . t  

Thetwo equations can be solved for a new al af ter  each N. is measured, 

o r  the data can be stored until the desired number of measurements h a s  
J 

been made. 

By means of the simulation programs described in Chapter 3, 

P I P A  output data for  the standard model was generated under laboratory 

(2.19) 

(2 .20 )  

(2 .21)  

(2 .22 )  

and launch pad test conditions. 

sources  described in the previous section. Under laboratory conditions, 

the tes t  results for  a least squares curve f i t  w e r e  excellent. 

The computer programs included the  e r r o r  

PIPA output 



data was measured approximately every 20 seconds for a period of 

six minutes and processed at the end of that time to determine the drift. 

An accuracy of within one meru of the actual drift was realized during 

all  normal operating conditions. 

Under conditions of 10 cm. r m s  sway, however, the e r r o r  in 

determining the d r i f t  averaged about 5 meru. The test  time was varied 

up to 10 minutes, the PIPAs were  read as fast as every . 5 seconds; and 

still,  no accurate determination of drift was made. The conclusion, then, 

i s  that the velocity of the missile must be taken into consideration. Now 

the problem is to estimate two constants and a variable at the time of 

every measurement. 

A convenient method of formulating the solution to the problem 

i s  the so-called "Kalman Filter. 

ment i s  processed a s  i t  i s  made to form a new estimate of the constant 

t e rm,  the drift, and three variables due to the motion of the missile. 

The procedure makes full  use of the AGC's  capabilities to act a s  the 

data processor for the test. The remainder of this chapter is devoted 

to the application of optimum fil ter theory to the measurement of gyro 

drift  and the derivation of the proposed test  method. 

In this technique, each PIPA measure- 
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2 . 5  Recursive Measurement Theory 

The remainder of this chapter wil l  derive the proposed drift 

coefficient test procedure. T h e  theory of optimal statistical filtering 

(o r  recursive measurement theory) is given in references 1, 2, and 3 

and will  be discussed only to the extent necessary to understand the results. 

When the launch vehicle is subjected to wind induced motion, the 

bending dynamics wi l l  be approximated by a second order system. The 

specific force on the vehicle due to the wind is assumed to be produced 

by a random (white noise) process passed through a f i r s t  order shaping 

filter to generate an exponentially correlated specific force. The 

consequences of these assumptions a r e  examined in Chapter. 3. 

The problem at hand is five dimensional and can be characterized 

by a five component state vector 

(2. 23) 

and 
d is the sum of the horizontal component of ear 

drift of the south gyro (the coefficient of the t’terrn in the 
east  P I P A  output). 

rate and the 

c is the coefficient of the t t e rm in the expression for P I P A  
output . 

v is the component of the velocity of the missile on the launch 
pad that is measured by the east P I P A .  

is the easterly component of missile displacement from a 
vert  ic a1 posit ion. 

p 

(aw) is the wind specific force (or  that part of the vehicle 
acceleration due to the wind). 
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A second order  system represents the missile bending 

dynamics 
2 G = -Wn p - 2ZWn v + (aw) 

where Wn is the resonant frequency of the launch vehicle in the 
first  bending mode 

Z is the damping ratio of the second order  system 

Hence, the state vector consists of two constant components and three 

variables. The system model is completely specified by the state 

vector. At any instant of time, however, a deviation state vector exists 

because the system model is not identical to that of the actual system. 

bx - is the deviation vector o r  the difference between the 
system and the system model. 

b e  - will denote an estimate of the deviation vector. Letters with will 

denote measured quantities and no h or - over the letter wil l  indicate 

true values of the quantity. 

A s  each PIPA measurement is taken, a new deviation vector 

exists and the system model is corrected to include the new piece of 

data. Let primed quantities indicate values extrapolated from the last  

measurement and unprimed quantities values after a measurement; then 
A x = PI + b e  

(2. 24) 

(2. 25) 

The estimation e r r o r  e immediately after a measurement is 

- e = I t - x  - -  
- 

(2. 26) 

or  

(2. 27) e = -6x - - 

The deviation is allowed to be large since we have a linear system. 
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Also ,  define e '  a s  the e r r o r  existing before a measurement. Then the 

definition of the correlation matrices fo r  both e and e I is 

- 

- - 

* T E = e e  

E' = e' e 

If N is the expected pulse count at some time and is based 

-- 
,T * 
- -  

A 

on the extrapolated value of the last state vector, then there wil l  be a 

measured deviation in the pulse count 

A 
6% = N - N + e  

where N is t h e  a c t u a l  value and Q is the e r r o r  in  measurement. 

We define a measurement vector b - such that 

A 
The components of b - a r e  the partial derivatives N(t)  with respect 

to the components of the state vector at the instant of measurement. 

Since the system model i s  corrected after each measurement, 

the predicted value of 6N is zero just before a measurement 

It wil l  be shown later  that the optimum estimate of the deviation 

vector a t  the instant of measurement is given by 
h 

6; = w i3N - - 

and the new estimate of the state vector is 

(2. 28) 

(2.29) 

(2. 30) 

(2. 31) 

(2. 32) 

( 2 . 3 3 )  

(2.34) 
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and the new correlation matrix becomes 

where 

- w = (l /a) gt - b the weighting vector 

2 and Q = the mean squared measurement e r ror .  

These results a r e  for uncorrelated measurement e r rors .  

After incorporating the measurement into the estimation 

procedure, the system model is changed and the state vector and the 

correlation matrix a r e  integrated to the next measurement time. 

With this brief introduction to the recursive formulation of 

the problem, the details wil l  be discussed in the ensuing sections. 

Figure 2 - 1  serves to  illustrate the recursive nature of the problem. 

i 
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2. 6 The Measurement Vector 

The components of the measurement vector are the partial 

derivatives of fi (t) with respect to  the components of the state vector. 

Since 
A 2  h 

G ( t )  = 2 t g / H  + . 5 d t  g/H + v / H  
1 then b is defined as - 

- r. St2g/H 

The components of b a r e  really sensitivity coefficients that - 

relate how w e l l  a change in one of the state variables can be measured 

by the P I P A .  

for  increasing test times. 

Apparently, the measurement of gyro drift will be better 

A six minute tes t  has been chosen to satisfy 

this requirement and also to keep the assumption of linearized platform 

dynamics valid. Note that in general, a complete solution to the plat- 

form motion would have required coupling between the axes and the 

measurement vector would have been a measurement matrix since 

more than one PIPA would have been used. A complete solution of the 

linearized platform motion is not possible with the use of accelerometer 

information alone and this handicap wi l l  prevent us from measuring all 

of the drift coefficients individually. We will consider this problem later. 

1 - In actual implementation the constant coefficients in  b would be - 
incorporated into the state vector. 
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2.7 Measurement E r r o r  

The te rm c in the state vector represents the addition of another 

state variable to the state vector because the e r r o r s  in PIPA output a r e  

indeed correlated with an infinite correlation time (PIPA bias, mi s -  

alignments). 1 By defining c: we estimate the correlated e r r o r  as  a state 

vector component and the remaining measurement e r r o r s  a r e  assumed 

random with zero mean. 

We wil l  have need of the following two equations 
- Q = o  PIPA pulses 

and 
- 
2 

Q = .25  2 (pulses) 

where the value for the mean squared measurement e r r o r  a2 has been 

experimentally determined a s  giving results that a r e  consistent with 

the simulation studies. 
-z Now that - b and a have been specified, the problem is to 

determine the weight that should be assigned to each measurement to 

update the estimate of the state vector and to find the e r r o r s  in the 

estimate itself. It is implied and it wil l  be shown that the optimal f i l ter  

generates i t s  own e r r o r  analysis. 

optimum weighing vector for any measurement and the resulting 

The next section wi l l  derive the 

correlation matrix of estimation e r rors .  

(2 .  40) 

(2.41) 

1 - A full discussion of the techniques for dealing with correlated 
measurement e r r o r s  can be found in reference 1. 
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2.  8 The Optimum Weighing Vector 

We have previously stated the result that the optimum linear 

weighing vector takes on the form such that 

and  also the resulting correlation matrix is 

The mean squared e r r o r  i n  the estimate of each state vector component 

i s  given by i t s  respective term in the correlation matrix 6. 
We will  f i rs t  show that the vector w has been chosen so  that - 

each component in the t race of the correlation matrix depends only 

on i ts  corresponding term in - w. Since the t race represents the mean 

squared e r rors ,  then i f  w is chosen to minimize the t race the mean - 

squared e r r o r  in each state vector component is minimized. 

Use  equations ( 2 .  26) and (2 .  34) to get 

e = x l + d G - x  A 

- - - -  

Then since - 
d? = wdN 

6 N  = N - N + a  

- - 
A - 

T A  N = b  X I  
A 

- -  and 

there follows by substitution in ( 2 . 4 6 )  
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- 
Assuming that e'@ is zero  and using the definition of the - 

correlation matrices,  it follows that 

Note that fi and fit are symmetric matrices and 

An inspection of the three right te rms  of equation ( 2 .  51)  shows that 

the t e rms  in the t race  of 8 depend on only corresponding elements of 

w and each te rm of the trace is then independent. Hence, i f  w is 

chosen to minimize the t race  of the correlation matrix, the mean 

- - 

squared e r r o r  in each component of the state vector will be minimized. 

From equation ( 2 . 5 1 )  

t race  (8) = t race (I?!' - 2 w bT dl + a w w ) T 
-- -- 

To minimize equation ( 2 .  53) ,  let the weighing vector w have a - 

variation 6 w. Then, the variation in  the t race  of the correlation 

matr ix  8 is given by 

- 

6 trace (2) = 2 trace (6w(awT - -  - bT 13)) 
Setting equation ( 2 . 5 4 )  equal to  zero, it follows that a stationary 

value for  the trace is obtained if  

I$ - b 

a 
w = -  - 

To show that equation ( 2 .  55 )  does yield a minimum, substitute 

for  - w using the value we  have j u s t  calculated plus Aw and the trace 

will be found to increase for any Aw. - 
The final results follow by substitution of equations ( 2 .  55) and 

(2 .  51)  

(2 .  52) 

( 2 . 5 3 )  

( 2 . 5 4 )  

( 2 . 5 5 )  

(2 .  52)  into equations ( 2 . 4 2 )  and ( 2 . 4 4 )  
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T *  cr2 + b  E' - b - 
* 

where 8 is always less  than $I; hence a step decrease occurs in 

1 3 1  at  every measurement. 

and 

We have now completely specified how a PIPA measurement 

is incorporated into the previous estimate of the state vector to form 

a new estimate. 

8l; the values of the estimated state vector and the correlation matrix 

There remains the question of determining 9' - and 

that exist immediately before the measurement is made. The next 

section formulates these operations. 
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2 . 9  Extrapolation of 8 and 2 - 

This section w i l l  derive the differential equations for the time 

variations of the estimated state vector and the correlation matrix. 

The AGC will  be required to numerically integrate these equations 

between measurement times. 

The following relationship is general 
* 

- X = Mx(t) - + - n (t) (2.  59) 

where n(t) is a five-dimensional column vector that is a random (white) 

noise process such that 

- 

g = o  

Because we have assumed a perfectly instrumented 

bending dynamics, 

Then assume that 

(2 .  60) 

platform and exact 

the vector n has zeros for i ts  f i rs t  four components. - 

(aw) + n(t) (2 .  61) 

i. e. ,  the wind specific force is the result of a white noise process passed 

through a first order  lag to  generate an exponentially correlated specific 

force with correlation time of l / h  seconds. 

A l s o ,  

- n(t) fi(7)T = 13 a(t - 7) 

Since four components of - n are zero, the noise matrix 8 has only one 

rea l  t e rm in it. In particular, denote this te rm by PD; it i s  equal to 

(2 .  62) 

the white noise power density necessary to produce the desired root 
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mean square sway at the output of cascaded f i r s t  and second order  

systems (the pseudo wind filter and the missile). Performing the 

necessary integrations, we find that 

4(rms  SWAY)^ zx  w n 3  ( (Wn2 + x 2)2  - ( ~ Z X  ~ n ) ~  ) 
P D  = 

(2zwn3 + Awn2 + x - 42' X W ~ ~ )  

In particular, P D  is a predetermined constant that is estimated from 

the conditions expected on the launch pad and is then stored in AGC 

memory. 
* 

To extrapolate the estimated state vector, the matrix M is 

easily determined as 

0 0 0 0 0 

0 0 0 0 0 

0 0 -2ZWn -Wn I t  
Jr M =  

I , o  0 1 0 0 .  

I , o  0 0 0 
I -X 

1 .  

and clearly the extrapolation should be according to 

- 
d t  

since the best estimate of n( t )  is zero. 

constant and also that only three of the components of 2 need be 

We should note that fi is a - 

- 

integrated. 

The initial conditions on the integration are,of course, that 

A - 2(0) = - x {tj) 
A where x(t.1 refers to  the last calculated value of 2. - - J  
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The extrapolation of the correlation matrix is a bit harder  

to derive. Write 

T i5 = e e  -- 

and differentiate 

Now 

Hence 

T To evaluate e n (t) write -- 

Clearly, d (t) and n (t) a r e  uncorrelated since 

according to a noise -free model. Therefore, 

i s  extrapolated - - - 

Now 

( 2 .  67) 

( 2 .  68)  

(2.70) 

37 



so  that 

(Mlf(7) + n ( 7 ) )  d 7  + x (t .)  
- 3  

- x (t)  = i; - 

Continuing 

( l h x ( 7 )  + n ( 7 )  n(t)T)d7 - x( t . )  n(t)?' 
- J -  - - x( t )  - n( t lT  = - - - 

But for  7 5 t and t; 5 t we have 
J 

X ( T )  n ( t )T  = 0 and x (t .)  n ( t )T  = 0 
- J -  - - 

so that finally we  obtain 

..?5;T=-T - -  l &  

from the definition of the Dirac delta function ( a  ). 

The end resu l t  is 

* 
Where N has all zeros  as elements except for the bottom right t e rm 

which is PD. 
. 

The initial condition on the integration is,of course, the 

value of the correlation matrix at the las t  measurement. 

We need initial estimates of x and 6 at the beginning of the - 
test. They a r e  a s  follows: 

(2 .  72) 

( 2 . 7 3 )  

( 2 . 7 4 )  

( 2 . 7 5 )  



Where Dy i s  the estimate of the drift (if there was one) from previous 

tes ts  and we have assumed no previous estimate of PIPA bias; also 

0 0 0 0 
2.  ~ x I O - ~  0 0 0 

0 (SWAY) 2Wn2 0 0 

0 0 (SWAY)2 0 I 
0 0 0 (SWAY)2Wn4 1 

is a reasonable guess a t  maximum uncertainties in drift (a14 meru). 

misalignment, and the sway variables. 1 

We have now completely specified the data handling. 

no 
measurement 

A * A  x = M x  - - 

i$ = & & + ( B k ) T + & -  

and 

\ measurement 

1 - If desired, the three terms due to vehicle motion in the  initial 
correlation matrix can be se t  equal to zero for laboratory testing. 
The results,  of course, w i l l  be the same. 

(2 .76 )  

( 2 .  77) 

(2 .78 )  , 



In Chapter 3 the integration of ^x - and 8 was carr ied out as 
1 follows: search for a P I P A  pulse if a pulse does occur, integrate 2 - 

and 8 to the time of the pulse and proceed to form a new estimate of 

- x; i f  no pulse occurs during a . 1 second interval, integrate ^x - and 8 
over that . 1 second time step. 

2 - 2 .  The particular choice of a maximum time step such as . l  second 

between updates depends on the  numerical accuracy desired. A l s o ,  in 

this scheme of pulse searching we are su re  of detecting the natural 

frequency of the launch vehicle which is required i f  we are to estimate 

(filter) the variables due to the motion. 

This method is summarized in Figure 

The figures following Figure 2-2  summarize the analytical 

results of Chapter 2. 

1 - By pulse search we mean that the computer is triggered into 
computation when a P I P A  pulse is recorded. 
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Figure 2 - 2  Pulse Search and Update 

iC0) = 

i -  

0 0 0 0 o- 12 

0 2.5~16' 0 0 0 

0 0 lSWay?Wn2 0 0 

0 2 0 0 0 (sway) 

0 0 0 0 (sway) 2 4  Wn 

0 0  0 0 0 

0 0  0 0 

0 0  1 0 0 
0 0  0 0 -;h 

k -  o o -2mn -wn2 

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 O P E  

Initialization Constants: g, W, b, H, PD, a , h, 201, A. PD, sway(rms), A, Z, wn 

Figure 2 - 3 Initial Conditions 
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Figure 2 - 4  Integrate $ - 

A 
Figure 2-5 Compute N and 

* 
Figure 2 - 6  Integrate E 

Figure 2 - 7  Compute Weighing Vector and Step Change 
in Correlation Matrix 
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2.10 Platform Positions 

In this section we will present the eight initial platform posi- 

tions required to determine the drift coefficients. 

will review the estimation procedure and the necessary implementation. 

The next section 

The result of the recursive measurement scheme is an esti-  

mate of the sum of horizontal earth rate and drift of the south gyro. 

Therefore, the final step in the data processing i s  the subtraction of 

horizontal earth rate from (d)  a t  the end of six minutes. 

of the drift i s  clearly unbiased. 

The estimate 

Eight initial platform orientations a r e  given in the following 

(cdi) will  indicate the calculated drift from the measurement figure. 

scheme (cdi = d - Wh) applied in each orientation. 

cannot be positioned near the vertical because of the gimbal lock constraint. 

h 
The y stable member 

4 3  
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P O S I T I O N  1 ( N B D y )  

x 

E A S ‘  d, 
REFERENCE COORDINA~ ES 

POSITION 5 ( A D I A z )  P O S I T I O N  6 

i 
P O S I T I O N  7 A D S R A z ,  A D l A y  P O S I T I O N  8 ( ADSRAN 1 

Figure 2 - 8  Test Positions 
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From these platform positions the drift coefficients can be 

calculated a s  is shown. 

required. 

of the ADIA drift coefficients (in essence, rotations about the vertical). 

The general result of the thesis is, therefore, somewhat limited; 

however, the actual implementation of i t  is not expected to require 

much more  computer programming than existing test methods. 

Note that an apriori  knowledge of ADIAx is 

The linear analysis does not permit an explicit calculation 

Two possible methods a r e  available i f  it is desired to measure 

the vertical gyro drift on the launch pad, however both require con- 

siderable implementation. 

nonlinear solution to the equations of motion for an untorqued platform; 

'this is felt unrealistic. The second is to torque the platform and 

determine the drift a s  part of a platform alignment program; this 

procedure has been used in reference 5 with success. 

proposes that the test  method developed here  be used in conjunction 

with one platform position in which the referenced alignment program 

is used. 

filtering. 

The f i rs t  is to attempt the complete 

The author 

Reference 5 is also an application of optimum statistical 

In the eight position test w e  have proposed, the drift coef- 

ficients a r e  calculated from the results of drift measurements in 

several  platform positions as shown in Figure 2-7.  

e r r o r s  is then important. 

and assume u is approximately the same for each position, then the 

Propagation of 

If w e  denote the r m s  e r r o r  in (cdi) by u 
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following equations may be derived for  the r m s  uncertainty in any 

drift coefficient. 

u (NBDx) = u 

cr (NBDz) = u 

u (ADSRAy) = @ u 

u (ADIAz) = i@qu + cr (ADIAx)/8 

u (ADSRAz) = @ u 

cr ( A D I A ~ )  = \/rzdU2 + ( A D I A ~ ) / U  

u (ADSRAx) = mdu2 + u (ADIAx)/lO 

where u (ADIAx) = estimated mean squared e r r o r  in determining 

A DIAx. 

In the next chapter it is shown that u . 3 meru  for  any test. 

Assuming that u (ADIAx) = 3 m e n ,  equation ( 2 .  79) may be evaluated 

as 

(r (NBDy) 

u (NBDx) 

u (NBDz) 

u (ADSRAy) 

cr (ADIAz) 

u (ADSRAz) 

u (ADIAy) 

u (ADSRAx) 

= . 3  meru 

= . 3  meru  

= . 3  meru 

= . 4 2  meru 

= .85 meru  

= . 7 4  meru  

= 1.04 meru  

= 1 .  34 meru 

Equation ( 2 .  80) is essentially the main result of the thesis. 

The rms uncertainty is seen to vary f rom . 3 meru for  the bias drifts 

4 6  

( a .  79) 

(2. 80)  



to 1. 34 meru fo r  the ADSRAx term. 

improvement over the estimated accuracy (* 50 meru) of the 

existing test  method. 

This is a considerable 
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2. 11 Implementation 

The two main concerns in determining the necessary imple- 

mentation for application of the test procedure to  the Apollo G&N 

System a re  required speed of data processing and computer storage 

that i s  needed. 

The following table shows the computer time (in milliseconds) 

for arithmetic operations using the double precision interpreter. 

Table 2 - 1  AGC (Block 11) Arithmetic Operations (Ref. 8) 

Ope rat  ion Time Operation Time Operation Time 

Add . 6 6  Subtract . 66 Multiply 1.13 
Divide 2.48 Sign Test .70 Vector Add . 9 2  

Vector Subtract .92 Dot Product 3.08 Scaler x Vector 3. 27 
Vector/Scaler 5. 39 Cross Product 4.98 Vector x Matrix 8.98 
Matrix x Vector 8. 98 (vectors and matr ices  3 dimensional) 

In determining the time required for calculations by the computer 

we should remember that the correlation matrix is symmetric and 

only fifteen of i t s  twenty-five elements need be integrated; that the 

state vector has only three components that must be integrated; that 

- b has only three real  components; and N has only one non-zero element. 

These facts will  be of help in the actual programming. 

* 

The author estimates that the processing of a measurement 

and the two integrations wi l l  require about . 2 second each to complete. 
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A scheme that updates the state vector and correlation matrix 

only every . 5  second is demonstrated a s  follows: 

Operation 

Pulse Found 

Update (to 0) 
Process  Pulse 
Pu l se  Search 
Update (to .7 )  
Pulse Search 

Update (to 1. 2) 

Pulse Search 
Update (to 1. 7) 

Pulse Search 
Update (to 2. 2) 

Time 
0 

. 2  

. 2  

. 1  

. 2  

. 3  

. 2  

. 3  

.2 

. 3  

.2 

Time Running 
0 

. 2  

. 4  

. 5  

.7 
1. 0 
1. 2 

1.5 

1.7 

2.0 

2. 2 

The computer will  search for a pulse approximately 407’0 

of the time (the computer is inactive until a pulse tr iggers i t  to 

s t a r t  the update process). 

with a computer that i s  not as sophisticated as the AGC there may be 

In applying the test  procedure to systems 

some question as to whether the data can be processed on board. 

The presently programmed gyro drift test  requires approx- 

imately 800 words of AGC memory. The author estimates a 207’0 

increase in computer memory required for the gyro drift t es t  i f  the 

proposed test  procedure is  implemented. The end result is a con- 

siderable increase i n  test  accuracy. 

The total test  time for  an eight position test  including one 

alignment test f rom reference five (40 minutes) i s  about 82 minutes. 



Added to this a r e  the times required to align the platform to seven 

of the positions; the total test time is estimated a s  2 hours maximum 

to determine al l  of the drift coefficients. 

It i s  interesting to note that all three major functions of the 

AGC (platform alignment, component performance determination, and 

astronautical navigation) a r e  now shown to have essentially the same 

statistical formulation. 
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2 . 1 2  Chapter Summarx 

In Chapter 2 we have motivated the development of a recursive 

measurement technique for determination of gyro drift. 

pulse count is registered, the estimates of the state vector and the 

correlation matrix undergo step changes. Between measurements 

the estimates a r e  integrated according to our estimate of vehicle 

dynamics. 

test  positions and one alignment test (40 minutes) will  allow us to 

determine all  of the IRIG drift coefficients. 

this test  procedure wil l  require a 2070 increase in existing computer 

storage and the total test  time will be about two hours. 

A s  each PIPA 

A total of six minutes of data processing in each of seven 

It has been estimated that 
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CHAPTER 3 

CONI PUTE R SIMULATIONS . 
In this chapter the simulation studies that were carr ied 

out in  the Computation Center of the Instrumentation Laboratory 

are described. 

tes t  are  studied and found to  be minor. 

the drift of the south gyro in the standard platform orientation with a 

r m s  uncertainty of three tenths of a meru  under launch pad environ- 

ments. 

The effects of different e r r o r  sources on the drift  

The test procedure measures  
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3.1 Computer Program Description 

Revisions were made to existing Apollo G&N System simula- 

tions in order  to accommodate the test  procedure. 

the system variables w e r e  completely updated every tenth of a second 

and extrapolated between updates to second order  accuracy. 

author's desire w a s  to duplicate as  closely as possible actual data and 

data ra tes  that would be available from the system under a variety of 

environments. 

sources w a s  included. 

center. 

process passed through a digitally simulated shaping filter. 

PIPA pulse count due to the horizontal accelerations, earth ra te  and 

gyro drift, i s  thought to be an extremely accurate representation of 

what could be expected from the actual system. 

In these programs 

The 

The capability to study the effects of different e r r o r  

These programs are on file in the computation 

The wind specific force was generated by a random binary 

The total 

The recursive measurement procedure was included in these 

programs as a subroutine and the output of any particular run could be 

either data, graphs, o r  punched cards. The graphs that a r e  presented 

w e r e  all done by the computer with the author superimposing a number 

of runs in order  to make parametric studies. 

Appendix "A" serves  to demonstrate in one program the compu- 

tation routines that are needed if  we are given PIPA pulse count as a 

function of time. The next section wil l  present the simulation results. 

'ENVCPIPSEARCH, IMUCDUPIPSEARCH, PRELAUNCH on file in IL-7. 



3. 2 Simulation Results 

This section wil l  present the results of the computer simu- 

Arbitrary values of drift were assigned to the x, y, and z lations. 

gyros - 10, 3, and 10 meru, respectively. 

wil l  show that an extremely effective test  has been developed for  the 

The results of this section 

determination of the y gyro drift under both laboratory and launch pad 

c on di t ion s . 
Platform Initial Misalignments (Graph #l). The estimate of 

the y gyro drift can be seen to be excellent and varying only slightly 

a s  a function of initial misalignments. 

ra tes  a r e  due to the change in the te rm (c) caused by the different mi s -  

alignments; the final e r r o r  in the estimation is a function of the non- 

linear te rms  which begin to appear a s  time increases. 

varying nature of the statistical estimation technique decreases the 

effects of misalignments because the gains in the filter decrease with 

time while the non-linear t e rms  a r e  increasing with time. 

of the rms uncertainty curves reflect the changes in the bias te rm caused 

by the different values of Ayo. 

The different initial estimation 

The time 

The shifting 
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G r a p h  #1 Effects of M i s a l i g n m e n t s  
c r  



P I P A  Bias (Graph #2). The effects of P I P A  bias a r e  to 

introduce different initial estimation rates  and corresponding rates  

of decrease of the r m s  uncertainty curves. A s  we would expect, a 

positive increase in bias will increase the initial estimation rate  

and increase the rate at which the r m s  uncertainty decreases since 

more pulses a r e  processed. The transient peaks reflect the dynamics 

of the estimation procedure. 

P I P A  Scale Factor and Timing Er ro r s .  Both of these effects 

h a v e  been found to contribute a negligible e r r o r  to the drift estimation. 

This conclusion i s  based on a number of computer r u n s  using all ex- 

pected scale factor e r r o r s  and a timing uncertainty (3u ) of 1 millisecond. 

- 
Effect of Incorrect a 2  (GraDh #3) .  Since scale factor e r r o r s  

and timing e r r o r s  have a negligible effect on the results,  w e  can expect 

the correct value of u 2  to be close to zero. This graph shows that the 

final estimation of drift is essentially independent of our choice of Q . 
The r m s  uncertainty, of course, w i l l  depend directly on a . From this 

- 

- 
2 

- 
2 

graph and a number of similar computer runs, a choice of a much smaller 

measurement variance is justified for laboratory testing. However, the 

author has chosen the la rger  value of . 25 pulse2 so that the resultant 

dispersion of results for launch pad testing will agree with the r m s  un- 

certainty predicted from the measurement scheme. This w i l l  be discussed 

shortly. 
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Incorrect Initial Correlation Matrix (Graph #4). Using a value 

of 14 meru for the rms  uncertainty in the initial estimate of zero drift, 

a computer run was made with an actual drift of 20 meru. 

see, the value of the initial correlation matrix does not affect the final 

estimated value of drift. 

A s  we can 

Miss i le  Motion (Graph #5). A typical time history of the 

easterly displacement of the launch vehicle for 40 seconds of a six 

minute test  in which the r m s  displacement is 10 cm.is given in this 

graph. 

Velocity Estimation (Graph #6). This graph shows the actual 

velocity, the extrapolated velocity, and the estimated velocity at 

selected intervals during a launch pad test. 

to show the amplitude of the interfering velocity. 

This graph really serves  

Launch Pad Estimation (Graph #7). This graph shows the 

typical transients experienced in the drift estimation for a launch pad 

test  with the 10 cm. r m s  motion. After about four minutes of filtering 

most of the transients have disappeared and the estimated value sett les 

out. The graph demonstrates the time varying nature of the filter. 

following list of drift estimates and r m s  uncertainties is the result  of a 

number of computer runs with different random processes used to gen- 

e ra te  the 10 cm. r m s  sway. 

The 



Axo=. 003, Aye=. 0004, Azo=. 0004 rad  
PIPA bias =. 2cm/sec/sec 
Actual drift= 20 meru 

m e n  

25 

20.01 drift 

. 26 

20 

15 

10 

5 

0 

test t ime seconds 
1 I Q 5p I 1Q 1 0 1q I 0 290 230 3p 0 390 

1 1 v 1 
I 
1 

Graph #4 Incorrect Initial Correlation Matrix 
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Estimated Drift (meru) Uncertainty - rms 

3. 2 8  . 31 

2 . 9 6  . 31 

2 . 7 4  . 3 3  

2 . 9 3  . 32 

3. 1 6  . 30 

3. 48 . 31 

3 . 0 8  . 29 
- 

2 
This short l is t  is used to  justify the choice of Q 2  as . 2 5  pulse S O  

that the actual launch pad results will show a dispersion which is more  

in accord with the estimated uncertainties. 1 

Incorrect Wind Correlation Time. The following l i s t  shows 

that the effect of variations in actual wind correlation time do not cause 

very much e r r o r  in the drift estimation. This is a hoped-for result  

since the characteristics of the launch pad winds are not well defined. 

Wind Correlation Time (sec) Estimated Uncertainty 

Model Actual Drift r m s  

10 5 3. 29 . 2 6  

10 10 3. 2 8  . 31 
10 2 0  3.  51 . 34 

10 1 0 0  3. 09 . 4 0  

Variations in Wn. A greater dependence o f  the  results on the 

actual value of launch vehicle resonant frequency can be seen in the 

following list.  Launch pad sway-vibration measurements will be needed 

to  firm up our estimate of Wn for  the system model. 

The mean value of drift  for  the seven runs is 3 . 0 9  meru; the standard 
deviation is . 2 3  meru. 
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Resonant Frequency ( rad /  sec) 

Model Actual 

2.07 
2.07 
2.07 
2.07 
2.07 

1.02 
2.07 
5 
6. 28 
9. 42 

Estimated Uncertainty 

Drift r m s  

2.42 . 38 
3. .28 .31 
3. 27 .24 
2. 76 .23 
4. 82 * 23 

Variations in Damping Ratio. The quality of drift estimation 

shows less  of a dependence on damping ratio than on Wn. However, 

a good estimate of Z from vibration tests can be made and i t  will  be 

to our advantage to use  the best information available. 

Damping Ratio Estimated Uncertainty 

Model Actual Drift r m s  

. 1  . 0 5  3.06 . 27 

.1 . 1  

.1 . 2  

.1 . 3  

.1 . 4  

.1 . 5  

.1 . 6  

3.28 

3. 39 

3.29 

3.35 

2.96 

2.54 

. 31 

. 34 

. 35 

.35 

. 36 

. 36 
r m s  Sway Greater than 10 cm. Two runs with a 15 cm. r m s  

sway w e r e  made. The model w a s  not corrected and the results show 

that no major problem can be expected from greater than normal sway 

amplitudes. 

Estimated Drift r m s  Uncertainty 

3.34 .28 
2. 99 .28 



3. 3 Conclusions from the Simulation Studies 

In the previous section the results of a number of computer 

simulations have been presented which indicate that the test procedure 

will be an extremely accurate one under all specified environments and 

e r r o r  sources. The r m s  uncertainty in any test  wi l l  be about . 3 meru 

for the determination of the south gyro drift. 

tion needed is a better knowledge of the launch vehicle dynamics. 

type of information is easily gathered by sway and vibration measurements 

once the launch vehicle is in place (ref. 7). In conclusion, the use of 

computer simulations has  played an important part  in determining the 

effectiveness of the proposed gyro drift coefficient test. 

have shown an extremely effective test under many different operating 

conditions. 

The only further informa- 

This 

The results 
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CHAPTER 4 

CONCLUSION AND SUMMARY 

A linearized model of an inertial platform has been developed 

in order  to relate accelerometer outputs to gyroscope drift. After 

eliminating deterministic and curve fitting drift tests,  an optimum 

statistical f i l ter  i s  proposed for use during a launch pad system 

test  to determine the IRIG drift coefficients. 

simulations the effectiveness of the test  procedure was examined and 

found to be a significant improvement over existing test  procedures. 

The increase in computer storage is estimated at  20% and the total 

tes t  time is about 2 hours to determine all of the IRIGs'drift coef- 

ficients. 

additional studies a r e  recommended in order  to define the launch 

vehicle sway characteristics. 

By means of computer 

In order  that the test be a s  effective a s  i s  intended, 

The drift of the south gyro in the standard platform orienta- 

tion can be determined with a root mean square uncertainty of three 

tenths of a meru. 

by a se r i e s  of eight platform positions; one position i s  an alignment 

tes t  position. 

these e r r o r s  a r e  due to the propagation of calculation e r r o r s  since the 

drift coefficients a r e  calculated from a number of previous measure- 

ments of the south gyro drift. 

The coefficients of all  the gyros may be determined 

The resultant uncertainties may vary up to 1. 34 meru; 



With this thesis and reference 5, the complete problem of 

drift measurements, when the system is on the launch pad, has been 

discussed using optimum filtering. 

w e l l  solved and the next step is the actual application of these tech- 

niques of the Apollo System. 

The author considers the problem 
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APPENDIX A 

DEMONSTRATION PROGRAM USING THE MAC LANGUAGE 

The following two pages demonstrate the typical calculations 

that must be made to determine the drift of the south gyro. 

program is written in the MAC computer programming language. 

Data cards  punched with the time of the measured PIPA pulse count 

and the pulse count are needed as inputs to  the program. 

is similar to  that used in the simulation studies. 

The 

This program 
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R 
M 
M 
M 
M 
E 
M 
R 
E 
M 
E 
M 
E 
M 
M 
M 
M 
M 

U S E R F I L E = D I S C F I L E  
MAC* GTS 

D I M E N S I O N  5 

RESERVE M v N O I S E W O  
* *  - 

I N I T I  AL I Z A T  I O N  SECT I O N  

BEG1 M READ G,H,L+DY,PRBIS 
GRAVITY,SCALE FACTOR,LATITUDEWPREVIOUS E S T I M A T E S  OF D R I F T  AND B I A S  

READ W 92,LAMBDtSWAY 
N 

NATURAL FREQe,DAMPINC R A T I O W I N V E R S E  WIND CORR. T I M E t E X P E C f E D  RMS SWAY 
VAR=o25 ,TLASf *O 
L=OECTORAO ( L  1 

-5  
W = 7 0 2 9 2 1 1 5 ( 1 0  ) , W  = W  COS(L)+VRU=.OOlW 

E H E  E - 
X = (  ( W  +DY MRU) w ( P R B I S  H / G )  + O , O , O )  

* -12 - -7 - 2 2 -  2 -  4 2 
E = ( l O  s012.5(10  ) , O W ( W  SWAY ) W O W S W A Y  t O + ( W  SWAY ) )  

H 

N N 
2 3 2 2 2  2 

P O 1 4  SWAY 2 LAMBD W I ( W  +LAMB0 - ( 2  2 LAMB0 W 1 1 
N N N 

3 2 3 2 2 

N N N 
P D t P D / (  2 2 W +LAMBD W +LAMB0 -4 Z LAMBD W 1 

NOISE POWER D E N S I T Y  REQUIRED TO PRODUCE THE SWAY 
N O I S E  =PO 

2 4  
2 

M e-2ZW ,M = W  ,M t l ~ M  = ~ w M  =-LAMB0 
12  N 13 N 14 17 2 4  

CONSTANT M A T R I X  I N  THE D I F F e E Q N o  FOR THE S T A T E  VECTOR 

I N P U T  DATA CARDS ARE T I M E  THEN PULSE COUNT 
LOOP READ TNEWeN 

I F  TNEW Z E R O e E X I T  
T ~ T L A S T t D T = o l  
I F  (TNEW-TLASf -o l~NEC,OTr ( fNEW-TLAST)  * + *  

UPDATE ME=M E 
EXTRAPOLATE THE CORRo M A T R I X  AND STATE VECTOR TO THE T I V E  OF MEAS. * * * *  

DE/DT=ME+TRANSPOS€( M E ) + N O I S E  

DX/DT=MX 

O I F E Q  TWDTWDE/DT,DX/OT 
!F DQPHASE NZeGO TO UPDATE 
I F  T ~ T N E W ~ C O  TO I M L  
I F  ( T N E W - f - . l ) P O S ~ D T ~ o l s G O  TO UPDATE 
I F ( T N E W - T - ~ ~ ) N E C W D T ~ T N E W - T ~ G O  TO UPDATE 

70 

e *- 
* - 



R 
E 
M 
R 
E 
M 
E 
M 
R 
E 
M 
R 
E 
M 
E 
M 
R 
E 
M 
E 
M 
R 
M 
S 
M 
R 
M 
M 
M 
* 
0 

C A L C U L A T I O N  SFCTION - 
I ML 
THE MEASUREMENT V E C T 0 9  

E=( ~ S T T G / H I T G / H * ~ / H , O  P O  1 

- *- 
I N V R A = B e ( E B ) + V A R  
a *- 
W E I G H = ( l / I N V R A ) E B  

THE WEIGHING VFCTOR - -  
NES TMx B e X 

E S T I M A T E D  PULSE COUNT - - 
DELST=WEICH(N-NESTM) - - -  
X= X+DEL ST 

NEW S T A T E  VECTOR - *- 
C=EB 

E = € -  ( 1 I I N V R A  )CC 

D R I F T = ( X  -W ) /MRU*RMSUN=SQRT(E )/MRU 

PR I N T  OR Iff 9RMSUN I T 

T L A S T - T  
GO TO LOOP 
START AT B E G I N  

* *  -- 
NEW CORRELATION M A T R I X  

O H  0 

D R I F T  RMS UNCERTAINTY T I M E  

RUN 
DATA CARDS 
ENDJOB 
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