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EVALUATION

The cost of producing sof tware has increased at a rapid pace , and ,
as a result, much has been said about the unreliability problems
associated with producing this software . The need by the software
industry in general, and the military establishment in particular ,
to produce reliable, maintainable and quality software , is ever
increasing. Investigations into the types of software errors and
the reasons for their occurrence are taking place, but are some-
what deterred by an insufficient quantity of error data. The
error data base can be utilized for in-depth analysis as well as
testing software error prediction models.

In an attempt to overcome this insufficient data base and to
respond to these needs, this effor t was initiated. The effor t
is in accord with the goals of RADC TPO No. 5, Software Cost
Reduction (formerly RADC TPO No. 11, Software Sciences Technology) ;
particularly in the area of Software Quality (Software Data). The
report provides a description of the delivered data. The data
consists of a history of software modifications to an on—board
flight software project for a specific period . The value of
acquiring this data is that it will be analyzed for the purpose
of developing software measurements and will also be used to support
current software model development projects. In addition, this
data will be used concurrently with other procured software error
data , to aid in establishing a baseline for on-board flight soft-
ware projects in quantitative terms. This class of information
will, in the future, influence better methods of developing on-
board flight software projects.

~~~~~~~~~~~~~~~ e~-
JAMES V. CELLINI, Jr. -

Project Engineer
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SECTION 1

INTRODUCTION

This stud y is based on a unique experience: Project Apollo,
the manned lunar landing , an effort combining many technologi-
cal disciplines . The Instrumenta tion Laboratory of The Massa-
chuse tts Insti tute of Technology (MIT/IL), since incorporated
as The Charles Stark Draper Laboratory, Inc. (CSDL ), was given
responsibility by NASA for the guidance, navigation and control
(GNC) functions of the Apollo space vehicles. The da ta investi-
ga ted by this stud y are derived from the software developed for
the computers of the onboard Pr imary GNC Systems (PGNCS) of both
the Command Module (Ci4) and Lunar Module (LM).

This stud y compiles and ca tegorizes modifications tha t were
made to the flight software pr ograms dur ing the development of
the PGNCS of both CM and LM. This ma terial was recorded on mag-
netic tape ; the da ta con tents are described in Section 4 of this
r eport. The purpr~- - f this effort is to contr ibute to the est-
ablishment of a ire error da ta base to support research in
software reliab

A great d support software was produced at the labora-
tory for the b~~O~.lo project in addition to the flight software:
simulators, assemblers, data management systems, post proces-
sors, and engineering simulators. Figures for computer usage
and staffing include thi s total software effort; the modifi-
cation data collected and described in this report, however ,
are only from the flight programs. These data are compiled
from changes made to the flight software for Apollo flights 7
through 17. Apollo flights 16 and 17 used the same software as
Apollo 15. The da ta were collected from flight software devel-
oped over the years 1967 to 1971.

This r eport provides a description of the project used as
the source foz these da ta , and describes the da ta base itself.
Section 2 of thi s r eport describes the flight computer archi-
tecture, the functional nature of the software, its pr oduction,
testing and management. Section 3 discusses the life cycle of
the software. Section 4 describe s in detail the collected da ta
and its forma . Section 5 summarize s the da ta in graphic and
tabular form. Section 6 presen ts some conclusions and recommen-
dations drawn from this activity.

•1-
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SECTION 2

BACKGROUND

2.1 FLIGHT COM PUTER ARCHITECTURE

The Apollo Guidance Computer designed and developed by the
MIT/IL was advanced for its day, being small, light—weight and
highly reliable. Dur ing all the hour s of testing and actua l
flight, not one failur e was ever recorded. The AGC was used
throughout all the Apollo , Skylab, Apollo—Soyuz and F—8 Pha se I
programs.

2.1.1 MEMORY ORGANIZATION

The computer consisted of a fixed wired program memory
(called a “core rope *hu ) of 36,864 words in 36 banks and a read—
write (“erasable ”) memory of 2048 words in 8 banks. Words were
15 bits plus parity ; the memory cycle time was 12 micro— seconds.
Fixed memory could not be changed after manufacture .

There were 34 possible machine instructions. Since 15
bits were not sufficient to specify an op—code and all 38,912
memory addresses, computer core was divided into banks and pr o-
grammable bank selection registers were provided in the CPU .
Any instruction could specify any address within its own bank
and could also address the first 3 banks of erasable as well as
the first 2 banks of fixed memory . Access to any other bank
was accomplished by using the bank registers. The limited size
of erasable memory forced the time—sharing of these locations.
Many software modifications resulted from this memory organiza-
tion and appear in such error categories as VO SO , pr ogram memory
optimiza tion, NOlO , item s in wrong location, F040, organiza tion
problem .

Throughout all Apollo pr ograms, there was a “memory
crunch” . Extreme efforts were expended by pr ogrammers to be
“clever ” in order to save even a few memory locations. Not
surprisingly , thi s added to the difficulty of the debugging
process and made ongoing pr ogram modification a tricky business .
In some instances modifications were not made even though
potential pr oblems were known to exist because it was felt tha t
known pr oblems were less hazardous than new problems tha t could
be introduced by a complex correction . Care was taken tha t the
problem s were wefl understood and work—around procedures were
deve loped, when reauired , to avoid them.

* The term “r ope” came to be used by Apollo engineers to denote
each program intended fot release , even while it was under
development . “Rope ” is also used elsewhere in this r eport in
that sense.
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The fact tha t the program memory was hard—wired led to an
effort (not covered by this study) which extended thr- ough the
late Apollo fligh ts, Skylab, and the Apollo—Soyuz programs. It
consisted of the deve lopment of Erasable Memory Programs (EMPs)
which were impl emented in order to provide modifications to a
flight pr ogram while avoiding remanufacture of the “rope ” . The
EMP5 resided in erasable memory , time—sharing even fur ther tha t.
scarce resource . Needless to say, extreme caution was used in
specifying , designing , implementing and testing each E~4P. An
experienced team of experts par-ticipa teu in each phase of EMP
development, and the astronauts and ground crews were
thoroughly briefed on the use and limi ta tions of each EMP.

2.1.2 INTERRUPT SYSTEM

Ten interrupt levels were provided. They are shown in
Table 2—1. Of these ten , four were programmable coun ters of
varying granularity, the finest being 10 milliseconds . These
counters were utilized to provide cyclic servicing of the vehi-
cle control functions, hardware calibration and other servicing
such as display refresh and telemetry .

One of the coun ters was used to service a time queue by
which the operating system dispatched asynchronously timed
tasks to be processed in the interrupt mode. Processing in the
interrupt mode was constrained to a time limit of 14 milli-
seconds, since other interrupts were ma sked while the current
interrupt was being processed . Computer hardware failure moni-
tors were provided and are described in Table 2—2. Any of these
failures caused a GOPROG interrupt and a subsequent software
r e star t.

2.1.3 HARDWARE INTERFACES

The computers were interfaced -to the several hardware com-
ponents shown in Figures 2—1 and 2—2.

All input/output (I/O ) took place through coun ters and
channels. Coun ters were used for the transmission and reception
of numeric data ; channels were used for the communication of
discrete data . Coun ters were accessed by direct memory access
on a cycle—steal basis .

2.2 FLIGHT SOFTWARE FUNCTIONS

2.2.1 MISSION PROGRAM S

The purpose of the AGC was to compute guidance , targeting ,
navigation , and control functions for the Apollo space vehicles
for all mission phases. Many guidance , targeting and naviga—
tion functions were computed by the ground control system and

3 
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Table 2—1 INTERRUPT STRUCTURE

INTERRUPT PURPOSE HIERARCHY

GOPROG RESTARTS 1
T6RUPT JET TURN ON/OFF 2
TSRUPT DAP 3
T3RU PT WAITLIST 4
T4RUPT IMU/OPTICS MONITORING 5
KEYRUPT(2) KEYSTROKE PROCESSING 6,7
UPRUPT UPTELEMETRY PROCESSING 8
DOWNRU PT DOWNLINK PROCESSING 9
RADR(JPT RADA R RETURN PROCESSING 10

Table 2—2 COM PUTER HARDWARE INTERRUPTS

OSCILLATOR FAIL
Occur s if loss of oscillator 1.02 MHz square wave
happens . In addition a logic circuit insures a
RESTART condition for a 250 millisecond interva l upon
transferring from STANDBY to OPERATE.

TRANSFER CONTROL (TC) TRAP
Occur s if too many or too few TC instruc tions are
requested . The period for “too many ” or “too few ” is
from 5 to 15 milliseconds in duration .

PARITY ALARM
Occur s if any accessed word in fixed or erasable
memory whose address is 10 octal or greater contains
an even parity of “ones- ” All Lcations of 10 octal
or grea ter are stored in fixed or erasable memory with
odd parity .

NIGHTWATCHMAN FAIL
Occur s if the computer should fail to access address
67 within a period whose duration varies from .64 to
1.92 seconds. This assures that the computer is still
operating during an extended idle period and is tied
up in an interrupt loop.

INTERRU PT (RUPT) LOCK
Occur s if an interrupt is either “too long ” or “too
infrequent ” . -

VOLTAGE FAIL
Occur s if the AGC voltages are out of limits for 157
to 470 microseconds.

4
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duplicated on—board , but control functions were, of cour se , an
on—board responsibility ; so too were computations of range ,
range—rate , velocity requirements , and other parame ters for- lun—
ar landing and rendezvous. These computations were based on
radar and opticb sensor inputs and monitored by the astronauts,
who had final authority over all activity . The following defi-
nitions of these functions appear in reference 1.

Naviga tion — the measurement and computation necessary
to determine the present spacecraft position and velo-
city .

Targe ting - — the computation of the maneuver required
to continue to the next step in the mission .

Guidance — the continuous measur ement and computation
dur ing accelerated flight to generate steering signals
necessary to assur e tha t the position and velocity
changes of the maneuve r will be those required by navi—

F 
ga tion measur ements and targe ting computations.

Control — the management of spacecraft attitude motion ;
the rotation to and maintenance of the desired space-
craft attitude during free—fall coasting flight arid
powered accelerated flight.

Table 2—3 lists the major mission programs tha t were available
for astronaut selection .

2.2.2 CREW INTERFACE

Because of the importance of the man—machine interface, a
significant portion of the software effort was devoted to dis-
plays and handling of crew keyboard inputs. At significant
points in the processing , a di splay was presented to the crew;
the program did not advance fur ther un til directed to do so by
the crew (depression of a PROCEED key was the standard method
of crew approval) .

These paragraphs are adapted from ma terial presented in
re ference 1.

The basic man/computer interface device is the
display keyboard (DSKY) (shown in Figur e 2—3). Through
the DSKY the astronaut could initiate , monitor or
change pr ograms being processed by the computer . He
could request the display of specific da ta or enter new
data . Communication with the DSKY was two—way : the
astronaut could exercise command via the DSKY and the
computer could request the astronaut to monitor ,
approve , or enter da ta when necessary . There were 

two7
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Table 2 — 3  M I S S I O N  PROGRAM S

CO MMAND MOD ULE LUN A R M O DULE

00 CMC Idling 00 LGC Idling
01 Prelaunch Initializa tion 06 GNCS Power Down
02 Gyro Compassing ASCENT
03 Verify Gyro compassing 12 Ascent Guidance
06 CMC Power Down NAVI GATION
07 IMU Ground Test 20 Rendezvous Navigation

EARTH ORBIT INSERTION 21 Groun d Track
11 Earth Orbit Insertion 22 Surface Navigation

NAVI GATION 25 Preferred Tracking Attitude
20 Rendezvous Navigation 27 LGC Update
21 Groun d Track Determina tion RENDEZVOUS
22 Orbi tal Navigation 30 External Delta V
23 Cislunar Navigation 31 Lambert Aimpoint Maneuve r
27 CMC Update 32 Coelliptic Sequence

RENDEZVOUS TARGETING 33 Constant Delta Height
30 External Delta V 34 Transfer Phase Initiation
31 Lambert Aimpoint 35 Transfer Phase Midcour se
32 Coelliptic Sequence POWERED FLIGHT
33 Constant Delta Height 40 DPS Maneuver
34 Transfer Phase m i t  41 RCS Maneuve r
35 Transfer Phase Midcourse 42 APS Maneuve r
37 Return to Earth 47 Thrust Monitor

POWERED FLIGHT IMU ALIGNMENT
40 SPS Maneuve r 51 IMU Orientation
41 RCS Maneuve r 52 IMU Realign

IMU ALIGNMENT 57 Lunar Surface Align
51 IMU Orientation LANDING
52 IMU Realign 63 Braking Phase
53 ~3ackup IMU Orientation 64 Approach Phase
54 ~ackup IMU Realign 65 Landing Phase (auto)

ENTRY 66 Landing Phase (ROD)
61 Maneuve r and Separation 67 Landing Phase (manual)
62 Separation and Reentry 68 Landing Confirma tion
63 Entry—Initiation BACKUP
64 Entry—Post .05 g 70 DPS Abort
65 Entry—Up Control 71 APS Abort
66 Entry—Ballistic 72 CSM CSI Targeting
67 Entry—Final Phase 73 CSM CDH Targeting

UI RENDEZVOUS TARGETING 74 CSM TPI Tar geting
72 LII Coelliptic Sequence 75 CSM TPM Targeting
73 UI Constant Delta Height 76 Target Delta V
74 LM TPI
75 LII TPM
76 Tar ge t Delta V
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DSKYs available in the CM and one in the LM. Each DSKY
had a keyboard, several electro— luminescent displays,
and activity and alarm lights. The activity lights
were for the computer and the telemetry uplink, and
the alarm lights were for the computer and inertial
subsystems. These aided the astronaut in monitoring
the sta tus of the G&N system . The alarm lights m di—
ca ted equipment failur e and pr ogram alarms .

The basic language used for communication between
the operator and the computer was a pair of two
character -  numbers tha t represented a verb/noun combin—
ation. The verb code indicated the operation to be
performed , while the noun indicated the operand to
which the operation (verb) applied. Typica l of the
verb codes used are those for displaying and loading
data . For example, VERB 16 NOUN 20 provided a

-
~~ 

- monitored display of gimba l angles and VERB 25 NOUN 18
loaded the desired gimbal angles.

Noun codes called up groups of erasable registers
wi thin computer memory . Processing of noun s provided
informa tion in units scaled for ease of crew use.

The users of the system , the Apollo astronauts, were very
muc h involved in the design of the software/crew interface. In
the early flights, a grea t deal of keyboard activity was
required of the astronauts who wanted total control over the
selection of computer pr ogram sequences. Later in the Apollo
program , a~ confidence in the computer system increased , the
crews were willing to relinquish some of tha t authority and the
program sequences were au toma ted to a gr eater extent . One sig-
nificant effort in tha t direction was the development of the
MINKEY (for minimum keystroke ) sequence in the command module
rendezvous program . The MINKEY sequence automa ted what was
formerly a burdensome period for the single astronaut aboard
the comma nd module . Another effort tha t was undertaken after
the first manned flights was the incorporation into the soft-
ware of the error checking of all crew inputs. Experience had
shown tha t illegal or incorrect inputs caused aberrant behavior
and could have seriously impacted mission performance. Legal-
ity checks in the software, although consuming scarce memory
resources, were deemed necessary to guard against a potentially
dangerous source of err-or .

2.2.3 RESTARTABILITY

A unique a spect of the Apollo software was its built—in ,
real—t ime error recovery and restart capability . This capability
was impl emen ted by storing restart. pointers at strategic points
in each process. The pointers were stored in “r estart tables ” ,

10
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which accommoda ted up to six separate pr ocesses at any time .
Determination of restart points was a complex process ba sed on
the repea tability of coding sequences. Updating of variables
was protected by storing a copy of the updated value , inserting
a restart point, then replacing the old values with the newly
computed ones. Other coding sequences posed more difficult
logic problem s f o r  the p r o g r a m m e r s,  sometime s nece s s i t a t i ng
m u l t i p l e  r e st ar t  po in t s  wi th in  a few lines of code. The multi—
programmed nature of the software contributed to the complexity
of the restart design. The restart tables were time—shared , so
tha t the assignment of table locations to various processes
required expert knowledge of the total program activity
throughout the mission . Also , insertion of restart points in
the code had to take into consideration the possibility tha L

) - ‘ processes could be preempted by a higher priority process at
almost any time . Although -this capability was expensive in
terms of memory usage, as well as being a significant source of
error s dur ing development, this feature was directly
responsible for the success of the Apollo 11 and 12 missions,
which may well have failed without it.~

IIodifications to the software for the implementa tion of this
capability are recorded under categories H040, inadequa te
restart , or H050, errors in restart logic.

2.2.4 MULTIPROGRAMMING AND ASYNCHRONISM

The AGC operating system was designed and implemented very
early in the program , before the time period covered by this
study. It provided great flexibility in that it allowed for both
synchronous, precisely timed cyclic processing and asynchronous
tasks which could themselve s he either cyclic, timed processes
or pr iority—driven jobs. Timed processing was interrupt—driven
and was itself non—interruptable. For this reason timed proces-
sing was subject to a time limit of 14 milliseconds . Typical
synchronous timed processe s were the digita l autopilot (DAP)
and the hardwa re monitoring and service routines . Dedicated
interrupts were assigned to these pr ocesses.

*Lightning~~struck the Apollo 12 vehicle dur ing the ascen t phase
and caused a series of powe r transients in the computer
system . The software recovery system successfully restarted
the pr ogram allowing the mission to continue . The recovery
system was similarly involved in the lunar- landing pha se of
Apollo 11 when erroneous radar inputs caused a computational
overload. The recovery system deleted low pr iority functions,
performing only essential computa tional sequences, and thus
relieving the computer overload and allowing successful comple—
tion of the landing .

11 
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Asynchronously timed processes were dispa tched by the oper—
ating system from a time queue (called WAITLIST) to which
another in terrupt was dedicated. These tasks were scheduled
in response to real—time pr ogram requirements .

Priori ty—driven jobs were also scheduled as required by cur —
rent demands on the system, often in direct response to crew
inputs. These jobs were preemptable; tha t is, they could be
interrupted by timed tasks (unless interrupts were specifically
ma sked) or by jobs of higher priority .

In teraction between processes in real time , the sharing of
resour ces necessitated by limited memory, and the fac t tha t
processes could be initiated asynchronously and unpredictably,
crea ted  a compl exi ty  in program behavior tha t required extensive
testing and often heroic debugging efforts. The Assembly Cont—
rol Supervisor (para 2.4.1) and a relatively small group of
softwa re experts were often called upon to dig into a problem
to help explain the seemingly inexplicable.

2 . 3  FLIGHT SOFTWARE PRODUCTION AND TESTING

The laboratory began its Apollo work in 1961, and the
early years were primarily devoted to hardware development,
including computer design and prototyping . Early software work
was performe d by a small group of engineers who were familiar
with the computer design work and who had been closely involved
with the working groups tha t developed the mission requirements .
All of the programs for the manned Apollo flights were based on
this initial existing “core” of system (e.g., executive , display
and hardware interface) software. Thus each new pr ogram was
essentially a modification , although usually a large—scale modi—
fication, of a pr evious release . With the approach of manned
missions , software r equirements grew and the programming and
verification group was expanded. Figur e 2—4 shows how this
effort was staffed over the years.

— 

2.3.1 PRODUCTION

The group responsible for the flight software included
guidance, navigation, and control engineers, programmers, and
test engineers, led by a small team who had been associated
with the early work at the laboratory and who had themselves
developed the first test and flight pr ograms. Experts in the
various disciplines worked closely together and in many cases a
single person participa ted in all pha ses of development of a
particular software module, i.e., initial engineering studies,
programming and testing .

The coding was done both in the assembly language of the P1GC

J 

and in the interpretive language (INTERPR ETER ) developed for the
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project. Fixed point arithme tic was used throughout . Most
mathema tical programming was done in INTERPR ETER, which pr ovided
pseudo i n s t r u c t i o n s  f o r  ma t r ix  and vector arithmetic , tr igono-
metric functions, and d ouble precision arithme tic. The code
was assembled by a c ross—assemble r  hosted f i r s t  on the Honeywe l l
1800 computer and l a t e r  on the IBM 360/ 75.

2.3.2 TESTING

2.3.2.1 TYPES OF FACILITIES

Testing and verification at the laboratory were performed
using various facilities, including engineering simulation on
the host computer, ful l scale digital simulation on the host
computer, and a hybrid laboratory and system test laboratory
tha t provided real—time execution . Engineering simulations
were primarily used as a design tool to test algorithms and
technique s before actua l incorporation into the flight pr ogram.
Some of these simulations were used throughout the Apollo
program to evalua te the performance of the mission pr ograms and
procedures.

By far the largest amoun t of in—house code verification was
performed using the all—digita l simulator , a sophisticated tool
which performed high—fidelity environment modelling and inter-
pretive simulation of the AGC and provided a large variety of
d iagnos t i c  tools and user opt ions .

The hybrid laboratory consisted of 2 complete simulators,
one for the lunar module and one for the command module. Mock-
ups of the CM and LII cockpits were interfaced with the hybrid
computers to provide a realistic environment. A XDS—9300
computer controlled the simulation. It enabled real—time test-
ing of the crew interfaces and procedures wi th the flight soft-
ware (in a core rope simulator ) ~nd a mix of real and simulated
hat dwa re.

The system test laboratory also contained two complete hard-
ware systems, one for the LM and one for the CM . It pr ovided a
test bed which included a simulated guidance computer (the core
r ope simulator) , actua l radar, optics, and in~~ tial measurement
un its.

The hybrid and system test laboratories were extensively
used, in parallel wi th digital simulation , for leve l 3,4,5 and
6 tests (see below). Levels 1 and 2 were performed exclusively
on the digita l or engineering simulators.

14
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2.3.2.2 LEVELS OF TESTING

Several levels of test rig were performed .

Level 1 tests were high order language (HOL) prog rams run on
the host  computer  to test  algorithms. The MAC (MIT Algebraic
Compiler), developed at MIT/IL, was used for this effort.

Level 2 was the AGC coun terpart of these programs. The
results of the two were compared to establish the accuracy of
the AGC equivalent. The errors found at this level were pr im-
arily computational.

Level 3 was intended to verify the operation of a complete
-
‘ program or routine including crew interface and realistic physi—

cal environment models. The errors discovered at this level
were primarily logic and display interface problems. This• level was performed only when a routine was incorporated into
the flight program .

Level 4 testing was intended to verify mission phases,
e.g., ascent, rendezvous. The multi—programmed environment was
exercised extensively and therefore uncovered pr iority , timing ,
and erasable—sharing problems.

Level 5 repeated the level 4 tests on the final rope which
was released for manufacture . This was required because even
though the level 4 tests had been successfully completed, they
may not have run on the version of the program tha t was
re leased.

Level 6 took place after the ropes were released for manu-
factur e and were intended to verify the program using actua l
mission data and the flight time—line. These runs were run
with 1 sigma and 3 sigma errors in the simulated instruments.

2.4 IN—HOUSE CONFIGURATION CONTROL

The very early programs, produced by a small cadre of
dedicated engineers, were not subject to forma l configuration
control procedures. By the time of the period covered by this
study, however, the magnitude of the task and the large number
of contributors necessitated control procedures to insure the
continuing integrity of the software.

2.4.1 ASSEMBLY CONTROL SUPERVISOR

The assembly corittol function was established to localize
responsibility for th quality of each pr ogram as it was being

k developed . The Assembly Control Supervi sor (ACS) was a person 
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who was knowledgeable about all a spects of the program, and
especially expert in the system software, subprogram interfaces,
initializa tion and crew interfaces. The ACS could call on a
group of “ex per ts ” in the various di sciplines to act as consult—
ants to resolve problems . All code was submitted to the ACS
for approva l before it was incorporated into the official assem-
bly. The code was documented using coding forms* which provided
informa tion about the nature of the code, the reason it was
being incorporated , the official change notice or change request
reference (if any), and the signatures of the pr ogrammer and
his supervisor , which guaranteed tha t the code had been checked
out independently before it was submitted .

It was only after carefully scanning the code and analyzing
it wi th respect to its interfaces with existing software tha t
the ACS approved each submittal for incorporation into the
otficial assembly. The ACS issued memos documenting in detail
each change tha t had been included into each new assembly
revision.

2.4.2 ASSEMBLY CONTROL BOARD

The assembly control activity described above was under the
overall management of a system integration group. A board con-
sisting of an integration supervisor, the ACS for each separate
program ** and a group of experts was established to provide pol-
icy guidance and resolve technical issues not able to be decided
by the ACS alone .

For testing and checkout before submittal to the official
assembly, engineers could snapshot a version of the assembly,
incorporate their new code, run simulations, and modify and
r emodify their programs .

2.4.3 ERASABLE COMMITTEE

This system, with its built—in checks at several levels
(engineer, supervisor , ACS, experts) , worked well to provide
visibility and control dur ing development phases of the project.
Because only 2048 words of read—wr ite (erasable) memory were
available , it. was necessary to time—share da ta memory among many
software modules. Assuring the integrity of erasable data
required an overview of the pr ogram behavior and a knowledge of

*These coding forms served as the sour ce of the data pr epared
— 

- for this study.

**  There were always at. least two pr ograms under development ,
the UI and CM programs and at time s programs for different
flights .
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the timing characteristics and interactions of the various
program modules. To this end a committee was established to
oversee the ma nagement of erasable memory; the ACS was an
important member of this committee . Requests for da ta storage
from engineers working on the software were reviewed by the
committee which assigned da ta locations on the basis of globa l
needs and time—sharing considerations.

Some consid era tion was given to automa ting the process of
erasable assignments. Studies that were conduc ted at the time ,
however,  led to the conclusion tha t the e f f o r t  and accuracy
required to provide correct input describing da ta requirements
and time—sharing characteristics would be as difficult for the
automa ted process as it was for the manual activity .

Figure 2—5 is a typical erasable memory map showing the da ta
overlays in one bank of erasable memory.

1 .
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SECTION 3

SOFTWARE LIFE CYCLE

3.1 SYSTEM SOFTWARE

M u c h  Apollo flight software was developed before the con-
trols discussed in Section 2 were established. This included
both system software and mission software. Although the
mission—related software was e v e n t u a l ly  replaced by software
capable of performing the lunar landing mission, the system
software was basically unchanged . This software included the
executive , display interface , interpreter, much of the hardware
interface logic, interrupt handling and computer self—test. In
general, the system design was not formally documented and was
produced by a r e l a t i v e l y  smal l  group of eng inee r s  who were th o r —
oughly knowledgeable of the performance requirements of the
hardware , the sensor instruments and the computer. As the pro-
grams  con t inued  to develop and as  more  and  more t e s t i ng  was
done , some changes were made to these pr ograms for improvement
and error corrections, but these corrections were relatively
few .

3 .2  MISSION SOFTWARE REQUIREMENTS

The r equirements for the Apollo mission were determined
jointly by NASA and the laboratory . Once the lunar orbit rendez—
vous technique was established as the method of accomplishing
the ultima te goal of Apollo , some obvious and desirable require— -

ments became apparent, e.g., navigation , guidance , etc . The
software was designed to perform the mission functions on—board
even though many functions were duplicated on the ground.

3.3 MISSION PROGRAM DEVELOPMENT

For the period of time covered by this study, software
development consisted of creating a program for a particular
mission~ testing tha t pr ogram, and releasing it for manufacture.
This cycle was repeated for each relea se. The major utilization
of host computer resources during a program ’s life cycle was in
testing . Testing continued after every release to eva lua te any
deviation from the planned mission .

In the development of software capabilities, use was made of
e n g i n e e r i n g  s i m u l a t i o n s  of v a r y i n g  c o m p l e x i ty  to validate the
algorithms and technique s before actua l implementation into the
flight. software.

During the development pha se a da ta base management system,
List Processing Service, LIPSVC , was used. The LIPSVC system
provided reliablity and visibility in tha t earlier pr ogram re—

20 
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v is ions could be recreated a t  any time ; i t  pr ovided control  of
the frequent assemblies and permitted easy creation of “off—
line” versions whi le  record ing  a l l  m o d i f i c a t i o n s  to these ve r-
sions. This allowed new pr ograms to be debugged without inter—
fering with the main line production . The interim modifications
to the off—line versions were not centrally maintained and
therefore do not appear in the da ta collection.

There often was parallel development of software for the
same vehicle. For example, Colossus 3, the software pr ogram
which flew on Apollo flights 15, 16 and 17, was begun by snap-
ping a version of the program named Comanche under the new
name , Ar temis. This new version was begun in parallel wi th the
Apollo 12 program . Since extensive changes were planned for

- - 
- . Apollo 15,16 and 17, a major effort was undertaken to recode

vast portions of the existing pr ogram solely for the purpose of
gaining space for the new features. Rather than waiting for
the release of the Comanche pr ogram for these changes, the new

- • version was deve loped.

3.4 SPECIFICATIONS AND DOCUMENTATION

• The controlling document in the life cycle of the Apollo
software was the Guidance System Operation Plan (OSOP), a docu-
ment which served as the specification for the software efforts.
Development and control of the GSOP were important activities
in planning , con trolling , and documenting a flight program. For
early flights the GSOP was a single volume document . With the
advent of manned flights, it was expanded to six separate
volumes . Each volume of the GSOP was dedicated to controlling a
differen t aspect of the AGC software. Section 1 controlled the
AGC prelaunch activities. Section 2 dealt with data links,
uplink, downlink, and telemetry . Section 3 dealt exclusively
with the digita l autopilot. Section 4 governed operational
modes including PGNCS interfaces wi th the flight crew and rn-is—
sion con trol. Section 5 contained the guidance and navigation
equa tions. Section 6 specified the data used in the digital

— and hybrid simulators in support of the verification of the AGC
programs.

In addition to the function of the GSOP as a NASA control
document, it served as an internal working document, as a test-
ing guide, and as a crew training aid.

4- -
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Changes to the sof tware  or the GSOP were controlled by the
documents  described below .

•Program Change Request ( PCR )

A PCR was a request  for  a change in the
specif icat ion (GSOP ) for  a f l i g h t  program.
I t  was given a pre l iminary  review by a lab-
ora tory engineer and by the NASA F l i gh t
Sof tware  Branch  and then held fo r  Software
Control  Board ac t ion.  The SCB was composed

-: of r epresentatives of var ious  branche s of
- 

— 
NASA . SCB could disapprove the change ,
require more detai led evalua tion by MIT/ IL
or require implementat ion of the change.
This decision involved overall mission con—
siderations and scheduling , as well  as the
part i cu la r  sof tware considerations.

•Program Change Notice (PCN )

A PCN originated at MIT/IL and was a noti-
fication tha t a change was being made
ra ther  than a request for  a change. The PCN
was used fo r  c ler ical  corrections to the
f l i g h t  program specif icat ions or for  changes
tha t were required to the program for deve l-
opment to cont inue . PCNs required approva l
by the SCB, but approva l was usually auto-
ma tic. If the SCB disapproved, a change to
undo the PCN was generated.

•Anomaly  Report

Anomaly Reports r eported a discrepancy
between a program ’s specification and its
operat ion.  Anomaly  Reports  required of f 1—
cial disposition ,bu t did not always result
In program modification . Work—around pro-
cedures or EMPs were some time s developed to
correc t  the anoma ly .  Table 3—1 shows the
number of known anomalies tha t. existed in
each fl ight.

•Assembly  Control  Board Request

An Assembly Control Board Request was pre-
pared by MIL/IL ’s Assembly Control Board
and initiated a program change. This change
did not change the pr ogram ’s specification .
Ins tead  i t  was in the nature of an in—house
improvement.
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Tabl e 3—1 ANOMALIES IN FLIGHT PROGRAMS

FLIGHT COMM AND MODULE LUNAR MODULE

- 7 32 —

8 60 —

9 2 8 10
10 10 49
11 9 28
12 9 13
13 8 9
14 13 12
15 12 11

t .
— 
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3.5 SOFTWARE RELEASES

When the laboratory was directed to relea se the mission
program , a magnetic tape was produced for  delivery to the manu-
f a c t u r e r .  The m a n u f a c t u r i n g  process, which required a t  least
45 days,  s t a r t ed  by processing the magnetic  tape to produce 2
mylar  tapes. One tape , the core r ope weaver,  actua ted the
weaving machines tha t produced the module memory . The other
tape was used to v e r i f y  the memory fabr ica t ion  process.

Fig ur e 3— 1 shows the development of the f l i g h t  rope s for
the Command and Lunar Modules.  -•

3.6 MISSION SU PPORT

Al l  missions were suppor ted around the clock by laboratory
personnel both in Cambridge and at  NASA f ac i l i t i es .  Although no
sof tware  problems occur ed in f l igh t ,  work--around procedures
invoked through the sof tware  were occasionally required to solve
GNC S problems *. The se procedures had to be developed very
quick ly  to a l low as much testing as possible before they were

— 
t r ansmi t t ed  to the crew .

*Apollo 14 r equ ir ed  a procedure to bypass  checking the f ai l e d
Li ahnrt switch by the software.
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SECTION 4

APOLLO SOFTWARE DATA FI LES

Two f i l e s  of da ta have been del ivered to the sponsor of
this study. The first file contains 11,729 records, each of
which describes a modification to the software, called a Record
of S o f t w a r e  Modi f i ca t ion  ( R S M ) .  The second file contains 83
r ecords,  and gives da ta on other e r r or s ,  machine use s ta t i s t ics,  -

speed of simulation and charateristics of the software.

4.1  APOLLO SOFTWARE MODIFICATIONS

The basic da ta in the RSM s (record identifier, da te of mod—
ification , revision identifier, reference , functional category,
modification category, modifica tion description), were prepared
by a team of 14 engineers  wi th  experience in deve loping Apollo
so f twar e .  The rest  of the da ta in the RSM s was  compu t a t i o n a l l y
der ive d f rom this  basic da ta .

Each RSM was  p repared  f rom one of 2 type s of so f tware
M o d i f i c a t i o n  Report ( M R ) .  The f i r s t  of these two was used only
for modifications entered into the Sundisk and Sundance series
and is illustrated in Figur e 4— 1 . The other one was used for
the Sundance and for all later pr ograms and is illustrated in
Figur e 4—2.

Each MR documents one or more software changes and the
reason for the change(s). Each change resulted in a different
RSr4. In this way a MR may have generated several RSMs. In some
cases a change went in to more than one pr ogram;  in tha t ca se an
RSM for each was pr epared. All modifications were also docu-
mented in a memorandum series for each program. Frequently
these memoranda were referenced by the engineer pr eparing the
basic data of the RSM , thus supplementing the informa tion in
the MR.

A good deal of knowledge , background and judgement was
required and used in interpreting the MRs and other documenta-
tion in order to prepare the RSM ’s basic da ta , in particular in
supplyi ng the da ta for the functional category field, the modi-
fication category field and the modification description field.
The background knowledge and judgement were provided by
restricting the people preparing the da ta to those with exten-
sive experience in deve loping Apollo software; nevertheless, it - 

-

should be recognized tha t a significant degree of subjec t ive
judgement was exercised in assigning categories to the da ta
items.

Each RSM conta ins  9 f i e l d s ,  which  a re  described below. In
all numeric fields leading zeroes are replaced by blanks.
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4. 1.1 RECORD IDENTIFIER (Column s 1 — 4 )

Each record  identifier is unique in the file of RSMs. A
record i d e n t i f i e r  consis ts  of a le t ter  fol lowe d by a three deci-
mal digit number . These unique record identifiers were gener-
ated at the time of the preparation of the record . They provid-
ed traceability during the da ta preparation process, in tha t the
letter identifies the engineer who prepared the record. At the
time of the pr eparation of the RSM , its record identifier was
written on the MR from which the RSF4 was prepared , thus provid-
ing references from the file of MRs to the file of RSM5 .

4 . 1. 2  DATE OF MODIFICATION (C olumn s 6 — 13)

An entry in this field is in the form YY—MM—DD , for year—
month—day . MM and DD may contain a leading blank, but no lead-
ing zero. All entries in this field were checked to make sure
tha t they were val id da tes.

This  da te is the da t e the mod i f i ca t ion  was submi tt edthy  the
programme r to the Assembly Control Supervisor for approval and
inclusion in the pr ogram .  The da te tha t the mod i f i ca t ion  was
actually incorporated into the program is not known , but was
usually within a day or two or at most a week, of its submit-
t a l .

In most cases thi s da te is the da te shown on the MR . In
those few cases where the da te field on the MR was left blank,
the revision identifiers (see paragraph 4.1.3, below) were used
as the basis for estima ting this date . Estimating this date
sometime s required a linear interpolation, interpolating between
revision numbers wi th approxima tely known da tes.

4.1.3 REVISION IDENTIFIER (Columns 15 — 18)

This field was taken directly from the MR and denotes the
program r evision into which the modification was incorporated.
The pr ograms to which the da ta applies consist of six distinct
program series: Sundisk, Colossus, Comanche , Artemis (all Corn—
mand Module programs) , Sundance and Luminary (Lunar Module
p r o g r a m s ) . As shown in Table 4 — 1,  s ixteen separate  f l i g h t
p r o g r a m s  w e r e  m a n u f a c t u r e d  f r om these series.

The revision identifier consists of a letter followed by a
th ree  decima l d ig i t  number . The l e t t e r  i d e n t i f i e s  the pr ogram
series;  the number is the revis ion number w i t h i n  t ha t  series.

- 

- 
• For some revisions there are no RSMs. This could happen

for one of two different reasons. (1) For Sundisk revisions 1
through 88, and for Sundance revisions 1 through 82 there were
no reports on modifications available . ( 2 )  In some cases a
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Table 4— 1 REVISION IDENTIFIERS , FLIGHT PROGRAMS , SIZES,  FLIGHTS

Prog Revi— Program F l igh t  To tal New Space Apoll
ode sions Name Program Words Words Vehicle Flight

D 1—282 Sundisk Sundisk 36480 23100 C 7

C 1—237 Colossus Colossus 1 37757 11770 C 8

C 2 3 8 — 2 4 9  Colossus Colossus 1A 37854 110 C 9

M 1— 45 Comanche Colossus 2 38575 2035 C 10

M 46— 55 Comanche Colossus 2A 38610 110 C 11

M 56— 67 Comanche Colossus 2C 38702 215 ! C 12

M 68— 72 Comanche Colossus 2D 38702 34 ! C 13

• M 73—108 Comanche Colossus 2E 38402 1692 1 C 14

A 1— 72 Ar temis Colossus 3 38485 * 770 * C 15

S 1—306 Sundance Sundance 36424  28600 L 9

L 1— 69 Luminary Luminary 1 37904 10560 L 10

L 70— 99 Luminary Luminary 1A 38646 - 2310 L 11

L 100—116 Luminary Luminary lB 38502 700 1 L 12

L 117— 131 Luminary  Luminary  1C 38502 150 1 L 13

L 132—178 Luminary Luminary 1D 38202 940 1 L 14

L 179—210 Lumina ry Luminary  1E 38452 + 770 # L 15

Legend for column headed “Space Vehicle ”

“C” means Command Module
“L ”  me ans Lunar  Module

Legend for  the column s headed “Tota l  Words ” and “New Words ” :

* Number taken from the program listing for Art.emis 72
+ Number estima ted by experienced assembly contol supervisor
I Number take n f rom R a n k i n ’s thesis
33 Number estima ted by averaging the numbers for the

previous 4 flights
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revision was created without a MR being pr epared. This happened
only in the case of an abort during the assembly process, where
due to a clerica l error or a machine failure, a spurious rev—
~sion was crea ted. In those cases, the assembly supervisor
simpl y r e submi t ted  the o r ig ina l  modi f ica tions.

The following revision numbers do not appear on the RSMs:

Comanche 45.1 , 45.2
Comanche 72.1, 72.2, 72.3
Luminary 69.1 , 69.2
Luminary 99.1
Luminary 131.1

The revision number on the RSM contains only the digits ~~~~~ the
left of the decima l point; thus a modifica tion to revision
Luminary 69.1, for example, is recorded in the RSM as occurring
in L 69. Fewer than 15 RSMs contain these truncated revision
numbers .  These revisions are  the r e s u l t  of r e—r e lea se s  tha t
were made after further deve lopment had continued on the prog-
ram. To illustrate : Luminary 69 was released for manufacture ;
meanwhile Luminary 70, 71, 72, etc. were being created (as
updates of Luminary 69). Testing of the released program con-
duc ted during thi s period revealed a problem serious enough to
warrant re—release . Apollo support software allowed the
retrieva l of any previous revision; revision 69 was therefore
retrieved, copied , and corrected without disturbing the later
revisions. The offshoot revision was entitled Luminary 69.1,
which later spawned Luminary 69.2 when still another serious
problem surfaced.

4 . 1. 4  REFERENCE (Colu mns 20 — 25)

For about 13% of the RSM s, anothe r document is referenced.
The document is identified in the reference field in the manner
shown in Table 4—2. The referenced document is either a Prog-
ram Change Request, a Program Change Notice, an Anomaly Report
or an Assembly Cont ro l  Board Reques t  (see p a r a g r a p h  3 . 4 ) .  The
document established the basis for the change. If it was writ—
ten before the MR, then it served to initiate the change . If
after the MR, then it served to- - rationalize the change.

When such a document was cited in an MR, it. was recorded
in the reference field of the corresponding RSM .

For the remaining RSM 5 the reference field is blank .
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Table 4—2 REFERENCE NUMBERS

- 

Column s Meaning Coun t
20 — 2 5

PCRddd P rogram Change Request  ddd 949

PReddd Prog ram Change Request eddd

PCNddd Program Change Notice ddd 78

PNeddd Program Change Notice eddd

COLddd Colossus Anomaly ddd 40

- - ACBxxx Assembly Control Board xxx 357
Request

COMddd Comanche Anomaly ddd 43

LNYddd Luminary Anomaly ddd 40

symbol used explanation
above

d a decima l digit
e a decima l digit other than zero
x a decima l digit or a capital letter
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. 1.5 FUNCTIONAL CATEGORY (Column 27 )

This field identifies the function within the flight prog—
~m which is being modi f ied.  22 f u n c t i o n a l  categories were
~en t i f i ed  and assigned code l e t t e r s  “A” th rough  “V” . The func—
ional categories and their codes are shown in Table 4—3. The
jeld, then , contains a letter denoting the functional category
f the code being modi f ied.

This field was coded on the basis of the informa tion in
he MR , supplemented by other documentation and the background
nowledge of the individua l preparing the da ta .

.1.6 MODIFICATION CATEGORY (Columns 29 - 32 )

The entry in this field denotes that category out of the
08 preselected categories (shown in Table 4—4) which best
escribes the modification or the reason for the modification .
he entry itself is a code denoting the modification category
nd consists of a letter followed by a three decimal digit
umber.

184 categories  were def ined by the sponsor in the Statement
f Work , each wi th i ts  unique code. F i r s t  these codes, which
ere S characters long , with the first and second character
lways identical, were changed by deleting the second redundant
hazacter ~f the code to shorten it, and by replacing leading
eroes in the numerical portion of the code by blanks .

Secondly,  i t  became appa ren t  in the cour se of this s tudy
hat a large propor tion of Apollo programming errors do not fit.
he 184 categories defined by the sponsor. This misma tch is ‘

ue pr imarily to the fact tha t the Apollo code was written for
real—time multiprog rammed application, whereas the error da ta

na lyzed  p r e v i o u s ly  under  the sponsor ’s auspices  was derived
rom non z e a l — t i m e  app l i ca t ions.  Rea l—t ime  e r r o r s  m a n i f e s t
hemselve s as r o u t i n e — t o — r o u t i n e  i n t e r f a c e  c o n f l i c t s  as well  as
r i o r i t y  or time c o n f l i c t s.  The sequence of opera t ion  of
outines in real time is frequently dependent upon the pr oper
eccing cf f l a g s  and  o ther  i n t e r f a c e  da ta  by othe r r o u t i n e s.
rog ram sequencing and r e s t a rt  p ro tec t ion  is cons ide rab ly  corn—
licated by the actions of an on—line astronaut . Finally , the
xis tence of an  i n t e r a c t i v e  user c rea tes  a ser ies  of possible
an /mach ine  i n t e r f a c e  problems .

In order to avoid forcing the Apollo real—time errors into
nnatural categories, 24 new categories were defined, each with
new code. 5 other categories had their descriptions modified

ut not their code; one category had its description modified
nd was given a new code; and 1 category was given a new code
‘ithout its description being modified. We thus arrive at the 
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Table 4—3 FUNCTIONAL CATEGORIES, THEIR CODES AND SI7ES
Colossus Luminary

Code Functional  Category 237 98

A Digi ta l Autopi lot  5815 3464

B Error De tection/Recovery 332 280

C Crew Interface 1771 2220

D Teleme try 404 242

E I/O NA NA

F Executive 773 1173

G Sequence I n i t i a l i z at ion/Rein i t ia l ization 1009 953

H Display 3603 3107

I Naviga t ion  4043  4655

J Coordina te Transforms 616 474

K Vehicle Attitute Computations/Maneuvers 939 998

L Tracking 2929 3560

M Targeting 3728 2684

N Powered Flight Maneuvers 2479 3103

O Guidance Computations NA 1570

P Alignments 1588 2101

O Interpreter 2145 2150

R Math Subroutines 71 126

S Sottware Utility Routines 196 162

T Hardware Failure Monitor 1291 1780

U Hardware Service Routines 1982 967

V Manual Operations (non—software) NA NA

“NA ” means tha t the size of the code for the functional
category is not available.
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final coun t of 208 categories. Care was taken to avoid prolif—
eration of categories. In most cases, the new zeal—time cate—
gories are simply subsets of existing , closely related non real-
time categor ies. Descriptions of categories were modified to
clarify their meaning within the Apollo context. Categories
were recoded to pr ovide a clearer hierarchy of categories. All.
these changes are shown in Table 4—5.

-be

The va lue of the modification category field was entered
by the RSM ’s preparer on the basis of 1 all the informa tion in
the MR, 2)  other documentation related to the modification , 3)
using his or her knowledge of the context in which the MR had
been written and 4) using his or her knowledge of the categor—
iza tion scheme tha t was being used.

The MRs document each change to an assembly and the reason
for the change . Ideally it would be possible for experienced
Apollo pr ogrammers to go through the MRs ca tegorizing each mcdi—
fication according to the categoriza tion scheme being employed.
However, when the hand—written MRs were originally produced,
they were not pr oduced with anything like the present purposes
(e.g, carrying out error analysis) in mind . As it. is, the MRs
frequently do not contain sufficient information to categorize
a modification and thus other documentation is required. The
appr opr ia te Apollo memo series was used for this purpose , since
tha t series contained memos provided by the Assembly Control
Supervisor which gave for each revision a detailed description

L 

of all modifications incorporated in the revision- Also , if the
MR references a PCR, PCN , Anomaly Report or an Assembly Control
Board Request (see paragraph 4.1.4), supporting da ta identify-
ing the sour ce of the change was obtained, if needed, fr om the
ref~ renced document . Even with all this documentation , often
not enough informa tion was available about the nature of the
original change and about the context in which the change was
mad c-~ in many cases, judgement based on exper ience was relied
on -
4.1.7 MODIFICkTION DESCRIPTION (Column s 34 — 83)

This field contains a brief textua l description of the
program change or the rea son for the change. Generally this is
just a fuller description of the modification or the reason for
it then what is denoted in the modification category field
(paragraph 4.1.6). (Note tha t “reason for the modification ”
and “dqscziption of the modifica tion ” are largely synonymous.)

The description in this field, like the code in the mod !—
fication category field, was entered by the RSM s pr eparer on
the basis of all the informa tion in the MR, other available doc—
umenta tion , as well as his or her knowledge of the context in
which the MR had been written .
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Table 4—5 CHANGES TO THE ERROR MODIFICATION CATEGORIES

Code S ta tus  Category De scription.  ( Exp l a n a t i o n  of the Cha nge)

A 42 A Sampl ed da ta problem ; cha rac t e r i s t i c  of r ea l—t ime
da ta  was not as expected .

A 130 A Fixed point scaling e r r o r .

B 63 A Open b ranch ;  poss ib i l i ty  of logic branch  to
undefined location.

B 70 C Incorrect log~c design.(“ d e s ig n ” added to d i f f e r e n t i a t e  ca tegory f rom
the one below coded “B 7 1 ” )

B 71 A I nco r r ec t  impl ementa t ion ;  logic designed
cor rec t ly  but  i nco r r ec t l y  implemented.

D 20 C Da ta written in or read from wrong memory
location.

( “ d i s k ”  changed to “ memory ” )

F 11 C Program .~~gmentat ion  ( l ay o u t  of subrout ines,  e t c. ) .
(O r i g i n a l  category was specialized to apply

only  to changes to the o rgan iza t ion  of
s u b r o u t i n e s) .

F 12 A Real  time o rgan i za t i on  problem ( incompat ib le
modes) ;  incompat ib le  modes of operat ion of
rout ines  in rea l time ( i nc ludes  r e s t a r t
problems) .

F 40 A Organ iza tion e r r o r s  ( l o c a t i o n  of code, e t c .) ;
errors in location of code, deletion of
unused code, etc.

G 61 A Real  time r o u t i n e/ r o u t i n e  i n i t i a l i z a t i o n  e r r o r ; - 
-

initializa tion error resulting in
real—time sequencing problem .

G 62 A Pr iority conflict; error in establishment of
pr iority of z~?al—time rou ’~ine.

G 63 A Time conflict; zeal—t.~.me routine does not meet
time constraints.

H 40 A Inadequate re~ tazt capability (was J100); addition
or modification ot restart tables, etc.
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Table 4-5 CHANGES TO THE ERROR MODI FICATION CATEGORIES (cont.)

Code Status  Category Description. (Explanation for the Change)

H 50 A Errors in restart logic; modification in restart
procedures.

p 
3 10 C Incompa tibility with external requests; changes

made to conform to external requests.

3 90 C Poor design in man/machine interface.
(“operator ” changed to “man /mach ine ”)

Jl00 0 Inadequa te interrupt and restart capability.
(Code for the category changed to “H 40”)

K 11 D Uncoordinated use of da ta elements by more than
one user.

(Code for the category changed to “K 20”)

K 20 A Uncoordinated use of da ta elements by more than
one user.

(Code for this category was “K 11” originally)

L 26 A Man/machine real—time spec change; user requested
change in man/machine interface.

L 27 A Error recovery spec change ; user requested change
in restart mechanism.

L 90 A Impl ementation of original spec.; new code required
to conform to or iginal specification.

N 60 A Make room in E—Bank (erasable memory).

N 70 A Reorganize da ta .

N 80 A Missing da ta definition ; primarily includes those
modifications to the Erasable Assignments
tha t parallel coding changes tha t fall
into such ca tegor ies as “ incor r e c t
implementation of logic design ” , “mis sing
logic” , and others of a similar nature.

S 10 A Requirements error (insufficient, inadequa te);
coding changes due to an insufficient or
inadeauate specification .

3 20 A Requirements enhancement; coding changes due to
changes in requirements.
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Table 4— 5 CHANGES TO THE ERROR MODIFICATION CATEGORIES ( cont.)

Code Sta tus  Category De scription; Explanation for  the Change

V 0 A IN — HOUSE PROGRAM IM PROVEMENTS.

V 10 A Simplif ied in te r face  and/or convenience.
(Descr ipt ion same as for the ca tegory coded

“L 10”)

V 20 A New and/or enhanced func t ions.
(Descr ipt ion same as for  the ca tegory coded

“L 20” )

V 30 A Da ta ba se management and in tegr i ty.
(Descript ion same as for  the ca tegory coded

“L 70 ” )

V 40 A CPU time optimiza tion.

V 50 A Program memory opt imiza t ion.

Legend for  column headed “Sta tus ” : -

“A” means tha t the code was added.
“C” means tha t the description w a s  changed,

but  the code was not.
“0” means tha t the code was deleted .
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4.1.8 FLIGHT PROGRAM (Column s 85 — 87)

A modification is intended for a -particular flight program
then under development . This study covers the development of 16

- - 
different flight programs .

The field has one of 16 values, and indicates that the mod—
ifica tion is intended for the flight program denoted by the
value and under development at the time of the modification.
Table 4—i. page 30, shows which value denotes which flight
program.

This field also indicates that the modification was intend—
ed for a particular space vehicle (paragraph 4.1.8.1) and a
particular Apollo flight (paragraph 4.1.8.2). However , there
are no modifications tha t were intended for the Lunar Module of
Apollo flight 7 or 8, because there was no Lunar Module on
Apollo flights 7 and 8. Thus, instead of 18 (i.e., 2*9) possi—

r ble combinat ions of ve hicle and flight number , there were only
16. -

The entry for this field is computed from the revision
i den t i f i e r  ( see paragraph  4 . 1 . 3 ) ,  using — the informat ion  in
Table 4—1 .

4 . 1.8.1 SPACE VEHICLE (Column 85)

This field has one of two values. “C” denotes that the
modification was made to a Command Module program, “L” , to a
Lunar Module program .

The entry for the field was derived from the leading
character of the revision identifier (see paragraph 4.1.3),
using the informa tion in Table 4—1 .

4.1.8.2 FLIGHT NUMBER (Columns 86 — 87)

A flight program (rope) is designed to play its part in
one or more Apollo flights. The Apollo flights are numbered .
The flight pr ograms covered in this study flew on Apollo flights
7 th rough  17. No te tha t the two f l i g h t  pr ograms in tended  for
Apollo flight 15 are also for Apollo flights 16 and 17, since
these three flights employed the same pr ograms.

This field identifies for which one of these Apollo flights
the modification was first. implemented , by containing in the
field a two decima l digit number identifying the Apollo flight.

4 The entr y for this field was derived from the revision
identifier (see paragraph 4.1.3), using the information in
Table 4—1.
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4 . 1.9 SOFTWARE DEVELOPMENT PHASE (Column 89)

This field indica tes whether the modifica tion was made
dur ing  the development or during the ve r i f i ca t ion  pha se of the
f l i g h t  program ’s so f twa re  development cycle.  The let ter  “D”
entered in the field indicates tha t the change was made during
the development pha se, the letter “V” , during the verification
phase .

Note t h a t ,  if the modif ica tion is to correct  an error , then
this field does not g~,erally indica te (neither does any other
field) in which pha se of the software development cycle the
error was found (recognized). Such da ta is not generally avail—
able. However, it. is safe to assume tha t in most cases the

I . - e r ro r  was discovered in the same phase tha t it was corrected.
This is, of- cour se, necessarily the case if the error was
corr ected dur ing the development phase .

Note further that, if the modification is to correct an
error , then this field does not generally indicate in which
phase of the software development cycle the error was intro—
duced into the program. However , the modification category
f ield general ly indicates whe ther an error was introduced
during the specification phase or later.

The value of this field was derive d from two other values
contained in the RSM , (1) the date the modification was complet-
ed (paragraph 4.1.2), and (2) the flight program (paragraph
4.1.8), as well as from (3) the date the verification phase
began for tha t flight program . The va lue of the field is “D”
if the date the modification was submitted was earlier than the
date of the beginning of the verification phase ; otherwise the
value of the f ield is “V” .

— 
The date the verification phase began is the da te tha t is

underlined in Table 4—6 for that flight program. This da te is
either the date tha t configuration control by NASA began, if
that da te is available, or else the da te tha t Level 4 testing
started. The NASA configuration con trol da te was preferred , if
ava ilable, over the Level 4 testing da te, because it is consid-
ered a more accurate and reliable estima tor of the beginning of
the verification pha se.

Other and more refined breakdown s of tha t portion of the
software development cycle dur ing which program modifica tions
were made were  considered , but  were r e j e c t e d , e i ther  because
the r esulting pha ses would not be sufficiently meaningful or
because the available da ta , whether on the basis of partition—
ing the series of r evisions into pha ses or on the basis of
establishing dates tha t separate pha ses, was not sufficiently
rel iable.
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Table 4-6 FLIGHT PROGRAM RELEASE DATES , etc.

Fl igh t  Space Apollo NASA Release — — Level 4 - -
Program Vehicle Flight Control Da te Start Complete

Sundisk  Command 7 67 — 10— 4 68— 2 NC NC
Module

Colossus Command 8 68 7— 26 68— 8 NC NC
1 Module

Colossus Command 9 68 8—23 67—10—28 NC NC
I ’ 1A Module

Colossus Command 10 69 3— 7 69 — 4— 2 NC NC
2 M odule

Colossus Command 11 NA 69— 4—18 63 3—14 69— 4— 4
2A Module

Colossus Command 12 NA 69 — 7— 18 69 7— 7 69— 7—17
2C Modul e

Colossus Command 13 NA 6 9 — 1 2 — 1 2  69 — 10—10 6 9 — 1 0 — 2 4
20 M o d u l e

Colossus Command 14 NA 70— 5—29 70 5— 8 70— 5—26
2E Module

Colossus Command 15 NA 71— 3— 1 70 7—20 71— 1—28
3 Module

Sundance Lunar  9 68 4— 12 68—10 NC NC
Modu le

Luminary Lunar 10 NA 69— 4— 2 68—11—22 68— 11—22
1 Module

Luminary Lunar 11 NA 69— 6—17 69 2—28 69— 4—14
1A Module -

Luminary Lunar 12 NA 69— 8—12 69 7—14 69— 8—12
lB Module

Luminary Lunar 13 NA 70— 2— 5 69—10—20 69—11— 5
1C Module

Luminary Lunar 14 NA 70— 4—18 70 4—13 70— 5—24
lD Module

Luminary Lunar 15 NA 71— 3—20 70—12— 7 71— 1—18
IE Module

Legend for da te fields:

NA Da te not available
NC Da te not compiled, but probably available
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4.2 SUPPLEMENTAL DATA

The data described in this section was derived from CSDL
Apollo project documentation . It is contained in the second
file delivered to the sponsor. This file contains 83 records
of 80 characters each. The order of the items in each record 4

is listed below:

Field 1 Column s 1 — 5 paragraph of the sponsor ’s
- Statement of Work

Field 2 Column s 7 — 16 alphanumeric tag
Field 3 Column s 18 — 29 numeric value

or
Field 3 Column s 18 — 19 NA (for not available)

or
Field 3 Columns 18 — 76 multiple subfields (computer hour s

table)
Field 4 Columns 31 — 80 comment (for records other than those

containing computer hour s table)

The informa tion contained in this file is described below .

4.2.1 ERRORS

No errors wer e due to fa ilures in the computer hardware
only.

The number of so f tware  error s tha t resul ted  in abnorma l
processor termination is not available, since such da ta would 

-

have to be based on a detailed history of digital simulation
runs . 4

The number of software errors tha t resulted in normal
processor termination is not available, since such da ta would
have to be based on a detailed history of digital simulation
runs.

There were no software errors for which the exact cause of
the error was unknown when the corresponding software problem
report was closed, since such reports were not closed until the
problem was understood .

4.2.2 MACHINE USE STATISTICS

The total amoun t of CPU time used for the Apollo project
per month is shown in Figures 4—3 and 4—4 and Table 4—7. This
CPU time is provided only for Draper Laboratory ’s Honeywell
1800 and its IBM 360/75, and not for the Draper Laboratory ’ s
hybrid computer , its System Test Laboratory, or testing facili-
ties used outside the Laboratory. The CPU time given, for the
Honeywell 1800 and the IBM 360/75 , is in IBM 360/75 equivalent
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Table 4—7 COM PUTER USAGE (in hours) ~
- :
~

-
~ -

-
- I —

- 

I -
~~~~~Year Jan Feb Mar Apr 1 May Jun July Aug Sep Oct Nov Dec .4

I _ iI

1967 491 444 553 385 414 453 325 485 529 439 377 378

1968 446 484 555 606 703 1010 932 915 1097 1372 1267 1042

1969 1008 569 678 802 546 623 325 416 386 545 496 438 
-

1970 529 513 573 508 571 571 484 435 441 370 406 423

1971 197 315 262 264 323 216 214 206
_____  _____  ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ -
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hours. (4 hour s of Honeywell 1800 time are considered equiva-
lent to 1 hour of IBM 360/75 time.) The total amoun t of CPU
time used for the Apollo project is provided on a monthly
basis, not on a daily basis.

The monthly CPU time is based on Apollo project documenta-
tion -

Note tha t. the CPU time used for the Apollo project went
mainly into (1) testing (i.e., finding errors) , (2) assembling
programs to correct errors, (3) assembling programs to modify
the programs to meet new requirements and (4) developing the
equations. Thus, except for the time tha t went into developing
the equa tions——a rather small proportion of the total time used ,
the pr eponderance of the CPU time used for the Apollo project
went into finding and correcting errors or effecting
r equirements changes.

4.2.3 NUMBER OF SIMULATION RUNS -

Da ta on the number of simulation runs for each period in
the software development cycle is not. available; the record of
this item , therefore, contains the letters “NA ” .

Even if data regarding the number of simulation runs were
available, it is not clear how meaningful this da ta would be,
since the simulation testing done at Draper on Draper ’s IBM
360/75 and on Draper ’s Honeywell 1800 represented only a small
portion of all the simulation testing that was done . A great
deal of simulation testing was also done at Cape Kennedy,
NASA/JSC, Grumman, Rockwell, Delco and on Draper ’s hybrid comp-
uter and in Draper ’s System Test Laboratory . (These remarks
also apply to the data discussed under paragraph 4.2.2, above.)

4.2.4 SPEED OF SIMULATION 
-

The simulator to real time processing ratio varied
considerably , depe~iding on the rate of activity of the AGC being
simulated . At best , when the AGC (the on—board computer) was
performing the coasting flight functions (i.e., when only a
small percentage of its processing capacity was being used),
about 1 unit of IBM 360/75 time was required to simulate 8 units
of AGC time - At worst, when the AGC was very heavily loaded
(i.e., all of its processing capability was being used), about
4 units of IBM 360/75 time was required to simulate 1 unit of
AGC time - With an average load on the AGC , about 3 units of
IBM 360/75 time were required to simulate 2 units of AGC time.

These figures ~ema ned fairly constant over the period
covered by this study . The Honeywell 1800 program tha t simu—
lated the AGC was, when correcting for the 4 to 1 ratio in
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processing power between the IBM 360/75 and the Honeywell 1800,
approxima tely as efficient in simulating the AGC as the IBM
360/75 simulator program.

The user of the simulator pr ogram was able to vary the
fidelity (high and low) with which the environment was simulat—
ed. Users specified high fidelity only when high accuracy was
r equired , thus effecting some savings in run time .

4.2.5 SOFTWARE CHARACTERISTICS

4.2.5.1 SIZE

The total number of computer words in all the 16 releases
- - ~. covered by this study is approxima tely 610,000-

A second estima te of the total size of the Apollo flight
software covered by this study is provided by the sum for all
ropes of the number of words added or changed since the last
rope , exc luding , however,  a l l  words changed to correct
programming errors. This number is 83,866.

The second of these two numbers is a more meaningful esti—
ma te of the total size of the Apollo project, if we consider
primarily the extent of the development effort. However, the
first is the more meaningful estima te , if we consider the size
of the testing effort, since every rope had to be tested anew ,
and there was relatively little carry over to the testing of
one rope from the testing of its parent . In particular , approx-
ima tely the same amoun t of Level 4 through Level 6 testing was
performe d for each rope .

The first of these two numbers can be fairly well
approxima ted by multiplying the size of the computer ’s memory
(38,912 words) by the number of ropes (16, i.e., one rope for
each of the Apollo flights 7 and 8 and two ropes for each of
the flights 9 through 15). This pr ovides an estima te , albeit
high, of 622,592 words. However, a more accurate estimate,
610,000 words, was obtained by using the da ta of reference 11.
The size s of Colossus 3 and Luminary 1E are not available in
reference ii. The total number of words for flight program
Colossus 3 was taken from the program listing for Ar temis revi-
sion 72. The total for Luminary 1E was estima ted by an exper-
ienced Assembly Control Supervisor . Table 4—1 , page 30, lists
the size s for each rope.

The best estima te of the second of these numbers is the
sum of the entries of the sixth column (headed “New Words ”) of
Table 4—1 . This column lists, for each of the 16 flight prog—
rams , an estima te of the number of words added or changed since
the last flight program (rope) for the same space vehicle,
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excluding , however, all words changed to correct pr ogramming
— e r r o r s .  8 of the 16 numbers of this column are taken from

reference 12. 6 of the 16 are taken from reference 7. The
other 2 were estima ted by averaging the numbers in the column
for the previous 4 flights.

For an explanation of why size is estima ted in terms of
numbers of computer words, see the discussion in paragraph
4. 2 .5 .1 .1 .

4.2.5.1.1 SIZE OF FUNCTIONAL CATEGORIES

Table 4— 3, page 34, provides an estima te of the amoun t of
4’ code (in numbers of words) used for each functional category for

two representative revisions, Colossus revision 237 (the final
revision for the Command Module for Apollo flight 8), and Lumin—

— . ary revision 98 (one of the la ter revisions for the Lunar Module
for Apollo flight ii). Where , for a size , “NA ” . is entered
instead of a number it means tha t the size of the code for the
functional category is not available, since the code is embedded
among the code tha t was coun ted for other functional categories.

These numbers have not been computed for the other ropes,
because the pr ogram listings on the basis of which these numb-
ers are computed are not readily available. The NASA archive s
in Houston may con tain a compl ete or near complete set, but
this has not been investigated.

The size of each component module (i.e., the amoun t of
code used for each functional category) is sta ted in terms of
r.umber of machine words (each word consisting of 15 bits of
informa tion , wi th a sixteenth bit being used as a parity check) ,
and includes constants (data) and interpretive code, as well as
instructions. Although a listing of a program indica tes for
each word whether the word is an instruction word (the word is
unmarked), a constant (the word is marked with a “C”) , or a word
of interpretive code (the word is ma rked with an “I”) , it would
still be an arduous task to coun t these separately (for each
rope over 30,000 words would have to be categorized), and no
clear benefit would be obtained from this. Typically and very
roughly , about 53% of the words of a program represen t basic
machine instructions , 34% represent interpretive code and 13%
constants.

Measuring size in terms of machine words conforms to the
sponsor ’s requirement tha t programs be measured in terms of
number of machine instructions for tha t portion of a pr ogram
written in assembly language . The AGC instructions can be
meaningfully viewed as being of fixed (i.e., constant ) length ,
each the size of a word . Thus it makes sense to measure the
number of machine instructions in terms of the number of words
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the machine instructions occupy. (This make s sense even in
terms of those machine instructions tha t employ more than one
word. For example, a conditional branch instruc tion requires 4
words, yet those 4 words are generally occupied by 4
instruc tions.)

Measuring size in terms of machine words conforms to the
sponsor ’s requirement tha t programs be measured in terms of
number of lines of source code for tha t por tion of a program
written in a higher order language , since each line of the list-
ing r epresenting interpretive code can be considered to be a
line of source code and corresponds to a machine word.

Further, since interpretive code, machine instructions and
constants are apt to be interspersed throi.~hout a log section,
subroutine or functional category, it makes sense to use the
same yardstick for interpretive code as for machine instruct—
ions. Note tha t thi s situation is different from the typical
one , where different modules are written in different languages,
in tha t one segment of code is often written partly in a higher
order language (interpretive code) and partly in a (more
normal) assembly language .

Since modules are viewed as functional categories, the
size of each module given here is based on an approxima tion
obtained by considering each “log section I

~* as containing one
function . To the extent that this is true , the sizes are cor-
rect. It should be recognized, however, that, although log
sections in general were assigned on a functional basis, cert-
ain code embedded in any given log section properly belonged to
a function other than tha t represented by the log section . As
an example, a log section tha t was, quite reasonably, judged to
belong to the functional category of “navigation ” (since a very
large proportion of its code is dedica ted to tha t function),
contains within it. some code tha t is ‘display ” , some tha t is
“I/O” , and perhaps some other categories as well . Since the
functional category assigned to the code modification (column 27
in the first data file) was assigned on the basis of actua l
function, there is an inconsistency between the sizes given
here and the modification functional categories.

The first step in computing the size of the functional
categories for the two programs was to assign each log section
of each of the two pr ograms to one (or , in some cases, to none
or to two ) functional categories, depending on which category
(or categories) best described the log section ’s pr incipa l
function. The result of this step is shown in the Table 4—8

*A n ex p lana tion of “ log sec tion” and “subroutine ”——these fields
appear on the Modification Report (MR)——is given in Appendix B.
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headed “Functional Ca tegories Applied to Colossus 237” and Table
4—9 headed “Functional Ca tegories Applied to Luminary 98” . The
second step was to take the listing for each of the two pr ograms
in turn , look up on the listing the s~ ze of each log section
and add thi s number to the size for the appr opriate functional
ca tegory .

One minor problem connected with this procedur e arise s
from the fact that, for each of the pr ograms, just 2 (out of
some 80) log sections are assigned to more than one functional
category. In particular , in both Colossus revision 237 and in
Luminary revision 98 the log section T4RUPT PROGRAM is assigned
to functional category “E” (I/O ) as well as “T” (Hardware Fail—
ure Monitor), and Pill COM PENSATION PACKAGE assigned to “E” and
“U” (Hardwa re Service Routine). Clearly we do not want to add
the size of a log section to the size of each of two functional
categories. There are at. least the following 3 ways of
resolving this problem : (1) We arbitrarily split the size of
the log section in two , and add half to one functional category
and half to the other . (2) We could specify, for each log
section which is assigned to more than one turictional category,
what. proportion it is most appr opr iate to assign to one and wha t
to the other. (3) We assign the size of the log sections to the
more appropriate of the two categories. We chose the third of
these 3 ways. The reasoning was as follows : All the log sect-
ions in question involved I/O. Input/Output is a more subsidi—
ary function than is Hardware Se~ vices and Hardware Failure f”bni—
tor , and is thus best subsumed under (embedded in) the more
primary function. Input/Output may not. be a meaningful func—
tional category in the first place.

Tables 4—8 and 4—9 were prepared by two engineers with
extensive experience with Apollo software . For each log section
the functional category (see paragraph 4 .1-5) was selected which
best described the function to which the log section contribut—
ed. Some log sections consisted only of constants, which parti-
cipated in ma ny , if not all functions. The functional ca tegory

r . column in the table for these log sections is ma r ked “all” . The
log section ENTRY LEXICON of Colossus 237 consisted c~f a comment
and did not pr oduce executable code, hence could not be assigned
to a functional category, and is ma r ked “comment ” -

4.2.5.2 MODE OF CONSTRUCTION

All the 16 flight pr ograms were developed using convention—
al programming techniques- Structured programming was not in
general use at the time of the Apollo development . 
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Table 4—8 FUNCTIONAL CATEGORIES APPLIED TO COLOSSUS 237

Sub— Log Section Functional
rou t i ne  Ca tegory

- 

- 
( coded)

KILERASE ERASABLE ASSIGNMENTS all

INTERRUPT LEAD INS F
T4RU PT PROGRAM E,T
DOWNLINK LISTS D
FRESH START AND RESTART G
RESTART TABLES B
SX~N A R K  I
EXTENDED VERBS C
PINBALL NOUN TABLES H

KOOLADE CSM GEOMETRY J
IMU COM PENSATION PACKAGE E,U
PINBALL GAME BUTTONS AND LIGHTS H
P60,P6 2 K
ANOLFIND K
GIMBAL LOCK AVOIDANCE K
KALCMANU STEERING K
SYSTEM TEST STANDARD LEAD INS T
IMUJ CALIBRATION AND ALIGNMENT U

GROUND TRACKING DETERMINATION
PROGRAM — P2 1—P29 L

P34—P35, P74—P75 M
SMOOCH P31 C

P76 M
4 P80 C

STABLE ORBIT - P38—P39 M

P11 - N
TPI SEARCH M
P20—P25 L
P30,P37 Fl
P40—P47 N
P51—P5 3 P
LUNAR AND SOLAR EPHEMERIDES SUBROUTINES R

‘ANDORA P61—P6 7 A
SERVICER2O7 I
ENTRY LEXICON comment

• REENTRY CONTROL A
CM BODY ATTITUDE K
P37,P70 M
S—BAND ANTENA FOR CM C
LUNAR LANDMARK SELECTION FOR CM I

_



Table 4—8 FUNCTIONAL CATEGORIES APPLIED TO COLOSSUS 237 (cont.)

• Sub— Log Section Functional
rou t ine  Category

(coded)

TVCINITIALIZE A
P15 G
TVCEXECUTIVE A
TVCMASSPROP A
TVCRESTARTS B

L - 
TVCDA PS A
TVCSTROKETEST T

DAPCSM TVCRCIIDA P A
TVCGENBF I LT ER S A
MYSUBS R
RCS—CSM DIGITAL AUTOPILOT A
AUTOMATIC MANEUVERS K
RCS—CSM DAP EXECUTIVE PROGRAM S A
IFT SELECTION LOGIC A

• CM ENTRY DIGIT AL AUTOPILOT A

DOWN — TELEMETRY PR OGRAM D
INTER -BANK COMMUNICATION F
INTERPRETER Q
FIXED—FIXED CONSTANT POOL all
INTERPRETIVE CONSTANTS all
SINGLE PRECISION SUBROUTINES R
EXECUTIVE F
WAITLIST F
L A T I T U D E  L O N G I T U D E  S U B R O U T I N E S  J
PL A NETARY INERTIAL ORIENTATI ON J
MEASUR~ 4ENT INCORPORATION I
CONIC SUBROUTINES I
INTEGRATION INITIALIZATION I

;ATRAP ORBITAL INTEG R ATI ON I
IN F L I G H T  ALIGNMENT ROUTINES P
POWERED FLIGHT SUBROUTINES N
TIME OF FREE FALL M
STAR TABLES I
~GC BLOCK ~~~O SELF- CHECK T
PHA SE TABLE MAINTENANCE B
RESThRTS ROUTINE
I M U  MO DE SWITCHING R O U T I N E S  U
KEYRUPT , UPRUPT D

-
~~~ DISPLAY INTERFACE ROUTINES H

SERVICE ROUTINES S
ALARM AND ABORT B
UPDATE PR OGRAM D
RTB OP CODE S S

_ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _
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Table 4—9 FUNCTIONAL CATEGORIES APPLIED TO LUMINARY 98

Sub — Log Section Functional
rout ine Category

( coded)

LUMERASE ERASABLE ASSIGNMENTS all

INTERRU PT LEAD INS F
T4RUPT PROGRAM E,T
RCS FAILURE MONITOR T
DOWNLINK LISTS D
AGS INITIALIZATION B
FRESH START AND RESTART G
RESTART TABLES B

- - - AOTMARK I
EXTENDED VERBS C
PINBALL NOUN TABLES H

— - ~F~lONAID LEM GEOMETRY
IMU COMPENSATION PACKAGE E,U
R63 K
ATTITUDE MANEUVER ROUTINE K
GIM BAL LOCK AVOIDANCE K
KALCMANU STEERING K
SYSTEM TEST STANDARD LEAD INS T
Pill PERFORMANCE TESTS 2 T
IMU PERFORMANCE TESTS 4 T
PINBALL GAMES BUTTONS AND LIGHTS H
R60,R62 K
S—BAND ANTENNA FOR LM C

LF-MP2OS RADA R LEADIN ROUTINES U
P20—P25 L

P30,P37 Fl
-: - 

LEMP3OS P32— P35, P72—P7 5 Fl
GENERAL LAMBERT AIMPOINT GUIDANCE M

GROUND TRACKING DETERMINATION PROGRAM — P21. L
P34—P35, P74—P75 Fl

K I S S I N G  R 31 C
P76 Fl
R30 C
STABLE ORBIT - P38-P39 Fl

BURN, BABY, BUR N -— MASTER IGNITION ROUTINE N
‘ P 4 0 — P 4 7  N

FLY THE LUNAR LANDING N
THROTTLE CONTROL ROUTINES 0
LUNAR LANDING GUIDANCE EQUATIONS 0
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Table 4—9 FUNCTIONAL CATEGORIES APPLIED TO LUMINARY 98 (cont.)

Sub— Log Section Functional
rout ine  Category

P70—P7 1 N -

P 12 N
FLY ASCENT GUIDANCE 0

SERVICER I
— LANDING ANALOG DISPLAYS C

FINDCDUP — GUIDAP INTERFACE 0

LEMP5OS P5l—P53 p
LUNAR AND SOLAR EPHEMERIDES SUBROUTINES R

DOWN—TELEMETRY PROGRAM D
INTER—BANK COMMUNICATION F
INTERPR ETER Q
FIXED—FIXED CONSTANT POOL all

L 
INTERPR ETIVE CONSTANTS all
SINGLE PRECISION SUBROUTINES R
EXECUTIVE F
WAITLIST F -

LATITUDE LONGITUDE SUBROUTINES 43
PLANETARY INERTIAL ORIENTATION 43
MEASUREMENT INCORPORATION I
CONIC SUBROUTINES I
INTEGRATION INITIALIZATION I

SKIPPER ORBITAL INTEGRATION I
INFLIGHT ALIGNMENT ROUTINES P
POWERED FLIGHT SUBROUTINES N -. -

TIME OF FREE FALL Fl
AGC BLOCK TWO SELF—CHECK T
PHASE TABLE MAINTENANCE B
RESTARTS ROUTINE - B
Pill MO DE SWITCHING ROUTINES U
KEYRUPT , UPRUPT D
DISPLAY INTERFACE ROUTINES H
SERVICE ROUTINES S

• ALARM AND ABORT B
UPDATE PROGRAM D
RTB OP CODES S

T6—RU PT PROGRAMS A
DAP INTERFACE SUBROUTINES A
DAPIDLER PROGRAM A
P—AXI S RCS AUTOPILOT A

LM DA P Q—R AXI S A
KALM AN FILTER R
TRIM GIMBAL CONTROL SYSTEM A
P1OSTASK AND AOSJOB A

_ _ _ _ _ _ _ _  

SPS BACK—UP RCS CONTROL A

H
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4 .2 .5 . 3  LANGU : ~ES USED

The language used on this project was assembly language ,
with interpretive code interspersed throughout an assembly
language program .

Typically interpretive code and machine instructions, as
well as data , are interspersed throughout a log section, sub-
routine or functional category . Thus there would not likely be
a log section consisting only of interpretive code.

The interpretive language being used is primarily oriented
toward doing three kinds of arithmetic, 1) one tha t operates on
28 bits plus sign fixed point scalar numbers, 2) one tha t oper—
a-tes on 42 bits plus sign fixed point scalar numbers, and 3)
the third tha t operates on three element vectors, each of whose
elements is a 28 bi t  plus sign fixed point scalar number. The
vector arithme tic includes provision for multiplying three ele-
ment vectors and 3 by 3 ma trices. Even though this language is
thus considerably more powerful than a typical assembly lang—
uage, its form (syn tax) is tha t of an assembly language ra ther
than of a higher order language . For a fuller description of
the language see Appendix A . Use of the interpretive lang uage
instead of assembly language (ox machine code) generally saves
storage space in the AGC memory at the expense of speed of
execution .

~1A
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SECTION 5

DATA SUMMARIES

The da ta described in Section 4 have been summarized and
presented  i i this section in tabular and graphic form. The
following- observa tions are made from examining these summaries
with a knowledge of the software development.

5.1 PATTERNS OF FLIGHT SOFTWARE DEVELOPMENT

The general pattern over time of the number of software
modifications accurately reflects the history of program
development. Fig ure 5—1 shows tha t the periods of greatest
activi ty would be expected before the Apollo 9 flight and
before the Apollo 15 fliqht ,since a lonq lead development time was

• scheduled for those flights and they were deve1o~ed in parallel
h with others. The data bear this out (Figures 5—2 , 5—3, 5—4;

Tables 5—1 , 5—2 , 5—3 , 5—4) . In mid—1970 a new flurry of
activi ty followed the release of Apollo 14, reflecting the fact
that a large number of new capabilities were specified for the
Apollo 15 flight. The increased modification activity shown
for the Apollo 15 flight reflects the space saving activity
tha t took place to enable the impl ementation of those major
impr ovements.

At least two ropes were under development at all times.
Throughout 1967 and for a period in 1969 and 1970, three or more
were being developed simultaneously. Many of the modifica tions
tabulated for these periods, therefore, are multiple
impl ementations of the same change .

Apollo 9 was the first joint flight with the Lunar Module ;
not surprisingly, Table 5—4 shows tha t the vast majority of mod-
ifications for Apollo 9 were those made to the Lunar Module
program , Sundance .

5.2 FUNCTIONAL CATEGORIES

Fig ure 5—5 and Tables 5—5, 5— 6, and 5—7 show that the
grea test modification activity was in mission—oriented
fLictions; powered flight, navigation , tracking , targeting and
digita l autopilot (DAP). These functions were all specifically
related to the lunar landing and the rendezvous programs tha t
were being newly developed during the period covered by this
study.

5.3 MODIFICATION ACTIVITY RELATED TO MEMORY SIZE

It . was expected tha t a correlation would be observed
between the size of the functional ca tegories and the number of
modifications to them. The da ta do not exhibit this, however ,
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as shown in Figure 5—6 and Table 5—8.

It is probably true tha t modification activity is more
directly correlated to the specific development taking place ,
as di scussed in Section 5—2 , than to memory size.

A factor tha t should be considered is the me thod used in
this stud y to determine the sizes of the functions. The sizes
were taken directly from two intermediate programs that were
though t to be representative . Furthermore, the determination
of size and the assignment of functional categories to the mod—
ifications were done on different bases: the sizes were based

~ on log sections, while the assignment of a category to a modifi—
cation was based on the actual content of the modification
itself. Thus the usefulness of the figures on sizes of furic—
tions is questionable.

Off—line development and checkout were more common for
some functions than for others. Da ta on this off—line activity
are not available, but it may well be a factor in these statis-
tics. It is known , for example, tha t the digita l autopilot
( D A P )  programming group did a large amount of off—line work,
while the powered flight programming group did not. The da ta
show tha t the percentage of modifications vs. size for these
two functions is in direct opposition, 7.4% of the modifications
vs. 13% of the memory size for the DAP, 13.1% of the modifica-
tions vs. 7.8% of memory size for powered flight..

5.4 MAJO R MO DIFICATION ACTIVITY

It was expected even prior to the examination of an” of
the data summaries tha t large numbers of modifications would
fall into the categories of logic , in—house improvements, corn—
pool d e fi n i t i o n,  i n t e r f a c e s,  c o n f i g u r a t i o n  cont ro l  and user
requests. The nature of the Apollo project and its computer
architecture led to this expectation, which is borne out by the
data (see Fig ure 5—7, Tables 5—9, 5—10 and 5—11).

The use of assembly language undoubtedly contributed to the
pre ponderance of logi c errors ; had a higher or der language been
used, the percentage of these errors would no doub t have been
smaller .

The number of in—house improvements was expected to be, and
[ was, large . This category included memory optimizations as an

ongoing activity .

Modifications to compool variables were expected to be
lar ge in number because of the time—sharing of erasable memory.
This limitation imposed continuing r equirements for modifica—
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dons t h r o ug h o u t  the development.

Interfaces are a traditional sour ce of error ; in the Apollo
p r o j e c t ,  the compl exit ies of rea l—time in te rac t ions  and the use
of assembly language coupled wi th in te rp re t ive  lang uage
exacerba ted the pr oblems in this  area .

The fixed bank architecture of the computer required
t specific code to address remo te banks; in addition, the memory

organiza tion was changed frequently to accommodate program
changes, both actua l and anticipa ted.

The “user requested” category is actually a more significant
factor than is shown by the number of modifications in tha t
category , since more often than not, a single change involved
one or more large blocks of code. Da ta on the size of the
individual changes are not available.

I
It was expected tha t the number of computational errors

would be significant, due to the large percentage of “number—
crunching ” code and especially because of the fixed point scal-
ing tha t was used. The da ta show, however, that this category
was relatively small in comparison to the others discussed
above.

5.5 DEVELOPMENT PHASE VS. VERIFICATION PHASE

Although Figure 5—8 and Table 5—12 indica te tha t most of
the modifications to each rope were made during the development
phase as expected, the informa tion presented is pr obably not
entirely accurate - The configuration control da tes for Apollo
flights 7,8, and 9 are available and , therefore, the phase m di—
cators for these flights -a~ e reliable . Phase indicators for
later flights were based on the completion of level 4 testing ,
which approxima tes the configuration control da tes.

It should be pointed out tha t some errors were found after
configuration control but were not corrected for tha t flight
and , therefore , will not appear in the verification phase da ta ;
instead; corrections were implemented in the development phase
of the next flight. Fig ur e 3—1, page 23, shows tha t a signifi-
cant number of known anomalies were allowe d to remain in the
f l i g h t  programs.

5 .6  REFERENCED DOCUMENTS

Tabl’~s 5—1 3 and 5—14 illustrate the references in the da ta
to supporting documents— PCR5, PCNs, ACBs and Anomaly Reports.
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TABLE 5-2 MODIFICATIONS BY FLIGHT
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TABLE 5-4 MODIFICATIONS BY ROPE

-
, - !S P O L L O  NU~~?ER OF

Rop~ MODI!~ CA T I ON S

C7 196k
08 29~i7
090 52
09L 3325
100 291
1~ L 1140
110 32
11L 26~4
120 94
12L 172
13C 22
13L 49
14C 211

2 1’
150 78’~’15 .  176
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TABLE 5-12 MODIFICAT IONS BY PHASE AND ROPE
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TABLE 5-14 MODIFICATION BY ROPE AND REFERENCE CATEGORY

APOLLO NU -~BER CF MODIFICATICNS ~ ~EF:~ rNcp C A T E G O R Y
T -~ ncPr ~!O-REF AC E~ COL CO~ LMY PCN
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12L -38 2 0 0 19 0 63

-: 13C 4 4 0 8 C 0 6
13L 19 5 0 3 0 0 25
tUC 53 26 0 6 ‘4 122
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15C 337 247 0 11 0 1 184
15L 59 13 -3 C 0 ‘4 100
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SECTION 6

SUMMARY AND RECOMMENDATIONS

6.1 NATURE AND QUALITY OF THE DATA

The set of da ta provided by this stud y is derived directly
from the program modifications . It is a complete history of the
programs ove r the f o u r— y e a r  period . It  inc ludes,  there fore ,
all changes made to the programs, including error corrections,
enhancements of capability , deletions of obsolete capabilities,

-~~~~ changes in mission requirements, optirniza tions of either memory
or execution time , and improvements in elegance of construct ion-

It is not quite correct to classify these da ta , then, as
an “error history ” , since a larger portion of the items were in
the nature of improvements rathe r than corrections to outright
mistakes . On the other hand , had the system been specified and
built perfectly the first Lime , there would have been no need
for any modifica tions at. all, except for those that reflected
changing mission requirements. Since the requirements imposed
by changes in mission were relatively few in number (although
large in number of lines of code), it is fair to say tha t the
data set r epresents the response to system errors, some of
which were software errors (mistakes), some of which represent-
ed a failure in specification or design, and others which repre-
sent the fact tha t the job was not done perfectly the first time
and, therefore, could be improved.

The va lue of thi s data  set to prospective ana ly s i s  should
be considered in the light of several factors unique to the
Apollo project :

A. The real—time multi—programmed aspects of the programs:

This led to problems in da ta integrity and da ta
availability in real—time . In addition , the
varying levels of demand on system resources
caused problems in t iming  and a s s i g n m e n t  of
priorities

B. The importance of the man/machine interface :

The crew, through the DSKY , was an interactive
user of the software in tha t. approval was
required at each major program step; options
presented to the crew enabled selection of
alternate program paths . Fur thermore , many
special functions could be invoked, at any
time , by crew request .
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C. Ul t r a—high  re l iabi l i ty  requirements:

This imposed a heavy programming and testing
burden , e specially for  real—time restar t
a b i l i ty  and error checking .

D. Severe memory l imitat ions:

This  led to extensive modificat ions for  memory
optimizt ion , as well as the necessity for time—
sharing of erasable da ta locations. .5

~~

E. The computer archi tecture:

Thi s led to many modif ica tions to tailor both
f ixed and era sable code to enable the correct
address ing mode .

F. The era in which the development took place:

The strict me thodologies in specification tech—
niques, design standards, documen ta tion s tand—
ards  and programming conventions were not in
general use at the time.

6. 1.1 RELIABILITY OF THE DATA

The in i t ia l  recording of the da ta was  done for the purposes
of ma nagement control  and v is ibi l i ty  a t  the time ; it was not
ant icipa ted tha t the records would be used for later statist ical
ana lys i s .  The forma t did not,  therefore , always pr ovide suf-
f i c i en t  in forma tion for  the categoriza tion process performed in
th is  s tudy .  Some item s required reference to other ma terial ——
memos , management p lans,  presentation ma ter ial .

A team of experienced Apollo programmers and engineers was
formed to collect and categorize the data ; had these spec ial—
ize d personnel not been ava i lab le,  it is doubt fu l  that  the job
coul d have been done. Yet it is possible tha t biases may have
been introduced due to thei r  personal involvement with  the
or igina l pro jec t .

The i n h e r e n t  sub jec t iv i ty  of the categoriza tion process
should be emphas ized.  Judgement was exercised by four teen
i n d i v i d u a l s  in ass igning  categories.  The r isk was recognized
e a r l y  in the process and consu l ta t ions  produced a general
appr oach to be take n by a l l;  never the less,  i t  is impossible to
estima te the extent of the divergence in judgement decisions.
Also , i t  mus t  be recognized tha t inadver ten t  e r ro r s  were
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undoubtedly made ;  it was impossible to check for any but
mechanical errors (examining the fields of machined da ta ) due
to the large volume of da ta .

Specific f i e lds  which may not be comple te ly  r e l i ab le
include:

— r e fe rence  f i e l d:  there  is no way of assuring tha t
re fe rences  were a lways  cited on the modification repor t
when they appl ied;  it is reasonably cer tain, however,
tha t the recorders included all such references when
they were ci ted.

— functional category, modifica tion category, and - -

modification description fields: subjectivity , as
discussed above , was a component in determining these
fields.

— software development phase field: due to lack of
sufficient data , the date chosen for the verification
phase was estima ted for the later flights (Apollo 10
through Apollo 17).

— size fields: the estima tes on which the va lues of
these fields are based are discussed in paragraph
4.2.4.

6. 1.2 UNAVAI LABILITY OF DATA

Certa in  item s would have been included in the da ta had they
— been available. These include:

— the da te of initiation of each error correction; the
date  or program revision of the discovery of each
error : no informa tion is available on when errors were
found  ox when correction processes were begun .

— detailed informa tion on the number of s imula t ion
r u n s ,  the t e rmina t ion  conditions of tests, the amoun t
of computer time necessary to isolate  each e r ror .

— the size of the modifica tions.

— traceability from one modification to others: only
incomplete information is available to establish the
e f f e c t,  in causation of additional errors , of
incorporating a given modification .

6 . 2  RECOMMENDATIONS

One of the pr ime goa ls  of software research is to achieve 
- 

-
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greater  sof tware  r e l i a b i l i ty . One promising approach toward
this goal is to find me thods of measuring and predicting the
r e l i a b i l i t y  of a given sof tware  pr oduct ,  much in the way tha t
hardwa re reliability is measured and predicted .

Another  approach is to a t t ack  the r e l i ab i l i t y  problem at
its source , tha t is, to ask what kinds of errors happen in
softwa re produc tion , to attempt to analyze their causes, and to
develop tools designed to deal spec i f i ca l ly wi th those aspects
of sof tware  produc tion tha t contr ibute  to the c reation of
errors.

In order to implement these approaches,  large quantities
of error  da ta must be analyzed. This means that errors must be
tracked f r o m  the very beginning of software development, and
further, tha t they must be recorded in a way tha t will enhance
analysis of their types and causes.

A stud y such as thi s one reveals the difficulty of
compiling data  f rom sources tha t were o r i g i n a l l y  designed for
other purposes .  Had more ana lys i s  of the da ta been included at
the time i t  was produced , the job of compiling the da ta would
have been mere ly  a c ler ica l  one . As it was, specialized
personnel were required to expend considerable effort in the
compilation and categoriza tion process. Fur ther, some data
that would have been useful for analysis were not available
( see paragraph  6 - 1 . 2) .

The first recommendation, therefore, is tha t reporting
procedures be designed so tha t the ma ter ia l  collected dur ing
deve lopment wi l l  be useful for later dnalysis . Specific
studies should be conduc ted to determine just what informa tion
is re levant  to error  a n a ly s i s  and an e f f o r t  to compile fo r
several large cur ren t  p ro jec t s  should be instituted .

In practice, however, there is extreme difficulty in
attempting to maintain error records during project deve lopment.
The realities of schedules and costs make it almost impossible
for project engineers and programmers to devote their time to - 

-

anything but the process of software production , test, and
verification .

M e th ods must be found, therefore , tha t can automa te the
produc tion and col lect ion of error data without significantly
impacting the schedule or the cost of the host project .

Studies should be conduc ted to investigate the feasability
of incorporating error analysis and compilation of statistics
into exis t ing tools. Modern compilers already contain sophisti-
cated diagnostics; the use of these as a basis for maintaining
error statistics may be easily implemented . Similar existing
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diagnostics contained in simulators and other testing tools
could be enhanced to provide error histories as well-

Much work has a l r eady  been done to pr event e r rors  at their
sour ce. Higher order languages themselve s preempt many of the
errors common to assembly—coded programs; structured program—
ming is generally recognized as a giant step forward and docu—
mentation and control techniques have been greatly improved.

S t i l l,  t he r e  is a need for a better understanding of the
roots of the pr oblem, and work toward this understanding should
be founded on a sound sta tistical base .

The creation of the da ta base by the sponsor is certainly
a step in this direction .

~1
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APP ENDI X A

THE INTERPRETIVE LANGUAGE

The interpretive language used as one of the two languages
in which to write the flight pr ograms for the Apollo on—board
computers can well be viewed as a lang uage in which to write
instructions for a virtua l machine . This machine , called an
interpreter , has i ts  own ins t ruc tion set, i ts  own multi—purpose
a r i t hme tic accumula tor , i ts own arithme tic overflow indica tor ,
its own arithme tic argument stack (push—down list) , its own two
integer index registers, its two step registers (used by the TIX
instruc tion , which manipulates an index register), its own 60
switches (boolean variables), its own pr ogram (control) counter,
its own return address register, and its memory , which is
essen tially the same as the memory of the AGC , which hosts the
interpreter. Each of the interpreter ’s instructions can be
viewed as consisting of an operation code followed by 0, 1 or 2
operand designators.

Consider first a class of instructions whose operation code
can be followe d by either one or no operand designator. The
operations invoked by these instructions are binary arithmetic
opera tions, e.g., add, multiply , subtract and divide . Each
such operation operates on two arguments. The first argument
is the content of the interpreter ’s accumula tor. The second is
either explicitly designated , in which case the operation code
is followed by an operand designator, or not, in which case the
operand designator is missing . If the second argument is only
implicitly designated, then it is the top of the interpreter ’s
stack, and one of the side effects of the operation is the pop-
ping of the stack. If explicitly designated it can be designat-
ed sta tically or dynamically. If designated statically, it. is
designated by giving a fixed address . If designated dynamical-
ly, it is designated by giving a fixed address and by designat-
ing one of two index registers, the argument being the one at
the address which results from adding to the fixed address the
content of the designated index register . The result of the
operation is returned to the accumulator , and the interpreter ’s
overflow indica tor is set if overflow occurred during the
operation .

Consider next another class of instructions whose operation
code is never followe d by an operand designator. The operations
invoked by these instructions are unary arithme tic operations,
e.g., square, round, double, sine and complement. The opera-
tions operate on one argument, the content of the interpreter ’s
acc~m~ulator, with the resul t of the operation being returned to
the accumula tor , and the interpreter ’s overflow indicator being
set if overflow occurred during the operation.
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• Other i n s t ruc tions pr ovide for  test ing the acc umula tor  or
the overf low indica tor , t r a n s f e r r i n g  da ta be tween the in t e rp re t—
er a s regis ters  (e . g . ,  accumulator , index regis ters)  and memory,
rese tting the program counter, reset ting the re turn add ress

• register, manipulating and testing index registers, manipulat-
ing and testing switches, manipulating the stack, and exiting
and conditionally exiting from the interpreter. BY an instruc-
tion by which testing is carried out is meant an instruction
which conditionally resets the program coun ter (i.e., resets
the program coun ter if the test succeeds).

Each of certain store instruc tions wi th N operand designat—
ors (N=1 or 2) occupies N words of consecutive storage. Any
other instruction with N operand designators (N = 0, 1 or 2)
requires N plus a half or N+1 words of (not necessarily consec-
utive) storage. Thus an instruction requires anywhere from a
half to 3 words of storage . The average amoun t of storage
required for an instruc c.ion is around one and a half words.
(Of cour se these figures do not include the amoun t of storage
required to house thq interpreter , which is itself part of the
flight program and takes up around 2150 words of storage.)

In terpretive instructions are interpreted by the interpret-
er only after a transfer of control to the loca tion INTERPRET
is effected by the AGC via a Transfer Control (TC) machine
language instruc tion. The word in the location immediately
following the TC instruc tion is the f irs t to be interpre ted
af ter invoking (entering) the interpreter. Transfer of control
from the interpreter to a designated real machine instruction
is effected by the interpreter via an appropriate exit
instruction.

4c

90

LÀ _ _ _ _ _ _ _ _ _  ____



• APPEND IX B

• LOG SECTIONS AND SUBROUTINES

The f iel ds “Log Section” and “Subroutine ” appear on the
modifica tion r eports (Figures 4—1, page 27, and 4—2, page 28)
used as the source of the data of this study. They are

• explained below.

Log sections, even though recognized by the assembler as
program components, should not be identified as modules . (3
examples of log sections are , for subroutine PANDORA of
COLOSSUS 237, P11, TPI SEARCH, P20—P25.) Log sections were
created during the Apollo development as a bookkeeping

• • convenience , to par tition the sof tware into manageable
portions. In some cases, but not all, a given log section was
assigned to a single group of engineers who had responsibili ty

• • for maintaining it. Line numbering began anew with each log
section; renumbering could be accomplished by an assembler
instruction . A log section could not be separately assembled.
In most cases (as can be seen from Tables 4—7, page 47 and 4—8,

I page 53, which are described in paragraph 4.2.5.1.1) a log sec-
tion was dedica ted to a particular functional category, but was
not sufficient for carrying out the functio’ • nce more than

• one log section was usually required to carry function .

Subroutines, also recognized by the assembler as program
components, again should not be identified as modules. (4

r examples of subroutines are, for COLOSSUS 237, KILERASE,
KOOLADE, SMOOCH, PANDORA.) Subroutines were also crea ted as a

• bookkeeping convenience , to partition the software into manage—
able but more inclusive portions. A subroutine could be separ—
ately assembled. However, a subroutine was seldom dedica ted to
carr ying out a particular function. Instead (as can be seen
from Tables 4—8, page 53, and 4—9, •page 55), different portions
(log sections) of a subroutine participa ted in carrying out dif—
ferent functions. It should be noted tha t this sense of
“ subroutine ” is not the same as the common concept of a coded
module tha t can be invoke d by , and will return to, another
module.

I
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