
COPY # 237

GUIDANCE AND NAVI

Z-1077

PRELIMINARY MOD 3C

PROGRAMMERS MANUAL

by

R. Alonso
J;H. Laning, Jr.

FI. Blair-Smith

November 1961

0
GATION

INSTRUMENTATION

CAMBRIDGE 39, MASSACHUSETTS
LABORATORY

ACKNOWLEDGMENT

This report was prepared under the auspices of DSK

Project 55-191 sponsored by the Space Task Group of

the IVationa.1 Aeronautics and Space Administration

through Contract NAS9-153.

The publication of this report does not constitute

approval by the National Aeronautics and Space

Administration, of the findings or the conclusions

contained therein. It is published only for the

exchange and stimulation of ideas.

TABLE OF CONTENTS

Preliminary Mod 3C Programmers Manual

Introduction

Machine Organization

Description of the Instructions

Additional Special and Central Registers

Output Registers

Input Registers

Counter Incrementing

Program Interruption

Examples of Programs

APPENDIX I

APPENDIX II

APPENDIX III

APPENDIX IV

APPENDIX V

APPENDIX VI

Complete List of Centrals and
Specials with Numerical Address
and Bit Transformations

List of Control Pulses

3C Instructions (H. Blair-Smith)

Yul System for 3 C and Related
Computers (H. Blair-Smith)

Interpreted Instructions
(J. H. Laning, Jr.)

Illustrative 3C Program in
Yul Language (J. H. Laning, Jr.)

Page
5

5

5

8

11

13

14

15

17

19

27

31

33

49

59

15

3

PRELIMINARY MOD 3C PROGRAMMERS MANUAL

INTRODUCTION

This manual is intended for those people who have some

familiarity with the type of computer of which the Mod 3C is an

example. Although the 3C computer is like the one desci-ibed in

R-276, there are many differences of details and of nomenclature,

The material presented here neither is complete, nor is

it entirely firmly established 2.t the present date.: It is me&lit to

provide prospective 3C programmers with enough information

to code representative programs, to make estimates of storage

and speed requirements, and to aid the 3C designers by forcing

commitments as to the nature of the IN-OUT system. Furthermore,

it is hoped that this manual will bring about comments and questions

by those who program. Despite the foregoing remarks which

suggest that the design of 3C is still in a fluid state, it should be

emphasized that there is no reason at present to suppose that

the material described in this report will be changed in any

respect in the final design.

A complete listing of all registers in Groups SC, IO; and

C (Table 1) and their tentative address assignments is included in

Appendix I. Appendix II contains a listing of control pulses, and

Appendix III shows all the control pulse sequences. Appendices

IV, V, and VI describe, respectively, the Yul system compiler

for compilation of 3C programs and prepara.tion of corresponding

rope wiring diagrams, a set of interpreted instructions for extra

precision arithmetic and vector operations, and finally a repre-

sentative program in Yul system language for purposes of illus-

tration.

MACHINE ORGANIZATION

For programming purposes, 3C may be outlined as in

5

Table I. Other relevant facts are:

a. Bit positions in the 3C word are numbered 0 to 15,

reading from right to left. Bit zero is always the

parity bit whenever a parity bit exists. Bit 1 is the

lowest order digit position and bit 15 the highest.

Data words consist of a sign bit (151, 14 bits of data

(bits 14-l), and parity bit 0.

b. Number system is ONE’s complement. This means

that there are two representations of zero.

c. Instruction format consists of 3,.bits for instruction

code (bits 15-131, and 12 bits for the relevant address

(bits 12-l).

d. List of Instructions:

~~’ TC

ccs

INDEX Modify Next Instruction

XCH Exchange

cs Clear and Subtract

TS Transfer to Storage

AD Add and Count on Overflow

MP Multiply

Transfer Control

Count, Compare and Skip (a kind of
branch)

e. Additional Sequences:

Increment Counters

Interrupt

Resume

Several other operations on a word are possible by the

use of specially wired registers. The present content of a register,

e. g. register A, is symbolized by

c(A),

and it means “that which would be read out of A”. It is sometimes

6

TABLE I Programmer’s View of 3C Organization

Group
Name’*

F

E

C

Fixed: 3584 Registers

Octal Addresses

7777 to 1000, inclusive

Normal Erasable: 460 Registers

Octal Addresses

0777 to 0064, inclusive

Counters: 20 Registers

Octal Addresses

0063 to 0040, inclusive

IN-OUT: 16 Registers

(6 Input, 4 Output, 4 Unassigned

Addresses, and Inhibit Interrupt)

Octal Addresses

0037 to 0020, inclusive

A

Specials and Centrals: 15 Registers

Octal Addresses

0017 to 0001, inclusive

Accummulator A: 1 Register

Octal Address

0000

ii: Group Name is for convenience in writing the text.

7

necessary to make a distinction between the present content of a

register, and the content of a register before some action or

operation. The “before” content is symbolized by

b(A).

The registers mentioned in the description of instructions

are:

A The Accummulator

Q The Return Address Register

N The Uncorrected Sum Register

LP The Low Order Product

These registers are all addressable as ordinary registers in

storage and have addresses and properties as given in Appendix I,

DESCRIPTION OP THE INSTRUCTIONS ----

When discussing an instruction, it is assumed that L is

the location of that instruction.

Code 0.. TC x Transfer Control

Action: Take the next instruction from location

x, instead of from location L + 1. Set

central register Q to

c (Q) = L + 1~7 TC L + 1

The last equality holds because the

numerical code for TC is 000. *

Comments : The instruction TC Q is useful for exiting

subroutines. The instruction TC A

causes the single instruction in register

A to be executed. This action follows

because register A has address 0 and

register Q has address 1.

8

Code 1. ccs x. Count, Compare and Skip :~. ---~

Action: If c(x) > 0, set c(A) = c(x) - 1;

Take next instruction from L + 1.

If c(x) = + 0 , set c(A) = + 0 ;

Take next instruction from L + 2.

If c(x) < 0 , set c(A) = - c(x) - 1;

Take next instruction from L + 3.

If c(x) = - 0, set c(A) = + 0 ;

Take next instruction from L t 4.

Comments : The instruction CCS A is permissible.

Note, however, that the original contents

of A are changed as per the actions

described above.

Code 2. INDEX x. Modify Next Instructions by Adding c(x) --

Action : Take as the next instruction. ,’

c(L + 1) + c(x).

Comments : If L + 1 is. of Group Ed, its contents are not

correctly restored. Address x may be of

Group E without ill effects.

The sum c(L + 1) + c(x) is the overflow-

corrected sum. (See Note 3 ofAppendix I).

Code 3. XCH x. Exchange c(x) _-- -

Action: Set c(A) = b(x)

Set c(x) = b(A)

Exchange c(A) with c(x), unless x is of

Group F. If it is, c(x) remains undisturbed.

Take next instruction from L + 1.

Comments: There are implications to the use of XCH C,

where C is a counter of Group C. This

will be elaborated upon later.

9

Code 4. cs x. Clear and Subtract x
.,.

Action: Set c(A) = - c(x);

Re,store x to the original c(x). [c(x) = b(x)]

Take next instruction from L + 1.

Comments : The instruction CS A complements c(A);

i. e., c(A) = - b(A)

Beware of CS x, where x is of Groups

ID or SC; restoring the contents of a

register implies first clearing that

register, and then writing back into it.

If the register x is a shift register,

for example, its contents will be altered

in the process of restoration. This

warning applies to all instructions.

Code 5. TS:x. Transfer to Storage x

Action: Set c(x) = c(A);

Leave c(A) undisturbed

Code 6. AD x Add and Count Overflow

Action: Set c(A) = b(A) + c(x), corrected for

overflow. Superpose the uncorrected

sum onto c(N). N is of Group SC.

If overflow occurs, set a signal to

cause incrementing or decrementing

of the’overflow counter (OVCTR) of

Group C, according to whether the

addends were’ positive or negative.

Comments : Superposing onto c(N) means storing in

N the bit-by-bit OR of the sum c(A) + c(x),

notcorrect’ed for overflow, and the previous

content of ,N, i. el ,I c,(N)* = b(N) +{c(A) + c(x)) .

As, will be: shown later, N can be used

for_ editing purposes. The counter

10

incrementing feature is useful in double

precision subroutines. TS N may bed used

to set N to some desired initial value.

See Appendix I, Note 3 for definition

of overflow correction.

Code 7. MP x. Multiply by x -- _._.~.._~..~.~ __--

Action: Set c(A) and c(LP) to b(A). c(x), with

LP holding the low order part of the

product, and A the high order part.

Register x is restored. The quantity

in LP has the same sign a&that in A.

Comments : Multiplication requires 16 Instruction

Times, versus 2 for CCS, and 1 for all

others.

ADDITIONAL SPECIAL & CENTRAL REGISTERS

There are 15 registers classified as Special or Central,

The Special registers are those which perform some sort of

transformation or manipulation of the incoming or outgoing bits.

Shift and Cycle registers are of this sort, as well as the N register;

the N register has its sign bit position connected to a special place

in the Adder circuit, rather than to the normal sign bus. Non-

special registers are those which are like erasable registers in

that they do not modify the information transmitted through them

in any way.

The category of Central registers - which is not mutually

exclusive,with that of Specials - refers to those registers which

are addressed directly by the Sequence Generator, as well as by

the regular addressing method. For example, register CYL,

which cycles a word left by one bit position, is Central because

it is used by the MP instruction, and clearly Special because of

the tranformation it effects on a word. The programmer may

use freely those Specials which are not Centrals; that is, those

11

special registers which are not committed to any particular

sequence or instruction. These registers are:

SRl Shift Right

SLl Shift Left

CYR Cycle Right

EDH An editing register described in Appendix I.

and meant for use in the Interpretive set

of subroutines.

The programmer may also use certain other of the special registers

such as CYL, or LP, at his own discretion, provided no-l intervening

instructions alter their contents. Other central registers, such

as D or 2, should be used only by the programmer who has full

knowledge of the specific effects of the control pulse sequences.

These registers are discussed in detail in Appendices I and III.

Several Central registers, not Special, are worthy of note

bec,ause of the use they are put to. These :are:

D ‘Holds the data address of an instruction.

Programmers stay away.

z At the point of beginning an instruction at

L, c(Z) = L + 1, Stay away.

Q Holds P + 1, where P is the location of the

TC instruction last executed. Used in

exiting subroutines, as is shown in later

examples ~

BI Holds a replica of what register B held at

t.he time of an interruption. B is not an

addressable register. BI should not be

disturbed unless the programmer is trying

to resume from an interrupting program

to another program different from the original

interrupted one. This sort of thing is to

be done with extreme caution.

12

ZI Holds a replica of what Z held at the time

of an interruption. ,Further comments as ;~

in BI.

OUTPUT REGISTERS --

There are four addresses currently reserved for output

registers. The output registers are OUTO;, OUTl, OUT:?,, and

OUT3. Each output register consists of,15 bistable latches

corresponding to the 15 useful bit positions of the word length and

are addressed by executing TS OUTX.; those latches will be turned

on which correspond to ONES in the word originally in A. Hence,

each latch is addressed by bii position within a word, as well as

by word address.

Register OUT0 and OUTl are such that their latches, once

turned on, stay on until a new word is written into them. The

useful output signal is a DC level. To turn off all the latches of,

say, OUTl, execute TS OUTl, (or XCH OUTl), where c(A) = +O..

Register OUT2 is discussed after Register OUT3.

Register OUT3 is different from the previous two in that

all of its latches are connected to the circuitry associated with

the Group C registers (the Counters), so that a given latch within

OUT3 may be turned on by the overflow of a specific counter, as

well as by the execution of TS OUT3. Furthermore, these latches

are turned off by every time pulse 6”, so that these latches are

never on for longer than a fraction of an Instruction Time; the

time these latches remain on ‘i:s 30 Fsec if they were turned on

by an overflow; about 10 psec if turned on by a TS OUT3. The

XCH instruction should not be used for addressing either OUT3 -
or OUT2.

The reason for the complicated arrangement for OUT3 is

that the latches are meant to be primarily the overflow (underflow)

indicators for counters. The feature of addressing these overflow

*The basic Instruction Time ua.has 8 steps, called Time Pulses.

13

indicators by means ,of programming was tacked on as an after-

thought. It is thought that the ability tom simulate overflows will

aid in systema and computer tests. The brief duration of these

outputs is a logical requirement of the Counter Incrementing and

Priority Interrupt systems.

Register OUT2 is like OUT0 and OUT1 in that the output :~

latches can be turned on only by means of a TS instruction. For

the most part, these latches wilr’stay on until’turned off by an

instruction, as in OUT0 and OUTl. Some bit positions, however,

may have connections which turn those latches off at every Time

Pulse 6, exactly as in the case of OUT3 latches.

There are a.Yotal~of SO output latches in 3C. Attempts to

read information from an OUTx register, e. g. , by means of

XCH OUTx’or CS OUTx, will result in c(A) = 0; CS OUTx will

also result in’& the latches of OUTx being turned off.
s 1

INPUT REGIiTERS

There are ,six input registers in 3C, IN0 through IN5.

These input registers are veiy like sampling and storing devices,

and experience with, Mod 1B has shown them to be a source of

mild confusion.
.i~

Input registers consist of magnetic cores, each of which

is tied to some DC source, e..g., a toggle switch, or an output
!
latch. An instruction such as XCH INx first clears those cores

to ZERO, ,sensing their contents into A, and then, samples the ~,
state-of the DC sources; the state of the cores of INx is known

to belike~the state~‘of the sampled,DC sourceaonly after the

execution’of XCH IN?. What this me,ans, is that the. first XCH

INx does not transfer into A the present state of the sampled

DC sources, but the state those sources were in the previous

time INx was addressed. Prudent’practice;~‘then, calls for

interrogating input registers by means of ‘two successive ‘orders

XCH”INx, or equivalent.

14

Registers INO, INl, and IN2 are tied, one to one, with

the output latches of registers OUT0 j OUTl, and OUT2. In this

way it is possible, by means of programs, to check on the state

of output latches. The short duration of the outputs from Register

OUT3,makes it impractical~to tie an Input Register to it. OUT2

is connected to IN2 because it is anticipated that most of its

latches will stay on as do those of OUT0 and OUTl, and hence

it is desirable to be able to check the state of those latches.

The remaining registers IN3, IN4, and IN5 are to be

connected to the outside world. The input convention is that a

ONE is a grounded input line i. e., the DC source supplies a

ground to indicate a ONE, and an open or -10~ through high

impedance when indicating ZERO.

INx registers may not be written into directly by way of

programs; it is not possible to transfer c(A) into INx by means

of TS INx or KCH INx. Those two instructions will, however,

cause the state of the input lines to be sampled into INx.

COUNTER INCREMENTING

Mod 3C has 20 addressable registers which behave as

counters. The inputs to those counters are things such as

accelerometer pulses, or pulses from a clock, or overflows

from other counters. Specification of the inputs to counters is

a matter of wiring, not of program, and is one of the desired goals

and a necessary condition for the full definition of 3C. Counter

incrementing~takm place between the end of one instruction and

the beginning of the next one. This process requires one Instruction

Time per increment executed; ‘t’ciis is one reason why statements

about time of execution of programs must be qualified.

As presently planned, positive or negative input into a

counter position causes the action c(K) = b(K) * l(o), where lbo)

stands for low order ONE. Every input into a counter position

specifies a counter. The overflow or underflow of counters

may be used as outputs to be connected to the outside world; or

15

to serve as inputs to other counters; or to the Priority Interrupt

circuits. It is part of the programmer’s job to specify such

connections when he needs them.

To interrogate a counter without risk of missing input

pulses., use CS CTR and not XCH CTR. To preset a counter to

a given value, and not miss pulses, use XCH CTR, not TS CTR.

The subtleties which’ cause these recommendations will be

explored later,in examples.

Table II Preliminary Counter List

Comments

Used in connection with AD x

Low order part of time

High order part of time

Presettable counter. See Example II.
-

A list with a tentative assignment of the first four counters

is shown in Table II. The inputs to TIME 1 are pulses from a clock.

For the sake of definiteness,, assume that these pulses appear at

10 m set intervals. Counter TIME 1 can store 2 14 such pulses, or

about 160 sec. The overflows from TIME 1 are the inputs

toTIME 2. TIME 3 also has input pulses which appears once every

10 m sec. Overflows from TIME 3 cause automatic interruption of

whatever program is then being executed, and transfer of control

to another program. TIME 3 can be preset to any desired value,

so ~that it may be used to mark off time intervals in multiples of

10 m’sec; this method of marking time intervals, which may differ

one from the next, is useful in that it avoids clumsy programs for

finding out whether it is time to perform some action or not.

See Example II.

16

PROGRAM INTERRUPTION

In general, a program may be interrupted by the occurence

of certain external signals. This means that the normal sequence

of instructions of a program :may be broken into at any point,

and that control is transferred to some other program. There

is a short subroutine which has the net effect of returning control

to the original (interrupted) program, with no loss of information.

if certain precautions are taken. It would be expected, for example,

that the signalling of the computer from the control console by

manual intervention would take place through an interrupt operation.

In other words, the depressing of the button or turning of the

switch on the control console could signal the computer that

information was to be read, and the information itself then taken

from one of the input registers.

An interrupting program is prevented by interlock logic from

itself being interrupted. It is the responsibility of the interrupting

program to preserve the contents of registers Q and A, and to

restore them to their original content. The content of register Z

is preserved automatically. The interrupting program must

also restore any other Central or Special register it uses back

to its original state. Register A is mentioned specifically because

it is necessarily used by an i,nterrupti.ng subroutine. Register Q

must usually be preserved, since interrupting subroutines will

usually have a TC instruction.

The specific point at which the interrupted program is

resumed is when the instruction TS RIP is executed; the content

of A may be anything at all; RIP is a specific address (octal

0036), and the mnemonic code stands for “Resume Interrupted

Program”.

A specific format has been decided upon for the Interrupt

System. These are eight Interrupt options available; i. e. , all

signals which cause an Interrupt belong ,to one of eight categories,

17

OPTION 1 through OPTION 8. The first and immediate result

of some such signal is to preserve B and Q, and to transfer

control to one of eight subroutines named OPTION 1 through

OPTION 8. These routines are located in octal addresses 1000

through 1037; for example:

-
Mnemonic
Address

OPTION 1

OPTION 2

- 1
1

_.--.-
Absolute
Address

-__..-
1000

1

2

1003

1004

3

4

1005

etc.

TS

XCH

TS

TC

TS

XCH

TS

TC

AI

Q
QI
INTPNG 1

AI

Q
QI
INTPNG 2 !

These programs preserve c(A) and c(Q), and transfer control to

the appropriate interrupting program INTPNG 1, 2, etc. Registers

AI and &I are in E; since there can be no interruption of an interrupt,

AI and QI are the same for all options.

The particular actions described above may seem round-

about, since it can be arranged for an interruption to transfer

control directly to INTPNG X, The reason for first transferring

control to an OPTION X is to mnke definite the wiring of the

sequence generator, since ea.ch OPTION X now has a definite

numerical address associated with it. These addresses are in

F; the rope wiring is still left indefinite, of course.

The last act of the INTPNG X program is to transfer control

to the RESUME subroutine.

RESUME XCH QI

TS Q
XCH AI

TS RIP

18

The last instruction causes transfer of control back to the interrupted

program.

It is sometimes necessary to guarantee that an interruption

will not occur during a certain part of a program, as is shown

in Example I. An address has been reserved for this purpose and

the instruction TS INHINT, where c(A) < 0, will inhibit interrupt.

Removal of the inhibition takes place by executing another TS

INHINT, where c(A)>O. Address INHINT happens to be octal

address 0037.

EXAMPLES OF PROGRAMS

Example I. Modification of a Single Bit of an Output Register

Let OUT1 (whose latches are turned ON and OFF

by program) be in some uspecified state. Let it be desired to turn

to ON bit 5 of OUTl. All other latches must be left in their original

state. We may not assume that bit 5 was OFF to being with.

Recall that IN1 is tied to OUTl, and the present state of OUT1 may

be known by interrogating INl. The logical problem is then simple:

Transfer into OUT1 a word which has a ONE in bit position 5, and

ONES and ZEROS elsewhere as before. If it is known that bit 5

was OFF, then such a word could be obtained by the following

program:

XCH INl,

XCH INl,

AD “Bit 5”, c (“Bit 5”) = 000 000 000 010 000

TS OUTl.

If latch 5 of OUT1 were ON, however, such a program would result

in a ZERO sum in position 5, and a carry into the higher order

bits. What is desired, then,is the OR operation, rather than AD.

A particular way of doing this is to blank the content of A as per

the content of some register Bk, where blanking means “make

ZERO those bit positions of A which correspond to ONES of Bk. ”
Once a word is blanked in the desired hit positions, the OR operation

19

is achieved by the AD instruction.

A blanking subroutine can be as follows,

making use of the special register N (see description of AD x).

“Blank c(A) by c(Blr)” CS A, Invert c(A)
+1 XCH N,

+2 XCH ZERO c(ZER0) = 0

+3 AD Bk

+4 cs N,
+5 TC Q

The first two instructions result in placing

-b(A) in N. XCH ZERO clears A. AD Bk places c(Bk) on the

word already in N. This word is the inverse of what is desired.

Return of control to the calling subroutine is accomplished by

TC Q. This subroutine is useful in turning output latches OFF

as well as ON.

follows :

Turning on bit 5 of OUT1 is then done as

Latch ON XCH ml

+1 XCH IN1

t-2 TC Blank A by “Bit 5”, c(Bk) = all
ZEROS except
for a ONE in
bit 5.

+3 AD “Bit 5”,

f4 TS OUTl.

If it is desired to check that all the latches

are now in their proper state, the following program might be used.

Latch ON +5 TC CHECK OUTl,

20

CHECK OUT1

i.1

f2

+3

+4

+5

+6

+7

+a

+9

+10

XCH Templ Preserve c(A)

XCH IN1

XCH IN1

cs A

AD Temp 1

TS Temp 2 Preserve difference

ccs Temp 2

TC WRONG Too few latches ON.

TC Q Ok exit

TC WRONG Too many latches ON.

TC Q Ok exit

Further routines, remedial or diagnostic,

could follow a failure of .the above check. If the check succeeds,

TCQ causes control to be transferred to “Latch ON +6”.

One cause for concern in the above programs

might be if the program LATCH ON is interrupted, say after

AD “Bit 5”, and the interrupting program changes the state

of some other latch of OUTl. Upon resumption of LATCH ON,

the selection of latches to be turned ON (or OFF) with TS OUTl.

is based on the sampling of OUT1 which occurred before the

interruption. Thus, as far as OUT1 is concerned, the latches

will all be restored to the st.ate they were at before the interruption,

excepting for bit 5. This situation can be remedied by inhibiting

interruptions for a brief period. Interruptions may be inhibited

by the instruction TS INHINT, where c(A) 5.0 or c(A) = - 0; i. e.,

the sign bit position of A contains a ONE. To again allow inter-

ruptions, it is necessary to do TS INHINT with the sign bit of A

at ZERO. Hence, program L,ATCH ON should be preceded and

succeeded as follows:

LATCH ON -2 cs PLUS Puts sign bit of A at ONE,
if c (PLUS) <O

-1 TS INHINT

LATCH ON ETC.

LATCHON t6 C,S MINUS c(M1NU.S) ’ 0
?.s7 TS INHINT

21

There is no need for such precautions if the LATCH ON

program is part of an interrupting program.

Example II. Use of Counters

Let the overflow of TIME 3 cause control to be

transferred to INTPNG 1. For present purposes, let it be desired

that this occur once per second. Since TIME 3 is incremented

once every 10 -2 set, it should overflow every 100 pulses (octal

144). The largest positive number a register can hold is, in

octal, t37777; hence, if upon overflowing TIME 3 is set to

+37634, it will overflow 144 (octal) pulses later. Let c (SET) =

+37634; then part of the interrupting program is

INTPNG 1 XCH SET

fl TS SET

+2 XCH TIME 3

etc.

EXIT TC Resume.

In this case the time elapsed between overflow and the execution

of INTPNG’: 1 + 2 is 8 instruction times, counted as follows:

Interrupt Sequence 1 IT

Option 1 Program 4 IT

INTPNG to INTPNG + 2 3 IT.

This time is 320 nsec; hence, there is little fear* of having

missed a pulse between overflow and resetting. This, in turn,

means that the next overflow will occur exactly 100 (decima1)

pulses later, and not 101 pulses later. Upon overflow TIME 3

is left at ZERO.

There may be circumstances in which the time

elapse between overflow and resetting of TIME 3 is so great

as to make it possible to miss a count. This hazard may be

avoided by the program shown below.

;*Assume there are few or none intervening counter increments
being performed.

22

INTPNG 1 ---

+M XCH

TS

XCH

TS

ccs

TC

TC

TC

AD XCH

fl XCH

+2 AD

f3 XCH

t4 TC

CONTINUE - - -

EXIT TC

SET

SET

TIME 3

TEMP

A

AD

CONTINUE

WRONG

ZERO

TIME 3

TEMP

TIME 3

M+3

RESUME

Some unspecified action

TEMP is in E

TIME 3 had counted something

.before being set.

it had not; continue.

These two possibilities can only

occur if there has been an error.

Clear A

Set TIME 3 again, and again bring

its previous contents out for

examination.

Check again that no pulses have

been missed.

Other actions of interrupting prograr

The program checks if TIME 3 was incremented before being set.

The XCH order is such that the actual exchange of c (A) and

c (register) takes place between Time Pulses 4 and 5, while

counter incrementing does not take place until Time Pulse 8.

Thus the program guarantees that no pulses will be lost. Un-

fortunately, this guarantee may be at the expense of an endless

loop, since the AD subroutine transfers control back to the

start of the checking program to see if any pulses were added

between AD + 1 and AD + 3;: hence, a sufficiently fast input

pulse rate could cause such an endless loop. This checking program

23

is probably most useful in circumstances where input fiulse rates

are slow, but where there is reason to think an initial pulse might

have been missed.

One way to use the INTPNG programs is to have them

execute a TC to register CHOICE, where CHOICE is in E. The

content of CHOICE can be set by the INTPNGprogram itself or

by some other program. In this way, INTPNG 1 does different

things at different times, As an example, let it be required that

TIME 3 overflows twice every 10 m set: once at the 10 and once

at the 10, 625 m set mark. Assume that a ONE in bit 1 of OUT1

connects to TIME 3 a pulse source which provides a pulse every

.625 m set, or 16 times faster than TIME 3’s normal pulse source

of one pulse per 10 m sec. This latter ptilse source is not

disconnected from TIME 3 since Gl(Fi~.lb~ i&DON but,a bmall ,.

portion of the time, and never when the 100 pps source is active.

Gl is a gate which allows fast pulses into TIME 3 if OK,

24

The subroutines CHE 1 and CHE 2, shown below, are straight

forward examples. The method of turning Gl ON and OFF is

good only if the state of G2 is known, in the sense that being in

CHE 1 implies that G 1 is OFF, and being in CHE 2 implies G 1

is ON.

INTPNG 1 TC CHOICE

TC ALA,RM

c (choice) is guaranteed to be either TC CHE 1 or TC CHE 2

CHE 1 XCH

XCH

AD

TS

XCH

XCH

XCH

XCH

TC

CHE 2 XCH

cs

AD

cs

TS

XCH

XCH

XCH

XCH

TC

c (BIT 1) = 0000 1

c (SET 1) = t 37777

c (S~~2)=+37634

IN 1

IN 1

BIT 1 BIT 1 .is, a word in F

OUT 1 TURN ON G 1

SET 1 SET 1 i,s a word in F

TIME 3

c2 C 2 is~ a word in F

CHOICE

RESUME

IN 1

IN 1

BIT 1

A

OUT 1 TURN OFF G 1

SET 2 SET 2 ins. a word in F

TIME 3

Cl C 1 is. a word in F

CHOICE

RESUME

C(Cl) = TCCHE 1

C(C2) = TCCHE 2

25

A.PPENDIX I

COMPLETE LIST OF CENTRALS & SPECIALS

WITH NUMERICAL A,DDRESS AND BIT

TRA~NSFORMATIONS

h

APPENDIX I COMPLETE LIST OF CENTRALS & SP%CIALS WITH NUMERICAL ADDRESS
AND BIT TRANSFORMATIONS

TRANSFORMATION (Se
Registe !r Bit Positi nv

8

Note 1)
‘rite Buss

NAME

Q

D

Z

I___

N

SR
.-

SL

BI

CYL

EDH

-_.-

CYR

CLHP

HP

LP

--- -~~
Octal

Addres: ---

001

002

003

004
----.,_~-

005

006
--_-.

007

010
--_-

011

013

.--

012

014
~-

,015

016
_~. .- I

017

PURPOSE OR COMMENTS
__._~. .- -.--~ ---- -~~.

Return Address

P;orm.%l Register
- --.-,.-l--

Overflow Detection and OR operation
Used in ADx

Shift Right
-_~ F -, --... ---~

Shift Left

Keep c(B) during Interrupts

Cycle Left

Edit - Used in Interpretive Sub-
routines

-_._ _~--

Cycle Right

See Note 2 for Comments
-_- ..-

High Order Register - Used in MPx

Low Order Product - Used in MPx
~. .~ ,_. --. ~~~

Keep c(Z) During Interrupts

8

8
.- .

8

8

T 8

9
I~. .

7

8

7

9

9

9

8

6

6

7

5

6

7

7

6

5
--

5

5
-

5

5
~_

5

6
_i

4

5
-

4

14
0

6

6

6
._
5

~_

4
-.

4

4

4

4

4

5
__

3

4

3

L:

5

-

5

5
_.
4

3

3

3
-

3

3
_=

3

4
I.

2

3
-

2

12

4

_
4

4
-~
3

-.
2 1

2 1 1 2 1

2 1

2 I

2 1

3 :

1 1

2 1

r

1 1

11 1

3 :

_
-..._~
3 :

I
3, :

~~~, ,. 

.I- 
2 1 

lentra 
._._-- 

x 

x 

x 

x 

I___ 

x 

x 

x 

x 

x 

x 

1 : f ,-- 
1 / 
JI .- 

_ _,~-_- 

special 



N 
m 

Tied to OUT 1 

Tied to OUT 2 

From outside the computer 

(Addresses 20 and greater have 

the standard one-to-one trans- 

From outside the computer 

Spare addresses 

Resume Interrupted Program 

Inhibit Interrupt if write a ONE into 
this word, in si osition. Uninhibit 



Notes for Appendix I: 

1. Register bit positions are named, as are the 3C word 

bit positions, 0 through 15. Bit position 0 is the 

parity position, bit position 14 is the most significant 

digit position, and 15 is the sign position. 

The Write Busses are 19 in number, named 0 through 

15, US, OFW and UFW. Write Busses 0 through 15 

correspond to the normal word bit arrangement. 

Write Buss US is for the Uncorrected Sign (i. e. , the 

sign of an addition, not corrected for overflow; see 

AD x instruction). Write Buss OFW is for overflow 

and UFW for underflow. Both of these are; part of 

the Counter Incrementing System, and are not con- 

nected to either Central or Special Registers. Buss 

US is connected to two such registers, as is shown in 

the accompanying table. 

2. 

3. 

Addressmg CLHP has the net effect of clearing register 

HP without restoring anything to it. The register which 

would normally be associated with CLHP is not connectec 

to that address. It is called B14, and it is not indepen- 

dently addressable. B14 behaves as follows: 

if LP is cleared, B14 is cleared; 

if HP is written into, B14 is written into. 

Registers B14, HP and LP are used in MP x. 

Definition of overflow correction. 

When two numbers are entered into the Adder circuits, 

the sign bit of each is repeated as shown below. 

SenseLines 

Bit 15 1 

,15 us 14 

Write Busses 

29 



The addition performed is that of two 16 bit binary numbers, 

corresponding each to the original 15 bit binary number, 

with the sign bit repeated. The resulting sum is a 16 bit 

number. If the two higher order bits are alike, no overflow 

or underflow had occurred. If they are different, 01 

represents an overflow and 10 an underflow,. Positive sign 

is represented by ZERO in the 01\7P, 4 s oomplemeht, number 

system. The overflow corrected sign is the highest order 

bit; ZERO in the case of overflow, ONE in the case of 

underflow. This means that the sign of a sum which over- 

flowed is the same as that of the two numbers summed. The 

Uncorrected Sign is the next to highest order bit, and the 

Write Buss associated with this sign is called US. (See Note l), 

30 



APPENDIX II 

LIST OF CONTROL PULSES 



LIST OF CONTROL PULSES 

Conventions - 
CL means clear register to all ZEROS, 

IV means write into register WiFttever is now present on 

Write :Busses. 

ALPHA samples sense lines of alpha side. 

BETA samples sense lines of beta side. 

Control Pulses Having To Do With S & C Registers -. --__-- ---- 

CL A, WA CL B, WB 

CL RI, WBI CL Q , WQ CLD , WD 

CL z, wz (No CL N), WN CLCYL, WCYL 

c IL, HP, WI-i I ’ CLLP , WLP CLZI, WZI 

CL c, WC CLPI , WPl CLPZ , WP2 

CLSQ , WSQ CLS , ws CLSUM,WX, WY 

Other Control Pulses 

TP 

CLE 

WE 

CI 

CI 2 

BH 1,131x2, BR3 

II 

00001 

All l’s 

77776 

CL SN 

INH 

EN1 

CL,1 

CL CTR i 

CL CTR~ 

W cTR 

Test Parity. 

Clear Memory, F, E, IO, C, or S & C 

Write into memory register last cleared. 

Carry into bit 1 of adder. 

Carry into bit 2 of adder. 
:Branching options for SQ. 

Inhibit interrupt for one instruction time. 

Read this number into Write Buss latches. 

Same. 

SBme. 

Clear S, but allow no rope currents to flow. 

Inhibit interrupt until further notice. 

Enable interrupt. 

Advance priority. 

Clear counter, first time. 

Clear counter, second time, 

Write counter. 

31 



APPENDIX III 

3C INSTRUCTIONS 



APPENDIX III -- 3C INSTRUCTIONS 11-01-61 1 

DESCRIPTION OF MODEL 3C INSTRUCTIONS 
----------i -- -_--- -- -----------_ 

MODEL 3C HAS EIGHT INSTRUCTIONS... TRANSFER CONTROL, COUNT 
COMPARE AND SKIP, INDEX9 EXCHANGE, CLEAR AND SUBTRACT* TRANSFER TO 
STORAGE, ADD, AND MULTIPLY. THE SEQUENCES ADD ONE TO COUNTER* SUB- 
TRACT’ONE FROM COUNTER, INTERRUPT, AND RESUME ARE BUILT IN. 

THE STANDARD QUANTUM OF TIME IS THE INSTRUCTION TIME; OR 
I-TIME. ONE I-TIME, OR 1 It IS 8 PULSE TIMES, SINCE THE SHIFT 
REGISTER IS 8 STEPS LONG.~ ALL INSTRUCTIONS AND SEQUENCES TAKE 1 I, 
EXCEPT COUNT COMPARE AND SKIP, WHICH TAK~ES 2 I, AND MULTIPLY, WHICH 
TAKES 16 I. 

SEQUENCES ARE SELECTED BY A DIODE DECODING MATRIX OPERATED BY 
THE SQ REGISTER. THE LATTER CONTAINS THE TOP THREE BITS OF AN IN- 
STRUCTION WORD AND THREE -MORE BITS FOR BRANCHING WHICH ARE SET BY 
SOME COMBINATION OF THE PULSES BRl, BR2, AND BR3. THE PULSE CLSQ 
SELECTS AN INSTRUCTION OR ONE OF A PAIR OF BRANCH SEQUENCES DEPEND- 
ING ON THE BRANCH BITS IN THE so REGISTER. 

MOST CONTROL PULSES CLEAR OR WRITE INTO REGISTERS. CLEARING A 
REGISTER SETS ITS ELEMENTS (CORES OR LATCHES) TO THE ZERO STATE* AND 
PLACES ITS INITIAL CONTENTS OWN ITS ASSOCIATED SENSE LINES. THE ALPHA- 
SIDE REGISTERS, INCLUDING FIXED AND ERASABLE STORAGE* ARE MADE OF CORES 
AND FEED THE ALPHA SENSE LINES. THE EXCEPTIONS ARE THE OUTPUT REG- 
ISTERS* WHICH ARE MADE OF LATCHES AND HAVE NO SENSE LINE CONNECTIONS. 
THE BETA-SIDE REGISTERS ARE MADE OF CORES (THE SPECIAL CIRCUITRY IN THE 
PARITY REGISTERS AND THE ADDER DOES NOT AFFECT THIS DISCUSSION1 AND 
FEED THE BETA SENSE LINES, EXCEPT FOR Plr.WHICH FEEDS THE PARITY TEST 
CIRCUIT. THE GAMMA-SIDE REGISTERS ARE MADE OF CORES. S FEEDS THE 
MEMORY ROPE INHIBIT LINES, AND SQ FEEDS THE SEQUENCE SELECTION MATRIX 
INHIBYT LINES. 



APPENDIx,III -- 3c INSTRUCTIONS 11-01-61 2 

WRITING INTO A REGISTER CONDITIONS ITS ELEMENTS TO BE DRIVEN BY 
ITS ASSOC’IATED WRITE BUSSES , WHICH ARE USUALLY THE SENSE AMPLIFIER OUT- 
PUTS. FIXED STORAGE HAS OF COURSE NO WRITE BUS CONNECTIONSv AND INPUT 
REGISTERS ARE DRIVEN BY DC LEVELS EITHER FROM OUTPUT LATCHES OR FROM 
EXTERNAL CONDITIONS. 

OF THE CONTROL PULSES THAT MANIPULATE REGISTERS, SOME (CLEv WE* 
CLCTRl.9 CLCTR29 WCTR, AND CL11 MANIPULATE WHICHEVER OF A SET OF REGIS- 
TERS WAS CHOSEN BY SOME PREVIOUS PROCESS. THE OTHERS REFER TO REGIS- 
TERS BY NAME, AND ANY REGISTER SO REFERENCED IS CALLED A CENTRAL REGIS- 
TER. THIS CLASS INCLUDES ALL THE BETA-SIDE AND GAMMA-SIDE REGISTERS, 
AND IS TABULATED BELOW. 

A THE ACCUMULATOR REGISTER 
0 THE BUFFER 

C 

01 

CYL 

814 

D 
HP 
LP 
N 
Pl 
P2 
Q 
S 
SO 
2 
21 

THE COMPLEMENTING REGISTER 

BUFFER INTERRUPT STORAGE 

A CYCLE-LEFT-ONE REGISTER 
THE DATA ADDRESS REGISTER 

THE PRODUCT TRANSFER REGISTER 

THE HIGH-ORDER PRODUCT REGISTER 
THE LOWS-ORDER PRODUCT REGISTER 
THE NO-OVERFLOW SUM REGISTER 
THE PARITY TESTING REGISTER 
THE PARITY GENERATING REGISTER 
THE RETURN ADDRESS REGISTER 
THE MEMORY SELECTION REGISTER 
THE SEQUENCE SELECTION REGISTER 
THE INSTRUCTION LOCATION COUNTER 
Z-REGISTER INTERRUPT STORAGE 

ALPHA I 
BETA1 
ALPHA j 
ALPHA I 
BETA) 
ALPHA 1 
ALPHA 1 
ALPHA 1 
ALPHA I 
ALPHA I 
BETA L 
BETA) 
ALPHA 1 
GAMMA J 
GAMMA J 
ALPHA J 
ALPHA 1 

AND THE ADDER9 (BETA) 9 WITH INPUTS X AND Y AND OUTPUT DENOTED SLJM. 
WITH NO X INPUTp THE CONTROL PULSES ‘WY .CI INCREMENT THE NUMBER 

?KANSFERRE’D BY INTRODUCING A CARRY INTO BIT POSITION 1. SIMILARLYI 
AN INCREMENT OF Tb;O IS OBTAINED BY WY CIZ. 



APPENDIX III -- 3C INSTRUCTIONS 11-01-61 3 

MEMORY TRANSFERS FROM ALPHA TO BETA AND VICE VERSA DO NOT 
NEED TO ALTERNATE, SINCE THE SENSE AMPLIFIER GATES ARE OPERATED BY 
CONTROL PULSES. S AND SQ MAY BE WRITTEN INTO FROM EITHER SIDE. 

ALL THE ALPHA-SIDE REGISTERS HAVE ADDRESSES IN ERASABLE 
STORAGE. THESE AND SOME MAJOR PROPERTIES ARE GIVEN BELOW. 

A 0000 
Q 0001 
D 0002 
z 0003 

+ N 0005 
CYL 0011 
BI 00 10 
814 0014 

* HP 0015 
LP 0016 
21 0017 

NORMAL WIRING. 
NORMAL WIRING. 
NORMAL WIRING. 
NORMAL WIRING. 
SEE BELOW. 
CYCLES LEFT 1 BIT. 
NORMAL WIRING. 
BIT 14 ONLY. iJHP IMPLIES WE149 CLLP 
IMPLIES CL6140 
SHIFTS RIGHT ONE, PLACING BIT 1 INTO 614. 
CYCLES RIGHT ONE+ HAS NO BIT 14. 
NORMAL WIRING. 

THE ADDER CONTAINS AN EXTRA BIT (BIT 161. THE SIGN BIT (BIT 151 OF AN 
INPUT TO THE ADDER IS WRITTEN INTO ADDER BITS 16 AND 15. WHEN THE 
ADDER IS CLEARED, BIT 16 ACTIVATES WRITE BUS 15 SO THAT THE REGULAR 
WRITE BUSSES CONTAIN AN OVERFLOW-CORRECTED SUM. ADDER BIT 15 ACTIVATES 
A SPECIAL LINE WHICH GOES TO THE REGISTERS MARKED * ABOVE. IT FEEDS 
BIT 15 OF N (WHICH IS NORMALLY WIRED OTHERWISE) AND BIT 14 OF HP . 



APPENDIX III -- 3C INSTRUCTIONS 11-01-61 4 

THE OCTAL CODE, NAME, DURATION, MNEMONIC CODE* ACTION, AND 
PULSE SEQUENCE OF EACH INSTRUCTION IS GIVEN BELOW. THE FORMAT 
L ** X INDICATES THAT BITS 15-13 OF C(L) ARE 
INTERPRETED AS THE,OPERATION ** . AND BITS 12-l OF C(L) AS THE ADDRESS 

NOTE THAT IF THE PRECEDING INSTRUCTION WAS AN INDEX ORDER* THIS 
~CRIPTION APPLIES NOT TO GIL) , BUT TO THE SUM OF C(L) AND THE 
QUANTITY REFERENCED BYE THE INDEX. THE APPEARANCE OF L IN THE 
DESCRIPTION OF THE ACT-ION OF EACH INSTRUCTION HAS ITS REGULAR 
MEANING IN THIS CASE+ HOWEVER. THE INTERRUPT, RESUME+ AND COUNTER 
INCREMENT/DECREMENT SEQUENCES ARE ALSO DESCRIBED IN THIS SECTION. 

CODE O* TRANSFER CONTROL 1 I 

L TC X SET C(Q) = TC L+l AND TAKE NEXT 
INSTRUCTION FROM X. 

1. ALPHA CL.2 WY 
2. ALPHA CLE WB WPl ws WSQ 
3. CL0 
4. BETA CLSUM WC’ 
SD ALPHA CLD WY CI 
6. BETA CLSUM WZ 
7. 
8. BETA CLB CLPl TP WE WQ CLS CLSQ 

NOTE THAT TC Q WORKS BUT LEAVES C(Q) SET TO THE LOGICAL SUM OF 
TC L+l AND THE ORIGINAL CIQI. 



APPENDIX III -- .3C INSTRUCTIONS 11-01-61 5 

CODE 1. COUNT COMPARE AND SKIP 2 I 

L ccs X IF C(X) IS POSITIVE NON-ZERO, SET C(A) 
: TO C(X)-1 AND TAKE NEXT INSTRUCTION FROM L+l. 

IF C(X) = +O,,SET C(A) = +0 AND TAKE NEXT INSTRUCTION FROM L+2. 

IF C(X) IS NEGATIVE NON:ZERO, SET CIA1 TO -C(X)-1 AND TAKE NEXT 
INSTRUCTION FROM L+3. 

IF C(X) = -01 SET C(A) = +0 AND TAKE NEXT INSTRUCTION FROM L+4. 

C(A) IS SET TO +0 FOR C(X) = +l OR C(X) = -1. 

1. CLD 
2. ALPHA CLE WB WPl WSQ BRl 
3. BETA CLB CLPl TP WE WD CLSQ 

4+. ALPHA CLD WC 4-. ALPHA CL2 WY CI2 
5+. BETA CLC WD CLA 5-. BETA CLSUM WZ CLA 

6. ALPHA CLD WY CI 
7. BETA CLSUM WA WSQ BR2 II 
8. CLSQ 

1+. ALPHA CLZ WY CI l-. ALPHA CLA WC 
2+. BETA CLSUM WZ CLA 2-. BETA CLC WA 

3. 
4. ALPHA CLZ WY CI 
5. BETA CLSUM WZ CLS ws 
6. 
7. ALPHA CLE WB WPl ws WSQ 
8. BETA CLB CLPl TP WE WD CLS CLSQ 



APPEND’IX I I I -- 3C INSTRUCTIDNS 

CODE 2. MODIFY NEXT INSTRUCTION 

L 

1. 
20 
3. 
4. 
5. 
6. 
7. 
8. 

INDEX OX 

ALPHA CLZ, WY CI 
ALeHA CLE wa WPl 
BETA c L s u r4 I’d 2 CLD 
BETA CLB CLPl TP 
ALPHA CLE WX WPl 
ALPHA CLD WY 
BETA CLSUM WD WS 
BETA CLB CLPl TP 

CODE 3. EXCHANGE 

L XCH X 

1. ALPHA ,CLA WB WP2 
2. ALPHA CL.2 WY CI 
3. BETA CLSUM WZ CLD 
4. ALPHA CLE WY WPl 
5. BETA CLB CLPZ WE 
6. BETA CLSUM CLPI TP 
7. ALPHA CLE W B WPl 
8. BETA CLB CLPl TP 

11-01-61 6 

1 I 

TAKE AS THE NEXT INSTRUCTION THE 
OVERFLOW-CORRECTED SUM OF CIL+ll AND 
C(X). IF L+l IS IN ERASABLE, ITS CON- 
TENTS ARE NOT CORRECTLY RESTORED. 

ws 

CLS 
WE WD 

WSQ 
WE WD CLS CLSQ 

1 I 

INTERCHANGE CIA1 WITH C(X). THE OP 
CODE CAF MAY BE USED WHEN X IS IN 
FIXED STORAGE (CLEAR AND ADD FIXED). 

ws CLPl 

CLS 
WA 
WS WSQ 
WE WD CLS CLSQ 



APPENDIX III -- 3C INSTRUCTIONS 11-01-61 7 

CODE 4. CLEAR AND SUBTRACT 1 I 

L . cs X SET C(A) TO THE ONES COMPLEMENT OF C(X). 

1. ALPHA CL2 WY CI ws 
2. ALPHA. CLE WB WPl WC 
3. BETA CLB CLPl TP WE 
4. CLA 
5. BETA CLSUM WZ CLS CLD 
6. BETA CLC WA 
7. ALPHA CLE WB WPL ws WSQ 
0. BETA CLB CLPl TP WE W D CL5 CLSQ 

CODE 5. TRANSFER TO STORAGE 1 I 

L TS X SET CIX) TO C(A). TRANSMISSION IS 
THROUGH THE ADDER so THAT TS WILL 
WORK FOR N AND HP . 

1. ALPHA CLA WY WP2 WB 
2. CLE 
3. BETA CLSUM CLP2 WE 
4. ALPHA CL2 WY CI WS 
5. BETA CLSUM WZ CLS CLD 
6. BETA CLB W A 
7. ALPHA CLE WB WP 1 w s !*I s (3 
8. BETA CLB CLPl TP WE WD CLS CLSQ 



APPENDIX III -- 3C INSTRUCTIONS 11-01-61 8 

CODE 6. ADD AND COUNT ON OVERFLOW 11’ 

L AD X SET C(A) TO THE OVERFLOW-CORRECTED 
SUM OF C(A) AND C(X). SUPERPOSE ON 
C(N) THE UNCORRECTED SUM. IF OVERFLOW 
OCCURS, SET AN INTERRUPT SIGNAL TO 
CAUSE INCREMENTING OR DECREMENTING OF 
THE OVERFLOW COUNTER9 ACCORDING AS 
THE ADDENDS WERE POSITIVE OR NEGATIVE. 

l* ALPHA CL2 WY CI ws 
2. BETA CLSUM WZ CLD 
3. ALPHA CLE wx WB WPl 
4. BETA CLB CLPl TP WE 
50 ALPHA CLA WY CLS 
6. BETA CLSUM WA WN 
7. ALPHA CLE WB WPI ws 
80 BETA CLB CLPl TP WE 

WSQ 
WD CLS CLSD 

CODE 7. MULTIPLY 16 1 

L . W X DELIVER THE PRODUCT OF C(A) AND C(X) TO 
A (HIGH-ORDER PART) AND LP (LOW-ORDER 

PART). THE SIGNS OF THE TWO PARTS AGREE AND ARE STRICTLY DETERMINED BY 
THE SIGDS OF THE OPERANDS* PULSE SEQUENCE IS ON THE NEXT PAGE. 



1. ALPHA CLA WB WC WSQ BR1 BR2 
2. CLLP CLSQ 

3+. BETA CL0 WLP CLD 3-. BETA CLC WLP CLD 
4+. ALPHA CLE WY WPl WB CLC 4-. ALPHA CLE WY w P 1 wc cLa 

5. BETA CLB CLC W D WSQ BR2 BR3 
6. BETA CLSUM CLPI TP bJ E CLCYL CLSQ 

7+. CLHP II ?-. ALLlS WHP II 
8+. 00001 WCYL a-. 00001 b!CYL 

1. ALPHA CLLP W B WSQ BRl BR3 
2. BETA CLB WLP CL50 

3+. 3-. ALPHA CLD !d a !;I x 
4+. 4-. BETA CL6 WD 

APPENDIX III -- 3C INSTRUCTIONS 

PULSE SEQUENCE 0~ MIJLTIPLY INSTRUCTION. 

11-01-61 9 

5. ALPHA CLHP WY 
6. BETA CLSUM WHP 
7. ALPHA CLCYL Wa 
8. BETA Cl-B WCYL 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

ALPHA CLHP WB 
ALPHA CL2 WY 
BETA CLSUM WZ 
BETA CLR WA 
ALPHA CLE w 0 
BETA CL6 CLPI 

WSQ aR3 II 
CLSQ 

CI ‘AS 
CLS CLD 

WPl w s WSQ 
TP w E WD CLS CLSQ 



APPENDIX III -- 3C INSTRUCTIONS 

INCREMENT OR DECREMENT 1 I 

THIS SEQUENCE IS TRIGGERED ,dY A SUITABLE INTERRUPT SIGNAL AND 
EXCEPT THE FOLLOWS LINE 8 OF ANY SEQUENCE OR E-LINE PORTION THEREOF9 

DUMMY L INE 8 THAT IMMEDIATELY PRECEDES INTERRUPT AND RESUME. ITS 
ACTION IS TO. SET THE CONTENTS OF THE COUNTER SELECTED AS CTR 
(CICTR9 I TO CfC,TRi+OOOOl (INCREMENT9 OR TO CICTR9+77776 (DECREMENT99 
CHECKING~PARITY OF THE INITIAL CTCTR9 AND GENERATING.PARITY FOR THE 
SUM. 

11-01-61 10 

2+. 

1. ALPHA CLCTRl WX WPl 

00001 WY 2-• 77776 WY 

3. CLPl TP 
4. BETA CLSUM WCTR 
5. ALPHA CLCTR2 WY WP2 
6. BETA CLSUM CLP2 WCTR II 
7. 
8. 



APPENDIX III -- 3C INSTRUCTIONS 11-01-61 11 

INTERRUPT 1 I 

THIS SEQUENCE IS TRIGGERED BY A SUITABLE INTERRUPT SIGNAL AND MAY 
FOLLOW ANY LINE 7 NOT INCLUDING THE CONTROL PULSE II. THE PULSE CL1 
SUPPLIES THE ADDRESS OF THE DESIRED INTERRUPT PROGRAM. THIS 
SEQUENCE IS PRECEDED BY A DUMMY LINE 8 , AND IS FOLLOWED BY THE STAN- 
DARD LINE 8 WHICH WAS LEFT SET UP BY THE INTERRUPTIBLE SEQUENCE. 
THE PULSE INH INHIBITS ANY INTERRUPT UNTIL THE OCCURENCE OF THE 
PULSE EN1 IN THE RESUME SEQUENCE. 

1. ALPHA CLD WB CLSN INH 
2. BETA CL8 CLPl TP WE WBI 
3. ALPHA CLZ WB 
4. ALPHA CL1 WY CI ws 
5. BETA CLSUM WZ CLS 
6. BETA CLB WZI 
7. ALPHA CLE WB WPl ws WSQ 

RESUME 1 I 

THIS SEQUENCE IS TRIGGERED BY REFERENCING THE RESUME ADDRESS, CUST- 
OMARILY WITH A TS INSTRUCTION. ITS BEHAVIOR WITH RESPECT TO 
LINES 7 AND 8 IS ANALOGOUS TO THAT OF INTERRUPT. THE PULSE EN1 
ENABLES INTERRUPT. 

1* 
2. CLD 
3. CLZ CLSN EN1 
4. BETA CLB CLPl TP WE 
5. ALPHA CLZI WB 
6. BETA CLB WZ 
7. ALPHA CLBI WB WPl ws WSQ 



APPENQIX III -- 3C INSTRUCTIONS 11-01-61 12 

SINCE INSTRUCTIONS MAKE INTERMIXED REFERENCES TO REGISTERS BY 
ADDRESSING AND BY NAME, THE BEHAVIOR OF THE COMPUTER !dHEN AN ALPHA-SIDE 
CENTRAL REGISTER IS ADDRESSED IS NOT ALW.4YS OBVIOUS. THIS SECTION 
LISTS THE ALPHA-SIDE CENTRAL REGISTERS REFERENCED EXPLICITLY dY EACH 
INSTRUCTION, AND BRIEFLY DESCRIBES THE BEHAVIOR OF EACH CASE. IN SOME 
OF THE USEFUL CASES* A SPECIAL SYMBOLIC OPERATION CODE IS GIVEN. IN 
Y :JL LANGUAGE, IT IS PERMISSIBLE TO USE THIS CODE AND LEAVE THE ADDRESS 
FIELD BLANK. THE ASSEMBLER WILL SUPPLY THE CORRECT ADDRESS. 

L TC Q OPTIONAL CODF -.....................RETURN’ 
TAKE NEXT INSTRUCTION FROM Q AND SUPERPOSE TC L+l ON Q. COMPL I - 
CATED BEHAVIOR RESULTS IF THE INSTRUCTION TAKEN FROM 0 ISNOTA TC. 

L TC D NO OPTIONAL CODE. CAUSES INFINITE LOOP. 

L TC 2 NO OPT IONAL CODE. CO:$PLEX 9 NOT USEFUL. 

L ccs A NO OPT 
STRAIGHTFORdARD A,ND USEFUL. 

IONAL CODE. 

L ccs D NO OPTIONAL CODE. 
SET C(A) = +0 ANC TAKE NEXT INSTRUCTION FROM L+2. PROBABLY NOT USEFUL. 

L ccs 2 NO OPTIONAL CODE. 
SET C(A) = TC L AND TAKE NEXT INSTRUCTION FROM L+l. PROEABLY NOT 
USEFUL. 



APPENDIX III -- 3C INSTRUCTIONS 11-01-61 13 

L INDEX D NO OPTIONAL CODE. 
TAKE AS THE NEXT INSTRUCTION THE OVEKFLOW-CORRECTED SUM OF C(L+l) AND 
20002. PROBABLY NOT USEFUL. 

L INDEX Z NO OPTIONAL CODE. EQUIVALENT TO NOOK . 

L XCH A NO OPTIONAL CODE. EQUIVALENT TO NOOP . 

L XCH D NO OPTIONAL CODE. COMPLEX 9 NOT USEFUL. 

L XCH 2 NO OPTIONAL CODE. COMPLEX, NOT USEFUL. 

L cs A OPTIONAL CODE.....................COM 
REPLACE C(A) BY ITS ONES COMPLEMENT. 

L cs D NO OPTIONAL CODE. 
REPLACE C(A) BY 37775. PROBABLY NOT USEFUL. 

L cs Z NO OPTIONAL CODE. 
SET CIA1 = -0. PROBABLY NOT USEFUL. 



APPENDIX III -- 3C INSTRUCTIONS 11-01-61 14 

L TS A NO OPTIONAL CODE. EOUIVALkNT TO NOOP . 

L TS D OPTIONAL CODE.....................NOOP 
PROCEED TO NEXT INSTRUCTION. 

L TS 2 OPTIONAL CODE.....................TCAA 
TAKE NEXT INSTRUCTION FROM TH E LOCATION ‘WHOSE ADDRESS IS IN BITS 12-1 
OF C(A). LEAVE C(O) UNDISTURBED. TCAA STANDS FOR TRANSFER CONTROL TO 
THE ADDRESS IN k . THE VALUES OF BIT 15-13 OF C(A) ARE IRRELEVANT. 

L AD A OPTIONAL CODE..,..................DOUBLE 
STRAIGHTFORWARD AND USEFUL. 

L AD D OPTIONAL CODE.....................ORN 
SUPERPOSE LINCLUSIVE OR) C(A) ON N. THIS IS THE ONLY PURE BOOLEAN 
OPERATION IN THE MACHINE (INDEPENDENT OF THE DATAi, THAT IS). AN 
ADDITION WITH EITHER C(A) OR CIX) = +0 WILLS DO THE SAME THING. 

e AD z NO OPTIONAL CODE. 
REPLACE CiAI BY C(A) + ;TC L+23e SUPERPOSITION ON N , OVERFLOW 
PROVPSIONS AS USUALe PROBABLY NOT USEFUL. 

L AD N NO OPTIONAL CODE. COMPLEX9 NOT ~USEFUL. 



L MP D NO OPTIONAL CODE. .5 AM E A5 YP A . 

L M P 2 NO OPT IONAL CODE. 
DELIVERS THE PRODUCT OF C(A) AND I TC L+ll TO A AND LP . 
STRAIGHTFORWARD, PROBABLY NOT USEFUL. 

L MP CYL NO OPT IONAL CODE. 
NON-DETERMINISTIC BEHAVIOR. 

APPENDIX III -- 3C INSTRUCTIONS 11-01-61 15 

L MP A NO OPTIONAL CODE. 
SET CIA1 AND C(LP) TO ZERO WITH THE SIGN OF THE INITIAL C(A). PROBABLY 
NOT USEFUL. 

L MP HP NO OPTIONAL CODE. COMPLEX, NOT USEFUL. 

L MP LP NO OPTIONAL CODE. 
IF BITS 15 AND 1 OF C(A) HAVE THE SAME VALUE, DELIVER HALF THE SQUARE 
OF THE INITIAL C(A) TO A AND LP . PROBABLY NOT USEFUL. IF BITS 15 
AND 1 OF CIA) DIFFER, COMPLEX AND NOT USEFUL. 



APPENDIX III -- 3C INSTRUCTIONS 11-01-61 16 

THERE ARE THREE OTHER OPTIONAL CCDES THAT ARE tiSEFUL. 

L XAO EXECUTE C(A) USING (3. 
THIS IS ASSEMBLED INTO TC A. IT IS STRAIGH T 

FOLLOWS A IN iMEMORY, BEHAVES LIKE AN EXECUTE 
ISNOTA TC. 

L EXIT LEAVE INTERPRET 
THIS IS ASSE?.!.BLED INTO +O’AND IS RECOGNIZED BY 

I 

SIGNAL TO GIVE CONTROL TO THE BASIC 3c INSTRUC T 

FORWARD9 AND SINCE i) 
INSTRUCTION WHEN C(A) 

VE MODE. 
THE INTERPRETER AS A 
ION IN L+l. 

L R E S i I 14 E RESUME AFTFR PROGRAM INTERRUPT. 
THIS IS ASSEMOLED INTO TS RIP , WHERE RIP IS THE ADDRESS OF THE 
RESUME-INTERRdPTED-PROGRAM REGISTER IN MEMORY. C(A) IS IRRELEVANT. 



APPENDIX IV 

YUL SYSTEM FOR 3C AND RELATED COMPUTERS 



A,PPENDIX IV 

THE YUL SYSTEM FOR 3C AND RELATED COMPUTERS 

INTRODUCTION 

The Yul System is a set of programs for the IBM 650 and 

the Honeywell 800 which aid the preparation of programs for the 

Apollo Guidance Computer : (3C)’ and related computers in the 

Mars computer series. ‘The series consists of machines named 

lB, 3S, and 3C. The name 3C is used in what follows, but the 

discussion applies equally to the other computers, except where 

noted. The system has two major components, the Assembler 

and the Simulator. Primary inputs to the Assembler are IBM 

cards containing 3C programs in symbolic Yul Language, and 

primary outputs are wiring diagrams for fixed memory ropes. 

The Assembler maintains files of active programs and sub- 

routines in symbolic form, and of active programs in binary 

form. Control operations are provided:forl the manipulation of 

these files. Inputs to the Simulator are binary records prepared 

by the Assembler and control cards specifying 3C environment 

and editing paramemrs, and outputs are edited and annotated 

accounts of the action of the 3C programs. The Simulator will 

be available as a MACH subroutine so that MACH simulation of 

environment can proceed in parallel with simulation of a 3C 

program as it interacts with environment. 

Appendix VI shows a representative 3C program, containing 

many but not all of the types of operation which the Yul system 

accepts. Each line of printing represents one IBM card in this 

program. Those cards beginning .%th: the’ letter R.represeht 

remarks cards and are ignored by the compiler. It may be 

seen that the remaining cards are divided into five fields of 

information. These represent, respectively, the card number, 

49 



the location field, the operation field, the address field, and the 

remarks field occupying the right-hand half of the card. In the 

operation field are written the instruction codes for the basic 

computer operations, or instruction codes for interpreted 

instructions, or, from time to time, certain other symbols 

having special significance to the Yul system. The location field 

is frequently blank, but is used when necessary to contain a 

mnemonic tag or symbol identifying the name of the register 

corresponding to that instruction. The address field contains the 

address part of the instruction itself, that is, the twelve low- 

order bits. Instructions are by and large written and stored in 

sequence, except when special clerical codes tell the compiler 

to do otherwise. Further details on the Yul Language are given 

at a later point in this appendix. The right-hand, or remarks, 

half of the card is ignored by the Yul system. 

ASSEMBLER 

The Assembler may be directed to assemble a new program 

or subroutine; revise a program or experimental subroutine; 

delete a program or subroutine; turn an experimental subroutine 

into a library subroutine; punch a symbolic deck of a program or 

subroutine; print a symbolic listing of a program or subroutine; 

or wire an assembled program. Wiring may be optionally re- 

quested along with a program assembly or revision, but is done 

only if the A,ssembler finds no errors in the program. 

Assembly or revision takes place in three passes (the 

wiring diagrammer is called Pass 4), using a system tape and 

two work tapes. The system tape consists of the Assembler 

program, various tables and catalogues, and three main files, 

known as SYPT, SYLT, and BYPT. SYPT, or Symbolic Yul 

Program Tape, consists of card images of all active programs: 

in the original symbolic Yul Language. SYLT, or Symbolic Yul 

Library Tape, consists of card images of experimental and 

library subroutines in Yul Language, and a catalogue showing 

which programs and subroutines use each subroutine. BYPT, or 

50 



Binary Yul Program Tape, consists of binary records generated 

by assembly. A binary record” (actually several physical tape 

records) is the binary representation of a program and the sub- 

routines used by it. 

Input to Pass 1 consists of symbolic program cards (new 

program) or symbolic program correction cards and SYPT records 

(revision), and any necessary SYLT records. In the revision of 

an experimental subroutine, the correction cards are of course 

merged with SYLT records. Pass 1 forms tables in core memory 

and writes combined symbolic and binary information on tape. 

Pass 2 finishes the assembly proper, using and updating 

the internal tables; updates SYPT (program assembly) or SYLT 

(subroutine assembly); makes up an unsorted binary record; and 

prints a listing of the program in which each card of Yul Language 

is reproduced in full, with any pertinent binary equivalent on the 

same line (mostly in octal), followed by as many lines of error 

or warning notices as needed. The vertical format originally 

punched in the cards is used to determine the vertical format 

of the listing. 

Pass 3 prints a summary of the assembly, using the tables 

generated by Pass Z’andamended by Pass. Zr The symbols used 

are listed in alphabetical order (see Honeywell character chart 

in H-800 Reference Manual) with the equivalent of each in octal 

and decimal notation, and the conditions under which it was 

defined, or any error associated with it. This is followed by a 

summary showing the number of symbols in each “health” 

category. Then a storage map is printed, showing the type 

(fixed, erasable, or special/nonexistent) and the reserved- 

unreserved status of each location. The binary record, which 

was sorted during the preceding Pass 3 printing operations, 

is printed in octal at eight words per line. If the assembly is of 

a program and is valid, the sorted binary record is inserted in 

BYPT; and if furthermore, wiring was requested, Pass 4 follows, 

4~ Also colloquially called a “load deck”, not because any cards are 
involved, but out of habit from 650 usage. 

51 



Otherwise, the next job begins. 

Pass 4, which is also available as a separate operation for 

previously assembled BYPT records, prints a production wiring 

diagram and a checkout listing for each rope, using rope des- 

cription cards supplied by the programmer, 

YUL LANGUA.GE 

This description is not intended to be a complete program- 

ming manual, but presents enough of the language so that patches 

of coding can be written, to be tied into coherent programs when 

a complete manual (and the Rssemblerl’)~,isccompleted:‘,It suffers 

from the fairly common disease of being about something that 

does not exist. 

(1:) Alphabet: The alphabet used in Yul Language is the 

57”character set (including blank) that can be printed by the 

Honeywell high-speed printer, This is the set available (without 

multipunching) on the keypunches, plus the following characters: 

Character 
1 

Name -- 
Apostrophe 

Card Code 

82 

& 

Ii 
# 
1, 

@ 

cR 

Ampersand 87 

Semicolon +8 2 

Percent +a 5 

Blot +8 6 

Sharp -82 

Quotes -85 

eat 08 2 

Credit 08 5 

It should be noted that the colon (:) in the Honeywell set corres- 

ponds to the card code 8 4, which is shown as a dash (-) on the 

keypunches (upper left-hand key, alphabetic shift, and which 

prints as a dash on the 407. The Yul System does NOT recognize 

this character as a minus sign. The SKIP key above the numerals 

(its skipping function has been disconnected) gives the legitimate 

52 



minus sign, in either shift. Any character not in the printer set 

but in the 64-character set acceptable tp the car,d reader is 

replaced with a blot (I) upon input to the Yul System, Since 

the blot has this and other special purposes: its use is not 

recommended, although not illegal. ‘The appearance of a character 

not ,acceptable ‘to the card reader ‘will cause the job to be ter- 

minated. 

(2) Subfields: the fundamental unit of meaning in Yul Lang- 

uage is the subfield, of which there are four ‘types: blank, numeric, 

signed numeric, and symbolic. A subfield always occurs in a field 

of definite size. A blank subfield consists entirely of blanks, and is 

therefore detectable only when it is alone in a field,. A numeric ,., 
subfield consists of numerals, optionally followed by a D; imbedded, 

leading, or trailing ,blanks are ignored, but there ~may be at most 

eight non-blank characters. This type of subfield is interpreted as 

an octal integer, unless the D is included, in which case it is 

interpreted as a decimal integer. If it contains any, 8’s or 9’s 

but no D, it is considered to be decimal, but a complaint is printed. 

A signed numeric subfield has either + or - as its, leftmost non- 

blank character, and has otherwise the same definition as the 

numeric subfield, except that the sign must be counted toward 

the maximum number of non-blank characters. A symbolic sub- 

field is any collection of characters which is at most eight. 

characters in length from its leftmost to: rightmost non-blank 

character, which does not satisfy the definitions for other types. 

Leading blanks are ignored, but imbedded blanks are significant, 

and since a symbolic subfield is exactly eight characters long 

for internal processing purposes, some trailing blanks may be 

significant. 

(3) Fields: The fields of primary interest in Yul Language 

are the location, operation, and address fields, but a word about 

overall card format is in order here. The 407 board for Honeywell 

card formats uses columns 1 and 8 for control information, and 

the,:~uli~yate~,lnterpre.ta,tio~,of,~~ese, columns .includes the 407 ~,. s.,, 1: ,~, 
conventions. The codes of greatest interest are the following: 

5,3 



(a) Vertical spacing control by column 8: 

blank normal upspace after printing, 
,-..-__-~~~ .-.-,..... ---- .._,.,., ---~-..- ..,.___ ~___~~~._ 

2 double upspace after printing, 

4 quadruple upspace after printing, 

skip to next page after printing; 

(b) 

b:nk 

Card content control by column 1: 

Yul System four-field format, / 

Ror P columns 9-80 contain remarks. 

When column 1 contains blank or R, the 407 prints columns 

l--7 in print positions 1-7, and columns 9-80 in print positions 

S-60. In the Pass 2 printout, the Assembler prints columns lo-7 

in print positions l-7, columns 9-80 in print postions 49-120, and 

complaints and octal translation in print positions 9-47, and 

upspacing according to column 8. The discussion of fields, then, 

is concerned with the two types of cards listed in (b). Cards with 

R in column 1 are inserted in SYPT or S~YLT and are printed 

during Pass 2, but have no other effect on assembly. Cards with 

column 1 blank are considered to consist of the following four 

fields: 

columns 9-16 

columns 18-23 

columns 25-40 

columns 41-80 

L,ocation field, 

Operation field, 

Address field, 

Remarks field. 

Columns 2-7 contain the card number. The first card in a deck 

must have a number greater than zero, and each card must have 

a number greater than that of the preceding card unless it 

specifies a sequence break. The characters blank and zero are 

equivalent in a card number. The occurrence of any character 

other than blank or a digit in the card number specifies a sequen.ce 

break: no comparison is made with the preceding card number, 

and the next card number is required to be greater than zero. 

54 



The location and operation fields consist of one subfield each, 

and the address field consists of one or two subfields (in certain 

cases the address field contains special formats; these will be 

described where they apply). The remark field is treated like 

the contents of an “R” card. 

(4) Instruction cards: The card type most frequently 

occurring specifies the location and makeup of 3C instruction of 

either the direct or interpreted type. Two control operations 

must be introduced (in an oversimplified way) to clarify the rules 

for writing instructions. The LOC operation specifies the location 

of the next 3C word defined in the program deck. In its simplest 

form, the LOC operation is written thus: 

Location Operation Address 

blank LOC numeric 

The Assembler’s Location Counter (LC) is set to the value of the 

address. At the beginning of an assembly, LC contains an illegal 

address. The HEAD (or TAIL: these words are equivalent) 

operation is useful when several programmers contribute to the 

same program (as when subroutines are used), and is written 

thus: 

Location Operation Address - ---- 
blank or HEAD or (irrelevant) 

one character TAIL 

The rightmost non-blank character (or blank if there is none) in 

the location field is set up as the prevailing headunt’iI. another 

HEAD operation occurs. Each symbol encountered in a location 

or address field is left-justified, and if the eighth character is a 

blank, the prevailing head is inserted. Thus a set of programmers 

can avoid conflicts in their use of symbols by restricting symbols 

to 7 characters or less and using different heads. The prevailing 

head at the beginning of an assembly is a blank. An instruction 

card’is written thus: 

55 



Location Operation Address 

blank or symbolic or blank or 

signed numeric or numeric signed numeric or 

numeric or numeric or 

symbolic symbolic or 

numeric and signed numeric or 

symbolic and signed numeric 

If the location field is blank or signed numeric, the word specified 

in the operation and address fields is assigned to the location 

given by c (LC). If the location field is symbolic, the same is true 

(unless the symbol has been defined in certain ways), and the 

symbol becomes defined as equivalent to c (LC). A numeric 

location field overrides the setting of LC and resets it. In all 

cases, c (LC) is incremented by 1 after each 3C word is processed. 

The operation field will usually contain a symbolic order code 

for a direct or interpreted 3C instruction. If it is numeric, it is 

regarded as occupying the same bits in the word as a direct order 

code. A blank operation field has the same effect as an R in 

column 1. 

In 3C and other machines the rightmost non-blank character 

of certain symbolic operation codes may be an asterisk (to 

indicate indirect addressing). See appendix V for the rules 

governing’ indirect:addresSirSg: in’the’ ~teppretive:3C:‘laRguage. 

If the address field is blank, c (LC) is used as the address. 

If it is signed numeric, the algebraic sum c (LC) + the value is 

used. If it is numeric, that value is the address. If it is numeric 

and signed numeric, the two subfields must be separated by at 

least one blank, and the algebraic sum is used as the address. A 

negative address value is meaningless. If it is symbolic, the 

numeric equivalent of the symbol (assigned either earlier~.or later in the 

program deck - -this is why there are two main passes) is the 

address. If it is symbolic and signed numeric, the two subfields 

must be separated by at least one blank, and the algebraic sum 

56 



of the equivalent of the symbol and the signed numeric value is 

used as the address. The symbolic subfield (if any) of an address 

field is treated in a special way to allow an instruction in a 

section of coding under one prevailing head refer to a symbol 

defined under a different head. There are several ways of doing 

this, but a convenient one is provided for as follows. If a symbolic 

subfield in an address field consists of more than one non-blank 

character, and if the rightmost of these is separated from the 

others by at least one blank, that character is shifted with respect 

to the left-justified symbol so as to be in’the eighth, or head, 

position. An outline of the Assembler’s rules for decoding an 

address field may be helpful: 

(a) see if address field is all blank; if so, investigation is 

finished; if not, 

(b) see if the leftmost character is a sign or if there is 

any sign preceded by at ileast one blxnk;,:if not, goto 

(e); if so, 

Cc) see if the rightmost of these, together with the characters 

to its right, form a signed numeric subfield; if not, go 

to (e): if so, 

(d) record the presence and value of the subfield, and 

delete it from the address field; then see if the field is 

blank; if not, go to (e); if so, the field is signed 

numeric. 

(e) see if the field constitutes a numeric subfield; if not, 

go to (f); ‘if so, the field is wholly or partially numeric. 

(0 see if there is more than one non-blank character and if 

’ the rightmost of these is preceded by at least one blank; 

if not, go to (h); if so, 

(g) see if the seventh character following the leftmost 

character is a blank; if not, go to (i); if so, shift the 

character found in (f) to that postion; then 

57 



(h) see if the field constitutes a symbolic subfield; if not, 

go to (i); if so, the field is wholly or partially symbolic. 

(i) the address field is meaningless. 

In the light of these rules, the definition of a symbolic subfield 

should include a provision that it be so structured as to be correct- 

ly interpreted when it occurs in an address field. 

Certain symbolic operation codes imply a specific fixed 

address (see the last section of appendix III). In these cases, 

the address field is not examined. 

Two other control operations should be defined to make up 

a basic usable subset of the Yul Language. The IS or = operation 

is used to assign an equivalent to a symbol when nolother method is 

convenient. 

Location 

symbolic 

Operation 

IS or 

= or 

EQUALS 

Address 

any format usable 

for instructions 

If the address field contains a symbol, that symbol must have been 

defined earlier in the program deck. If a symbol defined by IS or = 

occu,rs subsequently in the location field of an instruction card, 

the LC is overridden and reset. The OCT or 0CTA.L code defines 

a constant, written as an octal integer. 

Location 

any format 

usable for 

instructions 

Operation A~ddress 

OCT or numeric or 

OCTA,L signed numeric 

The location field is treated as in instructions. The address field 

specifies one 3C word; if the field is signed numeric with a minus 

sign, the 3C word generated is the ONES’ complement of the 

number shown. 

58 



APPENDIX V 

INTEBPRETED INSTRUCTIONS 



APPENDIX V 

INT%RPRETED INSTRUCTIONS 

INTRODUCTION 

It is recognized that the principal applications for the 3C 

computer will require a computational accuracy that cannot be 

met directly with a l,&%bit word, length. As a result, an early 

effort has been made to provide extra-precision computer opera- 

tions as a normal programming tool. Recognizing also that many 

of the applications will involve complicated geometric considerations, 

it has seemed natural to provide vector operations as well. Finally, 

the set of eight basic operations which the 3C computer provides is 

indeed rather restrictive, and a more diverse set would be highly 

desirable. 

To satisfy these requirements, a computer program has been 

prepared to interpret a set of pseudo-codes or interpretive instruc-. 

tions. These pseudo-codes are 32 in number and include a variety 

of double-precision operations, a small number of triple-precision 

operations, together with a set of double-precision vector operations. 

The Yul system will recognize these interpretive codes and translate 

them accordingly, so that for practical purposes a programmer may, 

for the most part, act as though he has a much more versatile 

computer at his disposal. However, this facility does not come free. 

The first price which is paid is approximately 35 words of erasable 

storage and approximately 700 words of fixed program storage used 

by the interpreter. In addition, the interpreted instructions generally 

consume many instruction times to execute. As an example, the 

double-precision multiplication operation requires approximately 

140 instruction times, in contrast to the 16 required for the basics 

single-precision multiply instruction. On the other hand, the capa- 

bility to execute some of the more powerful instructions, such as a 

59 



vector addition by a single operation code, may lead to very 

considerable savings in storage requirements. 

USE OF INTERPRETED INSTRUCTIONS -_.. -... ..,.._..~ . . -~---.._ 

To make use of the interpreted instructions, a programmer 

must initiate a transfer of control to the first word of the inter- 

pretive program; that is, to a register labeled INTPRET in 

the section of the interpretive program shown in Appendix VI, 

Following the instruction TC INTPRET , he.th&writeb in 

sequence the instructions which he wishes interpreted. Program 

INl~'PItF:'l' piCkS,up each inStruCtiod’.in turn, hrea!G..it apart 

into an operation code and an address, a,id itself transfers control 

to the necessary subroutine to carry out the operation, It 

continues this action on successive instructions until it encounters 

an instruction word which is identically zero. This it interprets as a 

request to exit from the interpretive mode back into the basic mode 

of operation. The control is then transferred to the word immedi- 

ately following the zero word, and successive instructions there- 

after are executed as basic computer instruction. The Yul system 

is capable of recognizing the operation EXIT, and will replace 

this instruction by a zero word. 

Appendix VI contains the beginning part of the interpreter 

program, used as an illustration of programming techniques. The 

program begins in register number octal 1040 or decimal 544, and 

i.n its present version extends for 698 consecutive registers. It 

uses ordinary erasable registers numbered octally from 60 through 

121, a total of 33 in all. In addition to the interpreter program 

proper, a double-precision square root routine is included in 

this count. In the interpreter as it now stands, a total of 30 out 

of the possible 32 instructions are defined. Th.e. remaining two 

are temporarily held in reserve pending further programming 

applications 

The preceding remarks concerning the exact size and 

storage requirements for the interpreter should not be taken too 

‘literally in program planning, nor should the timing estimate for 

60 



the interpreted instructions be taken as exact. These estimates 

of time and storage requirements are obtained from an actual 

count of program words, and are indicative of the probable time 

and storage utlimately required. However, the program in its 

present form has not been rigorously checked out, nor has it 

been carefully examined from the standpoint of optimizing and 

integrating its operations. As a result, it is almost certain that 

changes of one sort or another will be made before the program 

becomes operative. It is doubtful, however, that any major change 

in time or storage will result other than those arising from the 

elimination or addition of major instructions. 

Before proceeding with detailed discussion of the individual 

interpretive instructions, a few of the erasable registers used 

by the program should be specifically discussed. As noted above, 

a certain number of triple-precision, operations are carried out 

as well as the common double-precision orders. For this purpose, 

registers DAC to DAC +2 are reserved as an extra-precision 

accumulator. The initials DAC are a mnemonic misnomer, 

standing for the phrase “double accumulator ” For most of the 

instructions, however, use of DAC is restricted to double-precision 

work. This pair or triplet of registers plays much the same role 

for the interpreted instructions as does the ordinary accumulator, A, 

for the basic computer orders. There exist, for example, double- 

precision operations exactly analogous to the CS, TS, and XCH 

instructions. In addition, however, there are instructions for 

executing double-precision division and for shifting the entire 

contents of the triplet of registers left or right by one or more 

bit positions. Somewhat analogous to the register Q in the basic 

machine language, the register IQ is used by the interpreter for 

much the same purpose. * The interpreted transfer of control 

instruction, ITC, leaves in register IQ the address immediately 

following that from which the ITC instruction was executed. An 

*And not-to be confused with register QI. which is where (Q) is 
kept during,an interrupt. Mnemonics based on the words INTERRUPT 
and INTERPRET are basically confusing., smce they have all but 
two letters in common. 

61 



interpreted transfer of control to the address IQ will serve adequately 

as a subroutine exit, much as the operation TC Q does. A further 

instruction, ITA, interpreted transfer address, is provided. This 

serves directly to store the contents of IQ in a designated address. 

In addition to the double-precision accumulator DAC, a set of six 

registers, VAC to VAC +5, are reserved for a double-precision 

vector accumulator. Details of operations carried out with the 

double-precision vector accumulator may be found under the dis- 

cussion of the individual instructions. No attempt is made in the 

present scheme to execute any triple-precision operations with 

vectors, with the sole exception that the dot product operation 

accumulates a triple-precision sum of the three double-precision 

products involved. Neither, for that matter, are any single- 

precision vector operations considered here. Finally, it should 

be mentioned that a set of six registers, VBUF to VBUF +5, are used 

as temporary erasable registers in various vector operations, but 

not by’~theother .instructions. As a result, these are available to 

the programmer for use as temporary storage if his requirements 

do not involve use of vectors. 

To provide 32 interpreted instruction codes within the frame- 

work of a 15-bit computer word, a revised addressing procedure is 

used in the interpreter. The 4, 096-word computer storage is 

divided into 16 blocks of 256 words each. The first two of these 

blocks constitute the erasable storage section, including the 

special registers and input-output registers, The remaining 

14 blocks constitute fixed storage. Two types of addressing are 

permitted, direct addressing of erasable storage or of another word 

or words within the same block as the instruction, and indirect 

addressing which uses another word in the same block as the source 

of the address actually required. Any interpreted instruction may 

be translated by the compiler into the form for the latter indirect 

addressing mode, simply by placing an asterisk after the instruction 

-code. Specific action of the compiler in this and other cases is 

described for interpreted orders in a paragraph below. The 

62 



indirect addressing specified here should not be confused with that 

normally found in many advanced computers, in which any word in 

storage may be used as the source of an indirect address. Here, 

the use is really quite limited, and is intended simply as a crutch 

to enable any instruction in fixed storage to have reference to any 

other fixed storage location. 

The 15-bit word is divided into a 6-bit order code (bits 15-10) 

and a g-bit address (bits 9 -1). If bit 15 is zero, the address is 

taken directly from bits 9 - 1, that is, the address is an address 

in erasable storage. If bit 15 is one, bit 9 is used to indicate 

whether direct (bit 9 = 0) or indirect (bit 9 = 1) addressing is intended 

for the other eight bits ( 8 - 1). For direct addressing, bits 8 - 1 

are combined with a four-bit bank indicator in digit positions 12 - 9 

whose value corresponds to the beginning address of the particular 

block of 256 words containing the instruction. The resultant address 

is then used directly as the address of the operand. If indirect 

addressing is used, the address formed as above is used as the 

location from which the address of the operand is taken. 

It is noted in passing that action of the interpreter program 

changes the bank indicator (i. e., the work indicating in bits 12 - 9 

the block number of the present instruction) only when an ITC 

or an active IRMN order is encountered. It is therefore not 

possible for the program to proceed continuously from the last 

word in one 256 word block to the first word in the next without 

risking an error; an ITC order should be supplied to pass between 

blocks. This remark does not apply to the eight basic computer 

instructions. Further, the bank indicator is set each time upon 

entering the interpretive mode, so that block boundaries may be 

freely crossed by basic orders. 

INDEXING 

The interpretive instruction IN1 (interpretive index) works, 

for interpretive orders, much the same as the INDEX order does 

for basic 3C instructions. Specifically, the IN1 order causes the 

contents of the designated address to be added to the order following 

the INI instruction before execution. In the special case 

63 



of indexed instruction with indirect addressing, the indexing part of 

the operation occurs last, that is, after the indirect addressing is 

accomplished. Note that indexing works on the address part of the 

word only. Attempted ari.thmetic with the order code via the INI 

order will lead to error, To execute an ir.st.ruction made up by 

arithmetic processes, the i,nterpretive DO order is prcvided~ 

ADDRESSING EXAMPLES _- 

(All numbers are octal) 

Address Order 

2517 35271 

2517 35671 

2517 75271 

2517 

2671 

2516 

2517 

2671 

COMPILER 

75671 

05004 

IN1 53 

75671 

05004 

In,terpretaticn 

Operation 35 on E-address 271. 

Operation 35 on E-address 671, 

Operation 35 sn address B + 27:. 

B = 2400 : bank indicator for the 

address (2517) of this order. 

Opeyatian 35 using the address (5004) 

which is found in register 2671 

This c,ombination causes operation 35 to 

be executed with the address 5004 +C(53) 

The instruction PQR ADDR is t,ran,slated as follows by the 

compiler, whenever PQR is an interpreted order., 

(1) If the mnemonic symbol ADDR has a value less than 

octal 1000, i.t is interpreted as an ordinary E-address and its 

value is added in directly tn the order code. 

,(29 Otherwise: 

(a) The compiler checks th,at ADDR is in the same 256 

word blnck’as the r,rder; Alarm if not., If so, the 

low-order 6 bits are l:ced and a 1 is put, into bit 15. 

(b) Bit 9 is 0 or 1 accordi,ng to whether ti?e operation 

code PQR is not or is follcwed by an asterisk to denote 

indirect addressing. 



(3) Use of an asterisk in case (1) above causers an alarm. 

For noninterpreted orders, the value of’the mnemonic address ADDR 
‘,,, : .; .:,i.; 

is directly added to ths 3-bit order code with no further ado. 
: ,i: ,;, 

Before listing the individual instructions and :their,interpreta- 

tions, a small number of conventions used in this listed should be 

noted. The code number identifying each instruction is the octal 

version of the five-digit order code to be founds in digit positions 

14 to 10. Immediately following the code is the mnemonic symbol 

for the instruction. The letter X is used uniformly to represent 

the address part of the word. Immediately following’the name of 

the instruction in words, is listed the normal or average number 

of instruction times required for the instruction, together with 

the maximum number of instruction times if it differs from the 

average number. For simplicity, the times listed co.rrespond to 

direct addressing of erasable storage. To these must be added 

approximately 3 instruction times for direct addressing of fixed 

storage, and approximately 10 instruction times for indirect 

addressing of fixed storage. The letter L is used uniformly to 

denote the location or address from which the present instruction 

has been taken. Unless otherwise noted, the next instruction in 
sequence is taken from register L t 1. Finally, it should be 

remarked that unless otherwise noted, the contents,of the registers 

DAC, IQ, VAC, and VBUF, are left unaltered. 

The number system used for the double-and triple-precision 

arithmetic in the following instructions~is one in which the binary point 

is at the left-hand side of the register DAC, that is, between digits 

14 and 15. Thus the number which is contained in the registers 

DAC to DAC +2 is given by 

c(DAC) + 2 - ‘* o(DAC + l)+ 2-28 c(DAC t 2) 

Sign agreement among the three numbers is not postulated; that is 

to say registers DAC and DAC + 1 may have opposite signs, as may 

DAC t 1 and DAC +2. A special subroutine is available which can 

force sign agreement if required for special applications. However, 

65 



none of the interpretive instructions require that their operand 

have this characteristic. The programmer must be on his guerd 

to avoid expecting such sign agreement in his results, if he is to 

make special use of the individual parts of an extra-precision number. 

Code 00, ITC X, Interpreted Transfer Control to X, 35 I. 

Action: Next interpreted operation taken from X. 

c(IQ) set to the 12-digit address L + 1. 

Comments : The instruction ITC IQ causes the next 

interpreted instruction to be taken from 

the address stored in IQ, leaving IQ set 

to the address 0. 

Code 01, :: IBMN X, Interpreted Branch Minus to X, 35 I ave., 
44 I max. 

Action: Test DAC. If zero, test DAC t’l..:If:sero s 

test DAC +2. For the first nonzero number 

found, test sign. If pl-Lis,or ifall three 

numbers are zero, take next interpreted 

instruction from L + 1. If minus, execute 

ITC to address X. 

Comments: +0 and - 0 are equivalent here. For non- 

branch condition, IQ is undisturbed; it is 

set as in ITC order when branch is taken. 

Care should be taken in double-precision 

operations not to branch inadvertently 

on a leftover c(DAC + 2) when the two 

high-order words are zero. When DAC 

itself is nonzero, 38 I are required for 

for c(DAC) negative and 31 I for the 

positive case. 

66 



Code 02, IN1 X, Interpreted Index by X, 33I. -- 

Action: The next instruction executed is c(L + 1) 

with the address part of the instruction 

modified by addition of c(X). The next 

succeeding instruction is taken from L + 2. 

Comments: Only the address part of the instruction 

is modified by adding c(X). Any attempt 

to do arithmetic with the order code 

part of the word will lead to confusion 

and probable error. Details of how the 

indexing process is carried out can be 

obtained by examination of the program 

in Appendix VI. If the addressing operation 

in c(L + 1) is indirect, the indexing occurs 

on the final address. 

Code 03, DC X, Do Single Instruction at X, 26 I. ~-- - 

Action: The next operation is taken from X. The 

operation immediately following is taken 

from L + 1, unless c(X) is an ITC or an 

active IBMN instruction 

Comments : The purpose of this instruction is to 

provide the capability for executing a 

single order built up by an arithmetic 

process in erasable storage, or filled in 

by another program. 

Code 04, DCA X, Double Precision Clear and Add X. 40 I.~ 

Action: c(X) into DAC, c(X + 1) into DAC + 1, + 0 

,into DAC + 2. 

Code 05, DCS X,- Double Precision Clear and Subtract X, 
31 I. 

Action: -c(X) into DAC, -c(X+l) into DAC + 1, 

+ 0 into DAC + 2. 

67 



Code 06 _____ ‘---.. DAD X .~~-- ..-- _’ Double Precision Add X, 55 I ave., --._ 
58 I max. 

Action: c(X, X + 1) + c(DAC, DA6 + 1) into 

(DAC, DAC + 1). c(DAC + 2) is left 

unaltered. 

Code 07, 

Action: -c(X, X + 1) + c (DAC, DAC + 1) into 

(DAC, DAC + l).~ (DAC + 2) is left 

unaltered. 

Code10,---.~ DTS X, Double Precision Transfer to 
Storage X, 37 I. 

Action: c(DAC) into X, c(DAC + 1) into X + 1. 

c(DAC + 2) left unaltered. 

Comments: Note also the instruction TTS available 

for transferring all three registers to 

storage. 

Code 11, DXCH X, Double Precision Exchange with X, 
3L.L 

Action: c(X) and c(DAC)‘are exchanged, as are 

c (X+ 1) and c (DAC + l), with 

c (DAC + 2) left unaltered. 

Double Precision Multiply by X, .-- ---- 
141 I ave., 145 I max. 

Action: The product c (X, X + 1) c(DAC, DACtl) 

is written as a triple precision answer in 

DAC, DAC + 1, and DAC + 2. If the twc 

factors are exact, the result is precise 

to within 1 in the lowest order significant 

digit in DAC t 2. 

68 



Code 13, DDV x, Double Precision Divide by X. 
Approx 780 I ave. 

Action: c(DAC, DAC + 1) is divided by c(X, X + l), 

the result being left in DAC, DAC + 1. 

Comments : The numerator must be less than the 

denominator in order to prevent e.rroneous 

results. No hang-up of the computer or 

loop of indefinite duration will result from 

violating this constraint, however. An 

attempt to divide by 0 will produce 0 as 

a result with no further serious consequences. 

Code 14, TSLT X, Triple Shift Left by X, (38 + 16 X) I. 

Action: The entire triple accumulator, DAC to 

DAC + 2, is considered as a single 

42-bit register. Contents of this register 

are shifted left by X binary positions, with 

digits disappearing from the left hand edge 

of the register without overflow indication, 

and with 0 replacing the low-order digit 

positions. 

Comments: This operation is conducted without forcing 

sign agreement among the three zegisters. 

The means by which it is accomplished is 

by successive doubling of the contents bf 

the 42-bit register by adding it to itself, 

the lowest order words being added first, 

and the highest order being added at the end, 

with overflows propagating from the lowest 

order towards the highest order words. 

Overflows resulting through addition in 

the highest order position are ignored. 

The overall result is the same as though 

69 



the three words were first forced to .,~ 
share a common sign, and the entire 

42-bit word then shifted as a single 

entity, with zeros filling in the lower 

order digit positions for positive numbers, 

or ones filling &these digit positions 

for negative numbers. The result is 

left in’ B condition without sign agreement. 

Code 15, TSRT X, Triple Shift Right by X, (75 f 5X) I. .- 

Action: 

Comments : 

The number X must lie between 1 and 14 

inclusive. The double-precision number 

in DAC, DAC + 1 is multiplied by 2 -X 

The result is then stored as a triple- 

precision number, in DAC to DAC + 2, 

The result is the same as though the double- 

precision number in DAC, DAC + 1 were 

shifted to the right by X binary places, 

with the lowest order digits moving into 

the high order digit positions of DAC + 2, 

the rest of this register being clear, 

Code 16, SSP x, Set Single Precision Number in X, 35 I. 

Action: c(;L + 1) stored in register X. Next operation 

taken from register L ,+ 2 j 

Comments : The purpose of this instruction is to permit 

single words in storage to manipulated by 

the interpreted instructions, for use as 

counters, indexing words, and related 

operations, 



Code 17, INCR X, Increment by X, 39 I. 

Action: c(L + 1) + c(X) stored in X and in DAC. 

Registers DAC + 1 and DAC + 2 set to 

zero. Next operation taken from L + 2. 

Comments : This instruction complements the action 

of SSP above, permitting the incrementing 

of the single register and at the same 

time setting in DAC the incremented 

result to be tested by an instruction 

such as IBMN. It is noted in passing 

that c(L + 1) may be any word whatever, 

for both the SSP ,and INCR instructions. 

Thus whole instructions can be modified 

in erasable storage, for example, for 

use by the DC instruction. 

Code 20, ITA X, Interpreted Transfer Address to X, 34 I. ---_.---- . . ..-. ~-.- ____ - __. __.-.._ .- . .._.. -.-..~. _,~ -_-__ 

Action: c(IQ) into register X. 

Comments: The quantity stored is a 12-digit address, 

and can be recovered as the return address 

of a subroutine by the pair of instructions 

IN1 X, and ITC 0. An error would generally 

result by using the instruction ITC X, 

since c(X) contains part of the address in 

bits 12-10. 

Code 21, TCS X, Triple Precision Clear and Subtract- 
x 39 I. 

Action: -c(X, X + 1, X + 2) stored in (DAC, DAC + 1, 

DAC + 21. 

71 



~Code 22, TAD X, Triple Preci,sioedd X, QS I av~ 73-Iinax.- 
-2 

: i~i Action: C(X, X + 1, X + 2j-k c(DAC, DAC + 1, 

DAC + 2) into (DAC, DAC f 1, DAC +2) 

Code 23, TTS X, Triple Transfer to Storage X, 41 I, 

Action: c(DAC) into X, c(DAC + 1) into X + 1, 

c(DAC + ~2) into X + 2. 

Code 24 Available. ) _-.,.__ _.~.~. .~ 

Code 25, Available. 

Code 26, VCA X,----v.- Double Precision Vector Clear and 
Add X, 128 I. - 

Action,: c(X) to c(X + 5) transferred into the vector 

accumulator, VAC to VAC + 5. 

Code 27,~. VXCH X, Double Precision Vector Exchange with ..__ --.-..-..~.- ------- ..-..- x,_~~~~~--..-., .-,~.~-..~--__--._-.-.--- ..---.. 

Action: c(X) td c ~(X % 5) :exchanged~ withy c (V&J;, io 

c(VAC C 5 j. :- I 1 ; )~, 

.Co~e-30,__VTS_ZI,‘_-, ,~~ Doiible Precisidn Vector Transfer to 
Stc)rage X, 120 I. .~~.._---_- __-_.._. 

Action: c(VAC) to c(VAC + 5) transferred to registers 

xtex+ 5: 

Action: The negative of the vector stored in registers 

X to S + 5 is transferred to registers ~VAC 

toVA~C+ 5. 

12 



Code 32, VRD X, Double Precision Vector Add X, 120 I ave. L _-_.-- 
128 I max. - 

Action: The double-precision vector stored in 

registers X to X + 5 is added to the double- 

precision vector stored in the vector 

accumulator, the result being left’.in the 

vector accumulator. 

Code 33, vsc x, Double Precision Vector Times Scalar X, 
352 I ave 364 1 max. --.---C.‘---.- 

Action: The vector quantity in the vector accumulator 

is multiplied by the double-precision 

quantity in registers X and X + 1. The 

result is left in the vector accumulator. 

The multiplication here is the same as in 

the double-precision multiply operation, 

as is that used in the cross-product and in 

the two matrix vector operations. 

Code 34, DOT X, Double Precision Vector Dot Product with 
.x, 448 I ave., 466 I max. 

Action: The dot product of the vectors contained 

in registers X to X + 5 and VAC to VAC +5 

is formed and left in registers DAC to 

DAC i. 2. The multiplication is the same 

as in the double-precision multiply operation; 

however, the sum is accumulated in triple- 

precision arithmetic. 

Comments : The purpose of the triple-precision accum- 

ulation is a matter of convenience in scaling. 

In particular, it is possible by this means 

to take a reasonably accurate~ absolute 

value of a relatively small vector quantity, 

without first re-scaling the vector. 

73 



Code 35, CROSS X, Double Precision Vector Cross 
Product with X: 881 ave. , 914 I max, 

Action: The double-precision vector cross product 

is formed of the vector contents of X times 

the vector in the vector accumulator. The 

result is left in registers VBUF to VBUF 9 

5 and in the vector accumulator. 

Comments: Note ~specifically that the vector contents 

of X premultiply the vector accumulator 

Code 36, MXV X, Double Precision Matrix Times Vector,, 
1400 I ave, , 1460 I max. 

Action: Contents of the vector accumulator are 

premultiplied by the double-precision 

matrix stored in registers X to X + 17, 

the resulting vector being left in the 

vector accumulator. Contents of registers 

VBUF to VBUF + 5 are altered in the process. 

Code 37, VXM X, Double Precision Vector, Times Matrix, 
1400 I ave. ) 1460 I max, - 

Action: Contents of the vector accumulator are 

postmultiplied by the double-precision 

matrix stored in registers X to X +’ 17, 

the resulting vector being left in the 

vector accumulator. Contents of registers 

VBUF to VBUF + 5 are altered in the process, 

74 



APPENDIX VI 

ILLUSTRATIVE 3C PROGRAM IN YUL LANGUAGE 



R0005 
ROOlO 

APPENDIX VI ILLUSTRATIVE 3C PROGRAM IN ~UL LANGUAGE 

ERASABLE REGISTER ASSIGNMENTS 
_______- -----___ ___-_------ 

R0015 THE FOLLOWING REGISTERS ARE DEFINED BY INFERENCE...A, Q, N, 
R0020 EDHI OVCTR, LP 

0025 
0030 
0035 
0040 
0045 
0050 
0055 
0060 

LOC r 

IQ = 
IND .z 

DAC ERASE 
VAC ERASE 

2: 
0065 
0070 
0075 
0080 
0085 
0090 
0095 
0100 
0105 
0110 

VBUF ERASE 
BUF ERASE 
TEM3 = 
BANK = 
TEM2 = 
TEM4 = 
TAG ERASE 
ADDRWD = 
TEM5 = 
TEM6 = 
TEM7 = 
TEM8 = 
INTLOCK = 

60 
61 
62 
63 +2 
66 +5 
74 +5 
102 +1 
104 
105 
106 
107 
110 .4 
115 
116 
117 
120 
121 
122 

PAGE i 



RD115 
R0120 

0125 LOC 1040 

0130 INTPRET XCH 0 ENTRY 
0135 TS LOC RE-ENTRY FOR ITC 

0140 CS 
0145 TS 
0150 XCH 
0155 ORN 
0160 CS 
0165 TS 
0170 TC 

A 
N 
fkl SK 1 

COMPUTE CURRENT DANK INDICATOR 

LOGICAL ADD MSKl INTO N 
N 
E?ANK 
JNTl +3 

0175 MSKl OCT 

IBMNl ccs 
TC 
TC 
TC 
ccs 
TC 
TC 
TC 
ccs 
SC 
TC 
TC 

00377 

0180 
0185 
0190 
0195 
0200 
0205 
0210 
0215 
0220 
0225 
0230 
0235 

DAC 
JNTI 
+2 
ITCl 
DAC +1 
INTl 
+2 
ITCl 
DAC +2 
INTl 
INTl 
JTCl 

0240 INTl XCH ONE 
0245 AD LOC 
0250 TS LOC 

APPENDIX VI ILLUSTRATIVE 3C PROGRAhl IN YUL LANGUAGE PAGE 2 

INTERPRETER 

IF HIGH ORDER IS CO OR -0. 

IF BOTH HIGH ORDER WORDS ARE ZERO* 
TEST DAC +2. 

NORMAL RE-ENTRY 



0255 
0260 

R0265 

APPENDIX VI ILLUSTRATIVE 3C PROGRAM IN YUL LANGUAGE PAGE 3 

ccs TAG TEST FOR INTERPRETIVE INTERRUPT 
TC I RPT IF (TAG1 NON-ZERO, GO TO IRPT 

FOR NO INTERPRETIVE INTERRUPT REQUEST , GO ON WITH NEXT LINE. 

0270 INDEX LOC 
0275 cs 0 
0280 TS EDH 
0285 TS TEM2 
0290 cs EDH 
0295 AD CON1 
0300 XCH TEM2 
0305 TS N 

0310 CCS A 

0315 XCH MSK3 
0320 TC INT2 
0325 TC +3 

0330 INDEX 
0335 TC 

LOC 

0340 XCH 
0345 ORN 

MSK2 

0350 cs N 
0355 TS ADDRWD 
0360 INT3 ~XCH ZERO 
0365 XCH IND 
0370 AD ADDRWD 

C(LOC) = TC NEXT OP. = TC N. 

DELETE ONES FROM DIGITS 14-6. 

+0 IS IMPOSSIBLE HERE 

F-STORAGE 

E-STORAGE 

,EXIT INSTRUCTION (TC 0) SHOWS UP HERE 
EXIT IN BASIC TO LOC+l. 

DELETE DIGITS 15-10 IN N. 

POS.ITIVE 9-BIT E ADDRESS. 



0375 
0380 
0385 
0390 
0395 

APPENDIX ,VI ILLUSTRATIVE 3C PROGRAi4 IN YUL LANGUAGE PAGE 4 
~, 

l-s ADDRWD 
INDEX TEM2 

~TC BR IF SIGN IS MINUS, TC BECOMES CS. 
CS A 
TCAA CTBR + Nl .IS ITSELF A TC ORDER. 

0400 
0405 
0410 
0415 
0420 
0425 
04~30 
0435 
0440 
0445 

IRPT 

+2 

ccs I NTLOCK TEST IF ALREADY IN INTERPRETIVE 
Tc INTI +5 INTERRUPT MODE. 
XCH ZERO INITIATE INTERPRETIVE INTERRUPT 
XCH TAG +4 
XCH ,TAG +3 REGISTERS TAG +N STORE A PRIORITY 
XCH TAG +2 SEQUENCE OF TRANSFER CONTROL ORDERS* 
XCH TAG +1 SET UP BY ZERO-LEVEL INTERRUPT PROG- 
XCH TAG RAMS FOR LATER ACTION. THAT IN TAG 
TS I NTLOCK ITSELF IS NOW TO BE EXECUTED. 
TCAA 

0450 
0455 

0460 
0465 
0470 
0475 
0480 
0485 
0490 
0495 
0500 

MSK2 OCT 77000 
MSK3 OCT 77400 

INT2 ORN FIXED STORAGE CASE 
cs N POSITIVE B-BIT ADDRESS 
AD BANK 
TS ADDRWD 
ccs TEM2 
TC INT3 TO INT3 FOR DIRECT ADDRESSING 

CON1 OCT 40037 +0 NOT POSSIBLE HERE. 
TC +2 FOR INDIRECT ADDRESSING 
TC INT3 -0 RESULTS FOR ITC ORDER WITH, D9 = 0. 

0505 INDEX ADDRWD FORM INDIRECT ADDRESS 
0510 cs 0 
0515 CS A 
0520 'ii INT3 -1 



R0525 

APPENDIX VI ILLUSTRATIVE 3C PROGRAM IN YUL LANGUAGE 

INTERPRETIVE BRANCH TABLE 

0530 
0535 
0540 
0545 
0550 
0,555 
0560 
0565 
0570 
0575 
0580 
0585 
0590 
0595 
0600 
0605 
0610 
0615 
0620 
0625 
0630 
0635 
0640 

RR TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 
TC 

I TCl 
IBMNl 
IN11 
DO1 
DCAl 
DCSl 
DAD2 
DSUl 
DTSl 
DXCHl 
DMP2 
OPDIV 
SHIFTL 
SHIFTR 
SETONE 
I NCRMT 
ITAl 
TCSl 
TRAD 
STORE3 
0 
0 
VCAl 

PAGE 5 

CODE 0 = ITCI INTERPRETIVE TC ORDER 
CODE 1 = IBMNI DP BRANCH MINUS 
CODE 2 = INI, INTERPRETIVE INDEX 
CODE 3 = DO, EXECUTE SINGLE ORDER 
CODE 4 = DCA, DP CLEAR AND ADD 
CODE 5 = DCS, DP CLEAR AND SUBTRACT 
CODE 6 = DAD, DP ADD 
CODE 7 = DSU, DP SUBTRACT 
CODE 10 = DTS, DP TRANSFER TO STORAGE 
CODE 11 = DXCHI DP EXCHANGE 
CODE 12 = DMPt DP MULTIPLY 
CODE 13 = DDV, DP DIVIDE 
CODE 14 = TSLTI TRIPLE LEFT SHIFT 
CODE 15 = TSRT, TRIPLE RIGHT SHIFT 
CODE 16 = SSP, SET SINGL;~PRECIi;UN 
CODE 17 = INCRt INCREMENT SINGLE PREC 
CODE 20 = ITAI INT. TRANSFER ADDRESS 
CODE 21 = TCS, TRIPLE CLEAR AND SUBTR 
CODE 22 = TAD, TRIPLE PRECISION ADD 
CODE 23 = TTS, TRIPLE TRANS TO STOR. 
CODE 24 (AVAILABLE) 
CODE 25 (AVAILABLE) 
CODE 26 = VCA, DPV CLEAR AND ADD 

R0645 NOTATION DPV = DOUBLE PRECISION VECTOR. 

0650 TC VXCHl CODE 27 = VXCH, DPV EXCHANGE 
0655 TC VTSl CODE 30 = VT.59 DPV TRANSFER TO STOR. 
0660 TC VCSl CODE 31 = VCS, DPV CLEAR AND SUBTRACT 



0665 TC VADl CODE 32 = VADv DPV ADDITION 
0670 TC VSCl CODE 33 = VSC, DP VECTOR TIMES SCALAR 
0675 TC DOT1 CODE 34 = DOT, DPV DOT PRODUCT 
0680 TC CROSI CODE 35 = CROSS, DPV CROSS PRODUCT 
0685 SC MXVl CODE 36 = MXV, DP MATRIX TIMES VECTOR 
0690 TC VXMl CODE 37 = VXM, DP VECTOR TIMES MATRIX 

0695 TCSl INDEX ADDRWD 
0700 CS 2 
0705 TC DCSl +l 

TRIPLE CLEAR AND SUBTRACT ORDER 

0710 
0715 
0720 
0725 
0730 
0735 
0740 
0745 
0750 

DCSl XCH ZERO 
TS DAC +2 
INDEX ADDRWD 

DOUBLE CLEAR AND SUBTRACT 
IDCS CLEARS DAC +21 

CS 1 
TS DAC +l 
INDEX ADDRWD 
CS 0 

EX3 TS DAC 
TC INTl 

0755 
0760 
0765 
0770 
0775 
0780 
0785 
0790 
0795 
0800 
0805 
0810 
0815 

STORE3 CS 
cs 
INDEX 
TS 

DTSl cs 
cs 

cs 
EX4 cs 

INDEX 
TS 
TC 

DAC +2 
A 
ADDRWD 
2 
DAC 
A 
ADDRWD 
1 
DAC 
A 
ADDRWD 
0 
TNT1 

TRIPLE PRECISION TRANSFER TO STORAGE 

DOUBLE PRECISION TRANSFER TO STGRAGE 

INDEX 
TS 

APPENDIX VI ILLUSTRATIVE 3C PROG:?A;? IN YUL LANGUAGE PAGE 6 



APPENDIX VI 

0820 ITCl 
0825 
0830 
0835 
0840 TCIQ 
0845 
0850 
0855 

cs 
AD 
ccs 
TC 
TC 
TC 
XCH 
TC 

0860 NOTIQ 
0865 
0870 
0875 
0880 

XCH 
XCH 
AD 
TS 
TC 

0885 IN11 
0890 
0895 
0900 
0905 

INDEX 
cs 
COM 
TS 
TC 

0910 DO1 
0915 
0920 

INDEX 
cs 
TC 

0925 DXCHl XCH 
0930 INDEX 
0935 XCH 
0940 XCH 
0945 XCH 
0950 INDEX 
0955 XCH 
0960 TC 

ILLUSTRATIVE 3C PROGRAM IN YUL LANGUAGE 

AODRWD TEST WHETHER ADDRESS IS IQ 
TCIQ 
A 
NOTIQ TO NOTIQ IF ADDRESS IS NOT IQ. 
IQ (REGISTER NOT USED IN CCSI 
NOTIG’ 
IQ IF ADDRESS IS INDEED IQ 
INTPRET +1 LEAVES +0 IN IQ 

ADDRiD ‘, ADDRESS IS NOT IQ 
LOC 
ONE 
IQ 
INTl +3 

PAGE 7 

ADDRWD INTERPRETIVE INDEX ORDER. SET CTINDI 
0 TO THE VALUE IN THE REGISTER WHOSE 

ADDRESS IS IN ADDRWD. 
IND 
INTl 

ADDRWD INTERPRETIVE DO INSTRUCTION. 
0 EXECUTE OUT OF ORDER THE ISOLATED 
INTl +5 INSTRUCTION-WHOSE-ADDR IS IN ADDRWD- 

DAC +1 DOUBLE PRECISION EXCHANGE ORDER 
ADDRWD 
I 

DAC +l 
DAC 
ADDRWD 
0 
EX3 


	Table of Contents
	Introduction
	Machine Organization
	Description of the Instructions
	Additional Special & Central Registers
	Output Registers
	Input Registers
	Counter Incrementing
	Program Interruption
	Examples of Programs
	Appendix I:  Complete List of Centrals & Specials
	Appendix II:  List of Control Pulses
	Appendix III:  3C Instructions
	Appendix IV:  YUL System for 3C and Related Computers
	Appendix V:  Interpreted Instructions
	Appendix VI:  Illustrative 3C Program in YUL Language

