Software

There isn't any. You'll have to write your own.
The first instruction executed is always a HOP 0. SGCS generates this instruction for you automatically; you don't need to code it. You must put a HOP word at address 0 , sector 0 to tell SGSC what to do next.

Here's a short example. The memory address is shown in a column on the left side. ' X ' means we don't care whether the bit is zero or one.

Addresses $0,5,6$, and 7 contain 26 -bit words: HOP words at 0 and 7 ; data words at 5 and 6 .
Execution begins by processing the HOP word at address 0 . The word says "begin execution at syllable 0 (bit $15=0$), sector 0 (bits 13-9), address 1 (bits 8-1)". Execution therefore begins at the instruction in syllable 0 (bits 13-1) of memory address 1 .

The instruction is a Clear and Add (CLA) with the operand pointing to the data word at address 5 which contains the integer " 3 ". Number 3 is loaded into the accumulator.

The next instruction is ADD 6. It adds the data word at address 6 (-1 in 2's compliment representation) to the accumulator; this decrements the accumulator.

The next instruction, TNZ 2, jumps to the operand address if the accumulator is nonzero (it is). SGSC jumps back to the ADD 6 instruction and decrements the accumulator again.

When the accumulator reaches zero, the TNZ instruction falls through to the next instruction: HOP 7. This executes the HOP word at address 7 which transfers execution to sector 0 , word 1 , syllable 1. The instruction there is TRA 1 which causes SGSC to infinitely loop.

0		X	X	X	X	X	X	X	X	X	X	X	0	X	0	0	0	0	0	0	0	0	0	0	0	0	1	HOP	WRD
1	TRA 1	1	0	0	1	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	0	1	CLA	5
2															0	1	0	0	0	0	0	0	0	0	1	1	0	$A D D$	6
3															1	1	1	1	X	0	0	0	0	0	0	1	0	TNZ	2
4															0	0	0	0	0	0	0	0	0	0	1	1	1	HOP	7
5		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	DATA	WRD
6		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	DATA	WRD
7		X	X	X	X	X	X	X	X	X	X	X	1	X	0	0	0	0	0	0	0	0	0	0	0	0	1	HOP	WRD

