Software

There isn't any. You'll have to write your own.

The first instruction executed is always a HOP 0. SGCS generates this instruction for you automatically; you don't need to code it. You must put a HOP word at address 0, sector 0 to tell SGSC what to do next.

Here's a short example. The memory address is shown in a column on the left side. 'X' means we don't care whether the bit is zero or one.

Addresses 0, 5, 6, and 7 contain 26-bit words: HOP words at 0 and 7; data words at 5 and 6.

Execution begins by processing the HOP word at address 0. The word says "begin execution at syllable 0 (bit 15=0), sector 0 (bits 13-9), address 1 (bits 8-1)". Execution therefore begins at the instruction in syllable 0 (bits 13-1) of memory address 1.

The instruction is a Clear and Add (CLA) with the operand pointing to the data word at address 5 which contains the integer "3". Number 3 is loaded into the accumulator.

The next instruction is ADD 6. It adds the data word at address 6 (-1 in 2's compliment representation) to the accumulator; this decrements the accumulator.

The next instruction, TNZ 2, jumps to the operand address if the accumulator is nonzero (it is). SGSC jumps back to the ADD 6 instruction and decrements the accumulator again.

When the accumulator reaches zero, the TNZ instruction falls through to the next instruction: HOP 7. This executes the HOP word at address 7 which transfers execution to sector 0, word 1, syllable 1. The instruction there is TRA 1 which causes SGSC to infinitely loop.

<u>A</u> C	DR		26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	
0			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	0	0	0	0	0	0	0	0	0	0	0	0	1	HOP WRD
1	TRA	1	1	0	0	1	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	0	1	CLA 5
2																0	1	0	0	0	0	0	0	0	0	1	1	0	ADD 6
3																1	1	1	1	Х	0	0	0	0	0	0	1	0	TNZ 2
4																0	0	0	0	0	0	0	0	0	0	1	1	1	HOP 7
5			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	DATA WRD
6			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	DATA WRD
7			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	Х	0	0	0	0	0	0	0	0	0	0	0	0	1	HOP WRD