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PURPOSE
 

The purpose of this document is to specify the equations
 
necessary to perform-the guidance, navigation and control onboard computa­
tion functions for the space shuttle orbiter Vehicle. 
This equations
 
document will:' (1) establish more specifically, than on a functional
 
level, the GN&C computational requiremenis for computer sizing, (2) provide
 
GN&G design equations specification to develop demonstration softwre for
 
hardware feasibility testing, and (3) define the hardware interface'
 
requirements with the GN&C subsystem software. 
The document will provide
 
a standard of communication of information concerning the GN&C equations,
 
and will provide a means of coordination of GN&C equation -development.
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'SCOPE
 

This is Volume III of the document which defines the Guidance,
 
Navigation and Control (GN&C) design equations.sequencing and interfaces
 

for the computations required in the .GN&C-Sbsystei for all mission
 

phases of the Shuttle Orbiter-flight. 'The equations are intended to­

satisfy the functional requirements specified in.Reference a. 'This
 

document will describe in mathematical, logical, and operational language
 

all the details necessary td initiate and carry out .the design of the
 

required computer modules (subprograms) for the GN&C functions.
 

Thd document iill be organized into six volumes. Volume I
 

contains Sections 1 through '8,which ptovide introductory information for
 

the document. Volume II contains the current detailed equations for the
 

preflight, boost, separation, orbit insertion and ascent abort phases of
 

the Orbiter operation. Detailed equations for orbital operations of the
 

Orbiter, which include the orbital coast, orbital powered flight, rendez­

vous, station keeping, docking and undocking, and docked operations phases,
 

are presented in Volume III. Volume IV contains the current detailed
 

equations for the deorbit and entry, transition, cruise and ferry, approach
 

and landing, and horizontal takeoff phases of the Orbiter. Also, this
 

volume will contain the equations for communications and pointing functions
 

and the failure detection function. For this issue of the document, only
 

Volumes I through IV are being published. In future issues, Volume V will
 

contain the detailed flow diagrams for the equations. For the initial
 

issue, the flow diagrams for the approved equations are included with the
 

equations in Volumes II, III or IV. 
For future issues, the constants used 

in the equations will be summarized in Section 11 and the GN&C parameters 
and variables which can be entered or called via the keyboard will be 

enumerated in Section 12. These two sections will be contained in
 

Volume VI of the document.
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APPLICABILITY
 

This document is applicable to the Guidance, Navigation, and
 
Control (GN&C) Subsystem of the Electronics System of the Space Shuttle
 
Orbiter Vehicle.. It is applicable to the definition of the shuttle
 
computational requirements for the subsystem listed above. 
It is applicable
 
to the Phase B and Phase C subsystem development. It defines the Manned
 
Spacecraft Center Guidance and Control Division inhouse sutdy baseline
 

equations design.
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9.6 ORBITAL COAST
 

The 	following GN&C-software functions are envisioned for the orbital
 

coast phase:
 

Sensor Aligment and Calibration
 

1. 
Perform automatic calibration of sensors and compute,

compensation values during coasting orbital flight.


2. 
Perform automatic sensor pointihg and alignment during
 

coasting orbital flight.
 

Orbit Navigation
 

3. 	Advance inertial vector with conic solutions from an.
 
initial state t6 a final state as a function of time
 
or anomaly.
 

4 	 Augment conic state advancement with numerical
 
integration to account for complex gravity potential
 
mode'is. 

5. 	Reduce uncertainties in inertial state by accepting

and processing data from navigation sensors 
(ground

beacons, radar altimeter).
 

Attitude Control
 

6. 	Maintain attitude-hold about a desired orientation.
 

7. 	Provide attitude rate-hold about a desired rate for
 
orbital rate control, station keeping, passive thermal
 
control or other constant-rate maneuvers.
 

8. 	Provide semi-automatic control by initializing attitude
 
hold following manual maneuvers.
 

9. 	Implement minimum-impulse jet firings when required

by the autopilot or selected by the crew for manual control.
 

10. Maintain attitude for target visibility at crew and radar
 
locations during the coast periods of rendezvous, station
 
keeping and docking approach.
 

9.6.1 Orbital Navigation
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SPACE SHUTTLE
 

GN&C SOFTWARE EQUATION SUBMITTAL
 

Software Equation Section: Conic State Extrapolation Submittal No. 6
 

Function: Advance inertial state with cbnic solutions
 

Module N. ON2 Function No. 1 (MSC 03690) 

Submitted by: W. M. Robertson Co. MIT No. 3-71 

Date: Feb 1971 

NASA Contact: ,J. Suddath Organization: GCD 

Approved by Panel III: K. Cox ".- Date: 

Summary Description: Provides the capability to advance a geocentric
 
inertial state as a function of time or true anomaly. The extrapolation
 
is done analytically assuming Keplerian motion.
 

Shuttle Configuration: These equations are independent of'8huttle
 
configuration.
 

Comments:
 

(Design Status)
 

(Verification Status)
 

Panel Comments:
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9.6.1.1 Conic State Extrapolation
 

1. INTRODUCTION 

The Conic State Extrapolation Routine provides the capabil­
ity to conically extrapolate any spacecraft inertial state vector either 
backwards or forwards-as a function of time or as a function of 
transfei angle. It is merely the coded form of two versions of the 
analytic solution of the two-body differential equations of motion of 
the spacecraft center of mass, Because of its relatively fast compu­
tation speed and moderate accuracy, it serves as a preliminary 
navigation tool and as a method of obtaining quick solutions for tar­
geting and guidance functions. More accurate (but slower) results 
are provided by the Precision State Extrapolation Routine. 
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9.6.1.1 Conic State Extrapolation (continued)
 

NOMENCLATURE
 

a 	 Semi-major axis of conic 

C	1 First conic parameter (f0 " 0 ) / p )
 

2 Second conic parameter (r 0 v 0 
2 / "s -1)
 

c 3 Third conic parameter (r 0 v0 2 / ME)
 

C () Power series in defined in text
 

E Eccentric anomaly 

f True anomaly-

H Hyperbolic analog of eccentric anomaly 

i Counter 

p Semilatus rectum of conic 

PN Normalized semilatus rectum (p/r 0) 

P Period of conic orbit 

r 0 Magnitude of E0 
L0 Inertial position vector corresponding to initial time 

to 

r Magnitude of r(t) 

r (t) Inertial position vector corresponding to time t 

s Switch used in Secant Iterator to determine whether 
secant method or offsetting will be performed 
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9.6.1.1 Conic State Extrapolation (continued)
 

SC ) Power series in g defined in text 

t Final time (end 

extrapolation is 

of time interval through which an 

made) 

t0 Initial time ( beginning of time interval through which 

an extrapolation is to be made) 

(t - t0 ) Specified transfer time interval 

(t - t 0 )c Value of the transfer time interval calculated in the 

-UniversalKepler Equation as a function of x and the 

conic parameters 

(t - t 0 )! Previous value of (t - to ) 

(t - t0 )(i) tThe-"i-th" value of the transfer time interval calcula 

ted in the Universal Kepler Equation as a functionof 

the "i-th" value xi of x and the conic parameters 

tERR Difference between specified time interval and that 

calculated by Universal Kepler Equation 

v0 Magnitude of 0 

Y0 Inertial velocity vector corresponding 
.td 

to initial time 

v( t) Inertial velocity vector corresponding to time t 

x Universal eccentric anomaly difference 

variable in Kepler iteration scheme.) 

(independent 

x1 Previous value of x 

xc Value of x to which the Kepler iteration scheme 

verged 

con­

x1
C 

Previous value of x 
c 
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9.6.1.1 Conic State Extrapolation (continued)
 

x. The "i-th" value of x 

Xmin Lower bound on x 

x Upper bound on x 

a 0 Reciprocal of semi-major axis at initial point E0 

aN Normalized semi-major axis reciprocal ( r 0 ) 

'YO Angle from E0 to 0 

Atmax Maximum time interval which can be used in computer 

due to scaling limitations 

Ax Increment in x 

Et Relative convergence tolerance factor on transfer 

time interval 

Ex Convergence tolerance on independent variablex 

0 Transfer angle (true anomaly increment) 

PE, 	 Gravitational parameter of the earth 

Product of a0 and square of x 

S%, 2,y3 	 Coefficients of power series inversion of Universal 

Kepler Equation 

ir0 Unit vector in direction of r
 

1 Unit vector in direction of YO
-9V0 
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9.6.1.1 Conic State Extrapolation (continued)
 

2. 	 FUNCTIONAL FLOW 
DIAGRAM
 

The Conic State Extrapolation Routine basically consists of
 
two parts - one for extrapolating in time and 
one for extrapolating in 
transfe.r 	angle. Several portions of the formulation are, however,
 
common to the two parts, 
 and may be arranged as subroutines on a
 
computer.
 

2.1 	 Conic State Extrapolation As A Function Of Time (Kepler
 

Routine)
 

This routine involves a single loop iterative procedure, and 
hence is organized in three sections: initialization, iteration, and 
final computations, as shown in Fig. 1. The variable "x" is the in­
dependent variable in the iteration procedure. For-a given initial 

state, the variable "x" measures the amount of transfer along the ex­
trapolated trajectory. The transfer time interval and the extrapolated 
state vector are very conveniently exjressed in terms of "x". In the 
iteration procedure, "x" is adjusted until the transfer time interval 
calculated from it agrees with the specified transfer time interval 
(to within a certain tolerance). Then the extrapolated state vector 
is calculated from this particular value of 'xt. 

2.2 	 Conic State Extrapolation As A Function Of Transfer Angle 
(Theta Routine) 

This routine makes a direct calculation (i. e. does not have 
an iteration scheme), as shown in Fig. 2. Again, the extrapolated' 
state vector is calculated from the parameter "x". The value of "x" 
however, is obtained from a direct computation in terms of the conic 
parameters and the transfer angle 8, It is not necessary to iterate 
to det.ermine "x", as was the case in the Kepler Routine. 
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9.6.1.1 Conic State Extrapolation (continued)
 

Initialization 

(Compute Various Conic Parameters) 

(Compute A Rough Approximation To "x", Or-Use Previous Value 

As A Guess) 

Iteration 

Compute Transfer Time Interval Corresponding 

To The Variable "x 

Adjust "x" 

Final Computations
 
(Compute Extrapolated State Vector Corresponding
 

To The Variable "x")
 

Figure 1 KEPLER ROUTINE FUNCTIONAL FLOW DIAGRAM 
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9.6.1.1 Conic State Extrapblation (continued)
 

Initialization
 

(Compute Various Conic Parameters)
 

Compute 'x" Corresponding To The Specified 

Transfer Angle 

II ? 
Compute Transfer Time Interval Corresponding
 

To The Variable "x"
 

I
 

Final Computations
 
(Compute Extrapolated State Vector Corresponding
 

To The Variable "x")
 

Figure 2 THETA ROUTINE FUNCTIONAL FLOW DIAGRAM
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9.6.1.1 Conic State Extrapolation (continued)
 

3. 	 ROUTINE INPUT-OUTPUT 

The Conic State Extrapolation Routine has only one system 

parameter input: the gravitational parameter of the earth. Its prin­

cipal real-time inputs are the inertial state vector which is to be ex­

trapolated and the transfer time interval or transfer angle through 

which the extrapolation is to be made. Several optional secondary 

inputs may be supplied in the transfer time case in order to speed 

the computation. The principal real-time output of both cases is the 

extrapolated inertial state vector. 

3.1 	 Conic State Extrapolation As A Function of Transfer Time 

Interval (Kepler Routine) 

Input Parameters 

Sys tem 

PE 	 Gravitational parameter of the earth (Product of 

earth's mass and universal gravitational constant). 

Real-Time (Required) 

(ro, Y0 ) 	 Inertial state vector which is to be extrapolated 
(corresponds to time t o ). 

(t - t) 	 Transfer time interval through which the extrapola­

tion is to be made. 

Real-Time (Optional) 

x 	 Guess of independent variable corresponding to solu­

tion in Kepler iteration scheme. (Used to speed con­

vergence).
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9.6.1.1 Conic State Extrapolation (continued5
 

(t - t0 )c 	 Value of dependent variable (the transfer time inter­

val) in the Kepler iteration scheme, which was ­

calculated in the last.iteration of the previous call to 

Kepler. 

x' 	 Value of the independent variable in the Kepler itera­c 
tion scheme, to which the last iteration of the 

previous call to Kepler had converged. 

Output Parameters 

(r(t),v(t)) 	 Extrapolated inertial state vector (corresponds to 

time t). 

(t - to)c 	 Value of the dependent variable (the transfer time 

interval) in the Kepler iteration scheme, which was 

calculated in the last iteration ( should agree closely 

with (t - t0)). 

xcValue of the independent variable in the Kepler itera­

tion scheme to which the last iteration converged. 

3.2 	 Conic State Extrapolation As A Function Of Transfer Angle 

(Theta Routine) 

Input Parameters 

System 

11E 	 Gravitational parameter of the earth (Product of 
earth's mass and universal gravitational constant). 
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9.6.1.1 Conic State Extrapolation (continued)
 

Real-Time 

(10 ,yo) Inertial state vector which is to be extrapolated. 

e Transfer angle through which the extrapolation is to 

be made. 

Output Parameters 

(r, v) Extrapolated inertial state vector. 

(t - t0 )e Transfer Time Interval corresponding to the conic 

extrapolation through the transfer angle 0. 
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4.1 

9.6.1.1 Conic State Extrapolation (continued)
 

4., DESCRIPTION OF EQUATIONS 

Conic State Extrapolation As A Function Of Time (Kepler 

Routine) 

The universal formulation of Stumpff-Herrick-Battin in 
terms of the universal eccentric anomaly difference is used. This 
variable, usually denoted by x, is defined by the relations: 

[ a'(E - E.) for ellipse1W(tan f/2 - tan f0/ 2) for parabola 

--- (H - H 0 ),for hyperbola 

where a is the semi-major axis, E and H are the eccentric anomaly 
and its hyperbolic analog, p is the semi-latus rectum and f the true 
anomaly. The expressions for the transfer time interval (t - t 0 ) 
and the extrapolated position and velocity vectors (r; v') in terms of-' 
the iiiitial-position and velocity vectors (L0, y0 ) as-functions of x 

are: 

(Universal Kepler Equation) 

(t-t0 = C(a 0 x2 ) + -r 0 0 )x S(a0 x2) + r0 

F 3 2, 

v~) - 'a (x0 )i~o +[t- L - (a0x2)jO 
rro 

r 0,­
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9.6.1.1 Conic State Extrapolation (continued)
 

where 
2 

1 2 V 

a0 r 0 ME 

and
 

3! 5! 7! 

c (C) =I -_i + £2_ _.. 
2! 4! 6! 

Since the transfer time interval (t - t ) is given, it is desired to 
find the x corresponding to it in the Universal Kepler Equation, 'and 
then to evaluate the extrapolated state vector (r. v) expression 
using that value of x. Unfortunately, the Universal Kepler Equation 
expresses (t - t0 ) as a transcendental function of x rather than con­
versely, and no power series inversion of the equation is known which 
has good convergence properties for all orbits, so it is necessary 
to solve the equation iteratively for the variable x. 

For this purpose, the secant method (linear inverse inter­
polation/ extrapolation) is used. It merely finds the increment in 
the independent variable x which is required in order to adjust the 
dependent variable (t - tO)c to the desired value (t - t0 ) based on a 
linear interpolation/extrapolation of the last two points calculated on 
the {t - t0 ). vs x curve. The method uses the formula 

(t - t0)O(n)- (t - tO)
(Xn+ 1 -Xn) - (xn - Xnl, 

(n)_ (t - (n-1 ) 
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9.6.1.1 Conic State Extrapolation' (c6ntihued) 

where (t - t ) denotes the evaluation of the Universal Kepler 
Equation using the value xi . In order to prevent the scheme from 
taking an increment back into regions in which it is known frompast 
iterations that the solution does not lie, it has been found convenient 
to establish upper and lower bounds on the independent variable x 

which are continually reset during the course of the iteration as more 
and more values of x are found to be too large or too small. In Ad­
dition, it has also been found expedient to damp by 1016 any incre­
ment in the independent variable which would (if applied) take the 
value of the independent variable past a bound. 

To start the iteration scheme, some initial guess x 0 of the 

independent variable is required as well as a previous point (x_, 

(t - t 0 )c( - )) on the (t - t)c vs xcurve. If no previous point is 
available the point (0, 0) may be used as it lies on all (t - t0)c vs. 
x curves. The closer the initial guess x0 is to the value of x corres­

ponding to the solution, the faster the convergence will be. One 
method of obtaining such a guess x0 is to use a truncation of the 
infinite series obtained by direct inversion of the Kepler Equation 
(expressing x as a power series in (t - t 0 )). It must be pointed out 
that this series diverges even for "moderate" transfer time inter­

vals (t - t 0 ) ; hence an iterative solution must be'used to solve the' 
A third order truncationKepler equation for x in the general case. 

of the inversion of the Universal Kepler Equation is: 

3 
(t -to)nx 

n=O
 

where
 

-0 = ro, 

I PE ( -O)o. 
2 r0 ME 

=1 3 mo2 
- 1 

Y-3 ~ ~ ~ r -(L11 ro0ao~j. 

with a0 = 2/r0 - v02"/PE. 
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9.6.1.1 Conic State Extrapolation,(continued)
 

4, 2 	 Conic State Extrapolation As A Function of Transfer Angle 
(Theta Routine) 

As'with the Kepler Routine, the universal formulation of 
Stumpff'tHerri6k-Battin in terms of the universal eccentric anomaly 
difference x -is used'in the Theta Routine. A completely analogous 
iteration schme'could have been formulated with x again "asthe, in­
dependent variable and the transfer angle e as the dependent variable 
using Marscher's universdly valid equation: 

roi - X 2 S (c0x2)] 

cot- -	 + cotY0 
2 \ XC (a 0 x 2 ) 

where
 

p ='(-r 00) sin2 yO 

and 

yO = angle from F. to v0 . 

However, in contrast to the Kepler equation, it is possible 
to invert the Marseher equation into a power series which can be. 
made to converge as rapidly as desired, by means of which x may be 
calculated as a universal function of the transfer angle 0. Knowing 
x, we can directly calculate the transfer time interval (t - t 0 )c and 
subsequently the extrapolated state vectors using the standard 

formulae. 

The sequence of computations in the inversion of the 

Marscher Equation is asfollows: 

Let 

= =PN P/rO' aN cer0 

-and­
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9.6.1J1 Conic State Extrapolation (continued)
 

Wll F( sin' cot -Y0).iCos 0 

If 

Iw4'>1, let V, 1.
 

Let +I N+wo (wII< 1
Wn+l= Wn24+a.1W. 
or 

V +l = +& +a N i /w>2 +V, fnlwl>i>. 

Let 
 Wn=W (IW <1) 

or
 

l/Wn = (I1/W I)/Vn (iwil >l). 

Let
 

2 n ui N -

Wn (0~ 2j-lj=O 2j+l Wn 

where n is an integer > 4. Then 

(W 1 > 0)
X/I\I o-= 2 -Z (Wl< 0) 

The above equations have been specifically formulated to avoid certain 
numerical difficulties. 
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9.6.1.1 Conic State Extrapolation (continued)
 

5. DETAILED FLOW DIAGRAMS 

5*1 Conic State Extrapolation As A Function of Time (Kepler 

Routine) 

SYSTEM REAL TIME (Required) REAL TIME (Optional) 

i = 20 

r = UNIT (r) 

cI Lo IO 
\ 

c2 = r 

a = (1 - c2)/r 0 

Figure 3a KEPLER ROUTINE DETAILED FLOW DIAGRAM 
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9.6.1.1 Conic State Extrapolation (continued)
 

No
 
p < Atmax 

Yes 

Yes
 

> 01
 -
(t 0 (t -

I 
-
. 

t0 ) sign (t t0 p 

0<
 

ROUTINE DETAILED FLOW DIGRM 

b KEPLERFigure 
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9.6.1.1 Conic State Extrapolation (continued)
 

<0 >0 

IXmi n xm0Xmn 

Ax =x -x, 

2 

Call Universal Kepler Equation" 

YE , Cl I c2 ' x, , 0 
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9.6.1.1 Conic State Extrapolation (continued)
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5.2 

9.6.2.1 Conic State Extrapblation (continued)
 

Conic State Extrapolation As A Function of Transfer Angle 
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9.6.1.1 Conic State Extrapolation (continued)
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9.6.1.1 Conic State Extrapolation (continued)
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9.6.1.1 Conic State Extrapolation (continued)
 

5.3 	 Subroutines Used By The transfer Time or Transfer Angle 
Conic Extrapolation Routines 

5.3.1 	 Universal Kepler Equation 

SYSTEM 	 REAL-TIME 

PC C '2 X' 7 r0 

_ 2 

S() = __ 2 

3! -5! 7! 

2 
C(m ! -I + e .. 

2! 4! 6! 

(t -t 0 ) = clx 2 C(E) +x(c 2 x2 S() +r)]I l-E7 

OUTPUT
 

17 (- tO)c, S(0), C(e) J 

Figure 5 	 UNIVERSAL KEPLER EQUATION DETAILED FLOW DIAGRAM 

9.6-25
 



9.6.1.1 Conic State Extrapolation (continued)
 

5.3,2 Extrapolated State Vector 
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9.6.1.1 Conic State Ektrapolation (continued)
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9.6.1.1 Conid State Extrapolation (continued)
 

5.3.4 Marscher Equation Inversion 
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9.6.1.1 	Conic State Extrapolation,>(cofttinued)
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9.6.1.1 Conic State Extrapolation (continued)
 

6. SUPPLEMENTARY INFORMATION 

The analytic expressions for thi Universal Kepler Equation 

and the extrapolated position and velocity vectors are well known and 

are given by Battin (1964 ). Battin also outlines a Newton iteration 

technique for the solution of the Universal Kepler Equation; this tech­

nique converges somewhat faster than the secant technique but 

requires the evaluation of the derivative. It may be shown that if the 
derivative evaluation by itself takes more thaf 44% of the computa­

tion time used by the other calculations in one pass through the loop, 

then it is more efficient timewise to use the secant method. 

Marscher's universal equation for cot 0/2 was derived by 

him in his report (Marscher, 1965), and is the generalization of his 
"Three -Cotangent" equation: 

ct_ r0 (E- E0 ) 
cot cot --- :1- + cot mY 

Marscher has also outlined in the report an iterative method of ex­

trapolating the state based on his universal equation. The inversion 

of Marscher's universal equation was derived by Robertson (1967a). 

Krause organized the details of the computation inboth
 

routines. 

A derivation of the coefficients in the inversion of the Uni­

versal Kepler Equation is given in Robertson (1967 b) and Newman 

(1967). 
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9.6.1.1 Conic State Extrapolation (continued)
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9.6.1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation (continued,)
 

1. INTRODUCTION 

The Precision State and Filter Weighting Matrix Extrapola­
tion Routine provides the capability to extrapolate any spacecraft 
geocentric state vector either backwards or forwards in time through 
a force field in which all significant perturbation effects (such as the 
earth's oblateness, the attraction of the sun and moon, and atmos­
pheric drag) have been included, as well as the earth's dominant
 
central-force attraction. 
 The Routine also provides the capability of 
extrapolating the filter-weighting matrix along the precision trajec­
tory. This matrix, which is also known as the "W-matrix", contains
 
statistical information relative to the accuracies 
of the state vectors
 
and certain other quantities.
 

The routine is merely a coded algorithm for the numerical
 
solution of.modified forms of the basic differential equations 
which
 
are satisfied by the geocentric state vector of the spacecraft's center
 
of mass and by the filter-weighting matrix, namely
 

r(t) + E (t) = d(t) 

dt r 3 (t) 

and
 

± W(t) = F(t) W(t), 
dt 

where d 	 t) is the vector sum of all the perturbing accelerations, 
and F (t) is a matrix containing the gravity gradient matrix as one of 
its sub-blocks. 

Because of its high accuracy and its capability of extrapolat­
ing the filter weighting matrix, this routine serves as the computational 
foundation for precise space navigation. It suffers from a relatively 
slow computation speed in comparison with the Conic State Extrapola­
tion Routine. 
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9.6.1.2 Precision State and Filter Weighting Matrix
 

Extrapolation (continued)
 

!d(t) 

dDRAG 

adMOON 

-dOBL 

adSUN 

CDA/ M 

C22 

(cos ) 

D 

E (t) 

f (q) 

'DRAG 

fSN 

fw 

G (t) 

h 

NOMENCLATURE
 

Total perturbing acceleration at time t 

Perturbing acceleration due to atmospheric drag 

Perturbing acceleration due to moon's gravitational 

attraction -

Perturbing acceleration due to earth's oblateness 

Perturbing acceleration due to sun's gravitational 

attraction 

Spacecraft drag constant 

Constant describing earth's oblateness 

Cosine of colatitude of spacecraft 

Dimension of Filter Weighting Matrix (D =0,6,7,8, 9) 

Covariance matrix of dimension n 

Special function of q defined in text 

Flag to indicate whether drag perturbations are-to be 
included 

Flag to indicate whether sun and moon perturbations 

are to be included 

Flag controlling whether state or filter-weighting 
matrix integration is being performed (used only 

internally in routine) 

Gravity Gradient Matrix 

Altitude 
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9.6.1.2 Precision State and Filter Weighting.Matrix
 

Extrapolation 	(continued)
 

1 3 Three-dimensional Identity Matrix 

J2 ° J3,J4 Constants describing earth's oblateness 

MPM T Matrices of constants describing earth's atmospheric 

density 

P! ( Cos Derivative of i-th Legendre polynomial 

q Special function of r and a defined in text 

qM Special function of r and LEM defined in text 

•qs 	 Special function of -' and rES defined in text 

p 0Geocentric position vector at time 

r(t) Geocentric position vector at time t 

r (t) Magnitude of geocentric position vector 

rcon(t) Reference conic position vector at time t 

rcon(t) Magnitude of reference conic position vector at time t 

rE - Mean equatorial radius of the earth 

LEM Position vector of moon with respect to earth 

LES Position vector of sun with respect to earth 

r. Intermediate values of r 

rMC Distance of spacecraft from moon 

rSC Distance of spacecraft from sun 

$ 22 Constant describing earth's oblateness 

t 0 Initial time point 
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9.6.1.2 Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

tF Time to which it is desired to extrapolate (., 

and optionally W0 . 

f )) 

T c Exospheric temperature 

YO Geocentric velocity 'vector at time t0 

Xcon (t) Reference conic velocity vector at time t 

rel Velocity vector of spacecraft relative to the atmos­
phere
 

W0 Filter Weighting Matrix at time t 0 

W (t) Filter Weighting Matrix at time t 

w. Three-dimensional column vectors into which the 
W-matrix is partitioned 

XE First component of r in earth-fixed coordinates 

YE Second component of r in earth-fixed coordinates 

zE Third component of r in earth-fixed coordinates 

6 (t) Position deviation vector of true position from 
reference conic position at time t 

6ma x Maximum value of 1 1 permitted (used as rectifica­
tion criterion) 

At Time-step size in numerical integration of differential 
equation 

Atmax Maximum permissible time-step size 

Atno m Nominal integration time-step size 

Et Time convergence tolerance criterion
 

9.6-36
 



9.6.1.2 Precision State and Filter jeighting Matrix
 
Extrapolation 	(continued)
 

c_(t) Error in the estimate of the position vector 

r) (t) Error in.the estimate of the velocity vector 

XS 	 Local hour angle of the sun 

#UE, 	 "Earth's gravitational parameter 

9M Moon's gravitational parameter 

PS Sun's gravitational parameter 

u (:t) Velocity deviation vector of true velocity from 
reference conic 	velocity at time t 

Vmax 	 Maximum value of I v' permitted (usea as'rectifca­
tion criterion) 

p (r) 	 Atmospheric density at r 

4, 	 Geocentric latitude 

E Angular rotation rate of earth 

ir Unit vector in the direction of r 

1x, IYIz Earth-fixed vectors (1, 0, 0), (0, 1, 0),(0, 
transformed into reference coordinates 

0, 1) 
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9.6.1.2 	Precision State and Filter Meighting Matrix
 
Extrapolation (continued)
 

2. FUNCTIONAL FLOW DIAGRAM 

The Precision State and Filter Weighting Matrix Extrapola­

tion Routine performs its functions by integrating modified forms of 

the basic differential equations at a sequence of-points separated by 
intervals known as time-steps, which are not necessarily of the same 

size. The routine automatically determines the size to be taken at 
each step. In close earth orbit about 21 steps are taken per trajectory 
revolution. 

As shown in Fig. 1, the state vector and (optionally) the 
filter-weighting matrix are updated one step at a time along the pre-. 
cision trajectory until the specified overall transfer time interval is 
exactly attained. (The size of the last time-step is adjusted as neces­
sary to make this possible. 
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9.6.1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

ENTER 

"Compute 	time step size for this time-step. 

ITim e-Step 

/size = O? Yes 
(to within EXIT 
some
 

tolerance)No
 
Rect~ification Yes 

No 	 RECTIFY 

{ Integrate state vector one time-step 

No W-Matrix 

Extrapolation 
Desired? 
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Integrate 	W-matrix one time-step7 

Figure 1 	 FUNCTIONAL FLOW DIAGRAM, PRECISION STATE 
AND FILTER WEIGHTING iVIATRIX EXTRAPOLATION 

ROUTINE 
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9.6.1.2 	Precision State and Filter Weighting Matrix
 

Extrapolation (continued)
 

3. PROGRAM INPUT-OUTPUT 

The Precision State and Filter.Weighting Matrix Extrapola­
tion Routine has the following input and output parameters: 

System 
Input Parameters 

AE Gravitational parameter of the earth 

2' 3' 4' Constants describing the earth's oblateness 

C22J $22 

(TBD) Constants describing the sun's motion 

(TBD) Constants describing the moon's motion 

MP,"MT Matrices of constants describing the earth's atmos­

pheric density 

CDA/M Spacecraft drag constant 

WE Angular rotation rate of the earth 

Real-Time 

(r0, Y0) Geocentric state vector to be extrapolated 

to Time associated with (20, Y0) and W0 

tF Time to which it is desired to extrapolate (0, y0 ) 
and optionally W0 . 

W0 Filter Weighting (W) matrix to be extrapolated 

(optional) 

.D Dimension of W-matrix (0 indicates omit W-matrix) 

fSM Flag to indicate whether sun and moon perturbations 
are to be included 

fDRAG Flag to indicate whether drag perturbations are to be 
included 
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9.6.1.2 Precision State and-Filter Weighting-Matrix
 
Extrapolation (ccontinued)
 

Output Parameters 

(r (tF) v(tF )) Extrapolated geocentric state vector 

W (t F ) Extrapolated filter-weighting matrix 
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9.6.1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

4. DESCRIPTION OF EQUATIONS 

4. 1 Precision State Extrapolation Equations 

Since the perturbing acceleration is small compared with the
 
central force field, 
 direct numerical integration of the basic differ­
ential equations 
of motion-of the spacecraft state vector is inefficient.
 
Instead, a technique due to Encke is utilized in which only the devia­
tions of the state from a reference conic orbit are numerically integrated 
The positions and velocities along the reference conic are obtained
 
from the Kepler routine.
 

At time t. the position and velocity vectors, i0 and y, define
 
an osculating conic orbit. 
 Because of the perturbing accelerations,
 
the true position and velocity vectors r (t) and v (t) will deviate as
 
time progresses from the conic position and velocity vectors rcon (t)
 
and vcon (t) which have been conically extrapolated from E0 and Y.. 
Let 

6(t) = r(t) - r Con(t)
P(t) = v(t) - Ycon (t) 

be the vector deviations. It can be shown that the position deviation 
6 (t) satisfies the differential equation 

-6(t) + E f(q) r(t) + 6 (t)J = . d (t) 

con(t) 

with the initial conditions 

i(t 0 ) -- 0, zt 0 ) = 0 

where
 

(6 - 2r) 6 	 32 q=-	 f _q _33f(q) 

r 1 + (I + q)3/2 
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9.6.1.2 Precision State and Filter Weighting Matrix
 

Extrapolation (continued)
 

and id (t) is the total perturbing acceleration. The term 

PE If(q) r(t) +6 (t) i 
r 3 
con
 

must remain small, i.e. of the same order as d (t), if the method 

is to be efficient. As the deviation vector 6 (t) grows in magnitude, 

this term will eventually increase in size. When 

16 (t)l > 0. Ol 0 ton("or k(tI > o 011_con(t)I 

or when 

I i(t)II>max orl L(t) I>I.max. 

a new osculating conic orbit is established based on the latest preci­

sion position and velocity vectors r (t) and v (t), the deviations 6 (f) 

and v (t) are zeroed, and the numerical integration of 6(t) and V(t) 

continues. The process of establishing a new conic orbit is called 

rectification. 

4.2 Explicit Form of the Perturbing Acceleration 

The perturbing acceleration a d (t) is the vector sum of four 

separate accelerations, namely those due to the earth's oblateness 

adOBL' the gravitational attractions of the sun dSUN (t) and moon 

a (t) and the earth's atmospheric drag adDRAG (t). Thus: 

td = dSUN + -dMOON + dDRAG"( t) dOBL ' 
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9.6.1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

4.2.1 	 The earth oblateness acceleration is given by the truncated 

spherical harmonic expansion involving the zonal terms J2., J3 ' J4 

and the sectorial term J22: 

a = r(i F+1 (os ) ! ( Cos 
-	 x - 1 sdOBL 7{- J 	 -Z~ 

r . j=2 r II 

(r E2 [2xEL 1 -y2)2y 	 (x2 

2[ x -1 ___ _r 22 
rr r 

+ Y 	 2XE 1LOXE YE ) 
r X r r -r 22 

where
 

Ir is the unit position vector in reference coordinates, 

ly, iz 	 are the earth-fixed vectors (1,0,0), (0.1,0), 

(0.0, 1) transformed into reference coordinates, 

XEl YE' ZE 	 are the components of r in earth-fixed coordin­

ates, 

cos = ir• 	 I z . 

r E is the mean equatorial radius of the earth, 

and where 

P2 (cos ) - 3 cos ¢ 

) (1 cos2P, (cos
'e(os)- (7 CosP - 4P 

P15( cosf= (9 cos PI -5PI)
 

are the derivatives of the Legendre polynomials;*
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9.6.1.2 Precision State and Filter Weighting Matrix
 
Ektrapolatioh (continued)
 

4.2. The gravitational accelerations due to the sun and moon on a 

spacecraft in earth orbit are given by: 

rSC 

- [f (q.) LEM + r 

rMC 

where rts andrEM are the position vectors of the sun and moon with 
respect to the earth, rSC and rMC are distances of the spacecraft 

=from the-sun and moon (SC r - LES , rMC = r - rEM) and the 

arguments q§ and qm are computed from 

(r - 2rEs) -r
 

2
 
rEs
 

(r - 2rEM) r
qM =­

2 
rEM 

and f (qs) and qM ) are calculated from the equation for the function 

£ given in Section 4. 1. 

4.2.3 The drag acceleration is given by: 

1 ~1 CDA 
SDRAG - 2 (-DA)M reiYrel 

where (CDA/ M) is a constant depending on the coefficient of drag, 

and the cross sectional area and mass of the spacecraft, p (r) is the 

density of the atmosphere at the point in question, and vrel is the 

velocity vector of the spacecraft relative to the atmosphere and is 

computed by assuming the atmosphere is rotating at the same angular 

velocity as the earth, i. e. 
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9.6.1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

re =xY(z*&) 

where v is 	 the geocentric vebocity, 1 the unit vector of the earth's 
north pole expressed in reference coordinates, and wE is the angular 
rotation rate of the earth, The density p is obtained from an approx­
imation to the Jacchia density model in the form of two binomial fits: 
the exospheric temperature is approximated by a binomial in latitude 
and local hour angle of the sun, and the density is then approximated 
by a binomial in the exospheric temperature and the altitude. 

Specifically, Let 0, XS, h, T be the geocentric latitude, local hour 
angle of the sun, altitude and exospheric temperature respectively ai 

the position r; and let 

0&= -0 x= xs=XS 

h' = h - h 0 , T' = T -T 

be "adjusted" values of these parameters. Further, let , h'B', 
T' denote the vectors
 

1 1 1 1 

X1' S h' Tt 

(()I , )2 (h') 2 (T 2 

3 " -

s 
(XS)3 

h'= 
(h,) 3 T' -

whose components are the various powers of the adjusted parameters. 
Then the double binomial approximation to the atmospheric density 

may be written as: 

= ( T_)TMIT(.), P = (Tt)T M (h) 
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9.6.1.2 Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

where MT and MVI are rectangular matrices whose elements are con­
stants. For an altitude range of 60 nautical miles, it has been found 
sufficient to have 4_' and X of dimension six, h' of dimention nine, and 
T' of dimension four; the matrices MT and M are thus 6 x 6 and 
4 x 9 in size. 

4.3 Filter -Weighting (W) Matrix Extrapolation 

The position and velocity vectors as maintained in the
 
spacecraft's computer are only estimates of the true values, As
 
part of the navigation technique it is necessary also to maintain sta­
tistical data in the computer to aid in the processing of navigation 
measurements. The filter weighting W-matrix is used for this pur­

pose.
 

If (t ) and vj(t) are the errors in the estimates of the 
position and velocity vectors, respectively, then the six-dimensional 
error covariance matrix E 6 (t) is defined by: 

C (t) (t)T C(t) r(t) 

.E6 (t)= 

Trl(t) E (t) ri(t) ri(t) T 

In certain applications it becomes necessary to expand the 
state vector and the covariance matrix to more than six dimensions 
so as to include the estimation of various other quantities such as. 
landmark locations during orbit navigation and certain instrument 
biases during co-orbiting vehicle navigation. For this purpose a nine­
dimensional covariance matrix is defined follows:as 
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9.6.1.2 Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

7 c(( T 

9 (t) E (t) T 

T TJ
(

(MT M8 

where the components of the three-dimensional vector / are the errors 

in the estimates of three variables which are estimated in addition to 

the components of the spacecraft state vector. (In some navigation 

procedures, only one or two additional quantities are estimated). 

Finally if the position and velocities of two separate'space­

craftare to be maintained simultaneously as well as the additional
 

estimated quantities /_, then a fifteen dimensional covariance matrix
 

E15 (t) is defined:
 

(E 6 (t) 0 

= 0 E 9 (t) 
(t)15 

Rather than use one of the covariance matrices E6 E9, or E15 in 

the navigation procedure, it is more convenient to use a matrix Wn (t) 

having the same dimension n as the covariance matrix En (t) and 

defined by 

En(t) Wn(t) W n(t)T. 

Wn (t) is called the filter weighting matrix, and is (in a certain sense) 

the square root of the covariance matrix. 
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9.6,1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

Extrapolation of the six and nine-dimensional W matrices is 
made by direct numerical integration of the basic differential equa­
tions 

d W6 (t) = 
dt 	 w6(tlC(t) 0 

cd W
 9 (t) = (t) 0 0'W 9 (t) 

00
 

where I3is the 3 x 3 identity matrix and G (t) is the 3 x 3 gravity 
gradient matrix 

5 EG(t) - r F3r(t) r(t)T - r2 (t)13J 

If the W matrix is partitioned as 

w9 w9 Wl0 ... W8
n
 

-W 
w1 " 	' L176 
--- t
 

where the 'w. are three dimensional column vectors, then the basic 

differential equations may be written: 
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9.6.1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation -(continued)
 

d 'Li(t) '+9 (t) 

d ­

-w (t) G(t) wit) i = 0,1 ... , 8 

dt
 

ct d-M+8(t)=O
 

Hence, the extrapolation of the W 9 matrix may be accomplished by 

successively integrating the second order vector differential equa­

tions 

d%_(t) = G(t) w(t) i= 0,1, .. 8. 
2


dt


or equivalently 

d wIM =t)IE 3 M vwiAt)J r(t) r 2 (t ) w(t 
2 5 Mdt r

i= 0, 1, ... , 8 

and utilizing the identities: 

(t) = -w.(t)
dtI
 

(t) = constant 

The derivatives d-w. (t) ±i= 0, 1. ..... 8 are a by-product 'of the 

numerical integration of the second order equations. 

Similarly, the extrapolation of the W 6 matrix involves the 

same equations with the index i running only up to five (i = 0, 1, ... , 

5), while the extrapolation of the W15 matrix is merely the separate 

extrapolation of independent W 6 and W 9 matrices. 
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9.6.1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

4.4 Numerical Integration Method 

The extrapolation of inertial state vectors and filter weight­
ing matrices requires the numerical solution of two second-order 
vector differential equations, which are special cases of the general 

form 

dt
2-- y(t) =-f(t, y(t), z(t)) 

dr2 - _ 

where
 
d
 

dt ­

Nystrom's standard fourth-order method is utilized to numerically, 
solve this equation. The algorithm for this method is: 

= + At 1 (kl + kS+ k 3)(At) 2 
Yn+l Xn zn 2 


6
 

En+l zn 	+l(k 1 +2k2+2k+k At 
--36 i+-

k1 = f (tan Y 

k2=_(n Jr2 --n -	 -n hk (t~+1At, y +I-zAt
+ 

+-k (At) 2, z + At)- 2 2 81 	 2
 

k 3 = f (t +-At, y +z At+-k (At)2, z +1k At)Sn 2 -n 2 n 8 "1 -n 2--2 

k4 = f (t +At , X +z At +1ko(At) 2 , z +k 

=4nn-n 	 +- 3 (n ,+ At) 

where
 

Yn = y(tn) n = z(tn) 

and
 

tn+1 =t n + At 

9.6-51
 



9.6.1.2 Precision State and Filter Weighting Matrix
 
Extrapolation (continued).
 

As can be seen, the method requires four evaluations of 

f (t, y, z) per integration step At as does the classical fourth-order 

Runge-Kutta method when it is extended to second-order equations. 

However, if f is independent of z, then Nystrom's method above only 
requires three evaluations per step since k = k2 . (Eunge-Kutta's 

method will still require four). 

The integration time step At may be varied from step to 

step. The nominal integration step- size is 

= K r3/2Atno mnm con /1M 

with K = 0.3. The actual step size is however limited to a maximum 

of 

Atma x = 4000 seconds. 

Also, in-the last step, the actual step size is taken to be the interval 
between the end of the previous step and the desired integration end­

point, so that the extrapolated values of the state or W-matrix are 
immediately available. Thus the integration step-size At is given by 
the formula 

At = +iminimum (I tFFt, At , Atmax 

where tF is the desired integration end-point and t is the time at the 
end of the previous step. The plus sign is used it forward extrapola­

tion is being performed, while the negative sign is used in the back­
dating case. 

9.6-52
 



9.6.1.2 Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

5. DETAILED FLOW DIAGRAMS 

This section contains detailed flow diagrams of the Preci­
sion State and Filter Weighting Matrix Extrapolation Routine. 
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9.6.1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

ENTER
 

F ,v 	 tQ, tF, w O' D, ISM' t DRAG 

t- = to 
6 = (0, 0, 0) 

v =(0, 0, 0) 
rcon =r 

-con -o 

x =0
 

T =0
 

a sign (tF - t) nonAtmaxj 

EXIT " Yes l/- E 

NTo
 

EXIT
 

Figure 2a DETAILED FLOW DIAGRAM 

9.6-54
 



9.6.1.2 Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
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Figure 2b DETAILED FLOW DIAGRAM 
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9.6.1.2 Precision State and Weighting £larrix 
Extrapolation (continued)
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Figure 2c DETAILED FLOW DIAGRAM 
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9.6.1.2 Precision State and Filter Weighting Matrix
 
Extrapolation (cpntTnued) 

34 
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Figure 2d DETAILED FLOW DIAGRAM 
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9.6.1.2 Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
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Figure 2e DETAILED FLOW DIAGRAM 
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9.6.1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

6. SUPPLEMENTARY INFORMATION 

Encke's technique is a classical method in astrodynamics 

and is described in all standard texts, for example Battin (1964). 
The f(q) function used in Encke's technique and in the lunar-solar 

perturbing acceleration computations has generally been evaluated by 

a power series expansion; the closed form expression givei here was 
derived by Potter, and is described in Battin (1964). 

The oblateness acceleration in terms of a sphericalharmoni ­

expansion may be calculated in a variety of ways; three different 

algorithms are given in Gulick (1970). For low order expansins-, 

especially those involving mostly zonal terms, the formulation pre­

sented in Section 4 is generally superior computation-time-wise, as 
only the non-zero terms enter into the calculation. The general ex 

pression for the zonal terms is given by Battin (1964), while Zieldin 

and Robertson (1970) give explicit analytic expressions for each Of­

the tesseral terms up through fifth order; hence additional terms 

may easily be included in the oblateness acceleration adOBL by con­

sulting the formulations in these two references. 

The lunar-solar perturbing acceleration formulation,has 

also been described by Battin (1964) and many other texts. 

The drag acceleration utilizes the standard fundamental ex­
pression in terms of the CDA/M constant, the density, and the velocity 

with respect to the atmosphere. The double binomial approximation 

to Jacchia's density model has been developed by the McDonnell-
Douglas Corporation (19701); the model itself is described in Jacchia 

(1970 ). (A-new model by Jacchia is about to appear). 

A full discussion of the use of covariance matrices in space 

navigation is given in Battin (1964). Potter(1963) suggestedtheuse of 

the W-matrix and developed several of its properties. It should be noted 

that strictly the gravity gradient matrix G (t) should also include the 

gradient of the perturbing acceleration; however, these terms are so 

small that they may be neglected for our purposes. The use of only 

the conic gravity gradient, however, does not imply the W-matrix is 

being extrapolated conically, (-Conic extrapolation of the W-matrix 
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9.6.1.2 	Precision State and Filter Weighting Matrix
 
Extrapolation (continued)
 

can be performed by premultiplying the W-matrix by the conic state 
transition 	matrix, which can be expressed in closed form). Rather 
the W-matrix is here extrapolated along the precision (perturbed) 
trajectory, as can be seen from the detailed flow diagram of Section 

5. 

The Nystrom numerical integration technique was first con­
ceived by Nystrom (1925), and-is described in all standard texts on
 
the numerical integration of ordinary differential equations, such 
as 
Henrici (1962). Parametric studies carried out by Robertson (1970) 
on the general fourth-order Runge-Kutta and Nystrom integration
 
techniques indicate that the "classic" techniques 
are the best overall 
techniques for a variety of earth orbiting trajectories in the sense of 
minimizing the terminal position error for all the trajectories,
 
although for any one trajectory a special technique generally be
can 

found which decreases the position error 
after ten steps by one or 
two orders of magnitude for only that trajectory. The classical 
fourth-order Runge-Kutta and Nystrom techniques are approximately 
equally accurate, but the latter possesses the computational advant­
age of requiring one less perturbing acceleration evaluation per step 
when the perturbing acceleration is independent of the velocity. This 
fact has been taken into account in the detailed flow diagram of Section 
5, in that the extra evaluation is performed only when atmospheric 
drag is included. Some past Apollo experience has suggested that 
extra evaluation effect with drag is so small as to be negligible; 
further analysis will confirm or deny this for the Space Shuttle. In 
regard to step-size, the constants and the functional form of the 
nominal and maximum time-step expressions have been determined 
by Marscher (1965). 

9.6-60
 



9.6.1.2 Precision State and Filter Weighting Matrix'
 

Extrapolation (continued)
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9.6.2 Sensor Calibration and Alignment (TBD)
 

9.6.3 Orbital Coast Attitude Control (TBD)
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9.7 ORBITAL POWERED FLIGHT
 

The following GN&C software functions are envisioned or the orbital
 

phase:
 

Guidance Functions
 

1. 	Perform orbit modifications targeting, or accept ground/

base targeting solutions as initialization.
 

2. 	Compute and command initial thrusting attitude.
 

3. 	Command orbiter maneuvering engine on.
 

4. 	Compute velocity to be gained vector (before and 'duiing
 
burn).
 

5. 	Provide orbit maneuver steering commands to autopilot.
 

6. 	Compute time-to-cut-off and issue engine off commands.
 

7. Provide-commands to null residual velocities.
 

Navigation Functions
 

1. 	Specific Force Integration - Advance the inertial state
 
utilizing accelerometer measurement of thrust and.
 
aerodynamic'forces.
 

2. 	Update inertial state from other navigation sensor data
 
if available, An example is radar altimeter data.
 

3. 	Provide coordinate transformations for state vectors
 
as required.
 

4. 	Compare state with that calculated by other vehicle
 
during launch for use in decision making and possible
 
updating.
 

Control Functions
 

1. 	Perform vehicle stabilization and control during TVC by
 
engine gimbal commands.
 

2. 	Provide vehicle roll stabilization during single-engine
 

burns using RCS.
 

3. 	Perform attitude-hold RCS AV maneuvers.
 

4. 	Perform steered-attitude RCSAV maneuvers for docking
 
if required.
 

9.7-1
 



5. Do cg/trim estimation during TVC burns
 

6. Make high-frequency steering estimates between guidance

samples for docking if required. 

7. Perform adaptive-loop gain calculation if required.
 

9.7.1 Targeting (TBD)
 

9.7.2 Navigation (same as Rapid Real-Time State Advancement 
During Specific Force Sensing)
 

9.7.3 Guidance (TBD)
 

9.7.4 Attitude Control (TBD)
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9.8 RENDEZVOUS MISSION PHASE
 

The rendezvous mission phase begins at the completion of orbit
 
insertion with the computation of the rendezvous plan. 
 During this
 
coasting period of time, the mission planning software will utilize
 
the 	rendezvous targeting routines to insure that the insertion cut-off
 
conditions (i.e., cut-off state vector) 
are within the rendezvous
 
corridor defined by pre-mission and crew option inputs. 
 When a
 
satisfactory plan is established, the various tasks of the rendezvous
 
will be assigned a preliminary schedule. The implementation of this plan
 
will represent the remainder of the rendezvous mission phase.
 

The SW functions required in this mission phase are the following:
 

1. 	Estimate relative state of target vehicle based on
 
external measurements (if available).
 

2. 	Estimate absolute states of both shuttle and-target*
 
vehicle.
 

3. 	Target the rendezvous AV's required, their direction,
 
and the time's of ignition.
 

4. 
Execute rendezvous maneuvers by commanding engine's
 
on, providing attitude commands during the maneuvers,

and 	 commanding engines off. 

5. 	Powered flight navigation.
 

6. 	Provide RCS engine commands to achieve commanded attitude 
during AV maneuvers and during coast periods (digitak
autopilot).
 

7. 	Provide data for failure analysis.
 

8. 	Provide data for crew display.
 

The 	guidance and navigation software during the burns will be the 
same
 
as described in Orbital Powered Flight. 
The estimates of absolute states 
will be performed as described in Orbital Coast. 
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SPACE SHUTTLE
 

GN&C SOFTWARE EQUATION SUBMITTAL
 

Software Equation Section: Rendezvous Targeting Submittal No. 21 

Function: Provide targeting solutions for rendezvous 

Module No. OG3 Function No.: 1,2,3,4,5,6 (MSC 03690) 

Submitted byi W. H. Tempelman, P. M. Kachman Co. MIT No. 7-71 

Date: Feb 1971 

NASA Contact: J. Suddath Organization: GCD 

Approved by Panel III l. Cb,c Date: " 1-74 

Summary Description: Rendezvous targeting is concerned with selecting
 
the number of maneuvers, their spacing, magnitudes and directions, These
 
maneuvers and the resulting trajectory must satisfy lighting fuel,
 
communication and navigation constraints and have terminal conditions 
conducive to crew monitoring and backup procedures.
 

Shuttle Configuration: This software is essentially independent of the
 

shuttle configuration.
 

Comments:
 

(Design Status)
 

(Verification Status)
 

Panel Comments:
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9.8.1 Rendezvous Targeting
 

1. INTRODUCTION 

The rendezvous of the Shuttle with the Space Station is ac­
comrplished by maneuvering the Shuftle into a trajectory which inter­
cepts the Spiace Station orbit at a time which results in the rendezvous 
of the two vehicles. The Shuttle maneuvers by intirmittent thrusting 
of its rocket engines. 'Rendezvous targeting is concerned with select­
ing the number of maneuvers and their spacing, magnitudes and direct­
ions. These maneuvers and the resulting trajectory configuration 
must satisfy lighting, communication and navigation constraints and 
have a terminal configuration conducive to astronaut monitoring and 
backup maneuver procedures. In addition, the rendezvous'should 
not use excessive-amounts of fuel, 

1. 1 Possible Maneuver Sequences 

During the Gemini and Apollo flights and in the design of'the
 
Skylab'rendezvous trajectoies various numbers of maneuvers 
were 
involved in making the rendezvous. The range went from two (Apollo 
14) to six (Skylab). Rendezvous targeting is primarily concerned with 
the targeting of the maneuvers which proceed the two terminal maneuvers, 
which are targeted separately. The number of preterminal mneuvers 
involved in a rendezvous presents one way of categorizing the rendezvous 
scheme. For instance, one possible rendezvous nomenclature is 

Preterminal Rendezvous Sequences 

ZMS - Zero maneuver sequence 

SMS - Single maneuver sequence 
DMS - Double maneuver sequence (eg, Apollo: CSI, .CDH)
 
TMS - Triple (Three) maneuver sequence
 
FMS - Four maneuver sequence (eg, Skylab: NCI, NC2,
 

NCC, NSR) 

It would be premature to select one of the'above sequences 
as-involving an optimum number of maneuvers -forthe Shuttle 'rendezvous 
at this time as the desired targeting constraints (which are a'finition 
of the constraints mentioned above) have not yet been formulated. 
This report, therefore, will emphasize certain basic maneuvers to bb 
used as building blocks for the Shuttle rendezvous scheme employing 
N maneuvers. 
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9.8.1 Rendezvous Targeting (continued)
 

As each maneuver has its own targeting program, the above 

nomenclature can be applied to all of the above preterminal maneuvers. 

For instance, if the first maneuver performed is a four maneuver 

sequence (FMS), it will be chronologically followed by a TMS, DMS 

and a SMS. The next maneuver will then be the first maneuver of the 

terminal phase of the rendezvous. 

1. 	 2 Number of Targeting Consttaints Involved in the Preterminal 

Phase of Rendezvous 

The number of constraints involved in the preterrninal 

rendezvous sequences equals the number of degrees of freedom 

implicitly contained in the sequence. To establish this number, a 

rendezvous configuration can be constructed by imposing arbitrary 

constraints until the configuration is uniquely defined. A four maneuver 

coplanar sequence is shown in Fig. I , followed by a coast to a 

terminal point. Using the constraints v i (velocity magnitude), r i and 

oi it is easy to establish that the total number involved is 12, assuming 
the time of the first maneuver has been established. Removing one 

maneuver will reduce the number of degrees of freedom by three. 

Hence, the number of constraints necessary to uniquely determine 

the maneuver sequences are 

ZMS-	 3 

SMS -	 3 

DMS -	 6 

TMS -	 9 

FMS -	 12 

If the above rendezvous are not coplanar rendezvous, one additional 

constraint has to be added to each sequence to allow for the out-of­

plane component. 

If the desired number of targeting constraints falls short of
the number of constraints required for a particular rendezvous sequence 

then the rendezvous trajectory is not uniquely defined and it-cannot be 

determined. The deficiency in constraints can be eliminated by intro­

ducing sufficient variables to complete the determination of the rendez­

vous trajectory and then determining values for these variables by 

optimizing the fuel used by varying the variables. This procedure, 

although not used on previous missions, might be desirable for the 

Shuttle. 
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9.8.1 Rendezvous Targeting (continued)
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Figure 1 A Possible Set of Constraints Involved in a PIMS Rendezvous 
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9.8.1 Rendezvous Targeting (continued)
 

1. 3 Basic Preterminal Maneuvers 

Each maneuver in the above sequences can have associated 
with it targeting constraints governing the maneuver itself, the duration 
of the coast phase following the maneuver and trajectory constraints 
defined either with respect to the active vehicle or relative to the 
passive vehicle. The possible constraints are multifarious. However, 
Apollo and Skylab utilized three basic maneuvers, each with a set of 
unique constraints. 

NP - Nominal phase maneuver 

NH - Nominal height maneuver 

NC- - Nominal coelliptic maneuver 

NL - Nominal Lamber Maneuver 

In addition, many other types of maneuvers could be defined,
 
depending on the targeting constraints imposed.
 

1. 3. 1. Nominal Phasing Maneuver 

The nominal phase maneuver is a horizontal maneuver which 
adjusts the active vehicle's orbit to satisfy a terminal constraint on 
phasing. This phasing constraint is generally imposed at the TPI 
point (see below), using the desired relative geometry between the 
two vehicles. Also assoicated with this maneuver is a constraint 
on the elasped time before the next maneuver. In the Apollo concentric 
flight plan NP was the first maneuver in the rendezvous sequence 

and was referred to as the CSI maneuver. In the Skylab NCI and NC2 
programs it was also the first maneuver and was referred to as the 

NCI and NC2 maneuvers, respectively. 

1. 3. 2. Nominal Height Maneuver 

The nominal height maneuver is a horizontal maneuver 
whose purpose is to achieve a specified differential altitude with the 
passive vehicle orbit at the time of the following maneuver, which 
also has a constraint imposed on its timing. Generally, the latter 

constraint consists of the fraction of a revolution which elapses 
between the two maneuvers. The NC2 and NCC maneuvers during the 
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9.8.1 Rendezvous Targeting (continued)
 

Skylab NC1 program were height maneuvers and the NCC maneuver was 
a height maneuver during the NC2 program. 

1. 3.3. Nominal Coelliptic Maneuver 

The coelliptic maneuver computes a post maneuver velocity
which results in coelliptic (concentric) orbits, whereby the two orbits 
maintain an approximately constant, radial separation distance. This 
maneuver generally preceeds the TPI maneuver. In Apollo and
 
Skylab, CDH and NSR 
were the coelliptic maneuvers, respectively. 

1. 3.4. Nominal Lambert Maneuver 
The Lambert maneuver computes a maneuver based on
 

computing a trajectory between two position vectors with a constraint
 
on the traverse time. 
 In Apollo and Skylab, TPI and NCC were Lambert 
maneuvers.
 

1. 4 Terminal Maneuvers 

The terminal phase of the rendezvous includes three maneuvers: 

TPI - Terminal phase initiation
 
TPM - Terminal phase midcourse
 
TPF -Terminal phase final 

These maneuvers result in the rendezvous of the active vehicle Vith

the passive vehicle. 
 TPF.will be covered by documentation to be
 
submitted at 
a latter date and is not herein considered. 

1.4. 1 Terminal Phase Initiation Maneuver 

The time of this maneuver is determined either by assuming
 
a time or by specifying an elevation angle. 
 This angle allows the
 
maneuver time to be determined in an iterative search for the vehicle's
 
relative positions which satisfies the elevation angle constraint. 

The TPI maneuver determines a trajectory which results 
in a rendezvous with the passive vehicle. This maneuver is determined 
with a precision Lambert routine. 

1.4.2 Terminal Phase Midcourse Maneuver_ 

This program computes a midcourse maneuver to insure that 
the active vehicle will intercept the passive vehicle at the time estab­
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9.8.1 Rendezvous Targeting,(continued)
 

ished in the TPI program. The precision Lambert routine isused
 
in this program as in the TPI program.
 

1.5 Additional Maneuvers and Programs 

This section contains a discussion of the plane change (PC)
 
maneuver and the phase match (PM) program.
 

1.5.1. Plane Change Maneuver 

The purpose of the plane change maneuver is to make the
 
active and passive vehicle orbits coplanar. This maneuver is made
 
by the active vehicle following a 90 degree central angle traverse 
from the previous maneuver, which must result in the active vehicle's 
velocity vector being coplanar with the orbital plane of the passive vehicle 
This produces a nodal point 90 degrees from the maneuver. 

1. 5. 2. Phase Match Program 

The correct rendezvous configuration would be derived if 
the targeting programs used precision extrapolation programs. 
exclusively. However, as the targeting programs generally employ 
iterative searches, the use of precision extrapolation routines will
 
generally be rather costly from the time standpoint. For coplanar
 
problems, the "phase matcH' technique allows the use 
of conic extrapola­
tion routines without significantly degrading the accuracy of the calcula­
tion . This technique results in updating both vehicle's states over
 
the same sector of the earth's surface during the targeting program.

As the vehicles are in approximately the same orbits, the-effects
 
of the oblate earth will be the 
same in each orbit, resulting in an
 
approximately unperturbed relative motion.
 

1. 6 Organization 

The remainder of this document is divided into two main 
sections, 1) an individual description of each of the above maneuvers 
and 2) an assembly of some of these maneuvers into a four maneuver 
preterminal rendezvous requence. In addition there is a section contain­
ing some basic subroutines used in several of the programs. 
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9.8.1 Rendezvous Targeting(contlnued)
 

1. 7 Nomenclature 

The nomenclature below is a listing of the major symbols 
used in this report. It is not a complete listing due to the large 
number of basically independent programs contained in this report. 

Iteration counter (used in Newton Raphson iterative loop) 
DELH Delta altitude as defined in TPI program 
dv Maneuver magnitude 
e, eL, E Elevation angle (different symbols apply in different programs) 
h Height 
n Number of revolutions between maneuvers 
p Partial (used in Newton Raphson iteration loop) 
r Position 
RNGE Distance along orbit as defined in TPI program 
s Switch 
t Time 

•v- Velocity 

X, Y, Z Cartesian axes 

Iterative cutoff limit on the dependent variable. 
T Orbital period 

Subscripts 

A Active 

D Desired 

F Final 
H Heightimaneuver 

P Passive, phasing maneuver 

The function SIGN (x) (in the TPI program this function is SGN) 
equals I if x is zero or a positive number; otherwise equals -1. 
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9.8.1 Rendezvous Targeting(continued) 

2. MANEUVER PROGRAM DESCRIPTIONS 

The descriptions of the maneuver program are divided into 

five sections each 

1) 	 Program objectives and general comments 

2) 	 Program input - outputs 

3) 	 Program description 

4) 	 Program functional flow chart 

5) 	 Program detailed flow chart 

The program descriptions contain equations only when they are of 

special significance. In general, few equations are listed as the maneu­

ver programs mostly contain statements pertaining to state vector ex­

trapolations or trivial equations. 

The functional flow charts seek to describe with words exactly 

what the detailed flow charts describe with mathematical symbols. 

The two flow charts are, thus, both self sufficient (on their respective 

levels) and self explanatory. 

2. 1 Phase Maneuver Program (NP) 

2. 1. 1. NP Progra__Objecives 

The main objective of the Phase Maneuver NP Program is 

to compute a maneuver which will satsify a terminal phasing constraint. 

This constraint is generally imposed at the TPI point by specifying the 

desired relative geometry of the two vehicles. The geometry is 

usually defined in terms of the elevation angle (see Fig. 2) and 

a delta altitude between the passive orbit and the active vehicle at 

the TPI'time. In addition, this maneuver must satisfy the' constraints 

1. 	 AVp horizontal 

2. 	 Next maneuver occurs after transfer time nT, where n 

is specified and -r is the post NP orbital period. 

Additional maneuvers, which can be independently calculated, can be 

inserted between the NP and TPI maneuvers. 
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9.8.1 Rendezvous Targetingcontinued)
 

_LOS eL/Iq LI 

UH Unit Horizontal 

In Forward 
Direction for 
Active Vehicle 

Position Vector of Active Vehicle 

1) 

2) 

If the LOS Projection on UH is Positive: 
a) When the LOS is above the Horizontal Plane 
.0 < eL< ?r/2 

b) When the LOS is below the Horizontal Plane 
3r/2 < eL< 2r" 

If the LOS Projection on UH is Negative 
a) When the LOS is above the Horizontal Plane 

r/2 < eL< 7 

b) When the LOS is below the Horizontal Plane 

-< eL < 37r/2 

Figure 2 Definition of Elevation Angle, eL 
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9.8.1 Rendezvous Targeting (continued)' 

The calculation of the NP maneuver involves a ,Newton Raphson 
interation scheme to determine the magnitude of the maneuver, using 

a phasing error as the dependent variable, A functional flow chart 

of' the NP maneuver is- contained in Fig . 2.1, 4,. 

2.1.2 	 NP Program Input-Output 

The reqdired, inputs to the Phase Maneuver Program are 

LA. x A , rP, Vp 	 Active and-passive state vectors 
at time of NP maneuver 

n 	 Number of revolutions before next 
maneuver 

A h 	 Desired relative altitude at TPI 
(positive if'passive above active) 

e 	 Elevation angle (see Fig. 2 

v 	 Initial guess of NP maneuver magnitude 

tTp I 	 Time of the TPI maneuver 

The outputs to'thiis program are 

AvP 	 NP maneuver Av 

t Time of next maneuver 

2. 1. 3. 	 NP Program Description 

A detailed 	flow chart of the program is shown in Fig. 2. 1. 5. 

The program starts with an update of the passive state to 
the TPI time. The QRDTPI routine is then used to obtain the active 
vehicle's position vector rAD at the TPI time. This vector defines 
the desired TPI phasing. 

After adding the guess of the NP maneuver to the active 
vehicle's velocity vector, the REVUP subroutine is used to obtain 
the active state at the next maneuver point. This state can then be 
updated through additional maneuvers as required, so long as the 
maneuvers are self contained, until the TPItime is-reached. An 
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9.8.1 Rendezvous Targeting (continued) "
 

Phase Maneuver
 

Inputs: 	 Adtive and passive statevectors,, 
number of revoluti6ns, terminal 
geometry constraints, initial guess 

of maneuver fnagnitude 

Use terminal geometry constraints to 
determine terminal phasfng oanstraint -

Add maneuver magnitude in horizontal direction 
to velocity vector of active vehicle

4. 
Update active vehicle state through specified | 
- -nuber __ ,of revolutions 

Add additional maneuvers as required, updating 
to terminal point. -

- Compute terminal phasing error 

haing error 
I 

Yes 
b EXIT 

erorin- Ue ewton Ra~hson iteration scheme 

-,to determinem"ew maneuver magnitude 

.Fig. 2.1. 4 NP Functional Flow. Chart 
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9.8.1 Rendezvous Targeting(continued)
 

Phase Maneuver 

Inputs: rA, vA, V n, &h, e, v, t4p I 

, Update _p, v Pto tTPI using Conic Extrapolation Routine. 

Use EP, vP Ah, e, s=1 in QRDTPI Subroutine (Sec. 3. 6. 9) 

to obtain LAD 

c 0 

- 1 UNIT [LAX vA )X!A] 

- YAp' !A+ v H 

.Update LA,VAF through n revolutions using REVUP 

Subroutine (Sec. 3.6.1 ), obtaining rAS. !AS. t 

!AS, through additional maneuversEUpdate LAS' 

as require d
 

ep= SIGNErAS XLAD) (pX!d] cos-1 (rAs. AD/rAsrA) 

ec Yes Avvu EXIT 
No 

- Update c, v using ep in ITER Subroutine (Sec. 3.6. 7) 

Fig. 2. 1. 5 NP Detailed Flow Chart 
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9.8.1 	 Rendezvous Targeting (contlftued)" 

angular 	phasing error is then defined as 

e = 	 SIGN [(AS "<LAD)* (LP x Yi)] 0 AS"rAD/rAS rAD) 

where AS is the active vehicle's position at the TPI time. This error 
is "thenused in the ITER subroutine to vary the phasing, maneuver until 
the'phasing ,constraint is satisfied. 

2.2 	 Height Maneuver Program (NH) 

2.2. 1' 	 NH Program Objectives 

The objective of the height' maneuver NH program is to 
compute a maneuver which satisfies the following constraints 

1. 	 Av, horizontal 

2. 	 Next maneuver occurs aftertransfer time n T, where 
n is specified and -r is the post NH orbital period. 

3. 	 Attitude between passive orbit and active vehicle is 
specified. 

Generally, the third constraint is assumed to occur at the maneuver 
following the NH maneuver. However, a self contained maneuver 
-and coast phase can be inserted 'into this-calculation such that the 
third constraint applies at the second maneuver point following the 
NH maneuver. 

The caiculation of the NH maneuver involves a Newton 
Raphson iteration scheme to determine the magnitude of the maneuver, 
using,an error in altitude as the dependent variable. A functional 
flow chart of the NH maneuver is contained in Fig. 2. 2. 4. 

2.2.2 	 NH Program Input-Output 

The required inputs to the Height Maneuver Program are 

rA, ZA, _rp Vp Active and passive state vectors attime of NH maneuver 

n 	 Number of revolutions before mext 
maneuver 

9.8-15
 



9.8.1 Rendezvous Targeting (continued) 

Height Maneuver Program 

Inputs: .Active and passive state, 'number of revolutions, 
delta altitude, initial guess of maneuver magnitude 

_Add maneuver magnitude in horizontal direction to velocity 

vector of active vehicle 
Update active vehicle state through specified rnumber of I 

revolutions 

Update passive state vector to be radially above 
active vehicle 

Com ute altitude error usin desired delta altitude 

ltitude error Yes EXIT 

No 

Use error in Newton Raphson iteration scheme to determine 
new maneuver magnitude 

Fig. 2. 2. 4 NH Functional Flow Chart 
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9.8.1 	Rendezvous Targeting(continued)
 

Ah Delta Altitude 

* v Initial guess of NH maneuver magnitude 

The butputs to this program are 

A NH maneuver Atv.YH 

t Time of the next maneuver 

LAS' ZAS Active state at the next maneuver point 

2.2.3 	 NH Program Description
 

A Idetailed flow chart of the program is shown in Fig. 
 2. 2. 5. 

The program starts with the addition of the guess of the NH
 
maneuver to the active vehicle velocity vector. 
 The active state is
 
then updated through n revolutions using the REVUP subroutine.
 
Following the updating of the passive state to be radially above the
 
active position vector using the RADUP subroutine, the height error
 
is computed to be
 

e = rps- rAS-.Ah 

representing the error in attaining the desired altitude difference. 
This error is driven smaller than E using the Newton Raphson iteration 
scheme contained in the ITER subroutine by varying the magnitude of 
the NH maneuver. 

2. 3 	 Coelliptic Maneuver Program (NC) 

2,3.1. 	 NC Program Objectives 

The objective of the coelliptic maneuver NC program is to 
compute a maneuver which will result in the passive and active 
orbits being coelliptic following the maneuver. Coelliptic orbits 
have an approximately constant radial separation distance. 

Fig. 2. 3. 4 is a functional flow chart of the NC program.
The post maneuver velocity, which determines'the active orbit, is 
a function of the passive state radially above the active vehicle at 
the NC timd. 
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9.8.1 Rendezvous Targeting(continued)
 

Height Maneuver Program 

Inputs: rA, XA' rX n, Ah,. C 0 -

u=UNITEBrA x.VA) x rA] 

ILAF -uAv 

Update LA VAF through n revolutions using REVUP 

Subroutine (Sec. 3.6.1 ), obtaining rAS' XAS' t I 
Update ri vp to be radially above LAS using RADUP 

Subroutine (Sec. 3.6. 3 ), obtaining -p
S
 

e =re rA A
5 


e e Yes vH=vu EXIT 

•Update c, v using e in ITER Subroutine (Sec. 3. 77 ) 

Fig. 2. 2. 5 NH Detailed Flow Chait 
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9.8:1 Rendezvous Targeting.(continued)"
 

Coelliptic Maneuver 

Inputs: Active and Psies 

Update passive vehicle state to be radially above active 
vehicle state 

Compute post maneuver coelliptic velocity vector 

Compu coelliptic maneuver 

EXIT 

Fig. 2. 3. 4 NC Functional Flow Chart 
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9.8.1 Rendezvous Targeting (cbntinued)
 

2. 3. 2 NC Program Input-Output 

The required inputs 	to the Coelliptic Maneuver Program are 

-A' -A' r F Vp 	 Active and passive state vectors at 

time of NC maneuver 

The outputs to this program are 

A NC maneuver AvC 

2. 3.3 NC Program Description 

A detailed flow chart of the program is shown in Fig. 2. 3. 5 

The program starts with an update of the passive state to 

a point radially above the active position vector using the RADUP 

subroutine. After obtain the altitude difference between the two 

position ve ctors, the COE subroutine is used to obtain the post maneuver 

velocity vector of the active vehicle. Thisis then used to obtain the 

NC maneuver. 

2.4 Lambert Maneuver Program (NL) 

2, 4.1 NL Program 	Objectives 

The main objective of the Lambert Maneuver Program is
 

to compute a maneuver that will result in a trajectory which will pass
 

through a specified target position vector at a given time. The target
 

- vector can be established by either a precision or conic update of the 
passive vehicle. The Lambert maneuver can also be executed 

either in an oblate or two-body gravity field. A functional flow chart 

of this maneuver is shown in Fig. 2.4. 4, 

2. 4. 2 NL Program 	Input - Outputs 

The required inputs to the Lambert Maneuver Program are: 

A, - A , rp, v Action and passive state vectors at time of NL 
maneuver 

Time associated with the target vector 
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9.8.1 Rendezvous Targeti-g(continued)
 

Coelliptic Maneuver 

Inputs: rAI XA' E v
 

Update r , v to be radially above rA, using-p -p 
RADUP subroutine-(Sec.3.6.3 ). 

Use _p,yp, h in COE Subroutine (See. 3. 6. 5 
to obtain YAP 

AV C !VAF-A 

EXIT
 

Fig. 2. 3. 5 NC Detailed Flow Chart 
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9.8.1 Rendezvous Targeting (cont:nued)-


Lambert Maneuver 

time used to establish target vector 

through time to 
Uptdate pasive vehicle 

establish target aim vector 

.Use Lambert Routine to establish the 

intercept trajectory, obtaining departure 
velocity 

Obtain the Lambert maneuverAv 
II 

Exit 

Fig. 2. 4.4 NL Functional (Flow Chart) 
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9.8.1 Rendezvous Targeting'(continued) 

The outputs to this program are: 

VL NL maneuver Av 

2.4.3 NL Program Description 

A detailed flow chart of the program is shown in Fig. 2,4. 5. 

The program starts with an update of the passive state to
 
the target time to establish the target vector. This vector is then
 
used in a Lambert routine to obtain the post NL 
maneuver velocity,
 
which determines the NL maneuvet.­

2.5 Terminal Phase Initiation Program, (TPI) 

2.5.1 TPI Program Objectives 

The objective of the Terminal Phase Initiation (TPI) pro ­
gram is to compute the TPI maneuver and the adsociated target vector 
required to initiate the terminal phase of the rendezvous sequence. 
The functional flow is illustrated in Fig. 2.5.4. 

The position of the TPI maneuver is determined by specify­
ing either the time of the maneuver or thi elevatioh angle which
 
specifies the relative geonmetry of the vehicles at the TPI point. 
 If
 
the elevation angle is 
specified an iterative procedure is initiated to 
find-the TPI time at which this desired angle is attained. 

The TPI maneuver can satisfy either-of two objectives. It ­
can place the active vehicleon an~intercept trajeitory With the pas­
sive vehicle or it can cause the active vehicle to pass through a 
target vector which has a particular relative geometry with respect 
to the passive vehicle at the intercept time. 

If a coplanar intercept is desired, i.e. the activeand pas­
sive vehicles orbital planes aligned 'after TPI and before the final 
intercept of the target vect6r, the computed TPI maneuver is modified 
by nulling the active vehicle's out-of-plane velocity relative to the 
passive vehicle's orbital plane. This causes, the orbital planes to 
intersect ninety degrees from the active vehicle TPI position vector. 
At the time corresponding to this nodal crossing a mid-course cor­
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9.8.1 Rendezvous Targeting(continued)
 

Lambert Maneuver 

t
Inputs : rA 

Update r,. Vp through time t, obtaining EPT 

Call Lambert Routine with rA' rPT' t, obtaining VAF 

L - -T =-Av t 

YLAP -

Fig. 2.4. 5 NL Detailed Flow Chart 
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9.8.1 Rendezvous Targeting (continued)
 

rection is performed which aligns the two orbital planes. The tra­
jectories then remain coplanar throughout the rest of the terminal 
phase. 

The differences between this TPI-program and that usei n 
Apollo are: target offsets are used automatically in computing the 
TPI maneuver to account for oblateness affects; all updates are done 
with precision extrapolations; modification of the TPI target vector 
using range and altitude offsets; and the addition of a coplanar inter­
cept mode, 

2.5.2 TPI Program 	Input-Outputs 

The required inputs to the TPI program are: 

EAI, AI 	 Active vehicle state vector 

Ep, Zpn 	 Passive vehicle state vector 

tTPI 	 TPI ignition time 

E 	 Elevation angle of passive vehicle from the 

active vehicle at TPI' 

(a Central angle of travel of the passive vehicle, 
from its TPI position to its final position (TPF) 
yielding the'TPI target vector. Also deter­
mines the transfer time, tF' 

ENGE" 	 Distance along the passive vehicle orbit from 
its position at TPF which defines a new target 
vector. 

DELH 	 Altitude above or below the passive vehicle 
orbit, measured along the target vector at 
TPF, which defines a new target vector 

CPI 	 Flag which determines if the coplanar inter­
cept mode is to be used from TPI to TPF 
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9.8.1 Rendezvous Targeting continued)
 

The outputs from this program are:S . I 

AvTPI 	 TPI deltav in Inertial Reference Coordinates 

AVTPI ( LV) - TPI deltav in active vehicle local vertical
 
coordinates
 

AVTPI (LOS) 	 TPI deltav in active vehicle line--of-sight co­

ordinates 

Target vector used in the powered flight-PT 
routine for the TPI maneuver 

2,5.3 TPI Program Description 

The TPI program is entered during the rendezvous targeting 

sequence when the terminal phase of the rendezvous is to be initiated. 

The on-board estimated states of the active and passive 

vehicles are precision updated to the input TPI time. If the elevation 

angle has been input as zero, the TPI maneuver is executed at this 

time. 

If, however, the elevation angle, E, at TPI is specified, an 
iterative procedure is initiated to find the TPI time at which this E 

occurs. This procedure uses the input TEE time as the initial guess. 
The input TPI time is changed by a time correction 6t which is based 

on: (1) the angular distance between the passive vehicle position and 
the desired position of the passive vehicle obtained by assuming the 

target vehicle is in a circular orbit and (2) assuming the vehicles 

are moving at a constant angular rate. The following equation for 6t 

is used: 

, a - r 	 ­+ SGN (rp - rA)Elr - cos 1 (rA cos E/ r,)]
6t= 

(A - Wp 

where 
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9.8.1 	Rendezvous Targeting (continued)
 

E+SGN[QEA-XrP), uicos - l (rA. rP/ rArP) 

and wA' p are the angular velocities of the active andpassive vehicles 
respectively. 

The iteration is successful when-the computed elevation 
angle EA is sufficiently close to the desired elevation angle E. 

To help insure convergence, the following steps are taken: 

a. 	 The step size 6t is restricted to 250 secs. 

b. 	 If the solution has been passed (6E 6E0 < 0 ), the step 
size is halved and forced in the opposite direction-of 
the last step. 

c. 	 If the iteration is converging ( E0 I - 1EI < 0), the 

sign of 6t is maintained. 

d. 	 If the iteration is proceeding in the wrong direction, 
the step direction is reversed. 

The iteration is terminated for any of the following reasons:. 

1. 	 The-iteration counter has exceeded its maximum 

value of 15. 

2. 	 The line-of-sight emanating from the active vehicle 
does not intersect the circular orbit with radius equal 
to that of the target vehicle. 

3. 	 The elevation angle is inconsistent with the relative 

altitudes of the two vehicles (e. g. , if the elevation 

angle is less than 1800 when the active vehicle is 
above the target vehicle). 

Upon convergence, the state vectors are precision updated 
to the TPI time. 

The transfer time tF is then compute*d using wt in the Conic 
Extrapolation Routine (Time-Theta option) and the passive vehicle 
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9.8.1 Rendezvous Targeting (continued)
 

state vector is precision updated thrbughithis time yielding the target 
vector for the TPI maneuver. If an offset range, RNGE (see-following 
diagram) is input, the passive vehiclestate at tTPF (tTPF = tTp I 
+ tr) is precision updated through an additional At to yield an offset 
target vector. The time increment At is given by'the equation 

t = RNGE 

(rPT PT ) 

which assumes the passive vehicle is moving at a constant angular 
rate. 

'This modified target vector leads or trails the passive vehicle 
position at the intercept time and is in the same orbit as the passive 
vehicle. 

(+RNGE) . .. 

EP ( tTpP ) 

rP(tTPI) 

T ((tTpt ) A 

t r (ttTPl ) 

If an altitude differential between the passive vehicle orbit and the 
target vector altitude is input, DELH, the target vector magnitude is 
increa'sed or decreased accordingly. 
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9.8.1 Rendezvous Targeting (continued).
 

The precision target vector thus determined, whether it be 
the passive vehicle position at tTp, or a target offset from the pas­
sive'vehicle position at tTPk is used in the Precision-Lambert, 

Routine to obtain the-TPI maneuver. This routine uses the offset 
aimpoint technique to compensate for the earth's oblateness efiects. 

- The coplanar intercept flag indicates if the TPI maneuver jusi 
computed and its associated-aimpdint'vector are to be modified or not. 
If the flag is set, the maneuver is modified in the following way: the 
computed.TPI deltav is expressed in a frame (LVp) where the Z 
axis is in the -negative direction of the active vehicle, position vector, 
the Y axis is normal to the passive vehicle plane and X forms a right 
handed system. The 3 compohents of deltav are AVx, AVy, Avz. 
The active vehicle out-of-plane velocity relative to the passive vehicle 
orbitalplane, y, is then computed. The negative of this velocity over­
writes Avy, and the modified TPI velocity vector in the (LVp) frame 
becomes (Av., -y, Av z ). This velocity is then expressed in the 
inertial reference frame and in the active vehicle local vertical frame. 

A -new target vector is then computed by precisibn integrating 
the active vehicle state at TPI with the modified deltav added in to 
the time t The time of the nodal crossing at which a midcourse 
maneuver is to be performed.to make the orbits coplanar is then cal­
culated using the-Time,-Theta option of the Conic.Extrapolation Routine 
with 900 . . 

The TPI maneuver AV*i, the precision target vector r
T131,-PTand the time of 'flight t' are used in the powered -flight routine which 

controls the vehidle and determines thrusting attitude during the 
maneuver. 
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9.8.1 Rendezvous Targeting (continued)
 

TPI Program

Inputs: Section 2. 5. 2 

Update active and passive states to time of TPI mnue 

s elevation angle specifie No 

Yes 

Iterate to find TPI time and active and passive vehicle 

states based on elevation angle 

Establish target vector for TPI maneuve No 

I Yes 

[Compute new target vector for TFI maneuver 

Compute TPI maneuver to intercept target vector 

e Yes 

Compute coplanar maneuver and new target vector 

EXITk: 

Figure 2.5.4 TPI Functional Flow Chart 
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81Rendezvous Targeting (continued)
 

TPI Program 

oIlnputs :'rA'Al'V !P11 ,t't, FLAG = 0, E, tTPI 

INGE, ]jELH, CPI, 6tmaR 250 secs. n =0 

Upd ate rLAI, yAI and EPr pi, to tizme t | 
obtaining r vX and'rpVusg 

Precision Extrapolation Routine 

s•~ ~ >t AF 'EA' - F'0Y' -"F --E-"-P, -"-

HL = UNIT (Ep -_A ), u--UNIT ( EA XvyA) 
U~jp = EULA(L.i2 ]UNIT rA 

=Acos-lDuL •Hup SGN (up. a.UXrA)­

- - Yes 
•Z< EA - 27 EA< 

" Yes No 

- No Ye 

Figure 2.5. 5 TPI Detailed Flow Chart 

9.•8- 31 
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Yes y
 

n < 15 YeACO /p>1Ys 

No N
 

-[ with A RM 

< P 

n =n+l,6E 0 =6E, 6E=EA -E 

"A =XA "UNIT (uX A)/ rA 

p p* UNIT [(rpXvp)Xrp]/rp 

a E+SGNL[(!AXrEP).'UIcos(A. /lrrP) 

a -- SGN (rp6t - rA)Er - cos-l(rA cos Etrp)]St = 

A- Wp
 

Figure 2.5.5 TPI Detailed Flow Chart 
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6t>6ma mI, 6ra=tax-" 

No
 

6 0J Ye 6t =-SGNI(6t 0) 6-t/2 ---­

G(t0)66EI IE-6 

6 0 -66 0 /2t 

Update rA-F, !AF and rPF 
vpF through timne t - t obtaining 

1
LA , VA and rP, v. usin Precision Extrapolation Routine a 

Wt-2 Obtain tF using~irLp, y ,o i 
Conic Extrapolation Routine 

Figure 2.5.5 TPI Detailed Flow Chart 
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4
 

Update rp, yP to time t + t F obtaining rPT, vPT 

using Precision Integration Routine 

. Yes 

OPT < vPT UNIT E(rPT XvPT)9XrPT]/ r PT 

t = RNGE/ (rPT OPT) 

Update rPT. vpT to time At obtaining r XPT 

using Precision Extrapolation Routine 

BfTEPTIIDLH UNIT (.r PT) 

Obtain k f 2 and _AN, using LA LPT, tF, e 150,, 

in Precision Lambert Routine 

AYTPI zk -A' AYTPF = ZAF - YPT 
R 2 Y=-u, Z = UNIT(-rA), X = YXZ 

Figure 2.5.5 TP Detailed Flow Chart 
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AYTPI (LV) [i~z]TA&TpI_K 

I=1 No 

Y1 UNIT (Vp X Erp 

XP ='UNIT (Y X Z) 

yT
 

AyTPI (LVp) =[AVx ,-Y, AV] -

AVTPI =K[,Y,Z]AVTPI(LVF) 

AVTPI(LV) =[ . AYTPI 

" v=X+AVTPI. 

Obtain new target vector PT using A. v>, t F inPrecision Integration Routine 

Figure 2.5.5 TPI Detailed Flow Chart 
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6 7
 

Obtain tTPM using wt = 900 in
 

Conic Extrapolation Routine
 

R I UIL, tTPF t + tF 

2 = UNIT (u ])fll 

B3 = '1 xB 2 

AST~p [ %BjATF1 (LOS) 

EXIT 

Figure 2.5.5 TP Detailed Flow Chart 
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9.8.1 Rendezvous Targeting (continued)
 

2.6 Rendezvous Midcourse Maneuver Program (TPM) 

2.6.1 TPM Program Objectives 

The Rendezvous Midcourse Maneuver Program computes a
 
mideourse correction (TPM) which insures that the active vehicle
 
will intercept the desired target veptor at the desired intercept time
 
established in the TPlprogam. 
 The functional flow is illustrated in
 
Fig. 2.6.4
 

The time of the midcourse correction is chosen so that an 
adequate time interval from the preceeding rendezvous maneuver
 
(either TPI or a midcourse correction) occurs during which rendez,
 
vous navigation can be performed. 

If the coplanar intercept mode was used at TPI then the pro­
gram is 
entered for the first midcourse correction at the time cor­
responding to the nodal crossing of the active 
 and passive vehicle orbital 
planes. This time is computed in the TPI program. 

.The TPM program recomputes the target vector to achieve
 
the same objective 
as the TPI program attempted to satisfy., This
 
ob3ective is to either intercept the passive vehicle or achieve a 
de­
sired target position relative to the passive vehicle at the intercept
 
time. 

2.6.2 TPM ProgramInput-Output 

The required 'inputs to the Terminal Phase Midcourse pro­
gram are described below: 

EA' XA active vehicle state vector 

L vp - passive vehicle state vector 
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9.8.-1 Rendezvous Targeting (continued)
 

tTPI - time of TPI 

tTPM - time of the midcourse correction 

tF - transfer time between TPI and TPF 

RNGE - distance along the passive vehicle orbit from 

its position at the intercept time which defines 

a new target vector 

DELH - altitude above or below the passive vehicle orbit, 
measured along the target vector at the inter­

cept time which defines a new target vector 

The outputs from this program are: 

AV TPM - TPM deltav in inertial reference frame 

AV'P (LOS) TPlCIdeltav in the line-of-sight coordmate
 

frame
 

rPT target vector for the midcourse maneuver 

2.6,3 TPM Program Description 

The Terminal Phase Midcourse program is entered after 

the TPI maneuver or a preceeding midcourse correction. The time 

of the midcourse correctionis chosen so that an adequate time period 

from the previous maneuver occurs allowing rendezvous navigation 
to be performed. 

If the midcourse is the first'one after a TPI maneuver in which 

the coplanar intercept mode was used, then the time of the mideourse 
is that which was determined in the TPI program. 

The on-board estimated states of the active and passive 

vehicles are precision extrapolated to the midcourse correction time, 
tTPM. The passive vehicle state is then precision updated to the final 

-intercept time, tTPF, yielding the target vector for the midcourse 

maneuver. 
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9.8.1 Rendezvous Targeting (continued)
 

Ii an offset range, RNGE, is input, the passive vehiecl state 
at the intercept time is updated through an additional At to yield an 
offset target vector. The time increment At is given by the equation 

41t -RNGE 

(rPT wPT) 

which assumes the passive vehicle is moving at a constant angular 

rate.
 

This modified target vector leads or trails the passive
 
vehicle position at tTPF and is 
 in the same orbit as the passive
 
vehicle.
 

If an.altitude differential between the passive vehicle orbit
 
and the target vector magnitude is input, DELH, the target vector
 
magnitude is 
 increased or decreased accordingly. 

The precision target vector thus determined is used in the 
Precision Lambert Routine to obtain, the midcourse correction man­
euver. This routine uses the offset aimpoint technique to compensate 
for the earth's oblateness effects. 
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9.8.1 Rendezvous Targeting (continued)
 

Terminal Phase Midcourse Program 

Inputs: See Section 2.6.2 

Update active and passive vehicle states 

to input time of the midcourse maneuver 

Establish the target vector for the TPM M 

Is offs et No 

distance 

Compute new target vector for midcourse maneuver 

Compute midcourse maneuver to 
intercept target vector 

EXITI
 

Figure 2. 6.4 TPM Functional Flow Chart
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Terminal Phase Midcourse Program 

Inuts: rA. EA'p. P, tTPi) iF t TPM, tTp1 , RNGE, DELH I 

Update EA' -A and rp, vp to t TPM using 
Precision Extrapolation Routine 

Update r, vp to tTpF obtaining rPT' XPT 
L using Precision Extrapolation Routine 

~Yes 

Njo 

PT = _PT UNIT [(rP T X vpT)xrpT] / rPT 

At = RNGE/' (rPT 'PTY 

'Update pT' vPTto time.tTPF + At 
obtaining rEPT VFT using Precision Extrapolation Routine 

P T - DELH UNIT (rPT) 

Figure 2, 6.5 TPMDetailed Flow Chart 
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Obtain 4 and f 2 using LA' LPT, (tTPF - tTPM), 

C = 150 in Precision Lambert Routine 

AVTPM=VA - -A.
 

SR 
 f2
 

Y =UNIT (vAX A)
 

z UNIT (- A)
 

f 


X =YXZ
 

-T
 
AV TPM(LV) = YxZ] A
IANTP
 

R tUNIT (r -r
 

_= UNIT (R1 xy)xR 1]
 

R
 3 R--I x R2
 

AVTPM(LOS) =L[Rl AV, 

LEXIT 

Figure 2.6.5 TPM Detailed Flow Chart 
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Plane Change Program (PC) 

2.7. 1 PC Program Objectives 

The objective of the Plane Change Maneuver is to compute a 
manetver which will place the active vehicle into the plane of the 
passive vehicle. This is accomplished by nulling the out-of-plane 
velocity at a nodal point established by the previous maneuver. 
Fig. 2.17. 4 is functional flow chart of the PC program. 

2.7. 2 PC Program Input-Outputs 

The required inputs to the Plane Change Program are 

EA, LA, rp Vp Active and passive state vectors 

t Time oithe plane change maneuver 

The outputs to this program are: 

Av PC maneuver Av-PC
 

2.7. 3 PC Program Description 

A detailed flow chart of this program is shown in Fig. 2.7. 5. 

The program starts with a precision extrapolation of the 
state vectors to the time of the PC maneuver. The out-of-plane 
velocity of the active vehicle is then calculated and inserted into'the 

PC maneuver, 
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Plane Change'
 

Inputs: 
 Active and pas§ive state vectors, time of 
the PC maneuver 

Update active and passive states to the 
time of the PC maneuver 

Compute PC maneuver to null out-of-plane £ 

velocity of the active vehicle. 

EXIT
 

Fig. 2. 7. 4 PC Functional Flow Chart 
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Plane C.hange 

inputs: LA' ZA' EP' ! 

Update 5 A LA and !p, Vp to t using 

Precision Extr.apolatioh Routine 

y= UANIT (Vp X rp) 

z = -UNIT (A)' Y UNIT (vA x-rA) X -- Z 

Av (LV) (0, -Y, 0) 

-~pc . ---I z ,,c 

EXIT 

PFig., 2. 7. 5- PC Detailed Flow Chart 
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9.8.1 	Rendezvous Targeting (continued)
 

2. 8 	 Phase Match Program (PM) 

2.8-1 PMW Program Objectives
 

The objective of the Phase Match Program is to compute
 
a set of state vectors that are "phase matched'! These vectors, in
 
the coplanar case, will be colinear. Hence, 
 when entering a rendezvous 
targeting program with phase matched vectors, the program will
 
approximately update the two state vectors over the same 
sector of ­

the earth's surface.
 

In general, at the start of a typical targeting program; the
 
passive vehicle will lead the active vehicle. In this case the passive
 
vehicle has to be backed up using precision extrapolation to establish
 
the phase matched vectors. The functional and detailed flow charts
 
are shown for this case in Fig. 2.8.4 and 2.8. 5. 

2.8. 2 PM Program Input-Output
 

The required inputs to the Phase Match Program 
are 

-A, ZA , 	 rp:, Vp Active and passive state vectors'at time" 
of first maneuvers to be employed in 
the targeting program 

The outputs to this program are 

Ep, Vp Passive state vector at phase match 

t Time associated with the new passive 

state vector 

2. 	 8; 3 PM Program Description 

A detailed flow chart of this program is shown in 	Fig. 2. 8. 5, 

The program starts by computing the desired unit vector of 
the passive vehicle at phase match. 

tD = UNIT{[(rA X X LA]]A) (_rp yp)} 
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9.8.1 Rendezvous Targeting .(continued)
 

This vector is colinear with the intersection of the paisive vehicle 
plane and the plane perpendicular to the active plane which contains 
the active vehicle's position vector. The central angle 0 is then 
computed between the passive vehicle's position vector and uD as a 
positive angle when the passive vehicle leads the active vehicle. 
After checking to see if this angle is sufficiently small to terminate 
the iteration, the central angle is converted into a corresponding 
time At using a conic extrapolation routine. The passive state is 
then precision extrapolated through At to obtain a new estimate of 
the desired phase matched vector. 

Phase Match 

Inputs: Active and passive state vectors 

Compute desired unit vector of passive vehicle at phase
match point J 

Compute central angle between passive state and 

desired ,phase match point. 

Central angle<c Yes EXIT 

Convert central angle into a corresponding delta time 

~Extrapolate the passive state through the delta time 

Fig. 2. 8. 4 PM Functional Flow Chart 
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Phase Match
 

Inputs: r.AA. t.
vA, 


u= £x.p: t=t+At 

, -D ISIG U=.T{,rA V r] Iu} 
0 =, - o, E(UD x Ed , u3I, - cos- Qu- -pD p] 

E) Yes EXIT 

No 

Using r. y, -0 in Conic Extrapolation Routine, obtain At 

Update vthrough At using Precision Extrapolation Routine 

Fig. 2. 8. 5 PM Detailed Flow Chart 
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3. 	 THE ASSEMBLY OF T IE INDEPENDENT MANEUVERS 

INTO -PRETERMINAL RENDEZVOUS PROGRAMS 

As an application of the assembly of the basic preterminal 

maneuvers into an integrated rendezvous program, a Four Man­

euver Sequence (EMS) will be considered. This FMS will closely 

parallel the four maneuver Skylab NCt.program.- 'The EMS consists 

of a phase maneuver enclosing two height mardeuvers; the-latte 

enclosing a coelliptic maneuver. Also included is a phase match 

operation prior to the phase maneuver. 

-Following the FMS targeting and the addition of the,phase 

maneuver to the active vehicle state, the Triple Maneuver Sequence 

TMS will define the targeting for the three remaining maneuvers. 

This sequence parallels the NC2-program in Skylab. -It consists 

of a phase maneuver xhich encloses a height maneuver; the latter 

enclosing a coelliptic maneuver. The TMS also is initiated with a 

phase match operation. 

Following the TMS targeting and the addition of.thenew phase 

maneuver to theactive vehicle state, thp Double-Maneuver Sesjuence 

DMS will define-the targeting for the two remaining maneuvers. 

This sequence parallels the NCC program in Skylab. It consists, of 

a Lambert maneuver uSing an aim pointestablished by inserting a 

coelliptic orbit at the TPI point using the TPI geometry constraints. 

- Following the DMS targeting and the addition of the new 

Lambert maneuver to the active vehicle state, the Single Maneuver 

Sequence, SMS will define the targeting for the final preterminal 

maneuver. This maneuver is a-coelliptic maneuver resulting in 
oroits tnat are separated by an approximately constant radial dis­
tance. 

The maneuver designations for each rendezvous sequence 

are: 
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9.8.1 Rendezvous Targeting (Conl"t) 

Sequence Maneuvers 

FMS NP; NHI, NHt2, NC 

TMS NP, NH, NC 

DMS NL, -NC 

SMS NC 

The FMS and TMS programs are combined into one flow chart. Fig. 
is an illustration of the FMS rendezvous. 

This section is divided into fi're parts. The first section 

lists the constraints which each maneuver sequence satisfies. The 
following sections are devoted to the individual maneuver programs. 

3. 1 Constraints Associated with the Preterminal Rendezvous 

Programs 

Sufficient constraints must be imposed on each maneuver 
sequence to uniquely define the trajectory (see Sec. 1.2).' In gen­
eral, the constraints for the N-i maneuver sequence can be obtained 

by deleting three constraints from the N maneuver sequence. The 

targeting constraints associated with the FMS mentioned above are­

1. 	 AV horizontal 

2. N horizontal 

3. 	av horizontal' 

4. 	 NHI maneuver occurs after a transfer time of 

n, T, where nI is a specified number of revolu­

tions and - is the period of thepost INP maneuvei 

orbit. 

5. 	 NH2 maneuver occurs after a transfer time of 

n2 -r where n2 'is a specified number of revolu­
tions and T is the period of the post NI man­
,euver orbit. 

6. 	 NC occurs a specified time At from the NH2 

9.8-50
 



9.8.1 Rendezvous Targeting" 
(con't)
 

Orbit of Passfe Vehicle 

7= Period of post NP maneuver orbit 

o2 = Period of post Nlil rnaneuiet orbit 

Figure 3 Illustration of the FMS Rendezvous 
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9.8.1 Rendezvous Targeting (Con't)
 

.maneuver.
 

7. 	 Altitude between passive orbit and active vehicle 

at the NH2 time, Ab. 

8. 	 Radial velocity at NC computed by coelliptizing 

the orbit. 

9. 	 Horizontal velocity at NC computed by coelliptiz­

ing the orbit. 

10. 	 TPI time, tf. 

11, 	 TPI elevation angle, eL. 

12. 	 Altitude between passive orbit and active vehicle 

at TPI time, Ahf. 

The targeting constraints for the TMS are obtained by re­

moving the constraints 1, 4 and 7 from the FMS. For DMS, the 

additional, constraints 2, 3 and 5 are removed. The constraints on 

the 	coliptic orbit are applied at the TPI point during the DM8 

program. For SMS, the coelliptic maneuver requires constraints 

8 and 	9. Summarizing, the constraints which apply to the rendez­

vous 	sequences are shown oelow: 

Sequence Applicable Constraints 

TMS 2, 3, 5, 6, 8, 9, 10, 11, 12 

DMS 6, 8, 9, 10, 11, 12 

SMS 8, 9 

As the coelliptic maneuver is independent of the TPI eleva­
tion angle and altitude constraints, these constraints will not be 

satisfied by the active vehicle at the TPI time. 
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9.8.1 Rendezvous Targeting (Con't)
 

3.2 Four Maneuver Sequence (FMS) 

3.2.1 ;FMS' Program Objectives 

The objective of the FMS program is to compute a rendezvous 
trajectory which satisfies the constraints listed in Sect 3. 1. The 
program computes the NP maneuver as well as the magnitudes of
 

NHl, NH2 and NC maneuvers.
 

This program contains two independent iteration loops em­
bedded in an outer iteration loop, Each loop is iterated with a 
Newton Raphson iterative scheme. The two inner loops determine 
the two height maneuvers, (NHIand N12) and the outer loop deter­
mines the phase maneuver (NP). 

A functional'flow chart of the FMS program is shown in Fig. 
3.2. 4. If the time of/the nodal crossing is desired following the NP 
maneuver, the active vehicle is. extrapolated through 90 degrees of 
central angle travel following the NP maneuver to establish this 

time. 

3.-2.2 FMS Program Input - Output 

The inputs for the Four Maneuver Sequence Program are: 

r A , pv State vectors of active.and passive vehicle 

tp Time of the NP maneuver 

At Time betweeri the NH2 and NC maneuvers 

tF Time of the TPI maneuver 

AhF Altitude between the passive orbit and the active 

vehicle at the TPI time 
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9.8.1 Rendezvous Targeting(Con't)
 

eL Elevation angle 

S=I FIVIS - TMS 	mode switch 

.n. 	 Number of revolutions between the NP and NH 
maneuvers 

nIl Number of revolutions between the NHI and NH2 
maneuvers 

Ah Altitude between the passive orbit and the active 
vehicle at the NH2 time 

spe Plane change maneuver switch, (= 1 for computa­
tion of tpc) 

dvpI dvl I dvH 2 Nominal magnitudes of phase and heightmaneuvers 

The outputs 	to the FMS Program are: 

AVp 	 NP maneuver Av 

Avp (LV) 	 NP maneuver Av in local vertical co­

ordinates'
 

til Time of the NH1 maneuver 

tPC Time of the plane change maneuver (if 

required) 

AVH Magnitude of the NH 1 maneuver 

AV H2 Magnitude of the NH2 maneuver 

AVC Magnitude of the NC maneuver 
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9.8.1 Rendezvous Targeting (Con't)
 

3.2'.3-FMS Program Description' 

The FMS program logic is illustrated in the detailed flow 

chart in Fig. 3. 2. 5'. This program involves two independent iter­

ative loops embedded in.an outer iterative loop in order to compute 

a trajectory which 'satisfies'the FMS constraints. The'two inner 
loops -use the magnitudes of the NH1 and NH2 maneuvers as indepen­

dent variables, whil'the outer loop utilizes the magnitude of the 

NP maneuver. Nominal values for these maneuvers are used in 

-theprogram as initial guesses in the iterative loops. 

Prior to entering the iterative loops, the passive state 

vector is "phasematched" to the active state vector at the time of 

the NP maneuver., This results in the active and passive vehicles 
traversing approximately the same central angle during the NP 

to TPI phase of the rendezvous. As the relative motion of two 

vehicles that traverse the same central angle in approximately 

the same orbits can be predicted based on either precision or 

conic updates, the NP program exclusively employs conic updates 

without losing significant accuracy compared with a program using 

precision updates. 

The phase match procedure starts by updating the active and 
passive vehicles-to the NP time with precision and conic updates 

respectively. A unit vector urPD is then calculated which is co­

linear with'the intersection of the passive vehicle plane and -the 

plane perpendicular to the active plane which contains the active 

vehicle's position vector. 

urPD = UNIT{[(rAP XvAP) X rAPI (r pp X v pp 

The angle 0 between the two vehicles- is next calculated and 

defined as a positive angle for the passive vehicle leading-the-activ6 

vehicle. After converting 0 into a. corresp6nding time, the-passive 

vehicle is precision updated to theestimated phase match time ti-
N'

The updated position is then checked to see if it is approximately 
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9.8.1 Rendezvous Targeting(Con't)
 

colinear with urPD. If not, the calculation is repeated starting with 

the calculation of 6. 

For np 'sin excess of 18 there is a possibility that the
 

passive vehicle might'lead the active vehicle by a central angle
 

which exceeds 360 degrees. To allow for this possibility, the 

equation for 0 includes a term which will increase 0 by 360 degrees 

when np exceeds 18"and the passive 9ehicle leads the active vehicle 

by less than 180 degrees. The final formula for 9 is. 

pi - c[pi- cos- (urPD • rpr)] +i d4l)(c+l)pi/2 

where d = SIGN(n p-18) 

c = SIGN[(urpD X r ) - UNIT(rpp X Vpp 

and pi = 7 on the first-pass through S and otherwise equals zero. 

Upon successfully completing phase match, the active vehicle's 
state vector is rotated into the plane of passive vehicle's orbit. The 

passive vehicle is then updated to TPI time and the desired active 

veice' vctr-AFDvehicles positionpsllo vector r aat TPI is established-using the 

QRDTPI subroutine (sec. 3.6.9). This subroutine uses the eleva-­

tion angle and the altitude between the passive orbit and the active 
vehicle at the TPI time in an iterative search which solves for the 

TPI geometry. 

The outer loop is initiated by adding the. NP maneuver to the 

active vehicle's NP velocity vector. Using the REVUP subroutine 
(See. 3.6. 1), the new state vector is updated through np revolutions 

to the NIl point. 

Prior to entering the first height iterative loop, the iteration 
counter switch c I is set equal to 0 or . 5 if it is the'first or subsequent 

pass .through the outer loop, respectively. This height loop starts 

by adding the estimated INI1 maneuver to the active vehicle's 

velocity vector. The state is then advanced to the NH2 maneuver ­

time using nfll in the REVUP routine. To verify that the height 
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constraint Ah is satisfied, the passive vehicle must first be updated 
to be radially above the active vehicle, This -is accomplished using 

RADUP subroutine (Sec. 3.6.3) which computes thecentral angle 

between the two vehicles and updates the passive vehicle state 

through that angle. -An altitude error eII is then defined and 

checked to see if it is sufficiently small. This test is bypassed if 

the partial pHI employed .in the iterative loop is zero in order that 

a value for p. may be computed for use in subsequent passes­

through the NHI maneuver computation. If e. 1 , passes the test, 

the program proceeds to the second height maneuver. - Otherwise, 
the ITER subroutine (Sec. 3. 6. 7) is used to obtain a new estimate 

of the NHl maneuver and the first height maneuver calculation is 
repeated. ITER is a subroutine encompassing a Newton Raphson 

iterative scheme based on numerical partials. 

Followving convergence of the first height maneuver, the 
calculation of the second height maneuver NHI starts by setting the 

iteration counter c I to 0 or . 5 depending on the value of c. The 

estimated value of the N112 maneuver is then added to the active 
vehicle's stateat NH2. After updating the state through the time 
At to obtain the active vehicle's state at the NC point, the passive 

state is updated to be 'adially above the active vehicle's position 
vector using the RADUP subroutine. The coelliptic velocity for 

the active vehicle is then computed using the COE subroutine 

(Sec. 3. 6: 6) and the'active's state vector is updated to the TPI time 
t F The passive-state is again updated to be radially above the 

active vehicle's position vector using the RADUP subroutine.-

Based on the -desired altitude difference AhF, an altitude 

error e112 is defined. If the partial PH2 employed in the iterative 
loop is zero and this error is sufficiently small, the program pro­
ceeds to the outer loop. Otherwise, the ITER subroutine is called 

to obtain a new value of the -NHl maneuver and updated values of 

and the partial pH2 The second height maneuver calculation is 
then repeated until the TPI altitude constraint is satisfied. 
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In addition to a constraint on the altitude at the TPI point, 
there is a constraint on the phasing. The updated active vehicle's 
position Vector rA should be approximately colinear with rAFD. 
An angular error ep is defined which represents the central angle 
between rAF and rAF D . If this error is sufficiently small the 
program is terminated after calculating the required displays. 
Otherwise, the ITER subroutine is called to obtain a new value of 
the NP maneuver and to update values of the outer loop iteration 

counter cF' the partial PC and the stored "values of the error eop
and maneuver magnitude dvoc. 
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FIVIS, TMS Programs 

Inputs: See See. S.2.2 

Phase Match state vectors at NP Point 

iT 

Compute desired phasing constraint at the TPI point 

-IMInsert NP phase maneuver and update to NII1 point 

Compute NEI maneuver as height maneuver using height constraint 

at next maneuver point and update to NH2 point (Bypassed if TMS prog.) 

Compute NH2 maneuver as height maneuver, using coelliptic
 

maheuver and TPI height constraint, and update to TPI point
 

Complete phase maneuver calculation and recycle if 

necessary
 

Compute plane change time - N 
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FMS, TMS Programs 

Inputs: rA, rp.,LP! e L , t At, t F I Ah F ' nHl dvp, d v d spc 

S (= 1 for FMS , =2 for TMS), 

If S 1 :Ah, np 

= P = 0, = tp, rs' r p = V, p 7h 2 t N 


vF H. H2 
 S ,P P j 

=2 p = dH1,p dvH I 

Update rA ' vA to tp'usrng Precision Extrapolation Routine­

obtaining _AP vAP 

Update rip, vp to t using Conic Extrapolation Routinef 

obtaining rp. Vpp J, 


Iam = UNIT (rpp x vpp), urpD = UNIT 1[ (rAP ' "'AP ) L P.]X am) 

am]d =SIGN (np- 18), c = SIGN (urpD x r P P ) " 

,= =pi c[pi-co (urPD rpp/rp I+ (d +1) ( +1)pi/2s 

Figure 3.2.5 FMS, ThIS Detailed Flow Chart 
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2
 

0 < 1 Yes
 

_ ~No 

Backup rpp,	Vpp through 0 using Conic Extrapolation Subroutine 

obtaining t (+0- + t, -G6 t) 

- PSN- A? - AP?P 
- A4? 

r - rAP UNIT[r - (r m) m] 

]LAP VAP 	 UNIT [Ap (v am) am] 

Advance r pp, Ipp through t F - tN using Conic Extrapolation Routine 

btaining FF vpF 

Figure 3. 2. 5 FMS, TMS Detailed Flow Chart 
(page 2 of 6) 
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Using rPFo vPF hF, eL' s = 0 in QRDTPI Subroutine (Sec. 3. 6. 9) 

obtain rAFD 

ZAP? =XAi +dm UNIT (a&<£AP) 

Update rAP. ApF through np revolutions using 
REVUP Subroutine (Sec'. 3.6.1), obtaining 

EAHl yAH1' tHi (= tp + t), 

-2--tH2 tI A=2 -A:Hl, !AH2 -YAH1 

ZAHrP =vA1 + dv 1 UNIT (am xrE,1) 

Update rAH'-VAHlF through nI revolutions using REVUP 

Subroutine (Sec. 3.6.1), obtaining rAH2 YAH2,, 

tH2( = tH1 + t) 

6. 
Figure 3. 2. 5 FMS, TMS Detailed Flow Chart 
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Update rpp, _PP to be radially above _FH 2 

using RADUP Subroutine (Sec. 3.6.3) 

obtaining rPH2 

i ~-rp rAH. Ah- ­

- Update c, P'-"' dvHl using e. 1 in ITER 

Subroutine (Sec. 3.6. 7) 

I=. 5 C -F = 00 

= - At2 

A Vi_1H2-F ' ]YAH 2 + dvH2 UNT( ZAH2) 

Figure 3.2.5 FiVIS, TMS Detailed Vlow Chart 
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Update -AH2' XAH2F through At using 
Conic Extrapolation Routine, obtaining rAS, XASi
 

Update rp C , VPC to be radially above _AS 
using RADUP Subroutine (Sec. 3.6.3), obtaining £ps, Vps 

n vAS F using rPS, Vps P rAS in 
COE Subroutine (Sec. 3. 6.5) 

S Update EAS, yAs F through tF - tS using 

Conic Extrapolation Routine, obtaining ErAF , YAF 

Update rpC, ypc to be radially above -AF 
using RADUP Subroutine (Sec. 3.6.3), obtaining rPA F' 

L 'r-PAF - rAF- A 

p0 -9-_ H Yes 

Figure 3.2. 5 FMS, TMS Detailed Flow Chart 
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• Update ell PI-2o dtvHc2 dsing ejj2, 

ITER Subroutine (Sec. 3. 6. 7 ) 

e= SIGN [(rAF X rAFD). nn] cos-I (-AFD " EAF/rAFD rAF) 

I
 

pageS3e~c e 

NO
 

!Update c0F' PC, dvci enpa dvo~ us'iiig e~ 

in ITER Subroutine (Sec. 3.6.) 

AXp=vpUNIT (am X £pp)Ap(LV=(dvC, 0,0) 

Figure 3.2p5 FMS, TiS Detailed Flow Chart 
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3.3 Triple Maneuver Sequence Program (TMS) 

3.3.1 TMS Program Objectives 

The objective of the Three Maneuver Sequence program is 

to compute a rendezvous trajectory which satisfies the constraints 

listed in Sec. 3. 1. The program computes a phasing maneuver 

and the magnitudes of a height and a coelliptic maneuver. 

This program contains an outer iterative loop to determine 

the phase maneuver and an inner loop to calculate the height man­

euver. The program's logic is very similar to the FMS program, 

and is herein treated as a subset of the FMS program logic, as 

represented in the functional flow chart in Fig. 3.2. 4. 

3.3.2 TMS Program Input- Output 

The inputs for the Three Maneuver Sequence are: 

£A,yArP, VP 	 Active and passive state vectors 

tPTime 	 of the NP maneuver 

At 	 Time between the NH and NC 

maneuvers 

tF 	 Time of the TPI maneuver 

Ah F 	 Altitude between the passive orbit 

and the active vehicle at the TPI 

time 

e L 	 Elevation angle 

S = 2 	 FMS - TMS mode switch 

npPNumber of revolutions between the 

NP and NH maneuvers 

spc 	 Plane change maneuver switch 

( 1 for computation of tPC 
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AV, Av, 	 Nominal niagh'itudes of the phase 

and height maneuvers 

The"outputs to the TMS program are: 

Av NP maneuver Av 

4Vp ("LV) NP maneuver AV in local vertical 

coordinates 

t H Time of the NH- maneuver 

tc CTime of the plane change maneuver 

(if required) 

Av H Magnitude of the NH maneuver 

AVC Magnitude of the NC maneuver 
C 

3.3.3 	 TMS Program Description 

The detailed flow chart for Triple Maneuver Sequence prog­

ram is incorporated in FMS flow chart in Fig. 3.2. 4. As the TMS 

logic is just a subset of the logic of the FMS (i. e., it eliminates one 

of the height maneuvers in the FMS program), the reader is referred 

to Sec. 3.2. 3 for the TMS program description. 
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3.4 -	 Double'Maneuver Sequence Program (DMS) 

3.4. 1 	 DMS Program Objectives 

The objective of the Double Maneuver Sequence program is 

the computation of a Lambert'maneuver based on a target vector 

obtained by determining a coelliptic orbit at the TPI point. 

Fig. 3.4.4 is a functional flow chart of the DMS program. 

3.4.2 	 DMS Program Input-Outputs 

The required inputs to the double maneuver sequence 

program are: 

LA Arpvp Active and passive state vectors 

t -Time of the Lambert maneuver 

t F 	 Time of the TPI maneuver 

e L Elevation angle 

Ah Altitude between the passive orbit 

and tha active vehicle at the TPI 

time 

At Time between the Lambert and 

coelliptic maneuvers 

The outputs to this program are: 

AVL Lambert maneuver Av 

AvC Coelliptic maneuver av 

3.4.3 	 DMS Program Description 

Fig. 3. 4.5 is a detailed flow chart of the Double Maneuver 

Sequence 	program. 

The program starts with precision updates of the active and 
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passive vehicle's state vectors to tL and tF respectively. The 
QRDTPI' Subroutine is then called to obtain the passive vehicle's 
state r PF' vpF radially above the desired active vehicle's position 
vector at TPI. Using the passive vehicle's state vector and the 
altitude difference Ah, the COE subroutine is called to-obtain the a 
active vehicle's state rAF , VAF prior to the TPI maneuver. This 
state vector is then integrated backwards using the Precision Extra­
polation Routine to the time of the NC maneuver, obtaining the 
target vector -AT for the Lambert maneuver. The Precision 
Lambert routine is next called to obtain the NL and NC velocities 
based on setting the nunbei of precision offsets N1 equal to two 
and the cone angle equal to 15 degrees. The rotation projection 

switch f2 is.obtained from this routine for use in the powered flight 
steering program as S After calculating the NL andNC maneuv­
ers, the-NL maneuver is rotated into a lnnol vertical coordinate 

system for display purposes. 
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DMS Program
 

Inputs: See list inSec. 3.4.2
 

Update active vehicle to time of Lambert maneuver 

using precision extrapolation 

Update passive vehicle to time of TPI maneuver 

using precision extrapolation 

4
 
Obtain desired position of active vehicle at the TPI 

time using the QRDTPI routine 

Insert a coelliptic orbit at the TPI point using 

the COE routine 

Back up the active vehicle to the time of the 

coelliptic maneuver using precision extrapolation, 

obtaining target vector 

Fig. 3. 4. 4 DMS Functional Flow Chart 
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1 
btan the Lambert maneuver using the target 

vector in the Precision Lambert Routine 

EXIT 

Fig. 3. 4.4 DMS Functional Flow Chart 
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DMS Program 

Inputs: rA' vA' r Pv tL tF At, Ah, eL 

Update LA, vA to tL using Precision Extrapolation 

Routine 

Update rp, v to tF using Precision Extrapolation 

Routine _ 

Using rp, vp, Ah, eL SQ = 1 in QRDTPI I 

Subroutine (Sec. 3.6.9) obtain rpF. vpF 

Using Epp, vPF' Ah in COE Subroutine 

(Sec. 3. 6.5) obtain LAF VZAF 

Update _AF , VAF to t L + At using Precision 

Extrapolation Routine obtaining EAT 'AT 

Using rA, EAT' At, c = 150, N1 = 2 in Precision 

Lambert Routine, obtain ZAP' VATF, f2 

Fig. 3.4.5 DMS Detailed Flow Chart 
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9.8.1 Rendezvous Targeting(Con't)
 

"Nvc =-AT - VATF' 

z= -UNIT () 0 y =UNIT vA x EA), x y × 

AVL,(LV)
= [x y z]T Av L 

EXIT 

Fig. 3.4.5 DMS Detailed Plow Chart 
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9.8.1 Rendezvous Targeting(Con't)
 

3.5 Single Maneuver Sequence Program (SMS) 

3.5. 1 SMS Program Objectives 

The objective of the Single Maneuver Sequence, Program 

is the computation of the coelliptic maneuver (NC). Fig. 3.5.4 

is a functional flow chart of the SMS program. 

3. 5. 2 SMS Program Input-Outputs 

The required inputs to the single maneuver sequence pro­

gram are: 

LA,'_A, Ep-Yp Active and passive state vectors 

tC Time of the NC maneuver 

tF Time of the TPI maneuver 

eL Elevation angle 

The outputs to the program are: 

Av C Coelliptic manevuer Av 

3. 5.3 SMS Program Description 

Fig. 3.5.5 is a detailed flow chart of the Single Maneuver 

Sequence program. 

The program starts with precision updates of the active 
and passive vehicle's state vecotrs to time t The out-of-plan 

parameters are next computed. Following rotating the active state 

into the plane of the passive orbit, the passive state is updated to be 

radially above the active vehicle's position vector at the NC point. 

Using the COE subroutine, the coelliptic maneuver is computed such 

that the resulting post maneuver velocity vector of the active vehicle 

will be parallel to the plane of the passive vehicle's orbit. After 

updating to the TPI time, the TPI program is used to obtain the 

TPI time which corresponds to a specified elevation angle. 
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9.8.1 'Rendezvous Targeting(Cdn"t)-' 

Single Maneuver Sequence Program 

[Inputs: 	 -Active-and passive states, elevation angle, 

time of NC and TPI maneuvers 

Update states to time of NC maneuver using precision 

extrapolation 

Compute 	out-of-plane parameters 

Rotate acti-Qe state into plane of passive state 

Update passive state to be radially above active 

vehicle 

Compute 	coelliptic velocity of active vehicle 

following 	the NC maneuver 

-Compute coelliptic maneuver which results in-a 

post maneuver velocity parallel to the plane of 

the passive vehicle 

Fig. 3. 5. 4 SMS Functional Flow Chart 
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9.8.1 Rendezvous Targeting (Con't) 

I rUp6~te states to time of the TPI mnaneuver 

Obtain new 'TI time using TPI program 

EXIT 

Fig. 3. 5.4 SMS Functional Flow Chart 
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-Single Maneuvdr Sequence 	Program 

Inputs: rA VA r Vp 	 eLr tC, t 

to tC usingUpdate rv A and r v 

Precision Extrapolation Routine 

U1 UNIT A,XrLA), 4u 	 UNITvNI Lp xrp 

rYA u YAvA. 	 u2 -p =p U 

u=UNIT (rp x vP 

rA = rA UNIT L-A- LA 	 u) ul 

.A = vA UNIT A - Lv 	 u I 

'Update rp, vP to be radially above ZLA using 

RADUP Subroutine (See. 3.6.3), obtaining 

Obtain VAF using rF v p, rpF - r AFin COE 

Subroutine (Sec. 3.6.5).+ 
Fig. 3.5.4 SMS Detailed Flow Chart 
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T 
Z = -UNIT (rA) , Y -u X =y -x Z 

Avc(LV) = XY Z]T Av 6 

Avc(LV) = 4vm(LV)+[0, A 0] 

vC =[X Y Z] AVc(LV) 

Update LA, XAF and Lp, Xp to time tF obtaining 

rAS' VAS and rPSI ypS, using Precision Extrapolation 

Routine 

Obtain new. tF using LAS, vAS , rp _PSe L in A 

TPI Program (Sec. 2.5) 

EXIT 

Fig. 3.5.5 SMS Detailed Flow Chart 
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9.8.1 Rendezvous Targetin (Con't) 

Miscellaneous Subroutines Used in the FMS 

This section contains a discussion.of the special subroutines 
that are used in the FNIS rendezvous targeting programs containedin 
Sections 3.2 - 3. 5. A s these subroutines are short and easy to 
follow, the input-outputs are sometimes only listed on the detailed 
flow charts and the objectives of the subroutines are contained in the 
description of the subroutine. 

3.6.1 REVUP Subroutine 

The REVUP Subroutine (Fig. 3.6.2) conically updates a 
state vector r, v through a specified number of n of revoluti6ns. The 
semi-major axis a is first calculated and then used to convert n 
revolutions into a corresponding time by multiplying n by the period 
of the orbit. After concially updating the state through this time, 
the program returns the new state and the time. 

3.6. 3 RADUP Subroutine 

The RADUP Subroutine (Fig. 3.8.4 ) conically updates the 
passive vehicle's state vector rP, VP to be radially above the position 
of the active vehicle rA. The central angle C between the two vehicles 
is initially calculated as a positive angle if the active vehicle leads 
the passive vehicle. The passive vehicle state is then updated 
through 0 using the Time-Theta Subroutine to obtain the desired state. 

3.6.5 COE Subroutine 

The COE Subroutine (Fig. 3. 6.6) computes the active vehicle's 
coelliptic state based on the state vector r, v of the passive vehicle 
and a delta altitude h. After computing tht semi-major axis a of the 
passive orbit, the desired semi-major axis aD of the active vehicle's 
orbit is calculated. This is then used to compute the desired radial 
component of velocity vV and the velocity vector XA for the coelliptic 
orbit. 
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9.8.1 Rendezvous Targeting(Con t)
 

3.6. 7 	 ITER Subroutine 

The ITEI Subroutine (Fig. 3.6.8) encompasses a Newton 

Raphson iteration scheme based on empirical partials, It utilizes 

as inputs: 

1. 	 Current v and old v0 values of the independent varia­
ble. 

2. 	 Current e and old e0 values of the dependent variable. 

3. 	 Estimate of the partial p = de/dt. 

4. 	 A switch c which can assume three values: 

c = 0 -	 First pass, p equals zero so increment v by one. 

c = . 5 - First pass with non zero p, so compute 

change in v to be e/p. 

c 	 .5 - Change v based on new partial computed 

from e, eo , v and v0 . 

In addition to computing a new estimate of the independent variable, 
this routine-updates the quantities eo, Vo0 p and the iteration counter 

c. It also displays an Alarm Code whenever the counter exceeds 15. 

3.6.9 	 QRDTPI Subroutine 

The QRDTPI Subroutine (Fig. 3.6. 10) determines the de­
sired active vehicle's position vector rA at the TPI time. The inputs 

to this subroutine are: 

r, v -	 TPI passive vehicle's state vector, 

h - Altitude between the passive vehicle's orbit and the 

active vehicle at the TPI time. 
e - Elevation angle. 

s - Switch: 0 for coasting integration, 1 for conic update. 
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The subroutine utilizes the ITER Subroutine (Sec. 3.6. 7)

in an iterative search for the desired rA. 
 Each pass through the 
iterative loop involves an update of the passive vehicle's state vectoi 
to the estimated time associated with the passive vehicle's posi+ion
radially above 2:A. An error eT is then calculated which represents 
the difference between the desired central angle between the active 
and passive position vectors at the TPI time and the actual central
 
angle. 
 This error is driven to be smaller than e,using the Newton 
Raphson iterative scheme contained in the ITEB Subroutine. 
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9.8.1 Rendezvous Targeting(Con't)
 

-REVUPSubroutine 

Inputs: r, nv3 

a=f'/(2/r-v. v/,) 

t=2nr (a3/P)1/2 

Update, r, v through t using 
Conic Extrapolation Routine 

Return _,vtI 

Figure 3, 6.2 REVUP Subroutine Flow Chart 

RADUP Subroutine 

Inputs,: j'p, rALA 

SIGN P A). (Ep×Xp)jos1 (rp rA/r rA)P 

EUpdate rP, Vp through B using Conic Extrapolation Routine 

Rturn Lj:,~ Xp 

Figure 3. 6.4 RADuP Subroutine Flow Chart 
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9.8.1 Rendezvous Targeting(Contt)
 

COB Subroutine I 

Inputs: r, v, hi 

a=.I/ (2/ r'z - /.v ), = -haD 

V ' r(a/a)' 5 /r _A : r-hUNIT (r) 

=[5./U. /()r 2v2:)uk)'T((+ Ar VLA/ 

Figure 3. 6.6 COE Subroutine Flow Chart 
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9.8.1 Rendezvous Targeting(Con't)
 

ITER Subroutine 

InputS: c, e, p, dv, eo, dv0 

15 Yes44No 
21 1
 

F77. 7/7pDisplay Aarm Code 

Return: c, p, dv, e0 , dv0 

Figure 3.6.8 ITER Subroutine Flow Chart 
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9.8.1 Rendezvous Targetin (Con't) 

QRDTPI Subroutine 

Inputs; r, v, 4h, e, s 

C Yes r] 
o Y es 

e e -

igue Advance r, v through t using 

Conic Extrapolation Routine obtaining.8-8j5 

° /Advance r, v through t using 

Precision Extrapolation R outine obtaining Er., _vj 

1, 

SReturn- r, _vj 

[ A :- - Ah UNIT (Ej) 

-Update c, p, t, eTo' 0 using e Tto n
 

ITER Subroutine (Sec. 3.6.7 )
 

Figure 3. B. 10 QRDTPI Subroutine Flow Chart 
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9.8.1 Rendezvous Targeting(Con't)
 

4. SUPPLEMENTARY INFORMATION 

There are several steps that have to be completed prior to the 
selection of the preterminal rendezvous scheme. First, the mission 
and operational constraints that impinge on the rendezvous configura­

tion have to be defined. These next have to be converted into a set 
of targeting constraints which relate to the rendezvous trajectory 

itself, (For example, if the TPI maneuver is to be aligned along the 

line of sight, it might be necessary to constrain the TPI elevation 
angle and altitude as well as the distance between TPI and TPF. ) 
Upon completing this task, the minimum number of maneuvers involved 
in the preterminal targeting scheme will have been determined. This 
is because the rendezvous configuration must contain a sufficient 

number of maneuvers such that the corresponding degrees of freedom 
equals or exceeds the number of targeting constraints imposed. The 
number of degrees of freedom involved in an N maneuver rendezvous 

was originally defined in Bef. 1, and used to define the allowable 
number of Skylab targeting constraints in Ref. 2 and 3. 

Assuming that the number of required targeting constraints 
derived from the mission constraints is less than the number of degrees 
of freedom involved in the rendezvous, additional constraints must 
be conceived to uniquely define the rendezvous configuration. Con­

siderable work has been directed toward the problem of selecting 
rendezvous trajectories that minimize the fuel consumed (Ref. 4). 

Some very simple procedures might be used to accomplish this goal. 
For instance, maybe the specification of fractional orbital periods 
between maneuvers could be eliminated and the corresponding maneu­

ver times optimized to conserve fuel. It would also conserve some 
fuel if the maneuvers were applied along the velocity vector instead 

of in the horizontal direction. 

The TPI program (a carryover from Apollo and Skylab) con­
tains an iterative search to determine the time that corresponds to 

a specified elevation angle. This iteration scheme fails in some 
cases where the height separation between the orbits becomes small 
(approximately four miles or less). It appears that a redesign of 
the iteration scheme would eliminate this possibility. 
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9.8.1 Rendezvous Targeting (Con!t) 

Most of the targeting constraints and types of maneuvers con­
sidered herein originated with NASA MSC.
 

The authors recommend investigating an approach whereby all 
the basic maneuvers are programmed as separate entities and are 
available for assembly into different rendezvous schemes as selected 
by the astronaut during the flight. Most of these maneuvers would 
contain the options of 1) phase match prior to the maneuver, 2 ) conic 
or precision extrapolations 3) generation of the plane change maneuver 
time and 4) astronaut overwrites. The storage requirements of such 
a general purpose rendezvous targeting program have to be determined.
Hopefully, the increased requirements, which are not necessarily 
significant, will be offset by the advantage of the general program's 
flexibility. 
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9.8.2 	Relative State Updating
 

1. INTRODUCTION AND FUNCTIONAL FLOW DIAGRAM 

The purpose of the Relative State Updating function is to 

provide a means of automatically and autonomously improving on­

board knowledge of the-relative state between the SSV (primary 

vehicle) and another orbiting vehicle (target vehicle). This know­

ledge would be required in (a) rendezvous missions as inputs to 

rendezvous targeting programs to compute maneuvers which effect 

rendezvous between the primary and target vehicles or ('b) orbit 

navigation modes which utilize tracking of navigation satellites or 

satellites ejected from the primary vehicle. 

Rendezvous navigation sensor data, consisting of measure­

ments of some portion of the relative state, are accepted at discrete 
"measurement incorporation times". Relative state updating is ac­

complished at each of these times by sequentially processing the 

components of the relative state measured by the sensor. A pre­

cision extrapolation routine extrapolates the primary and target 

vehicle state vectors and the filter weighting matrix from one 
"measurement incorporation time" to the next, A typical measure­

ment incorporation sequence is thus: 

(a) 	 Extrapolate primary and target vehicle state vectors 

and filter weighting matrix to measurement incor­

poration time (t m ) 

(b) 	 Accept set of rendezvous navigation sensor data 

taken at time = tm. This will consist of k compon­

ents of the relative state at tm given by Qi (i = 1, 
2, ... , k). A measurement code (ci) is associated 
with each Qi to identify the type of measurement 

taken.
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9.8.2 	Relative State Updating (Con't)
 

(C) 	 Process Q, in the Measurement Incorporation 

Routine. If more than one component of the relative 

state is being sensed, process Q2' Q3 .... Qk 
sequentially in the Measurement Incorporation 

Routine. 

(a) thru (c) are then repeated for the next measurement incorpora­

tion time. 

A general flow diagram of this function is presented in Fig. 

1. The 	inputs required by this function are: 

I. 	 On-board estimate of primary vehicle state (x) 

with time tag. 

2. 	 On-board estimate of target vehicle state (XT) with 

time tag. 

3. 	 Initial filter weighting matrix (W) (not required if 
computed using Automatic Initialization Routine). 

4. 	 A priori sensor measurement variances, 

5. 	 Rendezvous sensor measurements. 

The output of this function is an updated n-dimensional state (x) 

which minimizes the mean squared uncertainty in the estimate of the 
relative state. This output is available after each measurement 

incorporation. 

The operations shown in Fig. 1, with the exception of pre­
cision extrapolation, belong in this function. The Precision Extrapo­
lation Routine is described in another report. The bulk of the 
equations involved in this function are associated with the Measurement 

Incorporation Routine. The equations involved in an optional Auto ­
matic Initialization Routine (initializes the filter weighting matrix) 
will also be described. The equations associated with reading the 
rendezvous navigation sensor will be described in a later report. 
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9.8.2 Relative State Updating (Con't)
 

Initialize
 
Relative State
 

Updating
 

(x, XT, W 

Read rendezvous navigation sensor 
output and time (t.) associated with it 

QI Q2 ..... . Qi . .. Qk ;..m 

(Cl), (e 2 )..... (c i ) .... ( k)J 

Precision Extrapolation Routine 

Extrapolate Xp, XT, W to t
In 

L------------------------------------

Measureent Incorporation Routine 

Update x, W by processing measurement Q.i 

No
 

Ye s 

Figure 1 RELATIVE STATE UPDATING FLOW bIAGRAM 
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9.8.2 Relative State Updating (Con't)
 

NOMENCLATURE 

b n-dimensional measurement geometry 

bpo bp3 3 dimensional measurement 

sociated with r Vp 

geometry vectors as ­

b J-dimensional measurement geometry vector 

sociated with -j. 

as­

ei Measurement code identifying i th measurement at 
tIn 

FIRSTMEAS Initially set to "I" and reset to "0" after first 
entrance into Measurement Incorporation Routine 

FULLTRACK "i" if angles and relative range measurements have 

been taken prior to final intercept maneuver. 

"0" if angles or relative range measurements only 
have been taken prior to final intercept maneuver. 

vA.NEUVER Initially set to "0". Set to "1" 

maneuver 

at completion of 

MANNOTRKI Assumed "no track" time immediately prior to 

maneuver 

MIANNOTRK2 Assumed "no track" time immediately following 

maneuver 

IVANTM Predicted time of next maneuver (either from pre­
loaded input or previous targeting routine) 

MNB-m Transformation matrix from navigation base axes to 
rendezvous sensor axes. MN'NB-m is fixed according 
to spacecraft configuration. 
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9.8.2 Relative State Updating (Con't)
 

MR -SM 

MSM-NB 

NOTRACKTM 


POSTMANWR 

QEST 


Qi 

rpPMagnitude 

rp 

rT 

ETP 

RENDWFLAG 


tm 


TBEFCOMP 


Transformation matrix from reference coordinate frame 
(inwhich initial state is expressed and computations are 

performed) to stable member axes. MRSM is givenfrom 
specified platform alignment
 

Transformation matrix from stable member axes
 
to navigation base axes on which IMU is mounted.
 
MSMNB is determined from IMU gimbal angles 

Maximum break in tracking threshold -if time of
 
"no track" period exceeds this, W reinitialization
 

is inhibited until after 3measurement incorporation
 
times
 

Initially set to "0". If set to "I", forces W rein­
itialization prior to first mark after maneuver.
 

On-board estimate of measured parameter 

i th measured parameter at t 

bf vector Ep 

Primary vehicle position vector 

Target vehicle position vector 

R elative position vector 

Position vector found in Automatic Initialization Routine(A.I.R ) 
"0" - W is left as extrapolated value from Precision 

Integration routine (initially set to "0") 

'" - W is set to pre-loaded value given by W R
 
Measurement Incorporation Time 

Minimum time required prior to a final targeting 
computation to allow requested W reinitialization to 
be performed 
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9.8.2 Relative State Updating (Con't)
 

TPIMAN Initially set to "0". Set to "I" at completion of 
final intercept maneuver (TPI) 

UNIT (Ep) Unit vector (rP/ rp) 

JPD 
= I find state of primary vehie 
-=2 find state of target vehicle 

ip Primary vehicle velocity vector 

vT Target vehicle velocity vector 

VTP relative velocity vector 

VAR A priori random measurement error variance 

Velocity vector found in A. I. R. 

W n x n filter weighting matrix associated with x 

WAITSTM Initially set to "0" and reset to "I" in order to 
inhibit W reinitialization until after 3 measurement. 
inforporation times 

WI Pre-loaded value of initial filter weighting matrix 

WF Pre-loaded value to which W is reinitialized 

WMAXTM 	 Maximum threshold value - if time since last W 
reinitialization exceeds this, a W reinitialization is 
forced to occur prior to the first mark after the 
next maneuver 

WRTM 	 Normal threshold value - if time since last W rein­
itialization exceeds this, a W reinitialization is 
requested 
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9.8.2 Relative State Updating (Con't)
 

n-dimensional state vector 

xp =(rP 6 dimensional primary vehicle state vector 

L_ T 6 dimensional target vehicle state vector 

(t)Uj = 6dimensional state vector found in A. I. i. 

At m Time increment between measurement incorpora­

tion times 

6x n-dimensional navigation update of x 

Ep A priori standard deviation of stable member mis­
alignment 

LT A priori standard deviation of misalignment between 
sensor measurement frame and navigation base 

7r' r , 7j0 A priori standard deviation of sensor bias errors in 
range, gimbal angles e and 0 (Fig. 2) 

j dimensional sensor bias vector! B 


UrJ Up. ae 	 A priori standard deviation of sensor random errors 
in range, g, S 

pGravitational 	 constant 
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9.8.2 Relative State Updating (Can't)
 

2, DESCRIPTION OF EQUATIONS 

The recursive navigation equations presented in the Measure­
ment Incorporation section are general with respect to the dimension 
of the state vector to be updated. These equations are therefore 
applicable to any one of the following navigated state vectors which is 
selected for the shuttle relative state updating function. (This selec­
tion will ultimately be based on shuttle G& N computer capacity, 
expected target vehicle state uncertainties, and the error character­
istics of shuttle navigation sensors. ) 

Table I 

Possible Navigated States 

Navigated State (x) Parameters Updated State dimensions (n) 

A. x = Xp or xT primary vehicle state 6 
or target vehicle state 

Xpor xT primary or target vehicle 
B. 	 state plus j components 6+j . - of sensor bias 

primary and target
C. x =l £ vehicle states 	 12 

x 	P primary and target 
(D) xvehicle states plus 	 12+j 

---- components of
 
!B / sensor bias
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9.8.2 Relative State Updating (Con't)
 

For any of these navigated state vectors, the relative state does not 

appear directly, but is updated implicitly as a result of the update of 
either or both vehicle inertial states, Utilizing the state vectors (A 

or 13) results in the Apollo rendezvous navigation filter, whereas 
either state vector (C orB) results in an optimum rendezvous navigation 

filter. Specifying the dimension (n) of the navigated state vector 

automatically specifies the dimension of the measurement geometry 

vector b to be (n), and the filter weightmg matrix W to be n x n. 

2. 1 Measurement Incorporation Routine 

As discussed above, this routine is entered k (number of 

measured components from sensor) times at each measurement in­

corporation time (tm) The equations presented below are identical. 

for incorporation of each of these components with the exception of 

equations for b, QEST and VAR which depend on the component in­

corporated. Equations for b, REST' and VAR are given for typical 

relative measurement parameters and bias estimation, since the 

precise parameters will not be known until the rendezvous sensor (s) 

are selected. The assumed sensor coordinate frame geometry is 

shown in Fig. 2. (Gimbal limits are assumed to be between + 900). 

The precedure for computing b, QEST and VAR is as follows: 

Q Compute the relative state (xp) from: 

t TP I 
= YTPJ XT 2p 

and
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9.8.2 .Relative State Updating (Con't)
 

x 

) , 

UX 0 

mJ 

--xz
 

Z 

•P: Primary vehilee 

T: Target vehicle 

Ygin
 

Figure 2 RENDEZVOUS SENSOR COORDINATE FRAME GEOMETRy" 
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9.8.2 	Relative State Updating (Con't)
 

URTp = UNIT (Tp) 

From the measurement code (ci), compute b, QEST 
and VAR appropriate to this measurement, 

For sensor gimbal angle (03, 0 ) measurements, make the 
following preliminary computations: 

G 	 Compute the unit vectors of the sensor coordinate 

frame uirn , Uym , uzm from: 

T 

T 
-m M4NB-m MSM-NB MR-SM 

T 
-m 

Compute sin (9), Rxz (Fig. 1) from: 

S = - TP * uy 

and
 

Rxz = 	RPT1 

Computation of b 

Depending on the ultimate selection of the navigated state 
(x of Table I), the vector b will take on the following definitions: 
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9.8.2 	Relative State Updating (cont'd)'
 

_b 0b x-C) ,b b 

=b 	 ­/T I 	 .o --P 
b 	 ­

/x: brao) 	 ­
2ET 	 , b - !! 

Q 	 Compute bP 0 and b 3 from the appropriate equations 
in the following table using ci to identify the type of 
measurement 

Measurement 	 bpo b 3
 

RelativeRange -URT P 	 0 
Rahge Rate u!RTp) (u_Tp×VTp)/RTp -U'TP 
SensorAngle (0) UNIT(uBTP XUYm)/ R xz 0 
Sensor Angle (6) (uRTpXUYm)X uBTP/Rxz 0 

Q 	 Compute b 

If-tB is included in the navigated state, b will be 
computed based on the selection of bias parameters 
to be estimated. The following are equations for 
some possible b 's,with ci used to identify the 
measurement type 
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9.8.2 Relatve&-State Updating (cont'd)
 

(a) 	 Estimating a single bias (,Bl) in measurement 
code = j): Por.meaurement (code c.) 

b ly (scalar)={ i0 ciiJ = 

(b) 	 Estimating bias (TB ) in m of the total of k 
measurements, the measurement codes of the 
m measurements being: 1, 2....... m: 

b (rn-vector)=() 

b = oforc. >m 

(c) 	 Estimating three angles (as, a 1, a)!of the 
stable member misalignment about x, y, z 
aes of stable member, i. e. -
H 

Measurement b 
-y 

(3 dimensional) 

Relative Range 0 
Range Rate 0" 

SeiisorAngle() RPT/Rx[' -sM(U TP× 

(UBTpXUY ))m 

SensorAngle (0) MRSM (UNIT (u BTPXuy m 
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9.8.2 Relative State Updating -Ccont d) 

Computation of QEST 

0 Compute estimate of bias (9) in measurement form: 
A b A 

s initially set t.o 

measurement incorporation for a state (x) which 

sB and attains a value after 

.A 
contains AB. Z-B will be the corresponding compon­

ents-of 6x in Eq. (li:)). 

Compute QEST from the appropriate equation identi­

fied by the measurement code (ci): 

-Measurement QEST 

Relative Range RTP +A 
. A 

Range Rate YTP UR--TP + Y 

SensorAngle (,B) Tan-1 RTp -- m) + ­

uR * uz 
- 1' -in 

+ASensor Angle (0) Sin-I (S) 

Computation of VAR 

Equations for VAR can not be anticipated as easily as was 

done for b and QEST since it is so strongly a function of the error 

model for'the particular rendezvous sensor selected for the final con­

figuration. The measurement -variance can be a constant or some 

function of relative range, range rate, 'etc and it may. have a minimum 

threshold. Consequenitly, equations for VAR will ncit be given at this 

timle. 
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9.8.2 Relative State Updating (cont'd)
 

State Vector and Filter Update at Measurement Incorporation Time 

The n x n filter weighting matrix (W) is available from one 
of the following sources; 

At the first measurement incorporation: 

1. 	 Pre-loaded values based orrmission simulations 

2. As an output of the Automatic Initialization Routine 

Between measurement incorporations at a given t 

3. 	 'From the computation (below) after a measurement 

incorporation 

At the 	first measurement incorporation f new tm 

4. 	 From the Precision Extrapolation Routine 

5. 	 From the Automatic Reinitialization Routine 

Compute n-dimensional.z vector for measurement 

(ci) from: 

z=W Tb 

O Compute n-dimensional weighting vector _a,from: 

I- Wz 
z • z + VAR ­

rThis routine provides the state and bias portions'of W when time in­

variant biases are modeled. For estimation of biases modeled as time 
variant, appropriate equations in the Precision Extrapolation Routine 
will be formulated. 
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9.8.2 Relative State Updating (cont'd)
 

Compute n-dimensional navigation update of x for 
measured parameter Qi (code = c) from: 

"6x = W(Qi - QEST ) 

QUpdate x by: 

x = k+ 6x 

update W by 

w=
W-WZ 1(1+ VA
 
z. z+VAR 

2.2 Automatic Filter Weighting Matrix (-W) Reinitialization 

If reinitialization of the filter weighting matrix is .required 
(e.g. if navigated states A or B of Table I are utilized), this opera­
tion may be accompiished autoratically by the Automatic Reinitialization 
Routine, This routine consists almost entirely of logic statements 
so that there is no real need to present a description of •equations here. 
Instead, the detailed desdription of the routine will be provided by the 
detailed flow diagrams, and a brief description of the approach will 
be given in'this, section. 

A conservative approach is taken in that W is reinitialized 
to pre-stored values more often than actually required but not at a 
time which would violate accepted W matrix reinitialization ground 
rules. The only exception to this is the case inwhichnot reinitializing 
will most probably produce a greater -performance degradation than a 
reinitialization. The ground rules which prohibit reinitialization are: 
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9.8.2 Relative State Updating (cont'd)
 

I. 	 No reinitialization unless a minimum time (TIEEFCOMP) 
exists prior to the final targeting computation for a 
rendezvous maneuver. 

2. 	 No reinitialization following a "no tracking" interval 
greater than NO TRACKTM seconds, until after 3 
measurement incorporation times. 

The only exception occurs when a maximum time has passed without 
a reinitialization (WMAXTM) because of ( 1) or (2). In this case a
 
reinitialization is forced to occur immediately following a rendezvous
 
maneuver (representing a "no track" interval) instead of waiting the
 
required 3 measurement incorporation times as specified by ( 2).
 

2.3- Automatic Initialization Routine 

2.3.1 Introduction 

This routine provides a means for computing an initial filter 
weighting matrix for recursive navigation which is closely related to 
the actual errors in the computed relative state. Two position fixes 
are required. The equations described relate to the problem of find­
ing the inertial state of one vehicle given in the inertial position of 
the other and the relative position of the two. 

The routine might be used if the inertial state of the primary 
vehicle is poorly known. That is, the estimate of the relative state 
is so bad that the (linear) recursive navigation filter does not con­
verge. This situation might arise, for instance, when (sensor) 
acquisition does not occur until the range between the vehicles is of 
the same order of magnitude as the relative error between them, 

9.8-106
 



9.8.2 Relative State Updating (cont'd)
 

2.3.2 Program Input-Output 

The required inputs to the routine are two sets of sensor 
measurements at t, and t and two inertial positions at t1 and t2 . 
Also required are various assumed values for instrument performance 
to be used in forming the W matrix. 

r } sensor measurements at t, 

1 

02 sensor measurements at 

0 
2 

Mn-SM
 

1M-NB (at t, and t2 )) rotation matices
 

MS-NB 

-Ti known inertial position of target at t I 
rT _2 known inertial position of target at t 2 

Va a priori standard deviation of sensor random 
measurement errors1r 

a priori standard deviation of bias in sensor 

measurement 
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9.8.2 Relative State puaL.Lug kcont'd) 

aT] a priori standard deviation of misalignment 

kT =tT between sensor measurement frame and navi­
'I T gation base 

fP a priori standard deviation of stable member 

OP S- misalignment 

The output of the program is xP (gor and an n nxT )at t2 x 
W matrix to use in relative state updating. 

2.3.3 Description of Equations 

The following equations are in two parts, computing the 
state of the unknown vehicle and computing the related covariance 
and W matrix. The first set of equations uses two position "fixes" to 
solve Lambert's problem for the velocity connecting the positions. 

Calculation of the State 

Let r1 , Pi, 6, and r,, 92' 0, be the measurements made by 
the sensor at the times t, and t2 . Find the cartesian vector rTP I 
in the sensor frame shown in Fig. 2. 

rTPS 1,0 = rI cos 01 sine1 

=
rTPS 1,i - rl sin l 

rTPS 1,2 = rI cos 01 cos P1 
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9.8.2 Relative State Updating (cont'd)
 

Using the same relations define ETPS 2' Transformthevector rTpS 1 
from sensor frame to reference frame. 

r 1I = MTT-TP1UTPR -SM' MSM-NIB 1 MNB - TPS 1 

Similarly define the vector 'TP 2 from (r 2, P2 ' 02 ). Depending onfthe 
value of logic switch, UPD, extrapolate either the primary or target 
vehicle to the times of the two fixes t1 and t2 . Using these two inertial 
positions~the two relative positions, and the time interval At = {2tl 
find the velocity V u 2 at t 2 via the Lambert Routine. The six-dimensional 
state vector X2u 2 at t 2 is: 

From two position measurements it is impossible to estimate any 
bias, so those components, if included in the state, are set to Zero. 

Calculation of the W-Matrix 

In rendezvous navigation it is the relative state which is 
measured and used to update either (or both) of the inertial vectors. 
Associated with the relative state is the relative covariance matrix. 
As an example the W matrix for a 9-dimensfonal state includink con­
stant sensor 6ihs is computed. 

The error in the relative state is due to errors in the sensor 
neasurements r, P, and 0 and to errors in the transformation matrices, 

SM, MSTNBOMNBm. The measured qua~ititiestrm, P', and 
Sm inclulde noise a and bias Y. 
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9.8.2 Relative State Updating (cont'd)
 

a1 (ar, a9 1.9O) 

L7 -2r, T7A J10) 

Errors in the transformation matrices are due to stable member 

misalignment and structural deformation between the sensor and the 

navigation base. These errors in the two matrices MRSM and 

MNBm are expressed as Ep and Er These pseudo-vectors represent 

one standard deviation small rotations about three othogonal axes. 

From the values of a , T , LT and Eptwo diagonal 9 x 9 matrices 

SIG and GAM are formed. It should be noted that nr n and ap­

pear in SIG if each of those components of bias is to be estimated 

(as is done here), otherwise they appear in GAM. 

Combinations of several 3 x 3 partial derivative matrices 

make up a 9 x 9 matrix relating state error to the matrix SIG. Those 

component matrices will now be computed. 

The partial derivative matrix of relative position error in 

the sensor frame due to error in r, P and 0, DRDMs, is computed 

by simply taking the necessary derivatives of the geometric relations: 

=rk, 0 rk cos Okslnfk 

=rk, l - 'ksin k 

=
rk,2 rk cos ekcos Ok 

Combined with transformation matrices the partial derivative mattices 

allow the partial derivative matrix of relative position error in the 

inertial frame to be written: 

DRDM =MT MT MT DRDMk= B-SM SM-NBk NB-m 3k 
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9.8.2 Relative State Updating (cont'd)
 

The dependence of the velocity deviations &vU 2 on the two 
position errors must be computed. The two matrices DVDR 2 and 
DVDR are derivatives of Lambert's solution for the velocity at the 
second point. They may be computed from values of semi-major 
axis, I/a, eccentric anomalies, Ek and S and C (Battin's special, 

transcendental functions ) found in the Lambert Routine. 

a reciprocal of semi-major axis 

x - (E 1 - E2 )/ .J' (E eccentric anomaly) 

y = x/C 

x } Battin's special transcendental functions 
C(ax) 

Using these variables-and the following definitions proceed: 

rl = '1l1 
r 2 IL121
 
Ar UNIT (r.)
 

A 
2 =r UNIT (r 2 )
 

q 12-ax)
 

(c - 3S)/ (2ax2 )
DS 
zDC (I - ax2 S - 2C)/ (2ax 2 

D - sin( ax)/ (4 q 'tax)'
Q
 

Qd (3 xS YDc)/(2C 2 ) _x 3 DS 

F ;7Y/a 

H y/ r -i 
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9.8.2 Relative State Updating (cont'd)
 

0 = FE
 

Y = F/r 1 - G/2y
 

A = -G/a
 

Qy = a/(2\) + 3 S x/(2C)
 

D Qd + Qy, a DQ
 

V~~a A A 2 /2

-- (r, + r 2 ) r2 c 

A AV2a = (r+r	 2 ) rl/2a 

Vl~aX2! (( -y- Qyq) Vlce+ Al/7 ax 
2 	 A 

V2 ax 2 = ((-- Qyq) V2a + Qy r2 )/D 
2
rl -q 171a- aDQVI axVJY 

A 	 2 

V2Y = r 2 -q V 2a -a DQ V2 ax 2 

V7F -F (Vla/a +Vly/2y) 

V2 F -F ( 2 ,/a + V2y/2y)
 

+
72G Y V2 y Ac V2 a 

VI Y 171y Ac V - rl2+ 

T
DVDR 2 = G I + 	r 2 V1 FT + r VGT
 

A T A T
+DVDR1 FI + r 2 72 F T r 1V2 G 

(I is the 3 dimensional identity matrix) 

Combined with DRDMI and DRDM 2 the above matrices yield 
the 9 x 9 partial derivative matrix relating the state to the matrix of 

sensor random and 	bias errors. 
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9.8.2 Relative State Updating (cont'd)
 

DVDM = DVDRI DRDM 

DVDM2 = DVDIR 2 DRDM 2 

DVDE = DVDM1 + DVDM 2 

[VDM2 0 DRDM 2 

DSDS = DVDM 2 DVDM1 DVDE
(9x9)21 

0 0 1. 

A second 9 x 9 partial matrix relates state errors to un­

estimated sensor bias and the two misalignments. The additional 

needed 3 x 3 component matrices are computed now, 

The matrix DRDE TS 1 relates position error atthefirpt "fix' 

in the sensor frame to misalignment between sensor and navigation 

base 

0 rTPS k,2-rTPS k,1 

DRDETS 17 -rTPS k, 2 0 rTPS k,0 

rTPS k,l -rTPS k,.0 0 

This matrix rotated into the reference frame is: 

MTT T
DEDE Ti MR-SMMSM-NB1 NB-m DRDETs 

In the same way DRDET 2 is computed. 
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9.8.2 Relative State Updating (cont'd) 

The matrices relating stable member misalignment to error 
in position in the reference frame DRDEp is computed in the same 
way. It consists of a matrix composed of elements of the relative 
position vector in the reference frame rTP. 

Using the chain rule allows the computation of the matrices 
relating velocity to the two misalignments: 

DVDET = DVDR2 DRDET 2+ DVDR IDRDE T I 

DVDEI = DVDR2 DRDEp 2 + DVDR 1 DRDEp 1 

The dependence of estimated bias in r, P and 0 on the two 
misalignments is given by the following two matrices. 

DBDET = DRDMsI DRDETS 1 

DBDE = DBDMs1 MNBm MSM-NB 1 MRSM DRDETS I 

The complete 9 x 9 partial matrix is thus: 

DRDM2 DRDET 2 DRDEp 2 

DSDG =DVDE DVDET DVDEp 

I DBDET DBDEP 

The covariance matrix of errors in the relative state in the reference 
frame is: 
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9.8.2 Relative State Updating (cont'd)
 

6ri [Sr 6v 6b] 
5v = DSDS SIG DSDS T + DSDU GAM DSDGT 

Lb 

The W matrix can be found from the above covariance matrix by 
forming a diagonal matrix E consisting of the square roots of the 
diagonalized covariance matrix. If the rows of the matrix RV are 
eigenvectors of COV; that is EV is defined to be: 

[E2 

2
E IREV COV RVT 

c22 

eet
 
elll
 

The W matrix is then: 

W =RVT E 
'22
 

etc
 

(Note: The above indicates symbolically the definition of 
W but the actual routine to compute W may or may not use the above 
steps). The vector state [rh2 vu2 j , the time t2 and the relative 

W matrix are returned to the calling program. 
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9.8.2 Relative State'Updating (cont'd)
 

3, DETAILED FLOW DIAGRAMS 

-This section contains detailed flow diagrams for the Auto­
matic Initialization Routine and Measurement Incorporation Routine 
of the Co-orbiting Vehicle Navigatibn Module. A nine dimensional 
W-matrix is computed. The three adjoined elements are for constant 
sensor bias in r, f, and 0. ' These particular biases were chosen only 
as an example. 

Two routines used are not yet documented: the Lambert
 
Routine and the Eigenvalue Routine.
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9.8.2 Relative State Updating (cont'd) 

ENTER 

Yes 

tRSMEA 

Automatic 
Initialization 

Routine (Fig.Copt4 

W, xp (or xT) 

A 

Read Rendezvous Sensor 

output and time 

Q1 "." Qi ... Qk" k, tIn 
(c 1 ) ... (c i ) . (ek) 

Read IMU Gimbal angles at ttm 

ANGi = 0 

Precision Integration Routine 

Extrapolate W, X1p, X to m 

BENDWFLAG = 1
 
WR Wl
 

Figure 3a DETAILED FLOW DIAGRAM,MEASUREMENT INCORPORATION ROUTINE 
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9.8.2 Relative State Updating (cont'd)


1 

AITSTM NoWAITSTM= 
0 or4 No WAITSTM+I 

Yes 

WAITSTM = 0 

Maeue I-] Maeuver 

.<No
 

= IYes 
No
0PA 


POSTMANWR
=No
 

Figure 3b DETAILED FLOW DIAQBAMMEASUREMENT INCORPORATION 

ROUTINE 
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9.8.2 Relative State Updating (cont'd)
 

2 3 

t 
No -PREVTM Yes [ 

TPIMAN > NOTUACKTIWWAIT 

Yes No 

4 WAITSTML=_ 
(M/ANTM 

-/ANNOTRKi Yes 

\InEWR=W 

REJMDWFLAG =1 

W = WR = W F 

Figure Sc DETAILED FLOW DIAGBAM.MEASUREMVENrr INCORPORATION 
ROUTINE 
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9.8.2 Relative State Updating (cont'd)
 

Ga wAgWRE14DPLAGYesRENDWFLAG=0 
( TIMEWR=m

®m 

2XR =2T -XP 

UNIT .=(Tp) 

B iOopUTISNNEfrm 

anglel Anges 

UComt=NB MSM-Nro 

s~m=MN-_ SMrp,M 

SM 

R-y 

xz = R PT 1 -2 

Figure 3d DETAILED FLOW DIAGRAM,MEASUREMENT INCORPORATION 
ROUTINE 
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9.8.2 Relative State Updating (cont'd)
 

7
 
Compute b
 

from c. andtables
(Se~tion 1) 

from c. and tables 
(Se~tion 1 ) 

Compute VAR (TBD) 

z = wT b 

- I Wz 
z- z+VAR ­

6x = (Q i - QEST ) 

Bx
= 

acceptable ? No 
(Automatic B 
Mark Reject 
Routine TBD 

Yes 

T 
W ZW=W- -

+ VAR 
z z +VAR 

Figure 3e DETAILED FLOW DIAGRAM,MEASUREMENTINCOOPORATION ROUTINE 

9.8-121
 



9.8.2 Relative State Updating (cont'd)
 

6
 

Wait 
TBD 

sec
 

current
tim'e \No 
In 4-tm(t m In 

Cycle to 

Figure 3f DETAILED FLOW DIAGRAMMEASUREMENT INCORPORATION 

ROUTINE 
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9.8.2 Relative State Updating (cont'd)
 

ENTER
 

Input
 

FrU CFO, Y%" 1pr' 0, !" &T' UPD 

SIG 1I = r2 SIG 44 = SIG1 

SIG22 =-P 2 SIG5 5  SIG22 
SIG33 = '02 SIG66 =SIG33 

SIG77 =r
 

SIG 88= $ 

SIG99 =2 

GAM =0 

GAM 2 2 =0 

GAM 3 3 = 0 

GAM4 4  	
2TO 

2GAM	 T1
5 5 


2GAM6 6 
6 'T,2
 

2GAM 

GAM 77 ='P,0 
- =GA88 , -'P, I 

GAM9 9 =2 

Figure 4a DETAILED FLOW DIAGRAM,AUTOMATIC INITIALIZATION ROUTINE 
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9.8.2 Relative State Updating (contd) 

k1
 

READ SENSOR, CLOCK, IMUI 
rk" k' 8k' tk MSM-NB k 

rTPSk,0 = rk cos Ok sin9k 

rTpS k, I -rk s2nl k 

rTPS k, 2 rk Cos 0k cos'k 

,-TP k MR-sM T T 

MSM-NB k MNB- TPS k 

k= 2 

Precision Integration Precision Integration
R outine Routine

Extrapolite Target To Extrapolate Primary To 
k tk 

L--Tk _Epk 

rU k =ET k-ITP k LU k -LPk + RTPk 

Figure 4b DETAILED FLOW DIAGRAM,AUTOMATIC INITIALIZATION ROUTINE 
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9.8.2 Relative State Updating (cont'd)
 

2J
 

2
1 


OUTINEINITIALIZATION 
DETAILED FLOW DIALAMATORATIC 

Figure 4c 
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9.8.2 -Relative State Updating (cont'd)*
 

Cos 0k sin 9 rk os 0 k cos Pk rk sif g Pkk 

DRDMs k - sin 6 k 0 -rk Cos ek 

Los 9k Cos Pk -k CoO sinOk -rsin Ok os 9 

2'D~ T TT 
MSMDRDM -MSM NB k MNB DRDMS k 

yk
 

2/ 

2 (E 2I- )1f 

Ar =1U,2 I 

A 

r2 -- 2/r'2 

Q = 2-ax 2 c 

2 
= (c - 3S)/ (2 - axD s 

Dc = (1-ax2S-2C)/(2ax 
2 

DQ = - sin (fa 7) /(4Q 4ZZxq" 

Figure 4d DETAILED FLOW DIAGRAIVL AUTOMATIC INITIALIZATION ROUTINE 
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9.8.2 Relative State Updating (cont'd)
 

Q d = 3xyS Dc/ (20e) X3 Ds 

F
 

H =y/r,-1 

G =FH
 

Yc = F/r 1 -G/2y 

A c = -G/a 

Qy = a/ (2 r- + 3XS/ (2c) 

D Qd +Qy a DQ 
A A 

V71a (rI + r2) r2/2a 
A A

172a (r I + r2) rl/ 2a 

Vlax2 2 ((y- Qy Q)Vla +Qyrd / D 
27_ax = ((ry - Qy Q) '72& + Qy r? )/D 

v~ax - ((r -Qy - QV+Q 
A 

V2y r2 - QV a- DQ viax 2 

V2y r2 -QV aaD 2 nc
 

71 F -F- C71 a/ a,+Vly/ 2y) 

7 2F = -F(V 2 a/ a + y (2y) 

v7G = ly +Ae 71c - F y I/r2 

Figure 4e DETAILED FLOW DIAGRAMAUTOMATIC INITIALIZATION ROUTINE 
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9.8.2 Relative State Updating (cont'd)
 

T
 
2 =Y V2 y + A V 2a 

I 71GTGI +r 1FT+ rVDBRD 2 = 2 

+ rDVDR I = F1 + r2 '72F T , 7 2 G 

DVDM = DVDR 1 DRDM1 

DVDM 2 = DVDR2 DRDM 2 

DVDE = DVDMI + DVDM 2 

DRDM2 0 DRDM2
 -


DSDS = DVDM2 DVDM1 DVDE
(9 x9) 

0 0 1 

k1 

0 ~TPSk,2 .rTPSk, 1 

DRDETSk= -rTPS k, 2 rTPS k, 0 
L r TPS k, I -r TPS k, 0 0, 

*I is the 3D identity matrix 

0 is the 3D null matrix 

Figure 4f DETAILED FLOW DIAGRAMAUTOMATIC INITIALIZATION ROUTINE 
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9.8.2 Relative State Updating (cont'd)
 

A
 
HE T T mT k 

'7k=MH-SMMSM-NBkMNB~rnDRDET~ 

r M =MT T r 
I-TB M SM-NB k MNB-r -TPS k 

0 rTPSM k, 2 -rTPSM k, 1 

DRDEp k TPSM k, 2 0 rTPSM k, 0 

r TPSM k,1 -rTPSM k, 0 

DRDE P k TMRSM DHDEP k 

k 

1 2 

DVDET = DVDR 2 DRDET 2 + DVDR1 DRDET I
 

DVDEp = DVDR 2 DBDEP 2 + DVDR1 DBDEp 1
 

)MlDDETS 1 

DEDEp = DHDM 4 - MN- MSM-NBiMR SMDHDETSlI 

Figure 4g DETAILED FLOW DIAGRAM,AUTOMATIC INITIALIZATION ROUTINE 
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9.8.2 Relative State Updating (cont'd)
 

•DRDM2 DRDET DRDEp­

2 T 2 D PD2 

DSDG DVDE DVDET DVDEp 

I- =DBDET DBDEp J 
COy DSDS SIG DSDST+ DSDG GAM DS D . 

CALL EIGENVALUBE Routine (TBD) 

INPUT : 'COY
 
OUTPUT: E, RV
 

Sk=1
 

./ k<10
 

B eturn: 2 W 

Figure 4h DETAILED FLOW DIAGRAIVLAUTOMATIC INITIALIZATION ROjTINE 
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9'.8.2 Relative State Updating (cont'd)
 

4. 	 SUPPLEMENTARY INFORMATION 

The equations presented in this report are the results to date 
of studies performed under'a G & C shuttle task to develop G & N 
equations for automatic rendezvous. Two fundamental approaches were 
taken in these studies: (1) automate proven Apollo rendezvous naviga-, 
tion equations; (2 ) develop optimum rendezvous navigation equations, 
By presenting the equations in the general form shown, they are made 
to reflect formulations developed using both approaches (1) and (2). 
Analyses performed to evaluate the filter equations are reported in the 
references. 

To complete the automation of the Apollo filter, an automatic 
mark reject routine remains to be formulated, 
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9.8.3 Rendezvous Guidance (TBD)
 

9.8.4 Rendezvous Attitude Control (TBD)
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9.9 STATION KEEPING MISSION PHASE
 

Station keeping begins with the targeting for braking as the Shuttle
 
approaches the target vehicle sometime after TPI. 
This phase includes
 
braking targeting, braking, positioning for station keeping, automatic
 
station keepingi repositioning to station keep at a different position
 
relative to the target vehicle and/or in preparation for docking.
 
Automatic station keeping here means the preservation of a precise
 
relative position with the target vehicle with no requirement for manual
 
commands. Automatic station keeping may occur before docking, after
 
docking, and on missions in which docking does not occur. 
This phase
 
ends when the docking maneuver begins, or when the shuttle is separated
 
from the target vehicle with no intention of preserving a precise
 

relative position with it.
 

The software functions required in this mission phase are the
 

following.,
 

1. 	Estimate relative state of target vehicle based on
 
external measurements.
 

2. 	Estimate absolute states of both shuttle and target
 
vehicle.
 

3. 	Compute (target) the braking AV(s) required, their
 
direction, and the time(s) of ignition.
 

4. 	Execute braking maneuver by commanding engine(s) on,
 
providing attitude commands during braking, and
 
commanding engine(s) off.
 

5. 	Powered flight navigation.
 

6. 	Automatically preserve a relative position and attitude
 
with the target vehicle by periodic RCS engine on/off

commands with a minimum-fuel technique. Spatial and
 
angular requirements and allowable variations during

automatic station keeping are TBD.
 

7. Provide RCS engine commands to achieve commanded
 
attitude during AV maneuvers and during coast periods

(digital autopilot).
 

Repositioning for docking maneuver initiation, for a separation maneuver,
 
or for station keeping at a different relative position is assumed to
 
be a manual function and therefore no software for performing these
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maneuvers automatically is required. 

A-flow of software functions during station keeping appears in 

Figurd 1. Some functions overlap with othervmission phases and only 

thdse equations not provided in earlier sections are discussed here. 

9.9.1 Relative State Estimation (TBD) 

9.9.2 Station Keeping Guidance (TBD) 

9.9.3 Station Keeping Attitude Control (TBD) 

9.9-2
 



Target
 
ehile
V, 


Engine Engine
 
External On/Off Throttle
 
Sensor Commands Comand
 

I U Sens shuttle 

Aa Navigation target Targeting & Autopilot Actual
_-
 Guidance 
 A 
 -a Attitude
 

R & f to Known Attitude 
[Orbital Gnd Beacons Commands am Measured attitude 

|Nav
 

q= estimated position, velocity and attitude
 

Figure 1. Flow of Software Functions During Station Keeping
 



9.10 
 DOCKING AND UNDOCKING
 

The two distinct events are described as one phase since the
 
events are essentially reversals of one another. 
The distinction between
 
the docking event and terminal rendezvous is the point at which the man­
euver defined by the docking constraints on such variables as range,
 
range rate, attitude, and attitude rate is initiated.
 

The mode of docking is still open; that is, it has not been
 
determined whether the docking will be performed manually or automatically
 
with a manual backup capability. 
The GN&C software functions to be per­
formed during this phase are based on an automatic docking with manual
 
backup. 
The 	docking SW functions are:
 

a) 	Specific force integration updates of relative states

during translational burns. 
This function will maintain
the relative state between the orbiter and its co-orbiting

target during orbiter burns.
 

b) Maintain attitude-hold about a desired orientation.
 
c) Compute and command steered-attitude RCS AV maneuvers for
 

docking.
 
d) Make high-frequency steering estimates between guidance


samples for docking.
 
e) 
Provide three-axis translation control.
 

The SW functions for undocking are:
 

a) Configure all GN&C systems for the next mission phase.
 
b) 	Schedule undocking.
 

c) Compute and command AV translations.
 
d) Ptovide capability to advance inertial state vector from an
 

initial state to a final state.
 
e) Provide for specific force integration updates of relative
 

state during burns associated with undocking.
 
f) 
Compute and command attitude-hold RCS AV maneuvers.
 

Figure 1 displays a function flow diagram of the docking GN&C software
 

functions.
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9.10 DOCKING AND UNDOCKING (con't)
 

Presently, no specific sensors for automatic docking have been
 

baselined. 'However, control laws and a navigation .routinehave been ap­

proved by the GN&C Software Equation Formulation and Iiplementation Panel.
 

These equation formulations are described in the following references:
 

a) 	E. T. Kubiak, "Automatic Docking Control Law," MSC
 

EG2-3-71, date 5 January 1971.
 

b) 	E. P. Blanchard, G, M. Levine, "Docking and Undocking
 

Navigation," MIT No. 2-71, dated January 1971.
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9.10 DOCKING AMJ UNDOCKING (cont'd)
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Figure 1 

Overall Functional Flow Diagram
for Docking and Undocking 
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9.10 DOCKING AND UNDOCKING (cont'd)
 

SPACE SHITLE
 

GN&C SOFTWARE EQUATION SUBMITTAL
 

Software Equation Section Docking and Undocking Submittal No.
 

Function Relative Navigation
 

Module No. ON3 Function No. -2, -5, -8 (MSC 03690)
 
Submitted By: E. P. Blanchard, G. M. Levine Co. MIT
 

(Name)
 

Date: January 1971
 

NASA Contact: W. H. Peters Organization EG2
 
(Name)
 

Approved by Panel III K. J. Cox It.w. 
6-X Date 3/10/71
 
(Chairman)
 

Summary Description: The objective of the Docking and Undocking

Navigation Program is to use the data from the docking sensor to
 
determine the relative position and attitude of the target vehicle
 
with respect to the shuttle. These quantities and their rates are
 
computed periodically and used in the generation of guidance
 
commands during both the docking and undocking procedure.
 

Shuttle Configuration: (Vehicle, Aero Data, Sensor, Et Cetera)

Assumes a docking sensor which measures the azimuth and elevation
 
angles to each of four sources located on the target vehicle.
 

Comments:
 

(Design Status) The algorithm for source identification is TBD.
 

(Verification Status) Open-loop testing has been performed simulating
 
the sensor-target geometry and the sensor.
 

Panel Comments: The equations are baselined subject to the qualifica­
tion that they are based on a sensor configuration which has not been
 
baselined. Also, the range and range rate computations must be co­
ordinated with those in the Automatic Docking Control Law.
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9.10.1 Docking and Undocking Navigation
 

1. INTRODUCTION 

The objective of the Docking and Undocking Navigation 
Program is to'use the data from the docking sensor to determine the 
relative position and attitude of the target vehicle with respect to the 
shuttle. These quantities and their rates are computed periodically 
and used in the generation of guidance commands -during both the 
docking and undocking procedure. 

The docking sensor measures, the azimuth and elevation 
angles-to each of four sources located on the target vehicle., The'
 
configuration of these four sources 
is designed to permit recognition 
of one source by its angular position relative to the other sources­
under all allowable rotations of the shuttle with respect to the target 
vehicle within certain restricted operating limits. As long as the 
operating-limit restrictions are satisfied, it is not necessary for the 
sensor to identify individually the sources; i. e., the sensor portion 
of the system does not have to associate a particular source'with 
each set of azimuth and elevation angles, that process can be ac­
complished computationally. Furthermore, in this case, the data 
from only three of the fbur sources are required to obtain a complete 
relative position and attitude solution. The velocity and attitude rates 
are determined by numerically differencing two position and attitude 
solutions' 

On the other hand, if the operating-limit restrictions are 
violated, then the equations have multiple solutions, and all four sets 
of data must be used'to resolve the ambiguities. 

An additional reason for the presence of four sources is to 
provide an option for selecting the best combination of three sources; 
i. e., at close range to permit selection of sources which fall within 
the sensor field of view, and at long range at provide a combination. 
of three sources which yield a more accurate solution. 
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9.10.1 Docking and Undocking Navigation (con't)
 

A 

a. 


B 


C 

ei 


£ 


FLAG 

FLAG 

I 

-xs 
ikyS 

-zs 

-XT
 

YT 

-ZT 

K 

k 

Vi 

m 

m.. 

n 

p 

NOMENCLATURE
 

Intermediate matrix
 

Azimuth angle to source i
 

Intermediate matrix
 

Cos 400
 

Elevation angle to source i
 

Rate indicator
 

Flag used in iteration
 

Flag used in rate calculation
 

Negative radicand indicator
 

Unit vectors along shuttle coordinate axes 

Unit vectors along target vehicle coordinate axes 

0.4 or 2.5 depending on selected source set 

Index used in rate calculations 

'Transformation matrix 

Index used in rate calculations 

"Element of M 

Index used in rate calculations
 

Source set indicator
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9.10.1 Docking and Undocking Navigation (con't)
 

r Relative position vector between docking hatches 

r Rate of change of r 

r. Vector from sensor to source i 

r i IMagnitude of r 

r.. Vector from source i to source j 

r. 
1 

Magnitude of r.. 
-_13 

r M Maximum value of s 1 

r new 

rold J 
Iteration interval end points 

S Sin 40 0 

s I Trial value of r 

y Vector from sensor to shuttle docking hatch 

z Vector from source 1to target vehicle docking hatch 

1l' ^12' 73 

l Rate 6f change of y-. 

72 

73.Y3 

} Rotation angles 

Ar s - I 

*Arold Previous value of Ar 

At Navigation cycle time­

£ Error "tolerance 

08i. Angle between lines-of-sight to sources i and.j 

p Scaling factor 

Subscript S Shuttle coordinates 

Subscript T Target vehicle coordinates 
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9.10.1 Docking and Undocking Navigation (con't) 

2. SOURCE CONFIGURATION AIND OPERATING LIMITS 

In this section, the configuration of the four sources on the 

target vehicle is described, and the operating limits under which a* 

unique relative position and attitude solution can be obtained is dis­

cussed.
 

Refering to Fig. 1, define a coordinate system fixed in the 

target vehicle with origin at source 1; X axis parallel to the docking 
axis; and iXT" 'iyT' and iZT unit vectors'along the three axes. Let 

r.. be the vector from source i to source j. Then the locations of 

sources 2, 3, and 4 are defined by 

/cos 400 

r12 T = 0.4 p sin 400 

cos
400 

r13T = 

14T z 2.50p si400 

where the subscript T denotes target vehicle coordinates and p is a 

scaling factor. 

In order to discuss the restricted operating limits, define a 

coordinate system centered at the docking sensor in the shuttle with 

unit vectors ixs' iYS" and iZS along its axes. Again, let the X axis 

be parallel to the shuttle docking axis. Let y1, ' 2' and '8 be the 

three rotation angles which make the shuttle coordinate system pa­

rallel to the target vehicle system (the condition required for docking); 

i. e. , a rotation of the shuttle system about the X axis through an 

angle y1' then a rotation about the resulting Y axis through an angle 

and finally a rotation about the resulting Z axis through an angle2 , 
73 make the two systems parallel. 
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9.10.1 Docking and Undocking Navigatfon (cqoP't) 
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Figure 1 TARGET VEHICLE COORDINATE SYSTEM AND 

SOURCE CONFIGURATION
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9.10.1 Docking and Undocking NIavigat-ion (con't) 

If the X (docking) axis of the shuttle is kept within 300 of 

the target vehicle docking axis, then an identification of the four 

sources can be made. Figure 2 illustrates the appearance of the 

sources for various relative vehicle attitudes for the case of zero -i 

The center illustration shows the appearance of the sources when the 

two vehicles are properly aligned for docking; the other eight illus­

trations show the appearance at various points on the surface of the 

cone 	defining the operation region..300 

For all relative vehicle orientations within the operating 

region, the following two facts hold: 

1) 	 Sources 1, 2, and 4 lie on a straight line. 

2) 	 The observed distance between sources 1 and 2 always 

has the same ratio with respect to the observed dis­

tance between sources I and 4. 

These two facts permit identification of the four sets of paired azimuth 

and elevation angles with the four sources. 

The source configuration has also been selected to assure 

that for all relative vehicle orientations within the 30 operating re­

gion the distances from the sensor to the sources will satisfy the 

relationship r1 < r 2 < r3 < r4 . This relationship provides the resolu­

tion of the multiple solutions which would otherwise exist in the 

navigation equations. 
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9.10.1 Docking and Undocking NavigatLion (con't)
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9.10.1 Docking and Undocking Navigation (con't) 

3. FUNCTIONAL FLOW DIAGRAM 

The sequencing of functions performed by the Docking and 
Undocking Navigation Program is described in this section and illus­
trated by the functional flow diagram in Fig. 3. 

The program is called periodically by the Docking and Un­
docking Guidance Program: The first function performed is to 
identify the four sources from the two facts discussed in Section-2. 
Next, the appropriate sources are selected and the unique relative 
position and attitude solution is determined. Included in this solution 
is the relative position of the two docking hatches. The final step is 
to compute velocity and angle rates by differencing two solutions for 

position and angle. 

4. PROGRAM INPUT-OUTPUT 

The required inputs to the program are the four sets of 
azimuth and elevation angles of the four sources relative to the dock­
ing sensor; and two indicators, the first of which indicates which of 
the two combinations of three sources (1, 2, and 3 )or ( 1, 2, and 4) 
have been selected, and the second is used in the rate calculations. 
The outputs of the program are solutions for the relative position of 
the two docking hatches', the rotation angles between the two vehicles, 

and the rates of change of these quantities. 

Input Parameters 

(a1 , e 1 ) 

, 2) 

(a 3 ,* e 

Four sets of paired azimuth and elevation angles but notJ)idenifled with any of the four sources 

(a 4 , e4 ) 
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9.10_1 Docking and Undocking Navigation (con't)
 

Enter from Guidance 

Identify Sources 

Select Appropriate Sources 

Compute Position Vectors of 
Appropriate Sources 

Compute Rotation Angles 

Compute Relative Position of the Two 

Docking Hatches 

[ Difference Present and Previous Solutions to Obtain 

Velocity and Attitude Bate Information 

Exit to Guidance 

Figure 3 FUNCTIONAL FLOW DIAGRAM 
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9.10.1 Docking and Undocking Navigation (con't)
 

The elevation angle is the angle between the line-of-sight and the XY 

plane of the shuttle coordinate system. The azimuth angle is the angle 
between the X axis of the shuttle coordinate system and the projection 

of the line-of-sight on the XY plane. See Figure 4. 

2 if selected source set is (1 2, 3) 
p Source set indicator 

4 if selected source set is (1, 3,4) 

Number of cycles separating

£ Rate indicator = differenced solutions in rate
 

calculations.
 

Output Parameters 

r. Position vector of target vehicle docking 

hatch relative to shuttle docking hatch in 

shuttle coordinates 

i s Rate of change of S 

= l 3 ) = Rotation angles(yly 2 ,y 

z;- = (y 1 ,y 2 ,y) = Rates of change of rotation angles 

5. DESCRIPTION OF EQUATIONS 

The computational sequence during the Docking and Undock­

ing Navigation Program and the related equations are described in 
this section. These equations are recomputed every guidance cycle. 
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9.10.1 Docking and Undocking Navigation (con't)
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Figure 4 DEFINITION OF AZIMVUTH AND ELEVATION ANGLES 
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9.10.1 Docking and Undocking Navigation (con't)
 

5. 1 Source Identification (TBD) 

The first step in the program is to associate each of the 

four sets of azimuth and elevation angles with a particular source. 

The procedure for performing the association is based on the two 

facts discussed in Section 2; i. e., 

1) 	 Sources 1, 2, and 4 lie on a straight line. 

2) 	 The observed distance between sources I and 2 has 

the same ratio with respect to the observed distance 

between sources I and 4. 

The algorithm used is TBD. 

5.2 Angles Between Lines-of-Sight 

The cosines of the three angles between the lines-of-sight 

fr6m the sensor to the sources in the selected set ( based on indica­

tor p) are computed from 

cos 6.. = cos ei cos ej cos (a i - a ) 

+ sin ei sin e 

for 

ij= 13, ip, and Sp 
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9.10.1 Docking and Undocking Navigation (adn't),
 

5.3 Distances to Sources
 

-Le'rE2, E3' and E4 be the vectors from the sensor tc 
the four sources. The magnitudes of the three vectors associate( 
with the selected sources satisfy 

r3 = r1 cos 013 r13 2 (1 - cos2 13 r1
2 

r2.= r3 cos 03 - .r322 (1 -cos2 032) '322 


r1 = r2 cos 012 -r12(21 -cos 2 012) r2
2
- _ , 

or
 

r3 = r1 cos 013 + \r1 3 2 - ( - cos2 013 ) r12 

2
 r4 = r3 cos 034 + \Ir32 - (1 - cos2 034) r3 

2
r1 =r 4 14- \r14 - (14os 2 

These equations are solved by an iterative interval-halving process in 
which Sl a trial value of r1, is-usedas input to compute an output: 
valie of r 1 by means of 

2 2 2r3 =r 1 cos 13 +r - (1 - cos 813 s I 

= r3 Cos 03p + \rp 2 _ (1 - Cos2 r3223p 

rp o 0 _ P ( ) 
=rp cos1 r -(1-cos r.
r1p 


where the upper and lower signs correspond,respectively, with p=4
 
and p=2. Agreement between s1 and rI indicates a correct solution. 
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9.10.1 Docking and Undocking Navigation (con't)
 

The iteration is initiated by computing the maximum possible 
value for r1 based on the serisor measurements 

r 13 
rM- = 1 COS 2 

___ 

-
41-cos2 .0l13 

Then, using rM as the first value for s,; values for r 3 , rp, and r 1 

are computed from Eq. (1). During these calculations, it is possible 
for one of the radicands to be negative, in which case the selected 
value of s 1 is too large. If this occurs, the value of s I is halved, and 
the computations are repeated. The process continues until three 
real numbers are obtained for r 3 , r and r1 as functions of s I . (It 
should be noted that once a value of s I which produces a real solution 
has been determined, then all smaller values of s I will also yield a
 
real solution. )
 

The difference between the input and output values of r 1 is
 

computed from
 

Ar = s I - r I (2) 

Assuming that a negative radicand did not occur, the value of 
6 I is halved, and new values for r3, r, r1 , and Ar are computed. If 
no sign change in Ar occurs, then s I is again halved and the procedure 
repeated until a polarity change in Ar occurs. When the sign change 

does occur, the last selected value of s1 is increased by one half its 
value and the polarity of the new resulting Ar is tested. This interval­
halving procedure, increasing or decreasing s, by one half of each 
increment taken, is repeated until the difference Ar is less than the 
desired error level e. 

this procedure is based on the fact that Eqs. ( 1 ) and (2) 
represent Ar as a continuous function of s . If there are two values 
of s1 , one of which yields a positive value of Ar and the other a nega­
tive value, then there is some value of s I between these two values 

for which Ar is zero - the desired condition. 
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9.10.1 Docking and Undocking Navigation (con't)
 

During the first calculation of Ar, if a negative radicand re­
sults, then a special procedure must be followed after the value of s 
which yields real values is found. Whereas in the first case it is 
known that the correct value of s I is not larger than rM, in this case 
the solution could be larger than the value of s I for which real (but 
incorrect) values of r 3, rp, and rI resulted. This ambiguity is re­
solved by performing one pass through Eqs. (1) and (2) with s 1 equal 
to zero. Comparison of the sign of the resulting Ar with the sign of 
the previous Ar indicates whether s i should be increased or de­
creased. This same procedure is used if, during an increase in Sl 
a negative radicand occurs, 

The details of the iterative procedure are shown in the flow 
diagrams of Section 6. 

5.4 Source Position Vectors 

The position vectors of the'three selected sources are ob­
tained from 

cos e. csia. 
iS = r i cos e i n a, (i = ,3, p) 

sin e. 

where the subscript S denotes shittle coordinates, 

5.5 Transformation Matrix 

The transformation matrix i from shuttle to target vehicle 
coordinates is computed from 

MT =AB 

where
 

A = ( 13S  rlp s r13asXrps)
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9.10.1 	Docking and Undocking Navigation (con't)
 

=_13T. ElpT E13T×rIpT)
 

-C C
 

C 1 ­ 1 	 C 
s I 22 	 s 

2Ic 
 c 
s S _ 

40 0C = cos 

S =sin 4 0 

K_0. 4 if p =2 

-2.5 if p 4 

r13s 0 	L3s -Ls 

-ips = £ps - 1s 

5.6. 	 Rotation Angles 

The rotation angles y 1. y 2 . and '3 are obtained from 

-'2 = *sin 1 (M 3 1 ) 

- I
'Y3 = -sin 1 m21 

cos 'Y2 
71 -sin-1i 

cos 72 
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Docking and Undocking Navigation (con't)9.10.1 

where ms31, m 2 1 , m3 2 are elements of M according to 

[mll ml2 m13, 

3M =m2 In22 m2 
\m31 I32 m 33/ 

5.7 Relative Position Vector Between Docking Hatches 

The position of the target vehicle docking hatch relative-to 
the shuttle docking hatch is computed from 

=yS - Y-S +-rIs + MTz--T 

where y and z are the locations of the shuttle and target vehicle dock­
ing hatches relative to their respective coordinate system origins, and 
the S and T subscripts indicate shuttle and target vehicle coordinates. 
Note that z_ and _T are fixed constants, 

5.8 Velocity and Attitude Rate 

The estimated relative velocity and estimated relative at­
titude rate of the two vehicles are computed by differencing the 
current relative position and attitude solution with the solution £ 
cycles in the past as follows: 

) -i(t 1, 2, 3)
 -i= -Yi(t - fat) fat (i = 

S (t)"Ks(t- fat) /fat
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9.10.1 Docking and Undocking Navigation (con't) 

During the first cycle, no tate miformation can be computed,, 

and during cycles 2 through f, the current and the first solutions are 

used in the calculations. 

This procedure provides smoother estimates of the rates 

from cycle to cycle than if successive values of relative position and 

attitude were used. 

6. DETAILED FLOW DIAGRAMS 

This section contains detailed flow diagrams of the Docking 

and Undocking Navigation Program. 
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9.10.1 Docking and Undocking Navigation' (con't) 

Prior to first entry the 
following are set: 

M=-1 
ENTER 
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(a I , e 1 ), (a 2 , e2). (a 3 , e3) (a 4 , e4)3 P, f 
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± sin e.sin e. 
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- Cos 13 
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rnew 
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s I =rmy
 

Figure 5a DETAILED FLOW DIAGRAM 
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9.10.1 Docking and Undocking Navigation (con't)
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Figure 5b DETAILED FLOW DIAGRAM 
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9,10.1 Docking and Undocking Navigation (con't)
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Figure 5c DETAILED FLOW DIAGRAM 
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9.10.1 Docking and Undocking Navigation (con't) 
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9.10.1 Docking and Undocking Navigation (con't) 
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9.10.1 Docking and Undocking Navigation (con't)
 

7. SUPPLEMENTARY INFORMATION 

The Docking and Undocking Navigation Program described 
in this report has been operated as an open loop, simulating the 
sensor-target geometry, the sensor, and the computations yielding 
as outputs the relative state vector and attitude between vehicles. 
The program is valid and the configuration chosen performs as ex­
pected. A chart and tabulated results appear in Ref. I. 

It is planned to continue the present program effort to provide 
a closed loop capability which will include a guidance law* for Dock­
ing and Undocking, and an autopilot with capabilityto operate with the 
guidance law and the vehicle and engine characteristics. The navi­
gation program will be modified to incorporate Kalman Filtering 
which should enhance the navigation and provide better assessment 
of the relative state vector, It is also planned to add a scale change 
or zoom capability to the sensor model used such that improvement 
in the accuracy of the state vector can be achieved at long ranges. 

A simplified guidance law will be implemented initially with growthto more sophisticated guidance laws as deemed necessary. 

9.10-29
 



9.10.1 	Docking and Undocking Navigation
 

Reference
 

1. 	 flan6hard, Earle P., NAS 9-10268 Automatic Docking GN& C 

Equation Development, 21 December 1970, 70-408L-7. 
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SPACE SHUTTLE
 

GN&C SOFTWARE EQUATION SUBMITTAL
 

Software Equation Section Docking and Undocking Submittal No. 3
 

Function Automatic Docking Control Law
 

Module No. 0C4 Function No. -4, -6 (MSC 03690)
 

Submitted By: 
 E. T. Kubiak Co. MSC/GCD
 
(Name)
 

Date: January 26, 1971
 

NASA Contact: V. H. Peters Organization EG2 
(Name) 

Approved by Panel III K. J. Cox Date January 26, 1971 

Summary Description: The automatic docking control laws provide the
 
attitude and translational commands for the docking procedure which
 
is defined to-begin at a range of 1000 ft. The procedure involves
 
two sequential control tasks. 
The first brings the orbiter within
 
stationkeeping range (=150 ft.) and the second accomplishes docking

with minimum docking hardware contact position dispersions.
 

Shuttle Configuration: (Vehicle, Aero Data, Sensor, Et Cetera)

No docking sensor configuration is defined but jet accelerations
 
are assumed.
 

Comments:
 

(Design Status) The design is in the conceptual stage with required
 
filters still to be designed.
 

(Verification Status) Will be simulated on an orbiter docking
 
engineering simulator.
 

Panel Comments: 
The range, range rate, and relative attitude computations

in these equations must be coordinated with similar computations in the
 
Docking and Undocking Navigation equations.
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9.10.2 Automatic Docking Control Law 

1. Introduction 

The docking procedure is defined to begin at a range of approxi­

mately 1000 feet. From this point, there are two sequential control
 

tasks. The first task is to bring the orbiter within stationkeeping
 

range, say 150 feet, with a lateral displacement of 10 feet or less from
 

the desired approach path and relative rates of one half ft/sec/axis or
 

less. The second control task is a successful docking with minimum
 

docking hardware contact position dispersion and transmitted impulses.
 

Significant improvements over the original control law (Refer­

ence 1) are (1) minimum use of relative angle measurements which have
 

large errors, (2) direct control of the probe tip which provides tighter
 

control, and (3) reduced time for the docking procedure due to improved
 

logic. The first two points are also discussed in the reference.
 

In generating this control law, the following assumptions have
 

been usdd as ground rules:
 

a) 	 Measured quantities available from the sensors are
 
'range, R; LOS (line-of-sight) angles for pitch, a,
 
and yaw, 0; and relative orbiter/target attitude
 
(OR,6R, TR). As the orbiter is to be autonomous,
 
no other information (e.g., target position or
 
attitude) is available from ground tracking or
 
computer initialization.
 

b) 	 Range and LOS angle measurements will have greater
 
accuracy than relative attitude angle measurements
 
(particularly at longer ranges).
 

C) 	 It is desirable to have at least a brief station
 
keeping period prior to the final phase (assumed
 
to begin at 100 ft range) of docking, providing
 
the opportunity for a final check of thrusters,
 
docking mechanisms, GN&C systems, and sensor
 
systems.
 

d) 	 The docking procedure begins at approximately
 
1000 ft range and should conclude in 5 to 10
 
minutes (plus any time spent in the station
 
keeping mode).
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9.10.2 Automatic Docking Control Law (don't>
 

e) 	 Sensor measurements provide the only available
 
information with regards to the passive vehicle's
 
relative stite (no data link).
 

f) 	 It is assumed that the target vehicle is under
 
attitude control and that any target vehicle
 
motion due to attitude control limit cycling is
 
negligible (a good assumption for CMG control).
 

Nomenclature
 

a 


a 


8LOS 


K 


9. 


LOS 

R
P 


TR 


R 


T 


ER 


p 


uo 


u 

u 

-fBODY 


Translational acceleration
 

LOS pitch angle
 

yaw angle
 

Factor in phase-plane switching lines
 
representing the relative importance
 
of time vs. fuel minimization
 

Distance along +X body axis from
 
orbiter c.g. to sensor location
 

Line-of-sight
 

Relative orbiter/target roll attitude
 

Relative orbiter/target yaw attitude
 

Range
 

Total closure time
 

Relative orbiter/target pitch attitude
 

±T yaw torques
 

±6 pitch torques
 

±y thruster forces
 

-±Z thruster forces
 

Orbiter body rate
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9.10.2 Automatic Docking Control Law (can't)
 

LOS angular rate
!kOS 

xO Initial separation distance 

X0 Initial closing rate 

Xcg Ycg: Zcg C.G. position errors 

OCS' YLCS' ZLCS Position errors in LOS coordinate 
system 

xp, Yp, z Probe position errors 
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9.10.2 Automatic Docking Control Law (cgn!t)
 

2. Coordinate System Definition
 

Before proceeding to equation formulation, the following coordi­
nate systems must be defined (see also Figure 1).
 

a) 	 Body coordinate system (BCS) - origin at c.g. of
 
+Xaxis towards nose along centerline, +Y towards
 
right wing, +Z down.
 

b) 	 Sensor coordinate system (SCS) - sensor and docking

mechanism location assumed coincident along +X body

axis at distance k from orbiter e.g., which also
 
defines the origin location. Direction of axes,
 
same as body axes.
 

c) 	 LOS Coordinate System (LCS) - origin same as the
 
SCS. Direction of axes defined by LOS pitbh and
 
yaw rotations from SCS +X axis:
 

d) 	 Target coordinate system (TCS) - origin located 
at passive vehicle docking mechanism assumed
 
coincident with reflectors. 
-X axes defines the
 
desired final approach path. Y and Z complete
 
the right hand system
 

3. Functional Flow Diagram
 

The sequencing of functions performed by the Automatic Docking
 
Control Law is described in this section and illustrated in the functional
 
flow diagram in Figures 2a and 2b.
 

The program calculates the probe to target vector and determines
 
whether Phase 1 or Phase 2 control is desired. If Phase I control is re­
quired, calculate the position and velocity errors for phase-plane control
 
using the sensor measured pitch and yaw LOS angles, e.g. to target range,
 
and the estimated vehicle to target attitude. 
Based on these values for
 
position and velocity errors, ener the X, Y, and Z-axis phase-plane
 
control logic and compute translational commands.
 

For Phase 2 control, compute the range position error using the
 
sensor measured pitch and yaw LOS angles, e.g. to target range, and the
 
estimated vehicle to target attitude. 
Passing this signal through a
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9.10.2 Automatic Docking Control Law (cont'd)
 

Calculate probe to
 
target vector
 

Determine control region Phase 2 Region
 
(see-Figure 2b)
 

TPhas I Region
 

Using docking sensor
 
inputs,, compute relative
 
position and velocity errors
 

Enter X, Y, and Z-axis
 
phase-plane logics to 

- .determine AV commands 

Coordinate AV commands
 
with CSM RCS-type DAP
 
for rotatonal control
 

'Return to probe to target
 
vector calculatibn
 

Figure 2a. Phase I Control Functional Flow Diagram
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Phase 2 Control Region
 

ompute range position error
 
using docking sensor inputs
 

Obtain rate error by filtering

the position error
 

Enter range control phase-plane
 
logic to computer AVx commands
 

.4 
Compute probe and C.G. lateral
 
position errors using docking
 
sensors inputs
 

Obtain lateral rate errors by
 
filtering the position errors
 

Enter Zp and Zcg phase-plane Enter Yp and Ycg phase-plane
 

logics to obtain coordinated logics to obtain coordinated
 

Uz and U6 thruster firings Uy and U thruster firings


L. II 

Perform CSM RCS-type roll
 
attitude control
 

-_T
 
Return to probe to target
 

vector calculation
 

Figure 2b. Phase IIControl Functional Flow Diagram
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9.10.2 Automatic Docking Control Law (con't)
 

filter, obtain the rate error. 
Enter the range control phase-plane logic
 
to compute jet firing times for X-axis translation control. 
 Compute the
 
lateral position errors of the probe and e.g. and determine the res­
pective rates by a filtering routine. 
Enter the e.g. and probe phase­
plane logics to obtain .coordinated ±Z thruster firings and ±e pitch
 
torques for Z-axis and pitch control, and coordinated ±Y thruster firings
 
and ±P yaw torques for Y-axis and yaw control.
 

4. Program Input-Output
 

The docking sensors have not been baselined, but in this develop­
ment, basic inputs have been identified. 
These inputs include range,
 
LOS pitch and yaw angles, relative orbiter/target attitude, body rates,
 
the distance between the 
orbiter e.g. and probe as measured along the
 
+X body axis, and estimates of the RCS jet control authorities. The
 
outputs of the program are RCS jet firing times.
 

Input Parameters
 

R Range between orbiter and target vehicle
 

a 
 LOS pitch angle
 

LOS yaw angle
 

R Relative orbiter/target toll angle
 
eR 
 Relative orbiter/target pitch angle

T R Relative orbiter/target yaw angle
 

-BODY Orbiter angular rates
 

Z. 
 Distance between orbiter e.g. and probe
 
as'measured along +X body axis'
 

a 
 Translational acceleration capability
 
of the orbiter (lateral and ±X body)
 

Uy, Uz RCS translational acceleration along
 
Y and Z axes
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5.1 

9.10.2 Automatic Docking Control Law (con't)
 

U0 , uT 	 RCS angular -acceleration about pitch
and yaw-axes 

Output Parameters
 

tRegion X 	 RCS jet firing time (and sign) for
 

various regions of the phase-plane
 
logics
 

5. Description of Equation
 

Phase I Control
 

Phase 1 is defined as the control period during which the
 
orbiter is brought from some post rendezvous state (range about 1000
 
feet) into the stationkeeping state."" In the sequence of control actions,
 

the first step is to define as a pitch/yaw reference, the LOS vector from 
the sensor to the target (i.e., a = 8 0, see Figure 3).: 

The roll reference is defined such that Z is parallel to ZT
 
(i.e., the relative roll angle is zero). The attitude error, (R' 
cc 3)
 
will change slowly due to relative motion and vehicle body rotation.
 
This error will be measured and filtered once per second. Control logic
 
will be basically the same as the CSM RCSDAP with a deadband of 50.
 
When the vehicle's attitude is within the deadband for all three axis
 
translational control is begun.
 

In the translational control formulation the TCS is considered
 
to be inertial (orbiter mechanics neglected). The control problem is
 
to translate the orbiter from its initial state to a limit cycle region
 
which has as its position reference (-156, 0, 0) in the TCS. 
 The ideal
 
trajectory, time and fuel-wise, is the straight line between the initial
 
condition and (-150, 0, 0) in the TCS. 
 One of the more precise control
 
processes which could be used to follow this trajectory is:
 

a-) 	 Generate displacement and rate vector in the
 
TCS from measurements and matrix computations.
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9.10.2 Automatic Docking Control Law (cont.Vd)
 

PITCH (X, Z),PLANE
 

LOS
 

X,
 

YAW (X, Ys) PLANE
 

X,
 

SLOS
 

Figure 3
 

LOS Angle Definition
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9.10.2 Automatic Docking Control Law (con't)
 

b) 	 Select a delta V to (1) null velocity component
 
normal to displacement vector, and (2) provide
 
the desired closing rate along the displacement
 
vector.
 

c) 	 Determine components of delta V in BCS and im­

plement commands.
 

d) 	 Reiterate computations to null residual errors.
 

The performance of such a process would be very dependent on the
 
relative angle measurements used in numerous matrix multiplications.
 

As these measurements are not highly accurate, particularly at initializa­

tion range (1000 ft or more), another process will be used which performs
 

the same function and requires much less computation.
 

a) Compute position error and vehicle relative rates
 
in LCS.
 

b) Input position errors and relative rates to phase
 

plane switching logic to determine delta V commands
 

c) 	 Recycle according to some selected sample frequency.
 

For this scheme, Figure 4a shows how the ZLC S position error 

is determined to be 

ZLC S = 150 sin (a + ) - sina 

Similarly, Figure 4b indicates
 

YLCS = -150 sin ($+ TR) + Zsin
 

Finally, the X position error is
 

XLCS = R + £coseRCOSTR - 150
 

The relative velocity of the orbiter with respect to the target
 

vehicle in the LCS is equal to the negative of the derivative of (R + £). 
As R is rotating in inertial space with an angular velocity of 

(WLOS + WBODY )' the expression for the derivative is 

d
d--- -LOS = 

m 
g 
-

((o
LOS 

+ W0 
-ODY 

x R 
-

+ 0D x 
-BODY 

P 
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9.10.2 Automatic Docking Control -LaTw (gon't) 

Assuming . is colinear with the XLCS axis, then ! = [k 0 0] T 

Also, 

2L [E] aEODY=[51 

which yields the following derivatives
 

'LCS
 

y S = -R-YR + e
 

ZLCS = R(e R+a) + ZER 

Figures 5a and 5b show the geometry relating to the YLCS and Z
 
equations. 
 It should be noted in the position-and-rate equations that
 
R and Z are always positive quantities.
 

Also, as 6BODY and "TBODY very nearly equal R and TP and further
 
as the body rates may be known much more accurately than the relative
 
angle rates,_?k and TR may-be replaced Iin the YLCS and ZLCS computations
 

by %ODY and TOY
 
BODY BODY*
 

The translational control law is based upon the parabolic switch­
ing logic which is the optimal control for minimizing time and fuel for
 
a l/s2 or double integrator plant. Figure 6 illustrates this optimal
 
logic where the available control acceleration is u = ±a.
 

The factor K.in the f2()and f4(X) switching curves is the rela­
tive importance of time vs. fuel minimization (i.e., increasing K decreases
 
time and increases fuel and vice versa). 
 As K - c, f2(X) - fl(C) and 
f4W -> f3(X), which is the time optimal solution (no coast zones). 
 The
 
docking logic will have separate yalues of X for range control 
W0 and
 
lateral control (Y, Z) and those will be selected from the allowable
 

docking time constraints.
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9.10.2 Automatic Docking Control Law (conttd)
 
2 ­

2R 

A•C 
 +&*R " 

+Ai 
_ 	 R XT 

For a change in	*R
 

YLCS = -(R + t) R YT
 

2 	 2 

,YLcs
 

_ 

XT 

For a change in s,
 

LCS =
 

Total Y = -RC4+ s) -- i 
LCS 

Figure 5a
 

YLCS Calculation 
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9.10,2 Automatic Docking Control Law (cont'd) 

R 

+AO 

t R 
AZc R 

2 

2 

For change in 6R 

ZC = (R + 

ZT 

T 

11 

AZZLCS 

2 29 

For change in a, 

2LCS =R& 

RclT 

+A 

z T 

Total ZLCS R(eR+a) +z 

Fi gi 

ZLCS Calculation 
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9.10.2 Automatic Docking Control Law (cont'd) 

.2 

x 

'Coast 

f2X 1 *+2 u = -a 

u=+a 

f 4 

~Co 

f2(X) 

ast 

f 3( M -fl(x 

Figure 6 

Time-Fuel Optimal Control Logic 
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5.2 

9.10.2 Automatic Docking Control Law (c6n't)
 

Phase I,Range Control
 

The maximum desired docking time is 5 minutes or 300 seconds and
 
the control acceleration is .2 ft/sec2 
(using two of the available four
 

thrusters for finer control). 
 Assuming a worst case initial separation 

and closing rate of 1500 feet and zero, respectively, the slowest possible 

path is shown in Figure 7 (A to B to C). 

COAST .

C(CAST


f 2W 

X 

Figure 7 - Maximum Closure Time Trajectory 

A to B is the control trajectory and B to C is the slowest
 

trajectory in the coast zone. 
Hence, the total closure time is
 

T = tAB + tBC 

The equation for total position change is,
 
K 2
Xt2 + I 


0= 2 AtB + (1 4)tkB 

Also, as the rate changes from A to B and B to C must be equal, 

KatA = a (K+-4) tBC 
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9.10.2 Automatic Docking Contr'l Law(hon't)
 

From these three equations, 	one can solve for K and K/(K + 4)
 

8X 
 2X
8X0 	 K 
 0
aT2 4X- K + 4 	 aT2 _
 

aT 0
00a
 

For-the given values of a, T and X0, K = 
 1 and K/(K+ 4) = 0.02. (1) 

Finally, to permit coasting between some position deadband,
 
modifications must be made to the optimal logic shown in Figure 6.
 
Assuming a ±5 foot deadband 	the complete modified logic is shown in
 

Figure 8.
 

Figure 9 defines the phase plane switching regions,. In Region I,
 
the desired control action is to drive the rate to 0.25 ft/sec (line seg­
ment AB). The thruster firing time is determined from AX = at or
 

SX- .25
tRegion I .2 5 	X 7 1.25 (2)
 

This firing time, of course, should be no longer than the control sample
 
period to make use of feedback. Because of inaccuracies in modeling it
 
may be necessary to include a hysteresis line bordering Region I to
 
eliminate chattering (see Figure 9). 
 This will be determined at a future
 

date.
 

In Region II, the desired control action brings the state into
 
the coast zone with an opposite rate sign (example trajectory CD shown
 

in Figure 9). The desired rate change can be found by first writing
 
the equation for the trajectory CD and then simultaneously solving this
 

equation with f4 (X). The former equation is
 

x-x' =­
2a
 

where ' = X + - a 
0 2 a 

K +
and the latter x 	 1 4 2
 
2a K X
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9.10.2 ; Automatic ,Docking Control Lw7 (cont'd) 
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9.10.2 Automatic Docking Control Law (conttd)
 

Region II 

Region I 

\ Region III 

A 

4.5 5.0 XD 

Region II 

x 

Figure 9
 

Phase 1 Range Control Regions
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5.3 

9.10.2 Automatic Docking Control Law (con't)
 

The intersection is given by
 

= K +4 V 

.K+2.X 

XINT aa
 

Hence, the firing time is-given by
 

tR~l Reon II+2 0 + aX' XK +- +(3) ­
a a IC2 a
 

Finally,.Region III is designed to provide smooth limit cycle
 
operation, the control action is to drive the rate to zero. 
Hence,
 

tRegion III 
= = 5X (4)
a(4
 

Phase 1 Lateral Control
 

Similarly, KCfor lateral control, can also be found from the
 
constraints, the acceleration is 
.2 ft/sec , maximum docking 'time equals 
300 seconds and maximum initial position and velocity errors of 150 feet 
and'3 ft/sec, respectively. Figure 10 shows the slowest trajectory.
 

f2(X)­

f xW
 

A (-X0, 2%0 
Figure 10 - Maximum Lateral Closure Time
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5.4 

9.10. 2 Automatic Docking Control Law (con't)
 

Again, three equations can be found to solve for K,
 

time, T = tAB + tBC 

1 2 1 KC 2

position, X0 = - T + - at +BT+ a tBC 

rate, a tAB = a(K-- 4)tBc + 1x01 

The equations for K and K ) are found to be 

K = Sa (Xo + 1X01T) - 41012 

1412 + (aT)2 4a- 0% + JX0JT) 
K 2a (X0 + IX IT)- lX0I2 

K+4 (a)2 2a (Xo + IX01T) 

K and K+4) are calculated to be 0.594 and 0.129, respectively. Finally,
 

Figure 11 depicts the lateral Y, Z control logic which also has a ±5
 

foot deadband modification. The control regions and thruster firing times
 

are of the same format as that shown for range control.
 

Phase 2 Control
 

Phase 2 control begins at the stationkeeping state and ends at
 

contact. For a minimum dispersion docking the following parameters and
 

their derivatives need to be controlled:
 

a) Range
 

b) Lateral probe position errors
 

c) Lateral c.g. position errors
 

d) Relative roll
 

e) Relative pitch and yaw
 

9.10-54
 



--- -- ---- 

------ 

9.10.2 lAutomatic"Docking Control Law (cont'd)
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Phase I Lateral (YZ)Control
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9.10. 2 Automatic Docking Control Law (con't)
 

5.5 Phase 2 Range Control
 

In addition to the obvious constraints of maximum time to dock­

ing and impact velocity, there may be other constraints; for example,
 

jet plume impingement restrictions. However, until these later con­

straints are defined, they will be neglected.
 

The coordinate system used'is the TCS. 
The position error is
 

given by
 

X ' R cos (6 R + a), cos (TR +) + ZcosecosTR - Z 

This quantity will be filtered to provide X.
 

The.control law will basically be- the same as.the previously
 

discussed time-fuel optimal logic with the addition of a rate limiting
 
zone for coasting during the final "d" feet of the 
docking maneuver 

(see Figure 12). f1 (X) is the curve dictated by two j-et braking. K for 
f 2(X) can-be determined by choosing a maximum time for reaching ,the.rate 
limiting logic for a worst case set of initial conditions. Selecting a
 

maximum time of 3 minutes and a worst case I.C. of X 
= .25 ft/sec and
 

X = 150 feet, than K =,0.2734 and K ) = 0.06404. For this value 
of K, it can be shown that the maximum closing rate is less thanx2 ft/sec. 

The upper boundary in the rate limiting zone is set by the
 
maximum impact velocity constraint which is assumed to be 0.1 ft/sec.
 

The lower boundary is a function of maximum allowable time for coast
 
and the distance for coast, d; Assuming a 100 seconds and 5 feet, res­

pectively, the lower limit is 0.05 ft/sec.
 

There are three control regions. The first is the one lying to
 
the right of the parabolic coast zone and above the rate limiting coast
 

zone. 
Here the control should aim for a rate of 0.075 ft/sec (mid-way
 

in rate limiting zone).
 

tRegionti II = x - .0750(5) 
a 
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5.6 

9.10.2 Automatic Docking Control Law (con't)
 

Region II lies to the left of the parabolic coast zone and the
 
line X = -(d + .1). Control requirement for this region is to bring
 
the state up to the lower parabolic switch line. Firing has been derived
 

previously in a similar calculation.
 

1X1
 

= X0 +- 02
 
where X 


a
 

Finally, Region III lies to the right of the line X = -(d + .1)
 
and below the rate limiting coast zone. The firing time is
 

- 0.075 - x(7)
Region III a
 

Control of Lateral Probe and C. G. Position Errors and
 
Relative Pitch and Yaw Angles
 

Lateral probe position error should be controlled directly be­
cause the allowable lateral probe displacement at impact is likely to
 
be quite small (one foot or less). Indirect control, by simply nulling
 
e.g. position and relative pitch and yaw attitudes, can cause signi­

.ficant lateral dispersions (see reference). However, as lateral probe
 
position error is a function of lateral e.g. position errors and the
 

relative pitch and yaw angles, the controls for all three must be co­

ordinated.
 

Considering the X-Z plane-first there are three pairs of vari­
ables to be controlled (Zcg Zcg) (Z, Zp)and (6R'
VR. During this
 
phase of control the two translational parameters will be calculated as
 

follows in the TCS (see Figure 13).
 

Zcg = R sin ( + a) + k sin 6 RR 


Z = R sin (0R + a) 
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9.10.2 Automatic Docking Control Law (con't) 

The respective rates will be obtained by a filtering routine to be
 

determined.
 

The control inputs are, of course, the ±Z thruster forces, Uz
 

and the ±6 pitch torques, u, which are applied in the following manner;
 

Zp = uZ - u 

cg = uZ 

0R 
 = 
 u
 

Intuitively, it can be seen that explicit control of any two of
 
6R)
the variables (Zp , Zcg , , implicitly controls the third. For example,
 

a control which forces two of the variables into prescribed limit cycles,
 

indirectly bounds the remaining variable into some limit cycle. As Zp
 
has already been chosen as one of the variables to be controlled directly,
 

it only remains to select either Zcg or BR for the other directly con­

trolled variable. Either is acceptable; however, Z is chosen because
 
cg 

ue has five times more control authority than uz and by this choice Lu6 

can be used exclusively for Z control. Summarizing, at this point we
 p 
have uZ for exclusive control of Zcg and u6 for exclusive control of 

Zp where uZ is a known disturbance of Z . In block diagram form, this 

is represented as: 

Control Dynamics

and
 

Zp Zp 6 Sensors Zp, Zp
 

Control
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9.10.2 Automatic Docking Control Law (can't)
 

As an aid in defining the control, it is helpful to visualize
 
the desired control state. Realizing that there is a minimum control
 
impulse on Zcg and eR which necessitates deadbands, Figure 14 indicates
 
the ideal control state. Effectively, we have Zp located on the approach
 
path with Z 
 moving up and down in a deadband. Requirements for this
 
condition are
 

(1) Z 0 

(2) Z 00 p
 

A method of approximating this control state is to (1) drive (Zcg
, Zcg)
 
into a deadbanded limit cycle (consistent with allowable 0R range),
 
(2) drive (Zp, Zp) into a very small deadband limit cycle, and (3) 
use
 
differential jet firings to approach Z 
= 0 (i.e., take advantage of the 
small control impulse available from u.- Yu). 

A final consideration is that Z and Z should be within their
 
cg p
deadbands before the range control has reached the rate limiting zone.
 

As the maximum closing rate is 2 ft/sec, the minimum time for this is
 

150/2 or 75 seconds.
 

Switching logic for (Zc­ , ZC)
 

The switching logic will have the same form as 
that used for
 
Phase I except there will be a different deadband and value of K for
 
the f2(X) function. The deadband is dependent on the per axis allowable
 

misalignment angle, y.
 

Hence, we have
 

Zcg DEADBAND = Zsiny 

Assuming a y of 20 the Zcg deadband is 2.5 feet. 
To determine K, we
 
insert T = 75 seconds and worst case initial conditions into the pre­
viously derived formula
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5.7 

9.10.2 Automatic Docking Control Law (con't)
 

4 IX012Xo0T) -K = 8a (X0 + 

2 T2O12 + a 4a(X o + IX0 IT) 

Assuming X0 
= 10 ft and X0 = -.25 ft/seac, K = .2265. However, as the
 
value 
of K used for Phase I control, 0.594, is more conservative (i.e.,
 
longer hence quicker) it will be used for simplicity-of logic coding.
 
A final modification from the Phase 1 logic is necessitated by the
 
differential jet firing technique which will be used to null Z .
 It
 
requires the minimum delta V impulses available from the Z-translation
 
and pitch jets to be the same. As uZ is approximately five times smaller
 
than u., 
the minimum impulse from ug must be increased proportionately.
 
The control regions are the same as that previously used for lateral
 

control.
 

Switching logic for (Zp, Z ) 

The control for (Z, Zp) will also be a modified form of the
 
time - fuel optimal switching logic. Figure 15 illustrates this logic.
 
The linear acceleration from the pitch thrusters is five times greater
 
than that from the translational thrusters, hence, for two thruster
 

acceleration
 

2f= 2a(
1 p 2
 

To determine K for the f2 (Zp) function we must again revert back to the
 
worst case initial conditions and maximum allowable time (this was chosen
 
in the range control law to be 3 minutes). Worst case initial conditions
 
from the stationkeeping phase are shown in Figure 16. 
The position error
 
is seen to be about -11 feet whereas velocity error is about -1.2 ft/sec
 
(due to minimum impulse rates from translational and rotational control).
 
Using this I.C., 
K is found to be 0.0575 and K/(K + 4) equals 0.0142. These 
small values may be increased slightly because of the high sensitivity of 
the f2(Z ) function to a rate error in ZP. The desired deadband as shown
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9.10.2 Automatic Docking Control Law (cont'd)
 

z 
p 

-zsin 60= -6f 

-5 ft
 

Approach path
 

Figure 16
 

Worst Case Position I.C.
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9.10.2- Automatic Docking Control Law (con't)
 

in Figure 15 is one foot. 
To account for uZ thruster firings the phase
 
plane is broken into several control regions, as illustrated in Figure 17.
 
With no Z-thruster control disturbances, uz, the firing times for Regions
 

I, II, and III are calculated in the same manner as the other phase planes.
 

Namely,
 

tgXi- .125 = X- .125 (8) 
Region I a X
 

tRegion II + K(9) X(
-O 


tRegion III ax O (0a = 

(1
 

However, in Regions I, I, 
and III, if a non-zero command is scheduled
 
from the (Zcg, Z g) phase plane, and this would cause the (Zp, 
p) state
 
to diverge (because of disagreement in sign), then this command is
 
treated as a disturbance and the (Zp, Z ) firing time is increased pro­

portionately for opposing commands 
p
 

tRegion I, II =t Region I, II 1 (1
5 (z, Z) (ii)
 

However, as the net acceleration during this disturbance period is re­
duced by 20 percent,convergence time in the phase plane may be increased.
 
If this proves a significant factor,K will be increased. 
Commands in
 
the proper direction are not compensated for as this would cause chatter­
ing during long Z firing times. 
 In Region III a uZ command in either
 
direction should be compensated for
 

t Region III =t Region I1 t (12t- 5 (Z,Z) (12) 

as the desired control action is to drive the rate to zero.
 

Finally, in Region IV, no control action is taken unless there
 
is a uz command; then the desired control action is to drive the rate to
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9.10.2 Automatic Docking Control Law (cont'd)
 

Region IRegionII 

0.75 1I.0 Z"JStRegion II 


Figure 17
 

Z., Z Control 'Regions
 
p p
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9.10.2 Automatic Docking Control Law (con't)
 

zero through differential jet firings. The firing time equation is
 

- z +Ui t -Au tp Z (Z,Z) (Z, Z )= 0 

Hence, the sign of the control is given by 

sign,(u 0 ) = sign (Z + uzT g 5)) (13) 

The firing time by 

Z + z t 

tRegion IV = P t(z, Z) (14)

Yu
 

A dual relation exists for control in the X-Y plane (see
 

Figure 18). The,position errors are
 

'cg -R,sin (YR + s) - £SinR 

Y = -R sin (IF + 8) 
P R
 

Applicable control accelerations are
 

yp 
 = y+Z. 

eg U 

TR = N 

The desired end condition requires' 

(1) Ycg +Z? = 0 

(2) Yp, Yp = 0
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5.8 

9.10.2 Automatic Docking Control Law (con'ty
 

The switching logic is identical except for Region IV where the
 

sign of the control effort is given by
 

Sign (2u ) = -sign (N + Uy ty y) (15) 

and the firing time is given by
 

tRegion - + Uy t(yy) (16) 
-YZn 

Relative Roll Control
 

Relative roll control will be the same as that used in Phase 1
 

except that the deadband will be reduced to comply with docking con­

straints and close-in measurement accuracies. Two degrees will be
 

assumed initially.
 

6. Detailed FlowDiagrams
 

This section contains the flow diagrams for the Automatic
 

Docking Control Law.
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9.10.2 Automatic Dlocking'Control. Law (can',t) 
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9.10.2 Automatic Docking Control ,Law (con'-t) 
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9.10.2 Automatic Docking Control Law (con't) 
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9.10.2' Automatic Docking Control Law (con't)
 

NJYES
 

t3EFNE iPAQA3ELA(Lt zj&. t XL-t:-,X 4XDe VTWEE#4 COAST 

a-dA~ AA~b TpeakidNJ
bFV44-PA XA13uLA3 
13S.TWFEW COAST 

rsutE ANDb Rt.GtdN 
4-


J5 STAPTE 1, TALI 

X < XI-CR4 )L . 

.0~C 

9.10-75
 



9.10.2 Automatic lopklng Control Law (con't) 
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9.10.2 Automatic flocking Control Law (con't) 
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9.10.2 Automatic Docking Control Law (con't)_ 
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9.10.2 Automatic Docking Control Law (contt) 
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9.10. 2 Automatic flocking Control Law (can't) 
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9.10..2 Automatic Docking Control Law (can't)
 

M I N 'P LFps =0 ~ 4tDVT 3 LJA ~~ 

CALLI 

q-h.LCA)LLPE 

tk-%Lk%6 

TrWis tA$('vULE- WILL 
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CA LL 
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%4ATcnar. rAIe 
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aE 

mi"'s &N0pIDLL.WL 
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ESrIMATL VlAM %~Q 
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9.10. 2, Automatic Docking Control -haw (com t) 
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9.10.,2 Automatice Docking Conttol taw (can't) 
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9.10.2 	Automatic Docking Control Law (cont'd)
 

Reference,
 

EG 2-70-149, "Docking Sensor Error Model," dated 16 	 September 
1970.
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9.11- DOCKED OPERATIONS
 

-The GN&C functions during docked operations are undefined.
 
Some of the candidate functions are the following:
 

1. 	 Targeting for Rendezvous, Deorbit, Orbit
 

modification.
 

2. 	 Absolute and Relative Navigation.
 

3. 	 Provide Guided AV's to the Space Station.
 

4. 	 Attitude Control of the docked cluster.
 

5. 	 -Sensor Calibration and Alignment.
 

6. 	 System Monitor, Test and Checkout.
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APPENDIX A
 

APPICABLE APOLLO SOFTWARE
 

The concepts represented by portions of the Apollo on-board
 
software have been designated as being applicable to the Shuttle Onboard
 
Software. These applicable Apollo concepts identified in the references
 
below represent a foundation on which to develop shuttle software:
 

Guidance System Operations Plan for Manned CM Earth
 
Orbital and Lunar Missions Using Program COLOSSUS 2E
 
Section 5. Guidance Equations (Rev. 12)
 

P30 - External AV Maneuver Guidance pg. 5.3-17
 

P51 - IMU Orientation Determination pg. 5.6-2
 

P52 - IMU Realignment Program pg. 5.6-6
 

NASA- MSC
 

A-1
 


