(THEL) :
™
[=]
2 -
3 (CODE)
0
(178
£ [CATEGORY)
g
-4
-

INTERMETRICS

———

Reproducad by o
’ NATIONAL TECHNICAL

INFORMATION SERVICE

Springficld, Ya. 22157

(ﬂl_

FINAL REPORT
VOLUME II
A GUIDE TO THE
" HAL
PROGRAMMING LANGUAGE
JUNE 1971

Submitted to:
National Aeronautics and Space Administration

Manned Spacecraft Center
Houston, Texas 77058

Prepared under Contract NAS 9-10542

INTERMETRICS,INC.

380 Green Street
Cambridge, Mass. 02139
(617) 868-1840

MANNED SPACECRAFT CENTER

NATIONAL AEROWNAUTICS AND‘SPACE ADMINISTRATION

Hat Guiae

Errata Sheet

1. p:wl-S First paragraph of Sec. 1.2 should be:
The HAL Guide is divided into three parts. Part I
presents an overall view of HAL and'its essential elements;
Part II defines a useful mathematical subset designated
HALM;
capabilities of the language in this implementation.

Part III completes the description of the full

The appendices

]

-2, p. 3-1 The last sentence should be: Scalars and the elements

of vectors and matrices zre floating-point quantities.

3. p. 4-10 Example 4.2.1.1 a |

X = VECTOR... s

4. p. 4-14 (x-p)2 + (y-q@)2 = 1?

‘5. p. 5-3 Example e)

{A]J 1O # instead of [AJ TO #]

®
6. P- 54 (E) 793, 1 10 3)

7. p. 5-5 (top of page)
W=1Y - 6;

eess Aand W =Y ~ 6 will be executed.

INTERMETRICS INCORPORATED » 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

8.. p. 5-12 A,

(also)

=G[BO+ .0

READ (CARDS) G; N,

9. p. 5-13 AZERO = G(BZERO + ...

WRITE (LISTING) I, AZERO;

10. p. 6-8 ... polar form is melQ
should be
£, .+« polar form is melc")

11, p. 6-8 +« insert the following statement after the
5 PHASOR PROCEDURE statement: ‘
DECLARE PI CONSTANT(3.14159265);
» omit comment

PI IS A RESERVED HAL CONSTANT

12. p. 6-9 (near botton of page)

- YINIT instead-of YIMT

13. p. 7-4 (top of page)
++.Sce Sec. 11.1.1.
(botton of page)

..s.8ce Sec. 11.1.2.

14. p. 7-5 (in PROGRAM A)

omit bar over Q

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

15. p. 7-10 reference should be to Sec. 11.2.1.2

16. p. 7-11 (within LIST)

insert SKIP(3), prior to each COLUMN()

17, p. 9-5 (at bottbn of page)

omit (:) after {A}35

18. p. 9-6 (at bottom of page)
At least one blank must separate structure
level from identifier; i.e.,

2 B CHARACTER(10), etc.
|

~

19. p. 10-2 {in Example 2)
The first 7 bits of B
20. p. 10-7 (middle of page)

D&E, F&Gs H

21l. p. 10-10 (at top of page)
' after the first END; insert

DO FOR I = 1 TO 12;

22, p. 10~13 Bars (~) should be placed over [P], VRESULT,[Q].
also, ‘

BLOCK should be replaced by VRESULT.

23. p. 10-21 (at bottom of page)

cee. = C[|E;

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

24, p. B-6 (within table)

Vm instead of '[V]m

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMéRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

Foreword

This document is Volume II of the final report of a
programming language development contract for advanced
manned spacecraft. This effort was sponsored by the
National Aeronautics and Space Administration's Manned
Spacecraft Centexr, Houston, Texas under contract NAS 9-10542,
It was performed by Intermetrics, Inc., Cambridge, Mass.
under the technical direction of Mr. Daniel J. Lickly.

The Technical Monitor for the Manned Spacecraft Center- was-
initially Mr. John E. Williams dand later was Mr. Jack R.
Garman, FS/5.

The publlcatlon of this report does not constitute approval
by the NASA of the findings or the conclusions contained

thereih. It is published for the exchange and stimulation
of ideas.

PREFACE

'fhis,document is meant to serve as an introductory guide
to the HAL programming language. The guide does not attempt
to cd#gr all £he features of the language and is directed at
the i§itia1 implementation of HAL on the TBM 3%0}75 at the
Manned: Spacecraft Center in Houston, Texas.

' -'Complete specifications'for HAT ére given in "The
Progfémming Language, HAL, - A Specification”, pocument

£MSC~-01846.

Table of Contents

Part I. An Introduction to HAL
1.0 Brief Description of HAL
1.1 ;The Basic Characteristics of HAL

1-i.l.1 Source Input/Soufce Listing

~-1.1.2 Data Types and Computations

1.1.3 Real—Tiﬁe Control

1311.4 Program Reliability

1;2 6fganization of tﬁe Guide-
2.0 Language Elements

_2.i; Program Structure
_L2}Dﬁa

"2.2.1 DbData Declarations

2.2.2 Literals

2.3 Statements
2.4 inpﬁt—Output
2.5 Source Code Preparation

.2.5.1 The Character Set

2.5.2 Identifiers

2.5.3 Keywords
2.5.4 Titerals

2.5.5 Special Characters

2.5.5.1 Arithmetic Operators

%-2.5.5.2 Relational Chatacters

Pagﬁ II. HAL, - A Mathematical Subset of HAL.

3.0

301

2.5.5.3
2.5.5.4
' 2.5.5.5
2.5.5.6

) 2.5‘8‘5.7

' Introduction to HAL

String and Logical Operators

Othexr Operators

Separators

Built-In Function Names

Compiler-Generated Annotation

]

M

Data Types and Data Declarations

-3.1.1 Types

3.1.2 Data Organizations

-3.1.3 Literals

'3.1.3.1

3.1.3.2,

Arithmetiec

Characters

- 3.1.4.1

-3.1.4.2

Arithmetic Expressions, Assignments, and Control

:3:1.4_ Declarations

DECLARE Statements

Arrays, Vectors, Matrices

Arithmetic Expressions

“4,1.1 The Order of Operations

4.1.1.1
.4.1.1.2

4.1.1.3

4,1.1.4

4.1.1.5

Some Exceptions

Product Operands

Sum and Difference

Vector Cross Product

Vector-Matrix Products

4.1.2 Some Examvles of Arithmetic Expression

4.1.3 Characters and Arithmetic Expressions

ii

4.1.4 Array Expressions

4,1.4.1 Some Examples

Aséignment Statements

" 4.2.1 Conversion Functions

;4,3.1- The GO TO Statement

. 4.2.1.1 Some Examples

' Control Statements and Relational Expressions

' 7.4.3.2. Thé IF Statement

4.4

4,3.3 Logical Conditions

4.3.3.1 Comparison Expressions

4.3.3.2 Sets of Logical Conditions

4.3.3.3 The Order of dperations

Exéméles - I

4,4.1 INTERSECTIONS

4.4.2 TRANSFORM
Subscripted variables & DO Statements
Subscripts

5.1.1 Subscript Expressions

'5.1.,2 Subscript Range Expressions: Partitions

5.1.2.1 The "T0". Operator

5.1.2.2 The "AT" Operator

5.1.2.3 -An Application of Partitioning

DO Statements
5.2,1 DO...END
5.2.2 DO WHILE
5.2.3 DO FOR

5.2.4 DO CASE

iii

- Examples - II

5o3.01 'MEANS

5.3.2 FREQ RESPONSE

"5.3.3 FILTER

Subroutines: Function and Procedures

- Functions

6.1.1 SBme Examples

Procedures

Examples - IIT

. 6.3.1 PHASOR

6.3.2 INTEGRATE

Program Organization: Scope of Names, Input-Output

-Sdope of Names

Scope of Labels
The QUTER Statement
Explicit Declarations

Communication Between Programs

'Input—Output

7.6.1 FILE Statement

*9.6.2 READ Statement

7.6.3 WRITE Statement

iv

5-9
5~10
5-11

5-~-12

Part III. General Capabilities

8.0

8.1

HAL Data
Data Types

8.1.1 Scalar, Vector, Matrix

8.1.2 Integer

8.1.3 Bit String

8.1.4 Character String

'Data Declarations

8.2.1 Multiple Declarations

8.2.2 PFactored Declarations

8.2.3 Implicit Declarations

Precision
Constants and Literals

8.4.1 Titerals

"8.4.1,1 String Repetition

8.4.1.2 Using Literals

.8.4.1.3 The REPLACE Statement

8.4.2 Constants

8.4.2.1 1Initialization Repetition

Storage Class
Arrays and Structures
8.6.1 Arrays

8.6.2 Structures

:3{7

9.3

8.6.2.1 WName Qualification

8.6.2.2 Multiple Copies of Structures

Formal Parameters and Functions

8.7.1 Formal Parameter Declarations

8.7.1.1 BSpecified Dimensions

8.7.1.2 Variable Dimensions

B8.7.2 Function Results

Alternate DECLARE Statement Format

The DEFAULT Statement

Subscripting
Selection

9.1.1 Arrays of Vectors and Matrices

9.1.1.1 The Use of * and % -~

9.1.2 Bit and Character Strings

9.1.3 Structures

- 9.1.3.1 Structures of a Single Data Type

Formulaticon

9.2.,1 VECTOR and MATRIX

9.2.1.1 VECTOR and MATRIX of a Single List Entry

"9.2.2 INTEGER and SCALAR

9.2.2.1 SCALAR and INTEGER of a Single List Entry

9.2.3 BIT and CHARACTER

.9.2.3.i BIT and CHARACTER of a Single List Entry

Modification

vi

10.0 Data Manipulation 10-1

10.1 String Operations 10-1
‘ 10.1.1 Bit Strings 10-1
10.1.1.1 Bit Strings Wi£hin Logical Conditions 10-3
10.1.1.2 "Boolean" Conditions b 10-4

10.1.1.3 Combining Comparison & Boolean Expressibns 10-4

10.1.2 Character Strings _) ' .) . i0—5
10.1.2.1 Character Strings Within Logical . 10-6
Conditions .
10.1.3 Oxder of Operations 10-7
10.2 Array Operations 10-8
10.2.1 Partitioned Arrays 10-10
10.2.2 Functions cof Arrays 10~-12
10.2.2.1 Functions with Single Data Item . ’
Arguments o 10-12
10.2.2.2 Functions with Array-Arguméﬁts . 10-14
10.3 Manipulations With Mixed Data Types 10-15
- '10.3.1 Inplicit Conversions] 10-15
. 1033.1.1 Conversion of Arithmetic Literals l0-18
10.3.2 Explicit Conversions 10-20
11.0 Additionai Program Organization and I/0 1i-1
11.1 Organization' - B "11-1
11.1.1 Declaration of Labels 11-1
11.1.2 Declaration of Function Names i1-2
11.1.3 Communication Between Programs 11-4
11.1.3.1 The COMPOOL 11-4

vii

11.1.4

11.1.3.2

The Symbolic Library and the
INCLUDE Directlive

Program Calls

11.1.4.1

11.1.4.2

1i.2 Inpﬁt*Output

11.2.1

11.2.2

Appendik
Appendix
Appendix

Appendix

Appendix E

Appendix

Program Declaration

Example

Read and Write Control Functicns

11.2.1.1

11.2.1.2

Read

Write

Standard Data Formats

11.2.2.1
11.2.2.2
11.2.2.3
11.2.2.4
11.2.2.5

1i.2.2.6

Numerical Input Data

Character Input Data

Non-standaxrd Data -Formats

Scalar Cutput Data

Integer and Bit String Output Data -

Character Output Data

HAL Keywords

HAL Built-In Functions & Psesudo~Variables

Summary of HAL Operations

.HAY, Single-Line Format

Charactexr Collating Sequence

Formulating ("shaping"”) Functions

viii

11-11

11-14

) 11-14

11-15
1i-16
llan;
11-16

11-17

Part I.

AN INTRODUCTION TO HAL

1.0 Brief Description of HAL

HAL is a programming‘languagé developed by Intermet%ics,
Inc. for aerospace computer applications. It is intende& to
satisfy the reguirements for both on-board and support software. -
The language cﬁntains features which provide fér real-time '

control, vector-matrix and array data handling, and bit

and character string manipulations.

1.1 The Basic Characteristics of HAL

-

1.1.1 Source Input/Source Listing

A singular feature of HAL is that it accepts source
code in a multi~line format, corresponding to the natural
notation of ordinary algebra. An equation which invoives
exponents and subscripts may be written, for example, as
2 2)3/2

CI = (X AJ + v BK

Anstead of (as in FORTRAN 6r PL/1)

C(I) = (X*A(J)*¥*2+Y*B (K)**2) %% (3./2)

_ HAL ‘@lso permits an optional single-line format; its construction

is similar to the example above, with some minor changes; thus
C$I = (X A§T#**2+4Y B§K**2)%%3/2

HAL source .code may be 1nput on cards or by‘data termlnal

The 1nput stream is free~form in that, for the mdst’ part, " card
or carrlage column locatlons have no meanlng: etatements are
:separated 51mply by semi-colons. —

e‘In an effort to 1ncreaee prcgram reliability and nromote
HAL as a_mcre:direct coﬁmunicatione medinm between specifications
and_code,.the HAL program listing is annotated with special
marks. vVEctors, metnices and arrays of data are instantly

recognized by bars, stars and brackets. Thus, a vector becomes

- . % .
.V, a matrix M, and an array [A]. Further, bit strlngs appear

. ?
w1th a dot, i.e., B and character strings with a comma, C.

With these epecial marks as aids, the source liéting is
moxre easily understood and serves as an important step
- toward self-documentation. In addition to data marks, logical

paragraphs, or blocks of code, are automatlcally 1ndented so that

dependence of ona block on another may be seen clearly._

HAL is a higher-order language, designed to allow the
programmer~analyst-engineer to communicate with the comquter
in a form which approximates ngtural mathematical expression.
Parts of the English language are combined with standar&;

notation to provide a tool that readily encourages programming

without demanding computer hardware expertise.

.1;1.2 Data Types and Computations

HAL provides facilities for manipulating a number of
different data types. Arithmetic déta may be declafeqlas
scalar, vector, matrix or integer (whole number). Individual
bits may be treated as Boolean guantities ér grouged'togefher
in strings. The language handles text by manipulatiﬁg phachter
strings via special instructions. Organizations of dafa%types'
may also be constructed; one-, two-, or three—dim@ﬁsfonal ‘
arrays of any single type can be formulated, paréitionea;
and used in expressions. An hierarchical organizaﬁioﬁ qalied
a_ structure can be declared in which related data of different
types may be stored and retrieved as a unit or by individual
feference.

HAL requires that most data types be described éxpiiéitly;
i.e., by declaratioﬁs which assign a name and specify desired
attributes. However, for scalars, 3-dimensional vectérs, 3Ix3
matrices, and Booleans (1 bit bit-strings), the programmer can

take advantage of HAL's implicit declarations and let the

-3

_nébmpiler assign these variableé appropriatelywy.

‘ The arithmetic data types together with the appropﬁiate
operators and built-in functions constitute a useful maéhematical
subset. HAL can be used directly as a "vector-matrix" fgﬁguagg
in implementing large portions_éf hoth on-board and supporf

software. For example, a simplified equation of motion might

appear as

i
1
o]
h:d
Q
0

RDOT

i
=

where the matrix ﬁ transforms acceleration from spaceéiéft to
reference coordinates.

By combining data types within expressions aﬂd utiiizipg
both implicit and explicit conversions from one type to another,
HAL may be applied to a wide variety of problems with a powerful
~and versatile capability.

1.1.3 Real-Time Control

HAL is a real-time control language; that is, cgrtain
defined blocks of code called programs and tasks can 5e’
scheduled based on time or the occurrence of anticipated
events. A limited subset of HAL's real-time capabilities will

be included in the current implementation.

http:portions.of

1.1.4 Progfam Reliability

Program reliability is enhanced when a software system

.pgh create effective isolation for various subsections of code as
well as.maintain_and control commonly used data. HAL is a block-
'orignted language in that a block of code can be established with
loc%l%y defined variables that cannot be altered by sections of
progrém located outside the block. Independent programs can be
comﬁiied and run together with communication aﬁoﬂg the programs
pegmitted through a centrally managed and highly visible data
poglg :for'a real~-time environment, HAL couples these precautions
with é_locking mechanism which can protect, by programmer directive,
a block from Being entered, a task fr5m being initiated, and even
an individual variabie from being written into, until the lock

is rémovedl (Locking is Eéﬁ included in this implementation.)

s These measures cannot in themselves ensure total software
.féiiabilitj‘but HAL does offer the tools by which many anticipated
p;oblems;_especially those prevalent in real-~time EOntrol, can

be isblated and solved.

1.2 Organization of The Guide

‘The HAL Gﬁide is divided into four parts. Part I presents an
overall view of HAL and its essential elements; Part II dgfines a
useful mathematical subset designated HALﬁ; Part III completes
the description of the full capabilities of the language in this
implementation; and Part IV discusses. source code preparation. and
the HAL listing, aspects of 360/75 job control, and compile- and
_run-time diagnostics.

The appendices contain lists of keywords, built—in functions,

features specifically dependent on the IBM 360/75 computer, and

other iInformation.
) 1-5

_2.__Language Elements
. 2.1 Program S£ructure

A HAﬁ program coﬁsists of statements termina@ed by semi-
colons (;), groups of associatéd statements which are treated
‘as‘a.singlé statement (DO-groups}, and blocks of statements
organized as subroutines (brocedures and functions)., The
stateménts and/or blocks must be compiled as a program uqit; or
‘as sets’ of inéependently compilable progfam units. Communication |,
_bétwegﬁ progréﬁs is through a common data pool (COMPOOQI:) within

a symbolic library.

2;2 -ﬁata

2.2.1 Data Declarations

1 general all data types and organizations in HAL
‘{ise:,'scalar, integer, vector, matrix, bit and character string,
.array- and structure) must be specifically declared by DECLARE
s%atements. However, HAL does provide a suﬁset of data which
may bhe deciared implicitly, i.e., simply by appearance in the
program. Implicit data presumes certain default characteristics;

e.g., vector and matrix dimensions.

2.2,2 Literals
' A literal is a name which expresses its own value and
is a constant during program execution. Literals can be numeric

or string; e.g.,

2-1

12.6

248 - numeric literal
6.62E-2 '
OCT'7776" - bit string literal
'HAL. PROGRAM' - character string literal

2.3 .Statements
; .in addition to the DECLARE statement, HAL statements provide
for assigﬁing expression reéults to variables, organizing
. statements in subroutines (procéaures and functions), and con-
Ero}ling‘program logic flow. Control is accomplished through
the.IF—, GO T0 -, and DO~ statemenﬁs. For é real—-time control
\

environment, HAL provides the commands to schedule programs

and tasks through a real-time executive.

72;4"Input~0utput

‘The HAL input-output statements READ, WRiTE, and FILE
facilitate the reading and writing of data and comments by
identifying the extermnal device (e.g., cards) and the quantities
to be assigned or "displayed". Data may be in standard or
non-standard formats. Statements are included to store and

retrieve file data and to control printer page layout.

2.5 Source Code Preparation
The HAL program may be written in multi-line or single line

format and loaded into the compiler on cards, data terminals

br_other compatible devices. The multi-line format defines
exbonent, main, and subscript lineé (E, M, S} and associates
them into a single input stream. Comments may be incluéed on
any line by enclosing the comment within the symbol pairﬁ;

. l
/* and */. (Comments can also be introduced on comment lines

(b—lines).
HAL is composed of five basic syntacticai elements:
identifiers, keywords, literals, special characters, and
"built-in functions. Complex syntactical units (i.e.; statements)
are constructed from these basic elemenés using a cbmmon set of

input characters.

2.5.1 The Character Set

The characters which may be used in writing a HAL program
are: the numerals 0 through 9, the letters A'through %Z, a blank

character, and the following symbols.

= (equals sign) | (OR symbol: also ;)
+ (plus sign) . .& {(ampersand)

- (minus sign) (semi-colon)

bl

/ (slash) : (colen)

* (asterisk) ' . . f(period)

< (less than symbol) , (comma)

> (greater than symbol) ' {apostrophe)

1 {(not symbol; also A) { (left parenthesis) .

) .(right parénthesisl

$ (dollar sign)
{break chagacter)

(number sign)

@ (at sign)

[T (brackets)

"{} (braces)

gAL will-aiso accept other characters, restricting their
use to within comments and_character strings. Some examples
are: - 1" (exclamation point)
‘% (percent sign)
? - (gquestion mark)

" {double guotation marks)

.2.5.2 TIdentifiers

An identifier is a name which is assignedhby the programmer
to 5 data element, statement label, etc. Tdentifiers must
satisfy the following rules:

a. The first character must be a-letter.

b. It may contain 0 to 31 more characters, whi&h may be
any combination of letters, digits, or break characters,
exéept that it must not'end with a break character.

¢. A gualified structure name” (see Section 8.6.2.1) will
contain imbedded periods and must not end in a period

or break character.

d. An identifier may not be a compiler keyword.

Examples of valid identifiers:

A
ROS
INTEGRATI&N;goUTINﬁ
SEXTANT TO NAVIGATION BASE_MAT

STATE.COV_MATRIX

Examples of invalid identifiers:

=

1A begins with a digit
SAMPLE _ ends in a break charaqté
DECLARE reserved word |
POS VEC contains a blank

. STATEMENT #200 contains a # charadter

2.5.3 Keywords
‘Reywords are words recognized by the compiler to have

standard meanings Within‘the language, and are usually unqvailable
for any other use; for example, operators, commands, attributes,
and built—-in function names. A list of HAL keywords is presented
in Appendix A. Some exanples are: -

DECTARE

INTEGER

AND

VECTéR

SQRT

PRANSPOSE
' 2-5

2.5.4 Literals

See Section 2.2.2,

2.5.5 Special Characters

Special characters or combinations of characters are
used in HAL as operators, separators, or other delimiters.

These characters and some of their uses are described bhelow.

2.5.5.1 Arithmetic Qperators

Symbol Definition
+ addition (pr prefix plus]
- . subtraction (or prefix minusj
/ : division ‘{other uses also)

(see note below?) multiplication
* ’ vector cross product (other uses also)
. ' vector dot product (other uses also)
*% exponentiation\(single—line)

+ Note that HAL does not utilize a character zs a multiplication
operator. Instead a space (or spaces) between two distinct

identifiers is interpreted as multiplication.

2-6

2.5.5.2

2,5.5.3

2.5‘5'4

Relational Operators

Symbol

<

not greater than (or

Definition

equal to

not equal to (or "=}
less than

greater than

less tpan or egqual to
greéter than or eéualito

FaY

>)

.not lesgs than (or 7<)

String and Logical Operators

Symbol
AND (or &)
OR (or |)

NOT (or10r A)

CAT (or [])

Other Operators

S&mbol

-

2-7

Defiﬁition

Boolean AND
Boolean OR
Boolean NOT*

Concatenation

Definition

Indicates repetition within

a list, or the last member
of an array or string.

Scaling operator, or
¢haracter to bit modifier

Subscript operator (single
line format)

2.5.5.5 Separators

The following characters have meaning as separators in HAL:

Symbol

comma,

semicolon

colon

apdstrophe

equals

-

/*

0

Definition

. (a) separates elements of a list;

(b) separates indices in index
expressions;

{(c) separates clauses in declare
statements.

(a2) terminates statements;

(b) separates structure indices from
array element indices. :

(a) associates a statement label
with the succeeding statement;

(b) Separates array element
indices from sub element indices.

delimits string literal values

" {character or bit).

indicates replace in assignment
and DO FOR statements.

separates component names of
qualified structures.

encloses comments

Parentheses have many uses in
the language. They are used

in expressions, for enclosing
lists, function arguments, data
dimension and initialization
values, etc.

2.5.5.6 PBuilt-in Function Names

Built—-in function names are identified by the compiler
as part of the language and are therefére keywords. A complete
list of these functions appears in Appendix B. Soﬁe
examplés are: . ‘

ARBS
' PRUNCATE
COoS
TAN
INVERSE

UNIT

2.5.5.7 Compiler-Generated Annotation

The following characters are used by the compiler to
annotate the output of variocus data types in the language.

Identical usage is also acceptable in the input stream.

Symbol Definition
* Over a name denotes a matrix
- Over a name denotes a vector
. Over a name denotes a bit string
p Over a name denotes a character string
[1] : Denotes an array organization
{} Denotes a structure organization

Part IX

HAL,,

~-—-A MATHEMATICAL SUBSET OF HAL

3. Introduction to HALM

HALM defipes a useful mathematicai subset of HAL. It
is primarily directed at the érogrammer;analyst who wishes
to gain rapid facility with HAL and use it in the solution of
engineering problems as he would use FORTRAN or ALGCL. ASs
such HALM concentrates on:

1) scalar, vector and matrix arithmetic.

2) simplified data declarations, arrays, and input-

- output commands.

and neglécés:

1) bit- and character-string variables and manipulations

(except for I/O0 where necessary).

2) complicated data arrays and structureé.

3) real-time control and data-locking.

HAL& is-not a formal language subset; "full-HAL" statements
can be freely mixed in HALy, if so desired. However, the
compiler implementation is such that programs written completelv
in HALy insure the greatest degree of machine independence

and transferability.

3.1 Data Types and Data Declarations

Three data~types are included: scalar, vector, and
matrix. Scalars and the elements of vectors and matrices are

flocating-point single precision quantities.

3~1

3.1.2 Data Organizations

One-, two-, and three-dimensional arrays of scalars may

‘be de&lared.

3;1.3 Literals

3.1.3.1 Arithmetic

Arithmetic literals are written as a series of decimal
digits with an optional decimal point. The literal may coptain: ’
powers of 10, 2 and/or 16, represented Bv E, B, and H'respebtively.
The following are some-a0cepta51e forms of arithmetic:literals

(all are equivalent to the value, 6):

-6, 630, +600E~2, 0.006E3, 12B-1, .12B+2B-1

3.1.3.2 Characters

‘Character literals are useful for'messages(heaaings,
etc. The simplified form is ég enclose text; i.e.{:ietters,
digits, symbols, and biaﬁk; within guote marks. 'Thds,:

'"NAUTICAL MILES'
"ERROR 106"
'GO BACK, TRY AGAINIT

‘are examples of character literals.

3.1.4 Declarations

HAL permits the implicit declaration of scglais} vectors,
and matrices by their first appearance in the prOgraﬁ listing.
A "bar" (-);_i.e., minus sign, on the E-line over an identifier
denotes a vector; a "star" (*); i.e., asterisk, denotés a matrix;
-and the absence of any marks above'an identifier means-the quaﬂtity
is a scalar. Once marked, the programmer need not éontinue EO'

supply notation in the source code. The compiler will annotéte
3-2 '

the output listing appropriately. The implicit declaration of
vectors and matrices always results in default dimensions.. The
standard defaults are 3-dimensional vectors, and 3x3 matrices.
The following statements would suffice to declare Fhe
scalars A, B, the vectors VvV, W, Y and the matrix M.
— %
W=MY¥V;

V=aV+BW?*TY;

3.1.4.1 DECLARE Statements

Three' data DEéLARE sfatgments are necessary witﬁin'HALM.
These statements allow specification of vector and ﬁétrix dimensions
(if‘defaults are not.adequate) as well as the declarétion of an
array of scalars. Some examples are: '
a. DECLARE V VECTOR (6); -
DECLARE VECTOR(8).T,U,V,W;
The desired vector dimension must appear_aé'an.intéger_
literal within parenthesis. The second declaratiOn
| illustrates the factored DECLARE statement where. T, U, V, W
are declareé in one statement.
b. DECLARE M MATRIX (4,4);
DECLARE MATRIX(3,6) M,N,P,Q;
The desired matrix dimensions must appear as ihteger
literalg within parenthesés; i.e.,(rows, column%). The
seéond declaration is a factored DECLARE statement.
c. DECLARE A ARRAY (3};
DECﬁARE ARRAY (2,3) A,B;
DECLARE C ARRAY (2,3,4); ..
The desired array shape must appear as integer literals

within parentheses, Arrays may be one-, two-, or three-

dimensional and consist of scalar elements.
3=

.3.1.4.2 Arrays, Vectors, Matrices
One-dimensional arrays are not vectors. Two-dimensional
:;frays are not matriées. That is airays ocbey séquential
element-by-element qperations.and not vector-matrix arithmetic.
Thus, for example, - ‘

DECLARE ARRAY(2,2) A,B,C;

[c} = [a] .[B];

is executed in the following orxrder:

C11 = B Baa?
C12 = Byp Byrai
Co1 = By Byys
C = A B :

22 22 7227

4. Arithmetic Expressions, Assignments and Control
4.1 Arithmetic Expressions

HALy, contains three types of arithmetic operands:

Scalar denoted S

_ Vector " denoted V
) *

M

Matrix denoted
An arithmetic exéression ié any meaningful arrangément
of operators and operands,.where parentheses may be freely used
. as in ordinary mathematical notation to épecify the grouping or
_ ordering of operations. An arithmetic expression is a string
of arithmetic operations which, when evéluated,resuits in a

a scalar, vector, or matrix.

4,1.1 The Order of Operations

In the evaluation of aﬁ expfession, the order of operations
is determined by parentheseé and operator precedence. ‘Operations
within an expression are performed in the order of decreasing
prioriéy. for example, in the expression A+B**3, exponentiation
is performed before addition. If an expression involves
operations of the same priority, the general rule is that the

operations are perﬁormed'left to right.

If an expression is enclosed in parentheses, it is treated
as a single operand. The parenthesized expression is evaluated
before its associated operation is performed., For example, in
the expression (A/B)C, A is divided by B and then the result is
multiplied by C. Thus, parentheses modify the normal rules.of

priority.

http:rules.of

The following chart illustrates all the possible arithmetic

operations in HALM, as well as each one's priority, operand types,

and value or result.

Summary of HAL Arithmetic Operations
' 2

Operation Prioritzl Form® Results
Exbonentiation 6 SS scalar
i *
Matrix transpose 6 MT matrix
(short form)
. . ¥ ’ .
Matrix inverse 6 M matrix
{short form)
Scalar-scalar product 5) S 5 ‘scalar
Scalar-vector ox 5 S Vor¥V s vector
vector-scalaxr product
. - %
Scalar-matrix or matrix- 5 S Mor M S matrix
scalar product . -
. % .
Vector-matrix product 5 -V M vector
.] .
Matrix—-vector product 5 M Vv vector’
Vector outer product 5 v v matrix
) * *
Matrix-matrix product 5 M M matrix
Vector cross product 4 vV xy vector
Vector inner (dot) 3 .7 " scalar
product
Scalar-scalar quotient 2 . s/ s scalar
Vector~-scalar guotient 2 . V/ S vector

1. Higher priorities have larger numerical values.

= * .) -
2. 8,'V, M are general scalar, vector, matrix operands - the
) symbols represent operand type rather than value.

4-2 -

fOperation.(cont'd) Priority Form Results

Matrix-scalar quotient 2 ’ M/ S matrix
Scalar sum or difference 1 S+5 Scalar
Vector sum or difference 1 V+ ¥ vector
* * |
Matrix sum or difference 1 M+ M matrix
4.1.1.1 Some Exceptions
i. Exponentiation is right-to-left. Thus,
BC
a) A¥*B¥*C = AT I A*% (B¥*()
2 2 2,
b) SIN(X)” = (8IN(X))", and not SIN(X™)
2.- Division is right-to-left. However, vqpto? and

matrix expressions may never appear as denominators

in a quotient. .

a) A/B/C = A/(B/C) = A C/B

b} &A/B X/C ¥Y/D = A/{B X/(C ¥/D)) = A-C Y/B X'D
¢y V/n/B =¥/(a/B) = B /A

d) V/a/F is illegal

e) (V/R)R is OK

£) V/E.\—r is OK

(See HAL specificatioﬁ document for more detail on exceptions.)

4.1.1.2 Product Operands

Note that in the product forms

*

* - —
M M Vv

S 8V
-*
4 V8

ZE W
= W,
B <
<

5

the multiply operator is implied from the "logical a&ﬂacency"
of the operands. In HAL all such operands must be easily

distinguishable,.

4,1.1.3 Sum and Difference

The operands must agree in the number of.éqa;ar
— * ; : ’ - —
components as well as in type (S, V or M). In the form V + V,
the vector operands must be of the same_lgngthr* In the form

% * L
M+ M, the matrix operands must have the same row-column .dimen-

sionality.

4;1.1.4 Vector Cross Product

The operation, V * V, is defined in HAL only for

vector operands of length three (3).

f-{.l.l.S Vector-Matrix Products

- a} V.V Vector inner (dot) product is computed as
[1 x n] [n x 1] » [1 x 17,
a scalar.
Note: In arithmetic expressions, the cﬂaracter
LY owill be'takén as a part of a literal if
the context.allows this interpretation. Thus,
for example, U .2 ¥V is interpreted as T(0.2 V)

and not as U . (2 V).

b}y VV Vector outer product is computed as
[n x 1] [l xm] + [nxm],
an n x m matrix.
cy. V ﬁ Vector-matrix product is camputed as:
Il x m]1[m x n];[l % nj
an n-dimensional vector.
d) .ﬁ v Matrix-vector product is computeq“és
[m X'n]'jn x 1]+[m x 1]
an m~dimensional wvector.
e) ﬁ ﬁ Matrix-matrix product is computed as

[m x n] [n xpl + [m x pl,

an m x p matrix,

4.1.2 Some Examples of Arithmetic Expressions.

MATHEMATICAL NOTATION " HAL EXPRESSION

1
]
1. ab ‘ ‘ AB !\
2. a(-b). _ A(-B) or -A B .
3. -{a + b)) . -{A + B)
4. ax+2 . 'AX+2
5, ax+2 c _ AX—l—2 c
-6. . ab/cd) A B/C D
7. " a+b. 2. ' 2.5
(18y 2+ \ ((a+B) /C) 22
8. a = /(1 + B/(2.7 + C))
I+ =779 :
-) — e -_:;)
9. T u L vy . @M (T+T)
10. _a(z_g?)T (v x w) . a¥ ﬁ)i(v * W)
4.1.3 éharacters and Arithmetic Expressions. Character -

strings may be joined and/or combined with arithmetic expressions
to produce messages or data printout, using the concatenation

operator (CAT or ||). Thus,

"NAUTICAL'||' '||'MILES' becomes NAUTICAL MILES

and

X2 +_5||'N.M.' becomes (value) N.M.

where (value) is the nuﬁerical value of X2 + 5.

Note that, in effect, concatenation converts numerical data
.+o0 characters, These "character expressions" can then be

output using the WRITE I/0 command.

4.i.4 Array Expressiogs. Wi?hin HAﬁM only arrays of
scalars are considered. Array expressions‘jield afray results
and may involve a combination of scalar and array operands.
Scalar~scalaf product, qﬁotient and sum of difference are defined
as:array operations where at least one operand is an a;éay.:“The
indicated operation is performed on a seéugntial e;eﬁept;byf

.element basis,

4.1.4.1 - Some Examples.

let 21 = |1 2] (B] = |°
- 3 4 , 7
then — . -
- 1/5 2/5
a) [al/5 =
3/5 4/5

L 1/5 2/6

by [al/IB] =)

3/7 4/8

)) . 15 16
c) [B] + 10 = .
: 17 18

5 .6

1 2

a B '

37 48

4,2 Assignment Statements
A HAL statement is an order to perform some acfion, and a
HAL program is composed of a series of statements of various
kinds. The fundamental statement is the assignment statement, which
assigns a value to one or more variables. A simple assignment
statement takes the form
Label: Variable =‘Expression;
where Label: is optional,. .A single assignment statement can set
“several variables; e.q.
ABLE: A,B,C = 5;
or
* *
M, N, P = Q;
Note that, in general, the dimensions of the left side wvariables
and the right side expressions must be the same. Exceptions are

made for "zeroing" and assigning arrays. Thus,

A= 0;
B = 0;
*

C =0;

[D] = 0;

1

are all valid "zeroing" statements in HAL. In the case of an

array, a scalar expression assigns the scalar value to every

element of the array; e.qg.

[A] = 5;
oxr

[B] =X2+Y;
If there is more than one left side variable then the array

dimensions of all must be identical.

4,.2.1 Conversion Functions

It may be'convenient to form a vector, matrix, or array
of scalars, from its components. JIn HALM, three conversion
functions are provided: VECTOR(list), MATRIX(list), SCALAR
(list). These functions may be applied te mixed lists of
scalars, vectors, matrices and arrays. The functions may be
thought of as constructing -a one—-dimensional list of all the
included elements. Vector, matrix, and arraf list~alements
are equivalent to lists of their components., Matrices arxe
unraveled by incrementing "right-most" index first-(i.e., 1,1,1;
i,1,2; 1,1,3;...1,2,1; 1,2,2; ‘etc.).

The resulting vector, matrix, or array is filled,‘respectively,
element-by-element from the list. ‘

a) If the list_consists of only one scalar, all the elements
will be assigned a value equal to this single list
element. The desired dimensions (or shape) are indicated
by subséripts. Thﬁs, for example, -
VECTOR (0)

MATRIX 5)

2,3(
SCALAR3’3’3(A)
The default dimensions will be applied to VECTOR and
MATRIX if subscripts are not supplied.
b) It the list consists of one vector, one matrix or one
array the resulting forms can be quite complex. See

Sec. 9.2, Appendix F, and Sec. 6 of the HAL specification

document.

c) If the list consists of several entries, VECTOR and SCALAR
lengths will be equal to the number of elements in the
list. MATRIX row and columns will be equal to the square
root of the number of iist elements (presuminé an integral
value) unless otherwise specified. The number of list
entries must be compalible, thus,

%,c2,D,64E)

)

)

VECTOR(AZ,B

MATRIX(X,Y,Z

— %
SCALAR(A,X,M
Note: 6#E, indicates six entries of the guantity E

(i.¢., E,E,E,E,E,;E).

-4.2.1.1 Some Examples

a) X = VECTOR(1,A,0)* VECTOR(1)
b) DECLARE P ARRAY (15);
LOOK: [P] = SCALARlS(S#A,S#B,S#C);

¢) RE = MATRIX, 3(2;?,§)§s;
r

4.3 Control Statements and Relational Expressions

4.3.1 The GO TO Statement

The GO.TO statement in HAL is a simple unconditional transfer
to a labelled statement. The general form is:

GO TC I; -

where L is the label of a statement elsewhere in the program. It
specifies that the statement to be executed next is the one identi-
fied by the label and that control is to be transferred to that

peoint in the program.

:4.3.2 The IF Statement. The IF statement provides the capability

tbichange the sequence of statement execution on the basis of
what happens during execution of the program. The geneﬁal forms
are:

IF L, THEN S

IF Lé THEN B ELSE 3

where L, denotes a logical condition or set of logical coﬁdiﬁions,
S may be any executable ‘statement except END. B may be ény

executable statement except IF or END. For exampler

IF X<5 THEN GO TO AGAIN;.
or IF X<5 THEN ABLE: GO TO AGAIN;

ELSE IF xklﬁ THEN GO TO TRY;

The IF statement format requires that an ELSE be preceded by
an IF and not by another ELSE. As a result,the execution of
a statement following ELSE occurs only-if the logical condition

associated with the nearest preceding IF is false,

4,3.3 Logical Conditions. A-logical condition may be expressed

as an arithmetic comparison expression, for example

% %
-IF M = N THEN . ..

or

8

IF-X<2.064 10~ ¥ THEN . . .

or

-

"4.3.3.1 Comparison Expressions. Within HAL,, scalar-

guantities may be compared using the following relational operators.

Symbol . -Qgeration

= egqual
Ti= . not equal

< - less than

> '.greater than

<= - less than or equal
>= greater than or equal
T1< not‘less_than
1> - not greater than

Vectors, matrices and arrays are restricted to

Symbol Operation
= : equal
A= " not equal
For the operator =, the comparison is true if and only if all

the corresponding elements are egual. For the operator —t=, the
comparison is true if and only if any of the corresponding

elements are not equal.

4-12

4,.3.3.2 Sets of Logical Conditions. Logical conditions can be

combined, using the logical operatdrs NOT (73,”), AND (&) and
OR (|), into complex sets of logical conditions; the final
result of any condition or set of conditions must be a single

true or false answer. Thus, for example,

2

* %
IF ¥>5 AND Y<A AND M=N THEN . . .

IF NOT (X<=C OR X>=C + DELTA] THEN . . .

4,3.3,3 The Order of Operations. In order to avoid ambiguity,

the following rules are established when evaluating logical sets

of relational expressions.

a. NOT (-,7) must be followed by a relational expression (or set
of expressions) within parentheses.

b. Relational expressions are evaluated before AND and OR.

c. AND is applied before OR.

Thus:

1. A>5 AND B>6 means (A>5) AND (B>6)

2. NOT (A>5 AND B>6 OR C<7)

means NOT ({A>5 AND B>6)} OR (C<7)

4.4 Examples -~ I

In this section two examples illustrate the use of thé

HALM as presented thus far.

-4.4,1- INTER$ECTIONS

c e ﬁleind the intersections defined by the 1line,

ax + by + ¢ =0

'éﬁd‘the circle, _
_ : . ,
(x - p)2 + (y - @°= p?

where a,:b; c, p, 4, ¥ are parameters. (This problem is adapted

from An Introduction to ALGOL 60, C. Anderson, Addison-Wesley,

1964) -

HAL,, Program -
- INTERSECTIONS : PROGRAM;.
READ (CARDS) A,B,C,P,Q,R;

C COMPUTE DISTANCE FROM LINE TO CENTER OF CIRCLE

" O

CAN BE DERIVED BY TRANSLATING ORIGIN TO (P, Q)

F = A2 + Bz;

it

(AP + B Q + C)/SQRT(F};

1F D*>R® THEN GO TO NO‘SOLVE; /*NO SOLUTION*

z2=(a’Q-2aBP-BC)/F;

u= (82 P - AB Q- AC)/F;

- WHERE (U, Z) IS THE POINT OF INTERSECTION BETWEEN

C THE GIVEN LINE AND AN ORTHOGONAI LINE THROUGH (P, Q)

DELTAX = -B SORT (R> - Dz)/SQRT(F);
DELTAY_=‘(A(B) DELTAX;

X1 = U -~ DELTAX; /¥INTERSECTION #1*/
Yl = Z - DELTAY; .

X2 = U + DELTAX; /*INTERSECTION #2%/
Y2 = 7 + DELTAY;
WRITE (LISTING) 'X1 = '[]X1, 'vl = '||vl, 'x2 = '[|x2,

'y2 = '||y2;
GO TO FINISH; '
NO_SOLVE: WRITE(LISTING) 'NO SOLUTION';

" -FINISH: CLOSE INTERSECTIONS;

414fé_-TRANsF0RM

) Given the three-dimensional vectors W, Xy ¥, %, form
an or?honormal coordinate éet from w, X, y and express z on
this set.

HALM‘Program

TRANSFORM: PROGRAM;

READ (CARDS) W, X, ¥, 7;

;@ USE GRAM-SCHMIDT TO FIND ORTHONORMAL SET

"Bl = UNIT(W);

A2 = UNIT(X - (X.R1)AL);

E3 = uNIT (¥ - (Y.E1)AL - (¥.E2)E2);

M o= MATRIX (Rl, B2, A3); /*TRANSFORMATION MATRIX*/

- * .
INEW = M Z;

C FIRST Z0LD, THEN ZNEW
"WRITE (LISTING)Z, ZNEW;

CLOSE TRANSFORM;

5. Subscripted Variables and DO Statements
5.1 Subscripts

The elements bf vectors, matrices and arravse within
HAL, may be referenced by appropriate subscripting,

The first component of a %ector or a one-dimensional
array, is given the subscript.l, the second 2, etc. up to the
total number of elements. Thus for a 9 element vector, i.e.,

DECLARE V VECTOR{9):;
- the components may be written as,
ViV, Vgoe.. V.

A matrix or two-dimensional array may be thought of as
being composed of horizontal rows and verticai columns. The
first of the two sﬁbscripts refers to the row number, running
from 1 up to the number of rows, énd the second to the column
number, running from 1 up‘to the number of columns. .For
instgnce, a matrix of two rows and three columns would

require the declaration
DECLARE B MATRIX(2,3):
and the elements could be referred to by writing:

B B B B

Bi1,1 B1,2 B1,3 B2,1 Bz,2 Ba,s

A three-dimensional array may be thought of as being
composed of planes, each plane containing rows and columns.
'This interpretatibn depends somewhat on the purposes of the

computation. The reference to an element would simply be,

for example, C3,2,l°

- 5.1.1 Subscript Expréssions

A subscript expression can be any -arithmetic expression
._fesulting in a scalart value. Before being used as a
subscript the value is algeﬁraically rounded to the nearest

‘integex. Some examples are:

a? : BB};+Y,-—3Y+X _
b) ¢

. Br
©) Diaypyge=n

:5¢1}2 Subscript Range Expressions: Partitions
HAL provides two subscript range expressions which

permit the partitioning of vectors, matrices and arrays; the

~ -forms are:

Ap To 0

AR aT s

where P, Q, R, S may be literals, variables or expressions.

" 5.1.2.1 The "TC" operator

The TO-~operator is used to reference, or partition
a set of elements by specifying the subscript (or index)

limits. For example:

t For subscript variables which take on only integral wvalues,
some run-time efficiency may be gained by declaring these variables
to be integers. The HAL integer data declaration is
presented in Part III of this Guide.

a) Vl ro 4 Partitions a larger vector, V, and selects the

first four components to form a vector.

* - L] -
b) Ml TO P, 1 TO O partitions a larger matrix and s%lects

the first P rows and the first 0 columns.

!
*

. L] L] l
c) A*' 3 po g Partitions a larger matrix and selectsiall

-

rows, columns 3,4,5. The asterisk used in this. context .
means "all of the particular index”.

dy [a] partitions a three~dimensional array

P TO (P+2),-I, J
of scalars. The result is a one-dimensional array of

three elements.

e) A5 qo 2l

J "to the end". The number sign, used in this context

partitions a one~dimensional array from the
‘means "to the end of the subscript range®.

5.1.2.2 The "AT" Operator

5-
‘a set of elements by specifying the index size (or leﬁgfh)_and

.The‘AT—operator is used to reference, or partition

e

the beginning value. For example:

N * - . : I . --
a) My am 5, 4 AT 7 partitions a larger matrix and -
selects a 4x4 sub-matrix; i.e., rows' 5, 6, 7,-8, and

columns 7, 8, ¢, 10. l ‘

b) Vi ar 2 partitions a vector and selects three-cqmponents

starting with the second component.

5-3

5.1.2.3 "An Application of Partitionigg
Let E be a 9x9 covariance matrlx involving errors in

the estlmatlon of alrcraft p051t10n, ve1001tv and ground beacon

1
1

position. Find the current rms error in aircraft position.
The matrix E is declared by the statement
- DECLARE E MATRIX(9,9);

and the rms error is directly

1103, 110 307

Of course, this presumeé that the covariance terms in position

BMS_POS = SQRT (TRACE (E
6ccupy the upper left corner of the matrix.

5.2 DO Statements
The Do statements are used to deflne groups of HAL . Statements
which are to be treated as a single unit. There are fqur
- statements:
a) DO.z.END
b) DO WHILE
c¢) DO _FOR

d) DO CASE

5.2.1 DO...END
" The DO...END statement simply serves to block out or group
a set of statements. Tts most frequent application is as an

alternative within an IF statement. - For example:

IF A>5 THEN DO;
ABLE: X = Y + 67
BAKER: % = X ¥;
TP Z>10 THEN 7 = 10;
END; -

X=%Y - 6;

All of the statements enclosed within the DO..:END g;ouﬁ will
be executed if A>5. If A$5 then control will pass over the entire

DO...END group and X = Y —~ 6 will be executed.

5.2.2 DO WHILE
The DO WHILE statement provides a means of executing a
DO...END gioup-as long as a logical condition (or set of conditions)

is satisfied. The general form is

DO WHILE Lc;

é%étemeﬁté

END;
where Lc denotes the logical condition(s) as defined in Section
4.3.3. As an example, consider the compuﬁation of a équare,root
(baseé on an example in "A Guide to ALGOL Programming", McCracken,
gohn Wiley, 1962). Using the Newton;Raphson iterative technique,
to find the square root S, of a number A, the férmula

s - 1/2(2, + 57)
may be applied repeatedly. S' is the previous value of S. In

this illustration the initial guess will be 1 and the number of

iterations will not be a factor. Thus,

SLAST = 1;
DO WHILE ABS (S-SLAST)> 10 ° S; /*CONVERGENCE*/
S = (A/SLAST + SLAST)/2; /*CRITERION*/
SLAST = §; ' '
END; _
Note that, in effect, the logical condition is within the DO WHILE
loop and is reevaluated each time before execution of the group
6

of statements. When ABS(S-SLAST) < 10 ° 8, control will pass to

the statement following END.

'5.2.3 DO _FOR
The DO FOR statement provides a means of executing a DO...END

graﬁp repetitively for a list of values of a:control variable as
well as for a logical condition. The list may contain a series
of values and/or ranges of values. The general foxm is:

DO FOR VAR = A,B,...;C 70 D BY F ...WHILE Lc;
where A, B, C, D, E may be_scalar-i~ expressions .and VAR is a
§calar+ variable. -"BX E" and "WHILE Lc" are optional.

The control variable, VAR, is initially set equal to the -first
element of the iist, i.e., A, and then takes on successive values
from the list on each pass through'ﬂmagréﬁp éf statements.

Between C and D, VAR is incremented by the value of E until VAR
exceeds D (or is less than D, if the increment is negative). VAR
is evaluated and compared to D prior to each pass. Note that if
VAR = D then the statéments will be executed for that value. The
logical condition L_, if present, must be true before any pass is
initiated. It .is ‘processed after thé'éghtiol variable VAR 1is

inqremented and evaluated.

T or integer

If BY E is not provided, the increment is taken to be +1.

Note that the expressioﬁs B,C,D, and E are not within the loop
structuré of the DO FOR statement and are evaluated only once in
the DO FOR statement at the beginning. If they are then modified
within the loop, this will not affect their values in the DO state-
ment. Two exémples follow: ‘ -

1. Evaluate y = %> - log |[x| for the following values of
x: -2, -1.2, 1 to 10 by 2's, 100.
Thus, ‘ ’ a
DO FOR X = -2, -1.2, 1 TO 10 BY 2, 100;
Y = x> -~ LOG(ABS (X)) ;
WRITE(LISTING) X,Y;
END;
2.‘ Evaluate e¥ for x = .01, 1, 1, 10 using 20 terms of the
infinite series.
X X2 X3

Two DO FOR loops will be used; one to specify the values

+ o & & +

of %, and the other to sum the terms iq the series:
DO FOR X = .01, 31, 1, 10;
* SERIES = 1; /* INITIAL CONDITION */
TERM = 1;
EXP: DO FOR N = 1 T0 20;
TERM = TERM X/N;
.SERIES = SERIES + TERM;
END EXP; '
WRITE (LISTING) X, SERIES;

END;

5.2.4 DO CASE
The DO CASE statement provides a means of transferring
control tovany one of a number of statements, depending on
the value of a sc‘=.tl<’:u:"r expréséion. ’
"Suppose it is necessary to transfer to one of five

statements based on the value of N: the general form would

DO CASE N;

Sl: CASE 1-H
Sz; CASE‘2
53: CASE 3
84: CASE 4
CASE 5
85;
END;

where Slto 55 may be any executable st;tements, including
other DO CASE statements.

If N is an expression, its wvalue is rounded to the
nearest integer. A value of 1 specifies the f£irst statement
kCASE 1), 2 the second, and so on. The compiler will
issﬁe an error message if the rounded value of N is
negative, zero of greater than the number of statements

provided.

T or integer

7

1 The compiler supplies these CASE indicators] they are not
programmer-supplied comments.

5-8

The DO CASE statement can be used most effectively‘as
a multi-decision point, allowing combinatidons of specific

computations and transfers af control. For example;

CHOICE: DO CASE N;

G0 TO Al; - CASE 1
o o A2; cASE 2
GO TO Bl; CASE 3
_DO; ; % CASE 4
A= 3;
GO TO C1;
- END;
'hﬁq'EAsﬁ P; o CASE 5
A= 4; CASE 1
GO TO C2; CASE 27
END; B

IF A > 5 THEN GO TO Dl1; CASE 6
ELSE GO TO DZ;
GO TO F¥l; CASE 7

END CHOICE;

5.3 Examples - II
Two examples are included in this section as further:

illustrations of HALy, _programming.

*.5.3.1 MEANS

Given n numbers XI, X,

a) the arithmetic mean

""Xn' compute

= + S
a (x; +x X)/n,

m 2

b) the geometric mean

_ 1
9 = {Ei Xy oee X, P

. ¢) the harmonic mean

hm‘= 1/xl + 1/x2 +.:.+ l/xn,
]

. (This probiem'is adapted from An Introduction to Algol 60,

C. hndéfson, Addison & Wesley, 1964.)

MEANS: PROGRAM;
DECLARE X ARRAY(100); /* ALLOW UP TO 100 NUMBERS *}
-READ (CARDS) N, [x]l 0 1
P = PRODUCT([x]l To 17
'ZERO_CHECK: IF P = 0 THEN WRITE (LISTING)
- "HARMONIC MEAN DOES NOT FXIST';
'ARITH MEAN: AM = SUM([X]). oo) /N;
WRITE (LISTING) 'THE ARTITHMETIC MEAN HAS THE
VALUE' | |aM;
GEO_MEAN: IF P<0 AND CEILING(N/2) - ﬁ/z = 0
THEN DO; 7
WRITE (LISTING) 'GEOMETRIC MEAN IS UNDEFINED
FOR NEGATIVE PRODUCT AND EVEN NUMBER OF TERMS';
GO TO HAR MEAN;
END;

c CEILING WILL ROUND UP TO NEAREST INTEGER

GM = sTGN(P) (aBS ()},
" WRITE (LISTING) 'THE GEOMETRIC MEAN HAS THE VALUE!
L e |
HAR__MEAN: Ir P = 0 THEN GO TC FIN;
. EM = SUM(L/[X]) g oY '
WRITE (LISTING) 'THE HARMONIC MEAN HAS THE VALUE!
| |t

FIN: CLOSE MEANS;

5:3.2 FREQ RESPONSE
Find the sinuscidal amplitude-frequency response, over a

significant frequence spectrum, for the transfer function

% .

K

G(s) = — , Where T, > T,
-(srl+l) (ST2+1)
FREQ RESPONSE: PROGRAM;
READ (CARDS) K, TAUL, TAU2;
WRITE (LISTING) 'R ='||K, 'Taul='||TAaUul, 'Tau2=']|TAU2;
WRITE (LISTING) 'RAD/SEC', 'AMPLITUDE'; /*HEADINGS*/
TlSQ.= TAU1?;
7280 = TAU2Z; ’
¢ FIND SPECTRUM LIMITS IN POWERS OF 10 ,
c _ ASSUME ALL FREQUENCIES TO BE BETWEEN 10%#*-10 AND 10%**10

DO FOR I = 10 TO ~10 BY -1 WHILE .1/TAUL < 107;

END; /*THIS LOOP WILL FIND LOWER LIMIT OF SPECTRUM*/

DO FOR J = 10 TO 10 WHILE 10/TAU2 > 10Y;

END; /*THIS LOOP WILL FIND UPPER LIMIT OF SPECTRUM*/

SPECTRUM: DO FOR K = I TO J; /*STEP THROUGH SPECTRUM¥*/

W = lQK:

TABLE: DO FOR OMEGA = W TO 9 W BY W; /*INCREMENT
)) - FREQUENCY */
- o

MAGN= K/SQRT (TAUL® OMEGA® + 1) sQRT (TAU2? OMEGAZ + 1);

WRITE (LISTING) OMEGA, MAGN;
END TABLE;
END SPECTRUM;

FINISH: CLOSE FREQ RESPONSE:

5.3.3"FILTE§

Find the step response for a digital filter represented

by the difference equation:

N M _
AO = K{BO + i PK BK] +'§ QK AK

where A B

Y O'are current values of A and B, and AK’ BK are K
samples old. -

FI;TER: PROGRAM;
DECLARE VECTOR(20) A,B,P,0;

. /*ALLOW FOR TP TO 20 PAST SAMPLES#7

/*AND 20 COEFFICIENTS*/

READ (CARDS) K, N, P} oy v M Qf oo o

/*P AND Q ARE COEFFICIENTS*/

READ (CARDS) S; /*NUMBER OF DESIRED SAMPLE PERIODS 1IN
RESPONSE*/

5-12

HEADINGS: WRITE (LISTING) 'SAMPLE', 'OUTPUT RESPONSE';
BZERO = 1; /*SET UNIT STEP*/

X . = . % . ®
Al TO M G; / Z{ERO MEMORY */

0 -

’

it

Bl 1o
DO FOR I = 0 TO S;

1mon *B1ront P o0oMm Pmom’
/*USE DOT PRODUCT*/

AZERO = K(BZERO + P B

WRITE (LISTING) S, AZERO;

- -
VECTOR (AZERO, Ky ng (y-1)

A H *TN &
Ay ro N); /*INDEX OUTPUTS*/

VECTOR (B%ZERO, R

B . * \ %
.Bl TO M Y; /¥INDEX INPUTS*/

1 0 (M—-1)
END;

FINISH: CLOSE FILTER;

6, Subroutines: Functions and Procedures

It often happens that somé basic computation is required
at a number of places in a. program. It is possible, 6f course,
to write out the necessary statements each time they are
needed, bﬁt doing go wastés storage space and is conducive
to errors. It is therefore desirable to be able to write
the statements once and refer to them.as éequired. Functions

and procedures provide this capability.

6.1 Functions

HAL offers a number of built-in functions (see Appendix
B} to cdmpute such quanéities as trigonometiic functions,
logarithms, vector absolute values, matrix determinants
and inverses, etc. In ofder to use these functions, it
is necessary only to write their names where they are needed,
entering the desired expression(s) for the aréumentks).
For examplé,

X

A SINH(Y):

assigns the product of A and the hyperbolic sine of Y to
the scalar X. Y may be a simple name or an expression.
A more complicated example might be

R * %
A = ABVAL (X*Y) TRACE (M+N) ABS(P LOG(S));

The HAL prog¥ammer need not be confined to the HAL
built-in functions, but can develop and use programmer-—
defined functions. Suppose it is desired to make the
cbmputation of one root of the guadratic équation ax2+bx+c =0
into a function. The function's arguments are the coefficients;

6-1

itg value is the roct. Thus by simply writing the function
'name, as iﬁ"
A = Y2 RQOTl(E,F,G);:

control is transferred to the function, its value computed
énd control is returned. Thé product of Y2 and the value
of the function ROOT1 is then assigned to A. Note fhat

:fhe coefficient arguments may be names an@/or expressions;
- thus - a
o 2

A = ¥ ROQT1 (-E2, LOG (F) ,- g;/E);

“would mean thét the coeffiéient of.x2 is ﬁhe valué'Ez, the
-éoefficignt of X is the valﬁe‘LOG(F), and the constant
term is G/E. - o -

‘ The function name with its list of arguments may be
considered tﬁe calling statémént, or "function reference".
fhe function itself must be definéd elsewhere in the
program by a FUNCTIQN-statement anq‘ggcompanying function
ﬁody, or block ;f cade. The FUNCTION stateme;t names
the function, names the parameters used within the function
and specifies the data type Qf the function result; for
example

ROOT1l: FUNCTION{A,B,C)SCALAR;
Using HAL,, only functions resulting in vectors

or matrices need specify the function data type. If no

.specification is provided the function is presumed to be a
scalar; e.g. ROOT1: FUNCTION (A,B,C); . Although a function

Imay accept an arra& as input data, HAL does not permit

the specification of an array data-type function.

62

" - -The body of the function consists of the operations
necessary to compute its value. For the example being
-éonsidéred, the complete func£ion definition might appear as:

ROOTL: FUNCTION(A,B,C};
| RETURN (-B+SQRT(B2-4 A C))/2 A;
. :
- CLOSE ROOT1;
fhe RETURN statement terminates the execution of a function.
fhe function body must have at least one RETURN statement,
The "returned" expression must agree wi;h the function datg—
.tygé; in this cagse a scalar. The ahove function might be
organized in other ways, t&o; for egample,
ROOTl: FUNCTION (A,B,C);

T =B - 4 A C;

U = -B+SQRT(T);
RETURN V;

CLOSE RQOT1;
In this example, T, U, V are introduced for programmer
convenience. These are loca} variables, i.e., local to the
defined function and unknown outside the function_yblock. Local
variables are discussed further under Scope of Names in
Sec. 7.1 . The declaration of Zocal variables follow the
same géneral rules for variable declarations as described
in Sec. 3.1.4,

The variables A,B,C are called formal parameters; that

6-~3

‘is, they do not exist in of themselves and are no more than dummy
lﬁiariables that indicate what to do with the actual paraméters in
-zéée:function reference, The appearance of formal parameters in
ﬁhé'function statement serves as their declaration; .Gy
. }

FUNCTION(A,V,&). An explicit declaration is necessary if other
than default characteristics are required; e.g., i

E; FUNCTION(A,V,&);

DECLARE V VECTOR(6);

DECLARE M MATRIX(6,6);

.
L]
[

- It is important to emphasize that the data types and dimensions
provided in the function reference must match, correspondingly,
the data types and dimensions of the formal parameters declared

in the FUNCTION statement and function body:

The formal parameters.in a FUNCTION statement c%nnqt be
assigned values; i.e., they may not appear on the left hand side
of an assignment statement. The actual parameters are gxpressions
involving actual variables that have been declaréa elséwhere in
the program. In the ROOTL examplé above, the formal paraméfer
A would be replaced in the function body by Ez, the formal para-
rmeter B by LOG(F) and the formal parameter C by G/E.:

A function accepting a particular data type will usually

accept an array of that type also. For example:
2

[A] = v2 ROOTL([E], [F],(G]):

Presuming linear arrays, this assignment statement would be

executed as follows:
2

Al =Y ROOTl(El,Fl,Ql);

- .
Az =Y ROOTl(Ez,Fz,Gz),
etc.

‘6&1,1‘ Some Examples

LU

1
el.%32/k§

l) Compute E = . 3
x~(-1)
as a function.
' E: FUNCTION(X);
B = EXP(1.432/K X) -1;
RETURN(l/X5 B);

CLOSE E;

2) Define a fﬁnction to compute

o .
/(l + Ya.a + x2) —/—- if x <0
i _ ~ al 5
y(a,x) = < 0 : if x =0
. a
(1L - Yaizg ¥ x2) T—T if x > 0
a

where y, & are six-dimensional vectors.
Y: FUNCTION(A,X)VECTOR(6);
DECLARE A VECTOR{6);

IF X = 0 THEN RETURN 0;

2); /*B IS A LOCAT VARIABLE*/

B = SQRT(A.A + X
IF X < 0 THEN RETURN (1 + B) UNIT(X);
ELSE RETURN (1 ~ B) UNIT(A);
CLOSE ¥;

Note that the formal parameter A reguired explicit deciarétion

because the desired wvector dimension was not the default.

because the desired vectdr dimension was not the default.

‘6;2 Procedures
A procedure is like a fqncéion in fhat,once invoked,
cenfxol is transferred to the procedure body, computations are
performed and results are made available to the caller, Where
a functlon is used 51mply by writing its name, "ard a particular data type
is aSSOClated w1th the function result, a procedure must be
called'with a CALL statement and may provide many results of
ﬁiffefent types. The CALL etatement has the form:
' | ‘CALL Name (2,B,C)ASSIGN(T,U,V);
Where'Name is the name of the procedire. A, B, and C may be names
end/ef expressions; T, U, V must be names only. A, B, and C
ﬁfb%ide the "input" data to the érocedure and the precedure
'feéultsu("output“) are assigned to T, U, and V.
As an example, suppose that instead of desiring one-root
of a guadratic, as illustrated in the previous section, two roots
are necessary. The CgiL statement might be
' CALL ROOT2 (E%,LOG (F) ,G/E) ASSIGN (X1,X2) ;
and the procedure definition would consist of a PROCEDURE statement
and a procedure body, thus ‘
ROOT2: ?ROCEDURE(A,B,C)ASSIGN(P,Q);
T = SQRT(B2 - 4 A C);
P=(-B+ T)/2 A;
Q= "(-B - T)/2 A;

CLOSE ROOT2:

6-6

As in the case of a function,A, B and C are formal parameters
'(éummj variables) representing the "input" data. These variables
.éaﬂgot be assigned values; they can;ot appear on the lefthand
‘side of =. The assign parameters, i.e., P, Q above, are glso

formal parameters in that they only stand for the actual assign
: §

- i
parameters (X1, X2) in the CALL statement, but they can be assigned

as shown in the example. 8Since P and Q are in fact X1 and X2,

the assignment statements actually place new vélﬁes into X1, X2
at these points in the procedure body. Interéstingly:enough,
since P and Q0 may appear on either side of =, data can.be input'
“to a procedure via the assign parameters as well as %ﬁe call
parameters. ‘ ‘

The declaration of formal parameters ané local variables
follow the same rules as for functions. Not; that ho-éaﬁa'type
is associated with a procedﬁré name and therefore a pfoceduré
name must be called rather than simply used. A précedure ﬁay be

- terminated and control returned to the caller by reaching a

RETURN oxr CLOSE statement.

6.3 Examples - IiI
Twohexémples are included in this section as further.illust¥a—
_Eist.of HAﬁM programming.
'6.3.1 PHASOR : ' - l
Write a procedura to trahsfgrm a complex numbex frbm
rectangular to polar form with the CALL statement i
CALL PHASOR(A,B)ASSIGN (M,PHL);
where the rectangular form is a + ib, and the poclar form is meiQ.
PHASOR: PROCEDURE(XREAL,XIMAG)ASSIGN(MAGN,PHASE);
MAGN ='SQRT(XREAL2 + XIMAGz);
IF MAGN = 0 THEN DO;
WRITE (LISTING) 'PHASOR UNDEFINED';
MAGN = -1; /*-1 IS USED TO INDICATE*/
PHASE = ~1; /*UNDEFINED CASF*/
RETURN; _ /*RETURN FROM PROCEDU##*/
- END; ‘
C KEEP ARCTA& COMPUTATION LESS THAN 45 DEG.

II' ABS (XREAL) >= ABS(XIMAG) THEN

DO; ' -

IF XREAL > 0 “THEN PHASE = ARCTAN(XIMAG/%REAL);
ELSE PHASE = PI + ARCTAN (XIMAG/XREAL) ;
La/*PI IS A RESERVED HAL CONSTANT*/
RETURN; -
END; .
TF XIMAG > 0 THEN /*AT THIS POINT ABS (XIMAG) > ABS (XREAL*/
DHASE = PI/2 ~ ARCTAN (XREAL/XIMAG) ; ‘
ELSE PHASE = 3 PI/2 - ARCTAN{XREAL/XIMAG);

CLOSE PHASOR;

6.3.2 INTEGRATE

Integrate the differential equation

= t p2 + t2 o)

Q1Q
e

from tl to t2, where p(tl) = pl'

Use the Runge Kutta technigque, and an integration step of At.

INTEGRATE: PROGRAM;

READ(CARDS) P1, T1, T2, DELT;

T = 713
P =Pl; /*INITIAL CONDITIONS*/
C INTEGRATION LIMITS

LIMITS: DO FOR TLIM = T1 TO T2 BY DELT;.

¥

Cc RUNGE_KUTTA REQUIRES FOUR PASSES FOR EACH STEP

FOUR_PASSES: DO FOR I = 1 TO 4;

-2 2,
DIFF_EQUAT: PDOT = T P~ + T'P;

CALL RUNGE_KUTTA (PDOT,P1,TLIM,DELT,TI)ASSICN (P,T);

-

END FOUR PASSES;
P1=P; /*INITIALIZE FOR NEXT TIME STEP*/
WRITE (LISTING) T,P; ‘
END LIMITS;
. CLOSE TNTEGRATE;
C RUNGE_KUTTA PROCEDURE
RUNGE_KUTTA: PROCEDURE (YDOT,YIMT,XINIT,DELX,J)ASSIGN(Y,X);
oUTER; |

DECLARE K ARRAY (4);

T Bee Section 7.3 for discussion of the OUTER statement.

6-9

KJ = DELX YDOT;

PASSES: DO CASE J; /*EACH CASE IS A PASS*/

DO; L casE 1
X = XINIT + DELX/2; /*HALF-STEP*/
Y = YINIT +'KJ/2; |
" END; B - E
Y = YINIT + KJ/2; .CASE-z
g /*HALF-STEP AGAIN*/
" DO; CASE 3°
X = XINIT + DELX; ‘/*WHOLE;STEP*/
Y = YINIT + Kj; |
END;
C FINAL REgUﬁT
Y = YINIT + SUM([K])/6; - éASE 4
- J*WHOLE~STEP AGATN*/
END PASSES: ' ‘

CLOSE RUNGE_KUTTA;

Some comments on this example:

1)

é)

3)

In the RUNGE_KUTITA procedure, YDOT, YINIT, XINIT, DELX,
J, Y and X are formal parameters. .

The array K is an actual local variable.

Note that data is "remembered” by the procedﬁfe from one
call to the next; values of X and the elementé of_tﬁe
array K are retained. X ié computed in Cases 1 and 3
and held for Cases 2 and 4 respectively. The eléments
of K are assigned on successive calls and retained for

the summation if Case 4.

6~10

"7. Program Organization: Scope of Names, Ihput—Output.

_ A HAL program, written using the features defined in HAL,,
'igéy:consisﬁ of statements (i.e., IF's, DO's, assignments, etc.),
lpﬁécedures, and functions within a PROGRAM-CLOSE block. EThe
PROGRAM-CLOSE block constitutéé the main program and is th
smallest compilable unit in HAL; the procedures and func%ipné
are sub-programs and a£e not independently compilable. Any
procedure .or function may, in turn, contain statements and -
additional procedures and functions.

| Program, procedure, énd function blocks define bou@dériés,
or regions, witﬁin which names and labeis are ;ecognized and
may be used for coﬁputation and controlt wa blocké with
mutually exclusive name regions m-ay use the same name for.
different purposes without interfe_rence; e.g.,; X may bg.‘a':‘
vector in one procedure and a label in another. The;%egion
in which a name or label is potentially recogn;zabie.ié'called:

the scope of that name.

7.1 Scope of Names

The scope of a name or label, in HAL (or HALMX, is defined
from the outer-most block toward the inner. _Thus, namgs déclaréd
at the main program level in a fROGRAM—CLOSE block are potehtially
recogniz%ble within all nested procedures and functioﬁs;
The names are only potentially known because any pafticular
‘name can be declared again in an inner block and then i;s
scope would become all the nested blocks within this block.
In general, name and label scopes are basea on the firgt

appearance of the identifiers. An example may help to illustrate

7-}

-these principles:
A: PROGRAM;

DECLARE X VECTOR(6);

B: PROCEDURE;

DECLARE M MATRIX(3,4);

*
1]
|

" CLOSE Bj
" 'C: FUNCTION;
' .DECLARE X MATRIX(4,5);
'D: PROCEDURE;
DECLARE VECTOR(6), A, M;
" CLOSE D
.deSE C;
CLOSE 2;
Commenté:
"1. The scope of the program name (label)}, A, is .all of A
except D. Note that A is declared to Sé a vector in D. B
2. _The-sccpe of the vector X is all of A excépf Q and
D. "X is deciare@_to be a matrix in C and its scope encomvasses
the nested procedu#gig,_ -
3. The scope of the matrix M is B.
" 4. The scope of the veétor M is D.
For fhése examples of dﬁé;icate names within é Sing;e
program, there are no émbiguities‘bégaﬁse of the different
name scopes. HAL does not-admif ddpli&ate hameé within the

same scope.

7.2 Scope of Labels

The'scope of labels (statement labels, procedure and function
ngmes) generally follows the same rules.as.for names' with some
minor exceptions. The GO TO and PROCEDURE statements; i.e,
GO TO X or CALL X (=—--), implfrthe existence of ¥ as a label.
If the label X does not appear in tﬁe block in which the :statement
is written, the GO TO or CALL must refer Eo a label in an
outer‘block; if the label does appear in the same block, the
‘statement refers to this label. .

For example:

A: PROGRAM; A: PROGRAM;
B: PROCEDURE; B: PROCEDURE:
GO TO X; GO TO X;

. X: P =G + H;
CLOSE B;] .

CLOSE B;

CLOSE A;
CLOSE A;

In #1, no iabel X appears 1in B,therefore control is trans-—
ferred to the X appearing in A. 1In #2, control will be trans-
. ferred to the X which appears in the same block as the GO TO X.
With reference to #1, if the label X would have appeared in A
after B, i.e., after its use in the GO TO statement, then X-

would have to be declared explicitly,prior to B,by a speciai-

DECLARE statement (see Section 12.1.1).

A fundtion name presents special problems because its
appearance within a statement does not cue the fact that it is
-a label. For examplé

Y = 3 + SéECIAL(Az + 5):
does not convey whether SPECIAﬁ is a function hame or simply
a data name. It is therefore necessary to locate the
funétion definition statements at the beginning of a block so
that the appearance 6f-the function name causes no difficulties.
* Por example:
A: PROGRAM;

X: Y=13 + 3;

B: PROCEDURE;

Z: FUNCTION:

-®
.
L]

CLOSE %;.
P=2Z+ 3;
CLOSE B;

CLOSE A;

Note that even though % is implicitly declared as a scalar at
the prograﬁ level, the reference to 72 in B can only be to the

function Z. (For an alternate technigue, see Sec. 12.1.2.)

7-4

7.3 The OUTER Statement

Even though name écope allows for the duplicétion of names,

it does not séfely permit their implicit declaration (Sec. 3.1.4)
within biocks in a proéram. I For example, if a name were ‘
‘implicitly declared within a.functién and also deélared at

-tﬁe prbgrém level, perhaps being unaware of the ambiguity, the
pfogkam level scope ﬁbuld encompass the function; sqpercede
thé'name's "Function definition", and cause an.error. In

order to prevent such an occurrence HAL érovides the means to .
isoléte an inner block so that only intended ﬁames are recognized.
The OUTER statement effects this isolation. For example:

A: PROGRAM; _ Z: PgbGRAM;

DECLARE VECTOR (4) ,X,Y,Z; .

P=Q+ R; - .. ’ B:)PROCEDURE;
K = mmmee , ’ - QUTER Q, X, ¥;
B: PROCEDURE; . : C: FUNCTION;

OUTER Q, X, ¥Y; L= M + N;

-
© -
-

- "CLOSE C;
L -
CLOSE B; . CLOSE B;
CLOSE A; CLOSE Z;

The use of the QOUTER statement here, means that of all the

names (and@ labels) that might have been declared at the

prd&f&m level, only Q, X and ¥ are recognized inside B.
If OUTER is written without a list of identifiers, no

"outer" names or labels will be recognized. It follows then

that .if it is desired to declare names implicitly an OUTER

statement must be provided.within the block, or the block must

be within another block which contains an QUTER statement.

7-5

(See prgrams A and Z above. In A: P,Q and R are implicitly declared.

In 2: L, M and ¥ are implicitly declared.)

_§i4 Explicit Declarations
‘ In a program with nested procedures and/or functiond,
'dénvenienqe may dictate the use of explicit Qeclarations,
even for scalars and étandard default vectors and matrices.
Iné£éad‘of seiecting outer names for each block with an OUTER
stéte@ent and.list, it may be easier to 1-'a.c:ce{)t all" outer
ﬁames and declare explicitly the inner (or local) names.
Eo£ example: \

ABLE: PROGRAM;

‘ DECLARE VECTOR A, B, C, D, E,...,K;

DECLARE MATRIX AM, BM, CM,...,RM;

BAKER: PROCEDURE;
DECLARE A, B, L,.M, N;
DECLARE VECTOR X;

DECLARE MATRIX D, W;

CLOSE, BAKER;
In this example, all of the names declared at'the proéfam
level (ABLE) and all of the names declared ﬁithin BAKER are
recognized in ﬁhe pfdcedurg; BAKER. Note that within BAKER A and B
are declared scalars, and D is a matrix. HAL permits the complete

selection of inner- and outer-names by combining the use of DECLARE

statements and the OUTER statement.

7.5 Communication Between 'Programs

The communication between independently compilaqle
programs is provided by HAL through a common data pool‘i
(COMPOOL). This facility is discussed in detail in Sec.12.1;3.
If the COMPOOL exists and is compiled with a set of proérams
the scope of the names in the COMPOOL comprises all of the
;rdgramsl OUTER statements would then be required at the

program levels if implicit declarations were to be made.

7.6 Input~Output

HAT, provides three basic I/0 statements: .FILE;,READ
and WRITE. It is presumed that for the HALM proérémﬁer, -
a simplified usage will suffice. (A more complete-discu;siqn

appears in Sec. 12.2).

7.6.1 FILE Statement

By‘"assigning" a name to a file, its value(s)is .
written into the file, thus;

FILE(Device,Record) = X;
Device is a thrée digit number specifying a tape or disc;‘
etc., and Record is a program generated identification numﬁer ‘
(Récord can be a scalar expression).

By "assigning" a file to a variable, the contents of the.

file are read and assigned, thus ‘

X = PILE (Device, Record):

For filing and retrieval, X may be any data type or organization.

7-7

.7.6.2 "READ Statement

The READ statement causes input data to be read from an

external device and assigned to a list of wvariables. The general

1
. .]
format is:

READ(device+)_A, B, C, .v..1% i
where A, B, C are-variable names. If the variable is alvector,i
matrix or array, the number of data fields to be read is the
same as the number of elements; the order is.the same as Wﬁen
a vector, matrix ox array is “filled" from a list (sée:ééc. 4.2.1).

The following discussion assumes that the external device
is a card reader. . o

Fach READ statement presumes data begins iﬁ co;uﬁn 1 of
a new card, and that each data field is separated by- a.comma and/or
blanks. Control over the reading of c%rds is explaigedamore
fully in Sec. 12.2.1.1. If Ehe READ statement reqﬁireé mofé data
‘than can be provided on a single card, subseguent cards will
be read_automatically as reguired. An example follows:

PRCG: PROGRAM; .
READ (CARDS) L, M, N, V;

READ (CARDS) A, B, C, D, E;

CLOSE PROG;

"device" is a three digit number specifying a particular device
(see Sec. 7.6). A programmer—-defined name may be substituted
by using the REPLACE statement. For example, suppose the I.D.
number for the card reader were 696 then

. REPLACE CARDS BY '696';
would permit the read contrel statement

READ (CARDS)}A,B,C,eue.;

Cards:

col 1
CARD #£1 64.06, -17.10, 45, -100.06, 67.17, 26.54

CARD #2 5, 7, 9, 12, 16

The input data may appear in a.natural format. Any decimal
number with or without a décimal point will be recognized. The
letter E is used to express exponent powérs of 10. Internal
Slanks may not appear in.the numbe;. The following are examples
of acceptable input data:
' 369.00
8
-8.36E+2 (equivalent to ~8.36 x 10°)
+0.123E~05 {(equivalent to 0.123 x 106)

456,789

7.6.3 WRITE Statement

The WRITE statement transmits HAL internal data to an
external device. The geﬂeral format is: -
WRITE (device) A, B, C,;
whére thé list A, B, C may be of variable names and/oxr expressions;
If a member of the list is a vector, matrix or array the number of‘
data‘fields to be written is equal to the number of elements; the

order is the same as when a vector, matrix or array is "filled"

from a list (see Sec, 4.2.1).

The following discussioﬁ assumes that the external device
is a line printer.

Each WRITE statement presumes that data output will start
in column 1 on a new line. The ﬁirst executed WRITE statement
presumes,;n.addition,that data output will start a£ the top of
a new page of the lisfing. The programmer can control printing
by including COLUMN (N) and.SKIP(M) instructions in the WRITE
‘list. For example: _

% WRITE (PRINTER)} COLUMN(4) ,A,SKIP(2) ,B....;

will cause the printer to advance to column 4 before starting to
print the %alue of A, and subéequently to skip 2 lines before
starting to print B. If no print control is used; 5 blanks

are inserted between each written field. If the WRITE statement
" delivers more data than can be w;itten on one line, the printer
automatically advances to the beginning of the next line and
then continues. More about the control of printing is explained
in Sec. 12.2.1.2.

Numerical output data appears in the following fixed format:
/
SX . xXXXxxxxEtxx

L_—Y____JK__Y_J

mantissa exponent

where
$ 1s a blank or a minus sign;
X 1is a single digit, 0 to 9;

t is_a plus or a minus sign.

7-10

An example follows:

WRITE {PRINTER) COLUMN (20} , ' TRAJECTORY RESULTS',
SKiP(3),COLpMN(10),'RATE IN FT/SEC',
COLUMN (30) , 'TIME IN SEC',
COLUMN (50) , 'DISTANCE IN FT';
LIST: DO FOR I=1 TO 50;
WRITE (PRINTER) COLUMN (10) R
COLUMN (30) T

COLUMN (50) D_:

Il’
END LIST;
Printer:
col 190 . 20 30 50
TRAJECTORY RESULTS

RATE IN FT/SEC
-6.3745228E+03
-5.8812074E+03

~5.2156354E4+03

4.2573067E+02

TIME IN SEC
5,0000000E-01
1.0000000E+00

1.5000000E+00

2.500C0000E+01L

DISTANCE IN PFT
5.79946738+04
3.32100548+04

2.1478935E+04

-
-

1.0057928E+04

Part IIX

GENERAL CAPABILITIES

Part III presents a description of some of the more
general capabilities and complex aspects of HAL. A complete
description and specification for HAL are given in the

document "The Programming Language, HAL, - A Specification",

_bgéument ¥ MSC-01846.

8. HAL Data

HAL classifies data into six types:

integer,

scalar,

vectoﬁ, matrix, character and bit string. Through use of

DECLARE statements the prograﬁmer can specify, where apovlicable,

attributes concerning the size, shape, precision, initlalization,

and storage class of any data. Figure 8.1 below, summarizes

the allowable attributes ‘for each type.

The attribute effect

appears within the chart. (See Sec. 8.4 and 8.5 for Initialization

énd Storage Class

&

-\Attribute Storage
Type “~. . | Dimensions| Precision | Varying Initialization { Class
Integer - - - v/ v
Scalar - gi;i?gl - v/ g
Vector length decimal - 4

digits
Matrix TOWS, decimal - v v
i colunns digits .
Bit length - - W v
Character length - -Lax.length /
- 1

—

Fig. 8.1 HAL Data Types and Attributes

8.1

Data Types

8.1.1 Scalar, Vector, Matrix

These data types are floating point quantities and

correspond to normal mathematical definitioas.

8-1

A vector consists

of n-scalar components, a matrix of m rows, n columns of scalar
components.
8.1.2 1Integer

The integer aata type is a full word signed number containing

only integral values; i.e., a whole number.

8.1.3 Bit String . -

The bit string data type is simply a.string of 1's and/or
0's of specified (fixed) length. A bit string of length
aqual to one may be used as a bodlean variable.

!

8.1.4 Character String‘

The character string data type is a string of any of the
HAYL characters, and may be of fixed ‘'or varying length. The
varying string is one whose length_is dynamically controlled
by the compiler at execution time, and requires specification

of its maximum length.

8.2 Data Declarations

Each data type may be declared-by a DECLARE statement.
In addition, for convenience, several declarations may bé
made within a‘single statement. The general form is as follows:

DECLARﬁ'Name _type dimensions precision- 5thérfattri5ﬁtes;
That is, the ﬁﬁrd DECLARE and then the n;ﬁe, followed by the type,
including any dimensions and precision, followed thereafter by
oéher attributeé in any order. A few examples follow:

1. DECLARE J INTEGER INITIAL(65);:

J is.an integer variable with an initial value = 65.
2. DECLARE X PRECISION (8)AUTOMATIC INITIAL(G.UGI);

8-2

X is a scalar variable with a precision of at least 8

decimal digits. The storage class is automatic and X has an

initial value = 6.061. WNote.that when the type is not provided
-the HAL compller presumes a scalar. The programmer can supply

the word SCALAR at his option.

3. DECLARE M.MATRIX(3,3)STATIC~
. INTTIAL (1,0,0,0,1,0,0,0,1);

M is a 3x3 matrix variable with default precision
~supplied by the compiler. The storage class is statié and M
is initially set to an identity matrix. -

Note that when the programmer does not supply an attribute,
in most cases the compiler will presume a standard default.
For exaﬁple the default dimensions are VECTOR(3),
MATRIX(3,3), BIT(l), CHARACTER(8). A liét of all the
HAL standafd defaults may be found in the HAL specification
document. (Reference 1).

4. DECLARE P BIT(lZ)INITIAL(OCTf4372');

P is a.bit s£ring variable of length 12 with an
‘initial value of 100011111010. The default. on stdrage class

is STATIC.

8.2.1 Multiple Dbeclarations

Several declarations may be made in a single statement
by first separafing individual declarations by commas, e.g.
- . DECLARE J INTEGER INITTAL(65),

X PRECISION(8).....,

8.2.2. Factored Declarations

When a group of declarations have common fac?ors, the
-dgclarations may be made in a single DECLARE statement with the
é&mmon factors appearing first._ For example,

‘ 1. DECLARE PRECISION(8) X INITIAL(6.061),
M MATRIX(3,3), V VECTOR(6);
All quantities have been declaxed to ha;e a precision
of ét ieast 8 decimal digi£s. - oo
2. DECI-..ARE BIT (1) INITIAL(BIN'1') ,A,B,C,D,E,F;
| A through F are 1 bit bit strings, all initially

. set equal to 1. - _ <

8.2.3 Implicit Declarations

b £
As previously indicated in Sec. 3.1l.4, sScalars, vectors,

and'maérices may be declared implicitly (i.e., not by a DECLARE
.:5sta£ement) by their first appearance in the program with an
appropriate défining mark on the E-line over the variable name.

Bit and character strings may also be declared in a like manner,
with default characteristics, by marking.the bit string with a
period (.} and the character string with a comma (,). The standard
default lengths for b;t and character strings are one and eight,
respectively. Thus the following statements would be sufficient

. to declare the stringé i, é, é, and 6.

A = BIN'1l' OR B;

r r
C = 'ANSWER=' |[D;
A-and B are bit strings of length equal to one.
r !
C and D are character strings of length egual to.eight.

8-4

8.3 Precision
As indicated above,HAL allows the user to specify the

'precision of data in a DECLARE statement. The PRECISION
;éttribute may only be applied to scalar, vector, and matrix and
:%pecifies.ﬁhé desired minimum number of decimal digits; the
number must be a positive integer literal and appear within
ﬁarenthesis as, for examplé:

DECLARE X PRECISION (4); T

DECLARE V VECTOR(6)PRECISION(8);
For the iBM 360 implementation at MSC the compiler will provide
eiﬁher single ox doﬁbLe pfecision floa£ing_point depending
on the magnitude of the PRECISION specification. (The standard
deféult‘is single-precisionl) For magnitudes greater than

.1, double precision will be assigned.

J8.4-”Constants and Literals

HAL ﬁakes a distinctiog bgtween guantities (names) which
are declared as coqgtant and those which literally express
their own wvalue (iiterals). Both remain constant during

program execution.

8.4.1 Literals

. There are two types of literals; arithmetic and string.
An arithmetic literal aﬁpears as an ordinary decimal number and
may exhibit exponent powers of 2, 10, 16. See Sec. 3.1.3 for
examples of arithmetic énd character string literals.

The bit string literal expresses its value as a series of binary,

octal, decimal or hexadecimal digits. String literals must be
enclosed in single quote marks. - Some examples of bit ;éring

R

.literals are:
' BIN. '101001"
OCT '77346"
DEC '943"
" HEX ‘96FABY

8.4.1.1 String Repetition

A convenient way to repeat a string p?ttern is to
iﬁplﬁde a repetition factér indicating the number of "repeats®.
For.eﬁample, ‘

“ 1) BIN(6)'10"
would produce 101010101010
‘;) OCT(4)'7!'
would produce 7777
.3)- CHAR(2€) 'POP')

would produce PCPPOPPOP...... .POP. .

Note that when repeating a character string,éHAR() must
- precede the string. The programmer may use CHAR for an unrepeated
string at his option; i.e., 'ANSWER' aﬁd CHAR'ANSWER' are
egquivalent. '

A repetition faﬁt&r may not be included when eXpressing

a string as DEC 'digits'.

-

8.4.1.2 Using Literals : . ¥
Literals may be used in HAL wherever a constant number
(or string) is required; for example, in the assignment statement

X = 3.064 Y;

8.4.1.3 The REPLACE Statement

The REPLACE statement provides a means of replacing

& name literally by the string of characters enclosed, within single
guote marks. For example, £hefstatement .
REPLACE THRUST BY 'l10601.74%; E
would replace the name THRUST by the characters within the °

quote marks. The substitﬁtibn is made whenever THRUST is

encountered in the program. Substitution is éccomplished

within the compiler and does not appear in the listing. For

example:
1. A: PROGRAM;
REPLACE BZERO BY '({-6.27)';

DECLARE B INITIAL BZERO; -

2. A: PROGRAM;

. REPLACE THRUST BY '10600';

-
-

ACCMAG= THRUST/MASS;

The REPLACE statement may also be used to substitute
short statements or expressions (or any character string):
i,e.

1. REPLACE FIRE_JETS BY 'GO TC F_J;';

¥ =3B + C;

FIRE_JETS

etc.

. 8-7

http:10601.74

2. REPLACE FACTOR BY 'X**2 + Y';
P = M LOG(FACTOR);

In writing‘a REPLACE statement the character strinq must
be in one-line format (see Apéendix‘ D) and the identif%er to
be replaced may not Be a HAL keyword or symbol. E

* If a replace statement contains a string literal, double Quétes
must be used to distipguisb then from the oﬁter quotes; e.9.,
1) REPLACE A BY 'BIN"1010"‘; - _
2) REPLACE B BY 'Y"THE ANSWER IsS"'.

A would then be replaced by BIN'1010' and B by 'THE ANSWER IS'.

The scope of a REPLACE statement is thé same as thét for

4

a name {S5ec. 7.15 with the following exception: the name in‘a
REPLACE stateﬁent is never "replaged" as a:result-pf ﬁnqther
REPLACE statement located in an outer block. -
EXAMPLE:
ABLE: PROCEDURE;

REPLACE X BY '¥f;

DECLARE X INTEGER;

-
-
-

BAKER: PROCEDURE;

REPLACE X BY '%Z';

CLOSE BAKER;
CLOSE ABLE;
The identifier X appearing in BAKER.is replaced by Z. "X outside

of BAKER is replaced by Y.

B.4.2 Constants

The CONSTANT attribute when-included in the DECﬂARE state-
..inent sﬁecifies that the named guantity is a constant during exé—
a?@ytion; fhe use of CONSTANT.and‘INITIAL is mutually exclusive.
Spﬁe examples are:

1) DECLARE INTEGER CONSTANT(GS);

1

3) DECLARE

J

2) DECLARE X CONSTANT(6.061);
M MATRIX(3,3)é0NSTANT(1,0,0,0,1,0,0,0,1)}
P

4) DECLARE BIT(lz)éONSTANT(OCT'4372');

The declarations are similar to those at the beginning of Sec. 8.2

éxcept J, X, M and P are constants.

8.4.2.1 Initiglization Repetition

Initial and constant values of vectors and méﬁrices may
be specified by lists of literals and it may be copvgnieﬁt.to repeat
portions of the list. This is accomplishéa by use of thé pumbef ()
sign. As an illustration consider example (3) in Sec,:8.,4.2 gbove.
This could also be written: '

DECLARE M.MATRIX(3,3)CONSTANT(1,3#0,1,3#0,1);
o " DECLARE M MATRIX (3,3) CONSTANT (2#(1,3%0),1); B
The term 3%#0 means 0 repeated 3 times.

Fér vectors and matrices, the number of literals ih.fhe'
INITIAL or COHSTANT lis?s {including all repetitiohsf must'eifher
be equal to the total number of vector or matrix components, or
be equal to one. |

1} If equal to one, all the components are set equal

to the literal (e.g., DECLARE M MATRIX INITIAL(Q))._
2) If equal to the total numﬁer of coﬁponents, the com~

ponents are set equal to literals in the list

6n_an elemeﬁt—by~element basis.
The vector-and/or matrix is 'filled' in the same manner
. ‘as-described in Sec. 4.2.1. : -
~The uses and forms. of INITIAL and CONSTANT are comglex and
it is suggested that the programmer consult the HAL speg}fication

!

document (reference 1) if more information is meeded,

B.5 Storage Class

In HAL there are two ways in which data storage may be
_aésigned: STATIC and AUTOMATIC. These attributes may only be
applied to declarations made within probedures and functions.
- STATIC storage is assigned when a progrém is activated

and remains assigned until the end of a program. This'is

the kind éf storage to which the FORTRAN pfogrammer is éccugtomé&.
’ Consider the following example:

A: PROGRAM:

B: FUNCTION;
~ DECLARE X INITIAL(5)STATIC;
X=X+ Y;
CLOSE B;
CLOSE A;
In ;his example, X being a STATIC variable is assigned a étqrage
location and initialized to five only when A is activated. Since
_its storage assignment does not depend upon B, the value of X,
upon successive entries to B, will be the last computed} i.ev,
the value of X is held static ("remembered"). -
AUTOMATIC storage is assigned on entry to the bibck

in which it is declared, and is released on exit from that

8~10

block. Suppose that in the example above an additional scalar
Y is declared in B; thus

B FUNCTIbN;

bECLARE INITIAL(5) X STATiC;.Y AU?OMATIC;

Y, being an AUTOMAT%C variable is assigned étdrage onIy when
~ control passes td the function B. Therefore, the last value of Y
’ is not "?emembéred" and each invocation of'B will cause Y
Fo be initialized at a value of 5. AUTOMATIC storage is
"normally used for local data which must be ?einitialized

. each time the block is entered., -

8.6 . Arrays and Structures

In HAL the programmer may associate the various data
types into two organizations; arrays and structures. The
array is an ordered collection of elements,_known'by one
name, ail of which have the same data tyvpe and attributes.
'Thg structure may be a collection of different data tyées, or-

ganized in a hierarchy.

8.6.1 Arrays
Any of the HAL data types may be organized into one-,

two-.or three-dimensional arrays.. This 1s accomplished within

the DECLARE statement; for example,

1) DECLARE J ARRAY (6) INTEGER, INITIAL (65):
J is a one-dimensional array variable of 6 elements,
Each element is an integer with an initial value = 65.
2) TDECLARE M ARRAY(4,2)MATRIX(3,3);

M is a two-dimensional array (4x2) of 3x3 matrices.

*

In.applying the INITIAL and CONSTANT attributes to arrays of
ﬁat; types the list of literals may specify the array value by
the ‘whole array, by a single array component (e.g., a matrix),
o£ by'an element of a component (e.g., a scalar element of a
vector)., The programmer should consult the HAL specification
document (reference 1) for the allowable forwms; some examples
Lfollgﬁ:— - -
! "1)_ DECLARE V ARRAY(4) VECTOR(2) INITIAL(1,2,3,4,-4,-3,-2,-1);
‘ . The array V is initialized such that its*first component
has the value [1,2] and the second [3,4], etc.
2) DECLARE V ARRAY(4) VECTOR(2) INITIAL(L,2};
All four vectors in the array are initialized to the
value [1,2].
3) DECLARE V ARRAY (4) VECTdR(Z) INITIAL{1l};
All of the vector elements in all of the vectors are

initialized to 1.

;3.6;2 S£ructures
‘ Some programsg are concerned with collections of data of
different types. PFor example, in a spacecraft application the
time, fuel, position and velocity vectors, navigation{covarianoe
matrix, cockpit switch positions and status monitoring flags
might‘be collected periodically for storage or transmission
to the ground. A programmer might wish to move (i.e., READ,
iWRITE, FILE, etc) ali or only part of the collectio#. To do
this he must be able to‘name and establish relaﬁi;nsﬁips among
the data and to the whole. This is accomplished by the '
structure declaration, e.g.- ’
DECLARF 1 SPACECRAFT DATA,
2 TIMEPINTEGER,
2 FUEL,
2 NAVIGATION,
3 POSITION VECTOR,
3 VELOCITY VECTOR,
3 NAV_COV MATRIX(6,6),
2 COCRKRPIT,
3 POWER_SWITCHES BIT(20),
3 LIFE_SWITCHES BIT(15)},
2 STATUS BIT(10):
The number preceding each name indicates the level of the.
name. The name SPACECRAFT DATA has level 1, the hiéhest_level.
This name refers to the major structure and includes-all the names
in the declaration. Thereafter, whenever a name at a highér leyel

is followed by a name(s) at a lower level (higher number), the

8~-13

«Paﬁe at:the higher level is that of a minor structure and includes
;Eﬁélother names within its structure. For example, -

COCKPIT includes éOWER_SWITCHEs and LIFE_SWITCHES.
The data type declarations, %.é., not the major or mino;
structure namesg, follow the general rules forx declaration$ stated .

earlier in this section. Note that the collection of items

above could be represented pictorially as in Figure 8.6-1.

SPACECRAFT_DATA

I] i _ I . - b
TIME FUEL NAVIGATION COCKPIT - .| STATUS

f ' o
POWER , SWITCHES LIFE SWITCHES

-

] [
POSITION VELOCITY NAleOV

Figure 8.6-1 Hierarchy of Levels in -
. Example Data Structure

8.6.2.1 Name Qualification

When all the names associated with a structure are unique,
as in_the example above, the data type names and the mlnor ‘
structure names may be referred to individually WLthout ambigulity;
i.e., FUEL, COCKPIT; POWER_SWITCHES, etc. Under these conditions
the major structure may be given the attribute NONQUALifIED,J
i.e., its names need no further qualification. Thus tﬁel

declaration above would begin:

DECLARE 1 SPACECRAFT_DATA NONQUALIFIED,

. 2 TIME INTEGER

[
.
'Y

etc.
Howevey, the names within a structure need not be unigue.

It is permissible to use some or all of the 1ower—lev§l
names in several minor structures or in anothef majdgnstructure
declared "in the same part of the prograﬁ. For example,
‘consider the following structure where position and velocity
are grouped into three interyals:
| DECLARE 1 NAV_DATA QUALIFIED,
2 FIRST,
3 TIME INTEGER,
3 POSITION VECTOR,
3 VELOCITY VECTOR,
2 SECOND,
3 TIME INTEGER,
3 POSITION VECTOR,
3 VELOCITY VECTOR,
2 THIRD,
3 TIME INTEGER,

3 POSITION VECTOR,

3 VELOCITY VECTOR;

In order to distinguish among the variables with the same
names, it is necessary to specify additional information.

This is done by gualifying the names with higher-level names

to make the identification unigue. The rules for qualification

8-15

are that a name used in a structure must be qﬁalified by
prefixing it with the names of all the structures (major and
minor) in which it is contained: The names are separated
by a period and must be in order of level number, the most
inclusive level appearing first. The major structure deciaration
must contain the attribute QUALIFIED. Thus in the example
above, the three variables TIME would be referred to as:
NAV_DATA.FIRST.TIME -
NAV_DATA.SECOND.TIME
NAV__DATA +THIRD.TIME

If the programmer does not provide a major structure, attribute,

the compiler presumes a NONQUALIFIED structure.

8.6.2.2 Multiple Copies of Structures

Multiple copies of major and/or minor structures may
be declared by including a dimension in the DECLARE statement
after—the structure name; e.q..,

DECLARE 1 NAV_DATA (10)QUALIFIED,

2 FIRST(5),

2 SECOND(5),

-
-
@

2 THIRD(5),

&
-

In this case there are 10 copies of the major structure NAV DATA.
Each copy of NAV_DATA contains 5 copies of the minor-structures

FIRST, SECOND, THIRD. To refer to a particular VELOCITY
8-16

the qualified name must be subscripted as follows:

NAV_DATA.FIRST.VELOCITYg s,

"~ that is, the VELOCITY in the 3% copy of FIRST which is in the

sth-copy of NAV_DATA. Structure subscripting is presented in

Section 9.

8-17

8.7 Formal Parameters and Functioﬁs

Functions,_prdcedures and formal parameters were introduced
--and discussed in SectionNE in the’context of HAL,. In general,
FUNCTION and PROCEDURE statements may contain lists of formal
‘éa;aﬁete;sfof any data type, inclﬁdipg arrays and structures.

The FUNCTION statement may define the function result t6 be of

any-single data-type (arrays and structures are not permitted) .

3

8.7.1 Formal Parameter Declarations

8.7.1:} Specified Dimensions

‘ Formal parameters with default attributes may Be
deﬁlareé-implicitly simply by their appearance in the list of
parameters with appropriate annotation. Thus,
ABLE: FUNCTIO&(A,E,E,B,&);

T - - *
declares A a scalar, B a three component vector, C a 3x3

‘matrix, ﬁ a one bit bit string, and é a character string, eight
cﬂaracters long. S;nce the data type of the function result
is not provided, a scalar result is presumed.

_If other than default characteristics are desired, but
_with specified dimensions, the formal parameters must be
declared withiﬁ the function body (programmer-supplied annota-
tion becomes optional). For exaﬁple,

ABLE:_FUNCTION(A,é,ﬁ,[D])VECTOR;
DECLARE A PRECISION(10), B BIT(15);

DECLARE M MATRIX(6,3), D ARRAY(10,5,3);

The DECLARE statements follow the forms presented in
»prev#ous sections. ©Note that the function has a vector result
 of default dimensioh (i.e., 3) since the dimension has not
been provided.
Implicit and explici£ fofmal parameter declafagions follow

‘the same rules for functions and procedures.

8.7.1.2 Vafiable Dimensions
For certain applications it mav bé convenient not to
épecify the dimensions of parameters but instead, to have the
'péfameters-take on the dimenéions of the éorresponding
~arguments in the éALL or function-reference statements.
This may be accomplished by substituting &n asterisk (*) for
the dimension literal. For example, suppose a function is
'writﬁen to accept any size matrix and returns some scalar
result; i.e.,
ANY :- FUNCTION(&);
DECLARE Q‘ MATRIX (*,*);
The two asterisks mean that_both the row and column dimensions
will be determined at run time. A more complicatéd example
might be
ABLE: PROCEDURE([éi)ASSIGN(G);.
DECLARE C ARRAY (*,2)BIT(*);

This procedure expects to process an nx2 array of m-bit
bit strings, where n and‘m will be determined at run time.

In general, fhe asterisk dimension may be applied to
array, matrix and vector dimensions, as well as to bit and

character string lengths.

8-19

8.7.2 Function Results
' The FUNCTION statement defines the fuﬁction result
by indicating its data type and attributes. The type may
be any of the six HAL data iypes but the attributes are
limited to dimension and precision. The following a;e‘
exaﬁples of walid FbﬁéfiéN statemenés:

A: FUNCTION(X,Y) PRECISION(10);

B: FUNCTION(X,Y) D;IATRT_X(G,Q)) PRECISION_(IO_);

C: FUNCTION(X,¥) CHARACTER(25);

8.8 Alternate DECLARE Statement Format

All of the HAL data tvpes, and arrays of these types,
may be declared usigg an alternaﬁe form of the DECLARE sta£ement
where the data type is indicated ({except for scalar and integer)
by an appropriate mark over the ﬁame and the size and shape
designated by a subscripé. -y, (*y, (.), (,) appearing over
a name specifies vector, matrix, bit string and character
string data types respectively,. Within the subscript, array
shape must be separated from string oxr'vector length, and
matrix dimensions, by a coleon (:).

The use of INTEGER, PRECISION and other attributes remain
as described in Secs. 9.2 and 8.3. -
EXAMPLES ;
1) DECLARE ASO; '
~ a linear array of 50 écaiars.

2) DECLARE B INTEGER:

2,3
- a 2x3 array of integers.

3) DECLARE 10:67 .
- a linear array of 10 vectors of length 6.

. * .
4) DECLARE M,

- a bxbh matrix.

5) DECLARE SlOOF

- a bit string of length 100.

8.9 The DEFAULT Statement

As detailed in Sec. 8.2, when names are implicitly‘declared,
or explicitly declared with not all characteristics specified,
the unspecified characteristics are supplied from a set of
defaults. Standard defaults gre included in Sec. 8.2 and a
complete list appears in Appendix B of the HAL specification
document. '

In some cases it may be convenient to modify the standaxd
default set to reduce the amount of sourée program coding required
éb achieve fhe given objective. For this purpose, the DEFAULT.
statement is_provided, and the following 'sige" keywords defined:

BITLENGTH . l
- VECTORLENGTH
MATRIXDIM
CHARLENGTH
The DEFAULT statement has the general format:
- DEFAULT type(dimension) size; -
EXAMPLES:
]:) DEFAULT MATRIX(4,7) BITLENGTH(24);
DECLARE A, B MATRIX, C BIT(10), D BIT;
The DEFAULT statement changes the type default from sgalar
to matrix, the matrix dimension from (3,3) to (4,7)_énd
the bit length from 1 to 24. Therefore, the DECLARE -
statement declares A and B to be 4x7 matrices (note
the MATRIX need not be supplied), and D to have length equal
to 24 bits. It is to be emphasized that the defaults will
"£il1ll in" wherever the particular characteristics is not
épecified.

8-22

2) DEFAULT BITLENGTH(16);
DECLARE E, ﬁ, é;
The DEFAULT statement changes bit length to 1l6; all other
defaults remain the same. Therefore, E is a scalar, F a

bit string of length 16, and G a character string of

length 8.

The scope of a DEFAULT statement, that is the region in which

it is recognized, is the same as that for a DECLARE statement

{see Sec. 7.1).

o]
1

23

9. Subscripting

HAL makes use of subscripts fof three purpoées: 1) to select
(i.e., index oxr partition} data items from complex data types,
arréys and étructures: 2) to formulate £ypes and arrays from
component parts; and 3) to modify_the interpretation and usage
of data guantities. All subscripting may be accomplished in a
natural format by infréducing the subscript expressions on the

5-line.

’9:1 Selection

9.1.1 Arrays of Vectors and Matrices

The referencing of individual components of vectors and
matrices, and the partitioning of these data types, by subscript-
ing, are presented in Sec. 5.1 of this guide. Since HAL also
péfmits arrays of vectors and matrices it becomes necessary to
introduce additional subscripting in order to select and partition
all quantities; This 1s accomplished by separating the array sub-
scripts from the array element subscripts with a colon (:), with
the array subscripts always coming first. For example, consider
the following array of matrices:

DECLARE M ARRAY (4,3)MATRIX(6,6);
-— a 43 array of 6x6 matrices.

A few subscript possibilities are:

1) My 5.3,4

This selects the scalar component in the 3rd row, ..

4th column of the matrix in the lst row, 2nd column of the array.

9-1

F3
2) My 5.

This selects the matrig in the l1lst row, 2nd column
of the array. The "tralling colon” means that the selection_
consists of the data types in the array, and not of elements
'_Within the data types. (Note tﬁat the compiler will supply the

"over-star" indicating a matrix}.

3) [Mly

This selects the scalar components in- the 5rd‘row,

4th column of all the matrices. The result is an arrav

of scalars. If M were not an array of matrices, but a single

matrix instead, M3 4 ¥vould result in a single scalar. (Note-
F .

that the compiler will supply the brackets indicating an

array.)

4) M3 9.0,%

This selects a single 6-dimensional vector from
the 2nd row {all columns) of the matrix in the 3rd row, lst
column of the array. (Note that the compiler will supply the

"overtbar" indicating a vector.)

" .
) My 16 3,2:1 10 3,1 TO'3 .

This selects a sub-array of sub-matrices; i.e.,
the lst three rows and lst three columns of all the
matrices in ﬁhe lst three rows, 2nd column of the original
array. {Note that the compiler will supply the brackets

and "over-star" indicating an array of matrices.)

It is evident that many complex forms can he developed

+ 9_2

from this example. The important point is that by sub-
scripting (indexing and partitioning) both the array and the

array components, any selection can be made unambiguodusly.

9.1.1.1 The Use cf * and #
The two symbols * and # may be used in subscripting

variables to indicate "all of a particular index" and

>~ "the last of a particular index" respectively. The * can only

appear alone in a subscript position; i.e., or

M
* 2
A*,*,l' ' The # may appear alone, as part of t@e expressions

+ K, or associated with "TO" or "AT" in the following

forms:
+ KR TO %
P AT ¢ + L
Examples:
*®
D M opo g,

- a matrix partition: the first 6 rows,

all co}umns.
B .

2) My 5 om0 4,4-2 TO
" — a matrix partition: the last three rows
'and last three columns
3) V

P AT #£-Q
-~ a vector partition: P elements starting at

0 from the last element.

T Note that # is also used to indicate repetltlon within
a list (see Sec. 8.4:2.1 and 9.2).

9-3

9.1.2 Bit and Character Sfrinqs

The individual bits and characters of strings, and the
strings themselves within arrays, may be referenced by
subscripting. The method is similar to that for wvectors.
Some examples f£ollow based on éhe declaration:

DECLARE A BIT(15);

- a bit_string.of length-IS.

1) A,
This selects the pth bit in the string starting

from the left. (Note that the compiler supplies the

1

"over-dot" indicating a bit string.)

2) By g0 8

This partitions the string and selects the
lst eight bits.

3) AP TO %

This partitions the string from the Pth bit

to the end.

If the strings were arrayed, i.e.,
DECLARE A ARRAY (10)BIT(15):;
then

This selects the Ptb bit from every string.

The result is an array of 1 bit bit-strings.

9-4

5) By,
This selects the Pth bit string of the array. Note

the "trailing colon".

6) [é}l TO 63

This selects the 15 six strings of the array. The

result is an array of 6 bit strings, each of 15 bits length.

9.1.3 Structures

Any data item within a structure may be referenced by
appropriate’ subscripting of the item name. The structure may
be QUALIFIED or NONQUALIFIED. - The general methéd is "to reach"
the item by first indicating the major structure copy,‘thgn
the minor structure(s) copy(s), then the-array position and
finally the index within the,data type. All structure sub-
scripts must be sepafated from other subscripfs by a semi-colon (;).
The following example illustrates these points: i

DECLARE 1 A(50) QUALIFIED,
2 B{25),
3 C ARRAY(4,4)MATRIX(3,3),
3 » BIT(l0),
. 2 E VECTOR(6);
1. {alzg,
- This selects the 35th copy of the major structure, -A.

{Note that the compiler will supply the brackets indicating

a st;ucture.)

2) [A.B.C}35’lo;

This selects "the array of matrices, €, which are in
the lOth copy of B, which is in the 35th copy of A. (Note
that the compiler supplies the "over—star" and brackets

indicating an array of matrices.)

3) {A.B.D}*rl_5 To 8

This selects bits 5 to 8 of the bit string, D, in the
lst copies of B which are in all copies of A. (Note that
the compiler supplies the "over-~dot" and brackets indicating

a structure of bit strings.)

For a NONQUALIFIED structure the subscripting would be identical;

thus, for example, (2} above would be written,

F 3
[Cl35,10; ~

9.1.3.1 sStructures of a Single Data Type

Consider the following two DECLARE statements;
1) DECLARE 1 A(5),
2B CHARACTER({10):
2Y DECLARE i A,
2B ARRAY (5) CHARACTER(10);
From the first statement, {é} is a structure of all copies of

r ¥
string B. , From the second, [B] is the array of all strings.

Note that while {é} in 1) and [é] in 2) contain the same data they
are not identical and cannot be used interchangeably.
Consider further,
3) DECLARE 1 A(5),
28 ARRAY (5) CHARACTER(10);
{[é]}3 TO 5; is a stfﬁcturg of the last three copies of the
array [é]. , -

. It is suggested the'readér consult tﬁe HAL specification
éocument (Sec. 6) fof more detaills ‘on structure subscripting
and manipulations.

8.2 Formulatioﬁ
Vectors and matrices, and arxays of all data types may
be formulated from their component parts by using special
conversion functions and appropriate subsérigting. In Sec.
4.2.1, the functions SCALAR, VECTOR, MATRIX were introduced.
HAL alsoc provides the following additional "formulating”
functions:
INTEGéR

_ BIT

_ CHARACTER
Eacﬁ of these functions operates on lists of data and may be

"filled" and "shaped" by subscripting.

9.2.1 VECTOR and MATRIX

These functions may be uséﬁ both for formulating vector
and matrix data typés, as in Sec. 4.2.1, and for formulating
arrays of these types. The dist;nction is made in the subscript
format. For example

MATRIX2'3 (5)

formulates a 2x3 matrix, the elements of whiéh all egual 5.
On the other hand,
MATRIX6:3’3F5)
formulates: a one~dimensional drray of 6, 2x3 matrices, the
elements of which all egqual 5. Several objectives may be accom-
plished using these functions depending upon the number of data
items included in the list and the subscript format. For
example,
l)‘ VECTOR4(A,B,C,D)
formulates a 4 dimensional vector.
2) VECTOR6:4(A,B,C,D)
formulates a one dimension array of 6, 4 dimensional
vectors.
3) MATRIX10:4’2(20#A,20#B,40#C)
The arguments represent a iinear list of 80 data
items. This function formulates a one dimensional
array of 10, 4x2 matrices in the following way: the

first 8 items of the list %fill"™ the first 4x2 matrix

(by rows), the next 8 items "fill" the second matrix, etc.

The variations of VECTOR and MATRIX are numerous and the
reader is advised to consult the ﬁAL language specificatipn
_kRef. 1). 1f more information is needed. In general, though,
.thrée list sizes are acceptablé:‘a single ‘item which is "spread"
6&ér the data type or the data type ar?ay (also see Sec. 9.2.1.1
bélﬁw); a number of i@ems equal to those in the data type dimension
‘(g.g., the total‘numbe% of éleﬁénts in a-matrié) which is then
repeaﬁéd for all components of -an array; and a number of items
gﬁﬁéi to the total number in the array which thén.simpl& YFills™-
the array .on an element~by-element 5asis.

' Vectors and matrices must coﬁsist of scalaf elements,
thg;efgre other data types included within a list will ‘be con-
.verted appropriately. (Conversions of types to types are
.discussed'in Sec. 10.3.2.) ‘

- When the list contains more than one entry and the function

Lis unsubscribted, the result is a vector of length egual to the
. {
number of elements in the list or a square matrix with rows

and columns equal to the sguare root of the number of elements

in_the iist. (The square root must be an integral number.)
For example,
-1) VEC‘TOR(A,B,(-:,D)
formulates a 4 dimensiéﬁal vector
2) MATRIX(20%A,5#B)

formulates a 5x5 matrix.

When the array shape is épecifiéd but dimension is not; e.g.,

| VECTORG:(A,B,C;D)

the resultant vector(s) or matrices take on default dimgnsions
and thé number of elements iq-the list must be consistept with
the default. In the example épové, the function would'évgke

a compiler error messége because the 4 elements in the list would

not agree with the standard vector length default of 3.

9.2.1.1 VECTOR and MATRIX of a Single List Entry

If the number of ‘entries in list is one; e.g., a .
single scalar, vector, matfix, etc., or a single ggray of any-’
data‘type then two cases are of interest: subscripted and
unsubscripted. _ ' - i :: o

When the functions are subscripted and the list_entry
is a single data item (e.g., a scalar) its value is:"spread“
over the function as described above. If the single entry
comprises a multiple data item {e.g., a matrix 6? a;réff,
the entry is first unraveled and the function "filled"'acéordipg
to the subscripted array shape and dimensions. ‘

When the functions are unsubscripted, -the final result
depends upon the data type, array shape and dimension oflthe

list entry. A summary of the resulting forms is presented in

Appendix F.

9-10

I D

.9.2.2 INTEGER and SCALAR

The use of INTEGER and SCQPAR are similar in that arrays
of‘integers or scalars are formulated from lists of com?onents
with appropriate conversions (see Sec. 10.3.2) where negessary.
Some examples are: ' By i
1) INTEGER3 ,3,3 (J) '
The result is a 3x3x3 array of integgrs. Every com-
ponent'of the array is set equal to J. -

2) SCALAR (3) |
The result is a one-dimensional array of Scalars of
length 9, where'ﬁ'is a 3x3 matrix,

3) INTEGERG"Z(B#I,E) B
The result is a 6#2 array of integers (presuming_ﬁ is
3x3). fhe matrix is unraveled into a one-diﬁeﬁsional

list (see Sec. 4.2.1). Note that the scalar elements -

*) .
of the matrix D will be converted to integers.

When the list contains more than one entry and the fﬁnction
is unsubscripted, the result is a one~dimensional array of
length equal to the number of elements in the list. For‘examp}e,

‘ SCALAR(V,) -
The result ig a one—~dimensional array of scala?sigf as

— *
many components as in.V plus M.

9.2.2.1 SCALAR and INTEGER of a Single List Entry

See Sec. 9.2.2.1 and Appendix F.

9.2.3 BIT and CHARACTER

'BIT and CHARACTER may be used to formulate arrays of bit-
and character-strings respectively. Appropriate conversions are
made where necessary (see Sec. 10.3.2). Some examples are:

1) B (a) ' R

IT2,3:1 TO 10
The result is a 2x3 array of bit strings. Each bit
string equals the éirst 10 bits of the "bit—pat#ern"
representation of the scalgr, A.-

2) CHARACTERIOLK,Y;Z, 'COORDINATES ')
The result is a one-dimensional array of lg’character
strings: The first 9 strings are of the lénéth
nécessary to represent the scala; (fioating point)
components of the vectors. Resuléing charaété% strings
are implementea as varying.

3) BIT, 5(3%A,3#B,34C,34D)

- Thé result is a 4x3 array of bit strings, _All strings
will be of the same length and equél to-the mﬁkiﬁum
string length in the list of arguments.]

When the list contains more than one entry‘and fhe function
is unsubscripted, the result is a one-dimensional arra&}of.
length equal to the nunber of elements in the list. Bit-string

length corresponds to maximum string length in the list; character

length is varying.

9.2.3.1 BIT and CHARACTER of a Single IList Entry

See Sec, 9.2.2.1 and Appendix F. Note that subscript

dimension for BiT and CHARACTER a£e different, in concept,
-éhan for VECTOR. VECTOR dimension specifies resultant vector
length; BIT or CHARACTER dimension specifies the bits or
characters to be selected from the string representations of
thexargumenﬁs.

-‘ Once again, the reader is advised to co#su&t the HAL
specification document (Reference 1) for more complete information

on BIT and CHARACTER and the other functions presented in Sec. 9.2.

9.3 Modification
- Two forms‘of subscrip£ing allow the HAL programmer to modify
the. interpretation and/or usage of certain data types and
.expressions.
l 1) In converting from bits to éharacteré and from
'_characters to bits, the subscripts @BIN,“@OCT, @DEC,
@HEX provide binary, octal, decimal and hexadecimal

interpretation, e.g., B ('657") resulits in the

eocT
bit string 110101111.

2) The precision of an expression can be specified explicitly
by use of the subscript form €p, where p represents the
minimum numbexr of desiréd decimal digits. For example

suppose the integer I has the value 311,648,726 and is

to be added to the single precision floating point -

scalar X. Tt is‘desired to maintain at least 10 digit
precision in the floating point result. Thus the
expression ‘
Teig T X
will
li éause the integer to be converted to a scalar with
precision of at least 10 decimal digits (i.e.,
.a double precision mantissa on the’IBM 360/75) ;
2) convert X to doublé precision because it is
involved with a double precision operand;
3) perform the sum‘in'double precisi&n.

More examples of modification and HAL's automatic data

conversions will be presented in Section 10.

10. -Data Manipulation

‘ Iﬁ Part II of this guide the expressions and assignments
'éﬁsociated'with HAL, were presented. These were 1argel§ confined
to manipulation with the -arithmetic types: scalar, vector, matrix.
In this section, string and array operations are introd;ced as
well as the conversions necessar§ for combining mixed déta types.

A summary of all HAL data operations 1s presented in Appendix C.

10.1 Stfing Operations

10.1.1 Bit Strings
The manipulation of bit strings, in HAL, is‘accomplished

using the following four operators:

Operator Definition
Yperatoxr

NOT (71,7) C .coﬁplemen;
caT (|]) ‘ h éoncatenaéigﬁ-
AND (&) - " logical A‘ND:

) OR (| or |) 1ogicél OR

and certain of the built-in functions listed in hppéndix-B;
(Acceptable alternate forms for the above operators are shown

in pareﬁthesés.) NOT complements each bit in the st;ing; CAT
forms one string by joining togethef the two operand strings; AND
and OR perform bit-by-bit logical operations on the‘cérresponding
bitﬁ'of two bit operands. If the strings are of unéqué; length
for ANWD and OR, the shorter is padded on the left with Zeros.
When assigning a bit expression to a target variable, if the

target and expression are of unequal length, then the following

10-1

steps are followed: 1if the expressiocn result is too long, it is
truncated on the left; if it is too short, it is padded with
zeros on the left. As examples, consider

DECLARE BIT{12) 'A,B,C;

then,
1) NOT B
Each bit is complemented
2) €=By g5 7/124 4 10 &
The first 8 bits of B and the last 5 bits of A are joined.
3 A=B, g0 g A C ny 1.

The two operands are of different lengths. §4 70 8
is padded on the left with zeros until it matches the length

of C A logical AND is performed bit-by-bit; the result

i1 T0 10°
is a bit string of length 10. On assignment to A which is of

length 12, the result is padded on the left with two ‘zerxos.
4, M = (D&E)|(FaGeH) |I
If all of these bit strings were declared implicitly
then each represents a 1 bit string {(i.e., a boolean) and this
is an example of a complicated boolean expression and assignment.
M is either TRUE oxr FALSE; i.e., =2ither BIN '1' or BIN '0'
depending upon the expression result., For example if D = BIN '1l'

and E = BIN 'l' then M = BIN 'l' (- is performed before g;

see Sec. 10.1.3):-

“10.1.1.1 Bit Strings Within Logical Conditions

A logical condition or set of logical conditions,
L,; are conditions imposed upon IF and DO WHILE statements
{see Sec. 4.3.2), i.e,,
EN,...
IF L, THEN....

Cor

DO WHILE LC;

Y

As such the 1ogical-conéition expresses a comparison (or
comparisoﬁs) among data which is either true or false. TFor
.'HALM,kin Sec., 4.3.3.1, the relational operators were used
fq coﬁpare arithmetic data,:Thése operators may also be
gxtended to bit strings. Thus it becomes possible to test

whether

A < B

A >= B

. A= B
etc.

.fhe shorter string is padded on the left, as before. A
b;t comparison involves the left~to-right coﬁparison of
corresponding binary digits; BIN 'l' is defined as greater
than BIN '0'. The result of a bit string comparison is a
single true or false answer. Thus BIN "101' »= BIN 'll1ll’
is false because the first bit comparison (starting on ‘
the left) fails. ©Note that,in this context éﬁ1=_é,means

that if any of the corresponding bhits of A and B are not

equal then the relation is true.

10-3

10.1.1.2 "Boolean" Conditions

L If the logical condition in an IF or DO WHILE statement
ih§dlves only single-bit bit strings (booleans) then the condition
ma? be expressed as a boolean expression, similar to exaﬁple {4)
of.Seé. 10.1.1.1, For-example:

- IF A AND (é OR é).THEN e e

meap%hélif A is frpe {(i.e., =.BIN 'i') and either'é or é is

'true then...: of

DO WHILE —al|(Bs&C); ’ '

meaning do the following statements while A is false (i.e.,

BIN.'0') or, B and C are true.

10.1.1.3 Combining Comparisons and Boolean Expressions

Whenever it is desired to comﬁine comparison expressions
(ar;thmetic or string) with boolean expressions it becomes
neéessafy to express all conditions as comparisons.

That is,
IF X>5 AND é THEN . . .
is not an acceptable form using HAL. The statement must be written
ﬁith the condition on é expressed as a comparison expression; thus,
IF X>5 AND B = TRUE THEN . . .
is corregt. (Note TRUE = BIN 'l'.,) A more complicated example
might be:

IF(8||C = ocT '77') OR (X°>5 AND FLAGL = TRUE)THEN . .

10-4

10.1.2 - Character Strings.

When using HAL, input éata from cards, terminalg,
files, etc. and output data to a printer oxr other debice,
are considered to be streams of characters. The accgptance
and preparation of numerical data, message,texts, héédingé!
etc. reguires the manipulation of character strings. The
basic operations are presented here; I/0 étatements appear .
in Sections 7 and ll._ ST

The manipulation of character strings, in HAL, is
accomplished using the concatenation operatqr, QAfvor (!1),
and certain of the built-in functions listed in Apﬁendix_B; -
Since character variables may be fixed or varying, a aistinétion
must be made. ﬁhen éssigning a charac;er eipiesgioh‘to a -
fixed character string target variable, the resplf’is similar
to that for bit strings except that padding of t?ﬁnc%tion
is aéplied on the right. Thus,the expression. value ié".
truncated on the right,if it ié_too long,or p§§déd Witht
blanks on the right,if it is too short. For example, cpnsidgr
. DECLARE CHARACTER(12) A,B,C; '
then,
1. é ="ABC'; '
The first three characters of é are éet to 'ABC',
the rest are blanked.

1

- _,.I. 1.
T00 4 = ABC';.

i
2. C+
b I

Characters 3 and 4 are set to '"ABR', the rest of C

are left alone.

10--5

If the target variable is a varying character string,
“then, in general, the target string takes on a length
equal to that of the right hand side expression. If the

expression length is longer than the declared maximum length,

the expression is truncated on the right.
The HATL language specification (Ref. 1) pfésents detailed

rules and examples for the manipulation’ of character strings.

10.1.2.1 Character Strings Within Logical Conditions’

Character string comparisons may be inégrp&rated
_ into logical conditions in the same manner as bi%_strings
(Sec. ld.l.l.l). All of the relational coerators of Sec.
4,.3.3.1 may be applied in comparing twé character s?;ings.‘
The shorter string is padded on the right with.biénks. A
character comparison involves left-to-right compari%on of
correspénding characters according to the colL@tiﬁg sequence
presented in Appendix E. ‘ L

The result of a character string comparison'is’a A
single true or false answer. Thus

. 'ABCDE' = 'ABCEF' is false because thé fourth

T

character comparison (starting on the left) fails.

i

r r
T Note that in this context A 1= B means that if anv of the
' r ’
corresponding characters of A and B are not egual then the

relation is true.

10-6

10.1.3 Order of Operations

In evaluating the expressions with a logical condition,
an order of operations was established in Sec. 4.3.3.3. :With
the addition of the concatenation operatodr, this order may be

-generalized and applied to string expressions as well as

logical conditions. The complete order is:

. NOT highest
A 7~
CAT
Relationals
AND
; W
OR . . lowest

In illustrating the application of this precedence order,
e;ample (4) of Sec. 10.1.1 could ﬁave been written without
pérehthesis; i.e., M= 5&&]%&&& ﬁﬁli. -H wouié be performed
first, then the &'s from left-to-right: D&E, F&Gs —1H, and finally
the two |'s. Other logical meanings would have required
parenthesis; e.g:, B |
M = ﬁ&(é[ﬁ)&é& “Kﬁ[ih

As anotﬁer_example, considér the IF statement in
Section 10.1.1.3. Again this could have been written without
parentheses and no change in meaning:

2

IF B|lCc = ocT'77' OR X“>5 AND FLAGL = TRUE THEN...

B||C would be performed first, then the relationals from left

to right: B|[C = oCT'77’, x%>5, FLAGL = TRUE, then AND, and

10-7

finally OR. A different logical intent would have regquired
parentheses; e.q.

IF(B][C = oCT'77' OR X2>5)AND FLAGL = TRUE THEN...

0f course, the programner cah take advantage of HAL's
built-in precedence rules but he is advised to use parentheses
‘when in doubt in otder to clarify the intent of the expression

.as it appears in the listing.

10.2 Array Operations
Most of the arithmetic and string operations in HAL
can also be applied to arrays of appropriate data types,

for example,

€1 = [B1]]IA];

[E]

[%] AND f[é] OR [ﬁ]);
¥1 = 4 (7 |
are valid array manipulations.
In general, operations with arrays are equivglent
to operations with their components on a sequential

component-by-component basis; i.e. by incrementing the

"right-most" index first. Thus for two-dimensional arrays:
fal = [B];
means A A A = B .

1,1 = Bi,1 0 B, T By o0 eees By 0T B

.For array expressions and assignments, array dimensions

must be compatible; i.e. if two arrays are involved in -an
operation, they must be of iderntical dimensions. If only one
array is involved, the other operand may be a single data

item; e.g., A[B] is a valid product in that A multipiies every

10-8

component of [B]. MNote that an array may never be assigned
to a single data item. -
Scme exampleé’df array sﬁatemenﬁs and their egquivalents
follow: -
1) DECLARE ARRAY(10,10)3,B,C;
[a] = [B] + [C]:;
This array statement causes the addition of components of
[A] and [B] on a component-by-component 5asis. Fach sum is
assigned to the corresponding component of [Al. The state-
ment is eguivalent to the following mult;ple DO FOR - loops":
DO FOR I = 1 TO 10;
DO FOR J = 1 TO 10;
Br,5.7 Br,g * Oy
END; '

I’
END;

2) DECLARE ARRAY(12,6)D,E,F;
DECLARE G ARRAY (12,12);
[D] = [E] [F1/2 + X;
[G] = 03
The components of [E] and [F] are multiplied on a
compoﬁent~by—component basis; each p%oduct is divided by 2,
added to the scalar X, and assigned to the appropriate com-—
ponent of [D]. In addition, all components of [G] are set
to zero. These statements are eguivalent to the following

"DO FOR -loops":

10-9

DO FOR I = 1 TO 12;
DO FOR J = 1 TO 6;

D =B

T,J 1,3 FI,J/2 + X;

END;

10.2.1 ‘Partitioned Arrays

When array cperations involve partitions of arrays
the programmer is cautioned to remember the sequential nature
of array computations. Consider the following two examéles:

l! DECLARE A ARRAY (25);

) [al [A]

2 TO 25 1- TO 247

A, = A_NEW;
The intention here is to shift the information in the array
by one index position and iﬂcorporate new data into the.first.

éomponent of [A]. What is the actual result? This may be

seen by writing the operations in sequence:

2 1’
A3 = AZ;
Ay = BAg;
A, = A_NEW;

Unfortuﬁately the "o0ld" value of Al is propagated_throughout

- 10-10

the entire array. The final result for [A] would be A, = A_NEW
‘with the rest of the compénents set egual to the old value

of Al._ The. programmer could have accomplished the intended
objectivelby writing

[a] = SCALAR([A){ pq 4)7

2 TG 25
A, = A_NEW;

1
2). DECLARE B ARRAY(10,10);
- ’ [B]*pS = "[?]3’*47
The intention.here is simply to replace the 5th "column”
6f.the array by the contents of the 3xrd "row"”. Note that both
‘column and row represent one-dimensional arrays of 10 components

each. The operations are performed as follows:

B1,5 7 P37
By, 5 = By i
B3,5 7 B3,3;
By,5 = B3, 47
Bs5,5 = P3,5'
Bg,5 = B3 ¢!

B10,5 = P3,107

arnd the result is wrong! That is, By ¢ appearé both on
- - 4 .

“the right and left of the = sign and propagates 33’3 into

B3 5 and B5 5- Thé)programmer could have accomplished his
r I -
objective by writing: _

- e [51*’5 = SCALAR([B]3F*);

10-11

Thus, array manipulations do require some care and the
programmer is urged to write out, in preliminarv form, at
least a partial sequence of operations in order to verify that

the array statement will achieve the desired result.

10.2.2. Functions of Arrays

HAL built-in furictions and programmer-defined ~
functions may'be given array expressions, éf appropriate
" data-type, in the argument positions. Two cla;sés of functions
are of interest: 1) where the function's formal parameters
6r,defiﬁition,calls for single data items, 2) where the
function's formal parameters,or definition;calls for at.
least one array. (For built-in functions, the séring—, arith-
metic-, mathematical-, and matrix-vector-functions are Qf the
first class; the linear afray functions comprise the second.
See Aépepdix B.)

J0.2.2.1 Functions with Single Data Item Arguﬁents

When arrays are processed by a function designed’
for single data .item arguments, the ?esult-is a seguence
of operétions with the function being applied to the
components of the arrays, component—by-compoﬁent. Thus,
for example, consider fhe sine‘function where the argument
is an array of scalars; i.e.,

DECLARE ARRAXY(IO,S)A,B,;
[B] = SIN([2]}:

This statement 1s eguivalent to the following "DO FOR —~loop":

.10-12

http:array.of

DO FOR I = 1 -TO 10;
DO FOR J = 1 TO 5;

_BI,J = SIN(AI'J);
END;
END;
For a function requiring more than one single data item,
multiple array arguments must be of identical "shape". For
egample, let VRESULT be a programmer~defined'function returning

a vector, thus

VRESULT: FUNCTION (V,A,B)VECTOR (6)

and used in the statement

[P] = B VRESULT([Q1, [A],B);
where [P] and [Q] have been declared as 4x2 arrays of six
component vectors.and [A] is é 4x2 array of scalars. This
statement is equivalent to the following sequence of operations:

DO FOR I = 1 TO 4; -

DO FOR J = 1 TO 2;
®* _
PI,J: = M BLOCK(I,J;'AI,J'B)
END;
END;

*
Note that the same values M and B are applied to the computation

on every pass through the loop.
Both of the above examples illustrate that the manipulation
of arrays with this class of functions is straight forward and

is simply a sequence of component-by-component operations.

10-13

10.2.2.2 Functions With:Array Arguments
HAL functions written, or designed, to accept array
- arguments must produce single data item: results. For

example 1

SUM([X])
accepts an érray aggumen? and returns a single'resﬁltﬂ
The effect might be viewed as a "reduction in dimension".
Cénsidér the following examples: ’
1) DECLARE A ARRAY(5), B ARRAY(5,4);
[a] = SUM([BI);
This statement is equivalent to the folléwing seéuéncg of
operations:
DOFOR I = 1 T0 5;’
‘AI = SUM([B]
END;

I,*) H

2) DECLARE ARRAY(25,25,25)A,B;

= MaX([B]

(213 00 g,0,* 10 TO 15,%,%!7

The left hand siae represents a two-dimensional (6x25) sub-
array; the argument of MAX is a three-dimensional k6X25X2§5
spb%array. The statement is equivalent to the foilowing)
"DO FOR -100p$":_
DO FOR I = 3 TO 8;
DO POR J = 1 TO 25;
AI,Q,J = MAX ({B]

‘ 1+7,3,%!7
END;

END;

10-14

Note that Q is specified at run-time and is outside the
loop. '

In "redﬁcing the dimension", as illustratéd in the
examples above, the array funqtions operate on the "inner-

most" free index of the array argument (see Sec. F of

Appendix B).

10.3 Manipﬁlations With Mixed Data bees

HAL permits the mixing of most data types within expressions
and the assignment of one dgta type result to another data
type target variakle. The mixing of daté types is accomplished

through prescribed sets of implicit and explicit conversions.

10.3.1 Implicit Conversions

Some representative examples of implicit conversions
follow: -
1) DECLARE INTEGER I,J;
J =A4A + I
The addition (subttraction or multiplicétion) of
aﬁ integer and a scalar causes conversion of the integer to
fhe scalar type. The assignment of a scalar result to an integer
target causes cohversion of the scalar to integer before assign—‘

ment.

10-15

2) DECLARE B BIT(10), I INTEGER;

X¥=B+ I

~e

The additiog (subtractioﬁ or multiplication) of a
bit string and an integer causes conversion of the string to an
integer. The assignment of an infeger result to a .scalar target
causes conversion of the integer to scalar before assignment.

3} DECLARE BIT(10)&,B,C;
i = é/é;

Division is defined as a scalar operation. Bit string
operands are converted to scala;s by first converting the strings
to integers and then to scalars. The quotien£ is always a scalar
guantity. The assignment of a scalar to a bit target variable
causes conversion of the scalar first to integer and then to
bit string before assignment.

4} DECLARE C CHARACTER(25)VARYING;
‘ C = 'THE ANSWER IS’ | |x: B

The concatenation of a character string and a scalar,
-integer or bit string causes conversion of the scalaxr or integer
to a character string, and the conversion of a bit stfing first
to an intéger and then to a character string.

.In'general,_but with certain restrictions, implicit conver-
sions witﬁin expressions follow a progression:
to-scalar~to-character

from bit-to-integer- .
)) to-character
i.e.,
S > C
B > 1 #
C

10-16

"_‘and from single precision (SP} to double precision (DP). Vector

and matrix operands cause the same effects as scalars.
In assigniné expressions, conversions go both waysidepending
.]
upon the data type of the target variable; i.e., either
s+ C
B+TI
S C

or
S 1+ B

Foi example, if a bit string (B) is assigned to a scalar targét {8},
thée string is first converted _to an integer and theﬁ‘ﬁp a scaiaf
(B> I~ S); if a scalar is assigned to a bit string, the scalar
is first converted to an integer and then to a bit string (é + 1 =+ B).

The following tables summarize the imﬁlicit conversions
wﬂen two operands of different types are involved in exp;essions

or assignments:

A. Expressions

Gprerand 2 . o
. I s B C
Operand 1

T - I+8 B>I I+C

g ' I+S - B+I+S g+C -

B . BT B+I+S -(2) PREY

C I>C 5+C B+I+C -

Notes: (1) The concatenation of a character string and a

bit string is only valid if the character string
. ’ . !
is the left hand operand (i.e., C|[X).
(2) When bit strings are used in arithmetic operations

the strings are converted to integers.
10217 T

B.. Assignments

Expres- } .
sion - I s B C
Target 2).

I : - . §»I B>I (1)

s - ~ -B>Ivg (1)

B I+B- S+I+B - (1)

c I+C §+C B+I+C -
: Notes{ (1) Character expressions may not be assigned to

arithmetic or bit string target variables.

{2) Vector, matrix, and array expressions may only
be assigned to vector, matrix and array target
variables respectively. Structures may only be
assigﬁed to structures of identical component

declarations.

10.3:1.1 Conversion of Arithmetic Lite?als
Arithme£ic,lietrals exhibit the following default data
types and precision:
a) if the literal's value has no fractional part (e.g.,
6,.6.0, .12E+2B-1, etc.),-it is considered to be an

integer data type.

10-18

b) if the literal's wvalue has a fractional part (e.g.,
6.1, 123, 6.024E-5, etc.), it is considered to be
a scalar data type, and its precision will be determined
by context, if possibie; otherwise default precision will
be used.

Subsequent conversion within expressions of mixed data types,
follows the rules described'above, in Sec. 10,3.1. Note that
double precision representation of literals will be utilized when
'réquired within an expression, i.e., when the literal is involved
witnh a double precision operand. -

EXAMPLES _ . -

1. X =I + 3.1;

Presuming that I is an integer, it is converted to a
scalar (because 3.1 is ; scalar) and added to 3.1. The
result is assigned to the scalar X. Since £he_precision
of 3.1 cannot be determined by conte%t (i.e., being added
to an integer) default precision will be used. The
standard default is double precision.

2. DECLARE PRECISION(10) X, Y;

X = 4.06372 ¥;
Since ¥ iz a double precision scalar, the literal 4.06372
is utilized as a DP guantity and multiplied by Y.

3. REPLACE K BY '1060°';

A= (K + 3.064} B;
K is treated as an integer and therefore converted to a
scalar before being added to the "scalar literal", 3.064.

Both literals will be expressed in default precision.

10-19

10.3.2 Explicit Conversions

Four functions are provided for the explicit conversion

of one data type to another. The four are:

INTEGER
SCALAR
BIT

CHARACTER

These functions*may be applied to integer, scalar, bit- and

character-string arguments, and result in the named data types.

Thus;

(]

:yl
.

(O~

are examples

INTEGER(X/Y) + J;

BITg mg 1o (X)11B;

= CHARACTER (X) | [CHARACTER(J) ;

of the use of conversion functions.

The following

table describes the resulting conversion for each function and

type? -
‘ Type I s B c
Function
INTEGER - S+I B>1 C+I(l)
SCALAR I+S - B+I-+8 C+S(1)
BIT(3} I+B S+B(2) - C+B{2)
CHARACTER I>C S+C B=+I+C -

Notes: (1)

INTEGER and SCALAR only accept character string

arguments which represent whole numbers and scalars,

respectively.

¥ Also see Sec. 9.2.

For example, INTEGER('30672')

10-20

and

(2)

(3)

SCALAR ('362.06E+1'} are valid applications.

BIT converts scalars and character strings directly

to biﬁ strings. That iél a floating point scalar
argument wéﬁld result in a 32-bit bit string, the
string representing the 360/75 "bit-pattern" of the
floating point guantity. A character byte is converted
to its 8 bit pattern.

BIT and CHARACTER may be subscripted in order to
select particular bits and characters, or to modify
usage (see Section 9.3). A character string which
represents binary, octal, decimal or hexadecimal:digits

can be converted to a corresponding bit string; i.e.,

1]
BIT@BIN(1011'} becomes 1011
1 1
BIT@OCT(657") become§ 1i0 101 111
1 1y
BIT@HEX(FAD'") becomes 1111 1010 1101
L 1 ’
B;T@DEC(78)' _becomgs 100%110

Likewise-bit strings can be converted to binary, octal, decimal

or hexadecimal character digits; e.qg.,

: CHARACTER

@HEX(BIN'lllllOlO') . Lo

In addition to using conversion functions within expressions,

the."pseudo-variable" SUBBIT is defined, and may appear on the
left hand side of an assignment statement. That is, a-bit string
expression may be_aséigned directly to the bit representation of

other data types. For example,

SUBBIT6 TO 20(A) = C E;

r .
SUBBIT(CG) = HEX'S9F';

10-21

Thrdugh the use of.the SUBBIT pseudo-variable, the basic bit
pattern (machine representation) of any data type may be manipulated

by the programmer.

ldhg HAL Operations - A Sﬁmmary
.HAL.provides the programmer with full facilities for:
" 1) scalar and integer arithmetic
2) 'véctér and matrix arithmetic
3)' bit~ and character-string manipulations
4} array operaﬁions
5) structure handling
Most of. the cémmon operators are valid with most 6f the data types
és opéfaﬁds and yield results that might be expected intuitively.
qugver, some operations with particular data types are not
t- .':ﬂilcnﬂfled,.r and others imply speéific conversions. A summary of
ali'HiL operations, involving one or two operands, is included
iq Appenéix C. For most operations the wvalid resuit data type
(or error) and the implicit data conversion(s) are indicated.
The tabkles in Appendix C have been taken from the HAL language

specification document (Reference 1) and are presented heré for

programmer convenience.

10-22

"11l. Additional Program Organization and I/0
1ll.1 Organization .
In Sec. 7 the bhasic jeatures of érogram organization
_and name scope were presented in the context of HALM. For
the moét part, these features also apply to the full
HAL'lahguaée. The additional data types: integer, bit-’
:énd character-strings, arrays of these_tyﬁésiand structures
oé all data tvpes,follow the same rules with respect to scope
ana DECLARE and OUTER statements,as scalars, vectors and
matrices. _-)
It is the intention of this section to describe, to
the programmer, additional details of program organization
bearing principally upon the logical arrangement of hlocks

. 0f code within a érograﬂténd‘the relationship of ‘one program

to another, and to the Symbolic Library.

11.1.1 Declaration of Labels

It was ﬁointed out in Sec. 7.2 that the scope of
labels; in a HAL program, generally follows the same rules
as éhe scope of names. The statement Oor procedure label must
be defined before its use, or, at least, in the block in
'which it is used. ’
When a label appears after its use in a GO TO or
CALL statement and outside the block in which it is

used, then the label must be declaréd explicitly. For

example:

1i-1

-

A: BROGRAM;

DECLARE X LABEL;

-
L]
-

B: PROCEDUPE;

-
T e
-

GO T0O X;

-
-
-

"CLOSE B;

LI]

¥: Y = LOG(P);

=

CLOSE A;

'Thé'label X appears in the 1i§ti£g after GO TO X and outside
?B, and therefore requires the DECLARE gstatement. The LABFL
éttribute may not be factored-in a DECLARE statement; i.e.,

DECLARE LABEL A,B,C;

is not permitted.

11.1.2 Declaration of Function Names

Function names must always be defined before their
use, even if ‘the FUNCTION statement and function reference
appear within the same block. |

On occasion it may prove awkward to-locate in
the listing, all'function"blocks prior to the statements
in which the function names are actually used. This require-
ment may be avoided by declaring the fgnction name in a

DECLARE statement. For ekample:

11-2

1 €2

A: PROGRAM; A: PROGRAM;
"ZAP: FUNCTION VECTOR: DECLARE ZAP EUNCTION VECTOR;

-CLOSE ZAP; B: PROCEDURE}:
}

B: PROCEDURE;

Y = X + %ZAP;
: _ CLOSE. B;

" CLOSE B; 7AP: FUMCTION VECTOR;

-
<

CLOSE A; CLOSE ZAP;:
CLOSE A;-

In #1, the function ZAP is recognized in B because its definition

precedes its use. In #£2 the definition has been relocated

after its use, therefore ZAP must be declared, first, using

a DECLARE statement.

The DECLARE statements for a function have thé following

form:
- DECLARE A FUNCTION type dimensions precision;
The tﬁpe and attributes may be written in factored form; thus

DECLARE FUNCTION MATRIX(4,4)
, PRECISION(10) A,B,C;

bl

11.1.3 Communication Between Programs

' The program (i.e., PROGRAM-CLOSE block) is theiénly
independently compilable HAL proéram—unit. A program can
call another program and cémmunicate data through a dgmmon.
data pool (COMPOOL). Data may not be transferred Betwéén

programs by lists of arguments ahd‘férméi-parameters as

with procedures and functions.

11.1.3.1 The COMPOOL

The COMPOOL ié a centrally defined and-cgntrally
maintained group of statements. The statements are limited
tc REPLACE, OUTER and DECLARE, and the éttribﬁtes in the‘
DECTARE statements are further restricted to LABE#, FUNCTION,
dimensgions and PRECISION ({also VARYING for charaétef:stringéf.
The names and labels declared in the COMPOOL are potgntially
known to all programs and, in fact, provide tﬂe onl& ‘
means of communication between programs. -

In order to take advantage of the COMPQOL as avdata,
sharing mechanism, the programmer must include the COMPOOL
statements before the PROGRAM statemént during comp%lation.
In a sense, the COMPOOL is placed "outside" the program block
and its scope encompasses the program. .If anothér program
ig compiled in a similar manner, using the same COMPOOL, the.
variables declared in the COMPOOL will be recognizeﬁ in ﬁbth_
programs. Thus, for example,

131-4

INCLUDE COMPOOLA . .| - . " INCLUDE COMPOOLA.

A: PROGRAM; o B: PROGRAM;

©
-
-

CLOSE A; .. - o cpdéE B;
It should be noted that if fhe dOMPOOL is included after the
PﬁOGRAM statement; i.e., within the program block then its scope
_can encompass only the p?ogram itself, and declared variables

canﬁot be shared by another program.

11.1.3.2 The Symbolic Library and the INCLUDE Directive

The COMPOOL stafements.reside in a symbolic library
and are entered into the library.using specific 369/75 utility
commands {(to be specified at a later date). " Once in -
the library, the COMPOOL may be retrieved and compiied with any
HAL program by using the compiler directive*

IﬁCLUDE

along with certain other utility commands. - The name
associated with INCLUDE may be up to 8 characters in length with
the first being an alppabetic character. Thus
INCLUDE COMPL106
or
INCLUDE NAVDATA
are valid directives.
The symbolic library may alse be used to store any symbolic

source code; e.g., complete programs, procedures, single statements.

The library entries are available to all programs and may be

* Compiler directives require a D in column 1 of the input source code.

11i-5

included in the compilation of a program, at any point, by utilizing
the INCLUDE directive with the proper library name. Statements
from the Symbolic Library will then be compiled as if they were

supplied by the programmexr in nis source code.

11.1.4 Program Calls

The CALL statement may be used to call one program from
ancther program. The logical result is similar to calling a
procedure; i.e., control is transferxred to the program called
and returned when the program is completed. The CALL statement
is of the form:
, CALL program—name;:
In calling a program:

1) no arguments may be passed; all communications must
be through a COMPOOL.

2) All static variables are allocated on program
initiation, and released when the program ends; i.e.,
variables with the INITIAL attribute are initialized,
others take on unspecified values.

3) Contrel is returned to the céller at the statément
following the CALL statement, when a RETURN or CLOSE
statement is reached.

4) Control may be returned to the executive by executing
a TERMINATE statement; i.e.,

TERMINATE;

5) A program cannot call itself.

ll-6

-11.1.4.1 Program Declaration

In order to.call a program,its name must be
known_within the calling pfogrgm. fhis is accomplished by’
'£he DECLARE statement
| DECLARE A PROGRAM;

#his statement may be pl%ced in the COMPOOL, elsewhere iq
the symbolic library, or in the prograﬁ body. In-any case
thé declarétion must appear before the name of the program

is used in a CALL statement.

11.1.4.2 Example
-A: PROGRAM;

DECLARE XX -PROGRAM;

CALL XX;

B: PROCEDUERE;

DECLARE YY PROGRAM;

CALL XX;

CALL YY;

CLOSE B;

CLOSE A;

11-7

_11.2 Input-Output

St In this section the I/0 control functions and the standard

data formats complementing Sec. 7.6 will be presented. The material
. . . -
is specialized to card readexr and line printer types of. devices.
: |
The programmer is urged to consult the HAL language specification

document (Reference 1) for ‘a more general treatment.

11.2.1 Read and Write Control Functions

External data media, either providing inptt information
to a HAL program or accepting output data, are treéted‘as £w0~
dimensional devices. Data occupies a grid consisting'of
horizontal lines with each line being madg_up of column éoéitions;
for example, a deck of punched cards where each'dérd:ié a line,

or a 132-column high speed printer., The "read mechanism" or

"write mechanism" is located at some point on this two-dimensional

grid, and moves in a conventional way along each‘line and from
line to liﬁe as reading or writing takes place. Read- and
write-control functions are used to move the "read mechanism" or
"write mechanism" to any reachable location desired in rea&iness
for reading or writing. The definition of "reachaﬁle"&éries

depending on the physical device involved.
11.2.1.1 Read

In this section discussion is restricted tc the card

reader as-.a read device. The "read mechanism" is located on the

11-8

-two~dimensional grid by the read-control functions SKIP, TAB
‘and COLUMN. A READ statement without these functions will
- élways begin oh.coiumn i of the next card, and will then read
t‘chsécutive data fields, card after card until all wvariables
have been assigned values, unless interrupted by a semicolon
terminating a data field. In this latter case, vari%bles not
hé;ing yet been aésigﬁed values.retaip their previou; ones.
Fgliéwing is an example of é simpie READ statement:
READ (device)a, B, C, D, E, F, ... etc.;

_ The SKIP read-control functipn controls the wvertical position
-of:the "read mechanism"; that is, it controls which card is
next to be read. The form is i
. éKIP(Nf, where N > 0
A SKIP(0) in the middle or at the end of a list of variable
ﬂnamés-has no effect. A SKIP(0) Qefore the first variable name
fin_é READ statement causes reading to continue on the same card
‘as that last read by the previous READ statemént:“ Multiple
_SKIE(ﬁ) specifications are cumulative in effect. Any SKIP
_function appearing before the first variable nawme overrides
the implicit SKIP (1) which normally causes reading to start in
the next card. »

In the example
READ (CARDS) A, B, sKIP(3), C, SKIP(5), D:

values for A and B are 0£ the first card to be read, the wvalue

for C is on the 4th caxd, and the wvalue for D on the 92th card.

¥ See footnote of Sec. 7.6.2.

11-9

Thefe is ﬁo‘reloéation of the horizontal position of‘the "read-
ﬁebhanism" during the skips. ' '

The TAB aﬁd COLUMN read-control fuﬁctions control the
‘horizontal position of the "read mechanism", at wﬁich reading
is to start or resume. The TAB function moves the "read
mgchanism“'left or right by the Speéified numbef ofécolumns.
Its form is

TAB(N), where
N<0: move to left;
ﬁ=0; no effect;

N;G; move to right.)
N must be,of'such a -value that the column arrived at is in
tﬁélfgnge 1 through 80. The CdLUMN function moves the "read
-mséhaﬁigm" to the specified colume. Its form is
' ' COLUMN (N} , 1<W<80
"Multiple TAB functions are cumulative. A TAB or COLUMN
funcfioﬁ appearing before the list variable namelin a READ
étateﬁent overrides the implicit COLUMIN (1) normally causiﬁg
reading of a card to start at column 1.
: In the gxample .
READ(CARDS) A, B, TAB(6), é;
READ(C;RDS) SKIP(Q), COLUMW(7), D,E,ﬁ;
with the data fields
column (Ly (7)
-5.6, 7.2E+5, 113, 'SECONDS'

* '
the first READ statement causes A, :B and C to take the values

13-10

=5.6, 7.2E+5, and ' SECONDS ! respectively. The second READ_state;

@ent rercads the same card starting at column 7, causing D, E

o,) S

and F to take the values 7.2E+5, 113,-and 'SECONDS' respectively.
: |

11.2.1.2 Write

1

————

In this section discussion is limited to éie liﬁe
printer as a wriﬁe device. 'The "write medﬁanism" ié located in
the two-~dimensional grid by the write-~control fdnctioﬁé LINE, - ‘
SKIP, PAGE, TAB and COLUMN., A WRITE statement withouﬁ thesé
functions will always begin at .column 1 of the printer, and
print out the values of the variables and/or expressions in
turn; each data field separated from thé next by five.blanks.
When the end of the line is nearly_reachedL and the néxt data
field is too long to be printed,'one of two thingé ﬁgpp;ns.

If the data is pumerical, printing is deferred to the beéinﬁingr“’
of the next line. If the data is charécter, then printing

continues uatil the éﬁd of the line is reached and then the
remainder oé the field is printed at the beginniﬂé 5f_the hext
line. .Followiﬁg is an example of a simple WRITE s?atemgﬁt:
. WRITE (PRINTER)A,E,C-!—D?,E, ceend .

The TAB and COLUMN write-control functions have fhé'samg
effect as when used as read control functions. The wvalid
range of columns is 1 through 132, however. Note that . .if.use

of the functions to move the "write mechanism" to the left is

made beforeé printing, whatever was in those column positions'

11-11

}pf the same line beforehand,is overwritten. Thus for example
WRITE (PRINTER)5132,COLUMN (1) ,-66;
causes _the following line to be printed (see Sec. ll.2ﬁ2.5).

Column (1) (11) ,
) |

-60 ' |
because -~66 overwriteé SIBQ.PPA way of causing multiple over-
writing of characters is iﬂéicated later. Use of the TAB or
COLUMN functions between two entries in the WRITE stapemenﬁ_
inhibits the 5-blank interfield spacing normally occurr%ng
at that point.

The LINE, PAGE, and SKIP write"control'functiané_&ontrol-
the vertical position of the "write mechanism"., The PAGE
function is of the form i ' - .

PAGE(N), AL W>0

and causes the printer to advance N pages, remaining o#”ihe
same line relative to the head of the page. (Each ?aée h%s-
58 lines.) If N=0 the function is ignored. Fof exémble if

WRITE (PRINTER) X,PAGE(2) ,Y,PAGE(0),%; "
causesnprinting of the value of X on line 7 of the curreﬁt’
page, then the value of Y will be printed on line 7 of.the pex£
page bﬁt one. The value of 2 is printed on line 7 of this same
. page immediately following Y. -

The SKIP write;controi function operates in a similar
way to the read-control function. The only difference in
behavior results from the use of SKIP(0) in the middlé éf a
list of variables and/or expression. This behavior is best

demonstrated by an example:

11-12

~p

.WRITE(PRINTER)'RESULT’,SKIP(O),COLUMN(l),' ‘ !
‘causes the following to be printed:
RESULT '

Note the overprinting, which would not have resulted ffom the

statement

LT

WRITE(PRINTER)'RESULT',COLUMN(l),' !

which just results in the following being printed:

In SKIP(N), N may be any positive number: it is imﬁa?erial
whether or not page boundaries are crossed. :

The LINT write-control function forces priﬁting-fo con- -
tinue on the line specified. Its form is;

LINE (N), lf_N_gSé. '
If N is equal in wvalue to‘tﬂe current line number, thne errect.-
is the same as a SKIP(0). If N is greater than the curreﬁt line
number then the "write mechanism" moves to that‘iiﬁe on the
cuérent page. If N is less than the current line number then
the "write-mechanism" moves to that line on the EéEE page. For
example if
WRITE (PRINTER)X,LINE(20)},Y,LINE(1l),2;

causes the value of X to be printed on line 15 of the current

page, the wvalue of ‘Y will be printed on line 20 of the same

page, and 2 on the first line of the next page.

J11-13

j;.z.z Standard Data Formats

11.2.2.1 Numerical Input Data

Numerical data may‘be input o a HAL program as a
signed (+ is optional) decimal number (with or without a decimal
point) and raised, optionaily, to the powers 10, 2 or 16. The

format is as follows:

E .
tdecimal number<B:+integer
H - -

where E, B and H represent 10, 2 and 16 réspéétively. Igternal
bianks are not allowed. Data may contain.}epeatéd péweréi
Some examples follow:
369.0
8
-8.36E+2B-1
+0.123E6B-3H4
1E-75
<337
Numgrical data may be assigned to integer, scalar, veq?or, mat;ix
and bit string datq\types. For integers and bit strings.tﬁe
data form must represent integral values. For a bit string
assignment, data is first converted to a full word bit string
and then assigned to the corresponding bit wvariable named in

the read statement. The following statement could accept the

11-14

:* examples shown above:
READ(CARDS)I,B,V,A;

I is an integer, A is a scalar.

11.2.2.2 Character Input Data
' Character data may be'input to a HAL program as a
.string of characters enclosed by single quote markél - Thus,
for example,
’ tA B!
e
157.3/C!
' NUMBER_ONE'
'ON,OFF,OFF, ON'

Bit string data may be input directly in binary, octal, decimal
and hexadecimal forms by representing the data as a charac;er.
string and then interpreting the string within ‘the HAL program.
For example, suppose it is desired to assign-a bit string yith
the octal number 37776. The data may be input as

'377761
and the HAL statements might be:
DECLARE B BIT(15);
DECLARE C CHARACTER(5}:
READ(CARDS)&;

-

r
B = BIT@OCT(C);

11-15

EThis last statement interprets the character string as an octal

bit pattern and converts the quantity to a bit string.

11.2.2.3 Non-standard Data Formats

- t
It is possible for a HAL program to accept data in

forms other than those described above. The READALL statement.:
is defined for this purpose. It is suggested that the programmer
qonsulf the HAL language specification (Ref. 1) if he'aeéires

to use non-standard input data.

"11.2.2.4 Scalar Output Data

The standard single precision scalar outpuﬁ'daﬁa'from
" a HAL prograﬁ is presented in Sec. 7.6.3. For ﬁdublé precision
the number of decimal digits is increased from 8 to 17. Tie

total field size is 14 character positions for single précision

numobers, and 23 character positions for double precision.

numbers. -

ilﬂ2.2.5 Integer and Bit String Ouiput Data

Integer and bit string data are output from é HAT
program as signed integral values (a positive number: is indicated
by a blank). The total field size is 11 charactef pogitions.
Leading zeros are suppressed and appear as blanks, except for
a single zero value. For example,.the following WRITE state-

ments:

11-16

WRITE (PRINTER) B;

WRITE (PRINTER) J

e

WRITE (PRINTER)

K;
WRITE (PRINTER) é;
might result in the print-out,
column (1) éll)
5
~-4673
0
| 2684736

Note the conversion of bit strings to integer form.

11.2.2.6 Character Outﬁut Data

pharacter data output from a HAL program appears‘as
a variable size field equal to the string length -of the character
variable, or expression, in the WRITE statement. For eia@ple,
the statement ‘
- WRITE (PRIN.TER) "DISTANCE= '||aj]" MILES.';
might produce the printed line
column (1) - (30)
‘ DISTANCE= 8.6034768E+06 MILES
Note the blank characters after the = sign and befoxe MILES.
Bit string data may be output in binary, octal, deéimal or
hexadecimal form by first converting the string to characters;

for example, the statement

11-17

‘ TNRITE (PRINTER) CHAR_@OCT (B);

- would result in wfiting a bit string of value = 101110100 in
"the form:

564

The HAL language specification document (Ref. 1) contains

other examples of character output data.

11-18

. References

1. MSC-01846, The Programming Language HAL - A Specification,
prepared under NAS 9-10542, NASA/MSC, Houston,, Texas
(o be published). ’

Appendices

" Appendix A

"HAL Keywoxds

(not including built-in functions)

The following woxrds are ‘HAL keywords and are usually

unavailable for any other use.

PRIORITY

ACCESS FILE
AND .FOR PROCEDURE
ARRAY FUNCTION PROGRAM
ASSIGN GO QUALIFIED
AT HEX READ
AUTOMATIC IDCODE READALL
BIN IF. ' REPLACE
BIT IN RETURN
BITLENGTH INCLUDE SCATAR
BY INDEPENDENT SCHEDULE
CALL INITIAL SEND
CASE INTEGER SIGNAL
CAT LABEL SKIP
CHAR " LATCHED STATIC
CHARACTER. LINE SYSTEM
CHARLENGTH MATRIX TAB
CLOSE MATRIXPIM TASK
COLUMN NOT THEN
CONSTANT NONQUALIFIED TERMINATE
DEC oct TO
DECLARE OFF TRUE
DO ON UNTIL
ELSE OR UPDATE
END OUTER VARYING
ERROR PAGE VECTOR
EVENT PRECISION VECTORLENGTH
EXCLUSIVE PRIO WALT
FALSE PRIOCHANGE WHILE
WRITE

are given in this
order under their

fpr the arguments

Appendix B

HAL Built~-In Functions and Pseudo-Variables

The built~in functions and pseudo-variables available in HAL

I:

appendix, and are presented in alphabetical
respective headings. The allowable data-types

are indicated using the following abbreviations:

integer
scalar
vector
matrix
bit

.charactexr

A. Conversion Functions (See Secs. 9.2.1, 9.2.2, 10.3.2)

Arguments: I,S,V,M,E,C
1. INTEGER

2. SCALAR

3. .BIT

4. CHARACTER
©5. VECTOR

6. MATRIX

String Functions

l-

INDEX (string, config)

Argumenﬁs: B,C. Searches a string for a specified

bit or

character configuration. The

starting location of that configuration

B-1

within the string is returned as an integer

data type.

LENGTH (string)

Arguments: B,C. Finds the string length and returns it
as an inteéer data type.

LJUST (character-string)

Result: = LJUST reQOVes all the leading blanks of a
character string operaﬁd and returns the
resultant character étring.

RJUST (character-string, p)

Resﬁlt: RJUST creatés a new character string of
length, p. " The character string argument is
truncated on the left, or padded with blanks
on the left, dépending on whether its length
is greater or less than p. p is a scalar
expression which is:rounded to the nearest

integexr before use.

C. Arithmetic Functions (B,I,S)

These functions return the same data type as the argument

{(bit arguments are first converted to integers; the function

returns an integer). Array arguments yield axrray results.

1.

ABS

Finds the absolute value of the argument.
CEILING

Determines the smallest integral wvalue that is

greater than or egual to the argument.

B-2

3. FLOOR
Determines the largest integral wvalue that does not
exceed the argument.)
4. "ROUND
Rounds the argumeﬁt to nearest integral value.
5. SIGNUM '
Returns 0, +1, -1 as argument is zero, positive, and
negative, respectively. ‘
6. SIGHN
Returns +1, -1 as argument is positive or zero,.and
negative, respectively.
7. TRUNCATE
Returns 0 i1f argument is leés than +1 but greater
than ;l; otherwise returns equivalent of SIGN {argument)
times the largest poéitive integral wvalue that does not
exceed ABS (argument). ‘ ‘
8. 'MOD(a,b)
MOD extracts the remainder ¢ such that (a-c)/b=N, where
- N is an integral number. c is the smallest positive
number that must be subtracted from a in order to make

-

N an integral number.

D. Mathematical Functions
These functions return a scalar data type. Arguments may
be B,I,S. (Bits and integers are converted to scalars.) Array

. arguments vield array results.

10.

11.

12.

ARCCOS

Trigonometric cosine; argument in closed interval [-1,1];

results in q}osed intexrval [0, w].

ARCCOSH

Inverse hyperbolic cosiné; arg not less than 1.
ARCSIN

Inverse trigonometric sine; arg in closed interval
[-1,1]; result in closed inte?val [-%/2, n/21.

ARCSINH

" Inverse hyperbolic arc sine; arg any value.

ARCTAN

Inverse trigonometric tangent; arg any Qalue; result
in open interval (-w/2, w/2).

ARCTANH

Inverse hyperbolic éangent; [axrg|<1.

cos A
Trigonometric cosine; arg in radians; [;rg|<Kl.
COSH

Hyperbolic cosine; [arg[<K3;

EXP

Exponential, (319, |arg|<K3.

LOG ;

Natural logarithm; arg positive and non-zero.

SIN

Trigonometric sine; arg in radians; |[arg|<KIl.
SINH |

Hyperbolic sine; |arg|<K3.

B-4

13.

14,

15.

Note:

TAN

Trigonometric tangent; arxg in radians; arg may not be
an odd multiple of w/2; “]arg[<K2.

TANH ‘

Hyperbolic tangeﬁt; arg any value.

SQRT

Square root; arg positive.

K1, X2 and K3 are upper limits which depend upon 360/75

machine characteristics (to be supplied at a later date).

E. Matrix-Vector Functions

Arguments may be wvectors or mqtrices (as applicable). Array

arguments yield array results.

1.

ABVAL

Absolute value of magnitude of vector; argument may be
a vector of any length. -

ADJ -

Adjoint; argument is invertible square matrix of any
dimensions; result is equal to DETERMINANT {argument) times
INVERSE (argument),

DET

Determinant; argument is a square matrix.

INVERSE.

Inverse; argument is sguare matrix; result is inverse
if argument is invertible.

TRACE

Trace; argument is square matrix; result is sum of

diagonal matrix elements.

B-5

é.. TRANSPOSE
Transpose; argument is matrix of any d%mensions; result
is the interchange of the rows and columns of the argument.
7. UNIT _ |
Unit vector; argument-is vector-of any length; fesult
is a vector of magnitude 1 and in liné with argﬁment.
F. Linear Array.Functions'
These funcéions have the following general format:
‘ func£ion—1abel(single—operand) '
'where the function will operate on the "linear array" répresenting
the "imner-most" free index of the argument. The single-~operand
may be of (B,I,S,V,M) data types ox arrays of these types.‘ The
following table indicates the array shape.and dimgnsiph of the’

function result.

E?E-“ ",5

Argument (1) (1) - — ‘
\\mnxﬁxxﬁﬁaﬁﬂh_ {X]a [X}a,b Vl Iv]a,b:‘ﬂ, “Tmyn Ma,b:m,n

Function A(2)

(2) (3) (3
Label [A]a S,) [S]a

) — —
o) m a,b:m

Subscripts indicate shape and dimension (i.e., affayFshapegdiménsion)
£ = vector length; m,n = matrix rows, columns; a,b = array shape.
(In'generél, the argument array shape may be a,b,c,..l etc.) ‘
NOTES: -

(1) X may be bit string, integer or scalar

(2) A is an integer if X is a bit string or integer

(3) S indicates scalar

The linear array functions are:

1. suM
Sums over inner~most free index.
2. ©PROD
Forms product over inner-most free index.
3. MAX
‘ Finds maximum element value over innérumost free index.
é. lMIN
Finds minimum element value over inner-most free index.
EXAMPLES : -
1. DECLARE A ARRAY(2,4,6);
SUM([A]2’*'6) results in a 2x6 array of scalars. Sum
is performed over second index because it is free.
2.

DECLARE ARRAY (25,25,10)A,B;
(213 70 g,4,% = MBX(IBl g mo 15,5 ,4)7
The result is a 6x10 array of scalars. BEach scalar is eqgual
to the maximum value encountered along the inner most
index of [B]. The statement is equivalent to the following
"DO FOR-loops™: -

DO POR I = 3 TO 8;

DO FOR J = 1 TO 10; -

= MAX (

1,4,7 (Bliyq,q,+)7

_DECLARE D ARRAY(10)VECTOR(6) ;

SUM([D]) results in an array of scalars of length 10,

Each scalar is the sum of the 6 components of each'!of the

10 wvectors.

Miscellaneous Functions

i

RANDOM

Result is £he current base random number in the
pseudo-random number generator. This function enables
the programmer to make successive runs ofua_program
without repeating sequences of pseudoﬂrandém nﬁmbers.
RANDOMG

Selects a random number from a Gaﬁssian qistfiguéion.-
TIME — .

Returns current time as an integer.

. DATE

Returns current date as an integer.

Pseudo-Variables

A pseudo-variable, in HAL, is a function that can only

appear on the left of an egual sign (=) in an assignmeﬁt or

DO statement. The only defined pseudo-variable is SUBBIT.

See Sec, 10.3.2.

© Appendix C

Summary of HAL Operations

The following tables summarize the allowable operations
between two operands. In most cases the valid result-type
(or an error) and any implied data conversions are indicated

within the boxes.

~——

_ L p :';"t ["‘]}
(o} OPERAND. & ™'

Operation Prefix L _
: : PRI "Q: NOT
OPERAND = | INTEGER | ' SCALAR VECTOR MATRIX | BIT STRING | CHARACTER
C . STRING
P P P P P Q
- : : ~ IINTEGER BIT ERROR
INTEGER SCALAR | VECTOR . MATRIX o T STRING .
P refers to| P-group of.operatofs?shown above.

0 refers ol

Q-group of J

perators shot

m above.

-

* . B+I means conversion from bit to integer

Table C-1

OPERAND. . T OPERAND.-

Operation _Addition & Subtract :. 1 2
OPERAND,, . o . '
| INTEGER | SCALAR . VECTOR MATRIX PIT STRING | CUARACTER
: | . STRING
OPERANDl '
INTEGER INTEGER SCALAR ERROR ERROR INTEGER ERROR
* * '
' T+ BT
SCALAR SCATAR SCALAR ' ERROR. ERROR SCALAR ERROR
C I8 ' ' ' B+I+8
VECTOR ERROR ERROR VECTOR - ERROR ERROR ERROR
MATRIX ERROR " ERROR ERROR | MATRIX ERROR- ' 'ERROR
‘ a
BIT STRING . INTEGER 'SCALAR ERROR ERROR . ' INTEGER ERROR
B+ © BaIeS | ¥ ' CBeT L
PHARACTER ERROR - ERROR | ERROR . |. ' ERROR- ERROR ERROR
STRING , , = -
*I—S means conversion of integer to s¢alar d: dimension ‘check

Table ©.C~2

Operation Multiplication:'

.OPERAﬁDI'

' OPERAND,

OPERAND2 - .
INTEGER.- | ' SCATAR VECTOR MATRIX |BIT STRING | O ORACTER
OPERAND : - ’ . STRING
INTEGER - INTEGER SCALAR. ", VECTOR. MATRIX- INTEGER ERROR
IS5 I+5 I8 BT .
SCALAR SCALAR SCALAR VECTOR MATRIX SCALAR | ‘ s ERROR
I+S ' ‘Ba-I+5
MATRIX (1) ' - o
. _VECTOR VECTOR VECTOR SCALAR(2) . VECTOR VECTCR ERROR
TS VECTOR (3)" - BT .
MATRIX MATRIX MATRIX VECTOR . !MATRIX MATRIX ERROR -
I+5 " a B+I-+53
BIT STRING ,IQTEGER SCALAR VECTOR "MATRIX .+ INTEGER . ERROR
‘BT ‘B+I+S B>I+8 B+1+8 B+I, B+l
CHARACTER °
STRING ERROR ERROR ERROR ERROR ERROR ERROR
Notes: (1) Vector outer producﬁ v d: dimension check
(2) Vector DOT product V.V
¢3) Vector cross product V

3~element vectors)

"Table C-3

(d,_rgstricted to

Operation ~ Division

OPERANDI/OPERAND'

2

2 L " _
INTEGER | SCALAR VECTOR MATRIX. | BIT STRING | CHARICTER
R . NG
OPERAND, |
TNTEGER SCALAR SCALAR ERROR - ERROR SCALAR ERROR
I+§, I+8 I+S I+, B+I+S
SCALAR SCALAR SCALAR ERROR - ERROR SCALAR - ERROR
I+8 ' B+1+8 S
VECTOR VECTOR VECTOR 'ERROR ' ERROR 'VECTOR ERROR’
I+S B+I+S
" MATRIX MATRTX MATRIX ' ERROR | ERROR MATRIX ERROR
_ . : - ih .
I+8 ' B-+I+8
BIT STRING SCALAR SCALAR ERROR ERROR | gfﬁigR " ERROR
B+I+S, I+5 BI+S : BI85,
CHARACTER L oo L .
STRING . 'ERROR " _ERROR ' ERROR’ | -.° . ERROR: ERROR | ' BRROR

Table C-4

Operatioh " Exponentiation K

IZ'OPERANﬁi**O?ERANﬁi

L]
OPERAND,, S oo Lo : AR CHARAC o
| INTEGER . |' SCALAR VECTOR | MATRIX - -{BIT STRING Pt
OPERAND - ' ' , -)
l +
' (1) (1) SRR B | (2).
INTEGER SCALAR SCALAR ERROR ' ERROR SCALAR ERROR
I+S T+S) I+8, B+I-+S
SCALAR SCALAR SCALAR ERROR ERROR SCALAR ERROR,
‘ . B+I+S
VECTOR ERROR ERROR ERROR - ERROR ERROR * ERROR
(5) MATRIX ' b © MATRIX
MATRIX MATRIX - gor ERROR . ERROR . BT ERROR
| BIT STRING scatar‘®) | scarar‘® ERROR _ ERROR . scarar 4 ERROR
' . | B>I=+8, I=S BI85 ' . : B+I+S ,B+I»S
i . ' .
CHARACTER S : _ .o .
STRING ERROR ERROR + *ERROR.. - | ~ERROR " ERROR + ERROR
Notes: (1) Result is' INTEGER if OPERAND., is a wholé number literal > 0 (no I=+S).

(2)

(3)
(4)
(5)

Result is INTEGER if OPERANDZ is a bit string literal which may be ‘converted
to an unsigned integer (no Ias, B-L) . .

Result is INTEGER if OPERAND, is a whole number literal > 0 (B=I)..

Same as (2) except (B+I, B+I§. o ’

See Sec. 6.1.1.4

Table C-5

P =,71=

- . -
iOQERANDl{Z}OPERAND : o %
oo Q:"":"‘_’] =, <, >’.<=’ >=, '1<’71>‘

2.
Opération Compafison .

Table shows valid relational operators; the result is always true or. false:

OPERAND . : : _ .
2 INTEGER . |- SCALAR VECTOR MATRIX | BIT STRING'| CIRRPciER
OPERAN : : R
~ INTEGER .Q Q- ‘ ERROR ERROR 0 . ERROR
T+8 ' , .+ BT ‘
SCALAR | - 0 0 {. ERROR’ ERROR - Q 1" ERROR
I-+5 B+1+8
' , , N
VECTOR. . ERROR ERROR P ERROR ERROR . 'ERRCR
MATRIX ERROR * ERROR ERROR | .! . P ERROR . | ERROR -
BIT STRING Q ' Q- ERROR - ERROR Lt A ERROR
BT - Tt '
CHARACTER - A . - ' ~ I (2)
STRING ERROR ERROR ERROR ERROR ERROR - al2)
Lo K, ¥ | Notes: (1) OPERAND padded on the
. - P
Spelcgl. gtructure operandl_ structure operand2 left to make lengths

equal 1f necessary.

. (2) . OPERAND padded on the
‘Table C~6 . right to make lengths
. _.equal if necessary.

X RA!!': P"bPERAﬁD RSN
. _ " OPERRND, g § OFERAND, S.0: ||, AaND, OR_
Operation String : . ' ‘
OPERAND, . . . '
TNTEGER SCALAR VECTOR MATRIX | BIT STRING | CHARACTER
STRING
- | OPERAND ,
INTEGER | ERROR o p :
~ | CHARACTER
T+C
. _ P
SCALAR * |-ct— ERROR .| CHARACTER
' S+C **
VECTOR |~ ERROR ' A -
MATRIX |= ERROR o
. 5 0 .
BIT STRING [-<r— ERROR *- B T STRING ERROR
CHARACTER P P . P P
SPRTNG CHARACTER CHARACTER:| - ERROR ' ERROR CHARACTER
T T-+C S~+C BT CHARACTER

* I-»>C means conversion

from integer to charactexr

‘*% S->C means conversion from scalar to character

Table

C -7

Appendix D

HAL Single-Line Format

Most HAL statements can be written in ‘a single 1ineh similar
to FORTﬁAN or PL/1l. The single line format requires the ?se of
the following operators: !

** for exponentiation

$ for subscripting

T

Exaﬁples
Multi-Line . Singlerﬁine
1. x=2%+ 8% X = A**2 + B*¥*2;
2. X =R+ By; . X = A$I + BSI;

If the exponent or subscript is an expression:(or_a multiple
subscript) rather than a simple name or literal, the. expression,

in single~line format, must be enclosed in parenthéses:

_ 2P = &%
3. X = AJ,K X = A$ (JIK) . (Z'P)
4. X = Bi X = BS(AS (J,K+3)) **2
J,K+3

When subscripting an exponent or exponentiating a subscript,
it becomes necessary to introduce the single-line format into the

multi-line statement és well.

D.1 Implicit Data Declarations
Since data type annotation (-), (*), (.), (,) cannot be
supplied by the programmer over a variable name, using a single-

line, implicit data declarations are not posgsible in this format.

D-1

Appendix E

character Collating Seguence

(To be supplied at é later date)

Appendix F

Formulating ("shaping") Functions

(unsubscripted with single entry
lists. Also see Sec. 9.2)

~ The tables below indicate the fesulting array shape and

%ype dimensions‘for the functions

SCALAR

INTEGER

BIT

CHARACTER

VECTOR

MATRIX
where the functions themselves are unsubscriptedﬂand the arguments
consist of a single entry (e.g. a scalar, a vector, etc. or an

array of any data type).

Table F.l SCALAR, INTEGER, BIT, CHARACTER .

Argument = = * *
Vﬂ {V]a,b:ﬁ, Mm,n [M]a:m,n
~Resulting :
A X X X X
Sizgi []2 []a,b,£ []m,n []a,m,n

Subscripts above indicate shape and dimension (i.e., array-
shape:dimension){ = vector length; m,n = matrix rows, columns;
a,b = array shape (in general, the argument array shape may he

a,b,c,...etc.). X represents bit string, integer, scalar, or

character string.

Table F.2 VECTOR, MATRIX
T hrguﬁéntx;;;§"ii “W"*A"fif7‘“f“""¢“”;*~: R T T
Reéuiting n . vﬁ * *
Array Shape X(l) [K]a,b or [Vla,bzz Mm,n [M}a,b:m,n
~ & Dimensions [x1
: (2) _ N —
—— -t _— .~ ‘V
VECTOR Vﬁefault Va:b vg {V]a,bzi [v]m:n L]a,bym:n
%
. % () L AN * {3}) ﬁ u
MATRIX Maefault Ma,b Maefault [M]a:b,l m,n t]arb1m;n
— - .. L R . . L B -)

Subscripts are defined in Table F.1l

Noéés;

(1) X refers to bit stripg; integer; séaiér.or character
operands. Appropriate conversion to scalar is:
accomplished.

(2) All compoﬁents are set equal to X.

(3) The length & must equal the pigduct of the product
of the matrix default dimensions. (In general, the

" argument array shape may be a,b,c,...etc.).

