
iii1485
C0 (ACCESSIO 7 W 7

(CODE)

II-TCAEGORT)

SAA TUMBE)ECSNRTMEORADT

0~~~~ LIII LIIIGD 7
im
flnglld -5
I1lTEFIMETFIES,

INATIONALTEHIA

INFORMATION SERVICESpd~si.1dV.. 2151

FINAL REPORT

VOLUME II

A GUIDE TO THE

HAL

PROGRAMMING LANGUAGE

JUNE 1971

Submitted to:

National Aeronautics and Space Administration

Manned Spacecraft Center

Houston, Texas 77058

Prepared under Contract NAS 9-10542

INTERIMETRICS,INC.

380 Green Street

Cambridge, Mass. 02139

(617) 868-1840

MANNED SPACECRAFT CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

na'. ulae

Errata Sheet

1. 	P. 1-5 First paragraph of Sec. 1.2 should be:

The HAL Guide is divided into three parts. Part I

presents an overall view of HAL and its essential elements;

Part II defines a useful mathematical subset designated

HALM; Part III completes the description of the full

capabilities of the language in this implementation.

-The appendices

-2. p. 3-1 The last sentence should be: Scalars and tha elements

of vectors and matrices are floatig-point qualftities.

3. p. 4-10 	 Example 4.2.1.1 a

Y = VECTOR

4. p. 4-14 	 (x-p) 2 + (y-q) 2 = r 2

5. 	 p. 5-3 Example e)

[A]J TO # instead of [Aj TO #]

6. p. 5-4 	 (E1 TO 3, 1 TO 31

7. p. 5-5 	 (top of page)

W Y - 6;

.... and W = Y - 6 will be executed-.

INTERMETRICS INCORPORATED 380 GREEN STREET" CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

8.. p. 5-12 	 A 0 = G[B 0 +

(also)

READ(CARDS) G, N,

9. 	p. 5-13 AZERO = G(BZERO +

WRITE -(LISTING) I, AZERO;

10. p. 6-8 polar form is me i Q

should be

- ... polar form is me i

11. p. 6-8 	 insert the following statement after the

PHASOR PROCEDURE statement:

DECLARE PI CONSTANT(3.14159265);

omit comment

PI IS A RESERVED HAL CONSTANT

12. 	p. 6-9 (near botton of page)

YINIT instead-of YIMT

13. p. 7-4 	 (top of page)

...see Sec. 11.1.1.

(botton of page)

...see Sec. 11.1.2.

14. 	 p. 7-5 (in PROGRAM A)

omit bar over Q

INTERMETRICS INCORPORATED - 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 (617) 868-1840

15. p. 7-10

16. p. 7-11

17. p. 9-5

18. p. 9-6

19. p. 10-2

20. p. 10-7

21. p. 10-10

22. p. 10-13

23. p. 10-21

reference should be to Sec. 11.2.1.2

(within LIST)

insert SKIP(3), prior to each COLUMN(

(at botton of page)

omit (;) after {A}3 5

(at bottom of page)

At least one blank must separate structure

level from identifier; i.e.,

2 B CHARACTER(10), etc.

(in Example 2)

The first 7 bits of B

(middle of page)

D&, &G& H....

(at top of page)

after the first END; insert

DO FOR I = 1 TO 12;

Bars (-) should be placed over [P], VRESULT,[Q].

also,

BLOCK should be replaced by VRESULT.

(at bottom of page)

ClI;

INTERMETRICS INCORPORATED '380 GREEN STREET CAMBRIDGE, MASSACHUSETTS 02139 (617)868-1840

24. p. B-6 (within table)

V instead of [V]m

INTERMETRICS INCORPORATED • 380 GREEN STREET • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

Foreword

This document is Volume II of the final report of a

programming language development contract for advanced

manned spacecraft. This effort was sponsored by the

National Aeronautics and Space Administration's Manned

Spacecraft Center, Houston, Texas under contract NAS 9-10542.

It was performed by Intermetrics, Inc., Cambridge, Mass.

under the technical direction of Mr. Daniel J. Lickly.

The Technical Monitor for the Manned Spacecraft Center-was­
initially Mr. John E. Williams and later was Mr. Jack R.

Garman, FS/5.

The publication of this report does not constitute appioval

by the NASA of the findings or the conclusions contained

thereih. It is published for the exchange and stimulation

of ideas.

PREFACE

- This document is meant to serve as an introductory guide

to the HAL programming language. The guide does not attempt

to cover all the features of the language and is directed at

the initial implementation of HAL on the IBM 360/75 at the

Manned-Spacecraft Center in Houston, Texas.

Complete specifications for HAL are given in "The

Programming Language, HAL, - A Specification", Document

#MSC-01846.

Table of Contents

Part 	I. An Introduction to HAL 1-1

1.0 	 Brief Description of HAL 1-1

1.1 	 The Basic Characteristics of HAL 1-1

- 1..1 Source Input/Source Listing .1-1

*-'-.1.2 Data Types and Computations 1-3

* 1.1.3 Real-Time Control 	 1-4

111.4 Program Reliability 	 1-5

1.2 	 Organization of the Guide- 1-5

2.0 	 Language Elements 2-1

2.1 	 Program Structure 2-1

2.2 -Data 	 2-1

2.2.1 Data Declarations 	 2-1

2.2.2 Literals 	 2-i

2.3 	Statements 2-2

2.4 	 Input-Output 2-2

2.5 	 Source Code Preparation 2-2

.2.5.1 The Character Set 	 2-3

2.5.2 Identifiers 	 2-4

2.5.3 Keywords 	 2-5

2.5.4 Literals 	 2-6

2.5.5 	 Special Characters 2-6

. 2.5.5.1 Arithmetic Operators
 -2 6

t2.5.5.2 Relational Chatacters 2 7

i

2.5.5.3

.2.5.5.4

2.5.5.5

2.5.5.6

2.5..5.7

String and Logical Operators 2-7

Other Operators 2-7

Separators 2-8

Built-In Function Names 2-9

Compiler-Generated Annotation 2-9

Part II. HAL - A Mathematical Subset of HAL

3.0 Introduction to HALM 	 3-1

3.1 - Data Types and Data Declarations 	 3-1

.3.1.1 Types 3-1

3;1.2 Data Organizations 3-2

-3.1.3 Literals 3-2

3.1.3.1 Arithmetic
 3-2

3.1.3.2 	Characters 3-2

-
3;1.4 Declarations 	 3 2

- 3.1.4.1 DECLARE Statements 	 3-3

*3.1.4.2 Arrays, Vectors, Matrices 	 3-4

4.0 Arithmetic Expressions, Assignments, and Control 4-1

4.1 Arithmetic Expressions 	 4-1

4.1.1 The Order of Operations 	 4-1

4.1.1.1 Some Exceptions 	 4-3

.4.1.1.2 Product Operands 	 4-4

4.1.1.3 Sum and Difference 	 4-4

4.1.1.4 Vector Cross Product 	 4-4

4.1.1.5 Vector-Matrix Products 	 4_5

4.1.2 Some Examples of Arithmetic Expression 	 4-6

4.1.3 Characters and Arithmetic Expressions 	 4-6

ii

4.1.4 Array Expressions 	 4-7

4.1.4.1 Some Examples 	 4-7

4.2 Assignment Statements 	 4-8

4.2.1 Conversion Functions 	 4-9

4.2.1.1 Some Examples 	 4-10

4.3 Control Statements and Relational Expressions 4-10

:74.3.1 The GO TO Statement 4-10

_4.3.2. The IF Statement 4-11

4.3.3 Logical Conditions 	 4-11

4.3.3.1 Comparison Expressions 	 4-12

4.3.3.2 Sets of Logical Conditions 	 4-13

4.3.3.3 The Order of Operations 	 4-13

4.4 Examples - I 	 4-13

4.4.1 INTERSECTIONS 	 4-14

* 4.4.2 TRANSFORM 	 4-15.

5.0 Subscripted*Variables &-DO St&tements 	 5-1

5.1 Subscripts 	 5-1

5.1.1 Subscript Expressions 	 5-2

5.1.2 Subscript Range Expressions: Partitions 5-2

5.1.2.1 The "TO", Operator 5-2

5.1.2,2 The "AT" Operator 5-3

5.1.2.3 -An Application of Partitioning 5-4

5.2 DO Statements 	 5-4

5.2.1 DO...END 	 5-4

5.2.2 DO WHILE 	 5-5

5.2.3 DO FOR 	 5-6

5.2.4 	 DO CASE 5-8

iii

5-9 5.3< Examples - II

5.3..1 MEANS 	 5-10

5.3.2 FREQ RESPONSE 	 5-11

5.3.3 FILTER 	 5-12

6.0 	 Subroutines: Function and Procedures 6-1

6-1
6.1 	Functions

--6.1.1 Some Examples 6-5

.6.2 Procedures 6-6

.6.3 Examples - III 6-8

6.3.1 PHASOR 6-8

'6.3.2 INTEGRATE 6-8

7.0 Program Organization: Scope of Names, Input-Output 7-1

-7.4i Scope of Names 7-1

7.2 Scope of Labels 	 7-3

7.3 The OUTER Statement 	 7-5

7.4 Explicit Declarations 	 7-6

7.5 Communication Between programs 	 7-7

7.6 Input-Output 	 7-7

7.6.1 FILE Statement 	 7-7

*7.6.2 READ Statement 	 7-8

7.6.3 WRITE Statement 	 7-9

iv

Part -III. General Capabilities

8.0' HAL Data 8-1

8.1 Data Types 	 8-1

8.1.1 	 Scalar, Vector, Matrix 8-1

8.1.2 	 Integer 8-2

8.1.3 	Bit String 8-2

8.1.4 	 Character String 8-2

8.2 Data Declarations 	 8-2

8.2.1 	Multiple Declarations 8-3

8.2.2 	 Factored Declarations 8-4

8.2.3 	 Implicit Declarations 8-4

8.3 Precision 	 8-5

8.4 Constants and Literals 	 8-5

8.4.1 	Literals 8-5'

-8.4.1.1 String Repetition 8-6

8.4.1.2 Using Literals 	 -8-G

8.4.1.3 The REPLACE Statement 	 8-7

8.4.2 	Constants 8-9

8.4.2.1 Initialization Repetition 	 8-9

8.5 Storage Class 	 8-10

8.6 Arrays and Structures 	 8-11

8.6.1 	Arrays 8-11

8.6.2 	Structures 8-13

v

8.6.2.1 Name Qualification 	 8-14

8.6.2.2 Multiple Copies of Structures 8-16

8;7 Formal Parameters and Functions 8-18

8.7.1 	Formal Parameter Declarations 8-18

8.7.1.1 Specified Dimensions 	 8r18

8.7.1.2 Variable Dimensions 	 8-19

8.7.2 	Function Results 8-20

8.8 Alternate DECLARE Statement Format 	 8-21

8.9 The DEFAULT Statement 	 8-22

9.0 Subscripting 	 9-1

9.1 Selection 	 9-1

9.1.1 	Arrays of Vectors and Matrices 9-1

9.i.1l The Use of * and 4 9-3

9.1.2 	Bit and Character Strings 9-4

9.1.3 	 Structures 9-5

9.1.3.1 Structures of a Single Data Type 	 9-6

9.2 Formulation 	 9-7

9.2.1 	VECTOR and MATRIX 9-8

9.2.1.1 VECTOR and MATRIX of a Single List Entry 9-10

-9.2.2 INTEGER and SCALAR
 9-11

9.2.2.1 SCALAR and INTEGER of a Single List Entry 9-11

9.2.3 	BIT and CHARACTER .9-12

.9.2.3.1 BIT and CHARACTER of a Single List Entry 9-13

9.3 Modification 	 9-13

vi

10.0 Data Manipulation 	 10-1

iO.1 String Operations 	 10-1

10.1.1 Bit Strings 	 10-1

10.1.1.1 	Bit Strings Within Logical Conditions 10-3

10.1.1.2 	 "Boolean" Conditions I 10-4

10.1.1.3 	 Combining Comparison & Boolean Expressions 10-4

10.1.2 Character Strings 	 10-5

10.1.2.1 	Character Strings Within Logical 10-6

Conditions

10.1.3 Order of Operations 	 10-7

10.2 Array Operations -	 10-8

10;2.1 Partitioned Arrays 	 10-10

10.2.2 Functions of Arrays 	 10-12

10.2.2.1 	Functions with Single Data Item

Arguments 10-12

10.2.2.2 	Functions with Array-Arguments 10-14

10.3 Manipulations With Mixed Data Types 	 10-15

10.3.1 Implicit Conversions 	 10-15

10 3.1.1 	 Conversion of Arithmetic Literals 10-18

10.3.2 Explicit Conversions 	 10-20

-11.0 Additional Program Organization and I/0 	 11-1

11.1 Organization 	 11-1

11.1.1 Declaration of Labels 	 11-1

11.1.2 Declaration of Function Names 	 11-2

11.1.3 Communication Between Programs 	 11-4

11.1.3.1 	The COMPOOL 11-4

vii

11.1.3.2 	 The Symbolic Library and the

INCLUDE Directive 11-5

11.1.4 Program Calls 	 11-6

11.1.4.1 	Program Declaration 11-7

11.1.4.2 	Example 11-7

11.2 Input-Output 	 11-8

11.2.1 Read and Write Control Functions 	 11-8

11.2.1.1 	Read 11-8

11.2.1.2 Write 11-11

11.2.? Standard Data Formats 11-14

11.2.2.1
Numerical Input Data 11-14

11.2.2.2
Character Input Data 11-15

11.2.2.3
Non-standard Data-Formats 11-16

11.2.2.4
Scalar Output Data 11-16

11.2.2.5
Integer and Bit String Output Data 11-16

11.2.2.6
 Character Output Data' 11-17

Appendix A HAL Keywords A-i

Appendix B HAL Built-In Functions & Pseudo-Variables B-1

Appendix C Summary of HAL Operations C-I

Appendix E Character Collating Sequence E-I

Appendix F Formulating ("shaping") Functions F-i

Appendix C HAL Single-Line Format D-1

v ii

Part I.

AN INTRODUCTION TO HAL

i0 Brief Description of HAL

HAL is a programming language developed by IntermetrLcs,

Inc. for aerospace computer applications. It is intended to

satisfy the requirements for both on-board and support software.

The language contains features which provide for -real-time

control, vector-matrix and array data handling, and bit

and character string manipulations.

1.1 The Basic Characteristics of HAL

1.1.1 Source Input/Source Listing

A singular feature of HAL is that it accepts source

code in a multi-line format, corresponding to the natural

notation of ordinary algebra. An equation which involves

exponents and subscripts may be written, for example, as

(X A2 + YB2)3/2
=C I

instead of (as in FORTRAN 6r PL/1)

C(I) = (X*A(J)**2+Y*B(K)**2)**(3./2)

i-I

HAL'also permits an optional single-line format; its construction

is similar to the example above, with some minor changes; thus

C$I = (X A$J**2+Y B$K**2)**3/2

HAL source .code may be input on cards or by data terminal.

-The input stream is free-form in that, for the mdst'part, card

or carriage-column locations have no meaning; statements are

separated.simply by semi-colons.

In an effort to increase program reliability and promote

HAL as a more direct communications medium between specifications

and.code,.the HAL program listing is annotated with special

marks. Vectors, matrices and arrays of data are instantly

recognized by bprs, stars and'brackets. Thus, a vector becomes

, a matrix M, and an array [A]. Further, bit strings appear

with a dot, i.e., B and character strings with a comma, C.

With these special marks as aids, the source listing is

more easily understood and serves as an important step

.toward self-documentation. In addition to data marks, logical

paragraphs, or blocks of code, are automatically indented so that

dependence of one.block on another may be seen clearly.
-

1-2

HAL is a higher-order language, designed to allow the

programmer-analyst-engineer to communicate with the computer

I

Parts of the English language are combined with standard

notation to provide a tool that readily encourages programmin4

without demanding computer hardware expertise.

.1.1.2 Data Types and Computations

HAL provides facilities for manipulating a number of

different data types. Arithmetic data may be declared as

scalar, vector, matrix or integer (whole number). Individual

bits may be treated as Boolean quantities &r grouped together

in strings. The language handles text by manipulating character

strings via special instructions. Organizations of data_types

may also be constructed; one-, two-, or three-dimensional

arrays of any single type can be formulated, partitioned,

and used in expressions. An hierarchical organization called

a structure can be declared in which related data of different

types may be stored and retrieved as a unit or by individual

reference.

HAL requires that most data types be described explicitly;

i.e., by declarations which assign a name and specify-desired

attributes. However, for scalars, 3-dimensional vectors, 3x3

matrices, and Booleans (1 bit bit-strings), the programmer can

take advantage of HAL's implicit declarations and let the

1-3

-compiler
 assign these variables appropriately.

The arithmetic data types together with the appropiiate

operators and built-in functions constitute a useful mathematical

I

subset. HAL can be used directly as a "vector-matrix" language

in implementing large portions.of both on-board and support

software. For example, a simplified equation-of motion might

appear as

B ACC;

= -MU UNIT(R)/R.R;

VDOT = A + ;

!fDOT =

where the matrix B transforms acceleration -from spacecraft to

reference coordinates.

By combining data types within expressions and utilizing

both implicit and explicit conversions from one type to another,

HAL may 	be applied to a wide variety of problems with a powerful

and versatile capability.

1.1.3 	 Real-Time Control

HAL is a real-time control language; that is, certain

defined blocks of code called programs and tasks can be

scheduled based on time or the occurrence of anticipated

events. A limited subset of HAL's real-time capabilities will

be included in the current implementation.

1-4

http:portions.of

i.1.4 Program Reliability

Program reliability is enhanced when a software system

can create effective isolation for various subsections of code as

well as maintain and control commonly used data. HAL is a block­

oriented language in that a block of code can be established with

locally defined variables that cannot be altered by sections of

program located outside the block. Independent programs can be

compiled and run together with communication among the programs

permitted through a centrally managed and highly visible data

pool. For a real-time environment, HAL couples these precautions

with a locking mechanism which can protect, by programmer directive,

a block from being entered, a task from being initiated, and even

an individual variable from being written into, until the lock

is removed. (Locking is not included in this implementation.)

These measures cannot in themselves ensure total software

reliability but HAL does offer the tools by which many anticipated

problems, especially those prevalent in real-time control, can

be isblated and solved.

1.2 Organization of The Guide

The HAL Guide is divided into four parts. Part I presents an

overall view of HAL and its essential elements; Part II defines a

useful mathematical subset designated HALM; Part III completes

the description of the full capabilities of the language in this

implementation; and PartIVdiscusses-source code preparation-and

the HAL listing, aspects of 360/75 job control, and compile- and

run-time diagnostics.

The appendices contain lists of keywords, built-in functions,

features specifically dependent on the IBM 360/75 computer, and

other information.

1-5

2. . Language Elements

2..1 	 Program Structure

A HAL program consists of statements terminated by semi­

colons W), groups of associated statements which are treated

as a single statement (DO-groups), and blocks of statements

orgainized as subroutines (procedures and functions). The

statements and/or blocks must be compiled as a program unit; or

as sets of independently compilable program units.- Communication

between programs is through a common data pool (COMPOOL) within

a symbolic library.

2.2 	-Data

2.2.1 Data Declarations

* - In general all data types and organizations in HAL

-(Ai:e., scalar, integer, vector, matrix, bit and character string,

Sarray- and structure) must be specifically declared by DECLARE

statements. However, HAL does provide a subset of data which

may be declared implicitly, i.e., simply by appearance in the

program. Implicit data presumes certain default characteristics;

e.g., vector and matrix dimensions.

2.2.2 Literals

A literal is a name which expresses its own value and

is a constant during program execution. Literals can be numeric

or string; e.g.,

2-1

12.6

248 - numeric literal

6.62E-2
 J
OCT'7776' - bit string literal

'HAL PROGRAM' - character string literal

2.3 	 Statements

- In addition to the DECLARE statement, HAL §tatements provide

for assigning expression results to variables, organizing

statements in subroutines (procedures and functions), and con­

trolling program logic flow. Control is accomplished through

the IF-, GO TO -, and DO- statements. For a real-time control

environment, HAL provides the commands to schedule programs

and tasks through a real-time executive.

2.4 	 Input-Output

The HAL input-output statements READ, WRITE, and FILE

facilitate the reading and writing of data and comments by

identifying the external device (e.g., cards) and the quantities

to be assigned or "displayed". Data may be in standard or

non-standard formats. Statements are included to store and

retrieve file data and to control printer page layout.

2.5 	 Source Code Preparation

The HAL program may be written in multi-line or single line

format and loaded into the compiler on cards, data terminals

2-2

or other compatible devices. The multi-line format defines

exponent, main, and subscript lines (E, M, S) and associates

them into a single input stream. Comments may be included 6n

any line by enclosing the comment within the symbol pairs;

/* and *1. Comments can also be introduced on comment lines

(C-lines).

HAL is composed of five basic syntactical elements:

identifiers, keywords, literals, special characters, and

built-in functions. Complex syntactical units (i.e., statements)

are constructed from these basic elements using a common set of

input characters.

2.5.1 The Character Set

The characters which may be used in writing a HAL program

are: the numerals 0 through 9, the letters A through Z, a blank

character, and the following symbols.

= (equals sign) I (OR symbol; also h
+ (plus sign) & (ampersand)

- (minus sign) ; (semi-colon)

/ (slash) : (colon)

* (asterisk) (period)

< (less than symbol) , (comma)

> (greater than symbol) ' (apostrophe)

- (not symbol; also A) ((left parenthesis)­

2-3

.(right parenthesis)

$ (dollar sign)

(break character)

(nuimber sign)

@ (at sign)

[] (brackets)

{ (braces)

HAL will-also accept other characters, restrictinq their

use to within comments and character strings. Some examples

are:- Cexclamation point)

-% (percent sign).

?- (question mark)

(double quotation marks)

2.5.2 Identifiers

An identifier is a name which is assigned by the programmer

to a data element, statement label, etc. Identifiers must

satisfy the following rules:

a. 	The first character must be a letter.

b. 	It may contain 0 to 31 more characters, which may be

any combination of letters, digits, or break characters,

except that it must not end with a break character.

c. 	A qualified structure name- (see Section 8.6.2.1) will

contain imbedded periods and must not end in a period

or break character.

d. 	An identifier may not be a compiler keyword.

2-4

Examples of valid identifiers:

,A

R05

INTEGRATIONROUTINE

SEXTANT TO NAVIGATION BASE MAT

STATE.COV_MATRIX

Examples of invalid identifiers:

1A begins with a digit

SAMPLE ends in a break characte

DECLARE reserved word

POS VEC contains a blank

STATEMENT_#200 contains a # character

2.5.3 Keywords

Keywords are words recognized by the compiler to have

standard meanings within the language, and are usually unavailable

for any other use; for example, operators, commands, attributes,

and built-in function names. A list of HAL keywords is presented

in Appendix A.. Some exanples are:

DECLARE

INTEGER

AND

VECTOR

SQRT

.TRANSPOSE

2-5

2.5.4 	Literals

See Section 2.2.2.

2.5.5 	 Special Characters

Special characters or combinations of characters are

used in HAL as operators, separators, or other delimiters.

These characters and some of their uses are described below.

2.5.5.1 Arithmetic Operators

Symbol 	 Definition

+ 	 addition &or prefix plusi

- subtraction Cbr prefix minusl

/ division (other uses also)

(see note below) multiplication

* 	 vector cross product (other uses also)

vector dot product (other uses also)

** exponentiation (single-line)

± Note that HAL does not utilize a,character as a multiplication

operator,- Instead a space (or spaces) between two distinct

identifiers is interpreted as multiplication.

2-6

2.5.5.2 Relational Operators

Symbol Definition

equal to

- 1= not equal to (or =)

K less than

>• greater than

<= less than or equal to

>= greater than or equal to

A>)not greater than or

not less than Cor ^<)

2.5.5.3 String and Logical Operators

Symbol Definition

AND (or &) Boolean AND

OR (or j) Boolean OR

NOT (orn or A) Boolean NOT

CAT (or II) Concatenation

2.5.5.4 Other Operators

Symbol 	 Definition

-# 	 Indicates repetition within
a list, or the last member
of an array or string.

Scaling operator, or

character to bit modifier

$Subscript operator (single

line format)

2-7

2.5.5.5 Separators

The following characters have meaning as separators in HAL:

Symbol 	 Definition

comma ,(a) 	 separates elements of a list;

(b) separates indices in index

expressions;

(c) separates clauses in declare

statements.

semicolon 	 (a) terminates statements;

(b) separates 	structure indices from

array element indices.

colon (a) associates a statement label

with the succeeding statement;

(b) separates array element

indices from sub element indices.

apostrophe 	 delimits string literal values

-(character
 or bit).

equals 	 indicates replace in assignment

and DO FOR statements.

Deriod 	 separates component names of

qualified structures.

/* 	 encloses comments
*/

() 	 Parentheses have many uses in

the language. They are used

in expressions, for enclosing

lists, function arguments, data

dimension and initialization

values, etc.

2-8

2.5.5.6 Built-in Function Names

Built-in function names are identified by the compiler

as part of the language and are therefore keywords. A complete

list of these functions appears in Appendix B. Some

examples are:

ABS

TRUNCATE

Cos

TAN

INVERSE

UNIT

2.5.5.7 Compiler-Generated Annotation

The following characters are used by the compiler to

annotate the output of various data types in the language.

Identical usage is also acceptable in the input stream.

Symbol Definition

a name denotes a matrix

Over a name denotes a vector

Over a name denotes a bit string

Over a name denotes a character string

Denotes an array organization

f } Denotes a structure organization

-Over

2-9

Part II

HAL

---- A MATHEMATICAL SUBSET OF HAL

3. Introduction to HALM

HALM defines a useful mathematical subset of HAL. It

NI

is primarily directed at the programmer-analyst who wishes

to gain rapid facility with HAL and use it in the solution of

engineering problems as he would use FORTRAN or ALGOL. As

such HALM concentrates on:

1) scalar, vector and matrix arithmetic.

2) simplified data declarations, arrays, and input­

output commands.

and negl~cts:

1) bit- and character-string variables and manipulations

(except for I/O where necessary).

2) complicated data arrays and structures.

3) real-time control and data-locking.

HALM is not a formal language subset; "full-HAL" statements

can be freely mixed in HALM if so desired. However, the

compiler implementation is such that programs written completely

in HALM insure the greatest degree of machine independence

and transferability.

3.1 Data Types and Data Declarations

3.1.1 Types

Three data-types are included: scalar, vector, and

matrix. Scalars and the elements of vectors and matrices are

floating-point single precision quantities.

3-1

3.1.2 Data Organizations

One-, two-, and three-dimensional arrays of scalars may

'be'dealared.

3.1.3 Literals

3.1.3.-1 Arithmetic

Arithmetic literals are written as a series of decimal

digits with an optional decimal point. The literal may contain'

powers of 10, 2 and/or 16, represented 5y E, B, and H respectively.

The following are some acceptable forms of arithmetic literals

(all are equivalent to the value, 6):

6, 6-0, +600E-2, 0.006E3, 12B-l, .12E+2B-I

3.1.3.2 	 Characters

Character literals are useful for messages, headings,

etc. The simplified form is to enclose text; i.e.,letters,

digits, symbols, and blanks within quote marks. Thus,.

'NAUTICAL MILES'

'ERROR 106'

'GO BACK, TRY AGAIN!'

are examples of character literals.

3.1.4 Declarations

HAL permits the implicit declaration of scalars, vectors,

and matrices by their first appearance in the program listing.

A "bar" (-); i.e., minus sign, on the E-line over an identifier

denotes a vector; a "star" (*); i.e., asterisk, denotes a matrix;

-and the absence of any marks above'an identifier means the quantity

is a scalar. Once marked, the programmer need not continue to

supply notation in the source code. The compiler will annotate

3-2

the output listing appropriately. The implicit declaration of

vectors and matrices always results in default dimensions.. The

standard defaults are 3-dimensional vectors, and 3x3 matrices.

The following statements would suffice to declare the
I

scalars A, B, the vectors V, W, Y and the matrix M.

W M V;

V= A V + BW*

3.1.4.1 	DECLARE Statements

Threedata DECLARE statements are necessary within HAL

These statements allow specification of vector and matrix dimensions

(if defaults are not adequate) as well as the declaration of an

array of scalars. Some examples are:

a. 	 DECLARE V VECTOR (6);

DECLARE VECTOR(8)>T,U,V,W;

The desired vector dimension must appear as an integer

literal within parenthesis. The second declaration

illustrates the factored DECLARE statement where.T, U, V, W

are declared in one statement.

b. 	DECLARE M MATRIX (4,4);

DECLARE MATRIX(3,6) M,N,P,Q;

The desired matrix dimensions must appear as integer

literals within parenthes~s; i.e,,(rows, columns). The

second declaration is a factored DECLARE statement.

c. 	DECLARE A ARRAY(3);

DECLARE ARRAY(2,3) A,B;

DECLARE C ARRAY (2,3,4);

The desired array shape must appear as integer literals

within parentheses, Arrays may be one-, two-, or three­

dimensional and consist of scalar elements.

3--1

3.1.4.2 Arrays, Vectors, Matrices

-- One-dimensional arrays are not vectors. Two-dimensional

arrays are not matrices. That is, arrays obey sequential

element-by-2lement operations and not vector-matrix arithmetic.

Thus, for example,

DECLARE ARRAY(2,2) A,B,C;

[C] = [A] [B];

is executed in the following order:

C11 A11B
Cl =Al BII

C12 1
12 B12;

C21
 A21 B21;

C22
 A22 B22'

3-4

4. Arithmetic Expressions, Assignments and Control

4.1 Arithmetic Expressions

HALM contains three types of arithmetic operands:

Scalar denoted S

Vector denoted

Matrix denoted M

An arithmetic expression is any meaningful arrangement

of operators and operands, where parentheses may be freely used

- as in ordinary mathematical notation to specify the grouping or

ordering of operations. An arithmetic expression is a string

of arithmetic operations which, when evaluated, results in a

a scalar, vector, or matrix.

4.1.1 The Order of Operations

In the evaluation of an expression, the order of operations

is determined by parentheses and operator precedence. Operations

within an expression are performed in the order of decreasing

priority. For example, in the expression A+B**3, exponentiation

is performed before addition. If an expression involves

operations of the same priority, the general rule is that the

6perations are performed left to right.

If an expression is enclosed in parentheses, it is treated

as a single operand. The parenthesized expression is evaluated

before its associated operation is performed. For example, in

the expression (A/B)C, A is divided by B and then the result is

multiplied by C. Thus, parentheses modify the normal rules.of

priority.

4-1

http:rules.of

The following chart illustrates all the possible arithmetic

operations in HALM., as well as each one's priority, operand types,

and value or result.

Summary of HAL

Operation Priority1

Exponentiation 6

Matrix transpose 6

(short form)

Matrix inverse 6

(short form)

Scalar-scalar product 5

Scalar-vector or 5

vector-scalar product

Scalar-matrix or matrix- 5

scalar product

Vector-matrix product 5

Matrix-vector product 5

Vector outer product 5

Matrix-matrix product 5

Vector cross product 4

Vector inner (dot) 3

product

Scalar-scalar quotient 2

Vector-scalar quotient 2

Arithmetic Operations

Form2 Results

SS scalar

matrix

*-I matrix

S S scalar

S V or V S vector

S M or M S matrix

*V M vector

M V vector'

V V matrix

M M matrix

V * V vector

V V scalar

S / S scalar

- V / S vector

l Higher priorities have larger numerical values.

2. S,IV, M are general scalar, vector, matrix operands - the
symbols represent operand type rather than value.

4-2­

Operation.(cont'd) Priorit Form Results

Matrix-scalar quotient 2 M./ S matrix

Scalar sum or difference 1 S + S scalar

Vector sum or difference 1 V + V vector

Matrix sum or difference 1 M + M matrix

4.1.1.1 Some Exceptions

1. 	Exponentiation is right-to-left. Thus,

BC

a) A**B**C F A E 	A**(B**C)

b) 	 SIN(X) 2 (SIN(X)) 2 and not SIN(X2)

2.-	 Division is right-to-left. However, vector and

matrix expressions may never appear as denominators

in a quotient.

a) A/B/C E A/LB/C) A C/B

b) A/B X/C Y/D H A/(B X/(C Y/D)) E A C Y/B X-D

c) V/A/B = V/(A/B) B V/A

d) -/A/R is illegal

e) (V/A) R is OK

f) V/R.V is OK

4-3

(See HAL 	specification document for more detail on exceptions.)

4.1.1.2 	Product Operands

Note that in the product forms

Ss SV SM VM VV

MM VS MS MV

the multiply operator is implied from the "logical adjacency"

of the operands. In HAL all such operands must be easily

distinguishable.

4.1.1.3 	Sum and Difference

-The operands must agree in the number of scalar

components as well as in type (S, V or M). In the form V+ V,

the vector operands must be of the same length.- In the form

M + M, the matrix operands must have the same row-column-.dimen­

sionality.

4.1.1.4 	Vector Cross Product

The operation, V * V, is defined in HAL only for

vector operands of length three (3).

4-4

4.1.1.5 Vector-Matrix Products

a) V.V Vector inner (dot) product is computed as

El x n [n x] [x i],

a scalar.

Note: In arithmetic expressions, the character

".o will be taken as a part of a literal if

the context allows this interpretation. Thus,

for example, U .2 V is interpreted as U(0.2 V)

and not as U . (2 V).

b) V V Vector outer product is computed as

[n x] [ix m] [n x m],

an n x m matrix.

c). V M Vector-matrix product is computed as

f1 x m].[m x n]+[l x n]

an n-dimensional vector.

d) .M V Matrix-vector product is computed as

fm x'n]]n x l]-[m x 1]

an m-dimensional vector.
**

e) M M Matrix-matrix product is computed as

I [m x n] n x p] + [m x p],

an m x p matrix.

4-5

4.1.2 Some 	Examples of Arithmetic Expressions.

MATHEMATICAL NOTATION 	 HAL EXPRESSION

1. 	 ab A B

2. 	 a(-b), A(-B) or -A B

3. 	 -(a + b) -(A + B)

x+ 2 AX + 2
 4. 	 a

5. ax+ 2 X +2 C

.6. ab/cd A B/C D

7. 	 (- -)2.5 ((A+B)/C) 2.5

C

. a A/(l + B/(2.7 + C))

1+ (2.7 + c)

9. (vTy)M - (v+y) 	 (V.Y)M (V+Y)

0. -a(y 	vT) T (v x w) A(Y

4.1.3 Characters and Arithmetic Expressions. Character

strings may be joined and/or combined with arithmetic expressions

to produce messages or data printout, using the concatenation

operator 	(CAT or I I) Thus,

'NAUTICAL'II' 'JI'MILES' becomes NAUTICAL MILES

and

X + 511 'N.M.' becomes (value) N.M.

where (value) is the numerical value of X + 5.

4-6

Note that, in effect, conbatenation converts numerical data

*to characters, These "character expressions" can then be

output using the WRITE I/O command.

4.1.4 Array Expressions. Within HALM only arrays of

scalars are considered. Array expressions yield array results

and may involve a combination of scalar and array operands.

Scalar-scalar product, quotient and sum or difference are defined

-as array operations where at least one operahd is an array. "The

indicated operation is performed on a sequential element-by­

.element basis.

4.1.4.1 Some Examples.

let [A] = [=

then

1/5

2/5

a) AIL/ rL3/5 4/5

4/8

= [A]/[B]
b)

15 16

c) [B] -I10
 17 18

2 6
[A] [B]
d)

s4­37

4-7

4.2 Assignment Statements

A HAL statement is an order to perform some action, and a

HAL program is composed of a series of statements of various

kinds. The fundamental statement is the assignment statement, which

assigns a value to one or more variables. A simple assignment

statement takes the form

Label: Variable = Expression;

where Label: is optional. A single assignment statement can set

-several variables; e.g.

ABLE: A,B,C = 5;

or

M, N, P = Q;

Note that, in general, the dimensions of the left side variables

and the right side expressions must be the same. Exceptions are

made for "zeroing" and assignifig arrays.' Thus,

A = 0;

=

C 0;

[D] = 0;

are all valid "zeroing" statements in HAL. In the case of an

array,-a scalar expression assigns the scalar value to every

element of the array; e.g.

[A] = 5;

or

[B] = 2 + Y;

If there is more than one left side variable then the array

dimensions of all must be identical.

4-8

4.2.1 	 Conversion Functions

It may be convenient to form a vector, matrix, or array

of scalars, from its components. In HALM, three conversion

functions are provided: VECTOR(list), MATRIX(list), SCALAR

(list). These functions may be applied to mixed lists of

scalars, vectors, matrices and arrays. The functions may be

thought of as constructing a one-dimensional list of all the

included elements. Vector, matrix, and array list-elements

are equivalent to lists of their components. Matrices are

unraveled by incrementing "right-most" index first.(i.e., 1,1,1;

1,1,2; 	1,1.,3;o...i,2,1; 1,2,2; "etc.).

The 	resulting vector, matrix, or array is filled, respectively,

element-by-element from the list.

a) If the list consists of only one scalar, all the elements

will be assigned a value equal to this single list

element. The desired dimensions (or shape) are indicated

by subscripts. Thus, for example,

VECTOR 6 (0)

MATRIX2,3 (5)

SCALAR3,33(A)

The 	default dimensions will be applied to VECTOR and

MATRIX 	if subscripts are not supplied.

b) 	 If the list consists of one vector, one matrix or one

array the resulting forms can be quite complex. See

Sec. 9.2, Appendix F, and Sec. 6 of the HAL specification

document.

4-9

c) 	 If the list consists of several entries, VECTOR and SCALAR

lengths will be equal to the number of elements in the

list. MATRIX row and columns will be equal to the square

root of the number of list elements (presuming an integral

value) unless otherwise specified. The number of list

entries must be compatible, thus,

VECTOR(A2,B2,C ,D,6#E)

MATRIX (X,Y,Z)

SCALAR(A,X,M)

Note: 6#E, indicates six entries of the quantity E

(i.6., E,E,E,E,E,E).

4.2.1.1 Some Examples

a) 2 = VECTOR(I,A,O)* VECTOR(l)

b) DECLARE P ARRAY(15);

LOOK: [P] = SCALAR 15 (5#A,5#B,5#C);

c) RE = MATRIX3 ,3 (X,Y,Z)RS;

4.3 Control Statements and Relational Expressions

4.3.1 	The GO TO Statement

The G0.TO statement in HAL is a simple unconditional transfer

to a labelled statement. The general form is:

GO TO L;

where L is the label of a statement elsewhere in the program. It

specifies that the statement to be executed next is the one identi­

fied by the label and that control is to be transferred to that

point in the program.

4-10

4.3.2 The IF Statement. The IF statement provides the capability

to-change the sequence of statement execution on the basis of

what happens during execution of the program. The general forms

are:

IF Lc THEN S

or

IF L THEN B ELSE S

where Lc denotes a logical condition or set of logical conditions,

S may be any executable -statement except END. B may be any

executable statement except IF or END. For example:-

IF X<5 THEN GO TO AGAIN;.

or IF X<5 THEN ABLE: GO TO AGAIN;

ELSE IF Xcl THEN GO TO TRY;

The IF statement format requires that an ELSE be preceded by

an IF and not by another ELSE. As a result,the execution of

a statement following ELSE occurs only if the logical condition

associated with the nearest preceding IF is false.

4.3.3 Logical Conditions. A logical condition may be expressed

as 	an arithmetic comparison expression, for example

-IF M = N THEN

or

IF-X<2.064 108 Y THEN .

or

IF A+B = V.W THEN .

4-11

4.3.3.1 Comparison Expressions. Within HALM, scalar­

quantities may be compared using the following relational operators.

Symbol Operation

equal

= - not equal

< less than

> "greater than

<= less than or equal

>= greater than or equal

-I< not less than

> not greater than

Vectors, matrices and arrays are restricted to

Symbol Operation

equal

not equal

For the operator =, the comparison is true if and only if all

the corresponding elements are equal. For the operator 1=, the

comparison is true if and only if any of the corresponding

elements are not equal.

4-12

4.3.3.2 Sets of Logical Conditions. Logical conditions can be

combined, using the logical operators NOT (7,), AND (&) and

OR (I), into complex sets of logical conditions; the final

result of any condition or set of conditions must be a single

true or 	false answer. Thus, for example,

IF X>5 AND Y<A AND M=N THEN

IF NOT CX<=C OR X>=C + DELTAJ THEN . .

4.3.3.3 	The Order of Operations. In order to avoid ambiguity,

the following rules are established when evaluating logical sets

of relational expressions.

a. 	NOT (i,") must be followed by a relational expression (or set

of expressions) within parentheses.

b. 	Relational expressions are evaluated before AND and OR.

C. AND is applied before OR.

Thus:

1. 	A>5 AND B>6 means (A>5) AND (B>6)

2. 	NOT (A>5 AND B>6 OR C<7)

means NOT ((A>5 AND B>6) OR C<7)

4.4 	Examples - I

In this section two examples illustrate the use of the

HALM as presented thus far.

4-13

4.4.1 	INTERSECTIONS

-;Find the intersections defined by the line,

ax + by + c= 0

and the circle,

(x p)? + (y q) 2

where ab, c, p, q, r are parameters. (This problem is adapted

from An Introduction to ALGOL 60, C. Anderson, Addison-Wesley,

1964)

HALM 	Program

INTERSECTIONS: PROGRAM;.

READ(CARDS) A,B,C,P,Q,R;

C COMPUTE DISTANCE FROM LINE TO CENTER OF CIRCLE

C, CAN BE DERIVED BY TRANSLATING ORIGIN TO (P, Q)

2 	 2
F A + B;

D (A P + B Q + C)/SQRT(F);

IF D2 >R2 THEN GO TO NOWSOLVE; ftNO SOLUTION*/

Z (A2 Q - A B P - B C)/F;

U (B2 P - A B Q - A C)/F;

C- WHERE (U, Z) IS THE POINT OF INTERSECTION BETWEEN

C THE GIVEN LINE AND AN ORTHOGONAL LINE THROUGH (P, Qj

DELTAX = -B SQRT (R2 - D2)/SQRT(F);

DELTAY = (A/B) DELTAX;

Xl = U - DELTAX; /*INTERSECTION #i*/

Yl = 	Z - DELTAY;

4-14

C

X2 = U + DELTAX; /*INTERSECTION #2*/

Y2 =-Z + DELTAY;

WRITE (LISTING) 'Xl = 'liX1, 'Y1 = '1Yl,'X2 = '11X2,

IY2 = 'IIY2;

GO TO FINISH;

NO-SOLVE: WRITE(LISTING) 'NO SOLUTION';

-FINISH: CLOSE INTERSECTIONS;

4.4.2- TRANSFORM

Given the three-dimensional vectors w, X, y, z, form

an orthonormal coordinate set from w, x, y and express z on

this set.

HALM Program

TRANSFORM: PROGRAM;

READ (CARDS) W, X, 7, Z;

.C. USE GRAM-SCHMIDT TO FIND ORTHONORMAL SET

-A1 = UNIT(W);

X2 = UNIT(X - (X)AI);

X3 = UNIT(Y - (Y.Al)A1 - (Y.A2)A2)

M = MATRIX(Al, A2, A3); /*TRANSFORMATION MATRIX*/

ZNEW =M Z;

FIRST ZOLD, THEN ZNEW

WRITE(LISTING)Z, ZNEW;

CLOSE TRANSFORM;

4-15

5. Subscripted Variables and DO Statements

5.1 	Subscripts

The elements of vectors, matrices and arrays within

HALM may be referenced by appropriate subscripting.

The first component of a vector or a one-dimensional

array, is given the subscript 1, the second 2, etc. up to the

total number of elements. Thus for a 9 element-vector, i.e.,

DECLARE V VECTOR(9);

the components may be written as,

V1 V2 V3 - V9 .

A mbtrix or two-dimensional array may be thought of as

being composed-of horizontal rows and vertical columns. The

first of the two subscripts refers to the row number, running

from 1 up to the number of rows, and the second to the column

number, running from 1 up to the number of columns. For

instance, a matrix of two rows and three columns would

require the declaration

DECLARE B MATRIX(2,3);

and the elements could be referred to by writing:

BII B1,2 B1,3 B2,1 B2,2 B2,3

A three-dimensional array may be thought of as being

composed of planes, each plane containing rows and columns.

This interpretation depends somewhat on the purposes of the

computation. The reference to an element would simply be,

for example, C3 ,2 ,1.

5-1

" 5.1.1 Subscript Expressions

A subscript expression can be any -arithmetic expression

resulting in a scalart value. Before being used as a

subscript the value is algebraically rounded to the nearest

integer. Some examples are:

a) B
 a 3X+Y,-3Y+x

*b) CB

c) D(A+B)j**2

5.1.-2 Subscript Range Expressions: Partitions

HAL provides two subscript range expressions which

permit the partitioning of vectors, matrices and arrays;the

forms are:

. AP TO Q

AR AT S

where P, Q, R, S may be literals, variables or expressions.

5.1.2.1 The "TO" operator

The TO-operator is used to reference, or partition

a set of elements by specifying the subscript (or index)

-limits. For example:

t For subscript variables which take on only integral values,

some run-time efficiency may be gained by declaring these variables

to be integers. The HAkL integer data declaration is

presented in Part III of this Guide.

5-2

a) V1 TO 4 partitions a larger vector, V, and selects the

first four components to form a vector.

b) M1 TO P, 1 TO Q partitions a larger matrix and selects

the first P rows and the first Q columns.
*

C) A* 3 TO 5 partitions a larger matrix and selects all

rows, columns 3,4,5. The asterisk used in this-context

means "all of the particular index".

d) TO (P+2),I,J partitions a three-dimensional array

of scalars. The result is a one-dimensional array of

three elements.

-e) [AJ TO #] partitions a one-dimensional array from the

J "to the end". The number sign, used in this context

means "to the end of the subscript range".

5.1.2.2 The "AT" Operator

JThe AT-operator is used to reference, or partition9

a set of elements by specifying the index size (or length> and

the-beginnihg value. For example:

a)' M4 AT 5, 4 AT 7 partitions a larger matrix and

selects a 4x4 sub-matrix; i.e., rows 5, 6, 7,-8, and

columns 7, 8, 9, 10.

b) 	V3 AT 2 partitions a vector and selects three components

starting with the second component.

5-3

5.1.2.3 An Application of Partitioning

Let E be a 9x9 covariance matrix involving errors in

the estimation of aircraft position, velocity and ground beacon

position. Find the current rms error in aircraft position.

The matrix E is declared by the statement

.DECLARE E MATRIX(9,9);

and the rms error is directly

RMSPOS = SQRT(TRACE(E 1 TO 31 1 TO 3));

Of course, this presumes that the covariance terms in position

occupy the upper left corner of the matrix.

5.2 	DO Statements

The Do statements are used to define gtoups of HAL-statements

-which are to be treated as a single unit. There are four

statements:

a) DO.; .END

b) DO WHILE

c) DOFOR

d) DO CASE

5.2.1 	 D0.. .END

The DO... END statement simply serves to block out or group

a set of statements. Its most frequent application is as an

alternative within an IF statement. -For example:

5-4

IF A>5 THEN DO;

ABLE: X = Y + '6;

BAKER: Z,= X Y;

IF Z>10 THEN Z 10;

END;

X = Y - 6;

All of the statements enclosed within the DO.. .END group will

be executed if A>5. If A55 then control will pass over the entire

DO...END group and X = y - 6 will be executed.

5.2.2 DO WHILE

The DO WHILE statement provides a means of executing a

DO... END group as long as a logical condition (or set of conditions)

is satisfied. The general form is

DO WHILE L;

statements

END;

where L denotes the logical condition(s) as defined in Section

4.3.3. As an example, consider the computation of a square root

(based on an example in "A Guide to ALGOL Programming", McCracken,

John Wiley, 1962). Using the Newton-Raphson iterative technique,

to find the square root S, of a number A, the formula

A

S - 1/2(:, + s')

may be applied repeatedly. S' is the previous value of S. In

this illustration the initial guess will be 1 and the number of

iterations will not be a factor. Thus,

5-5

SLAST = 1;
-6

DO WHILE ABS(S-SLAST)> 10 S; /*CONVERGENCE*/

S = (A/SLAST + SLAST)/2; /*CRITERION*/

SLAST = S;

END;

Note that, in effect, the logical condition is within the DO WHILE

loop and is reevaluated each time before execution of the group

of statements. When ABS(S-SLAST) < 10- 6 S, control will pass to

the statement following END.

-5.2.3 DO FOR

The DO FOR statement provides a means of executing a DO.. .END

group repetitively for a list of values of a control variable as

well as for a logical condition. The list may contain a series

of values and/or ranges of Values. The general form is:

DO FOR VAR = A,B,...iC TO D BY E ...WHILE Lc;

where A, B, C, D, E may be scalart expressions and VAR is a

scalar variable. "BY E" and "WHILE Lc " are optional.

The control variable, VAR, is initially set equal to the first

element of the list, i.e., A, and then takes on successive values

from the list on each pass through the group of statements.

Between C and D, VAR is incremented by the value of E until VAR

exceeds D (or is less than D, if the increment is negative). VAR

is evaluated and compared to D prior to each pass. Note that if

VAR = D then the statements will be executed for that value. The

logical condition Lc, if present, uust be true before any pass is

initiated. It is processed after th6 cohtrol variable VAR is

incremented and evaluated.

t or integer

5-6

If BY E is not provided, the increment is taken to be +1.

Note that the expressions B,C,D, and E are not within the loop

structure of the DO FOR statement and are evaluated only once in

the DO FOR statement at the beginnin. If they are then modified

within the loop, this will not affect their values in the DO state­

ment. Two examples follow:

1. 	Evaluate y = x - log lxi for the following values of

x: 	 -2, -1.2, 1 to 10 by 2's, 100.

Thus,

DO FOR X = -2, -1.2, 1 TO 10 BY 2, 100;

X3Y = - LOG(ABS (X));

WRITE(LISTING) X,Y;

END;

2. 	Evaluate ex for x = .01, -i, 1, 10 using 20 terms of the

infinite series.

e 1 + X + 	 X2 + X ... +
2! 3!

Two DO FOR loops will be used; one to specify the values

of x, and the other to sum the terms in the series:

DO FOR X = .01, -i, 1, 10;

SERIES = 1; /* INITIAL CONDITION */

TERM= 1;

EXP: DO FOR N = 1 TO 20;

TERM = TERM X/N;

SERIES = SERIES + TERM;

END EXP;

WRITE(LISTING) X, SERIES;

END;

5-7

5.2.4 DO CASE

The DO CASE statement provides a means of transferring

control to any one of a number of statements, depending on

the value of a scalar expression.

-Suppose it is necessary to transfer to one of five

statements based on the value of N: the general form would

DO CASE N;

CASE 1 €

SI1;

$2; 	 CASE 2

$3; 	 CASE 3

$4; 	 CASE 4

CASE 5

END;

where Slto S5 may be any executable statements, including

other DO CASE statements.

If N is an expression, its value is rounded to the

nearest integer. A value of 1 specifies the first statement

(CASE 1), 2 the second, and so on. The compiler will

issue an error message if the rounded value of N is

negative, zero or greater than the number of statements

provided.

t or integer

tt 	 The compiler supplies these CASE indicators; they are not
programmer-supplied comments.

5-8

The DO CASE statement can be used most effectively as

a multi-decision point, allowing combinati6ns of specific

computations and transfers of control. For example;

CHOICE: DO CASE N;

GO TO Al; CASE 1

GO TO A2; CASE 2

GO-TO Bl; CASE 3

DO; CASE 4

A'= 3;

GO TO Cl;

- END;

DO CASE P; CASE 5

-A = 4; CASE 1

GO TO C2; CASE 2'

END;

IF A > 5 THEN GO TO Dl; CASE 6

ELSE GO TO D2;

GO TO Fl; CASE 7

END CHOICE;

5.3 Examples - II

Tzo examples are included in this section as further­

illustrations of HALM programming.

5-9

A­

-5.3.1 	MEANS

Given n numbers I, X2,....xn, compute

a) the arithmetic mean

am (x 1 + x2 +...+ xn)/n,

b) the 	geometric mean

gm = n' 1 x 2 ... xn

c) the harmonic mean

* 	 h+ 1/x2 1/x

* (This 	problem is adapted from An Introduction to Algol 60,

C. Ande'rson, Addison & Wesley, 1964.)

MEANS: 	PROGRAM;

DECLARE X ARRAY(100); /* ALLOW UP TO 100 NUMBERS */

-READ (CARDS) N, [X]1 TO N;

P = PRODUCT([X)1 TO N) ;

- ZERO-CHECK: IF P = 0 THEN WRITE (LISTING)

'HARMONIC MEAN DOES NOT EXIST';

-ARITHMEAN: AM = SUM([x]1 TO N)/N;

WRITE (LISTING) 'THE ARITHMETIC MEAN HAS THE

VALUE'IIAM;

GEOMEAN: IF P<O AND CEILING(N/2) - N/2 = 0

THEN DO;

WRITE(LISTING) 'GEOMETRIC MEAN IS UNDEFINED

FOR NEGATIVE PRODUCT AND EVEN NUMBER OF TERMS';

GO TO HARMEAN;

END;

CEILING WILL ROUND UP TO NEAREST INTEGER

5-10

C

= SIGNCP) CABSCPJ) 1I NGM

WRITE (LISTING) 'THE GEOMETRIC MEAN HAS THE VALUE'

ARMEAN: IF P 0 THEN GO. TO FIN;

HM = SUM(l/[X]1 TO N)

WRITE (LISTING) 'THE HARMONIC MEAN HAS THE VALUE'

FIN: CLOSE MEANS;

5;3.2 FREQ RESPONSE

Find the sinusoidal amplitude-frequency response, over a

significant frequence spectrum, for the transfer function

G(s) ,where T1 > T2
.(ST1+1) (ST2+1)

FREQRESPONSE: PROGRAM;

READ (CARDS) K, TAUl, TAU2;

WRITE (LISTING) 'R='IIK, 'TAUl='IITAUl, 'TAU2='IJTAU2;

WRITE (LISTING) 'RAD/SEC', 'AMPLITUDE'; /*HEADINGS*/

TISQ = TAUl2 ;

T2SQ = TAU2 2 ;

C FIND SPECTRUM LIMITS IN POWERS OF 10

C ASSUME ALL FREQUENCIES TO BE BETWEEN l0**-10 AND l0**l0

TO -10 BY -1 WHILE .1/TAUI < 101;
DO FOR-I 10

END; /*THIS LOOP WILL FIND LOWER LIMIT OF SPECTRUM*/

511

DO FOR J = 10 TO 10 WHILE 10/TAU2 > 10J.

END;' /*THIS LOOP WILL FIND UPPER LIMIT OF SPECTRUM*/

SPECTRUM: DO FOR K =.I TO J; /*STEP THROUGH SPECTRUM*/

W = 1o

TABLE: DO FOR OMEGA = W TO 9 W BY W; /*INCREMENT
..- FREQUENCY*/

2

MA-GN= K/SQRT(TAUI2 OMEGA '+ 1)SQRT(TAU22 O A 2~+ 1);

WRITE (LISTING) OMEGA, MAGN;

END TABLE;

END SPECTRUM;

FINISH: CLOSE FREQRESPONSE;

5.3.3'FILTER

Find the step response for a digital filter represented

by the difference equation:

N M

+
A0 KEB + PK BK] QK AK

1 .-1

where A0, B0'are current values of A and B, and AK, BK are K

samples old.

FILTER: PROGRAM;

DECLARE VECTOR(20) A,B,P,Q;

FOR UP TO 20 PAST SAMPLES*/

/*AND 20 COEFFICIENTS*/

-/*ALLOW

READ (CARDS) K, N, P1 TO N' M, Ql TO M;

/*P AND Q ARE COEFFICIENTS*/

READ (CARDS) S; /*NUMBER OF DESIRED SAMPLE PERIODS IN

RESPONSE*/

5-12

HEADINGS: WRITE (LISTING) 'SAMPLE', 'OUTPUT RESPONSE';

BZERO = 1; /*SET UNIT, STEP*/

A1 TO M 0; /*ZERO MEMORY*/

I TO N

DO FOR I = 0 TO S;

AZERO = K(BZERO + T1 TO N 1t TO N + 1 TO m A1 TO M);*

/*USE DOT PRODUCT*/

WRITE (LISTING) S, AZERO;

A1 TO N = VECTOR (AZERO, A1 TO (N-1)); /*INDEX OUTPUTS*/

B1 TO M = VECTOR (BZERO, B1 TO (M-1)); /*INDEX INPUTS*/

END;

FINISH: CLOSE FILTER;

5-13

6, 	 Subroutines: Functions and Procedures

It often happens that some basic computation is required

at a number of places in a-program. It is possible, of course,

to write out the necessary statements each time they are

needed, but doing so wastes storage space and is conducive

to errors. It is therefore desirable to be able to write

the statements once and refer to them-as required. Functions

and procedures provide this capability.

6.1 Functions

HAL offers a number of built-in functions (see Appendix

B) to compute such quantities as trigonomettic functions,

logarithms, vector absolute values, matrix determinants

and inverses, etc. In order to use these functions, it

is necessary only to write their names where they are needed,

entering the desired expression(s) for the argument(s).

For exampl,

X = A SINH(Y);

assigns the product of A and the hyperbolic sine of Y to

the scalar X. y may be a simple name or an expression.

A more complicated example might be

A = ABVAL(X*Y) TRACE(M+N) ABS(P LOG(S));

The HAL programmer need not be confined to the HAL

built-in functions, but can develop and use programmer­

defined functions. Suppose it is desired to make the

computation of one root of the quadratic equation ax2+bx+c = 0
into 	a function. The function's arguments are the coefficients;

6-1

its valie is the root. Thus by simply writing the function

name, as in

A 2 ROOTI(E,F,G);

control is transferred to the function, its value computed

and control is returned. The product of Y and the value

of the function ROOTI is then assigned to A. Note that

"the coefficient arguments may be names and/or expressions;

thus	 A

A = y2 ROOTl(E , LOG(F), G/E);

would mean that the coefficient of x is the value E the

coefficient of x is the value LOG(F), and the constant

term is G/E.

The function name with its list of arguments may be

considered the calling statement, or "function reference".

The function itself must be defined elsewhere in the

program by a FUNCTION statement and accompanying function

body, or block of code. The FUNCTION statement names

the function, names the parameters used within the function

and specifies the data type of the function result; for

example

ROOT1: FUNCTION(A,B,C)SCALAR;

Using HALM only functions resulting in vectors

or matrices need specify the function data type. If no

-specification
 is provided the function is presumed to be a

scalar; e.g. ROOT1: FUNCTION(A;B,C); Although a function

may accept an array as input data, HAL does not permit

the specification of an array data-type function.

6-2

- -The body of the function consists of the operations

necessary to compute its value. For the example being

considered, the complete function definition might appear as:

ROOT1: FUNCTION(A,B,C);

2_

RETURN (-B+SQRT(B -4 A C))/2 A;

CLOSE ROOT1;

The RETURN statement terminates the execution of a function.

The function body must have at least one" RETURN statement.

The "returned" expression must agree with the function data­

type; in this case a scalar. The above function might be

organized in other ways, too; for example,

ROOT1: FUNCTION(A,BC);

B2
T = 4 A C;

U = -B+SQRT(T);

V = u/2A;

RETURN V;

CLOSE ROOTI;

In this example, T, U, V are introduced for programmer

convenience. These are local variables, i.e., local to the

defined function and unknown outside the functionLblock. Local

variables are discussed further under Scope of Names in

Sec. 7.1 The declaration of local variables follow the

same g~neral rules for variable declarations as described

in Sec. 3.1.4.

The variables A,B,C are called formal parameters; that

6-3

-is, they do not exist in of themselves and are no more than dummy

:variables that indicate what to do with the actual parameters in

the function reference. The appearance of formal parameters in

the function statement serves as their declaration; e.g.:,

FUNCTION(A,V,M). An explicit declaration is necessary if other

than default characteristics are required; e.g.,

B: FUNCTION(A,V,M);

DECLARE V VECTOR(6);

DECLARE M MATRIX(6,6);

-It is important to emphasize that the data types and dimensions

provided in the function reference must match, correspondingly,

the data types and dimensions of the formal -parameters declared

in the FUNCTION statement and function body-.

The formal parameters in a FUNCTION statement cannot be

assigned values; i.e., they may not appear on the left hand side

of an assignment statement. The actual parameters are expressions

involving actual variables that have been declared elsewhere in

the program. In the ROOT1 example above, the formal parameter

A would be replaced in the function body by E2 , the formal para­

meter B by LOG(F) and the formal parameter C by G/E..

A function accepting a particular data type will usually

accept an array of that type also. For example:

[A] Y 2 ROOTC[E], [F], [GI);

Presuming linear arrays, this assignment statement would be

executed as follows:

A1 = Y2 ROOTl(EI,FI,GI) ;

A2 = Y2 ROOTl(E2 ,F2 ,G;2
) ;

etc.

r-A

-6.1.1, 	Some Examples

1) Compute E 	 1

x 5 (e1.432/kx

x .e -i

as 	a function.

E: 	FUNCTION(X);

B EXP(1.432/K X) -1;

RETURN(l/X 5 B);

CLOSE B;

2) Define a function to compute

a
(1+ y/ra i) Z- if x < 0

-a- lal=
y(a'x) 	= 0"if X =_0

iji - x 2) _- if x > 0
jaj

where y, a are six-dimensional vectors.

Y: 	FUNCTION(A,X)VECTOR(6);

DECLARE A VECTOR(6);

IF X = 0 THEN RETURN 0;

2

B = SQRT(A.A + X2); /*B IS A LOCAL VARIABLE*/

IF X < 0 THEN RETURN (1 + B) UNIT(A);

ELSE RETURN (1 - B) UNIT(A);

CLOSE Y;

Note that the formal parameter A required explicit declaration

because the desired vector dimension was not the default.

6- 5

because the desired vect6r dimension was not the default.

6.2 Procedures

A procedure is like a function in thatonce invoked,

control is transferred to the procedure body, computations are

performed and results are made available to the caller. Where

a function is used simply by writing its name,'and a particular data type

is associated with the function result, a procedure must be

called with a CALL statement and may provide many results of

different types. The CALL statement has the form:

"CALLName (A,B,C)ASSIGN(T,U,V);

where Name is the name of the procedure. A, B, and C may be names

and/or expressions; T, U, V must be names only. A, B, and C

provide the "input" data to the procedure and the procedure

results ("output") are assigned to T, U, and V.

As an example, suppose that instead of desiring one-root

of a quadratic, as illustrated in the previous section, two roots

are necessary. The CALL statement might be

CALL ROOT2(E ,LOG(F),G/E)ASSIGN(XlX2);

and the procedure definition would consist of a PROCEDURE statement

and a procedure body, thus

ROOT2: PROCEDURE(A,B,C)ASSIGN(P,Q);

2
T = SQRT(B - 4 A C);

- P = (-B + V)/2 A;

Q = (-B T)/2 A;

CLOSE ROOT2;

6-6

-.
 As in the case of a function,A, B and C are formal parameters

(dummy variables) representing the "input" data. These variables

cannot be assigned values; they cannot appear on the lefthand

side of =. The assign parameters, i.e., P, Q above, are Ialso

formal parameters in that they only stand for the actual hssign

parameters (Xl, X2) in the CALL statement, but they caP be assigned

as shown in the example. Since P and Q are in fact Xl and X2,

the assignment statements actually place new values into Xl, X2

at-these points in the procedure body. Interestinglyenough,

since P and Q may appear on either side of =, data can be input

-to a procedure via the assign parameters as well as the call

parameters.

The declaration of formal parameters and local variables

follow the same rules as for functions. Note that no-daEa type

is associated with a procedure name and therefore a procedure

name must be called rather than simply used. A procedure may be

.terminated and control returned to the caller by reaching a

RETURN or CLOSE statement.

6-7

6.3 Examples -III

- , Two examples are included in this section as further illustra­

tions of HALM programming.

6.3.1 	PHASOR

Write a procedure to transform a complex number from

rectangular to polar form with the CALL statement

CALL PHASOR(A,B)ASSIGN(M,PHI);

where the rectangular form is a + ib, and the polar form is me

PHASOR: PROCEDURE (XREAL,XIMAG)ASSIGN(MAGN,PHASE);

MAGN =-SQRT(XPEAL
2 + XIMAG2);

IF MAGN = 0 THEN DO;

WRITE(LISTING)'PHASOR UNDEFINED';-

MAGN = -1; /*-l IS USED TO INDICATE*/

PHASE = -1; /*UNDEFINED CASE*/ .

RETURN; /*RETURN FROM PROCEDURE*/

END;

C KEEP ARCTAN COMPUTATION LESS THAN 45 DEG.

IF ADS (XREAL) >= ABS(XIMAG) THEN

DO;

IF XREAL > 0 THEN PHASE = ARCTAN(XIMAG/XREAL);

.ELSE PHASE = PI + ARCTAN(XI-MAG/XREAL);

/*PI IS A RESERVED HAL CONSTANT*/

RETURN;

END;

IF XIMAG > 0 THEN /*AT THIS POINT ABS(XIMAG) > ABS(XREAL*/

PHASE = PI/2 - ARCTAN(XREAL/XIMAG);

ELSE PHASE = 3 PI/2 - ARCTAN(XREAL/XIMAG);

CLOSE PHASOR;

6-8

6.3.2 	 INTEGRATE

Integrate the differential equation

dp = 	 p2 t2
dt 	 p + p

from t to t2, where P(tl) =

Use the Runge Kutta technique, and an integration step of At.

INTEGRATE: PROGRAM;

READ(CARDS) Pl, TI, T2, DELT;

T = TI;

P = P1; /*INITIAL CONDITIONS*/

C INTEGRATION LIMITS

LIMITS: DO FOR TLIM = Ti TO T2 BY DELT;.

C RUNGE_KUTTA REQUIRES FOUR PASSES FOR EACH STEP'

FOURPASSES: DO FOR I = 1 TO 4;

2 2
DIFFEQUAT: PDOT = T P + T P;

CALL RUNGEKUTTA (PDOT,P1,TLIM,DELT,I)ASSIGN(P,T);

END FOUR-PASSES;

P=P; /t INITIALIZE FOR NEXT TIME STEP*/

WRITE(LISTING) T,P;

END LIMITS;

- CLOSE INTEGRATE;

C RUNGEKUTTA PROCEDURE

RUNGEKUTTA: PROCEDURE (YDOT,YIMT,XINIT,DELX,J)ASSIGN(Y,X);

OUTER;

DECLARE K ARRAY(4);

f See Section 7.3 for discussion of the OUTER statement.

6-9

C

Kj = DELX YDOT;

PASSES: DO CASE J; /*EACH CASE IS A PASS*/

DO; CASE 1

X = XINIT + DELX/2; /*HALF-STEP*/

Y = YINIT +

END; I

Y = YINIT + Kj/ 2 ; CASE 2

/*HALF-STEP AGAIN*/

DO; CASE 3*

X = XINIT + DELX; /*WHOLELSTEP*/

Y = YINIT + Kj;

END;

FINAL RESULT

Y = YINIT + SUM([K])/6; CASE 4

-/*WHOLE=STEP AGAIN*/

END PASSES:

CLOSE RUNGE KUTTA;

Some comments on this example:

1) In the RUNGE KUTTA procedure, YDOT, YINIT, XINIT, DELX,

J, Y and X are formal parameters.

2) The array K is an actual local variable.

3) Note that data is "remembered" by the procedure from one

call to the next; values of X and the elements of the

array K are tetained. X is computed in Cases 1 and 3

and held for Cases 2 and 4 respectively. The elements

of K are assigned on successive calls and retained for

the summation ih Case 4.

6-'10

7. Program Organization: Scope of Names, Input-Output

- A HAL program, written using the features defined in HALM,

may consist of statements (i.e., IF's, DO's, assignments, etc.),

procedures, and functions within a PROGRAM-CLOSE block. The

PROGRAM-CLOSE block constitutes the main program and is the

smallest compilable unit in HAL; the procedures and functions

are sub-programs and are not independently compilable. Any

procedure or function may, in turn, contain statements and

additional procedures and functions.

Program, procedure, and function blocks define bouhdaries,

or regions, within which names and labels are recognized and

may be used for computation and control. Two blocks with
 -

mutually exclusive name regions may use the same name for.

different purposes without interference; e.g., X may be a

vector in one procedure and a label in another. The-region

in which a name or label is potentially recognizable is called

the scope of that name.

7.1 Scope of Names

The scope of a name or label, in HAL (or HALM), is defined

from the outer-most block toward the inner. Thus, names declared

at the main program level in a PROGRAM-CLOSE block are potentially

recognizable within all nested procedures and functions.

The names are only potentially known because any particular

name can be declared again in an inner block and then its

scope would become all the nested blocks within this block.

In general, name and label scopes are based on the first

appearance of the identifiers. An example may help to illustrate

71

-these principles:

A: 	PROGRAM;

DECLARE X VECTOR(6);

B: 	PROCEDURE;

DECLARE M MATRIX(3,4);

'CLOSE B;

C: 	FUNCTION;

.DECLARE X MATRIX(4,5);

D: 	PROCEDURE;

DECLARE VECTOR(6), A, M;

CLOSE D;

-CLOSE C;

CLOSE A;

Comments:

l. The scope of the programname (label), A, is.all of A

except D. Note that A is declared to be a vector in D.

2. The scope of the vector X is all of A except C and

D. 	X is declared to be a matrix in C and its scope encompasses

the 	nested procedure, D.

3. 	The scope of the matrix M is B.

4. 	The scope of the vector M is D.

For these examples of duplicate names within a single

program, there are no amibiguities because of the different

name scopes. HAL does not admit duplicate names within the

same scope.

7-2

7.2 Scope of Labels

The scope of labels (statement labels, procedure and function

names) generally follows the same rulesasfor nameswith some

minor exceptions. The GO TO and PROCEDURE statements; i.e,

GO TO X or CALL X (----), imply the existence of X as a label.

If the label X does not appear in the block in which the :statement

is written, the GO TO or CALL must refer to a label in an

outer block; if the label does appear in the same block, the

statement refers to this label.

For example:

#1 #2

A: PROGRAM; A: PROGRAM;

X: Y = Z + 3; X: Y =Z + 3;

B: PROCEDURE:
B: PROCEDURE;

GO TO X;
GO TO X;

X: F =G + H;
CLOSE B;

CLOSE B;

CLOSE A;

CLOSE A;

In #1, no label X appears in B,therefore control is trans­

ferred to the X appearing in A. In #2, control will be trans­

ferred to the X which appears in the same block as the GO TO X.

With reference to #1, if the label X would have appeared in A

after B, i.e., after its use in the GO TO statement, then X.

would have'to be declared explicitly-,prior to B,by a special-,

7-3

DECLARE statement (see Section 12.1.l).

A function name presents special problems because its

appearance within a statement does not cue the fact that it is

a label. For example

Y = 3 + SPECIAL(A 2 + 5);

does not convey whether SPECIAL is a function name or simply

a data name. It is therefore necessary to locate the

function definition statements at the beginning of a block so

that the appearance of the function name causes no difficulties.

For example:

A: PROGRAM;

X: Y = Z + 3;

B: PROCEDURE;

Z: FUNCTION:

CLOSE Z;

P = Z + 3;

CLOSE B;

CLOSE A;

Note that even though Z is implicitly declared as a scalar at

the program level, the reference to Z in B can only be to the

function Z. (For an alternate technique, see Sec. 12.1.2.)

7-4

7.3 The OUTER Statement

Even though name scope allows for the duplication of names,

it does not safely permit their implicit declaration (Sec. 3.1.4)

within blocks in a program. For example, if a name were

implicitly declared within a function and also declared at

the program level, perhaps being unaware of the ambiguity, the

program level scope would encompass the function, supercede

the name's "function definition", and cause an,error. In

order to prevent such an occurrence HAL provides the means to

isolate an inner block so that only intended names are recognized.

The OUTER statement effects this isolation. For example:

A: 	PROGRAM; Z: PROGRAM;

DECLARE VECTOR(4) ,X,Y,Z;

B: 	 PROCEDURE;P 	 Q + R; -

OUTER Q, X, Y;

B: 	PROCEDURE; C: FUNCTION;

OUTER Q, X, Y; LZh= M + N;

CLOSE C;

CLOSE B; -CLOSE B;

CLOSE A; CLOSE Z;

The use of the OUTER statement here, means that of all the

names (and labels) that might have been declared at the

program level, only Q, Y and Y are recognized inside B.

If OUTER is written without a list of identifiers, no

"outer" names or labels will be recognized. It follows then

that .if it is desired to declare names implicitly an OUTER

statement must be provided-within the block, or the block must

be within another block which contains an OUTER statement.

7-5

(See prgrams A and Z above. In A: P,Q and R are implicitly declared.

.In Z: L, M and N are implicitly declared.)

7.4 Explicit Declarations

* 	 In a program with nested procedures and/or functions,

convenience may dictate the use of explicit declarations,

even for scalars and standard default vectors and matrices.

Instead of selecting outer names for each block with an OUTER

statement and list, it may be easier to "accept all" outer

names and declare explicitly the inner (or local) names.

Eor example:

ABLE: 	PROGRAM;

DECLARE VECTOR A, B, C," D, B,...,K;

DECLARE MATRIX AM, BM, CM,... ,KM;

BAKER: 	PROCEDURE;

DECLARE A, B, L,JM, N;

DECLARE VECTOR X;

DECLARE MATRIX D, W;

CLOSE BAKER;

In this example, all of the names declared at the program

level (ABLE) and all of the names declared within BAKER are

recognized in the procedure, BAKER. Note that within BAKER A and B

are declared scalars, and D is a matrix. HAL permits the complete

selection of inner- and outer-names by combining the use of DECLARE

statements and the OUTER statement..

7-6

7.5 	 Communication BetweeniPrograms

The communication between independently compilab le

programs is provided by HAL through a common data pool

(COMPOOL). This facility is discussed in detail in Sec.12.1.3.

If the COMPOOL exists and is compiled with a set of programs

the scope of the names in the COMPOOL comprises all of the

programs. OUTER statements would then be required at the

program levels if implicit declarations were to be made.

7.6 	 Input-Output

HAL provides three basic I/O statements: FILE, ,READ

and WRITE. It is presumed that for the HALM prograimer,

a simplified usage will suffice. (A more complete discussion

appears in Sec. 12.2).

7.6.1 	 FILE Statement

By "assigning" a name to a file, its value(s)is

written into the file, thus;

FILE(Device,Record) = X;

Device is a three digit number specifying a tape or disc,

etc., and Record is a program generated identification number

(Record can be a scalar expression).

By "assigning" a file to a variable, the contents ,of the

file are read and assigned, thus

X = FILE(Device, Record);

For filing and retrieval, X may be any data type or organization.

7-7

7.6.2 READ Statement

READ statement causes input data to be read from an

external device and assigned to a list of variables. The general

format is:

READ(device) A, B, C....

where A, B, C are variable names. If the variable is a vector,

matrix or array, the number of data fields to be read is the

same as the number of elements; the order is the same as when

a vector, matrix or array is "filled" from a list (see Sec. 4.2.1).

The following discussion assumes that the external device

is a card reader.

Each READ statement presumes data begins in column 1 of

a new card, and that each data field is separated by a comma and/or

blanks. Control over the reading of cards is explained more

fully in Sec. 12.2.1.1. If the READ statement requires more data

than can be provided on a single card, subsequent cards will

be read automatically as required. An example follows:

PROG: PROGRAm4;

READ(CARDS) L, M, N, V;

READ(CARDS) A, B, C, D,.E;

-The

CLOSE PROG;

"device" is a three digit number specifying a particular device

(see Sec. 7.6). A prograimmer-defined name may be substituted

by using the REPLACE statement. For example, suppose the I.D.

number for the card reader were 696 then

REPLACE CARDS BY '696';

would permit the read control statement

READ(CARDS)A,B,C

7-8

Cards:

col 1

CARD #1 64.06, -17.10, 45, -100.06, 67.17, 26.54

CARD #2 5, 7, 9, 12, 16

The input data may appear in a natural format. Any decimal

number with or without a decimal point will be recognized. The

letter E is used to express exponent powers of 10. Internal

blanks may not appear in.the number. The following are examples

of acceptable input data:

369.0

8

-8.36E+2 (equivalent to -8.36 x 102)

+0.123E-06 (equivalent to 0.123 x 106)

456.789

7.6.3 	WRITE Statement

The WRITE statement transmits HAL internal data to an

external device. The general format is:

WRITE(device) A, B, C,....

where the list A, B, C may be of variable names and/or expressions.

If a member of the list is a vector, matrix or array the number of

data fields to be written is equal to the number of elements; the

order is the same as when a vector, matrix or array is "filled"

from a list (see Sec. 4.2.1).

7-9

The following discussion assumes that the external device

is a line printer.

Each WRITE statement presumes that data output will start

in column 1 on a new line. The first executed WRITE statement

presumes,in addition,that data output will start at the top of

a new page of the listing. The programmer can control printing

by including COLUMN(N) and SKIP(M) instructions in the WRITE

*list. For example:

WRITE(PRINTER)COLUMN(4),A,SKIP(2),B....;

will cause the printer to advance to column 4 before starting to

print the value of A, and subsequently to skip 2 lines before

starting to print B. If no print control is used, 5 blanks

are inserted between each written field. If the WRITE statement

* delivers more data than can be written on one line, the printer

automatically advances to the beginning of the next line and

then continues. More about the control of printing is explained

in Sec. 12.2.1.2.

Numerical output data appears in the following fixed format:

sx.xxxxxxxEtxx

mantissa exponent

where

is a blank or a minus sign;

x is a single digit, 0 to 9;

t is a plus or a minus sign.

7-10

An example follows:

WRITE (PRINTER) 	COLUMN (20) ,'TRAJECTORY RESULTS',

SRIP(3),COLUMN(l0),'RATE IN FT/SEC',

COLUMN(30),'TIME IN SEC',

COLUMN(50),'DISTANCE IN FT';

LIST: DO FOR 	1=1 TO 50;

WRITE(PRINTER)COLUMN(10) Ri,

COLUMN(30) Ti,

COLUMN(50) DI;

END LIST;

Printer:

col 10 20 30 	 50

TRAJECTORY RESULTS

RATE IN FT/SEC TIME IN SEC DISTANCE IN FT

-6.3745228E+03 5.OOOOOOOE-01 5.7994673E+04

-5.8812074E+03 1.o0000000E+00 3.3210054E+04

-5.2156354E+03 1.o5000000E+00 2.1478935E+04

4.2573067E+02 	 2.5000000E+01 1.0057928E+04

7-11

Part III

GENERAL CAPABILITIES

Part III presents a description of some of the more

general capabilities and complex aspects of HAL. A complete

description and specification for HAL are given in the

document "The Programming Language, HAL, - A Specification",

Document # MSC-01846.

8. HAL Data

HAL classifies data into six types: integer, scalar,

vector, matrix, chatacter and bit string. Through use of

DECLARE statements the programmer can specify, where applicable,

attributes concerning the size, shape, precision, initialization,

and storage class of any data. Figure 8.1 below, summarizes

the allowable attributes for each type. The attribute effect

appears within the chart. (See Sec. 8.4 and 8.5 for Initialization

and Storage Class

Kttriut 	 II Storage
TV Dimensions Precision Varying Initialization Class

Integer ­
//.
Scalar _decimal

digits

Vector length decimal - / /

digits

Matrix 	 rows, decimal / /

columns digits

Bit length - /

Character length .x.length / /

Fig. 8.1 HAL Data Types and Attributes

8.1 Data Types

8.1.1 Scalar, Vector, Matrix

These data types are floating point quantities and

correspond to normal mathematical definitions. A vector consists

8-1

of n-scalar components, a matrix of m rows, n columns of scalar

components.

8.1.2 	 Integer

The integer data type is a full word signed number containing

only integral values; i.e., a whole number.

8.1.3 	Bit String

The bit string data type is simply a string of l's and/or

,O's of specified (fixed) length. A bit string of length

equal to one may be used as a bo6lean variable.

8.1.4 	 Character String

The character string data type is a string of any of the

HAL characters, and may be of fixed'or varying length. The

varying string is one whose length is dynamically controlled

by the compiler at execution time, 'and requires specification

of its 	maximum length.

8.2 Data Declarations

Each data type may be declared'by a DECLARE statement.

In addition, for convenience, several declarations may be

made within a single statement. The general form is as follows:

DECLARE Name type dimensions precision other-attributes;

That is, the word DECLARE and-then the name, followed by the type,

including any dimensions and precision, followed thereafter by

other attributes in any order. A few examples follow:,

1. 	DECLARE J INTEGER INITIAL(65);

J is.an integer variable with an initial value 65.

2. 	DECLARE X PRECISION(8)AUTOKtATIC INITIAL(6.061);

8-2

X is a scalar variable with a precision of at least 8

decimal digits. The storage class is automatic and X has an

initial value = 6.061. Note.that when the type is not provided

-the HAL compiler presumes a scalar. The programmer can supply

the word SCALAR at his option.

3. DECLARE M MATRIX(3,3)STATIC

-NITIATi (l20,0,0,1,0,0,0,1);

M is a 3x3 matrix variable with default precision

supplied by the compiler. The storage class is static and M

is initially set to an identity matrix.

Note that when the programmer does not supply an attribute,

in most cases the compiler willpresume a standard default.

For example the default dimensions are VECTOR(3),

MATRIX(3,3), BIT(l), CHARACTER(8). A list of all the

HAL standard defaults may be found in the HAL specification

document- (Reference 1).

4. DECLARE P BIT(12)INITIAL(OCT'4372');

P is a-bit string variable of length 12 with an

initial value of 100011111010. The default on storage class

is STATIC.

8.2.1 Multiple Declarations

Several declarations may be made in a single statement

by first separating individual declarations by commas, e.g.

- DECLARE J INTEGER INITIAL(65),

X PRECISION(8)

P BIT(12)

,..etc

8s3

8.2.2 	Factored Declarations

When a group of declarations have common factors, the

declarations may be made in a single DECLARE statement with the

common factors appearing first. For example,

.. 	 DECLARE PRECISION(8) X INITIAL(6.061),

M MATRIX(3,3), V VECTOR(6);

A-1l quantities have been declared to have a precision

of at least 8 decimal digits.

2. 	DECLARE BIT(1)INITIAL(BIN'l'),A,B,C,D,E,F;

A through F are 1 bit bit strings, all initially

set 	equal to 1.

8.2.3. 	Implicit Declarations

As previously indicated in Sec. 3.1.4, Ecalars, vectors,

and-matrices may be declared implicitly (i.e., not by a DECLARE

*'statement) by their first appearance in the program with an

* appropriate defining mark on the E-line over the variable name.

Bit and character strings may also be declared in a like manner,

with default characteristics, by marking the bit string with a

period (.) and the character string with a comma C,). The standard

default lengths for bit and character strings are one and eight,

respectively. Thus the following statements would be sufficient

-to declare the strings , B, C, and D.

A = BIN'l' OR B;

C 'ANSWER=' 1ID;

A-and B are bit strings of length equal to one.

C and D are character strings of length equal to eight.

8-4

-8.3 	Precision

As indicated above.,HAL allows the user to specify the

precision of data in a DECLARE statement. The PRECISION

.attribute may only be applied to scalar, vector, and matrix and

specifies the desired minimum number of decimal digits; the

number must be a positive integer literal and appear within

parenthesis as, for example:

DECLARE X PRECISION(4);

DECLARE V VECTOR(6)PRECISION(8);

For the IBM 360 implementation at MSC the compiler will provide

either single or double precision floating point depending

on the magnitude of the PRECISION specification. (The standard

default is single precision.) For magnitudes greater than

*7.,double precision will be assigned.

8.4-	 Constants and Literals

HAL makes a distinction between quantities (names) which

are declared as constant and those which literally express

their own value (literals). Both remain constant during

program execution.

8.4.1 Literals

There are two types of literals; arithmetic and string.

An arithmetic literal appears as an ordinary decimal number and

may exhibit exponent powers of 2, 10, 16. See Sec. 3.1.3 for

examples of arithmetic and character string literals.

The bit string literal expresses its value as a series of binary,

octal, decimal or hexadecimal digits. String literals must be

enclosed in single quote marks. Some examples of bit string

literals 	are:

BIN '1010011

OCT '77346'

DEC '943'

HEX t96FABt

8.4.1.1 	 String Repetition

- A convenient way to repeat a string pattern is to

include a repetition factor indicating the number of "repeats".

For example,

1) BIN(6)'1O'

would produce 1010101bioio

2) OCT(4)'7'

- would produce 7777

3). CHAR(26)'POP'

would produce POPPOPPOP POP.

Note that when repeating a character string,CHAR() must

'precede the string. The programmer may use CHAR for an unrepeated

string at his option; i.e., 'ANSWER' and CHAR'ANSWER' are

equivalent.

A repetition factor may not be included when expressing

a string as DEC 'digits'.

8.4.1.2 	Using Literals

Literals may be used in HAL wherever a constant number

(or string) is required; for example, in the assignment statement

X 3.064 Y;

8-6

8.4.1.3 The REPLACE Statement

The REPLACE statement provides a means of replacing

a name literally by the string of characters enclosed, within single

quote marks. For example, the statement

REPLACE THRUST BY '10601.74';

would replace the name THRUST by the characters within the

quote marks. The substitutibn is made whenever THRUST is

encountered in the program. Substitution is accomplished

ithin the compiler and does not appear in the listing. For

example:

a. A: PROGRAM;

REPLACE BZERO BY '(-6.27)';

DECLARE B INITIAL BZERO7

2. 	 A: PROGRAM;

REPLACE THRUST BY '10600';

ACCMAG= THRUST/MASS;

The REPLACE statement may also be used to substitute

short statements or expressions (or any character string);

i.e.

1. REPLACE FIREJETS BY 'GO TO F J;';

X = B + C;

FIRE-JETS

etc.

8-7

http:10601.74

2. 	REPLACE FACTOR BY 'X**2 + Y';

P =M LOG(FACTOR);

In writing a REPLACE statement the character string must

be in one-line format (see Appendix D) and the identifier to

be replaced may not be a HAL keyword or symbol.

- If a replace statement contains a string literal, double quotes

must be used to distinguisl then from the outer quotes; e.g.,

1) REPLACE A BY 'BIN' t1010"';

2) REPLACE B BY '"THE ANSWER IS"'.

A 	would then be replaced by 2IN'1010' and B by 'THE ANSWER IS'.

The scope of a REPLACE statement is the same as that for

a name (Sec. 7.1) with the following exception: the name in a

REPLACE statement is never "replaced" as a result of another

REPLACE statement located in an outer block.

EXAMPLE:

ABLE: 	PROCEDURE;

REPLACE X BY 'Y';

DECLARE X INTEGER;

BAKER: PROCEDURE;

REPLACE X BY 'Z';

CLOSE BAKER;

CLOSE ABLE;

The identifier X appearing in BAKER is replaced by Z. X outs-ide

of BAKER is replaced by Y.

8-8

6.4.Z Constants

The CONSTANT attribute when included in the DECLARE state­

.ment specifies that the named quantity is a constant during exe­

cution- The use of CONSTANT and INITIAL is mutually exclusive.

Some examples are:

1) DECLARE J INTEGER CONSTANT(65);

2) DECLARE X CONSTANT(6.061);

3) DECLARE M MATRIX(3,3)CONSTANT(1,0,0,0,1,0,0,0,1);

4) DECLARE P BIT(12)CONSTANT(OCT'4372');

The declarations are similar to those &t the beginning of Sec. 8.2

except J, X, M and P are constants.

8.4.2.1 Initialization Repetition

Initial and constant values of vectors'and matrices may

be specified by lists of literals and it may be convenieht to repeat

portions of the list. This is accomplished by use of the number (#)

sign. As an illustration consider example (3) in Sec.:8.4.2 above.

This could also be written:

DECLARE MMATRIX(3,3)CONSTANT(l,3#0,1,3#0,1)

or

DECLARE M MATRIX(3,3)CONSTANT(2#(I,3#0),l);

The term 3#0 means 0 repeated 3 times.

For vectors and matrices, the number of literals in the

INITIAL or CONSTANT lists (including all repetitions) must either

be equal to the total number of vector or matrix components, or

be equal to one.

1) If equal to one, all the components are set -equal

to the literal (e.g., DECLARE M MATRIX INITIAL(Q)).

2) If equal to the total number of components, the com­

ponents are set equal to literals in the list

8-9

on an element-by-element basis.

The vector and/or matrix is 'filled' in the same manner

-as described in Sec. 4.2.1.

The uses and forms of INITIAL and CONSTANT are complex and

it is suggested that the programmer consult the HAL specification

document (reference 1) if more information is needed. j

8.5 Storage Class

In HAL there are two ways in which data storage may be

assigned: STATIC and AUTOMATIC. These attributes may only be

applied to declarations made within procedures and functions.

STATIC storage is assigned when a program is activated

and remains assigned until the end of a program. This'is

the kind of storage to which the FORTRAN programmer is accustomed.

Consider the following example:

A: PROGRAM;

B: 	FUNCTION;

DECLARE X INITIAL(5)STATIC;

X=X+Y;

CLOSE B;

CLOSE A;

In this example, X being a STATIC variable is assigned a storage

location and initialized to five only when A is activated. Since

its storage assignment does not depend upon B, the value of X,

upon successive entries to B, will be the last computed; i.e',

the value of X is held static ("remembered").

AUTOMATIC storage is assigned on entry to the block

in which it is declared, and is released on exit from that

8-10

block. Suppose that in the example above an additional scalar

Y is declared in B; thus

B':. FUNCTION;

DECLARE INITIAL(5) X STATIC, Y AUTOMATIC;

Y, being an AUTOMATIC variable is assigned storage onif when

control passes to the function*B. Therefore, the last value of Y

is not "remembered" and each invocation of B will cause Y

to be initialized at a value of 5. AUTOMATIC storage is

-nomally used for local data which must be reinitialized

.each time the block is enterdd."

8.6 Arrays and Structures

In HAL the programmer may associate the various data

types into two organizations; arrays and structures. The

array is an ordered collection of elements, known by one

name, all of which have the same data type and attributes.

The structure may be a collection of different data types, or­

ganized in a hierarchy.

8.6.1 Arrays

Any of the HAL data types may be organized into one-,

two- or three-dimensional arrays.. This is accomplished within

the DECLARE statement; for example,

8-11

1) DECLARE J ARRAY(6)INTEGER INITIAL(65);

is a one-dimensional array variable of 6 elements.

Each element is an integer with an initial value = 65.

- 2) -DECLARE M ARRAY(4,2)MATRIX(3,3);

M is a two-dimensional array (4x2) of 3x3 matrices.

in applying the INITIAL and CONSTANT attributes to arrays of

data types the list of literals may specify the array value by

the'whole array, by a single array-component (e.g., a matrix),

or by an element of a component (e.g., a scalar element of a

vector). The programmer should consult the HAL specification

document (reference 1) for the allowable forms; some examples

follow:

1) DECLARE V ARRAY(4) VECTOR(2) INITIAL(,2,3,4,-4,-3,-2,-i);

'The array V is initialized such that its first component

has the value [1,2] and the second [3,4], etc.

2) DECLARE V ARRAY(4) VECTOR(2) INITIAL(l,2);

All four vectors in the array are initialized to the

value [1,2].

3) DECLARE V ARRAY(4) VECTOR(2) INITIAL(1);

All of the vector elements in all of the vectors are

initialized to 1.

8-12

8.6.2 	 Structures

Some programs are concerned with collections of data of
I
aifferent types. For exampie, in a spacecraft application the

time, fuel, position and velocity vectors, navigation covariance

matrix, cockpit switch positions and status monitoring flags

might be collected periodically for storage or transmission

to the ground. A programmer might wish to move (iie., READ,

WRITE, FILE, etc) all or only part of the collection. To do

this he must be able to name and establish relationships among

the data and to the whole. This is accomplished by the

structure declaration, e.g.-

DECLARE 1 SPACECRAFT-DATA,

2 TIME INTEGER,

2 FUEL,

2 NAVIGATION,

3 POSITION VECTOR,

3 VELOCITY VECTOR,

3 NAVCOV MATRIX(6,6),

2 	COCKPIT,

3 POWER SWITCHES BIT(20),

3 LIFE-SWITCHES BIT(15),

2 STATUS BIT(10);

The number preceding each name indicates the level of the­

name. The name SPACECRAFTDATA has level 1, the highest level.

This name refers to the major structure and includes all the names

in the declaration. Thereafter, whenever a name at a higher level

is followed by a name(s) at a lower level (higher number), the

8-13

name at the higher level is that of a minor structure and includes

,the other names within its structure. For example,

COCKPIT includes POWER-SWITCHES and LIFESWITCHES.

The data type declarations, i.e., not the major or minor

structure names, follow the general rules for declarations stated,

eariier in this section. Note that the collection of items

above could be represented pictorially as in Figure 8.6-i.

SPACECRAFT DATA

TIME 	 FUEL NAVIGATION COCKPXT STATUS

POWER.SWITCHES LIFE SWITCHES

POSITION VELOCITY NAV COV

Figure 8.6-1 	 Hierarchy of Levels in

Example Data Structure

8.6.2.1 Name 	Qualification

When all the names associated with a structure are unique,

as in the example above, the data type names and the minor

structure names may be referred to individually without ambiguity;

i.e., FUEL, COCKPIT, POWER-SWITCHES, etc. Under these conditions

the major structure may be given the attribute NONQUALIFIED,.­

i.e., its names need no further qualification. Thus the

declaration above would begin:

8-14

DECLARE 1 SPACECRAFT DATA NONQUALIFIED,

2 TIME INTEGER

etc.

However, the names within a structure need not be unique.

It is permissible to use some or all of the lower-level

names in several minor structures or in another major structure

declared-in the same part of the program. For example,

consider the following structure where position and velocity

are grouped into three intervals:

DECLARE 1 NAVDATA QUALIFIED,

2 FIRST,

3 TIME INTEGER,

3 POSITION VECTOR,

VELOCITY VECTOR,

2 SECOND,

3 TIME INTEGER,

3 POSITION VECTOR,

3 VELOCITY VECTOR,

2 THIRD,

3 TIME INTEGER,

3 POSITION VECTOR,

3 VELOCITY VECTOR;

In order to distinguish among the variables with the same

names, it is necessary to specify additional information.

This is done by qualifying the names with higher-level names

to make the identification unique. The rules for qualification

8-15

are that a name used in a structure must be qualified by

prefixing it with the names of all the structures (major and

minor) in which it is contained. The names are separated

by a period and must be in order of level number, the most

inclusive level appearing first. The major structure declaration

must contain the attribute QUALIFIED. Thus in the example

above, the three variables TIME would be referred to as:

NAVDATA.FIRST.TIME

NAV DATA.SECOND.TIME

NAVDATA.THIRD.TIME

If the programmer does not provide a major structureattribute,

the compiler presumes a NONQUALIFIED structure.

8.6.2.2 Multiple Copies of Structures

Multiple copies of major and/or minor structures may

be declared by including a dimension in the DECLARE statement

after the structure name; e.g.,

DECLARE 	1 NAVDATA(1O)QUALIFIED,

2 FIRST(5),

2 SECOND(5),

2 THIRD(5),

In this case there are 10 copies of the major structure NAV DATA.

Each copy of NAV DATA contains 5 copies of the minor-structures

FIRST, SECOND, THIRD. To refer to a particular VELOCITY

8-16

the qualifiedname must be subscripted as follows:

NAVDATA.FIRST.VELOCITY8 ,3 ;

that is, the VELOCITY in the 3d copy of FIRST which is in the

8th-copy of NAV DATA. Structure subscripting is presented in

Section 9.

8-17

8.7 Formal Parameters and Functions

Functions, procedures and formal parameters were introduced

-and discussed in Section 6 in the context of HALM. In general,

FUNCTION and PROCEDURE statements may contain lists of formal

"parameters-of any data type, including arrays and structures.

The FUNCTION statement may define the function result tobe of

any--single data-type (arraysand structures are not permitted).

I

8.7.1 Formal Parameter Declarations

8.7.l'i Specified Dimensions

Formal parameters with default attributes may be

declared -implicitly simply by their appearance in the list of

parameters with appropriate annotation. Thus,

ABLE: FUNCTION(A,B,C,D,E);

declares A a scalar, B a three component vector, C a 3x3

matrix, D a one bit bit string, and E a character string, eight

characters long. Since the data type of the function result

is not provided, a scalar result is presumed.

If other than default characteristics are desired, but

with spedified dimensions, the formal parameters must be

declared within the function body (programmer-supplied annota­

tion becomes optional). For example,

ABLE: FUNCTION(A,B,M, [E])VECTOR;

DECLARE A PRECISION(!0), B BIT(15);

DECLARE M MATRIX(6,3), D ARRAY(10,5,3);

8-18

The DECLARE statements follow the forms presented in

previous sections. Note that the function has a vector result

of default dimensioh (i.e., 3) since the dimension has not

been provided.

Implicit and explicit formal parameter declarations follow

the same rules for functions and procedures.

8.'7.1.2 Variable Dimensions

For certain applications it may be convenient not to

specify the dimensions of parameters but instead, to have the

parameters- take on the dimensions of the corresponding

arguments in the CALL or function-reference statements.

This may be accomplished by substituting &n asterisk (*) for

.the dimension literal. For example, suppose a function is

written to accept any size matrix and returns some scalar

result; i.e.,

ANY- FUNCTION(Q);

DECLARE Q MATRIX(*,*);

The two asterisks mean that both the row and column dimensions

will be determined at run time. A more complicated example

might be

ABLE PROCPDURE([C) ASSIGN(G);

DECLARE C ARRAY(*,2)BIT(*);

This procedure expects to process an nx2 array of m-bit

bit strings,,where n and m will be determined at run time.

In general, the asterisk dimension may be applied to

array, matrix and vector dimensions, as well as to bit and

character string lengths.

8-19

8.7.2 Function Results

The FUNCTION statement defines the function result

by indicating its data type and attributes. The type may

be any of the six HAL data types but the attributes are

limited to dimension and precision. The following are

examples of valid FUNCTION statements:

A: FUNCTION(X,Y) PRECISION10);

B: FUNCTION(X,Y) MATR-X(6,3) PRECISION(10);

C: FUNCTION(X,Y) CHARACTER(25);

8-20

8.8 Alternate DECLARE Statement Format

All of the HALIdata types, and arrays of these types,

may be declared using an alternate form of the DECLARE statement

where the data type is indicated (except for scalar and integer)

by an appropriate mark over the name and the size and shape

designated by a subscript. (-), (*), (.), (,) appearing over

a name specifies vector, mitrix, bit string and character

string data types respectively. Within the subscript, array

shape must be separated from string or-vector length, and

matrix dimensions, by a colon C:)o

The use of INTEGER, PRECISION and other attributes remain

as described in Secs. 9.2 and 8.3.

EXAMPLES:

1) DECLARE A50;

- a linear array of 50 scalars.

2) DECLARE B 2,3INTEGER;

- a 2x3 array of integers.

3) DECLARE V1 0 6 ;

- - a linear array of 10 vectors of length 6.

4) DECLARE M 6 6 ;

- a 6x6 matrix.

5) DECLARE SIO0;

- a bit string of length 100.

8-21

8.9 The DEFAULT Statement

As detailed in Sec. 8.2, when names are implicitly declared,

or explicitly declared with not all characteristics specified,

the unspecified characteristics are supplied from a set of

defaults. Standard defaults are included in Sec. 8.2 and a

complete list appears in Appendix B of the HAL specification

document.

In some cases it may be convenient to modify the standard

default set to reduce the amount of source program coding required

to achieve the given objective. For this purpose, the DEFAULT

statement is provided, and the following !'sie" keywords defined:

BITLENGTH

.VECTORLENGTH

MATRIXDIM

CHARLENGTH

The DEFAULT statement has the general format:

DEFAULT type(dimension) size;

EXAMPLES:

1) DEFAULT MATRIX(4,7) BITLENGTH(24);

DECLARE A, B MATRIX, C BIT(10), D BIT;

The DEFAULT statement changes the type default from scalar

to matrix, the matrix dimension from (3,3) to (4,7) and

the bit length from 1 to 24. Therefore, the DECLARE

statement declares A and B to be 4x7 matrices (note

the MATRIX need not be supplied), and D to have length equal

to 24 bits. It is to be emphasized that the defaults will

"fill in" wherever the particular characteristics is not

specified.

8-22

2) 	 DEFAULT BITLENGTH(16);

DECLARE E, F, G;

The DEFAULT statement changes bit length to 16; all other

defaults remain the same. Therefore, E is a scalar, F a

bit string of length 16, and G a character string of

length 8.

The scope of a DEFAULT statement, that is the.region in which

it is recognized, is the same as that for a DECLARE statement

(see Sec. 7.1).

8-23

9. Subscripting

HAL makes use of subscripts for three purposes: 1) to select

(i.e., index or partition) data items from complex data types,

arrays and structures- 2) to formulate types and arrays from

component parts; and 3) to modify the interpretation and usage

of data quantities. All subscripting may be accomplished in a

natural format by introducing the subscript expressions on the

S-line.

9.1 Selection

9.1.1 Arrays of Vectors and Matrices

The referencing of individual components of vectors and

matrices, and the partitioning of these data types, by subscript­

ing, are presented in Sec. 5.1 of this guide. Since HAL also

permits arrays of vectors and matrices it becomes necessary to

introduce additional subscripting in order to select and partition

all quantities. This is accomplished by separating the array sub­

scripts from the array element subscripts with a colon (:), with

the array subscripts always coming first. For example, consider

the following array of matrices:

DECLARE M ARRAY(4,3)MATRIX(6,6);

-- a 4x3 array of 6x6 matrices.

A few subscript possibilities are:

1) M1,2:3,4

This selects the scalar component in the 3rd row,

4th column of the matrix in the ist row, 2nd column of the ar-ray.

9-1

2) M1 ,2:

This selects the matrix in the 1st row, 2nd column

of the array. The "trailing colon" means that the selection

consists of the data types in the array, and not of elements

within the data types. (Note that the compiler will supply the

"over-star" indicating a matrix).

3), [M] 3 -4

This selects the scalar components in-the 3rd row,

4th column of all the matrices. The result is an array

of scalars. If m were not an array of matrices, but a sinqle

matrix instead, M3, 4 would result in a single scalar. (Note,

that the compiler will supply the brackets indicating an

array.)

4) M3,1:2,*

This selects a single 6-dimensional vector from

the 2nd row (all columns) of the matrix in the 3rd row, !st

column of the array. (Note that the compiler will supply the

"over'bar" indicating a vector.)

5) [M]1 TO 3,2:1 TO 3,1 TO3

This selects a sub-array of sub-matrices; i.e.,

the 1st three rows and ist three columns of all the

matrices in the 1st three rows, 2nd column of the original

array. (Note that the compiler will supply the brackets

and "over-star" indicating an array of matrices.)

It is evident that many complex forms can be developed

9-2

from this example. The important point is that by sub­

scripting (indexing and partitionin) b6th the array and the

array components, any selection can be made unambigu6usly.

9.1.1.1 The Use of * and #

The two symbols'* and # may be used in subscripting

variables to indicate "all of a particular index" and

"the last of a particular index" respectively. The * can only

appear alone in a subscript position; i.e., M,, or

A* 1 The # may appear alone, as part of the expressions

4# + K, 6r associated with "TO" or "AT" in the following

forms:

#+ 	K TO#

P AT # + L

Examples:

1) M1 TO 6,*

- a matrix partition: the first 6 rows,

all columns.

2) M#_2 TO If,#-2 TO#

- a matrix partition: the last three rows

and last three columns

3) VP AT #-Q

- a vector partition: P elements starting at

Q from the last element.

t Note that # is also used to indicate repetition within

a list (see Sec. 8.4.2.1 and 9.2).

9-3

9.1.2 Bit and Character Strinqs

The individual bits and characters of strings, and the

strings themselves within arrays, may be referenced by

subscripting. The method i§ similar to that for vectors.

Some examples follow based on the declaration:

DECLARE A BIT(15);

- a bit string of length 15.

This selects the pth bit in the string starting

from the left. (Note that the compiler supplies the

"6ver-dot" indicating a bit string.)

2) A1 O 8

This partitions the string and selects the

1st eight bits.

3) AP TO #

This partitions the string from the Pth bit

to the end.

If the strings were arrayed, i.e.,

DECLARE A ARRAY(10)BIT(15);

then

4) [A]p

This selects the Pth bit from every string.

The result is an array of 1 bit bit-strings.

9-4

5)A,,

This selects the pth bit string of the array. Note

the "trailing colon".

1[]TO 6:

stThis selects the 1 six strings of the array. The

result is an array of 6 bit strings, each of 15 bits length.

9..1.3 Structures

Any data item within a structure may be referenced by

'
appropriate subscripting of the item name. The structure may

be QUALIFIED or NONQUALIFIED. The general method is "to reach"

the item by first indicating the major structure copy, then

the minor structure(s) copy(s), then the array position and

finally the index within the data type. All structure sub­

scripts must be separated from other subscripts by a semi-colon (;)

The following example illustrates these points:

DECLARE 1 A(50) QUALIFIED,

2 B(25),

3 C ARRAY(4,4)MATRIX(3,3),

3 D BIT(10),

2 E VECTOR(6);

1. (A-13 5 ;

This selects the 35th copy of the majot structure, -A.

(Note that the compiler will supply the brackets indicating

9-5

a structure.)

2) [A.B.C]

This selects the array of matrices, C, which are in

the 1 0th copy of B, which is in the 35th copy of A. (Note

that the compiler supplies the "over-star" and brackets

indicating an array of matrices.)

3) {A.B.Dj* 1 ;5 TO 8

This selects bits 5 to 8 of the bit string, D, in the

Ist copies of B which are in all copies of A. (Note that

the compiler supplies the "over-dot" and brackets indicating

a structure of bit strings.)

For a NONQUALIFIED structure the subscipting would be identical;

thus, for example, (2) above would be written

I[C]35,10;

9.1.3.1 	Structures of a Single Data Type

Consider the following two DECLARE statements:

1) DECLARE 1 A(5),

2B CHARACTER(10);

2Y DECLARE 1 A,

2B ARRAY(5) CHARACTER(10);

From the first statement, {B} is a structure of all copies of

I 	 •

string B. From the second, [B] is the array of all strings.

9-6

Note that while {B} in 1) and [B] in 2) contain the same data they

are not identical and cannot be used interchangeably.

Consider further,

3 TO 5;

3) DECLARE 1 A(5),

2B ARRAY(5) CHARACTER(10);

{[B]} 5 is a structure of the last three copies of the

array [B].

It is suggested the-reader consult the HAL specification

document (Sec. 6) for more details on structure subscripting

and manipulations.

9.2 Formulation

Vectors and matrices, and arrays of all data types may

be formulated from their component parts by using special

conversion functions and appropriate subscripting. In Sec.

4.2.1, the functions SCALAR, VECTOR, MATRIX wereo introduced.

HAL also provides the following additional "formulating"

functions:

INTEGER

BIT

CHARACTER

Each of these functions operates on lists of data and may be

"filled" and "shaped" by subscripting.

9-7

9.2.1 VECTOR and MATRIX

These functions may be used both for formulating vector

and matrix data types, as in Sec. 4.2.1, and for formulating

arrays of these types. The distinction is made in the subscript

format. For example

MATRIX2,3(5)

formulates a 2x3 matrix, the elements of which all equal 5.

On the other hand,

MATRIX 6 3,3(5)

formulates a one-dimensional drray of 6, 2x3 matrices, the

elements of which all equal 5. Several objectives may be accom­

plished using these functions depending upon the number of data

items included in the list and the subscript format. For

example,

1) VECTOR4(A,B,C,D)

formulates a 4 dimensional vector.

2) VECTOR6 :4 (A,B,C,D)

formulates a one dimension array of 6, 4 dimensional

vectors.

3) 	MATRIXI0 :4 ,2 (20#A,20#B,40#C)

The arguments represent a linear list of 80 data

items. This function formulates a one dimensional

array of 10, 4x2 matrices in the following way: the

first 8 items of the list Ifill" the first 4x2 matrix

9-8

(by rows), the-next 8 items "fill" the second matrix, etc.

The variations of VECTOR and MATRIX are numerous and the

reader is advised to consult the HAL language specification

*(Ref. 1). if more information -isneeded. In general, though,

three list sizes are acceptable: a single -item which is "spread"

over the data type or the data type array (also see Sec. 9.2.1.1

below); a number of items equal to those in the data type dimension

(e.g., the totalmnumber of elements in a-matrix) which is then

tepeated for all components of-an array; and a number of items

equal to the total number inthe array which then.simply "fills"­

the- array-on an element-by-element basis.

Vectors and matrices must consist of scalar elements,

therefore other data types ihcluded within a list will be con­

-verted
 appropriately. (Conversions of types to types are

-discussed in Sec. 10.3.2.)

When the list contains more than one entry and the function

is unsubscripted, the result is a vector of length equal to the

number of elements in the list or a square matrix with rows

and columns equal to the square root of the number of elements

in the list. (The square root must be an integral number.)

For example,

.1) VECTOR(A,B,C,D)

formulates a 4 dimensional vector

2) MATRIX(20#A,5#B)

formulates a 5x5 matrix.

9"9

When the array shape is specified but dimension is not; e.g.,

VECTOR6: (A,B,C D)

the resultant vector(s) or matrices take on default dimensions

and the number of elements in the list must be consistent with

the default. In the example above, the function would evoke

a compiler error message because the 4 elements in the list would

not agree with the standard vector length default of .3.

9.2.1.1 VECTOR and MATRIX of a Single List Entry

If the number of entries in list is one; e.g., a

single scalar, vector, matrix, etc., or a single array of any-­

data type then two cases are of interest: subscripted and

unsubscripted.

When the functions are-subscripted and the list entry

is a single data item (e.g., a scalar) its value is "spread",

over the function as described above. If the single entry

comprises a multiple data item (e.g., a matrix or array),

the entry is first unraveled and the function "filled" according

to the subscripted array shape and dimensions.

When the functions are unsubscripted,-the final result

depends upon the data type, array shape and dimension of the

list entry. A summary of the resulting forms is presented in

Appendix F.

9-10

,9.2.2 INTEGER and SCALAR

The use of INTEGER and SCALAR are similar in that arrays

of integers or scalars are formulated from lists of components

with appropriate conversions see Sec. 10.3.2) where necessary.

Some examples are:

1) INTEGER3,3,3(J)

The result is a 3x3x3 array of integers. Every corm­

ponent of the array is set equal to J.

- 2) SCALAR9 (M)

The result is a one-dimensional array of scalars of

*

length 9, 	whereaM is a 3x3 matrix. ­

3) INTEGER 6 ,2 (3#I,D)

The result is a 6x2 array of integers (presuming D is

3x3). The matrix is unraveled into a one-dimensional

list (see Sec. 4.2.1). Note that the scalar elements

of the matrix D will be converted to integers.

When the list contains more than one entry and the function

is unsubscripted, the result is a one-dimensional array o?

length equal to the number of elements in the list. For-example,

SCALAR(v,M)

The result is a one-dimensional array of scalars of as

many components as in.V plus A.

9.2.2.1 	SCALAR and INTEGER of a Single List Entry

See Sec. 9.2.2.1 and Appendix F.

9-11

9.2.3 BIT and CHARACTER

BIT and CHARACTER may be used to formulate arrays of bit­

and character-strings respectively. Appropriate conversions are

made where necessary (see Sec. 10.3.2). Some examples are:

TO 10 (A)
 1) 	BIT 2 ,3 :1

The result is a 2x3 array of bit strings. Each bit

string equals the first 10 bits of the "bit-pattern"

representation of the scalar, A.

2) 	 CHARACTER 1 0 (X,Y,Z, 'COORDINATES.')

The result is a one-dimensional array of 10 character

strings. The first 9 strings are of the length

necessary to represent the scalar (floating point).

components of the vectors. Resulting character strings

are implemented as varying.

3) 	BIT 3 (3#A,3B,3#C,3#D)

The result is a 4x3 array of bit strings. All strings

will be of the same length and equal to the maximum

string length in the list of arguments.

When the list contains more than one entry and the function

is unsubscripted, the result is a one-dimensional array of.

length equal to the number of elements in the list. Bit-string

length corresponds to maximum string length in the list; character

length is varying.

9-12

9.2.3.1 BIT and CHARACTER of a Single List Entry

See Sec. 9.2.2.1 and Appendix F. Note that subscript

dimension for BIT and CHARACTER are different, in concept,

than for VECTOR. VECTOR dimension specifies resultant vector

length; BIT or CHARACTER dimension specifies the bits or

characters to be selected from the string representations of

the arguments.

Once again, the reader is advised to consult the HAL

specification document (Reference 1) for more complete information

on BIT and CHARACTER and the other functions presented in Sec. 9.2.

9.3 	Modification

Two forms of subscripting allow the HAL programmer to modify

the interpretation and/or usage of certain data types and

,expressions.

1) In converting from bits to characters and from

characters to bits, the subscripts @BIN, @OCT, @DEC,

@HEX provide binary, octal, decimal and hexadecimal

interpretation, e.g., BIT@OCT(I 657') results in the

bit string 110101111.

2) The precision of an expression can be specified explicitly

by use of the subscript form @p, where p represents the

minimum number of desired decimal digits. For example

suppose the integer I has the value 311,648,726 and is

to be added to the single precision floating point­

9-13

scalar X. It is desired to maintain at least 10 digit

precision in the floating point result. Thus the

expression

I 	 *X

will

1) 	cause the integer to be converted to a scalar with

precision of at least 10 decimal digits (i.e.,

a double precision mantissa on the IBM 360/75);

2) convert X to double precision because it is

involved with a double precision operand;

3) perform the sum in double precision.

More examples of modification and HAL's automatic data

conversions will be presented in Section 10.

9-14

10. -Data Manipulation

In Part II of this guide the expressions and assignments

associated with HALM were presented. These were largely confined

to manipulation with the-arithmetic types: scalar, vector, matrix.

In this section, string and airay operations are introduced as

well as the conversions necessary for combining mixed data types.

A summary of all HAL data operations is presented in Appendix C.

10.1 String Operations

10.1.1 	Bit Strings

The manipulation of bit strings, in HAL, is accomplished

using the following four operators: -

Operator Definition

NOT (n, ^) complement

CAT (If) concatenation

AND (&) logical AND

OR (f or logical OR

and certain of the built-in functions listed in Appendix-B.

(Acceptable alternate forms for the above operators are shown

in parentheses.) NOT complements each bit in the string; CAT

forms one string by joining together the two operand strings; AND

and OR perform bit-by-bit logical operations on the corresponding

bits- of two bit operands.. If the strings are of unequal length

for AND and OR, the shorter is padded on the left with 2eros.

When assigning a bit expression to a target variable, if the

target and expression are of unequal length, then the following

10-1

steps are followed: if the expression result is too long, it is

truncated on the left; if it is too short, it is padded with

zeros on the left. As examples, consider

DECLARE BIT(12) A,B,C;

then,

1) 	NOT

Each bit is complemented

2) C = B1 TO 7 11A- 4 TO #

The first 8 bits of B and the last 5 bits of A are joined.

3) = B4 TO 8 AND 1 TO 10

The two operands are of different lengths. B4 TO 8

is padded on the left with zeros until it matches the length

of C1 TO 10' A logical AND is performed bit-by-bit; the result

is a bit string of length 10. On assignment to A which is of

length 12, the result is padded on the left with two zeros.

4. 	 M= (D&E)(F&G& -i)I

If all of these bit strings were declared implicitly

then each represents a 1 bit string (i.e., a boolean) and this

is an example of a complicated boolean expression and assignment.

M is either TRUE or FALSE; i.e., either BIN '1' or BIN '0'

depending upon the expression result. For example if D = BIN '1'

and E = BIN '1' then M = BIN '1' (n is performed before &;

see Sec. 10.1.3).

10-2

10.1.1.1 Bit Strings Within Logical Conditions

A logical condition or set of logical conditions,

Lc are conditions imposed upon IF and DO WHILE statements

(see Sec. 4.3.2), i.e.,

* IF L THEN....

c

or

DO WHILE Lc;

As such the logical-condition expresses a comparison (or

comparisons) among data which is either true or false. For

.HALM,,in Sec. 4.3.3.1, the relational operators were used

to compare arithmetic data.' These operators may also be

extended to bit strings. 'Thus it becomes possible to test

whether

AB

A >= B

A =

etc.

The shorter string is padded on the left, as before. A

bit comparison involves the left-to-right comparison of

corresponding binary digits; BIN 'I' is defined as greater

than BIN '0'. The result of a bit string comparison is a

single true or false answer. Thus BIN '101' >= BIN '1111'

is false because the first bit comparison (starting on

the left) fails. Note thatin this context A B,means
B=

that if any of the corresponding bits of A and B are not

equ~l then the relation is true.

10-3

10.1.1.2 	"Boolean" Condi-tions

If-the logical condition in an IF or DO WHILE statement

involves only single-bit bit strings (booleans) then the condition

may be expressed'as a boolean expression, similar to example (4)

of Sec. 10.1.1.1. For example:

IF A AND (B OR C) THEN

meaning if A is true (i.e., = BIN '1') and either B or C is

true then..'.; or

-	 DO WHILE -iAj(B&C);

meaning do the following statements while A is false (i.e.,

BIN '0') or, B and C are true.

10.1.1.3 	Combining Comparisons and Boolean Expressions

Whenever it is desired to combine comparison expressions

(arithmetic or string) with boolean expressions it becomes

necessary to express all conditions as comparisons.

That is,

IF X>5 AND B THEN .

is not an acceptable form using HAL. The statement must be written

with the condition on B expressed as a comparison expression; thus,

IF X>5 AND B = TRPE TEEN .

is correct. (Note TRUE E BIN '1'.) A more complicated example

might be:

2
IF(ijC = 	OCT '77') OR (Xc>5 AND FLAGl = TRUE)THEN . .

10-4

10.1.2 Character Strings.

When using HAL, input data from cards, terminals,

files, etc. and output data to a printer or other device,

are considered to be streams of characters. The acceptance

afid preparation of numerical data, message.texts, headings,

etc. requires the manipulation of character strings. The

basic operations are presented here; I/O statements appear

in Sections 7 and 11.

The manipulation of character strings, in HAL, is

accomplished using the concatenation operator, CAT or (H),

and certain of the built-in functions listed in Appendix B.,

Since character variables may be fixed or varying, a distinction

must be made. When assigning a character expressioh to a

fixed character string target variable, the result is similar

to that for bit strings except that padding or truncation

is applied on the right. Thus,the expression-value 'is

truncated on the right,if it is too long,or padded witL

blanks on the right,if it is too short. For example, consider

DECLARE CHARACTER(12) A,B,C;

then,

1. C ='ABC';

The first three characters of C are set to 'ABC',

the rest are blanked.

2. Cj TO 4 = 'ABC,;.

Characters 3 and 4 are set to 'AB', the rest of C

are left alone.

10-5

If the target Variable is a varying character string,

then, in general, the target string takes on a length

equal to that of the right hand side expression. If the

expression length is longer than the declared maximum length,

the expression is truncated on the right.
 -

The HAL language specification (Ref. 1) presents detailed

rules and examples for the manipulation of character strings.

10.1.2.1 	Character Strings Within Logical Conditions'

Character string comparisons may be incorporated

into logical conditions in the same manner as bit strings

(Sec. 10.1.1.1). All of the relational ocerators of Sec.

4.3.3.1 may be applied in .comparing twb characte2 strings.

The shorter string is padded on the right with blanks. A

character comparison involves left-to-right comparison of

corresponding characters according to the collating sequence

presented in Appendix E.

The result of a character string comparison is a

single true or false answer. Thus

'ABCDE' = 'ABCEF' is false because the fourth

character comparison (starting on the left) fails.'

t Note that in this context A2= B means that if anv of the

corresponding characters of A and B are not equal then the

relation is true.

10-6

10.1.3 Order of Operations

In evaluating the expressions with a logical condition,

an order of operations was'established in Sec. 4.3.3.3. :With

the addition of the concatenation operat6r, this order may be

generalized and applied to string expressions as well as

logical conditions. The complete order is:

NOT highest

CAT

Relationals

AND

OR lowest

In illustrating the application of this precedence order,

example (4) of Sec. 10.1.1 could have been written without

parehthesis; i.e., = -I1.D&EJF&G& 2H would be performed

first, then the &'s from left-to-right: D&E, F&G& -1H, and finally

the two 's. Other logical meanings would have required

parenthesis; e.g.,

M D&(EJF)&G& fCHjII);

As another example, consider the IF statement in

Section 10.1.1.3. Again this could have been written without

parentheses and no change in meaning:

2

IF BI f = OCT'77' OR X >5 AND FLAG1 = TRUE THEN...

BlIC would be performed first, then the relationals from left

to right: BiC = OCT'77', X2>5, FLAGi = TRUE, then AND, and

- 10-7

finally OR. A different logical intent would have required

parentheses; e.g.

IF(B, C = OCT'77' OR X >5)AND FLAC1= TRUE THEN...

Of course, the programmer can take advantage of HAL's

built-in precedence rules but he is advised to use parentheses

when -in doubt in otder to clarify the intent of the expression

as it appears in the listing.

1"0.2 Array Operations

Most of the arithmetic and string operations in HAL

can also be applied to arrays of appropriate data types,

for example,

[C] = [B]II[A];

[E] = IF] AND ([G] OR [H]);

IV] [IM] [W];

are valid array manipulations.

In general, operations with arrays are equivalent

to operations with their components on a sequential

component-by-component basis; i.e. by incrementing the

"right-most" index first. Thus for two-dimensional arrays:

[A] [B];

means A = B , A1 = B 1 . A =B .,is 1,i 1,2 1,2 An,m n,m

For array expressions and assignments, array dimensions

must be compatible; i.e. if two arrays are involved in-an

operation, they must be of identical dimensions. If only one

array is involved, the other operand may be a single data

item; e.g., A[B] is a valid product in that A multiplies every

10-8

component of [B]. Note that an array may never be assigned

to a single data item.

Some examples of array statements and their equivalents

follow:

1) DECLARE ARRAY(10,10)A,B,C;

[A] = [B] + [C];

This array statement causes the addition of components of

[A] and [B] on a component-by-component basis. Each sum is

assigned to the corresponding component of [Al. The state­

ment is equivalent to the following multiple "DO FOR - loops":

DO FOR I = 1 TO 10;

DO FOR J = 1 TO 10;

AI'j = B +Cd

END;

END;

2) 	DECLARE ARRAY(12,6)D,E,F;

DECLARE G ARRAY(12,12);

[D] 	= [E] [F]/2 + X;

[G] 	 = 0;

The components of [El and [F] are multiplied on a

component-by-component basis; each product is divided by 2,

added to the scalar X, and assigned to the appropriate com­

ponent of [D]. In addition, all components of [G] are set

to zero. These statements are equivalent to the following

"DO 	FOR -loops":

10-9

DO FOR I = 1 TO 12;

DO FOR J = 1 TO 6;

D I,J E FI,j/2 + X;

END;

DO FOR 	J = 1 TO 12;

EI,J

END;

END;

10.2.1 	Partitioned Arrays

When array operations involve partitions of arravs

the programmer is cautioned to remember the sequential nature

of array computations. Consider the following two examples:

1) DECLARE A ARRAY(25);

[A] 2 TO 	25 = [A]I TO 24

A, = ANEW;

The intention here is to shift the information in th~e array

by one index position and incorporate new data into the.first

component of [A]'. What is the actual result? This may be

seen by 	writing the operations in sequence:

SA2 =A 1	;

=A3 A2 ;

=A4 A3;

ANEW;
A1

Unfortunately the "old" value of A1 is propagated throughout

10-10

the entire array. The final result for [A] would be A A NEW

-with the rest of the components set equal to the old value

of AI. The.programmer could have accomplished the intended

objective by writing

[A]2 To 25 = SCALAR([A]I TO 24) ;

A, = A_NEW;

2). DECLARE B ARRAY(10,10);

[B]*s = [B] , ;

The intention.here is simply to replace the 5th "column"

of.the array by the contents of the 3rd "row". Note that both

column and row represent one-dimensional arrays of 10 components

each. The operations are performed as follows:

B = B3,1;

B2,5 B 3,2;

3,5 3,3;

B4,5 = 3,4;

B5, 5
= B3,5;

B = B3,6;

B10,5 B3,10;

aid the result'is wrong! That is, B3,5 appears both on

-iheright and left of the = sign and propagates B3,3 into

B3,5 and B5,5. The programmer could have accomplished his

objective by writing:

. .[B],5 = SCALAR([B]3 ,*);

10-11

Thus, array manipulations do require some care and the

programmer is urged to write out, in preliminary form, at

least a partial sequence of operations in order to verify that

the array statement will achieve the desired result.

10.2.2. Functions of Arrays

HAL built-in fuaictions and programmer-defined ­

functions may be given array expressions, of appropriate

data-type, in the argument positions. Two classes of functions

are of interest: 1) where the function's formal parameters

or definitioncalls for single data items, 2) where the

function's formal parameters,or definition,calls for at.

least one array. (For built-in functions, the string-, arith­

metic-, mathematical-, and matrix-vector-functions are of the

first class; the linear array functions comprise the second,

See Appendix B.)

10.2.2.1 Functions with Single Data Item Arguments

When arrays are processed by a function designed'

for single data item arguments, the result is a sequence

of operations with the function being applied to the

components of the arrays, component-by-component. Thus,

for example, consider the sine function where the argument

is an array.of scalars; i.e.,

DECLARE ARRAY(10,5)A,B,;

[B] = SIN([A]);

This statement is equivalent to the following "DO FOR -loop":

.10-12

http:array.of

DO FOR I = 1-TO 10;

DO FOR J = 1 TO 5;

BI, J = SIN(AI j)

END;

END;

For a function requiring more than one single data item,

multiple array arguments must be of identical "shape". For

example, let VRESULT be a programmer-defined function returning

a vector, thus

VRESULT: FUNCTION(V,A,B)VECTOR(6)

and used in the statement

[P] = M VRESULT([Q], [A],B);

where [P] and [Q] have been declared as 4x2 arrays of six

component vectors~and [A] is a 4x2 array of scalars. This

statement is equivalent to the following sequence of operations:

DO FOR I = 1 TO 4;

DO FOR J = 1 TO 2;
*

PIJ: = M BLOCK(QIT:,AI,jB)

END;

END;

Note that the same values M and B are applied to the computation

on every pass through the loop.

Both of the above examples illustrate that the manipulation

of arrays with this class of functions is straight forward and

is simply a sequence of component-by-component operations.

10-13

10.2.2.2 Functions With Array Arguments

* HAL functions written, or designed, to accept array

-arguments must produce single data items results. For

example

SUM([X])

accepts an array argument and returns a single'result.

The effect might be viewed as a "reduction in dimension".

Consider the following examples:

1) DECLARE A ARRAY(5), B ARRAY(5,4);

[A] = SUM([B]);

This statement is equivalent to the following sequence of

operations:

DO FOR I = 1 TO 5;

A,= SUM([B] 1 ,, ;

END;

2) DECLARE ARRAY(25,25,25)A,B;

[A] 3 :TO 8,Q,* = M-AX[B]10 TO 15,*,*) ;

The left hand side represents a two-dimensional (6x25) sub

array; the argument of MAX is a three-dimensional (6x25x25)

subearray. The statement is equivalent to the following

"DO FOR -loops":

DO FOR I = 3 TO 8;

DO FOR J = 1 TO 25;

AI,Q,J MAX([B]I+7,j,,);

END;

END;

10-14

Note that Q is specified at run-time and is outside the

loop.

In "reducing the dimension", &s illustrated in the

examples above, the array functions operate on the "inner­

most" free index of the'array argument Csee Sec. F of

Appendix B).

10.3 	Manipulations With Mixed Data Types

HAL permits the mixing of most data types within expressions

and the assignment of one data type result to another data

type target variable. The mixing of data types is accomplished

through prescribed sets of implicit and explicit conversions.

10.3.1 	 Implicit Conversions

Some representative examples of implicit conversions

follow:

1) DECLARE INTEGER I-,J;

J = A + I;

The addition (subttaction or multiplication) of

an integer and a scalar causes conversion of the integer to

the scalar type. The assignment of a scalar result to an integer

target causes conversion of the scalar to integer before assign­

ment.

10-15

2) DECLARE B BIT(10), I INTEGER;

X = B + I;

The addition (subtraction or multiplication) of a

bit string and an integer causes conversion of the string to an

integer. The assignment of an integer result to a scalar target

causes conversion of the integer to scalar before assignment.

3) DECLARE BIT(lO)A,B,C;

A = B/C;

Division is defined as a scalar operation. Bit string

operands are converted to scalars by first converting the strings

to integers and then to scalars. The quotient is always a scalar

quantity. The assignment of a scalar to a bit target variable

causes conversion of the scalar first to integer and then to

bit string before assignment.

4) DECLARE C CHARACTER(25)VARYING;

C = 'THE ANSWER IS' liX;

The concatenation of a character string and a scalar,

-integer or bit string causes conversion of the scalar or integer

to a character string, and the conversion of a bit string first

to an integer and then to a character string.

.In general, but with certain restrictions, implicit conver­

sions within expressions follow a progression:

(to-scalar-to-character

from bit-to-integer­

to-character

i.e.,

B-1

t:C

10-16

" and from single precision (SP) to double precision (DP). Vector

arid matrix operands cause the same effects as scalars.

In assigning expressions, conversions go both ways depending

upon the data type of the target variable; i.e., either

C

or

S -'I B

For example, if a bit string (B) is assigned to a scalar target -(S),

h6 string is first convertedtto an integer and then to a scalar

(B I S); if a scalar is assigned to a bit string; the scalar

is first converted to an integer and then to a bit string (S + 1 B).

The following tables summarize the implicit conversions

when two operands of different types are involved in expressions

or assignments:

A. Expressions

7 rOperand 	2

Oe 	 I S BC
 ,

BC
Opera.nd 11

I - I+S B I I*C

S I-S - B I+S S-C

(2) (i)
B I B+I S
B '

C I;C S+C B+I C

Notes: (1) 	The concatenation of a character string and a

bit string is only valid if the character string

is the left hand operand (i.e., CI[X).

(2) When bit strings are used in arithmetic operations

the strings are converted to integers.

I i12 17 *

B.. 	Assignments

Expres­

sion I S B C

2)
Target

I "- . S x n-sI (i)

"S Ixs - - l)

B I-B- S4-I B Ci)
-

-C 	 I+C S-*C B+I4C -

Notes: (1) 	Character expressions may not be assigned to

arithmetic or bit string target variables.

(2) Vector, 	matrix, and array expressions may only

be assigned to vector, matrix and array target

variables respectively. Structures may only be

assigned to structures of identical component

declarations.

10.3.1.1 	Conversion of Arithmetic Literals

Arithmetic lietrals exhibit the following default data

types and precision:

a) 	if the literal's value has no fractional part (e.g.,

6,:6.0, .12E+2B-I, etc.), it is considered to be an

integer data type.

10-18

b) 	if the literal's value has a fractional part (e.g.,

6.1, .123, 6.024E-5, etc.), it is considered to be

a sca-lar data type, and its precision will be determined

by context, if possible; otherwise default precision will

be used.

Subsequent conversion within expressions of mixed data types,

follows the rules described above, in Sec. 10.3.1. Note that

double precision representation of literals will be utilized when

required within an expression, i.e., when the literal is involved

with a double precision operand.

EXAMPLES

1. 	X=I+ 3.1;

Presuming that I is an integer, it is converted to a

scalar (because 3.1 is a scalar) and added to 3.1. The

result is assigned to the scalar X. Since the precision

of 3.1 cannot be determined by context (i.e., being added

to an integer) default precision will be used. The

standard default is double precision.

2. 	DECLARE PRECISION(10) X, Y;

X = 4.06372 Y;

Since Y is a double precision scalar, the literal 4.06372

is utilized as a DP quantity and multiplied by Y.

3. 	REPLACE K BY '1060';

A = (K + 3.064) B;

K is treated as an integer and therefore converted to a

scalar before being added to the "scalar literal", 3.064.

Both literals will be expressed in default precision.

10-19

10.3.2 Explicit Conversions

Four functions are provided for the explicit conversion

of one data type to another. The four are:

INTEGER

SCALAR

BIT

CHARACTER

These functions*may be applied to integer, scalar, bit- and

character-string arguments, and result in the named data types.

Thus,

I = INTEGER(X/Y) + J;

A BIT8 TO 1 2 (X)IIB;

C = CHARACTER(X)IICHARACTER(J);

are examples of the use of conversion functions. The following

table describes the resulting conversion for each function and

type:

Type I S B C

Function

C I (I)

INTEGER - S+I B+I

SCALAR I-S - B-I-S CS

BIT (3) IB S B (2) CB 2)

CHARACTER ItC S C B-I C -

Notes: (1) INTEGER and SCALAR only accept character string

arguments which represent Vrhole numbers and scalars,

respectively. For example, INTEGER('30672') and

* Also see Sec. 9.2.

10-20

SCALAR ('362.06E+') are valid applications.

(2) 	 BIT converts scalars and character strings directly

to bit strings. That is, a floating point scalar

argument would result in a 32-bit bit string, the

string representing the 360/75 "bit-pattern" of the

floating point quantity. A character byte is 'converted

to its 8 bit pattern.

(3) 	 BIT and CHARACTER may be subscripted in order to

select particular bits and characters, or to modify

usage (see Section 9.3). A character string which

represents binary, octal, decimal or hexadecimal;.digits

can be converted to a corresponding bit string; i.e.,

BIT@BIN('1011) becomes 1011

BIT@OCT(' 657 ') becomes 110 101 111

BIT@HEX('FAD') becomes 1111 1010 1101

BIT@DEC('78') becomes 1001110

Likewise-bit strings can be converted to binary, octal, decimal

or hexadecimal character digits; e.g.,

CHARACTER@HEX (BIN'11111010')

In addition to using conversion functions within expressions,

the ."pseudo-variable" SUBBIT is defined, and may appear on the

left'hand side of an assignment statement. That is, a-bit string

expression may be assigned directly to the bit representation of

other data types. For example,

SUBBIT6 TO 20CA) C E;

or

SUBBIT(C6) HEX'9F';

10-21

Through the use of.the SUBBIT pseudo-variable, the basiclbit

pattern (machine representation) of any data type may be manipulated

by-the programmer.

16.4 	HAL Operations -. A Summary

HAL provides the programmer with full facilities for:

1) scalar and integer arithmetic

2) vector and matrix arithmetic

3) bit- and character-string manipulations

4) array operations

5) structure handling

Most of the common operators are valid with most of the data types

as operands and yield results that might be expected intuitively.

However, some operations with particular data types are not

- allowed, and others imply specific conversions. A summary of

all HAL operations, involving one or two operands, is included

in Appendix C. For most operations the valid result data type

(o error) and the implicit data conversion(s) are indicated.

The tables in Appendix C have been taken from the HAL language

specification document (Reference 1) and are presented here for

programmer convenience.

10-22

11. Additional Program Organization and I/O

11.1 	Organization

In Sec. 7 the basic features of program organization

and name scope were presented in the context of HALM. For

the most part, these features also apply to the full

HAL laHguage. The additional data'typest integer, bit­

and character-strings, arrays of these types',and structures

of all data types,follow the same rules with respect to scope

and DECLARE and OUTER statementsas scalars, vectors and

matrices.

It is the intention of this section to 'describe, to

the programmer, additional details of pr6gram organization

bearing principally upon the logical arrangement of blocks

of code within a program and'the relationship of 'one program

to another, and to the Symbolic Library.

11.1.1 Declaration of Labels

- It was pointed out in Sec. 7.2 that the scope of

labels, in a HAL program, generally follows the same rules

as the scope of names. The statement or procedure label must

be defined before its use, or, at least, in the block in

which it is used.

When a label appears after its use in a GO TO or

.CALL statement'and outside the block in which it is

used, then the label must be declardd explicitly. For

examole:

11-1

A: 	RROGPAM;

DECLARE X LABEL;

B: 	PROCEDURE;

GO TO X;

CLOSE B;

X: 	Y = LOG(P);

CLOSE A;

The label X appears in the listing after GO TO X and outside

_B, and therefore requires the DECLARE statement. The LABEL

attribute may not be factored in a DECLARE statement; i.e.,

DECLARE LABEL A,B,C;

is not permitted.

11.1.2 Declaration of Function Names

Function names must always be defined before their

use, even if the FUNCTION statement and function reference

appear within the same block.

On occasion it may prove awkward to locate in

the listing, all function blocks prior to the statements

in which the function names are actually used. This require­

ment may be avoided by declaring the function name in a

DECLARE statement. For example:

11-2

i 	 #2

A: PROGRAM; 	 A: PROGRA,!;

ZAP: FUNCTION VECTOR; 	 DECLARE ZAP FUNCTION VECTOR;

-CLOSE ZAP; 	 B: PROCEDURE4r,

B: PROCEDURE; 	 Y = 7 + ZAP;

Y 	= X + ZAP;

CLOSE.B;

CLOSE B; 	 ZAP: FUNCTION VECTOR;

CLOSE A; CLOSE ZAP;

CLOSE A;-

In #1, the function ZAP is recognized in B because its definition

precedes its use. In #2 the definition has been relocated

after its use, therefore ZAP must be declared, first, using

a DECLARE statement..

The DECLARE statements for a function have the'following

form:

•DECLARE A FUNCTION type dimensions precision;

The type and attributes may be written in factored form; thus

DECLARE FUNCTION MATRIX(4,4)

PPECISION(i0) A,B,C;

11-3

11.1.3 Communication Between Rrograms

The program (i.e., PROGRAM-CLOSE block) is thel6nly

independently compilable HAL program-unit. A program can

call another program and communicate data through a common.

data pool (COMPOOL). Data may not be transferred between

programs by lists of arguments and formai parameters as

with procedures and functions.

11.1.3.1 The COMPOOL

The COMPOOL is a centrally defined and centrally

maintained group of statements. The statements are limited

to REPLACE, OUTER and DECLARE, and the attributes in the

DECLARE statements are further restricted to LABEL, FUNCTION,

dimensions and PRECISION (also VARYING for character strings).

The names and labels declared in the COMPOOL are potentially

known to all programs and, in fact, provide the only

means of communication between programs.

In order to take advantage of the COMPOOL as a data

sharing mechanism, the programmer must include the CQMPOOL

statements before the PROGRAM statement during compilation.

In a sense, the COMPOOL is placed "outside" the program block

and its scope encompasses the program. If another program

is compiled in a similar manner, using the same COMPOOL, the

variables declared in the COMPOOL will be recognized in both

programs. Thus, for example,

11-4

INCLUDE COMPOOLA. INCLUDE COMPOOLA.

A: PROGRAM; B: PROGRAM;

CLOSE A; - CLOSE B;

It should be noted that if the COMPOOL is included after the

PROGRAM statement; i.e., within the program block then its scope

can encompass only the program itself, and declared variables

cannot be shared by another program.

1i1A.3.2 The Symbolic Library and the INCLUDE Directive

The COMPOOL statements,reside in a symbolic library

and are entered into the library using specific 360/75 utility

commands (to be specified at a later date) Once in

the library, the COMPOOL may be retrieved and compiled with any

HAL program by using the compiler directive*

INCLUDE

along with certain other utility commands. The name

associated with INCLUDE may be up to 8 characters in length with

the first being an alphabetic character. Thus

INCLUDE COMPL106

or

INCLUDE NAVDATA

are valid directives.

The symbolic library may alse be used to store any symbolic

source code; e.g., complete programs, procedures, single statements.

The library entries are available to all programs and may be

t Compiler directives require a D in column 1 of the input source code.

11-5

included in the compilation of a program, at any point, by utilizing

the INCLUDE directive with the proper library name. Statements

from the Symbolic Library will then be compiled as if they were

supplied by the programmer in his source code.

11.1.4 Program Calls

The CALL statement may be used to call one program from

another program. The logical result is similar to calling a

procedure; i.e., control is transferred to the program called

and returned when the program is completed. The CALL statement

is of the form:

CALL program-name;.

In calling a program:

1) no arguments may be passed; all communications must

be through a COMPOOL.

2) 	All static variables are allocated on program

initiation, and released when the program ends; i.e.,

variables with the INITIAL attribute are initialized,

others take on unspecified values.

3) 	Control is returned to the caller at the statement

following the CALL statement, when a RETURN or CLOSE

statement is reached.

4) Control may be returned to the executive by executing

a TERMINATE statement; i.e.,

TERMINATE;

5) A program cannot call itself.

11-6

.11.4.1 Program Declaration

In order to call a program,its name must be

known within the calling program. This is accomplished by

the DECLARE statement

DECLARE A PROGRAM;

This statement may be placed in the COMPOOL, elsewhere in

the symbolic library, or in the program body. In-any case

the declaration must appear before the name of the program

is used in a CALL statement.

11.4.2 Example

-A: PROGRAM;

DECLARE XX-PROGRAM;

CALL XX;

B: 	PROCEDURE;

DECLARE YY PROGRAM;

CALL XX;

CALL YY;

CLOSE B;

CLOSE A;

11-7

11.2 	Input-Output

In this section the I/O control functions and the standard

data formats complementing Sec. 7.6 will be presented. The material

is specialized to card reader and line printer types of!devices.

The programmer is urged to consult the HAL language specificatiqn

document (Reference 1) for a more general treatment.

11.2.1 Read and Write Control Functions

External data media, either providing input information

to a HAL program or accepting output data, are treated as two­

dimensional devices. Data occupies a grid consisting of

horizontal lines with each line being made up of column positions;

for example, a deck of punched cards where each card is a line,

or a 132-column high speed printer. The "read mechanism" or

"write mechanism" is located at some point on this two-dim'ensional

grid, and moves in a conventional way along each line and from

line to line as reading or writing takes place. Read- and

write-control functions are used to move the "read mechanism" or

"write mechanism" to any reachable location desired in readiness

for reading or writing. The definition of "reachable"varies

depending on the physical device involved.

11.2.1.1 Read

In this section discussion is restricted to the card

reader asta read device. The "read mechanism" is located on the

11-8

-two-dimensional grid by the read-control functions SKIP, TAB

and COLUMN. A READ statement without these functions will

always begin on column I of the nqxt card, and will then read

consecutive data fields, card after card until all variables

have been assigned values, uniess interrupted by a semicolon

terminating a data field. In this latter case, variables not

having yet been assigned values retain their previous ones.

Following is an example of a simple READ statement:

R- ADidevicet)A, B, C, D, E, F, ... etc.;

The SKIP read-control function controls the vertical position

.of the "read mechanism"; that is, it controls which card is

next to be read. The form is

SKIP(N), where N > 0

A SKIP(O) in the middle or at the end of a list of variable

'names-has no effect. A SKIP(0) before the first variable name

%na READ statement causes reading to continue on the same card

as that last read by the previous READ statement. Multiple

SKIP(N) specifications are cumulative in effect. Any SKIP

function appearing before the first variable name overrides

the implicit SKIP(l) which normally causes reading to start in

the next card.

In the example

READ(CARDS)A, B, SKIP(3), C, SKIP(5), D;

values for A and B are on the first card to be read, the value

for C is on the 4th card, and the value for D on the 9th card.

See footnote of Sec. 7.6.2.

11-9

There is no relocation of the horizontal position of the "read­

mechanism" during the skips.

The TAB and COLUMN read-control functions control the

horizontal position of the "read mechanism", at which reading

is to start or resume. The TAB function moves the "read

mechanism" left or right by the specified number ofIcolumns.

Its,-form is

TAB(N), where

N<O: move to left;

N=O: no effect;

N>0; move to right.

N must be of such a value that the column arrived at is in

the range 1 through 80. The COLUMN function moves the "read

mechanism" to the specified colume. Its form is

COLUMN (N) , l<N<80

- Multiple TAB functions are cumulative. A TAB or COLUMN

function appearing before the list variable name-in a READ

statement overrides the implicit COLUmN(l) normally causing

reading of a card to start at column 1.

In the example

READ(CARDS) A, B, TAB(6), C;

READ(CARDS) SKIP(0), COLUMN(7), D,EF;

with the data fields

column (1) (7)

-5.6, 7.2E+5, 113, 'SECONDS'

the first READ statement causes A, B and C to take the values

11-10

-5.6, 7.2E+5, and 'SECONDS' respectively. The second READ state­

ment rereads the same card starting at column 7, causing D, E

and F to take the values 7.2E+5, 113,,and 'SECONDS' respectively.

11.2.1.2 	Write

In this section discussion is limited to the line

printer as a write device. The "write niecha 'sn" is located in

the two-dimensional grid by the write-control functions LINE,

SKIP, PAGE, TAB and COLUMN. A WRITE statement without these

functions will always begin at column 1 of the printer, and

print out the values of the variables and/or expressions in

turn, each data field separated from th& next by five blanks.

When the end of the line is nearlyreached, and the next data

field is too long to be printed, one of two things happens.

--'
 If the data is numerical, printing is deferred to the beginning- '

of the next line. If the data is character, then printing

continues uttil the end of the line is reached and then the

remainder of the field is printed at the beginning of the hext

line. Following is an example of a simple WRITE statement:

* 2 ­

WRITE(PRINTER)A,B,C+D_,E,,,...;

The TAB and COLUMN write-control functions have the same

effect as when used as read control functions. The valid

range of columns is1 through 132,.however. Note that-if-use

of the functions to move the "write mechanism" to the left is

made before printing, whatever was in those column positions'

11-11

'of the same line beforehand,is overwritten. Thus for example

WRITE (PRINTER)5132,COLUMN(l) ,-66;

causes the following line to be printed (see Sec. 11.2.i2.5).

Column (1) (li)

-66

because -66 overwrites 5132.?,A way of causing multiple over­

writing of characters is indicated later. Use of the TAB or

COLUMN functions between two entries in the WRITE statement

inhibits the 5-blank interfield spacing normally occurring

at th&t point.

The LINE, PAGE, and SKIP write-control functions control.

the vertical position of the "write mechanism". The PAGE

function is of the form

PAGE(N) ,. N>O

and causes the printer to advance N pages, remaining on the

same line relative to the head of the page. (Each page has­

58 lines.) If N=O the function is ignored. For example if

WRITE (PRPINTER)X,PAGE(2),Y,PAGE(O),Z;

causes printing of the value of X on line 7 or the current*

page, then the value of Y will be printed on line 7 of.the next

page but one. The value of 2 is printed on line 7 of this same

page immediately following Y.

The SKIP write-control function operates in a similar

way to the read-control function. The only difference in

behavior results from the use of SKIP(O) in the middle of a

list of variables and/or expression. This behavior is best

demonstrated by an example:

11-12

WRITE(PRINTER)'RESULT',SKIP(O),COLUMN(l),' '-,

causes the following to be printed:

RESULT

Note the overprinting, which would not have resulted from the

statement

WRITE(PRINTER)'RESULT',COLUMN(l),' 1;

which just results in the following being printed:

In SKIP(N), N may be any positive number: it is immaterial

whether or not page boundaries are crossed.

The LINE write-control function forces printing to con­

tinue on the line specified. Its form is'

LINE(N), 1<N<58.

If N is equal in value to the current line number, tne ertect­

is the same as a SKIP(0). If N is greater than the curreit line

number then the "write mechanism" moves to that-line on the

current page. If N is less than the current line number then

the "write-mechanism" moves to that line on the next page. For

example if

WRITE(PRINTER)X,LINE(20),Y,LINE(l),2;

causes the value of X to be printed on line 15 of the current

page, the value of -Y will be printed on line 20 of the same

page, and 2 on the first line of the next page.

11-13

:1 .2.2 Standard Data Formats

11.2.2.1 Numerical Input Data

Numerical data may be input to a HAL program as a

signed (+ is optional) decimal number (with or without a decimal

point) and raised, optionally, to the powers 10, 2 or 16. The

format is as follows:

+decimal number +integer -:

where E, B and H represent 10, 2 and 16 respectively. Internal

blanks are not allowed. Data may contain repeated powers.

Some examples follow:

369.0

8

-8.36E+2B-l

+0.123E6B-3H4

1E-75

.337

Numerical data may be assigned to integer, scalar, vector, matrix

and bit string data types. For integers and bit strings the

data form must represent integral values. For a bit string

assignment, data is first converted to a full word bit string

and then assigned to the corresponding bit variable named in

the read statement. The following statement could accept the

11-14

examples shown above:

READ(CARDS)IBVA;

I is an integer, A is a scalar.

11.2.2.2 Character Input Data

Character data may be input to a HAL program as a

string of characters enclosed by single quote marks. -Thus,

for example,

I
IC

'57.3/Cl

'NUMBER ONE'

'ONOFF,OFFON'

Bit string data may be input directly in binary, octal, decimal

and hexadecimal forms by representing the data as a character

string and then interpreting the string within the HAL program.

For example, suppose it is desired to assign-a bit string with

the octal number 37776. The data may be input as

3377761

and the HAL statements might be:

DECLARE B BIT(15);

DECLARE C CHARACTER(5);

READ(CARDS)C;

B =BIT oc(C);

@OCT ;

11-15

This last statement interprets the character string as an octal

bit pattern and converts the quantity to a bit string.

11.2.2.3 	Non-standard Data Formats

It is possible for a HAL program to accept data in

forms other than those described above. The READALL statement.:

is defined for this purpose. It is suggested that the programmer

consult the HAL language specification (Ref. -) if he desires

to use non-standard input data.

11.2.2.4 	Scalar Output Data

The standard single precision scalar output'data from

a HAL program is presented in Sec. 7.6.3. For double precision

the number of decimal digits is increased from 8 to 17. The

total field size is 14 character positions for single precision

numbers, and 23 character positions for double precision.

numbers.

i1.2.2.5 	Integer and Bit String Output Data

Integer and bit string data are output from a HAL

program as signed integral values (a positive number-is indicated

by a blank). The total field size is 11 character positions.

Leading zeros are suppressed and appear as blanks, except for

a single zero value. For example,4 the following WRITE state­

ments:

11-16

WRITE (PRINTER) B;

WRITE(PRINTER) J;

WRITE (PRINTER) K;

WRITE (PRINTER) C;

might result in the print-out,

column (1) (11)

5

-4673

0

2684736

Note the conversion of bit strings to integer form.

11.2.2.6 Character Output Data

Character data output from a HAL program appears as

a variable size field equal to the string length -of the character

variable, or expression, in the WRITE statement. For example,

the statement

WRLTE(PRINTER) 'DISTANCE= 'I 1Al' MILES';

might produce the printed line

cblumn (1) (30)

DISTANCE= 8.6034768E+06 MILES

Note the blank characters after the = sign and before MILES.

Bit string data may be output in binary, octal, decimal or

hexadecimal form by first converting the string to characters;

for example, the statement

11-17

WRITE (PRINTER) CHAR@oCT (B);

would result in writing a bit string of value 101110100 in

the form:

564

The HAL language specification document (Ref. 1) contains

other examples of character output data.

11-18

References

1. MSC-01846, The Programming Language HAL - A Specification,

prepared under NAS 9-10542, NASA/MSC, Houston,, Texas

(to be published).

Appendices

.Appendix
A

HAL Keywords

(not including built-in functions)

The following words are -HAL keywords and are usually

unavailable for any other use.

ACCESS

AND

ARRAY

ASSIGN

AT

AUTOMATIC

BIN

BIT

BITLENGTH

BY

CALL

CASE

CAT

CHAR

CHARACTER.

CHARLENGTH

CLOSE

COLUMN

CONSTANT

DEC

DECLARE

DO

ELSE

END

ERROR

EVENT

EXCLUSIVE

FALSE

FILE

*FOR

FUNCTION

GO

HEX

IDCODE

IF

IN

INCLUDE

INDEPENDENT

INITIAL

INTEGER

LABEL

LATCHED

LINE

MATRIX

MATRIXDIM

NOT

NONQUALIFIED

OCT

OFF

ON

OR

OUTER

PAGE

PRECISION

PRIO

PRIOCHANGE

A-I

PRIORITY

PROCEDURE

PROGRAM

QUALIFIED

READ

READALL

REPLACE

RETURN

SCALAR

SCHEDULE

SEND

SIGNAL

SKIP

STATIC

SYSTEM

TAB

TASK

THEN

TERMINATE

TO

TRUE

UNTIL

UPDATE

VARYING

VECTOR

VECTORLENGTH

WAIT

WHILE

WRITE

Appendix B

HAL Built-In Functions and Pseudo-Variables

The built-in functions and pseudo-variables available in HAL

are given in this appendix, and are presented in alphabetical

order under their respective headings. The allowable data-types

fpr the arguments are indicated using the following abbreviations:

I: 	integer

S: 	scalar

V: 	vector

M: 	matrix

B: 	bit

C: 	character

A. 	Conversion Functions (See Secs. 9.2.1, 9.2.2, 10.3.2)

Arguments: I,S,V,M,B,C

1. 	 INTEGER

2. 	SCALAR

3. 	BIT

4. 	CHARACTER

5. 	VECTOR

6. 	MATRIX

B. 	String Functions

1. 	INDEX (string, config)

Arguments: B,C. Searches a string for a specified

bit or character configuration. The

starting location of that configuration

B-1

within the string is returned as an integer

data type.

2. LENGTH 	(string)

Arguments:. B,C. Finds the string length and returns it

as an integer data type.

3. LJUST 	(character-string)

Result: 	 LJUST removes all the leading blanks of a

character string operand and returns the

resultant character string.

4. 	RJUST (character-string, p)

Result: 	 RJUST creates a new character string of

length, p. The character string argument is

truncated on the left, or padded with blanks

on the left, depending on whether its length

is greater or less than p. p is a scalar

expression which is-rounded to the nearest

integer before use.

C. 	Arithmetic Functions (B,I,S)

These functions return the same data type as the argument

(bit arguments are first converted to integers; the function

returns an integer). Array arguments yield array results.

1. 	ABS

Finds the absolute value of the argument.

2. 	CEILING

Determines the smallest integral value that is

greater than or equal to the argument.

B-2

3. 	FLOOR

Determines the largest integral value that does not

exceed the argument.

4. 	ROUND

Rounds the argument to niarest integral value,

5. 	SIGNUM

Returns 0, +1, -1 as argument is zero, positive, and

negative, respectively.

6. 	SIGN

Returns +1, -1 as argument is positive or zero, and

negative, respectively*.

7. 	TRUNCATE

Returns 0 if argument is less than +1 but greater

than -1; otherwise returns equivalent of SIGN (argument)

times the largest positive integral value that does not

exceed ABS (argument).

8. 	MOD(a,b)

MOD extracts the remainder c such that (a-c)/b=N, where

- N is an integral number. c is the smallest positive

number that must be subtracted from a in order to make

N an integral number.

D. 	Mathematical Functions

These functions return a scalar data type. Arguments may

be B,I,S. (Bits and integers are converted to scalars.) Array

arguments yield array results.

B-3

1. 	ARCCOS

Trigonometric cosine; argument in closed interval [-1,1];

results in closed interval [0, w].

2. 	ARCCOSH

Inverse hyperbolic cosine; arg not less than 1.

3. 	ARCSIN

Inverse trigonometric sine; arg in closed interval

[-1,1]; result in closed interval [-r/2, 7r/2].

4. 	ARCSINH

Inverse hyperbolic arc sine; arg any value.

5. 	ARCTAN

Inverse trigonometric tangent; arg any value; result

in open interval (-7/2, n/2).

6. 	ARCTANH

Inverse hyperbolic tangent; largj<l.

7. 	 COS

Trigonometric cosine; arg in iadians; largl<K.

8. 	COSH

Hyperbolic cosine; largl<K3.

9. 	EXP

Exponential, (earg); largl<K3.

10. 	 LOG

Natural logarithm; arg positive and non-zero.

11. 	 SIN

Trigonometric sine; arg in radians; largj<Kl.

12. 	 SINH

Hyperbolic sine; largl<K3.

B-4

13. 	 TAN

Trigonometric tangent; arg in radians; arg may not be

an odd multiple of 7/2; largj<K2.

14. 	 TANH

Hyperbolic tangent; arg any value.

15. 	 SQRT

Square root; arg positive.

Note: Kl, K2 and K3 are upper limits which depend upon 360/75

machine characteristics (to be supplied at a later date).

E. 	 Matrix-Vector Functions

Arguments may be vectors or matrices (as applicable). Array

arguments yield array results.

1. 	 ABVAL

Absolute value of magnitude of vector; argument may be

a vector of any length.

2. 	 ADJ

Adjoint; argument is invertible square matrix of any

dimensions; result is equal to DETERMINANT (argument) times

INVERSE (argument).

3. 	 DET

Determinant; argument is a square matrix.

4. 	 INVERSE

Inverse; argument is square matrix; result is inverse

if argument is invertible.

5. 	 TRACE

Trace; argument is square matrix; result is sum of

diagonal matrix elements.

B-5

6.-	 TRANSPOSE

Transpose; argument is matrix of any dimensions; result

is the interchange of the rows and columns of the argument.

7. 	UNIT

Unit vector; argument is vector of any length; result

is a vector of magnitude 1 and in line with argument.

F. 	Linear Array Functions

These functions have the following general format:

function-label(single-operand)

where the function will operate on the "linear array" representing

the "inner-most" free index of the argument'. The s'ngle-operand

may be of (B,I,S,V,M) data types or arrays of these types. The

following table indicates the array shape and dimension of the

function result.

Argument() [Xa [X] () V£ IV"~:Pab9 * m,n Ma,b:m,n*aa,b 	 Z [V]b:,£ mn Ma m

Function (2 2 (3) (3) [V
Label A [A] a S 3 S]a,b m V]a,b:m

Subscripts indicate shape and dimension (i.e., array-shape:dimension)

t E vector length; m,n E matrix rows, columns; a,b E array shape.

(In general, the argument array shape may be a,b,c,... etc.)

NOTES:

(1) 	X may be bit string, integer or scalar

(2) A is an integer if X is a bit string or integer

(3) 	S indicates scalar

B-6

The 	linear array functions are:

1. 	 SUM

Sums over inner-most free index.

2. 	PROD

Forms product over inner-most free index.

3. 	MAX

Finds maximum element value over inner-most free index.

4. 	MIN

Finds minimum element value over inner-most free index.

EXAMPLES:

1. 	 DECLARE A ARRAY(2,4,6);

SUM([A]2,*,6) results in a 2x6 array of scalars. Sum

is performed over second index because it is free.

2. 	DECLARE ARRAY(25,25,10)A,B;

*) ;
[A] 3 TO 8,4,* = MAX([B]1 0 TO 15,,

The result is a 6xlO array of scalars. Each scalar is equal

to the maximum value encountered along the inner most

index of [B]. The statement is equivalent to the following

"DO FOR-loops":

DO 	FOR I = 3 TO 8;

DO FOR J = I TO 10;

AI,4, J MAX([B]I+7,J,*)

END;

END;

B-7

.3. 	DECLARE D ARRAY(10)VECTOR(6);

SUM([D]) results in an array 'of scalars of length 10.

Each scalar is the sum of the 6 components of each of the

10 vectors.

G. 	Miscellaneous Functions

1. 	RANDOM

Result is the current base random number in the

pseudo-random number generator. This function enables

the programmer to make successive runs of a program

without repeating sequences of pseudo-random numbers.

2. 	RANDOMG

Selects a random number from a Ganssian distribution.

3. 	TIME

Returns current time as an integer.

4.-	 DATE

Returns current date as an integer.

H. 	 Pseudo-Variables

A pseudo-variable, in HAL, is a function that can only

appear on the left of an equal sign (=) in an assignment or

DO statement. The only defined pseudo-variable is SUBBIT.

See Sec. 10.3.2.

B-8

I Appendix C

Summary of HAL Operations

The following tables summnarize the allowable operations

between two operands. In most cases the valid result-type

(or an error) and any implied data conversions are indicated

within the boxes.

C-I

0. RAE ..
Operation Prefix ­

2 4 Q :.. NOT.

OPERAND INTEGER SCALAR VECTOR MATRIX BIT STRING CHARACTER
STRING

P p P P L
INTEGER SCALAR VECTOR: MATRIX- 3+1*R BIT ERROR

I.

P refers to P-grbup' of. operators shown above.

Q refers to Q-group of operators sho 7n above.

* * BtI means conversion from bit to integer

Tab1e C-i

Operation Addition & Subtract OPERAND

OPERAND 2

r INTEGER SCALAR ' VECTOR
OPERArNDl "

INTEGER INTEGER, SCALAR ERROR

* 1S

SCALAR SCALAR SCALAR ERROR.

'I S

VECTOR ERROR ERROR VECTO)R

-,MATRIXERREROERO

BIT STRING -INTEGER SCALAR ERROR
B-?I B I-+S ,

ARACTER
STRING " ERROR ERROR ERROR.-

*I-" S means conversion of integer to sbalar,

Table tC..2

OPERAND

MATRIX

ERROR

ERROR

ERROR

MARXER.

ERROR

ERROR.-

BIT STRING

INTEGER

B I

SCALAR

B-*IeS

ERROR

.

INTEGER

* +

ERROR
..

d:

CHARACTER

STRING

ERROR

ERROR,

ERROR

ERR

ERROR

ERROR
--. • ,

dimension check

OPERAND
A" Operation Multiplication: OPERAND1 OPERAND 2

OP RAND-

RAINTGER. SCALAR

OPErAND

INTEGER -INTEGER SCALAR.

I _) SS

SCALAR SCALAR SCALAR

..-VECTOR VECTOR VECTOR

n 1+5
bth

MATRIX MATRIX 'MATRIX

ItS

BIT STRING INTEGER SCALAR

B+I B+! S

CHARACTER

STRING ERROR ERROR

Notes: (1) Vector outer product V V

(2) Vector DOT product V.V(d)

VECTOR

VECTOR.

VECTOR

MATRIX(l)

SCALAR(2).

VECTOR(S3)'

VECTOR

dd

VECTOR

B+IS

ERROR

-. MATRIX

MATRIX.

1+S_1I_

MATRIX

VECTOR

d

.1!MATRIX

MATRIX,

B+1+8

ERROR

BIT STRING CHARACTER

STRING

INTEGER ERROR

B'

SCALAR .:ERROR

VECTOR ERROR

B IeS

MATRIX ERROR

B41+S

INTEGER ERROR

B+I, B41

RROR ERROR

d: dimension check

C3) Vector cross product V*V(d, restricted to
3-element vectors),

Table C73

Operation _____________OPERAND•Division 1/OPERANDO ND

OPERAND2

OPERAND1

sRAND, SCALAR VECTOR
,

MATRIX. BIT .STRING
INTEGERSTRING

CHARACTER

INTEGER SCALAR

1S, leS

SCALAR

I+S

* ERROR ERROR SCALAR

I S, B-*IS

ERROR

SCALAR SCALAR SCALAR ERROR ERROR SCALAR ERROR

0

VECTOR VECTOR

~15*

VECTOR 'ERROR ERROR VECTOR

-*S

ERROR'

MATRIX MATRIX MATRIX * ERROR ERROR MATRIX ERROR

BIT STRING

lHARACTER

STRING

. SCALAR

B+I+S, I+S

'ERROR' '

SCALAR

BtI- S

ERROR

*

"

ERROR."

*ERROR '

ERROR

* ERROR

' 'SCALARB+I S,

B+I--S.

ERROR

'ERROR

ERROR

Table C-4

OPERND'*OPERAXND
Operation 'Exponentiation .. 9PERN 2

O0ERAND2,
ARCE

INTEGER, SCALAR VECTOR MATRIX BIT StRING CHARACTER

PERAD.STRING

INTEGER SCALAR (1) SCALAR (1) ERROR ERROR SCALARC2) ERROR

I4S. 1>S I >S, B+I S

SCALAR SCALAR SCALAR ERROR ERROR SCALAR ERROR.

VECTOR ERROR ERROR ERROR. ERROR ERROR ERROR

MATRIX(5) MATRIX MATRIX ERROR ERROR. MATRIX ERROR

BIT STRING SCALAR (3) SCALAR (3) ERROR ERROR . SCALAR (4) ERROR

*CHARACTER E ERO

STRING ERROR ERROR ERROR... ERROR- RROR

Notes: (1) Result is-INTEGER if OPERAND 2 is a whole number literal > 0 (no I S).

(2) Result is INTEGER if OPEAND is a bit string literal which may be converted

to an unsigned integer Cno I;S, B+I).

(3) Result is INTEGER if OPERAND is a whole number literal >'0 (BI)..

(4) Same as (2) except (BeI, BeI?.

(5) See Sec. 6.1.1.4

Table C-5

~,,OPERAND%()OPERAND2 FQ: = , ='' , I , '>
1<,

.Qperation Comparison . ,

Table shows valid relational'operators; the result is always true or.false.

RNTEGER SCALAR VECTOR MATRIX' BIT STRING' CHARACTER

0 pSTRING

POERAN
1

INTEGER Q Q ERROR ERROR Q ERROR
* I+-S B T
,.

SCALAR Q Q ERROR ERROR Q ERROR

I+S B+I S

VECTOR. . ERROR ERROR P, ERROR ERROR ERROR

MATRIX ERROR ERROR ERO P ERROR.ERO

BIT STRING Q 0Q ERROR.- ERROR 'IQ51 ERROR'I

CHARACTER ERROR ERROR ERROR ERROR ERROR (2)
QSTRING

structure-operand2 Notes: (1) OPERAND padded on the

.lftomkleghSpeic&l1: structure-operadiPstutr-prn 2 left to make lengths

equal if necessary.

(2) OPERAND padded on the
'Table C-6 right to make lengths

,equal if necessary.

_ _ _ _ _ _

OPERZ~ 0 OPRAND2:
-0E2 '0 .2..Q:fj11 AND, OR-

Operation Strng

ND2 CHARACTER
OPERAND2

INTEGER SCALAR VECTOR MATRIX
 BIT STRING STRING

OPERANDI1 .,

_INTEGER _ _ _ _ERRO C p

SCALAR

VECTOR <

SMATRIX Z

CHARACTER

ERRO -, CHARACTER

ERRO.

ERRO ' . .'I

_'__ ',. .
BIT STRING . . ERROF . ' BITRSORINGR

STRING CHARACTER CHARACTER- ERROR ERROR CHARACTER
CHARACTER CHARPACTER

I->C means conversionfrom integer to character

* S-C means conversion from scalar to character

Table C -7

Appendix D

HAL Single-Line Format

Most HAL statements can b# written in a single line', similar

to FORTRAN or PL/l. The single line format requires the hse of

the following operators:

** for exponentiation

$ for subscripting

Examples

Multi-Line SinglerLine

1. X = A2 + B2 X = A**2 + B**2;

2. X = A + BI; X = A$I +.B$I;

If the exponent or subscript is an expression (or a multiple

subscript) rather than a simple name or literal, the.expression,

in single-line format, must be enclosed in parentheses:

3 2P X = A$(J,K)**(2P)
32 K X =j,

B 24. X = X = B$(A$(J,K+3))**2
AJK+

3

When subscripting an exponent or exponentiating a subscript,

it becomes necessary to introduce the single-line format into the

multi-line statement as well.

D.1 Implicit Data Declarations

Since data type annotation (-), (f), (.), (,) cannot be

supplied by the programmer over a variable name, using a single­

line, implicit data declarations are not possible in this format.

D-1

Appendix E

Character Collating Sequence

(To be supplied at a later date)

E-1

Appendiz F

Formulating ("shaping") Functions

(unsubscripted with single entry

lists. Also see Sec. 9.2)

The tables below indicate the resulting array shape and

'typedimensions for the 	functions

SCALAR

INTEGER

BIT

CHARACTER

VECTOR

MATRIX

where the functions themselves are unsubscripted and the arguments

consist of a single entry (e.g. a scalar, a vector, etc. or an

array of any data type).

Table F.1 SCALAR, INTEGER, BIT, CHARACTER.

Argument v[]
V£ [Vla,b:k Mm,n

*

[Mla:m,n

Resulting
Array [X]) [Xa,b,t [Xlm,n [Xla,m,n
Shape

F-1

Subscripts above indicate shape and dimension (i.e., array­

shape:dimension)2 H vector length; m,n E matrix rows, columns;

a,b H array shape (in general, the argument array shape may be

a,b,c,...etc.). X represents bit string, integer, scalar, or

character string.

Table F.2 VECTOR, MATRIX

Argument-4-
 -

VResulting -k ,

X (I)
Array Shape EXIa,b or [V m,n [Mia,b:m,n

& Dimensions X] Va,b:Z m a

(2)
VECTOR Vdefault Va:b z [Via,b:ZP" [Vlm:n [Vla,b,m:n

M(2) . ***(3) - * * *
MATRIX default Ma,b Mdefault [1]a:b,. m,n [Ma,b-:m,n

Subsc-ipts are defined in Table F.1

Notes:

-()
 X refers to bit string, integer, scalar or character

operands. Appropriate conversion to scalar is

accomplished.

C21 All components are set equal to X.

(3) The length £ must equal the product of the product

of the matrix default dimensions. (In general, the

argument array shape may be a,b,c, ...etc.) - - ­

F-2

