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Errata Sheet
 

1. 	P. 1-5 First paragraph of Sec. 1.2 should be:
 

The HAL Guide is divided into three parts. Part I
 

presents an overall view of HAL and its essential elements;
 

Part II defines a useful mathematical subset designated
 

HALM; Part III completes the description of the full 

capabilities of the language in this implementation.
 

-The appendices .....
 

-2. p. 3-1 The last sentence should be: Scalars and tha elements
 

of vectors and matrices are floatig-point qualftities. 

3. p. 4-10 	 Example 4.2.1.1 a 

Y = VECTOR .....
 

4. p. 4-14 	 (x-p) 2 + (y-q) 2 = r 2 

5. 	 p. 5-3 Example e)
 

[A]J TO # instead of [Aj TO #]
 

6. p. 5-4 	 (E1 TO 3, 1 TO 31 

7. p. 5-5 	 (top of page) 

W Y - 6; 

.... and W = Y - 6 will be executed-. 
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8.. p. 5-12 	 A 0 = G[B 0 +
 

(also)
 

READ(CARDS) G, N,
 

9. 	p. 5-13 AZERO = G(BZERO +
 

WRITE -(LISTING) I, AZERO;
 

10. p. 6-8 polar form is me i Q
 

should be
 

- ... polar form is me i
 

11. p. 6-8 	 insert the following statement after the
 

PHASOR PROCEDURE statement:
 

DECLARE PI CONSTANT(3.14159265);
 

omit comment
 

PI IS A RESERVED HAL CONSTANT
 

12. 	p. 6-9 (near botton of page)
 

YINIT instead-of YIMT
 

13. p. 7-4 	 (top of page)
 

...see Sec. 11.1.1.
 

(botton of page)
 

...see Sec. 11.1.2.
 

14. 	 p. 7-5 (in PROGRAM A)
 

omit bar over Q
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15. p. 7-10 


16. p. 7-11 


17. p. 9-5 


18. p. 9-6 


19. p. 10-2 


20. p. 10-7 


21. p. 10-10 


22. p. 10-13 


23. p. 10-21 


reference should be to Sec. 11.2.1.2
 

(within LIST)
 

insert SKIP(3), prior to each COLUMN(
 

(at botton of page)
 

omit (;) after {A}3 5
 

(at bottom of page)
 

At least one blank must separate structure
 

level from identifier; i.e.,
 

2 B CHARACTER(10), etc.
 

(in Example 2)
 

The first 7 bits of B ....
 

(middle of page)
 

D&, &G& H....
 

(at top of page)
 

after the first END; insert
 

DO FOR I = 1 TO 12;
 

Bars (-) should be placed over [P], VRESULT,[Q].
 

also,
 

BLOCK should be replaced by VRESULT.
 

(at bottom of page)
 

ClI;
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24. p. B-6 (within table) 

V instead of [V]m 
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Foreword
 

This document is Volume II of the final report of a
 
programming language development contract for advanced
 
manned spacecraft. This effort was sponsored by the
 
National Aeronautics and Space Administration's Manned
 
Spacecraft Center, Houston, Texas under contract NAS 9-10542.
 
It was performed by Intermetrics, Inc., Cambridge, Mass.
 
under the technical direction of Mr. Daniel J. Lickly.

The Technical Monitor for the Manned Spacecraft Center-was­
initially Mr. John E. Williams and later was Mr. Jack R.
 
Garman, FS/5.
 

The publication of this report does not constitute appioval

by the NASA of the findings or the conclusions contained
 
thereih. It is published for the exchange and stimulation
 
of ideas.
 



PREFACE
 

- This document is meant to serve as an introductory guide 

to the HAL programming language. The guide does not attempt 

to cover all the features of the language and is directed at 

the initial implementation of HAL on the IBM 360/75 at the 

Manned-Spacecraft Center in Houston, Texas. 

Complete specifications for HAL are given in "The 

Programming Language, HAL, - A Specification", Document 

#MSC-01846. 
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Part I. 

AN INTRODUCTION TO HAL
 



i0 Brief Description of HAL
 

HAL is a programming language developed by IntermetrLcs,
 

Inc. for aerospace computer applications. It is intended to
 

satisfy the requirements for both on-board and support software.
 

The language contains features which provide for -real-time
 

control, vector-matrix and array data handling, and bit
 

and character string manipulations.
 

1.1 The Basic Characteristics of HAL
 

1.1.1 Source Input/Source Listing
 

A singular feature of HAL is that it accepts source
 

code in a multi-line format, corresponding to the natural
 

notation of ordinary algebra. An equation which involves
 

exponents and subscripts may be written, for example, as
 

(X A2 + YB2)3/2
=C I 


instead of (as in FORTRAN 6r PL/1)
 

C(I) = (X*A(J)**2+Y*B(K)**2)**(3./2) 

i-I
 



HAL'also permits an optional single-line format; its construction
 

is similar to the example above, with some minor changes; thus
 

C$I = (X A$J**2+Y B$K**2)**3/2 

HAL source .code may be input on cards or by data terminal.
 

-The input stream is free-form in that, for the mdst'part, card
 

or carriage-column locations have no meaning; statements are
 

separated.simply by semi-colons.
 

In an effort to increase program reliability and promote
 

HAL as a more direct communications medium between specifications
 

and.code,.the HAL program listing is annotated with special
 

marks. Vectors, matrices and arrays of data are instantly
 

recognized by bprs, stars and'brackets. Thus, a vector becomes
 

, a matrix M, and an array [A]. Further, bit strings appear
 

with a dot, i.e., B and character strings with a comma, C.
 

With these special marks as aids, the source listing is
 

more easily understood and serves as an important step
 

.toward self-documentation. In addition to data marks, logical
 

paragraphs, or blocks of code, are automatically indented so that
 

dependence of one.block on another may be seen clearly. 
-
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HAL is a higher-order language, designed to allow the
 

programmer-analyst-engineer to communicate with the computer
 

I 

Parts of the English language are combined with standard
 

notation to provide a tool that readily encourages programmin4
 

without demanding computer hardware expertise.
 

.1.1.2 Data Types and Computations
 

HAL provides facilities for manipulating a number of
 

different data types. Arithmetic data may be declared as
 

scalar, vector, matrix or integer (whole number). Individual
 

bits may be treated as Boolean quantities &r grouped together
 

in strings. The language handles text by manipulating character
 

strings via special instructions. Organizations of data_types
 

may also be constructed; one-, two-, or three-dimensional
 

arrays of any single type can be formulated, partitioned,
 

and used in expressions. An hierarchical organization called
 

a structure can be declared in which related data of different
 

types may be stored and retrieved as a unit or by individual
 

reference.
 

HAL requires that most data types be described explicitly;
 

i.e., by declarations which assign a name and specify-desired
 

attributes. However, for scalars, 3-dimensional vectors, 3x3
 

matrices, and Booleans (1 bit bit-strings), the programmer can
 

take advantage of HAL's implicit declarations and let the
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-compiler 
 assign these variables appropriately.
 

The arithmetic data types together with the appropiiate
 

operators and built-in functions constitute a useful mathematical
 
I 

subset. HAL can be used directly as a "vector-matrix" language 

in implementing large portions.of both on-board and support 

software. For example, a simplified equation-of motion might 

appear as 

B ACC; 

= -MU UNIT(R)/R.R; 

VDOT = A + ; 

!fDOT = 

where the matrix B transforms acceleration -from spacecraft to
 

reference coordinates.
 

By combining data types within expressions and utilizing
 

both implicit and explicit conversions from one type to another,
 

HAL may 	be applied to a wide variety of problems with a powerful
 

and versatile capability.
 

1.1.3 	 Real-Time Control
 

HAL is a real-time control language; that is, certain
 

defined blocks of code called programs and tasks can be
 

scheduled based on time or the occurrence of anticipated
 

events. A limited subset of HAL's real-time capabilities will
 

be included in the current implementation.
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i.1.4 Program Reliability
 

Program reliability is enhanced when a software system
 

can create effective isolation for various subsections of code as
 

well as maintain and control commonly used data. HAL is a block­

oriented language in that a block of code can be established with
 

locally defined variables that cannot be altered by sections of
 

program located outside the block. Independent programs can be
 

compiled and run together with communication among the programs
 

permitted through a centrally managed and highly visible data
 

pool. For a real-time environment, HAL couples these precautions
 

with a locking mechanism which can protect, by programmer directive,
 

a block from being entered, a task from being initiated, and even
 

an individual variable from being written into, until the lock
 

is removed. (Locking is not included in this implementation.)
 

These measures cannot in themselves ensure total software
 

reliability but HAL does offer the tools by which many anticipated
 

problems, especially those prevalent in real-time control, can
 

be isblated and solved.
 

1.2 Organization of The Guide
 

The HAL Guide is divided into four parts. Part I presents an
 

overall view of HAL and its essential elements; Part II defines a
 

useful mathematical subset designated HALM; Part III completes
 

the description of the full capabilities of the language in this
 

implementation; and PartIVdiscusses-source code preparation-and
 

the HAL listing, aspects of 360/75 job control, and compile- and
 

run-time diagnostics.
 

The appendices contain lists of keywords, built-in functions,
 

features specifically dependent on the IBM 360/75 computer, and
 

other information.
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2. . Language Elements 

2..1 	 Program Structure
 

A HAL program consists of statements terminated by semi­

colons W), groups of associated statements which are treated
 

as a single statement (DO-groups), and blocks of statements
 

orgainized as subroutines (procedures and functions). The
 

statements and/or blocks must be compiled as a program unit; or
 

as sets of independently compilable program units.- Communication
 

between programs is through a common data pool (COMPOOL) within
 

a symbolic library.
 

2.2 	-Data
 

2.2.1 Data Declarations 

* - In general all data types and organizations in HAL 

-(Ai:e., scalar, integer, vector, matrix, bit and character string, 

Sarray- and structure) must be specifically declared by DECLARE 

statements. However, HAL does provide a subset of data which 

may be declared implicitly, i.e., simply by appearance in the 

program. Implicit data presumes certain default characteristics;
 

e.g., vector and matrix dimensions.
 

2.2.2 Literals
 

A literal is a name which expresses its own value and
 

is a constant during program execution. Literals can be numeric
 

or string; e.g.,
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12.6
 

248 - numeric literal
 

6.62E-2 
 J 
OCT'7776' - bit string literal
 

'HAL PROGRAM' - character string literal
 

2.3 	 Statements
 

- In addition to the DECLARE statement, HAL §tatements provide
 

for assigning expression results to variables, organizing
 

statements in subroutines (procedures and functions), and con­

trolling program logic flow. Control is accomplished through
 

the IF-, GO TO -, and DO- statements. For a real-time control
 

environment, HAL provides the commands to schedule programs
 

and tasks through a real-time executive.
 

2.4 	 Input-Output
 

The HAL input-output statements READ, WRITE, and FILE
 

facilitate the reading and writing of data and comments by
 

identifying the external device (e.g., cards) and the quantities
 

to be assigned or "displayed". Data may be in standard or
 

non-standard formats. Statements are included to store and
 

retrieve file data and to control printer page layout.
 

2.5 	 Source Code Preparation
 

The HAL program may be written in multi-line or single line
 

format and loaded into the compiler on cards, data terminals
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or other compatible devices. The multi-line format defines 

exponent, main, and subscript lines (E, M, S) and associates 

them into a single input stream. Comments may be included 6n 

any line by enclosing the comment within the symbol pairs; 

/* and *1. Comments can also be introduced on comment lines 

(C-lines).
 

HAL is composed of five basic syntactical elements:
 

identifiers, keywords, literals, special characters, and
 

built-in functions. Complex syntactical units (i.e., statements)
 

are constructed from these basic elements using a common set of
 

input characters.
 

2.5.1 The Character Set
 

The characters which may be used in writing a HAL program
 

are: the numerals 0 through 9, the letters A through Z, a blank
 

character, and the following symbols.
 

= (equals sign) I (OR symbol; also h 
+ (plus sign) & (ampersand) 

- (minus sign) ; (semi-colon) 

/ (slash) : (colon) 

* (asterisk) (period) 

< (less than symbol) , (comma) 

> (greater than symbol) ' (apostrophe) 

- (not symbol; also A) ( (left parenthesis)­
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.(right parenthesis)
 

$ (dollar sign)
 

(break character)
 

# (nuimber sign)
 

@ (at sign)
 

[] (brackets)
 

{ (braces)
 

HAL will-also accept other characters, restrictinq their
 

use to within comments and character strings. Some examples
 

are:- Cexclamation point) 

-% (percent sign). 

?- (question mark) 

(double quotation marks) 

2.5.2 Identifiers
 

An identifier is a name which is assigned by the programmer
 

to a data element, statement label, etc. Identifiers must
 

satisfy the following rules:
 

a. 	The first character must be a letter.
 

b. 	It may contain 0 to 31 more characters, which may be
 

any combination of letters, digits, or break characters,
 

except that it must not end with a break character.
 

c. 	A qualified structure name- (see Section 8.6.2.1) will
 

contain imbedded periods and must not end in a period
 

or break character.
 

d. 	An identifier may not be a compiler keyword.
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Examples of valid identifiers:
 

,A
 

R05
 

INTEGRATIONROUTINE
 

SEXTANT TO NAVIGATION BASE MAT
 

STATE.COV_MATRIX
 

Examples of invalid identifiers:
 

1A begins with a digit 

SAMPLE ends in a break characte 

DECLARE reserved word 

POS VEC contains a blank 

STATEMENT_#200 contains a # character 

2.5.3 Keywords
 

Keywords are words recognized by the compiler to have
 

standard meanings within the language, and are usually unavailable
 

for any other use; for example, operators, commands, attributes,
 

and built-in function names. A list of HAL keywords is presented
 

in Appendix A.. Some exanples are:
 

DECLARE
 

INTEGER
 

AND
 

VECTOR
 

SQRT
 

.TRANSPOSE
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2.5.4 	Literals
 

See Section 2.2.2.
 

2.5.5 	 Special Characters
 

Special characters or combinations of characters are
 

used in HAL as operators, separators, or other delimiters.
 

These characters and some of their uses are described below.
 

2.5.5.1 Arithmetic Operators
 

Symbol 	 Definition
 

+ 	 addition &or prefix plusi 

- subtraction Cbr prefix minusl 

/ division (other uses also) 

(see note below) multiplication 

* 	 vector cross product (other uses also) 

vector dot product (other uses also) 

** exponentiation (single-line) 

± Note that HAL does not utilize a,character as a multiplication
 

operator,- Instead a space (or spaces) between two distinct
 

identifiers is interpreted as multiplication.
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2.5.5.2 Relational Operators
 

Symbol Definition 

equal to 

- 1= not equal to (or =) 

K less than 

>• greater than 

<= less than or equal to 

>= greater than or equal to 

A>)not greater than or 


not less than Cor ^<)
 

2.5.5.3 String and Logical Operators
 

Symbol Definition 

AND (or &) Boolean AND 

OR (or j) Boolean OR 

NOT (orn or A) Boolean NOT 

CAT (or II) Concatenation 

2.5.5.4 Other Operators
 

Symbol 	 Definition
 

-# 	 Indicates repetition within 
a list, or the last member 
of an array or string. 

Scaling operator, or
 
character to bit modifier
 

$Subscript operator (single
 
line format)
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2.5.5.5 Separators
 

The following characters have meaning as separators in HAL:
 

Symbol 	 Definition
 

comma ,(a) 	 separates elements of a list;
 

(b) separates indices in index
 
expressions;
 

(c) separates clauses in declare
 
statements.
 

semicolon 	 (a) terminates statements;
 

(b) separates 	structure indices from
 
array element indices.
 

colon (a) associates a statement label
 
with the succeeding statement;
 

(b) separates array element
 
indices from sub element indices.
 

apostrophe 	 delimits string literal values
 
-(character 
 or bit).
 

equals 	 indicates replace in assignment
 
and DO FOR statements.
 

Deriod 	 separates component names of
 
qualified structures.
 

/* 	 encloses comments
*/
 

() 	 Parentheses have many uses in
 
the language. They are used
 
in expressions, for enclosing
 
lists, function arguments, data
 
dimension and initialization
 
values, etc.
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2.5.5.6 Built-in Function Names
 

Built-in function names are identified by the compiler
 

as part of the language and are therefore keywords. A complete 

list of these functions appears in Appendix B. Some 

examples are: 

ABS 

TRUNCATE 

Cos 

TAN 

INVERSE 

UNIT 

2.5.5.7 Compiler-Generated Annotation
 

The following characters are used by the compiler to
 

annotate the output of various data types in the language.
 

Identical usage is also acceptable in the input stream.
 

Symbol Definition
 

a name denotes a matrix 

Over a name denotes a vector 

Over a name denotes a bit string 

Over a name denotes a character string 

Denotes an array organization 

f } Denotes a structure organization 

-Over 
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Part II 

HAL 

---- A MATHEMATICAL SUBSET OF HAL 



3. Introduction to HALM
 

HALM defines a useful mathematical subset of HAL. It
 
NI
 

is primarily directed at the programmer-analyst who wishes
 

to gain rapid facility with HAL and use it in the solution of
 

engineering problems as he would use FORTRAN or ALGOL. As
 

such HALM concentrates on:
 

1) scalar, vector and matrix arithmetic.
 

2) simplified data declarations, arrays, and input­

output commands.
 

and negl~cts:
 

1) bit- and character-string variables and manipulations
 

(except for I/O where necessary).
 

2) complicated data arrays and structures.
 

3) real-time control and data-locking.
 

HALM is not a formal language subset; "full-HAL" statements
 

can be freely mixed in HALM if so desired. However, the
 

compiler implementation is such that programs written completely
 

in HALM insure the greatest degree of machine independence
 

and transferability.
 

3.1 Data Types and Data Declarations
 

3.1.1 Types
 

Three data-types are included: scalar, vector, and
 

matrix. Scalars and the elements of vectors and matrices are
 

floating-point single precision quantities.
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3.1.2 Data Organizations
 

One-, two-, and three-dimensional arrays of scalars may
 

'be'dealared.
 

3.1.3 Literals
 

3.1.3.-1 Arithmetic
 

Arithmetic literals are written as a series of decimal
 

digits with an optional decimal point. The literal may contain'
 

powers of 10, 2 and/or 16, represented 5y E, B, and H respectively.
 

The following are some acceptable forms of arithmetic literals
 

(all are equivalent to the value, 6):
 

6, 6-0, +600E-2, 0.006E3, 12B-l, .12E+2B-I
 

3.1.3.2 	 Characters
 

Character literals are useful for messages, headings,
 

etc. The simplified form is to enclose text; i.e.,letters,
 

digits, symbols, and blanks within quote marks. Thus,.
 

'NAUTICAL MILES'
 

'ERROR 106'
 

'GO BACK, TRY AGAIN!'
 

are examples of character literals.
 

3.1.4 Declarations
 

HAL permits the implicit declaration of scalars, vectors, 

and matrices by their first appearance in the program listing. 

A "bar" (-); i.e., minus sign, on the E-line over an identifier 

denotes a vector; a "star" (*); i.e., asterisk, denotes a matrix; 

-and the absence of any marks above'an identifier means the quantity
 

is a scalar. Once marked, the programmer need not continue to
 

supply notation in the source code. The compiler will annotate
 

3-2
 



the output listing appropriately. The implicit declaration of
 

vectors and matrices always results in default dimensions.. The
 

standard defaults are 3-dimensional vectors, and 3x3 matrices.
 

The following statements would suffice to declare the
I 

scalars A, B, the vectors V, W, Y and the matrix M.
 

W M V;
 

V= A V + BW*
 

3.1.4.1 	DECLARE Statements
 

Threedata DECLARE statements are necessary within HAL
 

These statements allow specification of vector and matrix dimensions
 

(if defaults are not adequate) as well as the declaration of an
 

array of scalars. Some examples are:
 

a. 	 DECLARE V VECTOR (6); 

DECLARE VECTOR(8)>T,U,V,W;
 

The desired vector dimension must appear as an integer
 

literal within parenthesis. The second declaration
 

illustrates the factored DECLARE statement where.T, U, V, W
 

are declared in one statement.
 

b. 	DECLARE M MATRIX (4,4);
 

DECLARE MATRIX(3,6) M,N,P,Q;
 

The desired matrix dimensions must appear as integer
 

literals within parenthes~s; i.e,,(rows, columns). The
 

second declaration is a factored DECLARE statement.
 

c. 	DECLARE A ARRAY(3);
 

DECLARE ARRAY(2,3) A,B;
 

DECLARE C ARRAY (2,3,4);
 

The desired array shape must appear as integer literals
 

within parentheses, Arrays may be one-, two-, or three­

dimensional and consist of scalar elements.
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3.1.4.2 Arrays, Vectors, Matrices
 

-- One-dimensional arrays are not vectors. Two-dimensional 

arrays are not matrices. That is, arrays obey sequential 

element-by-2lement operations and not vector-matrix arithmetic. 

Thus, for example, 

DECLARE ARRAY(2,2) A,B,C;
 

[C] = [A] [B];
 

is executed in the following order:
 

C11 A11B
Cl =Al BII
 

C12 1
12 B12;
 

C21 
 A21 B21;
 

C22 
 A22 B22'
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4. Arithmetic Expressions, Assignments and Control
 

4.1 Arithmetic Expressions
 

HALM contains three types of arithmetic operands:
 

Scalar denoted S
 

Vector denoted
 

Matrix denoted M
 

An arithmetic expression is any meaningful arrangement
 

of operators and operands, where parentheses may be freely used
 

- as in ordinary mathematical notation to specify the grouping or
 

ordering of operations. An arithmetic expression is a string
 

of arithmetic operations which, when evaluated, results in a
 

a scalar, vector, or matrix.
 

4.1.1 The Order of Operations
 

In the evaluation of an expression, the order of operations
 

is determined by parentheses and operator precedence. Operations
 

within an expression are performed in the order of decreasing
 

priority. For example, in the expression A+B**3, exponentiation
 

is performed before addition. If an expression involves
 

operations of the same priority, the general rule is that the
 

6perations are performed left to right.
 

If an expression is enclosed in parentheses, it is treated
 

as a single operand. The parenthesized expression is evaluated
 

before its associated operation is performed. For example, in
 

the expression (A/B)C, A is divided by B and then the result is
 

multiplied by C. Thus, parentheses modify the normal rules.of
 

priority.
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The following chart illustrates all the possible arithmetic
 

operations in HALM., as well as each one's priority, operand types,
 

and value or result.
 

Summary of HAL 


Operation Priority1 


Exponentiation 6 


Matrix transpose 6 

(short form)
 

Matrix inverse 6 

(short form)
 

Scalar-scalar product 5 


Scalar-vector or 5 

vector-scalar product
 

Scalar-matrix or matrix- 5 

scalar product
 

Vector-matrix product 5 


Matrix-vector product 5 


Vector outer product 5 


Matrix-matrix product 5 


Vector cross product 4 


Vector inner (dot) 3 

product
 

Scalar-scalar quotient 2 


Vector-scalar quotient 2 


Arithmetic Operations 

Form2 Results 

SS scalar 

matrix 

*-I matrix 

S S scalar 

S V or V S vector 

S M or M S matrix 

*V M vector 

M V vector' 

V V matrix 

M M matrix 

V * V vector 

V V scalar 

S / S scalar 

- V / S vector 

l Higher priorities have larger numerical values.
 

2. S,IV, M are general scalar, vector, matrix operands - the 
symbols represent operand type rather than value. 
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Operation.(cont'd) Priorit Form Results
 

Matrix-scalar quotient 2 M./ S matrix
 

Scalar sum or difference 1 S + S scalar
 

Vector sum or difference 1 V + V vector
 

Matrix sum or difference 1 M + M matrix
 

4.1.1.1 Some Exceptions
 

1. 	Exponentiation is right-to-left. Thus,
 

BC
 
a) A**B**C F A E 	A**(B**C) 

b) 	 SIN(X) 2 (SIN(X)) 2 and not SIN(X2) 

2.-	 Division is right-to-left. However, vector and
 

matrix expressions may never appear as denominators
 

in a quotient.
 

a) A/B/C E A/LB/C) A C/B 

b) A/B X/C Y/D H A/(B X/(C Y/D)) E A C Y/B X-D 

c) V/A/B = V/(A/B) B V/A 

d) -/A/R is illegal 

e) (V/A) R is OK
 

f) V/R.V is OK
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(See HAL 	specification document for more detail on exceptions.)
 

4.1.1.2 	Product Operands
 

Note that in the product forms
 

Ss SV SM VM VV 

MM VS MS MV 

the multiply operator is implied from the "logical adjacency"
 

of the operands. In HAL all such operands must be easily
 

distinguishable.
 

4.1.1.3 	Sum and Difference
 

-The operands must agree in the number of scalar 

components as well as in type (S, V or M). In the form V+ V, 

the vector operands must be of the same length.- In the form 

M + M, the matrix operands must have the same row-column-.dimen­

sionality. 

4.1.1.4 	Vector Cross Product
 

The operation, V * V, is defined in HAL only for 

vector operands of length three (3). 
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4.1.1.5 Vector-Matrix Products
 

a) V.V Vector inner (dot) product is computed as
 

El x n [n x ] [x i],
 

a scalar.
 

Note: In arithmetic expressions, the character
 

".o will be taken as a part of a literal if 

the context allows this interpretation. Thus, 

for example, U .2 V is interpreted as U(0.2 V) 

and not as U . (2 V). 

b) V V Vector outer product is computed as
 

[n x ] [ix m] [n x m],
 

an n x m matrix.
 

c). V M Vector-matrix product is computed as
 

f1 x m].[m x n]+[l x n] 

an n-dimensional vector.
 

d) .M V Matrix-vector product is computed as
 

fm x'n] ]n x l]-[m x 1] 

an m-dimensional vector. 
** 

e) M M Matrix-matrix product is computed as
 

I [m x n] n x p] + [m x p],
 

an m x p matrix.
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4.1.2 Some 	Examples of Arithmetic Expressions.
 

MATHEMATICAL NOTATION 	 HAL EXPRESSION
 

1. 	 ab A B 

2. 	 a(-b), A(-B) or -A B 

3. 	 -(a + b) -(A + B)
 
x+ 2  AX + 2
 4. 	 a 


5. ax+ 2 X +2 C
 

.6. ab/cd A B/C D
 

7. 	 (- -)2.5 ((A+B)/C) 2.5
 
C
 

. a A/(l + B/(2.7 + C))
 

1+ (2.7 + c) 

9. (vTy)M - (v+y) 	 (V.Y)M (V+Y) 

0. -a(y 	vT) T (v x w) A(Y 

4.1.3 Characters and Arithmetic Expressions. Character
 

strings may be joined and/or combined with arithmetic expressions
 

to produce messages or data printout, using the concatenation
 

operator 	(CAT or I I) Thus, 

'NAUTICAL'II' 'JI'MILES' becomes NAUTICAL MILES 

and 

X + 511 'N.M.' becomes (value) N.M. 

where (value) is the numerical value of X + 5. 
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Note that, in effect, conbatenation converts numerical data
 

*to characters, These "character expressions" can then be
 

output using the WRITE I/O command.
 

4.1.4 Array Expressions. Within HALM only arrays of
 

scalars are considered. Array expressions yield array results
 

and may involve a combination of scalar and array operands.
 

Scalar-scalar product, quotient and sum or difference are defined
 

-as array operations where at least one operahd is an array. "The
 

indicated operation is performed on a sequential element-by­

.element basis.
 

4.1.4.1 Some Examples.
 

let [A] = [ =
 

then
 
1/5 


2/5
 

a) AIL/ rL3/5 4/5
 

4/8
 
= [A]/[B]
b) 


15 16
 
c) [B] -I10
 17 18
 

2 6 
[A] [B]
d) 


s4­37 
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4.2 Assignment Statements
 

A HAL statement is an order to perform some action, and a
 

HAL program is composed of a series of statements of various
 

kinds. The fundamental statement is the assignment statement, which
 

assigns a value to one or more variables. A simple assignment
 

statement takes the form
 

Label: Variable = Expression; 

where Label: is optional. A single assignment statement can set 

-several variables; e.g. 

ABLE: A,B,C = 5;
 

or
 

M, N, P = Q; 

Note that, in general, the dimensions of the left side variables
 

and the right side expressions must be the same. Exceptions are
 

made for "zeroing" and assignifig arrays.' Thus,
 

A = 0; 

= 

C 0;
 

[D] = 0; 

are all valid "zeroing" statements in HAL. In the case of an
 

array,-a scalar expression assigns the scalar value to every
 

element of the array; e.g.
 

[A] = 5;
 

or
 

[B] = 2 + Y;
 

If there is more than one left side variable then the array
 

dimensions of all must be identical.
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4.2.1 	 Conversion Functions
 

It may be convenient to form a vector, matrix, or array
 

of scalars, from its components. In HALM, three conversion
 

functions are provided: VECTOR(list), MATRIX(list), SCALAR
 

(list). These functions may be applied to mixed lists of
 

scalars, vectors, matrices and arrays. The functions may be
 

thought of as constructing a one-dimensional list of all the 

included elements. Vector, matrix, and array list-elements 

are equivalent to lists of their components. Matrices are 

unraveled by incrementing "right-most" index first.(i.e., 1,1,1; 

1,1,2; 	1,1.,3;o...i,2,1; 1,2,2; "etc.).
 

The 	resulting vector, matrix, or array is filled, respectively,
 

element-by-element from the list.
 

a) If the list consists of only one scalar, all the elements
 

will be assigned a value equal to this single list
 

element. The desired dimensions (or shape) are indicated
 

by subscripts. Thus, for example,
 

VECTOR 6 (0)
 

MATRIX2,3 (5)
 

SCALAR3,33(A)
 

The 	default dimensions will be applied to VECTOR and
 

MATRIX 	if subscripts are not supplied.
 

b) 	 If the list consists of one vector, one matrix or one
 

array the resulting forms can be quite complex. See
 

Sec. 9.2, Appendix F, and Sec. 6 of the HAL specification
 

document.
 

4-9
 



c) 	 If the list consists of several entries, VECTOR and SCALAR
 

lengths will be equal to the number of elements in the
 

list. MATRIX row and columns will be equal to the square
 

root of the number of list elements (presuming an integral
 

value) unless otherwise specified. The number of list
 

entries must be compatible, thus,
 

VECTOR(A2,B2,C ,D,6#E)
 

MATRIX (X,Y,Z)
 

SCALAR(A,X,M)
 

Note: 6#E, indicates six entries of the quantity E
 

(i.6., E,E,E,E,E,E).
 

4.2.1.1 Some Examples 

a) 2 = VECTOR(I,A,O)* VECTOR(l) 

b) DECLARE P ARRAY(15); 

LOOK: [P] = SCALAR 15 (5#A,5#B,5#C);
 

c) RE = MATRIX3 ,3 (X,Y,Z)RS;
 

4.3 Control Statements and Relational Expressions
 

4.3.1 	The GO TO Statement
 

The G0.TO statement in HAL is a simple unconditional transfer
 

to a labelled statement. The general form is:
 

GO TO L;
 

where L is the label of a statement elsewhere in the program. It 

specifies that the statement to be executed next is the one identi­

fied by the label and that control is to be transferred to that 

point in the program. 

4-10 



4.3.2 The IF Statement. The IF statement provides the capability
 

to-change the sequence of statement execution on the basis of
 

what happens during execution of the program. The general forms
 

are:
 

IF Lc THEN S
 

or
 

IF L THEN B ELSE S
 

where Lc denotes a logical condition or set of logical conditions,
 

S may be any executable -statement except END. B may be any
 

executable statement except IF or END. For example:-


IF X<5 THEN GO TO AGAIN;.
 

or IF X<5 THEN ABLE: GO TO AGAIN;
 

ELSE IF Xcl THEN GO TO TRY;
 

The IF statement format requires that an ELSE be preceded by
 

an IF and not by another ELSE. As a result,the execution of
 

a statement following ELSE occurs only if the logical condition
 

associated with the nearest preceding IF is false.
 

4.3.3 Logical Conditions. A logical condition may be expressed
 

as 	an arithmetic comparison expression, for example
 

-IF M = N THEN
 
or
 

IF-X<2.064 108 Y THEN .
 

or 

IF A+B = V.W THEN . 
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4.3.3.1 Comparison Expressions. Within HALM, scalar­

quantities may be compared using the following relational operators.
 

Symbol Operation
 

equal 

= - not equal 

< less than 

> "greater than 

<= less than or equal
 

>= greater than or equal
 

-I< not less than
 

> not greater than
 

Vectors, matrices and arrays are restricted to
 

Symbol Operation
 

equal
 

not equal
 

For the operator =, the comparison is true if and only if all 

the corresponding elements are equal. For the operator 1=, the 

comparison is true if and only if any of the corresponding 

elements are not equal. 
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4.3.3.2 Sets of Logical Conditions. Logical conditions can be
 

combined, using the logical operators NOT (7,), AND (&) and
 

OR (I), into complex sets of logical conditions; the final
 

result of any condition or set of conditions must be a single
 

true or 	false answer. Thus, for example,
 

IF X>5 AND Y<A AND M=N THEN
 

IF NOT CX<=C OR X>=C + DELTAJ THEN . .
 

4.3.3.3 	The Order of Operations. In order to avoid ambiguity,
 

the following rules are established when evaluating logical sets
 

of relational expressions.
 

a. 	NOT (i,") must be followed by a relational expression (or set
 

of expressions) within parentheses.
 

b. 	Relational expressions are evaluated before AND and OR.
 

C. AND is applied before OR.
 

Thus:
 

1. 	A>5 AND B>6 means (A>5) AND (B>6)
 

2. 	NOT (A>5 AND B>6 OR C<7)
 

means NOT ((A>5 AND B>6) OR C<7)
 

4.4 	Examples - I 

In this section two examples illustrate the use of the
 

HALM as presented thus far.
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4.4.1 	INTERSECTIONS
 

-;Find the intersections defined by the line,
 

ax + by + c= 0
 

and the circle,
 

(x p)? + (y q) 2
 

where ab, c, p, q, r are parameters. (This problem is adapted
 

from An Introduction to ALGOL 60, C. Anderson, Addison-Wesley,
 

1964)
 

HALM 	Program
 

INTERSECTIONS: PROGRAM;.
 

READ(CARDS) A,B,C,P,Q,R;
 

C COMPUTE DISTANCE FROM LINE TO CENTER OF CIRCLE
 

C, CAN BE DERIVED BY TRANSLATING ORIGIN TO (P, Q)
 

2 	 2
F A + B;
 

D (A P + B Q + C)/SQRT(F);
 

IF D2 >R2 THEN GO TO NOWSOLVE; ftNO SOLUTION*/
 

Z (A2 Q - A B P - B C)/F;
 

U (B2 P - A B Q - A C)/F;
 

C- WHERE (U, Z) IS THE POINT OF INTERSECTION BETWEEN
 

C THE GIVEN LINE AND AN ORTHOGONAL LINE THROUGH (P, Qj 

DELTAX = -B SQRT (R2 - D2 )/SQRT(F); 

DELTAY = (A/B) DELTAX; 

Xl = U - DELTAX; /*INTERSECTION #i*/ 

Yl = 	Z - DELTAY; 
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C 

X2 = U + DELTAX; /*INTERSECTION #2*/ 

Y2 =-Z + DELTAY; 

WRITE (LISTING) 'Xl = 'liX1, 'Y1 = '1Yl,'X2 = '11X2, 

IY2 = 'IIY2; 

GO TO FINISH;
 

NO-SOLVE: WRITE(LISTING) 'NO SOLUTION';
 

-FINISH: CLOSE INTERSECTIONS;
 

4.4.2- TRANSFORM
 

Given the three-dimensional vectors w, X, y, z, form
 

an orthonormal coordinate set from w, x, y and express z on
 

this set.
 

HALM Program 

TRANSFORM: PROGRAM; 

READ (CARDS) W, X, 7, Z; 

.C. USE GRAM-SCHMIDT TO FIND ORTHONORMAL SET 

-A1 = UNIT(W);
 

X2 = UNIT(X - (X)AI);
 

X3 = UNIT(Y - (Y.Al)A1 - (Y.A2)A2)
 

M = MATRIX(Al, A2, A3); /*TRANSFORMATION MATRIX*/
 

ZNEW =M Z;
 

FIRST ZOLD, THEN ZNEW
 

WRITE(LISTING)Z, ZNEW; 

CLOSE TRANSFORM; 
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5. Subscripted Variables and DO Statements
 

5.1 	Subscripts
 

The elements of vectors, matrices and arrays within
 

HALM may be referenced by appropriate subscripting.
 

The first component of a vector or a one-dimensional
 

array, is given the subscript 1, the second 2, etc. up to the
 

total number of elements. Thus for a 9 element-vector, i.e.,
 

DECLARE V VECTOR(9);
 

the components may be written as,
 

V1 V2 V3 - V9 .
 

A mbtrix or two-dimensional array may be thought of as
 

being composed-of horizontal rows and vertical columns. The
 

first of the two subscripts refers to the row number, running
 

from 1 up to the number of rows, and the second to the column
 

number, running from 1 up to the number of columns. For
 

instance, a matrix of two rows and three columns would
 

require the declaration
 

DECLARE B MATRIX(2,3);
 

and the elements could be referred to by writing:
 

BII B1,2 B1,3 B2,1 B2,2 B2,3
 

A three-dimensional array may be thought of as being
 

composed of planes, each plane containing rows and columns.
 

This interpretation depends somewhat on the purposes of the
 

computation. The reference to an element would simply be,
 

for example, C3 ,2 ,1.
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" 5.1.1 Subscript Expressions
 

A subscript expression can be any -arithmetic expression
 

resulting in a scalart value. Before being used as a
 

subscript the value is algebraically rounded to the nearest
 

integer. Some examples are:
 

a) B
 a 3X+Y,-3Y+x
 

*b) CB
 

c) D(A+B)j**2
 

5.1.-2 Subscript Range Expressions: Partitions
 

HAL provides two subscript range expressions which
 

permit the partitioning of vectors, matrices and arrays;the
 

forms are:
 
. AP TO Q
 

AR AT S
 

where P, Q, R, S may be literals, variables or expressions.
 

5.1.2.1 The "TO" operator
 

The TO-operator is used to reference, or partition
 

a set of elements by specifying the subscript (or index)
 

-limits. For example:
 

t For subscript variables which take on only integral values,
 

some run-time efficiency may be gained by declaring these variables
 

to be integers. The HAkL integer data declaration is
 

presented in Part III of this Guide.
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a) V1 TO 4 partitions a larger vector, V, and selects the
 

first four components to form a vector.
 

b) M1 TO P, 1 TO Q partitions a larger matrix and selects 

the first P rows and the first Q columns. 
* 

C) A* 3 TO 5 partitions a larger matrix and selects all
 

rows, columns 3,4,5. The asterisk used in this-context
 

means "all of the particular index".
 
d) TO (P+2),I,J partitions a three-dimensional array
 

of scalars. The result is a one-dimensional array of
 

three elements.
 

-e) [AJ TO #] partitions a one-dimensional array from the
 

J "to the end". The number sign, used in this context
 

means "to the end of the subscript range".
 

5.1.2.2 The "AT" Operator
 

JThe AT-operator is used to reference, or partition9
 

a set of elements by specifying the index size (or length> and
 

the-beginnihg value. For example:
 

a)' M4 AT 5, 4 AT 7 partitions a larger matrix and
 

selects a 4x4 sub-matrix; i.e., rows 5, 6, 7,-8, and
 

columns 7, 8, 9, 10.
 

b) 	V3 AT 2 partitions a vector and selects three components
 

starting with the second component.
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5.1.2.3 An Application of Partitioning
 

Let E be a 9x9 covariance matrix involving errors in
 

the estimation of aircraft position, velocity and ground beacon
 

position. Find the current rms error in aircraft position.
 

The matrix E is declared by the statement 

.DECLARE E MATRIX(9,9); 

and the rms error is directly 

RMSPOS = SQRT(TRACE(E 1 TO 31 1 TO 3)); 

Of course, this presumes that the covariance terms in position 

occupy the upper left corner of the matrix. 

5.2 	DO Statements
 

The Do statements are used to define gtoups of HAL-statements
 

-which are to be treated as a single unit. There are four
 

statements:
 

a) DO.; .END
 

b) DO WHILE
 

c) DOFOR
 

d) DO CASE
 

5.2.1 	 D0.. .END
 

The DO... END statement simply serves to block out or group
 

a set of statements. Its most frequent application is as an
 

alternative within an IF statement. -For example:
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IF A>5 THEN DO;
 

ABLE: X = Y + '6;
 

BAKER: Z,= X Y;
 

IF Z>10 THEN Z 10;
 

END;
 

X = Y - 6; 

All of the statements enclosed within the DO.. .END group will
 

be executed if A>5. If A55 then control will pass over the entire 

DO...END group and X = y - 6 will be executed. 

5.2.2 DO WHILE
 

The DO WHILE statement provides a means of executing a
 

DO... END group as long as a logical condition (or set of conditions)
 

is satisfied. The general form is
 

DO WHILE L;
 

statements
 

END;
 
where L denotes the logical condition(s) as defined in Section
 

4.3.3. As an example, consider the computation of a square root
 

(based on an example in "A Guide to ALGOL Programming", McCracken,
 

John Wiley, 1962). Using the Newton-Raphson iterative technique,
 

to find the square root S, of a number A, the formula
 
A
 

S - 1/2(:, + s')
 

may be applied repeatedly. S' is the previous value of S. In
 

this illustration the initial guess will be 1 and the number of
 

iterations will not be a factor. Thus,
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SLAST = 1; 
-6
 

DO WHILE ABS(S-SLAST)> 10 S; /*CONVERGENCE*/
 

S = (A/SLAST + SLAST)/2; /*CRITERION*/
 

SLAST = S;
 

END;
 

Note that, in effect, the logical condition is within the DO WHILE
 

loop and is reevaluated each time before execution of the group
 

of statements. When ABS(S-SLAST) < 10- 6 S, control will pass to
 

the statement following END.
 

-5.2.3 DO FOR
 

The DO FOR statement provides a means of executing a DO.. .END
 

group repetitively for a list of values of a control variable as
 

well as for a logical condition. The list may contain a series
 

of values and/or ranges of Values. The general form is:
 

DO FOR VAR = A,B,...iC TO D BY E ...WHILE Lc;
 

where A, B, C, D, E may be scalart expressions and VAR is a
 

scalar variable. "BY E" and "WHILE Lc " are optional.
 

The control variable, VAR, is initially set equal to the first
 

element of the list, i.e., A, and then takes on successive values
 

from the list on each pass through the group of statements.
 

Between C and D, VAR is incremented by the value of E until VAR
 

exceeds D (or is less than D, if the increment is negative). VAR
 

is evaluated and compared to D prior to each pass. Note that if
 

VAR = D then the statements will be executed for that value. The
 

logical condition Lc, if present, uust be true before any pass is
 

initiated. It is processed after th6 cohtrol variable VAR is 

incremented and evaluated.
 

t or integer
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If BY E is not provided, the increment is taken to be +1.
 

Note that the expressions B,C,D, and E are not within the loop
 

structure of the DO FOR statement and are evaluated only once in
 

the DO FOR statement at the beginnin. If they are then modified
 

within the loop, this will not affect their values in the DO state­

ment. Two examples follow:
 

1. 	Evaluate y = x - log lxi for the following values of 

x: 	 -2, -1.2, 1 to 10 by 2's, 100.
 

Thus,
 

DO FOR X = -2, -1.2, 1 TO 10 BY 2, 100;
 

X3Y = - LOG(ABS (X)); 

WRITE(LISTING) X,Y;
 

END;
 

2. 	Evaluate ex for x = .01, -i, 1, 10 using 20 terms of the
 

infinite series.
 

e 1 + X + 	 X2 + X ... +
2! 3!
 

Two DO FOR loops will be used; one to specify the values
 

of x, and the other to sum the terms in the series:
 

DO FOR X = .01, -i, 1, 10;
 

SERIES = 1; /* INITIAL CONDITION */
 

TERM= 1;
 

EXP: DO FOR N = 1 TO 20;
 

TERM = TERM X/N;
 

SERIES = SERIES + TERM; 

END EXP;
 

WRITE(LISTING) X, SERIES;
 

END;
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5.2.4 DO CASE
 

The DO CASE statement provides a means of transferring
 

control to any one of a number of statements, depending on
 

the value of a scalar expression.
 

-Suppose it is necessary to transfer to one of five
 

statements based on the value of N: the general form would
 

DO CASE N;
 

CASE 1 €
 
SI1; 


$2; 	 CASE 2
 

$3; 	 CASE 3
 

$4; 	 CASE 4
 

CASE 5
 

END;
 

where Slto S5 may be any executable statements, including
 

other DO CASE statements.
 

If N is an expression, its value is rounded to the
 

nearest integer. A value of 1 specifies the first statement
 

(CASE 1), 2 the second, and so on. The compiler will
 

issue an error message if the rounded value of N is
 

negative, zero or greater than the number of statements
 

provided.
 

t or integer
 

tt 	 The compiler supplies these CASE indicators; they are not 
programmer-supplied comments. 
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The DO CASE statement can be used most effectively as
 

a multi-decision point, allowing combinati6ns of specific
 

computations and transfers of control. For example;
 

CHOICE: DO CASE N;
 

GO TO Al; CASE 1
 

GO TO A2; CASE 2
 

GO-TO Bl; CASE 3 

DO; CASE 4 

A'= 3; 

GO TO Cl; 

- END; 

DO CASE P; CASE 5 

-A = 4; CASE 1 

GO TO C2; CASE 2' 

END; 

IF A > 5 THEN GO TO Dl; CASE 6
 

ELSE GO TO D2;
 

GO TO Fl; CASE 7
 

END CHOICE;
 

5.3 Examples - II
 

Tzo examples are included in this section as further­

illustrations of HALM programming.
 

5-9
 

A­



-5.3.1 	MEANS
 

Given n numbers I, X2,....xn, compute
 

a) the arithmetic mean
 

am (x 1 + x2 +...+ xn)/n,
 

b) the 	geometric mean
 

gm = n' 1 x 2 ... xn
 

c) the harmonic mean
 

* 	 h+ 1/x2 1/x
 

* (This 	problem is adapted from An Introduction to Algol 60,
 

C. Ande'rson, Addison & Wesley, 1964.)
 

MEANS: 	PROGRAM;
 

DECLARE X ARRAY(100); /* ALLOW UP TO 100 NUMBERS */ 

-READ (CARDS) N, [X]1 TO N; 

P = PRODUCT([X)1 TO N) ; 

- ZERO-CHECK: IF P = 0 THEN WRITE (LISTING) 

'HARMONIC MEAN DOES NOT EXIST'; 

-ARITHMEAN: AM = SUM([x]1 TO N)/N;
 

WRITE (LISTING) 'THE ARITHMETIC MEAN HAS THE
 

VALUE'IIAM;
 

GEOMEAN: IF P<O AND CEILING(N/2) - N/2 = 0
 

THEN DO;
 

WRITE(LISTING) 'GEOMETRIC MEAN IS UNDEFINED
 

FOR NEGATIVE PRODUCT AND EVEN NUMBER OF TERMS';
 

GO TO HARMEAN;
 

END;
 

CEILING WILL ROUND UP TO NEAREST INTEGER
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= SIGNCP) CABSCPJ) 1I NGM 

WRITE (LISTING) 'THE GEOMETRIC MEAN HAS THE VALUE' 

ARMEAN: IF P 0 THEN GO. TO FIN;
 

HM = SUM(l/[X]1 TO N )
 

WRITE (LISTING) 'THE HARMONIC MEAN HAS THE VALUE'
 

FIN: CLOSE MEANS;
 

5;3.2 FREQ RESPONSE
 

Find the sinusoidal amplitude-frequency response, over a
 

significant frequence spectrum, for the transfer function
 

G(s) ,where T1 > T2 
.(ST1+1) (ST2+1) 

FREQRESPONSE: PROGRAM;
 

READ (CARDS) K, TAUl, TAU2;
 

WRITE (LISTING) 'R='IIK, 'TAUl='IITAUl, 'TAU2='IJTAU2;
 

WRITE (LISTING) 'RAD/SEC', 'AMPLITUDE'; /*HEADINGS*/
 

TISQ = TAUl2 ;
 

T2SQ = TAU2 2 ;
 

C FIND SPECTRUM LIMITS IN POWERS OF 10
 

C ASSUME ALL FREQUENCIES TO BE BETWEEN l0**-10 AND l0**l0
 

TO -10 BY -1 WHILE .1/TAUI < 101;
DO FOR-I 10 


END; /*THIS LOOP WILL FIND LOWER LIMIT OF SPECTRUM*/
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DO FOR J = 10 TO 10 WHILE 10/TAU2 > 10J.
 

END;' /*THIS LOOP WILL FIND UPPER LIMIT OF SPECTRUM*/
 

SPECTRUM: DO FOR K =.I TO J; /*STEP THROUGH SPECTRUM*/
 

W = 1o
 

TABLE: DO FOR OMEGA = W TO 9 W BY W; /*INCREMENT 
..- FREQUENCY*/ 

2

MA-GN= K/SQRT(TAUI2 OMEGA '+ 1)SQRT(TAU22 O A 2~+ 1);
 

WRITE (LISTING) OMEGA, MAGN;
 

END TABLE;
 

END SPECTRUM;
 

FINISH: CLOSE FREQRESPONSE;
 

5.3.3'FILTER
 

Find the step response for a digital filter represented
 

by the difference equation:
 

N M
 
+
A0 KEB + PK BK] QK AK
 

1 .-1
 

where A0, B0'are current values of A and B, and AK, BK are K
 

samples old.
 

FILTER: PROGRAM;
 

DECLARE VECTOR(20) A,B,P,Q;
 

FOR UP TO 20 PAST SAMPLES*/
 

/*AND 20 COEFFICIENTS*/
 

-/*ALLOW 


READ (CARDS) K, N, P1 TO N' M, Ql TO M;
 

/*P AND Q ARE COEFFICIENTS*/
 

READ (CARDS) S; /*NUMBER OF DESIRED SAMPLE PERIODS IN
 
RESPONSE*/
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HEADINGS: WRITE (LISTING) 'SAMPLE', 'OUTPUT RESPONSE'; 

BZERO = 1; /*SET UNIT, STEP*/ 

A1 TO M 0; /*ZERO MEMORY*/ 

I TO N
 

DO FOR I = 0 TO S;
 

AZERO = K(BZERO + T1 TO N 1t TO N + 1 TO m A1 TO M);*
 

/*USE DOT PRODUCT*/
 

WRITE (LISTING) S, AZERO;
 

A1 TO N = VECTOR (AZERO, A1 TO (N-1)); /*INDEX OUTPUTS*/
 

B1 TO M = VECTOR (BZERO, B1 TO (M-1)); /*INDEX INPUTS*/
 

END;
 

FINISH: CLOSE FILTER;
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6, 	 Subroutines: Functions and Procedures
 

It often happens that some basic computation is required
 

at a number of places in a-program. It is possible, of course,
 

to write out the necessary statements each time they are
 

needed, but doing so wastes storage space and is conducive
 

to errors. It is therefore desirable to be able to write
 

the statements once and refer to them-as required. Functions
 

and procedures provide this capability.
 

6.1 Functions
 

HAL offers a number of built-in functions (see Appendix
 

B) to compute such quantities as trigonomettic functions,
 

logarithms, vector absolute values, matrix determinants
 

and inverses, etc. In order to use these functions, it
 

is necessary only to write their names where they are needed,
 

entering the desired expression(s) for the argument(s).
 

For exampl,
 

X = A SINH(Y); 

assigns the product of A and the hyperbolic sine of Y to 

the scalar X. y may be a simple name or an expression. 

A more complicated example might be 

A = ABVAL(X*Y) TRACE(M+N) ABS(P LOG(S)); 

The HAL programmer need not be confined to the HAL 

built-in functions, but can develop and use programmer­

defined functions. Suppose it is desired to make the 

computation of one root of the quadratic equation ax2+bx+c = 0 
into 	a function. The function's arguments are the coefficients;
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its valie is the root. Thus by simply writing the function
 

name, as in
 

A 2 ROOTI(E,F,G);
 

control is transferred to the function, its value computed
 

and control is returned. The product of Y and the value
 

of the function ROOTI is then assigned to A. Note that
 

"the coefficient arguments may be names and/or expressions;
 

thus	 A 

A = y2 ROOTl( E , LOG(F), G/E);
 

would mean that the coefficient of x is the value E the
 

coefficient of x is the value LOG(F), and the constant
 

term is G/E.
 

The function name with its list of arguments may be
 

considered the calling statement, or "function reference".
 

The function itself must be defined elsewhere in the
 

program by a FUNCTION statement and accompanying function
 

body, or block of code. The FUNCTION statement names
 

the function, names the parameters used within the function
 

and specifies the data type of the function result; for
 

example
 

ROOT1: FUNCTION(A,B,C)SCALAR;
 

Using HALM only functions resulting in vectors
 

or matrices need specify the function data type. If no
 

-specification 
 is provided the function is presumed to be a
 

scalar; e.g. ROOT1: FUNCTION(A;B,C); Although a function
 

may accept an array as input data, HAL does not permit
 

the specification of an array data-type function.
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- -The body of the function consists of the operations 

necessary to compute its value. For the example being
 

considered, the complete function definition might appear as:
 

ROOT1: FUNCTION(A,B,C);
 

2_

RETURN (-B+SQRT(B -4 A C))/2 A;
 

CLOSE ROOT1;
 

The RETURN statement terminates the execution of a function.
 

The function body must have at least one" RETURN statement.
 

The "returned" expression must agree with the function data­

type; in this case a scalar. The above function might be
 

organized in other ways, too; for example,
 

ROOT1: FUNCTION(A,BC);
 

B2
T = 4 A C;
 

U = -B+SQRT(T);
 

V = u/2A; 

RETURN V;
 

CLOSE ROOTI;
 

In this example, T, U, V are introduced for programmer
 

convenience. These are local variables, i.e., local to the
 

defined function and unknown outside the functionLblock. Local
 

variables are discussed further under Scope of Names in
 

Sec. 7.1 The declaration of local variables follow the
 

same g~neral rules for variable declarations as described
 

in Sec. 3.1.4.
 

The variables A,B,C are called formal parameters; that
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-is, they do not exist in of themselves and are no more than dummy
 

:variables that indicate what to do with the actual parameters in
 

the function reference. The appearance of formal parameters in
 

the function statement serves as their declaration; e.g.:,
 

FUNCTION(A,V,M). An explicit declaration is necessary if other
 

than default characteristics are required; e.g.,
 

B: FUNCTION(A,V,M);
 

DECLARE V VECTOR(6);
 

DECLARE M MATRIX(6,6);
 

-It is important to emphasize that the data types and dimensions
 

provided in the function reference must match, correspondingly,
 

the data types and dimensions of the formal -parameters declared
 

in the FUNCTION statement and function body-.
 

The formal parameters in a FUNCTION statement cannot be
 

assigned values; i.e., they may not appear on the left hand side
 

of an assignment statement. The actual parameters are expressions
 

involving actual variables that have been declared elsewhere in
 

the program. In the ROOT1 example above, the formal parameter
 

A would be replaced in the function body by E2 , the formal para­

meter B by LOG(F) and the formal parameter C by G/E..
 

A function accepting a particular data type will usually
 

accept an array of that type also. For example:
 

[A] Y 2 ROOTC[E], [F], [GI);
 

Presuming linear arrays, this assignment statement would be
 

executed as follows:
 

A1 = Y2 ROOTl(EI,FI,GI) ;
 

A2 = Y2 ROOTl(E2 ,F2 ,G;2
) ;
 

etc.
 
r-A 



-6.1.1, 	Some Examples
 

1) Compute E 	 1

x 5 (e1.432/kx

x .e -i
 

as 	a function.
 

E: 	FUNCTION(X); 

B EXP(1.432/K X) -1; 

RETURN(l/X 5 B); 

CLOSE B;
 

2) Define a function to compute
 

a 
(1+ y/ra i) Z- if x < 0 

-a- lal=
y(a'x) 	= 0"if X =_0 

iji - x 2 ) _- if x > 0 
jaj 

where y, a are six-dimensional vectors.
 

Y: 	FUNCTION(A,X)VECTOR(6);
 

DECLARE A VECTOR(6);
 

IF X = 0 THEN RETURN 0;
 

2

B = SQRT(A.A + X2); /*B IS A LOCAL VARIABLE*/ 

IF X < 0 THEN RETURN (1 + B) UNIT(A); 

ELSE RETURN (1 - B) UNIT(A); 

CLOSE Y;
 

Note that the formal parameter A required explicit declaration
 

because the desired vector dimension was not the default.
 

6- 5
 



because the desired vect6r dimension was not the default.
 

6.2 Procedures
 

A procedure is like a function in thatonce invoked,
 

control is transferred to the procedure body, computations are
 

performed and results are made available to the caller. Where
 

a function is used simply by writing its name,'and a particular data type
 

is associated with the function result, a procedure must be
 

called with a CALL statement and may provide many results of
 

different types. The CALL statement has the form:
 

"CALLName (A,B,C)ASSIGN(T,U,V);
 

where Name is the name of the procedure. A, B, and C may be names
 

and/or expressions; T, U, V must be names only. A, B, and C
 

provide the "input" data to the procedure and the procedure
 

results ("output") are assigned to T, U, and V. 

As an example, suppose that instead of desiring one-root
 

of a quadratic, as illustrated in the previous section, two roots
 

are necessary. The CALL statement might be
 

CALL ROOT2(E ,LOG(F),G/E)ASSIGN(XlX2);
 

and the procedure definition would consist of a PROCEDURE statement
 

and a procedure body, thus
 

ROOT2: PROCEDURE(A,B,C)ASSIGN(P,Q);
 

2
T = SQRT(B - 4 A C);
 

- P = (-B + V)/2 A;
 

Q = (-B T)/2 A;
 

CLOSE ROOT2;
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-.
 As in the case of a function,A, B and C are formal parameters
 

(dummy variables) representing the "input" data. These variables
 

cannot be assigned values; they cannot appear on the lefthand
 

side of =. The assign parameters, i.e., P, Q above, are Ialso 

formal parameters in that they only stand for the actual hssign
 

parameters (Xl, X2) in the CALL statement, but they caP be assigned
 

as shown in the example. Since P and Q are in fact Xl and X2,
 

the assignment statements actually place new values into Xl, X2
 

at-these points in the procedure body. Interestinglyenough,
 

since P and Q may appear on either side of =, data can be input
 

-to a procedure via the assign parameters as well as the call
 

parameters.
 

The declaration of formal parameters and local variables
 

follow the same rules as for functions. Note that no-daEa type
 

is associated with a procedure name and therefore a procedure
 

name must be called rather than simply used. A procedure may be
 

.terminated and control returned to the caller by reaching a
 

RETURN or CLOSE statement.
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6.3 Examples -III
 

- , Two examples are included in this section as further illustra­

tions of HALM programming. 

6.3.1 	PHASOR 

Write a procedure to transform a complex number from 

rectangular to polar form with the CALL statement 

CALL PHASOR(A,B)ASSIGN(M,PHI); 

where the rectangular form is a + ib, and the polar form is me 

PHASOR: PROCEDURE (XREAL,XIMAG)ASSIGN(MAGN,PHASE); 

MAGN =-SQRT(XPEAL
2 + XIMAG2); 

IF MAGN = 0 THEN DO; 

WRITE(LISTING)'PHASOR UNDEFINED';-

MAGN = -1; /*-l IS USED TO INDICATE*/ 

PHASE = -1; /*UNDEFINED CASE*/ . 

RETURN; /*RETURN FROM PROCEDURE*/ 

END;
 

C KEEP ARCTAN COMPUTATION LESS THAN 45 DEG. 

IF ADS (XREAL) >= ABS(XIMAG) THEN 

DO; 

IF XREAL > 0 THEN PHASE = ARCTAN(XIMAG/XREAL); 

.ELSE PHASE = PI + ARCTAN(XI-MAG/XREAL); 

/*PI IS A RESERVED HAL CONSTANT*/ 

RETURN; 

END; 

IF XIMAG > 0 THEN /*AT THIS POINT ABS(XIMAG) > ABS(XREAL*/ 

PHASE = PI/2 - ARCTAN(XREAL/XIMAG); 

ELSE PHASE = 3 PI/2 - ARCTAN(XREAL/XIMAG); 

CLOSE PHASOR; 
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6.3.2 	 INTEGRATE
 

Integrate the differential equation
 

dp = 	 p2 t2
dt 	 p + p
 

from t to t2, where P(tl) =
 

Use the Runge Kutta technique, and an integration step of At.
 

INTEGRATE: PROGRAM;
 

READ(CARDS) Pl, TI, T2, DELT;
 

T = TI;
 

P = P1; /*INITIAL CONDITIONS*/
 

C INTEGRATION LIMITS 

LIMITS: DO FOR TLIM = Ti TO T2 BY DELT;. 

C RUNGE_KUTTA REQUIRES FOUR PASSES FOR EACH STEP' 

FOURPASSES: DO FOR I = 1 TO 4; 

2 2 
DIFFEQUAT: PDOT = T P + T P;
 

CALL RUNGEKUTTA (PDOT,P1,TLIM,DELT,I)ASSIGN(P,T);
 

END FOUR-PASSES;
 

P=P; /t INITIALIZE FOR NEXT TIME STEP*/
 

WRITE(LISTING) T,P; 

END LIMITS; 

- CLOSE INTEGRATE; 

C RUNGEKUTTA PROCEDURE 

RUNGEKUTTA: PROCEDURE (YDOT,YIMT,XINIT,DELX,J)ASSIGN(Y,X);
 

OUTER;
 

DECLARE K ARRAY(4);
 

f See Section 7.3 for discussion of the OUTER statement.
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C 

Kj = DELX YDOT;
 

PASSES: DO CASE J; /*EACH CASE IS A PASS*/
 

DO; CASE 1
 

X = XINIT + DELX/2; /*HALF-STEP*/
 

Y = YINIT +
 

END; I
 

Y = YINIT + Kj/ 2 ; CASE 2
 

/*HALF-STEP AGAIN*/
 

DO; CASE 3*
 

X = XINIT + DELX; /*WHOLELSTEP*/
 

Y = YINIT + Kj;
 

END;
 

FINAL RESULT 

Y = YINIT + SUM([K])/6; CASE 4 

-/*WHOLE=STEP AGAIN*/ 

END PASSES:
 

CLOSE RUNGE KUTTA;
 

Some comments on this example:
 

1) In the RUNGE KUTTA procedure, YDOT, YINIT, XINIT, DELX,
 

J, Y and X are formal parameters.
 

2) The array K is an actual local variable.
 

3) Note that data is "remembered" by the procedure from one
 

call to the next; values of X and the elements of the
 

array K are tetained. X is computed in Cases 1 and 3
 

and held for Cases 2 and 4 respectively. The elements
 

of K are assigned on successive calls and retained for
 

the summation ih Case 4.
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7. Program Organization: Scope of Names, Input-Output
 

- A HAL program, written using the features defined in HALM, 

may consist of statements (i.e., IF's, DO's, assignments, etc.), 

procedures, and functions within a PROGRAM-CLOSE block. The 

PROGRAM-CLOSE block constitutes the main program and is the 

smallest compilable unit in HAL; the procedures and functions 

are sub-programs and are not independently compilable. Any 

procedure or function may, in turn, contain statements and 

additional procedures and functions. 

Program, procedure, and function blocks define bouhdaries,
 

or regions, within which names and labels are recognized and
 

may be used for computation and control. Two blocks with 
 -

mutually exclusive name regions may use the same name for.
 

different purposes without interference; e.g., X may be a
 

vector in one procedure and a label in another. The-region
 

in which a name or label is potentially recognizable is called
 

the scope of that name.
 

7.1 Scope of Names
 

The scope of a name or label, in HAL (or HALM), is defined
 

from the outer-most block toward the inner. Thus, names declared
 

at the main program level in a PROGRAM-CLOSE block are potentially
 

recognizable within all nested procedures and functions.
 

The names are only potentially known because any particular
 

name can be declared again in an inner block and then its
 

scope would become all the nested blocks within this block.
 

In general, name and label scopes are based on the first
 

appearance of the identifiers. An example may help to illustrate
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-these principles:
 

A: 	PROGRAM;
 

DECLARE X VECTOR(6);
 

B: 	PROCEDURE;
 

DECLARE M MATRIX(3,4);
 

'CLOSE B;
 

C: 	FUNCTION;
 

.DECLARE X MATRIX(4,5);
 

D: 	PROCEDURE;
 

DECLARE VECTOR(6), A, M;
 

CLOSE D;
 

-CLOSE C;
 

CLOSE A;
 

Comments:
 

l. The scope of the programname (label), A, is.all of A
 

except D. Note that A is declared to be a vector in D.
 

2. The scope of the vector X is all of A except C and
 

D. 	X is declared to be a matrix in C and its scope encompasses
 

the 	nested procedure, D. 

3. 	The scope of the matrix M is B.
 

4. 	The scope of the vector M is D.
 

For these examples of duplicate names within a single
 

program, there are no amibiguities because of the different
 

name scopes. HAL does not admit duplicate names within the
 

same scope.
 

7-2
 



7.2 Scope of Labels
 

The scope of labels (statement labels, procedure and function
 

names) generally follows the same rulesasfor nameswith some
 

minor exceptions. The GO TO and PROCEDURE statements; i.e,
 

GO TO X or CALL X (----), imply the existence of X as a label. 

If the label X does not appear in the block in which the :statement
 

is written, the GO TO or CALL must refer to a label in an
 

outer block; if the label does appear in the same block, the
 

statement refers to this label.
 

For example:
 

#1 #2
 

A: PROGRAM; A: PROGRAM;
 

X: Y = Z + 3; X: Y =Z + 3; 

B: PROCEDURE:
B: PROCEDURE; 


GO TO X;
GO TO X; 


X: F =G + H; 
CLOSE B;
 

CLOSE B;
 
CLOSE A;
 

CLOSE A;
 

In #1, no label X appears in B,therefore control is trans­

ferred to the X appearing in A. In #2, control will be trans­

ferred to the X which appears in the same block as the GO TO X.
 

With reference to #1, if the label X would have appeared in A
 

after B, i.e., after its use in the GO TO statement, then X.
 

would have'to be declared explicitly-,prior to B,by a special-,
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DECLARE statement (see Section 12.1.l).
 

A function name presents special problems because its
 

appearance within a statement does not cue the fact that it is
 

a label. For example
 

Y = 3 + SPECIAL(A 2 + 5);
 

does not convey whether SPECIAL is a function name or simply
 

a data name. It is therefore necessary to locate the
 

function definition statements at the beginning of a block so
 

that the appearance of the function name causes no difficulties.
 

For example:
 

A: PROGRAM;
 

X: Y = Z + 3;
 

B: PROCEDURE;
 

Z: FUNCTION:
 

CLOSE Z;
 

P = Z + 3;
 

CLOSE B;
 

CLOSE A;
 

Note that even though Z is implicitly declared as a scalar at
 

the program level, the reference to Z in B can only be to the
 

function Z. (For an alternate technique, see Sec. 12.1.2.)
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7.3 The OUTER Statement
 

Even though name scope allows for the duplication of names,
 

it does not safely permit their implicit declaration (Sec. 3.1.4)
 

within blocks in a program. For example, if a name were
 

implicitly declared within a function and also declared at
 

the program level, perhaps being unaware of the ambiguity, the
 

program level scope would encompass the function, supercede
 

the name's "function definition", and cause an,error. In
 

order to prevent such an occurrence HAL provides the means to
 

isolate an inner block so that only intended names are recognized.
 

The OUTER statement effects this isolation. For example:
 

A: 	PROGRAM; Z: PROGRAM;
 

DECLARE VECTOR(4) ,X,Y,Z;
 

B: 	 PROCEDURE;P 	 Q + R; -

OUTER Q, X, Y;
 

B: 	PROCEDURE; C: FUNCTION; 

OUTER Q, X, Y; LZh= M + N; 

CLOSE C; 

CLOSE B; -CLOSE B; 

CLOSE A; CLOSE Z; 

The use of the OUTER statement here, means that of all the 

names (and labels) that might have been declared at the 

program level, only Q, Y and Y are recognized inside B. 

If OUTER is written without a list of identifiers, no
 

"outer" names or labels will be recognized. It follows then
 

that .if it is desired to declare names implicitly an OUTER
 

statement must be provided-within the block, or the block must
 

be within another block which contains an OUTER statement.
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(See prgrams A and Z above. In A: P,Q and R are implicitly declared.
 

.In Z: L, M and N are implicitly declared.)
 

7.4 Explicit Declarations
 

* 	 In a program with nested procedures and/or functions,
 

convenience may dictate the use of explicit declarations,
 

even for scalars and standard default vectors and matrices.
 

Instead of selecting outer names for each block with an OUTER
 

statement and list, it may be easier to "accept all" outer
 

names and declare explicitly the inner (or local) names.
 

Eor example:
 

ABLE: 	PROGRAM;
 

DECLARE VECTOR A, B, C," D, B,...,K;
 

DECLARE MATRIX AM, BM, CM,... ,KM; 

BAKER: 	PROCEDURE;
 

DECLARE A, B, L,JM, N;
 

DECLARE VECTOR X;
 

DECLARE MATRIX D, W;
 

CLOSE BAKER;
 

In this example, all of the names declared at the program
 

level (ABLE) and all of the names declared within BAKER are
 

recognized in the procedure, BAKER. Note that within BAKER A and B
 

are declared scalars, and D is a matrix. HAL permits the complete
 

selection of inner- and outer-names by combining the use of DECLARE
 

statements and the OUTER statement..
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7.5 	 Communication BetweeniPrograms
 

The communication between independently compilab le
 

programs is provided by HAL through a common data pool
 

(COMPOOL). This facility is discussed in detail in Sec.12.1.3.
 

If the COMPOOL exists and is compiled with a set of programs
 

the scope of the names in the COMPOOL comprises all of the
 

programs. OUTER statements would then be required at the
 

program levels if implicit declarations were to be made.
 

7.6 	 Input-Output
 

HAL provides three basic I/O statements: FILE, ,READ
 

and WRITE. It is presumed that for the HALM prograimer,
 

a simplified usage will suffice. (A more complete discussion
 

appears in Sec. 12.2).
 

7.6.1 	 FILE Statement
 

By "assigning" a name to a file, its value(s)is
 

written into the file, thus;
 

FILE(Device,Record) = X;
 

Device is a three digit number specifying a tape or disc,
 

etc., and Record is a program generated identification number
 

(Record can be a scalar expression).
 

By "assigning" a file to a variable, the contents ,of the
 

file are read and assigned, thus
 

X = FILE(Device, Record);
 

For filing and retrieval, X may be any data type or organization.
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7.6.2 READ Statement
 

READ statement causes input data to be read from an
 

external device and assigned to a list of variables. The general
 

format is:
 

READ(device) A, B, C....
 

where A, B, C are variable names. If the variable is a vector,
 

matrix or array, the number of data fields to be read is the
 

same as the number of elements; the order is the same as when
 

a vector, matrix or array is "filled" from a list (see Sec. 4.2.1).
 

The following discussion assumes that the external device
 

is a card reader.
 

Each READ statement presumes data begins in column 1 of
 

a new card, and that each data field is separated by a comma and/or
 

blanks. Control over the reading of cards is explained more
 

fully in Sec. 12.2.1.1. If the READ statement requires more data
 

than can be provided on a single card, subsequent cards will
 

be read automatically as required. An example follows:
 

PROG: PROGRAm4;
 

READ(CARDS) L, M, N, V;
 

READ(CARDS) A, B, C, D,.E;
 

-The 


CLOSE PROG;
 

"device" is a three digit number specifying a particular device
 

(see Sec. 7.6). A prograimmer-defined name may be substituted
 
by using the REPLACE statement. For example, suppose the I.D.
 
number for the card reader were 696 then
 

REPLACE CARDS BY '696';
 

would permit the read control statement
 

READ(CARDS)A,B,C ......
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Cards:
 

col 1
 

CARD #1 64.06, -17.10, 45, -100.06, 67.17, 26.54
 

CARD #2 5, 7, 9, 12, 16
 

The input data may appear in a natural format. Any decimal
 

number with or without a decimal point will be recognized. The
 

letter E is used to express exponent powers of 10. Internal
 

blanks may not appear in.the number. The following are examples
 

of acceptable input data:
 

369.0
 

8
 

-8.36E+2 (equivalent to -8.36 x 102) 

+0.123E-06 (equivalent to 0.123 x 106) 

456.789 

7.6.3 	WRITE Statement
 

The WRITE statement transmits HAL internal data to an
 

external device. The general format is:
 

WRITE(device) A, B, C,....
 

where the list A, B, C may be of variable names and/or expressions.
 

If a member of the list is a vector, matrix or array the number of
 

data fields to be written is equal to the number of elements; the
 

order is the same as when a vector, matrix or array is "filled"
 

from a list (see Sec. 4.2.1).
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The following discussion assumes that the external device
 

is a line printer.
 

Each WRITE statement presumes that data output will start
 

in column 1 on a new line. The first executed WRITE statement
 

presumes,in addition,that data output will start at the top of
 

a new page of the listing. The programmer can control printing
 

by including COLUMN(N) and SKIP(M) instructions in the WRITE
 

*list. For example:
 

WRITE(PRINTER)COLUMN(4),A,SKIP(2),B....;
 

will cause the printer to advance to column 4 before starting to
 

print the value of A, and subsequently to skip 2 lines before
 

starting to print B. If no print control is used, 5 blanks
 

are inserted between each written field. If the WRITE statement
 

* delivers more data than can be written on one line, the printer
 

automatically advances to the beginning of the next line and
 

then continues. More about the control of printing is explained
 

in Sec. 12.2.1.2.
 

Numerical output data appears in the following fixed format:
 

sx.xxxxxxxEtxx
 

mantissa exponent
 

where
 

is a blank or a minus sign;
 

x is a single digit, 0 to 9;
 

t is a plus or a minus sign.
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An example follows:
 

WRITE (PRINTER) 	COLUMN (20) ,'TRAJECTORY RESULTS',
 

SRIP(3),COLUMN(l0),'RATE IN FT/SEC',
 

COLUMN(30),'TIME IN SEC',
 

COLUMN(50),'DISTANCE IN FT';
 

LIST: DO FOR 	1=1 TO 50;
 

WRITE(PRINTER)COLUMN(10) Ri,
 

COLUMN(30) Ti,
 

COLUMN(50) DI;
 

END LIST;
 

Printer:
 

col 10 20 30 	 50
 

TRAJECTORY RESULTS
 

RATE IN FT/SEC TIME IN SEC DISTANCE IN FT
 

-6.3745228E+03 5.OOOOOOOE-01 5.7994673E+04
 

-5.8812074E+03 1.o0000000E+00 3.3210054E+04
 

-5.2156354E+03 1.o5000000E+00 2.1478935E+04
 

4.2573067E+02 	 2.5000000E+01 1.0057928E+04
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Part III
 

GENERAL CAPABILITIES
 

Part III presents a description of some of the more 

general capabilities and complex aspects of HAL. A complete 

description and specification for HAL are given in the 

document "The Programming Language, HAL, - A Specification", 

Document # MSC-01846. 



8. HAL Data
 

HAL classifies data into six types: integer, scalar,
 

vector, matrix, chatacter and bit string. Through use of
 

DECLARE statements the programmer can specify, where applicable,
 

attributes concerning the size, shape, precision, initialization,
 

and storage class of any data. Figure 8.1 below, summarizes
 

the allowable attributes for each type. The attribute effect
 

appears within the chart. (See Sec. 8.4 and 8.5 for Initialization
 

and Storage Class
 

Kttriut 	 II Storage
TV Dimensions Precision Varying Initialization Class
 

Integer ­
//.
Scalar _decimal 

digits 

Vector length decimal - / / 

digits 

Matrix 	 rows, decimal / /
 
columns digits
 

Bit length - / 

Character length .x.length / / 

Fig. 8.1 HAL Data Types and Attributes
 

8.1 Data Types
 

8.1.1 Scalar, Vector, Matrix
 

These data types are floating point quantities and
 

correspond to normal mathematical definitions. A vector consists
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of n-scalar components, a matrix of m rows, n columns of scalar
 

components.
 

8.1.2 	 Integer
 

The integer data type is a full word signed number containing
 

only integral values; i.e., a whole number.
 

8.1.3 	Bit String
 

The bit string data type is simply a string of l's and/or
 

,O's of specified (fixed) length. A bit string of length
 

equal to one may be used as a bo6lean variable.
 

8.1.4 	 Character String
 

The character string data type is a string of any of the
 

HAL characters, and may be of fixed'or varying length. The
 

varying string is one whose length is dynamically controlled
 

by the compiler at execution time, 'and requires specification
 

of its 	maximum length.
 

8.2 Data Declarations
 

Each data type may be declared'by a DECLARE statement.
 

In addition, for convenience, several declarations may be
 

made within a single statement. The general form is as follows:
 

DECLARE Name type dimensions precision other-attributes;
 

That is, the word DECLARE and-then the name, followed by the type,
 

including any dimensions and precision, followed thereafter by
 

other attributes in any order. A few examples follow:,
 

1. 	DECLARE J INTEGER INITIAL(65); 

J is.an integer variable with an initial value 65. 

2. 	DECLARE X PRECISION(8)AUTOKtATIC INITIAL(6.061);
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X is a scalar variable with a precision of at least 8
 

decimal digits. The storage class is automatic and X has an
 

initial value = 6.061. Note.that when the type is not provided
 

-the HAL compiler presumes a scalar. The programmer can supply
 

the word SCALAR at his option.
 

3. DECLARE M MATRIX(3,3)STATIC
 

-NITIATi (l20,0,0,1,0,0,0,1); 

M is a 3x3 matrix variable with default precision
 

supplied by the compiler. The storage class is static and M
 

is initially set to an identity matrix.
 

Note that when the programmer does not supply an attribute,
 

in most cases the compiler willpresume a standard default.
 

For example the default dimensions are VECTOR(3),
 

MATRIX(3,3), BIT(l), CHARACTER(8). A list of all the
 

HAL standard defaults may be found in the HAL specification
 

document- (Reference 1).
 

4. DECLARE P BIT(12)INITIAL(OCT'4372');
 

P is a-bit string variable of length 12 with an
 

initial value of 100011111010. The default on storage class
 

is STATIC.
 

8.2.1 Multiple Declarations
 

Several declarations may be made in a single statement
 

by first separating individual declarations by commas, e.g.
 

- DECLARE J INTEGER INITIAL(65),
 

X PRECISION(8) ......
 

P BIT(12) ...........
 

,..etc .............
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8.2.2 	Factored Declarations
 

When a group of declarations have common factors, the
 

declarations may be made in a single DECLARE statement with the
 

common factors appearing first. For example,
 

.. 	 DECLARE PRECISION(8) X INITIAL(6.061),
 

M MATRIX(3,3), V VECTOR(6);
 

A-1l quantities have been declared to have a precision
 

of at least 8 decimal digits.
 

2. 	DECLARE BIT(1)INITIAL(BIN'l'),A,B,C,D,E,F;
 

A through F are 1 bit bit strings, all initially
 

set 	equal to 1.
 

8.2.3. 	Implicit Declarations
 

As previously indicated in Sec. 3.1.4, Ecalars, vectors,
 

and-matrices may be declared implicitly (i.e., not by a DECLARE
 

*'statement) by their first appearance in the program with an
 

* appropriate defining mark on the E-line over the variable name.
 

Bit and character strings may also be declared in a like manner,
 

with default characteristics, by marking the bit string with a
 

period (.) and the character string with a comma C,). The standard
 

default lengths for bit and character strings are one and eight,
 

respectively. Thus the following statements would be sufficient
 

-to declare the strings , B, C, and D.
 

A = BIN'l' OR B;
 

C 'ANSWER=' 1ID;
 

A-and B are bit strings of length equal to one.
 

C and D are character strings of length equal to eight.
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-8.3 	Precision
 

As indicated above.,HAL allows the user to specify the
 

precision of data in a DECLARE statement. The PRECISION
 

.attribute may only be applied to scalar, vector, and matrix and
 

specifies the desired minimum number of decimal digits; the
 

number must be a positive integer literal and appear within
 

parenthesis as, for example:
 

DECLARE X PRECISION(4);
 

DECLARE V VECTOR(6)PRECISION(8);
 

For the IBM 360 implementation at MSC the compiler will provide
 

either single or double precision floating point depending
 

on the magnitude of the PRECISION specification. (The standard
 

default is single precision.) For magnitudes greater than
 

*7.,double precision will be assigned.
 

8.4-	 Constants and Literals
 

HAL makes a distinction between quantities (names) which
 

are declared as constant and those which literally express
 

their own value (literals). Both remain constant during
 

program execution.
 

8.4.1 Literals
 

There are two types of literals; arithmetic and string.
 

An arithmetic literal appears as an ordinary decimal number and
 

may exhibit exponent powers of 2, 10, 16. See Sec. 3.1.3 for
 

examples of arithmetic and character string literals.
 

The bit string literal expresses its value as a series of binary,
 

octal, decimal or hexadecimal digits. String literals must be
 

enclosed in single quote marks. Some examples of bit string
 



literals 	are:
 

BIN '1010011
 

OCT '77346'
 

DEC '943'
 

HEX t96FABt
 

8.4.1.1 	 String Repetition
 

- A convenient way to repeat a string pattern is to
 

include a repetition factor indicating the number of "repeats".
 

For example, 

1) BIN(6)'1O' 

would produce 1010101bioio 

2) OCT(4)'7' 

- would produce 7777 

3). CHAR(26)'POP' 

would produce POPPOPPOP ....... POP. 

Note that when repeating a character string,CHAR( ) must
 

'precede the string. The programmer may use CHAR for an unrepeated
 

string at his option; i.e., 'ANSWER' and CHAR'ANSWER' are
 

equivalent.
 

A repetition factor may not be included when expressing
 

a string as DEC 'digits'.
 

8.4.1.2 	Using Literals
 

Literals may be used in HAL wherever a constant number
 

(or string) is required; for example, in the assignment statement
 

X 3.064 Y;
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8.4.1.3 The REPLACE Statement
 

The REPLACE statement provides a means of replacing
 

a name literally by the string of characters enclosed, within single
 

quote marks. For example, the statement
 

REPLACE THRUST BY '10601.74';
 

would replace the name THRUST by the characters within the
 

quote marks. The substitutibn is made whenever THRUST is
 

encountered in the program. Substitution is accomplished
 

ithin the compiler and does not appear in the listing. For
 

example:
 

a. A: PROGRAM;
 

REPLACE BZERO BY '(-6.27)';
 

DECLARE B INITIAL BZERO7
 

2. 	 A: PROGRAM;
 

REPLACE THRUST BY '10600';
 

ACCMAG= THRUST/MASS;
 

The REPLACE statement may also be used to substitute
 

short statements or expressions (or any character string);
 

i.e.
 

1. REPLACE FIREJETS BY 'GO TO F J;';
 

X = B + C; 

FIRE-JETS
 

etc.
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2. 	REPLACE FACTOR BY 'X**2 + Y'; 

P =M LOG(FACTOR); 

In writing a REPLACE statement the character string must 

be in one-line format (see Appendix D) and the identifier to 

be replaced may not be a HAL keyword or symbol. 

- If a replace statement contains a string literal, double quotes 

must be used to distinguisl then from the outer quotes; e.g., 

1) REPLACE A BY 'BIN' t1010"'; 

2) REPLACE B BY '"THE ANSWER IS"'. 

A 	would then be replaced by 2IN'1010' and B by 'THE ANSWER IS'.
 

The scope of a REPLACE statement is the same as that for
 

a name (Sec. 7.1) with the following exception: the name in a
 

REPLACE statement is never "replaced" as a result of another
 

REPLACE statement located in an outer block.
 

EXAMPLE:
 

ABLE: 	PROCEDURE;
 

REPLACE X BY 'Y';
 

DECLARE X INTEGER;
 

BAKER: PROCEDURE;
 

REPLACE X BY 'Z';
 

CLOSE BAKER;
 

CLOSE ABLE;
 

The identifier X appearing in BAKER is replaced by Z. X outs-ide
 

of BAKER is replaced by Y.
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6.4.Z Constants
 

The CONSTANT attribute when included in the DECLARE state­

.ment specifies that the named quantity is a constant during exe­

cution- The use of CONSTANT and INITIAL is mutually exclusive.
 

Some examples are:
 

1) DECLARE J INTEGER CONSTANT(65);
 

2) DECLARE X CONSTANT(6.061);
 

3) DECLARE M MATRIX(3,3)CONSTANT(1,0,0,0,1,0,0,0,1);
 

4) DECLARE P BIT(12)CONSTANT(OCT'4372');
 

The declarations are similar to those &t the beginning of Sec. 8.2
 

except J, X, M and P are constants.
 

8.4.2.1 Initialization Repetition
 

Initial and constant values of vectors'and matrices may 

be specified by lists of literals and it may be convenieht to repeat 

portions of the list. This is accomplished by use of the number (#) 

sign. As an illustration consider example (3) in Sec.:8.4.2 above. 

This could also be written: 

DECLARE MMATRIX(3,3)CONSTANT(l,3#0,1,3#0,1)
 
or
 

DECLARE M MATRIX(3,3)CONSTANT(2#(I,3#0),l);
 

The term 3#0 means 0 repeated 3 times.
 

For vectors and matrices, the number of literals in the
 

INITIAL or CONSTANT lists (including all repetitions) must either
 

be equal to the total number of vector or matrix components, or
 

be equal to one.
 

1) If equal to one, all the components are set -equal
 

to the literal (e.g., DECLARE M MATRIX INITIAL(Q)).
 

2) If equal to the total number of components, the com­

ponents are set equal to literals in the list
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on an element-by-element basis.
 

The vector and/or matrix is 'filled' in the same manner
 

-as described in Sec. 4.2.1.
 

The uses and forms of INITIAL and CONSTANT are complex and
 

it is suggested that the programmer consult the HAL specification
 

document (reference 1) if more information is needed. j
 

8.5 Storage Class
 

In HAL there are two ways in which data storage may be
 

assigned: STATIC and AUTOMATIC. These attributes may only be
 

applied to declarations made within procedures and functions.
 

STATIC storage is assigned when a program is activated
 

and remains assigned until the end of a program. This'is
 

the kind of storage to which the FORTRAN programmer is accustomed.
 

Consider the following example:
 

A: PROGRAM;
 

B: 	FUNCTION;
 

DECLARE X INITIAL(5)STATIC;
 

X=X+Y;
 

CLOSE B;
 

CLOSE A;
 

In this example, X being a STATIC variable is assigned a storage
 

location and initialized to five only when A is activated. Since
 

its storage assignment does not depend upon B, the value of X,
 

upon successive entries to B, will be the last computed; i.e',
 

the value of X is held static ("remembered").
 

AUTOMATIC storage is assigned on entry to the block
 

in which it is declared, and is released on exit from that
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block. Suppose that in the example above an additional scalar
 

Y is declared in B; thus
 

B':. FUNCTION; 

DECLARE INITIAL(5) X STATIC, Y AUTOMATIC; 

Y, being an AUTOMATIC variable is assigned storage onif when
 

control passes to the function*B. Therefore, the last value of Y
 

is not "remembered" and each invocation of B will cause Y
 

to be initialized at a value of 5. AUTOMATIC storage is
 

-nomally used for local data which must be reinitialized
 

.each time the block is enterdd."
 

8.6 Arrays and Structures
 

In HAL the programmer may associate the various data
 

types into two organizations; arrays and structures. The
 

array is an ordered collection of elements, known by one
 

name, all of which have the same data type and attributes.
 

The structure may be a collection of different data types, or­

ganized in a hierarchy.
 

8.6.1 Arrays
 

Any of the HAL data types may be organized into one-,
 

two- or three-dimensional arrays.. This is accomplished within
 

the DECLARE statement; for example,
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1) DECLARE J ARRAY(6)INTEGER INITIAL(65); 

is a one-dimensional array variable of 6 elements. 

Each element is an integer with an initial value = 65. 

- 2) -DECLARE M ARRAY(4,2)MATRIX(3,3); 

M is a two-dimensional array (4x2) of 3x3 matrices. 

in applying the INITIAL and CONSTANT attributes to arrays of
 

data types the list of literals may specify the array value by
 

the'whole array, by a single array-component (e.g., a matrix),
 

or by an element of a component (e.g., a scalar element of a
 

vector). The programmer should consult the HAL specification
 

document (reference 1) for the allowable forms; some examples
 

follow:
 

1) DECLARE V ARRAY(4) VECTOR(2) INITIAL(,2,3,4,-4,-3,-2,-i);
 

'The array V is initialized such that its first component
 

has the value [1,2] and the second [3,4], etc.
 

2) DECLARE V ARRAY(4) VECTOR(2) INITIAL(l,2);
 

All four vectors in the array are initialized to the
 

value [1,2].
 

3) DECLARE V ARRAY(4) VECTOR(2) INITIAL(1);
 

All of the vector elements in all of the vectors are
 

initialized to 1.
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8.6.2 	 Structures
 

Some programs are concerned with collections of data of
I 
aifferent types. For exampie, in a spacecraft application the
 

time, fuel, position and velocity vectors, navigation covariance
 

matrix, cockpit switch positions and status monitoring flags
 

might be collected periodically for storage or transmission
 

to the ground. A programmer might wish to move (iie., READ,
 

WRITE, FILE, etc) all or only part of the collection. To do
 

this he must be able to name and establish relationships among
 

the data and to the whole. This is accomplished by the
 

structure declaration, e.g.-


DECLARE 1 SPACECRAFT-DATA,
 

2 TIME INTEGER,
 

2 FUEL,
 

2 NAVIGATION,
 

3 POSITION VECTOR,
 

3 VELOCITY VECTOR,
 

3 NAVCOV MATRIX(6,6),
 

2 	COCKPIT,
 

3 POWER SWITCHES BIT(20),
 

3 LIFE-SWITCHES BIT(15),
 

2 STATUS BIT(10);
 

The number preceding each name indicates the level of the­

name. The name SPACECRAFTDATA has level 1, the highest level.
 

This name refers to the major structure and includes all the names
 

in the declaration. Thereafter, whenever a name at a higher level
 

is followed by a name(s) at a lower level (higher number), the
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name at the higher level is that of a minor structure and includes
 

,the other names within its structure. For example,
 

COCKPIT includes POWER-SWITCHES and LIFESWITCHES.
 

The data type declarations, i.e., not the major or minor
 

structure names, follow the general rules for declarations stated,
 

eariier in this section. Note that the collection of items
 

above could be represented pictorially as in Figure 8.6-i.
 

SPACECRAFT DATA
 

TIME 	 FUEL NAVIGATION COCKPXT STATUS 

POWER.SWITCHES LIFE SWITCHES
 

POSITION VELOCITY NAV COV
 

Figure 8.6-1 	 Hierarchy of Levels in
 
Example Data Structure
 

8.6.2.1 Name 	Qualification
 

When all the names associated with a structure are unique,
 

as in the example above, the data type names and the minor
 

structure names may be referred to individually without ambiguity;
 

i.e., FUEL, COCKPIT, POWER-SWITCHES, etc. Under these conditions
 

the major structure may be given the attribute NONQUALIFIED,.­

i.e., its names need no further qualification. Thus the
 

declaration above would begin:
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DECLARE 1 SPACECRAFT DATA NONQUALIFIED,
 

2 TIME INTEGER
 

etc.
 

However, the names within a structure need not be unique.
 

It is permissible to use some or all of the lower-level
 

names in several minor structures or in another major structure
 

declared-in the same part of the program. For example,
 

consider the following structure where position and velocity
 

are grouped into three intervals:
 

DECLARE 1 NAVDATA QUALIFIED,
 

2 FIRST,
 

3 TIME INTEGER,
 

3 POSITION VECTOR,
 

VELOCITY VECTOR,
 

2 SECOND,
 

3 TIME INTEGER,
 

3 POSITION VECTOR,
 

3 VELOCITY VECTOR,
 

2 THIRD,
 

3 TIME INTEGER,
 

3 POSITION VECTOR,
 

3 VELOCITY VECTOR;
 

In order to distinguish among the variables with the same
 

names, it is necessary to specify additional information.
 

This is done by qualifying the names with higher-level names
 

to make the identification unique. The rules for qualification
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are that a name used in a structure must be qualified by
 

prefixing it with the names of all the structures (major and
 

minor) in which it is contained. The names are separated
 

by a period and must be in order of level number, the most
 

inclusive level appearing first. The major structure declaration
 

must contain the attribute QUALIFIED. Thus in the example
 

above, the three variables TIME would be referred to as:
 

NAVDATA.FIRST.TIME
 

NAV DATA.SECOND.TIME
 

NAVDATA.THIRD.TIME
 

If the programmer does not provide a major structureattribute,
 

the compiler presumes a NONQUALIFIED structure.
 

8.6.2.2 Multiple Copies of Structures
 

Multiple copies of major and/or minor structures may
 

be declared by including a dimension in the DECLARE statement
 

after the structure name; e.g.,
 

DECLARE 	1 NAVDATA(1O)QUALIFIED,
 

2 FIRST(5),
 

2 SECOND(5),
 

2 THIRD(5),
 

In this case there are 10 copies of the major structure NAV DATA.
 

Each copy of NAV DATA contains 5 copies of the minor-structures
 

FIRST, SECOND, THIRD. To refer to a particular VELOCITY
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the qualifiedname must be subscripted as follows:
 

NAVDATA.FIRST.VELOCITY8 ,3 ;
 

that is, the VELOCITY in the 3d copy of FIRST which is in the
 

8th-copy of NAV DATA. Structure subscripting is presented in
 

Section 9.
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8.7 Formal Parameters and Functions
 

Functions, procedures and formal parameters were introduced
 

-and discussed in Section 6 in the context of HALM. In general,
 

FUNCTION and PROCEDURE statements may contain lists of formal
 

"parameters-of any data type, including arrays and structures.
 

The FUNCTION statement may define the function result tobe of
 

any--single data-type (arraysand structures are not permitted).
 
I 

8.7.1 Formal Parameter Declarations
 

8.7.l'i Specified Dimensions
 

Formal parameters with default attributes may be
 

declared -implicitly simply by their appearance in the list of
 

parameters with appropriate annotation. Thus,
 

ABLE: FUNCTION(A,B,C,D,E);
 

declares A a scalar, B a three component vector, C a 3x3
 

matrix, D a one bit bit string, and E a character string, eight
 

characters long. Since the data type of the function result
 

is not provided, a scalar result is presumed.
 

If other than default characteristics are desired, but
 

with spedified dimensions, the formal parameters must be
 

declared within the function body (programmer-supplied annota­

tion becomes optional). For example,
 

ABLE: FUNCTION(A,B,M, [E])VECTOR;
 

DECLARE A PRECISION(!0), B BIT(15);
 

DECLARE M MATRIX(6,3), D ARRAY(10,5,3);
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The DECLARE statements follow the forms presented in
 

previous sections. Note that the function has a vector result
 

of default dimensioh (i.e., 3) since the dimension has not
 

been provided.
 

Implicit and explicit formal parameter declarations follow
 

the same rules for functions and procedures.
 

8.'7.1.2 Variable Dimensions
 

For certain applications it may be convenient not to
 

specify the dimensions of parameters but instead, to have the
 

parameters- take on the dimensions of the corresponding
 

arguments in the CALL or function-reference statements.
 

This may be accomplished by substituting &n asterisk (*) for
 

.the dimension literal. For example, suppose a function is
 

written to accept any size matrix and returns some scalar
 

result; i.e.,
 

ANY- FUNCTION(Q);
 

DECLARE Q MATRIX(*,*);
 

The two asterisks mean that both the row and column dimensions
 

will be determined at run time. A more complicated example
 

might be
 

ABLE PROCPDURE([C) ASSIGN(G);
 

DECLARE C ARRAY(*,2)BIT(*);
 

This procedure expects to process an nx2 array of m-bit
 

bit strings,,where n and m will be determined at run time.
 

In general, the asterisk dimension may be applied to
 

array, matrix and vector dimensions, as well as to bit and
 

character string lengths.
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8.7.2 Function Results
 

The FUNCTION statement defines the function result
 

by indicating its data type and attributes. The type may
 

be any of the six HAL data types but the attributes are
 

limited to dimension and precision. The following are
 

examples of valid FUNCTION statements:
 

A: FUNCTION(X,Y) PRECISION10);
 

B: FUNCTION(X,Y) MATR-X(6,3) PRECISION(10);
 

C: FUNCTION(X,Y) CHARACTER(25);
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8.8 Alternate DECLARE Statement Format
 

All of the HALIdata types, and arrays of these types,
 

may be declared using an alternate form of the DECLARE statement
 

where the data type is indicated (except for scalar and integer)
 

by an appropriate mark over the name and the size and shape
 

designated by a subscript. (-), (*), (.), (,) appearing over
 

a name specifies vector, mitrix, bit string and character
 

string data types respectively. Within the subscript, array
 

shape must be separated from string or-vector length, and
 

matrix dimensions, by a colon C:)o
 

The use of INTEGER, PRECISION and other attributes remain
 

as described in Secs. 9.2 and 8.3.
 

EXAMPLES:
 

1) DECLARE A50;
 

- a linear array of 50 scalars. 

2) DECLARE B 2,3INTEGER; 

- a 2x3 array of integers. 

3) DECLARE V1 0 6 ; 

- - a linear array of 10 vectors of length 6. 

4) DECLARE M 6 6 ; 

- a 6x6 matrix. 

5) DECLARE SIO0; 

- a bit string of length 100. 
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8.9 The DEFAULT Statement
 

As detailed in Sec. 8.2, when names are implicitly declared,
 

or explicitly declared with not all characteristics specified,
 

the unspecified characteristics are supplied from a set of
 

defaults. Standard defaults are included in Sec. 8.2 and a
 

complete list appears in Appendix B of the HAL specification
 

document.
 

In some cases it may be convenient to modify the standard
 

default set to reduce the amount of source program coding required
 

to achieve the given objective. For this purpose, the DEFAULT
 

statement is provided, and the following !'sie" keywords defined:
 

BITLENGTH
 

.VECTORLENGTH
 

MATRIXDIM
 

CHARLENGTH
 

The DEFAULT statement has the general format:
 

DEFAULT type(dimension) size;
 

EXAMPLES:
 

1) DEFAULT MATRIX(4,7) BITLENGTH(24);
 

DECLARE A, B MATRIX, C BIT(10), D BIT;
 

The DEFAULT statement changes the type default from scalar
 

to matrix, the matrix dimension from (3,3) to (4,7) and
 

the bit length from 1 to 24. Therefore, the DECLARE
 

statement declares A and B to be 4x7 matrices (note
 

the MATRIX need not be supplied), and D to have length equal
 

to 24 bits. It is to be emphasized that the defaults will
 

"fill in" wherever the particular characteristics is not
 

specified.
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2) 	 DEFAULT BITLENGTH(16);
 

DECLARE E, F, G;
 

The DEFAULT statement changes bit length to 16; all other
 

defaults remain the same. Therefore, E is a scalar, F a
 

bit string of length 16, and G a character string of
 

length 8.
 

The scope of a DEFAULT statement, that is the.region in which
 

it is recognized, is the same as that for a DECLARE statement
 

(see Sec. 7.1).
 

8-23
 



9. Subscripting
 

HAL makes use of subscripts for three purposes: 1) to select
 

(i.e., index or partition) data items from complex data types,
 

arrays and structures- 2) to formulate types and arrays from
 

component parts; and 3) to modify the interpretation and usage
 

of data quantities. All subscripting may be accomplished in a
 

natural format by introducing the subscript expressions on the
 

S-line.
 

9.1 Selection
 

9.1.1 Arrays of Vectors and Matrices
 

The referencing of individual components of vectors and
 

matrices, and the partitioning of these data types, by subscript­

ing, are presented in Sec. 5.1 of this guide. Since HAL also
 

permits arrays of vectors and matrices it becomes necessary to
 

introduce additional subscripting in order to select and partition
 

all quantities. This is accomplished by separating the array sub­

scripts from the array element subscripts with a colon (:), with
 

the array subscripts always coming first. For example, consider
 

the following array of matrices:
 

DECLARE M ARRAY(4,3)MATRIX(6,6); 

-- a 4x3 array of 6x6 matrices. 

A few subscript possibilities are: 

1) M1,2:3,4 

This selects the scalar component in the 3rd row, 

4th column of the matrix in the ist row, 2nd column of the ar-ray. 
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2) M1 ,2:
 

This selects the matrix in the 1st row, 2nd column
 

of the array. The "trailing colon" means that the selection
 

consists of the data types in the array, and not of elements
 

within the data types. (Note that the compiler will supply the
 

"over-star" indicating a matrix).
 

3), [M] 3 -4
 

This selects the scalar components in-the 3rd row,
 

4th column of all the matrices. The result is an array
 

of scalars. If m were not an array of matrices, but a sinqle
 

matrix instead, M3, 4 would result in a single scalar. (Note,
 

that the compiler will supply the brackets indicating an
 

array.)
 

4) M3,1:2,*
 

This selects a single 6-dimensional vector from
 

the 2nd row (all columns) of the matrix in the 3rd row, !st
 

column of the array. (Note that the compiler will supply the
 

"over'bar" indicating a vector.)
 

5) [M]1 TO 3,2:1 TO 3,1 TO3
 

This selects a sub-array of sub-matrices; i.e.,
 

the 1st three rows and ist three columns of all the
 

matrices in the 1st three rows, 2nd column of the original
 

array. (Note that the compiler will supply the brackets
 

and "over-star" indicating an array of matrices.)
 

It is evident that many complex forms can be developed
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from this example. The important point is that by sub­

scripting (indexing and partitionin) b6th the array and the
 

array components, any selection can be made unambigu6usly.
 

9.1.1.1 The Use of * and # 

The two symbols'* and # may be used in subscripting 

variables to indicate "all of a particular index" and 

"the last of a particular index" respectively. The * can only 

appear alone in a subscript position; i.e., M,, or 

A* 1 The # may appear alone, as part of the expressions 

4# + K, 6r associated with "TO" or "AT" in the following 

forms: 

#+ 	K TO#
 

P AT # + L
 

Examples: 

1) M1 TO 6,* 

- a matrix partition: the first 6 rows, 

all columns. 

2) M#_2 TO If,#-2 TO# 

- a matrix partition: the last three rows 

and last three columns 

3) VP AT #-Q
 

- a vector partition: P elements starting at 

Q from the last element. 

t Note that # is also used to indicate repetition within
 
a list (see Sec. 8.4.2.1 and 9.2).
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9.1.2 Bit and Character Strinqs
 

The individual bits and characters of strings, and the
 

strings themselves within arrays, may be referenced by
 

subscripting. The method i§ similar to that for vectors.
 

Some examples follow based on the declaration:
 

DECLARE A BIT(15);
 

- a bit string of length 15.
 

This selects the pth bit in the string starting
 

from the left. (Note that the compiler supplies the
 

"6ver-dot" indicating a bit string.)
 

2) A1 O 8 

This partitions the string and selects the
 

1st eight bits.
 

3) AP TO #
 

This partitions the string from the Pth bit
 

to the end.
 

If the strings were arrayed, i.e.,
 

DECLARE A ARRAY(10)BIT(15);
 

then
 

4) [A]p 

This selects the Pth bit from every string.
 

The result is an array of 1 bit bit-strings.
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5)A,,
 

This selects the pth bit string of the array. Note 

the "trailing colon". 

1[]TO 6: 

stThis selects the 1 six strings of the array. The 

result is an array of 6 bit strings, each of 15 bits length.
 

9..1.3 Structures
 

Any data item within a structure may be referenced by
 

' 
appropriate subscripting of the item name. The structure may 

be QUALIFIED or NONQUALIFIED. The general method is "to reach" 

the item by first indicating the major structure copy, then 

the minor structure(s) copy(s), then the array position and 

finally the index within the data type. All structure sub­

scripts must be separated from other subscripts by a semi-colon (;) 

The following example illustrates these points: 

DECLARE 1 A(50) QUALIFIED, 

2 B(25), 

3 C ARRAY(4,4)MATRIX(3,3), 

3 D BIT(10), 

2 E VECTOR(6); 

1. (A-13 5 ;
 

This selects the 35th copy of the majot structure, -A.
 

(Note that the compiler will supply the brackets indicating
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a structure.)
 

2) [A.B.C] 

This selects the array of matrices, C, which are in
 

the 1 0th copy of B, which is in the 35th copy of A. (Note
 

that the compiler supplies the "over-star" and brackets
 

indicating an array of matrices.)
 

3) {A.B.Dj* 1 ;5 TO 8 

This selects bits 5 to 8 of the bit string, D, in the
 

Ist copies of B which are in all copies of A. (Note that
 

the compiler supplies the "over-dot" and brackets indicating
 

a structure of bit strings.)
 

For a NONQUALIFIED structure the subscipting would be identical;
 

thus, for example, (2) above would be written
 

I[C]35,10;
 

9.1.3.1 	Structures of a Single Data Type 

Consider the following two DECLARE statements: 

1) DECLARE 1 A(5), 

2B CHARACTER(10); 

2Y DECLARE 1 A, 

2B ARRAY(5) CHARACTER(10);
 

From the first statement, {B} is a structure of all copies of
 
I 	 • 

string B. From the second, [B] is the array of all strings.
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Note that while {B} in 1) and [B] in 2) contain the same data they
 

are not identical and cannot be used interchangeably.
 

Consider further,
 

3 TO 5;
 

3) DECLARE 1 A(5), 

2B ARRAY(5) CHARACTER(10); 

{[B]} 5 is a structure of the last three copies of the 

array [B].
 

It is suggested the-reader consult the HAL specification
 

document (Sec. 6) for more details on structure subscripting
 

and manipulations.
 

9.2 Formulation
 

Vectors and matrices, and arrays of all data types may
 

be formulated from their component parts by using special
 

conversion functions and appropriate subscripting. In Sec.
 

4.2.1, the functions SCALAR, VECTOR, MATRIX wereo introduced.
 

HAL also provides the following additional "formulating"
 

functions:
 

INTEGER
 

BIT
 

CHARACTER
 

Each of these functions operates on lists of data and may be
 

"filled" and "shaped" by subscripting.
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9.2.1 VECTOR and MATRIX
 

These functions may be used both for formulating vector
 

and matrix data types, as in Sec. 4.2.1, and for formulating
 

arrays of these types. The distinction is made in the subscript
 

format. For example
 

MATRIX2,3(5)
 

formulates a 2x3 matrix, the elements of which all equal 5.
 

On the other hand,
 

MATRIX 6 3,3(5)
 

formulates a one-dimensional drray of 6, 2x3 matrices, the
 

elements of which all equal 5. Several objectives may be accom­

plished using these functions depending upon the number of data
 

items included in the list and the subscript format. For
 

example,
 

1) VECTOR4(A,B,C,D)
 

formulates a 4 dimensional vector.
 

2) VECTOR6 :4 (A,B,C,D)
 

formulates a one dimension array of 6, 4 dimensional
 

vectors.
 

3) 	MATRIXI0 :4 ,2 (20#A,20#B,40#C)
 

The arguments represent a linear list of 80 data
 

items. This function formulates a one dimensional
 

array of 10, 4x2 matrices in the following way: the
 

first 8 items of the list Ifill" the first 4x2 matrix
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(by rows), the-next 8 items "fill" the second matrix, etc.
 

The variations of VECTOR and MATRIX are numerous and the
 

reader is advised to consult the HAL language specification
 

*(Ref. 1). if more information -isneeded. In general, though,
 

three list sizes are acceptable: a single -item which is "spread"
 

over the data type or the data type array (also see Sec. 9.2.1.1
 

below); a number of items equal to those in the data type dimension
 

(e.g., the totalmnumber of elements in a-matrix) which is then
 

tepeated for all components of-an array; and a number of items
 

equal to the total number inthe array which then.simply "fills"­

the- array-on an element-by-element basis.
 

Vectors and matrices must consist of scalar elements,
 

therefore other data types ihcluded within a list will be con­

-verted 
 appropriately. (Conversions of types to types are
 

-discussed in Sec. 10.3.2.)
 

When the list contains more than one entry and the function 

is unsubscripted, the result is a vector of length equal to the 

number of elements in the list or a square matrix with rows 

and columns equal to the square root of the number of elements 

in the list. (The square root must be an integral number.) 

For example, 

.1) VECTOR(A,B,C,D)
 

formulates a 4 dimensional vector
 

2) MATRIX(20#A,5#B)
 

formulates a 5x5 matrix.
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When the array shape is specified but dimension is not; e.g.,
 

VECTOR6: (A,B,C D)
 

the resultant vector(s) or matrices take on default dimensions
 

and the number of elements in the list must be consistent with
 

the default. In the example above, the function would evoke
 

a compiler error message because the 4 elements in the list would
 

not agree with the standard vector length default of .3.
 

9.2.1.1 VECTOR and MATRIX of a Single List Entry
 

If the number of entries in list is one; e.g., a
 

single scalar, vector, matrix, etc., or a single array of any-­

data type then two cases are of interest: subscripted and
 

unsubscripted.
 

When the functions are-subscripted and the list entry
 

is a single data item (e.g., a scalar) its value is "spread",
 

over the function as described above. If the single entry
 

comprises a multiple data item (e.g., a matrix or array),
 

the entry is first unraveled and the function "filled" according
 

to the subscripted array shape and dimensions.
 

When the functions are unsubscripted,-the final result
 

depends upon the data type, array shape and dimension of the
 

list entry. A summary of the resulting forms is presented in
 

Appendix F.
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,9.2.2 INTEGER and SCALAR
 

The use of INTEGER and SCALAR are similar in that arrays
 

of integers or scalars are formulated from lists of components
 

with appropriate conversions see Sec. 10.3.2) where necessary.
 

Some examples are:
 

1) INTEGER3,3,3(J)
 

The result is a 3x3x3 array of integers. Every corm­

ponent of the array is set equal to J.
 

- 2) SCALAR9 (M) 

The result is a one-dimensional array of scalars of
 
*
 

length 9, 	whereaM is a 3x3 matrix. ­

3) INTEGER 6 ,2 (3#I,D)
 

The result is a 6x2 array of integers (presuming D is
 

3x3). The matrix is unraveled into a one-dimensional
 

list (see Sec. 4.2.1). Note that the scalar elements
 

of the matrix D will be converted to integers.
 

When the list contains more than one entry and the function
 

is unsubscripted, the result is a one-dimensional array o?
 

length equal to the number of elements in the list. For-example,
 

SCALAR(v,M)
 

The result is a one-dimensional array of scalars of as
 

many components as in.V plus A.
 

9.2.2.1 	SCALAR and INTEGER of a Single List Entry
 

See Sec. 9.2.2.1 and Appendix F.
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9.2.3 BIT and CHARACTER
 

BIT and CHARACTER may be used to formulate arrays of bit­

and character-strings respectively. Appropriate conversions are
 

made where necessary (see Sec. 10.3.2). Some examples are:
 

TO 10 (A )
 1) 	BIT 2 ,3 :1 


The result is a 2x3 array of bit strings. Each bit
 

string equals the first 10 bits of the "bit-pattern"
 

representation of the scalar, A.
 

2) 	 CHARACTER 1 0 (X,Y,Z, 'COORDINATES.') 

The result is a one-dimensional array of 10 character
 

strings. The first 9 strings are of the length
 

necessary to represent the scalar (floating point).
 

components of the vectors. Resulting character strings
 

are implemented as varying.
 

3) 	BIT 3 (3#A,3B,3#C,3#D)
 

The result is a 4x3 array of bit strings. All strings
 

will be of the same length and equal to the maximum
 

string length in the list of arguments.
 

When the list contains more than one entry and the function
 

is unsubscripted, the result is a one-dimensional array of.
 

length equal to the number of elements in the list. Bit-string
 

length corresponds to maximum string length in the list; character
 

length is varying.
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9.2.3.1 BIT and CHARACTER of a Single List Entry
 

See Sec. 9.2.2.1 and Appendix F. Note that subscript
 

dimension for BIT and CHARACTER are different, in concept,
 

than for VECTOR. VECTOR dimension specifies resultant vector
 

length; BIT or CHARACTER dimension specifies the bits or
 

characters to be selected from the string representations of
 

the arguments.
 

Once again, the reader is advised to consult the HAL
 

specification document (Reference 1) for more complete information
 

on BIT and CHARACTER and the other functions presented in Sec. 9.2.
 

9.3 	Modification
 

Two forms of subscripting allow the HAL programmer to modify
 

the interpretation and/or usage of certain data types and
 

,expressions.
 

1) In converting from bits to characters and from 

characters to bits, the subscripts @BIN, @OCT, @DEC, 

@HEX provide binary, octal, decimal and hexadecimal 

interpretation, e.g., BIT@OCT(I 657') results in the 

bit string 110101111. 

2) The precision of an expression can be specified explicitly 

by use of the subscript form @p, where p represents the 

minimum number of desired decimal digits. For example 

suppose the integer I has the value 311,648,726 and is 

to be added to the single precision floating point­
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scalar X. It is desired to maintain at least 10 digit
 

precision in the floating point result. Thus the
 

expression
 

I 	 *X
 

will
 

1) 	cause the integer to be converted to a scalar with
 

precision of at least 10 decimal digits (i.e.,
 

a double precision mantissa on the IBM 360/75);
 

2) convert X to double precision because it is
 

involved with a double precision operand;
 

3) perform the sum in double precision.
 

More examples of modification and HAL's automatic data
 

conversions will be presented in Section 10.
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10. -Data Manipulation
 

In Part II of this guide the expressions and assignments
 

associated with HALM were presented. These were largely confined
 

to manipulation with the-arithmetic types: scalar, vector, matrix.
 

In this section, string and airay operations are introduced as
 

well as the conversions necessary for combining mixed data types.
 

A summary of all HAL data operations is presented in Appendix C.
 

10.1 String Operations
 

10.1.1 	Bit Strings
 

The manipulation of bit strings, in HAL, is accomplished
 

using the following four operators: -

Operator Definition 

NOT (n, ^) complement 

CAT (If) concatenation 

AND (&) logical AND 

OR (f or logical OR 

and certain of the built-in functions listed in Appendix-B.
 

(Acceptable alternate forms for the above operators are shown
 

in parentheses.) NOT complements each bit in the string; CAT
 

forms one string by joining together the two operand strings; AND
 

and OR perform bit-by-bit logical operations on the corresponding
 

bits- of two bit operands.. If the strings are of unequal length
 

for AND and OR, the shorter is padded on the left with 2eros.
 

When assigning a bit expression to a target variable, if the
 

target and expression are of unequal length, then the following
 

10-1
 



steps are followed: if the expression result is too long, it is
 

truncated on the left; if it is too short, it is padded with
 

zeros on the left. As examples, consider
 

DECLARE BIT(12) A,B,C;
 

then,
 

1) 	NOT
 

Each bit is complemented
 

2) C = B1 TO 7 11A- 4 TO #
 

The first 8 bits of B and the last 5 bits of A are joined. 

3) = B4 TO 8 AND 1 TO 10 

The two operands are of different lengths. B4 TO 8
 

is padded on the left with zeros until it matches the length
 

of C1 TO 10' A logical AND is performed bit-by-bit; the result
 

is a bit string of length 10. On assignment to A which is of
 

length 12, the result is padded on the left with two zeros.
 

4. 	 M= (D&E)(F&G& -i)I 

If all of these bit strings were declared implicitly 

then each represents a 1 bit string (i.e., a boolean) and this 

is an example of a complicated boolean expression and assignment. 

M is either TRUE or FALSE; i.e., either BIN '1' or BIN '0' 

depending upon the expression result. For example if D = BIN '1' 

and E = BIN '1' then M = BIN '1' ( n is performed before &; 

see Sec. 10.1.3). 
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10.1.1.1 Bit Strings Within Logical Conditions
 

A logical condition or set of logical conditions,
 

Lc are conditions imposed upon IF and DO WHILE statements
 

(see Sec. 4.3.2), i.e.,
 

* IF L THEN....
 
c
 

or
 

DO WHILE Lc;
 

As such the logical-condition expresses a comparison (or
 

comparisons) among data which is either true or false. For
 

.HALM,,in Sec. 4.3.3.1, the relational operators were used
 

to compare arithmetic data.' These operators may also be
 

extended to bit strings. 'Thus it becomes possible to test
 

whether
 

AB
 

A >= B
 

A =
 
etc.
 

The shorter string is padded on the left, as before. A
 

bit comparison involves the left-to-right comparison of
 

corresponding binary digits; BIN 'I' is defined as greater
 

than BIN '0'. The result of a bit string comparison is a
 

single true or false answer. Thus BIN '101' >= BIN '1111'
 

is false because the first bit comparison (starting on
 

the left) fails. Note thatin this context A B,means
B= 


that if any of the corresponding bits of A and B are not
 

equ~l then the relation is true.
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10.1.1.2 	"Boolean" Condi-tions
 

If-the logical condition in an IF or DO WHILE statement
 

involves only single-bit bit strings (booleans) then the condition
 

may be expressed'as a boolean expression, similar to example (4)
 

of Sec. 10.1.1.1. For example:
 

IF A AND (B OR C) THEN 

meaning if A is true (i.e., = BIN '1') and either B or C is 

true then..'.; or 

-	 DO WHILE -iAj(B&C); 

meaning do the following statements while A is false (i.e.,
 

BIN '0') or, B and C are true.
 

10.1.1.3 	Combining Comparisons and Boolean Expressions
 

Whenever it is desired to combine comparison expressions
 

(arithmetic or string) with boolean expressions it becomes
 

necessary to express all conditions as comparisons.
 

That is,
 

IF X>5 AND B THEN . 

is not an acceptable form using HAL. The statement must be written 

with the condition on B expressed as a comparison expression; thus, 

IF X>5 AND B = TRPE TEEN . 

is correct. (Note TRUE E BIN '1'.) A more complicated example 

might be: 

2
IF(ijC = 	OCT '77') OR (Xc>5 AND FLAGl = TRUE)THEN . . 
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10.1.2 Character Strings.
 

When using HAL, input data from cards, terminals,
 

files, etc. and output data to a printer or other device,
 

are considered to be streams of characters. The acceptance
 

afid preparation of numerical data, message.texts, headings,
 

etc. requires the manipulation of character strings. The
 

basic operations are presented here; I/O statements appear
 

in Sections 7 and 11.
 

The manipulation of character strings, in HAL, is
 

accomplished using the concatenation operator, CAT or (H),
 

and certain of the built-in functions listed in Appendix B.,
 

Since character variables may be fixed or varying, a distinction
 

must be made. When assigning a character expressioh to a
 

fixed character string target variable, the result is similar
 

to that for bit strings except that padding or truncation
 

is applied on the right. Thus,the expression-value 'is
 

truncated on the right,if it is too long,or padded witL
 

blanks on the right,if it is too short. For example, consider
 

DECLARE CHARACTER(12) A,B,C;
 

then,
 

1. C ='ABC';
 

The first three characters of C are set to 'ABC',
 

the rest are blanked.
 

2. Cj TO 4 = 'ABC,;. 

Characters 3 and 4 are set to 'AB', the rest of C
 

are left alone.
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If the target Variable is a varying character string,
 

then, in general, the target string takes on a length
 

equal to that of the right hand side expression. If the
 

expression length is longer than the declared maximum length,
 

the expression is truncated on the right. 
 -

The HAL language specification (Ref. 1) presents detailed
 

rules and examples for the manipulation of character strings.
 

10.1.2.1 	Character Strings Within Logical Conditions'
 

Character string comparisons may be incorporated
 

into logical conditions in the same manner as bit strings
 

(Sec. 10.1.1.1). All of the relational ocerators of Sec.
 

4.3.3.1 may be applied in .comparing twb characte2 strings.
 

The shorter string is padded on the right with blanks. A
 

character comparison involves left-to-right comparison of
 

corresponding characters according to the collating sequence
 

presented in Appendix E.
 

The result of a character string comparison is a
 

single true or false answer. Thus
 

'ABCDE' = 'ABCEF' is false because the fourth
 

character comparison (starting on the left) fails.'
 

t Note that in this context A2= B means that if anv of the
 

corresponding characters of A and B are not equal then the
 

relation is true.
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10.1.3 Order of Operations
 

In evaluating the expressions with a logical condition,
 

an order of operations was'established in Sec. 4.3.3.3. :With
 

the addition of the concatenation operat6r, this order may be
 

generalized and applied to string expressions as well as
 

logical conditions. The complete order is: 

NOT highest 

CAT 

Relationals 

AND 

OR lowest 

In illustrating the application of this precedence order, 

example (4) of Sec. 10.1.1 could have been written without 

parehthesis; i.e., = -I1.D&EJF&G& 2H would be performed 

first, then the &'s from left-to-right: D&E, F&G& -1H, and finally 

the two 's. Other logical meanings would have required 

parenthesis; e.g., 

M D&(EJF)&G& fCHjII); 

As another example, consider the IF statement in
 

Section 10.1.1.3. Again this could have been written without
 

parentheses and no change in meaning:
 
2 

IF BI f = OCT'77' OR X >5 AND FLAG1 = TRUE THEN... 

BlIC would be performed first, then the relationals from left
 

to right: BiC = OCT'77', X2>5, FLAGi = TRUE, then AND, and
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finally OR. A different logical intent would have required
 

parentheses; e.g.
 

IF(B, C = OCT'77' OR X >5)AND FLAC1= TRUE THEN...
 

Of course, the programmer can take advantage of HAL's
 

built-in precedence rules but he is advised to use parentheses
 

when -in doubt in otder to clarify the intent of the expression
 

as it appears in the listing.
 

1"0.2 Array Operations
 

Most of the arithmetic and string operations in HAL
 

can also be applied to arrays of appropriate data types,
 

for example,
 

[C] = [B]II[A]; 

[E] = IF] AND ([G] OR [H]);
 

IV] [IM] [W];
 

are valid array manipulations.
 

In general, operations with arrays are equivalent
 

to operations with their components on a sequential
 

component-by-component basis; i.e. by incrementing the
 

"right-most" index first. Thus for two-dimensional arrays:
 

[A] [B]; 

means A = B , A1 = B 1 . A =B .,is 1,i 1,2 1,2 An,m n,m
 

For array expressions and assignments, array dimensions
 

must be compatible; i.e. if two arrays are involved in-an
 

operation, they must be of identical dimensions. If only one
 

array is involved, the other operand may be a single data
 

item; e.g., A[B] is a valid product in that A multiplies every
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component of [B]. Note that an array may never be assigned 

to a single data item. 

Some examples of array statements and their equivalents 

follow: 

1) DECLARE ARRAY(10,10)A,B,C; 

[A] = [B] + [C]; 

This array statement causes the addition of components of 

[A] and [B] on a component-by-component basis. Each sum is 

assigned to the corresponding component of [Al. The state­

ment is equivalent to the following multiple "DO FOR - loops": 

DO FOR I = 1 TO 10;
 

DO FOR J = 1 TO 10;
 

AI'j = B +Cd
 

END;
 

END;
 

2) 	DECLARE ARRAY(12,6)D,E,F;
 

DECLARE G ARRAY(12,12);
 

[D] 	= [E] [F]/2 + X; 

[G] 	 = 0; 

The components of [El and [F] are multiplied on a
 

component-by-component basis; each product is divided by 2,
 

added to the scalar X, and assigned to the appropriate com­

ponent of [D]. In addition, all components of [G] are set
 

to zero. These statements are equivalent to the following
 

"DO 	FOR -loops":
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DO FOR I = 1 TO 12; 

DO FOR J = 1 TO 6; 

D I,J E FI,j/2 + X; 

END; 

DO FOR 	J = 1 TO 12; 

EI,J
 

END;
 

END;
 

10.2.1 	Partitioned Arrays
 

When array operations involve partitions of arravs
 

the programmer is cautioned to remember the sequential nature
 

of array computations. Consider the following two examples:
 

1) DECLARE A ARRAY(25);
 

[A] 2 TO 	25 = [A]I TO 24
 

A, = ANEW;
 

The intention here is to shift the information in th~e array
 

by one index position and incorporate new data into the.first
 

component of [A]'. What is the actual result? This may be
 

seen by 	writing the operations in sequence:
 

SA2 =A 1	;
 

=A3 A2 ;
 

=A4 A3;
 

ANEW;
A1 


Unfortunately the "old" value of A1 is propagated throughout
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the entire array. The final result for [A] would be A A NEW
 

-with the rest of the components set equal to the old value
 

of AI. The.programmer could have accomplished the intended
 

objective by writing
 

[A]2 To 25 = SCALAR([A]I TO 24) ; 

A, = A_NEW; 

2). DECLARE B ARRAY(10,10);
 

[B]*s = [B] , ;
 

The intention.here is simply to replace the 5th "column"
 

of.the array by the contents of the 3rd "row". Note that both
 

column and row represent one-dimensional arrays of 10 components
 

each. The operations are performed as follows:
 

B = B3,1;
 
B2,5 B 3,2;
 

3,5 3,3; 

B4,5 = 3,4; 

B5, 5 
= B3,5; 

B = B3,6; 

B10,5 B3,10;
 

aid the result'is wrong! That is, B3,5 appears both on
 

-iheright and left of the = sign and propagates B3,3 into
 

B3,5 and B5,5. The programmer could have accomplished his
 

objective by writing:
 

. .[B],5 = SCALAR([B]3 ,*);
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Thus, array manipulations do require some care and the
 

programmer is urged to write out, in preliminary form, at
 

least a partial sequence of operations in order to verify that
 

the array statement will achieve the desired result.
 

10.2.2. Functions of Arrays
 

HAL built-in fuaictions and programmer-defined ­

functions may be given array expressions, of appropriate 

data-type, in the argument positions. Two classes of functions 

are of interest: 1) where the function's formal parameters 

or definitioncalls for single data items, 2) where the 

function's formal parameters,or definition,calls for at. 

least one array. (For built-in functions, the string-, arith­

metic-, mathematical-, and matrix-vector-functions are of the 

first class; the linear array functions comprise the second, 

See Appendix B.)
 

10.2.2.1 Functions with Single Data Item Arguments
 

When arrays are processed by a function designed'
 

for single data item arguments, the result is a sequence
 

of operations with the function being applied to the
 

components of the arrays, component-by-component. Thus,
 

for example, consider the sine function where the argument
 

is an array.of scalars; i.e.,
 

DECLARE ARRAY(10,5)A,B,;
 

[B] = SIN([A]); 

This statement is equivalent to the following "DO FOR -loop":
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DO FOR I = 1-TO 10; 

DO FOR J = 1 TO 5; 

BI, J = SIN(AI j) 

END;
 

END;
 

For a function requiring more than one single data item,
 

multiple array arguments must be of identical "shape". For
 

example, let VRESULT be a programmer-defined function returning
 

a vector, thus
 

VRESULT: FUNCTION(V,A,B)VECTOR(6)
 

and used in the statement
 

[P] = M VRESULT([Q], [A],B); 

where [P] and [Q] have been declared as 4x2 arrays of six 

component vectors~and [A] is a 4x2 array of scalars. This 

statement is equivalent to the following sequence of operations: 

DO FOR I = 1 TO 4; 

DO FOR J = 1 TO 2; 
* 

PIJ: = M BLOCK(QIT:,AI,jB)
 

END;
 

END;
 

Note that the same values M and B are applied to the computation
 

on every pass through the loop.
 

Both of the above examples illustrate that the manipulation
 

of arrays with this class of functions is straight forward and
 

is simply a sequence of component-by-component operations.
 

10-13
 



10.2.2.2 Functions With Array Arguments
 

* HAL functions written, or designed, to accept array 

-arguments must produce single data items results. For 

example
 

SUM([X])
 

accepts an array argument and returns a single'result.
 

The effect might be viewed as a "reduction in dimension".
 

Consider the following examples:
 

1) DECLARE A ARRAY(5), B ARRAY(5,4);
 

[A] = SUM([B]); 

This statement is equivalent to the following sequence of
 

operations:
 

DO FOR I = 1 TO 5; 

A,= SUM([B] 1 ,, ; 

END;
 

2) DECLARE ARRAY(25,25,25)A,B;
 

[A] 3 :TO 8,Q,* = M-AX[B]10 TO 15,*,* ) ;
 

The left hand side represents a two-dimensional (6x25) sub
 

array; the argument of MAX is a three-dimensional (6x25x25)
 

subearray. The statement is equivalent to the following
 

"DO FOR -loops":
 

DO FOR I = 3 TO 8;
 

DO FOR J = 1 TO 25; 

AI,Q,J MAX([B]I+7,j,,);
 

END;
 

END;
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Note that Q is specified at run-time and is outside the
 

loop.
 

In "reducing the dimension", &s illustrated in the
 

examples above, the array functions operate on the "inner­

most" free index of the'array argument Csee Sec. F of
 

Appendix B).
 

10.3 	Manipulations With Mixed Data Types
 

HAL permits the mixing of most data types within expressions
 

and the assignment of one data type result to another data
 

type target variable. The mixing of data types is accomplished
 

through prescribed sets of implicit and explicit conversions.
 

10.3.1 	 Implicit Conversions
 

Some representative examples of implicit conversions
 

follow: 

1) DECLARE INTEGER I-,J; 

J = A + I; 

The addition (subttaction or multiplication) of 

an integer and a scalar causes conversion of the integer to
 

the scalar type. The assignment of a scalar result to an integer
 

target causes conversion of the scalar to integer before assign­

ment.
 

10-15
 



2) DECLARE B BIT(10), I INTEGER;
 

X = B + I; 

The addition (subtraction or multiplication) of a
 

bit string and an integer causes conversion of the string to an
 

integer. The assignment of an integer result to a scalar target
 

causes conversion of the integer to scalar before assignment.
 

3) DECLARE BIT(lO)A,B,C;
 

A = B/C; 

Division is defined as a scalar operation. Bit string
 

operands are converted to scalars by first converting the strings
 

to integers and then to scalars. The quotient is always a scalar
 

quantity. The assignment of a scalar to a bit target variable
 

causes conversion of the scalar first to integer and then to
 

bit string before assignment.
 

4) DECLARE C CHARACTER(25)VARYING;
 

C = 'THE ANSWER IS' liX;
 

The concatenation of a character string and a scalar,
 

-integer or bit string causes conversion of the scalar or integer
 

to a character string, and the conversion of a bit string first
 

to an integer and then to a character string.
 

.In general, but with certain restrictions, implicit conver­

sions within expressions follow a progression:
 

(to-scalar-to-character
 
from bit-to-integer­

to-character
 

i.e.,
 

B-1
 

t:C
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" and from single precision (SP) to double precision (DP). Vector
 

arid matrix operands cause the same effects as scalars.
 

In assigning expressions, conversions go both ways depending
 

upon the data type of the target variable; i.e., either
 

C
 

or 

S -'I B 

For example, if a bit string (B) is assigned to a scalar target -(S), 

h6 string is first convertedtto an integer and then to a scalar 

(B I S); if a scalar is assigned to a bit string; the scalar 

is first converted to an integer and then to a bit string (S + 1 B). 

The following tables summarize the implicit conversions
 

when two operands of different types are involved in expressions
 

or assignments:
 

A. Expressions
 

7 rOperand 	2
 
Oe 	 I S BC
 , 


BC
Opera.nd 11 


I - I+S B I I*C
 

S I-S - B I+S S-C 

(2) (i)
B I B+I S
B ' 

C I;C S+C B+I C
 

Notes: (1) 	The concatenation of a character string and a
 

bit string is only valid if the character string
 

is the left hand operand (i.e., CI[X).
 

(2) When bit strings are used in arithmetic operations
 

the strings are converted to integers.

I i12 17 * 



B.. 	Assignments
 

Expres­

sion I S B C
 
2)
Target 

I "- . S x n-sI (i) 

"S Ixs - - l)
 
B I-B- S4-I B Ci)
-

-C 	 I+C S-*C B+I4C -

Notes: (1) 	Character expressions may not be assigned to
 

arithmetic or bit string target variables.
 

(2) Vector, 	matrix, and array expressions may only
 

be assigned to vector, matrix and array target
 

variables respectively. Structures may only be
 

assigned to structures of identical component
 

declarations.
 

10.3.1.1 	Conversion of Arithmetic Literals
 

Arithmetic lietrals exhibit the following default data
 

types and precision:
 

a) 	if the literal's value has no fractional part (e.g.,
 

6,:6.0, .12E+2B-I, etc.), it is considered to be an
 

integer data type.
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b) 	if the literal's value has a fractional part (e.g.,
 

6.1, .123, 6.024E-5, etc.), it is considered to be
 

a sca-lar data type, and its precision will be determined
 

by context, if possible; otherwise default precision will
 

be used.
 

Subsequent conversion within expressions of mixed data types,
 

follows the rules described above, in Sec. 10.3.1. Note that
 

double precision representation of literals will be utilized when
 

required within an expression, i.e., when the literal is involved
 

with a double precision operand.
 

EXAMPLES
 

1. 	X=I+ 3.1;
 

Presuming that I is an integer, it is converted to a
 

scalar (because 3.1 is a scalar) and added to 3.1. The
 

result is assigned to the scalar X. Since the precision
 

of 3.1 cannot be determined by context (i.e., being added
 

to an integer) default precision will be used. The
 

standard default is double precision.
 

2. 	DECLARE PRECISION(10) X, Y;
 

X = 4.06372 Y;
 

Since Y is a double precision scalar, the literal 4.06372
 

is utilized as a DP quantity and multiplied by Y.
 

3. 	REPLACE K BY '1060';
 

A = (K + 3.064) B;
 

K is treated as an integer and therefore converted to a
 

scalar before being added to the "scalar literal", 3.064.
 

Both literals will be expressed in default precision.
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10.3.2 Explicit Conversions
 

Four functions are provided for the explicit conversion
 

of one data type to another. The four are:
 

INTEGER
 

SCALAR
 

BIT
 

CHARACTER
 

These functions*may be applied to integer, scalar, bit- and
 

character-string arguments, and result in the named data types.
 

Thus,
 

I = INTEGER(X/Y) + J;
 

A BIT8 TO 1 2 (X)IIB;
 

C = CHARACTER(X)IICHARACTER(J);
 

are examples of the use of conversion functions. The following
 

table describes the resulting conversion for each function and
 

type:
 

Type I S B C
 

Function
 

C I (I )
 
INTEGER - S+I B+I 

SCALAR I-S - B-I-S CS 

BIT (3 ) IB S B (2 ) CB 2 ) 

CHARACTER ItC S C B-I C -

Notes: (1) INTEGER and SCALAR only accept character string
 

arguments which represent Vrhole numbers and scalars,
 

respectively. For example, INTEGER('30672') and
 

* Also see Sec. 9.2. 
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SCALAR ('362.06E+') are valid applications.
 

(2) 	 BIT converts scalars and character strings directly
 

to bit strings. That is, a floating point scalar
 

argument would result in a 32-bit bit string, the
 

string representing the 360/75 "bit-pattern" of the
 

floating point quantity. A character byte is 'converted
 

to its 8 bit pattern.
 

(3) 	 BIT and CHARACTER may be subscripted in order to
 

select particular bits and characters, or to modify
 

usage (see Section 9.3). A character string which
 

represents binary, octal, decimal or hexadecimal;.digits
 

can be converted to a corresponding bit string; i.e.,
 

BIT@BIN('1011) becomes 1011
 

BIT@OCT(' 657 ') becomes 110 101 111
 

BIT@HEX('FAD') becomes 1111 1010 1101
 

BIT@DEC('78') becomes 1001110
 

Likewise-bit strings can be converted to binary, octal, decimal
 

or hexadecimal character digits; e.g.,
 

CHARACTER@HEX (BIN'11111010')
 

In addition to using conversion functions within expressions,
 

the ."pseudo-variable" SUBBIT is defined, and may appear on the
 

left'hand side of an assignment statement. That is, a-bit string
 

expression may be assigned directly to the bit representation of
 

other data types. For example,
 

SUBBIT6 TO 20CA) C E;
 

or
 

SUBBIT(C6) HEX'9F';
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Through the use of.the SUBBIT pseudo-variable, the basiclbit
 

pattern (machine representation) of any data type may be manipulated
 

by-the programmer.
 

16.4 	HAL Operations -. A Summary
 

HAL provides the programmer with full facilities for:
 

1) scalar and integer arithmetic
 

2) vector and matrix arithmetic
 

3) bit- and character-string manipulations
 

4) array operations
 

5) structure handling
 

Most of the common operators are valid with most of the data types
 

as operands and yield results that might be expected intuitively.
 

However, some operations with particular data types are not
 

- allowed, and others imply specific conversions. A summary of 

all HAL operations, involving one or two operands, is included 

in Appendix C. For most operations the valid result data type 

(o error) and the implicit data conversion(s) are indicated.
 

The tables in Appendix C have been taken from the HAL language
 

specification document (Reference 1) and are presented here for
 

programmer convenience.
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11. Additional Program Organization and I/O
 

11.1 	Organization
 

In Sec. 7 the basic features of program organization
 

and name scope were presented in the context of HALM. For
 

the most part, these features also apply to the full
 

HAL laHguage. The additional data'typest integer, bit­

and character-strings, arrays of these types',and structures
 

of all data types,follow the same rules with respect to scope
 

and DECLARE and OUTER statementsas scalars, vectors and
 

matrices.
 

It is the intention of this section to 'describe, to
 

the programmer, additional details of pr6gram organization
 

bearing principally upon the logical arrangement of blocks
 

of code within a program and'the relationship of 'one program
 

to another, and to the Symbolic Library.
 

11.1.1 Declaration of Labels
 

- It was pointed out in Sec. 7.2 that the scope of 

labels, in a HAL program, generally follows the same rules 

as the scope of names. The statement or procedure label must 

be defined before its use, or, at least, in the block in 

which it is used. 

When a label appears after its use in a GO TO or
 

.CALL statement'and outside the block in which it is
 

used, then the label must be declardd explicitly. For
 

examole:
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A: 	RROGPAM;
 

DECLARE X LABEL;
 

B: 	PROCEDURE;
 

GO TO X;
 

CLOSE B;
 

X: 	Y = LOG(P); 

CLOSE A;
 

The label X appears in the listing after GO TO X and outside
 

_B, and therefore requires the DECLARE statement. The LABEL
 

attribute may not be factored in a DECLARE statement; i.e.,
 

DECLARE LABEL A,B,C;
 

is not permitted.
 

11.1.2 Declaration of Function Names
 

Function names must always be defined before their
 

use, even if the FUNCTION statement and function reference
 

appear within the same block.
 

On occasion it may prove awkward to locate in
 

the listing, all function blocks prior to the statements
 

in which the function names are actually used. This require­

ment may be avoided by declaring the function name in a
 

DECLARE statement. For example:
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i 	 #2 

A: PROGRAM; 	 A: PROGRA,!; 

ZAP: FUNCTION VECTOR; 	 DECLARE ZAP FUNCTION VECTOR;
 

-CLOSE ZAP; 	 B: PROCEDURE4r, 

B: PROCEDURE; 	 Y = 7 + ZAP; 

Y 	= X + ZAP;
 
CLOSE.B;
 

CLOSE B; 	 ZAP: FUNCTION VECTOR;
 

CLOSE A; CLOSE ZAP;
 

CLOSE A;-


In #1, the function ZAP is recognized in B because its definition
 

precedes its use. In #2 the definition has been relocated
 

after its use, therefore ZAP must be declared, first, using
 

a DECLARE statement..
 

The DECLARE statements for a function have the'following
 

form:
 

•DECLARE A FUNCTION type dimensions precision;
 

The type and attributes may be written in factored form; thus
 

DECLARE FUNCTION MATRIX(4,4)
 
PPECISION(i0) A,B,C;
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11.1.3 Communication Between Rrograms
 

The program (i.e., PROGRAM-CLOSE block) is thel6nly
 

independently compilable HAL program-unit. A program can
 

call another program and communicate data through a common.
 

data pool (COMPOOL). Data may not be transferred between
 

programs by lists of arguments and formai parameters as
 

with procedures and functions.
 

11.1.3.1 The COMPOOL
 

The COMPOOL is a centrally defined and centrally
 

maintained group of statements. The statements are limited
 

to REPLACE, OUTER and DECLARE, and the attributes in the
 

DECLARE statements are further restricted to LABEL, FUNCTION,
 

dimensions and PRECISION (also VARYING for character strings).
 

The names and labels declared in the COMPOOL are potentially
 

known to all programs and, in fact, provide the only
 

means of communication between programs.
 

In order to take advantage of the COMPOOL as a data
 

sharing mechanism, the programmer must include the CQMPOOL
 

statements before the PROGRAM statement during compilation.
 

In a sense, the COMPOOL is placed "outside" the program block
 

and its scope encompasses the program. If another program
 

is compiled in a similar manner, using the same COMPOOL, the
 

variables declared in the COMPOOL will be recognized in both
 

programs. Thus, for example,
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INCLUDE COMPOOLA. INCLUDE COMPOOLA.
 

A: PROGRAM; B: PROGRAM; 

CLOSE A; - CLOSE B; 

It should be noted that if the COMPOOL is included after the 

PROGRAM statement; i.e., within the program block then its scope 

can encompass only the program itself, and declared variables 

cannot be shared by another program. 

1i1A.3.2 The Symbolic Library and the INCLUDE Directive
 

The COMPOOL statements,reside in a symbolic library
 

and are entered into the library using specific 360/75 utility
 

commands (to be specified at a later date) Once in
 

the library, the COMPOOL may be retrieved and compiled with any
 

HAL program by using the compiler directive*
 

INCLUDE
 

along with certain other utility commands. The name
 

associated with INCLUDE may be up to 8 characters in length with
 

the first being an alphabetic character. Thus
 

INCLUDE COMPL106
 

or
 

INCLUDE NAVDATA
 

are valid directives.
 

The symbolic library may alse be used to store any symbolic
 

source code; e.g., complete programs, procedures, single statements.
 

The library entries are available to all programs and may be
 

t Compiler directives require a D in column 1 of the input source code.
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included in the compilation of a program, at any point, by utilizing
 

the INCLUDE directive with the proper library name. Statements
 

from the Symbolic Library will then be compiled as if they were
 

supplied by the programmer in his source code.
 

11.1.4 Program Calls
 

The CALL statement may be used to call one program from
 

another program. The logical result is similar to calling a
 

procedure; i.e., control is transferred to the program called
 

and returned when the program is completed. The CALL statement
 

is of the form:
 

CALL program-name;.
 

In calling a program:
 

1) no arguments may be passed; all communications must
 

be through a COMPOOL.
 

2) 	All static variables are allocated on program
 

initiation, and released when the program ends; i.e.,
 

variables with the INITIAL attribute are initialized,
 

others take on unspecified values.
 

3) 	Control is returned to the caller at the statement
 

following the CALL statement, when a RETURN or CLOSE
 

statement is reached.
 

4) Control may be returned to the executive by executing
 

a TERMINATE statement; i.e.,
 

TERMINATE;
 

5) A program cannot call itself.
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.11.4.1 Program Declaration
 

In order to call a program,its name must be
 

known within the calling program. This is accomplished by
 

the DECLARE statement
 

DECLARE A PROGRAM;
 

This statement may be placed in the COMPOOL, elsewhere in
 

the symbolic library, or in the program body. In-any case
 

the declaration must appear before the name of the program
 

is used in a CALL statement.
 

11.4.2 Example
 

-A: PROGRAM;
 

DECLARE XX-PROGRAM;
 

CALL XX;
 

B: 	PROCEDURE;
 

DECLARE YY PROGRAM;
 

CALL XX;
 

CALL YY;
 

CLOSE B;
 

CLOSE A;
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11.2 	Input-Output
 

In this section the I/O control functions and the standard
 

data formats complementing Sec. 7.6 will be presented. The material
 

is specialized to card reader and line printer types of!devices.
 

The programmer is urged to consult the HAL language specificatiqn
 

document (Reference 1) for a more general treatment.
 

11.2.1 Read and Write Control Functions
 

External data media, either providing input information
 

to a HAL program or accepting output data, are treated as two­

dimensional devices. Data occupies a grid consisting of
 

horizontal lines with each line being made up of column positions;
 

for example, a deck of punched cards where each card is a line,
 

or a 132-column high speed printer. The "read mechanism" or
 

"write mechanism" is located at some point on this two-dim'ensional
 

grid, and moves in a conventional way along each line and from
 

line to line as reading or writing takes place. Read- and
 

write-control functions are used to move the "read mechanism" or
 

"write mechanism" to any reachable location desired in readiness
 

for reading or writing. The definition of "reachable"varies
 

depending on the physical device involved.
 

11.2.1.1 Read
 

In this section discussion is restricted to the card
 

reader asta read device. The "read mechanism" is located on the
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-two-dimensional grid by the read-control functions SKIP, TAB
 

and COLUMN. A READ statement without these functions will
 

always begin on column I of the nqxt card, and will then read
 

consecutive data fields, card after card until all variables
 

have been assigned values, uniess interrupted by a semicolon
 

terminating a data field. In this latter case, variables not
 

having yet been assigned values retain their previous ones.
 

Following is an example of a simple READ statement:
 

R- ADidevicet)A, B, C, D, E, F, ... etc.; 

The SKIP read-control function controls the vertical position 

.of the "read mechanism"; that is, it controls which card is 

next to be read. The form is 

SKIP(N), where N > 0 

A SKIP(O) in the middle or at the end of a list of variable
 

'names-has no effect. A SKIP(0) before the first variable name
 

%na READ statement causes reading to continue on the same card
 

as that last read by the previous READ statement. Multiple
 

SKIP(N) specifications are cumulative in effect. Any SKIP
 

function appearing before the first variable name overrides
 

the implicit SKIP(l) which normally causes reading to start in
 

the next card.
 

In the example 

READ(CARDS)A, B, SKIP(3), C, SKIP(5), D;
 

values for A and B are on the first card to be read, the value
 

for C is on the 4th card, and the value for D on the 9th card.
 

See footnote of Sec. 7.6.2.
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There is no relocation of the horizontal position of the "read­

mechanism" during the skips.
 

The TAB and COLUMN read-control functions control the
 

horizontal position of the "read mechanism", at which reading
 

is to start or resume. The TAB function moves the "read
 

mechanism" left or right by the specified number ofIcolumns.
 

Its,-form is
 

TAB(N), where
 

N<O: move to left;
 

N=O: no effect;
 

N>0; move to right.
 

N must be of such a value that the column arrived at is in
 

the range 1 through 80. The COLUMN function moves the "read
 

mechanism" to the specified colume. Its form is
 

COLUMN (N) , l<N<80 

- Multiple TAB functions are cumulative. A TAB or COLUMN 

function appearing before the list variable name-in a READ 

statement overrides the implicit COLUmN(l) normally causing 

reading of a card to start at column 1. 

In the example
 

READ(CARDS) A, B, TAB(6), C;
 

READ(CARDS) SKIP(0), COLUMN(7), D,EF;
 

with the data fields
 

column (1) (7)
 

-5.6, 7.2E+5, 113, 'SECONDS'
 

the first READ statement causes A, B and C to take the values
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-5.6, 7.2E+5, and 'SECONDS' respectively. The second READ state­

ment rereads the same card starting at column 7, causing D, E
 

and F to take the values 7.2E+5, 113,,and 'SECONDS' respectively.
 

11.2.1.2 	Write
 

In this section discussion is limited to the line
 

printer as a write device. The "write niecha 'sn" is located in 

the two-dimensional grid by the write-control functions LINE, 

SKIP, PAGE, TAB and COLUMN. A WRITE statement without these
 

functions will always begin at column 1 of the printer, and
 

print out the values of the variables and/or expressions in
 

turn, each data field separated from th& next by five blanks.
 

When the end of the line is nearlyreached, and the next data
 

field is too long to be printed, one of two things happens.
 

--'
 If the data is numerical, printing is deferred to the beginning- '
 

of the next line. If the data is character, then printing
 

continues uttil the end of the line is reached and then the
 

remainder of the field is printed at the beginning of the hext
 

line. Following is an example of a simple WRITE statement:
 
* 2 ­

WRITE(PRINTER)A,B,C+D_,E,,,...;
 

The TAB and COLUMN write-control functions have the same
 

effect as when used as read control functions. The valid
 

range of columns is1 through 132,.however. Note that-if-use
 

of the functions to move the "write mechanism" to the left is
 

made before printing, whatever was in those column positions'
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'of the same line beforehand,is overwritten. Thus for example 

WRITE (PRINTER)5132,COLUMN(l) ,-66; 

causes the following line to be printed (see Sec. 11.2.i2.5). 

Column (1) (li) 

-66 

because -66 overwrites 5132.?,A way of causing multiple over­

writing of characters is indicated later. Use of the TAB or 

COLUMN functions between two entries in the WRITE statement 

inhibits the 5-blank interfield spacing normally occurring 

at th&t point. 

The LINE, PAGE, and SKIP write-control functions control. 

the vertical position of the "write mechanism". The PAGE 

function is of the form 

PAGE(N) ,. N>O 

and causes the printer to advance N pages, remaining on the 

same line relative to the head of the page. (Each page has­

58 lines.) If N=O the function is ignored. For example if 

WRITE (PRPINTER)X,PAGE(2),Y,PAGE(O),Z; 

causes printing of the value of X on line 7 or the current* 

page, then the value of Y will be printed on line 7 of.the next 

page but one. The value of 2 is printed on line 7 of this same
 

page immediately following Y.
 

The SKIP write-control function operates in a similar
 

way to the read-control function. The only difference in
 

behavior results from the use of SKIP(O) in the middle of a
 

list of variables and/or expression. This behavior is best
 

demonstrated by an example:
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WRITE(PRINTER)'RESULT',SKIP(O),COLUMN(l),' '-,
 

causes the following to be printed:
 

RESULT
 

Note the overprinting, which would not have resulted from the
 

statement
 

WRITE(PRINTER)'RESULT',COLUMN(l),' 1;
 

which just results in the following being printed:
 

In SKIP(N), N may be any positive number: it is immaterial
 

whether or not page boundaries are crossed.
 

The LINE write-control function forces printing to con­

tinue on the line specified. Its form is'
 

LINE(N), 1<N<58.
 

If N is equal in value to the current line number, tne ertect­

is the same as a SKIP(0). If N is greater than the curreit line
 

number then the "write mechanism" moves to that-line on the
 

current page. If N is less than the current line number then
 

the "write-mechanism" moves to that line on the next page. For
 

example if
 

WRITE(PRINTER)X,LINE(20),Y,LINE(l),2;
 

causes the value of X to be printed on line 15 of the current
 

page, the value of -Y will be printed on line 20 of the same
 

page, and 2 on the first line of the next page.
 

11-13
 



:1 .2.2 Standard Data Formats
 

11.2.2.1 Numerical Input Data
 

Numerical data may be input to a HAL program as a
 

signed (+ is optional) decimal number (with or without a decimal
 

point) and raised, optionally, to the powers 10, 2 or 16. The
 

format is as follows:
 

+decimal number +integer -: 

where E, B and H represent 10, 2 and 16 respectively. Internal
 

blanks are not allowed. Data may contain repeated powers.
 

Some examples follow:
 

369.0
 

8
 

-8.36E+2B-l
 

+0.123E6B-3H4
 

1E-75
 

.337
 

Numerical data may be assigned to integer, scalar, vector, matrix
 

and bit string data types. For integers and bit strings the
 

data form must represent integral values. For a bit string
 

assignment, data is first converted to a full word bit string
 

and then assigned to the corresponding bit variable named in
 

the read statement. The following statement could accept the
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examples shown above:
 

READ(CARDS)IBVA;
 

I is an integer, A is a scalar.
 

11.2.2.2 Character Input Data
 

Character data may be input to a HAL program as a
 

string of characters enclosed by single quote marks. -Thus,
 

for example,
 

I
IC
 

'57.3/Cl
 

'NUMBER ONE'
 

'ONOFF,OFFON'
 

Bit string data may be input directly in binary, octal, decimal
 

and hexadecimal forms by representing the data as a character
 

string and then interpreting the string within the HAL program.
 

For example, suppose it is desired to assign-a bit string with
 

the octal number 37776. The data may be input as
 

3377761
 

and the HAL statements might be:
 

DECLARE B BIT(15); 

DECLARE C CHARACTER(5);
 

READ(CARDS)C;
 

B =BIT oc(C);
 
@OCT ;
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This last statement interprets the character string as an octal
 

bit pattern and converts the quantity to a bit string.
 

11.2.2.3 	Non-standard Data Formats
 

It is possible for a HAL program to accept data in
 

forms other than those described above. The READALL statement.:
 

is defined for this purpose. It is suggested that the programmer
 

consult the HAL language specification (Ref. -) if he desires
 

to use non-standard input data.
 

11.2.2.4 	Scalar Output Data
 

The standard single precision scalar output'data from
 

a HAL program is presented in Sec. 7.6.3. For double precision
 

the number of decimal digits is increased from 8 to 17. The
 

total field size is 14 character positions for single precision
 

numbers, and 23 character positions for double precision.
 

numbers.
 

i1.2.2.5 	Integer and Bit String Output Data
 

Integer and bit string data are output from a HAL
 

program as signed integral values (a positive number-is indicated
 

by a blank). The total field size is 11 character positions.
 

Leading zeros are suppressed and appear as blanks, except for
 

a single zero value. For example,4 the following WRITE state­

ments:
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WRITE (PRINTER) B; 

WRITE(PRINTER) J;
 

WRITE (PRINTER) K;
 

WRITE (PRINTER) C; 

might result in the print-out,
 

column (1) (11)
 

5 

-4673
 

0 

2684736
 

Note the conversion of bit strings to integer form.
 

11.2.2.6 Character Output Data
 

Character data output from a HAL program appears as
 

a variable size field equal to the string length -of the character
 

variable, or expression, in the WRITE statement. For example,
 

the statement
 

WRLTE(PRINTER) 'DISTANCE= 'I 1Al' MILES'; 

might produce the printed line 

cblumn (1) (30) 

DISTANCE= 8.6034768E+06 MILES
 

Note the blank characters after the = sign and before MILES.
 

Bit string data may be output in binary, octal, decimal or 

hexadecimal form by first converting the string to characters;
 

for example, the statement
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WRITE (PRINTER) CHAR@oCT (B); 

would result in writing a bit string of value 101110100 in
 

the form:
 

564
 

The HAL language specification document (Ref. 1) contains
 

other examples of character output data.
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.Appendix 
A
 

HAL Keywords
 

(not including built-in functions)
 

The following words are -HAL keywords and are usually
 

unavailable for any other use.
 

ACCESS 


AND 


ARRAY 


ASSIGN 


AT 


AUTOMATIC 


BIN 


BIT 


BITLENGTH 


BY 


CALL 


CASE 


CAT 


CHAR 


CHARACTER. 


CHARLENGTH 


CLOSE 


COLUMN 


CONSTANT 


DEC 


DECLARE 


DO 


ELSE 


END 


ERROR 


EVENT 


EXCLUSIVE 


FALSE 


FILE 


*FOR 


FUNCTION 


GO 


HEX 


IDCODE 


IF 


IN 


INCLUDE 


INDEPENDENT 


INITIAL 


INTEGER 


LABEL 


LATCHED 


LINE 


MATRIX 


MATRIXDIM 


NOT 


NONQUALIFIED 


OCT 


OFF 


ON 


OR 


OUTER 


PAGE 


PRECISION 


PRIO 


PRIOCHANGE 


A-I
 

PRIORITY
 

PROCEDURE
 

PROGRAM
 

QUALIFIED
 

READ
 

READALL
 

REPLACE
 

RETURN
 

SCALAR
 

SCHEDULE
 

SEND
 

SIGNAL
 

SKIP
 

STATIC
 

SYSTEM
 

TAB
 

TASK
 

THEN
 

TERMINATE
 

TO
 

TRUE
 

UNTIL
 

UPDATE
 

VARYING
 

VECTOR
 

VECTORLENGTH
 

WAIT
 

WHILE
 

WRITE
 



Appendix B
 

HAL Built-In Functions and Pseudo-Variables
 

The built-in functions and pseudo-variables available in HAL
 

are given in this appendix, and are presented in alphabetical
 

order under their respective headings. The allowable data-types
 

fpr the arguments are indicated using the following abbreviations:
 

I: 	integer
 

S: 	scalar
 

V: 	vector
 

M: 	matrix
 

B: 	bit
 

C: 	character
 

A. 	Conversion Functions (See Secs. 9.2.1, 9.2.2, 10.3.2)
 

Arguments: I,S,V,M,B,C
 

1. 	 INTEGER
 

2. 	SCALAR
 

3. 	BIT
 

4. 	CHARACTER
 

5. 	VECTOR
 

6. 	MATRIX
 

B. 	String Functions
 

1. 	INDEX (string, config)
 

Arguments: B,C. Searches a string for a specified
 

bit or character configuration. The
 

starting location of that configuration
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within the string is returned as an integer
 

data type.
 

2. LENGTH 	(string)
 

Arguments:. B,C. Finds the string length and returns it
 

as an integer data type.
 

3. LJUST 	(character-string)
 

Result: 	 LJUST removes all the leading blanks of a
 

character string operand and returns the
 

resultant character string.
 

4. 	RJUST (character-string, p)
 

Result: 	 RJUST creates a new character string of
 

length, p. The character string argument is
 

truncated on the left, or padded with blanks
 

on the left, depending on whether its length
 

is greater or less than p. p is a scalar
 

expression which is-rounded to the nearest
 

integer before use.
 

C. 	Arithmetic Functions (B,I,S)
 

These functions return the same data type as the argument
 

(bit arguments are first converted to integers; the function
 

returns an integer). Array arguments yield array results.
 

1. 	ABS
 

Finds the absolute value of the argument.
 

2. 	CEILING
 

Determines the smallest integral value that is
 

greater than or equal to the argument.
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3. 	FLOOR
 

Determines the largest integral value that does not
 

exceed the argument.
 

4. 	ROUND
 

Rounds the argument to niarest integral value,
 

5. 	SIGNUM
 

Returns 0, +1, -1 as argument is zero, positive, and
 

negative, respectively.
 

6. 	SIGN
 

Returns +1, -1 as argument is positive or zero, and
 

negative, respectively*.
 

7. 	TRUNCATE
 

Returns 0 if argument is less than +1 but greater
 

than -1; otherwise returns equivalent of SIGN (argument)
 

times the largest positive integral value that does not
 

exceed ABS (argument).
 

8. 	MOD(a,b)
 

MOD extracts the remainder c such that (a-c)/b=N, where
 

- N is an integral number. c is the smallest positive
 

number that must be subtracted from a in order to make
 

N an integral number.
 

D. 	Mathematical Functions
 

These functions return a scalar data type. Arguments may
 

be B,I,S. (Bits and integers are converted to scalars.) Array
 

arguments yield array results.
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1. 	ARCCOS
 

Trigonometric cosine; argument in closed interval [-1,1];
 

results in closed interval [0, w].
 

2. 	ARCCOSH
 

Inverse hyperbolic cosine; arg not less than 1.
 

3. 	ARCSIN
 

Inverse trigonometric sine; arg in closed interval
 

[-1,1]; result in closed interval [-r/2, 7r/2].
 

4. 	ARCSINH
 

Inverse hyperbolic arc sine; arg any value.
 

5. 	ARCTAN
 

Inverse trigonometric tangent; arg any value; result
 

in open interval (-7/2, n/2).
 

6. 	ARCTANH
 

Inverse hyperbolic tangent; largj<l.
 

7. 	 COS
 

Trigonometric cosine; arg in iadians; largl<K.
 

8. 	COSH
 

Hyperbolic cosine; largl<K3.
 

9. 	EXP
 

Exponential, (earg); largl<K3.
 

10. 	 LOG
 

Natural logarithm; arg positive and non-zero.
 

11. 	 SIN
 

Trigonometric sine; arg in radians; largj<Kl.
 

12. 	 SINH
 

Hyperbolic sine; largl<K3.
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13. 	 TAN
 

Trigonometric tangent; arg in radians; arg may not be
 

an odd multiple of 7/2; largj<K2.
 

14. 	 TANH
 

Hyperbolic tangent; arg any value.
 

15. 	 SQRT
 

Square root; arg positive.
 

Note: Kl, K2 and K3 are upper limits which depend upon 360/75
 

machine characteristics (to be supplied at a later date).
 

E. 	 Matrix-Vector Functions
 

Arguments may be vectors or matrices (as applicable). Array
 

arguments yield array results.
 

1. 	 ABVAL
 

Absolute value of magnitude of vector; argument may be
 

a vector of any length.
 

2. 	 ADJ
 

Adjoint; argument is invertible square matrix of any
 

dimensions; result is equal to DETERMINANT (argument) times
 

INVERSE (argument).
 

3. 	 DET
 

Determinant; argument is a square matrix.
 

4. 	 INVERSE
 

Inverse; argument is square matrix; result is inverse
 

if argument is invertible.
 

5. 	 TRACE
 

Trace; argument is square matrix; result is sum of
 

diagonal matrix elements.
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6.-	 TRANSPOSE
 

Transpose; argument is matrix of any dimensions; result
 

is the interchange of the rows and columns of the argument.
 

7. 	UNIT
 

Unit vector; argument is vector of any length; result
 

is a vector of magnitude 1 and in line with argument.
 

F. 	Linear Array Functions
 

These functions have the following general format:
 

function-label(single-operand)
 

where the function will operate on the "linear array" representing
 

the "inner-most" free index of the argument'. The s'ngle-operand
 

may be of (B,I,S,V,M) data types or arrays of these types. The
 

following table indicates the array shape and dimension of the
 

function result.
 

Argument() [Xa [X] () V£ IV"~:Pab9 * m,n Ma,b:m,n*aa,b 	 Z [V]b:,£ mn Ma m
 

Function (2 2 (3) (3) [V 
Label A [A] a S 3 S]a,b m V]a,b:m 

Subscripts indicate shape and dimension (i.e., array-shape:dimension) 

t E vector length; m,n E matrix rows, columns; a,b E array shape. 

(In general, the argument array shape may be a,b,c,... etc.) 

NOTES:
 

(1) 	X may be bit string, integer or scalar
 

(2) A is an integer if X is a bit string or integer
 

(3) 	S indicates scalar
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The 	linear array functions are:
 

1. 	 SUM
 

Sums over inner-most free index.
 

2. 	PROD
 

Forms product over inner-most free index.
 

3. 	MAX
 

Finds maximum element value over inner-most free index.
 

4. 	MIN
 

Finds minimum element value over inner-most free index.
 

EXAMPLES:
 

1. 	 DECLARE A ARRAY(2,4,6);
 

SUM([A]2,*,6) results in a 2x6 array of scalars. Sum
 

is performed over second index because it is free.
 

2. 	DECLARE ARRAY(25,25,10)A,B;
 

* ) ;
[A] 3 TO 8,4,* = MAX([B]1 0 TO 15,,
 

The result is a 6xlO array of scalars. Each scalar is equal
 

to the maximum value encountered along the inner most
 

index of [B]. The statement is equivalent to the following
 

"DO FOR-loops":
 

DO 	FOR I = 3 TO 8; 

DO FOR J = I TO 10; 

AI,4, J MAX([B]I+7,J,*)
 

END;
 

END;
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.3. 	DECLARE D ARRAY(10)VECTOR(6);
 

SUM([D]) results in an array 'of scalars of length 10.
 

Each scalar is the sum of the 6 components of each of the
 

10 vectors.
 

G. 	Miscellaneous Functions
 

1. 	RANDOM
 

Result is the current base random number in the
 

pseudo-random number generator. This function enables
 

the programmer to make successive runs of a program
 

without repeating sequences of pseudo-random numbers.
 

2. 	RANDOMG
 

Selects a random number from a Ganssian distribution.
 

3. 	TIME
 

Returns current time as an integer.
 

4.-	 DATE
 

Returns current date as an integer.
 

H. 	 Pseudo-Variables
 

A pseudo-variable, in HAL, is a function that can only
 

appear on the left of an equal sign (=) in an assignment or
 

DO statement. The only defined pseudo-variable is SUBBIT.
 

See Sec. 10.3.2.
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I Appendix C
 

Summary of HAL Operations
 

The following tables summnarize the allowable operations
 

between two operands. In most cases the valid result-type
 

(or an error) and any implied data conversions are indicated
 

within the boxes.
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0. RAE ..
Operation Prefix ­

2 4 Q :.. NOT. 

OPERAND INTEGER SCALAR VECTOR MATRIX BIT STRING CHARACTER
STRING 

P p P P L 
INTEGER SCALAR VECTOR: MATRIX- 3+1*R BIT ERROR 

I. 

P refers to P-grbup' of. operators shown above. 

Q refers to Q-group of operators sho 7n above. 

* * BtI means conversion from bit to integer 

Tab1e C-i 



Operation Addition & Subtract OPERAND 

OPERAND 2 


r INTEGER SCALAR ' VECTOR
OPERArNDl " 

INTEGER INTEGER, SCALAR ERROR 

* 1S 


SCALAR SCALAR SCALAR ERROR. 

'I S 


VECTOR ERROR ERROR VECTO)R 

-,MATRIXERREROERO 


BIT STRING -INTEGER SCALAR ERROR 
B-?I B I-+S , 

ARACTER
STRING " ERROR ERROR ERROR.-

*I-" S means conversion of integer to sbalar, 


Table tC..2
 

OPERAND
 

MATRIX 


ERROR 


ERROR 


ERROR 

MARXER. 


ERROR 


ERROR.-


BIT STRING 


INTEGER 

B I
 

SCALAR 

B-*IeS
 

ERROR 


.
 

INTEGER 

* +
 

ERROR 
.. 


d: 


CHARACTER
 

STRING
 

ERROR
 

ERROR,
 

ERROR
 

ERR
 

ERROR
 

ERROR
--. • ,
 

dimension check
 



OPERAND
A" Operation Multiplication: OPERAND1 OPERAND 2 

OP RAND-

RAINTGER. SCALAR 

OPErAND 

INTEGER -INTEGER SCALAR. 


I _) SS 

SCALAR SCALAR SCALAR 


..-VECTOR VECTOR VECTOR 

n 1+5 
bth 

MATRIX MATRIX 'MATRIX 


ItS 


BIT STRING INTEGER SCALAR 


B+I B+! S 


CHARACTER
 
STRING ERROR ERROR 


Notes: (1) Vector outer product V V 

(2) Vector DOT product V.V(d) 

VECTOR 


VECTOR. 

VECTOR 


MATRIX(l)
 
SCALAR(2). 


VECTOR(S3)' 


VECTOR 


dd 


VECTOR 


B+IS 


ERROR 


-. MATRIX 


MATRIX. 

1+S_1I_ 

MATRIX 


VECTOR 


d 


.1!MATRIX 


MATRIX, 


B+1+8 


ERROR 


BIT STRING CHARACTER 

STRING
 

INTEGER ERROR
 

B' 

SCALAR .:ERROR
 

VECTOR ERROR
 
B IeS
 

MATRIX ERROR
 

B41+S
 

INTEGER ERROR 

B+I, B41 

RROR ERROR
 

d: dimension check
 

C3) Vector cross product V*V(d, restricted to 
3-element vectors), 

Table C73
 



Operation _____________OPERAND•Division 1/OPERANDO ND 

OPERAND2 

OPERAND1 

sRAND, SCALAR VECTOR 
, 

MATRIX. BIT .STRING 
INTEGERSTRING 

CHARACTER 

INTEGER SCALAR 

1S, leS 

SCALAR 

I+S 

* ERROR ERROR SCALAR 

I S, B-*IS 

ERROR 

SCALAR SCALAR SCALAR ERROR ERROR SCALAR ERROR 

0 

VECTOR VECTOR 

~15* 

VECTOR 'ERROR ERROR VECTOR 

-*S 

ERROR' 

MATRIX MATRIX MATRIX * ERROR ERROR MATRIX ERROR 

BIT STRING 

lHARACTER 

STRING 

. SCALAR 

B+I+S, I+S 

'ERROR' ' 

SCALAR 

BtI- S 

ERROR 

* 

" 

ERROR." 

*ERROR ' 

ERROR 

* ERROR 

' 'SCALARB+I S, 

B+I--S. 

ERROR 

'ERROR 

ERROR 
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OPERND'*OPERAXND 
Operation 'Exponentiation .. 9PERN 2 

O0ERAND2, 
ARCE
 

INTEGER, SCALAR VECTOR MATRIX BIT StRING CHARACTER
 

PERAD.STRING
 

INTEGER SCALAR (1 )  SCALAR (1 )  ERROR ERROR SCALARC2 ) ERROR
 
I4S. 1>S I >S, B+I S
 

SCALAR SCALAR SCALAR ERROR ERROR SCALAR ERROR.
 

VECTOR ERROR ERROR ERROR. ERROR ERROR ERROR
 

MATRIX( 5 ) MATRIX MATRIX ERROR ERROR. MATRIX ERROR 

BIT STRING SCALAR (3 )  SCALAR (3 )  ERROR ERROR . SCALAR (4) ERROR 

*CHARACTER E ERO 

STRING ERROR ERROR ERROR... ERROR- RROR
 

Notes: (1) Result is-INTEGER if OPERAND 2 is a whole number literal > 0 (no I S).
 
(2) Result is INTEGER if OPEAND is a bit string literal which may be converted
 

to an unsigned integer Cno I;S, B+I).
 
(3) Result is INTEGER if OPERAND is a whole number literal >'0 (BI)..
 
(4) Same as (2) except (BeI, BeI?.
 
(5) See Sec. 6.1.1.4
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~,,OPERAND%()OPERAND2 FQ: = , ='' , I , '>
1<, 

.Qperation Comparison . , 

Table shows valid relational'operators; the result is always true or.false.
 

RNTEGER SCALAR VECTOR MATRIX' BIT STRING' CHARACTER
 
0 pSTRING


POERAN 
1
 

INTEGER Q Q ERROR ERROR Q ERROR 
* I+-S B T
,. 

SCALAR Q Q ERROR ERROR Q ERROR
 

I+S B+I S
 

VECTOR. . ERROR ERROR P, ERROR ERROR ERROR 

MATRIX ERROR ERROR ERO P ERROR.ERO 

BIT STRING Q 0Q ERROR.- ERROR 'IQ51 ERROR'I
 

CHARACTER ERROR ERROR ERROR ERROR ERROR (2)
QSTRING 

structure-operand2 Notes: (1) OPERAND padded on the
 
.lftomkleghSpeic&l1: structure-operadiPstutr-prn 2 left to make lengths
 

equal if necessary.
 

(2) OPERAND padded on the 
'Table C-6 right to make lengths
 

,equal if necessary.
 



_ _ _ _ _ _ 

OPERZ~ 0 OPRAND2: 
-0E2 '0 .2..Q:fj11 AND, OR-

Operation Strng
 

ND2 CHARACTER
OPERAND2

INTEGER SCALAR VECTOR MATRIX 
 BIT STRING STRING
 

OPERANDI1 ., 

_INTEGER _ _ _ _ERRO C p 

SCALAR 

VECTOR < 

SMATRIX Z 

CHARACTER
 

ERRO -, CHARACTER
 

ERRO. 

ERRO ' . .'I 

_'__ ',. . 
BIT STRING . . ERROF . ' BITRSORINGR 

STRING CHARACTER CHARACTER- ERROR ERROR CHARACTER 
CHARACTER CHARPACTER 

I->C means conversionfrom integer to character
 

* S-C means conversion from scalar to character
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Appendix D
 

HAL Single-Line Format
 

Most HAL statements can b# written in a single line', similar
 

to FORTRAN or PL/l. The single line format requires the hse of
 

the following operators:
 

** for exponentiation 

$ for subscripting
 

Examples
 

Multi-Line SinglerLine
 

1. X = A2 + B2 X = A**2 + B**2;
 

2. X = A + BI; X = A$I +.B$I;
 

If the exponent or subscript is an expression (or a multiple 

subscript) rather than a simple name or literal, the.expression, 

in single-line format, must be enclosed in parentheses: 

3 2P X = A$(J,K)**(2P) 
32 K X =j, 

B 24. X = X = B$(A$(J,K+3))**2 
AJK+
 

3
 

When subscripting an exponent or exponentiating a subscript,
 

it becomes necessary to introduce the single-line format into the
 

multi-line statement as well.
 

D.1 Implicit Data Declarations
 

Since data type annotation (-), (f), (.), (,) cannot be 

supplied by the programmer over a variable name, using a single­

line, implicit data declarations are not possible in this format. 
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Appendix E 

Character Collating Sequence
 

(To be supplied at a later date)
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Appendiz F
 

Formulating ("shaping") Functions
 

(unsubscripted with single entry
 
lists. Also see Sec. 9.2)
 

The tables below indicate the resulting array shape and
 

'typedimensions for the 	functions
 

SCALAR
 

INTEGER
 

BIT
 

CHARACTER
 

VECTOR
 

MATRIX
 

where the functions themselves are unsubscripted and the arguments
 

consist of a single entry (e.g. a scalar, a vector, etc. or an
 

array of any data type).
 

Table F.1 SCALAR, INTEGER, BIT, CHARACTER.
 

Argument v[]
V£ [Vla,b:k Mm,n 

* 

[Mla:m,n 

Resulting 
Array [X]) [Xa,b,t [Xlm,n [Xla,m,n 
Shape 
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Subscripts above indicate shape and dimension (i.e., array­

shape:dimension)2 H vector length; m,n E matrix rows, columns; 

a,b H array shape (in general, the argument array shape may be
 

a,b,c,...etc.). X represents bit string, integer, scalar, or
 

character string.
 

Table F.2 VECTOR, MATRIX
 

Argument-4-
 -

VResulting -k ,
 
X (I )  
Array Shape EXIa,b or [V m,n [Mia,b:m,n


& Dimensions X] Va,b:Z m a 

(2)
VECTOR Vdefault Va:b z [Via,b:ZP" [Vlm:n [Vla,b,m:n 

M(2) . ***(3) - * * * 
MATRIX default Ma,b Mdefault [1]a:b,. m,n [Ma,b-:m,n 

Subsc-ipts are defined in Table F.1 

Notes: 

-() 
 X refers to bit string, integer, scalar or character
 

operands. Appropriate conversion to scalar is
 

accomplished.
 

C21 All components are set equal to X.
 

(3) The length £ must equal the product of the product
 

of the matrix default dimensions. (In general, the 

argument array shape may be a,b,c, ...etc.) - - ­
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