M72- 2)205
CRI)IS /Y

RepoL

vVolume II.

Contract NAS 9—11778,

ADVANCED SOFTWARE TECHNIQUES
FOR DATA MANAGEMENT. SYSTEMS

February 1972

INTERMETRICS

OFFICE OF PRIME RESPONSIBILITY

EDS

Final Report
Volume II. .
Contract NAS 9-11778

ADVANCED SOFTWARE TECHNIQUES
OR DATA MANAGEMENT. SYSTEMS

February 1972

INTERMETRICS

OFFICE OF PRIME RESPONSIBILITY

£EDS5

i
i
|
|

Final Report
Volume II.
Contract NAS 9-11778

ADVANCED SOFTWARE TECHNIQUES
FOR DATA MANAGEMENT. SYSTEMS

February 1972

SPACE SHUTTLE F‘LIGHT EXECUTIVE
SYSTEM: FUNCTIONAL DESIGN

Prepared by:

- James T. Pepe

’INTERMETR!CS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ¢ (617) 661-1840

FOREWORD'

This document is the final report on the functional design of.

‘a flight executive system for the Space Shuttle mission. The
study was sponsored by the Manned Spacecraft Center, Houston,
Texas, under Contract NAS-9-11778. It was performed by I
‘Intermetrics, Inc., Cambridge, Massachusetts, under the technical
direction of Mr. Joseph A. Saponaro, to whom the author is
"indebted for his many helpful contributions to the design of

this executive system and to the format of this report.

. The s tudy program covered the period from June 16, 1971 through
February 16, 1972. The Technical Monitor for the Manned
Spacecraft Center was Mr. Donald Barron.

The publication of this report does not constitute approval
by the NASA of the findings or recommendations contained therein.

,-'INTERME'I;RICS INCORPORATED.- 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

TABLE OF CONTENTS

Page-

1. INTRODUCTION | |
1.1 Scope . o 1
1.2 Executive System Overview .. 1

2. EXECUTIVE DESIGN FUNCTIONAL REQUIREMENTS .

' 2.1 Introduction ’ - 7
2.2 Space Shuttle Avionicé'System> |
2.3 Features of the IBM 4 Pi EP Computer System 13
2.4 - Executive Design Issues ' - 18
2.5 Synchronous versus Asynchronous Task Control 20
2.6 Interrupt Handling and Task Dispatching . 30
2.7 Resource Allocation ' B 32
2.8 Allocation of Specific Resources . 34

3. EXECUTIVE {SYSTEM ARCHITECTURE - - : 43
3.1 ‘Iﬁtroduction,b o : . 43
3.2 Executive and Task Structures -) : 44
3.3 Definitions. o - 48
3.4 Subroutine Linkage o - 54
3.5 Task Priority Levels : _ . 59

3.6 Assignment of Core Memory " - | 60
3.7 Events ' o 61
3.8 I1/0 Scheduling S 67
3.9 I/0 Considerations I IR 67

4. TASK MANAGEMENT FUNCTIONS = S ‘ . 69
4.1 Introduction g : _ S 69

4.2 Time Interrupt ... 89

‘.INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.3 Deadlock Detection o - 90

5. I/0 MANAGEMENT FUNCTIONS 103
- 5.1 Introduction | 103
5.2 Definition of I/0 Management Functions : 104
5.3“ i/O Queues and Control Blocks 104
5.4 The I/0 Supervisor | 106
5.5 'I/O Service Routines , o 107
5.6 Cyclic and Non-Cyclic I/0 , 108
5.7 Configuration Dependent Features 108"
5.8 I1I/0 Errof Correction : L 109
6. CONFIGURATION MANAGEMENT S | o 113
6.1 Introduction ' : ' . 113
6.2 Initialization k | 113
6.3 Failure Detéction and Error Recovery4u 115
6.4 Failures in a Quad-Redundant System = . . 120
6.5 Mode Switching | | \ o 121
6.6 Synchronization : o ' o S122
7. SECONDARY STORAGE MANAGEMENT . S 127
7.1 Introduction . o 127
7.2 Data Set Structure . ' ' ' 127
7.3’_The Secondary Storage Supervisor . - 127
8. EXECUTIVE DESIGN PARAMETERS : | . : _ 131
8.1 Introduction o IR e 0131
8.2 Synchronous Versus Asynchronous'Cbntrolﬂui 131
8.3 Executive Control Element Sizes ' - 132
‘8.4 Task Management Parameters _ ’ o 133
8.5 Supervisor Call Parameters - A - 133

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -+ CAMBBIDGE, MASSACHUSETTS 02138 + (617) 661-1840

9. APPLICATION TASK INTERFACES N 135

9.1 Introduction ' 135
9.2 SVC Parameters | . 135
APPENDIX A - OPERATION AND CONTROL OF .T_HE .DATA BUS 137
APPENDIX B - DATA BUS ERROR CONT;ROL» 163
APPENDIX C - LITERATURE REVIEW OF AVIONICS EXECU-

TIVE SYSTEMS - 175

- INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Chapter 1

Introductien

1.1 Scope

This document presents a top level functional design of
a software executive system for the Space Shuttle avionics
computer.. The design task was accomplished as part of a . study
entitled Advanced Software Techniques for Data Management
Systems.. Three primary functions of the executive are
emphasized in the design: task management, I/0O" management
and configuration management.

The executive system organization is based -on the applications
software and configuration requirements established during the. .
Phase B definition of the Space Shuttle program. Although the
primary features of the executive system architecture were
.derived from Phase B requirements, it has been specified for
lmplementatlon with the IBM 4 Pi EP aerospace computer and
ultimately is expected to be incorporated into a breadboard
data management computer system at NASA Manned Spacecraft
Center's Information Systems Division. Accordingly, the
executive system has been structured for internal operation on
the IBM 4 Pi EP system with its external configuration and
applications software assumed to be characteristic of the
centralized quad-redundant avionics systems defined in Phase B.

1.2 fExecutive'System Overview

_ The majorbareas of the executive system designed durlng<
the course of this study are briefly summarlzed below with
the major characterlstlcs deflned

1 _ .
lNTERMET;RlCS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

1.2.1 Controi Structure

The executive system is based on a combined synchronous/
asynchronous control structure with priority dispatching for
processor allocation and task execution. Cyclic computations are
operated at high priority in a synchronous mode under the super-
vision of a cyclic control executive function. It is -
initiated by a timer interrupt at a fixed frequency, currently
20 msec, with the scheduling and sequencing of each computation in
a minor cycle predetermined and specified via control sequencing
tables. The total running time of the synchronous mode or '
"foreground" 'is constrained to be at maximum less than a percentage
of the minor cycle frequency, the percentage to be established
during implementation. After completing the execution of the
cyclic computations each minor cycle, the executive dispatches
the processor to one of the "ready" tasks in the executive ,

_ ready queue .on the basis of priority. A total of three priority
levels have been established for application programs. '

1.2.2 Interrupt and Task Dispatéhing

All external interrupts within the configuration' are

fielded and serviced by the executive as in any real time .

. - system, allowing a multiprogrammed task environment in the

- background. The concept termed "segmented dispatching" is
however employed for background tasks. That is, although
interrupts are immediately serviced by the executive and entries
-are made in appropriate queues, the interrupted task is resumed
and continued until it either ends or until it reaches a seg- '
ment dispatch point. Only then is a higher priority back-
ground task activated by the executive dispatcher. In this
way long duration tasks can be organized into reasonable
"execution segments with task swapping or interruption points
more predictable. The dispatching of the cyclic task con-
troller each minor cycle is however an exception and is
executed immediately at the occurrence of the minor cycle
clock interrupt. This exception is made as a reasonable
tradeoff to provide the timing and response characteristics
"needed for cyclic computations - ultimately assigned in' the
synchronous mode. This subject is discussed more fully in
.Chapter 2. » : :

.

2

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

1.2.3 Task and Event Scheduling

Any executing taskvmay request the executive to schedule
another task on the occurrence of an event or a specified time.
.Events are system defined in scope and may be posted or deposted

by application tasks via the executive.

1.2.4 Memory Organization and Allocation

All applicatioh software program modules are known to

the executive via a program module directory. Programs are

‘defined as either total mission resident or mission phase resident.
Phase resident programs are loaded from ‘the secondary storage

- device into their assigned portion of the operating memory by

the phase initiation function of the executive. Dynamic memory

is allocated to each task by the executive, when a task is made
ready for execution, out of a subpool of working memory esta-
blished for each priority level. Dynamic memory requirements

are preestablished and defined for each program in the directory.
Memory is allocated in continuous blocks within the priority

pool and addressing is accomplished v1a base reglsters on the

EP computer.

A portion of the memory is dedicated to shared

data. The common memory pool, the compool, is organized into

mission dependent resident data and an overlaid area for
phase dependent data. The phase dependent shared memory
is initialized with the program load at phase initiation

and statically assigned during the phase. All access to the
common data is controlled through and by the executive. The

executive prevents conflicts in memory utilization
by plac1ng the conflicting task in a wait state until the

memory is properly released by the task to which it is presently

assigned.

~1.2.5 I/0 Control

Control and execution of all input and butput operations
are performed by the executive system. Input/output services

-are performed in two modes: on demand via request by an
executing task, or table driven as in the case of cyclic
computatlons in the synchronous mode. Secondary memory
.management is under the control of the executive. - Limited
use of the secondary storage device is assumed during any

mission phase. The executive is responsible for the maintaining

~of tables of current status and communication paths to. all
‘redundant equipment within. the system conflguratlon.

3

INTERMETRICS INCORPORATED* 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02136 -

1.2.6 Configuration Management Error Recovefy

The executive responds to all system hardware and software
detected error conditions and supervises reconfiguration of
the system. A standard system error recovery action is defined
for each error class. Application tasks may invoke. during
execution local recovery for a class via specification of a
task re-entry point.

1.2.7 Executive Functions as a Summary
The specific functions that the executive performs within
the scope of its design to insure the overall integrity and

proper executlon of appllcatlon tasks are the follow1ng-

'a) control allocation of the processor by scheduling and
,dispatching both periodic~and nonperiodic tasks;

b) provide timing ‘and event handling services to 1nsure
proper scheduling of tasks;

c) supervise and control all I/0 operations;

d) allocate all resources to tasks and avoid conflicts; resources-
include dynamic memory, secondary storage and shared memory;

e) provide methods for controlling conflicts over shared memory;
f) maintain and update all system queues and tables;

g) provide the means of hardware error recovery and system
reconflguratlon,

h) prov1de llnkage and common subroutines and executive serv1ces
in appllcatlon tasks via controlled simple interfaces.

1.3 Task Objectives and Approach

The executive system design task was accomplished in
conjunction with other major tasks of the study. Its primary
objectives were threefold:

a) review the Phase B avionics configuration and software
requirements and identify major functlons of the executive
system, . A

(617) 661-1840

b) analyze and determine key aspects of the executive structure
such as: methods of task scheduling and control, external
interrupt. control techniques, task dispatching algorithms,
allocation and sharing schemes, and’ appllcatlon program.
interfaces;

c) develop functional logic and algorithm design for the.

' task .management, I/0 management and configuration manage-
ment modules of the executive system. The design is to
incorporate definition of application program interfaces
to the executlve.

The approach taken in this task was based upon several con-
straints and necessary assumptions about the nature of the
Space Shuttle mission.

1) The application software is not completely defined.
Hence, specific parameters, such as the amount of dynamic
memory needed, can not now be decided. This topic is
again discussed in Chapter 8. :

. 2) The ‘software system we are developing is a kernel

executive system for use in the Space Shuttle Data
Management computer. It is not an operatlng system
for a ground based system.

3): The:breadboard data management computer system at NASA
Manned Spacecraft Center's Information Systems Division
is not at present completely specified. Thus,. several
assumptlons concerning the de51gn are made and p01nted
out in later chapters. . -

4) The executive features incorporated‘in this design are -

those deemed necessary to execute the application software
as far as it is defined in the Phase B Study_Reports_[l,2].

»INTERME'I;RICS. INCORPORATED. - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Page Intentionally Left Blank

Chapter 2

‘Executive Design Functional Requirements

2.1 Introduction

The fundamental features of an executive system must be
‘based on the requirements of its environment and the application
software it controls. Ideally, it should be efficiently tailored
to meet the design objectives and operatlng environment of the
total system. Prior to discussing the design chosen, the purpose
of this chapter is to review major system requirements impacting
on executive system architecture. These topics include: aspects
of the avionics system configuration and applications software,
and the organization of the host computer system. Finally,
several key issues relative to-the selection of a particular
executive system structure (as it influences task control, resource
allocation and interrupt handling) are discussed with respect
to the approprlate design cons1deratlons

2.2 Space Shuttle-Avionics System

2.2.1 Configuration

The Phase B Space Shuttle avionics systems have been
reviewed and are discussed in Volume 1 of this study. Although
more than one Phase B design was reviewed, a hypothetical system
configuration is briefly described incorporating the important

. features of the designs to the software executive.

The avionics configuration assumed consists of a-centralized
data management computer system interfaced to all avionics sub-
systems via a high speed time multiplexed serial data bus system
as illustrated in Figure 2.1. The data management . -computer
system consists of quad redundant computers which operate in a
simplex redundant mode.

During critical phases of the mission more than one eomputer

is operating with one of them designated as the prime computer.
The prime computer transmits and\Feceives all commands and -

7

INTERMEfRICS INCORPORATED - 701 CONCORD AVE_NUE . C_AMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

and data over the data bus to the avionics subsystems. The
standby computers are synchronized with the prime computer via
- external control and execute the identical software. Outputs
from the prime computer are monitored by the standby computers
and compared via hardware by its bus control unit in lieu of
transmission. The results of the comparison are sent to
external control unit and crew operator personnel for voting
and switching.

The data bus system consists of a bus control unit (BCU) ,
4 bus lines and remote interface units (IU) for equipment
connection. The BCU functions as a peripheral under command

from the computer and controls the transmission of information
over the bus. It communicates with the IU which in turn acquires,

converts and sends data to and from the subsystems. The bus
system operates in a "command response" mode in which data is
sent only when requested by the central computer. The
operation and control of the bus is described more fully in
Appendix A. There is no provision for interrupts from.the
subsystems. Each bus line carries serial digital data at 1
- MBPS. The bus system is quad redundant with each BCU capable
.of transmitting on each of the four buses; however, each
computer interfaces with only one BCU. Redundant subsystems are
interfaced to physically separate bus lines via the interface
‘units. The computer system is also interfaced to redundant
secondary storage units. These units contain additional programs
and data tables for various mission phases. For the purpose
of executive design it will be assumed to have limited use
during a phase with restricted write access. Also for purposes
of executive design, it will be assumed that other external
units may be interfaced to the computer directly and not via
the data bus such as display and control subsystems.

2.2.2 Application Software

_ The total onboard software has been estimated (during
Phase B) at requiring approximately 50,000 32 bit words of
operating memory and a peak rate speed of approximately 200,000
equivalent adds operations per second. For purposes of this
discussion the total flight software for the Space Shuttle
central computer system may be broadly classified into two areas:
the executive and mission applications software. The application
software. is under the control of the executive and supports
all phases of the mission: boost, insertion, orbital operations,
coast and powered- flight, rendezvous, docking, undocking, entry
and landing. The applications software to support these
phases .comprises the follow1ng functional areas:

a) flight control and stabilization.
b) 'guidance

c) navigation

8 -

(617) 661-1840

1 - [
. g swsem B .
! CONTROL
] unit . B !
! L b l
| y -
| CREW STATION . :
] LEFT PANEL CENTER PANEL RIGHT PANEL l
CREW STATIGN CREW STATION CREW STATION
| olu {4) olu {11)) ow (4) 1 ¢
| I 1 J I |
: |]
- i |
1 ~t
1 —T) P
L e —_——— ISR S R S J
g — —t 4+~ — — - — o B ol e . - — 4 - -tt-—1 = -1
| aTaTale) A I | T - Y |
| 10CY . 10UC o 1ouc 1ocu |
| CENTRAL [+ CENTRAL | l centraL = O cenrRad]
| COMPUTER : COMPUTER | COMPUTER COMPUTER
- o , |
| o | |
~ ') : . |
I EMon] anea] = 1 l : | AREA’ nory | |
. MEMORY MEMORY
= ov B | IAC ow (2 o |
_ : o |
© : , AREA |: 1 3 AREA a |
: o H I +—{] owi2 |
|) |
l LEFT I : . . .’ l n'GHT l
| CABIN . | : " CABIN |
| BAY , 2 = L. a | BAY |
e AREA T S] AREA ‘
b . owvi [| } - |_c oIu(2) - |
g ' . |
I 3 | I | |
A — I |
| INERTIAL l: T I INERTIAL |
S NAV SE L AV SE
| SET K NAV SET
| _ Lo P ‘ i*H olu (2) =
o R | >0 ¢ b e e ——
et ittt e s { 3 =
Fm—————————— == — s - - 1
I ~ f ! |
| : — 1, | ! S
| AREA AREA | - : = | AREA AREA | |
A oW (2) - o F l ‘ . ——C olu (2 g owi2 | N
I ' } . 1 I : : S l . |
] AREA’ T T AREA
| o B | - ol [
| ! | |
b e — — ——— e L o e e e e e - —— — J

RIGHT AFT BAY

- LEFT.AFT BAY

 Figure 2.1 Avionics Computer Conf].guratlon

d) trajectory targeting
e) crew displays and control
f) onboard checkout and systems monitoring-

g) avionics subsystem management and support..

Estimates of size, data requirements and frequency of operation

of this software have been estimated during Phase B. The flight
control and stabilization function place the highest respond

time demands on the system and have been estimated at basic
frequency of approximately 20 msec. Subsystem and status monitoring
rates are significantly less at 1 sample/sec being the average
although the number of such samples and processing loads are
greater. Targeting, navigation and guidance schemes are .
characteristic of more lengthy, iterative mathematical

calculations, requiring large CPU utilization.

The full impact of crew interaction via display and control
is not completely determined. It is evident however, they
will require the capability to interact through the display
to: load programs and data, select major program modes for
execution, terminate execution, request displays, select control
options, configure and reconfigure equipment, and monitor the status
of avionics subsystems. The crew will also interact with the computer
through other controls such as the rotational hand controller
when flylng under pilot control.

These requirements indicate the Shuttle software environment
‘to include three types of tasks:

a) cyclie tasks: ' Tasks which are performed on a periodic
basis at varying frequencies.

b) response/request tasks. These are tasks which are performed
in response to a pre-selected mode such as the rendezvous
mission mode. Generally these tasks are major sequences -
or functions initiated throughout the mission by the
crew.

c) demand tasks: These are tasks which must be performed
at the occurrence of a system event or certain time.

10

INTERMETR!CS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.2.3 Data Rates -

In the Phase B avionics design. concept the data bus system - .

prov1des ‘a cormunication path between the avionics* equipment and the
prime computer complex. No general requirement for terminal

to terminal communication which cannot, or should not be routed
through the computer complex was identified. The exact '
number and type of subsystems has been continually changing.

A representative list provided below is presented to indicate
the scope of the system.

1) Primary propulsion subsystem: this system consists of
two orbital insertion engines and one orbital maneuvering
engine. :

2) Reaction control subsystem: at least 20 RCS jets located
in the nose, wings and tail for effectlng rotatlon and
' translatlon in space.

3) Hydraulic system: hydraullc power generation, dlstrlbutlon,
control, and conversion of mechanical energy. It consists
of supply lines, gimbals, pumps, aerodynamic surfaces, flaps,
wheel controls, etc. ‘

- 4) Electrical power generation and distribution system: fuel
© ~ cells and battery, and the aux1llary power units located
throughout the Shuttle.

5) Navigation alds/alr data: a collection of equipment
providing navigation and landing capabilities (ALS, radar
altimeter, TACAN, DME, etc.). S

6) Environmental control system: the environmental control
" system provides temperature, pressure, and humidity control
of equipment, equipment bays,.and personnel compartments.

7) Cryogenic system: contains the hydrogen and oxygen for
the primary propulsion, the reaction control system, the
fuel cells and the aux111ary power units.

8) Displays and controls: this system is assumed to have
local processing capability and accepts dynamic data
through the bus for updating of display parameters.

9) Telecommunication: this system consists of various trans-
mitters and receivers including S-band, C-band, VHF,
telemetry encoder, EVA communications, air traffic control
communications, etc.

10) Guidance, navigation and control: this subsystem is
' composed of elements necessary to control, stabilize and
navigate the Shuttle vehicle during all phases of the
mission. It interfaces to the reaction control system,
. jet engines, aerodynamic control surfaces, and landing
- gear, etc. It has access to sensors which include the

11

INTERMEfRICS INCORPORATED + 701 CONCORD AVENUE - _CAMBRIDGE, MASSACHUSETTS' 02138.+ (617) 661-1840 -

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02‘1 38

inertial subsystem, horizon and star trackers, approach
-landing aids, rendezvous radar, radar altimeter, etc.

Although this list of subsystems may not be complete for the
final organization of the avionics system it is meant to be
representative. It is estimated that approximately 150 to 250
LRU's are associated with the subsystems listed above.

N

2.2.4 Data Requirements

The following is a summary of the data requirements
abstracted from the various studies of Phase B contractors.

1) Speed. Peak load estimates of data rate for both the
Shuttle and orbiter have ranged between 100,000 and 250,000
bits per second, including overhead. Considering an average
overhead of approximately 50% for each bus transaction and
allowing for a minimum of 100% expansion to the maximum
speed, a capability of 10° bits per second has been assumed
to be an adequate requirement. This speed should allow
"the computer to acquire data at a rate of approximately
10,000 average transactions per second.

2) Measurements. Estimates have ranged between 4000 and 6500
unique -data points to be sampled from the total complement
of avionics equipment by the central computer. Data
types include: :

digital parallel
digital serial
analog

discrete

The majority of these data points are measurements input
to the computer, and are estimated at approx1mately 60%
to 70% of the traffic on the data bus.

3) Response time/sampling frequency. The maximum sampling
' frequency of measurements is estimated at fifty samples
‘per second. The average sampling frequency for status
information is between two and five samples per second.
Very little information was made available on response
-requirements and load distribution of subsystems.

+ (617) 661-1840

2.3 Features of the IBM 4 Pi EP Computer System

The hardware features of the computer can directly influence

the executive system software design. In this section the
most pertinent features of the IBM 4 Pi EP computer assumed
in the executive design are presented for review. 4 Pi EP

hardware is documented in detail in the IBM Programmlng Manual

for System 4 Pi Model EP [3].

' 2.3.1 Computer Organization

. The EP is a byte addressable computer w1th two bytes
constituting a half word, four bytes a full word, and eight
"bytes a double word. The EP memory size for the computer in

the ISD breadboard is assumed at 24K 32 bit words. An additional

16K multlport buffer memory may be 1ncorporated yet its
status is unknown at this time.

There are 16 general registers (GR) of full word size

used for high speed fixed point and logical operations and four
floating point registers of (FPR) of double word size used for

floating point operations.

The instructions are organized into four classes: register

to register (RR), register to indexed storage (RX), register.
to storage (RS), and storage and immediate operand (s1). A
complete list of all instructions may be found in reference

[3].

All addressing of core storage within instructions is done
relative to a base address stored in one of the general registers,
designated the base register. Many instructions' address fields

can reference up to 4K bytes beyond a base address by 'adding
.12 bit displacement to the contents of a base register. RX

a

instructions further extend this addre531ng capablllty by also

allowing indexed addressing.

2.3.2 Interrupts
There-are five.classes of interrnpts in the EP.

a) I/O 1nterruptlons allow the CPU to respond to conditions
in the channels and I/0 units.

b) Program interruptions signal unusual conditions encountered
' in a program, e.g., incorrect operands and operand specifica-
tions. This class of interrupt may be subdivided into nine

subclasses identified by the interruption code generated
by the EP. The subclasses are: »

13
lNTERMEfRICS INCORPORATED « 701 CONCORD' AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

1) Operation Exception: opefation code unassigned -

2) Privileged-Operation Exception: a privileged operation
is encountered in the problem state

3) Specification Exception: incorrect operand specification
4) .Fixed Point Overflow Exception '

5) Fixed Point Divide Exception

6) Exponent Overflow Exception

7) Exponent Underflow Exception

8) Significance Exception: the result of a floating
point add or subtract has an all zero fraction

9) Floating Point Divide Exception

c) Supervisor call interruptions result from the execution of
a SVC opcode. This interrupt is used to switch from the
problem state to the supervisor state in which pr1v11eged
1nstructlons can be executed.

d) External 1nterruptlons allow the CPU to respond to signals
from the interruption key on the system control panel and
the timer. The timer is a full word in main storage location
~80. An external interrupt is generated when the value of
the timer goes from positive to negative. A timer is essential
to the executive system. The exact details of the timer in
the breadboard are not known as of thlS time.

e) The machine check interruption occurs when a hardware erroxr
is encountered. A diagnostic procedure is automatically
initiated. - - . :

Should several interrupts occur simultaneously'they are
honored in the following order:

1) ~machine check;

2) program or supervisor call (mutually exclusive interrupts);
3) external;

4) 1/0:

Each of the five interrupts described above has two related
program status words (PSW) associated with them in unique main
storage locations (see Figure 2.2). An interrupt causes

the current PSW to be stored in the "old" position and the

PSW in the "new" position to become the current PSW. The old
PSW contains all the information necessary to resume the problem
"program again at the point of interruption, and the new PSW
allows executing a routine associated with the interrupt.

14

INTERMEfRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - ACAMB_R.IDGE. MASSACHUSETTS 02138 -

As mentioned above the supervisor state (as distinct from
the problem state) allows a class of privileged instructions
to be executed. The executive uses thése instructions-to
maintain the integrity of the system. Examples of privileged
" instructions include direct I/0 operations, setting system
masks, and setting PSWs. To prevent their use by : _
application tasks a program interruption is generated when
"a privileged instruction is encountered in the problem state.

The supervisor state can also be used to protect the
executive from invalid access by application tasks. Hence,
SVC operations provide the means for application tasks to
correctly use the executive, and they help insure that an
application task does not alter the executive.

2.3.3 4 Pi Input/Output Via Standard Channel

Another important EP hardware feature is the structure
of the I/O control system. Since the structure of I/O operations
depends heavily upon the channel control structure and its
operation, I/0 management will be one of the most configuration
sensitive areas of the executive software. ~ Hence, a clear
understanding of the EP's I/0 system is necessary.

All I/O operations are initiated by.a START I/O instruction.
If the channel is free, this instruction is executed, and the CPU
continues processing its program. Then the channel, independent
- of the CPU, selects the I/0 device the instruction specifies.

START I1/0 causes the channel to fetch a channel address
word (CAW) from main storage location 72. This word points to
- the main storage location where the channel program begins. The
channel program is a series of chained channel command words
(CCW), each of which contains a command code to the channel as
well as main memory data addresses and byte counts. See
Figures 2.3 and 2.4 for the CAW and CCW formats.

Should an I/0 command be rejected during execution of
a START I/0 (by a program check, busy condition, etc.), the
‘command rejection is indicated in the PSW. The details of
the conditions that prevented I/0 initiation are given in the
channel status word (CSW) which is stored in main storage '
location 64 when the command is rejected (see Figure . 2.5),.
The CSW is formed or reformed by START I/0, TEST I/0, or an
I/0 interruption. This word contains information about the
termination of an I/0 instruction. An error recovery program
-that is initiated because of ‘an I/0 error will depend heavily
upon the CSW to determine the cause of the error and whether
a system reconfiguration is necessary. .

15

(617) 661-1840

'System 'é!nw interruption
- Mask Key Code
Program Instruction
1LC CC Mask Address

Figure 2.2 Program Status Word Format

Key 0000 '| Command Address

Figure 2.3 Channel Address Word Format

16

Command
Code Data Address

Figure 2.4 Channel Command Word
Format

Key © 0000 . Command Address

Status Count

Figure 2.5 Channel Status Word
- Format

17

“

2.3.4 4 Pi EP Data Bus Input/Output

The 4 Pi computer in the DMS breadboard (Figure 2.6)
will be interfaced to a bus system via a stored program
data processor (SPDP). The details of this interface and
method of operation are currently not known. Accordingly,
by direction, the executive design has been based upon inter-
facing to a Phase B type of bus system described previously.
It is anticipated that the functional organization of
executive I/0O management will remain the same.

2.4 Executive Design Issues

In conjunction with the review of the avionics system
‘requirements, several factors of the basic executive system
structure were evaluated. The purpose of this and succeeding
‘sections is to discuss these issues.

"Prior to performlng the analysis several design goals
were established to be used as guidance in selecting an
ultimate design approach. Primary considerations of the - *
executive structure analyzed are: :

a) synchronous versus asynchrdhous fask control;
b) interrupt handling and task dispatching;

C) resource allqcation; | -

d) shared data; ‘

e) secondary stofage'management. o

The primary objective or goal usually adapted by most -
executive system designers is the achievement of an "efficient"
‘executive where efficiency is some measure of throughput.
Efficiency may be defined by either the fraction of executive
overhead time spent doing nonproductive work or in terms of
response time. In performing analyses of these issues,
efficiency was considered a necessary but not primary factor
since it often tends to lead towards complex design resulting
in complex testing and verification.of software. Ideally,
flight software should not only be tailored to meet operational
mission requirements but should be structured to enhance
software verification and flexibility to adjust to changing .
needs. Therefore, the following deSLgn criteria were used as
evaluation of the executive structure.

18

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

INFLIGHT MONITORING CHECKOUT

LONBOARD/GROUND CHECKOUT

MASS
MEMORY

SYSTEM
MANAGEMENT
CONSOLE

|

I. KEYBOARD l

(REQUIREMENTS)

COMPUTER

MAINTENANCE
~ RECORDER

1/0 -

(SOFTWARE)

3

i

Loop
RECORDER.

STORED
PROGRAM
PROCESSOR

3

TIME .

r———-

b

'(SOFTWARE)

= T0 PILOT CRT I

.
(HDW/SFTW) I

comvano. | |
DECODER, [T

- RAU

RAU |-

SUBSYSTEMS

- PILOT
CONSOLE {

_Figure 2.6

REQUIREMENTS)

19

© ACM

i ocwm

, CDB
- 360-44

ISD Breadboard Data Management System

K

HARDWARE

 SOFTWARE

REQ'S

PR R R

dmiay e e e

heaw . T ity

™.

a) To provide an executive system which will'control and
allocate resources of the system to satify operational
mission requirements (i.e., one that does the job).

b) To establish an executive organization which facilitates
verification of application software and reliability of
code.

c) To structure an executive enabling flexibility and modularity
in incorporation of application software changes over long
term maintenance perlods.

d) To define simple and well defined application program
interfaces to the executive system. It should be structured
as a virtual machine to the applications programmer.

e) To develop an executive structure which is both simple
and efficient but consistent with other objectives.

2.5 Synchronous versus Asynchronous Task Control

A primary function of the task management portion of the

. executive is the scheduling, dispatching and control of the

~allocation of processor to task in the job stream.. It is a

- fundamental feature of the executive system. Most large
ground based computer systems incorporate very flexible and -
general task scheduling and dispatching algorithms to accommodate
a varied number and type of users. The Shuttle software on the.
other hand, is more tailored to its environment. Although Phase
B contractors have specified synchronous structured executives,
shuttle software requlrements do not allow-task schedullng to be
completely planned in advance. Furthermore, it is our contention
that a pure synchronous structure would ultlmately be modified
to accommodate priority based event handling since it is necessary
as a Shuttle software feature. We have chosen a design which
accommodates the best features from each control structure. The
following presents the advantages and disadvantages of synchro-.
nous versus asynchronous control. ’

2.5.1 Synchrbnous Structure

A synchronous structured executive is based on a timer-
interrupt, fixed schedule, time slice mode of operation. For
example, Shuttle baseline designs use a 20 msec interval as
a basic reference frame for the system, providing a minor
cycle sampling rate of 50 cps. Under this concept jobs are
organized by the designer into short routines, and when. the
executive detects a timer interrupt (i.e., every 20 msec) it

_ .20 _
INTERMETRICS INCORPORATED 701 CONCORD AVéNUE CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138

examines the "task schedule tables" to determine which set

of routines is to be operated during the next program interval.
Each 20 msec interval contains all 50/sec tasks and a selection
of other lower frequency tasks. The minor cycle is operated
every 20 msec, and a percentage of that time is distributed
among the tasks that are assigned to each minor cycle. A back-
ground job may be run in the slack time before the next minor
cycle. Each task is statically structured as a subroutine

such that ‘it can be dynamically called and returned to the

- executive. : '

Using a command response data bus control concept, scheduling
I/0 in a synchronous structure is similar to the scheduling of
tasks. The I/O requirements for each mission phase or major
cycle are predetermined and synchronized with the structure
of tasks operated in the major cycle. The I/0O request list
is assumed to be fixed. Since the I/0 requirements will have
different frequencies, they are incorporated in each minor cycle
in correspondence to load balancing of the processing tasks.

For example, assume all I/0 requirements for a particular
mission phase are organized into three categories of frequencies:
50 times/sec, 5/sec, and l/sec. Assume that X, Y, and Z are
the number of commands in each category. Assume further that
a minor cycle occurs every 20 ms and that a BCU is commanded
with a. list. . of I/O requests each minor cycle. The averaged
number of I/0O operations required to be scheduled each minor
cycle are: all of the 50/sec requests, 1/10 of the 5/sec
requests, and 1/50 of the 1/sec signals. In a synchronous
structure tables of predetermined I/O requests are organized
according to sampling frequencies. The appropriate number of
I/0 entries to command each minor cycle are selected from these
tables. The synchronized concept attempts to avoid non-deter-
ministic behavior of I/0, I/0 queues, and I/0 backlog.

Several types of I/0O activity cannot be determined in
advance; for example, the command of jets on and off. The
I/0 scheduler may accomplish this by providing a place for
the command in the appropriate list and then causing the
BCU to skip the command or incorporate it, depending on the
results of the stabilization and control tasks.

2.5.2 Example of a Synchronous Executive

For purposes of illustration the basic functions performed
by a synchronously controlled executive include:

a) managlng data bus I/O by 1ssu1ng all I/0 requests for
the minor cycle,

21

. (617) 661-1840

INTERMETRICS !NCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

b) managing task execution by executing ‘all high fregquency
- tasks; deciding what tasks executed at a less frequent
rate must now be done and executing these; and doing
background and/or housekeeping functions in any slack time.

To enable the executive to perform these tasks with the least
amount of overhead, judiciously organized system tables must
be used. A description of the contents of the types of tables
is presented below.

A cyclic command table (CCT) 1lists all tasks and the
frequency they are to be done in a given mission phase. 1In
other mission phases a different table is used, which can be
stored on a mass storage device until it is needed. For
~example, a typical entry would be -

program module _ core

frequency ID address

‘It must also contain pointers to the I/0 requests for every
minor cycle. That is, in a particular minor cycle all I/0
requests are known in advance since a synchronous structure
is deterministic. Thus, the executive can issue all I/0
requests at once. For example, consider the following CCT
entries: ’ :

Fﬁequency Module - | Address
every A 1000
minor B 2000

~cycle C 3000
every

, . D 4000
other minor E 5000
cycle .
every F 6000
four minor G 7000
cycles H 10000

The order of ‘execution of these program modules every four
minor cycles would be the following

22

(617) 661-1840

_Minor Cycles ‘ Modules

N : ABC

N+1 ABCDE
N+2 - ABC

N+3 ABCDEFGH

Should D take an abnormal exit during the (N+1)st minor cycle, -

and deschedule E, the order then becomes:

" Minor Cycles ' Modulés
N -~ ABC
N+1 ABCD
N+2 ABC.
N+3 _ABCDEFGH

'A flowchart of a synchronous executive structure 'ls presented
in Chapter 4. :

2.5.3. Advaﬁtages of Synchronous Structure

a) There is minimal overhead for scheduling and dispatching
because all tasks are known to the system in advance,
and hence, are prescheduled. The executive knows which
fixed set of code to execute in each time slice.

b) The executive design is simple and thus easy to program.

c) The system is not multiprogrammed so no gqueues of
ready and waiting tasks have to be maintained. 1In
other words, more than one task is never in contentlon
at any time for the processor. One fixed set of
code is executed in each time slice. Memory conflict
problems are also eliminated since core and word areas
for all programmers are pre-allocated.

d) The system is deterministic which makes the task of

software verification easier. A programmer must divide a

long program into segments to evenly distribute over:
several time slices. The break points can occur at
places at which he knows no interrupting program can
interfere with his program or data.

e) - The computational and I/0 load will be balanced over
a major loop. Thus, no degraded response can occur

23

INTERMEfRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

-because of computational or I/O overload. Response
- is predictable. : '

f) The predictability of the system eliminates sharing
problems. Programs can be put together in time slices
so that no data sharing problems result. This fact
eliminates the need for a central update routine for
data. Also, the need for reentrant coding, and hence,
dynamic storage allocation, is eliminated.

2.5.4 Disadvantages of Synchronous Structure

a) Application programming is more difficult especially
for long programs. The programmer must break such a
program into segments so that between segments any
running. program cannot interfere with his program.
or data. Also, fitting-his program segments into time
slices ‘with other program segments is difficult. Timing
requirements of each segment must be known before '
these can be fitted together in a time slice. Thus,
the programmer has a second constraint, namely, time.
bounding his segments.

b). Changing application programs or mission programming

' - requirements can be a major redesign. Such a change
can require rebalancing of the entire computational
load. New requirements can mean having to spread the
existing application programs more thinly over the
time slices of a major loop, so that the new programs
can also be fit. That .is, each existing program segment
might be restricted to a smaller time bound, and hence,
reprogramming will result.

c) Each time slice must accommodate the worst case computational
requirement. For example, if the crew is provided the
option to display a parameter during a particular mission
phase, then the calculation of that parameter will have
to be incorporated into the sequence whether or not the
crew ever requests it. '

This situation is particularly bad if more tasks are
added to the system. If in the worst case 80% of the
computer's time is being used, a task having a worst case
requirement of 25% cannot be accommodated. If it were
accommodated, some time slice would have a worst case
requirement of over 100%. This situation is unacceptable
in a synchronous structure. :

24 | .
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

"d) A synchronous structure does not allow tasks to be run
. on a time or event basis. In particular, this type of fixed-

sequence executive organization does not provide a structure
which allows for external interaction by the crew, or which
copes with a random job stream. Jobs must be predetermined
and assigned to slots in a sequence and must operate within
the basic reference framework. It is not clear at this
point whether all Shuttle requirements can be so predetermined.

Both Phase B executive designs allow tasks to be
scheduled on an event basis. That is, when an event
occurs a task can then be scheduled. A scheduler is

used to fit the newly scheduled task into the time slices
and to deschedule lower priority tasks when necessary.
Such an executive cannat be fully synchronous, as defined
and described above.

2.5.5 Asynchronous Structure

. In an asynchronous control structure scheduling and
allocation of the processor are accomplished in real time
according to the needs of the operating environment. Under
this concept processing tasks are assigned a priority which
establishes their relative importance to each other. A task
with a given priority runs until a wait is encountered, or
the existence of a higher priority task is. established..

The distinction between synchronous and asynchronous
control structure can be illustrated by the "states" in which
a task will exist while operating under each structure. In
a synchronous structure, tasks are in one of two states:
actively running or not running. At any instant of .time only
one task is in the running state and all others are not
running. The transition to the running state occurs when a
task's scheduled time slot arrives.

In-an asynchronous structure, a task, while present in the
system, will exist in one of four states: running,
waiting, ready, or inactive. 'The executive insures
the proper transition of states depending upon either 1nternal
or external stimuli. The running state definition is obvious.
Note that the running state can only be entered from the
ready to run state. This unifies the dispatcher functions.
The waiting state is either a voluntary or involuntary state,
depending upon its cause. A voluntary wait would be a wait
. for completion of I/0, or perhaps some external time stimulus.
An involuntary wait would be awaiting resources (e.g., memory)
to become available. The inactive state occurs when the task
is neither running, waiting, or ready. .

25

INTERME'I;RICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138+ (617) 661-1840

The ready state can be entered from all other states
and indicates that a job ‘has all the facilities available to
it to run. 'The function of the dispatcher is to pick the most
appropriate task from the ready queue and start it running.

State changes from wait to ready would occur when the
awaited stimulus has occurred. The change from limbo to
ready state occurs when a schedule request is issued by some
task. The switch from running to ready occurs when a task
is preempted by a higher priority task or interrupt.

In summary, an asynchronous structure is one in which one
or more tasks may be in the ready state awaiting allocation
of the processor. In a simplex computer system this is termed
multprogramming, i.e., the concurrent operation of more than .
one task.

An overview of- the operation of a general asynchronous -
executive is illustrated in Figure 2.7 . The scheduler and
dispatcher, once in control, should be able to pick a
task and run with it. The scheduler assigns or reassigns
task priorities, verifies that all the task resources are
available, and maintains the overall view of real time events.
All task starting is done through the dispatcher.

" The scheduling function in a brodd serse consists of’
making appropriate entries in task blocks and priority queues
so that the dispatcher need only select jobs from the top of
the ready list. If there is a number of tasks to be scheduled,
the scheduler treats some as more important than others and ‘
executes them first. If the dispatch function occurs at some
time other than at the end of a program, then a multiprogrammed
environment is a direct result. N

The interrupt handler "posts" the event complete, makes
~the task ready if possible, and then passes control to the
scheduler to act on the information it has provided.

The resource allocator is invoked as an executive function
by the scheduler to test readiness to run, and if not ready,
will inform the scheduler of the requirements for readiness.

It may also be invoked to test availability of contention
~items.

I/0 in an asynchronous structure is generally scheduled
on a demand basis. An active task requiring I/O schedules
its request via an I/0 queue. The task is placed into the
wait state until completion of the I/O request. The I/0

@

26 -

INTERME*!;RICS INCORPOHATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

"control routines operate on the I/0 queue and interface the

I/0 peripheral (i.e., the bus system) to perform the request.
I/0 is performed. asynchronously with other processing tasks

in the system. After acknowledging receipt, initiation or
completion of the I/O request, the scheduler is informed via

a simulated or actual interrupt. The task awaiting the I/O
request is then placed into the ready state and awaits processor
assignment. However, demand scheduling may not be easily
implemented in the Shuttle software due to the high speed

of the BCU as a peripheral and the intended block scheduling.

2.5.6 Advantages of Asynchrbnous Structure

a) . It is able to adapt to a random job stream; i.e., it does
not require rebalancing of a computational load, and it
can tolerate periodic overload and backlog since it is
designed to cope with this problem. Time and event
scheduling can easily be accommodated.

b) It is more adaptive to a real time environment. If a task
of high priority must be scheduled, it is not necessary
to deschedule a lower priority task. The task dispatcher
selects this high priority task for execution while lower
priority tasks remain in the ready state. Lower overhead
results.

c) -Application programming is easier. An asynchronous
structure does not require long program sequences -such
as targeting, etc. to be arbitrarily organized into
fixed segments to fit in some fixed cycle or sequence.

d) Since it is able to adapt to a random job stream, intexr-
face with the crew is easier. If the crew schedules a
program of high priority, they can be sure this program
will not be spread out over small portions of many time
slices but will be executed quickly.

e) It has a greater'fléxibility for incorporating changes
than the fixed sequence approach. A change in mission
requirements is not a major programming change for
existing programs. ' :

2.5.7 Disadvantages of Asynchronous Structure

a) The multiprograming environment resulting from this type

of scheduling is more complex and difficult to test and
verify. Programmers no longer know where their programs.

27

INT'ERME'I"RICS INCORPORATED - 701 CONCORD\ AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

" will be interrupted. Thus, the executive must guarantee
data integrity, handle sharing of data, and allow for
reentrant coding. It can be made more predictable, however,
particularly on the Shuttle where no external 1nterrupts
exist. .

b) Since all tasks are run through the scheduler and
dispatcher, there is an increased overhead for running"
these programs, queueing ready and waiting tasks, and
handling the queues.. However, this overhead can be
minimized by combining the features of synchronous and
as will be explained later.

2.5.8 Need for Asynchronous Features

Since the nature of the Space Shuttle mission requires
the computer to respond to unpredictable events, such as the
crew altering the job stream, handling emergency situations,
reconfiguring because of failed equlpment, etc., a fully
synchronous executive is insufficient.’ As méntioned.
above, both contractors see the need for scheduling
tasks on an event basis. Since this fact is a step toward
asynchronous structure, the question arises to what degree
the executive organization should be asynchronous. Because
of the simplicity of a synchronous structure, as many of its
advantages ‘as possible must be kept. It is the- disadvantages.
that must be eliminated by allowing some asynchronous features.

The following structure obtains the best features
of both. Tasks will be organized into foreground and -
. background categories. .The foreground tasks are .
those ‘tasks run at a fixed frequency by the scheduler in a
synchronous manner, as described above. The time needed to
execute each of these tasks must be small, i.e., less than
a minor cycle. By definition all foreground tasks (synchronously)
scheduled in a minor cycle must be totally executed in that
cycle. The remainder of the time of the minor cycle can be
.devoted to executing background tasks. Background tasks have
several features. They can be operated on a‘priority basis;
they can be long (i.e., require more than one minor cycle to
execute); and they can be scheduled on a time or event basis. -
-The nature of background tasks makes a queue structure necessary. -
Hence, in a minor cycle there are now two types of scheduling:
synchronous and asynchronous. By making as many tasks fore-
ground as possible we eliminate much . overhead in scheduling/
dispatching background tasks.’ :

The edvantages of this structure are:

a) it eases the 1ncorporatlon of event and time dependent
'reschedullng of tasks; .

28~

(617) 661-1840

6¢C

Q——_-—_—.—— — G gt S om— o S—

l
|
l
|
|
|
|
N
|
|
i

Event complete, remove from queue

Ready Waiting
Task, Assion

l
|
{

b

Priority _ __ _ _. & . :
1~ | P rask ‘1/0
e — Queue - Queue .
Use Task Info. | S
for Tle'Breaklng o o) ;
. B j : o ’ 1
? - -y Schedule . :
e ; o _I/0_Task__ _ _ _..
. Resource Scheduler 1<
Allocatlon K —— o
. iq“eSt Dispatcher

@h—))
Input Request
e ,

Figure 2.7 System Flow of General Asynchronous Structured Executive .

‘ " Work for
Ig:ﬁgigit . Processor 1/0
™ — . Controller
N - Immediate '
a ‘Completion
] A
- 7
I/0 Interrupt Signal
Timer ' ' ; o
: Interrupt . : : S
Unscheduled S L e e
Signal : ‘ '

Output Signals

'b) asynchronous structure data integrity problem avoided, i.e.,
. programmer control of where interrupts will be serviced;

'C) tasks for which precise timing anaylysis is unnecessary
or impossible, or which require extreme timing safety
factors can be executed on a priority basis rather than
on a time '‘slice basis.

Thus, in general, the proposed structure can handle the
Shuttle software in a way advantageous to either completely
synchronous or completely asynchronous structure.

2.6 Interrupt Handling and Task Dispatching

The interruption of a running program in response to
an external signal was introduced into the computer technology
to serve two purposes~

a) provide rapid response—time to asynchronous events;'

b) eliminate the necessity of polling (and its overhead) to
discover whether an awaited event has yet occurred.

In single-processor systems, particularly dedicated systems
where most or all of the computation is devotéd to a single
application, the introduction of interrupt-mode computation
raises the hazards associated with multiprocessing: at
arbitrary times, an interruption can introduce what appears
to be a parallel task which is at least conceivably capable
of disrupting the progress of the interrupted task by alterlng
its variables. Thus, methods for masking or inhibiting
1nterruptlons were added, and the nature of the functions:
allowed in 1nterrupt-mode was restricted. Properly and
thoroughly applied, these fixes allowed programs to perform
properly, although no truly thorough method has been found
of proving that the system was actually properly programmed.

N There exist therefore, two relevant negative aspects of
- interruptions: timing response uncertainties, and potential

.data disruption and conflict. Both can be minimized by cau51ng
interrupts to schedule tasks whenever possible, as opposed to

performing them. This provision reduces the multiplicity
of possible timing situations, since job swapping occurs ‘only

at specified intervals.

30

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Accordingly, it is considered desirable to utilize hardware
interrupts such that tasks are scheduled and the interrupted
task is rapidly resumed. The primary consideration becomes
when to dispatch a higher priority task resulting from an
interrupt, such that respond time requirements can be satisfied.

When an active task is dispatched into the wait state,
another higher priority task is dispatched (made active) from
the ready queue. When else does the executive dispatch? The
following summarizes various approaches considered. :

a) If the executive dispatches at no other time, system
response time to high priority tasks cannot be guaranteed .
since long duration tasks would execute to their end.
This appears unacceptable in the Space Shuttle mission unless
all lengthy tasks were broken down into separate, suffi-
ciently short, independent tasks.

b) The executive can dispatch whenever a task of higher
priority than the active task is scheduled. 1In this case,
“interruption of the active task will occur at a random
point in the coding and a higher priority task given the
CPU. This uncertainty can lead to a program verification
problem due to its random nature and non-repeatability.

¢) Alternatively, a programmer can inhibit dispatching at
dangerous, points in his program. Tasks of higher priority
would be dispatched when permitted. However, this method
does not completely solve the verification problem or
prevent a higher priority task being delayed from execution
for an unacceptable amount of time. By introducing an
onboard "watchdog" timer, it is possible to guarantee
a maximum time in which dispatching is inhibited. If a
programmer exceeds this maximum time in inhibiting
dispatching, the CPU is taken from his program. However,
the dispatch will now occur at a random point.

d) Another approach is to regquire the application task to be
organized into short segments in which the dispatcher
is requested at the end of each segment. If these segments
- were fixed at short intervals it would enable system
response time to be maintained.

31

INW:ERMETRICS INCORPORATED - 701 CONCORD -AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Furthermore, the segment organization of a lengthy program
provides visible and controllable evidence to the programmer
of the possible points that alternate control paths can
occur. Conversely, he is assured that once the segment
begins it is non-interruptable until it ends other than by
the executive servicing of an interrupt or the task placing
itself into a wait state. Similar arguments could be used
for the previous approach. ’ '

The chosen method involves a modification to approach
(d). First, high priority cyclic tasks, operating in a syn-
chronous mode in the foreground, will always be dispatched at
the occurrence of the clock interrupt. All other tasks will
only be-dispatched at the segment points. This will guarantee
response time where it is needed and loosen the requirement
for segment operating limits.

Secondly, the establishment 6f segments for lengthy programs
can be aided by an assembler or compiler. Given that a proce-
dure oriented higher order language is used for application
programming, it can often suggest segment points and make them
visible to the programmer. Tentative examples of compiler based
segment points are:

a) on all forward GO TO statements;
b) entry or exit from a block;

c) maximum time allowed in a segment exceeded. -

The programmer must have a compiler override capability.

2.7 Resource Allocation

A resource may be defined as a facility of a computing
- system that can be temporarily assigned to tasks to enable them
to perform their computations. Examples of resources pertinent
"~ to the Shuttle software are core storage, shared data, and data
. sets on mass memory units. Resource allocation is that function
- of a computer's operating system that assigns resources, when
possible, to the tasks requesting them. In a multiprogrammed
system, several tasks can request the exclusive use of a
single resource. Since only one task at a given time can be
granted its request, the others must wait until these resources
are freed. Care must be exercised in resource allocation to
minimize the number of transitions of a task from the active
to the wait state and to avoid allocation conflicts.

32

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

To be specific, several conflicts can result from
inefficient resource allocation. These are:

a) deadlock,
b) memory fragmentatipn,
c) priority conflict.

We will define each of these condltlons in the following para—
graphs. :

2.7.1 Deadlock

Deadlock is a condition in which two (or more) tasks
are each waiting for a resource held by the other before either
can proceed. Neither task can release the resource it holds,
so neither can be taken out of the wait state [16]. For
example, suppose task A holds resource Rl and needs R2, but
task B holds R2 and needs Rl. Since neither task can release
its resource, neither can proceed and deadlock results.

Deadlock detection algorithms can be included in an
operating system to enable the task performing resource
allocation to recognize potentially hazardous situations;
and hence, to avoid them. This topic has been discussed
extensively by several authors [9-10,13-16]. However, such an
algorithm can cost a high overhead in eXecution time. The Space
Shuttle executive should have an alternate way of avoiding deadlock.

"Deadlock is the result of incremental resource allocation.
That is, it is the result of tasks requesting resources
sequentially during execution. By avoiding incremental
allocation we can avoid deadlock without costly detection
algorithms. More will be said about this topic later as -
it relates to the Space Shuttle computer.

2.7.2 Memory Fragmentation

. Memory fragmentation is a condition. in Wthh a task:
cannot be granted its request for a large block of contlguous
core because all available core for dynamlc allocation is in
small noncontiguous blocks. :

When this situation arises in a large ground based computlng
system having a large secondary memory, part of the contents
of core are rolled out temporarily to create a large enough

33 : :
INTERMEleCS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

contiguous area of main memory to satisfy dynamic allocation
requests However, on the Space Shuttle computer we seek to

minimize the use of any MMU because of its inherent -
complexity. Thus, most data will be maintained in main memory so-
that programs can operate at maximum speed. Programs and

data are only reloaded into the operating memory at low

. frequency during the mission, such as at the start of a new mission
phase. ' ‘ :

2.7.3 Priority Conflict

Finally, an allocation conflict can arise when a low
priority task holds a resource that a high priority task
reqgquests. Often the resource cannot be released by the former
task as in the case of temporary work areas of core storage.
Unfortunately, the high priority task must now be placed in
the wait state until the low priority task can safely release
the resource. The result of this situation is a degradation
in the system's response time for high priority computations.
For a sufficiently large degradatlon the effects upon the
overall mission can be very serious.

Each of these hazardous situations must be avoided in
designing a resource allocation algorithm for the Space
Shuttle computer. The following section will present methods
of avoiding these problems.

2.8 Allocation of Specific Resources

In the Space Shuttle computer there will be three
categories of resource allocatlon for Wthh provisions must
be made. These are:

a) dynamic memory allocation,
b) common data sharing,

c) data set management.

~2.8.1 Dynamic Memory Allocation

Dynamic memory allocation occurs when the executive
temporarily assigns blocks of core storage to a task requesting
this resource. This core is returned to the dynamic core
pool either by the task during its execution or by the executive
at the end of the task. To avoid deadlock we require that
‘all core requests of a task be satisfied when the task is
placed in the ready state. That is, to avoid incremental
allocation a task makes all core requests known to the-

34

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

executive via its TCB at schedule time. If the request can be
satisfied, the task can be placed in the ready state provided
it is not awaiting the allocation of any other resource. If
not, the task is placed in the wait state, awaiting the release
of a sufficient amount of dynamic core to satisfy its needs.
When this core becomes available, the task can be placed in
the ready state. Eventually when the task becomes active, it
has all the core it will ever need and will not have to be
placed back in the wait state during execution for lack of
this resource, Hence, deadlock cannot occur because of a
.conflict in dynamic core allocation.

Although we have avoided deadlock fairly easily, the
problem of memory fragmentation is not as readily solved.
The reason for this increased difficulty is that several
alternative methods of avoiding this problem are available to
us, and the specific method chosen depends upon the computational
requirements of the mission application programs. So far these
requirementS'are not known in any detail. Hence, we will
examine four methods of memory allocation and determine which
is optimal with respect to our present knowledge of the
program requlrements

'2.8.1.1 Fully Static. This method would avoid dynamic storage
allocation by permanently assigning to each task all the core

' storage it needs for the duration of the mission. Memory
conflicts are obviously avoided.

If the total amount of core so assigned is small, e.qg.,
1K bytes, then avoiding the problems of dynamic storage allocation
is advantageous since the executive designh will be simpler. :
However, the amount of core needed is likely to be higher
than our 1K example above, so the extra cost in the amount
of memory needed for static allocation becomes uneconomical.

This is not to say that no task should have its work
areas permanently assigned. For example, a computation executed
every minor cycle will utilizes its work area for a large '
pexrcentage of every major cycle. In this case it could be
economical to statically assign this task's work area to it.
However, for the large amount of tasks run on a less frequent
basis the percentage of a major cycle that they utilize their
work areas is small. Hence, static storage allocation cannot
be the only method of storage allocation in the Space Shuttle
computer.

Note that any task having a static work area allocatlon
is by its very nature non- reentrant.

35
QTE_RMET;RICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.8.1.2 Fully Dynamic. A frequently used method of dynamic
storage allocation in. large scale computing systems is to allow
all tasks to compete with each other for all available core.

A task can request a block of any size provided it does not

exceed the amount of core available. If this block is available,
it will be allocated to the task [4]. o

The disadvantage of fully dynamic allocation is that it
does not solve the problem of memory fragmentation.

2.8.1.3 Semi-dynamic. Let dynamic core be divided into blocks
of several specific sizes, e.g., 50 bytes, 100 bytes, .5K bytes
and 1K bytes. Tasks which request core must be structured so
that their request conforms to one of these sizes. Although -
this method imposes a restriction upon the tasks, the problem
of memory fragmentation is now solved.

There still remains the problem of low priority tasks
holding core and preventing high priority tasks from executing.
The problem can be partially solved by allowing several -
blocks of each size in dynamic core. This will reduce the
probability of all blocks of a given size being simultaneously
allocated. However, the number of blocks of each size cannot

- be too large since this would be as uneconomical as static memory
allocation. Program requirements will of course determine
how many blocks and what sizes to allow.

2.8.1.4 Priority Subpool Allocation. Dynamic core will be
divided into sections called subpools, one corresponding to
each possible task priority level. A task requesting core
will then receive its allocation only from the subpool
corresponding to its priority level. Within a subpool core
can be allocated on a fully dynamic or semi-dynamic basis.

If the fully dynamic method were used, fragmentation
would occur within each subpool. To avoid this problem we
will use semi-dynamic memory allocation (as explained above)
within subpools. Each subpool will have several blocks of
core of several different sizes. A task is then allocated

" a block of its requested size when it is placed on the ready
queue. ‘

Should a task request a block of core that is unavailable
within .its subpool because of existing allocations, a block
from a lower priority level can be used for allocation.

This will prevent a high priority task from having to wait

_ 36
NTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

NTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

for the release of core while low priority tasks can be scheduled.
In addition, tasks of the highest priority will not have to
share their subpool with any other tasks. These tasks will
have the least interference from other tasks in competing for
core. :

The sizes of the blocks and the number of each size - are
determined by the number of tasks and their requirements at-

the given priority level. Once thi$ algorithm has been implemented

size and guantity parameters can be varied for optlmlzatlon.
This is the method selected in the design structure.

'2.8.2 Common Data Sharing

In any multlprogramming system a resource allocation
problem arises when data in core memory can be simultaneously
used by two (or more) tasks. If two tasks only want to read
the data, no conflict exists. However, if one of the tasks |
wants to update before the other has finished reading, a con-
flict arises.

To illustrate this, consider the examples shown in
Figure 2.8. 1In both examples TASK B interrupts TASK A during
the execution of a statement. In Example 1, presume that
the interruption occurred while the matrix ﬁ was being read.
- When TASK A resumes, the computation of M will continue using
some "old" data and the "new" N data assigned in TASK B.
In order to prevent this conflict, initigtion of TASK B would
have to be stalled until the reading of N in TASK A is completed.

In Example 2, presume that the interruption occurs just
after the current value of Y is loaded into the accumulator.
When TASK A resumes, the "old" value of ¥ (i.e., hot reflecting
the update of Y in TASK B) is restored into the accumulator,

X is subtracted and the result assigned to Y. In order to
prevent this conflict, the initiation of TASK B would have to
be stalled until the value of Y is updated in TASK A.

These examples illustrate the fact that accesses to shared
data must be controlled to prevent conflicts. One possible
way of doing this is by preventing task dispatching at critical
times.- This method is too restrictive however, especially for
high priority tasks needing fast system response. We will
investigate alternative approaches to this problem.

37

(617) 661-1840

a) 0S/360 uses the ENQ and DEQ macros to grant tasks access
rights to shared data. ENQ will grant a task access rights
as long as no other task is using the data. In the latter
case, the task requesting access rights is put in the wait

. state, awaiting the release of this data (DEQ). Upon this
release, the next task enqueued for access rights is taken
out of the wait state and allowed to proceed. For two
tasks that only want to read shared data, this method
imposes a needless wait for one while the other has the-
data enqueued. ' ‘

b) A second approach to avoid common data sharing conflicts
is to use UPDATE blocks as is done in the HAL compiler [¢,7].
An UPDATE block is a group of statements within a program
providing a controlled environment for the reading and
writing of shared data variables. Upon entry into the
UPDATE block, read or write locks are established around
parts of the compool containing the variables to be
referenced. There need not be an individual lock for
each variable nor should there be only one lock around the
the entire compool. How the compool is organized can be
decided at a later time depending upon the programs: to
be executed and their requirements.

Should a part of the compool needed by a task be unavailable
for locking, the task is placed in the wait state. Any
"other parts of the compool it has locked are now unlocked

so that they can be used by nonwaiting tasks. The requesting
task can be placed in the ready state when the scheduler
determines that all parts of the compool requested now

can be allocated to this task. At this time read or write
locks are established around these parts®of the compool.

Three types of locks can be established: read, write,
and writing. We say that unlocked data is in state 0 and
locked data can be in states 1-3 corresponding to the
three types of locks respectively.

A read lock will enable another task that also wishes

to read lock. this data to do so. If a write lock is
established around a piece of data, a copy of the data is
made for the updating task. Upon- closing the UPDATE block,
the compool is updated as long as no other locks exist
around the data to be undated. No writing locks can be
put on a given part of the compool, until any read locks
already there are removed by all tasks reading this data.
If the locks exist, the updating task must wait until the
locks are removed. '

38

lNTERMEfRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840 '

"Consider the first example above and suppose that the
statements in question (in TASKS A and B) were enclosed
within UPDATE blocks. In TASK A a read-lock is established
for ﬁ,' because it will be read only. After the interruption,
a write-lock is established for, § and TASK B proceeds toward
completion using copy-data for N rather than active data.

At the end of the update block in TASK B, the process stalls
because of the read-lock imposed in TASK A. As a result,
TASK A is allowed to continue with consistent "old" K data.
After completion of TASK A, a copy-cycle is effected in

TASK B and is updated. All conflicts are eliminated.

A table of compool state transitions follows.

Present
State : : :
- Desired - Read Write Writing
State . Free Locked Locked Locked
Free' ‘ ‘ 0.K. 0.K. ~ not 0.K.
: appli-
cable
Read Locked 0.K. 0.K. 0.K. | wait
- Write Locked 0.K. 0.K. Wait Wait
Writing Locked not Wait 0.K. ~ not
: ' appli- : o appli-
cable ' cable

To prevent any task from locking a part of the compoool
any longer than necessary, no I/0 statements and no pro-
grammed WAIT statements will be allowed in an UPDATE block.
This requirement will prevent a high priority task from
having to wait for long time intervals while a lower
priority task has data locked.

To economize on the amount of core needed for the compool,
part of the compool can be overlaid on transitions to
different mission phases. If two tasks that are only
executed during a particular mission phase use part of

the compool, it is needless to keep this part of the compool
in core as long as no other task in another phase will

ever again use the data. In this case as new program
modules are read into core during a mission phase transi-
tion, this part of the compool can be overlaid.

39

|NTERME'I;RICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

oV

EXAMPLE 1:

_ Figure 2.8 Control of Shared Data = |

READ AND WRITE CONFLICTS

f\h=ﬁ+|’5;

A: TASK; 4//

UPDATE;

CONTROL-

CLOSE A; &

UPDATE;

EXAMPLE 2:

A: TASK;
&

~~CLOSE;

UPDATE CONFLICTS

UPDATE;

Y=Y-X

y

- CLOSE B™

(2

N.= XY;._ '

B: TAS:K;'

~.CLOSE;

—CONTROL

CLOSE A; CLOSE; -

NOTES: 1. B "INTERRUPTS" A INBOTH CASES

B: TASK;
Y=Y-Z;
 CLOSEB

&

UPDATE;
/

~CLOSE;

2. #1 TASK A RESUMES USING OLD AND NEW VALUES FORN |
3. #2 TASK RESUMES "CLOBBERING" THE VALUE FOR Y SETBY TASKB

2.8.3 'Data Set Management

Data set management is heavily dependent upon the type
of mass storage unit used on the Space Shuttle. If a tape
drive is used, as in the MDC/TRW study, very little data”
management capability will be necessary. However, if a random
access unit is used, as in the NR/IBM study, more extensive
data management facilities will be necessary.

_ In this report we will assume a random access unit,
especially since the ASIL configuration includes an IBM 2311
disk drive. However, the data management system we will
present is not as general purpose as in the System/360, for
example. It is designed to meet the needs of the Space Shuttle
mission. One of the criteria used in designing this part of
the executive is the desirability of minimizing use of the
random access unit during the Space Shuttle mission. The major
anticipated uses of the storage unit are to record flight data,
to update the programs in core memory on a per mission phase
basis, and to retrieve display skeletons for the visual.
display application‘programs. More frequent use of the mass .
storage unit is unnecessary, based upon the two Phase B
study reports [1,2].

There will be two classes of data sets on the random
access storage unit, read only and read/write. The former
category may be read at any time by any number of tasks without
conflict. The latter category, however, can cause access
conflicts, and hence, some protection mechanism is necessary.

A directory of each data set on the storage unit and its
characteristics will be maintained in core memory (see Figure
3.4). The . data set directory entry for a. read/write data
set will identify only one program module*with writing access rights,
Whenever a task requests to write upon a data set, the I/O
- supervisor will check to see if the data set is indeed read/
write, and if the requesting task has access rights. Since
only one task can update a given read/write data set, no write
conflicts are possible.

A task may also request to read a read/write data set.
For example, data recorded in a former mission phase may be
important to an executing task. In this case, the I/O super-
visor will honor the read request. However, the software must
be structured so that the requesting task is not reading part
of the data that is presently being updated. The I/O super-.
visor will not check for this fact. Each task that wishes to
read a read/write data set is respon51ble for knowing the
integrity of the data it receives.

2

* This program module must not be reentrant.

41

INTERMETR!CS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Page Intentionally Left Blank

Chapter 3

Executive System Architecture

/3.1 Introduction

Describing the architecture of the executive system con-
sists of more than an explanation of how the various parts of
the executive software work. It also consists of an explana-
tion of how these parts dynamically interact with each other
to extend the power of the host machine. Furthermore, the
hardware structure of this machine plays an additional role in
executive system design since particular hardware features,
such as I/0 channel structure, influence the software design.
In a sense we may consider the machine together with its ex-
ecutive software to be the full executive system that enables
application programs to be executed..

. The executive system is responsible for the control of
all computing tasks in the Space Shuttle real time software
environment. It must manage the allocation and utilization
of all resources of the system including processor, memory,
data bus system, secondary memory, timers, and all other de-
vices connected to the computer. The executive system must be
organized such that it simply and efficiently allocates system
resources to the computing tasks and provides sufficient gen-
eral services to application programs to enable them to achieve
mission requirements.

In order to make the system flexible, it must be structured
such that the executive modules are either self-contained or
utilize a standardized set of subroutines. It must be possible
to make alterations to these modules without jeopardizing the
rest of the executive functions.

In order to make the system simple, it is necessary to
prevent application programs, regardless of their complexity,
from directly performing system control functions. This limits
the number of checks and balances necessary in order to assure

- full system reliability. This does not mean that application

43"

'INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

programs are denied use of hardware facilities, but rather
that the control of such facilities is restrlcted to one
responsible module.

Since the system must support applications which will
have real-time inputs and outputs, it will have to be or-
iented toward being able to guarantee response within some
predlctable time constraints and yet not be performing super-
visory tasks so frequently as to constrict throughput rates,
a problem encountered in many highly interactive systems.

This chapter presents a description of the architecture
of the executive system selected as a basis for the rest of
the design. The structure was derived from the analysis of
exXecutive functions and system requirements described in
Chapter 2. The major executive queues, directories, control
linkage and operating environment are defined.

3.2 . Executive and Task Structure

The flight software for the Space Shuttle computer avionics
system can be organized into two categories: system software
and application software. The executive system is the kernel
of systems software which interfaces directly between the com-
puter configuration and the applications software. It should
be constructed to appear as part of a virtual machine to the
application software programmer. System software can include
other functions such as display software, interpreters, or
other functions necessary as utilities to application software.
In this report, the executive system structure identified is
a kernel set of functions necessary to continue and execute
application software.

Certain assumptions have been made .about the
application software, which are necessitated by the charac-
teristics of the executive system. The major structural pro-
perties that application tasks must possess are the following:

1) All application tasks communicate ‘with each other
and with the éxecutive following a rigid set of conventions
which will be described in the following chapters. :

2) Application software is block oriented with all the
program modules for a given mission phase in main
memory during that phase. Application tasks are
structured as subroutines dispatched by the executive
(analogous to 0S/360).

3) There are no direct I/O0 operations from application
- tasks. The executive's I/O routines handle all I/0
requests.

44

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

A: - PROCEDURE , : A: PROCEDURE -
‘ o , 'SCHEDULE A IN T
- ’ . SECONDS ;
SCHEDULE A IN T -
‘SECONDS ; '
..... END = _END
CORRECT B INCORRECT

Figure 3.1 Correct and incorrect methods of time
: scheduling of background tasks.

45 -

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4)' A task can request the scheduling of another task.
5) All access to shared data is through the executive.

'6) The executive maintains a list of all. program modules
that can ever be executed by the system during flight.

7) A task can include a local recovery procedure in case
- of a software error.

- 8) All tasks' dynamic memory requifements are known to the
system preflight.

9) Background tasks, which are repetitively operated, are
rescheduled at the end of their execution and not at ,
the beginning as shown in Figure 3.1. This is specified
because there might otherwise be insufficient background

" time to complete the task prior to its next dispatching.

3.2.1 General Description

The executive system is driven by a minor cycle real
time interrupt, which causes execution of the cyclic sequencer.
The cyclic sequencer is an executive task which performs all
functions that :are characterized by precise timing sepcifica-.
tions. It commands all I/0 operations done on a periodic
basis, supervises execution of all computations to be run on
a periodic basis, updates core memory with input received.
in the last minor cycle, and monitors the status of avionics
subsystems. Upon termination of the cyclic sequencer, the
dispatcher is called to select a background task for execution.

~The dispatcher is at the heart of the executive system.
It is this executive function that selects tasks for execution
on a priority basis. When a task terminates, it returns to the
dispatcher, which calls a terminator routine to insure the
release of all system resources held by the task.

While an application task is executing, it may request
another task to be scheduled for execution by calling the
scheduler. Scheduling can be done unconditionally, on .a time
basis, or on the occurrence of an event. A function of the
scheduler is to put this new task in a state ready for execu-
tion. It does so by calling the resource allocator to give the
task any resources it may need. Should a resource be unavailable

| 46
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

the task must wait for scheduling until this resource is
- freed. At this time, the resource can then be assigned to the
task, and the task is then ready for execution. It competes
for CPU time on a priority basis with all other tasks in a
similar ready state. The dispatcher will choose the highest
priority task that is ready for execution and assign the CPU
to this task. A task will continue executing until it ends,
or until it voluntarily releases the CPU, or until a system
event occurs necessitating the CPU being assigned. to another
task.

At any time during its execution, a task may request
1/0 operations to be done and may regquest its own execution be
halted until these I/O operations are completed. It is one of
the functions of the executive to supervise and schedule all
1/0 operations. In addition, the executive must supervise
error recovery functions. Should a hardware or -software
error occur, the executive must provide the capability of
running a specific recovery routine depending upon the type of
error. A system reconfiguration routine might then have to be
executed if a piece of hardware is judged faulty. The faulty
equlpment will then be sw1tched out, and the system will
continue execution. :

The execution software to perform all the above functions
will be organized in modular fashlon. We will now identify
the necessary modules. : '

3.2.2 Identification -of Executive Program Modules

a) Cyclic sequencer: performs all services done on a minor
cycle basis.

b) Scheduler: puts previously inactive task or waltlng task
in a status ready for execution.

c) Dlspatcher: assigns CPU to a task ready'for execution.
d) Resource allocator: assigns system resources to tasks.
e) 1I/0 supervisor: dispatches all I/Q requests ‘to channels.

f) Machine check supervisor: diagnostic routines executed
when hardware error is detected.

g) - . Reconfiguration routines: brings up standby equipment
when active unit is judged faulty.

h) Timer routine: sets hardware timer-and signals events
based upon elapsed -times. :

47

(617) 661-1840

i) Program check supervisor: provides recovery from detectable
software errors, such as division by zero.

j) Supervisor service routines: provide supervisor services
for application programs, e.g., enable a task to await
an event or to free an assigned resource.

3.2.3 Executive Operating Environment

~ The executive is not presented with a random stream of
tasks, queued upon secondary storage, as is 0S5/360. Instead
there is a fixed set of tasks organized on a mission phase
basis. Within a particular phase, task throughput is maximized.
Then if core memory must be overlaid with new program modules,:
they are loaded from secondary storage at the beginning of a
new mission phase in order to minimize the use of the mass
memory unit. Moreover, since the modules loaded will be known
preflight, their loading addresses and relocation constants
will be determined at compile time. In other words, fully
dynamic loading and binding of program modules is not supported
by the executive. ‘- This minimal use of the MMU presents a fixed °
program environment for the executive system.

3.3 Definitions

3.3.1 Task

A task is an executive unit of work shich competes for
system resources. A task is created dynamically upon ex-
ecution of the executive's scheduling function. A task
is identified and defined a unique task control block.

A task control block (TCB) is a table containing all pertinent
control information for a task used by the executive for task
management. The TCB is created by the scheduler when it
attempts to bring a currently unscheduled program module into
the system. Each TCB contains a pointér to a program module
which the task executes. ”

A program module .is code executable -t
by the executive. Program modules are started by the
executive and return control to the executive END function upon:
completion. A program module may be associated with more than -
one task. ' :

~The following information is contained in the TCB:
a) task identification;

b) program module entry point;

48

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

c) program module characteristics, such as reentrant;

d) an area to save the PSW, 16 GRs and 4 FPRs should the
task go on the ready or wait queues;

e) - task priority:

f) a flag to denote the task being partially_complete;'

g) a pointer to the DCD entry for the task's dynamic core;
h) | a pointer to the chain of ECBs should the task go into

the wait state;

i) the number of events the task awaits to be made ready,
' supplied when the task goes into the wait state;

h) a pointer to a list of the compool parts the task has locked °
while it is in an update block; _

k) a timer entry indicating the time' at which the task can .
be made ready should it be on the time wait queue;

1) a p01nter to any task's TCB that schedules this task by
LINK;
m) an entry point for a task specified recovery procedure

in case of a program check error;

n) threaded list pointers for the queue and subqueue the
TCB is on.

A task control block designed for the EP is illustrated in
Figure 3.2. It contains a task ID assigned by EXEC dynam-
ically at schedule time.

‘A task may be in one of four task states at any time.

a) Active: The task has been allocated the CPU and is ex-
ecuting. ' ' '

b) Ready:-'The task has been assigned all its resources and
if ready for execution. It only awaits the CPU.

c) Wait: The tesk is awaiting the occurrence of some event
or events in the system. Such an event may be the release
of a resource, an elapsed time, or an I/O interruption.

49
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

Program module ID

character- _ .
istics entry point
prior- | comple- .
ity tion state beD p01pter
PSW (2 full words)
GR : (16 full words)
FPR . . (8 full words)
event . _ .
infor- ECB pointer
-mation :

Compool lock list pointer

Timer entry

Recovery program address

Pointer to parent task's TCB

TCB gqueue pointer

11} 14 n

Subdueue pointer

v

«———— 1 Full Word

Figure-3.2 Format of a Task Control
Block :

50

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE .- CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

d) Inactive: The task is not presently known to the
.scheduler. However, its prodram module is present in
core storage or on a mass memory unit. (Strictly
speaking, an inactive task is merely a program module
and not a task. A program module is made a task at
schedule time, when its TCB is created.)

Our concept of the states of a task is analogous to the
MULTICS concept of the states of a process [11,17]. A state
transition diagram is shown in Figure 3.3.

3.3.2 Executive Queues

The executive dqueues are llStS used by the executive
to associate and control tasks of a similar condition. Task
control blocks are linked into lists correspondlng to a par-
ticular executive queue. A task can only exist in one gqueue
at any instant of time. There are four major executive queues:
ready queue, wait queue, time queue and I/0 queue.

a) .Ready queue: The ready queue is a threaded list whose
elements are the TCBs of the tasks ready for execution.
These TCBs are organized on a priority basis with the
TCBs corresponding to the highest priority tasks oc-
curring at the beginning of the list. An entry is es-
tablished by the scheduler in the ready queue when a task
is brought to the ready state.

b) Wait queue: The wait queue is a threaded list whose
"elements are the TCBs of the tasks waiting for the oc-
currence of some event or events. Each TCB on the wait
gueue points to a list of ECBs, and each ECB on this
list corresponds to an event. When all these .events
or.some allowable combination of them have been com-
pleted, the task can be put on the ready queue.

c) Time queue: The time queue is a subgqueue of the wait
queue. The tasks on the time queue are awaiting the oc-
currence of a timed event. At some multiple of a minor
cycle time interval, the executive examines the tasks on
this queue, to determine if they can be made ready at.
the present. time. If so, those that can are placed on
the ready dqueue. ' o

d) I/0 queue: The I/O queue is a subgueue of the wait queue.
The tasks on the I/0 queue are awaiting the completion of
some I/0 operation. When the I/0 operation completes, a
task awaiting it in this queue can now be placed on the
ready queue.

: 51
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBR_IDGE. MASSACHUSETTS 02138 « (617) 661-1840

endoftask [~ programmed WAIT
“ahort ACTIVE -

Dispatcher
Dispatcher

_scheduler
(on occurrence
of an event)

A
Y
lww)
-

CWAIT

CINACTIVE

7

-schedule command

Figure 3.3 Task State Transition Diagram

52

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.3.3 Common Data Pool

The COMPOOL is an area of operatlng memory permanently
assigned to data variables shared by tasks.
All communication between tasks is done through the compool
Data assigned in the compool remains in the system subsequent
to a task completion. It is statically assigned as opposed
to. the dynamic memory assigned to a task for working storage.
The compool is organized into two parts: a mission compool
and a phase related compool. The data assigned in the mission
portion of the compool is permanently resident. Data assigned
to the phase dependent portion of the compool exists only -
during that phase of the mission. It is overlaid with other
phase data during subsequent mission phases. When a mission
phase is initiated, the phase is loaded from the secondary

memory and the phase dependent compool is initialized.
Data which is to be retained subsequent to a task completlon

must be included in the compool. All accesses to data in

the compool must be coordinated by the application task through
the executive system. The executive prevents conflicts in

the use of the data by system tasks. The SECURE, RELEASE

and COPY executive functions are provided for compool inter-
action and are discussed in a succeeding chapter. ,

. Ao b

3.3.4 1I/0 Request Block

The I/0 request block (IORB) is a table of all pertinent
control information for the I/O0 channel to execute an I/0
operation. The format, content ,and use of this control block
are discussed in Chapter 5. s

3.3.5 Directorieé

There will be three directories present in core storage
for use by the executive task management functions. These
directories and their use will now be defined.

. 3.3.5.1 The Program Module Directory. The program module
directory (PMD) 1is a list of all program modules known to the
system; i.e., all program modules both in operating memory

and secondary storage. Each entry consists of three full words
and has the format shown in Figure 3.4a. It contains the
following information: “

a) program module identification,
b) where the module is resident,
c) address of module,

: 53
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

d) module characterlstlcs, such as reentrant,
e) dynamic core needs.

This directory is updated when the contents of core change
or new program modules are added to the system preflight.
Its major purpose is to enable the schedulér to locate a
program module and to provide enough 1nformatlon to con-
struct a TCB.

3.3.5.2 The Data Set Directory. The data set directory

(DSD) is & list of all data sets residing on the MMU. A data
set may be an executable program module or a collection of
flight data. An entry in this directory is three full words
containing a data set identification word, MMU starting
address, logical record length, and data set characteristics
(i.e.,. read only or read/write). In addition, if this data
set can be updated, the program module with update rights will
be identified in the DSD entry. This information is illus-
trated in Figure 3.4b. '

The DSD enables the I/O superv1sor to locate data sets
on the MMU for I/0 operatlons.

'3.3.5.3 The Dynamic Core Directory. The dynamic core dir-
ectory (DCD) is a list of all blocks of core that can be
dynamically assigned to a task. Each entry. is two full words
containing the address of the block, its byte length, its
subpool number, and an assignment bit. The format is given
in Figure 3.4c. The DCD enables the executive to dynamically
assign core to tasks at schedule time.

3.4 Subroutine Linkage

In order. to standardize the’ way program modules are
structured and to avoid conflicts in parameter passing, regis-
ter usage, and register saving, a method of program module
initialization and linkage must be developed. The EP hardware
structure, as seen by the programmer, is similar enough to .
System/360 to make a linkage convention SLmllar to the 360
feasible.

Upon entering a program module the contents of the gen-
eral registers must be saved so that they can be restored
upon task termination. These registers are stored in an area
of core called the save area. Each task must provide a save
area, pointed to by GR13, which is used by any subtask. it calls.
The format of the save area is shown in Figure 3.5. - :

| 54 |
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

L Progrém Module D?rectory (PMD)

pro’g'ram module 1D

device /////// address

character- % dynamic core
istics //// - request

(a)

2. Data Set Directory (DSD) -

data set 1D

‘atceSs record
type length

address

program module ID for update access

(b)

3. Dynamic Core Dikectory (DCD)

assigned%//z address |
A Z .

subpool
number

length

(c)

Figure 3.4 System Directory
Elements

55

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE -« CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

7777777

address of previous save area
address of next savé_area
~GR 14
GR._15_
GR O
GR 11
GR 12 ;‘ °

Figure 3.5 Format of a Save Area

56

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

After saving the general registers, one or more of these
registers can be initialized as base registers. All addressing
‘0of core storage in a program module is. done with base reg-
isters. Finally, a new save area address is put in GR13. An
example of this linkage follows.

ST™M . 14, 12,‘12(13) save registers in save area.
BALR 12, 0 initialize GR12 as a base
» : = -register. :
USING *, 12 declare to assembler that
' GR12 is base register.
LA 2, SAVEAREA get address of next save
area.
‘ST 13, SAVEAREA +4 store address of previous
: save area in next save area.
ST 2, '8(13)' store address of next
save area in previous save
area.
LR 13, 2 load GR13 with address of
' next save area- to complete
“linkage.

When the linkage and lnltlallzatlon are done, a task may now
freely use the general registers.

The following ass1gnment of the generail reglsters will

be made:
GRO: contains address of dynamic core upon entry
to program module,
GR1: used to pass parameters between program

_ modules,
GR2-GR12: may be freely used by tasks,
GR13: points to save area provided by task,

GR14: contains the return address of task that
: " called currently executing task,

- © GR15; . contains entry point address when control is

passed to a task and can also contain a re-
turn code when a task terminates.

57

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Upon completion of its computation, a task terminates by
restoring the content of the general registers it had saved
upon entry, setting its return code in GR1l5, and branching
to the return address in GR1l4.

Example: :
L 13, 4(13) - get address of previous save area,
M 14,12,12(13) = restore registers,
LA 15,4 "~ load return code of 4,
BR 14 .return.

As previously mentioned, all communication between tasks
is via the compool. Since one task cannot pass another a
parameter list, the compool serves as the communication medium.
Data variable assignments in the compool are generated at
system compile time and do not change during the mission. In
other words, no dynamic assignments can be made in the compool.
All tasks reference compool data at fixed locations for the
duration of the mission.

3.4.1 Common Subroutines

. In addition to a task being able to schedule another

task, a task may execute a common subroutine. A subroutine is

a piece of coding which may be used by several tasks without
itself becoming a task. A common subroutine must be reentrant
or serially reusable. In the former case the calling task
supplies working memory for the subroutine. " In the latter case,
the subroutine must supply control for preventing multiple simultaneous
executions. A software generated event can be used by the subroutine
as a semaphore to insure only one user at a time [12]. This

topic is further discussed in Section- 3.7. Examples of common
subroutines are square root, trlgonometrlc functions, and
vector/matrlx functions.

The calling task may pass parameters to a common sub-
routine by providing a pointer. This pointer will contain the
address of a list of pointers, each p01nt1ng to one of the para-
fmeters, as 1llustrated below.

address of - .| address of
‘'parameter 1list ‘ parameter 1

address of
parameter 2

address of
parameter n.

58

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

The subroutine may now read each of the passed parameters and
return a computed value in one of them. The registers in
which the parameter pointer and dynamic core pointer are
passed to the common subroutine have been described in the
last section.

3.5 Task Priority Levels

In the Space Shuttle computer there will be six priority
levels, 0-5, with 0 being the highest priority. Priorities
3, 4, and 5 are used by application tasks.

Priority 2 is reserved for any application task while it
is executing an UPDATE block. That is, if a task of priority
3, 4, or 5 is executing an UPDATE block, the task's priority"
is raised to 2 until the updating of common memory is com-
pleted. It then returns to its previous value. Thus in ef-
fect, we are - limiting dispatching of priority 3~5 tasks while
another task executes an UPDATE block. By the nature of the
system there will be at most one task at priority 2 at any
given time. This places restrictions on the use of an update
block in that a task cannot enter the wait state voluntarily
under any conditions. It must enter the block, complete the
updating of common memory, and exit the block. The high
priority cyclic sequencer is allowed to interrupt an update
block.) ' : :

Priority 1 is only used by the cyclic sequencer. = It is
given priority over any application task because of the time
dependent nature of its execution. Should the cyclic se-
quencer be unable to lock part of the compool, the task at
priority 2 is executed until it closes its UPDATE block. Now
the cyclic sequencer can lock its required data without inter-
ference. The use of priority 2 is specifically designed to
enable the cyclic sequencer to execute with the least pos-
sible wait due to shared data unavailability. ‘

If a response time equal to a minor cycle is insufficient
to handle critical mission functions, a special priority level
could be included in the executive system. Priority 0 can be
reserved for acyclic tasks that must immediately be executed
for the safety of the mission. These tasks are time constrained
and must execute in less than 0.5 msec. .This rule is enforced
by a timer in the hardware. (Although the EP has only one
timer, the computer chosen for the Shuttle mission would need
at least two, one for the minor cycle interrupt and one for
timing critical task events.) Moreover, priority 0 tasks may
not use dynamic core or use the compool since by their very-
nature no wait in their execution can be tolerated.

59

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Examples of priority 0 tasks are computations that must
be done during a critical maneuver, engine burn or cutoff,
etc. Should one of these tasks require more than 0.5 msec
to execute, it may change its priority to 3 or lower during
its execution. Should there be no higher priority task
scheduled, it will continue execution at this lower priority.
Otherwise, it must wait for the CPU. In this way critical
functions can immediately be given 0.5 msec of CPU time without
seriously interfering with the executive's cyclic functions that
must be performed every minor cycle.

Including priority 0 in this executive system would re-
‘quire more hardware interfaces to the computer than we have
assumed. There would have to be a method of generating an
immediate external interrupt in the CPU from the subsystem
or device sending the interrupt condition. However, sub- :
system requirements have not been sufficiently defined yet to
determine whether or not a priority 0 is necessary in this
system. .

3.6 Assignment of Core Memory

Operating memory will be organized as follows: - the lower
core addresses will be assigned to the executive, as shown
in Figure 3.6. The first locations contain system registers,
such as the timer, the PSWs, and the CSW., This assignment is
described in the 4 Pi EP Manual [3]. The next block of core
contains the executive's program modules, followed by the
exXecutive work area: Within this latter area the executive's
queues, directories and tables are resident.

There are three types of queues present in this area:
TCB queues, ECB queues, and IORB gqueues. Since each type
of control block is a fixed size, the executive can maintain
three threaded lists of unused blocks of core storage, each
element of which contains enough core for allocation as one
‘'of the three types of control blocks, respectively. Thus,
when a task requires ‘a control block, the executive can remove
an element from the appropriate queue of unused blocks and
assign this block to the task to be formatted into a control
.block. Similarly, when the executive determines a task is
finished with a control block, that core that the control
block occupied is then returned to the appropriate queue of
unused blocks for later allocation.

Sufficient space must be allowed this part of core to
hold the maximum number of control blocks that will ever be
needed by application tasks at any given time. Should space be
unavailable, this is an error condition since more tasks are
in the system than its resources can accommodate.

60

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

The compool.will immediately follow the executive work
area and be divided into a mission portion, which is resident
in main memory throughout the flight, and a phase portion,
which is overlaid when a mission phase transition occurs. A
similar feature exists with the application software which
follows next in memory. The mission resident part comes first, '
'followed by the phase dependent part.

The protection key feature of the EP assumes each block
of 2K bytes of core is assigned a single protection key. No
subdivisions of these blocks can be assigned different pro-
‘tection keys. For this reason and the fact that most aero-
space computers do not have a protection key feature an al-
ternate method of protecting parts of main memory from illegal
access 1s necessary. To avoid executive overhead in performing
this protection function, simulation of the entire software
system on a ground based computer must check for illegal accesses
from the application tasks. The methods of valid executive
access are discussed in later chapters. ‘

3.7 Events

An event is an occurrence of significance to the system.
There are a fixed number of events established for the system
identified in an event directory. There are five categories
of events recognized by the executive, the first four of
which are controlled by the executive. These are: time -
events, I/O completion events, release of shared data, and
release of dynamic memory. If other external interrupts are
used in the EP system they may also be categorized as an
event. The final category of events include those which are
controlled via application software and used for task synch-
ronization. ' '

There are two types of events within this last category:
latched and unlatched. A latched event has associated with
it a binary state either on or off. Latched events may be
signalled on (posted) or signalled off (deposted) under
application software control via the executive. A latched
event maintains its current state until changed via signal
~command. -An important use of latched events is to record
the occurrence of an event within the system so that if a
task later wishes to use the occurrence of the event as a
criterion for performing a function, it can do so without
having ‘lost all record of the events occurrence. An un-
‘latched event is only signalled on. It is signalled off im-
mediately after processing by the executive. In a sense an
unlatched event is a pulsed event analogous to a hardware
interrupt.

61

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

System Registors

Executive Coding

Executive Work Area

Mission Compool

. Phase Compool

Dynamic Memory Pool

'Mission Resident Application
Software '

;

Phase'Application Software

Figure 3.6 Structure of Operating
Memory

62

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

An event control block (ECB) contains the current status
of an event. It is dynamically created by the executive when
a task is placed in the wait state. All events have system
scope. When the anticipated event occurs, bit 0 of the ECB
is set to 1 to record the event for the executive. See
Figure 3.7 for the format of an ECB. The ECB contains a bit
to denote if the task is awaiting the event, a bit to denote
if the event is completed, and two threaded list pointers.

3.7.1 Event Handling

In the Space Shuttle software system there is a close
relationship between task management and event handling.
Tasks that are placed in the wait state remain there until the
anticipated events that they are awaiting occur. Then the
event handling facilities of the executive call upon the
scheduler to place these tasks in the ready state.

Tasks can be placed in the wait state in two ways.
First, a task can voluntarily request the executive to place
its TCB on the wait queue until some anticipated event or
events occur. Second, when the scheduler attempts to place a
task in the ready state, the unavailability of a resource
on the nonoccurrence of some event(s) causes the task to wait
until the resource is freed or the event(s) occurs.

A TCB in the wait queue is associated with a threaded
-list of ECBs, each corresponding to an event whose occurrence
"the task awaits. In addition, each event has an associated
event list which contains pointers to all ECBs of tasks
awaiting the occurrence of the event. Thus, when an event
occurs, each ECB pointed to by the event list can be posted,
i.e., record the fact that the event occurred. An illustration
of this control structure is given in Figure 3.8.

‘After the event occurs, the scheduler is called. 1Its

function is to determine if any task awaiting this event can

" be placed on the ready queue. The criterion for this decision
is whether or not all (or some acceptable combination) of the
events a task is awaiting have occurred. If so, the task is
placed in the ready state by having its TCB moved to the o
ready queue and having its ECBs deleted. 1In addition, the
scheduler can now delete the event list associated with the
event. Tasks can perform a function based upon the occurrence
of a single event or upon the occurrence of some combination
of several events. In the latter case the allowable com-
binations are ‘

1) The occurrence of all of the events, or

63
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

awaiting event

event complete queue polnter

gueue pointer

Figure 3.7 Format of Event Control Block

bits: 0 1 2 .3 : 7

Figure 3.9 Format of Event Descriptor Byte

_ 64 .
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617)' 661-1840

2) the occurrence of m out of n events, where m < n.

Each task awaiting an event in one of the first four cat-
egories can only await this one event and not some combination
of events. However, software controlled events contain a
predefined number of distinct events which may be used in-
dividually or in combinations by tasks. Events are not dy-
namically created by the system. Hence, software generated
signals must correspond to events defined at system generation
time. Each software generated event contains an event de-
scriptor byte, containing the characteristics and state of the
event. Figure 3.9 shows the format of the byte. Bit 0 de-
~scribes the event as latched or unlatched; bit 1 records
whether the event is on or off; and bit 2 describes the event
as exclusive or non-exclusive, a distinction we will presently
explain.

Within the class of unlatched events we will choose a
subset to be exclusive events. An important use of exclusive
events is to exclude tasks from use of some serially reusable
resource. When an exclusive event is signalled on, only the
highest priority task awaiting the event is placed in the
ready state. All other tasks awaiting the event remain on '
the wait queue. When the highest priority task is made ready,
the event is then signalled off by the scheduler to be sure
no other application task can interfere with the exclusion

"process. This use of exclusive events is analogous to
Dijkstra's concept of semaphores [12].

Note: it is the duty of the programmer to know if the
events he is using in his tasks are being used by any other
tasks. Without being sure of this fact, tasks can unintendedly
interfere with each other's execution and destroy the in-
tegrity of their computations. '

Also note: in the actual implementation of this
executive system, some categories 6f events will be immediately
serviced by the executive upon occurrence of the event, and
hence, a record of the event's occurrence will be unnecessary.
These events will therefore not need ECBs in their functional
implementation. These events include release of dynamic memory

. and unlocking parts of the compool.

65
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -+ (617) 661-1840

0¥8L-199 (L19) - 8£120 SLLISNHOVSSYI 'IJOQIHENYD » INNIAY QHOONOD LOL - Q31vHOdHOONI SOIHLINHILNI

99

wait

 queue

TCB

TCB |,

TCB |

Event list
1
Y —
ECB K" ECB
Al Ay
Event list
2
ECB
"Bl
i k 3 “Event list
! o - — 10
) - . o
ECB | ECB.
N Mo
Figure 3;8

3.8 I/0 Scheduling

We assume that the data bus system hardware will be

mechanized in a way which allows bus- operations to continue

independently of the CPU once an I/0 command is issued to the

bus control unit. This means that the processor is only

allocated to the I/0 function during an I/0 channel command

and should be reallocated to the computation job stream upon
completion of the command. The de51gn question for the software
I/0 control will be how to schedule the 1/0 operation: should

it be decoupled from the.executive program control and main-
tain its own separate I/O queue, or should it be inserted as

an integral part of a fixed sequence? For example, if I/O

were operated each minor cycle it would output data from the
previous cycle, and input data which is to be processed during

the following cycle. With this concept, however, the I/0

must be predetermined and fixed, with constraints similar to
those for fixed scheduling of computational jobs. 'Input and

output then occurs each cycle, whether it is needed or not.

This approach will cause excess data to be put on the bus,
reducing its effective bandwidth, and its capability for

expanded performance. On the other hand, scheduling I/0 as
a priority queue based on demand, has many features in common
with scheduling jobs (e.g., priority, timing, conflicts, etc.).
An effect of the I/0.gueue on the system is that several jobs
may be in a suspended state awaiting I/0 completions. ‘Methods

are available to avoid such delays, for example, buffering
for data in and out, and issuing commands only via a queue.
The I/0 algorithms presented in Chapter 5 will combine the

best features of synchronous and asynchronous control.

3.9 I1I/0 Considerations

At present there are uncertainties concerning the

operation of I/0 whose resolution overlaps the designs of the
shuttle avionics subsystems. Some of these uncertainties are:

a) Does the central computer have to perform echo checking

of all common data issued on the bus to ensure that commands
" are received by the right subsystem; or is this function
performed by the bus control hardware, or by the standarq

interface units?

b) 1Is data validation in transm1551on a responsibility
of . software?

67

INTERMEfRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

c) Can demand/response really be achieved via the central
computer software? This question becomes important if -
the use of existing hardware is contemplated, because I/0
demands may force the computer into an "I/O-bound" condi-
tion, or seriously load its processing capability.

d) How are devices such as the hand controller to be
-incorporated into I/0O without interrupts?

e) Where and when should conversion and limit testing be
done: in the central software, or at the subsystem?

f) How is telemetry downlink and uplink handled and how
does it effect I/O control software?

68

INTERMEfRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Chapter 4

Task Management Functions

4.1 Introduction

In this chapter we will present a functional design of
the executive software task management functions. Each task
management function is defined, and flowcharts are presented.
The intention of this chapter is to present a functional design
description of each of the task management areas of the execu-
tive and not to present a coding level design. For this reason
several software error checking features. have been incorporated
in the algorithms, but yet others have not been since they are
more appropriately included on a coding level of design.

4.1.1 Definition of Task Management Functions

The Task Management area of the executive system has
the primary function of controlling the sequencing of task
execution. It supervises the scheduling and dispatching of the
CPU, the allocation of memory resources to application software
in accordance with a defined:- controlling algorithm; and it
responds to requests from executing tasks for task and event
control. As part of this function an executive routine, called
the Cyclic Sequencer, is defined and operates at priority 1.
-This routine controls the synchronous execution of cyclic
application subroutlnes

a) ,The Scheduler is that part of task management which
~ takes a program module from the inactive state, makes it a
task, and places it on the ready or wait queue. Moreover,
the Scheduler takes tasks from the wait state, and when
possible, places them in the ready state.

b) The Dispatcher selects a ready task for execution. It
observes a priority algorithm with tasks organized in a -
FIFO manner within a priority level.

c) The Resource Allocator is called by the Scheduler and
tries to give tasks the main memory resources they need for

69

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

-execution.

d) The Cyclic Sequencer manages all tasks and 1/0 performed
at Prlorlty 1.

e) Task Management Service Routines are those executive
routines which an application task can call upon to perform
some task management function. These routines include:

1. Freemain - release dynamic'core held by the active task

2. Secure - lock part of the compool for readlng or
updating
3. Release - unlock the part of the compool held by

the active task

4, Copy - copy part of the compool into the active
' task's work area
5. Link ~ schedule a task and wait upon the task's
completion
6. End - terminate the currently active task

7. Schedule

schedule a task

8. Wait - place the active task in the wait state

9. Signal - turn a system event on or off
10. Test : _
Event - test a software event to see if it is on
or off
1l1. Change
CCT - change an entry in the Cyclic Control Table

Each of these routines is called by a 4 Pi EP Superv1sor
Call (SVC), explained in Chapter 2. .

4,1.2 The Scheduler

The scheduler is functionally organized into two
parts; a SCHEDULE processor which responds to supervisor
calls to schedule a program module as a task, and an event
services processor which is called at the occurrence of system
software-events, i.e. a software signal.

70

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.1.2.1 The SCHEDULE SVC Processor. This routine performs
the following functions: . :

1) Search the TCB queues to see if a task is already scheduled

using the requested program module. If so, the module's
characteristics must be checked to be sure no scheduling
conflict exists. Such a conflict can arise if the program

module is not reentrant.and is scheduled as a task more
than once concurrently.

2) Create a TCB for the task from information found in the

PMD.
3) If the task is to be scheduled upon some condition, place
" the task in the wait state and set up the appropriate ECB
linkage. '

4) For tasks to be scheduled unconditionally, try to allocate
any necessary core storage. If it is ‘unavailable, place
the task in the wait state. ‘ ' B

5) If the task can be made ready, place the task on the ready
queue by priority. The TCB becomes the last one at its
priority level. :

6) Return control to the active task.

When a TCB is inserted into a queue (all of which have a
threaded list structure), this process is accomplished merely
by pointer manipulation. For example, suppose that task A
at priority 3 and task C at priority 5 are on the ready queue,
as shown in Figure 4.la. To place task B on the ready queue
at priority 4 new pointers must be established. These priorities
are illustrated in Figure 4.1b. '

4.1.2.2 Event Services Processor. When the scheduler is
called by the software associated with an event, it performs
the following functions: ,

1) For exclusive software signalled events at most, one task

' can be made ready. Hence, the scheduler finds the highest
priority waiting task and tries to put it into the ready _
state. When a task is put into the ready state, the pointer
to its ECB in the event list can now be deleted.

2) For non-exclusive events, the scheduler checks to see
: if all tasks awaiting the event can be made ready. Those

71

INTERMEfRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Ready Queue

TCB A

Priority 3

[
LS TCB C
Priority 5 "

Figure 4.la Example of TCB queue
’ : - Before Entry of TCB B

- 72,

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Ready Queue

A4

"TCB A

Priority 3

/> - TCB B

- Priority = 4.

TCB C

Priority 5

Example of TCB gqueue

Figure 4.1b 4
After Entry of TCB B

73

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

PROGRAM
MODULE
ALREADY
A TASK,

ALLOW IT TO BE
SCHEDULED
AGAIN
NOW

CREATETCB

.18
SCHEDULE
CONDITIONAL
UPON AN
EVENT (S)

4

'CALL RESOURCE
ALLOCATOR -

HAS

CORE BEEN NO

YES

IS AN
EXCLUSIVE
EVENT BEING
USED IN
COMBINATION

ARE
NUMBER
OF EVENTS
REQUIRED TO
MAKE TASK
READY,
LATCHED
-ON

I |. wAarrQueue . |.

PROGRAM ERRORY

YES PROGRAM

|ERROR_

SET UP ECB
CHAIN

—

N PUT TCB.ON..

!

MAKE EVENT -

ALLOCATED

PUT TCB ON READY
.QUEUE AS LAST
TASK AT ITS
PRIORITY LEVEL

LIST ENTRIES

 Figure 4.2

Flowchart of SCHEDULE SVC

74

RESTORE
REGISTERS

!

ENABLE .
INTERRUWPTS |
" AND EXIT
VIA PSW

Figure 4.3 Flowchart of Scheduler Called as Subroutine
‘ " by SIGNAL SVC _ o

STANDARD h .
LINKAGE 4

YES | FIND HIGHEST
PRIORITY TASK

1 :

AWAITING
THE
EVENT

PUT TASK IN
- 1 - READY STATE
GET £CB .
Annaesses ‘
FRO o .
EVENT LIST REMOVE EVENT
e .. " LIST ENTRY AND
i RETURN ECB TO
EXECUTIVE) _ , _
POST WORK AREA . . L
. EACH ECB : o * _ :
‘ L . TURN OFF ’ : -
0 . "EVENT : : : o
L COUNT =0 : *) 4 ‘)
‘ RESTORE : o . . R
"REGISTERS
LOCATE LAST
ECB OF FIRST ‘ *
CHAIN
EXIT - -

COUNT =
COUNT +1

" FIND-NEXT
ONE

1S

NOMOER OF
N
EVENTS REQUIRED Do REXT enTRY
TO MAKE TASK -
READY
CLEAR _ °
RETURN ECB : | €vent uisT
CHAIN TO .
EXECUTIVE
WORK AREA
-
TURN :
s EVENT OFF
TASK NO _ leaLL RESOURCE

PARTIALLY
COMPLETED

IALLOCATOR

RESTORE
REGISTERS - [®

HAS
CORE BEEN .
ALLOCATED

PUT TCB ON READY YES
QUEUE AS LAST
TASK AT ITS
PRIORITY LEVEL

CEXIT .- . o _ S

PUT TCB ON
WAIT QUEUE

| MAKE EVENT) : - : S
LIST ENTRY

-'75

that can have their TCBs put on the ready queue, and the
core occupied by the ECBs is returned to the executive's.
work area queues. Those tasks that cannot be made ready,
remain on the wait queue. The scheduler can now delete
the ‘event's entire list of pointers. to the ECBs of tasks
awaiting the event. :

3) Return control to the event software.

4.1.3 The Dispatcher

Dispatching is the central function of the executive
system. The dispatcher initiates all application tasks, and
all tasks under normal conditions return to the dispatcher upon
termination. At that time, a terminate routine is executed
to enable the task to release any system resources it may be
holding. This process is illustrated in Figure 4.4.

When there are no ready tasks in the system, the dispatcher
places the CPU in the wait state. This feature aids digital
simulation requirements. The simulator can be implemented
to advance through the wait until the’ next env1ronmental 1nter—
rupt is predlcted.

& é_ngmer 1nterrupt]

. No work CPU 'in
- Dispatcher . 2 . S
wait state

task goes

Task . to wait
state

:¢§ to Dispétcher

Terminate

Flgure 4.4 Overv1ew of Dlspatchlng and Termlnatlng
a Task - . / :

76'
INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 - (617) 661-184.b ,

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138

The major function of the dispatcher is to select the
highest priority task ready for execution and make it active.
Within a priority level the oldest ready task is always selected
first yielding a FIFO dispatching algorithm. . When a task is
being initiated by the dispatcher, i.e., when it is not being
dispatched in a partially completed state, the dispatcher
assigns a save area to the task so that the task can perform its
standard linkage operations as described in Chapter 3. The CPU
is then assigned to the task making it the system's active task.

As explained in Chapter 2 application software operating
in the background is segmented if it has lengthy execution time.
Each active task voluntarily requests the dispatcher to check
the ready queue to determine if a higher priority task is wait-
ing for the CPU. If so, the higher priority task is made active.
_These Segment points are established at convenient breakpoints
to minimize the effect of potential job swaps. These dispatching
checks are done with SVCs, inserted in the program with the-
assistance of an assembler or compiler that generates the object
coding. The flowchart of the dispatch check algorithm is
.presented in Figure 4. 6

The dispatcher is entered at:
1) the end of a task via return linkage;

2) a segment point in a "long" background task via a
supervisor cally; :

3) the active task's going into the wait state;

4) the beginning of a minor cycle via the timer interrupt
software.

4.1.4. The Resource Allocator

The resource allocator is a subroutine called by
the executive's task management functions to allocate dynamic
memory to tasks in the system.

The dynamlc memory requirements of each application
software module is pre-established at system .generation and
specified in the PMD. The function of the allocator is to main-
tain the current status of all of dynamic memory and to service
requests made to it by other parts of the executive.

As explained in Chapter 3, a portion of the operating
memory is used as dynamic memory. It is organized into blocks

77

- (617) 661-1840

INHIBIT 1/0

AND EXTERNAL
INTERRUPTS

IS
THERE
A READY

TASK IN THE
SYSTEM

SELECT HIGHEST
PRIORITY -
READY TASK
BY FIFO ORDER

ISIT
AN AN
INCOMPLETE
STATE

PUT TCB IN
ACTIVE STATE

i

- SET INCOMPLETE
BIT INTCB

!

ESTABLISH
SAVE AREA

!

ENABLE
INTERRUPTS

y

BRANCH TO'
TASK ENTRY
POINT

RETURN
FROM TASK /

EXECUTE
END SVC

PUT CPU IN
WAIT STATE

PUT ITS TCB
IN ACTIVE
STATE)

I

RESTORE GR’s
AND FPR's '

3

ENABLE“INFERRUPTS:
ANDs EXIT-TO-TASI
BY RESTORING PSW

v

Fig,ur-e_'4. 5 Flowchart of Dispatcher

78

k3

\f

ANY NEW
TASK BEEN RESTORE
MADE READY REGISTERS
SINCE LAST)
CHECK #
ENABLE
INTERRUPTS
"AND EXIT
1S\ VIA PSW
THERE. T
A READY
TASK OF HIGHER

PRIORITY THAN
ACTIVE
TASK

STORE PSW, GR's
AND FPR’s OF
ACTIVE TASK

IN ITSTCB

)

PUT TCB ON
READY QUEUE

!

EXIT TO
DISPATCHER

Figure 46 Flowchart of Dispatch Chéck‘ sve

79

STANDARD"
LINKAGE

!

READ TASK) -
PRIORITY AND i

CORE REQUESTED
FROM TCB ’

SEARCH DCD TO
SEE IF CORE -
IS AVAILABLE

IS

- THIS
1S IT THE LOWEST EXAMINE
AVAILABLE PRIORITY NEXT LOWEST
: SUBPOOL SuUBPOOL

YES
POST =~ RECORD FACT:
ASSIGNMENT THAT CORE
BIT IN DCD : WAS UNAVAILABLE
PUT DCD
POINTER. ,
IN TCB - RESTORE
& REGISTERS
RECORD FACT ' ‘
THAT CORE WAS
AVAILABLE } R EXIT

" Figure 4.7 Flowchart of Resource Allocator

80

dedicated'to each priority level. When the allocator is entered

with a, request for X words of dynamic memory for task A at
prlorlty_k,.
unused in

e“pool associated with priority k or any lower

t'determines if x continuous words are currently

priority. " If the memory is unavailable, the task is put in the

wait state pending memory release.

A task may not request additional memory during its execu-

tion. All memory allocation is granted to a task only upon

initiation. However, this task may release all of its dynamic
memory at any time durlng execution to economize in the use of

this resource.

4.1.5 The Cyclic Sequencer

The cyclic sequencer is operated as a task scheduled via
the timed wait queue. It is put on the ready minor cycle with
priority 1. It contains cyclic control tables (CCT) 1dent1fy1ng

.a list of all cyclic computations and theé frequency

at which each must be executed. These computations are executed
as subroutines of the cyclic sequencer, and hence, their execu-

tion time must be fitted to the minor cycle time interval.
cyclic subroutines are c¢onsidered the system's foreground

The

computations, and in turn, they may schedule other tasks to be

executed in the background at priority 3, 4, or 5.

An entry of the CCT is shown in Figure 4.8. It
contains the address of the subroutine to be executed; the
frequency setting indicating the frequency in an integral

number. of minor cycles at which the subroutine is to be executed;
and a frequency count. . The count contains the number of minor
cycles since the subroutine was last executed. It is .incre-

"mented in each minor cycle and zeroed when . .the subroutine

executes. In addition, there are p01nters to the I/O commands

for each subroutine. Frequency settings’ may be dynamically

changed by the subroutine during flight via a supervisor call.

Upon entry into the cyclic sequencer, each CCT entry
is examined. The frequency count is .incremented by 1 and
compared to the frequency setting. Should these entries be
equal, the subroutine must be executed in this minor cycle.

In this case, the frequency count is set to 0, and the subroutine's

input commands are executed. To make the most efficient use

of the channel this process is performed for each CCT entry

before any subroutines are executed. Now each subroutine can be

81

INTERME"I;RICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

program module address

frequency setting_

frequency count

address of inpﬁt commands

address of output coémmands |

€&——1 full word —— >

Figure 4.8 Format of CCT Entry

82

INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840 .

- exXecuted, and at its completlon its output commandsere executed.
.This algorlthm is presented in Figure 4.9. :

During execution a subroutine must wait for its input
requests to be completed before contlnulng its execution. The
cyclic sequencer algorithm chosen minimizes the time that the
subroutine may have to wait. :

The subroutines to be executed in a given minor cycle are
run in the order in which they appear in the CCT. Two sub-
routines executed at the same frequency may be run out of phase
by initially biasing their frequency counts. For example, if
subroutines A, B, and C are executed every 8 minor cycles, and
if A and C are not to be run in the same minor cycle, the CCT
entries may be initially set as shown.

frequency frequency

: _setting __count
A
B
C

The result is that A and B are run in that order every 8 minor
cycles C is also run at that same frequency although it is
4 minor cycles out of phase with A and B \

If a subroutine's execution time is too longf it must be
broken into several smaller subroutines so as not to overload
the system during any one minor cycle interval. Each of the
smaller subroutines runs at the same frequency and must run in
successive minor cycles. As in the above example, this can
be accomplished by initial biasing of the frequency counts.
For example, presume that A must be executed every 4 minor
cycles and is organized into 3 parts A A2, and A3 with an
entry made in the CCT . for each piece.

frequency frequency

setting count
Al 4 o 4
)
2
A3 4 _ _

By phasing the frequency count in the initial conditions,

computation A is run in 3 successive minor cycles: Ay in the

83

INTERMEfRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

first, A, in the second, and A3 in the third. Each has
a frequency of execution of 4 minor‘cycles.

To prevent a system overload during a minor cycle some
percentage of the CPU and I/0 channel's time should be reserved
for foreground computations. The remaining time will be devoted
to executive overhead and background computations. Should the
cyclic sequencer be placed on the ready queue before its pre- _
vious execution has terminated, a software error condition results
because of the overload.

Since foreground subroutines can schedule background tasks,
it is necessary to have a method of preventing a program module
" from being scheduled as a task before its previous execution
is finished. This prevention can be accomplished by several
methods, one of which is to use event handling. For example;
let A be a foreground routine and B a module which is scheduled
for execution by A under one condition. Since A is cyclic,
caution must be used in the method selected for 1nvok1ng the
.execution of B.

B may be scheduled as a task through the use of a SCHEDULE
SVC. If B has not completed execution prior to A scheduling
B again, it is possible for two tasks to be in the system
associated with module B. This condition will occur, for
example, if B enters the wait state for a suff1c1ently long
time interval.

As a solution to this problem define Q to be a latched
event associated with the condition that B should be executed.
Let A be structured to 51gnal event Q on when it detects that B
should be scheduled.

" At phase initiation the start up routine will schedule B’
on event Q.- This will establish B as a task in the wait state
until Q is signalled on. Eventually when A signals Q on, B

.can be executed. '

Task B can then be re-established in two ways:

1) B can avoid termination until mission phase transition
by having a structure looping upon itself as shown in
Figure 4.10a. Whenever Q is signalled on by A, B is again
executed. At phase transition time A and B can be terminated.

2) B can reschedule itself as a task prior to its termination
as shown in Figure 4.10b.B remains in the wait state until
A signals Q on.

In elther case, two concurrent executlons of program module B
are avoided.

"84

(617) 661-1840

#

STANDARD
LINKAGE

{

_ POINT TO
- FIRST CCT
ENTRY

!

INCREMENT
& FREQUENCY

POINT TO

NEXT ENTRY

COUNT

DOES
COUNT =
FREQUENCY
SETTING

NO

NO END OF
TABLE

YES

POINT-TO
BEGINNING~ }
OF TABLE’

DOES

POINT- TO
NEXT CCT
ENTRY

Figure 4.9

FREQUENCY
COUNT
=0

.RESTORE
REGISTERS

!

EXIT

85

YES

EXECUTE INPUT |
COMMANDS

T

FREQUENCY
COUNT =0

EXECUTE
SUBROUTINE

'

ISSUE OUTPUT
COMMANDS

Flowchart of Cyclic Sequencer

B: PROCEDURE A
Begin: Wait for QON;

Signal Q Off;

Go to Begin;
END

Figure 4.10a Re-estéblishing Background Task

B: PROCEDURE
Begin: Signal Q Off;

Schedule B on Event Q;
END

© Figure 4.10b Re—establishing Background Task

86

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02/138 + (617) 661-1840 . |

. The cyclic sequencer is the only priority 1 task in the
system. Thus, the dynamic core in the priority 1 subpool is
not shared with any other tasks and can be considered statically
assigned to the cyclic sequencer. . To reduce overhead this
core should not be allocated through the resource allocator.
There need only be subpools for priorities 3, 4, and 5.

4.1.6 Supervisor Service Routines

Upon the execution of a supervisor call, a PWS associated
with the supervisor interrupt becomes the new PSW This PSW
will enter a general SVC routine to determine which executive
service routine to execute and then to branch to this routine.

The flowchart for this process is shown in Figure 4.11. In addltlon,
the flowcharts for the task management supervisor service routines
listed in Section 4.1.1 will also be presented in Figs. 4.12-4.21.

INTERMEfRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

Certain SVC's require parameters to be supplied to the
executive. For example, SCHEDULE requires the name of the
program module that is to be scheduled as a task. A list of the
necessary parameters is supplied in Chapter 9. :
a) FREEMAIN (SVC 1) - The purpose of this SVC is to enable

a task to release all of its dynamic memory during execution.

b) SECURE (SVC 2) - This SVC enables a task to lock parts of
the compool for reading or updating. If a copy of parts
of the compool are to be created, the task must supply the
copy area from its core allocation. It does so by providing
a pointer to the copy area as a parameter with the SVC.
Should the task have to wait for compool access, it does
so in a partially completed state. The PSW and registers
stored in the TCB must correspond to a point in the coding
at which execution is to continue when the task becomes
active again.

c) RELEASE (SVC 3) - To close an update block the lacks

' established by the active task must be released. This
'SVC does so by referencing the parameter list supplied by
the SECURE SVC. The pointer to this list is in the active
task's TCB. This list contains the addresses of each lock
and the type of lock established by SECURE. Any necessary
updating of the compool is done and then all locks released.

d) COPY (SVC 4) - The SVC copies parts of-thé compool into a

part of the active task's work area. It enables the active
task to read parts of the compool without having to keep

87

(617) 661-1840

-locks established for long time intervals. This SVC

would be used instead of an Update block if the active task

wanted to use compool data for long periods of time, but yet
did not want to prevent other tasks from updating the data.

e) LINK (SVC 5) - The LINK SVC allows a task to create a
dependent task and await this task's completion before
allowing its own execution to continue. Should the depen-
dent task abort because of an error, .the calling task also
aborts; and if this latter task was scheduled via a LINK,
the task that scheduled it also aborts, etc.

f) END (SVC 6) - Upon termination a task returns to the
dispatcher via the return address in GR 14. The dispatcher
puts the CPU in the supervisor state by executing the END SVC.
The END SVC performs several bookkeeping functions for the
executive. It closes any update block that is still open,
frees dynamic memory still held by the task, and puts the
task in the wait state until any pending I/O requests are
completed. Upon termination it returns to the dispatcher.

g) SCHEDULE (SVC 7) - This SVC allows the active task to
schedule another task without establishing a task dependence,
as in the case of LINK. The schedule can be unconditional
or conditional upon some set of criteria. These criteria
include:

1) scheduling on some software event or events occurring;
2) scheduling at some specific time; and

3) 'scheduling after some time interval has elapsed.

These criteria are analagous to the types of scheduling
available within HAL [7,8].

h) WAIT (SVC 8) - The WAIT SVC allows the active task to
place itself in the wait state pending the occurrence
of some event or group of events. The allowable events
are: <

1) waiting for some software event or events being
signalled on (posted) ;

2) waiting until a specific’time occurs; and

3) waiting for a time interval to elapse [7,8].

88
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

i) SIGNAL (SVC 9) - Signal turns an event on or off, depending
upon the parameters supplied by the SVC. When an event
is turned on,the scheduler is called to place any tasks
awaiting the event in the ready state, if possible.

j) TEST EVENT (SVC 10) - The status of the event tested is
returned to the active task via a flag which is set by the
executive. The active task supplies a pointer to the

flag as an SVC parameter.

k) CHANGE CCT (SVC 11) - This SVC enables a task to change
the entries in the CCT as mission phase requlrements
change. Direct updating of the CCT by tasks is illegal and should
.be checked for during system simulation.

1) DISPATCH CHECK (SVC 12) - This SVC occurs at program segment
points. It returns control to the executive to check if
a higher priority is waiting for the CPU.. If so, the pre-
viously active task is put in the ready state, and the new-
higher priority task is made active. (via the dispatcher).

4.2 Timer Interrupt

When the value of the EP timer goes from positive to
negative, an external interrupt is generated. This interrupt
is used to signal the start of a new minor cycle. The execu-
tive coding associated with the timer interrupt will first
reset the timer to interrupt at the start of the next minor
cycle and then service the mission clock. A check is then made
to be sure the cyclic sequencer terminated the last minor
cycle. If not, a software overload condition exists, and a
program error condition results. The cyclic sequencer's TCB
is now formatted and put at the top of the ready queue, and
the previously active task is put in the wait state.

All other tasks awaiting a timed event are checked every
N minor cycles to see if they can now be made ready. The timer
entry in the TCB contains the time at which the task can be _
put in the ready state. When the system clock equals or exceeds
this time, the task can be made ready for execution. The value
of N is a system parameter. Its value must be an integer greater
than or equal to 1 dependlng upon the system response time
desired. '

To expedite checking the time wait queue, TCB entries on
the queue will be arranged in terms of increasing time at which
they can be made ready. That is, suppose task A can be put

89

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

INTERMEfRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

on the ready queue at time x, and task B at time y. If x<y,
the TCB for task A must preceed the TCB for B on the time wait
queue. As a result, it is not necessary to examine the entire
queue whenever it is serviced every N minor cycles. Checking
of entries can stop when the timer entries in the TCBs exceed
the value of the system clock used for comparison. At its
completion the timer interrupt routine exits to the dispatcher.
The flowchart for the above algorithm is given in Figure 4.22.

4.3 vDeadlock Detection

As explained in Chapter 2, the algorithms for resource
2llocation avoid incremental allocations, and hence avoid
deadlock. However, the SIGNAL and WAIT supervisor .calls
introduce the possibility of deadlocked tasks. For example,
if task A contains the SVCs, WAIT M and SIGNAL N, in that
order, it goes into the wait state until M occurs. Now suppose
task B contains the SVCs, WAIT N and SIGNAL M. It too goes into
the wait state, and if a third task does not 51gnal M or N,
tasks A and B are deadlocked.

Judicious program design can, of course, avoid this problem.
However, an alternative approach is to periodically check for
. deadlocked tasks. If the time at which each task goes into the
~wait state is stored in its TCB, a low priority task could
periodically check these times. If a certain time criterion
was exceeded, the waiting task would be considered deadlocked,
and error recovery would commence. ‘

90

(617) 661-1840

INHIBIT 1/O AND
EXTERNAL
INTERRUPTS
VIA PSW

!

STANDARD
‘LINKAGE

7 s

ey o IR N

7 “THIS SVC
A CLOSEOR A
RECOVER

PROGRAM ERROR

BRANCH TO svC
ROUTINE TASK
REQUESTED

utine

Figure 4.11 Flowchart of SVC Interrupt Ro

AN

91

|

GET TCB
POINTER
TO DCD

I

FLAG DCD ENTRY
TO DENOTE THIS
BLOCK OF CORE IS
NOW UNUSED

B!

CLEAR TCB
POINTER
TO DCD

S

ARE

ANY TASKS
AWAITING A RESTORE

CORE - REGISTERS
‘ALLOCATION

ENABLE INTERRUPTS
AND EXIT VIA PSW

SELECT HIGHEST . . A
IPRIORITYTASK | - 7 e e

i

CALL RESCOURCE
ALLOCATOR 9 :

CAN

CORE BE

PUT TASK IN
-ASSIGNED

READY STATE

Y

DELETE EVENT
LIST ENTRY

SELECT NEXT
HIGHEST
PRIORITY TASK

Figure 4.12 Flowchart of FREEMAIN SVC

92

CAN
ALL COMPOOL
LOCKS BE

STORE PSW, GR's, -

FPR’s IN TCB ESTABLISHED
PUT TASK ON
WAIT QUEUE
, % IS
TASK SAVE PRIORITY
PRIORITY -VALUE

MAKE EVENT <3 :
LIST ENTRY g :

& SET PRIORITY
p—— EQUAL TO 2
DISPATCHER

COPY DATA IF
"NECESSARY IN TASK
PROVIDED AREA OF
MAIN MEMORY

!

ESTABLISH
COMPOOL LOCKS

!

ENABLE INTERRUPTS
AND EXIT VIA PSW

' FPigure 4.13 Flowchart of SECURE SVC

93

STORE PSW, GR's,
AND FPR's IN TCB

!

‘PUT TCB IN
WAIT QUEUE

!

MAKE EVENT
LIST ENTRY

!

EXIT TO
DISPATCHER,

DO WE
UPDATE
COMPOOL

.CAN
WRITING
LOCKS BE

ESTABLISHED

REMOVE
READ LOCKS

DOES

TASK
PRIORITY
=2

"RESTORE OLD
PRIORITY

LOCKS

ESTABLISH

%

" COPY DATA

PRIORITY

REMOVE LOCKS

1 TASK WAITING
FOR A
COMPOOL
; ACCESS
! ESTABLISH ITS
COMPOOL LOCKS
PUT IT IN
READY STATE
DELETE EVENT
LIST ENTRY
-————————
RESTORE
REGISTERS

'

- ENABLE INTERRUPTS
.AND EXIT: VIA PSW

;VFigure,4.l4 Flowchart of RELEASE SVC

94

locate data
to be copied
.from SVC supplied
addresses

¢

~copy data
into user supplied
core area

\y

enable interrupts
and exit
via PSW

Figure_4.15 Flowchart of
COPY SVC .

95

'INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

f

SAVE PSW, GR's, AND
FPR’s INTCB

3

PLACE TCB IN
'WAIT QUEUE

!

CALL SCHEDULER
TO MAKE NEW
TASK READY

'

ESTABLISH TCB
LINKAGES
BETWEEN TWO
TASKS

|

EXIT TO
DISPATCHER

Figure 4.16 Flowchart of LINK SVCA'

926

DOES
TASK HAVE
ANY 1/O
REQUESTS
PENDING

HAS

EXECUTE
CLOSE SvC

UPDATE
BLOCK BEEN
CLOSED

EXECUTE
FREEMAIN SvC

'S
DYNAMIC
CORE
FREE

CLEAR ACTIVE
TASK POINTER

!

RETURNTCB TO
EXECUTIVE WORK
AREA QUEUE

DOES
TASK HAVE
PARENT
TASK

YES

EXECUTE CHECK
SVCTO PUT TASK
IN WAIT STATE

!

EXITTO
.DISPATCHER

PLACE PARENT
TCB ON READY
QUEUE

EXITTO
DISPATCHER

97

Figure 4.17 - Flowchart of END svc

|

PUT PSW, GR's,
FLP’s IN TCB

IS AN
EXCLUSIVE
EVENT BEING - -

USED IN

YES

-..PROGRAM
ERROR

COMBINATION

CHECK ALL EVENTS
TO SEE IF ANY ARE
LATCHED ON

ARE
REQUIRED
. NUMBER TO
SCHEDULE

YES

PUT TASK IN
READY STATE

LATCHED
ON

- PUT TASK IN

!

WAIT STATE

¥

FIND EVENT LIST
SUPPLIED BY SVC

¥

EXAMINE EVENT

SELECT NEXT
EVENT -

POST ECB
MAKE EVENT
LIST ENTRY
e pu PUT ECB ON
: CHAIN

AND ESTABLISH ECB

EXIT TO
DISPATCHER -

133

1S
THIS
THE LAST
EVENT OF
THE

YES

- PUT REQUIRED

NUMBER OF EVENTS
TO SCHEDULE IN
TCB .

LIST

Figdref4.18v‘Flowchart

98 -

of WAIT SVC

SET BIT 1 OF
EDB TO 1

CALL SCHEDULER
.TO PLACE WHATEVER

SETBIT10F | TASKS POSSIBLE ON
. EDB,TO 0 i READY QUEUE

RESTORE REGISTERS

!

ENABLE INTERRUPTS
AND EXIT VIA PSW -

Figure 4.19 Flowchart of SIGNAL SVC

99

SET RETURN
BIT TO O '

-SET RETURN
BIT TGO 1

RESTORE REGISTERS

!

ENABLE INTERRUPTS
AND EXIT VIA PSW

'Figure 4.20 Flowchart of TEST EVENT SVC

100

get pointers
to CCT entry
and its replacement
supplied by
SvcC

update

CCT
entry

i/) -

enable interrupts
and exit
via PSW

Figure 4.21 Flowchart of
. CHANGE CCT svC

101

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

i

INHIBIT 1/0O
INTERRUPTS

¥

SAVE
REGISTERS

T

ADD MIRROR CYCLE|
TIME VALUE TO
TIMER TO RESET IT -

¥

INCREMENT
SYSTEM CLOCKS

HAS
EXECUTION
. OF CYCLIC
SEQUENCER IN
LAST MINOR -
CYCLE
TERMINATED
YET

PROGRAM
ERROR

CREATETCB FOR CYCLIC
SEQUENCER AND PUT AT
TOPOF READY QUEUE

y |

STORE PSW, GR's|
AND FPR’s OF ANY
ACTIVE TASK
INITSTCB

T

PUT ACTIVE
TASK IN
READY STATE

DO
WE CHECK
TIME WAIT
QUEUE IN
JHIS MINOR
CYCLE

EXAMINE
FIRST ENTRY

Figuref4.22 Flowchart of Timer Interru

EXIT TO
DISPATCHER

102

DOES
SYSTEM
CLOCK EQUAL
- OR EXCEED
. TCB TIMER
ENTRY

1S
TASK IN -
INCOMPLETE
STATE

EXIT TO
DISPATCHER

“1ALLOCATOR

1
CALL RESOURCE

1

PUT IN READY

CAN
CORE BE

YES

STATE ASSIGNED
KEEP TCB ON
WAIT QUEUE
RETURN ECB: - -
MAKE EVENT
TO EXECUTIVE |l
WORK AREA LIST ENTRY
FIND NEXT
ENTRY -

EXIT TO
DISPATCHER

pt Software

-\

Chapter 5

1/0 Management Functions

5.1 Introduction

The input/output control function of the executive provides
supervision of all I/O operations in the system. The design of
this part of the software reflects the specific requlrements of
the Space Shuttle avionics system.

Current Phase B concepts are based on interfacing the
computer to onboard subsystems via a common data bus of up to
106 bits per second data rate capability. The computer's I/O
section will be connected to a bus control unit whose function
is to command the bus system. All subsystems are connected to
the main bus through a standard interface unit which supplies
standard digital format of data and commands. The bus system
will contain redundant paths to achieve the FO/FO/FS require-
ment. The final design of the data bus system is a crucial
aspect of the avionics system design and dlrectly effects the
computer software. -

Indeed, this part of the executive software design is the
most hardware sensitive. "We are, of course, directing our
‘design toward the 4 Pi EP computer, and this fact influences
our algorithms. In particular, we will make use of the I/O
interrupt, channel command, and channel test conventions of
the EP in the design. : ’

103 :
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

- 5.2 Definition of I/0 Management Fuhctidné"

There are three basic 1I/0 management functions. These
are: READ, WRITE, and CHECK. These functions are essentially
interfaces between application tasks and executive I/0 services.
As with task management services they are executed by means of
SVCs with parameter lists. Further details about the parameters
are in Chapter 9.

a) READ (SVC 13) = The purpose of this SVC is to input date .
into main memory from the MMU or one of the avionics
subsystems. It queues an I/0 request to the I/O channel
and. then returns control to the. active task.

b) WRITE (SVC 14) - This SVC outputs data from main memory
to the MMU or one of the avionics subsystems. As with
READ, it queues an I/O request to the I/O channel and
then returns control to the active task.

In the case of READ or WRITE, the active task may continue °
processing and may at some point wait for an I/O operation
to be completed by executing CHECK.

c) CHECK (SVC 15) - An active task may place itself in the-
' wait state until a particular I/O operation is completed
by executing CHECK. Should the operation have been
completed when this SVC is executed, the active task
continues processing. :

5.3 I/0 Queues and Control Blocks

Since the I/O channel may have several requests pending
while it is performing some operation, a queue of I/0 requests
is necessary. The elements of this gueue are I/0 Request
Blocks linked with a threaded list structure. The format of
an IORB is shown in Figure 5.1. An IORB contains all the
information necessary for the channel to perform the desired
I/0 operation. This information includes: :
-a) - channel, subchannel and device addresses;
b) “task priority;

c) number of bytes of data to be transmitted;
d) device command;

e) 1if device is MMU, a data address;

104

(617) 661-1840

channel, subchannel
device address

task number of
-priority bytes of data

device command

data set address on MMU

core address of data

Caw -
timer ,]
option TCB pointer
bit

timer storage pointer

ECB pointer -

threaded list pointer

threaded list,pointef o

N

1l full word—m———>

- Figure 5.1 . Format of an IORB

- 105

f) main memory data address;
g) CAW;
h) pointer to the TCB;

i) a flag to be set if the value of the timer is to be
returned in a read operation; ‘

j) - a pointer to where this timer is to be stored;
k) a pointer to the ECB for the I/0 operation;

1) threaded list pointers.’

IORBs are dynamically created by the executive when a task
performs an I/0 operation. The necessary core storage for the
IORB is taken from the executive's work area as described in
Chapter 3. This control bleock is then placed on the channel's
queue on a priority basis with its priority equal to the priority
of the active task. Thus, a high priority task's I/0 commands

are executed before those of a low priority task.

Associated with each READ or WRITE is an ECB located in the .
program module's coding or established in the task's dynamic
core- (in the case of a reentrant module). This ECB is posted
upon completion of the I/0 operation by the I/O interrupt super-

visor. This posting enables CHECK to perform its desired

function of determining whether a particular I/0 command is
completed. In addition, by binding the ECB to the given I/0
command, a particular READ or WRITE must be completed before
this same command can be executed again. However, should this
latter condition occur, the READ or WRITE will place the task
in the wait state until its ECB is posted. Then the command

‘can be executed again.

5.4 The I/O Supervisor

The I/0 supervisor is an executive routine called when an
.I/0 interrupt occurs. Upon occurrence of the interrupt the
current PSW is saved and a PSW associated with the interrupt
becomes the new PSW, as explained in Chapter 2. The new PSW

gives CPU control to the I/0 supervisor.

The I/0 supervisor first checks for successful completlon

of the last I/O operation. If an error occurred, an error

recovery routine will be called. The errxor recovery performed
will be a function of the type of error encountered. System

106

INTERMETNCS‘NCORPORATED?701CONCORDAVENUE‘-CAMBNDGE.MASSACHUSETKS&NSB-

(617) 661-1840

reconfiguration might then be necessary. If the operation was
successfully completed, any task awaiting the I/0 operation is
put in the ready state. The next pending I/0 request is then
selected, the channel program is formatted,; and the channel is
activated. :

A task issuing a read command has the option of having the
data time tagged when it is read into core. That is, the value
- of the timer at input time can also be stored by the I/0 super-
visor in core in a location the task specified with the read
command. This time value is of importance to certain numerical
integration algorithms. The I/0 supervisor is responsible for
returning the timer value to the task (see Figure 5.2).

5.5 I/0 Service Routines -

The algorithms and flowcharts for the three I/0 SVCs
mentioned in section 5.1 will be presented here and in Figs. 5.3-5.5.

The read and write routines each format the IORB to be
queued to the channel's list of I/O requests. Queueing is done
on a priority basis with the priority of the task becoming the
priority of the IORB. When the MMU is the device to be read

. or written upon, a secondary storage routine is called to locate .
the data set and convert the physical record requested into an
actual MMU address, which is put into the IORB. This routine is
explained in Chapter 7.

When the channel is not busy, the READ or WRITE SVC takes
the IORB, formats the channel program, and activates the channel.
Otherwise, channel activation is only done by the I/O supervisor.

If data is to be read into core, the core address specified
must be checked to be sure it is not a protected area. For
example, an address in the compool is not allowed. This checking
of protected addresses requires buffering of data whose involve-

. ment with I/O operations can cause conflicts between tasks.

When data in the compool is to be inputed or outputed, the
requesting task must access the data via the executive and use
part of its working core.as a buffer. No direct I/O operations .
. are allowed in the compool. In addition, the physical address
of the device to be read or written upon is found in a device
table maintained by the configuration management routines. This
table is called the Redundant Equipment Table and will be
described in Chapter 6. Should a device fail and a spare be
used to replace it, the new device address is entered in this
table for use by the I/0 routines. Thus, any system reconfigura-
tion will cause an update of this table. : _

107

INTERMETRICS INCORPORATED ¢ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

5.6 Cyclic and Non-Cyclic I/0O

A bus I/O transaction once initiated by the computer is
independent of the computer software organization. The
command/response addressed bus may be directed by a computer
with either an asynchronous or synchronous software structure.
The main difference will be in the scheduling and dispatching
of I/0 requests, and in the coordination of I/0 with processing.

In the synchronous structure, I/0 requests must be pre-
planned and interleaved with the task processing. I/0 requests
are dispatched in a list every mlnor cycle and carried out con-
currently with task processing. A synchronous software structure
requires a command response bus access method. A polling or
contention access method would be difficult to run with a '
synchronous structure [8]. However, in an asynchronous structure,
I/0 is scheduled on a demand basis by the processing tasks..
These I/0 requests may also be carried out concurrent with task
processing, but their scheduling and dlspatchlng are non-
deterministic. .

The major distinction between cyclic and non-cyclic I/0 in
this executive system is that I/0 done by the cyclic sequencer
is table driven wvia the CCT. That is, the cyclic sequencer has
tables of how frequently each I/O operation it performs must
be done. Because of the high priority of the cyclic sequencer,
the read/write routines will insert these requests at the
beginning of the IORB queue to insure their completion before
the next minor cycle interrupt. In addition, the percent of
I/0 channel usage by the cyclic sequencer must be limited.
Sufficient time must be allowed for the channel to complete
all I/0 operations generated by cyclic computations before
their next execution.

5.7 Configuration Dependent Features

The data bus system we are assuming is a high speed data
transmission device which is primarily used for sampling
measurements from avionics subsystems and.sending computed
information back to the subsystems. We are not designing
" the executive I/0 system for devices such as printers or tape
drives to be on the data bus.

The EP architecture features we have used in structuring
the I/0 management functions of the executive system are the
following: the I/0 interrupt, channel programs consisting of
CCWs, the characteristics of the START I/0 and TEST I/0
instructions, and the CSW.

108

o Computer control of the data bus is accomplished via the

~I1/0 channel. Since the EP allows no direct BCU control, the

I/0 channel sends commands to the BCU and receives returning
information. Thus, the channel-BCU interface hardware must
transform channel commands into a BCU command format. Other
computers, such as the Hughes 230, allow more direet BCU
control than the EP. Appendix A of this volume presents a study
of operation and control of the data bus with such a computer.

5.8 1I/0 Error Correction

Upon the detection of an I/O errxor, via the CSW, the .
executive must perform several functions. First, the occur-
rence of the error must be reported in the record of the flight
kept on the MMU. Next an indicator is flashed to the pilot,
and finally a reconfiguration routine is called. The faulty
equipment must be isolated and an inactive spare switched into
the configuration to allow the mission to continue.

The BCU hardware can be structured to try an I/0 trans-
mission several times when an error is detected before reporting
the error to the computer. In other words, the error can be made
invisible to the computer and the executive until the BCU
determines it cannot correct the error by retransmission of the
I/0 command. At this point, the BCU reports the error to. the I/0
channel, and the channel in turn formats the appropriate CSW.

A discussion of data bus error control is presented in
Appendix B.

109

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4

INHIBIT 1/O AND
EXTERNAL
INTERRUPTS
VIA PSW

K]

SAVE
REGISTERS

!

STORE
PRESENT TIME

” poES -
cswsrow N_YES [procrAM
AN 1/0 ERROR
ERROR
NO
IS A
AWAITING N\ YES | REMOVETCR
COMPLETION WAIT QUEUE
OF I/0
1
' PUT TCB ON
READY QUEUE
POST ECB
ASSOCIATED
WITH 1/0
OPERATION

DOES

IORB SHOW -
TASK WANTS
TIMER
VALUE

STORE AT
GIVEN
ADDRESS

"REMOVE IORB FROM
QUEUE AND RETURN
TO EXECUTIVE
WORK AREA

CHANNEL
REQUESTS
PENDING

RESTORE

"REGISTERS |9

R

-ENABLE
INTERRUPTS
CEXIT VIA PSW

Figure 5.2 Flowchart of I/0 Interrupt Software

110

" YES

GET NEXT 1ORB
IN QUEUE

i

PUT ADDRESS AND
BYTE COUNT
INFORMATION IN
.CHANNEL PROGRAM

7

PUT CAW IN
‘LOCATION 72 AND
FORMAT START
i/0 INSTRUCTION

ACTIVATE
CHANNEL BY

EXECUTING
START /O

DOES
CSW SHOW
INSTRUCTION
- PROPERLY

STARTED

PROGRAM
- ERROR

g

-STANDARD
LINKAGE

DOES .
ECB SHOW EXECUTIVE .
LAST READ CHECK SVvC

POSTED é
EXIT TO
DISPATCHER

FORMAT IORB

CALL SECONDARY
YES _| STORAGE MANAGER

TO GET DATA
ADDRESS

YES

PUT ADDRESS
iN tORB
PROGRAM
ADDRESS '
SPECIFIED BE ERROR
CONVERT DEVICE -
ADDRESS INTO A
PHYSICAL ADDRESS
AND PUT IN IORB
INSERT IORB ON .
.QUEUE BY TASK
PRIORITY
N RESTORE -
H
< BAuNsl\\jfEL REGISTERS
ENABLE -
INTERRUPTS
AND EXIT .
VIA PSW

Figure 5.3 Flowchart of READ

111

SET UP’
CHANNEL
'PROGRAM

i

PUT CAW IN

" LOCATION YZ
. AND FORMAT
"START 1/O

é\ .

EXECUTE
START I/0

DOES
CSW SHOW
INSTRUCTION
STARTED
PROPERLY

PROGRAM
.ERROR

SvC

1

STANDARD
LINKAGE
DOES ’
ECB SHOW NO EXECUTE .
LAST WRITE CHECK SVC
POSTED
YES EXITTO
: DISPATCHER
'FORMAT IORB
CALL SECONDARY

STORAGE MANAGER
TO GET DATA ADDRESS
AND CHECK ACCESS

RIGHTS
CONVERT_DEVICE : 2
ADDRESSINTOA | | LNDngRzgss
PHYSICAL ADDRESS IN IORB
AND PUT IN IORB '
INSERT IORB ON
QUEUE BY TASK
PRIORITY
1S :
YES RESTORE
. CHANNEL 5
AN REGISTERS
ENABLE ’
| INTERRUPTS
SET UP CHANNEL . - AND EXIT
PROGRAM VIA PSw
PUT CAW IN
LOCATION YZ
AND FORMAT
START I/0
EXECUTE
START /0

DOES
CSW SHOW
INSTRUCTION
STARTED
. PROPERLY

YES

PROGRAM
ERROR

' Figure 5.4 Flowchart of WRITE SVC
T 1 ST

;

"STANDARD
LINKAGE

DOES
ECB SHOW RESTORE
1/0 OPERATION REGISTERS
PENDING
"ENABLE
INTERRUPTS
PLACE TCB OF AND EXIT
ACTIVE TASK VIA PSW
IN 1/0 WAIT T
QUEUE
EXIT TO
DISPATCHER

Figure 5.5 Flowchart of CHECK SVC

112a

Chapter 6

Configuration Management

6.1 Introduction

The topic of configuration manageméent is very extensive,
covering many aspects of computer and system design. An _
- adequate discussion of this topic in relation to the Space: BN
Shuttle mission must treat the areas of power on initializa-
tion, mission phase initialization, error recovery, switching
between simplex and redundant modes of operation, and system
synchronization. The first three of these topics are
pertinent to the 4 Pi EP configuration in the Avionics
: Systems Integration Laboratory, which will operate in a -
- simplex mode, and hence, these topics will be included in
the design of this executive system. The latter two topics
are pertinent to the avionics configurations proposed in
both Phase B Study Reports and will be treated in this
report in a tutorial manner. As we will later see, the
configuration management functions are very dependent upon
the computer and system architecture assumed.

6.2 Initialization

When the EP computer is powered on, initial program
loading .(IPL) must be performed. IPL is initiated by the
operator pressing a load key. The load is done from an MMU

" with the unit address taken from switch settings on the
console. 'The first 24 bytes read are placed in main memory
locations 0-23. The double words read into locations 8
and 16 are then used as CCWs for subsequent I/O operations.

113 :
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

When the channel ceases its activity, the CPU fetches the
double word in location 0 as the PSW and proceeds under its
. control. The first program module loaded and executed
should be a hardware diagnostic routine to insure the
computer and subsystems are functioning properly.

Upon successful completion of the diagnostic checks,
the mission program for the first phase of flight is
-loaded. All program module loads are absolute since the
mission programs for each flight phase will be preassembled
with - absolute addresses. At load time the program modules
and data need merely be put into main memory at their pre-
defined locations. Furthermore, part of the mission program
will be phase independent in the sense that it will be
resident in main memory for the entire flight. Examples of
this part of the program are the executive, part of the
Compool, and some common subroutines, such as sine and
cosine. The remainder is phase dependent, changing with
the beginning of each flight phase.

- The signal to begin a new mission phase can be
initiated by the pilot pressing a button. This signal
would initiate a priority 0 task which would begin the
phase transition. On the other hand, this determination
could also be more automated by allowing the computer to
determine a phase transition time based upon some set of
predetermined criteria. In either case, phase transition
involves reloadlng the phase dependent parts of the .
computer's main memory.

Phase transition begins by inhibiting the cyclic
sequencer subroutines from executing every minor cycle,
except for the phase transition subroutine. The background
tasks can then execute to completion, or the pilot can
examine the TCB queues via the graphic display systems. He
can then terminate any background tasks he wishes in order
to shorten phase transition time. When all background tasks
have terminated, the phase transition subroutine will issue
input commands to the MMU to load the phase dependent
program modules and data for the next phase. An important
part of this load is overlaying the phase dependent entries
of the CCT with entries corresponding to the new phase
dependent subroutines. The PMD must also be updated to
record which program modules are in main memory and
which are not. Now at load completion normal processing
for the new mission phase can begin. It starts by the
timer interrupt occurring, and the cyclic sequencer
beglnnlng execution of the subroutlnes associated with
the mission phase. :

114

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

6.3 Failure Detection and Error Recovery

The area of failure detection in this executive system
has two main focal points: internal computer failures and
subsystem failures. The former category consists of hardware
malfunctions and software errors. The latter consists of
the computer's detecting a malfunctioning ssubsystem by
periodically monitoring the status of each. Whenever a
failure is detected, a recovery procedure must be invoked.

6.3.1 Hardware Failures

A machine check interrupt is generated in the EP
when a hardware malfunction is detected. The PSW associated
with the interrupt is given control, and the CPU can then
execute a diagnostic routine to determine the cause of the
error. An advantage to this procedure is that the CPU can
try to restart computation at the point of failure. Hewever,
if the diagnostic procedure indicates a persistent machine
failure, the EP must be powered down so that the faulty
‘hardware can be replaced. Since the EP is operating in
simplex mode, there is no backup computer to take over the
computational load. It is almost inconceivable to formulate
a recovery procedure for the case where a periodically
executed diagnostic test reveals a consistent machine
failure, such as an adder error, for which no machine check
interrupt is generated. Upon detection, the CPU can be
powered down, but tasks which have been running in this
environment have probably produced invalid results if this
failure condition has existed for some time. Furthermore,.
the invalid results may have been propagated through the
system to an arbitrary degree. Thus, it appears almost
mandatory to rely only on instantaneous discovery of error
by the hardware.

6.3.2 Software Errors

A software erxrror can be detected two ways: either
by the EP hardware generating a program interrupt or by a
task determining that an error exists. The program
interrupt enables a new PSW to be given control which will
invoke a recovery procedure. The standard system recovery
procedure will be to terminate the task.-

115.
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE -CAMBMDGE,MASSACHUSETHSGN38-

Termination includes releasing dynamic memory and shared data,
and removing all of the task's I/0 requests from the IORB ,
gueue. On the other hand, a task may specify its own recovery
procedure to be used instead of the system procedure. The

new procedure is specified by an SVC executive in the task.

The SVC supplies the address of the recovery procedure, and

the executive places this address in the task's TCB. The SVC
may be executed several times within a task with a different
procedure address specified each time. The flowcharts for these
algorithms are given in Figures 6.1 and 6.2. Should a task
determine a software error exists by checks within the coding,
e.dg., by checking an argument for negativity before taking a-’
square root, the task can specify what corrective action to take
at that point. It can transfer control to a recovery procedure,
or it can. immediately terminate. In either case, the executive
does not intervene in the recovery process.

6.3.2.1 RECOVER SVC. RECOVER (SVC 16) - The purpose of this
supervisor call is to allow a task to specify what corrective
action should be taken if a program check 1nterrupt occurs
during its execution. (See Figure 6.1)

6.2.3 Subsystem Monitoring

The subsystem monitoring function consists of periodic
monitoring of the health of the subsystems which are inter-
faced to the bus. The objectives are to provide an updated
status of the system and to detect errors and failures. Di-
agnostic routines must be initiated upon detection of an error
to provide fault isolation to the functional path or redundant
unit level. In conjunction with fault isolation data must be
collected periodically to enable trend analysis to be performed.
as a means of failure prediction.

The cyclic sequencer will periodically request status
information from each subsystem. This information is examined
by a cyclic subroutine to determine if the subsystems are op-
erating properly. When an error is detected, a fault isolation
and reconfiguration procedure must be executed. The procedure
will switch out the faulty equipment and replace it with a
spare. The spare is chosen from a redundant equipment table
(RET) maintained in main memory. A typical entry of this table
is illustrated in Figure 6.3. Each entry contains the logical
unit number, its physical address and its status. Upon switch-
ing active units the formerly active unit is flagged as faulty

"in the RET, and the new unit is flagged as active. The RET
is also used by the I/O routines to determine the physical ad-
dresses of logical units for structuring IORBs.

1le6

(617) 661-1840

v -
.standard
linkage

v

insert recovery
routine address
in TCB

\/

restore
registers

enable interrupts

and exit via
PSW

Figure 6.2.1: Flowchart of RECOVER

117

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

!

INHIBIT 1/O
AND EXTERNAL
INTERRUPTS
VIA PSW

¥

STANDARD
LINKAGE

SPECIAL
RECOVERY
PROCEDURE
SPECIFIED

YES RESTORE
™ REGISTERS

!

ENABLE
INTERRUPTS AND
CLOSE ANY EXIT TO RECOVERY
OPEN UPDATE ® ! PROCEDURE VIA
BLOCKS IN : PSwW

THIS TASK

¥

RELEASE
DYNAMIC
MEMORY

¥

. REMOVE
TASKS IORB’s
FROM QUEUE

DOES
THIS TASK
HAVE A
‘PARENT
TASK

RETURN ALL TCB's
OF TERMINATED
TASKS TO EXECUTIVE
WORK AREA

¥

ENABLE

INTERRUPTS
AND EXIT TO
DISPATCHER

Figure 6.2 Flowchart of Program Check
Interrupt Software

118

logical unit

physical address

Status

&————1 full word —m—

'Figure 6.3 Format of Redundant
Equipment Table Element

119

6.4 Failures in a Quad-Redundant System

. Phase B efforts to date have indicated that a form of
voting and/or comparison will be used for detecting failures in
a quad-redundant computer. The following are significant ques-
tions in the design of error detection technlques and the soft--
ware required to support them.

a) How are the computers synchronized: via software or hard-
- ware, and how often? This could be a very difficult
task for the software alone.

b) What data is voted or compared to detect the error?
If the bus outputs are compared for example, identical
simultaneous input data must be presented to all com-
puters to eliminate effects of small timing differences.

c) If a comparison mode is recommended, it may be impossible
to maintain the software in the "active" computer identical
. to that in the redundant computers.

It must be pointed out that the techniques of voting and
comparing will detect only hardware failures. Software is
inherently non~redundant, and errors or inadequacies in its
specifications cannot be detected in this way.

6.4.1 Error Recovery of Shuttle Computer Hardware

The problems or recovery, via software, after the de-
tection of a computer failure can be severe. Error detection
by voting on and/or comparing the outputs of two or more re-
dundant operating computers is favored in the current Phase B
avionics system approaches. Such techniques can be made less
difficult to implement if the elements being compared are complete
units, d.e., including a complete memory, CPU and I/O controller. A
detected failure would result in the disability of a complete
computer and its replacement by a standby. However, if re-
dundancy, error detection and recovery are taken to the level
of the memory unit, which is then considered as an element of
the system independent of the processors, the complexity of the
. reconfiguration problem increases. .The recovery from a mem-
ory module failure requires either the replacement of the.
failed module by an identically loaded copy, or the regener-
ation of its state prior to the hardware failure. This in-
volves the continucous updating of spares, or an initial load
with a consequent delay in system operation.

'Failure detection by pure comparison imposes the problem
of determining, in the event of a comparison failure, which

120

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETNCS!NCORPORATFD 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

of the processors is defective. An approach might be to ter--
minate -operations in both computers, run diagnostic routines
in each, and then reconfigure once the failed computer is .
identified. However, reconfiguration does pose the following
questions: ‘ ' :

1) What happens to the time-critical prOCesses that may have
been active at the time?

2) If the active computer is the one that failed, how does
it hand off control to its backup?

3)- What is the next step if both computers indicate failure?

These discussions are not to imply that the problems
are insoluble, but more to underline the impact of placing the. .
recovery and error detection responsibilities, of redundant
computer hardware, into the software. During the course of
this work, careful hardware/software trades must be made to
identify clearly the impact on software of these functions.

6.5 Mode Switching

During critical mission phases the MDC Phase B Study
[2] calls for all four computers to be processing in a re-
dundant mode of operation. In the event of a failure one of
them can be powered down while the remaining three continue
processing. In noncritical mission phases, however, only one
active computer is necessary. Hence, in a transition from a
noncritical to a critical mission phase, it is necessary to
switch from a simplex to a redundant mode of operation.

. In performing this transition the active computer must
supervise the loading of main memory for the other three com-
puters and synchronize their start up. The data to be loaded
falls into three categories: phase independent, phase de-
pendent and time critical, such as the mission clock. The
- first two categories can be loaded from the MMU. The third
category of data must be loaded from the active computer, but
this transfer can use the MMU as an intermediate device.

The transition from simplex to redundant mode should be
done in the noncritical phase before the full redundant com-
puting power is necessary, i.e., before the critical phase.begins.
This allows time for transfer of data and synchronization,
while the computers are not in a critical mode of operation.

121

(617) 661-1840

6.6 Synchronization

" Several approaches have been taken to solve the problem
of synchronizing the operations of several redundant computers
executing the same software in parallel. MDC/TRW [2] rely
on extra hardware (an external clock) sending minor cycle
synchronization pulses to the four executing computers. On
the other hand, IBM [5] relies on software communication
between computers to synchronize the start of tasks. The
particular method chosen depends heavily upon the architec—
ture of the computlng systems. However, some general principles
do apply

Although the computer operates in a highly involved and
complex fashion, it is deterministic and exact: a given op-'
eration will always yield the same result if repeated with the
same input data. The major problem for computer comparison in
.a real time environment such as the Shuttle is the synchron-
ization of computations which involve time dependent functions
and input data. Any detection of the computers not belng
synchronized must be treated as an error.

Synchronization can be achleved‘by:

a) central control of the computer clocks;
b) careful gating and distribution of input data;
c) strict identity of hardware and software operation.

A comparator/voter mechanism adds to the hardware and
software complexity. It also incurs operational delays, be-
cause time is required:

a) to wait for synchronization of clock and data;

b) to perform the comparison;

c) to decide on the results. of comparison; i
d) to take corrective action.

To minimize overhead, the comparison should, therefore,
take place at a fairly high level of operation, rather than
‘instruction by instruction. Comparing the operation of the
computers at the point where they influence their environment,
i.e., at the computer/bus interface, is a loégical choice,

’provided that outputs occur frequently enough.

122 .
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Comparison and voting can be done in varying degrees,
with varying hardware and software complexity:

a) Majority voting on the output data of three or more
computers, reducing to comparison with diagnostics when
less than three good computers remain. The bus receives
only the data derived from the majority vote. Failure
isolation and correction is automatic as part of the
voting process. The complex voter that this requires must
be sufficiently redundant and possess adequate error
protection to meet the failure tolerance criterion,
bacause it is an in-line element in the data bus.

b) Majority voting on the indications of health, but not on
the output data. One computer is selected to be "active"
and its outputs control the bus directly. The other
computers are used as standards to provide independent
checks on the operation of the active computer. A voting
mechanism decides on the basis of a majority of comparator
.results whether the active computer is operating correctly.
It may also determine which of the inactive computers has
developed a failure (see Figure 6.4). In the event of
a failure of the active computer one of the others is made
active. The voter mechanism may be considerably simpler
than the data voter of the previous paragraph, since it
only operates on binary values; its response time need:
only match. the reconfiguration dynamics, not the trans-
mission frequency of the bus. Furthermore, since it is
not an in-line element of the system, it may not have to
meet the same stringent failure tolerance requirements.
Each comparator can be considered a part of a computer's
I/0 section and is thus naturally reduidant. In fact,
the comparison could be performed, by software, internal
to each computer.

As a consequence of voting binary, rather than many-

valued byte or word data, the simplicity of the second method
pays a penalty in the lower inherent certainty of correctly
interpreting failure conditions. There is a greater possibility
for split vote situations to arise with binary variables, and

a greater likelihood of identical multiple failure. However,
-these conditions will only arise when failures in the compar-
ison and voting logic itself produce erroneous indication of
computer health; the lower complexity of this voter will aid

the achievement of the necessary reliability. '

For either voting approach once less than three good
computers remain, reliance must be placed on self-diagnostic

123

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

 to determine the faulty computer. No self- diagnostic technique
can be infallible; a disagreement between two computers could
yield the following condltions

a) One computer determines itself to be faulty, the other
‘finds itself healthy. This is the expected result.

b) Neither computer detects a malfunction. This may be
because the fault was transient, or because it was a
border-line case beyond the capability of the disgnostic
method. ;

c) Both computers detect malfunctions.. This event is highly
unlikely in the case of uncorrelated random errors, but
may easlily occur for common mode problems such as physical
environmental transients (e g., power supply and thermal
variations).

One insidious possibility for a processing failure that
may not be trapped by any of the techniques discussed so far
is that of the software error. The software in each of the o
redundantly operating computers must, for the purpose of com-
parison and voting, be virtually identical. ‘It is, therefore,
inherently non-redundant. A software fault will produce data
which, being identlcally erroneous, will appear to compare
vcorrectly A

124 |
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -+ (617) 661-1840

VOTER

A
COMPUTER COMPUTER COMPUTER COMPUTER
NO. 1 NG. 2 NO.3 NO. 4
COMPARATOR
. 1 and ’
NOT | NO2| NO.3 |, notal
¥ ¥ ¥
BCU ND.1 BCU NO.2 BCU NO.3 BCU NO.4
) o ‘

N

QUAD BUS

Figure- 6.4 Computer configuration with

external comparator and voter

125

Lt

Page Intentionally Left Blank

~Chapter 7

'Secondary Storage Management

7rl' Introduction

The primary purpose of the executive's secondary storage
management functions is to supervise data transfer between the
computer's main memory and the MMU. These routines must insure
correct MMU accesses by tasks, so that the integrity of data
transfers is preserved. This chapter will explore the algorithms
for performing these functions. ’

7.2 Data Set Structure

-A data set is a collection of records. Data sets may be,
for example, program modules, flight data, or display skeletons
for the shuttle's graphic display units. All data sets on the
MMU are listed by name and address in the DSD. The length of

a record is constant throughout a-data set and is stored
in the DSD :

‘When a task reads or writes upon a data set, it must
operate on complete records. Each read or write operation _
is done for one entire record. Thus, all blocking and unblock-
ing operations on data within a record are performed by the
task and not by the executive.

7.3 The Secondary Storage Supervisor

The secondary storage supervisor is called as a subroutine
of the I/0 management routines. One of the functions of the
secondary storage supervisor is to calculate the MMU data ‘
addresses referred to in I/0 commands. This calculation is o
based upon the data set start™address, the logical record within -
‘the data set referred to, and the device geometry. Different
types of MMUs, such as disks and drums, will each have a different

127

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

geometry. Hence, a detailed description of calculating a
physical data address is very dependent upon the MMU used.

_ The number of bytes to be read or written in an I/O
command will correspond to the physical record length of the
data set. .This parameter will be dynamically supplled to
channel programs by the secondary storage supervisor from DSD
1nformatlon.

If each data set is systematically organized so that its
physical records are contiguous on the MMU and the addresses
of these records are monotonically increasing as we proceed
from the beginning to the end of the data set, an important
error checking feature can easily be achieved. By similarly
organizing the DSD entries, i.e., in terms of increasing MMU
addresses, each physical record address calculated by the
secondary storage supervisor can be checked to be sure it is

..indeed within the specified data set. This check is done by
comparing the record address with the beglnnlng address of
the next data set in the DSD. If the former is greater, an
error exists in the logical record number specified in the I/O
command. A software error condition then results.

If, in addition, the data set specified is to be written
upon, the secondary storage manager will check to see if the
data set is indeed read/write, and if the requesting program
module has access rights. If these two conditions are not
true, a software error condition again will result. The
flowchart for this algorithm is presented in Figure 7.1.

128

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

|

STANDARD
LINKAGE

{

FIND DATA SET
START ADDRESS
AND RECORD
LENGTH IN DSD

!

‘ 1 ERROR

CALCULATE
MMU ADDRESS
OF RECORD

EXIT

IS
ADDRESS PROGRAM
WITHIN PROGR
DATA SET
IS 1/0 ,
- OPERATION . RESTORE
A REGISTERS
WRITE' A

1S
DATA SET
READ/
WRITE

DOES
PROGRAM
MODULE HAVE
ACCESS
RIGHTS

PROGRAM

F:Lgure 7.1 Flowchart of Secondary

Storage Supervisor

129

Page Intentionally Left Blank

INTERMEfRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 -

Chapter 8

Executive Design Parameters

- 8.1 1Introduction

In the course of developing this exeécutive system several
design parameters must be left unspecified, e.g., the maximum
number of elements that the system queues should accommodate,
or the amount of main memory reserved for dynamic allocation -
to tasks. The nature of these parameters makes assigning - '
numerical values to them at this time very difficult because they
are highly dependent upon the characteristics of the application
. software, the computer and system architecture, and the avionics
subsystems eventually chosen for the Space Shuttle. In this
chapter we will attempt to isolate these parameters and by
doing so identify those parts of the executive implementation.
that should be parameterized. Parameterization allows for the
easy regeneration of new versions of this executive as needed,
each tallored to a specific shuttle mission.

8.2 Synchronous Versus Asynchronous Control

The executive software design can support a fully
synchronous mode of operation in which all application software
is run in the foreground, or fully asynchronous in which all
application software is run in the background. ' Tasks that
require careful synchronization with real time, that are
highly repetitive, that are short, that are self-contained,
are obvious candidates for the cyclic foreground.

Tasks that do not require first order timing specifica-
tions, that have wide variations in timing, that require large
timing factors for safety, and that are interactive with outside
events are candidates for the background. The ‘percent of fore-
ground versus background use of the system depends upon the
nature of the application tasks to be executed.

131

(617) 661-1840

INTERMETR!CS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

Another parameter dependent upon foreground versus back-
~ground use of the system is the length of the minor cyc¢le time
interval. NR/IBM [l] recommends 40 msec, while MDC/TRW [2]
recommends 20 msec. The actual value, of course, depends upon
the rate at which subsystems must be sampled in the command:
response data bus system recommended.

Within a minor cycle care must be exercised so that the
foreground computations and I/0 requests can be accompllshed
_1n this time interval. Any overlap into the next minor cycle-:

is a system overload condltlon, which requires corrective
action. , :

8.3 Executive Control Element Sizes

The table presented below is a list of each of the exe-
cutive's directory and queue elements and their storage require-
ments. _

Element Main Memory Needed

TaSk control‘blook. , , , “ 38 full words

I/0 request block ' 11 full words
Event control block | 2 full words
'Eventvdescriptor byte ' 1 byte

Program module directory -

element » 3 full words
Data set directory element ' | 3 full words

Dynamic core directory.
element : _ 2- full words

Cyclic control table .
element . ' ' 5 full words

’Redundant equlpment table
element : 3 full words

The maximum number of these elements that each table must
accommodate should be parameterized.

132

(617) 661-1840

8.4 Task Management Parameters

1) Task Priority Levels: 6 priority levels were chosen.

" Levels 0-2 serve very specific purposes as previously
explained. However, levels 3-5 are merely reserved for
executing background tasks. The number of these
priority levels can be varied dependent upon background
task requirements.

2) Size of Main Memory: while not an executive system
parameter, the amount of main memory available 1nfluences
the software design. For example, ‘it determines the maxi-
mum number of tasks that can be concurrently scheduled, the
amount of dynamic memory available, and the number of soft-
ware events the system can support.

. 3) Software Events: these events are predefined; i.e., they
are not dynamically created during flight. Within this
category of events, some are exclusive, some latched and
some unlatched. These characteristics should be para- °
meterized. ' .

4) Executive Resources: the size of the compool and the
organization of dynamic core should also be parameterized.
The characteristics of these areas of memory are very.
dependent upon the number of tasks that can be scheduled
concurrently and the amount of main memory available.

5) Maximum Number of Tasks: a limit must be imposed upon the
maximum number of tasks that can concurrently be scheduled.
Exceeding this limit implies a system overload condition
exists because more tasks exist than the system has
resources to allocate. Among these resources are main
memory to create TCBs, dynamic core, and CPU time. The
limit imposed on the number of tasks, in turn, determines
the maximum sizes of the system TCB queues.

-6) Frequency of Servicing the Time Wait Queue: servicing
this queue every minor cycle can impose a high executive
overhead. However, if the tasks on this queue are serviced
~every N minor cycles, there would beé€ a reduction in over-
head depending upon the value of N chosen. N can be
parameterized.

8.5 Supervisor Call Parameters

The particular parameters associated with each SVC
are listed in the next chapter. However, it must be pointed

133

INTERMETFICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

out here that the number of SVC and the services provided by

- each are system parameters. . Since the mechanism for using SVCs
is included in the system design, which ones are implemented
can be left to the disgression of the- system de31gner based
upon application software needs.

134 .
INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSAGHUSETTS 02138 - (617) 661-1840

Chapter 9

- Application Task Interfaces

9.1 Introduction

As we have already seen the interfaces between application
"~ .tasks and the executive are the SVCs. ' These represent the
only means application: tasks have of using the services provided
by the executive.

This chapter will list the parameters needed by each of
the SVCs described in previous chapters. So far 16 SVCs have
been defined, which meet all the needs of ‘the application tasks
to run within this system. However, should further executive
services be necessary, more SVCs can later be defined and easily
included in the framework of this executive system.

9.2 SVC Parameters .

SVC Number SVC Name Parameters‘to be Supplied
FREEMAIN None’
 SECURE ‘ Compool data addresses;

address of copy area if a
copy is necessary; lock
address of compool areas

to be locked; type of locks
to be established.

3 RELEASE If update.of compool is to
' be done, addresses of data
to update compool.

4 COPY Compool data addresses;
: address of copy area.

135
INTERMETFICS INCORPORATED -+ 701 CONCORD AVENUE. . CAMBRIDGE, MASSACHUSETTS 02138 - (617') 661-1840

10

11

12
13

14

15
16

LINK

-END

SCHEDULE .

WAIT

- SIGNAL

TEST EVENT

CHANGE CCT .

DISPCHECK

'READ

WRITE
CHECK
RECOVER

136

. None

Program module ID

" Priority

Program module ID; priority;
scheduling. conditions:

a) none, i.e. unconditional,
b) at a specific time,
c) after a time interval,

d) for some software event
or events. -

Conditions of wait:

a) until some time,

b) for some time interval,

c) for some event or events. °
Event name;

on, off. -

Event name; pointer to flag

Pointer to old CCT entry,
point to replacement.

None

ECB pointer; .
Core address;
Logical device;

Data set name;

- Logical record;

. Timer option; pointer to
-location in which timer

value is to be stored.
Same as READ except no timer option
ECB pointer. o

Address of recovery procedure.

]NTERMEfRICS INCORPORATED - 701 CONCORD AVENUE < CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

A Y

- Appendix A

Operation and Control of the Data Bus*

A.l Data Bus Access and Control Philosophy

Since the Shuttle data bus constitutes a central communica-
tions resource shared among multiple terminals and a central
controller, a fundamental feature of its design is the method
by which it is allocated to a particular communication path.

The data bus system is essentially a "party line" shared by
all terminals: when access is granted, the bus is dedicated
to a single communication path between a transmitting and
receiving station.

Selection of the bus access method is a basic decision
because it constrains the design of both the remote terminal
and the bus control unit,

A.l.1 Command.Response Addressing

In a command response addressing scheme access to the
bus is centrally managed by the controller. Under this concept, -
the controller transmits an appropriate command to the terminal
including: synchronization header, terminal address, function
to be performed (transmit, receive), data, and parity coding..
Upon recognition of its address, the terminal interprets the
command and begins transmitting or receiving the appropriate
data.

Using command response access, a terminal does not initiate
any communication unless it is commanded to by the controller.
‘Terminals only "speak" when "spoken to".

*The discussion in Appendix A and Appendix B is taken from an
‘Intermetrics, Inc. study on a standard interface definition
for avionics data bus systems [8]. '

137

INTERMEfRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

geEt

COMPUTER .

- SOFTWARE

———
——————

CHANNEL COMMAND

————
t—

1/0 LIST

A ————
— ety

INPUT/OUTPUT
DATA

LRU

trans actlon

i s
X BeU . | Lo ' OUTPUT
INITIATE 1/0 | < ACCEPTS COMMAND LIST | TRANSMIT CHECK SIU ADDRESS & INTERFACES
|t * FORMATS AND ENCODES f§——————> * CHECK DATA Suhuikbiret
DATA : * VERIFY COMMAND :
FUNCTION DECOOE
| A/D AND D/A
. « TRANSMIT AND CONTROL
BCU ACCESS | BUS TRANSACTION
< » VERIFY PARITY
* VERIFY ECHO CHECK
| Siy } INPUT
8oy TRANSMIT A | INTERFACES
7] DECODE CHECK DATA fa—————: A/D ENCODE TRANSIT {0
. Flgure A.l Bas:.c functions durlng a bus

FUNCTION
OF LRU

In contrast to the polling scheme a terminal is not "polled"
as to whether it wants the bus or not but rather is "commanded"
to send or receive a message. Command/response addressing is
similar to a polled system in that. a termlnal responds only
when addressed.

. A fundamental characteristic of command response control
is ‘that the "intelligence" of when, what, and how often to
communicate is in the controller (i.e., computer software).
There are.consequently no access confllcts to resolve or
local decisions required.

A.2 Control and Operation of the Data Bus by the BCU

Once a particular access method is selected, the communica-
tions procedure established to perform a single I/O transaction
impacts the design of the bus system elements. The following
steps, illustrated in Figure A.l, must be taken in order for
a single computer to send and receive data from a set of
avionics equipment.

a) In a command response access concept, the computer directs
" all I/0 reguests in the system. It indicates along which
bus line and to which remote terminal the message is routed,
and if data is requested, where to put it when it has been
~ obtained.

b) The BCU must encode the message and transmit it to the
proper remote station over the selected bus line.

c) The remote terminal responds to the command, selects the
appropriate channel to the LRU and executes the appropriate
functions to obtain the data. : ‘

d) Signal conditioning and conversion take place at the
terminal, which then encodes and transmits the data back
to the control unit.

e) The established error-control scheme is maintained
throughout the transaction.

~ f) The BCU transfers the data to the computer and informs it
of the completed request or list.

The details of this transaction influence the bus message
format, the functions of bus elements, and communication security.
.The message format and structure must satisfy the data acquisition
and distribution requirements, without unduly complicating the
bus hardware design. A level of transmission "security" must
be established to minimize the probability of an undetected
error, without significantly increasing the equipment complexity
or message overhead. The following sections provide a general
discussion of bus operation and the bus format and structure.

139
INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

A.2.1 Bus Message Format

In general there are four basic parts to the structure
of any communication message: the message header and terminator,
the address and routing information, function code, and message

content.
Message Address Function Message \ EOM
Header Routing Code Content : Sync
Sync

The first three parts of the message are assoc1ated with the

-communication system.

A.2.1.1 Message Header and Terminator. Message synchronization

is required to enable terminals to recognize the start of a
message and is usually a unigque control signal recognized by

the terminal. It is essential that the synchronization signal
be different and clearly distinguishable from data to avoid mis-

interpretation. The characteristics of the sync signal will
depend on the modulation technique selected. It is usually

‘assigned a pulse width or phase change different from the
standard data bit.

There are four possible sync signals: at the beginning

and end of the BCU to SIU message and at the beginning and end
of the SIU to BCU message. However, from a communication point

of view they are not all necessary. The end of the BCU to

SIU message can be distinguished by the "idle bus" when the
BCU stops transmitting; similarly for the end of the SIU to
BCU message. However, detection of an "idle bus" may cause

circuit difficulties in either the BCU or SIU. The use of

‘different sync signals for BCU to SIU messages and SIU to BCU
message rules out inadvertent SIU. to SIU communications, since

the SIU need only respond to a BCU sync.

In any case, the only positive requirement for any address
system is that there by a sync signal, clearly distinguishable

from data, so that each terminal can begin to look for its

own address in synchronization with the message. The need for
other sync signals for end of message, accept, knowledge, etc.,
is a function of the communication procedures and the details

of the implementation.

A.2.1.2 Address and Routing, The address portion of the

message identifies the sender and receiver by "to X" "from Y".
In a centrally controlled system, where there is no terminal-

to-terminal communication, there is no requirement for the

"from" part of the address. - All communications are initiated

140

INTERMEfRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

, by the BCU w1th transm1tt1ng/rece1v1ng occurrlng only between
- BCU and one S1IU.

The "to" part of the message identifies the path to the -
LRU via an SIU address and an EIU address. A separate EIU
address is necessary when the bus terminal communicates with
more than one EIU, If the SIU and EIU were combined into a
single unit, then the address could be combined.

A.2.1.3 Group Addressing. . A group addressing capability would
be. required to send a single message to more than one SIU or
EIU, as might be required to enable a passive flight recorder
on the line to receive data intended for other terminals. -
Group SIU addressing could be an advantage in transmitting the.
same data to every element of a distributed subsystem, such

as the individual quads in the RCS system. Group addressing
would be useful in the central management of a redundantly
configured subsystem, particularly if identical commands are
issued by the computer to every redundant unit.

Group addressing on the bus requires the SIU to recognize-
more than one address. However, there is the problem of
coordinating the return transmissions of echo or data messages.
Coordination could be implemented in several ways: by

, sequentlal time slottlng of the SIU responses, by ignoring
the echo in the passive device, or by a contention access
method. The SIU, EIU address and function codes would need
to be coded in a way which would have group meaning. The
tradeoff here is between the added complexity of the SIU and
BCU hardware, and the additional software and memory to store
multiple commands instead of one. A modification to the
computer/BCU message to provide a routing indicator and a list
of SIU -addresses, which would enable the BCU to send multiple
messages, could alleviate the computer software burden.

In summary, however, it is felt that group addressing :
is probably not worth the additional complexity in bus system
de51gn if, as has been estimated, there is adequate capac1ty
in speed to accommodate ‘the 1nefflclences encountered.

A.2.1.4 Function Code. The function code field of the bus
command specifies the action to be taken by the interface unit
in acquiring or distributing data or signals ‘to the LRU. The
structure and format of this field is directly impacted by the
requirements of the electronic interface portion of the remote
terminal. In order to provide the capability of interfacing

141

INTERMET"RICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

the majority of electronic equipment, the following types of
interfaces would be required: :

a) digital parallel,
b)' digital seriél,
c) analog data,

d) discrete.

The function code does not have to be in a standardized
format for all terminals. More parallel digital signals
may be required for a particular LRU, but less analog. The
electronic interface itself need not be standardized. The
function can be decoded and interpreted by specially tailored
function controllers at the terminal. Alternatively the
function code could represent the address of a location in a
control memory which stores special control sequences within
the interface unit. There are several ways of organizing
the function code field, which are discussed in the following
paragraphs. '

a) Channel Addressing

\Under this concept, each interface is assigned a channel
“address, and the function code becomes part of the address
structure. Group addressing is possible only if channel
addresses are in sequence (e.g., 2 through 6, not 1, 3, 5,
etc.). 1Input or outputs may be implicit in the channel
address number, .or specified via a format. The interface
unit is required to distinguish between input and output
v ' channel addresses, to determine if data ‘is to be sent back.

Channel addressing is the simplest function code to implement
and allows the greatest flexibility. However, it can be
very inefficient if channel addresses are not assigned

in a way which can be effectively utilized.

b). Functional Classification of Interfaces

In this method interfaces are functionally classified and

a code for each class or subclass is defined. For example,

all communications can be functionally organized into the
following categories: commands, moding, functional input,
functional output, and others. The functional categories

are assigned a coded number and all interfaces are assigned

to a category. A function code would then involve input

or output of all data in the corresponding category. Obviously
each major category can be further subdivided into subclasses
by extension of the function code field. A significant

142
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMEfRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

" advantage of this method is that the efficiency of information

~transfer can be much higher if information is generally
transferred in a block. It can also be useful from the
computer's point of view, since all data in the "functional
group" may be desired at the same time (e g., all status
information).

q) Memory

The final approach involves a small memory, of a few hundred
words. The function code specifies a location in the -
memory which contains instructions for data input and output.
The memory could store channel addresses or sequences ”
corresponding to an interface function. A memory with a
read/write capability could be altered inflight to accommodate
changes to a subsystem's operation demanded by different
mission phases.

" A small high speed memory of the read/write or read only
type described above is well within the state of technology.
This concept provides the most general and flexible '
capability, although it obviously increases the complexity
of the EIU. Memory size could be expanded to accommodate
increases in equipment requirements, or to extend the
terminal capability to provide functions such as limit '
checking of data, or the monitoring of LRU status. Ultimately
the terminal becomes a small computer capable of providing
a local service to the equlpment and thereby reducing bus
traffic.

A.3 Operation and Control of the Data Bus by the Computer

Viewed from the computer the data bus is a single,
relatively high speed, asynchronously operable, peripheral I/O
device, capable of performing data gathering and data distri-
bution. . Under the command response access concept, the computer
initiates and directs I/O operations on the data bus. It directs
I/0 by commanding the bus control unit with a sét of I/0 requests.
The BCU then controls and synchronizes the data bus system to
carry out these requests. Most likely, the bus system will be
mechanized in a way which allows the bus to operate independently
~“of the CPU once an I/0 command is issued by the computer. This

means that the data bus system and computer operate asynchro-
nously. : :

143

(617) 661-1840 -

A.3.l- Overview of Computer I/0 Operations

There are two basic approaches to the design of the-
computer software for controlling the activities of the bus.
The first is the synchronous, fixed I/0 method, in which 1/0
control is based on a predetermined execution sequence and a
fixed time cycle. The second schedules I/O operations on a-
demand basis. The characteristics of the two are summarized
in the following sections. To a large extent the computer
executive and 1/0 control structure can be considered inde-
pendently of the control structure chosen for the bus.

A.3.1.1 Computer I/O Operation in a Synchronous Structure.

Fixed sequence structured software requires I/O operations

- to be interleaved with processing tasks in the minor cycle.. -
The inputs required by processing tasks in a minor cycle must

be available prior to execution of the minor cycle.

The concept requires commanding the BCU (or dispatching
I/0), each minor cycle to input data required for the "next-
minor cycle", and output data from the "last cycle". 1I/0
software for controlling the data bus is operated in each
minor cycle. For example:

Bus . | 'Inputs for pro- _Inputs'for'pro— Inputs for pro-
Activity cessing during N cessing during N+1 | cessing during N+2
' Outputs from N-2 | Outputs from N-1 Outputs from N ‘
Computer Process inputs Process inputs Process inputs:
Activity | from N-2 for from N-1 for | from N for

‘output during N output during N+1 output during N+2 [
Minor N-1" : ' N : N+1 -
Cycle

The dispatching of an I/0 command list to the BCU can occur at
_the beginning of each minor cycle. However, it is necessary

that the list of I/O be completed by the bus system prior to

the start of processing the next minor cycle. Thus, the bus

will be operating for only a portion of the minor cycle at.

a percentage of its speed. For example, the BCU may be commanded
for 16 ms of I/0 every 20 ms. In this case there would be 4 ms
idle bus time unless the BCU were commanded agaln to perform

some additional I/O on checkout functlons. -

At the beginning of each cycle I/O commands are checked

for errors. If no errors ‘have occurred, the next I/0O list is
sent to the BCU and computer commences its processing sequence.

144

INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 - (61 7) 661 1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAIMBRIDGE MASSACHUSETTS 02138 -

If - I/0 errors occurred, an error recovery and fault isolation-
routine must be operated and the sequence of processing tasks
re-scheduled accordingly . Prior to the end of the minor cycle
1/0 scheduling is operated to set up the I/0 command list for
the next dispatch to the BCU

, Since much of the Shuttle data bus design conducted to date
has postulated this philosophy of software operation, it will be
assumed for the description of BCU activities in the following
sections. . -

A.3.1.2 Computer I/0 Operations in a Demand Structure. The
alternative approach to fixed sequence I/0 is scheduling I/0
operations on a demand basis. Typically, this is accomplished
in asynchronously controlled software structures as follows:

a) when an I/O request is made by the computer software, control
is transferred to an I/O scheduler, and a command is inserted
-into an I/0 gqueue. : o

b) _The task requesting the transfer is placed 1nto a "wait
state", .

¢) Upon availability of the I/O device, the queued I/0 requests
are processed via the dispatcher which uses an algorithm,
e.g., first in/first out (FIFQO), to deternine which I/0
request to service next. :

d) The I/O requests are sent to the BCU one at a tlme, or in
a list for bus execution. i}

" e) When the I/O request has been serviced, the issuing task
is informed and allowed to continue. : :

This approach is used on large ground-based systems,
particularly where I/0 requirements are not known or impossible
to predetermine. The demand I/O concept does not appear- con-
sistent with command response or fixed sequence scheduled pro-
cessing tasks. However, if a distinction were made between
computer input and output’ requests, output requests because
of their independence of processing tasks may lend themselves
.to demand scheduling. :

A.3.2 Computer to Bus Operations
An evaluation of the'requirements of the interface between
the computer software and BCU is directly dependent on the design

"of the BCU. There are obviously tradeoffs between complexity
in the BCU hardware design and the computer software. The BCU

145

-(617) 661-1840

‘in an extreme case could become a computer itself, dedicated to
communications functions, supplying all communication of data .
in and out of the bus system. At the other extreme, it could
'Slmply perform time synchronization, transmlttlng and
receiving control, and error coding. Somewhere in the mlddle,
the basic BCU capabilities can be extended by providing the
BCU with a limited set of registers and logic, and a direct
memory access (DMA) interface to the computer's memory. By
cycle stealing from the computer, the DMA can supply commands
and data to the BCU directly from the memory. Commands and
data are sent to the BCU either by incorporating a starting
address and the number of commands into the channel command
word, or by chaining commands and instructing the BCU via the
operation code in each bus command. A limited capability will
be assumed for purposes of this discussion, although comments
are made on areas where an expanded BCU capability may lessen
the software problems. The basic computer-to-BCU operations
are the following: '

a) I1I/0 dispatching - involves commanding and controlling the
“BCU with I/O to be performed.

b) I/0 scheduling - involves scheduling bus commands to be
1ssued the next minor cycle.

c) I/0 errox proce551ng - checking previous 1/0 commands
' issued for errors and taklng approprlate action.

A.3.2.1 Dispatching I/0: Computer/Bus Interface. The BCU

is provided with a list of I/0 commands by loading an I/O

channel with a command word from the computer (see Figure A.2).

The channel command word must contain suffieient information

to enable the BCU to execute all the appropriate I/0 commands

in the list. Once this channel is loaded, the computer and .

BCU may operate independently. The channel command word contains

an address of the first BCU command, and the number of BCU commands
to be processed. (BCU commands may also be linked by address
chaining.) The BCU commands can be stored in sequential memory
locations, and the list operated on in sequential order by the

BCU. Upon completion the BCU can be instructed to interrupt

the processor with an I/0 complete signal. (Alternatives,

.more in line with a "no interrupt" policy, can be devised,

such as a "BCU busy" signal accessible to the computer enabllng _
it to determine status of the BCU.) 1In either case, it is necessary
to coordinate the asynchronous operation of the computer. and BCU

so that the computer is aware of the status of the BCU.

146 C T

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 021384..(617) 661-1840

- TABLE OF BCU COMMANDS o DATA

COMPUTER PROGRAM TRANSMISSION
] l ' COMMANDS

EXECUTE 1/0

INSTRUCTION
LOAD CHANNEL -
- CONTROL

BCU COMMANDS .

VIA I/0 CHANNEL .

| | input/oUTRUT
—=1 " DATA

Figuré A.2 Computer to BCU I/0 command operation

1147

A.3.2.2 BCU Command Format. The BCU command format must contain
instructions for the BCU to execute the computer's I/0 request.

‘A single command will contain four parts: control information
for the message, status information, skeleton bus message format,
data linkage addressing information.

BCU I/0 Bus command Linkage to
control SIU Function
op code '

P status 3 code data

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138

a) Control

The control part of the BCU command contains information

pertaining to the type of operation requested of the BCU.

Examples of individual BCU operation codes are Read,

Write, Skip, Linkage. With fixed I/0 tables in the computer' s

memory, a "no-operation" code may be desirable to skip

commands at certain times such as unrequired jet on commands
~in a fixed I/0 schedule. If the BCU contained memory, and

was more of a communication processor, this part of the '

BCU command may contain a pre-programmed BCU memory

address for execution.

b)W‘Status Bits

Status bit(s) are required to enable the computer to
determine if the bus command was completed successfully.
The computer must be informed of bus errors so that it

can reconfigure and reschedule accordingly. An incomplete
I/0 transaction will result in rescheduling the processing
tasks. An "incomplete I/0" status indication may also

be desirable,

'c) Skeleton Data Bus Message

The skeleton bus message contains the actual bus command
associated with the I/0 transaction. The contents of the
bus message format were discussed in Section A.2.1.. It contain
contains information which is both fixed and variable '
during the course of the mission. Specifically, the

terminal addressing will vary with the status of the avionics
configuration; a specific communication.path must be chosen
prior to execution of the command. For example, a request:
for data from a redundant subsystem (e.g., radar) requires
information as to which LRU is active, and which data path

to use. It is reasonable to assume that configuration
management is a computer software function, and therefore
this information must be supplied to the BCU in some form.

148

(617) 661-1840

- The degree to which the computer will need to modify the
. bus message format at run time will depend on the extent
‘and capablllty of the BCU.

In order to establish fixed I/0 command tables required

by the synchronous I/0 method it may be useful to define

‘a symbolic and "physical" relationship similar to that

used with tapes, disks, etc., in a conventional facility.
In this case a symbolic assignment, such as 1SS, or ISS

for inertial subsystem active and standby respectively,™
will be associated with the subsystem. The symbolic
identification is then associated via configuration tables
to a physical unit such as ISS#1l, ISS#2, etc. Predetermined
I/0 bus commands would be generated using symbolic
identification and their physical identification determinéd
at run time by the computer or by the BCU via the transfer
tables of the computer. Path identification for a specific
physical unit (i.e., which SIU/EIU address) must also be
determined dynamically.

If each physical unit had a single path, i.e., a unique
address (BUS#, SIU#, EIU#) the problem is solved. However,
there is more than 1 path to each unit; the address must

be determined from the status of buses and SIU's. The
complexity of this problem will, of course, depend on the
redundancy interfacing and cross-connections established

in the system. For example, consider a system configuration
of a quad-redundant bus, 4 SIU's, and up to 4 EIU's per

SIU. There could be up to 64 pOSSlble paths depending

on the cross-strapping.

Physical Unit Bus ' SIU ' EIU

"LRU #1 - 1 A X
: 2 B Y

3 C Z

4 D W

If the SIU is an extension of the bus such that SIU, cannot
be addressed via bus #2, then there are 16 possible paths
to a specific LRU. If the SIU were cross-strapped to the
bus and interfaced to a single LRU, then there are only

4 paths to it.

The function of inserting addresses could be allocated to’
the BCU, assuming it had memory, by sending it a table

of physical equipment codes, and the current path. The
current path would be updated by the configuration management
task as configuration switching occurred.

149 |
'INTERMET.'RICS’INCORPORATED - 701 CONCCRD AVENUE - CAMBRIDGE. MA_SSACHUSETTS 02138 + (617) 661-1840

d) . Data Linkage Addressing

This part of the bus command identifies the computer

memory location of the data to be output, or the destination
of the data input from the bus. If the bus format allows
block transmission, then the number of words is variable,
and must be obtained from the bus message itself.

A.3.2.3 Computer I/0 Error Processing. An unsuccessful ,
I/0 transaction detected by the BCU during bus operations is
eventually communicated to the computer, using the error
control bits in the bus command table. TIf the BCU is commanded
with a list of I/O0 requests, an I/0 error will not be detected
until the start of the next minor cycle. At the beginning

of each minor cycle, the error status of all messages is
checked. If errors occur, the minor cycle task schedule . is
modified accordingly, and the I/O error recovery procedures

are lnltlated Some of the alternatives are: :

a) the I/O request could be rescheduled via an alternate
path. A reconfiguration of equipment may be required.

b) Fault isolation tasks could be initiated to determine
what to reconfigure (the BCU, SIU, or subsystem may
have failed). '

¢) The sequence of tasks contained in the following minor
cycle must be altered, delayed entlrely, or allowed to
continue with "old" data.

A.3.3 -I/0 - Processing Memory Conflicts (Buffering and
Interlocking)

Independent operation of the bus and computer can result
in a conflict over the access to common data. This problem
occurs when .a processing task is using data while the bus
control unit is at the same time attempting to input or output

" the same data for the same memory locations. The problem is
more likely to occur for data that is sampled at a high
frequency, when use of the data cannot be easily synchronized.
It is also more likely to occur in a blcck of data rather
than a single word because of the inherent interlock of a single
word access. For example, attitude angle information from the

. inertial unit may be in use by the digital autopilot task when
the BCU inputs new values via the DMA. In this case the auto-
pilot is operating on partly new and partly old values. This
problem can be avoided by several approaches: : .

» 150 | .
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

a) - the I/O input and output in this category can be buffered

into different memory locations. It may be transferred

to other locations, or a pointer can be switched between
two sets of registers for the data item, one set for I/O,
one for processing. Input data may in any event require
to be smoothed or compensated prior to use. This is the
general concept of "double buffering" of input or output.

b) The data could be interlocked via a control indicator or
busy bit, during the time either the BCU or the computer is
using it. However, this would require the BCU to access,

test, set and release the indicator w1th a consequent
increase in its complexity.

c) I/O0 can be planned by predetermining and adjusting the
sequence of I/0 commands to avoid the conflict. I/O
commands can be designed to occur at the opposite end

of the cycle from the conflicting processing task. This
approach, although consistent with synchronous bus control
and I/0 philosophies, appears risky due to the inaccurate =

estimates of timing. It is, in fact, similar to the
approach used to solve the memory conflict problem in
Apollo. This was only partially successful, and it
could only be verified by extensive testing.

A.4 Description and Analysis of I/O Transactions

A.4.1 Definition of an "I/O Transaction"

An "I/O transaction" is defined as the complete sequence

of operations performed by the BCU in carrying out a single

I/0 request from the computer. Once the BCU has received and
interpreted a command from the computer, it synchronizes the

terminals on the line, transmits a message to the specified

terminal and receives the appropriate response. A transaction
occurs between the BCU and a siangle terminal. It is the basic

bus communication activity. It is independent of any other

transaction over the data bus system. There are two types of
I/0 transactions that are performed by the data bus: read and

write transactlons.

a) A read transaction is the sequence of steps performed by
the bus: system in acquiring data from the avionics equipment.

It can be termed a "get" command, to sample a specified

LRU equipment interface.

.b) A write transaction is a sequence of steps to send data

to an LRU interface. It can be described as either a

"receive" command, or a "do" command. The SIU receives

‘the data or command and delivers it to the spec1f1ed
‘equlpment interface.

151

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

A third type of transaction may be required, termed an
"SIU Event Status Command", in which the BCU transmits a
command message to an SIU, requesting it to return its event
status register.

This transaction enables the computer to determine if
random events (interrupts) have occurred at LRU's connected
to a particular SIU station. A rescheduling of processor
tasks ‘and read/write transactions may be necessary as a-
consequence of the event.

A.4.2 Functional Description of Bus Transactions

A discussion of how the bus system performs a transaction
provides another step towards a specification of the bus/SIU/EIU
hardware design. In order to describe the operation of the
bus during a transaction an assumption must be made with regard
to a specific bus to SIU to EIU configuration, and an error
control approach. It is important to emphasize that this
section is intended to describe the functions required at -
each bus element, and not to select a final design. -Several
configurations of a standard bus terminal were considered, but
a detailed bus command format was only designed for one.

The example configuration assumes a physical separation
of SIU and EIU. Each SIU is connected to only 1 bus line -and
 may service up to 8 EIU's. Each EIU provides analog and digital
. interfaces to equipments. The other terminal configurations
assume no logical separation of the SIU and EIU, and are
cross-strapped to all four buses.

The error control method selected for analyzing the trans- .
action is transmission error detection through vertical and
horizontal parity, and path verification by address echo.

A variable number of 8-bit data bytes was selected as
the basic transmission format. A 3-byte command format is
selected since 16 bits are considered inadequate to provide
the range of addressing and function.codes. A minimum of 18
bits are required for the command word in this configuration
(7 for SIU address, 3 for EIU address, and an 8 bit function
code) . : : :

Figure A.3 lllustrates a representative format designed
around the 3 byte command message with a variable data message.

The asterisked fields are mandatory. Representative use for
the other bits in the 3 byte command are discussed below:

152

lNTERMEfRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

*a) SIU address (up to 128 since only one terminal address per
station is required. See Section 3.)

b) SIU transaction bit. This bit may be_used to command. an
- SIU station to send an event status message. This is a
two byte response from an SIU containing the status of 16
events or conditions that are assigned among EIU's at a
terminal. Each is set in an EIU by the occurrence of a .
local random event such as a hand controller movement,
display input, or fault occurrence. .

*c) EIU address (up to 8 EIU's per SIU)

d) Error control bits. These are sent in an echo message from
" SIU to BCU when an error occurs associated with the LRU.
Typical of the possible error response conditions are:

lj- parity failure at EIU
2) EIU/LRU.busy

3) ° no response by EIU

4) improper channel

This information could be provided by a special request

to .the SIU. Making it part of the command format simplifies:
SIU/EIU logic. If the information were not provided to

the BCU, a "no echo" response for all the above conditions
will be treated in the same way.

3

e) I1I/0 control. This control bit determines whether the
specified channel address is an input or output operation.

f) Block. This field of the command message identifies a
single or multiple channel address group. It is used in
conjunction with "block size" to specify the size of the
message block. :

*g) Channel Address. This specifies the EIU interface by one
of the methods listed in Section A.2.1.4.

h) Block Size. The block size 1dent1f1es the number of
channels to be sampled.

| o 153
INTERMEfRICS INCORPORATED » 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

pST -

9 BIT BYTE ORGANIZATION

e — 27 BITS - — —
1 | 2 e 3
"SI0 ABDRESS | "EIU_|ERR|I/0 "CHANNEL |"BLK |
SIUADDRESS | |\ P} appr |conT|cont| |P| ADDREss fsize |P| ‘.
U L s m
. ! -
7 BIT SIU ADDRESS | EIU ADDRESS JLOUK REQUEST - BLOCK SIZE
| ° 1 BLOCK CHANNELS =~ 4 -
| | | 4
, | EIU COMMAND -
» 01 = INPUT CHANNELS -
SIU TRANSACTION BIT 10 = OUTPUT CHANNELS
1=SIUTRANSACTION L gpoon conthot

SEND LRU/EIU
INTERRUPT STATUS W 01 = PARITY :
S S WORD 10 = EIU/LRU BUSY

' DATA TRANSWISSION FORMAT 9 BIT BYTE VERTICAL AND HORIZONTAL PARITY
1] N | N+

T T R
DATABYTE1 ~|P| DATABYTE2 |P|eee | DATABYTEN

P VERTICAL PARITY .

* REQUIRED IN COMMAND MESSAGE

"Figure A.3 Representative bus <ommand message organization

GST

51+ Kps:

READ TRANSACTION *

|SYNC

BCU DELAY FOR START
OF NEXT MESSAGE -

* 3BYTE BCU COMMAND |
- ECHO CHECK
* VERTICAL AND HORIZONTAL PARITY

!

Figure A.4': S‘ample read/write 'tran.sactions '

("2 5 ps)

Euq i 36 us — 12— 9 (N+1)ps— i
[scu] [sivJew aoof Funcr [verTicaL] [siw] sw DATA | DATA | DATA | ... [Data |VERTICAL
sYNC| | ADD |& conT | cODE | PARITY | [SYNC|| ADD BYTE 1| BYTE2 |BYTE3 v LeN| PARITY
—— scw 70 s1u MEssAGE ——] } L_s&t&eaé:;io__] L—————sxu T0 BCU DATA MESSAGE ——m—]
POSSIBLE SIU DELAY
IN RESPONSE
K= 2-4 ps
)
1
]
i ~ WRITE TRANSACTION
2 — | - N + l’L_'.',.)
~ 30 ps 1 —— 3N+ s] 2w |
BCU) [siu_[ew Jrunct] [oata [0aTA| DATA | . [0ATA | VERTICAL sul [s aoo
SYNC| | ADDR |AQAR CODE | |BYTE! |BYTE2| BYTE3 | BYTEN | PARITY lsnel ,
— ——— BCU- I MESSAGE COMMAND AND DATA !f! — ECHO CHECK —
| N o
ASSUMPTIONS: ' P OSFJEPEPSS',U DELAY ;
« 9 BIT BYTE

8CU

SYNC

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

A.4.3 Description of the Transaction Sequence

The steps involved in read and write transactions using
this format are illustrated in Figure A.4. A brief description
of the transaction is as follows.

a) A read transaction begins when the BCU initiates a sync-
signal on the bus, followed by transmission of the bus
command word. The BCU then waits the response.

.b) All "up" receivers on the line receive the sync signal.
Each compares the SIU address in the message with its own
prewired address. If no match occurs the rest of
message is ignored, and then each SIU monitors the llne
for the next BCU sync.

c) If the address check shows agreement, the SIU decodes the
EIU address and then routes the message to the specified
EIU over a serial channel*, while checklng for horlzontal

_parity in each byte.

d)}) The SIU awaits the parity check signal from the EIU to
insure that the message was received properly, and upon
its receipt, transmits an echo message to the BCU. If the
EIU does not accept the message, the SIU transmits its
address echo with the appropriate error control bits set
in the second byte of the command word.

e) During the time the SIU is transmitting the return echo,
the EIU decodes the function code (channel address or
memory) , multiplexes the requested input channels,
performs A/D conversion if required and sends the requested .
data to the SIU. A time lag is incurred by this process, '
termed the LRU latency. It is discussed below.

£) .The SIU verifies parity and continues transmitting the
data message to the BCU.

The BCU, after transmitting the initial command, monitors
the line for the return echo. If no echo is received within
a fixed time interval, a transmission error is deemed to have
-occurred, and the computer is informed via the I/0 error control.

When the BCU receives the echo check, it accepts the
requested number of data bytes, verifies parity, and transfers
the data to the requested locations in computer memory, after
which the read transaction is completed. :

.* Serial transfer is considered advantageous in minimizing
the number of interconnections.

156

(617) 661-1840

" PRANSACTION EFFICIENCY °

100

75 |-

WRITE TRANSACTION

READ TRANSACTION

50 |~
1/0 TRANSACTION:
~ *8 BIT DATA BYTE
"o 3 BYTE COMMAND WORD
o VERTICAL & HORIZONTAL PARITY

25 » ECHD CHECK
. ! L 1
0 8 16 .2

- NUMBER OF BYTES OF INFORMATION -

Figure A.5 Bus I/O transaction efficiency

157

32 -

1/ TRANSACTiONS PER INTERVAL K

250

200

150

100

50

TRANSACTION TYPE:
° 8 BIT DATABY TE
e VERTICAL AND HORIZONTAL PARITY
e 3 BYTE COMMAND
o ECHO CHECK ADDRESS

N L |

8 I R

. DATA BYTES PER TRANSACTION.

Figure A.6 Frequency of I/0 'trénsactidns
» - versus number of data bytes

158

Write transactions are performed using similar procedures
as illustrated in Figure A.4. A total time to complete an I/0
transaction using this command structure and error control
procedures has been estimated for a block of size N bytes to
be approximately:

WRITE transaction = (59 + 9N) us

READ transaction (69 + 8N) wus

A.4.4 Bus Efficiency and Latency

A.4.4.1 Efficiency. The bus utilization efficiency can be
computed by the ratio of information bits in a transaction
to.-the total number of bits in the transaction. 1If we consider
the total number of bits in a transaction to be the total
transaction time (including delays, etc.) times the bus speed
(assumed to be 1 MBPS) we obtain a worst ‘case estimate of ‘bus
efficiency. Information transfer efficiency estimates for a
3-byte command format are illustrated in Figure A.5.

The bus system will operate at about 50% efficiency for
transfers of 10 or more bytes. This illustrates the obvious
fact that to maintain efficiency the software should be
structured to obtain information from LRU's in blocks. For
example, status data should be obtained in functionally related
groups, such as all temperature readings.

A significant factor is the number of I/O transactions
that the bus can complete in a minor bus control cycle. Figure
A.6 contains a plot of the I/0 transactions, consisting of a
given number of data bytes, which can be completed during a
fixed interval of time. Based on an average block of length
8 data bytes, approximately 70 transactions can be . completed
during a 10 ms interval. It is apparent that even though the
efficiency of information transfer may be less than 50% in most
‘cases, the actual number of transactions completed during an
interval of time should be adequate to service the expected
Shuttle I/0 requirements. Figure A.6 illustrates that careful
scheduling of the bus during any minor cycle will be requlred,
partlcularly if the size of blocks vary.

A.4.4.2 Subsystem Latency. When a read transaction command
is received by the EIU, an interval of time is required, called
the latency time, for the EIU to interpret it, to carry out the
command, and return the data. A delay can be causes by analog-
to-digital conversion, serial/parallel conversions, inherent

159
INTERMETRlCS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

equipment dynamics, etc. If an I/O request from the computer has
a latency time exceeding a certain fixed interval, it must be
organized into two or more transactions. An example is the
computer request for DME transponder range. The inherent
. characteristic of the DME is that to obtain range to a specific
point, the DME measures the time a signal takes to traverse
~the distance to that point and back again. The latency time
required for this operation is intolerable in the I/O transaction
structure described above. This type of transaction must be
divided into two transactions: one to command the range to be
read, and the other for reading the range. Coordinating these
interdependent transactions so that they occur at the right
time, presents problems to the I/0 scheduling software design.

A form of latency occurs for certain types of block data .
transfer from computer to subsystem. Error control that
depends on horizontal and vertical parity cannot provide verifi-
cation of the correct receipt of a data block until the last
byte has been received (the last byte is, in fact, the vertical
parity byte). To prevent erroneous data from being transmitted
to a subsystem, the complete block must bhe buffered at the
terminal until it is verified. It is subsequently transmitted
to the subsystem for which it is intended. However, this
second transmission may take a considerable time, by bus
standards: a 32 byte block will take over 0.25 milliseconds
at 106 bits per second. This is enough time for several other
transactions to take place.

For both kinds of latency, it is essential to allow no
inadvertent interference with the terminal from other
transactions. For this reason it is desirable to provide for
the indication of an EIU/LRU "busy" condition via the status
bit(s) associated with the SIU echo return. This bit can be
interrogated by the BCU to provide an I/0 error indication to
the computer whenever another command is addressed to the busy
terminal.

A.5 I/0 Timing Difficulties

. A claés'of system problems exists in the operation of a
time shared bus which is associated with the correlation of
data and commands with "time". For example:

a) Correlation of data and absolute time. Several system
computations demand the acquisition of data from separate
subsystems at the same time. For example, a navigation
measurement combines sensor data with attitude information,
correlates both to the same absolute time, and updates the

160
INT'ERME'I;RICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

navigation data. With a synchronously controlled data bus,
in which samplin is performed only at fixed minor cycle
intervals, time may only be established with a granularity
of the sampling period. That is, all samples taken during
one minor cycle are associated with the same time tag. If
‘a finer time reference is required it must be provided by

a local clock. 1In an asynchronously driven bus system

a finer reference time quantization may be obtained because
. a specific I/0 command may be sexrviced within approx1mately
100 us (depending on the I/0 queue backlog). - -

A related processing problem arises in the derivation of a
rate of change by differencing two measurements. In this

case a difference in time must be either assumed or computed
for two measurement samples. For high frequency samples, '
obtained with a synchronously driven bus, the order .of the
I/0 command in the list may be important, particularly if

a fixed delta time is assumed in the calculation.

b) Local precision tlmlng. Another problem that may arise
concerns the precision timing of events at geographically
separate and remote subsystems, for example, the timing
and coordination of firing commands to the RCS jet thrusters.
From a system point of view, it is desirable to design such
subsystems to receive a message which contains not only
the command but also the firing interval. The impact on
I/0 complexity, bus traffic and response, of separate trans- .
missions to command the thruster on and then off could be
considerable. if ‘this type of bus activity predominates.

The capability for local precision tlmlng may be incorporated-
into the subsystem or terminal. s

161

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Page Intentionally Left Blank

Appendix B

Data Bus Error Control

B.1l 1Introduction

Since the Shuttle data bus provides the sole communications
for onboard avionics equipment, an important design requirement
is that it provide a reliable transfer of information in the
presence of both permanent and transient failures. Permanent
failures are caused by equipment failures and are a direct func-
tion of the simplicity and reliability of the data bus system
elements (i.e. BCU, bus, SIU, EIU, and LRU). Transient failures
are caused by such effects as electromagnetic interference, which
must be .anticipated in the Shuttle environment. The characteristics
of the interference are anticipated to be predominantly impulsive,
and primarily caused by coupling to the line of transients and
noise from switches, motors, relays or other sources. "Burst
errors" involving multiple errors close together are to be expected
in this environment. A major task of the data bus design will be
to incorporate an error control approach which provides "security"
of communication in the presence of n01se of largely unknown

characteristics.

Several error control techniques have beéen applied in
communication systems to reduce the probability of undetected
errors. The techniques generally attempt to satisfy a proba-
bility goal within the system design constraints of cost, weight,

power, or bandwidth.

There are two basic objectives of the shuttle data bus
error control scheme to be satisfied in the presence of potentlal
permanent- and transient errors:

a) To maximize the probability that a transmltted nessage is
correctly received by the correct terminal; :

b) To minimize the probability that an incorrect message 1is
received.

Most commonly a particular error detection scheme has been
coupled with retransmission or forward error correction. Various

163

. INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139+ (617) 868-1840 .

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -

forms of information coding to obtain an error detection and/or
correction capability have been used. Numerous codes have been
devised to satisfy a particular communication channel error .
probability. Prior to discussing the specific error control
approach appropriate to the shuttle data bus, a review of informa-
tion coding schemes is presented with-a discussion of their advan~
tages and disadvantages.

B.2 ‘Information Coding Review Discussion

B.2.1 Coding Theory

Coding modifies the message to be transmitted by adding
redundant bits to the transmitted message. These extra bits are
examined at the receiving terminal to determine whether an error
has been introduced and in some cases to locate the error bit
within the message so that it can be corrected. '

The methods of detecting and correcting errors can most
easily be explained with the aid of the concept of Hamming
- distance. Briefly, the Hamming distance between two strings of
binary symbols (of equal length) is the number of positions in
which the symbols in the string are different. Thus, the symbol
strings 1100 and 1000 are separated by a Hamming distance of 1,
while 1100 and 001l are separated by a distance of 4.

In the study of codes, one of the parameters of interest is
the minimum Hamming distance between any two valid code words in
the set (for codes in which all the code words contain the same
number of bits). Thus, if a code has a minimum Hamming distance -
of two between any code words, at least two symbols must be
changed in order to change one valid code word into another valid
~code word. With such a code it would be possible to detect any

single symbol error, and also many but not all, possible errors
‘affecting more than one symbol.

B.2.2 Slngle Parity

A common example of such a code is the single parity
check, in which the code word is generated from the binary message
string to be transmitted by adding a single bit such that the
total number of "1's" in the code word is even (or odd). The
choice of even or odd parity has no effect on the random error
correcting properties of the code, and is usually made to faci-
litate the detection of certain equipment failures which can
produce all "1's" or all "0's" in the received message.

164

(617) 868-1840

INTERMETRICS lNC_ORPQRATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -

In particular, errors affectlng an odd number of bits will be

detected but errors affectlng an even number of bits will not.
The single parity bit is extensively used for error control, -
principally because of its simplicity in terms of hardware. It
is effective against random independent noise.

B.2.3 Error Correcting Codes

For some applications, the mere detection of an error is
not sufficient. It is necessary to determine from the received
symbol string the nature of the error, or, to be more precise,

" to determine the message that should have been received in the

absence of noise. This can be achieved by error correction codes.

B.2.3.1 Hamming Single Error Correctigg Code. The well-known
Hamming single error correcting code is an example. This is

a code having words of length 2M-1 where m is any integer.
There are m parity bits and 2M-1-m information bits. The

- construction of the code word from the message bits will

_be illustrated for m=3.

. Bit POS1txen : By B, - B, B, By Be By
Parity-Message Pl ' P2 My P3 - My M3 M,

The périty bits are determined from the equations:

Pl + Ml + M2 + M4 = 0 (or 1) (modulo 2 additions)

P2 + Ml + M3 + M4 0 (or 1) '

"

P, + M. + M, + M

"
37 My Myt M =0 (ord) ~

At the receiver, the three parity equations are checked
to give.three error states E3, E, and E;. ~ (A "1" denotes that
the eguation did not check, and a "0" indicates that it did.)
These three error bits are ordered as a binary number E3EjE],
called the syndrom, whlch equals number of the mesgage bit that
’should be changed. : :

165

(617) 868-1840

If two or more errors occur in the transmission, then either
. the received word passes the parity tests and is incorrectly
accepted by the decoder, or the decoder recognizes that an error
has occurred but incorrectly identifies the nature of the error
and incorrectly "corrects" the received message.

The Hamming codes -that .are discussed here have the interest-
ing property that every possible received word is within the- -
error correcting distance (in this case a "sphere" with a "radius
of a Hamming distance 1) of some valid code word. A code having
this property is called a perfect code or a close packed code [1].
In general, most codes do not have this property. In fact, for
codes capable of correcting more than one error, only a few such
codes are known. : :

"

B.2.3.2 Augmented Hamming Codes. In the case of non-perfect
codes, several strategies can be used when the received message
- is not within the specified correcting range of any valid code
word.. On one hand, the distance to each valid code word can

be -determined and the nearest valid code word selected for the
‘decoder output. If two valid code words are equidistant,
outside knowledge of the message probabilities could be used

to resolve the tie. At the other extreme, any received message

not within the assured error correcting range of the code could
be labelled as a detected but uncorrectable error.

An example of a code for the latter strategy is the
" augmented Hamming code generated from the Hamming code described
earlier by adding one.additional overall parity bit. This code
has a minimum distance of four, and, while it is not a perfect
. code, every possible received sequence is within a Hamming distance
of two of one or more valid words. This code can be used as a
. single error correcting, double error detecting code.

It is worth noting that a particular code can be used in
a number of different ways, depending on how the decoder is
mechanized. The extended Hamming code will detect some but not
all higher order errors (and will "correct" some other high
order errors to produce a wrong message). The same code could
also be used as a triple error detecting code. In this case, the
code will also detect many more of the higher order errors. In
fact, it will detect any error pattern that does not convert
the transmitted code word to another -valid code word.

, It has also been shown that this same code can correct all
- single errors and also all double errors in adjacent bits, provided

166
’INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIQGE, MASSACHUSETTS 02139 - (617) 868-1840

the parity bit is not in error [19]. Using this decodlng procedure
very few if any hlgher order errors will be detected

B.2.4 Higher Order Error Correcting Codes -

Codes are known which have sufficient Hamming distance
between valid words so that they can correct two or more errors
in a block. 1In general, these codes are either trivial (repeti-
tion of each message bit an odd number of- times with majority
voting, called a binary repetition code), or are too complicated
to describe in detail here.

Among the better known of the constructive (non-random) codes
are the Reed-Muller codes [20], and the Bose, Chandhuri and
Hocqueughem (BCH Codes). BCH codes are a generalization of
Hamming codes for multiple error correction. The correction
procedures are, however, fairly complicated. The technique for
BCH error correction consists of solving the.roots of a N degree
polynomial and a set of N equations, where N is the number of
correctable errors. The complexity of the correction procéess
forces BCH codes to be considered only for error detection.
Correction becomes feasible if a processing Capablllty is avail-
able, and a delay in the receipt of the message is acceptable.

BCH codes are cyclic codes and have the disadvantage of being
sensitive to loss of synchronism since shifted CYCllC code words

are also valid code words.

B.2.5 Burst Errors and Burst Codes

In many instances. where coding has been employed to
detect or correct random errors in a data transmission system,
the improvement in system performance has not been as great as
expected. The reason is often that the assumption of additive
white gaussian noise, or other mechanisms which generate
independent bit errors, is not valid. Generally, in a real
environment the errors occur in groups or bursts. Electro- _
‘magnetic interference of duration longer than one bit trans-
mission time would be an error source with this characteristic.

A simple example is provided below to lllustrate such a

: problem Consider the case of a system ogeratlng at
one million bits per second, and using coherently detected amplltude

modulation at 15 db signal to noise ratio. We will assume that
the system is perturbed by gaussian noise so that errors are
random and independent. The probability of a bit error for this
condition can be calculated to be one in 1.26 x 10° bits. The
code is a three error correcting code having 23 bits, with 12 of
them information. The example is a special case known as the

-167

INTERMETRICS INCORPORATED -+ 380 GREEN 'STREET « CAMBRIDGE, MASSACHUSETTS 02139 -« (617) 868--1840._

Golay code. This code is close packed, and we can, therefore,
neglect all of the possibilities of detecting higher order errors
as they always result in a word error. The following observations
are made:

a) a 51ngle bit error in a word is expected with probablllty
23 x 7.9 x 109 = 1.8 x 10~7 per word, or once every 126 sec.

b) a double bit error will occur with’ probablllty 1.6 x 107 -17
' Oor once every 47 5 years.

c) the probablllty of three or more errors and consequently the
apro?iblllty of an undetected error 1n a word is vanlshlngly
sma :

If, however, the mechanism of the disturbance is such that
for 10 consecutive bits the probablllty of error is 0.5, there
will be an average of 5 errors in the burst of ten blts, SO exror
bursts will occur every 630 seconds. Since .17 of these bursts
will have three or less errors, and neglecting the fact that
in some cases a burst laps over the division between two blocks,
a decoding error will occur approximately every 25 minutes.

The description of the burst error channel given above is
obviously a very simple case. Yet it illustrates the signifi-
cant difference in conclusions which can be drawn about the expected
performance of a control approach.

Some general observations can be made on the performance
of error control codes in the presence of burst noise. If a
- code with a minimum Hamming distance of h "is .used as an error
" detecting code, any burst causing up to (h-1) errors will be
detected. For bursts causing more than (h-1l) errors, most, but
- not all, will be detected. The exact percentage of errors of
various lengths that will be passed depends on the code used.

At the other extreme, if the burst is sufficiently long
and severe, so that the received bits have no correlation with
the transmitted message but are instead received with a proba-
bility of error of 1/2 for each bit, then an estimate of the
probability of passing an error is again possible. If the coded.
word has n bits, k of which are information, the remaining (n-~k)
bits are redundant. The k information positions in the word can
be filled by the random process with any bits, and there will
then be one and only one set of values for the redundant bits that
will result in a coded word. The probability of this partlcular
set of values being chosen is (l/2)n"k

 The assumption that a noise burst will result in bits being
received as "1" or "0" with probability 1/2 is, however, not always

168

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS €2139 - (6-17) 868-1840

valid. Sometimes a noise burst (or hardware failure) is more
likely to cause errors in one direction, such as turning "1l's

to "0's", than the other direction. Such situations arise from
the details of the modulation scheme used and the design of the
hardware, and are very difficult to evaluate in a general way.
When possible, it is usually good design practice to design the
code so that the most likely types of equipment failures will not
result in a valid code word. Examples of this would be elimina-
tion of all "1's" and/or all "0's" as valid code words.

" B.2.6 Fire Codes and Other Burst Codes

Some special error correc¢ting codes have been developed
which are especially applicable to error correction in channels .
which are subject to burst errors. For a given level of redundancy,
these codes are able to correct more errors in a burst than would
be possible if the errors were assumed to be random. These codes
reguire long blocks and complicated decodlng procedures. Two
examples of these codes are cited: <

a) Fire codes

Fire codes are oriented towards a‘single burst of errors per
message. They are inefficient for short blocks, however,

and are not particularly good for multiple bursts on a 51ngle
block.

b) Reed-Solomon Codes

The Reed-Solomon codes are a special case of the generalized
BCH codes, oriented toward multiple burs:t error correction.
They are moderately efficient, and for the same block length
are similar to BCH codes in decoding complexity.

B.2.7 Horizontal and Vertical Parity Coding
(&)

A coding technique which has been proposed for the Shuttle
baseline data bus systems is vertical and horizontal parity
"coding. This coding scheme assigns a single parity bit to each
byte or word of the message (horizontal parity), and an extra
byte or word for vertical parity on the. preceding bytes. This
approach detects all odd numbers of errors. An undetected error
can only occur when each byte and every bit position contains
an even number of errors. The scheme fails to detect errors only
when an even number of errors, equal to or greater than four, occurs
with the errors paired in rows and columns. The efficiency of
this approach is moderately high for messages of several bytes,

169 -
\INTERMETRICS INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACH.USETTS 02139 « (617) 868-1840-

but is poor if the number of bytes of data ih a message is small.
For example, the effective information’ rate of an 8 bit byte
of data would be computed by

__8N

Etr = 9Rriy

where‘N is the number of bytes

It can be seen that for a small number of data bytes the
efficiency is low (i.e. 44% for 1 byte, 59% for 2 bytes). When
the block size increases, however, the coding scheme becomes more
efficient (i.e. 79% for 8 bytes, 91% for 32 bytes). Although
there are more efficient coding techniques, this scheme has a
major advantage in that its implementation in terms of the
encoding, decoding and detection logic required in the SIU, EIU,
and BCU data bus equipment is probably the simplest.

B.2.8 'Repeated Transmission

The repeated transmission of a data message over a single
path is a well-known method for error detection. Detection is
accomplished by requiring all messages received to be identical.
The time diversity, or spacing of transmissions provides 1nde—
pendence.

Implementation of this approach as the prime error control
- .approach in the Shuttle data bus would require the BCU to transmit
the (uncoded) data to the remote station, and vice versa, two ’
or more times. The remote terminal would require a comparator
or voter to determine an "acceptable" transmission.. Retransmission
for error correction is still required for ambiguous voting results.

The method is relatively simple to implement, but is very
inefficient, particularly for block transmission. 1In order to
get a Hamming distance four code for three error detection, the

message must be repeated four times. = The same error detecting
capability can be obtained with many fewer bits u51ng other coding
schemes. :

'B.2.9 Transmission Over Multiple Paths

The transmission of the message over multlple separate
paths between a single BCU and single LRU is similar to the redun--
dant transmission over a single path. It is true that the
message is received and verified at the output with less delay
than is associated with the sequential transmission scheme, but

170

INTERMETRICS INCORPORATED - 580 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

- INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -

. on an overall basis, there-is no improvement in the utilization
rate of the available channel capacity. The necessity of providing
parallel channels to allow continued operation in the event of

a permanent hardware failure would directly affect the Shuttle

data bus if it were the prime error control method used. It

would require independent paths to be maintained for the FS mode

of operation, increasing the number of buses required for FO/FC/FS.

The approach would increase the complexity of the BCU and
SIU units, since it requires transmissions over multiple paths
to be synchronized, so that comparison or voting could be -
- performed at the receiver, or storage for delayed receipt.

B.2.10 pata Feedback/Echo Check

_ In this method, uncoded data is saved in buffer storage.
at the transmitting element and sent to the receiver. The
receiving element transmits back the entire message. The trans-
mitting element then performs a bit-by-bit verification of the
entire message. Upon verification by the transmitter, the receiv-
lng element is instructed to use the information on recelpt of a
verlfy" message from the transmitter.

If an error is detected the transmitting unit can retransmit
the entire message. If the error was caused by an external noise
transient, the second transmission should be valid. This method
is referred to as an echo. One of the problems with this approach
is the probability of transmitter's verification being in error,
An endless chain of echoes may result in requiring the receiver .

' to echo the echo, etc.: Complete feedback of "all data requires
twice the time to transmit a message. Its main advantage is the
high degree of error detection it provides.,

B.3. Detectioh and Retransmission Vs. Forward Error Correction

In the analysis of data transmission systems, two dlStlnCt
cases have been studied. The first case is Forward Error Correc-
- tion, in which the decoder at the receiver studies the received
- message and, if an error is discovered, attempts to deduce the
correct message from what was actually received. The second case
is retransmission, in which the decoder checks the received message .
for signs of error, and if an error is detected the decoder informs
the transmitter. The transmitter can then retransmit the message
- or take whatever other action is indicated. _

. A forward error correction scheme is considered undesirable
for the Shuttle data bus since it would require too much complexity

171

(617) 868-1840

at the terminal and BCU, particularly for correcting'more than
1l error in a message. The method preferred is to combine an _errox
detection scheme with retransmission for recovery. :

The advantages of the retransmission approach to error
recovery are reduced complexity of the decoder and the reduction
in the probability of an undetected error for a given level of

- coding.

The classic studies of retransmission systems were reported

in two papers by Benice & Frey in 1964 [21]. 1In these papers
three cases were considered: : !

1. Idle RQ - in which the transmitter sends a message and
" then sits idle until the decoder indicates whether a

retransmission is requested. Presumably, this includes

a "no response" from the terminal. ' :

2. Simple RQ - in which messages are sent continuously.
When an error is detected and a retransmission. requested,
the source repeats the requested message.

3. Dual RQ - in which messages are transmitted as in Simple
RQ, except that the requested message and all subsequent
messages are repeated.. , :

The Idle-RQ system appears to be most approprlate to the
Shuttle data bus, since the bus traffic is expected to consist
of a large number of relatively short communications between the
‘bus controller and the many terminals along the bus. The advan-
tages of the other schemes are achieved when full duplex trans-
mission systems (simultaneous continuous transmission in both
directions) is used. The Shuttle data bus is not expected to
be used in this manner.

The conditions for which the Idle-RQ scheme becomes a poor
candidate are not applicable to the Shuttle data bus. In many
data transmission systems, the transit time of the channel is
long compared to the length of a message. Thus, the transmitter
wastes a lot of time sitting in the idle state waiting for the
message OK or retransmit signal. In the Shuttle data bus, the -
round-trip time to the farthest subsystem will only be a few
mlcroseconds, or bits.

In the data presented by Benice & Frey, the computed
probability of an undetected error for the Idle RQ system drops
rapidly until a certain minimum probability is reached, and then
no further improvement is possible. This behavior is traced to
the failure of the retransmission request to be recognized at the

172

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840.

transmitter. The minimum error probability is the probability
that some kind of error will be detected in the forward message,
and then the retransmLSSLOn reguest is changed to a conflrmatlon
that the message was OK.

In the other two retransmission schemes, the retransmission
request was encoded as a part of a message moving in the opposite
direction and was, therefore, protected by the same level of
coding as the original message. The occurrence of any error in
a returned message was construed to be a retransmission request
for the forward message. This attitude results in a small decrease

~in throughput rate, and a large decrease in probability of an
undetected error. :

In the Idle RQ scheme, Benice and Frey postulated a one bit

confirmation message for most of the work, and this results in
a minimum probability of undetected word error of about 5 x 10-8
for a bit error probability of 10-5 and a 511 word message. By
changing the returned accept retransmit request message to a
7 bit format, the minimum probability of an undetected error was
reduced to 5 x 10-38, The point to be made here is that the
retransmit request must be suitably protected if it is not to
turn out to be the limiting factor in the probability of error-
in the transmission system. The penalty for this is a slight

- reduction in the throughput rate of the system, which does not
appear to be a prime consideration in the Shuttle data bus system.

173

_ INTERMETRICS INCORPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

References. for Appendix B

l. Berlekamp, E.R., Algebraic Coding Theory, McGraw Hill
Book Co., New York, 1968. .

2. Abramson; N.M., "A Class of Systematic Codes for Ndn—.
Independent Errors", IRE Transactions on Information
Theory . PGIT5, No. 4. December 1969, pp. 150-157.

3. Peterson, W.W., Erxror Correcting Codes, The M.I.T. Press,
Cambridge, Mass., 1961. _ . :

4. Benice, R.J. and Frey, A.H., Jr., "An Analysis of Retrans-—:
mission Systems", IEEE Transactions on Communication
Technology. PGCOM-12, No. 6. December 1964, pp. 135-145;
and "Comparisons of Error Control Techniques", Ibid,
pp. 146-154. ‘ .

174

INTERMETRICS INCORPORATED - 380 GREEN STREET .« CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840 -

:'Appendix C

Literature Review of Avionics Executive Systems

The purpose of this appendix is to review several articles
- whose content relates to the Space Shuttle executive design.
The executive features presented in the articles are outlined,
and those having direct bearing on the Space Shuttle executlve'
design are emphasized.

I. "Improved Centaur Computer,Opérating System", by S.W.
Matthews, AIAA Aerospace Computer Systems Conference, 1969(22].

The Centaur executive control allows for a system driven
entirely by hardware interrupts, or entirely by a programmed
task scheduler, or a combination of both. Matthews feels

it apparent that a software system having hardware interrupts
for asynchronous nonperiodic demands of peripheral hardware
and a programmed task scheduler for semiperiodic tasks,

would result in the most flexible hardware/software system.
Such a structure is a desirable feature for an aerospace
executive system as explained in Chapter 2.

The task scheduler is entered when a task ends or when

the real-time interrupt occurs. It operates off a task
table which is an ordered list containing the status of

the functional tasks to be executed. The order of the list
determines task priority since the table entries are
processed in sequential order. Each entry contains a task
start time, frequency for cyclic tasks, location of task,
task interrupt bit, and a special action indicator.

The interrupt bit indicates whether a task has been
interrupted by the executive task scheduler; that is,
whether a higher priority task received the processor before
the former task finished execution. The special action
indicator is used as a flag to indicate the requirement

of executing a communication or control subroutine. These
routines can vary with the particular application and

may be added to or deleted from the system as requirements
demand. Thus, the system can adapt to its env1ronment
through special action routines. :

175
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Tasks. are executed as a function of list position, interrupt
status, and start time. Any task can interrupt any task
following it on the list. Thus, the most frequently

cycled task must occur first on the list. The control
algorithm is shown in Figure C.1. This method of inter-
rupting a task is undesirable on the Space Shuttle because
it raises data integrity problems. Whenever a task is
interrupted, a copy of all the data which this task shares
with other tasks and which can be modified by other tasks,
must be saved. The Compool approach is an effective solution
to this problem. ' '

II. "A Simple Real-Time Executive for an Aerospace Data
Management System", by Peter Adler, MIT Drapexr Laboratory,
E-2579, May 1971 [23].

The basic functions that this executive performs (as indeed)
most executives do) are job dispatching, resource allocation,
and.I/O control.

The dispatcher works off a priority queue of jobs. It is
entered when an application program ends and selects the
highest priority job for execution. Three priorities

are recommended, each having a queue organized on a FIFO
basis. Both time and event scheduling are possible in
the system. A wait queue for jobs awaiting I/O is
suggested but no dynamics are presented.

Adler recommends dynamic storage allocation for job
temporary work areas. Thus, reentrant programming and
data sharing are possible. To avoid fragmentation of
memory, all available storage is organized into equal
size blocks with a threaded list structure. Although
dynamic storage allocation is a desirable shuttle executive-
feature, it is unclear whether all allocated blocks should
" be of equal size. For example, if a task requires several
contiguous blocks of storage, and if memory is already
fragmented, contiguity will not be possible. However,
by having a large sized single block of core ready for
allocation, the task's request can be granted.-

In Adler's system, Jjobs are segmented into 10 msec blocks.
Every 10 msec a breakpoint allows the job to be suspended
if a higher priority job is pending. A programmer must
be-sure all vital data are entered in temporary storage
before a breakpoint occurs. This mechanism also aids in
program verification and is a desirable executive feature.

176 :
INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

CLEAR
INTERRUPT

!

ENABLE
© INTERRUPT
SYSTEM

v

DISARM
REAL-TIME
INTERRUPT

v

1631/2 ps
50 CPS

SAVE ALL
VULNERABLES

v

-UPDATE
CLOCK

18ps

v

SET INTERRUPT
INDICATOR

v

SET TASK”
POINTER
=1

DISARM
REAL-TIME
INTERRUPT

v

UPDATE TASK

POINTER
I =+ 1

v

mf SPECIALACTION

¥y FORTASK (1 ?

12 us

1 8 us
NO I

év YES

SPECIAL ACTION

AS REQUIRED

12 ps

126 ps

177

1S TASK () %0

IN STATE OF

A\ INTERRUPT?

J; YES

RESET
INTERRUPT
INDICATOR (1)

RESTORE ALL
VULNERABLES (D

v

DISABLE .
ARM REAL-TIME

ENABLE

TIME T0O N
START
TASK (1) ?

_ves

CLOCK +
PERIOD () =
START TIME (1)

48 ps

SET LINKAGE
TO NORMAL
ENTRY (I}

v

ARM
REAL-TIME
INTERRUPT

Figure C.1 Control Module Executive Algorithm [22]

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

To avoid two jobs updating common .data, an interlock bit
mechanism is proposed. This mechanism could be avoided by
judicious program segmentation such that the use of shared
data is completed within one program segment

" As an alternative to I/0 interrupts, Adler suggests I/0
device polling which eliminates: the need for hardware
buffer gqueues. All I/O is done by one job to avoid
conflicts. There is then one interrupt to allow initiation
of the I/0 monitor at a fixed frequency. This method of
I/0 handllng is advantageous. for data acquisition. However,
when data is- outputted there is no way to know when
the transmission is done since there is only one fixed
frequency interrupt.

Adler aVOldS mentlon of synchronous vs. asynchronous
structure. The executive he proposed allows time and event

. scheduling, so it is not fully synchronous. However, jobs
can also be scheduled cyclically so it is not fully

asynchronous either. This blend of the two structures
is a desirable Shuttle feature.

III. "STS Software Development (Study Task 5)", MIT Draper
Laboratory, E-2519, July 1970 [24]. :

MIT lists four criteria for the Space Shuttle executive
system: v

1. Efficient resource allocation
2. Sufficient features incorporated to permit efficient
programming and runnlng of mission oriented programs.
These include:
a. priority execution gqueue
b. time execution queue
- c.. event execution queue
. ’ \
d. temporary storage allocation

.e. I/0 scheduling

f.- I/O‘execution

178

NTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 « (617) 661-1840

g. interlocking of shared data
_h; modification of protected data

3. Fast and simple-executive execution, e.g., by avoiding
looping, indexing, and indirect addressing.

4. Uncompllcated interfaces between executive and
application programs.

In addition, application programs must conform to certain

criteria.

1. Modularity: there must be rigid and well-defined
rules for programs interfacing -with each other.

2. Use of executive routines to minimize program overhead.

3. Program segmentatlon to allow long tasks to be
safely interrupted.

4., Temporary storage requests must be done through the
executive.

Dynamic storage allocation is also recommended to minimize
conflicts over dedicated locations and to allow for
reentrant subroutines. As mentioned above, this is a
desirable executive feature on the Shuttle.

These criteria for both the executlve and appllcatlon
programs support Intermetrics' views on Shuttle programmlng
as evidenced in the features of our executive system design.-

179

INTERMEfRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS'02.138 + (617) 661-1840

Page Intentionally Left Blank

BIBLIOGRAPHY

1. -IBM Corporation, "Space Shuttle Phase B Software
Specification (Preliminary)", IBM No. 70-D33-0020,
December 21, 1970.

2. McDonnell Douglas Corporation, "Space Shuttle Data:
Avionics", MDC E0395, June 30, 1971

3. ' IBM Corporation, "Programming Manual for System 4 Pi
Model EP", in Aerospace Digital Computer Data for
Mission Module Contractor, IBM No. 66-M22-020A.

4. IBM Corporation, "0S/360 Supervisor and Data Management
Services", IBM No. GC28-6646.

5. _IBM Corporation, "Space Shuttle Executive Control
Program (preliminary)", Huntsville, Aug. 16, 1971.

6. Intermetrics, Inc., Development of an MSC Language
and Compiler, Cambridge, Mass., June 1971, prepared
under Contract NAS 9-10542,

7. Intermetrics, Inc., The Programming Language HAL -
A Specification, Cambridge, Mass., June, 1971, pre-
pared under Contract NAS 9-10542, MSC Document #
MSC-01846.

8. Intermetrics, Inc.,. Standard Intexrface Definition for
‘Avionics Data Bus Systems, Cambridge, Mass., May, 1971,
prepared under Contract NAS 9-11477.

9. Coffman, E., et al, "Deadlock Problems in Computer
Systems", Proc. Conf. sponsored by Software World,
U. Sheffield, April 1970, pp.41-48. ‘

10. Coffman, E., et al, "System Deadlocks", Comp. Surveys,
3(2), June 1971, pp. 67-78.

11. Denning} P., "Resources Allocation in Multiprocess
Computer Systems", PH.D. Thesis, MIT, May 1968.

12. Dijkstra, E., "Structure of The Multlprogrammlng System",
CACM, May 1968, pp. 341-346.

13. Habermann, A.N., "Prevention of System Deadlocks", CACM,
: 12(7), July 1969, pp. 373-377.
181

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840 -

——

14.

- 15.

" 16.

17.
18.

19.

20.

21.

22.

- 23.

24,

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138+

“locks",- CACM,- 14(1), January 1971, pp. 36-38.

Holt, R.C., "Comments on Prevention of System Dead-

Murphy, J.E., "Resource Allocation with Interlock
Detection in a Multi-task System", Proc. FJCC, 1968,
pp. 1169-1176.

Pepe, J., "Protection Strategies in a Multiprocessor
Computer"”, Intermetrics, Inc., Multiprocessor Memo
#03-71, July 1971.

Vyssotsky, V., et al, "Structure of the MULTICS Sup-
ervisor", Proc. FJCC, 1965, pp. 203-212.

Berlekamp, E.R., Algebraic Coding Theory, McGraw Hill

Book Co., New York, 1968.

- Abramson, N.M., "A Class of Systematic Codes for-Non—

Independent Errors", IRE Transactions on Information
Theory. PGIT5, No. 4. . December 1969, pp. 159-157.

Peterson, W.W., Error Correcting Codes, The M.I.T.
Press, Cambridge, Mass., 1961. :

Benice, R.J. and Frey, A.H., Fr., "An Analysis of Re-
transmission Systems", IEEE Transactions -on Communication

Technology. PGCOM-12, No. 6. December l964, pp. 135-145;

and "Comparisons of Error Control Technlques , Ibid,

pp. 146-154.

Matthews, S.W., "Improved Centaur Computer Operating

System”, AIAA Aerospace Computer Systems Conference, -
1969. :

Adler, P., "A Simple Real-Time Executive for an
Aerospace Data Management System", MIT Draper Laboratory,
Report E-2579, May 1971. .

MIT Draper Laboratory, "STS Software Development (study
Task 5)", Report E-2519, July 1970. , .

182

(617) 661-1840

