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FOREWORD· 

This ,document is the final report on the func·tional design of 
a flight executive system for the Space Shuttle mission. The 
study was sponsored by the Manned Spacecraft Center, Houston, 
Texas, under Contract NAS-9"';11778. It was performed by 

. Intermetrics, Inc., Cambridge, Massachuset.ts I .under the technical 
dir~btion of Mr. Joseph A. Saponaro, to whb~ the author is 
indebted. for his many help£ul contributions to the design of 
this executive system and to the format of this report. 

The study program covered the period from June 16, 1971 through 
February 16, 1972. The Technical Monitor for the Manned 
Spacecraft Center was Mr. Donald Barron. 

The publication of this report does not constitute approval 
by the NASA of the findings or recommendations contained therein. 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETIS 02138 • (617) 661-1840 



1. INTRODUCTION 

1.1 Scope 

TABLE OF CONTENTS 

1.2 Executive System Overview 

2.· EXECUTIVE DESIGN FUNCTIONAL REQUIREMENTS 

2.1 Introduction 

2.2 Space Shuttle Avionics System 

2~3· Features'of the IBM 4 pi EP Computer System 

"2.4 ' Executive Design Issues 

2.5 Synchronous versus Asynchronous Task Control 

2.6 Interrupt Handling and Task Dispatching 

2.7 Resource Allocation 

2.8 A11oc~tion of Sp~cific Resources 

3. EXECUT1VE SYSTEM ARCHITECTURE 

3.1 Introduction, 

3.2 Executive and Task Structur,es 

3.3 Definitions. 

3.4 Subroutine Linkage 

3.5' Task Priority Levels 

3.6 Assignment of Core Memory 

3.7 Events. 

3.8 I/O -Scheduling 

3.9 I/O Considerations 

4. TASK MANAGEMENT FUNCTIONS 

4.1 Introdu6tion 

4.2 Time Interrupt 

Page· 

1 

1 

1 

7 

7 

7 

13 

18 

20 

30 

32 

34 

43 

43 
. 44 

48 

54 

59 

60 

61 

67 

67 

69 

69 

89 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840 

.. 



4.3 Deadlock Detection 

5. I/O MANAGEMENT FUNCTIONS 

·5.1 Introduction 

~.2 Definition of I/O Management Functions 

5.3 I/O Queues and Control Blocks 

5.4 The I/O Supervisor 

5.51/0 Service Routines 

5.6 Cyclic and Non-Cyclic I/O 

5.7 Configuration Dependent Features 

5.8 I/O Error Correction 

6. CONFIGURATION MANAGEMENT 

6.1 Introduction 

6.t Initialization 

6.3 Failure Detection and Error Recovery 

~.4· F~ilures in a Quad-Redundant System 

6.5 Mode Bwitching 

6.6 Synchronization 

7. SECONDARY STORAGE MANAGEMENT 

7.1 Introduction 

7.2 Data Set Structure 

7.3 The Secondary Storage Supervisor 

8. EXECUTIVE DESIGN PARAMETERS 

8;1 Introduction 

8.2 Synchronous Versus Asynchronous Control 

8.3 Executive Control Element Sizes 

8.4 Task Management Parameters 

8.5 Supervisor Call Parameters 

:", 

90 

103 

103 

104 

104 
106· . 

107 

108 

108 

109 

113 

113 

113 

115 

120 

121 

122 

127 

127 

127 

127 

131 

131 

131 

132 

133 

133 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



9. APPLICATION TASK INTERFACES 

9.1 Introduction 

9.2 SVC Parameters 

13~ 

135 

135 

APPENDIX A - OPERATION AND CONTROL OF THE DATA BUS 137 

APPENDIX B - DATA BUS ERROR CONTROL 163 

APPENDIX C - LITERATURE REVIEW OF AVIONICS EXECU~ 
TIVE SYSTEMS 175 

..,..' " 

. INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

, . 



Chapter 1 

Introduction 

1.1 Scope 

This document presents a top level functional design of 
a software executive system for the Space Shuttle avionics 
c..qIJ.1p.uter:.- -The design task was accomplished as pal;t of a, _ stuo.y 
entitled Advanced Software Techniques for Data Management 
Systems. Three primary functions of the executive are 
emphasized in the design: task management, I/O management 
and configuration management. -

:." 

The executive system organization is "based on the applications 
software and. configuration requirements established during the· 
Phase B definition of the Space Shuttle program. Although the 
primary features of the executive system architecture were 
.derived from Phase B requirements, it has been specified for 
implementation with the IBM 4 Pi EP aerospace computer and 
ultimately is expected to be incorporated into a breadboard 
data management computer system at NASA Manned Spacecraft 
Center's Information Systems Division •. Accordingly, the 
executive system has been structured for internal operation on 
the IBM 4 PiEP system with its external configuration and 
applications software assumed to be characteristic of the 
centralized quad-redundant avionics systems defined in Phase B. 

1.2 Executive -System Overview 

The major areas of the executive system designed during 
the course of this study are briefly summarized below with 
the major characteristics defined. . ,_ 

1 
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1.2.1 Control Structure 

The executive system is based on a combined synchronous/ 
asynchronous control structure with priority dispatching for 
processor allocation and task execution. Cyclic computations are 
operated at high priority in a synchronous mode under the super­
vision of a cyclic control executive function. .It is 
initiated by a .timer interrupt at a fixed frequ~ncy, currently 
20 msec, with the scheduling and sequencing of each computation in 
a minor cycle predetermined and specified via control sequencing 
tables. The total running time of the synchronous mode or 
"foreground" is constrained to be at maximum less than a percentage 
of the minor cycle·frequency, the percentage to be established 
during implementation. After completing the execution of the 
cyclic computations each minor cycle, the executive dispatches 
the processor to one of the "ready" tasks in the executive 
ready queue .on the basis of priority. A total of threep~iority 
levels have been established for application programs. 

1.2.2 Interrupt and Task Dispatching 

All external interrupts within the configuration are 
fielded and serviced by the executive as in any real time.· 
system, allowing a multiprograrnrned task environrnenbin the 
.packground. The concept termed "segmented d·ispatching"· is 
.however employed for background tasks. That is 1 although 
interrupts are immediately serviced by the executive and entries 
are made in appropriate queues, the interrupted task is resumed 
and continued until it either ends or until it reaches a seg­
ment dispatch point. Only then is a higher priority back­
ground task activated by the executive di~patcher. In this 
way long duration tasks can be organized into reasonable 
execution segments wi th task swapping or interruption poin·ts 
more predictable. The dispatching of the cyclic task con­
troller each minor cycle is however an exception and is 
executed immediately at the occurrence· of the minor cycle 
clock interrupt. This exception is made as a reasonable 
tradeoff to provide the timing and response characteristics 
needed for· cyclic computations: ultimately assigned in the 
synchronous mode. This subject is discusseq·more fully in 

.Chapter 2. 
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1.2.3 Task and'Event Scheduling 

Any executing task may request the executive to schedule 
another task on the occurrence of an event or a specified time. 
Events are system defined in scope and ~ay be posted or deposted 
by application tasks via the executive. 

1.2.4 Memory Organization and Allocation 

All appli.cation software program modules are known to 
the executive via a program module directory. Programs are 
defined as either total mission resident or mission phase resident. 
Phase resident programs are lo"aded from -the secondary storage 
device into their assigned portion of the operating memory by 
the phase initiation function of the executive. Dynamic memory 
is allocated to each task by the executive, when a task is made 
ready for execution, out of a subpool of working memory esta­
blished for each priority level. Dynamic memory requirements 
are preestablished and defined for each program in the directory. 
Memq~y is allocated in continuous blocks within the priority 
pool and addressing is accomplished via bas'e .register's on the 
EP computer. 

A portion of the memory is dedicated to shared 
da·ta.. The common memory pool, the compeol, is organi zed into, 
mission dependent resident data and an overlaid area for 
p.hase. dependent data. The phase depend,ent shared memory 
is initialized with the program load at phase initiation 
and statically assigned during the phase. All access to the 
common data is controlled through and by th~ executive. The 
exetutive. prevents conflicts in memory utilization . 
by placing the conflicting task in a wait state until the 
memory is properly released by the task- to which it is presently 
assigned. 

1.2.5 I/O Control 

Control and execution of all input and output operations 
are performed by the executive system~ Input/output services 

, . are perfo~med in two modes: on demand via request by an 
executing task, or table driven as in the case of cyclic 
con:tputations in the synchronous mode. Seconda·ry memory 
management is under the control of the executive. Limited 
use of 'the secondary 'storage device is assumed during any 
mission phase. The executive is responsible for the maintaining 
of tables of current status and communication paths to all 
redundant equipment within the system configuration. 
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1.2.6 Configuration Management Error Recovery 

The executive responds to all system hardware and software 
detected error conditions and supervises reconfiguration of 
the system. A standard system error recovery action is defined 
for each error class. Application tasks may invoke. during 
execution local recovery for a class via specification of a 
t~sk re-entry point. 

1.2.7 Executive Functions as a Summary 

The specific functions that the executive performs within 
the scope of its design to insure the overall integrity and 
proper execution of application tasks are the following: 

a) control allocation of the processor by scheduling and 
.dispatching both periodic-and nonperiodic tasks; 

b) provide timing and event handling services to insure 
proper scheduling of tasks; 

c), supervise and control all I/O operations; 

d) allocate al'l resources to tasks' and avoid conflicts; resources 
include dynamic memory, secondary storage and shared. memory; 

e) provide methods for controlling conflicts over shared memory; 

f)' maintain and update all system queues and tables; 

g) provide the means of hardware error recovery and system 
reconfiguration; 

h) provide linkage and common subroutines and executive services 
in application tasks via controlled simple interfaces. 

1.3 Task Objectives and Approach 

The executive system design task was accomplished in 
conjunction with other major tasks of the study. Its primary 
objectives were threefold: 

a)' review the Phase B avionics configuration and software 
requirements and identify major functions of .the executive 
system; 

t.· 
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b) analyze and determine key aspects of the executive structure 
such as: methods of task scheduling and control, external 
interrupt. control techniques, task dispatching· algorithms, 
allocation and sharing schemes, and'application program 
interfaces; 

c) develop functional logic and algorithm design for the 
task.management, I/O management and configuration manage­
ment modules of the executive system. The design is to 
incorporate definition of application program interfaces 
to the executive. 

The approach taken in this task was based upon several con­
straintsand necessary assumptions about the nature of the 
Space Shuttle mission. 

'1) The application software is not completely defined. 
Hence, specific parameters, such as the amount of dynamic 
memory needed, can not now be decided. This topic is 
again discussed in Chapter 8. 

2) The software system we are developing is a kernel 
executive system for uS'e in the Space Shuttle Data 
Management computer. Tt is nota'n operati"n-g system 
for a ground based system. 

3} The: hreadboard data managemen-t computer system a·t NASA 
Manned Spacecraft Center's Information Systems Division 
is. l)o.t at pres.ent c.ompletely specified .Th.us:~. s.ever.al. 
assumptions concerning the design are made and pointed 
out in later chapters. 

4) The executive features incorporated in this design are 
those deemed necessary to execute the application software 
as far as it is defined in the Phase B Study Reports [1,2]. 

:;: .. 
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Chapter 2 

Executive Design Functional Requirements 

2.1 Introduction 

The fundamental features of an executive system must be 
based on the requirements of its environment and the application 
software it controls. Ideally, it should be efficiently tailored 
to meet the design objectives and operating environment of the 
total system. Prior to discussing the design chosen, the purpose 
of this chapter is to review major system requirements impacting 
on executive system architecture. These topics include: aspects 
of the avionics system configuration and applications software, 
and the organization of the host computer system. Finally, 
several key issues relative to-the selection of a particular 
executive system structure (as it influences task control, resource 
allocation and interrupt h~ndling) are discus~ed with ~espect 
to the appropriate design considerations. 

2.2 Space Shuttle"Avionics System 
o 

2.2.1 Configuration 

The Phase B Space Shuttle avionics systems have been 
reviewed and are discussed in Volume 1 of this study. Although 
more than one Phase B design was reviewed, a hypothetical system 
configuration is briefly described incorporating the important 
features of the designs to the software executive. 

The avionics configuration assumed consists of a-centralized 
data management computer system interfaced to all avionics sub­
systems via a high speed time multiplexed serial data bus system 
as illustrated in Figure 2.1. The data management "computer 
system consists of quad redundant computers" which operate in a 
simplex redundant mode. 

During critical phases of the mission more than one computer 
is operating with one of them designate¢! as the prime computer. 
The prime computer transmi"ts and receives all commands and 

'-
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and data over the data bus to -the avionics subsystems. The 
standby computers are synchronized with the prime computer via 
external control and execute the identical software. Outputs 
from the prime computer are monitored by" the standby computers 
and compared via hardware by its bus control unit in lieu of 
transmission. The results of the comparison are sent to 
external control unit and crew operator personnel for voting 
and switching. 

The data bus system consists of a bus control unit (BCD), 
4 bus lines and remote interface units (IU) for equipment 
connection. The- Bcufunctions as a peripheral under command 
from the computer and controls the transmission of information 
over the bus. It communicates with the IU which-iri turn acquires, 
converts and sends data to and from the subsystems. The bus 
system operates in a "conunand response" mode in which data is 
sent only when requested by the central computer. The 
operation and control of the bus is described more fully in 
Appendix A. There is no provision for interrupts from the 
subsystems. Each bus line carries serial digital data at I 
MBPS. The bus system is quad redundant with each BCU capable 

-of transmitting on each of the four busesj however, each 
computer interfaces with only one BCU. Redundant subsystems are 
interfaced to physically separate bus lines via the interface 
units. The computer system is also interfaced to redundant 
secondary storage units. These units contain additional programs 
and data tables for various mission phases. For the purpose 
of executive design it will be assumed to have limited use 
during a phase with restricted write access. Also for purposes 
of executive design, it will be assumed that other external 
units may be interfaced to the computer directly and not via 
the data bus such as display and control sub~ystems. 

2.2.2 Application Software 

The total onboard software has been estimated (during 
Phase B) at requiring approximately 50,000 32 bit words of 
operating memory and a peak rate speed of approximately 200,000 
equivalent adds operations per second. For purposes of this 
discussion the total flight software for the Space Shuttle . 
central computer system may be broadly classified into two areas: 
the executive and mission applications software. The application 
software is under the control of the executive and supports 
all phases of the mission: boost, insertion, orbital operations, 
coast a~d powered-flight, rendezvous, docking, undocking, entry 
and landing. The applications software to support these 
phases-~comprises the following functional areas: 

a) flight control and stabilization 

b) guidance 

c) navigation 

8 -
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d) trajectory targeting 

e) crew displays and control 

f) onboard checkout and systems monitoring-

g) avionics subsystem management. and support.-

Estimates of size, data requirements and frequency of operation 
of this software have been estimated during Phase B. The f-light 
control and stabilization function place the highest respond 
time demands on the system and have been estimated at basic 
frequency of approximately 20 msec. Subsystem and status monitoring 
rates are significantly less at 1 sample/sec being the average 
although the number of such samples and processing loads are 
greater. Targeting, navigation and guidance schemes are 
characteristic of more lengthy, iterative mathematical 
calculations, requiring large CPU utilization. 

The full impact of crew interaction via display and control 
is not completely determined. It is evident however, they 
will require the capability to interact through the display 
to: load programs and data, select major program modes for 
execution, terminate execution, request displays, select control 
options, configure and reconfigure equipment, and monitor the status 
of avionics subsystems. The crew will also interact with the computer 
through other controls such as the rotational hand controller 
when flying under pilot control. 

These requirements indicate the Shuttle software environment 
to include three types of tasks: 

a) cyclic tasks: Tasks which are performed· on a periodic 
basis at varying frequencies. 

b) response/request tasks. These are tasks which are performed 
in response to a pre-selected mode such as the rendezvous 
mission mode. Generally these tasks are major sequences 
or functions initiated throughout the mission by the 
crew. 

e) demand tasks: These are tasks which must be performed 
at the occurrence of a system event or certain time. 

10 
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2.2.3 Data Rates 

. In th~ Phase B.avionics design concept, the.dat~ bus system·' 
pr<?vl.des a comr.1.Unication path betvleenth~avionics ··equipl!lent and the 
prlme computer :complex. No general requlrement for terffilnal 
to terminal communication which cannot, or should not be routed 
through the computer complex was identified~ The exact 
number and type of subsystems has been continually changing~ 
A representative list provided below is presented to indicate 
the scope of the system. 

'1) Primary propulsion subsystem: this system consists of 
two orbital insertion engines and one o~bital maneuvering 
engine. 

2) Reaction control subsystem: at least 20 RCS jets located 
in the nose, wings and tail for effecting rotation and 
translation in space. 

3) Hydraulic system: hydraulic power generation, distribution, 
control, and conversion of mechanical energy. It consists 
of supply lines, gimbals, pumps, aerodynamic surfaces, flaps, 
wheel controls, etc. 

4) Electrical power generation and distrib~tion system: fuel 
cells and battery, and the auxiliary power units located 
throughout the Shuttle. 

5) Navigati6n aids/air data: a collection of equipment 
providing. navigation and landing capabilities (ALS, radar 
al timeter, TACAN, DME, etc.).' 

6) Environmental control system: the environmental control 
system provides temperature, pressure, and humidity control 
of equipment, equipment bays,.and personnel compartments. 

7) Cryogenic system: contains the hydrogen and oxygen for 
the primary propulsion, .the reaction control system, the 
fuel cells and the auxiliary power units. 

8) Displays and controls: this system'is assumed to have 
local processing capability and accepts dynamic data 
through the bus for updating of display parameters. 

9) Telecommunication: this system consists of various trans­
mitters and receivers including S-band, C-band, VHF, 
telemetry encoder, EVA communications, air traffic control 
communications, etc. 

10) Guidance,.navigation and control: this subsystem is 
composed of elements necessary to control, stabilize and 
navigate the Shuttle vehicle during all phases of the 
mission. It interfaces to the reaction control syst~m, 
jet engines, aerodynamic control surfaces, and landing 
gear, etc. It has access to sensors which include ·the 

11 
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inertial subsystem, horizon and star trackers, approach 
"landing aids, rendezvous radar, radar altimeter, etc. 

Although this list of subsystems may not be "complete for the 
final organization of the avionics system it is meant to be 
representative. It is estimated that approximately 150 to 250 
LRU's are associated with the subsystems listed above. 

2.2.4 Data Requirements 

The following is a summary of the data requirements 
abstracted from the various studies of Phase B contractors. 

1) Speed. Peak load estimates of data rate for both the 
Shuttle and orbiter have ranged between 100,000 and 250,000 
bits per second, including overhead. Considering an average 
overhead of approximately 50% for each bus transaction and 
allowing for a minimum of 100% expansion to the maximum 
speed, a capability of 10 6 bits per second has been assumed 
to be an adequate requirement. This ·speed should allow 
the computer to acquire data at a rate of approximately 
10,000 average transactions per second. 

2) Measurements. Estimates have ranged between 4000 and 6500 
unique data points to be sampled from the total complement 
of avionics equipment by the central computer. Data 
types include: 

digital parallel 
digital serial 
analog 
discrete 

The majority of these data points are measurements input 
to the computer, and are estimated at approximately 60% 
to 70% of the traffic on the data bus. 

3) Response time/sampling frequency. The maximum sampling 
frequency of measurements is estima"ted at fifty samples 
per secorid. The average sampling frequency for status 
information is between two and five samples per second. 
Very little information was made available on response 

"requirements and load distribution of subsystems. 
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2.3 Features of the IBM 4 Pi EP Computer System 

The hardware features of the computer can directly influence 
the executive system software design. In this section the 
most pertinent features of the IBM 4 Pi EP computer assumed 
in the executive design are presented for review. 4 Pi EP 
hardware is documented in detail in the IBM Programming Manual 
for System 4 Pi Model EP [3]. 

2.3.1 Computer Organization 

The EP is a byte addressable computer with two bytes 
c6nstituting a half word, four bytes a full word, and eight 

'bytes a double word. The EP memory size for the computer in 
the ISD breadboard is assumed at 24K 32 bit words. An additional 
16K multiport buffer memory may be incorporated; yet its 
status is unknown at this time. 

There are 16 general registers (GR) of full word size 
used for high speed fixed point and togical operations and four 
floating point registers of (FPR) of double word size used for 
floating point operations. 

The instructions are organized into four classes: register 
to register (RR) , register to indexed storage (RX), register. 
to storage (RS), and storage and immediate operand (SI). A 
complete list of all instructions may be found in reference [3]. 

All addressing of core storage within instructions is done 
relative to a base address stored in one of the general registers, 
designated the base register. Many instructions' address fields 
can reference up to 4K bytes beyond a base address by adding a 

.12 bit displacement to the contents of a base register. RX 
instructions further extend this addressing capability by also 
allowing indexed addressing. 

2.3.2 Interrupts 

There ·are five classes of interrupts in theEP. 

a) I/O interruptions allow the CPU to respond to conditions 
in the channels and I/O units. 

b) Program interruptions signal unusual conditions encountered 
in a program, e.g., incorrect operands and operand specifica­
tions.· This class of interrupt may be subdivided into nine 
subclasses identified by the interruption code generated 
by the EP. The subclasses are: 

13 
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1) Operation Exception: operation code unassigned 

2) Privileged-Operation Exception: a privileged operation 
is encountered in the problem s~ate 

3) Specification Exception: incorrect.operand specification 

4) Fixed Point Overflow Exception 

5) Fixed Point Divide Exception 

6) Exponent Overflow Exception 

7) Exponent Underflow Exception 

8) Significa'nce Exception: the result of a floating 
point add or subtract has an all zero fraction 

9) Floating Point Divide Exception 

c) Supervisor call interruptions result from the execution of 
a SVC opcode. This interrupt is used to switch from the 
problem state to the supervisor state in which privileged 
instructions can be executed. 

d) External interruptions allow the CPU to respond to signals 
from the interruption key on the system control panel and 
the timer. The timer is a full word in main storage location 
80. An external interrupt is generated when the value of 
the timer goes from positive to negative. A timer is essential 
to the executive system. The exact details of the timer in 
the breadboard are not known as of this time. 

e) The machine check interruption occurs when a hardware error 
is encountered. A diagnostic procedure is automatically 
initiated. . 

Should several interrupts occur simultaneously they are 
honored in the following order: 

1) machine check; 

2)· program or supervisor call (mutually exclusive interrupts); 

3')' external; 

4) I/O~ 

Each of the five interrupts described above has two related 
program status words (PSW) associated with them in unique main 
storage locations (see Figure 2.2). An interrupt causes 
the current PSW to be stored in the "old" position and the 
PSW in the "new" position to become the current PSW. The old 
P8W contains all the information necessary to resume' the problem 
program again at the point of interruption, and the new PSW. 
allows executing a routine associated with the interrupt. 

r.". 
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As mentioned above the supervisor state (as distinct from 
the problem state) allows a class of privileged instructions 
to be executed. The executive uses these instructions-to 
maintain the integrity of the system. Examples of privileged 
instructions include direct I/O operations, setting system 
masks, and setting PSWs: To prevent their use by 
application tasks ~ program interruption is generated when 
a privileged instruction is encountered in the problem state. 

The supervisor state can also be used to protect the 
executive from invalid access by application tasks. Hence, 
SVC operations provide the means for application tasks to 
correctly use the executive, and they help insure that an 
application task does not alter the executive. 

2'.3.3 4 Pi Input/Output Via Standard Channel 

Another important EP hardware feature is the structure 
of the I/O control system. Since the structure of I/O operations 
depends heavily upon the channel control structure and. its 
operation, I/O management will be one of the most configuration 
sensitive areas of the executive software. Hence, a clear 
understanding of the EP's I/O system is necessary. 

All I/O operations are initiated bya START I/O instruction. 
If·the channel is free, this instruction is executed, and the CPU 
continues processing its program. Then the channel, independent 
of the CPU, selects the I/O device the instruction specifies. 

START I/O causes the channel to fetch a channel address 
word (CAW) from main storage location 72. This word points to 
the main storage location where the channel program begins. The 
channel program is a series of chained channel command words 
(CCW), each of which contains a command code to the channel as 
well as main memory data addresses and byte counts. See 
Figures 2.3 and 2.4 for the CAW and CCW formats. 

Should an I/O command be rejected during execution of 
a' START I/O (by a program check, busy condition, etc.), the 
command rejection is indicated in the PSW. The details of 
the conditions that prevented I/O initiation are given in the 
channel status word (CSW) which is storad in main storage 
location 64 when the command is rejected (see Figure 2.5). 
The CSW is formed or reformed by START I/O, TEST I/O, or an 
I/O interruption. This word contains information about the 
termination of an I/O instruction.. An error recovery program 

·that is initiated because of'an I/O error will depend heavily 
upon the CSW to determine the cause of the error and whether 
a system reconfiguration is necessary. 
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System Key AMWP 
Interruption 

Mask Code 

ILC CC Program Instruction 
Mask Address 

Figure 2.2 Program Status Word Format 

Key 0000 ·1 Command Address 

Figure 2.3 Channel Address Word Format 

.. 
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Command 
Code 

·Flags 0000 

Data Address 

'Count 

Figure 2.4 Channel Command Word 
Format 

Key I 0000 I Command Address 

Status I Count 

Figure 2.5 Channel Status Word 
Format 
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2.3.4 4 Pi EP Data Bus Input/Output 

The 4 Pi computer in the DMS breadboard (Figtire"2.6) 
will be interfaced to a bus system via ast6red program 
data processor (SPDP). The details of this interface and 
method of operation are currently not known. Accordingly, 
by direction, the executive design has been based upon inter-· 
facing to a Phase B type of bus system described previously. 
It is anticipated that the functional organization of 
executive I/O management will remain the same. 

2.4 Executive Design Issues 

In conjunction with the review of the avionics system 
• requirements, several factors of the basic executive system 
structure were evaluated. The purpose of this and succeeding 
sections is to discuss these issues. 

Prior to performing the analysis several design goals 
were established to be used as guidance in selecting an 
ultimate design approach. Primary considerations of the 
executive structure analyzed are: 

a) synchronous versu~ asynchronous task control; 

til iriterrupt handling and task dispatching; 

c) resource allocation; 

d) shared data; 

e) secondary storage management. 

The primary objective or goal usually adapted by most 
executive system designers is the achievement of an "efficient" 
executive where efficiency is some measure of throughput. 
Efficiency may be defined by either the fraction of executive. 
overhead time spent doing nonproductive work or in terms of 
response time. In performing analyses of these issues, 
efficiency was considered a necessary but not primary factor 
since it often tends to lead towards complex design resulting 
in complex testing and verification of software. Ideally, 
flight software should not only be tailor.ed to meet operational 
mission requirements but should be structured to enhance 
software verification and flexibility to adjust to changing 
needs.· Therefore, the fol~6wing design criteria were used as 
evaluation of the executive structure. 

18 
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a} To provide an executive system which will control and 
allocate resources of the system to satify operational 
mission requirements (i.e., one that does the job). 

b} To establish an executive organization which facilitates 
verification of application software and reliability of 
code. 

c} To structure an executive enabling flexibility and'modularity 
in incorporation of application software changes over long 
term maintenance periods~ 

d) To define simple and well defined application program 
interfaces to the executive system. It should be structured 
as a virtual machine to the applications programmer. 

e} To develop an executive structure which is both simple 
and efficient but consistent with other objectives. 

2.5 Synchronous versus Asynchronous Task Control 

A primary function of the task management portion of the 
executive is the scheduling, dispatching and control of. the 
allb6a~ion of processor to task in the job stream. It is, a 
fundamental feature of the executive system. Most large . 
ground based computer systems incorporate very flexible and 
general task scheduling and dispatching algorithms to accommodate 
a varied number and type of users. The Shuttle software on the 
other hand, is more tailored to its environment. Although Phase 
B contractors have specified synchronous structured executives, 
shuttle software requirements do not allow .. task scheduling to be 
completely planned in advance. Furthermore, it is our contention 
that a pure synchronous structure would ultimately be modified 
to accommodate priority based event handling since it is necessary 
as a Shuttle software feature. We have chosen a design which 
accommodates the best features from each control structure. The 
following presents the advantages and disadvantages of synchro-. 
nous versus asynchronous control. ' 

2~5.l Synchronous Structure 

A synchronous structured executive is based on a timer­
interrupt, fixed schedule, time slice mode of operation. For 
example~ Shuttle baseline designs use a 20. msec interval as 
a basic reference ,frame for the system, providing a minor 
cycle sampling rate of 50. cps. Under this concept jobs are 
organized by the designer, into short routines, and when the 
executive detects a timer interrupt (i.e., every 20. rnsec) it 
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examines the "task schedule tables" to determine which set 
of routines is to be operated during the next program interval. 
Each 20 msec interval contains all SO/sec tasks and a selection 
of other lower frequency tasks. The minor cycle is operated 
every 20 msec, and a percentage of that time is distributed 
among the tasks that are assigned to each minor cycle. A back­
ground job may be run in the slack time before the next minor 
cycle. Each task is statically structured as a subroutine 
such that it can be dynamically called and returned to the 
executive. 

Using a command response data bus control concept, scheduling 
I/O ina synchronous structure is similar to the scheduling of 
tasks. The I/O requirements for each mission phase or major 
cycle are predetermined and synchronized with the structure 
of tasks operated in the major cycle. The I/O request list 
is assumed to be fixed. Since the I/O requirements will have 
different frequencies, they are incorporated in each minor cycle 
in correspondence to load balancing of the processin~ tasks. 

For example, assume all I/O requirements for a particular 
mission phase are organized into three categories of frequencies: 
50 times/sec, S/sec, and l/sec. Assume that X, Y, and Z are 
the number of commands in each category. Assume further that 
a minor cycle· occurs every 20 ms and that a BCU is commande.d 
wi.th a. list of I/O requests each minor cycle. The averaged 
number of I/O operations required to be scheduled each minor 
cycle are: all of the SO/sec requests, 1/10 of the S/sec 
requests, and 1/50 of the l/sec signals. In a synchronous 
structure tables of predetermined I/O requests are organized 
according to sampling frequencies. The appropriate number of' 
I/O entries to command each minor cycle are selected from these 
tables. The synchronized concept attempts to avoid non-deter­
ministic behavior of I/O, I/O queues, and I/O backlpg. 

Several types of I/O activity cannot be determined in 
advance;' for example, the command of jets on and off. The 
I/O scheduler may accomplish this by providing a place for 
the command in the appropriate list and then causing the 
BCU to skip the command or incorporate it, depending on the 
results of the stabilization and control tasks. 

2.5.2 Example of a Synchronous Executive 

For purposes of illustration the basic functions performed 
by a synchronously controlled executive include: 

a) managing data bus I/O by issuing all I/O requests for 
the minor cycle; 
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b) managing task execution by executing ·all high frequency 
tasks; deciding what tasks executed at a less frequent 
rate must now be done and executing these; and doing 
background and/or housekeeping functions in any 'slack time. 

To enable the executive to perform these tasks with the least 
amount of overhead, judiciously organized system tables must 
be used. A description of the contents of the types of tables 
is presented below. 

A cyclic command table (eeT) lists all tasks and the 
frequency they are to be done in a given mission phase. In 
other mission phases a different table is used, which can be 
stored on a mass storage device until it is needed. For 
example,.a typicar entry would be 

frequency program module core 
ID address 

'It must also contain pointers to the I/O requests for every 
minor cycle. That is, in a particular minor cycle all I/O 
requests are known in advance since a synchronous structure 
is deterministic. Thus, the executive can issue all I/O 
requests at once. For example, consider the following eeT 
entries: 

F.requency Module Address 

every A 1000 
minor B 2000 
cycle e 3000 

every D 4000 other minor 
E 5000 cycle 

every F 6000 
four minor G 7000 

cycles H 10000 

The order of execution of these program modules every four 
minor cycles would be the following 
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. Minor Cycles. 

N 

N+l 

N+2 

N+3 

Modules 

ABC 

ABC D E 

ABC 

ABC D E F G H 

Should D take an abnormal exit during the (N+I)st minor cycle,· 
and deschedule E, the order then becomes: 

Minor·Cycles 

N 

N+I 

N+2 

N+3 

Modules 

ABC 
. 

ABC D 

ABC. 

A B' C D E F G H 

.A flowchart of a synchronous executive structure is presented 
in Chapter 4. 

2.5.3, Advantages of Synchronous Structure 

a) There is minimal overhead for scheduling and dispatching 
because all tasks are known to the system in advance, 
and hence, are prescheduled. The executive knows which 
fixed set of code to execute in each time slice. 

b)· The executive design is simple and thus easy to program. 

c) The system is not multiprogrammed so no queues of 
ready and waiting tasks have to be maintained. In 
other words, more than one task is never in contention 
at any time for the processor. One fixed set of 
code is executed in each time slice~ Memory conflict 
problems are also eliminated since core and word areas 
for all programmers are pre-allocated. 

d) The system is deterministic which makes the task of 
software verification easier. A programmer must divide a 
long program into segments to evenly distribute over 
several time slices. The break· points can occur at 
places at which he knows no interrupting program can 
interfere with his program or data. 

e) The computational and I/O load will be balanced over 
a major loop. Thus, no degraded response can occur 
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. because of computational or I/O overload. Response 
is predictable. 

f) The predictability of the system eliminates sharing 
problems. Programs can be put together in time slices 
so that no data sharing problems result. This fact 
eliminates the need for a central update routine for 
data. Also, the need for reentrant coding, and hence, 
dynamic storage allocation, is eliminated. 

2.5.4 Disadvantages of Synchronous Structure 

a) Application programming is more difficult especially 
for long programs. The programmer must break such a 
program into segments so that between segments any 
running program cannot interfere with his program 
or data. Also, fitting-his program segments into time 
slices with other program segments is'difficult. Timing 
requirements of each segment must be 'known before 
these can be fitted together in a time slice. Thus, 
the programmer has a second constraint, namely, time. 
bounding his segments. 

b.). Changing application programs or mission programming 
requirements can be a major redesign. Such a change 
can require rebalancing of the entire computational 
load. New requirements can mean having to spread the 
existing application programs more thinly over the 
time slices of a major loop, so that the new programs 
can also be fit. That is, each existing program segment 
might be restricted to a smaller time bound, and hence, 
reprogramming will result. 

c) Each time slice must accommodate the worst case computational 
requirement. For example, if the crew is provided the . 
option to display a parameter during a particular mission 
phase, then the calculation of that parameter will have 
to be incorporated into the sequenc'e whether or not the 
crew ever requests it. 

This situation is particularly bad if more tasks are 
added to the systelJ\. If in the worst case 80% of the 
computer's time is being used, a task having a worst case 
requirement of 25% cannot be accommodated. If it were 
accommodated, some time slice would have a worst case 
requirement of over 100%. This situation is unacceptable 
in a synchronous structure. 

C.,~ 
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'd) A synchronous structure does not allow tasks to be run 
on a time or event basis. In particular, this type of fixed­
sequence executive organization does not provide a structure 
which allows for external interaction by the crew, or which 
copes with a random job stream. Jobs must be predetermined 
and -assigned to slots in a sequence and must operate within 
the basic reference framework. It is not clear at this 
point whether all Shuttle requirements can be so predetermined. 

Both Phase B executive'designi allow tasks ,to be 
scheduled on an event basis. That is, when an event 
occurs a task can then be scheduled. A scheduler is 
used to fit the newly scheduled task into the time slices 
and to deschedule lower priority tasks when necessary. 
Such an executive cannot be fully synchronous, as defined 
and described above. 

2.5.5 Asynchronous Structure 

, In an asynchronous control structure scheduling and 
allocation of the processor are accomplished in real time 
according to the needs of the operating environment. Under 
this concept processing tasks are assigned a priority which 
establishes their relative importance to each other. A task 
with, a given priority, runs until a wait is encounter.ed, or 
the existence of a higher priority task. is. established.-

The distinction between synchronous and asynchronous 
control structure can be illustrated by the. "states" in which 
a task will exist while operating under each structure. In 
a synchronous structure, tasks are in one of two states: 
actively running or not running. At any instant of time only 
one task is in the running state and all others are not 
running. The transition to the running state occurs when a 
task's scheduled time slot arrives. 

In-an asynchronous structure, a task, while present in the 
system, will exist in one of four states: running, 
waiting, ready, or inactive. The executive insures 
the proper transition of states·depending ~pon either internal 
or external stimuli. The running state definition is obvious. 
Note that _ the running sta'te can only be entered from the 

ready to run state. This unifies the dispa~cher functions. 
The waiting state is either a voluntary or involuntary state, 
depending upon its cause. A voluntary wait would be a wait 
for completion of I/O, or perhaps some external time stimulus. 
An involuntary wait would be awaiting resources (e.g., memory) 
to become available. The inactive state occurs when the task 
is neither running, waiting, or-ready. 
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The ready state can be entered from all other states 
and indicates that a job has all the facilities available to 
it to run. The function of the dispatcher is to pick the most 
appropriate task from the ready queue and start it running. 

State changes from wait to ready would occur when the 
awaited stimulus has occurred. The change from limbo to 
ready state occurs when a schedule request is issued by some 
task. The switch from running to ready occurs when a task 
is preempted by a higher priority task or interrupt. 

In summary, an asynchronous structure is one in which one 
or more tasks may be in the ready state awaiting allocation 
of the processor. In a simplex computer system this is termed 
~ultprogramming, i.e., the concurrent operation of more than 
one task. 

An overview of the operation of a general asynchronous, 
executive is illustrated in Figure 2.7. The scheduler and 
dispatcher, once in control, should be able to pick a 
task and run with it. The scheduler assigns or reassigns 
task priorities, verifies that all the task 'resources are 
available, and maintains the overall view of real time events. 
All task starting is ~one through the dispa~cher. 

The scheduling function in a broad sense corisls"-cs' of', 
making appropriate entries in task blocks and priority queues 
so that the dispatcher need only select jobs from the top of 
the ready list. If there is a number of tasks to be scheduled, 
the scheduler treats some as more important than others and 
executes them first. If the dispatch function occurs at some 
time other than at the end of a program, then a multiprogrammed 
environment is a direct result. 

The interrupt handler "posts" the event complete, makes 
the task ready if possible, and then passes control to the 
scheduler to act on the information it has provided. 

The resource allocator is invoked as an ~xecutive function 
by the sChedul'er to test readiness to run, and if not ready, 
will inform the scheduler of the requirements for readiness. 
It may also be invoked to test availability of contention 
items. 

I/O in an asynchronous structure is generally scheduled 
on a demand basis. An active task requiring I/O schedules 
its request via an I/O queue. The task- is placed into the 
wait state until completion of the I/O request. The I/O 
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control routines operate on the I/O queue and interface the 
I/O peripheral (i. e., the bus sys tern) .to perform the reques t. 
I/O is performed asynchronously with other processing "tasks 
in the system. After acknowledging receipt, initiation or 
completion of the I/O request, the scheduler is informed via 
a simulated or actual interrupt. The task awaiting the I/O 
request is then placed into the ready state and awaits processor 
assignment. However, demand scheduling may not be easily 
implemented in the Shuttle software due to the high speed 
of the BCU as a peripheral and the intended block scheduling. 

2.5.6 Advantages of Asynchronous Structure 

a) It is able to adapt to a random job stream; i.e., it does 
not require rebalancing of a computational load, and it 
can tolerate periodic overload and backlog since it is 
designed to cope with this problem. Time and event 
scheduling can easily be accommodated. 

b) It is more adaptive to a real time environment. If a task 
of high priority must be scheduled; it is not necessary 
to deschedule a lower priority task. The task dispatcher 
selects this high priority task for execution whi'le lower 
priority tasks remain in the ready state. Lower overhead 
results. 

c) Application programming is easier. An asynchronous 
structure does not require long program sequences such 
as targeting, etc. to be arbitrarily organized into 
fixed segments to fit in some fixed cycle or sequence. 

d) Since it is able to adapt to a random job stream, inter­
face with the crew is easier. If the crew schedules a 
program of high priority, they can be sure this program 
will not be spread out over small portions of many time 
slices but will be execute~ qu±ckly~ 

e) It has a greater flexibility for incorporating changes 
than the fixed sequ~nce approach. A ch.ang,e in mission 
requirements is not a major programming change for 
existing programs. . 

2.5.7 Disadvantages of Asynchronous Structure 

a) The mUltiprograming environment reSUlting from this type 
of scheduling is more complex and difficult to test and 
verify. Programmers no longer know where their programs· 
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will be interrupted. Thus, the executive must guarantee 
data integrity, handle sharing of data; and allow for 
reentrant coding. It can be made more predictable, however, ~ 
particularly on the Shuttle where no external interrupts 
exist. 

b) Since all tasks are run through the scheduler and 
dispatcher, there is an increased overhead for running~ 
these programs, queueing ready and waiting tasks, and 
handling the queues .. However, this oVerhead can be 
minimized by combining the features of synchronous and 
as will be explained later. 

2.5.8 Need for Asynchronous Features 

Since the nature of the Space Shuttle mission requires 
the computer to respond to unpredictable events, such as the 
crew altering the job stream, handling emergen~y situations, 
reconfiguring because of f~iled eq~ipmenti etc., a fully 
synchronous executive is insufficient.' As mentioned 
above, both contractors see the need for scheduling 
tasks on an event basis. Since this fact is a step toward 
asynchronous structure, the question arises to what degree 
the executive organization should be asynchronous. Because 
of the simplicity of a synchronous structure.,. as many of its 
advantages as possible must be kept.I-t is the~disadvant-ages 
that must be eliminated by allowing some asynchronous features. 

The foliowirig structur~ obtains the best features 
of both. Tasks will be organized into foreground and 

. background categories. .The foregtound tasks are 
those tasks run at a fixed frequency by the scheduler in a 
synchronous manner, as described above. The time needed to 
execute each of these tasks must be small, i.e., less than 
a minor cycle. By definition all foreground tasks (synchronously) 
scheduled in a minor cycle must be totally executed in that 
cycle. The remainder of the time of the minor cycle can be 
devoted to executing background tasks. B~ckground tasks have 
several features. They can be operat~d on a priority basis; 
they can be long (i.e., require more than. one minor cycle to 
execute); and they can be scheduled on a time or event basis. 
The nature of background tasks makes a queue structure necessary. 
Hence, in a minor cycle there are now two types of scheduling: . 
synchronous and asynchronous. By making as many tasks fore­
ground as possible we eliminate much overhead in scheduling/ 
dispatching background tasks. 

a) 

The advantages of this structure are: 

it eases the incorporation of event and time dependent 
rescheduling of tasks; 
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b). asynchronous structure data integrity problem avoided, i.e., 
programmer control of where interrupts will be serviced; 

c) tasks for which precise timing anaylysis is unnecessary 
or impossible, or which require extreme timing safety 
factors can be executed on a priority basis rather than 
on a time 'slice basis. 

Thus, in general, the proposed structure can handle the 
Shuttle software in a way advantageous to either completely 
synchronous or completely asynchronous structure. 

2.6 Interrupt Handling and Task Dispatching 

The interruption of a running program in response to 
an external signal was introduced into the computer technology 
to serve two purposes: 

a) provide rapid response-time to asynchronous events;' 

b) .eliminate the necessity of polling (and its overhead) to 
discover whether an awaited event has yet occurred' . 

. In single~processor systems, particularly dedicated systems. 
where most or all of the computation is devoted to a sin:gle 
application, the introduction of interrupt-mode computation 
raises the hazards associated with mUltiprocessing: at 
arbitrary times, an interruption can introduce what appears 
to be a parallel task which is at least conceivably capable 
of disrupting the progress of the interrupted task by altering 
its variables. Thus, methods for masking or inhibiting 
interruptions were added, and the nature of the functions· 
allowed in interrupt-mode was restricted. Properly and 
thoroughly applied, these fixes allowed programs to perform 
properly, although no truly thorough method has been found 
of proving that the system was actually properly programmed. 

There. exist therefore, two relevant negative aspects of 
interruptions: timing response uncertainties, and potential 

. data disruption and conflict. Both can be minimized by causing 
interrupts to schedule tasks whenever possible, as opposed to . 
perform~ng th~m 7 Th,is pr.ovision, redu,ces the m,ul tiplici ty . 
of po~slble tlmlng sltuatlons, Slnce Job swapplng occurs only 
at specified intervals. 
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. Accordingly, it is considered desirable to utilize hardware 
interrupts such that tasks are scheduled and the interrupted 
task -is rapidly resumed. The primary consideration becomes 
when to dispatch a higher priority task resulting from an 
interrupt, such that respond time requirements can be satisfied. 

When an active task is dispatched into the wait state, 
another higher priority task is dispatched (made active) from 
the ready queue. When else does the executive dispatch? The 
following summarizes various approaches considered. 

a) If the executive dispatches at no other time, system 
response time to high priority tasks cannot be guaranteed 
since long duration tasks would execute to their end. 
This appears unacceptable in the Space Shuttle mission unless 
all lengthy tasks were broken down into separate, suffi­
ciently short,independent tasks. 

b) The executive can dispatch whenever a.· task of higher 
priority than the active task is scheduled. In this case, 
interruption of the active task will occur at a random 

·point in the coding and a higher priority task· g~ven the 
cpu. This uncertainty can lead to a program verification 
problem due to its random nature and non-repeatability. 

c) Alternatively, a programmer can inhibit dispatching at 
dangerous. points in his program. Tasks of higher priority 
would be dispatched when permitted. However, this method 
does not completely solve the verification problem or 
prevent a higher priority task being delayed from execution 
for an unacceptable amount of time. By introducing an 
onboard "watchdog" timer, it is possible to guarantee 
a maximum time in which dispatching is inhibited. If a 
programmer exceeds this maximum time in inhibiting 
dispatching, the cpu is taken from his program. However, 
the dispatch will now occur at a random point. 

d) Another approach is to require the application task to be 
organized into short segments in whIch the dispatcher 
is requested at the end of each segment. If these segments 

. were fixed at short intervals it would enable system 
response time to be maintained. 
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Furthermore, the segment organization of a lengthy program 
provides visible and controllable evidence to the programmer 
of the possible points that alternate control paths can 
occur. Conversely, he is assured that once the segment 
begins it is non-interruptable until it ends other than by 
the executive servicing of an interrupt or the task placing 
'itself in.to a wait state. Similar arguments could be used 
for the previous approach. 

The chosen method involves a modification to approach 
(d). First, high priority cyclic tasks, operating in a syn­
chronous mode in the foreground, will always be dispatched at 
th~ occurrence of the clock interrupt. All other tasks will 
only be·dispatched at the segment points. This will guarantee 
response time where it is needed and loosen the requirement 
for segment operating limits. 

Secondly, the establishment of segments for lengthy programs 
can be aided by an assembler or compiler. Given that a proce­
dure oriented higher order language is used for application 
programming, it can often suggest segment points and make them 
visible to the programmer. Tentative examples of compiler based 
segment points are: 

a) on all forward GO TO statements; 

b) entry or exit from a block; 

c) maximum time allowed in a segment exceeded.· 

The programmer must have a compiler override capability. 

2.7 Resource Allocation 

A resource may be defined as a facility of a computing 
system that can be temporarily assigned to tasks to enable them 
to perform their computations. Examples of resources pertinent 
to the Shuttle software are core storage, shared data, and data 
sets on mass memory units. Resource allocation is that function 
of a computer's operating system that assigns resources, when 
possible, to the tasks requesting them. In a multiprogrammed 
system, several tasks can request the exclusive use of -a 
single resource. Since only one task at a given time can be 
granted its request, the others must wait until these resources 
are freed. Care must be exercised in resource allocation to 
minimize the number of transitions of a task from the active 
to the wait state and to avoid allocation conflicts. 
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To be specific, several conflicts can result from 
inefficient resource allocation. These are: 

a) deadlock, 

b) memory fragmentation, 

c) priority conflict. -

We will define each of these conditions in the following para­
graphs. 

2.7.1 Deadlock 

Deadlock is a condition in which two (or more) tasks 
are each waiting for a resource held by the other before either 
can -proceed. Neither task can release the resource it holds, 
so neither can be taken out of the wait state [16]. For 
example, suppose task A holds resource Rl and needs R2, but 
task B holds R2 and needs Rl. Since neither task can release 
its resource, neither can proceed and de.adJ,ock results. 

Deadlock detection algorithms can be included in an 
operating system to enable the task performing resource 
allo~ation to recognize potentially hazardous situations; 
and hence, to avoid them. This topic has been disc~ssed 
extensively by several authors [9-10,13-16]. However, such an 
algorithm can cost a high overhead in execution time. The Space 
Shuttle executive should have an alternate way of avoiding deadlock. 

'Deadlock is the result of incremental resource allocation. 
That is, it is the result of tasks requesting resources 
sequentially during execution. By avoiding incremental 
allocation we can avoid deadlock without costly detection 
algorithms. More will be said about this topic later as 
it relates to the Space Shuttle computer. 

2.7.2 Memory Fragmentation 

Memory fragmentation is a condition in which a task 
cannot be granted its request for a large block of contiguous 
core because all available core for dynamic allocation is in 
small noncontiguous blocks. 

When this situation arises in a large ground based computing 
system having a large secondary memory, part of the contents 
of core are rolled out temporarily to create a large enough 
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contiguous area of main memory to satisfy dynamic allocation 
requests. However, on the Space Shuttle computer we seek to 
minimize the use of any ~~U because of its inherent 
complexity. Thus, most data will be maintained in main memory so' \ 
that programs can operate at maximum speed. Programs and 
data are only reloaded into the operating memory at low 
frequency during the mission, such as at the start of a new mission 
phase. 

2.7.3 Priority Conflict 

Finally, an allocation conflict can arise when a low 
priority task holds a resource that a high priority task 
requests. Often the resource cannot be released by the former 
task as in the case of temporary work areas of core storage. 
Unfortunately, the high priority task must now be placed in 
the wait state until the low priority task can safely release 
the resource. The result of this situation is a degradation 
in the system's response time for high priority computations. 
For a sufficiently large degradation the effects upon the 
overall missiori can be very serious. 

Each of these hazardous situations must be avoided in 
designing a resource allocation algorithm for the Space 
Shuttle computer. The following section will present methods 
of avoiding these problems. 

2.8 Allocation 6f Specific Resources 

In the Space Shuttle computer there will be three 
categories of resource allocation for which provisions must 
be made. These are: 

a) dynamic memory allocation, 

b) common d'ata sharing, 

c) data set management • 

. 2.8.1 Dynamic Memory Allocation 

Dynamic memory allocation occurs when the ~xecutive 
temporarily assigns blocks of core storage to'a task requesting 
this resource. This core is returned to the dynamic core 
pool either by the task during its execution or by the executive 
at the end of the task. To avoid deadlock we require that 
all core requests of a task be satisfied when the task is 
placed in the ready state. That is, to avoid incremental 
allocation a task makes all core requests known to the' 
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executive via its TCB at schedule time. If the request can be 
satisfied, the task can be placed in the ready state provided 
it is not awaiting the allocation of any other resource. If 
not, the task is placed in the wait state, awaiting the release 
of a sufficient amount of dynamic core to satisfy its needs. 
When this core becomes available, the task can be placed in 
the ready state. Eventually when the task becomes active, it 
has all the core it will ever need and will not have to be 
placed back in the wait state during execution for lack of 
this resource. Hence, deadlock cannot occur because of a 
conflict in dynamic core allocation. 

Although we have avoided deadlock fairly easily, the 
problem of memory fragmentation is not as readily solved. 
The reason for this increased difficulty is that several 
alternative methods of avoiding this problem are available to 
us, and the specific method chosen depends upon the computational 
requirements of the mission application programs. So far these 
requirements are not known in any detail. Hence, we will 
examine four methods of memory allocation and determine which 
is optimal with respect to our present knowledge of the 
program requirements. 

2.8.1.1 Fully Static. This method would avoid dynamic storage 
allocation by permanently assigning to each task all the core 
storage it needs for the duration of the mission. Memory 
conflicts are obviously avoided. 

If the total amount of core so assigned is small, e.g., 
lK bytes, then avoiding the problems of dynamic storage allocation 
is advantageous since the executive design will be simpler. 
However, the amount of core needed is likely to be higher 
than our lK example above, so the extra cost in the amount 
of memory needed for static allocation becomes uneconomical. 

This is not to say that no task should have its work 
areas permanently assigned. For example, a computation executed 
every minor cycle will utilizes its work area for a large 
percentage of every major cycle. In this case it could be 
economical to statically assign this task's work area to it. 
However, for the large amount of tasks run on a less frequent 
basis the percentage of a major cycle that they utilize their 
work areas is small. Hence, static storage allocation cannot 
be the only method of storage allocation in the Space Shuttle 
computer. 

Note that any task having a static work area allocation 
is by its very nature non-reentrant. 
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2.8.1.2 Fully Dynamic~ A frequently used method of dynamic 
storage allocation in. large scale computing systems is to allow 
all tasks to compete with each other for all .available core. 
A task can request a block of any size provided it does not 
exceed the amount of core available. If this block is available, 
it will be allocated to the task [ 4]. 

The disadvantage of fully dynamic allocation is that it 
does not solve the problem of memory fragmentation. 

2.8.1.3 Semi-dynamic. Let dynamic core be divided into blocks 
of several specific sizes, e.g., 50 bytes, 100 bytes, .5K bytes 
and lK bytes. Tasks which request core must be structured so 
that their request conforms to one of these sizes. Al though -
this method imposes a restriction upon the tasks, the problem 
of memory fragmentation is now solved. 

There still remains the problem of low priority tasks 
holding core and preventing high priority tasks from executing. 
The problem can be partially solved by allowing several 
blocks of each size in dynamic core. This will reduce the 
probability of all blocks of a given size being simultaneously 
allocated. However, the number of blocks of each size cannot 
be too large since this would be as uneconomical as static memory 
allocation. Program requirements will of course determine 
how many blocks and what sizes to allow. 

2.8.1.4 Priority Subpool Allocation. Dynamic core will be 
divided into sections called subpools, one corresponding to 
each possible task priority level. A task requesting core 
will then receive its allocation only from the subpool 
corresponding to its priority level. Within a subpool core 
can be allocated on a fully dynamic or semi-dynamic basis. 

If·the fully dynamic method were used, fragmentation 
would occur within each subpool. To avoid this problem we 
will use semi-dynamic memory allocation (as explained above) 
within subpools. Each subpool will have several blocks of 
core of several different sizes. A task is then allocafed 
a block of its requested size when it"is placed on the ready 
queue. 

Should a task request a block of core that is unavailable 
within.its subpool because of existing allocations, a block 
from a lower priority level can be used for allocation. 
This will prevent a high priority task from having to wait 

' •. ~ 
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for the release of core while low priority tasks can be s~heduled. 
In addition, tasks of the highest priority will not have .to 
share their subpool with any other tasks. These tasks will 
have the least interference from other tasks in competing for 
core. 

The si zes of the blocks and- the number of each si ze . are 
determined by the number of tasks and their requirements at 
the given priority level. Once this algorithm has been implemented 
size and quantity parameters can be varied for optimization. 
This is the method selected in the design structure. 

2.8.2 Common Data Sharing 

In any multiprogramming system a resource allocation 
problem arises when data in core memory can be simultaneously 
used _by two (or more) tasks. If t\-J'O tasks only want to read 
the data, no conflict exists. However, if one of the tasks 
wants to update before the other has finished reading, a con­
flict arises.· 

To illustrate this, consider the examples shown in 
Figure 2.8. In both examples TASK B interrupts TASK A during 
the execution of a statement. In Example 1 presume .that 
the interruption occurred while the matrix ~ was being read. 
When TASK A resumes, the computation of ~ will continue using 
some "old" N data and the "new" N data assigned in TASK B. 
In order to prevent this conflict, initi~tion of TASK B would 
have to be stalled until the reading ofN in TASK A is completed. 

In Example 2, presume that the interruption occurs just 
after the current value of Y is loaded into the accumulator. 
When TASK A resumes, the "old ll value of Y (i.e., not reflecting 
the update of Y in TASK B) is restored into the accumulator, 
X is subtracted and the result assigned to Y. In order to 
prevent this conflict, the ini tia,t,ion of TASK B wouldh~ve to 
be stalled until the value of Y is updated in TASK A. 

These examples illustrate the fact tha-t accesses to shared 
data must be controlled to prevent conflicts. One possible 
way of doing this is by preventing task dispatching at critical 
times.- This method is too restrictive however, especially for 
high priority tasks needing fast system response. We will 
investigate alternative approaches to this problem. 
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a) OS/360 uses the ENQ and DEQ macros to grant tasks access 
rights to shared data. ENQ will grant a task access rights 
as long as no other task is using the data. In the latter 
case, the task requesting access rights is put in the wait 
state, awaiting the release of this data (DEQ). Upon this 
release, the next task enqueued for access rights is taken 
out of the wait state and allowed to proceed. ~or two 
tasks that only want to read shared data, this method 
imposes a needless wait for one while the other has the· 
data enqueued. 

b) A second approach to avoid common data sharing conflicts 
is to use UPDATE blocks as is done in the HAL compiler [6,7]. 
An UPDATE block is a group of statements within a program 
providing a controlled environment for the reading ~nd 
writing of shared data variables. Upon entry into the 
UPDATE block, read or write locks are established around 
parts of the compool containing the variables to be 
referenced. There need not bean individual lock for 
each variable nor should there be only one lock around the 
the entire compool. How the compool is organized can be 
decided at a later time depending upon the programs to 
be executed and their requirements. 

Should a part of the compoolneeded by ~ task be unavailable 
for locking, the task is placed in the wait state. Any 

. other parts of the compool it has locked are now unlocked 
so that they can be used by nonwaiting tasks. The requesting 
task can be placed in the ready state when the scheduler 
determines that all parts of the compool requested now 
can .be allocated to. this task. At this time read or write 
locks are established around these partsOof the compool. 

Three types of locks can be established: read, write, 
and writing. We say that unlocked data is in state 0 and 
locked data can be in states 1-3 corresponding to the 
three types of locks respectively. 

A read lock will enable another task that also wishes 
to read lock. this data to do so. If a write lock is 
established around a piece of data, a copy of the data is 
made for the updating task. Upon'-closing the UPDATE block, 
the compool is updated as long as no other locks exist 
around the data to be undated. No writing locks can be 
put on a given part of the compool, until any read locks 
already there are removed by all tasks reading this data. 
If the locks exist~ the updating task must wait until the 
locks are removed. 
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Consider the first example above and suppose that the 
statements in que9tion (in TASKS A and B) were enclosed 
within UPDATE blocks. In TASK A a read-lock is established 
for~, because it will be read only. After the interruption, 
a write-lock is established for*~ and TASK B proceeds toward 
completion using copy-data for N rather than active data. 
At the end of the update block in TASK B, the process stalls 
because of the read-lock imposed in TASK A. As a result, 
TASK A is allowed to continue with consistent "old" ~ data. 
After compl~tion of TASK A, a copy-cycle is effected in 
TASK Band N is updated. All conflicts are eliminated. 
A table of compool state t~ansitions follows. 

Desired Read Write Writing 
State Free Locked Locked Locked 

Free' O.K. O.K. not O.K. 
appli-
cable 

Read Locked O.K. O.K. O.K. Wait 

Write Locked O.K. O.K. Wait Wait 

Writing Locked not Wait O.K. not 
appli- appli-
cable c·able 

To prevent any task from locking a part of the compoool 
any longer than necessary, no I/O statements and no pro­
grammed WAIT statements will be allowed in an UPDATE block. 
This requirement will prevent a high priority task from 
having to wait for long time intervals while a lower 
priority task has data locked. 

To economize on the amount of core needed for the compool, 
part of the compool can be overlaid on transitions to 
different mission phases. If two tasks that are only 
executed during a particular mission phase use part of 
the compool, it is needless to keep this part of the compool 
in core as long as no other task in another phase will 
ever again use the data. In this case as new program 
modules are read into core during a mission phase transi­
tion, this part of the compool can be overlaid. 
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Figure 2.8 Control of Shared Data' 

EXAMPlE 1: READ AND WR ITE CONPLI eTS 

A: TASK; 
UPDATE; 

B: TASK; 
UPDATE; 

t------CONTROL, · ")/ 
~ ICC .... 

M = N + P; 
<e, 

N = X y. . . , 

CLOSE A; 

EXAMPLE 2: UPDATE CONFLICTS 

UPDATE; A: TASK; ~UPDATE; . B: TASK; 

Y = Y - X; , ~ '. CONTROL Y = Y - Z;, 

CLOSE B 

NOTES: 1. B "I NTERRU PTS" A I N BOTH CASES 
11= 

. 2. #1 TASK A RESUMES US I NG OLD AND NEW VALUES FOR N . 

3. #i TASK RESUMES "CL0B BER I NG" THE VALUE FOR Y 'SET BY TASK B 



2.8.3 'Data Set Management 

Data'set management is heavily dependent upon the type 
of mass storage unit used on the Space Shuttle. If a tape 
drive is used, as in the MDC/TRW study, very little data 
management capability will be necessary. However, if a random 
access unit is used, as in the NR/IBM study, more extensive 
data management facilities will be necessary. 

In this report we will assume a random access unit, 
especially since the ASIL configuration includes an IBM 2311 
disk drive. However, the data management system we will 
present is not as general purpose as in the System/360, for 
example. It is designed to meet the needs of the Space Shuttle 
mission. One of the criteria used in designing this part of 
the executive is the desirability of minimizing use of the 
random access unit during the Space Shuttle mission., The major 
anticipated uses of the storage unit are to record flight data, 
to update the programs in core memory on a per mission phase 
basis, and to retrieve display skeletons for the visual 
display application programs. More frequent use of the mass 
storage unit is unnecessary, based upon the two Phase B 
study reports [1,21. 

There will be two classes of data sets on the random 
access storage unit, read only and read/write. The former 
category may be read at any time by any humber of tasks without 
conflict. The latter category, however, can cause access 
conflicts, and hence, some protection mechanism is necessary. 

A directory of each data set on the storage unit and its 
characteristics will be maintained in core memory (see Figure 
3.4 ). The.data .set directory entry for a read/write data 
set will identify only one program module*w~th writing access rights. 
Whenever a task requests to write upon a data set, the I/O 
supervisor will check to see if the data set is indeed read/ 
write, and if the requesting task has access rights. Since 
only one .task can update a given read/write data set, no write 
conflicts are possible. 

A task may also request to read a read/write data set. 
For example, data recorded in a former mission phase may be 
important to an executing task. In this case, the I/O super­
visor will honor the read request. However, the software must 
be structured so that the requesting task is not reading part 
of the data that is presently being updated. The I/O super­
visor will not check for this fact. Each task that wishes to 
read a read/write data set is responsible for knowing the 
integrity of the data it receives. . 

* This program module must not be reentrant. 
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Chapter 3 

Executive System Architecture 

3.1 Introduction 

Describing the architecture of the executive system con­
sists of more than an explanation of how the various parts of 
the executive software work. It also co~sists of an explana­
tion of how these parts dynamically interact with each other 
to e~tend the power of the host machine. Furthermore, the 
hardware structure of this machine plays an additional role in 
executive system design since particular hardware features, 
such as I/O channel structure, influence the software design. 
In a sense we .may consider the machine together with its ex­
ecutive software to be the full executive system that enables 
application programs to be executed •. 

. The executive system is responsible for the control of 
all computing tasks in the Space Shuttle real time software 
environment. It must manage the allocation and utilization 
of all resources of the system including processor, memory, 
data bus system, secondary memory, timers, and all other de­
vices connected to the computer. The executive system must be 
organized such that it simply and efficiently allocates system 
resources to the computing tasks and provides sufficient gen­
eral services to application programs to enable them to achieve 
miss~on requirements. 

In order to make the system flexible, it must be structured 
such that the executive modules are either self-contained or 
utilize a standardized set of subroutines. It must be possible 
to make alterations to these modules without jeopardizing the 
rest of the executive functions. 

In order to make the system simple, it is necessary to 
prevent application programs, regardle~s of their complexity, 
from directly performing system control functions. This limits 
the number of checks and balances necessary in order to assure 
full system reliability. This does not mean that application 
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programs are denied use of hardware facilities, but rather 
that the control of such facilities is restricted to one 
responsible module. 

Since the system must support applications which will 
have real-time inputs and outputs, it will have to be or­
iented toward being able to guarantee response within some 
predictable time constraints and yet not be performing super­
visory tasks so frequently as to constrict throughput rates, 
a problem encountered in many highly interactive sys-tems. 

This chapter presents a description of the architecture 
of the executive system selected as a basis for the rest of 
the design. The structure was derived from the analysis of -_ 
executive functions and system requirements described in 
Chapter 2. The major executive queues, directories, control 
linkage and operating environment are defined. 

3.2 -Executive and Task Structure 

The flight software for the Space Shuttle computer avionics 
system can be organized into two categories: system software 
and application software. The executive system is the kernel 
of systems software which interfaces directly between the com­
puter configuration and the applications software. It should 
be constructed to appear as part of a virtual machine to the 
application software programmer. System software can include 
other functions such as display software, interpreters, or 
other functions necessary as utilities to application software. 
In this report, the executive system structure identified is 
a kernel set of functions necessary to coritinue and execute 
application software. 

Certain assumptions have been made .about the 
application software, which are necessitated by the charac­
teristics of the executive system. The major structural pro­
perties that application tasks must possess are the following: 

1)- All application tasks communicate with each other 
and with the ~*ecutive following a rigid set of conventions 
which will be described in the following chapters. 

2) Application software is block oriented with all the 
program modules for a given mission phase in main 
memory during that phase. Application tasks are 
structured as subroutines dispatched by the executive 
(analogous to OS/360) • 

31 There are no direct I/O operations from application 
tasks. The executive's I/O routines handle all I/O 
requests. 
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A: PROCEDURE 

SCHEDULE A IN T 

-SECONDS; 

A: PROCEDURE 
SCHEDULE A IN T 

SECONDS; 

END END 

CORRECT INCORRECT 

Figure 3.1 Correct and incorrect methods of time 
scheduling of background tasks. 
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4) A task can request the scheduling of another task. 

5) All access to shared data is through the executive. 

6) The executive maintains a list of all·. program modules 
that can ever be executed by the system during flight. 

7) A task can include a local recovery procedure in case 
of a software error. 

8)' All tasks' dynamic memory requirements are known to the 
system preflight. 

9) Background tasks, which are repetitively operated, are 
rescheduled at the end of their execution and not at 
the beginning as shown in Figure 3.1. This is specified 
because there might otherwise be insufficient background 
time to complete the task prior to its next dispatching. 

3.2.1 General Description 

The executive system is driven by a minor cycle real 
time interrupt, which causes execution of the cyclic sequencer. 
The cyclic sequencer is an executive task which performs all 
functions that.are characterized by precise timing sepcifica­
tions. It commands all I/O operations done on a periodic 
basis; supervises execution of all computations to be run on 
a periodic basis, updates core memory with input received 
ih the last minor cycle, and monitors the status of avionics 
subsystems. Upon termination of the cyclic sequencer, the 
dispatcher is called to' select a background~ask for execution. 

-The dispatcher is at. the heart of the executive system. 
It is this executive function that selects tasks for execution 
on a priority basis. When a task terminates, it returns to the 
dispatcher, which calls a terminator routine to insure the 
release of all system resources held by the task. 

While an application task is executing, it may request 
another task to be scheduled for execution by calling the 
scheduler. Scheduling can be done unconditionally, on ·a time 
basis, or on the occurrence of an event. A function of the 
scheduler is to put this new task in a state ready for execu­
tion. It does so by calling the resource allocator to give the 
task any resources it may need. Should a resource be unavailable 
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the task must wait for scheduling until this resource is 
freed. At this time, the resource can then be assignep to the 
task, and the task is then ready for execution. It competes 
for CPU time on a priority basis with all other tasks in a 
similar ready state. The dispatcher will choose the highest 
priority task that is ready for execution and assign the CPU 
to this task. A task will continue executing until it ends, 
or until it voluntarily releases the CPU, or until a system 
event occurs necessitating the CPU being assigned to another 
task. 

At any time during its execution, a task may request 
I/O operations to be done and may request its own execution be 
halted until these I/O operations are completed. It is one of 
the functions of the executive to supervise and schedule all 
I/O operations. In addition, the executive must supervise 
error recovery functions. Should a hardware or-software 
error occur, the executive must provide the capability of 
running a specific recovery routine depending upon the type of 
error. A system reconfiguration routine might then have to be 
executed if a piece of hardware is judged faulty. The faulty 
equipment will then be switched out, and the system will 
continue-execution. 

The execution·software to perform all the above functions 
will be organized in modular fashion. We will now identify 
the necessary modules. 

3.2.2 Identification of Executive Program Modules 

a) Cyclic sequencer:-performs all services done on a minor 
cycle-basis. 

b) Scheduler: puts previously inactive task or waiting ta~k~: 
in a. status ready for execution. 

c) Dispatcher: assigns CPU to a task ready for exectition. 

d) Resource allocator: assign~ system resources to tasks. 

e) I/O supervisor: dispatches all I/q requests to channels. 

f) Machine check supervisor: diagnostic routines executed 
when hardware error is detected. 

g) .. Reconfiguration routines: brings up standby equipment 
when active unit is judged faulty. 

h) Timer' routine: sets hardware timer.and signals_events 
based upon elapsed ·times. 
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i) Program check supervisor: provides recovery from detectable 
software errors, such as division by zero. 

j) Supervisor service routines: provide supervisor services 
for application programs, e.g., enable a task to await 
an event or to free an assigned resource. 

3.2.3 Executive Operating Environment 

The executive is not presented with a random stream of 
tasks, queued upon secondary storage, as isOS/360. Instead 
there is a fixed set of tasks organized ·ona mission phase 
basis. Within a ~articular phase, task throughput is maximized. 
Then if core memory must be overlaid with new program modules, 
·they are loaded from secondary storage at the beginning of a 
new mission phase in order to minimize the use of the mass 
memory unit. Moreover, since the modules loaded will be known 
preflight, their loading addresses and relocation constants 
will be determined at compile time. In other words, fully 
dynamic loading and binding of program modules is not supported 
by the executive. - This minimal use of the MMU presents a fixed 
program environment for the executive system. 

3.3 Defini-tions 

3.3.1 Task 

A task is an executive unit of work shich competes for 
system resources. A·task is created dynamically upon ex­
ecution of the executive's scheduling function .. A task 
is identified and defined a unique .task control block. 
A task control block (TCB) is a table containing all pertinent 
control information for a task used by the executive for task 
management. The TCB is created by the scheduler when it 
attempts to bring a currently unscheduled program module into 
the system. Each TCB contains a pointer to a program module 
which the task executes. 

A program module :is code executable 
-by the executive. Program modules are started by the 
executive and return control to the executive END function upon· 
completion. A program module may be associated with more than· 
one task. . 

The following information is contained in the TCB: 

al task identification; 

b) program module entry point; 
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c) program module characteristics, such as reentrant; 

d) an area to save the PSW, 16 GRs and 4 FPRs should the 
task go on the ready or wait queues; 

e) task priority; 

f) a flag to denote the task being partially complete; 

g) a pointer to the DCD entry for the task's dynamic core; 

h) a pointer to the chain of ECBs should the task go into 
the wai t state; 

i) the number of events the task awaits to be made ready, 
supplied when the task goes into the wait state; 

h) a pointer to a list of the compool parts the task has locked 
while it is in an update block; 

k) a timer entry indicating the time at which the task can 
be made ready should it be on the time wait queue; 

1) a pointer to any task's TCB that schedules this task by 
LINK; 

m) an entry point for a task specified recovery procedure 
in case of a program check error; 

n) threaded list pointers for the queue and subqueue the 
TCB is on. 

-
A task control block designed for the EP is illustrated. in 
Figure 3.2. It contains a task ID assigned by EXEC dynam­
ically at schedule time. 

A task may be in one of four task states at any time. 

a) Active: The task has been allocated the CPU and is ex­
ecuting. 

b) Ready: . The task has been assigned all its resources and 
if ready for execution. It only awaits the CPU. 

c) Wait": The task is awaiting the occurrence of some event 
or events in the system. Such an event may be the release 
of a resource, an elapsed time, or an I/O interruption. 
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Program module ID 
-

character- entry point 
istics 

prior- comple- DCD pointer 
ity tion state 

PSvl ( 2 full words) 

GR (16 full \vords) 

FPR (8 full words) 

event 
infor- ECB pointer 
mation 

Compool lock list pointer 

Timer entry 

Recovery program address 

Pointer to parent task's TCB 

TeB queue pointer 

" " " 

Subqueue pointer 

.. .. 

~(:----- I Full Word--------?» 

Figure 3.2 Format of a Task Control 
Block 
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d} Inactive: The task is not presently known to the 
scheduler. However, its prog·ram module is present in 
core storage or on a mass memory unit. (Strictly 
speaking, an inactive task is merely a program module 
and not a task. A program module is made a task at 
schedule time, when its TCB is created.) 

Our concept of the states of'a task is an~logous to the 
MULTICS concept of the states of a process [11,17]. A state 
transition diagram is shown in Figure 3.3. 

3.3.2 Executive Queues 

The executive queues are lists used by the executive 
to associate and control t~sks of a similar condition. Task 
control blocks are linked into lists corresponding to a par­
ticular executive queue. A task can only exist in one queue 
at any instant of time. There are four major executive queues: 
ready queue, wait queue, time queue and I/O queue. 

a) Ready queue: The ready queue is a threaded list whose 
elements are th~ TCBs of the tasks ready for execution. 
These TCBs are organized on a priority basis with the 
TCBs corresponding to the highest priority tasks oc­
curring at the beginning of the list. An entry is es­
tablished by the scheduler in the ready queue when a task 
is brought to the ready state. . 

b} Wait queue: The. wait queue is a threaded list whose 
·elements are the TCBs of the tasks waiting for the oc­
currence of some event or events. Each TCB on the wait 
queue points to a list of ECBs, and each ECB on this 
list corresponds to an event. When all these .events 
or .. some allowable combination of them have been com­
pleted, the task can be put on the ready queue. 

c} Time queue: The time queue is. a subqueue of the wait 
queue. The tasks on the time queue are awaiting the oc­
currence of a timed event. At some multiple of a minor 
cycle time interval, the executive examines the tasks on 
this queue, to determine if they can be made ready at. 
the present time. If so, those that can are placed on 
the ready queue. 

d} I/O queue: The I/O queue is a subqueue of the wait queue. 
The tasks on the I/O queue are awaiting the completion of 
some I/O operation. When the I/O operation completes, a 
task awaiting it in this queue can now be placed on the 
ready queue. 
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3.3.3 Common Data Pool 

The COMPOOL is an area of operating memory permanently 
assigned to data variables shared by tasks. . 
All communication between tasks is done through the compool. 
Data assigned in the compool remains in the system subsequent 
to a task completion. It is statically assigned as opposed 
to the dynamic memory assigned to a task for working storage. 
The compool is organized into two parts: a mission compool 
and a phase related compool. The data assigned in the mission 
portion of the compool is permanently resident. Data assigned 
to the phase dep'endent portion of the compool exists only 
during that phase of the mission. It is overlaid with other 
phase data during subsequent mission phases. When a mission 
phase is initiated, the phase is loaded from the secondary 
memory and the phase dependent compool is initialized. . 
Data which is to be retained subsequent to a task completlon 
must be included in the compool. All accesses to data in 
the compool must be coordinated by the application task through 
the executive system. The executive prevents conflicts in 
the use of the data by system tasks. The SECURE, RELEASE 
and COpy executive functions are provided for compool inter­
action and are discussed in a succeeding chapter. 

3.3.4 I/O Request Block 

The I/O request block (IORB) is a table of all pertinent 
control information for the I/O channel to execute an I/O 
operation. The format, content ,and use of this control block 
are discussed in Chapter 5. 

3.3.5 Directories 

There will be three directories present in core storage 
for use by the executive task management functions. These 
directories and their use will now be defined. 

,3.3.5.1 The Program Module Directory. The program module 
directory (PMD) is a list of all program modules known to the 
system; i.e., all program modules both in operating memory 
and secondary storage. Each entry consists of three full words 
and has the format shown in Figure 3.4a. It contains the 
following information: 

a) program module identification, 

b) where the module is resident, 

c) address of module, 
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d) module characteristics, such as reentrant, 

e) dynamic core needs. 

This directory is updated when the contents of core change 
or new program modules are added to the system preflight. 
Its major purpose is to enable the scheduler to locate a 
program module and to provide enough information to con­
struct a TCB. 

3.3.5.2 The Data Set Directory. The data set directory 
(DSD) is a list of all data sets residing on the MMU. A data 
set may be an executable program module or a collection of 
flight data. An entry in this directory is three full words 
containing a data set identification word, HMU starting . 
address, logical record length, and data set characteristics 
(i.e., read only or read/write). In addition, if this data 
set can be updated, the program module with update rights will 
be identified in the DSD entry. This information is illus­
trated in Figure 3.4b. 

The DSD enables the I/O supervisor to locate data sets 
on the MMU for I/O operations • 

. 3.3.5.3 The Dynamic Core Directory. The dynamic core di'r­
ectory (DCD) is a list of all blocks of core that can be 
dynamically assigned to a task. Each entry is two full words 
containing the address of the block, its byte length, its 
subpool number, and an assignment bit. The format is given 
in Figure 3.4c. The DCD enables the executive to dynamically 
assign core to tasks at schedule time. 

3.4 Subroutine Linkage 

In order to standardize the way program modules are 
structured and to avoid conflicts in parameter passing, regis­
ter usage, and register saving, a method of program module 
initialization and linkage must be developed. The EP hardware 
structure, as seen by the programmer, is similar enough to 
System/360 to make a linkage convention similar to the 360 
feasible. 

Upon entering a program module the contents of the gen­
eral registers must be saved so that they can be restored 
upon task termination. These registers are stored in an area 
of core called the save area. Each task must provide a save 
area, pointed to by GRl3, which is used by any subtask it calls. 
The format of the save area is shown in Figure 3.5. '.: 
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1. Program Modu /e Directory (PMD) 

program modu Ie I D 

device I~ ~~ address 

character-

• 
dynam ic core 

istics requ est 

(a) 

2. Data Set Directory (DSD) 

data set /0 . 

access record address 
type length 

program modu Ie I D for u pd'ate access 

(b) 

3. Dynam ic Core Directory (OCD) 

~:/:: 
assigned ~. 

length 

(c) 

address 

subpool 
number 

Figure 3.4 System Directory 
Elements 
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address of previous save' area 

address of next save area 

GR 14 

GR 15 

GR 0 

GR 11 

GR 12 • 

Figure 3.5 Format of a Save,Area 
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After saving the general registers, one or more of these 
registers can be initialized as b~se ~egisters. All addressing 

·of core storage in a program module is done with base reg­
isters. Finally, a new save area address is put in GR13. An 
example of this linkage follows . 

STM 14, 12, . 12(13} 

BALR 12, 0 

USING * 12 , 

LA 2, SAVEAREA 

·ST 13, SAVEAREA +4 

ST 2, 8(13} 

LR 13, 2 

save registers in save area. 

initialize GR12 as a base 
. register. 

declare to assembler that 
GR12 is base register. 

get address of next save 
area. 

store address of previous 
save area in next save area. 

store address of next 
save area in previous save 
area. 

load GR13 with address of 
next save arcea·to complete 

. linkage. 

When the linkage and initialization are done, a task may now 
freely use the general registers. 

The following assignment of the general registers will 
be made: 

GRO: contains address of dynamic core upon entry 
to program module, 

GRl: used to pass parameters between program 
modules, 

GR2-GR12: may be freely used by·tasks, 

GR13: 

GR14: 

GR15: 

points to save area provided by task, 

contains the return address of task that 
called currently executing task, 

, . . 
contains entry point address when control is 
passed to a task and can also contain a re­
turn code when a task terminates. 
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Upon completion of its computc3.tion, a ·task terminates by 
restoring the content of the general registers it had saved 
upon entry, setting its return code inGR15, and branching 
to the return address in GR14. 

Example: 

L 

LM 

LA 

BR 

13, 4(13) 

14,12,12(13) 

15,4' 

14 

get address of previous save area, 

restore registers, 

load return code of 4, 

return. 

As previously mentioned, all communication between tasks 
is via the compool. Since one task cannot pass another a 
parameter list, the compool serves as the communication medium. 
Data variable assignments in the compool are generated at 
system compile time and do not change during the mission. In 
other words, no dynamic assignments can be made in the compool. 
All tasks reference compool data at fixed locations for the 
duration of the mission. 

3.4.1 Common Subroutines 

In addition to a task being able to schedule another 
task, a task may execute a common subroutine. A subroutine is 
a piece of coding which may be used by several tasks without 
itself becoming a task. A common subroutine must be reentrant 
or serially reusable. In the former case the calling task 
supplies working memory for the subroutine. In the latter case,' 
the subroutine must supply control fOr preventing multiple simultaneous 
ex~cutions. A software generated event can be used by the subroutine 
as a semaphore to insure only one user at a time [12]. This 
topic is further discussed in Section 3.7. Examples of common 
subroutines are square root, trigonometric functions, and 
vector/matrix functions. 

The calling task may pass p'arameters to a' common sub­
routine by providing a pointer. This pointer will contain the 
address of a list of pointers, each pointing to one of the ~ara­
meters, as illustrated below. 

address of "- address of 
parameter list parameter 1 

address of 
parameter 2 

· · · 
address of 
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The subroutine may now read each of the passed parameters and 
return a computed value in one of them. The registers. in 
which the parameter pointer and dynamic core pointer are 
passed to the common subroutine have been described in the 
last section. 

3.5 Task Priority Levels 

In the Space Shuttle computer there will be six priority 
levels, 0-5, with 0 being the highest priority. Priorities 
3, 4, and 5 are used by application tasks. 

Priority 2 is reserved for any application task while it 
is executing an UPDATE block. That is, if a task of priority 
3, 4, or 5 is executing an UPDATE block, the task's priority' 
is raised to 2 until the updating of common memory is com­
pleted. It then returns to its previous value. Thus in ef­
fect, we are· limiting dispatching of priority 3-5 tasks while 
another task executes an UPDATE block. By the nature of the 
system there will be at most one task at priority 2 at any 
given time. This places restrictions on the use of an update 
block in that a task cannot enter the wait state voluntarily 
under any conditions. It must enter the block, complete the 
updating of common memory, and exit the block. The high 
priority cyclic sequencer is allowed to interrupt an update 
block. 

Priority 1 is only used by the cyclic sequencer. It is 
given priority over any application task because of the time 
dependent nature of its execution. Should the cyclic se­
quencer be unable to lock part of the compool, the task at 
priority 2 is executed until it closes its UPDATE block. Now 
the cyclic sequencer can lock its required data without inter­
ference. The use of priority 2 is specifically designed to 
enable the cyclic sequencer to execute with the leastpos-
sible wait due to shared data unavailability. . 

If a response time equal to a minor cycle is insufficient 
to handle critical mission functions, a special priority level 
could be included in the executive system. Priority o can be 
reserved for. acyclic tasks that mus.t immediately be executed . 
for the safety of the mission. These tasks are time constrained 
and must execute in less than 0.5 msec.This. rule is enforced 
by a timer in the hardware. (Although the EP has only one 
timer, the computer chosen for the Shuttle mission would need 
at least two, one for the minor cycle interrupt and one for 
timing critical task events.) Moreover, priority 0 tasks may 
not use dynamic core or use the compool since by their very 
nature no wait in their execution can be tolerated. 
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Examples of priority 0 tasks are computations that must 
be done during a critical maneuver, engine burn or cutoff, 
etc. Should one of these tasks require more than 0.5 msec 
to execute, it may change its, priority to 3 or lower during 
its execution. Should there be no higher priority task 
scheduled, it will confinue execution at this lower priority. 
Otherwise, it must wait for the cpu. In this way critical 
functions can immediately be given 0.5 msec of cpu time without 
seriously interfering with the executive's cyclic function$ that 
must be performed every minor cycle. 

Including priority 0 in this executive system would re­
quire more hardware interfaces to the computer than we have 

'assumed. There would have to be a method of generating an 
immediate external interrupt in the cpu from the ,subsystem 
or device sending the interrupt condition. However, sub­
system requirements have not been sufficiently defined yet to 
determine whether or not a priority 0 is necessary in this 
system. 

3.6 Assignment of Core Memory 

Operating memory will be organized as follows: the lower 
core addresses will be assigned to the executive, as shown 
in Figure 3.6. The first locations contain system registers, 
such as the timer, the PSWs, and the CSW. This assignment is 
described in the 4 Pi EP Manual [3J. The next block of core 
contains the executive's program modules, followed by the 
executive work area~ Within this latter area the executive's 
queues, directories and tables are resident. 

There are three types of queues present in this area: 
TCB queues, ECB queues, and IORB queues. Since each type 
of control block is a fixed size, the executive can maintain 
three threaded lists of unused blocks of core storage, each 
element of which contains enough core for allocation as one 
of the three types of control blocks, respectively. Thus, 
when a task requires 'a control block, the executive can remove 

./"' 

an element from the appropriate queue of unused blocks and 
assign this block to the task to be formatted into a control 

,block. Similarly, when the executive determines a task is 
finished with a control block, that core that the control 
block occupied is then returned to the appropriate queue of 
unused blocks for later allocation. 

Sufficient space must be allowed this part of core to 
hold the maximum number of control blocks that will ever be 
needed by application tasks at any given time. Should space be 
unavailable, this is an error condition since more tasks are 
in the system than its resources can acconimodate. 
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The compoolwill immediately follow the executive work 
area and be divided into a mission portion, which is resident 
in main memory throughout the flight, and a phase portion, 
which is overlaid when a mission phase transition occurs. A 
similar feature exists with the application software which 
follows next in memory. The mission resident part comes first,-
followed by the phase dependent part. 

The protection key feature of the EP assumes each block 
of 2K bytes of core is assigned a single protection key. No 
subdivisions of these blocks can be assigned different pro­
tection keys. For this reason and the fact that most aero-
space computers do not have a protection key feature an al­
ternate method of protecting parts of main memory from illegal 
access is necessary. To avoid executive overhead in performing 
this protection function, simulation of the entire software 
system on a ground based computer must check for illegal accesses 
from the application tasks. The methods of valid executive 
access are discussed in later chapters. 

3.7 Events 

An event is ~n occurrence of significance to the system. 
There are a fixed number of events established for the system 
identified in an event directory. There are fivscategories 
of events recognized by the executive, the first four of 
which are controlled by the executive. These are: time 
events, I/O completion events, release of shared data, and 
release of dynamic memory. If other external interrupts are 
used in the EP system they may also be categorized as an 
event. The final category of events include those which are 
controlled via application software and used for task synch­
ronization. 

There are two types of events within this last category; 
latched and unlatched. A latched event has associated with 
it a binary state either on or off. Latched events may be 
signalled on (posted) or signalled off (deposted) under 
application software control via the executive. A latched 
event maintains its current state until changed via signal 
command. An important use of latched events is to record 
the occurrence of an event within the system so that if a 
task later wishes to use the occurrence of the event as a 
criterion for performing a function, it can do so without 
having-lost all record of the events occurrence. An un-
latched event is only signalle~ on. It is signalled off im­
mediately after processing by the executive. In a sense an 
unlatched event is a pulsed event analogous to a hardware 
interrupt. 

' . .'! 
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An event control block (ECB) contains the current status 
of an event. It is dynamically creat~d by the executive when 
a task is placed in the wait state. All events have system 
scope. When the anticipated event occurs, bit 0 of the ECB 
is set to Ito record the event for the executive. See 
Figure 3.7 for the format of an ECB. The ECB contains a bit 
to denote if the task is awaiting the event, a bit to denote 
if the event is completed, and two threaded list pointers. 

3.7.1 Event Handling 

In the Space Shuttle software system there is a close 
relationship between task management and event handling. 
Tasks that are placed in the wait state remain there until the 
anticipated events that they are awaiting occur. Then the 
event handling facilities of the executive call upon the 
scheduler to place these tasks in the ready state. 

Tasks can be placed in the wait state in two ways. 
First, a task can voluntarily request the executive to place 
its TCB on the wait queue until some anticipated event or 
events occur. Second, when the scheduler attempts to place a 
task in the ready state, the unavailability of a resource 
on the nonoccurrence of some event(s) causes the task to wait 
until the resource is freed or the event(s) occurs. 

A TCB in the wait queue is associated with a threaded 
list of ECBs, 'each corresponding to an event whose occurrence 
the task awaits. In addition, each event has an associated 
event list which contains Dointers to all ECBs of tasks 
awai ting the occurrence of" the event. ," Thus, when an event 
occurs, each ECB pointed to by the event list can be posted, 
i.e., record the fact that the event occurred. An illustration 
of this control structure is given in Figure 3.8. 

After the event occurs, the scheduler is called. Its 
function is to determine if any task awaiting this event can 
be placed on the ready queue. The criterion for this decision 
is whether or not all (or some acceptable combination) of the 
events a task is awaiting have occurred. If so, the task is 
placed in the ready state by having its TCB moved to the 
ready queue and having its ECBs deleted. In addition, the 
scheduler can now delete the event list associated with the 
event. Tasks can perform a function based upon the occurrence 
of a single event or upon the occurrence of some combination 
of several events. In the latter case the allowable com­
binations are 

1) The occurrence of all of the events, or 
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Figure 3.7 Format of Event Control Block 
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Figure 3.9 Format of Event Descriptor Byte 
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2) the occurrence of m out of n events, where m < n. 

Each task awaiting an event in one of the first four cat­
egories can only await this one event and not some combination 
of events. However, software controlled events contain a 
predefined number of distinct events. which may be used in­
dividually or in combinations by tasks. Events are not dy­
namically created by the system. Hence, software generated 
signals must correspond to events defined at system generation 
time. Each software generated event contains an event de­
scriptor byte, containing the characteristics and state of the 
event. Figure 3.9 shows the format of the byte. Bit 0 de­
scribes the event as latched or unlatched; bit I records 
whether the event is on or off; and bit 2 describes the event 
as exclusive or non-exclusive, a distinction we will presentl~ 
explain. 

Within the class of unlatched events we will choose a 
subset to be exclusive events. An important use of exclusive 
events is to exclude tasks from use of some serially reusable 
resource. When an exclusive event is signalled on, only the 
highest priority task awaiting the event is placed in the 
ready state. All other tasks awaiting the event remain on 
the wait queue. When the highest priority task is made ready, 
the event is then signalled off by the scheduler to be sure 
no other application task can interfere with the exclusion 
process. This use of exclusive events is analogous to 
Dijkstra's concept of semaphores [12]. 

Note: it is the duty of the programmer to know if the 
events he is using in his tasks are being used by any other 
tasks. Without being sure of this fact, ·tasks can unintendedly 
interfere with each other's execution and destroy the in­
tegrity of their computations. 

Also note: in the actual implementation of this 
executive system, some categories 6f events will be immediately 
serviced by the executive upon occurrence of the event~ and 
hence, a record of the eventJs occurrence will be unnecessary. 
These events will therefore not need ECBs in their functional 
implementation. These events include release of dynamic memory 
and unlocking parts of the compool. 
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3.8 I/O Scheduling 

We assume that the·data bus system hardware will be 
mechanized in a way which· allows bus operations to continue 
independently of the CPU once an I/O conunand is issued to the 
bus control unit. This means that the processor is only 
allocated to the I/O function during an I/O channel conunand 
and should be reallocated.to the computation job stream upon 
completion of the conunand. The design question for the software 
I/O control will·behow to schedule t~e I/O operation: should 
it be decoupled from the executive program control and main­
tain its own separate I/O queue, or should .it be inserted as 
an integral part of a fixed sequence? For eXqmple, if I/O 
were operated each minor cycle it would output data from the 
previous cycle, and input data which is to be processed during 
the following cycle. With this concept, however, the I/O 
must be predetermined and fixed, with constraints similar to 
those for fixed scheduling of computatiorial jobs. Input and 
output then occurs each cycle, whether it is needed or not. 
This approach will cause excess data to be put on the bus, 
reducing its effective bandwidth, and its capability for 
expanded performance. On the other hand, scheduling I/O as 
a priority queue based on demand, has many features in common 
with scheduling jobs (e.g., priority, timing, conflicts, etc.). 
An effect of the I/O.queue on the system is that several jobs 
may be in a suspended state awaiting I/O completions. 'Methods 
are available to avoid such delays, for example, buffering 
for data in and out, and issuing conunands o-nly via a queue. 
The I/O algorithms presented in Chapter 5 will combine the 
best fea ture-s of synchronous and asynchronous control. 

3.9 I/O Considerations 

At-present there are uncertainties concerning the 
operation of I/O whose resolution overlaps the designs of the 
shuttle avionics subsystems. Some of these uncertainties are: 

a) Does the central computer have to perform echo checking 
of all conunon data issued on the bus to ensure·that conunands 
are received by the right subsystem; or is this function 
performed by the bus control hardware, or by the standar~ 
interface units? 

b) Is data validation in transmission a responsibility 
of. software? 
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c) Can demand/response really be achieved via the central 
computer software? This question becomes importan~ if 
the use of existing hardware is contemplated, because I/O 
demands may force the computer into an "liD-bound" condi­
tion~ or seriously load its proc~ssing capability. 

d) How are devices such as the hand controller to be 
incorporated into I/O without interrupts? 

e) Where and when should conversion and limit testing be 
done: in the central software, or at the subsystem? 

f) How is telemetry downlink and uplink handled and how 
does it effect I/O control software? 

\ 
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Chapter 4 

Task Management Functions 

4.1 Introduction 

In this chapter we 'will present a functional design of 
the executive software task management functions. Each task 
management function is defined, and flowcharts are presented. 
The intention of this chapter is to present a functional design 
description of each of the task management areas of the execu­
tive and not to present a coding level design. For this reason 
several software error checking features have been incorporated 
in the algorithms, but yet others have not been since they are 
more appropriately included on a coding level of design. 

4.1.1 Definition of Task Management Functions 

The Task Management area of the executive system has 
the primary function of controlling the sequencing of task 
execution. It supervises the scheduling and dispatching of the 
CPU, the allocation of memory resources to application software 
in accordance with a defined· controlling algorithm; and it 
responds to requests from executing tasks for task and event 
control. As part of this function an executive routine, called 
the Cyclic Sequencer, is defined and operates at priority 1. 
This routine controls the synchronous execution of cyclic 
application subroutines. 

a) The Scheduler is that part of task managem~nt which 
takes a program module from the inactive state, makes it a 
task, and places it on the ready or wait queue. Moreover, 
the Scheduler takes tasks from the wait state, and when 
possible, places them in the ready state~ 

b) The Dispatcher selects a ready task for execution. It 
observes a priority algorithm with tasks Qrganized in a 
FIFO manner within a priority level. 

c) The Resource Allocator is called by the Scheduler and 
tries to give tasks the main memory resources they need for 

.. : 
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-execution. 

d) The Cyclic Sequencer manqges all tasks and I/O performed 
at Priority 1. -

e) Task Management Service Routines are those executive 
routines which an application task can call upon to perform 
some task management function. These routines include: 

1. -Freemain - release dynamic core held by the active task 

2. Secure lock part of the compoolfor reading or 
updating 

3. Release unlock the part of the compool held by 
the-active task 

4. Copy copy part of the compool into the active 
task's work area 

5. Link schedule a task and wait upon the task's 
completion 

6. End terminate the currently active task 

7. Schedule - schedule a task 

8. Wait place the active task in the wait state 

9. Signal 

10. Test 
Event 

11. Change 
CCT 

turn a system event on or off 

test a software event to see if it is on 
or off 

change an entry in the Cyclic Control Table 

Each of these routines is called by ~ 4 P~ EP Supervisor 
Call (SVC}, explained in Chapter 2. 

4.1.2 The Scheduler 

The scheduler is functionally organized into two 
parts; a SCHEDULE processor which responds to -supervisor 
calls to schedule a program module as a task, and an event 
services processor which is called at the occurrence of system 
software-events, i.e. a software signal. 
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4.1.2.1 The SCHEDULE SVC Processor. This routine performs 
the following functions: 

1) Search the TCB queues to see if a task is already scheduled 
using the requested program module. If so, the module's 
characteristics must be checked to be sure no scheduling 
conflict exists. Such a conflict can arise if the program 
module is not reentrant.and is scheduled as a task more 
than once concurrently. 

2) Create a TCB for the task from information found in the 
PMD. 

3) If the task is to be scheduled upon some condition, place 
the task in the wait state and set up the appropriate ECB 
linkage. 

4) For tasks to be scheduled unconditionally, try to allocate 
any necessary core storage. If it is unavailable, place 
the task in the wait state. 

5) If the task can be made ready, place the task on the ready 
queue by priority. The TCB becomes the last one at its 
priority level. 

6) Return control to the active task. 

When a TCBis inserted into a queue (all of which have a 
threaded list structure), this process is accomplished merely 
by pointer manipulation. For example, suppose that task A 
at priority 3 and task C at priority 5 are on the ready queue, 
as shown in Figure 4.1a. To place task B on the ready queue 
at priority 4 new pointers must be established. These priorities 
are illustrated in Figure 4.1b. 

4.1.2.2 Event Services Processor. When the scheduler is 
called by the software associated with an event, it performs 
the following functions: 

1) For exclusive software signalled events at most, one task 
can be made ready. Hence, the scheduler finds the highest 
priority waiting task and tries to put it into the ready 
state. When a task is put into the ready state, the pointer 
to its ECB in the event list can now be deleted. 

2) For non-exclusive events, the scheduler checks to see 
·if all tasks awaiting the event can be made ready. Those 
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CREATE TCB 

CALL RESOURCE 
ALLOCATOR 

PUT TCB ON READY 
. QUEUE AS LAST 
TASK AT ITS 
PRIORITY LEVEL 

NO 

NO 
~-"'PROGRAM ERROR· 

YES 

NO 

-: .. 

I PROGRAM 
!ERROR 

SET UP ECB 
CHAIN 

PUT TCBO.N. 
.. WAIT QUEUE. 

MAKE EVENT 
LIST ENTR IES 

RESTORE 
REGISTERS 

ENABLE 
INTERRUPTS 

. AND EXIT 
VIA PSW 

Figure 4.2 Flowchart of SCHEDULE SVC 
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RETURN ECB 
CHAIN TO 
EXECUTIVE 
WORK AREA 

Figure 4.3 Flowchart of Scheduler Called as Subroutin~ 
by SIGNAL SVC 
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that can have their TCBs put on the·ready queue, and the 
core occupied by the ECBs is. returned to the executive's 
work 'area queues. Those tasks that cannot be made ready, 

" remain on the wait queue. The scheduler can now delete 
the event's entire list of pointers to the ECBs of tasks 
awaiting the event. 

3) Return control to the event software. 

4.1.3 The Dispatcher . . 

Dispatching' is the central £unction of the executive 
system. The dispatcher initiates all application tasks, and 
all tasks under normal conditions return to the dispatcher upon 
termination. At that time, a 'terminate routine is executed 
to enable the task to release any sy~tem resources it may be 
hOlding. This proce$s is illustrated in Figure 4.4. 

When there are no ready tasks in the system, the dispatche~ 
places the CPU in the wait state. This feature aids digital 
simula tion requirements. The simulator can be, implemented· 
to advance through the wait until the next environmental inter­
rupt is predicted. 

~ • "Tl.mer l.nterrupt I . 

No work CPU 'in 
Dispatcher ... 

wait state 

t 
- task goes 

Task - to wait 
state 

" to Dispatcher 

Terminate . 
I 

Figure 4.4 Overview of Dispatching and Terminating 
a Task 
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· The major function of the dispatcher is to select the 
highest priority task ready for execution and make it active. 
within a priority level the oldest ready task is always selected 
first yielding a FIFO dispatching algorithm .. When a task is 
being initiated by the dispatcher, i.e., when it is not being 
dispatched in a partially completed state, the dispatcher 
assigns a save area to the task so that the task can perform its 
standard linkage operations as described in Chapter 3. The CPU 
is then assigned to the task making it the system's active t~sk. 

As explained in Chapter 2 application softwa~e operating 
in the background is segmented if it has lengthy execution time. 
Each active task voluntarily requests the dispatcher to check 
the ready queue to determine if a higher pribrity task is wait~ 
ing for the CPU. If so, . the higher priority task is made active. 
These segment points are established at converiient breakpoints 
to minimize the effect of potential job swaps. These dispatching 
checks are done with SVCs, inserted in the program with the· 
assistance of an assembler or compiler that generates the object 
coding. The flowchart of the dispatch check algorithm is 

.presented in Figure 4.6. 

The dispatcher is entered at: 

1) the end.of a task via return linkage; 

2) a segment point in a "long" background task via a 
supervisor call; 

3) the active task's going into the wait state; 

4) the beginning of a minor cycle via the timer interrupt 
software. 

4.1.4. The Resource Allocator 

The resource allocator is a subroutine called by 
the executive's task management funct·ions to allocate dynamic 
memory to tasks in the system. 

The dynamic memory requirements of each application 
software module is pre-established at system generation and 
specified in the PMD. The function of the allocator is to main~ 
tain the current status of all of dynamic memory and to service 
requests made to it by other parts of the executive. 

As explained in Chapter 3, a portion of the operating 
memory is used as dynamic memory. It is organized into blocks 
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INHIBIT 1/0 
AND EXTERNAL 
INTERRUPTS 

A )-____ ... 

SELECT HIGHEST 
PRIORITY 
READY TASK 
BY FIFO ORDER 

PUT TCB IN 
ACTIVE STATE 

" SET INCOMPLETE 
BIT IN TCB 

ESTABLISH 
SAVE AREA 

ENABLE 
INTERRUPTS 

BRANCH TO' 
TASK ENTRY 
POINT 

NO 

YES 

PUT CPU IN 
WAIT STATE 

PUT ITS TCB 
IN ACTIVE 
STATE 

RESTORE GR's 
AND FPR's 

ENABt;E"IN"FERRUPTS' ~ 
AND;E'><'IT'"TO'T-ASi<:' >­
BY REStORiNG PSVv 

Figure 4.5 Flowchart of Dispatcher 
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STORE PSW, GR's 
AND FPR's OF 
ACTIVE TASK 
IN ITS TCB 

PUT TCB ON 
READY QUEUE 

EXIT TO 
DISPATCHER 

RESTORE 
REGISTERS 

ENABLE 
INTERRUPTS 

. AND EXIT 
VIA PSW 

Figure 4.6 Flowchart of Dispatch Check SVC 
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STANDARD' 
LINKAGE 

READ TASK 
PRIORITY AND 
CORE REQUESTED 
FROM TCB 

SEARCH DCD TO 
SEE IF CORE 
IS AVAILABLE 

POST . 
ASSIGNMENT 
BIT IN DCD 

PUT DCD 
POINTER. 
IN TCB 

RECORD FACT 
THAT CORE WAS 
AVAILABLE 

NO 

RECORD FACT 
THAT CORE 
WAS UNAVAILABLE 

EXIT 

NO 

Figure 4.7 Flowchart of Resource Allocator 
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dedicated to each priority level. When the allocator is entered 
with 'a request, for x words of dynamic memory for task A at 
priori tyk" .. ;,j:t:;.'defermines if x continuous words are currently 
unused in the-~pool associated with priorityk or any lower 
priority. If the memory is unavailable, the task is put in the 
wait state pending memory release. 

A task may not requ~st addition~l memory during its execu­
tion. All memory allocation is granted to a task only upon 
initiation. However, this task may release all of its dynamic 
memory at any time during execution to economize in the use of 
this resource. 

4.1.5 The Cyclic Sequencer 

The cyclic sequencer is operated as a task scheduled via 
the timed wait queue. It is put on the ready minor cycle with 
priority 1. It contains cyclic control t~bles (CCT) identifying 
a list of all cyclic computations and the frequency 
at which each must be executed. These computations are executed 
as subroutines of the cyclic sequencer, and hence, their execu­
tion time must be fitted to'the minor cycle time interval. The 
cyclic subroutines are tonsidered the system's foreground 
computations, and in turn, they may schedule o,ther tasks to be 
executed in the background at priority 3, 4, or 5. 

An entry of the CCT is shown in Figure 4.8. It 
contains the address of the subroutine to be executed; the 
frequency setting indicating the frequency in an integral 
number of mi:r;lOr cycles at which the subroutine is to be executed; 
and a frequency count. The count contains the number of minor 
cycles since the subroutine was last executed. It isincre­
mented in each minor cycle and zeroed when the subroutine 
executes. In addition, there are pointers/to the I/O commands 
for each subroutine. Frequency settings'--may be dynamically 
changed by the subroutine during flight via a supervisor call. 

Upon entry into the cyclic sequencer, each CCT entry 
is examined. The frequency count is incremented by 1 and 
compared to the frequency setting. Should these entries be 
equal, the subroutine must be executed in this minor cycle. 
In this case, the frequency count is set to 0, and the subroutine's 
input commands are executed. To make the most efficient use 
of the channel this process is performed for each CCT entry 
before any subroutines are executed. Now each subroutine can be 
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program module address 

frequency setting. 

frequency count 

address of input commands 

address of output c6rmnand's 
<. ... 

~<------l full word--------~) 

Figure 4.8 Format of CCT Entry 

" 
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executed, and at its completion its output commands ~e executed . 
. This algorithm is presented in Figure 4.9. 

During execution a subroutine must.wait for its input 
requests to be completed before continuing its execution. The 
cyclic sequencer algorithm chosen minimizes the time that the 
subroutine may have to wait. 

The subroutines to be executed in a given minor cycle are 
run in the order in which they appear in fheCCT. Two sub­
routines executed at the same frequency may be run out of phase 
by initially biasing their frequency counts. For example, if 
subroutines A, B, and C are executed every 8 minor cycles, and 
if A and C are not to be run in the same minor cycle, the CCT 
entries may be initially set as shown. 

A 

B 

C 

frequency 
setting 

8 

8 

8 

frequency 
count 

o 
o 
4 

The result is that A and B are run in that order ~~ery 8 minor 
cycles. C is also run at that same frequency although it is 
4 minor cycles out of phase with A and B. \ 

. I 
If a subroutine's execution time is too long; it must be 

broken into several smaller subroutines so as not to overload 
the system during anyone minor cycle interval. Each of the 
smaller subroutines runs at the same frequency and must run in 
successive minor cycles. As in the above example, this can 
be accomplished by initial biasing of the frequency counts. 
For example, presume that A must be executed every 4 minor 
cycles and is organized into 3 parts Al , A2 , and A3 with an 
entry made in the CCT·for each piece. 

frequency frequency 
setting count 

Al 4 4 

A2 4 3 

A3 4 2 

By phasing the frequency count in the initial conditions, 
computation A is run in 3 successive minor cycles: Ai in the 
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first, A2 in the second, and A3 in the third. Each has 
a frequency of execution of 4 minor cycles. 

To prevent a system overload during a minor cycle some 
percentage of the CPU and I/O channel's time should be reserved 
for foreground computations. Th~ remaining time will be devoted 
to executive overhead and background computations. Should the 
cyclic sequencer be placed on the ready que~e before its pre7 
vious execution has terminated, a software error condition results 
because of the overload. 

Sin6e foreground subroutines can $chedule background tasks, 
it is necessary to have a method of preventing a program module 
from being scheduled as a task before its previous execution 
is finished. This prevention can be accomplished by several 
methods, one of which is to use event handling. For example; 
let A be a foreground routine andB a module which is scheduled. 
for execution by A under one condition. Since A is cyclic, 
caution must be used in the method selec~ed for invoking the 
.execution of B. . 

B may be scheduled as a task through the use of a SCHEDULE 
SVC. If B has not completed execution prior to A scheduling 
B again, it is possible for two tasks to be in the system 
associated with module B. This condition will occur, for 
example, if B enters the wait state for a sufficiently long 
time interval. 

As a solution to this problem define Q to bea latched 
event associated with the condition that B should be executed. 
Let A be structured to signal event Q on ~hen it detects that B 
should be scheduled. 

At phase initiation the start up routine will schedule B 
on event Q .. This will establish B as a task in the wait state 
until Q is signalled on. Eventually when A signals Q on, B 
can be executed. 

1) 

2) 

Task B can then be re-established in two ways: 

B can avoid termination until mission phase transition 
by having a structure looping upon itself as shown in 
Figure 4.10a. Whenever Q is signalled ort by A, B is again 
executed. At phase transition time A and B can be terminated. 

B can reschedule itself as a task prior t6 its termination 
as shown in Figure 4.l0b.B remains in the wait state until 
A signals Q on. 

In either case, two concurrent executions of program module B 
are avoided. 
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POINT TO 
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NEXT CCT 
ENTRY 

NO 

STANDARD 
LINKAGE 
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ENTRY 
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FREQUENCY 
COUNT 

>-Y_E_S ___ -fII"" EXECUT E INPUT 
COMMANDS 

POINT- TO 
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RESTORE 
REGISTERS 

EXIT 
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FREQUENCY 
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EXECUTE 
SUBROUTINE 

ISSUE OUTPUT 
COMMANDS 

~ F~gure 4.9' Flowchart of Cyclic Sequencer 
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B: PROCEDURE 
Begin: Wait for QONi 

Signal Q Off; 

Go to Begin; 

END 

: Figure 4.l0a Re-establishing Background· Task 

B: PROCEDURE 
Begin: Signal Q Off; 

Schedule B on Event Qi 

END 

Figure 4.l0b Re-establishing Background Task 
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· The cyclic sequencer is the only priority 1 task in the 
system. Thus, the dynamic core in the priority 1 subpoolis 
not shared with any other tasks and can be considered statically 
assigned to the cyclic sequencer. To reduce overhead this 
core should not be allocated through the resource allocator. 
There need only be subpools for priorities 3, 4, and 5. 

4.1.6 Supervisor Service Routines 

Upon the execution of a supervisor call, a PWS associated 
with the supervisor interrupt becomes the new PSW. This PSW 
will enter a general SVC routine to determine which executive 
service routine to execute' and then to branch to this routine. 
The flowchart for this process is shown in Figure 4.11. In addition, 
the flowcharts for the task management supervisor service routines 
listed in Section 4.1.1 will also be presented in Figs. 4.12-4.21. 

Certain SVC's require parameters to be supplied to the 
executive. For example, SCHEDULE requires the name of the 
program module that is to be scheduled as a task. A list of the 
necessary parameters is supplied in Chapter 9. 

a) FREEMAIN (SVC 1) - The purpose of this SVC is to enable 
a task to release all of its dynamic mem6ry during. execution. 

b) SECURE (SVC 2) - This SVC enables a task to lock parts of 
the compool for reading or updating. If a copy of parts 
of the compool are to be created, the task must supply the 
copy area from its core allocation. It does so by providing 
a pointer to the copy area as a parameter with the SVC. 
Should the task have to wait for compool access, it does 
so in a partially completed state. The PSW and registers 
stored in the TCB must correspond to a point in the coding 
at which execution is to continue when the task becomes 
active again. 

c) RELEASE (SVC 3) - To close an update block the locks 
established by the active task must be released. This 
SVC does so by referencing the parameter list supplied by 
the SECURE SVC. The pointer to this list is in the active 
task's TCB. This list contains the addresses of each lock 
and the type of lock established by SECURE. Any necessary 
updating of the compool is done and then all locks released. 

d) COpy (SVC 4) - The SVC copies parts of the compool into a 
part of the active task's work area. It enables the .active 
task to read parts of the compool without having to keep 

87 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1.840 



-locks established for long time intervals. This svc 
would be used instead of an Update block if the active task 
wanted to usecompool data for long periods of time, but yet 
did not want to prevent other tasks from updating the data. 

e) LINK (SVC 5) - The LINK SVC allows a task to create a 
dependent task and await this task's completion before 
allowing its own execution to continue. Should the depen­
dent task abort because of an error, the calling task al~o 
aborts; and if this latter task was scheduled via a LINK, 
the task that scheduled it also aborts, etc. 

f) END (SVC 6) - Upon termination a task returns to the 
dispatcher via the return address in GR 14. The dispatchei 
puts the CPU in the supervisor state by executing the END SVC. 
The END SVC performs several bookkeeping functions for the 
executive. It closes any update block that is still open, 
frees dynamic memory still held by the task, and puts the 
task in the wait state until any pending I/O requests are 
completed. Upon termination it retur'ns to the dispatcher. 

g) SCHEDULE (SVC 7) - This SVC allows the active task to 
schedule another task without establishing a task dependence, 
as in the case of LINK. The schedule can be unconditional 
or conditional upon some set of criteria. These criteria 
include: 

1) scheduling on some software event or e~ents occurring; 

2) scheduling at some specific time; and 

3) scheduling after some time interval has elapsed. 

These criteria are analagous to the types of schedulirtg 
available within HAL [7,8]. 

h) WAIT (SVC 8) - The WAIT SVC allows the active task to 
place itself in the wait state pending the occurrence 
of some event or group of events. The allowable events 
are: 

1) waiting for some software event or events being 
signalled on (posted); 

2) waiting until a specific time occurs; and 

3) waiting for a time interval to elapse [7,8]. 
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i) SIGNAL ·(SVC 9) - Signal turns an event on or off, depending 
upon the parameters supplied by the SVC. When an event 
is turned on,the scheduler is called to place any tasks 
awaiting the event in the ready state, if possible. 

j) TEST EVENT (SVC 10) - The status of the event tested is 
returned to the active task via a flag which is set by the 
executive. The active task supplies a pointer to the 
flag as an SVC parameter. 

k) CHANGE CCT (SVC 11) - This SVC ena~les a task to change 
the entries in the CCT as mission phase requirements 
change. Direct updating of the CCT by tasks is illegal and should 
be checked for during system simulation. 

1) DISPATCH CHECK (SVC 12) - This SVC occurs at program segment 
points. It returns control to the executive to check if 
a higher priority is waiting for the CPU. If so, the pre­
viously active task is put in the ready state, and the new 
higher priority task is made active (via the dispatcher) . 

4.2 Timer Interrupt 

When the value of the EP timer goes from positive to 
negative, an external interrupt is generated. This interrupt 
is used to signal the start of a new minor cycle. The execu­
tive coding associated with the timer interrupt will first 
reset the timer to interrupt at the start oi the fiext minor 
cycle and then service the mission clock. A check is then made 
to be sure the cyclic sequencer terminated the last minor 
cycle~ If not, a software overload condition exists, and a 
program error condition results. The cyclic sequencer IS TCB 
is now formatted and put at the top of the ready queue, and 
the previously active task is put in the wait state. 

All other tasks awaiting a timed event are checked every 
N mi~or cycles to see if they can now be made ready. The timer 
entry in the TCB contains the time at which the task can be 
put in the ready state. When the system clock equals or exceeds 
this time, the task can be made ready for execution. The value 
of N is a system parameter. Its value must be an integer greater 
than or equal to 1 depending upon the system response time 
desired. 

To expedite checking the time wait queue, TCB entries on 
the queue will be arranged in terms of increasing time at which 
they can be made ready. That is, suppose task A can be ~ut 
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on the ready queue at time x, and taskB at time y. If x<y, 
the TCB for task A must preceed the TCB for B on the time wait 
queue. As a result, it is not necessary to examine the entire 
queue whenever it is serviced every N minor cycles. Checking 
of entries can stop when the timer entries in the TCBs exceed 
the value of the system clock used for comparison. At its 
completion the timer interrupt routine exits to the dispatcher. 
The flowchart for the above algorithm is given in Figure 4.22. 

4.3 Deadlock Detection 

As explained in Chapter 2, the algorithms for resource 
allocation avoid incremental allocations, and hence avoid 
deadlock. However, the SIGNAL and WAIT supervisor calls 
introduce the possibility of deadlocked tasks. For example, 
if task A contains the SVCs, WAIT M and SIGNAL N, in that 
order, it goes into the wait .state until M occurs. Now suppose 
task B contains the SVCs, WAIT N and SIGNAL M. It too goes into 
the wait state, and if a third task does not signal M or N, 
tasks A and B are deadlocked. 

JUdicious program design can, of· course, avoid this problem. 
However, an alternative approach is to periodically check for 
deadlocked tasks. If the time at which each task goes into the 
wait state is stored in its TCB, a low priority task could 
periodically check these times. If a certain time criterion 
was exceeded, the waiting task would be considered deadlocked, 
and error recovery would commence. 
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Figure 4.11 Flowchart of SVC Interrupt Routine 
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Figure 4.19 Flowchart of SIGNAL SVC 

99 



SET RETURN 
BIT TO 1 

RESTORE REGISTERS 

ENABLE INTERRUPTS 
AND EXIT VIA PSW 

SET RETURN 
BIT TO 0 
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Chapter 5 

I/O Management Functions 

5.1 Introduction 

The input/output control function of the executive provides 
supervision of all I/O operations in the system. The design of 
this part of the software reflects the specific requirements of 
the Space Shuttle avionics system. . 

Current Phase B concepts are based on interfacing the 
computer to onboard subsystems via a common data bus of up to 
10 6 bits per second data rate capability. The computer's I/O 
section will be connected to a bus control unit whose function 
is to command the bus system. All subsystems are connected to 
the main bus through a standard interface unit which supplies 
standard digital format of data and commands. The bus system 
will contain redundant paths to achieve the FO/FO/FS require­
ment. The final design of the data bus system is a crucial 
asp~ct of the avionics system design and directly effects the 
computer software. 

Indeed, this part of the executive software design is the 
mos t hardware sensi ti ve. ·1;'le are, of course, directing our 

·design toward the 4 Pi EP computer, and this fact influences 
our algorithms. In particular, we will· make use of the I/O 
interrupt, channel command, and channel test conventions of 
the EP in the design. 
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5.2 Definition of I/O Management Functioni 

There are three basic I/O management functions. These 
are: READ, WRITE, and CHECK. These functions are essentially 
interfaces betvleen application tasks and executive I/O services. 
As with task management services they are executed by means of 
SVCs with parameter lists. Further details about the parameters 
are in Chapter 9. 

a) READ (SVC 13) - The purpose of this SVC is to input data, 
into main memory from the MMU or one of the avionics 
subsystems.' It queues an I/O request to the I/O channel 
and then returns control to the, active task. 

b) WRITE (SVC 14) - This SVC outputs data from main memory 
to the MMU or one of the avionics subsystems. As with 
READ, it queues an I/O request to the I/O channel and 
then returns control to th~ active task. 

In the case of READ or WRITE, the active task may continue 0 

processing and may at some point wait for an I/O operation 
to be completed by executing CHECl<. 

c) CHECK (SVC 15) '- An active task may place itself in the, 
wait state until a particular I/O operation is completed 
by executing CHECK. Should the operation have been 
completed when this SVC is executed, the active task 
continues processing. 

5.3' I/O Queues and Control Blocks 

Since the I/O channel may have several requests pending 
while it is performing some operation, a queue of I/O requests 
is necessary. The elements of this queue are I/O Request 
Blocks linked with a threaded list structure. The format of 
an IORB is shown in Figure 5.1. An IORB contains all-the 
information necessary for the channel to perform the desired 
I/O operation. This information includes: 

a) channel, subchannel and device addresses; 

b) task priority; 

c) number of bytes of data to betran~mitted; 

d) device command; 

e) if device is MMU, a data address; 
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channel, subchannel 
device address 

task number of 
-priority bytes of data 

device command 

data set address on MMU 

core address of data 

CAW -

timer 
option TCB pointer 
bit 

timer storage pointer 

ECB pointer 

threaded list pointer 

threaded list pointer 0 

E(~--------l full word-.--------~> 

Figure 5.1 Format of an IORB 

• 
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f) main memory data address; 

g) CAW; 

h) pointer to the TCB; 

i) a flag to be set if the value of the timer is to be 
returned in a read operation; 

j) a pointer to where this timer is to be stored; 

k) a pointer to the ECB for the I/O operation; 

1) threaded list pointers.' 

.~ . 

IORBs are dynamically created by the executive when a task 
performs an I/O operation. The necessary core storage for the 
IORB is taken from the executive's work area as described in 
Chapter 3. This control block is then placed on the channel's 
queue on a priority basis with its priority equal to the prioriby 
of the active task. Thus, a high priority task's I/O commands 
are executed before those of a low priority task. 

Associated with each READ or WRITE is an ECB located in the 
program module's coding or established in the task's dynamic 
core (in the case of a reentrant module). This ECB is posted 
upon completion of the I/O operation by the I/O interrupt super­
visor. This posting enables CHECK to perform its desired 
function of determining whether a particular I/O command is 
completed. In addition, by binding the ECB to the given I/O 
command, a particular READ or WRITE must be completed before 
this same command can be executed again. However,·should this 
latter condition occur, the READ or WRITE will place the task 
in the wait state until its ECB is posted. Then the command 
can be.executed again. 

5.4 The I/O Supervisor 

The I/O supervisor is an executive routine called when an 
.I/O interrupt occurs. Upon occurrence of the interrupt the 
current PSW is saved and a PSW associated with the interrupt 
becomes the new PSW, as explained in Chapter 2. The new PSW 
gives CPU control to the I/O supervisor. 

The I/O supervisor first checks for successful completion 
of the last I/O operation. If an error occurred, an error 
recovery routine will be called. The error recovery performed 
will be a function of the type of error encountered. System 
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reconfiguration might then be necessary. If the operation was 
successfully completed, any task a\'la{ting the I/O operation is 
put in the ready state. The next pending I/O request is then 
selected, the channel program is formatted; and the channel is 
activated. 

A task issuing a read command has the option of having the 
data time tagged when it is read into core. That is, the value 
of the timer at input time can also be stored'by the I/O super­
visor in core in a location the task specified with the read 
command. This time value is of importance to certain numeric.al 
integration algorithms. The I/O supervisor is responsible for 
returning the timer value to the. task (see Figure 5.2). 

5.5 I/O Service Routin:es 

The algorithms and flowcharts for the three I/O SVCs 
mentioned in section 5.1 will be presented here and in Figs. 5.3-5.5. 

The read and write routines each format the IORB to be 
queued to the channel's list of I/O requests. Queueing is done 
on a priority basis with the priority of the task becoming the 
priority of the IORB. When the MMU is the device to be read 

'or written upon, a secondary storage routine is called to locate 
the data set and convert the physical record requested ~nto an 
actual MMU address, which is put into the IORB. This routine is 
explained in Chapter 7. 

When the channel is not busy, the READ or WRITE SVC takes 
the IORB, formats the channel program, and activates the channel. 
Otherwise, channel activation is only done by the I/O supervisor. 

If data is to be read into core, the core address specified 
must be checked to be sure it is not a protected area. For 
example, an address in the compool is not allowed. This checking 
of protected addresses requires buffering of data whose involve­
ment with I/O operations can cause conflicts between tasks. 
When data in the compool is to be inputed or outputed, the 
requesting task must access the data via the executive and use 
part of its working core as a buffer. No direct I/O operations 

, are allowed in the compool. In addi tion, the physical address 
of the device to be read or written upon is found in a device 
table maintained by the configuration management routines. This 
table is called the Redundant Equipment Table and will be 
described in Chapter 6. Should a device fail and a spare be 
used to replace it, the new device address is entered in this 
table for use by the I/O routines. Thus, any system reconfigura~ 
tion will cause an update of this table. , 
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5.6 Cyclic and Non-Cyclic I/O 

A bus I/O transaction once initiated by the computer is 
independent of the computer software organization. The 
command/response addressed bus may be directed by a computer 
with either an asynchronous or synchronous software structure. 
The main difference will be in the scheduling and dispatching 
of I/O requests, and in the coordination of IjOwith processing. 

In the synchronous structure, I/O requests must be pre­
planned and interleaved with the task processing. I/O requests 
are dispatched in a list every minor cycle and carried out con­
currently with. task processing. A synchronous software structure 
requires a command response bus access method. A polling or 
contention access method would be difficult to run with a 
synchronous structure [8]. However, in an asynchronous structure, 
I/O is scheduled on a demand basis by the processing tasks. 
These I/O requests may also be carried out concurrent with task 
processing, but their scheduling and dispatching are non­
deterministic. 

The major distinction between cyclic and non-cyclic I/O in 
this executive system is that I/O done by the cyclic sequencer 
is table driven via' the CCT. That is, the cyclic sequencer has 
tables of how frequently each I/O operation it performs must 
be done. Because of the high priority of the cyclic sequencer, 
the readhJrite routines \vill insert these requests at the 
beginning of the rORB queue to insure their completion before 
the next minor cycle interrupt. In addition, the percent of 
I/O channel usage by the cyclic sequencer must be limited. 
Sufficient time must be allowed for the channel to complete 
all I/O operations generated by cyclic computations before 
their next execution. 

5.7 Configuration Dependent Features 

The data bus system we are assuming is a high speed data 
transmission device which is primarily used for sampling 
measurements from avionics subsystems and. sending computed 
information back to the subsystems. We are not designing 

. the executive r/o system for_ devices such as printers or tape 
drives to be on the data bus. 

The EP architecture features we have used in structuring 
the I/O management functions of the executive system are the 
following: the I/O interrupt, channel programs consisting of 
CC\vs, the characteristics of the START I/O and TEST I/O 
instructions, and the CSW. 
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computer control of the data bus is accomplished via the 
,·T/O channel. Since the EP allovls no direct BCU control, the 
I/O channel sends commands to the BCU and receives returning 
information. Thus, the channel-BCD interface hardware must 
transform channel commands into a BCU command format. Other 
computers, such as the Hughes 230 , allow more direct BCD 
control than the EP. Appendix A of this volume presents a study 
of operation and control of the data bus with such a computer. 

5.8 I/O Error Correction 

Upon the detection of an I/O error, via the CSW, the 
executive must perform several functions. First, the occur­
rence of the error must be reported in the record of the flight 
kept on the r1MD. Next an indicator is flashed to the pilot, 
and finally a reconfiguration routine is called. The faulty 
equipment must be isolated and an inactive spare switched into 
the configuration to allovl the mission. to continue. 

The BCD hardware can be structured to try an I/O trans­
mission several times when an error is detected before reporting 
the error to the computer. In other words, the error can be made 
invisible to the computer and the executive until the BCU 
determines it cannot correct the error by retransmission of the 
I/O command. At this point, the BCU reports the error to the I/O 
channel, and the channel in turn formats the appropriate CSW. 

A discussion of data bus error control is presented in 
Appendix B. 
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Chapter 6 

Configuration Management 

6.1 Introduct~on 

The topic of configuration management is very extensive, 
covering many aspects of computer and system design. An 
adequate discussion of this topic in relation to the Space 
Shuttle mission must treat the areas of power on initializa­
tioni mission phase initialization, error recovery, switching 
between simplex and redundant modes of operation, and system 
synchronization. The first three of these topics are 
pertinent to the 4 Pi EP configuration in the Avionics 
Systems Integration Laboratory, which wil'l operate in a . 
simplex mode, and hence, these topics will be included in 
the design of this executive system. The latter two topics 
are pertinent to the avionics configurations proposed in 
both Phase B Study Reports and will be treated in this 
report in a tutorial manner. As we will later see, the 
configuration management functions are very dependent upon 
the computer and system architecture assumed. 

6.2 Initiali~ation 

When the EP computer is powered on, initial program 
loading (IPL) must be performed. IPL is initiated by the 
operator pressing a load key. The load is done from an MMU 
with the unit address taken from switch settings on the 
console. The first 24 bytes read are placed in main memory 
locations 0-23. The double words read into locations 8 
and 16 are then used as CCWs for su~sequent I/O operations. 
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When the channel ceases its activity, the CPU fetches the 
double word in location 0 as the PSW and proceeds und~r its 
control. 'l'he first program module loaded and executed 
should be a hardware diagnostic routine to insure the 
computer and subsystems are functioning properly. 

Upon successful completion of the diagnostic checks., 
the mission program for the first phase of flight is 
loaded. All program module loads are absolute since the 
mission programs for each flight phase will be preassembled 
with absolute addresses. At load time the program modules 
and data need merely be put into main memory at their pre­
defined locations. Furthermore, part of the mission program 
will be phase independent in the sense that it will be 
resident in main memory for the entire flight. Examples of 
this part of the program are the executive, part of the 
Compool, and some common subroutines, such as sine and 
cosine. The remainder is phase dependent, changing with 
the beginning of each flight phase. 

The slgnal to begin a new mission phase can be 
initiated by the pilot pressing a button. This signal 
would initiate a priority 0 task which would begin the 
phase transition. On the other hand, this determination 
could also be more automated by allowing the computer to 
determine a phase transition time baseq upon some set of 
predetermined criteria. In either case, phase transition 
involves reloading the phase dependent parts of the 
computer's main memo~y. 

Phase transition begins by inhibiting the cyclic 
sequencer subroutines from executing every minor cycle, 
except for the phase transition subroutine. The background 
tasks can then execute to completion, or the pilot can 
examine the TCE queues via the graphic display systems. He 
can then terminate any background tasks he wishes in order 
to shorten phase transition time. When all background tasks 
have terminated, the phase transition subroutine \"ill issue 
input commands to the lfll~U to load the phase dependent 
program· modules and data for the next phase. An important 
part of this load is overlaying the phase dependent entries 
of the CCT with entries corresponding to the new phase 
dependent ·subroutines. The PHD must also be updated to 
record which program modules are in main memo+y and 
which are not. Now at load completion normal processing 
for the new mission phase can begin. It starts by the 
timer interrupt occurring, and the cyclic sequencer 
beginning execution of the subroutines associated with 
the mission phase. 
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6.3 Failure Detection and Error Recovery 

The area of failure detection in this executive system 
has two main focal points: internal computer failures and 
subsystem failures.The~ former category consists of hardware 
malfunctions and software errors. The latter consists of 
the computer's detecting a malfunctioning -subsystem by 
periodically monitoring the status of each. Whenever a 
failure is detected, a recovery procedure must be invoked. 

6.3.1 Hardware Failures 

A machine check interrupt is generated in the EP 
when a hardware malfunction is detected. The PSW associated 
with the interrupt is given control, and the CPU can then 
execute a diagnostic routine to determine the cause of the 
error. An advantage to this procedure is that the CPU can 
try to restart computation at the point of failure.· However, 
if the diagnostic procedure indicates a persistent machine 
failure, the EP must be powered down so that the faulty 
hardware can be replaced. Since the EP is operating in 
simplex mode, -there is no backup computer to take over the 
computational load. It is almost inconceivable to formulate 
a recovery procedure for the case where a periodically 
executed diagnostic test reveals a consistent machine 
failure, such as an adder error, for which no machine check 
interrupt is generated. Upon detection, the CPU can be 
powered down, but tasks which have been running in this 
environment have probably produced invalid results if this 
failure condition has existed for some time. Furthermore, 
the invalid results may have been propagated through the 
system to an arbitrary degree. Thus, it appears almost 
mandatory to rely only on instantaneous discovery of error 
by the hardware. 

6.3.2 Software Errors 

A. software error can be detected two ways: ei ther 
by theEP hardware generating a program interrupt or by a 
task determining that an error exists. Theprogram 
interrupt enables a new PSW to be given control which will 
invoke a recovery procedure. The standard system recovery 
procedure will be to terminate the task.~ 
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Termination includes releasing dynamic memory and shared data., 
and removing all of the task's I/O requests from the IORB 
queue. On the other hand, a task may specify its own recovery 
procedure to be used instead of the system procedure. The 
new procedure is specified by an SVC executive in the task. 
The SVC supplies the address of the recovery procedure, and 
the executive places this address in the task's TCB. The SVC 
may be executed several times within a task with a different 
procedure address specified each time. The flowcharts for these 
algorithms are given in Figures 6.1 and £.2. Should a task 
determine a software error exists by checks within the coding, 
e.g., by checking an'argument for negativity before taking a' 
square root, the task can specify what corrective action to take 
at that point. It can transfer control to a recovery procedure, 
or it can. immediately terminate. In 'either case, the executive 
does not intervene in the recovery process. 

6.3.2.1 RECOVER SVC. RECOVER (SVC 16) - The purpose of this 
supervisor call is to allow a task to specify what corrective 
action should be taken if a program check interrupt occurs 
during its execution. (See Figure 6.1) 

6.2.3 Subsystem Monitoring 

The subsystem monitoring function consists of periodic 
monitoring of the health of the subsystems which are inter­
faced to the bus. The objectives are to provide an updated 
status of the system and to detect errors and failures. Di­
agnostic routines must be initiated upon ¢letection of an error 
to provide fault isolation to the functional path or redundant 
unit level. In conjunction with fault isolation data must be 
collected periodically to enable trend analysis to be performed. 
as a means of failure prediction. 

The cyclic sequencer will periodically request status 
information from each subsystem. This information is examined 
by a cyclic subroutine to determine if .the subsystems are op­
erating properly. When an error is detected, a fault isolation 
and reconfiguration procedure must be executed. The procedure 
will switch out the faulty equipment and replace it with a 
spare. The spare is chosen from a redundant equipment table 
(RET) maintained in main memory. A typical entry of this table 
is illustrated in Figure 6.3. Each entry contains the logical 
unit number, its physical address and its status. Upon switch­
ing active units the formerly active unit is flagged as faulty 
in the RET, and the new unit is flagged as active. The RET 
is also used by the I/O routines to determine the physical ad­
dresses of logical units for structuring IORBs. 
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6.4 Failures in a Quad-Redundant System 

Phase B efforts to date have indicated that a form of 
voting and/or comparison will be used for detecting failures in 
a quad-redundant computer. The following are significant ques­
tions in the design of error detection techniques and the soft-· 
ware required to support them. 

a} How are the computers synchronized: via software or hard­
ware, and how often? This could be a very difficult 
task for the software alone. 

b) What data is voted or compared to detect the error? 
If the bus outputs are compared for example, identical 
simultaneous input data must be presented to all com­
puters to eliminate effects of small timing differences. 

c) If a comparison mode is recommended, it may be impossible 
to maintain the software in the "active" computer identical 
to that in the redundant computers. 

It must be pointed out that the techniques of voting and 
comparing wiil detect only hardware failures. Software is 
inherently non-redundant, and errors or inadequacies in its 
specifications cannot be detected in this way. 

6.4.1 Error Recovery of Shuttle Computer Hardware 

The problems or recovery, via software, after the de­
tection of a computer failure can be severe. Error detection 
by voting on and/or comparing the outputs of two or more re­
dundant operating computers is favored in the current Phase B 
avionics system approaches. Such techniques can be made less 
difficult to implement if the elements being compared are complete 
units, ~.e., including a complete memory, CPU and I/O controller. A 
detected failure would result in the disability of a complete 
computer and its replacement by a standby. However, if re­
dundancy, error detection and recovery are taken to the level 
of the memory u.ni t, which is then considered as an element of 
the system independent of the processors, the complexity of the 

. reconfiguration problem increases. .The recovery from a mem­
ory module failure requires either the replacement of the 
failed mOdule by an identically loaded copy, or the regener­
ation of its state prior to the hardware failure. This in­
volves·the continuous updating of spares, or an initial load 
with a consequent delay in system operation. 

Failure detection by pure comparison imposes the problem 
of determining, in the event of a comparison failure, which 
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of the processors is defective. An approach might be to ter-' 
minate operations in both computers, run diagnostic routines 
in each, and then reconfigure once the failed computer is . 
identified. However, reconfiguration does pose the following 
questions: 

1) What happens to the time-critical processes that may have 
been active at the time? 

2) If the active computer is the one .that failed, how does 
it hand off control to its ba~kup? 

3)· What is the next step if both computers indicate failure? 

These discussions are not to imply that the problems 
are insoluble, but more to underline the impact of placing the. 
recovery and error detection responsibilities, of redundant 
computer hardware, into the software. During the course of 
this work, careful hardware/software trades must be made to 
identify clearly the impact on software of these functions. 

6.5 Mode Switching 

During critical mission phases the MDC Phase B Study 
[2] calls for all four computers to be processing in a re­
dundant mode of operation. In the event of a failure one of 
them can be powered down while the remaining three continue 
processing. In noncritical mission phases, h6wever, only one 
active computer is necessary. Hence, in a transition from a 
noncritical toa critical mission phase, it is necessary to 
switch from a simplex to a redundant mode of operation. 

In performing this transition the active computer must 
supervise the loading of main memory for the other three com­
puters and synchronize their start up. The data to be loaded 
falls into three categories: phase independent, phase de­
pendent and time critical, such as the mission clock. The 
first two categories can be loaded from the MMU. The third 

. category of data must be loaded from the active computer, but 
this transfer can use the MMU as an intermediate device. 

The transition from simplex to redundant mode should be 
done in the noncritical phase before the full redundant com­
puting power is necessary, i.e. " before the critical phase.begins. 
This allows time for transfer of data and synchronization, 
while the computers are not in a critical mode of operation. 
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6.6 Synchronization 

Several approaches have been taken to solve the problem 
of synchronizing the operations of several redundant computers 
executing the same software in parallel. MDC/TRW [2] rely 
on extra hardvlare (an ex·ternal clock) sending minor cycle 
synchronization pulses to the four executing computers. On 
the other hand, IBM [5] relies on software communication 
between computers to synchronize the start of tasks. The 
particular method chosen depends heavily upon the architec-
tu:t"e of the computing systems. However, some general principles 
do apply. 

Although the computer operates in a highly involved and 
complex fashion, it is deterministic and exact: a given op­
eration will always yield the same result if repeated with the 
same input data. The major problem for computer comparison in 
.a real time environment such as the Shuttle is the synchron- . 
ization of computations which involve time dependent functions 
and input data. Any detection of the computers not being 
synchronized must be treated as an error. . 

Synchronization can be achieved by: 

a) central control of the computer clocks; 

b) careful gating and distribution of input data; 

c) strict identity of hardware and software operation. 

A comparator/voter mechanism adds to the hardware and 
software complexity. It also incurs operational delays, be­
cause time is required: 

a) to wait for synchronization of clock and data; 

b) to perform the comparison; 

c) to decide on the results of comparison; 

d) to take corrective action. 

To minimize overhead, the comparison should, therefore, 
take place at a fairly high level of operation, rather than 
instruction by instruction. Comparing the operation of the 
computers at the point \vhere they influence their environment, 
i.e., at the computer/bus interface, is a logical choice, 
provided that outputs occur frequently enough. 
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Comparison and voting can be done in varying degrees, 
with varying hardware and software complexity: 

a) Majority voting on the output data of three or more 
computers, reducing to comparison with diagnostics when 
less than three good computers remain. The bus receives 
only the data derived from the majority vote. Failure 
isolation and correction is automatic as part of the 
voting process. The complex voter that this requires must 
be sufficiently redundant and possess adequate error 
protection to meet the failure tolerance criterion, 
bacause it is an in-line element in the data bus. 

/ 

b) Majority voting on the indications of health, but not on 
the output data. One computer is selected to be lIactive ll 

and its outputs control the bus directly. The other 
computers are used as standards to provide independent 
checks on the operation of the active computer. A voting 
mechanism decides on the basis of a majority of comparator 

.results whether the active computer is operating correctly. 
It may also determine which of the inactive computers has 
developed a failure (see Figure 6.4 ). In the event of 
a failure of the active computer one of the others is made 
active. The voter mechanism may be considerably simpler 
than the data voter of the previous paragraph, since it 
only operates on binary values; its response time need 
only match. the reconfiguration dynamics, not the ·trans­
mission frequency of the bus. Furthermore, since it is 
not an in-line element of the system, it may not have to 
meet the same stringent failure tolerance requirements. 
Each comparator can be considered a part of a computer's 
I/O section and is thus naturally redu~dant. .In fact, 
the comparison could be performed, by software, internal 
to each computer. 

As a consequence of voting binary, rather than many-
valued byte or word data, the simplicity of the second method 
pays a penalty in the lovler inherent certainty of correctly 
interpreting failure conditions. There is a greater possibility 
for split vote situations to arise with binary variables, and 
a greater likelihood of identical multiple failure~ However, 

·these conditions will only arise when.failures in the compar­
ison and voting logic itself produce erroneous indication of 
computer health; the lower complexity of this voter will aid 
the achievement of the necessary reliability. 

For either voting approach once less than three good 
computers remain, reliance must be placed on self-diagnostic 
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· to determine the faulty computer. No self-diagnostic technique 
can be infallible; a disagreement between two computers could 
yield the following conditions: 

a) One computer determines itself to be faulty, the other 
finds itself healthy. This is the expected result. 

b) Neither computer detects a malfunction. This may be 
because the fault was transient, or becau~e it was a 
border-line case beyond the capability of the disgnostic 
method. 

c) Both computers detect malfunctions. This event is highly 
unlikely in the case of uncorrelated random errors, but 
may easily occur for common mode problems such as physical 
environmental transients (e.g., power supply and thermal 
variations) • 

One insidious possibility for a processing failure that 
may not be trapped by any of the techniques discussed so far 
is that of the software error.· The software in each of the 
redundantly operating computers must, for the purpose of com­
parison and voting, be virtually identical. It is, therefore, 
inherently non-redundant. A software fault will produce data 
which, being identically erroneous, will appear to compare 
correctly. 
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. Chapter 7 

Secondary Storage Management 

7.1 Introduction 

The primary purpose of the executive's secondary storage 
management functions is to supervise data transfer between the 
computer's main memory and the MMU. These routines must insure 
correct MMU accesses by tasks, so that the integrity of data 
transfers is preserved. This chapter will explore the algorithms 
for performing these functions. . 

7.2 Data. Set Structure 

A data set is a collecti~n of records. Data sets may be, 
for example, program modules, flight data, or display skeletons 
for the shuttle's graphic display. units. All data sets on the 
MMU are listed by name and address in the DSD ~ The. length of 
a record is constant throughout a data set and is stored 
in the DSD. . 

When a task reads or writes upon a data set, it must 
operate on complete records. Each read or write operation 
is done for one entire record. Thus, all blocking '3.nd·unblock­
ing operations on data within a record are performed by the 
task and not by the executive. 

7.3 The Secondary Storage Supervisor 

The secondary storage supervisor is called as a subroutine 
of the I/O management routines. One of the functions of the 
secondary storage supervisor is to calculate the MMU data 
addresses referred to in I/O commands. This calculation is 
based upon the data set star£~address, the logical record within 
the data set referred to, and the device geometry. Different 
types of MMUs, such as disks and drums, will each have a different 
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geometry. Hence, a detailed description of calculating a 
physical data addr.ess is very dependent upon the MMU used. 

The number of bytes to be read or written in an I/O 
command will correspond to the physical record length of the 
data set •. This parameter will be dynamically supplied to 
channel programs by the secondary storage supervisor from DSD 
information. 

If each data set is systematically organized so that its 
physical records are contiguous on the MMU and the addresses 
of these records are monotonically increasing as we proceed 
from the beginning to the end of the data set, an important 
error checking feature can easily be achieved. By similarly 
organizing the DSD entries, i.e., in terms of increasing MMU 
addresses, each physical record address calculated by the 
secondary storage supervisor can be checked to be sure it is 
indeed within the specified data set. This check ig done by 
comparing the record address with the beg~nning address of 
the next data set in the DSD. If the former is greater, a'n 
error exists in the logical record number specified in the I/O 
command. A software error condition then results. 

If, in addition, the data set specified is to be written 
upon, the secondary storage manager will check to see if the 
data set is indeed read/write, and if the requesting program 
module has access rights. If these two conditions are not 
true, a software error condition again will result. The 
flowchart for this algorithm is presented in Figure 7.1. 
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Chapter 8 

Executive Design Parameters 

8.1 Introduction 

In the course of developing this exscutive system Several 
design parameters must be left unspecified, e.g., the maximum 
number of ~lements that the system queues should accommodate, 
or the amount of main memory re-servedfor dynamic allocation 
to tasks. The nature of these para~eters makes assigning 
numerical values to them at this time very difficult because they 
are highly dependent upon the characteristics of the application 
software, the computer and system architecture, and the avionics 
subsystems eventually chosen for the'Space Shuttle~ In this 
chapter we will attempt to isolate these parameters and by 
doing so identify those parts of the executive implementation 
that should be parameterized. Parameterization allows for the 
easy regeneration of new versions of this executive as needed, 
each tailored to a specific shuttle mission. 

8.2 Synchronous Versus Asynchronous Control 

The executive software design can support a fully 
synchronous mode of operation in which all application software 
is run in the foreground, or fully asynchronous in which all 
,application software is run in the background. Tasks that 
require'careful synchronization with real time, that are 
highly repetitive, that are short, that are self-contained, 
are obvious candidates for the cyclic foreground. 

Tasks that do not require first order timing specifica­
tions, that have wide variations in timing, that require large 
timing factors for safety, and that are interactive with outside 
events are candidates for the background. The percent of fore­
ground versus background use of the system depends upon the' 
nature of the application tasks to be executed~ , 
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Another parameter dependent upon foreground versus back­
ground use of the system is the length of the minor cycle time 

. interval. NR/IBM [1] recommends 40 msec, while MDC/TRW [2] 
recommends 20 msec. The actual value, of course, depends upon 
the rate at which subsystems must be sampled in the command 
response data bus system recommended. 

Within a minor cycle care must be"exercised so that the 
foreground computations and I/O requests can be accomplished 
in this time interval. Any overlap into the next minor cycle· 
is a system overload condition, which requires corrective 
action. 

8.3 Executive Control Element· Sizes 

The table presented below isa list of each of the exe­
cutive's directory and queue elements and their storage require­
ments. 

Element Main Memory Needed 

Task control block 38 full words 

I/O request block 11 full words 

Event control block 2 full words 

Event descriptor byte 1 1::>yte 

Program module directory 
element 3 full words 

Data set directory element 3 full words 

Dynamic core directory 
element 2 full words 

Cyclic control table 
element 5 full words 

Redundant equipment table 
element 3 full words 

The maximum number of these elements that· each table must 
accommodate should be parameterized. 
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8.4 Task Management Parameters 

1) Task Priority Levels: 6 priority levels were chosen. 
Levels 0-2 serve very specific purposes as previously 
explained. However, levels 3-5 are merely reserved for 
executing background tasks. The number of these 
priority levels can be varied dependent upon background 
task requirements. 

2) Size of Main Memory: while not an executive system 
parameter, the amount of main memory available influences 
the software design. For example, . it determines the maxi­
mum number of tasks that can be concurrently scheduled, the 
amount of dynamic memory available, and the number of soft­
ware events the syst~m can support. 

3) Software Events: these events are predefined; i.e., they 
are not dynamically created during flight. within this 
category of events, some are exclusive, some latched arid 
some unlatched. These characteristics should be para­
meterized. 

4) Executive Resources: the size of the compool and the 
organization of dynamic core should also be parameterized. 
The characteristics of these areas of memory are very. 
dependent upon the number of tasks that can be scheduled 
concurrently and the amount of main memory available. 

5) Maximum Number of Tasks: a limit must be imposed upon the 
maximum number of tasks that can concurrently be scheduled. 
Exceeding this li~itimplies a system overload condition 
exists because more tasks exist than the system has 
resources to allocate. Among these resources are main 
memory to create TCBs, dynamic core, and CPU time. The 
limit imposed on the number of tasks, in turn, determines 
the maximum sizes of the system TCB queues. 

6) Frequency of Servicing the Time wait Queue: servicing 
this queue every minor cycle can impose a high executive 
overhead. However, if the tasks on this queue are serviced 
every N minor cycles, there would be a reduction in over­
head depending upon the value of N chosen. N can be 
parameterized. 

8.5 Supervisor Call Parameters 

The particular parameters associated with each SVC 
are listed in the next chapter. However, it must be pointed 
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out "here that the number of SVC and the services provided by 
each are system parameters. Since the mechanism for using SVCs 
is included in the system design, which ones are implemented 
can be left to the disgression of the- system designer based 
upon application software needs. 
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Chapter 9 

,. Application Task Interfaces 

9.1 Introduction 

As we have already seen the interfaces between .application 
·tasks and the executive· are the SVCs. These represent the 
only means application. tasks have of using the services provided 
by the executive. 

This chapter will list the parameters needed by each of 
the SVCs described in previous chapters. So far 16 SVCs have 
been defined, which meet all the needs of the application tasks 
to run within this system. However, should further executive 
services be necessary, more SVCs can later be defined and easily 
included in the framework of this executive system. 

9.2 SVC Parameters 

SVC Number 

, 1 

2 

3 

4 

SVC Name 

FREEMAIN 

SECURE 

RELEASE 

COpy 
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Parameters to be Supplied 

None 

Compool data addresses; 
address of copy area if a 
copy is necessary; lock 
address of compool areas 
to be locked; type of locks 
to be established. 

If update of compool is to 
be done, addr2.sses of data 
to update compool. 

Compool data addresses; 
address of copy area. 
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5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

LINK 

END 

SCHEDULE 

WAIT 

SIGNAL 

TEST EVENT 

CHANGE CCT 

DISPCHECK 

. READ 

WRITE 

CHECK 

RECOVER 
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Program module ID 

Priority 

None· 

Program module ID; priority; 
scheduling.~onditions: 

a) none, i.e. unconditional, 

b) at a specific time, 

c} after a time interval, 

d) for some software event 
or events. 

Conditions of wait: 

a) until some time, 

b) for some time interval, 

c) for .some event or events. 0 

Event name; 

On, off •. 

Event name: pointer to flag 

Pointer to old CCT entry; 
point to replacement. 

None 

ECB pointer: 

Core address; 

Logical device: 

Data set name; 

Logical record: 

Timer option; pointer to 
location in which timer 
value is to be stored. 

Same as READ except no timer option 

ECB pointer. 

Address of recovery procedure. 
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Appendix A 

Operation and Control of the Data Bus* 

A.I Data Bus Access and Control philosophy 

Since the Shuttle data bus constitutes a central communica­
tions resource shared among mUltiple terminals and a central 
controller, a fundamental feature of its design is the method 
by which it is allocated to a particular communication path. 
The data bus system is essentially a "party line" shared by 
all terminals: when access is granted, the bus is dedicated 
to a single communication path between a transmitting and 
receiving station. 

Selection of the bus access method is a basic decision 
because it constrains the design of both the remote terminal 
and the bus control unit. 

A.I.l Command Response Addressing 

In a command response addressing scheme access to the 
bus is centrally managed by the controller. Under this concept, 
the controller transmits an appropriate command to the terminal 
including: synchronization header, terminal address, function 
to be performed (transmit, receive), data, and parity cOding. 
Upon recognition of its address, the terminal interprets the 
command and begins transmitting or receiving the appropriate 
data. 

Using command res pons e acces S", a terini nal does not i ni ti a te 
any communication unless it is commanded to by the controller. 
Terminals only "speak" when "spoken to". 

*The discussion in Appendix A and Appendix B is taken from an 
"Intermetrics, Inc ~ study on a standard interface definition 
for avionics data bus systems [8]. 
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In contrast to the polling scheme a terminal is not "polled" 
as to whether it wants the bus or not but rather is "commanded" 
to send or receive a message. Command/response addressing is 
similar to a polled system in that a terminal responds only 
when addressed. 

A fundamental characteristic of command response control 
is that the "intelligence" of when, what, and how often to 
communicate is in the controller (i.e., computer software). 
There are consequently no access conflicts to resolve or 
local decisions required. 

A.2 Control and Operation of the Data Bus by the BCU 

Once a particular access method is selected, the communica­
tions procedure established to perform a single I/O transaction 
impacts the design of the bus system elements. The following 
steps, illustrated in Figure A.I, must be taken in order for 
a single .. computer to send and receive data from a set of 
avionics equipment. 

a) In,a command response access concept, the computer directs 
all I/O requests in the system. It indicates along which 
bus line and to which remote terminal the message is routed, 
and if data is requested, where to put it when it has been ' 
obtained. 

b) The BCD must encode the message and transmit it to the 
proper remote station over the selected bus line. 

c) The remote terminal, responds to the command, selects the 
appropriate channel to the LRU, and execu'testhe, appropriate 
functions to obtain the data. 

d) Signal conditioning and conversion take place at the 
terminal, which then encodes and transmits the data back 
to the control unit. 

e) The established error-control scheme is maintained 
throughout the transaction. 

f) The BCD transfers the data to the computer and informs it 
of the completed request or list. 

The details of this transaction influence the bus message 
format,' the functions of bus elements, and communication security. 
The message format and structure must satisfy the data acquisition 
and distribution requirements, without unduly complicating the 
bus hardware design. A level of transmission "security" mlist 
be established to minimize the probability of an undetected 
error, without significantly increasing'the equipment complexity 
or message overhead. The following sections provi~e a general' 
discussion of bus operation and the bus format and structure. 
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A.2.1 Bus Message Format 

In general there are four basic parts to the structure 
of any communication message: the message header and terminator, 
'the address and routing information, function code, and message 
content. 

Message Address 
Header Routing 
Sync 

Function Message 
Code Content 

, 

l
'~ 

LL:J 
The first three parts of the message are associated with the 
communication system. 

A.2.1.1 Message Header and Terminator. Message synchronization 
is required to enable terminals to recognize the start of a 
message and is usually a unique control signal recogni~ed by 
the terminal. It is essential that the synchronization signal 
be different and clearly distinguishable from data to avoid mis­
interpretation. The characteristics of the sync signal will 
depend on the modulation technique selected. It, is usually 
'assigned a pulse width or phase change differe'nt from the 
standard data bit. 

There are four possible sync signals: at the beginning 
and end of the BCU to SIU message and at the beginning and end 
of the SIU to BCU message. However, from a communication point 
of view they are not all necessary. The end of the BCU to 
SIU message can be distinguished by the "idle bus" when the 
BCU stops transmitting; similarly for the end of the SIU to 
BCU message. However, detection of an "idle bus" may cause 
circuit difficulties in either the BCU or SID. The use of 
different sync signals for BCD to SIU messages and SID to BCU 
message rules out inadvertent SID to SIU communications, since 
the SIU need only respond to a BCU sync. 

In any cas'e, the only posi ti ve requirement for any address 
system is that there by a sync signal, clearly distinguishable 
from data, so that each terminal can begin to look for its 
own address in synchronization with the message. The need for 
other sync signals for end of message, accept, knowledge, etc., 
is a function of the communication procedures and the details 
of the implementation. 

A.2.1.2 Address and Routing. The address portion of the 
message identifies the sender and receiver by "to X" "from Y". 
In a centrally controlled system, where there is no terminal­
to-terminal communication, there is no requirement for the 
"from" part of the address. All communications are initiated 
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by the BCU with transmitting/receiving occurring only between 
BCU and one SIU. 

'l'he "to" part of the message identifies the path to the' 
LRU via an SIU address and an EIU address. A separate EIU 
address is necessary when the bus terminal communicates with 
more than one EIU. If the SIU and EIU were combined into a 
single unit, then the address could be combined. 

A.2.l.3 Group Addressing. A group addressing capability would 
be required to send a ;=;ingle message to more than one SIU or 
EIU, as might be required to enable a passive flight recorder 
on the line to receive data intended for other terminals. . 
Group SIU addressing could be an advantage in transmitting the, 
same data to every element of a distributed subsystem, such 
as the individual quads in the RCS system. Group addressing 
would be useful·in the central management of a redundantly 
configured subsystem, particularly if identical commands are 
issued by the computer to every redundant unit. 

Croup addressing, on the bus requires ~he SIU to recognize 
more than one address. However, there is the problem of 
coordinating the return transmissions of echo or data messages. 
Coordination could b~ implemented in several ways: by , 
sequential time slotting of the SIU responses, by ignoring 
the echo in the passive device, or by a contention access 
method. The SIU, EIU address and function codes would need 
to be coded in a way which would have group meaning. The 
tradeoff here is between the added complexity of the SIU and' 
BCU hardware, and the additiqnal software and memory to store 
multiple commands instead of one. A modification to the 
computer/BCU message to provide a routing 'indicator and a list 
of SIUaddresses, which would enable, the BCU to send mUltiple 
messages, could alleviate the computer software burden. 

In summary, however, it is felt that group addressing 
is probably not worth the additional complexity in bus system 
design if, as has been estimated, there is adequate capacity 
in speed to accommodate ,the inefficiences encountered. 

A. 2 .1.4 Function Code. The function code field of the bus 
command specifies the action t'o be taken by the interface unit 
in acquiring or distributing data or signals to the LRU. The 
structure and format of this field is directly impacted by the 
requirements of the electronic interface portion of the remote 
terminal. In order to provide the capability of interfacing 
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the majority of electronic equipment, the following types of 
interfaces would be required: 

a) digital parallel, 

P) digital serial, 

c) analog data, 

d) discrete. 

The function code does not have to b~ in a standardized 
format for all terminals. More parallel digital signals 
may be required for a particular LRU, but less analog. The 
electronic interface itself need not be standardized. The 
function can be decoded and interpreted by specially tailored 
function controllers at the terminal. Alternatively the 
function code could represent the address of a location in a 
control memory which stores special control" sequences within 
the interface unit. There are several ways of organizing 
the function code field, which are discussed in the following 
paragraphs. 

a) Channel.Addressing 

Under this concept, each interface is assigned a channel 
address, and the function code becomes part of the address 
structure. Group addressing is possible only if channel 
addresses are in sequence (e.g., 2 through 6, not 1, 3, 5~ 
etc.). Input or outputs may be implicit in the channel . 
address number, .or specified via a format. The interface 
unit is required to distinguish between input and output 
channel addresses, to determine if data~is to be sent back. 

Channel addressing is the simplest function code to implement 
and allows the greatest flexibility. However, it can be 
very inefficient if channel addresses are not assigned 
in a way which can be effectively utilized. 

b) Functional Classification of Interfaces 

In this method interfaces are functionally classified and 
a code for each class or subclass is defined. For example, 
all communications can be functionally organized into the 
following categories: commands, moding, functional input, 
functional output, and others. The functional categories 
are assigned a coded number and all interfaces are assigned 
to a category. A function code would then involve input 
or output of all data in the corresponding category. Obviously 
"each major category can be further subdivided into subclasses 
by extension o~ the function code field. A significant 
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advantage of this method is that the efficiency of information 
transfer can be much higher if information is generally 
transferred in a block. It can also be useful from the 
computer's point of view, since all data in the "functional 
group" may be desired at the same time (e.g.; all status 
information) . 

c) Memo~ 

The final approach involves a small memory, of a few hundred 
words. The function code specifies a location in the 
memory which contains instructions for data input and output. 
The memory could store channel addresses or sequences 
corresponding to an interface function. A memory with a 
read/write capability could be altered inflight to accommodate 
changes to a subsystem's operation demanded by different 
mission phases. 

A small high speed memory of the read/write or read only 
type described above is well within the state of technology. 
This concept provides the most general and flexible 
capability, although it obviously increases the complexity 
of the EIU. Memory size could be expanded to accornmod'ate 
increase~ in equipment requirements, or to extend the 
terminal capability to provide functions such as limit 
checking of data, or the monitoring of LRU status. Ultimately 
the terminal becomes a small computer capable of providing , 
a local service to the equipment and thereby reducing bus 
traffic. ' ' 

A.3 Operation and Control of the Data Busby ,the Computer 

Viewed from the computer the data bus is a single, 
relatively high speed, asynchronously operable, peripheral I/O 
device, capable of performing data gathering and data distri­
bution. " Under the command response access concept, the computer 
initiates and directs I/O operations on the, data bus. It directs 
I/O by commanding the bus control unit with a set of I/O requests. 
The BCU then controls and synchronizes ,the data bus system to 
carry out these requests. Most likely, the b~s system will be 
mechanized in a way which allows the bus to operate independently 

'of the CPU once an I/O command is issued by the computer. This 
means that the data bus system and computer operate asynchro­
nously. 
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A.3.1 Overview of Computer I/O Operations 

There are two basic approaches to the design of the 
computer software for controlling the activities of the bus. 
The first is the synchronous, fixed I/O method, in which I/O 
control is based on a predetermined execution sequence and a 
fixed time cycl,e~' The second schedules I/O operations on a 
demand basis. The characteristics of the two are summarized 
in the following sections. To a large extent the computer 
executive and I/O control structure can be considered inde­
pendently of the control structure chosen for the bus. 

A. 3 .'1.1 Computer I/O Operation in a Synchronous Structure. 
Fixed sequence structured software requires I/O operations 
to be interleaved with processing. tasks in the minor cycle. 
The inputs required by processing tasks in a minor cycle must 
be available prior ,to execution of the minor cycle. 

The concept requires commanding the ,BCD (or dispatching 
I/O), each minor cycle to input data required for the "next' 
minor cycle", and output data from the "last cycle". I/O 
software for controlling the data bus is operated in each 
minor cycle. For example: 

Bus Inputs for pro- Inputs for pro- Inputs for pro-
Activity cessing during N cessing during N+l cessing during N+2 

Outputs from N-2 Outputs from N-l Outputs from N 

Computer Process inputs Process inputs Process inputs 
Activity from N-2 for from N-l for from N for 

output during N output during N+l output during 

Minor N-l N N+l 
Cycle 

The dispatching of an I/O command list to the BCD can occur at' 
the beginning of each minor cycle. However, it is necessary 
that the list of I/6b~ completed by the bus system prior to 
the start of processing the next minor cycle. Thus, the bus 
will be operating for only a portion of the minor cycle at 
a percentage of its speed. For example, the BCD may be commanded 
for 16 ms of I/O every 20 ms. In this case there would be 4 ms 
idle bus time unless the BCD were commanded again to perform 
some additional I/O on checkout functions. 

At the beginning of each cycle I/O commands are checked 
for errors. If no errors have occurred, the next I/Q list is 
sent to the BCD and computer commences its processing sequence. 
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If ·I/O errors occurred, an error recovery and fault isolation­
routine must be operated and the sequence of processing tasks 
re-scheduled accordingly. Prior to the end of the minor cycle 
I/O scheduling is operated to set up the I/O conunand list for 
the next dispatch· to the BCU. 

Since much of the Shuttle data bus design conducted to date 
has postulated this philosophy of software operation, it will be 
assumed for the description of BCU activities in the following 
sections. 

A.3.1.2 Computer I/O Operations in a Demand Structure. The 
alternative approach to fixed sequence I/O is scheduling I/O 
operations on a demand basis •. Typically, this is accomplished 
in asynchronously controlled software structures as follows: . 

a) when an I/O request is made by the computer software, control 
is transferred to an I/O scheduler, and a command is inserted 
into an I/O queue. 

b) The task requesting the transfer is placed into a "wait 
state" • 

c) Upon availability of the I/O device, the queued I/O requests 
are processed via the dispatcher which uses an algorithm, 
e.g~~ ·first in/first out (FIFO), to defer~ine which I/O 
reque~t to service next. 

d) The I/O requests are sent to the BCU one at a time, or in 
a list for bus execution. 

e) When the I/O request has been serviced, the issuing task 
is informed and allowed to continue. 

This approach is used on large ground-based systems, 
particularly where I/O requirements are not known or impossible 
to predetermine. The demand I/O concept does not appear con- . 
sistent with ·command response or fixed sequence scheduled pro­
cessing tasks. However, if a distinction were made between 
computer input and output requests, output requests because 
of their :(.nd·ependence of processing tasks may lend themselves 

.to demand scheduling. 

A.3.2 Computer to Bus Operations 

An eval·uation of the requirements of the interface between 
the,computer software and BCU is directly dependent on the design 
of the BCU. There are obviously tradeoffs between complexity 
in the BCU hardware design and the computer software. The BCU 
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in an extreme case could become a computer itself, dedicated to 
communications functions, supplying all communication of data 
in and out of the bus system. At the other extreme, it could 
'simply perform time synchronization, transmi tting and 
receiving control, and error coding. Somewhere in the middle, 
the basic BCU capabilities can be extended by providing the 
BCU with a limited set of registers and logic, and a direct 
memory access (DMA) interface to the computer's memory. By 
cycle stealing from the computer, the DMA can supply commands 
and data to the BCU directly from the memory. Commands and 
data are sent to the BCU either by.incorporating a starting 
address and the number of commands into the channel command 
word, or by chai-ning commands and instructing the BCU via the 
operation code in each bus command. A limited capability will 
be assumed for purposes of this discussion, although comments 
are made on areas where an expanded BCU capability may lessen 
the software problems. The basic computer-to-BCU operations 
are the following: 

a) I/O dispatching - involves commanding and controlling the 
BCUwith I/O to be performed. 

b) I/O scheduling - involves scheduling bus commands to be 
issued the next minor cycle. 

c) I/O error processing - checking previous I/O commands 
issued for errors and taking appropriate action. 

A.3.2.1 Dispatching I/O: Computer/Bus Interface. The BCU 
is provided with a list of I/O commands by loading an I/O 
channel with a command word from the computer (see Figure A.2) • 
The channel command word must contain suffi~ient information 
to enable the BCU to execute all the appropriate I/O commands 
in the list. Once this channel is loaded, the computer and 
BCU may operate independently. The channel command word contains 
an address of the first BCU command, and the number of BCUcommands 
to be processed. -(BCU commands may also be linked by address 
chaining.) The BCU commands can be stored in sequential memory 
locations, and the list operated on in sequential order by the 
BCU. Upon compLetion the BCU can be instructed to interrupt 
the processor with an I/O complete signal. (Alternatives, 

.more in line with a "no interrupt" policy, can be devised, > , 

such as a "BCU busy" signal accessible to the computer enabling,. 
it to determine status of the BCU.) In either case, it is necessary 
to coordinate the asynchronous operation of the computer and BCU 
so that the computer is aware of the status of the BCU. 
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A.3.2.2 BCU Command Format. The BCU command format must contain 
instructions for the BCU to execute the computer's I/O request. 
A single command will contain four parts: control information 
for the message, status information, skeleton bus message format, 
data linkage addressing information. . 

BCU I/O Bus command Linkage to 
control 

SIU Function op, code status 
# code data 

a) Control 

The control part of the BCU command contains information 
pertaining to the type of operation requested of the BCU. 
Examples of individual BCU operation codes are Read, 
Write, Skip, Linkage. With fixed I/O tables in the computer's 
memory, a "no-operation" code maybe desirable to skip 
cOInmands at certain times such as unrequired jet on commands 
in a fixed I/O schedule. If the BCU contained memory, and 
was more of a communication processor, this part of the 
BCU command may contain a pre-programmed BCU memory 
address for execution. 

b} Status Bits 

Status bit(s) are required to enable the computer to 
determine if the bus command was completed successfully. 
The computer must be informed of bus·errors so that it 
can reconfigure and reschedule accordingly. An incomplete 
I/O transaction will result in rescheduling the processing 
tasks. An "incomplete I/O" status indication may also 
be· desirable. 

c) Skeleton Data Btis Message 

The skeleton bus message contains the actual bus command 
associated with the I/O transaction. The contents of the 
bus message format were discussed .in Section A.2.1 .• It contain 
contains information which is both fixed and variable 
during the course of the mission. Specifically, the 
terminal addressing will vary with the status. of the avionics 
configuration; a specific communication path must be chosen 
prior to execution of the command. For example, a request 
for data from a redundant subsystem (e.g., radar) requires 
information as to which LRU is active, and which data path 
to use. It is reasonable to assume that configuration 
management is a computer software function, and therefore 
this information must be supplied to the BCU in some form. 
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The degree to which the computer will need to modify the 
bus message format at run time will depend on the extent 
and capability of the BCU. 

In order to establish fixed I/O command tables required 
by the synchronous I/O method it may be useful to define 
a symbolic and "physical" relationship similar to that 
used with tapes, disks, etc., in a conventional facility. 
In this case a symbolic assignment, such as ISSA or ISSS for inertial subsystem active and standby respectively, . 
will be associated with the subsystem. The symbolic 
identification is then associated via configuration tables 
to a physical unit such as ISS#l, ISS#2, etc. Predetermined 
I/O bus commands would be generated using symbolic 
identification and their physical identification determined 
at run time by the computer or by the BCU via the transfer 
tables of the computer. Path identification for a specific 
physical unit (i.e., \vhich SIU/EIU address) must also be 
determined dynamically. 

If each physical unit had a single path, i.e., a unique 
address (BUS#, SIU#, EIU#) the problem is solved. However, 
there is more than 1 path to each unit; the address must 
be determined from the status of buses and SIU's. The 
complexity of this problem will, of course, depend on the 
redundancy interfacing and cross-connections established 
in the system. For example, consider a system configuration 
of a quad-redundant bus, 4 SIU's, and up to 4 EIU's per 
SIU. There could be up to 64 possible paths depending 
on the cross-strapping. 

Physical Unit Bus SIU EIU 

LRU #1 1 A X 
2 B Y 
3 C Z 
4 D W 

If the SIU is an extension of the bus such that SIUA cannot 
be addressed via bus #2, then there are 16 possible paths 
to a specific LRU. If the SIU were cross-strapped to the 
bus and interfaced to a single LRU, then there are only 
4 paths to it. 

The function of inserting addresses could be allocated to· 
the BCU, assuming it had memory, by sending it a table 
of physical equipment codes, and the current path. The 
current path would be updated by the configuration management 
task as configuration switching occurred. 
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d). Data Linkage Addressing 

This part of the bus command identifies the computer 
memory location of the data to be output, or the destination 
of the data input from the bus. If the bus format allows 
block transmission, then the number of words is variable, 
and must be obtained from the bus message itself. 

A.3.2.3 Computer I/O Error Processing. An unsuccessful 
I/O transaction detected by the BCU during bus operations is 
eventually communicated to the computer, using the error 
control bits in the bus command table. If the BCU is commanded 
with a list of I/O requests, an I/O error will not be detected 
until the start of the next minor cycle. At the beginning 
of each minor cycle, the error status of all messages is 
checked. If errors occur, the minor cycle task schedule is 
modified accordingly, and the I/O error recovery procedures 
are initiated. Some of the alternatives· are: 

a) the I/O request could be rescheduled via an alternate 
path. A reconfiguration of equipment may be required. 

b) Fault isolation tasks could be initiated to determine 
what to reconfigure (the BCU, SIU, or subsystem may 
have failed). 

c) The sequence of tasks contained in the following minor 
cycle must be altered, delayed entirely, or allowed to 
continue with "old" data. 

A.3.3 I/O - Processing Memory Conflicts (Buffering and 
Interlocking) 

Independent operation of the bus and computer can result 
in a conflict over the access to common data. This problem 
occurs when a processing task is using data while the bus 
control unit is at the same time attempting to input or output 
the same data for the same memory locations. The problem is 
more likely to occur for data that is sampled at a high 
frequency, when use of the data cannot be easily synchronized. 
It is also more likely to occur in a block of data rather 
than a single word because of the inherent interlock of a single 
word access. For example, attitude angle information from the 
inertial unit may be in use by the digital autopilot task when 
the BCU inputs new values via the DMA. In this c'ase the auto­
pilot is operating on partly new and partly old values. This 
problem can be avoided by several approaches: 
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a) the I/O input and output in.this category can be buffered 
into different memory locations. It may be transferred 
to other locations, or a pointer can be switched between 
two sets of registers for the data item, one set for I/O, 
one for processing. Input data may in any event require 
to be smoothed or compensated prior to use. This is the 
general concept of "double buffering" of input or output. 

b) The data could be interlocked via a control indicator or 
busy bit, during the time either the BCD or the computer is 
using it. However, this would require the BCD to access, 
test, set and release the indicator with a consequent 
increase in its complexity. 

c) I/O can be planned by predetermining and adjusting the 
sequence of I/O commands to avoid the conflict. I/O 
commands can be designed to occur at the opposite end 
of the cycle from the conflicting processing task. This 
approach, although consistent with synchronous bus control 
and I/O philosophies, appears risky due to the inaccurate 
esti6ates of timing. It is, in fact, similar to the 
approach used to solve the memory conflict problem in 
Apollo. This was only partially successful, and it 
could only be verified by extensive testing. 

A.4 Description and Analysis of I/O Transactions 

A.4.l Definition of an "1/0 Transaction" 

An "I/O transaction" is defined as the complete sequence 
of operations performed by the BCD in carrying out a single 
I/O request from the computer. Once the BCD has received and 
interpreted a command from the computer, it synchronizes the 
terminals on the line,transmlts a message to the specified 
terminal and receives the appropriate response. A transaction 
occurs between the BCD and a single terminal. It is the basic 
bus communication activity. It is independent of any other 
transaction over the data bus system. There are two types of 
I/O transactions that are performed by· the data bus: read and 
write transactions. 

a) A read transaction is the sequence of· steps performed by 
the bus system in acquiring data from the avionics equipment. 
It can be termed a "get" corrunand, to sample a specified 
LRD equipment interface. 

b) A write transaction is a sequence of steps to send data 
to an LRD interface. It can be described as either a 
"receive" command, or a "do" command. The SID receives 
the data or command and delivers it to the sp~cified 
equipment interface. 
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A third type of transaction may be required, termed an 
"SIU Event Status Command", in which the BCU transmits a 
command message to an SIU, requesting it to return its event 
status register. 

This transaction enables the computer to determine if 
random events (interrupts) have occurred at LRU's connected 
to a particular SIU station. A rescheduling of processor 
tasks and read/write transactions may be. necessary as a· 
consequence of the event. 

A. 4.2 Functiona.l Description of Bus Transactions 

A discussion of how the bus system performs a transaction 
provides another step towards a specification of the bus/SIU/EIU 
hardware design. In order to describe the operation of the 
bus during a transaction an assumption must be made with regard 
to a specific bus to SIU to EIU configuration, and an error 
control approach. It is important to emphasize that this 
section is intended to describe the functions required at 
each bus element, and not to select a final design. Several 
configurations of a standard bus terminal were considered, but 
a detailed bus command format was only designed for one. 

The example configuration assumes a physical separation 
of SIU and EIU. Each SIU is connected to only 1 bus line and 
may service up to 8 EIU's. Each EIU provides analog and digital 
interfaces to equipments. The other terminal configurations 
assume no logical separation of the SIU and EIU, and are 
cross-strapped to all four buses. 

The error control method·selectedfor analyzing the trans­
action is transmission error detection through vertical and 
horizontal parity, and path verification by aqdress echo. 

A variable number of 8-bit data bytes was selected as 
the basic transmission format. A 3-byte command format is 
selected since 16 bits are considered inadequate to provide 
the range of addressing and function.codes. A minimum of 18 
bits are required for the command word in this configuration 
(7 for SIU address, 3 for EIU address, and an 8 bit function 
code) • 

Figure A.3 illustrates a representative format designed 
around the 3 byte command message with a variable data message. 
The asterisked fields are mandatory. Representative use for 
the other bits in the 3 byte command are discussed below: 
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*a) SIU address (up to 128 since only one terminal address per 
station is required. See Section 3.) 

b) SIU transaction bit. This bit may be. used to command an 
SIU station to send an event status message. This is a 
two byte response from an SIU containing the status of 16 
events or conditions that are assigned among EIU's at a 
terminal. Each is set in an EIU by the occurrence of a 
local random event such as a hand controller movement, 
display input, or fault occurrence. 

*c) EIU address (up to 8 EIU's per SIU) 

d) Error control bits. These are sent in an echo message from 
SIU to BCU when an error occurs associated with the LRU. 
Typical of the possible error .response conditions are: 

1) parity failure at EIU 

2) EIU/LRU busy , 

3) tio re~ponse by EIU 

4) improper channel 

This information could be provided by a special request 
to the SIU. Making it part of the command format simplifies 
SIU/EIU logic. If the information were not provided to 
the Bcd, a "no echo" response for all the above conditions 
will be treated in the same way. 

e) I/O control. This control bit determines whether the 
specified channel address is an input or output operation. 

f) Block. This field of the command message identifies a 
single or multiple channel address group. It is used in 
conjunction with "block size ll to specify the size of the 
message block. 

*g) Channel Address. This specifies the EIU interface by one 
of the. methods listed in Section ,1\.2.1.4. 

h) Block Size. The block size identifies the number of 
channels to be sampled. 
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A.4.3 Description of the Transaction Sequence 

The steps involved in read and write transactions using 
this format are illustrated in Figure A.4 .. A brief description 
of the transaction is as follows. 

a) A read transaction begins when the BCU initiates a sync· 
signal on the bus, followed by transmission of the bus 
command word. The BCU then waits the response . 

. b) All "up" receivers on·the line receive the sync signal. 
Each compares theSIU address in the message with its own 
prewired address. If no match occurs the rest of 
message is ignored, and then each SIU monitors the line 
for the next BCU sync. 

c) If the address check shows agreement, the SIU decodes the 
EIU address and then routes the message to the specified 
EIU over a serial channel*, while checking for horizontal 
parity in each byte. 

d) The SIU awaits the parity check signal from the EIU to 
insure that the message was received properly, and upon 
its receipt, transmits an echo message to the BCU. If th~ 
EIU does not accept the message, the SIU transmits its 
address echo with the appropriate error control bits set 
in the second byte of the command word. 

e) During the time the SIU is transmitting the return echo, 
the EIU decodes the function code (channel address or 
memory), mUltiplexes the requested input channels, 
performs A/D conversion if required, and sends the requested 
data to the SIU. A time lag is incurred by this process, 
termed the LRU latency. It is discussed below. 

f) The SIU verifies parity and continues transmitting the 
data message to the BCU. 

The BCU, after transmitting the initial command, monitors 
the line for the return echo. If no echo is received within 
a fixed time· interval, a transmission error is deemed to have 
.occurred, and the computer is informed via the I/O error control. 

When the BCU receives the echo check, it accepts the 
requested number of data bytes, verifies parity, and transfers 
the data to the requested locations in computer memory, after . 
which the read transaction is completed. . 

* Serial transfer is considered advantageous in minimizing 
the number of interconnections. 
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Write transactions are performed using similar procedures 
as illustrated in Figure A.4. A total time to complete an I/O 
transaction using this conunand structure and error control 
procedures has been estimated for a block of size N bytes to 
be approximately: 

WRITE transaction = (59+ 9N) ~s 

READ transaction = (69 + aN) ~s 

A.4.4 Bus Efficiency and Latency 

A.4.4.l Efficiency. The bus utilization efficiency can be 
computed by the ratio of information bits in a transaction 
to.-the . total number of bi ts in the transaction. If we consider 
the total number of bits in a transaction to be the total 
transaction time (including delays, etc.) times the bus speed 
(assumed to be 1 MBPS) we obtain a worst 'case estimate of bus 
efficiency. Information transfer efficiency estimates for a 
3-byte command format are illustrated in Figure A.S. 

The bus system will operat~ at about 50% efficiency for 
transfers. Of 10 or more bytes. This illustrates the obvious 
fact that to maintain efficiency the software should be 
structured to obtain information from LRD's in blocks. For 
example, status data should be obtained in functionally related 
groups, such as all temperature readings. 

A significant factor is the number of I/O transactions 
that the bus can complete in a minor bus control cycle. Figure 
A.6 contains a plot of the I/O transactions, consisting of a 
given number of data bytes, which can be completed during a 
fixed interval of time. Based on an average block of length 
a data bytes, approximately 70 transactions can be completed 
during a 10 ms interval. It is apparent that even though the 
efficiency of information transfer may be less than 50% in most 
cases, the actual number of transactions completed during an 
interval of time should be adequate to service the expected 
Shuttle I/O requirements. Figure A.6 illustrates that careful 
~cheduling of the bus during any minor cycle will be required, 
particularly if the size of blocks vary. 

A.4.4.2 Subsystem Latency. When a read transaction command 
is received by the EIU, an interval of time is required, called 
the latency time, for the EID to interpret it, to carry out the 
command, and return the data. A delay can he causes by analog­
to-digital conversion, serial/parallel conversions, inherent 
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equipment dynamics, etc. If an I/O request from the computer has 
a latency time exceeding a certain fixed interval, it must be 
organized into two or more transactions. An example is the 
computer request for DME transponder range. The inherent 
characteristic of the DME is that to obtain range to a specific 
point, the DME measures the time a signal takes to traverse 
the distance to that point and back again. The latency time 
required for this operation is {ntolerable in the I/O transaction 
structure described above. This type of transaction must be 
divided into two transactions: one to command the range to be 
read, and the other for reading the range. Coordinating these 
interdependent transactions so that they occur at the right 
time, presents problems to the I/O scheduling software design. 

A form of latency occurs for certain types of block data 
transfer from computer to subsystem. Error control that 
depends on horizontal and vertical parity cannot provide verifi­
cation of the correct receipt of a data block until" the last 
byte has been received (the last byte is, in fact, the vertical 
parity byte). To prevent erroneous data from being "transmitted 
to a subsystem, the complete block must ~e buffered at the 
terminal until it is verified. It is subsequently transmitted 
to the subsystem for which it is intended. However, this 
second transmission may take a considerable time, by bus 
startdards: a 32 byte block will take over 0.25 milliseconds 
at 106 bits per second. This is enough time for several other 
transactions to take place. 

For both kinds of latency, it is essential to allow no 
inadvertent interference with the terminal from other 
transactions. For this reason it is desirable to provide for 
the indication of an EIU/LRU "busy" condition via the status 
bit(s) associated with the SIU echo return. This bit can be 
interrogated by the BCUto provide an I/O error indication to 
the computer whenever another command is addressed to the busy 
terminal. 

A.S I/O Timing Difficulties 

A class of system problems exists in the operation of " a 
time shared bus which is associated with the correlation of 
data and commands with "time". For example: 

a) Correlation of data and absolute time. Several system 
computations demand the acquisition of" data from separate 
subsystems at the same time. For example, a navigation 
measurement combines sensor data with attitude information, 
correlates both to the same absolute time, and updates the 
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navigation data. With a synchronously controlled data 'bus, 
in which sarnplin is performed only at fixed minor cycle 
intervals, time may only be established with a granularity 
of the sampling period. That is, all samples taken during 
one minor cycle are associated. with the same time tag. If 
a finer time reference is reqctir~d it must be provided by 
a local clock. In an asynchronously driven bus system 
a finer reference time quantization may be obtained because 
a specific I/O command may be serviced within approximately 
100 l1S (depending on the I/O queue backlog-) • 

A. rel~ted processing problem arises in the derivation bf a 
rate of change by differencing two measurements. In this 
case a difference in time must be either assumed or computed 
for two measurement samples. For high. frequency samples 
obtained with a synchronously driven bus, the order of the' 
I/O command in the list may be important, particularly if 
a~ixed delta time is .assumed in the calculation. 

b) Local precision timing. Another problem that may arise 
concerns the precision timing of events at geographically 
separate and remote sctbsystems, for example, the timing 
and .coordination of firing commands to the Res jet thrusters. 
From a system point of view, it is desirable to design such 
subsystems to receive a message which' contains not only 
the command but also the firing interval. The impact on 
I/O complexity, bus traffic and response, of separate trans­
missions to command the thruster on and then off could be 
considerable. if 'this type of bus activity predominates. 
The capability for local precision timing may be incorporated 
into the subsystem _or terminal. 
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Appendix B 

Data Bus Error Control 

B.l Introduction 

Since the Shuttle data bus provides the sole communications 
for onboard avionics equipment, an important design requirement 
is that it provide a reliable transfer of information in the 
presence of both permanent and transient failures. Permanent 
failures are caused. by equipment failures and are a direct func­
tion of the simplicity and reliability of the data"bus system 
elements (i.e. BCU, bus, SIU, EIU, and LRU). Transient failures 
are caused by such effects as electromagnetic interference, which 
must be anticipated in the Shuttle environment. The characteristics 
of the interference are anticipated to be predominantly impulsive, 
and primarily caused by coupling to the line of transients and 
noise from switches, motors, relays or other sources. "Burst 
errors" involving mUltiple errors close together are to be expected 
in this environment. A major task of the data bus design will be 
to incorporate an. error control approach which provides "security" 
of co~nunication in the presence of noise 6f largely unknown 
characteristics. 

Several error control techniques have been applied in 
communication systems to reduce the probability of undetected 
errors. The techniques generally attempt to satisfy a proba- . 
bility goal within the system design constraints of cost, weight, 
pOvler, or band\vidth. 

There are two basic objectives of the shuttle data bus . 
error control scheme to be satisfied in the presence of potential 
p~rmanent and transient errors: 

a) To maximize the probability that a transmitted message is 
correctly received by the correct terminal; 

b) To minimize the probability that an incorrect message is 
received. 

Most commonly a particular error detection scheme has been 
coupled with retransmission or forward error correction. Various 
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forms of information coding to obtain an' error detection and/or 
corr~ction capability have been used. Numerous codes have been 
devised to satisfy a particular communication channel error 
probability. Prior to discussing the specific error control 
approach appropriate to the shuttle data bus, a revievl of informa­
tion coding schemes is presented with a discussion of their advan~ 
tages and disadvantages. 

B.2 Information Coding Revie~ Discussion 

B.2.1 Coding Theory 

Coding modifies the message to be transmitted by adding 
redundant bits to the transmitted message. These extra bits are 
examined at the receiving terminal to determine whether an error 
has been introduced and in some cases to locate the error bit 
within the message s~ that it can be corrected. 

The methods of detecting and correcting errors can most 
easily be explained with the aid of the concept of Hanuning 

J distance. Briefly, the Hamming distance between t\.,o strings of 
binary symbols (of equal length) is the number of positions in 
which the symbols in the string are different. Thus, the symbol 
strings 1100 and 1000 are separated by a Hanuning distance of 1, 
while 1100 and 0011 are separated by a distance of 4.' 

In the 'study of codes, one of the parameters ot interest is 
the minimum Hanuning distance betvleen any two valid code words in 
the set (for codes in 'vhich all the code \vords contain the same 
number of bits). Thus, if a code has a minimum Hamming distance 
of two between any code l,Alords, at least two symbols must be 
changed in order to change one valid code word into another valid 
code word. Nith such a code it l,Alould be possible to detect any 
single symbol error, and also many but not all, possible errors 
affecting more than one symbol. 

B.2.2 Single Parity 

A common example of such a code is the single parity 
check, in which the code word is generated from the binary message 
string to be transmitted by adding a single bit such that the 
total TIl,Imber of Ill's II in the code \vord is even (or odd). The 
choice of even or odd parity has no effect on ,the random error 
correcting properties of the code, and is usually made to faci­
litate the detection of certain equipment failures which can 
produce all 1I1'sll or all 1I0'SII in the, received message. 
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· In particular, errors affecting an odd number of bits will be 
detected but errors affecting an even number of bits will not. 
The single parity bit is extensively used for error control,· 
principally because of its simplicity in terms of hardware. It 
is effective against random independent noise. 

B.2.3 Error Correcting Codes 

For some applications, the mere detection of an error is 
not sufficient. It is necessary to determine from the received 
symbol string the nature of the error, or, to be more precise, 
to determine the message that should have been received in the 
absence of noise. This can be achieved by error co~rection codes. 

B. 2.3.1 Hamming Single Error Correcting' Code. The well-known 
Hanuning single error correcting code is an example. This is 
a code having words of length 2m-l where m is any integer. 
There are m parity bits and 2m-l-m information bits. The 
construction of the code word from the message bits will 
be illustrated for m=3. 

Bit Position Bl B2 B3 B4 B· 
5 B6 

Parity-Message P
l 

P 2 Ml P 3 M-2 M 3 

The parity bits are determined from the equations: 

P
l + Ml + M2 + M4 = 0 (or 1) (modulo 2 additions) 

.. 

h 

At the receiver; the three parity equations are checked 

B7 

M4 

to give three error states E3, E21 and El' (A "1" denotes that 
the equation did not check, and a "0" indicates that it did.) 
These three error bits are ordered as a binary number E3E2E11 
called thesyndrom, which equals number of the message bit that 
should be changed. 

165 

INTERMETRICS INCORPORATED' 380 GREENSTREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840 



If two or more errors occur in the·transmission, then either 
the received word passes ·the parity tests and is incorrectly 
accepted by the decoder, or the decoder recognizes that an error 
has occurred but incorrectly identifies the nature of the error 
and incorrectly "corrects" the received message. 

The Hamming codes ·that. ·are discussed here have the interest­
ing property. that every possible received word is within the· 
error correcting distance (in this case a "sphere" with a "radius" 
of a Harflr.ling distance 1) of some valid code word. A code having 
this property is called a perfect code or a close packed code [1]. 
In general, most codes do not have this property. In fact, for 
codes capable of correcting more than one error, only a few such 
codes are known. ..' 

B:2.3.2 Augmented Hanuning Codes. In the case of non-perfect 
codes,- several strategies can be used when the received message 
is not within the specified correcting range of any valid code 
word. On one hand, the distance to each valid code word can 
be 'determined and the nearest valid code word selected for the 
decoder output. If two valid code words are equidistant, 
outside knowledge of the message probabili·ties could be used 
to resolve the tie. At the other extreme, any received message 
not within the assured error correcting range of the code could 
be labelled as a detected but uncorrectable error. 

An example of a code for the latter strategy is the 
augmented Hamming code generated from the Hamming code described 
earlier by adding one additional overall parity bit. This code 
has a minimum distance of four, and, while it is not a perfect 
code, every possible received sequence is within a Hamming distance 
of t\-10 of one or more valid words. This code can be used as a 

. single error correcting, double error detecting code. 

It is worth noting that a particular code can be used in 
a number of different ways, depending on hov-I the decoder is 
mechanized. The extended Hamming code will detect some but not 
all higher order errors (and \vill "correct" some other high 
order errors to produce a wrong message). The same code could 
also be used as a triple error detecting code. In this case, the 
code will also detect many more of the higher order errors. In 
fact,it· will detect any error pattern that does not convert 
the transmitted code word to another 'valid code word. 

It has also been shown that this same code can correct all 
single errors and also all double errors in adjacent bits, provided 
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the parity bit is not in error [19]. Using this decoding procedure 
very few if any higher order errors will be detected. 

B.2.4 Hiqher Order Erroi Correcting Codes· 

Codes are knmvn which have sufficient Hamming distance 
between valid 1t1Ords so that they can correct tvlO or more errors 
in a block. In general, these codes are either trivial (repeti­
tion of each message bit an odd number of· times with majority 
voting, called a binary repetition code), or are too complicated 
to describe in detail here. 

Among the better knOt-m of the constructive (non-random) codes 
are the Reed-Huller codes [20], and the Bose, Chandhuri and 
Hocqueughem (BCH Codes). BCH codes are a generalization of 
Hamming codes for multiple error correction. The correction 
procedures are, however, fairly complicated. The technique for 
BCH error correction consists of solving the. roots of a N degree 
polynomial and a set of N equations, whereN is the number of 
'correctable errors. The complexity of the correction process 
forces BCH codes to be considered only fbr error detection. 
Correction becomes feasible if a processing capability is avail­
able, and a delay in the receipt of the message is acceptable .. 
BCll codes are cyclic codes and have the disadvantage of being 
sensitive to loss of synchronism since shifted cyclic code words 
are 'also valid code words. . 

B.2.5 Burst Errors and Burst Codes 

In many instances where coding has beAn employed to 
detect or correct random errors in a data transmission system, 
the improvement in system performance has not been as great as 
expected. The reason is often that the assumption of additive 
\vhi te gaussian noise, or other mechanisms which generate 
independent bit errors, is not valid. Generally, in a real 
environment the errors occur in groups or bursts. Electro­
magnetic interference of duration longer than one bit trans-
mission time would be an error source with this characteristic. 

A simple example is provided belmv to illustrate such a 
problem. Consider the case of a system operating at 
one million bits per second, and using conerently detected amplitude 
modulation at 15 db signal to noise ratio. We will assume that 
the system is perturbed by gaussian noise so that errors are 
random and independent. The probability of a bit error for this 
condition can be calculated to be one in 1.26 x 10 8 bits. The 
code is a three error correcting code having 23 bits, with 12 of 
them information. The example is a special case known as the 
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Golay code. This code is close packed, and we can, therefore, 
neglect all of the possibilities of detecting higher order errors 
as they always result in a word error. The following observations 
are made: 

a) a single bit error in a word is expected with probability 
23 x 7.9 x 10-9 = 1.8 lAv -7 d 126 x per '!tlor , or once every sec. 

b) a double bit error will occur wi th'_ probabili ty 1.6 x 10-'17 
or once every 47.5 years. 

c} the probability of three or more errors and consequently the 
-probability of an undetected error in a'word is vanishingly 
small. 

If, hOHever, the mechanism'of the disturbance is such that 
for 10 consecutive bits the probability of error is 0.5, there 
will be an average of 5 errors in the burst of ten bits, so error 
bursts will occur every 630 seconds. Since.17 of these bursts 
will have three or le~s errors, and negle6ting the fact th~t 
in some cases a burst laps over the division between two blocks, 
a decoding erior will occur approximately every 25 minutes. 

The description of the burst erroi channel given above is 
obviously a very simple case. Yet it illustrates the signifi-
cant difference in conclusions which can be drawn about the expected 
performance of a control approach. 

Some general observations can be made on the performance 
of error control codes in the pre~ence of bUrst noise. If a 
code with a minimum Hamriling distance of h'is .used as an error 
detecting code, any burst causing up to (1).-1) errors \,1ill be 
detected. For bursts causing more than (h-l) errors, most, but 
not all, will be detected. The exact percentage of errors of 
various lengths that will be passed depends on the code used. 

At the.other extreme, if the burst is sufficiently long 
and severe, so that the received bits have no correlation with 
the transmitted message but are instead'received with a proba­
bility of error of 1/2 for each. bit, then an estimate of the 
probability of passing an error is ag~:d.n. possible. If the coded 
word has n bits, k of which are information, the remaining (n-k) 
bits are redundant. The k information positions in the word can 
be filled by the random process with any bits, and there \V'ill 
then be 'one and only one set of values for.the redundant bits that 
will result in a coded word. The probability of this particular 
set of values being chosen is (1/2)n-k. 

The assumption that a noise burst will result in bits being 
received as "1" or "0" with probability' 1/2 is, however, not always 
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valid. Sometimes a noise burst (or hard\:,are failure) is more 
lik~ly to cause errors in one direction, such as turning Ill's" 
to "O's", than the other direction. Such situations arise from 
the details of the modulation scheme used and the design of the 
hardHare, and are very difficult to evaluate in a general \·lay. 
When possible, it is usually good design practice to design the 
code so that the most likely types of equipment failures will not 
result in a valid code word. Examples of this ~ould be elimina­
tion of all "1' s" and/or all II 0' S II as valid code ",ords. 

, B. 2.6 Fire Codes" and O"ther Burst Codes 

Some special error corretting codes have beeri developed 
which are especially applicable to error correction in channels 
which are subject to burst errors. For a given level of redundancy, 
these codes are able to correct more errors in a burst than would 
be possible if the errors were assumed to be random. These codes 
require long blocks and complicated decoding procedures. Two 
examples of these codes are cited: 

a) Fire Codes 

Fire codes are oriented towards a single burst of errors per 
message. They are inefficient for short blocks, however, 
and are not particularly good for multiple bursts on a single 
block. 

b) Reed-Solomon Codes 

The Reed-Solomon codes are a special case of the generalized 
BCH codes, oriented" toward multiple burs::' error correction. 
They are moderately efficient, and for the same block length 
are similar to BCH codes in decoding complexity. 

B.2.7 Horizontal and vertical Parity Coding 

A coding technique which has been proposed for the Shuttle 
baseline data bus systems is vertical and horizontal parity 

"coding. This coding scheme assigns a single parity bit to each 
byte or word of the message (horizontal parity), and an extra 
byte or word for vertical parity on the preceding bytes. This 
approach detects all odd numbers of errors. An undetected error 
can only occur when each byte and every bit position contains 
an even" number of errors. The scheme fails to detect errors only 
when an even number of errors, equal to or greater than four, occurs 
with the errors paired in rows and columns. The efficiency of 
this approach is moderately high for messages of several bytes, 
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but ,is poor if the number of bytes of data in a message is small. 
For example, the effective information rate of an 8 bit byte, 
of data \vould be computed by 

8N where N is the number of bytes 
9 (N+l) 

It can be seen that for a small, number of data bytes the 
efficiency is 10\-, (i.e. 44% for 1 byte, 59% for 2 bytes). \'lhen 
the block size in'creases, however, the coding scheme becomes more 
efficient (i.e. 79% for 8 bytes, 91% for 32 bytes). Although 
there are more efficient coding techniques, this scheme has a 
major advantage' in that i t p implementa'tion in terms of the 
encoding, decoding and detection logic required in the SIU, EIU, 
and BCU data bus equipment is probably the simplest. 

B.2.8 'Repeated Transmission 

The repeated transmission of a data message over a single 
path is a well-known method for error detection. Detection is 
accomplished by requiring all messages received to be identicai. 
The time diversity, or spacing of transmissions provides inde­
pendence. 

Implementation of thi~ approach as the prime error control 
.approach in'the Shuttle data bus would require the BCU to transmit 
the (uncoded) data to the remote station, and vice versa, t\vO 
or more times. The remote terminal vlOuld require a comparator 
or voter to determine an "acceptable" transmission .. Retransmission 
for error correction is still required for ambiguous voting results. 

The method is relatively simple to implement, but is very 
inefficient/'particularly for block transmission. In order to 
get a Hamming distance four code for three error detection, the 
message must be repeated four times. The same error detecting 
capabili ty can be obtained with many fevler bits using other coding 
schemes. 

B.2.9 Transmission Over Multiple Paths 

The transmission of the message over multiple separate 
paths between a single BCU and single LRU is' similar to the redUn­
dant transmission over a single path. It is true that the 
message is received and verified at the output with less delay 
than is assOciated vTi th the sequential, transmission scheme, but 
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on an overall basis, there is no improvement in the utilization 
rate of the available channel capacity. The n~c~ssity of providing 
parallel channels to allow continued operation in the event of . 
a permanent hardware failure would directly affect the Shuttle 
data bus if it were the prime error control method used. It 
would require independent paths to be maintained for the FS mode 
of operation, increasing the nUTIIDer of buses required for FO/FO/FS. 

The approach ,·,ould increase the complexity of the BCU and 
SIU units, since ~t requires transmissions over mUltiple paths 
to be synchronized, so that comparison or voting could be . 
performed at the receiver, or storage for delayed receipt. 

B.2.l0 Data Feedback/Echo Check 
.. . . 

. In this· method, uncoded data is saved in buffer storage 
at the transmitting element and sent to the receiver. The 
receiving element transmits back the entire message. The trans­
mitting element then performs a bit-by-bit verification of the 
entire message~ Upon verification by the transmitter, the receiv­
ingelement is instructed to use the information on receipt of a 
"verifyw message from the transmitter. 

If an error is detected the transmitting unit can retransmit 
the entire message. If the error was caused by an external noise 
transient, the second transmi~sion should be valid. This method 
.is referred "to as an echo. One of the problems wLth this approach 
is the probability of transmitter's verification being in error. 
An endless chain of echoes may result in requiring the receiver 

·to echo the echo, etc. Complete feedback of·all data requires 
twice the time to transmit a message. Its. main advantage is the 
high degree of error detection it provides. . 

B.3 Detection and Retransmis·sion Vs. Forward Error Correction 

In the. an,alysis of data transmission systems, t:''lO distinct 
cases have been studied. The first case is ForNard Error Correc­
tion, in which the decoder at the receiver studies the received 
message and, if an error is discovered, attempts to deduce the 
correct message from what was actually received. The second case 
is retransmission, in which the decoder checks the received message 
for signs of error, and if an error is detected the decoder informs 
the transmitter. The transmitter can then retransmit the message 
or take whatever other action is indicated • 

. A forward error correction scheme is considered undesirable 
for t,he Shuttle data bus since it would .. require too much complexity 
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at the terminal and BCU, particularly for cOrrecting more than 
l.error in a message. The method preferred is .to combine an error 
detection scheme with retransmission for recovery. 

The advantages of the retransmission approach to error 
recovery are reduced complexity of the decoder and the reduction 
in the probability of an undetected error for a given level of 
coding. 

The classic studies of retransmission systems were reported 
in tvlO papers by Benice & Frey in 1964 [21]. In these papers, 
three cases were considered: 

1. 

2. 
.' 

3. 

Idle RQ - in \-,hich the· transmi tter sends a message and 
then sits idle until the decoder indicates whether a 
retransmission is requested. Presumably, this inciudes 
a "no response" from the terminal. 

Simple RQ - in vlhich messages are sent continuously. 
When an error is detected·and a tetransmissionrequested, 
the source repeats the requested message. .. 

Dual RQ - in which messages are transmitted as in Simple 
RQ, except that the requested message and all subsequent 
messages are repeated. 

The Idle-RQ system appears to be most appropriate to the 
Shuttle data bus, since the bus traffic is expected to consist 
ofa large number of relatively short communications between the 
bus controller and the many terminals along the bus. The advan­
tages of the other schemes are achieved when full duplex trans­
mission systems (simultaneous continuous transmission in both 
directions) is used. The Shuttle data bus is not expected to 
be used in this manner. 

The conditions for which the Idle-RQ scheme becomes a poor 
candid~te are not applicable to the Shuttle data bus. In many 
data transmission systems, the transit time of the channel is 
long compared to the length of a message. Thus, the transmitter 
wastes a lot of time sitting in the idtestate waiting for the 
message OIC or· retransmi t signal. In the Shuttle data bus, the 
round-trip time to the farthest subsystem will only be a few 
microseconds, or bits. . . . 

In the data presented by Benice & Frey, the computed 
probability of an undetected error for the Idle RQ system drops 
rapidly until a certain minimum probability is reached, and then 
no further improvement is possible. This behavior is traced to 
the failure of the retransmission request to be recognized at the 
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transmitter. The minimum error probability is the probability 
that some kind of error \vill be detected in the for\-lard message, 
and then the retral)smission request is changed to a confirmation 
that the message was OK. 

In the other bvo retransmission schemes, the retransmission 
request was encoded as a part of a message moving in the opposite 
direction and was, therefore, protected by the same level of 
coding as the original message. The occurrence of any error in 
a returned message was construed to be a retransmissi6n request 
for the forward message. This attitude results in a small decrease 
in thioughput rate, and a large decreas~ in probability of an 
undetected error. 

In the Idle RQ scheme, Benice and Frey postulated a one bit 
confirmation message for most of the work, and this results in 
a minimum probability of undetected word error of about 5 x 10- 8 
for a bit error probability of 10- 5 and a 511 word message. By 
changing the returned accept retransmit re~uest message to a 
7 bit format, the minimum probability of an undetected error was 
reduced to 5 x 10- 38 . The point to be made here is that the 
retransmit request must be suitably protected if it is not to 
turn out to be the limiting factor in the probability of error' 
in the transmission system. The penalty for this is a slight 
reduction .inthe throughput rate of the system, which does .not 
appear to be a prime consideration in the Shuttle data·bus system. 
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·Appendix C 

Literature Review of Avionics Executive Systems 

The purpose of this appendix is to review several articles 
whose content relat~s to the Space Shuttle executive design. 
The executive features presented in the articles are outlined, 
and those having direct bearing on the Space Shuttle executive 
design are emphasized. 

I. "Improved Centaur Computer Operating System", by S.W. 
Matthews, AlAA Aerospace Computer Systems Conference, 1969[22]. 

The Centaur. executive control allows for a system driven 
entirely by hardware interrupts, or entirely by a programmed 
task scheduler, or a combination of both •. Matthews feels 
it apparent that a software system having hardware interrupts 
·for asynchronousnonperiodic demands of peripheral hardware 
and a programmed task scheduler for semiperiodic tasks, 
would result in the most flexible hardware/software system. 
Such a structure is a desirable feature for an aerospace 
executive system as explained in Chapter 2. 

The task scheduler is entered when a task ends or when 
the real-time interrupt occurs. It operates off a task 
table which is an ordered list containing the status of 
the functional tasks to be executed. The order of the list 
determines task priority since the table entries are 
processed in sequential order. Each ~ntry contains a task 
start time, frequency for cyclic tasks, location of task, 
task interrupt bit, and a special action indicator. 

The interrupt bit indicates whether a task has been 
interrupted by the executive task sche4uler; that is; 
whether a higher priority t~sk received the processor before 
the former task finished execution. The special action 
indicator is used as a flag to indicate the requirement 
of executing a communication or control subroutine. These 
routines can vary with the particular application and 
may be added to or deleted from the system as requirements 
demand. Thus, the system can adapt to its environment 
through special action routines. 
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Tasks, are executed as a function of list posi tion, interrupt 
status, and start time. Any task can interrupt any task 
following it on the list. Thus, the most frequently 
cycled task must occur first on the list. The control 
algorithm is shown in Figure C.l. This method of inter­
rupting a task is undesirable on the Space Shuttle because 
it raises data integrity problems. Whenever a task is 
interrupted, a copy of all the data which this task shares 
with other tasks and which can be modified by other tasks, 
must be saved. The Compool approach is an effective solution 
to this problem. ' 

II. IIASimple Real-Time Executive for an Aerospace Data 
Management System ll

, by Peter Adl~r, MIT Draper Laboratory, 
E-2579, May 1971 [23]. 

The basic functions that this executive performs (as indeed) 
most executives do) are job dispatching, resource allocation, 
.and I/O control. 

The dispatcher works off a priority queue of jobs. It is 
entered when an application program ends and selects the 
highest priority job for execution. Three priorities 
are recommended, each having a queue organized on a FIFO 
basis. Both time and event scheduling are possible in 
the system. A wait queue for jobs awaiting I/O is 
suggested but no dynamics are presented. 

Adler recommends dynamic storage allocation for job 
temporary work areas. Thus, reentrant programming and 
data sharing are possible. To avoid fragm~ntation of 
memory, all available storage is organized into equal 
size blocks with a threaded list structure. Although 
dynamic storage allocation is a desirable shuttle executive 
feature, it is unclear whether all allocated blocks should 
be of equal size. For example, if a task requires several 
contiguous blocks of storage, and if memory is already 
fragmented, contiguity will not be possible. However, 
by having a large sized single block of core ready for 
allocation, the task's request can be granted.' 

In Adler's system, jobs are segmented into 10 msec blocks. 
Every 10 msec a breakpoint allows the job to be suspended 
if a higher priority job is pending. A programmer must 
be'sure all vital data are entered in temporary storage 
before a breakpoint occurs. This mechanism also aids in 
program verification and is a desirable executive feature. 
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Figure C.l Control Module Executive Algorithm [22] 
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To avoid two jobs updating common.data, an interlock bit 
mechanism is proposed. This mechanism could be avoided by 
judicious program segmentation such that the use of shared 
data is completed within one program segment. 

As an alternative to I/O interrupts, Adler suggests I/O 
device polling which eliminates the neeq for hardware 
buffer queues. All I/O is done by one job to avoid 
conflicts. There is then one interrupt to allow initiation 
of the I/O monitor at a fixed frequency. This method of 
I/O handling is advantageous_, fo'r data acquisition. However, 
when data is·outputted, there is no way to know when 
the transmission is done since there is only one fixed 
frequency interrupt. 

Adler avoids mention of synchronous vs. asy-nchronous 
structure. The executive he proposed allows time and event 
scheduling, so it is not fully synchronous. However, jobs 
can also be scheduled cyclically so it is not fully 
asynchronous either. This blend of the two structures 
is a desirable Shuttle feature. 

III. liSTS Software Development (Study Task 5)", MIT Draper 
Laboratory, E-2519, July 1970 [24]. 

MIT lists four criteria for the Space Shuttle executive 
system: . 

1. Efficient resource allocation 

2. Sufficient features incorporated to permit efficient 
programming and running of mission oriented programs. 
These include: 

a. priority execution queue 

b. time execution queue 

c. event execution queue 
\ 

d. temporary storage allocation 

. e. I/O scheduling 

f. I/O execution 
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g. interlocking of shared data 

h. modification of protected data 

3. Fast and simple executive execution, e.g., by avoiding 
looping, indexing, and indirect addressing. 

4. Uncomplicated interfaces between executive and 
application programs. 

In addition, application programs must conform to certain 
criteria. 

1. Modularity: there must be rigid and well-defined 
rules for programs interfacing-with each other. 

2. Use of executive routines to minimize program overhead. 

3. Program segmentation to allow lo~g tasks to be 
safely interrupted. 

4. Temporary storage requests must be done through the 
executive. 

Dynamic storage allocation is also recommended to minimize 
conflicts over dedicated locations and to allow for 
reentrant subroutines. As mentioned above, this is a 
desirable executive feature on the Shuttle. 

These criteria for both the executive and application 
programs support Intermetrics' views on Shuttle programming 
as evidenced in the features of our ~xecutive system design. 
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