
The Programming Language

HAL

- A Specification

Document #MSC-01846

June 1971

Submitted to:

National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas 77058

Prepared under Contract NAS-9-l0542 by .

Intermetrics, Inc.
380 Green Street
Cambridge, Massachusetts 02139

. (NASA-CR-129506) THE
HAL: A SPECIFICATION
Jun. 1971 234 p

I

PROGRAMMING LANGUAGE
(Intermetrics, Inc.)

CSCL 098

G3/08

N73-12191

UncIas
48630

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

...

FOREWORD

This document constitutes the specification for the

programming language, HAL. It was prepared by Intermetrics,

Inc. under Contract NAS-9-l0542 from the Manned Spacecraft

Center of the National Aeronautics and Space Administration.

The Technical Monitor was Mr. Jack Garman/FS5.

The publication of this report does not constitute approval

by the NASA of the findings or the conclusions contained

herein. It is published for the exchange and stimulation

of ideas.

~TERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-18,:0

PREFACE

The HAL Programming Language has been developed by the

staff of Intermetrics, Inc. based on many years of experience

in producing software for aerospace applications.

HAL accomplishes three significant objectives: (1) increased

readability, through the use of a natural two-dimensional mathe­

matical format 1 (2) increased reliability, by providing for

selective recognition of common data and subroutines, and by

incorporating specific data-protect features 1 (3) real-time

control facility, by including a comprehensive set of real-time

control commands and signal conditions. Although HAL is designed

primarily for programming on-board computers, it is general

enough to meet nearly all the needs in the production, verifica­

tion and support of aerospace, and other real-time applications.

The design of HAL exhibits a number of influences, the

greatest being the syntax of PL/l and ALGOL, and the two-dimen­

sional format of MAC/360, a language developed at the M.I.T.

Draper Laboratory. With respect to the latter, Intermetrics

wishes to acknowledge the fundamental contribution, to the

concept and implementation of MAC, made by Dr. J. Halcombe Laning

of the M.I.T. Draper Laboratory.

J!J

June 1971

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 0213~ • (617) 868-1840

TABLE OF CONTENTS

1.0 BRIEF DESCRIPTION OF HAL

1.1 The Basic Characteristics of HAL

HAL LANGUAGE ELEMENTS

syntax Notation

2.1.1 Syntactical Elements

2.1.2 Keywords

2.1.3 vertical Strokes

2.1.4 Braces

2.1.5 Brackets

2.1.6 Three Dots

HAL Character Set

Basic Syntax Elements

1-1

1-1

1-1

1-3

1-4

1-4

2-1

2-1

2-1

2-2

2-2

2-3

2-3

2-3

2-4

2-6

2-6

2-7

2-8

2-8

2-9

2-10

2-10

2-11

2-12

Identifiers

Keywords

Literals

2.3.3.1 Arithmetic Literals

2.3.3.2 Bit String Literals

2.3.3.3 Character String Literals

Special Characters

2.3.4.1 Arithmetic Operators

2.3.4.2 Relational Operators

Source Input/Source Listing

Data Types and Computations

Real-time Control

Program Reliability

2.3.4

2.3.1

2.3.2

2.3.3

1.1.1

1.1. 2

1.1. 3

1.1.4

2.2

2.3

2.0

2.1

i

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

3.1.1 E and S Line Expressions

3.2 HAL Single-Line Format

3.2.1 Implicit Data Declarations

3.3 Comments

3.3.1 Comments on Statement Lines

3.3.2 Comment Lines

3.4 Use of Blanks

4.0 DATA ELEMENTS

4.1 Data Types

4.1.1 Arithmetic Data

4.1.1. 1 Scalar

4.1;1.2 Integer

4.1.1. 3 Vector

4.1.1. 4 Matrix

4.1.2 String Data

4.2 Data Organizations

4.2.1 Arrays

4.2.2 Structures

4.2.2.1 A Non-Qualified Example

4.2.2.2 A Qualified Example

3.0

3.1

2.3.4.3 String & Logical Op·erators

2.3.4.4 Other Operators

2.3.4.5 Separators

2.3.4.6 Built-in Function Names

2.3.4.7 Compiler-Generated Annotation

SOURCE LANGUAGE INPUT

Two-Dimensional Format

2-12

2-13

2-13

2-14

2-14

3-1

3-3

3-4

3-6

3-6

3-7

3-7

3-7

3-8

4-1

4-3

4-3

4-3

4-3

4-3

4-4

4-4

4-5

4-5

4-5

4-6

4-7

ii

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

4.2.2.3 An Aerospace Application

4.3 Attributes

4.3.1 Initialization Attributes

4.3.2 Storage Class Attributes

4.3.3 Memory Optimization Attributes

4.3.4 Dynamic Memory Protection Attributes

4.3.5 Special Attributes

5.0 DATA DECLARATION

5.1 DECLARE Statement

5.1.1 Simple DECLARE Statement

5.1.1.1 <array-spec>

5.1.1.2 <type-spec>

5.1.1.3 <attribute list>

5.1.1.4 Initialization

5.1.1.5 Declaration of Program, Function &
Statement Labels

5.1.1.6 Examples of Simple Declaration
Statements (Floating Point Implementation)

5.1.2 Factored Declaration Statement

5.1.2.1 Examples of Factored Declarations

5.1.3 Structure Declaration Statement

5.1.3.1 <terminal-declaration>

5.1.3.2 <minor-struct-declaration>

5.1. 3. 3 .Examples

5.1.3.4 structure Initialization

iii

4-8

4-10

4-10

4-10

4-11

4-12

4-13

5-1

5-1

5-1

5-2

5-2

5-4

5-5

5-9

5-10

5-11

5-12

5-13

5-14

5-14

5-15

5-16

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

5.2 Notation of Data Types and Organizations

5.2.1 Data Type Notation

5.2.2 Array Notation

5.2.3 structure Notation

5.3 Implicit Declarations

5.4 Alternate DECLARE Form

5.5 DEFAULT Statement

6.0 DATA MANIPULATION

6.1 Expressions

6.1.1 Arithmetic Expressions

6.1.1.1 Integer Expressions

6.1.1.2 Scalar'Expressions

6.1.1.3 Vector Expressions

6.1.1.'4 Matrix Expressions

6.1.2 String Expressions

6.1.2.1 Bit String Expressions

6.1.2.2 Character String Expressions

6.1.3 Array Expressions

6.1.3.1 Two-array Expressions

6.1.3.2 One-Array Expressions

6.1.4 Structure Expressions

6.1.5 Comparison Expressions

6.1.5.1 Bit String Comparisons

6.1.5.2 Arithmetic comparisons

6.1.5.3 Character String Comparisons

6.1.5.4 Array Comparisons

6.1.5.5 Structure Comparisons

iv

5-]

5-]

5-1

5-2

5-2

5-2

5-2

6-1

6-1

6-1

6-2

6-3

6-4

6-5

6-6

6-6

6-7

6-8

6-8

6-9

6-l(

6-l(

6-1]

6-1;

6-1:

6-1:

6-1~

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-184

6.1.6 Precedence Order

6.1.6.1 Group I Arithmetic Operations

6.1. 6.2 Group II Relational and String Operations

6.1.6.3 Further Comments on the Order of
Operat~ons

6.2 Conversions

6.2.1 Implicit Conversions

6.2.1.1 Data Type

6.2.1.2 Arithmetic Literals

6.2.1.3 Precision

6.2.2 Explicit Conversions

6.2.2.1 Single-Argument

6.2.2.2 Multiple-Argument

6.2.2.3 Special Character-To-Bit, Bit-To­
Character Functions

6.2.2.4 Precision

6.2.2.? Summary of Explicit Data-Type Conversions

6.3 Subscripts

6.3.1 Subscripting Data-Types and Arrays of Data-Types

6.3.2 Single-Element Reference

6.3.3 Multiple-Element Partitions

6.3.3.1 The Use of *
6.3.3.2 The "TO" Operator

6.3.3.3 The "AT" Operator

6.3.4 Subscripting Structures

6.3.5 Array Subscripts

6.4 Expression Summary

6-15

6-15

6-16

6-16

6-19

6-19

6-19

6-21

6-21

6-24

6-24

6-30

6-34

6-35

6-38

6-40

6-41

6-41

6-43

6-43

6-43

6-44

6-45

6-47

6-48

v
INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

Procedures and Functions

7.4.1 Procedures

7.4.1.1 PROCEDURE Statement

STATEMENTS

Assignment Statements

7.1.1 Implicit Conversions

7.1.1.1 Type Conversions

7.1.1.2 Precision Conversion

7.1.2 String Assignments

7.1.2.1 Bit Strings

7.1.2.2 "Boolean" Assignments

7.1.2.3 Pseudo-Variable Bit string Assignment

7.1.2.4 Fixed Character strings

7.1.2.5 Varying Character Strings

7.1.3 Array Assignments

Declaration Statements

Control Statements

7.3.1 The GO TO Statement

7.3.2 DO Statements

END Statement

The IF Statement

The NULL Statement

REPLACE Statement

7.0

7.1

7.2

7.3

7.4

7.3.3

7.3.4

7.3.5

7.3.6

7.3.2.1

7.3.2.2

7.3.2.3

7.3.2.4

The Simple DO Statement

DO WHILE Statement

The DO FOR Statement

DO CASE Statement

7-1

7-1

7-3

7-3

7-3

7-4

7-4

7-5

7-5

7-6

7-7

7-8

7-9

7-9

7-9

7-9

7-10

7-10

7-12

7-14

7-15

7-16

7-18

7-18

7-2C

7-2C

7-2C

vi

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1841

7.4.1.2 CALL Statement

7.4.2 Functions

7.4.2.1 FUNCTION Statement

7.4.2.2 Function Reference

7.4.2.3 Parameter Declarations

7.4.2.4 Functions of An Array

7.5 Programs

7.5.1 PROGRAM Statement

7.5.1.1 Program Calls

7.6 RETURN Statement

7.7 CLOSE Statement

8.0 HAL PROGRAM ORGANIZATION

8.1 Program Structure

8.1.1 Scope of Names

8.1.2 Selective Inclusion of Outer Names

8.1.2.1 Inclusion of Structure Names

8.1.2.2 Implicit Declaration of Names

8.1. 3 Scope of Labels

8.1. 4 Scope of the REPLACE Statement

8.1. 5 Scope of the DEFAULT Statement

8.2 The COMPOOL

8.3 The symbolic Library

9.0 REAL TIME CONTROL

9.1 TASK statement

9.1.1 Task Calls

9.2 Scheduling Statements

9.2.1 SCHEDULE Statement

7-22

7-23

7-23

7-25

7-25

7-27

7-29

7-29

7-30

7-31

,.7-32.

8-1

8-1

8-2

8-4

8-5

8-6

8-6

8-9

8-9

8-11

8-12

9-1

9-1

9-2

9-3

9-3

vii

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

9.2.2 WAIT Statement

9.2.3 PRIOCHANGE Statement

9.2.4 TERMINATE Statement

9.3 Events and Signals

9.3.1 Events

9.3.2 SIGNAL Statement

9.4 Dynamic Control of Shared Data

9.4.1 Conflicts in Sharing Data

9.4.2 The Update Block

9.4.2.1 Summary on Entering an Update Block
(LOCKTYPE(l) Variables)

9.4.2.2 Summary on Leaving an Update Block
(LOCKTYPE(l) Variables)

9.4.2.3 Examples

9.4.3 Exclusive Subroutines

9.4.4 Access Rights

9.5 Error Recovery

9.5.1 ON Statement

9.5.2 ON Examples

9.5.3 SEND Statement

10.0 INPUT-OUTPUT

10.1 FILE Statement

10.2 READ Statements

10.2.1 READ Statement

10.2.2 Standard Input Data Formats

10.2.2.1 Standard Arithmetic Data Formats

10.2.2.2 Standard Character Data Format

10.2.2.3 Arrays and Structures

viii

9-6

9-7

9-8

9-9

9-9

9-10

9-13

9-13

9-15

9-17

9-18

9-19

9-20

9-21

9-22

9-22

9-23

9-25

10-1

10-1

10-2

10-3

10-6

10-6

10-7

10-8

INTERMETRICS INCORPORATED' 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

10.2.3 READALL Statement

10.3 WRITE Statement

10.3.1 Standard Output Data Formats

10.3.1.1 Scalars, Vectors, and Matrices

10.3.1.2 Integers and Bit Strings

10.3.1.3 Characters

10.4 Input/Output Manipulations

10.4.1 I/O Functions

10.4.2 Character String Functions

APPENDIX A Built-In Functions on Pseudo Variables

APPENDIX B Standard Defaults

APPENDIX C HAL Keywords

INDEX

ix

10-8

10-10

10-13

10-13

10-13

10-14

10-15

10-15

10-16

A-1

B-1

C-l

1-1

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

,
, '.",

1.0 BRIEF DESCRIPTION OF HAL

HAL is a programming language developed by Intermetrics, Inc.

for aerospace computer applications. It is intended to satisfy

the requirements for both on-board and support software. The

language contains features which provide for real-time control,

vector-matrix and array data handling, and bit and character

string manipulations.

1.1 The Basic Characteristics of HAL

1.1.1 Source Input/Source Listing

A singular feature of HAL is that it accepts source code

in a multi-line format, corresponding to the natural notation

of ordinary algebra. An equation which involves exponents and

subscripts may be written, for example, as

instead of (as in FORTRAN or PL/l)

C(I) = (X*A(J)**2+Y*B(K)**2)**(3./2)

HAL also permits an optional single-line format; its construction

is similar to the example above, with some minor changes; thus

C$I = (X A$J**2+Y B$K**2) **3/2

1-:-1

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

r --- 1."'---'.

HAL source code may 'be input on cards or by data terminal.

The input stream is free-form in that, for the most part, card

or carriage column locations have no meaning; statements are

separated simply by semi-colons.

In an effort to increase program reliability and promote

HAL as a more direct communications medium between specifications

'and code, the HAL program listing is annotated with special

marks. Vectors, matrices and arrays of data are instantly

recognized by bars, stars and brackets. Thus, a vector becomes
..V, a matrix M, and an array CAj. Further, bit strings appear. ,

with a dot, i.e., B and character strings with a comma, c.

With these special marks as aids, the source listing is more

easily understood and serves as an important step toward

self-documentation. In additi~n to data marks, logical para­

graphs, or blocks of code, are automatically indented so that

dependence of one block on another may be seen clearly.

HAL is a higher-order language, designed to allow programmers,

analysts and engineers to communicate with the computer in a

form which approximates natural mathematical expression. Parts

of the English language are combined with standard notation to

provide a tool that readily encourages programming without

demanding computer hardware expertise.

1-2

INTERMETRICS INCORPORATED· 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 8e
';'

2

1.1.2 Data Types and Computations

HAL provides facilities for manipulating a number of

different data types. Arithmetic data may be declared as

scalar, vector, matrix or integer (whole number). Individual

bits may be treated as Boolean quantities or grouped together

in strings. The language permits the user to manipulate

character strings, via special instructions. Organizations of

data may also be constructed; multi-dimensional arrays of any

single type can be formulated, partitioned, and used in expressions.

A hierarchical organization called a structure can be declared,

in which related data of different types may be stored and re-

trieved as a unit or by individual reference.

HAL requires that most data types be described explicitly;

i.e., by declarations which ass~gn a name and specify desired

attributes. However, for data types with default attributes

the programmer can take advantage of HAL's implicit declarations

and let the compiler assign these variables appropriately.

The arithmetic data types together with the appropriate

operators and built-in functions constitute a useful mathematical

subset. HAL can be used directly as a "vector-matrix" language

in implementing large portions of both on-board and support soft­

ware. For example, a simplified equation of motion might appear as

- *-A = B ACC;

G = -MU UNIT(R)/R.R;

VDOT = A + G;

ROOT = V;

1-3

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

3... .L

*where the matrix B transforms acceleration from measurement

to reference coordinates.

By combining data types within expressions and utilizing

both implicit and explicit conversions from one type to another,

HAL may be applied to a wide variety of problems with a powerful

and versatile capability.

1.1.3 Real-time Control

HAL is a real-time control language; that is, certain

defined blocks of code called programs and tasks can be scheduled

based on time or the occurrence of anticipated events. These

events may include external interrupts, specific data conditions,

and programmer-defined software signals. Undesirable or un-

expected events, such as abnormal conditions, may be handled

by instructions which enable the programmer to specify appro-

priate action.

HAL's real-time control features permit the initiation and

scheduling of a number of active tasks. This is a necessity

for any complex onboard space application.

1.1.4 Program Reliability

Program reliability is enhanced when a software system

can create effective isolation for various subsections of code

as well as maintain and control commonly used data. HAL is a

block-oriented language in that a block of code can be established

with locally defined variables that cannot be altered by sections

of program located outside the block. Independent programs

1-4

INTERMETRICS INCORPORATED' 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

can be compiled and run together with communication among the

programs permitted through a centrally managed and highly visible

data pool. For a real-time environment, HAL couples these pre­

cautions with a locking mechanism which can protect, by pro­

grammer directive, a block from being entered, a task from

being initiated, and even an individual variable from being

written into, until the lock is removed.

These measures cannot in themselves ensure total software

reliability but HAL does offer the tools by which many anticipated

problems, especially those prevalent in real-time control, can

be isolated and solved.,

1-5

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

t=~_ 5

2.0 HAL LANGUAGE ELEMENTS

A HAL program consists of statements terminated by semi-

colons (I), groups of associated statements which are treated as

a single statement (do-groups), and blocks of statements organized

as subroutines (e.g. procedures and functions). The statements and/or

blocks must be compiled as a program unit, or as sets of indepen-

dently compilable program units. Communication between programs

is through a common data pool (COMPOOL) within a symbolic library

(see Sec. 8).

HAL is composed OD five basic syntactical elements: identi­

fiers, keywords, literals, special characters, and built-in

functions. Complex syntactical units (i.e., statements) are

constructed from these basic elements using a Common set of

input characters.

2.1 Syntax Notation

The following rules are used throughout this specification

to describe the syntax of the various constructs in HAL.

2.1.1 Syntactical Elements

Syntactical elements represent the defined language

elements which comprise HAL. Elements are denoted by lower

case letters (allowing imbedded hyphens) enclosed by angle

brackets. Some examples are:

2-1

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (Et!7L8Q8-1840

t 6

<digit>

<identifier>

<expression>

<operand>

<label>

2.1.2 Letter-Combinations

A letter-combination is the literal occurrence in the

language of the characters represented. These are made up of upper

case letters and break characters. Some examples are:

DECLARE

INTEGER

AND

OR-

NOT

CALL

PROCEDURE

2.1.3 Vertical Strokes

The vertical stroke I indicates that a choice of syn­

tactical units or other meaningful symbols is to be made; e.g.

<identifier>!<expression>

<name>!<label>

etc.

7
2-2

;NTEf1METRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

2.1.4 Braces

Braces { } are used to denote that a choice of one of the

enclosures must be made. The choices may be stacked vertically,

or horizontally using the vertical stroke. For example,

. MATRIX
DECLARE<name> {VECTOR}

and

DECLARE<name> {MATRIX IVECTOR}

are identical.

2.1.5 Brackets

Brackets [] are used to denote that a choice of one or

none is to be made. For example

[<label>:]END;

specifies that an END may but need not be, labeled; e.g.,

MARK: END;

or just

END;

2.1.6 Three Dots

Three dots denote that the immediately preceding

syntactical unit may occur one or more times in succession; e.g.,

[<digi t>] •••

specifies a sequence of zero or more digits, while

{<digit> }, ••

specifies a sequence of one or more digits.

2-3

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

--- 8

(period)

(comma)

(apos trophe)

(left parenthesis)

(right parenthesis)

(dollar sign)

(break character)

(number sign)

(at sign)

(brackets)

(braces)

)

$

#

@

[]

{}

10

23

2.2 HAL Character Set

HAL's language syntax includes a total of 85 basic characters.

These are:

52 English language alphabetic letters: upper case A

through Z and lower case a through z. (Lower case

is optional and may be used in identifiers when

available.)

digits 0 through 9.

special characters. Each special character or com­

bination of characters has a particular meaning within

the language .syntax. (Their uses are discussed in

Section 2.3.4.) They are:

= (equals sign)

+ (plus sign)

(minus sign)

/ (slash)

* (asterisk)

< (less than symbol)

> (greater than symbol)

I (not symbol; also A)

(OR symbol; also :)

& (ampersand)

(semi-colon)

(colon)

2-4

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840
....

HAL will also accept other characters, restricting'their

use to within comments and character strings. Some examples

are:

%

?

•

(exclamation point)

(percent sign)

(question mark)

(double quotation marks)

2-5

It-jTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE; MASSACHUSETTS 02139 • (617) 868-1840

;··...f..

1.0

2.3 Basic Syntax Elements

2.3.1 Identifiers

An identifier is a name which is assigned by the programmer

to a data element, statement label, etc. Each identifier must

satisfy the following rules:

a. The first character must be a letter.

b. It may contain 0 to 31 additional characters, which may

be any combination of letters, digits, or break characters,

except that it must not end with a break character.

c. It must not be a compiler reserved word.

d. A qualified structure name will contain imbedded

periods and must not end in a period or break character.

A structure name must be 31 characters or less,including

periods.

Examples of valid identifiers:

A

ROS

INTEGRATION ROUTINE

SEXTANT TO NAVIGATION BASE MAT

STATE.COV MATRIX

2-6

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-18.f1,.

Examples of invalid identifiers:

lA begins with digit

SAMPLE ends in a break character

DECLARE reserved word

P~S VEC contains a blank

STATEMENT #200 contains a # character

2.3.2 Keywords

Keywords are words recognized by the compiler to have

standard meanings within the language, and are usually unavailable

for any other use; for example, operators, commands, attributes,

and built-in function names. A list of HAL keywords is presented

in Appendix C. Some examples are:

DECLARE.

INTEGER

AND

VECTOR

SQRT

TRANSPOSE

PRIOCHANGE

2-7

IN.:J;t~ETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

12

2.3.3 Literals

A literal is a group of characters or digits

which expresses its own value. For example, 248 and

12.6 are literals in that the compiler will assign these values

to these "names". Literals are constants during program execution.

There are two types of literals: arithmetic and string.

2.3.3.1 Arithmetic Literals. An arithmetic literal has the

following general format:

<digits>[{EIBIH}<integer>] •••

where

<digits> = one or more decimal digits with an

optional decimal point.

<integer> = signed or unsigned whole number.

GENERAL RULES:

1. E, B, H represent powers of 10, 2, 16 respectively.

(That is, 1.023E+2 = 102.3, 32B-S =1.)

2. No distinction is made by form between scalar and integer

literals. (See Sec. 6.2.1.2 for the use of literals

in expressions.)

3. Arithmetic literals will be interpreted as single or

double precision depending on context and/or programmers'

designation (see Sees. 6.2.1.2, 6.2.1.3, 6.2.2.4).

2-8

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-18~3

EXAMPLES:

0.123E6B-3E10, lE75, ~E-75, 456.789, 3 are all valid

arithmetic literals.

2.3.3.2 Bit String Literals.

are defined:

Four forms of bit string literals

BIN[«repetition»] '<binary digit string>'

OCT[«repetition»] '<octal digit string>'

HEX[«repetition»] '<hexadecimal digit string>'

DEC '<decimal digit string>'

where <repetition> is an unsigned integer and the digit strings are

of length 1 or more. Where <repetition> is provided the resulting
I

string length is equal to <repetition> times the number of digits

in the particular <digit string>. Imbedded blanks are allowed

between the apostrophes, but have no significance.

GENERAL RULES,

1. Binary digit strings may contain only zeros, ones, or blanks.

2. There are 4 special forms of bit string literals:

{T~gE} " BIN'l'

{F~~E} " BIN'O'

EXAMPLES,

Literal Binary Form

TRUE 1

BIN'lOllO' lalla

HEX'ABCD' 1010 lOll 1100 1101

BIN(3)'l' llllllll"

OCT'3777' all 111 III 111

DEC' 42' 10101

2-9
INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

, .
", - ... 14

2.3.3.3 Character String'Literals. Two forms of character

string literals are defined:

I <text>'

CHAR [«repetition»] '<text>'

where <text> may contain any character in the accepted character

set.· If it is desired to have an apostrophe in the re~ulting

literal, it must be represented by an adjacent pair of apostrophes.

The length of the resulting string is equal to the count of the

characters plus the number of apostrophe pairs.

EXAMPLES:

'AB" '.' C', CHAR' 57. 3/C', CHAR(26) 'POP', are all valid character­

literals, having lengths of 5, 6, and 78 respectively.

NOTE: The character pair /* is always

interpreted as an opening~omment

bracket by the compiler, even if

it occurs within a character string

literal.

2.3.4 Special Characters

Special characters or combinations of characters are used

in HAL between or with identifiers as operators, separators,

or other delimiters. These characters and their uses are defined

below and described in more detail in Sec·, 6.

2-10

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840 .

1.5

2.3.4.1 Arithmetic Operators.

Symbol

+

/

(see note belOwt)

*

**

Definition

addition (or prefix plus)

subtraction (or prefix minus)

division (other uses also)

mUltiplication

vector cross product (other uses also)

vector dot product (other uses also)

exponentiation (single-line)

t Note that HAL does not utilize a character as a multiplication

operator. Instead:

(1) a space (or spaces) between two distinct identifiers·

is interpreted as multiplication, or

(2) one of the operands (identifer or expression) must be

enclosed in parentheses, or

(3) the leftmost operand must end with a parenthesis

(function form), e.g., SIN(X).

2-11

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

L__ , 16

2.3.4.2 Relational Operators.

Symbol

""=

<

>

<=

>=

Definition

equal to

not equal to (or A=)

less than

greater than

less than or equal to

greater than or equal to

not greater than (or A»

not less than (or A<)

The word NOT is equivalent to ('IA) and may be applied to the

combinations above.

2.3.4.3 String and Logical Operators.

Symbol

AND (or &)

OR (or I)
NOT '(or"" or A)

CAT (or II or ::)

Definition

Boolean AND

Boolean OR

Boolean NOT

Concatenation

Word operators (e.g., AND) may be substituted for symbols (e.g., &)

except that they do not act as delimiters and must be appropriately

delimited by blanks or otherwise. The use of th~se operators is

described in more detail in Sec. 6.

2-12

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840
. :1,7

\

2.3.4.4 Other Operators .-,

Symbol

@

$

Definition

Indicates repetition within
a list, or the last member
of an array or string.

Scaling operator, or character_
to-bit modifier

Subscript operator (single~

line)

2.3.4.5 Separators. The following characters have meaning

as separators in HAL:

Symbol

comma

semicolon

'colon

apostrophe

,
Definition

(a) separates elements of a list;

(b) separates indices in index
expressions;

(c) separates clauses in declare
statements.

(a) terminates statements;

(b) separates structure indices
from array element indices.

(a) associates a statement label
with the succeeding statement;

(b) separates array element
indices from sub-element indices.

delimits string literal values
(character or bit).

equals = indicates replace in assignment
and DO FOR statements.

2-13

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617)_868-1840

i_. 18

period

/*
*/

()

separates component names of
qualified structures.

encloses comments.

Parentheses have many uses in
the language. They are used
in expressions, for enclosing
lists, function arguments,
data dimension and initializa­
tion values, etc.

2.3.4.6 Built-in Function Names. Built-in function names are

identified by the compiler as names of functions.which are part

of the language. A complete list of these functions appears

in Appendix A. Some examples are:

ABS

TRUNCATE

COS

TAN

INVERSE

UNIT

2.3.4.7 Compiler-Generated Annotation. The following characters

are used by the compiler to annotate various data types as they

appear in the listing. Identical usage is also acceptable in

the input stream.

2-14

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868·1840

Symbol

*

,

[]

{ }

Definition

OVer a name denotes a matrix type.

Over a name denotes a vector type.

Over a name denotes a bit string type.

Over a name denotes a character string
type.

Denotes an array of a particular
data type.

Denotes a structure organization.

2-15

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

20

I
(.. I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

3.0 SOURCE LANGUAGE INPUT

A source language program is presented to the compiler

in the form of statements. Statements can be written in

single line, one-dimensional format, as in FORTRAN,PL/I,

'and most languages, as (for example)

A = B**4 + 2(C+D)**2 ;

Z = R/(A-Z)**2;

C = A**B**2 + E**4;

However, one of the unique features incorporated into HAL, in

order to improve readability and clarity, is that statements

may also be written using a multi-line or two-dimensional

format. That is:

A = B4 + 2 (C+D) 2;

Z 2= R/(A- ~ ;

C
B2

+ E4 •= A •

The multi-line format introduces the added dimension of optional

exponent and subscript lines. These lines are used for the

exponentiating and Subscripting of data on the main line of the

statement. The exponent line is also used for annotation of

variable names in order to indicate data types. Examples of

the multi-line format are:

3-1

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

•i __ 2:1

(1) an assignment statement involving scalar array

elements:

(2) a vector-matrix equation:

(3) a complicated expression in multi-line format in­

volving multiple exponents and multiple indices:

'K5N
Y = 5 BAKERINDEX TABLE

- I,J

The standard source language input is expected to be in

two-dimensional format. The single-line format is provided

as an alternate. If single-line input is used, the compiler

will expand the single-line to multi-line in the output listing.

The definitions and restrictions of the two-dimensional and

single-line formats are described below.

3-2

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

3.1 Two-Dimensional Format

Source language input statements must always have a main

or: "M" line. An "M" line may optionally have associated with

it zero or more "E lines" (exponent lines) and zero or more

"s lines" (subscript lines). An input statement may be thought

of as n continuous parallel streams of characters on the E-, M-,

S lines that comprise the statement. A statement terminator (semi-colon)

is used to terminate the n-line stream. The terminator must be

on the main line and occur after (to the right of) all information

on the main line and any associated E and S lines. Another state-

ment may begin following' the terminator.

The first character of each line of input must be the parti-

cular letter that identifies the line. The various identification

letters recognized, are:

First character of
line

E

M

S

c

D

Meaning

This line contains exponents for the main

line, or another E line below it.

This line is a main linel a blank is

assumed to be an M line.

This line contains subscripts for the

main line or another S line above it.

This line contains comments.

This line contains compiler directives.

3-3

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

-. 23

· Statements and comments may occupy any part of the rest of the

available lines (e.• g. columns 2 through 80 for cards).

Continuation of a statement from one set of E, M, and

S lines to another is permitted. For this purpose, column(s)

2 of the next set is considered equivalent to column(s) 81 of

the current set. A statement may be continued in this manner

until a terminator appears on an M line. The number of E and

S lines in the succeeding set(s) need not be the same as the number

of E and S lines used originally. An M line, however, must always

be present in every set. For example, ..

E 5
E K
M A = B + C
S I

E 2
M + D + E',

which is equivalent to

E 5
E K 2
M A = B + C + D + E;
S I

3.1.1 E and S Line Expressions. The E andS lines contain

exponent and subscript expressions respectively, as well as

certain data type annotations. Labels, terminators, statements,

.and expressions resulting in vectors, matrices, and character

strings are not permitted on E or S lines.

3-4

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE. MASSACHUSETTS 02139 . (617) 868-1840

S lines are evaluated from the lowest S line up to the

main line; E lines are evaluated from the upper-most Eline

down to the main line. Subscripting is always evaluated prior

to exponentiation. Exponent and subscript expressions follow

the same arithmetic rules as for expressions on the main line

(See Section 6).

Examples

M Q = A ; J is an index for C, the result of
S B which is used to index B; the result is
S C then used to index A.
S J

E 2
E 3 9
E 2 2 512
M B = A ; means B=A ; or B = A ;

E
E 2 (D+E)
M A = B +D ;
S 2(TABLE_l +TABLE 2.) K
S J K

Expressions on an E or S line must appear following (to

the right of) the associated identifier on the M line. Also,

M line information cannot appear directly above S line or

below E line expressions. Similar rules apply to E and S

lines associated with other E or S lines.

The number of E and S lines allowed in a statement will

be determined by the compiler implementation.

3-5

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840 .. .' 25·_·
. . _. j,

,.~ \ j',. -- •.

X = A**(B$J)**P;

,

3.2 HAL Single-Line Format

Most HAL statements can be written in a single line, similar

to FORTRAN or PL/l. The single line format requires the use of

the following operators:

** for exponentiation

$ for sUbscripting

EXAMPLES:

Multi-Line Single-Line

1- X = A2 + B2 ; X = A**2 + B**2;

2. X = A + B
I

; X = A$I + B$I;I

If the ~xponent or subscript is an expression(or a mu~tiple

subscript) rather than a simple name or literal, the expression,

in single-line format, must be enclosed in parentheses:

2P
3. X =AJ,K; X = A$(J,K)**(2P)j

4. X = B2 ; X = B$(A$(J,K+3»**2j
AJ ,K+3

When subscripting an exponent or exponentiating a subscript,

it becomes necessary to introduce the single-line format into the

multi-line statement as well; thus
P

5. X = A(B$J) ;

3.2.1 Implicit Data Declarations.

Since data type annotation (-), (*), (.), (,) cannot be

supplied by the programmer over a variable name using a single

line, implicit data declarations (See Sec. 5.3) are not possible

in this format.

3-6

INTERMETRICS INCORPORATED' 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840
~,,~

•

24

.-

3.3 Comments

3.3.1 Comments on Statement Lines.

Comments can be inserted on any E, M, or S line in a

statement. A comment consists of any set of characters enclosed

in the /* */ pair. These are the comment open-and close brackets

respectively. The */ combination cannot be used within a comment

since it would be interpreted as the comment close bracket.

Comments on one M line, initiated by /*, can be continued

to other M lines until terminating bracket*/ appears on a

succeeding M line. Comments initiated on an E or S line must be

terminated before the end of the line (e.g., column 80 for

cards). For example:

E 2 2 2 /*TH~S IS A COMMENT*/
M R MAG = X + Y + Z /*WHICH IS TO
S I I I /*SHOW HOW COMMENTS*/

M CONTINUE */ + ALPHA;

Note that imbedding a comment within a statement is allowed. In

general, comments are permitted wherever blanks are legal.

3.3.2 Comment Lines

Comments may also be introduced by the use of comment

lines. A comment line begins with a C in the first character

position of the input line. The rest of the line contains the

comment made up of characters recognized by the compiler imple­

mentation. Comment lines may only appear between statement line

3-7

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

27
Ii -_.

'.

groups; i.e., they are not permitted within the EMS combination

that comprises a statement line.

EXAMPLE:

E ;Z
M A=B ;
S I

C THIS IS A}, EXA}WLE WHICH
C 2
C SHOWS A = B AND IS
C I
C COMPUTED ONLY WHEN FLAG 1 IS SET

M ~=Y;

3.4 Use of Blanks

Blanks are significant as separators between identifiers,

keywords, and litera,ls. The use of consecutive blanks is syntac-

tically equivalent to the use of only one blank with the following

exceptions:

(1) within EMS combinations when the horizontal position of

items is important relative to the associated data above or

below;

(2) within character strings.

3-8

INTERMETRICS INCORPORATED· 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

4.0 DATA ELEMENTS

HAL classifies data elements by type and permits collections

of types into data organizations. Types are further specified

by data attributes. There are six data types in HAL; integer,

scalar, vector, matrix, and character and bit strings. The type

Classification of an identifier determines the contexts in which

it may be used.

The data types may also be combined into data organizations.

There are two types of organizations in HAL: arrays and structures.

Fig. 4-1 summarizes the relationship among the types and organiza­

tions.

4-1

.INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

., _..

'"(

HA
L

Da
ta

Ty
pe

s
an

d
O

rg
an

iza
tio

ns

TY
pe

s
O

rg
an

iz
at

io
ns

--

St
ru

ct
ur

e

I
Co

m
bi

na
tio

ns
of

Da
ta

-T
yp

es

In
di

vi
du

al
Da

ta
-T

yp
e

Ch
ar

ac
te

r

A
rit

hm
et

ic

... I '"

l.:
:!

F
ig

u
re

4
-1

"

~

4.1 Data Types

4.1.1 Arithmetic Data

An arithmetic data item is one that has a numeric value

and may be used in an arithmetic expression. There are four

arithmetic types in HAL: scalar, integer, vector, and matrix.

4.1.1.1 Scalar. Scalar variables are numbers represented in a

fixed or floating point form. The choice of form will depend on

the target machine for a particular compiler implementation of

the language (i.e., a compiler will implement either fixed or,
floating point, but not both). Fixed and floating point are

alternate forms of scalars and are not mixed or used together.

4.1.1.2 Integer. An integer is a signed number containing

:; .,

only integral values - a whole number.

4.1.1.3 Vector. A vector corresponds to its normal mathematical

definition, having magnitude and direction and represented by

n-components within a coordinate system. The individual components

of a vect.or item are scalars, by definition. Vectors obey the

standard rules of vector arithmetic.

4-3

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868:1840

31.

4.1.1.4 Matrix. A matrix corresponds to its normal mathematical

definition, being a rectangular array of m rows and n columns

of scal~r elements. A matrix obeys the standard rules of matrix

arithmetic.

4'.1.2 String Data

There are two types of strings in HAL: character strings

and bit strings. String data has a length property. A bit string

of length one is a Boolean variable which may take on values of

only 1 or O. A bit string of length n can be considered as the

concatenation (joining tpgether) of n bit strings of length one. A

character string may have fixed or varying length. A fixed length char­

acter string of~size n always contains n characters. A varying character

string is, one whose length is dynamically controlled at execution

time. A varying character string requires specification of

its maximum size.

EXAMPLE

'ABeD? HELPl' is a character string of

length 11, including the spaCe between? and

H.

4-4

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

'....

4.2 Data Organizations

A data organization is a collection of data items. There

are two kinds of data organizations in HAL: arrays and structures.

4.2.1. Arrays

An array is an ordered collection of elements, known by

one name, all of which have the same data type and attributes.

For example, every vector in an array of vectors must have the

same number of components; every character string in an array

of varying character strings must have identical maximum length. The

maximum number of dimensions of an array is implementation dependent.

4.2.2 Structures

A structure is a hierarchical organization of data which

may contain other structures, arrays, or individual data types.

A structure need not consist of identical data elements.

Briefly, when a structure name is declared it is immediately

followed by a list of the names and'attributes of the elements

within it. Each name is preceded by a level number (non-zero

integer literal) which identifies the level of organization. All

elements having the same level number are at the same level of

organization.

The outermost structure is called the major structure,and

is always at level one; all contained structures are minor struc­

tures. All elements of the structure must be at a level 'greater

than one. If a minor structure is at the nth level,

4-5

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

'" -..-. 33

its elements must be specified at the n+l level. ·Each item in

a structure is given a name. If the name of a structure is

referenced, the entire structure, i.e., all elements, are addressed.

If the name of an element which is a minor structure is referenced,

all of the elements of that minor structure are addressed.

If any of the names assigned to items of a major structure

are not unique within a name scope (See Sec. 8), the item must be

referred to by the major structure name, the name of the minor

structure in.which the element is contained, and the name of the

element. In referencing, all names of the hierarchy are separated

by periods and the entire compound or qualified name becomes the

element name: This type of structure, which requires all element

names to be fully qualified, is called a qualified structure,

and is specified with the attribute QUALIFIED in its declaration.

Multiple copies of major or minor structures (i.e., arrays of

structures) are permitted; these are limited to one-dimensional

arrays.

4.2.2.1 A Non-Qualified Example. One exa~ple of a hierarchical

organization is the table of contents of a book. The name of a

structure might be the name of the book and would contain as

elements other structures which would be chapters in the book. Each

chapter, as a minor structure could contain other elements which

would be the sections of the chapter, and so forth. Thus,

4-6

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

34

DECLARE 1 BOOK NONQUALIFIED

2 CHAPTER_ONE,

3 INTRODUCTION,

3 THEORY,

3 SUMMARY,

2 CHAPTER_TWO,

3 BACKGROUND,

3 DEVELOPMENT,

2 CHAPTER_THREE,

3 ORIENTATION,

3 FUNCTIONAL SPECIFICATION,
I -

2 CHAPTER_FOUR,

3 CONCLUSIONS,

3 FUTURE_PLANS;

4.2.2.2 A Qualified Example. An example of a structure which

must be qualified is:

DECLARE 1 A QUALIFIED,

2 B,

2 C,

3 A,

3 B,

2 D,

3 B,

3 C;

4-7

INTERMETRICS INCORPORATED· 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

35

Since the element names are not unique within the structure, each

element must have a qualified name. The qualified names are:

A is the major structure

A.B is element B (at level 2)

A.C is minor structure C

A.C.A is element A of minor structure C

A.C.B is element B of minor structure C

A.D is minor structure D

A.D.B is element B of minor structure D

A.D.C is element C of minor structure D

4.2.2.3 An Aerospace Application. In a space application a

structure can be used to collect and name sets of associated data

elements of different types. Structure commands permit move­

ment of data as well as other limited operations. For example,

coasting flight navigation data can be grouped in a

NAVIGATION DATA FILE structure; i.e.,

DECLARE,

1 NAVIGATION~DATA_FILE,

2 STATE_VECTOR,

3 TIME,

3 POSITION VECTOR,

3 VELOCITY VECTOR,

2 W_MATRIX MATRIX,

2 STATE_CONTROL_FLAGS,

4-8

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

36

,

3 CENTRAL_BODY_FLAG,BIT,

3 PERTURBATION_FLAG BIT,

3 MISSION_STATUS_FLAGS,

4 RENDEZVOUS_FLAG BIT,

4 ORBITAL_FLAG BIT,

4 IN_TRANSIT_FLAG BIT;

4-9

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

3'7

4.3 Attributes

Attributes are used in conjunction with type and organization

to specify to the compiler other characteristics associated with

a type or organization name. There are five classes of attributes

in HAL:

(1) Initialization

(2) Storage class

(3) Memory optimization

(4) Dynamic memory protection

(5) Special

4.3.1 Initialization Attributes

There are two forms of initialization attributes, INITIAL

and CONSTANT. Both forms provide a technique which enables the

programmer to preset values (numeric and string) into data elements.

The use of the CONSTANT attribute will additionally make it illegal

to assign new values to the identifier; i.e., to "write" into it.

When either form is used as an attribute the other form may not

be used. Both initialization attributes may be used with all

data types (and arrays of data types). Neither can be used with

major or minor structure names, but may be applied to the data

elements of a structure.

4.3.2 Storage Class Attributes

Storage class attributes are used to specify storage alloca­

tion characteristics of data elements. There are two storage

4-10

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

.•.. ~, 38

class attributes: STATIC and AUTOMATIC. STATIC specifies that

.storage for the data element or organization is to be allocated

when the program containing the data is loaded and initiated, and

is not to be released until the program execution has been

completed or terminated.

AUTOMATIC specifies that storage is to be allocated upon

entry into the procedure, function, or task block containing the declar­

atlon. Al]';r:OW\T;J;.C.i5-torilge:la .reJ;.ea,,,ed ul?on exit,.;f;romthe block. _ Since a

program may contain procedures, functions, and tasks, data with

AUTOMATIC attpibutes require storage only while the specific

procedure, function, or task is active~

4.3.3 Memory Optimization Attributes

These attributes are used to control the storage assign­

ment and packing of data elements and organizations. There are

two attributes: DENSE and ALIGNED. DENSE means that the amount

of memory space occupied by the variable is more important than

the time required to access it. Consequently, the compiler will

attempt to conserve storage space by packing items. The result

of packing by the compiler is dependent on the target computer

characteristics and the compiler implementation.

ALIGNED means that the time required to access this data

is more important than the space it occupies. This attribute

* See Sees. 7 and 9 for definitions of program, procedure,

function, and task.

4-11

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

39

will cause the compiler to store the data for efficient

access.

4.3.4 Dynamic Memory Protection Attributes

A real time· system application may require the coexistence

of many processes .and the use of common data elements. The control

techniques necessary to share these common data elements must

include mechanisms for:

a. blocking other users from reading data elements, or

organizations, while their current values are being

changed (written).

b. preventing changes (writing) when data is being used

(read) •

For example, one job may be in ~he middle of using a matrix when

it is interrupted by another job which updates the matrix. When

the first job was interrupted it had used part of the 'old' matrix

values, and when it continues it will be using the updated matrix.

This problem could, of course, apply to any data element or

organization which is shared among jobs in a real time system.

HAL provides the sharing control attribute LOCKTYPE

which specifies the type of sharing control that is to be used.

The LOCKTYPE attribute causes the compiler to perform checking on

all programs which use the specified variable to help insure that

the proper locking statements have been employed by the programmer.

4-12

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

40

The LOCKTYPE attribute is only useful for STATIC storage

and may be included in declarations at the program and COMPOOL*

levels. If this attribute is not assigned to a variable, locking

statements cannot be used (i.e., there will be no controlled

sharing).

The defined locktypes are:

LOCKTYPE (1) This class of sharing allows the data

to be read by any number of users.

Read accesses will wait for writes.

Write accesses will wait for any writes

and for all previously initiated reads

to be completed prior to writing.

LOCKTYPE (2) This type of sharing requires that

write accesses wait for other writes.

Read accesses can occur at any time.

4.3.5 special Attributes

There are some attributes which can only be applied to

certain data types or organizations. These are as follows:

(1) QUALIFIED and NONQUALIFIED are attributes which can only

be applied to major structures. The attribute specifies whether

the element names within that structure will always be qualified,

or never qualified. If the NONQUALIFIED attribute is used, all

* See Section 8

4-13

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

41.

·

the names within the structure must follow the rules that apply

to unstructured identifiers. If the QUALIFIED attribute is used,

then item names within the structure may be duplicated elsewhere,

and all references to structure elements must be fully qualified.

(2) VARYING is an attribute which can only be applied to charac­

ter strings. It signifies that the character .string length may

change at execution time. The maximum size of the string must be

declared when VARYING is specified.

(3) The PRECISION attribute is applied to fixed and floating

point scalars, vectors, and matrices, and arrays of these data

types. It specifies the desired minimum precision of the numerical

representatiqn of data within the computer.

(4) The dimension (or length) attribute is applied to vec-

tors, matrices, arrays; bit strings, fixed and varying character strings.

It specifies the size and shape of vectors, matrices and arrays,

the length of bit and fixed character strings, and the maximum

length of varying character strings.

4-14

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

42

5.0 DATA DECLARATION

5.1 DECLARE Statement

The DECLARE statement is a non-executable statement used to

specify explicitly the data organization, type, and attributes

of identifiers. There are three forms of the DECLARE statements:

1. Simple DECLARE statement

2. Factored DECLARE statement

3. Structure DECLARE statement

5.1.1 Simple DECLARE Statement

The simple DECLARE statement is used to specify individually,
the organization, type and attributes of one or more identifiers.

GENERAL FORMAT:

DECLARE<name><specifications>[,<name><specifications>] ••• ;

where <specifications> =

{[<array-spec;] [<type-spec>] [<attribute-list>] I

{PROGRAMILABELIFUNCTION[<type-spec>]}}

When no <specifications> are included, the compiler assigns

default* type and attributes.

'* HAL standard defaults are presented in Appendix B. (Also

see Sec. 5.5, DEFAULT Statement.)

5-1

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

"
43

5.1.1.1 <array-spec>~ An <array-spec> is written as follows:

ARRAY «dimension-list»

The array <dimension-list> can specify multiple dimensions

in the form <m>[,<m>l ••• where <m> must bean unsigned integer,

literal greater than one; e.g., ARRAY (2,3) specifies a 2x3

array.

*5.1.1.2 <type-spec>. A <type-spec> is written in one of the' follow-

ing forms:

INTEGER

SCALAR

VECTOR

MATRIX

BIT

CHARACTER

CHARACTER

[PRECISION «p>[,<q>l)l

[(<length»1 [PRECISION «p> [, <q> 1)1

[«rows><cols»l [PP.ECISION «p> [, <q> 1)1

[(<length» 1

[«length» 1

«max-length» VARYING

GENERAL RULES:

1. The <rows> and <cols> in the matrix declaration must be unsigned

integer literals greater than one; they define the dimensions

of the matrix.

2. For vectors, the <length> defines the vector dimension (i.e., the

number of scalar components) and must be an unsigned integer

literal greater than one. For bit and character strings, the <length,

define the number of bits or characters in the object string

and must be unsigned integer literals. For varying character

See Sec.' 5.4 for alternate form of specifying <array-spec> and
<type-spec>.*

5-2
INTERMETRI'CSINCORPORATED • 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

44

strings, the <max-length> defines the maximum number

of characters that may be assigned to that character variable.

3. The form PRECISION (~p> [,<q>]) defines the desired fixed or float­

ing point precision of scalars, vectors and matrices.

(a) For floating point, <p> must be an unsigned integer

literal which specifies the desired minimum number of

significant decimal digits.

(b) For fixed point, «p>,<q» are integer literals such· that

2<P> > maximum absolute value to be represented

«p> being the number of integer bits)

2-<q>
~ minimum absolute value to be represented

«q> being the number of fractional bits)

and <p>+<q> ~ the minimum number of bits necessary to

express the desired range of the scalar.

(c) In general, the compiler will assign either a single

word or a double word for scalars. For floating point,

a double word will be assigned if <p> is greater than the

number of decimal digits that can be represented in

single precision in a particular machine.

For fixed point, a double word will be assigned

if <p>+<q> + the number of sign bi ts exceeds the number of

bits for single precision representation in a particular machine.

(d) Examples:

(i) PRECISION (5, 3) requires a minimum of 8 bits to

accommodate a magnitude range of .125 ~ magnitude

5-3

IN:~~METRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 ·(617) 81~:S40

< 32. In this case, presuming a word length L>8,

(not: including sig~bits) the compiler would assign

5 integer bits, and a number of fractional bits equal to

L - -5 - the number of sign bits.

(ii) PRECISION(-5,39) requires a minimum of 34 bits to
-39accommodate a magnitude range of 2 ~ magnitude

<2-5 • In this case, presuming a DP word is necessary,

the compiler would assign -5 integer bits and

a number of fractional bits equal to -5 + 2L - the

number of sign bits.

4 •. 'If P~CISIONand dimensions are not included in a <type-spec>

the compiler will assign defaults. Defaults are presented

in Appendix B.

5.1.1.3 <attribute list>. An <attribute list> may be specified

by including zero or one attribute from each of the following

classes, in any order:

1. Initialization attributes:

INITIAL «value»

CONSTANT «value»

where <value> must be a literal or a list of literals (see
Sec. 5 •1. 1. 4) •

2. Storage class attributes:

STATIC

AUTOMATIC

3. Dynamic Sharing Control Attributes:

LOCKTYPE «n»

5-4
INTERMEJRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

·.\b

where <n> is an unsigned integer greater th.an ,zero literal

defining the class of sharing control.

4. Storage optimization attributes:

DENSE

ALIGNED

GENERAL RULES:

1. If an attribute does not appear in a simple declaration,

the compiler will assign the default* value for that

attribute.

2. Restrictions on use of classes of attributes (also see

Sec. 8):

a. Initialization attributes may not be used at the COMPOOL

level, nor in declaring <procedure-parameters> and <function-

parameters> within procedures and functions (see Sec. 7.4).

b. Storage class attributes may only be used at the task,

procedure, and function levels.

c. Sharing control attributes may only be used at the program

and COMPOOL levels.

d.Storage optimization attributes may not be used in

declaring <procedure-parameters> and <'£unctlon"'paramet:ers>.

5.1.1.4 Initialization. INITIAL and CONSTANT values

of vectors, matrices, and arrays may be specified by lists of

literals.

* See Appendi~ B.

5-5

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

'47, _...,
i 1"

GENERAL FORMAT:

{INITIAL ICONSTANT} ({<list-of-literals>/

<list-of-literals>,*})

where

<list-of-literals> = [<n>#]{[<literal>11 «list-of-literals»}

[, [<n>#1 {[<literal>11 «list-of-literals» II ...

<n> is an unsigned integer literal.

GENERAL RULES:

1. <n>#<literal> specifies that there are <n> consecutive

entries of this <literal> in the list.

2. <n># specifies <n> consecutive entries causing no initializa­

tion.

3. <n>#<list-of-literals> specifies that there are <n> consecutive

entries of this "sub" <list-of-literals> within the list.

4. ,* indicates a partial initialization. That is, for a

vector, matrix, array, and structure of data types not

enough literals have been specified. After component-by­

component assignment, all the rest are left uninitialized.

5. For vector and matrix declarations, if the number of <literals>

in the <list~of-literals>:

a. is equal to one, all the components are initialized

to the <literal>.

b. is equal exactly to the declared number of components,

the vector or matrix is initialized, component-by­

component, from the list.

5-6

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

~-".

5-7

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

.49

c. In (b), if the number of <literals> is not exactly

that required, see 6(d) above.

EXAMPLES.

1. DECLARE V VECTOR(9) CONSTANT (1,0,0,0,0,0,0,0,0,0):

may also be written as

DECLARE V VECTOR (9) CONSTANT (1, 8#0);

2. DECLARE A ARRAY (4,4) BIT (2)

INITIAL (BIN'lO', BIN'lO', l4#BIN'01');

3. ARRAY B ARRAY (3,3) VECTOR (5) INITIAL (0);

All the components of the 9 vectors in the array B,

are initialized to O.

4. DECLARE B ARRAY (3,3) VECTOR (5) INITIAL (25,0,5,0,1);

All 9 vectors in the array, B, are initialized to

(25,0,5,0,1) •

5. DECLARE B ARRAY (3,3) VECTOR (5)

INITIAL (15#0, 15#1, 15#2)

The number of literals in the initialization list is

equal to the total number of components in the array. The

components of the three vectors in the first row are initial­

ized to 0, in the second row to 1, and in the third row to 2.

6. DECLARE B ARRAY (100)

INITIAL (5#(1,2,3,4,5) ,25#, 5#(6,7,8,9,10) ,*);

The first 25 items of the array B are initialized

with the repeating pattern (1,2,3,4,5). The next 25 are

left uninitialized. Items 51-75 are initialized to the

5-8
INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 . (617) 868-1840

repeating pattern (6,7,8,9,10). The remaining items are

not initialized.

7. DECLARE A ARRAY (10) INITIAL (2),

B ARRAY (10) INITIAL (#,2,*)

All'the scalars of A are initialized to 2. Only the

second scalar of B is initialized to 2, the rest being left

uninitialized.'

5.1.1.5 Declaration of Program, Function, and Statement Labels.

The scopes of program, function and statement (and procedure)

labels, i.e., the regions of the program in which they are

recognized, are defined in Sec. 8.

GENERAL RULES:

1. Statement and procedure labels must be defined (by appearance

or by DECLARE statement) before their use in the listing,

or at least in the block (i.e. program, function or procedure)

in which they are used.

2. Function labels must be defined (by appearance or by DECLARE

statement) before their use, regardless of whether the

FUNCTION statement and function reference appear in the same block.

3. Program labels must be defined by a DECLARE statement before

their use, e.g.

DECLARE ABLE PROGRAM;

···
CALL ABLE;

(Also see Sedtion 7.5.1.1.)

5-9

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

51.

4. <type-spec> specifies the data type returned by a function.

5. LABEL and FUNCTION may not be used at the COMPOOL level.

5.1.1.6 Examples of Simple Declaration Statements (Floating
Point Implementation).

l~ DECLARE I INTEGER INITIAL (65);

I is an integer with an initial value = 65.

2. DECLARE X PRECISION (8) AUTOMATIC INITIAL (6.061);

X is a floating point scalar with at least 8 significant

decimal digits.

3. DECLARE COMMAND_MODULE_STATE VECTOR (6) STATIC;

COMMAND_MODULE_STATE is a 6-dimensional vector with

single precision components (by default).

4. DECLARE SXT TO NB MAT MATRIX CONSTANT- - .
(1,0,0,0,1,0,0,0,1);

The matrix is a constant 3x3 identity matrix.

5. DECLARE A ARRAY (5, 3, 4) VECTOR (6) PRECISION (10);

A is a 5x3x4 array of vectors. Each element is a 6-dimensional

vector with components represented to at least 10 significant

decimal digits.

6. DECLARE S BIT (100) INITIAL (BIN (100) ')..');

S is a bit string of length = 100. The initial value is

all l's.

7. DECLARE TRAKFLAG BIT AUTOMATIC;

TRAKFLAG is a bit string of length = 1 (i.e. a Boolean).

5-10
INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

5

8. DECLARE MESSAGE CHARACTER (3) INITIAL (CHAR(3) 'H');

MESSAGE is a fixed character string of length = 3.

The initial value is HHH.

9. DECLARE OUT ARRAY (132) CHAR (1) INITIAL (' ');

OUT is a linear array of 132 character strings of length 1.

Initially, all characters are blank.

5.1.2 Factored Declaration Statement

A factored declaration statement eliminates the need for

repeated specifications when an attribute or type is applicable

to more than one identif~er. All of the factors are placed prior

to the first name in the declaration statement; other names, with

or without specifications, are separated by commas.

GENERAL FORMAT:

DECLARE <factors>[,]<name>[<specifications>]

[,<name>[<specifications>]] ••• ;

where both the <factors> and <specifications> are of the following

form and order:

[<array-spec>] [<type-spec>] [<attribute-list>]

GENERAL RULES:

1. A <factor> applies to all names appearing in the factored

declaration statement, where applicable (e.g., PRECISION

will not be applied as a <factor> to a string type included

in the statement).

5-11

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

53
. ,.,

I\j:.,(,

2. For any <name>, <factors> may be superceded by the accompanying

<specifications>, e.g.

DECLARE VECTOR (5) A, B, C MATRIX (3,3),

D VECTOR (6):

A and B are vectors of 5 elements, C is a 3x3 matrix, D is

a 6 element vector.

5.1.2.1 Examples of Factored Declarations

1. DECLARE PRECISION (8) A VECTOR (6), B MATRIX (2,2) INITIAL

(1,0,0,0) :

All elements of A and B are represented to at least 8

significant decimal digits.

2. DECLARE STATIC

A VECTOR (4) INITIAL (0,0,0,1),

B MATRIX (5,5),

C ARRAY (20) AUTOl-1ATI.C:

A and B are allocated STATIC storage: C is allocated

AUTOMATIC.

3. DECLARE MATRIX (3,4) INITIAL (0) AUTOMATIC

A, B, C PRECISION (10):

A, B, and C are all (3,4) matrices with AUTOMATIC storage.

Initially, all components are set to zero.

5-12

,54
INTERf,1ETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETIS 02139 . (617) 1l68-1840

. \

~. DECLARE INTEGER A, B, 'c, D SCALAR INITIAL (5);

5. DECLARE BIT DENSE INITIAL (OFF) TRACKING, RENDFLAG;

5.1.3 Structure Declaration Statement

The structure declaration statement is used to declare

a structure organization.-

GENERAL FORMAT:

DECLARE 1 <struct-name>[«copies»] [<struct-attributes>],

{2{<minor-struct-declaration>}} •
, <terminal-declaration> "'r

GENERAL RULES:

1. <cop~es> must be an unsigned integer literal greater than 1;

it defines the number of copies of the structure. For

example, DECLARE 1 A (100), 2 B --- etc.

declares that there are 100 copies of the structure A.

2. <struct-attributes> are attributes limited to

QUALIFIED INONQUALIFIED

DENSE !ALIGNED

STATIC IAUTOI1ATIC

LOCKTYPE «n»

a. If any attributes are not provided in the declaration,

the compiler will assign default* values.

b. It should be noted that attributes apply to the entire

structure and,with the exception of DENSE and ALIGNED,

cannot be overridden in the minor structures or terminal

declarations.

* See Appendix B

5-13
INTERMETRICS .INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840. ,

,
(-, 55

5.1.3.1 <terminal-declaration>. The <terminal-declaration> is

similar to a simple declaration (Sec. 5.1.1); however, only a

single name may be declared and the attribute list is limited to

INITIAL or CONSTANT, and DENSE or ALIGNED.

GENERAL FORMAT:

[<next-level>] <name> [<array-spec>] [<type-spec>]

[INITIAL! CONSTANT] «value» [DENSEIALIGNED]]{,!;}

GENERAL RULES:

1. If the <terminal-declaration> is contained in a <minor-struct-

declaration> then

<next-level> equals <this-level> + 1, where <this-level>

is the level of the <minor-struct-declaration>, otherwise

<next-level> equals 2.

2. The semi-colon (;) is used ~f the declaration is the last

<terminal-declaration> of the structure declaration statement.

5.1.3.2 <minor-struct-declaration>.

GENERAL FORMAT:

<this-level><name>[«copies»] [DENSEIALIGNED],

{<minor-struct-declaration>}
<terminal-declaration> •••

GENERAL RULES:

1. <this-level> is an unsigned integer literal > 2 which identi­

fies the level of hierarchy.

2. If a second <minor-struct-declaration> is contained within

a first <minor-struct-declaration> then <this-level> of the

5-14

INTERMETRICS INCORPORATED· 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

t:...

second declaration must be 1 greater than <this-level> of

the first declaration.

5.1.3.3 Examples.

1. Notes

DECLARE 1 A,

2 B,

3 C,

4 D VECTOR(9),

4 E MATRIX (4,4) ,

3 F INTEGER;

(1) major structure A

(2) minor structure B contains
minor structure C and
terminal element F

(3) minor structure C contains
terminal elements D and E

Notes
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(7)

(8)

1. This is a structure whose name is NAV STATE.

The number of copies is 2 and it has a sharing class of 1.

2. This is a minor structure called STATE whose elements are

defined at the next level.

5-15

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

57

3. This is a terminal declaration of a scalar element, TIME.

4. This is a terminal declaration of the vector, R.

5. Same as (4) above except name is V.

6. This is a minor structure called STATE_FLAGS whose

elements are defined below at the next level.

7. These are terminal declarations of the Boolean variables,

BODY and PHASE.

8. This is a terminal declaration of the matrix, W.

5.1.3.4 Structure Initialization. A structure may be initialized

by including the INITIAL or CONSTANT attribute in the <terminal­

declarations>. If a <terminal-declaration> represents a single

copy of the declared data item (i.e. the major structure and minor

structures containing this item are single copies themselves)

then initialization may be accomplished as described in Sec. 5.1.1.4.

If mUltiple ·copies are implied (i. e. , the major structure

or minor structure(s) containing this item, or both, have more

than 1 copy), two possibilities exist: (1) the data item may be

initialized as if it were a single copy; or (2) the initialization

<list-of-literals> may be designed to account generally for all copies.

GENERAL RULES:

1. If multiple copies exist and the data item is initialized

as if it were a single copy, but not partially initialized,

(see Rule 4 of Sec. 5.1.1.4), all copies will receive

identical initialization for this data item.

5-16

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840 .~

'(

2. If multiple copies exist and it is desired to initialize

copies individually, or partially initialized the structure,

the <list-of-literals> specifies consecutive entries for the

data item, component-by-component, with copies running

serially.

EXAMPLES:

1. DECLARE 1 A

2 B INITIAL (6.061),

2 C ARRAY(5) INITIAL(1,4#0);

The structure A is initialized by initializing Band C.

2. DECLARE l~ A (20),

.2 B INITIAL (6.061),

2 C ARRAY(5) INITIAL(1,4#0);

The structure A has 20 copies; each is initialized identically.

3. DECLARE 1 A (20),

2 B INITIAL (15#6.061, *) ,

2 C ARRAY(5) INITIAL(15#(1,4#0),*);

The structure A has 20 copies; the first 15 are initialized

identically. The remaining copies are uninitialized.

4. DECLARE 1 A (20),

2 B INITIAL (6.061,*),

2 C ARRAY(5) INITIAL(19# (5#), (1,4#0»;

The structure A has 20 copies. The first copy of B is

initialized to 6.061, the rest are uninitia1ized. The

first 19 copies of Care uninitializedl the last copy is

initialized to (1,0,0,0,0).

5-17

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139--(617) 868-1840

. -_. 59

5.2 Notation of Data Types and Organizations

5.2.1 Data Type Notation

The compiler will annotate certain names in order to

enhance the readability of the output listing. The notation which

signifies data type will be placed on the E line directly over

the name on the M line. The notation characters are described

below.

Data
Type

VECTOR

MATRIX

BIT

CHARACTER

Notational
Character

*

,

Examples

POSITION = R
* *REFMMAT = M

COM_BUFFERg=TRACKFLAG
, ,
MSG = B

There is no data type notation for INTEGER or SCALAR types. These

types must be determined from context or from the declaration

statements (or symbol table listing).

GENERAL RULES:

The annotation of an operand depends upon the resulting

type of the operand itself and not upon the type associated with

the identifier being referenced; for example:

1. When an element of a vector is referenced, it is not annotated; .

i.e., it is a scalar. For example, V2 is the second scalar

element of the vector v.

5-18

INTERMETRI~$ INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

6

•

2. When an element of a matrix is referenced, it is not annotated

since it is a scalar. For example, Ml ,2 is the scalar

*element in the 1st row, 2nd column of M.

3. When a row or column of a matrix is referenced, vector

notation is used; for example,

M,2 is the 2nd column of the matrix M

4. When a partition of a matrix is referenced, matrix notation

is used; for example,

*
Ml TO 3, 1

rO~lS 1, 2, 3

*TO 2 is a partition of the matrix M;

and columns 1, 2.

i.e.

5.2.2 Array Notation

The compiler will annotate arrays of data types with

enclosing square brackets (i.e., []l.

If the array consists of vectors, matrices, bit or charac­

terstrings, then the appropriate data type notation will also

be presented. For example,

[Aj A is an array of vectors,

*[Aj A is an array of matrices,

[Aj A is an array of bit strings,
,

[Aj A is an array of character strings.

GENERAL RULES:

1. When a single array element is referenced, the compiler

annotation will be consistent with the resulting data type.

For example, suppose A is an array of matrices; then A2:*,1

has vector notation because the referenced item is a vector

5-19

INTERMETRICS INCORPORATED· 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

~ =_. 61.

•

(i.e., the first column vector from the second matrix element

of A).

2. When a partition of an array is referenced; array notation

is used; for example,

.[A1 2 TO 4 is an array of elements A2 , A3 , A4 from

array A.

The programmer may include the notation above as part of

the input source code. This notation must be consistent with

its use (e.g., a * must not be placed over a vector, etc.).

If notation is not included then the compiler wil~ annotate

the output listing as described.

5.2.3 Structure Notation

The compiler will annotate major and minor structure

names with enclosing braces (e.g. {A}).

GENERAL RULES:

1. When a single copy of a structure terminal is referenced, the

compiler annotation will be consistent with the resulting

data type or array. The notation will be the same as described

in Sees. 5.2.1 and 5.2.2.

2. When multiple copies of a structure terminal are referenced,

the compiler will annotate the terminal name with enclosing

braces in addition to the annotation of Rule 1. This reference

remains a structure organization subject to the restrictions

on structure manipulations imposed in Sees. 6 and 7.

5-20

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

62

EXAMPLES:

1. DECLARE 1 A (5),

2 B BIT(lO),

2 C VECTOR,

a.

b.

c.

2 D MATRIX;

{A}2 is the second copy of A.

B4 • is the bit string in the 4th copy of A.,
{C} is a structure of all copies of the vector C.

*d. {D}3 TO 5;is a structure of the last three copies of the

matrix D•

. 2. DECLARE 1 A (5),

2 B CHARACTER(lO);
,

. {B} is a structure of all copies of the string B.

3. DECLARE 1 A,

2 B ARRAY(5) CHARACTER(lO);
,

[B] is the array terminal.
, ,

Note that while {B} in 2·and [B] in 3 contain the same data they

are not identical in form and cannot be used interchangeably.

4. DECLARE 1. A (5),

2 B ARRAY(5) CHARACTER(lO)l
,

{[B]}3 TO 51 is a structure of the last three copies of the

array B.

5-21

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1eea

5.3 Implicit Declarations

In general, HAL requires that all data quantities be declared

explicitly. The syntax of explicit data declarations has been

presented in sections 5.1 and 5.2. HAL also permits certain

variables to be declared implicitly; namely,vector, matrix, bit

and character string data types, by providing a (-), (*), (.), or

(,) respectively, on the E line over the name of the data quantity.

In the absence of an identifying symbol on the E line, the compiler

will interpret the variable to be of a scalar type. The implicit

declaration of integers, arrays, and structures is not allowed.

The compiler will assign characteristics, valid throughout

the current scope (see Section 8 for further detail on scope of

names), to implicitly declared names based on their first appearance

in the listing. Thereafter, notation need not be supplied. For

example, if V is used to declare a variable implicitly, then that

variable may be referred to as V in any succeeding statement

within the current scope. The compiler will supply the bar (-)

on appropriate succeeding appearances of V when it has not been

included by the programmer.

The implicit declaration of names as scalar, vector, matrix,

bit or character string causes the assignment of default* values

for all appropriate attributes.

* See Appendix B

5-22

INT~RMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) ~68-184~4

5.4 Alternate DECLARE Form

All of the HAL data types, and arrays of these types, may

be declared using an alternate form of the DECLARE statement where

·the data type is indicated (except for scalar and integer) by an

appropriate mark over the name and the size and shape designated

by a subscript.

GENERAL FORMAT:

H*I.I,]
DECLARE <name><sizes> [INTEGER ISCALAR] [PRECISION«p>[,<q>])]

[<attribute-list>];

<sizes> = [<array-shape>!<array-shape>:] [<dimension> I
<string-length>]

<array-shape> = <m>[,<m>] •••

<dimension> = <m>[,n]

<string-length> = <r>

<m>, <n>, <p>, <q>, <r> must be integer literals. In addition,

<m>, <n> must be greater than 1; <r> must be greater than O.

GENERAL RULES:

1. (-), (*), (.), (,) appearing over the name specifies vector,

matrix, bit string and character string data types respectively.

If <note> and INTEGER are not provided, <name> is a scalar.

2. <dimension> specifies either vector length or the number

of rows and columns.

3. <string-length> specifies bit or character length for fixed

length strings or maximum length for varying strings.

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

65

4. Use of INTEGER, PRECISION, and <attribute-list> are described

in Sees. 5.1.1.2, 5.1.1.3, and Sec. 5.1.2.

5. When declaring <procedure- or <function-parameters> (see Sec.

7.4), <note> may be omitted if the proper annotations are

included on the parameters appearing in the CALL and function

reference statements.

EXAMPLES:

1. DECLARE V5 ,3,4:6;

- a 5x3x4 array of vectors. Each vector is of length 6.

2. DECLARE SlOO'

- a bit string of length 100.
,

3. DECLARE OUTl32 : l ;

a linear array of 132 character strings. Each string is

of length 1.

*4. DECLAREM6 ,6;

- a 6x6 matrix.

5. DECLARE A50 ;

- a linear array of 50 scalars.

5-24
INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

6'

5.5 DEFAULT Statement

When variables are implicitly declared, or when variables

or functions are explicitly declared with not all characteristics

specified, the unspecified characteristics are supplied from a

set of default characteristics. The standard set of these is

described in Appendix B.

In some cases it may be convenient to modify the standard

default set to reduce the amount of source program coding

required to achieve the given objective. For this purpose,

the DEFAULT statement is provided.

GENERAL FORMAT:

DEFAULT {<type &

where

attributes>![<type & attributes»<length-,
defaul t-list>};

<type & attributes> = {<type-spec> I
[<type-spec»<attribute-list>}

and

<type-spec> is defined in Sec. 5.1.1.2

<attribute-list> is defined in Sec. 5.1.1.3

<length-default-list> = {<length-default>}•••

<length-default> may be one of the following forms:

BITLENGTH (<rn»

. VECTORLENGTH «m»

. MATRIXDIM «m>, <n»

CHARLENGTH «m» [VARYING)

where <m> and <n> are literals of integral value.

<type-spec> is used to specify default type; e.g.

DEFAULT MATRIX (3,4);

DECLARE A, B, C SCALAR;
5-25

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

67

A and B are declared (3x4) matrices by default. The explicit form,

SCALAR, becomes necessary because of this change in default type.

<length-spec> is used to specify defaults for bit-string length,

vector length, matrix row-column dimension, and character-string

length (and VARYING-length) • In the case of character strings,

if VARYING is provided, the maximum length «m» must also be

provided, whether in a DEFAULT or DECLARE statement. For example,

the following statement will cause an error message;

DEFAULT C CHARACTER VARYING;

EXAMPLES:

1. ALPHA: Plil.OGRAM;

DEFAULT MATRIX(4,7) BITLENGTH(24);

DECLARE A MATRIX, B, C BIT(lO), D BIT;· .··
CLOSE ALPHA;

A and Bare (4x7) matrices. D is a bit string of length 24.

2. BETA: PROCEDURE;

DEFAULT BITLENGTH(16);

DECLARE E, F BIT, G CHARACTER;

CLOSE BETA;

E is a scalar and G is a character string of standard

default length. F is a bit string of length 16.

5.,.26

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 86S-1!!40

,

6.0 DATA MANIPULATION

6.1 Expressions

An expression is an algorithm used for computing a value.

Variables, constants, literals, built-in functions, and prograrnrner­

defined functions combined with operators, form expressions.

Expressions are of four types: arithmetic, string, array and

relational. The type of a function or an expression is the type

of its result and is independent of the types of its operands'.

In the definitions that follow

<type-operand>={<type-narne> I<type-function> !<type-expression> I
«type-expression»}

where,

<type-narne>~{<type-variable>l<type-constant>l<type-literal~}

and

<type- >={<integer- !<scalar- I<vector- I<matrix-

<bit- I<character- >}

6.1.1 Arithmetic Expressions

Arithmetic expressions yield arithmetic values; e.g.,a

scalar expression is defined to be an expression yielding a scalar

result. There are four types of arithmetic expressions: integer,

scalar, vector and matrix.

* literals are only defined as being arithmetic, bit and'character

strings.

," 6-1

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

69

6.1.1.1 Integer Expressions. An <integer-expression> is composed

of the following elementary operations:

GENERAL FORMAT:

{{[+ll-}<integer-operand>1

<integer-operand>{+I-!<mult>}<integer-operand>/

<integer-operand>**<positive-integer-literal>}

where

~positive-integer-literal>is a 'positive 'whcilenumbe,r

literal or a bit string literal (interpreted by the compiler

in this context as a positive whole number).

GENERAL RULES:

1. <mult> denotes multiplication by logical adjacency. -The

associated operands must be separated by at least one space

(blank) unless one or both of the operands are parenthesized.

2. <integer-operands> and <positive-integer-literals> may be

either integers or bit strings. Bit strings are converted

implicitly to integers.

3. An integer result can only ,be derived from operations on

<integer-operands>.

4. Division is ~ an integer operation; dividing one integer

by another yields a scalar result.

5. In general, exponentiation will result in a scalar, except

when the exponent is a <positive-integer-literal>.

6-2

70
INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

,

EXAMPLES:

are all integer expressions if P, 0, R, F are declared as integers.

6.1.1.2 Scalar Expressions. A <scalar-expression> is composed

of the following elementary operations:

GENERAL FORMAT:

{{[+ll-}<scalar-operand>1

<scalar-operand>{+I-I/I<mult>}<scalar-operand>I

<scalar-operand>**<scalar-operand>I

<vector-operand>.<vector-operand>}

GENERAL RULES:

1. The <scalar-operand> may be.a scalar, integer, or bit string

except where the above format reduces to an <integer-expression>.

Integers are converted implicitly to scalars. Bit strings

are converted implicitly, first to integers and then to scalars.

2. Exponentiation is undefined when the <scalar-operand> is

negative and the <scalar-operand> exponent has a non-integral

value.

3. <vector-operand>.<vector-operand> denotes the vector inner

product (dot-product). The dimensions of the two <vector­

operands> must be equal.

EXAMPLES:
-P,

are all valid scalar

p 2 _ * _
PIR, PIs, R , V.M V, S + SiR
expressions if P is declared a scalar,

and R is declared to be either an integer or a scalar.

6-3
INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

~ -r" -, 71

6.1.1.3 Vector Expressions. A <vector-expression> is composed

of the following elementary operations:

GENERAL FORMAT:

{{[+] I-}<vector-operand>I

<vector-operand>{+I-!*}<vector-operand>!

<vector-operand>{/I<mult>}<scalar-operand>I

<scalar-operand><mult><vector-operand>!

<matrix-operand><mult><vector-operand>I

<vector-operand><mult><matrix-operand>}

GENERAL RULES:

1. The <scalar-operand> may be a scalar, an integer or a bit

string. Integers and bit strings are converted implicitly

to scalars.

2. Addition and subtraction must involve two vectors of identical

dimensions.

3. <vector-operand>*<vector-operand> denotes vector cross-product,

which is defined only for three-dimensional vectors.

4. Multiplication and division of a <vector-operand> by a <scalar­

operand>, and negation of a vector, denote operations on each

vector component.

5. <matrix-operand><mult><vector-operand> denotes formal mathe­

matical matrix-vector multiplication; the vector dimension

must equal the column dimension of the matrix.

6. <vector-operand><mult><matrix-operand> denotes formal

mathematical vector-matrix multiplication: the vector

6-4

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

72

dimension must equal the row dimension of the matrix.

EXAMPLES:

all valid vector expressions.

6.1.1.4 Matrix Expressions. A <matrix-expression> is composed

of the following elementary operations:

{{[+ll-}<matrix-operand>/

<matrix-operand>{+I-1<mult>}<matrix-operand>I

<matrix-operand>**{<scalar-operand>/T}I

<scalar-operand><mult><matrix-operand>I

<matrix-operand>{/I<mult>}<scalar-operand>I

<vector-operand><mult><vector-operand>}

GENERAL RULES:

1. The <scalar-operand> may be a scalar, an integer, or a bit

string. Integers and bit strings are converted implicitly

to scalars.

2. Matrix addition and subtraction must involve matrices of

identical row and column dimensions.

3. <matrix-operand><mult><matrix-operand> denotes formal

mathematical matrix mUltiplication; the column dimension of

the left operand must equal the row dimension of the right.

4. Exponentiation is restricted to square <matrix-operands>.

5. A <scalar-operand> exponent will be converted to the nearest

integer before use. The following interpretations are made:

.<rit~tdx-~perand>0 := identi ty matrix

6-5

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617)868-1840 .

" . .. 73

· N<matrix-operand>
N
IT «matrix-operand»i

i=l

<matrix-operand>-N _
N
IT (inverse of <matrix-operand»i

i=l

6. Exponentiation by -1 and T may also be written in

functional form as INVERSE «matrix-operand» and

TRANSPOSE «matrix-operand» respectively.

7. MUltiplication and division of a matrix by a scalar, and

negation of a matrix, denote operations on each matrix

element.

8. <vector-operand><mult><vector-operand> denotes the vector

outer product; the result is a matrix whose row and column

dimensions are the dimensions of the left and right operands,

respectively.

EXAMPLES:

* * ** *-1 *3 * * T *. * * -2 *-M N, M+N, M , M, (M N) , MIS, (M+N) , A N, VV are all

valid .matrix expressions.

6.1.2 String Expressions

String expressions yield string results; e.g., a bit

string expression is defined as an expression yielding a bit

string result. There are two types of string expressions: bit

and character.

6.1.2.1 Bit String Expressions. Bit string expressions

may contain bit string operands only. A <bit-expression> is

composed of the following elementary operations:

6-6 74
INTERMETRICS INCORPORATED' 380 GREEN STREET, CAMBRIDGE,. MASSACHUSETTS 02139 • (617) 868-1840

GENERAL FORMAT:

'{[NOT) bit-operand> I

<bit-operand>{ANDloR!CAT}<bit-operand~}

GENERAL RULES:

1. NOT complements 'each bit in the string.

2. AND, OR perform bit-by-bit logical AND and OR on the

corresponding bits of the two operands. When the string

lengths are unequal, the shorter string is padded on the

left with zeros until the strings are of equal length.

3. Concatenation, CAT or (I I), links together two bit strings.

The length of the result is the sum of the lengths of

the two operands.

EXAMPLES:

NOT i, A OR (B AND ~), i I!NOT ~ II (~ OR C) are all valid

bit string expressions.

6.1.2.2 Character string Expressions. A character string

expression must involve the concatenation of a character string

and a bit string, integer, or scalar operand. A <character-

expression> is composed of the following elementary operations:

GENERAL FORMAT:

{<character-operand> I l<data~operand>1
<data-operand> I I<character-operand> I

<character-operand> I I<bit-operand>} ,

where <data-operand>={<integer-operand> I<scalar-operand> !

<character-operand>}

GENERAL RULES:

1 .. <integer- and <scalar-operands> are converted implicitly

•

6-7, ' , _ 75
INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-;840

,

to character numerical representation.

2. <bit-operands> are converted first to integers and then

to characters.

,EXAMPLES:
, ".,..
TEXTII 'HELP', AIITEXT, TEXT I I (A/S), TEXT I I (Bllc) areal!

valid character expressions.

6.1.3 Array Expressions

Array expressions yield array results. In general, most

of the operations described in Sections 6.1.1 and 6.1.2 are valid

for arrays if the operation is valid for elements of the arrays.

There are two classes of array expressions: 1) where both operands

are arrays; 2) where one operand is an array.

6.1.3.1 Two-array Expressons. For two-array expressions, all of

the expressions detailed in Sees. 6.1.1 and 6.1.2 are valid by

replacing the <type~operands> by <type-array-operands>~ For

example, in Sec. 6.,1.1.2 the <scalar-operand> becomes a' <scalar-

array-operand> and the ,<vector-operand> becomes a <vector-array­

operand>.

GENERAL RULES:

1. The two <array-operands> must be dimensionally'identical.

,2.' The indicated operation is performed element-by-element, in

sequence, on corresponding elements of the two arrays. For

example, let [P] and [S] be two-dimensional arrays. Then

[P] + [S] will be executed in the following sequence:

6-8
76

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

Pi,l + 51 ,1

Pl ,2 + 51 ,2

Pl ,3 + 51 ,3

.
•

3. The resulting array will be of the same dimensions as the

<type-array-operands>.

EXAMPLES:

'" [P], [P]I [S], . [P] * [V], [V] [S], [R] [P], [A]OR[B], [A]II [TEXT]

are all valid array expressions.

6.1.3.2 One-array Expressions. For one-array expressions, all

of the expressions detailed in·Secs. 6.1.1 and 6.1.2 are valid

if one of the <type-operands> is replaced by a <type-array-operand>.

GENERAL RULES:

1. The indicated operation is performed, in sequence, using

the single operand and each element of the array.

2. The resulting array will be of the same dimensions as the

<type-array-operand>.

EXAMPLES:

[Pl/S, [P]*V, V[S], R[P), [A] OR B, All [TEXT], V/[A), iti]~,

[A]+5 are all valid array expressions.

6-9

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868·1840

• __ . !7?

6.1.4 Structure Expressions

Structures containing one or more terminals may be

compared as detailed in Sec. 6.1.5.5. Structures containing

a single terminal or copies of one terminal may be treated as

an array within the context of the array expressions of

Sec. 6.1.3. However, a <structure-operand> and an <array­

operand> may not be combined within .a two-array expression

(Sec. 6.1.3.1).

EXAMPLES:

DECLARE 1 A (251,

2 B ARRAY(lO) INTEGER,

2 C;

{[B]} + {C} is a valid structure expression.

The array of integers, B, in each of the 25 copies of A is

added to the scalar, C, in each copy. The result is 25 copies

of arrays of scalars (note integer to scalar conversion).

6.1. 5 Comparison Expressions

Comparison expressions yield a single true (TRUE/ON)

or false (FALSE/OFF) result of a comparison of operands. Relational

operators are grouped as follows for use in different contexts:

6-10

INTERMHRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (sf?) 86S-"1S .

not eqUal}

equal

,= not equal

= equal

< less than

> greater than
<Q> =

<= less than or equal

>= greater than or equal

,< not less than

,> not greater than

6.1.5.1 Bit String Comparisons

GENERAL FORMAT:

{<bit-operand><Q><bit-operand>

GENERAL RULES:

1. When string lengths are unequal the shorter string is. padded

on the left with sufficient zeros to make the strings of

equal length.

2. When comparing bits:

6-11

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

79

a. Proceeding from left to right, if the first comparison

which is not equal is ">" then the total bit-string

comparison is~ for the relational operators >,

>=, ~<, ~=, and false for the operators <, <=, '>, =.

b. Proceeding from left to right, if the first comparison

which is not equal is n<" then the total bit-string

comparison is~ for the relational operators <,

<=, , >, ""l =, and false for the operators >, >=, '<, =.

c. The total·bit-string comparison is true for the re;ational

_ope:I:"ator = (and false for ,=) if and only if all bit

comparisons are =.

EXAMPLES:

A=B, A>B, A'<B, etc. are. all valid bit string comparisons.

6.1.5.2 Arithmetic Comparisons

.{ <:integer-operand><Q><integer-operand> 1
.<scalar-operand><Q><scalar-operand>!

<vector-operand><p><vector-operand>I

... <matrix-operand><P><matrix-operand>}

GENERAL RULES,

1. The <integer-operand> may be either an integer or a bit

string except where the <integer-operand> comparison reduces

to a ··<bit-operand> comparison. Bit strings are converted

impiicit1y to integers.

6-12

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

80

2. The <scalar-operand> may be a scalar, integer, or bit string

except where the <scalar-operand> comparison reduces to

either an <integer- or <bit-operand> comparison. Integers

are converted implicitly to scalars. Bit strings are

converted implicitly, first to integers-and then to scalars

EXAMPLES:

. * *I>J, I<A, A1=S, S<=(A+P.V), V=B, M1=N are all valid

arithmetic comparisons.

6.1.5.3 Character String Comparisons. Character comparisons

have the following general format:

<character-operand><Q><character-operand>

GENERAL RULES:

1. When the string lengths are unequal, the shorter string

is padded on the right w~th sufficient blanks to make

the strings of equal length.

2. The character comparison involves left-to-right comparison

of corresponding characters in each operand according to

a collating sequence which may be implementation dependent.

3. Total character-string comparisons follow the same rules

as described for bits in Sec. 6.1.5.1 (Rule 2).

6.1.5.-4 Array Comparisons. Array comparisons are valid in

comparing two <type-array-operands>, or one <type-array-operand>

and one <type-operand>. The result must be a single true or -

false answer.

6-13

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

81

GENERAL FORMAT:

{<type-operand> I<type-array-operand>}<P>

{<type-operand> I<type-array-operand>}

GENERAL RULES:

1. Comparisons are on an element-by-element basis.

2. For the operator =, the comparison is true only if all

the array elements are equal.

3. For the operator ~=, the comparison is true if any of

the array elements are not equal.

EXAMPLES:

[I] = [A], [A]'= S, [P]=[S] are valid array comparisons.

6.1.5.5 Structure Comparisons

GENERAL FORMAT:

<structure-operand><p><structure-operand>

GENERAL RULES:

1. The two <structure-operands> must be identical in organization.

6-14

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-18408:2

6.1.6 Precedence Order

In the evaluation of an expression, the order of operations

is determined by parentheses and operator precedence. The

precedence is divided into two groups, I and II; I is of higher

priority. The groups are further ordered by relative priority

number (the highest number being the highest priority).

6.1.6.1 Group I Arithmetic Operations

Operation

Exponentiation

Matrix transpose (short form)

Matrix inverse (short form)

Scalar-scalar product

Scalar-vector or vector scalar product

Scalar-matrix or matrix-scalar product

Vector-matrix product

Matrix-vector product

Vector outer product

Matrix-matrix product

Vector cross product

Vector inner (dot) product

Scalar-scalar quotient

Vector-scalar quotient

6-15

Priorityl Form2

6 SS

6 *TM

6 *-1M

5 S S

5 S 11 or 11S

* *5 S M or M S

- *5 VM

* -5 MV

5 1111

* *5 MM

4 11* 11

3 11 11

2 S / S

2 Vi / S

t =-. 83
.INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

Matrix-scalar *quotient 2 M/ S

Scalar sum or difference 1 S ! S

Vector difference 1 -+ Vsum or V _

* + *Matrix sum or difference 1 M _ M

*S, V, M represent scalar (also integer and bit string) ,

vector, and matrix operands.

6.1.6.2 Group II Relational and String Operations

Operation Priority Form
•

NOT (.." A) 5 B

CAT (II) 4 Alia

(=,1=, >, -'>, <,

"<, >=, <=)

AND (&)

OR (I)

3

2

1

• •

6.1.6.3 Further Comments on the Order of Operations

1. Operations within an expression are performed in the order

of decreasing priority. For example, in the expression

A+B**3, exponentiation is performed before addition. If an

expression involves operations of the same priority, the general

rule is that the operations are performed left to right.

Exceptions are noted below.

6-16

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

2. Exponentiation

A**B**C

is right to left.

BC
A A**(B**C)

Thus,

3. Division is right to left. However, vector and matrix

expressions may never appear as a denominator in a quotient.

a. A/B/C = A/(B/C) = A C/B

b. A/BX/CY/D = A/(B X/(C Y/D» = A C Y/B X D

c. V/A/B = V/(A/B) = B VIA

d. V/A/R = V/(A/R) is illegal

e. v/R.v = V/(R..V)

4. Within priority 5, in Group I, deviation from left-to-right

order of scalar-vector-matrix products is permitted in order

to simplify the computations. For example, in

- * -V=MSSSV

the scalars are first multipled together, then the vector

is multiplied by the matrix, and the final product is

performed. Strict left-to-right evaluation would cause 3

matrix-scalar and 1 matrix-vector product. However, since

these mUltiplications are associative and commutative, the

forms are mathematically equivalent. If an expression is

enclosed in parentheses, it is treated as a single operand.

The parenthesized expression is evaluated before its associated

operation is performed. In a more complex example:

* * * - * * - * *M = MO MI VI M2 M3 V2 M5 M6;

mUltiplications are performed in the same order as

* * * - * * - * *M = « (MO (Ml VI» M2) M3) «V2 M5) M6);

6-17

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 '~(617) f!§t:40

If there had been any scalars in the product, they would have

been mUltiplied together in the order they appeared, then the

one scalar result would be multipled by the matrix result.

When a specific order of multiplication is desired the products

must be grouped with parentheses.

5. The precedence rules determine the order of mUltiplication

when different mathematical interpretations are possible.

For example:

V= "V " M V; means the same as

"'V = V " (M V); not

V= (V " " -M)V;

and

V - "S = V M; means the same as

V - "S = (V M); not

" (V - "M = . V)MI

Note that the last line would be an illegal assignment of

a scalar to a matrix if the parentheses were left out.

There are situations in which applying the precedence

rules may not be straightforward, for example: Vl V2 • V3.

If the outer product is done first, a matrix dot vector

results and is illegal, therefore HAL interprets this as

Vl(V2 .• V3) which is a vector. Similarly Vl • V2 V3 • V4

must result in the final product of two scalars. Whenever

there is doubt, parentheses should be used to make the

order of multiplication clear to the compiler and to the

reader of the program listing.

6-18

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

6.2 Conversions

Conversions of data type and precision can be accomplished

implicitly within expressions, and explicitly by special con­

version functions. These conversions are detailed below.

E!.2.l Implicit Conversions

6.2.1.1 Data Type. Several implicit data-type conversions

are described in Sec. 6.1 as occurring when operands of different

types are combined by an operator. These conversions are also

noted in the expressions summary of Sec. 6.4. In general, but

with certain restrictions, implicit conversions within expressions

follow a progression:

{

to-scalar-to-character
from bit-to-integer

'to-character

i. e. ,

B .. I
{

..S

"C

.. C

and from single precision (SP) to double precision (DP). Vector

and matrix operands cause the same effects as scalars.

GENERAL RULES:

1. The prefix operations + and - applied to bit strings cause

conversion of the strings to integers.

2. For arithmetic operations, other than exponentiation,

involving two bit strings or a bit string and an integer,

the strings are converted to integers, and the result is an

integer.

6-19

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

87

3. Exponentiation of "main line" <integer- and <bit-operands> always

causes conversion of integers to scalars, and conversion of bit

strings first to integers, and then to scalarsl the result is a

scalar. There is an exception for the exponentiation of an

<integer-operand> by a <positive-integer-literal> (see

Sec. 6.1.1.1). In this case the result is' an integer.

4. For arithmetic operations involving a bit string and a

scalar, the string is first converted to an integer and then

to a scalar, and the result is a scalar.

5. For arithmetic operations involving an integer and a scalar,
I

the integer is converted to a scalar, and the result is a

scalar.

6. Division always causes the conversions of numerator and

denominator to scalars, and' produces a scalar result.

7. The concatenation of a character string and a scalar, integer

or bit string causes conversion of the scalar or integer

to a character string, and the conversion of a bit string first

to an integer and then to a character string. Conversion

of scalar to character produces a character string of

specific length to be determined by the implementation.

Conversion of integer to character produces a character string

of minimum length sufficient to represent the integer as a

signed decimal number. (The + sign will be suppressed and no

character position provided for it.)

6-20

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

Sf

6.2.1.2 Arithmetic Literals. If the representation of an

arithmetic literal in the target machine is exactly an integral

number (whole number) the literal will be treated as an

<integer-operand> in operations and expressions, and with respect

to the data-type conversions detailed in Sec. 6.2.1.1. Thus,

2, 2.00, 27.3E:t3, 0.1024E+4B-5 are examples of II integer 'literals".

If the literal has a fractional part, its precision will be

determined by context, if possible. Otherwise, default precision

will be used. For example,

1) DEC~RE A PRECISION(lO);

Y = A + 1.5;

1.5 will be a double precision literal because A is

double precision.

2) Y = (1.5 + I)A;

Since the precision of 1.5 cannot be determined from

context (i.e., being added to an integer) the default

precision will be used.

6.2.1.3 Precision. Implicit conversion of precision occurs

when operands of different types or precisions are combined

by an operator.

6-21

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

89

GENERAL RULES:

1. Conversion from bit to integer:

Bit strings of length less than a machine word length

are converted to integers by regarding the string as an

unsigned integer. The result will be a full word positive

integer. For string length exactly equal to word length,

a sign bit is presumed, and the resulting integer will be

a full word signed integer. For string lengths greater

than a word length, conversion will not be performed;

the compiler will issue an error statement.

2. Conversion.from integer to scalar:,

a. Floating Point

Resulting scalar precision will be determined by

context, if possible. Otherwise, default precision

will be used. (Also see Sec. 6.2.2.4 for explicit

precision conversion.) In the case of single precision,

conversion of large integers will approximate the

integer by the most significant portion that can be

represented in a single precision floating point

number.

b. Fixed Point

Conversions from integer to fixed point scalar will

be implementation dependent.

6-22

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

90

3. Conversions within expressions:

a. Floating Point Operations

For operations involving two single precision operands,

the result will always be single precision. For

operations involving single and double precision, the

single precision quantity will be converted to double

precision and the result will be double precision.

b. Fixed Point Operations

For operations involving two fixed point single

precision operands (single word length) the result

will be single precision.* For operations involving

single and double precision operands, the conversion

to double length will follow the same rules as for

floating point.

The result of an operation also carries with it an

implicit intermediate scaling based on the operation

involved and the scaling of th,e operands (e.g., addition,

subtraction, division, etc.).

GENERAL RULES:

Intermediate scaling results will be implementation

dependent.

6-23

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

91

c. Conversion of 'Literals

In converting a literal to a fixed point scalar,

only the necessary number of integer bits will be

used. First the literal is divided by 2N so that its

value is <1 but> 0.5. 2N is therefore the maximum

range and N becomes the number of integer bits in the

fixed point scaling. P-N-l bits are assigned as

fractional where P is the word length. (This pre-

sumes 1 sign bit.) For example, for the literal

250.87 the compiler would assign PRECISION(8, P-8­

sign bits). For the literal .004875 the precision

isPRECISION(-7, P+7-sign bits).

6.2.2 Explicit Conversions (Shaping Functions)

Three classes of explicit conversions are specified: a

single-argument class to convert from one data-type to another

or from an array of one type to an array of another, a multiple­

argument class to convert a list of mixed data types to a

vector or a matrix or to an array of any single data-type, and

a set of special bit and character conversions.

6.2.2.1 Single-Argument. The explicit conversion of data types

can be accomplished with the following set of conversion functions:

1. INTEGER[< h l «single-operand»array-s ape>

6-24

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

92

2.

3.

4.

5.

6.

SCALAR[<array_shape>] «single-operand»

BIT [<array-shape>:] [<index-expression>] «single-operand»

CHARACTER [<array.-shape>:] [<index-expression>] {<single-operand»

VECTOR[<array_shape>:] [<dimension>] «single-operand»

MATRIX[<array_shape>:] [<dimension>] «single-operand»

where <single-operand> = {<type-operand>l<type-array-operand>}

and <dimension> = <m>[,<n>]

<m> and <n> may be <bit-, <integer-, or <scalar-operands>;

their values are converted to integers: <m> and <n> must be > 2.

<index-expressions>, .. in the form of subscripts, are

detailed in Sec. 6.3.1.

A. INTEGER, SCALAR, BIT, CHARACTER

- unsubscripted

GENERAL RULES:

1. INTEGER converts bit strings, scalars and character strings

to integers, and arrays of these types to arrays of integers.

Array Shape is preserved. A bit string is converted according

to the rules stated in Sec. 6.2.1.3. A scalar is converted

to a signed full word integer by rounding to the nearest

whole number. A character representation of a whole number

is converted to a signed full word integer.

2. SCALAR converts bit strings, integers and character strings

to scalars, and arrays of these types to arrays of scalars.

6-25

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

93

Array shape is preserved. A bit string is converted first

to an integer (as in (1) above) and then to a scalar. An

integer is'converted to a scalar according to the rules

stated in Sec. 6.2.1.3. A character representation of a decimal

number is converted to a scalar.

A bit string may be converted directly to a floating

(or fixed point) scalar, i.e. not,converting to integer

first, by use of the SUBBIT pseudo-variable, described in

Sec. 7.1.2.3.

3. BIT converts integers, scalars and character strings to bit

strings ,and arrays of these types to arrays of bit strings.

Array shape is preserved. Integers and scalars are converted

to full word bit strings: character strings are converted

to the bit length representing the total character string.

BIT may be subscripted by an <index-expression> to select

a desired range of bits (see Sec. 6.3.1).

4. CHARACTER converts bit strings, integers, and scalars to

character strings and arrays of' these types to arrays of

character strings. Array shape is preserved. Scalars are

converted to specific length character strings: integers

are converted to minimum length character representations

(see Rule 7 of Sec. 6.2.1.1). Bit strings are converted to

integers first and then to characters. CHARACTER may be

subscripted by an <index-expression> to select a desired

range of characters (see Sec. 6.3.1).

6-26

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

5. INTEGER, SCALAR, BIT and CHARACTER convert vectors and

matrices, and arrays of vectors and matrices as if these

were arrays of scalars, applying (11 through (41 above,

respectively. Tile resulting array shapes are indicated

in the following table:

VR- [Vl a,b: R- * *Argument ~,n [Mla:m,n

Resulting
Array [XlR- [Xl a,b, R- [Xlm,n [Xl a,m,n
Shape

Subscripts indicate shape and dimension (i.e., <array-shape>:

<dimension>l R-:; vector length; m,n _ matrix rows, columns;

a,b _ array shape (in general, the argument array shape

may bea,b,c, ••• etc.l. X represents bit string, integer,

scalar, or character string.

B. VECTOR, MATRIX

- unsubscripted

VECTOR and MATRIX convert bit strings, integers, scalars

and character strings, and arrays of these types, to scalar

components; type conversion is the same as for SCALAR. The

resulting array shapes, and vector and matrix dimensions, are

shown in the following table:

6-27

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

95

Argument "--.

Resulting
X(1)

Vt *Array Shape [X] a,b or [V]a,b:t "M [M] a,b :m,n
& Dimensions [X] m,n

- _(2)
VECTOR Vdefault Va :b Vt [V]a,b:t [V]nt:n [V] a,.b,m:n

* (2) * t1 (3) . * * *MATRIX Mdefault M [M] a:b,t M [M] a,b :m,na,b default m,n

Notes:

(1) X refers to bit string, integer, scalar or character

operands. Appropriate conversion to scalar is accomplished.

(2) All components are set equal to X.

(3) The length t must equ~l the product of the matrix

default dimensions. (In general, the argument array

shape may be a,b,c, ••• etc.)

C. INTEGER, SCALAR, BIT, CHARACTER

- subscripted

Subscripting specifies the desired array shape and in the

Case of BIT and CHARACTER, an <index-expression> to select

the desired range of bits or characters. The product of the

array shape dimensions must equal the product of the array and

type dimensions of the argument. (Exception: if the argument

is a single unarrayed bit string, integer, scalar or character

6-28

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

96

string, the array-shape subscript may be arbitrary, and all

elements of the resulting array will have the same value.)

In forming a new array, the vector, matrix and array

arguments are equivalent to lists of their components. Matrices

are unraveled by rOWSl arrays are unraveled by the right-most

(or inner) index first (i.e., 1,1,1; 1,1,2; 1;1,3; •••1,2,1;

1,2,2; etc.). The new array is then constituted by filling

the inner-most index first, etc.

D. VECTOR, MATRIX

- subscripted

Subscripting specifies the desired array of shape and type

dimensions (i.e., vector length or matrix rows and columns).

In general the product of the array shape dimensions and the

type dimensions must equal the product of the array and type

dimension of the argument; exceptions:

1. if the argument is a single unarrayed bit string,

integer, scalar or character string,. the subscripts

may be arbitrary and all elements of the result will

have the same value;

2. if the product of the array and type dimensions of

the argument exactly equal the desired VECTOR or

MATRIX type dimensions then all the vectors in the

array of vectors or all the matrices in the array of

matrices will have the same value. For example:

VECTOR4 ,5: 6 ([AI)

where [AI is a 2x3 array of scalars, results in a

6-29

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

4xS array of vectors of length 6. Each 'of the 20

vectors is equal to the unraveled components of the

array, [A].

In forming anew vector or matrix, or array of vectors or

matrices, arguments are equivalent to lists of their components

and are unraveled by the inner-most index first. The result

is then constituted by filling the inner-most index first.

If <dimension> for VECTOR or MATRIX is not provided, the

default dimension is used, and the number of elements in the

argument must equal one, or be consistent with the default.

The total subscript may contain one and only one *, in which

case that ~ndex position is left unspecified and its value

will be adjusted to the size of the argument.

6.2.2.2 Multiple-Argument. The explicit conversion of data

types can be accomplished with the functions detailed in

Sec. 6.2.2.1 where the '<single-operand> is replaced by a list

of operands; i.e.

<list> = <singie-operand>{,<single-operand>} •••

Operands may be repeated consecutively by use of the # operator

as described for initialization in Sec. 5.1.1.4.

A. INTEGER, SCALAR, BIT, CHARACTER

- unsubscripted

Each <single-operand> in the <list> is unraveled as described

6-30

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

98

in Sec. 6.2.2.1 (C). The result .i~ an array of length equal

to the total number of elements in the list. Data conversions

are as described in Sec. 6.2.2.1; exceptions:

1. bit string length will be equal to the maximum bit

length of the elements in the <list>

2. character strings are considered varying and are limited

in size by the implementation

B. VECTOR, MATRIX

- unsubscripted

Each <single-operand> in the <list> is unraveled. The

result is a vector of length equal to the number of elements

in the <list>;. or a. square matrix with rows and columns

equal to the square root of the number of elements in the

list (the square root must be an integral number).

C. INTEGER, SCALAR, BIT, CHARACTER

- subscripted

The <list> is unraveled as in (A) and then ·shaped" into

an array as specified by the <array-shape>. The new array is

filled by inner-most index first. If <index-expression> is not

provided for BIT or CHARACTER,· lengths are as described in (A).

The <array-shape> Subscript may contain one and only one

*, in which case that index position is left unspecified and

its value will be adjusted to the length of the <list>.

6-31

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

99
, ~ - '-.

D. VECTOR, MATRIX

- subscripted

The <list> is unraveled as in (A). The resulting vector

or matrix, or array of vectors or matrices are formed by filling

the inner-most index first. In general the product of the

array shape dimensions and the type dimension must equal the

total number of elements in the <list>; exception: if the

list contains exactly the number of elements specified by

the type dimensions then all the vectors, or matrices, in

the formulated array will have the same value, being constituted
,

by the <list> elements.

If <dimension> is not provided, the resultant vector(s)

or matrices take on default dimensions and the number of elements

in the <list> must be consistent with the default.

The total subscript may contain one and only one *, in

which case that index position is left unspecified and its value

will be adjusted to the length of the <list>.

EXAMPLES:
,

1. INTEGER3 ,4(ACE)

- A 3x4 array of integer-elements. Each element is equal
, ,

to INTEGER(ACE). ACE must be the character representation

of an integer (e.g., '-604').

2. SCALAR(A,B,C,15#I)

- A one-dimensional array of 18 scalar values.

6-32

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.00

3. 2BIT(A,B ,C,D,E)

- A one-dimensional array of 5 bit strings. String length

equals maximum string length of elements.

4. BIT3 ,2:1 TO 8(A)

- A 3x2 array of 8-bit bit strings. All array elements are

equal to the eight "left most" bits of A.

5. VECTOR9 : 4 (A,0,0,0)

- A one dimensional array of 9 four-component vectors.

Each vector equals (A,O,O,O).

- A 4xn matrix where n

7. VECTOR2 ,2:(B)

= product of rA) dimensions
4

- A 2x2 array of default length vectors. Every vector

component is equal to B.

8. VECTOR2 ,2:6(6#A,6#B,1,0,0,1,0,0,6#D)

- A 2x2 array of 6-component vectors.

9. MATRIX (A B C -------)10: ",

- A one-dimensional array of 10 default size matrices.

(Note that list length must be consistent with the default.)

10. MATRIX2 ,3,4:5,5(5#A,5#B,5#C,5#D,5#E)

- A 2x3x4 array of 5x5 matrices.

6-33

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

101

6.2.2.3 Special Character-to-Bit, Bit-to-Character Functions

In addition to the BIT and CHARACTER functions presented in

Sec. 6.2.2.1, special subscripting allows binary, octal and

hexadecimal conversion from characters to bit string and vice-

versa. The general forms are:

a) BIT[<form>] «character-operand»

b) CHARACTER[<form>] (<bit-operand»

where

<form> = {@BINI@oCTj@DECI@HEX}

GENERAL RULES:

1. BIT<form> converts a character string (or array of

character strings) of binary, octal, decimal or hexadecimal

digits into a corresponding bit string (or array of bit

strings). @BIN requires the character string to be made

up of only l's and a's, @OCT of only a to 7, etc.

2. CHARACTER<form> converts a bit string (or array of bit

strings) into a character string of binary, octal, decimal or

hexadecimal digits, depending on the subscript. If the

6-34

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

,. 1.02

bit string is too short for the required form, it will be

padded on the left with zeros.

3. If <form> is not provided, these conversion functions revert

to the unsubscripted functions of Sec. 6.2.2.1.

'EXAMPLES:

BIT@OCT('657'), CHAR@HEX(B),

CHAR@BI~('lOlOl')' BIT@HEX('FAD')

are all valid applications.

6.2.2.4 Precision. The precision of expression results can be

specified or changed explicitly by the use of the <precision­

expression>. That is:

{<type-operand> I<type-array-operand<} <precision-expression>

where

<type-operand>={<integer- !<scalar- !<vector- I<matrix-

<bit- }operand>

and likewise for <type-array-operands>. If the <type-operand>

is an expression or a subscripted name, the <operand> must appear

within parentheses.

6-35

INTERMETRICS INCORPORATED' 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

".... 1.03

A. Floating point:

GENERAL FORMAT:

<precision-expression> = @p

GENERAL RULES:

1. p must be an unsigned integer literal and is equal to

the minimum number of significant decimal places (same

meaning as in the PRECISION attribute of the declaration

statement) .

EXAMPLES (presuming a 32-bit word) :

1. DECLARE A PRECISION(lO);

DECLARE B ARRAY(S) INTEGER;

A = (BI)@lO+C;

B
1

is converted from single to a double precision scalar

(i.e., at least 10 significant decimal places) and the

sum is performed in double precision. Note that an

indexed name requires parentheses.

2. REPLACEt SP BY '4';

REPLACE DP BY '10';

DECLARE X PRECISION(DP);

A = B +(X Y)@Sp;

The. double precision result of X Y will be converted

to single precision. The final sum is computed in

single precision.

B. Fixed point:

GENERAL FORMAT:

<precision-expression> =

{@p[,q]!{@<name>!@DPI@spl@*}[+k -k]}

t 7 3 6-36See Sec. ..6

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.04

where @DP and @SP are keywords; i.e., no spaces are allowed

between characters.

GENERAL RULES:

1. @p, q specifies the number of integer and fractional

bits (same meaning as in the PRECISION attribute of

the declaration statement).

2. @<name>±k specifies the precision to .be the same as

that of <name> except with the binary point shifted

relatively to the right (+) or left (-) by k places;

i.e., increasing or decreasing, respectively, the

number of integer bits.

3. @DP±k specifies conversion, first to double word length

while maintaining the number of integer bits, and then

a relative shift of the binary point right (+) or left (-)

by k places.

4. @SP±k specifies a relative shift of the binary point

to the right (+) or left (-) by k places first, and

then conversion to single word length while maintaining

·the new number of integer bits.

5. @*±k specifies the current word length with the binary

point shifted relatively to the right (+) or left (-)

by k places.

EXAMPLE:

Presuming a 32-bit word,

A = E@*_5 + (B + C@DP-S)D)@E-S

C is converted from single to double precision and the

6-37

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

105

binary point shifted left eight places~ B + C is

performed in double precision and the result of the

multiplication with D is rescaled to the same scaling

as E except that the binary point is shifted left

five places. This quantity is added to E after the

binary point of E is also shifted left five places.

6.2.2.5 Summary* of Explicit Data-Type Conversions. The

following table describes the resulting conversion for each

function and operand type (I+S means integer to scalar, etc.):

~Function ' I S B C

INTEGER / S+I B+I C+I(l)

SCALAR I+S /' B+I+S C+S (1)

BIT (3) I+B S+B (2) / C+B (2)

CHARACTER (3 I+C S+C B+I+C /

/: Restores original argUment (no operation).

Notes: (1) INTEGER and SCALAR only accept character string

arguments which represent whole numbers and scalars,

respectively. For example, INTEGER('30672') and

SCALAR('362.06E+l') are valid applications.

* This section summarizes the conversions presented in Sees.
6.2.2.1 and 6.2.2.3.

6-38

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.06

(2) BIT converts scalars and character strings directly

to bit strings. That is a floating point scalar

argument would result in the string representing the

machine "bit-pattern" of the floating point quantity.

A character is converted to its bit pattern.

(3) BIT and CHARACTER may be subscripted in order to

select particular bits and characters, or to modify

usage (see Section 6.2.2.3). A character string ,which

represents binary, octal, decimal, or hexadecimal digits

can be converted to a corresponding bit string; i.e.,

BIT@BIN('lOl1') becomes 1011

BIT@OCT('657') becomes 110 101 111

BiT@HEX('FAD') becomes 1111 1010 1101

BIT@DEC('78.') becomes 1001110

Likewise bit strings can be converted to binary,

octal, or hexadecimal character digits; e.g.,

CHARACTER@HEX(BIN'lllllOlO')

Also, VECTOR and MATRIX cause the same conversions

as SCALAR.

6-39

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

107

6.3 Subscripts

Subscript notation is used in·HAL to specify single elements,

or multiple-element partitions,of vectors, matrices, bit- and

character-strings, arrays, and structures.

The first element of a vector, the first bit in a bit-string

("left-most" bit) .and the first character in a .character string

("left-most" character) are noted by the subscript 1, the second

by 2, etc. up to the total number of components. Thus, for a·

9~element vector the components may be written as

For a matrix. the first of the two subscripts refers to the row

number, running from 1 up to the number of rows, and the second

to the column number, running f~om 1 up to the number of columns.

For example the elements of a 2x3 matrix could be referred to by

writing:

The above data-types (including integers and scalars) may

be arrayed in one, or multiple dimensions, and also organized

into hierarchical data structures. In order to select and

partition all quantities uniquely it is necessary to distinguish

levels of subscripts. In the most general case, this is accomplished

by separating structure subscripts from array subscripts with

a semi-colon (;) and array subscripts from data-type subscripts

with a colon (:). For example,

6-40

INTERMETRICS INCORPORATED· 380 GREEN STREET' t;AMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.08

X.Y5;3:3,4

"refers to the scalar element in the 3rd row, 4th column of the

3rd component of the array of matrices Y which is in the 5th

copy of the structure X.

6.3.1 Subscripting Data-Types and Arrays of Data-Types

Subscripting (i.e., selecting or partitioning) is

accomplished by attaching a <subscript-expression> to a name, thus

GENERAL FORMAT:

{<type-name> I<type-array-name>}< ub . t· . >s scr~p -express~on

where

<subscript-expression>

= [[<~ndex-expression>[,<index-expression>] •••]:]

[<index-expression>!,<index-expression>]]

and

<index-expression>

= {<scalar-operand> [TO<scalar-operand>JI

[<scalar-operand>AT] <scalar-operand>}

<scalar-operands> are evaluated and converted to the nearest

integer before use. <scalar-operands> must be >. 1.

6.3.2 Single-Element Reference

When referencing a single element (i.e., not an array) the

general format of Sec. 6.3.1 reduces to

[[<scalar-operand>[,~scalar-operand>]•••]:]

[<scalar-operand>[,<scalar-operand>]]

'.I .t;

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840
." ~09

GENERAL RULES:

1. The operands to the left of the colon (:) reference the

particular array element; the operands to the right may

be used to reference a matrix, vector, or string component.

2. For an array, if "left-operands" are not provided, the

colon being optional in this case, reference is made to an

array of the particular matrix, vector, or string components.

3. For a vector or matrix, one or two <scalar-operands> are

used to reference a vector or matrix component.

4. For a bit- or character-string, one <scalar-operand> is

used to reference a single bit or character in the string.

5. Use of a number sign (#) in place of a <scalar-operand>

means "the last of a particular index".

EXAMPLES:

1. M3 ,4 references the matrix-component in the third row, fourth

column.

2. A references a scalar or integer array element in the2,3,4

second plane, third row, fourth column.

3. A2 ,3,4:3,4 references the component in the third row, fourth

column of the matrix located in the second plane, third row,

fourth column of the array, A.

4.

5.

6.

BIT
16

(A) references the 16th bit in the bit representation of A.
,
TEXTS references the Sth character in the string.

*M references the matrix in the third row, fourth column3,4:
. *of the array of matr~ces, [Ml.

6-42

INTERMETRICS INCORPORATED· 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.1.0

7. [V]s references an array of the 5th components of all the

vectors in the array of vectors [V]. [V]s is an array of

scalars.

6.3.3 Multiple-Element Partitions

6.3.3.1 The Use of * An asterisk (*) may be-used in place of

<scalar-operand> to indicate "all of a particular index",

thus establishing a cross-section of a matrix or an array.

EXAM?LES:

1. M*,4 references the fourth column of the matrix, which is

a vector. (That is, all rows, fourth column.)

2. [V]2 *. references the vectors in the second row of the array, .
of vectors, Note that [V]2,* is itself a one-dimensional

array.

6.3.3.2 The "TO" Operator. The TO-operator may be used to

reference (or partition) a set of elements by specifying the

index limits.

GENERAL RULES:

1. The value of the operand to the left of TO refers to

the element at which the partition begins.

2. The value of the operand to the right of TO refers to the

element at which the partition ends.

EXAMPLES:

1. BS TO 10 selects bits 5, 6, 7, 8, 9, 10 from the bit string B.

6-43

INTE~METRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

111

*2. Ml TO P, 1 TO Q partitions a larger matrix and selects the

first P rows and the first Q columns •

3.
•

[A] ~ partitions a two-dimensionalP TO (P+2) , .1 TO 3: 4 TO 1f

array of bit strings. The result is an array of 3 rows and

3 columns. Each array element is a partition from bit 4 to

the last bit of the corresponding original bit string.

6.3.3.3 The "AT" Operator. The AT-operator may be used to

reference (or partition) a set of elements by specifying the

size (or length) and the beginning index.

GENERAL RULES:

1. The value of the operand to the left of AT indicates

the size of the partition.

2. The value of the operand to the right of AT refers

to the element at which the partition begins.

EXAMPLES:

1. B6 AT 5 selects 6 bits from the bit string B; i.e.,bits

5,6,7,8,9,10.

2. BIT10 AT p(A) first converts the floating point (or fixed­

point) scalar, A, to a bit string and then selects 10 bits

starting atP.

*3. M4 AT 5, 4 AT 7 partitions a larger matrix by selecting

a 4x4 sub-matrix.

6-44

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 1120

4. Note that·
•

6.3.4 Subscripting Structures

Subscripts may be used to specify terminal data elements

and spec~fic copies of the major structure, or·contained minor

structures.

GENERAL FORMAT:

<structure-name> ..
<structure-subscript-express~on><subscr~pt-

expression>

where

<structure~subscript-expression>

= [[<index-expression> [,<index-expression>] •••] 1]

<structure-name> = {<fully-qualified-name>l<non-qualified-name>}

and <index-expression> and <subscript-expression> are defined

in Sec. 6.3.1.

GENERAL RULES:

1. When the <structure-subscript-expression> is included, all

structure subscripts (major and minor) must be indicated.

2. The use of an asterisk * means "all of the particular index".

Thus, {A.B.D}26,*1 means D in all the copies of B which are in

the 26th copy of A. If all indices are filled with * then

the <index-expressions> may be omitted optionally; for example,

{A.B.D}* *. = {A.B.D}, ,

6-45

It-JTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

113

EXAMPLES:

DECLARE 1 A(SO)NONQUALIFIED,

2 B(2S),

3 C ARRAY (4,4) MATRIX(3,3),

3 D INTEGER,

2 E(lS),

3 G VECTOR (3) ,

2 F BIT(l);

The following examples refer to the above structure declaration.

1. C8,10;4,2:1,2
,

(This represents the scalar component in the first row, second

column of the matrix which occupies the 4,2 position in the

array C. This array is in the lOth copy of B which is in the

8th copy of A.

2. {G}2

This represents the second component of the vector G in

all copies of E which are in all copies of A.

3. F2S;

This represents the single I-bit bit-string in the 2Sth

copy of A.

4.{[~l}23 *'4 *., , , .
This represents the array of matrices in the "4th row" of the

array C, in all the copies of B which are in the 23rd copy

of A.

6-46

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.14
.. ,"',

6.3.5 Array Subscripts

The subscripting of Sec. 6.3 may be generalized by

substituting one or more <scalar-array-operands> for the

<scalar-operands> shown. The result will be an array whose shape

is determined by the subscripts.

GENERAL RULES:

1. <type-name> may not be a single scalar or integer quantity.

(That is, it must be capable of being "subscripted".)

2. If more than one <scalar-array-operand> appears as a sub-

script, all must have the same array shape.

3. The GENERAL RULES of Sec. 6.3.2 apply here.

The usage.of array subscripts is complex and a few simple

examples are shown below.

EXAMPLES:

1. DECLARE A ARRAY (100) ;

DECLARE B ARRAY (2,2) CONSTANT (1,20,40,60)

A[B! results in a 2x2 array of the following elements:

~' A'~JA40 A60

2. DECLARE M MATRIX (6,6);

DECLARE A ARRAY (2,2) CONSTANT (1,2,3,4);

M*,[Al results in a 2x2 array of vectors:

~*,l :*,~
~*'3 M*,J

6-47

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·18,:0

! 115

6.4 Expression Summary

Tables 6.4-1 through 6.4-7 summarize the allowable

operations between two operands. In most cases the valid result­

type (or error) and any implied data conversions are indicated

within the boxes. Array operations are generally valid wherever

corresponding data-type operations are also valid.

6-48

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.1.6

O
PE

R
A

N
D

IN
TE

G
ER

SC
A

LA
R

V
EC

TO
R

M
A

TR
IX

B
IT

ST
R

IN
G

C
H

A
R

A
C

TE
R

ST
R

IN
G

<P
>

<P
>

<P
>

<P
>

<P
>

<Q
>

IN
T

E
G

E
R

SC
A

LA
R

V
EC

TO
R

M
A

TR
IX

IN
T

E
G

E
R

B
IT

ER
R

O
R

B
+

I*
S

T
R

IN
G

.

-

,

.,
.

~
.

.,

.

...
.

,.
*

.B
+

I
m

ea
n

s
c
o

n
v

e
rs

io
n

fr
o

m
b

it
to

in
te

g
e
r

Z --
i

rn :n :s: rn --
i

:n 0 en Z ("
)

0 :n -0 0 :n :P -
l rn 0 · w ro 0 G
)

:n rn rn Z en --
i

:n rn rn -
l ·

en
~

I ...
:S

:.
\0

ID :n 0 G
)

)T
1 :s: :P en en :P ("
)

T C en rn --
i

-
l en 0 '" W <
0 · "@

~
.:::

!
ro

~
m ro · ro .. 0

O
p

e
ra

ti
o

n
P

re
fi

x
:

. {
<

P
*}

O
PE

R
A

N
D

<Q
>

T
a
b

le
6

.4
-1

<P
:;'

=
{
[
~
l
}

<Q
>

=
N

O
T

~
C

H
A

R
A

C
TE

R
IN

TE
G

ER
SC

A
LA

R
V

EC
TO

R
M

A
TR

IX
B

IT
ST

R
IN

G
O

PE
RA

N
D

l
ST

R
IN

G

IN
TE

G
ER

IN
TE

G
ER

SC
A

LA
R

ER
R

O
R

ER
R

O
R

IN
T

E
G

E
R

ER
R

O
R

I+
S

B
+

I

I
SC

A
LA

R
SC

A
LA

R
SC

A
LA

R
ER

R
O

R
ER

R
O

R
SC

A
LA

R
ER

R
O

R
-

I+
S

B
+

I+
S

I
V

EC
TO

R
ER

R
O

R
ER

R
O

R
V

EC
TO

R
ER

R
O

R
ER

R
O

R
ER

R
O

R

d

M
A

TR
IX

ER
R

O
R

ER
R

O
R

ER
R

O
R

i
M

A
TR

IX
ER

R
O

R
ER

R
O

R

I
d

B
IT

ST
R

IN
G

IN
TE

G
ER

SC
A

LA
R

ER
R

O
R

ER
R

O
R

IN
T

E
G

E
R

'
ER

R
O

R
" B

+
I

B
+

I+
S

B
+

I
-

,

tH
A

R
A

C
TE

R
ER

R
O

R
ER

RO
R

ER
R

O
R

ER
R

O
R

ER
R

O
R

ER
R

O
R

ST
R

IN
G

,

Z -
i m JJ <:: ,m -
i

.J
J

-0 (f
) z 0 0 JJ "0 JJ » -
i m 0 · (0 '"0 G
l

JJ m m Z (f
)

-
i

JJ m m
'"

-
i

I

·
U

l

0
a

» ;: O
J ;J;1 0 G
l

.m <:: » (f
)

(f
) » 0 I C (f
) m -
i

-
i

(f
)

0 '"~ '"<0 · m ~ .:::
! '"Q
) '? ~ '"
~ .-' (J)

O
p

e
ra

ti
o

n
A

d
d

it
io

n
&

S
u

b
tr

a
c
t

+
O

PE
RA

N
D

l
_

O
P.

ER
A

N
D

2

T
ab

le
6

.4
-2

d
:

d
im

en
si

o
n

ch
ec

k

~
C

H
A

R
A

C
TE

R
IN

TE
G

ER
SC

A
LA

R
V

EC
TO

R
M

A
TR

IX
B

IT
ST

R
IN

G
O

PE
R

A
N

D
I

ST
R

IN
G

IN
T

E
G

E
R

IN
TE

G
ER

SC
A

LA
R

V
EC

TO
R

M
A

TR
IX

IN
T

E
G

E
R

ER
R

O
R

I
I-

+5
I+

S
I+

S
B

+
I

SC
A

LA
R

SC
A

LA
R

SC
A

LA
R

V
EC

TO
R

_
M

A
TR

IX
SC

A
LA

R
ER

R
O

R

I+
S

B
+

I+
S

M
A

TR
IX

(1
)

,

V
EC

TO
R

V
EC

TO
R

V
EC

TO
R

SC
A

L
A

R
(2

)
.

V
EC

TO
R

V
EC

TO
R

ER
R

O
R

I+
S

V
EC

TO
R

(3
).

d
B

+
I+

S

M
A

TR
IX

M
A

TR
IX

'M
A

TR
IX

V
EC

TO
R

:M
A

TR
IX

M
A

TR
IX

ER
R

O
R

I+
S

d
d

B
+

I+
S

B
IT

ST
R

IN
G

IN
TE

G
ER

SC
A

LA
R

V
EC

TO
R

M
A

TR
IX

IN
T

E
G

E
R

ER
R

O
R

B
+

I
B

+
I+

S
B

+
I+

S
B

+
I+

S
B

+
I,

B
+

I
.

C
H

A
R

A
C

TE
R

'
ST

R
IN

G
ER

R
O

R
ER

R
O

R
ER

R
O

R
ER

R
O

R
ER

R
O

R
ER

R
O

R
.

'.
'

O
PE

RA
N

D
l

<m
ul

t>
O

PE
R

A
N

D
2

O
p

e
ra

ti
o

n
M

u
lt

ip
li

c
a
ti

o
n

:

z m
h

.
JJ ;;::

"
m

.,;
.... ::Q 0 (f

) Z 0 0 JJ -U 0 JJ » m 0 . W CD 0 G> JJ m m Z (f
) JJ m m

'"
0

I
»

1
ft

;;:
:

.....
O

J ::Q 0 G> IT
'

;;:
: » (f
)

(f
) » 0 I C (f
)

m (f
)

~
0 '"

~
w '" ~ .::
!

CD 0> 'f ~ 0

N
o

te
s:

1
)

V
e
c
to

r
o

u
te

r
p

ro
d

u
c
t

V
V

2)
V

e
c
to

r
D

O
T

p
ro

d
u

c
t

V
.V

(d
)

3)
V

e
c
to

r
c
ro

ss
p

ro
d

u
c
t

V*
V

(d
,

re
s
tr

ic
te

d
to

3
-e

le
m

e
n

t
v

e
c
to

rs
)

d
:

d
im

en
si

o
n

ch
ec

k

IS
2

IN
T

E
G

E
R

SC
A

L
A

R
V

E
C

T
O

R
M

A
T

R
IX

B
IT

S
T

R
IN

G
C

H
A

R
A

C
T

E
R

S
T

R
IN

G
O

PE
R

A
N

D
,

-
IN

T
E

G
E

R
SC

A
L

A
R

SC
A

L
A

R
E

R
R

O
R

E
R

R
O

R
SC

A
L

A
R

E
R

R
O

R

I7
S

,
I7

S
I7

S
I7

S
,B

7
I7

S

E
R

R
O

R
I

SC
A

L
A

R
SC

A
L

A
R

SC
A

L
A

R
E

R
R

O
R

SC
A

L
A

R
E

R
R

O
R

I7
S

B
7

I7
S

.

V
E

C
T

O
R

V
E

C
T

O
R

V
E

C
T

O
R

E
R

R
O

R
E

R
R

O
R

V
E

C
T

O
R

E
R

R
O

R

I7
S

B
7

I7
S

M
A

T
R

IX
M

A
T

R
IX

.M
A

T
R

IX
E

R
R

O
R

\:
E

R
R

O
R

M
A

T
R

IX
E

R
R

O
R

I7
S

B
7

I7
S

B
IT

S
T

R
IN

G
SC

A
L

A
R

SC
A

L
A

R
E

R
R

O
R

E
R

R
O

R
SC

A
L

A
R

E
R

R
O

R
B

7
I+

S
B

7
I7

S
,

I7
S

B
7

I7
S

B
7

I7
S

.

-
~
H
A
R
A
C
T
E
R

E
R

R
O

R
S

T
R

IN
G

E
R

R
O

R
ER

R
O

R
E

R
R

O
R

E
R

R
O

R
E

R
R

O
R

..

z -< m :n s: m -< :n 0 co Z 0 0 :n "U 0 :n » -< m 0 · '"co o
·

G
l :n m m Z co -< :n m m -< · 0

O
J

»
I

s:.
'"

O
J

IV

""0 G
l

!" s: » (f
) co » 0 I C CO m -< -< CO 0 '" '"<D · '§ .::
J

C
O O
J

~
'i' CO

N
c3

0

O
p

e
ra

ti
o

n
D

iv
is

io
n

O
PE

R
A

N
D

1
/O

PE
R

A
N

D
2

T
a
b

le
6

.4
-4

N
o

te
s:

1
.

R
e
su

lt
is

'IN
T

E
G

E
R

if
O

PE
RA

N
D

2
is

a
w

h
o

le
nu

m
be

r
li

te
r
a
l
~

O
.

2
.

R
e
su

lt
is

IN
TE

G
ER

if
O

PE
RA

N
D

2
is

a
b

it
s
tr

in
g

li
te

r
a
l

w
h

ic
h

m
ay

b
e

c
o

n
v

e
rt

e
d

to
an

u
n

si
g

n
ed

in
te

g
e
r

(B
....
I)

.
.

3
.

R
e
su

lt
is

IN
T

E
G

E
R

if
O

PE
RA

N
D

2
is

a
w

h
o

le
n

u
m

b
er

'l
it

e
r
a
l
~

0
(B

....I
).

4
.

Sa
m

e
as

(2
)

e
x

c
e
p

t
(B

....
I.

B.
...I

).
5

.
S

ee
S

e
c
.

6
.1

.1
.4

:::s
;::

IN
T

E
G

E
R

SC
A

LA
R

V
EC

TO
R

M
A

TR
IX

B
IT

S1
R

IN
G

C
H

A
R

A
C

TE
R

ST
R

IN
G

O
PE

R
A

N
D

I
.

.IN
TE

G
ER

SC
A

LA
R

SC
A

LA
R

ER
R

O
R

ER
R

O
R

SC
A

LA
R

ER
R

O
R

I
I.

...S
I .

...S
I.

...S
,

B.
...I

....
S

(S
ee

N
o

te
1

)
(S

ee
N

o
te

1
)

(S
ee

N
o

te
2)

SC
A

LA
R

SC
A

LA
R

SC
A

LA
R

ER
R

O
R

ER
R

O
R

SC
A

LA
R

ER
R

O
R

-
.

B.
...I

....
S

V
EC

TO
R

ER
R

O
R

ER
R

O
R

ER
R

o'R
ER

R
O

R
ER

R
O

R
ER

R
O

R
,.

M
A

TR
IX

(5
)

M
A

TR
IX

'
M

A
TR

IX
M

A
TR

IX
ER

R
O

R
'E

RR
O

R
ER

R
O

R
S.

...I
B.

...I
.

B
IT

ST
R

IN
G

SC
A

LA
R

SC
A

LA
R

ER
R

O
R

ER
R

O
R

SC
A

LA
R

ER
R

O
R

B.
...I

....
S

,
I.

...S
·B

....
I.

...S
B.

...I
....

S
.

B.
...I

....
S

(S
ee

N
0t

:.e
3)

(S
ee

N
o

te
3)

(S
ee

N
o

te
4)

CH
A

RA
CT

ER
ST

R
IN

G
ER

R
O

R
ER

R
O

R
ER

R
O

R
ER

R
O

R
ER

R
O

R
ER

R
O

R
'.

'

~ --< m JJ ;;: m
.~

:ri 0 (f
) z 0 0 JJ -0 0 JJ ::; m 0 · w 0
0

0 G
)

JJ m
·m

Z (f
) --< JJ m m --< ·

'"
0

I
»

U
1

;;:
W

O
J ;I;
!

0 G
)

!" ;;: » (f
)

(f
) » 0 I C (f
) m -< --< (f
)

0 '" w C
D · O
i

.:::
!

...
0

0
0

>

ti
~ 0

0 0

O
p

e
ra

ti
o

n
E

x
p

o
n

e
n

ti
a
ti

o
n

O
PE

RA
N

D
1

**
O

PE
R

A
N

D
2

T
ab

le
6

.4
-5

O
p

e
ra

ti
o

n
R

e
la

ti
o

n
a
l

T
ab

le
sh

o
w

s
,v

a
li

d
re

la
ti

o
n

a
l

o
p

e
ra

to
rs

;
th

e
re

s
u

lt
,i

s
al

w
ay

s
tr

u
e

o
r

fa
ls

e
•

I
~

IN
.T

EG
ER

SC
A

LA
R

V
EC

TO
R

M
A

TR
IX

B
IT

ST
R

IN
G

C
H

A
R

A
C

TE
R

O
PE

RA
N

1
ST

R
IN

G

I
IN

TE
G

ER
<Q

>
<Q

I>
ER

R
O

R
ER

R
O

R
<Q

>
ER

R
O

R

I"
-S

B
"-

I

SC
A

LA
R

<Q
>

<Q
>

ER
R

O
R

ER
R

O
R

<Q
>

I
ER

R
O

R
I

I"
-S

-
B

"-
I"

-S

V
EC

TO
R

ER
R

O
R

ER
R

O
R

<P
>'

ER
R

O
R

ER
R

O
R

ER
R

O
R

M
A

TR
IX

ER
R

O
R

ER
R

O
R

ER
R

O
R

'
'

<P
>

ER
R

O
R

ER
R

O
R

B
IT

ST
R

IN
G

<Q
>

<Q
>

E
R

R
O

R
,

ER
R

O
R

<Q
>

(1
)

ER
R

O
R

g.
.-I

B
..-

I..
-S

.

C
H

A
R

A
C

TE
R

ER
R

O
R

ER
R

O
R

ER
R

O
R

ER
R

O
R

ER
R

O
R

<Q
>

(2
)

ST
R

IN
G

I
.

-."

Z -
i en

,-
:J

J :;: m -
i
'

:J
J 0

.~
.
'

(J
) Z 0 a :J
J

"U a :D » -
i m
,

a · w '"0 G
l

:D m m Z (J
)

-
i

:D m m -
i

'"
·

1
0

U
1

»
"'"

;;: O
J
~ a G

l
.m ;;: » (J

)
(J

) » 0 I C (J
)

m -
i

-
i

(J
)

0 '" w '"' · en. ~ ::
! '"0'> '", CD "'"0

S
p

e
c
ia

l:
<

st
ru

c
tu

re
>

<
P

>
<

st
ru

c
tu

re
>

<
ar

ra
y

>
<

P
>

<
ar

ra
y

>

~

<P
>

O
PE

RA
N

D
1

{<
Q

>}
O

PE
R

A
N

D
2

T
a
b

le
6

.4
-6

<P
>

=
,

{=
\.

..
=}

<Q
>

=
{=

1
"'

=
!>

I<
j<

=
I>

=
!"

""
<

!"
""

>
}

N
o

te
s:

1)
O

PE
R

A
N

D
p

ad
d

ed
o

n
th

e
le

f
t

to
m

ak
e

le
n

g
th

s
e
q

u
a
l

if
n

e
c
e
ss

a
ry

.
2)

O
PE

RA
N

D
p

ad
d

ed
o

n
th

e
ri

g
h

t
to

m
ak

e
le

n
g

th
s

e
q

u
a
l

if
n

e
c
e
ss

a
ry

.

,'
"

I
E
R
R
O
~

I
I
I

•

I.
..

,
E
R
R
O
~

I
\

I
I

•

I..
.

,
E
R
R
O
~

1
.

I
..

,..
.

I
E
R
R
O
~

I
I

..
<

P
>

C
H

A
R

A
C

TE
R

I+
C

·

<
P

>
C

H
A

R
A

C
T

E
R

S+
C

C
H

A
R

A
C

T
E

R
S

T
R

IN
G

I

B
IT

S
T

R
IN

G

<
P

>
=

II {I
I}

<Q
>

=
~i
:n

M
A

T
R

IX
V

E
C

T
O

R

.
{<

P
>

}
O

PE
R

A
N

D
l

<Q
>

O
PE

R
A

N
D

2

SC
A

L
A

R

SC
A

L
A

R

V
E

C
T

O
R

M
A

T
R

IX

IN
T

E
G

E
R

IN
T

E
G

E
R

-
_

.
-

-
-

O
p

e
ra

ti
o

n
S

tr
in

g

w ~ G
l

JJ '" '"z (J
)

--
l

JJ '"m --
l •

C
\

o
I

:>
U

1
S:

.
U

1
O

J 2::J g mZ --
l '"JJ s: '"--l JJ o (J
) z o o JJ "U o JJ ::; '" o

I.
.

.,
ER

RO
~

I
~
I

B
IT

~~
RI

NG

s: &; (J
) :> o I C (J
)

...
..

r:::
N

uJ
Co

.:
§ W <

D

B
IT

S
T

R
IN

G

C
H

A
R

A
C

TE
R

S
T

R
IN

G

<P
;>

C
H

A
R

A
C

TE
R

I+
C

<P
>

C
H

A
R

A
C

TE
R

S+
C

E
R

R
O

R
E

R
R

O
R

<P
;>

C
H

A
R

A
C

TE
R

B
+

I+
C

E
R

R
O

R

<
P

>

C
H

A
R

A
C

T
E

R

0
;

:::
!

0
> ill ~ 0
> r. o

T
ab

le
6

.4
-7

I

I
I

I

I

I

I

I

I

I

I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I

I

I

I

I

I

I
I

I
I

I
I

I
I

I
I

I
I

I

7.0 STATEMENTS

7.1 Assignment Statements

The assignment statement is used to evaluate an expression

and to assign its value to one or more target variables. The

target variables may be integer, scalar, vector, matrix, bit and

character variables, array variables of these types,

subscripted variables, or structures.

GENERAL FORMAT:

[<label>:)<variable-name>[,<variable-name» = <data-expression>;

where,

<data-expression> = {<arithmetic !<stringI <array}-expression

GENERAL RULES:

1. An assignment is performed in the following steps:

a. subscripts of the target variables are evaluated;

b. the expression on the right hand side of = is evaluated;

c. the target variables are assigned.

2. If more than one <variable name> appears on the left hand

side of = then all the names must be of identical data

organization. (Several different data types may be included.)

3. The dimensionality of the right hand side expression must

be identical to that of the left hand side variables with

the following exceptions:

a. string assignments (see Sec. 7.1.2);

b. assigning zero (0) to arithmetic variables; e.g.,

V, it = 0; *[M] = 0; A,B,C,D = 0; are acceptable forms;

7-1

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

i _ 1.24

c. array assignments (see Sec. 7.1.3)

EXAMPLES:

A, a, c, D = VECTOR (1, 0, 0, PiC);

0= A P + ~ F + LOG(A)Z;

BAKER: Bl TO 8 = C3 TO 41 IA;

. .
ABLE: [A], [I] = BIT2 ,10: ([P]20 AT J);

are all valid assignment statements.

7-2

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.25

7.1.1 Implicit COnversions

7.1.1.1 Type Conversions. Implicit conversions are performed

on the following assignments:

1. Scalar and bit expressions to integer target

variables.

2. Integer and bit expressions to scalar target

variables. The bit result is first converted to

integer, and then to scalar.

3. Integer and scalar expressions to bit target variables.

The scalar result is first converted to integer, and

then to bit.

4. Integer, scalar and bit expressions to character

target variables. The bit result is first converted

to integer, and then to character.

EXAMPLES:

A = slip;
I = A2 ;

A = I - S;

ABLE: TEXT = slip;

7.1.1.2 Precision Conversion. The resultant precision of an

expression is converted to the precision of the target variable:

EXAMPLES: (32 bit word length)

1. DECLARE PRECISION (10) VECTOR A;

x = A * il;

All vectors are floating point; the components of A are

7-3
INTERM~J:IR!C.~ INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

1.26

held in double precision. B is first converted to double

precision, the cross-product is performed, and the result is

converted to single precision on assignment to X.

2. DECLARE PRECISION(5,12) A,B;

DECLARE PRECISION(21,12) C;

A = B + C;

All quantities are fixed point; A and B are single length;

C is double length. The number of fractional bits for each

variable fills out the word length (less sign bit); thus,

effectively,

A and B become (5,26)

C becomes (21,42)

The precision conversions are as follows:

a. B is converted to double precision and added to C.

b. The result is converted back to single precision;

Le. (5,26) when assigned to A.

7.1.2 String Assignments

7.1.2.1 Bit Strings. When the length of a bit string expression

and the target variable are unequal, the expression result is

truncated on the left if it is too long, or padded with zeros

on the left if it is too short. The resulting value is assigned

to the target variables.

7-4

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.2:7
. ~.

. EXAMPLE:

•
BAKER: Sl TO 6 = B20 AT P;

are examples in which padding and truncation will occur.

7.1.2.2 "Boolean" Assignments. A one-bit string may be viewed

as a Boolean variable and can be assigned as follows:

A=. {{TRUE!ON!BIN'l'} I{FALSE!OFF!BIN' O'}};

Note that TRUE and ON are literally the binary constant BIN'l'.

A long bit string may be zeroed by an assignment; i.e.,

Bl TO 18 = FALSE;

.
However, Bl TO 18 = TRUE;sets bit 18 equal to 1 and the rest

equal to O.

7;1.2.3 Pseudo-Variable Bit String Assignment. Bit strings

may be assigned directly to the bit representation of other data

types by using the pseudo~variable SUBBIT.

GENERAL FORMAT:

SUBBIT<index_expression> «variable-name» = <bit-string-expression>;

GENERAL RULES:

1. <variable-name> may be the name of an integer, scalar, bit,

or character variable, or an array variable of these types.

7-5

INTERMETRICS INCORPORATED' 380 GREEN STREET, CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

,'- .. h.

~J'''.A. 1.28

EXAMPLES:

1. SUBBIT6 TO 10 (A) = BIN(5} '1';

The scalar A is interpreted as a bit string and the bits 6

to 10 are assigned all l's.

2. SUBBITl TO a(C16} = HilA;
The character C16 is interpreted as a bit string and

bits 1 to a are assigned the result of the string concatenation.

3. SUBBIT(A} = 81 !MANTISSAI /EXPONENT;

The scalar A is interpreted as a bit string and is assigned

a floating (or fixed) point format directly from a bit

string expression.

7.1.2.4 Fixed Character Strings. Assignment is similar to that

of bit strings except that extension or truncation is applied

on the right. Thus, the expression value is truncated on the

right if it is too long or padded on the right with blanks if it

is too short. The resulting is assigned to the target variables.

EXAMPLES:

1.

2.

3.

4.

, , ,
C = • ABC '; sets Cl 3 = 'ABC' and blanks the rest of C.TO, ,
Cl 3 = • ABC' ; leaves the rest of C alone •TO, ,
C3 = 'ABC' ; leaves the rest of C alone.TO 5,
C3 aD = • ABC I; leaves characters 1 and 2 alone, and blanksTO

5.
,
C3 TO 4 =

characters 6 to 80.
,

'ABC'; sets C3 TO 4 = 'AB' and leaves the rest
,

of C alone.

7-6

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

"" - 1.29

7.1.2.5 varying Character Strings.

GENERAL RULES:

1. If the value of the expression is longer than the maximum

length declared for the variable, the value is truncated on

the right. The target string obtains a current length

equal to its maximum length.

2. If the value of the expression is not greater than the maximum

length, the value is assigned; the target string obtains a

current length equal to the length of the value.

3. If the target string is sUbscripted, the string partition

is considered a fixeP length character string and the expres­

sion is assigned according to the rules of Sec. 7.1.2.3.

If the target variable length is shorter than the upper index

of the sUbscript expression, the target variable is padded

on the right with blanks and the expression assigned. If

the length is longer than the upper index, the expression is

assigned, leaving the other characters alone. If the upper

index exceeds the string maximum length, the assignment is

truncated at the maximum length.

4. The use of # as a subscript means the last character position

of the current length of the string, not the maximum length.
,

EXAMPLES: (let C be a varying string of maximum length 10)
, ,

1- C = I ABC' ; sets the length of C to 3
, ,

2. C = I ABC' II 'BFG I ; sets the length of C to 6
,

3. C3 TO # = CHAR(3) 'ABC'; assigns; I ABCA' from character 3 to

character 6, 6 being the current length of the string.

7-7

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.30

,
4. C7 TO 9 = 'pOP';assigns POP to characters 7, 8, 9. If the

original length is <6, the string is extended with blanks

and the length set to 9.' For example, suppose C were

equal to 'ABC', then the result of this assignment would be

, ABcl6l2Sl2SpOp , •

7.1.3 Array Assignments

GENERAL FORMAT:

[<labe1>:]<array-variab1e-name> [,<array-variab1e-name>] •••

= {<type-expression>l<type-array-expression>};

GENERAL RULES:

1. If the expression on the right hand side of = is a <type­

expression>, the result of the expression is assigned

to every target array element in sequence.

2. If the expression on the right hand side of = is a <type-

array-expression>, the result of the expression is assigned

to the target variables, in sequence, on an e1ement-

by-element basis.

EXAMPLES:

[A] = 5;' [VI, [W] = VECTOR(A,B,C,O);

[A] = [A] + 5; [A] = [B] [C];are all valid array assignment

statements.

7-8

INTERMETRICS INCORPORATED ·380 ,GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.31.

7.2 Declaration Statements

See Section 5.0.

7.3 Control Statements

7.3.1 The GO TO Statement

The GO TO statement causes control to be transferred to

the specified statement.

GENERAL FORMAT:

GO TO <label>;

EXAMPLE:

x = A;

GO TO BAKER;

ABLE: P = z;
- *-BAKER: V = M Y;

7.3.2 DO Statements

The bo statements constitute a set of four executable

statements. Each DO statement defines a group of statements

which are treated as a single unit. The four DO statements

are: the simple DO, the iterative DO WHILE and DO FOR,

. and the selective DO CASE.

A GO TO statement can transfer control from outside a group

to a statement within a group. Special care must be taken to

initialize necessary quantities in the cases of the iterative

·00 statements.

7-9
INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

,\ '

7.3.2.1 The Simple DO Statement.

GENERAL FORMAT:

[<label>:]DO; [[<label>:]<statement>] ••• [<label>:]END[<label>];

GENERAL RULES:

1. <statement> may be any executable statement including

another DO statement.

EXAMPLES:

BAKER: DO;

X = A;

Y = B; ,

DO;

Z = c;
W * Vi= M

END;

END BAKER;

Note that this example has been indented for clarity and does

not imply an established input source-output listing format

design.

7.3.2.2 DO WHILE Statement. The DO WHILE statement serves

as a means of executing a group of statements repetitively as long as

a condition is met.

7-10

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.33

GENERAL FORMAT:

[<label>:] DO WHILE <logical-condition>;

[[<label>:]<statement>] ••• [<label>:]END[<label>];

where

<logical-condition> = {<comparison-expression> I
<single-bit-expression>}

and

<comparison-expression> = {<bit-comparison>!<arithmetic­

comparison> I
<character-comparison> I
<comparison-expression> {AND!OR}

<comparison-expression> I
[-.] «comparison-expression»

and a <single-bit-expression> is an expression resulting in a

bit string of I-bit and involving only <bit operands> of length 1

(i.e., Booleans).

GENERAL RULES:

1. The <logical-condition> has a true or false result.

2. The <logical-condition> is within the loop structure of the

DO WHILE group and is re-evaluated each time before execution

of the group of statements.

3. When the <logical-condition> is not satisfied (i.e., false)

the DO WHILE loop is terminated and control is transferred

to the first executable statement following the END statement.

7-11

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

134

EXAMPLE: . ..
ABLE: DO WHILE (X>Y AND B6~TRUE)OR([A] ~ [B]);

p ~ LOG(Z);

* * *M ~ N + Q;

Y ~ M3 ,2 ;

END ABLE;

7.3.2.3 The DO FOR Statement. The DO FOR statement serves as

a means of executing a group of statements repetitively for a

list of valu~s of a control variable and a logical condition.

GENERAL FORMAT:

I<label>:]DO FOR<{~calar } variable> ~
1nteger

<for-list element>[,<for-list element>] •••

[WHILE<logical-condition>];

[[<label>:]<statement>] ••• [<label>:]END[<label>];

where

<for-list element> ~ <{~Catlar } expression>[<to-expression>
1n eger

[<by-expression>]]

<to-expression> ~ TO<{~calar} expression>
1nteger

and

<by-expression> ~ By<{~calar } expression>
1nteger

7-12

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.35

GENERAL RULES:

,1. The scalar or integer assignment means that a single variable

(control variable) will be assigned scalar or integer values.

2. The control variable takes on the successive values specified

by the <for-list elements>. If the element is simply a scalar

or integer expression, the control variable is set equal to

this value prior to a pass through the loop. If the element

involves <to- and <by-expressions>, the control variable is

compared with the value of the <to-expression> prior to each

pass, and is incremented by the <by-expression> at the con­

clusion of each pass.

3. If the <by-expression> is not provided, the group of statements

will be evaluated repeatedly, incrementing the assigned con­

trol variable by 1 until the control variable is greater than

the value of the <to-expression>.

4. If the <by-expression> is provided, the group will be evaluated

repeatedly, incrementing the assigned control variable by the

value of the <by-expression> until the control variable

exceeds (if the <by-expression> is positive) or is less

than (if the <by-expression> is negative) the value of the

<to-expression>.

7-13

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

5. The effect of the <logical-condition>, if provided, is the

same as for the DO WHILE statement.

6. The <to- and <by-expressions> are not within the loop struc­

ture of the DO FOR group and are evaluated only once. The

<logical-condition> is within the loop and is evaluated before

each pass.

EXAMPLES:

1. DO FOR I = 1,5,6,10 TO 20 BY 2,50;

x = Y;

Y = x2 + z;

END;

This loop will be executed five times.

2. BAKER: L = .Q/R;

ABLE: DO FOR I = P TO (N/S) BY L WHILE N > 0.046;

X = y
2 + AI;

N = N- .006 X;

END ABLE;

Note that the value of the <to-expression> (N/S) is only

computed Once. The condition N >0.046 is applied before

each pass.

7.3.2.4 DO CASE Statement. The DO CASE statement provides a

means of executing a selected statement from a group of statements.

GENERAL FORMAT:

[<label>:l DO CASE <case-expression>;

[[<label>:<statement>l ..• [<label>:lEND[<label>l;

where the <case-expression> can be either an integer expression

7-14

INTER¥ETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.37

or a scalar expression. The result of a <case-expression> is

rounded to the nearest integer before use.

GENERAL RULES:

1. The <case-expression> results in an integer, used to designate

which one of the included statements will be executed. A

value of 1 specifies the first statement, 2 the second, and

so on. An integer result outside the case range will be in

error. The compiler will annotate the listing, indicating

Case 1, Case 2, etc.

2. The <statements> may be any of the executable statements,

including other DO statements.

EXAMPLES:

ABLE: DO CASE N;
. 2

/*CASE 1*/X = Y ;

DO CASE P; /*CASE 2*/

F = A+ B; /*CASE 1*/

G= * - /*CASE 2*/M V;

END;

GO TO CHARLIE; /*CASE 3*/

Z =W + '8; /*CASE 4*/

END ABLE;

7.3.3 END Statement

The END statement delimits the do-groups.

GENERAL FORMAT:

l<label>:lENDI<label>l;

7-15

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617
1
)868-1840

. 38

GENERAL RULES:

1. The END statement terminates the group headed by the

nearest preceding DO statement which has not already been

terminated by an END statement.

2'. If a label follows END, the corresponding DO statement

must have that same label.

7.3.4 The IF Statement

The IF statement specifies the evaluation of a logical

condition and a consequent flow of control dependent on whether

the condition is true or false.

GENERAL FORMAT:

[<label>:]IF<logical-condition>THEN[<label>:] {<statement>!

<basic-statement>ELSE[<label>:]<statement>}

where

.a. the <logical-condition> has a true or false result; its

format was described in Sec. 7.3.2.2.

b. the <basic-statement> is any executable statement except

an IF or END statement.

7-16

INTERMETRIGS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·18·")

1.39

c. the <statement> is any executable statement (including

another IF statement) except an END statement.

GENERAL RULES:

1. If ELSE is not included, a true condition will cause

execution of the statement following, and a false condition

will cause control to pass to the statement following the

IF statement.

2. If ELSE is present then a true condition will cause execution

of the <basic-statement> following THEN and a false condition

will cause transfer of control to the statement following

ELSE.

3. The IF statement format requires that an ELSE be preceded

by an IF and not by another ELSE. As a result the execution

of a <statement> following ELSE occurs only if the <logica1­

condition> associated with the nearest preceding IF* is false.

EXAMPLES:

1. ABLE; IF B THEN IF (C OR Dl AND E THEN X = 5;

ELSE P: GO TO BAKER;

CHARLIE: Y = 6;

2. IF X>100 AND Y<3 THEN P: GO TO ABLE;

ELSE IF B OR C THEN

DO;

Y = A + B;

- *-ABLE: Z = M V;

END;

ELSE Y = A - B;

*IF statements within preceding do-groups do not apply.
7-17

INTERMETRICS INCORPORATED· 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

140

7.3.5 The NULL Statement

The NULL statement is a no~operation.

GENERAL FORMAT:

[<label>:] ;

EXAMPLE:

IF X<5 THEN ABLE:;

ELSE IF X<lO THEN GO TO HOME;

7.3.6 REPLACE Statement

The REPLACE statement provides a means of specifying the

substituti6n,of a string of characters for an identifier. The

character string must be contextually correct where substituted. This

is a compile-time feature and not a run-time executable statement.

GENERAL FORMAT:

REPLACE<identifier>BY '<character-string> ';

GENERAL RULES:

1. The <identifier> may not be a keyword or any word used

by the language syntax (e~g.,TO or WHILE).

2. The <character-string> must be written in.one-line format.

3. The <character-string> will be substituted, literally, whenever

the identifier is encountered within the program. Substitution

is accomplished within the compiler and does not appear in che

listing.

4. The <identifier> may not be a <parameter> in the PROCEDURE or

FUNCTION statements.

7-18

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

'.

5. The <identifier> may not be a minor structure name or a

terminal name within a QUALIFIED structure.

6. When the <character string> reflects a subscript, in general,

the <identifier> may not be subscripted within the body

of the program.

EXAMPLES:

1. REPLACE P BY 'LOG(F) + Y**2';

B = Z + P;

2. REPLACE 0 BY 'GO TO ABLE;';

IF B>6·THEN B = Z + 'Pi ELSE 0

3. REPLACE A BY '(106.2B-32)';

DECLARE B INITIAL A;

4. REPLACE FIRE JETS BY 'GO TO F_J;';

···
FIRE JETS

··•
F J: DO; ----------

END;

7-19

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

. 1~

7.4 Procedures and Functions

Procedures and functions are subroutines consisting of one

or more statements which are intended to be written once but

used at various points throughout a program. The primary distinc­

tion between procedure and function is that the procedure must be

invoked by a CALL statement, and may accept and return lists of para­

meters of different data types, while a function is invoked by the

appearance of its name as an operand and can return only a single

data type or result.

7.4.1 Procedures

7.4.1.1 PROCEDURE Statement. The PROCEDURE statement identifies the

beginning of a block of statements which forms a procedure: it defines

the entry point and specifies the input and output parameters.

GENERAL FORMAT:

<procedure-label>:PROCEDURE[<procedure-parameters>]

[ASSIGN<assign-parameters>]:

{[<label>:] <statement> I [<label>:] RETURN , } ••.

[<label>:]CLOSE[<procedure-label>]:

where
<procedure-parameters> = «name>[,<name>] •.•)

and

<assign-parameters> = «name>[,<name>] •••)

GENERAL RULES:

1. The <procedure-parameters> are interpreted as input data to

the procedure. They are formed parameters; that is, they do

7-20

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.4:3

not exist in of themselves and are no more than dummy variables

that indicate what to do, within the procedure block, with

the actual <call-arguments> in the CALL statement (see Sec.

7.4.1.2). If the <call-arguments> are names (not expressions),

the <procedure-parameters> are in fact the same data locations

as the <call-arguments>.

2. The <procedure-parameters> may not be assigned values within

the procedure block; i.e., they may not appear on the left

hand side of an assignment statement.

3. The <assign-parameters> are also dummy variables and represent

the computed output data of the procedure. They are in fact

the same data locations as the <assign-arguments> in the CALL

statement•.

4. The data-types and attributes of corresponding <call- and

<assign-arguments>and <procedure- and <assign-parameters> must

be identical (see Sec. 7.4.2.3).

5. Execution of a procedure may be terminated by a RETURN statement

(see Sec; 7.6) or by logically reaching the CLOSE statement;

control is returned to the caller.

6. Local variables may be defined within a procedure block by

declaration statements and implicit declarations. See Sec.

8.1.1 for discussion of Scope of Names.

7-21

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.44

EXAMPLE:

TIME: PROCEDURE(A,B)ASSIGN(C);

- 2C = A(Fl +F 2 B+F 3 B);

IF B>L THEN RETURN;

C = 100 C;

CLOSE TIME;

7.4.1.2 CALL Statement. A procedure is invoked by a CALL

statement which may define a set of input and output arguments

and which transfers control to a specified entry point.

GENERAL FORMAT.:

[<label>:]CALL<procedure-label> [<call-argument>],
[ASSIGN<assign-arguments>];

where <procedure-label> is the label associated with the PROCEDURE

statement and

<call-arguments> = ({<name> I<expression>} [,{<name>!<expression>}] •••

<assign-arguments> = «name>[,<name>] •.•)

GENERAL RULES:

1. <call-arguments> will be used only as input information to

the procedure.

2. <assign-arguments> maybe assigned values computed within

the procedure blocks and may also. supply input information to

the procedure.

7-22

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

EXAMPLE:

ABLE: PROCEDURE;

V = X + Y;

CALL TIME (V, T) ASSIGN(W);

* ­P = M S;

CLOSE TIME;

7.4.2 Functions

7.4.2.1 FUNCTION Statement. The FUNCTION statement identifies

the beginning of a block"of statements which form a function; it

defines the entry point and specifies the data-type of the result.

GENERAL FORMAT:

<function-label>:FUNCTION[<function-parameter>l

[<type-spec> 1;

{<statement>!RETURN«expression»;} •••

[<label>:lCLOSE[<function-label>l;

where

<function-parameters> = «name>[,<name>l •.•)

7-23

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

146

GENERAL RULES:

1. If <type-spec> is not provided and is not specified in a

declaration, default characteristics are used.

2. The <function-parameters> are interpreted as input data to

the function. They are formal parameters; that is, they do

not exist in of themselves and are no more-than dummy variables

that indicate what to do, within the function block, with the

actual:<function-arguments> in the function reference (See

Sec. 7.4.2.2). If the <function-arguments> are names (not

expressions), the <function-parameters> are in fact the same

data locations as the <function-arguments>.

3. The <type-spec> specifies the characteristics of the function

result. Arrays and structure organizations are not allowed.

4. The data-types and attributes of corresponding <function­

arguments> and <function-parameters> in the reference and

FUNCTION -statements must be identical. (See Sec. 7.4.2.3)

5. A function must have-at least one RETURN statement and

execution may only be terminated by a RETURN statement;

control is returned to the caller. An error message will be

generated at run-time if the process logically reaches the

CLOSE statement.

6. Local variables may be defined within a function block

(see Sec. 8.1.1).

7-24

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868"1840

1.47

7.4.2.2 Function Reference. A function is invoked by a function

reference which may define a set of input arguments and which

transfers control to a specified entry point.

GENERAL FORMAT:

<function-label>[«function-arguments>] •••]

where

<function-arguments> = ({<name> I<expression>} [; {<name> !
- _.

<expression>}] •••

GENERAL RULES:

1. The <function-arguments> will be used only as input informa­

tion to the function.

2. The <function-label> is treated as an operand whose value is

computed within the function.

EXAMPLE:

* * * *ABLE: A = M TRACER (B+C) 1

TABLE: GO TO BAKER;

*TRACER: FUNCTION(Q)1

R = TRACE(QO + 0+ 0 2 + 0 3)1

IF R>lOO THEN RETURN R1

ELSE RETURN 0 1

CLOSE TRACER1

7.4.2.3 Parameter Declarations. Scalar, vector, matrix, bit

and character string parameters may be declared implicitly, with

default attributes, by their appearance in PROCEDURE and FUNCTION

7-25

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

148

statements with appropriate annotation. Thus, for example
- * . ,

ABLE: FUNCTION(A,B,C,D,E);

Array-parameters and parameters with other than default attri-

butes require explicit DECLARE statements internal to the proce-

dure or function blocks, in addition to appearing in the lists

of parameters (annotation being optimal).

For certain applications it may be convenient not to specify

the length or dimensions of parameters but instead, have the

parameters take on these characteristics from the corresponding

arguments in the CALL or function-reference statements. This

may be accomplished by substituting an asterisk (*) for the

length or dimensions in the DECLARE statements.

GENERAL RULES:

1. With reference to Sec. 5.1.1, vector length, bit length,

character length and varying character maximum length may

be specified by asterisks.

2. For arrays, shape may be specified by combinations of

literals and/or asterisks.

3. For matrices, rows and columns may be specified combinations

of literals and/or asterisks.

EXAMPLES:

1. TIME: PROCEDURE (A) ASSIGN(C);

DECLARE VECTOR (*), A, C;

CLOSE TIME;

7-26

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840.

1.49

- * ASSIGN (N) ;2. ABLE: PROCEDURE (V, M)

DECLARE V VECTOR (*) ;

DECLARE M MATRIX (3,*);

DECLARE Y VECTOR (4) ;

Y * -= M V;
•
•

CLOSE ABLE;

*Comment: V, M, N are parameters. Y is a local variable.

Note that N is declared by appearance as an <assign-parameter>.

*With no explicit DECLARE statement forN, default attributes

are used.

7.4.2.4 Functions of an Array. When a <function-argument>

is an array, the corresponding <function-parameter> may be either

a single variable or an array-variable of the same data-type.

If a single variable, the function has been designed to operate

on each array element sequentially, element-by-element. If an

array, the function accepts the input array as a unit.

EXAMPLES:

1. DECLARE B ARRAY (4);

DECLARE C ARRAY (4);

[Cj = FUZZ([Bj);

FUZZ: FUNCTION (X) ;

TEM = 1 + X/2 + X2/6 + X3/24;

RETURN (TEM) ;

CLOSE FUZZ;

7-27

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBIlIDGE. MASSACHUSETTS 02139 • (617) 868-1840

150

FUZZ will be executed·· 4 times and return 4 scalar results

which will be assigned to the component of array C, in sequence.

If the <function-parameter> is an array-variable, then the

function accepts the input array as a unit. The function

will operate on the "inner-most" free indices of the array

argument consistent with the expression.

2. DECLARE B ARRAY (4) VECTOR;

BUZZ: FUNCTION([X]);

DECLARE X ARRAY (4) VECTOR;

ADD = Xl: + X2 : + X3: + X4 :;

RETURN (ADD) ;

CLOSE;

A - BUZ Z ([B]);

BUZZ returns a single vector.

3. DECLARE A ARRAY(5), B ARRAY(5,4);

[A] = SUM ([B]) ;

This statement is equivalent to the following "DO FOR-loop"

sequence of operations:

DO FOR I = 1 TO 5;

AI = SUM([BI ,*]);

END;

Note that SUM is a linear array function (see Appendix A).

7-28

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

1.51.

· 7.5 Programs

In HAL, a program is the smallest compilable unit. It

may contain all of the program elements and statements defined,

except PROGRAM statements; i.e. declarations, executable state­

ments, procedures, etc.

7.5.1 PROGRAM Statement

GENERAL FORMAT:

<program-label>:PROGRAM;

{<all-statements>} •••

[<label>;]CLOSE[<program-label>];

GENERAL RULES:

1. <all-statements> may contain all valid syntax.

2. A program may be called using the CALL statement with the

<program-label> (no parameters may be passed).

3. Execution of a program may be terminated by a RETURN state­

ment (See Sec. 7.6) or by logically reaching the CLOSE

statement; control is returned to the caller. (Also, see

the real-time control statement TERMINATE in Sec. 9.)

4. A program can be scheduled in real-time through the system

executive (see Sec. 9).

7-29

INTERMETRIC$ INCORPORATED· 380 GREEN STREET, CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

1.52.

7.5.1.1 Program Calls. The CALL statement may be used to,call

one program from another program. The logical result is similar

to calling a procedure; i.e., control is transferred to the program

called and returned when the program is completed. The CALL state­

ment is of the form:

CALL-<program-label>;

In calling a program:

1. No arguments may be passed; all communications must

be through a COMPOOL.

2. All static variables are allocated on program initiation,

and released when the program ends; Le., variables with the

INITIAL attribute are initialized, others take on unspecified

values.

3. Control is returned to the caller at the statement following

the CALL statement, when a RETURN or CLOSE statement is

reached.

4. A program cannot cal+ itself.

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-18-;e

1.53

7.6 RETURN Statement

The RETURN statement terminates the execution of a procedure,

function or program.

GENERAL FORMAT:

[<label> :I RETURN [<expression> 1;

GENERAL RULES:

1. In terminating a procedure or program, the RETURN statement

must not include an expression.

2. In terminating a function the data type of the <expression>

must agree with the type specified for the function.
I

3. The result of <expression> may not be an array.

4. The RETURN statement returns control to the caller.

7-31

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.54

7.7 CLOSE Statement

The CLOSE statement delimits the blocks of HAL statements

which have name scope*i viz. procedures, functions, programs,

tasks** and update** blocks.

GENERAL FORMAT:

[<label>:]CLOSE[<label>]:

GENERAL RULES:

1. The CLOSE statement delimits the block headed by the

nearest preceding PROCEDURE, FUNCTION, PROGRAM, TASK or

UPDATE statement which has not already been delimited

by a CLOSE statement.

2. If a label follows CLOSE, the corresponding "heading"

statement must have that same label.

3. For a procedure, program or task, execution of the CLOSE

statement returns control to the caller.

4. For an update block, execution of the CLOSE statement

causes no operation.

5. For a function, execution of the CLOSE statement is an

error.

* See Sec. 8.1.1

** See Sec. 9.

7-32

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

f
1.55

8.0 HAL PROGRAM ORGANIZATION

A HAL program organization consists of one or more indepen-

dently compilable programs and a symbolic library. The library

may contain a common data pool (COMPOOL) and all valid HAL

syntax. Variables declared in the COMPOOL are available for

use in any program. Library routines maybe compiled into

any program by directive. The organization is designed to

provide programmer convenience and flexibility and yet maintain

control and visibility of commonly used data.

8.1 Program structure

A program «program-block» is the smallest compilable

unit and is delimited by PROGRAM and CLOSE statements. The

<program-block> may contain the following elements:

<program-block> = <program-statement> [<declare-group>]

{<all-statements>!<task-block>l<sub-block>} •••

<close-statement>

where,

<declare-group> = [<replace-statements>}[<outer*-statements>}

[<default**-statements>] -[<declare-statements>]

<all-statements> = all executable statements including

do-groups and update***-blocks

<task-block> = <task***-statement> [<declare-group>}

'{<all-statements>!<sub-blocks>} ••• <close-statement>

* See Sec. 8 •1. 2
** See Sec. 5.5
*** See Sec. 9.4.2

8-1

iNTERMETRICS INCORPORATED' 380 GREEN STREET, CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868·1840

1.56

<sub-block> = {<procedure-statement>l<function-statement>}

'[<declare-group>]

{<all-statements>!<sub-blocks>} ••• <close':'statement>

<program~blocks> and contained <task-blocks> and <sub­

block> (and further nested <sub-blocks» define boundaries,

or regions, within which names and labels are recognized and

may be used for computation and control. The region in which

a name or label is potentially recognizable is called its scope.

8.1.1 Scope of Names

The scope of a name is defined as the block in which it

is declared and extends to all contained (and nested) blocks.

For example, names defined in the COMPOOL are potentially recog­

nized throughout every <program-block>; names defined in a

<program-block> may be recognized in all enclosed <task- and

<sub-blocks>; names defined in <task- and <sub-blocks> may be

recognized in all nested <sub-blocks>, etc. Note that a name

defined within an inner block is neVer recognized in an outer

block. (To be more precise, the named variable or constant is

never recognized in an outer block; the name itself, designating

various data quantities, may appear in a number of blocks.)

8-2

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

, 1· 1.51

Identical name declarations for two or more quantities

cannot exist within the same name scope; however, duplicate

names are allowed in different scopes. The following example

illustrates this principle:

ABLE: PROGRAM:

DECLARE VECTOR(5) A, Bj

BAKER: TASK;

DECLARE A INTEGER;

CHARLIE: PROCEDURE;

DECLARE A BIT;

DECLARE X;

•

CLOSE CHARLIE:

CLOSE BAKER;

GRAB PROCEDURE;

DECLARE X VECTOR(4);

CLOSE GRAB;

CLOSE ABLE;

8-3

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.58

Comments:

1. The vectors A and a'have been declared at the program level

and their scope is the entire program unless superseded by

a declaration in an inner block (or obscured by omission,

from an OUTER statement, see Sec. 8.1.2).

2. In the task BAKER, A is an integer (the vector A

will no longer be recognized); a is recognized.

3. In the inner procedure CHARLIE, A is re-defined again, being

recognized within CHARLIE as a bit string. The scope of a

remains the entire program.

4. In the procedure GRAB, A and a remain defined at the program

level and X is declared at a local level. Note that although

the names are the same, the variables represented by X in

GRAB and X in CHARLIE are different.

8.1.2 Selective Inclusion of Outer Names

In the previous example names declared in an outer block

were known to the ,inner block unless the inner block declared the

same name. Another mechanism is provided to include (or reject)

outer names selectively. The OUTER statement is an explicit

means of specifying which "outer" names are to be known within the

8-4

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.59

· block; outer names which would have been known but which are

not listed are hidden. Thus, for example,

ABLE: PROGRAM;

DECLARE A, B, C, D, E;

BAKER: TASK;

OUTER B, 0;

DECLARE A;

The program ABLE has declared names A, B, C, D, E which would

be known in the task BAKER. However, the OUTER statement in

BAKER only allows Band 0 to be known, and further BAKER redefines

A locally. Note that the absence of an OUTER statement means

that all outer names will be recognized within aparticular inner

block, while the inclusion of OUTER with no list of names completely

isolates the inner block from any outer-declared names.

8.1.2.1 . Inclusion of Structure Names. Structure names may also

be included by listing the structure name(s) in the OUTER state­

ment according to the following rules:

1. For a qualified structure, only the major structure name

may be listed; the result being that all associated minor

structure and terminal names are included implicitly.

8-5

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.60

2. For a not-qualified., structure, the major structure name

and all associated minor structure and terminal names may

be listed. Only those names that are listed will be

recognized within the block.

8: 1. 2.2 Implici t Declaration of Names. Implicit declaraHon

of names within a block will not be allowed unless the block contains

an OUTER statement or the block is .within a block (etc.) containing

an OUTER statement. Only those names appearing in an OUTER statement

and those explicitly declared within a block will be unavailable

for implicit declaration.

When no declarations precede the PROGRAM-statement, the

compiler permits implicit declarations at all levels as though

an OUTER-statement with no list had been included at the program level.

8.1.3 Scope of Labels

Labels are used for control purposes1 to transfer control

as in GO TO <label> or CALL <label>. The labels "name" the

entry-points to programs, tasks, functions, procedures, updates,

do-groups and statements. The scope of labels generally follows

the same rules as for names with the following exceptions:

1. The GO TO and CALL statements imply the existence of a

label. If the label does not appear in the block in which

the statement is written, the GO TO or CALL must refer

to a label in an outer block1 if the label does appear in

the same block (before or after the statement), the state-

ment refers to this label.

8-6

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.61.

2. If a GO TO or CALL statement refers to a label in an

outer "block, the label must appear in the listing prior

to the statement or be declared explicitly in a DECLARE

statement.

3. Function names (i.e., <function-labels» must always

be defined in the listing prior to their use, even if the

FUNCTION statement and the function reference appear

within the same block. A function name may be defined

by its appearance in a FUNCTION statement or by explicit

declaration in a DECLARE statement.

EXAMPLES:

A: PROG~l

X: Y = Z + 3;

•

B: PROCEDURE;

GO TO X;

•

CLOSE Bl

•

CLOSE A;

A: PROGRAM;

X: Y = Z + 3;

B: PROCEDURE;

GO TO X;

X: F =G + H;

CLOSE B;

CLOSE Al

8-7

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840
" " " " 1.62·

If #1, no label X appears in B, therefore control is trans-

ferred to the X appearing in A. In #2, control will be transferred

to the X which appearS in the same block as the GO TO x. With

reference to #1, if the label X would have appeared in A after

B, i.e., after its use in the GO TO statement, then X would have

to be declared explicitly, prior to B, in a DECLARE statement.

2. u
A: PROGRAM;

ZAP: FUNCTION VECTOR;

#2

A: PROGRAM;

DECLARE ZAP FUNCTION
VECTOR;

CLOSE ZAP; B: PROCEDURE;

B: PROCEDURE; y= X + ZAP;
y= X + ZAP;

CLOSE B;

CLOSE B; ZAP: FUNCTION VECTOR;

CLOSE A; CLOSE ZAP;

CLOSE A;

In #1, the function ZAP is recognized in B because its definition

precedes its use. In #2 the definition has been relocated after

its use, therefore ZAP must be declared, first, using a DECLARE

statement.

8-8

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.63

8.1. 4 Scope of the REPLACE Statement

With reference to the description presented in Sec. 7.3.6,

the scope of a REPLACE statement is the same as that for a

DECLARE statement with the following exception: the <identifier>

in a REPLACE statement is never "replaced" as a result of another

REPLACE statement located in an outer block.

EXAMPLE:

ABLE: PROCEDURE;

REPLACE X BY 'Y';

DECLARE X INTEGER;··•
BAKER: PROCEDURE;

REPLACE X BY 'Z';
··•

CLOSE BAKER;

CLOSE ABLE;

The identifier X appearing in BAKER is replaced by Z. X outside

of BAKER is replaced by Y.

8.1.5 Scope of the DEFAULT Statement

With reference to the description presented in Sec. 5.5,

the scope of the DEFAULT statement is the same as that for a

DECLARE statement.

8-9
INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

'.

EXAMPLE:

ALPHA: PROGRAM,

DEFAULT MATRIX(4,7) BITLENGTH(24),

'.·, "
•··

BETA: PROCEDURE,

DEFAULT BITLENGTH(lO) ,

DECLARE E, F, BIT;
•··

CLOSE BETA,

CLOSE ALPHA,

In procedure BETA, which is nested within ALPHA, the

default-type established in ALPHA remains valid so that E is

a 4x7 matrix. F is a 16-bit string by virtue of the DEFAULT

statement in BETA.

8-10

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.65

8.2 The COMPOOL

The COMPOOL is a centrally defined and centrally maintained

group of statements. The statements are limited to REPLACE,

OUTER and DECLARE (the <declare-group», and the attributes .in

the DECLARE statements are further restricted to LABEL,

FUNCTION, dimensions, and PRECISION (also VARYING for character

strings). The names and labels declared in the COMPOOL are

potentially known to all programs and, in fact, provide the only

means of communication between programs.

In order to take advantage of the COMPOOL as a data sharing

mechanism, the programmer must include the COMPOOL statements

before the PROGRAM statement during compilation. In a sense,

the COMPOOL is placed "outside" the program block and its scope

encompasses the program. If another program is compiled in a

similar manner, using the same COMPOOL, the variables declared

in the COMPOOL will.be recognized in both programs. Thus, for

example,

INCLUDE COMPOOL A

Ai PROGRAM;

•
•

CLOSE A;

INCLUDE COMPOOL A

B: PROGRAM;

•
•

CLOSE B;

It should be noted that if the COMPOOL is included after the

PROGRAM statement; i.e., within the program block then its

scope can encompass only the program itself, and declared

variables cannot be shared by another program.

8-11

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 '. (61718l:6840

8.3 The Symbolic Library

The symbolic library is a centrally defined 'and centrally

maintained pool of symbolic source code. The library is avail-

able to all programs and may be added to a program by use of the

compiler directive*

INCLUDE<library-entry>

The appearance of this directive causes the symbolic code in

the object file to be included in the compilation and inserted

at that point. For example:

INCLUDE NAVDATA

A: PROGRAM;

INCLUDE AGLOBALS

INCLUDE ALOCALS

B: TASK;

x = A;

Y = B;

INCLUDE LOGIC

CLOSE B;

C: PROCEDURE;

IF L>lOO GO TO ABLE;

ELSE

INCLUDE CHOICE

* Compiler directives require a D in column 1 of input source
code line.

, 8-12
INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.67

~

ABLE:

CLOSE C;

CLOSE A;

GENERAL RULES:

The symbolic library may contain source code identical to that

within a program except that INCLUDE directives are not allowed.

8-13

INJERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.68

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

9.0 REAL TIME CONTROL

The real-time control of HAL programs consists of the

interrelated scheduling of <program- and <task-blocks>,

the reliable sharing of common data, and the recovery from

abnormal error conditions.

The concepts and language features introduced in this

section have been designed for general applicability to real­

time control programming. It is recognized that depending upon

specific hardware environments and operating system designs,

certain features may not find utility.,

9.1 TASK Statement

A task is a subroutine which is intended to be scheduled

in real-time through an executive system. The TASK statement

identifies the beginning of a block of statements which form a

task and defines the entry point.

GENERAL FORMAT:

<task-label>: TASK;

{[<labe1>:]<statement>! [<labe1>:]RETURN;}.

[<labe1>:]CLOSE[<task-1abe1>];

GENERAL RULES:

. .

1. Unlike procedures, tasks do not provide for parameter

passage and return. Rather, data exchange must be accomplished

9-1

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.69

through

defined

variables with common data scope (i.e., variables
l
at the COMPOOL or program levels).

2. Local variables and constants may be declared as in

procedures and functions.

3. Execution of a task may be terminated by a RETURN state-

ment, a TERMINATE* statement or by logically reaching

the CLOSE statement. If the task is activated by the

executive, termination causes control to be returned to

the executive. If the task is simply called, as a

procedure, RETURN and CLOSE return control to the caller;

TERMINATE always Eeturns control to the executive.

9.1.1 Task Calls

The CALL statement may be used to call a task. The

logical result is similar to calling a procedure; i.e.,

control is transferred to the task called and returned when the

task is completed.

In calling a task:

The CALL statement is of the form:

CALL<task-label>;

1) No arguments may be passed.

2) Control is returned to the caller at the statement

following the CALL statement, when a RETURN or CLOSE

statement is reached.

3) A task cannot call itself.

* See Section 9.2.4

9-2
INTERMETRICS INCORPORATED' 380 GREEN STREET.' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.70

9.2 Scheduling Statements

9.2.1 SCHEDULE Statement

The SCHEDULE statement is used to request initiation

of a program or task based on three criteria:

a) at a specific time «spec-time»

b) in an incremental time «inc-time»

c) on events or combinations of events «event-expression»

where time is expressed in seconds or units specified by

implementation, and an event is a programmer-defined (see

Sec. 9.3.1) or system-defined occurrence. The general format

of the SCHEDULE statement is:

{

<prOgram-label>}
[<label>:]SCHEDULE

<task-label> [

AT <spec-time>]
IN <inc-time>

ON <event-expression>

[PRIORITY({<p>lpRIO + <q>})] [INDEPENDENT] [<task-id>];

<spec-time> and <inc-time> may be <scalar- or <integer-operands>.

<event-expression> has the same form as the <single-bit-expression>

(see Sec. 7.3.2.2); i.e., a logical combination (AND, OR, NOT)

of event names.

GENERAL RULES:

1. A SCHEDULE statement within one <program-block> maybe

used to schedule the program itself, any task within the

block, or another program. A task within one <program­

block> may not be scheduled from another <program-block>.

9-3

lNT.ERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.71.

2. Procedures, functions and labelled statements may not

be scheduled.

3. <spec-time> and <inc-time> are rounded to the nearest

integral number of time units before use.

4. PRIORITY«p» specifies the priority of initiation. If

two programs (or a task and a program, etc.) are scheduled

for the same time (or on the same event(s», the one of

higher priority will be initiated first. <p> may be a

positive <scalar- or <integer-operand> and represents an

absolute priority. Relative priorities maybe established

by using the keyword PRIO which returns the current

program or task priority. Thus, PRIORITY(PRIO + <q»

requests a priority of <q> greater than current priority.

<q> may be a positive or negative <scalar-or <integer­

operand>.

5. If PRIORITY is not provided, scheduling will take place

with current priority.

6. If INDEPENDENT is provided, the scheduled program or task

is to be independent of the block in which it is scheduled.

This means that an independent program or task can cont.inue

in an active state even after the scheduling block has

been terminated. However, a task with STATIC variables

or one which contains reference to identifiers declared

at the program level cannot be scheduled as an independent

task.

9-4

INTERMETRICS INCORPOHATED • 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1,,'7Z

7. If INDEPENDENT is not provided, dependent scheduling will

/ .
take place. All dependent programs and tasks are term~nated

when the block in which they were scheduled is terminated.

8. <task-id> is a name which will contain the unique identifica­

tion data for the scheduled program or task.

9. If AT, IN, ON are not provided, initiation will take

place as soon as possible (consistent with priority).

EXAMPLES:

1. SCHEDULE PROGRAM_20 PRIORITY(10)PROG_20;

PROGRAM_20 is scheduled as a dependent block (program or

task), priority 10', with identification stored in the

variable PROG 20. Initiation will begin as soon as possible.

2. SCHEDULE ,ABLE PRIORITY(PRIO + 1);

ABLE is scheduled as a dependent block at a priority 1 higher

than the current priority.

3. SCHEDULE RADAR ON R_RUPT PRIORITY (HIGH) ;

RADAR will be initiated on the occurrence of the event

R_RUPT at priority HIGH.

4. SCHEDULE STEERING AT TIG-5 PRIORITY(6)INDEPENDENT;

STEERING is scheduled, as an independent block, to begin

at the time TIG-5 with priority 6.

5. SCHEDULE TRACK IN 5;

TRACK is scheduled to begin in 5 units of time from the

time the SCHEDULE statement is executed.

9-5

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

6. SCHEDULE ABLE ON (~AND B) OR C;

ABLE is scheduled to begin on the occurrence of either

both events A and B, or event C.

7. IF x>10 AND TRACKFLAG = ON

THEN SCHEDULE AUTOMANEUVER PRIORITY (5) ;

ELSE GO TO BEGIN;

The SCHEDULE statement may be included as another executable

statement. AUTOMANEUVER will be scheduled if X>lO and

the TRACKFLAG is ON.

9.2.2 WAIT Statement

The WAIT statement is used by an active program or task

to suspend and reactivate itself based on three criteria:

a) a specific time

b) an incremental time

c) a particular event or combination of events.

GENERAL FORMAT:

~
UNTIL <spec-time> J

[<label>:]WAIT <inc-time> ;
FOR <event-expression

where <spec-time>, <inc-time>, <event-expression> are the same

as in Sec. 9.2 (SCHEDULE statement).

EXAMPLES:

1. WAIT 5;

The current block (program or task) is suspended for 5 units

of time and then reactivated.

9-6

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.74

2. WAIT UNTIL TIG-5;

The current block is suspended until the time TIG-5 and

then reactivated.

3. WAIT FOR ABLE;

The current block is suspended until the event ABLE occurs

(i.e., ABLE is turned ON) and then reactivated.

4. WAIT FOR NOT (Tl AND T2) OR T3;

The current block is suspended until at least one of the events

Tl and T2 are OFF, or the event T3 is ON, and then reactivated.

9.2.3 PRIOCHANGE Statement

This statement is used to change the priority of a

task or program.

GENERAL FORMAT:

[<label>:]PRIOCHANGE({<p>lpRIO + <q>}) [<task-id>]

[, H <p> IPRIO + <q>}) <task-id>] • .• • ;

where <p>, <q> are defined in Sec. 9.2.1.

GENERAL RULES:

1. <p> or <q> are new absolute and relative priorities,

respectively, for the corresponding <task-id's>.

2. The current program or task priority may be changed by

the statement

·PRIOCHANGE({<p>I PRIO + <q>});

EXAMPLES:

1. IF AFLAG THEN PRIOCHANGE (PRIO + 5);
•

If AFLAG is on then current priority is increased by 5.

9-7
INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

175

2. PRIOCHANGE (8l. (10) TASK_l<, .(1.3) TASK_2·, (PRIO + A) TASK_3;

The current priority is changed to 8, TASK_3's priority

is changed to the current priority plus A (i.e., 8 + A).

Note that a <task-id> can be omitted only before the first

comma, meaning the current task or program.

9.2.4 TERMINATE Statement

This statement is used to terminate a program or task

and return control to the executive.

GENERAL FORMAT:

,
1. Execution of this statement terminates all identified

tasks and programs and all their dependent tasks and

programs.

2. If <task-id> is not provided, the current program or

task and all dependent programs and tasks are terminated.

EXAMPLES:

1. TERMINATE PROG_20, T2;

The blocks (task or program) identified by PROG 20 and T2

are terminated.

2. TERMINATE;

The current program or task is terminated.

9-8

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.76

9.3 Events and Signals

Programs and tasks may be scheduled by the occurrence of

events or combinations of events. An event is a programmer-named

condition and can be stimulated only by the execution of the

SIGNAL statement.

9.3.1 Events

<event-variables> must be declared using DECLARE state­

ments. The format is similar to that described for data

declarations, thus:

GENERAL FORMAT:

DECLARE<event-variable>EVENT[LATCHED[INITIAL{ONIOFFl]];

GENERAL RULES:

1. <event-variables> may only be declared at the COMPOOL

and program levels. Scope rules are the same as for data.

2. If the attribute LATCHED is provided, the <event-variable>

will hold its signalled value; i.e., if signalled on,

it will remain on.

3. If LATCHED is not specified, the <event~variable> when

signalled on, will remain on only for a short interval

of time. The time interval is implementation dependent.

4. The declaration of an <event-variable> can be incorporated

in the same DECLARE statement with other identifiers; e.g.

DECLARE V VECTOR, M MATRIX, B EVENT;

9-9

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.77

5. EVENT, LATCHED, INITIAL may be factors in a DECLARE state-

ment; e.g.

DECLARE EVENT, A, B, C INITIAL(ON);

6. If INITIAL is not provided for <event-variables> with the

LATCHED attribute, a default value of OFF is presumed.

EXAMPLE:

DECLARE EVENT, A, B LATCHED;

A and B are declared "unlatched" and "latched" events.

Both are set off initially. It should be noted that an

unlatched event cannot be set on initially.

9.3.2 SIGNAL Statement

This statement is used to cause the occurrence of an event.

The specific effect depends upon whether the <event-variable>

has the attribute LATCHED.

GENERAL FORMAT:

[<label> :] SIGNAL<event-variable> [ON OFF] [, <event-variable>

[ON OFF]].

GENERAL RULES for LATCHED <event-variables>:

.. . ,

1. Latched <event-variables> may be on or off initially.

2. If an <event-variable> is off:

a) it may be turned on by SIGNAL<event-variable>ON;

b) it is unchanged by SIGNAL<event-variable>OFF;

c) if neither ON nor OFF is specified, SIGNAL<event-

variable>; turns the <event-variable> on for a short

time interval, and then off. The time interval is

implementation dependent.

9-10
INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.78

,3. If a latched <event-variable> is on:

a) it may be turned off by SIGNAL<event-variable>OFF;

b) if is unchanged by SIGNAL<event-variable>ON;

c) if neither ON nor OFF is specified, SIGNAL<event-

variable>; turns the <event-variable> off after a

short interval. The interval is implementation dependent.

GENERAL RULES for "unlatched" <event-variables>:

1. <event-variables> are normally off.

2. SIGNAL<event-variable>[ON]; turns the <event-variable>

on for a short interval, and then off. The time

interval is implementation dependent.

3. SIGNAL<event-variable>OFF; causes no action.

EXAMPLE:

SYNCHRO:' PROGRAM;

DECLARE EVENT LATCHED, A, B;

SCHEDULE ABLE INDEPENDENT;

SCHEDULE BAKER INDEPENDENT;

SCHEDULE CHARLIE ON A AND B;

z = W+ V;

- - *M = Z N;
•

TERMINATE;

ABLE: TASK;

•

SIGNAL A ON;

CLOSE ABLE;

/*INDEPENDENT TASK*/

9-11

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868,1840

179

BAKER: TASK; /*INDEPENDENT TASK*/

•

SIGNAL BON;

CLOSE BAKER;

CHARLIE: TASK;

CLOSE CHARLIE;

CLOSE SYNCHRO;

9-12
INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1'160

.. '

9.4 Dynamic Control of Shared Data

HAL provides features to control the sharing of variables

in order to prevent conflicts in their utilization. These

features include the attribute LOCKTYPE to designate shared

variables and an update block of statements in which shared

variables may be changed in a controlled environment. Although

the approach taken is basically implemented in software, it

does depend on the ability to perform an "uninterruptable"

instruction similar to the Test and Set instruction available

on IBM 360 computers.

9.4.1 Conflicts in Sharing Data

In order to illustrate the problems that can arise in

sharing data consider the following two examples:

Example 1: Read/Write Conflicts

A: TASK; B: TASK;

· ·• TASK ·* · * *
,

* •
M = N + P; Interruption N = Xy

· •· ·• ·CLOSE A; CLOSE B;

Example 2: Serial Updating Conflicts

A: TASK; B: TASK;

· •· TASK ·· ·Y = Y - X; Y = Y - z;
· Interruption •• •· ·CLOSE A; CLOSE B;

9-13

. INTERMETRICS INCORPORATED' 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

181

9-14

In both examples TASK B interrupts TASK A during the

execution of a statement. The interruption may be caused by

a hardware or software (SIGNAL) interrupt or by a' "job swap"

based on priority. In Example 1, presume that the interruption

*occurred while the matrix N was being read. When TASK A resumes,

* *the computation of M will continue using SOme "old" N data

*and the "new"N data assigned in ,TASK B. In order to prevent

this conflict, initiation of TASK B would have to be stalled

*until the reading of N in TASK A is completed.

In Example 2, presume that the interruption occurs first

after the current value of Y is loaded into the accumulator.

When TASK A resumes, the "old" value of Y (i.e., not reflecting

the update of Y in TASK B) is restored into the accumulator,

X is subtracted and the result assigned to Y. In order to

prevent this conflict, the initiation of TASK B would have to

be stalled until the value of Y is updated in TASK A (i.e.,

each variable declared with the LOCKTYPE attribute, see Sees.

4.3.4, 5.1.1.3).

The approach taken in solving the problems represented above,

using HAL, is to confine the read and write accesses of shared

variables to identified update blocks and for the compiler to

assign a locking control variable to each shared variable

(i.e., to each variable declared with the LOCKTYPE attribute).

The value of the "lock" is examined at run-time and only con-

sis tent (i.e., safe) accesses are permitted.

1.82
INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

9.4.2 The Update Block

The <update-block> of statements provides a controlled

environment for the reading and writing of shared data variables.

All LOCKTYPE(l) variables, and LOCKTYPE(2) variables to be

assigned new values (i.e., updated) must appear within <update­

blocks>. LOCKTYPE(2) variables which are to be read only need

not be confined to these blocks. The <update-block> may contain

the following elements:

<update-block> = <update-statement>[<declare-group>]

. {<all-statements>!<sub-blocks>}••• <close-statement>

subject to the restrictions below.

GENERAL FORMAT:

[<update-label>:]UPDATEl

{[<label>:]<statement>}.

[<label>:]CLOSE[<update~label>]l

GENERAL RULES:

1. <statements> within an <update-block> (and enclosed <sub­

blocks» may not include I/O statements (see Sec. 10),

or additional UPDATE statements.

2. Name scope rules are the same as described in Sec. 8.1.1

except <statements> may not contain <procedure-labels>

or <function-labels> defined outside the block. (HAL

built-in function names are permitted.)

9-15

f INTERMETRICS INCORPORATED. 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

3. Execution of the UPDATE statement attempts "to lock" all

shared variables within the block. A variable to be

assigned will be write-locked, variables to read only will

be read-locked. Once locks are established they are not

opened until execution of the CLOSE statement at the end

of the block.

4. If all desired locks cannot be established at the UPDATE

statement because one or more of the shared variables are

not available (i.e., they are already locked elsewhere),

the current program or task will be stalled (placed in

"wait" by the

able.

-executive)

"\
until all variables become avail-

5. After all locks are established, copies are made of the

shared variables to be assigned (if any), and the <statements>

within the <update-block> are executed using this copy-

data.

6. Execution of the CLOSE statement first opens all read-

locks and then attempts to transfer the updated copy-data

into the actual shared variables (to be assigned). If read­

locks are in effect on these variables (i.e., they are

still locked within other <update-blocks», the current

program or task will be stalled until these locks are

opened. After the copy-data has been transferred all

write-locks are opened and execution continues at the state-

ment following CLOSE.

9-16

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 86~SI\

7. In conjunction with (4) above, a stall will occur at the

UPDATE statement if any of the shared variables to be

assigned in the block already are write-locked. In other

words, a write-lock cannot be established on a variable

that is already write-locked. A stall will also occur if

any shared variables to be read are currently being

written in other <update-blocks> , .i.e., a read-lock cannot

be established while the variable is being assigned a new

value.

8. Transferring control outside the update block by a GO TO

statement or in response to an error condition (see Sec. 9.5)

is considered an "error exit". As a result, all read- and

write-locks are opened and no copy-cycle is performed.

9. LOCKTYPE(2) variables which are to be read only need

not be confined to update blocks. This attribute should

only be applied to those data types which can be accessed

in a single uninterruptable instruction.

9.4.2.1 Summary on Entering an Update Block (LOCKTYPE(l) Variables)

~tate Free Read-Locked Write-Locked writing
Variables

To be assigned Write- Write- Stall Stall
in block Lock Lock

To be read Read- .; Read- Stall
in block Lock Lock

Table 9-1

9-17
INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

. ~8S

Table 9-1 indicates that on entering an <update-block~,

if variables to be assigned are free or read-locked, write-locks

will be established: otherwise execution will stall until

variables are available. If variables to be read are free,

read-locked or write-locked, read-locks will be established;

'otherwise execution will stall until variables are available.

(/ means read-lock already established, new lock is unnecessary.)

9.4.2.2 Summary on Leaving an Update Block (LOCKTYPE(ll Variables)

~
State

Actual ' Free Read-Locked Write-Locked Writing
Variables "

To be written N.A. Stall Copy N.A.

Table 9-2

Table 9-2 indicates that on leaving an <update-block>, if

variables 'to be written are write-locked the copy-cycle will

proceed; otherwise execution will stall until variables are

available. (N.A. means not applicable. Once in an <update-block>,

variables cannot be free nor in the process of being written

within another <update-block>.)

9-18

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-;8401.8{

9.4.2.3 Examples. Consider the two examples at the beginning

of Sec. 9.4.1 and suppose that the statements in question were

enclosed within <update-blocks>, e.g.,

A: TASK;

•
UPDATE;

•

* * *M = N + P;

CLOSE;

CLOSE A;

Example 1

*In TASK A a read-lock is established for N. After the

*interruption, a write-lock is established for N and TASK B

proceeds toward completion using copy-data for~. At the

end of the <update-block> in TASK B the process stalls because

of the read-lock imposed in TASK A. As a result, TASK A is

*allowed to continue with consistent "old" N data. After com-

pletion of TASK A, the copy-cycle in TASK B is effected and

*N is updated. All conflicts are eliminated.

Example 2

In TASK A read- and write-locks as well as copy-data are

established for Y. As before, the value of Y (now copy-data)

is placed in the accumulator. After the interruption, execution

9- 19

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.87

of the UPDATE statement in TASK B attempts to establish read­

and write-locks for Y. The process stalls because a write­

lock already exists for Y. Therefore, control is transferred

back to TASK A and execution allowed to continue. Y is updated

in TASK A by X and a copy-cycle completed. TASK B now begins

again. This time Y is free and read- and write-locks are

established. ·TASK B runs through in a straightforward manner.

Y is updated properly by both X and Z with no conflicts.

9.4.3 Exclusive Subroutines

The attribute EXCLUSIVE may be applied to programs,

procedures, functions and tasks which are intended to be exe­

cuted serially. The object is to avoid reentrant use of a sub­

routine either because the variables are not protected by locks

(i.e., have not been declared with LOCKTYPE attributes) or because

dynamic design dictates serial use.

GENERAL FORMAT:

{<program-l~procedure-l<function-l<task-statement>}EXCLUSIVE;

GENERAL RULES:

1. The compiler will insert code at the beginning of the sub­

routine to cause the current program or task to stall if

the subroutine is in use. At the end of the subroutine,

the stalled programs or tasks of highest priority will

be reactivated.

9- 20

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • ({)17) iSS~O

EXAMPLES:

1. ABLE: PROCEDURE (A,B) ASSIGN(C) EXCLUSIVE;

2. BAKER: TASK EXCLUSIVE;

The above are valid statements using the EXCLUSIVE attribute.

9.4.4 Access Rights

The general use of COMPOOL data within programs may

be restricted by attaching access rights to the DECLARE state­

ments within the COMPOOL. Programs are identified by number

and permitted to access only those variables which have been

declared with corresponding identification numbers. An illegal

reference to a COMPOOL variable will prevent successful com­

pilation of the problem.

GENERAL FORMATS:

<program statement>IDCODE<p>;

<declare-statement>ACCESS«p>[<p>] •••);

where <p> is an unsigned integer literal.

GENERAL RULES:

1. If ACCESS is provided, declared variables will only be

recognized in programs whose identification numbers are

listed.

2. If ACCESS is not provided, declared variables will be

recognized in all programs.

3. Compilation will not be successfully completed if proper

access rights have not been established for a reference

to a COMPOOL variable.

9- 21

INTERt>.1ETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

9.5 Error Recovery

During execution of HAL programs an error condition may be

detected by the system. Examples of errors might be:

overflow/underflow

divide by zero

negative square root argument

arcsine argument greater than 1

subscript out of range

Depending upon implementation such errors may be hardware or

software detected. In any case, execution cannot continue and

the .system must offer generally applicable alternatives (e.g.,
aborting the current task, etc.).

In order to provide the programmer with some control after

the occurrence of an error, perhaps to reset flags or previously

initiated I/O commands, HAL permits programmer-defined error

conditions and alternatives.

9.5.1 ON Statement

The ON .statement may be used to direct the transfer of

control on the occurrence of one or more specific error conditions.

GENERAL FORMAT:

[<label>:] ON ERROR<p> [TO<q>] [{GO TO <label>jSYSTEM}]:

where <p> and <q> are integer literals.

GENERAL RULES:

1. For any implementation, unique <literals> are assigned to

every system error condition; e.g.

9- 22

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.90

•

floating point overflow

floating point underflow

and to programmer-defined error conditions.

2. A group of error conditions may be specified using the

subscript range expression (e.g., ERRORI TO 10).

3. Upon execution of the ON statement the alternatives GO TO

<label> or SYSTEM are made available for the scope of the

statement.

4. If the specified error condition occurs within the defined

scope the desired alternative is activated (i.e., control

is either transferr~d to the statement <label> indicated

or to the system).

5. If neithe~ GO TO <label> nor SYSTEM is specified the default

is SYSTEM.

9.5.2 ON Examples

1. ON ERRORI TO 5 GO TO ABLE;

If any of error conditions 1 through 5 occurs within the

scope of this statement, control is transferred to ABLE.

2. ON ERROR~ TO 5 SYSTEM;

If any of error conditions 1 through 5 occurs within the

scope of this statement, system action is taken.

3. A: PROCEDURE;

ON ERROR
I

GO TO BETA;

•··
CALL B;

•·• 9-23

. IN1ERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

1.91

•

B: PROCEDURE;

ON ERRORl GO TO ALPHA;~

···CLOSE B;
•··

ALPHA: FLAGl = OFF;

TERMINATE;

BETA: FLAG2 = OFF;

TERMINATE;

CLOSE B;

If ERRORl occurs during procedure BJcontrol is transferred to
,

ALPHA, otherwise if it occurs, control is transferred to BETA.

4. A: TASK;

DECLARE X - - -;

ON ERRORl TO 10 GO TO RECOVERY1;

- *RETRY: R = M X";

CALL B (R, V, TD •••);

ON ERRORl TO 10 GO TO RECOVERY2;

CALL JETS;

ON ERRORl TO 10 SYSTEM;

··
B: PROCEDURE (----);

·•·
CLOSE B;

RECOVERY1: X = X + DECTAX;

GO TO RETRY;

RECOVERY 2: CALL JETS_OFF;

GO TO ABORT;

.CLOSE A:

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

192

RECOVERYl and RECOVERY2 are established as different recovery

points for TASK A. Control is transferred to either one

depending on where the error conditions occur. The system

action is established after control is returned from the

procedure JETS.

This example illustrates that the programmer can

develop arbitrary restarting points within a HAL program.

9.5.3 SEND Statement

The SEND statement is used to announce the occurrence

of programmer-defined error conditions.

GENERAL FORMAT:

SEND ERROR<p>[TO <q>l;

where <p> and <q> are integer literals.

EXAMPLE:

,0 = 52 - 4A c;

IF 0<0 THEN SEND ERROR50 ;

X = (-5 - SQRT (D)) /2A;

9-25

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.93

10.0 INPUT-OUTPUT

The HAL input-output statements provide for the filing,

retrieval, reading and writing of data to and from external

storage media. Filing is record-oriented in that a file state­

ment causes a single record to be transmitted to or from a

storage device; transmission is. direct without any conversions.

Reading and writing are stream-oriented in that data is considered

to be a continuous stream of characters; conversions may occur

during transmission.

~he HAL I/O syntax consists of four statements and a small

set of control functions.

10.1 FILE Statement

The FILE statement has the appearance of an assignment

statement and may be used for both filing and retrieving data

depending upon which side ·of the" .sign FILE appears.

GENERAL FORMAT:

1. for filing data

[<label>:] FILE «device>, <iecord-i. d. »';'{<data-expression> I
<structure>};

2. for retrieving data

[<label>:]<variable-name>=FILE«device>,<record-i.d.» ;

10-1

I~ITERMETRI\.S INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 8!ttJi

GENERAL RULES:

1. <device> is an integer literal identifying the external

device. The maximum number of digits is implementation

dependent.

2. <record-i.d.> is the record identification number and may

be an integer or scalar expression. The result of <record-

i.d.> is rounded to the nearest integer before use.

3. In retrieving data, the size of the record, i.e., the number

of words (or perhaps bytes, etc.), must match the size

(dimension) attributes of the <variable-name> on the left

hand side of =. Because the filed information does not

carry data-type or attributes, conversion errors can occur

even if the sizes match properly.

EXAMPLES:

FILE(TAPE,I) = [AJ;

{B} = FILE(DISC,AI);

are valid FILE statements, where TAPE and DISC represent

integer literals.

10.2 READ Statements

Two READ statements are defined in HAL: READ and READALL.

READ is used to process data presented in standard formats;

READALL admits all characters and provides the flexibility to

accept data in non-standard (arbitrary) formats.

10-2
INTERf,jETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, M~SSACHUSETTS 02139 • (617) 868-184\.~5

10.2.1 READ Statement

The READ statement causes data, in standard formats

from an external source,to be assigned to a list of variables.

GENERAL FORMAT:

'READ«device» [<read-control> I<variable-name>]

[,[<read-control>l<variable-name>]] ••• ;

where

<read-control> = {SKIP «p» ITAB «p» ICOLUMN«p»}

and

<p> is an integer or scalar expression, rounded to the nearest

integer before use.

GENERAL RULES:

1. The READ statement implies the input transmission of a

stream of data fields, each field being separated by a

comma or a semi-colon. (A blank or blanks may be used

optionally instead of a comma, between data fields.)

2. The <variable-names> in the list may be of single elements,

arrays of elements and/or structures. The number of

fields transmitted, for each <variable-name>, corresponds

to the size, or dimension, attribute of the <variable-name>.

* *For example, READ M; (where M is a 4x4 matrix) will cause 16

fields of data to be transmitted. It is presumed that vectors,

matrices and arrays will be filled according to the rules

10-3

. INTERMETRICS INCORPORATED· 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.96

and conversions for processing <lists>, as described in

Sec. 6.2.2.1. The arrangement of structure data is described

in (51 below.

3. The external device is visualized as being two-dimensional

in that data occupies horizontal lines, each line being

made up of column positions. A data field is defined as

a segment of contiguous columns, delimited by commas

(blanks) or semi-colons. (The first column of line n+l

follows the last column of line n.) The <read-control>

functions locate the "read-mechanism" on this "grid".

If a <read-control> function is not provided immediately
,

following READ «device» , blanks being ignored, a default

SKIP(l), COLUMN (1) is presumed; i.e. READ «device» causes

the next line to be selected and reading to begin at

column L

4. The appearance of SKIP«p» and/or cOLUMN«p» within the

list of <variable-names> sets up the "read-mechanism"

to skip <p> lines and/or begin reading at column <p> when

the next data field is encountered. The TAB«p» function

causes a relative column location; i.e. TAB(8) would cause

the "read-m~chanism" to "move" eight columns; Thepresence

of a semi-colon, separating fields of data causes termination

of the current READ statement. Unassigned <variable-names>

in the statement are left with their previous values. If

additional data fields follow the semi-colon, on the same

10-4

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

line, they may be processed by the next read statement if

a SKIP(O) and TAB(O) are provided; e.g. the data card,

5,6,7;8,9;10;

could be processed by the following READ statements:

READ (CARDS) A,B,C,D,E;

READ (CARDS) SKIP(O),TAB(O),F,G,H,I,J;

READ (CARDS) SKIP(O),TAB(O),K,L,M,N,P;

The first semi-colon on the data card causes termination of the

first READ statement after A,B and C are assigned. The second

READ statement begins "reading" immediately after C, on the

same line, because of the SKIP(O),TAB(O), and assigns F and

G only. The last READ statement assigns K. Note that after

the three READ statements D,E,H,I,J,L,M,N,P will retain

their previous values.

5. If the <variable-name> is a structure, the elements of the

structure are transmitted in the order specified in the

structure declaration. MUltiple-copy structures are transmitted

one copy at a time. For the structure

DECLARE 1 A(5), 2B ARRAY(4,S), 2C VECTOR(4);

the statement

would result in an input transmission order of

A.Bl;l,l A.Bl ;l,2·· • A.Bl ;4,5 A.el : I ,·· A'Cl ;4

A:B2;l,1 A.B 2;4,5 A'C2 :i'" A'C2;4.
•

A.B5;l,l A.BS;l,2·· • A.B5 ;4,5 A.es:!'·· A'C5;4

10-5
INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

1.98

EXAMPLES:

1. READ (CARDS) A,B,C,D,[E],{F}l

This statement causes transmission of enough data fields

to assign the variables listed. Note that CARDS represents

an integer literal.

2. READ (CARDS) COLUMN(20),A,B,

SKIP(l), COLUMN(20),C,D,

SKIP(l), COLUMN(20),E,F,

..
etc.

This statement causes two fields of data to be read on each

successive card. The data will be read starting in column 20.

3. READ (CARDS) A, TAB(40), Cl

This statement is designed to skip over some data fields

(40 columns) known to be on the input cards.

10.2.2 Standard Input Data Formats

The list of variables in a READ statement may be of

any data type. Each type requires the input data to be presented

in a standard format.

10.2.2.1 Standard Arithmetic Data Formats. Integer, scalar,

vector, matrix and bit string data may be presented in the

following format:

[+ 1-] <digi ts> [{E IB IH} {+ {- 1<integer>]. ••

where ~ represents optional blanks. Note that this is the

same form as an arithmetic literal. See Sec. 2.3.3.1 for

definition of terms.

10-6 1.99
INTERMETnICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617)868-1840

·GENERAL RULES:

1. For integers and bit strings the data form must represent

integral values. Bit string data is first converted to a

full word bit string and then assigned to the corresponding

bit variable according to the rules stated in Sec. 7.1.2.1.

2~ The data forms for scalars, vectors and matrices are identical.

EXAMPLES:

1. 369.0, 8, -8.36E+2B-l are valid forms of integer and bit

string input data.
,

2. +0.123E6B-3H4, lE-75, 3, 456.789 are valid forms of

scalar, vector and matrix input data.

10.2.2.2 Standard Character Data Format. Character data may

be presented as any character or string of characters (in the

HAL set) enclosed in apostrophes. If it is desired to place an

apostrophe in the string, it must be represented by an adjacent

pair of apostrophes.

EXAMPLES:

1. 'AB'" 'C', '57.3/C', 'NUMBER_ONE', 'ON,OFF,OFF,ON' are

valid forms of character data.

2. The following input data field and statements will assign a

bit string variable using an octal input data form.

10-7
INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

200

DECLARE B BIT(lS);

DECLARE C CHARACTER(lO) VARYING;
,

READ C;. ,
B = BIT@OCT(C);

column (1)

input data: '37776'

10.2.2.3 Arrays and Structures. Arrays and structures consist

of the above data types,and the forms presented are acceptable

as required.

10.2.3 READALL Statement

The READALL statement allows data in non-standard form

to be assigned to HAL character-string variables. This is

accomplished by not defining fields of data but accepting all

characters encountered in the input stream, including blanks,

commas, semi-colons and apostrophes.

GENERAL FORMAT:

Same as for the READ statement except READALL replaces

READ and the <variable-names> may pertain to character strings

only.

GENERAL RULES:

1. Tne READALL statement implies the input transmission of

a continuous stream of characters.

10-8

INTERMETRICS INCORPORATED· 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840
. '.,- \.j" '.

201

•

2. The <variable-names> in the list may be of character strings,

arrays of character strings and/or structures containing

only character strings.

EXAMPLE:

Suppose the following data card has been generated at a

computer facility. It is desired to process this data in a HAL

program.

column (1) (30) (60)

DATE: 25/12/70 8,632 06 101101

where the scalar starting in column(20) is equivalent to

8.632E06 and the data starting in column(40) is a set of six

boolean variables.

DECLARE B BIT(6);

DECLARE CHARACTER (2 0) , C,D,E;
, , to

READALL(CARD)C, COLUMN (30) , D, COLUMNl60), E;

C PUT SCALAR IN PROPER FORM
,
D2 = '.'; / *CHANGE COMMA TO PERIOD*/

I =. 3;
,

LOOP: DO WHILE DI 1= ' '; /*LOOK FOR BLANK*/

I = I + 1;

END LOOP;
,
o = 'E'; / *CHANGE BLANK TO E* /

I ,
A = SCALAR (D); / *ASSIGN SCALAR TO A* /

10-9
INTERMETRICS INCORPORATED' 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

202

C PUT BOOLEAN VALUES IN PROPER FORM. ,
B = BIT@BIN(E);

/*FINISH*/

10.3 WRITE Statement

The WRITE statement causes the transmission of data to

an external device. Data items transmitted are the character

string representations, in standard formats, of values of HAL

expressions.

GENERAL FORMAT:

WRITE «device» [<write-control> I{<variable-name> I<data-expression>} 1

[,[<write-control>!{<variable-name>!<data-expression>}l1 ••• ;

where

<data-expression>={<arithmetic-!<string-I<array}-<expression>

and

<write-control>~{SKIP«p» ITAB«p» ICOLUMN «P» I

PAGE «P» ILINE«p»}

<p> is an integer or scalar expression, rounded to the nearest

integer before use.

GENERAL RULES:

1. The WRITE statement implies the output transmission of a

continuous stream of characters.

2. The <variable-names> in the list may be the same as defined

10-10

ITERMETRICS INCORPORATED· 380 GREENSTREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

203

•

for the READ statement. The <data-expressions> may be

any valid arithmetic, string and/or array expressions.

3. The external device is visualized as being two-dimensional

in that output data will occupy horizontal lines, each line

being made up of column positions. A page is defined as a

default number of lines. The <write-control> functions

locate the "-write-mechanism" on this "grid". If a <write­

control> function is not provided immediately following

WRITE«device», blanks being ignored, a default SKIP (1) ,

COLUMN (1) is presumed; i.e. WRITE «device» causes the next

line to be selected and writing to begin at column 1-
I

4. The appearance of <write-control> functions within the

list of <variable-names> and/or <data-expressions> sets up

the "write-mechanism" for execution when the next name or

expression is encountered. SKIP, COLUMN and TAB perform the

same functions as in the READ statement.

LINE «p» redefines the value of the current line. If <p>

is greater than the current line, blank iines are inserted

so that the next line will be the pth line of the current

page. If <p> is less than the current line, the next line

will be the pth line on the next page.

PAGE «p» causes

execution.

<p> pages to be skipped upon

5. If COLUMN and/or TAB functions are not provided the presence

of a comma will cause a tab of a default number of columns.

For example,

10-11

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

204

•

WRITE A, TAB(lO), B, COLUMN(50), C;

causes A to begin in column 1, B to begin 10 columns

after A, and C to begin in column 50.

WRITE A, B, C;

causes A to begin in column 1, Bto begin a default number

of columns after A, and C to begin a default number of columns

after C.

6. If the <variable-name> is a vector, matrix, or array,

the effect is to unravel these types by rows

separating each element by the tab default.

Sec. 6.2.2),

If the <variable-name> is a structure the effect is

to unravel the structure into the order in which it was

declared, copy-by-copy, (see READ statement), separating each

element by the tab defaUlt.

EXAMPLES,

. - *WRITE (LISTING) A,B,C,D,[E],{F};

This statement causes transmission of all the named

data to the output device. The data is converted to a

continuous stream of characters with the elements separated

by the tab default. Note that LISTING represents an

integer Iiteral.

2. DO FOR I = 1 TO 3;

WRITE (LISTING) COLUMN (20) , MI ,.;

END;

*These statements will cause the matrix M to be printed

in rectangular form, each row starting in column (20).

10-12
INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

205

,

10.3.1 Standard Output Data Formats

The list of variables and expressions in a WRITE

statement may be of any data type. Each type produces a standard

output character format.

10.3.1.1 Scalars, Vectors, and Matrices. The standard output

format for scalar, and components of vectors and matrices is:

sx. <digi ts>E:.±)!'Y

where s is a blank or a minus sign,

x and yare single digits, 0 to 9,

<digits> is a string of digits, 0 to 9,

sx.<digits> represents the mantissa, tyy represents the

exponent power of 10. The number of digits in <digits> is fixed

and set by machine implementation. The total field of characters

in this standard form is 7 plus the number of <d1gits>.

EXAMPLES:

8.0603478E+06, -7.54362l0E-ll, 0.0

scalar output data.

10.3.1.2 Integers and Bit Strings. The standard output

format for integers and bit strings is:

~blanks>s<digits>

where <blanks> is a string of blanks

s is a blank or a minus sign

<digits> is a string of digits, 0 to 9.

10-13
INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

206

,

The total field of characters in this standard form is

fixed in size by the implementation; leading zeros

are suppressed and appear as blanks, except for a single zero.

For example, suppose the character field has been fixed by

implementation at 11, then integers might appear as:

(1) (11)

5

-4673

o

2684736

Note that when bit strings appear in the WRITE statement they

are converted to integers according to the rules stated in

Sec. 6.2.1.3.

10.3.1.3' Characters. The standard output format for

characters is simply' a variable field size equal to the string

length of the character variable or expression in the WRITE

statement.

(20)

DIST.=3.0654767E+06 MILES

2. Suppose it is desired to print the same data as above

in the non-standard format sxxx.xxx, where s is a blank or

10-14
INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

"

minus, and the x's represent digits. Then,

WRITE(LISTING)COLUMN(20)'DIST.=' I I
PICTURE ('sxxx.xxx' ,AlII 'MILES';

The function PICTURE could be a programmer-defined

function which accepts the character literal 'sxxx.xxx'

and a scalar, A, and returns a character variable repre­

senting the ~calar quantity in the desired form.

3. Print an array of bit strings in octal format •.
WRITE (LISTING) CHAR@OCT([B]);

Note that the character strings representing the octal

values will be separated, on each line, by the tab default.

The result might be

03664

06437
•··

etc.

04662

77172

37774

46162

03725

12346

10.4 Input/Output Manipulations

In addition to the <read- and <write-control> functions

SKIP, TAB, COLUMN, PAGE and LINE, several others are defined for

programmer convenience.

10.4.1 I/O Functions

PAGEOF(<device»

LINEOF«device»

COLUMNOF«device»

10-15

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

208

are functions which result in the current page, line and

column numbers.

10.4.2 Character String Functions

LJUST «character-expression»

RJUST «character-expression> ,<p»

are functions for the left and right justification of character

strings.

LJUST removes all leading blanks of the <character-expression>.

RJUST creates a string of length <p> and truncates on the

left or pads with blanks on the left depending on whether the

<character-expression> length is greater or less than <p>.

10-16

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

APPENDIX A

Built-In Functions and Pseudo Variables

The built-in functions available in HAL are given in

this appendix, and are presented in alphabetical order under

'their respective headings. The allowable data-types for the

arguments are indicated using the following abbreviations:

I: integer

S: scalar

V: vector

M: matrix

B: bit

C: character

A. Conversion Functions (see Sec. 6.2.2).

Arguments: B,I,S,V,M,C

L INTEGER

2. SCALAR

3. BIT

4 • CHARACTER

5. VECTOR

6. MATRIX

B. String Functions

1. INDEX (string, config)

Arguments: B,C. Searches a string for a specified

bit or character configuration. The

starting location of that configuration

within the string is returned as an integer

A-l

INTERMETRICS INCORPORATED· 380 GREEN STREET • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

210

data type.

2. LENGTH (string)

Arguments: B,C. Finds the string length and returns

it as an integer data type.

3. LJUST (character-string)

Result: LJUST removes all the leading blanks of

a character string operand and returns the

resultant character string.

4. RJUST (character-string, p)

Result: RJUST creates a new character string of

length, p. The character string argument

is truncated on the left, or padded with

blanks on the left, depending on whether its

length is greater or less than p. p is a

scalar expression which is rounded to the

,nearest integer before use.

C. Arithmetic Functions (B,I,S)

These functions return the same data type as the argument

(bit arguments are first converted to integers; the

function returns an integer). Array arguments yield array

results.

A-2

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

21.1.

1. ABS

Finds the absolute value of the argument.

2. CEILING

Determines the smallest integral value that is

greater than or equal to the argument.

3. FLOOR

Determines the largest integral value that does

not exceed the argument.

4. ROUND

Rounds the argument to nearest integral value.

5. SIGNUM

Returns +1, 0, -1 as argument is positive, zero,

and negative, respectively.

6. SIGN

Returns +1, -1 as argument is positive or zero, and

negative, respectively.

7. TRUNCATE

Returns 0 if argument is less than +1 but greater than

-1; otherwise equivalent of SIGN (argument) times the

largest positive integral value that does not exceed

ABS (argument).

8. MOD(a,b)

MOD extracts the remainder c such that (a-c)(b=N where

N is an integral number. c is the smallest positive

number that must be subtracted from a in order to make

N an integral number.

A-3
INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE. MASSACHUSETTS 02139 • (617) 868-1840

212

D. Mathematical Functions

These functions return a scalar data type. Arguments may

be B,I,S. (Bits and integers are converted to scalars.)

Array arguments yield array results.

1.' ARCCOS

Trigonometric cosine; argument in closed interval

[-I, 1]; results in closed interval [a, n].

2. ARCCOSH

Inverse hyperbolic cosine; arg not less than 1.

3. ARCSIN

Inverse trigonometric sine; arg in closed interval

[-I, 1]; result in closed interval [-n/2, n/2].

4. ARCSINH

Inverse hyperbolic arc sine; arg any value.

5. ARCTAN

Inverse trigonometric tangent; arg any value; result

in open interval (-n/2, n/2).

6. ARCTANH

Inverse hyperbolic tangent; larg!<l.

7. COS

Trigonometric cosine; arg in radians;

8. COSH

Hyperbolic cosine; !arg!<K3.

largl<K1.

9. EXP

Exponential, (earg); largl<K3.

A-4

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

213

10. LOG

Natural logarithm; arg positive and non-zero.

11. SIN

Trigonometric sine; arg in radians; /argl<Kl.

12. SINH

Hyperbolic sine; largl<K3.

13. TAN

Trigonometric tangent; arg in radians; arg not odd

multiple of rr/2; largl<K2.

14. TANH

Hyperbolic tangent; arg any value.

15. SQRT

Square root; arg positive.

Note: Kl, K2 and K3 are upper limits which depend

upon target machine characteristics.

E. Matrix-Vector Functions

Arguments may be vectors or matrices (as applicable).

Array arguments yield array results.

1. ABVAL

Absolute value of magnitude of vector; argument may

be a vector of any length.

2. ADJ

Adjoint; argument is invertible square matrix of any

dimension; result is equal to

DETERMINANT (argument) times INVERSE (argument).

A-5

INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

2.14

3. DET

Determinant; argument is a square matrix.

4. INVERSE

Inverse; argument is square matrix; result is inverse

if argument is invertible.

5. TRACE

Trace; argument is square matrix; result is sum of

diagonal matrix elements.

6. TRANSPOSE

Transpose; argument is matrix of any dimensions; result

is the interchange of the rows and columns of the argument.

7. UNIT

Unit vector; argument is vector of any length; result is

a vector of magnitude 1 and in line. with argument.

F. Linear Array Functions

These functions have the following general format:

<function-label> «single-operand»

where the function will operate on the ·"linear array" repre­

senting the "inner-most" free index of the argument. The

<single-operand> may be of (B,I,S,V,M) data types or arrays

of these types. The following table indicates the array

shape and dimension of the function result.

A-6

INTERMIOTF1ICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, .MASSACHUSETTS 02139 • (617) 868-1840

2:15

rgument

Function
Label

[X] (1)
a

[X] (1)
a,b

[A] (2)
a

[5] (3)
a,b

*Ma,b:m,n

Subscripts indicate shape and dimension (i.e. <array-shape>:

<dimension»i =vector length; m,n =matrix rows,columns;

a,b = array shape. t.(In general, the argument array shape may

be a,b,c, ... etc.)

NOTES:

:(1) X may be bit string., integer or scalar

(2) A is an integer if X is a bit string or integer

(3) S indicates scalar

The linear array functions are:

1. SUM

Sums over inner-most free-index.

2. PROD

Forms product over inner-most free index.

3. MAX

Finds maximum element value over inner-most free index.

·4. MIN

Finds minimum element value over inner-most free index.

EXAMPLES:

1. DECLARE A ARRAY (2,4,6);

SUM([A]2,*,6) results in a 2x6 array of scalars. Sum

is performed over second index because it is free.

A-7

INTERMETRICS INCORPORATED' 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) ~iiiO

2. DECLARE ARRAY(25,25,10)A,B;

[A] 3 TO a, 4, * = MAX ([B]10 TO 15, * ,*) ;

The result is a 6xlO array of scalars. Each scalar

is equal to the maximum value encountered along the

inner most index of [B]. The statement is equivalent

to the following "DO FOR-loops":

DO FOR I = 3 TO 8;

DO FOR J = 1 TO 10;

A1 ,4,J = MAX([B)I+7,J,*);

END:

END;

3. DECLARE D ARRAY(10)VECTOR(6);

SUM([D) results in an array of scalars of length

10. Each scalar is the sum of the 6 components of each

of the 10 vectors.

G. Miscellaneous Functions

1. RANDOM

Result is the current base random n-umber in the pseudo­

random number' generator. This function enables the

programmer to make successive runs of a program without

repeating sequences of pseudo-random numbers.

2. RANDOMG

Selects a random number from a Gaussian distribution.

A-a

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

217

3. TIME

Returns current time as integer.

4. DATE

Returns current data as integer.

H. Pseudo-variables

A pseudo-variable, in HAL, is a function that can only appear

on the left of an equal sign (=) in an assignment or DO

statement. The only defined pseudo-variable is SUBBIT.

See Sec. 7.1.2.3.

A-9

INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

21.8

I
I

I

I
I
I
I

I

I
I
I
I

I

I
I
I
I

I

I
I
I
I

I

I
I
I
I

I

I
I
I
I

I

I
I
I
I

I

I
I
I
I

I

APPENDIX B

Standard Defaults

B.l DEFAULTS WITH DATA DECLARATIONS

B.l.l Within DECLARE Statements

B.l.l.l Specifications (See Sec. 5.1.1). If no <specifications>

are provided; Le. no <array-spec>, <type-spec> and <attribute

list>, the following defaults apply to the declared name(s):

1. At the COMPOOL level,

SCALAR PRECISION(6)

2. At the PROGRAM 'level,

SCALAR PRECISION (6) 1 initial value is unspecified.

3. At other levels,

SCALAR PRECISION(6) STATIC; initial value

is unspecified.

4. For a function (Sees. 5.1.1.5, 7.4.2.1), if <type-spec> is

not provided,

SCALAR PRECISION(6)

Note: For fixed point machine PRECISION.default is single

precision, with zero. integer bits.

B.l.l.2 precision, Dimensions and Length (Sec. 5.1;1.2).

1. If scalar, vector, or matrix PRECISION is not provided,

the precision default is the same as in B.l.l.l above.

2. If vector <length> is not provided, a length = 3 is

presumed.

3. If matrix <rows> and <columns> are not provided, 3

rows and 3 columns are presumed.

B-1
INTERMETRICS INCORPORATED· 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840,

2:19

4. If bit <length> is not provided, a length, ~ 1 is

presumed.

5. If fixed character <length> is not provided, a

length = B is presumed.

B.l.l.3 Attributes (See Sec. 5;1.1.3)

B.l.l.3.1 Initialization Attributes. If INITIAL or CONSTANT

is not provided, the identifier is presumed to be a variable

with unspecified initial value.

B.l.l.3.2 Storage Class Attributes. If STATIC or AUTOMATIC
,

is not provided, the STATIC storage class is used.

B.l.l.3.3 Dynamic Sharing Control Attributes. If LOCKTYPE «n»

is not specified, for a variable, no controlled sharing is provided.

B.l.l.3.4 Storage Optimization Attributes. If DENSE or ALIGNED

is not provided, the ALIGNED attribute is presumed.

B.l.l.3.5 Structure Qualification. If QUAL1FIED or NONQUALIFIED

is not prOVided in a structure declaration NONQUALIFIED is

presumed.

B.l.2 Implicit Declarations (See Sec. 5.3)

For the implicit declaration of SCALAR, VECTOR, MATRIX,

BIT and CHARACTER the default characteristics of length, precision,

initialization, sharing class, and storage optimization are the

B-2

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

220

I

"

I

I
f

•

same as described in B.l above for the explicit declaration of

these data types.

B.2 WITHIN EXPLICIT CONVERSION FUNCTIONS (See Sec. 6.2.2)

B.2.l Single-Operand

B.2.l.l B!T «single-operand». If BIT is not subscripted,

integers and scalars are converted to full word bit strings;

character operands are converted to the bit length representing

the total character string.

B.2.1.2 CHARACTER «single-operand». If CHARACTER is not
i

subscripted, an integer or scalar operand is converted to a

character representation; a bit string is first converted to an

integer, and then to a character representation.

B.2.l.3 VECTOR «single-operand». If VECTOR is not subscripted,

and the <single-operand> is unarrayed (B,I,S,C) the vector

dimension will be set to the default otherWise the vector dimension

takes on the inner most dimension of the argument.

B.2.1.4 MATRIX «single-:operand». If MATRIX is not subscripted,

and the <single-operand> is unarrayed (B,I,S,C), a linear array

of these types or a vector, the matrix dimension will be set to

the default value. Otherwise, the matrix dimensions take on

the two inner most dimensions of the argument.

B-3

, INTERMETRICS INCORPORATED· 380 GREEN STREET· CAMBRIDGE, MASSACHUSETTS 02139· (617) 868·1840

221.

B.2.2 Multiple-Operand

B.2.2.1 INTEGER «list» and SCALAR «list». If these functions

•

are not sUbscripted, a linear array of n elements is presumed,

where n is the number of elements in the list.

B.2.2.2 BIT «list» and CHARACTER «list». If these functions

are not subscripted, linear arrays of lengthn are presumed,

where n is the number of elements in the list. Bit string length

will be equal to the .maximum length within the list. Character

strings are varying, limited in length by implementation.

B.2.2.3 VECTOR «list». If VECTOR is not subscripted, the vector

dimension is equal to the total number of unraveled elements in

the <list>.

B.2.2.4 MATRIX «list». If MATRIX is not subscripted, the

resultant matrix is square with rows and columns equal to the

square root of the total number of unraveled elements in

<list> •

B-4

INTERMETRICS INCORPORATED' 380 GREEN STREET' CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868·1840

' .. ", ~.,

APPENDIX C

J:lAL Keywords

(not including built-in functions)

The following words are HAL keywords and are usually unavailable

for any other use.

ACCESS FILE PROCEDURE

AND FOR PROGRAM

ARRAY FUNCTION QUALIFIED

ASSIGN GO READ

AT HEX READALL

AUTOMATIC IDCODE REPLACE

BIN IF RETURN

BIT IN SCALAR

BITLENGTH INCLUDE SCHEDULE

BY INDEPENDENT SEND

CALL INITIAL SIGNAL

CASE INTEGER SKIP

CAT LABEL STATIC

CHAR LATCHED SYSTEM

CHARACTER LINE TAB

CHARLENGTH MATRIX TASK

CLOSE MATRIXDIM THEN

COLUMN NOT TERMINATE

CONSTANT NONQUALIFIED TO

DEC OCT TRUE

DECLARE OFF UNTIL

DO ON UPDATE

ELSE OR VARYING

END OUTER VECTOR

ERROR PAGE VECTORLENGTH

EVENT PRECISION WAIT

EXCLUSIVE PRIO WHILE

FALSE ··PRIOCHANGE WRITE

PRIORITY

C-l

INTERMETRICS INCORPORATED' 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 • (617) 868-1840

)'::(u.s. GOVERNMENT PRINTING OFFICE: 1972-779-261/365

223

