The Programming Language
HAT
- A Specification
Document #MSC-01846
June 1971

Submitted to:

National Aeronautics and Space Administration
‘Manned Spacecraft Center :
Houston, Texas 77058

Prepared under Contract NAS-9-10542 by .

Intermetrics, Inc.
'380 Green Street
Cambridge, Massachusetts 02139

"{NASA-CR~129506) -+ THE PROGRAMMING LANGUAGE N73-12191
HAL: A SPECIFICATION {Intermetrics, Inc.)

~Juan. 1971 234 p CSCL 098

! Unclas

 63/08 48630

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 866-1840

FOREWORD

This document constitutes the specification for the
programming language, HAL. It was prepared by Intermetrics,
Inc. upder Contract NAS~9-10542 from the Manned Spacecraft
Center of the National Aercnautics and Space Administration,
The Technical Monitor was Mr. Jack Garman/FSS.

The pﬁblication of this report does not constitute approval
by the NASA of the findings or the conclusions contained
herein. It is published for the excﬁénge and stimulation

of ideas.
1

-

NTERMETRICS INCORPORATED -« 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - {617) 868-1840

\

PREFACE

The HAL Programming Language has been devéloped by the
staff of intermetrics, Inc. based on many years of experieﬁce
in producing software for aerospace applications;

HAL accomplishes three significant objectives: (1) increased
readability, through the use of a natural two-dimensional mathe-
matical format; (2) increased reliability, by providing for
selective recognition of common data and subroutines, and by
incorporating specific data-protect features; {3) real-time
control facility, by including a comprehensive set of real~time
control commands and signal conditions. Although HAL is designed
primarily for programming on-board computers, it is general
enough to meet nearly all the needs in the production, verifica-
tion and support of aerospace, énd other real-time applications.

The design of HAL exhibits a number of influences, the
greatest being the syntax of PL/1 and ALGOL, and the two-dimen-
sional format of MAC/360, a languagé developed at the M.I.T.
Draper Laboratory. With respect to the latter, Intermetrics
wishes to acknowledge the fundamental contribution, to the
concept and implementation of MAC, made by Dr. J. Halcombe Laning

of the M.I.T. braper Laboratory.

il

e

June 1971

-

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

~

2.1

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139

TABLE OF CONTENTS

BRIEF DESCRIPTION OF HAL

The Basic Characteristics of HAL

1.1.1
1.1.2
i1.1.3

1.1.4

Source Input/Source Listing

Data Types and Computations

Real~-time Control

Program Reliability

HAL LANGUAGE ELEMENTS

Syntax Nétation

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5

2.1.6

Syntactical Elements

Kexﬂords

Vertical Strokes

Braces
Brackets

Three Dots

HAL Character Set

Basic

S 2.3.1

2.3.2
2.3.3

Syntax Elements

Identifiers

Keywords

Iiterals

2.3.3.1 Arithmetic Literals

2.3.3.2 Bit String Literals

2.3.3.3 Character String Literals

Special Characters

2.3.4.1 Arithmetic Operators

2.3.4.2 Relational Operators

i

2-6
2-6
2-7
2-8

2-9

2-10
2-10
2-11

2~-12

- (617) 868-1840C

2.3.4.3 String & Logical Operators - p 2-12

2,.3.4.4 Other Operators 2-13
2.3.4.5 Separators 2-13
2,3,4.6 Built-in Function Names §—14
2.3.4.7 Compiler-Generated Annotation 2~14
3.0 SOURCE LANGUAGE INPUT : 3-1
3.1 Two-Dimensional Format -~ 3-3
3.1.1 E and S Line Expressions 3-4
3.2 HAL Single-Line Format ' 3-6
3.2.1 TImplicit Data Declarations | 3-6
3.3 Comments | - 3-7
3.3.1 Comments on Statement Lines | 3-7
3.3.2 Comment Lines 3-7
3.4 Use of Blanks ' 3-8
4.0 DATA ELEMENTS | ' 4-1
4.1 Data Types ' 7) 4-3
4.1.1 Arithmetic Data .I 4-3
4.1.1.,1 Scalar ' 4-3
4,1.1.2 Integer 4-3
4.1.1.3 Vector 4-3
4.1.1.4 Matrix C 4-4
4.1.2 String Data : ‘ 1-4
4.2 Data Organizations 4-5
4.2.1 Arrays : 4-5
4.2,2 Structures 4-5
4.2.2.1 A Non-Qualified Example 4-6
4.2.2.2 A Qualified Example 4-7
ii

INTERMETRICS INCORPQRATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

4.2,2.3 BAn Aerospace Application

4,3 Attributes

4.3,1 Initialization Attributes

4.3.2 Storage Class Attributes

4.3.3 Memory Optimization Attributes

4.3.4 Dynamic Memory Protection Attributes

4.3.5 gpecial Attributes

5.0 DATA DECLARATION
5.1 DECLARE Statement

5.1.1 Simple DECLARE Statement

5.1.1.1 <array-spec>

5.1.1,2 <type-spec>

5.1.1.3 <attribute list>

5.1.1.4 Initialization

5.1.1.5 Declaration of Program, Function &
Statement Labels

5.1.1.6 Examples of Simple Declaration
Statements (Floating Point Implementation)

5.1.2 Factored Declaration Statement

5.1.2.1 Examples of Factored Declarations

5.1.3 Structure Declaration Statement

5.1.3,1 <terminal-declaration>

5.1.3.2 <minor-struct-declaration>

5.1.3.3 Examples

5.1.3.4 Structure Initialization

iii

4-8

4-10
4~10
4-10
4-11
4-12
4-13

5-11
5-12
5-13
5-14
5-14
5-15
5-16

INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 868-1840

5.2 WNotation of Data Types and Organizations

'5.2.1 Data Type Notation

5.2.2 Array Notation

5.2.3 Structure Notation

5.3 Implicit Declarations

5.4 Alternate DECLARE Form

5.% DEFAULT Statement

6.0 DATA MANLPULATION

6.1 Expressions

6.1.1 Arithmetic Expressions

6.1.1.1
6.1.1.2
6.1.1.3
6.1.1.4

Integer Expressions

t .
Scalar Expressions

Vector Expressions

Matrix Expressions

6.1.2 string Expressions

6.1.2.1
6.1.2.2

Bit String Expressions

Character String Expressions

6.1.3 Array Expressions

6.1.3.1
6.1.3.2

Two-array Expressions

One-Array Expressions

6.1.4 Structure Expressions

6.1.5 Comparison Expressions

6.1.5.1
6.1.5.2
6.1.5.3
6.1.5.4

6.1.5.5

Bit String Comparisons

Arithmetic Comparisons

Character String Comparisons

Array Comparisons

Structure Comparisons

iwv

6-1{
6-11]
6-1:
6-1:
6-1:

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-184

6.1.6 Precedence Order

6.1.6.1
6.1.6.2
6.1.6.3

6.2 Conversions

Group I Arithmetic Operations

Group II Relational and String Operations

Further Comments on the Order of
Operations

6.2.1 Implicit Conversions

| 6.2.1.1 Data Type
6.2.1.2 Arithmetic Literals
6.2.1.3 Precision

6.2.2 Explicit Conversions

6.2.2.1
6.2.2.2
6.2.2.3

6.2.2.4
6.2.2.5

6.3 Subscripts

Single-Argument

Multiple-Argument

Special Character-To-Bit, Bit-To-
Character Functions

Precision

Summary of Explicit Data-Type Conversions

6.3.1 Subscripting Data-Types and Arrays of Data-Tvpes

6.3.2 Single-Element Reference

6.3.3 Multiple-

Element Partitions

6.3.3.1
6.3.3.2

6.3.3.3

The Use of *

The "TO" Operator

The "AT" Operator

6.3.4 Subscripting Structures

6.3.5 Array Subscripts

6.4 Expression Summary

INTERMETRICS INCORPORATED

v

« 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139

6-15
6-15
6-16

6-16
6-19
6-19
6-19
6-21
6-21
6-24
6-24
630
6-34

6-35
6-38
6-40
6-41
6-41
6-43
6-43
6-43
6-44
6-45

6-47

« (617) 868-1840

7.0 STATEMENTS

7.1 Assignment Statements

7.1.1 Implicit Conversions

7.1.1.1
7.1.1.2

Type Conversions

Precision Conversion

7.1.2 String Assignments

7.1.2.1
7.1.2.2
7.1.2.3
7.1.2.4

7.1.2.5

‘Bit Strings

"Boolean" Assignments

Pgseudo-Variable Bit String Assignment

Fixed Character Strings

Varying Character Strings

7.1.3 Array Assignments

7.2 Declaration Statements

7.3 Control Statements

7.3.1 The GO TO Statement

7.3.2 DO Statements

7.3.2.1
7.3.2.2
7.3.2.3
7.3.2.4

The Simple DO Statement

DO WHILE Statement

The DO FOR Statement

DO CASE Statement

7.3.3 END Statement

7.3.4 The IF Statement

7.3.5 The NULL Statement

7.3.6 REPLACE Statement

7.4 Procedures and Functions

7.4.1 Procedures

7.4.1.1

PROCEDURE Statement

vi

-

7-1
7-1
7-3
7-3
7-3

7-4

INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1841

7.4.1.2 CALL Statement : 7=-22

7.4.2 Functions ‘ : 7=-23
7.4.2.1 FUNCTION Statement 7-23
7.4.2.2 Function Reference . 7-25
7.4.2,3 Parameter Declarations ' 7-25
7.4.2.4 Functions of An Array - 7-27
7.5 ' Programs : 7-29
7.5.1 PROGRAM Statement _ 7-29
7.5.1.1 Program Calls C7-30.
7.6 RETURN Statement 7-31
7.7 CLOSE Statement Ny . aedm32
8.0 HAL PROGRAM ORGANIZATION 8-1
8.1 Program Structure 8~1
8.1.1 Scope of Names 7 _ _ 8§-2
8.1.2 Selective Inclusion of Outer Names . 8-4
8.1.2.1 Inclusion of Structure Names : 8-5
8.1.2,2 Implicit Declaration of Names 8-6
8.1.3 Scope of Labels . . ' ' 8-6
8.1.4 Scope of the REPLACE Statement) 8~-9
8.1.5 Scope of the DEFAULT Statement , 8-9
8.2 The COMPOOL - 8=-11
8.3 The Symbolic Library | . 8-12
9.0 REAL TIME CONTROL - 9--1
9.1 TASK Statement | 9-1
9.1.1 7Task Calls _ ' 9-2
9.2 Scheduling Statements ~ 9;3
9.2.1 SCHEDULE Statement 9-3
vii

-~

INTERMETRICS INCORPORATED - 380 GREEN STREET * CAMBRIDGE, MASSACHUSETTS 02139 - {617) 868-1840

10.0
10.1

10.2

9.2.2
9.2.3

9.2.4
Events
9.3.1

9.3.2

2.4,1

9.4,2

9.4.3
9.4.4
Error
9.5.1

9.5.2

" 9.5.3

WAIT Statement

PRIOCHANGE Statement

TERMINATE Statement

and Signals
Events

SIGNAL Statement

Dynamic Control of Shared Data

Conflicts in Sharing Data

The Update Block

9.4.2.1 Summary on Entering an Update Block

{LOCKTYPE(l) Variables)

9.4.2.2 Summary on Leawving an Update Block
{LOCKTYPE(l) Variables)

9.4.2.3 Exanples

Exclusive Subroutines

Access Rights

Recovery

ON Statement

ON Examples

SEND Statement

INPUT~OUTFUT

FILE Statement

READ S
10.2.1
10.2.2

tatements

READ Statement

Standard Input Data Formats

10.2.2.1 standard Arithmetic Data Formats

10.2.2.2 sStandard Character Data Format

10.2.2.3 Arrays and Structures

yviii

-~

9-10
9-13
9-13
9-15
9-17

10-3
10-6
10-6
10-7
10-8

INVERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

10.2.3 READALL Statement 10-8

10.3 WRITE Statement . " 10-10

10.3.1 standard Output Data Formats | 10-13

10.3.1.1 Scalars, Vectors, and Matrices 10-13

10.3.1.2 Integers and Bit Strings 10-13

10.3.1.3 Characters 10-14

10.4 1Input/Output Manipulations 10-15

10.4.1 I/0 Functions ' 10-15

10.4.2 Character String Functions 10-16
APPENDIX A Built-In Functions on Pseudo Variables A-1
APPENDIX B Standard Defaults B-1
APPENDIX C HAL Keywords - C-1
INDEX | I-1

ix

-

INTERMETRICS INCORPORATED - 380 GREEN STREET CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

1.0 BRIEF DESCRIPTION OF HAL

HAL is a programming language developed by Intermetries, Inc.
for aerospace computer applications. It is intended to satisfy
the requirements for both on-board and support software. The
1énguage contains features which provide for real-time control,
vector-matrix and array data handling, and bit and character

string manipulations.
1.1 The Basic Characteristics of HAL

1.1.1 Source Input/Source Listing

A singular feature of HAL is that it accepts source code
in a multi-line format, corresponding to the natural notation
of ordinary algebra. An equation which involves exponents and
subscripts may be written, for example, as

2 2

- 3/2
c; = (X A + Y BK)

.

instead of (as in FORTRAN or PL/1)
c(1) = (X*A(J)**?+Y*B(K)**2)**(3./2)

HAL also permits an optional single-line format; its construction

is similar to the example above, with some minor changes; thus

C$SI = (X ASJT**24y BSK**2)**3/2

1-1

~

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

. L R |

HAL source code may be input on cards or by data terminal.
The input stream is free-form in that, for the most part, card
or carriage column locations have no meaning; statements are
separated simply by semi-colons.

In an effort to increase program reliability and promote
HAL as a more direct communications medium between specifications
"and code, the HAL program listing is annotated with special
marks. Vectors, matrices and arrays of data are instantly
recognized by bars, stars and brackets.' Thus, a vector becomes

—_ ., % . .
V, a matrix M, and an array [A]. Further, bit strings appear

* ’

with a dot, i.e., B and charactér strings with a comma, C.
With these special marks as aids, the source listing is more
easily understood and serves as an important step toward
self-documentation. 1In additiqn to data marks, logical paré-
graphs, or blocks of code, are automatically indented so that
dependence of one block on another may be seen clearly.

HAL is a higher-order language, designed to allow programmers,
~analysts and engineers to communicate with the computer in a
form which approximates natural mathematical expression. Parts
of the English language are combined with standard notation to
provide a tool that readily encourages programming without

demanding computer hardware expertise.

1-2

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 8t

E

1.1.2 Data Types and Computations

HAL provides facilities for manipulating a number of
different data types. Arithmetic data may be declared as
scalar, ﬁector, matrix or integer (whole number). Individual
bits may be treated as Boolean quantities or grouped together
in strings. The language permits the user to manipulate
character strings, via special instructions. Organizations of
data may also be constructed; multi-dimensional arrays of any
single type can be formulated, partitioned, and used in expressions.
A hierarchical organization called a structure can be declared,
in which related data of different types may be stored and re-
trieved as a unit or by individual reference.

HAL requires that most data types be described explicitly:
i.e., by declarations which assign a name and specify desired
attributes. However, for data types with default attributes
the programmer can take advantage of HAL's implicit‘declarations
and let the.compiler assign these variables appropriately.
| The arithmetic data types togéther with the appropriate
operators and built~in functions constitute a useful mathematical
subset. HAL can be used directly as a "vector-matrix" language
iﬁ—impléﬁéntihg large.portions of both on-board and support soff—

ware. For example, a simplified equation of motion might appear as

=32 ACC;
G = ~MU UNIT(R)/R.R;
Voo = & + G;
RDOT = V;
1-3

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840 '

v & o ——
o)

where the matrix E transforms acceleration from méasureﬁent
to reference coordinates.

By combining data types within expressions and utilizing
both implicit and explicit conversions from one type to another,
HAL may be applied to a wide variety of problems with a powerful

and versatile capability.

1.1.3 Real-time Control

HAL is a real-time control language; that is, certain
defined blocks of code called programs and tasks can be scheduled
based on time'of the occurrence of anticipated events. These
events may include extérnal interrupts, specific data conditions,
and programmer-defined scoftware signals. Undesirable or un-
expected evenés, such as abnormal conditions, may be handled
by instructions which enable the programmer to specify appro-
priate action.

HAL's real-time control features permit the initiation and

scheduling of a number of active tasks. This is a necessity

for any complex onboard space application.

1.1.4 Program Reliability

Program reliability is enhanced when a software system
can create effective isoclation for various subsections of code
as well as maintain and control commonly used data. HAL is a
block-oriented language in that a block of code can be established
with locally defined variables that cannot be altered by sections

of program located outside the block. Independent programs

1-4
INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

can be compiled and run together with commﬁnication among tha
programs permitted through a centrally managed and highly visible
data pool. For a real-time environment, HAL couples these pre-
cautions with a locking mechanism which can protect, by pro-
grammer directive, a block from being entered, a task from
being initiated, and even an individual variable from being
written into, until the lock is removed.

‘These measures cannot in themselves ensure total software
reliability but BAL does coffer the tools by which many anticipated
problems, especially those prevalent in real-time control, can

be isolated and solved.,

1-5
INTERMETRICS INCORPORATED + 380 GREEN STREET * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 868-1840

E___ 5

2.0 HAL LANGUAGE ELEMENTS

A HAL program consists of statements terminated by semi-
colons (;), groups of associated statements which are treated as
a single statement (do-groups), and blocks of statements organized
as subroutines (e.g, procedures and functions). The statements and/or
blocks must be compiled as a program unit, or as sets of indepen-
dentiy compilable program units, Communication between programs
is through a common data pool (COMPOOL) within a symbolic library
{see Sec, B8).

HAL is composed of five basic syntactical elementé: identi-
fiers, keywords, literals, special characters, and built-in
functions., Complex syntactical units (i.e., statements) are
constructed from these basic elements using a common set of

input characters.
2.1 Syntax Notation
The following rules are used throughouﬁ_this specification

to describe the syntax of the various constructs in HAL,

2.1.1 Syntactical Elements

Syntactical elements represent the defined language
elements which comprise HAL.. Elements are denoted by lower
case letters (allowing imbedded hyphens) enclosed by angle

brackets. Some examples are:

2-1
INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

6

N

<digit>
<identifier>-
<expression>
<operand$

<label>

2.1.2 Letter-Combinations

A letter-combination is the literal occurrence in the
lénguage of the characters represented. These are made up of upper
case letters and break characters. Some examples are:

DECLARE
INTEGER
AND
OR -
NOT
CALL

PROCEDURE

~2.1.3 Vertical Strokes

The vertical stroke | indicates that a choice of syn-
tactical units or other meaningful symbols is to be made; e.qg.
<identifier>|<expression>
<name> | <label>
0l1]2]3]2
etc.
2-2 - 7

) fNTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

2.1.4 Braces
Braces { } are used to denote that a choice of one of the
enclosures mugt be made. The choices may be stacked vertically,

or horizontally using the vertical stroke. For example,

MATRIX}

DECLARE<name${VECTOR

and
DECLARE<name> {MATRIX | VECTOR}

are identical.

2.1.5 Brackets
Brackets [] are used to denote that a choice of one or
none is to be made. For example
f{<label>:]END;
specifies that an END may but need not be, labeled; e.g.,
MARK: END:
or just

END;

2,1.6 Three Dots
Three dots ... denote that the immediately preceding
syntactical unit may occuf one or more times in succession; e.q.,
f<digit>]...
specifies a sequence of zero or more digits, while
{<digit>}...

specifies a sequence of one or more digits.

2-3

INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

2.2 HAIL Character Set

HAL's language syntax includes a total of 85 basic characters.

These are:

52 English language alphabetic letters: upper case A

through Z and lower case a through z.

(Lower case

is optional and may be used in identifiers when

available.)

10 digits 0 through 9.

23 special characters.

Fach special character or com-

bination of characters has a particular meaning within

the language 'syntax.

Section 2.3.4.)

+

e

(equals sign)

(plus sign)

(minus sign)

{slash)

{asterisk)

{less than symbol)
{greater than symbol)
(not symbol; also 7)
{OR symbol; élso)
{ampersand)
{semi-colon)

{colon)

2-4

They are:

[]

{}

(Their uszes are discussed in

(period)

(comma)
{apostrophe)

{left parenthesis)
(right parenthesis)
{dellar sign)
(break character)
fnumber sign)

{at sign)
(brackets)

{(braces)

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840°

HAL will also accept other characters, restricting their
use to within comments and character strings. Some examples
are:

! (exclamation point)
% (percent sign)
? (question mark)

" (double quotation marks)

2-5

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE; MASSACHUSETTS 02139 - (617) 868-1840 .

-
Ao

10

2.3 Basic Syntax Elements

2.3.1 Identifiers

An identifier is a name which is assigned by the programmer
to a data element, statement label, etc. Each identifier must
satisfy the following rules:

a. The first character must be a letter.

b. It may contain 0 to 31 additional characters, which may
be any combination of letters, digits, or break characters,
except that it must not end with a break character.

c. It must not be a compi%er reserved word.

a. a qualified structure name will contain imbedded
periods and must not end in a period or break character.
A structure name must be 31 characters or less,including
periods. |

Examples of valid identifiers:
A
ROS5
INTEGRATION__ROU‘I‘ INE
SEXTANT_TO_NAVIGATION BASE_MAT

STATE.COV_MATRIX

2-6

-~

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-18{)1

e

Examples of invalid identifiers:

1a begins with digit

SAMPLE - | ends in a break character
DECLARE reserved word

POS VEC contains a blank
STATEMENT_#200 contains a # character

2.3.2 Keywords

Keywords are words recognized by the compiler to have
standard meanings within the language, and are usually unavailable
for any other use; for example, operators, commands, attributes,
and bﬁilt—in function names. A list of HAL keywords 1is presented

in Appendix C. Some examples are:

DECLARE.
INTEGER
AND
VECTOR
SQRT
TRANSPOSE

PRIOCHANGE

. 2=-7
IN{EQMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840 -

.. 12

-~

2.3.3 Literals
A literal is a group of characters or digits
which expresses i£s own value. For example, 248 and
12.6 are literals in that the compiler will assijn these values
to these "names". Literals are constants during program execution,

There are two types of literals: arithmetic and string.

2.3.3.1 Arithmetic Literals., An arithmetic literal has the

following general format:
| <digits>[{E|B|H}<integer>]...
where ' |
<digits> = one or more decimal digits with an

optional decimal point.

<integer> = signed or unsigned whole number.

GENERAL RULES:
l. E, B, H represent powers of 10, 2, 16 respectively.

(That is, 1.023B+2 = 102.3, 32B-5 = 1.)

2. No distinction is made by form between scalar and.integer
literals. (See Sec. 6.2.1.2 for the use of literals
in expressions.)

‘3. Arithmetic literals will be interpreted as single or
double precision depending on context and/or programmers'

designation (see Secs, 6.2.1.2, 6.2.1.3, 6.2.2.4).

2-8

INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 » (617) 868-18113

EXAMPLES:

0.123E6B-3E10, lE75, 1E-75, 456.789, 3 are all valid

arithmetic literals.

2.3.3.2 Bit String Literals. Four forms of bit string literals

are defined:
BIN[(<repetition>)] '<binary digit string>'
| OCT[(<repetition>)] ‘'<octal digit string>'
HEX[(<repetition>)] '<hexadecimal digit string>'
DEC '"<decimal digit string>!
where <re§etition> is an unsigned integer and the digit strings are
of length 1 or more. Where <repet;tioﬁ> is provided the resulting
'string length is equaf to <repetition> times the number of digits
in the particular <digit string>. Imbedded blanks are allowed
between the épostroPhes, but have no significance.
GENERAL RULES: .
1. Binary digit strings may contain only zeros, ones, or blanks.

2. There are 4 special forms of bit string literals:

{(TRUE} = pInta
{ForsF) = mIn'or
EXAMPLES :
Literal . : Binary Form
TRUE 1
BIN'10110" , . 10110
HEX'ABCD' 1010 1011 1100 110l
BIN(3)'1" 11111111 |
ocT'3777" 011 111 111 111
DEC'42' 10101
2-9

© INTERMETRICS INCORPORATED « 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

.. 14

- .

'2.3.3.3 Character String\Lite:als. Two forms of‘character
string literals are defined:
' '<text>"

CHAR [(<repetition>)]'<text>'

where <text> may contain any character in the accepted character
set. If it is desired to have an apostrophe in the resulting
literal,_it must be represented by'eh adjacent pair'eflapostrophes.
The length of the resulting string is equal to-ehe count ef the

characters plus the number of apostrophe pairs.

EXAMPLES: _ 7
_ }AB"':C',"CHAR'57.3/C', CHAR(26) 'POP', are all valid character-
.litefals, having lengths of 5, 6, and 78 respectively.
NOTE: The character pair /* is always
interpreted as an opening comment
bracket by the compiler, even if
it occurs within a character string

literal.

2,3.4 Special Characters

Special characters or combinations of characters are used
in HAL between or with identifiers as operators, separators,
or other delimiters. These characters and their uses are defined

below and described in more detail in Sec} 6.

2-190
INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 -

-

15

2.3.4.1 Arithmetic Operators.

S ol Definition

+ . addition (or prefix plus)

subtraction (or prefix minus)
/ division (other uses also)

(see note below*) ' multiplication

* vector cross product (other uses also)

. vector dot product (other uses also)

*k exponentiation (single-line)

t Note that HAL does not utilize a character as a multiplication
operator. Instead:
{1) a space (or spaces) between two distinct identifiers .
is interpreted as_multiplication, or
(2) one of the operands (identifer or expressioh) must be
enclosed in parentheses, or
{(3) the leftmost oPeraﬁd must end with a parentheéisA

(function form), e.g., SIN(X).

2-11

~

INTERMETRICS INCORPORATED -« 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - {617) 868-1840 -

e 116

2.3.4.2 Relational Operators.

Symbol ‘ Definition
= - eqﬁal to
= not equal to (or =)
< ‘ © less than
> greater.than
<= . ' less than or equal to
>= ' - greater than dr equa1 to
> not greater than (or *>)

N

< " not less than (or <)

The word NOT is equivalent to (M]") and may be applied to the

combinationg above.

2.3.4.3 s8tring and Logical Operators.

Symbol Definition
AND (or &) . Boolean AND
OR (or [y - ‘ Boolean OR

" NOT for 1 or *) . Boolean NbT
caT {or || or.f:) : Concatenation

Word operators (e.g., AND) may be substituted for symbols (e.g., &)
except that they do not act as delimiters and must be appropriately
delimited by blanks or otherwise. The use of these operators is

described in more detail in Sec. 6.

2-12

~

INTERMETRICS. INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 °

47

N Y

- 2.3.4,4 oOther Operators.-

Symbol Definition
¥ Indicates repetition within

a list, or the last member
of an array or string.

a | Scaling operator, or character -
to-bit modifier

$ Subscript operator (single-
line)

2.3.4.5 geparators. The following characters have meaning

as separators in HAL:

Symbol Definition
comma R - {a) separates elements of a list;

(b) separates indices in index
expressions}

(c) separates clauses in declare
statements.

semicolon {a) terminates statements;

(b) separates structure indices
from array element indices.

(a) associates a statement label
with the succeeding statement;

- ‘¢olon

(b) separates array element :
indices from sub-element indices.

- apostrophe ! delimits string literal wvalues
{charactex or bit),. : '

equals = indicates replace in assignment
and DO FOR statements.

2-13

N

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 ¢ (617) 868-1840
' i

-. 18

preriod . separates component names of

gqualified structures,
/* '
x/ encloses comments.
() Parentheses have many uses in

the language. They are used
in expressions, for enclosing
lists, function arguments,

- data dimension and initializa-
tion wvalues, etc.

2.3.4.6 Built-in Function Names. Built-in function names are

identified by the compiler as names of functions which are part
of the language. A conplete list of these functions appears

in Appendix A, Some examples are:

ABS
TRUNCATE
cos
TAN
INVERSE

UNIT

2.3.4.7 Compiler-Generated Annotation. The following characters

are used by the'compiier to annotate various data types as they
_appear,in'the 1isting.‘ Identical usage is also acceptable in

the input stream.

2-14
INTERMETRICS INCORPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

bl

{1

{}

ol Definition

Over a name denotes
Over a name denotes
Over a name denotes

Over a name denotes
type.

Denotes an array of
data type.

Denotes a structure

2-15

a matrix type.
a vector type.
a bit string type.

a character string

a particular

organization.

-,

<0

3.0 SOURCE LANGUAGE INPUT

A source language program is presented to the compiler
in the form of statements. Statements can be written in

single line, one-dimensional format, as in FORTRAN, PL/I,

‘and most languages, as (for example)

A = B**4 + 2(C+D)**2 ;
= R/ (A-2) **2;
C = A**B¥*2 + E**4;

However, one of the unique features incorporated into HAL, in
i
order to improve readability and clarity, is that statements

may also be written using a multi-line or two-~dimensional

format. That is:

a =84+ 200402,
= R/éa-zaz;
C = AB + E4;

The multi-line format introduces the added dimension of optionél
exponent and subscript lines. These lines are used for the
exponentiating and subscripting of data on tﬁe main line of the
statement. The exponentlline is also used for annotation of
variable names in order to indicate data types. Examples of

the multi-line format are:

3-1
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - {617) 868-1840

3
B

.. 21

(1) an assignment statement involving scalar array
elements
2 2

Ar,3 = By * Cogey’

{(2) a vector-matrix equation:

-— PO — a— * - [
X = (R.9) unIiT () + M (R*V);
(3) a complicated expression in multi-line format in-
volving multiple exponents and multiple indices:
Y=35 BAKERINDEX—TABLEI J + COMBUFT ; .
_ ' J .
The standard source language input is expected to be in

two-dimensional format. The single-line format is provided

as an alternate. If single-~line input is‘used,'the compiler

will expand the single-line to multi~line in the output listing.

‘The definitions and restrictions of the two-dimensional and

single-line formats are described below.

3-2

INTERMETRICS INCORPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840 -

-

-

"

- 3.1 Two-Dimensional Format
Source language input statements must always have a main

or "M" line. An WM" line may optionally have associated with

it zero 6r more "E lines" (exponent lines) and zero or more

"S lines” (subscript lines). An input statément may be thought -

of as n continuous éarallel streams of characters on the E-, M-,

S lines that comprise the statement, A statement terminator (semi-colon)

is used to terminate the n-line stream. The terminator must be |

on the main line and occur after (to the right of) all information

oh'the main line and any assqciated E and S lines. Another state-

ment ﬁay begin following' the terminator.
The first character of each line of input must be.the parti-

cular letter tHat identifies the line. The various identification

letters recognized, are:

First character of

line Meaning
E This line contains exponents for the main

line, or another E line below it.
M This line is a main line; a blank is
assumed to be an M line.
S This line contains subsbripts for the

main line or another § line above it.

c This line contains comments.
D This line contains compiler directives.
3-3

INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

.. 23

- Statements and comments may occupy any part of the rest of the

available lines (e.g. columns 2 through 80 for cards}. |
Continuation of a statement from one set 6f E; M, and

S lines to another is permitted. For-this purpose, column(s)

2 of the next set is considered equivalént to column(s} 81 of

the current set. A statement may be continued in this manner

until a terminator appears on an M line. The number of E and

S lines in the succeeding set(s) need not be the same as the number

of E and S lines used originally; An M.line, however, must always

be present in every set, For examplé,_
i

nhEmH
b=
U
m
+
Q

=
+
=]
=+
%]

which is equivalent to

nEHM

A=B +C + D+ Es
I .

3.1.1 E and S Line Expressions; The E and § iines contain

exponent and subscript engessions respectively, as well as

certain‘data type annotations. Labels, terminators, statements,
'_and expressions resulting in vectors, matrices, and character

strings are not permitted on E or S lines.

3-4
INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

ol

S lines are evaluated from the lowest S line up to the
main line; E lines are evaluated from the upper-most E line
down to the main line. Subscripting is always evaluated prior
to exponentiation. Exponent and subscript expfessions follow
the same arithmetic rules as for expressions on the main line

(See Section 6).

Examples
M Q = A : J is an index for C, the result of
S B which is used to index B; .the result is
s Cc then used to index A,
S J
E 2
E 3 ' 9
E 2 2 512
M B = A : means B=A ; or B = A H
E .
E 2 (D+E) :
M A =B +D ;
s 2(TABLE_1 +TABLE_2.) K
s J K

Expressions on an E or S line must appear following (to
the right of) the associated identifier on the M line. Also,
M line information cannot appear directly above § line or
below E line eXpressions. ‘Similar rules applj to E and S
lines associated with othef E or S lines.

| The number of E and S lines allowed in a statement will

‘be determined by the compiler implementation.

3-5
INTERMETRICS INCORPORATED « 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

it
I i

o [

ot R | VR

.3.2 HAL Single-Line Format
Most HAL statements can be written in a single line, similar
to FORTRAN or PL/l;' The single line format requires the use of
the following operators:
** for exponentiation

‘$ for subscripting

EXAMPLES :

Multi-Line | Single-Line
l. X = A2 + 32; X = A%%2 4 B*%*2,

2, X ASI + BSI:

Ai + BI; - X
If the gxponent or subscript is an expression(or a multiple

subscript) rather than a simple name or literal, the expression,

in single-line format, must be enclosed in parentheses:
2p

3. X= AT .i X = AS$(J,K)**(2P)}
r R

4. x=8 ; X = B$ (A$(J,K+3)) *%2;
T, K+3

.

When subscripting an exponent or exponentiating a subscript,
it becomes necessary to introduce the single~line format into the

mualti-line statement as well; thus
Po) - * % *kD.

3.2.1 Implicit Data Declarations.

Since data type annotation (-}, (*), (.), {,) cannot be
supplied by the programmer over a variable name using a singie
line, implicit data declarations (See Sec. 5.3) are not possible

in this format.

3-6
INTERMETRICS INCORPQRATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 868-1840

g o,
LR

L)

20

-3.3 Comments

3.3.1 Comments on Statement Lines.

Comments can be inserted on any E, M, or § line in a
statement. A comment consists of any set of characters enclosed
in the /* */ pair. These are the comment open- and close brackets
respectively. The */ combination cannot be used within a comment
since it would be interpreted as the comment close bracket.

Comments on one M line, initiated by /*, can be continued
to other M lines until terminating bracket */ appears on a
succeéding M line. Comments initiated on én Eor S 1iné must be
terminated before the end of the line (e.g., column 80 for

cards). For example:

B 2 2 2 . /*THTIS IS A COMMENT*/
M RMAG =X +Y + 2 J*WHICH IS TO

- *
S 1 I I /_SHQW HOW COMMENTS*/
M CONTINUE */ + ALPHA;

Note that imbedding a comment within a statement is allowed. 1In

general, commehts are permitted wherever blanks are legal.

3.3.2 Comment Lines
Comments méy also be introduced by the use of comment
lines. A comment line begins with a C in the first characte;
position of the input line. The rest of the line contains the
comment made up of characters recognized by the compiler imple-
meﬁtation. Comment lines may only apéear between statement line
3-17
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617} 868-1840

groups; i.e., they are not permitted within the EMS combination

that comprises a statement line.

EXAMPLE:
E 2
- M A=B ;
s I
C THIS IS AN EXAMPLE WHICH
C g
C SHOWS A =B AND IS
C I o _
C COMPUTED ONLY WHEN FLAG 1 IS SET
M }S=Y;) ‘

3.4 Use of Blanks

Blanks are significant as separators between identifiers,
keywords, and literals. The use of consecutive blanks ié syntac~
tically equivalent to the use of only one blank with the following
exceptions: _ |
(1)-‘within EMS combinations when the horizontal position of

items is important relative to the associated data above or

below;

(2) within character strings.

3-8

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (517) 868-1840

L | '; 28

4.0 DATA ELEMENTS

HAL classifies data elements by type and permits collections
of types into data organizations, Typeé are further specified
by data attributes. There are six data types in HAL; integer,
séalar, vector, matrix, and character and bit strings. The type
classification of én identifier determines the confexts in which ,
it may be used.

The data types may also be combined into data organizatiéns.
There are two fypes of organizations in HAL: arrays and structures.
Fig. 4-1 summarizes the relationship among the types and organiza-

tions.

4-1

ANTERMETRICS INCORPORATED - 380 lGREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

e

sadA]-eleq jo
suoljeuiqwon — |

Aeday

a1npnns

suoneziuebiQ

T-§ =anbtg

ad]-ejeq R
[enpiAlpu|

fetdy

Jajoeteyn

—

nd

X14)eW

10J99A

Joba)ui

1ejR2g

buiys

mco:mu._cmmgo pue

sadA[e1eq WH.

JIPWYIIY

sadA]

4.1 Data Types

4.1.1 Arithmetic Data

An arithmetic data item is one that has a numeric value
and may be used in an arithmetic expression. There are four

arithmetic types in HAL: scalar, integer, vector, and matrix.

4.1.1.1 Scalar. Scalar variables are numbers represented in a
fixed or floating point form. The choice of form will depend on
the target machine for a particular compiler implementation of
the language {i.e., a coppilér will implement either fixed or
floating point, but not both}. Fixed and floating point are

alternate forms of scalars and are not mixed or used together.

4.1.1.2 Integer. An integer is a signed number containing

only integral wvalues - a whole number.

4,1.1.3 Vector. A vector corresponds to its normal mathematical
definition, having magnitude and direction and represented by
n-components within a coordinate system. The individual components
of a vector item are scalars, by definition; Vectors obey the

standard rules of wvector arithmetic.

4-3

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

31

"4.1.,1.4 Matrix. A matrix corresponds to its normal mathematical
definition, being a rectangular array of m rows and n columns
of scalar elements. A matrix obeys the standard rules of matrix

arithmetic.

4.1.2 8tring Data

There are two types of strings in HAL: character strings
and bit strings. String data has a length property. A bit string
of length one is a Boolean variable which may take on values of
only 1 or 0. A bit string of length n can be considered as the
concatenation (joining tpgether) of n bit strings of length one. A
character string may have fixed or varying length. A fixed length char-
acter string ofisize n always contains n characters. A varying character
string is one whose length is d¥namica11y controlled at execution
time. A varying character string regquires specification of

its maximum size.
EXAMPLE
'ABCD? HELP!' is a character string of -

length 11, including the space between ? and

Hl

4-4
INTERMETRICS INCORPORATED + 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

32

4,2 Data Organizations
A data organization is a collection of data items. There

are two kinds of data organizations in HAL: arrays and structures.

4.2.1 . Arrays

An array is an ordered cﬁllection.of elements, known by
dne name, all of which have the same data type'and attributes.
For example, every vector in an array of vectors must have the
same number of components; every character string in an array
of varying character strings must have identical maximum_length. The

maximum number of dimensions of an array is implementation dependent.

4.2.2 structures

A structure is a hierarchical organization of data which
may contain other structures, aérays, or individual data types.
A structure need not consist of identical data elements.

Briefly, when a structure name is declared it is iﬁmediately
followed by a list of the names and attributes of the elements
within it. Each name is preceded by a level number (non-zero
integer litéral) which identifies the level of organization. All

elements having the same level number are at the same level of

organization.

The outermost structure is called the major structure and
is always at level one; all contained structures are minor struc-
tures. All elements of the structure must be at a level greater

than one, If a minor structure is at the nth level,

4~-5
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 -

rits elements must be specified at the n+l level.. 'Each item in

a structure is given a name. If the name of a structure is
referenced, the enfire structure, i.e., all elements, are addressed.
If the name of an element which is a minor structure is referenced,
all of the elements of that minor structure are addressed.

If any of the names assigned to items of a major'structure
are not unique within a name scope (See Sec. 8), the item must be
referred to by the major structure name, the name e¢f the minor
structure in which the element is contained, and the name of the
@lement. In referencing, all names of the hierarchy are separated
‘by periods and the entire compound or &ualified name becomes the
element name. This type of structure, which regquires all element

- names to be fully qualified, is called a gualified structure,
and is specified with the attribute QUALIFIED in its declaration.
Multiple copies of major or minor structures (i.e., arrays of
structures) are perﬁitted; these are limited to one-dimensional

arrays.

4.2.2.1 A Non-Qualified Example. One example of a hierarchical

organization is the table of contents of a book. The name of a-
structure might be the name of the book and would contain as
elements other structures which would be chapters in the book. Each
chapter, as a minor structure could contain other elements which

would be the sections of the chapter, and so forth. Thus,

4-6

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

34

DECLARE 1 BOOK NONQUALIFIED
2 CHAPTER_ONE,
3 INTRODUCTION,
3 THEORY,
3 SUMMARY,
2 CHAPTER_TWO,
3 BACKGROUND, :
3 DEVELOPMENT,
2 CHAPTER_THREE,
3 ORIENTATION,
3 FUNCTIONAL_SPECIFICATION,
2 CHAPTER_FOUR,
'3 CONCLUSIONS,

3 FUTURE_PLANS;

4.2.2.2 A Qualified Example. An example of a structure which

must be qualified is:

DECLARE 1 A QUALIFIED,
2 B,
2c,
3a,
3 B,
2 D,
3 B,

3C;

4-7
INTERMETRICS INCORPORATED + 380 CREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

.. 35

- Since the element names are not unique within the structure, each

element must have a qualified name. The qualified names are:

A is the major structure

A.B is element B (at level 2)

A.C is minor structure C

A.C.A is element A of minor structure C
A.C.B is element B of minor structure C
A.D is minor structure D

A.D.B is element B of minor structure D
A.D.C is element C of minor structure D

4.2.2.3 An Aerospace Application. 1In a space application a
structure can be used to collect and name sets of associated data
elements of different types. Structure commands perﬁit move-
ment of data as well as other limited operations. For example,
coasting flight navigation data can be groupéd in a

NAVIGATION DATA FILE structure; i.e.,

DECLARE,
1 NAVIGATION DATA FILE,
2 STATE_VECTOR,
3 TIME,
3 POSITION VECTOR,
3 VELOCITY VECTOR,
2 W_MATRIX MATRIX,

2 STATE_CONTROL_FLAGS,

4-8
INTERMETRICS INCORPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

36

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 -

R
B T

3 CENTRAL_BODY_FLAG. BIT,

3 PERTURBATION FLAG BIT,

3 MISSION_STATUS_FLAGS,
4 RENDEZVOUS_FLAG BIT,
4 ORBITAL_FLAG BIT,

4 IN_TRANSIT FLAG BIT;

4-9

(617) 868-1840

37

4.3 Attributes

Attributes are used in conjunction Qith type and organization
to_specify to the compiler other characteristics associated with
a type or organization name. There are five classes of attributes
in HAL:

{1) Initialization

{2) Storage §1ass

(3) Memory pptimization

(4) Dynamic memory protection

{5) Special

4.3.1 Initialization Attributes

There are two forms of initialization attributes, INITIAL
and CONSTANT. Both forms provide a technique which enables the
programmer to preset values (numeric and string) into data elements.
The use of the CONSTANT attribute will additionally make it illegal
to assign new values to the identifier; i.e., to "write" inteo it.
When either form is used as an attribute the other form may not
be used. Both initialization attributes may be used with all
data types (and arrays of data types). Neither can be used with
major or minor structure names, but may be applied to the data

elements of a structure.

4.3.2 Storage Class Attributes

Storage class attributes are used to specify storage alloca-

tion characteristics of data elements. There are two storage

4~10
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

class attributes: STATIC and AUTOMATIC. STATIC specifies that
.storage for the data element or corganization is to be allccated
when the program containing the data is loaded and initiated, and
is not to be released until the program execution has been
.gompleted or terminated.

AUTOMATIC specifies that storage is to be allocated upon
entry into the procedure,.funqtion, or task 5lock containing the declar-
ation. AUTOMATIC ‘s\t'qrgge,.is.. .rglc_aaée'd upon exit. from the klock.. Since a
program may contain pibéeduras;=fu£¢tibns; and tasks, data with
AUTOMATIC attr¥ibutes require storage only while the specific

procedure, function, or task 'is active#

4,3.3 Memory Optimization Attributes
These a£tributés are used to control-the storage_assign—

ment and packing of data elements and organizations. There are
two attributes: DENSE and ALIGNED. DENSE means that the amount
of memory space occupied by the variable is more important than
the time required to access it. Consequently, the compiler will
attempt to conserve storage space by packing items. The result
of packing by the compiler is dependent on the target coﬁputer
characteristics and the coﬁpiler implementation.

ALIGNED means that the time required to access this data

is more important than the space it occupies. This attribute

* See Secs. 7 and 9 fdr definitions of program, procedure,
" function, and task.
4-11

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

.39

will cause the compiler to store the data for efficiént

access.,

4.3.4 Dynamic Memory Protection Attributes

A real time system application may require the coexistence
pf many processes and the use of common data elements. The control
techniques necessary to share these common daté elements must

. include mechanisms for:
a. blocking other users from reading data elements, or
organizations, while their current wvalues are being
changed (written). i
b. preventing changes (writing) when data is being used

{read).

For example, one job may be in the middle of using a matrix when
it is interrupted by another job which updates the matrix. When
the first job was interrupted it had used part of the 'old' matrix
values, and whén it continues it will be using the updated matrix.
This problem could, of course, apply to any data element or
organization which is shared among jeobs in a real time system.

HAL, provides the sharing control attribute LOCKTYPE
which specifies the type of sharing control that is to be uéed.
The LOCKTYPE attribute causes the compiler to perform checking on
all programs ﬁhich use the specified variable to help insure that

the proper locking statements have been employed by the programmer.

4-12
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

40

-The LOCKTYPE attribute is only useful for STATIC storage
“and may be included in declarations at the program and COMPOOL*
levels. If this attribute is not assigned to a variable, locking
statements cannot be used (i.e., there will be no controlled
sharing).
The defined locktypes are:
LOCKTYPE (1) This class of sharing allows the data
to be read by any number of users.
Read accesses will wait for writes,
Write accesses will wait for any writes
and for all previously initiated reads

, to be completed prior to writing.

LOCKTYPE (2) This type of sharing requires that
writeé accesses wait for other writes.

Read accesses can occur at any time.

4.3.5 sSpecial Attributes

There are some attributes which can only be applied to
certain data types or 6rganizations. These are as follows:
(1) QUALIFIED and NONQUALIFIED are attributes which can only
be applied to major structures. The attribute specifies whether
therelement names within that structure will always be qualified,

Or never qualified. If the NONQUALIFIED attribute is used, all

* See Section 8

4-13

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

R 2 X

-

the hames within the structure must follow the rules that apply

to unstructured identifiers. If the QUALIFIED attribute is used,
then item names within the structure may be duplicated elsewhere,
and all references to structure elements must be fully qualified.
(2) VARYING is an attribute which can only be applied to charac-
ter strings. It signifies that the character string length may
change at execution time., The maximum size of the string must be
declared when VARYING is specified.

{3) The PRECISION attribute is applied to fixed and floating

point scalars, vectors, and matrices, and arrays of these data
types. It specifies the desired minimum precision of the numerical
re?resentatiqn of data within the computer. |

(4) The dimension (or length) attxibute is applied to vec-

tors, mattices, arrays, bit strings, fixed and varyiﬁg character strings.
It specifies the size and shape of vectors, matrices and arrays,
the length of bit and fixed character strings; and the ﬁaximum

length of varying character strings.

4-14
INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBﬁIDGE. MASSACHUSETTS 02139 + (617) 868-1840

42

5.0 DATA DECLARATION

5.1 DECLARE Statement

The DECLARE statement is a non-executable statement used to
specify explicitly the data organization, type, and attributes
of identifiers. There are three forms of the DECLARE statements:

1. Simple DECLARE statement |

2, Factored DECLARE statement

3. Structure DECLARE statement

5.1.1 Simple DECLARE Statement

The simple DECLARE statement is used to specify individually

the organization, type and attributes of one or more identifiers.

L]

GENERAL FORMAT :
DECLARE<name><specifications> [,<name><specifications>]...;
where <specifications> =" : -
"{ [<array-spec>) [<type-spec>] [<attribute~1list>] |
' {PROGRAM | LABEL | FUNCTION [<type-spec>]1}}
When no <specifications> are included, the compiler assigns

default* type and attributes.

'* HAL standard defaults afe presented in Appendix B. (Also
see Sec. 5.5, DEFAULT Statement.) |
' ' 5-1
INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

._. 43

5.1.1.1 <array-spec>* BAn <array-spec> is written as follows:

ARRAY (<dimension-list>)

The array <dimension-1list> can specify multiple dimensions

in the form <m>[,<m>]... where <> must be an unsigned integer

literal greater than one; e.g., ARRAY (2,3) specifies a 2x3

array.

* : N
5.1.1.2 <type-spec>., A <type-spec> is written in one of the follow-~

ing forms:

INTEGER
SCALAR
' VECTOR
MATRIX
BIT
CHARACTER

CHARACTER

GENERAL RULES:

[PRECISION (<p>[,<g>1)]

[{<length>)] [PRECISION (<p>[,<q>})]

[(<rows><cols>)] [PRECISION (<p>[,<q>]}]
{(<length>f]

[(<length>)]

{<max-length>} VARYING

1. The <rows> and <cols> in the matrix declaration must be unsigned

integer literals greater than one; they define the dimensions

of the matrix,

2. For vectors, the <length> defines the vector dimension (i.e., the

number of scalar components} and must be an unsigned integer

literal greater than one. For bit and character strings, the <length:

define the number of bits or characters in the object string

and must be unsigned ihteger literals. For varying character

* See Sec. 5.4 for alternate form of specifyihg <array-spec” and

<type-spec>.

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (517) 868-1840

5-2

44

Rt

strings, the <max-length> defines the maximum number
of characters that may be assigned to that character variable.
3. The form PRECIQION (Ep>[;<q>])rdefines the desired fixed or float-

ing point precision of scalars, vectors and matrices.

(a} For floating point, <p> must be an unsigned integer
literal which specifies the desired minimum number of
significant decimal digits.

(b} For fixed point, (<p>,<g>) are integer literals such. that

<p>

2 > maximum absolute value to be represented

(<p> being the number of integer bits)

~<?> < minimum absolute value to be represented

2
' (<q> being the number of fractional bits)
and <p>+<q>'=.the minimum number of bits necessary to
express the desired range of the scalar.
(c) 1In general, the compiler will assign either a single
word or a double word for scalars. For floating point,
a double word will be assigned if <p> 1is ¢greater than the
number of decimal digits that can be represented in
single precision in a particular machine.
For fixed point, a double word will be assigned
if <p>+<g9> + the number of sign bits exceeds the number of
bits for-singie precision representation in a particular machine;
(d) Examples:

(i) PRECISION(5,3) requires a minimum of 8 bits to

accommodate a magnitude range of .125 < magnitude

5-3

INTERMETRICS INCORPORATED » 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - .(617) 8?1-540

-

< 32, In this case, presuming a word length L>8,
{ﬁot including sign bits) the compiler would assign
5 integer bits, and a number of fractional bits equal to
L - 5 - the number ofléign 5its.
(ii) PRECISION(-5,39)- requires a minimum of 34 bits to

accommodate a magnitude range of =39

< magnitude
<2-5. In this case, presuming a DP word is necessary,
the bompiler would assign -5 integer bits and
a number of fractional bits egual to =5 + 2L - the
number of sign bits. | .
4, ‘' If PRECISION and dimérisions are not inéluded in a <typé-spec>
the compiler will assign defaults. Defaults are presented
in Appendix B.

5.1.1.3 <attribute list>, An <attribute list> may be specified

by including zero or one attribdte from each of the following

classes, in any order:

1. 1Initialization attributes:
INITIAL (<value>)
CONSTANT (<value>)
where <value> must be a literal or a list of literals (see
‘Sec. 5,1.1.4).
2. Storage class attributes:
- STATIC
AUTOMATIC
3. Dynamic Sharing Control Attributes:

LOCKTYPE (<n>)

- 5-4
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617} 868-1840 -

.455

where <n> is an unsigned integefhgreater‘thaﬁ‘zero literal

defining the class of sharing control.

4, Storage optimization attributes:

DENSE
ALIGNED

GENERAL RULES:

1. If an attribute does not appear in a simple declaration,
the compiler will assign the default* value for that
attribute. ' -

2. Restrictions on use of classes of attribﬁtes (also see

Sec. 8):

a. Initialization attributes may not be used at the COMPOOL
1eve£, nor in declaring <procedure-parameters> and <function-
parameters> within procedures and functions (see Sec. 7.4).

b. BStorage class attributes may only be used at the task,
procedure, and function levels.

c. Sharing control attributes may only be used at the prograﬁ
and COMPOOL levels.

d. Storage optimization attributes may not be uéed in

declaring <procedure-parameters> and <function-parameters>.

5.1.1.4 fnitialization. INITIAL and CONSTANT values

of vectors, matrices, and arrays may be specified by lists of

literals.

* See Appendix B,

5-5
INTERMETRICS INCORPORATED » 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 868-1840

. !r?

L .

-GENERAL FORMAT:

{INITIAL|CONSTANT} ({<list~of~literals>|

<list-of-literals>,*})

where

<list-of-literals> = [<n>#]{[<literal>]]|(<list-of-literals>)}

[, [<n>#] {[<literal>]|(<list-of-literals>)}]...

<n> is an unsigned integer 1literal.

GENERAL RULES:

l.

<n>#<literal> specifies that there are <n> consecutive
entries of this <literal> in the list.
<n># specifies <n> consecutive entries causing no initializa-
tion, o
<n>#<list-of-literals> specifies that there are <n> consecutive
entrieé of this "sub" <listiof-literals> within the list.
.* indicates a partial initialization. That is, for a
vector, matrix, array, and structure of data types not
enough literals have been spécified. After componenthy—
component assignment, all the rest are left uninitialized.
For vector and matrix declarations,rif the number of <literals>
in the <list-of-literals>:
a. is egual to one, all the components are initialized
to the <literal>.
b. is equal exactly to the declared number of compoﬁents,
the vector or matrix is initialized, component-by-

component, from the list.

5-6

INTERMETRICS INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 » (617) 868-1840

[

Ce

In (b), if the number of <literals> is not exactly

that required, the list must include a * as its last item

and the rest of the vector or matrix will be uninitialized.

6. For array declarations of vectors and matrices, if the number

of <literals> in the <list-of-literals>:

a.

is equal to one, all of the vector or matrix components
in all the array elements are initialized to the
<literal>.

is exactly equal to the declared number of components
in a vector or matrix element, each array element is
initialized igentiﬁally, component—-by-component, from
the list.

is exactly equal to the total number of componehts,

the entire array is initialized, component-by-component,
from the list. ’

In (b) and (c) above, if the number of <literals>

is not exactly that required then the list must

include a * as its last item and the rest of the array

will be uninitialized.

7. PFor array declarations of scalars, integers, and bit and

character strings, if the number of <literals> in the <list-

of-literals>:

.

is equal to one, all of the components are initialized
to the <literal>. |

is equal exactly to the total number of components,
the array is initialized, componeht-by—component, from
the list,

5-7

INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - {617) 868-1840

a9

c. In (b), if the number of <literals> is not exactly

that required, see 6({d) above.

EXAMPLES

1.

INTERMETRICS INCORPORATED -+ 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

DECLARE V VECTOR(9) CONSTANT (1,0,0,0,0,0,0,0,0,0);
may also he written as

DECLARE V VECTOR (9) CONSTANT (1, 8#0);
DECLARE A ARRAY (4,4) BIT (2)

INITIAL (BIN'10', BIN'10', 14#BIN'01');
ARRAY B ARRAY (3,3) VECTOR (5) INITIAL (0);

All the components of the 9 vectors in the array B,

are initialized to 0. i |
DECLARE B ARRAY (3,3) VECTOR (5) INITIAL (25,0,5,0,1):

All 9 vectors in the array, B, are initialized to
(25,0,5,0,1).

DECLARE B ARRAY (3,3) VECTOR (5)
INITIAL (1540, 1541, 154#2)

The number of literals in the initialization list is
equal to the total number of coﬁponents in the array. The
components of the three vectors in the first row are initial-
ized to 0, in the second row to 1, ‘and in the third row to 2.
DECLARE B ARRAY (100)

INITIAL (5#(1,2,3,4,5),25#%, 54#(6,7,8,9,10),%);

The first 25 items of the array B are initialized
with the repeating pattern (1,2,3,4,5). The next 25 are

left uninitialized. Items 51-75 are initialized to the

5-8 .

o

repeating pattern (6,7,8,%9,10). The remaining items are
not initialized. |
7. DECLARE A ARRAY (10) INITIAL (2),
B ARRAY (10) INITIAL (#,2,%*)
All the scalars of A are initialized to 2. 'Only the
second scalar of B is initialized to 2, the rest being left

uninitialized.

5.1.1.5 Declaration of Program, Fuhction, and Statement Labels.

The scopes of program, function and statement (and procedure)
labels, i.e., the regions of the program in which they are

recognized, are defined in Sec. 8.

GENERAI, RULES:
1. Statement and procedure labels must be defined (by appearance
or by DECLARE statement) before their use in the listing,
or at least in tﬁe block (i.e. program, function or procedure)
in which they are uséd.
2. Function labels must be defined (by appearance or by DECLARE
statement) before their use, regardless of whether the
FUNCTION étatement and function reference appear in the same block.
3. Program labels must be defined by a DECLARE statement before
their use, e.q.

DECLARE ABLE PROGRAM;

CALL ABLE;

(Also see Sedtion 7.5.1.1l.)

5-9
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

53 8

4. <type-spec> specifies the data type returned by a function.

5. LABEL and FUNCTION may not be used at the COMPOOL level.

5.1.1.6 Examples of Simple Declaration Statements (Fleating
Point Implementation). .

1, DECLARE I INTEGER INITIAL (65);
I is an integer with an initial value = 65.
2. DECLARE X PRECISION (8) AUTOMATIC INITIAL‘ (6.061);
X is a floating point scalar with at least 8 significant
decimal digits.- _ |
3. DECLARE COMMAND MODULE_STATE VECTOR (6) STATIC;
COMMAND MODULE_STATE is a 6-dimensional vector with
single precision components {(by default).
4. DECLARE SXT_TO_NB_MAT MATRIX CONSTANT
(L,, 0, 0, 0, 1, 0, O, O, 1);
The matrix is a constant 3x3 identity matrix.
5. DECLARE A ARRAY (5, 3, 4) VECTOR (6) PRECISION (l0)};
A is a 5x3x4 array of vectors. Each element is a 6-dimensional
vector with components represented to at least 10 significant'
decimal digits.. |
6. DECLARE S BIT (100) INiTIAL {BIN (lOQ) Y1)
8 is a bit string of length = 100. The initial value is
all 1's.
7. DECLARE TRAKFLAG BIT AUTOMATIC;

TRAKFLAG is a bit string of length = 1 (i.e. a Boolean).

. 5-10
INTERMETRICS INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

8. DECLARE MESSAGE CHARACTER (3) INITIAL (CHAR(3}'H');
MESSAGE is a fixed character string of length = 3.
The initial value is HHH.

9. DECLARE OUT ARRAY (132) CHAR (1) INITIAL (' ');
OUT is a linear array of 132 character strings of length 1.

Initially, all characters are blank.

5.1.2 Pactored Declaration Statement

A factored declaration statement eliminates the need for
repeated specifications when an attribute or type is appliéable
to more than one identifier. All of the factors are placed prior
to the first name in the declaration statement; other names, with
or without Specifications, are separated by commas.

GENERAL FORMAT:

+

DECLARE <factors>[,]<name>[<specifications>]
[,<name> [<specifications>1l...:
where both the <factors> and <specifications> are of the following
form and order:
[<array-spec>]I<type—specS][<attribute*list>]
GENERAL RULES: | ' |
l. A <factor> applies to 511 names appearing in the factored
declaration statement, where applicable (e.g., PRECISION
will not bhe applied as a <factor> to é string type inciuded

in the statement).

5-11
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617} 868-1840

R . o3

L3 O]

2.

For any <name>, <factors> may be superceded by the accompanying
<specifications>, e.qg.
DECLARE VECTOR (5) A, B, C MATRIX (3,3),
D VECTOR (6);
A and E are vectors of 5 elements, C is a 3x3 matrix, D is

a 6 element vector.

5.1.2.1 Examples of Factored Declarations

l.

2.

3.

DECLARE PRECISION (8) A VECTOR (&), B MATRIX (2,2) INITIAL
(1,0,0,0);
All elements of A and B are represented to at least 8
significant decimal digits. ' ‘
DECLARE STATIC

A VECTOR (4) INITIAL (0,0,0,1),

B MATRIX {5,5},

C ARRAY (20)AU&‘0MAT]:C:
A and B are allocated STATIC storage; C is allocated
AUTOMATIC.
DECLARE MATRIX {3,4) INITIAL (0) AUTOMATIC

A, B, C PRECISION (10);
A, B, and C are all (3,4) matrices with AUTOMATIC storage.

Initially, all components are set to zero.

5-12

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) #6B-1840

‘4. DECLARE INTEGER A, B, 'C, D SCALAR INITIAL (5);

5. DECLARE BIT DENSE INITIAL (OFF) TRACKING, RENDFLAG;

5.1.3 Structure Declaration Statement

The structure declaration statement is used to declare
a structure organization.. | |
GENERAL FORMAT:

DECLARE 1 <struct-name>[{<copies>)}] [<struct-attributes>],

{ 2{<m:i.nor—s.tl:'uct--:ilecii.aratic>n>}} .
r“*<terminal-declaration> st

GENERAL RULES:

1, <copiés> must be an unsigned integer literal greater than 1;
it defines the number éf-copies of the structure. For
exanmple, DECLARE-l A (100), 2 B --- etc.
declares that there are looicopies of the structure A.

2. <struct-attributes> are attributes limited to

QUALIFIED [NONQUALIFIED
DENSE | ALIGNED
STATIC|AUTOMATIC
LOCKTYPE (<n>)
a. If any attributes are not provided in the declaration,
the compiler will assigﬁ default* values.
b. It'should be noted that attributes apply to the entire
| structure and,with the exception of DENSE and ALIGNED,
cannot be overridden in the minor structures or terminal

declarations.

* See Appendix B

~

5-13
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 -

i_. 55

5.1.3.1 <terminal-declaration>. The <terminal-declaration> is

similar to a simple declaration (Sec. 5.1.1): however, only a
single name may be declared and the attribute list is limited to
INITIAL oxr CONSTANT, and DENSE or ALIGNED.
GENERAL FORMAT:
[<next-level>]<name> [<array-spec>] [<type-spec>]
[INITIAL|CONSTANT] (<value>)} [DENSE|ALIGNED]I{,]|;}
GENERAL RULES: |
1. If the <terminal-declaration> is contained in a <minor-struct-
declaration> then |
<next-level> equals <this-level> + 1, where <this-level>
is the level of the <minor-struct-declaration>, otherwise
<next—1eve1$ equals 2.
2. The semi-colon (;) is used if the declaration is the last

<terminal-declaration> of the structure declaration statement.

5.1.3.2 <minor-struct-declaration>.

GENERAL FORMAT:

<this-level><name> [(<copies>}] [DENSE|ALIGNED],

»{<minor-struct—declaration>}
<terminal~declaration> =

GENERAIL. RULES:

1., <this-level> is an unsigned integer literal > 2 which identi-
fies the level of hierarchy.

2. If a second <minor-struct-declarationﬁ.iS contained within

a first <minor-struct-declaration> then <this-level> of the

5-14

~

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

rr

second declaration must be 1 greater than <this-level> of

the first declaration.

5.1.3.3 Examples.

1, Notes
DECLARE 1 3, (1) major structure A
2B, (2) minor structure B contains
minor structure C and
3¢, terminal element F
4 D VECTOR(9), {3} minor structure C contains
terminal elements D and E
4 E MATRIX (4,4),
3 F INTEGER; Notes
2. DECLARE 1 NAV_STATE(2) LOCKTYPE (1) NONQUALIFIED, (1)
2 STATE, o (2)
3 TIME PRECISION(S8), (3)
3 R VECTOR(3) PRECISION(10)}, . (4)
3 V VECTOR(3) PRECISION(10), (5)
2 STATE_FLAGS DENSE, ‘ {6)
3 BODY BIT INITIAL(TRUE), {(7)
3 PHASE BIT, (7)
2 W MATRIX(9,9) PRECISION(10); (8)

l1.- This is a structure whose name is NAV_STATE.
The number of copies is 2 and it has a sharing clasé of 1,
2. This is a minor structure called STATE whose elemenfs are

defined at the next level.

5-15
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 -« (617) 868-1840

-~

. .. OF

gt

3. This is a terminal declaration of a scalar element, TIME.
4, This is a terminal declaration of the vector, R.
5. Same as (4) above except name is V.
6. This is a minor structure called STATE_FLAGS whoée
- elements are defined below at the next level,
7. These are terminal declarations of the Boolean variables,
BODY and PHASE. |

8. This is a terminal declaration of the matrix, W.

5.1.3.4 Structure Initialization. A structure may be initialized

by including the INITIAL or CONSTANT attribute in the <terminal-
declarations>, If a <£erminal—declaration> represents a single
copy of the declared data item (i.e. the major structure and minor
structures containing this item are single copies themselves)

then initialization may be accomplished as described in Sec. 5.1.1.4,

If multiple copies are implied (i.e., the major structure
or minor structure(s) containing this item, or both,.have more
than 1 éopy). two possibilities exist: (1) the data item may be
initialized as if it were a single copy; or (2) the initialization
<list-of-literals> may be designed to accéunt generally for éll'copies.
GENERAI: RULES:
1. If multiple copies exist and the data item is initialized

as if it were a single copy, but not partially initialized,

{see Rule 4 of Sec. 5.1.1.4), all copies will receive

identical initialization for this data item.

5-16
INTERMETRICS INCORPORATED * 380 GREEN STREET CAMBRIDGE, MASSACHUSETTS 02139 - (617) B68-1840 ° 55

-

X

2. If multiple copies exist and it is desired to initialize
copies individually, or partially initialized the structure,
the <list-of-literals> specifies consecutive entries for the
data item, component-by-component, with copies running
serially.

EXAMPLES:

l. DECLARE 1 A

2 B INITIAL (6.061),
2 C ARRAY(5) INITIAL({l,4#0);
The structure A is initialized by initializing B and C.
2. DECLARE 1'A (20), |
.2 B INITIAL (6.061),
2 C ARRAY (5) INITIAL(1l,4#0);
The structure A has 20 copies; each is initialized identically.

3. DECLARE 1 A (20), A

2B INITIAL‘(15#6.061,*),

2 C ARRAY (5) INITIAL(1S#(1,440),%*);
The structure A has 20 copies; éhe first 15 are initialized
identically. The remaining copies are uninitialized.

4. DECLARE 1 A (20),

2 B INITIAL (6.061,%),

2 C ARRAY(5) INITIAL(19#(5#),(1,440));
The structure A has 20 copies. The first copy of B is
initialized to 6.061, the rest are uninitialized. The
first 19 copies of C are uninitialized; the last copy is
initialized to (1,0,0,0,0).

5-17

'INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139-+ (617) 868-1840 ’

.. O9

5.2 Notation of Data Types and QOrganizations

5.2.1 Data Type Notation

The compiler will annotate certain names in order to
enhance the readability of the output listing. The notation which
signifies data type will be placed on the E line directly over

the name on the M line. The notation characters are described

below.

Data Notational

Type Character Examples
VECTOR - POSITION = R

* *
MATRIX * REFMMAT = M
BIT . COM_BUFFER9=TRACKFLAG
! r

CHARACTER ’ MSG = B

There is no data type notation for INTEGER or SCALAR types. These
types must be determined from context or from the declaration
statements (or symbol table listing).
GENERAL RULES: .
The annotation of an operand depends upon the resulting
type of the operand itself and not upon the type associated with
the identifier beiné referenced; for example: ‘
1. When an element of a vector is referenced, it is not annotated;_
i.e., it is.a scalar. For example, v, is the second scalar

element of the vector V.

5-18
INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

-~

6

2. When an element of a matrix is referenced, it is not annotated
since it is a scalar. For example, Ml'2 is the scalar
element in the lst row, 2nd column of ﬁ. '

3. When a row or column of a matrix is referenced, vector
notation is used; for example,

W, , is the 2nd column of the matrix ﬁ

4, When a partition of a matrix is referenced, matrix notation
is used; for example,

: ﬁl T0 3, 1 TO 2 is a partition of the matrix ﬁ; i.e.

rows 1, 2, 3 and columns 1, 2.

:

5.2.2 Array Notation

The compiler will annctate arrays of data types with
enclosing square brackets (i.e.f [1).

If the array consists of vectors, matrices, bit or charac-
ter.strings; then the appropriate data type notation will also

be presented. For example,

2] A is an array of vectors,

[K] A is an array of matrices,

[i] A is an array of bit strings,

[A] A is an arfay of character strings.

GENERAL RULES:
1. When a single array element is referenced, the compiler

.annotation will be consistent with the resulting data type,

For example, suppose A is an array of matrices; then Kz_* 1
-

has vector notation because the referenced item is a vector

5-19 '
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02135 » (617) 868-1840

{(i.e., the first column vector from the second matrix element
of A).
2. When a partition of an array is referenced, array notation
is used; for example,
'[A]2 70 4 is an array of elements AZ' A3, A4 from
array A.

The programmer may include the notation above.as part of
the input source code. This notation must be consistent with
its use (e.g., a * must not be placed over a vector, etc.).
If notation is not included then the compiler will annotate

the output listing as described.

5.2.3 structure Notation

The compiler will annotate major and minor structure

names with enclosing braces (e.g. {A}).

GENERAL RULES:)

1. When a single copy of a structure terminal is referenced, the
compiler annotation will be consistent with the resulting
data type or array. The notation will be the same as described
'in Secs. 5.2.1 and 5.2,2.

2. When multiple copies of a structure terminal are referenced,
the compiler will annotate the terminal name with enclosing
braces in addition to the annotation of Rule 1. This reference
remains a structure organization subjeét to the restrictions

- on structure manipulations imposed in Secs., 6 and 7.

5-20
INTERMETRICS INCORPORATED - 380 GREEN STREET - .CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

.. 6<

EXAMPLES:
1. DECLARE 1 A (5),
' 2 B BIT(10),
2 C VECTOR,
2 D MATRIX;
a. '{A}z is the second copy of Aa.
b. 54: is the bit string in the 4th copy of A.
c. {C} is a structure of all copies of the vector C.
d. {5}3 po 5,18 @ structure of the last three copies of the
matrix D.
2. DECLARE 1 A (5),
+ 2 B CHARACTER(10):;
'{é} is a structure of all copies of the string B.
3; DECLARE 1 A,
2 B ARRAY(5) CHARACTER(10);
[é] is the array'terminal.
Note that while {B} in 2 and [é] in 3 contain the same data they
are not identical in form and cannot be used interchangeably.
4. DECLARE 1 A (5),
2 B ARRAY(5) CHARACTER(10):
{[1'3]}3 70 5; is a structure of the 1a$£ three copies of the

array B.

5-21

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-18@3

5.3 Impliecit Declarations

' In general, HAL requires that'all data quantities be declared
explicitly. The syntax of explicit data declarations has been
presented in Sections 5.1 and 5.2. HAL also permits certain
variables to be declared implicitly; namely,vector, matrix, bit
and character string data types, by providing a (-), (*), (.), or
(,) respectively, on the E line over the name of fhe data guantity.
In the absence of an identifying symbeol on the E line, the compiler
will interpret the variable to be of a scalar type. The implicit
declaration of integers, arrays, and structures is not allowed.

The compiler will assign characte;istics, valid throughout

the current scope (see Section 8 for further detail on scope of

names), to implicitly declared names based on their first appearance

in the listing. Thereafter, notation need not be supplied., For
example, if ¥V is used to declare a variable implicitly, then that
variable maf be reférred to as V in any succeeding statement
within the current scope; The compiler will supply the bar (-)
on appropriate succeeding appearances of V when it has not been

- included by the programmer. | |

The implicit declaration of names as scalar, vector, matrix,

bit or character string causes the assignﬁent of default* values

for all appropriate attributes.

* See Appendix B

5-22

INTERMETRICS INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

64

5.4 Alternate DECLARE Form
All of the HAL data types, and arrays of these types, may
be declared using an alternate form of the DECLARE statement where
-the data type is indicated (except for scalariand integer) by an
appropriate mark over the name and the size and shape designated
by a subscript.
GENERAL FORMAT:
(- l* l . I v]
DECLARE <name>_ [INTEGER|SCALAR] [PRECISION(<p>[,<q>1)]
i [<attribute-list>];
<gizes> = [<array-shape>|<array~-shape>:]{<dimension> |
<string~length>]
<array-shape> = <m>[,<m>]...
<dimension>» = <m>[,n]
<string-length> = <r>
<m>, <n>, <p>, <g>, <r> must bé integer litérals. In addition,
<m>, <n> mﬁst be greater than l; <r> must be greater than 0.
GENERAL RULES:
1. (=), (*), (.), (,) appearing over the name épecifies vector,
matrix, bit string and character string data types respectively.
If <note> and INTEGER are not provided, <name> is a scélar,
2. <dimension> specifies either vector iength or the numbef
of rows and columns.
3. <string-length> specifies bit or character length for fixed

length strings or maximum length for varying strings.

5-23

~

© INTERMETRICS INCORPOHATED . 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

. 65

4. Use of INTEGER, PRECISION, and <attribute-list> are described

in Sees. 5.1.1.2, 5.1.1.3, and Sec. 5.1.2.

5. When declaring <procedure- or <function-parameters> (seé Sec.
7.4), <note” may be omitted if the proper annotations are
included on the parameters appearing in the CALL and function
reference statements, _ _ .

EXAMPLES :

1. DECLARE 5,3,4:6° |
- a 5x3x4 array of vectors. Each vector is of length 6.

2, DECLARE SlOO; .

- a bit string of length 100.

r
3. DECLARE OUT,,,.7

- a linear array of 132 character strings. Each string is

of length 1.

) *
4. DECLARE M/

- a 6xX6 matrix.

. 5. DECLARE ASO;

.~ a linear array of 50 scalars.

5-24
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

6

5.5 DEFAULT Statement
When variables are implicitly declared, or when variables
or functions are explicitly declared with not all characteristics

-specified, the unspecified characteristics are supplied from a

set of default characteristics. The standard set of these is

described in Appehdix B.

In some cases it may be convenient to modify the standard
default éep to reduce the amount of source program coding)
required to achieve the given objective, For.thié purpose,.
the DEFAULT statement is provided.

GENERAL FORMAT: _
DEFAULT {<type & gttriﬁutes>[[<type & attributes>]<length-
| default~list>};
where |
<type & attributes> = {<type-spec>|
[<t§pe-spe¢>]<attribute~1ist>}
and .
<type-spec> is defined in Sec, 5.1.1,2
 cattribute-list> is defined in Sec. 5.1.1.3
<iength~défau1t—list> = {<length—defau1t>}...
<length~default> may be one of the following forms:
-- BITLENGTH {<m>)
" VECTORLENGTH (<m>)

"MATRIXDIM (<m>,<n>)

CHARLENGTH (<m>) [VARYING]
where <m> and <n> are literals of integral wvalue.

<t§pe-spec> is used to specify default type; e.qg.
DEFAULT MATRIX (3,4);
DECLARE A, B, C SéALAR;

5-25 :
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

. 67

A and B are declared (3x4) matrices by default. The explicit form,
SCALAR, becomes necessary because of this change in default type.
<length-spec> is used to specify defaults for bit-string length,
vector length, matrix row-column dimension, and character-string
length (and VARYING-iength). In the case of character strings,

if VARYING is provided, the maximum length (<m>) must also be
provided, whether in a DEFAULT or DECLARE statement. For example,'
the following statement will cause an error message;

DEFAULT C CHARACTER VARYING;

EXAMPLES :
1. ALPHA: PROGRAM;
. DEFAULT MATRIX(4,7) BITLENGTH(24);

DECLARE A MATRIX, B, C BIT(IO), D BIT;

CLOSE ALPHA; _
A and B are (4x7) matrices. D is a bit string of length 24.
2. BETA: PRocEDURE;
- DEFAULT BITLENGTH(IG);
DECLARE E, F BIT, G CHARACTER;
CLOSE BETA; | .
E is a scalar and G is a character string of standard

default length. F is a bit string of length 16.

5-26
INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBR!DGE, MASSACHUSETTS 02139 - (617) 868-1840

6.0 DATA MANTPULATION

6.1 Expressions
An expression is an algorithm used for coﬁputing a value.

Variables, constants, literals, built~in functions, and programmer-
defined functions combined with operators, form expressions.
Expressions are of four types: arithmetic, string, array and
relational. The type of a function or an éxpression is the type
of its result and is independent of the types of its opérands}
In the definitions that follow

<type—operand>={<type-name>[<type*fgnction>]<type-expression>|

| | {(<type-~expression>)}

where,

: *
<type-name>={<type-variable>|<type-constant> | <type-literal>}
and ' :

<type- >={<integer- [<scalar- |<vector- [<matrix~- |

<bit-~ |<character- >}

6.1.1 Arithmetic Expressions

Arithmetic expressions yield arithmetic values; e.g.,a
scalar éxpression is defined to be an expression yielding a scalar
result, There are four types of arithmetic expressions: integer,

scalar, vector and matrix.

* Jiterals are only defined as being arithmetic, bit and-character
strings.

S 6-1
INTERI\;IETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

69

6.1.1,1 Integer Expressions. An <integer-expression> is composed

of the following elementary operations:
GENERAL FORMAT:

{{[+]]-}<integer-operand>|
<integer-operand>{+|-|<mult>}<integer-operand> |
<integerfopéfahd>**<positiye—integer-1itera1>}
where - |
<positive-integer-literal> is a positive whole number
literal or a bit string literal {interpreted by the compiler

in this context as a positi?é whole number).

GENERAL RULES:
1. <mult> denotes multiplication by logical adjacency. -:The
associated operands must be separated by at least one space

(blank) unless one or both of the operands are parenthesized.

2. <integer-operands> andr<positive-integer—literals> may be
either intégers or bit strings. Bit strings are converted
implicitly to integers.

3, An ihteger result éan only be derived from operations 6n
<integer-operands>.

4. Division is not an.integer operation; dividing one integer
by another yiélds arscalar result.

5. In generél, exponentiation will result in a scalar, except

when the exponent is a <positive-integer-literal>.

6-2

70

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

EXAMPLES:

3

=P, Q+R, F7, Q ér (‘P)4

are all integer expressions if P, Q, R, F are declared as integers.

6.1.1.2 Scalar Expressions. A <scalar-expression> is composed

of the following elementary operations:
GENERAL FORMAT:

{{[+]|-}<scalar-operand> |
<scalar-operand>{+|{-|/|<mult>}<scalar-operand> |
<scalar-operand>**<scalar-operand> |

<vector-operand>.<vector-operand>}

GENERAL RULES:

l. The <scalar-operand> may be.a scalar, integer, or bit stfing
except where the above format reduces to an <integer—expression>.
Integefs are.converted implicitly to scalars. Bit strings
are converted implicitly, giggg to integers and'theh to scalars,

.2. Exponentiation is undefined wheﬁ the <scalar-operand> is
negative and the <scalar-operand> exponent has a non-integral
value.

3. <vector-operand>.<vector-operand> denotes the vector .inner

product (dot-product}. The dimensions of the two <vector- |

operands> must be equal.

EXAMPLES : 2

- — * — - L
-p, P/R, P/S, B , V.M ¥, S + S/R

are all valid scalar expressions if P is declared a scalar,

and R is declared to be either an integer or a scalar.

~

6~3 ‘ '
INTERMETRICS INCORPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 -

S |

ey

6.1.1.3 Vector Expressions. A <vector-expression> is composed

of the following elementary operations:

GENERAL FORMAT:

'{{[+1[*}<vector—operand>]A
<vector-operand>{+|-|*}<vector-operand> |
<vector-operand>{/|<mult>}<scalar-operand>|
<scalar—operand><mult><vector-operand>[
<matrix"operand><mu1t><vector¥operaﬁd>|

<vector-operand><mult><matrix-operand>}

GENERAL RULES: -,

1.

The <scalar-operand> may be a scalar, an integer or a bit

string. Integers and bit strings are converted implicitly

to scalars.

Addition and subtraction must involve two vectors of identical

‘dimensions.

<vector-operand>*<vector-operand> denotes vector cross-product,
WHich is defined only for three-dimensional wvectors.
Multiplication and division of a <vector-operand> by a <scalar-
operand>, and hegation of a vector, denoté operations on each
vector component.

<matrix-operand><mu1t><vector-operand> denctes formal_mathe-
matical matrix-vector multiplication; the vector dimension

must equal the column dimension of the matrix.

<vector-operand><mult><matrix-operand> denotes formal

. mathematical vector-matrix multiplication; the vector

64

INTERMETRICS INCOﬁPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

e

dimension must equal the row dimension of the matrix.
EXAMPLES :

— — -_—- — L] __2—*__.—._*

-P*y, P+V, 5V, V 8, P/(Aa+8), (V.P}°F, MV, F/{V.V M) are

all valid vector expressions.

6.1,1.4 Matrix Expressions. A <matrix-expression> is composed

of the following elementary operations:

‘{{[+]1-}<matrix—operand>|
<matrix-operand>{+l—|<mult>}<matrix—operand>|
<matrix—operand>**{<scé1ar—ogerand>[T}[
<scalar-operand><mult><matrix-operand>|
<matrix—operand>{/[<mult>}<sc$lar-operand>|

<vector-operand><mult><vector-operand>}

*

GENERAL RULES:

1. The <scalar-operand> may be a scalar, an integer, or a bit
étring. . Integers and bit strings are converted implicitly
to scalars. .

2. Matrix addition and subtraction must involve matrices of
identical row and column dimensions.

3. <mat¥ik—operahd><mult><matrix—operand> denotes formal

| mathematical matrix multiplication; fhe column dimension of -
the left operand must equai the row dimension of the right,

4. ‘Exponentiatién is restricted to square <matrix-operands>.

5. A <scalar-operand> exponent will be converted to the nearest
integer.before use. The followiﬂg ihferpretations are made:

ot ":<ﬁétfik-épérand$otE identity matrix

_6-5 .
" INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

73

-~

<matrix-operand>" =

nea=

(<matrix-opera'nd>)i '

i=1

"N
<matrix-~operand> N = I (inverse of <matrix-operand>)

i=1 +
6. Exponentiation by -1 and T may also be written in
iunctional form as INVERSE {(<matrix-operand>) and

TRANSPOSE (<matrix-operand>) respectively.

7. 'Multiplication and division of a matrix by a scalar, and
negation of a matrix, denote operations on each matrix

element.

8. <vector-operand><mult><vector-operand> denotes the vector
outer product; the result is a matrix whose row and column

dimensions are the dimensions of the left and right operands,

respectively.

EXAMPLES :
* % * .k - *® * % ® * x % o * -
-M N, M+N, M 1, M:,” M NI, Mys, (MN)T2, A N, V T are all

valid matrix expressions.

6.1.2 String Expressions

String expréssions yield string results; e.g}, a bit
string expression is defined as an expression yielding a bit
string result. There are two types of stfing expressions: bit

‘and character,

6.1.2.1 Bit String Expressions. Bit string expressions

may contain bit string operands only. A <bit-expression> is

composed of the following elementary operations:

66 | - 74

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

GENERAL FORMAT:
"{[NOT] bit-operand>]
7 <bit-~operand>{AND|OR|CAT}<bit-operand>»}
GENERAL RULES: .
1. NOT complements each bit in the string.
2. AND, OR perform bit-by-bit logical AND and OR on the
| corresponding bits of the two operands. When the string
lengths are unequal, the shorter string is padded on the
left with zeros until the strings are of equal length.
3. Concatenation, CAT or (||), links together two bit strings.
The length of the result is the sum of the 1eﬁgths of

the two operands.
‘EXAMPLES :

NOT A, A OR (B AND ¢), A||NOT B||(B OR C) are all valid

bit string expressions.

6.1.2.2 Character Strinrg Expressions. A character string

expression must involve the concatenation of a character string
and a bit string, integer, or scalar operand. A <character-
expression> is composed of the following elémentary operations:
GENERAL FORMAT:
| '{<character-operénd>l|<datafoperand>l
<data-operand>| [<character-operand> |

<character-operand> | |<bit-operand>}
where <data-operand>={<integer-operand>|<scalar-operand> |

<character-operand>}
GENERAL RULES:

1. <integer- and <scalar-operands> are converted implicitly

6-7 ‘ , : =

INTERMETRICS INCORPORATED - 380 GREEN STREET CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

to character numerical representation.

2. <bit-operands> are converted first to integers and then
to characters.

EXAMPLES: .
'ZE‘EXT] | "HELP', A] l-i-Ex'r, TEXT| | (A/S), TEXT]| | (8]]C) are all

valid character expressions.

6.1.3 Array Expressions

. Array expressions yield array resuits. In general, most
of the operations described in Sections 6.1.1 and 6.1.2 are Qalid
for arrays if the operation is valid for elements of the arrays.
There are two classes of array expressions: 1) where both operands
are arrays; 2} where one operand is an array.

6.1.3.1 Two-array Expressons. For two-array expressions, all of

the expressions detailed in Secs. 6.1.1 and 6.1.2 are valid by
replacing the <type~0perands$ By <type-array—eperands$; Por
example, in Sec. 6.1.1.2 the <scalar-operand> becomee:a'éscalar-
arréy-oPerend? and the <vector-operand> becomes a <vector-array-
operand>. | | | A
‘GENI;JRAL RULEQ :

1. The two <array-operands> must be dimensionallfiidenéical.

2. The 1nd1cated operation is performed element-by-element, in

o 'sequence, on corresponding elements of the two arrays. For

example, 1et fp] and [S] be two-dimensional arrays. Then

[P] + [S] w1ll be executed in the following sequence:

6-8
' 76

INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

i,1 vt 8,1

3. The resulting array will be of the same dimensions as the
<type—-array-operands>.

EXAMPLES:
~[p1, [P1/181, [F1*[¥1,[¥1(s1, (R1[®), (aJor(B], [al]|[TEXT]

are all valid array expressions.

6.1.3.2 One-array Expressions. For one-array expressions, all

of the expressions detailed in-Secs. 6.1.1 and 6.1.2 are valid

if one of the <type-operands> is replaced by a <type-array-operand>.

GENERAL ‘RULES H

1. The iﬁdicated operation is performed, in seqﬁenCe, using
the single operand and each element of the array.

2. The resulting array will be of the same dimensions as the

_ <type-array-operand>,

EXAMPLES H _

[p1/8, [21%%, Tis1, RI®), (a1 om B, al|[Texr1, V/1a1, (¥,

[A]+5 are all valid array expressions.

6-9

: INTERMVE_TRICS INCQRPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) B88-1840 °

el 7

-~

6.1.4 Structure Expressions

Structures containing one or more terminélé may be
compared as detailed in Sec. 6.1.5.5, Structures containing
a single terminal or copies of one terminal may he treated as
an array within the context of the array expressions of
Sec. 6.1.3. However, a <structure-operand> and an <array-
operand> may not be combined within a two-array expression

{Sec, 6.1,3.1).

EXAMPLES:
DECLARE 1 a (25},
2 B ARRAY(10) INTEGER,
2 C;
{[B]} + {cCc} is a walid structure expression.
The array of integers, B, in each of the 25 éopies,qf A is
added to the scalar, C, in each copy. The result is 25 copies

of arrays of scalars (note integer to Scalar conversion).

6.1.5 Comparison Expressions

Comparison expressions yield a single true (TRUE/ON)
or false (FALSE/OFF) result of a comparison of operands. Relational

operators are grouped as follows for use in different contexts:

6-10

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868348

A= not equal

<p> =)
= equal
-
(M= not equal
= equal
< less than
: > greater than
<> =4 %
<= less than or equal
>= greater than or equal
- not less than
1> not greater than J

6.1.5.1 Bit String Comparisons

GENERAL FORMAT:

{<bit-operand><Q><bit-operand>

GENERAL RULES :

1, When string lengths are unequal the shorter string is padded
on the left with sufficient zeros to make the strings of |
equal length.

2. When comparing bits:

6-11

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 -

73

a. Proceeding from left to right, if the first comparison
whigh is not equal is ">" then the total bit-string
~ comparison is true for the relational operators >,
>=, 1<, 7=, and false for the operators <, <=, 7>, =,
b, Proceeding from left to right, if the first comparison
which is not equai is "<" then the total bit-string
' comparison isg true fof the relational operators <,
<=, 7>, 7=, and false for the operators >, >=, T, =,
¢. The total ‘hit-string comparison is true for the relational
operator = (and false for 7=) if and only if all bit

comparisons are =,

EXAMPLES :

i:B, A>B, Aﬂ<ﬁ, ete. are_all valid bit string comparisons.

6.1.5.2 Arithmetic Comparisons _
. ‘{ginteger-operand><Q><integerﬂoperand>]
r¢'<scalar-operand><Q><scalar-operand>]
<vector—operand;<P><vector—operand>[

.. _<matrix-operand><P><matrix-operand>}

GENERAL RULES:

1. The <integer-operand> may be either an integer or a bit

| string except where the <integer-operand> comparison reduces
to a <bit-operand> comparison. Bit strings are converted

‘implicitly to integers.

6-12

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

80

 INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -

2. The <scalar-operand> may be a scalar, integer, or bit string

except where the <§Ealar-operénd> comparison reduces to
either an <integer- or <bit-operand> comparison. Integers
are converted implicitly to scalars. Bit strings are
converted implicitly, first to integers-and then to scalars
EXAMPLES:
I1>J, I<a, A-I=é, <= (a+PF.V), V=B, M=N are all valid

arithmetic comparisons.

6.1.5.3 Character String Comparisons. Character comparisons
have the following general format: |
<character—0perand><Q$<charactér-operand>
GENERAL RULES:
1. When the string lengths are unequal, the shorter string
is padded on the right with sufficient blanks to make
the strings of egual length,
2. The character comparison involves left—to-rigﬁt comparison
of corresponding characters in each operand according to
~a collating sequence which méy be implementation dependent.
3. Total charécter-string comparisons follow the same rules

as described for bits in Sec. 6.1.5.1 (Rule 2).

6.1.5.4 Array Comparisons. Array comparisons are valid in

comparing two <type-array-operands>, or one <type-array—6perand>
and one <type-operand>. The result must be a single true or -

false answer.

6-~13

-

(617) 868-1840 -

81

GENERAL FORMAT:
| {<type-operand> | <type-array-operand>}<p>

{<type-operand> | <type-array-operand>}

GENERAL RULES:

1. Comparisons are on an element-by-element basis.

2. For the operator #, the comparison ig true only if all
the array elements are equal.

3. For the oPérator ==, the comparison is true if any of

the array elements are not equal.
. -

EXAMPLES :

[1] = [A], [A] 7= 8, [P]=[S] are valid array comparisons.

6.1.5.5 S8tructure Comparisons

GENERAL FORMAT:

<structure-operand><P><structure-operand>

GENERAL RULES:

1. The two <structure-operands> must be identical in organization.

6-14

" INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 82

o -

 INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -«

6.1.6' Precedence Order

In the evaluation of an expression, the order of operations

is determined by parentheses and operator precedence. The

pfecedence is divided into two groups, I and II; I is of higher

priority. The groups are further ordered by relative priority

number (the highest number being the highest priority)}.

6.1.6.1 Group I Arithmetic Operations

Operation
i

Exponentiation
Matrix transpose (short form)
Matrix inverse (short form)
Scalar-scalar product
Scalar-vector or vector scalar product
Scalar-matrix or matrix-scalar product
Vector-matrix product
Matrix-vector product

Vector outer product

. Matrix-matrix product

Vector cross product

Vector inner (dot) product

Scalar-scalar gquotient

Vector-scalar quotient

6-15

Prioritx1

CCRNE C R O ST T T TRT NRNT TR JT TR S S

m w

S s

xe <l me o
2 g < Jx R R
2% <)
n)]

<
»
<

n <t
<

<
~
s

i~ 83

(617) 868-1840

*
Matrix~scalar quotient . 2 M/ S5
Séalar sum or difference l] f S
Vector sum or difference 1 vrv
.) . * *
Matrix sum or difference. 1 MiM
— ok '
8, V, M represent scalar (also integer and bit string),
vector, and matrix operands.
6.1.6.2 Group II Relational and String Operations
Operation frioritx - Form
NOT (", ™) 5 B
car (| 4 | Al|B
(.-'_' =, >, -l>' < 3 Sl = 52
-I<’ >=' <=)
AND (&) - 2 o A&B
orR (]) 1 AlB

6.1.6.3 Further Comments on the Order of‘0perations

1. Operations within an expression are performed in the order
of decreasing priority. For example, in the expression
A+B**3, exponentiation is performed before addition. 1If an

expression involves operations of the same priority, the general

rule is that the operations are performed left to right.

Exceptions are noted below.

6~16 .
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

-~

2. ,Exponentiation is right to left. Thus,

BC
ArkBh kO A A** (B**C)

3. Division is right to left. However, vector and matrix

' expressions may never appear as a denominator in a quotient.
a. A/B/C = A/(B/C) = A C/B
b. A/BX/CY/D = A/(B X/(C ¥/D)) = A C ¥/B X D
c. V/A/B | | |

V/{(A/B) = B V/aA |
d. V/a/R

V/(a/R) is illegal
e. V/R.V = V/(R.V)

4. Within priority 5, in Groﬁp I, deviation from left-to-right
order of scalar-vector-matrix products is permitted in order
to simplify the cbmputations. For example, in

V=M5sSsV
the scalars are first mult%pled together, then the vector
is multiplied by the matrix, and the final product is
performed. Strict left-to-right evaluation would cause 3
matrix-scalar ana 1 matrix—vector:product. However, since
fhese multiplicationslare associative and commutétive, the
forms are mathematically eQuivalent. If an expression is
enclosed in parentheses, it is treated as a single operand.
The parenthesized expression is evaluated before its éssociéted
operation is performed. In a more complex example:
| M= Mo ML V1 M2 M3 V2 M5 M6;
multiplications are performed in the same order as

* Tk k. * * . *
M= (({MO(ML V1)) M2) M3) ((V2 M5} Ms&);

6-17

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 »(617) 8§58 o

If there had been any scalars in the product, they would have
been multiplied together in the order they appeared, then the
one scalar result would be multipled by the matrix result.
When a specific order of multiélication is desired the products

must be grouped with parentheses.

5. The precedence rules determine the order of multiplication
when different mathematical interpretations are possible.

For example:

<

=V % M V; means the same as

<
i
<
*
D
S

not

<
"
3
*
B
S

_and

n
<
<
2%

means the same as

I
<
<l
Eal-

S
S not
*

-— -— %
M (V . V)M;

(]

Note that the last line would be an iilegal assignment of
a scalar to a matrix if the parenthesés were left out,
There are situations in which applying the precedence
‘ruales may not bé straightforwa£d, for example: V1 V2 , V3.
If the outer product is doné first, a matrix dot vector
results and is illegal, therefore HAL interprets this as

. V1{V2.. V3) which is a vector. Similarly V1 . V2 V3 . 74
must result in the final product of two scalars. Whenever
there is doubt, parentheses should be used to make the
order of multiplication clear to the compiler and to the

reader of the program listing.

6-18

/ INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

-

SN

. 6.2 Conversions
Conversions of data type and precision can be accomplished
implicitly within expressions, and explicitly by special con-

version functions. These conversions are detailed below.

6.2.1 Implicit Conversiong

6.2.1.1 Data Type. Several implicit data~type conversions
are described in Sec. 6.1 as occurring when operands of different
types are combined by an operator. These conversions are also
noted in the expressions summary of Sec. 6.4. 1In general, but
with cértain restrictions, implicit conversions within expressions
follow a progression: |

to-scalar-to-character

from bit-to-integer
‘to-character

+5 > C
B~»+1I
+C

and from single precision (SP) to double precision (DP). Vector

j.e.,

and matrix-operands cause the same effects as scalars.

‘GENER’A_L RULES:

1. The prefix operations + and - applied to bit strings cause
conversion of the strings to integers.

2. For arithmetic operations, other than exponentiation,
involving two bit strings or a bit string and an integer,
the strings are converted to integers, and the result is an
integer.

6-19

~

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840 °

| - g7

'3. Exponentiation of "main line" <integer- and <bit-operands> always
causes conversion of integers to scalars, and conversion of bit
strings first to integers, and then to scalars; the result is a
scalar. There is an exception for the exponentiation of an
<integer~operand> by a _<positive-integef-literal> (see
Sec. 6.1.1,1). In this case the result is an integer.

4, For arithmetic operations involving a bit string and a
scalar, the string is first cpnverted to an integer and then
to a scalar, and the result is a scalar.

5. For arithmetic operations involving an integer and a scalar,
the integer is conv;rted to a scalar, and the result is a
scalar.

6. Division aiways causes the conversions of numerator and
denominator to scalars, and produces a scalar result.,

7. The concatenation of a character string and a scalar, integer
or bit string causes conversion of the scalar or integer
ﬁo a character string, and the conversion of a bit string first
to an integer and then to a character stfing. Conﬁersion
of scalar to character produces a character string of_
specific length to be determined by the implementation.
Conversion of integer to character produces a character string
of minimum length sufficient to represent the integer as a
signed decimal number. (The + sign will be suppressed.and no

character position provided for it.)

6-20

INTERMETRICS INCORPORATED -+ 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 » (617) 868-1840

SH

6.2.1.2 Arithmetic Literals. If the representation of an

arithmetic literal in the target machine is exactly an integral.
numberr(whole number) the literal will be treated as. an
<integer-operand> in operations and expressions, and with respect
to the data-type.conversions detailed in Sec. 6.2.1.1. Thus,
2, 2.00, 27.3E+3, 0.1024E+4B-5 are examples of "integer'literals”.
If the literal has a fractional part, its precision will be
determined by context,_if possible, Otherwise, default precision
will be used. For example, |
1) DECLARE A PRECISION(10)};
Y.= A+ 1.5;
1.5 will be a double prgcision literal because A is
double precision.
2) Y= (1.5 + I)a;
Since thé precision of 1.5 cannot be deterﬁined from
context (i.e., being added to an integer) the default

precision will be used.
6.2.1.3 Precision. Implicit conversion of precision occurs

when operands of different types or precisions are combined

-by an operator.

6~21

INTERMETRICS l!NCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - {617) 868-1840

89

' GENERAL RULES:

1. Conversion from bit to integer:
Bit strings of length less than a machine word length
are converted to integers by regarding the string as an
unsigned integer. The result will be a full word positive
integer, Fof string length exactly equal'to word length,
a sign bit is presumed, and the resulting integer will be
a full word signed integer. For string lengths greater
than a word length, conversion will not be performed;
the compiler will issue an error statement.

2. Convers%on.from integer to scalar:

a, Floating Point

Resulting scalar precision will be determined by
context, if possible. .Otherwise, default precision
will be used., (Also see Sec, 6.2.2.4 for explicit
precision conversion.) In the case of single precision,
conversion of large integers will approximate the
integer by the most significant portion that-can be
re?resented in a single precision floating point
number.

b, PFixed Point

Conversions from integer to fixed point scalar will

be implementation dependent.

6-22

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

90

3. Conversions within expressions:

a, Floating Point Operations

Por operations involving two single precision operands,
the result will always be single precision. For
operations involving single and double precision, the
single precision quantity will be converted to double

precision and the result will be double precision.

b. Fixed Point Operations

For operations involving two éixed.point éingle
precision operands (single word 1eﬁgth) the result
will ke single precision.* For operations involving
single and double precision operands, the conversioﬁ
to double length will follow the same rules as for
floating peoint.

The result of an operation also carries with it an
implicit intermediate scaling based on the operation
involved and the scaling of the operands (e.g., addition,
subtraction, division, etc:).

GENERAL RULES:
Intermediate scaling results will be implementation

dependent.

6~23

INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

.
E XX

31

¢. Conversion of Literals

In converting a literal to a fixed point scalar,

only the necessary number of integer bits will be

used. First the literal is divided by 2N

value is <l but > 0.5. ZN is therefore the maximum

so that its

range énd N becomes the number of integer bits in the
fixed point scaling. P-N-1 bits are assigned as
fractional where P is the word length, (This pre-
sumes 1 sign bit.}) For example, for the literal
250.87 the compiler would assign PRECISION(8, P-8-
sign bits). For the literal ,004875 the precision

is PRECISION(-7, P+7=-sign bits).

6.2.2 Explicit Conversions {Shaping Functions}

Three classes of explicit conversions are specified: a
single-argument_class to convert from one data-type-to aﬁother
or from an array of one type to an array of another,Aa multiple-
arguﬁent class to convert a list of mixed data types to é
vactor or a matrix or to an array of any single data-type, and

a set of special bit and character conversions.

6.2.2.1 Single-Argument. The explicit conversion of data types

can be accomplished with the following set of conversion functions:

1. INTEGER Shape>](<51ngle—operand>)

[<array-

6—24

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - {617) 868-1840 -

92

2. SCALAR _shape§](<single—operand>)

[<array

3. BIT[<array-shape>:][<index—expressioh>l((Slngle-operand>)

4. CHARACTER 1{<single-operand>).

[<array—-shape>:] [<index-expression>

S. VECTOR[<array-shape>:][<dimension>](<31ngle"OPerand>)

6. MATRIX

[<array—shape>:]{<dimensi0n>](<51ngle'°Perand>)

where <single-operand> = {<type-operand>[<type-array-operand>}

and <dimension> = <m>[,<n>]

<m> and <n> may be <bit-, <integer-, or <scalar~-operands>;

their values are converted to integers: <m> and <n> must be > 2.
<index-expressions>, . in the form of subscripts, are

detailed in Sec. 6.3.1.

A. INTEGER, SCALAR, BIT, CHARACTER
- unsubscripted o

GENERAL RULES:

1. INTEGER converts bit strings, scalars and character strings
to integers, and arrays of these types to arfays 6f integers.
Array shape is preserved. A bit étring is converted according
to the rules stated in Sec. 6.2.1.3. A scaiar is converted
to a signed full word integér bf rounding to the nearest
whole number. A character representation of a whole number
is converted to a signed full word integer. |

2. SCALAR converts bit strings, integers and character strings

to scalars, and arrays of these types to arrays of scalars.

6-25

INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 ~

93

Array shape is preserved. A bit string is converted first
to an integer [(as in (1) above) and then to a secalar. An
integer is converted to a scalar according to the rules
stated in Sec. 6.2.1.3. A character representation of a decimal
number is converted to a scalar.
A bit string may be convertéd-directly to a floatiné
{or fixéd point) scalar, i.e. not converting to integer
first, by use of the SUBBIT pseudo-variable, described in
Sec. 7;1.2.3.

3. BIT converts integers, scalars and character strings to bit
strings and arrays of these types to arrays of bit strings.
Array shape is preserved. Integers and scalars are converted
to full word bit strings; character strings are converted
to the bit length representing the total character string.
BIT may be subscripted by ah <index-expression> to select
a desired range of bits (see Sec. 6.3.1}.

4. CHARACTER converts bit strings, integérs, and scalars to:
character strings and arrays of these types to airays of
character strings. Array shape is preserved. Scalars are
converted to specific length character strings; integers
are converted to minimum length character representations
(see Rule 7 of Sec. 6.2.1.1). Bit strings are converted to
integers first and then to characters. CHARACTER may‘be
subscripted by an <index-expression>. to select a desired

range of characters (see Sec. 6.3.1).

6-26

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 -

“

5. INTEGER, SCALAR, BIT and CHARACTER convert vectérs and
matrices, and arrays of vectors and matrices as if these
were arrays of scalars, applying (1) through (4) above,
respectively. Tne resulting array shapes are indicated

in the following table:

- — » *
Argument Ve [V]a,bzl Mm,n IM]a:m,n
Resulting

ggggg [X]L [x]a,b,z _ {X]m,n | ‘ [XJa,m,n

Subscripts indicate shape and dimension (i.é., <array-~shape>:
<dimension») & = vector length; m,n = matfix roﬁs, columns;
a,b = array shape (in gqural, the argument array shape
may be a,b,c,...etc.). X represents bit string, integer,

scalar, or character string.

B. VECTOR, MATRIX

- unsubscripted

VECTOR and MATRIX convert bit strings, integers, scalars
and character strings, and arrays of these types, to scalar
‘components; type conversion is the same as for SCALAR. The
resulting array shapeé, and vector and ﬁatrix dimensions, are

shown in the following table:

6-27

INTERMETRICS INCORPORATED » 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 -

.. 95

Argument ——) ‘ -

Resulting (1) Vs, — *
Array Shape X [x] or [v] o I M [M] .
& Dimensions a,b (] a,b:8 m,n a,b:m,n
L _(2y _
. VECIOR vdefault Va:b Vz [V]a,bzl [V]m:n [V]atb,m:n
MATRIX mt2) M 731 M [M]

)} _ default a,b default asb,% m,n a,b:m,n

Notes:

(1) X refers to_bit string, iﬁtegér, scaiar or character
operands. Appropriate conversion to scalar is accomplished,
(2} all componenﬁs are set équal to X.
(3) The length £ must equ@llthe product of the matrix
default dimensions. (In general, the argument array

shape may be a,b,c¢,...etc.)

c. iNTEqu, SCALAR, BIT, CHARACTER

- subééripted

Subscripting specifies the desifed array shépe and.in the
case.of EIT‘and CHARAdTER,‘an <index~expression> to select
the deéifed range of bits or characﬁers. The product of.the
array shape dimensions must equal the.product of the array and
type diméhéioné of the argﬁment. (Exception: if the argument

is a single unarrayed bit string, integer, scalar or character

6-28

INTERMETRICS 1NC6RPORATED . 380 GREEN STREET * CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

36

" string, the array-shape subscript may be_arbitréry, ahd-all
elements of the resulting array will have the same value,)

In forﬁing a new array, the vector, matrix and array
arguments are equivalent to lists of their components. Matrices .
are unraveled by rows; arrays are unraveled by thé right-most
(or inner) index first (i.e., 1,1,1; 1,1,2; 1;1,3:...1,2,1;
i,2,2; etc,). The new array is then constituted by filling

the inner-most index first, etc,

D. VECTOR, MATRIX

- subscripted

Subscripting specifies the desired arraj of shape and type
dimensions (i.e., vector length or matrix rows and columns).
In general the product of the array shape diménsions and the
type dimensions must equal fhe'product of the array and type
dimension of the argument; exceptions:

1. if the argument is a single unarrayed bit string,
integer, scalar or character string, ﬁhe subscripts
may be arbitrary and all elements of the result will
have the same value; - |

2. 1if the product of the array and type dimensions of
the argument exactly egqual the désiréd_VECTOR or
MATRIX type dimensions then all the vectors in thé.
array of vectors or all the matrices in the array of
matrices will have the same value., For example:

VECTOR, ¢ c([A]) |

where [A] is a 2x3 array of scalars, results in a
6-29 |

INTERMETRICS INCORPORATED « 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 -

.95

4x5 array of vectors of length 6. Each of the 20
vectors is equal to the unraveled components of the
array, [A].

in forming a new vector or matrix, or array of vectors or

matrices, arguments are eguivalent to lists of their compbnents
"and are unraveled by the inner-most index first. The result
is then constituted by filling the inner-most index first.

If <dimension> for VECTOR or MATRIX is not.prOVided, the
default dimension is used, and the number of elements in the
argument must equal one, or be consistent with the default.

The total subscript may contain one and ocnly one *, in which
case that index position is left unépecified and its wvalue

will be adjusted to the sizé.of the argument.

6.2.2.2 Multiple-Argument. The explicit conversion of data

types can be accomplished with the functions detailed in
Sec. 6.2.2.1 where the:<single—0perand> is replaced by a 1list
of oéerands; i.e. | .
<list> = <sing1e-operahd>{,<sing1e—operand>}...
Operands may be repeated consecutively by use of the # operator

as described for initializatibh in Sec. 5.1.1.4.

A. INTEGER, SCALAR, BIT, CHARACTER
- unsubscripted

Each <single-operand> in the <list> is unraveled as described

6-30
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

98

in Sec. 6.2.2.1 (C). The result is an array of length equal
to the total number of elements in the list. Data conversions
are as described in Sec. 6.2.2.1; exceptions:
l. bit string length will be equal to the maximum bit
1éngth of the elements in the <list>
2. character strings are considered varying and are limited

in size by the implementation

B, VECTOR, MATRIX

- unsubscripted

Each <single-operand> in the <list>.is unraveled. The
result is a vector of length equal to the number of elements
in the <li§t>;, or a. square matrix with rows and columns
equal to the square root of the number of elements in the

list (the square root must be ‘an integral number).

C. INTEGER, SCALAR, BIT, CHARACTER
- subscripted |
The <list> is unraveled as in {(A) and then "shapéd" into
an array as specified by the <array—éhape>. The new array is
filled by inner-most index first. If <index-expression> is not
provided for BIT or CHARACTER, lengths are as described in (a).
| The <ar;ay—shape> subscript may contain one ahd only one
*, in which case that index position is left unspecified and

its value will be adjusted to the length of the <list>.

6~-31
INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868{840

99

"
'] —

D. VECTOR, MATRIX

- subscripted

The €1ist> is unraveled as in (A). The resulting vector
or matrix, or array of vectors or matrices are formed by filling
the inner-most index first. 1In general the product of the
'array shape dimensions and the type dimension must equal the
total number of elements in the <list>; exception: 1if the
list contains exactly the number of elements specified by
the type dimensions then all the vectors, or matrices, in
the formulated arraylwill have the same value, being constituted
by the <list> elementsi | |

If <dimension> is not provided, the resultant vector(s)
or matrices take on default dimensions and the number of elements
in the <list> must be consistent with the default.

The total subscript may contain one and only one *, in
which case that index position is left unspecified and its value

will be adjusted to the length of the <list>.

EXAMPLES:

’
1. INTEGER (ACE)
3,4

- A 3x4 array of integer-elements. Each element is equal
to INTEGER(ACE). ACE must be the character represeﬁtation
of én integer (e.g., '-604').
2. SCALAR(A,B,é,lS#I)

-~ A one-dimensional array of 18 scalar wvalues.

6-32

INTERMETRICS INCORPORATED -+ 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

100

-3, BIT(A,B2,C,D,E)

- A one-dimensional array of 5 bit strings. String length
equals maximum string length of elements.

4, BIT (A)

3,2:1 TO 8
~ A 3x2 array of 8-bit bit strings. All array elements are
equal to the eight "left most™ bits of A.

5. VECT039:4(A,0,0,0)

- A one dimensional array of 9 four-component vectors.
Each vector equals (A,0,0,0).

6. MATRIX4'*([A])

-~ A 4xn matrix where n = product of [A] dimensions
4

7. VECTORz' 2: (B)

- A 2x2 array of default length vectors. Every vector
component is equal to B.

8. VECT0R2'2=6(G#A,G#B,l,O,O,l,O,O,G#D)

- A 2x2 array of 6-component vectors,

9. MATRIX,,. (A,B,C,-=~=-=-)

- A one-dimensional array of 10 default size matrices.
(Note that list length must be consistent with the default.)

10. MATRIX2,3'4=5’5 (5#A,54B,54#C,54D,54E)

- A 2x3x4 array of 5x5 matrices.

6-33

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840 -

P PR
e,
A

e

s | 101

6.2.2.3 Special Character-to-Bit, Bit-to-Character Functions

In addition to the BIT and CHARACTER functions presented in
Sec. 6.2.2.1, special subscripting allows binary, octal and
hexadecimal conversion from characters to bit string and vice-

versa., The general forms are:

a) BIT[<form>](<character-operand>)

b) CHARACTER[<f°rm>](<b1t—operand>)
where
<form> =" {@BIN|@OCT |@DEC|@HEX}

GENERAL RULES:

+

1. BI converts a character string (or array of

T<form>
character strings) of binary, octal, decimal or hexadecimal
digits into a corresponding bit string (or array of bit

strings}. @BIN requires the character string to be made

up of only 1's and 0's, @OCT of only 0 to 7, etc.

2. CHARACTER converts a bit string (or array of bit

form> ‘
strings) into a character string of binary, octal, decimal or

hexadecimal digits, depending on the subscript. If the

6-34

-~

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 °

102

bit string is too short for the required form, it will be
padded on the left with zeros.
3. If <form> is not provided, these conversion functions revert

to the unsubscripted functions of Sec. 6.2.2.1.

EXAMPLES :
BITGOCT('GST'), CHAR@HEX(BL
CHAR@BIN('IOIOI'), BIT (*FAD')

@HEX

are all valid applications.

6.2.2.4 Precision. The precision of expression results can be '
specified or changed explicitly by the use of the <precision-
expression>. That is:

{<type-—operand>|<type~array-operand<}<Precision_expression>

where 7
<type-operand>={<integer- [<scalar- |<vector- [<matrix- |
<bit—'}operand>‘
and likewise for {type-éfray-operands#. If the <type-operand>
is an expression or a subscripted name, the <operand> must appear

within parentheses.

6-35

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

N . 103

B.

Floating point:

GENERAL FORMAT:

<precision-expression> = @p

GENERAL RULES:

l.

p must be an unsigned integer literal and is equal to
the minimum number Qf significant decimal places (same
meaning as in the PRECISION attribute of the declaration

statement).

EXAMPLES (presuming a 32-bit word):

1.

DECLARE A PRECISION(10);
DECLARE B ARRAY(5) INTEGER;

A= (B +C;

1’ e10
B, is converted from single to a double precision scalar
(i.e., at least 10 significant decimal places) and the
sum is performed in double preciéion. Note that an
indexed name requires parentheses. '

REPLACET sp BY '4';

REPLACE DP BY '10';

DECLARE X PRECISION{DP);

A =B +(X Y)@SP;

The. double precision result of X Y will be converted

to single precision. The final sum is computed in

single precision.

Fixed point:

GENERAL FORMAT:

<precision-expression> =

{@pl,g]|{@<name>|@DP|@SP|@*} [+k -k]}

t See Sec. 7.3.6 | 6-36

~

INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

104

where @DP and @SP are keywords; i.e., no spacesrére allowed

between characters.

GENERAL RULES:

1. @p, q specifies the number of integer and fractional
bits (same‘meaning as in the PRECISION attribute of
the declaration statement). | |

2, A<name>tk specifiés the precision to be the same as
that of <name> except with the binary point shifted
relatively to the right (+) or left (=) by k places;
i.e., increasing or decreasing,. respectively, the
number of integer bits.

3. @DPtk specifies conversibn,“first tp‘double word leﬁgth
while maintaining the number of integer bits, and then
a relative shift of the.binary point right (+) or left {(-)
by k places.

4. @SPtk specifies a relative shift of the binary point
to the riéht (+) or left (=) by k places first, and
then conversién to single word length while maintaining
.the new number of integer bits.

5. @*ik specifies'the current word length with the binafy
point shifted relatively to the right (+) or left (-)
by k places.

EXAMPLE ¢
Présuming a 32-bit word,

| A = Egu.g + (B + Copp_g)Plggp 5

C is converted from single to double precision and the

6-37
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

. 105

binary point shifted left eight places. B + C is |
performed in double precision and the result of the
mﬁltiplication with D is rescaled to the same scaling
as E except that the binary point is shifted left
fivé places., This quantity is added to E after the

binary point of E is also shifted left five places.

6.2.2.5 Summary* of Explicit Data-Type Conversions. The

following table describes the resulting conversion for each

function and operand type (I+S means integer to scalar, etc.):

Type '

Function I'. S . B c
INTEGER Y 5+T B>T csz (D)
SCALAR I+S v B+>I+S cas ()
prr3d) I+B g2 4 _ csp(?)
cmaracter 3] 1ac | §+C BeIsC Y

Y: Restores original argﬁmeﬁt (no operation}.

Notes: (1) INTEGER and SCALAR only accept character string
arguments which represent whole numbers and scalars,
respectively. PFor example, INTEGER('30672') and

SCALAR('362.06E+1"') are valid applications.

% This gection summarizes the conversions presented in Secs.
6.2.2.1 and 6.2.2.3.

6-38

. INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 86871840

106

{2) BIT converts scalars-and character strings directly
to bit strings. That is a floating point scalar
argument would result in the string representing the
machine "bit-pattern" of the floating point quantity.
A character is converted to its bit pattern.
(3) BIT and CHARACTER may be subscripted in order to
select particular bits and characters, or to modify
usage (see Section 6.2.2.3). A character string.which'
represents binary, octal, decimal, or hexadecimal digits
can be converted to a corresponding bit string; i.e.,
BIT@BIN('1011‘) becomes IOIi
, BITgoep('657') becomes 110 101 111
BITguuy ('FAD') becomes 1111 1010 1101
BIT@DEC('78F) becomes 1001110
Likewise bit strings can be converted to binary,
octal, or hexadecimal character digits; e.qg.,

CHARACTER (BIN'11111010")

@HEX :
Also, VECTOR and MATRIX cause the same conversions

' as SCALAR.

6-39
INTERMETRICS INCORPORATED - 380 GREEN STREET * CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

107

oy

6.3 Subscripts

Subscript notation is used in .HAL to specify single elements,
or multiple-element partitions,of vectors, matrices, bit- and
character-strings, arrays,'and structures.

The first element of a wvector, the first bit in a bit-string
("left-most" bit) and the first character in a character string
{"left-most" character) are noted by the subscript 1, the second
by 2, etc. up to the total number of components. Thus, for a

9-element vector the components may be written as

Va V3 e ¥

1l 3 9

For a matrix, the first of the two subscripts refers to the row
number, running from 1 up to the number of rows, and the second
to the column number, running fqom 1 up to the number of columns.
For examp;e the elements of a 2x3 matrix could be referred to by
writing:

B B

‘B1,1 Bi,2 B1,3 B2,1 By,2 B33

The.above data;types (including integers and scaiars} may
be arrayed in one, or multiple dimensions, and also crganized
into hierarchical data structures. 1In order to select and
partition all gquantities uniquely it is necessary to distinguish
levels of subscriéts. In the most general case, this is accomplished
by separating structure subscripts from array subscripts with
a semi-colon (;) and array subscripts from data-type subscripts

with a colon (:). For example,

6-40
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

o | 108

¥5;3:3,4
refers to the scalar element in the 3rd row, 4th column of the

3rd component of the array of matrices Y which is in the 5th -

copy of the structure X.

6.3.1 Subscripting Data-Types and Arrays of Data-Types

Subscrlptlng (1 e., selectlng or partitioning) is
accompllshed by attachlng a <subscr1pt—expre551on> to a name, thus
GENERAL FORMAT:

{<type“name>I<type-array_name>}<subscfipt-expression>

where
<subscript-expression>
= [[<index-expression>[,<index-expression>]...1:]
[<index-expression>],<index-expression>]]
and
<index-expression>
= {<scalar-operand> [TO<scalar-operand>] |
[<séalar-ope;ahd>AT]<scalar-operand>}
<scalar-operands> are evaluated and converted to the nearest

. integer before use. <sca1ar—operands> must be > 1,

6.3.2 Single-Element Reference

When referencing a single element (i.e., not an array) the

) general format of Sec. 6.3.]1 reduces to
- [[<scalar—operand>[tscalar-operand>]...] 1

[<scalar-operand>[<scalar-operand>]]

6—-41

'_-, S t .
INTERMETRICS INCOHPORATED 380 GREEN STREET - CAMBFHDGE MASSACHUSETTS 02139 - {617) 868-1840

109

"GENERAL RULES: ;

l. The operands to the left of the colon (:) reference the.
particular array element; the operands to the right may
be used to reference a matrix, vector, or string component.

2. For an array, if "left-operands" are not provided, the
colon being optional in this dase, reference is made to an
array of the particular matrix, vector, or string components.

3. For a vector or matrix, one or two <scalar-operands> are
used to reference a vector or matrix component.

4, For a bit- or character-string, one <scalar-operand> is
used to reference a single bit or character in the string.

5. Use of a number sign (#)}) in place of a <scalar-operand>
means "the last of a-particular index".

EXAMPLES :

1. M:,“4 references the matrix-component in the third row, fourth
column.

2. A2’3'4 references a scalar or integer array elqmgnt in the
second plane, third row, fourth column.

3. A2'3'4;3'4 references tﬁe componept in the third row, fgurth
column of the matrix located in the second plane, third row,
fourth column of the array, A.

4. BITlG(A) references the 16th bit in the bit representation of A.

r
5. TEXT, references the 8th character in the string.

8

*
6. M3 4. references the matrix in the third row, fourth column
r - .

*
of the array of matrices, [M].

6-42

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

110

7. [Vlg references an array of the 5th components of all the
vectors in the array of vectors [V]. [Vl is an array of

scalars.

6.3.3 Multiple-Element Partitions

'6.3.3.1 The Use of *, An asterisk {*) may be used in place of

<scalar-operand> to indicate "all of a particular index",
thus establishing a cross-section of a matrix or an array.
EXAMPLES:
1. ﬁ*'4 references the fourth column of thé matrix, which is
a vector. (That is, all rows, fourth column.)
2, [712'*: references the vectors in the second row of the array
of vectors. Note that [V]z'* is itself a one-dimensional

array.

6.3.3.2 The "TO" Operator. The TO-operator may be used to

reference (or pértition) a set of elements by specifying the
indexllimits. .
GENERAL RULES:

1. The value of the oper#nd to the left of TO-refers to

| the element at which tﬁe partition begins.

é. The value of the operand to the right of TO refers to the

element at which the partition ends.

EXAMPLES:

Bg po 10 Selects bits 5, 6, 7, 8, 9, 10 from the bit string B.

1.

6-43

INTERMETRICS INCORPORATED » 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

AWy,
L)

111

*
2, Ml TO P, 1 TO Q partitions a larger matrix and selects the

first P rows and the first @ columns.

3. [AJP TO (P+2), 1 TO 3:4 TO # partitions a two-dimensional
array of bit strings. The result is an array of 3 rows and
3 columns. Each array element is a partition from bit 4 to

the last bit of the corresponding original bit string.

6.3.3.3 The "AT" Operator. The AT-operator may be used to

reference (or partition) a set of elements by specifying the
size (or length) and the beginning index. |

GENERAL RULES: _
1. The value of the operand to the left of AT indicates
the size of the partition.

2. The value of the operand to the right of AT refers

to the element at which the partition begins.

EXAMPLES:

1, és AT 5 selects 6 bits from the bit string B; i.e.,bits
5,6,7,8,9,10.

2. BITyy am p{n) first converts the floating point (or fixed-

point) scalar, A, to a bit string and then selects 10 bits

starting at P.
*

3. M4 AT 5,

a 4x4 sub-matrix.

4 AT 7 partitions a larger matrix by selecting

644

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) fiﬁo

‘4. Note that -

82 p0 10 =8

9 AT 2

6.3.4 Subscripting Structures

Subscripts may be used to specify terminal data elements
and specific copies of the major_structﬁre, or .contained minor
structures,

GENERAL FORMAT:

<structure-name> ' . .
m <structure-subscript-expression><subscript-

expression>
where
<structure-subscript-expression>

= [[<index-expression>[,<index~expression>]...];]

<structure-name> = {<fully-qualified-name>|<pon-gualified-name>}

and <index-expression> and <subscript-expression> are defined

in Sec. 6.3.1.

GENERAL RULES:.

1. When the <structure-subscript-expression> is included, all
struéture subscripﬁs {major and minor) must be indicated.

2. The use of an asterisk * means "all of the particular index".
Thus,'{A.B.D}zef*; means D in all the éopies of B which are in
the 26th copy of A. If all indices are filled with * then
the <indei-expressions>.may be omitted optionally; for example,

{a.B.n}, ,. = {A.B.D}

6-45

. INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

c 113

EXAMPLES:
DECLARE 1 A(50)NONQUALIFIED,
2 B(25),
3 C ARRAY(4,4) MATRIX(3,3),
3 D INTEGER,
2 E(15),
3 G VECTOR(3),
2 F BIT(1);
The following examples refer to the above structure declaration.

1. Cg,10;4,2:1,2

{This represents the scalar componeﬁt in the first row, second
column of the matrix which occupies the 4,2 position in the
array C. This array is.in the 10th copy of B which is in the
8th copy of A,
2. '{G}z
This represents the second component of the vector G in
all copies of E which are in all copies of A.

3. F25; 7
This represents the single l-bit bit-string in the 25th

copy of A. | .

180353 44,4,

This represents the array of matrices in the "4th row" of the
array C, in all the copies of B which are in tﬁe 23rd cépy.

of A,

6-46

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

114

. 6.3.5 Array Subséripts

The subscripting of Sec. 6.3 may be generalized by
substituting one or more <scalar—array-operands$ for the
éscalar-operands> shown. The result will be an array whose shape

is determined by the éubscripts.

GENERAL RULES:

1. <type-name> may not be a single scalar or integer quantity.
(That is, it must be capable of being "subscripted".)

2. If more than one <scalar-array-operand> appears as a sub-
script;-all must have the same array shape.

i
3. The GENERAL RULES of Sec. 6.3.2 apply here,

The usage .of array subscripts is complex and a few simple

examples are shown below.

EXAMPLES:
1. DECLARE A ARRAY (100);

DECLARE B ARRAY (2,2) CONSTANT (1,20,40,60)

A[BI results in a 2x2 array of the following elements:
Ay A20
20 260

2. DECLARE M MATRIX (6,6);
DECLARE A ARRAY (2,2) CONSTANT (1,2,3,4);

M, [A] results in a 2x2 array of vectors:
4

6-47
INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (61 7)‘ 868-1840

ey

115

6.4 Expression Summary

Tables 6.4-1 through 6.4-7 summarize the allowable
operations between two operands. In most cases the valid result-
type {or error) and any implied data conversions are indicated
within the boxes., Array operations are generally valid wherever

corresponding data-type operations are also valid. -

6-48

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

116

1-%°9 °1qel

J9693UT 03 3Tq WOAF UCTSASAUOD SURIW T+d »

"ONISLS yI<d

aY¥Ivos

m_.ommﬂ LI SEDELNI XTY4IYH HOLOIA HIOIINI
<> <d> <d> . T «d> <d> <d>
HNIULS .
| EIOVEVED DONI¥YIS IId XTHIVH HOLOIA "YIYOS . HADTINT aNvyadado
ION = <O> , »
. XTIoig uoTiexado
aNvaEao {073 3

.Hﬁﬂ.”_w = &d>

6-49

INTERMETRIGS INCORPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

117

Z-7'9 STqeL
YoayD UOTSUSWIp P
. ONIYLS
LG douyd qouud | q09udE RlLLE Jouya ALV
T S . S«I+«d p2x:i
gowdd dEOEINI Jouud | ¥gowdH AVIVOS |- MIDAINT - ONI¥IS &LId
. P _
q0udd ‘| gow¥m XTHIVH | F0YyE HOUHE . Jouda XTELVH
. 12
Jouyd gowud Jouud FOIOFA q09¥" ot HOLOEA
SeI+d - ‘ : , g+
qo¥ud . WYIVOS . @owdd JOYH ATIVOS dVIYOS | ¥YTIYOS
I<d -
doqud YADFINT gogud 40guH AYIVOS YEOTINT YAOEINT
_ : T
ONTHIS . aNYMEIO
SLIOVEVHD ONINLS &LId XTSINH AOLOIA qYTYOS YADTINT .
ANVEEd0
: . : T dorIggn UoT , T ad
¢ anvuEdo : T ANVEEdO 30RIIAS ¥ UOTATPPY uoTIRIad0

: _ 6~50
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 888-184118

. Awuovumb uﬂmﬁmawlm (o}
pa3nTa3sax ‘p) AxA FONpoad ss50I0 I0308A (€
(D) A*A 3onpoxad J0a zo3osp (g
}OOUD UOTSUSWIP P A A 3onpoad x93no I0309A (T 1 S930N
qoqyd HOHAH q109dd - dQu¥d b0 .40 p: (023 po o ONIYLS
’ . ELOYEYHD
I+g ‘I+9 S+I+«d S+I+d S+I+d 1.8
HOd4dH HAOHLNT XTALVH JOLOIA dvIvos YADFINT ONIYELS &LIg
S+I+d P] S+
- 4094dd XTIaLVH XI4IVW. . doxLDFA XTIV XTILVH XTIALVH
S+I+d P (e HOLOEA W.TH
qoudd YOLOEA OLIEA (z)T¥IVOS ¥OLOTA FOLOTA ¥OLOIA
’ : o XITYLVH
(T)
S+I+g ‘S+I
HOHNT - AVIYOS XIYIVKH ~ AOLOEA AVIVOS AVIVOS AVIYOS
I+4 S«I S«I S+I
b-(8}. k. IC JIDHELNI XITILYW HOLOIA dvivos IO LNI dIOILNI
'ONTYLS _ _ Taxvazao
TALOVEVED ONTALS &LId XTILVR dOLOIA av¥ivos - dEDHINI ,
ANVEEdO0

4

T

ONYIIJO<I TN "ANVIII0

TUOT3IEDTTAIRION uoTieaado

6-~51

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (817) 868-1840°

119

p-%'9 oTqel
HouNH gouud Jouus Jodaud qOuNE Houud ONTHLS
o mmaomm«mJ
S«l«d S+I+H S¢I ‘S«I+d
S+I+d :
ettt TTYOS J098d ogud AVTYDS AYTYOS ONIELS I1€
S4I+d . SeI
qoTad XTAIVH qoudy | qouyE XTUINH XTHIVH X THLYR
S+I+d S+1
FOWH WOLOTA qouua souad MOLOFA 4010FA YOILDIA
. S+T<+g . S<«T
4099d . ¥YIYOS g0uNd qouus VTS AEIYOS AVTYOS
STI<H" ' GeI S<«I S+«I ‘g+I
Jouud WYTVYOS 90¥uT . gouud ¥YTYOS AVTEOS SHOTINT
T
aANYEIJ0
ONTYLS ONTHLS II4 RTUINH HOLOHA AVTYOS EFOAINT
AHLOVEVED : . :
Canpmao
H [T
¢ anvaEao/ TanvaEao . UOTSTATQ uot3eIado

6-52

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

120

ue 03 pa3IdAUOD 2 Aewl YoTyM TeIel Tl BuTIls 3ITq v ST

7°T°T°9 °"D8g5 @95 ‘¢ ‘ *(I+8 ‘I«€) 3Ido0oxXs (¢) se sues °y
“(I+dg) 0 < TeI93TT. Iaqunu 9TOyYM ' ST Naz¢mmmo 3T YFOUINI ST 3ITnsad °¢
. . . * (I+dg) asb693ur poubrTsun

CONVEEAO 3T MEDAINI ST 3TNS9d °Z

0 < TeIslTT roquUNU OTOYM e ST CGNVNEA0 FT WEOAINI ST 3Tsod T
: S930N
-y*9 STqer
qouyy gouysg qo¥Ed - doyyd pElorssic gogys ONIILS
o _ : . A LOVIVHD
(v ®30N ®o3) { (¢ @30N °98) | (¢ S210oN °9S)
S+I+8 ‘S+I+d . : " S«I«fd | S+I ‘Sel«d
40393 UIVOS B (02: 15 c qoudd AYTYDS AVIVOS ONIYLS 1Ig
qo¥uE I«d | | I+S -
: ORI, J09uT | . XTILYH
XTYIVH o B XIHIVA & (g) XTHLVKW
- d0¥y¥d Jodds q05ug JouuT JoduE Jouyd JOLOIA
S+led .) :
qouyd . ¥VIVOS ~ douyg . ¥o¥yd AVIVOS AVIVOS AIVOS
{Z ©3°N 2°5) ‘ . {1 230N ©935) | (I ®30N ©0°8)
S+I+d ‘S+I _ S«I ST
qouud dY'IVOS qOUYS q034¥" IVIVOS AVTYDS WADAINI
. : ~Janvszao
ONIULS ONTHIS LIg XTEIVH 40L0FA AVIVDS gEOEINI |
YILOVIVHD ! z
. . ANVdEdo
Z 1 3 GOﬁvuﬂu:mnomxm_ uot3zexado

ANHHIdOx » ANVIIJO

6-53

JTERM.EIRICS INCORPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

121

. * Kaesgsosu

* T Tenbe syibual ayew o3
3ybTx sy3 uo pepped ANVMEAO (2

. *Axessooau

3T Teubs syjbusT axyew 03

122

9-%*9 S7qRL T
: <lexaescg><lexies

6-54

8T © uo : ’
hed H U3 pepped ANVEEJ0 (T :S930N <2IANIONIFS >« d><2INJonaysy :TeToadg
‘ ONTILS
(z)<©> youya Joudd JOoUHH gomia ¥ogyd IEIOVIVHD
hwvaov . ‘ S+I«d I+g
Joggd JoudsE “goadd <0> <G> ONI¥LS LId
- aogud Jowad <d> Joudd JOWIE JouyH XIAIVH
yoydd 02 : qodud <d> qodys JougH JOLOIA
S+«I+g _ S«+1
(orit: e <0> qodua (o t: ke <0> <0> YYIYOS
I«4 S+I
Jouud <0> q0ddd Jodyd 40> <D > YIOHLNI
I
ONIJLS . - , NVIZJO
sarovavny | 2NI¥IS 114 XTELVW JOLDIA YYI¥OS WEDAINI |,
. . : ANV Edo
*9sTel X0 o9ni3} sdAemre ST JInssl msuWhmnouMHmmo TRUOTIRTSI PITRA SMOUS STdRlL
. . _ "” TeuoTjeIsy uoTiexadQ
{<f>f=<|=>[>]<| = | =} = <0> z B> . _
. T
(=_| =}'= <a> anvaagol 7} ANVEEI0

'INTERME%I'RICS INCORPOHATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

<d>

L-7*9 oT9eL
o«I+d i
MEIOVIYHD 5«8 eI
)| MHLOVEVHD : ONTYLS
<q> b Jowud | AONHE | mmaommMmo mmawmmmmo iy
gouua wzﬁMm LIE | douas | ONTNIS LIS
-t : Jowad —p| XIUIVH
- Houug | HOIDFA
DS - .
SHIOVIVED |- Jouus »| uvTeos
<d>
oI
AALOVIVHD
<d> - douud — »| MEOIINT
. T
ONTYLS : INVIE40
Saioveans | ONISIS Lle KIALYH J0LOIA ANVIVDS YEOAINT .
ANVHEAO
40 : BUTI38 uoT3exado
aNY = AOV . N AOV H N T
IE aweaEgo £0” Tanvaaao

6~55
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

123

7.0 STATEMENTS

7.1 Assignment Statements

The assignmeht statement is used to evaluate an expression
and to assign its value to one or more target variébles: The
farget variables may be integer, scalar, vector, matrix, bit and
character variables, array variables of thesé‘tyées,
subscripted variables, or sfructures.
GENERAL FORMAT:

[<label>:]<variable-name> [,<variable-name>] = <data-expression>;

where, '

<data-expression> = {<arithmetic|<string|<arrayl}-expression

GENERAL RULES:

l. &An assignment is performed in the folléwing steps:
a. subscripts of the target variables are evaluated:
b. the expression on the right hand side of = is evaluated;
c. the target variables are assigned.

2. If more than one <variable names appears on the left hand
side of = then all the names must be of identical data
organization., (Several different data types may be included.)

3. The dimensionality of the right hand side expression must
be identical to that of the left hand side variables with
the following exceptions:

a. string assignments (see Sec. 7.1.2):
b. assigning zero (0) to arithmetic variables; e.qg.,

— w= *
vV, R=0; [M}] = 0; A,B,C,D = 0; are acceptable forms;

7-1

INTERMETRICS INCORPORATED « 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02133+ (617) 868-1840

.. 124

¢c. array assignments (see Sec. 7.1.3)

EXAMPLES:

A, B, C, D = VECTOR (1, 0, 0, BP/C);
—_— — * . -
D=AF+MF+ LOG(A)T;

BAKER: By q5 g = C3 g 4|27

M = A*B;
*'3
ABLE: [A],[I] = BIT

2,10: {IPlyg ap o)
are all valid assignment statements,

7-2 :
INTERMETRICS INCORPORATED -« 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

i

~

125

7.1.1 Implicit Conversions

7.1.1.1 Type Conversions. Implicit conversions are performed

on the following assignments:

1., Scalar and bit expressions to integer target
variables.

2. Integer and bit expressions to scalar target
variables. The bit resuit is first converted to
integer, and then to scalar.

3. Integer and scalar expressions to bit target variables.
The scalar result is first converted to integer, and
then to bit.

4, Integer, scalar and bit expréésions to character
target variables, The bit result is first converted

to integer, and then to character.

EXAMPLES:
A= éllé:
I = a2;
A=1I- é;

ABLE: TEXT = S||P;

7,1.1.2 Precision Conversion. The resultant precision of an
expression is converted to the precision of the target variable:
EXAMPLES: (32 bit word length)

1. DECLARE PRECISION{10)VECTOR A;

X=A* B;

All vectors are floating point; the components of A are

7-3 .
!NTERM§fE!C§ INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + {617) 868-1840

126

held in double precision. B is first converted to double
precision, the cross-product is performed, and the result is

converted to single precision on assignment to X.

2. DECLARE PRECISION(5,12) A,B;
DECLARE PRECISION(21,12) C;
A=B+ C;
All quantities are fixed point; A and B are single length;
C is double length. The number of fractional bits for each
variable fills out the word length (less sign bit); thus,
effectively,
A and B become (5,26)
C becomes (21,42)
The precision conversions are as.follows:
a. B is converted to double precision and added to C.
b. The result is converted back to single precision;

i.e. (5,26) when assigned to A.

7.1.2 String Assignments

7.1.2.1 Bit Strings. When the length of a bit string expression
and the target variable are unequal, the expression result is
truncated on the left if it is too long, or padded with zeros

on the left if it is too short. The resulting value is aésigned

to the target variables.

7-4
INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

A 27

-
Y

" EXAMPLE::

~

-

S

1710 6 = 52 7o 47

51 10 6 = B20 ar Pf

are examples in which padding and truncation will occur.

7.1.2,2 "Boolean" Assignments. A one-bit string may be viewed

as a Boolean variable and can be assigned as follows:
A = {{TRUE|ON|BIN'1'}|{FALSE|OFF|BIN'0"}};

Note that TRUE and ON are literally the binary constant BIN'1l‘.

A long bit string may be zeroed by an assignment; i.e.,

Bl TO0 18 © FALSE;

However, TRUE;sets bit 18 equal to 1 and the rest

By 1o 18 T
equal to 0.

7.1.2.3 Pseudo-Variable Bit String Assignment. Bit strings

may be assigned directly to the bit representation of other data
types by uéing'the pseudo-variable SUBBIT.
GENERAL FORMAT:

SUBBIT (¢<variable-name>) = <bit-string~expression>:

<index-expression>

GENERAL RULES:

1. <variable-name> may be the name of an integer, scalar, bit,

or character variable, or an array variable of these types.

7-5
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS _92139 *+ (617) 868-1840 -

"~ .
TLEE T

(S 1;36;

EXAMPLES:

1. SUBBIT6 70 lO(A] = BIN(5)'1l';
The scalar A is interpreted as a bit string and the bits 6
to 10 are assigned all 1's.

2. SUBBIT (é _ ﬁ[li;

1l TO 8 16)
The character C;. is interpreted as a bit string and
bits 1 fo 8 are assigned the result of the string concatenation.
3. SUBBIT(A) = é[lﬁANTISSA[[éXPONENT;
The scalar A is interpreted as a bit string and is assigned

a floating (or fixed) point format directly from a bit

string expression.

7.1.2.4 Fixed Characfer Strings. Assignment is similar to that
of bit'strings except that exteﬁsion or truncation is applied

on the righﬁ. Thus, the expression value is truncated on the
right if it is too long or padded on the right with blaﬁks if it
is too short. The resulting is assigned to the target variables.
EXAMPLES : | |

r r - r
1. C = "ARCf: sets C "ABC' and blanks the rest of C.

170 3

’ ’

= 'ABC': leaves the rest of C alone.

2« € 903

r r
3. C3 M0 5 = 'ABC'; leaves the rest of C alone.

’ _ . . .
4. C3 70 80 = 'ABC'; leaves characters 1 and 2 alone, and blanks

characters 6 to‘80.
r ’ .
= 1 ', = ¢ '

5. C3 TO 4 = ABC'; sets c3 TO 4 AB' and leaves the rest

f
of C alone.

o ‘ 7-6
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

129

FREEY

7.1.2,5 Varying Character Strings.

GENERAL RULES:

1. If the value of the expression is longer than the maximum
length declared for the variable, the value is truncated on
the right. The target string obtains a current length
equal to its maximum length,

2. If the value of the expression is not greater than the maximum
length, the value is assigned; the target string obtains a
current length equal to the length of the value.

3. If the target string is subscripted, the string partition
is considered a fixed length character strxring and the expres-
sion is assigned according to the rules of Sec. 7.1.2.3.
If‘the target variable length is shorter than the upper index
of the subscript expression, the target variable is padded
on the right with blanks and the expression assigned._ If
-the length is longer than the upper.index, the expression is
assigned, leaving the other characters alone. If the upper
index exceeds the string maximum length, the assignment is
truncated at the maximum length.

4. The use of # as a subscript means the last character position
ofrthe currént length 6f the'string, not the maximum length.

‘ r
EXAMPLES: (let C be a varying string of maximum length 10)

r]
1. C = 'ABC'; sets the length of C to 3
I r '
2. C = 'ABC'||'BFG'; sets the length of C to 6
' ’
3. _C3 0 F " CHAR(3) "ABC'; assigns;'ABCA' f;om character 3 to

chaﬁacter 6, 6 being the current length of the string.

-7

INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

a
[EN

r .
C7 00 9
original length is <6, the string is extended with blanks

= 'POP'; assigns POP to characters 7, 8, 9. If the
and the length set to 9. For example, suppose .C were
equal to 'ABC', then the result of this assignment would be

' ABCHBEPOP',

7.1.3 Array Assignments

GENERAL FORMAT:
[<label>:}<array-variable-name> [,<array-variable-name>]...

= {<type-expression>|<type-array-expression>};

GENERAL RULES:
1. If the expression on the right hand side of = is a <type-
expression>, the result of the expression is assigned

to every target array element in sequence.

2. If the expression on the right hand side of = is a <type-~
array-expression®>, the result of the expression-is assigned
to the target variables, in seéquence, on an element-

by-~element basis.

EXAMPLES :
[A]

[A] = [A]l + 5; [A]l = {B]iClsare all valid array assignment

5: [V}, [W] = VECTOR(A,B,C,D):

statements.

7-8

~

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 » (617) 868-1840

o a3

7.2 Declaration Statements

See Section 5.0.

7.3 Control Statements

7.3.1 The GO TO Statement

The GO TO statement causes control to be transferred to
the specified statement.

GENERAL FORMAT:
" GO TO. <label>;

EXAMPLE:
X = A;
GO TO BAKER;
ABLE: P = 2

;
— k
BARKER: V= M ¥;

7.3.2 DO Statements

The DO statements constitute a set of four executable

statements. Each DO statement defines a group of statements
which-are treated as a single unit. The four DO statements
aie: the simple DO, the iterative DO WHILE and DO FOR,
.and the selective DO CASE.

A GO TO statement can transfer control from outside a group
to a statement within a group. Special care must be taken to
initialize necessary quantities in the cases of the iterative

‘DO statements.
. 7-4
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBR!DGE, MASSACHUSETTS 02139 - (617) 868-1840

. 132

' 7.3.2.1 The Simple DO Statement.

GENERAL FORMAT:

[<label>:]1DO; [[<label>:]<statement>]...[<label>:]1END[<label>];
GENERAL RULES:

1. <statement> may be any executable statement including

another DO statement.

EXAMPLES:
BAKER: DO;
X = A;
Y = B;,
DO;
2 =C;
W= n v;
END;

END BAKER;

Note that this example has been indented for clarity and does

not imply an established input source-output listing'fbrmat

design, -

7.3.2.2 DO WHILE Statement. The DO WHILE statement serves

as a means of executing a group of statements repetitively as long as

.a condition is met.

‘ 7-10
INTERMETRICS INCOFIPORATEO - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

133

" GENERAL FORMAT:
[<label>:] DO WHILE <logical-condition>;
[f<label>:] <statement>]...[<label>:]END{<label>];
where
<1ogica14condition> = {<comparison-expression> |
<single-bit-expressions}
and
- <comparison-expression> = {<bit-comparison>|<arithmetic-
comparison>| .
<character-comparison> |
écoméﬁrison—expression>{AND/OR}
<comparison-expression> |
[“ﬂ(<compérison-expression>)
and a <single-bit-expression> is an expression resulting in a
bit sfring of 1-bit and involving only <bit operands> of length 1

(i.e., Booleans).

GENERAL RULES:

1. The <logical-condition> has a true or false result.

2. The <logical-conditi6n> is within the loop structure of the
DO WHILE group and is re-evaluated each time before execution
of the group of statements.

3. When the_<logical—condition> is not satisfied (i.e., false)
the DO WHILE loop is terminated and contrcl is transferred

to the first executable statement following the END statement.

7~11

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617} 866-1840

. 134

EXAMPLE:

ABLE: DO WHILE (X>Y AND 56=TRUE)0R([A] = [é]):

P = LOG(2);
* * *

M=N+ Q;
¥="HM3 5

END ABLE;

7.3.2.3 The DO FOR Statement. The DO POR statement serves as

a means of executing a group of statements repetitively for a
list of values of a control variable and a logical condition.

GENERAL 'FORMAT:

scalar

. } variable> =
integer

[<label>:}DO FOR<{

<for-list element>[,<for-list element>]...
[WHILE<logical-condition>];

[[<label>:]1<statement®]...[<label>:]END[<label>];

where
: - _rScalar . . .
< - > = <{3 X sion>{<to- s >
for-list element {1nteger} expression>{<to-expression
[<by-expression>]]
' . scalar .
<to-~ > = <{7 % ion>
to exprgssxon TO {1nteger} expressio
and _
R scalar X
- > = . b ion>
{by expression BY<{1nteger} expression

7-12
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

135

Iy

GENERAL RULES:

1. The scalar or integer assignment means that a single variable
(control variable) will be assigned scaiér or integer values.

2, The control variable takes on the successive values specified
by the <for-list elements>, If the element is simply a scalar
or ihteger‘expreséion, the cont;ol variable is set equal to |
thié.falue prior to a pass through the loop. If the element
involves <to- and <by-expressions>, the control variable is
compared with the value of the <to-expression> prior to each
pass, and is incremented by the <by-expression> at the con-
clusion of each pass. _

3. If thé <by-expression> is not provided, the group of statements
will be evaluated repeatedly, incrementing the assignea con-~
trol variable by 1 until the control variable is greater than
the value of the <to-expression>.

4, If the <by-expression> is provided, the group will be evaluatedr

- repeatedly, incrementing the assigned control variable by the
value of the <$y-expression> until the control wvariable
exceeds (if the <by-expression> is positive} or is less
than (if the <by-expression> is negative) the value of the

<to-expression>,

7-13

INTERMETRICS INCORPORATED « 380 GREEN STREET - CAMBHIDGE, MASSACHUSETTS 02139 - (617) 868-1840

136

5. The effect of the <logical-condition>, if provided, is the
same as for the DO WHILE statement.

6. The <to- and <by-expressions> are not within the loop struc-
ture of the DO FOR group and are evaluated only once. The

- <logical-condition> is within the loop and is evaluated before

each pass. |

EXAMPLES:

-1, bO FOR I =1,5,6,10 TO 20 BY 2,50:
X=Y;

b4

n
¥
+
=]

END;
This loop will be executed five times.
2. 'BAKER: L = Q/R;

ABLE: DO FOR I = P TO (N/S) BY L WHILE N > (.046;
2

X =Y+ Ap;
N=0N- .006 X;
END ABLE;

Note that the value of the <to-expression> (N/S) is only
computed once. The condition N >0.046 is applied before

" each pass.

7.3.2.4 DO CASE Statement. The DO CASE statement provides a

‘means of executing a selected statement from a group of statements.
GENERAL, FORMAT:
[<label>:] DO CASE <case-expression>;
[{<label>:<statement>]...[<label>:]END[<label>];
where the <case-expression> can be either an integer ekpréssibn
7-14

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + {617) 868-1840

137

‘or a scalar ekpression. The result of a <case-expression> is
rounded to the nearest integer before use.
GENERAL RULES: |
1., The <case-expression®> results ih an integer, used to designate
which one of the included statements will be executed. A
- value of 1 specifies the first stétement, 2 the second, and’
so on, An integer result outside the case range will be in
'error. The compiler will annotate the listing, indicating
Case 1, Case 2, etc.

2. The <statements> may be any of the executable statements,

including other DO statements,

EXAMPLES:

ABLE: DO CASE N; !

x = v%; ~ /*CASE 1*/

DO CASE P; /*CASE 2%/ -
F=A+ B; /*CASE 1%/
- *

G=MV; /*CASE 2%/
END; '
GO TO CHARLIE; /*CASE 3*/
Z=W+B; /*CASE 4%/

END ABLE;

7.3.3 END Statement

The END statement delimits the do-groups.

GENERAL FORMAT:

[<label>:]END[<label>];

7-15

INTERMETRICS INCOﬁPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617)_868-1840

138

-.GENERAL RULES:
1. The END statement terminates the group heéded by the
nearest preceding DO statement which has not already been .

terminated by an END statement.

2, If a label follows END, the corresponding DO statement

must have. that same label.

7.3.4 The IF Statement

The IF statement specifies the evaluation of a logical
condition and a consequent flow of control dependent on whether

the condition is true or false.

GENERAL FORMAT:
[<labe1>:]IF<logical-condition>THEN[<labe1>:]{<statement>[
<basic~statement>ELSE [<label>:]<statement>}
where
a. the <logica1;conditioﬁ? has a true or false result; its
format was described in Sec. 7.3.2.2.
b. the <basic-statement> is any executable statement except

an IF or END statement.

7-16

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-18:0

" | | ‘ 139

- the <statement> is any executable statement (including

another IF statement) except an END statement.

GENERAL RULES:

1. If ELSE isrnot included, a true condition will cause
execution of the statement following, and a false condition
will causé control to pass to the statement following the
IF statement.

2. If ELSE is present then a true condition will cause execution
of the <basic-statement> following THEN and a false condition
will cause transfer of control to the statement following
ELSE. '

3. The IF statement format requires that an ELSE be preceded
by an IF and not by another ELSE. As a result the execution

.of a <statement> following ELSE occurs only if the <logical-

condition> associated with the nearest preceding IF* is false.

EXAMPLES :
1. ABLE; IF B THEN IF (é OR D) AND E THEN X = 5;
 ELSE P: GO TO BAKER;
CHARLIE: Y = 6;
2. 1IF X>100 AND ¥<3 THEN P: GO TO ABLE;
ELSE IF B OR C THEN
DO;
Y = A + B;
ABLE: T = M U
END;

ELSE Y = A -~ B;

. * TP statements within preceding do-groups do not apply.
i 7-17
INTERMETRICS INCORPORATED » 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

140

7.3.5 The NULL Statement

The NULL statement is a no-operation.
GENERAL FORMAT:

[<label>:];

EXAMPLE:
IF X<5 THEN ABLE:;

ELSE IF X<10 THEN GO TO HOME;

7.3.6 REPLACE Statement

The REPLACE statement provides a means Of-spedifying the
substitution of a string of characters for an identifier. The
character string must be contextually correct where substituted. This
is a cbﬁpile—time feature and not a run-time executable statement.
GENERAL FORMAT:

| REPLACE<idehtifier>BYf<character~string>';

GENERAL RULES:

1. The <identifier> may not be a kéyWOrd or any word used
by the language syntax {(e.g.,T0 or WHILE)}.

2. The <character-string> must be written in one-line format.

3. The <character-string> will be substituted, liferally, whenever
the identifier is encountered within the program. Substitution
is accomplished within the compiler and does not appear in che
listing.

4, The <identifier> may not be a <parameter> in the PROCEDURE or

FUNCTION statements.

7-18

INTERMETRICS INCORPORATED - 380 GREEN ST.REET « CAMBRIDGE, MASSACHUSETTS 02139 - .(617) 868-1840

441

‘5. The <identifier> may not be a minor structure name or a
terminal name within a QUALIFIED structure.

6. When the <character string> reflects a subscript, in general,
the <identifier> may not be subscripted within the body

of the program.

EXAMPLES :
1. REPLACE P BY 'LOG(F) + Y**2';

B

It

2+ P;

2. REPLACE D BY 'GO TO ABLE;';
IF B>6 THEN B = 2z + 'P; ELSE D

3. REPLACE A BY '(106.2B-32)';
DECLARE B INITIAL Aj

-
r

4. REPLACE FIRE_JETS BY 'GO TO F_J;'

FIRE_JETS
F_J: DO; ——========
END;

7-19

INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02133 - (617} 868-1840

142

7.4 Procedures and Functions

Procedures and functions are subroutines consisting of one
or more statements which are intended to be written once but
used at various points throughout a program. The primary distinc-
tion between procedure and function is that the procedure must be
iﬁvoked by a CALL statement, and mﬁy accept and return lists of para-
meters of different data fypes, while a function is invoked by the
appearance of its name as an operand and can return only a single
data type or result.

7.4.1 Procedures

7.4.1.1 PROCEDURE Statement. The PROCEDURE statement identifies the

beginning of a block of statements which forms a procedure; it defines
the entry pbint and specifies the input and output parameters.
GENERAL FORMAT: '
<procedure—1abe15:PROCEDURE[<procedure—parameters>]
ASSIGN<assign-parameters>];
{{<label>:]<statement>][<labe1$:]RETURN;}...
[<label>:]CLOSE [<procedure-label>];

where
<procedure-parameters> = {(<name>[,<name>]...)

and
<assign-parameters> = (<name>[,<name>]...)
GENERAL RULES:

1. The <procedure-parameters> are ihterpreted as input data to

the procedure. They are formed parameters; that is, they do

7-20

+

INTERMETRICS INCORPORATED -+ 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

143

not exist in of themselves and are no more than dummy variables
that indicate what to do, within the procedure block, with |
the actual <call-arguments> in the CALL statement (see Sec.
7.4.1.2), If the <call-arguments> are names (not expressions),
the <procedure-parameters> are in féct the same data locations
as the <call-arguments>,.

2. The <procedure-parameters> may not be assigned values within
the procedure block; i.e., they may not appear on the left
hand side of an assignment statement. |

3. The <assign~parameters> are also dummy variables and represent
the computed output data of thé procedure. They are in fact
the same data locations as the <assign-arguments> in the CALL
statement. . |

4. The data—types and attributes of corresponding <call- and
<assign-arguments>and <procedure- and <assign-paramete£s> must
be identical (see Sec. 7.4.2.3).

5. Execution of ayprocedure may be termindted by a RETURN statement
(see Sec. 7.6) or b{ logically reaching the CLOSE statement;

" control ‘is returned to the caller.
6. Local variables may be.defined within a prﬁceduré block by

declaration statements and implicit declarations. See Sec.

8.1.1 for discussion of Scope of Names.

7-21

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

144

EXAMPLE :
TIME: PROCEDURE(A,B)ASSIGN(C);
- 2, .
C = A(F1+F2 B+F3 B“)
IF B>L THEN RETURN:
C = 100 C;

CLOSE TIME;

7.4.1.2° CALL Statement, A procedure is invoked by a CALL

statement which may define a set of input and output argumenté‘
and which transfers control to a specified entry point.
GENERAL FQRMAT:

[<label>:lCALL<procedure-label>[<call-argument>]

[ASSIGN<assign-arguments>];
where <procedure-label> is the label associated with the PROCEDURE
statement and
<call-arguments> = ({<name>|<expression>}[,{<name>|<expression>}]...
<assign-arguments> = (<name>|[,<name>]...)

GENERAL RULES:
1. <call-arguments> will be used only as input information to

the procedure.
2. <assign-arguments> may'bé assigned values computed within

the procedure blocks and may also supply input information to

the procedure.

7-22

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

145

EXAMPLE :
ABLE: PROCEDURE;
v = X + f;

CALL TIME (V, T) ASSIGN(W):

§ = W7,
x _
P=MS;

CLOSE ABLE;
TIME: PROCEDURE (A,B) ASSIGN(C);
- _ = 2_
C = A(F1+F2 B+F3 B);
1IF B>L THEN RETURN;
C = 100 C;

CLOSE TIME;
7.4.2 Functions

7.4.2.1 FUNCTION Statement. The FUNCTION statement identifies

the beginning of a block of statements which form a function; it

defines the entry point and specifies the dafa—type of the result.

GENERAL FORMAT: |

<function*1abel>:FUNCTION[<function-parameter>l

[<type-spec>]; | _
{<statement> | RETURN (<expression>);}...
[<label>:]CLOSE [<function-label>];

where

<function~parameters> = {(<name>[,<name>]...)

7-23

INTERMETRICS INCORPORATED - 380 GREEN STRECET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

146

GENERAL RULES:

1, If <type-spec® is not provided and is not specified in a
declaration, default characteristics are used. .

- 2. The <function-parameters> are interpreted as input data to
the function. They are formal parameters; that is, they do
not exist in of themselves and are no more -than dummy variables
that indicate what to do, within the function block, with the
actual :<function-arguments> in the function reference (See
Sec. 7.4.2.2). 1If the <function-arguments> are names {not
expressions), the <function-parameters> are in fact the same
data locations as the <function~aréuments>.

3. The <type-spec> specifies the characteristics of the_function
result. Arrays ana structure organizations are not allowed.

4. The data-types and attributes of corresponding <function-
arguments> and <function-parameters> in the reference and
FUNCTION statements must be identical. (See Sec. 7.4.2.3)

5. A function must have at least one RETURN statement and
execution may only be terminated by a RETURN: statement;
control is returned to the caller. An error message will be
generated at run-time if the process logically reaches the
CLOSE statement.

6. Local variables may be defined within a function block

(see Sec. 8.1.1).

7-24
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

1477

i

7.4.2.2 Function Reference. A function is invoked by a function
reference which may'define a-set of input afguments and which
transfers control to a spec;fled entry po;nt.
GENERAL FORMAT:
<funct10n-labe1>[(<function-arguments>]...]
T T e e oo . R
<function-arguments> = ({<ﬁéme>]<ex§ression>}[;{<name?|
7 <ex§re§sioh>}]..; o |
GENERAL RULES: o
1. The <funct10n-arguments> will be used only as .input informa-
tion to the functlon. |
2. The <function—1abe1> is-treated as an operand whose value is
cbmputed within the functioh.
EXAMPLE:
ABLE: A = M TRACER(B+C);
TABLE: GO TO BAKER;
TRACER: FUNCTION (Q);
R = 7RAcE(Q? + & + &2 +Q);
IF R>100 THEN RETURN R;
ELSE RETURN 0,
CLOSE TRACER;

7.4.2.3 Paraméter Declarations. Scalar, vector, matrix, bit

and character string parameters may be declared implicitly, with

default attributes, by their appearance in PROCEDURE and FUNCTION

7-25
INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

. 148

~

'statemeﬁﬁsIWith appropriate annotation. Thus, for example -

| ABLE: FUNCTION(A,E,E,ﬁ,é):

Array-parameters and parameters with other than default attri-

butes require explicit DECLARE statements internal to the proce-

dure or function blocks, in addition to appearing in the lists
of parameters ({annotation being optimal).

For certain applications it may be convenient not to specify
the length or dimensions of parameters but instead, have the
parameters take on these characteristics from the corresponding
argumeﬂts.in the CALL or function-reference statements. This
may be accomplished by substituting an asterisk (*) for the
lengfh or dimensidns'in the DECLARE statements.

GENERAL RULES:

1. With reference to Sec. 5.1.1, vector length, bit length,
character length and varying character-maximum length may
be specified by asterisks.

2. For arrays, shape may be specified by combinations of
literals and/or asterisks.

3. Por matrices, rows and columns may'be specified combinations
of literals and/or astérisks. o

EXAMPLES:

1. TIME: PROCEDURE (A) ASSIGN(C);

DECLARE VECTOR (*), &, C;

CLOSE TIME ;

7-26 .

~

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

149

. " —
2, ABLE: PROCEDURE(V,M) ASSIGN(N):
DECLARE V VECTOR (*);
DECLARE M MATRIX (3,*);
DECLARE Y VECTOR (4):
—_ | -
Y =MYV;

-

CLOSE ABLE;

Comment: ¥, ﬁ, N are pafameters. ¥ is a local variable.

Note that N is declared by appearance as an <assign-parameter>;
With no explicit DECLARE statement fOr'ﬁ, default attributes

are used.

7.4.2.4 PFunctions of an Array. When a <function-argument>

is an array, the corresponding <function~-parameter> may be either
a‘single variable or an array-variable of the same data-type.
If a single variable, the function has been designed'to operate
on each array element sequentially, elemenf-by—element, If an
array, the function accepts the input array aﬁ a unit;
EXAMPLES:
1. DECLARE B ARRAY (4):
DECLARE C ARRAY (4};
[C] = FUZZ([B]);
FUZZ: FUNCTION (X);
TEM = 1 + X/2 + X°/6 + X°/24;
RETURN (TEM) ;
CLOSE FUZZ;
7-27

~

INTERMETRICS INCORPORATED « 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

150

FUZZ will be executed-4 times and return 4 scalar results

which will be assigned to the component of array C, in seguence.
If the <function-parameter> iz an array-variable, then the
function accepts the input array as a unit. The function

will operate on the "inner-most" free indices of the array
argument consistent with the expression.

2. DECLARE B ARRAY (4) VECTOR;
BUZZ: FUNCTION([X]):
DECLARE X ARRAY (4) VECTOR:

BDD = X, + K, + Xy, + X0

RETURN (ADD) ;

2: 3:

CLOSE;
A = BUZZ ([B1):
BUZZ returns a single wvector.
3. DECLARE A ARRAY (5}, B ARRAY(5,4);
[A] = SUM([B]):
?his statement is equivalent to the following "BO FCR-loop"
sequence of operations: '
DO FOR I = 1 TO 5;
A = SUM([BI’*]):
END;

Note that SUM is a linear array function (see Appendix Aa),

7-28

-

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

151

7.5 Programs
In HAL, é program is the smallest dompilable unit. It
' may contain all of the program elements and statements defined,
except PROGRAM statements; i.e. declarations, executable state-

ments, procedures, etc.

7.5.1 PROGRAM Statement

GENERAL FORMAT:
<program-label>: PROGRAM;
{<all-statements>}...

.[<1abe1>:ICLOSE[<pngram—iébel>];

GENERAL RULES:

1. <all-statements> may contain all valid syntax.

2. A program may be called using the CALL statement with the
<progrém—label>(no parameters may be passed). |

3. Execution df a ﬁrogram hay be terminated by a RETURN state-~
ment (See Sec. 7.6) or by logically réaching the CLOSE
statement; control is returned to the caller. (Also, see
the reél—time control statement TERMINATE in Sec. 9.)

4. A program can be scheduled in real-time through the sfstem

executive (see Sec. 9),

7-29

INTERMETRICS INCORPQRATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840 '_

152

7.5.1,1 Program Calls. The CALL stateﬁent may be used to-call
one program from another program. The logical result is similar
to calling a procedure; i.e., control is transferred to the-program
called and returned when the program is completed. The CALL state-
ment is of the form:
CALL <program-label>;
In calling a progrém:
1. No arguments may be passed; all communications must
be through a COMPOOL.
2. All static variables are allocated on program initiation,
and released when the program ends; i.e., variables with the
INITIAL éttribute are initialized, others take on unspecified
values.
3. Control‘is_returned to the caller at the statement foilowing
the CALL statement, when a RETURN or CLOSE statement is
reached.

4, A program cannot call itself.

7-30

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (6177) 868-18-C

153

7.6 RETURN Statement
The RETURN statement terminates the execution of a procedure,

function or program.

GENERAL FORMAT:

{[<label>:]RETURN [<expression>];

GENERAL RULES:
1, in terminating a procedure or program, the RETURN statement
must not inélude'an expression.
2, In terminating a function the data type of the <expression>
- must agree with the typé sp?cified for the function.
3. The result of <expression> may not be an array.

4, The RETURN statement returns control to the caller.

7-31

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

154

7.7 CLOSE Statement

The CLOSE statement delimits the blocks of HAL statements

which have name scope*; viz. procedures, functions, programs,

tasks** and update** blocks.

GENERAL FORMAT:

[<label>:]CLOSE[<label>]:

GENERAL RULES:

1.

The CLOSE statément delimits the block headed by the
nearest preceding PROCEDURE, FUNCTION, PROGRAM, TASK or
UPDATE stétemenf which hﬁs not already been-delimited
by a CLOSE sfafement.

If a label follows CLOSE, the corresponding "heading"
statemeﬁt must haﬁe that same label.

For a procedure, program or task, exeéution of the CLOSE
statement returns control to the caller.

For an update block, execution of the CLOSE statement
causes no operation,

Por a function, execution of the CLOSE statemént is an

error.

* %

See Sec. 8.1.1

See Sec. 9.

7-32

~

IIL\JTERMETRICS INCORPORATED -+ 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868;1840 ‘

¥

155

8.0 HAL PROGRAM ORGANIZATION

A HAL program organization consists of one or more indepen-
dently compilable programs and a symbolic library. The library
may contain a common data pool (COMPOOL) and all valid HAL
syntax. Variables declared in the COMPOOL are available for
use in any program. Library routines may be compiled into
any program by directive. The organization is designed to
prbvide programmer convenience and flexibility and yét maintain

control and visibility of commonly used data.

8.1 Prqgrém Structure
A program (<program-block>)} is the smallest compilable
unit and is delimited by PROGRAM and CLOSE statements. The .
<program~biock> may contain the following elements:
<program-block> = <pro§ram-statement>[<declare—group>]
{<all-statements>|<task-block> |<sub-block>}...
<cloge-statement>
where, | |
<declare-group> =.[<rep1ace—statements>][<outer*-statements>1
[¢<default**-statements>][<declare~statements>]
<all~statements> = all executable statements including
do-groups and update***—blocké‘
<task-block> = <task***-gtatement> [<declare-group>]

"{<all-statements>|<sub-blocks3}...<close-statement>

* See Sec. 8.1.2
** See Sec. 5.5
% See Sec. 9.4.2

-1]

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

156

<sub~block> ='{<procedure*3tatément>[<fﬁnction-statement>}
[<declare-group>]

{<all-statements>|<sub-blocks>}...<close-statement>

<program-blocks> and contained <task-blocks> and <sub~
block> {and further nested <sub~blocks>) define boundaries,
or regions, withih_which names and labels are recognized and
may be used fo; computation and control. The region in which

a name or label is potentially recognizable is called its scope.

8.1.1 Scope of Names

The scope of a name is defined as the block in which it
is declared and extends to all éontained (and nested) blocks.
For example, names defined in_theACOMPQOL are potentially rec6g~
nized throughout every <program-block>;' names defined in a
<program-block> may be recognized in all enclosed <task- and
<gub-~blocks>; names defined in <task- and <sub-blocks> may be
recognized in all nested <sub-blocks>, etc. Note that a name
defined within an inner block is never recognized in an outer
block. (To be more precise, the named variable or constant is
never recognized in an outer block; the name itself, designating

various data. quantities, may appear in a number of blocks.)

8-2

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

4157

~

Identical name declarations for two or more quantities
cannot exist within_the same name scope} however, duplicate
' names are allowed in different scopes, The following example

illustrates this principle:

ABLE: PROGRAM:

DECLARE VECTOR(5) A, B;

BAKER: TASK;

DECLARE A INTEGER;

CHARLIE: PROCEDURE;
DECLARE A BIT;

DECLARE X;

L]
-

CLOSE CHARLIE:
CLOSE BAKER;
GRAB PROCEDURE;

DECLARE X VECTOR(4);

CLOSE GRAB;

CLOSE ABLE;

8-3
INTERMETRICS INCORPORATED + 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840 -

158

Comments:

1. The vectors A and B have been declared at the program level
and their scobe is the entire program unless superseded by
a declaration in an inner block (or obscured by omission

from an OUTER statement, see Sec. 8.1.2).

2. In the task BAKER, A is an integer (the vector A
will no longer be recognized); E is recognized.

3. In the inner procedure CHARLIE, A is re~defined again, being
recognized within CHARLIE as a bit string. The scope of B
remains the entire program.

4. In the procedure GRAB, A and B remain defined at the program
level and X is declared at a local level. Note that although
the names are the saihme, the variables represented by X in

GRABR and X in CHARLIE are different.

8.1.2 Selective Inclusion of Outer Names

In the previous example names declared in an outer block
were known to the inner block u1=r1'less the -inner block declared the
same name. Ancother mechanism is provided to include {or reject)
outer names selectively. The OUTER statement is an expliCit‘

means of specifying which "outer" names are to be known within the

8-4
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

159

-block; outer names which would have been known but which are

not listed are hidden. Thus, for_example,:

ABLE: PROGRAM;

DECLARE A, B, C, D, E;

- ' BAKER: TASK;
OUTER B, D;

DECLARE A;

The program ABLE has declared names i, B, C, D, E which would

be known in the task BAKER. However, the OUTER statement in
BAKER only allows B and D to be known, and further BAKER redéfines
A locally.. Note that the absence of an OUTER statement means

that all outer names will be recognized within aéarﬁicular inner

block, while the inclusion of OUTER with no list of names completely

isolates the inner block from any outer-~declared names.

8.1.2.1 " Inclusion of Structure Names. Structure names may also

be included by listing the structure name(s) in the OUTER state-

ment éccording to the following rules: |

1. For a gqualified structure, only the major structure naﬁe
may be listed; the result being that all associated minor

structure and terminal names are included implicitly.

8-5

~

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

160

2. For a not-qualified.structure, the major structure name
and all associated minor structure and terminal names may
be listed. Only those names that are listed will be

recognized within the block.

8.1.2.2 Implicit Declaration of Names. Implicit declaration

of names within a block will not be allowed unless the block contains
an OUTER statement or the block is within a block (etc.) containing
an OUTER statement. Only those names appearing in an OUTER statement
and those expliéitly declared within a block will be unavailable
for implicit declaration.
| When ho declarations precede the PROGRAM-statement, the
compiler permits impliéit declarations at all levels as though
an OUTER;stétément'with no list had been included at the program level.

8.1.3 Scope of Labels

Labels are used for control purposes; to transfer control
as in GO TO <label> or CALL <label>. The labels "name" the
entry-points to programs, tasks, functions, procedures, updates,
do-groups and statements. The scope of labels generally follows
the same rules as for naﬁeé with the foliowing exceptions:

1. The GO TO and CALL statements imply the existence of a
label. If the label does noﬁ appear in the block in which
the statement is written, the GO TO or CALL must refér
to a label in an outer block; if the label does appear in
the same block (before or after the statement), the state-

ment refers to this label.

8-6

-~

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

161

to a label in an

2. If a GO TO or CALL statement refers
outer block, the label must appear in the listing prior
to the statement or be declared explicitly in a DECLARE
statement.
3. Function names (i.e., <functi§nflabels>) must always
be defined in the listing priér to their use, even if the
.FUNCTION statement and the function reference appear
within the same block. A function name may be defined
by its appearance in a FUNCTION statement or by explicit
declaration in a DECLARE statement. |
EXAMPLES: , -
1. §1 42
A: PROGRAM; A: PROGRAM;
X: Y =2+ 3; X: Y =2 + 3;
B: PROCEDURE; B: PROCEDURE;
GO TO X; GO TO X;
CLOSE B; 'X: F =G + H;
. CLOSE B;.
CLOSE A;
CLOSE A;

8-7

INTERMETRICS INCORPORATED + 380 GREEN STREET CAMBRIDGE

C e
N N

. MASSACHUSETTS 02139 - (617) 868-1840

162

If #1, no label X appears in B, therefore control is trans-

ferred to the X appearing in A. 1In #2, control will be transferred

to the X which appears in the same block as the GO TO X. With

reference to $#1, if the label X would have appeared in A after

B, i.e., after its use in the GO TO statement, then X would have

to be declared explicitly, prior to B, in a DECLARE statement.

2. #1

A: PROGRAM;

%ZAP: FUNCTION VECTOR;

CLOSE ZAP;

B: PROCEDURE;

?.= X + ZAP:

CLOSE B;

»

CLOSE A4;

$2

A: PROGRAM;

DECLARE ZAP FUNCTION
VECTOR;

B: PROCEDURE;

¥T=%X+ ZAP;

CLOSE B;

ZAP: FUNCTION VECTOR;

CLOSE ZAP;

CLOSE A;

In #1, the function ZAP is recognized in B because its definition

precedés its use. In #2 the definition has been relocated after

its use, therefore ZAP must be declared, first, using a DECLARE

statement.

8-8

INTERMETRICS: INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « {617) 868-1840

163

8.1.4 Scope of the REPLACE Statement

With reference to the description presented in Sec. 7.3.6,
the scope of a REPLACE statement is the same as that for a
DECLARE statement with the following exception: the <identifier>
in a REPLACE statement is never "replaced" ag a result of ancother
REPLACE statement located in an outer block.
EXAMPLE:

ABLE: PROCEDURE;
REPLACE X BY 'Y';

DECLARE X INTEGER;

BAKER: PROCEDURE;
REPLACE X BY '2';

CLOSE B2KER;
CLOSE ABLE;
The identifier X appearing in BAKER is replaced by Z. X outside

of BAKER is replaced by Y.

8.1.5 Scope of the DEFAULT Statement

With reference to the description presénted in Sec. 5.5,
the scope of the DEFAULT statement is the same as that for a

DECLARE statement,

8-9
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

163

EXAMPLE:
AT, PHA: PRQGRAM;
DEFAULT MATRIX(4,7) BITLENGTH(24);

-

- B
gl

.l‘.l_

BETA: PROCEDURE;

DEFAULT BITLENGTH(10);

DECLARE E, F, BIT;

CLOSE BETA;

CLOSE ALPHA;

In procedure BETA, which is nested within ALPHA, the
default~type established in ALPHA remains valid so that E is

a 4x7 matrix. F is a 16~bit string by virtue of the DEFAULT

statement in BETA.

8-1g

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

165

8.2 The COMPOOL
The COMPOOL is a centrally defined and centrally maintained
group of statements. The statements are limited to REPLACE,
OUTER and DECLARE (the <declare-group>), and the attributes.in
the DECLARE statements are further restricted to LABEL,
FUNCTION, dimensions, and PRECISION (also VARYING for character
striﬂgs). The names and labels declared in the COMPOOL are
- potentially known to all programs and, in fact, provide the only
means of communication between programs. |
In order to take advantage of the COMPOOL as a data sharing
mechanism, the programmer must include the COMPOOL statements
before the.PROGRAM statement during compilation. In a sense,
the COMPOOL is placéd-“outside" the program block and its scope
encompasses the program. If another program is compiled in a
similar manner, using the same COMPOOL, the variables declared

in the COMPOOL will be recognized in both programs. Thus, for

example,
INCLUDE COMPOOL A INCLUDE COMPOOL A
A: DPROGRAM; ' B: PROGRAM;
CLOSE A; CLOSE B;

It should be noted that if the COMPOOL is included after fhe
PROGRAM statement; i.e., within the program block then its
scope can encompass only the program itself, and declared

variables cannot be shared by another program.

- 8-11

INTERMETRICS INCORPORATED - 380 GREEN STREET '.CAMBHIDGE, MASSACHUSETTS 02139 - (617, 8@6840

- 8.3 The Symbolic Library
The symbolic library is a centrally defined and centrally
maintained pool of symbolic source code. The library is avail~
able to all programs and may be added to a program by use of the
compiler directive*®
INCLUDE<library-entry>
The appearance of. this directive causes the symbolic code in
the object file to be included in the compilation and inserted
at that point. For example:
" INCLUDE NAVDATA
A: PROGRAM;
INCLUDE AGLOBALS

' INCLUDE ALOCALS

B: TASK;
X = A;
Y = B;

INCLUDE LOGIC

CLOSE B;

C: PROCEDURE;

IF L>100 GO TO ABLE;
ELSE

INCLUDE CHOICE

* Compiler directives require a D in column 1 of input source
code ling, '

Y g-12

INTERM%‘?RICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (817) 868-1840

167

ABLE :

CLOSE C;

CLOSE A;

GENERAL RULES:
The symbolic library may contain source code identical to that

within a program except that INCLUDE directives are not allowed.

8-13

. INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

168

9.0 REAL TIME CONTROL

The real-time control of HAL programs consists of the .
interrelated scheduling of <program- and <task-blocks>,
the reliable sharing of common data, and the recovery from
abnormal error conditions,

The concepts aﬁd language features introduced in this
section have been designed for general applicability to real-
time control programming. It is recognized that depending upon

. specific hardware environments and operating system designs,

certain features may not find utility.

9.1 TASK Stat‘:ement'

A task is a subroutine which is intended to be scheduled
in real~time through an executive system. The TASK statement
identifies the beginning of a block of statements which form a
task and defines the entry point.

GENERAIL FORMAT:
<task-~label>: TASK;
‘{{<label>:]<statement>| [<label>:]RETURN;}. . .

[<label>:]CLOSE{<task-label>];

GENERAL RULES:
1. Unlike procedures, tasks do not provide for parameter

passage and return. Rather, data exchange must be accomplished

9-1.
INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840
G

through variables with éommon data scope (i.e., variables
defined at the COMPQOL or program levels).

2, Local variables and constants may be declared as in
procedures and functions.

3. Execution of a task may be terminated by a RETURN state-
ment, a TERMINATE* statement or by logically reaching
the CLOSE statement. If the task is activated by the
executive, termination causes control to be returned to
the executive. If the task is simply called, as a
procedure, RETURN and CLOSE return control to the caller;

TERMINATE always returns control to the executive.

'9.1.1 Task Calls
The CALL statement may be used to call a task. The
logical result is similar to calling a procedure; i.e.,
control is transferred to the task called and returned ﬁhen the
task is completed. The CALL statement is of the form:
CALL<task-label>;
In calling a task:
1) No arguments may be passed.
2) Control is returhed to the caller at the statement
following the CALL statemeﬁt, when a RETURN or CLOSE
statement is reached.

3) A'taék cannot call itself.

* See Section 9.2.4

9-2
INTERMETRICS INCORPORATED » 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 868-1840

170

" 9.2 Scheduling Statements

9.2.1 SCHEDULE Statement

The SCHEDULE statement is uséd to request initiation
of a program or task based on three criteria:

a) at a specific time (<spec-time>)

"b) in aﬁ incremental time (<inc-time>)

c} on events or combinations of events (<event-expression>)
where time is expressed in seconds or units specified by
implementation, and an event is a programmer-defined (see
Sec. 9.3.1) or system-defined occurrence. The general format

of the SCHEDULE statement is:

<program-labels} |AT <spec-time>

[<1abe1>:]SCHEDULE{ IN <inc-time>

<task-label> ON <event-expression>

[PRIORITY ({<p>|PRIO + <g>})] [INDEPENDENT] [<task-id>];

<spec—time> and <inc-time> may be <scalaf- or <integer-operands>.
<event-expression> has the same form as the-<single-bit—expression>
{see Sec. f.3.2.2); i.e., a logical combination (AND, OR, NOT)
of event names, |
GENERAL RULES;
1. A SCHEDULE statement within one <program-block> may be

used to»schédule the program itself, any task within the

block, or another program. A task within one <program-

block> may not be scheduled from another <program-block>.

9-3
* INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 » (617) 868-1840

. 171

2. Procedures, functions and labelled statements may not

be scheduled. |

3. <spec-time> and <inc~time> are rounded to the nearest
integral number of time units before use.

4, PRIORITY(<p>) specifies the priority of initiation. If

' two programs (or a task and a program, etc.) are scheduled
for the same time (or on the same event(s)), the one of
higher priority will be initiated first. <p> may be a
positive <scalar- or <integer-operand> and represents an
absolute priority. Relative priorities may be established
by'using the keyword PRIO which returns the current
program or task priority. Thus,-PRIORITY(PRIO + <q>)
requests a priority of <g> greater than current priority.
<q> may be a positive or negative <scalar-or <integer-
operand>.

5. If PRIORITY is not provided, scheduling will take place
with current priority.

6. If INDEPENDENT is provided, the scheduied program or task
is to be independent of the block in which it is scheduled.
This means that an independent program or task can continue
in an active state even after the scheduling block has
been terminated. However, a task with STATIC variables
or one which contains reference to identifiers declared
at the program level cannot be scheduled as an independent

task.

9-4 -
INTERMETRICS INCORPORATED -« 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868—1&1'(}?‘2.

If INDEPENDENT is not provided, dependent scheduling will
take place. All dependenf/programs and tasks are terminated
when the block in which they were scheduled is terminated.
<task-id> is a name which will contain the unique identifica-

tion data for the scheduled program or task.

If AT, IN, ON are not provided, initiation will take

place as soon as possible (consistent with pribrity).

EXAMPLES :

1.

SCHEDULE PROGRAM._20 PRIORiTY(lO)PROG__ZO;

PROGRAM 20 is scheduled as a dependent block (program or
task), priority 10, with identification stored in the-
variable PROG_20. Initiation will begin as soon as possible.
SCHEDULE ‘ABLE P.RiORITY (PRIO + 1); |

ABLE is scheduled as a dependent block at a priority 1 higher
than the current pridrity.

SCHEDULE RADAR ON R_RUPT PRIQRITY (HIGH) ;

RADAR will be initiated on the occurrence of the event

R _RUPT at priority HIGH. | ‘

SCHEDULE STEERING AT TIG-5 PRIORITY (6)INDEPENDENT;

STEERING is scheduied, as én independent.block, to begin

ét the time TIG-5 wifh priérity 6.

SCHEDULE TRACK IN 5; |

TRACK is scheduled to begin in 5 units of time from the

time the SCHEDULE statement is executed.

9-5

~ INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - {617) 868-1840

173

6. ‘SCHEDULE ABLE ON (A~ AND B) OR C;
ABLE is scheduled to begin on the occurrence of either
both events A and B, or event C.
T IF X>10 AND &RACKFLAG = ON
THEN SCHEDULE AUTOMANEUVER PRIQRITY (5):
ELSE GO TO BEGIN;
" The SCHED&LE statement may be included as another executablé
statement. AUTOMANEUVER will be scheduled if X>10 and

the TRACKFLAG is ON.

9.2.2 WAIT Statement

The WAIT statement is used by an active program or task
to suspend and reactivate itself based on three criteria:
a) a specific time |
b) an incremental time
c) a particular event or combination of events.
GENERAL FORMAT: . -
UNTIL <spec—time>
[<label>:]WAIT | <inc-time> ' i
FOR <event-expression
where <spec-time>, <inc-time>, <event-expressi0n> are the same
as in Sec. 9.2 (SCHEDULE statement).
EXAMPLES:

1. WAIT 5;

The current block (program or task) is suspended for 5 units

of time and then reactivated.

9-6 .
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

174

-2, WAIT UNTIL TIG-5;

‘The current block is suspended until the time TIG-5 and

fhen reactivated.
3. WAIT FOR ABLE;

The current block is suspended until the event ABLE occurs

(i.e., ABLE is turned ON)} and then reactivated.
4. ~ WAIT FOR NOT(T1 AND T2) OR T3;

The current block is suspended until at least one of-the events

Tl and T2 are OFF, or the event T3 is ON, and then reactivated.

9.2.3 PRIOCHANGE Statement’

This statement is used to change the priority of a
task or proéram. |
GENERAL, FORMAT:
[<label>:]PRIOCHANGE ({<p> |PRIO + <qg>}) [<task-id>]
[, {{<p>|PRIO + <q>})§task-ia>]_. . e
where <p>, <g> are defined in Sec. 9.2.1,
" GENERAL RULES.:
1. <p> or <q> are new qbsolute and felative priorities,
respectively, for the corresponding <task-id's>.
2, The current program or task priority may be changed by
the statement

PRIOCHANGE({<p>| PRIO + <q>});

EXAMPLES:
1. IF¥ AFLAG THEN PRIOCHANGE (PRIO + 5);

If AFLAG is on then current priority is increased by 5.

9-7
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 868-1840

L 175

2. PRIOCHANGE (8), (10) TASK 1, (13). TASK 2, (PRIO + A) TASK 3;
The current priority is changed to 8, TASK;3'S priority
is changed to the current priority plus A (i.e., 8 + A).
Note that a <task-id> can be omitted only before the first.

comma, meaning the current task or program.

9.2.4 TERMINATE Statement

This statement is used to terminate a program or task
and return control to the executive.

GENERATL, FORMAT:

[<label>:]TERMINATE [<task-id>[,<task~id>]. . .];

GENERAL RULES:

1. Execut&on of this statement terminates all identified
tasks and programs and all their dependent tasks and
programs.

2, If <task-id> is not provided, the current program or
task and all dependeﬁt programs and tasks are terminated.

EXAMPLES:

1, TERMINATE PROG_20, T2;

The blocks (task or program) identified by PROG_20 and T2
are terminated.

2. TERMINATE;

The current program or task is terminated.

9-8
INTERMETRICS INCORPORATED + 380 GREEN STREET.* CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

176

9.3 Evehts and Signals

Programs and tasks may be scheduled by the occurrence of
events or combinations of events. An event is a programmer-~named
condition and can be stimulated only by the execution of the

SIGNAL statement.

9.3.1 Events
<event-variables> must be declared using DECLARE state-
ments. The format is similar to that described for data
declarations, thus:
GENERAL FORMAT: :
DECLARE<event-variable>EVENT [LATCHED [INITIAL{ON|OFF}]];
GENERAL RULES: |
1. <event-variables> may only be declared at the COMPOOL
and program levels. Scope rules are the same as for data.
2. If the attribute LATCHED is provided, the <event~variable>
will hold its signalled value; i.e., if signalled on,
it will remain on.
3, If LATCHED is not specified, the <event-variable> when
signalled on, will remain on only for a short interval
of time. The time interval is implementation dependent.
4, The declaration of an <event-variable> can be incorporated
in the same DECLARE statement with other identifiers; e.g.

DECLARE V VECTOR, M MATRIX, B EVENT;

. 9-~9
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

5. EVENT, LATCHED, INITIAL may be factors in a DECLARE state~
ment; e.g.
DECLARE EVENT, A, B, C INITIAL(ON);
6. If INITIAL is not provided for <event-variables> with thef
LATCHED éttribute, a default value of OFF is presumed.
EXAMPLE:
DECLARE EVENT, A, B LATCHED;
A and B are declared "unlatched" and "latched" events.
Both are set off initially. It should be noted that an
unlatched event cannot be set on initially.

9.3.2 SIGNAL Statement

This statement is used to cause the occurrence of an event.
The specific effect depends upon whether the <event-variable>
has the attribute LATCHED.
GENERAL FORMAT:
[<1abél>:]SIGNAL<event-variable>[ON OFF] [, <event~variable>
[bN OFFj]; . . 3
GENERAL RULES for LATCHED <event-variables>: .
1. Latched <event-variables> may be on or off initially.
2. If an <event-variable> is off:
é) it may be turned on by SIGNAL<event-variable>ON;
b) it is unchanged by SIGNAL<event-variable>QOFF;
c) if neither ON nor OFF is sPecified; SIGNAL<event-
| variable>; turns the <event-variable> on for a short
time interval, and then off. The time interval is

implementation dependent.
9~10
INTERMETRICS INCORPORATED + 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

o 178

-3. If a latched <event-variable> is'on:.
a) it_may be turned off by SIGNAL<event-variable>0FF;
b) 1if is unchanged by SIGNAL<event-variable>ON;
¢) if neither ON nor OFF is specified, SIGNAL<event-
variable>; turns the <event-variable> off after é

short interval. The interval is implementation dependent.

GENERAL RULES -for "unlatéhed" <event-variables>:

‘1. <event-variables> are normally off.

2. SIGNAL<event-variable> [ON]; turns the <event-variable>
on for a short interval, and then off. The time
interval is implementation dependent.

3. SIGNAL<event-variable>OFF; causéé no action,

EXAMPLE:

SYNCHRO: PROGRAM;
DECLARE EVENT LATCHED, A, B;
SCHEDULE ABLE INDEPENDENT;
SCHEDULE BAKER INDEPENDENT;
SCHEDULE CHARLJE ON A AND B;

Z =W+ V;

=

it

eaf

Zix +

TERMINATE;

ABLE: TASK; /*INDEPENDENT TASK*/

L]
»

SIGNAL A ON;

CLOSE ABLE;

: g-11
.INTERMETRIIC'S INCORPORATED + 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS (2139 « (617) 868-1840

179

BAKER: TASK; /*INDEPENDENT TASK*/

SIGNAL B ON;
CLOSE BAKER;

CHARLIE: TASK;

-
-

CLOSE CHARLIE;

CLOSE SYNCHRO;

) 9-12
INTERMETRICS INCORPORATED + 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1&(80

< w,

' 9.4 Dynamig Control of Shared Data _

| HAL provides features to conﬁfol the éharing of variables
in order to prevent conflicts in their utiliéation. These
features include the attribute LOCKTYPE to designate shared
variables and an update block of stateﬁents in which shared
variables may be changed in a controlled environment. Although
the approach taken is basicaliy implemented in software, it
does depend on the ability to perform an “uninterruptable“
instruction similar to the Test and Set instruction availaﬂle

on IBM 360 computers.

9.4,1 Conflicts in Sharing Data

In order to illustrate the problems that can arise in
sharing data consider the following two examples:

Example 1l: Read/Write Conflicts

A: TASK; _ _ B: TASK;

e B
- Pi Interruption N =

CLOSE A; ‘ CLOSE B;:

-Example 2: Serial Updating Conflicts

A: TASK; ' B: TASK;
. . TASK .
Y=Y - ¥; Y=Y - 2;
. Interruption -
CLOSE A; CLOSE B;
 9-13

- IN'IiEhMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

TE - ;:.

181 o

In both examples‘TASK B interfupts TASK A during the
execution of a statement. The.interruption may.be caused by
a hardware or software (SIGNAL) interrupt or by a "job swap"
based on priority. In Example 1, preéume that the interruptién
occurred while the matrix ﬁ was being read. When TASK A resumes,
the éomputation of ﬁ will continue using some "old" ﬁ data
and the."neﬁ"'ﬁ data assigned in TASK B. In order to prevent
this conflict, initiation of TASK B woulﬁ havé to be stalled
until the reading of N in TASK A is completed.

In Example 2, presume that the interruption occurs firs£
after the current value of Y is loaded into thé accumulator.
When TASK A resumes, the "old" value of ¥ (i.e., not reflecting
the update Bf Y in TASK B) is restored into the accumulator,

X is subtracted and the result assigned to ¥. In order to
prevent this conflict, the initiatioﬁ of TASK B would have to
he stalled until the value of Y is updated in TASK A (i.e.,
each variable declared with the LOCKTYPE attribute, see Secs.
4.3.4, 5.1.1.3).

The épproach taken in solving the problems represented above,
using HAL, is to confine the read and write accesses of shared
variables to identified'update‘blocks and for the compiler to
assign a locking control variable to each shared variable
(i.e., to each vériable declared with the LOCKTYPE atpribute).
The value of the "lock" is examined at run-time and only con-

sistent (i.e., safe) accesses are permitted.

9~ l.'4 | _ 182

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617} 868-1840

"9.4.2 The Update Block

The.<update—block> of statements provides a controlled
environment for the reading and writing of shared data variables.
All LOCKTYPE(l) variables, and LOCKTYPE(2) wvariables to be
assigned new values (i.e., updated) must appear within <update-
blocks>. LOCKTYPE(2) variables which are to -be read only need
not be confined ﬁo these blocks. The <update—bldck> may contain
the following elements:

<update-block> = <update—statement>[<declarefgroup>f
‘{€all-statements>|<sub-blocks>}. . .<close-statement>
subject to the restrictions below.

GENERAL FORMAT:
i

[<update-label>:]UPDATE;
"{[<label>:]<statement>}, ., .

[<label>:]CLOSE [<update=label>];

GENERAL RULES:

1. <statements> within an <update-block> {(and enclosed <sub-
klocks>) may not‘include I1/0 statements (see Sec. 10),
or additional UPDATE statements.

2. Name scope rules are the same as described in Sec. 8.1.1
except <statements> may not contain <procedure-labels>
or <function-labels> defined outside the block. (HAL

built-in function names are permitted.)

9-15

- INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 -+ (617) 868-1840

18
-3 3

3. Execution of the UPDATE statgment attempts "to lock" all
shared variables within the block. A variable to be
assigned will be write-locked, variables to read only will
be read-locked. Once locks are established tﬁey are not
opened until execution of the CLOSE statement at the 'end
of the block.

4. ' If all desired locks cannot be established at the UPDATE
statement because one or more of the shared variables are
not available (i.e., they are already locked elsewhere),
the current program or task will be stalled {(placed in
"wait" by the executive) until all variables become avail-
able. -

5. After all locks are established, copies are made of the
shared vériables to be assigned (if any),_and the <statements>
within the <update-block> are executed using this copy-
data.

6. Execution of the CLOSE statement first opens all read-
locks and then attempts to transfer thé'updated copy-data
into the actual shared variables (to be assigned). If read-
locks are in effect.on these variables (i.e;,‘thef are
still locked within other <update-blocks>), the current
program or task will be stalled until these locks are
Opéned. After the copy-data has been transferred all
write-locks are opened and execution continues at the state-

ment following CLOSE.

9-16

INTERMETRICS INCORPORATED - 380 GREEN STRE.ET + CAMBRIDGE, MASSACHUSETTS 02139 » {617) 86%1%@

-

7. In conjunction with (4) above, a stall will occur at the

UPDATE statement if any of the shared variables to be

assigned in the block already are write-locked.

- In other

words, a write-lock cannot be established on a variable

that is already write-locked. A stall will also

occur if

any shared variables to be read are currently being

written in other <update-blocks> , i.e., a read-lock cannot

be established while the variable is being assigned a new

value.

8. Transferring control outside the update block by

a GO TO

statement or in response to an error condition (see Sec. 9.5)

is considered an "error exit". As a result, all

read- and

write-locks are opened and no copy-cycle is performed.

9. LOCKTYPE (2) variables which are to be read only need

not be confined to update blocks. This attribute should

only be applied to those data typés which can be

in a single uninterruptable instruction.

accessed

9.4.2.1 Summary on Entering an Update Block (LOCKTYPE(l) Variables)

Present

tate Free Read-Locked Write-Locked | Writing
Variables ‘ :
To be assigned Write- Write- Stall Stall
in block Lock Lock
To be read Read- v Read- Stall
in block Lock Lock

Table 9-1
9-17

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS O

2139 - (617) 868-1840

185

Table 9-1 indicates that on entering an <update-block?>,
if variables to be assigned are free or read-locked, write-locks
will be established; otherwise execution will stall until
variables are available. If variables to be read are free,
read-locked or write-locked, read-locks will be established;
otherwise execution will stall until wvariables are available.

(¥ means read-lock already established, new lock is unnecessary.)

9.4.,2.2 Summary on lLeaving an Update BlOCk.(LOCKTYPEgl) Variables)

Present
State _
Actual Free Read-Locked Write-Locked | Writing
Variables
To be written N.A. Stall Copy N.A.
‘Table 9-2

Table 9-2 indicateé'that on leaving an_<update-block>, if
- variables to be written are write-locked the copy-cycle will
proceed; otherwise execution will stall until variables are
~available. (N.A. means not applicable. Once in an <update-block>,
variables cannot be free nor in the process of being Written

within another <update-block>.)

9-18

INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1540 18¢

9.4.2.3 Examples. Consider the two examples at the beginning
of Sec. 9.4.1 and suppose that the statements in question were
enclosed within <update-blocks>, e.qg.,

A: TASK;

CLOSE A;

Examgle 1
*
In TASK A a read-lock is established for N. After the

interruption, a write-lock is established for § and TASK B
proceeds toward completion using copy~data for ﬁ. At the
end of the <update-block> in TASK B the process stalls because
of the read-lock imposed in TASK A. As a result, TASK A is
allowed to continue with consistent "old" ﬁ data. After com-
pletion of TASK A, the copy-cycle in TASK B is effécted and
§ is updated. All conflicts are eliminated.
Example 2

In TASK A read- and write-locks as well as copy—daﬁa are
established for Y. As before, the value of Y (now copy-data)

is placed in the accumulator. After the interruption, execution

9-19
INTERMETRICS INCORPORATED + 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 » (617) 868-1840

of the UPDATE statement in TASK B attempts to establish read-
and write-locks for Y. The process stalls because a write-
lock élready exists for Y.. Therefore; control is,transferfed
back to TASK A and execution allowed to continue. Y is updated
in TASK A by X and a copy-cycle completed. TASK B now begins
‘again. This time ¥ is free and read- and write-locks are
established. TASK B runs through in a straightforward manner.

Y is updated properly by both X and 2 with no conflicts.

9.4,3 Exclusive Subroutines

The attribute EXCLUSIVE may be applied to programs,
procedures, functions and tasks which are intended to be exe-
cuted serially. Thé-object is to avoid reentrant use of a sub-
routine either because the variables are not protected by locks
{i.e., have not been declared with LOCKTYPE attributes) of“be¢ause
dyhamic design dictates serial use. |
GENERAL FORMAT: |

'{<prbgrém-|?proéedure—|€function-]<task-étatement>}EXCLUSIVE;
GENERAL RULES: |
1. The compiler will insert code at the béginning of the sub-
'-routine tb &ause the current program or-task torstall if
:Jthe subroutiﬁe is in use, At the end of the subroutiﬁe,;
the stalled-progréms or tasks of highest prioriﬁy will

be reactivated.

9- 20

INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) Bi'ﬁégo

EXAMPLES :
1. ABLE: PROCEDURE(A,B) ASSIGN(C) EXCLUSIVE;
2. BAKER: TASK EXCLUSIVE;

The above are valid statements using the EXCLUSIVE attribute.

9.4.4 Access Rights

The genéral use of COMPOOL data within programs may

be restricted by attaching access rights to the DECLARE state-

ments within the COMPOOL. Programs are identified by number

and permitted to access only those variables which have been
declared with corresponding identification numbers. An illegal
reference fo a COMPOOL variable will pfevent'successful com-
pilation of the problem.

GENERAL FORMATS:

<programn statement>IDCODE<p>{
<declare-sEaﬁement>ACCESS(<p>[<p>j...);

where <p> is ‘an unsigned integer literal.

GENERAL RULES:

1. If-ACCESS is provided, declared variables will only be
recognized in programs whose identification numbers are
listed. |

2, If ACCESS is not provided, declared variables will be
recognized in all programs.

3. Compilation will not be successfully completed if proper

| access rights have not been established for a reference

to a COMPOOL wvariable.

9- 21
INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

18D

9.5 Exrror Recovery
During execution of HAL programs an error condition may be
detected by the system. Examples of errors might be:
overflow/underflow
divide by zero
negative square root argument
arcsine argument greater than 1
subscript out of range
Depending upon implementation such errors may be hardware or
software detected. In any case, execution cannot continue and
the system mﬁst offer g?nerally,applicable alternatives (e.qg.
aborting the current task, etc.).
In order to provide the programmer with some control after.
the occurrence of an error, perhaps to reset flags or previously
initiated I/0 commands, HAL permits programmer-defined error

conditions and alternatives.

94.5.1 ON Statement

The ON statement may be used to direct the transfer of
control on the occurrence of one or more specific error conditions.
GENERAL FORMAT': |

{<label>:] ON ERROR_ . no o [{Go TO <label>[SYSTEM}];
where <p> and <g>» are integer literals.
GENERAL RULES:
l. For any implementation,unique <literals> are assigned to

every system error condition; e.q.

. 9~ 22
INTERMETRICS INCORPORATED « 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

ERRORs floating point overflow

ERROR6 floating poinﬁ underflow
and to programmer-defined error conditions.
2. A group of error conditions may be specified using the

T0 10’ °

subscript range expression (e.g., ERROR;

3. Upon execution 6f the ON statement the alfernatives GO TO
<label> or SYSTEM are made availablé-for the scope of the
statement.

4. If the specified error condition occurs within the defined
scope the desired alternative is activéted (i.e., control
is either transferred td the statement <label> indicated
or to the system).

5. If neither GO TO <label> nor SYSTEM is specified the default

is SYSTEM,

9.5.2 ON Examples

l. ON ERROR1 TO §

If any of error conditions 1 through 5 occurs within the

GO TO ABLE;

scope of this statement, control is transferred to ABLE.

2. ON ERRORy g g5 gysTEM;

If any of error conditions 1 through 5 occurs within the
scope of this statement, system action is taken.
3. A: PROCEDURE;

ON ERROR, GO TO BETA;

1
_CALL B;

-
-

9-23
" INTERMETRICS INCORPQRATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 » (617} 868-1840

191

B: PROCEDURE;

ON ERRCOR, GO TO ALPHA;

1
CLOSE B;

-
-
-

ALPHA: fLAGl = QOFF;
TERMINATE;

BETA: E.'LAGZ = QOFF;
TERMINATE;

CLOSE B;

[

If ERROR, occurs during procedure BJcontrol is transferred to

) :
ALPHA, otherwise if it occurs, control is transferred to BETA.

4., A: TASK;
' DECLARE X - - —;
ON ERROR; o 1
— * ’
RETRY: R = M X;

caLL B (R, V, TD...);

ON ERROR| oo 19
CALL JETS;

ON ERROR; o 1o SYSTEM;
B: PROCEDURE (~=-=-);
CLOSE B;

GO TO RECOVERYI1;

GO T0 RECOVERYZ2;

RECOVERY1l: X = X + DECTAX;

GO TO RETRY;
RECOVERYZ2: CALL JETS_OFF;
GO TO ABORT;

.CLOSE A:

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE,

9224

MASSACHUSETTS 02139

- (617) 868-1840

192

RECOVERY1 and RECOVERY2 are established as different recovery
points for TASK A. Control is transferred to eithexr one
depending on where the error conditions occur. The system
action is established after control is returned from the
procedure JETS.

This example illustrates that the programmer can

develop arbitrary restarting points within a HAL program.

9,5.3 SEND Statement

The SEND statement is used to announce the occurrence
of programmer-defined error conditions,

GENERAL FORMAT:

SEND ERROR ... (mo <q5]7

where <p> and <g> are integer literals.

EXAMPLE:
D = B2 - 4A C;

IF D<0 THEN SEND ERRORSO;

X = (-B - SQRT(D)}/2A;

9-25

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 888-1840

193

10.0 INPUT-OUTPUT

The HAL input-output statements provide for the filing,
retrieval, reading and writing of data to and from external
storage media. Filing is record-oriented in that a file state-
ment causes a single record to be transmitted to or from a
storage device; transmission is_direét without any conversions.
Reading and writing are stream-oriented in that data is considered
to be a continuous stream of cha:acters; conversions may occur‘
during transmission.

The HAL I/0 syntax consists of four statements and a small
set of control functions.

10.1 FILE Statement -

The FILE statement has the appearance of an assignment
statement and may be used for both filing and retrieving data
depending upon whichlside'of the = sign FILE appears.

GENERAL FORMAT:

1. for filing data .
[<1abel>:IFILE(<device5,<redbrd-i.d;>)é{<data—expression>I

. | ' <structure>};

2; for retrieving data

[<1abel>:]<variable-name>=FILE(#device>,<record-i.d.>);

10~1

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) BT-gg

‘GENERAL RULES: .

1. <device> is an integer literal identifying the external
device. The maximum number of digits is implementation
dependent.

2. <record-i.d.> is the recorﬁ identification number and may
be an integer or scalar expression. The result of <record- -
i.d.> is rounded to the nearest integer before use.

3. In retrieving data, the size of the record, i.e., the number
of words (or perhaps bytes, etc.), must match the size
(dimension) attributes of the <variable-name> on the left
hand side of =. Because the filed information does not

carry data-type or attributes,conversion errors can occur

even if the sizes match properly.

EXAMPLES:
FILE (TAPE,I) = [A];
{B} = FILE(DISC,A[);
are valid FILE statements, where TAPE and DISC represent

integer literals. _ -

10.2 READ Statements
Two READ statements are defined in HAL: READ and READALL.
READ is used to process data presented in standard formats; .

READALL admits all characters and provides the flexibility to

accept data in non-standard (arbitrary) formats.

10-2 N
INTERMETRICS INCCRPORATED + 380 GREEN STREET « CAMBRIDGE, Mf\SSACHUSETTS 02139 - (617) 868-184(}‘-‘(‘_.\)5

-

10.2.1 READ Statement .

The READ statement causes data, in standard formats

from an external source,to be assigned to a list of variables.

GENERAL FORMAT:
'READ (<device>) [<read-control>|<variable-name>]
[,[<read—control>|<variable?name>]]...;
where
<read-control> = {SKIP (<p>) |TAB (<p>) | COLUMN (<p>)}
and
<p> is an integer or scalar expression, rounded to the nearest

integer before use.

GENERAL RULES:

l. The READ statement implieé the input transmission of a
stream of data fields, each field being separated by a
comma or a semi-colon. (A blank or blanksrmay be used
optionally instead of a comma, between data fields.)

2. The <variable-names> in the list-méy be of single elements,
arrays of elements and/or structures. The number of
fields transmitted, for each <variable~name>, corresponds
to the size, or dimension, attribute of the <variable-name>,
For example, READ ﬁ; (where ﬁ is a 4x4 matrix) will caﬁse 16
fields of data to be transmitted. It is presumed that vectors,

matrices and arrays will be filled according to the rules

10-3

~

. INTERMETRICS INCORPORATED -+ 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

| 196

and conversions for procesaiﬁg <lists>, as deécribed in
Sec, 6.2.2.1. The arrangement of structure data is described
in (5) below.

3. The external device is visualized as being two-dimensional
in that data occupies horizontal 1iheé, each line being .
made up of column positions. A data field is defined as
a segment of contiguous columns, delimited by commas
(blanks) or semi-colons, (The first column of line n+1
follows the last column of line n.) The <read-control>
functions locate the “read—mechanism“ on this "grid".

If a <read-control> function is not provided immediately
followiné READ (<device>), blanks being ignored, a default
SKIP (1), COLUMN(l) is presumed; i.e. READ {<device>) causes
the nex£ line to be selected and reading to begin at
column 1. ‘

4, The appearance of SKIP(?p>) and/or COLUMN (<p>) within the
list of <vériab1e—names> sets up the "read-mechanism™
to skip <p> lines and/or begin reading at column <p> when
the next data field is encountered. The TAB(<p>) function

causes a relative column'location; i.e. TAB(8) would cause .

tﬁ; "read-m&échanism" to "move" eight columns;. The presence

of a semi-colon, separating fields of data causes termination
of the“cufrent READ statement. Unassigned <variable-names>
in the statement are left with their previous values. If

additional data fields follow the semi-colon, on the same

10-4
INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

line, they may be'processed by the next read statement if
a SKIP(O) and TAB(0) are provided; e.g. the déta card,
- 5,6,7:8,9;10;
could be processed by the following READ statements:
READ (CARDS) A,B,C,D,E;:
. READ (CARDS) SKIP(0),TAB(D) +¥,G,H,I,J;
READ (CARDS) SKIP(0),TAB(0) ,R,L,M,N,p;
The first semi-colon on the data card causes termination of the
~ first READ statement after A,B and C are assigned. The sécond
READ statement begins "reading" immediately after C, on the
same line, because of the SKIP(O):TAB(O). and assigns F and
G only. - The last READ statement assigns K. Note that after
the three READ statements D,E,H,I,J,L,M,N,P will retain
their previous values.

5. If the <variable-name> is a structure, the elements of the
structure are transmitted in the order specified in the
structure declaration. ‘Multiple~copy structures are transmiﬁted
one copy af a time. -For the structure

DECLARE 1 A(5), 2B ARRAY(4,5), 2C VECTOR(4);
the statement |
READ{A};

would result in an input transmission order of

‘B ' s s = . e+ -
R.By;1,1 ABp,p pers DBy 5 ACygees ACpy,
A:Bz;l'l CIE BRI B R B N] An82;4'5 A°c2:1"' A.C2:4
A.Bs;lfl A.BS:].’Z... A0B5;4'5 A.Cs;l... Alc5;4

10-5

INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 (617) 868-1840

.

198

—
. EXAMPLES:
1. READ(CARDS) A,B,C,D,[E],{F};
This statement causés tfansmission of ehough data fields
to assign the variables listed, Note that CARDS represents
an integer literal.
2. READ(CARDsi COLUMN(20),A,B,
S8KIP(1), COLUMN({20),C,D,

SKIP(1), COLUMN{20),E,F,

etc.
This statement causes two fields of data to be read on each
successive card. The data will be read starting in column 20.
3. READ(CARDS) A, TAB(40), C; ”
This statement is designed to skip over some data fields

{40 columns) known to be on the input cards.

10.2.2 Standard_Input Data Formats

The list of variables in a READ statement may be of
any data type. Each type requires the input data to be presented

in a standard format.

10.2.2.1 Standard Arithmetic Data Formats. Integer, scalar,

_ vector, matrix and bit string data may be presented in the
following format:
[+]|-1¢digits>[{E|B|H}{+[-}<integer>]...”
where ¥ represents optional blanks. Note that this is the
same form és an arithmetic literal. See Sec. 2.3;5.1 for

definition of terms.

10-6 | ' . ' 199

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (6'17}‘.868—1840)

-GENERAL RULES:

1, For intégers and bit strings the data form must represent
integral values. Bit string data is first converted to a
full word bit string and then assigned to the corresponding
bit variablé according to the rules stated in Sec. 7.1.2.1,

2. The data forms for scalars, vectors and matrices are identical,

EXAMPLES :

1. 369.0, 8, -8.36E+2B-1 are valid forms of integer and bit
string input data. B

2, +0.123E53-3H4, lE-?é, 3, 456.789 are valid forms of

scalar, vector and matrix input data.

10.2.2.2 gStandard Character Data Format. Character data may

be presented as any character or string of characters (in the

HAL set) enclosed in apostrophes. If it is desired to place an
apostrophe in the string, it must be represented by an adjacent

pair of apostrophes.

EXAMPLES:

1. 'aB''''c', '57.3/C', 'NUMBER_ONE', 'ON,OFF,OFF,ON' are
valid forms of character data.

"2. The following input data field and statements will assign a

bit string variable using an octal input data form.

10-7
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

<00

wm s e g e e
p]

7

DECLARE B BIT(15);
DECLARE C CHARACTER(10) VARYING;

.
READ C;

. : '
B = BIT@OCT(C);

column (1)

input data: '37776!

10.2.2.3 Arrays and Structures. Arrays and structures consist

of the above data types,and the forms presented are acceptable

as required,

10.2.3 READALL Statement

The READALL statement allows data in non-standard form

to be assigned to HAL character-string variables. This is
accomplished by not defining fields of data but acceptihg-all
characters encountered in the input stream, including blanks,'

commas, semi-colons and apostrophes.

GENERAL FORMAT:
Same as for the READ statement except READALL replaces
READ and the <variable-names> may pertain to character strings

only.

GENERAL RULES: ' ' .

l. The READALL statement implies the input transmission of

a continuous stream of characters.

10-8
INTERMETRICS INCORPORATED -« 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

204

-2, The <variable-names> in the list may be of character strings,
arrays of character strings and/or structures containing

only character strings.

EXAMPLE:

Suppose the following data card has been generated at a
computer facility. It is desired to process this data in a HAL
program, | .

column (1) (30) | (60)
DATE: 25/12/70 8,632 06 : 101101

where the scalar starting in column(20) is eguivalent to
8.632E06 and the data starti_ng in coiumn(40) is a set of six
boolean variables. |

DECLARE B BIT(6);

DECLARE CHARACTER(20), C,D,E;

READALL (CARD) C, COLUMN(30), D, COLUMN(60}, E

C PUT SCALAR IN PROPER FORM

62 = ','; /*CHANGE COMMA TO PERIOD*/'
I=3; ..
LOOP: DO WHILE fJI = ' '; /*LOOK FOR BLANK*/
| I=T1+1; -
END LOOP;
I')I = 'E'; /*CHANGE BLANK TO E* /

[
A = SCALAR(D); /*ASSIGN SCALAR TO A* /

10-9 .
INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840 -

<0<

C PUT BOOLEAN VALUES IN PROPER FORM
. r .
B = BITgp \(E);
/*FINISH*/

10.3 WRITE Statement

The WRITE statement causes the transmission of data to
an external'deﬁice. Data items transmitted are tﬁe character
string representations, in standard formats, of wvalues of HAL

expressions,

GENERAL FORMAT: '
WRITE(<de§icé>)[<write—control>|{<variable-name>|<data-expressioﬁ>}]
[,[<writé—control>[{<variable—name>[<data-expression>}]]..;{
where
<data—expressioh>={<arithmetic—l<string-|€array}-<expfession>
and
<write-control>={sxxp(<p>)|TAB(<p>)|c0LUMN(<p>)|
PAGE (<p>) | LINE (<p>) }
<p> is an iﬁteger or scalar expression, rounde@ to the nearest

integer before use.

GENERAI RULES:
1. The WRITE statement implies the output transmission of a
continuous stream of characters.

2. The <variable-names> in the list may be the same as defined

10-10
ITERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

203

for the READ statement. The <data-expressions> may be
any valid arithmetic, string and/or array expressions,

3. The external device is visualized as being two-dimensional
in that output data will occupy‘horizbntal lines, each line
being made up of column positions. A page is defined as a
default number of lines. The <write-contrel> functions
locate the "write-mechanism" on this "grid". If a <write-
control> function is not provided immediately following
WRITE (<device>), blanks being ignored, a default SKIP(1l},
COLUMN (1) is presumed; i.e. WRITE (<device>) causes the next
line to be.selected and writing to begin at column 1.

4. The appearance of <w;ite-control> functions within the
list of <variab1é-names> and/or <data-expressions> sets up
the "write-mechanism" for execution when the next name or
expression is encountered. SKIP, COLUMN and TAB perform the
same functions as in the READ statement.

LINE (<p>) redefines the value of the current line. If <p>
is greater than the current line, blank lines are inserted
so that the next line will be the bth line of the current
page. If <p> is less-than the current line, the nex£ line
will be the pth line on the next page. .

PAGE (<p>) causes <p> pages to be skipped upon
execution,

.5. If COLUMN and/or TAB functions are not provided the presence
of a comma will cause a tab of a default number of columns.

For example,

10-11
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

204

WRITE A, TAB(10), B, COLUMN(50)}, C;
causes A to begin in éolumn 1, B to begin 10 columns
after A, and C to begin in column 50.
'WRITE A, B, C;
causes A to begin in column 1, B to begin a default number - .
of columns after A, and C to begin a default number of columns
after C.
6. If the <variéb1e-name> is a vector, matrix, or array,
the effect is to unravel these types by rows (Sec., 6.2.2},
separating each element by the tab default.
If the <variable-name> is a structure the effect is
to unravel the structure into the arder in which it was

declared, copy-by-copy, (see READ statement), separating each

element by the tab default.

EXAMPLES:
1, WRITE(LISTING) A,é,E,ﬁ,[E];{F};
This statement-caﬁses transmission of all the named

data to the output device. The data is converted to a
continuous stream of éharacters with the elements separated
by the tab default. Note that LISTING'represehts an
integer liteéral.

2, DOFORI =1T0 3;

- WRITE (LISTING) COLUMN{(20), M. ,;
r

END;

*
These statements will cause the matrix M to be printed

in rectangular form, each row starting in column (20).

S : , 10-12 _ < .
INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

LR - - ;a{)fi

'10.3.1 Standard Output Data Formats

The list of variables and expressions in a WRITE
statement may be of any data type. Each type produces a standard

output character format.

10.3.1.1 Scalars, Vectors, and Matrices. The standard output

format for scaiar, and components of vectors and matrices is:
sx.<digits>Eiyy
where s iz a blank or a minus sign,
x and ¥y are single digits, 0 to 9,

<digits> is a string of digits, 0 to 9,

sX.<digits> represenﬁs the mantissa, tyy represents the‘

exponent power of 10. The number of digits in <digits> is £ixed
and set by machine implementation. The total field of characters
in this standard form is 77p1us the number of <digité>.

EXAMPLES: '

8.0603478E+06, -7.5436210E-11, 0.0

scalar output data.

10.3.1.2 Integers and Bit Strings. The standard output
format for integers and bit strings is:
;blanks>s<digité>
whére <blanks> is a string of blanks
s is a blank or a minus sign

<digits> is a string of digits, 0 to 9.

10-13 .
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

<06

The total field of characters in this standard form is
fixed in size by the implementation; leading zeros
are suppressed and appear as blanks, except for a single zero.
For example, suppose the character field has been fixed by
implementation at 11, then integers might appear as:
(1) _ {11)
5
-4673
o
2684736
Note that when bit strings appear in the WRITE statement they
are converted to integers according to the rules stated in

Sec. 6.2.1.3,

10.3.1.3 Characters. The standard output format for
characters is simply a variable field size equal to the string
length of the character variable-or expression in the WRITE
statement.
EXAMPLES:
1. WRITE(LISTING)COLUMN(20),'DIST.='|[A|!'MILES';
This statement might resﬁlt’in the following printed
line:

{20)

DIST.=3.0654767E+06 MILES
2. Suppose it is desired to print the same data.as above

in the non-standard format sxxx.xxx, where s is a blank or

10-14
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840. -

7

minus, and the x's represent‘digits. Then,
WRITE (LISTING) COLUMN (20) 'DIST.="']| |
PICTURE(‘sxxx.xxx;,A)]I'MILES';

The function PICTURE could be a programmer-defined
function which accepts the character literal 'sxxx.x#x'
and a scalar, A, and returns a character variable repre-
senting the scalar guantity in the desired form.

‘3. Print an array of bit strings in octal format.
WRITE (LISTING) CHAR@'OCT { [é] Vs
Note that the character strings representing the octal
values will be separated, on each line, by the tab default.

The result might be

03664 04662 37774 03725
06437 77172 46162 12346
etc.

10.4 Input/Output Manipulations
In addition to the <read- and <write-contrel> functions
SKIP,'TAB, COLUMN, PAGE and LINE, several others are defined for

programmer convenience.

10.4.1 I/0 Functions

PAGEOF (<device>)
LINEOF (<device>)

COLUMNOF (<device>)

10-15

INTERMETRICS INCORPORATED -« 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

208

are functions which result in the current page,'lihexand

column numbers.

10.4.2 Character‘étring Functions
LJﬁST(<¢haractér—expreésioﬁ>)
RJUST(<charactér-expféssion>,<p§)
are functions for the left and right justification of character
strings. | | |
LJUST removes all leading blénks of the <character-exéression>.
RJUST creates a étring of length <p§ and truncates on fhe
left or pads with blanks on the left dépending on whether thé N

<character-expression> length is greater or less than <p>.

10-16

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

209

APPENDIX A

' ﬁuilt-In Functions and Pseudo Variables

The built-in functions available in HAL are given in

this appendix, and are presented in alphabetical order under

- their respective headings. The allowable data-types for the

arguments are indicated using the following abbreviations:

I: integer
5: scalar
V: vector
M: matrix
B: bit

C: character

A. Conversion Functions (see Sec. 6.2.2).

Arguments: B,I,8,V,;M,C

1.
2.
3.
4,
5.
6.

INTEGER
SCALAR
BIT
CHARACTER
VECTOR

MATRIX

B. String Functions

1.

INDEX (string; config)

Arguments: B,C. Searches a string for a specified
bit or character configuration. The
starting location of that configurétion

within the string is returned as an integer

A1

INTERMETRICS INCORPQRATED - 380 GREEN STREET . CAMBRIDGE, MASSACHUSETTS 02139 » (617) 868-1840

<10

data type.
2; LENGTH (string)

Arguments: B,C. Finds the string length and returns

it as an integer data type.
3. LJUsST (character-string)

Result: LJUST removes all the leading blanks of
a character string operand and returns the-
resultant character string.

4. RJIUST {(character-string, p)

Result: 'RJUST creates a new character string of
length, p. The character string argument
is truncated on the left, or padded with

" blanks on the left, depending on whether its
léngth ig greater or legs than p. Pp is a
scalar expression which is rounded to the
nearest integer before use.
C. Arithmetic Functiong (B,1,5)
These functions return the same data type as the argument
(bit . arguments are first converted to integers; the
function returns an integer). Array arguments yield array

results.

A-2

INTERM'ET.RICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

211

5.

7.

ABS.

Finds the absolute value of the argument.

CEILING

Determines the smallest integral wvalue that is

greater than or egual to the argument.

FLOOR

Determines the largest integral value that does

not exceed the argument.

ROUND

Rounds the argument to neare;t integral'value.

SIGNUM -

Returns +1, 0, -1 as argument is positive, zero,

and negati§e, respectively.

SIGN

Returns +1, -1 as argument is positive or zero, and
negative, respecﬁively. 7

TRUNCATE

Returns 0 if argument is less than %; but greater than
~-1; otherwise equivalent of SIGN (argument) times the
largest positive integral value that does not exceed
ABS (argument). '

MOD (a,b) ‘

MOD extracts the remainder ¢ such that (a-c)/b=N where
N is an integral number. ¢ is the smallest pqsitiVe
number that must be subtracted from a in order to make

N an integral number.
A-3 .

INTERMETRICS INCORPORATED -« 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840 -

<1<

D. Mathematical Functions

~

These functions return a scalar data type. Arguments may

be B,I,S. (Bits and integers are converted to scalars.)

Array arguments yield array results.

1 - '

ARCCOS

Trigonometric cosine; argument in closed interval
-1, l];,results in closed interval [0,-w].
ARCCOSH

Inverse hyperbolic cosine; arg not less than 1.
ARCSIN

Inverse trigonometric sine; arg in closed interval
[jl, 11; result in closed interval [-n/2, ©/2].
ARCSINH

Inverse hyperbolic arc sine; arg any value,

.ARCTAN

Inverse trigonometric tangent; arg any value; result
in open interval (-w/2, w/2).
ARCTANH

Inverse hyperbolic tangent; |arg|<l.

cos

Trigonometric cosine; arg in radians; |arg|<Kl.
COSH

‘Hyperbolic cosine; |arg|<K3.

EXP

. Exponential, (e®9); |arg|<K3.

A~-4

~

INTERMETRICS INCORPORATED « 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 °

213

lo.

11.

12.

13.

14.

15.

LOG

Natural logarithm; arg positive and non-zero,

SIN |

Trigonometric sine; arg in radians; |arg|<Kl.
SINH ‘

Hyperbolic sine; |arg|<K3.

TAN

Trigonometric tangent; arg in radians; arg not odd
multiple of n/2; |arg|<K2.

TANH

Hyperbolic tangent; arg any Galue.

SQRT

Square rooﬁ; arg positive.

the: K1, K2 and K3 are upper limits which depend.

upon target machine characteristics.

E. Matrix-Vector Functions

Arguments may be vectors or matrices (as applicable).

Array arguments yield array results.

1.

ABVAL

Absolute value of magnitude of vector; argument may
be a vector of any length.

ADJ |

Adjoint; argument is invertible square matrix‘of.any
dimension; result is egqual to

DETERMINANT (argument) times INVERSE (argument).

A-5

-

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

214

3. DET
Determinant; argﬁment is a sguare matrix.
4, INVERSE
Inverse; argument is square matrix; result is inverse
if argﬁment is invertible,
5. TRACE
Trace; argument is square mgtrix; result is sum of
diagonal matrix elements.
6. TRANSPOSE
Transpose; argument is matrix of any dimensions; result
is the interchange of the rows and columns of the argument.
7. UNIT -
Unit vector; argument is vector of any length; result is
_a vector of magnitude 1 and in line with argument.
F. Linear Array Functions
These fuﬁctions have the following general format:
<function-label>(<single-~operand>)
where the function will operate on the "linear array" repre-
senting the "innefwmost" free index of the argument. The
<siﬁgle-op¢rand> may‘be of (B,I,8,vV,M) data types or arrays
of theSe types. The following table indicates thé array

shape and dimension of the function result.

A~6

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

215

'~é£gffifi_J lxlélj {x];}% Y Vla,b:2 ﬁm,n ﬁa,b:m,n
Function
Label al? m1(? s s 3) v, ¥1,,b:m

Subscripts indicate shape and dimension (i.e. <array-shape>:
<dimension>)% = vector length; m,n = matrix rows,columns ;
a,b = array shape. {In general, the érgument array shape may
be a,b,c,..; ete,) '
NOTES ; -
(1) X may be bit string, integer or scalar
(2) ‘A is an integer if X is a bit string or integer
(3) s indicates scalar
The linear array functions are:
l. suM
Sums over inner-most free-index.
2. PROD
Forms product over inner-most free iﬁdex.
‘3. MAX |
| Finds maximum eleﬁent value over inner-most free index.
4. MIN .
Finds minimum eleﬁent value over inner-most free index.
EXAMPLES:
1. DECLARE A ARRAY (2,4,6);
SUM([A]Z,*,G) results in a 2x6é array of scalars. Sum

is performed over second index because it is free,

A-7

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) BéBi%O

2. DECLARE ARRAY(25,25,10)A,B;

(Al3 10 g,4,+ = MAX(IBl1g qg 15,%,4);
The result is a 6x10 array 6f scalars. Each scaiar
is equal to the maximum value encountered along the
inner most index of [B]. The statemeht is equivalent
to the following "DO FOR-loops”:
DO FOR I = 3 TO 8;
DO FOR J = 1 TO 10;

A

1+7,3,%)
END:

END;

3. DECLABE D ARRAY (10)VECTOR(6) ;
SUM([D]) results in an array of scalars of length
10, Each scalar is the sum of the 6 components of each
of the 10 wvectors.

G. Miscellaneéus Functiops

1. RANDOM
Result is the current base random number in the pseudo-
random number’ generator. This function enables the
programmer to make sucecessive runs of a program without
repeating sequences 6f pseudo-random numbers.

2. RANDOMG

Selects a random number from a Gaussian distribution.

A-8
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

. | | 17

3., TIME
Returns current time as integer.
4. DATE
Returns current data as integer.
H. Pseudo-variables
A pseudo-variable, in HAL, is a function that can only éppear
on the left of an equal sign (=) in an assignment or DO
statement. The only defined pseudo-variable is SUBBIT.

See Sec. 7.1.2.3.

A-9
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-184Q

<18

.APPENDIX B
Standard Defaults

B.l DEFAULTS WITH DATA DECLARATIONS

B.l.1l Within DECLARE Statements

B.1.1.1 Specifications {See Sec. 5.1.1). If no <specifications>

are provided; i.e. no <array-spec>, <type-spec> and <attribute
list>, the following defaults apply to the declared name(s):
1. At the COMPOOL level,

SCALAR PRECISION(6)

2. At the PROGRAM 'level,

_ SCALAR PRECISIdN(G); initial value is unspeéified.

3. At other levels,
| SCALAR PRECISION(6) STATIC; initial value
is unspecified,
4, For a function (Secs. 5.1.1.5, 7.4.2.1), L1f <type-spec> is
not.provided,
4 SCALAR PRECISION(6)
Note: For fixed point machine PRECISION default is single

precision, with zero integer bhits.

B.1.1.2 Precisjion, Dimensions and Length (Sec. 5.1.1.2).
1. If scalar, vector, or matrix PRECISION is not provided,
the precision default is the same as in B.1,1.1 above.
2. If fector <length> is not provided, a length = 3 is
presumed. |
3. If matrix <rows> and <columns> are not provided, 3

rows and 3 columns are presumed.

B-1
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 -+ (617) 868-1840

219

4. 1If bit <length> is not provided, a length = 1 is
presumed,
5. If fixed character <length> is not provided, a

length = 8 is presumed.

B.1l.1.3 Attributes (See Sec. 5.1.1.3)

B.1.1.3.1 Initialization Attributes. If INITIAL or CONSTANT
is not provided, the identifier is presumed to be a variable

with unspecified initial value.

B.1.1.3.2 Storage Class Attributes. If STATIC or AUTOMATIC

]
is not provided, the STATIC storage class is used.

B.1.1.3.3 Dynamic Sharing Control Attributes. If LOCKTYPE (<n>)

is not spegified, for a variable, no controlled sharing is provided.

B.1.1.3.4 Storage Optimization Attributes. If DENSE or ALIGNED

is not provided, the ALIGNED attribute is presumed.

B.1.1.3,5 Structure Qualification., If QUALIFIED or NONQUALIFIED
is not provided in a structure declaration NONQUALIFIED is

presumed.

B.1l.2 Impiicit‘Declaratibns {See Sec, 5.3)
For the implicit declaration of SCALAR, VECTOR, MATRIX,
BIT and CHARACTER,thé default characteristics of length, precision,

initialization, sharing class, and storage optimization are the A

B-2
INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

220

e —— e

same as described in B.l above for the explicit declaration of

these data types.

B.2 WITHIN EXPLICIT CONVERSION FUNCTIONS (See Sec. 6.2,2)

B.2.1 Single-Operand

B.2,1.1 BIT {(<single-operand>). If BIT is not subscripted,

integers and scalars are converted to full word bit strings;

character operands are converted to the bit length representing

the total character Etring.

B.2.1.2 CHARACTER (<single-operand>). If CHARACTER is not
T

subscripted, an integer or scalar operand is converted to a
character representation; a bit string is first converted to an

integer, and then to a character representation,

B.2.1.3 VECTOR {(<single-operand>). If VECTOR is not subscripted,

" and the <single-operand> is unarrayed (B,I,5,C) the vector

dimension will be set to the default otherwise the vector dimension

takes on the inner most dimension of the argument.

B.2.1.4 MATRIX (<sing}efégerand>). If MATRIX is not subscripted,

- and the <single-operand> is unarrayed (B,I,S,C), a linear array

of these types or a vector, the matrix dimension will be set to
the default value. Otherwise, the matrix dimensions take on

the two inner most dimensions of the argument.

B-3

- INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

221

. B.2.2 Multiple-0Operand

B.2.2.1 INTEGER (<list>) and SCALAR (<list>). If these functions

are not subscripted, a linear array of n elements is presumed,

where n is the number of elements in the list,

B.2.2.2 BIT (<list>) and CHARACTER (<list>). If these functions
are not subscripted, linear arrays of 1ehgth'n are presumed,
wheré n is the number of elements in the list. Bit string length
will be equal to the maximum length within the list. Character

strings are varying, limited in length by implementation.

B.2.2.3 VECTOR (<list>). If VECTOR is not subscripted, the vector

dimension is egqual to the total number of unraveled elements in

the <list>,

B.2.2.4 MATRIX (<list>). If MATRIX is not subscripted, the

resultant matrix is square with rows and columns eqﬁal to the
square root of the total number of unraveled elements in

?iist>.

B-4

INTERMETRICS INCORPORATED + 380 GREEN STREET CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

.

L | - 2272

(not including built-in functions)

APPENDIX C

HAL Keywords

The following words are HAL keywords and are usually unavailable

for any other use,

ACCESS

FILE. PROCEDURE
AND FOR PROGRAM
ARRAY FUNCTION QUALIFIED
ASSIGN GO READ
AT HEX READALL
AUTOMATIC IDCODE REPLACE
BIN IF RETURN
BIT IN SCALAR
BITLENGTH INCLUDE SCHEDULE
BY INDEPENDENT SEND
CALL INITIAL SIGNAL
CASE INTEGER SKIP
CAT LABEL STATIC
CHAR LATCHED SYSTEM
CHARACTER LINE TAB ’
CHARLENGTH MATRIX TASK
CLOSE MATRIXDIM THEN
COLUMN NOT TERMINATE
CONSTANT NONQUALIFIED TO
DEC ocT TRUE
DECLARE OFF UNTIL
DO ON UPDATE
ELSE OR VARYING
END OUTER VECTOR
ERROR PAGE VECTORLENGTH
EVENT PRECISION WAIT
EXCLUSIVE PRIO WHILE
FALSE ~PRIOCHANGE WRITE
- PRIORITY
c-1

-

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868-1840

¢ U.S, GOVERNMENT PRINTING OFFICE; 1972—779-261/365

2723

