
(NASA-Ci-R13284 1
(aIntermetrics f c) AL/s-360-USE

6 S , I N74- 2 5 7 2 8
CSCL 0 9B

Unclas
G3/08 39737

II1TERmETRICE
Roproducod by

NATIONAL TECHNICAL
INFORMATION SERVICE PEE SIUmFI3 aT GE

US Dopartment of Commerce
Springfield, VA. 22151

HAL/S- 360

USER'S MANUAL

IR-58-5

April 7, 1974

Approved by:

Prepared by:

R. E. Kole
P. H. Helmers
R. L. Hotz

paniel J. Lickly
HAL Language/Compilr Dept. Head

Approved by:

Dr. F. H. Martin
Shuttle Program Manager

NTERMETRCS NCRPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

FOREWORD

This document was prepared for the Johnson Space
Center, Houston, Texas, under contract NAS9-13864.

This version of the User's Manual corresponds to
Release 7 of the HAL/S-360 compiler system.

The black lines in the margins of the text indicate
new changes since the previous version of the HAL/S-360
User's Manual, issued on February 18, 1974

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

TABLE OF CONTENTS

1. INTRODUCTION

1.1 Purpose of This Manual 1-1

1.2 Scope of This Manual 1-1

2. RUNNING A HAL/S PROGRAM 2-1

2.1 Communication with OS/360 - Job Control Language 2-1

2.1.1 Introduction 2-1

2.1.2 The Catalogued Procedure 2-1

2.1.3 The Optional Parameters: OPTION and RUNPARM 2-2

2.1.4 Specifying the Source Language Input 2-2

2.1.5 Specifying the Standard Execution-Time Input 2-3

2.1.6 Specifying the Standard Execution Time Output 2- 3

2.1.7 Specifying Additional Execution-Time JCL 2-4

2.1.8 A typical Run Submission 2-4

2.2 Compiler Outputs 2-7

2.2.1 Source Listing 2-7

2.2.2 Tables 2-7

2.2.3 Summaries 2-7

2.2.4 Diagnostics 2-8

2.3 Subsequent Steps 2-8

2.3.1 Link Step 2-8

2.3.2 The Execution Step 2-9

2.4 Creating and Running Program Complexes 2-9

T-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.4.1 Introduction 2-9

2.4.2 The Form of Compools and Comsubs 2-9

2.4.3 Compiling a Program Complex 2-11

2.4.4 An Example of Program Complex Compilation 2-12

3. COMPILATION LISTINGS

3.1 General Description 3-1

3.2 Formats 3-1

3.2.1 Headings 3-1

3.2.2 Statement Number 3-1

3.2.3 Line Type 3-2

3.2.4 Source Field 3-2

3.2.5 Current Scope Field 3-2

3.2.6 Information Field 3-3

3.3 The Output Writer 3-3

3.3.1 Concept 3-3

3.3.2 Auto-Indentation 3-4

3.3.2.1 Declaration Statements 3-4
3.3.2.2 Labels 3-4
3.3.2.3 Scope 3-4
3.3.2.4 IF Statements 3-5
3.3.2.5 DO Groups 3-5
3.3.2.6 Continuations 3-5
3.3.2.7 Page Boundaries 3-5
3.3.2.8 First Lines 3-6

3.3.3 Multi-line Expansion and Annotation 3-6

3.3.3,1 Overpunches 3-6
3.3.3.2 Array and Structure Notation 3-6
3.3.3.3 Subscripts and Exponents 3-7
3.3.3.4 REPLACE'd Symbols 3-7

3.3.4 Comments 3-7

3.3.4.1 Comment Cards and Directive Cards 3-7
3.3.4.2 In-Line Comments 3-7

Ie< T-2
4TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

3.4 Block Summaries 3-9

3.4.1 Concept 3-9

3.4.2 Informaiton Provided 3-9

3.5 Program Layout Summary 3-11

3.6 Symbol & Cross Reference Listing 3-11

3.6.1 "DCL" Field 3-12

3.6.2 "NAME" Field 3-12

3.6.3 "TYPE" Field 3-12

3.6.4 "ATTRIBUTE & CROSS REFERENCE" Field 3-13

3,7 Macro Table 3-15

3.8 Optional Unformatted Listing 3-15

3.8.1 Format 3-16

3.9 Additional Information 3-16

3.10 Phase II Listing 3-16

3.11 Phase III Listing 3-17

4. DEBUGGING AIDS (Non-Real Time) 4-1

4.1 Compilation Errors 4-1

4.1.1 Message Format 4-1

4.1.2 Classification Scheme 4-1

4.1.3 Error Severity 4-2

4.1.4 Phase I error Summary 4-2

4.1.5 Phase II Errors 4-2

4.2 Execution Errors 4-3

4.2.1 Introduction 4-3

4.2.2 GO TO Action 4-3

4.2.3 SYSTEM Action 4-4

4.2.4 IGNORE Action 4-5

T-3
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

4.2.5 The Error Summary 4-5

4.3 Execution Dumps and Traces 4-6

4.3.1 Direct Execution 4-6

4.3.2 Execution Monitoring System 4-6

4.3.3 Location of Diagnostic Dump 4-9

5. HAL/S REALTIME PROGRAMS

5.1 Using the Real-Time Features of HAL/S-360 5-1

5.1.1 Introduction 5-1

5.1.2 Terms and Concepts 5-1

5.1.3 Timing 5-4

5.1.4 PARM Field Options 5-5

5.1.5 Compile Time 5-5

5.1.6 Execution Time 5-5

5.1.7 List of Real-Time Messages 5-6

5.1.8 List of Real-Time Wait-Types 5-8

5.2 HAL/S Load Module and Operating Enviornment 5-9

5.3 Processes and the Stack Mechanism 5-9

5.4 Procedures and the Procedure Caller 5-10

5.4.1 Calling 5-10

5.4.2 Exiting 5-14

5.5 Intrinsics 5-14

5.6 User-Written Assembly Language Subroutines 5-15

5.6.1 HMAIN 5-15

5.6.2 HENITRY 5-16

5.6.3 HCALL 5-16

T-4

4TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

5.6.4 HEXIT 5-16

5.6.5 HERRMSG 5-16

5.6.6 HERROR 5-17

6. HAL/S CHARACTERISTICS SPECIFIC TO THE 360

6.1 Introduction 6-1

6.2 Compile Time Characteristics 6-1

6.2.1 Character Set 6-1

6.2.2 Internal Table Capacities 6-1

6.2.3 Data Type-Size Limitations 6-1

6.2.4 Program Organization Limits 6-2

6.2.5 Input/Output Statements 6-2

6.2.6 Program Naming Convention 6-3

6.2.7 The INCLUDE Compiler Directive 6-5

6.2.8 ACCESS Rights Implementation 6-6

6.2.9 Template Generation 6-9

7. HAL/S-360 Input/Output Operations

7.1 FILE I/O 7-1

7.2 File Type Characteristics 7-1

7.2.1 Type I: Dense Fixed-length Blocks 7-2

7.2.2 Type II: Sparse Fixed-length Blocks with Keys 7.3

7.2.3 Type III: Sparse Differing-length Blocks with Keys 7-4

7.3 File Type Selection 7-4

7.3.1 Choosing a File Type 7-4

7.3.2 Specifying a Chosen Type 7-6

7.3.3 DCB Parameters by File Type 7-6

7.3.4 Summary of DCB Errors 7-7

7.4 Run Time Errors 7-8

T-5
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

7.5 HAL Data Type Considerations 7-10

7.6 OS/360 Considerations 7-10

7.6.1 DD Cards 7-10

7.6.2 Separate Initialization of a File 7-11

7.7 360 Execution Time Characteristics 7-12

7.7.1 Input/Output 7-12

7.8 User-Defined Execution Time JCL 7-13

7.8.1 General Rules Used by HAL to Create DCB Attributes 7-13

7.8.2 General Rules Governing HAL/S Sequential Output 7-14

7.8.3 General Rules Governing HAL/S Sequential Input 7-14

T-6

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

APPENDICES

A. COMPILE-TIME JCL OPTIONS

B. EXECUTION-TIME JCL OPTIONS

C. PROTOTYPE CATALOGUE PROCEDURES

D. COMPILE TIME ERROR MESSAGES

E. EXECUTION-TIME ERRORS

F. USER ABEND CODES

G. NAMES RESERVED FOR HAL/S PROGRAMS

H. COMPILER DIRECTIVES

I. THE HALLINK PROGRAM

J. BLOCK LOCATION AND SEARCH ALGORITHMS FOR FILE TYPES II AND III

T-7
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

1. INITRODUCTION

1.1 Purpose of This Manual

The purpose of this manual is to provide the information
needed by programmers to compile and execute a HAL/S program.

It also provides a detailed discussion of the printed matter
that will be produced as a result of the compilation and

execution of a HAL/S program. This manual is not intended as a
guide to the HAL/S language. It is a reference document to be

used in the process of getting HAL/S programs compiled and
debugged on the IBM/360. A knowledge of the HAL/S language
syntax and programming techniques is presumed in some of the
discussions.

1.2 Scope of This Manual

The succeeding sections of this document present a system
guide for all phases in the development of a successful HIAL
program. Topics range from operating system communication to
interpretation of debugging aids. A final section presents
features of the HAL programming system that have specific
System/360 dependencies.

O 1-

INTERMETRICS INCORPORATED -701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

2. RUNNING A HAL/S PROGRAM

2.1 Communication with OS/360 - Job Control Language

2.1.1 Introduction

All communication between the programmer and the

operating system of the host computer must be done through

Job Control Language (JCL). In this section, the basic

JCL that must be provided to invoke HAL/S will be

presented. A detailed discussion of JCL is not attempted.

The intent is to give first-time and average users

sufficient information to begin running. A more detailed

description of the HAL/S JCL is available in Appendix C.

That description is written for persons experienced in

handling JCL and therefore does not "teach" the use of

JCL.

2.1.2 The Catalogued Procedure

Because JCL is a complex language, the operating

system (OS/360) allows for the grouping and saving of

whole blocks of JCL. Such a saved block of JCL is known

as a catalogued procedure. When this facility is used,

the programmer need only submit a minimum of his own JCL

to make a run. The descriptions that follow presume the

existance of a catalogued procedure that will compile,

load, and execute a HAL/S program. k listing of a

prototype catalogued procedure (HALSCLG) is presented in

Appendix C. Any JCL modifications that are desired may be

made in the standard manner described in the IBM

publication:

IBM System/360 Operating System:
Job Control Language Reference
Order #GC28-6704

The user calls in the catalogued procedure by referencing

it by name on an EXEC card as follows:

//ANYNAME EXEC HALSCLG

This card is sufficient to call in the catalogued JCL and

begin execution of the steps in the compilation process.

If no other information is supplied on this EXEC card, all

options available to the programmer for specification will

2-1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

default to that set of options saved in the catalogued
procedure. The user may change or add to these options by
specifying more information on the EXEC card.

2.1.3 The Optional Parameters: OPTION and RUNPARM

The HAL/S compiler has various options that the user
may specify through JCL. These options invoke functions
in both the compilation and execution steps of a HAL/S
job. The catalogued procedure HALSCLG allows the
specification of these options via the keyword parameters
OPTION or RUNPARM. These parameters are coded on the EXEC
card as follows:

//ANYNAME EXEC HALSCLG,OPTION='??',RUNPARM='??'

The OPTION parameter is put into the PARM field of the
compilation step and is available to the compiler for
interpretation and action (valid options are listed in
appendix A). The RUNPARM parameter is similarly made
available to the HAL/S execution-time monitoring system.

2.1.4 Specifying the Source Language Input

The user must identify, through JCL, the location of
the source program that he wants compiled. The typical
input is from punched cards. The compiler reads the
source input from the DD card named SYSIN. This card is
not supplied in the catalogued procedure because the user
must do the specification. For card input, the
specification would be:

//HAL.SYSIN DD *

Source cards

/*

2-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

where the * on the DD card indicates input to follow.

When source images are saved on some other medium, the
HAL.SYSIN DD card must still be included, ind the

specification on the card must correctly identify the
source file. Refer to the IBM JCL manuals for the

techniques needed.

2.1.5 Specifying the Standard Execution-Time Input

The catalogued procedure makes the assumption that

the primary data input to the running HAL/S program will
be made via sequential input file #5. This means that the
catalogued procedure supplies a DD card with the name
CHANNEL5. The use of the HAL/S statement:

READ(5) <specification list>;

causes data to be read from the data set defined by the
CHANNEL5 DD card. The catalogued procedure is organized
to associate the following JCL cards with CHANNEL5.

//GO.SYSIN DD *

Data cards

This DD card may alternately be defined in any suitable
manner to reflect the location of the desired input data.

2.1.6 Specifying the Standard Execution Time Output

The catalogued procedure provides the necessary JCL
to direct the results of the following HAL/S statement to
a line printer:

WRITE(6) <specification list>;

The JCL statement responsible is the

//CHANNEL6 DD ...

statement.

INTERMETRIC$ INCORPORATED ' 701 CONCORD AVENUE. ? CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

2.1.7 Specifying Additional Execution-Time JCL

The HAL/S programmer may reference 10 separate
sequential files with HAL/S I/O statements. In HAL/S
statements of the form:

READ
WRITE (n) <specification listing>
READALL

where n may vary from 0 through 9. These statements cause
the requested I/O operation to occur on data defined by
JCL cards of the following form:

//CHANNELn DD <appropriate specification>

where n is the same as in the HAL/S I/O statement. Cards
of this form may be added to the JCL brought in from the
catalogued procedure by following the rules described in
the IBM JCL publications.

2.1.8 A Typical Run Submission

The following JCL is an example of a typical user
run. The user has his HAL/S program and his
execution-time data on punched cards. In addition, his
program contains a WRITE(7) ... statement that he wishes
to direct to a card punch.

1 //ANYNAME1 JOB <installation dependent parameters>
2 //TRYHAL EXEC HALSCLG,OPTION='LISTING2'
3 //HAL.SYSIN DD *

4 Source Program

5 /*
6 //GO.CHANNEL7 DD SYSOUT=B
7 //GO.SYSIN DD *

8 Data Cards

9 /*

2-4

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Comments on individual lines in the example:

1: The user must supply a JOB card to identify himself to
the operating system and to give pertinent
accounting information. The form of this card is
installation dependent. Questions regarding its
form should be directed to the installation
operations staff.

2: This, the EXEC card, causes the JCL saved in
catalogued procedure HALSCLG to be read by the
operating system. The label TRYHAL is optional and
if included may be any 1 to 8 character name
beginning with a letter. If omitted, at least one
blank must separate the // and the word EXEC.
Following the name of the catalogued procedure, the
user has coded some optional parameters as
specified in Section 2.1.3 of this document. The
OPTION keyword shown causes the string 'LISTING2'
to be available to the compiler. The compiler
recognizes this as a directive to produce an
auxiliary source listing (See Sec. 3.8).

3: This card identifies the primary compiler input as
cards immediately following.

4: The source cards follow.

5: The /* delineates the end of the in-line source cards
and indicates a return to JCL card processing.

6: The CHANNEL7 DD card defines the destination of the
HAL/S program's references to device #7 as system
output class B (SYSOUT=B). At a typical 360
installation, this class refers to the card punch.

7: GO.SYSIN defines the input data set associated with
HAL/S references to device #5.

Note: Because of the way the HALSCLG catalogued
procedure is written, this could also have
been specified as:

//GO.CHANNEL5 DD *

8: The data cards to be read from channel 5 come next.

2-5

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

9: The /* terminates the input card data and indicates a
return to JCL processing. No special end-of-job
JCL indication is needed. The operating system
will determine the job boundaries by the occurrence
of subsequent JOB cards.

2-6

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

2.2 Compiler Outputs

2.2.1 Source Listing

As a result of the compilation process, a listing of

the user-supplied source code is printed by the compiler.

This primary listing has been formatted by the compiler to

conform with standard output rules. The primary listing
is always produced and is written to the data set defined
by the SYSPRINT card.

The HAL/S compiler operates as three separate phases:

Phase I is the syntax analysis phase ; Phase II is the

code generation phase; and Phase III is the diagnostic
table generation phase. Each phase produces some

informational and diagnostic output which together make up
the primary source listing.

An optional unformatted listing is available. The

user must specify the LISTING2 option in the OPTION field
of the EXEC card which invokes the HAL/S catalogued

procedure.

The formats of both of these listings are discussed

in Section 3.

2.2.2 Tables

In addition to reproducing the HAL/S language source
code, the compiler also prints various tables that contain

information of interest to the programmer. The tables
include the Symbol Table & Cross Reference Table, giving
name, type and usage information of identifiers, and the
Macro Table giving a summary of replaced names. See
Sections 3.6 and 3.7 for descriptions of these tables.

2.2.3 Summaries

The HAL/S compiler produces summaries of programmer
actions taken within a particular program block at the
close of that block and a quick-reference program layout
description at the end of the compiled program. See
Sections 3.3 and 3.4.

2-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.2.4 Diagnostics

The compiler produces error messages when syntax
errors or other abnormal conditions occur. These error
messages are interlisted with the source listing. An
error summary is provided at the end of the Phase I
listing. Section 4 discusses compile time diagnostics in
detail.

2.3 Subsequent Steps

2.3.1 Link Step

After an object file has been produced as described
above, it must be further processed into a form suitable
for loading and execution. This process includes the
resolution of any references to HAL/S library routines and
the generation of appropriately-sized work areas required
by the HAL/S programs at run time. These tasks are
accomplished in the second step of HALSCLG. This step
invokes a program known as HALLINK, a HAL/S compiler
system program which performs all necessary functions.
The HALLINK program dynamically invokes the System/360
Linkage Editor as part of its operation.

The printed matter generated by this step in the
HALSCLG procedure appears in three parts:

1) A standard output produced by the Linkage Editor
which may consist of a module map and size
statistics. Descriptions of this listing may be
found in the appropriate IBM system manual:

IBM System/360 Operating System
Linkage Editor and Loader
Form GC28-6538

2) A HALLINK listing which documents the tree structure
of all HAL/S modules involved in the link edit.

3) A second standard linkage editor listing as described
above. This listing will incorporate changes made to
the module structure by the HALLINK program. This
second link editor listing is the one corresponding
to the final load module produced by this step.

The HALLINK step puts its final result on a direct access
device suitable for subsequent loading and execution. The
load module thus produced requires a third step to be
executed. A more thorough description of the HALLINK
program may be found in Appendix I.

3< 2-8
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.3.2 The Execution Step

The execution of a compiled HAL/S program may produce
both user- defined output and system diagnostic output.
The user output occurs as a result of HAL/S I/O
statements. The system diagnostic output can occur as a
result of execution errors detected by the system or as a
result of user requests for dynamic dumps and traces.

2.4 Creating and Running Program Complexes

2.4.1 Introduction

Section 2.1 has explained how to run a self-contained
HAL/S program. However, the form of the language allows a
HAL/S program to use data external to itself (COMPOOLS),
and to call external procedures or functions (COMSUBS). A
HAL/S program and the compools and comsubs it uses are
collectively known as a PROGRAM COMPLEX. This section
explains how to create and run a program complex.

2.4.2 The Form of Compools and Comsubs

This subsection briefly recapitulates the forms taken
by compools and comsubs in the HAL/S language. Both
compools and comsubs are treated by the HAL/S compiler as
independently compilable entities in the same way as a
program.

The form of a cdmpool is illustrated by the following
example:

DATA: COMPOOL;
DECLARE S SCALAR INITIAL(2.5);
DECLARE I INTEGER INITIAL(5);

CLOSE DATA;

Fig. 2.1

2-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The form of a typical comsub is illustrated by the
following example:

ROUTINE: PROCEDURE(X);
DECLARE X SCALAR;
WRITE(6) X;

CLOSE ROUTINE;

Fig. 2.2

A program using data in the compool DATA and calling the
comsub ROUTINE must contain the appropriate matching
templates for them. Such a program is illustrated by the
following example:

DATA: EXTERNAL COMPOOL;
DECLARE S SCALAR INITIAL(2.5); compool
DECLARE I INTEGER INITIAL(5); template

CLOSE DATA;

ROUTINE: EXTERNAL PROCEDURE(X); comsub
DECLARE X SCALAR; template

CLOSE ROUTINE;

TEST: PROGRAM; program
CALL ROUTINE(I/S); proper

CLOSE TEST;

Fig. 2.3

The HAL/S language of course also allows comsubs themselves to
access compool data and/or other comsubs. Templates, like
those shown in the example above, are produced automatically by
the HAL/S-360 compiler when a compilation unit requiring a
template is compiled. The template produced is written as a
member of a partitioned dataset which may then be INCLUDE'd at
the appropriate place in another compilation which is to make
use of the template. See Section 6.2 for the technical details
of the HAL/S-360 implementation of templates.

2-10

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.4.3 Compiling a Program Complex

To compile a program complex, the program module and the

compool and comsub modules must each be compiled separately.
Each module is compiled in exactly the same way. However, due
to a requirement dictating that a template (as described in
Section 2.4.2) be included in a compilation referencing a
previous compilation,the compools and comsubs themselves should
be compiled in an order such that their templates are available
when needed.

For each compilation, a catalogued procedure should be
used which incorporates JCL enabling the object module (or
optionally a load module form of the object module) to be saved
until all modules are compiled; e.g. the HALSC or HALSCL
catalogued procedures in Appendix C.

When compiling the individual pieces of a program complex,
any templates produced should be directed via JCL to a common
template library which can then be used as an INCLUDE library
for referencing the templates.

When all compilations have been completed, the individual
modules are linked together with the runtime library by using
the HALLINK program (e.g. via the HALSL catalogued procedure
listed in Appendix C). The resulting finished load module may
then be executed as previously described for a simple program.

Each compilation also produces symbolic data used as a
run-time debugging aid. In compiling and executing simple
programs using the catalogued procedure HALSCLG, this symbolic
data is written on a member of a temporary PDS passed to the
load step of the JCL. Here are two methods for insuring that
the symbolic data for all modules of a program complex are
correctly made available at execution time:

2-11

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

(i) The symbolic data for each module is saved on a different
member of a PDS common to all compilations. In the
execution step this dataset should be specified on
the HALSYMB DD card. (See catalogued procedure in
Appendix C.)

(ii) The symbolic data for each module is saved on a different
PDS (each of which will therefore only have one
member). In the execution step, the HALSYMB DD cards
should specify the catenation of all the PDS's used.

2.4.4 An Example of Program Complex Compilation

To illustrate the procedure for the creation of an
executable program complex, the following example is provided.
Let there be four separately compilable units, as follows:

Unit 1 - A COMPOOL named DATA defined as:

DATA: COMPOOL;
DECLARE I INTEGER;
DECLARE S SCALAR;

CLOSE DATA;

Unit 2 - A PROCEDURE named PROC1 defined as:

D INCLUDE @DATA
PROC1: PROCEDURE(X);

DECLARE X SCALAR;
WRITE (6) 'THE ANSWER IS:' (X+S);
RETURN;

CLOSE PROC1;

Unit 3 - A PROGRAM named PROG1 defined as:

D INCLUDE @DATA
D INCLUDE @PROC1

PROG1: PROGRAM;
CALL PROC1(S);

CLOSE PROGl;

Unit 4 - A PROGRAM named DRIVER defined a s:

D INCLUDE @DATA
D INCLUDE @PROC1
D INCLUDE @PROG1

DRIVER: PROGRAM;-

2-12
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

CAL PROC1(S);
SCHEDULE PROG1;

CLOSE DRIVER;

Note the relationships between the various pieces of this

program complex. Units 2, 3, and 4 all reference data in Unit
1. Units 3 and 4 reference Unit 2. Unit 4 also references Unit
3. The HAL/S-360 Compiler must be given information about these
separately compiled units whenever references to such units
occur. The necessary information is generated automatically
when each unit is compiled. It is, therefore, necessary to
compile the units in an order which makes the information in a
given unit available when needed by subsequent compilations. An
example of a single job to perform these compilations and
execute the resultant module is presented next. Comments on the
example follow.

//TRYIT JOB <PARAMETERS>
//STEP1 EXEC HALSC
//HAL.SYSIN DD *

<UNIT #1 SOURCE>
/*
//STEP2 EXEC HALSC
//HAL.SYSIN DD *

<UNIT #2 SOURCE>
/*
//STEP3 EXEC HALSC
//HAL.SYSIN DD *

<UNIT #3 SOURCE>
/*
// STEP4 EXEC HALSCLD,RUNPARM

= 'FIRSTPGM= DRIVER '

//HAL.SYSIN DD *
<UNIT #4 SOURCE>

/*

STEP1 above compiles the COMPOOL named DATA. Because of
the way the HALSC catologued procedure is defined, the object
file for the compilation is placed on a temporary file which is
passed on to the later steps. This compilation also produces a
template for the COMPOOL as described in Sections 2.4.2 and
6.2.9. The template is also saved in a temporary data set and
passed to later steps. In a similar way, a simulation data file
(SDF) for the COMPOOL is produced and passed on.

Step 2 compiles the PROCEDURE named PROC1. Note that the
source code for the compilation contains the following include
compiler directive:

D INCLUDE @DATA

1.- < 2-13

INTERMETRICS INCORPORATED .701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

This directive is a request for the compiler to locate and read
the template ("@" indicates a template name) for the COMPOOL
named DATA. The template must be available for the succesful
compilation of statements referencing items in that compool.
The compiler finds and uses the template that was automatically
generated in STEP1. (see Section 6.2.9 for more details on
template look-up.) Step 2 adds the object file for the
PROCEDURE named PROC1 to the object file passed from step 1. It
also produces a template for PROC1 and an SDF and adds them to
the existing files. These files are then passed to later
steps.

Step 3 performs in a manner similar to step 2, this time
compiling the PROGRAM named PROG1. This compilation requires
access to both of the previously compiled units. The source of
the compilation therefore contains INCLUDE directives to cause
the compiler to retrieve the necessary information. Again,
object, template, and SDF files are produced and passed along.

Step 4 invokes the HALSCLG catalogued procedure because
this step will perform the last of the compilations, and then
execute the entire complex. The source code for the PROGRAM
named DRIVER contains the INCLUDE directives needed to retrieve
the templates for the previous compilations that are to be
referenced by DRIVER. The HALSCLG catalogued procedure adds the
object deck for DRIVER to the others, produces an SDF, and also
produces a template for DRIVER. Production of the template in
this case is unimportant because no subsequent steps will need
the template. HALSCLG then proceeds to link the object decks
for all four compilations together with the necessary library
routines to form a module suitable for execution. The last
function of HALSCLG is to initiate execution of the module.
Note that there is some ambiguity inherent in this module as to
which of the two PROGRAM's in the module is to begin execution.
If no statement to the contrary is made, execution defaults to
the first PROGRAM unit in the module which in this case would
be PROG1. The intention, however, is to begin execution with
DRIVER which will in turn invoke PROGI. It was the hierarchical
reference requirements which caused the compilation of the
units in the order illustrated. The way in which the correct
PROGRAM may be specified in a multiple-PROGRAM complex is shown
in step 4 JCL. The EXEC card for step 4 contains the aprameter:

RUNPARM='FIRSTPGM=DRIVER'

This specification causes the quoted string to be available to
the execution step of the HALSCLG catalogued procedure. The
FIRSTPGM option (see Appendix B) specifies the full name of the
PROGRAM which is to begin execution in the load module.

During execution of the program complex, the SDF files
created and passed by the previous steps are available to the
runtime package of the executing module. If any errors occur,

?I< 2-14
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

or if any user requests for debugging diagnostics were entered,

these SDF files would permit accurate dumps and traces of HAL

data items to be produced.

The complex would be executed as directed and after

execution, all temporary data sets used to collect the object

files, templates, and SDF's would be deleted by the operating

system.

This example shows only one method for building an

executable module. It is, perhaps, the simplest because it

presumes that all information passing is done via temporary
datasets built automatically by the catalogued procedures.

Users wishing to save the results of individual compilations

may define permanent template, SDF, and load module libraries

to be used in place of the temporary ones. The operations which

must be performed to eventually create an executable module

remain the same.

2-15

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

3. COMPILATION LISTINGS

3.1 General Description

The listings produced by the HAL/S compiler are designed
to document the actions taken by the compiler in the generation
of an executable form of the user's source program. The user's
code is reproduced in an annotated form and, optionally, in its
original form. All tables and error messages generated by the
compiler are also considered part of the documentation. They
are described in the following sections.

3.2 Formats

The numbered notes in the following discussion refer to an
example of a HAL/S source listing shown in Figure 3.1.

3.2.1 Listing of Options in Effect

On the first page of a compilation listing, the
HAL/S-360 compiler prints a summary of all compile-time
options in effect for the compilation (27). See Appendix
A for a list of available options.

3.2.2 Headings

A one-line page header (1) begins every page of the
listing. It contains compiler version identification and
page number within the listing.

On page one of the listing, the date and time of
generation of the compiler are printed, followed by the
date and time at which the current compilation was begun
(2).

Following any header information on each page of the
listing, a field description line is printed (3). This
line breaks the page into columns, the contents of which
are described below.

3.2.3 Statement Number

The statement number field (4) headed by the title
"STMT" contains the compiler-assigned sequence number for

3-1

NT<METRCS NCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 238
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

each HAL/S statement. This field is filled in for each
M-line in the source listing. The "STMT" field for E-line
and S-line entries as well as for comment cards and
compiler directives is left blank.

Note that the statement number is associated with a
complete HAL/S statement, not with the physical number of
M-lines. Thus, if a HAL/S statement spans several
M-lines, the same statement number will appear on each
M-line.

3.2.4 Line Type

The STMT field is followed by a blank and then by a
single character field (5) used to indicate the type of
source line. HAL/S has multi-line subscripting and
exponentiation capabilities. Such multiple line use is
identified for easier reading.

The compiler places an indicator of line type in this
one character field. The possible values of this field
are:

C = Comment line;
D = Compiler directive line;
E = Exponent line;
S = Subscript line;
M = Main line.

These values correspond generally. to the card types
(punched in column 1) of the user's source cards.

3.2.5 Source Field

The next field on the page (6) is centered under the
title "SOURCE". This field contains the actual HAL/S
language text. Vertical bars at either side delimit the
field. The field itself is 100 characters wide and is
filled by reformatted source text, complete with
compiler-supplied annotation.

3.2.6 Current Scope Field

Following the source delimiter (1) at the right of the
SOURCE field, is the variable length field headed by
"CURRENT SCOPE" (7). This is an information field which
contains the name of the HAL/S program block to which the
current source line belongs. This field applies only to
C, D, and M lines.

27< 3-2
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.2.7 Information Field

To the right of the "CURRENT SCOPE" field is another
variable length area that is used by the compiler to

supply additional information. This information may be

any compiler generated comments regarding the current
line. This field is applicable only to M-lines.

3.3 The Output Writer

3.3.1 Concept

The HAL/S compiler has been designed to provide
standard , automatic annotation of its output listing to
enhance the readability of HAL/S source code. The HAL/S

system allows each programmer to enter programs in a
free-form input consistent with individual coding
preferences. The compiler then edits the input during
compilation into the standard form so that all program
listings will observe the same coding rules.

HAL/S is a block-oriented language, and the logical
indenting of program blocks can do a great deal to enhance
understanding of program structure. The programmer can do
this indenting himself. But the problems involved in
inserting new indentation levels into existing code often
result in considerable wasted time because it is necessary
to re-punch existing lines to maintain consistency. HAL/S
frees the programmer from this task by completely
regenerating the indentation scheme each time the program
is compiled. Thus, the indentation is always complete and
reflects the total program structure.

Although HAL/S source input is in the form of card
images, the compiler treats the input as a continuous
stream of information, with only the statement-delimiting
semicolons to indicate statement boundaries. Each
statement is stored internally until its semicolon is
found. Then, with a complete statement in hand, the HAL/S
output writer completely reformats the source. The
reformatting includes referencing the symbol table to
obtain the types of any variables in the statement so that
the characteristic HAL/S overpunch mark may be supplied by
the compiler. The reformatting also includes expansion of
single line input to the full HAL/S multi-line form.
Finally, the resulting multi-line, annotated statement is
indented to the proper level determined by the line's
relative position in the program. The statement is then
placed on the output listing, using as many E-M-S groups
as necessary to contain it.

3-3

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

The specific conventions imposed on the output
listing are detailed in the following sections.

3.3.2 Auto-Indentation

References in this section are made to Figure 3.1.

3.3.2.1 Declaration Statements. The output writer
prints out declaration statements in a way which
makes the intent of the declaration as clear as
possible. The word DECLARE is aligned at the
current indent-level. If the DECLARE has factored
attributes, the attributes are placed on the same
line as the DECLARE and a new line begun (8). If
no factors are present, variable names follow the
DECLARE (9). Lists of variables without individual
attributes are placed on the same line (10). The
occurrence of a variable with attributes causes
that variable to appear on a line by itself with
its attributes (11). Any lines created after the
DECLARE line are indented one indent level.

Structure declarations (12) are reformatted
into the commonly used form. Each level of the
structure template is placed on a seperate line
with indenting appropriate to the level number.

3.3.2.2 Labels. All statement labels (13) are
right justified against the statement to which they
apply. The statement itself is placed at the
proper indent level before the label is applied.
If the label will not fit on the same line as the
statement body because of the indent location, it
is placed on a separate M-line predeeding the
statement body (14).

3.3.2.3 Scope Changes. Whenever a PROGRAM,
PROCEDURE, TASK, FUNCTION, or UPDATE block is
encountered, the statement is placed in the output
listing at the current level and then the indent
level is increased one increment (15). All
statements within the block follow the normal
indenting rules relative to the block level
indentation. Thus, all statements within a block
are indented farther than the block definition.

When the corresponding CLOSE statement is found,
the CLOSE statement is output at the same level as
the block definition statement and the indent level
is reset to its value before the block was entered

3-4
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

(16).

3.3.2.4 IF Statements. The IF ... THEN part of

the statement is placed on the listing at the
current indent level and the indent level is
increased one increment. The "true part" of the
statement is placed on the next level at the new
indent level and the level is decremented one level
(17).

If an ELSE clause is present, the "ELSE" gets a new
line at the current level, which is the same level
as the "IF", and the indent level is incremented.
The "false part" of the statement is placed on the
next line at the new level and then the level is
decremented one level (18).

3.3.2.5 DO Groups. All types of DO groups receive
the same treatment. The statement containing the
DO is placed in the listing at the current indent
level and the level is incremented (19). All
statements in the range of the DO are indented
relative to this new level. The END closing the
group is placed at the same level as the DO (20).

The DO CASE statement obeys the same indent rules
as other DO statements, but some additional
notation is supplied by the output writer. The
first M-line of each case is annotated in the
information field beyond the current scope notation
with a message of the form "CASE n" where n is the
current case number (21). If the current case is
really a "case within a case", (i.e., a nested DO
CASE is in effect), the notation is "CASE a.b
... n" where the a.b ... indicates the
structure of the case statements in the sense of:
case n within case b within case a ... Also, the
END associated with the DO CASE statement receives
the additional information "DO CASE END" to help
associate it with its group head (22).

3.3.2.6 Continuations. A reformatted E-M-S group
may not fit on the printed page in a single group
after the indentation rules have been applied. If
this is the case, the output writer breaks the
statement into as many E-M-S groups as necessary
(23). The break never splits an identifier or
keyword. A literal character string may be broken.

3.3.2.7 Page Boundaries. The output writer never

30< 3-5
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

places pieces of an E-M-S group on separate pages;
i.e. an E-line at the bottom of one page and the
corresponding M-line on the next. A page eject
will always be performed before such a group is
written.

3.3.2.8 The first line of any PROCEDURE, FUNCTION,
PROGRAM, TASK, or UPDATE block always begins on a
new page.

3.3.3 Multi-line Expansion and Annotation

References are made to Figure 3.1.

3.3.3.1 Overpunches. If, after all pertinent
subscripting has been applied, a variable name is
of a type for which HAL/S has defined an overpunch
character, the output writer supplies that
character on an E-line above the variable name.
The overpunch character is centered over the name.

The characters available are "*", "-", " , ",
"+" for matrix, vector, bit, character, and
structure data types respectively. The mark
supplied is determined from the totally subscripted
form of the variable. Thus the overpunch may be
changed by subscripting. For example, an element
of a matrix is a scalar. Therefore, a matrix name
subscripted down to a particular element receives
no overpunch (24). Similarly, a matrix variable
subscripted to a particular row of the matrix
receives a vector mark (25).

3.3.3.2 Array and Structure Notation. Variables
which are structure terminals or which are arrayed
may have additional annotation supplied. If a
particular use of such a variable has multiple
copies due to structure and/or array properties and
if those multiple copies have not been subscripted
away in the particular use of the variable, the
variable is enclosed in the appropriate marks.
Multiple copies due to arrayness receive brackets
("'[and "]") while multiple copies due to
structure copies receive enclosing braces ("j" and
")"). (26)

As with variable typing (see Sec.3.3.3.1), it is
possible to subscript away the "arrayness" or
"structureness" of a variable and thus have no

INTERMETRICS INCORPORATED CAMBRIDGE, MASSACHUSETTS 02138 (617)3-6

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

special annotation appear.

Note that the array and structure notation
characters are available only on certain print
trains such as the IBM TN chain. If a particular
installation does not have such a print chain, the
notation will probably appear as blanks
(unprintable characters).

3.3.3.3 Subscripts and Exponents. HAL/S allows the
user to supply source statements in single or
multi-line format. The output writer expands all
source to full multi-line format before printing.

During the expansion process, any unnecessary
subscript or exponent grouping parentheses are
removed. These grouping parentheses are often
needed in single line input to show the extent of a
subscript or exponent field.

Subscripts applied to variables on an exponent'
line, and exponents applied to variables on a
subscript line, are left in single line format
since multiple line expansion would produce an
ambiguous listing. Also, overpunch characters are
not supplied for variables on exponent or subscript
lines.

The multiple lines are indicated by "E" and "S" in
the line type field of the listing (see 3.2.3). As
many E or S lines as needed to contain the expanded
source are generated.

3.3.3.4 REPLACE'd Symbols. Any symbols which are
defined as replaced names in REPLACE statements are
underlined by the output writer in the source
listing (27).

3.3.4 Comments

3.3.4.1 Comment Cards and Directive Cards. All
comment cards (C in column one) and directive cards
(D in column 1) are transferred unchanged to the
output listing. Both types of card are treated
alike, being separated by a blank line from other
lines, and single spaced within the group.

3.3.4.2 In-Line Comments. Comments appearing on
the M-lines of input source cards in the form of

/* ... Comment ... */

3-7
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

are collected by the output writer and placed into
the output listing after the statement has been
processed.

The collected comments are placed on the M-line of
the statement if possible. If there is not room,
spill-over can occur onto as many S-lines as are
necessary. Multiple comments on a single source
statement are collected together and printed as one
comment. If the size of the total comment text for
any one HAL/S statement reaches 256, additional
comment text is ignored and a warning issued.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

O kL/S COPILTION I N T E n E T R I C S I N C ,MARCH 30, 1974 15:25:47.95 PAGE

HAL/S COMPILER PHASE I -- VERSION 7.0 OF MARCH 29, 1974. CLOCK TIME - 12:56:33.73.

Q ODAY IS MARCH 30, 1974. CLOCK TIME = 15:25:47.95.

OVERRIDING OPTIONS: LISTING2,LIST

COMPLETE LIST OF COMPILE-TIME OPTIONS IN EFFECT

TYPE 1 OPTIONS ©
NODUMP INSTEAD OF DUMP
LISTING2 INSTEAD OF NOLISTING2
LIST INSTEAD OF NOLIST
TPACS INSTEAD OF NOTRACE
NODECK INSTEAD OF DECK
TABLES INSTEAD OF NOTABLES
NOTASLST INSTEAD OF TABLST
NOADDRS INSTEAD OF ADDRS
NOSRN INSTEAD OF SEN
NOSDL INSTEAD OF SDL

TYPE 2 OPTIONS

PAGES = 250
LINE COUNT = 59

Figure 3-1 The HAL/S SOURCE LISTING

HAL/S COMPILATION I N T E RN E T R I C S I N C MARCH 30, 1974 15:25:47.95 PAGE 2

SST SOCE CUPRPENT SCOPE

t- 0: DEMO

1 MI PROGRAM; I DEMO

Cl I DEMO
CI THIS IS A DEMONSTRATION PROGRAM TO SHOE THE LISTING PRODUCED BY I DEMO
CI THE HAL/S-360 COMPILER I DEMO
CI I DEMO

2 MI REPLACE PRINTER BY "6"; I DEMO

3 tH DECLARE INTEGER INITIAL(1), I DEMO

3 MI A, B, C I DEMO

4 MI DECLARE D, F, G; I DEMO

5 MI DECLARE E VECTOR(4); I DEMO

6 MI DECLARE H, I, J, 10 DEMO

6 MI K ARRAY(5) MATRIX(3, 4), I DEMO

6 MI L, H, N, I DEMO

6 MI 0 SCALAR; I DEMO

7 MI STRUCTURE AA: I DEMO

7 M1 1 BB, DEMO

7 MI 2 CC MATRIX(4, 3), I DEMO

7 NI 1 DD, I DEMO

7 Mi 2 EE ARRAY(4) HATRIX(3, 4): I DEMO

8 MI STRUCTURE QQ: I DEMO

8 MI 1 RR, I DEMO

8 MI 2 AAREF AA-STRUCTURE, I DEMO

8 MI 2 SS CHARACTER(5); I DEMO

9 &I DECLARE MY_STRUCTURE QQ-STRUCTURE(5); I DEMO

Figure 3-1(con't.)

HAL/S COMPILATION I N T E R M T R I C S I N C . MARCH 30, 1974 15:25:47.95 PAGE 3

STMT SOURCE CURRENT SCOPE

10 MI PROC1: I PROC1

10 MI PROCEDURE; I PROCi

11 NJ DECLARE A INTEGER; PROCI

12 MI IF A = B THEN Q PROC1

13 M DO; I PROCI

14 M LABELl: B = C: PROC1

15 M (MY_STRUCTURE. . AREF. DD.EE} = (MY STRUCTURE. R. AAREF. BB. CC) ; PROCI

SI *;3:2,* .:*,2

16 Ml END; PROC1

17 NM ELSE PROCI

A 17 MI A = C; I PROCI

18 M I CLOSE PROC1: PROC1

B L 0 C K S U M M A R Y

OUTER VARIABLES USED:
8, B*, C, MYSTRUCTURE*, MY_STRUCTURE

Figure 3-1 (con't.)

HAL/S COMPILATION I N T E R M E T R I C S I N C . MARCH 30, 1974 15:25:47.95 PAGE 4

STMT SOURCE CURRENT SCOPE

19 MI DO FOR C = 1 TO 100; I DEMO

20 MI1 D = K 24 1 DEMO
SI C:2,3

21 I END: I DEMO

22 MI DO CASE A; I DEMO

23 A = B; I DEMO CASE 1

El - - 5
24 M1 E = K I DEMO CASE 2

SI B:A,*

25 MI END; I DEMO DO CASE END

El *
26 M1I rK = 0; DEMO

27 Ml WPITE(PR ~EP) MY_ STRUCTURE.R.AAREF.BB.CC , [MY _STRUCTORE.BR.AAREF.DD.BE] D, I DEMO
SI 3;1 TO 3,* 2;2 TO 4:

27 J E, F, G, H, I, J, K]1, L, M, N, 0; I DEMO

A 28 MI CLOSE DEMO; I DEMO

Figure 3-1 (con't.)

3.4 Block Summaries

3.4.1 Concept

The HAL/S compiler provides a summary of action taken
within a program block at the close of the particular
block. The blocks for which summaries are given are
PROGRAM, TASK, FUNCTION and UPDATE. When the matching
CLOSE to such a block is found, the summary is issued and
the listing of the program resumes with a skip to the new
page.

3.4.2 Information Provided

Information contained in block summaries consists of
lists of labels or variable names used in various contexts
within the block. The title "BLOCK SUMMARY" begins the
list. For all potentially summarized contexts within the
block, a descriptive heading is printed followed by the
list of names involved. The headings and their meanings
are listed below.

a) PROGRAMS AND TASKS SCHEDULED - A list of PROGRAM
and/or TASK names scheduled in the current block via
the HAL/S SCHEDULE statement.

b) PROGRAMS AND TASKS TERMILIATED - A list of PROGRAM
and/or TASK names terminated in the current block via
the HAL/S TERMINATE statement.

c) PROGRAMS AND TASKS CANCELLED - A list of PROGRAM
and/or TASK names cancelled in the current block via
the HAL/S CANCEL statement.

d) EVENTS SIGNALLED, SET, OR RESET - A list of
event variables declared outside the current scope
and appearing in the current block in a SIGNAL, SET,
or RESET statement.

e) EVENT VARIABLES USED - A list of event variables
declared outside the current scope that appeared in
one or more EVENT expressions.

f) PROGRAM OR TASK EVENTS USED - A list of PROGRAM
and/or TASK names appearing in one or more EVENT
expressions.

g) PRIORITIES UPDATED - A list of PROGRAM and/or TASK
names whose priorities have been updated in the
current block via the UPDATE PRIORITY statement.

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-18,

h) EXTERNAL PROCEDURES CALLED - A list of procedures

called within the current block which were defined

via EXTERNAL PROCEDURE templates.

i) EXTERNAL FUNCTIONS INVOKED - A list of functions
invoked within the current block which were defined

via EXTERNAL FUNCTION templates.

j) OUTER PROCEDURES CALLED - A list of PROCEDURE
names which are called from within the current block,
but are defined outside the current block.

k) OUTER FUNCTIONS INVOKED - A list of FUNCTION
names which are invoked from within the current block
but which are defined outside the current block.

1) ERRORS SENT - A list of the HAL/S error
numbers which are sent explicitly by a SEND ERROR
statement somewhere in the current block.

m) COMPOOL VARIABLES USED - A list of identifiers which
are defined in one or more COMPOOL blocks, and

referenced or assigned within the current block (a *
beside the name indicates "assigned into").

n) COMPOOL REPLACE DEFINITIONS USED - A list
of REPLACE variable names which are defined in a
COMPOOL block and used within the current block.

o) COMPOOL STRUCTURE TEMPLATES USED - A list of
STRUCTURE template names which are defined in a
COMPOOL block and used within the current block.

p) OUTER VARIABLES USED - A list of identifiers
which are defined outside the current block, but are
referenced or assigned within the current block (a *
beside the name indicates "assigned into").

q) OUTER REPLACE DEFINITIONS USED - A list of
REPLACE names which are used within the current
block, but which are defined outside of the current
block.

r) OUTER STRUCTURE TEMPLATES USED - A list of STRUCTURE
which are used within the current block, but which
are defined outside of the current block.

Note that in all categories except c and 1, only variables
which have a NEST level less than that of the current
block are included, as the block summary is an indication

3-10

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

of the impact of this block outside of its own local

variables or sub blocks. A block which is completely

self-contained, no matter how complex, will not have a

block summary issued.

The order of names in any list within the block

summary indicates the order of occurrence of first usages

of these names in the block within the identified context.

The block summary for any block will not duplicate

the information in the block summary for any block nested

within it (i.e. if Procedure A contains Procedure B which

schedules Program C, Procedure B's block summary will

indicate that Program C was called, but Procedure A's will

not).

3.5 Program Layout Summary

Immediately preceeding the Symbol Table printout at the

CLOSE of the HAL/S program, there is a program layout map,

indicating the way in which PROGRAMS, TASKS, PROCEDURES,
FUNCTIONS, and UPDATE blocks were defined. The indent level in

this printout indicates the nesting level definition of the

block shown. This serves to give a quick overview of the

program structure. Such a listing can be of assistance not

only as a documentation aid, but also as a guide to locating

the definition of procedures and functions which have been

diagnosed as undefined by the compiler.

3.6 Symbol & Cross Reference Table Listing

The symbol and cross reference table printed at the end of

a HAL/S compilation listing provides a detailed accounting of

all programmer-defined symbols. The table listing is organized

into two parts: a structure template listing and an

alphabetized total listing.
Any structure templates defined in the compilation appear

first in the symbol and cross reference table. The template

names appear in alphabetical order. The body of each template

(i.e. the levels defined under the template name) is listed

under the template name in the order of definition. This

ordering provides a quick reference to the organization of the

structure template. Special action is taken in the "NAME" and

"TYPE" fields (described below) to highlight the template

organization.
Following any listing of the templates, an alphabetized

listing of all programmer-defined symbols is printed. Symbols

previously listed as elements of a structure template are

included in this list. However, the list is completely

alphabetized and template organization is not shown. When a

40< 3-11

INTERMETRICS INCORPORATED -701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

)articular symbol is independently defined in more than one
name scope, the symbol is multiply listed in order of
definition. Figure 3.2 illustrates the form of a HAL/S
ompiler symbol and cross reference table.

3.6.1 "DCL" Field

The "DCL" field is used to list the compiler-assigned
statement number at which the identifier was first
declared. For explicit declarations, this number will
point to a DECLARE statement somewhere in the program.
For implicit declarations, this number is the statement at
which the identifier was first used in the program.

3.6.2 "NAME" Field

The "HACE" field lists the symbolic name of the
programmer-defined symbol. The width of this field is
determined by the length of the longest symbol in the
compilation. An asterisk preceeding the name indicates
that the varaible was implicitly defined.

Within the first part of the symbol table listing
which contains structure template names and their
organizations as described in Section 3.6, all parts of
the template body have their names indented one space from
the structure template name under which they are defined.

3.6.3 "TYPE" Field

The "TYPE" field describes the type of each
programmer-defined identifer. This field will contain
one of the following descriptions:

IITEGER
SCALAR
n - VECTOR
n X n IIATRIX
BIT(n)
CHARACTER(n)
EVEWT
PROGRAIM
PROCEDURE
TASK
COIPOOL
STATEHIEUT LABEL
UPDATE LABEL
STRUCTURE
STRUCTURE(n)
IIUOR HJODE
STRUCTURE TEMPLATE
REPLACE HACRO
1MACRO ARG.

3-12
ERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

The values of n and m indicate size or dimensionality in
their particular contexts.

Additional information may appear in the type field.
If the identifer has an array specification, the word
"ARRAY" will follow the basic type specification as in:

"INTEGER ARRAY"

If the identifier is a function name, the type
specification will be .followed by the word "FUNCTION" as
in:

"3 - VECTOR FUNCTION"

If the identifier has the NAME attribute, the type
specification will be preceded by the word "NAME" as in:

"NAME SCALAR"

Within the first part of the symbol table listing
which shows the organization of structure templates, the
"TYPE" field contains additional information to indicate
the hierarchical relationships which exist within the
structure templates. For each symbol which is part of a
structure template, the "level number" of the symbol is
printed in front of the type information for the symbol.

3.6.4 "ATTRIBUTES & CROSS REFERENCE" Field

This field contains all declared attributes of the
symbol, lists all cross reference information, and
contains comments about the identifier's use.

Attributes: This part of the field lists all data
declaration attributes of variables or labels. In
addition, special information about structure
template elements is provided. The possible
attributes which may appear are:

ARRAY(n,n,n)
SINGLE
DOUBLE
TEMPORARY
LOCKED
DENSE
ALIGNED
ASSIGN PARM

42< 3-13
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-

INPUT PARM
AUTOHATIC
STATIC
LATCHED
INITIAL
CONSTANT
ACCESS
REENTRANT
EXCLUSIVE
EXTER AL
NONHAL
<template name>-STRUCTURE

Elements of structure templates have their full
attributes listed in the first part of the symbol
table listing where they are shown under their
appropriate template name. In the alphabetized
second part of the listing, these structure
template elements will appear again but their
attributes will not be repeated. Instead the
notice:

"*** SEE STRUCTURE TE1MPLATE <template name>"

will appear directing attention to the hierarchical
template listing of the str'ucture template whose
name is given.

The attributes of a hEPLACE tACRO entry will
contain only the message:

"MrACRO-TEXT IiJDEX=<number>"

which directs the reader to the appropriate entry
in the Mlacro Text Listing for a definition of the
replace text.

Cross References: The remainder of the line,
following any attributes and the word "XREF:", is
devoted to a list of all references to the
identifier in the format:

11 XXXX

where XXXX is a four digit specification of the
line number of the HAL/S statement containing the
identifier. N is a cross reference flag which
specifies the identifiers usage:

Flag Code: N Use of Identifier
0 Definition
1 Subscript
2 Reference
3 Subscript and reference
4 Assignment

3-1CAMBRIDGE, MASSACHUSETTS
TERMETRICS INCORPORATED * 701 CONCORD AVENUE 1 CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HAL/S COMPILATION I N T E R M E T R I C S I N C . ARCH 30, 1974 15:25:47.95 PAGE 5

PR OG RAM L LAYO UT

DEMO: PROGRAM:

PROC1: PROCEDURE;

'Figure 3-2 The HAL/S Program Layout and Symbol

& Cross Reference Table Listing

00 aJ1v'iJdu 310ionuls 22S *.*(5)l) IDEH3 SS a
00 aZiVadUZJ amonui30Is .** SCON HOKN HH 8
a~aa aza Jion oto 0 :iaau aunoaoad ldOd 01.

iZOO Z ZOOO 0 :LasI L=xmUi .Lxal-o13vu OSDvw 33vidSS HaliNdd z
GaNDrSSv LIOng az9oNH8SAS ***** 9098a ***
LZO0 Z 9000 0 A55HX DIIVJ.S 'QasNI'I 'IISIS U11135 0 9
aam~issv ION ins mamas *** aoms ****

LaUo Z 9000 a :~Jkx Dli 311115 'aa9HIS ?zuus YJDS N 9
LZ00 Z SLOO 9 6000 0 :JZHX 31111.5 'uatmorv 'aflIoaglS-00 (snio.nas~ 29013nHIS 19 6

uanDISSv LION 109 Oa83sa28 ***** 90593 *****
LZO0 Z 9000 0 :LadX Di.lvis OaasN'I 'ZION15 HM'Ys w 9

at3faadad ILON tL00 0 :Ja39 159V'I luaw3IYis L'IZBVJ 17L
G39DISSV ION 1n9 a23 3a{aAH ***** dOU9i *****

LZOO Z 9000 0 :a39X D11115 03ZND1IV 3IONIS. HYJYDS 7 9
LZOO Z 9Z00 t

"ZOO Z 0Z00 Z 9000 0 :Jaax oilvis GaN!OIJv 137DNIS G~)A~a 11591 11591w t111 $1 E Y 9
uasiss LoN- ins a omam~ *****. soss *~**

LZOO Z 9000 0 :AasX 311V15 'GdNDIllV 'aINIS USIIS r 9
oa~ossv ION inls aN3dama ***** do92fl *****

LZ0O Z 9000 0 :935X 311115L '3 lOIJI 13IDNIS HYJYDS I9
O3NOISSV ION 10a Q33N31aasa ***** loda ***

LZOO Z 9000 0 :JadX Z311vlts 'cIsNoly l aIDNIS HVIVOs H 9
oaNsiss'1 ion ins aaflNxaala***dji**

LZOO Z t000 0 :1d 311115 'GaN5OV1 'rigmtIS HYs7l3s 5
O3NDIMS ION 109a G3DN39agaa ***** d0591 ***** V LZOO Z $1000 0 9391x Z3111;S- 'QSeNoI>1 a-iomis gyv'IVS I~ 1l

vv SIY'IdWil SMOSI3SS as **** 11551 XIS1.V9 " I E 2a L
ILl00 $1 nz 5ft 00 0 :aaJx 3IIVJS 102NDIIV '320915 HO03A -t2 a S

LOCO 0 3J3dx wvd9d oU33 L
vI 3 avdI.LI. 29DInln1s 3sa *** 20N HONIW 03 L

LlOO Z 010o0 tooo00 0 :.32ax 311115s '-zNOrlT laa!1s 9V'IVOS a t
VY ZIld-931 3daloftdIS 33!; ***tv E111 X $1 3 L

0l0&, 1
61.00 t LL00 Z tiLOO Z £000 0 LLSHI IVIIMII ':DIIYSLS 'agHDIIV 'aIDNIS HMa~tI3

VV aIVdWal 2dflI31laIS 33S **** 2 50919NI 99 L.

£100 Z tk1.00 Z$2 Z10 E £00 0 :A3X 'IVIIIHI 'DIXllS 'a3ND111 '3'L1)NIS H3D31K1 a £
00 aMv'd9al HfifilofilS US **** aa1309.15 L~ul 8

LLOO $1 11.00 Z L..0 C :d39X o11115 'Gamorr l aIDNIS a3Da191 v LL1 $2100 t. £100 b2 Z00 Z £000 0 :JZHX 7111111 *3IL1J.S '02k1'IV 'IONIS Ud03191 V E
0350 ION 1'1915504 8000 0 :Jasx t03NDIIY CS) 131193 Z ss 8

LlOO Z SLO00 9 8300 0 :Jauj 33N01'iv '3uio1305s-vv ada13051S Z 33511v 8 0350 ION 1'I9ISSOd B0C0 0 335HX dND)I1 2a0090SNIW 1. Ed 8
6000 Z 8300 0 :93dX c13NDIly MIldliaI 2H9013091S 00 8

LZO00 Z 51.00 t LOGO 0 :JaHX lusNIJy '379HIS '(0x1) d 11119 1155!w tIIY $2 E Z aa L
GSl ION lISISSOd LOOO 0 :33dX UaN0i'IY 3009 E099 L. 00 L GaRS~Is ION 179ISSOa 1.100 Z SL00 z LO00O 0 :3ax amoiv '.uIDNIS 119119 E X t2 Z 33 L aas0 ion 178ISSOd LOCO 0 :J35 03NU1 R009 HOKIN 1. a9 L

8000 Z LOGO 0 3351X lasoi'I1 ziY'idw 921 omu 391 vv L

ZoNz5aaad SSOHD 2 531091111i1 ad11 a91 710a

(soliNlaaa 0 laSO IdIas3S9S = 1. 33N32335 Z 'INZ9NOIssV $2 13 DV'IA 2339U335 sS03))

5 O I SI S 17 79 71 a o as a ja a S S 0 a3 2 7 0 a IS

9 soya S6*Lt2:5l:St 4L61 '0£ 113519 0 N I S :3 I a I a R d z I N I Noiivld 903 5/q19

HAL/S COMPILATION I N T E F E T B I C S I N C . ARCH 30, 1974 15:25:L7.95 PAGE 7

DCL NMAE TYPE ATTRIBUTES & CROSS REFERENCE

*** !ROR **** ONE OR MORE VARIABLES REFERENCED BUT NOT ASSIGNED.

MAC R 0O T E X T LIST I G:

LOC TEXT

1 6

Figure 3-2 (con't.)

HAL/S COMPILATION I N T E R N E T R I C S I N C . ABCH 30, 1974 15:25:47.95 PAGE 8

CALLS TO SCAN = 311
CALLS TO IDENTIFY = 85
NUMBER OF REDUCTIONS = 866
MAX STACK SIZE = 11
MAX INC. STACK SIZE - 10
END INC. STACK SIZE = 1
END ARRAY STACK SIZE = 0
MAX EXT ARRAY INDEX = 6
XREF LIST ENTRIES = 71
STATEMENT COUNT = 28
NUMBER OF SYMBOLS = 30
MINCR COMPACTIFIES = 1
MAJCR COMPACTIFIES = 0
MAX NESTING DEPTH = 2
FREE STRING AREA = 33063

END OF HAL/S PHASE 1, MARCH 30, 1974. CLOCK TIME = 15:25:52.46.

39 CARDS WERE PROCESSED.
ONE ERROR WAS rETECTED IN PHASE 1.

A **** SUMMARY OF ERRORS DETECTED IN PHASE 1 ***
ERROR *1 OF SEVERITY 1 LN CROSS-REFERENCE

TOTAL CPU TIME FOR PHASE 1 0:0:1.93.
CPU TIME FOR PHASE 1 SET UP 0:0:0.05.
CPU TIMN FOR PHASE 1 PROCESSING 0:0.:1.63.
CPU TIME FOP PHASE 1 CLEAN UP 0:0:0.25.
PROCESSING RATE: 1435 CARDS PER MINUTE.

******* COMPILATION ERRORS INHIBITED TEMPLATE GENERATION

5 Subscript and assignment
6 Reference and assignment
7 Reference, assignment, and subscript

Comments: Following the last reference listed for
each variable, the compiler may insert a comment
about the variable usage. Possible comments are:

iOT USED; if the identifier appears in a
DECLARE statement but is neither referenced
or assigned.

hOT REFERENCED; if the variable is assigned a
value but never used in any reference
context.

HOT ASSIGNED; if the variable value is
referenced but never appears in any context
where it can receive a value. This is
obviously an error situation involving the
use of an uninitialized variable. Therefore,
the Symbol Table & Cross Reference listing
contains the error message:

I*****ERHOR*****REFEREJCED BUT NOT ASSIGNED"

to call attention to this situation.

3.7 M1acro Table

Following the cross references, there will be a HACRO TEXT
listing if any REPLACE definitions appear in the program.
Figure 3 contains a IIACRO TEXT listing. The LOC field refers
to the TYPE field in the symbol table listing for REPLACE class
variables, and the TEXT indicates the string which was
substituted whenever the identifier was encountered. REPLACE
definitions are cross-referenced as well as any identifiers
which may occur within replacement string.

3.8 Optional Unformatted Listing

The primary source listing generated by the HAL/S compiler
is completely reformatted by the output writer. As a result,
the source text has lost its relationship to the original card
image input.

In order to give the programmer a correlation between the
primary source listing and his original input, the HAL/S
compiler will supply an optional unformatted source listing. A
sample of such a listing is shown in Figure 3.3.

This option is requested by including the word "LISTING2"
in the OPTION field of the JCL (see Section 2.1.3).

3-15
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

SA L C O P IL A T I O -- PHASE 1 U O R A T TED S O UR C E L I S T I NG PGU 1

1 HI DEHO:PROGRAM; 1 DEHO

CI i2 DENO
CI THIS IS A DEMONSTRATION PROGRAM TO SHOW THE LISTING PRODUCED BY I 3 DENO
CI THE HAL/S-360 COMPILER I 4 DEMO

CI 5 DEMO

2 HI REPLACE PRINTER BY "6": 6 DENO

3 81 DECLARE INTEGER INITIAL(1)A,B,C: 1 7 DENO

4 MI DECLARE D ,P,G; I 8 DEO

5 MI DECLARE E VECTOR(4): 9 9 -DEO

6 HI DECLARE H,I,J,K ARRAY(5) HATRIX(3,4),L,8,,O0 SCALAR; I 10 DEMO

7 HI STRUCTURE AA: I 11 DEMO

7 lI 1 BB,2 CC MATRIX(4,3), 1 DD,2 EE ARRAY(4) HATRIZ(3,4) I 12 DEHO

7 1t : 13 DEEO

8 M1 STRUCTURE 00: 1 DE1O

8 N1 1 RE, 15 DUO

8 aI 2 AAREF AA-STRUCTURE, I 16 DIMO

8 NI 2 SS CHARACTZR(5); I 17 DNo

9 MI DECLARE Y_STRUCTURE QQ-STRUCTURE(5); I 18 DENO

10 at PROC1:PROCEDURE; I 19 PEOCi

11 HI DECLARE A INTEGER; i 20 PROCi

12 HI IF A=B THEN DO; I 21 PROC1

14 HI LABELI:B=C: 1 22 PROC1

15 HI MYSTRUCTURE. ER.AAREF.DD.EES(*;3:2,*)- I 23 PROCI

15 HI MY_STIUCTURE.RR.AAREP.BB.CCS(*;*,2); I 24 PROC1

16 NI END; I 25 PROCI

16 1I ELSE A=C; (26 PROCi

18 HI CLOSE PROCI: I 27 DEO

19 81 DO FOR C - 1 TO 100; I 28 DEMO

20 Mt D=KS(C:2,3); I 29 DEMO

21 MI END; Figure 3-3 The HAL/S Unformatted Source 30 DEao

Listing and Additional Phase I Information

A L C 0 PI L A T ION -- PHAS E 1 -- F 0 R a T TED S 0 U R C E L IS T I N G PAGE 2

22 MI DO CASE A: I 31 DEBO

22 NI A=B: 32 DENO

24 M E=KS(B:A,*); I 33 DEMO

25 Nl END; I 34 DEBO

26 HI K=0; I 35 DEBO

27 MI WRITE(PRINTEP) HY_STRUCTURE. .AAREF.BB.CCS(3;1 TO 3,*), I 36 DEBO

27 NI YT_STROCTURE.R.AIREF.DD.EE I 37 DENO

27 NI S(2;2 TO 4:),D,E,F,G,H,I,J,K,L,M,N,O; I 38 DENO

28 MI CLOSE DEMO; 1 39

Figure 3-3 (con't.)

HAL/S COMPILATION I 3 TI B I E T R I C S I N C . UABC8 30, 1974 1522547.95 PAGE 8

CALLS TO SCAN = 311
CALLS TO IDENTIFY = 85
NUMBER OF R3DUCTIONS = 866
MAX STACK SIZE = 11
MAX IND. STACK SIZE = 10
END IND. STACK SIZE w 1
END ARRAY STACK SIZE = 0
MAX EXT ARRAY INDEX = 6

XIEF LIST ENTPIES = 71
STATEMENT COUNT = 28
NUMBER OF SYMBOLS = 30
MINOR COMPACTIFIFS = 1
HAJCR COMPACTIFIES = 0
MAX NESTING DEPTH a 2
FREE STRING AREA = 33063

END OF HAL/S PHASE 1, MAPCH 30, 1974. CLOCK TIME * 15:25:52.46.

39 CARDS WERE PROCESSED.
OIE ERROR WAS rETECTED IN PHASE 1.

A **** SUMMARY OF ERRORS DETECTED IN PHASE 1 ****

ERROR 81 OF SEVERITY 1 IN CROSS-REFERENCE

TOTAL CPU TIME FOR PHASE 1 0:0:1.93.

CPU TIME FOR PHASE 1 SET UP 0:0:0.05.

CPU TIME FOR PHASE 1 PROCESSING 0:0:1.63.

CPU TIME FOR PHASE 1 CLEAN UP 0:0:0.25.

PROCESSING RATE: 1435 CARDS PER MINUTE.

******* COMPILATION ERRORS INHIBITED TEMPLATE GENERATION

Figure 3-3 (con't.)

3.8.1 Format

The optional listing contains card images as read
from the input stream. These images receive no
compiler-generated annotation. Each card image is
bracketed by vertical bars (I).

To the left of each image, the compiler prints the
card type identification from column one of the input
card. The HAL/S statement number of the first statement
included on the card is also printed to the left of the
card type. This statement number is the same as the one
assigned to the expanded source by the compiler in the
primary source listing.

To the right of the card image, the compiler places a
sequential card number, one number per card, which simply
indicates a card's relative position in the input deck.

Current Scope information is supplied in the same
manner as in the primary listing. No other information is
put into the auxiliary listing. This listing does not
receive any error indication messages.

3.9 Additional Information

Immediately following the Macro Text Listing, the compiler
prints a list of internal statistics for use in compiler
development. These statistics can be ignored by the
programmer.

3.10 Phase II Listing

The Phase II listing of the HAL/S Compiler identifies
itself and lists current date and time before entering into the
code generation process (see Figure 3.4).

If the 'OPTIONS=' field in the EXEC statement of the JCL
specifies the 'LIST' option, a listing of all control section
names needed by the compiled program is prOduced (see fig.).
The format of this listing is typical of IBM model 360
compilers and translators.

Following this, a completely formatted object module
listing will be produced (see fig. 3-4). This listing shows
the complete code generated for each control section in both
hexadecimal and pseudo- assembler formats. This is listed
after a line in the following format:

ST#n EQU *

SI 3-16

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

where n is the compiled HAL/S statement number, and 'ST#n' is
in the label field. The label field is also used to indicate
both HAL/S label names and internal branch points in the same
format as the HAL/S statement number indicator. The comments
field gives information about the symbolic operand referenced
by the instruction.

Following this is a map of relocation information included
in the produced object module.

Regardless of whether 'LIST' was specified or not, a
listing of several performance statistics is printed next.
These are included to aid in compiler generation, and are of no
concern to the programmer.

3.11 Phase III

The .Phase III listing of the HAL/S compiler identifies
itself and lists the current time and date before beginning
construction of the simulation data file.

If the 'OPTIONS=' field in the EXEC statement of the JCL
specifies the 'TABLIST' option, the following printout will
result:

1) Translation Table - Lists the identification
codes (decimal and hexadecimal) assigned to
blocks, symbols, and statements (statement
#) and gives the associated block name,
symbol name, and SRN (if present), together
with the virtual memory pointer to the
corresponding file node.

2) Hex dump of the file, page by page.

Following the optional TABLIST data, Phase III prints a
message stating that the SDF has been either created or
replaced (updated).

A listing of performance statistics is printed next.
These are included to aid in compiler generation, and are of no
interest to the programmer.

3-17

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HAL/S COMPILATION I N T E R M E T R I C S I N C MARC 30, 1974 15:25:47.95 PAGE 9

HAL/S COMPILER PHASE 2 -- VERSION 360-7.0 OF MARCH 29, 1974. CLOCK TIME = 5:57:59.03

HAL/S PHASE 2 ENTERED BARCB 30, 1974. CLOCK TIME = 15:25:58.96

Figure 3-4

HAL/S COMPILATION I I T E R H B T R I C S I N C MARCH 3D, 1971 15:25:7.95 PAGE 10

ESDID NAME TYPE LENGTH BLOCK NAME

0001 SDENO 0000 000226 DERO
0002 0004 OC008C PROCl
0003 .DEMO 0000 00006B
0004 %DEMO 0000 000070
0005'*DEMO 0000 000608
0006 aDEMO 0002
0007 IOINIT 0002
0C08 M21SNP 0002
0009 EOUT 0002

Figure 3-4

HAL/S COMPILATION I N T E B n B T B I C S I u C . MARC 30, 1974 15:25:47.95 PAGt 1

LOCCTR CODE LABEL INSN OPERANDS SYMBOLIC OPERAND

000000 ST*1 EQU TIME = 39
000000 $DEMO CSECT ESDID= 0001
000000 DENO EQ *
000000 47FOF010 BC 15,16(0,15)
000004 000002B8 DC A'000002BB'
000C08 0050 DC 1'0050'
00000A 04C4C5D4 DC X'04C4C5D4'
00000E 06 DC X'D6'
00000? 00 DC X'00'
000010 58B0P004 L 11,4(0,15)
000014 986AB028 LM 6,10,40(11)
000018 05EB BALR 14,11
00001A 0001 DC X'0001'
00001C ST#2 EQU * TIME = 0
00001C ST#3 EQU * TIME = 0
000398 $9EMO CSECT ESDID= 0005
000398 0001- DC X'0001'
00039A ST#3 EQU * TIME = 0
00039A 0001 DC X'0001'
00039C ST#3 EQU * TIME = 0
00039C 0001 DC X'0001
0C039E ST#4 EQU * TIME = 0
00039E ST#4 EQU * TIME = 0
00039E ST#5 EQU * TIME = 0
00039E ST#6 EQU * TIME = 0
00039E ST#7 EQU * TIME = 0
00039E ST#8 EQU * TIME = 0

t) 00039 ST#9 EQU * TIME = 0
A 00039E STI-0 EQU * TIME = 10

00001C $DEMO CSECT ESDID= 0001
000228 SDEMO CSECT ESDID = 0002
000228 PROC1 EQU
000228 47F0?010 BC 15,16(0,15)
00022C 000002B8 DC A'000002B8'
000230 0050 DC X'0050'
000232 05D7D9D6 DC X'05D7D9D6'
000236 C3F1 DC X'C3Fl'
000238 05EB BALR 14,11
00023A 000A DC X'000A'
00023C ST#11 EQU * TIME = 0
00023C ST#12 EQU * TIME = 33
00023C 05EB BALR 14,11
00C023E 000C DC X'O00C'
000240 4820AC06 LH 2,6(0,10) A
0002U4 4920A002 CH 2,2(0,10) B
000248 476F0078 BC 6,120(15,0) 000210 LBL#4
00C0250 ST#13 EQU * TIME = 0
000250 05EB BALR 14,11
000252 000D DC X'000D
00C0254 ST#14 EQU * TIME = 18
000254 LABEL1 EQU *
OC0254 4820A004 LH 2,4(0,10) C
000258 4020A002 STH 2,2(0,10) B
00025C 05EB BALR 14,11
00025E 000E DC X'000E'

Figure 3-4

HAL/S COMPILATION I T E R H T EB C S T N C . MARCH 30, 1974 15:25:47.95 PAGE 12

LOCCTR CODE LABEL INSU OPERANDS SYMBOLIC OPERAND

000260 ST#15 EOU * TIME = 1601
000260 41900001 LA 9,1(0,0)
000264 LBLOS EQU
000264 1889 LR 8.9
000266 &C08B04C RH 8,76(0,11) H'248'
00026A 1879 LR 7,9
00026C 4C70B04C RH 7,76(0,11) H'248'
000270 412840D4 LA 2,212(8,10) MY STRUCTURE+156
000274 4137A038 LA 3.56(7,10) MY_STrUCTURE
000278 4140000C LA 4,12(0,0)
00027C 41000004 LA 0,4(0,0)
000280 45E0C060 BAL 14,96(0,12) V1SNP
000284 41909001 LA 9,1(0,9)
000288 4990B0 E CH 9.78(0,11) H*5'
0C028C 47CF003C BC 12,60(15,0) 000264 LBL#5
000290 05EB BALR 14,11
000292 000P DC X'000F'
0C0294 ST#16 EQU * TIME = 0
000294 05EB BALR 14,11
000296 0010 DC X'0010'
000298 STt17 EQU * TIME = 35
00C0298 47FF0084 BC 15,132(15,0) 00021C LBL#6
0002A0 LBL*4 EQU *
OC02A0 4820A004 LH 2,4(0,10) C
0002A4 4320A006 STH 2,6(0,10) A

j7 0002A8 058B BALR 14,11
o 0002AA 0011 DC X'0011'

A 0002AC ST#18 EQU * TIME = 10
CC02AC LBL#6 EQU *
0002AC 05EB BALB 14,11
0002AE 0012 DC X'0012'
000280 47F0C004 BC 15,4(0,12)
00001C $DENO CSECT ESDID= 0001
00001C ST#19 EQU * TIME = 41
00001C 41900001 LA 9,1(0,0)
000020 LBL#7 EQU
000020 4090A004 STH 9,4(0,10) C
0C00C24 05EB BALR 14,11
000026 0013 DC X'0013'
0C0028 U990804A CH 9,74(0,11) A*100'
00002C 472F0058 BC 2,88(15,0) 000058 LBL#8
000034 ST#20 EQU * TIME = 58
000034 UC903048 MH 9,72(0,11) H'3'
000038 88900002 SLA 9,2
00003C 89900002 SLL 9,2
000040 7829A028 LE 2,40(9,10) K+28
000044 7020A008 STE 2,8(0,10) D
000048 05EB BALR 14,11
00CO4A 0014 DC X'00141
00004C ST#21 EQU * TIME = 24
00004C LBL#9 EQU
00004C 41900001 LA 9,1(0,0)
000050 4A90A004 AH 9,4(0,10) C
000054 47FF0020 BC 15,32(15,0) 000020 LBL#7
000058 LBL#8 EQU *

Figure 3-4

HAL/S COMPILATION I N T E R M B T R I C S I N C . MABCH 30, 1974 15:25:47.95 PAGE 13

LOCCTR CODE LABEL INSN OPERANDS SYMBOLIC OPERAND

C0C0058 C5EB BALB 14,11
00005A 0015 DC X'0015'
00005C ST#22 EQU * TIME = 95
00005C 4820A000 LH 2,0(0,10) A
000060 05EB BALR 14,11
000062 0016 DC X'0016'
000064 413F00E4 LA 3.228(15.0) 0000E4 LBL#10
0OC36C 59203000 C 2,0(0,3)
00C0070 472F008A BC 2.138(15,0) 00008A LBL#11
000078 88200002 SLA 2,2
00007C 47DF008A BC 13,138(15,0) 000081 LBL#11
000084 58E230C00 L 14,0(2,3)
0000C88 07FE BCR 15,14
00C08A LBL*11 EQU *
00008A 45E0018 BAL 14,24(0,12) ERBSND
000COC 0D00308 DC A'0D000308
000092 ST#23 EQU * TINE = 35
000092 47FFOOFO BC 15,240(15,0) 00000FO LBL#12
000091 LBL#13 EQU
00009A 4820A002 LH 2,2(0,10) B
00009E 4020A000 STH 2,0(0,10) A
00COA2 05EB BALE 14,11
0000A4 0017 DC X'0017'
C0000A6 ST#24 EQU * TIME = 256

0000A6 47FF30P0 BC 15,240(15,0) 000070 LBL#12
0000AE LBL1l4 EQU *
000OAE 4890A002 LH 9,2(0,10) B
000082 4C90BC0L8 MH 9,72(0,11) H'3'

A 0000B6 4A90A000 AH 9,0(0,10) A
0000BA 89900002 SLA 9,2
00008E 89900002 SLL 9,2
OCOCC2 48908046 SH 9,70(0,11) H'16'
0000C6 4120A02C LA 2,44(0,10) E
0000CA 4139A00C LA 3,12(9,10) K
0000CE 41000004 LA 0,4(0,0)
0000D2 45E0C040 BAL 14,64(0,12) V1SN
0000D6 05EB BALR 14,11
OC00D8 0018 DC X'0018'
0000DA ST#25 EQU * TIME = 17
0000DA 47FF00FO BC 15,240(15,0) 0000FO LBL#12
0000E4 LBL#10 EQU
0000E4 00000002 DC X'00000002'
000E8 0000009A DC A00OOOOO9A' DEMO
0000EC 00000AE DC A'000000AE' DENO
0000FOF0 LBL#12 EQU
0000FO 05EB BALR 14,11
0000F2 0019 DC X'0019'
0000F4 ST126 EQU * TINE = 481
0000F7 41900001 LA 9,1(0,0)
0000F8 LBL#15 EQU *
0000F8 1889 LR 8,9
0000FA 4C80BO44 MH 8,68(0,11) H'12'
0000FE 89800002 SLL 8,2
000102 2800 SDE 0.0
000104 4128A00C LA 2,12(8,10)

Fiaure 3-4

HAL/S COMPILATION I N T E R E T B I C S I N C . ARCH 30, 1974 15:25:47.95 PIGE 14

LOCCTR CODE LABEL INSU OPERANDS SYMBOLIC OPERAND

000108 4100000C LA 0,12(0,0)
00010C 45EOCOF8 BAL 14,248(0,12) V16SN
000110 41909001 LA 9,1(0,9)
000114 4990B04E CH 9,78(0,11) H'5'
000118 47CF00F8 BC 12,248(15,0) 0000F8 LBL#15
00011C 05EB BALR 14,11
00011E OO01A DC OO001A'
000120 ST#27 EQUO TIRE = 1062
000120 41100006 LA 1,6(0,0)
000124 41000003 LA 0,3(0,0)
000128 05EC BALE 14,12
00012A 00000000 DC A'00000000' IOINIT
00012E 4130A31C LA 3,796(0,10) MTSTRUCTURE+740
000132 184 SR 4,4
000134 41000003 LA 0,3(0,0)
000138 41100033 LA 1,3(0,0)
00013C 05EC BALR 14,12
00013E 00000000 DC A'00000000' 21SNP
000142 41900001 LA 9,1(0,0)
000146 LBL#16 EQU *
000146 1889 LR 8,9
000148 4C808048 MH 8,72(0,11) H'3'
00014C 88800002 SLA 8,2
0C0150 89800002 SLL 8,2
000154 4138A254 LA 3,596(8,10) RTYSTRUCTURE+540
000158 184 SE 4,4
00015A 41000003 LA 0,3(0,0)
CC615E 41100004 LA 1,4(0,0)
000162 05EC BALE 14,12
0(0164 00000000 DC A'00000000' 92151P
000168 41909001 LA 9,1(0,9)
CO016C 49908048 CH 9,72(0,11) H'3'

000170 47CF0146 BC 12,326(15,0) 000146 LBL#16
000174 7800A008 LE 0,8(0,10) D
000178 05EC BALR 14,12
00017A 00000000 DC A'00000000' EOUT
00017E 4130A02C LA 3,44(0,10) E
000182 1844 SR 4,4
000184 41000001 LA 0.1(0,0)
000188 41100004 LA 1,4(0,0)
00018C 053C BALR 14,12
00018E 00000000 DC A'00000000' M21SNP
000192 7800A00C LE 0,12(0,10) F
000196 05EC BALR 14,12
000198 00000000 DC A'03000000' EOUT
00019C 7800A010 LE 0,16(0,10) G
0001A0 05EC BALE 14,12
0001A2 00000CCO DC A'00000000' EOOT
C0001A6 78004014 LE 0,20(0,10) H

OC01AA 05EC BAbR 14,12
OCO1AC 00000000 DC A'00000000' EOOT
000180 7800A018 LE 0,24(0,10) I
000184 05EC BALE 14,12
000186 OOO000000CO DC A'00000000' EOUT
0001BA 7800A01C LE 0,28(0,10) J

Figure 3-4

HAL/S COMPILATION I N T E R M E T R I C S I N C. naRC 30, 1974 15:25:47.95 PAGE 15

LOCCTR CODE LABEL INSY OPERANDS SYMBOLIC OPERAND

00018E 05EC BALB 14,12
0001CO 00000000 DC A'00000000' BOUT
C001C4 41900001 LA 9,1(0,0)
OC01C8 LBL*17 EQU
0001C8 1889 LR 8.9
0001CA 4C808044 MH 8,68(0,11) H'12'
OC01CE 89800002 SLL 8,2
CCO1D2 4138A00C LA 3,12(8,10) K
0001D6 1844 SR 4,4
0001D8 41000003 LA 0,3(0,0)
0001DC 41100004 LA 1,4(0,0)
0001E0 05EC BALR 14,12
0001E2 CO00000 DC A'00000000' M21SNP
0001E6 U1909001 LA 9,1(0,9)
0001EA 4990B04E CH 9,78(0,11) H'5'
0001EE 47C?01C8 BC 12,456(15,0) 0001C8 LBL17
0001F2 7800A020 LE 0.32(0,10) L
0001F6 05EC BALE 14,12
OCO1F8 000000CO DC A'00000000' EOUT
0001FC 7800A024 LE 0.36(0,10) R
C02C0 05EC BALR 14,12

000202 00000000 DC A'00000000' BOUT
000206 7800A028 LE 0,40(0,10) N
C0020A 05EC BALE 14,12

00020C 00000000 DC A'00000000' BOUT
000210 7800A02C LE 0,44(0,10) 0
000214 05EC BALR 14,12
C000216 00000000 DC A'00000000' BOUT

A 00021A 05EB BALE 14,11
00021C 0018 DC X'001B'
00021E STS28 EQU * TINE = 10
00021E 05EB BALE 14,11
000220 001C DC X'001C'
000222 47F00C004 BC 15,4(0,12)
000288 $DEBO CSECT ESDID = 0003
000288 47FOC174 BC 15,372(0,12) STRACE
00029C 00000398 DC A'00000398'
OC0200 00000328 DC A'00000328'
0002C4 FF000324 DC A'FF000324'
00C02C8 00000000 DC A'00000000 ' DEHO
0002CC 0001 DC X'0001'
0002CE 001C DC I'001C'
000200 00000000 DC X'00000000'
0002D4 00000000 DC X'00000000'
0002D8 00000000 DC X'00000000'00
0002DC 00003000 DC I'00000000'
OC02EO 00000398 DC A'00000398'
00C02E4 00000398 DC A'00000398'
0002E8 00000398 DC A'00000398'
00C2EC 00000398 DC A'00000398'
0002FO 00000398 DC A'00000398'
0002F4 00000001 DC X'00000001'
0002F8 00000000 DC A'00000000' &DENO
0002FC 000C DC X'000C'
0002FE 0010 DC X'0010'

Figure 3-4

HAL/S COMPILATION I N T E R M E T R I C S I N C ARCH 30, 1974 15:25:47.95 PAGE 16

LOCCTR CODE LABEL INSN OPERANDS SYMBOLIC OPERAND

000300 0003 DC 7'0003'
0C0302 0064 DC K'0064'
000304 00F8 DC X'00F8*
000306 0005 DC 1'0005'
0C0308 1AC3C1E2 DC X'1AC3CIE2
00030C C54035C1 DC X'C540E5C1'
000310 D9C9C1C2 DC X'D9C9C1C2'
000314 D3C540D6 DC X'D3C540D6'
000318 E4E340D6 DC X'E4E340D6'
0C031C C640D9C1 DC X'C640D9C1'
000320 D5C7C5 DC X'D5C7C5'
000328 SDENO CSECT ESDID= 0004

END

Figure 3-4

Figure 3-4

HAL/S CONPILATION I N T E R 5 E T H I C S I N C . HARCH 30, 1974 15:25:47.95 PAGE 17

RLD POS REF FLAG ADDPESS

0001 0009 C8 000217
0001 0009 08 00020D
0001 0009 08 000203
0001 0009 C8 0001P9
0001 0008 08 0001E3
0001 0009 08 0001C1
0001 0009 08 000187
0001 0009 08 0001AD
0001 0009 08 0001A3
C001 0009 C8 000199
0001 0008 C8 00018F
0001 0009 08 000178
C0001 0008 08 000165

0001 0008 08 00013F
0001 0007 08 000128
0001 0001 C8 000ED
C0001 0001 08 OOCE9

0001 0003 08 00008F
0001 0003 08 000C05
0002 0003 08 00022D
0003 0006 08 0002F9
0003 0005 C8 0002P1
0003 0005 C8 0002ED
0003 0005 C8 0002E9
0003 0005 08 0002E5

- 0003 0005 C8 0002E1
0003 0001 08 0002C9
0003 0004 C8 0002C5
0003 0004 C8 0002C1
0003 0005 08 0002BD

LOC B DISP NAME

UNDER DEMO
000398 A 000 A
00C039A A 002 B
00C039C A 004 C
0003A0 A 038 D
0003A4 A OOc F
0003A8 A 010 G
0003C8 A 02C E
0003AC A 014 H
000380 A 018 I
000384 A 01C J
0003D8 A OOC K
000388 A 020 L
0003BC A 024 M
0003C0 A 028 N
0003C4 A 02C 0
0004C8 A 038 MYSTBUCTUR

UNDER PROC1
00039E A 006 A

Fiaure 3-4

HAL/S COMPILATION I N T E R B T R I C S I N C . EARCH 30, 1974 15:25:47.95 PAGE 18

INSTRUCTION FREQUENCIES

INSN COUNT
BALR 15
BCB 1
LR 5
SR 4
SDR 1
STH 4
LA 34
BAL 4
BC 18
LH 6
CH 6
AH. 2
SH I
MH 7
L 2
C 1
STE 1
LE 11
SLL 5
SLA 4
LM 1

*** CONVERSION ERRORS INHIBITED EXECUTION

102 HALMAT OPERATORS CONVERTED

A 920 BYTES OF PROGRAM, 1544 BYTES OF DATA

MAX. OPERAND STACK SIZE =7
END OPERAND STACK SIZE =0
NUMBER OF STATEMENT LABELS USED =17
MAX. STORAGE DESCPIPTOR STACK SIZE =0
END STORAGE DESCRIPTOR STACK SIZE =0
NUMBER OF MINOR COMPACTIFIES =1
NUMBER OF MAJOR COMPACTIFIES =0

END OF HAL/S PHASE 2 MARCH 30, 1974. CLOCK TIME = 15:26:4.76
TOTAL CPU TIME FOR PHASE 2 0:0:1.43
CPU TIME FOR PHASE 2 SET UP 0:0:0.03
CPU TIME FOR PHASE 2 GENERATION 0:0:0.35
CPU TIME FOR PHASE 2 CLEAN UP 0:0:1.05

Figure 3-4

4. DEBUGGING AIDS

4.1 Compilation Errors

4.1.1 ressage Format

When Phase 1 of the HAL/S compiler (the syntax
checking phase) detects an error condition, a diagnostic
message is placed in the primary source listing at the
point of detection. These error messages have the
following form:

***** c ERROR #n OF SEVERITY s. *****

***** text of message

In this message:

c = mnemonic error name uniquely identifying
this error message (see Sec. 4.1.2)

n ; indication that this is the nth error in the
current compilation

s = severity of error (see Seco 4.1.3)

For error messages other than the first in a given
compilation, the following line is placed after all error
messages referring to a particular HAL/S statement:

***** LAST ERROR WAS DETECTED AT STATEIENT m *****

where m is the HAL/S statement number of the most recent
previous statement that received an error message.

4.1.2 Classification Scheme

Each error message that may be generated by Phase 1
of the HAL/S compiler has a unique mnemonic designation
which appears in the error printout. These mnemonics have
been assigned according to general error-type classes.
The first letter of each error message mnemonic indicates
the major class to which the error belongs (see Appendix
D). The second letter, if present, indicates a sub-class
further describing the error. These one or two letters

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

are followed by a number which simply indicates members of
a class-subclass group. The table at the beginning of
Appendix D shows the meaning of the possible letter
combinations.

4.1.3 Error Severity

The severity indication in the error message shows
the effect of the error on the compilation process. The
possible severities and their effects are as follows:

0 = warning (compilation proceeds normally)

1 = error (compilation proceeds, execution prevented)

2 = severe error (syntax check continues,
code generation prevented)

>2 = abortive error (compilation halts immediately)

4.1.4 Phase I Error Summary

Hear the end of the Phase I source listing and table
printout, a summary of detected errors is printed in the
following form.

END OF HAL/S PHASE 1, <date>. CLOCK TIME = <time>

n CARDS WERE PROCESSED.

x ERRORS WERE DETECTED. THE HAXIMUM SEVERITY WAS y.
THE LAST ERROR DETECTED WAS AT STATEMENT z.

***** SUMMARY OF ERRORS DETECTED IN PHASE 1 *****

ERROR #1 AT STATEMENT el OF SEVERITY sl

ERROR #2 AT STATEMENT e2 OF SEVERITY s2

4.1.5 Phase II Errors

Phase II of the HAL/S compiler (the code generation
phase) may also produce some error messages (see Sec.
3.6). These messages have the form:

*** ERROR #1 DURING CONVERSION OF HAL/S STATEMENT n
text of message 4-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

where n is the HAL/S compiler-assigned statement number to

which the error refers. Following these specific

messages, Phase II supplies a disposition message
indicating the total effect of all Phase II messages on

the compilation.

4.2 Execution Errors

4.2.1 Introduction

This section describes how error handling has been

implemented in the HAL/S 360 system. In the HAL/S system

every error is assigned a non-zero positive number. There

are two classes of errors:

i) system-defined errors, (1-99) which arise as a result
of failure during the execution of a user s program,
and are signalled internally;

ii) user-defined errors, (100-120) which are signalled by
the user through a SEND ERRORn statement.

System-defined errors may also be signalled by the user
through a SEND ERRORn statement.

The HAL/S Error Processor processes all errors and
determines what action is to be taken. The user can gain

control after an error by means of the ON ERRORn GO TO xxx
statement, or leave the system in control by default or by

means of the ON ERRORn SYSTEt statement. Additionally,
the user can specify that the HAL/S Error Processor take

no action for a specific error by means of the ON ERRORn

IGNORE statement. These three possible actions will be

referred to as GO TO action, SYSTEM action, and IGNORE

action respectively.

In the following sections, the error format given

shows the maximum information printed. If the compile time

TRACE option is not in effect then there will be no

information on the statement number of the last HAL/S
statement to be executed.

4.2.2 GO TO Action

If the user has requested control for a particular
error via a HAL/S ON ERROR GO TO statement, control is
transferred to the appropriate location. If the runtime

parameter MSGLEVEL has been specified with a value greater
than zero, the following message is printed:

< 4-3

INTRMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-18

***HAL ERROR n - (message) -->(location)
LAST STATEMENT WAS m
TRANSFER TO GO TO label -->(location)

If the MSGLEVEL value is zero, no message is printed.
Certain errors cannot result in GO TO action. If such an
error occurs after the error has been specified in an ON
ERROR GO TO statement, SYSTEM action ensues.

4.2.3 SYSTEM Action

One of three possible SYSTEM actions may ensue:

UNLIMITED - The standard fixup for ERRORn is taken
and the following message is printed:

***** HAL ERROR n - (message) --> (location)
LAST STATEMENT WAS m
STANDARD FIXUP, EXECUTION RESUMED

where (message) is the error text corresponding
to ERRORn. The last HAL/S statement to be fully
executed is specified by m and the address of
the error is specified by (location). Following
this, the Error Processor returns control to the
user s program.

LIHITED - The error count for ERRORn is updated.
If it equals or exceeds a user-set maximum count
(refer to the the ERRORLIM option in Appendix B.
- note that this is applied to all LIMITED type
errors for which SYSTEM action is specified),
the following message is printed:

***** HAL ERROR n - (message) --> (location)
LAST STATEMENT WAS m
ERROR COUNT EXCEEDED

and execution of the user's program abnormally
terminates.

Otherwise, if the maximum count is not
exceeded, the standard fixup for ERRORn is taken
and the following message is printed:

***** HAL ERROR n - (message) --> (location)
LAST STATEMENT WAS m
STANDARD FIXUP, EXECUTION RESUMED

and the Error Processor returns control to the
user s program.

In both cases, (message) is the text for

4-RCS NCORPORATED 701 CONCORD AVENUE * CAMBRIDGE MASSACHUSETTS 02138 (617 661-1840
INTERMETRICS INCORPORATED.- 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.- (617) 661-1840

ERRORn, (location) is the address where the
error occurred, and m is the last HAL/S
statement to be fully executed.

TERMINATE - The following message is printed:

***** HAL ERROR n - (message) -- > (location)
LAST STATEMENT WAS m
SYSTEM ACTION IS TERMINATE

where (message) is the text for ERRORn,
(location) is the address where the error
occurred, and m is the last HAL/S statement to
be fully executed. Following this, execution of
the user's program abnormally terminates.

Note that the form of the SYSTEM action and
standard fixup is specified for each error message
in Appendix E.

4.2.4 IGNORE Action

If a particular error has been specified in a HAL/S
ON ERROR IGNORE statement, the occurrence of the error
causes the standard fixup for the error to occur.
However, no message is generated and the occurrenceof the
error does not contribute towards the termination error
count for that error. Certain errors cannot be ignored.
If such an error occurs after an ON ERROR IGNORE statement
has been executed for the error, SYSTEM action ensues.

4.2.5 The Error Summary

Whether execution terminates normally or abnormally,
if there were any errors signalled either internally or by
the user, a summary in the following form is printed on
the output channel defined by the MCHAN RUNPARM option
(see Appendix B):

*** SUMHIARY OF ERRORS **

ERROR# SYSTEM GOTO IGNORE

<e> <nel> <ne2> <ne3>

where <e> is an error number and <nel>,<ne2>, and <ne3>
are the individual counts, by action type, for the error.

If the MSGLEVEL parameter has a value greater than

ITERMERICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 34 (617) 661--5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-11

zero and if no errors occurred, the following message is
printed:

NO ERRORS OCCURRED IN THIS RUN

4.3 Execution Dumps and Traces

When an executable form of a HAL/S program (or program
complex) has been produced by the HALLINK program as described
in Section 2, its execution may be carried out in one of two
ways:

1) direct execution of the program;

2) execution of the program under control
of an execution monitoring system.

In either mode of execution, actual operation of the HAL/S
program is identical. The differences between the two modes lie
in the type and degree of diagnostic aids available.

4.3.1 Direct Execution

Direct Execution of a HAL/S program is achieved by
naming the program in the PGN= field of an EXEC card of an
OS/360 job step. This type of execution is automatic if
the HALSLG or HALSCLG catalogued procedures of Appendix C
are used. Parameters may be passed to the module via the
PARH field or, if the catalogued procedures are used, via
the RUNPARM field. The legal parameters and their effects
are listed in Appendix B with one exception: the DUIIP=
parameter has no effect under direct execution. This
means that no dump of HAL/S variables may be obtained
(even during abnormal termination) when a HAL/S program is
executed directly. HAL/S variable dumps may be obtained by
running under the execution monitoring system described
next in Section 4.3.2 Under direct mode, all features of
the simulated Real Time executive (see section 5) are
available since the necessary routines are made part of
the HAL/S load module during the HALLINK step.

4.3.2 The Execution Ilonitoring System

To obtain the most complete diagnostic capability,
the user may run a HAL/S load module under control of the
execution monitoring system. Execution in this mode is
produced by using the HALSCLD and HALSLD catalogued
procedures in Appendix C. Under this mode, initial
execution control is given to a montitor program (RU14MON)
by specifying RUNMON in the PGII= field of the EXEC card.
RUNMON is a processing program supplied with the basic
HAL/S-360 compiler system.

6< 4-6

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

RUNMON performs two basic tasks:

1) loading and execution of a diagnostic

request processor;

2) loading and execution of a HAL/s program
as directed by the inputs to the diagnostic

request processor.

Under this system, the user indicates diagnostic

requests via an input dataset. The dataset is indicated in

the JCL of the execution step as:

//GO.REQUESTS DD *

<request cards>

/*

The REQUEST DD card may also indicate any existing dataset

into which the requests have been previously stored.

Under Release 7 of the HAL/S-360 Compiler System, the

requests which may be made are quite simple. The legal

requests are:

EXECUTE <module name>
PARAMETERS '<run time options>';

<module name> is the name of the load module which

contains the HAL/S program to be executed. The specified

module is loaded from the dataset indicated on the HALHOD

DD card. In the above illustration, <runtime options> is a

set of options as described in Appendix B. All options may

be specified including requests for dumps of HAL/S

variables.

If the HALSCLD catalogued procedure were used to

compile, link, and execute a HAL/S program, the following

REQUESTS DD card could be used:

//GO.REQUESTS DD *
EXECUTE TEHPNAME
PARAMETERS 'TRACE=4,DUMP=2'

The EXECUTE request indicates a module named

TEMPNAME. This name is the default module name generated

by HALLINK is specific HALLINK requests to change the

default are not made. (Changing the module name may be

accomplished by the inclusion of a NAME card in the

HALLINK input stream, or by specifying a member name on

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1

the SYSLNOD DD card in the HALLINK step.) The above
PARAMETERS request indicates that executive tracing of
realtime activity (TRACE=4) and an unconditional
termination dump (DUMP=2) are to be provided.

Note that to perform any type of dump activity, the
execution monitoring system must be provided with the
Simulation Data Files (SDF) for any HAL/S compilation
units for which dumps are expected. These SDF datasets are
specified vis the HALSDF DD card. See Section 2 for more
information about the creation and saving of SDF's,

The RUNMON first loads and executes the diagnostic
request processor which reads and interprets the requests
from the REQUESTS DD card. The module indicated in the
EXECUTE request is then executed under control of the
special requests given in the PARAMETERS request. If a
REQUESTS DD card is defined, any information found in the
PARM field passed to the RUNMON program is ignored.

In future releases of the system, many of the
requests which are now specified in the PARAMETERS option
will be expanded and will allow much more detailed control
of diagnostics. This will in general be done by removal of
options from the set of legal options in Appendix B and by
definition of new legal inputs on the REQUESTS DD card.
The future requests will be made via a diagnostic language
which will allow such actions as tracing of single
statements and dumps of specified variables at specific
points of execution, including dumps based on time.

An alternate method for executing a HAL/S program
under control of the execution monitoring system has been
defined. If no REQUESTS DD card is present when the RUNMON
program is executed, certain default actions will take
place:

1) the HAL/S module to be executed is presumed to
have the name TEMPNAME;

2) any PARM field information provided to the RUNMON
program is used as if it had been found on a
PARAMETERS request card. In the HALSCLD and HALSLD
procedures, the term field may be specified via the
RUNPARM JCL option.

This alternate system allows users to run their HAL/S
programs under the execution monitoring system in much the
same way as they can under the direct execution mode. If
the user is doing initial debugging of a new program,
simply changing the name of a catalogued procedure being
used from HALSCLG to HALSCLD will provide identical
program behavior, but will provide the benefit of a dump

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-184U

of all HAL/S variables in the event of an abnormal
termination.

4.3.3 Location of Diagnostic Output

Any printed output generated by the HAL/S runtime
system in either direct execution or execution under the
execution monitoring system is sent to the dataset defined
as the message dataset for the run. This dataset defaults
to the one indicated on the CHANNEL6 DD card and may be
altered by the MCHAN option as described in Appendix B.

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) -9

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138.- (617) 661-1840

5. HAL/S REALTIME PROGRAMS

5.1 Using the Real-Time Features of HAL/S-360

5.1.1 Introduction

The Real-Time features of HAL/S-360 - SCHEDULE, WAIT,
SIGNAL, etc. - have been implemented in Releases 3 60- 4 and
360-5. This section supplements Chapter 8 of the HAL/S Language
Specification with details about compilation and run-time
options, timing, and executive trace mode messages.

- 5.1.2 Terms and Concepts

Process:
The dynamic entity created when a SCHEDULE
statement is executed.

Program, Task;
The static blocks which are scheduled and'
executed as processes; the only allowed object of a
SCHEDULE statement.

Priority:
A number, implicitly or explicitly assignqd to
a process when it gets scheduled, and changeable by
the UPDATE PRIORITY statement, that determines which of
two or more ready processes is executing. A higher value
indicates greater importance. In HAL/S-360, priority may
range from 0 to 255. A value specified outside this range
results in a value MOD 256 with no error message. The
priority of the. initial process is 50.

Process Queue:
A list of active processes ordered by
priority.

5-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Process States:

a) Inactive: A non-existent process. A program or
task block that has not yet been scheduled or has
been terminated.

b) Active: The process exists on the process queue.
A process becomes active when it is scheduled. An
active process may be waiting, ready, or
A process remains excuting until it
terminates in any of several ways.

c) Waiting: The process is unable to execute because
some condition has not been met. Different kinds
of conditions exist:

1) time;

2) event expression;

3) completion of dependent processes;

4) the use of an exclusive procedure.

d) Readv: The process is able to execute but
is not because some other process is executing.

e) Executing: The process is progressing through a
sequence of HAL statements via CPU control.

Process Swap: A process state transition where
one process leaves the executing state and
another process changes from ready to
executing. This may be due to the first
process entering the wait state or inactive
(terminated) state, or because the second
process has a higher priority.

Breakpoint: A place in the code sequence at which
the existence of a higher priority ready
process is allowed to cause a process swap.
Currently in HAL/S-360, this is at the end of
every statement.

5-2
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Event (variable): A HAL variable with a boolean
ON/OFF (or TRUE/FALSE) value. The value (or
state) of an event variable is under
programmer control via the SIGNAL, SET, and
RESET statements. Process event variables
process values that indicate the state of the
associated process: active-ON, inactive-
OFF.

Event expression: A logical combination of event
variables (using AND, OR, NOT) which
specifies a condition for which a process may
wait or be cancelled.

HAL/S-360 load module: An OS/360 load module
which is the result of the HALLINK step. It
contains one or more HAL compilation units
(program, comsub, or compool) and all modules
in the run-time library to which they refer.
It runs under OS/360 as a single OS task.

Termination or Completion: The transition of a
process to the inactive state; its removal
from the process queue.

a) Normal: When an executing process reaches
the highest level RETURN or CLOSE statement
in the program or task, it automatically
waits for the completion of all its dependent
processes, if any exist. Following this, the
process is terminated provided it is not
cyclic (scheduled with a REPEAT option). If
it is a cyclic process, it is prepared for
another cycle of execution, unless it has
been cancelled (see below).

b) Cancellation: This provides a safe way to
stop a cyclic process. If a process has not
yet begun execution or is between cycles of
execution, cancellation causes immediate
termination. If a process has begun but not
yet completed a cycle, cancellation causes
normal termination, as above, at the end of
the current cycle. Thus, cancellation does
not affect non-cyclic processes which have
already begun execution. Cancellation can
occur in three ways:

1) a CANCEL statement;

5-3
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2) at a time specified in the UNTIL <time
value> expression on the SCHEDULE
statement;

3) by an UNTIL or WHILE event expression on
the SCHEDULE statement (see HAL/S Language
Specification for the special case when
using UNTIL <event expression>).

c) Abnormal: Immediate termination of a process and
all its dependent processes, if any exist, occurs
only as the result of a TERMINATE statement. The
process(es) may be in any of the active states.
Clean-up measures during termination guarantee that
all system resoures are freed, but the result with
regard to values of COMPOOL variables and the effects
of partial completion of specific computations and
control sequences are unpredictable. If this proves
to be a problem, the language specification and
implementation of TERMINATE could be changed to allow
execution of block-level specific clean-up procedures
via the ON ERROR GO TO mechanism.

Real Time Executive: Those routines in the library which
implement the real time features of HAL/S-360. This
includes:

a) a process manager which selects and executes ready
processes and controls cyclic execution and normal
termination;

b) timer handling routines;

c) event handling routines;

d) process service routines corresponding to the real
time statements.

5.1.3 Timing

The timing implied by the real time statements and
returned by the built-in function RUNTIME is an AP-101
pseudo-time in units of seconds. The pseudo-time is
maintained in HAL/S-360 by a post-statement processor in
the run-time library that is called at the end of each
executable statement. The compiler will assign a time cost
for each statement in terms of an integral number of
micro-second timer units based on the generated code
sequence. There is a global constant which is the number
of these units in one second of CPU operation. This

.5-4 '<
NTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

conversion number is modifiable by the SPEED Execution
option.

A pseudo interval timer which contains the number of
machine cycles until the next timed action is decremented
at the end of each statement by its time cost. When the
timer is decremented to or through zero, a pseudo-
interrupt routine is called which takes the appropriate
actions, including re-loading the timer with the interval
to the next timed action on the timer queue.

HAL variables which contain absolute or relative time
values should be declared as single or double precision
scalars. The timer routines maintain time in double
precision floating point seconds.

Both the initial time value at the start of a HAL run
and the constant equating machine cycles per second are
under control of the programmer via PARM field options
(see Below).

5.1.4 PAR1I Field Options

See Section 2.1.3 and Appendix B of this manual for
other compile-time and run-time options.

5.1.5 Compile Time

The compile time TRACE option must be specified to
get the compiler to include the calls to the pseudo-time
statement processor. Without this, the pseudo-time will
not advance properly.

5.1.6 Execution Time

1) SIMTIME= number: initial pseudo-time value
(DEFAULT=O)

2) SPEED = number: timer units per second
(DEFAULT = 10,000,000).

3) PCBS = number: maximum number of simultaneously
Active processes (DEFAULT = 10).

Note: This parameter will be eliminated in a later
compiler release when the value will be set
automatically to the total number of programs and
tasks in the HAL/S-360 load module.

5-5
INTERMETRICS INCORPORATED -701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

4) TRACE = 4: Specifies a mode of tracing where all
"significant interactions in the Real Time Executive
are printed on the message channel. The format of
these trace messages is:

***RTC TRACE: TIME = <time> <process-id> - <message>

where <time> is the current value of the pseudo -
time in seconds; <process-id> is PROGRAM name
(priority) or TASK name (priority); and <message> is
the action being taken. The different messages and
their meanings are listed in the next section.

5.1.7 List of Real Time flessages

1) READIED FRON WAIT: wait type

A condition, indicated by "wait type", for which the
process was waiting has occured. The named process
can now compete for CPU execution based upon its
priority.

2) SCHEDULED

A SCHEDULE statement creating the named process was
successfully executed.

3) INITIATED

The process is about to become executing for the
first time since being scheduled.

4) RESUIIED

The process is about to become executing after being
readied from a wait state or suspended at a
breakpoint.

5) AT RETURN OR CLOSE

The process finished normally. What happens next
depends on whether or not there were any active
dependents (if so, it enters a wait state - message
#11), and whether or not it was scheduled with a
REPEAT option (if so, it is either repeated
immediately - message #6, or put into an inter-cycle
wait state - message #11, or terminated, if it has
been cancelled or if it is not cyclic - message #9).

6) REPEATED

5-6
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIIG MASSACHUSETTS 02138 * (617) 661-1840

A process scheduled with the REPEAT option is about

to begin another cycle of execution. The beginning of
the first cycle is traced with the INITIATED message.

7) FASTTIME

This indicates that the process manager discovered no

ready processes, but there was at least one process
waiting for a future time. The pseudo-time is
advanced to that time so that work can be done.

(Note that no <process-id> appears with these
messages because the action does not relate to a
specific process.)

8) END OF RUN

There are no active processes. There is no more work
to do and none can be generated.

(Note that no <process-id> appears with these
messages because the action does not relate to a
specific process.)

9) TERMINATED

The process was terminated because of one of the
following:

a) a TERMINATE statement was executed;

b) normal termination occured;

c) cancellation resulted in termination.

10) CANCELLED (CANCEL)

The process was canceled via the CAHCEL statement.
The TER1INATED message may or may not follow
immediately, depending upon the state of the process.

11) ENTERED WAIT: wait type

The process entered the wait state either explicitly
with a WAIT statement or implicitly at the beginning
of an exclusive procedure, or at the RETURN or CLOSE
at the highest level.

12) SIGNALLED EVENT

The process executed a SIGNAL statement. If the
change of state of the event variable had any effect,
further messages will follow.

?'P< 5-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

13) SUSPENDED AT BREAKPOINT

The process manager suspended execution of a process
because there was a higher priority process.

14) PRIORITY UPDATED

An UPDATE PRIORITY statement was executed, changing
the priority of the process.

15) CANCELLED (EVENT)

The cancel condition specified in the UNTIL or WHILE
<event expression> phrase of the SCHEDULE statement
which created the process has been satisfied.

16) CANCELLED (time)

The cancel time specified in the SCHEDULE UNTIL
phrase has arrived.

17) SET/REST (event)

A SET or RESET statement altered the state of an
event variable. Any effect will be indicated in
following messages.

5.1.8 List of Real Time Wait-Types

The wait types and the statements causing them are:

Wait Types in Trace Message Statements

1. TIME WAIT <value>

2. UNTIL TIME WAIT UNTIL <value>

3. FOR EVENTS WAIT UNTIL
<event expression>

4. SCHED IN TIME SCHEDULE X IN <value>

5. SCHED AT TIME SCHEDULE X AT <value>

6. SCHED ON EVENTS SCHEDULE X ON
<event expression>

7. FOR DEPENDENTS WAIT FOR DEPENDENT

8. FOR DEPENDENTS

NTERMETRCS NCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138<5-8 (617) 661-1840

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

AT RETURN/CLOSE RETURN or CLOSE

9. EXCLUSIVE PROCEDURE entry to busy
exclusive procedure

10.REPEAT EVERY RETURN or CLOSE

11.REPEAT AFTER RETURN or CLOSE

5.2 HAL/S Load Module and Operating Environment

Object modules output from separate compilations of one or
more HAL/S-360 programs, zero or more COM1SUBS (external HAL/S
procedures and functions), and zero or more COMPOOLS (external
data blocks) are linked together in a HALLINK step which
automatically includes any needed members of the run time

library, The result is a HAL/S-360 load module which may be run
-in batch mode as an OS/360 job step.

The HAL/S-360 load module executes as a single task under

OS/360 MVT. Within this single OS/360 task, a HAL/S
multiprocessing environment exists in which programs and tasks
may be scheduled as dynamic processes that share CPU execution
based on priority. The HAL/S programmer controls the
multiprocessing environment via execution of the real time
statements (SCHEDULE, WAIT, SIGNAL, TERHINATE, CANCEL, etc.).
These statements in a HAL/S program are compiled as calls to a
small subset of the routines in the run time library known as
the real time "executive" which models the process management
function of the Flight Computer Operating System (FCOS). The
first HAL program in a load module is scheduled by the
"executive" as one of its initialization functions, so that a

single HAL/S program with no real time statements executes as
if it were merely called in single process system.

5.3 Processes and the Stack lechanism

Since processes may execute independently of each other, a

mechanism is required which cleanly guarantees non-interference
in the use of temporary storage for work areas, register save
areas, call and return linkages, parameter passing, and any
other process specific information. The stack not only
satisfies this requirement in a process swapping environment,
but also results in minimum temporary storage requirements and

easy implementation of reentrant procedures.

The stack is a contiguous area of storage defined as a

5-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

CSECT of sufficient size to handle all temporary storage
requirements. A stack CSECT is created in the HAL/S load
module. During execution, the address of the portion of the
stack in use by the current procedure (called the stack frame)
is contained in general purpose register 13 (R13).

The layout of the initial portion of the stack frame is
fixed in format and is identical for user procedures and
functions (internal or external COISUBS) and run time library
routines (see Figure 5-3). The rest of the stack frame depends
on the temporary storage requirements of the individual
routine. The total size of the stack frame is specified in the
procedure prologue. The minimum stack frame size is 80 bytes,
the size of the fixed portion.

5.4 Procedures and the Procedure Caller

In the following discussion, the word procedure applies to
.all run time library routines (excluding intrinsics) as well as
to all user-written HAL procedures and functions.

5.4.1 Calling

When a procedure is called, parameters are loaded and
control is transferred to the procedure caller (see
Figure 5-4). The procedure caller itself is code located
in the HALSYS CSECT. Its function is to:

1) increment the stack frame pointer (R13)
to the end of the current stack frame, thus defining
thus defining the beginning of the new stack
frame;

2) save the registers of the calling
procedure in the new stack frame;

3) initialize certain control words in the
stack;

4) branch to the entry address (or prologue)
of the procedure (see Figure 5-5).

In the new stack frame, saving of the registers
establishes the link to the previous stack frame, the
return address, and any parameters passed in registers RO
through R4. Parameters passed in floating point registers
are not saved in the stack automatically.

U,< 5-10

NTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The entry address of the called procedure is copied
from the 4 bytes following the BALR instruction to the
stack in order to:

1) align it to a fullword boundry for
loading into R15;

2) save it if the procedure calls for any other'
procedures.

Thus, the base of the calling procedure (R15) need not be
saved in the new stack frame, allowing the use of R15 in
updating the stack frame pointer.

At any time during execution, the stack represents
the dynamic nesting of the called procedures. It is a
last-in, first-out stack of stack frames, each frame
representing a level of dynamic procedure nesting.

The procedure prologue (see Figure 5-6) is very

simple, consisting of a single branch instruction that

skips over some constant data located at fixed offsets
from the entry point. In the case of alternate entry

points, two additional instructions set the base to the
main entry point.

Figure 5-4

PROCEDURE AND FUNCTION CALLS

Load hO, Argument 0

Load R1, Argument 1

Load R4, Argument 4

Load FO, Floating Argument 0

BALR R14, R12 GO TO PROCEDURE CALLER

DC , Adcon of Entry Point

TMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 65-1161-1840

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

PROCEDURE AND FUNCTION EXITS

B 4(R12) GO TO PROCEDURE EXITER

Notes:

a) The -Adcon is a four -byte field aligned on the
halfword immediately following the BALR instruction.

b) The one-byte is the lexical level of the called
procedure or function, as follows:

Block Type

0 Programs and tasks, library routines;

1 COMSUBS, and first level procedures;

>2 Nested procedures.

c) The three-byte Adcon is the entry point address of
the called procedure or function.

Figure 5-5

PROCEDURE CALLER

LH R15, 8(R15) Load current stack frame sizi

AR R15, h13 Increment stack frame
pointer to next stack frame;

STM RO, R14, 20(R15) Save caller's register in
new stack frame;

LR R13, R15 Set new stack frame ptr.

SR R15, R15
Zero error link field

ST R15, 16(R13)

ST R15, 4(R13) Zero statement index and
and flag field;

rIVC 0(4, R13), 0(R14) Copy called proc. base
to stack frame;

L R15, O(R13) Load called proc. base;

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840
5-12

BR R15 GO TO Procedure;

PROCEDURE EXITER

LN R2, R14, 28(R13) Restore caller's register
(including old stack frame
and return address);

L R15, O(R13) Restore caller's base;

B 4 (R14) Return to caller,
skipping -Adcon;

Note: RO and R1 are not restored by the procedure exiter.

Figure 5-6

PROCEDURE PROLOGUE
MAIN
ENTRY: B *+X(R15) SKIP AROUND COUSTANTS

DC A(FSIM) ADDRESS OF SIMULATION DATA CSECT
DC H'stack frame size' FOR PROCEDURE CALLER
DC AL1(name length, C'name' NAME OF PROCEDURE

. first

• instructions

ALTERNATE ENTRY: same as main entry with additional
instructions:

L R15, =A(MAIN ENTRY) GET BASE OF CSECT
ST R15, 0(R13) UPDATE IN STACK FRAME

PROCEDURE EPILOGUE

B 4(R12) GO TO PROCEDURE EXITER

Notes:
1) Main and alternate entries at least full-word aligned.

2) A(FSIM) is zero for assembled library routines.

3) High order byte of DC A(FSIM) is used as follows:

SN< 5-13

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

a) Process event - in Programs and tasks.

b) Exclusive control event - in Exclusive procedures.

5.4.2 Exiting

Procedure exits are simple. A branch instruction
(Figure 5-4) transfers control to a procedure exiter
(Figure 5-5). The procedure exiter, like the procedure
caller, is code located in the HALSYS CSECT. It restores
registers R2 - R14, leaving RO and R1 for function value
returns. This sets the stack frame pointer (R13) to the
caller's stack frame and loads the return address (R14).
The caller's base (R15) is loaded from his stack frame,
and a branch is made to the instruction following the
call, skipping the 4 bytes after the BALR instruction that
contains the entry address of the called procedure.

5.5 Intrinsics

Some of the routines in the run-time library are known as
intrinsics. Intrinsics have the following characteristics:

1) calls and returns are done directly, without the use
of the procedure caller or exiter;

2) as a result, a new stack frame is not established;

3) all intinsics are part of the HALSYS CSECT;

4) as a result, they are always included in the HAL
load module;

5) entry addresses of intrinsics are not external symbols,
but unique displacements from R12, which always points
to the beginning of the HALSYS CSECT;

6) intrinsics have special register conventions.

Figure 5-7 shows an example of a system intrinsic call. Not all
intrinsics use the parameter registers shown in this example.

INTERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

SYSTEM INTRINSIC CALLS

LA R2, result ptr.

LA R3, left-hand arg. ptr.

LA R4, right-hand arg. ptr. (if needed).

LA RO, size

LA R1, 2nd size parameter (if needed).

BAL R 1 4, SIDISP (R12)

SIDISP = Unique displacement for each system
intrinsic. FT1,0.50

Figure 5-7

5.6 User Written Assembly Language Subroutines

The asssembly language programmer may write programs
accessible to the HAL programmer. The standard macros
illustrated in Figures 5-8 through 5-13 should be used to
ensure compatibility with the HALLINK process and the run-time
routines.

Below is a description of the use of these macros.

5.6.1 HHAIN

Purpose - to define symbolic registers RO-R10, FO-F4;

- to set up the first few bytes of control section
to be compatible with HALLINK.

Notes: - The label on the HHAIN must begin with an
#, to enable the HAL compiler to reference the
program as a COMSUB.

- Registers R2-R10 may be freely used, because
procedure caller restores them.

- User programs should be re-entrant. If any
temporaries are needed, then the user must
declare the temporaries in a macro named
WORKAREA and code MACRO=YES in the operand field
of the HMAIN macro.

For example, if the programmer needed three temporaries,
T1, T2, and T3, he would code:

67<s-15
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

HIACRO
WORKAREA

T1 DS F

T2 DS XL8

T3 DS D

MEND

#ANYNAHE HMAIN MACRO=YES

5.6.2 HENTRY

Purpose:to define secondary HAL-accessible entry to assembly
program.

5.6.3 HCALL

Purpose:to call another HAL-accessible program.

Notes: Registers R2-R10 will always be saved; RO, R1, FO,
F2, F4 are never saved.

- no form of recursion is permitted.

5.6.4 HEXIT

Purpose:to return to caller.

Note: Values may be returned in R1 or FO; if more than
one value is expected, the compiler will provide an
area into which the values are to be placed.
The address of this area is in R1.

5.6.5 HERRMSG

Purpose:to set up message text in format compatible
with HERROR macro.

Notes: A label is required.

- One operand, the message text, enclosed in quotes
is required.

-I- - 16

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

Example:

ANYLABEL HERRMSG 'TEXT DESIRED'

5.6.6 HERROR

Purpose: Simulate the HAL 'SEND ERROR'.

Notes: Takes two arguments. First is error number;
Specified either as a self-defining value in range
75-100 (the user errors), or as a register number
specified in parentheses. In the case where the
register option is chosen, the contents of the
register must be pre-loaded with a number in the
range 75-100. The second is the label on the
HERRMSG macro with the desired text. Again, a register
may be specified in parentheses. The register
must contain the address of the label of
the HERRM1SG macro.

Example:

FIRST HERROR 80,MSG

SECOND LA R6, 80

LA R8, iISG

HERROR (R6), (R8)

MSG HERRMSG 'USER TEXT'

NTERMETRICS INCORPORATED CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

NTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

11ACRO
&L HMAIN &MACRO=NO
STACK DSECT

USING STACK, 13
CURRCODE DS A . CURRENT CODE BASE

DS H . H.O. BIT IS EXCLUSIVE FLAG
STIITNUMB DS H . STATEMENT NUMBER
AVAILABLE DS D AVAILABLE DOUBLE WORD
ERRLINK DS A . ON ERROR LINKAGE
ARGO DS F . CALLER'S ARGUMENTS
ARG1 DS F
ARG2 DS F
ARG3 DS F
ARG4 DS F

DS 10F REGS 5 - 14
AIF ('&MACRO' EQ 'NO').NOMAC

* ADDITIONAL STORGAE SPACE REQUIRED FOR THIS ROUTINE
WORKAREA
AGO .END

.NlOMAC ANOP
* NO ADDITIONAL STORAGE SPACE REQUIRED
.END ANOP
STACKEND DS OD
STACKLEN EQU *-STACK

REGISTER EQUATES
RO EQU 0 ***IIOTE*** NOT RESTORED BY HEXIT
RI EQU 1 ***NOTE*** NOT RESTORED BY HEXIT
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R14 EQU 14
FO EQU 0
F2 EQU 2
F4 EQU 4
*F6 MAY BE USED ONLY IF SAVED AND RESTORED
&L CSECT

USING *, 15
B *+20 SKIP AROUND JUNK
DC F'O' . ALIGN NEXT TO PROPER BOUNDAR)
DC AL2(STACKLEN) STACK SIZE OF THIS ROUTINE
DC AL1(8), CL8'&L'
MEND

Figure 5-8 HMAIN

5-18

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

MIACRO
&L HENTRY

DS OF ALIGN ON FULLWORD
ENTRY &L
USING &L,15

&L B *+20 SKIP AROUND JUNK
DC F'O'
DC AL2(STACKLEN) SIZE OF STACK
DC AL1(8), CL8'&L'

L 15, =A(&SYSECT) LOAD BASE OF HAIN ROUTINE
ST 15, CURRCODE
USING &SYSECT, 15
I1END

Figure 5-9 HENTRY

MACRO
&L IACALL &H
&L BALR 14, 12 CALL VIA PROCEDURE CALLER

DC VL4(&N) . FOR NO ALIGNMENT
MIEND

Figure 5-10 HCALL

MACRO
&L HEXIT
&L B 4(0,12) . RETURN

MEND

Figure 5-11 HEXIT

MACRO
&L HERRMSG &M4SG

AIF (T'&L EQ 'O' OR T'&MSG EQ 'O').ERROR
&L DC AL1(L'ERRII&SYSNDX)
ERRM&SYSIDX DC C&MSG

HEXIT
.ERROR HNOTE 8, 'lACRO IGNORED. NO LABEL OR HESSAGE TEXT

HIEND

Figure 5-12 HERRMSG

5-19

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

1MACRO
&LAB HERROR &INUM, &ISG

LCLB &NEEDMVI
LCLC &,&N,&L
AIF (N'&SYSLIST EQ 2).OK
HNOTE 2, 'MISSING OR EXTRA OPERAIJDS'
HEXIT

.OK ANOP
&L SETC '&LAB"'
&M SETC '&MSG'
&N SETC '&NUM'

AIF ('&rISG'(1,1) NE '(').TESTNUH
CNOP 0,4

&L ST &MSG(1),*+12
&L SETC
&1 SETC '0O
& NEEDnIVI SETB 1
.TESTNUM AIF ('&NUM'(1,1) NE -(').TESTIIVI

&L STC &NUM(l),*+8
&L SETC
&N SETC 'O0

AGO .BAL
.TESTMVI AIF (NOT &NEEDMVI).BAL

HVI *+8,&NU
.BAL ANIOP
&L BAL 14,24(,12) LINK TO ERROR HANDLER

DC AL1(&N),AL3(&N)
MEND

Figure 5-13 HERROR

5-20

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6. HAL/S Characterics Specific To The 360

6.1 Introduction

The HAL/S language as available on the IBH/360 has
several implementation dependencies. These dependencies
arise due to the specific hardware and software facilities
available on the machine. The following subsections
enumerate these characteristics.

6.2 Compile Time Characteristics

6.2.1 Character Set

The character set specified in the HAL/S
Specification document is available in its entirety
on the 360. The HAL/S-360 compiler will therefore
recognize this full character set. The internal
coding scheme for the characters is EBCDIC. No
other coding scheme is recognized.

6.2.2 Internal Table Capacities

a) The maximum number of symbol table entries is
1000. The symbol table is filled with the
names of user-defined variables and labels as
the input source is scanned.

b) A maximum of 32767 literals may be used in a
single compilation.

c) The maximum number of characters permitted in
the sum of all character literals in one
compilation is 3000.

d) Storage for replace text is limited to 1000
characters. However, multiple blanks within
such text are stored in a compressed form.

6.2.3 Data Type Size Limitations

a) Arrays are limited to 3 dimensions.

b) Each dimension in an array is limited to the
range 1 to 32767.

c) The maximum row or column dimension of a matrix
is 64.

6-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

d) The maximum dimension of a vector is 64.

e) Character strings are limited to 255 characters.

f) Bit strings may not be over 32 bits long.

g) Single precision integers are 16-bit signed
quantities.

h) Double precision integers are 32-bit signed
quantities.

i) Single precision scalar values are represented
internally in the standard 360 floating point
format using 32 bits (1 sign, 7 exponent, 24
mantissa).

j) Double precision scalar values are represented
internally in the standard 360 double precision
format using 64 bits (1 sign, 7 exponent, 56
mantissa).

k) Individual characters within character strings
are represented internally as the b-bit EBCDIC
pattern for the character. Hence, the result of
converting a single character to a bit string
by means of the BIT conversion function is an
8-bit string corresponding to the LECDIC bit
pattern for the character.

6.2.4 Program Organization Limits

a) The number of external names allowed in any one
compilation is 100. An external name is
defined as any user-defined or built-in
function which causes an external reference to
be satisfied by the link editor.

b) Function invocation (whether built-in or
user-defined) may not be nested more than 10
levels deep.

c) DO groups may not be nested to a depth exceeding
15 levels.

d) The total number of elements in initial lists in
any one compilation is limited to 32767.

6.2.5 Input/Output Statements

a) Device numbers in input or output statements are
limited to the range 0-9.

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CIMBPIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.2.6 Program Naming Convention

Each successful HAL/S compilation produces at
least one named control section (CSECT) and one or
more unnamed control sections (PCs). The CSECT name
is derived according to the following rules:

a) HAL/S compilation unit names are transferred to
the emitted object code by using only the first
seven characters of the HAL/S name. The name
will be padded or truncated to seven characters
where necessary. In the case of a CSECT
corresponding to a TASK, the name is truncated
to five characters. Care should be exercised in
naming to insure that only unique names will be
generated for a given compilation.

b) Any occurrence of the underscore character (_)
in the first 7 characters of a PROGRAM,
PROCEDURE, FUNCTION, TASK, or C011POOL is
eliminated. The resulting characters are joined
together to produce the characteristic name of
the compilation unit (e.g. A_BC becomes ABC).
An additional character is placed on the front
of the resultant name to form the final name
for each of the individual situations in which
the name is used. These additional names for
internal control sections are:

$ - the executable code control
section name for a PROGRAM

- the executable code control
section name for a COMPOOL *or
comsub, a nested FUNCTION, or a
nested PROCEDURE.

@ - the control section used by a
PROGRAM or TASK for a temporary
work area

$nn - assigned to TASKs within a
PROGRAN but using only the first
five characters of the
characteristic name, where nn is
a two digit number assigned
uniquely to each TASK in a single
compilation unit. "nn" is 01 for
the first TASK defined within a
compilation; 02 for the second;
etc. Note that the name of a
CSECT corresponding to a TASK is

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

derived from the PROGRAM in which
it is defined, not from the label
of the TASK declaration itself.

c) A separate CSECT called FIRSTPG1I is generated
for each compilation which is a PROGRAM. Its
contents in 360 Assembler language are as
follows (the name of the HAL program in this
example is HALPROG):

FIRSTPGM CESECT
EXTRN HALSTART
DC V(HALPROG)
END HALSTART

This establishes the link between the HAL set
up routines and the HAL program.

In addition to control section names, the
characteristic name of a compilation unit may
appear in certain external contexts preceded by the
following characters:

@ - the member name of the template
created for a compilation unit

- the member name of the simulation
data file created for a
compilation unit

Each PROCEDURE or FUNCTIONI declared internal to the
main compilation unit results in a Private Control
Section (PC) containing the executable code.

d) Each compilation unit has associated with it a
PC containing all the literals used in the
program, as well as address constants needed by
the program. If the compilation unit is a
PROGRAM, there is an address constant referring
to the stack associated with the PROGRAM. All
TASKS also have stacks associated with them,
and their address constants are also in this
PC. The name of the stack associated with a
PROGRAM or TASK is obtained by replacing
the $ in the CSECT name with an @.

f) All STATIC variables declared within a
compilation unit are allocated space in a
separate PC. If no variables are defined within
a compilation unit, a PC of zero bytes may or
may not be generated depending upon the
implementation. AUTOMATIC variables defined in

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

CODE FSIM DATA

.CCC +CCC

$NAME
or

#NAME

$01CCC
(TASK
only)

,Internal
Procedures,
functions,
update blocks

COST-USE

% CCC

STACK

II

Stack is not generated by the Compiler, and is
present only for PROGRAMS. In addition, a separate
stack exists for each TASK.

Figure 6-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-184(

A typical example:

(PARM.HAL = 'TRACE' specified)
ABC: PROGRAM;

X: TASK; ...CLOSE;
Y: PROCEDURE; ...CLOSE;
Z: UPDATE BLOCK; ...CLOSE;

CLOSE ABC;

CODE FSIM DATA

$ABC 1 .ABC +ABC

$01ABC

COST-USE
PC

for
Y o %ABC

STACK

PC @ABC
for

)I

I-I

S@01ABCI I

Figure f-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

STACK LAYOUT

Procedure Temps

& Reentrant Locals

80

R14 return address

R13 (previous stack

R12 frame)

P11
R10
R9
R8
R7
R6
R5
R4. arg4
R3 arg3

R2 arg2 increasing

R1 argl nenry

RO argO arldress
20

Error Link
16

Doubleword

Temporary
8

flag statement
field number

0 £i Current Code Base
R13 ,

Used

NOTE: High order bit of flag field is "l" if exclusive procedure;

other 1.5 bits "0" (reserved).
Fig. 6-3 99<

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

REENTRANT PROCEDURES are allocated in the
stack, not in this PC.

Refer to Figure 6-1 and 6-2 for examples of typical
layouts of generated object decks.

Figure 6-3 indicates the logical relationships

between the CSECTs and PCs generated for the
following PROGRAM. An arrow (A--oB) indicates
reference in A to B:

6.2.7 The IIICLUDE Compiler Directive

Use of the INCLUDE compiler directive to
access a symbolic library has been implemented in
the following way. The name found on the INCLUDE
directive such as:

D INCLUDE COMPOOLA

will be used to search the symbolic library. The
name must be a 1 to 8 character string.

The symbolic library must be defined by the
following JCL:

//HAL.INCLUDE DD DSN=<library name>,<other parameters>

The <library name> must be the data set name of the
library. The library data set must have partitioned
organization and must be referred to in the JCL by
data set name only (DSN=HAL.LIB), not as data set
and member name (DSN=HAL.LIB(CONPOOLA)).

The library thus defined is searched for a
member whose name is exactly the name found on the
INCLUDE directive. The library must contain card
images of the same size as the primary input, but
may be blocked in any legal manner. Two or more
libraries may be concatenated in the JCL if they
conform to the standard JCL rules for for such
concatenation.

If an INCLUDE request cannot be satisfied by
referencing the INCLUDE DD card, an attempt will be
made to find the member by using the OUTPUT6 DD

Scard. This search technique allows multiple-
compilation jobs to reference template libraries
created automatically in earlier steps without the
need to indicate an INCLUDE DD card.

1i O<
6-5

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.2.8 ACCESS Rights Implementation

The HAL/S language allows managerial
restrictions to be placed upon the usage of
user-defined variables and external routines. The
existence of such a restriction is indicated by the
use of the ACCESS attribute as described in the
HAL/S Language Specification. The manner in which
the restricitons are enforced in the HAL/S-360
compiler system is described below.

Any variable in a COMPOOL template or any
external routine to which the ACCESS attribute has
been applied is considered to be restricted for the
compilation unit which is being compiled. The
restriction is slightly different for variables
than for blocks:

a) Variables with the ACCESS attribute may not have
their values changed.

b) Block names may not be used at all.

These restrictions may be selectively overridden
for individual variable and block names. The
selection of which ACCESS controlled names are to
be available to the unit being compiled is
performed by processing an external dataset. The
external dataset is known as the Program Access
File (PAF). The PAF must have partitioned
organizaiton and is specified by the following JCL:

//HAL.ACCESS DD DSJ=<PAF name>, <other parameters>

where the <PAF name> is the dataset name of the PAF
without any member specification. Note that a PAF
need not be defined if the access control
facilities of the HAL/S compiler are not being
used.

Each member of the PAF contains the
information about ACCESS controlled names which are
to be available to one unit of compilation. The
member name is defined by a Program Identification
Name (PIN). The PIN is specified to the HAL/S-360
compiler by using the PROGRAN compiler directive in
the primary input stream:

D PROGRAM ID=<id>

6-6

INTERMETRICS INCORPORATED .701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The <id> field of the directive is a 1 to 8

character identifying name which is used to select
the member of the PAF to be processed for the
current compilation's ACCESS information. The

appearance of the PROGRAM directive in the

compiler's input stream causes immediate processing
of the PAF member specified. Therefore, the
PROGRAM directive must follow any CO11POOL or COMSUB

templates which may specify ACCESS-controlled data.
Also, the PROGRAM directive must appear before the
definition of the block which is the primary unit
of compilation. In general, the input stream seen
by the compiler should look like the following:

6-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

<COMPOOL or COMSUB template>

<COMPOOL or COMSUB template>
D PROGRAM ID=<id>
M PROG NAME: PROGRAM;

The format of an individual PAF member is described
below.

a) Column 1 of each record is ignored except when
column 1 contains the character "C", in which
case the entire record is ignored.

b) The portion of each record which is processed is
the same portion which is processed in the
primary compiler input (SYSIN).

c) COMPOOL elements which are to be made available
to the compilation are specified as:

<COIIPOOL-name>(<var-name>,<var-name>, ... <var-name>)

or

<COMPOOL-name>($ALL)

The first format specifies access to individual
variables within the named COMPOOL. The second
format specifies access to all variables within
the named COMPOOL.

d) Access to external block names is specified as:

$LOCK(<ext-name>, <ext-name>, ... <ext-name>)

e) Blanks are allowed anywhere in the record except
that names may not be broken by a blank.

f) Either of the constructions (c) or (d) above may
span more than one record.

g) The name of the particular COMPOOL in the form
(c) above may appear more than once; i.e. the
variables in a particular COMPOOL do not have
to be specified at one time. Similarly, the
form $ BLOCK may appear more than once.

Some validity checking is performed by the compiler

6-8 , 03<
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

while processing the PAF member. Warnings are
issued for the following conditions:

1) A syntax error on a PAF record - the bad record
is printed;

2) Names mentioned in the PAF are not defined;

3) Elements of $BLOCK in the PAF are not block
names;

4) Requests for names which are not ACCESS
protected;

5) Variables found, but not within the COMPOOL
specified; 6) Names used in the context of a
COMPOOL-name which are not COMIPOOLs.

7) Elements of an ACCESS-protected COHPOOL block
are mentioned in the PAF before the COMPOOL
block itself is freed for use.

If, at the time the PROGRAN directive is
encountered, there have been no ACCESS-controlled
variables declared, the PAF is not opened. If a
user does not require access to any, the PROGRAM
directive and associated PAF members may be
omitted.

6.2.9 Template Generation

If a HAL/S compilation contains invocations of
external PROGRAMS, procedures, functions
("COMSUBS") or references to variables in an
external COPOOL, the block templates for those
external blocks must appear in the compilation (see
Section 2.4). The HAL/S-360 compiler features
automatic generation of block templates during the
compilation of these blocks. Compilations which
later require use of such templates can retrieve
them by means of the IIJCLUDE compiler directive.
The INCLUDE directive causes any desired HAL/S
source text to be taken from a specified member of
a PDS rather than from the regular input stream.
It is recommended that block templates be
maintained on a different dataset from that used
for other kinds of INCLUDE text. If block
templates are maintained on a PDS called <templib>
and other material on a PDS caller <otherlib>, then
the appropriate JCL for such a compilation is:

//HAL.INCLUDE DD DSN=<templib>,....(other parameters)
// DD DSN=<otherlib>, ... (other parameters)

14I< 6-9
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

For the compilation of any compool, or external
procedure or function block, the following JCL must
be specified:

//HAL.INCLUDE DD DSN=<templib>,....(other parameters)
// DD DSiJ=<otherlib>,....(other parameters)
//HAL.OUTPUT6 DD DSN=<templib>......(other parameters)

During compilation, the following events take
place:

The HAL/S compiler ascertains whether or not a
block template for the block already exists in
the dataset referenced by the INCLUDE DD cards.
The search algorithm is applied in the same way
as for the INCLUDE compiler directives (see
6.2.7).

If no such template exists, then it is added as
a new member of <templib>. The compiler emits
the following message in the output listing:

*****TEMPLATE LIBRARY MEMBER <membername> IOT FOUND - ADDED

If the template already exists, and the new
template is different from the old, the member
of <templib> is replaced and the compiler emits
the message:

*****TEMPLATE LIBRARY MEMBER <membername> FOUND AND CHANGED

If the new template is the same as the old,
then replacement does not take place and the
compiler emits the message:

*****TEMPLATE LIBRARY MEMBER <membername> FOUND - CHANGE
NOT REQUIRED

Any error discovered during Phase I of the
compilation will inhibit the adding or
replacement of the member of <templib>, and the
compiler emits the message:

*****COMPILATION ERRORS INHIBITED TEMPLATE GENERATION

Each template has attached to it a version number
between 01 and 255. On first generation, the
version number assigned is 01. Every time the
template is updated in <templib>, the version
number is incremented by 1. If the version number
exceeds 255, it is reset to 01, and thereafter
begins incrementing again.

6-NTERMETRCS NCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-184010

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The format of a template as maintained in the

template library is exactly as described in the

Language Specification. It is followed by a

VERSION directive card specifying its version

number:

Example:

INC: PROCEDURE;
CLOSE;

D VERSION @

@ Is a generally unreadable character

whose hexadecimal value is the version

number.

The <membername> of a block template is formed by

taking the characteristic name of the compilation

unit (see Section 6.2.6) and prefixing it with the

character

Note that this naming convention determines

the form of the INCLUDE directive which can be used

to retrieve the block template; e.g. compilation

unit A B C produced a block template as member ABC

which must be specified as ABC on an INCLUDE

directive in order to find the proper template.

6-11

\TERMETRICS INCORPORATED - 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

7. HAL/S-360 Input/Output Operations

7.1 HAL/S-360 FILE I/O

This section presents a detailed description of the
FILE I/O implementation for HAL/S-360 release 7. The
implementation is consistent with the current Language
Specification. It allows for three different types of
files, giving the user the freedom to chose the type most
appropriate for the application. The types cover a range
of characteristics, from the most efficient but least
flexible (Type I) to the least efficient but most flexible
(Type III). If the user does not chose a type, the default
is Type III.

Familiarity with the Language Specification for FILE
I/O is assumed.

7.2 File Type Characteristics

A FILE I/O statement results in an unformatted core
image transfer between a contiguous data area in memory
and a physical block in a direct access data set,
hereafter referred to as a file. Blocks may be read,
written, or updated in any desired order. The OS/360 BDAM
(Basic Direct Access Hlethod) routines are used. The
distinguishing characteristics of each type of file are
described in the following paragraphs. The descriptions
use the following concepts:

Block length: The number of bytes in the block. Both the
input and output file expressions make a request for
a block transfer of a specific number of bytes,
determined by the size of the variable or expression
on the opposite side of the assignment (=) operator.
This size must be consistent with (and in some cases
automatically determines) the block length attribute
of the file (see Sec. 7 .3.4).The maximum size block
possible is 32,760 bytes

B: Block identification number (an integral value)
supplied by the user in the file expression FILE

7-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

(F,B). (F is the file number).

Bmax: The number of blocks or dummy blocks in a Type I or
II file, fixed at initialization time and determined
by the block length and the number of tracks
allocated to the file.

Track: An OS/360 Direct Access Storage Device (DASD)
concept. It is the smallest unit of DASD space
allocation. Track capacity varies with different
device types. The track capacity of a 2314 disk, for
example, is 7294 bytes.

7.2.1 Type I: Dense Fixed-length Blocks

Block length : Every block is the same length.

Block identification: B is the sequentially relative
block number in the data set and directly determines
.the location of the block in the file.

Valid range of B: 0<=B<=Bmax-1. If the file contains 200
blocks, then 0<=B<=199. Bmax<=2**24-1 (16, 777, 215).

Block existence: All blocks in the valid range exist in
an initialized file, whether or not an output file
statement merely updates the identified block. An
input file statement reading a block not written by
an output file statement assigns binary zeroes to the
variable (this may not be appropriate for some
applications, or for certain data types - see Sec.
7.5)

Block access time: Block access time is less (faster)
than for Types II or III.

Space utilization: Space for a block in the valid range
is guaranteed, since the blocks already exist. DASD
space utilization is good only if most values of B in
the valid range are used for real blocks. DASD space
utilization will be poor if the range of values used
for B is sparse.

7-2
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

7.2.2 Type II: Sparse Fixed-length Blocks with Keys

Block length: Every block is the same length.

Block identification: B is the hardware key of the block
The location and sequence of blocks is not directly a
function of B, so that a search for the block using B
as the key must be made each time it is accessed.

Valid range of B: B is translated to EBCDIC numeric
characters for the key, so that the valid range of B
is 0<=B<=10 **n-1, where n=number of characters in
the key (see KEYLEN in the DCB parameters 7.3.4). If
KEYLEN=8, then 0<=B<=99999999. Since B is
communicated as an integer, the upper limit is
2**31-1 (2, 147, 483, 647) for double precision, or
2**15-1 (32, 767) for single precision.

Block existence: A block exists only if it has been
written. Available space in an initialized file
consists of dummy blocks (high-order byte of key is
X'FF'). The initial number of dummy blocks (Bmax)
limits only the total number of real blocks, not the
maximum value for B. Dummy blocks are overwritten
with real blocks (with key=B) when a block is written
for the first time. Existing blocks are updated in
place when a block is re-written. An attempt to input
a dummy block will result in a run-time error.

Block access time: Block access time is slower than Type
I because of the hardware search for the block by the
key B. The time taken depends on the DCB LIMCT
parameter and other factors (see Sec. 7.3.4 and
Appendix J). Writing a block for the first time takes
at least twice as long as an update of an existing
block because it occurs only after a search for a
non-existent block fails.

Space utilization: An attempt is made to spread the
blocks evenly throughout the file. A run-time error
of "no space in file" occurs when available space on
a track or sequence of tracks is exhausted. This may
occur even though there is available space elsewhere
in the file, unless OPTCD=E is specified. See
Appendix J for a description of the block location

I9 < 7-3
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

and search algorithms for sparse files (Types II and
III). DASD space utilization is good if the values
of B are uniformly sparse.

7.2.3 Type III: Sparse Differing-length Blocks with Keys

Block length: Blocks may have different lengths. The same
block may not be re-written with a different length,
except in the case indicated below.

Block identification: Same as for Type II.

Valid range of B: Same as for Type II.

Block existence: A block exists only if it has been
written. Available space in an initialized file is
recorded in capacity records, one per track. A new
block is written in the available space of a track,
and the capacity record for that track is updated to
reflect the reduction in available space. When a
block is re-written, the old block is updated in
place if the new block has the same length; otherwise
a length error occurs. If OPTCD=F was specified, and
the standard fixup (ON ERROR SYSTEM or IGNORE) is
taken, then the old block is deleted and a new block
with the new length is written in available space.
The old block and the space it occupies remain
unavailable. An attempt to input an unwritten block
will result in a run-time error.

Block access time: Same as for Type II.

Space utilization: Same as for Type II.

7.3 Selecting a File Type

7.3.1 Choosing a File Type

A number of factors should be taken into
consideration when choosing a file type. The primary
factor is whether or not blocks in the same file need to
be of different lengths. If so, then Type III is the only
choice (barring user control over the "block length" error

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CIMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

- see Sec. 7.4), since different length blocks are not
possible in file Types I and II.

Another factor is the range of values for B. If it is
known that the maximum value of B will be less than or
equal to the number of possible blocks in the file (
determined only by the size of the file), and that most
values of B in that range will be used as a real block
identification, then Type I is the best choice (most
efficient). On the other hand, if the range of values of B
is sparse (for example, B=100, 200, 300..etc), then Type
II or III should be used.

Another factor may be that in a Type I file any block
in the valid range exists; that is, it may be input
without ever having been output. If the occurence of the
"block not found" error is needed for proper processing in
a certain application, then a Type I file cannot be used,
unless the program can test for and recognize a block of
binary zeroes as an invalid block.

7-5

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

7.3.2 Specifying a File Type

The type of a particular file is determined only by
its DCB parameters. DCB parameters may be specified by the
user on the DD card for a new file, or they are supplied
automatically by the operating system from the dataset
label (DSCB) of an existing file.

A file must be initialized for a particular type
before it can be used. Initialization causes the file to
be filled with available space of the proper format and
destroys any data existing previously in the file. The
initialization may be performed in a single job or job
step from the HAL program execution, or it may be
automatically initialized by HAL before its first use.
Automatic initialization is performed only if a file is
created and used in the same job step (i.e. if the DD
card specifies DISP=ILW). In any case, the DCB parameters
supplied at initialization time on the DD card determine
the file type. Defaults for omitted DCB parameters are
indicated below. If no DCB parameters are supplied, the
defaults cause initialization of a Type III file, the most
flexible but least efficient.

7.3.3 DCB Parameters by File Type

These DCB parameters are the ones that determine the
file type.

7.3.3.1 Type I

RECFMI=F or FT
and

KEYLEJ=0 or omitted

7.3.3.2 Type II

RECFM=F or FT
and

KEYLEN>O

7.3.3.3 Type III

RECFII=V, VS, or U
and

KEYLEN>0
DEFAULT: RECFM=U, KEYLEN=8

7-6
JTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

7.3.4 Summary by DCB Parameter

Options and defaults specific to a file type are so
indicated.

BLKSIZE=number: This specifies the block length for Type
I or II, or the maximum block length for Type III. It
must be less than or equal to the track capacity of
the DASD device unless RECFM=FT or VS is specified,
in which case the the maximum is 32, 760. If RECFM=V
or VS, the BLKSIZE should be 4 more than the largest
block length.

DEFAULT: Types I and II: length of first block transfer;
Type III: maximum blocksize of the device.

DSORG=DA: This identifies the dataset organization of the
file as direct access. Although it is not required
for HAL FILE I/O, it should be specified if the file
is to become permanent and be manipulated by OS
utilities. The OS utility program IEHMOVE requires
this identification to successfully copy a file.

KEYLEN=number: This specifies the number of characters in
the key for file types II and III. It must be in the
range 1-16. If KEYLEN=1, note that only 10 blocks may
exist in the file no matter how big it is, since it
would limit the the range of keys to 0-9. When B is
converted to a key, it must fit in a field of n
decimal digits, where KEYLEN=n, or an error occurs.

DEFAULT: KEYLEIJ=8 (Type III only).

LIHlCT=number: This specifies the number of tracks (or
blocks, if OPTCD=R) to be searched in a Type II or
III file when attempting to read or update an
existing block. It is also used when searching for
available space for writing a new block. This
parameter is ignored unless the extended search
option is used (OPTCD=E). See Appendix J for block
location and search algorithms.

DEFAULT: LIMCT=number of tracks (or blocks) in the file
(i.e. the entire file is searched).

NOTE: This parameter is not a "remembered" attribute of
the file. It must be re-specified (or altered) each time

7-7

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

the file is used.

OPTCD=E,F,R,ER, or EF: This parameter specifies various
options.

OPTCD=E: extended search (Types II and II) This specifies
the extended search option. See Appendix J.

OPTCD=F: feedback (Type III only) This option causes the
standard fixup for the "block length mismatch" error
in a Type III file to rewrite the block with its new
length. Its absence prevents changing the length of
an existing block.

OPTCD=R: relative block addressing (Types I and II only)
This option is required and is defaulted to for a
Type I file. In a Type II file, it causes a
different record location and search algorithm to be
used.

DEFAULT: OPTCD=R (Type I only)

RECFM1=F.FT: Type I or II; =U,V,VS: Type III only. This
specifies the block (record) format. RECFM=VS
(variable spanned) must be specified if the maximum
block length (BLKSIZE) is greater than the track
capacity in a Type III file. RECFM=FT (fixed with
track overflow) should be specified for the same case
in a Type I or II file, and also when the ratio of
block length to track capacity is such that there
would be a serious waste of DASD space. (Without
track overflow only integral numbers of whole blocks
are placed on a track.) Track overflow allows a fixed
block to be broken up across a track boundary,
resulting in maximum utilization of track space.
RECFIM=FT can be specified only if the hardware track
overflow option exists for the device.

DEFAULT: RECFIM=U

7.4 Run Time Errors

The following errors may occur at run-time when
executing a FILE I/O statement.

ERROR 31 - SYNAD ERROR: message

7-8
NTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

An uncorrectable I/O error occurred, described by
"message". An uninitialized file may be the cause. The
"message" is generated by the system macro SYNADAF.

SYSTEM action: limited fixups.

ERROR 32 - MISSING DD CARD - FILEn

FILE I/O was attempted without a defining DD card.
SYSTEM action: terminate.

Standard fixup : The I/O operation is ignored. NOTE:
Errors 31 and 32 may also occur in sequential I/O.

ERROR 64: NO SPACE IN FILE

An attempt was made to add a new block to a Type II
or III file, but available space was exhausted. To correct
this error, re-run the job with a new larger file, or with
the existing file and OPTCD=E.

SYSTEM action: terminate.
Standard fixup: The output FILE statement is ignored.

ERROR 65 - BLOCK LENGTH MISMATCH
The block in the file and the block in memory have

different lengths. The occurence of this error depends on
the file type and whether input or output is requested. An
input file statement will never read more data than
requested. Even if the block in the file is larger than
the variable being filled.

SYSTEM action: unlimited errors.
Standard fixup: For input, the number of bytes read is
the minimum of the two lengths. For output, the block in
the file is truncated or padded with binary zeroes to
force it to the proper length. If the error occurs for an
existing block in a Type III file and OPTCD=F is
specified, the standard fixup will rewrite the block with
a new length, deleting the old block.

Type I and II:
The error may occur on input, output, and update.

Type III, RECFM=U:
The error may only occur when updating an existing

block.
Type III, RECFM=V or VS:

The error may occur on input or output.

ERROR 66 - BLOCK NUMBER OUT OF RANGE
The block number supplied is invalid. It is either

negative or greater than the limit (Bmax-1 for Type I;
10**n-1, KEYLEN=n for Type II and III).

SYSTEM action: terminate.
Standard fixup: The I/O is ignored.

115<
7-9

NTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ERROR 70 to 79 - BLOCK bbbbbbbbbb NOT FOUND
Analogous to sequential I/O end of file errors 40 to

49, this error occurs in a Type II or III file when the
specified block number is legal but the block does not
exist. Errors 70 to 79 correspond to files 0 to 9
respectively.

7.5 HAL Data Type Considerations

The user should be aware of the implications of using FILE I/O
with different data types. A block in a file is a binary core
image and contains no type information. No problem exists if a
block is written from and read into data of the same type and
length.

If a block is written from one data type and read into
another, no error indication is given, assuming that the
lengths are the same. However, subsequent use of the data may

,cause errors ranging from the mild to the severe. The following
lists by data type the kind of trouble that could be caused by
reading in a block with arbitrary binary information.

Bit strings: none.

Integers: none

Scalars, Vectors, and Matrices: Underflow errors may
occur due to unnormalized floating point numbers.

Character strings: DECLAREd maximum length may be
altered. The first two bytes are the maximum and actual
lengths respectively. If the maximum length is increased
in this manner, subsequent assignment into the character
variable could destroy the data following it.

Name variables: Although explicit use of name variables
is disallowed in FILE I/O statements, they may be input
and output if imbedded in a structure. Since name
variables contain machine addresses, unpredictable results
may occur, including ABENDs. The same holds true, even
when strict type matching is observed, if a block is
written in one job or job step and read in another.

7.6 OS/360 Considerations

7.6.1 DD Cards

16 G<
7-10

NTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

One DD card is needed to define each file referred to
in a HAL program. For example, when file 3 is used, i.e.
when the expression FILE(3,<arith exp>) appears in a HAL
program, the minimum DD card required is:

//FILE3 DD UNIT=SYSDA,SPACE=(TRK,number)

where "number" defines the size of the file in tracks.
This results in a temporary Type III file which gets
deleted at the end of the job step.

The general format of the DD card for a temporary
file is:

//FILEn DD UNIT=unit,VOL=volume,SPACE=space,DCB=(list of
DCB parameters)

where n is the file number (0-9). The "unit", "volume",
and "space" values may be determined from a JCL manual.
The DCB parameters are covered in section 7.3.4.

If a permanent file is desired, the DSN and DISP
parameters must also be specified. If the file is being
created, then DISP=(NEW,KEEP) or DISP=(NEW,CATLG) is
needed. If an existing file is used, then DISP=OLD or
DISP=SHR is needed.

7.6.2 Separate Initialization of a File

Although HAL will automatically initialize a new
file, circumstances may require separate initialization.
The routine in the run-time library that does the
automatic initialization may be invoked as an independent
utility program. The following JCL illustrates the use of
this utility:

//INrIT EXEC PGM=FORMATDA,PAR=anydd
//STEPLIB DD DSN=HALS.RUNLIB,DISP=SHR

//anydd DD ... appropriate parameters

If it is desired to re-initialize an existing file, then
PARIl=anydd must be changed to PARM='*anydd'.

Return Codes

0: successful initialization
4: not formatted - DISP=OLD
8: missind DD card specified in parm field
16: no parm field specified

7-11

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

7.7 Execution Time Characteristics

7.7.1 Input/Output

a) The I/O device defined to be the error message channel
(CHANNEL6 is the default) is forced to have record format FA
or FBA.

b) Numeric formatting of output items is done as follows:

integers - an 11-character field is
printed with the number right
justified. A floating minus sign
is added if the number is negative.

single
precision
scalars - a 14 -character field is printed

as follows:

sx.xxxxxxxE+txx

where s is a blank or minus sign;

x is a single digit 0 to 9;
t is a plus or minus sign;

double
precision
scalars - a 23-character field is generated

as follows:

sx.xxxxxxxxxxxxxxxxEtxx

c) If not specified through JCL, the HAL/S I/O
routines will assume a logical record length of
80 for unpaged output devices and a logical
record length of 133 for paged output devices.
The first character of the 133 character paged
output record is assumed to be an ASA carriage
control character.

7-12
NTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

7.8 User-Defined Execution Time JCL

The user may require additional exectuion time JCL to service

his program's requirements:

Additional HAL/S data sets (other than the CHANIJEL5 and
CHANNEL6 supplied in the procedure). These are data sets
with names CHANIJELn where n is in the range 0 to 9. These
data sets are referenced by HAL/S I/O statements
specifying the proper n as their device number (e.g.
WRITE(8) references DD card CHANNEL8).

The HAL/S I/O routines make some assumptions about the
characteristics of the data sets which are allocated to
the various CHAINELn DD cards. These assumptions, along
with a description of devices and organizations supported
by HAL/S are detailed below.

The user may supply any, all, or none of the DCB
attributes for CHANNELn DD cards. The record formats
which are acceptable to HAL/S are:

F FB FA FBA FBSA

V VB VA VBA

U UA

Machine carriage control is acceptable but subject to
interpretation described below.

7.8.1 General Rules Used by HAL/S to Create DCB Attributes

a. BLKSIZE not supplied (by JCL or data set).
The maximum block size of the particular device is found.
The BLKSIZE is set to the largest multiple of LRECL which
is less than or equal to this block size. Note that for
tapes this maximum size is 32767 bytes which would require
a sizeable buffer area to be taken out of main storage.

b. LRECL not supplied. For PRINT files the LRECL
defaults to 133. For non-PRINT files the default is 80.

c. RECFM not supplied. For PRINT files the RECF1

iZ:<
7-13

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

defaults to FBA. For non-PRIrNT files the default is FB.

7.8.2 General Rules Governing HAL/S Sequential Output

a. If the mode is PRINT and the DCBRECFH specifies
"A", carriage control characters will be automatically
generated. For Itl" on PAGED devices, it is the user's
responsibility to see that the first character of each
output line has the proper control characters. For UNPAGED
devices, control characters are not allowed.

b. Variable length record specification will cause
records to be written in variable format. However, the
records will actually be all the same length (LRECL).

c. Format U records (undefined rocord format)
will be written in the proper form, but all records will
be the same length (LRECL).

7.8.3 General Rules Governing HAL/S Sequential Input

a. Carriage control characters encountered during
input will be available to the programmer; i.e. scanning
of the input will begin at the carriage control character.

b. Variable length records may be read.
The 4 byte descriptor field of each record will not be
available to the programmer. The effective length of a
variable record will be "length read minus 4" (subject to
further modification due to carriage control).

7-14

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

APPENDIX A.

Compile-Time JCL Options

The following is a list of options which may be coded in
the "OPTION=" field of the JCL invoking the HAL/S compiler.

Type 1 options are ones which are specified by the
occurrence of a keyword in the PARM field. The keyword may be
preceded by the letters "NO" to indicate that the option is not
in effect. The default value assumed by the compiler if a
keyword is not specified is listed first.

Type 2 options are ones which have "values" associated
with them. The default values are shown.

Type 1 Options

NOLISTING2/ - Causes unformatted
LISTING2 source listing to be generated

NODUMP/DUMP - Requests the compiler to produce a memory
dump if certain internal compiler errors
occur

NOLIST/LIST - Produces an assembly listing from Phase II
of the compiler

TRACE/NOTRACE - Causes the generation of a link to the HSS
end-of-statement routine in the object
module. Enables Real Time execution and
.debugging.

NODECK/DECK - Controls production of an additional
object deck on the OUTPUT4 DD card

NOTABLST/ - Causes Phase III of the compiler to
TABLST produce formatted dump to the simulation

data file (SDF).

NOSRN/SRN - Causes the compiler to omit the last
eight columns or characters from the
source scanning. These columns are then
used to print information on the

A-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661,1840

TABLES/ - Controls generation of
NOTABLES Simulation Data Files

NOADDRS/ - Indicates the presence of
ADDRS statement address information

in the Simulation Data Files

Type 2 Options

PAGES=250 - Sets the maximum page number to be
allowed in generation of the primary
compilation listing

LINECT=59 - Sets the maximum number of lines
which will be printed on any one page of
either the primary or secondary source
listing

TITLE= ... - Specifies 1 to 60 characters used
by the compiler when printing header
information at the top of each page of
the listing.

In addition to those options described above, certain
others exist to support operation of the SDL. These options
include:

Type I Options

NOSDL/SDL - Informs the compiler that it is
operating within the SDL. Certain
actions are then taken, actions dif-
ferent from those taken during Stand-
Alone operation. An example of such
action is inclusion of extra information
in the primary source listing to allow
tracing of source updates.

A-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

APPENDIX B.

Execution-Time JCL Options

The following is a list of options which may be coded in
the "RUNPARM=" field of the JCL invoking the HAL/S compiler.
This information is directed to the "PARM" field of the
execution step.

TAB=n : Specifies the automatic spacing between elements
on output. The default value is 5.

LINES=n : Specifies the number of lines per page of paged
output. The default value is 55 lines.

MCHAN=n : Specifies the channel number (DD card CHANNELn) on
which error and trace messages appear. The valid
range is 0-9; CHANNEL6 is the default.

TRACE=0 : Specifies no tracing (default option).

TRACE=1 : Statement tracing;
(Note that this option is valid only if 'TRACE'
was specified on the compilation).

TRACE=2 : Procedure & function call and return tracing.

TRACE=3 : Statement, procedure & function call, and return tracii

TRACE =4 : Executive tracing (combined with other trace options
by addition).

DUMP=0 : No HAL/S variables dumped.

DUMP=1 : HAL/S variables dumped on ABEND (default option).

B-i
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

DUMP=2 : same as DUMP=1 but also on normal end;
(Note that DD cards HALSYMB and HALDUMP are required).

MSGLEVEL=0 : no backtrace on normal termination;
(This is the default value).

MSGLEVEL=1 : backtrace occurs on normal termination.

ERRORLIM=n : specifies the maximum number of execution time
errors allowed . The default value is 10. The
maximum is 254; if 255 is specified, the SYSTEM
action will be UNLIMITED.

SIMTIME=n : number specifying the starting time in
seconds of the RUNTIME simulation clock (DEFAULT:SIMTTME=

SPEED=n : number specifying the number of machine
cycles per second to be used in simulated execution
time (DEFAULT:SPEED=500,000.0).

PCBS=n : whole number specifying the maximum number of
programs and tasks in the run (DEFAULT:PCBS=10).

FIRSTPGM= : full <name> (underscores included;
<name> up to 32 characters) of the PROGRAM which is

to receive control first in the execution
of the HAL/S Load Module.

PROFILE : Requests that an execution profile of the
executed program be printed.

B-2
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

APPENDIX C.

Prototype Catalogued Procedures

This Appendix contains seven examples of the form of

catalogued procedures needed to compile, link edit and execute

a HAL/S program. The seven procedures perform varying degrees
of processing. The procedure names and their uses are:

HALSC - Compile a HAL/S program;

HALSCL - Compile and link a HAL/S program;

HALSCLG - Compile and link a HAL/S program, and execute
it in direct mode;

HALSCLD - Compile and link a HAL/S program, and execute
it under control of the execution monitoring system;

HALSL - Link a previously compiled HAL program;

HALSLG - Link and execute a previously compiled HAL/S program;

HALSLD - Link a previously comoiled HAL/S program, and execute
it under control of the monitoring system.

The most complex procedure, HALSCLG, is described line by line.

The following comments apply to the prototype catalogued
procedure HALSCLG listed in this appendix. The comments
generally apply equally to any of the other procedures.

Line 10000 - This PROC statement names the procedure and
defines the symbolic parameters. The
OPTION and RUNPARM parameters are the means
of supplying optional information to the
compiler and run-time system respectively.

Lines 10100 - The name of the compilation step is HAL.
10200 The name of the actual program to be

executed is MONITOR. MONITOR handles all
compiler/OS interfaces and also performs
the actual loading and overlaying of the
two phases of the compiler. The compiler
requires a 350K region, although a larger

C-I

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

region may be specified. The compiler will
always use all the memory it is given. A
larger region will generally result in
smaller compilation times. A default time
limit of 1 minute is supplied. This is
sufficient for most average size HAL/S
programs (approx. 300 HAL/S statements).

The PARM field contains the compile-time
options. The OPTION field receives any
user-specified options.

Line 10300 - The STEPLIB DD card specifies the location
of the load module library containing the
module MONITOR needed to run the compiler.
This card may define any direct access
library which contains the proper module or
may be deleted at installations where the
module has been made part of the system
library (SYS1.LINKLIB).

Line 104 0 0 - The PROGRAM DD card defines the phases of
the compiler that is to be used.
This data set has a DCB of the form:

DCB=(RECFi=F,LRECL=7200,BLKSIZE=7200)

and may reside on direct access or magnetic
tape. It is recommended, however, that
direct access be used.

Line 10500 - The SYSPRINT DD card defines the primary
listing data set. This is generally
assigned to a system output class, but may
be associated with any sequential data set
with the proper characteristics. The
record format must be FA or FBA with a
logical record length of 133 and any
appropriate block size. If not supplied in
the JCL, the DCB will default to

DCB=(RECFM=FBA,LRECL=133,BLKSIZE=7182)

Line 10600 - The LISTIHG2 DD card defines the secondary
listing data set. It may define a system
output class or any sequential data set.

C-2 Ig'<
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The DCB requirements are the same as for
SYSPRINT.

Lines 10700 - The OUTPUT3 DD card defines the data set
10900 which is to receive object code which is

produced by the compiler. In the prototype
procedure, this data set is given a
temporary Name (&&HALOBJ) and is passed
(DISP=(MOD,PASS)) to subsequent steps.

Since this data set contains card images,
it must have a logical record length of 80
and a record format of F or FB. The
blocking factor may be any legal multiple
of 80. If no DCB information is supplied
in the JCL, the default will be
DCB=(RECFl=FB,LRECL=80,BLKSIZE=7200). This
DD card may specify a direct access,
magnetic tape, or unit record device.

Line 11000 - The OUTPUT4 DD card defines the location
to which a duplicate of the OUTPUT3 file
will be sent under control of the "DECK"
compiler option. Its DCb characteristics
are identical to OUTPUT3.

Lines 11100 - The OUTPUT5 DD card defines the data set
11200 which will receive the Simulation Data

File (SDF). This file allows the
execution-time DUMP and TRACE facilities to
associate memory locations with HAL/S
variable names. For the compile-load-go
type of run this data set is generally a
temporary one which exists only for the
duration of the job. However, if the
results of a given compilation are saved to
be executed many times without
recompilation, the SDF should be saved as
well.

The OUTPUT5 DD card must define a
partitioned data set. The SPACE parameters
used in the prototype procedure are more
than adequate to contain the mapping file
of any one HAL/S program.

The OUTPUT5 DD card is accessed during the
code generation phase of the compilation.
One member of the partitioned data set is

187<C-3
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

created for a compilation unit. The name

of the member is the first 8 characters of

the name of the program or procedure being
compiled, padded with blanks if necessary.

If a member with the desired name does not

exist at compile-time, one is created. If
a member with the desired name already
exists, it is replaced by the new member.

The use of a permanent partitioned data set
makes it possible to maintain a "library"
of mapping files, with the member names

uniquely specifying the HAL/S compilations
to which the maps may be applied.

The format of the file must have a logical
record length of 1680 and a record format
of F. This DCB information must be
supplied in the JCL.

Line 11300 - The OUTPUT6 DD card defines the partitioned
11400 data set onto which templates for compilation

units may be placed. Refer to 6.2.7 for details

of template generation. The DCB attributes
for the data set should be compatible
with those used for primary
compiler input (SYSIN) and secondary
compiler input (INCLUDE).

Line 11500 - The ERROR DD defines the partitioned
data set which contains the error message
texts used by the syntax analysis phase of

HAL/S.. This data set is supplied with the
compiler and, being a partitioned data set,
must reside on a direct access volume.

Lines 11600 - The FILE1 through FILE6 DD cards specify

11600 work files. These files are used for
interphase communication. The device may

be either direct access or magnetic tape.
Space equivalent to approximately 60 tracks
on a 2314 should be available for each DD
card. The DCB is internally specified and
should not be altered by a JCL.

C-4

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Line 12100 - The SYSUDUMP DD card specifies the location
to which an abend dump is to be sent in the
event that the compiler terminates
abnormally.

Lines 20CCO - These lines define the data sets necessary
2110r to allow the external references in the

object program to be resolved and prepare

the program for loading into memory. The
JCL is the standard reauired by the OS/360
Linkaqe Zditor plus that which is necessary
for execution of the HALLINK processing
program, Details of the use of individual
ED cards may be found in the IBM
Linkaqe-Editor and Loader manual. The only
feature of this JCL which is peculiar to a

HAL/S compilation is the form of the SYSLIB
D card and the addition of the STACKOBJ
and TFP?LOAD DD cards. These two
additional Dr cards should be used as

specified in the procedures. They serve as
intermediate work data sets for the HALLINK
program.

The SYSPRINT dd card should always
have a BLKSI7Z parameter specified in the
JCL.

The HAL/S runtime library package must
be the primary source of modules to resolve
external references. Any references which
cannot be resolved from the HAL/S library
will be resolved from any libraries
catenated to the first DD card.

If the user has any IAL/S program
references to user-written non-HAL/S
subproqrams or to previously compiled HAL/S
programs, it is at this point that the
programs must be supplied to the linking
process. This may be done through the use
of a catenated DD card specifying a user
librarv, or by direct user input of control
cards to the link editor.

Lines 3000 - These cards specify the execution of

3700 the load module created in the LKED
step. The JCL for the step differs
depending upon the choice of either
direct execution or execution under
the execution monitoring system. The
two modes are determined by the par-
ticular procedure invoked: HALSCLG
and HALSCLD invoke the execution
monitoring system.

The EXEC card either invokes the load
module produced in the LKED step directly,

S< C-5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

or it invokes the execution monitor
(EUNMON).

Certain JCL cards are common to both modes of execution:

The CHANNFL6 DD card is supplied in the
procedure because device 6 is commonly used
as an output unit. It is also supplied
because all system-generated output (e.g,
runtime error messages) is directed by
default to CHANNEL6. The user may alter the
destination of such messages via the MCHAN
optional parameter.

The CHANNEL5 DD card has been supplied in
the procedure because it is common practice
to assume that device 5 will be used for
input. The use of the DDNAME parameter on
the CHANNEL5 DD card allows the user to
specify either:

//GO.CHANNEL5 DD parameters

or //GO.SYSIN DD parameters

to define the runtime input.

The SYSrUMP DD card specifies the location
to which a hexadecimal memory dump will be
sent in the event of an abnormal
termination.

The following JCL is special to the execution monitoring
system:

The STEPLIB tD card indicates the location
of the EUNMON program.

The PFOGLAM DD card indicates the location
of the diagnostic processing program which
is executed by RUNMON.

The SYSPRINT DD card identifies the output
of the diagnostic processing program.
Fequest cards and request card errors are
listed here.

The HATSDF DD card defines the dataset
containing the SDF for the program(s) being
executed. In the case of the prototype
procedure, this is the temporary dataset
created by the compilation step as OUTPUTS.

The HALLIR DD card defines the dataset

-6 INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617 661-18

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

containinq the HAL/S load module to be'
executed. The prototype procedure indicates
the module produced in the LKED step just

preceedinq the execution step.

C-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HALSC

10000 //HALSC PROC OPTION=
10100 //HAL EXEC PGM=M4ONITOR,REGION=350K,TIME=1,
10200 // PARM='&OPTION'
10300 //STEPLIB DD DISP=SHR,DSN=HALS360;MONITOR
10400 //PROGRAM DD DISP=SHR,DSN=HALS360.COMPILER
10500 //SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
10600 //LISTING2 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE:3458)
10700 //OUTPUT3 DD UNIT=SYSDA,DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
10800 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
10900 // DSN=&&HALOBJ
11000 //OUTPUT4 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
11100 //OUTPUT5 DD DISP=(MOD,PASS),DSN=&&HALSDF,SPACE:(TRK,(2,2,1)),
11200 // DCB=(RECFM=F,LRECL=1680,BLKSIZE=1680),UNIT=SYSDA
11300 //OUTPUT6 DD DISP=(MOD,PASS),DSN=&&TEMPLIB,SPACE=(TRK,(2,2,1)),
11400 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=1680),UNIT=SYSDA
11500 //ERROR DD DISP=SHR,DSN=HALS360.ERRORLIB
11600 //FILE1 DD UNIT=SYSDA,SPACE=(CYL,3)
11700 //FILE2 DD UNIT=SYSDA,SPACE=(CYL,3)
11800 //FILE3 DD UNIT=SYSDA,SPACE=(CYL,3)
11900 //FILE5 DD UNIT=SYSDA,SPACE=(CYL,3)
12000 //FILE6 DD UNIT=SYSDA,SPACE=(CYL,3)
12100 //SYSUDUMP DD SYSOUT=A

C-8

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

HALSCL

10000 //HALSCL PROC OPTION=
10100 //HAL EXEC PGM=MONITOR,REGION=350K,TIME=1,
10200 // PARM='&OPTION'
10300 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
10400 //PROGRAM DD DISP=SHR,DSN=HALS360.COMPILER
10500 //SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=345

8)
10600 //LISTING2 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3

4 58)

10700 //OUTPUT3 DD UNIT=SYSDA,DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
10800 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
10900 // DSN=&&HALOBJ
11000 //OUTPUT4 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
11100 //OUTPUTS DD DISP=(MOD,PASS),DSN=&&HALSDF,SPACE=(TRK,(2,2,1)),
11200 // DCB=(RECFM=F,LRECL=1680,BLKSIZE=1680),UNIT=SYSDA
11300 //OUTPUT6 DD DISP=(MOD,PASS),DSN=&&TEMPLIB,SPACE=(TRK,(2,2,1)),
11400 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=1680),UNIT=SYSDA
11500 //ERROR DD DISP=SHR,DSN=HALS360.ERRORLIB
11600 //FILE1 DD UNIT=SYSDA,SPACE=(CYL,3)
11700 //FILE2 DD UNIT=SYSDA,SPACE=(CYL,3)
11800 //FILE3 DD UNIT=SYSDA,SPACE=(CYL,3)
11900 //FILE5 DD UNIT=SYSDA,SPACE=(CYL,3)
12000 //FILE6 DD UNIT=SYSDA,SPACE=(CYL,3)
12100 //SYSUDUMP DD SYSOUT=A
20000 //LKED EXEC PGM=HALLINK,REGION=100K,PARM=(LIST,MAP),
20100 // COND=(0,LT,HAL)
20200 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
20300 //SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1210
20400 //SYSLIB DD DSN=HALS360.RUNLIB,DISP=SHR
20500 //SYSLIN DD DISP=OLD,DSN=&&HALOBJ
20600 // DD DDNAME=SYSIN
20700 //SYSLMOD DD DSN=&&HALMOD(GO),DISP=(,PASS),UNIT=SYSDA,
20800 // SPACE=(CYL,(1,1,1))
20900 //SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD))
21000 //STACKOBJ DD SPACE=(TRK,(5,10)),UNIT=SYSDA

'110OQ //TEMPLOAD DD SPACE=(CYL,(1,1,1)),UNIT=SYSDA

C-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1841

HALSCLD

10000 //HALSCLD PROC OPTION=,RUNPARM=
10100 //HAL EXEC PGM=MONITOR,REGION=350K,TIME=1,
10200 // PARM='&OPTION"
10300 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
10400 //PROGRAM DD DISP=SHR,DSN=HALS360.COMPILER
10500 //SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
10600 //LISTING2 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=

3 458)
10700 //OUTPUT3 DD UNIT=SYSDA,DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
10800 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
10900 // DSN=&&HALOBJ
11000 //OUTPUT4 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
11100 //OUTPUT5 DD DISP=(MOD,PASS),DSN=&&HALSDF,SPACE=(TRK,(2,2,1)),
11200 // DCB=(RECFM=F,LRECL=1680,BLKSIZE=1680),UNIT=SYSDA
11300 //OUTPUT6 DD DISP=(MOD,PASS),DSN=&&TEMPLIB,SPACE=(TRK,(2,2,1)),
11400 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=1680),UNIT=SYSDA
11500 //ERROR DD DISP=SHR,DSN=HALS360.ERRORLIB
11600 //FILE1 DD UNIT=SYSDA,SPACE=(CYL,3)
11700 //FILE2 DD UNIT=SYSDA,SPACE=(CYL,3)
11800 //FILE3 DD UNIT=SYSDA,SPACE=(CYL,3)
11900 //FILE5 DD UNIT=SYSDA,SPACE=(CYL,3)
120'00 //FILE6 DD UNIT=SYSDA,SPACE=(CYL,3)
12100 //SYSUDUMP DD SYSOUT=A
20000 //LKED EXEC PGM=HALLINK,REGION=100K,PARM=(LIST,MAP),
20100 // COND=(0,LT,HAL)
20200 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
20300 //SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1210
20400 //SYSLIB DD DSN=HALS360.RUNLIB,DISP=SHR
20500 //SYSLIN DD DISP=OLD,DSN=&&HALOBJ
20600 // DD DDNAME=SYSIN
20700 //SYSLMOD DD DSN=&&HALMOD,DISP=(,PASS),UNIT=SYSDA,
20800 // SPACE=(CYL,(1,1,1))
20900 //SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD))
21000 //STACKOBJ DD SPACE=(TRK,(5,10)),UNIT=SYSDA
21100 //TEMPLOAD DD SPACE=(CYL,(1,1,1)),UNIT=SYSDA
30000 //GO EXEC PGM=RUNMON,REGION=100K,
30100 // COND=((0,LT,HAL),(4,LT,LKED)),
30110 // PARM='&RUNPARM'
30200 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
30300 //PROGRAM DD DISP=SHR,DSN=HALS360.DIAGPROC
30400 //SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=

3 458)
30500 //HALLIB DD DISP=OLD,DSN=&&HALMOD
30600 //CHANNEL6 DD SYSOUT=A
30700 //HALSDF DD DISP=OLD,DSN=&&HALSDF
30800 //CHANNEL5 DD DDNAME=SYSIN
30900 //SYSUDUMP DD SYSOUT=A

C-10

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HALSCLG

10000 //HALSCLG PROC OPTION=,RUNPARM=
10100 //HAL EXEC PGM=MONITOR,REGION=350K,TIME=1,
10200 // PARM='NOTABLES,&OPTION'
10300 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
10400 //PROGRAM DD DISP=SHR,DSN=HALS360.COMPILER
10500 //SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
10600 //LISTING2 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
10700 //OUTPUT3 DD UNIT=SYSDA,DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
10800 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
10900 // DSN=&&HALOBJ
11000 //OUTPUT4 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
11100 //OUTPUT5 DD DISP=(MOD,PASS),DSN=&&HALSDF,SPACE=(TRK,(2,2,1)),
11200 // DCB=(RECFM=F,LRECL=1680,BLKSIZE=1680),UNIT=SYSDA

11300 //OUTPUT6 DD DISP=(MOD,PASS),DSN=&&TEMPLIB,SPACE=(TRK,(2,2,1)),
11400 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=1680),UNIT=SYSDA
11500 //ERROR DD DISP=SHR,DSN=HALS360.ERRORLIB
11600 //FILE1 DD UNIT=SYSDA,SPACE=(CYL,3)
11700 //FILE2 DD UNIT=SYSDA,SPACE=(CYL,3)
11800 //FILE3 DD UNIT=SYSDA,SPACE-=(CYL,3)
11900 //FILE5 DD UNIT=SYSDA,SPACE=(CYL,3)
i2000 //FILE6 DD UNIT=SYSDA,SPACE=(CYL,3)
12100 //SYSUDUMP DD SYSOUT=A
20000 //LKED EXEC PGM=HALLINK,REGION=100K,PARM=(LIST,MAP),
20100 // COND=(O,LT,HAL)
20200 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
20300 //SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1210
20400 //SYSLIB DD DSN=HALS360.RUNLIB,DISP=SHR
20500 //SYSLIN DD DISP=OLD,DSN=&&HALOBJ
20600 // DD DDNAME=SYSIN
20700 //SYSLMOD DD DSN=&&HALMOD(GO),DISP=(,PASS),UNIT=SYSDA,
20800 // SPACE=(CYL,(1,1,1))
20900 //SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD))
21000 //STACKOBJ DD SPACE=(TRK,(5,10)),UNIT=SYSDA
21100 //TEMPLOAD DD SPACE=(CYL,(1,1,1)),UNIT=SYSDA

30000 //GO EXEC PGM=*.LKED.SYSLMOD,REGION=100K,
30100 // COND=((0,LT,HAL),(4,LT,LKED)),
30200 // PARM='&RUNPARM'
30300 //CHANNEL6 DD SYSOUT=A
30600 //CHANNELS DD DDNAME=SYSIN
30700 //SYSUDUMP DD SYSOUT=A

C-11

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HALSL

10000 //HALSL PROC
20000 //LKED EXEC PGM=HALLINK,REGION=100K,PARM=(LIST,MAP)
20100 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR

20200 //SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1210

20300 //SYSLIB DD DSN=HALS360.RUNLIB,DISP=SHR
20400 //SYSLIN DD DDNAME=SYSIN

20500 //SYSLMOD DD DSN=&&HALMOD(GO),DISP=(,PASS),UNIT=SYSDA,
20600 // SPACE=(CYL,(1,1,1))
20700 //SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD))
20800 //STACKOBJ DD .SPACE=(TRK,(5,10)),UNIT=SYSDA

20900 //TEMPLOAD DD SPACE=(CYL,(1,1,1)),UNIT=SYSDA

C-12

NTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

HALSLD

10000 //HALSLD PROC RUNPARM=
20000 //LKED EXEC PGM=HALLINK,REGION=100K,PARM=(LIST,MAP)
20100 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
20200 //SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1210
20300 //SYSLIB DD DSN=HALS360.RUNLIB,DISP=SHR
20400 //SYSLIN DD DDNAME=SYSIN
20500 //SYSLMOD DD DSN=&&HALMOD,DISP=(,PASS),UNIT=SYSDA,
20600 // SPACE=(CYL,(1,1,1))
20700 //SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD))
20800 //STACKOBJ DD SPACE=(TRK,(5,10)),UNIT=SYSDA
20900 //TEMPLOAD DD SPACE=(CYL,(1,1,1)),UNIT=SYSDA
30000 //GO EXEC PGM=RUNMON,.REGION=100K,
30100 // COND=(4,LT,LKED),
30150 // PARM='&RUNPARM'
30200 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
30300 //PROGRAM DD DISP=SHR,DSN=HALS360.DIAGPROC
30400 //SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
30500 //HALLIB DD DISP=OLD,DSN=&&HALMOD
30600 //CHANNEL6 DD SYSOUT=A
30800 //CHANNEL5 DD DDNAME=SYSIN
30900 //SYSUDUMP DD SYSOUT=A

C-13

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HALSLG

10000 //HALSLG PROC RUNPARM=
20000 //LKED EXEC PGM=HALLINK,REGION=100K,PARM=(LIST,MAP)
20100 //STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
20200 //SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1210
20300 //SYSLIB DD DSN=HALS360.RUNLIB,DISP=SHR
20400 //SYSLIN DD DDNAME=SYSIN
20500 //SYSLMOD DD DSN=&&HALMOD(GO),DISP=(,PASS),UNIT=SYSDA,
20600 // SPACE=(CYL,(1,1,1))
20700 //SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD))
20800 //STACKOBJ DD SPACE=(TRK,(5,10)),UNIT=SYSDA
20900 //TEMPLOAD DD SPACE=(CYL,(1,1,1)),UNIT=SYSDA
30000 //GO EXEC PGM=*.LKED.SYSLMOD,REGION=100K,
.30 00.- /.. -- ------- COND: (-4.,LT,LK ED
3n200 I/ PARM='&RUNPARM'
30300 //CHANNEL6 DD SYSOUT=A
30600 //CHANNEL5 DD DDNAME=SYSIN
30700 //SYSUDUMP DD SYSOUT=A

C-14
ITERMETRICS INCORPORATED • 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

APPENDIX D.

Ccmnile Time Error Messages

A complete list of compile time error messages is

presente d here. The first table gives the mnemonic naming
scheme used to identify the class-subclass structure of the

Phase I error messaqes. The complete list of Phase I errors

are presented next. Phase IT errors are listed last. These

errors do not have a mnemonic naming scheme and are simply
listed with their severities. The occurrences of double

ques+ion marks (??) in the text of the messages listed here

indicate positions at which text specific to each actual error

will be inserted (e.g. a variable name may be inserted to make
a clear identification of the error source).

-NTEMETCS NCOPOATED CAMBRIDGE, MASSACHUSETTS 02138

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Note: "b" denotes a blank.

CLASS a: ASSIGNMENT STATEMENTS

A ARRAY ASSIGNMENT
V COMPLEX VARIABLE ASSIGNMENT
b MISCELLANEOUS ASSIGNMENT

CLASS B: COMPILER TERMINATION

A 1ALMAT BLOCK S'ZF
N NAME SCOPE NESTTNG
S STACK SIZE LIMITATIONS
T TABLE SIZE LIMITATIONS
X COMPILER ERRORS
b MISCELLANEOUS

CLASS C: COMPARISONS

b GENERAL COMPARISONS

CLASS D: DECLARATION ERRORS

A ATTRIBUTE LIST
C STORAGE CLASS ATTRIBUTE
D DIMENSION
F FUNCTION DECLARATION
I INITIALIZATION
L LOCKING ATTRIBUTE
Q £TRUCTUg TILATE TMRE ORGANIZATION
S AC'TORED/U1IFACTORD SPECIFICATIO -

T TYPE SPECIFICATION
U UNDECLARED DATA
b MISCELLANEOUS

D-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

T TYPE SPECIFICATION
U UNDECLARED DATA
b MISCELLANEOUS

CLASS E: EXPRESSIONS

A ARRAYNESS
B BIT STRING EXPRESSIONS
C CROSS PRODUCT
D DOT PRODUCT
L LIST EXPRESSIONS
M MATRIX EXPRESSIONS
0 OUTER PRODUCT
V VECTOR EXPRESSIONS
b MISCELLANEOUS EXPRESSIONS

CLASS F: FORMAL PARAMETERS & ARGUMENTS

D DIMENSION AGREEMENT
N NUMBER OF ARGUMENTS
S SUBBIT ARGUMENTS
T TYPE AGREEMENT

CLASS G: STATEMENT GROUPINGS (DO GROUPS)

B BIT TYPE CONTROL EXPRESSION
C CONTROL EXPRESSION
E EXIT/REPEAT STATEMENTS
L END LABEL
V CONTROL VARIABLE

CLASS I: IDENTIFIERS

L LENGTH
R REPLACED IDENTIFIERS
S QUALIFIED STRUCTURE NAMES

CLASS L: LITERALS

B BIT STRING
C CONVERSION TO INTERNAL FORMS
F FORMAT OF ARITHMETIC LITERALS
S CHARACTER STRING

CLASS M: MULTILINE FORMAT

C OVERPUNCH CONTEXT
E E-LINE

D-3

O OVERPUNCH USE
S S-LINE
b COMMENTS

CLASS P: PROGRAM CONTROL & INTERNAL CONSISTANCE

A ACCESS CONTROL
C COMPOOL BLOCKS
D DATA DEFINITION
E EXTERNAL TEMPLATES
F FUNCTION RETURN EXPRESSIONS
L LABELS
M MULTIPLE DEFINITIONS
P BLOCK DEFINITION
S PROCEDURE/FUNCTION TEMPLATES
T TASK DEFINITIONS
U CALLS FROM UPDATE BLOCKS
b MISCELLANEOUS

CLASS Q: SHAPING FUNCTIONS

A ARRAYNESS
D DIMENSION INFORMATION
S SUBSCRIPTS
X ARGUMENT TYPE

CLASS R: REAL TIME STATEMENTS

E ON/SEND ERROR STATEMENTS
T TIMING EXPRESSIONS
U UPDATE BLOCKS

CLASS S: SUBSCRIPT USAGE

C SUBSCRIPT COUNT
P PUNCTUATION
0 PRECISION QUALIFIER
R RANGE OF SUBSCRIPT VALUES
S USAGE OF ASTERISKS
T SUBSCRIPT TYPE
V VALIDITY OF USAGE

CLASS T: I/O STATEMENTS

C CONTROL
D DEVICE NUMBER
b MISCELLANEOUS

D-4

CLASS U: UPDATE BLOCKS

I IDENTIFIER USAGE
P PROGRAM BLOCKS
T I/O

CLASS V: COMPILE-TIME EVALUATIONS

A ARITHMETIC OPERATIONS
C CATENATION OPERATIONS
E UNCOMPUTABLE EXPRESSIONS
F FUNCTION EVALUATION

CLASS X: IMPLEMENTATION DEPENDENT FEATURES

A PROGRAM ID DIRECTIVE
D DEVICE DIRECTIVE
I INCLUDE DIRECTIVE
U UNKNOWN OR INVALID DIRECTIVE

D-5

ERROR MESSAGES FOR MAJOR CLASSIFICATION A
CLASSIFICATION "A" ERRORS ARE RELATED TO ASSIGNMENT STATEMENTS

AA1 -SEVERITY 1
ARRAYNESS OF LEFT HAND SIDE'OF ASSIGNHENT DOES NOT MATCH THAT OF RIGHT HAND SIDE

AA2 -SEVERITY 1
ARRAYNESS OF ?? IS INCONSISTENT WITH THAT OF OTHER LEFT HAND SIDE VARIABLES

AA3 -SEVERITY 1
ARRAYNESS OF ?? DISAGREES WITH ARRAYNESS OF ITS SUBSCRIPTING

AVO -SEVERITY 1
ARGUMENTS ON EITHER SIDE OF NAME ASSIGNMENT ARE INCOMPATIBLE.

AV1 -SEVERITY 1
TYPE OF ?? IS ILLEGAL FOR ASSIGNMENT FROM GIVEN LEFT-HAND SIDE.

AV2 -SEVERITY 1
MATRIX DIMENSIONS DISAGREE ACROSS ASSIGNMENT

AV3 -SEVERITY 1
VECTOR LENGTHS DISAGREE ACROSS ASSIGNMENT

AV4 -SEVERITY 1
TREE ORGANIZATIONS DO NOT MATCH ACROSS ASSIGNMENT

AV5 -SEVERITY 1
ONLY ONE OPERAND IN ASSIGNMENT IS A NAME PSEUDO-FUNCTION
OR NULL.

Al -SEVERITY 1
ILLEGAL ASSIGNMENT TO CONSTANT OR PARAMETER ??

A2 -SEVERITY 1
?? POSSESSES SUBSCRIPTS ILLEGAL FOR THE ARGUMENT OF A NAME
PSEUDO-FUNCTION IN ASSIGNMENT CONTEXT.

A3 -SEVERITY 1
?? DOES NOT POSSESS THE NAME ATTRIBUTE - IT IS THEREFORE
ILLEGAL AS ARGUMENT OF A NAME PSEUDO-FUNCTION IN
ASSIGNMENT CONTEXT.

D-6 1 <

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION B
CLASSIFICATION "B" ERRORS RESULT FROM ABORTIVE COMPILER FAILURES

BB1 -SEVERITY 2
INTERMEDIATE CODE STORAGE OVERFLOW: ERROR SCAN CONTINUING

BNI -SEVERITY 3
MAX NAME SCOPE NESTING DEPTH EXCEEDED

BS1 -SEVERITY 3
MArIMUM DEPTH OF DO...END GROUP NESTING EXCEEDED

BS2 -SEVERITY 2
INDIRECT PARSE STACK SIZE EXCEEDED

BS3 -SEVERITY 3
PARSE STACK OVERFLOV

BS -SEVERITY 2
CURRENT ARRAYNESS STACK SIZE EXCEEDED

BS5 -SEVFRITY I
MAXIMUM FUNCTION NESTING DEPTH EXCEEDED

BT1 -SEVERITY 3
SYMBCL TABLE OVERFLOW

BT3 -SEVERITY 3
LITERAL TABLE DATA OVERFLOW

BT4 -SEVERITY 3
LITERAL TABLE STRING OVERFLOW

BT5 -SEVERITY 3
MACRO TABLE OVERFLOW

BT7 -SEVERITY 2
INITIAL LIST STORAGE CAPACITY EXCEEDED

BX1 -SEVERITY 2
SYTCLASS = 0 FOR ??

BX2 -SEVERITY 2
FUNCTOKEN = 0

BX4 -SEVERITY 3
TOO MANY BUILT-IN FUNCTIONS

BX5 -SEVERITY 2
EXT.AFRAY OVERFLOW

Bi -SEVERITY 3
INSUFFICIENT CORE AVAILABLE

B2 -SEVEPITY 3
INLINE FUNCTION MAY NOT BE IN A SUBSCRIPT OR EXPONENT,
THIS ERROR IS IRRECOVERABLE.

D-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184

ERROR MESSAGES FOR MAJOR CLASSIFICATION
C

CLASSIFICATION "C" ERRORS DEAL WITH COMPARISONS

CO -SEVERITY 1
ARGUMCO ENTS IN NAME COMPaRISON.ARE INCOMPATIBLE.

C1 -SEVERITY 1
?? CCHPARISONS MAY ONLY BE = OR -=

C2 -SEVERITY 1
ARRAYED COMPARISONS ARE RESTRICTED

TO - OR *=

CJ -SEVERITY 1
TREE ORGANIZATIONS OF STRUCTURES COMPARED DO NOT HATCH

C4 -SEVERITY 1
ONLY ONE OPERAND OF COMPARISON IS A NAME PSEUDO-FUNCTION

OR NULL.

D- 8

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION D
CLASSIFICATION "D" ERRORS ARE RELATED TO DATA DECLARATIONS

DAO -SEVERITY 1
CONFLICTING ATTRIBUTE SPECIFIED WITH THE LATCHED ATTRIBUTE

DA1 -SEVERITY 1
ILLEGAL ATTRIBUTE SPECIFIED FOR BIT OR BOOLEAN DATA TYPE

DA10 -SEVERITY 1
ILLEGAL ATTRIBUTE SPECIFIED FOR STRUCTURE DATA TYPE

DAll -SEVERITY 1
CONFLICT BETWEEN ATTRIBUTES AND FUNCTION OR LABEL TYPE SPECIFICATION
- ATTRIBUTES IGNORED

DA2 -SEVERITY 1
ILLEGAL ATTRIBUTE SPECIFIED FOR CHARACTER DATA TYPE

DA20 -SEVERITY 1
ILLEGAL ATTRIBUTE SPECIFIED FOR MINOR STRUCTURE ??

DA21 -SEVERITY 1
AN ARRAY SPECIFICATION IS NOT ALLOWED FOR THE MINOR STRUCTURE ??

DA22 -SEVERITY 1
NO ATTRIBUTES MAY BE SPECIFIED ON A NESTED STRUCTRUE TEMPLATE REFERENCE

DA23 -SEVERITY 1
ILLEGAL ATTRIBUTE FOR THE STRUCTURE TERMINAL ??

DA24 -SEVERITY 1
FACTORED AND NON-FACTORED ATTRIBUTE SPECIFICATIONS FOR ?? DISAGREE;
THE NON-FACTORED ATTRIBUTES WILL BE GIVEN PRECEDENCE.

DA25 -SEVERITY 1
CONTRADICTORY PAIR OF ATTRIBUTES SUPPLIED - FIRST
APPEARING ATTRIBUTE WILL BE USED

DA3 -SEVERITY 1
ILLEGAL ATTRIBUTE SPECIFIED FOR MATRIX DATA TYPE

DA4 -SEVERITY 1
ILLEGAL ATTRIBUTE SPECIFIED FOR VECTOR DATA TYPE

DA5 -SEVERITY 1
ILLEGAL ATTRIBUTE SPECIFIED FOR SCALAR DATA TYPE

DA6 -SEVERITY I
ILLEGAL ATTRIBUTE SPECIFIED FOR INTEGER DATA TYPE

DA9 -SEVERITY 1
ILLEGAL ATTRIBUTE SPECIFIED FOR EVENT DATA TYPE

DC1 -SEVERITY 1
DECLARATION CONTAINS BOTH LABEL TYPE AND DATA TYPE SPECIFICATION
- LABEL TYPE IGNORED.

DC2 -SEVERITY 1
THE ATTRIBUTES STATIC AND AUTOMATIC MAY NOT BE SECIFIED IN COMPOOL
DECLARATIONS,

D-9
INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

DC3 -SEVERITY 1
THE PARAMETER ?? MAY NOT HAVE STATIC OR AUTOMATIC ATTRIBUTES SPECIFIED

DC -SEVERITY 1
FACTORED AND NON-FACTORED TYPE SPECIFICATION FOR ?? DISAGREE

THE NON-FACTORED TYPE SPECIFICATION WILL BE USED

DC5 -SEVEPITY 1
ACCESS ATTRIBUTES MAY ONLY BE QUALIFIED IN COMPOOL DECLARATIONS.

DD1 -SEVERITY 1
ILLEGAL ARRAY DIMENSION SPECIFICATION

DD10 -SEVERITY 1
* ARRAY SIZE IS ILLEGAL FOR ?? - ARRAY SIZE OF 2 ASSUMED.

DD11 -SEVERITY 1
ILLEGAL FORM OF STRUCTURE DIMENSION SPECIFICATION

DD12 -SEVERITY 1
ILLEGAL CONTEXT FOR SPECIFICATION OF STRUCTURE COPIES

DD3 -SEVERITY 2
TOO MANY DIMENSIONS IN ARRAY

DD4 -SEVERITY 1
INVALID MATRIX DIMENSION SPECIFICATION; A DIMENSION OF 3 IS ASSURED

DD5 -SEVERITY 1
INVALID VECTOR LENGTH SPECIFICATION; A 3-VECTOR IS ASSUMED

DD6 -SEVERITY 1
ONLY SINGLE DIMENSION ARRAYS MAY USE THE * TO DENOTE UNKNOWN LENGTH

DD7 -SEVERITY 1
A * MAY NOT BE USED TO SPECIFY VECTOR LENGTH; A 3-VECTOR IS ASSUMED

DD8 -SEVERITY 1
* STRUCTURE COPY NOTATION IS ILLEGAL FOR ?? -
STRUCTURE COPY SIZE OF 2 ASSUMED.

DD9 -SEVERITY 1
A * MAY NOT BE USED TO SPECIFY A MATRIX DIMENSION; A DIMENSION OF 3 IS ASSURED

DF1 -SEVERITY 1
THE FUNCTION 77 MAY NOT BE DECLARED IN A COMPOOL

DF2 -SEVERITY 1
ILLEGAL ATTRIBUTE FOR THE FUNCTION 77

DF3 -SEVERITY 1
THE FUNCTION ?? MAY NOT HAVE AN INITIAL/CONSTANT SPECIFICATION

DI1 -SEVERITY 1
REPEAT FACTOR IN INITIALIZATION HAS NO LEGAL VALUE COMPUTABLE AT
COMPILE TIME

DI10 -SEVERITY 1
TOO HANY ELEMENTS SUPPLIED IN INITIAL LIST FOR ??

D-10
INTERMETRICS INCORPORATED " 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

DIll -SEVERITY 1
THE VARIABLE ?? USED IN A COMPILE-TIME EXPRESSION HAS NOT BEEN

PREVIOUSLY

DEFINED

DI12 -SEVERITY 1
FORMAL PARAMETER ?? POSSESSES ILLEGAL ATTRIBUTES CONCERNING

INITIALIZATION - ATTRIBUTES IGNORED.

D113 -SEVERITY 1
LABEL OR FUNCTION ?? POSSESSES ILLEGAL ATTRIBUTES CONCERNING

INITIALIZATION - ATTRIBUTES IGNORED.

DI14 -SEVERITY 1
IN AN INITIAL LIST, THE ARGUMENT OF A NAME PSEUDO-FUNCTION

MAY NCT POSSESS A SUBSCRIPT.

DI15 -SEVERITY 1
IN AN INITIAL LIST, THE ARGUMENT OF A NAME PSEUDO-FUNCTION
MAY NOT POSSESS ARRAYNESS.

DI16 -SEVERITY 1
IN AN INITIAL LIST THE ARGUMENT OF A NAME
PSEUDO-FUNCTION MAY NOT POSSESS THE NAME ATTRIBUTE.

DI2 -SEVERITY 1
IMPLIED NUMBER OF ELEMENTS IN INITIAL LIST EXCEEDS COMPILER LIMIT

DI3 -SEVERITY 1
EXPRESSION IN INITIAL LIST IS NOT COMPUTABLE AT COMPILE TIME

DI4 -SEVERITY 1
INITIALIZATION OF ?? HAS ILLEGAL TERMINATING * :
NUMBER OF INITIAL VALUES HATCHES TOTAL NUMBER OF ELEMENTS

DI5 -SEVERITY 1
TOO FEW ELEMENTS SUPPLIED IN INITIAL LIST FOR ??

DI6 -SEVERITY 1
ILLEGALLY-TYPED INITIAL VALUE--INITIALIZATION OF ?? EXPECTS
A VALUE OF CHARACTER TYPE

DI7 -SEVERITY 1
ILLEGALLY-TYPED INITIAL VALUE--INITIALIZATION OF ?? EXPECTS
A VALUE OF BIT TYPE

DI8 -SEVERITY 1
ILLEGALLY-TYPED INITIAL VALUE--INITIALIZATION OF ?? EXPECTS A
VALUE OF INTEGER OR SCALAR TYPE

DI9 -SEVERITY 1
THE DECLARATION OF ?? HAS BOTH FACTORED AND UNFACTORED INITIAL/CONSTANT
ATTRIBUTES: THE UNFACTORED ATTRIBUTES WILL BE-USED

DL1 -SEVERITY 1
?? DOES NOT APPEAR IN A COMPOOL OR PROGRAM DECLARATION,

AND IS NOT AN ASSIGN PARAMETER: THE LOCKING ATTRIBUTE

SPECIFIED IS THEREFORE ILLEGAL.

DL2 -SEVERITY 1
THE LOCKED ATTRIBUTE HAY NOT BE USED IN CONJUNCTION WITH THE CONSTANT ATTRIBUTE

D-11
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

DL3 -SEVERITY 1
ILLEGAL LOCK GROUP NUMBER SPECIFIED

DW1 -SEVERITY 1
PROGRAM, TASK. OR PROCEDURE.DECLARATION FOR ?? DOES NOT CONTAIN NAHE ATTRIBUTE

DN2 -SEVERITY 1
THE NAME ATTRIBUTE MAY NOT BE USED IN THE DECLARATION

OF TEMPORARIES - ATTRIBUTE IGNORED.

DO1 -SEVERITY 1
FIRST NODE DECLARED IN TEMPLATE MUST BE AT LEVEL 1

DO10 -SEVERITY 1
STRUCTURE ?? MAY NOT BE A TEMPOFARY SINCE ITS TEMPLATE CONTAINS
AT LEAST ONE TERMINAL NODE WITH THE NAME ATTRIBUTE.

DQ2 -SEVERITY 1
ILLEGAL SEQUENCE OF LEVEL NUMBERS IN TEMPLATE

DQ3 -SEVERITY 1
NAME OF STRUCTURE TEMPLATE CAUSES UNQUALIFICATION IN AN ILLEGAL CONTEXT

DO4 -SEVERITY 1
STRUCTURE ?? CANNOT BE UNQUALIFIED - STRUCTURE TEMPLATE IS ALREADY USED
BY AN UNOUALIFIED STRUCTURE

DO5 -SEVERITY 1
STRUCTURE ?? CANNOT BE UNQUALIFIED - STRUCTURE TEMPLATE IS NOT
IN SAME NAME SCOPE

DO6 -SEVERITY 1
STRUCTURE ?? CANNNOT BE UNQUALIFIED - STRUCTURE TEMPLATE CONTAINS
A REFERENCE TO ANOTHER STRUCTURE TEMPLATE.

D07 -SEVERITY 1
THE DECLARED NAME ?? DUPLICATES THE NAME OF A NODE OF THE
TEMPLATE OF AN UNQUALIFIED STRUCTURE PREVIOUSLY DECLARED
IN THE SAME NAME SCOPE: THIS CAUSES THE UNQUALIFICATION TO BECOME
ILLEGAL.

DOS -SEVERITY 1
STRUCTURE ?? CANNOT BE UNQUALIFIED - STRUCTURE TEMPLATE CONTAINS
AT LEAST ONE NAME NOT UNIOUE TO THE NAME SCOPE

D09 -SEVERITY 1
THE DECLARED NODE ?? DUPLICATES A PREVIOUSLY DECLARED NODE NAME -
CAUSING QUALIFIED REFERENCES TO THE TWO NODES TO BE INDISTINGUISHABLE

DS1 -SEVERITY 1
INVALID BIT-LENGTH SPECIFICATION

DS10 -SEVERITY 1
FACTORED AND NON-FACTORED STRUCTURE TEMPLATE REFERENCES DISAGREE;
NON-FACTORED REFERENCE WILL BE USED

DS11 -SEVERITY 1
INPUT/ASSIGN PARAMETERS OF CHARACTER TYPE CAN ONLY BE GIVEN A * LENGTH
SPECIFICATION

150<

D-12
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

DS2 -SEVERITY 1
INVALIE CHAR-LENGTH SPECIFICATION

DS3 -SEVERITY 1
A * IS AN ILLEGAL CHARACTER LENGTH SPECIFICATION; A LENGTH OF 8 IS ASSUMED

DS4 -SEVERITY 1
A * IS AN ILLEGAL BIT LENGTH SPECIFICATION; A LENGTH OF I IS ASSUMED

DS5 -SEVERITY 1
FACTORED AND NON-FACTORED BIT SIZE SPECIFICATION FOR ?? DISAGREE
THE NCN-FACTORED SPECIFICATION WILL BE USED

DS6 -SEVERITY 1
FACTORED AND NON-FACTORED CHARACTER LENGTH SPECIFICATION FOR ?? DISAGREE
THE NCN-FACTORED SPECIFICATION WILL BE USED

DS7 -SEVERITY 1
FACTORED AND NON-FACTORED MATRIX DIMENSION SPECIFICATION POR ?? DISAGREE
THE NCN-FACTORED SPECIFICATION WILL BE USED

DS8 -SEVERITY 1
FACTORED AND NON-FACTORED VECTOR DIMENSION SPECIFICATION FOR ?? DISAGREE
THE NON-FACTORED SPECIFICATION WILL BE USED

PS9 -SEVERITY 1
THE FACTORED AND NON-FACTORED STRUCTURE DIMENSION SPECIFICATION FOR ?? DISAGREE
THE NON-FACTORED SPECIFICATION WILL BE USED

DT1 -SEVERITY 1
CONFLICTING TYPE SPECIFICATIONS FOR ??

DT2 -SEVERITY 1
A REFERENCE TO A PREVIOUS TEMPLATE NAY NOT APPEAR IN THE CONTEXT OF A
MINOR STRUCTURE

DT3 -SEVERITY 1
LABEL TYPE CONFLICT FOR ??

DT4 -SEVERITY 1
ILLEGAL CHARACTER; HEX REPRESENTATION IS ??

DT5 -SEVERITY 1
A TYPE SPECIFICATION MAY NOT BE USED ON THE NINOR STRUCTURE ??

DT6 -SEVERITY 1
A STRUCTURE TEMPLATE MAY NOT CONTAIN A REFERENCE TO ITSELF

DT7 -SEVERITY 1
ILLEGAL TYPE FOR THE STRUCTURE TERMINAL ??

DT8 -SEVERITY I
?? IS EVENT TYPE AND MAY NOT THEREFORE BE AN INPUT PARAMETER

DU1 -SEVERITY 1
UNDECLARED IDENTIFIER ??

DU2 -SEVERITY 1
UNDECLARED PARAMETER ??

1 <

D-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184C

DU3 -SEVERITY 0
?? IS NOT A PARAMETER AND CANNOT BE DECLARED IN A TEMPLATE

DU4 -SEVERITY 1
NO TYPE INFORMATION AVAILABLE FOR ?7
A DEFAULT TYPE HAS BEEN ASSIGNED

DU5 -SEVERITY I
REFERENCE TO UNDECLARED STRUCTURE TEMPLATE 7?

DI -SEVERITY 1
THE TYPE SPECIFICATION FOR THE PARAMETER 77? IS ILLEGAL

D10 -SEVERITY 1
TEMPOPARY STATEMENTS MAY NOT APPEAR AT THE OPENING OF A DO CASE...END
GROUP

Dll -SEVERITY 1
TYPE SPECIFICATION OF 77 BENDERS NONHAL ATTRIBUTE ILLEGAL
ATTRIBUTE IGNORED.

D12 -SEVERITY 1
DECLARATION OF 7? SPECIFIES ATTRIBUTES INCOMPATIBLE WITH THE
NAME ATTRIBUTE.

D13 -SEVERITY 1
DECLARATION OF 77 HAS CONFLICTING FACTORED AND UNFACTORED NONHAL
ATTRIBUTES - UNFACTORED ATTRIBUTE WILL BE USED.

D2 -SEVERITY 1
THE PROCEDURE OR FUNCTION ?? HAY NOT BE DECLARED IN A COMPOOL

D3 -SEVERITY 1
THE DECLARATION OF PROCEDURE ?? MAY NOT POSSESS FACTORED ATTRIBUTES

D4 -SEVERITY 1
ARRAY SPECIFICATION ILLEGAL FOR 7?

D5 -SEVERITY 1
7?? HAS BOTH FACTORED AND NONFACTORED LOCK GROUP
SPECIFICATION - NON-FACTORED SPECIFICATION WILL
BE USED.

D6 -SEVERITY 1
THE DECLARATION OF ?? HAS BOTH FACTORED AND NON-FACTORED ARRAY SPECIFICATIONS;
THE NON-FACTORED SPECIFICATION WILL BE USED

D7 -SEVERITY 1
TEMPORARY STATEMENT DOES NOT APPEAR BEFORE THE FIRST EXECUTABLE STATEMENT
OF THE ENCLOSING DO...END GROUP

D8 -SEVERITY 1
DECLARATION OF 7?? SPECIFIES TYPE OR ATTRIBUTES NOT LEGAL
FOR TEMPORARIES
I

D9 -SEVERITY I
TEMPORARY ?? HAS AN ILLEGAL TYPE SPECIFICATION.

1.52<

D-14

ERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION E
CLASSIFICATION "E" ERRORS DEAL WITH EXPRESSIONS

EA1 -SEVERITY 1
ARRAYNESS OF 7? IS INCONSISTENT WITH CURRENT ARRAYNESS OF EXPRESSION

EBI -SEVERITY 0
RESULT OF BIT CATENATION WILL BE LEFT TRUNCATED TO MAXIMUM BIT LENGTH

EB2 -SEVERITY 1
LABEL ?? USED IN BIT OR EVENT EXPRESSION WAS NOT A PROGRAM OR TASK EVENT

ECI -SEVERITY 1
CROSS PRODUCT MUST BE BETWEEN THREE DIMENSIONAL VECTORS

EC2 -SEVERITY 1
CROSS PRODUCT * USED WITHOUT A VECTOR AFTER IT

EC3 -SEVERITY 1
CROSS PRODUCT * USED WITHOUT A VECTOR BEFORE IT

EDI -SEVERITY 1
DOT PRODUCT . USED WITHOUT A VECTOR AFTER IT

ED2 -SEVERITY 1
DOT PRODUCT . USED WITHOUT A VECTOR BEFORE IT

EL1 -SEVERITY 1
ONLY ARITHMETIC CONVERSION FUNCTIONS MAY POSSESS ARGUMENTS WITH REPEAT FACTORS

EL2 -SEVERITY I
REPETITION FACTOR OF EXPRESSION MUST BE AN UNARRAYED INTEGER OR SCALAR
EXPRESSION COMPUTABLE AT COMPILE TIME

EMi -SEVERITY 1
DIMENSIONS OF MATRIX OPERANDS IN EXPRESSION DISAGREE

EM2 -SEVERITY 1
MATRIX ARITHMETIC TYPE CANNOT BE CONVERTED TO A CHARACTER STRING

EM3 -SEVERITY 1
MATRIX-MATRIX MULTIPLICATION DIMENSION DISAGREEMENT

EM4 -SEVERITY 1
INVERSE OF NON-SQUARE MATRIX ATTEMPTED

EN1 -SEVERITY 1
THE ARGUMENT OF A NAME PSEUDO-FUNCTION MAY NOT BE A
NAME PSEUDO-FUNCTION.

EN10 -SEVERITY 1
?? IS A TEMPORARY AND-MAY NOT THEREFORE BE THE
ARGUMENT OF A NAME PSEUDO-FUNCTION.

ENl -SEVERITY 1
?? IS A CONSTANT OR INPUT PARAMETER AND MAY NOT
THEREFORE BE THE ARGUMENT OF A NAME PSEUDO-FUNCTION.

EN12 -SEVERITY 1
ACCESS BIGHTS HAVE BEEN DENIED TO ?? - ITS USE
IN A NAME PSEULO-FUNCTION IS THEREFORE ILLEGAL.

D-15

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184(

EN13 -SEVERITY 1
?? IS NOT A MAJOR STRUCTURE BUT POSSESSES STRUCTURE

COPIES - IT IS THEREFORE ILLEGAL AS THE ARGUMENT

OF A NAME PSEOCO-VARIABLE.

EN14 -SEVERITY 1
THE ARGUMENT OF A NAME PSEUDO-FUNCTION MAY NOT POSSESS
A PRECISION MODIFIER.

EN2 -SEVERITY I
THE ARGUMENT OF A NAME PSEUDO-FUNCTION NAY NOT BE

A SUBBIT PSEUDO-VARIABLE.

EN3 -SEVERITY I
THE PROCEDURE ?? POSSESSES PARAMETERS AND THUS MAY NOT

BE USED AS THE ARGUMENT OF A NAME PSEUDO-FUNCTION.

EN4 -SEVERITY 1
THE TYPE OF THE LABEL ?? IS ILLEGAL AS THE
ARGUMENT OF A NAME PSEUDO-FUNCTION.

EN5 -SEVERITY 1
NONHAL PROCEDURE OR FUNCTION 77 MAY NOT BE THE
ARGUMENT OF A NAME PSEUDO-FUNCTION.

EN6 -SEVERITY I
PROCEDUPE OR FUNCTION ?? IS NOT EXTERNAL AND THEREFORE

MAY NOT BE THE ARGUMENT OF A NAME PSEUDO-FUNCTION.

EN7 -SEVERITY 1
?? POSSESSES SUBSCRIPTING ILLEGAL FOR THE ARGUMENT
OF A NAME PSEUDO-FUNCTION.

EN8 -SEVERITY 1
77 HAS THE ATTFIBUTE DENSE AND MAY NOT THEREFORE
BE THE ARGUMENT OF A NAME PSEUDO-FUNCTION.

EN9 -SEVERITY 1
77 IS A MINOR NODE OF A STRUCTURE AND MAY NOT
THEREFORE BE THE ARGUMENT OF A NAME PSEUDO-FUNCTION.

E01 -SEVERITY 1
ILLEGAL PRODUCT: OUTER PRODUCT TIMES A VECTOR

E02 -SEVERITY 1
A PRODUCT INVOLVING BOTH CROSS AND OUTER PRODUCTS IS INDICATED.
USE MORE PARENTHESES.

E03 -SEVERITY 1
A PRODUCT INVOLVING BOTH DOT AND OUTER PRODUCTS IS INDICATED.
USE MORE PARENTHESIS.

EVI -SEVERITY 1
LENGTHS OF VECTOR OPERANDS IN EXPRESSION DISAGREE

EV2 -SEVERITY 1
MATRIX-VECTOR MULTIPLICATION DIMENSION DISAGREEMENT

EV3 -SEVERITY 1
VECTOR-MATRIX MULTIPLICATION DIMENSION DISAGREEMENT

D-16

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

EV4 -SEVERITY 1
VECTOR MAY NOT HAVE AN EXPONENT

EV5 -VECTO ARITHMETIC TYPE CANNOT BE CONVERTED TO A CHARACTER STRING

El -SEVERITY I
DIVISORS MAY ONLY BE OF INTEGER OR SCALAR

TYPE

EMATRIX MUST HAVE AN EXPONENT OF INTEGER TYPE KNOVN AT COMPILE TIME

E3 -SEVERITY 1
EXPONENT MUST BE A SINGLE VALUED QUANTITY

DOT OR CROSS PEODUCT SYMBOL (. OR *) USED IN A PRODUCT NOT INVOLVING VECTORS

E6 -SEVERITY 1
INCOMPATIBLE APITHMETIC OPERAND TYPES 1P EXPRESSION

D-17

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184

ERROR MESSAGIS FOR MAJOR CLASSIFICATION F
CLASSIFICATION "F" ERRORS DEAL WITH FORMAL PARAMETERS AND ARGUMENTS

FP1 -SEVERITY 1
MATRIX DIMENSIONS OF ARGUMENT AND CORRESPONDING FORMAL PARAMETER DO NOT AGREE

FD2 -SEVERITY 1
VECTOR LENGTHS OF ARGUMENT AND CORRESPONDING FORMAL PARAMETER DO NOT AGREE

FD3 -SEVERITY 1
TREE OtGANIZATIONS OF STRUCTURE ARGUMENT AND CORRESPONDING FORMAL PARAMETER ARE
NOT ICENTICAL

FD4 -SEVERITY 1
ARRAYNESS OF FUNCTION ARGUMENT DOES NOT MATCH CURRENT ARRAYNESS OF EXPRESSION
CONTAINING THE INVOCATION

FD5 -SEVERITY 1
ARRAYNESS OF ARGUMENT AND CORRESPONDING FORMAL PARAMETER ARE NOT IDENTICAL

FD6 -SEVERITY 1
ARGUMENT OF ?? FUNCTION IS NOT A SQUARE MATRIX

FD7 -SEVERITY 1
A NAME PSEUDO-FUNCTION MAY NOT POSSESS MULTIPLE COPIES IF
AN ARGUMENT OF A PROCEDURE CALL.

FN1 -SEVERITY 1
FUNCTION ?? UAS INVOKED WITH TOO FEW ARGUMENTS

FN2 -SEVERITY 1
FUNCTION 7? WAS INVOKED WITH TOO MANY ARGUMENTS

FN3 -SEVERITY 2
?? USED MORE THAN ONCE AS A PARAMETER

FN4 -SEVERITY 1
?? FUNCTION HAS INCORRECT NUMBER OF ARGUMENTS

FS1 -SEVERITY 1
AN ASSIGN ARGUMENT OF A PROCEDURE CALL MAY NOT BE A SUBBIT PSEUDO
VARIABLE

FS2 -SEVERITY 1
THE STRUCTURE COPIES OF ASSIGN ARGUMENT ?? MUST BE SUBSCRIPTED
AWAY

FTO -SEVERITY 1
NAME APGUMENT HAS PROPERTIES INCOMPATIBLE WITH
CORRESPONDING NAME FORMAL PARAMETER.

FT1 -SEVERITY 1
TYPE OF FUNCTION ARGUMENT IS INCOMPATIBLE WITH TYPE OF CORRESPONDING
FORMAL PARAMETER

FT10 -SEVERITY 1
A NAME PSEUDO-FUNCTION MAY NOT BE THE ARGUMENT OF. A
BUILT-IN OR SHAPING/CONVERSION FUNCTION.

FT12 -SEVERITY 1
ONE OF THE FOLLOWING IS TRUE:
,ARGTIMENT CORESPONDING TO NAME FORMAL PARAMETER

IS NOT A NAME PSEUDO-FUNCTION OR NULL;

.NAME PSEUDO-FUNCTION OR NULL AEGUMENT CORRESPONDS

D-18 L

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

TO FORMAL PARAMETER WITH NO NAME ATTRIBUTE.

FT2 -SEVERITY 1
?? FUNCTION HAS AN ARGUMENT OF INCORRECT TYPE

FT3 -SEVERITY 1
ILLEGAL TYPE FOR THE FUNCTION 7??

T THE SIZE SPECIFICATION FOR THE PETURN TYPE OF FUNCTION ??77 DISAGREES WITH THE

PREVIOUSLY DECLARED SIZE

7T6 -SEVERITY I
THE STRUCTURE TEMPLATE INDICATED IN THE TYPE

SPECIFICATION OF FUNCTION ??

DISAGREES WITH THE TEMPLATE USED IN A PREVIOUS DECLARATION

FT7 -SEVERITY 1
CONFLICTING SINGLE/DOUBLE SPECIFICATION FOR THE

FUNCTION ??

FT8 -SEVEPITY 1
THE FUNCTION ?? MAY NOT POSSESS A SUBSCRIPT OR PRECISION QUALIFIER.

FT9 -SEVERITY 1
THE INVOCATION OF NAME PROCEDURE 7? MAY NOT POSSESS ARGUMENTS.

D-19

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184(

ERROR MESSAGES FOR MAJOR CLASSIFICATION G
CLASSIFICATION "G" ERRORS DEAL WITH STATEMENT GROUPINGS (DO STATEMENTS)

GB1 -SEVERITY 1
BIT EXPRESSION IN ?? CLAUSE MUST BE BOOLEAN

GC1 -SEVERITY 1
CONTROL EXPRESSION IN A DO CASE MUST BE OF UNARRAYED INTEGER OR SCALAR TYPE

GC2 -SEVERITY 1
BIT EXPRESSION IN WHILE OR UNTIL CLAUSE MAY NOT BE ARRAYED

GC3 -SEVERITY 1
CONTROL EXPRESSIONS IN A DO FOR HUST BE OF UNARRAYED INTEGER OR SCALAR TYPE

GEl -SEVERITY 1
EXIT IS EITHER NOT IN A DO...END GROUP, OR NO LABEL
HATCH WAS FOUND.

GE2 -SEVERITY I
REPEAT IS EITHER NOT IN A DO FOR...END OR DO NHILE/UNTIL...END
GROUP, OR NO LABEL HATCH WAS FOUND.

GE3 -SEVERITY 1
EXIT CAUSES ILLEGAL BRANCHING OUT OF CODE BLOCK DEFINITION

GE4 -SEVERITY 1
REPEAT CAUSES ILLEGAL BRANCHING OUT OF CODE BLOCK DEFINITION

GL1 -SEVERITY I
LABEL AFTER END STATEMENT DOES NOT HATCH DO STATEMENT LABEL

GL2 -SEVERITY 1
LABEL IS THE DESTINATION OF A GO TO FROM OUTSIDE THE ENCLOSING DO...END GROUP

GL3 -SEVERITY 1
GO TO STATEMENT CAUSES A BRANCH INTO A DO..,END GROUP

GV1 -SEVERITY 1
CONTROL VARIABLE IN A DO FOR MUST BE OF UNARRAYED INTEGER OR SCALAR TYPE

58 <

D-20

RMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION I
CLASSIFICATION "I" ERRORS ARE RELATED TO IDENTIFIERS

ILl -SEVERITY 1
IDENTIFIER NAME MAY NOT END.WTH AN UNDERSCORE CHARACTER

IL2 -SEVERITY 1
RARE TOO LONG - TRUNCATED

IR1 -SEVERITY 1
ILLEGAL REPLACEMENT FOR LOCAL NAME: ??

IRO1 -SEVERITY 3
MAXIMUM NUMBER OF PARAMETERS FOR SOURCE MACBO DEFINITION EXCEEDED

IR3 -SEVERITY 1
MACRO EXPANSION TOO LONG

IR5 -SEVERITY 1
DUPLICATE REPLACE FOR ??

IR6 -SEVERITY 1
MACRO NAME ?? NOT DEFINED

IR7 -SEVERITY 2
REPLACE PARAMETER STRING TOO LONG; REPLACE NOT PERFORMED

IR8 -SEVERITY 2
INCORRECT NUMBER OF PARAMETERS FOR MACRO CALL; REPLACEMENT NOT PERFORMED

IR9 -SEVERITY 3
MACRO EXPANSION STACK OVERFLON; RECURSIVE DEFINITION LIKELY

IS1 -SEVERITY I
ILLEGAL CONSTRUCTION OF. QUALIFIED STRUCTURE NAME

D-21

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION L

CLASSIFICATION "L" ERRORS DEAL WITH LITERALS

LB1 -SEVERITY 1
BIT CONSTANTS MAY NOT BE LONGER THAN 32 BITS

LB2 -SEVERITY I
DECIMAL BIT CONSTANT MUST SPECIFY OR IMPLY A REPETITION

FACTOR OF 1

LB3 -SEVERITY 1
ILLEGAL DECIMAL STRING IN DECIMAL BIT CONSTANT

LB4 -SEVERITY I
ILLEGAL CHARACTER IN DECIMAL BIT CONSTANT

LB5 -SEVERITY 1
ILLEGAL CHARACTER IN BINARY BIT CONSTANT

LB6 -SEVERITY 1
ILLEGAL CHARACTER IN OCTAL BIT CONSTANT

LB7 -SEVERITY 1
ILLEGAL CHARACTER IN HEXADECIMAL BIT CONSTANT

LB8 -SEVERITY 1
REPETITION FACTOR OF A BIT LITERAL MUST BE GREATER THAN ZERO

LC2 -SEVERITY 1
7?? NOT EXPRESSIBLE INTERNALLY

LF1 -SEVERITY 1
ILLEGAL NUMERIC LITERAL CONSTRUCTION

LF2 -SEVERITY 1
ONLY ONE DECIMAL POINT ALLOWED

LF3 -SEVERITY 1
TOO MANY SIGNIFICANT DIGITS - 74 ALLOWED

LF5 -SEVERITY 1
EXPONENT INDICATOR BUT NO EXPONENT DIGITS

LS1 -SEVERITY 0
CHARACTER STRING TOO LONG - TRUNCATED TO 255 CHARACTERS

LS2 -SEVERITY 1
REPETITION FACTOR OF A CHARACTER LITERAL IS NOT GREATER TRAN ZERO

D-22

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION M
CLASSIFICATION "M" ERRORS DEAL WITH MULTI-LINE FORMATS

MCi -SEVERITY 1
ILLEGAL CONTEXT FOR OVERPUNCH

MC2 -SEVERITY 1
OVERPUNCH ILLEGAL ON FUNCTION NAMES

MC3 -SEVERITY 1
OVERPUNCH ILLEGAL ON REPLACED NAME

MC4 -SEVERITY 0
OVERPUNCH NOT VALID ON RESERVED WORD ??

MC5 -SEVERITY 0
OVERPUNCH ILLEGAL ON PARAMETER ??

MC6 -SEVERITY 0
OVERPUNCH ILLEGAL IN DECLARATION OF ??

ME1 -SEVERITY 3
EXPONENT STRING OVERFLOW

ME2 -SEVEITY I
E-LINE CHARACTER MORE THAN ONE LINE ABOVE PRECEDING CHARACTER

ME3 -SEVERITY 1
E-LINE OVERLAPS M-LINE

ME4 -SEVERITY 1
OVERLAPPING E-LINE CHARACTERS

mO1 -SEVERITY 0
OVERPUNCH ILLEGAL

M02 -SEVERITY 1
INVALID OVERFUNCH ON ??

A03 -SEVERITY 0
MULTIFLE OVEPPUNCHES NOT VALID - FIRST ACCEPTED

MO4 -SEVERITY 1
USER SUPPLIED OVERPUNCH CHARACTER NOT VALID - IGNORED

MS1 -SEVERITY 3
SUBSCRIPT STRING OVERFLOW

MS2 -SEVERITY 1
S-LINE CHARACTER MORE THAN ONE LINE LOWER THAN PRECEDING CHARACTER

MS3 -SEVERITY 1
S-LINE OVERLAPS N-LINE

MS4 -SEVERITY 1
OVERLAPPFING S-LINE CHARACTERS

M1 -SEVERITY 0
ILLEGAL CARD TYPE - CHANGED TO A COMMENT

D-23

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

M2 -SEVERITY I
INVALID SEQUENCE OF CARD TYPES

M3 -SEVHERITY 0
COMMENT LONGER THAN 256 CHARACTERS - HAS BEEN TRUNCATED

D-24

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION P
CLASSIFICATION "P" ERRORS INDICATE FLOW CONTROL PROBLEMS

PAl -SEVERITY 0
A MEMBER CORRESPONDING TO THE PROGRAM IDENTIFICATION ?? CANNOT BE FOUND

IN THE PROGRAM ACCESS FILE. NO ACCESS VALIDATION WILL BE PERFORMED.

PA2 -SEVERITY 0
PROCESSING OF THE PROGRAM ACCESS FILE FOR PROGRAM ID ?? HAS

CAUSED DETECTION OF ONE OR MORE ERRORS AND/OR INCONSISTANCIES

WHICH ARE LISTED BELOV:

PCi -SEVERITY 1
COMPOOL BLOCK CONTAINS STATEMENT(S) OTHER THAN DECLARATIONS

PC2 -SEVERITY 1
COMPCOI TEMPLATE CONTAINS STATEMENT(S) OTHER THAN DECLARATIONS

PD1 -SEVEPITY 1
ILLEGAL DECLARATION FOR THE PARAMETER ??

PE1 -SEVERITY 1
EXTERNAL TEMPLATES MUST NOT APPEAR WITHIN A BLOCK DEFINITION

PE2 -SEVERITY I
EXTERNAL TEMPLATES MUST NOT BE PLACED AFTER A BLOCK DEFINITION

PF1 -SEVERITY 1
RETURN FROM FUNCTION BLOCK MUST BE FOLLOWED BY AN EXPRESSION

PF2 -SEVERITY 1
RETURN MAY ONLY BE FOLLOWED BY AN EXPRESSION IN A FUNCTION BLOCK

PF3 -SEVERITY 1
EXPRESSION TO BE RETURNED MAY NOT POSSESS ARRAYNESS

PF4 -SEVERITY 1
ILLEGAL TYPE CCNVERSION OF RETURNED EXPRESSION REQUIRED

PF5 -SEVERITY 1
MATRIX DIMENSIONS OF FUNCTION DISAGREE WITH THOSE OF RETURN EXPRESSION

PF6 -SEVERITY 1
VECTOR LENGTH OF FUNCTION DISAGREES WITH THAT OF RETURN EXPRESSION

PF7 -SEVERITY 1
TREE CEGANIZATION OF FUNCTION DOES NOT MATCH THAT OF RETURN EXPRESSION

PF8 -SEVERITY 1
IN A DESEFERENCING CONTEXT, THE BLOCK NAME ?? MAY NOT

POSSESS SUBSCRIPTING HAVING ARRAYNESS

PF9 -SEVERITY 1
RETURN EXPRESSION MAY NOT BE A NAME PSEUDO-FUNCTION
OR NULL.

PL1 -SEVERITY 1
THE FUNCTION ?? HAS BEEN DECLARED BUT NOT DEFINED

PL2 -SEVERITY 2
?? IS A DUPLICATE LABEL

16~<
D-25

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

PL3 -SEVERITY 1
LABEL CM CLOSE DOES NOT MATCH BLOCK DEFINITION LABEL: ??

PL4 -SEVERITY 1
FUNCTION LABEL CONFLICT

PL5 -SEVERITY I
LABEL ?? IS NOT DEFINED WITHIN THE CURRENT SCOPE

PL6 -SEVERITY 1
A DEFINITION BLOCK FOR THE PROCEDURE OR TASK ?? IS ABSENT FROM

THE CCMPILATION

PL7 -SEVERITY I
USED IN A CALL STATEMENT, PROCEDURE LABEL ?? MAY NOT

POSSESS ARRAYNESS.

PHI -SEVERITY 2
DUPLICATE DEFINITION FOR ??

PM3 -SEVERITY 1
EARLIER DEFINITION OVERRIDDEN FOR ??

PM4 -SEVERITY 0
OUTER DEFINITION OVERRIDDEN FOR ??

PD1 -SEVERITY 1
A ?? DEFINITION MUST BE THE OUTERMOST BLOCK DEFINITION

PP10O -SEVERITY 2
INLINE FUNCTIONS MAY NOT BE NESTED WITHIN INLINE FUNCTION BLOCKS.

PP11 -SEVERITY 2
INLINE FUNCTIONS MUST NOT APPEAR IN EXPRESSIONS VHICH ARE

REoQIsED TO BE COMPILE TIME EVALUABLE - THIS ERROR IS RECOVERABLE

PP2 -SEVERITY 1
BLOCK DEFINITION IS NOT THE FIRST OUTERMOST BLOCK DEFINITION

PP3 -SEVERITY 1
A ?? DEFINITION CANNOT BE AN OUTERMOST BLOCK DEFINITION

PP4 -SEVERITY 1
NO BLOCK DEFINITIONS WERE ENCOUNTERED IN COMPILATION

PP5 -SEVERITY 1
AN INLINE FUNCTION MAY NOT CONTAIN AN I/O STATEMENT.

PP6 -SEVERITY 1
AN INLINE FUNCTION MAY NOT CONTAIN A REAL TIME STATEMENT.

PP7 -SEVERITY 1
AN INLINE FUNCTION MAY NOT CONTAIN A PROCEDURE CALL.

PP8 -SEVERITY 1
AN INLINE FUNCTION MAY NOT CONTAIN A USER FUNCTION INVOCATION.

PP9 -SEVERITY 1
AN INLINE FUNCTION MAY NOT CONTAIN A PROCEDURE OR FUNCTION

DEFINITION BLOCK.

D-26

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-184(

PSI -SEVERITY 1
EXTERNAL PROCEDURE/FUNCTION TEMPLATE CONTAINS STATEMENT(S)

OTHER THAN DECLARATIONS

PS2 -SEVERITY I
ONLY PROCEDURES OR FUNCTIONS MAY BE DESIGNATED 7?

PS3 -SEVERITY 1
ILLEGAL ACCESS ATTRIBUTE OR BLOCK HEADER.

PS4 -SEVERITY 0
THE ACCESS ATTRIBUTE MAY ONLY BE USED ON THE DEFINITION

OF AN OUTERMOST BLOCK.

PS5 SEVERITY 1
THE PFOGRAM NAMED 7? IS ACCESS CONTROLLED. THE CURRENT

COMPILATION UNIT IS NOT AUTHORIZED TO SCHEDULE THIS PROGRAH.

PS6 -SEVERITY 1
THE PRCCEDURE NAMED 7?? IS ACCESS CONTROLLED. THE CURRENT

COMPIATION UNIT IS NOT AUTHORIZED TO CALL THIS PROCEDURE.

PS7 -SEVERITY 1
THI FUNCTION NAMED ?? IS ACCESS CONTROLLED.

THE CUFRET COMFILATION UNIT IS NOT AUTHORIZED TO INVOKE

THIS FUNCTION.

PSe -SEVERITY 1
THE VARIABLE NAMED 7? IS ACCESS CONTROLLED. THE CURRENT

COMPILATION UNIT IS NOT AUTHORIZED TO CHANGE THE VALUE

OF THIS VARIABLE.

PS9 -SEVPITY 1
VARIABLE ?? IS DEFINED WITHIN A COMPOOL BLOCK WHICH IS

ACCESS ROTECTED. THE VARIABLE MAY NOT BE USED BY THIS

COMPILATION UNIT.

PT1 -SEVERITY 1
TASK DEFINITICNS OR DECLARATIONS MAY ONLY APPEAR IN

THE OUTER MOST BLOCK OF A PROGRAM COMPILATION

PU3 -SEVERITY 1
INVOCATIONS IN AN UPDATE BLOCK OF PROCEDURES OR USER FUNCTIONS DEFINED

OUTSIDE THE BLCCK ARE ILLEGAL

P1 -SEVERITY 1
END-OF-FILE AT INVALID POINT IN SOURCE TEXT

P3 -SEVERITY 0
BLOCK SUMMARY TABLE OVERFLOW

P4 -SEVERITY 2
CONFLICTING USE OF 77

P5 -SEVERITY 1
TOO MANY MACRO EXPANSIONS FOR ??

P6 -SEVERITY 0
PROGRAM LAYOUT TABLE EXCEEDED

D-27

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

P8 -SEVERITY 1
THE FOLLOWING SYMBOL IS SYNTACTICALLY ILLEGAL IN THE CONTEXT USED:

??

ERROR RICOVERY MAY CAUSE SUBSEQUENT SPURIOUS ERRORS

-h (- ,'

D-28

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-18,

ERROR MESSAGES FOR MAJOR CLASSIFICATION Q
CLASSIFICATION "Q" ERRORS DEAL WITH SHAPING FUNCTIONS

OAI -SEVERITY 1
ARRAYNESS OF SINGLE ARGUMENT OF INTEGER/SCALAR CONVERSIOU FUNCTION DOES NOT
MATCH THAT OF EXPRESSION CONTAINING FUNCTION

0A2 -SEVERITY 1
ARRAYNESS OF RESULT OF INTEGER/SCALAR CONVERSION FUNCTION IN UNCOMPUTABLE

0A3 -SEVERITY 1
SPECIFIED AREAYNESS OF INTEGER/SCALAR CONVERSION FUNCTION IS INCONSISTENT WITH
NUMBER OF DATA ELEMENTS SUPPLIED IN ARGUMENT LIST

OA4 -SEVERITY 1
ARRAYNESS OF RESULT OF INTEGER/SCALAR CONVERSION FUNCTION DOES NOT MATCH THAT
OF EXPRESSION CONTAINING FUNCTION

ODI -SEVERITY 1
DIMENSIONS OF VECTOR/MATRIX CONVERSION FUNCTION DO NOT AGREE WITH THE NUMBER
OF DATA ELEMENTS SUPPLIED IN THE ARGUMENT LIST

OD2 -SEVERITY 1
BIT OR CHARACTER CONVERSION FUNCTION MAY ONLY HAVE ONE ARGUMENT

0S1 -SEVERITY 1
COLONS AND SEMICOLONS MAY NOT APPEAR IN SUBSCRIPT OF CONVERSION FUNCTIONS

OS10 -SEVERITY 1
BIT OR CHARACTER CONVERSION FUNCTION HAY ONLY HAVE ONE SUBSCRIPT

OSil -SEVERITY 1
SUDBIT CONVERSION FUNCTION MAY ONLY HAVE ONE SUBSCRIPT

0S12 -SEVERITY 1
COLONS AND SEMICOLONS MAY NOT APPEAR IN THE SUBSCRIPT OF A SUBBIT
PSEUDO-VARIABLE

05S13 -SEVERITY 1
SUBSCRIPT OF A SUBBIT PSEUDO-VARIABLE.MAY NOT CONTAIN A PRECISION
MODIFIER

OS2 -SEVERITY 1
MATRIX CONVERSION FUNCTION DOES NOT HAVE TWO SUBSCRIPTS

0S3 -SEVERITY 1
VECTOR CONVERSION FUNCTION DOES NOT HAVE ONE SUBSCRIPT

OS4 -SEVERITY 1
INTEGER OR SCALAR CONVERSION FUNCTION HAS MORE THAN MAXIMUM PERMITTED
NUMBER CF SUBSCRIPTS

0S5 -SEVERITY 1
SUBSCRIPT OF APITHMETIC CONVERSION FUNCTION IS NOT A SINGLE INDEX

OS6 -SEVERITY 1
SUBSCRIPT OF ARITHMETIC CONVERSION FUNCTION BAY NOT CONTAIN 0 VALUES

0S7 -SEVERITY 1
SUBSCRIPT OF ARITHMETIC CONVERSION FUNCTION BUST BE AN UARRAYED INTEGER/SCALAR
EXPRESSION COMPUTABLE AT COMPILE TIME

D-29 .q "<

NTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

0S8 -SEVERITY 1
VALUE OF SUBSCRIPT OF ARITHMETIC CONVERSION FUNCTION LIES OUTSIDE LEGAL RANGE

OS9 -SEVERITY 1
SUBSCRIPT OF BIT OR CHARACTER CONVERSION FUNCTION MAY NOT CONTAIN A PRECISION
OUALIFIER

OXl -SEVERITY 1
CONVERSION FUNCTIONS NAY NOT HAVE ARGUMENTS OF STRUCTURE TYPE

OX2 -SEVERITY I
MATRIX/VECTOR CONVERSION FUNCTIONS MAY NOT HAVE ARGUMENTS OF BIT TYPE

013 -SEVERITY 1
MATRIX/VECTOR CONVERSION FUNCTIONS HAY NOT HAVE ARGUMENTS OF CHARACTER TYPE

OX4 -SEVEPITY 1
MATRIX OR VECTOR ARGUMENT IS ILLEGAL IN BIT OR CHARACTER CONVERSION FUNCTION

OX5 -SEVERITY 1
CHARACTER CONVERSION FUNCTION WITH RADIX DOES NOT HAVE ARGUMENT OF BIT TYPE

OX6 -SEVERITY 1
BIT CONVERSION FUNCTION WITH RADIX DOES NOT HAVE ARGUMENT OF CHARACTER TYPE

OX7 -SEVERITY I
IN AN ASSIGNMENT CONTEXT THE ARGUMENT OF A SUBBIT PSEUDO-VARIABLE MAY NOT
ITSELF BE A SUBDIT PSEUDO-VARIABLE

OX8 -SEVERITY 1
AR1UMENT OF ILLEGAL TYPE IN SUBBIT PSEUDO-VARIABLE

OX9 -SEVERITY 1
THE ARGUMENT OF A SUBBIT PSEUDO-VARIABLE MAY NOT
BE A NAME PSEUDO-FUNCTION.

D-30 13 <

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION R
CLASSIFICATICN "R" ERRORS ARE RELATED TO REAL-TIRE STITEHENT ERRORS

Rgi -SEVERITY 1
ILLEGAL FORM OR VALUE OF ON- ERROR SUBSCRIPT

RE2 -SEVERITY 1
ILLEGAL FORM OR VALUE OF SEND ERROR SUBSCRIPT

R23 -SEVERITY 1
TOO MANY ON ERROR STATEMENTS ACTIVE

RT1 -SEVERITY 1
SCHEDULE STATEMENT CONTAINS AN ILLEGAL FORH OF Ti TIRING EXPRUSSION

ST10 -SEVERITY I
AN UNLATCHED EVENT RAY NOT BE SET OR RESET

RT11 -SEVERITY 1
USED IN A REAL TIME STATEMENT OR AS A PROCESS EVENT, LABEL
?7 MAY NOT POSSESS ARRAYNESS.

RT14 -SEVERITY 1
7? IS A NAME LABEL TYPE AND MAY NOT THEREFORE BE USED AS
A PROCESS EVENT

RT2 -SEVERITY 1
WHILE EXPRESSION MAY NOT BE A TIMING EXPRESSION

RT3 -SEVERITY 1
SCHEDULE STATEMENT CONTAINS AN ILLEGAL FORM OF 7? EVENT EXPRESSION

RT4 -SEVERITY 1
?? STATEMENT CONTAINS ILLEGAL PRIORITY EXPRESSION

RTS -SEVERITY 1
SCHEDULE STATEMENT CONTAINS DUPLICATED AT/IN/ON EXPRESSIONS

RT6 -SEVERITY 1
WAIT STATEMENT CONTAINS ILLEGAL FORM OF ?? EXPRESSION

RT7 -SEVERITY 1
EVENT MUOST BE SIGNALLED ON/OFF OR ITS BINARY EQUIVALENT

RTO -SEVERITY 1
AN ABRAYED EVENT MAY NOT BE SIGNALLED

RT9 -SEVERITY 1
USED IN A REAL TIME STATEMENT OR AS A PROCESS EVENT, LABEL
?? MUST BE A PROGRAM OR TASK.

RU1 -SEVERITY 1
SIGNAL STATEMENTS ARE THE ONLY REAL-TIME STATEMENTS WHICH MAY APPEAR INSIDE
AN UPDATE BLOCK

D-31

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

ERROR MESSAGIS FOR MAJOR CLASSIFICATION S
CLASSIFICATION "S" ERRORS INDICATE INCORRECT SUBSCRIPT USAGE

SCi -SEVERITY 1
?? HAS TOO MANY STRUCTURE SUBSCRIPTS

SC2 -SEVERITY 1
?? HAS TOO MANY ARRAY SUBSCRIPTS

SC3 -SEVERITY 1
?? HAS TOO FEW ARRAY SUBSCRIPTS

SC4 -SEVERITY 1
?? HAS TOO MANY COMPONENT SUBSCRIPTS

SC5 -SEVERITY 1
?? HAS TOO FEW COMPONENT SUBSCRIPTS

SP1 -SEVERITY 1
SUBSCRIPTING CONTAINS MORE THAN ONE LIST OF STRUCTURE SUBSCRIPTS

SP2 -SEVERITY 1
SUBSCRIPTING CCNTAINS MORE THAN ONE LIST OF ARRAY SUBSCRIPTS

SP3 -SEVERITY 1
SUBSCRIPT CONTAINS LEADING COLON, OR A COLON PRECEDED BY A SEMICOLON,
COLON, OR COMMA

SP4 -SEVERITY 1
SUBSCRIPT CONTAINS LEADING SEMICOLON, OR A SEMICOLON PRECEDED BY A SEMICOLON,
COLCN, CR COMMA.

SP5 -SEVERITY I
SUBSCRIPT CONTAINS A LEADING COMMA, OR A COMMA PRECEDED BY A SEMICOLON, COLON,
OR COMMA

SP6 -SEVERITY 1
SUBSCRIPT IS EMPTY OR CONTAINS A TRAILING COMMA

S01 -SEVERITY I
??77 IS OF INCORRECT TYPE TO POSSESS A PRECISION QUALIFIER

SQ2 -SEVERITY 1
SUBSCRIPTED VARIABLE ?? MAY NOT POSSESS A PRECISION MODIFIER

S03 -SEVERITY 1
?? IS IN AN ASSIGNMENT CONTEXT AND THEREFORE MAY NOT POSSESS A
PRECISION QUALIFIER

SR1 -SEVERITY 1
SIZE OF PARTITION IN A SUBSCRIPT OF ?? WAS UNKNOWN

SR2 -SEVERITY 1
SIZE OF PARTITION IN SUBSCRIPT OF ?? IS EITHER LESS THAN 2 OR
PRODUCEC AN INDEX VALUE GREATER THAN THE MAXIMUM ALLOWABLE

SR3 -SEVERITY 1
THE VALUE OF A SUBSCRIPT OF ?? WAS GREATER THAN THE CORRESPONDING DIMENSION

SR4 -SEVERITY 1
THE VALUE OF A SUBSCRIPT OF 77 WAS LESS THAN 1

D-32

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Sq5 -SEVERITY 1
?? CONTAINED AN ILLEGAL 0 SUBSCRIPT

SR6 -SEVERITY 1
INDEX VALUE IN SUBSCRIPT OF'?? IS UNKNOWN

SS1 -SEVERITY 1
IN SUBSCRIPT OF ?? ONLY TRAILING ASTERISKS MAY BE OMITTED

STI -SEVERITY 1
A SUBSCRIPT OF ?? WAS NOT OF INTEGER OR SCALAR TYPE

SVI -SEVERITY 1
SUBSCRIPTING OF ?? IS ILLEGAL IN CONTEXT OF USE AS AN ASSIGN ARGUMENT

SV2 -SEVERITY 0
USEB SUPPLIED OVERPUNCH NOT CONSISTENT WITH SUBSCRIPTING FOR VARIABLE. ??

SV4 -SEVERITY 1
?? MAY NOT POSSESS SUBSCRIPTS

D-33 -i<

INTERM TRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION T

CLASSIFICATION -T" ERRORS DEAL VITH INPUT/OUTPUT STATEMENTS

C1 -SEARGUMENT OF I/O CONTROL FUNCTION MUST BE OF UNARRAYED
INTEGER O9 SCALAR TYPE

TD1 -SEVERITY I
I/O DEVICE NUMBER IS NOT IN RANGE 0 THROUGH ??

TD2 -SEVERITY 1
RECORD ADDRESS IS NOT AN UNARRAYED INTEGER

OR SCALAR

Ti -SEVERITY 1
VASIAELE IN READALL IS NOT OF CHARACTER TYPE

T2 -SEVERITY 1
VARIAELE IN READ MAY NOT BE OF EVENT TYPE

T3 -SEVERITY 1
VARIABLE IN READ/READALL NAY NOT BE A SUBBIT PSEUDO-VARIABLE

T4 -SEVERITY 1
A FILE STATEMENT MAY NOT READ INTO A SUBBIT PSEUDO-VARIABLE

T5 -SEVERITY I
AN. I/O STATEMENT MAY NOT CONTAIN A NAME PSEUDO-FUNCTION

OR NULL.

T6 -SEVERITY 0
I/O STATEMENT CONTAINS A STRUCTURE WHOSE TEMPLATE

CONTAINS

AT LEAST ONE TERMINAL NODE WITH THE NAME ATRIBUTE.

T7 -SEVERITY 1
IN FILE STATEMENT VARIABLE TO BE READ POSSESSES

AN II.LEGAL SUBSCRIPT.

T8 -SEVERITY 1
IN FILE STATEMENT VARIABLE TO BE READ INTO MAY ONLY

POSSESS MULTIPLE COPIES IF IT IS A MAJOR STRUCTURE

NAME.

D-34

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

EBROP MESSAGES FOR MAJOR CLASSIFICATION U
CLASSIFICATION "U" EBRORS DEAL WITH UPDATE BLOCKS

UI -SEVERITY 1
?? IS LOCKED: IT MAY ONLY APPEAR IN UPDATE BLOCKS
OR ASSIGN ARGUMENT LISTS,

U12 -SEVERITY 1
UPDATE BLOCK DEFINITION MAY NOT APPEAR INSIDE AN UPDATE BLOCK

UP1 -SEVERITY 1
THE PROCEDURE, TASK, OR PROGRAM ?? MAY NOT BE INVOKED WITHIN THE
CURRENT UPDATE BLOCK

UP2 -SEVERITY 1
UPDATE BLOCKS MAY NOT CONTAIN RETURN STATEMENTS

UP3 -SEVERITY 1
THE FUNCTION 7? MAY NOT BE INVOKED WITHIN THE CURRENT UPDATE BLOCK

UTI -SEVERITY 1
1/O STATEMENTS ARE ILLEGAL INSIDE UPDATE BLOCKS

D-35

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION V
CLASSIFICATION "V" ERRORS ARE RELATED TO COMPILE-TIME VARIABLE ERRORS

VA1. -SEVERITY 1
COMPILE TIME INTEGER/SCALAR-ADDITION FAILED

VA2 -SEVERITY 1
COMPILE-TIME INTEGER/SCALAR SUBTRACTION FAILED

VA3 -SEVERITY 1
COMPILE TIME INTEGER/SCALAR MULTIPLICATION FAILED

VA4 -SEVERITY 1
COMPILE-TIME INTEGER/SCALAR DIVISION FAILED

VA5 -SEVERITY 1
COMPILE TIME INTEGER/SCALAR EXPONENTIATION FAILED

VC1 -SEVERITY 0
COMPILE-TIME CATENATION PRODUCED TOO LONG A CHARACTER STRING -

TRUNCATED TO 255 CHARACTERS

VE1 -SEVERITY 1
AN EXPRESSION NOT COMPUTABLE AT COMPILE-TIME HAS BEEN USED IN A CONTEXT WHERE
A VALUE MUST BE KNOWN

VF1 -SEVERITY 1
COMPILE-TIME EVALUATION OF ?? FUNCTION FAILED

D-36 B

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

eRORs MES AGES FOR MAJOR CLASSIFICATION I
CLASSIFICATION "X ERRORS DEAL WITH IMHPLEMENTATION DEPENDENT FEATURES

XA1 -SEVERITY 0
ONLY ONE PROGRAM IDENTIFICATION DIRECTIVE IS ALLOWED IN A COMPILATION

UNIT.

XA2 -SEVERITY 0
THE PROGRAN IDENTIFICATION DIRECTIVE DOES NOT CONTAIN A VALID IDENTIFICATION.

THE DIRECTIVE MUST BE OF THE FORM:
D FPOGRAM ID=<ID>

XA3 SEVZRITY 0
A PROGFAM IDENTIFICATION PIRECTIVE MUST APPEAR FOLLOWING ANY EXTERNAL
TEMPLATES AND PFIOR TO THE BEGINNING OF THE PRIMARY UNIT OF COMPILATION.

THE CURRENT DIRECTIVE I OUT OF PLACE AND WILL NOT BE PROCESSED.

XDI -SEVERITY 0
UNINTELLIGIBLE INFORMATIQN IN DEVICE DIRECTIVE

XD rSEVERITY 0
pUP ICATE DEVICE DIRECTIVE FOR CHANNEL ??

XD3 "SEVERITY 0
DEVICE DIRECTIVE DOES NOT CONTAIN A VALID CHANNEL INDICATION

XD4 -SEVRRITY 0
CHANNEL NUMBERS MUST BE IN RANGE 0 TO 9

XI1 -SEVERITY 0
NESTED INCLUDE DIRECTIVES NOT ALLOWED

xJ2 -SEVERITY 0
INCLUDE DIRECTIVE DOES NQT CONTAIN A NAME

X13 -SEVERITY 0
7? 7OT IN INCLUDE LIBRARY .

XU1 -SEVERITY 0
D CARD CONTAINS UNKNOWN DIRECTIVE

XV1 9SEVEBITY 1
LAST LINE OF TEMPLATE LIBRARY MEMBER 7? IS NOT A VALID
VERSION DIRECTIVE

D-37

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

PHASE II ERRORS

Compiler Limits

SEVERITY 2
DATA STORAGE CAPACITY EXCEEDED

SEVERITY 2
INDIRECT STACK OVERFLOW

SEVERITY 2
CHARACTER LITERAL BUFFER OVERFLOW

SEVERITY 2
CONSTANT TABLE OVERFLOW

SEVERITY 1
TOO 1MANY EXTERNAL NAMES

SEVERITY 1
STORAGE DESCRIPTOR STACK OVERFLOW

SEVERITY 1
EXCEEDED TEMPORARY SPACE

SEVERITY 2
STATEMENT LABELS ALL IN USE

SEVERITY 2
SUBPROGRAM STACK OVERFLOW

SEVERITY 1
EXCEEDED ON ERROR STACK SIZE

SEVERITY 1
TOO MANY UNIQUE OPERANDS IN EVEIIT EXPRESSION

SEVERITY 1
EXCEEDED ARGUMENT STACK SIZE

SEVERITY 1
EXCEEDED SHAPING FUNCTION DIMI STACK

SEVERITY 1
EVENT EXPRESSIONTOO LONG

SEVERITY 1
FLOW LABEL TABLE OVERFLOW-

D-38 4<
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

User Errors

SEVERITY 1
SIZE CONFLICT ON VECTOR/MATRIX PARAMETER #N

SEVERITY 1
ASSIGN PARAMETER NOT SYMBOL

SEVERITY 1
DATA TYPE CONFLICT ON PARAHETER #N

SEVERITY 1
ARRAYNESS CONFLICT ON PARAMETER #N

SEVERITY 1
ARRAY SIZE CONFLICT ON PARAMETER #1J

SEVERITY 1
NOT ASSIGN PARARMETER

SEVERITY 1
STATEMENT CONTAINS PHASE I ERROR

SEVERITY 1
UNIM1PLEIIENTED FEATURE OF HAL/S CALLED FOR

SEVERITY 1
MALFORMED TEMPLATE, WALK INHI~ITED

SEVERITY 1
STRUCTURE TEMPLATES DO NOT 1 ATCH

SEVERITY 1
STAR SIZE ARRAY TEMPORARY NOT ALLOWED

SEVERITY 1
STRUCTURE COPYNESS CONFLICT ON PARAIIETER #N

SEVERITY 1
STRUCTURE COPY SIZE CONFLICT ON PARAMETER #N

SEVERITY 1
REFERENCE TO UNDEFINED PROCEDURE OR FUNCTION

SEVERITY 1
INCORRECT NUIMBER OF ARGUMENTS TO ??

SEVERITY 1
... ,ILjF.AL H0OIIHAL FUNCTIOll TYPE

7< D-39

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

SEVERITY 1
DO FOR ENDING INCOMPLETE DUE TO PREVIOUS ERROR RECOVERY

SEVERITY 1
ARRAYNESS CONFLICT

SEVERITY 1
COPYNESS CONFLICT

SEVERITY 1
ARRAYNESS INCINSISTENT WITH STATEHENT

SEVERITY 1
NON-ARRAYED ARGUMENT TO ARRAY FUNCTION

SEVERITY 1
INVALID ARGUMENT TYPE FOR ARRAY FUNCTION

SEVERITY 1
ILLEGAL ARGUMENT TO SIZE FUNCTION

SEVERITY 0
INITIAL STRING TOO LONG

SEVERITY 0
INITIAL VALUE TOO LARGE
SEVERITY 1 OQ
INITIALIZATION DATA TYPE MISMATCH

SEVERITY 1
NULL ONLY LEGAL NAME CONSTANT

SEVERITY 1
ILLEGAL NAME PARAMETER #N

SEVERITY 1
NAME PROCEDURE/FUNCTION HAY NOT HAVE ARGUMENTS

SEVERITY 1
NOT NAME PARAMETER

SEVERITY 0
TEMPORARY ?? NOT ADDRESSABLE

SEVERITY 0
?? NOT ADDRESSABLE

SEVERITY 1
SUBBIT SUBSCRIPT OUT OF RANGE

SEVERITY 1
CANNOT RETURN VALUE FROM NON-FUNCTION

D-40
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Compiler Errors

SEVERITY 1
LITERAL PROCESSING FAILURE

SEVERITY 0
INDEX STACK USAGE INCONSISTENT

SEVERITY 0
UNHATCHED DO CASE ENDING

SEVERITY 0
UNMATCHED CASE LABEL

SEVERITY 0
UNHATCHED DO WHILE ENDING

SEVERITY 0
UNMATCHED DO FOR ENDING

SEVERITY 1
LEVEL MISNATCH ON PROC/FUNC/IO ARGUMENT

SEVERITY 1
LEVEL HISMATCH ON SHAPING FUNCTION ARGUMENT

SEVERITY 1
STRUCTURE NODE SIZE CONFLICT

SEVERITY 1
ARRAY LEVEL HISMATCH

SEVERITY 1
ARRAY ENDING MISMATCH

SEVERITY 1
MISMATCHED CLOSING

SEVERITY 1
LEVEL MISHATCH ON PROC/FUNC CALL

2 O< D-41

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

APPENDIX E.

Execution-time Errors

The following tables indicate runtime error conditions which

may occur during execution of a HAL/S-360 program. The tables

list any standard fixups performed by the runtime system. The

form of the system action taken is indicated by the following
code:

U UNLIMITED
L LIMITED
T TERMINATE

i0 <

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

m
-4

o9

Error SYSTEM
O

O-u

m

1 EXPONENT OVERFLOW the exponent of a scalar the result is set L
or of a vector/matrix to the maximum

O element has overflowed value representablz
O on the machineO

C " 2 EXPONENT UNDERFLOW the exponent of a scalar the result is set
m or of a vector/matrix to zero U
C I ' element has underflowed

m i

o 3 SCALAR DIVISION BY ZERO a scalar division by the result is set L
-m zero has occurred to the maximum

Svalue representabl
Z on the machine

I
>l 42 EXPONENTIATION OF ZEO TO a negative or zero the result is set U

mPOWE < power was specified to zero

a 5 SQUARE ROOT HAS ARG < 0 square root of the U
5SQAR square root of the U

absolute value of
>the argument

0

._

(nEPNNITO FZEOT eaieo er h euti e
M o e a p c f e o z r

-4m

m
-I

SError SYSTEM
Ce Number Message Explanation Standard Fixup Action
O
0

-4
m
m the result is set to

• Ithe maximum value
6 EXP FUNCTION HAS ARG > 174.673o representable on the L

0 machine
O
z
O

o if the argument was
zero then the result< 7 LOG FUNCTION HAS ARG < = 0sm A is act tu mne maxi- Lz

c mum representable
m negative value, else

O W it is set to the log
> o. the absolute valuc

a)of the arg.

G)
m the two figures are for

the result is setSIN OR COS FUNCTION HAS single and double pre- the result is set
o to0° cision arguments
> respectively

m
- the result is set to

0) SIN OR COSH FUNCTION HAS the maximum value
R 5representableARG) 175,366

Co

ai 10 ARCSIN OR ARCCOS FUNCTION HAS the result is set te
IARGI > I zero: L

m
n2

o ErrorError SYSTEM
Number Message Explanation Standard Fixup Action

O
O

O
M TAN FUNCTION HAS the two figures are for the result is set
m single and double preci- to one

11 IARGI > 2.621E5 PI sion respectively L
1.126E15

o

z
0
O the argument is too clost the result is set tc
Sto an odd multiple of the maximum repre-
S12 TAN FUNCTION TOO CLOSE TO 7/2 sentable value L
m q SINGULARITY

! the value of the case the do case state-
S13 CASE VARIABLE OUT OF RANGE variable is either <1 or ment is ignored L

greater than the number
0 of cases and there was
S. no ELSE clause

(n no return statement was none: IGNORE not> 14 encountered prior to allowedo CLOSE REACHED ON
reaching the close of theC-

FUNCTION function

-4

the result is set
to the maximum

15 SCALAR TOO LARGE FOR INTEGER representable value L
CONVERSION

o

0

-4
m

m

nError SYSTEM
z Number Message Explanation Standard Fixup Action
0
O

O

The result is setm
o to the maximum
0 16 INTEGER DIVISION BY ZERO DIV OPERATOR HAS ZERO L

Srepresentableo DIVISOR valuevalue

O
z
O
O
0 17 ILLEGAL CHARACTER SUBSCRIPT Character component The out-of-bounds
> subscripting out-of- subscript(s) set U
m M bounds to first or lastz
c character

The length is less Truncation to the
18 BAD LENGTH IN LJUST OR RJUST than the string length specified length UM 18 BAD LENGTH IN UST OR RJUST

0occurs on the left
m (RJUST) or right
K(LJUST)
C,

In A mod B Returns A
o 19 MOD DOMAIN ERROR

c, B=O and A<0 (negative)SL

The string was not in
20. CHARACTER TO SCALAR CONVERSION standard internal The result is U

format for integers.or zero.
scalars.

m

-4
Error SYSTEM

SMessage Explanation Standard FixupU)Number Action

-0
O
-u
o

O

o

> 21 CHARACTER TO SCALAR Same as above. rnalThe variable is U
M CONVERSION DURING INPUT left unchanged.

m

0

Z

C

0 The string was not in The result is zero. U
X (', 22 CHARACTER TO INTEGER standard internal
o CONVERSION DURINGformat for integers

m

C
m

SVECTOR/MATRIX DIVISION The result is

the original L

23 CHARACTER TO INTEERR Same asO vector/matrix U

o

UError

zNumber MESSAGE EXPLANATION STANDARD FIXUP SYSTEM
0 Action

O

0J26 ILLEGAL BIT STRING Character other than Variables left

2 DURING INPUT blank, zeros or ones unchanged L
O
O
z
O
O
0 The result is the
> 27 ARG OF INVERSE IS SINGULAR identity matrix L

c A
m

S t4
>
o 28 ARG OF UNIT FUNCTION IS. Every component of the The result is a LMNULL VECTOR vector was zero in vector all of whose0

value. components is zero.

O
I
C 29 ILLEGAL BIT STRING Returns L
m

zero
C,

value of routine30 Subscript takes30 Illegal SUBBIT subscript SUBBIT subscript Subscript takes
exceeded bit length value of exceeded L

limit

0

Z
-I

m

m

S0 SYSTEMn Error Message Explanation Standard Fixup Action
2NumberO
O

O

A transmission error The block is
m31 SYNAD ERROR: xxx was detected in a REA accepted as is31 SYND ERR: xxx READALL, or FILE stmnt. (ERROPT=ACC) L

SYNAD message "xxx"
describes the error.

O
o
0

32 MISSING DD CARD - xxx User did not provide I/O on the channelthe specified CHANNELn is ignored T
< or FILEn DD card.

00

SPRINT ON INPUT CHANNEL N I/O was attempted on The channel remains>(
specified channel in in the originalS3'J 33 or print mode as well as mode, I/O in the T

A INPUT ON.PRINT CHANNEL N read/readall mode. new mode is ignoredG)ON PRINT CHANNEL N

C,

The number of skips Skip (0) is assumed LO 34 ILLEGAL SKIP COUNT ON CHANNEL n is negative.r
C
m
(n

C-
The horizontal posi-

A TAB or COLUMN I/O tion is reset to eit er
control function was column one (left

35 MARGIN VIOLATION ON CHANNEL n specified which forced margin error) or just
the device mechanism off the right-hand. the device mechanism margin. On an I/Omargin. On an I/O

off the left or right transfer this lattermarqin. causes an immediate
I.

skip to the next lin
o

-4
m

0

2 Error Message Explanation Standard Fixup SYSTEM

O0 Number- Action
0
-u

A PAGE I/O control func- The PAGE command is-4
m tion with negative argu- ignored.

S36 ILLEGAL PAGE COUNT ON CHANNEL n ment was specified L

O

0

o

M In a LINE I/O control In the first case the
C 37 ILLEGAL LINE COUNT ON CHANNEL n function on an "unpaged" LINE function is

channel an argument less L
m than the current line ignored. In the
z M number was specified, or second, the effect i:
c in the case of print mode PAGE (1).
m W, a value areater than the
o =V number of lines per page

> _ was specified.

-- A An invalid character was The field with theS38 ILLEGAL NUMERIC FIELD ON found while reading a invalid character(s)
m CHANNEL n numeric field (Valid is skipped. The var- L
Kcharacters: 0-9, -, +, ., iable remains unchan ed

E, B, H) as if a null field
) were encountered.

O The field is treatedI
39 ILLEGAL BIT OR CHARACTER STRING In READ mode, character/ as a numeric field

m bit strings must be with regard to sepa-
I delimited by apostrophes, rators, and is L
o with included apostrophes skipped. The charac-

doubled. ter/bit variable re-
o mains unchanged as if

a null field were
encountered.

0)_ _ _ _ __-_ _ _ __ _ _ _ __ _ _ _ _

-t
m

m-4__ _ _

Error SYSTEMz Error
O Number Message Explanation Standard Fixup Action

-u
0-n

-4 The remainder of the
m Error 40+n is signalled I/O statement iso 40 if the end of file is ignored. A further
)through END OF FILE ON CHANNEL n reached while reading d on that channel T

49 channel n. will close and reope
0 the file at line 1O
Z again.

0 A
o

> 050 ERROR IN HAL SOURCE Continue T
< A
z
C
m M

0 PROCESS NOT SCHEDULED DUE TO A SCHEDULE statement with
PROCESS NOT SCHEDULED DUE TO the UNTIL <arith exp> or The SCHEDULE statement

SUNTIL/WHILE: program or task WHILE <event exp> was is ignored.
o 51 name executed, and the time was
Gf already passed, or the
m event expression was false

C)
C)

S PRIORITY NOT UPDATED, PROCESS The specified task or The update requestI PRIORITY NOT UPDATED, PROCESS
c 52 program is not a is ignored. U
M, NOT ON QUEUE: program or task
m currently scheduled-4 name
-l) process.
0O-

oCD

PROCESS NOT TERMINATED: NOT The terminate

0 53 ON QUEUE: program or task name Same as above. request is ignored. U

o

m

ch Error
Number Message Explanation Standard Fixup SYSTEM.

O Action
O

O-u
-I

m PROCESS NOT CANCELLED, NOT The cancel requesto 54 Same as above. UON QUEUE: program or task name is ignored.
o

o

z
o
O

B The specified program The SCHEDULE
55 PROCESS NOT SCHEDULED - or task is currently statement is U

< D ALREADY ACTIVE: program or task an active process ignored.
z A name
c t
m I

o All remaining processes
K>are in a wait state for None (IGNORE or GOTC
CD56 action not allowed) TM5 PROCESS DEADLOCK some condition other action not allowed) T
o than time.
m

I

U) (GOTO ACTION not
>, The process was scheduled

allowed)
OC "REPEAT EVERY"program or task with the REPEAT EVERY The cycle which was
c OVERLAP : name option, and the current L
v, supposed to start is
m cycle lasted longer than

the EVERY value. skipped. The timing
Cn stays "in phase".

C

00PROCESS NOT TERMINATED: NOT A
C58 ENDENT: Trm The specified program or The terminate.

task is not dependent on request is ignored. L
the running process.,

c

c -

Z

m--

m
-4--

Error ' SYSTEM
SNumber Message Explanation Standard Fixup Action

0

O
2:,
-4
m
059 ARCCOSH function has argument < 1 Return 0 U

O
C
0
z

o

0

> 60 ARCTANH function has IARGI a 1 Return 0 U
m.x
C

S61 ARCCOTH function has IARGI < 1 Return 0 U

o

62 BITWOCT - INVALID character Return 0 L

63 BIT@HEX - INVALID character Return 0 L
-n

Attempt to add a The I/O operation
64 No Space in File new block to Type II is ignored. T

or III file failed.

CO

C)

co

m
Error Message Explanation Standard System

mNum. Fixup Action
-4

z 65 Block Length Mismatch Block in memory and See Sec.7 U
o block on file indic-o

ated by FILE stmnt
0 have different lengths
-4

mr 66 Block Number out of Block number speci- The I/O T
range fied in FILE stmnt operation

is out of legal is ignored
o range for partitioned
o fileo
z
o
0 I

m 70
A thru BLOCK bbbbbbbbb NOT Error 70+n is signalled The I/O

> 79 FOUND led if a Type II or III operation
file input request indi-is ignored L
cates a legal but non-

Sexistent block.

I
C

U)
m

N?

-o

APPENDIX F.

USEF ABEND CODES

User Abend Codes During Execution

S EMissing DD card for message channel, The HAL/S
channel specified for writing error and trace
messages had no assigned DD card. (This may also
appear as SYSTEM ABEND CODE 0).

1 HAL/S error with SYSTEM=T, A run time error
causing abnormal termination occurred. A specific
message preceding the ABEND information explains
the error.

2 HAL.S error with SYSTEM=L and error count exceeded.
A run time error occurred and the specified maximum
error count for that error was thereby exceeded.

3 Invalid error recursion. An error condition arose
while processing a run time error.

4 unused

5 unused

6 I/O mode conflict. Input asked for when I/O
processor expected output or vice versao

7 Illegal I/O channel or mode. I/O asked for on
illegal channel, or I/O mode was illegal.

9 Program interrupt in non-HAL/S environment.
Peqisters 12, 15 not set as expected on program
interrupt.

10 Program interrupt from convert-to-binary (CVB)
instruction.

11 Illegal HAL/S error number.

12 Too many events in event expression 1>6)

13 Invalid event expression

_ F-1

User Abend Codes During Compilation

100 Unable to open one of the files: PROGRAM,
SYSIN, or SYSPRINT

200 Unexpected end of file while reading in the XPL
proqram

300 Synad error while reading in the XPL program

400 XPL program won't fit in the amount of memory
available

500 Invalid service code from the XPL program

600 Printed-page limit exceeded

700 Linked programs specified different size common
areas

800 Synad error on output file

900 Invalid output file specified

1000 Synad error on input file

1100 Linking process overlayed common string area

1200 End of file error on input file

1300 Impossible to move the common strings up during
linking

1400 Invalid input file specified

1500 Unknown request by 'MONITOR' func

1600 Unknown do in 'MONITOR' request

1700 Directory error on PDS

1800 Synad error on output PDS file

1900 Invalid member name specified

2000 Synad error on direct access file

2100 Attempt to read from an input PDS without
issuing the "FIND" MONITOR request first

2200 End of file error on direct access file

2300 Invalid member to be found

F-2

11<

2400 Synad error on PDS input file

2500 File blockinq specification error

3000 MON#9/10 error or misaligned #5

4000 XPL program called exit to force an abend (and a

possible core dump)

F-3

APPENDIX G

List of HAL/S-360 runtime library routines.

These names should not be used to name any user-written, NONHAL
routines.

ARCCOS ALIAS(ARCSIN)
ARCSINH ALIAS(ARCCOSH)
ARCTAN
ARCTANH ALIAS(ARCCOTH)
BAKTRACE
BIN ALIAS(CTOB)
BOUT ALIAS(BTOC)
CANCEL ALIAS(CANCELT)
CINDEX
CINP
CLJUSTV
CLOKTIME
CLOSEHAL
COLUMN ALIAS(TAB)
SCOUTP
CPAS
CPASP
CRJUSTV
CSHAPQ
CSLD ALIAS(CPSLD,CPSLDP,CPSST,CPSSTP,CSLDP,

CSST,CSSTP)
CTOX ALIAS(CTOO)
CTRIMV
DARCCOS ALIAS(DARCSIN)
DARCSINH ALIAS(DARCCOSH)
DARCTAN
DARCTANH ALIAS(DARCCOTH)
DATE
DEXP
DISPATCH ALIAS(DISPACHS,DISPACHT,DISPACHW)
DLOG
DSIN ALIAS(DCOS)
DSINH ALIAS(DCOSH)
DSLD ALIAS(DSST)
DSQRT
DTAN
DTANH
DTOTHED
EIN ALIAS(CTOD,CTOE,DIN)
EOUT ALIAS(DOUT,DTOC,ETOC)
ERRORtMON
ERRORSUM
ERRTAB
ETOTHEE
EVENTENQ ALIAS(EVENTPRO)
EXCLUDE ALIAS(ALLOW)

INTERMETRICS INCORPORATED * 701 CONCORD V UE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

EXECTRCE
EXP
FINDFIX ALIAS(GETADDR,GETSIZE)
GETPTR
HALDUMP ALIAS(HSLOCATE)
HALSIM
HALSTART
HALSYS
HDREAD ALIAS(HDOPEN,HDWRITE)
HSDUMP
IIN ALIAS(CTOI,CTOK,HIN)
INPUT ALIAS(CIN,SKIPIN)
IOINIT ALIAS(MSGIOINT)
IOUT ALIAS(ITOC)
ITOTHEI ALIAS(DTOTHEI,ETOTHEI)
LINE
LOG
MM6DN
MM6D3
MM6SN
'MM6S3
MOMSTACK
MV6DN
MV6SN
M1DNP
MlDSNP
M1SDNP
M1SNP
M11DN
M11SN
M12DN
M12D3 ALIAS(M14D3)
M12SN
M12S3 ALIAS(M14S3)
M13DN
M13D3
11 3SN
M13S3
M14DN
M1 4SN
M1 5DN
M15SN
M16DNP
M16SNP
M17DN
M17SN
H20DNP
M20SNP
M21DNP
M21SNP
NDX2PTR
OUTPUT ALIAS(COUT,FLUSH,HALPRINT,SKIPOUT)

G-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

PAGE
PAGER ALIAS(FILETAB,NUMOFFLS,NUMOFPGS,PAGETAB)
PROGINT
QSHAPQ
RANDOM ALIAS(GETSEED,RANDOMG,SETSEED)
READBUFF ALIAS(CMPLBIT)
READPAGE ALIAS(PDSFILE)
SCHEDULE
SDLDUMMY ALIAS(SDATRAP,SDETRAP,SDFTRAP,SDINIT,SDNTRAP,

SDSTRAP,SDTTRAP,SDWTRAP)
SDLSTACK
SET ALIAS(RESET)
SIGNAL
SIN ALIAS(COS)

--s"RR--ALIAS(COSH)
SKIP
SQRT
STMTRACE
SVBTOC
SVDTOC
SVETOC
SVITOC
,SVPMSG
SVSTOP
SVTDEQ
SVTENQ
SVTIME
SYMBFILL
TAN
TANH
TENSTBL
TERMIN
TERMINT
TERMPCB
TIMENQ ALIAS(TIMECANC,TIMEINT)
UPPRIO ALIAS(UPPRIOT)
VM6DN
VM6SN
VO6DN ALIAS(VO6D3)
VO6SN ALIAS(VO6S3)
VV6DN
VV6SN
V16DNP
V16SNP
V9D3 ALIAS(V1ODN,V1OD3,V9DN)
V9S3 ALIAS(V1OSN,V10S3,V9SN)
WAIT ALIAS(WAITUNTL)
WAITDEP
WAITFOR
WHERE ALIAS(WHERES,WHERESP)
XTOC ALIAS(KTOC,OTOC)

G-3 Sa

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

APPENDIX H.

Compiler Directives

The following compiler directives have been defined for the

HAL/S-360 compiler.

a) The DEVICE directive has the form:

D DEVICE CHANNEL=n <option>

This directive sets the mode of the specified channel

(referred to via the CHANNELn DD card) to the mode

indicated by the <option>. The <option> may be "PAGED",
nUNPAGED", or null (in which case UNPAGED is assumed).

b) The INCLU1DE directive has the form:

D INCLUDE <name> <option>

This directive names a member of an include library as
defined in section 6.2.7. The <option> may be "NOLIST" or
null. The "NOLIST" option indicates that the included

text is not to be listed.

c) The PIOGIRA directive has the form:

D PROGRAM ID-<id>

This directive provides a Program Identification Nane to be

used by the compiler to determine access rights to controlled
resources as described in Section 6.2.8.

H-1 1H9<

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

APPENDIX I

The HALLINK Program

The HAL/S-360 compiler system employs a mechanism for the
handling of temporary work areas at execution time which
requires special processing at the time all pieces of a run are
linked together. This processing is achieved by substituting a
HAL/S-360 compiler system routine for the standard OS/360 link
editor in the LINKED step in the program generation process.
This program is known as HALLINK.

Temporary work areas and general register save areas used
by a -running HAL/S program are obtained from an area called the
STACK. The STACK is really a CSECT of sufficient size to allow
all routines with temporary data requirements to obtain memory
from the STACK csect. One STACK CSECT exists for each PROGRAM
or TASK in a program complex. It is not until link-edit time
that all of the individual routines' requirements for temporary
space are known. The HALLINK program determines the
requirements and creates the STACK for each PROGRAM and/or
TASK. In performing this function, HALLINK makes use of the
standard OS/360 linkage editor. The HALLINK program has been
designed to be essentially transparent to the user (i.e. it
performs functionally the same task as the standard
link-editor). Persons using the standard JCL procedures listed
in Appendix C need not be concerned with the existance of the
HALLINK step.

The processing done in HALLINK is generally broken down
into three phases:

1) Invoke the standard linkage editor thus
performing all library searches and producing a
load module with references to the STACK csects
unresolved. This load module is written to the
TEMPLOAD DD card.

2) Analyze the load module which was put on the
TEMPLOAD DD card and create the necessary
control sections as object files on the
STACKOBJ DD card.

3) Re-invoke the standard linkage editor to
incorporate the STACK csects into a final load
module which is placed on the SYSLMOD DD card.

INTERMETRICS INCORPORATED * 701 CONCORD-AVENUE :*CAMA8IDGE, MASSACHUSETTS 02138 * (617) 661-1840

Some special considerations may arise when attempting to use
features of the OS/360 linkage editor in the HALLINK step. A
few comments on certain of these features follow:

a) Provision has been made to pass load module name
information to the second link edit step if a
NAME card was sent by the user to the first
link edit. If the member name on the TEMPLOAD
load module is not TEMPNAME, the second link
edit step is passed the record:

NAME XXXXXXXX(R)

as part of the generated object decks. The
TEMPLOAD member name is determined by the first
name found in the directory of that PDS. If
the member name was TEMPNAME, no such card will
be passed to the second link edit, and it is
the user's responsibility to ensure that a name
is specified on the SYSLMOD DD card, otherwise
the link editor will attempt to store the load
module as TEMPNAME.

The user should be fully aware of the
consequences of supplying a NAME card without
overriding the member name on the catalogued
SYSLMOD DD card. This situation will lead to
JCL errors if the GO step attempts to use
refer-back (PGM=*.LKED.SYSLMOD) to identify the
module to be executed.

b) The overlay capabilities of the Linkage Editor
should not be used.

The following topics describe the various input options
and ouput return codes produced by HALLINK.

HALLINK Output

HALLINK produces a series of object decks and directives
to the Link Editor, They are described in the sequence
that they are generated. User-control of HALLINK action is
described later in an options list.

1.) INCLUDE <SYSLIB> (HALSTART)

<SYSLIB> is the name of auto-call library and
defaults to SYSLIB.

This card may be suppressed. See option list

I-2
INTERMETRICS INCORPORATED. 701 CONCORD AVENICAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

description to follow.

2) HALMAP CSECT

The content is detailed in a later paragraph.
This object deck may be suppressed. See the
options list.

3) Stack object decks for each PROGRAM and TASK.

4) INCLUDE <TEMPLOAD> (<MEMBER>)

<TEMPLOAD> defaults to TEMPLOAD.
<MEMBER> defaults to TEMPNAME.

5) ENTRY HALSTART

6) NAME <MEMBER>(R)

Produced only if <MEMBER> was not TEMPNAME.

HALLINK Option

Parameters may be passed to HALLINK. The JCL for this
is PARM.LKED = 'link parms/HALLINK parms'.

The slash is optional if no HALLINK parameters are
passed.

HALLINK parameters are coded as numbers, 0-9.

Code Significance

0 Suppress printing of call tree
and recursion diagnostics.

1 Suppress INCLUDE <SYSLIB>
(HALSTART)

2 Suppress HALMAP CSECT. If a
HALMAP CSECT exists in the input
load module, i.e. a module
created by HALLINK is reprocessed,
this option is ignored.

3 Recursion ignored. Recursive
PROGRAMS and TASKS receive
stack size of 32760(plus
interrupt time).

14 Pass Link Editor parameters
to second Link Editor only.

N72< 1 -3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Attempt to open DCB with
DDNAME LINKLIB. If suc
cessful, the Link Editor and
HALLKED will be retrieved
from this library or
system library. STEPLIB
will not be used.

6-9 Reserved.

HALMAP CSECT

The HALMAP CSECT contains the following information about
the load module:

1) Number of Process Control Blocks (PCBs) required
by the Realtime Executive to handle all potential
processes in the module.

2) 'Address of each PROGRAM, COMSUB, and COMPOOL, and
an indicator as to which type each pointer is
referencing.

3) Simulation Data File (SDF) file member name containing
information about symbols in corresponding compilation
units.

Layout of HALMAP

Loc Length Description

0 2 # of entries in pointer table

2 2 # of PCBs

4 -- Pointer table. 12 byte
entries as outlined below.

Pointer Table

0 1 Type (X'00'=COMPOOL,
X'01'=PROGRAM,
X'03'=COMSUB)

1 3 address of CSECT

4 8 SDF member name

Note that the last entry is not indicated by high order bit
being set in type field. Use halfword at location 0 in HALMAP

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

to determine number of entries.

HALLINK Return Codes

Return Codes

0,4,8,12,16 As defined by Link Editor.

1,5,9,13,17 Return code of n corresponds
to Link Editor return code of (n-l)
and recursive calls detected in
load module and HALLINK option 3
was specified.

100 Recursive calls and option 3
not specified.

104 Insufficient space for tables.
Rerun in larger partition.
Current implementation requests
32K, 16K, 8K, and 4k,
in that order, stopping
when a request is satisfied.

108 Usable to open STACKOBJ
or TEMPLOAD. If SYSPRINT
cannot be opened, HALLINK
option 0 assumed.

124 User specified a member name
on TEMPLOAD card. TEMPLOAD
must. not have a member
name specified.

128 I/O error reading
TEMIPLOAD directory.

< I-5

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184C

Appendix J

Block Location and Search Algorithms for Type II and III

The location of a block in a Type II or III is determined by
the following algorithm:

1) A starting location for the search is determined by the
formula B MOD DCBREL, where B is the block number and DCBREL is
the number of blocks in a Type II file with OPTCD=R or the number
of tracks in a Type II or Type III without OPTCD=R (the default).
For example, if B=10 and a Type III file has 7 tracks, then the
starting location is 10 MOD 7, or 3. This number is interpreted
as the relative block or track in the file, again depending on
OPTCD. In this case the starting location is relative track 3 of
a seven track file, or the fourth track (the first track is
relative track 0).

2) If.OPTCD=E is specified, the search starts at the beginning of
the track determined above and continues for as many tracks (or
blocks) as the number specified in the LIMCT parameter. The
search is for available space for a new block or for an existing
block. If OPTCD=E is not specified, the search stops at the end
of the track as determined in 1). If OPTCD=E is specified but
LIMCT is not, then LIMCT defaults to the maximum, causing the
entire file to be searched. (If the end of the file is reached,
the search continues from the beginning of the file.)

3) If the search fails, the result is either ERROR 64 - NO SPACE
IN FILE, or ERROR 70-79 - BLOCK bbbbbbbbbb NOT FOUND, depending
on whether an output or an input file statement was being
executed.

Conclusions:

1) If the range of B is uniformly sparse (say B=100, 200, etc)
then the uniform increment (in this case 100) should be prime
with respect to DCBREL.

2) Available space in an existing file may be increased without
increasing the size of the file by utilizing OPTCD=E and/or an
increased LIMCT.

J-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

