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REVISION 3 CHANGES

This document is a revised version of the previous one dated June 1872,
and supersedes that document. The following is a summary of the major techni-
cal changes included in this revision:

1. The option of including process noise in the
cross-track components only has been added
to the previously existing options of including
it in all components or not including it at all.

1}
veh
and number "b" of additionally estimated

parameters have been combined into one vari-
able "k',

2. The previously used vehicle switch ''s

3. The magnitude of the process noise to be in-
cluded is now an input fo the routine rather
than the full 3 x 3 process noise matrix.
The matrix is constructed internally from the
input magnitude.
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FOREWORD

This document is one of a series of candidates for inclusion in a future re-
vision of MSC-04217, "Space Shuttle Guidance Navigation and Control Design Equa-
tions'. The enclosed has been prepared under NAS9-10268, Task No. 15-A,

"GN & C Flight Equation Specification Support', and applies to function 1 of the

Orbital Navigation Module (ON2) and function 1 of the Co-orbiting Vehicle Naviga-
tion Module (ON3) as defined in MSC-03690 Rev. C, ''Space Shuttle Orhiter Guid-
ance, Navigation and Control Software Functional Requirements - Vertical Flight

Operations", dated 31 July 1972.
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Gerald M. Levine, Director
APOLLO Space Guidance Analysis Division
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NOMENCLATURE
Perturbing acceleration at time t

Number of additional guantities, such as landmark

locations or instrument biases, being estimated
Constant for adjustment of nominal step-size
Number of columns in the filter weighting W-matrix
Primary vehicle covariance matrix (6 x 8)
Target vehicle covariance matrix (6 x B}
Special function of g defined in text
Gravity gradient matrix

Unit vector of earth's north polar axis expressed in

reference coordinates
Unit vector in the direction of the position vector r
Three-dimensiénal identity matrix
Constant describing dominant term of ea;rth's oblateness
An index on the filter-weighting matrix elements
Special function of r and & defined in text .
Three-dimensional column vector in the 3 x 3 process

noise matrix for either the primary vehicle (i = 3, 4, 5)
or the target vehicle (i = 9+b, 10+b, 11+b)
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QP’ QT Process noise matrix (3 x 3) associated with the primary (P)

or target (T) vehicle

o Geocentric position vector at time tg

E(t) Geocentric position vector at time t

r{t) Magnitude of geocentric position vector

r con(t) Reference conic position vector at time t

rconm Magnitude of reference conic position vector
at time t

re Mean equatorial radius of the earth

g Geocentric position vector at time tF

r ] Intermediate values of r

S ont Switch indicating whether previous extrapolation is
to be continued without re-rectification

sper ¢ Switch indicating the perturbing accelerations to
be included

sq Switch controlling whether process noise is to be
included in the W-matrix extrapolation, and if so
whether in all components or only cross-track
components

Sw Switch controlling whether state or filter-weighting

matrix integration is being performed (used only

internally in routine)

vii



ts Initial time point. Also, time of last rectification

to Time to which it is desired to extrapolate (rg,v,)
and optionally W0

¥o Geocentric velocity vector at time t,

YE Geocentric velocity vector at time tp

—conm Reference conic velocity vector at time t

WO Filter-weighting matrix at time t,

WF Filter-weighting matrix at time te

Wi i Elements of the filter-weighting matrix

LA Three-dimensional column vectors into which the
filter-weighting matrix is partitioned

X Independent variable in Kepler routine

x' Previous value of x

x ) Vector random variable of dimension b representing
errors in the additionally estimated quantities such
as landmark locations or instrument biases

8t Position deviation vector of true position from
reference conic position at time t '

5 Magnitude of position deviation vector (temporary
variable used for rectification test)

Gmax Maximum value of [EI permitted {used as rectifi-

cation criterion)



At

At

At

nom

£

n (1)

vt}

u'

max

Time-step in numerical integration of differential

equation

Maximum permissible time-step size

Nominal integration time-step size

Time convergence tolerance criterion

Random variable representing error in estimate of
position vector at time t

Random variable representing error in estimate of
velocity vector at time t

Earth's gravitational parameter

Velocity deviation vector of true velocity from refer-

ence conic velocity at time t

Magnitude of velocity deviation vector {(temporary
variable used for rectification test)

" Maximum value of ]gl permitted {(used as rectifi-

cation criterion)

Time interval since last rectification

Previous value of T

Geocentric latitude



1, INTRODUCTION

The Precision State and Filter Weighting Matrix Extrapola-
tion Routine provides the capability to extrapolate any spacecraft
geocentric state vector either backwards or forwards in time through
a force field consisting of the earth's primary central-force gravita-
tional attraction and a superimposed perturbing acceleration. The
perturbing acceleration may be either the single dominant term (J2)
of the earth's oblateness or a more complete expression involving
all significant perturbation effects. The Routine also provides the
capability of extrapolating the filter-weighting matrix along the preci-
sion trajectory. This matrix, also known as the ""W-matrix', is a
square root form of the error covariance matrix and contains statisti-
cal information relative to the accuracies of the state vectors and

certain other optionally estimated quantities.

On any one call, the routine extrapolates only one state vec-
tor and only those gsix rows of the filter-weighting matrix relating to
this state vector. Two calls are required to extrapolate two separate
state vectors and a complete filter-weighting matrix pertaining to two
state vectors. The complete extrapolated filter-weighting matrix is
obtained by properly adjoining the two separately extrapolated sub-
matrices of six rows each.

The routine is merely a coded algorithm for the numerical
solution of modified forms of the basic differential equations which
are satisfied by the geocentric state vector of the spacecraft's center

of mass and by the filter-weighting matrix, namely:

a E(t) +

at?

I

r{t) = t
3 r a,{t)
r {t)

and

Wit} = F(t) W(t) +{-§- at wTo) -1}

2o

where a , {t) is the vector sum of all the desired perturbing accelera=
tions, F(t) is a matrix containing the gravity gradient matrix and the
identity matrix in its off-diagonal sub-blocks, and @ is the process
noise matrix. A simplified form of the term in braces is included
only during phases when process noise is to be introduced into the
navigation filter to improve the long-term navigation accuracy,
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Because of its high accuracy and its capability of extrapola-
ing the filter-weighting matrix, this routine serves as the computa-
tional foundation for precise space navigation. It suffers from a
relatively slow computation speed in comparison with the Conic State
Extrapolation Routine.
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2, FUNCTIONAL FLOW DIAGRAM

The Precision State and Filter Weighting Matrix Extrapola-
tion Routine performs its functions by integrating modified forms of
the basic differential equations at a sequence of points separated by
intervals known as time-steps, which are not necessarily of the same
size, The routine automatically determines the size to be taken at
each step,

As shown inFigure 1, a state vector and (optionally) the six
rows of the filter-weighting matrix relating to this state vector are
updated one step at a time along the precision trajectory until the
specified overall transfer time interval is exactly attained. (The size
of the last time-step is adjusted as necessary to make this possible).



ENTER

Rectification
required ?

Yesi No

Rectify

' '

| Compute time step size for this time-step

Time-step
gize = 07
(to within

Yes

Integrate state vector one time-step

Filter-

No weighting
- matrix
extrapolation
desgired 7

Integrate filter weighting sub-matrix
one time-step

- *

Figure 1.

- EXIT

Functional Flow Diagram Precision State and Filter

Weighting Matrix Extrapolation Routine
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3. INPUT AND OUTPUT VARIABLES

The Precision State and Filter Weighting Matrix Extrapolation Routine has

the following input and output variables:

Input Variables

#0,

(EO’XO) Geocentric state vector to be extrapolated. [ If S cont

(ry- ¥ o) is last rectified geocentric state vector]

tg Time associated with (r,.v,) and Wy. [If s . # O,
ty is last rectification time]

Time to which it is desired to extrapolate (30,30) and

optionally WD

Switch indicating the perturbing accelerations to be in-
cluded. (

pert

spert = 1implies J, oblateness term only;

spert > 1 implies a more complete perturbing accelera-

tion model {or models)}.)

d Number of columns in filter-weighting matrix (d = 0,
6,7, ..., where O indicates no W-matrix extrapolation)

k An index indicating which six rows of the filter-weighting matrix
are to be extrapolated {hence not used if ¢ = 0). Should be set
to 0 for the primary vehicle and to 6+b for the target vehicle,
where b is the number of additionally estimated quantities
{such as landmark locations or instrument biases) being esti-

mated.
Filter-weighting matrix to be extrapolated (optional)

s Switch indicating whether process noise is not to be included
(sq =0), is to be included in all components (sq = 1), or is
to be included in cross-track components only (sq = 2)

qmag Magnitude of the process noise to be included in the W-matrix

being extrapolated



SCOn‘t

(6,v)

)

r » vV
(“" con =comn

T

xl

Tl

g vy

T'

Switch indicating whether previous extrapolation is to be

continued (s = 1) or not (scont = Q) without re-

cont
" rectification

Position and velocity deviation vectors \
Conic position and velocity vectors

. . . cps . At end of previous
Time interval since rectification B

> extrapolation [ used
Last value of independent variabie in only if s = 1)
i cont
Kepler Routine
Last value of dependent variable in
Kepler Routine )

Qutput Variables

Extrapolated geocentric state vector

Time associated with (EF , y_F) and WF'
[ Will equal t within tolerance of €, i

Extrapolated filter-weighting matrix (only the six rows
indicated by the index k are extrapolated in a single
call) .

Last rectified position and velocity vectors
Time of last rectification

Position and velocity deviation vectors . -
: For use as input if

L = -
scont 1 on a subse

Conic position and velocity vectors .
quent extrapolation

Time interval since rectification
Last value of independent variable in Kepler Routine

Last value of dependent variable in Kepler Routine
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r 1+ (1+q)3/2
and a; {t) is the total perturbing acceleration, The above
second order differential equation in the deviation vector §(t)

is numerically integrated by a method described in a later sub-
section,

The term

£0q) r(t) +5(t)
Teon

must remain small, i.e, of the same order as ay (t), if the method

is to be efficient, As the deviation vector & (t) grows in magnitude,

this term will eventually increase in size, When

s (t)| > 0.01] (t)] or [p(t) >0.01)v__ (1)}

r
-Ccon —con

or when -

| 6Ct)|>8, ., or| vit) [>y ..

a new osculating conic orbit is established based on the latest preci-
sion position and velocity vectors r(t) and v(t), the deviations § (t)
and v (t) are zeroed, and the numerical integration of & (t) and y(t)
continues. The process of establishing a new conic orbit is called

rectification,

The total perturbing acceleration a4 {t) is in general the
vector sum of all the desired individual perturbing accelerations com-
prising the total force field, such as those due to the earth's oblate-
ness, the gravitational attractions of the sun and mbon, and the earth's
atmospheric drag. Since many Shuttle applications will require only
tht{ perturbing effect of the dominant term J, of the earth's oblate-
ness, the use of only this term has been made a standard option in
the routine diagrammed in Section 5. However, provision has been
made for handling a completely general perturbing acceleration. The
form of this perturbing acceleration will depend primarily upon the
requirements of the Orbit Navigation function.
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The explicit expression for the earth's J2 oblateness accel-

eration alone is:

‘ 2

2q 7 7 :%"{% J2[rrE} [(l ~8sin®e)i, +2 sin® Ioole
where

i, is the unit position vector in reference coordinates,

-i'-pole is the unit vector of the earth's north polar

axis expressed in reference coordinates,

sine = —ir ) ip(:tle,
and

Te is the mean equatorial radius of the earth,
4,2 Filter-Weighting (W) Matrix Extrapolation Equations

The position and velocity vectors which are maintained by the
spacecraft's computer are only estimates of the actual values of these
vectors. As part of the navigation technique it is also necessary for
the computer to maintain statistical information about the position
and velocity vectors. Furthermore, in particular applications it is
necessary to include statistical data on various other quantities, such
as landmark locations during Orbit Navigation and certain instrument
biases during Co-orbiting Vehicle Navigation. The filter-weighting

W-matrix is used for all these purposes.

If ¢(t) and n(t) are three dimensional vector random
variables with zerc mean which represent the errors in the estimates
of a spacecraft's position and velocity at time t, then the six-dimen-

sional state error covariance matrix E(t) at time t is defined by:

ety ()T c(tyn(e)T
E(t) = - — 1.
n(t) ()T n(t)n(t) T

where the bar represents the expected value or ensemble average at
the fixed time t of each element of the matrix over which it appears.
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If Y(t) is ab-dimensional vector random variable with zero
mean which represents the errors in the estimates of the b additionally
estimated quantities such as landmark locations or instrument biases,
then a (6 +h) - dimensional state and other parameter covariance matrix

is defined by:

cwe®T cwnwT vt
Et) = it e®? nw Wt  aw) vt
i) e(t)T yryn)T vy |
=

Further, if the statistical properties of the positions and ve-
lacities of two separate spacecraft are to be maintained, a twelve-

dimensional state covariance matrix is defined by:

r .
. T T T T
EpEp Eplp EpET Epirt

T T T T
TpEp Tplp Tp e Tpir
El{t) =
T T T T
€T EP £E1lp ETET L
T T T T
irep DNpl2p Rper A7 ]
3

where the subscripts P and T refer to the primary and target ve-
hicles, respectively.

And finally, if the statistical properties of the b additionally
estimated quantities are also to be maintained along with the two state
vectars, a (12 + b} state and other parameter covariance matrix

is defined by:
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—.‘_p_.‘.pT £p !LPT ipl’T f_piTT fpit

Dpfp e in EPZT np .‘_TT tplyT

E(t) = b4 .‘_PT b4 IlpT X IT X ET X HTT
£r EPT £t IlpT ETZT £ iTT £1 IITT

i RTEPT nr IIpT Ly .'ZT nTt ETT ntht

Rather than use one of the above covariance matrices in the

navigation procedure, it is more convenient to use a matrix W (t)

having the same dimension d as the covariance matrix E (t) and

defined by:

E{M) =W WO T

The matrix W (t) is called the f
sense a square root of the cova

ilter-weighting matrix, and is in a

riance matrix,

>
Extrapolation of the W (t) matrix in time may be made

by direct numerical integration of the differential equation which it sat-

isfies. In the one-spacecraft c
1
O I3 :
g - G(t) 0
3 v :
O x 6) :

{where b =0,1,2,..

______________ W{t) + luﬁ)

ase, this is:

Ot6 x b g © 0
o Q
O(b % b) O(b x B}

In the two-spacecraft case, the differential equation is:

| i -
o I o
il 0 R
Goh 0 | ©xPy o o
| |
da_ P T .
Tt W = 1Oy 6) ! Obx b Cbxe) Wit +
o o 77 "o 1.
i o l 3
o o ! m*b’}c%u} 0

*The term in braces is added only when process noise is to be included.

4-5

. is the number of additionally estimated quantities}.




0 o ! b o o
| O 1
{6 xb)
O % 1% .o . .
. I ' -
* 342 % xe) 1 Pbxpy | Ok xe) (w-m] .
BH*—_O_TBH-——'—_‘O__- 0
: I

where 13 is the 3 x 3 identity matrix, the O's are zero matrices of
the required dimensions, the G(t) are the 3 x 3 conic gravity gradient
matrices

B T 2 :
G(t) = Sr{tyr{t)* - r9(t)1
xywll RIS 3 ]

associated with the vehicle under consideration or with the primary (P)
or target (T) vehicle, and the Q are the likewise associated 3 x 3 pro-
cess noise matrices,

Extrapolation of the W matrix may also be made by the following
technique, which is somewhat simpler to implement in an on-board computer
since matrix mainpulations are reduced to more tractable vector manipula-
tions, and matrix inversion is avoided.

Let the d x d filter-weighting matrix W = [ Wy i] be partially

partitioned into three-dimensional column vectors ¥ which bear the

k,
subscripts of their first component:
B | )
¥o,0%0,1"¥o0,5 | 0,6 ¥o,5+ | 0,640 0, 74p """ ¥o0,d4-1
j !
¥3,0%831 %35 ; ¥s,6 " ¥3 54b ! ¥3,6#b %3, 74p 0 %3, 441
T R e C L N SO0 VU
Ye,0%,1°° Ve, 1 ! %e,6 " Vg, 54p : %6, 8+b Ve, T4p 070 Yg, d-1
oY1 Yrs  Yr e Yasep L Wreen W, et e W, g1
W = i \
- - ' a8 l » s 3
i i .
Wetb, 00 ¥5+b, 5 : W5+b, 6" " W5+b, 5+b ; Wath, 8+b W S+b, T+b" ' * W5+h, d-1
--—ﬁ--—-i—-n—.—‘——i—————_—-—-"—‘——‘-I— ———————————————————
¥ e+b, 0" " Xeg+b, 5 ! Z6+b, 6" " Lg+b, 5+b | Lg+b, 6+b “6+b, T+b" " " Y g+b, d-1
|
¥orb, 0 ¥orh, 5 | Forb, 6 X otb, 5+6 : ¥ o+b, 6+b L o+b, 8+b" * *Fg+p, g-1
e |

*The term in braces is added only when process noise is to be included.
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and let the 3 x 3 process noise matrices be partitioned into three-dimensional
column vectors:

Qp=[g3. 94- 951 Qp "1 394 D04 T114b

Furthermore let the inverse of the filter-weighting matrix be approximated by
the diagonal matrix ‘.?EID“1 (t) whose diagonal elements are the reciprocals of
diagonal elements of the filter-weighting W-matrix:

1/wg o

[whe) s wpm] ™t - ¥
o

0

"1/%4.1,d-1

Then the previous first order differential equations are equivalent to:

d2 ’ e
—;ﬁ' Wo,i - Gl wg (1/2wi,i)9i
with {i=3, 4, 5 only) i=0,1,...(d-1)
-
W3,i = dt ¥9,i
wk i = constant for k=86
and - d2 4 "
T2 Foi TCpiM) EoM) (2w g, \
i= 3, 4,5 only) .
q? w = G (t)w + (1/2w, )
T2 6+, i T 'Y Zetb,i i,173i
with i =9+b, 10+b, 11+b only) } i=0,1,...(d-1)
- 4
¥, dt Yo,i

I
¥orb,i ~ dt Xe+b,i

w i = constant for 6 =k <6+b

B
The terms in braces are added only when process noise is to be included.



i =O’ 1] l..(d-l)

. (d-1)

i=0,1,..

When written out in full, the above equations are:

2
d ¢ 2

W, . = 3 (t) w_ . {(t}|r(t)-r“(t)w .(t)j’
at? 0Ly 5m[ [z ¥ 0]z =0.i

" {(1/2wi g, (@ =3,4,5 only) I

with
_ d
Y31 B dt %o
wk . = constant for k = 6
21
and
a? = —E I3 (t)- ()] ro(t) - r 2w, . ()
2 ¥o,i T 5 [EP ¥o.i ]EP p W ¥o,i
dt rp {t)

+ ;(1/2 wi,i)ﬂi {i = 3,4, 5 only) } *

2 2
"5 ¥g+b,i " '"%_ [3 [ET“) .Es*'b'i(t):lzr‘rm T Yo, i(t)]
dt rr (t)

&
+ g(ll2wi ;79; U = 8+b, 10+b, 11+b only}{

with

w = 4y

Y3 i at ¥o,:

G

Y 9+h, i dt Ye+b,i

W s = constant for 6 <k < 6+b

These second-order differential equations may be integrated using the
same nurnerical integration technique as is vused for the spacecraft
position vector. The vectors L and ¥ o+p, ; Pear the same relation-

ship to the spacecraft velocity vector as the vectors Yo i and Wetb i

3,1 04 Woy g area

by-product of the numerical integration of ¥o.i and Wg+p, ; Just as

the velocity vector is a by-product of the numerical integration of the

bear to the spacecraft position vector, and w

position vector,

=
The terms in braces are added only when process noise is to be included.



4.3 Numerical Integration Method

The extrapolation of inertial state vectors and filter weight-
ing matrices requires the numerical solution of two second-order
vector differential equations, which are special cases of the general

form
d2
.oy () = £(t, y(t), 2(1))
at?
where
d
2= —v,
=T & b

Nystrom's standard fourth-order method is utilized to numerically
solve thig equation, The algorithm for this method is:

Yoel = Yot 2, A +;_{51+& +kg) (at)?

_ 1
= _z_n+-.(5 +2E2+2k +E4)At

Zn+l 5 3
g = £t v, 2,)
k, =f(t +iat,y +1z at+li (at)? z +1k at)
L2 =Ty » In 5 1 | - |
8 2
) 1 1 1 2 1
_153 = f_(tn+;At, %+;Enat+—51{.&t) , ?-n+“1—{-2 At)
. 8 2
_ ' 1 2
54 -E(tn+At,Xn+EnAt+;53(§t),_z__n-i-_lESAt)
where
zn=z(tn).5n=5(tn)
and
1:n+1=tn+‘,'\‘t



As can be seen, the method requires four evaluations of
f (t, y, z) per integration step At as does the classical fourth-order
Runge-Kutta method when it is extended to second-order equations.
Howevér, if f is independent' of z, then Nystrom's method above only
requires three evaluations per step since 53 = 52. (Runge-Kutta's
method will still require four).

The integration time step At may be varied from step to

step, The nominal integration step size is

At = ¢ r 3/2/\/u
on

nom nom [o]

where c is a program constant. (The value c = 0.3 1is
nom nom

recommended and implies that about 21 steps will be taken per trajec-

tory revolution). The actual step-size is however limited to a maxi-

mum of At . which is also a program constant. (A value of about

4000 seconds Eilg suggested.) Also, in the last step, the actual step
size is taken to be the interval between the end of the previous step
and the desired integration endpoint, so that the extrapolated values

of the state or W-matrix are immediétely available. Thus the integra-

tion step-size At is given by the formula

At )

At = + minimum (| to- t], ot . At

where tg, is the desired integration end-point and t is the time at the
end of the previous step, The plus sign is used it forward extrapola-
tion is being performed, while the negative sign is used in the back-
dating case,
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5. DETAILED FLOW DIAGRAMS

This section contains detailed flow diagrams of the Precision State and

Filter Weighting Matrix Extrapolation Routine.

Each input and output variable in the routine and subroutine call state-
ments can be followed by a symbol in brackets. This symbol identifies the
notation for the corresponding variable in the detailed description and flow dia-
grams of the called routine. When identical notation is used, the bracketed

~symbol is omitted.
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UNIVERSAL PROGRAM
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[ 1 i
1
t = t0
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Figure 2a. Detailed Flow Diagram
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6. SUPPLEMENTARY INFORMATION

Encke's technique is a classical method in astrodynamics
a.nd is described in all standard texts, for example Battin (1964),
The f(q) function used in Encke's technique (and in the lunar-solar
perturbing acceleration computations) has generally been evaluated
by a power series expansion; the closed form expression given here
was derived by Potter, and is described in Battin (1964).

The oblateness acceleration in terms of a general spherical
harmonic expansion may be calculated in a variety of ways; three
different recursive algorithms are given in Gulick (1970). For low
order expansions, especially those involving mostly zonal terms, an
explicit formulation is generally superior computation-time-wise, as
only the non-zero terms enter into the calculation. The general ex-
pression for the zonal terms is given by Battin (1964), while Zeldin
and Robertson (1970) give explicit analytic expressions for each of
the tesseral terms up through fifth order; hence zll combinations of
terms may easily be included in the oblateness acceleration by con-
sulting the formulations in these references.

A full discussion of the use of covariance matrices in space
navigation is given in Battin (1964). Potter (1963} suggestedtheuse of
the W-matrixand developed several of its properties, It should benoted
that strictly the gravity gradient matrix G(t) should alsgo include the
gradient of the perturbing acceleration; however,these terms are so
small that they may be neglected for our purposes. The use of only
the conic gravity gradient, however, does not imply the W-matrix is
being extrapolated conically, (Conic extrapolation of the W-matrix
can be performed by premultiplying the W-matrix by the conic state
transition matrix, which can be expressed in closed form), Rather
the W-matrix is here extrapolated along the precision { perturbed)
trajectory, as can be seen from the detailed flow diagram of Section
5.

The expression for the inclusion of process noise in the
differential equation satisfied by the filter-weighting matrix is taken
from Gustafson and Kriegsman (1970), page 7.
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The Nystrom numerical integration technique was first con-
ceived by Nystrom (1925), and is described in all standard texts on
the mumerical integration of ordinary differential equations, such as
Henrici {1962), Parametric studies carried out by Robertson (1970}
on the general fourth-order Runge-Kutta and Nystrom integration
techniques indicate that the "classic" techniques are the best overall
techniques for a variety of earth orbiting trajectories in the sense of
minimizing the terminal position error for all the trajectories,
although for any one trajectory a special technique can generally be
found which decreases the position error after ten steps by one or
two orders of magnitude for only that trajectory. The classical
fourth-order Runge-Kutta and Nystrom techniques are approximately
equally accurate, but the latter possesses the computational advant-
age of requiring one less perturbing acceleration evaluation per step
when the perturbing acceleration is independent of the velocity, This
fact has been taken into account in the detailed flow diagram of Section
5, in that the extra evalunation is performed only when the perturbing
acceleration depends explicitly on the velocity, Some past Apollo ex-
perience has suggested that extra evaluation effect with drag is so
small as to be negligible; further analysis will confirm or deny this
for the Space Shuttle. In regard to step-size, the constants and the
functional form of the nominal and maximum time-step expressions
have been determined hy Marscher (19653).
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