
C 74-29539

(NASA-CR13 3 72 HAL/S-33 2 C C S ySTE7 l-FCTIONA sPECIFICATIO (ntermetrics,

cSCL 09B Unclas

IncI) e4 p HC $7.25 G3/ 0 8 45609-1

I I IE
IInTERmETRI CS

HAL/S-FC* COMPILER SYSTEM
FUNCTIONAL SPECIFICATION

24 July 1974

IR #59-4

Approved:

Daniel J. Lickly
HAL Language/Compile Dept. Head

Approved:

Dr. F. H. Martin
Shuttle Program Manager

* For the IBM AP-101 Computer.

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

FOREWORD

This document was prepared for the Johnson Space
Center, Houston, Texas, under contract NAS 9-13864.

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Table of Contents

Page

1. INTRODUCTION 1

1.1 Scope of Document 1
1.2 Language and Interface Definition 1
1.3 Scope of Implementation 2

1.3..1 Stand-Alone Environment 2
1.3.2 Software Development Laboratory

Environment 3

2. COMPILER ORGANIZATION 5

2.1 Overall Compiler Structure 5

2.1.1 The Monitor 5
2.1.2 Phase 1 - The Syntax Analysis Phase 7
2.1.3 Phase 2 - The Code Generation Phase 11

2.2 Internal Data Transfer 15

2.2.1 Monitor/Phase Data Relationships 15
2.2.2 Phase 1/Phase 2 Data Relationships 15
2.2.3 Data Passed to the Table Generation

Phase 16

2.3 Compiler Development 17
2.4 Code Optimization 19

2.4.1 Local Optimizations 19
2.4.2 Global Optimizations 20

3. COMPILER/ENVIRONMENT DATA INTERFACE 21

3.1 User Interface 21

3.1.1 Compiler Inputs 21
3.1.2 Compiler Outputs 23

3.2 System Interface 27

3.2.1 Job Control Language 27
3.2.2 Compiler Inputs 27
3.2.3 Compiler Outputs 28
3.2.4 Link Edit Support 30

iiNRPORATD 701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138 (617) 6611840

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

3.3 SDL Interfaces 30

3.3.1 User Interface 30
3.3.2 System Interface 32

4. COMPILER SYSTEM REQUIREMENTS 33

4.1 General 33
4.2 Hardware Requirements 33

4.2.1 Processor 33
4.2.2 Memory 33
4.2.3 I/O Support 34

4.3 Software Requirements 34

5. RUNTIME SOFTWARE SUPPORT PACKAGE 35

5.1 Vector-Matrix Routines 36
5.2 Character Routines 38
5.3 Conversion Routines 38
5.4 Input/Output 39
5.5 Mathematical Functions 41
5.6 Miscellaneous Functions 43
5.7 Arithmetic Functions 43
5.8 Real Time Interfaces 45

6. RESTRICTIONS AND DEPENDENCIES 47

6.1 Introduction 47
6.2 Compile-Time Characteristics 47

6.2.1 Character Set 47
6.2.2 Compilation Dependent Language Features 47

6.3 Runtime Characteristics 51

6.3.1 Character Set 51
6.3.2 Computer Dependent Language Features 51

Appendix A: Compiler Directives 55
Appendix B: Compiler Error Messages 59
Appendix C: Compiler Options 67
Appendix D: Runtime Errors 69

ITERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184C

1. INTRODUCTION

1.1 Scope of Document

This document defines the functional requirements to
be met by the HAL/S-FC compiler. It also defines the hardware
and software compatibilities between the compiler system and
the environment in which the compiler system operates.

The specification is for the HAL/S-FC compiler and the
associated runtime facilities which implement the full HAL/S
language. The HAL/S-FC compiler system will interface with
the Software Development Laboratory (SDL). The functional
specification of this HAL/SDL interface is also a part of this
document.

This document describes both the construction of the
HAL/S-FC system as functionally separate units and the interfaces
between those units. The remainder of Section 1 presents an overview
of the system's capabilities. Section 2 describes the internal
structure of the compiler. Section 3 shows the data interfaces
which will exist between the compiler and its environment.
Section 4 specifies the hardware/operating system requirements
of HAL/S-FC compiler. The general runtime support packages
are found in Section 5. Finally, Section 6 specifies the
computer-dependent aspects of the HAL/S-FC implementation.
Several Appendices follow containing further details of
specific facilities.

1.2 Language and Interface Definition

The HAL/S-FC compiler system will implement the HAL/S
language as defined in the HAL/S Language Specification,
dated June 15, 1974, including approved changes as of

July 18, 1974. All references to the HAL/S language imply
this document.

In addition, interfaces to other software systems which
will be met by the HAL/S-FC compiler system are specified in
the HAL/FCOS Interface Control Document (ICD) and the HAL/SDL
ICD. In the event of any conflicting specification among any
of these documents, the following document precedence will
prevail:

Highest precedence - HAL/S Language Specification
- HAL/FCOS ICD
- HAL/SDL ICD

Lowest precedence - HAL/S-FC Compiler System Functional
Specification

1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

1.3 Scope of Implementation

The HAL/S-FC compiler will be implemented to compile
HAL/S programs on the IBM 360/75 computer and to produce
code for the IBM AP-101 computer. (The compiler system will
be compatible, with minor modifications, with the IBM 360/370
computer series.)

The HAL/S-FC compiler will provide a complete system
for the organized production of HAL/S programs. The computer
system will facilitate a modular approach to the generation
of large program units by allowing separate compilations of
subsections of HAL/S code. In allowing such modular compilation,
however, the static verification possible under a single large
compilation scheme will not be lost. The compiler will auto-
matically maintain such static verification information during
separate compilations.

The compilation system will provide a generalized
facility for the management of HAL/S program resources. Such
resources as individual global variables or subroutines may
be restricted to use by designated programmers. Additionally,
management decisions governing use of particular HAL/S
language features will be enforced automatically by the
compiler. Since such individual management restrictions will
not be known until well into the Space Shuttle program, the
HAL/S-FC compiler will implement a system of Compiler
Directives which will describe administrative action to be
taken by the compiler. Directives will be added as the need
for more controls arises.

Following compilation, the compiler system will aid in
the checkout portion of program development. For each
compilation unit, a Simulation Data File (SDF) will be
generated for use by the SDL. Each SDF will contain symbol,
statement, and cross-referencing information which can be
accessed during simulation. A runtime package will be supplied
to implement HAL/S language features not supported via in-line
code generation. The compiler-generated executive linkages
and the runtime package will be compatible with the Flight
Computer Operating System (FCOS).

1.3.1 Stand-Alone Environment

The HAL/S-FC compiler system will be capable of
executing within the standard batch processing facilities of
OS/360. Operation in this environment is known as Stand-Alone

2

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-18

execution. The HAL/S-FC system will provide the facilities
necessary to proceed from initial compilation through execution
and debugging on an appropriate Interpretive Computer
Simulator or an AP-101 in the Stand-Alone environment. These
facilities will include:

a. Complete compilation of all HAL/S language
constructs. The design goal for compilation
speed is 1000 cards per minute.

b. Separate compilation of PROGRAM's, COMPOOL's,
and external PROCEDUREs (COMSUBs) in one invocation
of the compiler.

c. Production of compilation diagnostics.

d. Generation of object code. The object code
produced will not exceed that produced via hand-
coded assembler language methods by more than
15% in either memory requirements or execution
time.

e. Link-editing of object code to resolve all external
references.

f. A complete runtime package implementing all built-in
functions and operations defined in HAL/S. This
package will include (or be compatible with) a full
realtime support system (FCOS).

1.3.2 Software Development Laboratory Environment

The HAL/S-FC system will be capable of operating within
the Software Development Laboratory (SDL). When operating in
the SDL environment, the HAL/S-FC system will provide facili-
ties which include:

a. Complete compilation of all HAL/S language
constructs. The design goal for compilation
speed is 1000 cards per minute.

b. Separate compilation of PROGRAMs, COMPOOLs, and
external PROCEDUREs (COMSUBs) in one invocation
of the compiler.

c. Production of compilation diagnostics.

3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

d. Generation of object code compatible with SDL
link edit facilities. The object code produced
will not exceed that produced via hand-coded
assembler language methods by more than 15%
in either memory requirements or execution time.

e. A complete runtime package implementing all built-
in functions and operations defined in HAL/S. This
package will be compatible with a full realtime
support system (FCOS).

f. Provision for runtime package diagnostic capability
with appropriate interfaces to the FCOS.

g. Interfaces to the SDL necessary to allow implementa-
tion of the SDL. This includes static data inter-
faces in the form of tables and system control.

4

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2. COMPILER ORGANIZATION

This section describes the functional operations that will
be performed by the various parts of the HAL/S-FC compiler.
The information is organized into three categories:

2.1 Internal operation of various elements in the
compiler. Data interfaces between elements is
mentioned only briefly.

2.2 Details of interfaces between various elements
including descriptions of data transmitted.

2.3 Details of the XPL Translator Writer System1

which will be used to develop the compiler.

2.1 Overall Compiler Structure

The HAL/S-FC compiler will be made up of separate
modules, each module performing a distinct function in
the compilation process. The relationships of the various
modules in the compiler to each other and to the compiler
environment are shown in Figures 1 and 6. The four modules
of the compiler (Monitor, Phase 1, Phase 2, Table Generation)
are described in more detail in the following sections.

2.1.1 The Monitor

The Monitor will be the controlling module in a
compilation. It will perform all sequencing and control
operations.

The sequencing function of the Monitor will direct
the compilation by deciding which of the other modules are
in the computer memory. The Monitor will make use of overlay
techniques to make maximum utility of available memory. The
Monitor will supervise loading and execution of the other
modules and pass any required information to the modules.

The control function of the Monitor will handle all
interfaces between secondary modules in memory and the
operating system under which the entire compiler runs. These

1. Mc Keeman, W.M., Horning, J.J., Wortman, D.V., A Compiler
Generator, Prentice-Hall, Inc., 1970.

5

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ENVIRONMENT

ONIHAL COMPILER (STAND ALONE OR SDL)

WORK ERROR A AUUX

FIFILES TEXT ES

Overall Structure of the HAL/S-FC Compiler
Figure 1.

interface functions include all Input/Output operations, all
memory management, and all special requests to the operating
system such as time-of-day information.

The Monitor will be written in OS/360 Basic Assembler
Language.

2.1.2 Phase 1 - The Syntax Analysis Phase

The Syntax Analysis Phase will perform all syntactic
and semantic analysis of the user's HAL/S source statements.
This analysis will be driven by a parsing system which will
generate a complete parse of the input. The parsing algorithm
will detect and identify all syntax errors in the source state-
ments and will make information generated as a result of the
parse available to other sections of Phase 1.

Phase 1 will be responsible for the identification of
all compiler directives and for the proper implementation of
the facility which allows separate compilation of COMPOOLs,
COMSUBs, and PROGRAMs.

This separate compilation facility is illustrated in
Figure 2. The boxes labeled 1 through 3 each identify a sep-
arate Unit of Compilation. A Unit of Compilation is the
minimum element of the HAL/S language which may be compiled
separately.

Units labeled 1 and 2 illustrate the system which will
be implemented by the compiler to allow separate compilation
of COMPOOLs and external PROCEDUREs and FUNCTIONs (COMSUBs).
This system will allow the compiler to perform complete static
verification of all data types and formal pdrameters even in
PROGRAMs (Unit 3) which reference separately compiled Units.
This system will be implemented by producing a symbolic
template for each Unit 1 or Unit 2 compilation as well as any
object code. When a PROGRAM makes reference to one of these
separate Units, the symbolic template must be INCLUDE'd (identi-
fied by an INCLUDE compiler directive) by the programmer. Phase 1
will automatically generate these templates whenever a Unit of
Compilation of-type 1 or 2 is compiled. The templates will be
compatible with standard INCLUDE library formats. See Section 3.2.2.

7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

'--- I 9- -
COMSUB COMPOOL I PROGRAM

SOURCE SOURCE SOURCE

VIA INCLUDE
HAL HAL DIRECTIVE

COMPILER COMPILER I

HAL
SYMBOLIC COMPILER
TEMPLATE

", LIBRARY

LINK
EDITOR

OBJECT
MODULE L

LIBRARY

SYMBOLIC DATA LOAD

- OBJECT DATA Figure 2.ODULE

HAL COMPILATION SYSTEM

Phase 1 is also responsible for production of the
source listing and the symbol table/cross reference table
listing. Details of the listings and other Phase 1 data
interfaces may be found in Section 3. Phase 1, written in
the XPL language, will consist of four distinct parts:

1. The Scanner

2. The Syntax Analyzer

3. The Semantic Analysis Routines.

4. The Listing Synthesizer

Figure 3 illustrates the organization of Phase 1 in
more detail.

2.1.2.1 The Scanner. The Scanner is sometimes called the
Lexical Analyzer. It will scan the sequence of characters
that comprise the source input (letters, digits, punctuation,
spaces) and will generate a stream of tokens which are
meaningful symbols of the Syntax Analyzer, (e.g. reserved
words, identifiers, literals, and other so-called terminals).
It will discard the semantically irrelevant text and handle
imbedded comments. The proper interpretation of multi-line
input will be done in the Scanner.

Each symbol will be converted to an internal "token" in
a simplified format so that the analyzer is presented with
a stream of uniform symbols. This will permit the rest of
the compiler to operate in an efficient manner using fixed
length numerically-formatted data instead of variable length
character strings. The Scanner will be called upon by the
Syntax Analyzer as needed to deliver the next token from the
input stream.

2.1.2.2 The Syntax Analyzer. The Syntax Analyzer will
decompose the input stream tokens (parse the lexical format)
to determine if it is legal according to the grammar of
the language. Once the parse verifies the syntactical
correctness of the input, control will be passed to appropriate
semantic analysis routines.

The parse will be conducted using the table-driven
algorithm of the XPL Translator Writer System. A description
of this approach is given in Section 2.3.

9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SOURCE - TABLES

INPUT - - SCANNER -

INPUTI

SYMBOL
REQUESTS ISYMBOLS

SYNTAX CROSS REFERENCE
ANALYSIS

S- - EXTERNAL

- TABLES
IPARSE
IRESULTS

CONSTANT

HALAT - SEMANTIC

ANALYSIS

LITERAL

FILE

OTHER TABLES

LISTING LISTING ------

TO PHASE 2

Figure 3.

Phase 1 Organization

10

2.1.2.3 The Semantic Analysis Routines. Once a complete

syntactic check has been performed and the format identified,
a semantic routine will be invoked. Given the particular construct

and access to the compiler tables, the analysis routine will

check for semantic correctness and then interpret the meaning.
The result of this interpretation is some action taken by the

compiler to properly implement the language construct in

question. This action may range from adding information to

the symbol table to generating some intermediate code

language elements (HALMAT). The HALMAT is a machine independ-
ent representation of the program being compiled. It is used
to drive the code generation process. The HALMAT is further
discussed under the topic of internal compiler data transfer
in Section 2.2.2.

2.1.2.4 The Listing Synthesizer. At appropriate points in
the analysis, the Listing Synthesizer will be given control.
This routine will generate the fully annotated primary source
listing by synthesizing the source statements. Further
discussion of the primary source listing may be found in
Section 3.1.2. The synthesis will be driven by the tables
and other data generated during syntactic and semantic analysis.

2.1.3 Phase 2 - The Code Generation Phase

The Code Generation Phase will accept any necessary
data from previous phases and use that data to direct the
generation of object code for the target computer.

Phase 2 will produce,on request, a formatted
mnemonic listing of object code produced. In addition,
Phase 2 must supply proper object code interfaces to the

runtime system.

Phase 2 will contain four .(4) distinct sections:

1. Declared Storage Allocation,

2. Initial Code Generation,

3. Code Compaction,

4. Object Module Creation.

Figure 4 illustrates the organization of Phase 2 in
more

detail. Phase 2 will be written in the XPL language.

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184C

FROM PHASE 1

TABLES

DECLARED

STORAGE
ALLOCATION

SYMBOL

HAIMAT

-- INITIAL

CODE
- GENERATION

LITERAL G A

FILE
CROSS REFERENCE

EXTERNA

TABLES

CODE
COMPACTION GENERATED

CONSTANTS

OBJECT
LISTING - - MODULE - -- - OTHER TABLES

CREATION

OBJECT RUNTIME

MODULE TABLES

Figure 4.

Phase 2 Organization

12

2.1.3.1 Declared Storage Allocation. Using symbol table
information generated by Phase 1, this routine will allocate
the necessary memory for data explicitly declared by the
user. The assignment of storage will be done in a manner
to best take advantage of word alignment and frequency of use.
Base registers are assigned to data at this time. With the AP-101
the various address classes (e.g. displacement <56, displacement
<2K, bank 0, bank 0 displacement <2K, PC relative) will be
considered to improve code generation.

2.1.3.2 Initial Code Generation. Using operations specified
in the HALMAT intermediate code language, this module will
generate actual target machine instructions. These instruc-
tions will be maintained in an internal form to allow for
modification of instructions by later sections of Phase 2.

Included in the Code Generation section will be the
building of the list of generated constants. This data will
originally be obtained from the Literal File, which contains
the constants in a generalized internal form. The generated
constants will be specific to the context in which they are
to be used; (e.g. generate an integer constant rather than a
floating point constant).

During this phase, local optimizations are performed
to reduce the amount of code generated. Each time a variable
is to be forced into a register, a check is made to determine
if the variable has been previously loaded or still exists
in the register which last assigned the variable. If so, the
register version, rather than the storage copy, is used for the
associated arithmetic operation. This scheme also works for
indexed variables. Also, constant terms involved in additive
operations are carried at compile time until they must be
incorporated into the variable part of the expression. Thus,

J = 8 + ((K + 3) - 2) + 4;

is compiled as if the statement were

J = K + 13;

Operations which are commutative are commuted if:

13

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

1. the right-hand operand is in a register,

2. the right-hand operand is a literal which can
be loaded by an immediate instruction.

2.1.3.3 Code Compaction. This section will operate both
on generated object data and generated object instructions.

The generated constants are output starting with
those requiring the largest boundary alignment being emitted
first. This compresses the literal pool to its smallest
possible size.

During initial code generation, all branches to unknown
labels (i.e. any forward references) generate an instruction
to reach any possible destination. The compaction process
reduces this to a short instruction when possible.

This section will also compute the actual length of
code and the data in each control section.

2.1.3.4 Object Module Creation. This section will transform
the internally coded instructions and data into standard
OS/360 object module format. This includes generation of:

a. ESD cards for each control section.

b. SYM card for SYMBOLS defined in program.

c. TXT cards for code and initial data.

d. RLD cards for necessary address constants.

e. END card for each PROGRAM.

In addition, this section will produce the formatted
object code listing,if requested by the user,as well as the
runtime tables needed during execution of the compiled code.

14

INTERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.2 Internal Data Transfer

Communication between Phases of the HAL/S compiler
will occur in two ways: 1) via direct, in-memory tables (i.e.
common areas) and 2) via data stored on direct access I/O
devices by one Phase and retrieved for use by another Phase.

Figure 1 shows the data relationships that will exist
in the compiler. The relationships to be discussed in this
section are those involved in inter-Phase communication. In
general, data transfer will be in one direction only; i.e.
since phases will operate in sequence and not concurrently,
data will flow from earlier to later phases.

2.2.1 Monitor/Phase Data Relationships

The Monitor will not participate in the actual
generation or retrieval of any inter-Phase data. It will act
only as a central channel for managing I/O operations on such
data, or as an overlay supervisor in the handling of memory-
resident common data. The Monitor may receive data from
individual Phases in the form of completion codes indicating
whether the compilation sequence is to continue.

2.2.2 Phase 1/Phase 2 Data Relationships

The interface between Phase 1 and Phase 2 will be
generated in the most target-machine-independent manner
possible. The degree to which this machine-independence is
achieved will determine the ease with which the code generator
(Phase 2) can be modularly replaced. Such a replacement
scheme will allow efficient implementation of a complete HAL/S
compiler for additional target machines.

Phase 1 will pass information to Phase 2 via both
in-memory tables and external files. The data passed via a
common memory area will include all symbol table and cross
reference table information. These tables will contain complete
descriptions of all user-defined symbols and the HAL/S state-
ments in which they are used. Since this table data is tied
to HAL/S source code it is in a machine-independent form.
Additional data passed in memory will include status information,
special request information, error condition data detected
in Phase 1, and some literal data information.

Data will be passed to Phase 2 via two files on I/O
devices. One file will contain representations of all numeric
literal data encountered by Phase 1 during the compilation.
The literal data will be in an internal, coded form which will
allow Phase 2 to produce object code literals in the proper
target machine format.

15

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The second I/O file will contain a description of
the compiled HAL/S program in an intermediate language form
known as HALMAT. The HALMAT for a given compilation will
describe the HAL/S source program in an elemental, operation-
by-operation form. All HAL/S statements will be represented
as groups of operations. The operations will consist of an
operator (e.g. vector add) and operands upon which the
designated operation is requested. The operands may be, for
example, simple data items (e.g. simply indicating a particular
symbol table entry) or results of previous operations (e.g.
references to previous HALMAT operations which produced some
intermediate result). The HALMAT language itself will describe
only HAL/S constructs and refer only to the tables generated
by Phase 1. It will therefore be independent of the target
machine's object code format. The form and organization of
the HALMAT will, however, permit an orderly, operation-by-
operation generation of target code by Phase 2.

2.2.3 Data Passed to the Table Generation Phase

Information generated in Phase I and modified by
Phase II will pass to the Table Generation Phase via both
in-memory tables and an external file. Symbol table and
cross-reference information, augmented by relative address
information from the code generator will be passed in the
common memory area.

The external file passed to the table generator will
contain information concerning the individual HAL source state-
ments as scanned by Phase 1 and translated into AP-101 code in
Phase II. The file contains information to identify and
locate in the generated code each executable source statement
with regards to type, symbolic references, and modified
variables. Each of these features refer to the source code
so that table generation is independent of the target machine's
object code.

16

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.3 Compiler Development

The HAL/S-FC compiler will be implemented using the
XPL Translator Writing System (TWS), as the primary tool. The
TWS is a program or a set of programs comprising a tool to
assist in the writing of translator-compilers, interpreters,
assemblers, etc. Its usefulness is derived from its ability
to supply uniform functional modules for standard functions
such as text scanning, and to automate the production of
language-dependent portions of the compiler. The problem of
correct syntax analysis is solved by using a scheme in which
all parsing of input is driven by automatically generated
tables. The tables are produced from an explicit specification
of the language grammar. This produces a more complete,
thoroughly checked compiler, and yet one that lends itself
easily to modifications and changes.

The use of the XPL TWS will have its major influence
in Phase 1 of the compiler where the syntax analysis is
performed. Figure 5 illustrates the use of the XPL system
in the generation of Phase 1 of HAL/S-FC. The Grammar
Analyzer is an independent program whose purpose is to accept
a description of a grammar, analyze it for ambiguities, and
produce a set of parsing tables. The parsing tables become
a part of the syntax analysis routines in the compiler.
Table look-up procedures to access the analyzer-generated
tables are part of the XPL system. Thus, a correct parse
of sentences in HAL/S is guaranteed by this separation of
parse rules from semantic processing rules. The semantic
processing routines and other utility functions form the
remainder of Phase 1.

17

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

SYNTAX TABLES
(XPL SOURCE
STATEMENTS)

SEMANTIC & XPL
UTILITY COMPILER
ROUTINES
(XPL SOURCE)

TABLE LOOKUP,,
PROCEDURES
(XPL SOURCE)

PHASE 1

Figure 5.

Using the XPL TWS to Implement Phase 1

18

2.4 Code Optimization

Code optimization is the minimization of either memory
space, execution time, or a combination of the two. Optimiza-
tion techniques may conveniently be classified into two
categories: local and global. Local optimizations are
confined to small contexts of the language or generated code.
They may be either machine-dependent or machine-independent
in nature. Global optimizations, of larger contexts, often
require an analysis of entire blocks or segments of code
and flow analysis between the blocks; they are often
machine-independent in nature.

The following optimizations will be performed by the
HAL/S-FC compiler:

2.4.1 Local Optimizations

1) Constant Folding. Evaluation of constant
expressions and elimination of unnecessary
constant operations will be performed. The
range of constant expressions include the
following functions:

a) SIN/COS

b) SQRT

c) TAN

d) LOG

e) EXP

2) Peep-hole Optimization. This consists of
redundant operations and the combination of
several instructions into fewer equivalent
ones.

3) Boolean expressions will be shortened by by-pass
branching around unneeded portions when the result
may be inferred.

4) Computation will be reordered, viz. Matrix/Vector
products, to minimize time and storage.

19

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5) The storage layout of structures will be
reordered into groups with similar align-
ment requirements in order to minimize space
and achieve ease of addressibility.

6) In-line multiplication will be used for small
integer exponents of Scalars and Integers.

7) The machine environment after an IF clause will
be stacked so that an ELSE clause can be executed
as efficiently as the THEN part.

8) Special cases in the code generator will be
recognized so that peculiar AP-101 instruc-
tions may be used where possible when the
addressibility and context are valid. Possible
candidates include:

SB TD XIST

ZB TH NIST

TB TRB MSTH

ZH SHW

A particular case is the use of LFXI and LFLI
to load literals where possible and the commuting
of operations so that these forms may be used
more often.

9) When possible, registers will be used for TEMPORARY
types of Scalars and Integers.

2.4.2 Global Optimizations

1) Some forms of common subexpressions will be
recognized and saved for subsequent use.

2) Loops will be streamlined and some invariant
computations moved out of the loops.

3) The buffering of HAL aggregates (Vector,
Matrices, and Characters) through temporaries
can be prevented by collapsing HALMAT when the
circumstances are safe enough to warrant the
simplification. The action taken must be conserva-
tive in order to guarantee safety.

20
INTERMETRICS INCORPORATED -701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. COMPILER/ENVIRONMENT DATA INTERFACE

This section describes the data interfaces which will
be maintained by the HAL/S-FC compiler to provide communica-
tion with the compiler's environment. The interfaces described
here are those which will receive data from or send data to
areas outside the compiler. Compiler inter-phase communica-
tion has been described in Section 2.2 and is not a part of
this Section.

The compiler/environment interfaces exist primarily
in two areas. These areas are covered in the following
sections:

3.1 User Interface - data "handled" by the user
such as source inputs and listings.

3.2 System Interface - data read by or generated by
the compiler and manipulated by other software.

Any special considerations in these two interface areas
due to the SDL are detailed under an additional heading in
Section 3.3.

3.1 User Interface

The user interface includes all data which is directly
user-oriented. This data includes all user source inputs
and compiler controls and all listings produced by the compiler.

3.1.1 Compiler Inputs

User-supplied inputs to the compiler will include:

a. HAL/S Source Statements. The HAL/S source state-
ments will originally be entered into the HAL/S-FC
compiler in the form of 80 column card images.
The text of the statements will occupy columns
2-80.

21
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Column 1 will be reserved for defining the type of
the individual card as follows:

'C' in column 1 indicates a comment card.
The remainder of the card may contain any
user information. The contents of the card
will be ignored by the compiler.

'D' in column 1 indicates a compiler directive
card. Compiler directives will inform the
compiler of user requests for specific compi-
lation features. Refer to Appendix A. for
descriptions of some individual directives.

'M' in column 1 indicates the main line of a
HAL/S statement. Columns 2-80 of the card
may contain HAL/S statement text.

'E' in column 1 indicates the exponent line of
a HAL/S statement. Columns 2-80 of the card
may contain HAL/S statement text. These cards
may only occur in association with an 'M'
card.

'S' in column 1 indicates the subscript line of
a HAL/S statement. Columns 2-80 of the card
may contain HAL/S statement text. These
cards may only occur in association with an
'M' card.

'5' blank in column 1 will be treated by the
compiler as if it were an 'M'

All other characters occurring in column 1 will be
treated as errors. Such illegal characters will
cause the card on which they occur to be treated
as a comment card. The compiler will also flag any
illegal sequence of cards as an error.
The HAL/S-FC compiler will accept user input in
single line or multi-line form as described in the
HAL/S Language Specification.

b. Controls and Options. User-defined options which
affect the action taken by the compiler will be
accepted either from specific Directive cards(e.g.
INCLUDE) in the input stream as in (a) above, or via
the JCL PARM field which is made available to individual
phases by the Monitor. Appendix C. describes some
specific options.

22

INTERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.1.2 Compiler Outputs

User-oriented information produced by the compiler
in the form of listings and printed tables will include:

a. The Primary Source Listing. The HAL/S-360 compiler
will provide standard, automatic annotation of its
output listing to enhance the readability of the
HAL/S source code. The HAL/S system will allow each
programmer to enter his programs in free-form input
consistent with his own coding preferences. The
compiler will edit the input during compilation
into a standard listing form so that all program
listings will observe the same coding rules.

Although original HAL/S source input will be in
the form of 80 column card images, the compiler will
treat the input as a continuous stream of informa-
tion. Elements of the source listing will be
generated statement-by-statement, regardless of the
original input form.

The editing performed by the compiler will include
expansion of any single line HAL/S input into full
multi-line form, the addition of annotation marks
(overpunches, structure and array brackets), and
the logical indenting of statements.

The annotation generated by the compiler will be
in the form of marks supplied to indicate the type
or organization of individual symbols. The marks
will be generated as follows:

Overpunches - Variables of type vector, matrix,
character, bit, or structure will appear
in the listing with a characteristil
mark above the variable name as in
for a matrix. The marks are:

* for matrix,

- for vector,

for character,

. for bit or boolean,

+ for structure.

23

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Brackets Variables which have dimensioned array
or structure organizations will be enclosed
in brackets:

[A] for arrays,

{S} for structures.

Bracketing will occur in addition to
overpunching.

Underlining - All REPLACE variables will be underlined
when they appear in the listing,

e.g. REPLACE A BY UB";

C = A + D;

Statement indentation will be done to highlight the
logical construction of the program. In general,
the more deeply a statement is indented, the deeper
it is in the logical construction of the program.
The indentation will perform alignment of associated
statements (e.g. END and CLOSE statements will be
indented identically as their respective DO or
PROCEDURE statements).

The primary source listing will identify each HAL/S
statement with a statement number. The listing will
also identify program blocks by listing the name of
the block in which a statement occurs in the right
margin associated with that statement.

b. Block Summaries. At the close of each PROCEDURE,
TASK, PROGRAM, FUNCTION, or UPDATE block, the compiler
will provide a summary of interactions between the
block being closed and the outer scope in which the
block is nested. The information will include both
variable and block references, (e.g. a block summary
for a PROCEDURE will list all variables used in that
PROCEDURE and any code blocks referenced by that
PROCEDURE).

c. Program Layout. At the close of any PROGRAM, the
compiler will provide a summary of all blocks
contained within the PROGRAM. This summary will

24

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

list the name and type of each block and will
indicate by indentation, the nesting relationships
which exist between the blocks.

d. Symbol Table Listing. The compiler will, at the
end of compilation of a compilable unit, display
the complete symbol table generated during the
compilation. The table will be sorted alphabeti-
cally and will identify each user-defined symbol
by name. The table will identify all attributes
of the symbols, such as type, array/structure size,
matrix/vector size, character string length, pre-
cision, etc.

e. Cross Reference Table Listing. The compiler will,
in the Symbol Table Listing, display
a complete cross reference map for each symbol
defined in the symbol table. This table will
indicate, by number, the statements in which indivi-
dual symbols appeared in the compilation. In
addition, the listing will indicate the type of
reference made to the symbol by distinguishing
between assignment, simple reference, and use as
a subscript. Also, the cross reference listing will
summarize total usage of variables (e.g. if a
variable is declared, but never used, the listing
will indicate this condition). If the usage summary
indicates that a variable is referenced but never
assigned a value, the compiler will flag this
condition as an error.

f. Replace Text Listing. For each variable defined
to be a REPLACE variable, the compiler will list
the text that was substituted for the variable.

g. Error Messages and Error Message Summary. When
compilation errors are detected, the compiler
will insert an error message in the primary source
listing at the point of detection. The error
message will be identified by an error number, an
error text indicating the cause of the error, and
an error severity, (see Section 3.2.2 and Appendix B.)
At the end of the primary source listing, a summary
of errors will be printed indicating which state-
ments in the compilation received error messages.

25

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

h. The Secondary Source Listing. Since the primary
source listing will be completely reformatted by
the compiler, an optional secondary source listing
may be requested which will list the original
card images as they were input to the system.

i. The AP-101 Code Listing. On request, the compiler
will produce a formatted, mnemonic listing of AP-101
code produced by the code generation Phase. This
listing will identify basic machine instructions
by their standard assembler language mnemonics.
References to data and to program addresses will
be identified by symbolic reference. Corresponding
HAL/S data names will be indicated in the listing.
The Assembler Code Listing will show generated
instructions on a statement by statement basis,
following the same order as the HAL/S source
statement (i.e., nesting of HAL/S code blocks
which produce separate CSECT's will cause the
Assembler code listing to display the generated
CSECT in a nested manner). The individual lines
in the Assembler code listing will be compatible
in format with the absolute listing function of
the AP-101 link editor.

26

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.2 System Interface

The system interface includes all data accessed by
the compiler or produced by the compiler which is not directly
user oriented. These data include any auxiliary inputs used
during compilation and any tables produced for use at runtime.

3.2.1 Job Control Language

The HAL/S-FC compiler system will be invoked through
standard OS/360 Job Control Language (JCL). The JCL will be
used to define the particular parts of the HAL/S-FC system
to be invoked and to define all data upon which the compiler
will operate. Additionally, the JCL will provide a means for
user specification of compiler system options.

3.2.2 Compiler Inputs

The HAL/S-FC compiler will require data in addition
to user-supplied source code and directives. These data
will include:

a. An INCLUDE Library. This library will contain all
auxiliary source inputs that may be called in by
user requests. The source to be included may be
either user-written source statements or template
data generated by the compiler for COMPOOLS or
COMSUBs. The INCLUDE library will take the form
of a partitioned data set. An individual member
of the data set will be the minimum data which
can be INCLUDE'd.

27

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

b. A Program Access File. This file will contain
information used by the compiler to assign ACCESS
rights to individual users. The structure of the
data set will be a partitioned organization with
each member specifying the ACCESS rights for one
Program Identification Name (PIN). See Appendix A.
for definition of the PIN.

c. An Error Text File. This file will contain the text
of all error messages which may be generated by the
compiler. The data set will have partitioned
organization and each member will contain the text
for one error message (see Appendix B. for details
of the error message classification scheme). The
Error Text File will also contain the severity of
the individual errors. This severity information
will be under administrative control and may be
modified to change the effect of individual errors
on a compilation.

The error messages themselves will have provision
for the inclusion of imbedded text in the message.
The imbedded text feature will allow the compiler
to more accurately diagnose errors by specifying
compilation-dependent data in the message text.

3.2.3 Compiler Outputs

As part of the normal compilation process, the compiler
will issue the following sets of data:

a. Templates for COMPOOLs and external procedure
COMSUBs. Whenever a COMPOOL or COMSUB is compiled,
the HAL/S-FC compiler will produce a symbolic
template of the compiled module. Refer to Figure 2
for a graphic representation of the compilation
process.

The templates generated in this manner serve to
define all interfaces between the COMPOOL and
COMSUB's and the HAL/S programs in which they are
used. The templates will be generated to be compa-
tible with the INCLUDE library (see Section 3.2.2).

On recompilation of a COMPOOL or COMSUB a mechanism
will be provided to generate a new template only
when the old template needs to be changed.

28

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

b. Simulation Tables. A Simulation Table will be
produced (optionally) by the HAL/S-FC compiler for
each unit of compilation, including COMPOOL. These
tables will provide the information about HAL
symbols and statements that are necessary to conduct
the FC and ICS simulation processes and to reduce
simulation output into a convenient and readable form.
Each table will be stored as a member of a PDS,
separate from the associated object code, and thus
can be retrieved as needed by the simulation
processors.

A Simulation Table contains several distinct
collections of data that are organized into a complex
hierarchical list structure. For this reason the
term Simulation Data File has been sometimes applied.

A Simulation Table is logically divided into the
following three parts:

" Director Data - which contains global information
about the file, identifies the locations of the
various component parts, and provides information
that can be used to reduce the time needed to
access specific data items.

* Symbol Data - which provides all required
information about the symbols defined within the
compilation unit. This information includes the
normal attributes (i.e., name, data type,
dimensionality) and in addition supplies relative
core locations of symbols, structure template
linkages for structure elements, and lists of
statements in which the symbols are modified
(assigned).

* Statement Data - which provides attribute infor-
mation about the statements in a compilation.
It also supplies information on relative core
locations of the first and last machine instructions
in a statement, identifies labels that are
attached to the statement, and lists the variables
that are assigned values by the statement.

29

NTERMETRICS INCORPORATED * 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

c. Object Modules For All Compiled Code. The HAL/S-FC
compiler will produce complete object modules which
are compatible with the AP-101 link editor. The
object modules will contain all interfaces to run-
time facilities which are necessary to implement
the full HAL/S language and associated error handling
facilities.

3.2.4 Link Edit Support

The final step in preparing HAL compiler output
for simulation or execution is performed by the AP-101
linkage editor program. Until the final version of the
linkage editor is available to support all features of
the HAL/S-FC compiler, an interim program, known as
HALLINK-FC (see Figure 6), will be supplied to perform
the link edit functions.

Inputs to HALLINK-FC are object modules on cards,
tape, or disk, control cards, and runtime libraries.
Their formats are identical to those of the AP-101 Link
Editor.

Outputs at least include, but are not restricted to,
those provided by the AP-101 Link Editor; e.g., listings
of control cards, map of storage and load modules.

3.3 SDL Interfaces

The HAL/S-FC compiler will supply interfaces necessary
to allow implementation of the SDL. These interfaces will
be in the form of compilation control and data management
information supplied by the SDL. The compiler will include
an option to indicate operation within the SDL environment.
When running in this mode, HAL/S-FC will provide the
following extensions (and/or restrictions) to the interfaces
detailed above in Sections 3.1 and 3.2.

3.3.1 User Interface

3.3.1.1 Compiler Inputs. The HAL/S-FC compiler will accept
as source input logical records of fixed lengths (LRECL) where
80 < LRECL < 132. Certain fixed fields of these records will
be recognized for data management purposes and provision
made for printing this information in the listing, if desired.

30

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HALLINK-FC PROCESS

OBJECT CONTROL

DECKS

Internal flow of control and
data not shown. Update
to this figure to be provided
when HALLINK AP-101 LINK
EDITOR interface complete.

Figure 6.

3.3.1.2 Compiler Outputs. The compiler will print data
management information on the listing related to specific
fields on the input records.

3.3.2 System Interface

The HAL/S-FC compiler will optionally write a
duplicate object deck for each compilable unit. This deck
is to be used by the SDL for data management purposes.

As a result of a compilation, the compiler will issue
return codes to the SDL indicating the state of the compila-
tion (e.g. template status, simulation table status, etc.).

32

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4. COMPILER SYSTEM REQUIREMENTS

4.1 General

This section specifies in detail the system require-
ments which are necessary to compile programs written in the
HAL/S language.

4.2 Hardware Requirements

4.2.1 Processor

The HAL/S-FC compiler may only be run on a System/360
Model 75 or equivalent which supports the full 360 instruction

set, including all floating point instructions. The develop-
ment machine is a 360/75, which meets all existing operational
requirements.

4.2.2 Memory

The compiler will require at least 300k bytes of memory

to perform efficiently. The compiler will allow the user to
define maximum sizes for the following internal tables:

a) Symbol table: each entry represents one user-
defined symbol.

b) Macro text table: The size of the table defines
the number of characters of REPLACE statement
text allowed in a compilation.

c) Character literal table: The size of the table
defines the total number of characters allowed
in literal character strings in a compilation.

The compiler, when running in a 300k region, will
accomodate 600 user-defined symbols, 500 bytes of macro text,
and 2000 bytes of character literals.

The effect of these table options upon compiler size
will be as follows:

a) Increased symbol table size will require an
additional 5k bytes of memory per 100 symbols.

33

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184(

b) Increased macro text table size will require
one byte of additional memory for each incre-
ment of table size.

c) Increased character literal table size will
require one byte of additional memory for
each increment of table size.

4.2.3 I/O Support

4.2.3.1 Unit Record. Any standard IBM compatible card
reader (2540 or equivalent) may be used to read HAL programs.
For printing, any standard IBM compatible printer with a
carriage width of 132 characters will be necessary. The
printer must supply all printable characters legal in the
HAL/S language.

4.2.3.2 Mass Storage. The compiler will require that the
on-line file system support physical record lengths of 7200
bytes. Thus, for compiler work files, the IBM 2314 direct
access storage system (or functional equivalent) will be a
minimum requirement. A minimum of 300 tracks of 2314 storage
(or equivalent) will be required.

4.3 Software Requirements

The host operating system under which the HAL/S-FC
system runs must be OS/360 MVT, release 21.6, or an upwards
compatible equivalent. The standard sequential and direct
access methods must be supported. The standard OS storage
management facility (GETMAIN, FPREEMAIN) must also be supported
as described in the IBM publication, "OS/360 Supervisor
Services". The HAL/S-FC compiler system will use standard
OS/360 data sets supported under the BSAM, QSAM, BPAM, and
BDAM access methods.

34

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5. RUNTIME SOFTWARE SUPPORT PACKAGE

An essential ingredient in the successful execution

of any compiler system is a powerful, efficient, and well-

integrated collection of runtime routines. These routines

become especially important in light of the comprehensive

set of operational primitives. In the HAL/S Language, it
is these routines that supply computational power to support

many of the higher level concepts of HAL.

However, strictly from a theoretical point of view,
there is no absolute need for a runtime library. Everything
in the library could be submerged in the compiler and issued

as needed as part of the code generation process. In fact,
if a particular routine were only used once, it would undoubt-

edly be more efficient to expand it in place with the rest

of the generated code rather than collecting it into a library.

But practical considerations dictate that often-used operations

be centralized in a subroutine library to reduce the amount

of redundant code sequences and thus save space. There are

two factors to be taken into consideration in determining
the suitability of routines for centralization:

1. Frequency of use. Will it be used often enough to
justify subroutinization?

2. Size of code particles. Is enough code removed
from in-line sequences to cover the overhead of
the linking mechanisms and still produce a size
savings?

Thus, the library routines can be thought of as

extensions to the code generation algorithms that are lengthy
enough to warrant their definition as separate routines.
While scalar addition is an in-line operation, matrix addition
is a called routine; however, the same rules apply to both.

The following sections will identify the runtime
routines required. Although there are differences in
how the routines are invoked - some are explicitly named

(SIN or UNIT), others are associated with HAL operations

(Vector Add or Character Concatenate), and others appear

implicitly (Integer to Scalar Conversion) - they all funda-
mentally serve the same purpose.

35

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-181

5.1 Vector-Matrix Routines

A set of generalized routines to handle vectors of
both single and double precision of a minimum of 64 components
and matrices of both single and double precision of at
least 64 by 64 elements, will be provided. In addition,
particular routines or entry points for vectors of size 3 and
3 by 3 matrices will be supplied for some of the more common
cases. Unless otherwise specified,the following routines will
be supplied in both single and double precision.

1A Vector Assignment

SP to SP

SP to DP

DP to SP

DP to DP

IB Matrix Assignment

SP to SP

SP to DP

DP to SP

DP to DP

2A Vector Add

2B Matrix Add

3A Vector Subtract

3B Matrix Subtract

4A Vector times Scalar

4B Matrix times Scalar

6A Vector divided by Scalar

6B Matrix divided by Scalar

36

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

7A Vector times Matrix

7B Matrix times Vector

8A Vector Dot Product

8B Matrix-Matrix Product

8C Vector Outer Product

8D Vector Cross Product

9A Vector Negate

9B Matrix Negate

10A Vector Magnitude

10B Unit Vector

11A Matrix Transpose

11B Matrix Inverse

11C Matrix Trace

11D Matrix Determinant

11E Identify Matrix

12A Vector Comparison

12B Matrix Comparison

13A Vector Precision Conversion

SP to DP

DP to SP

13B Matrix Precision Conversion

SP to DP

DP to SP

14A Vector Assign All

14B Matrix Assign All

37

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.2 Character Routines

A set of generalized routines to handle character
strings that vary in length from 0 (the null string) to 255
characters will be provided.

1 Character Assignment

2 Character Concatenate

3 Character Comparison

4 LJUST

5 RJUST

6 INDEX

7 TRIM

5.3 Conversion Routines

A set of routines to convert from one to another of the
HAL data types will be provided.

1 Integer to Character

2 Scalar to Character

SP

DP

3 Vector to Character

4 Matrix to Character

5 Bit to Character

Binary

Octal

Hex

Decimal

38

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6 Character to Integer

7 Character to Scalar

8 Character to Vector

9 Character to Matrix

10 Character to Bit

Binary

Octal

Hex

Decimal

5.4 Input/Output

The HAL/S-FC compiler system will supply the routines
necessary to implement the HAL/S I/O statements: READ,
READALL, and WRITE. Device numbers 0-9 will be reserved for
360 compatibility.

The following I/O routines are planned:

1A Vector Input

SP

DP

1B Vector Output

SP

DP

2A Matrix Input

SP

DP

39

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184C

2B Matrix Output

SP

DP

3A Integer Input

3B Integer Output

4A Scalar Input

SP

DP

4B Scalar Output

SP

DP

5A Bit Input

5B Bit Output

6A Character Input

6B Character Output

6C Character Input (READALL)

7 Carriage Control Functions (Input & Output)

SKIP

LINE

PAGE

TAB

COLUMN

40

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.5 Mathematical Functions

These functions return a scalar data type. Arguments

may be Integer or Scalar. (Integers are converted to Scalar
unless otherwise specified.) Array arguments yield array
results.

1. ARCCOS

Inverse trigonometric cosine; argument in closed
interval [-1, 11; results in closed interval [O,r].

2. ARCCOSH

Inverse hyperbolic cosine; arg not less than 1.

3. ARCSIN

Inverse trigonometric sine; arg in closed interval

[-1, 1]; result in closed interval [-r/2, r/2].

4. ARCSINH

Inverse hyperbolic arc sine; arg any value.

5. ARCTAN

Inverse trigonometric tangent; arg any value;
results in open interval [-/2, w/2].

6. ARCTANH

Inverse hyperbolic tangent; Iargl < 1.

7. COS 2187 (SINGLE)

Trigonometric cosine; arg in radians; arg < 250 (DOUBLE)

8. COSH

Hyperbolic cosine; Iargl <175.366

9. EXP

Exponential, (earg); JargJ <174.673.

41

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

10. LOG

Natural logarithm; arg positive and non-zero.

11. SIN
2187r (SINGLE)

Trigonometric sine; arg in radians; argi < 250 (DOUBLE)
250 (DOUBLE)

l2. SINH

Hyperbolic sine; Iargl <175.366

13. TAN

Trigonometric tangent; arg in radians; arg not multiple

of 7/2; largf< 21 8 7 (SINGLE)
. 2 5 0 7 (DOUBLE)

14. TANH

Hyperbolic tangent; arg any value.

15. SQRT

Square root; arg positive.

16 RANDOM

Returns random number selected from a rectangular
distribution over the range 0-1.

17. RANDOMG

Selects a random number from a Gaussian distribution
with a mean of zero and a variance of one.

18. EXPONENTIATION ROUTINES (aB)

a. Integer Base - Integer Exponent - Integer Result

b. Integer Base - Scalar Exponent - Scalar Result

c. Scalar Base - Integer Exponent - Scalar Result

d. Scalar Base - Scalar Exponent - Scalar Result

42

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

5.6 Miscellaneous Functions

1. DATE

2. RUNTIME

3. CLOCKTIME

4. PRIO

5.7 Arithmetic Functions

Unless otherwise specified, these functions yield the
same data type of result as their arguments. (These functions
are mentioned because they appear as a built-in function to
the user. Some may be generated in-line, according to the
criterion presented at the beginning of this section, and so
will hot appear in the library.)

1. ABS (a)

Finds the absolute value of the argument.

2. CEILING (a)

Determines the least integer value that is greater
than or equal to the argument

3. FLOOR (a)

Determines the greatest integer value that does not

exceed the argument.

4. ROUND (a)

Rounds the argument to nearest integer value.

5. SIGNUM (a)

Returns +1, 0, -1 as argument is positive, zero,
and negative, respectively.

6. SIGN,(a)

Returns +1, -1 as argument is positive or zero,
and negative, respectively.

43

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

7. TRUNCATE (a)

Rounds the argument towards zero to the nearest

integer value; equivalent of FLOOR for positive
arguments and CEILING for negative ones.

8. MOD (a,b)

MOD extracts the remainder c such that (a-c)/b = N
where N is an integer number. c is the smallest
positive number that must be subtracted from a in
order to make N an integer number,

9. DIV (a,b)

DIV performs an integer divide of a by b; (arguments.
are forced to integer before divide).

10. REMAINDER (a,b)

Return the integer remainder after performing the
integer div function, DIV.

11. SIZE (any)

Result: Finds the unknown amount of arrayness as
indicated by starred (*) dimensionality and returns
the value as an integer data type,

Argument: Any HAL data type with starred arrayness
including a structure.

12. LENGTH (string)

Finds the string length and returns it as an
integer data type.

13. 'UiAX (a)

Finds maximum value of all elements of argument.

14. MIN (a)

Same as MAX, except finds minimum.

15. ODD (a)

Argument is scalar or integer. Result is Boolean which
is true if a is ODD, otherwise false. Scalar arguments
are rounded to nearest integer value before evaluation
of ODD.

44
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

16. SUM (a)

Finds sum of all elements of argument.

17. PROD (a)

Finds product of all elements of argument.

5.8 Real Time Interfaces

1. SCHEDULE

Input: Parameters describing the required
and optional operands of the SCHEDULE
statement.

Result: Creates a process which can be given
the CPU under appropriate conditions.

2. WAIT

WAIT UNTIL

Input: An absolute or relative scalar time in
units of seconds.

Result: The running process is made to wait
the appropriate time.

3. WAIT FOR

Input: An event expression.

Result: The running process is made to wait until
the event expression is true.

4. WAIT FOR DEPENDENT

Input: None.

Result: The running process is made to wait until
all dependent processes have completed or
terminated.

5. SIGNAL, SET, RESET

Input: An event variable.

45

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Result: The state of the event variable is altered,
and if any event expressions become true,
the appropriate action is taken (a process
is made ready, or a cyclic process is
cancelled).

6. TERMINATE

Input: 1) none or 2) a program or task name.

Result: 1) the running process is terminated or

2) the specified program or task process
is terminated.

Note: Termination is unconditional, immediate, terminating
the cyclic nature, if present, and all
dependent processes.

7. CANCEL

Input: 1) none or 2) a program or task name.

Result: The actions specified for the CANCEL
statement occur.

8. UPDATE PRIORITY

UPDATE PRIORITY...TO

Input: 1) none or 2) program or task name, and
priority.

Result: The priority of 1) the running process or
2) the specified process is changed to the
specified priority.

46

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6. RESTRICTIONS AND DEPENDENCIES

6.1 Introduction

The implementation of the HAL/S-FC compiler on the

IBM/360 will contain certain restrictions which are due
to either the 360 hardware and available facilities, or
to the hardware and organization of the AP-101. These
restrictions, which include specific language implementa-
tion dependencies as described in the HAL/S Language
Specification, are explained in the following sections.

6.2 Compile-Time Characteristics

The use of the IBM/360 computer as the host machine

for generation of AP-101 code will determine certain rules

governing use of the HAL/S language and compiler. ,These
rules are explained in this section.

6.2.1 Character Set

The character set, as described in the HAL/S Language

Specification document, which may be used as compiler input,
will be available in its entirety on the 360. The HAL/S-FC
compiler will recognize this full character set. The coding
scheme for compiler input will be EBCDIC. No other coding
scheme will be recognized.

6.2.2 Compilation Dependent Language Features

The HAL/S-FC compiler implementation will have the
following language dependencies.

6.2.2.1 Data Type and Size Restrictions.

0 Up to 74 decimal digits may appear in an
arithmetic literal preceeding the exponent
field.

47

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

SThere will be no limit to the number of exponent
modifiers which may be appended to an arithmetic
literal, so long as the total length of the literal
does not exceed 256 characters. However, appli-
cation of each exponent to the mantissa to which
it belongs may not cause generation of a number
outside the range 10-78 to 1075.

* Bit literals may not indicate values requiring
more than 32 bits.

* Character literals may not contain more than
255 characters.

* Comment brackets (/* and */) may not enclose
more than 255 characters in any one comment.

* There will be no compiler-imposed limit on the number
of COMPOOL blocks existing in a program complex
except the limit implied by the number of user-
defined symbols allowed.

" The implementation of the ACCESS attribute will
be as described in the HAL/SDL Interface Control
Document.

* Each declared dimension in an array will be
limited to the range 2 to 32767.

* Arrays will be limited to 3 dimensions.

* The NONHAL attribute will not be supported.

* The maximum declarable row or column dimension
of a matrix will be 64.

* The maximum declarable dimension of a vector
will be 64.

* Character variables will be limited to a declared
length of 255 characters.

* Bit variables may have declared lengths of from 1
to 32 bits.

* The number of declared multiple copies allowed for
a structure variable will be limited to the range
2 to 32767.

48
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

6.2.2.2 Program Organization Limits.

* The number of cases in a DO CASE statement will
be limited to 256.

* The number of internal code blocks within any
one compilation unit will be limited to 256.

* The depth to which code blocks may be nested
within one another in any compilation unit will
be limited to 16 levels.

* The maximum nesting level of DO ... END groups
will be 16 levels.

* The maximum depth to which function invocations
may be nested will be 20.

* Up to 32767 literals may be defined in any one
compilation unit.

* The maximum number of characters which may be
defined in all character string literals in one
compilation unit will be under user-control.

* The maximum number of user-defined symbols allowed
in one compilation will be under user control.

* The maximum size of REPLACE macro text will be
under user control.

* The total number of elements in initial/constant
lists in any one compilation will be limited to 32767.

9 The maximum number of parameters allowed in the
definition of any REPLACE macro will be 12.

0 The maximum size of any argument used in the
expansion of a REPLACE macro will be limited
to 250 characters.

* The depth to whidh macro expansions may invoke
other macros may not exceed 4 levels of nesting.

* A compilation unit will be limited in the size
of its code segment to 32K half words.

49

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

* The data defined in a compilation unit will be
limited to 32K half words.

0 The sum total size of all COMPOOLs allowed
in a single mission load shall be at least
32K half words.

* The maximum number of external names (ESD's)
allowed in one compilation will be limited to
500, of which no more than 256 may be CSECTs
defined by the compilation unit.

* The maximum number of ON ERROR statements
which may be potentially active at any time
in any compilation unit will be limited to
100.

* The number of arguments indicated in a subroutine
invocation may not exceed 100. This limit includes
arguments of nested FUNCTION invocations; i.e. FUNCTION
invocations which are themselves part of an argument
expression.

6.2.2.3 Input/Output Statements.

* Sequential I/O device numbers 0-9 will be
reserved for test I/O functions.

* The use and interpretation of other devices
and numbers is TBD.

50

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

6.3 Runtime Characteristics

Designation of the IBM AP-101 as the target machine
will determine certain rules governing operation of HAL/S
programs run on that machine. These rules are explained
in this section.

6.3.1 Character Set

The HAL/S-FC compiler will generate object code in
which thq representation of character data is TBD. (Until
the character representation is known, generated code will
use EBCDIC).

6.3.2 Computer Dependent Language Features

The hardware available on the AP-101 and design
of runtime support software determine the behavior of certain
language features described here. The behavior being described
is of language features whose implementations have been
subjected to the compile-time rules of Section 6.2.2.

6,3.2.1 Data Types and Size Dependencies.

* The dynamic size of character variables may not
exceed 255.

* Bit variables may have lengths of from 1 to 32 bits.

* Integer variables will be represented as either 16
or 32 bit signed quantities for SINGLE and DOUBLE
declaration specifications respectively.

* Single precision scalar values will be represented
in the AP-101 in the 32 bit floating point format
(1 sign, 7 exponent, 24 mantissa).

* Double precision scalar values will be represented
in the AP-101 in the 64 bit floating point format
(1 sign, 7 exponent, 56 mantissa).

51

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

* Runtime conversions of double precision scalar
to single precision scalar will be performed by
truncating the right-most 32 bits from the double
precision mantissa.

* Runtime conversion of double precision integer
values to single precision integer values will be
performed by eliminating the left-most 16 bits of
the double precision value.

* Runtime conversion of integer values to scalar
values will be performed by converting the integer
value to a double precision scalar value retaining
all significant digits. If the final result of the
conversion is to be single precision, the standard
double-to-single precision scalar conversion will
be applied to the intermediate scalar value.

* Runtime conversion from scalar to integer value will
result in an error condition if the scalar value cannot
be represented in the integer form.

" Runtime conversion of single precision integer to
double precision integer will be performed by propagating
the sign bit of the single precision value through
the 16 high order bit positions of the double
precision value.

* Runtime conversion of single precision scalar
to double precision scalar will be performed by
padding 32 zero bits to the right of the single
precision mantissa.

52

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.3.2.2 Runtime Conversions To and From Character Type.

* When any HAL/S initial data is to be converted
from its internal representation to a character

representation, the general rules specified in

the HAL/S Language Specification governing formats

will apply. The specific AP-101 representations of

data cause the following specific conversion
formats to apply:

Integers - an 11 character field will be generated
with the number right-justified. A
floating minus sign is added if the
number is negative.

Single
Precision - a 14 character field will be generated
Scalars as follows:

sx. xxxxxxxEtxx

where s is a blank or minus sign,

x is a digit 0 to 9,

t is a plus or minus sign.

Double
Precision - a 23 character field will be generated
Scalars as follows:

sx.xxxxxxxxxxxxxxxxEtxx

* Conversions of character data to other data types
will have the same restrictions governing the format
of the character data as those restrictions placed
upon compiler literal data (Section 6.2.2.1).

6.3.2.3 Input/Output. The runtime functions of HAL/S input/
output statements are TBD.

53
INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

APPENDIX A.

Compiler Directives

Any card images input by the user may contain commands to the
compiler in the form of Compiler Directives. A card image
with a "D" in column 1 is considered to be such a Directive.
Some Directives whose use and form are presently known are
listed below. Other uses for Directives are also identified.

1. PROGRAM - The general use of COMPOOL data or library
programs may be restricted by using the access right
attribute when defining the resource to be controlled.

Each Compilation Unit (PROGRAM, external PROCEDURE
or FUNCTION) that is to participate in the controlled
access of COMPOOL variables must identify itself to
the compiler by establishing a Program Identification
Name (PIN). The PIN is specified in a PROGRAM Compiler
Directive of the form:

D PROGRAM ID = <id>

where <id> is a 1 to 8 character name defining the
PIN.

The PIN will be used by the compiler to access a
data file called the Program Access File (PAF). The
PAF will contain an entry for each possible PIN.
The PAF is intended to be a centrally managed access
control list which, for each PIN, identifies the HAL/S
resources to which the program in question may have
write access. Any attempt to use an ACCESS controlled
resource which has not been found in a program's
PAF entry will be flagged as an error.

2. DEVICE - The Device Directive has the following form:

col 1

D DEVICE CHANNEL=n XXXX

pR0EDING
PAGE BLANK

NOT FILED

55

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

"CHANNEL=n" must be present. This keyword defines the
channel number n (with the range 0-9 reserved for 360
compatibility) to which the directive is applied.
These channel numbers are the same as those used in the
HAL I/O statements READ(n), READALL(n) and WRITE(n).

The field XXXX can indicate PAGED or UNPAGED. If no
field is specified, UNPAGED is assumed.

The occurrence of PAGED identifies the specified
channel as printer compatible; i.e., carriage control
characters are supplied and the output device is
assumed to be page oriented.

The occurrence of UNPAGED or no field identifies the
specified channel as input and output compatible.
No carriage control is assumed and the device is
thought of as pageless.

The DEVICE directive may appear at the same location
in a source program as a comment card. It need not
appear before I/O statements for the specified channel.
If no DEVICE directives are encountered, default
attributes are assigned to channels used in I/O state-
ments as follows:

a. A channel number for which no directive is found
appearing only in a write statement will be
assigned the PAGED attribute by default.

b. A channel number for which no directive exists
that appears in both input and output statements
will be assigned the UNPAGED attribute.

Conflicts arising between DEVICE directives and I/O
usage will be flagged as errors. For example:

D DEVICE CHANNEL=2 PAGED

M READ(2) A;

This is an error since the DEVICE directive indicates
an output-only, printer compatible channel, and the
READ statement attempts to input from that channel.

56

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Since the defaults are applied if no directive is found,
the creation of an UNPAGED, output-only data set
requires a DEVICE directive with the UNPAGED or no
option. Omission of the DEVICE directive would cause
the channel number (which in this case occurs only in
a write statement) to be assigned the PAGED attribute.

3. INCLUDE - The form of the INCLUDE Directive is:

D INCLUDE <name> [NOLIST]

where name defines the entry in the auxiliary
symbolic library to be included in the compilation.
For HAL/S-FC, the name must be a 1 to 8 character
string beginning with a letter.

The source included as a result of the Directive
will be listed in the primary source listing unless
the NOLIST option is specified.

4. HEADING - A Directive to allow the user to define the
page heading for the primary source listing will be
provided. The exact form of this directive is not
known at this time.

5. Future Directives may be defined to accommodate management
rules governing use of particular HAL/S language
features. For example, a Directive may be defined
which prohibits use of any realtime control statements
in the compilation containing the Directive.

57

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

APPENDIX B.

Compiler Error Messages

Any compile time diagnostic messages printed by the HAL/S-FC
compiler will originate on a direct access file. The file will
be organized to allow the compiler's error printing routine to
gain rapid access to an individual error message.

The compiler will internally identify an error condition by
an error class and an error number within the class. These
two pieces of information will form the index information
needed to access the error message file.

The error message file entry for an individual error will
contain the severity of the error, the text of the error
message, and an indication of a point in the message where
specific imbedded text may be inserted by the compiler.

The following table lists the tentative error classification
system. Within each class, subclasses have been identified
to further qualify the error type. Following the classifica-
tion table is a partial listing of some tentative error
message text. The full listing can be produced automatically
with an existing Intermetrics utility program. This system
will allow easy monitoring and updating of error messages.

59

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ERROR CLASSIFICATIONS

Note: "u" denotes a blank.

CLASS A: ASSIGNMENT STATEMENTS

A ARRAY ASSIGNMENT

V COMPLEX VARIABLE ASSIGNMENT

MISCELLANEOUS ASSIGNMENT

CLASS B: COMPILER TERMINATION

B HALMAT BLOCK SIZE

N NAME SCOPE NESTING

S STACK SIZE LIMITATIONS

T TABLE SIZE LIMITATIONS

X COMPILER ERRORS

MISCELLANEOUS

CLASS C: COMPARISONS

GENERAL COMPARISONS

CLASS D: DECLARATION ERRORS

A ATTRIBUTE LIST

C STORAGE CLASS ATTRIBUTE

D DIMENSION

F FUNCTION DECLARATION

I INITIALIZATION

L LOCKING ATTRIBUTE

Q STRUCTURE TEMPLATE TREE ORGANIZATION

60

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

S FACTORED/UNFACTORED SPECIFICATION

T TYPE SPECIFICATION

U UNDECLARED DATA

MISCELLANEOUS

CLASS E: EXPRESSIONS

A ARRAYNESS

B BIT STRING EXPRESSIONS

C CROSS PRODUCT

D DOT PRODUCT

L LIST EXPRESSIONS

M MATRIX EXPRESSIONS

O OUTER PRODUCT

V VECTOR EXPRESSIONS

MISCELLANEOUS

CLASS F: FORMAL PARAMETERS & ARGUMENTS

D DIMENSION AGREEMENTS

N NUMBER OF ARGUMENTS

S SUBBIT ARGUMENTS

T TYPE AGREEMENT

CLASS G: STATEMENT GROUPINGS (DO GROUPS)

B BIT TYPE CONTROL EXPRESSIONS

C CONTROL EXPRESSIONS

E EXIT/REPEAT STATEMENTS

L END LABEL

V CONTROL VARIABLE

CLASS I: IDENTIFIERS.

L LENGTH

R REPLACED IDENTIFIERS

S QUALIFIED STRUCTURE NAMES

61

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

CLASS L: LITERALS

B BIT STRING

C CONVERSION TO INTERNAL FORMS

F FORMAT OF ARITHMETIC LITERALS

S CHARACTER STRING

CLASS M; MULTILINE FORMAT

C OVERPUNCH CONTEXT

E E-LINE

O OVERPUNCH USE

S S-LINE

1 COMMENTS

CLASS P: PROGRAM CONTROL & INTERNAL CONSISTENCE

A ACCESS CONTROL

C COMPOOL BLOCKS

D DATA DEFINITION

E EXTERNAL TEMPLATES

F FUNCTION RETURN EXPRESSIONS

L LABELS

M MULTIPLE DEFINITIONS

P BLOCK DEFINITION

S PROCEDURE/FUNCTION TEMPLATES

T TASK DEFINITIONS

U CALLT FROM UPDATE BLOCKS

MISCELLANEOUS

CLASS Q: SHAPING FUNCTIONS

A ARRAYNESS

D DIMENSION INFORMATION

62
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

S SUBSCRIPTS

X ARGUMENT TYPE

1 MISCELLANEOUS

CLASS R: REAL TIME STATEMENTS

E ON/SEND ERROR STATEMENTS

T TIMING EXPRESSIONS

U UPDATE BLOCKS

CLASS S: SUBSCRIPT USAGE

C SUBSCRIPT COUNT

P PUNCTUATION

Q PRECISION QUALIFIER

R RANGE OF SUBSCRIPT VALUES

S USAGE OF ASTERISKS

T SUBSCRIPT TYPE

V VALIDITY OF USAGE

CLASS T: I/O STATEMENTS

C CONTROL

D DEVICE NUMBER

MISCELLANEOUS

CLASS U: UPDATE BLOCKS

I IDENTIFIER USAGE

P PROGRAM BLOCKS

T I/O

63

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

CLASS V: COMPILE-TIME EVALUATIONS

A ARITHMETIC OPERATIONS

C CATENATION OPERATIONS

E UNCOMPUTABLE EXPRESSIONS

F FUNCTION EVALUATION

CLASS X: IMPLEMENTATION DEPENDENT FEATURES

A PROGRAM ID DIRECTIVE

D DEVICE DIRECTIVE

I INCLUDE DIRECTIVE

U UNKNOWN OR INVALID DIRECTIVE

64

iNTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ERROR MESSAGES FOR MAJOR CLASSIFICATION A

CLASSIFICATION "A" ERRORS ARE RELATED TO ASSIGNMENT
STATEMENTS

AA -SEARRAYNESS OF LEFT HAND SIDE OF ASSIGNMENT DOES NOT MATCH THAT OF RIGHT HAND SIDE

AA2 -SEVERITY 1
AA2 RRAYNESS OF ?? IS INCONSISTENT WITH THAT OF OTHER LEFT

HAND SIDE VARIABLES

AA3 -SEVERITY 1
ARRAYNESS OF ?? DISAGREES WITH ARRAYNESS OF ITS SUBSCRIPTING

AV0 vSEVERITY 1
ARGUMENTS ON EITHER SIDE OF NAME ASSIGNMENT ARE INCOMPATIBLE.

AVI -SEVERITY 1
TYPE OF ?? IS ILLEGAL FOR ASSIGNMENT FROM GIVEN LEFT-HAND SIDE.

AV2 -SEVERITY 1
MATRIX LIMENSICNS DISAGREE ACROSS ASSIGNMENT

AV3 -SEVERITY 1
VECTOR LENGTHS DISAGREE ACROSS ASSIGNMENT

AV4 -SEVERITY 1
TREE ORGANIZATIONS DO NOT MATCH ACROSS ASSIGNMENT

AV5 -SEVERITY 1
CNLY CNE OPE.BAND IN ASSIGNMENT IS A NAME PSEUDO-FUNCTION

03 NULL.

Al -SEVERITY 1
ILLEGAL ASSIGNMENT TO CONSTANT OR PARAMETER ??

A2 -SEVEPITY 1
?? POSSESSES SUBSCRIPTS ILLEGAL FOR THE ARGUMENT OF

A NAME

PSEUDO-FUNCTION IN ASSIGNMENT CONTEXT.

A3 -SEVERITY 1
?? DOES NOT POSSESS THE NAME ATTRIBUTE - IT IS THEREFORE

ILLEGAL AS ARGUMENT OF A NAME PSEUDO-FUNCTION IN

ASSIGNMENT CONTEXT.

65

APPENDIX C.

Compiler Options

The following is a list of anticipated options to direct the
execution of the HAL/S-FC compiler. The keywords describing
the option will be placed in the PARM field of the JCL
invoking the HAL/S-FC compiler.

1. Generate an unformatted listing of original source
input card images.

2. Generate a memory dump if certain interval compiler
errors occur.

3. Generate a formatted code generatidn listing showing
all generated object code.

4. Indicate compiler operation within the SDL.

5. Produce duplicate object deck.

6. Supply header information.

67

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

APPENDIX D.

Runtime Errors

The following tables list some anticipated runtime error
conditions which may occur during execution of a HAL/S-FC
program. The tables list any standard fix-ups performed
by the runtime system.

NOT FLD

69

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

-rn
m

rn
TABLE 1. Error Behavior Table for 'SYSTEM' Action

O Message Explanation Standard Fixup

0
O

-4

0

EXPONENT OVERFLOW the exponent of a scalar the result is set
oC> or of a vector/matrix to the maximum

O element has overflowed value representabliO
z on the machine
0
O

3> EXPONENT UNDERFLOW the exponent of a scalar the result is set
< or of a vector/matrix to zero
Z element has underflowed
no
M

co
M_ SCALAR DIVISION BY ZERO a scalar division by the result is set
0 zero has occurred to the maximum
m value representabl

on the machine

Cn

0
MEXPONENTIATION OF ZERO TO a negative or zero the result is set

SPOWER <= O power was specified to zero
rn-4-4

r0

the result is the
SQUARE ROOT HAS ARG < 0 square root of the

absolute value of
the argument

c0

o

-4
m

m
-r

0 Message Explanation Standard Fixup

0O

-4

0 Ithe result is set to
* the maximum value

EXP FUNCTION HAS ARG > 174.673 represent e on the0 representable on the
machine

O
z

O
if the argument wasO
zero then the result

LOG FUNCTION HAS ARG < = zero th the result< is awt tu zne maxi-m
z mum representable
m H negative value, else

it is set to the log
O> of the absolute value
KoE the arg.

0
G) the two figures are for
m the result is set

SIN OR COS FUNCTION HAS single and double pre-
cision arguments -to

S2.621E5 respectivelyU) 2.621E5
> I ARG O PI

S1. 126E15 P 2
Cc
oM the result is set to

SINH OR COSH FUNCTION HAS the maximum value
G 175.3 epresentable0 ARG > 175.366co

0CD

ARCSIN OR ARCCOS FUNCTION HAS the result is set tn
IARGI > 3 zero

0
co

-I
m

m

O
O
O

33

0

TA FUCTIO AS the two figures are for the result is set
I4 single and double preci- to one

ARG 2.621E5 P sion respectivelyJARGI >PO 1. 126E 15

O
z
O the argument is too closi the result is set tc
M to an odd multiple of the maximum repre-
> TAN FUNCTION TOO CLOSE TO r/2 sentable value
m SINGULARITY
c
m.

.) the value of the case the do case state-
CASE VARIABLE OUT O RN variable is either <1 or ment is ignored

C greater than the number
M. of cases and there was

Sm no ELSE clause

no return statement was none: IGNORE not
CLOSE REACHED ON encountered prior to allowedc reaching the close of the

SFUNCTION function

a

the result is setco
to the maximum

SCALAR TOO LARGE FOR INTEGER representable value
CONVERSION

o

Z

m

O

2 Message Explanation Standard Fixup
o
O

-The result is setm
-O to the maximum

INTEGER DIVISION BY ZERO DIV OPERATOR HAS ZERO
representableo DIVISOR value

O
Z
0

ILLEGAL CHARACTER SUBSCRIPT Character comnonent The out-of-bounds
subscripting out-of- subscript(s) set

Z bounds to first or last
C
m character

The length is less Truncation to the
BAD LENGTH IN LJUST OR RJUST than the string length specified length

D occurs on the left
. (RJUST) or right

(LJUST)

o In A mod B Returns A
I 1OD DOIMAIN ERRORC
M B=O and A<O (negative)

o

The string was not in
CHARACTER TO SCALAR CONVERSION standard internal The result is

format for integers.or zero.
0? scalars.

0

m

O
I

O

MCHARACTER TO SCALAR Same as above. The variable is
CONVERSION DURING INPUT left unchanged.

o

Z
o
O
M The string was not in The result is zero.

c

0

-u

m
C>

0M CHARACTER TO INTEGER Same as above. The varible is
CONVERSION DURING INPUT left unchanged

0 IT-- GATIVE BASE IN A**B where A<O , The result is

m
C

VECTOR/MATRIX DIVISION The result is
Sthe original

BY ZERO vector/matrix

m

m

i) MESSAGE EXPLANATION STANDARD FIXUP

O
O

O0

mi ILLEGAL BIT STRING Character other than Variables left
0

DURING INPUT blank, zeros or ones unchanged
o

O
z
o
O The result is the
0 ARG OF INVERSE IS SINGULAR identity matrix

m
Z
C
m

-J

ARG OF UNIT FUNCTION IS. Every component of the The result is a
M NULL VECTOR vector was zero in vector all of whose
o value. components is zero.
m

I

C ILLEGAL BIT STRING Returns
()

zero
(n

0

0The uncorrected
residual is
returned_74FIXED POINT OVERFLOW

0)

m

m
-4

Cn

O

Z
Message Explanation Standard Fixup

-4
O

PRINT ON INPUT CHANNEL N I/O was attempted on The channel remains
SPRINT ON INPUT CHANNEL N

specified channel in in the original
O or print mode as well as mode, I/O in the
O read/readall mode.- new mode is ignored
Z INPUT OJ PRINT CHANNEL NO
O

m The number of skips The SKIP function
Z
C ILLEGAL SKIP COUNT ON CHANNEL n is negative. is ignored.
m

o

a The horizontal posi-
A TAB or COLUMN I/O tion is reset to eitler
control function was column one (leftm margin error) or jus

MARGIN VIOLATION ON CHANNEL n specified which forced off the right-hand
the device mechanism margin. On an I/O
off the left or right transfer this latter

> margin. causes an immediate0
I skip to the next lin.
C

o

o

-4
m

rn

C Message Explanation Standard Fixup

O

> A PAGE I/O control func- The PAGE command is
m tion with negative argu- ignored.
O ILLEGAL PAGE COUNT ON CHANNEL n ment was specified

0

I In a LINE I/O control In the first case th
ILLEGAL LINE COUNT ON CHANNEL n function on an "unpaged" LINE function is

o channel an argument less In the
than the current line

m number was specified, or second, the effect i

zC in the case of print mode PAGE (1).
m .j a value areater than the

• number of lines per page
was specified.

M An invalid character was The field with the
SILLEGAL NUMERIC FIELD ON found while reading a invalid character(s)

I CHANNEL n numeric field (Valid is skipped. The var
characters: 0-9, -, +, ., iable remains unchan ed
E, B, H) as if a null field

/n were encountered.

...... icl- is trcated

IC ILLEGAL BIT OR CHARACTER STRING In READ mode, character/ as a numeric field
bit strings must be with regard to sepa-

CI delimited by apostrophes, rators, and is

0 with included apostrophes skipped. The charac-

doubled. ter/bit variable re-
Dmains unchanged as if

a null field were
T encountered.

o

m

m
-

O
C,

Z

OO

O
-D

0

O

< The remainder of the
SError 40+n is signalled I/O statent is

m if the end of file is 10reande the
z END OF FILE ON CHANNEL n eed o i ignored. A further

END O FILE ON CHANNEL n reached while reading on read on that channel
channel n. will close and reope

0 the file at line 1
Kagain.

o

fnERROR IN HAL SOURCE j Continue

C'

O
I
C,
m
-4

C,

o

