MSC-05107

NASA CR-
/AL 22
(unsarca-1u0222)' ADVANCING HAL TO AN NT4~32651
'OPERATIONAL STATUS Final Report, Oct. .
&1911 -:Jul. 1974 {Intermetrics, Incs) -
HC $13.25 .C3cL G9B _Unclas
R o .53/93;WE??39 o

1201 p

%
kN

INTERMETRICS

M3C-05107

,'FinalhRepoft
Advancing HAL to an

Operational Status

July 1974

Preparéd under Contract NAS 9-12291

Intermetrics, Inc,.
701 Concord Avenue A
Cambridge, Massachusetts 02138

Intermetrics Final Report #88-74

NTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - {617) 661-1840

Foreword

This document is the Final Report of the delivery
of HAL compilers and the engineering study reports of
the design of HALM, a computer architecture to directly .
execute HAL statements. This program was sponsered by
by the NASA Johnson Spacecraft Center, Houston, Texas,
" under Contract NAS 9-12291., It was performed by Intex— -
‘metrics, Incorporated, Cambridge, -Massachusetts . over
the period October 1971 to July 1974, The program was
under the direction of Mr., Daniel J, Lickly and Dr. :
Fred H. Martin. Mr. Woodrow Vandever was the principal -
contributor to the HALM effort documented in Chapter 4
of this report. The NASA Technical Monitors for the
Johnson Spacecraft Center were Mr. Jack Garman and
Mr. Richaxd Carl. '

Publication of this report does not COnstitute'

approval by NASA of the findings and COHClUSlonS
contained therein. -

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MAS5ACHUSETTS 02138 + (817) 661-1840

Table of Contents

- Page
1. INTRODUCTION AND CO_NTRACT SUMMARY l-];'
2. THE HAL/360 COMPILER - X , 2-1
2.1 HAL/360 Compiler Releases 2-1
2.2 Compiler and HAL System Features 2-3
3. THE HAL 1108 COMPILER ' 3-1
3.1 Method of Implementation 3-1
3.2 Implementation Guldellnes for 1108 XPL 3-7
3.3 Implementation 3-19
4. HALM IMPLEMENTATION STUDY - 4-1
4,1 Introduction and Overview 4-5
4.2 HAL/S-HALMAT-HALM : 4-9
4.3 Addressing 7 4-25
4.4 Micro-Processors - ‘ - 4-45
4.5 Implementation 4-75
4,6 HALM and B1700 Mutual Reflections 4-93
4,7 Statistical Results o 4-103
4.8 Supra-HAL/S Usages , 4-118
4,9 Conclusions and Recommendations 4-122
4.10 Bibliography and References 4-125
5. CONCLUSIONS AND RECOMMENDATIONS - 5-1
5.1 Conclusions - HAL =-. 5-1
5.2 Recommendations — HAL ' 5-2
5.3 5-2

HAIM Recommendations and Conclusions

Appendix A: Selected HAL Menios Describing HAL _
Compiler Releases _ A-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Y]

1. INTRODUCTION AND CONTRACT SUMMARY e

The development of the HAL language and the compiler
implementation of a mathematical subset of the language had
been completed under NAS 9-10542, The on-site support,
training, and maintenance of this compiler were completed
under NAS 9-11944. The objective . of this contract was to
broaden the implementation of HAL to include the implemen-—
tation of all features of the language specification thus
permitting MSC to conduct an evaluation of the language
for NASA manned space usage. The contract commenced . on
31 October .1971 with these two tasks: The implementation -
on the 360 of all HAL language specification features and
the implementation of a HAL compiler for an airborne computer.
In this case, the IBM 47EP. computer was selected. This machine
was scheduled to be an integral part of an MSC Shuttle avionics
breadboard. Early in the contract period, it was recognized
that this avionics development system was being redirected’
and it was pointless to continue with the 47EP as an object
machine for a HAL compiler. Fortunately, few resources had:-been
expended in this direction. A stop work oxder was issued,
followed by a change order directing Intermetrics to establish
a HAL facility on the Univac 1108. This contract change order

- was effectively initiated in April 1972. In addition to the
1108 compiler effort, a task was alsc undertaken to conduct
a study of the problems associated with implementing a HAL
compiler on an alr borne computer.

In July 1972, the Space Shuttle Orbiter contract was
awarded to Rockwell, International (then North American -~
~Rockwell}. In October 1972, at the first meeting of the soft-
ware control board, it was decided to use HAL as the programming
langquage for the Space Shuttle computer. Intermetrics came
under contract for the development of those compilers. It
was then redundant to conduct the engineering study under
this contract as the implementation would solve these
specific problems. This effort was put aside until August
1973 when, after considering a number of alternatives, it
was decided by NASA/JSC to conduct a design of the implemén-
~ tation of a HAL machine, '

1-1

INTERMETRICS INCORPORATED + 70t CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The contract was amended in January, 1973 to add an
additional task to conduct a study of the possible implemen-
tation routes to construct a GOAL to HAL translateor. This
effort was conducted for the Kennedy Space Center using
this contract or an existing vehicle and was intimately tied to
the basic contract objective. The results of this work
have been previously reported and are contained in the
following document:

1. The GOAL-TO_HAL/S Translator Specification,
Contract NAS 10-8385, December 15, 1973.

This final report then addresses three basic items.
Chapter 2 is a summary of activities associated with the HAL
compiler for the IBM 360/75 computer. Chapter 3 is a
summary of activities of the moving of the HAL/360 compiler
to the UNIVAC 1108. Chpater 4 is the results of the
engineering study and design of a HAL machine. Chapter 5
are the conclusions and recommendations for further work.

1=-2

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2. THE HAL/360 COMPILER

2.1 HAL/360 Compiler Releases

The structure of the HAL/360 compiler had been

developed under a previous NASA contract. The compiler
is a two pass compiler. Pass 1 performs syntactic and
semantic interpretation of HAL statements. The output
is an intermediate language, HALMAT. This portion of -
the compiler is machine independent and is written in
XPL. XPL is a higher order language {(a subset of PL/1)
and has been designed for writing compilers. Pass 2 of
the compiler is the code generator and becomes machine

- specific. In this compiler, the code generator translated
HALMAT into Fortran. There were some portions of HAL system,
the run time library, that. were more ammenable to direct: 360
BAL statements and were implemented in that manner., This
general structure of the compiler was released for usage on
6/8/71 and implemented a mathematical subset of HAL plus
certain other features. Further releases of the compiler
were accomplished during the summer of 1971. These added
new language features and modified the compiler to operate
on the IBM 360/75 complex at MSC which utilized RTOS as
the operating system. ,

The compiler development was managed using the develop~
ment plan concept. The plan was updated and reviewed with
NASA/MSC teclinical personnel on approximately a two month
schedule. The final release schedule for compilers is shown
in Figure 2-1.

2~1

NTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

HAL COMPILER RELEASE SCHEDULE

Release Target Predicted Actual
Number Date Date Date Comments

360-1 - 4/5/71 4/5/71 4/5/71 Feasability Version

360-2 6/8/71 6/8/71 6/8/71 Most of HALy plus other features

360-3 7/30/71 7/30/171 7/30/71 RTOS Modifications

360-4 9/15/71 9/15/71 9/15/71 See HAL User Memo (10/71) (Appendix A)

360-5 1/10/72 1/10/72 1/10/72 See HAL User Memo (03/72)

360-6 +3/15/72 4/1/12 4/14/72 Most of Real-time, complete output
writer, diagnostics HAL User Memo(15/72)

360-7 5/15/72 6/8/72 6/13/72 User—aids, error handling
HAL User Memo (19/72)

360-8 7/15/72 8/8/172 9/15/74 ‘Structures, update blocks, access rights,
data sharing, link to FORTRAN, Optimiza-
tion, clean ups

360-9 10/1/72 10/1/72

360-10 11/1/72 11/1/72

360-8A 2/21/73 Final HAL 360 Release

7/25/73 Compiler modified to'correct reported

Figure 2-1

errors and discrepancies

2.2 Compiler and HAL System Features

2.2.1 Real Time Features

The real time language features of HAL were
released in version 6 of the compiler with some of the
final clean up of these features being completed by
release 360-8, The real time features of HAL provided.
an active means of controlling the computing system
for purposes of manned space software development. These
features were, for the most part, a departure from the gen-
eral capabilities of most higher order languages. In

- particular, the Fortran intermediate approach to HAL
-implementation did not providé means to deal with these
features. For the most part, they were implemented by '~
linking to run time routines written in 360 basic assembly
language, BAL.

Real time implies a clock, either a real or pseudo-
clock. In this implementation, the actual 360 clock was.
used for timing. Interfaces to this clock were 1mplemented,
and access to time dependent HAL statements were thus 360

. clock time dependent. A dynamic storage capability was
implemented permitting multiple scheduling of the same
program or task., Included in the real time statements
implemented were: - '

SCHEDULE: A capability to actlvate a program or
task on the basis of an event or time. :

_ TERMINATE: The ability to terminate a program or
task. :

UPDATE PRIORITY: This feature permitted the change
in priority of a program or task in real time. Real time
dependency permitted an ability to schedule in advance a
program -oxr task dependent upon another program or task.
Real time task ID was implemented. 'This is an ability to
control multlply scheduled versions of the same program
or task.

2-3

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

A second category are the real time services.
These include: :

SIGNAL: A statement that causes an event.
This event could be used to wake up a task or program
and be activated on the basis of the emitted signal,

WAIT: A program could be scheduled to WAIT
in real time for a signal or a specified time.

Data sharing is a feature that was included with

the HAL system., This is fundamentally a real time feature.
The capability was included to permit data to be shared

with reading and writing. A series of locks are employed -
such that during the time that data is being modified or
accessed by a program, the operation is permitted to run
through completion without being interrupted by another
" program which desires to modify or acctess the same data.

The critical operations are confied by the compiler-tc an
UPDATE block, which provides both high wisibility on the
program listing and the protected environment during execution.

2.2.2 Advanced HAL Language Features

The following advanced development features were
‘included in the HAL compiler implementation:

ARRAYS: An ability to handle data structures of a
very complete nature was included in the compiler
implementation. These could be multi-dimensional arrays,
or hierarchical tree structures of data. Structures were
handled in a very general sense,

BITS AND CHARACTERS: The ability to manipulate
bits and to handle characters were included in the compiler
implementation. &An ability to control the precision of
data was part of the compiler implementation. This is
called precision modifier. It gave the ability to ask
for either single, double, or mixed precision of arithmetic.

2-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184

The file I/0 statement was included. = This gave,
through the language, a direct access to randomly stored
file data. A feature was added to the compiler to permit
Compool initialization, that is, a means to start the
Compool wvalues out at‘desired'values.

2,2,3 HAL System Features

Of primary importance to the HAL system was the
output writer. The output writer is a program which
operated in Pass 1 of the compiler to put each compiled

_ HAL program into a standardized format. The listings

" were annotated and indented to provide paragraphing for
easy identification of programs, tasks, and procedures.
It permitted gquick identification of statements, such as
IF THEN ELSE, and DO groups. The multiple line format
was included to subscript and superscript variables, for
example, vectors were marked by a bar superscripted over
the variable and matrices with .an asterisk. Brackets and
braces were used to identify arrays and structures.

At the end of the program llstlng generated by
the output writer, a program layout was formatted. It
' 'gave the program and all the procedures and tasks within
the program, and the procedures within tasks.

A symbol table was included and a cross reference
for all of the HAL variables within that program or compila-
tion., Attributés of the HAL variables are listed, such as
statement numbers for declaration, reference and use. The
output writer was a significant advance as an aid to manage-
ment for flight software development. '

A complete system of traces and dumps was included
with the compiler. There was an ability to dump at termin-
ation, and this dump was done with HAL variables. Individual
HAL variables could be dumped by name at any user-specified
statements. An ability to trace by HAL statements was pro-
vided. That is, an operation of the HAL statements could
be traced statement-by-statement in a dynamic sense, as -

~ the program ran on the 360. Oné way link.to Fortran was
provided in the compiler. A HAL program could call a
Fortran program. ThlS program could be linked in and run
with the HAL program,

2-5 ‘
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-18

A complete system of error determination and
recovery was included. These fell into two categories:
compile time errors and run time errors. In the compile
time error category, the compiler listed where errors
were found, and categorized them. A serious attempt
was made to compile the program in the presence of errors.
There is a limitation as to the ability to continue
compilation based upon the severity of errors.

The second class of errors had to do with run time
errors. Here, two capabilities are included. One
capability is teo perform an operation upon the event of
an error. For example, ON ERROR X, performs this opera-
tion. A second class of run time errors are those associated
with mathematical singularities. These are signalled through
the run time system in the event of a mathematical error.

For example, DIVIDE BY 0.

Compiler directives are a feature that were included
_within the system. As an example, the INCLUDE directive
allowed a programmer to include other HAL programs with a
simple inclusion statement. That is, that these -are non-
language features that aid in the building of HAL programs.

Access Rights: Access rights are management tools
which can be employed to limit the access of programs, tasks,
and procedures to the availability of data. For example,
only certain programs could be permitted access to read the
state vector of the vehicle, or only certain programs could
be permitted an ability to write the state vector of the
vehicle. _ ’ :

2.2.4 Documentation

A HAL 360 User's Manual was issued in November 1972,
This document constitutes the User Manual for the 360
implementation of the HAL language and the compiler. The
User's Manual, along with the Language Specification,
contains the fundamental information needed for a programmer
to write and run a HAL program on the 360 computer, The
manual covered the following subjects:

Running a HAL Program: The communication required
with the 0S 360 in the job control language. '

2-6
 INTERMETRICS INCORPQRATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184

Compiler Outputs: The outputs of subsequent steps
of the compiler were covered in detail including the
compilation listings. This was the output writer that
was described previously.

The User's Manual contained a complete description
of the debugging aids both for real time and for non real
time programs. This included compilation errors, execution
errors, execution dumps and traces. In the real time
category, it included compilation errors and execution errors.
The manual alsc described HAL characteristics specific to
the 360. Such things as the character set, the internal
table capacities, the data type size llmltatlons, Fortran
call restrictions, program organization limits, 1nput/output
statements; program naming -conventions, the include compiler -
directive, and compile time compatibility checking,

The execution time characteristics contained input/
output, formatting of output, and execution time checks,
The unimplemented features of HAL and the language
restrictions was also contained in the document.

2.2. 5 Re31dent Support Malntenance, and Training

Mr. Carl Helmers was in residence at NASA/MSC from

November 1971 through September 1972. His principle

function was to aid programmers in the use of HAL and

install compiler releases on the IBM 360. He did, in
addition, a number of other tasks. These included: providing
complete listings of the error messages for the HAL 360
compiler, and aiding in the translation of XPL to the

Univac 1108. Mr., Carl Helmers, along with Dr. Fred Martin,
conducted HAL training courses. These courses were given

at NASA/MSC and at NASA/KSC. In the area of maintenance

and training, an important function conducted was the
communications with: the C.S. Draper Laboratory, with whom
NASA had contracted to perform an evaluation :

of the HAL language for manned space programming. This

group of people performed a very complete evaluation of

the language and compiler characteristics and its use for
manned space programming. There was.much communication
between the two organizations to provide support for the use
“of the compiler and for feedback of desired language features
into the HAL system. :

2-17
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1¢

3. THE HAL 1108 COMPILER

3.1 Method of Implementation

Under contract NAS 9-12291, Intermetrics was to
provide two HAL compilers for the UNIVAC-1108 at
MSC: one essentially duplicating the capabilities
developed for the IBM/360 (RTCC), and one providing Code
generation and linking to the G&CD FORTRAN functional
simulator operational on the 1108 (SSFS).

' HAL/360 as it existed, compiled source HAL
language and emitted FORTRAN. This approach had
utility at MSC .in. that llnklng HAL to already existing
FORTRAN programs was straightforward, and HAL/1108 would
exhibit this feature. The HAL compiler itself isg a
large (=15,000 lines) program written in XPL, a
derivative of PL/l It is compiled using XCOM on the
360/75.

1. 1108 Implemenﬁation

In transferring HAL fiom the 360 to the 1108,
three technical approaches were considered:

‘a) Write the compiler in HAL, that is, trans-

late the XPL program into HAL. XPL and HAL
- have many similar features and the transla-

tion can be done, to a great extent (95%)
automatically. The objective is to obtain
a large HAL program, compile this program
on the current HAL/360 compiler, obtain
FORTRAN, adjust this 360/FORTRAN to 1108/
FORTRAN, and transfer the compiler. The
final 1108 compiler would then be in FORTRAN.

Intermetrics fully investigated this
approach, wrote sample programs, examined
emitted FORTRAN, and concluded that "HAL-in
HAL"™ is not feasible. The essential reasons
were that: 1) FORTRAN code generation is toco
general for an efficient compiler implementa-—

3-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 "(617) 661-1€

tion, 2} resulting code would be very

- bulky, 3) emitted FORTRAN is unreadable,
4} numerous "handcrafted" changes would
be necessary to adjust 360/FORTRAN to
1108/FORTRAN.

b) Write the compiler in FORTRAN, that is

translate the XPL program into FORTRAN.

This has the same effect as a) above,
that of producing a compiler written in
FORTRAN which can then be transferred
to the 1108. The advantage here is that
the translation is direct and not through
HAL. As a result, an efficient FORTRAN
version could be generated which would be

" modular (i.e. a series of small subroutines),
and readable in that the names of variables,
etc. would have some relation to names in the
original XPL.

Intermetrics has investigated this approach
and although feasible, it was not recommended
for two principal reasons:

i) It required a large (essentially manual)
'translation job from. XPL to FORTRAN. '
These languages are not very similar
and we would expect the process to be
error—-prone. :

ii) FORTRAN does not offer language features
(control, naming conventions, block
structure, data types) which enhance
efficient and reliable compiler-writing.

¢} Write the compiler in XPL, that is, utilize most
of the current XPL source code but provide
an XPL-t0o-1108 code generator. The result here
was to augment the current XCOM, which has an
XPL~t0o-360 code generator, with a new code
generator. In addition, modularize the XPL
source code by making its subroutines indepen-
dent for convenient use by 1108 programmers.

Intermetrics fully investigated this approach
and concluded that of all the alternatives this
was clearly the best. XPL was a well known

3-2
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184

quantity to Intermetrics, and it is
particularly well-suited to.compiler-
writing. (This is the reason it was
selected in the first place for HAL),
HAL/1108 would then be a large XPL
source program,; similar in most ways to
the HAL/360, presentlng no. structure, or
readability problems,

Intermetrics ascertained that the
technical risk of producing a new 1108
code generator was no more than that of
effecting a massive translation into
FORTRAN, while the benefits'were much
MR greater. '

2. Trade-off Issues Between XPL and FORTRAN

a) Technical Risks

Fortran is straightforward, but error-
prone because of large translation and would
require a higher percentage of assembly
language subroutines because of data-type
and manipulation deficiencies.

XPL would reguire a new 1108 code gener-
ator but Intermetrics' intimacy with XPL
made this task accomplishable.

Intermetrics was confiident it could
deliver the HAL/1108 compilers, using either
_approach, within the cost and schedule con-
straints.

b} Language Features .

FORTRAN is not as well-suited to compllerwr
writing as XPL. FORTRAN exhibits severe name
restrictions, is not block-oriented and has poor
control structure.

As an example, consider the illustration
selected from the HAL/360 compiler, and shown
in Figure 3-1. Because FORTRAN only permits

3-3
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1€

6 letters for an identifier the expressive

name HOW TO INIT ARGS in XPL becomes the
unintelligibple HOWTOI in FORTRAN. Also,

VAR LENGTH becomes VARLEN and VEC_TYPE be-
comes VECTYP. Note that. XPL allows the

useful IF--THEN--ELSE while FORTRAN requires
multiple GO TO's and the objects of the GO TO's
must be numeric; thus GO TO 4, GO TO'S5, GO TO 7,
etc. In addition, the logical AND must be

a function in FORTRAN rather than the operator e,
and lastly the convenient hexadecimal constant
FF must be expressed as the integer- 255.

These few observations portended numerous
errors and a variety of translation difficulties
using FORTRAN,

c). Maintenance and Configuration Control

By having both HAL/360 and HAL/1108 in
a single source language (XPL), maintenance
will be less costly and configuration control
easier. Maintenance personnel (whether NASA
or contractor) need not master two quite
different programs and changes and modifications
can be effected in a straightforward manner.
A separate FORTRAN version for the 1108 would
encourage separation of the two compilers and
permit independent modification and compilation.
Once this drift developed it would be virtually
impossible to keep track of or reconcile the
differences, especially when the source code
program design were different.

d) "Portability"

Although a compiler written in FORTRAN
is theoretically portable to other machines
because of the universality of FORTRAN compilers,
in actuality the specific differences among
FORTRAN's can.be considerable. HAL/1108 would
require advanced FORTRAN V features which are
non-standard due to word-length and byte
definitions across machines.

3-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184(

3. 'Summary'Recommendation

In view of the foregoing discussion and based
upon the analyses conducted by Intermetrics, it was
recommended ,” and NASA/MSC concurred, to pursue
implementation of a HAL/1108 compiler by writing
an ¥XPL-to-1108 code generator and delivering the
HAL/1108 compiler to MSC in XPL source language.
Problems arising during implementation were handled
by introducing a limited amount of 1108 assembly
language and/or other expediencies where required.

3~5

NTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

In XPL

i
]
i
i
i
|
I
|
|
]
|
-
l
|
f
|
]
|
!
|
|
!

HCW_TC_INIT_ARGS 3 : SR | |
PROCEDUREINA;SYT) - R A SR
CECLARE {NA,SYT) FIXED; _ e
CDECLARE (NU,NE,TEMP) FIXED;

Figure 3-1

IF NA <= 1 THEN %* IF 1 {OR ERRQR) ARGS THEN JUST RETURN */

RETURN 15 /% 1 INDICATES 1 ARG */

IF SYT_TYPELSYT) = VEC_TYPE THEN /% PICK UP VECTOR DIMENSION

U = VAR_LENGTH{SYT};

ELSE DO O B T P
[E SYT_TYPEL(SYT) = MAT_TYPE THEN DO; /* GET THE MxN DIMENSION

MU = VAR_LENGTHISYT) & M"OOFFY;

-l
~

1

/

TEHMP = SHR(VAH_LENGTHISYTI,8) & MIOEFw; - o oovioewe v
IF (NU=MFFY) | {TE&4P="FFY) THEN /% CAREFULE OF THE FF CASES
ELSE :
NU = NU * TEMP;
END;3 ' _ , o : ~ S
NU = 1; /=% THIS.IS THE BIT, CHAR, INTEGER, OR SCALAR CASE
In FORTRAN

o= 0 o

0N

~NEFOID

INTERSER FUNCTTON HPITOI{MAe SYT)

CTHAPLICTT TNTEGER(A=Z)

COMION SYTYPE(100) s SYARIY(300)s FXARZY(S50) ¢ SYCLAS(100)
COM NN SYTRTR(ING) » VARLEN{109) , S

- COM NN VECTYRs MATTYPy STRUCC

IF (NA 6T, 1)} G TO 1 :
IF 1 {OR ERINI) ARGS THEN JIST RETURN

Reinay mies 1 ane : REp

IF {(SYTYPE(SYT) .ME, VECTYP) GO YO 2 op }“HHRHB

PICK (P VECTOR DIYENSION ' Rﬂmﬁi,P ﬂm‘lﬁ'ow

NIJ = VARLEN(SYT) ' . AGE}s " Thg
60 T 3 Pog

1F (SYTYPEL(SYT) .S, MATTYP) GO TN 4

GRET THE seN DIMENSTOM '

MY = ANDIVARLENM{ARYTY» 2959)

TEMP = AMD(SHRI(VARLEN(SYT)Y» AYe 255)

CAREFIN. OF THE F< CASES) :

IF ((M) JNE. 2545) oAND. (TEMP NE. 2551} 60 TO §
N} = =1 ~

GO TO 6 ,

N = NIJ ok TEMP ‘ -
GO To 7

THIS IS THE 31T, CHAR INTEGER, 0O SCA_AT CASF
NEP =1 .

CONYTINIE 3mg

Fl13 .

. pTa

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

3.2, Implementation Guidelines for 1108 XPi,

A set of general guidelines was established to
transfer the 360 XPL programs that comprise HALPASS1
and HALPASSZ. This contained the design decisions and
implementation facts necessary to understand and imple-
ment the 1108 XPL.

1. BOOTSTRAP MEDIUM

XPL-1108 would produce assembly language subroutines
to be collected together and executed. The assembler
was to fix~up forward branches and the like as well as
to supply relocation information., - It- also provided
“external linkages where appropriate,

2. SUBMONITOR

The submonitor was implemented via a set of library
subroutines,

3. REGISTER ALLOCATION .

Although a form of a general register machine, the
. register allocation policy for the 1108 was quite
different from the 360. Some of the differences are:

a) No base registers are needed since the 1108
permits direct addressing of the whole computer.
(This removes the need of R4 through R11, R13,
R14, and R15 of the 360 which were all bases of
some sort). . . '

b) 16 accumulators (A regs) which need only be used
for accumulators. (RO through R3 on- 360).
c) 15 index registers (4 overlap and hence are also
accumulators) which are used for indexing and as
" link registers. (These were R1 through R3 on the
- 360 and R12).

d) 1In addition, there are auxiliary R-regs on the
1108 if any use can be made of them. :

3-7 -

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138

. (617) 661-1840

4. STORAGE ALLOCATION

Storage allocation and use differs fundamentally because.
the 1108 is a word machine (36 bits) whereas the 360

is byte~oriented. Although the 1108 provides partial
word designators in instructions for manipulating
smaller pieces, there exists no mechanism to index
within a word to the next logical quantum (such as

the byte point on the PDP-10). This dictates that

the elements of all arrays must be located in different
words {(and occupy the same location within the word).

The various partial words that can be handled
are the following: Signed and unsigned half-words
- {18 bits), signed third-words (12 bits), unsigned
gquarter-words (9 bits), and unsigned sixth-words
(6 bits). Unfortunately, the quarter-words and
third-words cannot both be used since a bit must
be set in the PSW to indicate which mode is currently
being used. (Actually the quarter mode eliminates
all three thirds and one of the halves). After
analyzing the programs using XPL, and receiving information
that quarter~words are unavailable on the 1108's
at MSC, the following strategy was chosen:

a) Sixth-words: used for characters and for BIT <.6
that are packable. '

b) OQuarter-words: cannot be used.

c) Third-words: used for packable quantities of
items of type of BIT(n} where 6 < n < 12.

d) Signed half-words: used for packable guantities
of BIT(n) where 12 < n < 16. (It is probably
only of academic interest, but the last limit
should actually be 18 bits).

e} .Unsigned half-words: did not appear to be useful.

f) sSigned full-words: used for FIXED and BIT < 16,
and all items not indicated as packable.

3-8

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

il Items in COMMON may be packed if they have a bit
length of 16 or less and are dimensioned (arrayed)}.
- For NON-COMMON items, they must be declared to be
packable by declaration keyword (either ARRAY or
PACKED are favorite choices}). Local variables may
be determined to be suitable for packing by usage
context,

5. CHARACTER HBANDLING

Character handling was to be similar to the 360 except
word addressing was used and characters are packed
6 per word. The similarities and differences include:

a) There was to be a free string area that was
repeatedly filled as new strings were created

b) A COMPACTIFY routine to condense these areas as
‘ necessary. ‘

¢) Strings to be designated by descriptors which
would be kept in one contiguous area of memory so
that these are accessible by COMPACTIFY for garbage .
collection. However, there was no need to limit
this area to 1024 descriptors. There were to be
two subdivisions within the descriptor area; one
for COMMON descriptors, and thé- other for the rest.
The best approach to form the descriptor group
seemed to be to use a SEG card in the MAP processor
to gather up the descriptors from all the separate
assemblys. Were it not for the HAL multlpass overlay
requirements, a more elementary method of collecting
descriptors might have been feasible.

d) A character assignment (MSGl = CHAR2;) was to
- merely transfer the descriptor of CHAR2 to the
descriptor location known as MSGl. Thus, a single
string could comprise several character wvariables
as was done on the 360.

e) The form of thé descriptor was to be as follows:. .

e
O

12 bits , | 16 bits

35 24 15 9

_ : 3-9
INTERMETRICS INCORPQORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

The low 16 bits was an absolute pointer to
the first word of the string. Zeros filled
out the rest of the low 22 bits so that it
could be used as an indirect address. (x,
h, & 1 fields).

The upper 12 bits was the string length
in characters; it could be fetched using a
third-word partial word designator. This
permitted strings to vary from 0 to a theor-
etical limit of 2047 characters. There seemed
little need for the special handling accorded
a zero-length (null) string on the 360.

Fh
—

;h= ucbbflptOI approach facilitated character
procedures since they could return a full word
descriptor in one of the a reglsters (AQ)

for further usage.

g) The character functions were similar to their
360 counterparts.

The LENGTH function is even faster than the
360 since there is no need of special tests for
null strings and fix-ups if not because of the
{length - 1) methodology of the 360.

The BYTE function has three cases:

1. Literal arguments were detected and
accorded special treatment -- BYTE('H')

.2, Numeric literal indexing could be
accomplished efficiently on both left
and right sides -- BYTE (MSe6,7)

3. Variable indexing would be slower
since it had to be done by subroutine
because of the word organization of
memory -- BYTE (MSG,J)

SUBSTR was slower then the 360 since it involved
the creation of a new string rather than just a
new descriptor. The reason for this decision
was a desire to have strings start at a word
boundary.

CONCATENATION was to be done in an analogous
fashion to the 360.
3-10
INTERMETRICS INCORPORATED » 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « {817) 661-1840

- 6, ARITHMETIC ENVIRONMENT

.Some differences do arise because of the 1l's comple-
ment arithmetic used on the 1108. 1In particular,
when the low 8 bits of -1 are examined, it is not FF
but rather FE. (-0 reduced to FF). A systematic
method to reconcile the HEX constants and negative
numeric usages was sought. The language was extended
to allow -initialization with negative numbers. It
was then mandated that HEX constants were not to be
‘treated as signed on the 360.

7. CODING "TRICKS"

Advantage was taken on the 360 that storage into an

8 bit quantity (1 byte) masked off any excess bits.
The effect was not identical on the 1108 if it was
stored into a 12 bit storage quantum. (The 8's
reducible to 6 bits were ok). The only way to
exactly duplicate results would be to mask ({AND with '
an 8 bit mask) before storage. This would have bheen
too high a price to pay for 360 emulation when it was
seldom really required. There are over 1000 STC

in both HALPASS1 and 2 and 2000 STH. (This truncation
may have been used on half words also). Besides,

it seems inherently wrong to imitate the 360 for the
purpose of propagating coding that has utiliged
machine dependent characteristics of the 360.

A better move seemed to be to eliminate . this
usage. A method was devised that trapped the dirty
cases and flagged them for modification. 1In addition,
it was helpful for people to point out all the places
that they remembered using implicit characteristics
of the 360 or seeing them used. A master listing was
kept with all the trouble spots marked.

8., FORTRAN COMPATABILITY

FORTRAN compatibility was to be maintained if at all
possible. "Compatibility" in this case, means only

the ability to call FORTRAN subroutines, pass them
arguments, and accept returning results from FORTRAN
functions. It was anticipated that it would also be'
‘possible to call XPL procedures from FORTRAN but it

is not a primary requirement and would take more effort,

3-11

NTERMETRICS INCORPORATED + 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 .

A procedure or function call produced code that
resembled the following FORTRAN example.

CALL FOOLSI,JpMESCUNY _ 0 . . T
AL L o 00117 7201 06 oG O otonp) 0010

Q00120 _ 7413°13 00_0 0CGIGY 0016 _ LMJ. | X11,FO0L
arolel G007 0C U0 O gConi?2 OQID + 1 .
_.pcfiz2z onpd N0 o0 0 gCeotid volo Ao - .
T T ¢LC123 007 00 GG 0 ofcacn 0610 + HEMDURN
| T 183,07

While this example is not exhaustiﬁe, it did .
illustrate the general format. The specific
rules for subroutine branches were as follows:

a) Linking was to be accomplished via an LMJ
using X11 as link register.

b) The argument list would immediately follow
the branch instruction. The list would be
constructed as addresses for each actiial argument
so that indirect addressing could be used to
fetch their values. The list for each type was
to be:

1) Variables - the address of a full word
variable (not packed). For character
variables, it was the address of the_
descriptor.

2} Constants - the address of a full word (36 bit)
constant.

3) Expression - the address of a temporary
containing the resultant value.

4) Subscripted variable - same as for expressions
except for full word arrays when it is easy to
generate the element address.

¢) According to FORTRAN conventions, A0 through A5 and
Rl through R3 may be modified in the subroutine.
However, we planned to assume that almost all
registers were invalid upon return. This required
less register saving and restoring than FORTRAN . .
Calls to FORTRAN subroutines would then involve
rieedless register saving but it was not incompatible.

3-12
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

- ' d) A function would return its result in A0,

e) It was anticipated that the Walk-back location
would be eliminated. To not do so would cost
1,000 words in HALPASSl. This would require
some care in exiting from FORTRAN subroutines.

The rationale for the FORTRAN compatibility was
to take advantage of existing FORTRAN capabllltles
in areas that were either not freguently needed in
XPL or else difficult to implement. Some examples
could include:

'a)' Floating point, single and double precision and
conversions to and from integers.-

b I/0 routines,’

9. ASSIGN PARAMETERS

XPL was incapable of modifying parameters passed to
subroutines because all calls were by value., For
compatibility reasons, this decoupling would be :
maintained on the 1108 version even though the calling
was by pointers. (See the next section for actual
details). However, it was often useful to modify

- calling parameters by assigning them new values,
{(especially for arrays). The suggestion was to
implement the HAL ASSIGN type of list in both pro-
cedure definition statements and calllng sequences.
Examples are:

. CALL SUBGUM{A,B) ASSIGN(Y,Z);
SUBGUM: PROCEDURE (U,V) ASSIGN{(W,X);:

Before the ASSIGN all the usual XPL rules would.
apply. After the ASSIGN in the CALL statement,

may come only variable names, with or without
subscripts, but no expressions. The compiler would
link them up by reference.so that . aSSLgnmentS in

the subroutines will be reflected back in changes in-
the actual variables.

3-13.

= INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

10. PROCEDURE PARAMETER LINKAGES

At procedure entry X1l was to be left pointing at

a list of indirect addresses that permit accessing
of the actual calling variables. Section 8 shows
the list for FORTRAN calls. The treatment accorded
each variable depends on how it is used in the
procedure. Specifically,

a) If merely referenced in the procedure, it was
to be accessed via indirect addressing.

b) If it was assigned a value {(via the LHS of an
assignment statement, or in cther usages. that
could possibly change its value), 1ts value
would be copied into a temporary in a prologue
and the temporary used exclusively.

¢) If on the ASSIGN side of the list, it would always
be referenced indirectly, including stores.

d) Arrays were to be permitted on the ASSIGN side and
direct fetches and stores would be accomplished
with appropriate indexing. (It was not clear
whether arrays should be allowed on the other
side of the lists; they were not functional in
360 ¥PL. If permitted, -storing would be
prohibited.)

11. REGISTER RECOGNITION

The System 360 has 16 general purpose registers, 15

of which may be used as base and/or index registers.

The XPL philosophy allocated nine of these registers

as base registers, whether the program required them .

or not. Three more were used to branching and

subroutine linkage. This left four registers to serve

as accumulators, only three of which could double as
index registers. This severely limited the amount of
information which could be retained in registers. Thus,
no attempt was made to remember what a register contained
once its value was used. On the other hand, the 1108 has
16 accumulators and 15 index registers (4 of which double
as accumulators). Since many operations reguire a
register pair, accumulators were managed as pairs, while
indices were handled as single registers. Thus, at
minimum 8 accumulators and 9 index registers (which is
considerably more than an average XPL statement would

3-14 :
... [ERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

require) were available for use on the 1108. Thus,

- a system was developed which allowed the code generator.
to remember the contents of these registers for later
use. The following guantities were remembered: 1) the
name of the variable in the register, plus any variable

" and/or constant indexing which applied to the name; and
2) any additive constant modifier applied to the variable
which changed its value from that in memory. Because of
the bottom—up properties of the XPL synthesis, multi-
level indexing could be remembered to as many depths
as required, significantly reducing the number of
storage references required by the compiled code
(approximately 30% fewer instructions on the 1108 than
for an identical program on the 360) .

le.r INSTRUCTION GENERATION

Where possible, instructions were not gcnerated untll
they were absolutely necessary, such- that the most
information could be used to intelligently decide
what code would produce the desired result. 1In general, -
constant terms in expressions were saved as modifiers,
their value changing as other constant terms entered
into .the expression. Any constant operating on another
constant was evaluated at compile time, the result being
a new constant term. Any constant added to or subtracted
- from a variable was retained as an expre531on modifier,.
to be generated only when the expression value was forced
to be evaluated. If the value or variable term represented
in the compiler stacks matched up with the contents of a
‘register whose value was known, the expression was
suppressed and the register value was used instead (in
some cases, it was necessary to move the register contents,
if other sub-expressions required the register, and its
contents were to be altered)

Unlike the 360, wirtually all non-branch types
of instructions on the 1108 can use immediate operands
(operands specified within the actual instruction). Any
constant whose absolute value is less than 216 can be -
specified in this manner, effecting a saving in genera-
tion of constants, as well as memory references,

3-15

"~ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184y

Statement constructions of the form "IF <relational
expression> THEN" generated a TEST, JUMP sequence.
Otherwise, a bit conditional was generated, using a- :
SET TRUE, TEST, SET FALSE sequence, to be subsequently
used in a JUMP testing the resulting condition. Any
relational expressions involving c¢onstant terms on both
sides of the relational operator are balanced, such
that the constant term of one operand (the one to be
used in the TEST operation) is zereo. Thus, (A+3).> 8
becomes A > 5, and (A-4) < (B+5) becomes (A~9} < B.
Also, since the 1108 has no "less than" or "greater
than or equal" test instruction, the "greater then"
and "less than or egual" tests must be used with the
respective operands reversed; i.e. A < B is coded as
B > AO)

Instructions and data were kept physically
separate, so that the two bank interleaved fetch
properties of the 1108 could be taken advantage of.

Il

ki
o

Unlike other compilers, the XPL code generator
does not attempt to save and restore the registers
which are used within a procedure (except the linkage
registers). Instead, registers whose contents are
vital are saved prior to calling.a function, and
restored upon return. Registers considered non-vital
are merely treated as if their contents were destroyed
during the function, and are no longer considered to
have recognizable contents. Except in very complex
expressions involving functions, especially character
functions, register saving is never done. In the HAL
Compiler, with its 130 procedures, less than 50 register
saves are performed,

By definition of the XPL grammar, any index expres-
sion on the left-hand side of an assignment will be the
first quantity forced into a register. This classed
the register as vital over any functions which appeared
on the right-hand side, forcing many unnecessary register
saves. For simple indices (variable * constant), the load-
ing of the index expression is deferred until the right-
hand side is evaluated, thus eliminating many such register
saves.

3-16
INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 ¢« {617) 661-1840

13. DATA ALLOCATION -

Data on the 1108 compiler falls under three main
classifications: FIXED, BIT, and CHARACTER. Within

BIT are 4 sub-classifications: BIT(6)}, BIT{12),

BIT(18), and BIT(36), which corresponds to the:
allowable partial word designators in 1108 instructions.
All but BIT(6) are.classified as signed guantities. The
data generation section of the compiler follows a number
of rules: 1) data declared as COMMON, ARRAY, or global
in modular compilations, is explicitly packed or not-
packed strictly on the declaration properties, whereas
all other data attributes are subject to change depending
upon its usage within the program; 2) all unpacked data
is generated in the order in which it is declared; 3)
packed data is sorted down by bit length, and secondly
by array length. Side-by-side arrays of like data

types are generated from longest to shortest until all
are exhaustive. All uninitialized data is implicitly
set to zero.) :

The following rxrules determined how data might
become unpacked: 1) use as an ASSIGN parameter, 2} use
as a formal parameter, either by name alone or modified
by a constant index; and 3) not having the ARRAY attri-
bute in global declarations. The first two reasons
result from the implementation restriction that all
formal parameters must be passed ag full words. It is
less costly to force a BIT(6) simple variable to occupy
a full word than to load a packed variable and store it
in a full word temporary for passing inteo a procedure.
The third reason merely assures an identical storage
layout for global data regardless of the contextual
uses within the various modules sharing this data.

Any integer initialization is passed to the :
assembler as signed decimal numbers (negative initiali-
zation was added to the language). Any data initialized
with hexidecimal or binary constants are converted to
the corresponding octal representation on the 1108 (since
32 bit masks on the 360 would not be identical on the .-
1108 if passed as signed numbers). It is assumed, there-
fore, that blnary initial values are not utlllzed as 51gned
quantltles in the XPL program. - -

T U LTI T S QAU ST S S

3-17

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « {617) 661-1840 _

Data is isolated into the following categories
for later use by the 1108 MAP processor and collector:

. 1) initialized string data (all modes)
2) local data and literals
3) 1local string descriptors

4) global data (shared between co-resident
modules) .

5) global string descriptors

'6) common data (shared between both co-resident

and overlay mecdules)
7) common string descriptors - \

14, MODULARIZATION

Although the 1108 assembler is capable of assembling
very large source programs, there is a finite maximum
number of source cards it 1is capable of absorbing.

To avoid this problem, the XPL compiler was extended

to allow both EXTERNAL and ENTRY properties, permitting
intermodule communication. The global data declaration
facility can be used in conjunction with this facility;
if so desired. Although Phase I was only separated into
two major modules (scanning and analysis}, it could
easily have been modularized to the point where each
procedures was @ separate compilation. More importantly,
however, this facility can be used to group mutually -
exclusive collections of procedures to generate an overlay
structure, should space limitations become a serious
problem. (The 360 implementation has the advantage of
growing into any size partition the host operating
system will allow). ‘

3-18

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

3.3 Implementation

Implementation of the HAL 1108 compiler followed
the procedure described in Section 3.1 and used the
guidelines of Section 3.2. The tasks follow in almost
a straight chronological flow from the start of the
effort through final delivery.

1. Design of the 1108 code generator that described
each of the XPL constructs and their equivalent
on the 1108 was undertaken. These followed the
1108 guidelines described in Section 3.2,

2, XPL was rewritten to produce 1108 assembly language

' " and the 1108 constructs per the design guidelines,
This version of XPL was compiled and debugged on
the 360. '

3. ¥PL 1108 subroutines and supporting routines were
written in 1108 assembly language and assembled for -
the 1108, This involved conversion routines, character
handling routines, and input/output routines, both
sequential and direct access. These were programmed
and debugged on the 1108, both at Intermetrics, Cambridge
on a rental 1108, and at MSC in Houston.

4. When the 1108 XPL was thought to be producing reasonable
code, the 1108 assembly language out of the 360 was
taken to the 1108 where it was assembled, loaded, :

and debugged on the 1108. The result was that several
simple XPL programs, such as ANALYZER, could be compiled
on the 360 and executed on the 1108. :

5. At this juncture, the XPL compiler itself was fed
through the 1108 XPL code generator running on the 360
and the resultant assembly language taken to the 1108
added to the supporting routines and debugged on the 1108.,
When this was successfully completed, a working XPL
compiler had then been bootstraped from the 360 to the
1108. From this point on, XPL programs could be compiled
as well as executed on the 1108.

_ 3-19
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

v—

6. Work that had been proceeding on the HAL pass 2
code generator to produce 1108 FORTRAN was not a
large effort since a great deal of attention had
been paid in the attempt to conform to ANSI standard
FORTRAN. However, there were a number of differences
and in particular, the data organization had to be
changed to reflect the word size, and word structure
of the 1108 versus the bit oriented 360. However,
this was accomplished during the XPL development
process.,

7. Work commenced on the 1108 HAL support routines.
These included the usual HAL supporting and library
routines, such as the vector/matrix package, the
math routines, the character routines, post-mortem
dump, and input/output. Most of these were written
in FORTRAN and therefore the transfer was accompllshed
ea::J.J._y HUWCVGJ_, thl:J.c wWerg a n‘..L"“.b‘"" r\'F f‘hangﬁq-
especially in any area where the data had been packed
for efficiency reasons, or for-address constant
restrictions on the 360 (i.e. LOGICAL=*l, INTEGERx*2).
However, the sort of changes that were required could
be and were done in a systematic method. Some routines,
such as character handling, had to be changed drastically.
However, the resultant changes effort required was
much smaller due to the FORTRAN than would have been
otherwise.

8. At this point, work had to begin on HAL Pass 1 and Pass
2 to make them compatible with 1108 XPL, In particular,
a number of minor changes were required, such as the use
of hex constants for negative values in certain areas.
But, beyond these minor fixes, the major cause for re-
vision was the different data structuring regquired in
the 1108. 1In particular, large tables which had bheen
8 bit quantities in the 360 had to be re-analyzed to
see if they would fit in to 6 bits or 12 bits on the
1108, which were the quantums of memory that could be
dealt with directly. The same held true for 16 bit data,
to see whether it could be reduced to 12 or had to be
increased to 18 bit. XPL 1108 had already been written
to permit packing of these different tables into the
same words on the 1108, which was a necessity because
of the indexing on a word oriented machine. This proved -
straightforward in an XPL 1108: however, initialization

. of this data area was a troublesome problem., Nevertheless,

3-20

INTERMETRICS INCORPORATED - 70t CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

workable techniques weré devised and implemented:
The reguirements for this data packing came about
because of the size restriction on the 1108 HAL
compiler., Only about 53,000 words of memory were
available to a user program under EXEC 2, the
operating system which as all there was for a given
pass, such as pass 1 and included the area required
for code, data, buffers, and free string area. It
was a fairly tight requirement compared to the 360
memory availability. It was readily achieved. The
key ingredient in this success of the process to
shoe-horn the HAL compiler onto the 1108 was the success.
of the 1108 XPL implementation. The design appears to be
a good one, and is implemented efficiently on the 1108.
The measure of the 1108 XPL design efficiency, the
- number of instructions required for the same pass 1
of the compilers was reduced from approximately 45,000
on the 360 to under 30,000 on the 1108. And, this o
under 30,000 figure included about 4,000 words of
address constants, which were not required on the 360,

9, Finally, pass 1 and pass 2 were compiled for the 1108,
The results assembled using the 1108 assembler, they -
and their library routines were loaded and executed
and debugged on the 1108, When this process was
successfully completed, HAL programs could then be
compiled on the 1108,

10, The compiled HAL programs produced 1108 FORTRAN which
wags fed through the 1108 FORTRAN compiler and combined
with HAL 1108 support and library routines written in
FORTRAN for the most part, but some assembly language,
{see item 3 in the list) the combination lcaded and
executed on the 1108. Successful completion of this
phase of the process was that HAL prceograms cculd then
execute on the 1108, thus terminating the move process.
HAL was thus a totally independent and operational
compiler system on the 1108. A number of HAL test
cases were successfully compiled and run on the 1108
and their result compared quite favorably with their
360 counterpart to within the accuracy supported by
the differences in the machines word length and data types.

3-21

NTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The HAL compiler that resulted from this effort,
the HAL 1108, with all things considered, was a very
good implementation of HAL. In many ways, it was
superior to the 360 implementation, faster and more
efficient than the 360 HAL. However, it never received
the amount of usage and exercise that was undertaken
using the 360 HAL. One reason for this is that the HAL
1108 was not completed until January 1973. By this time,
HAL had been picked for the Space Shuttle. Shuttle work
had begun in earnest, and the definition of HAL/S was
already undertaken. None of the .Shuttle contractors
had an 1108 whereas all of them have 360's. JSC did have
1108's that had already done much of its Shuttle work
using other methods, were committed to other approaches.
However, this does not detract from the intrinsic merit
of the HAL 1108 compiler. Much was learned from the
process of moving compilers from one machine to another
(e.g. the essentials of maintaining transferability), and
from creating a machine language code generator for 1108 XPL,
(e.g. the design problems of two guite different type-
instruction architectures). It was learned from these
processors that they should find their way intoc better
compiler and code generators for HAL/S on the AP-101 and
360's, and any other possible HAL/S compilers that might
be undertaken in the future.

3-22

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4. HALM IMPLEMENTATION STUDY

ThlS study was for the development of an 1nstructlon
architecture to support HAL/S and the investigation of
micro-processors in order to implement the resultant archltecture.z
The results of this study 1nclude

1) The investigation of addressing structures for
the support of higher order language instruction
architectures;

.2) the results of a partlal implementation indicating
POSSlble modifications to HAL/S and desirable
medifications for a support mlcro—processor,'and

3) =a comparlson of the initial instruction archltectures

code size with respect to current instruction
architectures.

4-1

NTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

' Table of Contents for Chapter 4

'4. HAIM IMPLEMENTATION STUDY
Table of Contents

4.1 Introduction and Overview
4.2 HAL/S-HALMAT-HALM

4.2,1 Design Methodology
. 4,2,2 Initial HALM Design
4,2.3 Separable Implementation Issues of
Instruction Architectures

4.2.3.1 Control Seguencing

4.2.3.2 Data Addressing

4.2.3.3 PFunctional Transformations
4.2.3.4 Data Representation

4.2.3.5 advantages of Separation of

Issues
4.3 BAddressing

4.3.1 Importance of Addressing
4,3.,2 Data Addressing

4.3.2,1 Super Compilation Data versus
Compiled Data

4.3.2.2 Statically Declared versus

. Dynamically Declared

4.3,2,3 Formal Parameters versus
Declared Data

4.3.2.4 Name Reference versus Value
Fetch

4.,3.2.5 Name Scope Properties versus
Homogeneous Treatment of Data

4.3.2,6 Formal Parameters versus Scoped
in Data versus Locally
Declared Data

4.3.2,7 Solutions to Addressing

4,3.3 Addressing with the B1700
4.3.4 Useful HAL/S Statistics

4.4 Micro~Processors
4.4.1 History of Micro~Programming
4.4.1.1 Systematic Hardware Design
Manufacture Cost Savings

1.2
1.3 Maintenance of 014 Software
4-2

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

Page

4-9
4-16

4-22
4-22
4~23

s }
4~-23

4-24
4-24
4-25
4-25
4-31
4-31
4-32
4-33
4-33
4-34
4-35
4-35

4-37
4-43

4~45
4-45
4-46

4-46
4-49

{617) 661-1840

Special Slngular Users,

4,4.1.4
4.4.1.5 Current Mlcro—Programmlng Usage
4,4.2 Important Micro-Processor Design Issues
4.4,2.1 Horizéental Versus Vertical
Micro Encoding
4.4.2,.2 Degree of Parallelism
4,4.2.3 Bit Testing and Field
Extraction
4.4.2.4 Sequencmng
4.4.3 Micro-Processors Under Consideration
4.4.3.1 The Nano Data QM-1 [Nc 71]
4.4.3.2 _Burrough's D-Machlne [Bl 701
4.4.3.3 The IBM AP-101 -
4,4,3.4 The Burrough's Bl700
Implementatioﬂ
4.5,1 B1700 Emulator Environment
4.5.2 TImplementation Structure
4.5.3 Implementation Examples
4.5.3.1 FETCH Routine
4.5,3.2 1LTS4 Semantic Routines
4.5.3.3 LOR Semantic Routine
4.5.3.4 Routine Implementation

4.6.1

- HALM and B1700

HAL/S

Mutual Reflections

Ability to Implement a HALM
Modifications to HAL/S

beficiencies

Possible Modifications
General Micro-Procegsor
Characteristics

- 4-3

JTERMETRICS INCORPORATED - 701 CONCORD AVENUE -CAMBWDGE,MASSACHUSETHSONBB-

4-55
4~60

4-61
4-63

(617) 661-1840

4.7 Statistical Results . 4-103

4,7.1 Useful Measures for Comparing 4-103
4.7.1.1 Execution Time 4-103
4,7.1.2 Memory Reguirements 4-104
4.7.1.3 Ease of Use 4-105

4;7.2 Methods for Quantifying Instruction
Architecture Comparisons 4-106
4.7.2.1 Method of Benchmark Programs 4-108

4,7.2.2 Modified Wichmann Approach
[sa 72] _ 4-111
4,7.2.3 Wortman's Approach 4-114
4,7.3 Comparisons of Architectures , 4-117
4.8 Supra-HAL/S Usages . . ' 4-118
4,8.1 Language Features and Routines 4-118
4.8.2 Executive Usage of Micro Code 4-120
4.9 Conclusions and Recommendations _ 4-122
4.10 Bibliography and References ' 4-125
Appendix-izr HAL Programming Example 4-129
- Appendix 2: Initial MP Instruction Architecture '
Coding Example . 4-143

4-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4,1 Introduction and Qverview

Higher order languages have been accpeted in
recent years as the proper method for programming
software projects. HAL/S is to be used in the Space
Shuttle program for the coding of the actual flight
computer. While the advantages in software cost savings _
with the use of higher order languages has been well known
and documented [Bo 73, Ca 68, Co 68, C6 69, Gr 701, "there
has often been the fear of a corresponding hardware penalty..
The argument has often been receited that a higher oxder
language generates inefficient machine instructions. The
natural result of this consideration and the
insentive to use higher order languages, has been
the development of various machine instruction
-architectures which are directly oriented towards the
hlgher order language(s) being implemented. This problem
is most acute in the aerospace industry where efficiency of
memory usage not only correlates to dollar cost, but also to
weight, physical size and power consumption. Thus,-an-avid_-
interest in higher order language instruction architecture
has occurred in this industry [Co 72, Ke 70, Kr 70, Mi 72,
Ni 72, We 71]. :

While it was admitted that an'instruction,architecture
oriented towards a higher order language provided for efficient
code generation and execution, it was sometimes questioned

as to whether this was accomplished by an undue excess in- -hard-

ware size and complexity. Results of the micro-program
implementation. of the SUNY at Buffalo's BSM instructioni -
architecture [Lu 72, p. 15] on the QM-1 micro- processor
shows that the only "complexity” in inmplementation is

in the address (GEA: get effective address) routine. But, .
if the support processor aids in the function required, even
this is not complex. The results of encoding higher order.
language emulators and second generation instruction
architectures on the B1700 which have been reported by

W.T. Wilner [Wi 72c] indicate that the number of bhits
needed to encode their respective instruction archltectures_
is ‘equivalent. Wilner's results lead him to claims

4-5

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

HAL/S MICRO-

PROCESSORS

HALM
SPEC | _ 31790
IMPLEMENTATION

'+ general design
+ detail investigation

HAL/S versus B1700
. CONSTRAINTS

HAL/S limitations
address limitations
mods for the Bl700
tradeoffs

Btatisticg HALM/Convential/Ideal

Statistical Results

SUPRA HAL FEATURES
* language features -
« poperating system .

Figure 4.1-1: Study Summary

4-6
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

© "No matter what one is emulating,
whether it be a second-generation ---
computer, a contemporary . program-~
ming language, or a futuristic -
abstract machine, one's interpreter
tends to contain 28,000 bits of code
for virtual hardware and from 5,000 -
to 25,000 bits of debugging aids
{e.g. trace, dump, symbolic modifica-
tion of memory) .
: : : [wi 72¢, p. 105]

The purpose of this study was basically two
fold. First, it wasto develop an instruction architecture
suitable for the efficient 1mplcmentatlon of HAL/S
Secondly, it was to investigate mlcro—processors in order
“to determine and then use a suitable micro-processor
" for the implementation of the. resultant HALM ingstruction-
architecture.

Figure 4.1-1 gives a diagram of the work performed
to accomplish this study. Section 4.2 will discuss
the relationship between HAL/S, its intermediate language
HALMAT, and develop an initial architecture for a HAL
machine, HALM. Section 4.3 will indicate the importance
of addressing considerations in the development of instruc-~
tion architectures and analyze the requirements made by -
HAYL/S upon any proposed implementation methodology. It
is partlcularly in this area that both incremental improve-
ments and major reorientations to instruction architectures may
accur. Section 4.4 will discuss the major areas of design
differences of micro-processors, provide a description of
the various micro-procesosrs under consideration, and indicate
the choice of the B1700 for this study. Section 4.5
will give the results of the partial implementation. of the
modified HALM instruction architecture on the B1700.
“Section 4.6 will discuss the results obtained from the
implementation with respect to desired modifications in
both the HAL specification and in the support micro-
processor. Section 4.7 will discuss the meaning of
" comparison between various instruction architectures, methods
for performing such a comparison, and will give a brief
comparison between HAL/S code generated for the IBM 360,
AP-101, and the initial HALM instruction architecture.

47

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACRUSETTS 02138 » (617) 661-1840

Section 4.8 will indicate other areas besides the HAL/S
instruction architecture where a micro-processor capability
is of use. Section 4.9 will provide a brief summary and
.conculsions of the study, Coee e s

Two appendlces are also included with this Chapter.
Appendix 1 gives a HAL/S program example and the code generated
for it on both the IBM 360 and AP-101. Appendix 2 contains the
same HAL/S program example encoded in the initial HALM instruc-
tion architecture. Included in Appendix 2 is a state-
ment for statement comparison of the code generated for the
program for each of the three instruction architectures.

4-8

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617} 661-1840

4.2 HAL/S-HALMAT-HALM

One of the major tasks in thlS study, - and that
which forms a basis for the remainding tasks, is the
development and designation of an 1nstructlon architecture
for HAL/S implementation.’

Under contract to NASA/JSC in 1972, Intermetrics
developed an instruction architecture for HAL implementa-—
tion as part of its multi-processor design. Chapter 2 of
the fimal report of that contract [Mi 72] discussed in
detail the design rational and methodology along with the
resultant instruction architecture.

4.2,1 Design'Methodology

The methedology used in the development of a hlghers
order language machine is graphically represented in
Figure 4.2.1-1,

The desire to use a higher order language is now
a commonly accepted idea at NASA. The advantages of
documentation, communication, maintainability, shortered
programming time, fewer conceptual errors, no machine
oriented errors and ease of learning have all become self
apparent., HAL/S is now being used to program the Space
Sshuttle computer. Having accepted the use of a higher -
order language, the next step is to implement it efficiently.

In the aerospace community in particular, there is

the requirement to have efficient execution. In particular,
- memory is costly, power consuming, weighty and physically
large., But it is also true -that the aerospace environment

has many aspects which do not bear directly on the design of

a general computer. Some of these aspects include the
assumption that the architecture can be tailored to a single
language or at least a similar family of languages. The

actual use of an aerospace computer also facilitates the
assumptions that it has a relatively small memory size, and
that there exists reasonable limits upon the complexity of

the operating system environment with respect to the number

‘of processes in existance. Similarly, the addressing spaca =
can in general be considered to be smaller than on a commercial
computer since there is a pragmatic limit to the number of
variables in use. Memory management often can be accompllshed
in a relatively static fashion since telemetry and hybrid
simulation requirements often can make mandatory a correlation
between the physical address and the logical entity; rellablllty
con51deratlons often prohibit the free use of secondary

4~9
T INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

DESIRE FOR A HOL

DESIRE TO EXECUTE THE HOL
EFFICIENTLY

SEMANTIC CONCISENESS

MACHINE CONSTRAINTS OF THE HOL

“LOGICAL CONSTRUCTION FOR
EXECUTION

FEEDBACK TO LOGICAL PG THTO PHYSI
CONSTRUCT 10N i SPAgz INTO PHYSICAL

DESIGN AND IMPLEMENTATION OF A HOLM

Figure 4.2,1-1

4-10

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (517) 661-1840

H INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

storage. The result is to eleviate many of the problems
.found when dynamic address management is required.

An efficient implementation of a higher order
language instruction architecture has two aspects. One
is the problem of forming a concise logical representation
of the HOL. The second problem is to do this in such a
way that it can be implemented in a cost efficient manner.
Tt is this second constraint, the understanding of current
technological limitations and the availability of support
- micro-processors, that limits the capability of a logical
instruction design. Thus, for example, the arithmetic
data type formats supported by a language are usually
driven by the hardware available with the computer upon
which the language is implemented.

On the IBM 360, HAL/S supports 32 and 64 bit
floating point scalars. If it were implemented on another
machine, such as the B6700, it would be supporting 48 bit
floating point scalars. Indeed, on the Singer SKC-2000, although
it has 32 bit floating point capability, this is of a different
format than that of the IBM 360. Similarly, the guantum of
data which is easily manipulated, and thus, e€fficiently
supported by a language on any given processor varies,
The IBM 360 supports addressing easgily to the 8 bit byte
level. The IBM AP-101 supports addressing only to the
16 bit half word level. Other computers support 18 bit
units or 24 bit units. These data widths in turn tend
to force design decisions upon an instruction architecure.
Thus, for example, descriptors would be given but a single
length such as 32 or 64 bit widths. If more information-
need be encoded, then multiple descriptors of this basic
unit length would be used., And indeed, this form of machine
constraint was a major driver in the handling of multi-rank
descriptors in the HAL. instruction architecture [M1I 72].
It igs to be noted, however, that all of these particular
" machine constraints are not now inherent in current
technology. For example, the Burrough's B1700 supports
bit addressing of memory with (basically) any bit field
width; and similarly it is possible with the B1700 to
execute arithmetic data efficiently in varying widths.

4-11

(617) 661-1840

HAL/S
REORDERS TO PARENTHESES FREE FORM;
PERFORMS SYNTACTIC AND SEMANTIC VERIFICATION;

Y -
HALMAT
FORCES INTO A “SEQUENTIAL EXECUTION FORM";
ATTACHES AN ADDRESSING STRUCTURE;

Logical. HALM

LIMITS ADDRESS SIZING;

PROVIDES DATA REPRESENTATION;
PROVIDES ACTUAL BIT REPRESENTATION;

PHYSICAL HALM

Figure 4.2.1-2: The Steps of Translating HAL/S to
an Implemented HALM

4-12

Figure 4.,2.1-2 is a slightly different representation of
this critical step in the design process. FBAL/S is the
.language to be implemented. There already exists an
intermediate language for code generation called HALMAT.
The object is to first take the intermediate language HALMAT
and make it into a logical design for a HAL machine., It is
this step that takes into consideration the real world of
current technolegy and available micro-processors.

The translation from HAL/S into HALMAT accomplishes
several purposes. First, it reorders the HAL/S language
from a parenthetical language into a parenthetical free
notation. Effectively, this is a reordering of the code

- which places operators and operands into a sequential form, a
.polish notation, so that each particle is meanlngful In
the process of performing this reordering (iﬁe,.parsing)-
the compiler has also performed syntactical verification
and then performs appropriate semantic verification.

Figure 4.2.1-3 represents-such a translation from HAL into
HALMAT,

The translation from HATLMAT into a logical HALM
again accompllshes several purposes. The current technology
in general requires that an instruction' stream be of a single
instruction single data form (SISD). That is, a single .,
operator is executing at any given instant upon a single
object {perhaps of several operands). This is to distinguish
between, for example, array processors or tree structured
execution [refer Mi 72,pp. 25-28]}. 1Included in this considera-
tion of arranging the code for proper execution would be making
explicit all the required operands. Thus, DO FOR...END;...
statements needs six operands: the iteration variable,
the initial value, incremental value, limit value, and the
next instruction address within the loop, and the next instruc-
tion address when the loop is finished. This sixth operand,
for example, is not rectified in just the HALMAT, It is a
pragmatic concession to machine efficiency that it is included .
with the operation. For example, when the loop is finished
it would be possible for the processor to keep reading each
instruction (and performlnq a NOP) within the DO block, until
the END statement is located.

4-13
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE : CAMBRIOGE, MASSACHUSETTS 02138 - (617) 661-1840

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

assignment with terminal subscZzipting .

{

DECLARE V VECTOR (6),

receiver
subscripting

- -

J (note 1.}

matrix _
subscripting:
\, : .
row then

column

vector

>subscripting

assignment

M MATRIX (7,4):
Vieo 3= M3 ap 4,2 % V4 g0 67
: : ! t
: 1 T/, i
/ 5
1 /f’ ///r/ 13 ;/,/f// @ || | sMRK
b f; / ¥ H
g St 11A 1 RALC.
AR zZZZ 21N
3 1 poanoy| 3 | 1 i;mn 71 |a | TTse
£ Ty A 1
//, i // P
4) _,‘,3!,_{,,; //)j,//f './,;; A | ALCE
R ' 3 R T]
5 4 g/-"/:sm r,//, // A) ALC
1 R4 f g]
1 4 P e vl .
6 IR (111D :? ! 2 iLIT 7 | ! TASB
i .(-"‘ s f i’ _, - = i 0
24| 2 | Ty, /| {a 1 TIDX
: __% o _»i . A L 4 vd i
8 | [t a2l) o "J’ f"/ V)| prcs
~ _Jl'//-! * /:/i ."'/;"//' ' F o . }
wil & “hmmof} 6 1 tmmp|[7~1|ay TTSB
1’ "1 s] ey 1
; } // ,_J—‘E.r L B S Iy s i
s C gy e ; . :
1 '/ /1 ’”‘ Lo /C:’_:",’ ’_:i/"f & f// : ; AJ.:'CE
12 5 i /} VAC 9 },/; vac{ . |18 | VADD
13 2 lvr.c 12 IW'_,QVAC g |2 | vasn
1‘ i | 1
| 1 T i f
: |
Notes:
1. It is difficult to predict the order of emission of

the subscript constructs for dltferent variables in
the same assignment.

[Ti 71]

Figure 4.2,1-3

4-14

NP

REPROBUCIBIL ITY
OF
RINAT, PAGE IS poé}i‘ .

The other main function that is performed by the
translation between HAILMAT and the logical HALM, is the
attachment of an addressing strucdture. HALMAT refers to
variables via symbol table reference and their value
space does not in reality exist: only the requirements
for it are described within ‘the symbol table. And as

- was seen above, there are various flow addressing gquestions
to be resolved. The question of addressing at this point
can change the design drastically. It is possible to support
a tagged, stack oriented architecture or a normal Von-Neumann
architecture or any point in the spectrum between them.

Both Figures 4.2.1-1 and 4. 2.1~2 indicate there is a
final translation between the logical HALM design and its
physical implementation. It is during this last translation
step -that the final constraints are placed upon the use of
the higher oxder language. It is here that physical limits
are placed upon the addressing capabilities of the design,
the number and type of data operands and the flow addressing
capabilities. For example, it would be possible to keep the

. same basic design of the AP-101 yet reduce its displacement
fields in SRS instructions from 56 to 48. Or, it would be
possible to add a new: addressing form allowing 32 bits of
addressing space, i.e. a 3 half word instruction with 2
half words of addressing. In the case of a higher order
language architecture, these limitations could either be
in the field sizes or, indeed, the number of different formats
made availlable,

In general, the implementation on a particular processor
forces the exact data representation upon the implemented
language. The processor effectively defines the size (16
bit, 32 bit, ...),'the.representation (sign magnitude, 2's
complement, ..., ASCIY, ...), and restrictions (only single
precision) upon the languages data formats. And, of course,
the physical implementation places an actual bit representa-—
tion upon the operators and operands,

Figure:. 4.2.1~1 has one further line in its graphical
representation. This is the feedback from the physical
implementation to the logical design. This represents both
the continual improvement possible with the gathering of
actual statistiecs, and the discovering of problem areas in the
logical design.when the instruction architecture is actually
used.

_ Further details on d951gn methodology with examples
may be found in Chapter 2 of Mi 72,

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184

4,2,2 Initial HALM Design

. The question of addressing structure is considered
to be both the most controversial and the most important
issue in the design of efficient HALM architectures.
Section 4.3 will go into more detail in the discussion of
this subject. Because of the interest in the addressing
problem, it was felt that an initial instruction architecture
must be choosen in order to pursue the micro-programming
implementation aspect of this study.’ It was therefore

- decided to use the instruction architecture developed by
Intermetrics in Mi 72 (designated MP) as the baseline

for micro-processor considerations, while at the same

time separately pursuing the design issues of addressing
and HALM modularity. The choice of the MP architecture

as the baseline was subject to varying degrees of modifica-
tion when first the micro-processor was choosen and then
comparisons were to be made. Section 4.2.3 will briefly
discuss some of the features of an instruction architecture
that are basically independent of each other, and are thus
subject to change without affecting the total design,

The MP architecture is basically a meodification of
the Algolish design of the Burrough's B6700. It consists
of a tagged architecture, stack oriented with a polish
- Instruction stream. The floating point data types of the MP
are of a compatible precision and range -as that of the IBM
360 and AP-101 however.

Figures 4.2.2-1 through 4.2.2-4 briefly summarize
this instruction architecture. Figure 4. 2.2-1 présents
the instruction set and is divided into their functional
categories, Figure 4.2.2~2 presents the special words which
are required for the addressing of both formal parameter and
flow control. Figure 4.2.2-3 presents the format of the
descriptors used within this architecture. Figure 4.2.2-4
represents the arithmetic data types as supported in the MP
architecture. It also indicates the transformation that.
takes place between its main memory representation and its
representation when residing in the stack.

. A full description of this architecture is to be found
in Mi 72 Section 2.4, pp. 88~156.

4-16

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Tt is to be noted that the MP architecture was-
predicated upon a syllabic orientation: that the implemen-
tation would operate with a preference for 8 bit bytes.
While this was a reasonable initial assumption, the B1700

~is bit oriented and does not require this orientation.

Thus, this machine constraint is removed when the B1700

is5 the host micro-processor. This would principally
have design repercussions in the various format constraints:

@ no need to have 8 bit gquantums for operators
e no need to keep addressing-Within 16 bit units

e no need to keep the arithmetic data types as
a multiple of 8 bit units.

‘The main effect upon the instruction architecture,
therefore, is with respect to the actual instruqtion
encoding and. data elements available for execution.

4-17

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661»_184(

L

OPERAND META-OPERATORS ARITHMETIC MANIPULATORS

FLOW CONTROL

8T-V

coPryY ADD JOT
GET SUB JOF-
ADR MUL JMP
ADRE DIV JCC m
CHSN PRCS
LITERALS : MKS
- LOGICAL MANIPULATIONS ENTR
LTS4 RTRN
LTS10 EQUL EXIT
LTS15 GREQ FOR
LT32 LSEQ .
LT32F SAME DATA FIELD MANIPULATION
LT64 * LAND - L
LTS 7M LOR INTT
LTLD LNOT INTR
LTLDX BSETL n FRAC
BRSTL n CCAT
NAME MANIPULATORS BCHGL n (. IT0C
_BTSTL n STOC
LOAD BSET CTOT
LDRX BRST CTOS
INDX BTRN ‘
LIM BLD m,n SYSTEMS CONSIDERATION
AROF BOUT m,n ;
BIN m,ns XCH
STORE : DLET
ARRAY AND MEMORY DUPL
STD NOP
STN STT IDLE
STDI STT3 HALT
STNI LDPR
BST m,n - - - STPR
STLD
f) \ » LDID .
Figure 4.2,2-1 ,Instruction Repertoire IPC n

* REPRODUCIBILITY OF ‘THE
ORIGINAL PAGE IS POOR

FEW Byte| £2| Entry Offseﬁfi;zgggéééyfSegment PTR
. ., //.)
5 6 . . 3 5 12 _ 12 20
REW . Byte| L4 Entry OxfsetWSegment PTR
5 6 3 5 12 1z 20
MSH % 22 -V//u Link PTR étack Link PTR
. (AP - . _ -
5 6 3 5 4 20 20
o | G722
ADY [/ /A ,‘ PTR
5 1 , ‘ .
PEW: Program Entry Control Word .
%: Lexical level of procedure to be entered
Segment PTR: Stack number-offset of program segment
Entry Offset: Double word offset within program segment to which
-, to transfer control
Byte: DByte identification within double word entry offset
REW: TReturn Entry Control Word _
L%: Lexical level of procedure when control is returned
Segment PTR: Stack number-offset of return program segment
Entry Offset: Double word offset within return program segment
' to which to return control
Byte: . Byte identification double word return entry offset
MSW: "Mark Stack Control Word _
2%+ Lexical level of indicated procedure ,
Stack Link PTR: Stack number-offset of previocus MSW .
L% Link PTR: Stack number-offset of previous lexical level MSW
ADW: Address Word)

A: Access Bit: either read/write or read only allowed
PTR: Address pointer in stack number-offset representation’

Figure-4.2.2—2» Special Words *W 'm,wm,q;

1 1e

LA 4

Tvpel M A‘D Ygfylnelgq Array Offset Liﬁit MOM PTR Copy
5 1.l1z2 12 12 ?0

B

Tvre{ Ay/AJ :"%P%W Langth MZ)MS Address dom

5 1111 2111 2 12 1z 20

Tyoe = Data Type Form:

ARA: elcht bit arithmetic array
ARlG: sixteen it arithmetic array .
AR32: "32 bit single precision f£lcating point array
ARG3: 63 bit double precision ficating point array
CHARS character array
PROG: code asegment
GEN: untyped descriptor

M = Copy Cescriptor {uses stack numbsr-offset pointers}
Mom Descriptor {uses ¥2/43 address pointers)

A = Bead/write acgess allowed from array

Read only allowed from array

Y » Singie rank array, no additional rank information present

¥ultiple rank array, more rank information follows
x = Compool hits:

00: Kormal non-Compocl
10: Compocl unreferenced
1l: . Compool refercnced

I = Delta, array offset, limit fields refer to (sub) arrays
Delta = 0; Limit = 0; Array offset = single element index’

Deltas Distance between slements in this rank
Distance in units of elemonts

Arrey offset = index into array cof first element of this rank;
In units of eclements starting at ¢

Litite Makimum limit for index into this rank in vnits of elements

Figure 4.2.2-3 Descriptors

MOM PTR = Stack number - offset of agsociated mon desc*iptor
P a Pregsence bit: either M2 or M3 address
R = Refer bit: segment has been referred to either by rending
writing into it ~
c = Changed bit: Segment has been written inté
CR = Critical information:
00: Hormal, one copy stored
XXz Critical, duplicate copies interleaved
11: Both copies good
Ql: "One" cory good, use this one
10r “Other" copy good, use this cone

Length = Length of segment in units of that array type ('critica]
dqpa segment twice as long as length indicates)

M2/M2 address = Physical address of the segnent

T .
3 : ‘ .1 | DP Floating
a3 I mantissa ' © g{Point - -
A : ' —— = , Stack and
il 10 ‘ ‘ - 51 ‘ ' 1 Storage
- ‘ : .
i t | {SP Floating
! 1 mantissa le| Point -
- 1 1 storage

\ T T
l-:rg,s 0 - l ¢ ... 0 ‘ mantissa k| Stack
I - 1 ! :
13 7 S 28 o 23 I |
| 7 1116 bit in-
" int. | teger or
{llogical
1 i
{ [} 1
0 1 0. ... 0 . | Stack
IR) l . s 1 .
1110 - 36 ‘ 15 1
18 pit in-
int &} teger oOr
— logical
TTT 1 o 1T
1 . !
dd 0 ' 0 - s a 0 L E StaCk
21 1 : — I '
11 10 44 - 7 1

Figure 4,2,2-4 - Arithmetic Type Formats and Mapping.
to Stack : o

4f2l

4.2.3 .Separable implementation Issues of Instruction -
Architectures .

Reflection upon HAL/S or otherihigher order languages
will show that there are several areas that are basically
independent of each other. These include the control
sequencing of the HOL, versus the data addressing
methodology, versus the set of functional transformations
(operators) of the languages, versus the data representa-
tion. It is easy to conceive that any one of these areas may
vary in their implementation methodology and physical
representation with minimal effect upon the other areas.

4,2.3.1 Control Sequencing. The method employed for

the implementation of the CALLs,-RETURNs, DO FORs, GO TOs,
etc,, must as a minimum reflect the semantics of the language
definition. If it is to be an efficient implementation, :
it should reflect the HOL structure, taking intc account

the properties of block addressing. It is also important
that the implementation be efficient with respect to

machine constraints and thus be able to be executed from

a local context.

One can conceive that a language such as HAL/S
could remove its- GO TO and implement a LEAVE .
Or it could modify its Procedure and Function and other
block structures. These would not affect the data addressing,
data representation or data transformation operations.

It is true, however, that the change of a tagged
architecture to/from a Von Newmann architecture can have
a drastic effect in data appearance since there is the
necessity for at least one bit of tag for-each data item
is not referenced through a descriptor. Even this, however,
is. an addressing problem and does not directly affect the
data transformations or their basic representation.

4-22

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4,2.3.2 Data Addressing. .The method used for data
addressing is extremely important if one is to have
an efficient HOLM implementation. The addressing of
data takes up the majority of bits in the instruction

~ stream in most architectures. Thus, improvement in data
addressing compactification can provide to be a dramatic
total space savings. But again, it is to be noted that
how one addresses data is basically independent of data
representation and the various data transformation operators.
The data addressing does not of necessity interact with
the control flow addressing, although they are usually
combined since a given instruction architecture tends to
have but one addressing methodology.

-Questions as to whether the architecture supports:

one or two dimensional addresses; whether addresses are of

a lexical level-displacement or base-digplacement form; whether

a single accumulator general register set, or stack exist;

or whether absolute, indirect, sectored or banked

addressing exists; do not prevent the implementation of .

" the language. The guestion again is one of efficiency and

design cleanliness.

-4.,2,3.3 Functional Transformations. From examining a higher
order language such as HAL/S, 1t is readily seen that one
could change, add or delete,the set of operators that
perform the data transformations. One could have the exact
same . set of control instruction and yet remove arithmetic
operators and provide list structure type manipulation.
"Similarly, how one addresses the data, or the exact.

details of the data representation,do not overly affect

the concept of add, multiply, etc.

The actual implementation of a given transformation
cperator will, of course, be dependent upon the actual data
representation. But, during implementation, this is isolated
into a subroutine. That is, when the "operator" is decoded,
control is transferred to the appropriate micro code routine
to perform the semantics, e.g. add. Thus, while the routine
may change, ‘it does not effect the overall structure of the
micro-program implementatiocn. -

: 4-23 . -
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.2.3.4 Data Representation. It is obvious that the
detailed data representation is basically independent

of the other three areas. Indeed, often the data size,
precision and range are not even defined within the higher
order language other than by some vague concept such as
SINGLE and DOUBLE precision.

This then is an area that can easily be modified
in design for purposes of comparison of hardware restric-—
tion.

Whether an integer is represented in binary by
sign magnitude, one's complement, two's complement, or is
16 bits, 24 bits, etc.; or even represented in a decimal
format, the value has an identical interpretation. Three
plus four is still seven: Add has a definite meaning.

4.2.3.5 Advantages of Separation of Issues. By under-
standing that these basic implementation 1ssues are
separable, it is possible to investigate the effects of
modifying one particular area. Also, it then becomes
possible to perform meaningful comparisons with other
architectures, where for example, the data format is already
specified. Also, when viewed in this manner, it becomes
clear that the emphasis for improvement falls upon the
addressing structure both for control flow and data
addressing.

4-24

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.3 Addressing

The importance of addressing in an efficient instruction
architecture design cannot be over empha51zed.' The memory
used for program code is dominated by the addressing fields.
The efficiency of execution of a HOL program depends upon a
clean implementation of the addressing structure. This
section will discuss the importance of addressing, the
requirements which are placed upon any addressing design
for BAL/S implementation, an ideal encoding of this
information, and the requlrements for HAL/S usage statistics
in order to form the basis for the proper encoding. A large
amount of time was spent on this task during the study.
While the method of optimal address encoding is clear when
thought about (Section 4.3.3),. this is but one aspect of
the HALM development. More fundamental is the process of
trying to understand the addressing options available in
the aerospace environment and their effect upon execution
efficiency. While various avenues were investigated, any
conclusion must be reached when HAL/S uger statistics bhecome
avallable. :

4,3.1 Importance of Addressing

When trying to compare instruction architectures
it is very useful to separate the data space requirements (D)
from the program code requirements (P). The total memory
requirement (M) being the sum of the two. :

M=PFP+D

Regardless of the instruction architecture, a first
approx1matlon is to assume that the data representation
must remain similar. While this is not always true, and
indeed integer arrays may be greatly improved upon, the bit size of
arithmetic data and character representations are usually
based upon outside reguirements, such as required precision.
It is therefore in the program code where most of the memory
savings must be found: In the aerospace industry, this is
‘particularly evident since program mewmory reguirements are
often two, three or more times as large as that of the data
memory requirements.

4--25

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

BASIC INSTRUCTION FORMATS

[EZI NS | B
10 :;GI!‘:.:: "ll BTQRAGE ’ ‘
poren | R | |
=T xl =] |
r ™ “::‘:“u!u 1w o nl I
hsromar 1Y | e |
[own [n o] =]]
!n "[m::;.r:i“ mnsmm: .n| l
SF FQRMAT 2 , OpERAD | 1
i OF CODL ["; } Bl D] ‘
lo 11 u?n B2 . nl . | !
‘ :srmmr &—‘: 7 ! op:i.\:.u { oPFhAND [
I O Y D O DY R
* Number of Operator Operands
Format Bits bits | percentage |bits |percentage
RR 16 8 50% 8 50%
RX 32 8 25% 24 75%
RS 32 8 25% 24 75%
SI* 32 8- 25% 1 24 75%
sg*t 48 I 16 2/3% | 40 83 1/3%
bits per jpercentage
* Two memory operands format‘loperand " | per operand
present: SI 12° -} 37 1/2%
SS 20 41 2/3%

TERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

1t Length fields could p0351bly be considered
as part of operator,

- =

IBM 360 Instruction Formats
Figure 4,3.1-1

4-26

(617) 661-1840

RR Format

o § 0 . ' ‘ : ' S
op R1 “tel R2 Y- e -
P Pl blbrblel®) 1]
g 4 5 7 8 1171213 15 -
SRS Format
op i Disp® 62 *Displ £ the form 111XXX tyalid,
a T a nol vali.
l i 1 l l ‘_ l l l ’ l } l 5P cemen 5Q e .orm re .
o 45 7 8 13 14 15
RS Format
: Tr —
Qp R1 Pl 87 ~ Address Specification)
LIt Loy o jrpiprpax) g ol- [T T 0 N VO T T Y L OO
@ 4B 7 8 . 111213141518 - : 31
umber of | Operator Operand u
Pormat Bits bits |percentage | bits |percentage
RR i6 10 62.5% 6 37.5%
SRB* is6 ‘ 5 31.25% 11 68.75%
RS 32 10 31.25% | 22 68.75%

* Not quite 11 bits,$ince only 56 displacements used.

Actually: log2 56 = 5.8;: thus, 5.8 + 5 = 10.8 bits,

IBM AP-101 Instruction Format .

Figure 4.3.1-2

4-27

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

CUBES

HAL/S PROGRAM EXAMPLE RESULTS

{refer

IBM 360 encoding:

Number of Bits _
Percentage of Total

AP-101 encoding:

Number of Bits
Percentage of Total

to Chapter 4, Appendix 1}
~Total Address Opcode
2800 2144 656
100% 76.5% 23.5%
Total Address Opcode
1888 1298 590
100% 68.7% 31.3%

AP-101 encdding compared to the IBM 360 encoding:

Reduction in Bits

Reduction Percentage

Relative Size of AP-101}|

Bit Savings compared to Total program size;

Fraction
Percentage

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Comparing Comparing Comparing
Totals Address Opcodes
912 846 66
32.6% 39.6% 10.1%
67.4% 60.4% 89.9%

~ Total Address ‘Opcodes

Savings Savings Savings
912/2800 846/2800 66/2800

32.6% 30.2% 2.4% |

Figure 4.3.1-3

4-28

: An investigation of the program memory usage itselfl’

< leads to the differentiation between operators and
operands. That is, the opcode fields (0) versus the
addressing fields (A). ‘

P=10+A

An examination of the IBM 360 instruction formats (Figure
4.3.1-1) show for the RX, RS and RI formats the opcode
field constitutes only 25% of instruction, while the
address field(s) contains the remaining 75%. [Qualifica-
tions of understanding can be made: . the register field

is a second operand, but will be here considered as an
"implied" operand; indexing is here considered part of

the operand specification rather than as an operator]. It is
"easily seen therefore, a savings in the address field
representation can easily have a large impact upon total
memory savings. '

The IBM AP-101 instruction architecture design
recognized this large bit representation dedicated to
addressing., Its instruction compactification, to a large
degree, depends upon having a short memory reference form.
Assuming that these instructions are used with a high
frequency, the total memory requirements for a program
can be appropriately reduced. Figure 4.3.1-2 shows the
'AP-101 formats along with operator and operand break down. .
Even here, the addressing information dominates, except.
for the RR instructions.

Appendix 1 contains a HAL/S program along with both
the IBM 360 and AP-101 code which is generated for it.
Figure 4.3.1-3 summarizes the results of this example.
There is a substantial reduction of the program size from
2800 bits for the IBM 360 down to 1888 bits for the AP-101.
But when this is examined in detail, it is seen that while
the addressing bits were reduced by 846 bits, or 39.6%,
the opcodes were only compactified by 66 bits, or 10:.1%. .
Even this reduction of the opcode fields is not reflective
in the total program size reduction. Since the opcode
fields formed but a small percentage of the bit space
initially, its contribution to the resultant code compacti-
fication is only 2.4%! Sixty six bits cut of the total
2800. Of the total savings of 32.6%, the address field

4-29

i INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIODGE, MASSACHUSETTS 02138 - (617) 661-1840

i

reduction contributed 30.2%. The reason, of course, is
that even in the AP-101, the address portion of the
program is 68.7% of the total while the opcode portion
is only 31.3%. Even a small reduction in the address
field size has a large effect upon the total reduction.

while the AP-101, for example, has been able to
reduce the address portion of the instruction from the
IBM 360's 76.5% down to 68.7%, it is still apparent
that addressing considerations dominate. Indeed, it is
very easy, given user statistiecs, to Huffman encode the
opcode fields very efficiently, but addressing must also
reflect a spectrum of capabilities. It should not be
so tailored to a particular set of programs or users
that is becomes inefficient in other cases. Because of
this dominance of addressing in efficiency considerations,
considerable time was spent investigating and analyzing
various methods of address implementation in instruction
architectures; the requirements that HOLs, HAL/S in
particular, place upon address mechanisms if they are
to be efficient; and the actual encoding techniques
available for optimal encoding once the addressing
methodology has been choosen. .

4-30

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.3.2 Data Addressing

The forms of addressing required to access data

‘referenced in a HOL (HAL/S) can be examlned from several dlfferent

p01nts of view.

* Super compilation data (COMPOOL) versus compiled
data

* Statically decléred.versus'dynamically‘declared'
Formal parameters versus declared data
'+ Name (address) reference versus value fetch

-+ Name scope properties. (locallty) versus homo-
geneous treatment of data

- Formal parameters versus scopped in data versus
locally declared data

Each of these different attitudes indicate the wvarious

characteristics of data which must be resolved in the code

generated by a HOL. In order to create an efficient machine

for the execution of a HOL, the semantics of the language must
be considered along with a model as to the ‘actual usage of the
language. ‘That is, while an instruction architecture such as

- the IBM 360 is capable of implementing an(y) HOL, it is 'in
_ general very inefficient in doing so. While the semantics

of the particular HOL can be implemented, both the instruction

architecture of the IBM 360 itself and the lack of a model

of the proposed language usage,;cause 1neff1c1ent 1mplementa—

tion of the language.

4.3.2.1 ‘Super Compilation Data versus Compiled Data. Data
at a COMMON or COMPOOL level exist outside of any given
single compilation. The data is to be referxenced (by
definition) by several different compiled units. It is
only at link edit or actual run time that the environment
of the generated code is known. It is only after the

COMPOOL has been "linked" to the compiled unit (s) that actual

referencing (addressing) of data is completely. known,
From a pragmatlc point of view, this has two major implica-
tions for an instruction architecture. The first is that

- the Compool data cannot be massaged by the compiler. It
cannot be sorted by size or frequency of reference or homo~

4~-31

tNTERMETmCSINCORPORATEDf?O1CONCOﬁDﬂNENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

geneously addressed as other compiled data might be.
Since the Compool is to be referenced by multiple
compilations, its data must be referenced by each compila-
tion in a set standard way. The second implication is
that the actual physical addressing of a Compool cannot
be "complete" until either.a link edit step or at run
time. While the Compool is logically addressible, its
actual memory residency is not known. Thus, for example,
the Compool could be considered to have, of necessity, a
different memory "relocation factor", than dces that data
which was known in the compilation step.

4.3.2.2 Statically Declared versus Dynamically Declared.
Ideally, storage allocation would follow the semantics

of language definition both explicikly (static versus
automatic) and implicitly (the life duration of a process
‘or procedure}. Pragmatically, the data storage policy is
often otherwise. 1In aerospace applications, it is often
useful to have information be truly static regardless of
how it is declared., This can facilitate both hybrid simu-
lation and testing, and provide a "down link" capability
for further analysis. However, if procedures are elther
re&ntrant or recursive, this is not often viable,and true
automatic storage need be provided.

: Another static/dynamic question involwves the guestion
as to when data memory is allocated to a process. This
‘question also involves the decision as to how storage is
allocated. That is, is it allocated as‘'a single contiguous
block (region), or as several blocks. One model of data
memory allocation that can be assumed is that which is similar
to the Space Shuttle model. All data which is to be allocated
statically will reside in one contiguous block, which can be
assumed (if necessary) to be resolved at linkage edit time.
All data which is dynamically allocated will be from another
contiguous block (stack area) which may be allocated at run
time. Thus, there appears three blocks of data to be addressed
gy a program: +the COMPOOL, the static data, and the dynamic
ata. '

4-32

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - {(617) 661-1840

4,3,2.3 TFormal Parameters versus Declared Data. The actual
data reference tor declared data can be resolved during
compilation. The reference for a formal parameter, by defini-
tion, is more complex. While it is possible to address the
"formal parameter”, the data must either be placed in this
known address or plse must be obtained via-an 1nd1rectlon step.

Whlle declared data can be either static or dynamlc
{(and in the Space Shuttle model the static appears to
predominate), formal parameters by their nature are dynamic,
and need exist only when the procedure in which they are
used 1s actually called.

The addressing structure of the instruction archltecture
should then be able to handle both static addressing and-
dynamic addressing., The static addressing would be used
for both Compool data and the majority of compiled data,
while the dynamic addressing would be used for formal
parameters and dynamic data of reentrant or recursive
procedures., :

. 4.3,2.4 Name Reference versus Value Fetch. An instruction
architecture must be able to both generate the address of

‘an operand and also be able to fetch the wvalue of the operand,
When a "call by value" occurs, as with a formal parameter, -
the value must indeed be passed and sent rather than an address,
or else side effects of the change of value could occcur, Simi-
larly, if a "call by reference" of a formal parameter occurs,

an address must be passed in order to assure that the value

of the parameter changes as the varlable changes, and also

in order that the formal parameter itself can be assigned 1nto.

Besides their use in formal parameter passage,
addresses must also be able to be generated 1f the instruction
architecture separates "operators" from "operands"”. This occurs
in standard stack organized machines (e.g. B6700, and base-
line MP) where the store operator needs the address of the
operand to be stored into to reside on the stack. Of course,
this usage could be circumvented if the stack operator (and
any other memory changing operator: set bit, move, ...} were
allowed to be incorporated into the "operand" versus "operator"
¢lass. This is not as strange as 1t might first sound, since
the "operand" class is itself standardly a load stack and/or
load address to stack operator.

4-33

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (517) 661-1840

4.3.2.5 Name Scope Properties versus Homogeneous Treatment
of Data. Instruction architectures which are

developed from a HOL often use the name scope properties

" of the HOL to develop the addressing structure of the
machine. The pragmatic result is an immense saving in
memory requirements by the efficient compactification of
the required address field. This result comes from two
phenomena. One reason is that name scopes (lexical levels)
inherently narrow the amount of data that need be addressed
in any given instant. The name scope forms a static tree
and identifies that data which can be seen by the instruction.
Only that information which is in the name scope can be

- referenced, by definition of the HOL. Hence, only that
amount of data (information) need be addressible. This -
greatly reduces the number of bits needed to address the
allowable data. In conventional Von Neumann architectures,
all of memory is addressed (although often partially compacted
by a static two dimensional address - base and displacement -
as 1in the IBM 360).

The second reason is that instruction architectures
developed from a HOL recognize that they only need to
address variables, e.g. integers, scalars, vectors, matrices,
bit and character strings, arrays, and structures. They
do not have to explicitly address each element of a vector,
matrix, array, Hence, the number of entities which must
be addressed are simply the number of namwes, of variables, which
appear in the program. While a Von Neumann architecture would
have a large enough address field to address each element of
a 100 element array, a HOLM would need only reference the
array itself. To reach the ith element of this 100 element
array, an index operation is performed.

The reason then for the savings of address field size
when a HOLM is developed is that of the "locality" of the
appearance of the possible data is taken into condieration.
The address field can be compacted by both considering name
scope rules (hence HOL self imposed data referencing restric-
tions) and by directly addressing only the HOL named data
and not elements of the data.

4-34

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 -

4.3,2.6 Formal Parameters versus Scopped In Data versus
Locally Declared Data. From another point of

" view, a HOL procedure must be able to reference from three

distinct sources. One source following name scope rules

is scoped in from other procedures. Formal parameters

are passed into the procedure and can either be known

as values or must be referenced indirectly to the indicated

data. Locally declared data must either be created upon

entry or else be static throughout the life of the process.

In the use of most name scoped HOLs, local data is
"created” upon entry to the procedure and thus regquires
a -dynamic characteristic similar to formal parameters. Indeed,
this implies that scoped in data has been, in general, so
created from a previous outer level procedure. In this
case static data which is to exist throughout the process
could be handled by moving it physically (addressability)
to the outer most level of the process to the program level.

The Space Shuttle, however, uses the other assump-
ticn: most data is to be considered static and only eXceptionally
will it be dynamic (formal parameters, local data of reéntrant
or recursive procedures). This then would imply that if the
addressing scheme is to be efficient with the Space Shuttle
model, and hence make use of "locality", this static data can
- not be simply moved in the program level, but rather the
standard lexical level referencing must be able:to reference
both static local data and dynamic local data {formal para-
meters and reentrant local data).

4.3.2.7 Solutions to Addressing. One major motivation for
a HOLM design is to be efficient. No matter what the form
of addressing available for an instruction architecture,

it must be able to support the various HOL addressing modes
indicated in Sections 4.3.2.1 to 4.3.2.6. Indeed, all
(almost) addressing methodologies do have solutions since
such languages as Fortran, Algol, an@»Cobol can be
implemented with them. The question therefore turns.
rather on efficiency: the minimizations of addre551ng

space requirements. As Section 4.3.2.5 indicated, the
advantage of the lexical level-displacement:form of
addressing is in fact that it minimizes the space of‘ L
variables which must be spanned. The size, therefore, of a-
sufficient displacement field can be more compact than if
all memory had to be addressed. That is, it makes use of:

4-35

(617) 661-1840

1) Name Locality.

Associated with this concept is the use of descriptors.
This then allows the limitation of the addressing to -
only the number of variables declared, and is not de-
pendent upon their size. Thus, an array of a hundred
elements counts as but one entity for instruction addres-
sing. This again reduces the requirements on the size

of the displacement field, thus: -

o et - . : v Amete Tl .

2) reference only declared entities.

If these two features are examined, it is seen their
saving is a result of the reduction in the address field
width. The conclusion to be drawn is that any form -
of addressing which can reasonably support the addressing
requirements of a HOL (Section 4.3.2,1 through 4.3.2.6) is
sufficient 1f it can be made efficient by the reduction of
the address field width. In order to do this intelligently
it is necessary to have very explicit statistics of actual
programmer usage. While one may have to support a possibly
large address space, if the majority of the time only 16
or 32 entities need be addressed, then this would only require
for the majority of cases only logy 32 or 5 bits worth of
information. This of course depends exactly on how these
variables are distributed across the classes of data
described in Section 4.3.2.1 through 4.3.2.6, Section 4.3.4
will indicate the forms of statistics on addressing that
should be acguired by HAL/S programs in order that a tailored
efficient addressing structure can be designated.

4-36

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

"4.3.3 Addréssing with the BL700 - - -

The baseline MP architecture for HAL/S was
predicated upon the use of a byte oriented micro-
processor. For efficiency reasons, it was -assumed
that an access to an 8 bit byte was optimal and that .
there was no advantage, because of hardware restrictions,
for entities of a non 8 bit multiple. However, the use
of the B1700 opens another set of possibilities. The
B1700 has been designed (refer to Section 4.4.3.4) to-
have bit addressible memories with access width of
varying sizes. This has been accomplished without
paying an execution penalty for any guantums of 24 bits
(i.e. 1-24 width field each requires the same access
time; 25-48, etc. ...). This possibility of efficient
bit addressing therefore opens the way for more efficient

encoding. No longer are bytes sacred and both instruction -
and data built upon these units. The baseline MP instruc-
tion architecture consists of a majority of 8 bit "operators"
and 16 bit "operands"; data is in multiples of 8 bits with

. the basic arithmetic Lypes being of 32 and 64 bits width;

and stack usage was predicated upon 64 bit gquantums both

for special words and descriptors., With the B1700 it is
p0551ble to actually have 3 bit or 7 bit operators without
paying an efficiency penalty. Indeed, such encoding is as
quick as 8 bit encoding, yet can be spacially more efficient.

The paper "Burroughs B1700 Memory Utilization", by
W.T. Wilner,. [Wi 72b], presents the results of Burrough's
own success in developing implementation for their Fortran,
Cobol, RPG and &DL (asystem development language) on the
B1700. These results can be summarized in Figure 4.,3.3-1.
Figure 4.3.3-2 reports similar results from another paperx
by Wilner [Wi 72a]. These results appear to be dramatic,
and indeed they are. The results come from properly
encoding the information of the respective higher order
language under actual user statistics. The best example
presented by Wilner was with respect to SDL. Since Burroughs
is the sole user of this language, the accurate sample
(namely all that exists) of its usage was available.

4-37

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

B1700 Comparisons

Percent Faster
Percent Program Execution Speed

Other System Memory Reduction Comparison
FORTRAN System/360 50% -
FORTRAN B3500 T 40 o -
RPG System/3 50% " 25% to 5%
COBOL System/360 Mod 30) 70% 60%

Burrough's Encoding Comparisons for the B1700

- Figure 4.3.3-1 fwi 72b, p. 585]

4-38

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-184(

Aggregate Aggregate

Language Size on Size on Other
of Sample BL700 Othey Systen
FORTRAN 280KB 56 0KB System/360
FORTRAN 280KB AS0KB B3500
COBOL 450KB 1200KB B3500
'COBOL 450KB 1490KB System/360
RPG ITI 150KB 310KB System/3

Percent

Inproved

- B1700
Utilization

50

40

60
70

50

Amount of Program Compaction on B1700

Figure 4.3.3-2 [Wi 72a, p. 495]

4-39

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Total Bits

Encoding for MCP's Utilization Decoding -

‘Méthod " Opcodes Improvement Penalty Redundancy
Huf fman 172,346 a3% 17.2% . .0059
SDL 4-6-10 184,966 39% . 2.6% .0196
‘g-bit field = 301,248 0% 0 s .4313

Comparison of SDL Opcode Encoding
Against Extreme Methods

Figure 4.3.3-3 [Wi 72b, p. 581}

4-40

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184

Figure 4.3.3-3 represents the chart Wilner
presents showing a comparison between an 8 bit opcode
encoding of SDL versus the ideal Huffman encoding versus the
method which they adopted. This method was to have three
opcode sizes: 4, 6, and 10 bits in width. What is
interesting to note is how close their choosen encoding
approaches the ideal case, and yet how much it saves from
the 8 bit encoding. Besides.the opcode encoding, the SDL
B1700 implementation provides for both flow control addressing
and data addressing. Flow control addressing is a triple
as follows: :

field segment
“ description |. name | displacement]

3 bits . 0, 5 or ©0,12,16 or
: 10 bits 20 bits

where the field description indicates which of the eight .
allowable addressing possibilities is present. The data.
addressing is also a triple but of the form as follows:

field lexical
description | level jdisplacement

g

2 bits 1or 4 5 or 10 bits
bits

where the field descriptor indicates which of the four
formats is involved. '

While the width of these addressing structures
produce "operands" of varying length, the data addressing
can be either 8, 11, 13 or 16 bits in length, while the
control addressing can possibly vary between 12 bits and
33 bits.

4-41

INTERMETRICS |NCORPORA_TED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (6817) 661-1840

MEMORY

COMPOOL: - CODE

Block Allocation: Block Allocation:
Linkage Edit Time | Linkage Edit Time
Block/Displacement B}ocg/Displacement
Binding: Binding:
Pre~-Compilation Compile Time

STATIC DATA

Block Allocation:
Linkage Edit Time

: ‘Block/Disgplacement
[bynamic pata - Binding:
(STACK AREA)

Block Allocation:

Compile'Time

Run Time (Process
Initiation)

Block/Displacement
Binding:
Run Time

Block Allocatién:

Memory managemeﬂt assumes memory has been assigned by the
linkage editor with the possible exception of the stack area.
Overlays to be handled statically and resolved by the linkage
editor.

Block Displacement:

The displacement relative to the start of the block is known
except in the case of the stack area. 1In the case of the stack,

displacements are relative to a mark stack word (i.e. procedure
level usage).

Memory Usage Model

Compiler Generated Blocks and Data Referencing

Figure 4.3.4-1

4-42
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-18:

INTERMETRIGS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138

The methodology applied in-the reduction of
opcode fields, and the control flow and data addressing.
is stralght forward and produces a near optimal result.
But in order to accomplish this in a realistic way, it .
is necessary to obtain real user statistics of both opcode
appearances (HAL/S language usage) and information as to the
distribution of the referenced operands.

Unfortunately, it was not possible during the period
of this gtudy to gather meaningful HAL/S usage statistics
since HAL/S had only begun tobe used in-the Space Shuttle -
program.

4.3.4 Useful HAL/S Statistics

Gathering statistics for HALM development, not only

allows for optimal encoding of operators and operands, but

it can also make possible an understanding of what forms

of operands need be cleanly supported. While lexical level-
displacement addressing follows.the name scope rules of a
block structured language, it is not the most efficient
method when parameters outside the current name scope are to
be passed Similarly, the aerospace environment often-—
requires a more static environment than is implicit with

a stack organization. This too can cause 1nefflc1enCLes

in lexical level-displacement addressing, forcing a
disproportionate number of variables to the higher. lex1cal
levels. This of course then requires a large :
displacement field at these levels. Named Compools

also can provide addressing problems for lexical level-
" displacement addressing. While a single Compool can be eaSLly
handled by allocating a single high lexical level for its
addressing, multiple Compools demand multiple addressding
capabllltles, and hence resolution. In aerospace usagé}

there is also the possibility that the sizes required are T
smaller than is a more general earth bound environment. ‘
From these considerations, it is apparent that good dlstrlbutlonal
statistics of actual address usage, not only can provide for
efficient encoding, but will also perhaps indicate another
approprlate form of addressing. The requirements for addr9551ng
discussed in Section 4.3.2 must be fulfilled, but is a
minimimum, efficiency is to be found in compactification of
the result addressing fields. It would be hoped, thereEoref,
that patterns of locality of operands would be detected in

the statistical distributions. Figures 4.3.4-1 displays one
.p0551ble model for code and data blocks generated by HAL/S
in an aerospace environment such as the Space Shuttle. . From
this diagram, it is seen that even here there is locallzatlon
of addressing reguirements to very specific blocks. .

4~-43

(617) 661-1840

. Assuming a lexical level-displacement form of
addressing is a real possibility for implementation,
it is necessary to know:

e The number of procedures at each lexical
level that define n variables.

¢ The number of procedures at each relative
lexical level that define n variables.

In the HAL/S environment it is useful to know:

® The number of Compools with n defined
variables referenced at each lexical level.

In the aerospace environment it is of interest to know:

® The distribution of procedures with respect to -
the number of locally declared dynamic variables,
the number of locally declared static variables,
and the number of formal parameters.

& The distribution of variable references with respect
to their lexical level {(or Compeool) definition:
for each procedure at level n.

To develop a reasonable control flow addressing structure,
information of the following nature should be obtained.

® The number of programs expected to be in the
system at any given time.

® The distribution of the number of procedures
per program.

® The number of tasks within a program that can
be expected.

It is expected that with the progress of the Space Shuttle
program, these statistics will become available. This will

allow for both a near optimal encoding of HAL/S, and for

further investigation into the addressing possibilities open -
to aerospace applications. '

4-44

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184

* 4.4 Micro-Processors

The level of design immediately below the instruction:
architecture is that of the processor that will implement
the instruction architecture. The development of micro- |
processors and their availability for use, has- ..

- allowed the tailoring and development of varying .
‘instruction architectures., These in turn have aided in _
the development of appropriately designed micro-processors,
This section will firgt give a brief history of the develop—
ment of the concept of micro- programmlng. This will facili-
tate an understanding of why micro-processors tend to
differ so dramatically from each other and the motivation
for their design. Next, several important issues for micro-
processor design will be discussed along with their relevancy
for higher order language emmulation during the instruction -
architecture development stage. Finally, several-:specific
micro-processors will be examined and the reasons for the '
selection of the Burrough's B1l700 indicated.

4.4.1 History of Micro~-Programming

A lot of confusion and difference of opinion regarding
micro-programming arises because each author and corporation
"uses this term in their own manner with their own connotations.
In the literature on micro-programming, there are at least
four different attitudes and hence four different connotations
in using the term micro-progrdmming. The four divergent views
of micro-programming can be classified as follows:

1) . clean systematic hardware design;

2) computer manufacture cost sav1ngs with a
"famiiy"” of syatems;

3) "User" being able to save "o0ld" software via
compatibility and tailoring of the system to his
needs; and

4} special requirements such as teaching and research,
and associated cost savings in singular develop-
ments such as found in the aerospace industry.

These will each be'briefly discussed in turn.

4-45

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.4.1.1 ‘Systematic Hardware Design. Historically,
micro-programming was a term coined by M.V. Wilkes in
1951 [Wi 51). He states:

"My object was to provide a system-

atic alternative to the usual some-

what ad hoc procedure used for de-

signing the control system of a

digital computer. The execution

of an instruction involves a seguence

of transfers of information from one
register in the processor to another;

some of these transfers take place

directly and some through an adder or

other logical circuit. I likened the
execution of these individual steps

in a machine instruction to the execu-

tion of the individual instructions in

a program. Hence the term micro-
programming. Each step is called for by

a micro~instruction and the complete set

of micro—-instructions constitutes the micro-
program. The analogy is made more complete
by the fact that some of the micro-instruc-
tions are conditional.” [Wi 69a])

The term "micro-programming®” used in this way applies only as

a hardware concept. It is a "method" of logical design which

has all the advantages of modular development for complex

systems. Many authors who are hardware oriented se e
- aqrefer to [Va 71]) still tend to regard this Lo :

as its main value, while récognizing others.

4.4.1.2 Manufacture Cost Savings. Large companies find
that micro-programming is a means to provide system com-
patability over a wide range of performance and cost.
The IBM 360 series of computers is able to have even its
smallest computers have the same "power" as its large
brothers since they can be encqded via micro-programming.
S.S. Husson's book, "Microprogramming: Principles and
Practices", [Hu 70] is representative of this attitude.
In this book (pp. 72-74), he discusses seven advantages
with the use of micro-programming.

4-406

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

1)
2) -
3)
w4)
3}

6)

T

flexibility and talloring;

changeability; B

éase of designing, maintaining and checking;
uniformity of design;

ease of education;

micro-programming can extend the useful 11£e
of the System, and

economy.

" In discussing each of these,- the emphasis is from the system
design point of view, that of the manufacturer. He states
(pp. 16-19}: - :

INTERMETRICS INCORPQORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 »

"We have seen that microprogramming
offers many advantages over a conven-
tional hardware control in factors
such as cost, performance, flexibility
and tallorability, ease of maintenance,
and many others which will be reviewed
in more detail in a later chapter. Yet
in reality, except for few isoclated

cases, microprogramming remains in the

domain of the design engineer, Why?

wWhat is holding the different interested
disciplines from taking advantage of the
flexibility and efficiency microprogramming
can offer? The following is a partial list
of observations on this question.

1. Microprogramming was not intended
for the novice programmer. ...

2. Except for few special system designs,
the control programs are stored in
read~only storage devices that are
difficult and expensive to modify. ...

4-47

(617) 66%1840.

3. The lack of standard assembly
language and standard micro-
orders and micro-instructions
discourages the users from
attempting to apply micro-
programming. ...

4., A fourth major problem is .
the lack of sufficient educa-
tional effort in preparing the
potential user to cope with
the problems he is to be con-
fronted with in instructing
him of the available means for
solving them, and in acgquainting
him with the advantages and dis-
advantages of thisg additional
option for any given class of
problems. Basically, micro-
programming has been treated
as an adjunct to machine design;
no particular effort has been
made to separate the related
information or to make micro-
programming itself convenient,
Clearly, such a responsibility
does not all fall on .the designer.

5. --.'n-

6. A sixth reason for the lack of
widespread usage of the micro-
programming option is the
manufacturer's concern for the
preservation of the architec-
tural identity of the system
and with preserving its effective-
ness and its compatibility with
other models in the product line.

This problem becomes a simple one

if the system's original identity

or affiliation with any product line
or any operating system is not needed,
that is, if the system is to become
completely and permanently a slave to
one fixed mission or task. ..."

 4-48

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

From a manufacturer's point of view, ‘the emphasis upon
system compatability and orderly growth becomes para-—

mount. This is both obvious and necessary, since they
.wish to market thelir product on a mass scale, -

4,4,1.3 Maintenance of 01d Software, The same desires
of compatability and orderly growth is expressed from
the user's view but with a different emphasis. This
point of view is well expressed in the birth of the
Standard Computer Corporation and developed in a paper
by its Vice President, L.L. Rakoczi [Ra 69].

- The. user of computer systems has a financial
investment and therefore a real desire to maintain the
‘working set of programs. that he already has. When new
computer systems are bought, the expense of changing the
current programs to make them compatible with the new
system can be prohibitive. It is widely known that those
programs written in a HOL for portability reasons, seldom
are truly transferable, and programs written in an assembly
language are usually given up as a hopeless loss. :

IBM has recognized this form of problem by allowing
its small 360's to have a special 1401 emmulation mode in
which the 360 "loocks like" a 1401, and hence the old 1401
programs can be run while "the new and improved programs"
can be written for the 360. The user, however, is not

‘necessarily interested in just one computer manufacturer,
but wants to be able to salvage his software from any
computer. By emmulating the "old" machine while taking
advantage of the new, he obtains the best of both worlds.

"{the user) often finds it costly and
time consuming to rewrite his proven

and useful programs so that they will run
on the new generation computer. A related
problem is faced by users of large scale
computer installations who have a number
of computer systems. These computer systems
frequently have different machine-language
‘repertoires which are not compatible with
each other. In other words, a program.
written for one computer system of the
user will not perform on another computer
system of the same user."

4-49

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1841

“any fourth generation machine can
be 'dedicated', not in one direction,
but in many. Vintage software,
massaged and made workable through
frequent use and long study, can

now be employed - -as reguired with-
out locking the user in or out.”

" The fourth generation computer

will save training, sales and

service costs for its maker and

will permit its user to call on

an infinite variety of industry
resources and know-how for the
execution of his functions and

the solution of his problems." [Ra 69]

Besides this general gain which all users can hope te obtain,
the micro-programmed computer can be of assistance in another
way. :

"for their part, fourth generation

thinkers were planning to combine

micro-programming with some form

of inner computer solely to execute

subroutines. Then they started

adding features to increase micro-

programming efficiency.” :

Commonly executed subroutines can be made into
executed micro-code. If sine or cosine, for example, are
used repeatedly they could be implemented as an instruction.
Similarly, when common table search and date lockup routines
are the main occupation in a commercial application, they
become measurable bottlenecks which can be opened by making
their execution efficient. These two features then are
of the utmost concern to the user: . ,

a) To make all his current software available
to him as he goes to the new (or different)
computer systems. This also would allow
access to any software available from any
source; and

- ..

4-50

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Ab) the possibility of tailbring'the computef
' to particular needs when identifiable bottle—
necks in subroutine execution can be located.

4.4.1.4 Special Singular, Users. The fourth attitude is
rather limited by 1ts very nature of being specialized.
There are applications where the three previous economic
incentives meant generalization. Designing systematically
with a general method means ultimiate savings. Building

" a compatible system across a spectrum of price range means
economic savings in developmental cost and a market base
for growth, Being able to save current software- and‘being
able to use any other software. in ex1stence saves rewriting
and much developmental cost., : SR -

In the university environment, one runs into the
needs for education and research. These both have their
special requirements [Ro 71]. Micro-programming becomes
both a teaching tool to train people in system architecture

and a device for research to expand the frontiers of know-—
ledge. ,

The use of micro-programmed machines for aeroépace
applications is ancther example of spe01al usage. Patzger,
et al. [Pa 70] states:

"Attention is focused upon three systems
engineering considerations:

(a) Specialized Operations - A micro-
programmed computer organization
is shown to be well suited to
applications where very special-
ized tasks require a significant
percentage of total executlon
time.

{b) Restructurable Architecture - The
case with which the computer instruc-
tion set, data representation, inter-
rupt system, and input/output system
can be restructured via micro-
programming is shown to be a sig-
nificant consideration,

-4-51

NTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

(c) Efficient Simulation - The unigue
capability for efficient simula-
tion (emulation) inherent in
micro-programmed computers is shown
to permit a significant reduction
in development time and overall
cost when a previous system is up-
graded or an experimental systen
is used."

and " Two costs are relevant to the aero-
space systems implicatioéns of micro-
programmed computers. The first is
the cost of the computer itself; the
second is total system cost. The
former includes electrical and logic
design, packaging, drawing release,
tooling and gualification and environ-
mental testing of the computer. The
latter includes the cost of the computer,
its peripheral devices, other system com-
ponents, software, operating costs and any
costs assigned to intangibles, For a specific
aerospace system application, the cost-of a micro-
program controlled computer by itself may
or may not be less than that of an alternative
computer. However, the system engineer's free-
dom to modify computer characteristics with-
out major hardware redesign, repackaging or
requalification and his ability to extend
system life by micro-program changes may
lower overall system cost. This freedom can
often allow later incorporation of a new
weapon system, navigation aid or mode of
operation, System cost analysis for each
application must quantitatively account
for such factors qualitatively discussed here-
in," :

4-52

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.4,1,5 Current Micro-Programming Usage. It is

as a direct out growth of research by both the
Universities and by the aerospace industry that

an emphasis upon higher oxder language machlnes has
occurred.

For. the universities, this has been an emphasis
upon research in developing new instruction -architectures
and improving programming practices. The aerospace

~industry has been highly lnterested in the compactlflca-
" tion of memory in order to reduce computer cost, weight,
power consumption, and physical size. :

While hardware designers, industry, and large
‘software users still maintain thelr particular orienta-
tlons, the usefulness and capabllltles of wmicro-processors’
in HOL execution has become a major area of investigation. It is
with respect to this attitude, concern for HOL implementa-
tion, that the various microprocessors have been examined
in this study. The ability of a micro-processor to imple~-
ment a HAL machine is the criteria by which they were
judged,

4-53

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIOGE, MASSACHUSETTS 02138 - (617) 661-1840

ve-o

[

REPRODUCIRILITY op Ty
ORIGINAL PAGE 1§ pogg

Function of Field Field

Figure 8.14 Microinstruction format—CPU mode,

.

Figure 4.4.2-1

- Field ROS Bits ROS Bits Function of Pield
20 e Pty iR o reld
- o Parity of bita 0-130 . La 47 LB counter control
Lu 1.3 Left input to mover MB 48 MB counter control
MV -5 Right input to mover - o] 49-5} Length counter and ca rry insertion tontrol
ZpP 6-11 Bits 0-5 of next ROS address UL 5253 Mover {unction «« left digit
ZF 12-15 Source of bits 6-9 of the next ROS addrass UR 54-55 Mover function -~ right digit
ZN 15-18 ROS addressing mode 56 Parity of bits 57-89
TR 19-23 Destination of adder latch contents CE 57-60 Emit field {used as data)
24 Spare Lx 61-63 Left input to adder
w5 a5-27 Source of local sto rage address TC 64 True/complament contral of left adder input
SF 28-130 Local storage function - RY 65-67 Right input 1o adder
: 1 Parity of bits 32-55 AD 68-71 Adder function
v 23-24 Lwvalid digit test and inatruction address AR | T2-77 Candition branch test A
register contro} . : {furnishes bit 10 of next ROS address)
AL 35-39 Shift control and gating into adder latch BR. 78-82 Condition branch test B
WM 4u-43 Mouver destination ffurnishes bit 11 of next RQS address)
up 44-45 Byte counter function . 83 Spare
MD 46 MD counter control 55 B4-89 Stat setting and miscellaneous control :
KOSOR Pomiviors
1 “ s 17 [T -) A4 LEATAEAY 5] sk sy 4y Bl 4dE3 s) o o) »
TP Mde Flakdy w !uv[z * liw | " W | % " Al l [Iuld:ﬁ‘] b J ullug[I et I X kl [’ AL] A8] 11 g 1) I
Pority Righs- A0AR Adder Lotch Lecal fevalid J Maver MO M Mover Posiny Lafta Right- . A Ssar-
Bim 0-30] Mawer o &9 riu_]l o tngates Stora Digir Tar Detingtion | Can | Byre Furetion | Bin Adder Adder Brarmh Swtring
. (L) o Fun tiom ord Cnti | Caer Lefe 58-89 put st Conreal Commal
Furction of } fn Bronch I Consrol ot Oigit
<ry M Conirol .
HOSDR Fiaide (st rOAr Ackiray Logal Parity Guting Into Brie U0 Legth Mover Emis Tre Aicher . +
Maver Moy -5 Comwal Srorn Bin Adder Loich Lountar Car Cotr Function Finld or FuncHem Beanch
Tynst Field Addraay n-a ond Fonction Carl and Right Complument Conmgl Conmral
- Conwol Shilt Cant Carl Corry Digh Conrm)
ey
Crt

. 322
Micro-Instruction Formatting for IBM 2050 [Hu 70, p. 322]

4.4.2_-Importahﬁ Micro4Proce350r'Désigh“IssueSj'

There have been a large number of micro-processors
designed and developed-in recent years. They vary in their
internal bussing, computational capability, data width,
and methodology of micro-instruction encoding. In order
to appreciate their basic differences and associated
advantages with respect to higher order language 1mplemen-
tation, it is necessary to dlscuss certaln of these
differences.

4.4,2,1 Horizontal Versus Vertical Micro Encoding. Micro-
instructions are used to control the execution of the processor.
It does this by specifying at the adder, shifter, and register

. Jevel both the inter-connectionsbetween these elements and

the function- which the active elements are to perform. How
this information of inter-connections and functional’ specifica-
tion is encoded dlfferentlates "horizontal" versus "vertical™®
micro-programming. ' —

Horizontal is meant to imply "wide", a laxrge number
of bits., With many bits available it is possible to encode
very low level information, specifying all the gating at
the adder, shifter, and register level. Thus, any of the
capabilities of the circuit can be potentially exercised.
.Similarly, this in turn implies that any possible paral-
lelism (e.g. independent shifter, and adder action) can be
taken advantage of. The wide width of a horizontally
encoded micro-instruction also, in general allows for a
fairly reasonable form of micro addressing to occur. That
ig the address specification of the next mlcro-lnstructlon
can be directly specified with each micro~instruction,

The micro instruction format (Figure 4.4.2-1) for the

IBM 2050 (processor for the IBM 360/50) is 89 bits wide

and is an example of this form of "horizontal" encoding:
fHu 70]. The Wanodata QM-1 slightly modifies this normal
concept of horizontal encoding to include four "time steps"
within a single micro-instruction. This width is a total
of 342 bits [Nc 71, p. 9-11.

4-55

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE -« CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

Field: PF1
Qn

‘2

-

F3

11

F4

| R - R
17 .21

F6
28

©FT s - F8
29 7 3y

Fo

9 43

1

Left
{ALU
!Input

|

Field' 3
Width

9S-¥

1.
ALU Options and
and right
input

A,

Local
Store

- Misc_#l

Emit $1]
i Emit

Misc 42

Low -

f,Branch_[

Functional Branch Hi
IIA“ Bit
specifi-
cation

Direct or.

' Indirect

Branch'to s

"B" Bit
specifica
tion

APlOl Mlcroprocessor - Mlcro Instructlon

Flgure 4 4 z_zjfﬁl;:ud“”?”

I I

Fotmat L

[Va 72]

Vertical is meant to imply a "narrow" width for

- the micro-instruction. This is accomplished eithex
by enceoding the possible gatings into mutually exclusive
fields, as for exanmple selecting but one register to be
the left input to the adder, or by minimizing the address
capability within each micro-instruction, (either requiring
a separate instruction to branch, or allowing only
a.branch of a few bits}, or a combination of these two.
The Shuttle computers, the AP-101, is an example of a
partial vertical encoding (Figure 4.4.2-2) being 43 bits
in width. The B1700 has a.micro-instruction width of
16 bits [Va 73] being extremely encoded.

The Burrough's D-machine [Bi 70] combines both
‘of these concepts. It has a two-level encoding. On the
lowest level, it has a "nano" store with a horizontal
encoding being 54 bits in width and a vertical encoding
of 16 bits in width. While the nano-store (horizontal)
indicates the normal inter-connections, function specification
and simpler micro addressing; the micro store (vertical) -
is used as a source of literals and larger addressing fields
(Figure 4.2.2-3).

The QM-1 has also adopted this concept. Besides
“having a horizontal encoding, as mentioned above, it
also containsg .a vertical encoding used to provide access
to the routines of theé nano store (horizontal).

: From the practical point of view, the difference
between these methods of encoding is a guestion of dollar
cost and execution speed., The more "horizontal" a micro-
instruction, the less decoding required and thus
potentially the faster the execution. But this in turn
reguires a larger micro-instruction store (more bits)
which in turn is more costly. In the other direction, the
more vertical a micro-instuxction, the more decoding
that is required before the designated inter-connections
can be completed and functions executed. But in return,
there is a reduction in the amount of micro-instruction
storage. ;

4-57

NTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184C

85-¥

MICRO CONTROLS ‘ N

1223245678 9% 10111213141516

1

8 9 10| Condition Adjust == CAY
06> SAR lggggeddyg 00 0 ..
1 ol sAR LIT g g é gf‘g égg
I AMPCR 9 I { RESETGC
e 1 0 0 SETINT
prroo09d o LiT 10 1 SETLC3
i1 11 1] NANO ADDRESS 11 0 SETGCL
11 1 SETLC:
§ Unused .
¢ Shorter fields are right justified Successor
NAND CONTTROLS ' o '
e —— Then Part ; Else Part
Parenthieses surround optional lexie units, Used if 8C=1 to MPAD Ctls Used {f SC=0
provided by default, 6 o 0 WAIT 0 0 o
Brackels contain DC 2000 mnemonics 0 o 1 {STER) o o 1
. . ¢ 1 0 SAVE 01 ¢,
? Codag not produced by TRANSLANG, Lo 11 SKIP ‘a1 1
t ¢ 9 JUMP 1 0 0
1 2 3 4] Condition Tested 1ot EXEC o
Result is Boclean ond L0 - CALL, rie
1 1 1 RETN ¢ 11 1
o001 o2 Adter X Input
o010 LCl 000 (D
0011 LC2 0 0o 1 T '
o1 00 MST 0 1 0 2EXT [EXT]
¢ 1 801 LST 6 1 1 CTR
01 1 0 ABT .1 0 0 2z
6011 1 AOV ‘ 1 o 1 AR N
1000 cov 1 1 ¢ A2
1 oot sar [Rmi] 1 1 1 A3
1 010 RO . ‘ .
1011 LC3 Em\m} [20 21 22 23 24 25 26] Adder Y Input
11900 EXI [EXT)
1.1 ¢ 1 INT D 0 . = -~ . - BOe~
11 1 0 LEX2|[5RQ 0 1 . = + - - BT==
1111 EX3 [URQ 1 0 - - - - - BF-=
. 1 1 = = « o =+ Ble=
- -« 0 0 0 = = B-0-
FT Condition Vaiue NP L D T BT~
— ' = - = « = 0 0 B0
2 NOT c¢nd=:5C e, e = = = 0 1 B--T
.1 .- cnd=:5C - - - .= - 1 4} B--F
= = = « = 1 1 B=-1
(6] Logic Unit Conditional Comp 1 © 0 Comp B-F-#
Comp O ¢ © Comp B-l-w
0 Do Unconditionally . ¢ o o 0 1 0 2 LT '
1 Do Cenditionally if SC 0 0 ¢ 1 0 © 0 ZEXT (EXT]
: : 0o 1 ¢ 1 1'90 O CTR
: 2 1t o0 1 0 1 X
[F] Ext Op (MDOP/CAN Conditional : o 0 1 1 ¢ ©0°1 AMPCR
o 1.1 1 t o t [Lo]
0 Do Unconditionally . ’ Cthera ? .
1 Do Conditionally if 5C ! " *Upe Adder Operation with Complement ¥

)

0‘~

1

'

INTERPRETER

MICROPROGRAMMING REFERENCE CARD

Inhibit Carries into Bytes
== Allow
IC Inhibit
[EE Adder Operation
Logle

' o 0 0 b + Y -
0 0 1 %X WOoR ¥ X ¥
0 L -9 X NRI ¥ KX
0o 1 1 X+ ¥ +1 S
1 0 0 X NAN Y Xvy¥
1 6 1 X OAD Y XK+(Xv¥)
i1 1 0 X XOR Y XYvXY
1 1 1 X NIM Y XY
e 0 0 X mMP ¥ Xvy_ _
V(R | X EqQVv Y KYyvX¥
0 1 o X AAD Y X + (XY}
[T | X AND Y XY _
1 0 0 X- Y -1 X+¥
1 0 -1 ¥ RIM Y XeY
11 0 X OR ¥ Xvy
1 1 1 X - X X+¥+1

lalla i T = - == = B N =

[32_ 53] shift Type Selection for BSW)

PO D

[34 35 3¢]

0-
1

-

e b e e ke OO

Figure 4.,4,2-3:

No Shirt

- D

4

R Ripght End Off

L Left End Off

= Right Circular

A Register Input from BSW

No Change

1
38 39 40| DB Register Input Select

0 4] -—

< - Al

1 - A2

- Al

0 4} [} ~e

0 1] 1 BCA4

0 0 0 BAD

[} 0 1 BCE

0 1 0 BNA

0 1 1 B

1 0] BEX

T 0 1 BMI

I 1 Q BER

1 1 1 BBl
Others’ ?

[Bi 70]

No Change

Comp 4 Bit Carries
Adder

Comp 8 Bit Carries
BSW v Adder

BSwW

External

MIR

BSW v External
B5SW v MIR

qQ
1

0
1

. AMPCR Input from BSW

*

MIR Input from BSW

MIR

No Change
L4

No Change
AMPCR

43 44 45 146 Mem Deov Address Input

¢c o o - -~ No Change
- -« 1 @0 LMAR From LIT
- - 1 1 MAR From BSW
- 1 ¢ - B2 From BSW
- 1 1 1 MARZ Frem BSW
1 - 0 - BR1 . From BSW
1 - 1 1 MARI1 From IISW
Cotner Tnput.
- 4 o0 - No Change :
¢ ¢ 1 LCTR From LIT* i
1t o 1 CTR From B3Ws
- 1 0 INC +}
- 1 1 ?
*Onea Complement
SAR Input
0 0 - No Change
0 1 CSAR Complement
1 i} S5AR From BS5W
1 1 7

. Mem e Op--MDOP

--n-'p-;-v-n---b-c;;ogcc

Others | ?

MR
MRz
MW!
Mwe
pLi {AsSK
DL? [ASE
DRI
DR2
DU1
Duz
oW1
Dw2

No Change

o et DD DO O500
DD e e DD e e ek D
e LR - =)

Burroughs Corporation

DEFENSE, SPACE AND SPECIAL SYSTEMS GROUP
PAOLE, PENNSYLVANIA 19301

‘D-Machine Micro-processor — Micro and Nano Instruction Formats

Besides these cost arguments, the vertical encoding
by its very nature removes some of the pogsibilities for
the circuits usage. While this could potentlally reduce
some useful execution capabilities, it in general does- not, _
since few of all the possible horizontal encodings would ever
be wuseful.

What is more serious in extreme vertical encodings is
the cost of micro-instruction addressing capability. If no
sequencing information is provided, then this vertical
instruction becomes in nature, similar to the normal Von
Neumann machine architecture. That is, for example, a lack
of parallelism in processor exécution and the general require-
ments for two instructions to be executed in instruction
sequencing,i.e. a separate bhranch instruction is required.

_Thus, the penalty becomes not only an executlon time lossage
due to "vertical® enceoding, but indeed time lossage due to-a second
micro-instruction fetch before a change in sequenc1ng can occur.

It is seen that the choice of encoding effects both
dollar cost and execution time capabilities. From the
point of view of the development of a higher order language
architecture, however, this is a minor consideration. Time -
can be conveniently counted in time steps rather than the
real execution time. The implementation of the HOLM architecture
‘on a micro-processor gives insight into problem areas, but
being a tool in design is not overly restrictive., In a produc-
tion version of an HOLM, %the insights gained in its develop-
mental 1mplementat10n would allow for the appropriate modlflca“
tion of the underlying support processor.

4-59 ,
NTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184(

4.4.2.2 Degree of Parallelism. One advantage of a micro-
processor over the standard mini computer is that it is

possible to make more efficient usage of the processors
circuitry. As mentioned in the last section, many micro-
instruction encodings allow for sequencing information

in each micro-instruction. Thus, upon the execution of

each micro-instruction there can be made a conditional choice

of the next micro~instruction. This saves a time step when
compared to the normal computers which are required to execute a
following branch instruction, :

It is also often possible to execute the various
active elements in the same time step within a micro-
processor. Thus, for example, the shifter and adder
of the OM~1 can be executed separately in the same time
step while even inerementing ancother register. Often,
memory accessing can be initiated and overlapped with the
micro-processor, e.g. Burroughs D-machine.

The advantages of the use of parallelism within
the processor is, of course, the time savings involved.
The price is having a relatively wide micro—-instructiocon
encoding and the complexity of more than a simple single
bus between the various executing elements.

From the point of view of the implementation of a
higher order language machine, any specific parallelisms are not
required for development. But a production version can
benefit highly from the appropriate combination of certain
limited parallel functions, such as stack manipulation
(maintenance of stack indicators) while also using- the ALU,

4-69

ITEAMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.4.2.3 Bit Testing and Field Extraction. There are two
basic extreme philosophies with regard to accessing particular
bit fields within a main store instruction. One extreme is

to be able to access any bit field within the main memory
instruction within any given micro cycle. This would thus
allow for a micro—-processor to have a general emmulation
capability: no matter how the (any) instruction architecture
is encoded, it can be swiftly and efficiently decoded since
any bit field can quickly be accessed and tested. The price’
for this capability is to have a "barrel switch"; a field
-isolation unit that can both shift, mask and test the
resultant value of a word within one micro-instruction clock
time. This indeed is included in the design of the Burrough's
D-machine. The B1700 has a similar capakility but is done
_differently and can often regquire several micro—instructions
‘in oxder to complete the process. . Once such a feature as

a barrel switch is developed and the initial developmental
cost covered, it can become an effective element of any
processor.

The other extreme is to allow access to just those
bit fields that are of interest for the particular instruc-
tion architecture bheing implemented by the micro-processor.
This 1is indeed the method used by the AP-101. Thus, this
does not require the use of such a complex element as a
barrell switch within the processor. It is accomplished
instead by placing the appropriate random logic required to
access and test the fields of interest. While this does
not therefore lend itself to the capability of general
instruction architecture emmulation, it does prove to be a
cost effective engineering technlque in the development of

. a production computer.

One other dlfierence between these two methodologles
should be noted. - The second method allows the following micro-
instruction to be executed upon results of the fields and/or
conditions specified, In the first case, though more general,
the field of interest to be tested mustoften first be isolated via
the barrel switch, and which would take an extra micro-instruc-—
tion clock step to do., (Sometimes, of course, it could
take more,and other times the second method itself would take
several clock steps in order .to generate the desired result).
Between these two extremes are many possible design compromises.
While a micro-processor may have an oritentation to a ‘
particular main instruction architecture format, it may also
~have a fairly good field isolation and testing capability.

4-61

NTERMETRICS INCQRPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

e
*—..

Common Sub-Routines

Figure 4.4.2-4

4-62

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

The B1700 has extremely good testing and sequencing control
since it can efficiently manipulate and isolate fields from
zero to 24 bits. ‘

In order to use a micro-processor for instruction
architecture development, it is extremely important to
~have the capability of field isolation and testing. It
is to be noted, however, that this generality often causes
more time steps than if an "ideal" micro-processor was
available which is specifically oriented towards the
_instruction architecture being emmulated. While this is
no handicap during development, and indeed can be considered
a great advantage since no bias towards certain field
usages and designations are present, it is not the most
efficient _method for a final production version,

4.4.2.4 Sequencing. In conjunction with bit testing and

field isolation, the method of sequencing found in a micro-
processor can allow for both efficiency and ease of implementa-—
tion of a higher order language machine, or it can allow

for the opposite: inefficiency and difficulty. It has already
been stressed how micro-instruction addressing correlates to
micro-instruction bit width (horizontal/vertical) and how this
inturn can imply either parallel next instruction selection
or the need for an extra clock step.

The capabilities of the micro-instruction addressing
are also of interest. Often, these consist of but simple
. pranches which thus formma linearization upon *the micro
control flow. If a sequence such as in Figure 4.4.2-4
is required, this would in turn require:; the setting of a
flag in order to differentiate the source and hence .the
return from the common subroutine. While this is oftéen not
a problem with micro-processors used for standard Von Neumann
architectures, it can pose a problem for those Processors
. used to emmulate higher oxder languages. The solution,of
course, is to provide for modularization: CALL and RETURN.
This is effectively done on the D-machine by use of a simple
alternate micro program counter, thus providing for the .
savings of the return address. In the B1700, an actual return
stack is provided for several levels of calling. As in most
_cases, the penalty for this cleanliness is, in general, a degree
of inefficiency: that is, a call and a return must be performed.

/

%/ ~ | | 4-63
¥

I]NTERMETWCS1NCORPORATED-?O1CONCORDANENUE -CAMBMDGE,MASSACHUSETH?OEBB-(&7)66%1&m

(In the D-machine, this form of sequencing is part of each
nano-instructions option and thus does not provide a time
penalty). However, if modularization is required, this

is no more inefficient than the setting and testing of

some flag.

Another consideration is with respect to the design
process: modularization allows for a clean design which
can be modified rather than having the design controlled
in development by addressing and size restrictions. Thus,
modularization is also an important feature for a micro-
processor if it is to support general emulation.

4-64

INTERMETRICS INCORPORATED - 701 CONGORD AVENUE - CAMBRIDGE, MASSACHUSETTS 138 » (617) 661-1840

INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

4.4.3 Micro-Processors Under Consideration

In recent years there have been a plethora of
‘micro-processors made available on the market. Many
of these have been developed by mini computer manufacturers
in order to gain entry into the "micro computer’ market
and in order to allow their customer to do some tailoring
to his specific needs. Often, however, these mini micro”
computers are merely the standard mini computer with some
access to fast memory. That is, the micro-instruction
set itself is basically indistinguishable from a standard
mini computer instruction set. The instruction format is
vertical with no parallel processing capablthy,_and requiring
sequencing instructions. Further, it is usually required
~that-any "new" .instruction added rigidly follow their current
instruction formats with regard to field 51ze, location, and
meanings. Finally, they are usually limited in the amount of
control store available for this extra usage. These state-
ments do not, of course, pertain to all cases.

For a varlety of reasons, the micro—processors which
were seriously considered and examined were the Nano Data QM-1,

The Burrough's D-machine, the IBM AP-101, and the Burrxough's B1700.

The OM~1, D-machine and B1700 each have been initially designed
to be emmulators and interpreters for higher order languages.
The AP-101 on the other hand is the micro-proceéessor used for.
the Space Shuttle program and upon which HAL/S will be
implemented in the standard fashion. The B1700 is a newer
design than either the QM—-1 or the D-machine and has taken
emmulation a. step further than the other two. The B1700

uses bit addreéssing of memory and is basically free of any
particular bit width restrictions (no inherent bytes or words) ,
fields or formats. This, along with its commercial availability,
makes it the most desirable micro-processor for developmental
work.

4-65

(617) 661-1840

99-%

SuleIM ! ;
o] [eon] For]
- RN A
! 5 | ' 3
| ¥ ALU HOLD j%—0{ SHIFTER o
MAIN ' F Lin LOCAL CONTROL [EXTERNAL
STORE STORE STORE _ REGISTERS
.
a‘ N
ALU
; |
] 1
&) 4 i - A ER i
<
. B
* 7. 5
ATD AT SID {14 fcin} EIAl 5 G
, - - 3 o o <5
¢ ' =
i 4 . . g)j E
[Ty r.--u\..__! - ..,“ -
\—- E1D] } . o .
] . ,[‘M'I"L, ol
: g2
.""ﬂ-l"ﬂl..f..-q‘.l-#"‘lhp’h.uu__ it Ay lw m
NANOSTORE, CONTROL MATRIX, and MACHINE STATE VECTOR

- QM-1 ORGANIZATION AND DATA FLOW -

Figure 4.4.3~1

A AT e P T ALY ey

4 oEpa Yy i r s AT R et e BN o

[Ne 711

ao4dddd

" 4.4,3,1 The Nano Data OM-1 {Nc 71] The QOM-1 offers an
exceptlonal degree of flexibility in a processor unit.
Control is effected by double level emulation with a micro-

- control store driving a nano-control store. The micro
memory is a writeable control store. The data width is
18 bits. . One of the major features of the machine is the
~variety within the memory hierarchy. This includes main
memory up to 512K bytes of 750 ns core, a local store of
thirty-two 18 bit registers, external register ‘consisting
of thirty-two.1l8 bit registers, control store of up to
32K 18 bit words, and a nano store up to 1K 360 bit wide.
This hierarchy of storage with the extremely wide nano
memory, and potentially large degree of processing
parallelism would certainly prove quite satisfactory for
1mplementlnq the proposed instruction set,

One 1mportant shortcoming of the machine is that |
the word 1ength ig fixed to 18 bits. While this is not.a .
handicap for developmental work, it would penalize its
execution for the standard aerospace units of 32 bits in
actual operation.

The generalized structure of the QM-1 appears to
be ideal for emulation, which indeed is what it was
designed for. The reason that the QM-1 can not currently be
considered is that it is not easily available for usage,
and thus 1s currently an unrealistic choice for HALM
development. A study of its structure, however, proves
very fruitful in comparing mlcro—processor designs
(Figure 4.4.3-1). A

4-67

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

E?érOprogrm

*1 Memory " | Nanomemory External conditions
Y -
= , From SWI
&
]
Control [A
Unit] B
. - =
Memory :
Control , ' Logical
Unit % . Unit]
. v . :
Addresses to SWI . To other interpreter - © To 8WI

Burxough's D-Machine

Interpreter Block Diagram

Figure 4.4.3-2

4-68

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184C

4.4.3.2 Burrough's D-Machine [Bi 70]. The Burrough's D—-Machine
is an unusually modular and flexible architectural design,
which is capable of application to a wide variety of problem
areas. In its basic multi-processor configuration, it

consists of -three major building blocks: interpreters,

switch interlock, and memories. The interpreter is a micro-
programned processor and is used to perform both arithmetic/
logical computation and I/0 device control. The switch
interlock is the communication network which links

interpreters, operating memory, and I/0 devices.

The D-machine interpreter is constructed from
five functional parts: memory control unit (MCU),

_control unit (CU), logic unit (LU}, micro program mMemory
(MPM), and nano memory (NM), (Figure 4.4.3-2). The word - -
length of the interpreter depends only upon the logic unit,
which is modular in 8-bit blocks, from 16 bits to 64 bits.

The use of micré programming enables the control logic to

be quite regular in structure, resulting in economy of .
manufacturing. Additionally, different micrxo programs may .
be used with the same hardware to implement different instruc-
tion sets for different applications. Furthermore, if a '
read-write rather than read-only micro programmable memory

is attached, the system can reload this memory dynamically

to run programs written in different machine languages at
different times, '

To save storage, the micro program structure of the
interpreter has been divided into two logical sections: micro
and nano. The control of functional operations within the
interpreter is dictated by the contents of a location in nano’
memory. Each of the 56 bits corresponds to a control line
for the elements of the LU, CU, and MCU. A given nanoword
is selected under control of a micro word which specifies
the nanoword's address in nano memory. As a result,
nanowords may be referred to by many micro words; hénce,
the bit saving.

Burroughs is producing koth a commercial and a
military version of the interpreter-based system. The

commercial version is being used for disk controllers and.
for other applications not yet announced.

4-69

INTFRMFTRICS INCORPCRATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

A major shortcoming of the D-machine appears to
be the fact that there is little local storage associated
with an interpreter. However, Burroughs has indicated
that a memory unit could be attached to a device port,
which would serve the function.

The D-machine would be a good candidate for a
micro-processor implementation of HAL. But as with
most micro-processors, it has a definite byte and word
orientation. The data units would have to be choosen
to be some multiple of 8 bits. This structuring of
sizes varies greatly in philosophy from the bit orienta-
tion and non forced structuring of the B1700. This,
in .conjunction with the easier access to the B1700,
removed the D-machine from active consideration.

4-70

{TERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » {617) 661-1840

4.4.3.3 The IBM AP-101 [Va 72]. - The IBM AP-101 is a
micro-processor oriented to the execution of a meodified
IBM 360 type of instruction architecture. Intermetrics .-
has in the past examined thé capabilities of this processor
under contract first to IBM and latter within the Space.
Shuttle program under contract to Rockwell International.

The data width of the AP-101 is 32 bits. It contains
a single 32 bit ALU and a register file containing 32 32-
bit registers. The instruction decoding is specifically
. oriented towards the current AP-101 instruction architecture.
‘While it is always possible to emulate any particular
instruction architecture, the AP-101 was not designed for
‘this purpose and any such use would become very inefficient.
The micro instruction addressing capability is basically
oriented towards a limit of 4K by 44 bit micro words.
The physical implementation is actually less than that limit.

Since the AP-101 is the computer to be used for the
Space Shuttle, it was of interest to see how it would be
able to support a HAL machine design. However, its specific.
instruction format orientation and micro addressing structure
make it unfeasible to consider it as a design tool. Further,
it would be impossible to have access to it in order to develop
an implementation, since, for example, the micro . store itself
is not writtable.

A study of the AP-10l1 micro processor design is
interesting in the fact -that it has taken a very pragmatic.:.

engineering approach for a cost effective implementation of
its instruction architecture [Pa 70}. - -

4-71 »

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.4.3.4 The Burrough's B1700. The B1700's design objective
was "to give 100 percent variability, or the appearance of
no inherent structure”. [Wi 72al. It was designed to be

‘an essentially unbiased emulation facility, able to adopt

to any instruction architecture used to support the
language being emulated. The general structure, philosophy,
and usage of the B1700 has been published in a series of
three papers by W.T. Wilner in 1972 ([Wi 72a, Wi 72b, Wi 72c].

The basic qualities of the B1700 indicated in
these papers include: ‘

© Bit Addressible Memories

_ In order to be free of structure restrictions, there
are no mandatory byte or word boundries inherent in the
processors architecture. The hardware supports the memory
access in such a way that there is no penalty for addressing
and particular bit address (even though physical memdry is
eight kit units).

¢ Field Wwidths are Free to Vary

Besides having bit addressible memory,
the field width accessed and processed are free to vary
for 1 to 65K bits. The internal bussing and ALU are
capable of automatically handling information in units of
from 1 to 24 bits. If larger units than 24 bits are to be -
processed, this would require further memory accessed (access is in
24 bit guantums), but the processing can be performed without
the involvement of the user.

© Good Bit Testing and Field Manipulation

As a corallary to the bit addressing capability,
the B1700 provides for efficient manipulating, and
sequencing upon 4 bit units while being able to easily
manipulate and extract 1 to 24 bit units.

@ Writable Micro Memory

_ ?he system was designéé to support a multi emulator
capability. The micro instruction executes out of main memory,
but may be buffered by fast circuits. The ability to modify

and develop an emulator is inherent in the design and its
philosophy.

4-72

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184(

® pesigned for Multi Emulators’

The B1700 was intended to operate in a multi- -
emulator mode. Thus, the facility for this form of
development explicitly exists. Similarly, the problems
of common executive and I/0 interfaces has heen resolved.
The interface to each emulation is standardized and the
L/0 and other executive functions supported. Thus, the -
development of a new emulator can principally concentrate
on the instruction architecture under development.

© Micro Code Facilitates Modularity

The addressing structure of the micro code is
such that micro-procedures may be defined both re- .
Bntrantly and recursively. The micro-processor hardware
supports a 32-deep hardware stack. This then enables
clean modular design with minimal penalty.

The B1700 is a commevcial machine which is
fairly accessible for usage. Upon the request of
Intermetrics for work under this contract, the Burrough's
corporation allowed access to further information upon
the B1700 micro-processor and for its actual usage in
the development of a HALM emulator, The details of the
B1700 micro-processor design has not yet (it is believed)
appeared in general publication, and are currently considered \
propriatory by the Burrough's Corporation. The availability
of this information has greatly "helped the pursuit of the
HALM development in this contract. ' :

4=73

INTERMETRICS INCORFORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.5 Implementation

In order to investigate the implementation of a
HALM, the B1700 was choosen to be the host processor
for the baseline MP instruction architecture. The
baseline MP instruction architecture is more highly
structured (byte and word oriented) than is required
by the B1700. While modification of the design could
have improved the efficiency of the HALM design, the
limited time available for this task made this prohibitive.
Reguirements for, and possible modifications to, the HALM ,
addressing structure were, however, investigated in parallel
to this implementation task (Section 4.3), thus providing.
a basis for future improved implementation., :
The two main results of this task have been the
detailed investigation and analysis of the B1700
capabilities and limitations for the implementation.of
emulators; and the design and partial implementation of
a modified MP instruction architecture.

The remainder of this section will discuss the
programming environment and conventions provided by the
B1700 for HOL emulators; the high level design of
the MP instruction architecture implementation; and
examples of instruction architectures encoding. Section
4.6 will discuss the limitations and possible modifications
to the B1700 (also applicable to other micro-processors)
for improved IHALM execution.

4.5,1 B1700 Emulator Environment

The Burrough's Bl700 was designed as an emulation
vehicle. It does not have any preference for a particular
instruction architecture or format sizes, and various
HOLs can be supported in their own fashion. This
amorphousness is inherent in its design philosophy. The
B1700 was designed for a multi emulator environment, From
this decision arises the requirement that there be a
atandardized interface to the operating system and for

.~ I/0 processing. It is by convention that the various

emulators interface in a particular way. This is not
inherent in the processor's design itself. Being but
a gentleman's agreement, it is the responsibility of
each emulator to test for any required interrupt servicing
at convenient times (normally the start of each new HOL
instruction cycle) and then to return to the operating system
having saved one's own environment., : : _
4-75.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

FETCH

Y

. Interrupt Test
« Instruction Fetch
+ OP decode

SEMANTICS

LTS-4 " GET : . ADD . oo

Instruction Execution

Figure 4.5.2-1

—

4-76

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « {617) 661-18¢

'I/O, for example {Wi 72¢], is handled by sending .
or receiving a string of bits. A pointer to a bufferx '
area along with a device code is passed to the ‘operating
system. The system is designed.so that the HOL emulators
may assume perfect I/0 transmission. I/0 devices,
from the HOL emulator point of view, can be assumed to be
present and ready, and the results obtained to be exror free.

- This philosophy is consistent with a top down design.
Responsibility for I/0 preparation is not placed upon each
HOL emulator, but rather upon the next level of service,
in this case the operating system. The emulators do, however,
have the responsibility of periodically checking to see if
there is a hlqh priority I/O process waiting to be performed;

~ that is, the micro-program must check for I/0 .interrupts.

Other operating system functions for multi-programming
are handled in 'a similar fashion.

This establishment of a standardized operating
system and I/0 handling greatly facilitate the use of the
B1700 as a design tool for the development of instruction
architectures. Concentration can thus be placed upon the
development and rcfinement of the instruction archltecture
language structures.

4.5.2 Implementation Structure

The basic flow of all instruction set implementations
follows the basic pattern:

o instruction fetch
® op decode
@ semantic routines

Instruction execution begins by obtaining the next

instruction. The opcode of this instruction is then

decoded. This decoding is used to indicate the meaning

of the instruction: what function is to be performed. Control

is transferred to the appropriate routine- and the semantics
 of the instruction is performed. Figure 4.5.2-1 indicates

this flow with respect to B1l700 usage.

| 4-77
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617)'661-1840

® HALM to B1l700 Interface Routines

- SET-UP-HALM initial entry set up
- SWAP , return interface
- RUN-TIME-ERROR error handling

© HALM Instruction Architecture Requirements

- PUSH-STACK ' register to memory

- POP~STACK . memory to register

- REGISTER-FILL £ill the top of stack

- GEA ' calculate. physical address
- FORM-DESCRIPTOR £ill in descriptor fields

& Common Semantic Subroutines

- GET-2-0OPERANDS set up stack for dyadic operator
- GET-1-OPERANDS set ﬁp stéck for monadic operator
- PUT-RESULT | se£ up sfack with.éperatorfs result
- MULTIPLY-16-16 fixed point multiply service routine

= Floating Point Support
Routines :

il Working Subroutines
Figure 4.5.2-2

- -

| 4-78 _
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184C

In the micro-instruction set of the B1700 is
an instruction for directly reading from the main memory.
With this instruction. it is possible to simultaneously
execute the read and increment/decrement the address
pointer while simultaneously incrementing/decrementing an a35001ated
counter. This allows for very efficient memory referencing
since the bookkeeping and maintenance of pointers and
counters are gimultaneously provided for. This allows
for modification of the standard instruction flow to only
two basic steps:

© instruction FETCH and DECODE
© SEMANTIC routines

In the description of the B1700 micro-processor
{Section 4.4.3.4),it was indicated that there was great
facility in the manipulation and testing of four bit fields.
This allows for the decoding of the opcodes by four bits
at a time. It is possible to do an effective 16 bit do case
by "or"ing a four bit field to the micro-instruction program .
counter. Thus, op code decoding occurs in steps of four-bits -
at a time, : o

The semantic routines then perform their appropriate
functions as defined in the instruction architecture. These
are the basic routines that actually execute the instruction
function such as ADD, COPY, Store, ...

The B1700 was designed with a micro-instruction level

stack mechanism which allows for reéntrant and recursive

- routines. This design modularity allows each of the
semantic routines to call upon a series of service routines
for common functions. These functions can either be
reflective of the bookkeeping required for the instruction
architecture, e.g. stack Push or Pop, calculate effective
address, J..; or bookkeeping required by B1700 conventiocons,
e.g. operating system and I/0 interfaces; or they can be
a common function of two or more the semantlc routlnes, e.g.
floating point normalize.

Figure 4.5.2-2 gives a summary of the basic service
routines associated with an 1mplementatlon of the MP
instruction architecture. Other service routines would also
exist because of the desire for modularlty and clean de51gn.
The Bl700 allows each of these routines to be encoded in a
fashion similar to normal machine instructions.

‘ This section has presented the basic structure of the
HALM implementation consisting of three parts: 1) the FETCH
routine for obtaining and decoding the instruction, 2) the
semantic routines for their interpretation, and 3) various
support routines, :

. 479

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Arithmetic forms have been reduced to 24 and
4¢. bit units,

Modlfled MP Instruction Archltecture

" Arithmetic Type Formats and Mapping
to Stack

Figure 4.5.3-1

4-80

‘ _ | |DP Floating
Cg ‘ ! mantissa _g|Point -
L1 1 ' . 11 Stack and
zi‘ 10 , ' .- 35 o - 1 Storage
5 | 1 s
| i { ISP Floating
I i ‘mantissa lg| Point -
‘ { 1 1] Storage
T r Y - ' ‘ . - 1
G t T : N ,
ast O ¢ | 0 ... 0 mantissa u| Stack
[| ! 1
~ . \ |16 pit in-
int. b| teger or
11 logical
7Y — : i
11 l iy ‘ \
aqa 0 i 0. ... 0 . - g|Sstack
1 1 o ~ : ‘] .) I
11 10 | 20 ¢ : ’ .15 1
) e e
118 bit in-
int &|teger or
1] logical
SR 1 ; !
t . i
dd 0] 0:-va. O . k| Stack
|) ' .
11 10 28" - 7 1

4.5.3 Implementation Examples

A partial implementation of the MP instruction.

architecture was made during this study. During
this implementation, several modifications to the base-
line MP instruction architecture were made. In particular,
since this was an investigation and analysis task, '
modifications were made to the arithmetic types as
deseribed in the baseline. This was caused by the fact
that the internal data width of the Bl700 is 24 bits,
Thus, it is more aimiable to manipulations of gquantum
either less than this size or multiples of it. 1In
particular, it.was decided that instead of supporting

- a stack of 64 bits width, it would support a .stack of
48 bits of width. This does not directly effect the
other portions of the MP arxchitecture, but only changes
its data types, descriptors, and special words. The
change, however, facilitates the implementation on the
B1700. While the 64 bit format can be supported by the
B1700, it reguired more care in detalls and bookkeeping.
Figure 4.5.3~1 shows the modifications to the arithmetic
formats for the modified MP architecture. similar minor
modifications also were required for the descriptor and
special word formats. '

Three of .the implemented routines are now given as -
examples. These. are the FETCH routine, and the two:
semantic routines, 'LTS54 and LOR,

4-81
INTERMFTRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

L}

FETCH * ROUTINE LABEL

MOVE 24 TO CP *# SET FIELD CONTROL TO FULL WIDTH
MOVE FETCH—ADDRESS TO TAS * RESET/UP THIS ROUTINES. ADDRESS
IF ANY-INTERRUPT THEN *¥ TEST FOR HI-PRIO INTERRUFT
BEGIN * IF THERE IS ONE :

MOVE CHECK-FOR-INTERRUPT-CODE TO X
; * WHICH CODES TO TEST FOR

CALL SWAP ' * SEE TIF SHOULD RETURN TO 0.S.
MOVE L TO Y # HAVE SUCCESSFULLY COMPLETED

IF Y NEQ O THEN CALL RUN-TIME-ERROR .
* ERROR HAS OCCURRED

END
MOVE NEXT-INST-PTR-TO FA * PLACE PC FOR MEMORY FETCH

READ 24 BIT TO T INC FA * READ THE NEXT 24 BITS

EXTRACT 4 BITS FROM T(0) TO L
' * OBTAIN THE FIRST 4 BITS

MOVE L TO M . % OR IT TO THE MICRO INSTRUCTION
JUMP FORWARD ' * JUMP UPON THE 4 BITS
GO TO EIGHT-BIT-OPS * 0000
GO TO EIGHT-BIT-OPS * 0001
GO TO EIGHT-BIT-OPS * 00L0
GO TO EIGHT-BIT-OPS * 0011
GO TO LTS4 | * 0100
GO TO LTS4 * 0101
GO TO LT-O0PS * 0110
GO TO LTLD-LTLDX * 0111
GO TO COPY * 1000
GO TO COPY * 1001
GO TO GET : * 1010
GO TO GET * 1011
GO TO ADR * 1100
GO TO ADR ' * 1101)
GO TO ADRE * 1110
GO TO ADRE % 1111

The Initial Op Decode‘of Four Bits
Figure 4.5.3-2

‘ 4-82
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIOGE, MASSACHUSETTS 02138 + (617) 661-1840

4.5.,3,1 FETCH Routine. BSection 4.5.2 indicated the
function Of the FETCH routine in the HALM implementation.

It is responsible for checking for any interrupt, for
obtaining the next instruction from memory, and for the
~actual opcode decoding process. Figure 4.5.3-2 shows

this routine as written for the modified MP instruction
‘architecture. Pigures 4,5.3~3 through 4.5.3-5 show the

MP instruction architecture encodings as given in Mi 72,

(errors being corrected). These are the encodings that have
been implemented in the FETCH routine. '

. Going through the FETCH routine, the following is
seen:

® The data width to be used within the processor
is set to 24 bits. _By setting the CP to a value:
of 1 to 24, the ALU will act accordingly on
that bit width.

©® The address of the FETCH routine itself is now
placed upon the micro instruction stack. This
allows the semantic routines, when they are
finished, to do an. EXIT (e.g. a GOTO the
address indicated by the value on the top of
the micro-instruction stack).

e The interrupt flags are tested to set if there
is an interrupt present. If there is an inter-
rupt, the mask of those of interest is passed
to the SWAP routine. If control must be
returned to the operating system, this will
be done so by the SWAP routine after appropriately
saving the emulators environment (i.e. registexrs).
Upon return from the SWAP routine, it is checked
to see if all is satisfied or if there is an errox.
If there is an error related to the process, control
is given Lo a routine to handle it.

® After any interrupt processing has been handled,
if present, the program counter (PC) is placed
into the memory address register. Twenty four
bits of memory is now .read, -and the PC is
incremented by this 24,

4-83

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

@ The first four bits from this memoxry
read are now extracted from the 24 bits,

e The extracted 4 bits, the opcode, are now
"ored" into the next micro-instruction. This
effectively modified the next micro-instruction's
address field.

© This next instruction is a bxranch. The low
four bits of address have been modified by
the four bits of opcode which have been
extracted. Therefore, a 16 way branch can
now occur.,

© A comparison of the sixteen GO TOs with the
encoding presented in Figures 4.5.3-3 through
4,5.3~5 show that each of these branches now
go to the appropriate semantic routine.

Bits 0000 to 0010 need further decoding and
this now go to an EIGHT-BIT-opg decode
routine which does another appropriate fan-
out.

Bits 0100 and 0101 both go the the LTS4 instruc-
tion routine.

Bits 0110 must be further decoded to discover
which literal operator is present. Hence, this
branch goes to a LIT-OPS routine for decoding.

Bits 0111 are either a ITLD or a LTLDX instruc-
tion. It thus goes to a routine which will perform
~the appropriate semantics. :

Bits 1000 through 1111 are similarly decoded
and go appropriately to either the COPY, GET,
ADR, or ADRE instruction routines,

Control returns to the FETCH routine when the
appropriate instruction semantics are completed.

It is interesting to note that the preference of the
B1700 for 4 bit fields has resulted in a 16 way fan out for
this routine. . Often, other forms of opcode decoding are
possible. Either random logic or fields of a larger W1dth_
can be tested. These methods pay the penalty of either being
special logic, non modular, or if the field size is larger
than 4 bits, it will cost more memory in its usage (8 bits
implies 28 fan out or 256 fan out: but the literals and
operands are encoded in 3 of 4 bits!). |

4-84

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

0vg1-199 (£19)

- 8120 SLI3SNHOVSSYW '3DGIMBINYD » JANIAY QHOONOD 104 - 03LYHOdHOON! SOIYLINWHILNI

S8-y

OPERATOR ‘ BYTE LENGTH o - FORM .

a) "All Instructions (except
“those below)

:b) Exceptional Instructions

BST m,n
BLD m,n
 BOUT m,n

'BIN m,n

BSETL n-
BRSTL n
BCHGL n

BTSTL n

JCCm“_-

1 [0 vvvvVvyVv Vv V..V prévides codes

3 ‘ 'Fﬁop-ppppploOmmmmmmLQOnnnnnn‘['
3 - [P Oppppprpllmmmnmnm miO Onnnnnng
3 - 'rﬁﬂppppppiforﬁmmmmmioOnn.nnnn_!
3 FU‘Op ppppp0lmmmmnmn mi0 0nnnnmn n |

:m-.;. m bit field 1ength

'l:

21 [0 0q q.9g q§ G0 0nnnnnon]
2 ['Oquc;qqul{)lnnnnr.an
2 l.-rOququ.qq]TLOnnnnnn]
: [TlsageeelIRnEnnn]

n ... n bit position

2 B0y rrzrx0O0OOmmTMmMpum,]

MP Instruction Ehcodi_ngs (1)
Figure 4.5.3-3

‘kn' _.j._;. n -starting bit position

o¥81-199 (£19)

» GELZ0 SLIFSNHDVYSSYIN FDOIMENYD - 3NNIAY GHOONCD L0L + O3 LVHOIHOON] SOId LAWHI LN

98-¥

c)

-a)

Operand Meta-Operators

COPY
GET

ADR

ADRE

Literals

LTS 4

LTS10

LTS1S
LT32
LT32F

LT64

LTS7M

2

2
2
2

TIguIe 4.,3,3~4

MO0 aaaaaaaaaaaaadl]
fTO0laaaaaleaaaaaaaal
[TT 0 aaaaalaaaaaaaal
M1l aaaaalaaaaaaaal]
a...a lexical level, displacement
[TT0 xx XX s A
0T 100 xxx|xx XX XXX s |
(0T TIO L0000 ... xXxXXXXZXX] '
Nt e 2 DY EES
TTTOT00 Y +.. [FX%XX%XX]
- o 4 bytes
LT grorTdyd ... [xxx XX X X % | :
MITOL0LY ... xxxxxxxx]
[0 L 101100 ...[xgxxxZxXxx g
‘ \hum%wﬂﬂn\/ﬂﬁmmmmww/_2 bytes
Mo 1101103 ...[%xxx%xXZxXX 8§ .
W3bytes
[01 101110 ...[xxxxxxx 8
4 bytes
Legend: s - sign bit
XeweX = numer1ca1 value
MR ShNst i Qe ncadang s 2)

ovaL-199 (219)

+ BEIZ0 SLLISNHOVSSYN '2DCIHAWYD + INNIAY QHODNOD 10/ + GILYHOJHOON} SOIHLIANYILN:

OPERATOR BYTE LENGTH -

FORM
LTLD - 1 O [UITIVDURW
or 3 | [T TTO0IHN]... T35 T 11
LTLDX 1 ' | L__l TTT O NN
or 3 - [OCTTITTITTT 5§ Nl...[T 11311111}

‘wmnﬁmmm*\/ﬂmmumMW,/ 2 bytes

NN: literal to be loaded 00 smgned 7 bit’
R _ - , . 0Ll 'signad 15 bit
i...it 1literal table address 10 32 bit flt. pt.
Sl S - 11 64 bit value

L8~¥

oy

MP Instruction Encodings (3)

‘Figure 4.5.3-5

LTS4

COUNT FA DbWN BY 16 * FIX PC ADDRESS CORRECTLY

EXTRACT 5 BITS FROM T(3) TO ¥ '
*¥ GET THE 5 LITERAL BITS

CLEAR X * ZERO THE X REGISTER
CALL PUT-RESULT * PLACE RESULT: X,Y INTO STACK
EXIT * RETURN TO FETCH ROUTINE

(Note: This rotuine assumed a 48 bit arithmetic format
versus the baseline MP 64 bit arithmetic format; refer
to Pigure 4.5.3~1}. '

Semantic Routine: LTS4 Implementation Load Signed 4 Bit
Literal Into Stack

Figure 4.5.3-6

4-88

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE' + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

LTS4 Semantic Routines. The LTS4 operator places

4-'5.3.2
a:signed five bit quantity into the top of stack. Figure.
4.5.3-6 shows the B1700 implementation of this instruction.

e Since the FETCH routine counted up the PC by
24 bits, but the LTS4 is only 8 bits in length,
this routine must now decrement the PC back down
by 16 bits. {The FETCH routine incremented the
PC by 24 bits since it read the maximum amount
that it efficiently could, and the increment
of the address pointer can be done at the same
timel. : :

‘@ Referring to the LTS4 format in Figure 4.5.3-4,
shows the literal information in bits 3 to 8
of the operator byte. - Thus,-these five bits ..
are extracted from the instruction register (T)
which still contains the 24 bits of information
obtained by FETCH. These five bits are placed into
the Y register and then the X register is zeroed:

e By convention, the X and Y registers contain the
high and low portions of a resultant value of
an operation (in this implementation). Referring
to. Figure 4.5:3-1, it is seen that the literal is
indeed in the correct format for placing into the
stack. ' ' ‘ ‘

® The routine PUT-RESULT is now called which will
take the 48 bit XY value and place it in the top
of stack. The PUT~RESULT routine worries about
the bookkeeping of the stack: whether the A
register is currently filled, whether the top
of stack must be pushed to memory, etc.

® Finally, control is returned to the FETCH routine
in order to process the next instruction. EXIT
is a return using the address on the top of the.

This routine is representative of the bit extractlon
capability of the BL700 and the ease of the code generation -
- for it. ' : -

4-89

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

LOR

COUNT FA DOWN BY 16 * FIX PC ADDRESS CORRECTLY
CALL GET-2-OPERANDS * SET UP TWO TOP OF STACK REGISTERS
MOVE B~REG-2 TO X SET UP TO "OR" LOW

*

MOVE A-REG-2 TO Y * 24 BITS OF STACK
MOVE XORY TO I * REGISTERS, SAVE IN TEMPORARY
MOVE B-REG-1 TO X * SET UP TO "OR" HIGH
MOVE A-REG-1 TO ¥ * 24 BITS OF STACK
S MOVE XORY TO X * REGISTERS, LEAVE IN X
MOVE L TO Y * LOW 24 BITS TO Y
CALL PUT-RESULT * PLACE RESULT INTO STACK
EXIT ' * RETURN TO FETCH ROUTINE

Semantic Routine: LOR Implementation Perform Logical

Or Upon Two Top of Stack Registers

Figure 4.5.3-7

4-90

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.5.3.3 LOR Semantic¢ Routine. The LOR operator performs

a loqlcal OR upon the top two operands upon the stack. The -~
result is the left on the top of the stack. Figure 4. 5 3-7
shows the B1700 implementation of this instruction.

® As with the 1LTS4 1nstruction, “the PC must be
decremented by 16 bits since the operator is only
a syllable of 8 bits in length. '

@ The routine now calls the GET-2-0PERANDS routine. This
routine makes sure that the two top of stack '
reglsters, A and B, contain values. This may
require reading opelands from memory or interpreting
an address.

a ”Thé LOR routine then takes the"loﬁ 24 bits of the
A and B registers and places them as inputs to -
the 24 bit ALU (i.e. the X and Y registers).

@ The "1ogléal or" of these values 1is- temporarlly
saved.

@ The routine then does the same for the high 24
bits of the A and B registers. The "logical or"
being placed into the X register.

® The low order 24 bits are now placed into the Y
register, thus,forming the desired 48 bit result,

® WNWow, as with the LTS4 routine, the 48 bit result
in the XY register is placed into the stack by
the PUT~-RESULT routine.

© pPinally, control is returned to the FETCH roubtine
for processing the next instruction.

This routinevdiscloses the préfereﬁce for 24 bits
in the B1l700 architecture. To process 48 bits took two
steps through the ALU, .

4-91 | }

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

4.5.3.4 Routine Implementation. The previous three
examples have shown how code 1s generated for the B1700.
The process is basically straight forward with the ability
to manipulate various bit fields as desired. The ALU
itself provides the standard types of results such as
"and", “or", "not", "exclusive oxr", "masking", "“complemen-
tation®, "addition", and "subtraction”,

These three examples are sufficient to show how the
B1700 is used and its possibilities. 1In the next section,
several limitations and desired modification to its
structure will be discussed. '

4-92

INTERMETRICS INCORPORATED - 70t CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

- -

4.6 HAIM and B17060 Mutual Reflections

Implementation of the MP instructicn architecture
upon the B1700 highlights the assumption made during
their individual developments. The free, basically
structureless form of the Bl700, indicates how HAL/S
has presummed the necessity of rigid data formats.
The ability of the Bl700 teo perform almost any form
ermmlation, on-the other hand, often results in time
_penalties when a specialized function is required. A
proper design process consists of refinement, with feed-
back to the previous level, as artificial restrlctlons
are discovered or pragmatlc ones reguired.

4,6.1 HAL/S

The process of implementing the MP instruction
architecture highlights the ease of implementation with
the use of the B1700. - But it alsc indicates where
HAL/S has either general or complex capabllltles
whose requirement for a micro-implementation is debatable
Either because they are used very infrequently, or because
they could consume large amounts of time, thus adversly
interacting with real time process and I/0 handling.

The B1700 also indicated areas where more generality
for the HAL/S language does not involve efficiency penalties.

4,6.1.1 Ability to Implement a HALM. As previously discussed,
‘the implementation of an instruction architecture can be
viewed with respect to four separate categories: control
sequencing, data addressing, functional transformations,

and data representation. '

The B1700 has a very clean modular structure. It
is fairly easy to write a micro routine for any particular
instruction. The control sequencing as presented in the
" MP instruction architecture is basically of a straight
forward nature. As was mentioned previously, the MP
instruction architecture was modified to have a 48 bit

4593

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

width stack instead of the initial design of 64. This in

turn forces modification to the special control words by
narrowing their width. This constraints was not mandatory,
but rather one of convenience since the internal bussing

s of 24 bit width. (It would be possible to use multiples

of 32 bits, but this requires more careful bookkeeping and _
more coding. This was not of importance for the investigation
of the implementation aspects of both the instruction

architecture and host micro-processor).

Similarly, the implementation of the MP instruction
architecture data addressing is well defined. While the
B1700 easily emulates this structure, it is to be noted
that address manipulation (lexical level-displacement
to stack number-offset to physical memory addresses) . are
performed in a step by step fashion using the general
capabilities of the micro-processor. In a specific
implementation cof such an instruction architecture, it
would be profitable to have the specialized capability
for some of this, otherwise, seguential manipulation.

Of course, in a non-real time or developmental environment,
this is no real penalty.

HAL/S has a set of function transformations, semantic
operations, more powerful than the conventional scalar
arithmetic. These include the ability to do vector and

 matrix arithmetic along with generalized array processing
of the various basic data types. These powerful operators could
be encoded either as micro instructions, as are the scalar :
operations, or they also can be provided as basic instruction level
subroutines. The advantages and disadvantages are of course
memory size and execution reguirements. In particulaxr, the
time granularity of response required for process and 1/0
interaction may make prohibitive the total calculation upon
an array or even a large matrix. The gquestion then of
implementation depends upon statistics of HAL/S language
usage, the capabilities of the micro-processor, and the
real time characteristics of the required mission. Within
the context of this study, these various complex operators
were considered to be a refinement to the basic implementation
and non essential for this initial investigation. Thus,
they are, in general, assumed to exist as subroutines, (which
of course, is how they are implemented, either in line or out
of line, in the IBM 360 and AP-101 implementations).

4-94

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

REPRODUCIBILITY OF THE
ORIGINAL PAGE I8 POOR

One other set of operators are of interest in HAL/S.
These are the real timé or executive functions. HAL/S
assumes that there exists an executive which is both
priority driven and is c=pable of supporting the HAL/S
real time statements. The B1700 was not designed, nor
meant to be,a real time processor. It is oriented towards
batch proceSSLng in the business community. Since the
B1700 is also meant to execute in a multi emulator environ-
ment, it has already assumed a particular executive inter-—
face and its appropriate functions. Within the context of
this project, this was the executive interface assumed for
HAL/S.

The final area of data representation was also affected
by the -B1700. Soley for implementation convenience within
the context of this project, the data representations were
modified from the initial MP instruction architecture format
of 64 bits in the stack to 48 bits. It is to be noted,
however, the HAL/S language specification does not deSLgnate
data types other than by the weak attribute of SINGLE or
DOUBLE. The B1700 does not directly support floating point
arithmetic data types. - Rather, this must be encoded
via micro subroutines. The only penalty paid, of course,
is that of execution time. For the business community to
which the B1700 is oriented, this is no problem since most
of their arithmetic is in decimal (or binary) format. To
efficiently support a sclentific application where floating
point calculations predominate, it would of course be
desirable to have a special floating point capability.

One other reflection of the B1700 is the fact that
it is able to support data representations of varying
widths. Thus, it actually 1s practical to support a’

" gpectrum of data precisions within higher order language.
It is easy to envision the higher order language having
a precision attribute specifying the number of decimal
digits required, and then having the storage thus
allocated and the calculations thus performed.

4-95

INTERMETRICS INCORPORATED - 701 CONCORD AVEMUE °CAMBRHM3E.MASSACHUSETTS(E138-(61?)66%1840

4.6.1.2 Modifications to HAL/S. The last section indicated
two interesting possibilities for the HAL/S language definition:
one with respect toc data type representation, and the other
with respect to the executive interfaces. '

The data representation was seen to be one of the
four areas of language specification which are basically
independent of each other. Further, HAL/S, as with most
higher order languages, does not directly specify the
arithmetic data representation to be used. Their policy
of non-specification is a hedge. Higher order languages
are usually implemented on various processors. There is
no industry standard upon format representation, the Univac
1108 varying from the IBM 360 from the gSinger SKC 2000 from
the Burroughs 6700, It can, in general, also be
legltamately argued that an add is indeed an add. If the
precision provided is sufficient for any task, then the
algorithm (encoded in the HOL} itself should not care
about the data represeqtation.

The variability offered in the B1700 for data widths
indicates that perhaps what should be done is that a higher
order language should specify the characteristics: precision
and range, required for the variable, and thus make this
a part of the algorithmic development. It would then be
possible to have efficient use of both memory resources
and to have an algorithm that would work "correctly"
upon dlfferent host processors

Another variant of this idea (in the context of
the current generation of software) would be to have the
data declared to have a particular data representation
(instead of the required attributes such as precision and
range) and thus be able to have the execution have the data
characteristics of a known architecture: IBM 360, SKC 2000,
B6700, This attitude, while not ideal from either
the top down design or analytical approach, would be useful
in the context of software verification, duplication, and
reproducibility of results while allowing the introduction
of more efficient instruction architecture and hardware
1mplementatlons

4-96

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

The other area df interest to HAL/S is the executive . . .
. interface. While HAL/S goes in great .detail in specifying

the executive and real time statements, it would be of interest
to see, as part of the specification, the other side of this .
interface. That is, HAL/S should also specify the assumed
characteristics of an executive required to properly support
‘HAL/S. 1In particular, since HAL/S is a real time language,
it would be desirable to quarantee that a complex of HAL/S
programs will execute identically in an identical real
time environment when the processor and/or executive support.
have been changed. Basically, the specification desired is
that equivalent to specification of a "multiply". It is
not important how the circuitry is done, but rather that
the came result Be returned. In the case-of HAL/S executive
functions, both “"time" and "processes" are entities whose
‘interactions need be specified in order to obtain determin-
istic and reproducible results. ' ‘

4.6,2 Bl700

The B1700 has proved to be an excellent facility for
the investigation, implementation and refinement of ,
instruction architectures. The results of this study, of
course, indicate several areas in which it ig found lacking,
highlights useful modifications, and indicates some of
the general characterigtics desired in any micro-processor
used as a support for emulators.

4.6.2.1 Deficiencies. While the B1700 is an extremely
efficient emulator for the general case, it has several draw-
backs for use with HAL/S. In the aerospace environment, HAL/S
is used as a real time process control language and must
efficiently execute various scientific calculations.

While it is not impossible to have the B1700 execute
in "real time", the amount of calculation that could be
performed in such a manner is limited. Again, this is .
not that for which the B1700 was designed.

The newer aerospace computers have come to support -
floating point calculations.. The advantages have _ .
to do with algorithmic specification, programming design
and fewer conceptual or run time errors. When floating
point is encoded into a micro routine, it of course takes
in general quite a few time steps. These can become
prohibitive if the floating point is used regularly. From
the HAL/S point of view, it would be more than desirable
to have direct floating point support, and thus improved

4-97
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

execution time. From the conceptual design point of view,
this is of no importance.

The SKC-2000 and the AP-101 both have 32 bit single
precision floating point formats (however, of slightly
different representations). One drawback of the B1700
is its preference for, and internal bussing of, 24 bit
data widths. While conceptually this does not alter the
B1700's design, it has the real pragmatic effect of hampering
in the efficient emulation of many current 32 bit width:
machines. It is quite easy to conceive of the B1700 design,
but altered to have an- internal bussing (and ALU capability,
ete.) of 32 bits.

4.6.2.2 Possible Modifications. While the last section
contained 1ssues that are thought to be "real T
drawbacks for the use of HALM-BL700 implementation

in a real time environment, this section will contain possible
modifications to the micro-processor's' structure that would
aid in éxscution efficiency.

® Speclial Opcode Facility

, The FETCH routine illustrated the preference of
the B1700 for four bit manipulations. The initial fan out
in the opcode decoding was 24 or 16 ways. While this is
an extremely efficient methodology in minimizing the number
of steps required versus the amount of memory required,
it can be seen that a large part of this routine is
consumed with standardized testing and bookkeeping.
Since the FETCH routine, by definition, occurs in each
instruction execution, it would be reasonable to provide
some further hardware support for this function.

This hardware support could take the form of a
particular entry point for FETCH (thus no need to set up
the FETCH address into the micro-instruction stack),
automatic interrupt testing undexr mask, reading of the
next instruction from memory, and a fanout to the
specified routines (pragmatically again this would be on
the order of the 24 or 16 way fanout).

Further sophistication could allow for a specifica-
tion of encoding of the opcode bits. This would allow the
minimum number of words required for the opcode jump table
while still being fast by use of hardware support.

4-98
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184(

' Hardware Sﬁpport of a Memoxry Stack

"While it is easy to manipulate the register file
of the B1700 and to read/write memory, the use of a stack
in the higher order language instruction architecture usually
regquires some degree of bookkeeping. Thus, for example, if two
registers are designated to be the "top of stack", A register,
and "next to top of stack", B register, it becomes necessary to
keep track of which is currently filled and of when it becomes
necessary to push one or both of them into the memory.
portion of the stack, or to fill them from memory. .

Since so many higher order language architectures
are stack oriented (by the fact of the stacks correspond ..
to both the compilér codes generxation and the algorithm's run
time execution characteristics), it would be quite reasonable
to have two of.the registers in the register file be designatable
~.as the A_anrd B registers,. and then to provide hardware support
for their maintenance and manipulation. . R

. While this might seem to be a minor point, their
continual need for maintenance in a stack oriented architecture
becomes a sizeable overhead.

@ Fixed Point Multiply

When one is multiplying by a multiple of two,
this can be accomplished with great efficiency by merely
shifting. In the B1700, where fields of. any bit width may
be used, numbers such as 3, 5 or 23 c¢an usually appear. In
the process of addressing elements of an array, for example,
the index must be multiplied by the f£ield widths, Thus, if
the B1l700 is being used efficiently, general multiplications
must occur and not mere shifting. The way that this would
currently be done is, of course, to call a multiply subroutine,
This subroutine uses the adder in the norxmal repetitive fashion
to accomplish the multiplication. Since HAL/S does have both
a Vector/Matrix and array capability, the use of indices,
‘either implicit or explicit, must be efficiently supported.

If a hardware fixed point multiple were provided, .
the manipulation of arrays of varying bit sizes and dimensions -
of course becomes that much more efficient as does the process
of multi ranked entities which also involve general multi-.
plication. ' '

4-99

INTERMETRICS INCORPQRATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

© Condition Code Testing

The B1l700 provides both a very good mechanism
for bit manipulation and field extraction, and for a large
number of condition code testing. However, the bit
manipulation and field extraction is not a part of the ALU,
while most of the condition code testing is. It would be
desirable to be able to have condition code on bits without
having to use the ALU which would both consume another instruc-
tion for this move, and potentially destroy some useful information.

@ Floating Point Support

As has been previously discussed, it would be beneficial
from an execution point of view if floating point calculations
were directly supported by the B1700 rather than being micro-
programmed. In the scientific environment, towards which HAL/S
is oriented, this is most important.

& Internal Bussing of 32 Bits

The desire for an internal bussing of 32 bits is
the pragmatic desire to be efficiently compatible with a
large number of processors currently. available, With some
loss of efficiency, it is of course possible with the B1700,
to emulate a 32 bit architecture. Also, of course, certain
applications may not reguire an arithmetic data representa-
tion greater than 24 bits or multiples thereof. Then, of
course, the current Bl700 is emmiently suitable.

o Descfiptor and Addressing Support

While the previous suggested modifications were
oriented towards the general support of any emulator, this
suggestion presupposes a particular architecture with
a particular representation. Once the formats and semantics
of the addressing of an instruction architecture becomes
known, it is then possible to specify subfunctions for their
manipulations, It 1s these repetitive actions and bookkeeping
that become prone to inefficiencies.

. When, for example, the descriptor formats are given,
specific hardware aids can be envisioned for tearing apart
the information and its appropriate manipulation.

4-100
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184t

TN

-8imilarly, when the addre351ng structure is
designated, such as base-displacement in the IBM 360,
or the lexical level-displacement, stack number-offset,
and physical memory addresses, as in the MP instruction
architecture, it is obviously more efficient if the
hardware is capable of adding in the appropriate transla-
tions. That is, the micro-process must decipher the
base-displacement form of addressing by:

a) extract the “base" bits ;
b} fetch the indicated register using the bits as an index;
¢) add the displacement bits to register value; and
d) use the resultant value as the memory address.
If hardware aid were available, the extraction of bits
and fetch of reglsters and addition of dlsplacement
could all occur in one time step. :
This form of aid is seen to be very dependent . -

on the instruction architecture being emulated. But,
this specialization in return greatly aids in efficiency.

All of the above modifications were not functional
regquirements in nature, but were rather related to the
question of efficiency: - the number of time steps rcqulred
for the emalation of an instruction archltecture :

4-101

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (6817) 661-1840

4.6.2.3 Ceneral Micro-Processor Characteristics. From the
discussions in the previous section and Section 4.4 on
micro-processors, several general charcterizations may

be drawn about the features desired in a mMicCro-processor
used for a HALM instruction architecture emulation.

¢ Easy Bit and Field Manipulaﬁion

In order to interpret the various formats, bit
fields rust be able to be manipulated.

© Condition code testing and branching

It must be possible to test bits and bit field
and to make a decision upon the result.

o Modularization

In an instruction architecture oriented towards
a higher order language, modularization becomes extremely
important since there is the need of various common
gservice and common semantic subroutines. Also, this allows
for a clean design methodology.

¢ Special Hardware Support

In order to have an efficient emulation of a higher
order language such as HAL/S it is desirable to have hard-
ware support in the following areas:

- floating point support

- automatic top of stack maintainance

- special opcode decoding mechanism

- address decode aids such as fixed point multiply

P

A combination of generalized bit and field manipulation
along with some. specialized hardware supports, proves to be a
very efficient methodology of supporting a class of higher
"order language machines.

4-102

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184(

4.7 Statistical Results

The comparison of instruction architectures requires
an understanding of just what a meaningful comparison is,
and which measures are useful; it also reguires a method for
obtaining these measures; and then finally the results
obtained by this comparison. While the most desirable
comparisons would have been made with the use of HAL/S Space
Shuttle usage: statistics, these were not available during
the time period of this contract. However, the simple

- method of benchmarks allows for a meaningful, general
‘comparison.

4,7.1 Useful Measures foxr Comparing

In orxder to compare various instruction architectures,
it is necessary to choose a measure, or quantification, of some
aspect of their design. From a realistic point of view, the
only important measure of any system development 1s whether
it can perform as needed within the cost and time constraints
allowed. But, within this framework there are many different
architectures available to a computer system with respect to
‘network design, instruction architecture, implementation of the
instructions, and the actual physical circuit design. In the
consideration of a higher order language, there would seem to
be three measures that could beé considered as objective criteria
for measurement of an (any) instruction architecture: time,
space, and ease of use,

4.7.1.1 Execution Time. While initially time may seem to

be a useful writeria, further consideration shows that the
execution time of a program is basically independent of the
instruction architecture itself, relving instead upon the

logic and circuit design of the architecture's implementation..
That is, while gross inefficiencies of instruction architecture
design could have bad effects, "good" designs (in all the various
forms: three, two, one operand or stack-oriented; single
accumulator or multiple register; etc.) are largely dependent
on the speed of memories, registers and logic, and the degree
of parallelism used in the instruction execution. The actual
number of fetches from memory can, however, provide a metric
which accurately compares efficiency of one architecture to
another. A further refinement would be to differentiate the
memory accesses for instructions from those for data.

4-103

NTERMETRICS INCORPORATED - 701 CONCORD AVENUE » GAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.7.1.2 Memory Requirements. Space, the amount of main
memory requlired, is however a real objective measurement

that can be made. It is possible to separate the "logical" -
design of an - instruction set, from the actual "physical”

bit implementation. From an information theoretical point

of view, even "logical" designs can be compared regarding
efficiency of representing the information content of a

given program. Memory is a major factor in system design,
since currently it is the most costly physical component
within a computer system., Reducing program length (compacting
instructions) minimizes both hardware cost and execution
speed. Hence, if the instructions fetched from memory have

a higher information content, fewer memory fetches and total
memory cycles are needed. In the measurement of memory needs,
data memory may be differentiated from instruction memory. It
is not to be expected that different machine architecture will
vary greatly in data memory requirements since data (size)

is predicated upon on the precision reguirements of the
problem under consideration. The instruction memory however,
allows for a large memory savings. The design of several
architectures for Higher Order Languages have claimed memory
reductions from 25% to 75% [Sa 72].

a) Cirada [We 71] has reported that thelr SPL machine
had yielded an overall reduction of 60% in the
memory requirements over a traditional single-
addressed architecture for implementing the same
set of guidance eguations and functions. The
memory efficiency is reported to be "due to the use
of Polish stack with implied addressing, the use
of floating point, the number representation used,
direct fetch of literals for instructions, built-in
array operations and use of one of two byte instruc-
tions without word boundary restrictions®.

b) Xerner and Gellman [DR 70} have designed a machine
which directly executes Fortran statements,
Programs written in this language and executed
on their machine occcupied 75% less memory. These
results were atained by comparing the machine
code generated by the Fortran compiler for the
"IBM 7094 with the numbers of words required to
represent the instructions for the ILM, The 4:1
compression of memory space for program storage
was the result.

4-104

- INTERMETRICS INCPRPORATED - 701 CONCORD AVENUE < CAMBRIDGE, M/ SSACHUSETTS 02138 « (617) 661-184C

c) Sugimoto [Su 69] has studied the direct execution

~of the PL/1 language and the implementation of

his PL/l reducer. FYor typical scientific programs,
the length of the object code has been reduced

by 25% compared to the object code generated by
presently available PL/1 compilers. He also found
a speed gain of 28% for arithmetic string opera-
tions,

d) Higher order language examples have demonstrated
‘that a traditional machine architecture; viz. the
IBM 360, uses at least twice as much memory as a
specially designed computer, the Burroughs 6500,
Distinguishing between the static memory size and
the dynamic memory usage allows for a more efficiently
compacted information and optimal design of the data..

e) As previously indicated in Section 4.3.3, Wilner
[Wi 72a, Wi 72b] has reported program memory
savings of from 40% to 70% with usage of the
B1700 over current instruction implementations.

4.7.1.3 Ease of Use. The third criteria, "ease of use" is
difficult to express quantitatively. It is, however, very
real with respect to programmer usage: How easy is it to
implement a program? When the system is to be programmad in.
a higher order language, the question is changed into whether
the HOL can be-easily and effectively implemented with the
instruction architecture. This question of ease of usage
also can be useful in examining an existent axrchitecture
with respect to what are the common programmer mistakes and
errors, what do programmers find irritating and annoying, .
and what then are useful incremental improvements.

4-105.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.7.2 Methods for Quantifying Instruction Architecture
Comparisons

Several methods have been suggested to compare proposed
instruction architecture and produce gquantitative results.
The ideal solution would be to continue development on all
candidates and measure performance with respect to cost and
execution time after they have been built. This method
of approach is hardly practical. An attempt to achieve
the same results has been made by postulating some mix of
instruction types and then evaluating the machine's execu-
tion time and memory sizing, based on the assumed mix. This
approach, however, is open to question because of the assump-
tions inherent in the 3 priori presumed instruction mix.
This fault is particularly apparent when comparing two architec-
tures which are basically different, such as an IBM 360 versus
a Burrough's B6700. They do not even begin to have the same,
or similar, breakdown of instructions.

When dealing with a higher order language, such as HAL,
it is more practical to take a different approach. Often,
benchmark programs have been devised for comparative testing,
but they have the drawback that they are seldom representative.
They usually consist of but a relatively simple set of routines
that do some well-defined tasks such as matrix multiply, sort,
etc. They are inadeqguate since they ignore the real character-
istics of a job's execution. It is most important to know
how the machine executes programs in the application environment.
Subroutine calling and exiting, saving of special index registers,
linking conventions, and addressing are of interest inscfar as
they are utilized in the execution of actual programs.

"In the selection of a computer from a set of already
existing candidate machines, the use of benchmarks is often
facilitated by the existence of the appropriate HOL compiler
(e.g. FPORTRAN) on each of these machines. The benchmarks
then can be compiled and run and results compared on each of
the candidates. The software as well as the hardware is tested
in this fashion: it is only the success of the combinations
of both that can produce good results and merits the ranking.
It can be argued therefore, that fair and reasonable overall
conclusions may be obtained. This method is not directly
applicable to the development and comparison of new computer
architectures, since compilers on these machines, of course,
do not yet exist; further it is difficult to project accurately
the picture of proposed job usage. However, the use of bench-
mark programs can still be a useful technique. Note that the
code generated must also assume the capabilities of a compiler.
A more detailed discussion of this method is given below in
Section 4.7.2.1. :

4-106
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Besides the use of benchmark programs, the various
language features of a HOL can be- separated so that code
generation and performance on the candidate machine may be
examined. This then allows for a comparison between state-

- ment types on each machine as well as the additional ability
of separately weighing the relative importance of statement
types under discussion., This method of relative comparison
was first developed by Wichmann [Wi 69, Wi 70, Wi 71, Wi72]
who compared the implementation of different Algol compiler's
code execution time, His methods were extended by Wortman

- [Wo 721 into a tool for the comparison and development of
machine architectures. Section 4.7.2.2 will discuss a modified
Wichmann approach; Wortman's approach is examined in Section
4.7.2.3.

To a large degree, the actual design of an 1neructlon
architecture itself can allow for a near optimal encoding.
Once the basic logical instruction architecture is made, a
Huffman encoding is then performed with respect to actual
usage statistics of the language. However, this method
‘itself has several limitations. 1) There is the assumption
that the basic operators and operands have some how been -
designated, i.e. the logical dinstruction architecture has
been made. But, this logical design can often itself be
improved upon such factors. as by examining the frequency of two or
more instructions following each other. 2) There is the
requirements that actual usage language statistics are available.
If they are available, how representative are they? 3) Probably
the most important decision which effects the encoding is the
implementation of the addressing structure. The actual sizing
of operand fields will highly effect the efficiency of encodingj
but this is dependent upon usage statistics which can be -
interpreted in many ways dapendlng upon how the addressing. is
handled. 4) Most important, it is to be noted that this prov1dos
“for but or static bit encoding. It is not concerned with
eilther execution time or with dynamic encoding. Thus,taken
in extreme, it would become very inefficient and prohibitive.

It is thus seen, that while usage statistics can aid .
in the physical encoding of a logical instruction architecture,
it is not in itself a sufficient methodology for the develop-
ment of the instruction architecture. The instruction architec-
ture is of a logical nature that must reflect the HOL (HAL/S)
while taking in consideration current machine capabilities
and possgibilities, and in particular, the addressing structure
must be developed. Even with this design work being done,
improvement can be made outside of the architecture. Thus,
the methods of Wichmann and Wortman provide a useful tool to
- highlight both the efficiencies and inefficiences of the
instruction architecture allowing for improvement beyond more
efficient Huffman encoding.

4-107

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138 « (17) 661-1840

4.7.2.1 Method of Benchmark Programs. One method of
obtaining a comparison between proposed instruction archi-
.tecture involves encoding a series of benchmark programs

for each proposed machine. The approach involves arranging
a cursory compilation of representative programs; the resultant
code is then examined in terms of both memory and time
efficiency. This method eliminates one major source of
discrepancy, namely the vagaries of individual compiler
writers and their chosen technigues. Since the code
generation is being performed by the developer, the
compilation technigues remain constant, the results obtained
should be a fair measure of each architecture's capabilities.

The application of this approach would consist
of the following steps:

a}l Selection of a subset of representative HAL
programs. This may be based on those developed
for the proposed usage if it differs from the general usage.

b) Postulation of a run time environment for each
of the proposed architectures. Included would
be assumptions concerning the compiler's use of
the general register set if present (e.g. bases,
indices, accumulators). It is necessary to
define in detail the addressing agssumptions used,
and the method and number of things addressed.
Allowance must be made for the number of entities
in excess of the basic addressing policy. Also
included is the definition of linking conventions:
their type, purpose, size restrictions and various
specialized formal parameter passage policies.

¢) Given the basic run time environment, the mechanical
policy for translating the HAL language features is
adopted. Modification of the basic policies is allowed
only insofar as it is reasonable to assume that a
compiler could efficiently detect special cases.
It is important to emphasize the global attitude
and policies of a compiler versus those of an
assembly language programmer. The assembly language
programmer in general takes an extremely local
contectual view in the generation of code.

4-108

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

d) Using the run time envirocnment and mechanical
code generation policies, generate the code for
the selected HAL programs. '

e} Statistics can now be directly obtained from the
generated code. Size data can be gathered by
direct examination of the resultant code. Speed’
information can be inferred (approximately) by
counting the instructions to be executed and
assuming equivalent hardware implementation for
the comparative architectures.

. While this method gives a basically sound comparison
between various architectures, it does not indicate the
relative merits of each architecture. Indeed, the assumption
- in generating code from benchmark programs is that the
benchmark programs are indeed representative of theé environ-
“ment to be encountered in actual usage. While the code
generation can be considered fairly accurate, the relative
weighing of the various language features may not be so.
Secondly, a small subset of a total run time environment
does not approach, let alone emphasize, the limitations
of a particular architecture. There are the limitations
which are inherent in any instruction architecture. These
include how many entities can be addressed, the gize of a
code module, the number of formal parameters which can be
passed,; and so on., It is important when developing an
instruction architecture that these limitations of the archi-
tecture are carefully choosen and thus may be assumped to he
reasonable for the proposed computer usage., These boundary
limits will seldom be highlighted, or even encountered, by
benchmark programs. '

Nevertheless, it is this method (though not applied
in a rigorous fashion) which is most convenient and easiest
to apply with the initial investigation and development of _
differing instruction architectures. While a detailed analysis
is often required when architectures vary but in small
detail, a short benchmark is often helpful in differentiating
architectures that vary greatly (e.g. Von Newmann
architecture versus a stack-oriented architecture).

4-109

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POQR

[x :=1.0])

T ox = 1]
T K o= y‘l
T x :=y+ 2]

T ox =y x oz
T x =y /2]
T k=11
T k :=1.0)

0T ko= m)

T k= 21xmf
T k=1 +ml
T X :=1)
T x = 1]
T 1=y]

T x 1= y12)
T xioy13]
T x:=y712z2]
T ei[1) =17 :
T e2[1,1) =71]
T e3(1,1,1) =7]
T 1:=en)]
T berin real @3 end]
T berin arrav al 171)5 end]
T %ermin zrray al 1:500° 15 énd]
T Terin avray al 1:3, 1:3 T3 end J
Toerin arroy al 1:1,V:1,1:1 J3 end]
[~ Dherin fovo abed; abed: end 1507
Toherincwiten ssi=pg; Foto ss Uxmd]
T % = sin(¥ 1 : _
T x :=cos{y)] |
T x :=abs{ v)] E
[x :=cxp{ ¥y)1 .
T x :=1In(v)T '
T x = sqrt(¥)] ‘
T x = arctan(y }]
T x :=sig(¥)]
T x = entier{ y)l
L 0] |
T pilTx)1
L p2{ x5 ¥)“}_

—
=
o

Ky ¥y Z)]

Wichmann's Lanqugage Fragments

Figure 4.7.2-1

4-110
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4,7.2.2 Modified Wichmann Approach [Sa 72]. A second
approach to comparative evaluation can be made by
extending a method presented by B.A. Wichmann [Wi 69].
Briefly, this method consists of defining a representative
set of statements (figure 4.7.2-1) of the HOL (in this
case Algol, in our case it would be HAL/S), and making

~a set of time measuremenst, Tij, for each representative .-

HOL statement 1 (i=1 to n) on machine 7 {j=1 to m). wichmann
choose to use 41 representative statement Lypes for hlS ‘
comparlsons.

He then models these measurements as:

i

| A
| A

Tij = Fi S Rij 1 n

1.

iA

;| m

| A

where Fi. is a measure of statement complexity, Sj is a
measure of machine performance, and Rij is a factor related
to the machine's relative performance for a particular.
statement. S

The assumption i1s that the execution time of a state-
ment is somehow directly proportional to the "complexity" of
that statement and to the "performance" of the particular
machine. The Rij is then a measure of how much the particular
Tij measurement varies from the ildeal.

After obtaining the Tij measurements, the next step
is to use these mn values and to determine the m + n values
for the Fi and Sj. This is a valuable apprcach if the
postulated measurements Tij are the only ones obtainable.
However, the results are less than satisfying since the
relative frequency of dynamic occurrence of the statements
of the actual application is not taken into account. An
extension of this approach is proposed as a more satisfying
view of the problem of determination of statement complexity
and machine performance.

. 4- lll
NTERMETRICS INCORPORATED » 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Suppose a large sample of software were coded in
the HOL. If these programs were executed on a commercial
machine, under instrumentation which can cbserve the relative
frequency of dynamic occurrence of each statement type Wi,
or the relative weights of each statement type is assumed
upon aerospace statistics, then a more meaningful measure
of machine performance (1n this case, slowness: Pj) is given
by :
n .
- Y wi Tij = Pj . 1<35<m
i=1 . ‘ ' o ' o

The P-values are analogous to Wichmann's S- values, but are
renamed to avoid confusion. These P-values are computed
“fyom the measured statement execution times on the J machines
as defined by -the matrix Tij adjusted by the statement execu-
tion frequency estimation for the proposed appllcatlon
software.

In an analogous manner, the relative measure of the

memory utilization can be obtained. Let Mij be the amount
- of memory needed to represent the HQL statement i, and the
machine j. The static distributilon of HOL statements

can be obtained for the benchmark by counting the HOL
constructs in the code. Define 03 as the static distribu-~
tion. Then a relative measure of memory efficiency can

be obtained by

]

The Aj values are relative measures of the memory sufficient
for ecach machine.

Since the Pj have been determined, the statement
complexities Ci in the Wichmann equation can be written
as:

i

ﬁ (1)

-
PA 1A

Tij Ci Pj Qij 1

ba A

4-~112

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184€

13

Where the 0ij and Ci are related to the Rij and Fi of the
Wichmann equation. This is mn equations in n(mkl)
unknowns. To obtain a "best fit", we chose to minimize
the varlatlon of the Qij relatlve to the Ci, therefore
.define:

ZE (LOij) 2 = 17 (1Ci + LPj - Lle)
ij

where the prefix L on a variable indicates the legarithm
of that variable., This leads to

=

LCi = = § (LTij - LP3)
J

and the Qij may then be computed from (1).

The interpretation to be placed upon the Qij-
- values is that they reflect the inefficiency of machine j
- executing statement-type i, relative to how that machine
executes other statement-types, 1ndepondent of the statement—
complexity and frequency of execution. - _ T

The values Qij then, allow for an understandlng of
the structure of the machine with respect to the HOL. This
. would allow insight as to the ability of the machine to
carry out particulaxr functions not specifically considered
in the weighting of the HOL statements.

In this method, therefore, it is necessary to first
develop a set of statement-types to be examined with respect
to .code memory size and execution time. Further, in order
to develop the P, an assumption of theirx relative weights
is made. After this it is possible to develop a meanianul
measure which is capable of indicating inefficiencies in the
design of the respective architectures.

4-113

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.7.2.3 Wortman's Approach. Wortman [Wo 72] enlarged

Wichmann's

approach both by having static and dynamic

metrics, and in his particular choice of metrics. These
metrics which Wortman used, included two terms for the
description of the static characteristics of programs:

a1

as

number of bits required to represent the
instructions,

number of bits requlred to represent the
data,

and four terms for the descrlptlon of the dynamic character-
istics of programs -

a3'

Using each

the number of memory references reguired to fetch
instructions during program execution,

the number of memory references required to
access (fetch or store) data during program ,
execution,

the number of bits of instruction fetched during
program execution,

the number of bits of data accessed during program
execution.

of these attributes with each of the associated

language fragments (statement- types) and then experimentally

obtaining:

5.
.]
and

d.
J

static frequency of the language fragment,

dynamic freguency of the language fragment f.
for computer p. : J

This allows for the development of cost measurement with
respect to either measure, or agsumed weighing functions .

(p}
o

for the statement fragments £. for the machine p. This

then leads

to a total cost formula of:
4-114

lNTERMLTRlCS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184C

Ck ‘m (p) Cn . :
(p) _ (p) (p) (p) Apdy

i=1- g1 _- i=k+l .. j=1

In actual practice it lS generally sufficient to be able
- to calculate:

m.
' (p) : - .
j=1 '
m
(p) () .
1 gggtlasP 4= 3,4,5,6
j=1 S

without obtaining the wl(P) in detail. This is true since
the difference between various architectures is great
enough to see the difference in most language fragments.
Further, in using this information for incremental design
_improvement, the relative changes in each fragment can be
clearly seen.

Whlle Wichmann limited himself to 41 statement—types,
Wortman performed his comparison upon 284 statement-types
[Wo 72)}. The statement fragments as presented by Wortman,
modified by the additions and subtractions of features,
would be quite appropriate for HAL. These added features
would primarily concern the real time features of HAL; the
primitive arithmetic types in HAL of vector and matrix and
their associated operators; the HAL TASK blocking; general
HAL flow control statements. including DO CASE, EXIT and

" LOOP; and the use of the HAL sub-array capability. The
deletions would include the ALLOCATE and FREE statements.

For a detailed comparison of various instruction

architectures, this is the method which is most beneficial.

While it is possible to make a basic statement of the

efficiency of one form of instruction architecture as compared

with another by using benchmark programs, this is but a gross

measure which fails to indicate, in-detail, where the efficiencies
. and inefficiencies lie. By examining. each language feature, and

thereby producing statement fragments, it is possible to find

the inefficiencies and hénce to allow 1ncremental 1mprovements

in the de51gn.

4-115
JTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

However, this level of analysis which is necessary for

the fine tunning, the incremental improvements, of an
instruction architecture was neither reguired nor feasible
‘within the context of this study. . The investigation

of stack-oriented architectures and various addressing
possibly in themselves greatly reduced memory regquirements
when compared to Von Neumann architectures, and thus a
benchmark form of comparison suffices. The applications
of the Wichmann/Wortman approaches requires actual usage
statistics when used as a design methodology. But it

is to be noted that during the time period of the performance
of this work, actual HAL/S Shuttle usage statistics had
not yet become available.

4-116

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4,7.3 Comparisons of Architectures

Section 4.3 discussed the importance of addressing
and provided a comparison between the IBM 360 and AP-101
code generation of the HAL/S compilers. (The actual code
generation and HAL/S program are contained in Appendix 1).
For the purposes of the implementation on the B1700, a
modified MP instruction :architecture was adopted. :
Appendix 2 shows the engodlng of the same HAL/S program,
CUBES, using this instruction architecture. There are several
interesting things to note about the resultant comparison.

While the AP-101 reduced the IBM 360 code gize by

. 32.6%, the MP reduced the IBM 360 code size by 42.53%.
This is by 10% more (Figure 4.4.2-2). . The MP instruction
architecture also managed to reduce the address field
portlon to 56.6% of the bits used (Figure 4.4.2-3)
versus 76.5% of the IBM 360, or 68.7% of the AP-101
(Figure 4.3.1-3). Only 901 bits were requlred for
addressing with the MP versus 1298 for the AP-101 and
2144 by the IBM 360, Yet, the AP-101 only required 590
opcode bits while the MP requlred 691 bits. The reason
for this discrepancy in favor of the AP-101 is. simply
that the initial MP instruction architecture design was

. byte oriented with the majority of operators requiring
8 bits, while the AP-101 was able to obtain a large
nuriber of 5 bit of opcodes. Even with this advantage
for the AP-101, the total result showed more efficiency
for the MP architecture.

Any final (next) physical mapping of the MP instruction

~architecture would be a great improvement con the current

good results. 1) Actual usage statistics will become

available and allow for an efficient Huffman encoding

of the opcodes (thus, by definition be as :

compact as possible). and 2) when using a basically

format free micro-processor such as the BL700 there is

no requirement to have "syllable" operators, but rather

5 or 6 bits, or what ever operator is most informationally

efficient may be used. It is hoped that in the next bit

mapping another 20 to 40% reduction in space may occur.

4-117

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 -« (617) 661-1840

4.8 supra-HAL/S Usagdes

It has been seen that a micro-processor allows for
a relatively efficient implementation of a higher order
language instruction architectuxe. There are other
possibilities for the use of a micro-processor other
than just HOL implementation. Certain features of a
language may be too complex and thus, prohibitive for
implementation; but other features, which normally give
rise to difficulty, e€.g. error handling, may be _
easily implemented with the aid of micro code., Looking
beyond the HOL language instructions, it is seen that
whole routines may be written in the micro code if
their simplicity and frequency of usage warrant it. Besides
features related to a particular HOL and its: usage, there
is the whole area of executive support which can be greatly
enhanced by use of micro code.

4.8.1 Language Features and Routines

It was previously indicated that certain of the HAL/S
semantics may be too complex than to be worthwhile to implement
in the micro code. These would include the general array
and matrix processing. Besides requiring excessive micro memory for
implementation, they require a large amount of processing

_time, perhaps more than would be allowed for the real time
processing. But, it is also possible that certain
language functions (which are usually defined to be a
funection in the language specification and treated as such
during implementation) may be of frequent enough occurrence
and simple enough nature to be effectively implemented in
the micro code.

These routines might consist of some of thetrig-
onometric package as has often been suggested [Pa 70].
These, however, are not usually of a very high occurrence
in.actual practice. Another posgsibility following the
same line of thought would be to implement some basis for
the generation of the various trigonometric functions, thus
aiding in all of their implementations. (Conceptually, for
example, implement ei® in micro code).

4-118

INTERMETRICS INCORPORATED - 701 GONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Recognizing that a HOL implementation normally
functions with a support package of routines including.
the trignometric, vector and matrix, and other arithmetic
functions, it would seem very reasconable to carefully
consider their linkages. 1In particular, these "system"
routines are both well defined and cempletely known by
the compiler performlng code generatlon Whether a
particular routine is to be in micro cdode or to be’
implemented with the normal instruction set, could be deter—
mined by statistical usage or execution requirements,
In either case, the executive environment required
by these system routines is very limited and defined.
Thus, it is possible to generate linkages which take
‘particular advantage of this fact and need not set up
‘thé general environment., An example of this concept -
of linkages can be found in Va 73a pertaining to preposed
modification for the AP-101 for the Space Shuttle computer.

Generalizing this special interegt taken in the
functions and routines defined to be part of the language
(SIN(X); ...), it would of course be possible to actually
encode other routines written in HAL/S into micro code.

This would be done either because the timing charactéeristics
of the routine are so critical that they must be made more
efficient, or else the frequency of usage of this routine

is so high that a dramatic saving in throughput is to be
gained by such an implementation.

" While it is possible to envision an automatic
mechanism for either generating standard HALM code or
actual micro code for g particular routine during compila-—
tion, the need for this complex and difficult code .
generation capability would not in general be warranted.
By the definition of the routine which is candidate for

- such an encoding, it is an exceptional case.

4-119

"FRMFTRICS INCORPORATED - 701 CONCORD AVENUE - CAMBHIDGE. MASSACHUSETTS 02138 - {617) 661-1840

4.8.2 Executive Usage of Micro Code

The operating system of a particular computer is
not necessarily directly encoded .in, or even related to,
the higher order language used by the application programmers,
Two promising areas for executive/micro code
interaction are in the data structure required by the
executive and in the interfaces to the higher order
language proegrams.

Executives require certain general forms of data
structures which are not directly. supported by scientifically
oriented HOLs. These data structures would include queues,
stacks, and various linked lists structure. Often, these
bagic structures are "built" by specifying an array or
structure in the executive's implementation language.

Then, a few basic routines are written to treat the "built®
data structure in the appropriate manner. These routines
would indicate such things as ENQUE and DEQUE elements

for queue data structures, and ENTER, REMOVE and SEARCH

for the link 1list data structures. It is obvious, that if

the executives implementation language were to have these

data types as:primitives and their manipulative routines

as language primitives, then a micro code implementation would
greatly improve its execution efficiency.

Besides general data structures, any particular executive
has specific data structures which are basic to its operations.
These would include such things as the Process Control Block
(PCB), or a Time Queue element. It then becomes possible to
define operators upon, for example, the PCB, which do
exactly the appropriate manipulations. These could include
the state transaction operations such as READY, WAIT, ACTIVE,
+e+ « Being identified as primitives, they too could then
be implemented in micro code. It should be noted, that these
forms of data structure manipulation,in general,are not complicated
but consist of searching and bit manipulation, and these types
of functions of course are very efficient in micro code,

4=-120

INTERMETRICS INCORPORATED - 761 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 6G1-1840

A third set of data structures which concern the
executive are those various synchronization primitives
that are finding their way. in higher order languages and which =
are required for real time processing. These primitives
include, for example, Dijkstra's PV primitives, and Events
and locks as used in HAL/S. Here is a case where there
is an interaction between the HOL implementation and the
executive. While the data structure is defined in the HOL,
by its nature of being more globkal than a particular process,
it must be handled by the executive. Again, a micro code
‘implementation can make the implementation very efficient,
and in this case it can also lend authority to the
integrity of the operators by guaranteeing tholr unlnterrupted
execution,.

_ Besides data structures, another area is theé specifica-
tion of interfaces from the applications program to the
executive. The executive can be considered to be a series
of routines that act-upon the process state of the system.

It allows changes in the states of processes. The executive
also handles the interfaces to the cutside world interrupts
and I/0 processing.

: If some of the HOL executive interfaces are simple
executive routines (e.g. UPDATE PRIORITY) then it is pOSSlble that
the whole function had become a single instruction, a micro
routine. In this case, the interface indeed consists of
executing one instruction which is the appropriate executive’
routine. ‘

‘It is also possible to develop special executive
HOL interfaces in order to minimize the amount of
overhead reguired. This is possible, just as with the other.
language service routines (SIMN(X),..) since all of the inter-
faces are known and well defined.

As with all routines, the decision of the encoding
of an executive routine must depend upon its complexity,
critical time requirements, and frequency of usage. With
a refined definition of the regquired executive environment
for a real time HAL/s, it would be possible to investigate
those routines candidate for micro program encodlng. The
method for determining the best candidates is to instrumentate
the actual execution of the system, and to determine the bottle
necks. Perhaps in the future, this will become possible, with
for example, the development of the Space Shuttle environment.

4-121
TERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.9 Conclusions and Recommendations

As a result of this implementation study, it is
clear that a HALM is fairly simple to realize. A
modified version of the MP instruction architecture
(Mi 72] was investigated in detail and partially
implemented on the B1700. While the B1700 is not
designed to be a real time process control computer,
its internal structure allows for convenient implemen-
tation of varying instruction architectures, and with
the help of some specialized hardware, €.9. floating
point unit, it would prove to be efficient in time
as well as it is in space.

Further results of this study are the emphasis upon
the importance of the instruction architecture addressing
methbdology; the reguirements for actual HAL/S user
statistics in order to both properly encode the instruc-
tion architecture operators and in order to help determine
the most appropriate addressing mechanisms; and, an
appreciation of the possibilities of being able to address
any bit width without penalty, e.g. true precision specifica-
tion in the HAL/S language itself.

while the results of this short study have been
affirmitive and reassuring, it is desirable that several
of the areas of investigation be developed further. Areas
which can be considered to be of particular importance
are as follows: :

o HAL/S User Statistics

Tn order to both compare current instruction
architectures and to develop future ones, it is necessary
to know exactly how a language is used. Both Section 4.3
on addressing and Section 4.7 on statistics emphasized the
requirements for usage statistics. It is only by this
means that compact encoding of a logical instruction
architecture into a physical representation of the
instruction architecture may occur. Further, by knowing
both the forms of operands and their character-
istics distribution, it becomes possible to develep the
appropriate, and most efficient addressing structure.
User statistics also enable incremental improvements
to the instruction architecture itself. WNot only can
encoding be made better, but appropriate operators can

4~122 _
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184(

be specified to optimize u?on the~correlation of actual
occurance of several basic operators (e.g. A = A + 1:).

. As the Space Shuttle program continues, étatistics .
for HAL/S usage should become available. It is hoped that
they will be used. . :

e Investigation of Various Address Structures

, A thorough investigation of the various addressing
structures available (abseclute, indirect, lexical level-
displacement, stack number-~offset, base-displacement,
sectors, banks, descriptors, ...) should be performed.

In particular, it is of interest to know the time and
‘space tradeoffs with respect to implementation complexity.
In the aerospace environment, in particulax, appropriate - -
addressing would greatly decrease memory reguirements.

® Develop Standardized Basic Operating System

It would be useful to have a virtual operating
system specification which would define not only the
HAL/S interfaces, but would indicate the allowable
process interactions and time constraints. Such a
specification would allow for deterministic and ,
reproducible results of a complex of HAL/S programs _
regardless of the specific executive implementation or
sSupport processor.

® Variations and Stability in User Statistics and
Resultant Design

It would be useful to determine how well a particular
physical HALM realization acted with different sets of
user statistics. Had the design been so tuned, that with
a different set of usage characteristics, it became
inefficient? Or, is it a relatively stabile design that
varies but reasonably? This task would require both an
analysis of how the design varies as statistiecs vary, and
the actual gathering of several sets of statistics which
do vary. Both the analytical and practical treatment of
this task c¢an be considered of interest.

4-123

ERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

@ Full Implementation of a HALM

It would be desirable to actually complete a HALM
implementation. This would afford assurance of actual
design integrity and provide a facility for statistics
validation. While it is relatively easy to develop
memory size comparisons in abstraction, the actual
execution of a HALM provides valid timing statistics
and the micro routines provide the basis for the under-
standing of the timing. Actual execution on a micro-
processor enables the determination of the timing bottle
necks of an instruction architecture design.

The efficient hardware implementation of higher oxder
languages is no longer in question. It is possible to orient |
the ingtruction architecture for the languagde which they are
to execute, and to do so in an efficient manner. The principal
issue for computing systems should be the development of
languages which are truly oriented towards the problems to
be solved. '

4-124

INTERMETRICS INCORPQORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (B817) 661-184(

4.10 Bibliogfaphy and References”

Al72 Alexander, W.G., "How A'Prégrammiﬁg Language 1is Used”,
Technical Report CSRG-10, February 1972, Computer
Systems Research Group, University of Toronto, Canada.

Bi70 Bingham, H.W., et al, “"Microprogramming Manual for
Interpreter Based Systems”, TR 70-8, Burroughs
Corporation, Paoli, Pennsylvania, November 1970.

Bo73 Boehm, B.W., "Software and Its Impact: A Quantitative
‘ Assessment”, Datamation, May 1973. '

WCaBB Carey, L.J., and Sturn, W.A., "Space Software at the
Crossroads", Space and Aeronautics, December 1968.

Ch64 Chen, T.C., "The Overlap Design of the IBM System/360
Model 92 Central Processing Unit", FJCC, Part 2, 1964,

Co68 Corbato, F.J., "Sensitive Issues in the Design of
~Multi-Use Systems", MAC-M-383, Project MAC, December 12,
1968.

€069 Corbata, F.J., "PL/I as a Tool for System Praogramming"”,
Datamation, May 1969. :

Co72 Colen, P., "Space Programming Language Machine
Architecture Study", 2 Volumnes, prepared by CIRAD
Corporation for USAF SAMSCO, TR 72-117, 15 May 1972,

GR70 Graham, R.M., "Use of Higher Level Languages for
Systems Programming", Technical Memorandum 13, Project
MAC, September 1970, AD 711 965.

Hu70 Husson, S.S., "Microprogramming: Principles and
Practices, Prentice Hall, 1970,

4-125

ZRMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

I171
Ke70
Kr70
Kn70

Lu72

Mi72

Ne71

Ni72

ra’vo

~Ra69

Ro71

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661

Intermetrics, Inc., "HALMAT: An Intermediate
Language of the First HAL Compiler", Revised,
Intermetrics, Inc,, 27 October 1971.

Keeler, F.5., et al, Computer Architecture Study,
USAF SAMSO, Report TR-240, October 1970. AD 720-
798. :

" Kerner, H., and Gellman, L., "Memory Reduction Through

High Level Language Hardware", AIAA Journal, December
1970, pp. 2258-2264. : '

Knuth, D.E., "An Empirical Study of Fortran Programs",
Stanford University, Computer Science Department,

- Report No. (C8-186, 1970, AD 715 513.

Lautz, M.J., and Munthey, M.J., "A Micropogrammed
Implementation of a Block Structured Architecture",
Department Report 33-72-MU, Department of Computer
Science, SUNY at Buffalo.

Miller, J.S., Vandever, W.H., Stanten, S.F., Avakian, A.E,,
and Kosmala, A.L., "Engineering Study for the Functional
Design of a Multiprocessor System", Final Report,

Contract NAS 9-11745, Interxmetrics, Inc., Canmbridge,

Mass., September 1972, :

- Nanodata Corporation, "QM-1l: Preliminary System

Description", Nanodata Corporation, Williamgville,
New York, October 1971.

Nielsen, W.C., et al, "Aerospace HOL Computexr",
prepared by Logicon, Inc. for USAF AFAL, TR-72-292,
4 Volumnes, October 1972.

Patzer, W.J., et al, "Aerospace System Implications

- of Microprogramming", in Air and Spaceborne Computers,

Technicians Services, Slough, England, April 1970.

Rakoeczi, L.L., "The Computer with a Computer A Fourth
Generation Concept", Computer Group News, March 1969.

Rosin, R., et al, "An Environment for Research in Micro-
programming and Emulation”, State University of New
York at Buffalo, Department of Computer Science, Dept.
Report 5-71-M, 1971. .

4-126

-1840

Sa72 Saponaro, J.A., et al, "Advanced Software Techniques

' for Data Management Systems”, Volume 1, Final Report,
Contract NAS 9-11778, Intermetrics, Inc., Cambridge,
‘Mass,, Fehruary 1972, ‘

Su69 Sugimoto, M., "PL/I Reducer and Direct Processor”,
' Proc. 4th National Conference, ACM, ‘1969,

Va7l Vandever, W.H., "Uncorrelated Notes from the 4th
Annual Workshop on Microprogramming™, Multi-
processor Memo #07-71, Intermetrics, Inc., 20
September 1971,

'Va72 Vandever, W.H., "AP-101 Micro Processor Description",
-+ - - AP-101 Memo #01-72, Intermetrics, Inc., 13 October " °

1972,

Va73 Vandever, W.H., "B1700 Micro Processor Description“,
B1700 Memo #01~73, Intermetrics, Inc., 3 December
1973.

vVa73a Vandever, W.H., "AP-101 Instruction Set Modifications"®,
Shuttle Memo #35-73, Intermetrics, Inc., 17 September
1373.

We7l Wersan, 5.J., et al, Architectural Study for Advanced
Guidance Computers, Part 2, prepared by CIRAD Corxrporation
for USAF SAMSO, TR 71-6, -February 5, 1971, AD 723 669.

Wi51 Wilkes, M.V.,_"The Best Way to Design an Automatic
Calculating Machine", Manchester University, Computer
Inaugural Conference, 19251, p. 8.

Wi69 Wichmann, B.A., "A Comparison of Algol 60 Execution
Speeds", National Physical Laboratory Report CCcu-3,
January 1969.

Wié%a Wilkes, M.V., "The Growth of Interest in Micro-
programming; A Literature Survey", Computing Surveys,
vol., 1, No. 3, September 1969. ,

Wi70 Wichmann, B.A., "Some Statistics from Algol Programs",
National Physical Laboratory Report CCU-11l, August 1970.

Wi71 Wichmann, B.A., "The Performance of Scme Algol Systems“;
Proceedings of the IFIP Congress 1871, -

Wi72 Wichmann, B.A., "Five Algol Compllers ; Computexr Jourhal,
L v. 15, No. 1, 1972,

4-127
sN'i ['RMETR!CS INCOHPOHATFD + 701 CONCORD A‘V’ENUE CAMBRIDGE, MASoACHUSETTS 02138 - (617) 661-1840.

Wi72a Wilner, W.T., "Design of the Burroughs B1700",
FJCC, 1972, pp. 489- 497

Wi72b Wilner, W.T., "Burroughs B1700 Memory Utilization",
FJCC, 1972, pp. 579-586.

Wi72c Wilner, W.T., "Microprogramming Environment in the
Burroughs B1700", Compcon 72, Digest of Papers,
qu 103_106. .

Wd72 Wortman, D.B., "A Study of Language Directed Computer
Design", Technical Report CSRG-20, December 1972,

-Computer Systems Research Group, UnlverSLty of
Toronto, Canada. :

4-128

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 6G1/184C

Chapter 4.
Appendix 1

HAL Programming Example_

Included in this aﬁpendix is an example of
the code generated for HAL/S on both the IEM 360 and
the IBM AP-10L.

This program is representative of the size reduc-—
tion which occurs when in a program code generated for
the AP-101 versus the IBM 360. Several comments need be
made in order to determine the relative sizes, of the '
address fields and the opcode fields.

In the code generated for the IBM 360, there are
inserted into the listings, several constants which are
not directly needed for the execution, but are rather used by
the Functional Simulator, SDL, and for debugging. These
constants have been ignored in the total size count. But .
there are also some constants which are required in order
to both set up the addressing environment for the routine
and in order to bind it to other routines. These have
been included in the instruction count as contributing
to the address and total bit sizes. PFigure 4.A1l~1l shows
a summary of the sizing as indicated in the listings.
This sizing is broken down into the address fleld and
opcode fleld portlons of the total. :

The listing for the AP-101 code generation does not
break the instruction summary into the various formats, -
SRS and RS. Figure 4.Al-2 provides analysis of this break
down, and then summarizes the program sizing. This again
is broken down into the address field and opcode field .
‘portions of the total.

4-129

INTERMETRICS INCCRPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-18

IBM 360 Code Generation Field Breakdown

¢ Constants to be counted in program size
000004 DC A used for initial addressibility

= 000178 bC A l used to set up addressi-
through 000150 pcC. A - 5 bility registers '

' LOCCTR

= 6 "4 byte" Address Constants

There are 7 BALR instructions requiring address constants
in order to link to the indicated routine

= 7 "4 byte" address constants

All other‘consténts are assumed to be not relevant to
the programs algorithm, and are for the Functional Simulator,
5D, or other usage. :

© The break down of instruction count is therefore as follows:

RR (RX,RS,SI) S8 De

number of '
instruc- 15 67 0 13
tions) -

© Weighing these as indicated by Figure 4.3.1-1:

RR (RX,RS,SI) 55 DC Total
Address
Field Bits| 120 1608 0 416 2144
" Opcode
Field Bits| 120 536 0 0 656
Total Bits| 240 2144 0 416 § 2800

Figure 4.A1-1

4-130

NTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

AP-101 Code Generation Field Breakdown

® The output listing of the AP-101 code generation does
not provide for a breakdown between the SRS and RS '
formats. This breakdown can beifound by counting the
instructions as given in the listing. The results of
such an examination areé here presented:

Total as Given

INSTRUCTURE" RR SRS RS in Listing
AH 0 0 1 1
AHI 0 0 5 5
“BAL . . 0. 0 8 8
'BC 0 6 2 8
LH 0 1 4 5
LA 0 2 0 2
LH 0 18 7 25
LHT 0 0 7 7
STH 0 13 5 18
TOTAL 0 40 39 79

® Weighing these as indicated by Figure 4.3.1-2:

RR SRS ‘RS . TOTAL
Address fleld
hits ‘ . I 0 440G . 858 1298
Opcode field .
bits 0 200 390 : 590
TOTAL BITS oo 640 1248 . © | 1888

Figure 4.Al-2

4-131

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

HIL/S COMPILATION INTERMETRICS, INC. JULY 16+ 1574 21514:42.7€ PAGE 2
san STHY _ SOLRCE - CURRENT SCCFE = _
© 000000 1 Ml CUBSS: ' . | CUBES
S 0D0DOO 1 M PROGRAMY T T AT S —
. 00ggo0 2 Ml DECLARE INTEGER INITIAL(LD, ,,L&Q?ESm U
0goc00 2 m] Iy 1L, MINIM: | CLRES
600000 3 M| DECUARE IH INTEGER INITIAL(203 T cleeesT T
1000000 4 Ml DECLAPL INTEGER, - l.cuecs | ——
000000 & Mi Ay By K3 _ % - 1 cLeEs
000000 "5 i} TDECUARE U ARRAY(12) TINTEGER INTTTAU(ZET, *77 ‘ @ , T
000000 6 MI____OTCLARE S ARREY{12)_INTFGER_INITIAL(Z, S, *13 % ‘ | CLBES
0G00G0 T M DECLARE P ARRAY(12)} INTEGER INITIAL(1s £, #1; g ! CUEES
‘ o S e e e e e W e e e e e
VYLDOY 8 M| D3 WHILE MINIM =~= § ; a2 | CLags .
-~ 51 1 3] -l]
o i e e ivr =5 S
(5201000 9 i A =13 E R | CLBES
2 o .
gopong 10 M MINIM = § 5 _ - ?E—i_ _lcewsEs
s 1) = i
Q
002001 _ 11 ™)_ B = 43 % : o H |_CLBES P
Y 1 K lF:T E = {
Gooe " B mq
ot 12 M 1F 3= 1 THEN = : 1_CLRES
St 1 'g s i
B v 3
000001 _ 13 MI__ - TL = IL + 13 . =3 doceees
0coool e 4 ELSE .= g | cipes
aeoool’ ie M}TTTT T Tppy T EEe— —
600001 15] 1F J = 1 THEN | CLEES 3
e T 1
000aGl 16 Mt oes | CLBES
000001 17 Mi iH = IH + 13 } CurES
o N 3 i T
000001 18 H| Fo= IH 3 { CUBES
S I - ! e _
00000 19 M . . J = 1 | cyBes
. st TH i

Hat /S COMPTILATION : ‘ INTERMETRICES, INC. : JULY 1é&y 1674 Z1314:42.78 FAGe 3

. R SCURCE . | "
000001 20 M1 S =P +1: T

S e M IR
000001 21 M| | CEND:

SRH_STHT

CCURFENT SCOPE

]

| CLEES

[CLEES
poooaz EzelT T 4= U +1
st I I
cocooz 23wl T ' f ' T CUEES
si L B N , 1
ooaco2 24 M} ‘ ERD3 P S Lo R L - R

| CLEES o I
P ' :

v

RS B : I Cuges ' E
‘wooo02 28 MIT 1 = 1Li T IR ' - : [oleEs -

000002, - 26 M) K= I3

| : - . CURES___ ..
000002 27 MI - DD WHILE K < IH3 e e e A T B

D A AT \ | CUEES o
opoooz 38 Ml T T TR e kT T , 2 ' ["TLRES '

1 _ S

coopoz 3OMI_ o Lo=Ki o o : T ST A LT IS SR | CLBES

000002 29 M _IF 5 €S ThEN

L LLEES
1

wo000z 31 M END3 ow b CLEES
s S e = [
000003 32 MY ENRTT T T Br‘g . | CiBes.
000003 33 vl WRITE(6) MINIMy Ay 8¢ 1eid 5 - AR JleuEES L
S ' - I e P !
. e | ©a
_..3% M| _CLOSE CUBES:

[#)

i

im .
‘e
i*o
T
‘tn

{

|

€}
B\

g0Qd S|
AL J0 ALl

e e e e 12 e e
: P
e -t -
- - et et e e o+ e e 2o . _— 7

HAL/S CuMPILATION

LOC TR

0000 as
aoanog
QuL00U
(elalaie el
000004
CoQUER
[AT0T OIS TR
cuQual
oonG1o
ooogl4
090418
cono1c
0eQloo
QU000
oonoo2
ogoca?
aguc0s
Cuouls
[CIeRaTRINIS
NouCUs
ooouis
aoagar
[sTefelaloki]
Cona0.
Queolice
upuHnt2
000024
oooRre
ogQu2
[SReIieN
GoDIsg

cooanz

RODO LY
pognlc
oo0dL-
guDde 20
QoGP 2z
ounz g
opanz-
ooLusT
Quouz -’
Coon 32
00G0uU3A

20Co0Cs

00003
Joou3e
03003~
OOOUL2
Vaooas
O00n4h
000042
ooon 4
-Qe0I%2
Q000652
ceconse

I NTERM

ETRICS .

INC.

JULY 16s 1574 £1214:42.0€ + PAGE

S

Jkong LRBEL INSN __ OPERANDS SYMBCLIC CPERAND
STHL oy w TIME = &9
. SOCUSES _ | (SECT. ESDIC= 000l
CUAES Fy =)
47F0F010 8C . 1541610+1%) !
00200150 bt AT000CC150"
00%0 . ' ne X100s5Q¢
0523:4L2 e X050 3rac2?
5 2 . BL XTCEIT2Y —
58707 004 L 11+4(0+15¥
996ARG2H LM 5,10.40011)
92010000 - KVE 0{131.1
ST#2 L TiwE = O
#CCUPES CSECT FST1E= 0003
@O0y . ec _ _xtoooi’ o
5782 Ty TIME = O,
a0l o X0001°
) . S5Tsz Q¥ E TIME = 0
ool : N T XtQo01Y
ST#3 oy oA TIME = 0
0002 _Dhe Xtoo02¢ o
T T sTHa £qu = TINE = O
5T44 QY % TINE = O :
STK';}___ _m__rau___* _ TIME = Q
0001 - ; or x*000L"
0001 oe %T000LY
R 631 S TIME = O
0002 o X1Qoo2!
0009 oC X'000%!
ALY . Toy = TIME = 0 S
goolr ne 10001
0oas Dt X'0008"
SLE __EmU % TIME = 45 o
"$0CUBES CS5CT rsDi0= QGOl
LBaLY2 CQu = _
48900000 LH 94,010,100 1 e
1499 o T AR 9.9 ;
40200 Q04 L+ 2+480,1 00 FINTIM L
Qg 24 LM 23605000 s ‘ ‘ L
47AF0104 8 B8.266015,0) C60104 LBLH3
§T4Q roy % TINE = 18
48300000 LH 3,000,410} 1
40302008 STH ~73,8{0,101} - 3
- - 5THl0 2QU 1 % TIME = 18 .
48494024 LM 4,36(5,(10} 5 .
L0404 004 STH 4.410,10) PINIM
5TH11 £y TIKE = 18
48295000 LH __ 2,12(9.101} J i T
4020004 STH 24+10100,10) 3
STH12 tQu % TIME = 33
6859400C S WM 5,12(9.10) - R
£950.000 CH - 5,000,100 1 :
476F0062 8C 61981 15,0} Ce0062 LBLYS
‘ C 0 sT#y3 Fou_ ox TEME = 26 . .
4860 002 LH 6+2{0410] IL
4 A60604% AH 6:6B{0,11} prle

—— p—

HAL/S COMPILATION INTERMETRICS » I NEC - Jubky 1&g 15174 21314142, 7€ FaGL . LU

LOCCTR CORE LABEL INSN _ OPERANDS, SYMBCLIC CRERAND - . S,
B : RN . i
S . . . :] H

00NG5: 40605002 STH 6,200,100 Ce o : i

0oo0sT C SYwla FQU % TIME ® AT o N i e

OCO0SE 47FFOQCO , [1s 15,192({15,0) CCO0ES LBLES

QoQ0E2 LBL ¥4 Fqu * . ‘

000062 SIS EqQu_x TIMZ = 43 [,

COCo62 48902000 L4 T o.0lD,10) - 1

000Gu6 1249 At 9,9 ‘

0000Gs8 41200001 . LA 2,1t0,0) o e e

000D6L 45294000 CH 2,1219,10) d

0007 4TLF00AD , BC 64,160(E5,0) 0000AD 1LELWS

00GC0T4 sT#l - EQU_ ¥ _ TIME = O e e

000074 ST#17 EQuy = TIME 8 26 0

CO00T4 483041006 Lo 2,600,10) - : v 1M

QUQU IS 4A3IQRO&4 aH 0 3.68(0,11) L p11 e

GGOUTC 40303006 5TH 3,£{0,100 Ir

000080 5T418 U * TIME = 180

0DGeD YA3Y AR 3,3 N

0Do0e2 41100003 La 1.3{04+0) o

0000Hs 48D0AD06 LH 0,610.10) IH :

0000R. 0S:C - BALR_ 14412 AR i - .

QCQO0RT 0Q00Caa0 - DC A'000D0000! LTCTHET

GOOAI0 4013403C : 5TH 1,60(3,10) .

oooLYs SYHYe Fau_ * o TIMES -

0OOD94 40234008 STH 251203, 100

0aedas STH#20 EqQu * TIME

CODDYB 42103044 ©AH 146800411) I

Q0009C 40134024 STH . 1,3613,10} . '

00000 ST4#21 EQu * TIME "

C00G30 . _SY#zz __ raQu s TIME = L R

000040 LBL¥G £ou % ‘ o '

000000 4890 000 : LH - S,0(0,10} O

CO0GA4 L1299 AR g,9 ol

000036 4829AD0C LH 2,1219,10) J Eg

Q000" L 44204044 aH 2,881 0.11) HeYs E’-O ;

0000AT 40264000 . STH 2,12{9,10) 4 e N

0o00R2 sTa23 EQy % TIME = 300 o0 o=

0ocoe2 1422 AR 2,2 . e

G000 % 4839203C LH o 3,60(9410) P s R .

000U8 S 4A32A03C AH 3,6012,10) D =

0CoONeC 406394024 $TH 3,3606,10) 3 B =

0GO0CG _ STH24 Fouw % TIME = O — :j?

9Go0L0 TTsT425 TEou = TIME = 18+ RN

Qonoto LBL #5 BQYy ok o : "'d%

00000 48203002 LW 242{0.10) HoR —

Ua00TE 40203000 STH 2,000,110} (@] E

000078 STE26 Loy o TTIME = 10 W

[0O00CS 4020100C STH 2,12(0,10) K e -

ooooCs STH2T EQU L ® CTIME = 33 S) -

000GLL LEL#T Loy % o oo

puocrL 4820006 LH 2+1200,10) . K o

O00T0 49208006 ' CH 2,610,101} IH- :

000054 4T5FO100 ac 10,2556(15,0) 000100 LEBL#E

0000LR o sTeps EQU ¥ TIME = 18

Q00008 43203044 i AH 2:680(0,11) - NS D T

JoQOonL 50204 00C STH 21210410} K :

JAL LTV

YaL/S COMPILATION

EOCCTR

0oo0io
Q000r 0
ogon* 2
ccaue
QoLOT &
coooTr
0000
QOCOF%
aouor 4
QuooFA
oQooTs
oOonFL
QUUITL
Cuolog
063100
gotico

000104

UOOL 04
Noa104s
QoulCa
uoaL el
oodi0:
pooliz2
0C0116
Qoo s
gooric

T apo120

oogd1z2
aooLzée

L0012

Gony2-
002130
0oNL34s
CL0lah
DO 34

ConuLat

QuUO140
Q0144
QQulsas
QQUL4A

QCOl4an

Q02120
CoJ15G
QG154
ooo1es
00014
guuleo
gUul &4
0003166
GOoL 68

S poslen

0go17Y0
Gool74

. 000178

U917

Leag tABEL ENSN__
ST#29 s0U
1A22 e AR
48504000 LH
143¢ AR
48324024, LH___
4939.0264 rH
4 IAFQUFC EC
5T#30 Loy
4840L00C LH
404 0L 000 STH
e .._5T#31 L Fe
LEL #9 £t
4T7FOGLC 8L
LeL#s w0y
ST#32 rou
ATFFODLIC RC
o tm#s 00 QU %
5THIY Fou
41100006 LA
41000003 X
G5=C BALP
aggaooono e
48000004 tH
0s57C ¢ EALR
00000000 Conc
4pgQ0t003 O LH
Q5. [BALR
00003000 nr
48005004 LH
ns . BALR
00000000 Do
48007000 LM
05. € aaLp
sfaleTeieloloTs) oo
&890: 000 _tH
139 T AR
5305 00C. LH
05°C — .. hatm
00000000 oe
$T#34 Ffy
47707006 BC
¥FCURES £53CT
4T 0ILTS BC
gegclgeo b
00000000 oe
00000090 nc
apa0eQoe .o
goo1 0c
0022 -G
goocoooo o cobe
000CO000 ne -
00000000 Ds
gogogooo . BC.
oYsToYeleYolols] R Do
00000000, e

S 9,0(0410)

3436024101
3e3615,10)

C0.010410)

INTERMETRICGS »

INC .

JULY 16, 157%

21:14342.78

PAGE 11

_CPERANDS

2+2

SYMBOLIC DPERAND

TIME = 49

9,9

10.,252115,0}

o TivE = 18

4,1200,10)
4,0(0,10)

inin

COOCFC

LeL4y

* TIME_= 10

x

15:204(15,0)
%

5¢28115,0)
*

« 7 TIME = 10

cooocc

LELAT

I
N

0000Q1C

LBL#2

TR

i

® T TIME =
~14610,0!
0121040}

124

vk T
H BRI
vl

14,12
A'oobooQooY
041010}

14,142

SRIQCCGONT G
__018(01L0?
14,12

£+00C0G000Y
0410004100

—_ sy -

14,12

Ar*0000000Q°

14512

- AYQC000000"

9,0(0,101

9,9
0,1219+10)
14,12

1000000000

i TIFE = 10

15,406,12)

Lty 310= 0002

1%,37210.12}

_A'0C0000000°
X' 00000000

Xx'0cooo000!

ArY0QCQ0000Y_

®*Qo0l’
xroQaze
X10GCC0OQU0Y

CSTRACE. o v

CLBES

Ktrqgaooagoor . -

X'ccogoaco!
X100000000"

" AfTOCOQODD0!

4°000G0000°

HEL/S COMPILATION

ORCTR O ConE - LAE

INTERMETRICS, 1 NC -

LABEL _ INSN_ OPERANGS . SYMBCLIC OPERAND

JULY 16+ 1574

21:14242.78

.
0oo180 GQOO0000 Do A0Q0OO00COCT
000184 00000000 - bC. A 1000000007 N e
000133 00000000 ne A10Q000000°
0G0l8C 0000000L o Xro0aoooore : :
000199 _00000000 _.0C A100G6800001 20CUBES -
000194 0001 “pE. XY0001¢ AN 3
T “END i
i
- alsadvens!
: §
!
I
o [—
|
[
9%
T U . P — ; e et e
T
s e e e et Z “ % ?U- - -
= B
&2 = e
[T i ,' o '
: c & s _
s e et P - ﬁ
=
52 i
BEZIN
mvim e — - e . R e+ o e e
EE
— s Rar

"8ET-F

- L P1 —

T yrX. CEIRaNT STACK s17E

HiL/Z3 COMPILATION

FL? #0OS REF FLAG ADDREISS

INTERMETRICS, INC..

JULY 1€, 1874 . 21:14:42.78

- PAGE

13

Goul ogor 08 QO01aT
G001 0207 08 000137 .

Boul 0007 08 000120
0001 0007 OR 000123
001 oLGT OB 000119

T 000l 000L OB QODI1OF
0cul 0005 08 00O0ED

0ol 002 08 000005
0002 0304 08 00GI91
0002 0003 .08 000189
00Uz 0003 03 0001RS5

DUU2 G003 08 ooglal
0002 0003 08 QOG1TD
Qou2 0603 08 000179

"oudz 000l 08 000181
Cco0Z 0203 0A DOOLSS

Loc 3 DISP NeME

UNIER CusEs
cooooo 10 000 1
GoOd0z 10 Qo2 It

COOLU4 10 Gl6 MINIM
COO0CE 10 006 IH

000uG8s 10 008
00DCOZ 10 D0A
0C000¢ 10 POC

00232 10 024

K
00000~ 19 000 3
b
0000rT 10 030 r

INSTFUCTION FREQUENCIES

s EGUNT
[P I
Py 8

=TH ta T
Le 4 .
°C 11

LH 24
CH b3
tH

. . 6
L 1
vl o1

1

406 nYTE S OF PROGRAM. 86 BYTES COF CATA

o
7 GPERAND STaCR STIE - =0

INTERMETPRICS«

19:47:65.26

EAL/SS COMPILATION I NC . JULY 17, 1974 PAGE g
. LoC . CODE EEEAD. o LABEL __ INSN._. _0OPERANDS __SYMBOLIC OPERAND - - —l
el : ,
GACO0N00 STHL QU % : P A ‘

LOnC00C, . e $ACURES.. CSECT. . . . FSDIN= 0001 v "l tl
Qcceco 0000 nc X*GO00!
ceeeon 4#DCUBES CSECT ESDID= 0002

_€Cceec . ool LG X'0001!
nacnat onao - ne X100000
cacool $OCUBES C(SECT ESDIg= DOOL
GOCCOL C30000 o o i e e e e QRG L Fl S o [
CCeronoa ‘ CUBES Ecu .
0CCO00 FRF3 0000 ' LH1 (,0(3) BOCUBRES
0nNCno? 5973 0000 e LHL__ 1,0(3) _#DCLBES S
gccene RSCA o002 STH 1,200} . 0 S W
Qanons5 SRA0 ano0i4 ‘ LA~ 3,2000) -7 _ g !
0CCCa6 BROC . €C0CC3 e STHLL 303000 : : -]
0CALCT 5801 00000 La . 3,011}

CCeLes Rid4 00001 $TH O 3,1{0)

CQCCnedos. - - _5TH2 EQU.___ % ey
guacaz #DLUBES . CSECT ESDID= 0002 - ;
cooen? (0oL : S 0C - X600V o T :

CCOBO000R. o e s i e S TR EQUL K SR |
ceccay coot De - x'oQole
0C0CC1N04% 5TH#2 el *

.. gCocces cOCY . —_— I ol X1agQ1e -
CoC0000s §TH3 FRU % S
00005 0002 R _ 0 X10Q02t ;
OCCCAD0E oo e L STHG L RQULL R j
QCoceooe T4 EQU *

CLLeccos ST45 Eou %

. DUnCCe, CO2009.. . CRG._ . &3 ‘ ——,
cceees toom T oe ¥reooLy v 5
aoenca coal : " rE X000l :

LOBCOCA0Y L e e il .5TH6 EQU_Lm L S
Geecon onooLs CRG . *+10
cnQaols coar - oC xvogp2’
05CEte C0CT . - EC .____X10098 _ -
ceocantt STH#7 FQU = o]
QCoar? Cono2l neg A4+ 143) i
080321 COOL ot e e BE X000 - e e
pUoa?? 0008 oc X*1qopg*

LcCccon?a ST#8 £oy e

_____ oToRoksToks SR, e $0CUBES_ CSELT ESDID= 0001
GCLOCoey ' CLRLWZ - EOU % e o E
gccocy $F09 ‘ noen2 : ‘ LR . 7e2(3) L A i

_00m0Q0A GN11 00006 it B H L S AULE MINIM - . ;
0CCaCH 9575 Z014 cocls CH 5,2007y1) 5
0OoNan C457 004F qoosn ‘ RC 4,78{3) LBL#3

__CCrconar. : R 5149 FQU_._* . —
0OCOOF BFLY cocos STH TeBILY . CA
gIeieoln e STY¥10 au * ‘ '

CORCLE S5C9 o COCO2 o e LR 60201 1
0O0ULl 9LF5 COl4 . 00014 —LH O 4420{6,1) S
0GoCt3 BCLL CCCo4 STH 4s4il} MINIM

L0AGonnLe . . ST#11 EQU___ %k e
0oCC14 SRS CO0S . eooos : - LE Sy8(6,1) o
gooale BEDLD - Q0007 - STH 5,7(1) . - . -

vvil—-v -

HALZS COMPILATION

_EFFAD.

INTERMETRTICS

I NC

JULY 17, 1974 19:47:45.26 - PAGE 10

o LCh. L _CUDE___ LABEL __INSN.__ ORERANDS _ SYMBOLIC_GPERAND e
cccencn? §TH#12 EQU ® . :
003317 5655 COGB..— __CCCUR o o o . CH 64816411 J — _J
CGCCLS TRL4 CO0LE ‘ RC 3,5{~1} LBL#&S

ERCNeEnLA -+ sTH#13 ECU %

GI0COLA 9FOY_. . _.cono3. 1K 7.3{1] Lt l
gnccter RO £Col BRI Tl B - ‘ &
COCCLY PRGN £0003% STH 7431011 I o , : ,

CCOCOOE o STHi4 . _EQU_..% . ‘ |
GHCCLT nEar CO0GA BC Tr431~1) LOL#5

GOCOONLE LBL#G egy %

COCACILE . o o e e e 57415 reu_ :
07101 E 9509 60002 © LM 7,701} 1. |
Oroe*o <ne3 0oct , LHI 5,1 _ |
CU0Q?2 9565 ECGA . 00608 o CHL 55 B(7,1] ! !
COcera rReq 60030 BC 3,24(~1.) LBL#6

Gooane2s 5THLG 0y %

CCoaGoN?S STHL7? o w . _
aCCC2s 15 oCnes LH 6s501) _IH]
QUou?A P05 QUOI : AHI © 641 . s

coccza asls . _0OCOS. o CSTH. 65011 IH J
OCCorc?g ST#18 EQU % ¢ ‘
QCCC?2% BT48 LWEURAR B . STH &y 1300

OACCPA TEER 0083 __ . . - LPI. 643 _ —
0aco?s 9nLs , acaos LH s,5(11 C1H ,

GINC2N T4F1 COCQ BAL © 4+0(3) HTOTHEH ;
0000PE 904N . _DODO17? e LB H441810) : e
0CCL2g RATS BO2D cecro _ STH 5,321641} P

GLo0003? ‘ 5T419 FQU ®
CQuCeir oeMis. . £J00% . LE o S5.5(1) IH

070073 TEEE COGL LHT 4.1 |

000335 ACES AQCSH £NC03 | STH 4.8{5,1) J .

COCROCTT e STHRO TR L EL

ana03T YFFS AD20 00020 : “LH 7:32{5,1) P

GQoLC?9 AQRT €GOl AMT Ted N

Qncen BFESR _AGLG . __C0O0l4. e . STH . 1:.2005,41) < .
cceoeosn sT#21 ECU ® S i 1
coeceesn 5T#22 rey # . |
0CI000 R e ABL¥G.._. EQU % —
0CED3P 9ECQ ocoe2 LH T.201) [

OnGCO3F SNES E008 oncoa LH SeG{TsL} J

QCCLAn RIS GO0V . .) AR _5e1

QUCC4? ONF5 EQCE coeca TTH 5+B(7T41) J

CCCOUCas. $THZ3 EQU A _

QCUC4s SSRGS £020 ___ _. CO0R0 _ - LH . 623217s1) p e
03004m BHEFH ANZ0O €020 AH 6432{5,1) P

OCCCsn RIFS KOL4 cocie STH 6420(7+1) 3

CCOCAN0GA e 8TH24_ EQU.__ X .
CoCLCoaA . ’ STH#25 rou * '
COLRGED4S ‘ LRLYS QU ® ‘

CCLCAL TQIOD ... 00003 . . LB .543(1) 1L }
0Cecas a3Lo £oCo2 STH . 5,2(1}

000L0040 _ STHZ6 QU %

coonae RO2L o OTC08 .o STHL._BLB11) K e
COCO0NAR cTH2T QU % -

CLLLTLaT LALHT ECU %

L L—v

TEALZS COMPILATIDN

INTERMETRIC S » I NE . JULY 17, 1974 19:47345.236 PAGE 11
..Lne FONE U EFFAD e LABELL INSK _OFERANES SYMADL 1C_OPERAND e ram)
00CC4n 9n?l 0008 TR PE A4 B SO '
COL0es $515 ... 0080S e CCH. L By5L1Y P IH o
Qoecar Do2C €058 BC . Setli=1) LEBL#S
coooccse - 5TH2E gouy %
OCOCSG ROGS G001 R AR Sel - - -
ononR2 2021 Qacaos . CSTH . 5,801} K ;
CCLan0s? _ g $TH29 ECU . ® T .
040067 G=C9 .. _ongoz . e LHe a2y 1. — S
CoCcs4a $TFS AOL4 Qocl4 T LK 6,2015,1) 3
COCNSE SAFS EQL4 cocl4 T CH 62200741} s
OOCCSA €004 . . ._._...000%A . .. - BC . 8sllm1) L BLYD ey
CCeNeess _ 5 STH3Q - - CCUY ® e v ;
0OCCRS ANOD uGon2 - o sTH L 542410 1 '
QCoCCresa — o sTH3YL. L ECM_ R ;
QaLannsa LAL#9 EQU *
GCeesa E3A _000sDd 8C 7y1at=1)
CCCocrs®e e APLRAERUL R :
coeocese ‘ e 8T H32 BEQU . * PRI
eornse 0757 (854 . G0Ca% ' : ac - TeBaEY L
0CeIN0S5D i o lAL#3_ EQUL Al —_

S geeeacsn ST#33 pog
gODOSN £573 0006 . LHIT £46
0CCCSE NT3 0003 e oo o oo o LHI 543 _ S
000061 #4651 0000 TURAL ¢ &4,003) ool T 1CINIT
ccccal sn1t CO004 S LF 5,400 - CMINTM
GCCre4 =473 0000 . L. ; _BAL 4,003 HOUT
ponLFA ST19 goeos LH . 5patl) A L
GOCCHT H4F3 00CC galL 4,0(2) HOUT '
ogncew oo T 0D0QL I 1 2 PR T 4 5 B !

CCCChA =473 0000 - . BAL © ARQ{BY i CHOUT T s
oceoat 009 06o02 T N T T & I S 3 e

S poCeen T4T3 0000 .. , e RAL. . 43021 . HDUT -
0CCCHE 9539 0oc02 - LH 72811 1
QCeniIn 9Nt s 008 00gas LH S,80751) J .

QL1243 0000 . . _ BAL__.4y0(3] —HOUT o —
ANCUNEITE ‘ L ST#34 ey ox 0 L AR IETRI R B '
Goroie T4T3 0000 . - RAL © 4,031 ¢ CLOSTOR L - o}

Laoooz2 s i r BorusEs CSELT e ESNIR= 0002 - - : '2 o
aCcCi23 Ccooozn oRG %410 e (=]

T END =

. e - et
b= .

a2 0

E_z

) S —‘g%

Q3)
A= B

. e s

— . S
¥

v

HALSS COMPILATION . : INTERMETHARICS . I NC . JULY 17, 1974 19:4T7:45.26 PAGE 13

tee T aorse NAME

UNTER CUSES

oceooz . 1 002, 1
onouot L 003 IL

CCLCcLus 1 004 MINIM e e an o e
poencs L 005 IH
cooLte L N0A A

L SSTo S WATSS S e
coeoca 1 ncs K
gacoEns 1 o8 Y

_ 00015 1 016 S S
ecccrl 1 020 P

INSTRUCTICN FREQUENCIZES

INSA O CUUNTL

STE 18 T
La
. BaAL

ag
LH

AH
3C
CEHT

S ZYTI-d

o
8
7
?
Lk 5
1
1
7
5

AHI

130 HALMAT OPRRATORS CCNVERTED -

_ 118 RALEWSENS. CF_PROGRAM, 48 RALFWORDS _OF _DATA.

MAY, OPTEAND STACK SI?E

SSRGS CRT2AND STALK SIZE . L. —
NuMete OF STATEMENT LEAELS USED

LJEND O STORAGT DUSLPIPTOR_STACK SLZE
NUMuTL (T VMINOR COMPACTIFIRS =
NUPRTR CF MAJDR COMPACTIFIRS =

=5
0
g9
MAX. STCRAGT NESCRIPTER STACK SIZF =1
=0
=1
=0}

ENT OF HALZS PRASE 2 JULY 17, 1974. CLOCK TIME = 19:47:55,78

TATaL CPU TIWE =NR pHAST 2 N:0:0.89
L P TIMT FOR_PHASY 2 SET_DP . 0303C,02
CPU TIMS E(R PHASE 2 GENRRATICN 0:0:0.31
‘CoU TIMI FNR PHAST 2 CLZAN UP 0:0:0.4T7

Chapter 4
Appendix 2

Initial MP Instruction Architecture Coding Example

Included in this appendix is both an example of
the MP instruction architecture and a statement for
statement comparison with respect to the AP-101 and
IBM 360 code generation. The CUBES example given in
Appendix 1 has been encoded with MP instruction archi-
tecture. The size comparison between the IBM 360, AP-101
and MP is given in Figure 4.A2-1.

. It should be noted that in the encoding of the
example, the data has been assumed to have been declared -
statically in order to be equivalent to the IBM 360

and AP-~101 coding methodologies. Similarly, the method

of executing the WRITE statement (S5t #33) has been made
equivalent to the current IBM 360 and AP-101 methods ,
even though others would be more efficient. TFigure 4.A2- -2
summarizes the relative code size for the three architectures.
It alszo indicates the relative sizes when the address
initialization (St.#1) and I/0 statement (St#33) are
removed. This was done to remove the bias in favor of
the MP instruction architecture which has a great deal less
overhead in these particular functions.

Figure 4.A2-3 gives the opcode field and address.
field encoding for the CUBES example usage of the MP instruc-
tion architecture. This provides for convenlent comparison .
to Figure 4.3.1-3 of Section 4.3.1 which contains the
analogous breakdown for the IBM 360 and AP-101.

4-143

NTERMETMGSlNCOHPORATED-7o1chNCORE)AVENUE_JCAMBRuaeE,MASSACHUSETT302138~(617)6614840

MP ‘AP*—].Ol IBM 360

ST#1(...7) 0 18 40
ST#8 10 12 18
STH#9 5 2

ST#10 7 8

ST#11 7 6

ST#12 8 6 12
ST#13 5 8 12
ST#14 3 2 4
STH#15 9 10 18
ST#L6(17) 7 8 12
ST#18 10 18 20
ST#19 6 10 4
ST#20 11 12 - 8
ST#21(22) 11 14 18.
sST#23 14 12 14
ST§#24 (25) 5 8
ST#26 5 4
ST#27 12
ST#28 8
ST#29 11 12 20
ST#30

ST#31

ST§32

ST#33 38 46 70
ST#34 1 4
TOTAL 199 234 346%*
*NOTE: Instruction summary was incorrect in Appendix 1,

HAL/S~360 listing.
Appendix 1 counted 4 bytes too much.

There were but 10 BC, thus,

Comparison of Code Sizes for CUBES (refer to Appendix 1}

Figure 4.A2-1

4-144

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184

Relative Program Sizes’
CUBES

® Total Program Size Comparisqh'
IBM 360 AP-101 MP
Total Program ' :
Bytes 346 234 199
% Compared: to

IBM 360 1003 67.4% 57.5%

. ® Program Size Comparison with I/0 and Envirzonment
Initialization Removed '

- IBM 360 AP-101 Mp
Program Bytes
Excluding
ST#l & ST#33 226 170 l6l
% Compared to -] : :
- IBM 360 ©100% 75.3% 71.3%

Figure 4.A2-2

| 4-145
NTERMETRICS INCORPORATED - 701 CONCORD AVENUE ~CAMBWDGE.MASSACHUSETHSOZBB-(HW)BB%H

Operators Operands LTS4 TLTS10

Number of _
Instructions 56 ' 60 11 6

Weighing these as indicated by Figures 4.5.3-3 and

4. 50 3_4:

Operators Operands LTS4 ILTS10 Total 2
Address field bits 0 780 55 66 901 1{/56.6%
Opcode field bits | 448 . 180 33 30 691 H43.4s3
Total bits ' - 448 960 88 96 © § 1592 - 100%

Bit Distribution in the MP Instruction
.Architecture

Figure 4.A2-3

4~146

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184

91014 0-00)

00030
GOOu0
o050
00060
QO0QT70
00040
00090
08100
00110
00120
0G130
0C140
QG150
006160
Q00170

g0130.

00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00250
006300
00310
00320
00330
00340
00350
00360
00370
00330
00390
00400
00410
00420
00430
00440
00450
00460
Q0470
00480
00490
00500
60510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00670
00640

00681

CuBes

*kd el
R S

r
=

B vl o]

ST#10

ST#12

STH#13

STH#14

LBL#Y
ST#15

ST#16
STHIT

ST#18

GET
- ADR
STD

- ADR

EQU ¥
Ty ¥
QU #
GET X
GET 3

IJ

GET

TN TH

CEQUL .
LTS10 150
Jor)

EQU

=R

EQU #

GET I
GET S

ADR MINIM
STD
£QU
GET

GET

ol Y S <

STD
EQU *.
GET I
DUPL,
GET J
EQUL
LTSy *
JOT

EQU *
LTSY 1

. ADD

ADR 'IL
STD

EQU ¥
LTS10 68
JHMP

EQU -*
EQU %
GET I
GET d
LTS4 1.

EQUL . _
LTS10 34

JOF
EQU #
EQU *
GET IH
LTSY 1
ADD
ADR IH
STD -
EQU *
GET IH
DUPL
PUPL
bupPL
MUL

CLBL#3

LBL#4 -

LBL#5

LBL#6

4-147

EHCODED USIHG THE INITIAL HP:INSTRUCTIOH ARCHITECTURE

REPRODUCIBILITY OF THE

'ORIGINAL PAGE IS POOR

N06s3

00604

Q0655

00636

00690 ADRE P
00700 STD
00710 ST#19 EQU #
00720 LTSY 1
00730 GET 'IH
00740 ADRE J
00750 STD
00760 ST#20 EQU *
00770 GET IH
00750 GET P
00790 LTS I
00800 ADD
00810 GET IH
00820 ADRE §
0030 STD
00840 ST#21 EQU *
00850 ST#22 EQU *
00660 LBL#6 EQU *
00370 GET I
00530 GET J
00890 . LTSH 1
00900 ©ADD
60910 GET I
00920 ADRE J
00930 STD
009L0 ST#23 EQU ¥
00950 GET I
00960 DUPL
00970 . DUPL
00930 GET J
00990 XCH
01000 GET P
01010 ADD
01020 " XCH
01030 ADRE §
01040 STD
01050 ST#24 EQU *
01060 ST#25 EQU *
01070 LBL#5 EQU ¥
01030 GET IL
01090 : ADR I
01100 STD
01110 ST#26 EQU *
01120 GET I
01130 ADR K
01140 STD

01150 3T#27 EQU ¥
01160 LBL#7 EQU *

61170 GET K

01180 GET IH

01190 GREQ R
01200 - ‘LTSIO 26 LBL#8
01210 JOT :

01220 ST#28 EQU #

01230 GET K

01240 LTSH 1

11250 ADD

01260 ADR K

01270 STD 4-3148
N12840 @meaa ™I % :

a1291
01292

31293,

012494
01295
01300
01310
S D1320
01330

01340

01341
01350
01360
01370
01350
01390
01400
01410
01420
01430
01440
01450
01460
01470
G180

01490
01500
01510
01520
01530
01540

01550,

01560
01570
01540
101590
01600
01610
01620
01630
01640
01650
01660
01670
01630
01690
01700
01710
01720
01730
. 01740
01750
01760

ST#30 E

ST#31
LBL#9

LBL#3
ST#32

LBL#3 .
ST#33

EQU ¥

LTS10 -34
Jup

EQU #

EQU ¥
LTS10 ~160
JHP

EQU *

EQU *
KS
LTSY 3
LTSH 6

ADR IOINIT .

ENTR

MEKS

GET MININM
ADR HOUT
ENTR

MK3

GET A

ADR HOUT

. ENTR

ST#34

K S

GET B
ADR HOUT
ENTR

MKS

GET I
ADR HOUT
ENTR

MKS

CET I
GET J
ADR HOUT
ENTR

EQU *

EXIT

LBL#9 -

-

LBL#T

LBL#2

4-149

5. CONCLUSIONS AND-RECOMMENDATIONS

5.1 "Conclusions -.HAL

A.

All language features of the HAL language
specification were implemented in the 360
version of the compiler. This permitted a
thorough evaluation of the language prior to
its selection for usage in the Space Shuttle.

Many impleméntation problems were solved and
the way was paved for the inclusion of these

.solutions into Space Shuttle compilers. This

permitted the rapid and timely deliver of
HAL/S compilers..

The invesbient in compiler implementation

and the tailoring of the compiler to the

machine architecture produced a number of
positive proposals that resulted in adoption
into the Space Shuttle F_C instruction repetoire.

The method and procedures for .rehosting the
HAL compiler were demonstrated by the transfer
of HAL 360 to the 1108.

A system of language control, compilexr change
control and modification was developed that was
to prove useful for Space Shuttle work.

In general, the RTOP investment in language and

compiler activity provided many returns that
are being reaped in the Space Shuttle program.

5-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE +» CAMBRIDGE, MASSACHUSETTS 02138

- (B17) 661-1840

5.2 Recommendations - HAL

A. The HAL language was developed and evaluated.
It has now been adopted for Space Shuttle usage.
NASA should make wide usage of the language.
This will provide a common language of communica=
tion across all levels of NASA software develop-
ment, it will increase programmer productivity,
and provide software transferability.

B. Broad usage of HAL will require a unified method.
of language control to insure transferability and
reduce maintenance and compiler change costs.

C. A unified method of compiler implementation should
be studied and the best method adopted by NASA
“consistent with their objectives of centralization
of compiler generation and maintenance, transfer-
ability, and language control.

5.3 HALM Reconmendations and Conclusions

 The recommendations and conclusions resulting from
" the HAL machine design effort are contained within Chapter 4
in order to provide a section of the. final report that can
be self contained. These same recommendations and conclusions
are repeated here for completeness.

As a result of this implementation study, it is
¢lear that a HALM is fairly simple to realize. A
modified version of the MP instruction architecture
IMi 72] was investigated in detail and partially
implemented on the B1700, While the Bl700 is not
designed to be a real time process control computer,
its internal structure allows for convenient implemen-
tation of varying instruction architectures,.and with
the help of some specialized hardware, e.g. floating
point unit, it would prove to be efficient in time
as well as it is in space.

Further results of this study are the emphasis upon
the importance of the instruction architecture addressing -
methodology; the reguirements for actual HAL/S user
statistics in order to both properly encode the instruc-
tion architecture operators and in order to help determine
‘the most appropriate addressing mechanisms; and, an
appreciation of the possibilities of being able to address
any bit width without penalty, e.g. true precision specifica-
tion in the HAL/S language itself. '

5-2 :
INTERMLTRICS INCORPORATED + 701 CONCORD AVENUE = CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

While the results of this short study have been y
caffirmitive and reassuring, it is desirable that several o :
of the areas of investigation be developed further. Areas
‘'which can be considered to be of particular 1mportance'
are as follows:

A. HAL/S User Statistics:
In order to both compare current 1nstructlon .

architectures and to develop future ones, it is necessaly .

to know exactly how a language is used, Both Section 4.3

on addressing and Section 4.7 on statistics emphasized the

requirements for usage statistics. It is only by this

means that compact encoding of a logical 1n5tructlon

archltccture into a physical representation of the
nstruction architecture may occur. Further, by know1ng

both the forms of operands and their character-

istics distribution, it becomes possible to develop the .

appropriate, and most efficient addressing structure.

User statistics also enable incremental improvements

to the instruction architecture itself. Not only can

enceding “be made better, but appropriate operators can

be specified to optimize upon the correlation of actual

cccurance of several basic operators (e.g. A = A + 1;).

As the Space Shuttle program continues, statistics
for HAL/S usage should become available. It is hoped that
they w1ll be used. L .

B. Investlgatlon of Varlous Address Structures

A thorough 1nvest1gatlon of the various addressing
structures available (absolute, indirect, lexical level—
-displacement, stack number-offset, base-displacement,
sectors, banks, descriptors, ...} should be performed.

In particular, it is of interest to know the time and
space tradeoffs with respect to implementation complexity.
In the aerospace environment,in particular, appropriate
addressing would greatly decrease memory regquirements.

C. Develop Standardized Basic Operating System

It would be useful to have a virtual operating -
system specification which would define not only the -
HAL/S interfaces, but would indicate. .the allowable
process interactions and time constraints. Such a.
specification would allow for deterministic and
reproducible results of a complex of HAL/S programs
regardless of the specific executive 1mplewentat10n oY
support processor.

5-3

JTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

D. " yariations and Stability in User Statistics and
Resultant Design

It would be useful to determine how well a particular
physical HALM realization acted with differxent sets of
user statistics. Had the design been so tuned, that with
‘a different set of usage characteristics, it became
inefficient? Or, it is a relatively stabile design that
varies but reasonably? This task would require both an
analysis of how the design varies as statistics vary, and
the actual gathering of several sets of statistics which
do vary. Both the analytical and practical treatment of
this task can be considered of interest. :

'

E; Full Implementation of a HALM

It would be desirable to actually complete a HALM
implementation. This would afford assurance of actual
design integrity and provide a facility for statistics
yalidation. While it is relatively easy to develop
memory size comparisors in abstraction, the actual
execution of a HALM provides valid timing statistics
and the micro routines provide the basis for the under--
standing of the timing. Actual execution on a micro-
processor enables the determination of the timing bottle
necks of an instruction architecture design.

The efficient hardware implementation of higher order
languages is no longer in question. It is possible to orient
the instruction architecture for the language which they are
to execute, and to do so in an efficient manner.- The principal
issue for computing systems should be the development of

languages which are truly oriented towards the problems to
- be solved. ' :

u

5-4

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Appendiéké

Selected HAL Memos Describiﬁq HAL Compiler Releases

10/71 — Operation Status of HAL on the IBM 360

- 03/72 . HAL Specification Change Notice #1 (HAL I/0)
15/72 Operational Status of HAL/360 Version 360-6
- 19/72 ~ Release of HAL Version 360~7
aA-1

NTEHMETWCS!NCORPORATHD'TUICONCOHE)AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (817) 661-1840

HAYL USER'S MEMO #10-71

TO: | Jack Garman
FROM:) Dan Lickly
DATE: 19 October 1971

SUBJECT: Operation Status of HAL on the IBM 360

The utility of the HAL compiler on the 360 is constantly
increasing as more capabilities are added to the system and
previous flaws corrected. Consequently, any discussion of
operational features must referxence a verslon or point-in~-time.
Two versions are of interest at this time; first, the one made
in early September and in use at MSC and second, the one that
will be installed at MSC at the next opportunity - approximately
1 November 1971. The characteristics of both are described
below. : : :

A, HAL-360 (1 Nov. 1871)

The following items have not yet been implemented in the
HAL compiler.

. Pass 1

1. The linear array functions: MAX, MIN, SUM, PROD, POLY,
2. Compiler directive cards; viz., INCLUDE,
3. The character constant, CHAR.

4, Output listing cosmetics; e.g., stars, bars, and brackets
are incomplecte.

5. Real-time control statements are recognized, but not
* processed further.

-1, Update blocks or tasks
2. Locking
3. Precision modifiers

4. READALL

A-2

WIS MO ORPOBATIN - 701 CORCOND AVEHUD + CALIDSE, MASSACHUSETTS 02138 + (617} 661-130

- 5. Structure assignment, comparison, and parameter passing.
6. The folloWLng bull% -in £unctlons INDEX, LJUST, RJUST,

SIGHUM, ARLCOSH, ARCSINH, ARCT ANH, ADJ, MAX, MIN, SUM .

PROD, POLY, MOD A R

7. The fo?lowxng sha01ng functidns: BIT, BIT CHAR CHAR
' @ @’
S5UBBIT. o L

8. Advanced bit utr&ng features, e.q., bit user functions,.

s

bit conditionals, and arrayed bit arguments to procedures
or funcLJons.

9, MNo shaping functions with arrayness, nor shaping functions
with arraved arguments.

10, File operations
11. Run-time checks of subscripts & other out-of- llmlt
.vioclations.
B, HAL~360 {10 September 1970) All of the above plus the following:
Pass 1 | 7
1. Real-time control statements are not recognized and the
key word not reserved; e.g., SCHEDULE, WAIT, UNTIL, SILIGNAL,
etc. : -
2. the reserved bit constants: FAL E,-ON, OFF. .
3. The CHARACTER conversion function-is spelled CHAR.
4. DO FOR loops with négative increments,
5. Nested repeat expressions in INITIAL lists.
6. DBit constants may not have repeat numbers.
7. TOF is a Pey word denoting end- of file.
8. The optional comma separating the factoxcd attrlbute
list from the first variable name in a factored DECLARE
statement i1s not optional, but mandatory.
Pass 2 ' : .-
1. All bit etzlng opuratlons'

2. 'Multiple invocation of the same functlon at dlfferent
N levels of nC%tGd functxona.

A-3

GTERLETRICS IMCORPORATED « 701 CONCORD AVENUE » CARDRIDGE . MAGSACHUSETTS 02138 «(617) 651-1840

5.

The built-in function, LENGTH.

Arguments of procedures for user function may not be
expressions. , :

DO groups operate unreliably under certain circumstances.

C. Implementation Dependent Restrictions

The following limitations are ‘imposed on the current
implementation of HAL on the 360.

1.

10.
11.

12.

13.

14,

Vectors limited to a léngth of 32 elements.

Matfices limited to l6—by~l6.

Iﬁtegers are 32~bit two's complement numbers.

Bit strings limited to 32 bits.

Varying character'striﬁgs limited to 255 characters.

The number of calls to any one procedure or user function
is limited to 50.

The number of cases in a 'do case' is limited to 40,

" The number of groups in a grouped DO FOR is limited

to 40.

The READ statement only handles 80 column input, through
one channel only.

The WRITE statement only handles 133 columns output .
through one channel only.

Arguments of procedures or user functions which are
arrayed expressions arxe not allowed.

No precision or type conversions are made on arguments
of proccdures or usecr functlons, nor upon the returns
of user functions,

If a IUAL program is to be calléd by another then only
the first 5 characters of the name are used. The.
underscore {_) may not be_used in the first 5 characters
of a program name under anhy circumstances

The REPLACE statement has a size 1imitation; the string
replacing the identifier may not be more than 256 characters

“long, ner, in the case of nested REPLACE 's may the sum

of the string to be added and the part of the old string
to. the right of the insertion be more than 256 characters.

A-4

MUTEHCS INCOBPORATED » 701 CONSORD AVENUE - CAMBRIDGE, MASSACHUSTTTS 02128 (Gl?) 3¢

Fot

{

HAL USER MEMO .£03~72

TO:' _ Dldtrlbutlon

FROM: P. M. Newbold
'DATE:_ | 1 February 1972
" SUBIECT HAL Specification Change Notice #1 (HAL I/O)

The following changes to and clarifications of the HAL I/0
specifications are hereby made. They are implemented in the
current version of the HAL 360 compiler. They cover the
following areas:

a.. characterlzdtlon of strcam 0l1ented (eequentlal)
storage devices

b. commanalng the movement of their read— or write-
mechanisms -

c. structure of the input data stream
d. effect of the READALIL statement
e. type conversion during READ statements.

1. Storage devices are divided into two classes, paged and

unpaged. A paged device may be visualized as a book,
control Ffunctions being used.to move the device- mechanlfm
from page to page as well as to position the device-
mechanism on the page. An unpaged device may be visualized
as a long strip of teletype paper; contreol functions being

used to position the device-mechanism anywhere on the strip.

2. The device-mechanism of any paged device may be commanded
by the following control functions,. whether they occur
in, READ, READALL or WRITE statements:

SKIP {<p>) ... TAB(<p>)
LINE {<p>) : . COLUMN {<p>)
PAGE {<p>)

where <p> is an integer or scalar expression (the latter -
being rounded}. The device-mechanism of any unpaged
dov1cc may be commanded by any of the above control func~

A-5
TERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

[%2]

_ tions except PAGE (<p>») which is meaningless. The operation

of a physical device may impose bounds on the acceptable
values of <p>.- s

The data fields in the input data stream may be delimited
by 1 or more spaces, by a comma, or by a comma and 1. oxr
more spaces. No delimiter is required to data field if
one of them 1is a character data field (i.e. enclosed in
gquotes). A semicolon, as well as delimiting data fields,
also serves to terminate the read operation. If n commas
appear between 2 data fields, or if n-1 commas appear
between a data field and a trailing semicolon, then n-1
null data fields are said to exist at that place in the
data stream. The null field has the effect of leaving the
value of the READ list element being processed at that
point unchanged.

Example:

X = 0.5;
READ (CARDSY Y, X,%;
input: , ,
0.753, , 0.0157
- X is left at 0.5.

The READALL statement causes diffeérent actions to take
place, depending on whether the character string list
elements have the fixed or varying attribute. If the
character string is fixed, 1t will be completely filled
from the input data stream, as many lines being traversed
by the device-mechanism as required. If the character
string is varying then one of two courses of action are
taken. If the maximum length of the character string is
greater than the (remaining) length of the current line,

. then the character string takes on that length, and is
filled with the remainder of the line. Otherwise the

character takes on its maximum length and is filled from
the input stream as if it were a fixed character string.

A run-time error message i1s giliven if a data field enclosed
in quotes is read on input to a scalar, integer or vector/
matrix variable, or if a data ficld not enclosed in quotes
is read on inpult to a character variable. 1If a scalar
data field with a fractional part is read into an integer
or bitstring, rounding will occur. :

A—-6

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184¢

1)

Extra-Lingual Features

In the current 1mplementatlon of HAL~ 360 Lhe association
of actual I/0 devices with HAL I/0 channels is made by the-
use of the DEVICE compiler directive [1] in conjunction
with 058360 JCL. 7Two types of device are supposed to exist:

1. PRINT device: for output only; not input
' compatible; paged. a

2. non—PRINT device: for ocutput and input, possibly
in the same program; unpaged. :

An expanded explanation of the way in which physical /0
devices are allocated will appear shortly in a future memo.

[1]- HAL USER MEMO #01-72, The HAL DEVICE directive,
R.E. Xole. :

A~7

JTERMETRICS INCORPORATED » 701 CONCORD AVENULE + CAMBRIDGE, MASSAC HUSETTS 02138 « (617} 651-1840

HAT, User Memo # 15

TO: Distribution
FROM: HAL Staff
DATE: 28 April 1972

SUBJECT: Operational Status of HAL/BGO Version 360-6

The purpose of this memo is to describe the HAL/360 compiler
release number 6 as it is currently keing installed at the RTCC
at MSC. This release represents a snapshot of the HAL system as
of March 15, 1972. Topics covered in this memo include:

. Functional Restrictions of the HAL Language
Specification

. Compiler implementation dependent restrictions
. Summary of new features
With the exception of the Functional Restrictions, all improve-

ments and extensions of the compiler's capabilities mentioned in
previous memoranda also apply to the new release.

1. Functional Restrictions of the HAL Language Specification

The following restrictions on the use of HAL's full specificétion
remain in the current release. They are divided into two categories
based upon the pass of the compiler which pertains to the restriction.

A. Phase]l Restrictions

1. The linear array functions MAX, MIN, SUM, PROD,
and POLY are not recognized.

2. The INCLUDE compiler directive and corresponding
library facilities have not been implemented.

3. The character constant form of CHAR' ... ' has not
been implemented -=-> and may be dropped from the
language specification. -

. 4. Houston/MSC only: Lack of a "TN" print chain in
RTCC forces the outpul writer to use an "up-arrow"

) (% to replace brackets {([1) in the annctation
et
\J A-8

INTFRMETRICS INCORPORATED « 701 CONCORD AVENUE » CAMBIIDGE, MASSACHUSETTS 02138 + (G17) G1-184

of arrays, and "integral signs" (J[)'in place of
braces ({}-) to yield annotation for structures.

B. PhaseIZ Restrictions

1. Update blocks and the control of data sharing . -
among programs via the LOCKTYPE attribute have
not been implemented. '

2. Structure operations of assignment, comparison
and parameter passing should not be attempted.

3. The followihg list of bullt-in functions:

INDEX LJusT - RJUST . SIGNUM
ARCCOSH ARCSTINH . ARCTANH ADJ
MAX MIN 50M PROD
POLY "’ MGOD
4, The follow1ng bit and character string shaping
functions
BIT BIT@' SURBIT
CHAR ' CHAR,

5. Certain rules regarding the use of Shaping
Functions have now been defined. Refer to HAL
USER MEMO $8-72 for details of these rules.

G. 1th two exceptions, there are no run time checks
of limit condutions connected with program control,
The exceptions are the detection of compool size
discrepancies and the situation of program control
flowing to a FUNCTICON procedure's CLOSE statement.
Various run time error conditicons relating to data
integrity and I/0 coperations are detected.

7. The optional comma separating the factored attribute

' list from the first variable name in a factored
DECLARE will producg a warning message if omitted;
however, omission will not affect the validity of
the compiled plogram

A-9

NTEAMETRICS INCORPOY =50 » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHRIGETTS 02138 « (617) 661-1840

2. Compiler Implementation Dependent Restrictions

The implementation restrictions summarized in the previous
release memo, HAL Houston User Memo $#02-72 still apply to the
present compiler without modification.

3.. Summary of New Features

A. Output Writer: The HAL output writer feature has
been upgraded to its full specification in the
current release. The improvements to this routine
in the Phase 1 program of the compiler are as follows:

1. Automatic indentation algorithms have been
implemented. As a result, a standard format
which is quite readable now is created by the
output writer. The block structure and logical
organization of such language features as DO
statements and IF statements is now quite
recognizable in the standard form produced.

2. The previous deficiency of ignoring embedded

PL/1 form comuents ("/% ... */"} has been
corrected. All enmbedded comrents which occur

" prior to the semicolon which terminates a state-
ment (beginning with the first comment in the
statement if any) are collected, stripped of the
/*.. %/ delimiters, catenated together and turned
into a single comment which starts with the "/*"
deliniter and ends with, the "*/" delimiter and is.

- placed following the terminating semicolon of the
statenent. A word of caution: comments which are
embedded in E or S lines of a statement are still
ignored.

3. Certain cosmetic features have been added or
improved in the listings of the compiled program.
The principal examnple is a much improved LISTING2
input image format.

B. REAL Time Facility: The current release of the HAL system
‘supports a simulated real time enviromment. In this
simulation, an external file of events (stimuli) is main-
tained, which is used t®gether-with application program-
_internal scheduling of events to run cxamples of real time
systems. New features of the Phase 2 code generation
. support the following statements: -

SCHEDULE. .. VIATT. ..

ThSK. .. TERMINATE, ..

SIGNAL. ..

A-10 .
INTERMETRICS 1N - PORATED « 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (G17) G61-184

BILIT THE
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

additionally, the EVENT variables used in a real

time situation may now be declared in the HAL. ldnguage'
DECLARE statement using the keyword EVENT as an
.attribute. For a disucssion of the details of this new
- feature, consult HAL”User Meno £9-72.

Cc. the use and applicability of shaplnq functions for,'
conversion between data types in the HAL language have
heen oxtended in several ways., Refer to HAL Us
Memo #8-72 for a discuzsion of the current ground rules
of shaping function usa,

D. Precision modifiers have now been implemented.

E. Literals: The literal prccessing of Phase 1 now implements
an 1mproved algorithm for malntalnnng a list of literals
uged in a glven program, There is still a limit of 100
unigue numeric literals in any program, but this limit
restricts only literals occurring in executable statements;
i.e., literals in declare contexts are no longer considered
in checking the literal limit of 100,

F. Initialization: In the previous versions of the compiler,
there was a stacking limitation on the number of literal
values which could be coded in the literal lists of HaL
DECLARE statements. This limitation typically was in the
50-70 range.depending upon the context of the program in
being compiled.. The current release of the compiler
employs a new strategy which alleviates this restriction
to a great extent. The limitation now is that no more than
450 arithmetic values may be initialized within the
initial lists of a single BEAL statement. Thlo llmltatlon
is independent of program context,

G. Dump and trace facilities: This new release of the
compiler incorporates a termination dump which may be used
on program faillure in the execution of non-real time jobs,
and a trace facility which is usabkle in both real-time
and non-~real time situations. The dunmp may be used at
terminaticon or at selected points in the program, giving a
formatted listing of the user defined variables and
identifiers. The trace may apply in general to a whole
program, or may be specified for a specified range of
statements in a program --- in either case, the trace
consists of a formatted message notifying the user of -the -
current position in the program. In a future release;
facility will be incorporated for both TRACE and DUMP
user aids in either real time or static modes of opcratlon

- of a program. HAL User Memo #12-72 gives a full descrip-
tion of the DUMP and TRACE faClllLlOa as they now stand,

| ‘A-11 -
STERMETRICS INGORPORATED » 701 CONCORD AVENUE -+ CAMBRIDGE, MASSACHUSETTS 02138 » (G17) 661-1840

H. The following Specification Change Proposals which were
detailed in the specified Intermetrics HAL User Memos
have been implemented. These memos may now be considered
as updates to the HAL specifications: ' :

1) User Memo #3 HAL I/0

2} User Memo #6 The TIME keyword

3) User Memo #7 Real Time Control

4) User Memo #9 Real Time Control

5) User Memo #11 Compool Initialization
A-12

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMORIDGE, MASSACIIUSETTS 02138 - (617) 6G1-184(

JTERM

HAL USER MEMO $19-72

TO: .. - _Distribution
FROM : R. E. Kole - o
DATE: 12 June 1972.

 QUBJECT: Release of IAL Version,BGO—?

This memo describes the status of the PAL/BGD‘écmpiler'as
of the release of Version 360~7 to M.I.T. on June 13, 1972.

1. Functional Festrictions of the HAL Language Qpec1f1catlon

The following restricticons on the use of thc full HAL
languaao remain: in Verslon 360-7.

A, Phase 1 Restrictions

(1) The linear array functions MAX, MIN, SUM,
PROD and POLY are not implemented.

(2) The character constant form of CHAR'..."
is not implemented. :

{3) The EXCLUSIVE attribute of procedures is
not implemented.

(4) ACCESS rights for control of COMPOOL data
are not implemented. -

B. Phase 2 Restridtions

(1) Update blocks anrnd control of shared .data
are not implemented.

(2) Structure operationsare undafined.

{3} The following built- Jn functions are not

implemented:
INDEX LJUST RJUST STCNUM
ARCCOSH ARCSINH ARCTANH ADJT
MAX MIN SUM PROD
POLY MOD
A-13

ETRICS INCORPORATED - 701 CONCORD AVENUE -CANHNNDGE,MA““ACHU8L1T)O9133 (617) 661-1840

(4) The following bit and character string
shaping functions are not implemented.

BIT BIT@ SUBBIT
CHAR CHAR a

{(5) H2L User Memo #8-72 is still applicable
(defines rules for use of shaping functions).

(6) Run time limit checks are only made for the
following situations:

{(a) Attempted execution of CLOSE of a
function.)

(b) Mismatching of COMPOOL sizes of programs
that invoke. each other.

2. Compiler Implementation Dependent Restrictions

No additions or deletions to the list of implementation
restrictions have been made. Therefore, those restric-
tions summarized in the previous release memo still
.apply.)

3. Sumnmary of New -Features
. A, Output Writer

Small improvements have been made to the output
writer portion of Phase 1. :'These improvements
include. the correction of errors in the expansion
of single line input to multi-line output and the
correction of improper indenting in some forns

of the DECLARE statement. :

Also, REPLACE items are underlined in the listing
to make their use clear. ' :
B, The INCLUDE compiller directive has been implemented.
- The form of the directive is thatl proposed in
HAL User Memo #13-~72. Use of the INCLUDE directive
causes source code Lo be read {rom a data set >
defined en a JCL card of the following form:

//INCLUDE DD DISP=SHR, DSN=name,...

A-14

INTERMETIRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (B17) 661-1610

where name defines a partitioned data set. The'
partitioned data set dlregtory is searched for

the member name SpeLlflLd in the INCLUDE directive
and that member is included if 4t is found. -All
other situations result il an error message..

C. User Aids

Fxtenolve changes and improvements have been made
to the listing produced by the compiler. These
changes involve the production of a block summary
at the CLOSE of each block of a program and a
completely reordered symbol table listing. These
'1mplovcmurtu are fully expla¢nod in HAL Usex

Memo #17-72.

D. Error Recovery
Full error recovery facilities are now available
in non—-REALTIME including use of the ON ERROR.
and SEND LERRCR statements.
Also, HAL error mes saqes are now produced for all
errors and HAL error swuwrary is given at termination
of a run. ‘ :

The full functicnal déscription of the HAL Errox
Processor is given in HAL User Memo #18-72.

The form of the SEKD ERROR statement has been

changed to corrcupond to the form deflned in HAL
User Memo #16-72. .

A-15,

IMTERHETAICS INCORPOBATED « 701 GONCORD AVENUE + CAMBRIDGE, MASSACHUSFTTS 02138 + (617) 661-1840

