(HASA=-CR=-14.278)

HRL/S-36. COWMPILER TEST

PIVITY REPORT (Intermetrics, Inc.)
65 p CSCL £9B

68 p

NASA CR:

j4022 5,

NT4=33675

Uanclas

G3/L8 48785

INTERMETRICS

Rapraduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U5 Department of Commereo
Springfield, YA. 22151

e e
I

PR

)

R TRl i S P
T T T
ot i ool DV Modwo wrudiuy

. HAL/S-360 Compiler
Test Activity Report
IR #86-1

3 July 1974

Prepared by: Carl T. Helmers

Api)roved by: -:A’U“%\ \5‘ N\T\h\:m

Dr. Fred H. Martin

i
.WTERMETRICS INCORPORATED + 701 CONCORD AVENUE +» CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Preface

This report describes the testing activities which
have been performed as a part of the HAL/S-360 compiler
development project.

There have been eight HAL/S-360 compiler releases,
designated 360-1 through 360-8, 360-1 and 360-2 were
early developmental in-house versions of the compiler.
They were used for design purposes, and performance
was verified largely by visual inspection of produced
code. No real execution was planned¥*.

Releases 360-3 through 360-8 were compilers with
successively greater capabilities. These compilers were
issued to the Shuttle programming community (viz. Rockwell,
Draper, IBM/Houston, Honeywell). Discrepancy reporting
began with 360-3%*, Formal testing activities, according
to plan, have been conducted on all releases from 360-3
forward. Plans and results have been recorded by
Intermetrics Shuttle Information Exchange (SI1IE) Memos.

This current publication summarizes all of the 360 test
activities and is meant to serve as a final test report.

* Results were discribed in Intermetrics reports issued
" on 13 April 1973 and 15 June 1973.

** This release was also described by Intermetrics report
issued on 28 August 19273.

[T
JNTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBR!IDGE, MASSACHUSETTS 02138 « (617) 661-1840

Table'of Contents

Page
1. IN?RDDUCTION 1
2. INITIAL TEST PLAN 3
2.1 Test philosophy and Test Procedure 3
2.2 Example: Integer-Scalar 7
2.3 Test Result Criteria 9
3. TEST PLAN ADAPTATION 11
3.1 Design Tests Incorporated into Formal Testing 11
3.2 Total Testing of the HAL/S—-360 Compiler -
Use Testing 13
4. TEST RESULTS SUMMARIES 13
4.1 Formal Testing of Release 360-3 19
4.2 Formal Testing of Release 360-4 19
4.3 Formal Testing of Release 360-5 and 360-6 23
. 4.4 Formal Testing of Release 360-7 25
4.5 TFormal Testing of Release 360-8 25
4.6 Discrepancy Reports . 26
Appendix A: Matrices of Tests 29
A.l Assignments with Implicit Conversions 30
A.2 Operator Test C 30
A.3 Exponentiation Test 31
A.4 Unary Operator (-) 32
A.5 Comparisons 33
A.6 Initial 34
Appendix B: Summary of Categories (Initial Listing) 35
B.1l Discrete 36
B.2 System Support Features 40
B.3 Pass 1 42
B.4 General 43
- Appendix C: Test Categories & Test Programs A7
C.l Piscrete 37
c.2 System Support Features 9
C.3 Pass 1 43 .
Cc.4 General 50
C.5 New Features 51
C.6 Special Tests 52
Appendix D: HAL/S Discrepancy Report Log 53
65

Appendix E: Discrepancy Worksheet
v t
. | ¢
NTERMETRICS INCORPORATED + 701 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

1.0 . INTRODUCTION: LEVELS OF TESTING

The testing of HAL/S can be undertaken at several
different levels. At the highest level of abstraction,
the usefulness of HAL/S as a programming tool can be
tested by using it in typical applications programming
cases. Such testing has been and continues to be an
important source of changes and modifications to the
HAL/S Language Specification itself, as well as serving
as a compiler-verification tool (see Section 3.1}.

At a lower level, given the current language defini-
tion, the functional characteristics of the compiler system
can be tested. Here the object is to wverify that the
compiler produces object code which is a faithful transla-
tion of the original HAL/S Program source. This functional
testing of the compiler and its generated code is performed
by a judicious selection of significant test cases which
are compiled and then executed. Selection criteria for
tests are based on many inputs, ranging from knowledge of
the compiler's internal structure to the known "good"
results of mathematical built-in functions.

At the lowest level there is the machine oriented
testing of a particular compiler's implementation - such as
the HAL/S-360 implementation on the IBM 360 or the HAL/S-FC
implementation for the AP-101 flight computer. Here the
emphasis is placed on the details of the resulting object
code, e.g. are internal register assignments correct? 1is
optimization working properly? etc. 1In a great many
instances, problems revealed at the functional level provide
indicators of significant areas to test at this level.

All three levels of testing are employed in verifying
the HAL/S5-360 compiler.

TERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

REPRODIKHBHJTY’O
F THE
ORIGINAL PAGE IS POOR

2.0 INITIAL TEST PLAN

The formal program of testing the HAL/S Compiler
for the System 360 began just prior to the first
operational release of the HAL/S compiler, Release
360~3 (August 1973). Subsequent evolution of the
language itself, as well as the continued work on
testing, have together resulted in modifications and
improvements of the test plan.

This section contains a description of the HAL/S-360
test plan as originally formulated. Section 3, which
follows, contains information on additional features in-
corporated in the test plan during the course of compiler
development.

2.1 Test Philosophy and Test Procedure

If it is assumed that the definition of a working
compiler is one which produces correct object code for
every possible legal input, then clearly, the primary
criterion for a compiler test plan is that it examine
the code produced for every possible source statement.
However, to take this requirement literally would produce
a test program with a hopelessly large number of statements;
the number of syntactic forms in the language factorial,
might be a good first approximation. If this were necessary,
it would not be practical to test the compiler at all. A
more efficient method of testing than this "black box"
approcach must be utilized.

The saving feature is that of the huge number of possible
HAL/S statements, most are different only to the programmer
and not to the compiler. For instance, the "black box™ or
outside approach dictates that the addition operator, '+°',
must be tested with all possible combinations of positive
and negative operands. This is really not necessary, as
examination of the compiler will show that the negative
operands, once converted to an internal form, are treated
exactly the same as-.positive operands. In fact, the sign
of an operand 1s not usually known by the compiler. Thus,
an "inside" approach to testing may be developed. It is
necessary only to test the several cases of this conver-
sion to internal machine representation, and the test of
the addition operator is reduced by a factor of four, or more.

PRECEDING PAGE BLANK NoT FILMED

JTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

This is not an isolated case; in fact, it is the rule rather
than the exception. Testing based on a detailed knowledge
of the compiler's inner workings eliminates the gross re-
dundancy of the outside, or user, approach. Thus, the test
philosophy becomes one of exhaustively testing all meaning-
fully different inputs to the compiler, where a "meaningful”
difference is defined as one that is preserved through the
initial passes of the compiler, and causes a different path
to be taken in generating object code. This approach may
require more time on the design of test cases, but it reduces
these cases to a tractable number and further, makes it
possible to examine the output code for correctness, in
addition to comparing the results of the execution of that
code against a predetermined answer.

The general problem of testing the HAL/S-360 compiler can
be separated into several categories. The categories are chosen
through an analysis of the structure of the compiler, -
paralleling its logically disjoint sections. Four major
headings are identified (see Table 1}:

a. the hand-coded portions of the first phase of the
compiler which are listed under PASS 1;

b. those language features listed under Discrete which
are more basic and self-contained;

¢. those under General which have wider implications
and which will require more special testing; and

d. System Support Features which cotains those categories
which facilitate communication with the environment,
and simpligy the writing of programs.

Certain language features, such as declarations, are mot - -
listed, but are implicitly tested by their use in the test
routines for all categories. These implicit tests, together
with the categories listed in Table 1, form a comprehensive
set of language elements which must be tested. Based on this
organization, the following procedure will be followed to
produce all of the necessary tests. '

———

4

TERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

av Select a category.

b. Determine sub-categories.

c. Classify sub-categories into enumerable vs. special.

d. Produce test matrices for each enumerable sub-category.
e. Generate tests from these matrices.

f. Generate special case tests.

Within each category, sub-categories will be produced by a
process similar to that which generated the category itself.
These sub-categories tend to split along the lines of statement
types, rather than along the lines of language features, as the
initial categories did. This type of classification scheme,
while somewhat redundant, simplifies the testing process, and
increases the probability that no language construct will remain
untested. ‘ :

Next, the sub-categories will be divided into two groups:
enumerable and special. The first group will test those parts
of the compiler through which several paths may be taken,
depending upon the context in which they are used. For instance,
the exponentiation routine's behavior varies considerably
depending on the arguments it is called with. An example of
a "special" sub-category is the test of the multiple assignment
processor. This routine always functions in the same way,
sequencing through the receiving fields on the left of the
assignment statement, evaluating each one, and calling some
other routine to do the assignment. The routine that actually
does the assignment is tested as one of the "enumerable®
sub-categories, as it must do a conversion if the data types
involved are not identical.

The tests required for one of these "enumerable" sub-
categories are represented by a matrix. The matrices for
the Integer-Scalar sub-categories are listed in Appendix A.
Refer to the matrix A3: This matrix is accompanied by the
expression <column element>**<row element>. The X in the matrix
which has been circled indicates that one of the test cases
must be a double precision scalar raised to the power of a
double precision scalar. In general, an X in the matrix
indicates that the label above the X (signified by
<column element>) must be raised to the power of the label
to the left of it (signified by <row element>). In one of
these matrices, an X may be omitted if and only if there is
already a case which will take the same path through compilation.

5
} INTERMETRICS INCORPORATED -« 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

TABLE

l.

Testing Categories

Pass 1
error checks

output writer
scanner

System Support Features

macros

includes

PDS manipulation
files

compool

comsubs

locks

real time

6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE

Discrete

Integer, Scalar
Vector, Matrix
Bit

Character
Structure

Flow Control
Conversions

I/0

General

library

built-ins

Arrayness

structure copyness

relational expressions

arrayed relations

procedure link and parameter
pass

addressability

register usage

update, task blocks

« CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Finally, test cases must be generated for the "special”
sub-categories. Here the matrix formalism is not applicable.
These special cases must be made to trigger specific pathways
through the compiler, and their design requires a detailed
knowledge of the decision points along the compilation process.
Wherever a decision point occurs in the compiler, a test case
must be prepared to follow each branch. The results of these
special test cases rmust be checked by an examination of the
object code rather than by checking the results of execution,
but this is advantagecus in that the number of test cases may
be reduced by combining several tests into one statement.

2,2 EXAMPLE: INTEGER-SCALAR

To illustrate the testing strategy, one of the major cate-
gories from Table 1 will be explained in detail down to actual
test cases. The example that has been chosen is Integer-Scalar.
The primary reason for selecting this category for first
consideration is that it will be so widely used in HAL/S
programs; an error here is likely to cause errors in the majority
of compiled programs. In addition, an early test of this
category may show up widespread errors in the compiler, since
the testing of Integer-Scalar operations must involve the use
of many other language features. Finally, the Integer-Scalar
category is large enough to 1lllustrate many of the problems
encountered in the test procedure and point to their solutions.

To simplify the task, the Integer-Scalar category was
divided into several sub-categories along the lines of
statement type (see Table 2). These sub-categories overlap
to cover all uses of integers that are not more appropriately
covered under one of the other categories listed under General
in Table 1.

appendix A contains appropriate matrices for the enumerable
sub-categories of Integer-Scalar. Some matrices indicate many
possibilities where as in others only a smaller number of cases

, 7
INTERMETRICS INCORPORATED - 701 CONGCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

. " TABLE 2.

Categories Tested Under Integer, Scalar*

Category Matrix Comments

1. Assignments X All tested due to implicit
conversions.

2. Initial Values X

3. 'Comparisons X

4. Binary Mathematical Not including ** (exponen-

Operators X tiation)
5. Exponentiation X Separate category due to
: required internal handling
by compiler.
6. " Unary Operators X + and = prefixes.
7. Multiple Assignments Test .of ordering of assign-
: ment included.

8. Complex Expressions Tests of precedence; elementary
function, returns, definitions,
and element selection implicitly
tested. ’

9. Complex Comparisons Tests of precedence, combina-

' tions with BOOLEAN variables
“included.

*+ Note: Certain declares and initialization, (simple I/0 and
flow corftrol, comment ability, and no argument
procedures call) implicitly tested.

8 ‘
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

will need to be tested. Those cases which are eliminated are
done ‘so due to certain properties of the compiler, primarily
commutivity. For example, under the operators '+', '-', and
'/', the tests form a triangular matrix due to the "bubbling
up" (to higher precision) property of the compiler; a scalar
of double (SD) precision divided by a scalar of single precision
(Ss) is essentially the same as SS5/5D since in both cases the
§S is converted to an 8D and then the division is performed.
On the other hand, all possible assignments are tested due to
implicit conversions. Each matrix will have notes explaining
deletions of tests.

2.3 Test Result Criteria

Once the test programs have been run, the results must be
verified. This can be done on two levels. The higher level
is that of checking produced values vs. expected values.
(This level is, in fact, the more important of the two in terms
of correctness.) For two reasons the checkout of the HAL
compiler will involve both levels. The first is that of
completeness through retention of an outside check. The second
is that in order to remain compatible with our inside approach,
the object deck produced from a HAL program should be examined.
Therefore, in a HAL statement such as A=5; where A is a scalarx
or single precision, one would check that A is indeed equal to 5
and that the literal has been converted to a single precision scalar.

It may be noted that the majority of test cases are simple
rather than compound statements and expressions. The motiva-
tion behind this is that intermediate results in the evaluation
of expressions are usually kept in registers. Thus, they all
have the same format, which means that there is no need to mix
data types in the complicated expressions, after each combina-
tion has been paired and checked in the simple expressions.
More complex expressions in the Integer-Scalar category examine
such things as order of evaluation of sub-expressions and the
correct use of temporaries. Evaluation of these tests will be
done by examination of the object code produced rather than by
checking the results. Thus, as expressions get more complex,
we move from examination of the results of many cases, to a
check of the generality of the code produced for a few cases.

9
| .
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

3.0 TEST PLAN ADAPTATION

The original test plan, as described in Section 2 above,
has been adapted and improved during the course of the HAL/S-
360 testing activities. At the time of the final compiler
version,Release 360-8, the number of test programs, for
instance, had grown to over 100 from an original count of
40 programs. Language design features have also changed
during the course of compiler development, and with each
release the test cases in the library of test programs
have been reviewed and modified to reflect such additions.
This section describes the extensions to the original test
plan which have been incorporated as of the date of this
report.

3.1 Design Tests Incorporated into Formal Testing

In carrying out the HAL/S-360 test plan, Intermetrics
took advantage of its knowledge of the internal design
and implementation of the compiler. Special tests in order
to verify specific constructs and/or algorithms were added
to the set of Formal Tests. Some examples are described in
this paragraph:

1. Since the compiler's replace machanism sees the replace
text as an uninterpreted character string, significant
tests involve replace texts of varying length, nested
replaces and parameterized replaces.

2. Referencing elements of aggregate data types must be
tested in cases where the total size of the data in
question is greater than 4096 bytes (on the 360).

This is due to the fact that in some cases a subscript
expression can be incorporated into the displacement
field (12 bits) of a machine instruction.

For a similar reason, HAL statements which increment
an integer variable by more than 4096 must be tested:

"T = I + 5;" can be done by a LA instruction
(leaving the result in a register) whereas
"I = I + 5000;" cannot.

ED
PRECEDBﬂG-PAGE:BIJGWK'NOT FILM

11 :
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE +» CAMBRIDGE, MASSACHUSETTS 02138 + {817) 661-1840

3. Since the compiler stores multidimensional arrays
(and matrices) in row-major order, tests of the form
"A$(*,3) = ..." are necessary to verify assignments into
array partitions which are not contiguous.

¢

4. The order of evaluation of parts of a statement must
be tested in several cases other than expression
context. An example is:

"ASI,I = I+AS$3",

5. 8ince the compiler maintains a separate stack segment
for each code block, assignment statements across task,
procedure, and program boundaries must be used to verify

_correct accessinag of data at various nest levels.

6. Some computations are done at compile time. Thus, a
complete test of exponentiation must include both
"I = 3**%12;" and "J = 3; I = J**12:", Tests of :
precedence and certain built-in functions must also be
made in this context.

7. Consider the following example:

T: program; o
Declare integer initial (5), A,C;
VDeclare B bit (16) initial (Hex'8005');

/*Test 1*/ A = abs(integer (b)};
/*Test 2%/ C = abs(A);
Write(6) A,C;
Close; '

" One might expect that Test 2 was the same as Test 1
in the above example, since both statements takg the
absolute value of a single (default) precis%on integer.
This, however, is not the case, due to the %mplementaﬂ
tion of the abs function and the peculariaties of the

360 STH and LPR instructions.

12
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

3.2 Total Testing of the HAL/S~-360 Compiler - Use Testing

The programs which represent the implementation of
the HAL/S-~360 test plan are only a portion of the test
effort that is in progress. All tests can be included
in one of the following four classes:

1. Formal Testing: The tests which are generated according
to a test plan.

2. Developmental Testing: The day to day test programs
which are used to verify parts of the compiler as they
are written. .

3. Visual Verification: The examination of the code as it
is written to find special cases which have not been
accounted for.

4. Compiler Use: Programs which are written in HAL/S to
be used in the course of other work.

With respect to the last class, it should be noted that
certain types of errors are not easily caught by a systematic
test plan. These errors can be found only when a program 1is
presented with one particular set of inputs. Therefore, it is
useful to spot check the compiler randomly by subjecting it te
a number of application and utility programs. Such programs
have been designed and are listed under Category 6 in the
tables of Appendix C. -

The uses of these programs range from calculations to
debugging, to the generation of other test programs. Many
of them were run on a daily basis. -

This type of program has been responsible for the
detection of several errors during the course of the HAL/S
development effort. For instance, in release 3 of the compiler,
an application program called QUEUES detected one of
several discrepancies in compiler operation when a particular

| ‘ combination of name choice and block nesting was compiled.

‘ In release 6 of the compiler, the programs KIP and FDA were :
responsible for the detection of an error triggered by the

N specific program swapping techniques employed in the real

; time aspects of these applications. These are not the only
examples of such error detection. The technique will continue
to prove valuable in the future releases of HAL/S compilers
for the flight computer and the 360, if necessary.

‘ 13
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

3.2.1 PMF and FDI Simulators

Two major HAL/S programming efforts were developed

. at Intermetrics in support of Rockwell International, viz.
a Performance Monitoring Function simulator and a Failure
Detection Indication simulator. The HAL/S-360 development
has benefitted from this in-house use of the language and
compiler. The programs are distinctly different and exercise
almost all aspects of HAL/S from mathematics and structures
to systems use and real time. They were developed in parallel
with HAL/S-360 and were run successfully using several releases
of the compiler. Several HAL/S discrepancies were discovered
using these programs on developmental versions of the compiler.

3.2.1.1 PMF. The Performance Monitoring Function simulation
currently comprises ten external procedures, two Compools,
and four programs. The external procedures are display
handling primitives which are called by the following
programs:

1) Operational Programs

a) FDA. Executes all Fault Detection and Annuncia-
tion funetions. Provides data base for SMM,
SCM display functions,

bh) KIP. (Keyboard Input Processor) Contrel center
for display processing. Responds to KBD
inputs, and maintains control of the-CRT level
usage by each of the four DEU's.

2) Simulatiog Support Programs

a)- CREWMAN. Prepares simulated crew KBD inputs,
~and passes them to KIP., Also processes requests
for CRT page print-outs, and provides genexal
simulation control. '

b) EXEC. This is a small routine that does the
initial scheduling of all the component programs,
to get the simulation going.

The combined programs and procedures contain approximately
1800 HAL/S statements and the Compool data occupies approximately
10,000 360 woxds. The four programs contain eight task blocks
and over twenty internal procedures and functions.

14 .
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

+

3.2.1.2 FDI., The FDI simulator is designed to evaluate
sensor FDI algorithms under realistic Shuttle flight
considerations. The following Program Layout taken from
the compilation indicates the organization and scope of
the simulation.

PRCGRAM LAYOUT
LA . . .

1 STATZUPDATE: EXTERNAL PROCEDURES

=

SELECTSTATE: EXTZRNAL PROCEDURE;

RELLOATA: EXTEANLL CCMPCCLS

CRTHC: EXTIAMAL FUNCTICHNG

T

“CEMPCATA: EXTERMAL CCHPOOLS

4 .
_QUTPUTDATA: EXTERNAL PROCEDURE:D

—

' 5 VEFICLIDYRAMICS: EXTERMAL PROCEDURES

-

TIMUMOCEL : EXTSRNAL PRCCEDURES

¢
_NAVSENSORS: EXTERNAL PRCCEDUREGD

7 IMUFDI : SXTERNAL PROCECURES

r

CTRAVEILTER: EXTERNAL PROCEDURES

GUIDANCE : EXTERNAL PRCCEDURE: _

$ SHUTTLE_FDISTM: PRUGRAMS

]

TTTUBASICDATA: PROCSULURES

g
CASEDATA: PROCESURES

1

—

I REALWOPLD: PROCEDURES

: TLOAPUTER: PROCEDURES v
12
TE#ESTEPT PROCEDUNLS
O T T T e e e e T T

——

The program contains ovexr 1400 HAL/S statements and also
includes 40 internal proccdures and functions. o

15

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

3.2.2 Boost Trajectory Generator

This program simulates a boost-into-orbit trajectory.
It is typical of guidance and control programming using all
the mathematical features (integer, scalar, vector, matrix)
available in HAL/S as well as arrays for formulating and
manipulating tables of data. '

3.2.3 Other Testing

Testing of the HAL/S compiler releases was also
conducted at three other contractor installations:

Draper Laboratory
IBM/Houston
Rockwell/Downey

These contractors reported discrepancies (Discrepancy
Reports} to NASA/JSC and Intermetrics. All reports were
evaluated by Intermetrics and errors fixed in subsequent
releases,

3.3 Mathematical Function Precision Testing

The incorporation of precision tests into the testing
of HAL/5-360 mathematical function routines was begun with
Release 8 of the HAL/S 360 compiler. The purpose of this

“testing is to verify the mathematical function algorithms
as implemented, for internal consistency and for consistency
with known values of the functions.

The initial approach to this form of testing was to
analyze the algorithms used, looking for likely sources of
error in the calculation and for input ranges where large
errors can be expected., The purpose of this analysis was
to find a set of worst case test points for each function
which would then be compared with the exact mathematical
values of the funetions. For example, it was expected
that the errors would be larger neax singularities. There
was some success with the method as applied for example to
the Sine routine, testing multiples of w for an exact zero
value, thus analyzing the results of the finite precision
of the constant m used in making the principal angle
corrections. This type of testing is continuing with more
results to be expected at a later date.

16
INTERMETRICS INCORPORATED » 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 6£1-1840 ,

Following the initial testing of mathematical
routines as outlined above, it was decided to check
the accuracy of the approach --—- were the largest
relative errors at the predicted points based on analysis
of the algorithms? To perform this consistency checking,
it was decided to use the double precision versions of
routines as the "standard" for comparing single precision
results and calculating relative error as a function of
the input argument range. Preliminary results indicate
that for ranges of the argument which result in errors on
the order of magnitude of the last digit, the error is not
related to the "most likely" points determined by analysis.
The source of this error is attributed to truncation as
opposed to fundamental characteristics of the routine itself.
For larger errors, the programs doing the testing were modified
to isolate the regions of larger error and examine such
regions with a finer granularity. Using this approach, it
was found, for example, that the HAL/S single precision TANGENT
function yields regions of arguments with exrors three
orders of magnitude larger than the largest IBM FORTRAN
relative error in the equivalent routine, indicating a
probable error in the HAL/S runtime routines. In order to
extend this approach to double precision routines, it is
necessary to obtain comparison standards for triple
precision versions of the same functions. Work is now
progressing on the definition of such extended precision
algorithms for use in checking out the HAL/S double precision
routines.

All the function range testing being applied on the 360
version of the compiler can and will be carried over to the
flight computer compiler. This work can be accomplished due
to the identical floating point data representations and the
fact that identical algorithms (although differing in machine
representation) are used for both computers.

17

INTERMS : 11CS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.0 'TEST RESULTS SUMMARIES
The HAL/S-360 testing activities have been carried

out for each release of the HAL/S compiler. This section
summarizes the results of tests, by release.

4.1 Formal Testing of Release 360-3

The test plans, as described above, were first applied
to Release 360-7. A set of test categories and sub-categories
was generated for this purpose. Test programs were written
and exercised on 360-3 covering all features expressed in
the plan. In the tables of Appendix C, the categories (and
sub~categories) and the corresponding test programs (in caps)
are indicated. (Appendix C shows the current list of programs).

In all, forty (40} test programs were written for
categories A, B, C, D. These programs contained approximately
4,000 individual logic and language feature tests for Release
360-3. The bulk of source text, object code, and test
results printout precluded their publication for distribution,
however, these volumes are on file at Intermetrics, i.e:

1. The original source program

2. The formatted compiler listing

3. The object code listing produced by the compiler

4, The printout of the test routine's execution

4.2 Formal Testing of Release 360-4

Release 360-4 was tested using a sub-set of the
tests defined for 360-3 (see Appendix C) and a new
additional set of tests. The tables and paragraphs
below identify and summarize the purpose of these tests.
In all, these programs represented in excess of 2000
individual logic and language feature tests,

19
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIOGE, MASSACHUSETTS 02138 - (617) 661-1840

4,2.1 Sub-Set of Test Plan

A. Discrete
1. Integer-Scalar
HALTEST
- OPERTEST
EXPONTEST
2. Vector-Matrix
MATVECT COMPARE
MATVECTWPARTITIONING
MATVECT_EXPRESSIONS
3. Bit
BITTEST
4. Character
CHARACTERTEST
CHARTEST
TEST2
6. Arrays
ARRAY ELEMENT SELECT
7. Flow Control
FLOWTEST
B. System Support Features
4. Compool & 5. Comszubs
C5UB ____.

CPOOL
PROG

20 .
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

*D. General
1. Library & 4. Procedures
EXPRESSIONS_AS“ARGUMENTS
4. Procedures

PARM
ECCHO

6. Conversion
VECFEON
F. Special Tests

SCRUNCH
ED

4.3.2 New Formal Tests for Release 360-4

1. CONFLICT TEST examines part of the compiler's
error detection facility. It is a test of the use of
factored attributes which disagree with non-factored
attributes in the same declaration: e.g. "Declare vector (3},
I,J,K integer, L;". A test is also made of the compiler's
conflict-detection algorithm; i.e. "Declare integer, A,B,

C integer double, D;" must not be flagged as an error.

This category of testing (error detection) is made
_ difficult by the fact that the compiler, having found one
error, may announce further spurious errors as a result of
incomplete error recovery. Further, the discovery of one
error may cause the occurrence of further errors to go
undetected.

2. LOG SORT is a test of two of the built-in mathematical
functions. It produces a table of square roots and logorithms
which may be checked-against any standard reference. In addition,
the inverses of the built-in functions are used within the program
for self checking and to determine the loss of precision involved-
in the operations. Two other tests, SIN and SINH are essentially
the same, except that they test the trigonometric functions,

21
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3. REMEMBER REGS tests the compiler's optimization
of register usage. This program checks the following features:
a) That register contents are not assumed to remain
intact across statement boundaries when a labeled
statement or when flow control statements are
encountered.

b) That when a statement has too many variables for the
number of registers available, the variables in
registers that must be re—used are properly stored
into memory, and

¢) That these variables which have been replaced are not
assumed to remain in the registers in subsequent
statements.

4. VECTOR SHAPETEST was written specifically to insure
that the discrepancies found in the vector shaping function
" at the time of Release 360-3 had been corrected. It tests
nested shaplng functions, and the use of a vector shaping
function in the argument list to a procedure or function.
The errors which were found in Release 360-3 were corrected.

5. SPLAT is a test of the use of the operator "#" to
specify repetition in an initial or constant list in declarations.
The program insures that nested repetition lists, such as "3#
{(14.5,2#(3,4),5)" are correctly interpreted, and that repeated
lists with elements that require some conversion are properly
handled. An example of this latter case is: "Declare I
ARRAY (6) INTEGER INITIAL (2% (3,SQRT(8),4));".

6. ILIONG is a test of the EXIT and REPEAT statements used
inside an iterative DO loop which has a length of more than
4096 object bytes. The program checks that addressability is
maintained when an EXIT or REPEAT causes a branch to a section
of code which cannot be addressed from the current base register,

—-———

7. The programs PROD, SUM, CEILING, FLOOR, MOD, and
REMAINDER test the built-in functions of the same names. Several.
related errors were found in these library routines. For instance,
CEILING (4.0) returned 5. This error was introduced in the single
to double precision conversion which introduces non-zero low

order bits, forcing the result in the next higher integer. These
errors were corrected in Release 360-5.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUEz-ZCAMBRIDGE, MASSACHUSETTS 02138 - (617) 861-1840

4.3 Formal Testing of Release 360-5 and 360-6

All previously generated tests were run using releases
5 and 6. In addition, new test programs were written to
augment the previous test plan. 1In all, by the release of
360-6, eighty-eight test programs had been written for
categories A, B, C, and D. These test programs contain
approximately 8,000 individual logic and language feature
tests.

As a result of the tests above being conducted, nineteen
compiler errors were discovered:

1. Pass two of the HAL/S compiler failed to generate
proper code for shaping functions applied to bit
strings of length 16 arguments.

2. One matrix exponentiation library routine was
improperly coded, causing spurious errors and abends.
This error was detected by MATRIX EXPONENTIATION.

3. Assumed length passing in the library routine of CTOB
caused erroneous runtime results. The error was
discovered by BSHAPE,

4. The use of the CSHAPE test program determined that
improper coding in the library routine called by

the HAL/S language form CHARACTER@DEC caused results

to be proper if and only if a factor of ten was
calculated into the original argument. ~

5. The replace macro facility improperly interpreted
macros nested within macros for the case in which a
parameter to the outer macro was itself an argument
of a nested macro. The error was detected by SUBBIT_
ON_INTANDBIT.

6. Registers 0 and 1 were found not to be preserved in
process swapping. Such preservation is necessary for
the proper functioning of the code generated by pass
two of the compiler because pass two assumes that these.
registers remain unchanged across statement boundaries.

23
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

‘8.

10.

il.
12.
13.
l4-

15.

16.

17.

Passing a bad argument to the library routine CTOI
caused abends during runtime instead of the generation
of the proper error message.

Character subscripting in an expression using the

70 4 subscript form caused overwriting of the calculated
length value. Thus, erroneous results coccured at run-—
time,

Structure input and output caused bad code to be
generated for the case in which the structure had a
multiple copy specification.

The length of a literal character string was incorrectly
calculated in the compiler.

During automatic template generation, multiple replaces
in compools caused replacement of the several sub-
sequent macro statements by the first macro string,
regardless of the form of the later statements.

Subscripts which select one copy of a multiple copy
structure result in incorrect code: the base to which
the calculated index is added is greater than the address
of the first copy of the structure.

The default value of the "speed" parameter was set to
five million rather than five hundred thousand as specified.

The INCLUDE function worked incorrectly when a block
template being generated was being matched with a
previously created template.

The MAX or MIN functions did not work with arguments
with a * array size.

If two compool templates used in the same compilation unit
possessed identically named identifiers, nc 2rror was
detected.

There was an output writer problem in printing a gqualified
structure name in a subscript.

24

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

18. If the dot product of two vectors of unequal length was
taken, the Phase I error message was garbled.

19. The multiplication of unsubscripted variables by argument
less functions sometimes produced bad object code.

20. If a program contained an identifier T then occurrences
of the superscript form of transpose caused spurious
cross references to appear in the symbol table entry for T.

1. 1In some circumstances, use of the SIZE function with
arguments of * array size produced bad object code.

All of these errors were corrected for Release 7 of the
compiler. :

4.4 Formal Testing of Release 360-7

The standard library (with additions) of formal tests
were re-run on Release 7. Additional tests were generated,
covering new HAL/S language features incorporated into
Release 360-7. A total of 4 discrepancies were reported
during development of 360-7, with additional testing after
release yielding 3 morxe.

4.5 Formal Testing of Release 360-8
The standard library ({(with additions) of formal tests
was run using the release 8 version of the compilex. Additional
tests generated for release 8 were used to test out new
features and to add to the repertoire of previous tests.
The new test programs are:
Structures:
STRUCT _I0_COMP
STRUCT_ACCESS
STRUCT ERR ...
STRUCT PARM
Arrays:

ARRAY PARTITION

ARRAY PARM

25

HNTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - {(617) 661-1840

Replace Macros:
REPL_TEST
REPL_ERR
System lLanguage Features:
INLN_ FUNCTIONS
TEMP_TEST
As of the time of the release, this testing had revealed
one discrepancy in the operation of the compiler occurring
when a structure function used in an assignment statement.

The final list of formal test programs is included as Appendix
C of this document.

Also, the precision testing of mathematical function
subroutines in the run-timeclibrary was begun with release
8 of the compiler. A later memo will document results of
this test activity. '

4.6 Discrepancy Reports

Appendix D lists all reported discrepancies as of June
30, 1974. These discrepancies were analyzed and entered
onto the work sheets included in Appendix E. The figures
below summarize this information. Figure 4-1 plots the
number of discrepancies introduced into each released version
of Fhe compiler as a result of new code and/or the alter-
nation of existing (good) code. The first three HAL/S-360
releasgs'have been grouped together and are treated as
Fhe original release. The drop-off in introducing errors
is @arked with only two resulting from 360-7. The trend
1s indicative of the maturity of both the compiler itself
and programmers at Intermetrics developing it. Changes can

now be introduced with minimum risk in causing additional
errors.

Figure 4-2 is interesting in that it attempts to
convey a degree of difficulty in finding introduced errors. :
The latency value 0, 1, 2, etc., means that the error

26

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

Figure 4-1
Discrepancies introduced into the

60 1 HAL/S-360 Development (by release)
50
. REPRCDUCEILITY CF Tab
ORIGINAL PAGE IS POOR
40
) REPRODUCIBILITY OF THE
o OT‘"""A AR et o WA N
a .
g 30 A
Lol
0
H
+
£
H
o 20
e
[
g
o
o7}
o
e
@
-rd 10
o .
w
[}
o=
1,2,3, 4 5 6 7 8
HAL/S Releases 360- '
Figure 4-2 . Discrepancy Laten.cy
50.]
40]
30]
o
8
0
Be
2 20 -——
e
Q
d
[
a
M
5 10]
o
w“ .
- |

F-

0 1 2 3

Release Latency

27
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE < CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

50
40

g

S 30

(]

[iH]

ot

[#)

g

(o0

[+

R

9}

n

ot

[a]

LT

o]

=19

20

was introduced in one release and found in the same
release(0), the next(l), or the next again(2), etc.

Thus for example, 42 of the descrepancies were intro-
duced and then discovered in the same HAL/S-360 release.
The average latency value 1is 1.1 and indicates that

for the development so far, it takes, on the average,
one additional release with its attendent testing, use,
verification, etc., to find an introduced error.

Figure 4-3 presents latency data again, this time
with the first three HAL/S releases eliminated. Dis-
counting this start-up "transient" it would appear that
the total verification effort was some what better, in
that errors were found, on the average, a little sooner.
Of course this result might be expected as the test
cases became more voluninous and the programmers gained
more insight into the wvulnerable arecas of the compiler.

The full story on HAL/S~360 development is, at
this writing, incomplete. Release 360-8 has just been
release and data will continue to be gathered. At a
subsequent date an addendum to this report will be
issued in which it is hoped that the reliability of the
compiler and the effectiveness of the total test and
verification efforts may be judged.

FPigure 4-3
Discrepancy Latency (eliminating data from
(eliminating data from Releases 1,2,3)
f .
.}
0 1 2 3 4

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE Q%AMBWDGE,MASSACHUSETNSOMGB

- (617) 661-1840

APPENDIX A

Matrices of Tests

<row element> means the label of the row in which an 'X'
appears.

<column element> means the label of he column in which an
'X' appears. :

List of Tables

Al Assignments with Implicit Conversions
A,2 Operator Test

A.3 Exponentiation Test

A.4. Unary Operator (-)

A.5 Comparisons

A.6 Initial

29

INTERMETRICS INGORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

A.l ',Assignments with Implicit Conversions

sc(s) Sc(d) I(s) I(d)‘ Lit(scalar) (1n£ggei]l-
-_Sc{s) X X X é X H X "_
h—Sc(d) X X X X X X +
%1(5) X X X X X X
— 3
I(d) X X X X X X
3
Lit{s)
- g
Lit (I}
<gcolumn element> = <row element>
A.2 Operator Test
: Tit
Sc(s) Sc(d) I(s) 1(a) Lit{scalar)} (:Lnteger)
- 3
.Sc(s} X E
__ i
Sc(4a) X X
B +¥
I(s) X X X
'1{a) X W X X r
- T
Lit(s) X X X X X
M_Lit(I) X X X X % r

INTERMETRICS INCORPORATED « 701 CONCORD AVEN%I(F): -

<column element> <operator> <row element> where <operator>

» e
-

=+ | -|stimes>{/
CAMBRIDGE, MASSACHUSETTS 02138 -

(B17) 6G1-184D

-

A.3 Exponentiation Test

Sc{s) Sc(4) .ﬁI(s) I(d) Lit (scalaxr) (iniiger)
_5!(5) X X X X X X
SB(d) X € X X X X
”;'L) X X X X X X
blld) X X X X X X
b ‘t(s-) X X X X X X
| 1'1;(1) X X X X X X

|

An exhaustive test was necessary because the compiler makes

a more elaborate treatment of exponentiation than the other
operators:

<column element>**<row element>

———

at compile time.

<literal>**<literal> is reduced to <literal>

sxponentiation is done with an in-line code substitution.

31

INTET S TRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

vt

A.4 Unary Operator (—).
| Lit
sc(s) sc(d) I(s) | I(d) Lit(scalar) | (integer]

Sc(s) X E' F _ﬁir_
L Sc{d) X X X r

I{s) X T

1(a) X |
| Lit(s) X X X §
TL?i.-t(I) X X X ' '

i

<column element>

- <row element>

The cases above include a few of the possible conversions.

for a conversion.

A————

- Conversions were tested thoroughly elsewhere;
here is just to test th

their inclusion

at the compiler recognizes the need

32

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSAGHUSETTS 02135 - (617) €

Fmta i a ma ay

G1-1840

. A.5 Comparisons

Lit
1 scis) sc (d) I(s) ‘ 1(d) lLit (scalar) | (integer)
SC(S) X -t E - E
Sc (d) X X

p!Ls) ¥ X X

,(a) X X X Tox

lt(s) X | X X X

'it(‘i) X X X X

If <column element> = <row element> then

Once one operator has been tried against all possibilities,
the others need only one test case. The code produced will
be similar tc the following: -

CLC dependent on data types
BC M-dependent only on operator
Thus, a test of one operator will ensure that the correct

comparison is done, and the test of the others is only to
ensure that the correct mask is set up in the BC instruction.

b

33

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE » CAMBRIDCLE, MASSACHUSLTTS 02138 - (G17) 661-1840

A.6 Initial

Sc(s) Sc(4d) I(s) I(d) Lit{scalar) (inf:lcieger
Sc{s} ‘t X X
kSc(d) X X
I(s) X X
I(d) X X
Lit(s)
Lit{I)

Declare <row element><attributes> initial (<column element>);

34

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

APPENDIX B:

DISCRETE B.4

INTEGER-SCALAR
VECTOR-MATRIX
BIT

CHARACTER
STRUCTURE
ARRAYS

FLOW CONTROL
I/0

SYSTEM SUPPORT FEATURES "B.5

MACROS (REPLACE)
INCLUDES

FILES

COMPOOLS

COMSUBS

REAL TIME
OPTIONS IN JCL
DEVICE DIRECTIVES

PASS 1

ERROR CHECKS
QUTPUT WRITER
SCANNER

DATA DECLARATIONS
SCOPING RULES

35

Summary of Categories (Initial Listing)

GENERAL

LIBRARY & BUILT-INS

ARRAY-STRUCTURE INTERACTION

RELATIONAL EXPRESSIONS

PROCEDURE LINK & PARAMETER
PASS

ADDRESSABILITY & REGISTER
USAGE

CONVERSIONS

SHAPING FUNCTIONS

NEW FEATURES

NAME Facility

INLINE FUNCTION BLOCKS

PERCENT MACROS (% MACROS)
STAND~ALONE DEBUGGING LANGUAGE

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 661-1840

APPENDIX B: Detailed Breakdown of Categories

B.1l DISCRETE

B.1.1l. Integer-Scalar

Assignments

Initial Values

Comparisons

Infix Mathematical Operators
Exponentiation

Prefix Operators

Multiple Assignments

Complex Expressions

Complex Comparisons

B.1l.2. Vector-Matrix

Comparisons

Assignments

Initial Values

Conversions

Plus, Minus

Multiply (All Types), Divide
Exponentiation

Unary Operators : .
Element Selection
Partitioning

Complex Expressions

Complex Comparisons

Multiple Assignments
Built-In Functions

——

e - 36 :
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1640"

B.1.3. Bit

. Assignments
Initial Values
Comparisons
Conversions
Concatenation
And, Or Operators
Not Operator
Element Selection
Complex Expressions
Complex Comparisons
Multiple Assignments
SUBBIT
Partitioning

B.1.4. cCharacter

Assignments

Initial Values:

Conversions

Comparisons

.Concatenation

Element Selection _ -
Complex Expressions

Complex Comparisons

Multiple Assignments

Built-In Functions

Partitioning

dp——c——

37 .
INTERMETRIGS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - {G17) 661-1840

B.1.5. Structures

. Qualified Name Reduction (assign into)
Qualified Name Reduction (assign from)
Template Matching
Initialization
Comparisons
As Parameter or Retuxn
Multiple Copies
Dense & Aligned
Copy Selection
Multiple Assignments

. Minor Structures
Qualified vs. Ungualified
Complex Subscripting

Assignments

B.1.6 Arrays)

Element Selection
Partitioning
Initialization
Mathematical Infix Operators
Comparisons
- Parameter Passing
Dense vs. Aligned
" Assignments
Multiple Assignments
Prefix Operxators
Built—-In Fanctions

38 . _
INTERMETRICS INCORPORATED « 707 CORNCORD AVENUE « CAMBRINGE, MASSACHUSETTS 02138 - (G17)y GG1-1840

B.1.7. Flow Control

. IF <bit> THEN

IF <arrayed bit exp> THEN...
IF <bit>.THEN ELSE

IF <bit or relational expression> THEN
DO...END GROUP

Discrete DO FOR

Iterative DO FOR

DO UNTIL <bit>

UNTIL <bit or relational expression>
DO WHILE (<bit>)

DO WHILE (<expression>) .

DO Case

DO Case...Else

GOTO

EXTIT

REPEAT
DO FOR...BY...TO

Discrete DO FOR WHILE
Yterative DO FOR WHILE
Discrete DO FOR UNTIL
Iterative DO FOR UNTIL

DO Case <scalar>

Nested Conditionals

Nestced DO's

Conversion in DO Case

Null Statement

39 :
FTERMETRICS INCORPORATED « 701 CONCORD AVENUL « CAMBRIDGE, MASSACHUGETTS 02138 + (817) 651-1840

B.1.8. I1/0

Implicit Positional Control
Explicit Positional Control
(Tabl, Skip...)
Conversions
Record Selection
Null Field, <;> in read statement
Field Width
Generation of Device Control Characters

B.Z2. SYSTEM SUPPORT FEATURES

B.2.1. MACROS (Replace)

Substitution of Arguments
Nested Macros

Scoping Conflicts
Argument Name as Argument

B.2.2. Includes

Selection of Correct Data Set Member
Text Included at Correct Point -
Text Introduced Unchanged

Multiple Includes

Include Within Include {(Error)

B.2.3. Files

Association-of Channel Number with Data Set or Device
Opening and Closing Files
Standard Input File (SYSIN)

40 :
WTERMETRICS INCORPORATED + 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - {617) 661-1840

B.2.4. COMPOOLS

Template Declaration
Compilation of COMPOOL
Access of Contained Data
Storing Into COMPOOL
Access Rights

Multiple COMPOOLS

Locked Data

B.2.5. COMSUBS

External Procedure Declaration
External FPunction Declarxation
External Procedure Reference
External Function Reference
Procedure Compilation

Function Compilation

B.2.6. Real Time Control

SCHEDULE

TERMINATE

WAIT

CANCEL

SIGNAL

ON ERROR

UPDATE PRIORITY

PRIO BUILTIN FUNCTION
SEND LERROR

RUNTIME

Events -
Independent Processes
Process Events
Latched Events

Locked Tining

Update Blocks

Event Expressions

Tasks
41 .
INTERMETRICS INCORPORATED - 701 CONCORD AVENLE « CAMBRIDGE, MASSACHUSETTS 02138 « (617 661-17

. PASS 1

B.3.1. Error Checks

Set off every error message.

Check that syntactically correct but semantically
invalid statements produce errors.

Check recognition of syntactically invalid forms,
Check code production inhibition. '

B.3.2. Output Writer

Single to multiple line conversion.
Automatic variable annotation
Symbol table dump

X-ref dump

Error summary

B.3.3. Scanner
Declaration Processing Separate Category
Replace Processing T Separate Category

Symbol Table Entry
 Token Creation
Multi-line Input

B.3.4. Data Declarations

Conflicting Attributes
Factored Declares
Constant Attribute
Automatic Attribute

bt————

_ 42 -
INTERMETRICS INCORPORATED « 701 COMCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 6611840

B.3.5. Scoping Rules

' DECLARE VARIABLES W/ SAME NAME.

REPLACE SEVERAL IDENTIFIERS OF THE SAME NAME IN
DIFFERENT SCOPES.

STRUCT TEMPLATES WITH SAME NAME IN DIFFERENT SCOPES.
DECLARATION LOOPS
TEMPORARY LINKAGES
EXTREMELY DEEP NESTING
B.4. GENERAL
B.4.1, Library & Built-Ins

Matrix-Matrix
Matrix-Vector
Matrix-Scalar (Scalar-Matrix)
Vector-Vector
Vector-Matrix
Vector-Scalar
Scalar~-Scalar

Matrix

Vectox

Scalar

Integer

Character

Array

No Argument Functions

Use in Expressions
Use in Output Statement
Use as Subscript

———

43

.NT(.E‘h\"\ETRiCS (INCORPORATED « 701 CONCORD AVENUE « CAMBIIDGE, MASSACHUISETTS 02138 « (617) 641-1840

B.4.2. Array-Structure Interaction

. Assignment

Comparison ' - Use with mixed structure

Multiple Assign and array.

Operators
Dense vs. Aligned Ascertain that conversion
still works.
B.4.3. Relational Expressions

Multiple Occurrence of &, |, ~
Multiple Operators with Parentheses
IF..., THEN IF...THEN IF...

With Arrayed Relations (=, ~=)

With Structured Comparisons

With Function Calls

B.4.4. Procedure Link & Parameter Pass

Linking to External Procedures

Passing Simple Parameters of 6 Data Types
Passing Multiple Parameters of Mixed Type
Assign Lists -

Linking to External Functions
Passing Single Parameter of Each Data Type
Passing Multiple Parameters

Test Return of Six Types

Test 'X'-length Parameter
Implicit Conversions

Expressions as Arguments
Subscripted Variables in Assigns

Use of Arrays and Structurcs as Parameters, Assigns,
and Returns

, 44
TLRRETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBGRIDGE, MASSACIHUSETTS 02138 « {(G17) 6611840

B.4.5. Addressability & Register Usage

Data

Single array > 4096 bytes

many single elements totalling > 4096 bytes
many structures > 4096 each

random access indexing

computed access where optimization applies

Procedure

length > 1600 instructions

branching top-to-bottom, bottom-to-top...

b0 case *

DO WHILE

long iterative DO loop

repeat
. large number of literals

automatic storage _
register usage under all adverse conditions above

B.4,.6. Conversion

a. Shaping functions covered separately except with '
single arg and radix

b, Implicit conversions not covered under individual
data types:
int~-bit
bit-int
char to int
. char to scalar
char to bit
bit to char

c. @single, @double

' 45
INTURIETRICS INCORPORATID » 701 CDNCCY%?FV‘RU[« CAMBRIDGE, MASSACHUSETTTS 02138 « (G17) 6611340

B.4.7. Shaping Functions

single argument

arrayed arguments

radix

all levels of resultant subscripting
use with argument of size

unknown at compile-time

nested shaping fus

RN 46 :
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMIRIDGE, MASSACHUSETTS 02138 - (817) 661-1840

APPENDIX C:'ﬁTésfréétegories & Test Programs
{(Listing current as of Release 8)

c.1.

c.1.1.

c.1.2.

DISCRETE

Integer-Scalar

Assignments

Initial Values

Comparisons

Infix Mathematical
Operators .

Exponentiation

Prefix Operators

Multiple Assignments

Complex Expressions
Complex Comparisons

Vector-Matrix

Comparisons
Assignments

Initial Values
Conversions

Plus, Minus
Multiply (all Types)
Divide
Exponentiation
Unary QOperators
Element Selection
Partitioning
Complex Expressions
Complex Comparisons
Multiple Assignments

Built-in Functions

t—

Bit

Assignments
Initial Values
Comparisons
Conversions

Concatontation
Aand, Qv Oprrators
Not Opoeruator

¥ THE
EPRODUCIBILITY 0
%RIGINAL PAGE 18 POOR

HALTEST*
HALTEST*
HALTEST*

OPERTEST*
EXPONTEST*
HALTEST*
HALTEST*

Multiple assignments to data types
of differing type or precision will
result in loss of precision.

HALTEST*
HATLTEST#

MATYECT COMPRE

MATVECT ELEMENT SELECTION,*
MATVECT PARTITIONING,*
MATVECT EXPRESSIONS*

- Same as above

Implicitly tested in all Vector-Matrix
routines,
MIXED_ TYPE TEST

MIXED TYPE TEST

MATRIX EXPONENTIATION
MATVECT UNARY COMPARE*
MATVECT ELEMENT SELELCTION*
MATVECT PARTITIONING*
MATVECT EXPRESSIONS*
MATVECT UNARY COMPARE*

Multiple assignments to data types
of differing precisions will result in
loss of precision.
MATVECT_UNARY_COMPARE*

NASNTEST
ANDTLEST,* ORTEST,* NASNTEST,* CONCTEST,
COMPUEST

Precision conversion implicitly
tested in all tests.,

CORCILAY
ANDTEST, T ORTLST*
NASHLST

47

Partitioning BITTEST,* BIT_CHARACTER_SUBSCA
c.1l.4. Character
Assignments CHARACTERTESTY* -
Initial Values CHARACTERTEST*
Conversions CHARTEST* _
Comparisons CHARTEST,* CHARACTERTEST*
Concatenation CHARACTERTEST,* CHARTEST*
Element Selection TESTZ, CINP, CH
Complex Expressions CHARTEST*
Complex Comparisons CHARTEST*
Multiple Assignments CHARTEST*
Built-In Functions CH, CHARTREST¥*
Partitioning CHARTEST,* CH, TEST2, CINP,
BIT_CHARACTER__SUBSCR
c.1.5. Structures
Assignments No explicit tests
Comparisons STRUCT_IO_COMP
Initial Values STRUCTURE TEMPLATE
Terminal Accessing STRUCT_ACCESS
Element Selection STRUCT_ACCESS
Partitioning STRUCT_ ACCESS
1/0 STRUCT 10O _COMP
Dense vs, Aligned STRUCT _IO_COMP
c.l.6. Arrays
Arrayed Statements ARRAY BIT CHAR TEST
ARRAY PREYIX
ARRAYASSIGN
Subscripting ARRAY PARTITION
Element Selection ARRAY ELEM SELECT
Comparisons ARRAY COMPARISON TEST
Arrayed Subscripting ARRAY SUBSCR -
C.1.7 Flow Control FLOWTEST*, TEST2

‘Element Selection

BITTEST*

Complex Expressions BITTEST*
Complex Comparisons BITTEST*
Multiple Assignments BITTEST*

SUBBIT

I/0

SUBBIT ON INTANDBIT
SUBBIT ON SCALANDCHAR

Extensively Tested***

* TEST source published in previous memo,
*% See Section 3 of this report.,

C ok \ e : . .
* Means that features are tested by most runs during
development and use of HAL/S compiler.

48 .
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

C.2. SYSTEM SUPPORT FEATURES

c.2.1. MACROS (Replace) REPL_TEST

c.2.2. Includes Extensively tested
INCLUDE_TEST

c.2.3. COMPOOLScompools All subcateqories covered by CSUB,
. COMPOOQOL, PROG

C.2.4. Comsubs All subcategories covered by CSUB,
COMPOOL, PROG

c.2.5. Real Time Control Tested by PMF Simulator

c.3 Pass 1

c.3.1. Error Checks . CBLTIN

EXPONENTIATION ERROR
SUBBIT ERROR_TEST

CH’ - -

EVEN TEST

UNFACTORED _ERROR_TEST
ASSIGN CONTEXT LRROR
TERMINAL SS BIT CHAR
SUBBIT IN READ
STRUCT SUBBIT IN ASSIGN
BLOCKSTRUCT TEST
NAME PROG_ERR .

NAME ERR
STRUCT ERR
REPL_ERR
¢.3.2. Output Writer Extensively Tested
C.3.3. Scanner Extensively Tested

C.3.4. Data Declarations

Conflicting Attributes CONFLICT TEST

Factored Declares Implicitly tested in many routines
Constant Attribute CONSTANT TEST
Automatic Attribute Development Tests
C.3.5. Scoping Rules Implicitly tested
49

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) GG1-1840

C.4. GENERAL

Cc.4.1., Library and Built-Ins

Integer & Scalar

Character

Array

No Argument Functions
Use in Ixpressions

Use in Output
Statement
Ugse in Subscript

C.4.2. Array-Structure
Interaction

C.4.3. Relational
Expressions

C.4.4. Procedure Link &

Parametcr Pass

. Linking to External
Procedures

Passing Simple
Yarameters off 6
Data Types

Passing Multiple
Paramecters of 6
Data Types

Assign Lists

Linking to Extcrnal
Functions

* Beo Section 3 of this report.

50
INTEBMETIICS INCORPODATLD « 701 COMNCORD AVINUL

COs TeST, COSH TEST, LOG_SORT !
Values of results have been compare

with a CRC tables and were found to be

correct within the accuracy of the

tables

MAXIMUMPRODSUM

MODTEST

SIGN SIGNUM TEST

DIVANDREMAINDERTEST

CEILINGFLOOR TEST

EXPRESSION Ag_ARGUFiEN'PS

CH, CINP, CHARACTERTEST*, CBLTIN

STIZE TEST

Only RUNTIME Explicitly tested

Tested in the complex expressions
subcategory of each category

Development Tests

Tested as part of the general sub-
scripting test for each datatype

Development Tests

Subcategories covered by parts of
FLOWTEST, HALTEST, CHARTEST,.
BITTEST, MATVECT COMPARE,
ARRAYCOMPAREISONTEST

CSUB, PROG

Development Tests

TERTE,

ECOTO,

PARH,
PAR,

T4, ECCHO
T3

Dxtensively tested by both FDI
and PP Simulaltors®

i

s A '-\‘,IIL.JSE'I'H% 07138 < (B 17) Cot-18a

Passing Single Para-
meter of Each Data
Type Tested in the complex expressions
subcategory of each datatype
Passing Multiple ‘

Parameters PARM, T4
Test Return of Six
Types Tested in the complex expressions

subcategory of each datatype
Test '*'-length
Parameter SIZE TEST
Implicit Conversions Used in all tests
Expressions as

Arguments EXPRESSIONS AS ARGUMENTS
Subscripted Varia-
bles in Assigns SUBSCRIPT_ASSIGN_ PARTITION

Use of Arrays and
Structures as

Parameters, Assigns, STRUCT_ PARM
and Returns ARRAY PARM

C.4.,5. Addressabilitv -and
Register Usage Extensively Tested

C.4.6. Conversion

Integer-Scalar . :
Shaping Functions INTEGER_SCALAR_SHAPE, ISSHAPE ON MISC
Vector-Matrix : -
Shaping Functions VECFUN, VECTORSHAPE TEST, MSHAPE

C.4.7. Shaping Functions .

SUBBIT SUBBIT ON_SCALANDCHAR
SUBB ITWON__I NTANDBIT
Bit Shaping Functions BSHAPLE
Character Shaping
Functions CSHAPE

C.5. NEW FIATURES

| C.5.1. Svstem HAIs---

NAME NAME PROG o .
RiEPLACE HMACROS REPL.T‘\._CE_BUGS*

& MACROS Deoveloraantal Tests

TEMPORARY TEMP TEST

IH=-LING FUNCTLIONS INLIN FUNCTIONS

* et ol routines Lo test stacking, parasciers, macros—inside-macro:n,
clc,

51
'\'H;HN’EETHICS INCORPORATED « 70+ « ONCORD AVENUL « CANMBEDGT MASQACHIISETTS 071208 {G17Y 051 1750

C.5.2. Error Library

An extensive error check library has been developed.
Some programs in this library are designed to trigger the
error message and error recovery mechanisms within the
compiler. These tests verify whether the appropriate
error messages are being generated and whether the error
recovery mechanism responds in a fashion which allows
subsequent statements within the compilation to be
processed despite the fact that no code will be generated
by the particular run. This allows the user to review
the majority of his current syntactic or semantic errors
before resubmitting the job. Other programs in the error
check library are designed to trigger runtime errors.
These tests verify the proper generation of an error
message, and the possible trace information associated
with the message. In addition they check the GO TO,

IGNORE, and SYSTEM options available with the ON ERROR
statenment.

C.6. SPECIAL TESTS «+ INT TO BIT, ED, QUEUES, PARENTHESIS,
o CHECKER, DEBUG, SCRUNCH, ARITH,
TESTGEN, BTESTGEN, KIP, FORMAT,
PMSPOOL, FDA

. FDI*Simulator

«. 2 Compools

« 13 COMSUBS :

« 39 internal functions and procedures
. Over 2000 HAL/S statements

+ PMP-Simulator

* 1 Compool
i g EzzgfamS} real time

« 20 internal functions and procedure
. Over 2000 UAL/S statements

Math Function Precision Tests

_ 52 : _
INTENMETRICS INCORPORATED « 701 CONCORD AVINLIE « CARNLUZINAT WAASEACHULITTS 00928 « (G17) 6611840

APPENDIX D

HAL/S Discrepancy Report Log

‘ 53
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (G17) 661-1840

A%

BAL/S DISCREPANCY REPORTS

) _ ‘Fixed
. Scurce TiE1 Intermetrics | -Date for :
5urbcr whe? {Date Ree. itie Evaluation *Fixed FPelease Comment
!
1 CSDL 9/05/73 | Replace Text confirmed bug | 8/15/73| 360-3a
: Tdentifiers :
2 CSDL 9/05/73 | Initialization of " 8/15/73 | 360-3A
Integers '
3 CSDL 8/03/73 | Bit Function " 8/15/73 1 360-3A .
Writes .
4 RI 9/17/73 | Character " 9/05/73 | 360-4
, Initialization
5 CSDL 9/18/73 | Trailing Under- n 9/25/73 | 360-4
' scores in identi-
fiers
£ CSDL 9/18/73 | END Labels " 1 9/01/73] 360-4
7 CSDL 8/18/73 | READ Statements " 9/27/73 1 360-4
8 IBM 10/04/73 | Half-word sign bit " 10/04/73 | 360-5
S IBM 10/04/73 | Bit catenation " 10/04/73} 360-5
10 CSDL 16/10/73 | Replace Statements " 10/14/73] 360-5
1l CSDL 10/18/73 | Precedence Inconsis. v 10/20/73} 360-~5
12 RI 10/24/73 | Arith. Functions " - 360~4
13 RI 10/24/73 | DO END Label See DR #6
14 IEM 10/29/73 .| Matrix Shape Error | Not -availablelin 360-4

65

HAL/S DISCREPANCY REPORTS

Source Fixed
Numb ' = : Title Intermetrics Date for .
Rm2Er who? |Date Rec. Zvaluation | Fixed Release Comment
1% EIBM 19/25/73 IF Statement Hot a bug
1% ‘ipd 10/29/73 |Error cleanup after [Confirmed bug | 10/29/73| 360-5
INTTIAL . -
17 IBM 10/29/73 |END Lables See DR #6 O td
. 5
18 By 10/29/73 |EOF Looping Confirmed bug 360~5 S;g
: &
19 IBM 10/29/73 |Comparison failure " 360-5 N g
. =
20 13 | 10/29/73 |ARCCOS Results " 360-5 s g
] . =
21 12 10/08/73 |Argument Count " 10712773 | 360-3 g ‘%
22 12 10/08/73 |Array Loop Gener. " 10712773 | 360-5 EB(D
e,
23 1? 10/12/73 |Literal in Built-in " 10/12/73 | 360-5 53:3
24 1% 10/15/73 |Init. of Bit Var. " 10/17/73 | 360-5 =
25 12 10/17/73 |Use of RO " 10/17/73 | 360-5
26 12 10/20/73 |Shaping Functions " 10/28/72 | 360-5
27 12 10/28/73 |Single Precision " 10/28/73 | 360-5
Literals
23 IsM 10/22/73 |vriter Formatting " 11/1/73 360-5
Lrroxr
29 IBM 10/29/73 |INITIAL/AUTOMATIC " 11/1/73 360~-5
. lon Assign Varx.
30 1B | 10/30/73 |ARCSIN/ARCTAN " 11/11/73 | 360-5
probliemns

9§

HAL/S DISCREPANCY REPORTS

Fixed
: Source P61 Intermetrics Date for
Humber who? |[Date Rec. Title Evaluaticn “Fixed Release Comment
31 Txnu' 10/31/73| ELEMENT Selection [Confirmed bug [11/6/73 360-5
: from bit string °
32 I8 10/31/73] Bit Partitioning " 11/6/73 360-5
33 I1EH 11/1/73 | Bit Partitioning " - 11173773 '] 360-5
and # -
34 CSDL 11/3/73 Inconsistency in ~See DR
‘ : Array Compares #22
35 1? 11/3/73 | Structure Assign |Confirmed bug |10/6/73 | 360-5
Parms L
36 IBM 11/13/73} IF/ELSE Indentation n 11/13/73 360-5
37 IBM 11/13/73} Invalid Opcecde " 11/10/73 360~5
Generation .
38 IEM 11/28/73| Illegal FP Reg. Side effect of
‘Alloication $39
39 1IEM 11/28/73) Invalid Opcode Confirmed bug j11/15/73 360-5
Generation
40 12 g | 11/28/73| noNHAL Procs & Fungs " 11/28/73 | 360-6
41 712 a | 11/28/73| Array Args of n 1271773 | 360-6
Functions
42 ? 11/27/73| Dynamic FP Range - n 11/28/73 | 360-6
43, 12 11/29/73| Arrayed Statement " 12/1/73 | 360-6
' ‘ as case of DO CASE

EAL/S DISCREPANCY REPORTS

cor Fixed
rumber ource Title Intermetrics Date for
Humoer ¥who? |Date Rec. Evaluation "Fixed Release Comment
2 N
44 I 12/3/73 Repeat Group in ; _
; Shaping Confirmed bugll2/4/73 360-6
¢
45 12 a | 12/6/73 |cHAR, .. conversiong " 12/7/73 | 360-6
46 12 a | 12/6/73 |{Exponentiation " 1277775 "] 360-6
, ; o=
47 12 12/7/73 |Abend in Shaping L 12/8/73 | 360-6 = =
' Qo
48 CSDL 12/15/73 Comment & Directive | Not Error Documentation = g
o Cards Problem B g
~3 : t*cj
49 CSDL 12/15/73 |} in Subseript Confirmed 12/20/73 | 360-=6 &
. " : H
50 C3shr, 12/15/73 Replace & Formatting| Not Error g%
51 CSDL 12/15/73 Bit 1/0 Confirmed 12/20/73 360-6 EBQ
. =i
52 12 12/13/73 CONSTANT Character " 1/2/74 360-6 & =
- Strings = 5
53 12 12/20/73 Bit Formal Parameters 12/20/73 | 360-6
54 2 12/19/73 Functions in Arrayed o 12719773 | 360-¢
Starts
55 r? 12/19/73 Exclusive Functions " 12/19/73 | 360-6
d: Repprted b} Draper Laporatory

[P ——

g e

8S

HAL/S DISCREPANCY REPORTS

: Fixed
Source ‘i Intermetrics Date for
Humber Who? |Date Rec. Title Evaluation | Fixed Release Comment
56 4 12/19/73 {Structure I/0 Confirmed 12/19/73 13560-6
57 2 12/21/73 |Replace Text in " 12/21/73 |360-6
Templates
58 RI 12/20/73]Exceptions -Ouiput
Writer with REPLACE
59 1% 1/02/74 Bits in Range 9-16 | Confirmed 1/02/74 360-6
‘ bits
60 12 1/02/74 |Bit(16) vars. and . 1/02/74 |350-6
. Assignments
6l I2 1/02/74 Structure Parameters " 1/02/74 360-6
62 €s0L |12/09/73 |Precision " 1/02/74 |360-6
63 CSDL 12/02/73 addition Failure: Confirmed ' } eliminated in re-
64 CspL |12/069/73 {Array I/0 Part Confirmed o release of 360-6
65 C5DL 12/09/73 Macro-text Listings Confirmed 12/10/73 1360~-6
66 CsSDL 12/09/73 Vector Shaping = Confirmed {12/10/73 |360-6
67 cspL |12/09/73 [Overflow See DR #46
63 CS5DL 12/09/73 Overflow(2) Confirmed
69 CsDL 12/09/73 Character @ DEC Confirmed 12/20/73 |360-6
70 CSDL 11/22/73 Procedure Parmeters|Confirmed 1/15/74 360—é' N
71 CsShL 11L/24/73 Arrayness Conflict |Confirmed 1/15/74 | 360-6
72 - CSDL 11/20/73 Link Step OCS Confirmed 1/15/74 }360-6
73 CSDL {11/20/73 |Phase II Error in |Part Confirmed | 1/15/74 {360-6
Arrayed Args. .
74 C5DL 11/24/73 |Indirect Stack Overt Confirmed 1/15/74 360-6
£ e

6%

gAL/S DISCREPANCY REPORTS

= 5 r‘ . Fi:{Ed
sumbor Souzce Title Intermetrics Date for
who? |Date Rec. Bvaluaticn Fixed Release Comment
75 CS?L 11/16/73 Add;essability Compiler Restrictipn 1/15/74 360-6
76 csin | 12/7/73 | Args of NONHAL Not Error
Procedures
77 cspL | 12/21/73 | Rounding confirmed 1/10/74 360-6
78 cspn | 1/16/74 f SUBBIT pseudo- confirmed 1/30/74 360-6
variable '
79 IaM 12/10/73 ahend 1/2 word BIT
oS See DR #59, 6
30 1A 12/12/73 | 1/2 word bit compate
21 IBM 1/8/74 vVariable Dump of Not Error i
: Constraints .
82 ipM 11/16/73 ptatement # Trace Not Error
g3 IRM 11/19/73 frace Diagnostic ? Trace;Package
Problem changed. Bug nom
24 SSDL 1/2%/74 ~atalog Procedure Confirmed 360-6 gfégtg?t in Ver—:
Error
85 espL [1/29/74 Execution with Confirmed 1/30/74 360-6
: “ompiler Error : g
g5 cspn |1/29/74 [Esi's split over ‘Confirmed 1/30/74 | 360-6
page
g7 CSDL 1/30/74 Block Summaries Confirmed 1/30/74 360-6
28 CSDL 1/29/74 Failure of MAX-MIN{ Confirmed 3/3/74 360-7
839 CSDL 1/29/74 RGS Message Wwordind Confirmed 1/30/74 360-6

09

HAL/S DISCREPANCY REPORTS

1 - Fixed
fmbar Source Title - Interme?rics Date for
who? {Date Rec. Evaluation Fixed | Release Comment:
90 leson [1/29/74 Unlatched Event Not Error ‘doc i
s . umentation
; Inltzallzatlgn problems
91 CSDL 1/29/74 oDD Function : Not Error
92 CSDL 1/29/74 Compile time OCS ‘Not Error
Dumps)
93 ¢spl, {2/12/74 |Random Exror Messages Not Error
94 ~5DL 2/18/74 Writing Structures Confirmed 1/306/74 350-6
95 CSDL 2/18/74 Indexing Error - Confirmed 1/30/74 360-6
96 cspn |2/18/74 |pouble Explicit . Confirmed . 2/12/74 360-6
) Conversion .
927 cspL |2/18/74 {Unlatched Event . —
Initialization See DR #30
a3 CSDL 2/18/74 Inter-Process. @ Not Error
Boolean
99 cepL 12/18/74 pMultiply Defined Confirmed 1/30/74 1360-7
Compools vars.
100 2 3/5/74 |INTEGER/SCALAR [Confirmed 3/12/74 360-7
- shaping -
‘ Functions as .
101 CSDL 3/20/74 Multipliers Confirmed 3/15/74 360-=7
102 CSDL 3/20/74 hrector Length in Confirmed 3/15/74 3607
dot product
3/15/74 360-7

.-1an..*3/%iiif

i ltmin inline Cofnirmed
' 1iﬁ!nc . 1III - T. lll[l ...ﬂ o ll’i

uAL/S DISCREPANCY REPORTS

Source

, Fixed
Titl - Intermetrics Date for
Humber . iule Evaluation Fixed Release Comment
who? [Date Rec. :
1c4 CsbL {3/20/74 Tnlines in Replaces Confirmed 3/15/74 360-7
§
105 2+ l3/5/74 Argument of SIZE confirmed 3/12/74 360-7
106 12 |3/7/74 [UPDATE BLOCKS & DO | Confirmed 3/15/74 | 360-7
CASE _ - '
107 12 3/7/74 Output Writer Sub- Confirmed
script Problem)
i0sg SDL 3/20/74 Symbol Table Loop Confirmed 3/18/74 360-7
169 cspL |3/20/74 | DECLARE Tasks Confirmed 4/08/74 360-8 LCR Required 3%
) =4 g
110 csDL [3/20/74 Single Prec. Ex= Confirmed %g
plicit Conversion : - =
. : . i
111 csonL |3/20/74 DO CASE Error See DR #106 'E;Eg
112 csdL [3/27/74 HAL/S Initializatior Confirmed 3/25/74 360-7 %3%3
113 cspL 3/27/74 READ-ALL Structureg Confirmed 3/25/74 360-7 53:2
. Q
114 CSDL [3/27/74 READ-ALL Skip Confirmed 1/25/74 360-7 =
: Q
115 cSDL | 3/29/74 |Infinite Loop in Confirmed 3/25/74 360-7 ?ﬂgg
GO TO _
116 CsSDL 4/05/74 Init. of Var. with Conf irmed 360-8
‘ NULL- String
117 IBM 4/24/74 Garbage in Macro Confirmed 360~8
Expansion
118 IBM 2/24/74 | Precision of Mixed Confirmed 360-8

Prec. Divide

<9

HAL/S DISCREPANCY REPORTS

- Fixed
Scource Titl - Intermetrics Date- for .
Hunmker itle Evaluation Fixed Release Comment
who? iDate Rec.
119 I 4/18/74 Range of Error Confirmed 360-8
' ¥Numbers
120 12 4/24/74 |Source Macro's & Confirmed 360-8
Templates .
121 12 | 5/02/74 |Transpose Problem 360-8
122 CSDL 5/02/74 |Nested SUBBITS Spec. Problem
123 CsSDL 5/02/74 {AP-101 Timing . Confirmed 360-8
Anomalies
124 cspr. | 5/02/74 |DEVICE Directive Confirmed 360-8
125 CSDL 5/13/74 [Assignment of BIT Confirmed 5/19/74 360-8
Literals
'126 CSDL 5/13/74 Reading Structures Confirmed 5/19/74 360-8
127 CsSDbL 5/13/74 Size Function Confirmed 5/19/74 360-8
128 CSDL 5/13/74 |Var. names length ' Confirmed 5/19/74 360-8
) 32
2
12¢ I 6/1/74 Phase I abend in Confirmed 5/12/74 360-8"
mMACYQ eXpal. |
2 " .
130 I 6/1/74 Replace macros in Confirmed 6/12/74 360-8
symbol table
‘ 2 .
131 I 6/1/74 Literals & Constant$ Confirmed 6/12/74 360-8
. 2 , ’
132 T 5/16/74 Names of programs Confirmed €/5/74 360-8
il & tasks

HAL/S DISCREPANCY REPORTS

€9

Soufco Fixed
rmbor Title Intermetrics Date for
el Who? |Date Rec. Evaluation "Fixed Release * Comment
133 2 5/15/74 Simulation Vector ICD Discrepancy

| Table
i34 IBM 6/1/74 hCI Abend in- 02 Confirmed 6/12/74 360-8
135 IBM 6/12/74 Bad code for DO CASE " 6/19/74 360-8
t
i36 IBEM §/1/74 Bad printout of struc-
. ture terminals " 6/19/74 360-8
137 12 6/19/74 '<label>® for '('

Appendix F REPRODUCIBILITY OF THE

Discrepancy Worksheet QRIGINAL PAGE IS POOR

Disposition

Discrepancy 360- 360 360 360 360 360
Number 1,2,3 -4 -5 -6 -7 -8

¥

NSNS SNIN SN L
CiIC 10100 IO O |0 O
b

10 /Y O X

11 Y 0 ‘ X 1

12 Yy 0 X

13 _ """

T e e B B R) —
e Bl [. — .

I AT NS

17 - - 1 N

18 ' J 0 X - -
s byo . X
| LA I 2 S R X

21 _ J 0
LA R 2N A '

24 Vi B o IS R B -
LA A x| ”)
A SR (2 S I D I B—
B ‘28 s . B B B

- - o - - . _ e

3 , 0 N e

PRECEDING PAGE BLANK NOT FILMED

Legend:

Y: introduced X: fixed in
0: found in 65

Discrepancy
Number

Disposition

360-
1,2,3

360
-4

360
-5

360

360

360

31

32

e 33

/...

B DO © S,

34] . _
35 i VA . o
Y36 4 R N S

N ¥ ‘ _/"i N 0 . X N

P

—_— . o YO X — .
S R °©___ X _
42 v . o X
A4 . 17 0. D S IV
e 45 . 4 | S A S D
a7 I 2 _ ° _|__._x N
X N SO B _]
49 v ° X
SR U S F —
- S R LA “ X
52 A o] X
53 __ EA I I
L SN NN 5 AN S S
e85] v o x |)
56 . AT R R
ST 1o x |
EC N I R D
60 v 0. X
66

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Discrepancy
Nunmber

Disposition'

360
-5

360
-8

64 _
. 65
66

P . TT UIP VNP IPNITE TSRO [N RO N

!

:,bd :><

{

!

| .
el M
|

l .
i

o
Yo)R
470 X

R T BT PR

tall

A A o

i
i

69 _O . X
10 O XM .

L7 e X Y ISR
12 Ao
T3 I IO R e

74 Yo X
75 0 X]

Y _o i ‘
— ._,_..»_.»..O .
] e ey
N LA
S S N
Y 0

o A ke e e

67

Discrepancy
Number -

Disposition -

b

360~
1,2,3

360
-5

360
-6

360
-4

360

360

91

92

. 94
95
96

23 .

v

D T P

©

b

3

ba B

H

3
|

cob o o oo

PN PR g

LY
losu _ - T . l/ - o) k_m“ T
109 . T h _-: A 4.0
= 3 R4 0 X
a1 | - H T
EE RN 2 B R P
N SRR B LA ST X
114 Y 0 o
115 v o T
R - /

O ©0-0'00 X X

=

68

REPRODUCIBILITY OF THR
ORIGINAL PAGE IS POOR

. Dispositicen J—

Discrepancy 360- 360 360 360 360 360

.._l

[]

o

.
cwiclo:o© (o0

:
i
!
{
}
i
!
1
H
i

!
1
|
|
!
|
|
i
i
|
i
I
!

69

