
NASA CRa

(NASA-CR-14
2 7 8) HAL/S-36, COMPILER TEST N74-33675

ACTIVITY REPORT (Intermetrics, Inc.)
68 p CSCL C9B

Unclas
G3/~8 48785

II1TERmETRICE
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE ..

US Department of Commerce 7- - j ',
Springfield, VA. 22151 jL

HAL/S-360 Compiler

Test Activity Report

IR #86-1

3 July 1974

Prepared by: Carl T. Helmers

Approved by: ______ A
Dr. Fred H. Martin

EETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Preface

This report describes the testing activities which
have been performed as a part of the HAL/S-360 compiler
development project.

There have been eight HAL/S-360 compiler releases,
designated 360-1 through 360-8. 360-1 and 360-2 were
early developmental in-house versions of the compiler.
They were used for design purposes, and performance
was verified largely by visual inspection of produced
code. No real execution was planned*.

Releases 360-3 through 360-8 were compilers with
successively greater capabilities. These compilers were
issued to the Shuttle programming community (viz. Rockwell,
Draper, IBM/Houston, Honeywell). Discrepancy reporting
began with 360-3**. Formal testing activities, according
to plan, have been conducted on all releases from 360-3
forward. Plans and results have been recorded by
Intermetrics Shuttle Information Exchange (SIE) Memos.
This current publication summarizes all of the 360 test
activities and is meant to serve as a final test report.

* Results were discribed in Intermetrics reports issued
on 13 April 1973 and 15 June 1973.

** This release was also described by Intermetrics report
issued on 28 August 1973.

,NTERMETRICS INCORPORATED *701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Table of Contents

Page

1. INTRODUCTION
1

2. INITIAL TEST PLAN
3

2.1 Test philosophy and Test Procedure 3

2.2 Example: Integer-Scalar
2.3 Test Result Criteria 9

3. TEST PLAN ADAPTATION
11

3.1 Design Tests Incorporated into Formal Testing 11

3.2 Total Testing of the HAL/S-360 Compiler -
Use Testing

13

19
4. TEST RESULTS SUMMARIES

4.1 Formal Testing of Release 360-3 19

4.2 Formal Testing of Release 360-4 19

4.3 Formal Testing of Release 360-5 and 360-6 23

4.4 Formal Testing of Release 360-7 25

4.5 Formal Testing of Release 360-8 25

4.6 Discrepancy Reports 26

Appendix A: Matrices of Tests
29

A.1 Assignments with Implicit Conversions 30

A.2 Operator Test 30

A.3 Exponentiation Test 31

A.4 Unary Operator (-) 32

A.5 Comparisons 33

A.6 Initial 34

Appendix B: Summary of Categories (Initial Listing) 35

B.1 Discrete 36

B.2 System Support Features 40

B.3 Pass 1 42

B.4 General 43

Appendix C: Test Categories & Test Programs
47

47
C.1 Discrete

49

C.2 System Support Features 49

C.3 Pass 1 50

C.4 General 51

C.5 New Features 52

C.6 Special Tests

Appendix D: HAL/S Discrepancy Report Log 53

Appendix E: Discrepancy Worksheet 65

ITRICSINCORPORATED701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS
02138(617)661-1840

NTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

1.0 * INTRODUCTION: LEVELS OF TESTING

The testing of HAL/S can be undertaken at several
different levels. At the highest level of abstraction,
the usefulness of HAL/S as a programming tool can be
tested by using it in typical applications programming
cases. Such testing has been and continues to be an
important source of changes and modifications to the
HAL/S Language Specification itself, as well as serving
as a compiler-verification tool (see Section 3.1).

At a lower level, given the current language defini-
tion, the functional characteristics of the compiler system
can be tested. Here the object is to verify that the
compiler produces object code which is a faithful transla-
tion of the original HAL/S Program source. This functional
testing of the compiler and its generated code is performed
by a judicious selection of significant test cases which
are compiled and then executed. Selection criteria for
tests are based on many inputs, ranging from knowledge of
the compiler's internal structure to the known "good"
results of mathematical built-in functions.

At the lowest level there is the machine oriented
testing of a particular compiler's implementation - such as
the HAL/S-360 implementation on the IBM 360 or the HAL/S-FC
implementation for the AP-101 flight computer. Here the
emphasis is placed on the details of the resulting object
code, e.g. are internal register assignments correct? is
optimization working properly? etc. In a great many
instances, problems revealed at the functional level provide
indicators of significant areas to test at this level.

All three levels of testing are employed in verifying
the HAL/S-360 compiler.

1

TERMETRICS INCORPORATED 701 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

2.0 INITIAL TEST PLAN

The formal program of testing the HAL/S Compiler
for the System 360 began just prior to the first
operational release of the HAL/S compiler, Release
360-3 (August 1973). Subsequent evolution of the
language itself, as well as the continued work on
testing, have together resulted in modifications and
improvements of the test plan.

This section contains a description of the HAL/S-360
test plan as originally formulated. Section 3, which
follows, contains information on additional features in-
corporated in the test plan during the course of compiler
development.

2.1 Test Philosophy and Test Procedure

If it is assumed that the definition of a working
compiler is one which produces correct object code for
every possible legal input, then clearly, the primary
criterion for a compiler test plan is that it examine
the code produced for every possible source statement.
However, to take this requirement literally would produce
a test program with a hopelessly large number of statements;
the number of syntactic forms in the language factorial,
might be a good first approximation. If this were necessary,
it would not be practical to test the compiler at all. A
more efficient method of testing than this "black box"
approach must be utilized.

The saving feature is that of the huge number of possible
HAL/S statements, most are different only to the programmer
and not to the compiler. For instance, the "black box" or
outside approach dictates that the addition operator, '+',
must be tested with all possible combinations of positive
and negative operands. This is really not necessary, as
examination of the compiler will show that the negative
operands, once converted to an internal form, are treated
exactly the same as-positive operands. In fact, the sign
of an operand is not usually known by the compiler. Thus,
an "inside" approach to testing may be developed. It is
necessary only to test the several cases of this conver-
sion to internal machine representation, and the test of
the addition operator is reduced by a factor of four, or more.

PRECEDING PAGE BLANK
NOT FILMED

,,qTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

This is not an isolated case; in fact, it is the rule rather
than the exception. Testing based on a detailed knowledge
of the compiler's inner workings eliminates the gross re-
dundancy of the outside, or user, approach. Thus, the test
philosophy becomes one of exhaustively testing all meaning-
fully different inputs to the compiler, where a "meaningful"
difference is defined as one that is preserved through the
initial passes of the compiler, and causes a different path
to be taken in generating object code. This approach may
require more time on the design of test cases, but it reduces
these cases to a tractable number and further, makes it
possible to examine the output code for correctness, in
addition to comparing the results of the execution of that
code against a predetermined answer.

The general problem of testing the HAL/S-360 compiler can
be separated into several categories. The categories are chosen
through an analysis of the structure of the compiler,
paralleling its logically disjoint sections. Four major
headings are identified (see Table 1):

a. the hand-coded portions of the first phase of the
compiler which are listed under PASS 1;

b. those language features listed under Discrete which
are more basic and self-contained;

c. those under General which have wider implications
and which will require more special testing; and

d. System Support Features which cotains those categories
which facilitate communication with the environment,
and simpligy the writing of programs.

Certain language features, such as declarations, are not
listed, but are implicitly tested by their use in the test
routines for all categories. These implicit tests, together
with the categories listed in Table 1, form a comprehensive
set of language elements which must be tested. Based on this
organization, the following procedure will be followed to
produce all of the necessary tests.

4

TERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

at Select a category.

b. Determine sub-categories.

c. Classify sub-categories into enumerable vs. special.

d. Produce test matrices for each enumerable sub-category.

e. Generate tests from these matrices.

f. Generate special case tests.

Within each category, sub-categories will be produced by a

process similar to that which generated the category
itself.

These sub-categories tend to split along the lines of statement

types, rather than along the lines of language features,
as the

initial categories did. This type of classification scheme,

while somewhat redundant, simplifies the testing process, and

increases the probability that no language construct will remain

untested.

Next, the sub-categories will be divided into two groups:
enumerable and special. The first group will test those parts
of the compiler through which several paths may be taken,

depending upon the context in which they are used. For instance,

the exponentiation routine's behavior varies considerably

depending on the arguments it is called with. An example of

a "special" sub-category is the test of the multiple assignment

processor. This routine always functions in the same way,

sequencing through the receiving fields on the left of
the

assignment statement, evaluating each one, and calling some

other routine to do the assignment. The routine that actually
does the assignment is tested as one of the "enumerable"
sub-categories, as it must do a conversion if the data types

involved are not identical.

The tests required for one of these "enumerable" sub-

categories are represented by a matrix. The matrices for

the Integer-Scalar sub-categories are listed in Appendix A.

Refer to the matrix A3: This matrix is accompanied by the

expression <column element>**<row element>. The X in the matrix

which has been circled indicates that one of the test cases

must be a double precision scalar raised to the power of a

double precision scalar. In general, an X in the matrix

indicates that the label above the X (signified by
<column element>) must be raised to the power of the label

to the left of it (signified by <row element>). In one of

these matrices, an X may be omitted if and only if there is

already a case which will take the same path through compilation.

5

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

TABLE 1.

Testing Categories

Pass 1 Discrete

error checks Integer, Scalar

output writer Vector, Matrix
scanner Bit

Character
Structure
Flow Control
Conversions
I/O

System Support Features General

macros library
includes built-ins
PDS manipulation Arrayness
files structure copyness
compool relational expressions
comsubs arrayed relations
locks procedure link and parameter
real time pass

addressability
register usage
update, task blocks

6

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Finally, test cases must be generated for the "special"
sub-categories. Here the matrix formalism is not applicable.
These special cases must be made to trigger specific pathways
through the compiler, and their design requires a detailed
knowledge of the decision points along the compilation process.

Wherever a decision point occurs in the compiler, a test case

must be prepared to follow each branch. The results of these

special test cases must be checked by an examination of the

object code rather than by checking the results of execution,
but this is advantageous in that the number of test cases may
be reduced by combining several tests into one statement.

2.2 EXAMPLE: INTEGER-SCALAR

To illustrate the testing strategy, one of the major cate-

gories from Table 1 will be explained in detail down to actual
test cases. The example that has been chosen is Integer-Scalar.

The primary reason for selecting this category for first
consideration is that it will be so widely used in HAL/S

programs; an error here is likely to cause errors in the majority
of compiled programs. In addition, an early test of this

category may show up widespread errors in the compiler, since
the testing of Integer-Scalar operations must involve the use
of many other language features. Finally, the Integer-Scalar

category is large enough to illustrate many of the problems
encountered in the test procedure and point to their solutions.

To simplify the task, the Integer-Scalar category was
divided into several sub-categories along the lines of

statement type (see Table 2). These sub-categories overlap
to cover all uses of integers that are not more appropriately
covered under one of the other categories listed under General

in Table 1.

Appendix A contains appropriate matrices for the enumerable
sub-categories of Integer-Scalar. Some matrices indicate many

possibilities where as in others only a smaller number of cases

7

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

TABLE 2.

Categories Tested Under Integer, Scalar*

Category Matrix Comments

1. Assignments X All tested due to implicit
conversions.

2. Initial Values X

3. Comparisons X

4. Binary Mathematical Not including ** (exponen-

Operators X tiation)

5. Exponentiation X Separate category due to
required internal handling
by compiler.

6. Unary Operators X + and = prefixes.

7. Multiple Assignments Test.of ordering of assign-
ment included.

8. Complex Expressions Tests of precedence;,elementary
function, returns, definitions,
and element selection implicitly
tested.

9. Complex Comparisons Tests of precedence, combina-
tions with BOOLEAN variables
included.

* Note: Certain declares and initialization, (simple I/O and
flow cofftl ol, comment ability, and no argument
procedures call) implicitly tested.

8
INTERMFTRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138-* (617) 661-1840

will need to be tested. Those cases which are eliminated are
done 'so due to certain properties of the compiler, primarily
commutivity. For example, under the operators '+', '-', and

'/', the tests form a triangular matrix due to the "bubbling
up" (to higher precision) property of the compiler; a scalar
of double (SD) precision divided by a scalar of single precision

(SS) is essentially the same as SS/SD since in both cases the
SS is converted to an SD and then the division is performed.
On the other hand, all possible assignments are tested due to

implicit conversions. Each matrix will have notes explaining
deletions of tests.

2.3 Test Result Criteria

Once the test programs have been run, the results must be

verified. This can be done on two levels. The higher level
is that of checking produced values vs. expected values.

(This level is, in fact, the more important of the two in terms
of correctness.) For two reasons the checkout of the HAL

compiler will involve both levels. The first is that of

completeness through retention of an outside check. The second
is that in order to remain compatible with our inside approach,
the object deck produced from a HAL program should be examined.
Therefore, in a HAL statement such as A=5; where A is a scalar
or single precision, one would check that A is indeed equal to 5

and that the literal has been converted to a single precision scalar.

It may be noted that the majority of test cases are simple
rather than compound statements and expressions. The motiva-
tion behind this is that intermediate results in the evaluation
of expressions are usually kept in registers. Thus, they all
have the same format, which means that there is no need to mix
data types in the complicated expressions, after each combina-
tion has been paired and checked in the simple expressions.
More complex expressions in the Integer-Scalar category examine
such things as order of evaluation of sub-expressions and the
correct use of temporaries. Evaluation of these tests will be
done by examination of the object code produced rather than by
checking the results. Thus, as expressions get more complex,
we move from examination of the results of many cases, to a
check of the generality of the code produced for a few cases.

9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

3.0 TEST PLAN ADAPTATION

The original test plan, as described in Section 2 above,
has been adapted and improved during the course of the HAL/S-
360 testing activities. At the time of the final compiler
version,Release 360-8, the number of test programs, for
instance, had grown to over 100 from an original count of
40 programs. Language design features have also changed
during the course of compiler development, and with each
release the test cases in the library of test programs
have been reviewed and modified to reflect such additions.
This section describes the extensions to the original test
plan which have been incorporated as of the date of this
report.

3.1 Design Tests Incorporated into Formal Testing

In carrying out the HAL/S-360 test plan, Intermetrics
took advantage of its knowledge of the internal design
and implementation of the compiler. Special tests in order
to verify specific constructs and/or algorithms were added
to the set of Formal Tests. Some examples are described in
this paragraph:

1. Since the compiler's replace machanism sees the replace
text as an uninterpreted character string, significant
tests involve replace texts of varying length, nested
replaces and parameterized replaces.

2. Referencing elements of aggregate data types must be
tested in cases where the total size of the data in

question is greater than 4096 bytes (on the 360).
This is due to the fact that in some cases a subscript

expression can be incorporated into the displacement
field (12 bits) of a machine instruction.

For a similar reason, HAL statements which increment
an integer variable by more than 4096 must be tested:

"I = I + 5;" can be done by a LA instruction
(leaving the result in a register) whereas
"I = I + 5000;" cannot.

PRECEDING PAGE BLANK NOT FILMED

11

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. Since the compiler stores multidimensional arrays
(and matrices) in row-major order, tests of the form
"A$(*,3) = ... " are necessary to verify assignments into
array partitions which are not contiguous.

4. The order of evaluation of parts of a statement must
be tested in several cases other than expression
context. An example is:

"A$I,I = I+A$3".

5. Since the compiler maintains a separate stack segment
for each code block, assignment statements across task,
procedure, and program boundaries must be used to verifycorrect accessina of data at various nest levels.

6. Some computations are done at compile time. Thus, a
complete test of exponentiation must include both
"I = 3**12;" and "J = 3; I = J**12;". Tests of
precedence and certain built-in functions must also be
made in this context.

7. Consider the following example:

T: program;
Declare integer initial (5), A,C;
ueclare B bit(16) initial (Hex'8005');

/*Test 1*/ A = abs(integer(b));
/*Test 2*/ C = abs(A);

Write(6) A,C;
Close;

One might expect that Test 2 was the same as Test 1
in the above example, since both statements take the
absolute value of a single (default) precision integer.
This, however, is not the case, due to the implementa-
tion of the abs function and the peculariaties of the
360 STH and LPR instructions.

12

INTERMETRICS INCORPORATED 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.2 Total Testing of the HAL/S-360 Compiler - Use Testing

The programs which represent the implementation of

the HAL/S-360 test plan are only a portion of the test

effort that is in progress. All tests can be included

in one of the following four classes:

1. Formal Testing: The tests which are generated according

to a test plan.

2. Developmental Testing: The day to day test programs

which are used to verify parts of the compiler as they

are written.

3. Visual Verification: The examination of the code as it

is written to find special cases which have not been

accounted for.

4. Compiler Use: Programs which are written in HAL/S to

be used in the course of other work.

With respect to the last class, it should be noted that

certain types of errors are not easily caught by a systematic

test plan. These errors can be found only when a program is

presented with one particular set of inputs.
Therefore, it is

useful to spot check the compiler randomly by subjecting it to

a number of application and utility programs. Such programs

have been designed and are listed under Category 6 in the

tables of Appendix C.

The uses of these programs range from calculations to

debugging, to the generation of other test programs.
Many

of them were run on a daily basis.

This type of program has been responsible for the

detection of several errors during the course of the HAL/S

development effort. For instance, in release 3 of the compiler,

an application program called QUEUES detected
one of

several discrepancies in compiler operation when a particular

combination of name choice and block nesting was compiled.

In release 6 of the compiler, the programs KIP and FDA were

responsible for the detection of an error triggered by the

specific program swapping techniques employed
in the real

time aspects of these applications. These are not the only

examples of such error detection. The technique will continue

to prove valuable in the future releases of HAL/S
compilers

for the flight computer and the 360, if necessary.

13
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.2.1 PMF and FDI Simulators

Two major HAL/S programming efforts were developed
.at Intermetrics in support of Rockwell International, viz.
a Performance Monitoring Function simulator and a Failure
Detection Indication simulator. The HAL/S-360 development
has benefitted from this in-house use of the language and
compiler. The programs are distinctly different and exercise
almost all aspects of HAL/S from mathematics and structures
to systems use and real time. They were developed in parallel
with HAL/S-360 and were run successfully using several releases
of the compiler. Several HAL/S discrepancies were discovered
using these programs on developmental versions of the compiler.

3.2.1.1 PMF. The Performance Monitoring Function simulation
currently comprises ten external procedures, two Compools,
and four programs. The external procedures are display
handling primitives which are called by the following
programs:

1) Operational Programs

a) FDA. Executes all Fault Detection and Annuncia-
tion fundtions. Provides data base for SMM,
SCM display functions.

b) KIP. (Keyboard Input Processor) Control center
for display processing. Responds to KBD
inputs, and maintains control of the-CRT level
usage by each of the four DEU's.

2) Simulation Support Programs

a)- CREWMAN. Prepares simulated crew KBD inputs,
and passes them to KIP. Also processes requests
for CRT page print-outs, and provides general
simulation control.

b) EXEC. This is a small routine that does the
initial scheduling of all the component programs,
to get the simulation going.

The combined programs and procedures contain approximately
1800 HAL/S statements and the Compool data occupies approximately
10,000 360 words. The four programs contain eight task blocks
and over twenty internal procedures and functions.

14
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

3.2.1.2 FDI. The FDI simulator is designed to evaluate
sensor FDI algorithms under realistic Shuttle flight
considerations. The following Program Layout taken from
the compilation indicates the organization and scope of
the simulation.

PRCGR M LAYOUT
r ---.

I STATEUPDATE: EXTERNAL PROCEDURE;

SELECTSTAT': EXTERNAL PRCCE.DURE;
2

RFLLDATA: EXTr.NAL CCPCCL:

31 C.THC: EXT'R:AL FUNCTICN;

CC.MPCATA: EXTERNL CCPPOOL;
4

OUTPUTDATA: EXTEPNAL PROCEDURE;
[--

,!s VE I-CLFCYNAMICS: EXTEPNAL PROCEDURE;

IMUMODEL: EXTERNAL PRCCEDURE;
6

NAVSENSORS: EXTERNAL PFOCEDURE;

7 IUFDI: EXTERNAL PRCCECURE;

NAVFILTER: EXTERNAL PPOCEDURE;
8

GUIDANCE: EXTFRNAL PFRCCEDURE;

F-SHUTTLE _FDISIM: PROGRAM;

8ASICDAT-: PROCEDURE;
10

CA.SDATA: PROCEURE ;

va. REALWPLC: PROCFCURF

CUMPUTtqR: PROCEDURE;

The program contains over 1400 IIPL/S statements and also
includes 40 internal procedures and functions.

15

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

3.2.2 Boost Trajectory Generator

This program simulates a boost-into-orbit trajectory.
It is typical of guidance and control programming using all
the mathematical features (integer, scalar, vector, matrix)
available in HAL/S as well as arrays for formulating and
manipulating tables of data.

3.2.3 Other Testing

Testing of the HAL/S compiler releases was also
conducted at three other contractor installations:

Draper Laboratory
IBM/Houston
Rockwell/Downey

These contractors reported discrepancies (Discrepancy
Reports) to NASA/JSC and Intermetrics. All reports were
evaluated by Intermetrics and errors fixed in subsequent
releases.

3.3 Mathematical Function Precision Testing

The incorporation of precision tests into the testing
of HAL/S-360 mathematical function routines was begun with
Release 8 of the HAL/S 360 compiler. The purpose of this
testing is to verify the mathematical function algorithms
as implemented, for internal consistency and for consistency
with known values of the functions.

The initial approach to this form of testing was to
analyze the algorithms used, looking for likely sources of
error in the calculation and for input ranges where large
errors can be expected. The purpose of this analysis was
to find a set of worst case test points for each function
which would then be compared with the exact mathematical
values of the funetions. For example, it was expected
that the errors would be larger near singularities. There
was some success with the method as applied for example to
the Sine routine, testing multiples of n for an exact zero
value, thus analyzing the results of the finite precision
of the constant 7 used in making the principal angle
corrections. This type of testing is continuing with more
results to be expected at a later date.

16

INTERMETRICS INCORPORATED .701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Following the initial testing of mathematical
routines as outlined above, it was decided to check
the accuracy of the approach --- were the largest
relative errors at the predicted points based on analysis
of the algorithms? To perform this consistency checking,
it was decided to use the double precision versions of
routines as the "standard" for comparing single precision
results and calculating relative error as a function of
the input argument range. Preliminary results indicate
that for ranges of the argument which result in errors on
the order of magnitude of the last digit, the error is not
related to the "most likely" points determined by analysis.
The source of this error is attributed to truncation as

opposed to fundamental characteristics of the routine itself.
For larger errors, the programs doing the testing were modified
to isolate the regions of larger error and examine such

regions with a finer granularity. Using this approach, it
was found, for example, that the HAL/S single precision TANGENT
function yields regions of arguments with errors three
orders of magnitude larger than the largest IBM FORTRAN
relative error in the equivalent routine, indicating a
probable error in the HAL/S runtime routines. In order to
extend this approach to double precision routines, it is
necessary to obtain comparison standards for triple
precision versions of the same functions. Work is now
progressing on the definition of such extended, precision
algorithms for use in checking out the HAL/S double precision
routines.

All the function range testing being applied on the 360
version of the compiler can and will be carried over to the
flight computer compiler. This work can be accomplished due
to the identical floating point data representations and the
fact that identical algorithms (although differing in machine
representation) are used for both computers.

17

INTERMF: CS INCORPORATED *701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.0 TEST RESULTS SUMMARIES

The HAL/S-360 testing activities have been carried
out for each release of the HAL/S compiler. This section
summarizes the results of tests, by release.

4.1 Formal Testing of Release 360-3

The test plans, as described above, were first applied
to Release 360-7. A set of test categories and sub-categories
was generated for this purpose. Test programs were written
and exercised on 360-3 covering all features expressed in
the plan. In the tables of Appendix C, the categories (and
sub-categories) and the corresponding test programs (in caps)
are indicated. (Appendix C shows the current list of programs).

In all, forty (40) test programs were written for
categories A, B, C, D. These programs contained approximately
4,000 individual logic and language feature tests for Release
360-3. The bulk of source text, object code, and test
results printout precluded their publication for distribution,
however, these volumes are on file at Intermetrics, i.e:

1. The original source program

2. The formatted compiler listing

3. The object code listing produced by the compiler

4. The printout of the test routine's execution

4.2 Formal Testing of Release 360-4

Release 360-4 was tested using a sub-set of the
tests defined for 360-3 (see Appendix C) and a new
additional set of tests. The tables and paragraphs
below identify and summarize the purpose of these tests.
In all, these programs represented in excess of 2000
individual logic and language feature tests.

pRECEDING PAGE BLANK NOT

19

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

4.2.1 Sub-Set of Test Plan

A. Discrete

1. Integer-Scalar

HALTEST
OPERTEST
EXPONTEST

2. Vector-Matrix

MATVECT COMPARE
MATVECT PARTITIONING
MATVECT EXPRESSIONS

3. Bit

BITTEST

4. Character

CHARACTERTEST
CHARTEST
TEST2

6. Arrays

ARRAY ELEMENT SELECT

7. Flow Control

FLOWTEST

B. System Support Features

4. Compool & 5. Comsubs

CSUB___
CPOOL
PROG

20

INTERMETRICS INCORPORATED *701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

'D. General

1. Library & 4. Procedures

EXPRESSIONS AS ARGUMENTS

4. Procedures

PARM
ECCHO

6. Conversion

VECFEON

F. Special Tests

SCRUNCH
ED

4.3.2 New Formal Tests for Release 360-4

1. CONFLICT TEST examines part of the compiler's
error detection facility. It is a test of the use of
factored attributes which disagree with non-factored
attributes in the same declaration: e.g. "Declare vector(3),
I,J,K integer, L;". A test is also made of the compiler's
conflict-detection algorithm; i.e. "Declare integer, A,B,
C integer double, D;" must not be flagged as an error.

This category of testing (error detection) is made
difficult by the fact that the compiler, having found one
error, may announce further spurious errors as a result of
incomplete error recovery. Further, the discovery of one
error may cause the occurrence of further errors to go
undetected.

2. LOG SQRT is a test of two of the built-in mathemAtical

functions. It produces a table of square roots and logorithms

which may be checked-against any standard reference. In addition,
the inverses of the built-in functions are used within the program
for self checking and to determine the loss of precision involved
in the operations. Two other tests, SIN and SINII are essentially
the same, except that they test the trigonometric functions.

21
INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

3. REMEMBER REGS tests the compiler's optimization
of register usage. This program checks the following features:

a) That register contents are not assumed to remain
intact across statement boundaries when a labeled
statement or when flow control statements are
encountered.

b) That when a statement has too many variables for the
number of registers available, the variables in
registers that must be re-used are properly stored
into memory, and

c) That these variables which have been replaced are not
assumed to remain in the registers in subsequent
statements.

4. VECTOR SHAPETEST was written specifically to insure
that the discrepancies found in the vector shaping function
at the time of Release 360-3 had been corrected. It tests
nested shaping functions, and the use of a vector shaping
function in the argument list to a procedure or function.
The errors which were found in Release 360-3 were corrected.

5. SPLAT is a test of the use of the operator "#" to
specify repetition in an initial or constant list in declarations.
The program insures that nested repetition lists, such as "3#
(14.5,2#(3,4),5)" are correctly interpreted, and that repeated
lists with elements that require some conversion are properly
handled. An example of this latter case is: "Declare I
ARRAY (6) INTEGER INITIAL (2#(3,SQRT(8),4));".

6. LONG is a test of the EXIT and REPEAT statements used
inside an iterative DO loop which has a length of more than
4096 object bytes. The program checks that addressability is
maintained when an EXIT or REPEAT causes a branch to a section
of code which cannot be addressed from the current base register.

7. The programs PROD, SUM, CEILING, FLOOR, MOD, and
REMAINDER test the built-in functions of the same names. Several
related errors were found in these library routines. For instance,
CEILING (4.0) returned 5. This error was introduced in the single
to double precision conversion which introduces non-zero low
order bits, forcing the result in the next higher integer. These
errors were corrected in Release 360-5.

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE 2?CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.3 Formal Testing of Release 360-5 and 360-6

All previously generated tests were run using releases
5 and 6. In addition, new test programs were written to
augment the previous test plan. In all, by the release of
360-6, eighty-eight test programs had been written for
categories A, B, C, and D. These test programs contain
approximately 8,000 individual logic and language feature
tests.

As a result of the tests above being conducted, nineteen
compiler errors were discovered:

1. Pass two of the HAL/S compiler failed to generate
proper code for shaping functions applied to bit
strings of length 16 arguments.

2. One matrix exponentiation library routine was
improperly coded, causing spurious errors and abends.
This error was detected by MATRIX EXPONENTIATION.

3. Assumed length passing in the library routine of CTOB
caused erroneous runtime results. The error was
discovered by. BSIIAPE.

4. The use of the CSHAPE test program determined that
improper coding in the library routine called by
the HAL/S language form CHARACTER@DEC caused results

to be proper if and only if a factor of ten was
calculated into the original argument.-

5. The replace macro facility improperly interpreted
macros nested within macros for the case in which a
parameter to the outer macro was itself an argument
of a nested macro. The error was detected by SUBBIT
ON INTANDBIT.

6. Registers 0 and 1 were found not :o be preserved in
process swapping. Such preservation is necessary for
the proper functioning of the code generated by pass
two of the compiler because pass two assumes that these,
registers remain unchanged across statement boundaries.

23

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

7. Passing a bad argument to the library routine CTOI

caused abends during runtime instead of the generation

of the proper error message.

'8. Character subscripting in an expression using the

TO # subscript form caused overwriting of the calculated

length value. Thus, erroneous results occured at run-

time.

9. Structure input and output caused bad code to be

generated for the case in which the structure
had a

multiple copy specification.

10. The length of a literal character string was incorrectly
calculated in the compiler.

11. During automatic template generation, multiple replaces

in compools caused replacement of the several sub-

sequent macro statements by the first macro string,

regardless of the form of the later statements.

12. Subscripts which select one copy of a multiple copy
structure result in incorrect code: the base to which

the calculated index is added is greater than the address

of the first copy of the structure.

13. The default value of the "speed" parameter was set to

five million rather than five hundred thousand as specified.

14. The INCLUDE function worked incorrectly when a block

template being generated was being matched with a

previously created template.

15. The MAX or MIN functions did not work with arguments
with a * array size.

16. If two compool templates used in the same compilation unit

possessed identically named identifiers, no error was
detected.

17. There was an output writer problem in printing a qualified
structure name in a subscript.

24

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

18. If the dot product of two vectors of unequal length was

taken, the Phase I error message was garbled.

19. The multiplication of unsubscripted variables by argument

less functions sometimes produced bad object code.

20. If a program contained an identifier T then occurrences

of the superscript form of transpose caused spurious

cross references to appear in the symbol table entry for T.

21. In some circumstances, use of the SIZE function with

arguments of * array size produced bad object code.

All of these errors were corrected for Release 7 of the

compiler.

4.4 Formal Testing of Release 360-7

The standard library (with additions) of formal tests

were re-run on Release 7. Additional.tests were generated,
covering new HAL/S language features incorporated into
Release 360-7. A total of 4 discrepancies were reported
during development of 360-7, with additional testing after
release yielding 3 more.

4.5 Formal Testing of Release 360-8

The standard library (with additions) of'formal tests

was run using the release 8 version of the compiler. Additional
tests generated for release 8 were used to test out new
features and to add to the repertoire of previous tests.
The new test programs are:

Structures:

STRUCT IO COMP

STRUCT ACCESS

STRUCT ERR..

STRUCT PARM

Arrays:

ARRAY PARTITION

ARRAY PARM

25

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

Replace Macros:

REPL TEST

REPL ERR

System Language Features:

INLN FUNCTIONS

TEMP TEST

As of the time of the release, this testing had revealed
one discrepancy in the operation of the compiler occurring
when a structure function used in an assignment statement.
The final list of formal test programs is included as Appendix
C of this document.

Also, the precision testing of mathematical function
subroutines in the run-time(library was begun with release
8 of the compiler. A later memo will document results of
this test activity.

4.6 Discrepancy Reports

Appendix D lists all reported discrepancies as of June
30, 1974. These discrepancies were analyzed and entered
onto the work sheets included in Appendix E. The figures
below summarize this information. Figure 4-1 plots the
number of discrepancies introduced into each released version
of the compiler as a result of new code and/or the alter-
nation of existing (good) code. The first three HAL/S-360
releases have been grouped together and are treated as
the original release. The drop-off in introducing errors
is marked with only two resulting from 360-7. The trend
is indicative of the maturity of both the compiler itself
and programmers at Intermetrics developing it. Changes can
now be introduced with minimum risk in causing additional
errors.

Figure 4-2 is interesting in that it attempts to
convey a degree of difficulty in finding introduced errors.
The latency value 0, 1, 2, etc., means that the error

26

INTERMETRICS INCORPORATED *701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Figure 4-1

Discrepancies introduced into the

60 HAL/S-360 Development (by release)

50

IIEPRCDU CLILI T Oil TE-,
ORIGINAL PAGE IS POOR

40

REPRODUCIBILITY OF THE

30

S 0

201.4
O

.4 10

0

1,2,3, 4 5 6 7

HAL/S Releases 360-

Figure 4-2 . Discrepancy Latency

50.

40

30

10

04

Rclease Litency

27
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

was introduced in one release and found in the same
release(0), the next(l), or the next again(2), etc.
Thus for example, 42 of the descrepancies were intro-
duced and then discovered in the same HAL/S-360 release.
The average latency value is 1.1 and indicates that
for the development so far, it takes, on the average,
one additional release with its attendent testing, use,
verification, etc., to find an introduced error.

Figure 4-3 presents latency data again, this time
with the first three HAL/S releases eliminated. Dis-
counting this start-up "transient" it would appear that
the total verification effort was some what better, in
that errors were found, on the average, a little sooner.
Of course this result might be expected as the test
cases became more voluninous and the programmers gained
more insight into the vulnerable areas of the compiler.

The full story on HAL/S-360 development is, at
this writing, incomplete. Release 360-8 has just been
release and data will continue to be gathered. At a
subsequent date an addendum to this report will be
issued in which it is hoped that the reliability of the
compiler and the effectiveness of the total test and
verification efforts may be judged.

Figure 4-3
50

Discrepancy Latency (eliminating data from

(eliminating data from Releases 1,2,3)

40

o 30

20

10

0 2 3 4

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE *2 CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

APPENDIX A

Matrices of Tests

<row element> means the label of the row in which an 'X'
appears.

<column element> means the label of he column in which an
'X' appears.

List of Tables

A.1 Assignments with Implicit Conversions

A.2 Operator Test

A.3 Exponentiation Test

A.4. Unary Operator (-)

A.5 Comparisons

A.6 Initial

29

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

A.1 .Assignments with Implicit Conversions

Lit

Sc(s) Sc(d) I(s) I(d) Lit(scalar) I(integer

Sc(s) X X X X X

I(d) x x x x x x

I(d) X X X X X X

Lit(s)

Lit(I)

<column element> = <row element>

A.2 Operator Test

•.*. 'Lit

Sc(s) Sc(d) I(s) I(d) Lit(scalar) (integer

Sc(s) X

Sc(d) X x

I (d) X X--- X

Lit(s) x x x x x

Lit(I) X X X X

<column element> <operator> <row element> where <operator>

:: = + I -I<times>l/
INTERMETRICS INCORPORATED 701 CONCORD AVEN JF CAMBRIDGE, MASSACIIUSETTS 02138 * (617) 6,1-18400

A.3 Exponentiation Test

Lit

Sc(s) Sc(d) I(s) I(d) Lit(scalar) (integer)

A(s) x 11 x X

d) X X X X X

A) x . x x x x x

, ! x I x x x _x x
t(s)_ X X X X X

- (I) x x x x x x

<column element>**<row element>

An exhaustive test was necessary because the compiler makes
a more elaborate treatment of exponentiation than the other
operators:

<literal>**<literal> is reduced to <literal>
at compile time.

,:xponentiation is done with an in-line code substitution.

31

IN rl-I' i.rRICS INCORPOA[ED . 701 CONCORD AVENUE • CAMR,, DE, MASSACHUSET TS 02138 - (617) 661-1810

A.4 Unary Operator (-)

Lit
Sc(s) Sc(d) I(s) I(d) Lit(scalar) I(integer)

Sc(s) x

Sc(d) X x x I
I(s) X

I(d) I I XI I

Lit(s) X x X

Lit(I) X x

<column element> = - <row element>

The cases above include a few of the possible conversions.
Conversions were tested thoroughly elsewhere; their inclusion
here is just to test that the compiler recognizes the needfor a conversion.

32

INTERMETR!CS INCORPORATED *701 CONCORD AVENUE * CAMBRIDGE, MASSACHUlSETTS 02138 . (617) G,:;1-1810

A.5 Comparisons

Lit

Sc(s) Sc(d) I(s) I(d) Lit(scalar) (integer)

s (s) x

Sc(d) x X

xI x I x I

d) X x x I x

it(s) x x x x

t x x I x x

If <column element> = <row element> then

Once one operator has been tried against all possibilities,
the others need only one-test case. The code produced will
be similar to the following:

CLC dependent on data types

BC M-dependent only on operator

Thus, a test of one operator will ensure that the correct
comparison is done, and the test of the others is only to
ensure that the correct mask is set up in the BC instruction.

33

INT1['nIRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDCE, MASSACI USLTTS 02138 - (617) 661-1840

A.6 Initial

Lit
Sc(s) Sc(d) I(s) I (d) Lit(scalar) (integer

I(s) x x

I(d) I I x X

Lit (s)
Lit (I)

Declare <row element><attributes> initial (<column element>);

34
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACIIUSETTS 02138 . (617) 661-1840

APPENDIX B: Summary of Categories (Initial Listing)

B.1 DISCRETE B.4 GENERAL

INTEGER-SCALAR LIBRARY & BUILT-INS
VECTOR-MATRIX ARRAY-STRUCTURE INTERACTION
BIT RELATIONAL EXPRESSIONS
CHARACTER PROCEDURE LINK & PARAMETER
STRUCTURE PASS
ARRAYS ADDRESSABILITY & REGISTER
FLOW CONTROL USAGE
I/O CONVERSIONS

SHAPING FUNCTIONS

B.2 SYSTEM SUPPORT FEATURES B.5 NEW FEATURES

MACROS (REPLACE) NAME Facility
INCLUDES INLINE FUNCTION BLOCKS
FILES PERCENT MACROS (% MACROS)
COMPOOLS STAND-ALONE DEBUGGING LANGUAGE
COMSUBS
REAL TIME
OPTIONS IN JCL
DEVICE DIRECTIVES

B.3 PASS 1

ERROR CHECKS
OUTPUT WRITER
SCANNER
DATA DECLARATIONS
SCOPING RULES

35

'IN1fnEMETlRCS INCORPORATED *701 CONCORD AVENUE CAMBRI!DGE, MASSACHLIUSTTS 02138 (617) 61-18i40

APPENDIX B; Detailed Breakdown of Categories

B.1 DISCRETE

B.1.1. Integer-Scalar

Assignments

Initial Values

Comparisons

Infix Mathematical Operators

Exponentiation

Prefix Operators

Multiple Assignments

Complex Expressions

Complex Comparisons

B. 1. 2. Vector-Matrix

Comparisons

Assignments

Initial Values

Conversions

Plus, Minus

Multiply (All Types), Divide

Exponentiation

Unary Operators

Element Selection

Partitioning

Complex Expressions

Complex Comparisons

Multiple Assignments

Built-In Functions

36
NTEIT 1 ITRICS INCORPORATFD. 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) G61 .10'4

B.1.3. Bit

Assignments

Initial Values

Comparisons

Conversions

Concatenation

And, Or Operators

Not Operator

Element Selection

Complex Expressions

Complex Comparisons

Multiple Assignments

SUBBIT

Partitioning

B.1.4. Character

Assignments

Initial Values

Conversions

Comparisons

Concatenation

Element Selection

Complex Expressions

Complex Comparisons

Multiple Assignments

Built-In Functions

Partitioning

37

iNTERMETRICS INCORPORATED 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

B.1.5. Structures

Qualified Name Reduction (assign into)

Qualified Name Reduction (assign from)

Template Matching

Initialization

Comparisons

As Parameter or Return

Multiple Copies

Dense & Aligned

Copy Selection

Multiple Assignments

Minor Structures

Qualified vs. Unqualified

Complex Subscripting

Assignments

B.1.6 Arrays

Element Selection

Partitioning

Initialization

Mathematical Infix Operators

Comparisons

Parameter Passing

Dense vs. Aligned

Assignments

Multiple Assignments

Prefix Operators

Built-In Functions

38
INT[EREFTRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-18.10

B.1.7. Flow Control

IF <bit> THEN

IF <arrayed bit exp> THEN...

IF <bit>.THEN ELSE

IF <bit or relational expression> THEN

DO...END GROUP

Discrete DO FOR

Iterative DO FOR

DO UNTIL <bit>

UNTIL <bit or relational expression>

DO WHILE (<bit>)

DO WHILE (<expression>)

DO Case

DO Case...Else

GOTO

EXIT

REPEAT

DO FOR...BY...TO

Discrete DO FOR WHILE

Iterative DO FOR WHILE

Discrete DO FOR UNTIL

Iterative DO FOR UNTIL

DO Case <scalar>

Nested Conditionals

Nested DO's

Conversion in DO Case

Null Statement

39

,NiERL1[iRICS 1'CORPORnATI'TD 701 CONCORD AVENUL- C'\MBRIDCG- MASSACtIUSETTS 02138 * (617) 6W1-1840

B.1.8. I/O

Implicit Positional Control

Explicit Positional Control

(Tabl, Skip...)

Conversions

Record Selection

Null Field, <;> in read statement

Field Width

Generation of Device Control Characters

B.2. SYSTEM SUPPORT FEATURES

B.2.1. MACROS (Replace)

Substitution of Arguments

Nested Macros

Scoping Conflicts

Argument Name as Argument

B.2.2. Includes

Selection of Correct Data Set Member

Text Included at Correct Point

Text Introduced Unchanged

Multiple Includes

Include Within Include (Error)

B.2.3. Files

Association-of Channel Number with Data Set or Device

Opening and Closing Files

Standard Input File (SYSIN)

40
IN1ERME]RICS INCORPORATED - 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840

B.2.4. COMPOOLS

Template Declaration

Compilation of COMPOOL

Access of Contained Data

Storing Into COMPOOL

Access Rights

Multiple COMPOOLS

Locked Data

B.2.5. COMSUBS

External Procedure Declaration

External Function Declaration

External Procedure Reference

External Function Reference

Procedure Compilation

Function Compilation

B.2.6. Real Time Control

SCHEDULE

TERMINATE

WAIT

CANCEL

SIGNAL

ON ERROR

UPDATE PRIORITY

PRIO DUILTIN FUNCTION

SEND ERROR

RUNTIME

Events

Independent Processes

Process Events

Latched Events

Locked Timing

Update Blocks

Event Exprossions

41
NI RMTaCOS INCO'RO1RAl: D ' 701 CONCORD AVENUE * CAMBRIDGE, MASSACIIUSETTS 02138 (617) 661-1'

B.3. PASS 1

B.3.1. Error Checks

Set off every error message.

Check that syntactically correct but semantically
invalid statements produce errors.

Check recognition of syntactically invalid forms.

Check code production inhibition.

B.3.2. Output Writer

Single to multiple line conversion.

Automatic variable annotation

Symbol table dump

X-ref dump

Error summary

B.3.3. Scanner

Declaration Processing Separate Category

Replace Processing Separate Category

Symbol Table Entry

Token Creation

Multi-line Input

B.3.4. Data Declarations

Conflicting Attributes

Factored Declares

Constant Attribute

Automatic Attribute

42
NTERMTRICS INCORPORATED. 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (017) 661-18.10

B.3.5. Scoping Rules

DECLARE VARIABLES W/ SAME NAME.

REPLACE SEVERAL IDENTIFIERS OF THE SAME NAME IN
DIFFERENT SCOPES.

STRUCT TEMPLATES WITH SAME NAME IN DIFFERENT SCOPES.

DECLARATION LOOPS

TEMPORARY LINKAGES

EXTREMELY DEEP NESTING

B.4. GENERAL

B.4.1. Library & Built-Ins

Matrix-Matrix

Matrix-Vector

Matrix-Scalar (Scalar-Matrix)

Vector-Vector

Vector-Matrix

Vector-Scalar

Scalar-Scalar

Matrix

Vector

Scalar

Integer

Character

Array

No Argument Functions

Use in Expressions

Use in Output Statement

Use as Subscript

43

INTiIM:FTRI INCO -POi ATEI) 701 CONCORI D A\VNUE CAMBRIDGE, MASSACiiUSFTT 02138 * (617) 601-1810

B.4.2. Array-Structure Interaction

Assignment

Comparison Use with mixed structure

Multiple Assign and array.

Operators

Dense vs. Aligned Ascertain that conversion
still works.

B.4.3. Relational Expressions

Multiple Occurrence of &, I,

Multiple Operators with Parentheses

IF..., THEN IF...THEN IF...

With Arrayed Relations (=, '=)

With Structured Comparisons

With Function Calls

B.4.4. Procedure Link & Parameter Pass

Linking to External Procedures

Passing Simple Parameters of 6 Data Types

Passing Multiple Parameters of Mixed Type

Assign Lists

Linking to External Functions

Passing Single Parameter of Each Data Type

Passing Multiple Parameters

Test Return of Six Types

Test 'X'-length Parameter

Implicit Conversions

Expressions as Arguments

Subscripted Variables in Assigns

Use of Arrays and Structures as Parameters, Assigns,
and Returns

44

.METR CS INCOB1PORAThD 701 NCNCORD AVINUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

B.4.5. Addressability & Register Usage

Data

Single array > 4096 bytes

many single elements totalling > 4096 bytes

many structures > 4096 each

random access indexing

computed access where optimization applies

Procedure

length > 1600 instructions

branching top-to-bottom, bottom-to-top...

DO case

DO WHILE

long iterative DO loop

repeat

large number of literals

automatic storage

register usage under all adverse conditions above

B.4.6. Conversion

a. Shaping functions covered separately except with
single arg and radix

b. Implicit conversions not covered under individual
data types:

int-bit

bit-int

char to int

char to scalar

char to bit

bit to char

c. @single, @double

45
INTiLMU:TRICS INCORPORATrFD 701 CONCORD AVENUE CAMflRIDSE. I\MSSA STITTS 0138. (617) 661 18.10

B.4.7. Shaping Functions

single argument

arrayed arguments

radix

all levels of resultant subscripting

use with argument of size

unknown at compile-time

nested shaping fus

46
I1FRfMETRICS INCORPORATED 701 CONCO D AVENUE CAMIBRIDGE, MASSACHUSEITS 02138 * (617) 661-18.10

APPENDIX C: Test Categories & Test Programs
(Listing current as of Release 8)

D EPRODUCIBILITY OF THE

C.1. DISCRETE ORIGINAL PAGE IS POOR

C.1.1. Integer-Scalar

Assignments HALTEST*
Initial Values HALTEST*
Comparisons HALTEST*
Infix Mathematical

Operators OPERTEST*
Exponentiation EXPONTEST*
Prefix Operators HALTEST*
Multiple Assignments HALTEST*

Multiple assignments to data types

of differing type or precision will
result in loss of precision.

Complex Expressions HALTEST*
Complex Comparisons HALTEST*

C.1.2. Vector-Matrix

Comparisons MATVECT COMPRE
Assignments MATVECT ELEMENT SELECTION,*

MATVECT PARTITIONING, *

MATVECT EXPRESSIONS*
Initial Values Same as above
Conversions Implicitly tested in all Vector-Matrix

routines.
Plus, Minus MIXED TYPE TEST
Multiply (all Types)

Divide MIXED TYPE TEST
Exponentiation MATRIX EXPONENTIATION
Unary Operators MATVECT UNARY COMPARE*
Element Selection M.ATVECT ELEMENT SELECTION*
Partitioning MATVECT PARTITIONING*
Complex Expressions MATVECT EXPRESSIONS*
Complex Comparisons MATVECT UNARY COMPARE*
Multiple Assignments Multiple assignments to data types

of differing precisions will result in
loss of precision.

Built-in Functions MATVECT UNARY COMPARE*

C.1.3. Bit

Assignments NASNTEST
Initial Values ANDTEST,* ORTEST,* NASNTEST,* CONCTEST,
Comuoarisons COIMPTEST
Conversions Procisiorr conversion implicitly

tested in all tests.
Concateent at ion CONCT "ST
AnJ, Or O.,rators AN~;;. , * Oi'':ST*
Not Opc.vra tor

47

Element Selection BITTEST*

Complex Expressions BITTEST*

Complex Comparisons BITTEST*
Multiple Assignments BITTEST*
SUBBIT SUBBIT ON INTANDBIT

SUBBIT ON SCALANDCHAR

Partitioning BITTEST,* BIT CHARACTER SUBSCA

C.1.4. Character

Assignments CHARACTERTEST*

Initial Values CHARACTERTEST*

Conversions CHARTEST*

Comparisons CHARTEST,* CHARACTERTEST*

Concatenation CHARACTERTEST,* CHARTEST*

Element Selection TEST2, CINP, CH

Complex Expressions CHARTEST*

Complex Comparisons CHARTEST*
Multiple Assignments CHARTEST*
Built-In Functions CH, CHARTEST*
Partitioning CHARTEST,* CH, TEST2, CINP,

BIT CHARACTER SUBSCR

C.1.5. Structures

Assignments No explicit tests
Comparisons STRUCT IO COMP
Initial Values STRUCTURE TEMPLATE
Terminal Accessing STRUCT ACCESS
Element Selection STRUCT ACCESS
Partitioning STRUCT ACCESS
I/O STRUCT IO COMP
Dense vs. Aligned STRUCT IO COMP

C.1.6. Arrays

Arrayed Statements ARRAY BIT CHAR TEST
ARRAY PREFIX
ARRAYASSIGN

Subscripting ARRAY PARTITION
Element Selection ARRAY ELEM SELECT
Comparisons ARRAY COMPARISON TEST
Arrayed Subscripting ARRAY SUBSCR

C.1.7. Flow Control FLOWTEST*, TEST2

I/O Extensively Tested***

* TEST source published in previous memo.
** See Section 3 of this report.

*** M1eans that features are tested by most runs during
developmeint and use of HAL/S compilr.

48
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

REPRODUCU3BIL1Y OF THE

ORIGINAL PAGE IS POOR

C.2. SYSTEM SUPPORT FEATURES

C.2.1. MACROS (Replace) REPL TEST

C.2.2. Includes Extensively tested
INCLUDE TEST

C.2.3. COMPOOLScompools All subcategories covered by CSUB,

COMPOOL, PROG

C.2.4. Comsubs All subcategories covered by CSUB,

COMPOOL, PROG

C.2.5. Real Time Control Tested by PMF Simulator

C.3 PASS 1

C.3.1. Error Checks CBLTIN
EXPONENTIATION ERROR
SUBBIT ERROR TEST
CH
EVEN TEST
UNFACTORED ERROR TEST
ASSIGN CONTEXT ERROR
TERMINAL SS BIT CHAR

SUBBIT IN READ

STRUCT SUBBIT IN ASSIGN

BLOCKSTRUCT TEST
NAME PROG ERR

NAME- ERR
STRUCT ERR
REPL ERR

C.3.2. Output Writer Extensively Tested

C.3.3. Scanner Extensively Tested

C.3.4. Data Declarations

Conflicting Attributes CONFLICT TEST

Factored Declares Implicitly tested in many routines

Constant Attribute CONSTANT TEST

Automatic Attribute Development Tests

C.3.5. Scoping Rules Implicitly tested

49

INTERMETRICS INCORPORATED .701 CONCORD AVENUF " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

C.4. GENERAL

C.4.1. Library and Built-Ins

Integer & Scalar COS TEST, COSH TEST, LOG SORT
Values of results have been comparer

with a CRC tables and were found to be

correct within the accuracy of the
tables
MAX IMUMP ROD SUM
MODTEST
SIGN SIGNUM TEST
DIVANDREM4AINDERTEST
CEILINGFLOOR TEST
EXPRESSION AS ARGUMENTS

Character CH, CINP, CHARACTERTEST*, CBLTIN

Array SIZETEST
No Argument Functions Only RUNTIME Explicitly tested
Use in Expressions Tested in the complex expressions

subcategory of each category
Use in Output

Statement Development Tests
Use in Subscript Tested as part of the general sub-

scripting test for each datatype

C.4.2. Array-Structure
Interaction Development Tests

C.4.3. Relational
Expressions Subcategories covered by parts of

FLOWTEST, LHALTEST, CHARTEST,
BITTEST, MATVECT COMPARE,
ARRAYCOMPAREISONTEST

C.4.4. Procedure Link &
Parameter Pass

Linking to External
Procedures CSUB, PROG

Passing Simple
Parameters of 6
Data 'TYpes Development Tests

Passing Multiple
Parameters of 6
Data Types PAPI, .S2, T4, ECCHO

Assign Lists PAEt, ECCiO, T3
Linking to External

Functions Ext:ei... 1 tested by both FDI
and PMi' S.imulators*

* See Section 3 of this report.

50
.N t I t'LTIICS INCOM POI:AIt.L) 01 C .NCORt) AV"-U * UST. I 02138 * 1') j; 1-180

Passing Single Para-
meter of Each Data
Type Tested in the complex expressions

subcategory of each datatype
Passing Multiple

Parameters PARM, T4
Test Return of Six

Types Tested in the complex expressions
subcategory of each datatype

Test '*'-length
Parameter SIZE TEST

Implicit Conversions Used in all tests
Expressions as

Arguments EXPRESSIONS AS ARGUMENTS
Subscripted Varia-

bles in Assigns SUBSCRIPT ASSIGN PARTITION
Use of Arrays and

Structures as
Parameters, Assigns, STRUCT PARM
and Returns ARRAY PARM

C.4.5. Addressabilit -and
Register Usage Extensively Tested

C.4.6. Conversion

Integer-Scalar
Shaping Functions INTEGER SCALAR SHAPE, ISSHAPE ON MISC

Vector-Matrix
Shaping Functions VECFUN, VECTORSHAPE TEST, MSHAPE

C.4.7. Shaping Functions

SUBBIT SUBBIT ON SCALANDCHAR
SUBBIT ON INTANDBIT

Bit Shaping Functions BSHAPE
Character Shaping

Functions CSHAPE

C.5. NEW FEATURES

C.5.1. System HAI-- -

NAME NAME PROG
REPLACE IMACROS REPLTCE BUGs- *
% MACROS Devlo:.teont:al Tests
.. EMPOARY TEMP TEST
IN-LINE EUL NCTIONS INLIN FUNCTIONS

SR.t of routie:; to test staciiig, p.r:.Co rs, macros-inside-macro:,
etc.

51
,lEMETHICS INCOPORATWD 70' , .NCOfHD AVF Nui CAMBRD(F ,'R8 IErTIS 021", (61 7 eI 1)

C.5.2. Error Library

An extensive error check library has been developed.
Some programs in this library are designed to trigger the
error message and error recovery mechanisms within the
compiler. These tests verify whether the appropriate
error messages are being generated and whether the error
recovery mechanism responds in a fashion which allows
subsequent statements within the compilation to be
processed despite the fact that no code will be generated
by the particular run. This allows the user to review
the majority of his current syntactic or semantic errors
before resubmitting the job. Other programs in the error
check library are designed to trigger runtime errors.
These tests verify the proper generation of an error
message, and the possible trace information associated
with the message. In addition they check the GO TO,
IGNORE, and SYSTEM options available with the ON ERROR
statement.

C.6. SPECIAL TESTS * INT TO BIT, ED, QUEUES, PARENTHESIS,
CHECKER, DEBUG, SCRUNCH, ARITH,
TESTGEN, BTESTGEN, KIP, FORMAT,
PMSPOOL, FDA

* FDI-Simulator

* 2 Compools
. 13 COMSUBS
* 39 internal functions and procedures
* Over 2000 HAL/S statements

* PMF-Simulator

* 1 Compool
. 4 programs real time
. 8 tasks r
* 20 internal functions and procedure
. Over 2000 HAL/S statements

* Math Function Precision Tests

52
I \T!ICS INCOfPO~RA [I) 701 CONC1RD AVFNU- CA;i\:'I0D . .\1SA(1TiUS- SO 021338 (017) 661 18.10

APPENDIX D

HAL/S Discrepancy Report Log

53
INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

HAL/S DISCREPCY REPORTS

Fixed

Scurce intermetrics Date for
:umbcr h? Date Rcc. Title Evaluation -Fixed Release Comment

1 CSDL 9/05/73 Replace Text confirmed bug 8/15/73 360-3A
Identifiers

2 CSDL 9/05/73 Initialization of 8/15/73 360-3A
Integers

3 CSDL 9/05/73 Bit Function 8/15/73 360-3A.
Writes

4 RI 9/17/73 Character 9/05/73 360-4
Initialization

5 CSDL 9/18/73 Trailing Under- " 9/25/73 360-4
scores in identi-
fiers

6 CSDL 9/18/73 END Labels " 9/01/73 360-4.

7 CSDL 9/18/73 READ Statements " 9/27/73 360-4

8 IBM 10/04/73 Half-word sign bit " 10/04/73 .360-5

9 IBM 10/04/73 Bit catenation " 10/04/73 360-5

10 CSDL 10/10/73 Replace Statements " 10/14/73 360-5

11 CSDL 10/18/73 Precedence Inconsis. " 10/20/73 360-5

12 RI 10/24/73 Arith. Functions " - 360-4

13 RI 10/24/73 DO END Label See DR #6.

14 IBM 10/29/73. Matrix Shape Error Not :available in 360-4

HAL/S DISCREPANCY REPORTS

Source Fixed

Nu r TiSource Intermetrics Date for
Number ho? DatRec. Title Evaluation Fixed Release Comment

15 IB4:. 10/29/73 IF Statement Not a bug

16 IBM 10/29/73 Error cleanup after Confirmed bug 10/29/73 360-5

INITIAL

17 IBM 10/29/73 END Lables See DR #6 .

18 IBM: 10/29/73 EOF Looping Confirmed bug 360-5

U1 19 IB 10/29/73 Comparison failure " 360-5
Ul *

20 IBM 10/29/73 ARCCOS Results " 360-5

21 12 10/08/73 Argument Count 1" 0/12/73 360-5
2 C

22 2 10/08/73 Array Loop Gener. 10/12/73 360-5

23 12 10/12/73 Literal in Built-in 10/12/73 360-5 O

24 12 10/15/73 Init. of Bit Var. " 10/17/73 360-5

25 12 10/17/73 Use of RO " 10/17/73 360-5

26 12 10/20/73 Shaping Functions " 10/28/73 360-5

27 12 10/28/73 Single Precision " 10/28/73 360-5

Literals

28 IBM 10/22/73 Writer Formatting 11/1/73 360-5
Error

29 IBM 10/29/73 INITIAL/AUTOMATIC 11/1/73 360-5

on Assign Var.

30 IBM 10/30/73 ARCSIN/ARCTAN 11/11/73 360-5
problems

HAL/S DISCREPANCY REPORTS

Fixed

Source Intermetrics Date for

Number Who? Date Rec. Title Evaluation Fixed Release Comment

31 IBM11 10/31/73 ELEMENT Selection Confirmed bug 11/6/73 360-5

from bit string

32 IB: 10/31/73 Bit Partitioning " 11/6/73 360-5

33 IBM 11/1/73 Bit Partitioning " - 11/3/75 360-5

and #

34 CSDL 11/3/73 Inconsistency in -See DR
Array Compares #22

35 12 11/3/73 Structure Assign Confirmed bug 10/6/73 360-5
Parms

36 IBM 11/13/73 IF/ELSE Indentatio " 11/13/73 360-5

37 IBM 11/13/73 Invalid Opcode " 11/10/73 360-5
Generation.

38 IBM 11/28/73 Illegal FP Reg. Side effect of
Alloication #39

39 IBM 11/28/73 Invalid Opcode Confirmed bug 11/15/73 360-5
Generation

40 12 d 11/28/73 NONIAL Procs & Fun s " 11/28/73 360-6

41 12 d 11/28/73 Array Args of " 12/1/73 360-6
Functions

42 12 11/27/73 Dynamic FP Range " 11/28/73 360-6

43 12 11/29/73 Arrayed Statement " 12/1/73 360-6

as case of DO CASE

HAL/S DISCREPANCY REPORTS

Source Fixed
Number Title Intermetrics Date for

Who? Date Rec. Evaluation -Fixed Release Comment

44 1 12/3/73 Repeat Group in
Shaping Confirmed bug 12/4/73 360-6

'245 1 d 12/6/73 CHAR@DEC conversion 12/7/73 360-6

46 12 d 12/6/73 Exponentiation " 12/7/75 360-6

47 12 12/7/73 Abend in Shaping 12/8/73 360-6 d

48 CSDL 12/15/73 Comment & Directive Not Error Documentation 0
'Cards Problem

49 CSDL 12/15/73 # in Subscript • Confirmed L2/20/73 360-6

50 CSDL 12/15/73 Replace & Formatting Not Error

51 CSDL 12/15/73 Bit I/O Confirmed 2/20/73 360-6 c
52 12 12/13/73 CONSTANT ChAracter 1/2/74 360-6

Strings

53 12 12/20/73 Bit Formal Parameter " 12/20/73 360-6

54 12 12/19/73 unActions in Arrayed 12/19/73 360-6
3tarts

55 12 12/19/73 Exclusive Functions 12/19/73 360-6

d: Rep rted b Draper Laboratory

HAL/S DISCREPANCY REPORTS
Fixed

Source Intermetrics Date for
Nuber ho? Rec. Title Evaluation 'Fixed Release Comment

56 t2 12/19/73 Structure I/O Confirmed 12/19/73 360-6

57 :2 12/21/73 Replace Text in " 12/21/73 360-6
Templates

58 RI 12/20/73 Exceptions -Output
Writer with REPLACE

59 12 1/02/74 Bits in Range 9-16 Confirmed 1/02/74 360-6
bits

60 I 1/02/74 Bit(16) Vars. and 1/02/74 360-6
Assignments

61 12 1/02/74 Structure Parameter 1/02/74 360-6

62 CSDL 12/09/73 Precision " 1/02/74 360-6

63 CSDL 12/09/73 Addition Failure Confirmed) eliminated in re-

64 CSDL 12/09/73 Array I/O Part Confirmed release of 360-6

65 CSDL 12/09/73 Macro-text Listings Confirmed 12/10/73 360-6

66 CSDL 12/09/73 Vector Shaping : Confirmed 12/10/73 360-6

67 CSDL 12/09/73 Overflow See DR #46

68 CSDL 12/09/73 Overflow(2) Confirmed

69 CSDL 12/09/73 Character @ DEC Confirmed 12/20/73 360-6

70 CSDL 11/22/73 Procedure Parmeters Confirmed 1/15/74 360-6

71 CSDL 11/24/73 Arrayness Conflict Confirmed 1/15/74 360-6

72 CSDL 11/20/73 Link Step OC5 Confirmed 1/15/74 360-6

73 CSDL 11/20/73 Phase II Error in Part Confirmed 1/15/74 360-6

Arrayed Args.

74 CSDL 11/24/73 Indirect Stack Over Confirmed 1/15/74 360-6
.9 1 _-.

HAL/S DISCREPANCY REPORTS

Fixed

Source Intermetrics Date for

:;ubecr Title Evaluation Fixed Release Comment

Who? Date Rec.

75 CSTL 11/16/73 Addressability Compiler Restricti)n 1/15/74 360-6

76 CS6L 12/7/73 Args of NONHAL Not Error

Procedures

77 CSDL 12/21/73 Rounding . Confirmed 1/10/74 360-6

78 CSDL 1/16/74 SUBBIT pseudo Confirmed 1/30/74 360-6

variable

79 IBM 12/10/73 Abend 1/2 word BIT
OPS See DR #59, 6

30 IBM 12/12/73 1/2 word bit compa e

81 IBM 1/8/74 Variable Dump of Not Error

Constraints

82 IBM 11/16/73 tatement # Trac.e Not Error

83 IBM 11/19/73 race Diagnostic ? Trace Package
Problem

changed. Bug non-
I existent in Ver- .

84 CSDL 1/29/74 -atalog Procedure Confirmed 360-6 slon 5.

Error

85 CSDL 1/29/74 Execution with Confirmed 1/30/74 360-6

Compiler Error

86 CSDL 1/29/74 E&M's split over Confirmed 1/30/74 360-6

page

87 CSDL 1/30/74 Block Summaries Confirmed 1/30/74 360-6

88 CSDL 1/29/74 Failure of MAX-MIN Confirmed 3/3/74 360-7

89 CSDL 1/29/74 RG9 Message Wordin Confirmed 1/30/74 360-6

HAL/S DISCREPANCY REPORTS

Fixed
Source Intermetrics Date for

er Title Evaluation Fixed Release Comment

Who? Date Rec.

90 CSDL 1/29/74 Unlatched Event Not Error documentation

Initialization problems

91 CSDL 1/29/74 ODD Function Not Error

92 CSDL 1/29/74 Compile time OC5 *Not Error
Dumps

0 93 CSDL 2/12/74 Random Error Messages Not Error

94 CSDL 2/18/74 Writing Structures Confirmed 1/30/74 360-6

95 CSDL 2/18/74 Indexing Error Confirmed 1/30/74 360-6

96 CSDL 2/18/74 Double Explicit. Confirmed. 2/12/74 360-6

Conversion

97 CSDL 2/18/74 Unlatched Event See DR #90
Initialization

98 .CSDL 2/18/74 Inter-Process.: Not Error

Boolean

99 CSDL 2/18/74 *Multiply Defined Cdnfirmed 1/30/74 360-7

Compools vars.

100 12 3/5/74 INTEGER/SCALAR Confirmed 3/12/74 360-7

shaping

Functions as Confirmed 3/15/74 360-7
101 CSDL 3/20/74 Multipliers

102 CSDL 3/20/74 Iector Length in Confirmed 3/15/74 360-7

dot product

ISD 3/ lt- in ine cofnirmed 3/15/74 360-7

HAL/S DISCREPANCY REPORTS

Fixed

Source Intermetrics Date for
Tumber Title Evaluation Fixed Release Comment

Who? Date Rec.

104 CSDL 3/20/74 Inlines in Replaces Confirmed 3/15/74 360-7

1C5 I 12 3/5/74 Argument of SIZE Confirmed 3/12/74 360-7

106 12 3/7/74 UPDATE BLOCKS & DO Confirmed 3/15/74 360-7

CASE

107 12 3/7/74)utput Writer Sub- Confirmed
script Problem

10 'SDL 3/20/74 Symbol Table Loop Confirmed 3/18/74 360-7

109 CSDL 3/20/74 DECLARE Tasks Confirmed 4/08/74 360-8 LCR Required

110 CSDL 3/20/74 Single Prec. Ex-? Confirmed
plicit Conversion

1! CSDL 3/20/74 DO CASE Error See DR #106

112 CSDL 3/27/74 AL/S Initializatio Confirmed 3/25/74 360-7

113 CSDL 3/27/74 READ-ALL Structure Confirmed 3/25/74 360-7

114 CSDL 3/27/74 READ-ALL Skip Confirmed 3/25/74 360-7

115 CSDL 3/29/74 Infinite Loop in Confirmed 3/25/74 360-7

GO TO

116 CSDL 4/05/74 Init. of Var. with Confirmed 360-8

NULL String

117 IBM 4/24/74 Garbage in Macro Confirmed 360-8

Expansion

118 4 IBM 4/24/74 Precision of Mixed Confirmed 360-8

Prec. Divide

HAL/S DISCREPANCY REPORTS

Fixed

Source T - Intermetrics Date for

Number Title Evaluation Fixed Release Comment

Who? Date Rec.

119 I 4/18/74 Range of Error Confirmed 360-8

Numbers

120 12 4/24/74 Source Macro's & Confirmed 360-8

Templates

121 12 5/02/74 Transpose Problem 360-8

122 CSDL 5/02/74 Nested SUBBITS Spec. Problem

123 CSDL 5/02/74 AP-101 Timing Confirmed 360-8

Anomalies

124 CSDL 5/02/74 DEVICE Directive Confirmed '360-8

125 CSDL 5/13/74 Assignment of BIT Confirmed 5/19/74 360-8

Literals

126 CSDL 5/13/74 Reading Structures Confirmed 5/19/74 360-8

127 CSDL 5/13/74 Size Function Confirmed 5/19/74 360-8

128 CSDL 5/13/74 Var. names length Confirmed 5/19/74 360-8

32

12S I2 6/1/74 Phase I abend in Confirmed 5/12/74 360-8

macro expan.

130 1 2 6/1/74 Replace macros in Confirmed 6/12/74 360-8
symbol table

131 12 6/1/74 Literals & Constant Confirmed 6/12/74 360-8

2
132 I 5/16/74 Names of programs Confirmed 6/5/74 360-8

& tasks

HAL/S DISCREPANCY REPORTS

Fixed

S Source Intermetrics Date for
Number a Title Evaluation Fixed Release Comment

133 'IBM 5/15/74 Simulation Vector ICD Discrepancy
Table

134 IBM 6/1/74 OCI Abend in 02 Confirmed 6/12/74 360-8

135 IBM 6/12/74 Bad code for DO CASE " 6/19/74 360-8

136 IBM /1l/74 Bad printout of.struc-
ture terminals 6/19/74 360-8

137 12 6/19/74 '<label>' for '('

Appendix E REPRODUCIBILITY OF THE

Discrepancy Worksheet ORIGINAL PAGE IS POOR

Dis osition

Discrepancy 360- 360 360 360 360 360

Number 1,2,3 -4 -5 -6 -7 -8

1 / o X

2 0. X

3 / x

4 / o x

5 / ox

6 /O X

7 / x

8 / 0 0 x

9 / o X

10 0

11 / 0o
12 / O X
13

14

15

16 / O O
17

18 / 0 X18 i

19 /. 0o X
20 o x
21 / O
22 / 0 X

"~~~ ~~I~~~~~~ ~~~------ -"~-'~---~--"------ ----- ------ I-------- ----- ;---^

23
0 x

24
. O X

27 / X
26 SO X

26 / . O X...27

- -------- -0 X---- - -I -- __
28 . ' .
29 / 0 X

30 O

PRECEDING PAGE BLANK NOT FILMED

Legend:

/: introduced X: fixed in
0: found in 65

Disposition

Discrepancy 360- 360 360 360 360 360
Number 1, 2,3 -4 -5 -6 -7 -8

31 o X

35 _ X

40 2 X

....... .. 4. 3 _ D X

37 . O x

52 0 X.. ..

.....41...4.... . .____ 0. .. O X

I a x

437 / x4 7-

5849 o x

50

51 o x

.......... ~'~-~---~ 41 /[..-.....- X--- --- - -......

52 / o 0 X

5 / o x
54 / O X

60 / X

66

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Disposition -

Discrepancy 360- 360 360 360 360 360

Number 1,2,3 -4 -5 -6 -7 -8

61 / x

62 O/ X

63 /0 X

64 . O X..

65 V O X

66 O X

67

68 O 0 X

69 0 X

0 _0X

71 / X
72 0 X

74 : O X

75 O X

76

77 / O X

78 / 0 X

79

80

81

82

83

..-__ _ 0 _ x
84 / O X

86 .. o x

87 . O x

89 /o x

90

67

Disposition -

Discrepancy 360- 360 360 360 360 360
Number 1, 2,3 -4 -5 -6 -7 -8

91

92

93

94 / O X

95 / 0 x

96 /

97 -

98

99 /
0 X

100 O X

101 /

102 O X

103

104

108 /O x

109

110 / o x

111

114 1
11 / . X

116

-- a O

117

118 / o X
119
120 O X

0 x

68

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Disposition

Discrepancy 360- 360 360 360 360 360
Number 1,2,3 -4 -5 -6 -7 -8

121

122

124

1 25 / O X....X._
126 / O X

127 / O X
128 / O X
129 / O X

130 O X

131 /0 X

132 / 0 X

133

134 / O X
135 O X

136 0 X

137

138

139

140

141

].42

143

144

145

14 6

147

148

149

150

69

