
NASA CR-

LANGUAGE
SPECIFICATION

(NASA-CR-140279) HAL/S LANGUAGE N75-10101
SPECIFprIT ION (Intermetrics, Inc.) --- p
HC CSCL 09B nclas

G3/08 4q8784

II1TERmETRIE5

UPDATE SHEET

Enclosed with each update package you receive is a new
update sheeting listing the new Version number, the
affected pages, and the date of the update.

As you receive each update, replace the old update sheet
with the new one. It is important that you refer to the
most recent Version number on the update sheet whenever you
correspond with Intermetrics concerning this document.

VERSION AFFECTED MATERIAL DATE

IR-61-8 The following pages have 6/16/76
been updated or added:

1) Title Page
2) Approval Page
3) Page 4-10/4-10.1
4) Page 4-19/4-20
5) Page 5-9/5-10
6) Page 6-5/6-6
7) Page 6-31/6-32
8) Page 7-23/7-24
9) Page 8-3/8-4

10) Page 8-5/8-6
11) Page 11-3/11-4
12) Page 11-5/11-6
13) Page 11-19/11-20
14) Page 11-21/11-22
15) Page 11-29/11-30
16) Page 11-31/11-32
17) Page 11-41/11-42
18) Page A-5 thru A-11
19) Page B-1/blank page
20) Page C-7/C-8
21) Page G-1/G-2
22) Page I-1/blank page
23) Remove Bibliography

and Section Divider
24) New Index, Page I-i thru

1-29

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

HAL/S

LANGUAGE
SPECIFICATION

VERSION IR-61-8

16 JUNE 1976

PREPARED BY

DLI'1

InTERmETRIES

INTERMETRICS INCORPORATED 70: CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

HAL/S LANGUAGE SPECIFICATION

NASA APPROVAL:

Charles W. Floyd
Head, Systems Software Section

John R. Garman
Deputy Chief, Avionics Software Branch

Richard P. Parten
Chief, Spacecraft Software Division

INTERMETRICS APPROVAL:

Daniel J. Lickly
Head, HAL Langdage Compiler Department

Dr. F.H. Martin
Shuttle Program Manager

This document was originally prepared by Intermetrics Incorporated in ac-
cordance with NASA Coitract NAS9-13864. It has been subsequently rodified
by Intermetrics under a subcontract to IBM4 Corporation in accordance with
NASA contract NAS 9-14444.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

PREFACE

The HAL Programming Language has been developed by
the staff of Intermetrics, Inc. based on many years of exper-
ience in producing software for aerospace applications.

HAL accomplishes three significant objectives:

* increased readability, through the use of a
natural two-dimensional mathematical format;

* increased reliability, by providing for
selective recognition of common data and sub-
routines, and by incorporating specific data-
protect features;

* real-time control facility, by including a
comprehensive set of real-time control commands
and signal conditions.

Although HAL is designed primarily for programming on-board
computers, it is general enough to meet nearly all the needs
in the production, verification and support of aerospace, and
other real-time applications.

The design of HAL exhibits a number of influences, the
greatest being the syntax of PL/l and ALGOL, and the two-
dimensional format of MAC/360, a language developed at the
Charles Stark Draper Laboratory. With respect to the latter,
Intermetrics wishes to acknowledge the fundamental con-
tribution to the concept and implementation of MAC, made by
Dr. J. Halcombe Laning of the Draper Laboratory.

The HAL/S Language Specification was prepared
by the staff of Intermetrics, Inc. under the direction
of Dr. Philip Newbold, the document's principal author.
Contributions were also made by Arra Avakian, Carl
Helmers, Andy Johnson, Ron Kole, Dan Lickly, Fred
Martin, Joe Saponaro, and Woody Vandever.

Editorial assistance was provided by Lee Hotz,
and the typescript was prepared by Valerie Cripps.

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

TABLE OF CONTENTS

PAGE

1. INTRODUCTION 1-1

1.1 Purpose of the Document 1-1

1.2 Review of the Language 1-1

1.3 Outline of the Document 1-3

2, SYNTAX DIAGRAMS AND HAL/S PRIMITIVES 2-1

2.1 The HAL/S Syntax Diagram 2-2

2.2 The HAL/S Character Set 2-4

2.3 HAL/S Primitives 2-5

2.3.1 ReAerved WoAd6 2-6

2.3.2 Identifie4s 2-7

2.3.3 Literals 2-8

2.4 One- and Two-Dimensional Source Formats 2-11

2.5 Comments and Blanks in the Source Text 2-13

3, HAL/S BLOCK STRUCTURE AND ORGANIZATION (Diags. 1-10)3-1

3.1 The Unit of Compilation 3-2

3.2 The PROGRAM Block 3-4

3.3 PROCEDURE, FUNCTION, and TASK Blocks 3-6

3.4 The UPDATE Block 3-8

3.5 The COMPOOL Block 3-10

3.6 Block Templates 3-11

3.7 Block Delimiting Statements 3-13

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

'

3.7.1 SimpZe HeadeA Statement-s 3-14

3.7.2 The Procedure HeadeA Statement 3-15

3.7.3 The Function HeadeA Statement 3-17

3.7.4 The CLOSE Statement 3-19

3.8 Name Scope Rules 3-20

4. DATA AND OTHER DECLARATIONS (Diags. 11-18) 4-1

4.1 The Declare Group 4-3

4.2 The REPLACE Statement 4-4

4.2. 1 FoArm of REPLACE Statement 4-4

4.2.2 RefeAencing REPLACE Statement6 4-6

4.3 The Structure Template 4-8

4.4 The DECLARE Statement 4-12

4.5 Data Declarative Attributes 4-13

4.6 Label Declarative Attributes 4-18

4.7 Type Specification 4-19

4.8 Initialization 4-23

5. DATA REFERENCING CONSIDERATIONS 5-1

5.1 Referencing Simple Variables 5-2

5.2 Referencing Structures 5-3

5.3 Subscripting 5-5

5.3. 1 Classes of Subs6cipting 5-7

5.3.2 The General Fom o6 SubscAipting 5-11

5. 3. 3 Structure Subsclipting 5-13

5.3.4 ArAay Subs cxipting 5-14

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5. 3.5 Component Subs C.ipting 5-15

5.4 The Property of Arrayness 5-17

5.4.1 Aragness of SubscApt Exptessions6 5-18

5.5 The Natural Sequence of Data Elements 5-20

6. DATA MANIPULATION AND EXPRESSIONS 6-1

6.1 Regular Expressions 6-2

6. 1.1 Arithemtic ExpAessions 6-3

6.1.2 Bit Expressions 6-7

6. 1. 3 ChatacteA Expuesion6 6-10

6.1.4 StAuctuAte Expessions 6-12

6.2 Conditional Expressions 6-13

6.2.1 Arithmetic Comparisons6 6-15

6.2.2 Bit CompaAi ons 6-17

6.2.3 CharacteA Comparisons6 6-18

6.2.4 StA.uctue Comparisons 6-19

6.2.5 Comparisons between Arrayed OpeAands 6-20

6.3 Event Expressions 6-21

6.4 Normal Functions 6-23

6.5 Explicit Type Conversions 6-26

6.5.1 Akithmetic Converion Functions 6-27

6.5.2 The Bit Conve.&ion Function 6-31

6.5.3 The ChaAacteA ConveAion Function 6-33

6.5.4 The SUBBIT Pseudo-variable 6-35

6.5.5 Summay o6 Argument Types 6-37

6.6 Explicit Precision Conversion 6-38

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

7. EXECUTABLE StIATEILNIS (Diags. 44-56) 7-1

7.1 Basic Statements 7-2

7.2 The IF Statement 7-3

7.3 The Assignment Statement 7-5

7.4 The CALL Statement 7-9

7.5 The RETURN Statement 7-12

7.6 The DO...END Statement Group 7-14

7.6.1 The Simple DO Statement 7-15

7.6.2 The DO CASE Statement 7-16

7.6.3 The DO WHILE and UNTIL Statement6 7-17

7.6.4 The Discrete DO FOR Statement 7-19

7.6.5 The IteAative DO FOR Statement 7-21

7.6.6 The END Statement 7-23

7.7 Other Basic Statements 7-24

8. REAL TIME CONTROL (Diags. 57-62) 8-1

8.1 Real Time Processes and the RTE 8-2

8.2 Timing Considerations 8-3

8.3 The SCHEDULE Statement 8-4

8.4 The CANCEL Statement 8-9

8.5 The TERMINATE Statement 8-11

8.6 The WAIT Statement 8-12

8.7 The UPDATE PRIORITY Statement 8-14

8.8 Events and the SIGNAL Statement 8-15

8.9 Process-events 8-18

8.10 Data Sharing and the UPDATE Block 8-19

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

9. ERROR RECOVERY AND CONTROL 9-1

9.1 The ON ERROR Statement 9-2

9.2 The SEND ERROR Statement 9-7

10. INPUT/OUTPUT STATEMENTS 10-1

10.1 Sequential I/O Statements 10-2

10. 1.1 The READ and READALL Statements 10-3

10.1.2 The WRITE Statement 10-6

10. 1.3 I/O ContAol Functions 10-8

10.2 Random Access I/O and the FILE Statement 10-10

11. SYSTEMS LANGUAGE FEATURES 11-1

11.1 Introduction 11-1

11.2 Program Organization Features 11-1

11.2.1 Intine Function Blockz 11-2

11.2.2 %-macAo ReeAences 11-4

11.2.3 OpeAand Reference Invocations 11-6

11.2.4 The %-MacAo Cal2 Statement 11-11

11.3 Temporary Variables 11-12

11.3.1 Regula TEMPORARY VaAiables 11-12

11.3.2 Loop TEMPORARY Vatiables 11-14

11.4 The NAME Facility 11-16

1 1.4.1 IdentijZes with the NAME AttrZbute 11-16

11.4.2 The NAME AttAibute in StAucture Templates 11-22

11.4.3 Declarations o6 TempotaiZes 11-24

11.4.4 The 'DeAefeAenced' Use o6 Simple NAME
IdentifieA 11-2 5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

v \r I

11.4.5 RefeAencing NAME Values 11-26

11.4.6 Changing NAME Vaues 11-29

11.4.7 NAME Assignment Statement6 11-29

11.4.8 NAME Value CompauLson 11-30

11.4.9 Argument Passage Considen.tions 11-31

11.4.10 Initialization 11-33

11.4.11 Notes on NAME Data StAuctures 11-34

APPENDICES

A. SYNTAX DIAGRAM SUMMARIES A-1

B HAL/S KEYWORDS B-1

C. BUILT-IN FUNCTIONS C-1

D. STANDARD CONVERSION FORMATS D-1

E. STANDARD EXTERNAL FORMATS E-1

F. COMPILE-TIME COMPUTATIONS F-1

G. WORKING GRAMMAR G-1

H. SUMMARY OF OPERATORS H-1

BIBLIOGRAPHY

INDEX

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

1. INTRODUCTION

HAL/S is a programming language developed by
Intermetrics, Inc. for the flight software of the NASA
Space Shuttle program. HAL/S is intended to satisfy virtually
all of the flight software requirements of the Space Shuttle.
To achieve this, HAL/S incorporates a wide range of features,
including applications-oriented data types and organizations,
real time control mechanisms, and constructs for systems
programming tasks.

As the name indicates, HAL/S is a dialect of the [1]
original HAL language previously developed by Intermetrics []

Changes have been incorporated to simplify syntax, curb
excessive generality, or facilitate flight code emission.

1.1 Purpose of the Document.

This document constitutes the formal HAL/S Language
Specification, its scope being limited to the essentials of
HAL/S syntax and semantics. Its purpose is to define
completely and unambiguously all aspects of the language.
The Specification is intended to serve as the final arbiter
in all questions concerning the HAL/S language. It will be
the purpose of other documents to give a more informal,
tutorial presentation of the language, and to describe the
operational aspects of the HAL/S programming system.

1.2 Review of the Language.

HAL/S is a higher order language designed to allow
programmers, analysts, and engineers to communicate with
the computer in a form approximating natural mathematical
expression. Parts of the English language are combined with
standard notation to provide a tool that readily encourages
programming without demanding computer hardware expertise.

HAL/S compilers accept two formats of the source text:
the usual single line format, and also a multi-line format
corresponding to the natural notation of ordinary algebra.

1-1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

DATA TYPES AND COMPUTATIONS

HAL/S provides facilities for manipulating a number
of different data types. Its integer, scalar, vector, and
matrix types, together with the appropriate operators and

built-in functions,provide an extremely powerful tool for

the implementation of guidance and control algorithms. Bit
and character types are also incorporated.

HAL/S permits the formation of multi-dimensional
arrays of homogeneous data types, and of tree-like structures
which are organizations of non-homogeneous data types.

REAL TIME CONTROL

HAL/S is a real time control language. Defined blocks
of code called programs and tasks can be scheduled for
execution in a variety of different ways. A wide range of
commands for controlling their execution is also provided,
including mechanisms for interfacing with external interrupts
and other environmental conditions.

ERROR RECOVERY

HAL/S contains an elaborate run time error recovery
facility which allows the programmer freedom (within the
constraints of safety) to define his own error processing
procedures, or to leave control with the operating system.

SYSTEM LANGUAGE

HAL/S contains a number of features especially
desiqned to facilitate its application to systems programming.
Thus it substantially eliminates the necessity of using an
assembler language.

PROGRAM RELIABILITY

Program reliability is enhanced when software can, by
its design, create effective isolation between various
sections of code, while maintaining ease of access to commonly
used data. HAL/S is a block oriented language in that blocks
of code may be established with locally defined variables that

1-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

are not visible from outside the block. Separately
compiled program blocks can be executed together and
communicate through one or more centrally managed and
highly visible data pools. In a real time environment,
HAL/S couples these precautions with locking mechanisms
preventing the uncontrolled usage of sensitive data or areas
of code.

1. 3 Outline of the Document.

The formal Specification of HAL/S is contained
in Sections 3 through 10 of this document. Section 2
introduces the notation to be used in the remainder.

The global structure of HAL/S is presented in
Section 3. Data declaration and referencing are presented
in Sections 4 and 5 respectively. Section 6 is devoted to
the formation of different kinds of expressions. Sections
7 through 10 show how these expressions are variously used
in executable statements.

Section 7 gives the specification of ordinary
executable statements such as IF statements, assignments,
and so on. Section 8 deals with real time programming.
Section 9 explains the HAL/S error recovery system and
Section 10 the HAL/S I/O capability.

Finally, Section 11 is devoted to system language
features of HAL/S.

1-3

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

2. SYNTAX DIAGRAMS AND HAL/S PRIMITIVES

In this Specification, the syntax of the HAL/S
language is represented in the form of syntax diagrams.
These are to be read in conjunction with the associated
sets of semantic rules. Sometimes the semantic
rules modify or restrict the meaning inherent in the
syntax diagrams. Together the two provide a complete,
unambiguous description of the language. The syntax
diagrams are mutually dependent in that syntactical terms
referenced in some diagrams are defined in others. There
are, however, a basic set of syntactical terms for which no
definition is given. These are the HAL/S "primitives".

This Section has two main purposes: to explain how
to read syntax diagrams, and to provide definitions of the
HAL/S primitives. Various aspects of HAL source text which
impact upon the meaning of the diagrams are also discussed
briefly.

A syntax diagram Cross Reference Table may be found
in Appendix A.

2-1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

2. 1 The HA1 IS Syntax Diagram.

Syntax diagrams are, essentially, flow diagrams
representing the formal grammar of a language. By tracing
the paths on a diagram, various examples of the language
construct it represents may be created. In this Specification,
the Syntax Diagrams, together with the associated Semantic
Rules, provide a complete and unambiguous definition of the

HAL/S Language. The syntax diagrams are, however, not meant
to be viewed as constituting a "working" grammar (that is,
as an analytical tool for compiler construction).

A typical example of a syntax diagram is illustrated
below. Following the diagram, a set of rules for reading
it correctly is given. The rules apply generally to all
syntax diagrams presented in the ensuing Sections.

WAIT statement 0

statement

WAIT FOR DEPENDENT

label 7 qeven~t x

UNTIL arith exp

example:
NOW: WAIT UNTIL T + 7.5;

2-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

RULES:

1. Every diagram defines a syntactical term. The name
of the term being defined appears in the hexagonal box Q.
The title of the syntax diagram(is usually a discursive
description of the syntactical term. In the case illustra-
ted, the language construct depicted is a particulariza-
tion of the syntactical term defined (a "WAIT statement"
is an example of(O).

2. To generate samples of the construct, the flow path is
to be followed from left to right from box to box,
starting at the point of juncture of the definition box
0, and ending when the end of the path(is reached.

3. The path is moved along until it arrives at a black dot
.No "backing up" along points of convergence such

as(D)is allowed. A black dot denotes that a choice of
paths is to be made. The possible number of divergent
paths is arbitrary.

4. Potentially infinite loops such as(Dmay sometimes be
encountered. Sometimes there are semantic restrictions
upon how many times such loops may be traversed.

5. Every time a box is encountered, the syntactical term
it represents is added to the right of the sequence of
terms generated by moving along the flow path. For
example, moving along the path paralleling the dotted
line ®generates the sequence "WAIT <arith exp>;" (see
Rule 7.)

6. Boxes with squared corners ,such as(,represent syntactical
terms defined 'n other diagrams. Boxes with circular
ends, such as , represent HAL/S primitives. Circular
boxes ,such as contain special characters (see
Section 2.2).

7. In the text accompanying the syntax diagrams, boxes
containing lower case names are represented by enclosing
the names in the delimiters <>. Thus box® becomes
<arith exp>. Upper case names are reserved words of the
language.

8. The example given at is an example of HAL/S code
which may be generated by a plying the syntax diagram
(since some boxes ,such as 9 for example, are defined in
other syntax diagrams, reference to them may be necessary
to complete the generative process).

2-3

INTERMETRICS INCORPORATED -701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR -61-5

2.2 The HALUS Character Set.

The HAL/S character set consists of the 52 upper and
lower case alphabetic characters, the numerals zero through
nine, and other symbols. The restricted character set is
the set necessary for the generation of constructs depicted
by the syntax diagrams. The extended character set includes,
in addition ,certain other symbols legal in such places as
comments and character literals, and is used chiefly for the
purpose of compiler listing annotation.

The following table gives a complete list of the
characters in the extended set, with a brief indication of
their principal usage.

alphabetic alphabetic special characters

A +
B k -
C 1| *
D m
E n /
F oF 0 operators
G P literals,
H q identifiers &

I r
J s <
K t >
L u #
M identifiers, v @
N literals, w $
0 reserved words x

P Y separators

RQ z (blank)
S pseudo-alphabetic (
T identifiers
U m delimiters81 V macros , J

W € text generation
W escape additional extended-set

X numeric symbolsy symol

Z 0
a 1
b 2 identifiers
c 3 literals }
d 4
e 5 ?f 6

7

h 8
i 9

2-4

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

2.3 HALIS Primitives.

HAL/S syntax diagrams ultimately express all syntac-
tical elements in terms of a small number of special charac-
ters and pre-defined primitives. Primitives are constructed
from the characters comprising the HAL/S restricted character
set. There are three broad classes of primitives: "reserved
words", "identifiers", and "literals".

2-5

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.3.1 ReeAved Word6

As their names suggest, reserved words are names
recognized to have standard meanings within the language
and which are unavailable for any other use. With the
exception of %-macro names, they are constructed from
alphabetic characters alone. Reserved words fall into
three categories: keywords, %-mnacro, and built-in function
names. In the syntax diagrams, and in the accompanying
text, reserved words are indicated by upper case characters.
A list of keywords is given in Appendix B, and of built-in
function names in Appendix C.

2-6

INTERMETRICS INCORPORATED 701 CONCORD AVENUE -CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

An identifier is a name assigned by the programmer to
be a variable, label, or other entity. Before its attributes
are defined, it is syntactically known as an <identifier>.
Each valid <identifier> must satisfy the following rules:

* the total number of characters must not exceed 32;

" the first character must be alphabetic;

" any character except the first may be alphabetic
or numeric;

" any character except the first or the last may be
a "break character" ().

The definition of an <identifier> generally establishes its
attributes, and,in particular,its type. Thereafterbecause
its type is known,it is given one of the following syntac-
tical names, as appropriate:

<label>

<process-event name> arith (arithmetic)
char (character)

<§ var name> where § bit
event

<template name> structure

The manner in which its attributes are established is
discussed in Section 4. The manner in which it is thereafter
referenced is discussed in Section 5.

2-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.3.3 Liteas.

Literals are groups of characters expressing their own
values. During the execution of a body of HAL code their
values remain constant. Different rules apply for the forma-
tion of literals of differing type.

RULES FOR ARITHMETIC LITERALS:

1. No distinction is made between integer- and scalar-valued
literals. They take on either integer or scalar type
according to their context. Similarly, no distinction
is made between single and double precision. Consequently,
arithmetic literals can be represented by the single
syntactical form <number>.

2. The generic form of a <number> is

±ddddddd.dddddddd<exponents>

where d = decimal digit.

Any number of decimal digits to an implementation depen-
dent maximum, including none, may appear before or
after the decimal point. The sign and decimal point
are both optional. Any number of <exponents> to an
implementation dependent maximum may optionally follow.

3. The form of any of the <exponents> may be

B<power> ~ 2 <power>

E<power> - 10<power>

H<power> ~ 16<power>

where <power> is a signed integer number. The valid
range of values of <power> is implementation dependent.

examples:

0. 123E16B-3
45, 9
-4

2-8

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

RULES FOR BIT LITERALS:

1. Literals of bit type are denoted syntactically by
<bit literal>.

2. They have one of the forms shown below:

BIN <repetition> 'bbbbbbb' b = binary digit

OCT <repetition> 'ooooooo' o = octal digit
where

HEX <repetition> 'hhhhhhh' h = hexadecimal digit

DEC <repetition> 'ddddddd' d = decimal digit

The <repetition> is optional and consists of a parenthesized
positive integer number. It indicates how many times
the following string is to be used in creating the value.
The number of digits lies between 1 and an implementation
dependent maximum.

3. The following abbreviated forms are allowed:

TRUE = ON E BIN'1'

FALSE E OFFE BIN'O'

examples:

BIN'11011000110'
HEX(3)'F'

2-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

RULES FOR CHARACTER LITERALS:

1. Literals of character type are denoted syntactically
by <char literal>.

2. They have one of the two following forms

'ccccccc'

CHAR <repetition> 'ccccccc'

where c is any character in the HAL/S extended
character set. The <repetition> consists of a
parenthesized positive integer literal. It
indicates how many times the following string is
to be used in creating the value. The number of
characters lies between zero and an implementation
dependent maximum.

3. A null character literal (zero characters long) is
denoted by two adjacent apostrophes.

4. Since an apostrophe delimits the string of characters
inside the literal, an apostrophe must be represented
by two adjacent apostrophes; i.e. the representation
of "dog's" would be 'DOG''S'.

118 5. Within a character literal, a special "escape"
mechanism may be employed to indicate a character other
than one in the HAL/S extended character set. "¢" is
defined to be the "escape" character within this context.
In accordance with an implementation dependent mapping
scheme, HAL/S characters will be assigned alternate charac-
ter values. Inclusion of these alternate values in a string
literal is achieved by preceeding the appropriate HAL/S
character by the proper number of "escape" characters.

128 The specified character with the "escape" character(s)
preceeding it will be interpreted as a single character
whose value is defined by the implementation,

Since "¢" is used as the "escape" character, specifica-
tion of the character "¢" as a literal itself must be
done via the alternate character mechanism, i.e. an
implementation will designate an alternate value for
some HAL/S character to be the character "'".

2-10

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

examples:

I

'ONE TWO THREE'

'DOG' 'S'

'AB¢AD' The implication is that ¢A

'AB¢¢ AD' and ¢€A have been defined I
as alternate characters.

128

2-10.1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.4 One- and Two-Dimensional Source Formats.

In preparing HAL source text,either single or multiple
line format may be used. In the single line or "l-dimensional"
format, exponents and subscripts are written on the same line
as the operands to which they refer. In the multiple line or
"2-dimensional" format exponents are written above the
line containing the operands to which they refer, and subscript:
are written below it. Of the two formats, the 2-dimensional
is regarded as standard since it closely parallels usual
mathematical practice.

RULES FOR EXPONENTS:

1. In the syntax diagrams, the 1-dimensional format is
assumed for clarity. The operation of taking an exponent
is denoted by the operator **.

examples:

A - A**JJA - - A**J**K

2. Operations are evaluated right to left (see Section 6.1.1).

3. If an exponent is subscripted, the subscript must be
written in the 1-dimensional format.

RULES FOR SUBSCRIPTS:

1. In the syntax diagrams, the 2-dimensional format is
assumed for clarity. Two special symbols are used to
denote the descent to a subscript line, and the return
from it:

< descent to subscript line

<return from subscript line

Effectively they delimit the beginning and end of
a subscript expression respectively.

2-11

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2. The 1-dimensional format of a subscript expression
consists of delimiting it at the beginning by $(and
at the end by a right parenthesis.

example:

AK+ 2 --0 A$(K+2)

3. For certain simple forms of subscript,the parentheses

may be omitted. These forms are:

* a single <number>

" a single <arith var name> (see Section 5.3).

aIexaml:

A~- A$J

4. If a subscript expression contains an exponentiation
operation, the latter must be written in the 1-dimensional
format.

2-12

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2. 5 Comments and Blanks in the Source Tex.

Any HAL source text consists of sequences of HAL/S
primitives interspersed with special characters. It is
obviously of great importance for a compiler to be able to
tell the end of one text element from the beginning of the
next. In many cases the rules for the formation of primitives
are sufficient to define the boundary. In others,a blank
character is required as a separator. Blanks are legal in
the following situations:

* between two primitives;

* between two special characters;

* between a primitive and a special character.

Blanks are necessary (not just legal) between two primitives.
With respect to string (bit and character) literals, the single
quote mark serves as a legal separator.

Comments may be imbedded within HAL source text
wherever blanks are legal. A comment is delimited at the
start by the character pair /*, and at the end by the
character pair */. Any characters in the extended character
set may appear in the comment (except, of course, for *
followed by /). There are implementation dependent restric-
tions on the overflow of imbedded comments from line to line
of the source text.

2-13

INTERMETRICSINCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138*-(617) 661-1840

3. HALUS BLOCK STRUCTURE AND ORGANIZATION

The largest syntactical unit in the HAL/S language
is the "unit of compilation". In any implementation, the
HAL/S compiler accepts "source modules" for translation,
and emits "object modules" as a result. Each source module
consists of one unit of compilation, plus compiler direc-
tives for its translation.

At run time, an arbitrary number of object modules are
combined to form an executable "program complex"l. Generally,
a program complex contains three different types of object
modules:

* program modules - characterized by being independ-
ently executable.

* external procedure and function modules - charac-
terized by being callable from other
modules.

* compool modules - forming common data pools for
the program complex.

Each module originates from a unit of compilation of corres-
ponding type.

1 A program complex is executable within the framework of an
executive operating system, and a run time utility library.

3-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.1 The Unit of Compilation.

Each unit of compilation consists of a single PROGRAM,
PROCEDURE, FUNCTION, or COMPOOL block of code, possibly
preceded by one or more block templates. Templates, in effect,
provide the code block with information about other code
blocks with which it will be combined in object module form
at run time.

SYNTAX:

unit of compilation

compilai function block

program template - procedure block -

. compool block

function template program block

procedure template

function
§ procedure

compool template - proced e
compool
program

SEMANTIC RULES:

1. A program <compilation> is one containing a <program block>.
Its object module in the program complex may be activated
by the Real Time Executive (see Section 8.), or by other
means dependent on the operating system. The <program
block> is described in Section 3.2.

2. A procedure or function <compilation> is one containing
a <procedure block> or <function block> respectively.
Its object module in the program complex is executed by
being invoked by other program, procedure or function
modules. Both <procedure block>s and <function block>s
are described in Section 3.3.

3-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. A compool <compilation> is one containing a <compool block>
specifying a common data pool potentially available to
any program, procedure or function module in the program
complex. The <compool block> is described in Section 3.5.

4. The code block in any< compilation> except a compool
compilation> may contain references to data in a compool
<compilation>,references to other< program block>s, and
invocations of external< procedure block>s or< function
block>s in other <compilations>s. A <compilation> making
such references must precede its code block with a
block template for each such< program block>,< procedure
block>, <function block> or <compool block> referenced.
Block templates are described in Section 3.6.

3-3

INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3.2 The PROGRAM Block.

The PROGRAM block delimits a main, independently
executable body of HAL/S code.

SYNTAX:

PROGRAM block

program
block

statement

program header - declare group closing

example: task block

ALPHA: PROGRAM; I
DECLARE Q; update block -

CALL BETA ASSIGN (0); function block -

BETA: PROCEDURE ASSIGN (W); procedure block -

DECLARE W;
W=W+ 1;
CLOSE BETA;

CLOSE ALPHA;

SEMANTIC RULES:

1. The name of the <program block> is given by the <label>
prefacing the block.

2. The <program block> is delimited by a <program header>
statement at the beginning, and a <closing> at the end.
These two delimiting statements are described in Sections
3.7.1 and 3.7.4 respectively.

3. The contents of a <program block> consist of a <declare
group> used to define data local to the <program block>,
followed by any number of executable <statement>s.

3-4

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

4. The normal flow of execution of the <statement>s in the
block is sequential; various types of <statement> may
modify this normal sequencing in a well-defined way.

5. PROCEDURE, FUNCTION, TASK, and UPDATE blocks may appear
nested within a <program block>. The blocks may be
interspersed between the <statement>s of the <program block>,
and with the exception of the UPDATE block are not
executed in-line.

6. Execution of a <program block> is accomplished by schedul-
ing it as a process under the control of the Real Time
Executive (see Section 8.).

3-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.3 PROCEDURE, FUNCTION, and TASK Blocks.

PROCEDURE, FUNCTION, and TASK blocks share a common
purpose in serving to structure HAL/S code into an interlock-
ing modular form. The major semantic distinction between the
three types of block is the manner of their invocation.

SYNTAX:

PROCEDURE

§ FUNCTION block
TASK

§block

statement

§ header declare group - -

update block

procedure block

example: function block
NEW: TASK;

I=1;
CLOSE NEW;

SEMANTIC RULES:

1. The name of the block is given by the <label> prefacing
the block. The definition of a block label is considered
to be in the scope of the outer block containing the
block in question. Block names must be unique within
any compilation unit.

2. The block is delimited at its beginning by a header
statement characteristic of the type of block, and at the
end by a <closing>. The delimiting statements are
described in Sections 3.7.1 through 3.7.4.

3. The contents of the block consist of a <declare group>
used to declare data local to the block, followed by
any number of executable <statements>s.

3-6

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4. The normal flow of execution of the <statement>s in the
block is sequential; various types of <statement> may
modify this normal sequencing in a well-defined way.

5. The block may contain further nested PROCEDURE,
FUNCTION, and UPDATE blocks. The nested blocks may appear
interspersed between the <statement>s of the outer block,
and except for the UPDATE block are not executed in-line.
A consequence of this rule is that PROCEDURE and FUNCTION
blocks may be nested within each other to an arbitrary
depth.

6. Execution of a <task block> is invoked by scheduling it
as a process under the control of the Real Time Executive
(see Section 8.). Execution of a <procedure block> is
invoked by the CALL statement (see Section 7.4). Execution
of a <function block> is invoked by the appearance of its
name in an expression (see Section 6.4).

7. In the <declare group> of a PROCEDURE or FUNCTION block
which forms the outermost code block of a <compilation
unit>, some implementations may require all formal
parameters to be declared before any local data.

3-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3.4 The UPDATE Block.

The UPDATE block is used to control the sharing of data
by two or more real time processes. Its functional charac-
teristics in this respect are described in Section 8.

SYNTAX:

UPDATE block

statement

update header -declare group 0 a-coi

procedure block

function block

SEMANTIC RULES:

1. If present, the <label> prefacing the <update block>
gives the name of the block. If <label> is absent, the
<update block> is unnamed.

2. The block is delimited at its beginning by an <update
header> statement, and at the end by a <closing>. The
delimiting statements are described in Sections 3.7.1
and 3.7.4.

3. The contents of the block consist of a <declare group>
used to declare data local to the <update block>,
followed by any number of executable <statement>s.

4. The normal flow of execution of the <statement>s in the
block is sequential; various types of <statement> may
modify this normal sequencing in a well-defined way.

5. Only PROCEDURE and FUNCTION blocks may be nested within
an <update block>. The nested blocks may appear inter-
spersed between the <statement>s of the block, and are
not executed in-line.

3-8

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6. An <update block> is treated like a <statement>
in that it is executed in-line. In this respect
it is different from other code blocks.

7. The following <statement>s are expressly forbidden inside
an <update block> in view of its special protective
function:

* I/O statements (see Section 10.);

" invocations of <procedure block>s or <function block>s
not themselves nested within the <update block>;

* real-time programming statements, except for the
SIGNAL, SET,and RESET statements (see Section 8.8).

3-9

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

2 r Tha ' AAAD"AAI DI%.I
. II I %JVIT11 VVI. UIvIt.

The COMPOOL block specifies data in a common data pool
to be shared at run time by a number of program, procedure,
or function modules.

SYNTAX:

COMPOOL block

lcompool header - declare group closing

SEMANTIC RULES:

1. The name of the block is given by the <label> prefacing
the block.

2. The block is delimited at its beginning by a <compool
header> statement, and at its end by a <closing>. The
delimiting statements are described in Sections 3.7.1
and 3.7.4.

3. The contents of the block consist merely of a <declare
group> used to define the data constituting the compool.
In no sense is a <compool block> to be regarded as an
executable body of code.

4. The maximum number of <compool block>s existing in a
program complex is implementation dependent.

3-10

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.6 Block Templates.

In a <compilation>, block templates are used to provide

the outermost code block of the <compilation> with informa-

tion concerning external code or data blocks. Depending

upon the implementation, the translation of program, procedure,

function, and compool <compilation>s may automatically
generate the corresponding block templates, to be included

in other <compilation>s by compiler directive.

There are four kinds of block templates, PROGRAM,

PROCEDURE, FUNCTION, and COMPOOL templates, all being

syntactically similar (see Section 3.1).

oYNTAX:

PROGRAM
§ PROCEDURE template

§ I FUNCTION
template MCOPOOL

bl EXTERNAL §header - declare group closing -

example:
ETA: EXTERNAL COMPOOL;

DECLARE S SCALAR;
CLOSE ETA;

SEMANTIC RULES:

1. The <label> of the template constitutes the template
name. It is the same name as that of the code block to
which the template corresponds.

2. The block template is delimited at its beginning by a
header statement identical with the header statement of
the corresponding code block, and at the end by a
<closing>. The delimiting statements are described in
Sections 3.7.1 through 3.7.4.

3-11

INTERMETRICS INCORPORATED 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3. The contents of the block template consist only of a
<declare group>, which has the following significance:

* in a <program template>, the <declare group> contains
no statements. All information about external programs
is contained in the <program header>.

* in a <compool template>, the <declare group> is used to
declare a common data pool identical with that of the
corresponding <compool block>;

* in a <procedure template> or <function template>, the
<declare group> is used to declare the formal parameters
of the corresponding <procedure block> or <function
block> (see Sections 3.7.2 and 3.7.3).

4. The keyword EXTERNAL preceding the header statement of
the block template distinguishes it from an otherwise
identical code block. To a HAL/S compiler the keyword
is in effect a signal to prevent the compiler from
generating object code for the block and setting aside
space for the data declared.

3-12

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MACSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

3.7 Block Delimiting Statements.

Both code blocks and block templates are delimited
at the beginning by a header statement characteristic of
their type, and at the end by a <closing> statement. In
all code blocks except for the COMPOOL block, the header
statement is the first statement of the block to be executed
on entry. A COMPOOL block, containing only declarations of 124
data, is, of course, not executable at all.

3-13

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Version IR-61-5

3.7.1 Simple HeadeA Statement6

Simple header statements are those which specify no
parameters to be passed into or out of the block. They
are the compool, program, task and update header state-
ments.

SYNTAX:

COMPOOL
PROGRAM
PROGRAM header statements
TASK
UPDATE

update
header

header UPDATE

progam TS

ACCESS
/compool

.header > f PROGRAM e

ACCESS

90 COMPOOL

RIGID

3-14

INTERMETRICS INCORPORATED *701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

version IR-bl-!

SEMANTIC RULES:

1. The type of the code block or template is determined
by the type of the header statement, which is in turn
indicated by one of the keywords COMPOOL, PROGRAM,
TASK and UPDATE.

2. The keyword ACCESS causes managerial restrictions to
be placed upon the usage of the block in question. The
manner of enforcement of the restriction is implementa-
tion dependent.

3. The keyword RIGID causes Compool data (except for
data with the REMOTE attribute) to be organized in
the order declared and not rearranged by the compiler. 90

3-r-14.1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

3.7.2 The Proceduwe Header Statement.

The procedure header statement delimits the start of
a <procedure block> or <procedure template>.

SYNTAX:

PROCEDURE header statement

procedure
header

PROCEDURE

(idsmdie)

REENTRANT

ASSIGN (aidentifie r EXCLUSIVE

example:
PROCEDURE ASSIGN (B);

SEMANTIC RULES:

1. The keyword PROCEDURE identifies the start of a <procedure
block>, or <procedure template>. It is optionally
followed by lists of "formal parameters" which correspond
to "arguments" in the invocation of the procedure by a 124
CALL statement (see Section 7.4).

2. The <identifier>s in the list following the PROCEDURE
keyword are called "input parameters" because they may not
appear in any context inside the code block which may
cause their values to be changed.

3-15

INTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. - (617) 661-1840

3. The <identifier>s in the list following the ASSIGN keyword
are called "assign parameters" because they may appear
in contexts inside the code block in which new values may
be assigned to them. They may, of course, also appear in
the same contexts as input parameters.

4. Data declarations for all formal parameters must appear
in the <declare group> of the <procedure block> or
<procedure template>.

5. If the <procedure header> statement specifies neither of
the keywords REENTRANT or EXCLUSIVE, then only one real
time process (see Section 8.) may be executing the
<procedure block> at any one time; however there is no
enforcing protective mechanism. If the keyword EXCLUSIVE
is specified, then such a protective mechanism does exist.
If an EXCLUSIVE <procedure block> is already being executed
by a real time process when a second process tries to
invoke it, the second process is forced into the stall
state (see Section 8.) until the first has finished execu-
ting it. If the keyword REENTRANT is specified, then two
or more processes may execute the <procedure block>
"isimultaneously".

6. The keyword REENTRANT indicates to the compiler that
reentrancy is desired. However, other attributes and
conditions may conflict with this overall objective.
The following effects should be noted:

* STATIC data is allocated statically and initialized
statically. There is only one copy of STATIC data
which must be shared by all processes simultaneously 107
executing the block. Hence, in coding REENTRANT
blocks care must be taken not to assume that STATIC
variables participate in the reentrancy.

* AUTOMATIC data is allocated dynamically and initialized
dynamically. Every process simultaneously executing
the block gets its own initialized copy of the data
on entry into the block. In general, all local data
in a REENTRANT block should be declared with the
AUTOMATIC attribute.

* Procedures and functions defined within a REENTRANT
block must also possess the REENTRANT attribute if
they too declare local data which is required to
participate in the reentrancy.

3-16

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

In addition, for reentrancy to be preserved, the following
rules must be observed:

* Update blocks* and inline functions within a REENTRANT
block may not declare any local data, STATIC or 107
AUTOMATIC.

* A procedure or function called by a REENTRANT block
must itself also be REENTRANT.

7. The keyword ACCESS may be attached to the <procedure
header> of a <procedure template> and its corresponding
external <procedure block>. It denotes that managerial
restrictions are to be placed on which <compilation>s may
reference the <procedure block>. The manner of enforce-
ment is implementation dependent.

Any use of update blocks and LOCK data, and of EXCLUSIVE

procedure or function blocks should be carefully analyzed

with respect to unfavorable interactions with REENTRANT

blocks.

3-16.1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3.7.3 The Function HeadeA Statement.

The function header statement delimits the start of
a <function block> or <function template>.

SYNTAX:

function FUNCTION header statement

header

EXCLUSIVE

FUNCTION type s1 - - -

17

identifier) REENTRANT

ACCESS

example:example: FUNCTION (A) SCALAR REENTRANT;

SEMANTIC RULES:

1. The keyword FUNCTION identifies the start of a <function
block> or <function template>. It is optionally followed
by a list of "formal parameters" which are substituted
by corresponding "arguments" in the invocation of the
<function block> (see Section 6.4)..

2. The <identifier>s in the list following the FUNCTION
keyword are "input parameters" since they may not appear
in any context inside the <function block> which may cause
their values to be changed.

3-17

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

3. Data declarations for all the formal parameters must
appear in the <declare group> of the <function block>
or <function template>.

4. <type spec> identifies the type of the <function block>
or <function template>. A <function block> may be of
any type except event. A formal description of the type
specification given by <type spec> is given in Section 4.7.

5. If the <function header> statement specifies neither of
the keywords REENTRANT or EXCLUSIVE, then only one real
time process (see Section 8.) may be executing the
<function block> at any one time; however there is no
enforcing protective mechanism. If the keyword EXCLUSIVE
is specified, then such a protective mechanism does exist.
If an EXCLUSIVE <function block> is already being executed
by a real time process when a second process tries to
invoke it, the second process is forced into the stall
state (see Section 8.) until the first has finished exe-
cuting it. If the keyword REENTRANT is specified, then
two or more processes may execute the <function block>
"simultaneously".

6. The keyword REENTRANT indicates to the compiler that
reentrancy is desired. However, other attributes and
conditions may conflict with this overall objective.
The following effects should be noted:

* STATIC data is allocated statically and initialized
statically. There is only one copy of STATIC data
which must be shared by all processes simultaneously
executing the block, Hence, in coding REENTRANT
blocks care must be taken not to assume that STATIC

107 variables participate in the reentrancy.

* AUTOMATIC data is allocated dynamically and initialized
dynamically. Every process simultaneously executing
the block gets its own initialized copy of the data
on entry into the block. In general, all local data
in a REENTRANT block should be declared with the
AUTOMATIC attribute.

* Procedures and functions defined within a REENTRANT
block must also possess the REENTRANT attribute if
they too declare local data which is required to
participate in the reentrancy.

3-18

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-
5

In addition, for reentrancy to be preserved, the following
rules must be observed:

107

* Update blocks* and inline functions within a REENTRANT
block may not declare any local data, STATIC or
AUTOMATIC.

* A procedure or function called by a REENTRANT block
must itself also be REENTRANT.

7. The keyword ACCESS may be attached to the <function header>
of a <function template> and its corresponding external
<function block>. It denotes that managerial restrictions
are to be placed on which <compilation>s may reference
the <function block>. The manner of enforcement is imple-
mentation dependent.

* Any use of update blocks and LOCK data, and of EXCLUSIVE
procedure or function blocks should be carefully analyzed
with respect to unfavorable interactions with REENTRANT
blocks.

3-18.1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

3.7.4 The CLOSE Statement.

For all code blocks and block templates, the CLOSE
statement is the <closing> delimiter of the block.

SYNTAX:

closing of block

CLOSE

example:
ALLDONE: CLOSE;

SEMANTIC RULES:

1. The <closing> of a code block or block template is
denoted by the CLOSE keyword followed by an optional
<label>. If present, <label> must be the name of the
block.

2. Execution of the CLOSE statement causes a normal
exit from a PROGRAM, PROCEDURE, TASK, or UPDATE
block, and a run time error from a FUNCTION block.
Exit from a FUNCTION block must be achieved via 124
the RETURN statement (see Section 7.5).

3. The <closing> of a PROGRAM, PROCEDURE, FUNCTION,
TASK, or UPDATE block may be labelled as if it were
a <statement>. The <closing>s of COMPOOL blocks
and block templates cannot be labelled.

3-19

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.8 Name Scope Rules.

By using the code blocks described, and by taking
advantage of their nesting property, the modularization of
HAL/S <compilation>s may be effected. An important consequence
of the nesting property is the need to determine the "name
scope" over which names defined in a code block are potentially
known. Names (i.e. <identifier>s) to which name scope rules
apply are generally either labels or variable names.

GENERAL RULES:

1. The name-scope of a code block encompasses the entire
contents of the block, including all blocks nested within
it.

2. A name defined in a name-scope is known, and therefore
able to be referenced, throughout that name-scope,
including all nested blocks not redefining it. A name
defined in a name-scope is not known outside that name-
scope.

3. Names defined in all common data pools used by a
<compilation> are considered to be defined in one name-
scope which encloses the outermost code block of the
<compilation>.

QUALIFICATIONS:

1. The name of a code block is taken to be defined in
the name scope immediately enclosing the block. A
PROCEDURE or FUNCTION label defined at the outermost
level of compilation can be invoked from anywhere
within the compilation.

2. The <label> of a statement is effectively unknown in
blocks contained in the name scope where the <label>
is defined. This is because a code block cannot be
branched out of by using a GO TO statement (see Section
7.7).

3. Block labels must be unique throughout a unit of compila-
tion.

4. Under particular, limited circumstances described in
Section 4.3, the names of structure template nodes and
terminals need not be unique.

3-20

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

example:

ALPHA: PROGRAM;
DECLARE X; x known everywhere

souter DECLARE Y; this Y known everywherescope DCAEY
except in BETA.

BETA: PROCEDURE;-- BETA is known everywhere;

DECLARE Y; new Y known in BETA only
inner name DECLARE Z; Z known in BETA only
scope .

CLOSE BETA;

DELTA: Y - O; 4 DELTA not known in BETA

CLOSE ALPHA;

3-21

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

4. DATA AND OTHER DECLARATIONS

The HAL/S language provides a comprehensive set of
data types. To encourage clarity and decrease the frequency
of errors of omission, all data is required to be declared in

specific areas of a HAL compilation called "declare groups".
Occasionally the demands of a particular algorithm also
reauire other kinds of declarations to be made. The diagram
on the following page summarizes the relationship among the
types and organizations.

4-1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HAL DATA TYPES AND ORGANIZATIONS

TYPES ORGANIZATIONS

arithmetic string array structure

L individual *- scalar - character' t- e array
types

-- integer I combination
of types

- vector-E ifl special

process
event

* Component Subscripting (see Section 5.3.5) Allowed.

* Array Subscripting Allowed.

* *Structure Subscripting Allowed.

4-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.1 The Declare Group.

A <declare group> is a collection of data and other
declarations. The position of <declare group>s within code
blocks and block templates has been described in Section 3.

SYNTAX:

declare group

0
declare
group

replace statement

- structure template -

f declare statement

SEMANTIC RULES:

1. A <declare group> may simply be empty, or it may contain
<replace statement>s, <structure template>s, and <declare
statement>s. The form of each of these constructs is
defined in this Section.

2. The "name scope" (see Section 3.8) of <identifier>s
defined in a <declare group> is the code block contain-
ing the <declare group> and potentially all code blocks
nested within it.

4-3

INTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.2 The REPLACE Statement.

The REPLACE statement is used to define an identifier
text substitution which is to take place wherever the identifier
is referenced within the same name scope after its definition.
The REPLACE statement constitutes a "source macro" definition.

4.2.1 FoAm o6 REPLACE Statement

SYNTAX:

repla
replace statement

statement

(identifier

IEL C identifier VI

examples:
REPLACE ALPHA BY "J+1"
REPLACE BETA (X, ANGLE) BY "SIN (X ANGLE) - EXP (X)/X";

GENERAL SEMANTIC RULES:

1. The <identifier> following the keyword REPLACE is
called the REPLACE name.

2. A REPLACE name may not appear as a formal parameter
in a <procedure header> or <function header>.

3. A REPLACE name in an inner code block is never
"replaced" as a result of another REPLACE statement
located in an outer code block.

4. Nested replacement operations to some implementation
dependent depth are allowed (i.e. the <text> of a
<replace statement> may contain a further <identifier>
to be replaced).

4-4

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Version IR-61-5

SEMANTIC RULES: Simple Replacements

1. A simple replacement is a REPLACE statement with no
parameter list following the <identifier>.

2. Whenever it is referenced, an <identifier> defined in
a simple REPLACE statement is to be replaced by <text>
of the definition as if <text> had been written directly
instead of the source macro reference. Enclosing the 81

reference within € signs (e.g. ¢ALPHA¢) makes the
<text> visible in the compiler listing.

3. <text> may consist of any HAL/S characters except
instances of an unpaired double quote (") character.
A double quote character (") is indicated within
<text> by two such characters in succession ("").

SEMANTIC RULES: Parametric Replacements

1. A parametric replacement is defined by a REPLACE statement
with a list of one or more parameters following the <identifier>.
The maximum number of parameters allowed is an implementa-
tion dependent limit. Each parameter is itself a HAL/S
<identifier>. It is known only locally to the REPLACE
statement: its name may therefore be duplicated by
names used for other <identifier>s in the name scope
containing the REPLACE statement.

2. The <text> of a parametric REPLACE statement is composed of

any HAL/S characters except instances of an unpaired double
quote (") character. A double quote character may be
indicated within <text> by coding two such characters
in succession. The <text> may contain, but is not
required to contain, instances of the parameters of
the REPLACE statement.

4-5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

4.2.2 ReAVrencing REPLACE Statement6

SYNTAX:

parametric replace reference

(parametricGreplace
ref erence

identifier argument)

SEMANTIC RULES:

1. A reference to a parametric REPLACE statement consists
of the REPLACE name followed by a series of <argument>s
enclosed in parentheses. The REPLACE name must have
been defined previously within the name scope of the
reference. The number of <argument>s must correspond
to the number of parameters of the REPLACE statement
being referenced. Enclosing the reference within ¢ signs
(e.g. CBETA(A,B)¢) make the <text> visible in the compiler
listing.

2. The <argument>s supplied in a parametric REPLACE
reference are substituted for each occurrence of the
corresponding parameter within the source macro
definition's <text>. Note that if the parameter in
question does not occur within the source macro
definition <text>, the <argument> is ineffective.
<text> substitution is always completed before parsing.

Example:

124 REPLACE BETA(X,ANGLE) BY "SIN(X ANGLE) - EXP(X)/X";

Z = BETA(Y,ALPHA); WILL GENERATE SIN(Y ALPHA) - EXP(Y)/Y

4-6

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. In general, the <argument>s supplied in a parametric
REPLACE reference comprise <text> separated by commas
(subject to the specific exceptions listed below).
As such, they conform to the preceding semantic rules
for <text> with the following emendations.

* Blanks are significant in <argument>s. Only the
commas used to separate <argument>s are excluded
from the <text> values substituted into the macro
definition.

* The <text> string comprising an <argument> may be
empty. The value substituted in such a case is a
null string.

* Within each <argument> there must be an even number
of apostrophe characters ('). The effect of this
rule is to require that each character literal used
must be completely contained within a single <argument>.

* Within each <argument> there must be an even number
of quotation mark characters ("). The effect of this
rule is to require that the substitution of a nested
REPLACE statement include the entire text of the
replacement within a single <argument>.

* Within each <argument> there must be a balanced number
of left and right parentheses: for each opening left
parenthesis there must be a corresponding right
parenthesis.

* Commas are not separators between <argument>s under the

following circumstances:

- within a character literal.

- within REPLACE <text>.

- nested within parentheses.

4-7

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

4.2.3 IdentiLieA GeneAration

New identifiers may be generated by enclosing a

reference to a simple REPLACE statement within € signs.
81 The effect is to make visible in the compiler listing,

the catenation of the REPLACE <text> with the characters

surrounding the construct. For example,REPLACE ABLE BY "BAKER"

then:

1) X = ¢ABLE¢YZ

becomes X = BAKERYZ

2) CALL P _ABLE¢(Q,R,S);

becomes CALL PBAKER(Q,R,S);

A4- a +tAken in pairs, thus ¢X¢Y¢Z¢ is interpreted

as ¢X¢Y Z
-.

4,2.4 IdentilieA GeneAation With MacAo Parameters

New identifiers may be generated for text substitution

within a source macro text by enclosing references to macro

parameters within € signs. The effect is the compile-time
catenation of the corresponding macro argument with the

characters surrounding the C-enclosed parameter (a blank
is considered as a character). For example:

81 REPLACE ABLE (X,Y) BY
"P = ¢X¢QRS+Y;
CALL SUB X€;";

Then the reference ABLE(V,A) causes the
following substitutions.

P = VQRS+A;
CALL SUB V;

Enclosing the entire reference within ¢ signs, i.e. ¢ABLE(V,A)
makes the text with the new identifiers visible in the
compiler listing (see Section 4.2.2).

4-7.1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

4.3 The Structure Template.

In HAL/S, a "structure" is a hierarchical organization
of generally nonhomogeneous data items. Conceptually the
form of the organization is a "tree", with a "root",
"branches", and with the data as "leaves". The definition of
the "tree organization" (the manner in which root is connected
to branches, and branches to leaves) is separate from the
declaration of a structure having that organization. The
tree organization is defined by a <structure template>
described below. The description of the declaration of
structures is deferred to later Subsections.

The following figure illustrates a typical tree
organization.

start of end of
tree walk - >. tree walk

\ /
\ /

I "root"
II
/2.\ ,- -\ NAME

" " fork"

\~ ~

S"branch"

S structure terminal / r

template name 4

O mnorstrctue // \ .a

tree diagram for a typical structure template

INTERPRETATIONS:

1. The "template name" is at the root of the tree organization

2. The named "leaves" and "forks" in the branches are at
numbered levels below the root. Leaves and forks are
called "structure terminals" and "minor structures"
respectively.

4-8
INTERMETRICS INCORPORATED • 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

3. The "tree walk" shown can provide an unambiguous linear
description of the tree organization. The syntactical
form of the <structure template> corresponding to a tree
organization calls for the names of minor structures and
structure terminals to be defined in the same order that
the tree walk passes them on the left, as indicated by
the arrow at * in the diagram.

4. The tree organizations of two templates are considered to
be equivalent for the purposes of various HAL/S statement
contexts only if the tree forms are identical, and the type
and attributes of all nodes in the tree agree. An implication
of this rule becomes apparent: if two corresponding terminal
nodes of otherwise equivalent structures reference different
structure template names , then the structure templates
containing these terminal nodes are not identical.

The syntactical form of a <structure template> is now given:

SYNTAX:

structure template statement

DENSE IGID 90

STRUCTURE

90

ALIGNED

- - identifier attributes

4-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

GENERAL RULES:

1. The <template name> of the <structure template> is
given by the <identifier> following the keyword STRUCTURE.

2. The operational keywords DENSE and ALIGNED denote E
data packing attributes to be applied to all <identifiers>
declared with the <structure template>. At each level of
a <structure template>, either the DENSE or ALIGNED
packing attribute is in effect, subject to modification
by use of DENSE and ALIGNED as minor <attributes>. The
choice used in the <structure template> gives the default
value for the whole template. This packing attribute
is then inherited from higher to lower levels in the
structure unless the <attributes> of a minor structure
or terminal element modify the choice. Details of the
allocation algorithm used for DENSE and ALIGNED data
are implementation dependent.

3. The keyword RIGID causes data to be organized in
the sequential order declared within the <structure
template>. This attribute is then inherited from
higher to lower levels in the structure. Details of
the allocation algorithm used for RIGID are implementa-
tion dependent. (Note that the absence of the keyword
RIGID permits compiler reorganization of data).

4. In each definition <number> is a positive integer
specifying the level of the tree at which the definition
is effective.

5. The level of definition in conjunction with the order
of definition is sufficient to distinguish between a
minor structure and a structure terminal.

6. In the form <identifier><attributes>, <identifier> is
the name of the minor structure or structure terminal
defined. The applicable <attributes> are described in
Section 4.5.

7. If the <attributes> specify a structure template <type
spec> (see Section 4.7), then the template of the
structure is being included as part of the template
being defined.

8. The minor structures and structure terminals of the
template (the forks and leaves) are sequentially defined
following the colon. The order of definition has already
been described.

9. Each definition of a minor structure or structure
terminal is separated from the next by a comma.

4-10

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

NAME UNIQUENESS RULES:

1. <template names> may duplicate <identifiers> of any
other kind within a given name scope, but may not
duplicate other <template names>.

2. In a given name scope, if a <template name> is used
exclusively in qualified structure declarations,
duplications of the <identifiers> used for nodes
may occur under the following circumstances:

4-10.1

INTFRMFTRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

* Any< identifier> used for a node in one template may
duplicate an< identifier> used for a node in another
template.

* Any < identifier > used for a node in a given template
may duplicate another <identifier> used for a different
node in the same template, provided that a qualified
reference can distinguish the two nodes.

3. In a given name scope, if a template is ever used for a
non-qualified structure variable declaration, the duplications
allowed under rule #2 within that template become illegal.

examples:

i) definition of a template Z

STRUCTURE Z: z

1 A SCALAR,
1 B VECTOR(4), A B

1 C,
2 D MATR I X(4,4), D E 2

2 E BIT(3);

ii) definition of a template Y
with Z nested within it Y

STRUCTURE Y:
1 F, F H

2 X Z-STRUCTURE,
2 G INTEGER, G - - 2

1 H CHARACTER(10).; x

A C ---- 3

----- 4
D E

iii) equivalent form of template Y without nesting

STRUCTURE Y: Y
1 F,

2 X,
3A SCALAR F H --- 1

3 B VECTOR(4), x 2
3 C,
4D MATRIX(4,4),
4 E BIT(3), A B C -3

2 G INTEGER,
1 H CHARACTER(10); D E ---- 4

4-11

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

4.4 The DECLARE Statement.

The DECLARE statement is used to declare data names
and labels, and to define their characteristics or
<attributes>.

SYNTAX:

declaration statement

statement

S DECLARE idetiie attributes

attributes

example:
DECLARE INTEGER. A, B ARRAY (5);

SEMANTIC RULES:

1. Each <identifier> and its following <attributes> consti-
tute the declaration of a data name or label. Each
definition is separated from the next by a comma.

2. The generic characteristics if any, of all <identifier>s
to be declared are given by the "factored" <attributes>
immediately following the keyword DECLARE. The
<attributes> of a particular <identifier> must not
conflict with the factored <attributes>.

3. The name scope of any of the <identifier>s defined in a
<declare statement> is the code block containing the
<declare group> of which the <declare statement> is a
part (see Section 3.8). In any name scope all such
< identifiers> must be unique.

4. There are two forms of <attributes>; data declarative, and
label declarative. The form determines whether an
<identifier> is defined as a data name or a label.

4-12
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

4. 5 Data Declarative Attributes.

Data declarative attributes are used to define an
<identifier> to be a data name or part of a structure template,
and to describe its characteristics. If <attributes> appears
in a <declare statement>, the <identifier> defined is a
"simple variable", or a "major structure" with predefined
template. If <attributes> appears in a <structure template>,
the <identifier> defined is either a minor structure, or a
structure terminal. Structure terminals have very similar
properties to simple variables.

SYNTAX:

dt. dcla. t db uttnIbu

I17

ARRAY writh ep

24

STATIC

CD

ALIGNEDI

90

LOC

18

ARRAY (5) SCALAR STATIC

4-13

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

GENERAL SEMANTIC RULES:

1. The <type spec> determines the type and possibly the
precision of the <identifier> to which the <attributes>
are attached. Type specifications are discussed in
Section 4.7.

2. An optional array specification can precede the <type
spec>. It starts with the keyword ARRAY; the following
parenthesized list specifies the number of dimensions
in the array, and the size of each dimension. The number N
of <arith exp>s gives the number of dimensions of the
array. <arith exp> is an unarrayed integer of scalar
expression computable at compile timel. The value is
rounded to the nearest integer, and indicates the number
of elements in a dimension. Its value must lie between
2 and an implementation-dependent maximum. The maximum
value of N is implementation dependent. A single asterisk
denotes a linear array, the number of elements of which
is unknown at compile time.

3. Following the <type spec> a number of minor attributes
applicable to the <identifier> can appear. These are:

* STATIC/AUTOMATIC - the appearance of one of these key-
words is mutually exclusive of the other. STATIC and
AUTOMATIC refer to modes of initialization of an
<identifier>, not to the allocation of its storage.
The AUTOMATIC attribute causes an <identifier> with
the <initialization> attribute to be initialized on
every entry into the code block containing its
declaration. The STATIC attribute causes such an
<identifier> to be initialized only on the first
entry into the code block. Thereafter its value on
any exit from the code block is guaranteed to be
preserved for the next entry into the block. STATIC
data is not reinitialized whenever a program is re-
entered (executed again). Values are preserved in
this way even though a STATIC'<identifier> has no
<initialization>. Preservation of values is not
guaranteed for AUTOMATIC <identifier>s. If neither
keyword appears, then STATIC is assumed.

1 See Appendix F.

4-14

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

* DENSE/ALIGNED - The appearance of one of these keywords

is mutually exclusive of the other. Although legal
in other contexts, the keywords are only effective
when appearing as <attributes> in a <structure template>.
DENSE and ALIGNED refer to the storage packing density
to be employed when a <structure var name> is declared

using the template. If neither keyword appears, then 124

ALIGNED is assumed.

* ACCESS - this attribute causes implementation
dependent managerial restrictions to be placed

upon the usage of the <identifier> as a variable
in assignment contexts. The manner of enforce-
ment of the restrictions is implementation
dependent.

* LOCK - this attribute causes use of the <identifier>
to be restricted to the interior of UPDATE blocks,

and to assign argument lists. <number> indicates
the "lock group" of the <identifier> and lies

between 1 and an implementation-dependent maximum.
"*" indicates the set of all lock groups. The

purpose of the attribute is described in Section 8.10.

* LATCHED - see Section 4.7.

* <initialization> - this attribute describes the

manner in which the values of an <identifier>
are to be initialized. It is described in
Section 4.8.

* REMOTE - this attribute identifies data which is
to be located in areas separate from normal data.
Its implementation is machine dependent. Its 124

purpose is to provide information to the compiler so

that proper addressing to the data can be generated.

Generally, this addressing requires longer and slower

access methods.

* RIGID - Although legal on other contexts, the keyword

is only effective when appearing as an <attribute>

in a <structure template> or in a Compool. It causes

data to be organized in the order it is defined within

the <structure template>. 90

4-15

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

RESTRICTIONS FOR SIMPLE VARIABLES AND MAJOR STRUCTURES:

1. The asterisk form of array specification can only be
applied to an <identifier> if it is a formal parameter
of a procedure or function. The actual length of the
array is supplied by the corresponding argument of an
invocation of the procedure or function.

2. An array specification is illegal if the <identifier>
is defined by the <type spec> to be a major structure.

3. The ACCESS attribute may only be applied to <identifier>
names declared in a <compool block> or <compool template>.
The LOCK attribute may only be applied to <identifier>
names declared in a <compool block>, <compool template>
or <program block>, or to the assign parameters of
procedure blocks.

4. The LATCHED attribute only applies to event variables
(see Section 4.7).

.. .. *"a" a u . . is illegal for any <identifier>
of EVENT type. It is also illegal if <identifier>
is the input parameter of a PROCEDURE block.

6. The attributes DENSE, ALIGNE,-, and RIGID.are illegal

90 for major structures.90
7. The <initialization> attribute may not be applied to

formal parameters of procedures and functions.

RESTRICTIONS FOR STRUCTURE TERMINALS:

1. The asterisk form of array specification is not allowed.

2. The <identifier> may not be defined to be a major struc-
ture by the <type spec>. Otherwise, the type specifica-
tion is the same as for simple variables.

3. The appearance of any minor attributes except DENSE,
ALIGNED, and RIGID is illegal. Appearances of DENSE
and ALIGNED override such appearances on the minor

90 structure levels or on the <structure template> nameitself.

4-16

INTERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

RESTRICTIONS FOR MINOR STRUCTURES:

1. The <type spec> for a minor structure name must be

empty (see Section 4.7).

2. No array specification is allowed.

3. No attributes except DENSE, ALIGNED and RIGID are allowed.

Appearances of DENSE and ALIGNED at any level of the structure

override such appearances at higher levels or on the

<structure template> name itself. The appearance of 90
RIGID causes structure terminals within the minor

structure to be organized in the order in which they

are declared. However, RIGID at the minor structure

level will not affect the order of data within an

included template specified by a structure template
<type spec>.

EXAMPLE:

STRUCTURE Y:

1 A SCALAR,
1 B VECTOR(q),

1 D MATRIX(q, 4);

STRUCTURE Z RIGID;

1 F BIT(13),
1 G Y-STRUCTURE,
1 H CHARACTER(10);

The order within Z will be: F,G,H, but the order

within G will not necessarily be as declared by Y.

4-17

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

4.6 Label Declarative Attributes.

A label declarative attribute defines an <identifier>
to be a <label> of some specific type.

SYNTAX:

label declarative attributes

attributes

PROCEDUREli * NNHAL nme

41 FUNCTION type Spec 17

(TASK'
example:

FUNCTION VECTOR (4) NONHAL (1);

SEMANTIC RULES:

1. The form FUNCTION <type spec> is used to define the name

and type of a <function block>. Such a definition is

124 only required if the function is referenced in the source
before the occurrence of its block definition.

Functions requiring definition this way are subject to the
following restrictions:

* they must have at least one formal parameterl

* none of their formal parameters may be arrayed.

The type specification of the function declared is given by

<type spec> (see Section 4.7). A function may be of any
type except EVENT.

2. The NONHAL (<number>) indicates that an external routine
written in some other language is being declared. NONHAL
(<number>) may be a factored attribute applied to a list
of label declarations. The <number> is an implementation-
dependent indication of the type of NONHAL linkage.

3. The form TASK is used to define the name of a <task block>.
It may be required if a <task block> is referenced before
the occurrence of its definition.

4-18

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138-* (617) 661-1840

4.7 Type Specification.

The type specification or <type spec> provides a
means of defining the type (and precision where applicable)
of data names and parts of structure templates.

SYNTAX:

SOUBLE

CHARACTER (arith exp

BOOLEAN

.
(a

arith exp)

examples:
MATRIX (2,2) DOUBLE
Z-STRUCTURE (15)

GENERAL SEMANTIC RULES:

1. If <type spec> is empty (i.e. there is no specification
present) then the interpretation is as follows:

* If the <type spec> is that of a simple variable
or structure terminal, then the implied type is
SCALAR with SINGLE precision.

4-19

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

* The <type spec> is otherwise that of a minor
structure of a structure template.

2. If the <type spec> is empty except for the keyword
SINGLE or DOUBLE, the implied type is SCALAR with the
indicated precision.

3. The precision keywords only apply to VECTOR, MATRIX,
SCALAR, and INTEGER <type spec>s. In the last case
SINGLE implies a halfword integer, and DOUBLE a fullword
integer. In the absence of a precision keyword, SINGLE
is presumed.

4. Any <arith exp> in a <type spec> is an unarrayed integer
or scalar expression computable at compile time (see
Appendix F.). Its value is rounded to the nearest integer.

RULES FOR INTEGER AND SCALAR TYPES:

1. Integer and scalar types are indicated by the keywords
El INTEGER and SCALAR,respectively. Note that scalar type

I can be indicated implicitly as described in General
Semantic Rules 1. and 2.

RULES FOR VECTOR AND MATRIX TYPES:

1. Matrix type is indicated by the keyword MATRIX. If
present, the two <arith exp>s in parentheses give the
row and column dimensions of the matrix respectively.
In the absence of such a size specification, a 3-by-3
matrix is implied.

2. Vector type is indicated by the keyword VECTOR. If
present, the parenthesized <arith exp> indicates the
length of the vector. In the absence of a length speci-
fication, a 3-vector is implied.

3. The row and column dimensions of a matrix, and the length
of a vector may range between 2 and an implementation
dependent maximum.

4-20

INTERMETRICS INCORPORATED -701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

RULES FOR CHARACTER TYPES;

1. Character type is indicated by the keyword CHARACTER.

A character variable is of varying length; the

parenthesized <arith exp> following the keyword
CHARACTER denotes the maximum length that the
character variable may take on. A length must be
specified.

2. The working length of a character data type may range from

zero (the "null" string) to the defined maximum length.

3. The defined maximum length has an upper limit which is

implementation dependent.

4. The asterisk form of character maximum length specification

must be applied to an <identifier> if it is a formal para-

meter of a procedure or function. The actual length infor-

mation of the character string is supplied by the corres-

ponding argument in the invocation of the procedure or

function.

RULES FOR BIT, BOOLEAN, AND EVENT TYPES:

1. The keyword BIT indicates type. The following parenthe-
sized <arith exp> gives the length in bits. Its value
may range between 1 and an implementation dependent upper
limit.

2. The keyword BOOLEAN indicates a bit type of 1-bit length.

3. The keyword EVENT indicates an event type, similar to
BOOLEAN, but which differs in that it has real time
programming implications (see Section 8). An <identifier>
of event type is the only type to which the attribute
LATCHED is applicable. The implications of the LATCHED
attribute are discussed in Section 8.8. An <identifier>

of event type may not be used as an input formal para-
meter, nor may it be a structure terminal.

RULES FOR STRUCTURE TYPE:

1. The condition for the <type spec> indicating a minor
structure are described in General Semantic Rule 1.

2. The phrase <template name>-STRUCTURE defines an <identifier>
to be a major structure whose tree organization is
described by a previously defined template called
<template name>.

4-21

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. The parenthesized expression or asterisk optionally
following the keyword STRUCTURE specifies the structure

to have multiple copies. The value specifies the number

of copies, which may range from 2 to an implementation

dependent maximum.

4. The copy specification may only be an asterisk if the

structure is a formal parameter of a procedure or function.

The actual number of copies is supplied by the correspond-
ing argument of an invocation of the procedure or function.

5. If the <identifier> name defined is the same as the
< template name> of the template of the structure,

then the structure is said to be unqualified. Otherwise
the structure is said to be qualified. Templates used
for non-qualified declarations may not contain nested
structure references. Section 5.2 dontains material on
some further implications of structure qualification.

6. If the <type spec> of a function is STRUCTURE then no
specification of multiple copies is allowed.

7. If the <type spec> of a structure terminal is STRUCTURE, then
no specification of multiple copies is allowed.

4-22

INTERMETRICS INCORPORATED *-701 CONCORD AVENUE . CAMBRIDGE, MAFSACHUSETTS 02138 (617) 661-1840

4.8 Initialization.

The <initialization> attribute specifies the initial
values to be applied to an <identifier>. The circumstances
under which the attribute is legal have been described in
Section 4.5.

SYNTAX:

initialization specification

nitialization

J CONSTANT (initial list

INITIAL

1qexpre!ss1ion1

arith exp

example:
INITIAL (2# (1, 3#5))

GENERAL SEMANTIC RULES:

1. The <initialization> starts with the keyword INITIAL
or CONSTANT. If it starts with CONSTANT, the value of
the <identifier> initialized may never be changed. It
is illegal for <identifier>s with CONSTANT <initialization>
to appear in an assignment context.

4-23

INTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2. The simplest form of an <initial list> is a sequence
of one or more <expression>s computable at compile time.
(See Appendix F).

3. A simple <initial list> of the form given in Rule 2. may
be enclosed in parentheses, and preceded by <arith exp>#,
where <arith exp> is any unarrayed integer or scalar
expression computable at compile time. The value, rounded
to the nearest integer, is a repetition factor for the
initial values contained within the parentheses. This
repeated <initial list> may itself become a component
of an <initial list>, and so on to some arbitrary nesting
depth.

4. In addition to preceding a parenthesized <initial list>,
<arith exp># may also precede certain unparenthesized
items denoted collectively in the syntax diagram by §.
These items are:

* a single literal;

* a single unsubscripted variable name.

* blank (i.e. the component(s) of the <identifier>
should not be initialized).

5. The presence of an asterisk at the end of the <initial list>
implies the partial initialization of an <identifier>.

6. The order of initialization is the "natural sequence"
specified in Section 5.5.

RULES FOR INTEGER AND SCALAR TYPES:

1. If the <identifier> has no array specification, the
<initial list> must contain exactly one value.

2. If the <identifier> has an array specification, then one
of the following must hold:

* the number of values in the <initial list> is
exactly one, in which case all elements of the
array are initialized to that value;

* the number of values in the <initial list> is
exactly equal to the number of array elements to
be initialized;

* the <initial list> ends with an asterisk, in which
case the number of values must be less than the

4-24

INTERMETRICS INCORPORATED *-701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

number of array elements to be initialized, and
partial initialization is indicated.

3. <expression> must be an unarrayed integer or scalar
expression computable at compile time (see Appendix F.).
Type conversion between integer and scalar is allowed
where necessary.

RULES FOR VECTOR AND MATRIX TYPES:

1. If the <identifier> has no array specification, then one
of the following must hold:

e the number of values in the <initial list> is
exactly one, in which case all components of the
vector or matrix are initialized to that value;

* the number of values in the <initial list> is
exactly equal to the number of components to be
initialized;

9 the <initial list> ends with an asterisk, in which
case the number of values must be less than the
number of components to be initialized, and partial
initialization is indicated.

2. If the <identifier> has an array specification, then
one of the following must hold:

9 the number of values in the <initial list> is
exactly one, in which all the components of all
the array elements of the vector or matrix are
initialized to that value;

e the number of values in the <initial list> is
exactly equal to the number of components of the
vector or matrix, in which case every array
element takes on the same set of values.

e the number of values in the <initial list> is
equal to the total number of components in all
array elements;

4-25

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

* the <initial list> ends with an asterisk, in
which case the number of values must be less
than the total number of components in all
array elements, and partial initialization is
indicated.

3. <expression> must be an unarrayed integer or scalar
expression computable at compile time. Type conversion
between integer and scalar is allowed where necessary.

RULES FOR BIT, BOOLEAN, EVENT AND CHARACTER TYPES:

1. If the <identifier> has no array specification, the
<initial list> must contain exactly one value.

2. If the <identifier> has an array specification, then one
of the following must hold:

* the number of values in the <initial list> is
exactly one, in which case all elements of the
array are initialized to that value;

* the number of values in the <initial list> is
exactly equal to the number of array elements to
be initialized;

* the <initial list> ends with an asterisk, in which
case the number of values must be less than the
number of array elements to be initialized, and
partial initialization is indicated.

3. If an <identifier> of bit, boolean, or event type is
being initialized, <expression> must be an unarrayed
<bit exp> computable at compile time (see Appendix F.).
If an event <identifier> has the LATCHED attribute, then
it may be initialized to the values TRUE or FALSE (or
their equivalent). If it does not have the LATCHED
attribute, it can not be initialized. (See Section 8.8).
In the absence of <initialization> all events are implictly
initialized to FALSE.

4. If an <identifier> of character type is being initialized,
<expression> must be an unarrayed <char exp> computable
at compile time (see Appendix F.).

4-26

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

RULES FOR STRUCTURE TYPES:

1. Only a major structure <identifier> may be initialized.

2. If the <identifier> has only one copy, then one of the
following must hold:

* the number of values in the <initial list> is equal
to the total number of data elements in the whole
structure;

* the <initial list> ends with an asterisk, in which
case the number of values must be less than the number
of data elements in the whole structure, and partial
initialization is indicated.

3. If the <identifier> has multiple copies, then one of the
following must hold:

* the total number of values in the <initial list> is
exactly equal to the total number of data elements
in one copy of the structure, in which case each copy
is identically initialized;

" the number of values in the <initial list> is equal
to the total number of data elements in all copies
of the structure;

* the <initial list> ends with an asterisk, in which
case the number of values must be less than the total
number of data elements in all the copies of the
structure, and partial initialization is indicated.

3. The type of each <expression> must be legal for the type
of corresponding structure terminal initialized (see the
Semantic Rules for initialization of simple variables
of each type).

4-27

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

5. DATA REFERENCING CONSIDERATIONS

Central to the HAL/S language is the ability to
access and change the values of variables. Section 4 dealt
comprehensively with the way in which data names are defined.
This Section addresses itself to the various ways these names
can be compounded and modified when they are referenced.

5-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

5.1 P~foranrinn Simnla Variabhles

In Section 4.5 the term "simple variable" was intro-
duced to describe a data name which was not a structure, or
part of one. When a simple variable is defined in a <declare
group>, it is syntactically denoted by the <identifier>
primitive. Thereafter, since its attributes are known, it
is denoted syntactically by the <§var name> primitive, where
§ stands for any of the types arithmetic, bit, character,
or event.

5-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.2 Referencing Structures.

When an <identifier> is declared to be a structure,
its tree organization is that of the template whose <template
name> appears in the structure declaration (see Section 4.7).
References to the structure as a whole (the "major structure"),
are obviously made by using the declared <identifier>, which
syntactically becomes a <structure var name>. The way in
which parts of the structure (its minor structures and
terminals) are referenced depends on whether the structure
is "qualified" or "unqualified" (see Section 4.7).

* If a structure is "unqualified", then any part of
it, either minor structure or structure terminal,
may be referenced by using the name of the part as it
appears in the <structure template>. If a minor
structure is referenced, the name becomes syntact-
ically a <structure var name>. If a structure
terminal is referenced, then syntactically the name
becomes a <§var name>, where § stands for any of the
types arithmetic, bit, character, or event, as
specified in its <attributes> in the template.

* If a structure is "qualified", then any part of it,
either minor structure or structure terminal, is
referenced as follows. First the major structure
name is taken. Then starting at the template name,
the branches of the template are traversed down to
the minor structure or structure terminal to be
referenced. On passing through every intervening
minor structure, the name is compounded by right
catenating a period followed by the name of the minor
structure passed through. The process ends with the
catenation of the name of the minor structure or
structure terminal to be referenced. If a minor
structure is being referenced, the resulting "quali-
fied" name becomes syntactically a <structure var
name>. If a structure terminal is referenced, then
syntactically it becomes a <§var name>, where §
stands for any of the types arithmetic, bit, character,
or event, as specified in its <attributes> in the
template.

5-3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

example:

STRUCTURE A:
1 B,

2 C,
3 E VECTOR(3),
3 F SCALAR,

2 G, structure template

3 H EVENT,
3 1 INTEGER,

1 J BIT(16);

"unqualified"

DECLARE A A-STRUCTURE,
Z A-STRUCTURE; "qualified"

i) references' to parts of structure A -

G I J
ii) references to corresponding parts of structure Z -

Z.B.G Z.B.G.I Z.J

5-4

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.3 Subscripting.

For the remainder of this Section, a data name with
known <attributes> is denoted syntactically by <§var name>,
where § stands for any of the types arithmetic, bit, charac-
ter, event, or structure. It is convenient to introduce
the syntactical term <§var> to denote any subscripted or
unsubscripted <§var name>.

SYNTAX:

arith
bit

§ char variables
var structure

event

§ var name • a

]S subscript Mexample:

A1 TO 10

It is also useful to introduce the syntactical term
<variable> as a collective definition meaning any type of
<§var>.

SYNTAX:

variable

---- event var

variablebit var

arith var

[bit pseudo-var

char var

_- structure var j

5-5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SEMANTIC RULES:

1. <bit pseudo-var> is a reference to the SUBBIT pseudo-
variable. An explanation of its inclusion as a
<variable> is given in Section 6.5.4.

5-6

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.3.1 Clase 06 Subzsnpting.

In HAL/S, there are three classes of subscripting
which may be potentially applied to <§var name>s: structure,
array, and component subscripting.

* Structure subscripting can be applied to
arithmetic, bit, character, and event variables
which are terminals of a structure which has
multiple copies. It can also be applied to the
major and minor structure variable names of such
a structure. Structure subscripting is denoted
syntactically by <structure sub>.

* Array subscripting can be applied to any arith-
metic, bit, character, and event variables which
are given an array specification in their declara-
tion. This includes both simple variables and
structure terminals. Array subscripting is
denoted syntactically by <array sub>.

* Component subscripting can be applied to simple
variables and structure terminals which have one
or more component dimensions (i.e. which are made
up of distinct components). The applicable types
are vector, matrix, bit and character. Component
subscripting is denoted syntactically by <component
sub>.

The three classes of subscript are combined according to a
well-defined set of rules.

5-7

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SYNTAX:

subscript construct

Tsubscript

component
sub

component
sub

structure sub component- L sub

component
array sub sub

example:
I;J,K:L

SEMANTIC RULES:

1. The syntax diagram shows 10 different ways of
combining the three classes of subscripting. The
following table shows when each of these combinations
is legal for simple variables and structure terminals.
In the table, the following abbreviations are used:

<component sub> + C

<array sub> + A

<structure sub> + S

5-8

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

interpretation of <§ var name >

data unarrayed arrayed unarrayed arrayed
type simple simple structure structure... variable variable terminal W terminal (
integer A S S;
scalar none A: S; S;A
event S;A:

vector C A: S; S;
matrix A:C S;C S;A:bitbit

S;A:CcharacteS

Notes:

It is assumed that the structure has multiple copies.
If not, corresponding columns for simple variables
apply.

2. In the case of a <structure var name> relating to a
major structure with multiple copies, or to a minor
structure of such a major structure, the following
forms are legal:

S

S;

No subscript is possible if the major structure has no
multiple copies.

5-9

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

Version IR-61-8

examples:

i)P

<array sub> P is any arrayed simple variable

equivalent form-
p Jequivalent only if P is of
X integer, scalar, or event type

X Q is any simple variable of integer,
E <component sub> Ascalar, or event type

E <array sub> -- see example i)

<structure sub> Q is any unarrayed structure ter-
Iminal* of integer, scalar, or event
type

iii)R R;
t; <structure sub> -- R is any structure terminal*

equivalent forms -

RX equivalent only if R is of unarrayed
integer, scalar, or event type

iv) S x;y:Z S is an arrayed structure terminal*
; -<component sub> of vector, matrix, bit, or

- <array sub> I character type

<structure sub>

of a structure with multiple copies

5-10

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

5.3.2 The GeneAal Form of Subs cAiptLng.

The three classes of subscripting, <structure sub>,
<array sub>, and <component sub>, have an identical syntac-
tical form; however, the semantic rules for each differ.

SYNTAX:

component, array, and structure subscripts

array
sub

omponent structure
sub sub

example:
example: 3 AT # -5

GENERAL SEMANTIC RULES:

1. A <structure sub>, <array sub>, or <component sub>
consists of a series of "subscript expressions"
separated by commas. Each subscript expression
corresponds to a structure, array, or component
dimension of the <§var name> subscripted.

5-11

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2. There are four forms of subscript expression:

* the simple index;

" the AT-partition;

" the TO-partition;

" the asterisk.

3. The simple index form is denoted in the diagram by a
single sub exp. Its value specifies the index of a
single component, array element, or structure copy
to be selected from a dimension.

4. The AT-partition is denoted by the form <arith exp> AT
<sub exp>. The value of <arith exp> is the width of the
partition, and that of <sub exp> the starting index.

5. The TO-partition is denoted by the form <sub exp> TO
<sub exp>. The two <sub exp> values are the first and
last indices respectively of the partition.

6. The asterisk form, denoted in the diagram by *, specifies
the selection of all components, elements, or copies
from a dimension.

7. <sub exp> may take any of the forms shown. The value of
is taken to be the maximum index-value in the relevant
dimension.

8. Any <arith exp> in a subscript expression is an arrayed
or unarrayed integer or scalar expression. Values are
rounded to the nearest integer. The effect of an
<arith exp> being arrayed is discussed in Section 5.4.

5-12

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138-* (617) 661-1840

5.3.3 StAuctue SubscAZptLng.

Major structures with multiple copies, or the minor
structures or structure terminals of such structures may
possess a <structure sub>. Since there is only one dimension
of multiple copies, the <structure sub> may only possess one
subscript expression. The effect of such subscripting is to
eliminate multiple copies, or at least to reduce their number.

RESTRICTIONS:

1. 'Errors result if any index value implied by a subscript
expression lies outside the range 1 through N, where N
is the number of copies specified for the major structure.

2. If the subscript expression is a TO- or AT-partition,
the width of the partition must be computable at compile
time. This is guaranteed by enforcing the following
restrictions.

* in the form <arith exp> AT <sub exp>, the value of
<arith exp> must be computable at compile time
(see Appendix F.).

* in the form <sub exp> TO <sub exp>, the values of
both <sub exp>s must be computable at compile time.

examples:

STRUCTURE A:
1 B SCALAR,
1 C INTEGER,
1 D VECTOR(6);

DECLARE A A-STRUCTURE(20);

A20 2 0 th copy of A

A 1 0 th and 1 1th copies of A
2 AT 10; (semicolon optional)

C1 C from 1 st copy of A

D D from 4 th through 6th copies of A4 TO 6; (semicolon enforced)

Note: D*;4T06 components 4 through 6 of D from
J all copies of A

5-13
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

5.3.4 Array SubcA/iptung .

Any simple variable or structure terminal with an

array specification (see Section 4.5) may possess an <array
sub>. The number of subscript expressions in the <array sub>
must equal the number of dimensions gven in the array speci-
fication. The leftmost subscript expression corresponds to
the leftmost dimension of the array specification, the next

expression to the next dimension, and so on.

RESTRICTIONS:

1. Errors result if any index value implied by a subscript
expression lies outside the range 1 through N, where N
is the size of the corresponding dimension in the array
specification.

2. If the subscript expression is a TO- or AT- partition,
the width of the partition must be computable at compile
time. This is guaranteed by enforcing the following
restrictions:

* in the form <arith exp> AT <sub exp>, the value of
<arith exp> must be computable at compile time.

* in the form <sub exp> TO <sub exp>, the value of
of both <sub exp>s must be computable at compile
time.

examples:

STRUCTURE P:
1 Q ARRAY(5) SCALAR,
1 R SCALAR;

DECLARE P P-STRUCTURE(10);
DECLARE S ARRAY(5) SCALAR,

T ARRAY(5) VECTOR(6);

Q*;5 5th array element of Q in all copies of P

Q 2nd and 3rd array elements of Q in 1st

;2 TO 3: copy of P (colon optional)

S 4 th through 5th array elements of S
4 TO 5: (colon optional)

AT 2: 2nd and 3
r d array elements of T

AT 2: (colon enforced)

Note:T 2 A components 2 and 3 in all array elements
2 AT2 of T

5-14

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

5.3.5 Component SubscAipting.

Simple variables and structure terminals of vector,
matrix, bit and character type may possess component sub-

scripting because they are made up of multiple distinct
components.

* Those of bit, character, and vector types must
possess a <component sub> consisting of one
subscript expression only.

* Those of matrix type must possess a <component
sub> consisting of two subscript expressions.
In left to right order these represent row and
column subscripting respectively.

RESTRICTIONS:

1. Errors result if any index value implied by a subscript
expression lies outside the range 1 through N, where N
is the size of the corresponding dimension in the type
specification.

2. For bit, vector and matrix types, if the subscript
expression is a TO- or AT-partition, the width of the
partition must be computable at compile time. This is
guaranteed by enforcing the following restrictions:

* in the form <arith exp> AT <sub exp>, the value
of <arith exp> must be computable at compile
time.

* in the form <sub exp> TO <sub exp>, the values
of both <sub exp>s must be computable at compile
time.

3. The subscript expressions of a character type need not
be computable at compile time.

SPECIAL RULES FOR VECTOR AND MATRIX TYPES:

The <component sub> of a variable of vector or matrix type
can sometimes have the effect of changing its type. The
following rules apply:

5-15

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

T-9 ... VC4- ty1pe is susc.Lte wit.. a ipene
<component sub>, then since one component is being
selected, the resulting <arith var> is of scalar type.

2. If only one of the two subscript expressions in a

<component sub> of a matrix type is a simple index, then
one row or column is being selected, and the result is
therefore an <arith var> of vector type. If both
subscript expressions are of simple index form, then
one component of the matrix is being selected, and the
result is an <arith var> of scalar type.

examples:

DECLARE M MATRIX(3, 3),
• C ARRAY(2) CHARACTER(8);

characters 2 through 7 of 1 st

1: 2 TO 7 array element of C

Mo, column 1 of matrix M (vector)

M 3rd component of 3rd row

3,3 of M (scalar)

5-16

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.4 The Property of Arrayness.

A <9var name> which is a simple variable is said to
be "arrayed", or to possess "arrayness", if any array speci-
fication appears in its declaration. The number of dimensions
of arrayness is the number of dimensions given in the array
specification.

A <§var name> which is a structure terminal is said to
be arrayed or to possess arrayness if either or both of the
following hold:

* an array specification appears in its declaration
in a structure template;

* the structure of which <§var name> is a terminal
has multiple copies.

The number of dimensions of arrayness is the sum of the
dimensions originating from each source.

Appending structure or array subscripting to a
<§var name> may reduce the number and size of array dimensions
of the resulting <§var>.

The arrayness of HAL/S expressions originates ultimately
from the <§var>s contained in them. It is a general rule
that all arrayed <§var>s in an expression must possess identical
arrayness (i.e. the number of dimensions of arrayness, and
their corresponding sizes must be the same). Although the
forms of subscript distinguish between array dimensions, and
structure copy dimensions, no distinction between them is
made as far as the matching of arrayness is concerned.

example:

STRUCTURE Z:
1 B ARRAY(5);

DECLARE A Z-STRUCTURE(10);
DECLARE C ARRAY(10, 5);

Sarrayness of both operands is 10,5

C-A.B + C;

5-17

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

5.4.1 Arayneus o6 Subzcilpt Exptesonz

Any <arith exp> within a subscript may be arrayed
(possess "arrayness"). Appending such subscripts to

124 a <§var name> may produce an arrayed operand of the same
arrayness as the <arith exp>. The following rules are
applicable to such subscript forms.

SEMANTIC RULES:

1. Any <arith exp> appearing in Syntax Diagram 22
depicting the syntax of <structure sub>,<array sub>
and <component sub> may potentially possess arrayness.

124 2. If the <§var name> possessing the subscript containing
g the arrayed <arith exp> is imbedded in an arrayed

HAL/S expression, then the arrayness of the <arith exp>
must match the arrayness of the expression [event if
the <var name> itself does not possess arrayness,
e.g. is a vector].

3. The evaluation of an arrayed expression can be viewed
as a parallel evaluation of the expression element by
element. If the expression contains an arrayed
<arith exp> in a subscript, then during the parallel
evaluation the appropriate array elment of <arith exp>
is selected for each evaluation.

Example:

Given the declarations:

DECLARE A ARRAY(3) INTEGER;
DECLARE B ARRAY(3,2) INTEGER;

124 DECLARE V VECTOR(5);

the following operands become:

VA - a 3-array
Sof corresponding vector componenets

VB - a 3x2-array

5-18

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

example:

DECLARE I ARRAY(3) I TEGER,
M MATRI (2,2),
MA ARRAY131 MATRIX 2,23;
MB ARRAY 2 MATRIX 2,2),

Let M [1.75 0.25] and I (2)
0O.75 1.25]

1

thenMM2,, .75 1.25]
SM1,* e ([1.75 0.251 124

MI [1.75 0.25]

- a linear 3-array of 2-vectors: subscripting
has reduced M from a matrix to a row-vector,
but since I is arrayed, the entire operand has
an effective arrayness even though M itself has
not.

Let MA 1.0 0.0]
L3.0 2.0J 1 I1 = 2

[4 0 7 0
6.0 5.0

2 = 1

[8.0 3.0].4.0 9.0

Then MAI3
=1:21

M [3.0 2.0]
Then MAM2:1, [4.0 7.01 124

M3:1,* [8.0 3.0]

is also a linear 3-array of 2-vectors: now
however MA and I both have arrayness (which
correctly match). Three parallel subscript
evaluations are effectively performed using
corresponding array elements of MA and I
each time.

Note MB:, * is illegal since the array-
ness of MB does not match the

arrayness of I.

However MB., 1is legal since array subscripting
'1 TO 2-0 has been used on I to force array-

ness matching.

If MB ([0.5 0.] Ii = 2

100.2 007
0.4 0:81)

then MB: T 21:2,) a [0.1 0.31 Q 12 1
M1 TO 2 B2:1, , [0.2 0.7] 124

5-19

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

5.5 The Natural Sequence of Data Elements.

There are several kinds of operation in the HAL/S
language which require operands with multiple components,
array elements, and structure copies to be unraveled into
a linear string of data elements. The reverse process of
"reraveling" a linear string of data elements into components,
array elements, and structure copies also occurs. Two major
occurrences of these processes are in I/O (see Section 10),
and in conversion functions (see Section 6.5).

The standard order in which this unraveling and
reraveling takes place is called the "natural sequence".
By applying the following rules in the order they are stated,
the natural sequence of unraveling is obtained. By applying
the rules in reverse order, and replacing "unraveled" by
"reraveled", the natural sequence for reraveling is obtained.

RULES FOR MAJOR AND MINOR STRUCTURE:

1. If the operand is a major structure with multiple copies,
each copy is unraveled in turn, in order of increasing
index. If the operand is a minor structure of a multiple-
copy structure, then the copy of the minor structure in
each structure copy is unraveled in turn in order of
increasing index.

2. The method of unraveling a copy is as follows. Each
structure terminal on a "branch" connecting back to the
given major or minor structure operand is unraveled in
turn. The order taken is the order of appearance of the
terminals in the structure template.

3. Each structure terminal is unraveled according to the
Rules given below.

example:

STRUCTURE A:
1 B,

2 C SCALAR,
2 D VECTOR(3),

1 E INTEGER;
DECLARE A A-STRUCTURE(3);

* order of unraveling of B is Bi , i 1,2,3

* order of unraveling of each Bi is Ci , Di

5-20
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

RULES FOR OTHER OPERANDS:

1. An operand of any type (integer, scalar, vector, matrix,
bit, character, or event) may possess arrayness as
described in Section 5.4. Each dimension of arrayness,
starting from the leftmost is unraveled in turn, in order
of increasing index.

2. Integer, scalar, bit, character, and event types are
considered for unraveling purposes as having only one
data element.

3. Vector types are unraveled component by component, in
order of increasing index.

4. Matrix types are unraveled row by row, in order of
increasing index. The components of each row are
unraveled in turn in order of increasing index.

example:

DECLARE V ARRAY(2,2) VECTOR(3);

* order of unraveling of V is V ,, i - 1,2

* order of unraveling of each Vi . is V .j:* , j*1,2
I, . I,J.

* order of unraveling of each V ij: is Vi,j:k , k=1,2,3

(standard HAL/S subscript notation used)

5-2±

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

6. DATA MANIPULATION AND EXPRESSIONS

An expression is an algorithm used for computing a
value. In HAL/S, expressions are formed by combining together
operators with operands in a well-defined manner. Operands
generally are variables, literals, other expressions, and
functions. The type of an expression is the type of its
result, which is not necessarily the same as the types of
its operands.

In HAL/S, expressions are divided into three major
classes according to their usage.

* regular expressions appear in a very large number
of contexts through the language; e.g.
in assignment statements, as arguments to proce-
dures and functions, and in I/O statements.
Typical regular expressions are arithmetic, bit,
and character expressions. They are collectively
denoted by <expression>.

* conditional expressions are used to express
combinations of relationships between quantities,
and are found in IF statements, and in WHILE and
UNTIL phrases. They are denoted by <condition>.

* event expressions are used exclusively in real time
programming statements.

6-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

6. 1 Regular Expressions.

Regular expressions comprise arithmetic expressions,
bit expressions and character expressions, together with a
limited form of structure expression. As a generic form,
<expression> appears in the assignment statement, as the input
arguments of procedure and function blocks, and in the WRITE
statement.

SYNTAX:

expression

expression

aritheexp

bit exp

char exp - -

structure exp -

Descriptions of <arith exp>, <bit exp>, <char exp>, and
<structure exp> are given in the following subsections.

6-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

6.1.1 AMithmetic Expeusions .

Arithmetic expressions include integer, scalar, vector,
and matrix expressions. Collectively they are known by the
syntactical term <arith exp>.

SYNTAX:

arithmetic expression

+

arith exp

+

arith operand 124

examples: I+J-(K+2)I +J -(K+2)

M. (M * N)

SEMANTIC RULES:

1. An <arith exp> is a sequence of <arith operand>s
separated by infix arithmetic operators, and possibly
preceded by a unary plus or minus.

2. The form < > is used to show that the two <arith
operand>s are separated by one or more spaces. 124
It signifies a product between the <arith operand>s.

6-3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

3. The syntax diagram for <arith exp> produces a sequence

extensible on the right. Any sequence produced is not

necessarily to be considered as evaluated from left to

124 right. The order of evaluation of each operation
14in the sequence is dictated by operator precedence.

4. Not all types of <arith operand> are legal in every infix

operation. The following table summarizes all possible

forms, by indicating the result of each legal operation.

operands infix operator

left right +< > I

vector vector vector vector matrix 1 vector 2 scalar

integer
4

vector scalar vector o

integer vector vector
scalar

matrix matrix matrix impmatix

Sinteger mtrix matrix matri
e l o v r xvscalar

integer matrix matrixs alJar -----------

scalar sca la r scalar scalar scalar th scalar scalar

is caa indie dih ih peadi ieal

scalar integer scalar scalar scalar scalar scalart

integer integer integer integer Linteger scalar

NOTES:

In operations with vector and matrix operands, the sizes of

the operands must be compatible with the operation involved,

in the usual mmahematical sense.

outer product.

0 cross product - valid for 3-vectors only.

dot product.

every element of the vector or matrix is multiplied
by the integer or scalar.

every element of the vector or matrix is divided by
the integer or scalar.

if the right operand is literally "T" the transpose
is indicated, if the right operand is literally
"0" the result is an identity matrix. if the right
operand is a positive integer number a repeated product
is implied. if the right operand is a negative integer
number, repeated product of the inverse is implied. These
are the only legal forms.

C the operands are converted to scalar before division.

d the operation is undefined if the value of the left
operand is negative, and the value of the right operand
is nonintegral.

% the result is a scalar except if the right operand is

a non-negative integral literal, in which case the

result is integer.

6-4
INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

5. Except as noted in Rule 4 (t), if only one operand in
an operation is of integer type, it is converted
to scalar type (see Appendix D).

6. If the two operands of an operation are of differing
precision, the result is double precision, otherwise
the precision of the result is the same as the precision
of the operands. This is true in all cases except where
one operand only is of integer type. In this case the
precision of the result is the same as the precision of
the non-integer operand.

PRECEDENCE RULES:

1. The following table summarizes the precedence rules
for arithmetic operators:

Operator Precedence Operation

FIRST

** 1 exponentiation

<> 2 multiplication

* 3 cross-product

. 4 dot-product

/ 5 division

+ 6 addition and
unary plus

6 subtraction and E
unary minus

LAST

2. If two operations with the same precedence follow each
other, then the following rules apply:

* operators **, / are evaluated right-to-left;

. all other operators are evaluated left-to-right.

3. Overriding Rules 1 and 2, the operators <>, *, and -
are evaluated so as to minimize the t6tal number of
elemental multiplications required. However, this rule
does not modify the effective precedence order in cases
where it would cause the result to be numerically
different, or the operation to be illegal.

6-5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

An <arith operand> appearing in an <arith exp> has the

following form.

SYNTAX:

arithmetic operand

arith ~~
operand arith var

arith exp
=24+B9

A < onumber h a

<normal function> of the appropriate type (see Section

39 43.

ari6.4), an <arith conversion> function (see Section 6.5.1),

39

example:

or a literal <number>.

(A +B1)
0 DOUBLE

SEMANTIC RULES:

2. TheAn <arith operand> may be an arithmetic variable, anrted
arithmeby subscripting it with a <precision> specifier (see
Secti<normal function> o6.6). If the approperand is an <arith var> this is

true only if it has no <subscript>.1

3. Only integer and scalar <arith operand>s may have theion 6.5.1),
or a literal <number>.

2. ThSince prea subscriptedon of an <arith opevar> is an> examplay be onverted
<arithby subscripting it with athe <precision> specifier (smay be applied by
firSection 6.6). If the operand is an <arith var> thisin parentheses.is

6-6

INERMETRICStrue only if it has no <subscript>.DGE, MASSACHUSETTS 02138 (617) 661-1840

3. Only integer and scalar <arith operand>s may have the
form <number>.

1Since a subscripted <arith var> is an example of an
<arith exp>, the <precision> specifier may be-applied by
first enclosing the <arith var> in parentheses.

6-6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

6.1.2 Bit Expressions .

A bit expression is known by the syntactical term
<bit exp>.

SYNTAX:

bit expression

J bit operand)

example:
B& C Il-I D

SEMANTIC RULES:

1. A <bit exp> is a sequence of <bit operand>s separated
by bit operators.

2. The syntax diagram for <bit exp> produces a sequence
extensible on the right. Any sequence produced is
not necessarily to be considered as evaluated from left
to right. The order of evaluation of each infix operation
is dictated by operator precedence:

6-7

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Operator Precedence

FIRST

CAT, 11 1
AND, & 2

OR, 3

LAST

If two operations with the same precedence follow each
other, they are evaluated from left to right.

3. The operator CAT (I) denotes catenation of <bit operand>s.
The length of the result is the sum of the lengths of the
operands.

4. The operators AND (&) and OR (1) denote logical inter-
section and union respectively. The shorter of the two
<bit operand> is left padded with binary zeroes to match
the length of the longer.

A <bit operand> appearing in a <bit exp> has the following
form.

SYNTAX:

bit operand
bit

operand

NOT (bit exp

1 event var

process-event name

I bit literal

-- normal function

bit conversion

example: bit pseudo-varBIN '11010110'

6-8

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SEMANTIC RULES:

1. A <bit operand> may be a <bit var>, a <bit exp> enclosed
in parentheses, a <bit literal>, a <normal function> of
bit type (see Section 6.4), a <bit conversion> function,
or a <bit pseudo-var> (see Sections 6.5.3 and 6.5.4).

2. In addition a <bit operand> may be an <event var> or
a <process-event name> (see Section 8.9). Events and
process-events are treated as boolean (1-bit) <bit operand>s.

3. Any form of <bit operand> may be prefaced with the NOT
(-) operator causing its logical complement to be evaluated
prior to use within an expression. Note that associating
the NOT operation with the <bit operand> syntax achieves
an effect similar to placing the NOT operator in the bit
expression syntax at the highest level of precedence.

6-9

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

6. 1. 3 ChaacteA Expressions.

A character expression is known by the syntactical
term <char exp>.

SYNTAX:

character expression

J . .char operand

1:arith expTCA

example:
Q II I II QQQ

SEMANTIC RULES:

1. A <char exp> is a sequence of operands separated by the
catenation operator CAT (1). Each operand may be a
<char operand> or an integer or scalar <arith exp>.

2. The sequence of catenations is evaluated from left to
right.

3. Integer and scalar <arith exp>s are converted to character
strings according to the standard conversion rules given
in Appendix D.

6-10

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

A <char operand> appearing in a <char exp> has the following
form.

SYNTAX:

character operand

char
operand

(char exp)

a (char var

normal function
char literal

example: char conversion

(A 11 B)

SEMANTIC RULES:

1. A <char operand> may be a character variable, a
<char exp> enclosed in parentheses, a <char literal>,
a <normal function> of character type (see Section 6.4),
or a <char conversion> function (see Section 6.5.3).

6-11

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.1.4 SAuctae.tuExptesio

Since there are no manipulative expressions for
structure data, a <structure exp> merely consists of one
structure operand.

SYNTAX:

structure expression

structure
exp

structure vr.

normal function

SEMANTIC RULES:

1. A <structure exp> consists of one structure operand which
may be either a <structure var>, or a <normal function> of
structure type (see Section 6.4).

6.1.5 A/Uay PtopeA-ti/ of Exptesionz.

Any regular expression may have an array property
by virtue of possessing one or more arrayed operands. The
evaluation of an arrayed regular expression implies element-
by-element evaluation of the expression. For any infix opera-
tion with an array property the following must be true.

SEMANTIC RULES:

1. If one of the two operands of an infix operation are
arrayed, then evaluation of the operation using the
unarrayed operand and each element of the arrayed operand
is implied. The resulting array has the same dimensions
as the arrayed operand.

2. If both of the operands of an infix operation are arrayed,
then both operands must have the same array dimensions.
Evaluation of the operation for each of the corresponding
elements of the operands is implied. The resulting array
has the same dimensions as the operands.

6-12
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

6.2 Conditional Expressions.

Conditional expressions express combinations of relation-
ships between quantities. The HAL/S representation of a rela-
tion between quantities is a <comparison>. <comparison>s are
combined with logical operators to form conditional expressions,
or <condition>s.

SYNTAX:

conditional expression

Jconditional operand AN
@0

example:
(A>B) I (A>C)

SEMANTIC RULES:

1. A conditional expression or <condition> is a sequence
of <conditional operand>s separated by logical operators. 124

2. The syntax diagram for <condition> produces a sequence
extensible on the right. Any sequence produced is not
necessarily to be considered as evaluated from left to
right. The order of evaluation of each infix operation
is dictated by operator precedence:

6-13

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

S Operator Precedence

FIRST

AND, & 1
OR, 2

LAST

If two operations with the same precedence follow each
other, they are evaluated from left to right.

3. The operations AND (&) and OR (I) denote logical inter-
section and union respectively.

A <conditional operand> appearing in a <condition> has the
following form.

SYNTAX:

c tconditional operand

co°mparison]l~
32-5

NOT
example:

1(A> B)

SEMANTIC RULES:

1. A <conditional operand> is either a <comparison> or
a parenthesized <condition>. The latter form may be
preceded by the logical NOT (-) operator.

2. A <comparison> is a relationship between the values of
two arithmetic, bit, character or structure operands.
The result of a <comparison> is either TRUE or FALSE,
but cannot be used as a boolean operand in a bit expres-
sion.

6-14
IN FERMETRICS INCORPORATED *701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.2.1 AAithmetic Compaizon.

An arithmetic <comparison> is a comparison between
two arithmetic expressions.

SYNTAX:

arithmetic comparison

NOT <

comparison

example:

l>J

SEMANTIC RULES:

1. The types of <arith exp> operand must in general match,
with the following exception: in a comparison with
mixed integer and scalar operands, the integer operand
is converted to scalar.

2. If the precisions of the <arith exp> operands are mixed
then the single precision operand is converted to double
precision.

6-15

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. Not all types of <arith exp> are legal for every type
of arithmetic comparison. The unshaded boxes in the
following table indicate all legal forms.

operator

operands = NOT= > < NOT> NOT<<= >=

vector / /

matrix / /

integer / / no arrays -
scalar I

4. If the operands are of vector or matrix type, the
<comparison> is carried out on an element-by-element
basis.

* If the <comparison> operator is =, the result is
TRUE only if all the elemental comparisons are TRUE.

* If the <comparison> operator is NOT= (-=), the
result is TRUE if any elemental comparison is
TRUE.

5. If one or both of the <arith exp>s are arrayed then only
the operators = and NOT= (-=) are legal, and the result
is an arrayed <comparison> (see Section 6.2.5).

6-16

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.2.2 Bit CompaAsons.

A bit comparison is a comparison between two bit
expressions.

SYNTAX:

bit comparison (

IJ....... bit exp 26bit exp 2I 26W 26

NOT=

example:

B1-BIN'110'

SEMANTIC RULES:

1. If the lengths of the operands are the same, their
values are equal if and only if they have identical bit
patterns.

2. If the lengths of the operands differ, the <bit exp>
of shorter length is left padded with binary zeroes
to match the length of the longer before comparison
takes place.

3. If one or both of the <bit exp>s are arrayed, then the
result is an arrayed <comparison> (see Section 6.2.5).

6-17

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Version IR-61-5

A.9.q C11hAitc-tA rnM porAA&1bA

A character comparison is a comparison between two
character expressions.

SYNTAX:

character comparison

* NOT < <@

comparisonNO >

char exp chrep - -

115

example: 'A'
C-'

SEMANTIC RULES:

1. If the lengths of the operands differ, the shorter
operand is considered less than the longer.

2. If one or both of the <char exp>s are arrayed then the

115I1 result is an arrayed <comparison> (see Section 6.2.5).

3. The values of the operands will conform to the character
codes selected and thus are machine dependent.

6-18

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.2.4 StuctuAe Compauison6.

A structure comparison is a comparison between two

structure expressions.

SYNTAX:

structure comparison

[structure exp structure exp

NOT=

SEMANTIC RULES:

1. The tree organizations of both <structure exp>s must be

identical in all respects.

2. The number of copies possessed by each <structure exp>
must be the same. If the number of copies is greater than
one, then the following holds:

* if the <comparison> operator is =, the result is TRUE
only if it is TRUE for all copies.

* if the <comparison> operator is -= (NOT=), the result
is TRUE if it is TRUE for at least one pair of correspondinc

copies.

6-19

INTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.2.5 CompaAis on between Akayed OpeAands.

A <comparison> of one of the forms described may have
arrayed operands. When one or both of the operands is arrayed,
the <comparison> operators are restricted to = and -= (NOT=).
In any arrayed <comparison>, the following must be true.

SEMANTIC RULES:

1. If one of the two operands of a <comparison> is arrayed
then evaluation of the <comparison> using the unarrayed
operand and each element of the arrayed operand is
implied.

2. If both of the operands are arrayed, then both operands
must have the same array dimensions. Evaluation of the
operation for each of the corresponding elements of the
operands is implied.

3. The result of an arrayed <comparison> is unarrayed. If
the operator is = then the result is TRUE only if it is
TRUE for all elements of the <comparison>. If the
operator is -= (NOT=) then the result is TRUE if it is
TRUE for at least one element of the <comparison>.

6-20

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

6.3 Event Expressions.

Event expressions appear in real time programming
statements (see Section 8.), and are denoted by the syntacti-
cal term <event exp>.

SYNTAX:

event expression G

example:
ALPHA OR BETA

SEMANTIC RULES:

1. An <event exp> is a sequence of <event operand>s separated
by a subset of bit operators. An <event exp> may not be
arrayed.

2. The syntax diagram for <event exp> produces a sequence
extensible on the right. Any sequence produced is not
necessarily to be considered as evaluated from left to
right. The order of evaluation of each infix operation
is dictated by operator precedence: E

6-21

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Operator Precedence

FIRST

AND, & 1

OR, I 2

LAST

If two operations with the same precedence follow each
other, they are evaluated from left to right.

3. The operators AND (&) and OR (I) denote logical inter-
section and union respectively.

An <event operand> appearing in an <event exp> has the
following form.

SYNTAX:

event operand

F NOT
(event xp

IE 1
36

19

p-rocess-event name

example:

1 (A&B)

SEMANTIC RULES:

1. An <event operand> may be an event variable, an <event exp>
enclosed in parentheses, or a <process-event name>, in
which case it is the name of a program or task event.

2. The arrayness of any <event var> must have been removed
by suitable subscripting (see Sections 5.3.3 and 5.3.4).

3. The <event operand> may be optionally prefaced by the
logical complementing operator NOT (").

4. If the <process event name> used as an event operand is
that of an external PROGRAM, then a <PROGRAM template> must
be included in the compilation unit. The <process event name>
for a TASK block is defined by the occurrence of the TASK
block within a PROGRAM block.

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE- 2 CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.4 Normal Functions.

Sections 6.1.1 through 6.1.3 have made references to
normal functions which may appear as operands in various types
of <expression>. Normal functions comprise all those functions
which are not conversion functions, and fall into two classes:

* "built-in" functions defined as part of the HAL/S
language;

* "user-defined" functions defined by the presence
of <function block>s in <compilation>s.

The manner of invoking each class of function is essentially
the same.

SYNTAX:

normal function
nomI

normal

T, -

expression

23

example:
SIN(2 X)

SEMANTIC RULES:

1. <label> invokes execution of a function with name <label>.

2. If <label> is a reserved word which is a built-in function
name then that built-in function is invoked. A list of
built-in function names is given in Appendix C.

3. If a <function block> with name <label> appears in such a
name scope that <label> is known to the invocation, then
that block is invoked.

4. If no such <function block> exists, then the <function block>
is assumed to be external to the <compilation> containing
the invocation. A <function template> for that <function
block> must therefore be present in the <compilation>
(see Section, 3.6).

6-23

INTERMETRICS INCORPORATED *701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Version IR-61-5

5. The type of the <normal function> must be appropriate to
the type of the <expression> containing it (see Sections
6.1.1 through 6.1.3).

6. Each of the <expression>s in the syntax diagram is an
"input argument" of the function invocation. Input argu-
ments are "call-by-reference" or "call-by-value" l .

124
7. Each input argument of a <normal function> must match the

corresponding input parameter of the function definition2

exactly in type, dimension, structure function, and
tree organization, as applicable, except for the following
relaxations:

* precisions need not match, precision conversions are allowed;

* the lengths of bit arguments need not match;

* the lengths of character arguments need not match;

* implicit integer to scalar and scalar to integer
conversions are allowed;

* implicit integer and scalar to character conversions
are allowed.

Input arguments may be viewed as being assigned to their
respective input parameters on invocation of the function.
The rules applicable in the above relaxations thus parallel
the relevant assignment rules given in Section 7.3.

8. If the appearance of an invocation of a user-defined func-
tion precedes the appearance of its <function block>,
the name and type of the function must be declared at the
beginning of the containing name scope (see Section 4.6).

9. Special considerations relate to arrayed input arguments
to the <normal function>. If the corresponding input
parameter is arrayed, then the arraynesses must match in
all respects. In this case,the function is invoked once.
If the corresponding parameter is not arrayed, then the
arrayness must match that of the <expression> containing
the function. In this case, the <normal function> is
invoked once for each array element.

1 1 See Section 7.4.
124

2 2 the parameter specifications for built-in functions is part
of the formal definition given in Appendix C.

6-24

INTERMETRICS INCORPORATED *-701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

example:

DECLARE X ARRAY(4) SCALAR;

SIN evaluated once
IXI - SIN([X]); for each element of X

ADD: FUNCTION (P) SCALAR;
DECLARE P ARRAY(4) SCALAR;

RETURN P +P +P3
~1 2 3'

CLOSE ADD;
ADD evaluated once
only: formal parameter
P has same arrayness

[XI [XI + ADD([XI); as argument x.
.L[ADD must be defined
* before its invocation].

Note: [] enclosing a variable name indicates that it has
been declared to be arrayed.

6-25

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

6.5 Explicit Type Conversions.

The limited implicit type conversions offered by HAL/S
are described elsewhere in the Specification (see Sections
6.1.1 and 7.3). HAL/S contains a comprehensive set of
function-like explicit conversions, some of which also have
the property of being able to shape lists of arguments into
arrays of arbitrary dimensions. For this reason, conversion
functions are sometimes referred to as "shaping functions".
HAL/S contains conversion functions to integer, scalar, vector,
matrix, bit and character types.

6-26

INTERMETRICS INCORPORATED 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

6.5.1 Arithmetic ConveAion Functionas.

Arithmetic conversion functions include conversions to
integer, scalar, vector, and matrix types.

SYNTAX:

arithmetic conversion function

arith
conversion

VECTOR

SCALAR)precision subscript M

INTEGER

Sexpression

arith exp #

example:
INTEGER2. 2 (4# I +J)

GENERAL SEMANTIC RULES:

1. The keyword INTEGER, SCALAR, VECTOR, or MATRIX gives the
result type of the conversion.

2. The conversion keyword is optionally followed by a
<precision> specifier giving the precision of the result
(see Section 6.6), and by a <subscript> specifying its
dimensions.

6-27

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. The conversion has one or more <expression>s as arguments.
The total number of data elements implied by the argument(s)
are shaped according to well-defined rules to generate the
result. The data elements in each <expression> are
unraveled in their "natural sequence"' 3. The result of
doing this for each argument in turn is a single linear
string of data elements. This string is then reformed or
"reraveled" to generate the result.

4. Any <expression> may be preceded by the phrase <arith exp>#,
where <arith exp> is an unarrayed integer or scalar
expression computable at compile time (see Appendix F.).
The value of <arith exp> is rounded to the nearest integer
and must be greater than zero. It denotes the number of
times the following <expression> is to be used in the
generation of the result of the conversion.

5. The nesting of <arith conversion>s is subject to implemen-
tation dependent restrictions.

SEMANTIC RULES (INTEGER and SCALAR);

1. If INTEGER or SCALAR are unsubscripted, and have only one
unrepeated argument of integer, scalar, bit, or character
type, then if the argument is arrayed, the result of the
conversion is identically arrayed.

2. If INTEGER or SCALAR are unsubscripted, and Rule 1 does
not apply, then the result of the conversion is a linear
(1-dimensional) array whose length is equal to the total
number of data elements implied by the argument(s).

3. If INTEGER or SCALARae subscripted, the form of the
<subscript> must be a sequence of <arith exp>s separated
by commas. The number of <arith exp>s is the dimension-
ality of the array produced. Each <arith exp> is an
unarrayed integer or scalar expression computable at
compile time. Values are rounded to the nearest integer
and must be greater than one. They denote the size of
each array dimension produced. Their product must there-
fore match the total number of data elements implied by the
argument(s) of the conversion.

4. INTEGER and SCALAR may have arguments of any type except
structure. Type conversion proceeds according to the
standard conversion rules set out in Appendix D.

3 see Section 5.5.

6-28

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

5. The precision of the result is SINGLE unless forced by
the presence of a <precision> specifier.

SEMANTIC RULES (VECTOR and MATRIX):

1. In the absence of a <subscript> VECTOR produces a single
3-vector result; MATRIX produces a single 3-by-3 matrix
result. The number of data elements implied by the
argument(s) must therefore be equal to 3 and 9 respectively.

2. VECTOR and MATRIX cannot produce arrays of vectors and
matrices. Consequently, <subscript> may only indicate
terminal subscripting.

3. In VECTOR the <subscript> must be an <arith exp>.
<arith exp> is an unarrayed integer or scalar expression
computable at compile time (see Appendix F). Its value
is rounded to the nearest integer, and must be greater than
one. It denotes the length of the vector produced by the
conversion. It must therefore match the total number of
data elements implied by the argument(s) of the conversion.

4. In MATRIX the form of the <subscript> must be

<arith exp>,<arith exp>

Each <arith exp> is an unarrayed integer or scalar
expression computable at compile time. Values are rounded
to the nearest integer, and must be greater than one.
They denote the row and column dimensions respectively
of the matrix produced by the conversion. Their product
must therefore match the total number of data elements
implied by the argument(s) of the conversion.

5. VECTOR and MATRIX may have arguments of integer,scalar,
vector, and matrix type only.

6. The precision of the result is SINGLE unless forced by
the presence of a <precision> specifier.

6-29

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

examples:

DECLARE X ARRAY(2,3) SCALAR,
. V VECTOR(3);

INTEGER(XI) result is 2,3 array of integers

INTEGER([X], IX]) result is linear 12-array of
integers

SCALAR(V) result is linear 3-array of
scalars

124 INTEGER2,6(2#[X]) result is 2,6 array of integers*

124INEE 2 (2X]
MATRIX(3#V) result is 3 by 3 matrix, each row

being equal to V

VECTOR6([X]) vector of length 6

Note: A variable enclosed in [] denotes that it is
arrayed

* For example;:

Let [X] = [2 3]

124
1. Argument 2#[X] is "first unraveled", i.e.

[1 2 3 4 5 61 1i 2 3 4 5 6]

2. Linear string is then "reraveled" into 2x6 array:

1 2 3 4 5 6

6-30

INTERMETRICS INCORPORATED .701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Version IR-61-8

6.5.2 The BLt Conveuion Function.

Conversion to bit type is carried out by the BIT

conversion function.

SYNTAX:

Mt conversion function

S radix M I char exp

BITexpression 2

S subscript
2k

example:
BIT (I +J)

GENERAL SEMANTIC RULES:

1. The keyword BIT denotes conversion to bit type.

2. The conversion has one argument of integer, scalar, bit
or character type. If the argument is arrayed, the
result of the conversion is identically arrayed.

SEMANTIC RULES (without <radix>):

1. Conversions of the argument proceed according to the

standard conversion rules given in Appendix D. The
resulting bit string is of maximum length for the
implementation and the significantt data is right E
justified within the word.

2. <.subscript> represents component subscripting upon the
results of the conversion. <subscript> has the same
semantic meaning and restrictions in the current context
as it does in the subscripting of bit <variable>s (see
Section 5.3.5).

6-31

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

SEMANTIC RULES (with <radix>):

1. The single argument of the <radix> version of the BIT
conversion must be a <char exp>. <radix> specifies a
radix of conversion, and has one of the following syntac-
tical forms:

@HEX (hexadecimal)

@DEC (decimal)

@OCT (octal)

@BIN (binary)

2. The <char exp> must consist of a string (or array of
strings) of digits legal for the specified <radix>,
otherwise a run lme error occurs. The conversion generates
the binary representation of the digit string.

3. During conversion, if the length of the result is too
long to be represented in an implementation, left truncation
occurs.

examples:

DECLARE X ARRAY(2,3) SCALAR;

BIT([X]) result is a 2,3 array of bit strings

BIT1 (XI) same as above except that only bits
1 TO 16 1 through 16 of each array element

are takenBIT ,HE (' FACE')BIT@HEX FACE) result is bit pattern of hexadecimal

digits represented by argument

Note: A variable enclosed in [] denotes that it is
arrayed

6-32

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

Version IR-61-5

6.5.3 The CharacteA Conveasion Function.

Conversion to character type is carried out by the
CHARACTER conversion.

SYNTAX:

character conversion function

char E
conversion

S radix 26 M bit exp 23

S CHARACTER expression)

S subscript 23

example:
CHARACTER@HEX (B)

GENERAL SEMANTIC RULES:

1. The keyword CHARACTER denotes conversion to character
type.

2. The conversion has one argument of integer, scalar,bit, or
character type. If the argument is arrayed, the result
of the conversion is identically arrayed.

6-33

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SEMANTIC RULES (without <radix>):

1. Conversion of the argument proceeds according to the
standard conversion rules given in Appendix D.

2. <subscript> represents component subscripting upon the
results of the conversion. It has the same semantic
meaning and restrictions in the current context as it
does in the subscripting of character <variable>s (see
Section 5.3.5).

SEMANTIC RULES (with <radix>):

1. The single argument of the <radix> version of the
CHARACTER conversion must be a <bit exp>. <radix>
specifies a radix of conversion, and has one of the
following syntactical forms:

@HEX (hexadecimal)

@DEC (decimal)

@OCT (octal)

@BIN (binary)

2. The value of <bit exp> is converted to the representation
indicated by the <radix>, left padding the value with
binary zeroes as required. The result is a character
string consisting of the digits of the representation.

examples:

DECLARE X ARRAY(2, 3) SCALAR;

CHARACTER([XI) result is a 2,3 array of character
strings

CHARACTER 2([X]) same as above except that only the
second character of each array

CHARACTER E(BIN '101101') element is taken

@DEC result is decimal representation of
the bit pattern of the argument

Note: A variable enclosed in [] denotes that it is
arrayed

6-34

INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

6.5.4 The SUBBIT P~eudo-vaAiable.

The SUBBIT pseudo-variable is a way of making the
bit representation of other data types directly accessible
without conversion. It may appear in an assignment context

(see Section 7.3) as well as part of an <expression>. It
is denoted syntactically by <bit pseudo-var>.

SYNTAX:

SUBBIT pseudo-variable

bit
pseudo-var

Ljsubscript exapresson

example:
SUBBIT 5 TO8

SEMANTIC RULES:

1. The keyword SUBBIT denotes the pseudo-variable.

2. SUBBIT has one argument only. If it appears in an
assignment context, the argument must be a <variable>.
If it appears as an operand of a bit expression, the
argument must be an <expression>.

3. The argument may be of integer, scalar, bit or character
type, and may optionally be arrayed.

4. The effect of SUBBIT is to make its argument look like
an operand of bit type. (If the argument is arrayed, then
it looks like an arrayed bit operand.)

5. <subscript> represents component subscripting upon the
pseudo-variable. It has the same semantic meaning as if
it were subscripting a bit variable (see Section 5.3.5).

6-35

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

6. The length of the argument in bits may in some implemen-

tations be greater than the maximum length of a bit

operand. Let the maximum length of a bit operand be
N bits. If SUBBIT is unsubscripted, only the N leftmost
bits of the machine representation of the data-type of
the argument are visible. If the representation is less
than N, the number of bits visible is equal to the

length of the particular data argument.

7. Partitioning subscripts of SUBBIT may make between 2 and
N bits from the representation of the argument type
visible at any time (i.e. the partition size is < N.)
The partition size must be known at compile time. If
the representation is less than the specified partition
size, binary zeros are added on the left.

8. In an assignment context, SUBBIT functions may not be
nested within SUBBIT functions. Neither may they
appear as assign arguments, or in READ or READALL
statements.

example:

DECLARE P SCALAR DOUBLE;

SUBBI T33 TO 64(P) bits 33 through 64 of the machine
representation of P look like a 32-bit
bit variable

bits 1 through 32 are invisible

6-36

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

6.5.5 Summary of Argument Type.

The checkmarks in the following table indicate the

legal argument types for each conversion function.

argument type
conversion
function integer scalar vector matrix bit character

INTEGER / /

SCALAR /

VECTOR

MATRIX

BIT
<radix>CHARACTER I
CHARACTER

with (radix>)

SUBBIT

6-37

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

6.6 Explicit Precision Conversion.

The precision specifier may be used to cause explicit
precision conversion of integer, scalar, vector, and matrix
data types.

SYNTAX:

pprecision specifier

J SINGLE

DOUBLE

SEMANTIC RULES:

1. If <precision> is specified as a subscript to an
<arith operand> (see Section 6.1.1), a conversion to
the precision specified takes place.

2. If <precision> is specified as a subscript to an
<arith conversion> then the result of the conversion is
generated with the indicated precision.

3. If referring to integer type, SINGLE implies a halfword,
and DOUBLE a fullword. The interpretation is machine
dependent.

6-38

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

7. EXECUTABLE STATEMENTS

Executable statements are the building blocks of the
HAL/S language. They include assignment, flow control, real
time programming, error recovery, and input/output statements.
Syntactically a statement of the above type is designated by
<statement>. The manner of its integration into the general
organization of a HAL/S compilation was discussed in Section 3.

7-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

7.1 Basic Statements.

All forms of <statement> except the IF statement
and certain forms of the ON ERROR statement (Section 9.1),
fall into the category of a <basic statement>.

SYNTAX:

basic statement

J basic statement l

Any <basic statement>, unless it is imbedded in an IF
statement or ON ERROR statement, may optionally be labelled
with any number of <label>s. Not all forms of <basic
statement> are described in this Section. Real time
programming statements are described in Section 8, error
recovery statements in Section 9, and input/output statements
in Section 10.

7-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-

7.2 The IF Statement.

The IF statement provides for the conditional execu-
tion of segments of HAL/S code.

SYNTAX:

IF stenmnt

statement

300
IF copdition THEN - - -

--- Statment
i4

basic statement ELE statement

example: IF J > 0 THEN K = 1;

ELSE K = 2;

SEMANTIC RULES:

1. The IF statement, unless it is imbedded in another
IF statement or in an ON ERROR statement, may
optionally be labelled with any number of <label>s.

2. The option to label the <statement> or <basic statement> 129
of an IF statement is not disallowed. However, such
labels may only be referenced by REPEAT or EXIT state-
ments within the (compound) <statement> or <basic statement>
thus labelled.

3. If <bit exp> appears in the IF statement, then it must
be boolean (i.e. of 1-bit length).

4. If the <condition> or <bit exp> is TRUE, then the <statement>
or <basic statement> following the keyword THEN is executed.
If <bit exp> is arrayed, then it is considered to be TRUE
only if all its array elements are TRUE. Execution then
proceeds to the <statement> following the IF statement.

7-3

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5. If the <condition> or <bit exp> is FALSE then the

<statement> or <basic statement> following the keyword
THEN is not executed. If the ELSE clause is present
then the <statement> following the keyword ELSE is
executed instead, and then execution proceeds to the
<statement> following the IF statement. If the ELSE
clause is absent, execution merely proceeds to the next
<statement>.

NOTE: If the ELSE clause is present, a <basic statement>
rather than a <statement> precedes the keyword ELSE. A

nested IF statement therefore cannot appear in this position,
thus preventing the well-known 'dangling ELSE' problem.

7-4

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

7.3 The Assignment Statement.

The assignment statement is used to change the current
value of a <variable> or list of <variable>s to that of an-
expression evaluated in the statement.

SYNTAX:

assignment statement

Jvariable e expression

example:
ETA, KAPPA = LAMBDA + 1;

GENERAL SEMANTIC RULES:

1. <variable> may not be an event variable or an input
parameter of a procedure or function block.

2. The effective order of execution of an assignment state-
ment is as follows:

* any subscript expressions on the left-hand side are
evaluated;

* the right-hand side <expression> is evaluated;

* the values of the left-hand side <variable>s are
changed.

3. If the <expression> on the right-hand side is arrayed,
then all the <variable>s on the left-hand side must be
arrayed. The number of dimensions of arrayness on each
side must be the same, and corresponding dimensions on
either side must match in size.

7-5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4. If the <expression> on the right-hand side is not arrayed
then it is still possible for one or more <variable>s on
left-hand side to be arrayed. If more than one <variable>
is arrayed, the arraynesses must match in the sense of
General Semantic Rule 3, above. The single unarrayed value
will be assigned to every element of arrayed targets.

5. Generally, the type of the <expression> must match the
types of the <variable>s on the left-hand side. Specific
exceptions to this rule are listed below. The type of
an assignment is taken to be the same as the type of the
<variable> whose value is being changed.

SEMANTIC RULES (integer and scalar assignments):

1. The following implicit type conversions are allowed
during assignment:

* Assignment of an integer <expression> to a scalar
<variable> is allowed. Depending on the implementation
this may cause loss of decimal places of accuracy.

SAssignment of a scalar <expression> to an integer
<variable> is allowed, causing rounding to the nearest
integral value. This may cause a run time error if,
in any implementation,the scalar has too large an
absolute value to be represented as an integer.

2. If the left- and right-hand sides of a scalar assignment
have differing precisions, precision conversion is freely
allowed. Conversion from DOUBLE to SINGLE precision
implies truncation of an implementation dependent number

of binary digits from exponent, mantissa, or both.

SEMANTIC RULES (vector and matrix assignments):

1. The <expression> must normally be a vector or matrix
expression with the same type and dimension(s) as the
<variable>s on the left-hand side. One relaxation of
this rule is permitted. Matrix or vector <variable>s may
be set null by specifying literal zero for the <expression>.
In this case only, both matrices and vectors of any
dimension(s) may appear mixed in the list of <variable>s.

2. If the left- and right-hand sides of an assignment have
differing precisions, precision conversion is freely
allowed.

7-6

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138-* (617) 661-1840

SEMANTIC RULES (bit assignments):

1. If the length of the bit <expression> is unequal to that
of the left-hand side bit <variable>, then the result of
the <expression> is left-truncated if it is too long, or
left-padded with binary zeroes if it is too short.

2. The effect of a left-hand side <variable> being a
<bit pseudo-var> is described in Section 6.5.4.

SEMANTIC RULES (character assignments):

1. Assignment of an integer or scalar <expression> to a
character <variable> is allowed. During assignment the
integer or scalar value is converted to a character string
according to the conversion formats given in Appendix D.

2. If <variable> is a character variable with no component
subscripting, then:

* If the length of the <expression> is greater than the
declared maximum length of the <variable>, the
<expression> is right-truncated to that length. The
<variable> takes on its maximum length.

* If the length of the <expression> is not greater than
the declared maximum length of the <variable>, then
<variable> takes on the length of the <expression>.

3. If <variable> is a character variable with component sub-
scripting then:

* If the length of the <expression> is greater than the
length implied by the component subscript, then it is
right-truncated to the implied length.

* If the length of the <expression> is less than the
length implied by the component subscript, then it is
right-padded with blanks to the implied length.

* After assignment the <variable> takes on the length
implied by the upper index of the component subscript,
or retains its original length, whichever is the
greater . If the upper index of the subscript implies
a length greater than the declared maximum for that
<variable>, right-truncation to the maximum length
occurs.

* If the lower index is greater than the length of the
<variable> before assignment, then the intervening
gap is filled with blanks.

7-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

SEMANTIC RULES (structure assignments):

1. <expression> can only be a <structure exp>. The tree
organization of the structure operands on both sides
of the assignment must match exactly in all respects.
The sense in which tree organizations of two structures
are said to match is described in section 4.3.

7-8

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

7.4 The CALL Statement.

The CALL statement is used to invoke execution of a
procedure. The PROCEDURE block may be in the same <compilation>
as the CALL statement or external to it.

SYNTAX:

CALL statement

(expresion

CALL labe

ASSIGN (variable
20

example: CALL EPSILON (A * B) ASSIGN (C);

SEMANTIC RULES:

1. CALL <label> invokes execution of a procedure with name
<label>.

2. If a <procedure block> with name <label> appears in such
a name scope that <label> is known to the CALL statement,
then CALL <label> invokes that block.

7-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

3. If no such <prc'Pire block> exists, then the <procedure
block> is assumed to be external to the <compilation>
containing the CALL statement. A <procedure template>
for that <procedure block> must therefore be present in
the <compilation> (see Section 3.6).

4. Each of the <expression>s is an "input argument" of the
procedure call.

5. Each of the <variable>s is an "assign argument" of the
procedure call. Only assign arguments may have their
values changed by the procedure. If <variable> is sub-
scripted, it must be restricted in form to the following:

* No component subscripting for bit and character types.

* If component subscripting is present, <variable> must
be subscripted so as to yield a single (unarrayed)
element of the <variable>.

* If no component subscripting is present, but array
subscripting is, then all arrayness must be subscripted
away.

6. Assign arguments are "call-by-reference". Input arguments
are either "call-by-reference" or "call-by-value".

7. Each assign argument must match its corresponding procedure
block assign parameter exactly in type, precision, dimension,
arrayness, structure tree organization, and DENSE and
REMOTE attributes, as applicable. CHARACTER lengths
are an exception; the declared lengths need not match.
The reason is that character types are of varying length
and the actual length is available at execution. If an
assignment argument has the LOCK attribute,then the
following must apply:

* If it is of lock group N, then the corresponding assign
parameter must be of lock group N, or *.

* If it is of lock group *, then the corresponding
parameter must also be of group *.

1 In this context "call-by-reference" means the arguments
are pointed to directly. "Call-by-value" means the

124 value of an input argument, at the invocation of a
procedure, is made available to the prodedure.

7-10

INTERMETRICSINCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Version IR-6]

8. Bit type identifiers which are part of structure
variables and have the DENSE attribute may not be
used as ASSIGN arguments of a CALL statement. All
other types of structure terminals with the DENSE
attribute may be used as ASSIGN arguments. See
Sections 4.3 and 4.5 for further explanation of
the DENSE attribute. Note, however, that an
entire structure with the DENSE attribute may be
passed provided that template matching rules are
observed.

7,10.1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

9. For input arguments, the following relaxations of

rules 7 and 8 are permitted:

* precisions need not match;

0 the lengths of bit arguments need not match;

" the lengths of character arguments need not match;

* implicit integer to scalar and scalar to integer
conversions are allowed;

• implicit integer and scalar to character conversions
are allowed;

* matching of the attributes DENSE and REMOTE is not
required.

Input arguments may be viewed as being assigned to their
respective input parameters on invocation of the procedure.
The rules applicable in the above relaxations thus
parallel the relevant assignment rules given in
Section 7.3.

10. If an assign argument is a structure terminal or a
minor structure node (but not if it is a major structure)
and if the structure possesses multiple copies, then the
number of copies must be reduced to one by subscripting.

example:
STRUCTURE Z:

1 A,
2 C CHARACTER (80),
2 B VECTOR,

1 D INTEGERj
DECLARE ZZ Z-STRUCTURE(20);

CALL X ASSIGN(ZZ, ZZ.A, ZZ.A.B, ZZ.A);

legal illegal legal

7-11

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

7.5 The RETURN Statement.

The RETURN statement is used to cause return of
execution from a TASK, PROGRAM, PROCEDURE, or FUNCTION block.
In the case of the FUNCTION block it also specifies an
expression whose value is to be returned.

SYNTAX:

RETURN statement
basic

statement

label expression

example:
DONE: RETURN ZETA;

GENERAL SEMANTIC RULES:

1. The effect of the RETURN statement is to cause normal
exit (return of execution) from a TASK, PROGRAM,
PROCEDURE, or FUNCTION block. (Also see the CLOSE
statement, Section 3.7.4).

124 2. <expression> may only appear in a RETURN statement of
a <function>. Its value is the returned value of the
function, and is evaluated prior to returning.

7-12

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

3. <expression> must match the function definition in type
and dimension, with the following exceptions:

* the lengths of bit expressions need not match;

* the lengths of character expressions need not match;

" implicit integer to scalar and scalar to integer
conversions are allowed;

* implicit integer and scalar to character conversions
are allowed.

The return of the function values may be viewed as the
assignment of the <expression> to the function name.
The rules applicable in the above exceptions thus
parallel the relevant assignment rules given in Section 7.3.

4. <expression> must always appear in RETURN statements of
<function block>s. Execution must always end on logically
reaching a RETURN statement of such a block, and not by
logically reaching the delimiting CLOSE statement. 124

7-13

INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

7.6 The DO... END Statement Group.

The DO...END statement group is a way of grouping a
sequence of <statement>s together so that they collectively
look like a single <basic statement>. Additionally, some
forms of DO..END group provide a means of executing a sequence
of <statement>s either iteratively, or conditionally, or both.

SYNTAX:

DO . .. END statement group

S procedure block 3

* 3
Sfunction block

3

bas task block

update block

I I nd satemnt 55
st edo statement e s

51
51

statem ent
44

example:
DO WHILE J >0;

J=J - 1;
END;

The DO...END statement group is opened with a <do statement>
and closed with an <end statement>. In between may appear
any number of <statement>s interspersed as required with
FUNCTION, PROCEDURE, TASK, or UPDATE blocks. The form of the
<do statement> determines how the <statement>s within the
group are executed.

7-14

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Page intentionally left blank

Page intentionally left blank

7.6.3 The VO WHILE and UNTIL Statement6.

The DO WHILE and UNTIL statements cause repeated
execution of the sequence of <statement>s in a group until
some condition is satisfied.

SYNTAX:

DO WHILE and UNTIL statements

statement

condition

J DO WHILEbit exp

labelUNTIL

example:
DO WHILE I > 0;

SEMANTIC RULES:

1. There is no semantic restriction on <condition>.
<bit exp> must be boolean and unarrayed (i.e., of
1-bit length). The <condition> or <bit exp> is re-
evaluated every time the group of <statement>s is
executed.

2. In the DO WHILE version, the group of <statement>s is
repeatedly executed until the value of <condition> or
<bit exp> becomes FALSE. The value is tested at the
beginning of each cycle of execution. This implies that
if <condition> or <bit exp> is initially FALSE the group
of <statement>s is not executed at all.

7-17

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. In the DO UNTIL version, the group of <statement>s is
repeatedly executed until the value of <condition> or
<bit exp> becomes TRUE. The value is not tested before
the first cycle of execution. On the second and all
subsequent cycles of execution, the value is tested at the
beginning of each cycle. Use of the UNTIL version there-
fore guarantees at least one cycle of execution.

7-18

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

7.6.4 The DiAcete DO FOR Statement.

The discrete DO FOR statement causes execution of the
sequence of <statement>s in a group once for each of a list
of values of a "loop variable". The presence of a WHILE or
UNTIL clause can be used to cause such execution to be depend-
ent on some condition being satisfied.

SYNTAX:

discrete DO FOR statement

statement

DO FOR arith var = arith exp - - -

WHILE condition

UNTIL bit exp

example:

DO FOR I - 10, 20 WHILE J > 0;

SEMANTIC RULES:

1. <arith var> is the loop variable of the DO FOR statement.
It may be any unarrayed integer or scalar variable.

2. The maximum number of times of execution of the group of
<statement>s is the number of <arith exp>s in the assign-
ment list.

3. <arith exp> is an unarrayed integer or scalar expression.

7- 19

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840
/

4. At the beginning of each cycle of execution of the group
the next <arith exp> in the list (starting from the left-
most) is evaluated and assigned to the loop variable. The
assignment follows the relevant assignment statement rules
given in Section 7.3.

5. Use of the WHILE or UNTIL clause causes continuation of
cycling of execution to be dependent on the value of
<condition> or <bit exp>.

6. There is no semantic restriction on <condition>.
<bit exp> must be boolean and unarrayed (i.e. of
1-bit length). The <condition> or <bit exp> is re-
evaluated every time the group of <statement>s is
executed.

7. If the WHILE clause is used, cycling of execution is
abandoned when the value of <condition> or <bit exp>
becomes FALSE. The value is tested at the beginning of
each cycle of execution after the assignment of the loop
variable. This implies that if <condition> or <bit exp>
is FALSE prior to the first cycle of execution of the group,
then the group will not be executed at all.

8. If the UNTIL clause is used, cycling of execution is
abandoned when the value of <condition> or <bit exp>
becomes TRUE. The value is not tested before the first
cycle of execution. On the second and all subsequent
cycles of execution, the value is tested at the beginning
of each cycle after the assignment of the loop variable.
Use of the UNTIL version therefore always guarantees at
least one cycle of execution.

7-20

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

7.6.5 The Itative DO FOR Statement.

The iterative DO FOR statement is similar in intent and

operation to the discrete DO FOR statement, except that the

list of values that the loop variable may take on is replaced

by an initial value, a final value, and an optional increment.

SYNTAX:

iterative DO FOR statement

statement

DO FOR arith var 1 arith exp T - - -

--

ithexp

BY arith exp WHILE condition

UNTIL bit exp

example:
DO FOR I-1 TO30BY2 UNTIL J <0;

SEMANTIC RULES:

1. <arith var> is the loop variable of the DO FOR statement.
It may be any unarrayed integer or scalar variable.

2. Each <arith exp> is any unarrayed integer or scalar expression.
All are evaluated prior to the first cycle of execution of the
group.

7-21

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. Unless a BY clause appears in the DO FOR statement, the
value assigned to the loop variable prior to the Kth
cycle of execution is one greater than its value on the
K-lth cycle.

4. If a BY clause appears in the DO FOR statement, the value
assigned to the loop variable prior to the Kth cycle of
execution is equal to its value on the K-lt cycle plus
the value of <arith exp> following the BY keyword (the
"increment").

5. Assignment of values to the loop variable follows the
relevant assignment rules given in Section 7.3. In
particular, if the loop variable is of integer type,
and an initial value or increment is of scalar type, the
latter will be rounded to the nearest integer in the
assignment process. The effect of the loop variable assign-
ment is identical to that of an ordinary assignment state-
ment: the loop variable will retain the last value computed
and assigned when the DO statement execution is completed.

6. After the value of the loop variable has been changed, it
is checked against the value of the <arith exp> following
the TO keyword (the "final value").

7. If the sign of the increment is positive, the next cycle
is permitted to proceed only if the current value of the
loop variable is less than or equal to the final value.

8. If the sign of the increment is negative, the next cycle is
permitted to proceed only if the current value of the loop
variable is greater than or equal to the final value.

9. If the WHILE clause is used, cycling of execution is
abandoned when the value of <condition> or <bit exp>
becomes FALSE. The value is tested at the beginning of
each cycle of execution after the assignment of the loop
variable. This implies that if <condition> or <bit exp>
is FALSE prior to the first cycle of execution of the group,
then the group will not be executed at all.

10. If the UNTIL clause is used, cycling of execution is
abandoned when the value of <condition> or <bit exp>
becomes TRUE. The value is not tested before the first
cycle of execution. On the second and all subsequent
cycles of execution, the value is tested at the beginning
of each cycle after the assignment of the loop variable.
Use of the UNTIL version therefore always guarantees at
least one cycle of execution.

7-22
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

7.6.6 The END S tatement.

The END statement closes a DO...END statement group.

SYNTAX:

END statement

example:

END LOOP;

SEMANTIC RULES:

1. If <label> follows the END keyword, then it must match a
<label> on the <do statement> opening the DO...END group.

2. The <end statement> is considered to be part of the group,
in that if it is branched to from a <statement> within the
group, then depending on the form of the opening <do
statement>, another cycle of execution of the group may
begin.

7- 23

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

7.7 Other Basic Statements.

Other <basic statement>s are the GO TO, "null"
EXIT, and REPEAT statements.

SYNTAX:

El GO TO, "null", EXIT, and REPEAT statements
basic

statements

example: EXIT

ONE: DO FOR I - 1 TO 10;
TWO: DO FOR J - 37 TO 43; RAlabel

IF Bi,J = FALSE THEN REPEAT ONE
END;

END;

SEMANTIC RULES:

1. The GO TO <label> statement causes a branch in execution
to an executable statement bearing the same <label>.
The latter statement must be within the same name scope
as the GO TO statement. A GO TO statement may not be
used to cause execution to branch into a DO...END group,
or into or out of a code block.

2. The "null" statement (where no syntax except possible
<label>s precede the terminating semicolon) has no effect
at run time.

7- 24

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

3. The EXIT statement is legal only within a DO...END group,
or within nested such groups. The form EXIT <labe2> controls
execution relative to the enclosing DO...END group whose
<DO statement >bears <labe l>. The form EXIT controls
execution relative to the innermost enclosing DO...END group.
Execution is caused to branch out of the DO...END group
specified or implied, to the first executable statement
after the group.

4. The REPEAT statement is legal only within a DO...END group
opened with a DO FOR, DO WHILE, or DO UNTIL statement, or
within nested sych groups. The form REPEAT <label> controls
execution relative to the enclosing such group whose<DO
statement>bears <label>. The form REPEAT controls execution
relative to the innermost such group. Execution is caused
to abandon the current cycle of the DO...END group. If the
conditions of the opening <DO statement> are still satisfied,
the next cycle of execution begins normally.

5. Code blocks (procedures, functions, etc.) may appear within
DO...END groups. However, EXIT, REPEAT, and GO TOstatements
may not be used to cause execution to branch into or out of
such code blocks.

7-25

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

8. REAL TIME CONTROL

HAL/S contains a comprehensive facility for creating
a multi-processing job structure in a real time programming
environment. At run time a Real Time Executive (RTE) con-
trols the execution of processes held in a process queue.
HAL/S contains statements which schedule processes (enter
them in the process queue), terminate them (remove them from
the process queue), and otherwise direct the RTE in its
controlling function. HAL/S also contains means whereby the
use of data by more than one process at a time is managed in
a safe, protected manner at specific, localized points within
the processes.

8-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

8.1 Real Time Processes and the RTE.

In HAL/S, a program or task may be scheduled as
a process and placed in the process queue. Although the
process created is given the same name as the program or task,
it is important to distinguish the static PROGRAM or TASK
block from the dynamic program or task process created. Two
processes are actually involved in the creation of a process:
the scheduling process, or "father"; and the scheduled process,
or "son".1

A process is said to be either "dependent" or "independ-
ent", as designated when created. A program or task process
is "dependent" if it is absolutely dependent for its existence
upon the existence of its father. If a orogram process is
"independent" its existence is independent of that
of all other processes. If a task process is "independent"
its existence is generally independent of that of all other
processes with an important exception: the program process in
whose static PROGRAM block the static TASK block of the task
process is defined.

Each process in the RTE's process queue is at any
instant in one of a number of states. For the purposes of
this Section, the following states are defined:

" "active" - a process is said to be in the active
state if it is actually in execution. Depending
on the implementation it may be possible for
several processes to be in execution simultaneously.

* "wait" - a process is said to be in the wait state if
it is ready for execution but the RTE has decided
on a priority basis that its execution should be
delayed or suspended.

* "ready" - a process is said to be in the ready state
if it is in either the active or the wait states.

* "stall" - a process is said to be in the stall state
if some as yet unsatisfied condition prevents it
from being in the ready state.

The occurrence of a process being brought into the active
state for the first time is called its "initiation".

1 except of course for the first or "primal" process which
must be created by the RTE itself.

2 these states are not necessarily definitive of those actually
existing in any particular implementation of the RTE.

8-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

Execution of a CLOSE or RETURN statement by an active
process causes termination of the process and return
to the RTE. In the case of a process which has
schedule dependent processes, such execution places
the father in a stall state until the sons have all
terminated before the process is itself terminated.

1241

8.2 Timing Considerations.

In the HAL/S system, the RTE contains a clock measuring
elapsed time ("RTE-clock" time). Time is measured in "machine
units" (MU) whose correspondence with physical time is imple-
mentation dependent. HAL/S contains several instances of timing
expressions which in effect make reference to the RTE-clock.

8-3

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1340

Version IR-61-8

8.3 The SCHEDUif' E St.tement.

Processes are scheduled (placed in the process queue)
by means of the SCHEDULE statement. The statement has many
variant forms and offers the following features:

* A process may be scheduled so that the RTE immediately
places it in a ready state, or so that the RTE places
it in a stall state pending some condition being satis-
fied.

76

* A process may be designated dependent or independent.

* The cyclic execution of a process may be specified.

* Conditions of future removal of a process from the
process queue may be specified.

SYNTAX:

SCHEDULE Ibt2met 24

a ithesp

24

Ivetep 6I
8-4

ih-N E M CT 018 (

- 36

LabelL ON evtaxp -

AFTER arith up UNTIL' 24tha

C36
24

example:

761 SCHEDULE IOTA PRIORITY(5);
SCHEDULE DELTA PRIORITY(P-2) DEPENDENT,REPEAT EVERY 15.9;

8-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Version IR-61-7

SEMANTIC RULES:

1. SCHEDULE <label> schedules a program or task with the
name <label>, placing a new process with name <label> in
the process queue. A run time error results if a
process of that name already exists in the process queue.
Unless otherwise specified the RTE puts the new process
in the ready state immediately after execution of the
SCHEDULE statement.

2. The phrase IN <arith exp> is used to cause the process
to be put in the stall state for a fixed RTE-clock dura-
tion. <arith exp> is any unarrayed integer or scalar
expression evaluated once at the time of execution of the
SCHEDULE statement. If the value is not greater than
zero then the process is put immediately in the ready
state.

3. The phrase AT <arith exp> is used to cause the process
to be put in the stall state until a fixed RTE-clock
time. <arith exp> is any unarrayed integer or scalar
expression evaluated once at the time of execution of
the SCHEDULE statement. If the value is not greater than
the current RTE-clock time, and the REPEAT EVERY option
is not specified, then the process is put immediately
in the ready state. If the value is less than the current
RTE time and the REPEAT EVERY option was specified, then 125
phased scheduling takes place. The process is put in a
stall state until a future time computed by the expression
CT + RE - ((CT-AT)MOD RE), where CT -current time, RE = RE- 141
PEAT' EVERY cycle time,, and AT =origin&lly'specifiedAT time.

4. The phrase ON <event exp> is used to cause the process
to be put in the stall state until some event condition
is satisfied. Starting from the time of execution of
the SCHEDULE statement, the <event exp> is evaluated at
each "event change point"3 until its value becomes TRUE.
At that time the process is placed in the ready state.
If the value of <event exp> is TRUE upon execution of the
SCHEDULE statement, then the process is immediately
put in the ready state.

3
the meaning of an "event change point" is defined in
Section 8.8.

8-5

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138-* (617) 661-1840

Version IR-61-8

5. The initiation priority is set by means of the phrase
kRIORITY (<arith exp>) where <arith exp> is an unarrayed
integer or scalar expression which is evaluated once on
execution of the SCHEDULE statement. Scalar values are
rounded to the nearest integral value. Its value must
be consistent with the priority numbering scheme set up
for any implementation,otherwise a run time error results.

76 A priority value must be present in the SCHEDULE statement.

6. When the keyword DEPENDENT is specified, the process created
by the SCHEDULE statement is dependent upon the continued
existence of the scheduling process. Note, however, that
a TASK process is always ultimately dependent upon the en-
closing PROGRAM process. Thus when scheduling a TASK from
the PROGRAM level of nesting, the keyword DEPENDENT is re-
dundant and need not be specified.

7. The REPEAT phrase of the SCHEDULE statement is used to
specify a process which is to be executed cyclically by
the RTE until some cancellation criterion is met. If the
REPEAT phrase is not qualified, then cycles of execution
follow each other with no intervening time delay. To
cause execution of consecutive cycles to be separated by
a fixed interveni.ng RTE-clock time delay , the qualifier
AFTER <arith exp> is used. <arith exp> is an unarrayed
integer or scalar expression evaluated once at the time
of execution of the SCHEDULE statement. If the value is
not greater than zero then no time delay results. To cause
the beginning of successive cycles of execution to be
separated by a fixed RTE-clock time delay, the qualifier
EVERY <arith exp> is used. <arith exp> is an unarrayed
integer or scalar expression evaluated once at the time
of execution of the SCHEDULE statement. If the value is
such as to cause a cycle to try to start execution before
the previous cycle has finished execution, then a run
time error results.

8. Between the successive cycles of execution of a cyclic
process, the process is put in a stall state and retains
the machine resources the RTE reserved for it. It is
not temporarily removed from the process queue.

9. The WHILE and UNTIL phrases provide a cancellation criter-
ion for a cyclic process. Before the cyclic process is
initiated, they also provide a means of removal of the
process from the process queue. In this latter capacity,
they also apply to non-cyclic processes. If a cyclic
process has no dependent sons, then cancellation merely
implies termination of the process between cycles (and
thus removal from the process queue). If dependent sons
exist, then cancellation implies that the cyclic process
is put in a stall state until the sons have all terminated
before the process is itself terminated.

8-6

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138-* (617) 661-1840

10. The UNTIL <arith exp> phrase specifies a cancellation
criterion based on RTE-clock time. <arith exp> is an
unarrayed integer or scalar expression evaluated once
at the time of execution of the SCHEDULE statement. For
any process, cyclic or non-cyclic, the following is
true. If the value of <arith exp> is not greater than
the current RTE-clock time, then the process is never
entered in the process queue. Otherwise if the value
of <arith exp> becomes equal to the RTE-clock time
before the process is initiated, then the process is
removed from the process queue. If neither of the above
is true, then the following ensues. If the process is
non-cyclic, the phrase has no further effect. If the
process is cyclic, then cancellation may occur in one
of two ways. If the value of <arith exp> becomes equal
to the RTE-clock time while the process is in an
inter-cycle stall state, the process is cancelled
immediately. If it happens during a cycle, the process
is cancelled immediately on completion of the current
cycle. The next cycle proceeds if cancellation does not
occur.

11. The WHILE <event exp> phrase specifies a cancellation
criterion based on an event condition. For any process,
cyclic or non-cyclic, the following is-'true. If the
value of <event exp> is FALSE at the time of execution
of the SCHEDULE statement, then the process is never
placed in the process queue. If not, then <event exp>
is evaluated at every "event change point" until its
value becomes FALSE. If it becomes FALSE before the
process is initiated, then the process is removed from
the process queue. If neither of the above is true, then
the following ensues. If the process is non-cyclic, the
phrase has no further effect. If the process is cyclic,
then cancellation may occur in one of two ways. If
<event exp> becomes FALSE at any "event change point"
occurring while the process is in an inter-cycle stall
state, the process is cancelled immediately. If it occurs
during the cycle, the process is cancelled immediately
on completion of the current cycle. If cancellation does
not occur, the next cycle proceeds.

8-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

12. The UNTIL <event exp> phrase also specifies a cancella-
tion criterion based on an event condition. However, it
differs fundamentally from the WHILE <event exp> phrase
in that it always allows at least one cycle of a cyclic
process to be executed. Consistent with this, the phrase
has no meaning and therefore no effect in the case of a
non-cyclic process. For a cyclic process, the value of
the <event exp> is evaluated at every "event change point"
from the time of execution of the SCHEDULE statement.
Beginning with the end of the first cycle of execution,
cancellation may occur in one of two ways. If the
<event exp> becomes TRUE at any "event change point"
occurring while the process is in an inter-cycle stall
state, the process is cancelled immediately. If it occurs
during a cycle, the process is cancelled immediately on
completion of the current cycle. If cancellation does not
occur, the next cycle proceeds.

8-8

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-6

8.4 The CANCEL Statement.

Cancellation of a process may be the result of the
enforcement of a cancellation criterion in the SCHEDULE
statement which created the process, or alternatively may
be the result of executing a CANCEL statement.

SYNTAX:

CANCEL statement

labellabel

example:

FINISHING: CANCEL ETA, NU;

SEMANTIC RULES:

1. CANCEL <label> causes cancellation of the process <label> 106
and its dependent processes. A run time error result, if
the process queue contains no process with that name. The
CANCEL statement can be used to cancel any number of
processes simultaneously.

2. If the CANCEL statement has no <label>, cancellation
of the process executing the CANCEL statement and its
dependents is implied. 106

4 the default action taken by the Error Recovery Executive
for this and other similar errors may be to ignore the
error.

8-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. If at the time of execution of the CANCEL statement, a
process to be cancelled has not yet been initiated, then
the process is merely removed from the process queue.
This applies to both cyclic and non-cyclic processes.

4. If at the time of execution of the CANCEL statement a

process to be cancelled has already been initiated, then
the following ensues. If the process is non-cyclic
and it has already been initiated, the CANCEL statement
has no effect. If the process is cyclic, then the
process is cancelled at the end of the current cycle of
execution.

5. A cancelled process with dependent offspring is put
in the stall state until its dependent offspring are
terminated. At that time, the parent process is
terminated.

8-10

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

8.5 The TERMINATE Statement.

The termination of a process implies the immediate
5

cessation of execution of the process and all its dependent
sons, and their removal from the process queue. The
TERMINATE statement is used to direct the RTE to terminate
specified processes.

SYNTAX:

TERMINATE statement

(TERMINATE

labellabel

example:
STOP: TERMINATE ALPHA, BETA;

SEMANTIC RULES:

1. TERMINATE <label> causes termination of the process
<label>. A run time error results if a process of that
name is not in the process queue, or if it is not a
dependent son of the process currently executing the
TERMINATE statement. The TERMINATE statement can be used
to terminate any number of processes simultaneously.

2. If the TERMINATE statement has no <label>, termination of
the process currently executing the TERMINATE statement
is implied.

5 subject of course to implementation dependent safety
constraints.

8-11

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

8.6 The WAIT StatementL

The WAIT statement allows the user to cause the RTE
to place a process in the stall state until some condition
is satisfied.

SYNTAX:

WAIT statement

arith exp

laritb exp --

example:
NOW: WAIT UNTIL T + 7.5;

SEMANTIC RULES:

1. The WAIT <arith exp> version specifies that the process
executing the WAIT statement is to be placed in the stall
state for an RTE-clock duration fixed by the value of
the expression. <arith exp> is an unarrayed integer or
scalar expression evaluated once at the time of execution
of the WAIT statement. If the value is not greater than
zero, the WAIT statement has no effect.

2. The WAIT UNTIL <arith exp> version specifies that the
process executing the WAIT statement is to be placed in
the stall state until an RTE-clock time fixed by the value
of the expression. <arith exp> is an unarrayed integer
or scalar expression evaluated once at the time of
execution of the WAIT statement. If the value is not
greater than the current RTE-clock time, the WAIT state-
ment has no effect.

8-12

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3. The WAIT FOR DEPENDENT version specifies that the process
executing the WAIT statement is to be placed in the stall
state until all its dependent sons have terminated. If
there are no such processes, the WAIT statement has no
effect.

4. The WAIT FOR <event exp> version specifies that the pro-
cess executing the WAIT statement is to be placed in the
stall state until an event condition is satisfied. Start-
ing from the time of execution of the WAIT statement,
the <event exp> is evaluated at every "event change point"
until its value becomes TRUE, whereupon the process is
returned to the READY state. If the value of <event exp>
is TRUE upon execution of the WAIT statement, then the
statement has no effect.

8-13

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

8.7 The UPDATE PRIORITY Statement.

The SCHEDULE statement which creates a process can
also specify the priority of its initiation. At any time
between the scheduling and the termination of the process,
that priority may be changed by means of the UPDATE PRIORITY
statement.

SYNTAX:

UPDATE PRIORITY statement

statement c6

UPDATE PRIORITY T rt x

example: UPDATE PRIORITY GAMMA TO PRIO + 10;

SEMANTIC RULES:

1. UPDATE PRIORITY <label> is used to change the priority
of the process with name <label>. The new priority is
given by the value of <arith exp>. <arith exp> is an
unarrayed integer or scalar expression whose value must
be consistent with the priority numbering scheme set up
for any implementation, otherwise a run time error results.
Scalar values are rounded to the nearest integral value.
A run time error results if there is no process with name
<label> in the process queue.

2. UPDATE PRIORITY with no <label> specification is used to
change the priority of the process executing the UPDATE
PRIORITY statement. <arith exp> has the same meaning as
before.

8-14

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

8.8 Event Control

Although a formal specification of events and event
expressions has already been given in Sections 4 and 6.3, the
Specification has not yet made their purpose clear in the con-
text of real time programming. Superficially event variables
are closely akin to boolean variables in that they are binary-
valued. Conceptually the two forms of HAL/S events (latched
and unlatched) may be thought of as the software counterparts
of hardware discretes and timing lines, respectively.

e a latched event may be thought of as a boolean system
state which may be SET or RESET by appropriate actions,
or momentarily changed for signalling purposes.

" an unlatched event may be thought of as the software
counterpart of a timing line which is used purely for
signalling - it is normally FALSE but becomes TRUE
momentarily when a signal action is executed.

This analogy is no accident, since event variables can actually
form the interface between HAL/S software and such hardware
control signals. The design and operation of this interface
is implementation dependent.

At any instant of time the RTE may be viewed as having a
knowledge of all existing events. Whenever the value of an
event changes, the RTE senses this so-called "event change
point", and may in response perform the evaluation of certain
<event exp>s. Depending on the results of the evaluations, the
states of one or more processes may be changed. This response
of the RTE to changes in event variables is termed an "event
action". The value of an event variable can change in response
to the environment external to the HAL/S software; depending
upon the type of event (see SEMANTIC RULES), a SET, RESET, or
SIGNAL statement may also be used to alter the state of an event
variable. The only event change actions possible are to ready
or cancel one or more process.

SET.SIGNAL and RESET statments
basic

statement
6

SET

I I SIGNAL event var

label RESET

example:

SIGNAL IOTA;

8-15

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

GENERAL SEMANTIC RULE:

1. <event var> denotes any unarrayed event variable, subscripted
or unsubscripted.

SEMANTIC RULES (latched <event var>s):

1. SET changes the value of the <event var> to TRUE and initiates
all event actions depending upon the TRUE state of this event.
No action is taken if the <event var> is already TRUE.

2. RESET changes the value of the <event var> to FALSE and ini-
tiates all event actions depending upon the FALSE state of
this event. No action is taken if the <event var> is already
FALSE.

3. SIGNAL does not change the state of a latched event.

4. If a latched event is TRUE, SIGNAL initiates all event actions
depending upon the FALSE state of this event.

5. If a latched event is FALSE, SIGNAL initiates all event
actions, depending upon the TRUE state of this event.

SEMANTIC RULES (unlatched <event var>s):

1. SET and RESET are illegal for unlatched <event var>s.

2. When used in a <bit expression>, an unlatched event variable
is equivalent to a literal "FALSE".

3. SIGNAL initiates all event actions depending upon the TRUE
state of this event. Note that when an event expression
depends upon a logical product of multiple <event var>s,
at most one such <event var> can be unlatched if the event
action is ever to be taken.

8-16

INTERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SUMMARY:

SET RESET SIGNAL

Take all event

unlatched event illegal illegal actions depending
on TRUE state of
<event var>

old 1. Set event state Take all event
old to TRUE actions depending
value on TRUE state of

latched is no action n t
event 2. Take all event <event varFALSE

actions depending

on TRUE state of
<event var>

old 1. Set event Take all event

value state to FALSE actions depending
latched is no action on FALSE state of

event TRUE 2. Take all <event var>
event actions
depending on
FALSE state of
<event var>

8-17

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

8.9 Process-events.

Every program or task block has associated with it
a "process-event" of the same name. This process-event behaves
in every way like a latched event except that it may not
appear in SET, RESET or SIGNAL statements. Its purpose is
to indicate the existence of its associated program or task
process. If a process of the same name as the process-event
exists in the process queue, the value of the process-event
is TRUE, otherwise it is FALSE.

8-18

INTERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

8.10 Data Sharing and the UPDATE Block.

The UPDATE block provides a controlled environment
for the use of data variables which are shared by two or more
processes. If controlled sharing of certain variables is
desired, they must possess the LOCK(N) attribute, where N
indicates the "lock group" of the variable (see Section 4.5).
LOCKed variables may only be used inside UPDATE blocks. A
LOCKed variable appearing inside an UPDATE block is said to
be "changed" within the block if it appears in one or more
statements which may change its value (the left-hand side
of an assignment for example). It is said to be "accessed"
if it only appears in contexts other than the above.

A formal specification of the UPDATE block appears in
Section 3.4. The manner of operation of an UPDATE block is
implementation dependent, but is such as to provide certain
safety measures.

OPERATIONAL RULES:

1. If two processes both require variables from the same
lock group to be changed, then the first process entering
its UPDATE block must complete execution of the block before
the other process can enter its own UPDATE block. The
second process is placed in a stall state for the duration.

2. If one process entering an UPDATE block requires a
variable(s) with the attribute LOCK(*) to be changed, 124
then the situation is equivalent to one in which the 124
process requires use of a variable from every lock group.

3. If only one of the processes requires a variable of a
lock group to be changed, the other merely requiring it
to be accessed, then depending on the implementation,
either Rule 1 or 2 holds, or some overlap in execution
of the two processes' UPDATE blocks is allowed. The
nature of such overlap must be such as to provide
exclusive use of the lock group by the process requiring
its change between the point where the variable is changed
and the close of the UPDATE block.

4. If both processes only require a variable of the same lock
group accessed, then execution of the two processes' UPDATE
block may be allowed to overlap depending upon implementation.

5. If there are several simultaneous conflicts in using
shared variables because of the participation of more
than two processes, or more than one lock group, then
the most restrictive of Rules 1 through 4 required is
applied to resolve the conflicts.

8-19
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

9. ERROR RECOVERY AND CONTROL

References to so-called 'run time errors' have been
made elsewhere in this Specification. Such errors arise at
execution time through the occurrence of abnormal hardware
or system software conditions. Each HAL/S implementation
possesses a unique collection of such errors. The errors
in the collection are said to be "system-defined". In any
implementation every possible system-defined error is assigned
a unique "error code". In addition, a number of other legal
error codes not assigned to system-defined errors may exist.
These can be used by the HAL programmer to create "user-
defined" errors. All run time errors, both system- and user-
defined, are classified into "error groups". The error code
for an error consist of two positive integer numbers, the
first representing the error group to which it belongs, and
the second uniquely identifying it within its group. The
method of classification is implementation dependent.

At run time an Error Recovery Executive (ERE) senses
errors, both system-defined and user-defined, and determines
what course of action to take. For every error group, a
standard system recovery action is defined which the ERE will
take unless error recovery has been otherwise directed by the
user. Depending on the error and the implementation, the
standard system recovery action may be to terminate execution
abnormally, to execute a fix-up routine and continue, or to
ignore the error.

In a real time programming context, every process in
the process queue has a separate, independent "error environ-
ment" which is continuous from the time of initiation of
the process to the time of its termination. At any instant
of time the "error environment" of a process is the totality
of error recovery actions in force at that time for all
possible errors. At the time of initiation of the
process, the standard system recovery action is in force for
all errors.

HAL/S possesses two error recovery and control state-
ments. The ON ERROR statement is used to modify the error
environment of a process at any time during its life. The
SEND ERROR statement is used for the two-fold purpose of
creating user-defined error occurrences, and simulating system-
defined error occurrences. E

9-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

9. 1 The ON ERROR Statement.

The ON ERROR statement is used to change the error
environment prevailing at the time of its execution. It
can change the error recovery action for one selected
error code, for one selected error group, or for all
groups simultaneously. There are two basic forms of
the statement: ON ERROR and OFF ERROR.

Error environment modification operates according to
HAL/S name scope rules. If an ON ERROR with a given error
specification is executed in a particular code block, then
the modified recovery action remains in force until one of
three things happen:

9 the modification is superseded by execution of
a second ON ERROR with the same error specification.

" the modification is removed by execution of an
OFF ERROR with the same error specification, the
recovery action thereupon reverting to that in
force on entry into the code block.

* the modification is automatically removed by exit
from the code block.

9-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SYNTAX:

ON ERROR statement

error spec

ERROR - number

S number number M

basic
statement

Slabel 1OFF ero pec
... .. . ON error spec SYSTEM

IGNORE

SIGNAL

-- AND SET event var

RESET

statement

label

example:
ERRONEOUS: ON ERROR 5 IGNORE AND SET IOTA;

9-3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

SEMANTIC RULES:

1. The ON ERROR statement consists of two parts: a

specification of an error action to be taken by the
ERE, preceded by an <error spec> specifying the
error number, error group or groups to which the
action is to apply.

2. There are three forms of <error spec>, for specifying
either all error groups, or a selected error group,
or a selected error code.

* The form of <error spec> without subscript is
used to specify all error groups.

* The subscript construct <number> with optional
following colon is used to specify a selected
<error group>. The value of <number> is restricted
to the set of error group numbers defined for a
particular implementation.

* The subscript construct <number>: <number> is used
to specify a selected error code. The leftmost
<number> designates the error group number; the
rightmost <number> the selected error number within
the group. Values are restricted to the set of
error codes defined for a particular implementation.

3. The form ON ERROR specifies the modification of

the error recovery actions for the given <error spec>.
OFF ERROR specifies the removal of a modification
previously activated in the same name scope for the
same <error spec>. If no such modification exists,
the OFF ERROR is effectively a no-operation.

4. The presence of the IGNORE clause specifies that in the
event of occurrence of a specified error, the ERE is
to take no action other than allow execution to proceed
as if the error had not occured. The IGNORE action may
not be permitted for certain errors.

5. The presence of the SYSTEM clause specifies that in the
event of the occurrence of a specified error, the ERE
is to take the standard system recovery action.

9-4

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-6

6. The form ON ERROR ... <statement> specifies that

<statement> is to be executed on the occurrence of a

specified error. <statement> may optionally be
labelled. However, such labels may only be referenced

by EXIT or REPEAT statements within the (compound) 129

<statement> thus labelled. After execution of <statement>,
execution normally restarts from the executable statement
following the ON ERROR statement. Execution of <statement>
itself may of course modify this.

7. It is important to note that the form ON ERROR

<statement> is itself a <statement> whilst other forms

of ON ERROR are <basic statement>s. The form ON ERROR ...

<statement> may therefore not be the true part of an

IF...THEN...ELSE statement.

8. If an ON ERROR possesses a SYSTEM or IGNORE clause,
it may also possess an additional SIGNAL, SET, or
RESET clause. The purpose is to cause the value of

an <event var> to be changed on the occurrence of a

specified error. Its semantic rules are the same
as those described for the corresponding SIGNAL, SET
and RESET statements in Section 8.8. Note that if

<event var> contains a subscript expression, then that

expression will be evaluated at the time of execution
of the ON ERROR statement, not on the occurrence of the

error.

PRECEDENCE RULE:

In a code block the action specified by an ON ERROR is

only superseded by another if the two <error spec>s are

of identical form. Similarly an OFF ERROR nullifies the

effect of a previous ON ERROR only if the two <error spec>s

are of identical form. However, different forms of

<error spec >may involve the same error group or error code.

It is logically possible for up to three ON ERRORs, each with

a different form of <error spec> as described in Rule 2 above,

to be active simultaneously and- involve the same error code.

The ON ERROR precedence order for determining the recovery
action in the event of an error occurrence is as follows:

9-5

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

<error spec>
Error subscript

Specification construct Precedence

LAST

all groups - 1

selected group <number> : 2
<number> o

selected error <number>:<number> 3
code

FIRST

9-6

INTERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

9.2 The SEND ERROR Statement.

The SEND ERROR statement is used to announce a selected
error condition to the ERE. If the error selected is 'system-
defined' then in effect that error is being simulated.

SYNTAX:

SEND ERROR statement

bac

SEND ERROR Mubrnme

example:
SEND ERROR 15;

SEMANTIC RULES:

1. <number> : <number> is a subscript construct consisting
of two unsigned integer literals. The leftmost <number>
designates the error group to which the selected error
condition belongs. The rightmost number denotes the
error number within the designated group. Values are
restricted to the set of error codes defined for a
particular implementation. If the error code corresponds
to a system-defined error, then that error is simulated
by the ERE. Simulation of certain system-defined errors
may not be permitted.

2. The action taken by the ERE after announcement of the
selected error condition is dictated by the error
environment prevailing at the time of execution of
the SEND ERROR statement.

9-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

10. INPUT/OUTPUT STATEMENTS

The HAL/S language provides for two forms of I/O:
sequential I/O with conversion to and from an external
character string representation; and random-access record-
oriented I/O.

All HAL/S I/O is directed to one of a number of
input/output "channels". These channels are the means used
to interface HAL/S software with external devices in a run
time environment. In any implementation each channel is
assigned a unique unsigned integer identification number.

The input/output statements described in this Section
are intentionally general-purpose. They provide a basic
support facility for applications programming on the Shuttle
project. Specialized hardware-oriented I/O commands may
be created via features of the HAL/S Systems Language.

10-1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

10.1 Sequential I/0 Statements.

All sequential I/O in HAL/S is to or from character-
oriented files. HAL/S pictures these files as consisting of
lines of character data similar to a series of printed lines
or punched cards. An "unpaged" file simply consists of an
unbroken series of such lines. In a "paged" file the lines
are blocked into pages, each a fixed, implementation depend-
ent number of lines in length. The choice of paged or
unpaged file organization for each sequential I/O channel is
specified in an implementation dependent manner.

HAL/S pictures the physical device as moving across
the file a read or write "device mechanism" which actually
performs the data transfer. The device mechanism has at
every instant a definite column and line position on the file.
The action of transmitting one character to or from the file
is followed by the positioning of the device mechanism to
the next column on the same line. When the end of the line
is reached the device mechanism moves on to the first
(leftmost) column of the next line.

The HAL/S sequential I/O statements are the READ,
READALL, and WRITE statements. Within these statements I/O
control functions can be used to cause explicit positioning
of the device mechanism on the file.

10-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

10.1.1 The READ and READALL Statement6.

The sequential input of data is accomplished in HAL/S
by employing either a READ or a READALL statement. The choice
depends upon the format of the character input and the conver-
sions (if any) which are to be performed. A READ statement
is used wherever data in a standard external format is to be
input; the READALL is used wherever arbitrary character string
images are to be input without conversion.

SYNTAX:

READ and READALL statemenuts

basic
statement

labelL4 jvariable

i/o control

example:
READ(4) LINE(5), DELTA 3 ;

GENERAL SEMANTIC RULES:

1. <number> is any legal I/O channel number.

2. <i/o control> is any legal I/O control function used to
position the device mechanism explicitly.

3. Unless overridden by explicit <i/o control> before the
first <variable>, the device mechanism is automatically
moved to the leftmost column position and advanced to
the next line prior to reading the first <variable>.
A SKIP, LINE, or PAGE <i/o control> before the first
<variable> overrides the automatic line advancement. A
TAB or COLUMN <i/o control> overrides the automatic column
positioning.

4. An unexpected end of file reached during the reading of
data from the input file causes a run time error.

10-3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SEMANTIC RULES (READALL Version):

1. <variable> may be any character or structure variable
in an assignment context. This specifically excludes
input parameters of functions and procedures. If it
is of structure type, all the terminals of the template
it references must be of character type. In this case,
also no nested structure template references are allowed.

2. If <variable> is an array or structure each element
thereof is filled sequentially in its "natural sequence".

3. Data is read from the input file character by character
from left to right, each <variable> element being filled
in turn. Filling of an element is completed either when
the end of a line on the file is reached, or when the
element has reached its declared maximum length, which-
ever happens sooner.

SEMANTIC RULES (READ Version):

1. <variable> is any variable which may be used in an assign-
ment context. This specifically excludes input parameters
of functions and procedures.

2. If <variable> is a vector or matrix, or an array or
structure, each element thereof is filled sequentially
in its "natural sequence".

3. The device mechanism (subject to <i/o control>) scans
the input file left to right, from line to line, looking
for fields of contiguous characters separated by commas,
semicolons or blanks. Each field found is in turn trans-
mitted and converted from its standard external format
to an appropriate HAL/S data value. Fields may not cross
line boundaries except when reading character strings.

4. A semicolon field separator encountered during a normal
sequential scan to fill a variable element terminates
the READ statement as follows:

* The current variable element is left unchanged;

" All remaining <variable>s in the statement are
unchanged;

* All remaining control functions in the statement are
ignored.

<i/o control> functions can force the device mechanism
over the semicolon without causing early termination.

10-4
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

5. A null field is transmitted whenever a comma or a
semicolon is detected when data is expected. This
occurs when a comma or semicolon is:

* preceded by a comma or semicolon;

* preceded by one or more blanks following the last I 111
comma or semicolon. I

A null field causes the corresponding variable element
to remain unchanged following transmission.

6. Fields are assumed to be in a standard external format
matching the type of each corresponding type of variable
element. A list of standard external formats is given in
Appendix E. A mismatch between standard external format
and element type causes a run time error.

10-5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

10, ..2 The WRTTE S teoment.

The sequential output of data is accomplished in
HAL/S by employing the WRITE statement.

SYNTAX:

WRITE statement

basic
statement

. <number> is any legal I/O channel number.

1. <number> is any legal I/0 channel number.

2. <i/o control> is any legal I/O control function used
to position the device mechanism explicitly.

3. There are no semantic restrictions on <expression>.

4. If <expression> is of vector or matrix type, or is an
array or structure, then each element thereof is trans-
mitted sequentially in its "natural sequence".

10-6

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

5. Unless overridden by explicit <i/o control> before the
first <expression>, the device mechanism is automatically
moved to the leftmost column position and advanced to
the next line prior to transmitting the first <expression>.
A SKIP, LINE, or PAGE <i/o control> before the first
<expression> overrides the automatic line advancement.
A TAB or COLUMN <i/o control> overrides the automatic
column positioning.

6. Each element in turn is converted to its standard external
format before being transmitted to the output file. A
list of standard external formats is given in Appendix E.

7. Between the transmission of two consecutive elements,
the device mechanism is moved to the right by an implemen-
tation dependent number of columns. If a TAB or COLUMN
<i/o control> separates two consecutive <expression>s
then this overrides the automatic movement between trans-
mission of the last element of the first <expression> and
the first element of the second <expression>.

8. When a line has been filled to the point where the next
converted output field will not fit in the remaining
columns, a wrap-around condition occurs. The actions
taken in such a case are implementation dependent.

10-7

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

10.1.3 1/0 ContAno Function .

An I/O control function is introduced into a READ,
READALL, or WRITE statement to cause explicit movement of the
device mechanism. Note that the interpretation of each I/O
control function differs depending upon whether the file is
paged or unpaged.

SYNTAX:

i/o control function

i/o control TAB

COLUMN

SKIParhex

ELINE

PAGE

example:
COLUMN (1+2)

SEMANTIC RULES:

1. <arith exp> is an unarrayed scalar or integer arithmetic
expression specifying a value to the control function.
The value is treated as an integer: scalar values are
rounded to the nearest integer prior to use. In the
following rules, let the value of <arith exp> be denoted
by K.

2. TAB (K) specifies relative movement of the device mech-
anism across the current line by K character positions
(columns). Motion is to the right (increasing column
index) if K is positive, to the left if K is negative.
Positioning to negative or zero column index values, or
to a positive index greater than an implementation depen-
dent maximum causes a run time error.

10-8

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. COLUMN (K) specifies absolute movement of the device
mechanism to column K of the current line. Values of
K may range from 1 to an implementation dependent maxi-
mum value. Column indices outside the legitimate range
cause run time errors.

4. SKIP (K) specifies line movement relative to the current
line of the file. A positive value of K will cause for-
ward movement. Subject to implementation and hardware
restrictions, backward movement is indicated by a negative
value of K. Error conditions will be indicated if a
skip causes movement past either end of the file, or
movement in violation of any implementation restriction
on the direction of the skip.

5. LINE (K) specifies line movement to a specified line
number, K. Two interpretations occur depending upon
whether the file is paged or unpaged.

0. Paged files - LINE (K) advances the file uncondition-
ally. K may not be less than 1 or greater than the
implementation and hardware dependent number of lines
per page, otherwise an error condition will be indi-
cated. If K is not less than the current line number,
the new print position is on the current page; if K
is less than the current line number, the device
mechanism is advanced to line K of the next page.

* Unpaged files - LINE (K) positions the device mechan-
ism at some absolute line number in the file. On
input K must be greater than zero, but not greater
than the total number of lines in the file. On output,
K must merely be greater than zero. In either case,
values outside the indicated ranges cause run time
errors. Depending on the implementation, values of
K causinq backwards movement may be illegal.

6. PAGE (K) is only applicable to paged files and specifies
page movement relative to the current page. If K is
positive the movement is forward, towards the end of
file. Depending upon the implementation, negative page
values may or may not be legal. The line value relative
to the beginning of the page remains unchanged.

10-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138-* (617) 661-1840

10 2 Pandnm Arc s 0 ,anti theI r FILE ~tm.enone...1WWWO.0 %fvve asy w u %It%# I ILL..- %;%atWHIfill

Random access I/O is handled by means of the FILE
statement. In this access method individual records on a
file may be written, retrieved or updated. A unique "record
address" is used to specify the particular record on the
file referenced.

SYNTAX:

FILE statements(basic
file exp expression

J variable file exp

FILEnumbr I arith exp

example:
FILE (3,J+2)= ALPHA 1 TO 1000;

SEMANTIC RULES:

1. The statement is an output FILE statement if <file exp>
is on the left of the assignment. If <file exp> is on
the right, then the statement is an input FILE statement.

10-10

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

2. <file exp> specifies the random access I/O channel and

record address to be referenced. <number> is any legal
random access channel number. <arith exp> is any unarrayed

integer or scalar expression. If the expression is scalar,

its value is rounded to the nearest integer before use.

A run time error occurs if its value is not a legal record

address.

3. Any record on a random access file may be transmitted by
a FILE statement.

4. In the input FILE statement, <variable> is any variable
usable in an assignment context. This specifically
excludes input parameters of function and procedure blocks.

Moreover, <variable> is also subject to the following
rules:

* No component subscripting for bit and character
types.

* If component subscripting is present, <variable>
must be subscripted so as to yield a single
(unarrayed) element of the <variable>.

* If no component subscripting is present, but array
subscripting is, then all arrayness must be subscribted
away.

* BIT type structure terminals which have the DENSE
attribute may not be used, due to packing implications.
However, an entire structure with the DENSE attribute
may be used.

* If the <variable> is a structure terminal or a
minor structure node (but not if it is a major
structure) and if the structure possesses multiple
copies, then the number of copies must be reduced
to one by subscripting.

5. In the output FILE statement, there are no semantic
restrictions on <expression>.

6. Compatibility between data written by an output FILE
statement, and later reference to it by an input FILE
statement is assumed. The exact interpretation of compa-
tibility is implementation dependent. In general, the
FILE statement transmits binary images of the internal
data forms, so that compatibility will be guaranteed if
the <expression> of the output FILE statement and the
<variable> of the input FILE statement have the same data
type and organization.

10-11

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

11. SYSTEMS LANGUAGE FEATURES t

11.1 INTRODUCTION

The systems language features of HAL/S are described in this
section. The features presented here are in three sections.
The new Program Organization features are "Inline Function
Blocks" and "%-macros". A data-related feature of this
systems language extension is the concept of "TEMPORARY
variables". The NAME Facility concerns a new concept in
HAL/S, the addition of NAME variables pointed to data or
blocks of code.

The information contained in this section constitutes
an extension of material presented earlier. Accordingly,
many of the syntax diagrams presented here are
modified versions of earlier diagrams reflecting the
extended features. Such modified diagrams are indicated
by appending the small leter "s" to the diagram number.

11.2 PROGRAM ORGANIZATION FEATURES

The addition of Inline Function Blocks and "%-macros" to
HAL/S extends the information presented in Section :3
concerning program organization. Inline functions are a
modified kind of user function in which invocation is
simultaneous with block definition. %-macros may be
viewed as a class of special purpose implementation
dependent built-in functions.

t The title indicates that the usage of these constructs
is more suited to systems programming rather than
applicationsprogramming. The programmer is warned
that unrestrained and indiscriminate use of certain of
these constructs can lead to software unreliability.

11-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

11. 2.1 Intine Function Btocks

The HAL/S Inline Function Block is a method of
simultaneously defining and invoking a restricted version
of the ordinary user function construct. Its primary
purpose is to widen the utility of parametric REPLACE
statement described in Section 4.2. Its appearance is
generally in the form of an operand of an expression.

SYNTAX:

§.o rar,, h
t%

inline char
function tstruct

FUNCTION type spec]

statement

-- declare group 3lsin

update block

example:
IF X = Y THEN R = FUNCTION VECTOR;
DECLARE A,B;

A = R: S;
B= R, T;

RETURN VECTOR (A, B, O);
CLOSE;

SEMANTIC RULES:

1. The syntactic form is actually equivalent to that of a
function block except that:

a) The <§inline function> has no label;

b) The <§inline function> has no parameters;

c) The <§inline function> definition becomes an operand
in an expression.

11-2

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2. The semantic rules for an <§inline function> block
definition are the same as those for the <function
block> definition described in Section 3.3, subject
to restrictions listed below.

3. A <Sinline function> may not contain the following
syntactical forms:

* All forms of I/O statements;

* All forms of reference to user-defined PROCEDURE
and FUNCTION blocks;

* Real Time statements.

4. A <§inline function> may only contain one form of
nested block, the <update block>. The following
block forms are thus excluded:

S<function block> definitions;

* <procedure block> definitions;

" Further nested <§inline function>s.

5. In use, the following semantic restriction holds:
<§inline function>s may not appear as operands of
the subscript or exponent expressions.

6. The <§inline function> falls into one of the following
four categories:

<arith inline> - <type spec> specifies an
inline function of an arith-
metic data type: SCALAR,
INTEGER, VECTOR or MATRIX.

<bit inline> - <type spec> specifies an
inline function of a bit
type: BOOLEAN or BIT.

11-3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Version IR-61-
8

<char inline> - <type spec> specifies.an
inline function of the
CHARACTER data type.

7

<struct inline> - <type spec> specifies an
inline function with a
structure type specifica-
tion.

The use of inline functions as operands of HAL/S
expressions is discussed in Section 11.2.3.

11.2.2 %-ma.cAo Rebe.Aen.

The HAL/S %-macro facility provides a means of
adding functional, special-purpose extensions to the

language without requiring syntax changes or extensive
rewriting of the compiler programs. The details of the
implementation of any given %-macro will depend upon
its nature and purpose. Possible options include inline
generation of code or links to an external routine
performing the processing of the %-macro.

The syntax of the %-macro reference is presented
in this section. The invocations of %-macro routines in
various expression or statement contexts is described

El below in Sections
11.2.3 and 11.2.4.

11-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Version IR-61-8

SYNTAX:

<1 macro-arg>

% label 1

SEMANTIC RULES:

1. The %-macro reference falls into one of the following
five categories based upon data type:

* <arith %-macro> is a reference to a %-macro which
returns an arithmetic value of INTEGER,
SCALAR, VECTOR or MATRIX data type.

* <bit %-macro> is a reference to a %-macro which
returns a bit string value.

0 <char %-macro> is a reference to a %-macro which
returns a value of the CHARACTER data type.

* <ttruct %-macro> is a reference to a %-macro which
returns a structure data value.

* <typeless %-macro> is a reference to a %-macro
which performs some systems function but
returns no value and may only be referenced
from a <%-macro call statement>. (See Section
11.2.4 below).

E
Available %-macros in any implementation will be
provided in the appropriate User's Manual.

2. The <%label> is a reserved word beginning with the
character "%" which identifies the %-macro in question.
The character "%" distinguishes %-macro names from all
other reserved words in the HAL/S language.

11-5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-5

3. A series of one or more arguments of the %-macro
reference may be supplied. The type, organization
and number of the arguments supplied to the %-macro
must be consistent with the requirements of the
routine.

4. Details of <%-macro arg>s will be supplied with the

117 definition of a given %-macro.

11.2.3 OpeArand Refeence Invocation,6

Inline Function Blocks are always invoked at the
point of their definition as operands of <expression>s.
%-macros are also invoked as operands of <expression>s
when they are of a definite data type and thus return
a value. Similar modifications of several syntax
diagrams from Section 6 add these features to arithmetic,
bit, and character operands, and to structure expressions.

11-6

INTERMETRICS INCCRPORATED - 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

SYNTAX OF ARITHMETIC OPERAND:

arithmetic operand

arith var

arith
operand

arith exp

am number I

normal function precision

arith conversion

Sarith inline 1

|arith % macro

SEMANTIC RULES:

1. This syntax diagram is a systems language extension
of the arithmetic operand diagram in Section 6.1.1.
The semantic rules of Section 6.1.1 apply to this
revised diagram.

2. <arith inline> is an inline function block which has an
arithmetic <type spec> in its header statement.

3. <arith %-macro> is a reference to a %-macro which
returns an arithmetic value (See 11.2.2 above).

11-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SYNTAX OF BIT OPERAND:

bit operand 2
bit 017

NOT bit exp

.... bit var
1 event var

proesevent name)-

normal function

-II

bit conversion

bit pseudo-var

--- bit inline

bit %macro

SEMANTIC RULES:

1. This syntax diagram is a systems language extension
of the bit operand diagram in Section 6.1.2. The
corresponding semantic rules found in Section 6.1.2
also apply to this revised diagram.

2. <bit inline> is an inline function block which has a
bit string (BOOLEAN or BIT) <type spec> in its header
statement.

3. <bit %macro> is a reference to a %-macro which returns
a value of the BIT or BOOLEAN data types.

11-8

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SYNTAX OF CHARACTER OPERAND:

character operand

char 0xp
char var

-normial function I--

char literal

char conversion -

char inline

char %macrol

SEMANTIC RULES:

1. This syntax diagram is a systems language extension
of the character operand diagram in Section 6.1.3.
The corresponding semantic rules found in Section
6.1.3 also apply to this revised diagram.

2. <char inline> is an inline function block which has
a CHARACTER <type spec> in its header statement.

3. <char %macro> is a reference to a %-macro which returns
a value of the CHARACTER data type.

11-9

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SYNTAX OF STRUCTURE EXPRESSION:

structure expression

structure
expression

structure v...
normal

function

structure inline

4 struct % macro

SEMANTIC RULES:

1. This syntax diagram is a systems language extension of
the structure expression diagram found in Section 6.1.4.
The semantic rules found in Section 6.1.4 also apply to
this revised diagram.

2. <struct inline> is an inline function block which has a
structure <type spec> in its header statement.

3. <struct %macro> is a reference to a %-macro which returns
a value of a structure data type.

11-10

INTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

11.2.4 The %-MacAo CaU Statement

The invocation of a typeless %-macro is
performed by a <%-macro call statement>.

SYNTAX

%
macro call
statement

_%macro

example: %SWAP(A,B,C);

SEMANTIC RULES:

1. The <%-macro call statement> invokes execution of the
typeless %-macro being referenced.

2. The effect of this statement is dependent upon the
details of the %-macro being referenced.

11-il

INTERMETRICS INCORPORATED* 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

11.3 Temporary Variables

The extension of HAL/S data concepts to include a
TEMPORARY variable form for use within DO groups is defined
within the systems language facilities. The object of
incorporatinq the TEMPORARY variable is to increase the
optimization and efficiency of the object code produced by the
compiler. Depending upon the details of the object
machine, a temporary variable might be stored in a CPU
register or a high speed, scratchpad memory location rather
than in the slower main storage. Coding efficiency may also
be achieved with temporary variables because the instructions
needed to access register or scratchpad memory values are
generally more compact. Since the existence of a temporary
variable is confined to a DO group (from DO header
statement to the END statement), these forms become highly
localized control variables.

11.3.1 Regutax TEMPORARY Variables

Regular TEMPORARY variables are declared in TEMPORARY
statements following the DO statement which begins a DO ,.. END
statement group and preceding the first executable statement of
the DO ... END statement group. The following diagram is a
systems language extension of the DO... END- statement group
in Section 7.6.

SYNTAX:

DO... END Statement Group

statement

do statement statemetanmtt

-update block

S task block

S function block --

w rceue block

11-12
INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

SEMANTIC RULE:

1. The TEMPORARY declaration may be included as part of any
DO group except a DO CASE group. Use of TEMPORARY
variables within nested DO groups of a DO CASE is allowed.

The TEMPORARY statement is a special purpose data declar-
ation used to create TEMPORARY variables for general use within
the DO group syntax as described above. Its form compares very
closely to that of the DECLARE statement in Section 4.4.

SYNTAX:

temporary statement

temporary
Statement

0

(TEMPORARY A trbtsidentifier attributes

SEMANTIC RULES:

1. In the <temporary statement>, <attributes> may define
the <identifiers> to be of any data type except EVENT.

2. <attributes> may only specify type, precision and
arrayness.

3. No minor attribute is legal.

4. The name of <identifier> may not duplicate the name
of another <identifier> in the same name scope
(procedure, function, or other block) or of another
temporary in the same DO ... END group.

11-13
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

11.3.2 Loop TEMPORARY VaAiablZe

The Loop TEMPORARY variable form is used in the context
of the DO FOR group and is declared by its specification in a
DO FOR statement. The following two syntax diagrams are modifi-
cations of the discrete DO FOR and the iterative DO FOR
syntax diagrams.

SYNTAX:

discrete 00 FOR with loop TEMPORARY variable index

do
statement

ietfe
TEMPORARY identifier

DO FOR arith var. -

label

.... --arith exp

WHILE condition

UNTIL L bi .

SYNTAX:

Iterative DO FOR with loop TEMPORARY variable index Q

Dr FR va . arith *xp - -

label

- TO7 arith ex.

By arith ex; - WH IL E condition

UNTILbtep

11-14

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SEMANTIC RULES:

1. All the semantic rules for DO FOR statements which are

given in Section 7.6.4 and 7.6.5 apply as well to the
corresponding Loop TEMPORARY forms. Additional rules for
Loop TEMPORARY variables are given below.

2. The Loop TEMPORARY variable is defined in the DO FOR
statement; a loop TEMPORARY variable is always a
single precision INTEGER variable.

3. The scope of the Loop TEMPORARY is the DO FOR group of
the DO FOR statement which defines the variable.

4. The <identifier> name used for the loop TEMPORARY may not
duplicate the name of another <identifier> in the same
name scope, nor may it duplicate the name of another
TEMPORARY variable in the same DO ... END group.

11-15
INTERMETRICS INCORPORATED 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184U

Version IR-61-6

II A The NAME F:rility

This section gives a definitive description of the
HAL/S NAME facility. This facility is designed to fill
the system programmer's need for a "pointer" construct.
Its basic entity is the NAME identifier: a NAME identifier
"points to" an ordinary HAL/S identifier of like attributes.
The "value" of the NAME identifier is thus the location of the
identifier pointed to. (An "ordinary" identifier is a HAL/S
identifier without the NAME attribute).

11.4.1 IdentLfie6 with the NAME AttAibute

Identifiers declared with the NAME attribute become
NAME identifiers. NAME identifiers may be declared with
the following data types:

INTEGER PROGRAM
SCALAR TASK
VECTOR

126 MATRIX
BIT
BOOLEAN
CHARACTER
EVENT
STRUCTURE

The following diagram is an extension of the DECLARE state-
ment syntax diagram in Section 4.4. The modification shows
how the keyword NAME is used in such a declaration to state
the NAME attribute.

SYNTAX:

declare
statement (

DECLARE] lniirattributes

attributes NAME

example:
DECLARE ALPHA NAME VECTOR (7);

11-16

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

GENERAL SEMANTIC RULES:

1. The following <attribute>s apply to the NAME variable
itself and bear no relationship to the ordinary
identifier which is pointed to at any given time during
execution:

* The <initialization> attribute (if supplied) refers
to the initial pointer value of the NAME variable
itself.

* STATIC/AUTOMATIC refer to the mode of initialization
of the NAME variable itself on entry into a HAL/S
block.

* DENSE/ALIGNED apply to the actual NAME variable when
it is defined by inclusion in a structure template.

All other legal attributes describe the characteristics
of the ordinary variables to which the NAME variable may
point. Except as noted below, these other attributes must
always match the corresponding attributes of the ordinary
variables to which the NAME variable points; compilation
errors will ensue if this is not the case.

2. The ACCESS attribute is illegal for NAME variables; its
absence does not prevent NAME identifiers from pointing
to ordinary identifiers with the ACCESS attributes and
matching is not required in this case.

3. There must still be consistency between declared type,
attributes, and factored attributes just as is the case
for ordinary identifiers as described in Chapter 4 of this
Specification.

examples

DECLARE VECTOR(3) DOUBLE LOCK(2), X, Y NAME;
DECLARE P NAME TASK;

Y may point to X
P points to any task block

11-17
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

SEMANTIC RULES (Data NAME Identifiers):

1. Arrayness Specification - in general the arrayness
specification of a NAME identifier must match that
of the ordinary identifiers pointed to, in both
number and size of dimensions.

2. Structure Copy Specification - in general the number
of copies of a NAME identifier of a structure type
must match that of the ordinary identifiers pointed
to.

3. The use of the "*" array specification or structure
copies specification is excluded from declarations
of NAME formal parameters.

4. Structure Type - if a NAME identifier is a structure
type it may only point to ordinary identifiers of
structure type with the same structure template.

examples of data NAME variables

DECLARE X ARRAY(3) SCALAR,
Y ARRAY(4),
Z NAME ARRAY(4) SCALAR;

DECLARE P EVENT;
DECLARE EVENT LATCHED, V, VV NAME;

Z may point to X but not Y

5. For any unarrayed character string name variable, the
"*" form of maximum length specification may be used.
This is an extension of the use of the "*" notation
which applies now in general to character name variables
as well as to formal parameters.

11-18

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

The Label Declarative Attributes available for use in declaring
NAME identifiers which point to HAL/S block forms have been 126
modified to include PROGRAM and TASK keywords and to exclude
PROCEDURE and FUNCTION keywords. The following syntax diagram
is substituted for the Label Declarative Attributes diagram in
Section 4.6 when declaring NAME identifiers which point to
HAL/S blocks

SYNTAX:

be declaratiy atibute 16iS

attrbutes

TASK 126"
-- 1126

PROGRAM'

AUTOMATIC

ALIGNED

11-19

INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1340

SEMANTIC RULES (Label NAME Identifiers):

1. <initialization>, STATIC or AUTOMATIC, DENSE or ALIGNED
may only be applied to the <label declarative attributes>
of identifiers with the NAME attribute. They are
properties of the NAME and not of the identifiers
pointed to.

2. The following rules apply to NAME <identifiers> of the PROGRAM
and TASK types:

0 The NAME <identifier> of a PROGRAM or TASK type always
points to a PROGRAM or TASK block, respectively. A
corollary of this rule is that <process event>s are never
referenced by NAME identifiers of the PROGRAM or TASK
types.

* The only form of PROGRAM label declarations allowed
are those with the NAME attribute.

* The program NAME <identifier> must always point to an
external PROGRAM block name; therefore a block template is
required for each PROGRAM which may be referenced by a
NAME value.

11-20

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Version IR-61-8

THIS PAGE INTENTIONALLY LEFT BLANK

11-21

INTERMETRICS INCORPORATED 701 CONCORD AVENUE -CAMBRIDGE. MASSACHUSETTS 02138-* (617) 661-!84C

11,4.2 The NAME Attilbute in StAutute Templatea

The NAME attribute may appear on any structure terminal
of a structure template. The following syntax diagram shows
how the koyword NAME is used to state the NAME attribute. This
diagram is a systems language extension of the Structure Template
diagram.

SYNTAX:

atutuwe tem staemnt 1

structure o
tampimt

DENSE

-- lentfi-er . stributes

NAME

In general, the rules governing the formation of the structure
template remain unchanged (see Section 4.3).

11-22

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

GENERAL SEMANTIC RULES:

1. Restrictions on attributes discussed in Section 11.4.1 generally
also apply to structure terminals with the NAME attribute.

2. No <initialization> may be applied to terminals; neither
may the attributes STATIC/AUTOMATIC appear.

3. NAME identifiers of any type (including program, task,
procedure & function) may appear as structure terminals.
Note that the NAME of an EVENT may appear in a structure
even though the EVENT itself may not.

4. The REMOTE attribute may be applied to a structure
terminal with the NAME attribute unless it is of
EVENT type.

SEMANTIC RULES: Nested Structure Template References

1. Nested structure template references are special instances
of structure terminals. The manner of their incorporation
into structure template definitions is as described in
Section 4.3 via the <type spec>.

2. Such references are permitted to use the NAME attribute.
If the NAME attribute is present, the following points are
to be noted:

e Specification of multiple copies is still not permitted.

* The reference may be to the structure template being
defined (and of which the reference is a part). The
implications of this are discussed later.

11-23

INTERMETRICS INCORPORATED 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

examples of structure NAME identifiers:

STRUCTURE A:
1 X NAME PROGRAM,
1 Y SCALAR,
1Z NAME SCALAR,
1ALPHA NAME A-STRUCTURE;

DECLARE P A-STRUCTURE;
DECLARE PP NAME A-STRUCTURE;

P.Z is a NAME identifier which may point to
P.Y

PP is a NAME identifier which may point to
P

PP.Z is a NAME identifier which may point to
P.Z which is itself a NAME identifier
pointing somewhere. This is an instance
of double indirection.

P.ALPHA is a NAME identifier of A-structure type.
The consequences of this are discussed later.

11.4.3 Dec&tations of Tempouarie

No identifier declared in a TEMPORARY statement may
possess the NAME attribute. No such identifier of structure
type may have a template which contains one or more structure
terminals bearing the NAME attribute.

11-24

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

11.4.4 The 'DeAefeAenced' Use of Simple NAME IdentifivL

Simple NAME identifiers are those which are not parts
of structure templates.

If a simple NAME identifier appears in a HAL/S
expression as if it were an ordinary identifer, then the value
used in computing the expression is the value of the ordinary
identifier pointed to by the NAME identifier. Similarly, if
a simple NAME identifier appears on the left-hand side of an
assignment, as if it were an ordinary identifier, then the value
of the right-hand side is assigned to the ordinary identifier
pointed to by the NAME identifier. These are examples of the
'dereferenced' use of NAME identifiers.

Whenever a NAME identifier appears in a HAL/S
construct as if it were an ordinary identifier, the
dereferencing process (to find the ordinary identifier
pointed to) is implicitly being specified. Specifically
this still takes place when a subscripted NAME identifier
appears as if it were an ordinary identifier. Here
the dereferencing takes place first, and then the
subscripting is applied to the ordinary identifier
pointed to:

examples of dereferenced NAME variables

DECLARE VECTOR(3), X, YNAME;
DECLARE P NAME TASK;
Q: TASK;

CLOSE;

if Y points to X, and P to Q then -

TERMINATE P; Means terminate Q.
Puts the cross product E
of X with X in X.

Y = y Puts the third element of
1 3; X into the first element.

A special construct to be described in Sections 11.4.5
and 11.4.6 is required to reference or change the value
of a NAME identifier (as opposed to referencing or
changing the value to which it points).

11-25

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

11.4.5 RedLencing NAME Values

The value of a NAME identifier is referenced or
changed by using the NAME pseudo-function. This pseudo-
function must also be used in order to gain access to
the locations of ordinary HAL/S identifiers. The locations
or values so indicated will be called NAME values. The
necessity also arises for specifying Null NAME values.

The following syntax diagram shows both the NAME
pseudo-function construct as used for referencing NAME
values, and the construct for specifying Null NAME values.

SYNTAX:

name reference

refereet

sub name id

sub id 22

NULL

SEMANTIC RULES:

1. <sub id> is any ordinary identifier, except an input
parameter, a minor structure, an identifier declared
with CONSTANT initialization, or an ACCESS-controlled
identifier to which assignment access is "denied" or
not asked for. <sub name id> is any NAME identifier.

2. Either of the above forms may possibly be modified by
subscripting legal for its type and organization. Note,
however, the following specific exceptions:

11-26

INTERMETRICS INCORPORATED *701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

* No component subscripting is allowed for bit
and character types.

* If component subscripting is present, <sub id> or
<sub name id> must be subscripted so as to yield
a single (unarrayed) element.

* If no component subscripting is present, but array
subscripting is, then all arrayness must be sub-
scripted away.

example:

DECLARE V NAME ARRAY(3) VECTOR;

NAME(V) is illegal since it
violates the second excep-
tion of semantic rule 3 above.

3. Any <sub id> must have the ALIGNED attribute.

4. NAME <identifier>s may not be declared with the ACCESS
attribute (see Section 11.4.1, rule 2). This does not,
however, imply that the NAME facility is independent of
the ACCESS control: NAME references to <sub id>s with
ACCESS control will compile without error only if
implementation dependent ACCESS requirements for
<sub id> are satisfied.

5. If <sub id> is unsubscripted, the construct delivers
the location of the ordinary identifier specified. If

it is subscripted, the construct delivers the location
of the art of the specified identifier as determined
by the form of the subscript. Subscripting can change
the type and dimensions of <sub id> for matching purposes.

6. If <sub name id> is unsubscripted, the construct delivers

the value of the NAME identifier specified. If it is

subscripted, the value of the NAME identifier is taken

to be the location of an ordinary identifier of compatible
attributes, and the subscripting accordingly modifies the

location delivered by the construct.

11-27

INTERMETRICS INCORPORATED 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

7. The two equivalent forms NULL and NAME (NULL)
specify null NAME values.

examples: '

DECLARE X SCALAR,
V VECTOR(3),
NX NAME SCALAR,
NV NAME VECTOR(3);

NAME(X) yields the location of X.

NAME(NX) yields the value of NX (i.e. the
location pointed to by NX).

NAME(V 2) yields the location of the second
element of V.

NAME(NV3) yields the location of the third
element of the vector pointed to
by NV.

11-28

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

11.4.6 Changing NAME Value4

The value of a NAME identifier is changed by using
the NAME pseudo-function in an assignment context. The
following syntax diagram shows the NAME pseudo-function
used for assigning NAME values:

SYNTAX:

nameigng

Sname

SEMANTIC RULE:

1. <name id> specifies any NAME identifier except an
input parameter, whose NAME value is to be changed.
<name id> may not be subscripted (except asinoted
in Section 11.4.11). E

example:

DECLARE X NAME MATRIX;

NAIME(X) in assignment context specifies
that a new value is to be given
to X.

11.4.7 NAME A g 9nment .. S tatement

The NAME assignment statement is the construct by
which NAME values are assigned into NAME identifiers.

11-29

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

SYNTAX:

name assignment statement

basic
statement

name assign . name reference

SEMANTIC RULES:

1. The <name reference> and <name assign>s must possess
arguments whose attributes are compatible in the
sense described in Section 11.4.1.

11.4.8 NAME Value Comparisons

The values of two <name reference>s may be compared
to one another.

SYNTAX:

name conditional expression

condition

name reference =name reference

SEMANTIC RULES:

1. This <comparison> may be used in any syntax where
other forms of <comparison> may be used, for example
in a <conditional operand> or as the <condition>
controlling a DO WHILE.

11-30

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

2. Both <name reference>s must possess arguments whose
<attributes> are compatible in the sense described
in Section 11.4.1.

examples:

DECLARE X SCALAR,
NX NAME SCALAR:

o

*

NAME(NX)= NAME(X); value of Nx is location
of X (NX points to X).

IF NAME(NX) = NULLTHEN RETURN;
if NX contains a null value
(points at no location) then E
return.

11 .4.9 Argument Passage Con6.dexAztion6

NAME values may be passed into procedures and
functions provided that the corresponding formal para-
meters of the blocks in question have the NAME attribute.
The following two syntax diagrams are systems language
extensions of the earlier <normal function> and <call
statement> syntax diagrams.

SYNTAX:

expression

(label '

11-31

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

SYNTAX:

rmnt

Mum r
expresion

ASSIGN VW . aI*

SEMANTIC RULES:

1. The formal parameters corresponding to <name reference>
or <name assign> arguments of these block invocations
must possess the NAME attribute.

2. The attributes of <name reference> and <name assign>
arguments supplied in the <normal function> reference
or <call statement> must be compatible with those of
the formal parameters in the same sense as described in
Section 11.4.1.

3. If the argument of the procedure or function invocation
is not a <name reference> then the corresponding formal
parameter must not have the NAME attribute.

11-32

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

examples:

DECLARE XI SCALAR,
X2 NAME SCALAR;

P: PROCEDURE(A, B)ASSIGN(C,D);
DECLARE SCALAR, A NAME,

B,
C NAME,
D;

NAME(C)- NAME(A);
NAME(C) - NAME(B); illegal - B is an

. input parameter

CLOSE;

NAME(X2) - NAME(XI);
CALL P (NAME(XI), XI) ASS IGN(NAME(X2), XI);

11.4.10 Initiatization

NAME identifiers may be declared with initiali-
zation to point to some particular identifier. The
form of NAME initialization is as follows;

SYNTAX:

NAME initialization attribute

initialization

INITIAL name reference

SEMANTIC RULES:

1. The argument of the <name reference> must be a previously
declared <sub name id> or <sub id> with <attributes>
compatible with the NAME identifier being declared.

2. Subscripts are illegal in NAME initialization.

11-33
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. Uninitialized NAME identifiers will have a NULL
NAME value until the first NAME assignment.

4. The argument of a <name reference> may not itself
possess the NAME attribute.

11. 4.11 Note on NAME Data and StuctuALe~

The previous sections have introduced the various
syntactical forms and uses of the NAME attribute , <name
assign>s, and <name reference>s. The use of these NAME
facilities with structure data merits further explanation
since the implications of the various legal combinations are
not always immediately apparent. Therefore, the purpose of
this section is to continue further discussion of various
aspects of NAME and structure usage by providing several
examples.

STRUCTURE TERMINAL REFERENCES

Consider the structure template and structure data
declaration below:

STRUCTURE A:
1 C SCALAR,
1 B NAME A-STRUCTURE;

DECLARE A-STRUCTURE, Zl, Z2, Z3;

Zl.B is a NAME identifier of A-structure type: its NAME
value may be set to point to Z2 by the assignment

NAME(Zl.B) = NAME(Z2);

If this is done then it is legal to specify ZI.B.C as a
qualified structure terminal name. The appearance of B in
the qualified name causes an implicit dereferencing process
to occur such that if Zl.B.C is used in a dereferencing context,
the ordinary structure terminal actually referenced is Z2.C.
If the NAME value of Zl.B is changed by

NAME(Zl.B) = NAME(Z3);

then the appearance of ZI.B.C in a dereferencing context
causes Z3.C to be referenced.

11-34
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Pictorially:

is- Z2.C Z2.Bz1

Zl.C Zl.B Z3

Z3.C Z3.B

Now Zl.B.B is itself in turn a NAME identifier of A-structure
type, so that if the NAME assignment

NAME(Zl.B.B) = NAME(Z2);

is executed, then Z2.C may be referenced by using the qualified
name Zl.B.B.C in a dereferencing context.

Pictorially:

zi Z3 Z2

Zl.C Zl.B Z3.C Z3.B Z2.C Z2.B

Clearly this implicit dereferencing in qualified names can extend
chains of reference indefinitely. A particular consequence is
the creation of a closed circular chain. If the following NAME
assignment statements:

NAME(Zl.B) = NAME(Z2);
NAME(Zl.B.B) = NAME(Zl);

are executed, then pictorially the following closed loop is
set up:

Z1 Z2

Zl.C Zl.B Z2.C Z2.B

11-35
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, ITASSACHUSETTS 02138 * (617) 661-1840

Care must clearly be taken when using this implicit multiple
dereferencing, so that all links in the chain have previously
been set up.

IMPLICATIONS OF SUBSCRIPTING STRUCTURE TERMINALS

Using the same A-structure template as before,

the following declarations are legal:

DECLARE A-STRUCTURE(3), Yl,Y2,Y3,Y4;

One or more copies of Y1.C may be referred to by subscripting,
for example:

Yl.C 2 AT 2; (optional semicolon for clarity)

Note that now Yl.Bis a NAME identifier of A-structure type
with 3 copies. One or more copies of it may therefore be

assigned a NAME-value at one time. For example:

NAME(Y1.B 2 AT 2) = NAME(Y22 AT 1

In this assignment, the left hand side has arrayness: two
copies of the Y1 structure. As a result, two values will
be defined by the statement. However, the right hand side
has no arrayness, because the object pointed to is Y2 2 AT 1This is a two copy section of the structure Y2, with a
unique'starting location.

Pictorially:

Y Y2
Y1 Y

Y1 Y2

., Yl.B Y2! Y2.B
Y1.C Y1.B Y2.C 2.B

YI.C' Yl. Y2.C Y2.B

Notice that in the above NAME assignment a subscripted <name id>
appears as argument of the left-hand side NAME pseudo-function.
Subscripts so appearing are legal only if they can have the
interpretation exemplified. The subscripting employed must
also be unarrayed, as was mentioned earlier.

11-36

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Further indirection may then be set up: thus for example:

NAME(Yl.B.B2) = NAME(Y31);

Here the subscript 2 on the left-hand argument refers to copies

of Yl (this can be its only interpretation). Hence, by virtue

of the fact that Yl.B2 has previously been set up to point to

Y21 , this assignment causes Y2.B 1 to point to Y31 .

Arrayness will appear on both sides of a NAME Assignment
Statement only when the assigned reference terminals of

both sides possess the NAME attribute within structure
variables with copies.
Consider the template:

STRUCTURE AA:

1 C NAME SCALAR,

1 D NAME VECTOR;

And the declaration:

DECLARE AA-STRUCTURE(3), YY1,YY2;

If the terminal element YY2.D is assigned to the terminal

element YY1.D, the NAME assignment is arrayed since both

sides contain three copies.

Thus:

NAME(YY1.D) = NAME(YY2.D);

causes ,the name values of YY2.D found in the three copies
of YY2 to be transfered to the corresponding name variables

in YY1.D. All the usual rules governing arrayed assignments

apply in this case.

11-37

INTERMETRICS INCORPORATED .701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138 * (617) 661-1840

MANIPULATING STRUCTURES CONTAINING NAME TERMINALS

Since the NAME attribute may be applied to structure

terminals, a definition of operations performed on such

NAME terminals in ordinary structure assignments, compari-
sons and I/O operations is required. The following general

rules are applicable:

0 For assignment statements and comparisons involving
structure data with NAME terminals, operations are

performed on NAME values without any dereferencing.

examples:

STRUCTURE IOTA:

1 LAMBDA NAME VECTOR,

1 KAPPA SCALAR;

DECLARE ALPHA IOTA-STRUCTURE(IO);

DECLARE BETA IOTA-STRUCTURE;

ALPHA BETA;4
As a part of this assignment, the vector
identifier (or NULL) pointed to by BETA.LAMBDA
becomes the vector identifier pointed to
by ALPHA.LAMBDA4 as if a <name assignment
statement> had been used.

IF ALPHA5 BETA THEN CALL QUEUPDATE;
In this IF statement, the structure compari-
son between the two variables (ALPHA5 and
BETA) is performed terminal by terminal as
usual. For the NAME terminal LAMBDA of each
structure operand, the effect is the same
as if a <name comparison> had been used: Equality
for the corresponding NAME terminals exists if
they both point to the same ordinary identifier.

11-38

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

* For sequential I/O Operations, all NAME terminals are 13
>ttil y ignored. Name terminals can take part in FILE T/O,1

examples:

STRUCTURE OMICRON:

1 ALPHA SCALAR,

1 BETA ARRAY(25) INTEGER SINGLE,

1 GAMMA NAME MATR IX(10, 10);

STRUCTURE TAU:

1 ALPHA SCALAR,

1 BETA ARRAY(25) INTEGER SINGLE;

DECLARE X OMICRON-STRUCTURE;

DECLARE Y TAU-STRUCTURE;

READ(5) X;
The structure variable X is an OMICRON-

STRUCTURE, whose template includes the NAME
of a 10 x 10 matrix (GAMMA). Only the
ordinary terminals are transferred from
Channel 5 by this READ operation --- the value
of.X.ALPHA and the 25 values required for
X.BETA. The NAME terminal X.GAMMA is ignored.

READ(5) Y;
The structure variable Y is a TAU-STRUCTURE,whose template omits the NAME terminal GAMMA

found in the OMICRON-STRUCTURE, but is otherwise
identical. The effect of this READ statement is
the samp as the previous statement as far as
Channel 5 is concerned --- one value is read for
Y.ALPHA and 25 values are read for Y.BETA.

11-39

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

APPENDICES

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

Version IR-61-8

SEMANTIC RULES:

1. The EQUATE statement causes <identifier> to become an
externally recognizable label of the HAL/S <variable>.
The manner in which this is done is implementation depen-
dent. The EQUATE statement has the effect of raising
the name of <identifier> to a global external level
such that it is known to whatever binders, loaders,
link-editors, etc., are used by an implementation.

2. The number of characters of the <identifier> which
participate in the external name created is implementation
dependent.

3. The EQUATE statement does not constitute a HAL/S declara-
tion. This implies that <identifier> may appear in a
declare statement and be used in any manner consistent
with that declaration. In the absence of such a
declaration, <identifier> is not declared and may not
be used anywhere else in the HAL/S code.

4. Duplication of <identifier>s among multiple EQUATE statements
within a single compilation unit is subject to implementation
dependent rules.

5. <variable> may be any HAL/S data item previously declared
in the innermost scope containing the EQUATE statement.

6. If <variable> is subscripted, all subscripts must be
computable at compile time.

7. The external name created by the EQUATE statement will be
associated with the memory location of the first (or only)
element specified by <variable>.

8. Attempts to associate external names with HAL/S data E
items which are not located at integrally addressable I
memory locations or discontiguous memory locations are
subject to implementation restrictions.

11-41

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-7

11.5.2 EQUATE Statement Placement

The following diagram is a system language extension
of the Declare Group syntax diagram in Section 4.1. The
modification shows how the EQUATE statement fits into the
declaration structure of HAL/S.

SYNTAX:

declare group

declare r
aroup

statement 12'

Sstructure template
13

declare
statement 14

.....equate
statement 80

11-42

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

A. SYNTAX DIAGRAM SUMMARIES

A. 1 SYNTAX PRIMITIVE REFERENCES

The syntax diagrams in this Specification are numbered
sequentially. The CONTENTS of the Specification state
which diagrams are in each Section.

The following table shows where the HAL/S syntactical
primitives (excluding reserved words and special characters)
are referred to.

NOTES:

1. Primitives are listed in alphabetical order.

2. Numbers enclosed in [] denote indirect references to
the primitive. Explanations are given in the accompany-
ing Semantic Rules.

Syntactical Diagram Syntactical Diagram
Primitive Number Page Primitive Number Page

<arith var name> [19] [5-5]
20 5-5 <label> 48 7-12

(continued) 50 7-15
<argument> 12.1 4-6 51 7-16

52 7-17
<bit literal> 19 5-5 53 7-19

20 5-5 54 7-21
55 7-23

<char literal> [18] [4-23] 56 7-24
29 6-11 57 8-4

58 8-9
<char var name> [18] [4-20] 59 8-11

19 5-5 60 8-12
20 5-5 61 8-14

62 8-15
<event var name? 19 5-5 63 9-3

20 5-5 64 9-7
65 10-3

<identifier> 8 3-15 66 10-6
9 3-17 68 10-10

12 4-4 53s 11-14
13 4-9 54s 11-14
14 4-12 77 11-31
15 4-13 47s 11-32
14s 11-16
13s 11-22 <number> 13 4-9

15 4-13
<label> 2 3-4 16 4-18

3 3-6 [18] [4-23]
4 3-8 25 6-6
5 3-10 63 9-2
6 3-11 64 9-3

10 3-19 65 10-3
[18] (4-23] 66 10-6
38 6-23 68 10-10
45 7-3 16s 11-19
46 7-5 13s 11-22
47 7-9

<process-event name: 27 6-8
37 6-22

<template name> 17 4-19

<text> 12 4-4

A-1 12.1 4-6

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

A.2 SYNTAX DIAGRAM CROSS REFERENCES

The following table shows where non-primitive syntactical
terms are defined and referenced.

NOTES:

1. Terms are listed in alphabetical order.

2. <radix> is included even though it has no syntactical
diagram, because for the purposes of the Specification
it was not regarded as a primitive. Its definition is
included in the Semantic Rules accompanying the syntax
diagrams where it is referred to.

3. Note that an "s" suffix identifies a modified systems
Language Diagram.

A-2

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Syntactical Defined in

Definition References

Diagram Section Page

<arith conversion> 39 6 6-27 25,25s

<arith exp> 24 6 6-3 15,17,18,22,23,25,28,32,39,51,
53,54,57,60,61,67,68,25s,54s

<arith operand> 25 6 6-6 24,25s

<arith var> 19 5 5-5 20,25,53,54,25s,54s

<array sub> 22 5 5-11 21

<arith inline> 25s 11 11-7 25

<arith % macro> 25s 11 11-7 25

<attributes>:

data 15 4 4-13

label 16 4 4-18 16s

name 16s 11 11-19 44,45

<basic statement>:

assignment 46 7 7-5

name 75 11 11-27 47s

CALL 47 7 7-9 47s

name 47s 11 11-32

CANCEL 58 8 8-9

DO...END 49 7 7-14

EXIT 56 7 7-24

FILE 68 10 10-10

GO TO 56 7 7-24

name assign 74 11 11-27

null 56 7 7-24 75,76,77,47s

ON ERROR 63 9 9-3

A-3

INTERMETRICS INCORPORATED 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Syntactical Defined in
Definition References

Diagram Section Page

READ 65 10 10-3

READALL 65 10 10-3

REPEAT 56 7 7-24

RESET 62 8 8-15

RETURN 48 7 7-12

SCHEDULE 57 8 8-4

SEND ERROR 64 9 9-7

SET 62 8 8-15

SIGNAL 62 8 8-15

TERMINATE 59 8 8-11

UPDATE PRIORITY 61 8 8-14

WAIT 60 8 8-12

WRITE 66 10 10-6

<bit conversion> 40 6 6-31 27,27s

<bit exp> 26 6 6-7 23,27,33,41,45,52,53,54,27s,54s

<bit inline> 27s 11 11-8 27

<bit % macro> 27s 11 11-8 27

<bit operand> 27 6 6-8 26,27s

<bit pseudo-var> 42 6 6-35 20,27,27s

<bit var> 19 5 5-5 20,27,27s

<char conversion> 41 6 6-33 29,29s

<char exp> 28 6 6-10 23,29,34,30,29s

<char operand> 29 6 6-11 28,29s

<char var> 19 5 5-5 20,29,29s

A-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

Syntactical Defined in
Definition References

Diagram Section Page

<char inline> 29s 11 11-9 29

<char % macro> 29s 11 11-9 29

<closing> 10 3 3-19 2,3,4,5,6,69

<comparison>: 31

arithmetic 32 6 6-15

bit 33 6 6-17

character 34 6 6-18

structure 35 6 6-19

<compilation> 1 3 3-2

<component sub> 22 5 5-11 21

<compool block> 5 3 3-10 1

<compool header> 7 3 3-14 5,6

<compool template> 6 3 3-11 1

<condition> 30 6 6-13 31,45,52,53,54,54s

name 76 11 11-30

<conditional operand> 31 6 6-14 30

<declare group> 11 4 4-3 2,3,4,5,6,69

<declare statement> 14 4 4-12 ll,14sls E

name 14s 11 11-16

<do statement>: 49,49s

CASE 51 7 7-16

discrete FOR 53 7 7-19

temporary var 53s 11 11-14

iterative FOR 54 7 7-21

A- 5

INT[:RMETRICS INCOFPORATED - 701 CONCORD AVENUE * CAMBRDE. MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

Syntactical Defined in
Definition References

Diagram Section Page

temporary var 54s 11 11-14

simple 50 7 7-15

UNTIL 52 7 7-16

WHILE 52 7 7-17

<end statement> 55 7 7-23 49,49s
135 <equate statement> 80 11 11-40 lls

S<event exp> 36 6 6-21 37,57,60

<event operand> 37 6 6-22 36

<event var> 19 5 5-5 20,27,37,62

<expression> 23 6 6-2 18,38,39,40,41,42,46,47,48,66,
68,70

<file exp> 68 10 10-10 68

<function block> 3 3 3-6 1,2,3,4,49,49s

<function header> 9 3 3-17 3,6

<function template> 6 3 3-11 1

<inline function> 69 11 11-2

<initial list> 18 4 4-20 18

<initialization> 18 4 4-23 15

name 79 11 11-33 16s

<i/o control> 67 10 10-8 65,66

<name> 14s 11 11-16

<name reference> 75 11 11-30

<normal function> 38 6 6-23 25,27,29,77

name 77 11 11-31

<precision> 43 . 6 6-38 1,2,3,4,49,49s

<procedure block> 3 3 3-6 3,6

A-6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

Syntactical Defined in
Definition References

Diagram Section Page

<procedure header> 8 3 3-15 3,6

<procedure template> 6 3 3-11 1

<program block> 2 3 3-4 1

<program, header> 7 3 3-14 2

<% macro> 70 11 11-5 25s

typeless % macro 71 11 11-11

<radix> Note 2. 6 40,41

<replacb statement> 12 4 4-4 11,11s E

parametric 12.1 4 4-6

<statement>:

basic 44 7 7-2

IF - 45 7 7-3

temporary 72 11 11-13

<structure exp> 29.1 6 6-12

<structure sub> 22 5 5-11 21

<struct inline> 29.1s 11 11-10 29.1

<struct % macro> 29.1 11 11-10 29.1

<structure template> 13 4 4-9 11,11s E

name 13s 11 11-22

<structure var> 19 .5 5-5 20,23,35,20,15,29.1

<sub exp> 22 5 5-11 22

<sub name.id> 73 11 11-26

<subscript> 21 5 5-8 19,39,40,41,42

<task block> 3 3 3-6 2,49,49s

A-7

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Syntactical Defined in
Definition References

Diagram Section 1Page

<task header> 7 3 3-14 3

<type spec> 17 4 4-19 9,15,16,69

<update block> 4 3 3-8 2,3,49,69,49s

<update header> 7 3 3-14 4

<variable> 20 5 5-5 42,46,47,65,68

<temporary statement> 49s 11 11-12 53s,54s
72 11 11-13

A-8

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

A.3 SYNTAX DIAGRAM LISTING *

DIAGRAM # TITLE PAGE

1 unit of compilation 3-2
2 PROGRAM block 3-4
3 PROCEDURE, FUNCTION and TASK blocks 3-6
4 UPDATE block 3-8
5 COMPOOL block 3-10

6 block templates: PROGRAM, PROCEDURE, 3-11
FUNCTION and COMPOOL templates

7 simple header statement 3-14
8 PROCEDURE header statement 3-15
9 FUNCTION header statement 3-17

10 Closing of block 3-19
11 declare group 4-3
lls EQUATE statement placement in declare group 11-42 j E
12 REPLACE statement 4-4
13 structure template statement 4-9
13s structure template statement/NAME attribute 11-22
14 declare statement 4-12
14s declaration statement/NAME attribute 11-16
15 data declarative attributes 4-13

16 label declarative attributes 4-18
16s label declarative attributes/PROGRAM-TASK 11-19
17 type specification 11-19
18 initialization specification 4-23
19 <var>: arithmetic, bit, character, 5-5

structure, event variables
20 variable 5-5

21 subscript construct 5-8
22 component, array, and structure 5-11

subscripts
23 expression 6-2
24 arithmetic expression 6-3
25 arithmetic operand 6-6
25s arithmetic operand inline function block/ 11-7

%-macros

*Note that an "s" suffix identifies a modified Systems
Language diagram.

A-9

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

DIAGRAM # TITLE PAGE

26 bit expression 6-7
27 bit operand 6-8
27s bit operand inline function block/ 11-8

%-macros
28 character expression 6-10
29 character operand 6-11
29s character operand inline function block/ 11-9

%-macros
29.1 structure expression 6-12
29.1s structure expression inline function block/ 11-10

%-macros
30 conditional expression 6-13

31 conditional operand 6-14
32 arithmetic comparison 6-15
33 bit comparison 6-17
34 character comparison 6-18
35 structure comparison 6-19

36 event expression 6-21
37 event operand 6-22
38 normal function 6-23
39 arithmetic conversion function 6-27
40 bit conversion function 6-31

41 character conversion function 6-33
42 SUBBIT pseudo-variable 6-35
43 precision specifier 6-38
44 basic statement 7-2
45 IF statement 7-3

46 assignment statement 7-5
47 CALL statement 7-9
47s CALL statement with NAME 11-32
48 RETURN statement 7-12
49 DO...END statement group 7-14
49s DO,,.END statement group/temporary 11-12

variable
50 simple DO statement 7-15

51 DO CASE statement 7-16
52 DO WHILE and UNTIL statements 7-17
53 discrete DO FOR statement 7-18
53s discrete DO FOR statement/temporary 11-14

variable
54 iterative DO FOR statement 7-21
54s iterative DO FOR statement/temporary 11-14

variable
55 END statement 7-23

A-10

INTERMETRICS INCORPORATED -701 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 -(617) 661-1840

Version IR-61-8

DIAGRAM # TITLE PAGE

56 other basic statements: GO TO, "null", 7-24
EXIT and REPEAT statements

57 SCHEDULE statement 8-4
58 CANCEL statement 8-9
59 TERMINATE statement 811
60 WAIT statement 8-12

61 UPDATE PRIORITY statement 8-14
62 SET, SIGNAL, and RESET statement 8-15
63 ON ERROR statement 9-3
64 SEND ERROR statement 9-7
65 READ and READALL statements 10-3

66 WRITE statement 10-6
67 i/o control function 10-8
68 FILE statements 10-10
69 inline function block 11-2
70 %-macro statement 11-5

71 %-macro call 11-11
72 temporary statement 11-13
73 NAME reference 11-26
74 NAME assign 11-29
75 NAME assignment statement 11-30

76 NAME conditional expression 11-30
77 normal function reference 11-31

79 NAME initialization attribute 11-33
80 EQUATE statement 11-40 g

A-11

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

B. HAL/S KEYWORDS

The following table of keywords excludes built-in functions
and %-macro names.

READ

ACCESS EXCLUSIVE READALL
AFTER EXIT REENTRANT
ALIGNED EXTERNAL REPEAT
AND REPLACE
ARRAY FALSE RESET
ASSIGN FILE RETURN
AT FOR REMOTE
AUTOMATIC FUNCTION RIGID E

BIN GO SCALAR
BIT SCHEDULE
BOOLEAN HEX SEND
BY SET

IF SIGNAL
CALL IGNORE SINGLE
CANCEL IN SKIP
CASE INITIAL STATIC

CAT INTEGER STRUCTURE
CHAR SUBBIT
CHARACTER LATCHED SYSTEM

CLOSE LINE
COLUMN LOCK TAB
COMPOOL TASK
CONSTANT MATRIX TEMPORARY

TERMINATE

DEC NAME THEN

DECLARE NONHAL TO

DENSE NOT TRUE
DEPENDENT NULL
DO UNTIL
DOUBLE OCT UPDATE

OFF
ELSE ON VECTOR
END OR
EQUATE WAIT 135
ERROR PAGE WHILE
EVENT PRIORITY WRITE
EVERY PROCEDURE

PROGRAM

B-1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

C. BUILT-IN FUNCTIONS

HAL/S typically supports the following set of built-in functions.
Minor variations may arise between implementations.

ARITHMETIC FUNCTIONS

* arguments may be INTEGER or SCALAR types

* in functions with one argument, result type matches
argument type (except as specifically noted)

• in functions with two arguments, result type is
scalar if either or both arguments are scalar;
otherwise the result type is integer

e arrayed arguments cause multiple invocations of
the function, one for each array element - arraynesses
of arrayed arguments must match

Name, Arguments Comments

ABS(a)

CEILING(a) smallest integer > a

DIV(a,8) integer division a/8 (arguments
rounded to integers)

FLOOR(a) largest integer < a

MOD(a, g) a MOD 8

TRUE 1 if a odd) result is
ODD(a) FALSE 0 if a even Boolean

signed remainder of integer divisionREMAINDER(a,8) a/ (argument rounded to integer)

ROUND(a) nearest integral value to a
+1 a > 0

SIGN(a) -1 a 0

+1 a > 0
SIGNUM(a) 0 a = 0

-1 a < 0

TRUNCATE(a) largest integer '< aj times
SIGNUM (integer T))

C-1
INTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

ALGEBRAIC FUNCTIONS

" arguments may be integer or scalar types - conversion

to scalar occurs with integer arguments

* result type is always scalar

Sarrayed arguments cause multiple invocations of the
function, one for each array element

* angular values are supplied or delivered in radians.

Name, Arguments Comments

ARCCOS(a) cos- 1 a al < 1

ARCCOSH(a) cosh-1 a a > 1

ARCSIN(a) sin - a a, l < 1

-1
ARCSINH(a) sinh a

-r < tan- (a/8) < w

102 ARCTAN2(a,8) Proper Quadrant if:

S= k sin k > 0
= k cos 6I -1

ARCTAN (a) tan 1 a

ARCTANH(a) tanh- 1 a jal < 1

COS(a) cos a

COSH(a) cosh a

EXP(a) e

LOG(a) loge ea , a > 0

SIN(a) sin a

SINH(a) sinh a

SQRT(a) /- , a > 0

TAN(a) tan a

TANH(a) tanh a

C-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

VECTOR-MATRIX FUNCTIONS

* arguments are vector or matrix types as indicated

" result types are as implied by mathematical operation

" arrayed arguments cause multiple invocations of the
function, one for each array element

Name, Arguments Comments

ABVAL(a) length of vector a

DET(a) determinant of square matrix a

INVERSE(a) inverse of nonsingular squareINVERSE(_)_matrix amatrix a

TRACE(a) sum of diagonal elements of square
TRC _ _)matrix a

TRANSPOSE(a) transpose of matrix a

UNIT(a) unit vector in same direction
as vector a

C-3

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61b-6

MISCELLANEOUS FUNCTIONS

* no arguments

" result type is integer or scalar as indicated

Name Result Type Comments

CLOCKTIME scalar returns time of day

DATE integer returns date (implementation
dependent format)

ERRGRP integer returns group number of last
error detected, or zero

ERRNUM integer returns number of last error
detected, or zero

PRIO integer returns priority of process
calling function

RANDOM scalar returns random number from
rectangular distribution over
range 0-1

RANDOMG scalar returns random number from
Gaussian distribution mean
zero, variance one.

RUNTIME scalar returns Real Time Executive
clock time (Section 8.)

NEXTIME scalar <label> is the name of a pro-

116 (<label>) gram or task. The value re-
turned is determined as follows:

a) If the specified process was
scheduled with the REPEAT
EVERY option and has begun
at least one cycle of execu-
tion, then the value is the
time the next cycle will
begin.

b) If the specified process was
scheduled with the IN or AT
phrase, and has not yet begur
execution, then the value is
the time it will begin execu-
tion.

c) Otherwise, the value is equal
to the current time (RUN-
TIME function).

C-4
INTERMETRICS INCORPORATED .701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

CHARACTER FUNCTIONS

" first argument is character type - second argument

is as indicated (any argument indicated as character

type may also be integer or scalar, whereupon conver-

sion to character type is implicitly assumed)

* result type is as indicated

* arrayed arguments produce multiple invocations of

the function, one for each array element - arraynesses

of arrayed arguments must match

Name, Arguments Result Type Comments

INDEX(a,8) integer 8 is character type - if string $
appears in string a, index point-

ing to the first character of 8 is

returned; otherwise zero is re-
turned

LENGTH(a) integer returns length of character
string

LJUST(,) character is integer type - string a isLJUST(a,8) character

expanded to length $ by padding
on the right with blanks
8 > length (a)

RJUST(a,$) character 8 is integer type - string a is
expanded to length 8 by padding
on the left with blanks
5 > length (a)

TRIM(a) character leading and trailing blanks are
stripped from a

C-5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

ARRAY FUNCTIONS

" arguments are n-dimensional arrays where n is
arbitrary

* arguments are integer or scalar type

* result type matches argument type and is
unarrayed

Name, Parameters Comments

MAX(a) maximum of all elements of a

MIN(a) minimum of all elements of a

PROD(a) product of all elements of a

SUM(a) sum of all elements of a

C-6

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

CHARACTER FUNCTIONS

* first argument is character type - second argument
is as indicated (any argument indicated as character
type may also be integer or scalar, whereupon conver-
sion to character type is implicitly assumed)

* result type is as indicated
*, arrayed arguments produce multiple invocations of

the function, one for each array element - arraynesses
of arrayed arguments must match

Name, Arguments Result Type Comments

INDEX(a,8) integer 8 is character type - if string 8
appears in string a, index point-
ing to the first character of 8 is
returned; otherwise zero is re-
turned

LENGTH(a) integer returns length of character
string

LJUST(a,8) character 8 is integer type - string a is
expanded to length 8 by padding
on the right with blanks8 > length (a)

RJUST(a,8) character 8 is integer type - string a is
expanded to length 8 by padding
on the left with blanks
8 > length (a)

TRIM(a) character leading and trailing blanks are
stripped from a

C-7

INTERMETRICS INCORPORATED -701 CONCORD AVENUJE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

BIT FUNCTIONS

* arguments are bit type

* result is bit type

* arrayed arguments produce multiple invocations
of the function, one for each array element -
arrayness of arrayed arguments must match

Name, Arguments Result Type Comments

XOR(a,08) bit Result is Exclusive OR of a
and 0. Length of result is
length of longer argument.
Shorter argument is left
padded with binary zeros
to length of longer argu-

__-ment.

ARRAY FUNCTIONS

* arguments are n-dimensional arrays where n is
arbitrary

* arguments are integer or scalar type

* result type matches argument type and is
unarrayed

Name, Parameters Comments

MAX(a) maximum of all elements of a

MIN(a) minimum of all elements of a

PROD(a) product of all elements of a

SUM(a) sum of all elements of a

C-8

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Version IR-61-6

D. STANDARD CONVERSION FORMATS

In relatively limited circumstances HAL/S allows conversion

between scalar, integer, bit and character types. The follow-

ing rules govern such conversions.

CONVERSIONS TO INTEGER TYPE:

* A bit type is converted to integer type by regarding it

as the bit pattern of a signed integer of the desired

precision (halfword or fullword). Left padding with

binary zeroes, or left truncation may occur.

* A scalar type is converted to integer type by rounding

to the nearest whole number. Overflow errors may occur

if the absolute value of the scalar type is too large

to be represented as an integer of the desired precision.

* A character type is convertible to integer type only

if its value represents a signed whole number (e.g.
137

'-604), otherwise an error condition occurs. An error

condition also occurs if the whole number is too large

to be represented as an integer of the desired precision.

CONVERSIONS TO SCALAR TYPE:

* An integer type is converted directly to scalar form.

Depending on the implementation, and the precisions,

some decimal places of accuracy may be lost during conver-

sion.

* A bit type is converted to scalar type by first converting

it to double precision integer type according to the rule

previously given, and then applying the integer
to scalar

conversion.

* A character type is convertible to integer type only if

its value represents a legal scalar- or integer-valued

literal (e.g. '-1.5E-7'). See Section 2.3.3 for details of 137
arithmetic literals. Other values cause error conditions

to arise.

D-1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-6

CONVERSIONSu TO BIT TYPE:.

* An integer type is converted to a bit type of fullword
or halfword length as appropriate to the precision of
the integer. The value is the bit pattern of the integer.

* A scalar type is first converted to double precision
integer type according to the rule already given, and the
integer to bit conversion rules is then applied.

* A character type is convertible to bit type only if its
value is a string of 'l's and 'O's, and blanks, (but not
all blanks), otherwise an error condition arises. The
result of the conversion is always a maximum length bit
string, irrespective of the argument type. If the argument
has more than N bits, where N is the maximum allowable length
of a bit operand, then only the N right-most are used. If
the argument has fewer than N bits, the string is padded on
the left with binary zeroes.

CONVERSIONS TO CHARACTER TYPE:

* An integer type is converted to the representation

dddd (positive)

137 -dddd (negative)

where dddd represents an arbitrary number of decimal
digits. Leading zeroes are suppressed yielding a variable
length result.

* A scalar type is converted to the representation

Yd.ddddE±dd (positive)
-d.ddddE±dd (negative)

(except scalar 0 is converted to 0.0).

The number of decimal digits d in the fractional part and
exponent are implementation and precision dependent. The
digit to the left of the decimal point is non-zero. There
are no imbedded blanks. Leading zeros in the exponent are
not suppressed. The representation includes a leading
blank (0) if the scalar is positive. In all cases, the result
is fixed in length.

* A bit type is converted to a character string of 'l's and
'0's corresponding to the binary representation of the bit
string argument.

D-2

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

E. STANDARD EXTERNAL FORMATS

Corresponding to each data type there exists a "standard
external format" for the representation of its values on
sequential I/O files. In any implementation the standard
external formal on output is fixed; on input the user has
a certain flexibility in the format he can use.

OUTPUT FORMATS

1. Integer Type:

* The value of an integer is represented by a
string of decimal digits, preceded if it is negative
by a - sign. Leading zeroes are suppressed.

* The string of digits is right justified in a field
of fixed width. The width depends on the implemen-
tation, and on the precision of the integer.

2. Scalar Type:

* If the value of a scalar is positive it is represented

by

$d.dddddddE±dd

where d represents a decimal digit. One non-zero
digit appears before the decimal point. The numbers
of digits in the fractional part and exponent are
fixed, and depend on the implementation and the
precision of the scalar. Leading zeroes in the
exponent are not suppressed. The representation
includes a leading blank (0).

* A negative value has the same form except that a - sign
precedes the first decimal digit.

" If the value is exactly zero, it is represented as
0.0.

* The representation of a scalar is contained in a field
of fixed width. The width is dependent on the imple-
mentation and the precision of the scalar. Justifica-
tion is such that the decimal point occupies a fixed,
precision dependent position in the field.

E-1

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. Bit Type (including BOOLEAN):

* There are two different representations of values of
bit variables.

* The first representation consists of a string of
binary digits corresponding to the bit variable. Lead-
ing binary zeros are not suppressed. The field width
is equal to the number of binary digits in the string
plus an inserted blank following every fourth digit
(to enhance readability). This form is not compatible
with the READ input (see Section 10.1.1).

* In the alternate representation, the string of binary
digits plus inserted blanks is enclosed in the apostro-
phes. The field width is equal to the total of the
number of digits, blanks and two apostrophes.

4. Character Type:

* There are two different representations of values
of character variables.

* The first representation merely consists of the
string of characters comprising the value. The
field width is equal to the number of characters
in the string. This representation is not compatible
with READ input (see Section 10.1.1).

* In the alternate representation, the string of
characters is enclosed in apostrophes, and all
internal apostrophes are converted to apostrophe
pairs. The field width is equal to the total number
of characters in the string, including added
apostrophes.

NOTE: The two alternate representations for bit and character
types occur on paged and unpaged output respectively.

INPUT FORMATS

1. Scalar and Integer Types:

* There are two basic representations, whole-number
and floating-point.

* The whole number representation consists of a string
of decimal digits preceded by an optional - sign. The
maximum number of digits allowed is implementation
dependent. Conversion to mantissa-exponent form takes
place for scalar types.

E-2
INTERMETRICSINCORPORATED .-701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

* The floating-point representation is either

ddd.dddd

or dddd.dddd B ±dd
H

where d is a decimal digit. Any number of digits

is allowed in the mantissa to an implementation
dependent maximum. The decimal point may appear in

any position. E,B, and H represent the exponent

digits to be powers of 10,2 and 16 respectively.
A choice of one is indicated. The maximum number of

digits in the exponent is implementation dependent.
For bit and integer types, the representation is

rounded to the nearest integral value. For bit

types the binary representation of the result is

taken.

* The floating-point representation may be prefixed
by +.or - signs to indicate the sign of the value.

Without such prefix the value is positive.

2. Character Type:

* The representation of character type is a string
of characters from the HAL/S extended set enclosed
in apostrophes. The number of characters may vary
between zero (a "null string") and an implementation
dependent maximum. Within the string apostrophes
must be represented by an apostrophe pair.

3. Bit Type:

* The representation of bit type is a string of 'l's and

'O's enclosed in apostrophes. Imbedded blanks are

ignored. The number of digits may vary between one an

an implementation maximum.

E-3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

F. COMPILE-TIME COMPUTATIONS

References are made in the text to expressions which must be
computable at compile time. In particular the following
constructs make use of them:

* declaration of dimensions;

* initialization;

* subscripting.

Subsets of arithmetic, bit, and character expressions are
guaranteed to be computable at compile time.

ARITHMETIC EXPRESSIONS (see Section 6.1.1)

1. <arith exp>s of integer and scalar type only can be
computable at compile time.

2. The operators of such <arith exp>s are limited to:

+

<> (multiply)
/
**

3. The <arith operand>s of such <arith exp>s may either be
<number>s or unarrayed unsubscripted simple variables1

of integer or scalar type. Such variables must previously
have been declared and initialized using the CONSTANT form.

1 see Section 4.5

F-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4. The following built-in functions are also legal:

SIN EXP DATE

COS LOG CLOCKTIME

TAN SQRT

DATE and CLOCKTIME are only computed at compile time if
they appear in an <initialization> construct.

BIT EXPRESSIONS (see Section 6.1.2)

1. The operators which may appear in <bit exp>s computable
at compile time are:

&

2. The <bit operand>s of such <bit exp>s must be either
<bit literal>s or unarrayed unsubscripted simple variables
of bit type. Such variables must previously have been
declared, and initialized using the CONSTANT form.

CHARACTER EXPRESSIONS (see Section 6.1.3)

1. The catenation operator (II) only may appear in <char exp>s
computable at compile time.

2. The <char operand>s of such <char exp>s must be either
<char literal>s, <arith exp>s computable at compile time,
or unarrayed unsubscripted simple variables of character
type. Such variables must previously have been declared,
and initialized using the CONSTANT form.

In some implementations,additional forms may also be computed
at compile time. They will not, however, be regarded as legal
in contexts where compile time computability is enforced
semantically.

F-2

INTERMETRICS INCORPORATED 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

G. WORKING GRAMMAR

E

Edited Grammar

1 <CCM PILAT!ON> ::= <COIPILE LIST> _.

2 <CCPPILF LIST> ::= <BLCCK DEFINITION>

3 <COMPILT LIST> <BLOCK D-FINITION>

4 <ARITH FXP> ::= <TEPM>
5 + <TERM>
6 | - <T'RM>
7 <ARITH ZXP> + <TERN>
8 I <ARITH EXP> - <TYRM>

9 <TERM> ::= <PRODUCT>
10 <PrODUCT> / <TEFM>

11 <PRODUCT> ::= <FACTOR>
12 <FACTOP> * <PEODUCT>
13 I <FICTOR> . <PPODUCT>
14 <FACTOR> <PRODUCT>

15 <FACTO?> ::= <PRIMARY>
16 1 <PRIMARY> <**> <FACTOR>

17 <**> ::= **

18 <PRE PRIMARY> ::= (<AFITH FXP>)
19 1 <NUMBER>
20 1. <COMroUN NUMBER>

21 <ARITH FUNC HEAD> ::= <ARITH FUNC>
22 <ARITH CONV> <SUBSCRIPT>

23 <ARITH CONV> ::= INTEGER
24 I SCALAR
25 I VECTOR
26 1 MATRIX

27 <PRIMAY> ::= <APITH VAR>

28 <PRE PPIMARY> ::= <ARITH FUNC HEAD> (<CALL LIST>)

29 <PEIARY> ::= <MCPIFI AFITR FUNC>
30 g <AFITH INLINFE DEF> <BLOCK BODY> <CLOSING> ;
31 I <PFE PRIMARY>
32 I <PFE PPIMARY> <QUALIFIER>

33 <OTHFP STATeMFNT> ::= <ON PHRASF> <STATEMENT>
3 4 <I? STA-TM NT>
35 I <LA9'EL DFINITION> <CTHr STATEmFNT>

G-1
INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-7

36 <.TA M'?NT> :: <9ASIC STATEMv NT>
37 I <OmHR STATEMENT>

38 <ANY STAT7MENT> ::= <STATEMENT>
39 <BLOCK DErTNITIO.>

4%C <BASIC STATEMENT> ::= <LABEL DEFINITION> <BASIC STATEMENT>
41 <ASSIGN.FNT> ;
42 I EXIT ;
43 I FXIT <LABEL> ;
44 FPEAT ;
45 I REPEAT <LABEL> ;
46 I GO TO <LABEL> ;
47 I ;
48 I <CALL KEY> ;
49 <CALL KvY> (<CALL LIST>) ;
50 <CALL KEY> <ASSIGN> (<CALL ASSIGN LIST>)
51 I <CALL K.Y> (<CALL LIST>) <ASSIGN> (<CALL ASSIGN LIST>) ;
52 E-T??rN.;
53 FVTU.N <EXPRESSION> ;
54 I <DO GPROUP HEAD> <ENDING> ;
55 I <READ KEY> ;
56 I <READ PHRASE> ;
57 I <WIRITE KEY> ;
58 I <WRITE PHRASE> :
59 <FILu FXP> = <EXPRESSION> ;
60 ! <VARIABLT> = <FILE EXP>
61 I <WAIT KEY> FOR DEPENDENT ;
62 I <WAIT KEY> <ARITH EXP>
63 <WAIT KEY> UNTIL <ARITH EXP> ;
64 I <WAIT KEY> FOR <BIT EXP>
65 <TEEMINATOR> ;
66 <TERMINATOR> <TERPMINATE LIST> ;
67 "PDA'E PRIOPITY TO <APITH EXP> :
68 I nPrATE PPIOPITY <LABEL VAR> TO <APITH EXP> ;
69 <SCHEDULE PHRASE> ;
70 I <SCHRDULE PHPAST> <SCHEDULr CONTROL> ;
71 I <SIGNAL CLAUSE> ;
72 S-ND ERROR <SUBSCRIPT> ;
73 I <ON CLAUSE> ;
74 I <ON CLAUSE> AND <SIGNAL CLAUSE> ;
75 I C? P.REOR <SUBSCRIPT> ;
76 <% MACRO NAME> ;
77 I <% MACRO HEAD> <% MACRO ARG>) ;

78 <% MACFOC EAn> ::= <% MACRO NAME> (
79 I < FACRO HEAD> <% MACRO APG> ,

80 <% MACFO APG> ::= <NAME VAR>
81 I <CONSTAN->

82 <BIT PRIM> ::= <PIT VAR>
83 1 <LABTEL VA?>
84 1 <EVENT VAR>
85 I <EIT CONS?>
86 I (<BIT EX?>)
87 <MOTrFI . ETT TUNC>
SI <PIT INLIV' DE> <BLOCK BOnY> <CLOSING> ;

89 I <SUBFIT H~E~> <XPPSSION>)

G-2

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

92 <BIT CAT> :: <BIT PRIH>
93 I <BIT CAT> <CAT> <BIT PRIM>
94 I <NOT> <BIT PRIM>
95 I <BIT CAT> <CAT> <NOT> <BIT PRIM>

96 <BIT FACTOR> ::= <BIT CAT>
97 I <BIT FACTOR> <AND> <BIT CAT>

98 <BIT XRIP> ::= <BIT FACTOR>
99 | <BIT EXP> <OR> <BIT FACTOR>

100 <RELATIONAL OP> ::= =
101 I <NOT> =
102 <
103 >
104 < =
105 > =
106 <NOT> <
107 <NOT> >

108 <COMPARISON> := <ARITH EXP> <RELATIONAL OP> <ARITH EXP>
109 j <CHAR EXP> <RELATIONAL OP> <CHAR EXP>
110 I <BIT CAT> <RELATIONAL OP> <BIT CAT>
111 <STRUCTURE EXP> <RELATIONAL OP> <STRUCTURE EXP>
112 I <NAME EXP> <RELATIONAL OP> <NAME EXP>

113 <RELATIONAL FACTOR> ::= <REL PRIM>
114 I <RELATIONAL FACTOR> <AND> <REL PRIM>

115 <RELATIONAL RIP> ::= <RELATIONAL FACTOR>
116 I <RELATIONAL EXP> <OR> <RELATIONAL FACTOR>

117 <REL PRIM> ::= (<RELATIONAL EXP>)
118 I <NOT> (<RELATIONAL EXP>)
119 I <COMPARISON>

120 <CHAR PRIM> ::= <CHAN VAR>
121 I <CHAR CONST>
122 I <MODIFIED CHAR FUNC>
123 I <CHAR INLINE DEF> <BLOCK BODY> <CLOSING> ;
124 I <CHAR FUNC HEAD> (<CALL LIST>)
125 I (<CHAR EXP>)

126 <CHAR FUNC HEAD> ::= <CHAR FUNC>
127 I CHARACTER <SUB OR QUALIFIER>

128 <SUB OR QUALIFIER> ::= <SUBSCRIPT>
129 I <HIT QUALIFIER>

130 <CHAR EXRIP> ::= <CHAR PRIM>
131 I <CHAR EXP> <CAT> <CHAR PRIM>
132 I <CHAR EXP> <CAT> <ARITH EXP>
133 I <ARITH EXP> <CAT> <ARITH EXP>
134 I <ABITH EXP> <CAT> <CHAR PRIM>

135 <ASSIGNMENT> ::= <VARIABLE> <=1> <EXPRESSION>
136 I <VARIABLE> , <ASSIGNMENT>

137 <IF STATEMENT> ::= <IF CLAUSE> <STATEMENT>

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

138 I <TRUE PART> <STATEMENT>

139 <TRUE PART> ::= <IF CLAUSE> <BASIC STATEMENT> ELSE

140 <IF CLAUSE> ::= <IF> <RELATIONAL EIP> THEN
141 1 <IF> <BIT EXP> THEN

142 <IF> ::= IF

143 <DO GROOP HEAD> ::= DO ;
144 DO <FOR LIST>
145 DO <FOR LIST> <WHILE CLAUSE> ;
146 DO <WHILE CLAUSE> ;
147 DO CASE <ARITH EXP> ;
148 <CASE ELSE> <STATEMENT>
149 <DO GROUP HEAD> <ANY STATEMENT>
150 <DO GUOJP HEAD> <TEMPORARY STMT>

151 <CASE ELSE> ::= DO CASE <ABITH EXP> ; ELSE

152 <WHILE KEY> ::= WHILE
153 I UNTIL

154 <WHILE CLAUSE> ::= <WHILE KEY> <BIT EXP>
155 I <WHILE KEY> <RELATIONAL EXP>

156 <FOR LIST> ::= <FOR KEY> <ARITH EXP> <ITERATION CONTROL>
157 <FOR KEY> <ITERATION BODY>

158 <ITERATION BODY> ::= <ARITH EXP>
159 <ITERATION BODY> , <ARITH IEXP>

160 <ITERATION CONTROL> ::= TO <ARITH EXP>
161 I TO <ARITH IEXP> BY <ARITH ZIEXP>

162 <FOR KEY> ::= FOR <ARITH VAR> =
163 I FOR TEMPORARY <IDENTIFIER> =

164 <ENDING> ::= END
165 I END <LABEL>
166 I <LABEL DEFINITION> <ENDING>

167 <ON PHRASE> ::= ON ERROR <SUBSCRIPT>

168 <ON CLAUSE> ::= ON ERROR <SUBSCRIPT> SYSTEM
169 I ON ERROR <SUBSCRIPT> IGNORE

170 <SIGNAL CLAUSE> ::= SET <EVENT VAR>
171 I RESET <EVENT VAB>
172 I SIGNAL <EVENT VAR>

173 <FILE EXP> ::= <FILE HEAD> , <ARITH EXP>)

174 <FILE HEAD> ::= FILE (<NUMBER>

175 <CALL KEY> := CALL <LABEL VAR>

176 <CALL LIST> :: <LIST EXP>
177 I <CALL LIST> , <LIST RIP>

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

171 <CALL ASSIGN LIST> ::= <VARIABLE>
179) <CALL ASSIGN LIST> , <VARIABLE>

1h) <EXPRESSION> ::= <ARITH EXP>
181i <BIT EXP>
162 I <CHAR EXP>
113 I <STRUCTURE EXP>
184 I <NAME EXP>

185 <STRUCTURE EXP> ::= <STRUCTURE VAR>
186 I <MODIFIED STRUCT FUNC>
187 1 <STRUC INLINE DEF> <BLOCK BODT> <CLOSING> ;
188 I <STRUCT FUNC HEAD> (<CALL LIST>)

189 <STRUCT FUNC HEAD> ::= <STRUCT FUNC>

190 <LIST EXP> := <EXPRESSION>
191 I <ARITH EXP> # <EXPRESSION>

192 <VARIABLE> ::= <ARITH VAR>
193 I <STRUCTURE VAR>
194 I <BIT VAR>
115 I <FVENT VAR>
196 I <SUBBIT HEAD> <VARIABLE>)
197 I <CHAR VAR>
198 I <NAME KEY> (<NAME VAR>)

199 <NAME VAR> ::= <VARIABLE>
200 I <LABEL VAR>
201 I <MODIFIED ARITH FUNC>
202 I <MODIFIED BIT FUNC>
203 I <MODIFIED CHAR FUNC>
204 I <MODIFIED STBUCT FUNC>

205 <NAME EXP> ::= <NAME KEY> (<NAME VAR>)
206 I NULL
207 I <NAME KEY> (NULL)

208 <NAME KEY> ::= NAME

209 <LABEL VAR> ::= <PREFIX> <LABEL> <SUBSCRIPT>

210 <HODIFIED ARITH FUNC> ::= <PREFIX> <NO ARG ARITH FUNC> <SUBSCRIPT>

211 <MODIFIED BIT FUNC> ::= <PREFIX> <NO ARG BIT FUNC> <SUBSCRIPT>

212 <MODIFIED CHAR FUNC> ::= <PREFIX> <NO ARG CHAR FUNC> <SUBSCRIPT>

213 <MODIFIED STRUCT FUNC> ::= <PREFIX> <NO ARG STRUCT FUNC> <SUBSCRIPT>

214 <STRUCTURE VAR> ::= <QIAL STRUCT> <SUBSCRIPT>

215 <ARITH VAR> ::= <PREFIX> <APITH ID> <SUBSCRIPT>

216 <CHAR VAR> ::= <PREFIX> <CHAR ID> <SUBSCRIPT>

217 <BIT VAR> ::= <PREFIX> <BIT ID> <SUBSCRIPT>

218 <EVENT VAR> ::= <PREFIX> <EVENT ID> <SUBSCRIPT>

,REPRODUCIBILITY OF TI±B
ORIGINAL PAGE IS POOR

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

219 <QUAL STRUCT> ::- (<STRUCTURE ID>
220 I <QUAL STRUCT> . <STRUCTURE ID>

221 <PREFIX> ::

222 I <QUAL STRUCT> .

223 <SOBBIT HEAD> ::= <SUBBIT KEY> <SUBSCRIPT> (

224 <SUBBIT KEY> :: SUBBIT

225 <SUBSCRIPT> ::= <SUB HEAD>)
226 I <QUALIFIER>
227 I <$> <NUMBER>
228 I <$> <ARITH VAR>
229 I

230 <SUB START> ::= <$> (
231 I <$> (I <PREC SPEC> *
232 I <SUB HEAD>
233 I <SUB HEAD> :
234 I <SUB HEAD> ,

235 <SUB HEAD> ::= <SUB START>
236 I <SUB START> <SUB>

237 <SUB> ::= <SUB EXP>
238 I *
239 I <SUB RUN HEAD> <SUB IEXP>
240 I <ARITH EXP> AT <SUB EXP>

241 <SUB BUN HEAD> ::= <SUB EXP> TO

242 <SUB EXP> ::= <ARITH EXP>
243 < EXPRESSION>

244 <# EXPRESSION> ::= 8
245 I <#8 EXPRESSION> * <TERN>
246 I <# EXPRESSION> - <TERN>

247 <=1> ::= =

248 <$> ::= S

249 <AND> ::=
250 I AND

251 <OR> ::= I
252 I OR

253 <NOT> ::=
254 I NOT

255 <CAT> ::= II
256 I CAT

257 <QUALIFIER> ::= <$> (<PREC SPEC>)

258 <BIT QUALIFIER> ::- <$> (I <RADIX>)

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE MASSACHUSETTS 02138* (617) 661-1840

259 .<RADIX> ::= HEX
260 g OCT
261 I BIN
262 I DEC

263 <BIT CONST HEAD> := <RADIX>
264 I <RADIX> (<NUMBER>)

265 <BIT CONST> = <BIT CONST HEAD> <CHAR STRING>

266 I TRUE
267 I FALSE
268 I ON
269 I OFF

270 <CHAR CONST> := <CHAR STRING>
271 I CHAR (<NUMBER>) <CHAR STRING>

272 <IO CONTROL> ::= SKIP (<ARITH EXP>)

273 I TAB (<ARITH EXP>)

274 I COLUMN (<ARITH EXP>)

275 . LINE (<ARITH EXP>)

276 I PAGE (<ARITB EXP>)

277 <READ PHRASE> ::= <READ KEY> <READ ARG>
278 I <READ PHRASE> , <READ ARG>

279 <WRITE PHRASE> ::= <WRITE KEY> <WHITE ARG>

280 I <WRITE PHRASE> , <WRITE ARG>

281 <READ ARG> ::= <VARIABLE>
282 <10 CONTROL>

283 <WRITE ARG> ::= <EXPRESSION>
284 I <10 CONTROL>

285 <READ KEY> :: READ (<NUMBER>)
286 g READALL (<NUBBER>)

287 <WRITE KEY> ::= WRITE (<NUMBER>)

288 <BLOCK DEFINITION> ::= <BLOCK STMT> <BLOCK BODY> <CLOSING> ;

289 <BLOCK BODY> ::=
290 I <DECLARE GROUTTP>
291 I <BLOCK BODY> <ANY STATEMENT>

292 <ARITH INLINE DEF> ::= FUNCTION <AHITH SPEC> ;

293 I FUNCTION ;

294 <BIT INLINE DEF> := FUNCTION <BIT SPEC> ;

295 <CHAR INLINE DEF> := FUNCTION <CHAR SPEC> ;

296 <STRUC INLINE DEF> ::= FUNCTION <STRUCT SPEC>

297 <BLOCK STMT> ::= <BLOCK STNT TOP>
298 I <BLOCK STMT TOP> ACCESS ;

299 <BLOCK STNT TOP> ::= <BLOCK STBT HEAD>

IEPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR

INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

300 I <BLOCK STNT HEAD> EXCLUSIVE

301 I <BLOCK STNT HEAD> REENTRANT

302 <LABEL DEFINITION> ::= <LABEL> :

303 <LABEL EXTERNAL> := <LABEL DEFINITION>

304 I <LABEL DEFINITION> EXTERNAL

305 <BLOCK STBT BEAD> ::= <LABEL EXTERNAL> PROGRAM
306 I <LABEL EXTERNAL> COMPOOL

307 I <LABEL DEFINITION> TASK

308 <LABEL DEFINITION> UPDATE

309 UPDATE

310 <FUNCTION NAME>

311 <FUNCTION NAME> <FUNC STMT BODY>

312 <PROCEDJURE NAME>

313 I <PROCEDURE NAME> <PROC STNT BODY>

314 <FUNCTION NAME> ::= <LABEL EXTERNAL> FUNCTION

315 <PROCEDURE NAME> ::= <LABEL EXTERNAL> PROCEDURE

316 <FUNC STMT BODY> ::= <PABAMETER LIST>
317 I <TYPE SPEC>
318 I <PARAMETER LIST> <TYPE SPEC>

319 <PROC STNT BODY> := <PARAMETER LIST>
320 I <ASSIGN LIST>
321 I <PARANETER LIST> <ASSIGN LIST>

322 <PARAMETER LIST> ::= <PARAMETER HEAD> <IDENTIFIER>)

323 <PARAMETER HEAD> ::= (
324 (<PARAMETER HEAD> <IDENTIFIER> ,

325 <ASSIGN LIST> ::= <ASSIGN> <PARAMETER LIST>

326 <ASSIGN> ::= ASSIGN

327 <DECLARE ELEMENT> := <DECLARE STATEMENT>
328 I <REPLACE STMT> ;
329 I <STRUCTURE STNT>

330 <REPLACE STMT> ::= REPLACE <REPLACE HEAD> BY <TEXT>

331 <REPLACE HEAD> ::= <IDENTIFIER>
332 I <IDENTIFIER> (<ARG LIST>)

333 <ARG LIST> ::= <IDENTIFIER>
334 I <ARG LIST> , <IDENTIFIER>

335 <TEMPORARY STNT> ::= TEMPORARY <DECLARE BODY> ;

336 <DECLARE STATERENT> ::= DECLARE <DECLARE BODY> ;

337 <DECLARE BODY> ::= <DECLARATION LIST>
338 I <ATTRIBUTES> , <DECLARATION LIST>

339 <DECLARATION LIST> ::= <DECLARATION>

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

340 I <DCL LIST ,> <DECLARATION>

341 <DCL LIST ,> ::= <DECLARATION LIST> ,

342 <DECLARE GROUP> ::= <DECLARE ELEMENT>
343 I <DECLARE GROUP> <DECLARE ELEMENT>

344 <STRUCTURE STMT> ::= STRUCTURE <STRUCT STMT HEAD> <STRUCT STMT TAIL>

345 <STRUCT STMT HEAD> ::= <IDENTIFIER> : <LEVEL>
346 <IDENTIFIER> <MINOR ATTR'LIST> : <LEVEL>
347 <STRUCT STMT HEAD> <DECLARATION> , <LEVEL>

348 <STRUCT STNT TAIL> ::= <DECLARATION> ;

349 <STRUCT SPEC> ::= <STRUCT TEMPLATE> <STRUCT SPEC BODY>

350 <STRUCT SPEC BODY> ::= - STRUCTURE
351 I <STRUCT SPEC HEAD> <LITERAL EIP OR *>)

352 <STRUCT SPEC HEA> ::= - STRUCTURE (

353 <DECLARATION> ::= <NAME ID>
354 i <NAME ID> <ATTRIBUTES>

355 <NAME ID> ::= <IDENTIFIER>
356 I <IDENTIFIER> NAME

357 <ATTRIBUTES> ::= <ARRAY SPEC> <TYPE & MINOR ATTR>
358 .) <ARRAY SPEC>
359 I <TYPE & MINOR ATTR>

360 <ARRAY SPEC> := <ARRAY HEAD> <LITERAL IEXP OR *>)
361 I FUNCTION
362 | PROCEDURE
363 PROGRAM
364 I TASK

365 <ARRAY HEAD> ::= ARRAY (
366 I <ARRAY HEAD> <LITERAL EXP OR *> ,

367 <TYPE & MINOR ATTB> ::= <TYPE SPEC>
368 I I <TYPE SPEC> <MINOR ATTR LIST>
369 I <MINOR ATTB LIST>

370 <TYPE SPEC> :: <STBUCT SPEC>
371 I <BIT SPEC>
372 I <CHAR SPEC>
373 I <ARITH SPEC>
374 I EVENT

375 <BIT SPEC> ::= BOOLEAN
376 I BIT (<LITERAL EXP OR *>)

377 <CHAR SPEC> ::= CHARACTER (<LITERAL EXP OR *>)

378 <ARITH SPEC> ::= <PREC SPEC>
379 I <SQ DQ NAME>
380 I <SQ DQ NAME> <PREC SPEC>

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

381 <SQ DQ MAE> :: DOUBLY QAL MAME HEAD> <LITERAL RIP OR *>

382 g INTEGER
383 I SCALAR
384 I VECTOR

385 I MATRIX

386 (DOUBLY QUAL NAME HEAD> ::= VECTOR (
387 I MATRIX (<LITERAL ZIP OR > ,

388 (LITERAL IEXP OR *> ::= <ARITH EXZIP>

389 I *

390 <PREC SPEC> :: SINGLE
391 DOUBLE

392 <103 ATTE LIST> ::= <MINOR ATTRIBUTE>
393 <MINOR ATTR LIST> <MINOB ATTRIBUTE>

394 <MINOR ATTRIBUTE> ::= STATIC
395 I AUTOMATIC
396 I DENSE

397 I ALIGNED
398 I ACCESS
399 I LOCK (<LITERAL EZIP OR *>
400 REMOTE
401 <INIT/CONST HEAD> <REPEATED CONSTANT>)

402 I <INIT/CONST HEAD> *)
403 I LATCHED
404 I NONHAL (<LEVEL>)

405 <INIT/CONST HEAD> ::= INITIAL (
406 1 CONSTANT (
407 I <INIT/CONST HEAD> <REPEATED CONSTANT> ,

408 <REPEATED CONSTANT> ::= (EXPRESSION>
409 I <REPEAT HEAD> <VARIABLE>
410 I <REPEAT HEAD> (CONSTANT>
411 <NESTED REPEAT HEAD> <REPEATED CONSTANT>)
412 I <REPEAT HEAD>

413 <REPEAT HEAD> ::= <ARITH EXP> #

414 <NESTED REPEAT HEAD> ::= <REPEAT HEAD> (
'415 <(NESTED REPEAT READ> <BREPEATED CONSTANT> ,

416 <CONSTANT> ::= <NUMBER>
417 I (COMPOUND NUMBER>
418 I <BIT CONST>
419 I <CHAR CONST>

420 <NUMBER> ::= <SIMPLE NUMBER>
421 I <LEVEL>

422 (CLOSING> ::= CLOSE
423 I CLOSE (LABEL>
424 I <LABEL DEFINITION> <CLOSING>

'425 <TERMINATOR> ::= TERMINATE
'426 I CANCEL

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

427 <TERMINATE LIST> :: <LABEL VAR>
428 I <TERMINATE LIST> , <LABEL VAR>

429 <WAIT KEY> ::= WAIT

430 <SCHEDULE HEAD> :: SCHEDULE <LABEL VAR>
431 I <SCHEDULE HEAD> AT <ARITH EXP>
432 <SCHEDULE HEAD> IN <ARITH EXP>
433 I <SCHEDULE HEAD> ON <BIT EXP>

434 <SCHEDULE PHRASE> ::= <SCHEDULE HEAD>
'435 I <SCHEDULE HEAD> PRIORITY (<ARITH EXP>)
436 I <SCHEDULE PHRASE> DEPENDENT

437 <SCHEDULE CONTROL> ::= <STOPPING>
438 I <TIMING>
439 I <TIMING> <STOPPING>

.440 <TIMING> ::= <REPEAT> EVERY <ARITH EXP>
:4,1 <REPEAT> AFTER <ARITH EXP>
442 I <REPEAT>

443 <IEPEAT> ::= , REPEAT

444 <STOPPING> ::= <WHILE KEY> <ARITH EXP>
445 I <WHILE KEY> <BIT EXP>

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

H. SUMMARY OF OPERATORS

This section contains a series of tables which explicitly
summarize the possible arithmetic, bit, character, and conditional
operators used in forming expressions in the HAL/S Language.

The information found in this appendix has been abstracted
from chapter 6 of this specification.

H-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-5

H.1 ARITHMETIC OPERATORS*

OPERATORS NAME ARITHMETIC
PRECEDENCE FORM COMMENTS

** Exponentiation 1 x**x Ordinary exponentiation
m**i Repeated Multiplication
m**0 Identity matrix
m**-i Repeated mult. of inverse
m**T Transpose of matrix

(blank).< > Product 2m m matrix-matrix product
m v matrix-vector product
v m vector-matrix product
v v outer product
x m
m x scalar or integer product

E v x with matrix/vectorl____x v si

x x scalar or integer product
with scalar or integer

* Cross Product 3 v*v cross product of two 3-vectors

Dot Product 4 v.v dot product of two vectors

Division 5 m/x division of left-hand term
v/x by scalar or integer
x/x

+ Addition 6 X+X
Subtration m+m Algebraic addition or

v+v subtraction; binary plus

x-x and minus
m-m
v-v
+X
+ma

10
-x
-m
-v

The following abbreviations apply:

i = positive integer literal
x = scalar or integer
m = matrix
v = vector

*Note that this table contains information found in Section 6.1.1.

H-2
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

H.2 CHARACTER OPERATOR*

OPERATOR NAME FORM

II concatenation I ----- 1 result

*Note that this table contains information found in Section 6.1.3.

H.3 BIT OPERATORS*

OPERATORS NAME BIT OPERATOR FORM COMMENTS
PRECEDENCE

II } ___ I_

CAT concatenation 1 BIIB 1101- - 1101010

AND logical product 2 B&B Barallel operation bit by bit

OR logical sum 3 BIB Parallel operation bit by bitORloiasubi

NOT logical Highest implied
complement by syntax -B Parallel operation bit by bit;

The following abbreviations apply:

B = bit string or boolean

*Note that this table contains information found in Section 6.1.2

H-3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

H.4 CONDITIONAL AND EVENT OPERATORS*

OPERATOR NAME CONDITIONAL FORM COMMENTS
PRECEDENCE

& C&C True if both "C"s true
AND logical product 1 C AND C

logical sum 2 CIC True if either "C" is true
OR C OR C

NOT logical Highest -C
complement implied by Operand

syntax

The following abbreviations apply:

"C" = any conditional operand.

*Note that this table contains information found in Sections 6.2
and 6.3.

H.5 COMPARISON OPERATORS*

OPERATOR USE COMMENTS

> A > B
>= A >= B
< A < B magnitude comparsions: apply only to
< = A< = B unarrayed scalar and integer data A and B.-> (A "> B
NOT>
"< A "< B
NOT<

= A=B
NOT A =B equality/inequality for general data A and B.
= 'A "= B '

*Note that this table contains information found in Section 6.2.

H-4

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

BIBLIOGRAPHY

[1]. 'The Programming Language HAL - A Specification',
Document #MSC-01846, Intermetrics, Inc., June 1971.

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Distribution

NASA
Johnson Space Center
Houston, Texas 77058

John L. Ford, BC28 (1)
Charles M. Grant, BM2 (2)
Gilbert C. Symons, BT3 (1)
John R. Garman, FR (3)

Kennedy Space Center

Florida 32815

J.R. Medlock, LV-CAP (1)

Aerospace Corporation
2350 E. El Segundo Blvd.
El Segundo, Calif. 90245

R.K. Luke (1)

CSDL
75 Cambridge Parkway
Cambridge, Mass. 02142

M. Hamilton, 73 (1)

IBM Electronics Systems Center
Bodle Hill Road
Owego, New York 13927

R.T. Smith, 002BC62 (1)

International Business Machines Corp.
1322 Space Park Drive
Houston, Texas 77058

J. Hoskins, MC69 (3)

Rockwell International
Space Division
12214 Lakewood Blvd.
Downey, Calif. 90241

E. Freddolino, FB-37 (1)
J. Ling, FAl9 (1)

USAF
Unit Postal Office
Los Angeles, Calif. 90045

Capt. D.G. Keach, XRZT (1)

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

I. % MACROS

The specific details of %-macro operation as well as
the % macros available are implementation dependent. A
generic description of % macro syntax can be found in
Section 11.2 of this document.

Individual implementations of the HAL/S language
may contain %macro capabilities. The documentation for
each implementation (such as a User's Manual) will contain
the detailed descriptions of the available % macros.

I-1

INTERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138-* (617) 661-1840

Version IR-61-8

INDEX

ACCESS 3-14 to 3-18.1
4-13, 4-15, 4-16

to NAME variables 11-17, 11-27

active process 8-2

ALIGNED 4-9, 4-10, 4-13,
4-15, 4-16, 4-17,
11-20, 11-27

AND 6-7, 6-8
6-13, 6-21

apostrophe 4-7

argument type summary (chart) 6-37

arithmetic comparison 6-15
syntax diagram #32
legal arithmetic comparisons 6-16

arithmetic conversion function 6-27, 6-37
syntax diagram #39

<arith conversion> 6-6, 6-28

arithmetic expressions 6-3
syntax diagram #24

<arith exp> 6-3, 6-15, 7-21,
8-12

syntax diagram #24 6-3
in subscript 5-12, 5-18
in type spec 4-19, 4-20

<arith exp># 4-24, 6-28, 6-4

<arith inline> 11-3, 11-7

arithmetic literals 2-8

<arith %-macro> 11-5, 11-7

<arith operand> 6-3, 6-6
syntax diagram #25

arithmetic operand 11-7
arith %-macro

syntax diagram #25s

I-1~

INTERMETRICS INCORPORATED 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

Version IR-61-8

<arith var> 5-16

ARRAY 4-13, 4-14

array dimension 5-17

array properties of expressions 6-12

array specification 4-14, 4-16, 4-17,
4-25, 4-26, 5-17

<array sub> 5-7, 5-8, 5-14

array subscripts 5-11
syntax diagram #22

Array Subscripting 4-2, 5-7, 5-14,
7-10

arrayed <comparison> 6-18, 6-17

arrayed infix operations 6-12

arrayed operand comparison 6-2

Arrayness 5-17, 5-21

Assignment statements 7-5

event variables 6-22, 6-24

of NAME identifiers 11-18

of subscript expressions 5-18

ASSIGN 3-15, 7-9, 7-10

assign parameter 7-10

assignment 7-1

assignment statement 7-5
syntax diagram #46

asterisk, use of 4-16, 4-21, 4-22,
4-24, 4-27, 5-11,
5-12

"*" 11-18

** 2-11

I-2

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

AT 5-11

AT <arith exp> 8-5

AT-partition 5-12, 5-13, 5-14,
5-15

<attributes> 4-12
factored <attributes> 4-12

AUTOMATIC 3-16, 3-16.1, 3-18,
4-13

basic statement 7-2

syntax diagram #44

<basic statement> 7-24

BIT 4-21, 4-26, 6-31,
11-3

bit argument length 6-24

bit assignments 7-7

bit comparison 6-17
syntax diagram #33

bit conversion function 6-31
syntax diagram #40

<bit conversion> 6-8

bit expression 6-7
syntax diagram #26

<bit exp> 4-26, 6-7, 6-8,
6-17, 6-34, 7-3,
7-17, 7-18

bit expression length 7-13

<bit inline> 11-3, 11-8

bit literals 2-9

<bit literal> 6-8, 6-9

I-3

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

bit operand 6-8
syntax diagram #27
bit inline
bit%-macro

syntax diagram #27s 11-8

bit operator precedence 6-8

<bit %-macro> 11-5, 11-8

<bit-pseudo var> 5-6, 6-35, 7-7

<bit var> 6-9, 6-8

BIN 2-9, 6-32

@BIN 6-32, 6-34

blanks 2-13, 4-7, 4-24

Block delimiting statements 3-13

block name uniqueness 3-20

Block Templates 3-13
syntax diagram #6 3-11

BNF Grammar of HAL/S Appendix G

BOOLEAN 4-19, 4-21, 4-26,

11-3

built-in functions 6-23, 11-1

built-in function names 2-6

built-in function parameters 6-24

BY 7-22

I-4
INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

CALL Statement 7-9, 7-10
syntax diagram #47 7-9
with NAME

syntax diagram #47s 11-32

call-by-reference 6-24, 7-10

call-by-value 6-24, 7-10

CANCEL statement 8-10
syntax diagram #58 8-9

cancellation 8-6, 8-7, 8-8,
8-9

CAT 6-7, 6-8, 6-10

catenation 6-10

channels 10-1

HAL/S character set 2-4

CHARACTER 4-21, 4-26, 6-33,
6-24, 7-10, 11-9

character argument length 6-24

character comparison 6-18
syntax diagram #34

character conversion function 6-33
syntax diagram #41

<char conversion> 6-11

character expression 6-10
syntax diagram #28

character expression length 7-13

<char exp> 4-26, 6-10, 6-18,
6-32

character initialization 4-26

<char inline> 11-4, 11-9

character length 4-21

character literal 2-10, 4-7

<character literal> 2-10, 6-11

<character %-macro> 11-5, 11-9

I-5

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

character operand 6-11
syntax diagram #29
char inline
char %-macro

syntax diagram #29s 11-9

character operator precedence 6-14

character string 6-10

character type 4-21

<char var> 6-11, 7-7

CLOSE Statement 3-19
syntax diagram #10

CLOSE 7-12, 7-13

closing 3-4

<closing> 3-13, 3-19

code blocks 3-13

colon, use of 4-10, 5-14, 9-4

COLUMN 10-3, 10-7, 10-8,
10-9

comma, use of 4-7, 4-10, 5-11,
10-5

comments (imbedded) 2-13

<comparison> 6-13, 6-20

<compilation> 3-2, 3-20, 7-9

Component Subscripting 4-2, 5-7, 6-35,
7-7, 7-10, 10-11

component subscripts 5-11
syntax diagram #22

<component sub> 5-7, 5-8, 5-16

I-6

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

COMPOOL 3-2, 3-14

COMPOOL block 3-13, 3-19
syntax diagram #5 3-10

<compool block> 4-16

COMPOOL block template 3-11

<compool header> 3-10

compool header statement 3-14

compool modules 3-1

<compool template> 4-16

<condition> 6-1, 6-14, 7-4,
7-17, 7-20, 7-22

conditional expression 6-1
syntax diagram #30 6-13

conditional operand 6-14
syntax diagram #31

<conditional operand> 6-13

CONSTANT 4-23

conversion 6-24

conversion functions
summary of argument types 6-37

cyclic execution 8-4, 8-6

Data declarative attributes 4-13

syntax diagram #15

data declarative <attributes> 4-12

Data Manipulation 6-1

I-7

INTERMETRICS INCORPORATED -701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

Version IR-61-8

Data NAME identifiers 11-18

Data referencing 5-1

Data Sharing and the UPDATE Block 8-19

data types 1-2

DEC 2-9, 6-32

@DEC 6-32, 6-34

DECLARE Statement 4-12
syntax diagram #14
with NAME

syntax diagram #14s 11-16
<declare statement> 4-3, 11-42

declare group 3-4, 3-6, 4-1
syntax diagram #11 4-3
with EQUATE

syntax diagram #115 11-42

<declare group> 3-12, 5-2

Declarations of Temporaries 11-13

Declaration of NAME temporaries 11-24

DENSE/ALIGNED 4-15, 11-17

DENSE 4-9, 4-10, 4-13,
4-16, 4-17, 7-10,
7-10.1, 7-11, 11-17,
11-20, 11-22

DEPENDENT 8-6, 8-12

dependent processes 8-2

DO 11-12

DO statement 7-15
syntax diagram #50

<do statement> 7-14, 7-23

DO CASE statement 7-16
syntax diagram #51

DO...END statement group 7-14
syntax diagram #49

I-8
INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

DO...END 7-23, 7-24, 7-25,
11-15

DO...END statement 11-12
TEMPORARY statement

syntax diagram #49s

DO FOR 11-15

Discrete DO FOR Statement 7-19
syntax diagram #53

discrete DO FOR 11-14
with loop TEMPORARY variable index
syntax diagram #53s

iterative DO FOR 7-21

DO WHILE and UNTIL statements 7-17
syntax diagram #52

DO UNTIL 7-18

DO WHILE 11-30

DOUBLE 4-19, 4-20, 6-38,
7-6

double precision 6-15

double quotes 4-5

ELSE 7-3, 7-4, 7-16

dangling ELSE 7-4

END 7-23

END statement 7-23
syntax diagram #55

<end statement> 7-14, 7-23

I-9

INTERMETRICS INCORPORATED 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

EQUATE Statement 11-40
syntax diagram #80 11-40

errors 9-1
system-defined
user-defined

error code 9-1, 9-5, 9-7

error environment 9-1

error groups 9-1

error number 9-7

Error precedence (chart) 9-6

<error spec> 9-3, 9-4, 9-5

Error Recovery 1-2, 7-1

Error Recovery Executive (ERE) 8-9, 9-1, 9-4,
9-7

EVENT 4-18, 4-19, 4-21,
4-26, 11-13, 11-23

event change point 8-5, 8-7, 8-8,
8-15

Event Control 8-15

event expression 6-1
syntax diagram #36 6-21

<event exp> 6-21, 8-13

event infix operator precedence 6-21, 6-22

event operand 6-22
syntax diagram #57

<event operand> 6-21

<event var> 6-9
latched 8-16
unlatched 8-16

1-10
INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

EVERY <arith exp> 8-6

EXCLUSIVE 3-15 to 3-18.1

executable statements 7-1

EXIT statement 7-24
syntax diagram #56

-EXIT 7-25

explicit conversion functions 6-26, 6-27, 6-31,
6-33

explicit type conversion 6-24, 6-38

exponent 7-6

<exponents> 2-8

exponentiation 2-12

<expression> 6-1, 7-5, 7-12

external procedure 3-1

EXTERNAL 3-12, 11-40

extended character set 2-4

FALSE 2-9, 4-26, 7-4,

7-17, 8-16

father 8-2"

FILE 10-11

<file exp> 10-10, 10-11

FILE statement 10-10
syntax diagram #68

paged file 10-2

unpaged file 10-2

I-11

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

flow control 7-1

flow of execution 3-5, 3-7

flow path 2-3

format 1-1

formal parameters 3-15, 3-17, 4-16,
4-18

FUNCTION 3-2, 3-5, 3-7,
3-8, 3-17, 3-20,
4-18, 7-12, 11-3,
11-19, 11-20

<function> 7-12

FUNCTION block 3-6
syntax diagram #3

<function block> 3-17, 6-23, 6-24

FUNCTION block template 3-11

Function header statement 3-17
syntax diagram #9

<function header> 3-17, 4-4

function modules 3-1

<function template> 3-12, 3-17, 6-23

user defined 6-24, 6-27

GO TO 7-24, 7-25,

GO TO Statement 7-24
syntax diagram #56

1-12

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

Hardware discretes 8-15

header statements 3-14
syntax diagram #17

HEX 2-9, 6-32

@HEX 6-32, 6-34

identifiers 2-5, 2-7

<identifier> 3-15, 3-17, 4-3,
4-10, 4-11, 4-25,
11-40, 11-41

identifier generation with REPLACE 4-7.1

identifiers with NAME attribute 11-16

IF 7-2, 6-1

IF statement 7-3
syntax diagram #45

IGNORE 9-4

implicit conversion 7-11, 7-13

implicit type conversion 6-26, 7-6

IN <arith exp> 8-5

independent processes 8-2

infix operators 6-3, 6-4
(chart) 6-4

INITIAL 4-23

initial list 4-23

<initial list> 4-24, 4-25, 4-26,
4-27

1-13

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

7ersion IR-61-8

initialization 4-13

<initialization> 4-14, 4-15, 4-16,
4-23, 11-17, 11-27

partial initialization 4-27

initialization specification 4-23
syntax diagram #18

initiation 8-2

inline function 11-1
<inline function>

syntax diagram #69 11-2

Inline function blocks 11-2

input argument 7-10, 7-11

input/output 7-1

I/O channel number 10-6

I/O control function 10-8
syntax diagram #67

<I/O control> 10-3, 10-4, 10-6,
10-7

random access I/O 10-1, 10-10

I/O statements 10-1

input parameters 3-15, 3-17, 6-24

INTEGER 4-19, 4-20, 4-24,
6-27, 6-28

integer 7-6

integer-valued literal 2-8

Introduction 1-1

Iterative DO FOR statement 7-21
syntax diagram #54

iterative DO FOR
with loop TEMPORARY variable index 11-14
syntax diagram #54s

1-14
INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

keywords 2-6

<label> 2-7, 3-8, 3-10,
3-11, 3-19, 3-20,
4-18, 6-23, 7-2,
7-3, 7-9, 7-23,
7-24, 7-25, 8-5,
8-14

<%label> 11-5

Label declarative attributes 4-18
syntax diagram #16
with NAME
S syntax diagram #16s 11-19

label declarative <attributes> 4-12

Label Name identifiers 11-20

LATCHED 4-13, 4-15, 4-21,
4-26

latched event 8-15

LINE 10-3, 10-7, 10-8,
10-9

linear array 4-14

literals 2-5, 2-8

literal zero 7-6

LOCK 3-16.1, 3-18.1, 4-13,
4-15, 4-16, 7-10,
8-19

LOCK(*) 8-19

lock group 7-10

Loop TEMPORARY variable 11-15
syntax diagram #53s 11-14
syntax diagram #54s 11-14

1-15

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

Version IR-61-8

loop variable 7-19, 7-20, 7-22

machine units 8-3

%-macro 2-6, 11-1, 11-6
arith 11-5
bit 11-5
char 11-5
struct 11-5
typeless 11-5

%-macro references 11-4
syntax diagram #70 11-5

%-macro CALL statement 11-11
syntax diagram #71

<%-macro call statement> 11-5, 11-11

major structure 4-13, 4-16, 5-3,
5-9, 5-20

mantissa 7-6

Matrix 5-21, 7-6

MATRIX 4-19, 4-20, 4-25,
5-15, 6-27, 6-29

maximum index value 5-12

minor structure 4-8, 4-10, 4-17,
5-3, 5-20

minor structure node 7-11, 10-11

MU 8-3

multiple copies 4-22, 5-9, 5-13,
5-17, 5-20, 7-11

1-16

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

name scope 3-20, 4-3, 4-4,
4-6, 4-10, 4-12,
7-9

Name Scope Rules 3-20

name uniqueness 4-10.1, 4-12

NAME facility 11-16

NAME argument passage 11-31

NAME assign 11-29
syntax diagram #74

NAME assignment statement 11-29
syntax diagram #75 11-30

<name assign> 11-30, 11-32, 11-34

NAME assignment 11-35

NAME attribute 11-16
syntax diagram #14s

NAME attribute in structure templates 11-22
syntax diagram #13s

NAME attribute 11-23, 11-24

NAME conditional expression 11-30
syntax diagram #76

NAME data and structures 11-34

NAME facility 11-16

name identifier 11-19
syntax diagram #16s

NAME identifier label 11-20

NAME identifier 11-20, 11-23, 11-24,
11-27

simple NAME identifiers 11-25

dereferenced use of simple NAME
identifiers 11-25

1-17

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

<NAME id> 11-29

NAME initialization attribute 11-33
syntax diagram #79

in I/O operations 11-39

NAME reference 11-26
syntax diagram #73

<name reference> 11-30, 11-34

NAME (NULL) 11-28

Null NAME values 11-26

NAME pseudo-function 11-29

Referencing NAME values 11-26

NAME structure 11-34, 11-38

NAME variable 11-17

natural sequence 4-24, 5-20, 6-28

rested blocks 3-8

Nested Structure Template References 11-23

NONHAL 4-18

normal function 6-6, 6-24
syntax diagram #38 6-23

<normal function> 6-24, 11-31
with NAME
Syntax Diagram #77

NOT 6-8, 6-9, 6-14,
6-19, 6-20

Null 4-7, 7-6, 11-28

Null character literal 2-10

Null field 10-5

Null statement 7-24
syntax diagram #56

1-18
INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

Version IR-61-8

Null string 4-21

<number> 4-18, 6-6

object modules 3-1

OCT 2-9, 6-32

@OCT 6-32, 6-34

OFF ERROR 9-2, 9-4

ON ERROR 7-2, 7-3, 9-1,
9-4, 9-5

ON ERROR Statement 9-2
syntax diagram #63 9-3

ON <event exp> 8-5

one-dimensional source format 2-11

operand 5-20, 6-1

OR 6-7, 6-8, 6-13,
6-21

packing attribute 4-10

PAGE 10-3, 10-7, 10-8,
10-9

parametric replace reference 4-7

syntax diagram #12.1 4-6

parentheses 2-12, 4-7

partitioning SUBBIT subscripts 6-36

pointer 11-16

1-19

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

<power> 2-8

precedence 6-5

precision specifier 6-38
syntax diagram #43

<precision> 6-6, 6-27, 6-29,
6-38

precision 6-38

precision conversion 7-6

primal process 8-2

HAL/S Primitives 2-1, 2-5

PRIORITY 8-6

PROCEDURE 3-2, 3-5, 3-7,
3-8, 3-15, 3-20,
7-9, 7-12, 11-3,
11-19

PROCEDURE block 3-4
syntax diagram #3 3-6

PROCEDURE block template 3-11

Procedure Header Statement 3-15
syntax diagram #8 3-15

<procedure header> 4-4

<procedure template> 3-12, 3-15, 7-10

process events 8-18

<process event> 11-20

<process-event name> 2-7, 6-8, 6-9,
6-22

process queue 8-4, 8-10

1-20

INTERMETRICS INCORPORATED -701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

Program 3-2, 3-14, 6-22,
7-12, 8-2, 11-19,
11-20

PROGRAM block 3-4
syntax diagram #2

<program block> 3-5

Program block template 3-11

program complex 3-1

program header 3-4

program header statement 3-14

qualified structure 4-22, 5-3, 5-4

<radix> 6-31, 6-32, 6-33,
6-34

random-access I/O 10-1, 10-10

READ 6-36, 10-2, 10-4,
10-8

READ and READALL statements 10-3
syntax diagram #65

READALL 6-36, 10-2, 10-4,
10-8

ready 8-2

ready state 8-4

real time 3-8, 7-1, 11-3

real time control 1-2, 8-1

Real Time Executive 8-1

real time processes 8-2

1-21

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

Version IR-61-8

REENTRANT 3-15, 3-16, 3-18

referencing simple variables 5-2

referencing structures 5-3

regular expression 6-1
syntax diagram #23 6-2

REMOTE 3-14.1, 4-13, 4-15,
7-10, 7-11, 11-23

REPEAT 7-25, 8-6

REPEAT statement 7-24
syntax diagram #56

REPEAT EVERY 8-5

REPLACE 4-5, 4-6, 4-7,
11-2

syntax diagram #12 4-4

<replace statement> 4-3, 11-42

reraveling 5-20, 6-28

reserved words 2-5, 2-6

RESET 8-16
syntax diagram #62 8-15

restricted character set 2-4

RETURN 3-17, 3-19, 7-13

RETURN statement 7-12
syntax diagram #48

RIGID 3-14, 3-14.1, 4-9,
4-10, 4-13, 4-15,
4-16, 4-17

rounding 6-28

row and column dimensions (Matrix) 4-20, 6-29

RTE 8-1, 8-2, 8-3,
8-4, 8-11, 8-15

1-22

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

RTE-clock 8-3, 8-5, 8-6,
8-12

run time errors 9-1

S 5-9

S; 5-9

SCALAR 4-19, 4-20, 4-24,
6-27, 6-28, 7-6

scalar valued literals 2-8

SCHEDULE 8-5, 8-7

SCHEDULE statement 8-4
syntax diagram #57

semi colon, use of 5-13, 7-24, 10-4,
10-5

SEND ERROR 9-1

syntax diagram #64 9-7

SET statement 8-16
syntax diagram #62 8-15

SET, SIGNAL, and RESET 8-15

syntax diagram #62

SET, SIGNAL, and RESET summary 8-17

Sequential I/O 10-1

Sequential I/O statements 10-2

shaping functions 6-26

SIGNAL statement 8-16

syntax diagram #62 8-15

simple index 5-12

single precision 6-15

1-23

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-61-8

SINGLE 4-19, 4-20, 6-29,
7-6

SINGLE (default) 4-20

SKIP 10-3, 10-7, 10-8,
10-9

son 8-2

source macro 4-4, 4-6

source modules 3-1

source text 2-13

stall 8-2

stall state 8-4, 8-6

statement 3-4

<statement> 7-2, 9-5

STATIC 3-16, 3-16.1, 3-18,
4-13

STATIC (default) 4-14

STATIC/AUTOMATIC 3-16.1, 4-14, 11-17,
11-20

STRUCTURE 4-8, 4-10, 4-19,
4-21, 4-22

structure assignments 7-8

structure comparison 6-19
syntax diagram #35

subscript construct 5-8
syntax diagram #21

structure copies 4-27, 6-19

structure copy dimensions 5-17

structure copy specification NAME 11-18

structure expression
Syntax Diagram #29.1 6-12
struct inline 11-10
struct % macro 11-10

syntax diagram #29.1s 11-10
1-24

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

<structure exp> 6-12, 6-19, 7-8

<struct inline> 11-4, 11-10

<struct %-macro> 11-5, 11-10

structure subscripts 5-11
syntax diagram #22

structure template statement 4-9
syntax diagram #13

structure template 4-8
tree diagram 4-8

structure template statement 11-22
with NAME
syntax diagram #13s

<structure template> 4-3, 4-10, 4-16,
4-17, 11-42

structure terminal 4-10, 4-13, 4-16,
7-11

structure terminal refernces 11-34

subscripting structure terminals 11-36

structures containing NAME terminals 11-38

unarrayed structure terminal
array structure terminal 5-9

structure type 11-18

structure types 4-27

Structure Subscripting 4-2, 5-7, 5-13

<structure sub> 5-7, 5-8, 5-13

non qualified structure variable
declaration 4-11

<structure var name> 5-3

<structure var> 6-12

1-25

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

version IR-61-8

SUBBIT 5-6, 6-35

SUBBIT pseudo-variable 6-35
syntax diagram #42

Subscripting 5-5

syntax diagram #19

subscripting classes 5-7

component subscripting 5-8

legal subscript combinations 5-8

<subscript> 6-6, 6-27, 6-28,
6-29, 6-31, 6-34

<sub exp> 5-13, 5-14

<sub id> 11-26, 11-27, 11-33

<sub name id> 11-26, 11-27, 11-33

subscript line 2-11

syntax diagrams 2-1, 2-2

syntax diagram summaries 2-1, 2-2, Appendix A

SYSTEM 9-4

systems language features 11-1

system-defined erros 9-7

"T" 6-4

TAB 10-3, 10-7, 10-8

TASK 3-5, 3-14, 4-18,
6-22, 7-12, 8-2,
8-6, 11-19, 11-21

TASK block 3-6
syntax diagram #3

task block 3-4

<task block> 4-18

task header statement 3-14

1-26

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

<template name> 2-7, 4-8, 5-3

TEMPORARY 11-12, 11-13

TEMPORARY statement
syntax diagram #49s 11-12
syntax diagram #72 11-13

Temporary Variables 11-12

regular TEMPORARY variables 11-12

TERMINATE statement 8-11
syntax diagram #59

<text> 4-4, 4-5, 4-6

THEN 7-3, 7-4

timing considerations 8-3

timing lines 8-15

TO 5-11, 7-22

TO-partition 5-12, 5-13, 5-14,
5-15

transpose 6-4

tree organization 6-19, 7-8

TRUE 2-9, 4-26, 8-16

two dimensinal Source Format 2-11

type conversion 4-25

type specification 4-19
syntax diagram #17

<type spec> 4-13, 4-14, 4-16,
4-17, 4-19, 4-20,
4-22, 11-3

typeless % macro 11-11

1-27

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

unary minus 6-5

unary plus 6-5

unit of compilation 3-2
syntax diagram #1 3-2

unlatched event 8-15

unqualified structure 4-22, 5-3, 5-4

unraveling 5-20, 6-28, 6-30

UNTIL 6-1, 7-18, 7-19,
7-20, 8-6, 8-7

UNTIL <arith exp> 8-7, 8-8

UPDATE 3-5, 3-7, 3-14,
8-19

UPDATE block 3-8
syntax diagram #4

update block 3-4

<update block> 3-9

<update header> 3-8

update header statement 3-14

UPDATE PRIORITY statement 8-14
syntax diagram #61

variable 5-5
syntax diagram #20

unarrayed simple variable 5-9
arrayed simple variable

<variable> 7-5, 7-6, 10-4,
11-40

<§var name> 2-7, 5-2, 5-3

1-28

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-61-8

<§var name> (interpretation table 5-9

<§var> 5-17

simple variable 4-13, 4-16, 5-2

VECTOR 4-19, 4-20, 4-25,
5-15, 5-21, 6-27,
6-29, 7-6

vector length 4-20

wait 8-2

WAIT statement 8-12
syntax diagram #60

WAIT 8-12

WAIT FOR 8-13

WAIT FOR DEPENDENT 8-13

WAIT UNTIL 8-12

WHILE 6-1, 7-19, 7-20,
7-22, 8-6

WHILE <event exp> 8-7

WRITE 6-2, 10-2, 10-8
syntax diagram #66 10-6

/*...*/, use of 2-13

#, use of 5-11, 5-12

¢, use of 2-4, 2-10, 2-10.1

@, use of 2-4, 4-5, 4-7.1

I-29 NASA-JSC

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Page intentionally left blank

UPDATE SHEET

Enclosed with each update package you receive is a new
update sheet listing the new Version number, the affected
pages, and the date of the update.

As you receive each update, replace the old update sheet
with the new one. It is important that you refer to the
most recent Version number on the update sheet whenever
you correspond with Intermetrics concerning this document.

VERSION AFFECTED MATERIAL DATE

This version of the Language
IR-61-4 Specification constitutes a final 6/15/74

revision of the document. Many changes
have been made and the user should
review the entire document.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

COMMENTS AND CHANGE OF ADDRESS

HAL/S users are encouraged to comment on this document
and to note any discrepancies that they may encounter.
The form below is provided for this purpose.

If the user believes that he is not receiving updates to
the document, he should indicate the current Version number
of the document, and check the update box below.

NAME COMPANY

ADDRESS

BUSINESS PHONE BUSINESS MAIL CODE

DOCUMENT VERSION NUMBER UPDATES --

COMMENTS

If the user is changing his address, but would like to
continue receiving updates to this document, he should
fill out his new address below, and the old address, along
with the document Version number, above.

New Company

New Address

Business Mail Code Business Phone

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840
L32-

