General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

o

F

Mg/ 708

rws%ﬁ%
L ”é;z
HAL/S-FC COMPILER SYSTEM ‘1/ b /“
[T I '
SPECIFICATION '
IR-95-5

1 March 1976
(NAS!-CF-1“756“) HAL/S=-FC COMPILER SYSTEM N76=22926
SPECIFICATIONS (Intsrmetrics, Inc.) 387 p
HC $10.7S csclL C09E

Unclas

G3/60 25972

INTERMETRICS APPROVAL

Daniel J.
Head, HA

mégler Department

Dr. F. H. Martin A A
Shuttle Program Manager Lo

r’i—(\‘—'r' br’v;'\
A Wit ¥ b
NASA ST! FACITY

INPUT BRANCH 7

W

L[]

|
8
_ M INTERMETRICS

INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

™

-y

Table of Contents

INTRODUCTION

l.1 Scope of Document

1.2 Outline of the Document
1.3 Status of Document

PHASE I - SYNTAX ANALYSIS

NN
. .

[SOIN O S 25 -]
S Ul > (W

N’NNNN‘
e .
F—'i—'\DOD-J

0
1

Primary Source Input

Secondary Source Input - The INCLUDE
System

ACCESS Rights Implementatlon
Compiler Directive Parsing

Template Checking and Generation
Listing Generation

2.6.1 Primary Formatted Listing

2.6.2 Error Messages

2.6.3 Block Summaries

2,6.4 Compilation Layout Summary

2.6.5 8Symbol & Cross Reference Table
Listing

2.6.6 Built-in Function Cross Reference

2.6.7 Replace Macro Text

2.6.8 Unformatted Source Listing

Symbol Table Generation
Statement Table Generation
L.iteral Table Generation
HALMAT Creation

The Optimizer

PHASE II - CODE GENERATION

3.1

INTERMETRICS INCORPORATED + 701

L) .

‘Code Generation

Bases and Conventions

Integer and Scalar Operations
Bit String Operations
Character String Operations
Vector Matrix Operations
Structure Operations
Indexing and Arrayed Statements
PROCEDURE/FUNCTION Calls
Block Definition

Flow of Control Statements
Built~-In Functions

Real Time Statements

I/0 Statements

NAME Operations

$MACROS

NONHAL References

S e e el N R el

o D 00 ST 0N UT o W N

AUV WO

i

3-1

3-1

3-18
3-24
3-29
3-32
3-46
3-48
3~52
3-54
3-55
3-64
3=70
3=74
3-80

3-81

3-82

CONCORD AVENUE -CAMBmDGE,MASSACHUSE?%SOQN%-

{617) 661-1840

*1

Table of Contents (Continued)

2 Object Code Naming Conventions

3 Printed Data From Phase IT

4 Symbol Table Augmentation

5 BStatement Table Augmentation

4.0 PHASE II1 -~ SIMULATION DATA FILE GENERATION
4.1 SDF Generation

4.1.1 Overall SDF Desigh

4,2 Phase III Printed Data

5.0 - RUN TIME LIBRARY
5.1 Introduction
5.2 Basic¢s and Conventions
5.2.1 Origin and Format
5.2.2 Purpose
5.2.3 Intrinsics and Procedure Routines
5.2.4 Register Conventions in Run Time
Library Routines
5.2.5. Referencing Conventions
5.2.6 Coding St¥ucture
5.2.7 The Macro Library
5.3 Library Routine Descriptions
5.3.1 Arithmetic Routine Descriptions
5.3.2 Algebraic Routine Description
" 5.3.3 Vector/Matrix Routine Descrip-
tions
5.3.4 Character Routine Descriptions
5.3.5 Array Function Routine Descrip~
tions
5.3.6 Miscellaneous Routine Descrip-
tions

5.3.7 REMOTE Routine Descriptions
6.0 SYSTEM INTERFACES
6:1 Internal System Interfaces
6.1.1 Macro Instructions
Dynamic Invoc¢ation of the Ccm-~

6:1,2
piler ,
6.1.3 08/360 Access Methods

i

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

3-83

o e = - U . e . S . e e ———— e e e

‘\“ |

R bt e

i e B

Table of Contents (Continued)

<
Page
6.2 User or External System Interfaces 6-3
6.2.1 User-defined Options 6-3
6.2.2 Job Control Language Specifica-~
tion 6-3
Appendices:
Appendix A: Compile-Time JCL Options A=-1
Appendix B: Compiler Directives B-1
Appendix C: Error Classifications c-1
Y
. P
A
g

iii

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

B B2
v

-1

REPRODUCIBILITY OF THE
ORIGINAT, PAGE I8 #0730

1.0 INTRODUCTION

1.1 Scope of Document

This document specifies the informational interfaces
within the HAL/S-FC compiler, and between the compiler and
the external environment. An overall description of the
compiler, and the hardware and software compatibility
requirements between compiler and environment are_ detailed
in the HAL/S-FC Ccmpiler Functional Specificationt. Familiar-
ization with the Functional Specification is presumed through-
out this document.

This Compiler System Specification is for the HAL/S-FC
compiler and its associated run time facilities which implement
the full HAL/S languagez. The HAL/S-FC compiler is designed
to operate "stand-alone" on any compatible IBM 360/370 computer
and within the Software Development Laboratory (SDL) at NASA/JSC,
Houston, Texas.

1.2 oOutline of the Document

The HAL/S-FC compiler system consists of:

1) a four phase language processor (compiler) which
produces object modules compatible with AP-10l1 Space
Shuttle Support Software and a set of simulation tables
to aid in run time verification. f

2) a comprehensive run-time library which provides
an extensive set of mathematical, conversion, and
language support routines.

The organization of this document is based upon
the organization of the compiler system. Each part of the
system is considered as a separate entity with its own
specific function and interfaces to other parts. Hence,

. there are four sections which cover the parts of the system

as follows:

HAL/S-FC Compiler System Functional Specification, 24 July

‘HAL/S Languége Specification, 14 November 1975, IR #61-7.
a1 Lo

! ’ i o \:, o
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETT3 02138 » (617) 661-1840

Section 2 - describes Phase I and the syntax analysis

phase of

the compiler.

Section 3 - desoribes Phase II and the code generation
phase and specifies in detail the code patterns
for specific HAL/S constructs.

Section

4 ~ describes Phase III and the operation of the

Simulation Data File generator.

Section 5 - describes the Runtime Library and the
concepts used in the library and also gives
specific information about each library routine
including size, speed, and algorithm.

In addition to this part-by-part documentation, the compilexr
system, taken as a whole, exhibits properties and interfaces
which are not specific to any one of the pieces. General

information about

such topics as the compiler's opexating

environment and user-written interfaces to emitted object
code are contained in Section 6. Several Appendices are
included which deal with tabular data used in the compiler

system.

1.3 Status of Document

This document, plus the HAL/S-FC Compiler System Functional
Specification comprise the complete HAL/S-FC Compiler System
Specificaiton. This publication is a specification for Release
10.0 of the HAL/S-FC compiler system. :

The HAL/S-FC
features from the

compiler inherits some of its operational
HAL/S-360 compiler system for which a

similax Specification exists. In addition, many features
of the HAL/S-FC system are under control of Interface

Control Documents

which are subject to update. When

appropriate within this document, references are made to
these companion documents.as sourdes of supplementary
material and in some cases as primary sources of detailed

information.

INTERMETRICS INCORPORATED - 701

; 1-2 ,
CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Cw

The following list of documents represents the set
of additional documents which reflect design and control
of the HAL/S-FC compiler system:

® HAL/S-FC Compiler System Functional Specification,
IR #59~4, 24 July 1974, by Intermetrics, Inc.

e Interface Control Document: HAL/FCOS, Revision 3;
published by IBM Federal Systems Division,
Houston, Texas. :

e Interface Control Document: HAL/SDL, Revision 6,
Published by IBM Federal Systems Division,
Houston, Texas,

. HAL/S-360 Compiler System Specification, IR #60-4,
by Intermetrics, Inc.

L e HAL/S Language Specification, IR #61-7, Published
£ by Intermetrics, Inc.

:%:’yt S : 1-3

INTERMETRICS INCORPORATED « 701 GONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661 ~1840 .

i
RSN

 INTERMETRICS INCORPORATED - 701 CONGORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

-

2.0 PHASE I - SYNTAX ANALYSIS

The Syntax Analysis Phase performs syntactic and
semantic analysis of the user's HAL/S source programs.
It performs all functions necessary to allow an independent
Phase II program to generate code for the target computer.
The basic design of the HAL/S system includes use of a
single Phase I for a variety of target machine Phase II's.
Thus, the Phase I used by the HAL/S-FC compiler is the same
one used in the HAL/S-360 compiler. 1In this section on
Phase I, data which is supplied in detail in the HAL/S-360
Compiler System Specification is not repeated. Instead,
reference is made to the proper ‘section of that document.

This section deals with the following Phase I functions:

® primary Source Input

® sgecondary Source Input

e ACCESS System Implementation

® Compiler Directives

® Template Checking and Generation

- ® Printed Data

® gsymbol Table Creation

® gStatement Table Generation

® TLiteral Table Generation

¢ HALMAT Creation

® The Optimizer

2-1

(617) 661-1840

o A T R I T I R TR SR

AR TR

e

:
ES

R R

ﬂ
.

2.1 Primary Source Input

Phase I accepts primary source input in the form of
fixed length logical records. This input must be defined
by the SYSIN DD statement in the JCL invoking the compiler.
The first byte of each record is used to define the type of
the record as follows: : .

M - main line

E - exponent line

S - subscript line

D - compiler directive

C - comment

For stand-alone operation the source recoxrds are 80 bytes

" in length and may contain data in columns 2-80. Optionally,

the user may designate, via the "SRN" compiler option, that
the source scanning is to stop at position 72 and also that
positions 73-78 are to be printed on the listing as "Statement
Reference Numbers".

When operating in the SDL environment, indicated by
use of the "SDL" compiler option, the scurce records must
still be all the same length but that length may be from
80 to 132 characters. When in the SDL mode, the compiler
accepts source data from record positions 2 through 72.
In addition, when the records are of sufficient length,
the following fields are recognized and printed on the
primary source listing:

® Record Sequence Number -~ positions 73 through 78;
e Record Revision Indicator - positions 79 and 80;

e Change Authorization Field - positions 81 - 88.

REPRODUCIBILITY 7 7hd

2-2

*_INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CA:MBRIDGE."MASSAO'HUSETTS 02138 - (617) 661-1840

| S S S

o

3

Portions of records beyond position 88 are ignored.

The compiler's primary input may optionally be in
a compressed source format as defined in the HAL/SDL ICD.
No special notification of use of compressed source is
needed. Phase I determines the type of input by examining
the first record. Catonated datasets defined ag primary
compiler input must all be either in compressed or non-
compressed format for one invocation of the compiler,

2.2 sSecondary Source Input - The INCLUDE System

The user may direct the compiler to an alternate input
source by use of an INCLUDE compiler directive in the primary
input. The exact form of the INCLUDE directive may be

found in Appendix B, ‘

The INCLUDE directive defines a member name in a
partitioned dataset. Phase I uses a FIND macro to locate ;
the member on the INCLUDE DD card. If the FIND is unsuccese«
sful, an identical FIND is issued for the OUTPUT6 DD card.

A member, when located, is read to its end by the compiler.
The records are processed identically to primary (SYSIN) input
with the exception that further INCLUDE directives within
INCLUDE'd source are not allowed. The same source margins

are applied to the INCLUDE'd source as are applied to the
primary input. In addition, the compiler prints a line in

the primary source listing indicating the catenation sequence
number of the DD card on which the member was found and the
RVL field from the PDS directory entry for the member. The
RVL field is the first 2 bytes of user data after any TTRN's.

The individual members which are INCLUDE'd may be in
either compressed or uncompressed format, independent of whether
the primary input was compressed. The form of each INCLUDE'd
member is determined by the compiler from the first record
read. ‘

Partitioned datasets may be catonated together in the JCL

to form the INCLUDE DD sequence, but such datasets must have
identical DCB att¥ibutes,

2-3

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617} 661-1840

REPRODUCIBILITY ™+
ORIGINAL PAGT 11 v

2.3 ACCESS Rights Implementation

The HAL/S language allows managerial restrictions to
be placed upon the usage of user-defined variables and external
routines. The existence of such a restriction is indicated by
the use of the ACCESS attribute as described in the HAL/S
Language Specification. The manner in which the restrictions
are enforced in the HAL/S~FC compiler system is described
below. >

Any variable in a COMPOOL template or any external
routine to which the ACCESS attribute has been applied is
considered to be restricted for the compilation unit which
is being compiled. The restriction is slightly different
for variables than for blocks:

a) Variables with the ACCESS atﬁribute may not have
their values changed.

b) Block names may not be used at all.

These restrictions may be selectively overridden for individual
variable and block names. The selection of which ACCESS controlled
names are to be made available to the unit being compiled is performed
by processing an external dataset. The external dataset is known

as the Program Access File (PAF). The PAF must have partitioned

organization and 1S specified by the following JCL:
//HAL .ACCESS DD DSN=<PAF name>, <other parameters>

where the <PAF name> is the dataset name of the PAF without any
member specification.

Each member of the PAF contains the information about
ACCESS controlled names which are to be made available to one unit of
compilation. The member name is defined by a Program Identifica-
tion Name (PIN). The PIN is specified to the HAL/S-FC compiler
by using the PROGRAM compiler directive in the primary input
stream:
col 1l

D PROGRAM ID = <id>

‘The <id> field of the directive is a 1 to 8 character
identifying name which is used to select the member of the

PAF to be processed for the current compilation’'s ACCESS
information. The appearance of the PROGRAM directive in the
compiler's input stream causes immediate processing of the PAF
member specified. o ' :

|NTERMETRICS INGORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

et R e

Lt I T R L s i M oK T

The format

a)

b)

c)

d)

‘)

£)

g)

of an individual PAF member is described below.

Column 1 of each record is ignored except when
column 1 contains the character "C",K in which
case the entire record is ignored.

The portion of each record which is processed is
the same portion which is processed in the primary
compiler input (SYSIN).

COMPOOL elements which are to be made available
to the compilation are specified as:

<COMPOOL-name> (<var-name>, <var-name>, ... <var-name>)
or

<COMPOOL-name> ($ALL)

The first format specifies access to individual
variables within the named COMPOOL. The second
format specifies access to all variables within

the named COMPOOL.

Access to external block names is specified as:

$BLOCK (<ext-name>, <ext-name>, ... <ext-name:)

Blanks are allowed anywhere in the record except
that names may not be broken by a blank.

Either of the constructions (c) or (d), above, may
span more than one record.

The name of the particular COMPOOL in the form
(c) above may appear more than once; i.e.
the variables in-a particular COMPOOL do not
have to be specified at one time . Similarly,
the form $BLOCK may appear more than once.

Some validity checking is performed by the compiler
while processing the PAF member. Warnings are issued for
the following conditions:

1)

2)
3)

B

-

A syntax error on a PAF record - the bad record
is printed. :

Names mentioned in the PAF are not defined.

Elements of $BLOCK in the PAF are not defined.

" 9-5

~ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - ‘CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4) Requests for names which are not ACCESS
protected.

5) Variables found, but not within the COMPOOL
specified.

6) MNames used in the context of a COMPOOL~name
which are not COMPOOLSs.

If, at the time the PROGRAM directive is encountered, there
have been no ACCESS—controlled variables declared, the PAF
is not opened. If a user does not require access to any,
the PROGRAM directive and associated PAF members may be
omitted.

2.4 Compiler Directive Parsing

When an input record is found which contains a “D"
in column one, Phase I scans the remainder of the card for
a valid compiler directive. A list of legal compiler
directives and their function is listed in Appendix B.

Directive processing is done independently of.HAL/S
source language parsing, i.e. words used on Directive cards

are not necessary HAL/S language keywords. Similarly,
HAL/S language keywords are not recognized as such on -
Directive cards. ‘ ;

2.5 Template Checking and Generation

Phase I assumes the task of source template verification
and generation. Every compilation unit in the HAL/S-FC
system has a source template. When the block header for a unit
of compiler is encountered, Phase I begins to construct the
source template for that unit as follows. '

The member name for the template being created is determined.
This is done by taking the "characteristic name" for the unit
and preceeding it by the characters '@@'. The characteristic
name for any unit is created by taking the block name, removing
any underscore characters, and then paddimgortruncating the
result to 6 characters. An attempt is made to locate a menber
of this name on either the INCLUDE or OUTPUT6 DD cards. If
such a member is found, the contents of the member are compared
with an internal, temporary template created as the compila- '

. .

tion proceeds. If the existing template and the internal one

2-6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

1

g

agree, a template update is not required, and the existing
template remains intact. If the templates do not agree, the
internal template is written to the OUTPUT6 DD card and STOW'ed
with the current member name. If the initial search for an
existing template fails, the generated template is automatically
written and STOW'ed on the OUTPUT6é DD card. The PDS directory
entry for a template member is created with two bytes af

user data. The two bytes are initialized to X'FOFO',

Phase I also sets appropriate bits in a field which is
passed back to the caller of the compiler ag the high order:
byte of reglster 15, - The deflnltlons of these bit settlngs
is defined 1n the HAL/SDL ICD.

Generation of the 1nternal template is performed during
syntax analysis on a token by token basis. As statements
are encountered which are required in the template, the tokens
from the statements are added to an internal buffer. When
a new token will no longer fit in the buffer, the buffer is
written and clearned for continuation. Thus, the templates
take the form of strings of HAL/S tokens separated by one block.
The template statements are continued from one line to the next
without regard for statement boundaries, thus producing the
template in the most compact form possible.

For: the comparlson of existing templates with new,

_generated templates, the generated records are compared

character for character with the existing records. Any mis-
match is considered to indicate a change in the template.

Templates are never generated using the compressed source
format mentioned in Section 2:1l. The generated templates conform
to the source margins in effect for the compilation (e.g. for
ar. SDL mode compilation, templates are created with source in
position 2 through 72 of the records. When template records
are written to the OUTPUT6é DD card, the records are padded
with blanks or truncated as necessary to conform to the LRECL
specification fox that DD card,

When a template has been found to have changed, the
compiler updates a "Version number" associated with the template.
For an existing template, the version number is found on a
VERSION compiler directive card at the end of the existing
template member. - If a new template is needed, the version
number is incremented by one and placed on a new VERSION

‘dlrectlve card at the end of the generated template., The

version number is limited to the range 1 to 255. Upon‘reaching
255, the next increméntation causes the number to begin agaln
at 1. When no ex1sL1ng template can be located, the versxon

is set to 1.

2-1

INTERMETRICS lNCORPORATED 701 CONCORD AVENU‘: . CAMBR!DGE MASSACHUSE rTs 02138 -(617) 661-1840 :

When templates produced by the compiler are referenced
in subsequent compilations by use of an INCLUDE for the
template, the version numbers from the referenced templates
are emitted into the produced object code on special SYM
records which indicate the versions of all external references.
In addition, the emitted object code fox any compilation unit
contains a SYM record indicating the version number of the
template created for that compilation unit. This information
permits the checking, if desired, of proper integration of
separately compiled units by providing information necessary
for .cross-checking of inter-module references.

2.6 Listing Generation

2.6.1 Primary Formatted Listing

The central printed output of the compiler is the

primary source listing. This listing is designed to document

the actions taken by the compiler during its generation of

an executable form of the user's program, The listing ‘ o
~ reproduces the user's source program in an indented, annotated Wgh

format. Additional information, such as block summaries

and symbol table listings, are also part of the primary

source listing. V

The formatting of the primary source listing leads
to the documentation of the users program in two ways: 1) variable
annotation, and 2) logical iridenting. .

1) Variable annotation - Each user—defined data
symbol, when printed on the primaxy source :
listing, receives "marks" appropriate to the type
and organization of the symbol, This annotation
is that which is defined by the HAL/S Language

- Specification.

2) Logical indenting - Each statement printed on the
primary source listing is formatted and indented
+o show internal statement structure, and to show
the statements' hierarchical and nesting relation-
ships to other statements in the compilation.

L

2-8

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

v,

When operating in the SDL, additional informatioh is
provided on the primary socurce listing. The Record Segquence
Numbex, Reccrd Revision Indicator, and Change Authorization
fields (see Section 2.1) are printed on the primary source
listing next to the statements to which they apply. Additional
details of the specific operations performed during SDL opera-
tion may be found in the HAL/SDL Interface Control Document.

2.6.2 Error Messaygcs

; When compilation errors are detected by Phase I, an
error message is printed in the primary listing at the point
of detection. All error messages have an identifying code
associating with them.

The code is assigned to messages according to a general
system which groups errors according to a class and a sub-
class. Multiple errors within a class/subclass combination
are assigned unique numbers within the group. Thus, every
possible error in the HAL/S-FC compiler system has a unique
identifying code. Appendix C lists the error classification
scheme. ‘ :

The text of all error messages is maintained.lon a direct
access dataset. The compiler retrieves error message text as

‘needed from this -dataset. During compilation, the ERROR DD

card defines the error message dataset. This file has partitioned
organization and contains one member for each error message.

The merber names are identical to the identifying code assigned

to the errors. '

The record format of the error library is FB and the

‘logical record length is 80 bytes. The first record of each

member defines the severity of that error. The severity is
a single EBCDIC number in position one of the first record.
The severities and their effects are:

0 = warning (compilation proéeeds)‘
1 = error (further compilation attempted)
2 = severe error (Phase I syntax check proceéds; code

generation prevented)

3 = abortive error (dompilation‘halts immediately)

2-9

INTERMETRICS INCORPORATED. + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Within the text of an error message, locations into
which specific descriptive information may be placed are
denoted by the appearance of ftwo question marks (??). For
errors which have this feature, the compiler supplies additional
description text (such as the name of an identifier) to make
the printed error message as specific and informative as
possible.

2.6.3 Block Summaries
The HAL/S-FC compiler provides additional information

on the primary listing at the close of HAL/S code blocks.
The blocks for which summaries are given are PROGRAM, TASK,

-FUNCTION and UPDATE.

Information contained in block summaries consists of
lists of labels or variable names used in various contexts
within the block., The title "BLOCK SUMMARY" beginsg the
list, For all potentially summarized contexts within
the block, a descriptive heading is printed followed by the
list of names involved. A "*" next to any name in the .
block summary. indicates that the name appears in a context . T
which changes its value. The headings are listed below. , b

PROGRAMS AND TASKS SCHEDULED

PROGRAMS AND TASKS TERMINATED

PROGRAMS AND TASKS CANCELLED

EVENTS SIGNALLED, SET, OR RESET

EVENT VARIABLES USED

PROGRAM OR TASK EVENTS USED

PRIORITIES UPDATED - ,

EXTERNAL PROCEDURES CALLED

EXTERNAL FUNCTIONS INVOKED

OUTER PROCEDURES CALLED

OUTER FUNCTIONS INVOKED

ERRORS SENT

 COMPOOL VARIABLES USED
COMPOOL STRUCTURE TEMPLATES USED
COMPOOL . REPLACE DEFINITIONS USED
“ OUTER VARIABLES USED ,
OUTER REPLACE DEFINITIONS USED A ' o @
OUTER STRUCTURE TEMPLATES USED
' 2-10

INTERMETRICS INCORPOHATED 701 OONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 - (6.1,7)‘ 661-1840

(A

2.6.,4 Compilation Layout Summary

Immediately preceeding the Symbol Table printout
at the CLOSE of the HAL/S program, there is a compilation
layout map, indicating the way in which PROGRAMS, TASKS,
PROCEDURES, FUNCTIONS, and UPDATE blocks were defined,
The indent level in this printout indicates the nesting
level definition of the block shown. This serves to give
a quick loverview of the compilation structure.

2.6.5 ¢ Symbol & Cross Reference Table Listing

The symbol and cross reference table printed at the
end of a HAL/S compilation listing provides a detailed
accounting of all programmer-defined symbols. The table
listing is organized into two parts: a structure template
listing and an alphabetized total listing.

S Any structure templates defined in the compilation
R appear first in the symbol and cross reference table. The
? template names appear in alphabetical order. The body of

each template (i.e. the levels defined under the template

name) is listed under the template name in the order of
definition. This ordering provides a quick reference to
the organization of the structure template.

Following any listing of the templates, an alphabetized
listing of all programmer-—defined symbols is printed. Symbols
previosuly listed as element of a structure template are included
in this list. However, the list is completely alphabetized and
template organization is not shown. When a particular symbol
is independently defined in more than one name scope, the
symbol is multiply listed in order of definition.

2.6.6 Built-in Function Cross Reference
, Phase I also produces a listing of any HAL/S'builtvin
functions used in a compilation. The printout shows the state-

ment numbers at which the references to the built-in functions
occurred. ,

2-11

" INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

CIBILITY OF THE

IR 1A]

-pRODUC $ I8
%%gGINAL ?AGE 103 Xk

2.6.7 Replace Macro Text

If any HAL/S REPLACE statements were used in the
compilation, the textof the macro is printed in the
symbol table listing in the attributes and cross reference

area.

2.6.8 Unformatted SourceyListing

Under control of the "LISTING2" compiler option,
Phase I will optionally produce, on the file defined by
the LISTING2 DD card, a listing of the input (both SYSIN
and INCLUDE) source records as read by the compiler. No
special annotation, formatting, or indenting is performed.
Tn the case of input in the SDL compressed format, the
LISTING2 option produces the records in their uncompressed
format. ' -

2.7 Symbol Table Generation

phase I is responsible for initial creation of the

compiler's internal symbol table. The symbol table consists
of a group of arrays which describe all of the properties

of declared variables and labels. The capacity of the symbol
table is under user control by means of the SYTSIZE compilexr
option. This table, as created by Phase I, is located in an
area common to all compiler phases. Thus, Phase II inherits
the initialized table from Phase I.

Design of the HAL/S-FC compiler includes, as a basic
concept, the use of a Phase I and Phase I/Phase IT interface
identical to that of the HAL/S-360 compiler. Thus, the
description of the internal symbol table to be found in the
HAL/S-~360 Compiler System Specification, Appendix B.2 is
sufficient to define the HAL/S-FC table.

2-12

[TERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2.8 statement Table Generation

The statement table passes information about executable
statements from Phase I of the compiler to Phase III. This
information allows Phase III to include statement type and
target variable information in the Simulation Data Files.

Due to the use of a common Phase I in the HAL/S-360
and HAL/S-FC compiler systems, the Statement Table descrip=-
tion in the HAL/S-360 Specification document is sufficient
to describe the HAL/S-FC table. (See Appendix B.3 of
that document).

The basic table description includes reference to an
"extension" field in which statement memory addresses and/or
SRN data is stored. Use of this field is activated by use of
certain compiler options: ‘ :

SRN data is included in the Statement Table if either
of the SRN or SDL compiler options are used.

Beginning and ending addresses for individual HAL/S
statements are included in the Statement Table when the ADDRS
compiler option is used,

The Statement Table is produced on the file specified

by the FILE6 DD card. No Statement Table data is communicated
via in-memory tables.

2.9 Literal Table Generation

The format of the HAL/S~FC literal table is identical
to that used by the HAL/S-360 compiler as described in

Appendix B.l of the HAL/S-360 Compiler System Specification.,

The size of the area in which character literal data is
stored is under user control via the LITSTRINGS compiler
option. . This character literal area is communicated to
subsequent phases of the compiler through common memory
locations. S ’

The portion of the literal table Which contains
arithmetic literals, bit literals, and pointers to :
character literals is passed to later phases via the data-

~set defined by the FILE2 DD card.

2-13

2.10 ﬂALMAT Creation

HALMAT is the intermediate code medium by which
the structure of the compiled HAL/S program is passed to
Phase II for code generation. The HAL/S-FC compiler uses
the same Phase I as the HAL/S-360 compiler. Therefore,
the HALMAT produced by Phase 1 for either system is the same.
A description of HALMAT as used by these compilers can be
fozgd in Appendix A of the HAL/S-360 Compiler System Specifi-
cation.

HALMAT is passed to Phase II through use of auxiliary
storage as defined by the FILEl DD carxd.

2.11 The Optimizer

The HALMAT produced by Phase I is a direct representa-
tion of the HAL/S program being compiled. A separate phase
of the compiler exists between Phases I and II which examines
and manipulates the HALMAT in order to produce an optimized
HALMAT representation. This phase, known as Phase 1.5, is - 3[}
conceptually a part of Phase I. Its operation is transparent Wi
to the user as it produces no standard printouts.

The Optimizer performs the following functions:

- Common subexpression elimination

- Additional literal folding

- Replacément of unneeded divisions by multiplications
—,Sﬁpression of unnecessary matrik ﬁranépose operations

- Indication of procedures which cannot be leaf
procedures (as an‘aid'to Phase II).

These operations are carried out by modifying the
HALMAT, literal table, and symbol table.

While the Optimizer is a separate phasé, it is

conceptually a part of Phase I and is described in the HAL/S =360
Compiler System SpeCification. ~ ; : ' ,

2-14

. INTERMETRICS INCORPORATED - 701 CONGORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.0 PHASE II - CODE GENERATION

The code generation phase of the HAL/S~-FC compiler
has the primary function of producing machine language
instructions for the AP-101. Phase II also performs other
tasks which are also the subject of this chapter.

This section deals with the following Phase II functions:

Code Generation

Naming Conventions

Printed Data

Symbol Table Augmentation
Statement Table Augmentation

3.1 Code Generation

3,1.1 Bases and Conventions

Phase II produces AP-10l1 machine language instructions
which perform the operations indicated by each. line of HALMAT
received from the syntax and semantic analysis phase. This
section describes in detail the ground rules which the code
generation phase follows in producing object code. The
following terms will be used throughout the ensuing text:

R - A general accumulator (integer or scalar);
X - = An indexing register (for subscripting);
B - A base register containing a base address

used to compute the effective address of a
variable, constant, temporary, or program
label.

OFFSET

The constant term which, when subtracted from
~the actual data address of a variable, yields
the address of the 0'th item of the aggregate
data collection (note that all HAL subscripts
start counting from 1). This is 0 when the

~variable is a single item,

VAR -"The address of a declared non-parameter HAL
variable. For addressing purposes, it is
actually the base address of the actual data
minus the OFFSET. . Single valued integer,
‘scalar, or bit input parameters also will use
this form. ' ‘ '

PAR - The address of a formal parameter paSSed,“by

reference". ~ This includes any assigned parameters,

plus any input parameters which are not simple
integer or scalar variables. Note that PAR
‘actually contains an address.,

3-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACGHUSETTS 02138 + (617) 661-1840

e T S 5 o s e 1k

REPRODUCIBILITY or THE
ORIGINAL PAGH I8 poom

DELTA - The constant indexing term in a subscript
, calculation. This term may also reflect
the displacement of a structure terminal

within a structure template.

OP - Any AP-101 machine instruction.

Note - When VAR or PAR appears in machine instruction
constructions, it represents the displacement difference
between the data address and the base address contained in
the base register B.

3.1.1.1 Register Usage. The following register assignments
are used by the code generator: ,

FO0-F5 Used for floating point accumulators and
parameters.

£ >
Wi, F

F6-F7 Used for floating point accumulators
only.

0 Stack register. This register points to
the caller's register save area in the run
time stack. ‘In addition, all formal
parameters;, temporaries, and AUTOMATIC
variables in REENTRANT procedures are based
on this register. ‘

1 Global data addressing register. This
register is used to address all of the
declared variables and literals within a
compilation unit.

2 Work addressing register. This register is
used to pass address parameters, dereference
NAME variables, and set up any other dynamic
addressing.

3 - Local addressing register,' This register is
used in SRS instructions only to address a
certain subset of the local data in a block.

4 ‘Linkage register. This register records the
. return address for all subroutine linkages.
It may also be used for an integer accumulator. i
| &
| 3-2
- INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138+ (617) 661-1840

5-=7 Used for integer accumulators, index
registers, and parameter passage where
applicable.

3.1.1.2 Storage Allocation. The HAL/S-FC compiler arranges
data in memory such that the least number of base registers
need be dedicated in addressing.

Data is grouped into two major categeries: single value (constant
offset=0) and aggregate (array, vector-matrix, structure with
copies). Within in each group, data is ordered such that data
requiring the same boundary alignment is adjacent, minimizing
the storage lost due to hardware alignment requirements. Within
the. aggregate group, ordering is further carried on such that
multi-dimensional arrays (with larger offsets) come after single
dimensional arrays. These above orderings are carried on
independently for: 1) program data, and 2) each COMPOOL block.
contained in the compilation unit. Note that program data
includes all variables within the compilation unit including
those defined in procedures, functions, or any other block.

Structure templates are internally ordered such that the
minimum boundary alignment within any node level is required.
Template matching requirements guarantee that templates
exhibiting identical properties will be identically reordered.

After all groupings are complete, storage assignments are made,
with the required base-displacement combinations being generated
to properly access the data. Note that the storage addresses
assigned refer to the actual data beginning, but the base~

displacement address includes the negative OFFSET value.

Note that all formal parameters and.all AUTOMATIC;VariabIes
in a REENTRANT PROCEDURE or FUNCTION are based off the stack
register (0).

For arrays, the offset is computed as follows for the number
of array dimensions:‘(Ni is the ith array dimension).

Dim Of fset
0 | 0
1 -1
2 (-1 Nz)—l
3

(((-1 N2)—1)N3)—l

3-3 |
 INTERMETRICS INCORPORATED - 701 CONGORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

Co The array OFFSET is then multiplied by the total width of

the data type specified. For integers, scalars, bits, and
characters, this is the width in halfwords to contain one
item of data. For vector and matrix types, this is the width
in halfwords for one item times the total number of items in
the vector or matrix.

For structures, the OFFSET is 0 if the structure has no copies.
If the structure has copies, the offset is -W, where W is the
aligned width of one copy of the structure template.

! Example:
DECLARE- A SCALAR,
B INTEGER,
C CHARACTER(7),
D ARRAY (5) DOUBLE;
DECLARE E ARRAY(5),
F ARRAY(3,3) VECTOR,
G MATRIX;
DECLARE H DOUBLE, : '
I ARRAY(5,5) INTEGER; , e
; ‘ : (In Decimal)
| Alignment NAME Location Base Displacement Offset
S : Halfword B 00000 1 0000 0
P Halfword C 00001 1 0001 0
by Fullword A 00006 1 0006 0
b Doubleword H 00008 1 0008 ' 0
po Halfword I 0000C 1 0006 -6
o Fullword E 00026 1 0024 -2
v Fullword G 00030 1 002E -2
D ' Fullword F 00042 1 0028 =26
L] Doubleword D 00078 1 0074 -4

34

" INTERMETRIGS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

o APERIN L U e

3.1.1.3 Aaddressing Concepts. This section describes the
general addressing rules for data. To the extent possible,
data can be directly addressed via some combination of base
register and bit displacement (eleven bits for indexed
addressing). This is not possible whenever the data item is
a formal parameter other than a simple integer oxr scalar,

or any formal parameter scoped in from an outer to an inner
procedure. The skeletal forms given in Section 3.2.2 assume
the most commonly used addressing forms. The rules described
here should be superimposed upon these skeletal forms to
interpret all possible combinations of operations between
operands.,

Simple Addressing Forms

Simple Variable
0} R, VAR(B)
Simple Aggregate Component
(array or vector-matrix)
10)5 R, VARADELTA(X,B)
Simple Integer—-Scalar formal parameter'
oP R, VAR(0)
Simple Aggregate formal parameter

L B, PAR(0)
OP R, DELTA(X,B)

' NAME Variable in de-referesnce context

1H B, VAR(B)
oP R, DELTA(X,B)

NAME Variable in de-reference context
(ASSIGN formal parameter)

L B, VAR(B)
LH B, 0(B)
OoP R, DELTA(X,B)

REMOTE Variable

OP@# R, 2CON(X,1)
' ZCON DC 2(0, VAR, 0)

3-5

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

:INTEERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138

Scoped Formal Parameter Addressing Forms

For scoped formal parameters, generation of an effective
address requires a loop to trace references back through
multiple save areas in the run time stack. In both of the
scoped formal parameter sequences below, the offset of 0

in the load instruction at the head of the loop represents
the fixed location of the next higher level's register copy.
The loop terminates when the nest level of the parameter in
question is equal to the nest level of the current save area
being referenced. :

Scoped Integer-Scalar formal parameter:

LHI 4, <scope number of parameter>
LR 2, 0
LOOP L ‘ 2, 2(2)

cHe@ 4, 9(2)
BNE LOOP
op R, VAR(2)

Scoped Aggregate or NAME formal parameter:

LHI 4, <scope number of parameter>
IR 2, 0 '
LOOP L 2, 2(2)
CH@ 4, 9(2)
BNE LOOP
TH 2, PAR(2)
oP R, DELTA(X,2)

Scoped NAME ASSIGN formal parameter:

LHI 4, <scope number of parameter>
LR 2, 0
LOOP L 2, 2(2)

CH@ 4, 9(2)
BNE LOOP

LH 2, PAR(2)
LH 2, 0(2)
OP R, DELTA(X,B)

3-6

+ (617) 661-1840

E L

b4

i
i
)
i
i

Address passage addressing forms

For parameter passing to PROCEDURES, FUNCTIONS, and library
routines, it is often necessary to pass address pointers
instead of data. The following sequences could be used
anywhere the instruction LA appears in the generated code
sequence (including NAME assignments).
Unsubscripted variable:

LA R, VAR(RB)
Subscripted variable:'

SLL X, <index alignment>
LA R, VAR(X,B)

Unsubscripted REMOTE variable:
L R, ZCON(1)*

Subscripted REMOTE variable:

SLL X, <index alignment> or SLL R, <index alignment>
L R, ZCON(1)* A R, ZCON(1)*
AR R, X '

Unsubscripted variable to REMOTE library:

LA R, VAR(B)
IAL "R, X'0400'

Subscripted variable to REMOTE library:

SLL X, <index alignment>
LA R, VAR(X,B) ‘
IAL R; X'0400""

* PCON DC 2Z(0, VAR, 0).

3=7
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Indexing:

The computation for all indexing is done as follows. All
constant index terms are factored out from the variable terms.
The variable terms are computed according to the natural
sequence of unwinding aggregate data. The constant terms

are similarly computed to form a DELTA. The variable subscript
in register X is shifted according to the halfword width of the
data being indexed, except for those instructions which perform
automatic index alignment. The DELTA is similarly shifted at
compile time. If 0 < DELTA < 2048, it is used in the variable
displacement. Otherwise, it is added to X if X is non-zero,

or loaded into a newly created X if X is zero (i.e. the sub-
script contains no variable terms). ' '

3.1.1.4 Condition Codes. The following table lists the
allowable relational operations and the resultant condition
code - referred to as COND throughout the remainder of this
section. Note that the AP-101 conditional branch instructions
branch on the "not true" condition.

<OE> COoND
= 3
- 4
< 5
> 6
- < or > = 2
- P> 0or < = 1
3-8

' INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + GAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

o

SR A R S TN N

Clmn

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

3.1.1.5 ZCONS and the Calling Mechanisms. Throughout the
descriptions of generated code of Section 3.1.2, branches
to other CSECTs (comsub or library) are generally indicated
as:

ACALL <routine name>

The actual implementation of this linkage is to go
not directly to the named routine, but instead to branch
indirectly through a long address constant (ZCON) located
in sector 0 of the machine. -

When the target of the branch is a compiler-generated
CSECT (a COMSUB), the ZCON referenced will be one created
during compilation of the COMSUB. The long indirect address
will be in a CSECT named #Znnnnnn (see Section 3.2) which will
in turn refer to the real code CSECT. P

When the target of the branch is a library routine, ‘the
ZCON referenced will be one provided with the library. Its
name will be #Qnnnnnn and it will in turn refer to the proper
library code CSECT. Certain library routines, for reasons of
execution speed, are referenced directly by compiler-emitted ‘
code without going through a ZCON. These routines are designated
in. the BANKO column of the library documentation. This direct
addressing requires that these routines reside either in sector
zero or in the same sector as the compiler code which references
them. S

The use of ACALL in the descriptions implies an external
call. In actuality, the instruction generated may be either:

SCAL - 0, <routine name>
or -
BAL = 4, <routine name>

depending on whether the library routine has been designated
as PROCEDURE or INTRINSIC type.

Some of the parameter setups show the use of P1, P2,
‘and P3 for parameter registers. The following table shows
the actual register values for Pl, P2, and P3 depending upon
the nature of the library routine (see library documentation
for specific details). ‘ :

- Pl P2 P3
Intrinsics - 1 2 3
Procedure - :

Pl used - 2 14 7
P1 not used X i2 ;4
3~9

INTERMETRICS INCORPORATED # 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

3.1.1.6 The Runtime Stack. The HAL/S-FC compiler system

~employs a runtime stack mechanism as an integral part of

its operation. The stack méchanism is used to provide

subroutine linkage areas, temporary work areas, error environ-

ments, and to provide reentrancy of code blocks when needed.
The actual memory used as a stack space for a given HAL/S
process is provided by the flight computer operating system
{FCOS). The determination of the size required for a

particular stack is made by the flight computer support software

linkage editor. The linkage editor determines stack size
(and upon special request will create a stack CSECT) from
information provided on SYM cards in the modules being
link edited. The HAL/S-FC compiler emits the SYM cards as
part of its object modules. The runtime library uses a
system of macros to generate the properly named DSECT's
and SYM entries for stack size computation.

The details of formats and requirements relating to
stack generation can be found in the HAL/SDIL Interface)
Control Document. That document also contains the detailed
description of the "stack frame", that portion of a total
stack which is used by an individual subroutine when that
subroutine has been invoked. The description of the basic
stack frame is reproduced here for reference.

The active stack frame is pointed to by the pointer
in register RO. The back link to the previous stack frame

is established when a new level is entered. A pointer, NEW.R3,

is established for any block with a local data area. If a
local data area is not present, e.g. in the case of a HAL/S~

FC library routine, NEW R3 is set to zero. See Section 3.1.1.7

for a definition of the local data area.

3-10

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

jg;

STACK LAYOUT

lower address

W—w
M"pushed"”
stack frames
ROQ:
Stack ptr
0f PSW (left half)
] ‘ TN
2| old stac% ptr RO
e | |
address 1ze’ 4 | new R1* R1
I
| R2
jpew R3* ‘
(locil)data R3 [REGISTER SAVE
| pgr) AREA
L ' | R4
minimum size: : {
.. 18 halfwords
i - Fixed Ark #1 RS-
, — -
14| Fixed Arg #2 R6
16| Fixed Ar% #3 | rR7
18 |Floating Arg #1, etc. |
ERROR Vector ‘ ~ optional area de-
— ==l fined by each
"7~ User Data . routine
Temporaries

available for
called routines

* For HAL blocks only

—» two halfwords wide e

higher address

g

| | 3-11 | |
‘ INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.1.1.7 Local Block Data Areas,

REPROD
ORIGINAL

During execution of a

UCIBILITY OF THE
PACT I8 POOR

P % HAL/S-FC program, certain machine registers have dedicated

uses as described in Section 3.1.1.1.
register R3 is a local addressing register which points
to the local Block Data Area for the block in execution.

In particular,

These R3 values are saved on the runtime stack as indicated

: in Section 3.1.1.6,
! is the subject of this section.

The format of a

the controlling definitions of these areas.

Block Data Areas are created by
part of the #Dnnnnnn CSECT generated
A Block Data Area may exist for any Program,
Punction, Update Block, or Task.
for block entry (as defined in Section 3.1.9) loads R3
with the address of the Block Data Area for the block
The format of such an area is shown in
the following diagram.

being entered,

the compiler and are
for a compilation unit,
Procedure,

local Block Data Area
The HAL/SDL ICD contains

The compiler-emitted code

: Fields
' BL 1 Block ID
2 XU ONERRS ERRDISP
T
3 Y UNUSED | RESERVE SVC #
P
4 UNUSED RELEASE SVC #
5 LOCK ID
Field

1. Block ID

~Definition

only required if
XU =1

A 16 bit field uniquely identifying the
HAL block,
"compilation number" supplied by the user

via the COMPUNIT compiler option,

The first 9 bits are a

The last

7 bits are a block count generated internally
for each new block within a compilation unit.

3-12

INTERMETRICS INCORPORATED » 701 CONGCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

A o

A
Lt 4

)

Field pefinition

2, XU EXCLUSIVE/UPDATE flag. (1 bit). Set to
one if block is either an UPDATE block
or has the EXCLUSIVE attribute,

ONERRS (6 bits). The number of discrete errors
for which an ON ERROR statement exists in
the block.

ERRDISP (9 bits). The displacement in half words

from the stack frame pointer register (RO)
to the error vector

3. TYP (1 bit), Set to zero for EXCLUSIVE
procedure or function. If an UPDATE
block, set to one if shared data
variables are read only. Set to zero
if shared data variables are to:be
written.

Reserve SVC# (8 bits). SVC number for the reserve SVC:
15 for a code block
16 for a data area.

-~

—

] T~

4. Release SVC# (8 bits). SVC number for release SVC:
: 17 for a code block
18 for a data area.

5. Lock ID (15 bits). An indicator of which code
block or data areas are being used, For
a code block this is the address of the
EXCLUSIVE DATA CSECT of the procedure/
function. For a data area this is a bit
pattern indicating which data areas (by
lock groups) are involved. If the "master
lock" was specified, the bit pattern will
be all ones.

3-13

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

3.1.1.8 Parameter Passing Conventions for User-written Routines.
| To the extent possible, HAL/S parameters are passed via

i registers. Scalar parameters are passed in floating point

i registers. All others are passed in general registers. The

: following rules describe how the registers are designated,

and what they contain for each: type of -parameter.

General purpose registers 5-7 and floating point registers

0, 2, 4 are available for parameter passing. If the supply ;

of registers is exhausted before the parameter list, the ~ ;

i palance of the parameters are passed in memory locations. All ’
; parameters are located via the stack register (0). g

! Allocation of general and floating registers is carried
on in parallel. If no scalar parameters exist, no floating
point registers will contain parameters.

General purpose registers 5 through 7 are automatically : ;
contained in the stack beginning at displacement 12310- Floating ;
point registers are not automatically saved, and it is the : |
: responsibility of the called program to do so. Storage
: locations are reserved in the stack for this purpose as described
‘ pelow. Parameters which cannct be passed in registers are
: automatically stored in the called procedure's stack by the »
f caller. The allocation of these stack locations is identical R
‘ to the allocation for floating point values. Note that,

unlike ordinary HAL/S variable allocation, parameter allocation

is not subject to reordering to minimize alignment conflicts.

The first available stack location is at 181¢ off the stack
register. All parameters are assigned storage in order starting
at this point (the exception being parameters contained in
general registers 5 through 7, which are allocated space in
the register save area as desoribed above) .. Any necessary
alignment is performed as needed.

Arguments are either input type or ASSIGN type. (Input
types are those whose values will not be changed by the called
routine.) The actual information which is passed for a
particular argument is dependent upon the following factors:

e whether the argument is input or ASSIGN;

e whether the HAL/S data type of the argument is an
aggregate (i.e. more than one element, as in a matrix);

e whether the argument has any arrayness Or structure
copies to be passed; and

e whether any arrayness or structure copies are defined
via ‘an ARRAY (*) or —STRUCTURE(*) specification. : ﬂlg

| 3-14
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

L

The following table and list show the information which
is passed for an argument with particular attributes.

Data
Type

Argument” . _)
Type \\\\Integer Scalar |Bit| Character (*)| Vector| Matrix| Structure

Input (no
arrayness 1 2 31 4 5 6 7
or copies)

ASSIGN (no
arrayness 8 8 8 4 5 6 7
or copies)

L | Input or
\ Assign 9% 9% 9% 10* 9* g* o 11%*
(with

arrayness
or copies)

Key v Information Passed

1 A halfword or fullword of data.

2 A single or double precision floating
point value.

3 Up to 32 bits of data (halfword or
fullword depending upon declared
size).

4 Address of the max-size byte of the
character string. ’

5 Bddress of the oth item in the VECTOR
(i.e, 1 item width ahead of the actual
vector) . »

6 Address of the 0th item as if the

' MATRIX were a VECTOR of length m x n.

. 3-15

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

ORIGINAL PAGE I8 17

Key ‘ Information Passed
7

Address of the first location

BEETKHﬂJCDEﬁETY OF THT

¥

in

i the structure as defined by its

! template. (Note that item position
within a template is subject to
compiler reordering unless RIGID

| is used).

{ 8 Address of the data item,

? 9 Address of the 0th item of the
i array.

: 10 Two items are passed. The fir

is the address of the 0th arra
item. The second is the numbe

st

Y
r of

halfwords of memory occupied by

one character string element
(including the halfword contai
the max and. current size bytes

é 11 The address of the first data
the 0th copy.

* If the parameter is declared as ARRAY(*) or
- =STRUCTURE (*), an additional parameter word
is passed containing the value of the unspecifi
dimension.

i For all cases where auxiliary values are allocated for
i a single parameter (i.e. CHARACTER(*) ARRAY or ARRAY (*)),
parameters (up to 3) must be contiguous. Thus, if more
pointers are required than registers are available, then
the whole parameter sequence will be pushed into the stack

Example:
P: PROCEDURE(X, ¥, I, J, K, 2, C, L);
DECLARE SCALAR, X, ¥, Z DOUBLE;

DECLARE INTEGER, I, J ARRAY (*), K, L:
DECLARE CHARACTER(*) ARRAY (*), C;

" 3~-16

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138

ning

) .

in

ed

the

+ {617) 661-1840

<1 B
e

Upon entry to this procedure, the stack and registers

are as follows:

Rl+12lo
+14
+16
+18
+20
+22
+24
+26
+28
+30

+32

+34

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

|¢— 1 word — l

i
I 1 unused
i

address of oth
array element of J

; T
size of

array J - unused
]
X
Y
]
K : unused
ISt word of 2
2nd

word of 2

address of Oth
array element of C

HW occupied by
one element of C

Size of array C

- unused

3-17

also

also

also

also

also

also

in

in

in

in

in

in

RS

R6

R7

FO

F2

F4, F5

e e

sazsant st

TR S

3.1.2 Integer and Scalar Operations

Nomenclature

The register R is any of the available set of
: accumulators. The terms I, I2, S,and Sy refer to the single
f - and double precision versions of Integer and Scalar values
? respectively. It is assumed that any implicit precision or
E type conversions have been accomplished prior to generating
; the code sequences shown below.

3.1.2.1 Arithmetic Operators. Integer and scalar arithmetic
operators generally employ two operands, denoted as X and Y.
X is assumed to be loaded into register Ry unless otherwise
noted. If Y is also in a register, it is represented by the

form Ry. ;
Operation Type Code Alternate Code
X + Y: I ~ AH R, Y AHI R , Y*
X X
, I2 A Rx, Y AR Rx, Ry
s AE R, Y AER R, R
. X X b4
S AED R_, Y AEDR R_, R
é 2 X X h%
X - ¥: Similar to X + Y except that the subtract
| operator is used. (For example, SH in
; place of AH in the above list,)
(Multiply)
X Y: I ‘MH Rx, Y MIH RX, Y*

SLL R_, 15
X

I M Ry, ¥ MR R+ R

2 y
SRDA R, 1, 1
' S ME R, Y MER R, R
! X x' Ty
s, MED R, Y MEDR R , R

i Note that the shift operations used in the integer multi-
plications are required to correctly normalize the result in the
proper registers. ‘ ~

Certain constant multipliers are optimized to avoid
using actual multiply instructions. They are described below.

* Used 1f Y is a literal.

|) 3"18
INTERMETRICS INCORPORATED - 701 GONCORD AVENUE + CAMBRIDGE, MASSAGHUSETTS 02138 « (617) 661-1840

Operation Type Code Alternate Code

P 1 2" SLL Ry, n , 0>l
§ I, 2 SLL Ry, D n>1

AR RI' RI, n=1l

no code for any type

s 2 AER Rs’ Rs
% S, 2 AEDR R_, Ry
é X/Y: S SER Rx+l, Rx+1 SER Rx+l, Rx+l
| DE R, Y DER Ry, Ry
s 82 DED Rx' Y DEDR Rx' Ry
: i X*k*Y: The exponentiation is perfdrmed by subroutine. The

patterns shown for I and S are identical to those
which will be generated for I3 and S,, except for
the obvious differences.

; A
Ix*1 LH 5, X
RN ACALL HTOE*
D LH 6, Y
| Sk*x1 LH 6, Y (see note) # Argument Setup
; LE 0, X
; ' Sx%S LE 2, Y
f LE 0, X)
ACALL oPWRB , } Actual call
where o and B represent the types of operands X and Y
respectively:
\ Type of X , o Type of ¥ B
§ single precision integer single precision integer H
. double precision integer ¢ E double precision integer I
L single precision scalar single precision scalar E
D

! , double precision scalar D double precision scalar
: single precision integer H* ' '
double precision integer I*

Return is in FO for o of E or D; in R5 for o of H or I.

o : * If Y operand is a positive integer literal, the HTOE conver-

f ‘ sion is eliminated and the PWR routine invoked is aPWRH or

Cg oPWRI.
! , - 3-19 -
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Operation

Note:

X*k*x] 2
Xk*x2:

Xk*x3:

Xx%*6:

REPRODUCIBILITY OF THI
ORIGINAL PAGE IS POOR

Type Code Alternate Code
iype Lodae

Scalar expressions raised to integer literal
powers from 1 to 16 are performed in-line via
repeated multiplication, using the binary
powers algorithm. The following examples should
serve to illustrate the method.

No code generated.

S MER R R

xT Tx

s LER Rp, R,
MER R+ R,

MER Ri, RX

(result in RT)

S MER Rx’ Rx
LER RT' Rx

MER Rx' Rx

MER Ry, T,

(result in RT)

For type Sj, the instruction MEDR is used in place of MER.
Two LER's must be used in place of one.

Operation

+X

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

i Type Code

No code generated.

I,I, LACR R, R_
8 LECR R, R
' X X
s, LED 'RX, X
LECR R , R_
3-20

L 4

L

3.1.2.2 Comparison Operators. The full complement of
relational operators 1s allowed for Integer or Scalar

: operations between single quantities. Only equal or not
é equal operators are allowed for arrayed comparisons. No
logical variables are created by comparisons. Instead,
branching to one of two points is used for true/false
relations.

OEeration Type Code Alternate Code
X <OP> Y: T CH R, Y

BC COND, not-true-label
I C Rx' Y CR R, R
BC COND, not-true-label
S CE R, Ry CER R, Ry
BC COND, not-true-label
CED R_,
b4
BC COND, not-true-label

Y CEDR Rx, Ry

Note: For comparisons to the literal 0, the condition code
is used directly. 1If the condition code is not valid, the
instruction LR or LER is used to set it.

3.1.2.3 Conversions. Where necessary, conversions are
performed in intrinsic or library functions. Some conversions
do not require any generation of code.

Integer Conversions

Operation Type Code Alternate Code
*1,12 TO S,8, I LH 5, X
argument setup
I L 5, X ' '
2
ACALL aTOSB } actual call

TYPE OF INTEGER o TYPE OF SCALAR B

Single Precision H Single Precision E
Double Precision I || Double Precision D

* I TO S does not call library routine; instead code generated is:
INTERMETRICS INCORPORATED » 701 CONCORD AVENUE '« CAMBRIDGE, MASSACHUSETTS 02138« (617) 661-1840

RFEPRODUCIBILIL
ORTGINAL PAGE &5

£
N7

Operation Type Code Alternate Code
1,1, Tb BIT No code necessary
I TO CHAR I LH 5, X
, 1A 2, temp-string-area*
ACALL HTOC
I 2 L 5; X
%) LA 2, temp-string—area*
ACALL ITOC
IT0I, o I SRA R, 16
I2 TO I I,2 SLL Rx, 16
Scalar Conversions
Operation | Type Code Alternate Code 5mf
S,8, T0 I,Ip S LE 0, X LER 0, Ry | 4rgument
s, LED 0, X LEDR 0, R, Set“p‘
ACALL aTOB }callr
TYPE OF SCALAR o || TYPE OF INTEGER B
Single Precision E Single Precision H
Double Precision D Double Precision I
S,S2 TO0 BIT ‘ Same as for scalar to integer
S TO CHAR s , LE 0, X
LA - 2, temp—string—aréa*

ACALL ETOC

* temp-string-area contains converted string.

3-22

NTERMETRICS INCORPORATED + 701 CONCORD AVENUE - GAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

s
i
3
2
i
E
.
:
:

Operation Type Code Alternate Code

52 LED 0, X
LA 2, temp-string-area*
ACALL DTOC
s TO s, s LE R, X

SER Rx+l’ Rx+1

3.1.2.4 Assignments. For all assignments, type conversion
may take place across the assignment operator. For multiple
assignments, the left hand side operands are grouped by

data type to minimize the number of conversions performed.
The order in which the groups are processed is determined by
the following table:

Right Hand Operand Type

Left Hand
Type Ordering I I,] S,
First I 12 g s2
12 Char Char Charx
Char 82 S2 S
52 S 12 12
: S I I I
Last Vector=Matrix

Character is always performed before any rlght hand side conver-
sion is performed.

) The following sequences assume that Ry has already had the

requlred 1nteger or scalar conversions performed as described
in Section 3.1.2.3.

* temp—string—area contains the resultant string.

3-23

 INTERMETRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

REPRODUCIBILITY CF THT

Operation Type of ¥ Code QRIGﬁﬂAl,PAKHE RATE N 1T
Y = X; I* STH R, Y E
X S
12 ST Rx' Y
S STE Rx' Y
82 STED Rx’ Y
Ry is also marked as now containing the value- Y. Subsequent
usages of Y may use this register in lieu of the copy of ¥
in memory ucrtil such time as the contents of this register
are destroyed or a label is generated.
* If X is an integer literal of value 0 or -1, then the following
code will be generated:
Y = 0; I ZH Y
Y = -1; I 7 SHW Y
3.1.3 Bit String Operations
3.1.3.1 Bit String Operators. Bit string operators include
the following: AND (&), OR (|), and CAT (||). They generally ,
employ two operands, denoted here as X and Y (of lengths Ny and ey
Ny respectively). X is assumed to be lcaded into register Ry .l
uhless otherwise noted. If Y is also in a register, it is
f represented as Ry. Note that the & and | operations will pad
i the bit length of the shorter bit string to the length of the
; longer bit string.
Operation - Bit Length : Code Alternate Code
t L 3
X &Y Ny, N, < 16 NR R, Ry NHI R, 'Y
] Nx' Ny > 16 N Rx’ Y NR Rx' Ry
1)
| X |x Ny» N, <16 OR Ry, Ry OHI R, 'Y'*
N, N, > 16 0 Rs ¥ OR R, Ry
X ||‘Y N2 16 SLL Rg, Ny
OR R, R
X! Uy
Ny > 16 SLL Rx' Ny
| 0 R Y OR R, Ry
: % yused only when Y is a BIT literal. , 6
o - 3-2

iNTERMETRiCS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.1.3.2 Bit String Comparisons. The only possible
relational operators for bit strings, as with bit operators,
are = or -= (see Section 3.3.1.4). The bit strings are
padded to be of equal lengths. No logical variables

are created by comparisons. Instead, branching to the

"not-true-label" occurs with the "not true" condition.

OEeration Bit Length - Code Alternate Code
X <0P> ¥ Nx' Ny < 16 CH Rx’ Y CHI Rx’ Tyl

BC COND, not-true-label

xr Ny 2 16 C R ¥ CR R.r R

BC COND, not-true=label

3.1.3.3 Component Subscripting. Component subscripting
for bit strings consists of shifting and &'ing out unwanted
components of the subscripted bit string. The resultant
bit string length, N,, determines a binary mask, whose
decimal value is 2™Y-1, and bit number "1" of the original
bit string is the last component of the resultant bit

string.
\ Operation Bit Léngth - Code
Xsubscript Ny SRL Ry, Ny-1I
' N Rx, mask#*
Xyariable subscript Ny , , LACR RI' RI
Examples of Subscript Forms: AHI RI' Nx
Subscript I N N R. mask**
: 3 TO 10 10 8
6 AT 11 16 6
. 9 9 1
: 8 AT J I+ 7 8
: K K 1

3.1.3.4 Bit Conversions. When necessary, conversions are
performed in intrinsic or library functions. Some conversions
do not require any generation of code.

. * Used only when Y is a Bit literal.
%J% : *% The mask value is equal to 2 r - 1.

3-25
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE '+ CAMBRIDGE, MASSAGHUSETTS 02138 + (617) 661-1840

Operation Bit Length Code Alternate Code
i BIT TO I No code necessary
BIT TO I, LH R, X |
SRA R _, 16
| SRA R, 16 s X
| X
BIT TO S,Sz Nx < 16 LH 5 X LR 5, Rx
ACALL HTOE
N, > 16 L 5, X LR 5, R,
5 ; ACALL ITOE
BIT TO CHAR Nx < 16 LH 5, X
SRL 5, 16
! set up of bit~type
Nx > 16 L 5, X argument
i LA 2, temp-string-area*
! LHI 6, N actual calling
b sequence
ACALL BTOC
BIT TO CHAR@<radix> Same as BIT TO CHAR except call to

BTOC is replaced as follows:

<radix>

BIN
oCcT
DEC
HEX

routine

BTOC
0TOoC
KTOC
XTOC

* Temp-string-area contains converted string.

INTERMETRICS INCORPORATED + 701 CONCORD AVEN

3-26 :
UE « CAMBRIDGE

; MASSACHUSETTS 02138 - (617) 661-1840

¥

Operation Bit Length Code Alternate Code

(> BIT TO BIT N, >N
- Y NHI R, 2 ¥-1
N_ < 16
Y-—
Ny > 16 N Rx’ mask*

3.1.3.5 Bit Assignments. The following sequences assume that
: Ry has already had the required conversions performed as
! described in Sections 3.1.3.3 or 3.1.3.4.

Operation Length of Bit String Y Code i
;
! Y = X N, < k%
| y S 16 STH R, Y
N, > 16 ST R, Y**

If the right hand side of the assignment (X) is a BIT llteral
as described below, and Ny < 16, then the following code is

generated:
| Y = BIN'0'; N, < 16 ZH Y
| Y = BIN(16)'1l'; N, = 16 SHW Y
| 3.1.3.6 Partitioned Bit Assignments. The following sequences
; assume that has alreaay had the required conversions

performed as described in Section 3.1.3.3 or 3.1.3.4. Defini~-

?Fj@ tions of I, Ny, and Ny are as described in Section 3.1.3.3.
Operation Length of Bit String ¥ Code
. =X; <
Ysubscrlpt X; : Ny < 16 | LH Rx’ X
g ‘ ' ~ ~LE R, Y

SLL Ry, N-I

XR R

x! Ty
NHI Rx’ mask***
XR R, R

STH RX' Y

¥ The value of the mask is 2 Y-1.

** Note: If N, > and Ny is not exactly 16 or 32, then
the followmng 1n§tructlon must be added:
N RXI F'2 r S L

**% Mask: The mask used 1n a bit store is computed as follows:
2V (2%
In other words, the mask is a sequence of Nr bits shifted
left Ny~-I bits.
3-27
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - + CAMBRIDGE, MASSACHUSE’TTS 02138+ (617) 661-1840

—

Operation Length of Bit String Y Code
Y . =X 17 < N < 32 L R, Y
subscript -y - Yy
L x,x
(Con't.) ,
SLL N -I
y' 'y
XR Ry, Rx
N , mask*
b4
XR r R
Y X
ST Ry' Y

If the right hand side of the assignment (X) is a bit literal
containing either BIN'0' or BIN(Ny)'l' then if Ny < 16 and Y is
addressable in SRS format, then the following coge is generated:

= 10 . - '
Yll 7O 13 BIN'O'; Ny 16 ZB Y, B'111000'

= ' . = .
YlO TO 12 BIN'11l1l'; Ny 16 1 SB Y, B'1110000'

If Ny > 16 then the following codé is genérated:

) = LN LY = y =y]
Yl3 TO 20 BIN'0'; Ny 32 L Rx’ X'FFFQOFFF
NST R_, ¥
X
- ' Ve = —y ! '
Y17 po 20 = BIN'ILL'i N, = 32 | L R, =X'00007000
0OST R_, Y
X
3.1.3.7 Bit Tests.
IF X Nx =1 TH X
BZ <not true.label>
= ' 1
IF X4, N, 16 B X, B'1000000
B2 <not true label>
or
LH R ., X
b4
SRL R, 6
NHI R, B'1l'
BZ <not true label>
IF =X Same as IF X except BZ changed to BNZ

instruction.

- , , N Ny
% The mask value is computed as: (2 o1y (2).

3-28

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.1.4 Character String Operations

3.1.4.1 Character String Operators. The only character string -
operator 1s the CAT (|]|) operating employing two character string
operands denoted here as X and Y (of lengths Ny and N,, respec-
tively). Unless otherwise noted, X is assumed to be Xoaded into
registers Ry. If Y is also in a register, it is represented

as Ry-
Operation Code
X ||y LA P3, Y

LA P2, X

LA Pl, temp~string-area
ACALL CATV
3-29

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.1.4.2 Character String Comparisons.
lational operators are allowed for char
Section 3.1.1.4 for condition codes) .
different lengths are always unequal.
are created by comparisons.
true-label" occurs with the "not true"

Operation Code

X <Op> Y LA P3, Y
<OPA o IA P2, X
<';' ACALL CPRa
<= C)
=, _
>= BC

3.1.4.3 Component Subscripting.

The full set of re-
acter strings (see
Characters with
No logical variables

Instead, branching to the "not-

condition.

COND, not-true-label

Component subscripting for

character strings consists of setting the initial, Nj, and

index values of the subscripted components into

final, Ngf,
registers 5 and 6 respectively, and then branching to the CASP
intrinsic. ‘
Operation Code Alternate Code
subscripting La P2, X
X = Xsubscript’ LA Pl, X
LH 5, N,
i
LH 6, N LR 6, 5 { if only 1
£ component
ACALL CASP
3.1.4.4 Character String Conversions. Where necessary, con-=
versions are performed in intrinsic or library functions.
Ogeration Code
CHAR TO I LA 2, char
ACALL CTOH
CHAR TO I, LA 2, char
ACALL CTOI
3-30

INTERMETRICS INCORPORATED - 701 CONGCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

“l»

Operation Code

CHAR TO S LA 2, char
ACALIL CTOE

CHAR TO 82 LA 2, char
ACALL CTOD

CHAR TO BIT LA 2, char
ACALL CTOB

CHAR TO BIT Same as CHAR TO BIT except call to

> .
@<radix BTOC is replaced as follows:
<radix> routine
BIN CTOB
OoCcT CTOO
DEC CTOK

HEX CTOX

3.1.4.5 Character String Assignments. Either the receiver
variable or the assigned variagle in a character string ‘
assignment may be subscripted. The possible forms are shown
below. When subscripting is used, a partitioning of a character
string results. The initial element of this partitioned
character string is signified by its index; Nj. Similarly

the final element has the index Ng. Some examples of HAL/S
subscript forms and the resulting Nj and Ng values are:

Subscript Form Ni Nf
1 TO 3 1 3
5 AT 2 2 6
Operation Code
Y =X LA P2, X
LA Pl, Y
ACALL CAS*
L i P2, X
¥ subscript X LA !
LA Pl, ¥
LHI‘ 5, Niy

LHI 6, ny
ACALL CPAS?

: 3-31
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

REPRODUCIBILITY OF Ti:¢
ORIGINAL PAGE IS F:d

: Operation Code :i;
| Y=Xsubscript LA P2, X

1A PL, ¥

LHI 5, Njx

2 LHI 6, Ngy
? ACALL CASP*

Ysubscript=xsubscript LA P2, X

LA Pl, Y
LHI 5, N,
LHI 6, Neo

1]]
L 7, H Niy, ny
ACALL CASP

* For REMOTE data, CASR is called instead of CAS, CASRP for

CASP, etc. e
’ | e

3.1.5 Vector Matrix Operations

3.1.5.1 Vector-Matrix Operators. Vector Matrix operators
usually operate on two arguments according to the conventions
stated in Section 5.2. Since 3-vectors, and 3x3-matrices
have special library routines, their code is listed in the
column labeled "3-code", while the code for any other vectors
or matrices is listed in the "n-code" column.

Operation ~ Type n-code 3-code
| vl + V2 single LA P3, V2 LA P3, V2
| ra P2, V1 ta P2, V1
; LA Pl, temprarea LA P1l, temp-area
| LHI 5, n ' ACALL VV2S3

ACALL VVZ2SN

; ; 3-32
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Operation Type n-code 3~-code
S V1 + V2 double LA P3, V2 LA P3, V2

La P2, V1 LA P2, V1
LA Pl,temp-area LA Pl, temp-area
LHI 5, n ACALL VVv2D3
ACALL VV2DN

vl - v2 Same as V1 + V2 except that the routines branched

to are VV3SN (VV3DN for double precision) and

vv3s3 (vw3D3 for double precision) for size n
and size 3 vectors respectively,

aal single LA P2, V1 LA P2, V1
LA Pl, temp-area LA Pl, temp-area
LHI 5, n ACALL VV7s3

ACALL VV7SN

-Vl double Same as -V1 single, except that
routines VV7DN and VV7D3 are called
for size n and size 3 respectively.

: vl B v2 single LA P3, V2 LA P3, V2
T V1: length n
L v2: length m LA P2, V1 LA P2, V1
r 1t i
szzrixls nxm LA Pl,temp-area LA Pl, temp-rarea
LHI 5, n ACALL V0683
LHI 6, m*
ACALL VO06SN
V1l B v2 double Same as for single precision, except
that the routines branched to are V06DN
and V06D3 for n~vectors and 3-vectors
respectively.
V1l * V2 ; single (illegal operation) LA P3, V2
LA P2, V1
LA Pl, temp-area.
ACALL VX6S3
vVl % V2 double Same as for single precision, except that

VX6D3 is branched to, rather than VX6S3.

* If both V1 and V2 are the same size, then this instruction

i1l be: . '
wi e LR 6, 5 3-33

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

3-code
LA P3, V2
LA P2, V1

ACALL VV6S3*

Same as for single precision, except
that the routines branched to are

VV6DN and Vv6D3 for n-vectors and
3-vectors respectively.

Operation Type n~code

vl . V2 single LA P3, V2
LA P2, V1
LHI 5, n
ACALL VV6SN¥*

vl - V2 double

M1 + M2 }

or M1 - M2

Same code as that for adding or subtracting two
vectors of length equal to the product of the

row size and the column size of Ml and M2.

vi M2 single LA P3, M2
V1: length n
M2: nxm LA P2, V1

LA P3, M2

LA P2, V1

LA Pl, temp-area LA Pl, temp-area

LHI 5, n
LHI 6, m**

ACALL VM6SN

ACALL VM6S3

¥ The scalar result of the dot product is left in register FO.

** TIf M2 is of size nxn, then this instruction is: LR 6, 5.

3-34

iNTERMETHICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (6817) 661-1840

S e e

Operation Type n-code 3~code

V1l B M1 double Same as for single precision, except
that the routines branched to are
VM6DN and VM6D3 for the general case
and the size 3 case respectively.

M1l B V1 Same as for V1 P M1l except that the routines

Ml: nxm branched to are MV6SN (MV46DN for double precision)

V1l: length m and MV6S3 (MV6D3 for double precision) for the
general case and the size 3 case respectively.

vVl p I*, single LE 0, s LE D, S
V1 B I2%,
V1 B S LA P2, V1 LA P2, V1

LA Pl, temp-area LA Pl, temp-area
LHI 5, n ACALL VV4S3
ACALL VV4 SN
V1l B s2 double Lep 0, S2 LED 0, S2
A P2, V1 La P2, V1l
LA Pl, temp-area f1,a Pl, temp-area
LHI 5, 1 ACALL VV2D3
ACALL VV4DN
v1i/1i,V1/12 Same as for‘Vl ¥ I, etc., except that the routines
vl1l/s,v1l/s2 branched to are VV5SN (VVSDN for double precision)

and Vv583 (VV5D3 for double precision) for n-vectors
and 3-vectors respectively.

IP V1,2 ¥ vi, - Exactly the same as for V1 B I, etc,

S pVvl,s2 p Vvl '

Ml B I,M1 P 12, Same as for V1 § I, etc., except that
ML ¥ s,ML B S2 the length value specified in R5 is the

product of the row size and the column
size of M1.

* Note that in the case of single and double precisidn integers,
they are first converted to scalar form whose value is in FO.

3-35

INTERMETRICS INCORPURATED - 701 CQNCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

INTE

Operation Type
M1/I,M1/12,
M1/S,M1/S2

I B M1,12 p M1,
S P ML,S2 ¥ ML

dek g A
M1 single

(where 1 is either
a literal or a
constant integer)

*kf

M1 double
* %k

M1 0 single
* % .

M1 0 double
* %

M1 T single

Ml: m xn

REPRODUCIBILITY OF THE
ORIGINAL PAGE I8 17

n-code ‘3-code

Same as for V1/I, etc., except that
the length value specified in R5 is
the product of the row size and the
column size of Ml.

Exactly the same as for V1 § I, etc.,
except that the length specified in
R5 is equal to the product of the row
size and the column size of Ml.)

LHI 6, 1 Same as for "n-
, code where n = 3.
LA P3, temp-storage-area

LA p2, M1

LA Pl, temp-storage-area

- LHI 5, n

ACALL MM17SN

Same as for single precision, except
branches to the MM17DN.

La P2, Ml

LA P1l, temp-storage-area
LHI 5, n

ACALL MM15SN

same as for single precision, except
branches to MM15DN.

LA P2, Ml La P2, Ml

LA Pl, temp~-stor- LA V P1l, temp-stor-
: age-area age-area
LA 5, n ACALL MMl’lS3

LAk 6, m

ACALL MM11SN

3-36

AMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

;m%

wlpr

’iP:

OEeration Type n-code 3-code

*
M1l *T double Same as for single precision, except
that the routine branched to is either
MM11DN or MM11lD3 for n X n matrices
and 3 x 3 matrices respectively.
M1 P M2 single LA P3, M2 LA P3, M2
Ml: k xm

P2, M1l
M2: m X n La P2, M1 LA !
LA Pl, temp+area LA Pl, temp-area
LHI 5, k ACALL MM6S3
LHI 6, m*
LHI 7, n*
ACALL MM6SN
% M1l B M2 double Same as for sinale precision, except
' that the 'routines branched to are

MM6DN and MM6D3 for the general case
and the 3 x 3 case respectively.

* Either of the instructions may be of the form: LR 6,5 if n=k,
etc. :

3~-37

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

e bkt e PR R T £

3.1.5.2 Conditional Operators. The only comparison operators
allowed for comparing vectors and matrices are = or — =.

Since these comparisons are done on an element-by-element basis,
the same routines that are used for size-n vectors are also used
for size n X m matrices which are considered to be vectors of
length n x m. No logical variables are created by comparisons.
Instead, branching to the "not~-true'label" occurs with the "not
true" condition.

Operation Type n-code 3-ccde
V1 <OP> V2 single LA P3, V2 LA P3, V2
LA P2, V1 LA P2, V1
LHI 5, D ACALL VV8S3
ACALL VV83N BC COND, not-true-
: label
BC COND, not-true-label
V1l <0p> V2 double Same as for single precision, except

that the routines branched to are VV8DN
and vv8D3 for n-vectors and 3-vectors

respectively.

M1l <OP> M2 single LA P3, M2 - LA P3, M2
M1, M2: mxn ; LA P2, M1 LA P2, M1l

LHIT 5, mxn TLHT 5, 9

ACALL VV8SN ACALL VV8SN

BC COND, not- BC COND, not-true-

true-~label label

M1 <OP> M2 double Same as for single precision, except

~that the routine branched to is VV8DN.

3-38

P INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.1.5.3 Component Subscripting. Possible components of

‘ ‘matrices lnchaersubmatrices, vectors, column vectors, and

(] 4 single components. Possible components of vectors include sub-
- vectors and sigle components. The resultant type of component
is determined by the subscripts used. Note that double
precision operations are not shown - their code is identical
except that: a) the called routines will be VV1DN rather than
VV1SN, etc; b) the index multiplier is 4 instead of 2.

Register 7, when used, contains skip values between elements

in partitioned matrices (see Section 3.1.1.3).

Operation* n-code 3-code
Y = Vxg; LE R V, +2 %1 N.A.
STE R, Y
Y = VX LH Ry, I
LE R,s Vx(Ry) N.A.
STE R, ¥
Vy; = X; LH Rys I
| LE Ry, X | N.A.
STE Rx’ Vy(RI)
V¥, ar 1 = V*n ar 1
‘ ’LH Ry, I LH Ry, I
AR Ry Ry AR Ry, R;
LA P2, Vx(Ry) LA p2, vz (Rp)
LA Pl, Vy(Rg) LA P1, Vy(R[)
LHI 5, n ACALL VV1S3

ACALL. VV1SN

* 1 indicates integer literal, I indicates integer variable.

3-39 : ,
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

| H
!
Q-m‘m&m—ﬁk;““,«A e e

' e e it ¢ s i A R & 1 NS e S REPRUD Ugj:"}i{&gﬁ’ f;§ }i";}ﬁﬁ;;’j e SR ETLEN be
; ORIGINAL P&
OEeration* n-code 3-code
; M, = MXp ar I, n AT J g
5 assumes My is an m by n
MATRIX
LH RI’ I <same>
MHI RI,<column size of MX>
AH RI' J
; AR RI’ RI
LA P2, My(RI)
L 7, F'delta,0’
? LA Pl, M
; Y
| LHI 5, m
| LHI 6, n
| ACALL MM1SNP
: N’y* . = Vx; LH RI' I LH RI' I
?
AR Rys Ry AR Ry, Ry -
- LA P2, Vx LA P2, Vx
IHI 6, O LHI 6, 0
LHT 7, delta LHI 7, delta
LA P1, MX(BI) 1A Pl, MX(Rq)
LHI 5, n ACAIL VV1S3P
ACALL VV1SNP
:i'*i Indicates integer literal, I indicates integer variable.
: . . LA
| 3-40 _ R

¥

INTERMETRICS INGORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

ot g i

.
: i

g

3.1.5.4 Conversions. MATRIX/VECTOR conversions are done by
considering matrices as vectors, and assigning the required
components to the receiver variable. More than 1 argument
requires multiple calls to the vector assign routine (as
shown in the second sequence below). Use of double precision
operands will cause branches to VV1DN. Otherwise, the code
is unchanged.

Operation n-code
VECTOR(MX) LA P2, M2
Produces vector of size LA Pl, temp-area
equal to product of A
dimension of matrix: LiI 5, nxm
n x m, ACALL VV1SN
’MATRIX(Vx,Vy,Vz) LA P2, Vx

LA Pl, temp-area

LHI 5, n

ACALL VVI1SN

LA P2, VY

LA Pl, temp-araea+DELTALl
LHI 5, ny

ACALL VV1SN

LA P2, VZ

LA Pl, temp-area+DELTA2
LHIT 5, n,

ACALL VVI1SN

¥ This 1S an example using several vectors to illustrate the
multiple calling of the VVISN (or VV1ls3) routine. It
applies to the VECTOR shaping function,

O 3-41 |
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

3.1.5.5 Assignments. Vectors and matrices may be assigned
to other vectors and matrices of the same dimensions. 1In
addition, they may have all elements set to zero by a state-
ment of the form:

L1 —
M= 0; or V = 0;

Note that the use of double precision operands will only
change the routines branched to: i.e. VVIDN and VVODN
respectively in the code sequences below.

Operation n-code 3-code

Ve = Yy LA P2, Y, LA P2, vy
LA P1, Vx LA P1, VX
LHT 5, n ACALL VV1S3

ACALL VV1SN*

v, =0 SEDR 0, 0 SEDR 0, 0
LA Pl, V, LA Pl, V,
LHI 5, n LEI 5, 3
ACALL VVOSN** "ACALL VV0OSN

M =M " Same as for vectors, except that the

Y content of register 5 is equal to the product
and of the matrix dimensions.
M_=0
X

* For REMOTE data, VRISN is called in'place‘of VV1SN. .

** For REMOTE data, VROSN is called in place of VVOSN.

| 3-42
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

;

.......

The temporary area used to store the result of the last

HALMAT operation before an assignment can be eliminated

if the vector-matrix statement is of a suitable "i:orm"

for optimization and one of four conditions hold:.. The
statement may not have multiple receivers; the single receiver
must be a consecutive partition or be nonpartitioned. The
precision of the right-hand-side of the statement must match
the precision of the receiver. The receiver cannot be a
remote variable, and neither the receiver nor the operand(s)
of the final HALMAT operation can be name variables, or

the terminal of a subscripted structure. Also, variable
subscripts on any variables do not allow optimization processing
to continue.

Statements that meet these basic requirements can then be
checked for the occurrence of a necessary and sufficient
condition for optimization. The result of the final operation
before the assignment will be stored directly in the receiver
if at least one of the following conditions is true:

1) a) The receiver is nonpartitioned and the last operation
before the assignment HALMAT is a "Class 3" operation.
Class 3 operations include matrix-scalar and vector-scalar
multiplication and division, vector-matrix addition and
subtraction, vector and matrix negation and the built-in
function, UNIT.

b) The last operation is a "Class 1" operation. The
class contains only "matrix raised to Oth power". The
result, the identity matrix, can be stored directly in
any consecutive receiver.

2) The operand(s) are in temporary work areas. Nonconsecutive

partitions are moved to work areas when the operands are
processed. The result of a previous operation is also in.

a work area. Operands in work areas are disjoint from

the receiver. This is important for "class 2" operations
that use the elements of the vector or matrix, vector-vector,
and matrix-matrix arithmetic, and matrix transpose and
exponentiation (also, the built-in functions, TRANSPOSE and
INVERSE) . This condition can also hold for class 1 and class
3 operations. If the operation has two operands, both must
be in work areas for this condition to be true.

3~-43

INTERMETRICS INGORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3)

4)

EPRODUCIBILL: OF THE

TonR

ORIGINAL PAGE bt
i

The operand(s) are nonidentical to the receiver. A
receiver-operand pair is nonidentical if the operand is
in a work area, or if neither variable is a formal
parameter and the variables have different symbol table
references, or if only one of the variables in a formal
parameter and the NEST Jevel of the non-parameterized
variable is greater than or equal to the NEST level

of the parameterized variable (again, symbol table
reference cannot be the same).

EXAMPLEl: PROGRAM;

DECLARE}MATRIX(3,3), sS,T;

PROC: PROCEDURE (A) ASSIGN (B);
DECLARE MATRIX(3,3), A,B,C;
SUBPROC: PROCEDURE (X) ASSIGN(Y);

DECLARE MATRIX(3,3), X,¥,P,Q;

Yo o 3,% = %2 70 3,« ¥ C2 10 3,4/

By mo 3,% = £2 TO 3,% T Qy 10 3, %!
CLLOSE SUBPROC;
CALL SUBPROC(A) ASSIGN(C);
CLOSE PROC;
CALL PROC(S) ASSIGN(T);
CLOSE EXAMPLEL;

. .y e
where

X&Y are parameters, C is not
NEST LEVEL (Y)=2,
NEST LEVEL(C)=1.
Y can be C - cannot assign directly.
P&Q not parameters - ok to assign directly
NEST_LEVEL (P)=2,
NEST LEVEL (A)=1.

The operand(s) are disjoint with the receiver. A receiver-
operand pair can be disjoint in two ways. If the pair is
nonidentical it is, by default, disjoint. If both the receiver
and the operand are consecutively partitioned, they are
disjoint if the partitions do not overlap in any way. If

the receiver and the operand have the same symbol table

reference (are identical) then the two partitions can be

“disjoint in either vdirection". For example, let A

be a 4-by-4 matrix. Then,

Al 70 2,% = As 1o 4,% + oaen and
Ay 00 4,% — Bl oo 2,% + ... are both disjoint pairs.

If the receiver and operand are possibly identical, then the
pair can only be disjoint if all of the operand partition

comes after the receiver partition. @

3-44

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

EXAMPLE2: PROGRAM;
DECLARE MATRIX(6,3), A,D,E;
PROC: PROCEDURE (B,C);
DECLARE MATRIX(4,3), B,C; Pairs A-B & A-C

Bl oo 2, ~ B3 g 4,- T C3 70 4,4 disjoint
A = B + C H Pair A-B not neces-
3 TO 4, "1 TO 2,* 3 TO 4, sarily disjoint

CLOSE PROC;
CALL PROC(A3 TO 6,*’B3 TO 6’*); (Bl TO 2,% is really
A 4 «)
A =D + E ; 3 TO 4,
3 TO 4,x* 3 TO 4,%* 1 TO 2,%’ A,D,E are, by default,
CLOSE EXAMPLEZ2; ' disjoint because they

are nonidentical

If the operation has two operands, both receiver-operand pairs
must be disjoint for this condition to be true. The non-
identical and disjoint checks are made at the same time,

so this condition also holds if one pair is disjoint by
disjoint partitioning and one pair is disjoint by being
nonidentical.

3-45

INTERMETRICS INCORPORATED + 701 CONGORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

3.1.6 Structure Operations

3.1.6.1 Structure Comparisons. Structure comparisons may
only be = or ==. The comparison is done by comparing corres-
ponding terminal elements of the two structure operands in
order of their natural sequence. Each terminal element is
referenced by adding the displacement of the element to

the address of the structure (see Section 3.1.1.3). No
logical variables are created. Instead, branching to the
"not-true-label" occurs with the "not-true" condition.

Operation Code
X <0P> Y LA 2, X
LA 3, Y
(LA 2, terminal #1(X)
LA 3, terminal #1(Y)
for. each { LHI 5, width
terminal .
BAL 4, CSTRUC |

BC COND, not-true-label
<gsame for all terminals>

BC 7, true-label

3-46
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138+ (617) 661-1840

3,1.6.2 Structure Assignments. The assignment of both
major and minor structures is done via the MSTRUC routine.
The addresses of the structure nodes being accessed are
loaded into registers 1 and 2. The width (in halfwords)
of the structure node accessed is loaded into register 5.

Operation Code
Y =X LA P2, X

LA Pl, ¥
LHI 5, width

ACALL MSTRUC¥*

* For REMOTE data, MSTR is called instead of MSTRUC.

3~47

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

[T ———— .) {

3.1.7 Indexing and Arrayed Statements

3.1.7.1 Linear Array Indexing. Linear array indexing is

the use of subscripts, on an arrayed data type, to produce a
one-~dimensional resultant array. In the generated code, only
one register - Ry - is needed to keep track of the index value.
An initial entry to the array loop (see Section 3.1.7.4), Ry
is initialized to a value of 1. On each pass through the loop,
Ry is used to define a DELTA value to index the arrayed data
(see Section 3.1.1.3). Pollowing this, at the end of the loop
Ry is incremented by 1, and is tested to determine if all of
+he data has been utilized, as described in Section 3.1.7.4.
R, is any available indexing register. Its contents may not
be altered during the course of an arrayed statement. If the
index in R must be shifted to access the word or doubleword
data, it must be moved to another register to perform this
shift.

3.1.7.2 Non-Linear Array Indexing. Non-linear array indexing
has more than one index which can change values to produce a
multi-dimensional resultant array. The actual code generated,
though, can only utilize one register - Ry - for indexing. Thus,
temporary storage is needed to store all but the inner-most
index. As with linear indexing, all index values (both in Ra
and temporary storage) are initialized to 1. The DELTA value
defining the index of each arrayed data item is then computed
on the basis of the value of Rz and the index values stored

in memory (see Section 3.1.1.3). Following this, each index
value is tested against the size of the corresponding dimension
{(of the resunltant array) to determine if all of the data has
been utilized and/or which indices &@re incremented for the

next iteration. BAn example of this is given in Section 3.1.7.4.

3.1.7.3 Array Indexing., Arrays may be used in their entirety
in HAL/S without explicit subscripting (for example assignment
of two equally dimensioned arrays). However, the code generated
is very similar to that for non-linear indexing, except that
the indicies are tested against the size of the corresponding
declared dimensions of the arrays, rather than against the

size of the corresponding dimensions of the subscripted

array. An example of this is shown in the next section.

3-48

" INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

REPRODUCIBILITY OF THE
ORIGINAL PAGE F: T4l

3.1.7.4 Arrayness and Loop Generation. This section has
an example of each possible form of array loops, and how
indexing is achieved within them. In general, an array
loop consists of the following sections:

a) initialization of index values;

b) computation of address of ariay clement from
index value (see Section 2.1.1.3);

c) actual operation to be performed on the array
element(s) (i.e. assignment, comparison, etc.);

d) incrementing and testing index values.

It should be noted that non-linear and array indexing
produce multiple loops and indices. Since only a single
register is available for indexing, temporary storage

of index values for outer loops is employed.

Operation Type Code
Linear Indexing: L 7, =H'l,2} Q
X1 = ¥l3 ap o [X]: ARRAY(3) SCALAR loop:LED 2, Y+4(7)
[Y]: ARRAY(5) SCALAR
DOUBLE (STE 2, X(7)

BIX 7, loop }C@

Notes on above example:

G} initialize

@ assignment

C@ increment and test index

3-49

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

e e e e o et i1 A s e b it

Operation Type

Non-Linear Indexing:

[T = V11,2 10 3,4:2
[T]: ARRAY (2,4) INTEGER
[V]: ARRAY(2,3,4) VECTOR L
outer-loop: ST
L
inner-loop: LH
SLL
AR
MIH

LH
SLL
AR
LE
STH
ACALL

LH
Notes on the above example: STH

initialization and storage of first ' BIX
index value

initialization of second index value L
indexing of [V] ‘ BIX
indexing of [I]

assignment of scalar value to an integer
value

incrementing and testing second index value

90 OO0 ©

incrementing and testing first index value

3-50

Code

ETOH

6,
5,
7,

74

14

V+100(6)
temp2

temp?2
I(6)

e 1@

templ C

outer=-
loop

INTERMETRICS - INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

®

Ogeration Type

Array Indexing:

[= (N (] , [N : L
ARRAY (2, 3) outer-loop: ST
MATRIX (2,4) I

inner-loop: LH
MIH
SLL
AR
SLL
LH
MIH
AR
SLL
LA
LA
ST
LHI

5,
P2,
Pl,
7.

Code

=H'l,l’ @

templ

=H'1,2' { ©

templ
aH'3!
15

7

3
templ
=H'3'

N(6)
M(5)
tempz

ACALL VVlSN

L.
BIX

L
BIX

Notes on above example:
initjialization and storage of

first index value

1n1t1allzat10n of second index value
indexing of lN] '
indexing of [M]

matrix to matrix assignment

1ncrement1ng and testing second index value

@@@@@@ ©

incrementing and testing first index value

3-51

7,

 |NTERMETRICS INCORPORATED - 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

tenip2

inner-
loop

templ

outer-
loop

I

)
=
:
%C

@

REPRODUCIBILITY OF T}_’I”f’,
ORIGINAL PAGE 1 PUUE

3.1.8 PROCEDURE/FUNCTION Calls

The PROCEDURE/FUNCTION calling process consists of
two parts:

a) argument set up; and
b) the actual branch to the subroutine.

Argument set up uses registers 5-7 as needed for
passing integers or bit strings, and/or pointers to
vectors, matrices, character strings, arrays or structures.
Floating point registers 0, 2, and 4 are similarly used
to pass scalar arguments. Once all of these registers
are utilized, all remaining arguments are placed in a run
time stack for the procedure or function.

The actual code generated sets up the arguments
in the order that they appear in the HAL/S PROCEDURE or
FUNCTION block definition statement, For example, if
the function is:
F: FUNCTION(integer_},scalar_l,scalar_?,vector_;,integer_?);

then the registers are loaded in the order:

register 7 using LH or L

register 6 using LA to load the pointer to
vector 1

register F2 using LE or LED

register FO using LE or LED depending on the
precision of scalar 1

register 5 using LH or L depending on the

precision of integer 1

Once all arguments are set up, the actual branch is a
BAL or SCAI instruction to the CSECT defined for the procedure
or function.

A leaf procedure/function is one which has no stack
requirements (i.e. no parameters, no stack temporaries, no
local addressable data, no ON ERROR statements, and no intrinsic
library calls). Such procedures may be called via BAL R4, <routine
name>. These routines are exited using BCR 7, R4.

3-52

" INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

R

Y

PR

T

Operation

Argument Setup

Actual Call

Argument Setup

Args

<3 non-scalar
and <3 scalar

>3 non=-scalar

and/or >3 scalar

Actual Call

Notes on the above:

@

Code

LH
LH
LH
LE
LE
ILE
ACALL

LH
STH

LH
STH
LE
STE

LE
STE
LH

LE
ACALL

7, arg3

6, arg2

Alternate Code

5, argl I,

4, scalar-arg3 LED

2, scalar-arg?2

LED

0, scalar-argl LED

csect-name

R, argn

R, stack

R, arg4
R, stack

P
FR, scalar-argn \

A~
rk%]

FR, stack

FR, scalar~arg4
FR, stack -/
5, argl ' W
2, scalar-arg?2
csect-name e

7, axrg3 or LA 7, arg3
6, arg2 or LA 6, arg2
5, argl or LA 5, argl
4, scalar-arg3
2, scalar-arg2

0, scalar-argl

non—-scalar stores
into stack

scalar stores into
stack

Any additional arguments are generally loaded into

any unused register and stored.

The actual load op

codes may be: L, LH, LA, LE, or LED, depending on
Similarly, the stores op

codes may be ST, STH, STE, or STED.
ment already exists in a register, then the code
generated will be only a store from that register

the type of argument.

into the stack.

If the argu-

Loading of the first 3 non-scalar, and the first 3

scalar arguments.

shown in the first example above.

; 3-53
~ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

This is identical to the code

3.1.9 Block Definition

3.1.9.1 PROGRAM and TASK Definition.

Operation ' Code
PROGRAM or TASK definition block-name: LA 0, stack-start?
LA 1, program-data-csect
sTH 1, 5(0)
IAL 0, stack-size
LA 3, local-data-area (1)
STH 3, 9(0)

* Omitted if SDL option is turned on.

3.1.9.2 PROCEDURE and FUNCTION Definition. Both PROCEDURE
and FUNCTION definitions are similar to PROGRAM and TASK
definitions. However, floating point store instructions are
needed to save any scalar arguments passed via registers.

Operation Code Alternate Code
PROCEDURE or block-name:
FUNCTION
definition FognggMSUBS {LA 1, Program~data-csect
STH 1, 5(0)
IAL 0, stack-size
LA 3, Local-data-area(l)
STH 3, 9(0)
STE 0, stack STED 0, stack
optional STE 2, stack STED 2, stack

STE 4, stack STED 4, stack

ofF *
e

3-54

TERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

s s e - . B e

3.1.10 Flow of Control Statements

3.1.10.1 IF...THEN...ELSE. The code shown below is for the
most general form of the IF...THEN...ELSE statement. It is

assumed that the condition code from the conditional expres-
sion has been generated (see previous subsections on condi-

tional operations).

-Operation Code
TF <cond exp> THEN <...> ELSE <...> BC cond, else-label

then-label: { executable code for
THEN clause

BC 7, next-statement

else-label: [executable code for
ELSE clause

next—-statement:

IF <cond exp> THEN <...> - BC cond, next-statemént

- executable code for
THEN clause

next-statement: .

, 3-55 - ,
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

THE
EPR ODIKﬂBHﬂTY'OF
%RIGIN AL PAGR T8 POOR

3.1.10.2 DO FOR...Loops. The DO FOR loop has two forms: the
iterative, and the discrete. They may also cause termination
of the loop by use of the clause UNTIL < >, or WHILE < >. The
use of these clauses is shown for the case of the iterative

DO FOR forms where the additional code needed has been labeled
"UNTIL code" and "WHILE code". This same additional code is
generated for the discrete DO FOR and is placed immediately
before the executable code within the DO group (the same
process as is illustrated with the iterative DO FOR). Note
that the code only shows the use of a single precision integer
index; double precision integers, and single or double precision
scalars follow the same algorithm with the exception that the
corresponding full word, or floating point instructions are
used when dealing with the index variable.

Operation Code
DO FOR I = a TO b BY c;* LHI 7, a
loop-begin: BC 7, test-label

. executable code within
DO group

: o repeat**: LH 7, Ikk*
| AHI 7, c

! test-label: STH 7, I
i . CHI 7, b
3 BC 6, loop-begin
exit-label: : code for statement foli-
: lowing DO group

* Asgsumes a, b, and ¢ are literal values.

** ~This is referenced by the REPEAT statement (see Section
2.3.10.5).

*%% This instruction may be omitted if the REPEAT label is
not actually used, and the loop index I is already in- the
designated register. :

, 3-56
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

.

OEeration

DO FOR I = a TO b BY ¢
UNTIL <cond exp>;

END; loop-begin:

first-statement:

repeat**:

test~label:

exit-label:

Code

ZH
LHI
BC
TS
BC

BC

AHI
STH
CHI
BC

temp-area UNTIL code
7, a

7, test-label
temp-area 7

4, first~-state-
ment¥*

}
.1 cond for exp. UNTIL code

P

cond, exit-label J

.1 executable code
| within DO group

7, I
7, ¢
7, I
7, b

6, loop-begin

: code for statement
. following DO group

* This is done to avoid testing the <cond exp> until after
executing through the loop at least once.

** This is referenced by the REPEAT statement (see Section

3.1.10.5).

3-57

INTERMETRICS INCORPORATED « 701 CONCORD. AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

Ogeration

DO FOR I = a TO b by C WHILE <cond exp>

DO FOR I = ay Aoy een a,

END;

loop-begin:

test-label:

exit-label:

label-1:

label-2:

label-n:

test-label:

repeat*:

exit-label:

LHI
BC

BC

LH

AHI

STH
CHI
BC

LHI
BAL
LHI
BAL

LHI

ST
STH

BCR

Code

7, a
7, test-label

code for cond WHILE
exp code

cond, exit-label

executable code within
DO group

7, I
7, ¢
7, I
7, b
6, loop-begin

code for statement fol-
lowing DO group

7, ajy
4, test-label

as
4, test-label ¢

7, a,
4, exit-label
4, temp-area
7, I

executable code within
" DO group

4, temp-area
7, 4

‘ code for statement fol-

lowing DO group

* This is referenced by the REPEAT statement (see Section

3.1.10.5).

IN%ERMETRKS|NCORPORATED-701CONCORDANENUE - CAMBRI

3-58

&%
“p

DGE, MASSACHUSETTS 02138 - (617) 661-1840

Operation Code

DO FOR I = I1 TO I2 BY I3 LH 5, 12

:) STH 5, temp-test
END; LH 6, I3
(11, I2, I3: variables) STH 6, temp-incr

LH 7, Il
BC 7, test-label

loop-begin:

senes s

] executable code within

DO group
repeat*: LH 7, I
‘ AH 7, temp-incr
test-label: STH 7, I)
LH 5, temp-incr
LA 5, loop-begin
BC 5, positive-test**
CH ,7, temp-test
BCR 5, 5
. BC 7, exit-label
gmt positive-test: CH 7, temp-test
BCR 6, 5
exit-label:]coggwgg; statenent. £ol-

* Repeat label (see Section 3.1.10.5)

** Phis branch is determined by the condition code set by the
previous LH 5, temp-incr instruction.

R,

3-59
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSAGHUSETTS 02138« (F1/) 661-1840

-
3.1.10.3 DO WHILE/UNTIL. Both of these forms of DO groups
are essentlally the same except that the DO UNTIL does not
test its conditional expression until it has finished executing
the code once. 1In both cases, the condition is tested as
detailed in preceeding subsections.
Operation Code
DO L > : . s
DO WHILE <cond exp repeat: l code for conditional
' ‘ expression
BC cond, exit-label
* code for statements
: within DO group
BC 7, repeat
exit-label: .
l code for statement
:) following DO group
DO UNTIL <cond exp> BC 7, first-statement .
B repeat: ' code for conditional
' expression
BC cond, exit-label
first-statement: i code for statements
: within DO group
BC 7, repeat
ex1t—1abel: : code for statement
- following: DO group
PR
3-60 i

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02188 +(617) 661-1840

3.1.10.4 DO CASE. The DO CASE statement is used to select
one- of a collection of statements for processing.

Operation Code
DO CASE I; LH Rc, I
<statement 1>
<statement 2> BC 6, else~case-label GD
E LA 2, case-vector
<statement n> .
END; CH R,, 0(2) @

BC 1, else-case~label QD
LE 4, 0(R,, 2)
BCR 7, 4

else~-case-label:
<else statement code>

BC 7, exit-case~label

<statement 1>

BC 7, exit-case-label

<statement 2>

BC 7: exit-case-label

<statement n>
exit-case~label:

Data

case~-vector - DC H 'n'
DC Y (statement 1)
DC Y (statement 2)
DC Y (statement n)

CD boundi,cggcks on case number. Omitted if ELSE case not
specified.

3-61 ‘
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

REPRODUCIBILITY OF THE
ORIGINAL PAOLL 11 2DOR

3.1.10.5 GO TC, REPEAT, EXIT. All of these statements take

the form of unconditional branches. It should be noted that
REPEAT and EXIT statements may only be used inside DO groups. See
Sections 3.1.10.2 and 3.1.10.3 for the locations of the

"repeat" and "exit-label” within a DO group.

Ogeration Code

GO TO label BC 7, label

REPEAT BC 7, repeat "repeat" is the loca-
tion of the code which

REPEAT label determines whether DO
group iteration is
finished or not.

EXIT BC 7, exit-label "exit-label" ig the
location of the code

EXIT label immediately following
the end of the DO
group.

3.1.10.6 RETURN. The RETURN statement will branch back from
the code for a tunction to the code immediately following the
function's invocation.

Ogeratigg Code

Procedures & Functions

RETURN SRET 7, 0 normal
BCR 7, 4 leaf procedure Or
function

Programs & Tasks

S =" '
RETURN vC H'21

3-62

- |NTERMETRICS INCORPORATED + 701 CONGORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

&

3.1.10.7 ON ERROR/QFF ERROR/SEND ERROR.

Operation Code
ON ERRORn_m<stmt> LA 4, <stmt>

STH 4, error table entry 1.

LHI 4, <action>*

STH 4, error table entry 0

BC 7, next-statement
<stnit>: <code for stmt>

next-statement: K }code for next statement

SIGNAL
ON ERRORn.mSYSTEM[AND SET <event>]
' RESET
La 4, <event> } only if event
.y action phrase
STH 4, error table entry 1 present
LHI 4, <action> |
STH 4, error table entry 0 |
| SIGNAL |
ON ERRORn_mIGNORE[AND SET <event>]
. * RESET . i
LA 4, <event> only if event ;
STH 4, error table entry 1| @&ction phrase :
A present ’
LHI 4, <action>* :
STH 4, error table entry 0 ;
SEND ERROR SVC = X'00l4nnmm’ :
OFF ERROR m ZH error table entry 0
n:m. , ‘ ’ ,

* <action> contains action cbde, exror code, and error group
as defined in HAL/FCOS ICD.

3-63
INTERMETRICS INCORPCRATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Ty OF
rEpROPUCENLL s 00R o

3.1.11 Built-In Functions

3.1.11.1 Inline Built-in Functions., The following built-

in functions emit the inline code shown in the following
sequences. In all cases, it is assumed that Ry contains
the argument except when a specific load instruction is

shown. The results will always be in register Ry.

Operation
ABS (arg)

LENGTH (char)

SIGN (arg)

INTERMETRICS INCORPORATED

Type Code
scalar, single LE Ry’ arg
LECR R, R
Y '
BC 2, *-1
scalar, double LED Ry’ arg
LECR R, R
y y
BC 2, %=1
integer, single LH Ry, arg ~
LACR R, R
y Y
BC 2, *-1
integer, double L Ry’ arg
LACR R _, R
Yy Y
BC 2, *x=1
character string LH R., char
' NHI R, 255
Yy
scalar, single LE Rx’ arg
o LFLI Ros 1
LER R_, R
X X
BC 5, continue
LECR R_, R
o Yy ¥
continue: :
3-64

- 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + {617) 661-1840

Operation ‘ Type Code

scalar, double LED Rx’ arg
LED Ry, D'4110000000000000'
LEDR Rx, Rx
BC 5, continue
LECR R _, R
Y Y
continue: :
integer, single LH Rx, arg

LFXI Ry. 1
LR R, R
X

X
BC 5, continue
LACR R_, R
. Y Y
contlinue: .
integer, double L Rx’ arg
‘L R =Fl 1]
v’ 1
LR R, R
X X
3C 5, continue
LACR R., R
. Yy Yy
continue: .
SIGNUM (axrg) scalar, single LE Rx, arg
LFLY Ry, 1
LER R., R
X X
BC 1, continue
BC 4, equal
LECR Ry’ R
BC 7, continue
equal: R, R
q SER Y' v
continue: .
3-65

 INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

OEeratioq Type Code

integer, single LH Rx' arg
LFXI R, 1
< Y
. LR R , R
; X X
; BC 1, continue
} BC 4, equal
? IACR R, Ry
BC 7, continue
equal: SR R R
° v’ By
continue: .
integer, double L Rx’ arg
L R _, =F'1l'
Y
LR R , R
X X
BC 1, continue
BC 4, equal
LACR R,RY
BC 7, continue
equal: SR R R
o v’ By
continue: .
SUBBITm 7O n(arg) integer, sihgle, SRL Ry, 16-n
or bits of length NHT R, mask*
<16 Y
- or- - ;
 SUBBIT _) (arg) integer double, SRL R, 32-n
m-n+ 1AT m or bits of length N Ry F'mask'*
> 16, or scalar yv'
gingle
* The mask value is: 2 ™®F)_5

‘ 3-66
INTERMETRICS INCCRPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) G51-1840

Operation Type Code

SHL (arg, n) integer SLL Rarg' n
SHR (arg, n) integer SRA Rarg’ n
XOR (X,Y) Bit, nilG LH Ry' Y
XR R_, R
X Y
Bit, n>16 X Rx' Y
or XR Rx’ RY
MIDVAL(X,Y,Z) scalar LE FO, X
LE Fl, Y
MVS FO, 2
3-67

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

REPRODEKHBHJT?‘QE‘EHE
ORIGINAL PAGE 13 FOOR

3.1.11.2 Out of Line Functions. Out of line functions require
branches to the run time library.

The registers needed for parameter passing, and the name of
the library routine branched to, are specified in the tables
of Section 5. Examples are given for representative argument

types.
Operation Type of X Code
COs (X) scalar, single LE 0, X
‘ ‘ ACALL COS
, ; SQRT (X) scalar, double LED 0, X
| | ACALL DSQRT
] ABVAL (X) vector (3), double LA 2, X
i ACALL VV9D3 -
(| TRANSPOSE (X) matrix(m,n), double LA P2, X
ﬁ | LA Pl, temp-area
i |
i LA 5, m
LA 6, n
ACALL MM11DN
matrix (3,3), single LA P2, X
LA Pl, temp-area
ACALI, MM11S3
UNIT (X) vector (3), single 1A P2, X
LA Pl, temp-area
‘ ACALL VV10s83
RANDOMG . ACALL RANDG
TRIM (X) character - LA P2, X
] 3 LA Pl, temp-area
J ' ACALL CTRIMV
; MAX (X) array{n) LA 2, X
; LHI 5, n
2 ACALL EMAX
i
’

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

g S e e e e e i s
R}

3.1.11.3 Shaping Functions. Shaping functions are explicit
invocations of type conversion. The generated code for shaping
functions has been described in previous subsections where
conversions have been described (see Sections 3.1.2.3, 3.1.3.4,
3.1.4.4, and 3.1.5.4).

In addition, when conversion functions are used in a true
"shaping" sense, (e.g. MATRIX (<integer array>)), a subroutine
is used to move contiguous elements, with possible conversion,
to a result location of the desired shape.

Example:

MATRIX (A) where A is a 9 element integer array

LA P2, A;

LA Pl, <result loc>
LHI 6, X'0002' flags*
LHI 5, 9 size
ACALL QSHAPQ

-—

* Flags: 18t 8 bits indicate input data type.
2nd ‘8 bits indicate output data type.
Values: ' ‘

|

WO
|| R R
(ol s B o e

3-69

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

3.1.12 Real Time Statements

All REAL TIME statements are implemented by means of
a supervisor call (svC) instruction which has as its address
a pointer to a parameter list. The first halfword of this
parameter list contains a number which identifies the type
of real time call. The remainder of the parameter list
varies with the service being requested.

The specific forms of the SVC parameter lists are
those described in the HAL/FCOS ICD document.

For real time statements in non-REENTRANT blocks,
the SVC parameter lists are in the block's data area. ARy
invariant portions of the parameter lists are implemented
by initialized data. Parts of the parameter lists which
are runtime-dependent are created by execution of in-line
code preceeding the sVC instruction.

For real time statements in REENTRANT blocks, the
SVC parameter lists nre dynamically created in the stack by
executable code preceeding the gvC instruction.

3.1.12.1 WAIT Statement. The WAIT statement may use
registers 0, 1 to contain a double precision time value
specified in seconds. If the UNTIL option is specified, the
time value is expressed as mission elapsed time. Any other
times are 1delta-time' from the current mission elapsed time.
If a time value is not specified in the WAIT statement, then
the registers will not be affected.

OEeration Type Code
WAIT n n: literal LED 0, D'floating point form
of n'

'gvCc parameter-list

WAIT X X: -scalar double LED 0, X
svC parameter-list

WAIT FOR DEPENDENT : ‘ sve parameter—list
WAIT FOR X X: event value sve parameter-list
WAIT UNTIL X Xx: scalar double LED 0, X

svC parameter—list

3-70
INTERWETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.1.12.2 CANCELL, TERMINATE Statements.

Ogeration Code

CANCEL

CANCEL<task id>
TERMINATE
TERMINATE<task id>

SVC parameter-list

3,1.12.3 SIGNAL, SET, RESET Statements.

Ogeration Type Code
SIGNAL<event var> latched or unlatched
SET<event var> latched SVC parameter-list
RESET<event var> latched

3.1.12.4 UPDATE PRIORITY Statement.

Operation Type Code
UPDATE PRIORITY TO i . . .
UPDATE PRIORITY<taskid> TO i } i: integer SVC parameter-list
% | 3-71

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

preceer gty B

nEpRONTICIBITAE . o
ORIGTNAT, PAGH w0 7

3.1.12.5 SCHEDULE Statement. In the following code generation
sequenc 3, a schematic representation of possible SCHEDULE
statement forms has been used. The symbol [] means that one

of the contained elements may appear in the statement form with-
out affecting the generated code. The symbol { } means that
one of the contained elements must be included in the statement
form - but which one does not affect the code generated.

In general, the code differs only when time values are specified
in the SCHEDULE statement. This requires that the time valuves
be specified in double precision format in certain registers

as shown below.

Ogeration Code
SCHEDULE<label> [ON<event exp>]PRIORITY(I)[DEPENDENT][

WHILE<event exp>]
UNTIL<event exp>

SVC parameter-list

AT X

SCHEDULE<label>{gy y WHILE<event exp>,

LED 0, D'X!
SVC = parameter-list

AFPTER X}

SCHEDULE<label>[ON<event eXP>]PRIORITY(I)[DEPENDENT],REPEAT{EVERY X

LED 2, D'X'

SVC parameter-list

SCHEDULE<label> [ON<event exp>]PRIORITY (I) [DEPENDENT]UNTIL X

LED 4, D'X!'
SVC' parameter-list

AT X}PRIORITY(I)[DEPENDENT],REPEAT{

AFTER Y}
ON X

SCHEDULE<label>{ EVERY Y

WHILE<event exp>

[UNTIL<event exp>]

LED 0, D'X'
LED 2, D'Y!
3-72 SVC parameter-list

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (817) 661-1840

#
??

'

Operation Code

SCHEDULE<label>{g§ ;g}PRIORITY(I) [DEPENDENT] UNTIL Y

LED 0, D'X'
LED 4, D'Y'
SVC parameter-list

SCHEDULE<label> [ON<event exp>]PRIORITY(I)[DEPENDENT],REPEAT

AFTER X
{EVERY X}UNTIL Y

LED 2, D'X'
LED 4, D'Y'’
SVC parameter-list

AFTER Y}

AT X
SCHEDULE<label>{ }PRIQRITY (I) [DEPENDENT], REPEAT{EVERY U

- ON X

UNTIL 2

LED 0, D'X'
LED 2, D'Y!
LED 4, D'Z'
SVC parameter-list

3-73

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

3.1.13 I/0 Statements
3.1.13.1 Initiation.
WRITE
routine.

Initiation of eltherlREAD READALIL, or

statements consists of a branch to the IOINIT library
Register 1 contains the I/0 channel number, and register

0 indicates the type of I/O to be initiated.

Operation

Type
"READ(n)...

READALL{n)...,.

WRITE(n)...

e eern e it e o e

3

74

" INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE; MASSACHUSETTS 02138+

Code
LHI 6, n
LHI 5, 0

ACALL IOINIT

LHI 6, n
LHI 5, 1
ACALL TIOINIT
LHI 6, n
LHI 5, 3

ACALL IOINIT

£

{(617) 661-1840

3.1.13.2 Input. In all cases, the code sequences below follow

the I/O initiation process described in the previous subsection.

It is assumed that any conversions have been done previous to

the code sequences shown; the resultant type determines which

type of code sequence is generated. Note that vector and matrix
partitioning require that the first element of the partition be
kinown; additionally, matrices require a DELTA value to be known

to skip over those elements (in the "natural sequence") which are
not part of the resulting partitioned matrix (see Section 2.1.1.3).

Operation Type Code
READ(Jesoer I, ... integer, single .
. initiation
2, 1
ACALL HIN
integer, double . } initation
LA 2, 1
ACALL IIN
READ(},;..., 5, 111 scalar, single . } initiation
LA 2, S
ACALL EIN
scalar, double . } initiation
LA 2, S
ACALL DIN
READ()..., V, ... vector(n);single .
. initiation
LA 2, V
XR 7, 7
LHI 5, 1
IHI 6,

n
ACALL MM20OSNP

3-75

INTERMETRICS INCORPORATED + 701 CONGORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

Ogeration
READ(Jeeu, V,

READ()euoy

M,

READ()..., M,

READ()...,

or REA

DALL().

READ()...,

C

m TO n’”

or READALL().

C

m TO n'’’

eesCrhen

C,

4

"

Type

partitioned vector
of length n whose
first element is
located at 'V+
displacement'

vector {n); double
(partitioned ox
not partitioned)

matrix{m,n); single

partitioned matrix
whose resultant
size is mxn, first
element is M+dis~-
placement.

matrix {m,n); double
(partitioned or
not partitioned)

character string

partitioned
character string

3-76

Code

.

. initiation
LA 2, V+displacement
XR 7, 7
IHI 5, 1
IHI 6, n

ACALL MM20SNP

same except branches to MM20DNP

.} initiation

LA 2, M

XR 7, 7

THI 5, m

LHI &6, n

ACALL MM20SNP

.} initiation

LA 2, M+displacement
ILHI 7, DELTA

LHI 5, m

LHI 6, n
ACALL MM20SNP

Same except branches to MM2O0DNP

.} initiation

A .2, C
ACALL CIN
.} initiation
LA 2,C
THI 51 m
LHI 6, n
ACALL CINP

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (6171.6G1-1840

|

O

Operation

READ()ueoy Cpyues
or READALL()..., Cp,...

READ()oce, B,...

Arrayed Input

3.1.13.3 Output.

Type Code
single partitioned .
character string . initiation
LA 2,C
LHI 5,n
LR 6,5
ACALL CINP
bit string(of length .
n)’ . initiation
LHI 6, 1
ACALL BIN*

The actual code generated depends on the

type of array. Thus, the code will consist

of an array loop (see Section 2.1.7.3) which
contains the proper code for inputting of each
array element using the code shown above
(corresponding to the array element type),

In all cases, the code sequences below follow

the I/0 initiation processes described in Section 2.1.12.1. It
is assumed that any conversions have been done previous to the
code sequences shown; the resultant type determines which type

of code sequence is generated.

Note that vector and matrix

partitioning require that the first element of the partition be
known; additionally, matrices require a "delta" value be known to

- skip over those elements (in the “"natural sequence") whlch are not
part of the resultlng partitioned matrix.

gperatlon~

WRITE(Yeuuy Tpoen

Code

[Y

Type

integer, single ; . ,
. initiation

LH 5. 1
ACALL HOUT

integer, "double

L 5,1
ACALL I0OUT

‘} initiation

* BIN returns the bit string input in register R6.

INTERMETMCS]NGORPORATED‘701CONCOHDANENUEi'CAMBWDGE,MASSACHUSETTSOEKM-

"3f-'77,
(617) 661-1840

« OF THE

Code

.} initiation

LE 0, S
ACALI: EOUT
LED 0, 5
ACALIL DOUT
.} initiation
LA 2, V.
XR T, 7
IHI 5, 1
. LBTI 6, n

ACALL. MM21SNP

|

initiation

1A 2, Vvi+displacement
AR 7,7 ‘
B 5, 1

IHI 6, n
ACALL MM21SNP

Same except branches to

MM2 1DNP

. } initiation

LA 2, M
LHI 5, m
LHT .6,

ACALL MM2 lSNP

V
RE?ROEUCI?.%% &5 POOR
ORIGINAL Pt
Ogeration Type
WRITE()eser Sypeee scalar, single
scalar, double
WRITE(Vever Vieoo vector (n); single
WRITE(Jeeer Vi oos partltloned vector of
length n whose first
element is located
at 'V+displacement'
vector (n); double
(partltloned or
non—partltnoned)
CWRITE() ee-s My ‘matrix(m,n); single
! ; : :
WRITE(Joeesr Mioeo partltnoned matrix

INTERMETRICS INCORFORATED -

of resultant size
‘nxn whose first element
is M+dlsplacemcnt‘

3-78

initiation

LA 2, M+displacement
LHI 7, delta

LHI 5, m

IHI 6, n

ACALL MM21SN

701 CONCORD AVENUE + CAMBRIDGE, M/\SSAC!"IUSETTS 02138 + (617) 661-1840

&

Operation

WRITE()--., C’oou

WRITE()...s Cp wo n

WRITE()..-]C}---

n

t'QRITE();-.' B,’g'u.

Arrayed Output

Type Code
matrix(m,n); double
(partitioned or not
partitioned)

‘same except branches to
MM21DNP

character string -
~initiation

1A 2, ¢
ACALL CouT

partitioned character . o
string . initiation
LA 2, C
LHI 5, m
LHI 6, n
ACALL couTp
single partitioned .
character string . initiation
LA 2, C
LEI 5, m
LR 6, 5
ACALL COUTP
bit string (of length .
n) . initiation
L 5 7 B
LHI 6 ' n
ACALL BOUT

The actual code generated depends on the type

of array. Thus, the code will consist of an array
loop (see Section 2.1.7.3) to cause iterative
outputting of each array element using the code
show? above (corresponding to the array element
type).

- 3=79

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1640

L T T T T T I T

pTre

T ST w: K ety

3.1.14 NAME Operations

3 o
= r .
OEergtion

NAME (X) <OP> NAME(Y)
X,Y - NAME Variables

NAME (X), <OP> NAME (Y)
' X = declared variable
Y =~ NAME variable

LH
LH
CR
BC
BC

LH
CR
BC
BC

I

14.1 NAME Comparisons. NAME comparisons may only be

codg

Rx, X

Ry Y

Ry Ry .
COND, not=true=label
7, true-label

Rx, X

Ry, Y
Rx’ Ry
COND, not~true-label)
7, true~-label ol

3.1.14.2 NAME Assignments. The variable Y in the following
examples may only be a NAME variable.

identical to Y.

NAME (Y) = NAME(x),
where X is declared variable

NAME(Y) NAME (X) ; :
where is‘NAME variable

X

3-80

LA
STH

ILH
STH

The variable X may

be either an actual or NAME variable having declared properties

INTERMETRICS INCORPORATED » 704 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

& e

3.1.15 %MACROS

The following $MACROS are recognized by the
HAL/S-FC compiler and produce the indicated code,

3.1.15.1 %svC.

Operation Code
$8VC (o) sVC a

3,1.15.2 % NAMECOPY. This operation works in the same manner

as NAME asS§ignments except that the operands must be structures,
but not necessarily having identical properties.

Ogeration Code
$NAMECOPY (Y, X) ; ' LA R, X
where X is actual
variable STH Rx’ X

3-1915-3 %COPY-

Operation Code
%COPY (X,Y) , L Rx’ =Y (X, size of Y)
‘ L R, =%(Y
Mv v’ (Y)
| H R, Ry
$COPY (X,¥Y,n) . = L R, =Y(X,n)
‘ L Ry, =2 (Y)
MVH R_, R
x" Ty
%COPY (X,Y,5); ' L R, ¥
ST L, X
: Y
L Ry Y42
ST , X+2
v
LH Ry, Y+4
STH Ry’ x+4
3-81

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

i
[
i

3.1.16 NONHAL References
Definition and use of the NONHAL construct in

the HAL/S-FC compiler system results in an unimplemented
feature message from the code generator.

3-82

" INTERMETRICS INCORPORATED + 701 CONCORD AVENUE ~ CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

LY

£y

3.2 Object Code Naming Conventions

Each successful HAL/S compilation produces several
named control sections (CSECTs), The CSECT names are
derived according to the following rules:

a)

b)

HAL/S compilation unit names are transferred
to the emitted object code by using only the
first six characters of the HAL/S name. The
name will be padded or truncated to six
characters where necessary.

Any occurrence of the underscore character £)
‘in the first six characters of a PROGRAM,
PROCEDURE, FUNCTION, TASK, or COMPOOL is

- eliminated. The resulting characters are

joined together to produce the characteristic

name of the compilation unit (e.g. A B C becomes
ABC). Additional characters are placed on the
front of the resultant name to form the final

name for each of the individual situations in
which the name is used. All CSECT names therefore
take the form:

 cCNNNNNN

where the value of cc for individual cases is:

PROGRAM i $0

TASKs : $c c=(1-9, A-7)

- COMSUBSs o i #C

Internal procs i an a=(A—Z); n=(0N=9)
DECLAREA data : #D

COMPOOL i 4P
Process Directory Entries: #E

Z=con to comsub i #72
“Remote data . ¥R
Exclusive data ‘ ;X

| , ~ In addition to CSECT's produced by the compiler, the
! HAL/S-FC system defines other CSECT's, some of which are

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661~184O

referenced by compiler-emitted code. These CSECT types
and theif naming conventions are: ' '

Z-con to library routine: #Q

Data for library routines: #IL

3~83

f‘ 3.3 Printed Data From Phase II

Under control of the LIST compller option, Phase IT
will produce a formatted, mnemonic listing of the object
code produced for the compllatlon unit. In addition to
the assembler-type mnemonic instruction llstlng, a full
hexadecimal listing of the emitted code is also produced,

This object code listing is normally appended to
the Phase I primary source listing as defined by the
SYSPRINT DD card. However, use of the SDL compiler option
in addition to the LIST option causes the object code .
listing to be produced through the OUTPUT7 DD card. The
listing thus produced is compatible with the ABSLIST
function of the AP-101 Link Editor. The HAL/SDL ICD contains
the detailed description of the ABSLIST format.

3.4 Symbol Table Augmentation

o ¥
Phase II inherits an initialized symbol table from : 4y
Phase I. In the course of generating code, Phase II makes
additions to the symbol table which are inherited, in turn,
by Phase III. These additions are generally in the area of
~data addressing.

Information is added in two of the symbol tables
parallel arrays: :

® The SYT ADDR array is filled with data offset
information indicating the relative location of
data items w1th1n CSECTs.

¢ The EXTENT array ig f£filled with information
about the size of the storage allocated to
1nd1v1dual data 1tems.

3-84
lNTERMETHICS‘INCORPO'RATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.5 Statement Table Augmentation

Phase III inherits, in a secondary storage device,
the statement table produced by Phase I, If the ADDRS
compiler option is in effect, Phase I leaves room in the
statement table for beginning and ending addresses of
individual HAL/S statements. This information is filled
in by Phase II after the generation of the executable code
has been performed., The completed statement table is then
left for use by Phase III.

t

3-8

Z

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

PRI VI

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

4.0 PHASE III - SIMULATION DATA FILE GENERATION

Phase III of the HAL/S-FC compiler has the primary
function of providing Simulation Data Files (SDFs) for each
unit of compilation. Phase III also produces user-oriented

printouts upon special request,

following Phase III functions:

e SDF generation

e Printed data

4,1 SDF Generation

Phase III synthesizes the SDF for a compilation unit
from data received from previous Phases of the compiler.
This data is primarily in two areas: a) The symbol table,
created by Phase I and augmented by Phase II, and b) The
statement table similarly created by Phase I and II.

The detailed format of an SDF is controlled by the

HAL/SDL Interface Control Document,

This section deals with the

The reader 1is referred

there for details of SDF design beyond the overview presented

in the next section,

4.1.,1 Overall SDF Design

A Simulation Data File (SDF) is an organized and
directoried collection of block, symbol, and statement data
which is created by the HAL compiler from a single unit of
compilation and stored in a permanent form for later use by

simulation processors.

Theré are basically three types of infqrmation contained

in an SDF, These are:

1) Symbol Data - contains the attributes of HAL symbols
(1abels and variables) such as name, class and type,
relative core address, number of bytes in core
occupied, etc, Also contains arrayness and
dimensionality for arrayed variables, template
linkages for elements of structures, and cross-
reference information listing all statements within
the compilation unit that may assign values to the

symbol.

INTERMETWCS!NCORPORATED'YOTCONCORDAVEN

4-1 ' : . ,
UE + CAMBRIDGE, MASSACHUSETTS 02138 -

R T I

(617) 661-1840

2) Statement Data - contains the attributes of HAL
statements such as type, Statement Reference
Numbers (SRNs) if specified by the user, indices
for all labels attached to each statement, and
indicies for all variables which may be assigned
values by that statement. Also may optionally
contain the relative core addresses of the first
and last executable instructions emitted for that
statement.

3) Block and Directory Data - contains information about
cach HAL block and the symbols and statements
contained within that block, plus information concerning
the layout and organization of the SDF which minimizes
the time needed to access desired data entries.

An SDF is produced for all compilation units unless
suppressed by the user (the TABLES/NOTABLES option). In
the case of COMPOOL compilations, the SDF becomes somewhat
simplified, having no executable statements and, consequently, .
no cross-reference data for its symbols. J;

SDFs are created as members of Partitioned Data Sets
(PDSs) and are assigned names of the form ##ccceec, where CCCCCC
is the first six characters of the compilation unit name with
any and all underscore characters removed. (Example: the
SDFs for the compilation units SAMPLER and TEST_SAMPLE would
be assigned the names ##SAMPLE and ##TESTSA, respectively). The
members are written in fixed record format with a block size
and logical record length of 1680.

The structure of the SDF will support three efficient
types of access:

1) Given the name of a symbol, and the name of the
block in which it was declared, obtain the
attributes of the symbol. '

2)' Given a Statement Reference Number (SRN), obtain
the attributes of the statement.

3) Given an Internal Statement Number (ISN), obtain
the attributes of the statement.

N o 4—;2
3 INTERME_TRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

In access methods 1) and 2), the SDF directory plays
a key role. When the symbol name and its block are given,
the directory will identify which particular physical record
of the SDF contains the corresponding fixed-length Symbol
Node. Once this record has been read into core, a simple
and fast binary search will locate the symbol node which
in turn "points" directly to the attributes of the symbol
which are contained within a variable-length Symbol Data
Cell, A virtually identical procedure can be used to locate
statement data when the SRN is given, In this case, the fixed-
length nodes involed in the binary search are called Statement
Nodes, and their corresponding variable~length data cells are
called Statement Data Cells. :

In contrast to access methods 1) and 2), which require
directory help followed by binary searches, method 3) is
direct, This is because there is a one-to-one correspondence
between the ISN (compiler-generated Internal Statement Number)
and the order of the Statement Nodes. The HAL/SDL ICD contains
detailed descriptions of the SDF organization,

4,2 Phase IIT Printed Data

For each invocation of Phase I1I, a set of tabular
data is printed. The information presented deals with
parameters relating to the SDF produced, such as number
of SDF pages, numbers of block, symbol, and statement nodes,
etc,

In addition to the information which is alvays printed,
two optional printouts are available. Under control of the
TABLST compiler option, the user may request that symbolic,
structured dump ofithe SDF be provided. In addition, under
control of the TABDMP compiler option, the user may request
that the contents of the SDF be displayed in a hexadecimal
format, page by page.

43

 INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

v,

REPRODUCIBILITY ©t" ‘f‘;:zm
ORIGINAL PAGE I§ FUOR

5.0 RUN TIME LIBRARY

5.1 Introduction

This section describes the HAL/S-FC runtime library
as used to support the HAL/S-FC compiler. The material is
organized to present both general design concepts and
detailed interface and algorithm information. Following
an introductory discussion of general conventions used
throughout the library, descriptions of the individual
routines are grouped according to the basic type of .
the routine. Each group is introduced by a quick-reference
chart containing basic interface data.

5.2 Basics and Conventions

5.2.1 Origin and Format

The HAL/S~FC compiler comes supplied with a run time
library. The library is a partitioned dataset (PDS) in IBM
AP-101 load module format. Each ‘primary member of the library
was generated by assembling the identically named member of a
source library consisting of statements written in AP-101 Basic
Assembler Language (BAL). Some source library members produce
more than one entry point, in which case load module library
ALIAS names are generated for each entry. A macro library
was used to standardize frequently used sequences of source
code.

5.2.2 Purpose

The run time library is used to supply routines, data
and interfaces which are needed to execute a HAL/S program or
group of programs, which are not produced by the compiler's
code generator. Most of the library consists of subroutines
which are called from compiler generated code in a HAL state-~

‘ment. ‘

5-1

v INTERMETRICS’ INCORPORATED -+ 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 .

5.2.3 Intrinsics and Procedure Routines

The library routines are divided into two groups:
intrinsics and procedures. The main distinction is that
procedure routines save the passed contents of all fixed
point registers, while intrinsics do not. For this reason,
a procedure can call another routine (e.g. vector (VV10S3)
magnitude calls SQORT), but an intrinsic cannot. Intrinsics
do not have a new stack level and therefore do not have-any
: stack work areas. Because intrinsics do not save all passed
: contents of fixed point registers, they cannot restore them,
and must not destroy any register contents that must be
returned to the calling program. Expansions of the macros
within intrinsics routines are different from the expansions
within procedure routines. ' : o

' 5.2.4 Register Conventions in Run Time Library Routines

5.2.4.1 General Purpose Registers RO-R7.

R1-R3, R5-R7: ‘ free use;
R4 H return address during calling ‘ 3[a
' and exiting intrinsics, otherwise -
free use;
RO : stack basej;

Parameters - ¢ Intrinsics: any or all of Rl,
R2, R3, R5, R6, R7 can be used
for parameter passing.

Procedures: any or all of R2, R4,
R5, R6, R7 can be used for
parameter passing. :

5.2.4.2 TFloating Registers F0-F6.

o : FO-F4 . . free use;

F6 (F7) B , k may be used only if saved and ' B
: . restored at entry and exit; ‘ :

Parameters : o _depending on the individual routine,
‘any or all of F0-F4 can be used for
_parameter passing. ‘

Only F6 is guaranteed constanﬁjacross procedure calls.

N

q , ; 5-2 R N
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

3
%

[T

5.2.4.3 Intérfacemébnventions.

In addition to the parameter passing conventions summarized
in general form'in the 'previous two sSéctions and given in detail
in the individual library routine descriptions, the compiler has
information defining the linkage conventions and register usage
for each routine. This section contains that information in a
. 1ist formatted in four columns as follows:

NAME ' The primary or secondary entry
point name.

CALL TYPE Either PROCEDURE or INTRINSIC to
distinguish between routines which
must be called via the SCAL instruc-
tion and those that must be called
using BAL.

BANKO YES indicates that the routine will
always reside in Sector 0 of the GPC.
and may therefore always be called
directly (no ZCON needed). NO indicates
that the routine may reside in a sector
other than 0 and must therefore be
‘crtled via a long indirect address
constant {(ZCON).

Registers assumed to be modified

A list of registers which the compiler
assumes to be modified across a call
to the routine. Any registers not
listed may be assumed to remain unmod-
ified and therefore to maintain their
previouq contents.

~ Any modlflcatlons to compller or library should be made care-'
fully so as to maintain this interface properly.

, 5=3 ,
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840.

REPRODUCIBITITY OF THE .
QRI.GIN&L AL !

| ‘ g
NAME CALL TYPE BANKO REGISTERS ASSUMED TO BE MODIFIED GKL
ACCS PBOCEDURE NC - FO,F1,F2,F3,F4,F5
ASIN .PKOCEDURE NG FO,F1,F2,F3,F4,F5
ACCSH FBOCEDURE NC FO,F1,F2,F3,F4,F5
ASINH PROCEDURE NC FO,F1,F2,F3,FU,F5
ATANH - PROCEDURE NO FO,¥1,F2,F3,F4,F5
BTOC "INTRINSIC NO #1,82,B3,84,K5,R6,R7
CASPV INTRINSIC NO R1,R2,R3,RU,R5,R6
CASP iINTRINSIC NO R1,R2,R3,RBU4,R5,R6
CASRPV ~ PBOCELURE NO NONE
CASRF - |BROCEDURE NG NONE
CASRV fsﬁocznunz NC NONE
CASR "BROCEDURE NO NONE
CASV INTRINSIC NO R1,Rk2,R3,R4,R5
CAS INTRINSIC NO R1,R2,R3,R4,RS
CATV INTRINSIC NO R1,R2,R3,R4,R5,R6,R7,FO,F1
CAT INTGINSIC ' NO R1,R2,R3,R4,RE,R6,R7,FO,PI
CIN EROCEDURE NO NONE
CINDEX PROCEDURE NG BR5,F0,F1,F2,F3,F4,F5 :
cINP EROCEDURE NO FO0,F1 : %
CLJSTV FBROCEDURE NG FO,F1 : '
CCUTE FROCEDURE | NO. NONE
CouT PROCEDURE ~~ NO ~ NONE
CPAS PROCEDURE NO FO,E1
CEASE PROCEDURE ~NO FO,F1 ‘ :

CPASE - PROCEDURE NO ~ FO,F1 - : o
CPASRP FBOCEDURE NO FO,F1 : b
31 INTEINSIC NO R2,R3,R4,R5,R6

CPRC ~ INTRINSIC NO R2,83,B4,R5,B6

CPBA PROCEDURE NO NONE

CRJSTV FROCEDURE NO FO,F1

CSEAPQ EFROCEDURE NC FO,F1,F2,F3,F4,F5

CSLD FEOCEDURE - NO RS ,FO0,F1

CSLDP PBOCEDURE NO R5,FC, F1

CPSLD | ' EROCEDURE NO ~ BR5,F0,F1

CPSLDE EROCEDURE- NO RS,F0, F1

CSST .- EROCEDURE NO , R5,F0,F1

CSSTF . PROCEDURE NO R5,F0,F1

CPSST EROCEDURE | NO RS ,F0,F1

CPSSTE FPROCEDURE NO R5,FQ, F1

CSTR °~ PROCEDURE NO NONE

CSTRUC INTRINSIC NO R2,R3,B4,R5,R6

C1ICB PROCEDURE NC R5,FO0,F1

"CTCE "PROCEDURE NO FO,F1,F2,F3,F4,P5

CICD EROCEDURE NO ~ FO,F1,F2,F3,FU4,F5

CICI PROCEDURE NO R5,F0, F1

CTCK - BROCEDURE = NC BRS,F0,F1

CICH _PROCEDURE ~— NO -~ RS,F0,F1

CTGCX PROCEDURE = NOC R5,F0,F1

cTCcOo EROCEDURE NO - R5,F0,F1

CTIRIMV PROCEDURE NC : FO,F1

DACOS PROCEDURE NG FO,F1,52,F3,F4,F5

DASIN PROCEDURE NG FO,F1,F2,F3,F4,F5 i
DACOSH PROCEDURE NG ~ FO,F1,F2,F3,F4,F5 o

: 0 : - B-4))
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

L DASINH EROCEDURE NC FO,F1,F2,F3,F4,F5

DATANH PBOCEDURE NC FO,F1,P2,F3,F4,F5
LATANZ PROCEDURE NO FO,F1,F2,F3,F4,F5
DATAN FROCEDURE NC FO0,F1,F2,F3,F4,F5
DEXP PROCEDURE NO FO,F1,F2,F3
DLCG PROCEDURE NO FO0,F1,F2,F3,F4,F5
DMAX INTRINSIC - NC R2,R4,R5,F0,F1
o DMCVAL PROCEDURE NG FO,F1,F2,F3,F4,F5
. DMIN INTRINSIC NC R2,R4,R5,F0,F1
i pMOD 'INTRINSIC NC RY4,F0,F1,F2,F3,F4,F5
P CEROL INTRINSIC NC R2,R4,R5,F0,F1
i DPWRD EROCEDURE NC FO0,F1,F2,F3,F4,F5
o DPWRI PROCEDURE NO FO,F1,F2,F3
< DPWRH PROCEDURE NG FO,F1,F2,F3 |
H DSIN FROCEDURE NO FO,F1,F2,F3,F4,F5
o pces PROCELURE NC FO,F1,F2,F3,FL,ES
i DSINH FHOCELURE - NC - PO,F1,F2,F3,F4,F5
N DCCSH PROCEDURE = NG FO,F1,F2, F3,F4,F5
I DSLD PROCEDURE NGO RS |
‘) DSQURT PROCEDURE NG FO,F1,F2,F3, Fu F5
o DSST EROCEDURE NO NONE
: DsuM INTRINSIC NC 82,R4,R5,F0,F1
by LTAN PROCEDURE NC FO.E1,F2;F3,Fu,F5
o DTANH FROCEDURE NC FO,F1,F2,F3,F4,F5
i EATAN2 PROCEDURE NC ~ FO,F1,F2,F3,F4,F5
: ATAN EROCEDURE NC FO,F1,F2,F3,F4,F5
| EMAX INTRINSIC NO R2,RY4 RS,FO F1
H EMIN INTRINSIC NC R2,R4,R5,F0,F1
o EMCD INTRINSIC NO RY4,FO, F1,F2 F3,F4,F5
A EPBOD INTRINSIC NC R2,R4,RS5,F0,FT"
R EPWRE PROCEDURE NO Fo, F1,¢2vF3 F4,F5
| EPWRI PROCEDURE NO - FO,F1,F2,F3
; EPWRH EROCEPURE NC FO0,F1,¥2,F3
i ESUM INTRINSIC NC R2,R4,R5,F0,F1
o EicC PROCEDURE NC F0,E1,F2,F3,F4,F5
i DTCC FROCEDURE NC - FO,F1,F2,F3,F4,F5
; EICH INTRINSIC YiS KY,R5,F0, F1
5 DICH INTRINSIC YES k4,R5,F0,F1
: EXE PROCEDURE NG FO.FT,FZ,F3
GIBYTE INTRINSIC NG R2,K4,R5,F0,F1
HIN EROCELURE NC FO,¥1
IIN FROCEDURE NU - FO,F1
EIN PROCEDURE NG ' FO,E1
DLW PROCEDURE NC FO,F1
BIN - FROCEDUKE NC. FO,F1
HMAX INTRINSIC NC R2 ,RY4 HS R6
HOIN = INTRINSIC NC : R2,R4, RﬁvRﬁ‘
HEROL INTRINSIC NO Rz,nu,ns,as
HE DY INTRINSIC NC . R2,84,R5,R6
IKAX INTRINSIC NG R2,R4,R5,R6"
- IMIN INTRINSIC NC - RZ2,RY,R5,R6"
IMOD INTRINSIC NO R2,R4,85,R6,R7
HHOD INTRINSIC . NO ~ R2,R4,R5,R6,R7
ICINIT PROCEDURE NC Lo FO,F1
HCUT FROCEDURE NO FO,F1
5- 5

INTEHMETRICS INCORPORATED * 701 CONCORD AVENUE -« CAMBRIDGE MASSACHUSETTS 02138 + (617) 661-1840

OUIER1

IcuT

ECUT

DOuUT

BOUT

SKIP

LINE

COLUMN

TAB

PAGE

1EROD

1PWRI

IPWRH

HPWRH

| IREM

| HREM
1SUM

; iT0C

! HTCC

g ITCD

3 ITCE

z KTGC

| LCG

; MEBDNE

; MMRSNE

; MYWDNE

3 VMASNE

i MMODNP
MMOSNP

3 MM1DNE

% MMISNP

i MMIT NP

MUTWNP

; HM11DN

. MMI1D3
| MM11SN
| MMi11S53
i MM12DN
ME1203
. MB12SN
g HM1253
; NEI13DN
MN13D3
HM13 SN
MM135S3
“MM14DN
MMI4D3
MMIUSN
MM14S3
MMI5DN
ME1SSN
MM17D3

L MM17Ss3
| MM17SN

M¥17DN-

PROCEDURE
EROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
FROCEDURE
FROCEDURE
PROCEDURE
PROCEDURE
INTRINSIC
PROCEDURE
PROCEDURE
EROCEDURE
INTRINSIC
INTRINSIC
INTRINSIC
PROCELURE
EROCEDURE
INTRINSLC
INTRINSIC
INTRINSIC
FROCEDURE
PROCEDURE
EROCEDURE
PROCEDURE
PROCEDURE
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
FROCEDURE
EROCEDURE
PROCEDURE
PROCEDURE
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
PROCEDURE
PROCEDURE
FROCEDURE
PROCEDURE
INTRINSIC
INTRINSIC
PROCEDURE
PROCEDURE
PROCEDURE

- PROCEDURE

NG
NO
NG
NO
NO
NC
NC
NOC
NG
NC
NO
NC
NO
NQ
NC
NC
NO
NG
NO
YES
YES
NO
NC
NC
NC
NG
NC
NG

NO
NO

NO
NO
NO
NO
NG
NG
NG
NG
NC
NC
NC
NG
NO
NC

NO -

NC
NO
NC
NC
NO
NO-
NC
NC
NC
NC

5~6

REPRODUCIBILITY OF LHi

FO/F1 ORIGINAL PAGE IS POOR o

’
FO,F1
FO,F1
FO,¥1
FO,F1
FO,F1
FO,F1
FO,F1
FO,F1i
R2,R4,R5,R6,R7
RS '
RS
R5
R2,84,R5,R6,R7
R2,R4,R5,R6,R7
R2,R4,B5,R6
NONE
NONE
R4 ,B5,F0,F1
RU,RE,FO0,F1
K1,R2,R3,R4,R5,R6,R7,F0,P1
¥F0,F1,F2,F3,F4,FS
NONE
NONE
FO,F1
FO,E1
R1,R3,R4,R5,R6,R7,FO,F1 1™
R1,R3,R4,R5,R6,R7,F0,F1 wlr
R1,K2,R3,R4,R5,R6,R7,FO,F1,F2,F3
R1,82,R3,R4,R5,R6,R7,F0Q,F1
R1,R2,R3,R4,R5,K6,R7,FO,F1,F2,F3
R1,R2,R3,R4,R5,R6,R7,FV,F1,F2,F3
R1,82,R3,R4%,R5,R6,R7,P0,F1,F2,F3
R1,R2,R4,R5,F0,F1,F2,F3,F4,FS
R1,R2,R3,R4,R5,R6,R7,FO,F1
R1,R2,R4,RS5,F0,F1,F2,F3
FO,F1,F2,F3,F4,F5
FOG,F1,F2,¥3,F4,F5
FO,F1,F2,F3,F4,F5
FO,FY,F2,F3,F4,F5
R2,R4,R5,R6,F0,F1
R2,R4,F0,F1 :
R24B4,R5,R6,F0,F1
R2,RU,F0,F1
FO:F1,F2,F3,F4,F5
FO,F1,¥F2,F3,F4,F5
FO,F1,F2,F3,F4,F5 :
F0,F1,F2,F3,F4,F5 ~
B1,R4,R5,86 ,8R7,F0,F1,F2,F3
R1,R4,R5,R6,R7,F0,F1,F2,F3
F0,F1,F2,F3,F4,FS

“FO,F1,F2,F3,FL4,F5

FO,F1,F2,F3,F4,F5 : S
FO,F1,P2,FP3,F4,F5 R e
ST o ; “g

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

MM6DN
MM6D3
¥M6SN
MMG6S3
MRODNE
MROSNE
MRI1DNE
MRISNE
MRI1TNE
MRIWNE
MSTR
MSTRUC
MV6DN
MveD3
¥V6SN
MV6S3
CSHAEC
BANDONM
RANDG
KCUND
ETOI
TRUNC
FLCOR
CEIL
DTRUNC
DFLOCEK
DCEIL
DKGUND
DICI
SIN
ces
SINH
CCSH
SQRT
STBYTE
TAN
TANH
VMeDN
VM6ED3
VMBS N
VM6S3
VO6DN
VC6D3
VG6SN
V0653
VEODN
VRODNE
VROSN
VROSNE
VEIDN
VE1DNE
VR1SN
VE1SNE
VEITN
VRITNE

INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
FROCEDURE
EROCEDURE
FROCEDURE
PROCEDURE
PROCEDURE
PFROCEDURE
PROCELURE
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
PROCEDURE
PROCEDURE
PROCEDURE
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTKINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTHINSIC

- INTRINSIC

PROCEDURE
EROCEDURE
INTRINSIC
INTRINSIC
PROCEDURE
EROCETCURE
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
INTRINSIC
PROCEDURE
FROCEDURE
PROCEDURE
EROCEDURE
EROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
EKOCEDURE
PROCEDURE

NC
NO
NO
NC
NC
NG
NC
NC
NC
NC
NO
NC
NO
NC
NC
NG
NC
NO -
NO
YES
YES
YES
YES
YLES
YES
YES
YES
YES
YES
NC
NC
NC
NC
NO
NC
NC
NC
NC
NG
NQ

NOC

NOC
NC
NC
NQ
NQ
NC
NC
NC
NC.

NG

NC -
NC
NC
NO

R1,B2,R3,RU,R5, R6,R7,F0,F1,F2,
R1,R2,E3,R4,R5,R6,R7,FO,F1,F2,
R1,R2,R3,R4,R5,R6,R7,FO, F1,F2
R1,BZ R3,R4,R5,R6,R7,FO,F1,F2,
FO,F1

FO,F1

FO,F1 _

FO,F1

FO,F1

FO,F1

NONE

R1,R2,R4,R5, R6

R1,RZ R3‘RU RS,R6,R7,FO0,F1,F2
B1,R2,R3,R“,R5,R6,R7,F0,F1,F2

K1,R2,R3,R4,R5, K6 ,F0,F1,F2,F3
FO,F1

FO,F1,F2,F3

FO,F1,F2,F3

K4 ,R5,F0,F1

R4 ,R5,F0,F1

R4 ,R5,F0, F1

R4,R5,F0,F1

R4 ,K5,F0,F1

R4,R5,F0,F1

R4 ,R5,F0,F1

R4 ,RS5,F0,F1

R4 ,R5,F0,F1

RU,R5, FO,F1

R1,R3,RY4,F0,F1, F2 F3,F4,F5
R1,R3,R4,FO, F1,F2,F3,Fby F5
FO,F1,F2,F3,F4,F5

FO, F1,F2 F3,F4,F5
R1,R44R5,R6,R7,F0,F1,F2,F3
R1,R4,R5,F0,F1
FO,¥1,F2,F3,F4,F5
FO,F1,F2,F3,F4,F5

F3,.% ,F5
F3,F4,F5
F3,F4,F5
F3,F4,F5S

«F3,F4,F5
R1,R2,R3,R4,R5,R6,R7,FO,F1,F2,

F3,F4,F5

B1,R2 K3,R4,R5,R6,R7,F0,F1, F2 F3,F4,F5

K1,R2,R3,R4,R5,F0, F1,r2 F3,F4,

F5

R1,R2,R3,R4,R5,R6,R7,FO,F1,F2,F3,F4,F5

R1,B2,R3,R4,R5,F0,F1,F2,F3
R1,R2, R3»RQ R5,R6,R7,FO0,F1,F4
'R1,82,R3,BRU4,R5,R6,F0,F1

+F5

B1 B2,R3,R4,R5,KR06, R7,FO0,F1,F4,F5

mz R3,R4,R5,R6,F0,F1
FO F1
FO,F1
FO,F1 |
FO,F1_ |
FO,F1
FO,F1
FO,F1
FO,F1
FO,F1
FO,¥F1

5-7

lNTFRMETRICS INCORPORATED - 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

VR1WN PROCEDURE NC } "FO,F1
i VR1WNF PROCEDURE "~ NC FO,F1
! VVODN INTRINSIC - NC R1,B4,R5,F0,F1
i VVODNP INTRINSIC NC R1,R4,R5,R7,FO,F1
: VVOSN INTRINSIC NC R1,RY4,E5,F0,F1
VVOSNE INTRINSIC NC R1,B4,R5,R7,FO0,F1
VVIDN INTRINSIC NC R1,R2,8B4,R5,F0,F1
'ARDE! INTRINSIC NG E1,R2,R4,F0,F1,F2,F3,F4,F5
VVID3P INTRINSIC NO : E1,R2,RH,R5,R6 ,R7,F0,F1
VVIDNP INTRINSIC NC R1,82,R4,R5,R6,R7,F0,F1
VVISN INTRINSIC - NC R1,R2,R4,R5,F0,F1
VV1S3 INTRINSIC NC ~ R1,B2,R4,FC,F1,F2,F3,F4,F5
VV1S3P INTRINSIC NG - R1,R2,R4,R5,R6,R7,F0,F1
; - VVISNP INTRINSIC NO R1,R2,R4,R5,R6,R7,F0,F1
ol VVITN INTRINSIC NC R1,R2,B4,R5,F0,F1
(. VVIT3 - INTRIWSIC NG ' R1,R2,R4,F0,F),F2,F3,FU,F5
! " VVIT3P INTRINSIC NC 'R1,R2,R4,R5,R6,R7,FO,¥
VVITNP INTRINSIC NC R1,R2,R4,R5,R6,R7,FO,F1
Lo VVINN INTRINSIC NC - R1,R2,R4,R5,F0,F1
VV143 INTRINSIC NG R1,K2,R4,F0,F1
VVIW3P INIRINSIC NG K1,R2,RY4,R5,R6,R7,FQ,F1
VVIWNP 1NTEIKSIC NG R1,R2,R4,RB5,k6, R7,k0 F1
VV10D3 EROCEDURE NC Fo,f1,Ez,F3,F4,F5
VV10DN PROCEDURE NC FO,F1,F2,F3,F4,F5
VV9D3 EROCEDURE NO F0,F1,F2,F3,F4,F5
VVIDN PROCEDURE NC FO,F1,F2,F3,F4,F5
VV10S3 PROCEDURE NG ¥0,F1,F2,F3,F4,F5
VV1i0SN EROCEDURE NC FO,F1,F2,F3,F4,F5
L VV9s3 PROCEDURE - NC FO,F1,F2,¥3,F4,F5
| VVISH PROCEDURE NC FO,F1,F2,F3,F4,F5
: VV2DN INTRINSIC NO ~ R1,RB2,R3,R4,R5,FO0,F1
VV2D3 INTRINSIC | NC k1,k2,R3,R4,F0,F1,F2,F3,F4,F5
| VV2SN INTKINSIC NO R1,R82,R3,R4,R5,F0,F1
: VY2S3 INTRINSIC NC R1,R2,R3,R4,F0,F1,F2,F3,F4,PF5
VV3DN INTRINSIC NO R1,R2,R3,R4,R5,F0,F1
VV3D3 INTKINSIC NC R1,R2,R3,R4,F0,F1
VV3SN INTRINSIC NO R1,R2,R3,R4,K5,F0,F1
i VV353 INTRINSIC NC , R1,R2,&3,R4,F0,F1,F2,F3,F4,F5
| ~ VVA4DN INTRINSIC NC R1,R2,R4,R5,F0,F1,F2,F3
i ' VV4D3 INTHINSIC NC: -~ R1,B2,R4,F0,F1,F2,F3
VYUSN INTRINSIC NC - R1,R2,R4,R5,F0,F1,F2,F3
VV4S3 INTRINSIC NC - K1,%2,R4,F0,F1,F2,F3
VV5DN INTRINSIC NC - R1,R2,RBR4,R5,F0,F1,F2,F3
VV5D3 INTRINSIC NC R1,R2,R4,F0,F1,F2,F3,F4,F5
VV5SSN INTRINSIC “NO ~ R1,K2,R4%,R5,F0,F1,F2,F3
VV553 INERINSIC ~NC R1,K2,R4,F0,F1,F2,F3
, VV6DN INTRINSIC NG R1,R2,R3,RY4,R5,F0,F1,F2,F3
i VV6D3 INTRINSIC NC . R2,E3,R4,F0,F1,F2,F3 ‘
VV6SN INTRINSIC ~NO R1,R2,R3,R4,R5,F0,F1,F2,F3
VVES3 INTRINSIC NC R2,RE3,R4,F0,FP1,F2,F3
VVIDN INTRINSIC NC R1,R2,R4,R5,F0,F1
VV7D3 INTRINSIC NG : R1,R2,R4,F0,F1,F2,F3,F4,F5
VVISN . INTRINSIC NC R1,82,R4,R5,F0,F1 ‘
VV7S3 INTBINSIC NC ' R1,BZ R4,FO0,F1,F2,F3,F4,F5
vveD3 INTRINSIC NC R1,R2,R3, Ru,Rs FO,F1
5-8

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02188 - (617) 661 1840

= b
W

VVEBDN INTRINSIC - NC R1,§2,R3,RU,R5,FO,F1

VV8s3 INTRINSIC NO &1,B2,R3,R4,R5,F0,F1

VV8SN INTRINSIC NOC R1,R2,R3,B4,R5,F0,F1

VX6D3 INTBINSIC NG R1,R2,R3,RY4,FO,F1,F2,F3,F4,F5

VX653 . INTRINSIC NO BR1,R2,R3,R4,F0,F1,F2,F3

XTOC INTRINSIC NO R1,R2,83,R4,R5,R6,K7,F0,F1

oT0C INTRINSIC - NO R1,R2,R3,R4,R5,R6,R7,FO,F1
5-9

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

BYPRONUCIRTELITY OF THE

oftf Ll CAGH I3 FOOR

5.2.5 Referencing Conventions

5.2.5.1 CSECT Names. In order to comply with the CSECT
naming standards described in the HAL/SDL ICD, all library
code CSECTs begin with two alphabetic characters (a-2)*. All
library primary names and aliases are unigue to 6 characters.

Whenever a data CSECT is needed for a particular library
module, it is given the CSECT name #Lnnnnnn, where nnnnnn
is the first 6 characters of the primary entry nanme.

5.2.5.2 ZCON's. For each primary entry point and alternate
~entry point in fhe runtime library, a member exists in a separate

7CON library. The members in the ZCON library contain address

constants which refer to the actual entry points. Thus, for

the library routine named SIN which has an entry point named

CcoS, there are two members in the ZCON library named #QSIN and
#0COS. These #Q modules contain references to the respective
entry points. The individual %ZCONs in the ZCON library are
created by assembly code like the following:

$0SIN CSECT
DC Z(SIN,,X'E')
EXTRN SIN
END

Some library routines make reference to other library
routines via the ACALL macro (see Section 5.2.6). The ACALL
macro does not make reference via a ZCON as is done when
compiler-emitted code references a library routine. Use of
+he ACALL macro for inter-library routine reference means
that a referenced routine must be in the same machine sectorxr
as the referencing routine, Or must be in sector zero.

‘% ‘gector 0 routines are an exception: their CSECT names
begin with #0. This is to conform to link editor conventions -
for routines which must reside in sector 0. Sector O routines.
are identified in the list in Section 5.2.4.3 and in the boxed
area of the individual library routine description.

i
1

5-10 '

INTERMETRICSV INCORPORATED - 701 CONCORD AVENUUE + CAMBRIDGE, MASSACHUSETTS 02138« (617) 661-1840

£

5.2.6 Coding Structure

The following outline represents the standard coding
structure of all library members.

1 TITLE

2 WORKAREA macro definition
used only if addition stack storage was needed

3 AMAIN

4 * Comment card describing the function of the
primary entry point

5 INPUT
6 OUTPUT

7 body of executable code including use of WORK,

- AERROR, AEXIT macros where needed and alternate
entry points defined using the AENTRY macro,
function comment card, and INPUT and OUTPUT macros
in the same manner as the primary entry point.

8 DC constant area addressed via PC relative mode

9 ADATA, followed by a DC constant area addressed via
base and displacement mode.

used only if constands need to be indexed

10 ACLOSE

. 3

1 5-11 | - .
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE < CAMBRIDGE, MASSAGHUSETTS 02138 - (617) 661-1840

I
i
I
1

5.2.7 The Macro Library

To standardize interface conventions, automate production
of commonly used code sequences, and impose a structure to the
runtime library, a series of macros are used. This section
describes the function, use, and expansion of these macros.
Lower case letters are used to indicate variable fields. Square
brackets [] indicate optional fields, braces { } indicate a
choice of required fields. Complete listings of all the macro
source code is also included. '

® AMAIN
, n _ JYES }
name AMAIN INTSIC = {INTERNAL
ACALL = YES
SECTOR = 0
Function:

Defines "name" as the primary entry point of a routine.
INTSIC=YES:
Defines the routine (and any entry points) as an intrinsic. 1%;*

If the INTSIC operand is omitted, the routine ig defined as a
procedure.

INTSIC=INTERNAL:

Defines an intrinsic which is called only by other routines
in the library. At present, this is only GTBYTE and STBYTE.

ACALL=YES:

(valid only for procédure routines.) Allows use of the ACALL
macro within the routine {See ACALL description).

SECTOR=0:

Defines the routine (intrinsic or procedure) as a Sector 0
routine.

Expansion:

The macro first defines the primary entry "name" (the AMAIN
label) as the CSECT name, unless SECTOR=0 was specified. In the
latter case, the CSECT name is generated by prefixing “name" with
#0, and the primary entry "name" is defined using the DS and ENTRY
statements. The options selected via the AMAIN operands are saved
in global SETB variables for testing by the other macros. If A
either INTSIC option was selected, the macro ends. Otherwise, ﬂ%p
a procedure is being defined, so the STACK DSECT is generated.

5-12

“INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The STACK DSECT consists of a standard 18 halfword area,
including symbols for the saved copies of the fixed point
register parameters (ARG2, ARG4, ARG5, ARGE, ARG7), followed

by the WORKAREA macro. The WORKAREA macro is the means by
which additional storage beyond the standard stack of 18
halfwords may be defined. If such storage is needed a local

. WORKAREA macro must have been defined earlier in the source

H which contains the appropriate DS assembler statements. These

) statements are thus incorporated as the remainder of the

« STACK DSECT. If additional storage is not needed, the local

| WORKAREA macro is not defined. As a result, the system WORKAREA
macro is invoked, which does not define any storage, leaving
the STACK DSECT at its standard length. The system WORKAREA
macro also sets a global SETB variable, which is tested later
by the AMAIN macro to determine if the stack is standard or
augmented. The STACK DSECT is then terminated by resuming the
original CSECT. The STACK DSECT is defined in this sequence

so that the assembler will output the SYM records in the order

i expected by the link editor's stack size algorithm. A USING

i statement is generated to give addressibility to the stack area.
. Finally, the executable code of the entry prologue is generated,
i This consists of an NIST instruction to zero the 9th halfword
of the new stack frame, establishing a null ON ERROR environ-
ment. In addition, if both ACALL=YES is specified and a local
WORKAREA provided, the default stack size of 18 set up by the

{'} SCAL microcode will be insufficient, so an IAL to set up the new
Lo stack size is dgenerated. :
® ABENTRY

name AENTRY
Function:
| Defines "name" as a secondary entry point.

Expansion: -

"name" is externally defined using the DS and ENTRY statements.
- If the routine was defined as an intrinsic, the macro ends. Other-
; wise, the executable code of the entry prologue is generated in
~ the same manner as the AMAIN macro.

| _ ' = 5-13 | o
INTERMETRIGS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

‘ REPRODUCIBITITY OF IR
| PRIGINAL P/ 7090 C e
| LI
; ® AEXIT
5 AEXIT [CC = (KEEP
1 (rx)
EQ
s NE
. COND=code
o Function:
Cause return of control from a procedure or intrinsic
routine. :
cc:
Used to pass a condition code back to the caller. It
can be used only if OUTPUT CC was specified. (See OUTPUT
o macro.)
|
§ valid for Intrinsics Only:
| CC=KEEP:
Passes back the condition code as is.
CC=(rx): ‘ {*1
e i i »f

Passes back the condition code generated by a LR rx, rx.

valid for Procedures Only:

Passes back an equal (B'00') condition ¢ode.
Passes back a not equal (B'li') condition code.

Note: The CC= operand is used in the following 8 routines:
CPR, CPRA, CTSR, CSTRUCT, VV8DN, VV8D3, VV8SN, and VVB8S3.

' COND=code:

Used to do a conditional return, i.e. based on the current
condition code. Valid for procedures only. "code" is either a
number used as the mask on a BC opcode, or a letter or letter pair
_representing the mask in the extended BC mnemonic op codes.

(E, Z, NE, N2, H, O, L, M, HE, LE, NL, NM, NH, NO). This
operand may be used to improve the efficiency of some . routines.
If used, be sure valid executable code follows it, so the fall
through case is valid. ‘ :

: 5-14 :
; INTERMETRICS INCORPORATED - 701 CONCORD AVENUE. + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Expansion:

The code generated by the AEXIT macro depends primarily on
whether the routine is an intrinsic or procedure, and secondarily
on what operands were supplied, and, in the case of intrinsics,
what fixed point registers were used. The expansions for intrinsics
and procedures are described separately. ’

Intrinsics:

If register(s) Rl and/or R3 have been defined (see
INPUT, OUTPUT, and WORK macros), it is assumed they have
been modified and must be restored from the stack, since
they are the addressing registers for compiled code. This
is done via the appropriate LH instruction(s), or IHL and
SLL instructions if CC=KEEP was specified, since LH would
destroy the existing condition code. If CC=(rx) was specified,
a LR rx,rx is generated to set the condition code. Finally,
a BCRE or BCR is generated to cause a return to the caller.
A BCR is generated if SECTOR=0 or INTSIC=INTERNAL was
specified on the AMAIN macro.

Procedures:

If CC=EQ or CC=NE was specified, the condition code
bits in the return PSW in the stack are zeroed or set via
the ZB or SB instruction. Then, an SRET instruction is
generated with a mask of 7 if the COND operand was omitted,
or the appropriate mask if it was supplied.

, ~ 5-15 , ,
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

® INPUT
I register spec type comments
INPUT {NONE
Function:

Defines input interface of primary or alternate entry
point and symbolic names for the register(s).

Register Spec:

One of Rl, R2, R3, R4, R5, R6, R7, FO, Fl, F2, F3, F4, F5,
F6, or F7. If there is no input (RANDOM, RANG only), code
NONE. If there is more than one, use continuation lines for
each subsegquent one (see examples). ,

Type Comments:

type precision units
SCALAR SINGLE/DOUBLE RADIANS

MATRIX (3,3)
MATRIX (N,N)

VECTOR (3)
VECTOR (N) N ; e
INTEGER (N) ’ - {
CHARACTER ~ , , —
T Examples:
col. 16 ' : col. 72
¥ : ~ ¥
(1) INPUT FO SCALAR STNGLE RADIANS
- (2) INPUT R2, VECTOR (N) DOUBLE X
' R3, VECTOR (N) DOUBLE X
R5 INTEGER (N) SINGLE

Note: Rl and R3 are illegal inputs for procedure routines, and
R4 is illegal for intrinsic routines. '

; ; 5-16 , :
flhﬂERMETmCSINCDRPORATED'701C@NCORDAVENUE - CAMBRIDGE, MASSACHUSETTS 02138 ~ (617) 661-1840 o

T AR T SO ETALAND e T T T

Expansion:

For each register spec supplied, the macro checks for a
valid register symbolic, or for the special case of NONE.
If the symbolic register name has not been previously defined,
an EQU statement is generated to define it. The macro also
tests for the illegal use of Rl or R3 for a procedure paramctor
and R4 for an intrinsic. A global arrayed SETB variable is
set, which in conjunction with the AMAIN, AENTRY, and ACLOSE
macros, will guarantee that an INPUT macro has been supplied
for each entry point (see ACLOSE macro).

® OUTPUT ,
register spec type comments
OuTPUT NONE '

cc

Function:
Defines output interface of primary or alternate entry point.

Operand form is identical to that of INPUT macro, with the
addition vf CC as a possibility. This indicates that the
condition code is the output of the routine. If CC is specified,
the CC= opticn of the AEXIT macro must be used.

Expansion:

Same as for INPUT macro, except for special processing for the
CC operand. If CC is supplied, a global SETB variable is set which
is tested by the AEXIT macro for consistency with its CC operand.

| | | 5-17
| INTERMETRICS INGORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

L
i3
® WORK
WORK {register spec}
—_ Functions
Defines work registers. T T
Expansion:
Similar to INPUT and OUTPUT, except that this macro is
required only if additional register symbols need to be
defined.
e ABAL
ABAL name
Function:
calls the intrinsic routine "name", valid only in a procedure
routine. :
Expansion: ‘ o ‘ ‘ P
Generates a BAL 4, name, and an EXTRN Statement if "name"
has not been previously»defined.
® ACALL
ACALL name
Function:
Calls the procedure routine "name", valid only in a
procedure routine defined with ACALL=YES option.
Expansion:
Generates an SCAL 0, name, and an EXTRN statement if “name"
has not been previously defined. : :
«
-

5-18

. |NTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

® AERROR
AERROR number cause comment
Function:

: Generates a send error SVC instruction to signal a run
e time _error to the FCOS.

Number:
"The error number.

Cause Comment:

Brief description of the cause of the error.

Expansion:

This macro accumulates, in GBLA variables, all errors sent
within one assembly. It also checks to see that the error
number indicates as an argument to AERROR is less than a
maxiutum value. The actual code emitted is an SVC in which the
operand is the label of an SVC parameter list to be emitted by
0y the ADATA or ACLOSE macro via the ERRPARMS macro, If any error
e : is sent more than once in an assembly, AERROR insures that only
: one SVC parameter list for that error is used.

I 0» ADATA
ADATA
; Function:

Defines the start of a separate data CSECT for indexable
constant data.

Expansion:

A CSECT is created with the name #Lnnnnnn where nnnnnn is the

: first 6 characters of the primary CSECT name defined by the AMAIN
- macro, The ADATA macro ends leaving the data CSECT in effect so

i ‘ - that any user-defined data following the macro call will be part

: of the data CSECT. The ERRPARMS macro is invoked so that any

: possible AERROR SVC parameter lists will appear before the indexed
v data. . This is necessary so that the assembler will use the direct
addressing mode instead of base and displacement.

| , , ; 5-19
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

® ACLOSE
ACLOSE
Function:

Terminates the assembly.'

Expansion:

The macro first invokes the ERRPARMS macro to create the
AERROR SVC parameter lists. (See ERRPARMS macro.) It then
checks via arrayed global SETB variables if INPUT and OUTPUT
macros were supplied for each entry point. Finally, it generates
an END assembler statement, terminating the assembly.

® ERRPARMS
ERRPARMS
function:

Generates SVC parameter lists for the AERROR macro.

Exgansion:

This macro is invoked by the ADATA and ACLOSE macro. It
first tests a global SETB variable to see if it has already
been invoked, in which case the macro does nothing. Otherwise,
it generates a CSECT statement to define the data CSECT (FCOS
parameter lists must reside in the data sector). The CSECT name
is #Lname, where "name" is the primary entry name. The parameter
lists are generated by looping through arrayed global SETA variables
in which the AERROR macro saved the unique error numbers. ERRPARMS
is invoked by the ADATA macro because the parameter lists must be
before any indexed data following the optional ADATA macro. It
is invoked by the ACLOSE macro in case the ADATA macro is not used.

5-20

INTERMETRIGS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 +« (817) 661-1 840

3
?
!
|
i
i
i

o >
b g

S ’ ® WORKAREA
WORKAREA
Function:

An automatically invoked, user-created macro used to define
extensions of the stack area for temporary reentrant storage.
1 The WORKAREA macro is invoked by the AMAIN macro in procedure
| routines. = A system supplied default is invoked in the absence
e —_.0f. a user-created macro. S

Expansion:

i The system WORKAREA macro merely sets a global SETB variable
which is tested by the AMAIN macro to determine whether the system
or user macro is being expanded,

i
1

5-21

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

REPRODUCIBILITY OF THE
(ﬁXHXHiAL,Pﬁﬂiﬁilﬁ POOE

T
i

~

| e AMAIN
{

; MACEOQ . 00000100
ENAME AMAIN EINTSIC=NO,EACALL=NO,ESECTOR= 00000200
GBLA EENICNT ; 0CC00300
GBLB &§CALLOK,ELIB,&NOEXTRA,EINTERN,ESECTO 0000400
. GBLC- GCSECT,SNAMES (20) , 00000500
5 ECSECT =~ SETC 'ENANE! coOC00600
| EENTCNT SETA EENICNT+1 00000700

ENAMES (EENTCNT) SETC "ENANMEY . 00600800
o R A AR o o ok o ok o R OKOK N K R ko ok R Rk K oK ok okl dokokok kkokkkokk - 000 00900

b * 00601000
; * PRIMARY ENTRY POINT 00001100
o *) 00001206
P ***********#******ﬂr*************i******’******************************** 00001300
o ECNAME SETC 'ENRME' 00061400
AIF {"&SECTOR' EQ ') ,REG , 00001500

AIF (*6SECTOR' NE '0').BADSECT - 00001600

§CNAME ~ SETC '#0'.7&NAMEY 00001700

i §SECTC SETIB 1 . N0C01800
N GCNAME CSECT : 06601900
oo ENAME DS 0H PRIMARY ENTRY POINT 00002000
: ENTRY GENAME 00€02100
AGO .CONM 00002200

+REG - ANOP 00002300

! . ECNAME CSECT 00002400

; LCOEN ANGP ; 00002500

i ELIB SETB ('E£INTSIC' EQ 'NO') 00002600
. EINTERN SETB ('BINTSICY EQ 'INTERNALY) . 00002700
! AIF (NOT §LIB).SPACE . 00602800
i STACK CSECT : : : 00002900
* DS 18H STANDARD STACK AREA DEFINITION 00003000

DS F PSW (LEFT HALF) - 00003100

} ‘ DS, 2F RO,R1 ‘ 00003200

i ARG2 LS 3 R2 0000330C

i DS F R3 - 00003490
ARGY LS -F RY : 00003500

ARGS DS F RS G0003600

N ARG6 DS F R6 00C03700
3 ARG7 LS F R7 00003800

ﬁ % END CP STANDARD STACK AREA 00003900

j WORKAREA 000CH000

; STACKEND DS oF END OF COMBINED STACK AREA 00008100

: §, ECNAME CSECT 0CCCL200
i ‘ USING STACK,O KDDRESS STACK AREA 00C 28300
&CALLCK SETB (YSACALL' EG 'YES') . oocouu0o

ATF (ENCEXTRA OR NOT. &CALLOK).NIST 00C04500

IAL 0,STACKEND~-STACK SET STACK SIZE : gocoueQo

»NIST NIST 9(0).,0 CLEAR ON RRROR INFO (LCL DATA PTR) ! 00024700

= .SPACE SPACE T : : 00604800

i ' MEXIT : ~ 000043800

j .BADSECT MNOTE 4,*ONLY SECTIOR=0 HAY BE SPECIFIED? 00005000

: MEND : 00005100

5-22
: INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE; MASSACHUSETTS 02138 + (617) 661-1840

e AENTRY
MACEC
ENAME AENTRY

N ROK KK N K I K K K KK K K o K ol ko o o Nl N R 0 o K R OK 2 ok ok ok 3k o ko ok ok ok

*
x
*

*#***#******###*****##**#****t#**#**%‘*#****#****##*##*t*##**#*******##

EENTCNT ~SETA GENICNT+1
ENAMES(SENTCNT) SEIC "ENAME!
§NARME Ls 0H
ENTKY E&NAME
ATF (NOT &LIB).SPACE
AIF {ENCEXTEA OR NOT &CALLOK) +NIST
IAL 0,STACKEND~-STACK SET STACK SIZE
o NIST NIST 9(0) 0 CLEAR ERROR VECTOR POINTER
«SPACE SPACE
MEND ,
o AEXIT
MACRC
& NAME AEXIT £CC=,ECOND=
GBLA - ERET
GBLB- &LIB,ECCTYPE,S6INTERN,5SECTO
LCLA G&MASK
EMASK SEThA 7
&RET SETA ERET+1
Hrkkwkk xRk FETURN TO CALLER ®%% %k koK ok o ok i sk o i ook e e i 2ok 3k oo ok sk sk s ol ok o sdoke s i i s s o ol
& NAME DS 0H ; ‘
AIF ('6CC* EQ ** AND NOT &CCTYPE).OKA1
RIF (*E6CC* NE "% AND ECCTYPE).OK1 :
MNOTE 1, 'CONFLICTING CC.OPERANDS IN OUTPUT AND AEXIT MACROS?
. 0K1 AIF (6LIB).LIB
o ¥ GENERATE EXIT. SEQUENCE FOR INTRINSICS
AIF {(*ECOND' EQ *1).,0K2
MNOTE 4,*COND OPERAND INVALID FOR INTRINSIC'
« 0K2 AIF {*&cc* EQ “*).LHS
AIF {v6CC* {1,2) EQ ' (R').LHS
AIF (*&6CC' EQ 'KEEP') JIHLS
MNOTE 4, *INVALID CC OPERAND FOR INTRINSIC®
. LHS “RIF {SINTERN) . SKIP1
AIF (NOT D*R3).SKIP3
LH 3,9(0) RESTORE LOCAL DATA BASE
«SKIP3 KIF {NOT ‘D*K1).SKIP1
LH 1,540) RESTORE PROGRAM DATA BASE
+SKIP1 AIF {*&8CCY EQ ') ,BCRE .
&K CSETC r&cc(1y!
ATF {(YER* NE 'R1* AND 'GR' NE *R3').LROK
MNOTE 4,"INVALID REGISTER IN CC= OPERAND!'
« LEOK LR £ER,ER SET CONDITION CODE

GBLA &ENTCNT
GBLE E&CALLOK,SNOEXTRA,SLIB
GBLC &NAMES (20)”

SECONLCARY ENTRY POINT .

AGO « BCEE

5-23

WNTERMETNCS|NCORPORATED-70ﬁCONCORDANENUE'-CAMBWDGE.MASSACHUSETﬂSOﬂSS-

00000100
00000200
00000300
00000400
00000500
00000600
060000700
goco0800
00000900
00001000
00001100
00001200
00061300
000C1400
00001500
00001600
00001700
00001800
00001900
00002000

0000100
00000200
00600300
00000400

- 00000500

000C0600
006000700
000C0800
00000900

~00001000

00001100
00001200
00001300

00001400
00001500
00001600
00001700
600C1800
00001900
000020C0
00002100
00002200
00002300
00002400
00002500
00C02600
00002700
00002800
00002900
00003000
00003100

(617) 661-1840

o AEXIT (CONTINUED)

.IHLS . AIF (EINTERN) ,BCRE ' 00¢03200
AIF (NCT D'R3).SKIPR3 £0C03300
IHL R3,9(0) LOAD R3, PRESERVING CC 0003400
SLL K3,16 POSITION IN UPPER HALFWORD 60003500
.SKIPR3 AIF (NCT D'R1).BCRE ' 00003600
IHL R1,5(0) LOAD R1, PRESERVING CC 00003700
SLL R1,16 POSITION IN UPPER HALFWORD 00003800
. BCRE ANOP 063900
AIF (aszcmo OR EINTEKY) .BCR . 00004000
$RETERET BCRE 7,4 RETURN TO CALLER 00004 100
****#m**tv*#v*’H:**!Ht****t****#***#*****#*********************#w&,‘**t**** 00Q0U200
SPACE _ 00004300
HEXIT 00004400
. BCR aNcp ' 00cec4500
$RETCRET ECkx 7,4 RETURN TO CALLER 000C4600
3 26 o 3 o 2k ok 2ok 2o 8 o o 3 ek 30K ke 30K oK o kK K Kk ok K o e e R KR ol 3K ok o 30K K s R RO Ok Ok R oROKoR Kok koK kkokkk k. 00 C0U 700
SPACE : . 00004800
MEXIT : : 00C 04900
+LIB AIF ("6CCY EQ '? OR *ECONDY EQ *'J,OK3 00005000
MNOTE 4, 'CC AND COND OPERANDS ARE HUTUALLY EXCLUSIVE! 00¢ 05100
+0K3 AIF ("6CC® EQ '').NOCC 00005200
AIF ('6CC* EQ 'EQ').ZB 00005300
ATF (VKCEY EQ 'NE'),.SB pONNSHON
MNOTE 4,*INVALID CC OPERAND FOR PROCEDURE ROUTINEY 00005500
«2B 2B 1(0),X*C000* SET PSW CC TO 00 (EQ) 00005600
8GO < NCCC 00C05700
.SB SB 1(0) ,X*C000* SET PSW CC TO 11 (LT (NE)) 00005800
« NOCC AIF (T‘SCOND NE *N?) ,CONDTSYT 0085900
& MASK SETA &COND 000Ce000
AGO ,SRET 00006k 100
+CONDTST AIF ('£COND* EQ *'),SRET ‘ 000C62C0
£ MASK SETA 1 - 00006300
ALF (*&COND* EQ 'H* OR '&COND® EQ YO!),SRET 00006400
EMASK SETA 2 L) 00006500
ALIF (*E&CONDY EQ 'L* OR *'5COND? EQ *'M'),SRET CO0C660C0O
& MA SK SETA 3 ; ‘ CO0DRTCO
ARIF (*&COND* EQ 'NE' OR '&COND' EQ *NZ'),SRET . 00206800
EMASK SETA &4 , 00006900
AIF (*&COND®* EQ 'E* OR 'SCOND' EQ Y2') .SRET 00£07000
EMASK SETA 5 00007100
AIF (*ECCNDY EC *'HE' OR *SCONDY EQ *NLY OR '&COND? EQ 'YNM?') ,SRET 00007200
EMASK SETA 6 , , i (0007300
AIF (*ECCNDY EQ *LE* OR '&COND' EQ *NH' OR *&COND? EQ FNO®').SRET 00037400
&MASK SETA 7 ‘ 00C07500
: MNOTE 4, *INVALID COND OPERAND® : 00007600
« SRET ANOP _ ‘ - ec00770¢
$RETERET SKET EMASK,O KETORN TO CALLER 00007800
>k nwun***w*w***u*u *****************#*****#*:*:**#********m**m&* 00007900
SPACE 000¢8000
MEND . 00008100

5-24

{INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

o
Y.

o INPUT

EINBUT(EE

&1
&LAST
«LOQP
&R

MACEKC
INEUT
GBLA
GBLB
AIT

&X
SENTCNT

EINPUT (20) ,ELIB
{N*ESYSLIST EQ 0) .EMBTY

NTCNI) SETB 1

AIF
SETA
SETA
AIF
SEIC
AIF
AIF

" AIF

&N
&R
+ NEXT
&I
«SPACE

. BADREG

AIF
AIF
SEIC
EQU
ANOP
SETA
AIF
SPACE
MEXIT
MNOTE

AGO

+« INVREG1
+ INVEEG2

+EHETY

MNOTE
AGO
MNOTE
AGO
HNOTE
MEND

~(*&X* EQ 'NONE'),SPACE
1

N'ESYSLIST
(K'6SYSLIST(6I) NE 2).BADREG

*€SYSLIST (5I) *

("ER" (1,1) NE 'F' AND '&R'(1,1) NE 'R'),BADREG
(YER' EQ 'RO') .BADREG '
(6LIB AND (*&R' EQ 'R1* OR '6R' EQ 'R3')).INVREGI
(NOT §LIB AND *&R' EQ *R4') ,INVREG2

(D*ER) . NEXT

*ERY (2,1)

EN

&EI+1
(61 LE ELAST).LOOP

4,' ILLEGAL REGISTER SPECIFICATION - &SYSLIST (6I)*
+NEXT

4,*6R INVALID INPUT FOR PROCEDURE ROUTINE®

« NEXT

4, *E4 INVALID INPUT FOR INTRINSIC®

«» NEXT

4,*CPERAND REQUIRED!

5=25

00000100
00000200
00€00300
00000400
00000500
00000600
00000700
000C08C0
00002900
00001000
00001100
00001200
00001300

00001400

00001500
00001600
000C1700
00001800
00001900

- 00002000

00002100
00002110
00002200
00002300
00002400
00602500
00002600
00002700
00002800
0002900
00603000

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE -« CAMBR!DGE. MASSACHUSETTS 02138 - (617) 6611840

L

|

‘ REPRODUCIBILITY O T
ORIGINAL PAGE I5 FOOR

e QUTPUT
MACEC 00000100
CUTPUT BX 00000200
GBLA &ENTCNT 00CC0300
GBLB £OUTPUT (20) (6CCTYPE, 6LIB 00000 UC0
| ALF (N'ESYSLIST EQ 0) +EMPTY 00000500
' §OUTPUT (& ENTCNT) SETB 1 000CH600
AIF (&X' EQ *NONE') , SPACE Q0000700
&1 SETA 1 0006n800
. ELAST SETA N'ESYSLIST i 00000900
| »LOOP ALE (K'6SYSLIST (§I) KE 2y . BADREG 00001000
L &R’ SETC *6SYSLIST(&I)' 00001106C
AIF (*&R' EQ 1CcCY) LCCTYPE . 000601200
ALF (*&RY (1,1) NE 'F! AND 9ER' (1,1) NE *31) ,BADREG 00001300
AIF (*6E* EQ *RO') . BADREG co0Cctuco
AIF (6LIB AND ('6R' EQ sR1' Ok *&RY EQ 'R3*)) . INVREG1 00001500
AIF (NOT §LIB AND ‘&R’ EQ 'RY4') .INVREGZ 00001600
AIF (D'ER) + NEXT : . 000017C0
A SETC '&RY (2, 1) 0neo1800
&R QU &N 00001900
+ NEXT ANOP 000020C0
&I SETA &I+1 00002100C
AIF (61 LE €LAST).LOOP 00002200
| .SPACE SEACE 00002210
| MEXIT 00002300
. JBADREG MNOTE 4,' ILLEGAL REGISTER SPECIFICATION = £SYSLIST (6I) " 0000240C
LGO JNEXT 00062500
' ,CCTYPE BRNOP . 00062600
| BCCTYPE SETB 1 000¢2700
' AGC < NEXT 00002800
LINVKEG1 MNOTE 4,'&R INVALID OUTPUT FOR PROCEDURE ROUTINE® 00002900
, AGC . . NEXT 00¢03000
| JINVREGZ MNOTE 4, ‘R4 INVALID OUTPUT FOR INTRINSIC' 00¢03100
; aGC WNEXT , , 00C03200
! LEMFTY MNCTE 4,*CPERAND REQUIRED! 00003300
? , MENT : 00003400

i

INTERMETRICS INCORPORATED * 701 CONCORD AVEN

5-26
UE + CAMBRIDGE, MASSACHUSETTS 02188 . (617) 661-1840

R

)

f-vF.

e WORK

MACRC
WORK &X
GBLB ELIB,ENOEXTRA
AIF (*6X* EQ 'NONE'),SPACE
&I SETA 1 ¢
ELAST SETA N'6SYSLIST
.Locp AIF (K*E6SYSLIST(6X) NE 2).BADREG
ER SETC 4&SYSLIST (1)
‘ AIF (*6R* (1,1) NE 'F' AND *ER' (1,1) NE *R'),BADREG
AIF ('*ER' EQ *RO') ,BADREG
, AIF {*ER* NE *P6') ,TESTD
MNOTE ##%k*% WARNING: F6 MUST BE PRESERVED ACROSS CALLS'
+TESTD AIF (D*ER) . NEXT

&N SETC 'ER'(2,1)
&R EQU EN

« NEXT ANQE

&I " SETA &I+

) AILF (61 LZ ELAST).LOOP
» SPACE SPACE
. MEXIT
+ BADREG MNOTE 4, ILLEGAL REGISTER SPECIFICATION - 6SYSLIST (8I) ¢
AGO « NEXT

MENTD
e ABAL
MACKQ '
ENAME ABAL . &P
GBLB . &LIB

RBIF (ELIB) .OK ;
MNOTE 4, *RBAL MACRO ILLEGAL FROM INTRINSIC®

MEXIT ,
. 0K AIF (D'€P).SKIP
‘ EXTEN &P '
«SKIP ANOP . ;
ENAME BAL 4,EP CALL INTRINSIC
' MEND '

5-27

| lNTERMETRICS INCORPORATED - 701 CONCORD AVENUE -« CAMBRIDGE,VMASSACHUSETTS 02138 - (617) 661-1840

0 i ey | ot L w1

00060100
60000200
00000300
ooocouco
00000500
¢0000600
60000700
doccoso0
00Cc009C0
00001000
00001100
06001200
000C1300
00001400
60001500
00001600
000017C0
00001800
00001900
00002000
00002100
€0G02200"
00002300

00000100
00000200
000C0250
06000300 -
00000400
oeQo005¢0
00000600
00000700
00000800
00000900
00001000

e ACALL

MACRC ’ 00000100

ENANE ACALL &P 00000200
GBLB 6CALLOK ‘ 00000300

ATF (ECALLOK) .CALL 00000 400

MNOTE 12,*ACALL OPTION NOT ‘SPECIFIED IN AMAIN OR INTSIC=YES SPX00000500

ECIFIED' 00000600

MEXIT) 00000700

.CALL AIF {D*SP) +SKIP 00000800
"EXTRN &P . 00000900

. SKIP ANOP 00001000
SNAME SCAL 0,87 CALL PROCEDURE ROUTINE 00001100
MEND ’ 00001200

¢ AERROR
MACRC) 00062100
& NAME AEKKCR ENUM,5GROUD=4 00002200
GBLA BERKCNT,SERRNUMS(10) ,SERRGRPS (10) £00023GC0
LCLA 6T 00600490
AIF (ENUM GT 62).BADNUM 00002500
6T SETA E&ERRCNT 00000600
. DUELOOP AIF (61 LE 0) .NEWERR 00609700
‘BIF (ENUM EQ GERRNUMS(EI) AND EGROUP EQ SERRGRPS(EI)).DUP 0000800
&1 SETA 6£I-1) 00003900
AGO .DUELOOP 00601000
" NEWERR ~&4NQP coon1100
EEEKRCNT SETA EERRCNT#+1 , 0ono1200
&I SETA GSERERCNT) 00C07130¢C
SELRNUMS (BI) SETA &NUX 00001400
EERRGRPS (6I) SETA EGROUP 0001500
.DUP ANOP Q2061600
¥k kkKEXK¥TSSUE SEND ERROR SVC************************************"‘***** C0Q01700
ENAMNE SVC RKEREORSI ISSUE SEND ERROR SVC 0001800
#xxdkxxxkSEND ERROR SVC RETURNS CONTROL FOR STANDARD FIXUDXkxksxxgkkkxkx (0007900
HEXIT 00002000
.BADNUM HNOTE 12,'ERBOR NUMBER GREATER THAN 62° 00062100
MEND 04002200
e ADATA

= 00605100

§g§§§ ‘ ' 00000200

GBLC &CSECT 00€C0300

AKX KR DETA CSECT****"‘*** Qo500 u00
ERREARMS 00000500

EDCSECT SETC 'Y#L%.*E8CSECT'(1,6) 00000600
EDCSECT CSECT ~ : 00000700
MEND : . . 0¢000800

5-28

INTERMETRICS INCORPORATED - 701" CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

.

t * ACLOSE

. 00009100
MACKO £0000200
Agi§SEaBNTCNT ' e00C2300
G

‘ GBLB ESINPUT (20),E0UTPUT (20) gggggggg
GBLC &NAMES (20) ‘ 00000600
EREPARMS 00009700
&1 SETA 1 G00008CO
AIF EINPUT (€1)).INOK ‘
+LO0F MNOTE §,’INPUT NOT SPECIFIED FOR ENAMES(6I)' 88883288
AIF £CUTPUT (6I)) .OUTOK :
PINOR - NotE g,'GUTPUT NCT SPECIFIED FOR ENAMES (6I)' gggg:;gg
« OUTOX ANOF 5Te1 ‘ 00001300
SETA & o 5
ot AIF (61 LE GENTCNT) ,LOOP 83801288 ;
END 00001600
MEND
e FRRPARMS
MACKC . : 00000 100
ERRPARMS 00000200
GELA &ERRCNT,EERENUMS(10) ,6ERRGRPS (10) . 00000300
GBLE G&DCNE ' GO00CH00
GBLC &CSECT ‘ 00000500
LCLA &I 00600600
LCLC &S : . 00000700
AIF ~ (&DCNE) . MEND : 00000800
EDONE SETB 1 00600900
LTCEG ' 0006C1000
kxrkpkax¥xxnx ¥ %X EREOR PARAMETER AREA®®xxdrdmksk ook &k ko aokk ko kpionmxk 00601100
AIF (SERRCNT EQ 0) .NOERROR 00001200
EECSECT SETC '#L'.'ECSECT' (1,6) : 00001300
EECSECT CSECT ¢0C01400
ALF (SERBCNT EQ 1).MSG 00601500
S SETC 'S¢ 00001600
. MSG MNCTE **%% §CSECT SENDS THE FOLLGWING ERRORES® 00001700
! .LOCP ANOP 00001800
: ' &1 SETh §I+1 : 00001900
: SPACE 2 00002¢00
MNOTE *#*** ERROR NUMBEK SERRNUMS(6I) IN GROUP E&ERRGRPS (EI)' 00002100
SPACE 1 00002200
AERRORST DC K267 SVC CODE POR SEND ERROR 30562300
e Y (EEREGRPS (6I) ¥256+EERRNUMS (61)) 8 BIT GROUP AND NUMBER 00002400
AIF (€1 LT SERRCNT).LOOP ‘ 00052500
RGO . CCHMOY 0092600
.NCERKOR MNOTE '#*%% NO ERRORS SENT IN ECSECT? c00C2700

+CGHMON - ANOP : . 00eo02800
HHARAKEKAKAF¥RNKENT OF ERROR PARANETER AREA®Skkkkkukkrkkrkkkikkrxsnrcks 00002900
+MEND MEND 00003000

5-29

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 861-1840

e WORKAREA

MACRC 00000100

WORKAREA 00000200

- GBLB ENCEXTRA 00000 300
&NOEXTRA SETB 1 00000400
* NO ADDITIONAL STACK STORAGE KEQUIRED FOR THIS ROUTINE 00900500
MEND 00000600

FEPRODUOELATY OF TEF
OR‘EGTNAIJ PAE L EADI

5=30

INTERMETRICS INCORPORATE’D . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

<pier

5.3 Library Routine Descriptions

This section contains descriptive material for all
routines in the HAL/S-FC runtime library. The routines have
been grouped into seven categories. - The routines within each
category are described in one subsection as ful ows:

5.3:1 Arithmetic
5.3.2 Algebraic

5.3.3 Vector/Matrix

5.3.4 Character

5.3.5 ‘Array Functions
5.3.6 Miscellaneous
5.3.7 Remote Operations

The documentation is based upon the "load module" as
a basic unit. A load module is the entity created by a
single invocation of the AP-101 linkage editor. It has a
primary member name and may have up to 16 alias names. The
primary and alias names indicate entry points to the module.

For each load module in the runtime library, and LRD
form will be found in the succeeding sections. The basic
LRD form is shown in Figure 1. The circled numbers in the
figure are explained below,

C)— The boxed area of the form (() -C) below) contains
information relating to qualities and attributes of
the load module apart from any of its entry points.

(:)— In the upper right portion of every routine or

‘ . entry point description, the name of the primary
entry point will be seen. This serves: as.a quick
reference aid in locating the documentation for a
load module, ,

5-31

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

@ -
® -

®-

T TR AR S S A R 5 L S

Source Member Name -~ The name of the member in
the assembler language source PDS of the library.
This name is always the pame as the primary
entry point name.

Size of Code Area - Each library module contains
one code CSECT, regardless of the number of entry
points. This number is the count of halfwords

of code that would be used if the module were
loaded. A module will be loaded if any one of

its entry points is referenced,

Stack requirement - If a module is not an intrinsic
(see), it will have a requirement for runtime
stack space. The minimum required will be one
standard stack frame (18 Hw). The number listed

on the form indicates the module's total stack
requirement. If the module is an intrinsic, zero
will be indicated. Individual entry points in

one module cannot have different stack requirements,
Therefore, the stack requirement is an attribute

of the module, '

Data CSECT size - If the module contains a #L CSECT,
its size is indicated. Otherwise, a zero is indicated,
This number shows the number of halfwords of data

area that will be used if the module is loaded,

Intrinsic/Library - The appropriate box is marked,
Entry points in a module are either all intrinsic
or all library, hence this is a quality of the
module. Sector 0 routines are noted here.

Other modules referenced - A list of other load
modules referenced in EXTRN statements by this
load module., If this module is loaded, the
indicated modules will also be loaded.

Entry point descriptions - Following the aggregate
attributes of the module in 0-~7 -above, the
descriptions of specific entry points follow.

Primary Entry Name - The name of the code CSECT* in
the module and the primary entry for the module in
the library load module PDS.

* ENTRY label in the case of Sector 0 routines.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

5=32

f;mv

D © ©

)

Function - A brief prose description of what this
entry point does.

Invoked By - Entry points may be referenced directly
from compiler-emitted code, from other library modules,
or both. The appropriate boxes are marked, If the
upper box is marked, an example of a HAL/S construct
which results in reference to the entry point is

shown, If the lower box is marked, the names of

other modules which refer to this entry point are
listed. If any of the other modules listed here are
loaded, this module will also be brought in.

Execution Time - The time, in microseconds, needed

to perform this entry point's function. ' These times
are obtained from examinations of trace listings of
simulations of the execution of the particular library
routine or entry point on Version 11.3 of the GPC
simulator in detailed timing mode. Times include times
for referenced routines unless specifically stated.

Input Arguments - The data that the entry point
receives as input is listed. "Type" indicates the
nature of the data (integer, scalar, etc.),.
"Precision", where applicable, is generally SP for
single precision and DP for double precision.

"How Passed” indicates the method of communication
of the data. 1In the case of DP scalar arguments,
this field may indicate thé firs: floating point
register of an even/odd pair. "Units", when
applicable, specifies the units presumed for an
argument.

Output Results -~ The data that is considered the
"answer" from the entry point. The fields are
used in the same way as in (:).

Errors Detected -~ If invocation of this entry point
can result in a Send Error SVC being executed, the
error #, cause, and standard fixup for all such
errors are indicated.

Comments -~ Any special behavior of this entry point
or notes to users are entered here.

k Algorithm - The steps taken by the entry point to

produce its results are shown. When appropriate,
references are made to other entry point descrip-
tions for further documentation.

5-33

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

REPRODUCIBILITY OF THE
; ORIGINAL PAGE IS POOR

In addition to the basic LRD form of Figure 1,
which documents module attributes and the primary entry
point, an extension LRD form is used to document additional
X alias entry points within a module. The extension LRD
no is shown in Figure 2. The circled numbers are explained
3 below:

- The primary entry name of the module is displayed,
This is the same name as is displayed in the
basic LRD form @ to which this extension
form is appended.

- Secondary Entry Name - The name of the secondary
entry point being documented.

-— The remainder of the extension form is identical
to the primary entry point description entries
through é% , and describe the function and inter-
face to this entry.

5-34

ERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 021:38 + (617) 661-1840

HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: (g)size of Code Area: Hw
Stack Requirements Hw(E)Data CSECT Size: . Hw
Intrinsic @] procedure

Other Library Modules Referenced:

ENTRY POINT DESCRLPTIONS

Primary Entry Name:

Punction:

1 Invoked bys -
E] Compiler emitted code for HAL/S construct of the form;

® 0o ©6

Ej Othex Library Modules:

Execution Time (microseconds):

Input Arguments: i
Type Precision How Passed Units ’

Output Results:
Type Precision How Passed Units

&

Erroxrs Detected:
Error # , Cause ' Fixup

®

Commentss

Algorithm:

© ®

Figure 1l: Basic LRD Form

g e s ~ ' 5-35
INTERMETRICS INCORPORATED - 701 CONGORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

LY ,"‘,A .

®

Secondary Entry Name:

Function:

®®

Invoked by:

D Compiler emitted code for HAL/S construct of the forxm:

D Other library modules:

Execution Time (microseconds):

Input Argumehts:

Type Precision How Passed

Output Results:

Tme Precision How Passed

Erxors Detected:

Error # Cause
Comments:
Alg orithin s

Figure 2: --Extension LRD ‘Form

5-36

s
Units
Units
'J
“SJ

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 »

The following tabkle shows the routines which are assigned
to each group. The table contains a list of primary and
secondary entry points with each secondary indented under
its primary entry. With each primary entry point, basic
descriptive information is shown along with the sizes of
the csects in the module and the module's stack requirement.
A final entry shows the timing information for the entry
point. Secondary entry points have only the descriptive
information and the timing for the entry. 1In cases where
the timing information is too involved to be listed in the
space available, the notice "See LRD" indicates that the
detailed write~up of the module (on an LRD form in the
proper subsection) should be referenced. In all cases,
information in the table is taken from the LRDs and further
details on the routines' performance can be found in
those detailed descriptions.

5-37

(617) 661-1840

BE~S

ENTRY
DMOD
DMDVAL
EMOD
IMOD
HMOD
TREM
HREM
ROUND
CEIL
" DCEIL
DFLOOR
DROUND
DTOI
DTRUNC
- ETOI
FLOOR
TRUNC

FUNCTION
MOD (D, D)
MIDVAL (D,D,D)
MOD (S, S)
MOD (I,1I)
MOD (H ,H)
REMAINDER (I, I)

REMATINDER (H,H)

ROUND (S)
CEILING(S)
CEILING (D)
FLOOR (D)
ROUND (D)

S > I ‘
TRUNCATE (D)
s> 1 '

FLOOR(S)

TRUNCATE (8)

ARITHMETIC ROUTINES (section 5.3.1)

PREC.

o

H oH M H MO OH HHH & H @ H o

CODE
42
20
36
20

14

84

DATA
2

0
2
2

¢ TVNIOIEO
AR e o

H

Ho0d 81

pgiLiiislit

aﬂz,&0~zm

STACK

0
18
0

TIME
74.6
41.4
46.6
29.4
29.4
27.0
27.0
39.0
See LRD
See LRD
See LRD
33.8
33.8
28.6
39.0
See LRD

31.4

6E-G

ENTRY
ACOs

ASIN -
ACOSH

ASINH

ATANH
DACOS
DASIN
DACOSH
DASINH
DATANH
DATAN2
~ DATAN
DEXP
DLOG
DPWRD
DPWRI
DPWRH
DSIN
DCOS
DISNH
DCOSH
DSQRT
DTAN
DTANH

FUNCTION
ARCCOS (S)
ARCSIN(S)
ARCCOSH (S)
ARCSINH (S)
ARCTANH (S)
ARCCOS (D)
ARCSIN(D)
ARCCOSH (D)
ARCSINH (D)
ARCTANH (D)
ARCTAN2 (D, D)
ARCTAN (D)
EXP (D)

LOG (D)
D#x%D

DaxI

D**H
SIN(D)

Cos (D)
SINH (D)
COSH (D)
SQRT (D)
TAN (D)
TANH (D)

SIS L e P o s syt

ALGEBRAIC ROUTINES (section 5.3.2)

PREC.

U U U UUUUYUyoouoyyYyoyo oy U o wun n n n

CODE
102

36
64
58
150

42
94
90
194

154
140
38
40

102 .

130

70
164
94

DATA
2

N N O

66

62

STACK
24

20
20
18
18

22
22
18
18

18
22
22
18

20

22

26
30
22

TIME
See LRD
See LRD
See LRD
See LRD
See LRD
See LRD
See LRD
See LRD
See LRD
See LRD
248.4
237.3
290.5
282.2
See LRD
See LRD
See LRD
267.0
261.8 - 264.2
See LRD
422.6
345.2
302.2
See LRD

ALGEBRAIC ROUTINES (CONTINUED) (section 5.3.2)

ENTRY FUNCTION PREC. CODE DATA STACK TIME
EATAN2 ARCTAN2(S,S) s 132 10 18 120.0 .
ATAN ARCTAN (S) S 116.5
EPWRE : S%%S S "32 4 22 See LRD
EPWRI Sx*T s 38 2 18 See LRD
EPWRH S**H S _ See LRD
EXP | EXP (S) S 108 2 18 141.8
IPWRT , ITxxT I 46 2 18 See LRD
 HPWRH Hx%H H See LRD
. IPWRH IxxH I | See LRD
2 L0G LOG(S) s 90 2 18 140.5
5IN SIN(S) s 70 30 0o 123.6 - 124.5
cos ‘ COoS (S) S . 122.1 - 123.1
SINH SINH(S) s 80 2 18 See LRD
COSH COSH (8) s | 228.9
SQRT SQRT (S) s 48 14 0 88.3
TAN TAN (S) S 112 4 20 164.0
TANH TANH (S) s 56 0 18 See LRD
£k Ay &
L — T

Y-S

B
)

VECTOR/PATRIX ROUTINES (section 5.3.3)

ENTRY o FUNCTION SIZE PREC. CODE DATA STACK TIME
MMODNP Scalar to _Partitioned n,m D 12 o 0 6.8+n (4.0+8.0m)
Matrix Move .
MMOSNP " n,m s 10 0 0 6.4+n(4.4+6.4m)
MMIDNP - Partitioned Matrix Move n,m D 18 0 0 10.8+n(5.4+12.2m)
MM1SNP " : n,m s 16 0 0 10.8+n(5.4+9.4m)
MM1TNP " , n,m D-S 16 0 0 10.4+n(5.8+10.6)
MM1WNP " n,m S-D 18 0 0 13.6+n(5.0+11.0m)
MM6DN Matrix Multiply (m,n), (n,£) D 42 0 0 22.2+m(10.8+£(21.2+27.n))
MM6D3 , : " (3,3),(3,3) D 32 0 0 671.6
MM6SN ' " (m,n), (n,£) S 40. 0 0 22.2+m(10.8+£(20.2+18.0n))
MM6S 3 ‘ " (3,3),(3,3) S 24 0 0 409.6
MM11DN .. Matrix Transpose n,m D 16 0 0 8.0+m(5.8+12.2n)
MM11D3 ' " ~ 3,3 D 22 0 [93.6
MM11SN LA m,n S 16 0 0 8.4+m(5.8+9.4n)
MM11S3 " 3,3 s 18 0 0 . 71.8
MM1 2DN Matrix Determinant n,n D 150 0 22 See LRD
MM12D3 " 3,3 D 44 o 18 229.6
MM12SN " n,n S 138 0 20 See LRD
‘MM12S3 " 3,3 S 26 0 18 116.0
MM13DN Matrix Trace n,n D 10 G 0 12.0+10.2n
MM13D3 " 3,3 D 0 0 19.8
MM13SN " n,n s 0 0 8.8+6.2n
MM13S3 " 3,3 s 0) 9.8

¢y =9

VECTOR/MATRIX ROUTIRES (CONTINUED) (section 5.3.3)

ENTRY FUNCTION SIZE PREC. CODE DATA STACK TIME
MM14DN Matrix Inverse n,n D 258 2 20 63.0+129.5n+43.0n2+65.4n°
MM14D3 w 3,3 D 128 2 18 795.4
MM14SN " n,n S 242 2 20 52.0+39.2n+10.50°+54. 6n°
MM14S3 ' " 3,3 S 80 2 18 458.8
 MM15DN Tdentity Matrix n,n D 18 0 15.6+5.0n+11.2n°
MM1L5SN no n,n s 14 0 10.0+5.2n+9.6n°
MM17D3 Matrix to a Power 3,3 D 86 0 20 See LRD
MM17DN " n,n D See LRD
MM1783 " 3,3 S 78 0 20 See LRD
~ MML7SN L n,n S See LRD
MY6DN . Matrix times Vector (m,n) ,n D 28 0 0 12.0+m(19.3+26.0n)
MV6D3 " (3,3),3 D 22 0 0 304.4
MV6ESN " (m,n) ,n S 18 0 0 11.2+m(11.0+18.4n)
MV6S3 , " (3,3),3 S 20 0 0 137.6
VM6DN Vector times Matrix n, (n,m) D 26 0 0 23.2+m(23.2+27.6n)
VM6D3 o 3,(3,3) D 24 0 0 227.8
VM6SN " n, (n,m) S 22 0 0 12.44+m(19.2+18.2n) ©
VM6S 3 " 3,(3,3) S 16 0 0 141.2 §§
VO6DN | Vector Outer Product n,m D 20 0 0 12.8+n(5.8+24. 4m) E
VO6D3 " 3,3 D 22 0 0 251.0 =
vo6SN e n,m s 200 0 0 14.2+4n(5.8+14. 4m) 2
VO6S3 " 3,3 S 20 0 0 160.6 =
VVODN Scalar to Vector Move n D 6 0 0 7.0+4+5.1n =
VVODNP Scalar to Column Vector Move n D 6 0 0 7.0+7.2n Z‘_:
2
& : o

]

L

?

£v-9

VECTOR/MATRIX ROUTINES (CONTINUED) (section 5.3.3)

FUNCTION

Vector Move

~Column Véctor

Vector Move

Column Vector

Vector Move

Column.Vector

Vector Move

1}

Column Vector

Scalar to Vector Move

Scalar to Column Vector Move

Move

Move

Move

Move.

Vector Add/Matrix Add

Vector Add

Vector Add/Matrix Add

Vector Add

Vector Subtract/Matrix Subtract

SIZE

Bow B wE B wWwd Bwws B oWwWwE B3 wwB BB

. CODE DATA STACK

PREC
s 0 0
S 0 0
D : 0 0
D 14 0 0
D 18 0 0
D
S 8
S 8
S 14
'S
D-S 8
D~S 12
D-S 14
b-5
S-D 10 0
S-D 12 0
S-D 18 0 0
S-D
D 14 0 0
D 22 0 0
S 10 0 0
S 12 0 0
D 16 ¢ 0

TIME

7.0+5.6n
7.0+6.0n
4.2410.2n
25.2
See LRD
See LRD
4.2+7.8n
16.8
See LRD
See LRD
4.249.0n
21.2
See LRD
See LRD
8.4+9.0n
23.8
See LRD
See LRD
8.8+20.6n
51.4
8.2+13.6n
29.6
6.0+22.7n

Pv-g

VECTOR/MATRIXkROUTINES (CONTINUED) (section 5.3.3)

ENTRY FUNCTICON SIZE PREC. CODE DATA STACK TIME

VV3D3 vVector Subtract 3 D 24 0 0 55.4
VV3SN Vector Subtract/Matrix Subtract n S 10 0 0 8.4+13.6n
VV383 . Vector Subtract 3 s 12 0 0 29.6
VV4DN Vector or Matrix Times Scalar n D '8 0 0 7.0+23.4n
YV4D3 Vector Times Scalar 3 D 18 0 0 68.4
VV4ASN Vector or Matrix Times Scalar n S 8 0 0 7.0+14.0n
vVv4s3 © Vectoxr Times Scalar 3 S 12 0 0 38.4
YV5DN Vector or Matrix Divided by Scalar n D 16 2 0 37.0+24.2n
VV5D3. Vector Divided by Scalar 3 D 26 2 0 98.4
VV5SN Vector or Matrix Divided by Scalar n S 14 2 0 7.2+18.0n
VV5S3 Vector Divided by Scalar 3 S 18 2 0 50.6
VV6DN) Vector Dot Product n D 12 0 0 16.4+25.4n
vveD3 " 3 D 16 0 0 71.8
VV6SN | " n s 12 0 0 15.2+16.8n
VV6S3 v 3 S 10 0 0 41.8
VV7DN Vector or Matrix Negate n D 8 0 0 7.0+11.4n
vV7D3 Vector Negate 3 D 18 0 0 32.4
VV7SK Vector or Matrix Negate n S 8 0 0 7.0+9.0n
vV7s3) Vector Negate 3 S 12 0 ¢} 23.4
Vvv8D3 Vectoxr Compare 3 D 12 0 0 See LRD
VV8DN = Vector or ‘Matrix Compare n D See LRD
VV8S3 | Vector Compare 3 S 12 0 0 See LRD
VV8SN Vector or ‘Matrix Compare. n S See LRD

(%

[&]
;
=~
1
3

w
1

>
wn

ENTRY

VV10D3
VV10DN
- VV9IDN
VV9oD3
VV1i0S3

VV10SN
VVISN

vVv9S3
vX6D3
VX6S3

VECTOR/MATRIX ROUTIHES (COWTINUED) (section 5.3.3)

FUNCTION

Unit
Vector
S Unit

‘Vector

Vector Cross Product

Vector
L1}

Magnitude

Vector

n

Magnitude

PREC. CODE DATA STACK

St Y m YU u o g

56 2 20
50 2 24
36
22 0

TIME

402.7
259.7+47.8n
226.64+24.4n

300.2
236.4
130.6+32.8n
118.9+14.0n
168.3
137.6
78.0

9% -3

P
Y

ENTRY

CASPV
CASP

CASV
CAS

CATV

.CAT
CINDEX

CLJSTV

CPAS

CPASP

CPR
CPRC

CPRA
CRISTV
CTRIMV

‘CHARACTER ROUTINES

FUNCTION

Partitioned Assign to VAC
Partitioned Assign
Assign to VAC
Assign
Catenate into VAC
Catenate into Data
INDEX Function

LJuUST

Assign to Partition

Partition Assign to Partition:

Compare (= or —=)

Compare (all relations except
. = and -a:)

Arrayed Compare
RJUST
TRIM

(Section 5.3.4)

CRDE DATA STACK
64 2 0
28 0 0
76 0 0
52 0 18
40 2 18
80 2 20
16 0 146
46 0 0
20 22
46 18
94 18

TIME

See

See

See
See
See
See
See
See
See

See

See
See

See

LRD

LRD

29.2 (n=0)
See LRD

32.0 {(n=0)
See LRD

LRD
LRD
LRD
LRD
LRD
LRD
LRD
LRD

LRD
LRD
LRD

Lv-S

ENTRY

DMAX
DMIN
DPROD
DSUM
EMAX
EMIN
EPROD
ESUM
HMAX
HMIN
HPROD
HSUM
IMAX
IMIN
IPROD
ISUM

FUNCTION

MAX (DA)
MIN (DA)
PROD (DA)
SUM (DA)
MAX (SA)
MIN (SA)
PROD (SA)
SUM(SA)
MAX (HA)
MIN (HA)
PROD (HA)
SUM (HA)
MAX(IA)
MIN (IR)
PROD (IA)

'SUM(IA)

ARRAY ROUTINES (section 5.3.5)

PREC.

CODE

HoH H M D m D T nn n g Yo o

10
10
14

10

12

22

DATA STACK
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

TIME

See LRD
See LRD
See LRD

7.2+11.6n

See LRD
See LRD
See LRD

5.2+6.6n

See LRD
See LRD
See LRD
4.4+5.4n
See LRD
See LRD
See LRD
4.4+5.4n

8¥ -9

o

ENTRY

BTOC

CSHAPQ

CSLD
CSLDP

céSLD
CPSLDP
CSSTP
CPSST

CSST
CPSSTP

CSTRUC
CTOB
CTOE
CTOD
CTOT
CTOH
CTOK

|

. ;

MISCELLANEOUS ROUTINES (Section 5.3.6)

FUNCTION

Bit+ +to Character Conversion
Shaping Function
SUBBIT Load of Character

SUBBIT Load of Partitioned
Character

Partitioned SUBBIT Load of
Character i

Partitioned SUBBIT Load of
Partitioned Character

SYBBIT Store to Partitioned
Character

Partitioned SUBBIT Store to
Character -

SUBBIT Store to Character

Partitioned SUBBIT Store to
Partitioned Character

Structure Compare

Character +o Bit Conversion
Character to SP Scalar Conversion
Character to DP Scalar Conversion
Character to DP Integer Conversion
Character to SP Integer Conversion

Character to Bit Conversion, DEC
Radix

CODE DATA STACK
28 0
40 4 18
246 4 22
12 0
32 18
287 30
104 2 20

TIME

161,.0 (16 bits)

See LRD
See LRD
See LRD

71.8

See LRD
See LRD

114.4

See LRD
See LRD

5.4+10.4n
See LRD
See LRD
See LRD Z
See LRD

See LRD i
See TiRD <~

P [T

ev-9

MISCELLAHEQUS ROUTINES (COMTINUED) (section 5.3.6)

ENTRY FUNCTION CODE ~ DATA STACK TIME
CTOX Character to Bit Conversion, HEX 58 4 18 See LRD
Radix ‘
CTOO Character to Bit Conversion, OCT See LRD
Radix
DSLD SUBBIT Load cf DP Scalar 22 2 18 36.5
DSST ~ SUBBIT Store into DP Scalar 54 2 18 64.6
ETOC SP Scalar to Character Conversion 278 64 20 336.9
DTOC ~ DP Scalar to Character Conversion ‘ 602.5
ETOH 8P Scalar to SP Integer Conversion 14 0 0 - 15.4
DTOH DP Scalar to SP Integer Conversion ' 17.4
GTBYTE Character Fetch 14 0 0 See LRD
ITOC DP Integer to Character Conversion 104 0 28 254.6
HTOC SP Integer to Character Conversion) 189.6
ITOD DP Integer to DP Scalar Conversion 20 0 0 15.6
ITOE DP Integer to SP Scalar Conversion 6 0 0 12.0
KTOC Bit to Character Conversion, DEC 70 0 0 262.5 (16 bits)
Radix ,)
MSTRUC Structure Move 8 0 0 ‘4;2+9.£n
OSHAPQ Shaping Functions 74 0 18 42,6+31.8n
" RANDOM Random Number Generator, Uniform’Dist;46 2 18 54.4
RANDG Random Number Generator, Gaussian Dist. 575.8
STBYTE - Character Store 22 -0 0 See LRD
XTOC = . Bit to Character Conversion, HEX 68 0 0 See LRD

OTOC Bit to cgggégter Conversion, OCT "~ See LRD

adilx

0s8-g

REMOTE ROUTINES (section 5.3.7)

“ENTRY ‘ FUNCTION CODE DATA STACK TIME

A. CHARACTER ROUTINES

CASRPV Partitioned Assign to VAC 86 2 22 See LRD
CASRP Partition Assign See LRD
CASRV ' Assign to VAC 36 0 18 See LRD
CASR Assign See LRD
CPASR Assign to Partition 132 2 24 See LRD
CPASRP Partition Assign to Partition 16 0 146 . See LRD

‘B. STRUCTURE ROUTINES

CSTR Structure Compare 18 0 18 See LRD
MSTR : Structure Move ‘ 10 0 18 See LRD

REMOTE ROUTINES (CONTINUED) (Section 5.3.7)

C.

15~-g

VECTOR

ENTRY

FUNCTION SIZE PREC. CODE DATA STACK TIME

AND MATRIX ROUTINES

MRODNP

MROSNP:

MRIDNP
MR1SNP
MRITNP
MRIWNP
VRODN

VRODNP

VROSN

 VROSNP

 VR1DN

VR1DNP

- VR1SN

VR1SNP
VRITN
VR1TNP
VRIWN
VRIWNP

Scalar to Partitioned
©. Matrix Move

11
Partitidned Matrix Move
' n
"

Scalar to Vector Move

Scalar to Column Vector
Move

Scalar to Vector Move

Scalar to Column Vector

Move

Vector Move
Column Vector Move

‘Vector Move
Column Vector Move

Vector Move
Column Vector Move

Vector Move
Column Vector Move

=]

BB BB B B8 B3y

w0

W m oo

16

16
22
22
24
24

10

10

20

20

20

10
22

[S O 0 00 o o

©C o 0o o o0 o o

20

20
22
22
22
18
18

18
18

18
18

18

18
18
18
18
18

22.8+n(5.6+9, 8m)

22.8+n(5.6+8.6m)
28.4+n(8.2+15. 0m)
28.4+n(8.2+12.6m)
31.2+n(7.6+13.8m)

-32.8+n(8.2+15. 8m)

16.4+9.2n
21.2+10.0n

16.4+8.0n
21.2+8.8n

16.4+15.0n
See LRD
16.4+12.6n
See LRD
16.4+13.8n
See LRD
20.6+13.8n
See LRD

i

5.3.1 Arithmetic Routine Descriptions

This subsection presents the detailed descriptions
of a class of routines generally denoted as "Arithmetic".
Appendix C of the HAL/S Language Specification contains a
list of HAL/S functions which are implemented by the
routines described here.

5-52

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - GAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

F .
DMOD
i;]? HAL/S-FC LIBRARY ROQUTINE DESCRIPTION
Source Member Name: DMOD Size of Code AMrea: 42 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw
EJ Intrinsic [J Procedure
Other Library Modules Referenced: None
ENTRY POINT DESCRIPTIONS 7
Primary Entry Name: DMOD
Function: (Calculates HAL/S MOD function in double precision.
Invoked by:

Eﬂ Compiler emitted code for HAL/S construct of the form-
MOD(A,B), where at least one of A or B is a double precision scalar.

E] Other Library Modules:

REPRODUCIBILITY or TIE
ORIGINAL TAG QR 15 POOR

Execution Time (microseconds): 74.6

Input Arguments:

Type ggecision How Passed Units
Scalar Dp - FO/F1 -
Scalar DP F2/F3 -

Output Results:
Type Precision How Passed Units
Scalar DP FO/F1 -
Errors Detected:
Error"# Cause Fixup
19 mod domain erroxr when B=0, Return A
A <O

Comments: If one argument is several orders of magnitude greater than the
other argument, the code sequence fox A*(IB[*FTOOR(A/!B } loses some bits
of precision,.. it is PT lele to have the result of A(mod B) be greater than

Algorit ,
Use B[. If B=0, then check A for a possible mod domain error. -If A 2 0y

then return A. If A < 0, signal exror and return negatlve A, If not equal,
then use MOD(A,B) =]Bl*FLOOR(A/IB!)). First, get X = a/|B|, If X = O,
then exit with result 0 (0 mod(B) = 0). The FLOOR{X) is different for
negative and positive X. If X < 0, round X down past next smaller negative
integer by subtracting .9999999999999999. Then subtract ’
BIGNUM (X'4E80000000000000') to get rid of the decimal places and leave only
an integer value, ~Bdd BIGNUM to normalize the integer value, If X > 0,
no rounding is done; BIGNUM is first added, then subtracted.

' For arguments that are oxders of magnitude apart, it is necessary to

L . check that the result is < lBI If RESULT > IBI. return [B].

5-~53
INTERMETRICS INCORPORATED - 701 CONCOF; AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (817) 661-1840

DMOD

DMOD

Comments (Cont'd.)

Registers Unsafe Across Call: R4,F0,F1,F2,F3,F4,F5.

5-54

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661‘-1840

a DMDVAL
é.] E | . HAL/S-FC LIBRARY ROUTINE DESCRIPTION
. f ,
Source Member Name: _DMDVAL Size of ngg Area: 20 Hw
Stack Requirgment: 18 Hw Data CSECT Size: 0 Hw .

O Intrinsic £ procedure

Other Library Modules Referenced: None

ENTRY POINT DESCRIPTIONS

Primary Entry Name: DMDVAL

Function: Finds mid value of three double precision scalar
arguments.

Invoked by: - -
Compiler emitted code for HAL/S construct of the form:

MIDVAL(A,B,C) where A,B,C are double precision scalars.

D Other Library Modules:

. Execution Time (microseconds): 41.4

Input Arguments:

Type Precision How Passed Units
scalarx DP FO
scalar ' DP F2
scalar DP
Output Results: F4
Type Precision How Passed Units
scalar -DP. FO
Errors Detected:
Exror # - Cause Fixup
Comments:

Registers Unsafe Across Call: ¥FO,Fl,F2,F3,F4,F5.

Algorithm: 1p A = B THEN RETURN A;
IF-A < B THEN DO; .
IF B <= C THEN RETURN B;
ELSE IF A <= C THEN RETURN C;
ELSE RETURN A;

END;
ELSE DO;
IF C <= B THEN RETURN B; : . :
ELSE IF C <= A THEN RETURN C; . : : "
ELSE RETURN Aj; ' :
END;

' 5-55"
AINTERMETRICS INCORPO_RATED + 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

&
EMQD
. £ W
HAL/S-FC LIBRARY ROUTINE DESCRIPTION -
Source Member Name: EMOD Hize of- Code Area: 36 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw
Intrinsic [J procedure
Other Library Modules Referenced: None
ENTRY POINT DESCRIPTIONS
Primary Entry Name: EMOD
Function: calculates HAL/S MOD function in single precision.
Invoked by: .
Compiler emitted code for HAL/S construct of the form:
MOD(A,B), where A and B are single precision scalars.
C] Other Library Modules:
Bxecution Time (microseconds): 46.6
A5
Input Arguments: *
Type Precision How Passed Units
Scalar sP FO -
Scalar Sp F2 -

Output Results:

Type Precision How Passed Units
Scalar Sp FO ’ -
Exrors Detected: . ‘
Error # Cause Fixup
19 mod domain erxor when B=0,A<0. Return A
Comments: See DMOD.

Registers Unsafe Across Call: R4,¥0,F1,F2,F3,F4,F5.

Algoxithm: See DMOD.

i

| | 5-56
INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02136 + (617) G81-1840

LE

RV S

IMOD

HAL/S~-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: IMOD Size of Code Area: 20 Hw

Stack Requirement: 0 Hw Data CSECT Size: 2 Hw . $
(X] Intrinsic] Procedure

Other Library Modules Referenced: None.

ENTRY POINT DESCRILPTIONS

Primary Entry Name: _ IMOD

Function: Calculates A Mod(B). For A > 0, the mod can be defined as
MOD=|B|-'A-(n+1)]B|| where n is an integer and [A-(n+1)|B|] < 0 < [a-n|B|]. For
A <O, MOD=‘B|—|A+(n~l)lB'|, where n is an integer and [A+(n-1) |B]] <0 <[a+n|B|].
Invoked by: -
Compiler emitted code for HAL/S construct of the form:
MOD(A,B), A and B are both integers and at least A or B is a
fullword integer value.

E] Other Library Modules:

Execution Time (microseconds): 29.4

Input Arguments:

Type Precision How Passed Units
Integer DP R5 -
Integer DP R6 -

Output Results:

Type Precision How Passed Units

Integer DP R5 -

Errors Detected:

Error # Cause Fixup
19 MOD not defined for first Return fixst arg.

arg < 0 and second arg = 0.

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6,R7.

‘Algorithm:

- Use |Bl. If B=0, then check for possible error; if A > 0, tnen result is A.
If A< 0, error. For B # 0, the mod is found using one of two formulae,
depending on the value of A. For'A > 0, MOD(A,B) = A~[‘B|*(A/§B])Z; For

A < 0, MOD(A,B) = A—]BI*(A/‘B‘)+!B|.—.For all values of A, the resz 1t is
always non-negative. '
For A > 0, MOD = REMAINDER(A,B}. These equations are used because

AP-101 division (scalar or integer) does not yield a remainder.

5-87
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

IMOD

«
Secondary Entry Name: HMOD <
Function: Performs HAL/S MOD (A,B) where both A and B are single
precision integers.
Invoked by:
Compiler emitted code for HAL/S construct of the form:
MOD (A,B), where A and B are both single precision integers.
D Other library modules:
Execution Time (microseconds): 29.4
Input Arguments:
Type : Precision How Passed Units
Integer sp R5 -
Integexr SP R6 -
Output Results: .
Type Precision How Passed Units
Integer Sp R5 - i
Errors Detected: o
Error # Cause Fixup e

Same as IMOD
Comments:)
Registers Unsafe Across Call: RZ,R4,R5,R6,R7.

Algorithm:
Same as IMOD

REPRODUCIBILITY UF TilE
ORIGINAL PAGE 3 00R

5-58 : , g

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASEACHUSETTS 02138 « {(617) 661-1840

IREM
HAL/S-FC LIBRARY ROUTINE DESCRIPTION
Source Member Name: IREM Size of Code Area: 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw
k] Intrinsic [0 procedure
. Other Library Modules Referenced:
ENTRY POINT DESCRIPTIONS
Primary Entry Name: IREM
Function: Calculates integer remainder of (A/B).
Invoked by: .
Compiler emitted code for HAL/S construct of the form:
REMAINDER (A/B) , where A and B are both integers and at least one
of A or B is double precision.
E] Other Library Modules:
Execution Time (microseconds): 27.0
Input Arguments:
Type Precision How Passed Units
Integer DP R5 ' ‘ -
Integer DP}one can be SP RG -
Output Results:
Type Precision How Passed Units
Integeyxr R5 -

DP

Errors Detected:

Error #
16
Comments :

Cause Fixup
Return A

zero denominator (B)

Registers Unsafe Across Call: R2,R4,R5,R6,R7.

Algorithm:
If B=0, then error. For B #
REMAINDER (A,B) =[a~- Bx(A/B)].

0, the remainder is found using
The result can be negative.

5-59

INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 *+(617) 661-1840

IREM

Secondary Entry Name: HREM

«}»
Function:
Calculates integer remainder of A/B.
Invoked by:
m Compiler emitted code for HAL/S construct of the form:
REMAINDER(A,B), where A and B are both single precision integers.
[J other library modules:
Execution Time {(microseconds): 27.0
Input Arguments:
Type Precision How Passed Units
Integer SP : R5 -
Integer SP R6 -
Output Results: ' ‘ :
Type Precision How Passed Units
Integer sP R5 - -
Erxors Detected:
Error # Cause Fixup b
16 zero denomination (B) Return A
Conmments : , .
Registers Unsafe Across Call: AR2,R4,R5,R6,R7.
Algorithm:
Same as IREM.
! E AN
5-60 , L %LL

iNTERMETRlCS INCORPORATED + 701 CONCORD AVENUE -+ CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

5-61

f ROUND
4 i HAL/S-FC LIBRARY ROUTINE DESCRIPTION
e
Source Member Name: ROUND size of Code Area: 84 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw
Intrinsic SECIOR O [J Procedure
Other Library Modules Referenced: None
ENTRY POINT DESCRIPTIONS
Primary Entry Name: ROUND
Function: conyerts single precision scalar to fullword integer.
Invoked by: .
Compiler emitted code for HAL/S construct of the form:
ROUND (X) where X is a single precision scalar.
m Othexr Library Modules: QSHAPQ
Execution Time {microseconds): 39.0
A~ Input Arguments:
= Type Precision How Passed Units
Scalar sP . FO -
output Results: ;
Type Precision How Passed Units
Integer DP :) R5 -
Errors Detected:
Exrror # Cause Fixup
15 Scalar to large for Set to max/min representable
X . value: .
integer conversion. Negmax = X'80000000°
Comments: Posmax = X“7FFFFFFP!
See DROUND. Registers Unsafe Across Call: R4,R5,F0,Fl.
Algorithm:
Second register of a flcating point register pair is cleared
then rout:ine mexges into the double precision float—to-fix
routine, DROUND,
“\';':");

INTERMETRICS INCORPORATED - 701 CONCORD. AVENUE. + CAMBRIDGE, MASSACHUSETTS 02138 + (617)' 661-1840

g 4 SRt Tt ey * - S N R e P S e e g

ROUND

Secondary Entry Name: _CEID

Function: Performs HAL/S CEILING function: Returns smallest integer
> the argument.
Invoked by:
Ea Compiler emitted code for HAL/S construct of the form:
CEILING (X), where X is a single precision scalar.
Ej Oother library modules:
Execution Time (microseconds): 31.4 if X > 0
40.8 if X < O
Input Arguments:
Type Precision How Passed Units
Scalar SP FO -
Output Results: .
Type Precision How Passed Units
Integer DP’ R5 -
Errors Detected: ‘ »[‘
Error # Cause Fixup g
15 Scalar too. large for Return either:
integer conversion, Posmax = X'7FFFFFFF'
or Negmax = X'80000000'
Comments:
See DCEIL . Registers Unsafe Across Call: R4,R5,F0,Fl.
Algorithm:

Second register of floating point register pair is cleared, then
routine merges with DCEIL.

REPRODUOIBIL TY OF THE
ORIGINAL PAS

5-62 , lg

' |NTERMETRICS INCORPORATED « 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 -+ (617) 661-184D

it §

ROUND

Secondary Entry Name: DCEIL....

Function: Performs HAL/S CEILING function: Finds the smallest integer
2 the argument.

Invoked by:

Compiler emitted code for HAL/S construct of the form:
CEILING (X) , where X is a double precision scalar.

D Other libraxy modules:

Execution Time (microseconds): 6.6 if x > 0
36.0 if X < 0
Input Arguments:
Type - Precision How Passed Units
Scalar DP FO, F1 -
Output Results: . :
Type : Precision How Passed Units
Integer DP ' R5 -
Errors Detected:
Exrror # Cause Fixu
15 Scalar too large for Return either:
integer conversion, Posmax = X'7FFFFFFF'

or Negmax = X'80000000"'
Comments: Negative args become less negative after CEILING;;‘, positive args

more positive. o 8
-3 ;-2 =1 0 1 ;2 3 . (Cont'd. at bottom of
Algorithm: LRI Y it page)
CEILING (0) CEILING (B) 3

Same as DROUND,. except positive ‘arguments are rounded up by almost 1.
Negative arguments are not rounded,

Comments: (Continued)

Registers Unsafe Across Call: R4,R5,FO,Fl.

5-63

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INGORPORATED » 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

ROUND

Secondary Entry Name: DFLOOR

Function: Performs HAL/S FLOOR function: Finds the largest integer

Z

< the argument.

Invoked by:

Ea Compiler emitted code for HAL/S construct of the form:
FLOOR(X), where X is a double precision scalar.

D Other library modules:

Execution Time (microseconds): 27.0 :f X - O
36.4 if X < 0

Input Arguments:

Type Precision How Passed Units
Scalar i8] FO, Fl1 -

Output Results: :
Type Precision How Passed Units

Integer DP R5 - -

Errors Detected:

Erxror # Cause Fixup
15 Scalar too large for Return either:

integer conversion. Posmax = X'7FFFFFFF'
: or Negmax = X'80000000°
Comments: tilegative arguments become more negative, positive arguments less
Y 3 . o
positive . -3 % -2 -1 0 1 2 ? % X (Cont'd. at bottom of page)

FLgOR (o) FLgOR (B)

Algorithm:

same as DROUND, except argument is rounded down by almost 1
(X' 40PFPFFFFFFFIFFF') 1f negative. Positive ‘arguments are not
rounded.

Comrents: (Cont'd.)

Registers Unsafe Across Call: R4,R5,FO,F1.

5~64

ROUND

Secondary Entry Name: DROUND

Function:
Converts double precision scalar to fullword integer.

Invoked by:

EJ Compiler emitted code for HAL/S construct of the form:
ROUND (X) , where X is a double precision scalar.

Ej Other library modules:

Execution Time (microseconds): 33.g

Input Arguments:

Type Precision How Passed Units
Scalar DP FO, Fl -

Output Results: :
Type Precision How Passed Units

The -argument is checked for negative/not negative. If the argument is
negative, the value is rounded down by subtracting just under %. The resulting
value is then checked against MAXNEG (X'C880000000FFFFFE) . If within the
legal range, the integer part of the scalar is shifted to the second register
of the floating point register pair. This remaining integer value is then put
in a fixed point register and complemented to leave it in the correct two's- :
complement fixed point form. " If the argument is not negative, the value is {
rounded up by adding almost %, and the resulting value is compared to MAXPOS ;
(X'487FFFFFFF FFFFFF) . Then, as with negative values, it is shifted to leave
the integer part in floating point format and loaded into a fixed point register.

Integer DP R5 _ ;
Errors Detected: ‘ ;
Exror # Cause Fixup |

15 Scalar too large for Return either:
integer conversion. Posmax = X'7FFFFFFF’ :
or Negmax = X'80000000"' f
Comments : _ :
Negative arguments are converted to the next more negative integer value; §
positive args to the next greater positive integer value, unless the (Con't on f
Algorithm: bottom of page). ?

Comments (Con't): original argument is an integer (argument rounded up or
down by not quite 1 before truncating decimal places).

Registers Unsafe Across Call: R4,R5,F0,FL.

5-65 . ¥

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

g o e e <

ROUND

4 F
" Secondary Entry Name: DTOIL ' ‘ly

Function: Converts double precision scalar to fullword integer.

Invoked by:

Compiler emitted code for HAL/S construct of the form:

I = D; where I is a double precision integer, and
D is a double precision scalar.
D Other library modules:

Execution Time (microseconds): 33.8

Input Arguments:

Type Precision How Passed Units
Scalar DP FO -

Output Results:

Type Precision How Passed Units
Integer DP R5 -

Erxrors Detected:

Error # : Cause Fixup o
15 Scalar too large for integer conversion. Return either:
POSMAX or
NEGMAX
Comments:

DTOL is identical entry-point to. DROUND,
Registers Unsafe Across Call: R4,R5,F0,F1l.

Algoxithm: Same as DROUND.

 REPRODUCILLITY OF T0F
SRIGHAL PAG: 1 FOOR

5-66 ; L

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

ROUND

i

. Secondary Entry Name: DTRUNC
ion: performs S TRUNCATE function: inds e signed value at is
Function £ HAL/S T funct Finds th d value that
the largest integer < absolute value of the argument.,
Invoked by:
Compiler emitted code for HAL/S construct of the form:
TRUNCATE (X), where X is a double precision scalar.
E] Other library modules:
Execution Time (microseconds): 28.6
Input Arguments:
Type Precision How Passed Units
Scalar DP FO, Fl1 -
Output Results: .
Type . Precision How Passed Units
Integer DP RS - -
, Errors Detected:
- Exror # Cause Fixup
15 Scalar too large for Return either:
integer conversion. Posmax: X'7FFFFFFF'
or Negmax: X'80000000'
Comments: After truncation, negative and positive arguments are closer to 0O;
no roundlng done before tzungat;on.l 01 s B s (Continued at bottom
. L= = O Lf of
Algorxithm: LI P page)
TRUNCATE (o) TRUNCATE (B) o
Same as DROUND, -except argument is not rounded up or down.
Comments: (Continued)
: Registers Unsafe Across Call: R4,R5,F0,Fl.
cim
“k?k 5=67

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

ROUND

Secondary Entry Name: =210l -

F tion: . Y c
une Converts single precision scalar to fullword integer.

Invoked by:
Ea Compiler emitted code for HAL/S construct of the form:

I=S where I is a double precision integer, S is a single precision
scalar.

E] Other library modules:

Execution Time (microseconds): 39.0

Input Arguments:

Type Precision How Passed Units
Scalar . SP - FO -

Output Results:

Type Precision How Passed Units
Integer DP’ R5 - -
Errors Detected: { ”
Exrror # Cause Fixup
15 Scalar too large for Return either:
integer conversion. Posmax = X'7FFFFFEFF'

Negmax = X'80000000'
Comments:

ETOI is identical entry point to ROUND; also see DTOI
Registers Unsafe Across Call: R4,R5,FO,F1.

Algorithm:

Same as ROUND,

5-68 | ‘ ' j;

iN?TERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

ROUND

7

Secondary Entry Name: FLOOR ’ ;

pPerforms HAL/S FLOOR function: Returns largest integer <
the argument.

Function:

Invoked by:

m Compiler emitted code for HAL/S construct of the form:
FIOOR (X), where X is a single precision scalar.

D Other library modules:

Execution Time (microseconds):31.2 if X > 0
40.6 if X < O

Input Arguments:

Type Precision How Passed Units
Scalar SP FO - ;

output Results:

| Type Precision How Passed Units :
Integer DP RS - - i
| Errors Detected: ,
; Exror # Cause Fixug P
15 Scalar too large for Returns elther: i

i : integer conversion. Posmax = X'JFFFFFFF' =
; or Negmax = X'80000000' B
Comments: . 4

See DFLOOR 4

Registers Unsafe Across Call: R4,R5,FO,F1. ?

Algorithm: ; ‘

Second register of floating point register pair is cleared, then -
routine merges with DFLOOR.

5-69

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

ROUND

Secondary Entry Name: __ TRUNC A '%\Jv

Function: Performs HAL/S TRUNCATE function: Returns signed value that
is the largest integer < absolute value of the argument.

Invoked by:

Compiler emitted code for HAL/S construct of the form:
TRUNCATE (X) where X is a single precision scalar. ‘

D Other library modules:

Execution Time (microseconds): 31.4

Input Arguments:

Type Precision How Passed Units
Scalar SP FO -

e

Output Results:

Type Precision .. How Passed Units
Integexr DP R5 : -
Errors Detected: :
Exror # Cause Fixup
' o 15 Scalar too large for Return either:
integer conversion. Posmax = X'7FFFFFFF'
or . Negmax = X'80000000"'
Comments: . :
See DTRUNC :
Registers Unsafe Across Call: R4,R5,F0,Fl.
Algorithm:

Second register of floating point register pair is cleared, then
routine merges with DTRUNC.

fﬂﬁﬁﬁKﬁonﬁﬁﬁiiﬁ’GF’gﬁE
ORIGINAL ¥ A3 IR POOR

5-70 ‘ ‘ ; J

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS '02138" (617) 661-1840

5.3.2 Algebraic Routine Description
This subsection presents the detailed descriptions

of "Algebraic" routines as defined in Appendix C of the
HAL/S Language Specification,

5-71

INTERMETRICS INCORPCRATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617)

661-1840

e

.. ACOS
HAL/S~-FC LIBRARY ROUTINE DESCRIPTION
Source Member Name: ACOS Size of Code Area: 102 Hw
Stack Requirement: 24 Hz Data CSECT Size: 2 Hw
] Intxinsic [] Procedure
Other Library Modules Referenced: SQRT
ENTRY POINT DESCRIPTIONS
Primary Entry Name: ~RACOS
Function: Cemputes arc-cosine(x) of scalar argument.
Invoked by: -
Da Compiler emitted code for HAL/S construct of the form:
ARCCOS(X) , where X is a singie precision séalar,
D Other Library Modules:
Execution Time (microseconds): .5 < !X] < 1: 225.5
2.441406252 x 1074 < |x|<.5: 132.7
-Z,
Input Arguments: [x] < 2.441406252 x 10~%: 71.5
Type Precision How Passed Units
Scalar Sp : FO -
Output Results:
Type Precision ' How Passed Units
Scalar Sp FO radians
Errors Detected:
Error # Cause ’ Fixup
10 argument outside range -1 to 1. Return 0.0
Comments:

Registers Unsafe Across Call: FO,Fl,F2,F3,F4,F5.

Algorithm: ACOS (x) is computed as T/2 - ARCSIN(X) .

5-72

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - {617) 661-1840

‘&E‘K"

RE‘PRODUCBILITf OF THE

ORIGINAL PAGE I PCOR ACOS

Secondary Entry Name: ASIN

Function:
Computes arc-sine of scalar argument.

Invoked by:

Compiler emitted code for HAL/S construct of the form:

ARCSIN(X), where X is a single precision scalar.
D Other library modules:
Execution Time (microseconds): .5 < |X|i 1: 227.6
2.441406252 x 1074<|x| <.5: 118.4
1x] < 2.441406252 x 1074: 57.2

Input Arguments:

Type Precision How Passed Units
Scalar sk FO . -

Output Results:

Type Precision How Passed Units
Scalar Sp FO radians

Errors Detected:

Erxror # Cause Fixup
iRy argument outside legz: range. Return 0.0
Comments:

Registers Unsafe Across Call: ¥0,F1,F2,F3,Fr4,F5.

Algorithm: The value of X is restricted to 0 < X < .1 by using the identity
arcsin: £) ~arcsin(X), and further to 0 < X £ .5 by the identity
arcsiniky = 7/2 - 2 arcsln(“l-—x) In this range, arcsin(X) is computed

2 . :
as 1 truncated continued fraction im X7, mulitiplied by X.
The ioxm of the approximation 1s: 3 ~

dlx

arcsain(¥) < X +

wheire the values of the constants are:

¢, = X'CL3B44eA' = -3.7042025
, = X'Cl1DBO34' = -1.8555182
dy = x'cosl43c7' = -0,5049404
A, - X'C11406BF* = -1.2516474

5-73

INTERMETRICS INCOHPOR/“TED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) .661-1840

-~

"

ACOSH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION ’
b
Source Member Name: ACOSH Size of Code Area: 36 Hw
Stack Requirement: 20 Hw Data CSECT Size: 2 Hw .
[Intrinsic £] Procedure
! Other Library Modules Referenced: 1.OG, SQRT
ENTRY POINT DESCRIPTIONS
Primary Entry Name: ACOSH
Function:
Computes hyperbolic arc-cosine in single precsion.
Inveoked by: .
[{5] Compiler emitted code for HAL/S construct of the. form:
ARCCOSH (x) , where x is a single precision scalar.
D Other Library Modules:
Execution Time (microseconds): 1.6777722E+7 < X: 124.2
1 <X <1.6777722E+7: 297.3
Input Arguments: :
Type Precision How Passed Units b
scalar ' SP O -
Output Results:
Type . Precision How Passed Units
scalar Sp FO : -
Errors Detected:
; Exror # Cause : Fixup
i 59 ~ ARG < 1 Return 0.0
Comments:
Registers Unsafe Across Call: E‘O,Fl,FZ,F3,F4,F5.
Algoxithm: ,
Using the external SQRT -and-LOG functions:
arccosh (x) = log(x + Vx2-1)
- p
A
e

5-74

INTERMETRICS INCORPORATED + 701 CONGORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

ik [ASINH ?
él% HAL/S-FC LIBRARY ROUTINE DESCRIPTION
) Source Member Name: «-ASINH Size of Code Area: 64 Hw
Stack Requirement: 20 Hw Data CSECT Size: 0 Hw
[J intrinsic A Proceduie
Other Library Moéules Referenced: SQRT; LOG

ENTRY POINT DESCRIPTIONS

: ASINH

! Primary Entry Name:
f Function:
Computes hyperbolic arc-sine in single Precision,
Invoked by: -

Ea Compiler emitted code for HAL/S construct of the form:
ARCSINH(X), where X is a scalar.

_[] Other Library Modules:

Execution Time (microseconds): (See below)

Input Arguments:

Type Precision How Passed Units
Scalar SP FO -

Output Results:
Type Precision How Passed Units

Scalar sp FO

“Errors Detected: .
Error # . Cause Fixup

none

Comments:
Registers Unsafe Across Call: . FO,F1,F2,F3,F4,F5.

Algorithm:
Using the external SQRT and LOG routines:

inh (X) = .
arcsinh (X) log (X + X2 +1 b

Execution Time: X{ < 8.8721751E~4: 31.5

X| > 1.6777722E7: 141.2
: 8.8721751E-4 < |xX| < 2.1632855E-1: 85.4
; : o 2.163255E-1 < |X!‘<l.6777722E+7: 314.1

5-75
INTERMETRICS INCORPORATED + 701 GONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

g
ATANH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION
AW 4
Source Member Name: ATANH Size of Code Area: 58 Hw
; Stack Requirement: 18 Hw Data CSECT Size: 2 Hw
} [J Intrinsic Procedure
‘. -
‘ Other Library Modules Referenced: LoG
ENTRY POINT DESCRIPTIONS
Primary Entry Name: _ ATANH
Function:
Computes hyperbolic arc~tangent in single precision.
Invoked by: -
Compiler emitted code for HAL/S construct of the form:
ARCTANH (X), where X is a single precision scalar.
D Other Library Modules:
; : X X| < 4.113892E-5: 33.9
tion T roseconds) : I
Execution Time (microseconds): ,'y)3995p 5 < [x| < 1.875E~1: 85.7
1.8758-1 < |X|: 228.2
Input Arguments:
Type Precision How Passed Units).
Scalaxr sP FO -
output Results:
Type Precision How -Passed Units
Scalar sp PO -
Errors Detected:
Error # Cause Fixup
60 argument outside range: Return 0.0
-1 <X<1
Comments: ‘
Registers Unsafe Across Call: ¥0,Fl,F2,73,F4,F5.
Algorithm:
Using the external LOG function,
arctanh(S) .= % log{(1 + X)/(1 — X))
- Error #60- is sent - if 1 - X =0, oxr if (1L + X)/(1 - X) < 0.
#%hich taken together, are equivalent to the requirement -1 < X <.1,
@.)_'Q

5-76

INTERMETRICS INCORPORATED « 701 CONCORD AVENLUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

o
AW

DACOS

HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DACOS Size of Code Area: Hw

Stack Requirement: 1€ Hw Data CSECT Size: Hw
[Intrinsic [} Procedure

Other Library Modules Referenced: DSQRT

ENTRY POINT DESCRIPTIONS

Primary Entry Name: DACOS

Function: Computes ARCCOS (X) in double precision.

Invoked by: -

Compiler emitted code for HAL/S construct of the form:

ARCCOS (X), where X is a double precision scalar.

E] Other Library Modules:

Execution Time (microseconds}): IX' < 3.7232907E-7: 89.1

3.7252907E-7 < [X| < .5: 263.1

.5 < |x] < 1: 460.5 (79.7 in odd cases)

Input Arguments:

Type Precision How Passed
Scalar DP FO

Output Results:

Type Precision How Passed
Scalar DP FO
Errors Detected:
Exror # _Cause
10 argument outside range
=1 <x<1
Comments:

Registers Unsafe Across Call: FO,F1,F2,F3,F4,F5,
Algorithm:
Computed as T/2 - ‘ARCSIN (X)

5-77

Return 0.0

Units

Units

radians

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02188 « (617) 661-1840

DACOS

Secondary Entry Name: DASIN

Function:
Computes ARCSIN(X) in double precision.

Invoked by:

EZ] Compiler emitted code for HAL/S construct of the form:

ARCSIN(X), where X is a double precision scalar.
E] Other library modules:
Execution Time (microseconds): |x| - < 3.7252907E-7: 64.1
3.7252907E-7 < |x} < .5: 238.1
.5 < |X] < 1: 470.3 (89.5 in odd cases)

Input Arguments:

Type Precision . How Passed Units
Scalar DP FO -

output Results:

Type Precision How Passed Units
Scalar DP FO radians .

. Errors Detected:

Error # Cause Fixup
10 argument outside range Return 0.0
-1 <X <1
Comments:

Registers Unsafe Across Call: FO,Fl,F2,F3,F4,F5.
Algorithm: The value of X is restricted to 0 £ X £ 1 by using the identity
arcsin(=X) = arcsin(X), .
and further to 0 < X < % by using the identity
arcsin(X) =n/2 -2 arcsi 1-X .
: 2
Within this range, arcsin(X) is computed as a truncated continued fraction
in X2, multiplied by X.
The form of the approximation is: '
‘ 3 4y ' \
arcsin(X) = X+X Cl -+) ‘ .

(Continued on next page)
5-78

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - GAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

e

DACOS

DACOS
Algorithm (Con't)

where the values of the constants are:

C, = X'3F180CD96B42A610' = .00587162904063511

1
dl = X'CO7FE600798CBF27' =-,49961647241138661
C2 = X'C1470EC5E7C7075C"' =-4,44110670602864049
d2 = X'CLl489A752C6A6B54' =-4,53770940160639666
C3 = X'C13A5496A02A788D' =-3.64565146031194167
d3 = X'C06B411D9ED01722' =-.41896233680025977
C4 = X'Cl1BFB2E6EB617AA' =~1,74882357832528117
64 = X'BF99119272C87E78' =-.03737027365107758
C5 = X'C11323D9C96F1661"' =-1.19625261960154476

5=79

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

§
[
!
¥
H

»

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

4
DACOSH
HAL/S~-FC LIBRARY ROUTINE DESCRIPTION
Source Member Wame: DACOSH Size of Code Area: 42 Hw
r Stack Requirement: 22 Hw Data CSECT Size: 2 Hw
B [iIntrinsic E Procedure
- Other Library Modules Referenced: DLOG, DSQRT
ENTRY POINT DESCRIPTIONS
- Primary Entry Name: DACOSH
Function: Computes hyperbolic arc-cosine in double precision.
Invoked by: -
, Compiler emitted code for HAL/S construct of the form:
| ARCCOSH(X) , where X is a double precision scalar.
* D Other Library Modules:
i
G Execution Time (microseconds): 1 < X < 6.7108869E+7: 403.4
b 6.7108869E+7 < X: 332.4
Input Arguments:
Type Precision How Passed Units
scalar DP FO : -
Output Results:
Type Precision How Passed Units
scalar DP FO -
{) Errors Detected:
Error #- Cause Fixup
59 argument < 1 return 0.0
Comments:
Registers Unsafe Across Call: FO,F1,F2,F3,F4,F5.
Algorithm:
Using the external DSQRT and DLOG functions:
arccosh(x) = log(x + sz—l)
REPRODUCIB“TM OF THE
ORICINAL PAc: 20 POOR
5~80

(617) 661-1840

DASINH E
HAL/S~FC LIBRARY ROUTINE DESCRIPTION ;
Source Member Name: - DASINH Size of Code Area: 94 Hw ;
Stack Requirement: 22 Hw Data CSECT Size: 0 Hw E
[0 Intrinsic] Procedure
Other Library Modules Referenced: DSQRT, DLOG

ENTRY POINT DESCRIPTIONS

Primary Entry Name: DASINH

Function:
Computes hyperbolic arc-sine in double precision.

Invoked by: .
Eﬂ Compiler emitted code for HAL/S construct of the form:

ARCSINH(X), where X is a double precision scalar.

Ej Other Library Modules:

Execution Time (microseconds}): (See below) .

Input Arguments:

Type Precision How Passed Units
Scalar Dp FO -

Ooutput Results:

Type Precision How Passed Units
Scalar DP) FO -

Errors Detected:
Exror # Cause Fixup

Comments: o
Registers Unsafe Across Call: FO,Fl,F2,F3,F4,F5.

Algoxrithm:
Using the external DSQKT and DLOG function:

arcsinh (X} = log (X + ¥~ + 1)

Execution Time: |x] < 1.353860E-8: 33.6
6.7108864E+7 < |x|: 348.2
1.353860E-8 < |X| < 6.25E-2: 185.4
6.258-02 < |X| < 6.7108864E+7: 570.8

5-81

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) €61 -1840

DATANH

HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DATANH Size of Code Area: 9p Hw

Stack Requirement: 18 Hw Data CSECT Size: 2 Hw
O Intrinsic E] PFProcedure

Other Library Modules Referenced: . DLOG

ENTRY POINT DESCRIPTIONS

Primary Entry Name: DATANH

Function:
Computes hyperbolic arc-tangent in double precision,
Invoked by: .
EZ]Compiler emitted code for HAL/S construct of the form:
ARCTANH (X) , where X is a double precision scalar.

E] Other Library Modules:

Execution Time (microseconds): |X| < 1.0774559E-8: 42.6
1.0774559E-8 < |X| < 6.25E~2: 186.6
6.25E-2 < |X|: 399.0

Input Arguments: -

Type Precision How Passed Units
Scalax DP FO -

Output Results:

Type Precision How Passed Units
Scalar Dp PO -
Erxroxrs Detected: ,
Exror # Cause Fixu
60 Argument outside range: Return 0.0
~1< X <1
Comments:

Registers Unsafe Across Call: ¥0,F1,F2,F3,F4,FS5.
Algorithm: ‘
Using the extermal DLOG library function,
arctanh(X) =% log ((X + X)/(1-x)).

5-82

 INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + GAMBRIDGE, MASSACHUSETTS 02138 « (617) 661~1840

7 DATAN2
;f?\ HAL/S~FC LIBRARY ROUTINE DESCRIPTION
Source Member Name: DATANZ2 Size of Code Area: 194 Hw
Stack Requirement: 18 Hw Data CSECT Size: - 26 Hw
[Intrinsic K] Procedure
Other Library Modules Referenced: None

ENTRY POINT DESCRIPTIONS

Primary Entry Name: DATAN2

Function: oonoutes aretan by fraction approximation in the range (~7,)
in double precision.

Invoked by:

Compiler emitted code for HAL/S construct of the form:
ARC'UAN2(X,Y), where X and Y are double precision scalar corresponding

to sine and cosine vespectively of the intended arc tangent argument.

[] Other Library Modulcs:

Execution Time (microseconds): 248.4
(S Input Arguments:
P ' Type Precision How Passed Units
: Scalar (sin) DP FO -
Scalar (cos) DP ¥2 -

Output Results:

Type Precision How Passed Units
Scalar Dp i FO Radians

Errors Detected:

Exrror # . Cause Fixup
62 arg 1l = axg 2 = 0 Return 0.0
Comments:

Registers Unsafe Across Call: FO,Fl1,F2,F3,F4,F5.

Algoriﬁhm: Same algorithm as EATANZ2, but values of constants and the fractional
_approximation formula is different for the double precision, as follows.

Again, Z = +§§§*§+5 . Special cases - (1) If cos x < 0. and Z < (16)"14,

return #1. {2) sin x = gos x = 0, signal error and return 0. (3) sin x # O,

. ‘ L4
cos x = 0, return * /2, (4) sin x # 0, cos x ¥ 0, but 2 > (16):L , return
tm/2. (5) If 7 < (16)7, return 7.
= ' {Continued on next page)
: 5-83 '

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE "~ CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

,. TY Gt THE
REPRODUCIBILITY L& 42
ORIGINAL PAGE I3 FOOR (.
¥ 4

DATAN2

DATAN2

Algorithm (Con't)

The fractional approximation after reduction of Z to < tan 15° is:

Tan—l(Z) =27 +Z . 22 « F, where

F =Cl+ C2/(Z% + C3 + c4/[z2 + C5 + (cs/(z2 + N,

Cl = X'BFlE31FF1784B965"' (-0.7371899082768562E~2)

C2 = X'COACDB34COD1B35D' (-0.6752198191404210)

C3 = X'412B7CE45AF5C165" (0.2717991214096480E+1)

C4 = X'Cl1A8F923B178C78" (-0.1660051565960002E+1)

C5 = X'412AB4FDSD433FF6’ (0.2669186939532663E+1)

C6 = X'C02298BB68CFD869" (~0.1351430064094942) -
C7 = X'41154CEE8B7DCAS9' (0.1331282181443987E+1) lxy

As in EATAN2, the intermediate result is adjusted to the proper section
in the first guadrant, as f£ollows:

(original) Z < tan 15° -+ + 0

tan 15° < 2 < 1 - + /6
1/Z < tan 15° : -+ (=m/2 + 1) then -1 (to preserve signif. bits)
tan 15° < 1/2 < 1 -+ (-/3 + 1) then -1 (to preserve signif. bits)

The resulting angle is adjusted to the proper guadrant as in EATAN2 (according

to sign of sin % and ¢cos x).

5~84

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (517) 661-1840

DATAN2

Ner Secondary Entry Name: DATAN

Function: Computes arc tangent by fractional approximation in the range
(=m/2, +1/2) in double precision.

Invoked by:

EJ Compiler emitted code for HAL/S construct of the form:
ARCTAN(X), where X is a double precision scalar.

E] Other library modules:

Execution Time (microseconds): 237.3

Input Arguments:

Type Precision How Passed Units
v =T —_—

Scalar DP

Output Results:

Type Precision How Passed Units
Scalar Dp’ FO Radians

Erroxs Detected:

Error # Cause Fixup
Comments:

Registers Unsafe Across Call: FO,Fl,F2,F3,F4,FS.

Algorithm: Same as ARCTAN, but see DATAN2 for ¢hanges in values of DP
constants and TAN“l_formula.

i:‘r‘ 5_85

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

DEXP

t HAL/S-FC LIBRARY ROUTINE DESCRIPTION @
;é Source Member Name: DEXP size of Code Area: 154 Hw
Stack Requirement: 18 Hw Data CSECT Size: 66 Hw
O Intrinsic k] procedure
Other Library Modules Referenced: None

ENTRY POINT DESCRIPT., ONS

Praimary Entxry Name: DEXP

Function .
Computes e in double precision,

Invoked by:
Compiler emitted code for HAL;S construct of the form:

EXP (X), where X is & double precision scalar.

[Other Library Modules:

DPWRD . DSINH, DTANH

Execution Time (microseconds): 290.5

Input Arguments: : o) < n
Type Precision How Passed "~ Units Y
Scalar Dp FO -

oOutput Results:

Type Precision How Passed ‘ Units
Scalar DP . . O -
Exrrors Deéetected:
Error # : Cause ‘ Fixup
S} Argument outgide range Return maximum positive
X < 174.6731 : floating point numbexr
Comments:

Gives underflow if argument to small - no error number.
Registers Unsafe Across Call: ¥O0,F1,F2,F3.

Algorithm: First, decompose X as P'log2 + R', where P' is the integer
E - part and first hexadecimal place of the result of dividing the high-ordex
. ‘part of X by LOGZH, which 1s a single precision approximation to log2,
Sl rounded up. This is done in 80-bit precision in orxder to yield a true 56-bit
value for R', by expressing log2 = LOG2H + LOG2L; where LOG2L is a double
precision scalar. R' has the same sign.as X, and |R"{ might be slightly >
log2 : ‘
16 -
(Continued on next page)
r.
o -3
5-86

INTERMETR.CS INCORFORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + {617) 661 -1840

i) : DEXP

DEXP

Algorithm (Con't)

Now, if R' > 0, subtract l—i%?z- from it until it becomes < 0, each time

adding —i%- to P'. If R' < - El-gl , add l—i%z— to it until it becomes

> - '—1-%22 , each time subtracting 1-16- from P'.

At the end of this, we have

X =P - log2 + R, P an integral multiple of 1/16, and - l%%2~ <RZO0.
Represent P as 4A ~ B ~ {%—, where A, B, and C are integers, 0 < B < 3,
0 < C < 15. Then:

eX = 16A . 2-B .2 l6 | eR

To calculate this, we compute eR with a polynomial approximation of
the form:

r 2 3 4 5 6
e .= ; + clr + c21 + c3r + crr + csr + c6r

where the values of the constants are:

.9999999999959892

cl = }'40FFFFFFFFPFFCFC!
cz' = X'407FFFFFFFFAB64A' = .4999999999951906
¢y = X'402AAAAAAT94AR99' = ,1666666659481656
cy = X' 3FAAAASD6ACLID734" = ,0416666173078875
cg = X'3F2220559A15E158' = ,00833161772003906
c6 = X'3E591893' = ,001359497
SRR - | |
. T 16 . SR , 9 -B AR A
Then, 2 is computed by table lookup, 2 by shifting ,f and 16

!
)
7

by adding A to the exponent of the answer. 4

5-87

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

DLOG
HAL/S-FC LIBRARY RQUTINE DESCRIPTION [;;
Al
Source Member Name: , DLOQ Size of Code Area: _140 Hw
Stack Requirement: 22 Hw Data CSECT Size: _ 2 _Hw
[0 intrinsic d procedure
Other Library Modules Referenced: _ None
ENTRY PQINT DESCRUPTIONS
Primary Entry Name: - DLOG
‘ Function: ,
; Computes log (X) in double precision.
: Invoked by:
Compiler emitted code for HAL/S construct of the form
LOG (X) , where X is a double precision scalar.
. Other Library Modules:
DPWRD, DASINH, DA’PANH: DACOSH
Execution Time (microseconds): ,g95 9
k Input Arguments: ‘ 5[?*
Type Precision , How Passed Units ' A
Scalar Dp FQ -

output Results: o : ‘
Type ' Precision How Passed Units
Scalar . DP FO i -

Errors Detected:

Erro;_i V Cause Fixup
7 argument outside range X > .0, If X < 0 return 1og(lxl),

1f X=0, return maximum
negative floating: point

Ccomments : ' number.
Registers Unsafe Across Call: FO,F1,F2,F3,F4,F5,
Algorithm: We write X = 16 Z_Q + M, where % <M <1, P, Q are integers,

0<Q<3. P, Q, and M arm found by flxed*pOLnt calculations, Define

=1, B=0, if M >l/2"f /2, and A= L, B=1 otherwise. Let 2 = (M~A)/(M+A}. Then
log(X) = (4P-Q-BYlog(2)+log({1+Z)/(1~3))

(Continued on next page)
‘ ; o 5-88
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + GAMBRIDGE, MASSAGHUSETTS 02138 + (617) 651-1840

DLOG
Algorithm (Con't)
~ ‘ log ((1+Z) /(1-Z)) is computed by an approximation of the form:
) C
W+C1W3 w2+c2+ > 3
W +C 4 + C5
w> *C

! . where W = 22, and the values of the constants are:

C, = X'3DDABBGCOF18CEDD' = 0,2085992109128247E-3

C, = X'422FC604E13C20FE' = 0.4777351196020117E+2

i C, = X'C38BESALCS5CEBLCA' = ~0.2277631917769813E+4
; C, = X'Cl6F2AG4DDFCCIFD' = -6,947850100648906
- Cy = X'CL2AO17578F548D1' = -2,625356171124214
L C_ = X'Cl58FA4EOE40COA5' = -5.561109595943017

P

5-89

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - {617) 661-1840 .

~ DPWRD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION .
]
<
Source Member Name: DPWRD Size of Code Area: 38 Hw ”
Stack Reqguirement: _A‘__22 Hw Data CSECT Size: B »’4; Hw
[intrinsic Procedure
Othexr Library Modules Referenced: DLOG, DEXP, DSQRT
VENTRY POINT DESCRIP'I‘IONS)
Primary Entry Name: ,DPWR?
Function:
Performs exponentiation of double precision scalar to double Precision power.
Invoked by: , .
Compiler emitted code for HAL/S construct of the form:
X**¥, where X and Y are scalars and at least X or Y is double precision.
E] Other Library Modules:
Execution Time (microseconds): If Y = .5: 238.4
' If Y # .5: 635.6
Input Arguments: , ’ : k 7 .
Type Precision ‘ How Passed Units o
Scalar (base) DP FO -
Scalar (exponent) ‘DP F2 -
Cutput: Resultgs: ,
Type Precision , How Passed Units ’
Scalar DP : FO -
Errors Detected: ;
Error # : Cause : Fixup
4 base=0; exponent < 0 Return 0,0
24 base < 0 use Ibasel
Comments: ‘
Registers Unsafe Across Call: FO,Fl,F2,F3,¥4,F5,
Algorithm: ~If exponent = 0.5, compute x0+3 as [/X, othexwise
Y ¥ L X o :
X = e %9 ¢ using the external DEXP and DLOG. functions.
e | a»
5-90 N . . ‘,(k

-

INTERMETRICS INCORPORATED + 701 GONCORD AVENUE + CAMBRIDGE, MASSAGHUSETTS 02138 - (617) 661-1840

DPWRL

HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DPWRI, size of Code Area: _ _40 Hw
Stack Requirement: __ 18 Hw Data CSECT Size: 2 Hw
[iIntrinsic B Procedure
Other Library Modules Referenced: ___ None
e .

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

ENTRY POINT DESCRIPTIONS

Primary Entry Name: DPWRT

Function:

Exponentiation of a double precision scalar to a fullword integer power.

Invoked by:
Compiler emitted code for HAL/S construct of the form.

X*x%*I, where X is a double precision scalar; I is a double precision integer.

Ej Other Library Modules:

 Execution Time (microseconds): (See next page)

Input Arguments:

Type , Precision How Passed Units
Scalar (base) DP , 0 “
Integer (exponent) Dp R6 -

Output Results:

Tvype Prec¢ision How Passed ' Units
. Scalar DP ‘FO =
Errors Detected: Lo ' .
Error # ‘ “Cause Fixup
4 Zero raised to power < O ' Return 0.0
Comments:

Registers Unsafe Across Call: ¥0,Fl,F2,F3.

Algorithm: If I is the fullword exponent, D the base, write

i ‘ L
I = &, Ll ex . = .
| Fl=o elz r where e, = 0 or 1
Then: i ;
r.e,2 * i
pfop it 32 ei2 i ‘ : .
=D = "i:o D5 =T igl DT ., if any e, = lf and = 1 otherwise,

{Continued on next page)

5=91

(617) 661-1840

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DPWRI l"‘ ‘
¥

DPWRL
Execution Time (microseconds):

If exponent > 0: 40.8 + (n~1) 23,2 + 13.0m

If exponent < 0: 64.0 + {n=1) 23,2 + 13.0m

i

where m number of 1's in binary representation of |exponent].

number of significant digits in binary representation
of ‘exponent .

il

n

Algoxithm (Con't)

i
27 L. .
To compute ﬂe -1 D® -, 4t 1s only necessary to compute successively

2t 2 4 .8 ~ i fm
p° =D, D% D, D, ..., and multiply the result by D whenever the i-th el

bit of the exponent is 1, This is determined by shifting bits one by one
. out of the exponent, and testing each one for a value of one. The loop
terminates when the remaining part of the expdnent is zero.

Operations are dcne on absolute value of exponent. If exponent was

negative, the reciprocal of the result is taken as the final reésult.

5-92 - At ' e

. INTERMETRICS INCORPORATED + 701 CONGORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

e R s e sl i i b B O A L S iy MO B i A O 4 8 e e SRR S s iAot e SR I AR

Secondary Entry Name: _ PPWRH

Function:
Exponentiation of a double precision scalar to a halfword integer power.

Invoked by:

Ea Compiler emitted code for HAL/S construct of the form:
X%*I, where X is a double precision scalar; I is a single precision integer,

EJ Other library modules:

Execution Time (microseconds): Same as DPWRI except constants are
exponent > 0: 41.4
exponent < 0: 64.6

Input Arguments:

Type , Prgcision How Passed Units
Scalar (base) DP ' FO -
Integer (exponent) SP , R6 -
Output Results: .
Type ‘ Precision How Passed Units
Scalar DP FO -
S Errors Detected:
b . Error # Cause Fixup
' 4 Zero raised to power < 0 : Return 0
Comments:

Régisters Unsafe Across Call:‘FO,Fl,FZ,FB.v

Algorithm: The halfword exponent is shifted right to convert it to a
fullword, then the DPWRI algorithm is used. :

5-93

INTERMETRICS INCORPORATED - 701 CONGORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

b |

HAL/S-FC LIBRARY

DSIN

ROQUTINE DESCRIPTION

INTERMETRICS INCORPORATED 701 CONGORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Comments :
Registers Unsafe Across Call:

) A ; ; .
Algorithm: Let 1Xl YT O+R, where @ is. an integer and - R a fraction.

Add 4 to ¢ if the sine is desired and

is desired.

FO,Fl,F2,F3,F4,F5.

Source Member Name: DSIN Size of Code Area: 102 Hw
stack Requirement: 20 Hw Data CSECT Size: 62 Hw
0O Intrinsic &l Pprocedure
Other Library Modules Referenced: None
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DSIN
Function: ,
Computes sine(X) in double precision.
Invoked by: -
Ea Compiler emitted code for HAL/S construct of the form:
SIN{X), where X is a double precision scalar.
E] Other Library Modules:

Execution Time (microseconds): 267.0
Input Arguments:

Type Precision How Passed Units

Scalar : DP FO radians
Output Results:

 Type Precision How Passed Units

Scalar DP ro -
Errors Detected:

Exroxr # “Cause Fixup

8 ‘ Argument outsid : i
) l;‘.’{Tu<e$ 2(5)_)0 i1de range Return E
B ,)

X < 0, and add 2 to Q if the cosine

Since sin(=x) == sin{ #+x), and cos(x) = sin(g*+x), this reduces the problem

t0'computing‘sin(x) foxr X Z_O;

(Continued oh next page)

5-94

DSIN

DSIN

Algorithm (Con't)

Since Q ‘has been adjusted, it is only necessary to compute sin ({-(Q+R)) .
If Q'=Q mod 8, then this is equal to sin (-H—(QWR)) . The eight cases

of this yeild; through simple trigonometric identities:

Q'=0: sin(x) = sin(R - -g-)

Q'=1: sin(x) = cos((1l-R)

.b\l/:l

Q'=2: sin(x) = cos(R +)
Q'=3: sin(x) = sin((1-R) - 'Ll)

0'=4: sin(x) = -sin(R - —})

0'=5: .sin(x) = -cos((L-R) - %)
Q'=6: sin(x) = ~cos(R - 'g‘)
Q'=7: sin(x) = -sin((1-R) *)

Thus, if we let R'=R in octants 0, 2, 4, 6, and R'=1-R in octants 1, 3, 5, 7.

We need only compute
o T
sin(R' - Z)

in octants 0, 3, 4, 7, and cos (R' - 1;—) in 1, 2, 5, 6, and take the negative

value in octants 4, 5, 6, 7.
) , . - —
sin(R' - Z) and cos(R' - Z) are computed by polyhomial approximations.

The form of the polynomial approximation for sine is:

sin(R' -) = R'(C + ClR'2 + C2R'4 + C3R'6 + C4R'8 + csvaO + CGvaz)
where the values of the constants are:
CO = X'40C90FDAA22168C2' = .78539816339744831
Cl = X"COly4ABBCE62SBE41' = ~,080745512188280536
' C2 = X'3EA335E33BAC3FBD’ = 2.4903945701888438E-3
C3 = X'BD265A599C5CB632' = -3.6576204158913872E-5

5-95 {Continued)

INTERMETRlCS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (€17) 661-1840

e e

T

RS

T THE
REPRODUCIBILITY V)
ORIGINAL PAGH IS POOR

DSIN
DSIN
Algorithm (Con't)
C4 = X'3B541EOBF684B527' = 3.1336162254333759E-7
C5 = X'B978CO1C6BEF8CB3' = =-1,7571500746935669E-9
kcﬁ = X'3778FCEOE5AD1685' = 6.8773605709403589E~12
The form of the polynomial approximation for cosine is:

L0 o 2 Pk R R R0 L o el 114
cos(R 4) 1+ ClR + 02 R + 03 R+ 04 R'" + CS‘R + c6 R + c7 R
where the values of the constants are:

: Cl = X'CO4EF4F326F91777' = ~.30842513753404242
C2 = X'3F40F07C20606ABl"' = 1.5854344243815420E~2
c3 = X'BE155D3C7E3C90F8' = ~-3,2599188692673765E~4
c4 = X'3C3C3EAODOGABC29' = 3.5908604460279520E-6
C5 = X'BA69B47B1E41AEF6' = -2.4611364033652271E-8
C6 = X'387E731045017594" = 1.1500512028186245E~10
C7 = X'B66C992EB4B6AA37"' = -3.8581890061323055E~13

» 5-96 |
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + GAMBRIDGE, M R e

AW

%

.

DSIN

Secondary Entry Name: DCOS

Function:
Computes cosine(x) in double precision.

Invoked by:

Ea Compiler emitted code for HAL/S construct of the form:
COS (X) ,where X is a double precision scalar.

E] Other library modules:

Execution Time (microseconds): -7 < x <T: 261.8
X>mmor x < =-T: 264.2

Input Arguments:

Type Precision How Passed
Scalar DP FO

Output Results:

Type Precision How Passed
Scalar DP FO

Exrrors Detected:

Error # , Cause
8 Argument outside range
|x] < m.250 Return 1:T~
Comments: .
Registers Unsafe Across Call: FO,Fl,F2,F3,F4,F5.
Algorithm:

See DSIN algorithm.

5-97

Units
radians

Units

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

F DSINH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION i -
i g
Source Member Name: DSINH Size of Code Area: 130 Hw
Stack Requirement: 22 . Hw Data CSECT Size: 2 Hw
! [intrinsic [f] Procedure
i¥ Other Library Modules Referenced: DEXP
i
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DSINH
Function:
Computes hyperbolic sine in double precision.
Invoked by:
- Compiler emitted code ‘for HAL/S construct of the form.
SINH (X), where X is ‘a double precision scalar.
Ej Other Library Modules:
. . . . 81374E-1 < |x| < 1.75366E+2: 434.1
Execution Time (microseconds): 8.
2.063017E~10 < XT < 8.81374E-01: 196.7
|x] < 2.063017E~10: 45.8
Input Arguments: e
Type Precision How Passed Units b
Scalar DP FO - -
Output Results:
Type Precision How Passed Units
Scalar _ DP FO -
Errors Detected: : R
Exror # _ Cause Fixup
9 Argument outsmde range Return maximum positive
|x{ < 175.366 floating point number.
Comments:
Registers Unsafe Across Call: FO,F1l,F2,¥3,F4,F5.
Algorithm: If IXI < 1.626459E~10, then sinh(x) = x. If 1.626569E-10 <
|X| < .881374. Then sinh(X) is computed via a pdlynomial approxxmatlon
The form of the polynomial is:
. _ 3 5 o7 9 11 13
sinh(x) = X + ClX‘~+ C2X + C3X + C4X + CSX + C6X
where the values of the constants are:
(Continued on next page) ~ : S G

5-98

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

DSINH

DSINH

Algorithm (con't)

C1 = X'402AAARAAARAAA4D' = 0,1666666666666653

02 = X'3F2222222222BACE' = 0.8333333333367232Eu2
C3 = X'3DDOODOOCBO6AEF5' = 1,98412698127C711E~4
C4 = X'3C2E3BC881345D91' = 2.755733025610683E-6
C5 = X'3A6B96B8975A1636"' = 2,504995887597646E~8
C6 = X'38B2D4C184418A97' = 1.626459177981471E-10

Othexrwise, sinh([x|) or cosh(lx]) is calculated using EXP. The number
V, eéqual to 0.4995050, is introduced to control rounding exrrors and
the formula is as follows:

2
_ (x+logv) v
sinh(x) = 2v((x'f———+;ogv))
2
i _ A, (x+logv) v ,
cosh(x) = 2V(e e(x+l-ogv))
The identities sinh{-x) = -sinh(x) and cosh(=x) = cosh{x} are used

to recover sinh(x) and cosh(x) from sinh,(lxl) and cosh(|x]|).

5-99

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

% DSINH

Secondary Entry Name: DCOSH ‘ : ; o

882

%

Function:
Computes hyperbolic cosine in double precision.

. ; Invoked by:

Compiler emitted code for HAL/S construct of the form:
COSH(X), where X is a double precision scalar.

[other 1ibrary modules:

Execution Time {(microseconds): Ix] < 1,75366E+2: 422.6

Input Arguments:

Type Precision » How Passed Units

Scalar _bp FO -

-

Output Results:

Type Prec.i.si’on How Passed ‘ Units
Scalar DP FO ‘ ' - Z
Erroxrs Detected: . ; T
: Exror # Cause Fixup - A
9 Argument outside range Return maximum positive
IX < 175.366 floating point number
Comments:

Registers Unsafe Across Call: FO,F1,F2,F3,F4,FS.
Algoxithm:

See DSINH algorithm.

-y
5-100 =5 , ‘ , q‘gl;
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840 |

™

HAL/S-FC LIBRARY ROUTINE DESCRIPTION

m k Source Member Name: DSQRT Size of Code Area: 70 Hw |
| Stack Requirement: ____ 26 Hw Data CSECT Size: 2 Hw ;
! O Ihtrinsic Ea Procedure

None

Other Library Modules Referenced:

’ENTRY POINT DESCRIPTIONS

Primary Entry Name: DSQRT

Function: ,
Computes square root in double precision,

Invoked by:
II Compiler emitted code for HAL/S construct of the form

SQRT (X) , where X is a double precision scalar.

Other Library Modules:
DACOS, DASINH, DPWRD, VV10D3, DACOSH

Execution Time {microseconds): 345.2

Input Arguments:

Type Precision : How Passed Units
Scalar DP FO -

output Results:

Type Precision - How_Passed Units
Scalar DP FO -
Errors Detected:
Exrror # Cause Fixup
5 B Argument outside of range Return sqrt(lxl)
Ix[>0
Comments:
' Registers Unsafe Across Call: FO,Fl,F2,F3,F4,F5.

2P+Q

Algorithm: Let X = 16 * M, where P, Q are integers, Q = 0 or 1, and

L (M <1, Then IT=16 - 4% -0
- 1687 .+ Vw162 .

For a first approximation, we take

y, = B*(+B) - 16F . a2t

(COntlnued OE next page)

VlNTERMETR‘ICS INCORPORATED - 701 bONC‘ORD AVENUE CAMBRIDGF MASSACHUSETTo 02138 + (617) 661 1840

——d

INTERMETRICS INCORPORATED

REPRODUCBILITY 011;‘0%%5‘*
4 ;iﬂ\i(;mfx'{_‘ ?_L Tu
DSQRT

DSQRT

Algorithm (Con't)

where the values of the constants are:

A . 22020005

li
i

X'40385r07°

B X'40423A2A7"

.25870006

This calculation is carried out with the characteristic of A increased by

€ and the others decreased by &, in order to store the value of
B - 16572 . 1678
for later use.

Then, two passes of the Newton-Raphson iteration are performed in single
precision. The form of the iteration is:

_ l X . P+Q-8 - P+Q-8
Vsl = 2 (y yy) + (B * 16) (B + 16) + Yq
-3 : v J
single precision
This is done to truncate excess digits of 3——- = Y3 which is = 0, and

3
is less than 16P+Q_8 in absolute value.

5-102

- 701 CONGORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Y I

DTAN
MIN HAL/S-FC LIBRARY ROUTINE DESCRIPTION
im} Source Member Name: DTAN Size of Cédé Area: 164 Hw
Stack Requirement: 30 _Hw Data CSECT Size: 4 Hw

[0 intrinsic @ Pprocedure

Other Library Modules Referenced: _ None.

ENTRY POINT DESCRIPTIONSV

Primary Entry Name: DTAN

Function:
Computes tangent in double precision.

Invoked by:
Compiler emitted code for HAL/S construct of the form:
- TAN(X), where X is a double precision scalar.

D Other Library Modules:

Execution Time (microseconds): 302.2
RS Input Arguments:
‘ ;’ Type Precision - How Passed Units
i Scalar DP . FO radians
Output Results:
Type Precision How Passed Units
Scalar DP - FO ' -
Errors Detected:
Error # “Cause Fixu
11 Argument outside range Xl <. 250 Return f
12 Argument too near a singularity of Return maximum positive
’ the. tangent function floating point number
Comments:

Error gets very large near a singularity, before error #12 is sent
Reglsters Unsafe Across Call: FO,Fl,F2,F3,F4,F5.

Algorithm: Multiply X by T and give the characteristic of this to

X'OOOOGOOOOOOOOOOSi for use as a comparand to determine nearness to a

singularity. The integer part‘of'|X . %1 is the octant. 'If'the octant is
‘even, let w = fraction part of le . %—,.

“{Continued on next page)

5103 :
INTERMETRICS INCORPORATED » 701 CONCORD AVENUE CAMBRIDGE, MA‘SSACHUSETTQ 02138 + (617) 661-1840

[NTEHMETRICS INCORPORATED - 701 CONCORD AVEN

DTAN

DTAN

Algorithm (Con't)

If the octant is odd, let w = -1 -fraction part of |X| s

4
pegip

. ‘ -46 :
Next, compute two polynomials P(w) and Q(w). If w> 2 , then the

‘forms of the polynomials are:

2 4 (3]
P(w) = w(aO + alw + a2w + W)
2 4 6
= A+ i - X
Q(w) bo blw + b2w + b3w
~46 ; _ . 4 .
If w< 2 , then with u = w if]xl . -T-T-< 1, and u = =w otherwise.

P(w) = w(ao + u)

Q(w) = b0 + ,b3u

where the values of the constants are: .

a, = X'C58AFDD0A41992D4'

il

-569309.04006345

a; = X'44AFFA6393159aa6' = 45050.3889630?77)
a, = X 'C325FDAA87357CAF' = ~607,8306953515

bO = X'C5BOF82C871A3B68B' = ~724866.7829840012

bl = X'4532644B1lE45A133" = 206404.69489206228

b2 = X‘C41926DBBB1F469B' = —-6438.8583240077

b3 = X'422376Fl7lF72282‘ = 35,4646216610

If w < the comparand derived earlier and the octant = 1 or 2 (mod 4),
then error 12 is sent. Otherwise, Q(w)/P(w) is returned with its sign
adjusted:. In octants = 0 or 3 (mod 4), P(w)/Q(w) is returned, with the

sign adjusted according to tan(-x) = ~tan{x).

The - A w i . Ny - P(w) om

. The justification for this compuytation is that -é-(w_f = tan(W - Z) and
g—g—;% = cot (w s -E—), and simple trigonometric identities

give, for R = fraction part of X %

(Continued on next page)

5-104

UE < CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

L R

G ~ DTAN
! DTAN

! Algorithm (Con't)

: Octant (mod 4) Formula for tan
0 tan(|x]) = tan(r . -Ll)
i k1)
i ‘ tan(|x|) = cot((1-R) - z)
: ; 2 ‘ tan(’xl) = =cot(R - {-)
. IR T ; T
- 3 tan(|x|) = —tan((1-R) . P
which is the result of the computation as performed,
!
|
14
-
~ 5-105

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

DTANH

HAL/S-FC LIBRARY ROUTINE DESCRIPTION
Source Member Name: _DTANH Size of Code Area: 94 Hw
Stack Requirement: 22 Hw Data CSECT Size: . , 0 Hw
{J intrinsic [@ Procedure
Other Library Moduleé Referenced: DEXP

" ENTRY POINT DESCRIPTIONS

Primary Entry Name: DTANH

Function: REPRODUCIBILITY OF TH
Computes hyperbolic tangent in double precision. ORIGINAL PAGE IS POOR

Invoked by:

. Compiler emitted code for HAL/S construct of the form:

TAN (X), where X is a double precision scalar,

D Other Library Modules:

Execution Time (microseconds): (See below)

Input Arguments:

Type P:_r‘ecis‘ion How Passed Units
‘ Scalar -~ DP FO -

! output Results:
f Type Precision How Passed Units

Scalar DP ’ FO -
Errors Detected: ;
Exrror # Cause . Fixup

i : Comments:
' Registers Unsafe Across Call: FO,Fl1,F2,F3,F4,F5.

« ; Algorithm: If |x| > 20,101, return +1 or -1, according to the sign of X.
| If 0.54931 < |x| < 20,101, then (using DEXP), tan(|x]) = 1« —~—ror—
o ; ; , ’ ; : l+eZ‘x

Restore sign with tan(-x) = -tanh(x), For |X\ < 16_'7‘, tanh(x) = X,
(Cont'd. on next page)

Execution Time: ; :

|x| < 3.725298-9: 47.8

3.725298~9 < |x| < 5.4931E-1: 177.9

5.4931E-1 < |X} < 2.0101E+1: 420.6

2.0101E + < |X|: 54.6

| INTERMETRICS INCORPORATED « 701 CONGORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

s

DTANH

DTANH

Algorithm (Con't)

' ~7 e
For other values of X, 16 < |x| < 0.54931, use a continued fraction
\ approximation:

3 ‘o N
tanh(x) = x + x7 (

| ’ 2 BN
| ; X+ G+ G \\

H
%% 40+ C

3. 4
x% + c;
where the values of the constants are: g
c, = X'COF6E12F40F5590A' = #.9643735440316707
| C, = X'419DAS06FDIDBCE4' = 9.8529882328255392
| ;?m? C, = X'C3LCS04FEFS537AF6' = 453.01951534852503
| ‘ C, = X'424D2FA31CADBDOC' = 77.186082641955181
C, = X'C3136E2A5891D8E9" = —310.8853383729134
Cy = X'4219B3ACAAC6ET90" = 25.701853083191565
|
| i"é;%
E i . | T T e 5-107

INTERMETRICS INCORPORATED « 701 GONGORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 6611840

' = o - o
EATAN2
‘-
HAL/S-FC LIBRARY ROUTINE DESCRIPTION | ‘;’
Source Member Name: EATAN2 _ size of Code Area: 132 Hw
Stack Requirement: 18 Hw Data CSECT Size: 10 Hw
(3 Intrinsic &} Procedure
Other Library Modules Referenced: None
ENTRY POINT DESCRTPTIONS
Primary Entry Name: EATAN2
Function: = Computes arctangent by fractional approximation in the range (-m, ™)
in single precision.
Invoked by:
Compiler emitted code for HAL/S construct of the form.
ARCTAN2(X,Y), where X and Y are single precision scalars corresponding
to sine and cosine respectively of the intended arctangent argument
E] Other Library Modules:
Execution Time (microseconds): 120.0
Input Arguments: : ‘ { %
Type Precision How Passed Units e
Scalar (sin) SP FO . -
Scalar (cos) sp F2 -

Output Results:

Type Precision How Passed Units
Scalar : Sp FO Radians

’Errbxs Detected:

Exror # ' . Cause Fixup
arg 1 = arg 2 =0 Return 0.0
Comments:

Registers Unsafe Across Call: ¥0,Fl,F2,F3,F4,F5.

Algorithm: The pointer to the data area that contains quadrant section constants

is set and the sign of sin x is saved. The value Z = !sin xl/lcos xl is checked
for several special cases. (1) If cos x < 0 and Z < (16)’6, then return
T - SIGNUM(SINX). (2) If SINX = COSX = 0, then signal error and return O.

_{3) If SINX # 0, COSX =@, then return £ /2 - SIGNUM(Sin X). . (4) "If
sin x # 0, cos x # 0, but 2 >-(16)®, again return * T/2 = (r/2 « SIGNUM(sin x))
(5) If 2 < (16)"3, retum Z.

Now, all of the special cases have been checked for. If the routine gets
this far, it ig time to reduce Z = tan x so that Z < tan 7m/12(tan 15%).

(Continued on next page)
: 5-108
INTERMETRICS INCORPORATED = 701 CONCORD AVENU«: + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

e

EATAN2

Algorithm (Con't)

EATAN2

There are four cases to examine for 2 in the 15t quadrant.

A) %2> 1. Use i/Z.
1) tan 15° < 1/Z <1
2) 1/z < tan 15°

B 2<1
3) tan 15° <z %1

4) 2z £ tan 15°

For % or 1/2 > tan 15°, the reduction

Tan‘lz = m/6 + tan(Y), where Y

To protect significant bits, Y is computed as

y=2(V3-1) -1+2/2+ V3.

=z B -1z + 3~ is used.

Once Z or 1/Z X tan 15°, the formula for arctan 7 can be applied.

-1
TanZ (z) . D + CZz +

(B/(Z2 + Aa)), where the constants

have the following values {hex values are used in the routine):

= X'41168A5E' (1.4087812)

A

B = X'408F239C' (0.55913711)

C = X'BFD35F49' (~0,051604543)
D =

%'409A6524' (0.603
To adjust the angle to the pr
constant is added to or subtx
2 < tan 15° |
tan 15° <2 <1
1/2 < tan 15°
tan 15° < 1/2 21

IR 2R 2NN

lNTERMETWCS&NCORPORATED-701CONCORD

10579)

oper section,

‘the appropriate section

acted from the intermediate result, as follows:

+ 0 (E'0")

+ /6 (X'40860A92')
/2 (X'C11921FB')
m/3 (X'CLLOC152')

(Continued on next page)
5-109 ~
AVENUE + CAMBRIDGE, MASSACHUSETTS

02138 « (617) 661-1840

INTERMETRICS INCORPORATED * 701 CONCO

ceoy R TBE
T v s POOR

R Y 4
EATAN2

EATAN2

Algorithm (Con't)

We now have the correct’anqle for the first gquadrant. All that remains

is to fix the quadrant. If the cos x < 0, then Tan‘l(x) =T - Tan-l(z).

That fixes the angle to agree with the sign of cos x. Now make the sign

ofkthe answer agree with the sign of sin x, i.e.‘—Tanul(z) for =—sin x and

+ Tan “(z) for + sin X.

The result,in radians, is in the correct quadrant in the range (=T, +T).
"
WO
- ,‘ *

L3

5-110 -
RD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

EATAN2 f

b Secondary Entry Name: ATAN

Function: Computes arctangent by fractional approximation in the range
(-m/2, + T/2) in single precision.

Invoked by:

, EI Compiler emitted code for HAL/S construct of the form:
i ARCTAN(X), where X is a single precision scalar.

i E] other library modules:

Execution Time (microseconds): '116.5

Input Arguments:

Type Pxecision How Passed Units
Scalar »SP FO) -

“ .

Output Results:

j Type Precision How Passed Units
i Scalar sp FO Radians .

Erroxrs Detected:

Exrror # Cause Fixup
{ .
% Comments:

Registers Unsafe Across Call:' ¥0,Fl,F2,F3,F4,F5.

i Algorithm: Very similar to EATAN2, but the only special case that can be
checked is Z = |tan x| < (16)~3. If Z is this small, then return Z to avoid

an underflow exception later on., The algorithm for reduction and computation

of Tanfl 7 is the same as EATAN2 again until quadrant fixing time. Since ARCTAN
has only one arg, the result can only be adjusted in the range (-n/2, T/2). The
‘Tan-l 2 is computed for the first quadrant.

If the argument,tan x, is negative, the result is made negative.

5-111

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

EPWRE
HAL/S-FC LIBRARY ROUTINE DESCRIPTION
Source Member Name: EPWRE Size of Code Area: 32 Hw
Stack Regquirement: 22 Hw . Data CSECT Size: 4 - Hw

[0 iIntrinsic E] procedure

Other Library Modules Referenced: _EXP, LOG, SQRT

INTERMETRICS INCORPORATED? 701 CONCORD AVENUE + GAMBRIDGE, MASSACHUSE._:.TTS 02138 - (517) 661-1840

ENTRY POINT DESCRIPTIONS

Primary Entry Name: EPWRE

Function:
Exponentiation of a single precision scalar to a single precision scalar power.

Invoked bys
Compiler emitted code for HAL/S construct of the form:

X*%¥, where X and ¥ are single precision scalars.

D Other Library Modules:

Execution Time (microseconds): If ¥ = .5: 124.7
If Y # .5: 337.1
Input Arguments: :

Type Precision How Passed Units
Scalar (base) SP FO -
Scalar (exponent) Sp F2 -

Qutput Results:
Type Precision How Passed Units
Scalar sSP FO -
Errors Detected:
Brrox # : Cause Fixup
4 Zero raised to power £ O Return 0.0
24 Base < O use Ibasel
Comments:
Registers Unsafe Across Call: F0,Fl,F2,¥3,F4,F5.
Algorithm: “If exponent = 0.5 compute XQ'5 as fX.

. 4 Y X .
Otherwise, X = e log , using the external EXP and LOG functions.

5-112

g
EPWRI
{ HAL/S-FC LIBRARY ROUTINE DESCRIPTION
Source Member Name: EPWRI Size of Code Area: 38 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw
[Intrinsic (%] Procedure "
Other Library Modules Referenced: None
ENTRY POINT DESCRIPTIONS
Primary Entry Name: EPWRI o
Function: pynonentiation of a single precision sc¢alar to a double f
precision integer power, &
Invoked by: . : .
Compiler emitted code for HAL/S construct of the form: ?
X**I, where X is a single precision scalar, and I is a double]
precision integer. B
' [other vibrary Modules: i
Execution Time (microseconds): (See next page) L
Input Arguments: ?
Type Precision How Passed Units &
Scalar (base) SP ’ ~FO - ¥
Integer (exponent) DP R6 ; - -
Output Results:
Type Precision How Passed Units
Scalar SP FO - :
Errors Detected: E
Exror # ' ‘ Cause - Fixup ;
4 Zero raised to power < 0 Return 0.0
Comments:

Registers. Unsafe Across Call: F0,Fl,F2,F3,
Algorithm: TLet I =|exponent), E = base. Write

I =21 eizl, where e, = O or 1 for all i.

then

. ‘ i
. . 5
EI =B g T.E e ™ -

ET if some e, = 1, and =1 otherwise.
i ; ei=l : i

(Continued on next page)

5-113

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

EPWRI

EPWRI

Execution Time:

38.2 + (n~-1) 16.2 + 6.0m + 14.2 (if exponent negative),

where n = number of significant digits in binary representation of
|exponent]| . ‘

g
il

number of significant 1l's in binary representation of
'exponentl_

Algorithm (Con't)

The product We -1 E2 is computed in a loop. Each time around the loop,
=
Sk , Kl
E is multiplied by itself to give E . The k+l-st bit is shifted
k+1 ‘
out of the exponent. If it is 1, E is multiplied into the result.,

If not, the result is left alone. When the remaining exponent is zero,

the loop is finished and the result is EI. If the exponent was positive,

I X ' R :
return B, Otherwise, return the reciprocal of EI.

5~-114

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

iy
sl

A
e

Y S5
A3

WTERMETR@SINCORPORATED-701CONCORDANENUE fCAMBmDGE.MASSACHUSETHSOMBBF

EPWRI

Secondary Entry Name: __ EPWRH

Function:
Exponentiation of a single precision scalar to a single precision integer
power,
Invoked by:

Compiler emitted code for HAL/S construct of the form:
X+x+I, where X is a single precision scalar, and I is a single precision
integer.

D Other library modules:

Execution Time (microseconds): game as EPWRI, except constant is 38.8.

Input Arguments:

Type Precision How Passed Units
Scalar (base) SP FO -
Integer (exponent) SP R6 -

Output Results: .

Type Precision How Passed Units

Scalar SP FO -

Errors Detected:

Error # Cause Fixup
4 Zero raised to power < 0 Return 0,0

Comments: .
Registers Unsafe Across Call: FO,F1,F2,F3.

Algorithm: Halfword exponent is shifted right to convert to a fullword
Then, EPWRI routine is used.

5-115

(617) 661-1840

EXP »h l
HAL/S-FC LIBRARY ROUTINE DESCRIPTION é
Source Member Name: EXP Size of Code Area: 108 . Hw é
Stack Requirement: 18 Hw Data CSECT Size: C2 Hw
[Intrinsic K] Procedure |
Other Library Modules Referenced: None

ENTRY POINT DESCRIPTIONS

Function:

Primary Entry Name: EXP

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Computes ex in single precision.

Invoked by:
Compiler emitted code for HAL/S construct of the form.

EXP(X), where X is a single precision scalar,

Eﬂ Other Library Modules:
TANH, EPWRE, SINH

Execution Time (microseconds): 141.8

Input Arguments:

Type Precision , How Passed ; Units
Scalar SP FO ’ -

Output Results:

Type Precision How Passed Units

Scalar : SP FO , -

Exxors Detacted:

Error # Cause Fixup
‘ 6 Argument outside range: © Return maximum positive
X < 174.673 . floating point number.
Comments:

Registers Unsafe Across Call: FO,F1,F2,F3.

Algoxithm: Let X log2 = 4R-S-T, where R and S are integers, 0 < S < '3,
and 0 < T <'1l. Then
exp(X) = 16R . 2--S . 2.-T

27 dis computed by a fractional approximation of the form:

P 21

B
CT -T+D+Z\+T2
The computation is carried out in fixed-point, and the wvalues and scaling
of the constants are: ‘

(Continued on next page)
5-116

NTLRMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 (657) 661 ;1840

s
b G

w

s

R

EXP
EXP

Algorithm (Con't)

A = X'576AE119"' = 87.417497 at bit 7

B = X'269FBE6B' = 617.97227 at bit 11

C = X'B9059003' = ~0.03465736 at bit (-4)
D = X'BO5CFCE3' = -9,95459578 at bit 4

The multiplication by 2-'S is carried out by shifting right S places,
and the multiplication of 16® is done by adding R to the floating
exponent, ‘

5-117

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGEl MASSACHUSETTS 02138 - (617). 661-1840

IPWRI
. HAL/S-FC LIBRARY ROUTINE DESCRIPTION : ‘l§
Source Member Name: IPWRL - Size of Code Area: 46 A Hw
Stack Requirement: 18 Hw Data CSECT size: 2 Hw |
0 Intrins;ic & Procedure
Other Library Modules Referenced: None

ENTRY POINT DESCRIPTIONS

Primary Entry Name: IPWRI

T ATAS ¢

ILITY OF THY
3! T

Function:

Computes double precision integer to positive double precision integer

power.
Invoked by:

[z] Compiler emitted code for HAL/S construct of the form:

arg 1 *% arg 2, where arg 1l is a double precision integer, and
arg 2 is a positive double precision literal.

D Other Library Modules:

Execution Time (microseconds) : k + l§.4(n-—l) + 7.0m + 0.4“(n—2) if n > 2, where
k = 44.6, n = # of significant digits in binary representation of

arg2, m = # of significant ones in binary representation of arg2. e
Input Arguments:] P
Type Precision How Passed Units *J
Ingeger (base) DP R5 -
Integer (exponent) pP R6 ~ -
output Results: ‘
Type Precision How Passed Units
Integer . DP R5 -
Errors Detected: s ,
Bxror # ~Cause Fixup
4 zero raised to - power < 0O Return 0

Comments:
Registers Unsafe Across Call: R5.-

Algorithm: Shift all halfwords to convert to fullwords, - Let B = base,
I = exponent. o T : :

32

Write I = I eiZl, where e, = 1 for each i. - Then:

BI _ T gt = Trei__:lB if e, =1, and = 1 otherwise.

(Continued on next page)

ey

5~118 ,

| lt\iTERM_ETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

s,
s

IPWRI
IPWRT
Algorithm (Con't)
2i
The product "e _i‘B is computed in a loop. Each time arxound the loop,
Lk i k+1
32 is multiplied by itself to give B . The Kk+l=st bit is shifted
out of the exponent and tested. If it is 1, the partial result is
2k+1
multiplied by B . If not, the partial result is left as is. When

the remaining exponent is 0, the result is ET and the exit is taken from
the loop. The answer is stored in ARG5S to be available after registers
are rveshtored.

'5-119

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - {(617) 661-1840

i

F

Secondary Entry Name: IPWRH

Function:

Computes double precision integer to positive single precision .integer power.

Invoked by:

Ea Compiler emitted code for HAL/S construct of the form:

arg 1 %% arg 2, where arg 1 is a double precision integer, and
arg 2 is a positive single precision integer literal.

E] Other library modules:

Execution Time (microseconds): game as for IPWRI, except k =

Input Arguments:

Type Precision How Passed
Integer (base) DP R5
Integer (exponent) sp R6

Output Results:

‘Type Precision
Integer DP R5
Erxrors Detected:
Error # Cause
4 Zero raised to power <= 0
Comments:

Registers Unsafe Across Call: R5.

‘Algoxithm:
See IPWRL

5-120

How Passed

46.6.
Units
Units
Fixup i

Return 0O

ﬁ%;

INTERMETRICS INCORPORATED - 701 GONGORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

TS

P
'

IPWRI

Secondary Entry Name: HPWRH

LT ki

Function:

Computes single precision integer to positive single precision integer power.

Invoked by:

Compiler emitted code for HAL/S construct of the form:
arg 1 »* arg 2, whexre arg 1 is a single precision integer variable, and
arg 2 is a positive single precision positive
integexr literal.

SRR

E] Other library modules:

Execution Time (microseconds): Same as for IPWRI, except k = 49.4.

Inpit Argunients:

Type Precision , How Passed Units
Integer (base) SP R5 -
Integer (exponent) SP ' R6 -

output Results: ' . :

Type Precision How Passed Units :
Integer Sp° : RE : -

Errors Detected:
'~ Ervor # ‘ Cause Fixup
4 Zero raised to power <= 0. Return 0
Comments:

Registers Unsafe Across Cali: R5.
Algorithm:

See IPWRI.

; i 5-121 ‘ .
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840 :

| T | SRRt P £, I s
1

[w05

HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: LOG Size of Code Area: 90 Hw
' é Stack Requirement: 18 Hw Data CSECT Size: 2 Hw
(O Intrinsic | [} Procedure
Other Library Modules Referenced: None

ENTRY POINT DESCRIPTIONS

o Primary Entry Name: __ LOG

RFPRODUCIBILILY OF THE
- ORIGINAL PAGH 15 POOR

computes log(X) in single precision.

Invoked by: ' -
Ea Compiler emitted code for HAL/S construct of the form:

1.0G(X), where X is a single precision scalar.

[X] other Library Modules: ASINH, ATANH, EPWRE, ACOSH

Execution Time {(microseconds): 140.5

Input. Arguments:

Type) Precision How Passed Units
Scalar SP ‘ FO -

Output Results:

Type Precision How Passed Units

Scalar SP FO -

Errors Detected:

Exror # Cause : Fixup
7 argument outside range X > Q For X=0, return LOG(IXI)

for'X < .0, return
; : maximum negative floating
Comments : point number.
Registers Unsafe Across Call: FO,Fl,F2,F3,F4,F5.

Algorithm: Write X = 16P . 2—Q . M, where Pand Q are integers, 0 < Q < '3, and
<M< L RQ,mdMue&defmw@dmcdwhﬂm&~mtA=L
. ;

B=0, if M> ~— , and A = %, B = 1 otherwise.

&

Let 7 = (M-A)/(M+B). Then log(X) = (4P-Q-B)log 2 + log((142)/(1=2)).
Log ({(1+2)/(1-2)) 1is comguted by an approximation of the form:

R
Wt ()
S-W
where W = 2z, and the values of the constants are: »
R = X'408D8BC7' = 0.55291413 S = X'416A298C' = 6.6351437

o E : : 5-122 , ,
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

SIN

HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: SIN Size of Code Area: 70 Hw
Stack Requirement: 0 Hw' Data CSECT Size: 30 Hw
x] Tntrinsic (] Procedure

Other Library Mcdules Referenced: None

Ty

iNTERMETWCS:uFQ4PORATED 7O1CONKOPDAVFNUF CAMBRIDGE, MASSACHU%ETWSOZBB

ENTRY POINT DESCRIPTIONS

Primary Entry Name: SIN

Function:
Computes sine(X) in single precision.

Invoked by:
Ea Compiler emitted code for HAL/S construct of the form:

SIN(X), where X is a single precision scalar.

E];Other Library Modules:

Execution Time {(microseconds): =T < X< m: 124.5
. X > T or X <=T: 123.6

Input Arguments:

Type Precision How Passed Units
Scalar SpP FO radians

Output Results:

Type Precision How Passed Units
Scalar Sp FO -

Errors Detected:

Erxror # Cause Fixup
8 argument outside of. range:
) !XT <m. 218 g return V?

Comments: Called as'a library by compiler: uses only fixed-point registers

Rl and R3, which are restored at exit from an intrinsic.
Reglsters Unsafe heross Call: RL R3,R4,FO0,FL,F2,F3,F4,F5.

Algorithm: = Let |X| - = Q+R, Q an integer, 0 < R < 1. Add 4 to Q if
" the sine is desired and X < 0, and add 2 to Q if the cosine is desired.
Since sin(-x) = sin(x+m), and cos(x) = sin(W + x). This reduces the problem
2

of computing sin(x). for X > 0.

(Continued on next page)

- 5-123

(617)661-1840

SIN
SIN

Algorithm (Con't)

L
Since Q has been adjusted, it is only necessary to compute sin (Z(Q+R)).

If Q, = Q mod 8, then this is equal to sin(lr-(Qo+R)) .. “The eight cases of
this yield, through simple trigonometric identities:

. ki)
Qo = 0: sin(R - Z)

1: cos((1-R) *+ ()
2: cos(R - :g-)
3: sin((1-R) - ;1'1)

4: -sin(R - -}I—)

™
5: =cos((1-R) - "'1') . 7 ﬁ]
Lis L
6: -cos(R - Z)
7: -sin((1-R) - &)
: sin y

Let RO = R in octants 0, 2, 4, 6 and Ro =.1-R in octants 1, 3, 5, 7.
We compute sin (Ro . %) in octants 0, 3, 4, 7 and cos(Ro . %) in octants

1, 2, 5, 6, and negate the result in octants 4, 5, 6, 7.

Sin (RO . %) and cos (Ro . %) are computed by polynomial approximations.

! 5-124"
i‘NTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

SIN

SIN

Algorithm (Con't)

The form of the approximation for sine is:

R02+a4.R4+aR6)

. T, _
51n(R0 o) o= RO(aO + a 5%, 3R

4 1

where the values of the constants are:

a, = X'40C90FDB' = ,78539819
a, = X'COL4ABEC' = ,080745459
a, = X'3EA32F62' = ,0024900069
£ a, = X'BD25B368' = -.000035943

The form of the approximatin for cosine is;

2 4
=1+ aR
) 1 ‘a__L 0 + a2R0 + a3RO

=3

cos (R0 .

where the values of the éonstants are:

a, = X'CO4EF4EE' = -,30842483

a, = X'3F40EDOF' = ,0158510767

ag = X'BE14F17D' = -~,000319570
5-125

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBHIDGE. MASSACHUSETTS 02138 - (617) 661-1840

g . o e FO e e .

Secondary Entry Name: COS

Function:
Computes cosine(X) in single precision.

Invoked by:

Compiler emitted code for HAL/S construct of the form:

COS(X), where X is a single precision scalar,

D Other library modules:

Execution Time (microseconds): -T <X <M 122.1
X > 7 or X <-m: 123.1

- Input Arguments:

Type Precision How Passed Units
Scalar SP FO radians

output Results:

Type Precision How Passed Units
scalar sp FO - -

Erroxs Detected:

Exrror # Cause Fixup

8 argument outside range le <T, 218
Return —
2

Comments:

See SIN Comments.)
Registers Unsafe Across Call: R1,R3,R4,FO,Fl,F2,F3,F4,F5.

Algoxithm:
See SIN Algoxrithm.

5-126

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

\ SINH
é:ﬁ ' HAL/S-FC LIBRARY ROUTINE DESCRIPTION
Source Member Name: SINH Size of Code Area: 80 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw
) Intrinsic K] Procedure
Other Library Modules Referenced: EXP
ENTRY POINT DESCRIPTIONS .
Primary Entry Name: SINH ﬁE?RODUG}BILYfY OF THY

ORIGINAL PAGE 18 FOUR

Function:
Computes hyperbolic¢ sine in single precision.

-

Invoked by: .
Compiler emitted code for HAL/S construct of the form:

SINH(X), where X is a single precision scalar.

[] Other Library Modules:

1 < |x| < 1.75366E+2: 235.6
2.0394E-4 < |X| < 1: 80.7
|x| < 2.0394E-4: 40.0

Execution Time (microseconds):

Input Arguments:

Type ' Precision How Passed Units

Scalarx SP . FO -

Output Results:

Type Precision How . Passed gpits

Scalar sp . FO -

Errors Detected:

Error # Cause Fixup
9 Argument outside range Return maximum positive
|x| < 175.366 floating point number.
Comments:

Registers Unsafe Across Call:'FO,Fl,FZ,FB,F4,F5.

Algorithm: If X < 2.04E-4, then sinh(x) = x. If 2.04E-4 < x| < 1,
then sinh(x) is computed via a polynomial approximation.

The form of the polynomial is:

. = 3 5 7
sinh(x) = X + clx + c3x + C3X

where the values of the constants are:

Lo,

(Continued on next page)
5-127

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (6