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1.0 INTRODUCTION

Program verification has been a topic o0f intense Tresearch
interest in recent vears. The desire to construct proveably correct
software has impacted coméuter science in variocus ways, for 1instance
by. motivating the use of prodgram design methodologies such as modular
Programming. Various languages, €.9. Gypsy {1l have been designed
with the ﬁrinary intention o0f constructing formally verifiable
software., This was accomplished by incorporating into these languages
only features amenable to modern verification technigques or, in many
cases, by inventing ney verification techniques for desirable

constrycts.

The research described 1in this report and the accompanying
documents was an attempt to evaluate the applicability of such
techniques to an existing programming language, HAL/S [2,3]. HAL/S is
3 dgeneral purpose high level language designed to accomodate the
software needs of the NASA Space Shuttle project. This goal mandated
a diversity of features for scientific computing, concurrent and
real~time programming, error handling, etc. Many of these features,
however, are not susceptible to existing technigues of progran
proving. Our concern was to examine the various features of HAL/S and
evaluate them according to certain criteria for verifiability. The
result, HAL/S5/V, is a subset of the language which we believe consists
only of those constructs  which ltend themselves ¢ program

verification.

Qur task was viewed only as one of subsetting--that is, we have

eliminated or restricted existing features and imposed a discipline on
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" the programmer rather than suggested nmew language constructs. This
approach insures that the verifiable subset is downwards compatible
with HAL/S and readily implementable utilizing existing HAL/S
compilers and support facilities. Of course, to formally verify
HAL/S/V programs it would be necessary to augment the 1language with
specification capabilities and, preferahly, design an autonated
verification system in the mode of the Gypsy verification system [1]

designed and implemented at the University of Texas.

This report consists of three sections in addition to this
introduction. The following section describes the criteria by which
features were evaluated for iInclusion into the verifiable subset.
Section 3 examines individual features of HAL/S with respect to these
criteria and provides Jjustification for the omission of varlous
features from the subset. In the final section, conclusions drawn
from this research are éresented and recommendations made for the use

of HAL/S with respect to the area of program verification.

The documents which should be considered along with this one are

the following.,
1. HAL/S/V: A Verifiable Version of HAL/S: This document is
the HAL/S/V c¢ounterpart of the HAL/S Programmer's Gulde [2]

and is derived by editing that document to reflect -the

changes which define HAL/S/V.

2. "An Overview of Differences Between HAL/S and HAL/S/V": This
document. is a 1ist of these  differences along with the
justification for each. Entries are grouped according to the

corresponding chapters in the HAL/S Programmer‘’s Guide,
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3. "Evaluation of Verifiability in HAL/S": This paper was a
preliminary version of much of the material in this report.
It was presented to the AIAA/NASA/ACM/IEEE Computers in
BRerospace Conference II and published in the preceedings of

that conference [(4}.

2.0 CRITERIA OF EVALUATION

Before examining individual features for inclusion into the
verifiable subset it was necessary to establish criteria of selection,
A few obvious criteria were readily avajilable--aliasing was to be
avoided, programs should he deterministid, language features should be
axiomatizable., Other desirable characteristics from a verifiability
standpoint were more subjective, Verifications should be of
manageable complexity; programs should be readable; modularity was to
be encouraged., The following emerged as areas to be considered in
evaluating language features for verifiability: aliasing,
axiomatizability, simplicity of verification, non-determinacy and

implementation~-dependency, and textual clarity.

2,1 Aliasing

In most program proof methods, assertions are nmade about the
state of computation at certain points 1in the progranm. These
assertions reference program variables. However, if there are various
paths to reference a variable-~-various "aliases"-=then ap assertion

made using one name may be invalidated by changing the value of the



Page 4

variable using some other name. For instance, If X and y refer to the

same storage location, then for the code segquence

X 2
/* Assert: x=2 and y=3 ¥/

!

i =
! vy = 3
| e

]

the given assertion is false, Such aliasing complicates the
verification process by reauiring the verifier to keep track of all

aliases for each storage location.

2.2 Axiomatizability

Axiomatizability of a language feature refers to the ability ¢to
write a collection of rules which completely and unambiguously
describes the results of applving that feature to any data iteﬁ. such
descriptions are essential for automatic verification because the
verification system manipulates symbollic gquantities which represent
arbitrary input values, One technigue for assuring axiomatizability
i1s to 1insist that language constructs which have mathematical
counterparts conform to them as closely as possible, They will not,
in general, conform entirely. Integer additicn in HAL/S, for
instance, 1is axiomatizable from a verification point of view with
axioms borrowed from the mathematical domain. These can be assumed to
hold even though the associative law of addition may be violated near

the maximum integer representable on a given machine,
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2.3 Simplicity Of Verification

In many cases even if it is possible to axiomatize a certain
feature of the language and give a complete mathematical definition of
its semantics, it mav turn out to be a very tedious job to verify
programs invelving the construct, - Languagg constructs should be easy
to grasp and simple to axiomatize. Simplicity of axiomatization leads

to ease in applying proof methods.

2.4 Non-determinacy And Implementation Dependency

It is desirable that the semantics of the language specify
completely and unambiguously the results of an computation. This is
unfortunately nof always possible, For instance, In concurrent
pProgramming the order in which operations are performed may be
non~determninistic. However, non-determinacy which results from the
incomplete specification of the language semantics is unacceptable.
The result i; lack of clarity, possibility of  error, and
implementation dependency which requires the verifier to be concerned
with implementation details. FEscape from such considerations is one
of the primary advantages of high level languages, not only from the

point of view 0f the programmer but also from the point of view of the

verifier,
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2.3 Textual Clarity

Textual c¢larity has long been recognized as important in the
design of programming language constructs; wWitness the long-standing
desire for "self~documenting" languages, Language constructs should
in every way encourage textual clarity. Operators should perform a
clear and simple function with a minimum of nhidden  effects.
Information should be available locally to decipher any language
fragment. A statement which is so obscure as to be understéndable
only by resort to global declarations and the lanpguage manual probably
indicts some language feature as too compleX. A feature which 1is so
complex that its meaning cannot be easily grasped is probable too

complex to be easily verified.

3.0 EVALUATION OF HAL/S
3.1 Data Tvpes And Structures
3.1.1 Data Types =

A primary determinant of the utllity of any general purpose
programming language is the ease with which different classes of data
can be represented and operated upon. HAL/S addresses this issue by
incorporating a diverse set of built-in data types with associated
operations, 3Some of these data types (INTEGER, BOOLEAN, CHARACTER,
BIT STRING) require only minor modifications to make them accessible
to existing verification techniques. Others (EVENTS, NAMES) would be
verifiable but only in a particularly restricted and disciplined form.

Finally, for still others (SCALAR, MATRIX, VECTOR} no manadgeable
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verification techniques are currently available, The data types which
are either eliminated or significantly restricted in HAL/S/V are the

SCALAR, MATRIX, VECTOR, EVENT, and NAME data types.

3.1.1.1 SCALAR, VECTOR, And MATRIX bata Types =

Most existing verification techniques reguire that assertions
about the values of variables be inserted at various points in the
program body. These values are manipulated accordiﬁg to well-defined
axioms to vield results which are invariantly true of the computation
whenever c¢ontrol reaches that' peint, Scalar {£loating point)

aritbmetic does not lend itself well to these techniques.

The values which result from scalar operations are seldom éxact.
Each instance of a scalar operation potentially introduces an error
the magnitude of which depends upon the type of operation, size of the
operands, implementation, etc. Sophisticated numericail technigues and
error analysis are needed to make valid and useful assertions about

the resultse.

The axioms of real arithmetic do not in general apply to scalar
operations. In this regard scalar arithmetic is unlike integer
arithmetic for which there is a "ready-made'" axiomatization availlable
which vields exact values except at very large positive and negative
values. Only a very complex set of axioms would suffice for scalar
arithmetic, Such an axiomatization still would be of doubtful value
since even a "correct" algorithm may vield vastly inaccurate results
due po accumulating errors, catastrophic cancellation, etc. Such data

dependent difficulties cannot easily be dealt with in axioms,
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These considerations indicate that any scalar operation probably
is not verifiable with existing techniques. Therefore, the SCALAR

data type has been omitted from the verifiable subset,

The VECTGR and MATRIX data types of HAL/S are composed ¢of scalar
components. Consequently, they iInherit all of the difficulties of

scalars and, 1lilke scalars, are not present In the verifiable subset.

3.1.1.2 NAME Data Items =

The HAL/S NAME facility permits the declaration of "pointers" to
data items, data structures, tasks, and‘program units. The ability to
maintain pointers is a valuable feature of many programming languages.
However, it presents a problem for verification unless the facil;ty is
severely restricted and disciplined. PASCAL, for instance, allows
pointers only to un-named dynamically created objects. This permits
aliasing of a limited sort since there may be several pointers to one
data object., However, the verifier is assured that no named data item

is also accessible via pointers.

In contrast, HAL/S treats a NAME data item as merely another nane
for the designated object, thsequently aliasing of the worst kKind
can result. Access is permitted to an object via any number of names
and assertions regarding the object can be written using any of them.
Assertions made using any of the aliases may be falsified by accessing
the object via any other, a fact not apparent from the program text.
Therefore, the verifier is constrained to keep track of all aliases
for every data object. To eliminate these difficulties, the HAL/S

NAME facility has not been jincluded in the verifiable subset.
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3.1,1.3 EVENT bata Items =~

A HAL/S event is a Boolean valued data item whose value is
visible at any instant to the HAL/S run-time executive; An event with
the optional latching property may be set to either true or false. An
event without this property 1is normally false but may becone

transiently true when so specified.

HAL/S/V permits declaration only of events with the latching
property for the following reason. Events are useful primarily for
scheduling and synchronization purposes=-~z process may be scheduled
when the value of some event data item is set to true, 1If el and e2

are event data items and T a task, the following is legal.

Schedulke T on (not el and e2};

However, for transient events which become true £or at most an
"infinitesimal" time, such expressions do not make sense. There is no
obvious interpretation for "not ei®™ when el is only transiently true.
Therefore, the primary utility'of events is lost for transient events.
Transient events do not seem to serve an additional useful purpose in

the language and have been excluded,

An additional restriction is necessary for event data items. Any
variables, including events, in HAL/S are permitted to belong to lock
groups whose members may be accessed only within update blocks. This

is the HAL/S mechanism for implementing mutual exclusion. However, no
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WALT or SCHEDULE statements are allowed within update blocks.
Therefore, the obvious use one would make ¢f events is not permitted
if they belong to lock groups. In HAL/S/V event data items are not

allowed to belong tLo any lock group,

3.1.2 pata Initialization =

HAL/S allows optional initialization of almost any declared data
items including arrays and structures, Most initializations are
verifiable, being semantically equivalent to a block of assignment
statements inserted Jjust after the declarations. However, two areas
present problems for verication: partial initialization and static

initialization for reentrant procedures,

3.1.2.1 Partial Initialization =

Partial initialization of arrays and structures violates our
criterion of simplicity of verification, Consider the following code

segment

Declare A array (50) integer
Initial (1,2,3,454#,4,5);
/% Asserft: ASI = Asi ¥/

————— i m——

The given assertion is a tautology and should be uniformly true,
However, the elements of A indexed 4 through 48 have undefined values.
To verify a program containing such partially initialized data
structures the verifier must have rules for dealing with undefined

values of every tvpe and keep track of all locations which contain
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undefined values. A substantial simplification can be gained if data
structures are such that either all compohent values have been
initialized or all are undefined. To gain this simpification, partial

initialization is not included in HAL/S/V.

3.1.2.2 Static Initialization For Reentrant Procedures -

HAL/S permits data to be initialized in either of two ways. The
keyword AUTOMATIC specifies that initialization is to take place upon
each entfy to a blogk, STATIC signifies that initialization occurs
only‘ upon the first entry, with each subsequent entry inheriting
whatever values were left in the data items by its predecessor.
HAL/S/V permits both types o0f initialization with the single
restriction that static initialization is not permitted for .any
procedure that is declared to be REENTRANT. This stipulation ensures
that two activations of a procedure are not updating a common data
store «c¢oncurrently. Such updating introduces all of the difficulties
of concurrency into procedures, an area where the simpler verification

techniques for sequential programming should be applicable,

3.2 Arithmetic And Computation

Arithmetic in HAL/S/V 1s substantially simplified by the
omission, c¢ilted earlier, of the SCALAR, MATRIX, and VECTOR data tvypes
and the associated operations~--scalar maitiplication, matrix
multiplication, matrix inversion, vector cross product, etc. However,
the remaining computational resources of the language still involve

features and permit interactions which violate the c¢riteria of
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verifiability outlined in section 2, We discuss these in the areas of

eXpressions, assignments, and array processind.

3.,2.1 Expressions =

One of our criteria in evaluating for verifiabil;ty is textual
clarity. HAL/S violates this criterion in the wevaluation of
expressions principally in 1its wide range of implicit type and
precision conversions. Mixed operationsg are a convenience for the
expert programmer but present a pitfall for everyvone else, Such
operations have effects which are textually indicated only in the
sense that they are imﬁlicit in the data declarations and the
definitions of the operations. But the individual instance of an
operation is far enough removed from these to be susceptible to error
and difficult to decipher if implicit conversions are present.
Therefore, HAL/S/V disallows anv type of implicit conversions, The

implications for expression evaluation are the following.

1. There is no "mixed-mode" arithmetic in HAL/S/V., The presence
in the language of & comprehensive set of explicit type
conversion functions ensures that this restriction is at
worst an inconvenience and not a significant loss in language

utility.

2. There is no mixed precision arithmetic. Again explicit
conversion functions can effect the result of mixed precision

with a substantial gain in clarity and programmer control.
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These restrictions are intended to be comprehensive, The absence
of the SCALAR data type in HAL/S/V removes the possibility of
scalar~integer operations but there are other mixed mode operations in
HAL/S. HAL/S/V forbids, for instance, catenation of character and
non=character data items and relational comparisons o£ bit strings of

differing lengths.

3.2.2 Assignments =

3.2.2.1 Coercion Across Assignments =

In keeping with the principle espoused above that all conversions
should be explicit, HAL/S/V permits no implicit type or precision
conversions across assignments., Such conversions constitute changing
information under the guise of transferring information. In many
cases information is lost and in some cases spurious information is
added as, for instance, when a bit string is assigned to a bit string
variable whose declared 1length 1is greater. Requiring explicit
conversions does not alter -this process but at least guarantees that
the programmer as well as the users and readers of his program are
aware of it. As with expressions, a complete set of type and
precision operators in HAL/S provides any capabilility which might

otherwise be lost by disallowing implicit conversions.,
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3.2.2.2 Multiple Assignments -

Multiple assignments present a difficulty for verification only
if the results cannot be translated in a straightforward fashion into
a seguence of single assignments. This is not always possible since
HAL/S does not specify an order in which multiple assignments are

performed. Consider the code seguence:?

H
o)

|

| 1 ;

M A ,1 = 3
18- 1

!

Whether 3 is assigned as the value of A(2) or of A(3) depends uponh the

order in which the multiple assignment is performed.

The simplest way to eliminate this nonwdeterminacy is to insist
upon some set order of assignment. However, this would be an addition
to the language semantics and in keeping with the view that HAL/S/V
should be strictly a subset of HAL/S we impose the following rule
instead: no variable which appears on the left hand side of a
multiple assignment may appear on both the main line and the subscript

line.

3.,2.3 Array Processing -

HAL/S contains extensive array processing capabilities which have
been excluded from the verifiable subset., HAL/S allows nearly all
operations which can be legally performed on the components fto be
applled te an entire arrave. Fer instance, 1f Al, A2, and A3 are

declared to be arrays of dimensionality 3 x 4, the statement
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A3 = Al + Div (A2, 5);

has the same effect as the sequence of statements

n =

Do for 1 = 1, 3;
Do for j = 1, 4;
A3 = A1l + Div (A2 r 5);
1,3 i,3 i,1
End;
End;

However convenient the first version may pe, the second is to be

preferred on the basis of textual clarity.

1.

The number of times operations are performed is teXtually
apparent and not dependent merely on the dimensionality of

the operands,

The order 1in which operations are performed is determined by
the programmer rather than by the compiler, For operations
such as assignment which may have side effects on the
operands,; this may affect the result of the computation. It
is not enough that information about the order of assignment

is available somewhere in the language description.

The operations involved need not be treated as generic

operations and the proof rules can simplified accordingly.

In the above example, either of At or A2 could have been
single valued dsta 1ltems. In such a case the addends would
have been size~-mismatched and a form of implicit coercion

regquired to make the operands compatible,
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These considerations along with the fact that little additional effort
is involved in explicitly programming the operations on a
component~wise basis has led to the exclusion of such array processing
features from HAL/S/V. The only coperation permissible on an entire
array in HAL/S/V is assignment to another array ofx identical

dimensionality.

3.3 Concurrency

HAL/S has certain explicit as well as implicit (at least
conceptually) provisions for concurrent processing, Multiprocessing
can be specified explicitly using the scheduling of concurrent
processes,; whereas certain other language constructs such as the array
processing facility provide implicit concurrency. These array

processing features have been discussed in Section 3.2.

3.3.1 Access Control -

HAL/S provides two mechanisms for synchronizing processes, UPDATE
blocks and EVENTS. Events have been discussed in Section 3.1.1.3.
Update blocks are 1like e¢ritical sections. A shared data object
declared to belong to some lock group may only be accessed inside an
update block. During the execution of an update block a 1lock 1is
placed on all data belonging to those lock-groups which are accessed
inside the update bloc¢k. At any instant at most one process can be
accessing data belonging to a particular lock=group. In HAL/S the use
of such lock-groups on shared data 1is optional; however, in the

verifiable subset we make it mandatory that all shared data (global
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and compool data) belong to some lock-group. This 1insures that all
sharing is done within update blocks. There are two reasons for this.
It textuyally isolates the places where the concurrency impacts the
proof process. Also, it guarantees that accesses to shared data be
within indivisible program blocks. This Pprohibits many of the
problems commonly associated with proving concurrent programs and
allows proofs on the level of update blocks rather than on the

individual statement level.

Update blocks in HAL/S cannot contain any i/o, wait, or schedule
statements or «c¢alls to routines declared outside the update block.
Additionally, task blocks cannot be defined inside an wupdate block.
In HAL/S/V, Dbecause direct accessing of non-local data 1s not
permitted to routines this restriction could be relaxed; an update
block c¢ould call routines defined outside the update block. However,
such routines must not contain any ;/0, wagit, or schedule statements
or call any other routines containing such statements. This kind of

cthecking could be done at complile time,

3.4 Flow 0Of Contrel
3.4.1 Prograim Flow=-control =

The flow of control facilities in HAL/S present few difficulties
for verification, One feature which has been omitted from the
verifiable subset is the GOTO statement. GOTOs in HAL/S are actually
guite controlled allowing branches only within or out of a
block==never into a block. However, with GOTOs present in the

language, it is difficult to assert the values of variables after any
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labelled statement since control may have branched from various places
within the block. Although programs with this feature probably could
be proved, because of the complexity involved GOTUS have been omitted
from HAL/S/V. As compared to the GOTO, the EXIT statement is much
more regtricted in changing the flow of eXecution; this statement
always branches to the end of a block. This form of branching has

been retained,

All forms of repetitive statements in HAL/S except £for one are
acceptable from the verification point of view. Statements of the
form

i

{ DO FOR var = expl, exp2, ..., €Xpn
are not retained in HAL/S/V. In this kind of iteration the control
variable is successively assigned the values of the given expressions
and the following statement group is executed for that value of the
control variable. The characteristic method for verifying loops,
hovever, is to use an inductive proof rule which assumes that the
control variable is assuming some arithmetic progression of values,
If this is not the case, each iteration must be separately verified.
The increase in generality does not Jjustify this inc¢rease in

complexity of verification., Therefore, this feature has been omitted.

3,4.2 Error Recovery =

HAL/S provides mechanisms for user=~level specification of error
handling routines. Besides the system defined error conditions, there

can pbe user~defined error conditions. Recovery under error conditions
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is specified using an ON ERROR statements by which the programmer can
state what actions need to be taken if a given error condition is
raised, When the error ocegurs, control is transferred to this error
handler after which execuﬁion resumes at the following executable

statement.

In HAL/S/V We suggest the following discipline on the programmer
in order to write verifiable programs. All ON ERROR (or OFF ERROR)
statements must be placed in the beginning of the block (or routine)
following the declaration of local variables. ON ERROR statements
would normally be preceded by the some "back-up" block t¢o store the
values of ASSIGN parameters and some critical .local variables which
might be needed to be restored in case of any attempt at roll-back and
recovery. Additionally, inclusion of error-recovery mechanisms in the
verifiable subset mandates the need for specification methods to

distinguish between normal exits and exits under error conditions.

3.4,3 Real-Time Programming -

A task block 1is the static counterpart of a process. HAL/S has
numerous real-time scheduliﬁg constructs., One process is designated
as the primal process which schedules other task or prcgram processes.,
These in turn can schedule other tasKs or program processes names of

which are visible according to the scoping rules.

The problems associated with the procof of real~time prodrams have
two dimensions, the proof of concurrent programs and the proof of
time-dependent constructs, The set ¢f problems associated with the

second dimension are hard to approach because of their sensitivity to
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the hardware underlving the imlementation.

The most promising approach to the proof of concurrent programs
in HAL/S seems to be the use of the proof methods of Owicki and Gries.
Proofs of this kind necessitate Kknowledge of all the <concurrent
processes at any given iInstant which operate on some shared datsa.
This can become a very complkex problem in HAL/S because of the quite
general scheduling rules of HAL/S. Any process may schedule ancther
task or program process., In HAL/S/V all scheduling is restricted to
the primal process level. This makes it possible to assert at any

point in the primal program the possibly active concurrent processes.

Processes can be assigned priorities at the time of scheduling
which can be c¢hanged dvnamicallivy. HAL/S does not restrict which
processes have the capability to change the priorities of other
processes, In tﬂe subset no process other than the primal process can

change its own or any other proccess’ priority.

At the time of scheduling a process can be either declared
INDEPENDENT or DEPENDENT. The existence of a dependent process is
contingent on the scheduling process being in the active state. In
HAL/S/V there 1is no need to make this disinction since all processes
are dependent on the primal process alone, A process can terminate
itself or can be terminated By the primal process onlv. 0On abnormal
termination & process must execute a "cleanwup" block of code which
mignt be specified by some construct such as ON TERMINATION similar to

ON -ERROR specifications.
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3.5 Program Units
3.5.1 Procedures And Functions =~

Considerations of modularity and incremental development make it
desirable that we should be able to prove procedures and functlons
independently of the context in which they are called. Iin other
words, we wWould like to see the abstraction facilities of these units
retained during proofs as well as during progran development.
Starting with the"entry" specification one must be able to prove the
"exit" specification only with reference to the code of the routine
body. Some features of HAL/S which prohibit this are non-local
referencing, the passing of shared data objects as parameters, and the

run=time dependency of some HAL/S constructs,

3.5.1.1 Non-~local Referencing =

The static lexical structure of HAL/S programs is block~oriented
like Pascal and Aalgol. The name=-scope rules are determined by the
block~structure rules such as in those languages, Such scope rules
permit a routine to access non-local variables other than those passed
as parameters, Non=local referencing causes serious difficulties for
verification primarily because it permits aliasing. A data item which
is passed as a parameter may be referenced via the formal parameter
name or may be referenced directly. Alsec, non~local referencing
violates the principie that routines should be understandable and
verifiable as much as possible in isolation. 1If such referencing is
allowed, it is impossible to verify routines without a knowledge of

the global environment in which they will be called. This inhibits
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factoring the proofs of programs into manageable subunits and can make

the proof of large systems prohibitively complex,

Non-local referencing also makes HAL/S functions unlike their
mathematical counterparts in the sense that the value returned is not
dependent solely upon the values of the parameters. This allows
functions ¢to have side~effects apd complicates the verification

substantially.

-~
il

3.5.1.2 Parameter Passing =

HAL/S has facilities to provide two kinds of parameters to
routines, INPUT and ASSIGHN parametérs. For 1input parameters the
routine has read—-only capability and these parameters cannot be
altered during the course of routine’s execution, In contrast, assign
parameters can be assigned new values and thereby can be changed by
the routine, In order ‘to avoid side effects, both in HAL/S and in the

verifiable subset functions are not allowed assigh parameters.

HAL/S does not specify whether input parameters are implemented
by passing a copy to the routine or by passing a pointer to the
original copy with a read only capability. If the implementation uses
the second alternative then side effects due to aliasing may occur if
the same variable is passed as both an input and an assign parameter
to & routine at one invocation. In order to overcome such
implementation dependent non=-determinacy in the results, in HAL/S/V
the input and assign parameter lists must be disjoint. Again to avoid
any aliasing, the actual parameters in the assign parameter list at

any call point must all be distinct.
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What happens 1f a procedure, inside its bogdy, passes one of its
input parameters as an assign parameter to a procedure called within?
Such a situation potentially causes difficuylties if input parameters
are passed by setting pointers (reference) with read-only capability.
No side-effects occur if input parameters are implemented by giving a
new copy to the called routine, In HAL/S/V we require that an input
parameter to a routine cannot be passed as an assign parameter to any

procedure called within the routine’s body,.

3,5.1.3 Procedures And Shared Dbata =~

In HAL/S the access=-control of shared data 1in a concurrent
execution environment is achieved using lock-groups as discussed
earlier. A procedure or function can be declared to have formal
parameters belonging o certain lock-groups. At the call point the
lock=-group of the actual parameter must match the lock~group of the
formal. In HAL/S lock=-group parameters can only be referenced within
UPDATE blocks which enforce mutual excilusion on the variables of the

lock group during its execution.

Proving procedures with shared data as parameters poses severe
problems; such procedures must be proved for each invocation since, in
order to prove the correctness8 of the procedure, one must know which
other concurren£ processes Mmay operate on that shared object during
the procedure call., Such information depends on the point where the
procedure 1s bheing called and also depends on the shared data object
passed as parameters. This implies that in order to prove the

procedure one must prove it for each call in which a shared data item
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is passed to it as a parameter. This destroys during proof time the
abstraction and modularization facilities provided by routines. To
alleviate this difficulty we suggest that in HAL/S/V procedures (or
functions) with locK=group parameters be executed as critical sections
thereby enabling their proofs as stand-alone units., We propose to use
the UPDATE (lock=-group) facility, as provided 'in HAL/S, for this

purpose,

One implication of this rule is thaé a procedure or function with
locked parameters must adhere to the following five restrictions which
are imposed by the language upon update blocks. An UPDATE block may
not contain statements of the following kind:

1) input/output

2) wailt or schedule statements

3) another update block

4) task blocks, but it may contain definition of new
procedures or functions

5) any procedure or function defined outside the

update block.

In order to make these restrictions effective an additional
restriction must be placed on procedures called within these
"update~procedures". One alternative 1s to insist that & procedure
with formal parameters belonging o a lock group cannot call any
procedure or function defined outside its block which does not have
any lock=droup parameters==such a procedure may c¢ontain a ‘schedule’
or ‘wait’ statement in its body. An alternative is to refuse to
permit any procedure or function to have 'wait’™ or ‘schedule’

statements in its body, However, in itself that would not be
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sufficient and one would have ¢ further disallow i/o statements
within procedures, Either alternative 1is unattractive because of the
loss of useful facilities such as procedures for scheduling and

synchronization.

A third alternative 1is enforced 1in HAL/S/V. Though the
procedures and functions with Jlock-group parameters are treated as
UPDATE blocks, they may call other procedures and functions provided
the called routines conform to the restrictions on update blocks
mentioned earlier, To clarify, a procedure with lock-group parameters
can <call another procedure with leck-group parameters although both
these are treated as update blocks. This is unlike the general case
in which update blocks within update blocks may lead to potential
deadlock situations because of the scope rules of HAL/S/V. Since the
only variables accessible within a routine are those which‘are
explicitly passed as parameters to 1it, the only procedures or
functions which can be called are those which need parameters of
eXactly the same locke-groups (or a subset of thesel) as those passed to
the calling routine. Also, a compile-time check can be made fo ensure
that a procedure with lock-group parameters does not call any routine
which contains statements of the five categories prohibited in update
blocks. This effectively creates two c¢lasses of routines one, which
contain statements like wait, schedule, i‘o, etc., and other routines

which don't contain such statements.
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3.5.1.4 Run-time Dependency =

Run~-time dependent system functions, like RUNTIME and DATE, cause
certain ‘unigque problems for verification as do non~memoryless
functions 1like RANDOM. Such functions have results which are not
dependent solely upon the values of the parameters., Hence two
invocations of the function will return different values even with
identical parameter 1lists. If a user=defined function during its
execution calls some system=-defined, run~-time dependent function, then
it 1is possible for the uyser~defined function alse to return different
values at different invocations even though the éame parameter values
are passed to it. Therefore in HAL/S/V one is not allowed to
reference run-time dependent functions within routines. This implies
that ruyn-time depenhdent functions can only be called at the outermost

level.

3.5.2 Tasks And Programs =~

The outermost level of prodgrams may contain task declarations and
definitions. The proof of a task block is highly dependent aon the
scheduling in the program, In order to prove a task one must have
Knowledge of which other tasks execute concurrently and share data
with it. More about these problems in discussed in the sections on

real-time scheduling.

In HAL/S (and alse .in the subset) tasks are the static
counterpart of processes, A task block may not be nested within
another task block. In HAL/S, a task can schedule another task.

Although & very useful feature from a functional abstraction point of
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view, this makes the proof of concurrent tasks very complex. In
HAL/S/V we propose to restrict all scheduling to the outermost level
of preograms. In this way, when proving concurrent tasks one does not

have to worfy about any subtasks which may be scheduled within them.

The most proﬁising way to approach the proof of concurrent tasks
in HAL/S seems to be the use of the technigques proposed by 0Owickil and
Gries. TIn this method, in order to prove concurrent programs, one has
to show that the execution of statements in one program does not
change the pre or post conditions of statements in the other programs.
This is c¢alled non-interference between the programs. In HAL/S/V,
this kind of non-interference only needs to be shown between programs
at the level o0f update blocks. After showing non=-interference, each

of the programs can be proved separately as & sequential program.

3.5.3 External Declarations =

In HAL/S external declarations permit users to define external
program units, procedures, functions, and oglobal data within
separately compiled blocks called compools. In HAL/S/V these have all
been retained except that all compool data items must be declared to
belong to some lock=-group. Also, procedures and functions may not
contain templates for compcol data since no non=local referencing by

procedures or functions is allowed in HAL/S/V.



Page 28
3.6 Textual Integrity

The behavior and hence the verifiability of a program is entirely
dependent upon the program text. Changing one token or even one
letter can 1lead to incorrect results or invalidate a previous
verification, Therefore, features are {0 be avoided which lead to
textyal alterations. The major offenders 1in HAL/S are replace

statements and replace macros.

These facilities permit almost unrestricted textual modification.
The effect of each such statement is to present the verifier with two
programs to verify-~the original and the modified version. Depending
upon the extent of replacement these verifications may be nearly
identical or quite different., In the worst c¢ase the difficulty of
verification may be .exponential in the number of replace statements
appearing. Such a severe penalty seems to cutweigh the benefits of
these facilities, Therefore, there are no replace statements or

replace macros in HAL/SB/V.

4,0 CONCLUSIONS

Tt is clear that the verifiable subset, HAL/S/V, <contains much
less than the full HAL/S language, The absence of the scalar, matrix,
and vector data types, replace statements, partial initialization, the
name facility, replace macros, inline functions, transient events,
geperal array processing features, all non-local referencing, and
function side~=effects are mwajor omissions. There is, however, much
that has been retained in HAL/S/V including the intéger, character,

Boeolean, and biltstring data- types, most control features of HABL/S,
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arrays and structures, subprogram definitions, real~time and
concurrent programming constructs, and all input/output facilities of
HAL/S., There are many significant programs that can be expressed
entirely in HAL/S/V,. Also because HAL/S/V 1is a strict subset of
HAL/S, it is possible to express in HAL/S/V critical segments of a

complete HAL/S prodgram,

In order to obtain verified programs, a language that will
support verification effectively is required. Is HAL/S/V such a
language? In principle, "Yes". By expressing programs strictly
within HAL/S/V, certain limited amounts of manual verification could
be done, However, any sizeable amount of verification will require
verification tools (verification condition generators, algebraic
simplifiers, theorem provers, etc.,). The building of these tools is a
large effort, and it is doubtful that building such tools for HAL/S/V

would be cost effective ip view of the other alternatives,.

One alternative that should be considered is the translation of
an existing verifiable 1language with existing tools. Gypsy, for
example, is a fully verifiable language with an extensive set of
verification tools., Building verified programs in Gypsy using
eXisting ftools and then mechanically translating the verified (ypsy
program into HAL/S 1is an alternative that 'should be weighed against

the sizeable cost of building verification tools for HAL/S/V.

Another alternative that should be considered seriously 1is the
use of the Ada language in place of HAL/S. We have begun a
verifiapility analysis of Ada similar to the study of HAL/S. Although

Ada 1is by no means fully verifiable, it appears to be significantly
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more supportive of verification than HAL/S. Although there are
currently no more verification tools for Ada than for HAL/S/V,-it is
almost certain that some of these tools will be developed. Ada also
provides several important dvantages in addition to verifiability.
Ada appears to provide all of the capability provided by HAL/S. Ada
programs can be interfaced to existing HAL/S programs. Ada is & much
more modern language design than HAL/S. It incorporates much of the
structured programming and software engineering technology that has
been developed in the last 5~10 vears. Ada 1s expected to receive
widespread use and support within the DoD. The general use of Ada in
favor of HAL/S, therefore, is an alternative that, we believe, should

be seriously considered.
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Overview of Differences Between HAL/S and HAL/S/V

This document lists all changes to HAL/S incorporated 1in the
HAL/S/V verifiable subset. Changes are dJrouped according to the
chapters of the HAL/S Programmer’s Guide, Reasons for the changes are
included though more elaboration and examples can be found with the
descriptions of the constructs in the document "HAL/AS/V: A Verifiable
Version of HAL/S,"
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1.0 STRUCTURE OF HAL/S

1. A procedure or function block can reference a non-local
variable only if it is passed as an actual parameter at the
call site. This does not apply te global constants.

There are several reasons why this restriction is imposed.
First, verification of large programs is a difficult process.
This difficulty is compounded if the program is not written
in such a way that it can be decomposed into smaller modules
which can be independently verified. An unrestricted
facility to reference global data inhibits such decomposition
since the behavior ¢f every module which references global
data 1is affected by the global environment in ways which may
be evident only with detalled analysis of the progam text.

In the case of fupctions, it is desirable that the behavior
be describable in terms of a time invariant functional (in
the mathematical sense) relationship between the parameters
and the output value. This becomes impossible with non-local
referencing.

Finally, one o0f the most pernicious problems in the way of
verifving any program is aliasing--data items having more
than one name by which they can be referenced. Assertions
made concerning a variable under one name +then wmay be
invalidated by changing the value of that variable under any
of the aliases, Non=local referencing allows aliasing since
global data may be referenced directly and also through the
parameter list.

2.0 HAL/S SYMBOLOGY
1, Arithmetic literals are of the form +ddddd where ddddd
represents an arbitrary number of decimal digits.

The INTEGER data type is the only arithmetic data type of
HAL/S/V. Therefore, scalar constants are not required,

3.0 A HAL COMPILATION-~THE PROGRAM BLOCK

HAL/S/V makes no explicit changes to the material in Chapter 3 of
the HAL/S Programmer’s Guide,
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DATA DECLARATION

1.

HAL/S/v possesses no SCALAR, MATRIX, or VECTOR data types.

Automatic verification of a program requires that the effect
of every language construct gypon the program state be
symbolically representable in an exact way. 0Only in that way
can meaningful assertions be constructed to describe the
progam state. The SCALAR data type (the HAL/S representation
of floating point numbers) is not so representable., SCALAR
operations usually introduce some error term whose magnitude
depends upon the particular object machine, the magnitudes of
the operands, the operation involved, etc. Verification
technigues cannot handle such contingencies, Therefore, the
SCALAR data type is not included in HAL/S/V,

The MATRIX and VECTOR data types, bheing composed of SCALAR
elements, are perforce also not present in HAL/S/V.

REPLACE STATEMENTS

1.

There 1s no replace statement in HAL/S/V.

The HAL/S replace statement permits almost wunrestricted
textual modification. The effect of each such statement is
to present the verification system with two programs to
verify--the original and the modified version. Depending
upon the extent of replacement these verifications may be
nearly 1identical _or quite different. 1In the worst case the
difficulty of verification may be exponential in the number
of replace statements appearing. Such a severe penalty seems .
to cutweigh the benefits of this facility.

DATA REFERENCING AND SUBSCRIPTING

i. Component subscripting applies only to CHARACTER data items
since MATRIX and VECTOR data iftems are not permitted in
HAL/S/V.

ORIGINAL PAGE is
OF POOR QUALITY
EXPRESSIONS
1. The only arithmetic operations recognized in HAL/S/V are

exponentiation (with positive exponents), mwmultiplication,
additicon, and subtraction or negation. Division 1is integer
division using +the system function DIV. The following
operations do not appear because they operate on data types
or return data types not sypported in HAL/S/V?:
expenentiation with negative or fractional exponents,
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inversion, transposition, vector cross product, and floating
point division,

No implicit precision conversion is permitted in HAL/S/V.

We feel that a reasonable requirement on any programming
language be that the effects o0f each construct be
transparent, This leads to programs which are more likKely to
be correct and which are easier to read and understand.

Operands of differing precision are essentially of different
types., Implicit conversions mask £rom the Programmer and the
reader the fact that in the conversion process information
may be lost or spurious information added, <Reguiring that
the programmer explicitly perform all precision conversions
explicitly using_ the conversion functions provided by the
language forces him to recognize this possibility and perhaps
compensate for it.

The operation of catenation operates on CHARACTER data items
only,

Catenation of non=character data items Is wuseful primarily
for output purposes. However, it wviclates the principle
espoused above that all conversions should be explicit.
Operators exist in the language for explicitly converting
between data types. Therefore, no power is lost by imposing
this requirement while a great deal of clarity is gained.

8.0 ASSIGNMENTS

1.

HAL/S/V allows no implicit type conversions across assignment
statements. Therefore, the declared type of the receiving
data item must be that of the expression on the right hand
side of the assignment statement.

This reguirement is in Keeping with our view that language
conhstructs can be powerful vet without deing anything behind
the prodgrammer’s back. Type and precision conversions across
assignment statements constitute changing information under
the guise of transferring information. The change should be
clearly indicated, A complete set o0f type and precision
conversion operators in HAL/S provides any capability which
might be lost by disallowing implicit conversions.

Arithmetic assignments are only of type INTEGER since MATRIX,
VECTOR, and SCALAR data types are not part of HAL/S/V.

in accordance with 8.1, the right hand side of CHARACTER
assignments must be CHARACTER valued expression.

No variable appearing on the left hand side of a multiple
assignment may appear on both the main line and the subscript
line,
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9.0 CONDITIONAL STATEMENTS AND BRANCHES

1-

To make Section 9.1 consistent with Section 2.3 the ability
to label the "true part® or the "false part" of a conditional
has been removed,

No comparisions involving operands of type INTEGER of
differing precision are allowed.

Operands of differing precision are essentially of differing
types. Therefore, implicit conversion is required for the
comparison to take place. A1l implicit c¢onversions are
disallowed 1in HAL/S/V for the reasons cited in 7.2 and §.1.

10.0 STATEMENT GROUPS

1.

Since SCALAR is not a ledal data type in HAL/S/V the initial,
and f£inal values of the DO FOR statements must be INTEGER
valued expressions and the control variabie must be an
unsubscripted INTEGER data item. -

The increment may be +1 or -1 only. This simplifies
construction of loop assertions without severely restricting
the prodarammer,

At the end of the final cycle, the control variable has the
value received after that cycle,

Although it is bad programming practice to do so, there is no
language imposed reguirement that the .loop control variable
not be used after exitting frem the 1loop. For a&ssertion
purposes then it is desirable that the value be determinate.

A second form of the DO FOR statement in vwhich values of var
are listed is disallowed in HAL/S/V.

This alternate form does not in general permit specification
of & loop invariant in any clear way. This is because the
value assumed bhv the control variapble may be such that one
execution of the loop is related to the next execution in a
very tenuous way, if at all, Also, the c¢ontrol variable
assumes for each «<¢ycle the valuye 0f an expression which is
evaluated immediately prior to that cycle of execution,
Hence, the behavicr of any loop execution may be dependent
ypon prior executions in very unhclear ways,

The exp of a CASE must be an INTEGER valued expression since
the SCALAR data type is not present in HAL/S/V.
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11.0 PROCEDURES AND FUNCTIONS

1.

In contrast to HAL/S, there 1is no default type for functions.

The HAL/S gdefault type is single precision SCALAR. This data
type does not exist in HAL/S/V.

Since HAL/S/V allows no implicit Ltype or precision
conversions, actual parameters to a funhction or procedure
must match the formal parameters exactly in- type and
precision.

There are no SCALAR, MATRIX, or VECTOR parameters since these
data types are apsent £rom HAL/S/V.

The notion of a functlon is restricted to make it conform to
the mathematical noticon of function in the following ways:
HAL/S/V allows accessing of non-local data only 1if it is
explicitly passed as parameters. Since functions have only
input parameters, this prohibits functions from having side
effects. An additional restriction is necessary to enforce
this. Namely, procedures called inside function blocks may
not have as assign parameters the input parameters of the
function. Functions should return values which depend only
on the wvalues of the input parameters and are not time
dependent, Therefore, functions may not call time dependent
system routines such as RUNTIME, DATE, PRIO, etc. Also they
may not call user defined procedures which c¢all these
routines.

These restrictions permit the behavior of functions to be
completely described in terms o0f a functiconal (in the
mathematical sense)}) relationship between dinput and output
values, Thus, HAL/S/V functions become implementations of
mathematical functions in a true sense, The advantage of
this Js +that, once proved, the behavior of the function is
entirely circumscribed no matter what the circumstances of
call. In such a case a function may be considered as a
"hlack box" which produces a unigue output value for values
in the input domain. Any details of implementation can be
hidden from the calling environment.

For procedures, the input and assign parameter lists must be
strictly disjoint. This prohibits the altering of any input
parameter during the execution of the procedure and preserves
the distin¢tion between input and assign parameters.

It is desirable that the effects o0f a function can be
registered solely by the value returned and the effects of a
procedure can be described solely in terms of a set of
changes to the assign parameters. Acheiving this ideal is
the reason for several of the restrictions we have 1imposed.
One way it can be vioclated is if the input parameters to a
routine can be altered during the execution of the routine.
If a data item appears as both an assign and an input
parameter then it can be changed during execution even though
it appears as an Iinput parameter. This possibility is
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disallowed,

6. No more than one part of a structured object may appear in
the 1list of assign arguments and no part of a structured
object may appear in the input 1list if any part of the object
appears in the assign list.

For structured objects two parts which are ostensibly
distinct (for instance A$i and Asj) may in fact refer to the
same storage locations. If these appear one in the input
list and one in the &ssign list, then the problem mentioned
above may occur. In any case, dangerous alliasing would
result, Hence only one part o©f a structured object may
appedar In these situations.

7. No assign argument may be an input argument or any part of an
input argument cof an enclosing procedure block.

Without this restriction an input parameter could be changed
in value by a c¢alled routine.

8. The expression returned by a function must match exactly the
declared type and precision of the function,

No implicit precision conversion is allowed in HAL/S/V,

12,0 INPUT/CUTPUT STATEMENTS

Chapter 12 is <concerned with the input/output facilities of
HAL/S. HAL/S/V incorporates these entirelvy. Hence, this chapter has
been left out of the HAL/S/V manual, being identical to Chapter 12 of
the HAL/S Programmer’s Guide.

i3.0 REAL TIME PROGRAMMING I

1. Statements involving & task block must always follow the
block definition,

2., The priority assigned a process af scheduling must be
strictly Lower than that of the scheduling process.
Assigning a priority of (PRIO =~ <¢} where ¢ 1is some
non=negative integer such that (PRIO - <¢) > 0 1is the
suggested means of accomplishing this.

3. All of the numerjic parameters in SCHEDULE and WAIT statements
are INTEGER valued expressions rather than SCALAR
expressions.

HAL/S/V contains no SCALAR data type.

4. No process may be terminated by execution of a TERMINATE
statement if it or any of its dependent processes updates
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global data.
There is no UPDATE PRIQRITY statement allowed in HAL/S/V,

As noted in Section 11.4.4, the functions RUNTIME and PRIO
may noet be invoked by any function ¢r any procedure called by
any function.

The use of a process name as & Booleah variable to 1indicate
the state of a process is not permitted in HAL/S/V.

14,0 SUMMARY OF PART I

Chapter 14 1is simply a summary of the contents o¢f Part I, the
first 13 chapters, ’

15,0 COMPOOLS AND COMSUBS

1.

No external function or external procedure may have compool
templates or access compool data. This is implied by the
HAL/S/V scoping rules which do not alloew procedures or
functions to access non-local data except that passed
explicitly as parameters.

Identifier names used to declare data in a compool body may
not duplicate the names of ldentifiers used to declare data
at the outermost level of programs having a template for that
compool,

To allow duplication leads to ambigulity of reference 1in the
program block, An appearance of the duplicated name in the
main program may refer to either the program’s glebal data
item or to the compool data item, HAL/& scoping rules
apparently are not sufficient to disambidguate this situation.

Replace statements are disallowed in external procedures as
in other places in the language.

16.0 ADDITIONAL DATA INITIALIZATION FORMS

1-

2.

Partial initialization of data is not permitted.

STATIC initialization of data is not permitted for reentrant
procedures.,

Static initialization for a procedure implies that each entry
is saddled with whatever data values the previous entry left
behind. This presents a problem for verification generally
since the procedure’s proof must take into account the
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effects preceeding calls may have had upon local data.For
reentrant procedures the difficulty 1s enhanced since the
data may be being acessed by several invecations
caoncurrently. Thus the proof requires knowledde not only of
bpreceeding calls which have completed but also of preceeding
and suceeding calls which are concurrently active. Thus the
difficulties which adhere to the proving of concurrent
programs are inherited by procedures«=-which should be
proveable sequentjally. Therefore, it is required that every
entry to a reentrant procedure have its own copy of the leocal
data. This 1is accomplished by allowing only BAUTOMATIC
initialization.

17.0 BIT STRINGS

1.

The operations called "conjunction" and "intersection® in the
HAL/S Programmer‘s  Guide are «called ‘"disjunction" and
"conjunction," respectively, in the HAL/S/V docunent to
conform to standard logical usage.

Two bit string operators compareg by the OR or AND operations
must be of equal lendth.

The operands of a bit string assignment must be of equal
length,

Two bit strings are considered unegual if they are of uneqgual
length.

A bit string actual parameter to a function or procedure must
be of the same length as the declared length of the formal
parameter, This applies both to input and assign parameters.

A bit string value specified at the RETURN statement of a
function must match in 1length the declared value of the
function.

18.0 MULTI-DIMENSIONAL ARRAYS

HAL/S/V makes no explicit changes to the material in Chapter 18
of the HAL/S Programmer ‘s Guide.

19,0 STRUCTURES

1.

A structure template may never possess & node of the same
structure type. Whether or not this is possible in HAL/S is
unclear from the Programmer ‘s Guide.

If such a situation were permissible then that node would in
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turn have a subnode of the same structure type, etc. Thus
there would be an infinite branch on the tree,.

20,0 HAL/S/V ARRAY PROCESSING FEATURE

The material contained in Chapter 20 of the HAL/S Programmer’s
Guide 1s not available in the BAL/S/V programming language,

Any allowable HAL/S operation one can perform on an array can be
done without these features on a component by component basis in a
loop. Though somewhat less convenient, this apprcach has several
advantages.

1. Implementation dependencies arising from the ambiguity in the
order in which component operations are performed are
eliminated since the serial order of the operations 1is made
explicit.

2. O0Operations such as "+" may be treated by the verification
system as non-generic and subject to a set of axioms which
are not dependent upon the types of the operands.

3. Verification is ¢greatly sinmplified. For instance, the number
of times a function is invoked is obvious from the text and
not dependent upon the dimensionallty of 1its arguments, as
may be the case in HAL/S.

For these reasons, the constructs described in Chapter 20 have
been removed from HAL/S/V even though several of ther mey be
theoretically verifiable.

21.0 EXPLICIT CONVERSIONS

Functions for conversion to and from sc¢alar, vector, and matrix
types have been ommitted because objects of these fypes are not
allowed in HAL/S/V. Subbit psuedo-conversion does not exist in
HAL/S/V because of the complexities which overweigh its usefulness,

22.0 ADDITIONAL INPUT/QUTPUT FEATURES

Chapter 22 1s concerned with the additional input/output
facilities of HAL/S. _HAL/S/V incorporates these entirely. Hence,
this chapter has been left out of the HAL/S/V manual entirely, being
identical to Chapter 22 of the HAL/S/V Programmer’s Guide.
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23.0 REAL TIME PROGRAMMING .II

1.

4,

Two program blocks may not contain templates for each other.
This 1is 1mplicit in the requirement that recursion is not
permitted in HAL/S.

All or the time and delay conditions in SCHEDULE statements
are specified by INTEGER rather than SCALAR expressions.,

No program process may be terminated if it or any dependent
process updates compool data.

A process mav only cancel itself or dependent processes,

24.0 REAL TIME PROGRAMMING III

In

the wverifiable subset only latched type of events are

permitted, Therefore event exXpressions can not contain transient
events; operation such as "signal" is of no meaning in HAL/S/V.

1-

2

HAL/S/V does not contain translient eventsy the reason
for not having these 1in the subset is mainly because the
semantics of certain 1logical operations on this type of
events is not well defined, Secondly, they seeem to be
redundant as the prodrams can be written by using the latched
events only which are like conditions,
example:

not EVY {where EV is a translent event}

does not have any well defined meaning. Similarly "EVi
and EV2" where both are transient events.

All th events are of latched type therefore default type
taken 1in decliaration is latched type,

Boolean expressions can not contain items of the type
event; if it is permitted then it not possible to assert the
expression as true or false becauyse the value of the latched
event might be c¢hanged by some other concurrent process.
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Paqgepd1

ERROR RECOVERY AND SIMULATION

This part of HAL/S has been retained in the subset but it needs
further

thoughts. This could possibly be redesigned on the lines of

error recovery in Ada which would lead to substantial simplification.

26.0

27.0

28,0

29.0

DATA STORAGE AND ACCESS

1.

A1l data iltems which are shared by more two or more tasks or
progdrams must belong to some lock group. This ruyle does not
apply to objects of "event" type,

HAL/S/V AND REENTRANCY

1.

HAL/S/V does not permit multiple copies of reentrant
procedures or functions to share 1local data 1items.
Therefore, the keyword STATIC may not be used in conjunction
with the Keyword REENTRANT in defining procedures and
functions.

See 16.2 of this document for justifications.

THE HAL/S NAME FACILITY

1.

No NAME data item may be declared in HAL/S/V.

The ability to maintain "pointers" to specified data itens is
a valuable feature of many programming languages. However,
1t presents a problem from the point of view of verification,

I1If the pointer value is treated as merely another name for an
object, as in HAL/S, aliasinf of the worst kind can result.
In such a case, the objecthas a declared name and any number
of other aliases, Assertions made using any of the allases
may be falsified by accessing the object via any other-=-a
fact which is not apparent from the program text. Therecfore,
the verification system is constrained to keep track of all
aliases of every data object. For this reason, HAL/S/V does
not permit any name data item to be declared.

REPLACE MACROS AND INLINE FUNCTIONS

1.

There are no REPLACE macros or inline functions in HAL/S/V.

It was stated in 5.1 that the REPLACE statement of HAL/S had
been removed from HAL/S/V. This applies as well to the
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parameterized version called REPLACE MACROS and for the same
reasons,

The behavior of a program and, hence the verifiability, 1is
governed by the program text. The HAL/S Replace facility
allows arbitrary chandes to be made to the program text.
Such changes _generate essentially new programs for which a
previous verification may be invalid, Thus, complete
verification requires that each possible program text be
considered individually. The work involved is potentially
exponential in the number of replace statements.

"In~line functiops® in HAL/S are parameferless functions
designed to enhance the versatility of the parametric
replacements. However, without REPLACE MACROS, they are of
little wuse, They are executed in~line and cannot be invoked
elsewhere in the program. Moreover, according to the HAL/S/V
scoping requirements outlined in Chapter 11, a function may
not access non-local data unless it is passed as a parameter
at the call site. Hence, a parameterless function 1is
essentially a .constant. For these reasons iln-line functions
are disallowed in HAL/S/V,

30,0 MANAGERIAL ACCESS OF CONTROL TO DATA AND CODE

HAL/S/V makes no explicit changes to the material in Chapter 30
of the HAL/S Programmer’s Guide,

31,0 INTERFACES WITH NON=HAL/S CODE

HAL/S/V makes no explicit changes to the material in Chapter 31
0f the HAL/S Programmer‘s Guide.

32.0 SUMMARY OF PART II

Chapter 32 is simply a summary of the cohtents of Part II,
Chapters 15 through 31 of the Programmer’s Guide,
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VERIFIABLE SUBSET OF HAL/S/V

This document defines the preliminary verifiable subset of the
HAL/5/V language. Those features in the original HAL/S/V language
which make the proof methods cumbersome have been deleted in selecting
this subset. This document has been prepared by editing the HAL/S
Programmer ‘s Guide. For purposes of comparing HAL/S and HAL/S/V, the
same section numbers have been retained .in both documents.
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CHAPTER 1

STRUCTURE OF HAL/S/V

This section gives an overview on an abstract 1level of the
overall properties of HAL/S/V compilations, and tries to relate these
properties to the need for go0d programming practice. Later sections
of the gquide interpret these-properties in terms of actual HAL/S/V
language constructs.

1.1 STRUCTURING AND HIGHER ORDER LANGUAGES

A commen method of probklem solving is the so~called "top down"
approach. The algorithm for scolving the problem is first outlined
broadly, then delineated step~by-step in successively deeper level of
greater detail. The success of the algorithm iIn arriving at the
solution lies as much in its ability to break the problem down to
simple compenents as in its ebility to resolve the problem as & whole,

If a problem 1Is to be s¢olved by programming it in a higher order
language, then the Ytop down" approach is of special interest since it
lends insight into how the program c¢an be organized. Specitically,
the organization takes the form of an outer program block enclosing
numerous nested subrouvtines. On the outermost level, the program 1is
only concerned with the broad outlines of the solution and relegates
the first level of detail to the outer set of subroutines. These, in
turn, relegate the next level of detall to the inner sets of
subroutines until each level 0f the problem has been relegated to the
appropriate set of subroutines.

This particular programming technigue is partly what is meant by
"structured programming", The term also implies an ability to form
nested groups of executable statements inside a program or subroutine,
On each level of nesting, a statement group has the ability to behave
as if it were a single executable statement.

Structured programming technigues introduce an order into the
writing of programs which not only makes the programs easier to read
but also less susceptible to error. Most modern high order languages
possess constructs out of which structured programs can be created:
the constructs of HAL/S/V have been defined deliberately with
structured programs in mind.

-1
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1.2 THE BLOCK STRUCTURE OF HAL/S/V

The structure of a HAL/S/V compilation generally consists of a
program block with procedure and fubction bloecks hested within it.

These blocks constitute the HAL/S/V Iinterpretation of the
"subroutines" mentioned jin Section 1.1. The more deeply such & block
is nested, the greater the detail of the problem solution it is meant
to handle. The blocks at each 1level <contain eXxecutable code
implementing the appropriate part of the problem solution.

Both kKinds of block are -similar in that they contain c¢ode which
is executed by a call or "invocation", and which returns execution to
the caller upon completion., However, procedure and function blocks
differ 1in the way they are invoked. A procedure 1s invoked by a CALL
statement while a function (like 1its mathematical counterpart) is
invoked simply by 1its appearance in an expression and returns a
resuilt. *

Generally, the code in any block may 1invoke a procedure or
function block defined at the same level, or in & surrounding outer
level. The rules defining the place where & block may be invoked are
discussed later in this section.

The forms of procedure and function blocks and the constructs for
invoking them are described in Section 11 of this guide. The form of
the outer program block is described in Section 3,

1.2.1 Scoping 0f Data

In HAL/S, all data must be defined in "data declarations”. An
important consequence of the structural properties of HaL/S is its
ability to place data declarations to bound the regions in a program
which may reference the declared data, This feature 1s called
"scopingV,

The scoping rules in HAL/S/V have been modified so that a
procedure or function block_c¢an reference a non=local variable only if
it is explicitly passed to it as an actual parameter at the call site.
Further, to avoid any side effects of the function calls, we retain
the restriction imposed on the original HaL/S:; by which functions c¢an
only haye INPUT parameters and cannot possess any ASSIGN parameters.,

Restricting the non~local varlable referencing only to those
variables which are passed explicitly as parameters, helps in avoiding
any aliasing of variables during a procedure call. In case of
accessing constant identifiers the scope rules of block structured
languages, as given for HAL/S, still remain valid.
¥ A procedure is therefore like a Fortran SUBROUTINE, and a function
is 1like & VFortran FUNCTION. Note, however, that while Fortran
SUBROUTINES and FUNCTIONS are always exterior to the program calling
them, this is not true for HAL/S/V.
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REASONS ! o rmermman

In a procedure bloc¢k no variaple can bhe referenced using more
than one name, Wwhich ensures that the assertions on the value of an
identifier remain wvalid. This 1s achieved by restricting the
non-~local references to the actual parameters passed fto a procedure at
the call site, If unrestricted accesses are permitted to the
non~local variables then it is very hard to make assertions at the
call site involving these non=local varliables.

Similarly, the type of parameters to a function are restricted to
input (value) pAarameters so¢ that function calls do not modify any
non~local variable.

1,2.2 Scoping Of Block Names

The prodram block, and every procedure of function within it are
named: block names have scoping rules identical with the data scoping
rules as in a block structured language like PASCAL. The name of any
procedure or function block is deemed te have been "declared" in the
surrounding block in which the procedure or function is nested. This
bounds the reglon where its name is known, and therefore determines
where it may be invoked., Thus, the name of any procedure or function
nested at the program lLevel 1s Kknown anywhere in the program.
However, since in HAL/S/V recursion is not allowed, such a procedure
or function may be invoked from anywhere in the program except inside

itself., Similarly, inner procedures and functions may be invoked £rom..
anywhere 1In the block enclosing them except within themselves, It
should be noted that all forms of recursion in HAL/S/V are illegal.
The form of recursion not prevented by the rules given above is that
in which procedures P and Q are not contained in each other, but P
calls Q@ and Q calls P.

NOTE: HAL/S/V does not suppert the passing of function or procedure
names a5 parameters. Therefore, the rules governing the "yisibility!"
of block names must be more Liberal than those governing variable
names. Otherwise, functions and procedures c¢ould never call each
other. Thus, the original HAL/S scoping rules concerning block names
were retalned in HAL/S/V whereas the scoping rules c¢oncerning variable
names were modified,

It is also possible for & program (or
any block within it) to invoke entities
cutside the compilation unit; l.e.
other compilation units. Procedures and
functions may be compiled independently
for this purpose.

See! Guide/15.
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1.3 STATEMENT GROUPING IN HAL/S

In HAL/S/V, the actua] step by step solution of & problem is
performed by executable statements contained in the blocks comprising
the program. Sequences of executable statements may be dJrouped
together and treated as a single compound statement., Such statement
groups are sald to be "well-bracketed" =~ they begin with a special
Statement (a "DO" statement), and end with another special statement
{(an "END" statement). Execution of the sequence 0f statements In the
group can be controlled in various ways depending on the form of the
cpening "DO" statement: ’

% the sequence may be executed once oniy;

% the seguence may be executed repetitively until specified
conditions are met;

¥ ope statement .in the sequence may be selected as the only one
to be executed. '

Sequences of compound statements may also be grouped together in
the same way and, in turn, be freated as a more complex compound
statement, and so on to an arbitrary degree of nesting,

Use of this grouping‘ﬁroperty-in conjunction with other HAL/S/V
coenstructs c¢an sibstantially eliminate the need for a "GO TO"
statement (in the Fortran sense, for example), which from the
structured programming viewpoint is recognized to be "dangerous®
becayse it destroys the readability ©f a program, and makes it more
error=prone,

1,3.1 sStatement Groups And Go To Statements

The design of HAL/S/V minimizes the dangers of "GO TO" statements
by limiting the regions which c¢an be branched by them, in a way
analogous to the limits imposed on data by the scoping rules described
in Section 1.2, Whiie groups can be branched out of, or branched
within, they may not be branched into, c—— et 44m o i

1.3.2 Interaction With Block Structure

Since procedure and function blocks may appear anvwhere in a
program, including inside statement groups, the problem arises of
branches by means of "GO Tg" statements in and out of such blocks,

In HAL/S/V, the destinations of "GO TO" statements are labels
attached t¢ executable statements. Because the scope rules for
statement labels are the same as for declared data, it follows that it
is  imposslble to branch intoe a procedure or function block.
Additionally, & rule is made that branches may not be made out o0f a
block (since by scope rules the 1label of the destination is not
visible}.
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This leaves the regiprocal processes of call and return~to-caller
the only ways of entering and leaving procedures and functions, which
Is in accordance with structured programming principles.



CHAPTER 2

HAL/S/V SYMBOLOGY

HAL/S/V source text has its own particular characteristics; a
specific character set, special combinations of characters set aside
as reserved words, and certain rules dictating the form of statements.
This section 1is an introduction to these characteristics of the
HAL/S/V Language.

2,1 THE CHARACTER SET
The HAL/S/V .language uses the following character set:

ABCDEFGHIJKLMNGPORSTUVWXYZ
abcddefghijiklmnopgrstuvwxyz

0123456789
=%, /I7&=<>HR8, 1 ") (B"cent sign"

(blank)

This character set is a subset of the standard character sets
ASCII and EBCDIC,

Although the user really needs only the above character set when
writing a HAL/S/V program, there are additional special characters
which can be wused in comments a&and in <character string literals
(descriped later in this section),

1 {3} &2

The output listings produced by a HAL/S/V compiler may use these extra
special characters for annotation.
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2.2 RESERVED WORDS, IDENTIFIERS, AND LITERALS

The HAL/S/V language uses four kinds of primitive elements as
basic constructs:

1. RESERVED WORDS are a fixed part of the language and consist
of combinations of upper case alphabetic characters;

2. IDENTIFIERS are uyser-defined names used for data or labels,
and c¢onsist of combinations of the alphanumeric characters;

3. LITERALS express actual values, and can consist of any of the
symbols in the character set;

4. SPECIAL CHARACTERS serve as delimiters, separators or
operators, and consist ¢f the non=alphanumeric characters of
the HAL/S/V set.

Z2.2.,1 Reserved Words

Reserved words are words having a standard meaning in the HAL/S/V
language, As thelr name sugdgests, the user cannot use reserved words
&s identifier names. There are two major categories of reserved
words:

1. KEYWORDS are used to express parts of HAL/S/V statements, for
example: GO0 To, DECLARE, CALL, and so on. A complete list
can be found in Appendix E.

2., BUILT-IN FUNCTION NAMES are used to identify a 1library of
common mathematical and other routines, for example: SINE,

SQRT, TRANSPOSE, and sc¢ ©on. (A complete list can be found in
Appendix B.)

Ze2.2 Identifiers

An identifier name is a user-assigned name identifying an item of
data, a statement or blockKk label, or other entity. The following
rules must be observed in the creation of any lidentifier name *,

1, The total number of characters in the name must not exceed
32;

2, The £first character must be alphabetic;
3., The remaining characters may be either alphabetic or numeric;

4. Any character eyxcept the first or last may be an
underscore(.).



HAL/S/Y SYMBOLOGY Page 2=3

Examples:

Elephant_And_Castle \

Al > legal
P /

IB \

) G / illegal

2.2.3 Literals

The three basic Kinds of literals described here are arithmetic,
character string, and Boolean. The utility of arithmetic literals is
obvious, In simple programming problems, c¢haracter stripg 1literals
£ind most use in the generation of output. Boolean literals are used
to state logical truth or falsehood,

2.2.3.1 ARITHMETIC LITERALS =

These eXpress numerical values in decimal notation, The generic
form of an arithmetic literal is:

+ ddd...

1, ddd represents ap arbitrary number of decimal digits.

2. The 4+ signs are optional.

3, The maximum number of digits is implementation dependent.*

Arithmetic -literals in HAL/S/V all express integer values,
Fiocating point numbers have been discarded in choosing the subset for
reaseons discussed in Section 4.1.

Examples:

- vy W e

* Some implementations of HAL/S/V may place extra restrictions upon
the names of identifiers, See appropriate User’s Manual,

¥ See appropriate user’s manual,
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2.2,3.2 CHARACTER STRING LITERALS =

These consist of strings of characters chosen from the
HAL/S/V character set. The generic form is:

‘cceceece!

entire

1. The quote marks delimit the beginning and end of the literal.

2. ccce represents an arbitrary number of characters in

combination.

3. Quote marks within the literal muyst be represented by a

any

pair

of quote marks to aveid confusion with the delimiting quotes.

4. The minimum number of characters is zero (a ‘null’ string},

- the maximum is 255. ¥

Examples:

s

‘ONE two THREE )
‘DOG*’S”’

If a 1literal consists of a single
character ’ or character Sequence
repeated many times, a condensed form of
literal using a repetition factor may be
used,

See: Spec./2.3.3.

2.2.,3.3 BOOLEAN LITERALS =

These express logical truth or falsehcod, and are generally
to set up the values of Boolean data items. Thelr forms are:

TRUE
> expressing truth, or binary "1"
ON
FALSE
> expressing falsehood or binary "0"
OFF

Literal strings of binary values also
exist.

LR LR R T

used

¥ This value may vary between implementations. See appropriate User’s

Manual.
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See: Guides17.1.

2,3 FORMAT OF SOURCE TEXT

HAL/S/V is a "stream-oriented” language, that is, statements may
begin anywhere oh & line (or cardl), and may overflow without special
indication onto succeeding lines or cards. Several statements may be
written on one line (or card) as required,

HAL/S/V 1s among the very few languages which permit subscripts
and exponents to be represéented as they are mathematically, using
lines below and above the main line respectively as needed, This
malti~line format is- an optional arternative to the HAL/S/V
single~line format,

Even when multi-line format is not used, the first character

position of each line (or card) is reserved for a symbol denoting the
kind of line format, subscript, main, or exponent,

2.3.1 Single-Line Format

In single-line format, the first character position of each 1line
is left blank, denoting a main line. A&An M <an alternatively be used
but is generally not preferred by users. '

EXPONENTS are denoted by the operators: *¥¥
Example:

t+2
X is Coded as:

IM X*F(L+2)

SUBSCRIPTS are denoted by parenthesizing the subscript and
preceding it with the symbol: §.

Examples

a is c¢oded as:

M As(I+1)
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2,3,2 Multi-Line Format

In multi-line format, the first character of a main 1line 1is
either 1leff blank or M is inserted as before. The first character of
an exXponent line is E, and that of a sUbscript line is 8.

EXPONENTS are written on an exponent line (E=line)} immediately
above the main line,

Example:
t+2
X is coded as:
|E T+2
M X

SUBSCRIPTS are written on a subscript line (5-line) .immediately
below the main line,.

Example:
a is coded as:
i+l
1M A
15 I+1

When using multi-iine format, the user must take care that nothing on
the E- and S-lines overlaps anything on the M~line.

Exponents of exponents and subscripts of
subscripts use extra exponent and
subscript lines., ©Special rules apply if
exponents are subscripted, or it
subscripts possess eXponents.

See! Spec./2.4.

2.4 STATEMENT DELIMITING

As Sectlion 2.3 indicated, HAL/S/V statements may be written in
free form without regard for line (or card) boundaries, Because of
this there is the need to explicitly indicate the end of each
statement with & special symbol. HAL/S/V uses a semicolon for this
purpose, The following statements arbitrarily selected from the
language show the placement ¢f the semicolon.
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Examples:

i

i DECLARE I INTEGER;
| T =3I + 1;

} CALL P(I,J);

2.5 COMMENTS IN HAL/S/V

The use of Comments is & sine gua non of good programming
practice, HAL/S/V possesses two mechanisms £for the inclusion of
comments in a compilation

¥ IMBEDDED COMMENTS may be placed anywhere on main, exponent or
subscript lines of HAL/S/V text.

¥ COMMENT LINES may appear between maln, exponent and subscript
lines of HAL/S/V text.

2.5.1 Imbedded Comments
An imbedded comment takes the form:
/¥ ... any text (except */) ,..%/

Such comments may appear between HAL/S/V statements or imbedded in a
statement. They may not appear in the middle of a literal, reserved
word, or identifier. Nor may they overlap any source text or other
comments on other lines of a group written in multi-line format., As
far as the sense of the source text 1s concerned, an imbedded comment
is treated as 1if it were a string of blank characters.

Examples:

| M X =X+ 1; /% ADD ONE TO X */
!

| M X = Y;

| S 1 /% BAD %/

]

illegal=controverse overlap rule

2.5.2 Comment Lines

Comment lines are input 1lines specially reserved solely for
comments by placing the character ¢ in the first character position of
the line. The rest of the line may contain any desired text.
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Examples:

C ADD ONE.TO0 X

]

| M I =X + 13

I

] C THEN CARRY ON



CHAPTER 3

A HAL/S/V COMPILATION - THE PROGRAM BLOCK

The structuring of HBAL/S/V programs was dealt with on the
conceptual level in Section 1. Section 3 begins to interpret this
information in terms of actual HAL/S/V language constructs.

For the purposes of Part I, an entire HAL/S/V unit of compilation
is known as the ‘"program block', The term "block" has a special
connotation in this Guide. It is taken to mean a coherent body of
data declarations and executable statements enclosed In statements

T S — ——— T Y T R i

delimiting its opening and closing, and identified with a name....

3.1 OPENING AND CLOSING THE PROGRAM BLOCK

The first statement of a HAL/S/Y program is a statement defining
the name @f the program and opening the program block. The last
statement of a HAL/S/V program is & statement c¢losing the proegram

block. Between the two are all the statements comprising the body of
the program.

3.1.1 Program Gpening
The statement opening a program block takes the form:
i ) ,
| label : PROGRAM;
| \

i. 1label is any legal identifier name, and constitutes the name
of the program,

3.1.2 Program Closing

The program block is closed with the statement:

3-1



|
| CLOSE label ;
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]
1. The identifier label is optional.

"2. If label is supplied, it must be the program name, i.e., the
label on the opening statement of of the program block.

3.2 POSITION OF DATA DECLARATIONS

Normal BAL/S/V programs regquire the use ©of data. The names used
Lo identify this data must be declared before use by the means of data
declaration statements. Data declarations (and, additionally, certain
other kinds of statements) must be placed after the program opening
statement and before the first executable statement.

3.3 FLOW OF EXECUTION IN THE PROGRAM

The program begins execution at the first executable statement
after the data dec¢larations, and thereafter follows a path determined
by the kinds of eXecutable statements encountered, Unless statement
groups, branches, or conditional statements intervene, execution is
sequential. Finally, the path either reaches a statement terminating
execution of the program block, which has the same effect,

As described in Section 1, procedure and function definition
blocks may be Interspersed between the statements In a program block,
The only way of executing such blocks is by exXplicit invocation: if
they are encountered in the path of executicn they are passed over as

e A ———

if non-existent..-




CHAPTER 4

DATA DECLARATIGN

Programming largely consists of the manipulation of numerical
data. The diversity of the data types in a language defermines its
utility f£or any required task. HAL/S/V contains an exceptionally
diverse set of data types.

This set has been considerably restricted in defining HAL/S/V.
This was done primarily because operations on certain types of data
lend themselves to verification methods more readily than others.

Identifiers of the kind described in Section 2 are used to name
items of data. Identifier names used to represent data items must ¥
be defined in data declarations appearing in the appropriate program,
procedure or function block. The effect of placing data in different
blocks is described in Section 1. The position of data declarations
within a prodgram block is described in Section 3.

This Section now proceeds to describe the detailed construction
of data declarations.

4,1 HAL/S/V DATA TYPES

In the HAL/S/V language, arithmetic data must be expressed as
type INTEGER for the representation of integer-~valued guantities.

The integer data tvpe may be specified in either single or double
precision. The pregision determines the maximum absolute valye the
identifier may take on.

NQTE: Other arithmetic data types which are found in HAL/S have been
omitted £rom HAL/S/V,., The SCALAR data type (floating point) has been
omitted because of the difficulty of axiomatizing £floating point
arithmetic. Hence, the VECTOR and MATRIX data types are also omitted
since they are composed of scalar elements, In the subseguent
sections anvthing involving these data types has been discarded or

¥ The HAL/S/V language prohibits the use of implicitly declared data
items, considering it to be an undesirable programming practice.

-
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modified.

In addition, HAL/S/V also possesses the following data types:
# (CHARACTER for the representation of strings of text;

BOOLEAN for the representation of binary~valued (logical}
guantities.

It is possible to declare arrays (or tables) of any of the above three
types. ’

e R A e W W T WS e P PEC W U I N NN WP WR W U BT o vy W A WG T My g s

HAL/S5/V possesses other data types.
The Boolean data tyvpe is a degen-
erate form of the' HAL/S/V '"bit
string" type.
Seer Guidesl7.

HAL/S/V also possesses hierarchical

organizations of data items of any
" type, Known as "structures".

See: Guide/s/19.

Y N W e v g gu T W el G e TR U W S TR R e St gy W T e TR R o e

Reasons: Verification is primarily concerned with discrete data; but
the representation of real numbers as discrete guantities introduces a
"degree of complexity which makes verification eXxtremely difficult.
Sophisticated numerical technigues and error analyses are often needed
to make valid assertions about the results of £loating point
operations,

4.2 SIMPLE DECLARATION STATEMENTS

Data declaration statements define identifiers used to name data.
The simplest forms of declaration statement for €each data type listed
above are exanined on-the following pages,

4.2.1 1Integer

DECLARE name INTEGER;
DECLARE name INTEGER SINGLE;
DECLARE name INTEGER DOUBLE;

. In each of the forms, name is any legal HAL/S/V identifier,.
2. Presence of the keyword SINGLE specifies single precision,

3. Presence of the keyword DOUBLE specifies double precision.
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4, Absence of either Keyword implies default of single
precision.

For the integer data type, SINGLE precision usually implies
halfword and DOUBLE precision implies fullword, depending on the
implementation,.*

Examples:

r

DECLARE I1 INTEGER;

I
i
i DECLARE BIGI INTEGER DGQUBLE?
i

4.2.2 Character

!
IDECLARE name CHARACTER (n};
i

1. name is any legal identifier.

2. n specifies the maximum length of the string that the data
type may carry (i.e. the maximum number of characters). It
must lie in the range of 1 <= n <= 255.%

3. The actual length of the string of text carried may vary
during " eXxecution between =zero (a "null" string) and the
maximum n.

Example:

!
|DECLARE C1 CHARACTER(80);
|

4.2.3 Boo¢lean

i
IDECLARE name BOOLEAN;
I

-y e TR AR e

¥ See appropriate User's Manual.

* This value may vary between implementations. See appropriate User’s
Manual.
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l. name is any legal identifier.

4,2.4 Arrayvs

The properties of a data item, (1ts type, preclision, and size),
as expressed in 1ts declaration are called the "attributes" of the
data item. In any of the above declarations, the attributes are
specified following the name of the data item.

To declare an array of any data tvpe an ARRAY specification is
inserted between the name of the data item and its attributes:

i
| DECLARE name ARRAY(n) attributes;
|

1. attributes stand for any legal form o¢of attributes for any
data type described., It is possible. that none appear.

2. n denotes the number of elements in the Iin the array (l.e.
entries 1in the tablie) and musft 1lie in the range 1 < n <
32768 ,%

Examples:

i
i DECLARE AS1 ARRAY(500) INTEGER;

| DECLARE AM1 ARRAY(20) CHARACTER(L5):
I i

HAL/S/V also supports multidimensional
arrays of any data type.
See; Guildes18.1,

4,2.5 Compound Declarations

If a program contains declarations of many data items it 1is
tedious to repeat the keyword DECLARE in every declaration. Many
separate declarations may be condensed into one compound declaration
as shown below:

Example:
Separate DecClarations:

t
i DECLARE S;

¥ This value mavy vary between implementations. See appropriate User's
Manual,
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| DECLARE I INTEGER DOUBLE;

I DECLARE B BOOLEAN;

i DECLARE C ARRAY(5) CHARACTER(20):;
!

Equivalent Compound Declarations:

!

i DECLARE S,

i I INTEGER DOUBLE,

i B BOOLEAN,

: C ARRAY(5) CHARACTER(20),

Note commas separating the declaration of each data item.

If the identifiers in compound declarations have some attributes
in commen, & third, even more compact form called a FACTORED
DECLARATION is possible,

Example:

[
i DECLARE 11 INTEGER,

i I2 INTEGER DOUBLE,
| I3 INTEGER DOUBLE;

can be rewritten in the factorial form:

| DECLARE INTEGER, I1,
! 12 DOUBLE,
t I3 DOUBLE;

Note the comma separating the factored attribute, and the first data
item.

4.3 INITIALIZATION OF DATA

A HAL/S/V data item of any type may be initialized by
incorporating the appropriate specification Iinto its declaration.* The
form of such a specification differs depending on whether the data
item is "uni-valued®,

* UNI-VALUED data items are those having only one element:
yharraved booleans, and characiers.

¥*

MULTI-VALUED data items are those having more than one
element: arrayved data items of any tvpe.

L RN R L]

L

¥ See Guidesl6 for certain restrictions and additional forms of
initialization,
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In either case, the specification is placed after the type,
precision, rand size attributes of a declaration, This positioning
will become apparent in the examples to follow.

4,3.1 Uni-Valued Data Itens

The two variations of the construct for initializing uni-valuyed
data items are:

INITIAL ( value J
CONSTANT ( value )

1. The two forms haye the same effect in that the data item is
initialized to the literal indicated by value.

2. The form using the kevword CONSTANT is required only 1if the
user wishes never to change the initial value during
execution.*

3, The type of the literal value must be compatible with the
type 0f the data item as determined from the followling table:

data type literal value
CHARACTER character string
BQOLEAN boolean

INTEGER arithmetic

Examples:

!
IDECLARE A INTEGER INITIAL(3),

! C CHARACTER(80) INITIAL(YES'),
] D BOOLEAN INITIAL{TRUE);

I

NHote: initial working length of C becomes 3.

4,3,2 Multi-Valued Data Items

There are two corresponding variations o¢f the INITIAL/CONSTANT
specification for multi~valued data items:

INITIAL( valuel valueZ , .,...)
CONSTANT( valuel , valueZ , ..ees)

1. The meaning of the keyword CONSTANT 1is the same as for
uni~valued data items.
¥ In many respects a data jitem initialized this way 1is akin to a
literal.
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2. The type ©0f each literal value must be compatible with the
type of the data item, as determined from the fellowing

table,
data type literal value
CHARACTER character string
BOOLEAN boolean -
INTEGER arithmetic

3. The number of literals in the 1list must equal the total
number of elements implied by the data dec¢laration.

Note that 1f all the elements of & multi-valued data item are to
*be initialized to the same value then the form used for uni~valued
data items may be used.

Examples:

|
IDECLARE S ARRAY(2) CONSTANT(1,03,
{DECLLARE & ARRAY(199) INTEGER INITIAL(256):
1 ~
|
(all elements of these data items
are identically initialized)

4.3.3 Order Of Initialization

To complete the specification of initislization, the order of
initjialization of the elements of multi-valued data items needs to be
defined,

The following ordering rule, applied here to the initialization
of multi-valued data items, holds true whenever the ordering of
elements 1s called into question.

# ARRAY data items are initialized array element by array
element In order of Increasing indexX where the array elements
are themselves multi=valued, each arrav element is initialized
completely according to the previous rules hefore going on to
the next.,’

Literal wvalues appesring in initial
lists may be expressions computable at
compile time rather than literals.

See! Guide/Apbendlix D.

Additional, more compact initlalization
forms are available 1f only partial
initialization is reguired, or if
subsets of the initial values are
identical,



See: Guides/16.

CHAPTER 5

REPLACE STATEMENTS

HAL/S/V does not contain any form of replace statements.

Reasons: Replace statements 1in HAL/S/V modify the text of the
program, and verification of a program containing & replace statement
is valid only in the context of that particular replace statement.
Any c¢hange in the replace statement amounts to generating a totally
new progran.

5 -\



CHAPTER 6

DATA -REFERENCING AND SUBSCRIPTING

Any appearance of the name of a previously-declared data item in
an executable statement constitutes a reference to its value (and
possibly causes a change in its value).¥ Sometimes it is necessary to
be able to reference elements of arrays, and also to reference parts
of character strings, HAL/S/V has a wide rande of subscript £froms
designed for this purpose,

Two kinds of subscripting are relevant to the data types
described in Section 4.

1. COMPONENT SUBSCRIPTING allows the user to select substrings
from character data items.

2. ARRAY SUBSCRIPTING allows the wuser to select elements or
subsets of elements from arravs of any data type.

Depending on the nature of a particular date item, either or both
Kinds of subscripting may be affixed to it.

6,1 SUBSCRIPTS OF UNARRAYED DATA TYPES

Unarraved data types, i.e. those whose declarations contain no
array specification, may at most possess only component subscripting.
Unarrayed data items of integer, and Boolean types may not possess any
subscripting. Allowable subscripts of the remaining type - CHARACTER
- are described.

- M

* This Section, for convenience, includes appearance causing change in
value under the term "reference", even though this is not the most
usual meaning of the term,

b
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6.1.1 Character
In a character data item, character positions are indexed left to
right starting from 1. In the subscript forms dgiven below, STRING
represents an unarrayed data 1item of character ¢type with current
working length L.¥
¥ To gelect the a-th character from STRING:
STRINGa

1. a is an integer expression .in the range 1 < a < L.

k3

To select a characters from STRING, starting from the b-th:
STRINGa AT b
1. & and b are integer eXpressions.
2. b is in the range 1 < b < L,

3, a is in the range 0 < a < L - b + 1.

¥ To select a substring starting with the a~th character of STRING,
and ending with the b-th:

STRINGa TO b
1. a and b are integer expressions in the range 1 <(a, b)< L.

2. b >/ a.

Examples:

1f C = "ABCDEF’ then:

C5 = ‘E”
C2 AT 2 = 'BC’
C4 70 6 = 'DEF’

b

* In the .case where reference of a subscripted character data type
causes a change 1in Jits value (e.qg. on the left hand side of an
assignment), somewhat different interpretations of the subscript forms
hold true. An account of these is given in Section 8.3.
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6.2 SUBSCRIPTS OF ARRAYED DATA TYPES
Arrayed data types, i,e. those whose declarations contain an
array specification, may possess array subscripting. 1If the data type

is character, then it may, in addition, pPOSsSess component
subscripting.

6.2,1 Array Subscripting Only

Arrays are indexed starting from 1. In the array subscript forms
given below, TABLE represents an array of length L of any data type.

¥ To select the a-th array element from TABLE:
TABLE(a)
1. a is an integer expression in the range 1<=a<= L,

2. The colon is optional if the data type of TABLE is integer,

* To select a sub-array of length a starting from the b-th array
element of TABLE!:

TABLE(a at b)
1. a is an integer literal value in the range 1<= a <= L.
2. b 1is an integer expression in the range 1 <= b <= L = a + 1.

3. The colon is optional if the data tvpe of TABLE is integer,

N

¥ To select a sub-array starting from the a=th array element of TABLE
and ending with the b=th:

TABLE(a to b)

1. a and b are integer literal values in the range
1<=(a, bl<= L.

2, b > a,

3. The colon is optional if the data tvpe of TABLE is integer.

Examples:
if T is a 4-array of booleans with

T2: = .FALSE (unarraved)
T3 TO 4: = (TRUE,TRUE) (still arrayed)



if T is a 4-array of integers with T = (1 2 3 4) then:
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T2 = 2 (unarrayed) } optiocnal colon
T3 T0 4 = (3,4) {still uynarraved) } omitted

if ¢ is a 3-array of characters, With

C = "YES* {selects first array element)
C2 TO 3: = ("NG'", "MAYBE") {still arraved)

6.2.2 Array And Component Subscripting

The following rule shows how array and component subscripting are
juxtaposed if TABLE represents an array of character data type.

TABLE array:component

1. array represents_ array subscripting of any of the forms
previously described.

2. component repregents any form of component subscripting legal

for the data type of TABLE, as described in Section 6.1.

The purpose ¢of the colon now becomes clear: It is required to
distinguish and separate array and ccmponent subscripting.

Examples:
if ¢ is a 3~array of characters, with

c

(*YES® "NO® "MAYBE’) then: -
C

n

'Y* (selects 3rd character from third array element)

Apparently, the colon should be optional
on Boolean data types also. It is not
because the Boolean data type 1is a
degenerate .case of a bit string data
type which may DOSSess component
subscripting.

Seel! Guides17.3.

6.2.3 Component Subscripting Only

When an arraved data item of character type 1s required to bhe
given only component subscripting, array subscripting cannot be
totally ommitted. Rather, it must be replaced by an asterisk. Letmmae—
TABLE represent such a data item; the subscripting form is then
required to be:

TABLE*:component



1.

for the data tvpe of TABLE,

DATA REFERENCING AND SUBSCRIPTING

Examples:

if C is a 3-array of characters with

(*YES’, 'NO", 'MAYBE') then: -

C*Y°, *N°, *M') (makes 3~array from first
each item)

HAL/S/V allows more general forms of
subscript expressions than Jjust those
stated above.
See Spec./5.3

In particular, a symbolic form of
reference to the 1last array or cother
element of a data type is allowed.

See Spec./5.3,2

More complex subscripting forms apply to
multi~dimensional arrays, (See
Guide/18.3); and to the arganization of
data called "structures",

See Guide/19.6

Subscript forms stated to be literals
may in fact be expressions computable at
compile time,

See Guide/Appendix D

component .represents any form of component subscripting legal
as descrivbed in Section 6.1.

Page 6=5
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CHAPTER 7

EXPRESSIONS

Section 6 dealt with the referencing of declared data items. At
this point 1t 1s appropriate to describe how the values of these data
items can be manipulated. 1In HAL/S/V the . construct which specifies
operations on data items is called an "expression®*. In many cases it
is very close iIin form to the generally accepted notion of a
mathematical expression.

Generally, expressions consist of sequences of operations,
possibly parenthesized in places to override the precedence rules of
HAL/&/V, Each operation is comprised of one or two operands and an
operator, The very simplest form of expression is one in which there
are no operations and just one operand, An operand may be a data
item, possibly subscripted, or a built=-in function, or an explicit
conversion functioen. This sectlon begins by describing the legal
HaL/S/V operations, and then continues to show how they are combined
into expressions.

Previous sections of the Guide have divided data items and
literals into three broad classes: arithmetic, character, and
Boolean, It is convenient to divide the operations to be described
into the same three classes, The TYPE of an expressiocn is the tyvpe of
the value resulting from 1its execution, and may, in general, bhe
different from the types of some of its operands,

7.1 ARITHMETIC OPERATIQNS

Ar;thmetic operations are the most numercous of all operations in
the HAL/S/V language. They comprise operations on integer data type.
HAL/S/V recognizes the following operations:

Symbol Purpose

BE exponentiation, positive exponent
(blank)} multiplication

+ addition

- subtraction, negative

NOTE: Since all arithmetic operands will be composed of integer
valued data items, no real division is needed. The function DIV is
the appropriate integer division function.

7-1
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7.1.1 ©Negation

Negation is a binary operation applicable to any arithmetic data
type:

Symbolic form: = R

i. The legal data types for R are given by the following table:

R=type  ——
Integer
Examples:

if I is an integer and I = 5
then ~I = -5 -

7.1.2 Addition And Subtraction

Bddition and subtraction can only take place between integer data
types:

Symbolic form: L + R -

T«1le3 Multiplication

The HAL/S/V language has no explicit symbol for multiplication:
the adjacency of two operands _ signifies this operation.
Multiplication can take place with arithmetic operands of integer
type.

The symbolic form for multiplication is shown as:

Symbolic form: L R

1. At least one blank character must separate the L and R
operands,

7.1.4 Exponentiation
This qperation takes the general symbolic form:
Symbolic form: L %% R
1. This is the one-line format version. In multi-line format

the operator symbol is omitted and R is placed on an exponent
line, R has to be a positive integer. See Section 2.3.
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2. The operand types are:
L ~type R =type
INTEGER INTEGER
3. The L operand is integer and the R operand is a non-negative
integral-valued literal.
Examples:
If I is an integer with I = 5

then *% 2 = 25 (integer result)

7.1.5 ©Note On Precision Conversion

No implicit precision conversion is dllowed in HAL/S/V.
Operations between operands of differing preclision requires the
explicit conversion of all similar precision before the operation |is
performed,

Reasons: Operands of differing precision are essentially of different
type. Implicit precision conversion masks fronk the programmer the
fact that in the conversion process information thsat may be 1leost or
spurious information may be added. Having the programmer perform the
conversion explicitly forces him to recognize this change and possibly
compensate for 1it.

7.2 CHARACTER OPERATIONS

There 1s only one character operation in HAL/S/V: the catenation
of character strings.

Symbol Purpose

11 catenation
CAT

7.2.1 Concatenation

The utility of catenating character strings 1is obvious in the
generation of output listings. Concatenation is guided as follows:

Symbolic form: L | | R
CAT ,

The L and R operands are restricted to character types, with the
following types being legal:
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L =type R =-type
CHARACTER CHARACTER
Examples:

If C is a character item with C = "UNITS’
then *TEN" | { C = 'TEN UNITS’

7.3 BOOLEAN OPERATIONS

Boolean operations are logical (binary) transformations
Boolean operands. HAL/S/V recognizes the following operations:

Symbol Purpose

& logical intersection
AND

] logical disjunction
OR
— logical complement
NOT

7.3.1 Complement

The complement operation complements the logical value o0f
Boolean operand. It takes the following form:

Symbolic form: == R
NOT

1. The R operand is of Boolean type.

Example:

I£f B is Booglean with B = TRUE
then =B = FALSE

7.3.2 Conjunction

The conjunction ¥ operations causes the logical values of
Boolean operands to be OR‘ed together.

<Symbolic form: L | R
* The term conjunction as used here, means disjunction in
terminoleay of logic.

T-4

on

two

the
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OR
1. The.L and R operands are o¢of Boolean type.

2. The truth table for the resulting Boolean is as followss

T=TRUE L
F=FALSE T F
T T T
R
F T F

Examples:
if B is Boolean with B = FALSE

then BB = FALSE -
BITRUE = TRUE

7.3.3 Intersection

The Intersection * oéeration causes the logical values of
Boolean operands to be AND'ed together,

Symbolic form: L & R
AND

1. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean is as follows:

T=TRUE - L

F=FALSE T F

R T T F
F F F

Examples:

If B is Boolean with B = FALSE
then B & TRUE FALSE
B & B FALSE

LR 2 R L T

¥ The term intersection, as used here, actually means conjunction
the language of logic.

iwo

in
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7.4 COMBINING OPERATION AND PRECEDENCE

It is obviously desirable to be able to compbine operations so as
to create expressions of any redquired complexity. In combining
operations, the following information is necessary:

1. The ORDER in which operations are executed (the order of
"precedence®);

2. The WAY in which the precedence order can be overridden.

7.4.1 Arithmetic And Character Precedence

The precedence of HAL/S/V operations on arthmetic and character
data types are shown in the following table:

symbol ’ Precedence Purpose
FIRST
F¥ 1 exponentiation, etc,
{blank) 2 multiplication
+ 6 addition
- 6 subtraction, negation
11, CAT 7 catenation
LAST

Two rules clarify and modify this information:

1. Sequences of operations of the same precedence are evaluated
left to right.,

2. EXCEPT for ** which is evaluated right to left,

T7.4.2 Boolean Precedence

The precedence rules for Boolean operations are stated separately
because there are no implicit conversions causing interaction with
arithmetic and character operations.

Symbol Precedence Purpose
FIRST

~, NGT 1 complement

&, AND 2 intersection

s OR 3 conjunction
LAST

Sequences of operations of the same precedence are evaluated left to
right.

Examples:
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In the following expression, the numbered pointers show the order
of operations:

-B1{B2 & =-B3

P I
1 4 3 2

7.4,3 oQverriding Precedence Order

In BAL/S/V, the order of precedence can be overridden at will by
the use of parentheses, nested to any arbitrary depth.

Examples:
In the following Bgolean expression,
B1IB2 & B3|B4 & BS

| f ! |
2 1 4 3

parentheses may change the precedence order as shown:
(BiiB2) & ((B3IB4) & BS)

} | ! i
1 4 2 3

In the follovwing arthmetic expression,

53/2
i
L3

B — >

parentheses may change the precedence order as shown:

(€81 5232 53)/2

+
I
3 4

)
!
2

= — 3 =+

HAL/S5/V allows the operands in an
expression to be arrayed, causing
parallel evaluation on an
element~by~element basis.

See! Gulders20.1.
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7.5 SOME EXPLICIT CONVERSIONS

As evidenced in Section 7, there are no implicit type conversions
in the HAL/S/V language, However, there is a comprehensive range of
explicit conversiocns, some of which are ncw described,

7.5.1 Precision Conversion
Any arithmetic expression may have 1ts precision explicitly
changed as follows: ’
(expression)
2 DOUBLE
{expression)
2 SINGLE
1. In the first ﬁorm. if expressjon 1is 38 single precision
arithmetic expression, it is converted to double precision.
If it is already double precisicn, the <conversion has no
effect.
2. In the second form, if expression is a double precision
arithmetic expression it {is converted to single precision.
If It is already single precision, the c¢onversion has no
effect,

See Appendix A,

EXamples:

If A and B are single precision, then the result of‘

(A + B} .
@ DOUBLE

is double precision, the type remaining unchanged.

The explicit conversions

commonly
analvsis.

many other explicit conversion

those most
numerical
contains

function forms

described are
requlired for
However, HAL/S/V

corresponding to

conversions between most data types.

See: Guide/s21l.



CHAPTER 8

ASSIGNMENTS

Section 7 described, in detail, the creation of HAL/S/V
expressions used in numerous places in the language, The assignment
statement iIs one such instance in which the value of an expression 1is
assigned to a data iten.

For convenience, an asgignment is classified according to the
type of the receiving data item; that is, the data item being assigned
into.

¥ ARITHMETIC ASSIGNMENTS are assignments to integer data items,

e

CHARACTER ASSIGNMENTS are assignments to character data itens.

BOOLEAN ASSTIGHMENTS are assignments to Boolean data items.

4%

NOTE: HAL/S/V allows no implicit type conversions. Therefore, this
type 1is the same as that of the expression whose value is used in the
operation. ©See Section 8.2.2.

8.1 GENERAL FORM OF ASSIGNMENT
The assignment statement 1s an instance of a HAL/S/V eXecutable
statement. It has a general form applicable to all types of
assignment:
Symbolic Form: L = Ry

1. L is the receiving data item. It may be subscripted or
unsubscripted.

2. Usually, R is ap expression whose resultant valuve is to be

used in the assignment. It may, of course, consist merely of
a single operand.

Additional assignhent rules are applicable which differ according to
assignment type.

gfl
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8.2 ARITHMETIC ASSIGNMENTS

Arithmetic assiognments are those in which the receiving data type
is an integer,

NOTE: Matrix, vector, and scalar data types which are part of the

HAL/S language have been removed from HBL/S/V. B&rithmetic assignment,
therefore, describes a more limited c¢lass of operations in HAL/S/V.

8.2.1 1Integer
The operand type is:
L =type R ~type

Integer Integer

8.2.2 PNote On Precision Conversion

One mey wish to assigp an expression to a data item of differing
precision. HAL/S/V prohibits any such assignment without explicit
conversion according to the rules of Section 7.5.

Example:
I£ 11 and I2 are double precision data items and we wish to add

them in double precision and store the result in a single precision
data item I3, then:

I3 = (I2 + 1)

| @ single
is the appropriate command.
Reasons: One desirable characteristic for any programming language is
consistency. The stipulation that precision converslon in expressions
be explicit suggests a similar stipulation for assignments.

Apart from that, implicit conversion in an assignment statement

sometimes disguises the 1loss of significant digits when assigning a
double precision value to a single precision data itenm, Explicit

conversion forces the programmer Lo recognize this possibility and
perhaps compensate for it.

8.3 CHARACTER ASSIGNMENTS
The receiving data item is character type.

The operand types are:
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L =type R =type
CHARACTER CHARACTER

NOTE: 1In contrast to HAL/S, HAL/S/V reguires that the right hand side
be of type character, Integer values must be explicitly converted to
Character values before they can be assigned to a character data item.
This is in accord with Section 8.2.2.

Examples:

If C is a character with C = *ABCDE’® and C2 is a character,

then

ic2 = ¢ ; results in C2 = ‘C*
i 3

These apparently straightforward rules can become more complex in some
situations.

_Generally, when the receiving data item 1is unsubscripted, its
working length becomes the same as the length of the R~expression.
However, if this would cause the declared maximum length of the
receiving data item to be exceeded, then truncation of the excess from
the right takes place,

Examples:
If C1 18 character of maximum length 10

.C2 is character of maximum length 1,
then

—

C1 = "ABCDE’;

results in C1 = ’ABCDE’ of working length 5 but

I C2 = "ABCDE";

r——

results in C2 = *A* of working length 1

If the receiving data item is subscripted, then this causes an
additional complication. The rules applicable in such a case are as
follows:

Let
STRING
a -
denote a receiving data item of character type:

N is declared maximum length
and

n is working length before assignment
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The range of the subscript expression a is presumed to be in
the range 1~N; otherwise an error results.

The length of the R~expression is adjusted to the length
implied by a, either by truncation of the excess from the
right, or by padding on the right with blanks,

If the range of a lies inside +the range 1-n, then simple
substitution of the character positions implied takes place.

If the range of a lies partly beyond the range 1-n, then the
working length of STRING is increased appropriately.

If the range of a_lies totally bevond the range 1-n, the
working 1length of STRING is increased appropriately, and the
gap between the n-th character and the first position implied
by a (if .any) is f£illed with blanks.

Examples:

Let C1 be character of declared maximum length 10 with value Ci =

*ABCD*

Then by rules 2 and 3:

C1 = "Q0";
i 2 TO 3
results in C1 = rAQQOD’ -
|
i C1 = *1234";
; 2 TO 3
results in C1 = *A1ZD -
I )
I C1 = 'X’";
i 2 TO 3
results in Ci = “AX D' -
By Rules 2 and 4:
|
I Ci = 'QQ°;

| 4 TO 5
results in C1 = “ABCQO’ —
(vorking length increased by 1)
]
- €1 = X0
i 4 TO 5
results in C1 = "ABCX’ -
. {working length increased by 1)

By Rules 2 and 5:

|
| C1 = 'Q0°;
! 5 TD 6
results in Ci = *ABCDQQ’



{(working length increased by 2)
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i
i Ci = 'FGH';
! 7 TO ¢
-results Iin €1 = *ABCRD FGR'
]
] C1 = "FGH':

| 6
results in ¢1 = *ARCD F*

8,4 BUODLEAN ASSIGNMENTS
The receiving data item is of a Boolean type,.
1, The operand types are:
L ~type - R =tvpe
BOOLEAN BOOLEAN

2. The logical balye of the R-expression is transferred to the
receiving data iten,

Example:
If B is Boolean, then

!
i B = FALSE;

results in B = FALSE

8.5 MULTIPLE ASSIGNMENTS

Several data items may ke assligned to the same Re~gxpression in
the same statements. The general form of such & multiple assignment
is as follows:

sSynbolic form: L1, L2; e.. LD = R;

1, The value of the R~expression is assigned to ail L1 ... Ln in
turn.

2. Any L-type must be compatible with the R~type according to
the rules stated jin Sections 8.2 through 8.4.

3. No particular order of assignment is guaranteed.

4, No variable appearing on the left~-hand side of a multiple
assignment may appear on both the main line and the subscript
line, B variable may, however, appear an arbitrary number of
.times on any one line.



ASSIGRMENTS Page B=8&

In HAL/S/V, the receiving data 1item or
items may be arrayed. This can produce
varying effects depending on whether or
not the R=-expression also 1is arraved
{i.e. has arrayed operands).

See: Guides/2¢.3.



CHAPTER 9

CONDITIONAL STATEMENTS AND BRANCHES

Section 9 is primarily concerned with the HAL/S/V conditional
statement by Wwhich other executable statements may be conditionally
executed (or by which their execution may be conditionally avoided)}.
Together with statement groups, which will be described in Section 10,
they form a crucially important part of the HAL/S/V language.

The HAL/S/V langduage encourages programmers to avoid using GO TO
statements to cause branches In execution. Thelr total elimination,
however, 1s not desirable, This Section therefore also describes the
HAL/S/V GO TO statement, and statement labels, which are their
destinations, Statement labels are, in addition, needed for other
constructs f£o be described in Section 190,

9.1 THE CONDITIONAL STATEMENT

In HAL/S/V, the simple version of the conditional statement is an
"IF clause" containing an expression evaluable as either TRUE or
FALSE, followed by a "true part" which is executed only 1f the IF
clause is TRUE. The simple version may be augmented by a "false part"
which is executed only if the IF clause 1is FALSE.

9,1.1 simple IF Statement
The form of the simple version is:

|
i IF exp THEN statement;

1. eXxp is an expression which is evaluable as either TRUE or
FALSE. It may be either a BOOLEAN expression or a relational
expression (these are described in Section 9.2).

2. statement constitutes the truye part of the <conditional
statement, Except as noted in Rule 3 it may be any
executable statement, either simple or compound.

q-\
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3.

Examples:

statement may not be another conditional statement.

statement may not possess & label,

If exp is FALSE, execution proceeds to the next statement,
If TRUE, statement 1s executed first.

NOTE: In contrast to 4., the HAL/S Programmer’s Guide states
that "statement may pPossess & label but cannot be branched to
from outside the IF statement". However, this contradicts
section 9.3 of that document.

|
| IF BIC THEN X = 0;
i Y = 1;

X is set to 0 if either B or C or both is true:

|

} IF BIC THEN DO;
} X X = 1;
i

]

Y Y + 1
END;

The true part is a compound statement containing two
assignments.

t IF B THE IF C THEN D = 0;

Illegal because true part is a conditional statement,
in violation of Rule 3.

9.1.2 Augmented If Statement

When argumented with a false part, the IF statement takes the

form:

| IF exp THEN statement ;
I ELSE else statement

The form of the_ IF clause and true part are the same as .in

the simple conditional statement.

ELSE statement constitutes the FALSE part of the conditional
statement. it may be anv executable statement either simple
or compound.
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3. ELSE statement may not possess a label.

4, 1If exp is FALSE, execution proceeds to the next statement visa
else statement, I£ TRUE, it proceeds to the next statement
via statement.

NOTE: As with the simple IF statement the HAL/S Programmer’s Gulde is
inconsistent on whether the else statement may possess a label,
Number three has been made consistent with Section 9.3 which states
that the "false part" of a conditional may not possess & label.

Examples:

IF BIC THEN X = 07
ELSE X = 1;

X is set to 0 if B or C or both is true, otherwise
X is set to t.

1f BIC THEN DO:

|

}

| X = 1;
| Y = 2;
I END;

| ELSE DO;
] X = 2;
{ Y = 1;
I END;

Here, both true and false parts are compound statements
each containing two assignments each,

IF B THEN X = 03
ELSE IF C THEN X = 1
Y = 27

e ey ——— —

This Is legal: the false part of a conditional statement
may itself be another conditional statement. —_—

9.2 RELATIONAL EXPRESSIONS

As was stated in Section 9.1, there are two valid forms of
expression in an 1IF c¢lause, BOOLEAN, and relational. BOOLEAN
expressions were described in Section 7; relahlonal expressions only
appear in a limited number o¢f HAL/S/V <constructs, amondg them
conditional statements, and are now described.

The simplest form of a relational expression is merely a
comparison between two like gqguantities., The result is either TRUE or
FALSE. MoOre complex formgs ©Of relational expressions result from
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combining comparisons with the BODOLEAN operators &, |, and = .

9,2.1 cComparative Operations

HAL/S/V recognizes the followihg comparative operators:

Symbol Purpose Class
> greater than
< less than
<= less than or egquals
NOT » } not greater than I
] }

= greater than or equals

NOT < } net less than
- }
= equals IT
NOT = } not equals
= }

The operands of comparative operations may, 1In general, be
expressions of any of the types described in Section 7. Depending on
the type ©of operand, the operators may bhe restricted to Class II only,
or may be either Class I or Class II,

CLASS II ONLY

Sympbolic form: L NOT = R

1. The L~type and R~type are both Boolean,

Symbeolic form: L - > R

2. Legal combinations of data types are indicated by the
following table:

L ~type R ~type
CHARACTER CHARACTER

3. For character comparisons, a shorter string is "less" than a
longer one, For strings of equal length, a4 string earlier in
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the collating seguence is "less"™ than one later in the
seguance. ¥

Examples:

I£f T is an integer with I = 5
then I = 5 js TRUE
I < 4 is FALSE
I > 5 is TRUE

If C is a character data item with C = *ABC*
then C = "ABC’ is TRUE
C = 'BCD" is FALSE
C > *AB" is TRUE

9.2.,2 Note On Precision Conversion

Comparisons of operands of different precision is prohibited in
HAL/S/V., Therefore, explicit precision conversion may be required
when both operands are integer,
NOTE: HAL/S/V allows no implicit precision conversions in eXpressions
or assignment statements, To preserve consistency, that prohibition
is extended to comparisons. See Section 7.5 for the explicit
conversions.,
Example:

et X be a single precision data item and v be double precision.

IF Y < X THEN Z2 = 1; is illegal

IF ¥ < (X} @ DOUBLE THEN Z = 1; is legal.

9.2.3 Combining Comparative Operations

Comparative operations may be combined as if they were BOOLEAN
operands, using the rules for Boolean operations described in Section
7. It is important to note however, that comparative operations are
not BOQLEAN operands in the sense that they can be mixed with actuala..
BOOLEAN data items.

¥ BOOLEAN EXPRESSTIONS may contain no comparative operations.

# RELATIONAL EXPRESSIONS may ccntain no Boclean operands,

A e v ey

* The collating sequence is implementation dependent. See appropriate
User’s Manual.
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53

if Ii1 and 12 are integer data items with
I1 = 17 and 12 = 8

and C is character with ¢ = ’'ABC’
then
11
I1

‘A" is TRUE
"A‘ is FALSE

Iz | C1
12 & Cit

fl 0l
Hn

If B8 is Boolean then
B I It = 12 is illegal

9,2.4 Precedence

Th
involve

Symb

NOT >,
NOT <, =<
NQT =, ==

-, NOT
&, AND

I, OR

Example;

* Any operand of this operator must

always be parenthesized.

e following table shows the precedence of operations
d in a relational expression:
ol Precedence Purpose
FIRST
] Operations involving
operands of comparisons
> 2 Comparative operations
3 %
4 Logical operations
on comparisons
5

In the following expression, the numbered pointers show the order

of execution of
IF 81 + S

!
1

operations:

2 (s3 > 0 (54 < 0 S5 0) THEN

]
5

- >
| !
4 3 6

- i
O~ 3
- 3 |
- — 3
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Relational expressions may be arrayved, additional
rules being required to determine if the result
is TRUE or FALSE.
See: Guides/20.4.

9.3 LABELS AND BRANCHES

In HAL/S/V, there are two entities invelved in the branching
operation: a GO TO statepent, which when executed causes the branch;
and a "statement label"” which is the destination o¢f such & branch.
HAL/S/V &also uses statement labels for other purposes, which will
become clear in Section 10, :

%.3.1 Labels

L.abels are names chosen by the programmer and attached to
statements. More than one label may be attached to a statement, The
way of attaching a single label to a3 statement is as follows:

| label : statement
|

1. statement is any executable statement or statement group (see
Section 10), with two exceptions,

2. statement may not be the "true part" or "false part" of a
conditional statement. )

3. label is a user~defined identifier name (see Section 2.2).

Examples:

|
| ONE: X
| TWO: Y

Hu
e
-+
fary
~.

The following are illegal since they violate Rule 2:

0 THEN X = 1;

F X = 0 THEN ONE: Y = 07
LSE TwWO: X = 37

However, the conditional statement itself may be labelled:

i
i THREE: IF X = 0 THEN Y = 1;
i

If more than one label is reguired, then they follow each other
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Example:

|
i ONE: TWO0: THREE: X = X + 1:

9,3.2 Go To Statement

The GO TD statement specifies the 1label to which execution
branches, It takes the form:

|
| GO TG label ;
|

1. label 1is a 1label attached teo some statement to which
execution is to branch.

Examples?

| :
| GO TO ONE;
!

The GO TO statement itself may be labelled:

I :
| TWO: GO TO THREE;

It is important to note that HAL/S/V places relatively severe
restrictions on the placement of GO TO statements and where they may
cause exacutlion to branch to. Section 1.3 described this on the
abstract level, and Section 10 further discusses it in connection with
statement groups.

9.3.3 Eliminating Go To Statements

The Guide has stressed throughout that, according o structured
programming principles, GO TO statements are inherently undesirable
bécause they tend to disguise the program’s flow of execution,

It will be found that HAL/S/V contains a sufficient number of
other constructs to aliow GG TO statements to be substantially
eliminated from a program, The following is an example showing the
elimination of GO TO statements

Examples:
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ALPHA:

BETA:

GAMMA:

This example

{possibly

language).

having

IF X > 1 THEN GO TO ALPHA;
IF ¥ < 1 THEN GO TQO BETA;
Y =Y + 17

GO TO GAMMA;

X =X - 1;

GO TO GAMMA:;

X=X+ 1;

L]
-
-

is ﬁrogrammed in HAL/S/V in the simplest way
been translated from Fortran or an assehbly

The same algorithm is more clearly programmed as folliows!:

IF X
X
ELSE
IF X
X
ELSE
Y

>

H

1 THEN
X = 1:

1 THEN
X+ 1:

Y + 1;
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STATEMENT GROUPS

Section 1.3 of the Guide introduced, on an abstract level, the
idea of ‘“"statement groups", which could be treated as if they were
simple executable statements, and could be nested one 1inside the
other. The power of such a facility can be seen, for example, when it
is used in conjunction with the conditional statement: (this 1is
demonstrated later in Sectlon 10.1),

There is, in fact, a second, egually important reason for
grouping statements in HAL/S/V: the execution ¢f such groups can be
controlled in a variety of ways. If no explicit specification 1s
made, the segquence of statements 15 executed once only. By explicit
specification:

¥ The sequence may be repetitively executed until some conditftion

is satisfied;

¥ A single executable statement (or nest statement group) of the
group, selectable at execution time, may be executed,

Section 10 explaing in detail how statements are grouped, and how
execution control of the groups is specified.

10.1 DELIMITING STATEMENT GROUPS

In HAL/S/V, dgroups of statements are said to be "well~bracketed":
they are delimited explicitly by opening and closing statements which
are themselves considered executable,.

10.1.1 The Do Statement

Every statement group is opened with a "DO" statement which 1is
also used to specilfy contrel of execution within the group. It takes
the generic form:

|
[ DO control ;

f
1o-1
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1, control is a construct to be described, It specifies the
manner in which the seguence of statements is to be eyxecuted.

2. Control is optional. If it 1is absent, the sequence of
staftements within the group 1is executed in order onhce only,

3. The DO statement is executable in that it may be labelled
according to the Rules of Section 9.

The particular instances of DO statements will be explained in
Section 10.2

10.1.,2 The End Statement

Every statement group is closed with an END statement:

1. The END statement is executable in that it may be labelled
according to the Rules of Section 9.

2. label is optional: if present, the opening DO statement of
the group must be labelled with label.

The label specification in an END statement is never functionally
necessary in HAL/S/V. However, 1t should be regarded as good
programming practice becauyse it facilitates <c¢ross-checking by the
compiler,

Examples:
(Two instances of statement groups are shown below. Even though

details o©of execution control have not yet been explained, the form of
the construct should be clear.)

[ DO WHILE I > 0} } opening DO statement

| I=1-=-1; }

| A = 03 } group of statements

| S I }

| END; } closing END statement
] FiX: DG FOR I = 1 TO 10;

] A = =A } one statement in group
I 8 I I }

| END FIX; } label specification in

END matches label of DD

The following examples show the importance of being able to group
statements together for wuse 1n conjunction with a conditional
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F 85 = 0 THEN I = 27
= ‘RESET VALUE OF I TO*

« & s Y

It is requireda to conditionally execyte both assignments: one

Solution might be

IF 8§ = = 0 THEN GO TD NOSET:

I = 2;

C = 'RESET VALUE OF I TO
NOSET:

This solution 1s error prone and not In accordance with structured
programming concepts: a better solution would be -

IF S = 0 THEN DO;
I = 2;
C = ’RESET VALUE OF I TQ *;

71
=
e}
~e

The whole of the group enclosed by DO ... END is subject to
conditional execution.

10.2 REPETITIVE EXECUTION OF STATEMENT GRQUPS

The segquence of statements in a group can be executed
repetitively until some condition is satisfied. In this section, two
pasic forms of DO  statement causing repetitive executlon are
described:

* The DO WHILE statemenf, in which execution is
repeated while a relational or boolean expression
remains true in value;

3

The DO FOR statement, in which the sequence is
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of a "control variable". )
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10.2.1 The Do While Statement
The form of the DO WHILE statement is:
i
i. DO WHILE condition;
|
1. condition is anvy relational or BOOLEAN expression. it is
evaluated prior to each cycle of executlion of the statement

seguence in the group.

2. The next cycle of execution of the group proceeds if the
value of condition is TRUE.

3. If the value of condition is FALSE, the stopping condition is

satisfied, Execution proceeds to the statement following the
END statement of the droup.

Examples:

|

{ I = 9;

] DO WHILE I ->» 0
i I =1I+-2;

| END;

Here the group is executed five times, after which the value of 1 is
~-1. T

It is possible for a group never to be eXecuted:
DO WHILE FALSE;

I =1+«2;
END;

It is also possible for a group to be executed forever:

I =0

DO WHILE TRUE;
I =1 - 2;

END;

L4

Normally in this case, the programmer would insert statements in the
group removing this possibility:

f
| I = 9;
| DO WHILE TRUE;



: I =1+ 27
| IF 1 < 0 THEN GO TO ALL.DONE;
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END;

If the keyword UNTIL is substituted for the keyword WHILE, then the

droup is

always exXecuted at least once, After the first cvycle, the

relational or Boolean expression is evaluated at the beginning of each

cycle as
inverted:

in the DO WHILE, -except that the logic of the test is
cycles of execution continue until the result of the

expression becomes TRUE, e

Example:

I I =0;

| DO UNTIL I <= 07
| I =1-~-1;

| END;

E

!

The group is executed once, and the final value of I is -1.

106,2.2 The Do For Statement

The

most widely used form of the DO FOR statement is:

]
| DO FOR var = initial TO final BY increment;
|

var is an unarraved and unsubscripted INTEGER dats item. It
is called the '“control variable" of the DO FOR statement.

initial and final are integer expressions: initial 1is the
initial wvalue asigned to vary; final is the value agalnst
which var is tested at the start of every cycle to determine
if the stopping condition is satisfied.

increment is the amount by which var 1is incremented on
each cvcle of eyecution of the sequence of statements iIn the
group,

All three expressions are evaluated once prior to the

first cycle of execution,

The stopping condition is met when the value of var Lies
outside the randge bounded by initial and final.

increment may be either +1 or =1.. The phrase:
BY increment r

L

is optional. 1If omitted, the implied increment is +1.
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5. At the end of the final cycle var has the value it received
after that cycle, Y m———

NOTE: Since HAL/S/V has no scalar data type, initial and £inal must
be integer eXpressions and var is INTEGER variable.

The increment may be only +1 or ~i, This simplifies loop
assertions wlthout restricting the programmer sidgnificantly, Finally,
the addition of 5 simply makes explicit the value of the control
variable upon leaving the loop. Though it is bad Programming practice
to do so, no language yregquirement prohibits the programimmer £rom
subsequently using the control variable for other purposes. In such a
case it is desirable for program verification that its value be
determinate,

Exanples:

DO FOR I = 1 TQ 107
X = I;
5 I
END;

Here the group is executed 10
times, I is Initialiy 1, and
increments each time untili 10
1s reached. At the end of
execution of the dgroup, the
valye of I 1is 11,

I =17;

DG FOR I = I
X=X 4+ 17

END;

+5T01 - 3 BY ~1;

—— e b da m— a—

This eyxample demonstrates some
of the subtleties of the DO
FOR statement, The 1initial
and £inal values are
precomputed as 12 and 4
respectively. Then 1 is
reused as the control
variable: the group is
executed 9 times, and after
the last cycle of execution, I
retains the value 3.

This DO FOR statement may
possess a WHILE or UNTIL

clause which furnishes a
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_supplementary stopping
condition.,
See: 8pec./T7.6.5,.

NOTE: A second form of DO .FOR statement is allowed in HAL/S which is
not permitted in HAL/S/V: that 1s, one In which the values 0f the
control variable do not form & regular vprogression and are listed
explicitly.

REASONS: This second form of the DO FOR statement dees not in general
permit specification of & loop invariant in any clear way. This is
because the values assumed by var may be such that one execution of
the loop is related to the next execution in a very tenuous way if at
all. Also, since var assumes the immediately prior te the c¢ycle of
execution 1in which they are used., The behavior of any loop execution
may be dependent upon prior executions of the 1loop 1in very huclear
wavys.

10,3 SELECTIVE EXECUTION OF STATEMENT GROUPS

One stateiment of a group may be selected for execution by means
0of the DO CASE statement. The form 0f the DO CASE statement is:

i
i DO CASE exp
i
1. exp is an integer expression.

2. If its value is k then the kth statement of the group is
selected for execution,

3. A run time error results if kK < ¢
or k is greater than the number of
statements in the group.
The flexibility of a DO CASE statement lies in that the
selected statement may be a compound statement (i.e, it may

itself be a statement groupl.

Example:
I = 3;
DO CASE I:
X = 4; -case 1
X = 3; case 2
po;
case 3

ra >
0o
LFV L |
g Wa
e

2!
=
Lw)



X =1 case 4
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X = 0; case 5
END;

Execution results 1in the third statement being scheduled for
execution, and the following values being set:

X.=7’Y=3 - _

An ELSE clause may be added to
the DO CASE statement which is
executed instead 0of an error
heing signalled, if the value
of the case variable is
outside the legal range for
the statement group.

See: Spec./7.6.2.

10.4 BRANCHING IN STATEMENT GROUPS

Execution may branch out of any statement group via a GO TO
statement. In those cases where the group 1s being repetitively
executed, executlicnh obviously ceases before the stopping criterion is
satisfied. Because GO TO statements are viewed unfavorably from the
standpoint 0f structured programming, HAL/S/V possesses two statements
expressly for executing controlled branches in statement droups,.

The EXIT statement 1is, in
effect, a controlled branch
out of a8 statement group.

The _REPEAT statement only
applies 0 statement dgroups
executed repetitively, and is
a controlled branch back to
the beginning of the group.

16.4.1 The Exit Statement

The simplest form of the EXIT statement is:

1. Its execution causes an immediate branch
cut of the innermost statement group in
which it is enclosed.

2. Execution 1is directed to the first
statement following the END of the group
branched out of.
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Examples:

]

} DO

} X = 1;

; Y = 2;

f IF X = 3 THEN EXIT} ~==v=me==~-
] Z = 4; I
| END;: i
I X = X + lj<mommmmonmm—- ——————
|

Arrow shows branch ¥In execution if 2 ~&=\& 3

DO WHILE X > 0y

i

|

i X=X~ 1;

i IF X > 2 THEN DO;

i IF ¥ = 3 THEN EXIT}=wrme~=
{ Yy =Yy + 1 i
i END; |
| ENDj<~wmmw e e R e —————
]

Arrow shows branch iIn execution if
Y = 3: execution branches to the end, but -not out
¢of DO WHILE groupe—-.

There exists a second form of the EXIT statement
to allow branches out of other than the innermost
statement group?

|
i EXIT 1label ;
|

1. 1Its execution causes a branch out of the
enclosing statement group whose DO
statement possegsses the label label.

2. Execution 1is directed to the  first
statement after the END o©0f the group
branched out of.

Example:

ONE: DO WHILE X > 07

X=X = 17

DO FOR I = 1 T0 1065
A=A+ X7
IF X I THEN EXIT QONE;

m
=
L
Al
]
]
[}
i
]
1
¥

0 THEN EXIT: ==-

W N pen HE wm w5 SE W e WP W W B

Page 10=9
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The first EXIT statement causes a branch out of
the outer group rather than the inner, by virtue
of its label.

1¢.4.2 The Repeat Statement
The simplest form of the REPEAT statement is:
i

| REPEAT;
!

1. It must be enclosed in a DO FOR or DO WHILE group.

2. 1tg execution causes an immediate branch to the beginning of
the innermost enclosing DO FOR or DO WHILE group. e e

3. The next cycle of execution of the group then starts (unless
of course the stopping condition is satisfled).

Examples:

DO WHILE X > 07

i

|

i X = X - 1

| IF X = 4 THEN DOy

| Y =Y + X;

| IF Y = 1 THEN REPEAT;
] END;

| END;

I£f Y = 1 then a branch back to
the beginning of the DO WHILE
is made, ©Note that although
the DO WHILE is not the
innermost group, it 1is the
innermost repetitive group.

X = 4;
DO WHILE X » 1!
X =% = 1; .
IF ¥ = 1 THEN REPEAT;
Y = X
s X
END;

e — g e —— et

When X = 2 the REPEAT branch
is executed: a new cycle of
execution does not begin
however, because the ipitial
test shows that the stopping



condition is satisfied.
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As with the EXIT statement, there exists a second form of the repeat
statement a&llowihg branches back to the bedinning of other than the
innermost DO WHILE or DO FOR GroUP ! eme—meeem—

E
t REPEAT label ?
f

l. Its execution causes an immediate branch to the beginning of
the enclosing DO FOR

or DO WHILE group whose DO statement possesses the label
label,

2. The next cycle of“execution of the group then starts (unless
the stopping conditicon is satisfied).

EXxample:

ONE: DO FOR I = 1 TO 107

J = I}
DO WHILE J > 0;
J=4J - 1;
X=X + J;
S J J
IF X = 25 THEN REPEAT;
5 J

IF X = 0 THEN REPEAT ONE;

in
[

The second REPEAT statement restarts the outer DO FOR group rather
than the inner DO WHILE by wirtue of its label.



CHAPTER 11

PROCEDURES AND FUNCTIONS

Section 1.2 of the (¢guide introduced the block structure of
HAL/S/V programs on the abstract level, To summarize, any program can
contain nested procedure and function blocks, which are two levels of
"subroutines" characterized by the segquence:

invocation =<> execution ==> return to caller

The invocation of procedures and functions is governed by well-defined
name scopling rules.

This section explains how, in practice, procedure and function

blocks are defined in HAL/S/V, and describes how they are invoked
returned fron,

11.1 INTRODUCTION

A procedure is a subroutine block invoked by a .CALL statement,
It may have two kinds of parameters:

¥ INPUT PARAMETERS = by which values may be passed
into a preocedure only.

3

ASSIGN PARAMETERS =~ by which values may be passed
inte and out of .a procedure.

A function is a subroutine block invoked by the appearance of its
name in an expression. It refurns a value and therefore has a defined
HAL/S/V data type. It may possess input parameters only.

11.t1.1 Relative Position Dé Block Definitions

Section 1,2 described the scoping rules which determine the
regions of @& program where any dgiven procedure or function block may
be invoked.

An important consequence of these rules is that a procedure
iInvocation may elither follow or precede 1its Dblock definition.

n-1



However, for other reasons, the invocation of & function block should
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always follow its block definition.

A number of rules restrict the
kind o¢f function which may be
invoked preceding its block
definition,

See; Spec./9

11.2 BLOCK DEFINITIOWNS

Procedure and function block definitions have forms very similar
to the form of a program block, which was described in Section 3. The
first statement is one defining the name and tvpe of block, and
listing its parameters., The last statement 15 a statement closing the
block.

11,2.1 Procedure Opening
The statement opening block takes the form:

1
|label: PROCEDURE (11,i2,...) ASSIGN (al,a2,...);
i

1. label is any legal identifier name, and constitutes the name
0f the procedure.

2. 11, i2,... are Jlegal identifier names defining input
parameters. If the entire parenthesized list 1s omitted,
then the procedure has no input parameters. )

3. al,aZ;e.. are legal identifier names defining assign
parameters. If the entire parenthesized list and the keyword

ASSIGN are omitted, then the procedure has no assign
parameters.

11,.2.2 Function Opening

The statement opening a function block takes the form;

|
|
| label: FUNCTION (ii1,i2,...) attributes:

1. 1label is any legal identifiler name, and constitutes the name
of the function.

2. 11,i2,... are legal identifier names defining input



parameters. If the entire parenthesized 1list is omitted,
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then the function 'has no input parameters,

3. attributes defines the type of attributes and, where
applicable, precjsion and size., The form specification is
the same as used in data declarations {(see Section 4.2).

NOTE: 1In contrast to HAL/S, there is no default type for Functions.
This 1s because the HAL/S default type, scalar, is not legal in
HAL/S/V.

Also, it is good programming practice to make explicit the type
of value being returned, Pparticularly in 1light of the HAL/S/V
prohibition of implicit conversion between data types, which requires
a function RETURN value to be of the same typeé as the function,

i1.2.3 Block Closing
Both procedure and function blocks are closed with the statement!?

f
i CLOSE label;
]

1., The identifier label is optional;

2. If supplied, it must be the name ¢of the procedure or functicn
block,

11.3 DECLARATION OF PARAMETERS AND LOCAL DATA

Procedures and functions commonly reguire the use of
locally=~defined data. As with programe=level data, a&ll data names must
be declared before use: by means ©f declaration statements. in
addition, all 1input and assign parameters must appear 1Iin local
declaration statements.

Data and parameter declarations must be placed after the
procedure or function opening statement, and before the first
executable statement, It is good practice, &and mandatory in some
inplementations¥, to place parameter declarations before local data
declaratjions. The forms of local data and parameter declarations are
identical, and are as described in Section 4.

b

* See the User’s ﬁanual for any given implementation.
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Examples:
General positioning =-

| ONE: PROCEDURE (ARGl) ASSIGN (ARG2)
{PARAMETER DECLARATIONS}
{LOCAL, DATA DECLARATIONS}
{EXECUTIVE STATEMENTS}
Particular instance =

ONE: PROCEDURE (ARG1) ASSIGN (ARG2);
DECLARE ARG1 INTEGER;

~=parameters
DECLARE ARG2 ARRAY(100) INTEGER DOUBLE;!}
DECLARE TEMP INTEGER: }==local

-

!
i
}
[
i
data
I
i
z - _
I CLOSE ONE;
|

11,3.1 Character Parameter Declarations

Parameters of character type may be declared Lo possess an
indefinite magximum length which is bounded by 255,% By this means
problems of truncation of character data during argument passage c¢an -
be avoided. ’

The basic form of declaration is:
DECLARE name CHARACTER (%);

1. The asteriskK denotes an indefinite maximum lendgth.

Example:

ONE: PROCEDURE(A):;
DECLARE A CHARACTER(x};

.

——————

-

LE L X E 2 F)

* This value may be implementation dependent. <Consult wuser’s manual
for any given implementation.
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11.4 FUNCTION INVOCATIONS

A function iIs invoked by the appearance of its name as an operand
in an expression. TIf the function is defined with input parameters, a
list of arguments to be passed must follow the appearance of the name.
The precise form of invocation is:

label(il,12,.0.)
1. label is the defined name of the function.

2., 1i,i2,... 1is a list of arguments, which must correspond in
number with the parameters of the function invoked. FEach
argument is a HAL/S/V expression,

3, If the function has no parameters, then the entire
parenthesized argument list must be absent.

NOTE: Since no implicit type or precisjion conversions are allowed in
HAL/S/V the actual parameters must match the formal parameters exactly
in type and precision.

The transmission of the argument list during function invocation
may be viewed as the assignment of the value of each expression in
turn to its corresponding 1input parameter (although in any given
implementation this may not actually be the mechanism of transmittal).

11.4.1 Inteder Parameter

1. The corresponding argument must be of integer type.

2. Explicit precision conversion is necessary 1f the precision
of the formal parameter varies from that of the actual
parameter.

11.4.2 Character Parameter
1. The corresponding argument must be character type.

Generally, the working length of the parameter becomes equal to
the length o0f the expression (after conversion, where applicable).
However, if this would cause the declarsd maximum length of the
parameter to be exceeded, truncation of the excess from the right
takes place,
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11.4,3 Boolean Parameter

1. The corresponding argument must be of Boolean type.

11.4,4 Note {In Function Restrictions In HAL/S/V

The mathematical notion of a function specifies that every
invocation o¢of a given function with a given set of arguments should
return the same value, For verification purposes it is desirable that
the programming landuage concept of function have a similar attribute.
One feature of HAL/5/V which helps ensure this is the requirement that
ne function can access non=local data except that which is explicitly
passed in the input argument list.

Since any function has only input parameters and not assign
parameters this implies that functions have no side effects, a
desirable result for verlficatlon purposes, To enforce this,
additional restrictions must be placed on procedures that can be
called inside a function block. These additional restrictions are
noted in Section 11.5.1.

In particular, problems can arise if a function <¢alls some
procedure or function which returns time dependant results. For
example, if a call is made within the function body toc CLOCK, DATE, or
RANDOM functions, then the function could return different vealues for
the same input parameters. '

Example:

Fi: FUNCTION (X) INTEGER;
DECLARE X INTEGER;

RETURN CLOCK;
CLOSE Fy;

—— T e —— —— i — A

Then F{X1,)} ne F(X2) even if X1 = X2.

In order to ensure the censistency of user defined functions,
HAL/S/V rTestricts the use of system functions® such as RUNTIME, DATE,
PRIO, teo the outermost block of the program or the taskK. Therefore, a
function or procedure in its body, will never use a system function
returning time dependent results. In case an integer valued random
number generator is defined, a similar restriction would apply.
¥ The use of "function" in this context is misleading. Rather these
can be thought of as system co-routines accessing variables which are
continually updated.
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Arguments may possess
ArTavYnNess. The effects of
this depend onh whether or not
the corresponding parameter is
declared to be an array.

See:; Guide/20.5

11.5 PROCEDURE INVOCATIONS

A procedure is invoked by the use of a CALL statement, which may
in the case of a procedure with parameters, also specify the arguments
to be passed. The precise form of invocation is:

I
i CALL label (il,i2,...) ASSIGN(ai,s2,...);
!

1. 1label is the defined name of the procedure.

2. i1,i2,... is a list of input arguments which must correspond
in number with the input parameters of the procedure invoked.
Each input argument is a HAL/S/V expression.

3, If the procedure has no input parameters, then the entire
parenthesized argument list must be absent,

4, al,a2,..» is a 1list of assign arguments which must
correspond iIn number with the assign parameters of the
procedure invoked, Each argument must be a HAL/S/V data
item.,*

5. 1If the procedure has no assign parameters, then the entire
parenthesized 1list of assign arguments, and the ASSIGN key-
word, must be absent.

. 6. The input and assign parameter lists must be disjoint, also,
ne more than one part of any structured object may appear in
the list of assign arguments and no part of a structured
object may appear in the input list if any part appears in
the assign list,

The transmission of the input argument 1list during procedure
invocation is identical in nature to function argument list
transmission. The related rules are given in Section 11.4.

The transmlission of the assign argument 1list follows stricter
rules since values are passed both inte and out of a procedure by this
mechanism.

¥ 0Or an assign parameter, if the iInvocation is nested within a
procedure block.
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NOTE: By the HAL/S/V scoping requirements outlined in Section 1.2, no
changes can be made in any variable in any enclosing block unless that
variable is explicitly passed as an assign paramnieter, This prevents a
problem of aliasing which could occur in PASCAL, for instance, when an
argument to a procedure is identical to a global variable referenced
by the procedure.

11.5.1 Assign Arguments

1. An assidgn argument must be a deciared HAL/S/V data item.¥%

2., BAn assign argument must match the corresponding assign
parameter in type and precision.

3. No structure may have more than one component appear in the
assign argument list.

4, No assign argument may be an input argument of any enclosing
function or vprocedure block or any part of a structured
object which is an input argument to an encleosing function or
procedure block.

Reasons: One should be able fo assert of any procedure that the input._-
parameters are unchanged after the procedure execytion. This is not
the case if arguments are allowed to appear both as input parameters
and as assign parameters. Moreover, whether the value 0of an input
parameter remains constant throughout the procedure execution beconmes
dependent upon whether input parameter passing is implemented by a
read only reference to a variable or by copying into local storage
hence, the truth value of certain assertions becomes implementation
dependant.

The requirement that several components of structured objects not
appear prevents the possibility of aliasing. For instance, let A be
an array of integers and EXAMPLE be a procedure of one input and two
assign parameters. Then the procedure call

CALL EXAMPLE (A ) ASSIGN (A ,B)
5 I J

— e i

strictly violates the rule that the parameter lists be disjoint only
if I = J. 'However, which assertions one can make about the procedure
become dependant upon the eguality or non-equality at call time of
variables. external to the program in a way that is not readily
apparent. Hence such a c¢all is disallowed in the verifiable subset.
Consider the following call:

|
| CALL EXAMPLE (B) ASSIGN (A ,A )
IS I J
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This is also disallowed. If I = J at c¢call time aliasing occurs,
Apart from the general undesirability of aliasing, any assertions made
about EXAMPLE would require that the case where I = J be explicitly
treated, But no feature in the procedure definition would indicate
this since the formal parametsrs are all distinct.

Finally, an assign argument should not be an input argument of
any enclosing block because this violates our earlier requirement that
input parameters not be changed by brocedure execution. Moreover, it
allows functions to have side effects by calling procedures whose side
effects are not confined to variables local to the function block.

Both input and assiagn
arguments may possess
arrayness, Iin which case the
corresponding parameters must
have an array declaration.
Seer Guide/s20,5.

11.6 RETURNS FROM PROCEDURES AND FUNCTIONS

When execution reaches the CLOSE statement of a procedure block,
an automatic return to caller takes place. However, if execution
reaches the CLOSE statement of a function block, a run L[ime error
results since the function has no value to return to the caller,
Hence a function block needs an explicit RETURN statement to cause the
return to take place. In addition, if returns are required from parts
of the code in a preocedure bleock other than at the CLOSE, an explicit
RETURN statement i1s required,

11.6.1 Procedure Return
The RETURN statement of & procedure takes the form:

f
I RETURN;
;

Example:

CHOICE: PROCEDURE (FLAG) ASSIGN (DIR):
DECLARE FLAG BOOLEAN:
DECLARE DIR INTEGER:
IF FLAG THEN RETURN;
DIR = 1;
CLOSE:;

bt — et — —

If FLAG = TRUE then procedure
merely returns execution at
RETURN, If FLAG = FALSE then
PIR is set equal ¢to 1, and
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procedure returns execution at
CLOSE,

11.6.2 Function Return
The RETURN statement of a function takes the form:

l ]
} RETURN exp
|

1. The resultant value of the eXpression exp 18 returned when
the function returns to its caller.

NOTE: The type and pregision of exp must match exactly the declared
tvpe and precision of the £function. This 1is in accord with the
HAL/S/V prohibition of implicit conversions.

The return of an expression by a function is similar in.nature fo
Lhe transmission of an Iinput argument of & function to the
corresponding parameter, the functlion itself plaving the role of
parameter.

Note that since a function block may not be defined with an array
specification, no function may return an array resulf.



CHAPTER 12

INPUT/QUTPUT STATEMENTS

HAL/&/V incorporates entirely the Input/Dutput mechanisms of
HAL/S, Therefore, Chapter 12 o¢£f this document is omitted, being
identical to Chapter 12 of the HAL/S Programmer‘s Guide.



CHAPTER 13

REAL TIME PROGRAMMING = I

S50 far the Guide has made no reference to the dynamic properties
of HAL/S/V programs. Clearly, any program wWill fake a finite time %o
execute but none of the constructs hitherto describeéd depend on any
sense of time for their operation.

HoweveY, the HAL/S/V language deoes contain constructs which
depend on a sense of time for thelr operation., This is what is meant
by the statement that HAL/S/V programs is a "real time programming
language®, In other words, HAL/S/V programs can be written which,
when executed, cause operations to be carried out at desired points or
during desired intervals in "real time",

In some implementations of HAL/S/V, "real time" may be just what
the phrase implies, real clock time. 1In others, the "real time" may
be simulated in some way by the operating environment of a HAL/S/V
program: in this case, it can be referred to as "pseudo=real time",

Thisg section of the Guide explains the basic HAL/S/V concepts of
real time programming, and describes some of the more elementary real
time programming language forms,

13.1 HAL/S/V REAL TIME CONCEPTS

The true HAL/S/V concept of a program at run time is an entity
executing .over some interval in "real time", directed and controlled
by a Real Time Executive (RTE). At the outset, the RTE begins
execytion of the program. When program execution 1is completed,
c¢ontrol is returned to the RTE. In HAL/S/V terminology, the dynamic
counterpart of the static program block which is executing under RTE
control, is called a "real time process',

13.1i.1 Multi=-Processing In HAL/S/V

Multi-processing is the simultaneous handling of more than one
"real time process",., With most present-~day machines, "simultaneous"
really means interleaved, because most machines can at one time only
support the execution of a single machine IiInstruction sequence.
However, this distinction has no significance at the higher level of

13-1
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the HAL/S/V language.

NOTE: This 1s not strictly true, A priority driven scheme c¢an have
very different results on an ac¢tual npulti-processing system If
processes update shared data items.

The RTE of HAL/S/V can simultaneously handle an arbitrary¥ number
Of processes created by the user. A number i1s attached by the user to
each process, called its Y"priority". The RTE maintains processes in a
"process gqueue" ordered by priority, and alwavs endeavors to execute
the processes in order of priority, highest first.

The HAL/S/V program itself, beginning execution under the RTE,
constitutes the first or "primal process"., All other processes are
brought into existence by the execution of SCHEDULE statements coded
into the program, Just as fthe primal process has a static
counterpart, which Is the program block coded by the user, so must the
other processes have their static counterparts. These are so-called
task blocks, which are coded inside the program block in a very
simlilar way to procedure blocks. FEach time a task block is invoked by
execution of a SCHEDULE statement, & new process .is created and queued
by the RTE,

13,1.2 States Of A Process

It is now possible to repreéesent the behavior of the RTE by a more
formal description of the possible states¥¥ in which a process can
exXist, This in turn will introduce other HAL/S/V constructs for
controlling the activities of the RTE. A process can be in either of
the following two major states at a given time:

* ACTIVE STATE: a process is in
an active state when it exists
in the RTE’s process gueue,
The state acutally comprises
three substates or minor
states in any one of which an
active process may he at a
given time.

* INACTIVE STATE: a process 1s

defined for completeness as

being in the inactive state 1if

it does not eXxist In the
¥ See the User’s Manual for the maximum number supported in anvy given
implementation.
*% The states to be defined do not correspond one-to-~one with the RTE
states described 1in the Language Specification document. The latter
are defined for the convenience of the formal description of language
constructs., The former are defined with user convenience in mind,
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process queue,
The minor states of an active process are as follows:!

EXECUTING: an active process
is Texecuting" when it has
actually been put into
execution by the RTE,
operating on the priority
principle already described,
The number of processes Which
can be in this state
simultaneously is
implementation dependent.¥%%
READY: an active process 1is
"ready" 1f it is available for
execution, but higher priority
processes in execution are
currently barring it. The
occurrence of & process first
entering the ready state will
be called its "initiation".

WAITING: an active process is
"waiting® if it is neither
ready nor executing, Some
condition set up by the user
prevents it being available
for execution by the RTE.

When a process is created by inveoking a task block by & SCHEDULE
statement it makes a transition from the inactive state to an active
state., It is entered into the process queuye in either the ready or
the waiting state, depending on the form of the SCHEDULE statement,
If it is entered in the ready state, then depending on its priority,
it may immediately be elevated to the executing state.

A process 1s caused to make a transition from an actlive state to
the inactive state (or removed from the process queue) by a TERMINATE
statement. The process is said to have been "terminated",

A process may be forced inte the waiting state by execution of a
WAIT statement.

NOTE: In HAL/S the priority of an active process can be changed by an
UPDATE PRIORITY statement. This facilitvy has been removed fronm
HAL/S/V,

The statements outlined above are among the real time programming
language forms to be described later in this section,

%% Tn most implementations it is likely to be 1, but see the User’'s

Manual for 2 given implementation.
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13.1.3 Process Swapping & Breakpoints

A process swap is a pair of state transitions in which one
process leaves the executing state, and secend enters it from the
ready state. The process sWap may occur bhecause the first process has
been forced into the inactive state or the waiting state, or because
the second process has a higher priority than the first,

The HAL/S/V language itself makes no assumptions on where process
swapping <¢an occur. However, most implementations, depending on the

object machine characteristics, limit process swapping to given places
in the HAL/S/V code seguences under eXxXecution by the RTE. These
places are called "breakpoints®. The determination of breakpoints 1is
a function of the HAL/S/V compiler for a gilven implementation, and no
language construct exists to modify their existencex,

The effect of breakpoints 1is to superimpese a kind of time
granularity on the operation of the RTE.

13.1.4 Ppriority Scales

The number speclfyving the priority P of a process is an integer
in the range:

0 < P < 258%%
The primal process is assigned a priority of 50%%¥ by the RTE on
beginning execution,

NOTE: Because of a restriction to be discussed subsequently (Section
13.4.1) the priorities which can be assigned to a process in HAL/S/V
are less than or equal to 50,

13,1.5 Process Dependency

Suppose that there are two processes, A and B, and that A creates
process B during the course of 1its execution. At the time of
creation, B may be specified to be either "dependent" on or
"independent"of A, If B is dependent, it means that it depends for
its existence on the existence of A, If B is independent, then A may
cease to exist without affecting B’s existence.

¥ As an example, in the HAL/S/V=360 implementation, breakpoints occur
at the end of every executable statement,

*¥ These values are, however, implementation dependent. See
appropriate User's Manual.
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However, an overriding rule is that all other processes are
always dependent on the primal process for thelr existenceiemwm——o

The conseguences of dependency will be seen when the flow of
execution through program and task blocks is described in Section
13.3, and again when the TERMINATE statement in introduced in Section
13.5.,.

13.2 TASK BLOCK DEFINITIDNS

A task block is a static block of code interior to a program,
from whence processes can be created by means of the SCHEDULE
statement, Task blocks mav only be defined at the program level, and

nct nested inside procedure or function blocks or other task blockS..-

defined in & program.

Task bloc¢k definitions are similar to progralm block definitions
as descgribed in Section 3, and have similar opening and closing
statements.

13.2.1 Relative Position 0Of Task Definitions

Statements invoking a task block should always follow 1its block
definition.

NOTE: 1In a language such as PASCAL which allows two processes to call
each other, this 1s not always possible and necessitates some
mechanism for forward referencing. But HAL/S/V specifically disallows
this and all other forms of recursicn. Hence, no forward referencing
of functions and procedures is necessary or allowved.

13,2.2 Task Opening
The statement opening a task block takes the form:
i
| label:TASK:
|

1., label is any legal identifier name, and constitutes the name
of the task block.

13.2,3 Task Closing
The statement c¢losing a task block takes the form:

i
i CLOSE label;
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i
1., The identifier label is optional.

2. If supplied, it must be the name of the task block,.

Example:

DISPLAY:TASK;

| !

! | task body
f I

i !

T e Mir A T o Mg RS W YW

CLOSE DISPLAY;

13.2.4 Local Data Declarations

Local data can be declared in & task block in exactly the same
way 4as it 1is declared in a procedure or fupction block, The
declarations appear after the task opening statement, and before the
first executable statement of the bplock. The forms o¢f the
declarations have been described in Section 4.
Examples:

General Positioning =
I DISPLAY: TASK:

I
i | local data declarations
]

I
f ] executable statements
i

CLOSE DISPLAY;
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Particular Instance -

DISPLAY: TASK;
DECLARE S CHARACTER(1Q),}m===~=~ local data
I INTEGER;

CLOSE DISPLAY;

A AL bt e i m o p— ——

13.3 FLOW OF EXECUTION IN PROGRAM AND TASK BLOCKS

The flow of execution through program and task blocks is subject
to a new interpretation, based on the concepts of real time
programming introduced in this section, Programs and tasks are
treated together since their representations at run time are in both
cases real time processes.

Execution of a process begins with the first executable statement
in the corresponding static program or task block. It continues, and
if not terminated by some other process, ends in one of the following
wayss

1. by execution of a TERMINATE statement terminating itself;
2. by reaching the CLOSE statement of the block;

3, by execution of a RETURN statement in the block;

If execution ends by self~termination, the process goes into the
inactive sgstate and is removed from the process gueue., All dependents
of the process are treated likewise. This 1is subject to certain
restrictions described in Section 13.5.

If execution ends on a CLOSE or RETURN statement, the process
goes intc the inactive state directly only 1f it has no dependents,
Otherwise, 1t goes into & waiting state until the dependents have 1iIn
their turn terminated. ’

13.3.1 Form 0Of Return Statement

The form of RETURN statement for programs and tasks is the same
as for procedures:

i
{ RETURN;
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13.4 THE SCHEDULE STATEMENT

The SCHEDULE statement is an exXecutablie statement causing a new
Process to be placed in the ©process queue, or "initiated". The
SCHEDULE statement specifies a task block from which the process is to
be created, and the priority which it is to be given. A& condition for
the initiation of the process can be supplied.

Only che process derived from a given task block may be active at
any given time,

13.4.1 1Immediate Tnitiation

The following variant of the SCHEDULE statement is the simplest.
It causes the creation of a process which is placed in the process
gueue in the ready state. The process is thus available for execution
immediately. :

|
| SCHEDULE label PRIORITY(a) DEPENDENT;
!

1. B2 process is created from the task block label and placed 1in
the process gueue in the ready state. The process created is
d150 Known by the name label.

2. a is an integer expression specifying the priority of the
newly-created process. It must lie in the legal range for a
given implementation. Moreover it must be lower than the
priority of the scheduling process.

3. The keyword DEPENDENT is optional. Its presence denotes the
dependency of the process created on the process executing
the SCHEDULE statement. In its absence, the processes are
independent.

NOTE: From a verification standpoint it is desirable that the effects
0f a process be Mlocalized" asffecting the global state only in
definite and apparent ways. The ability of 2 low priority process to
schedule other processes with arbitrary pricrity 1s counter to this
goal., It renders even a very low priority process the ability in
effect to wusurp the CPU from any other process whatsoever by
scheduling another task with high priority. Thus the restriction is
placed on the SCHEDULE statement in HAL/S/V that the priority assigned
to a scheduled process be lower than that of the scheduling process.
This effect can always be achleved by assigning a priority of (PRIO =~
C} where PRIO is & system function returning the opriority of the
calling process and C is a positive integer such that PRID - C > 0.

From & methodological viewpoint this restriction has the
additional benefit that process priority is determined relative only
to the scheduling process and not in relation to possibly unrelated
processes in the global environment, Thus the generation of a
priority driven scheme is discouraged though not entirely prevented,
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Another effect of this restriction is’'that no process ever has
priority mwore than 50% since the primal process is assigned priority
50 by the RTE,

13.4.2 pelayed Initiation

The following form of the SCHEDULE statement causes & process to
be placed 1in the process queue in the waiting state, The process is
transferred to the ready state on a specified time criterion being
met., There are two variants, each with a different time criterion.

INITIATION after some duration:

|
| SCHEDULE label IN interval PRIORITY(a) DEPENDENT;
i

1. A process called label is created from the corresponding task
blocki and placed in the process gueue in the waiting state,

2. PRIORITY(a) and DEPENDENT have the same meanings as described
in the previous form of SCHEDULE statement.

3, The phrase IN interval indicates that the process 1is to be
put in the ready state after a specified interval in the
walting state. interval is an integer expression whose value
specifies the duration in seconds.

4, If the value is negative or zero, the process is puft Iin the
ready state immediately.

INITIATION at a given time:

|
| SCHEDULE label AT time PRICRITY{a) DEPENDENT;
|

1. A process called label is created from the corresponding task
block and placed in the process gueue in the waiting state,

2. PRIDRITY(a) and DEPENDENT have the same meanings as described
in the previocus forms of SCHEDULE statement.

3. The phrase AT time indicates that the process is to be put in
the ready state at a specified real time. time is an integer
expression whose value specifies the time in seconds.*

4, If the indicated time is in the past, the process is placed
in the ready state immediately.

e Y e R TS

-

¥ This value is implementation dependent.
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NOTE: The introduction of time into programming present a difficulty
for wverification. Programs run at different rates on different
machines and often at varying rates on the same machine. The
Programmer in deneral should minimize the dependence of his results on
time,

SCHEDULE statements can also
specify the cyclic execution
of a process until a stcpping
criterion is met. An explicit
specification of the interval
between cycles can also be
given,

See: Guiders23.4 & 23.5.

13.5 OTHER REAL TIME FEATURES OF HAL/S/V

Three other real time programming statements which have already
been mentioned are now described. These are the TERMINATE, WAIT, and
UPDATE PRIORITY statements. Certain other useful constructs are also
introduced,

13.5,1 Terminate Statement

A process 1s forced to the inactive state (removed from the
process gueue) by means of the TERMINATE statement, Its form is shown
below:

1
| TERMINATE label ;
|

1. The appearance of label 1s optional. If present, the
statement terminates an active process called label.

2. If label is absent, then the process executiﬁg the TERMINATE
statement is terminating itself.

3. No process may be terminated by execution of a TERMINATE
statement if it or any of its dependent processes updates
global data.

In order to make ingependent processes truly independent, HAL/S/V
blaces an added restriction on the operation of the TERMINATE
statement. A process is only allowed to use it to terminate itself or

its dependents. e

¥ The real time origin is not speicified by the language. The origin
is normally coincident with the initiation of the primal process.
Some implementations allow its value te be preset at run time. See
appropriate User’s Manual.
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Note that when a process 18 terminated by execution of a
TERMINATE statement, all its dependents are automatically terminated
at the same time,

NOTE: The ability of a process to terminate itself and its dependents
presents & problem for verification if any global data items are
updated by those processes. In general the synchronization of a
process with its dependents occurs only by the SCHEDULE statement.
Beyond scheduling, the actual execution of the processes occurs
asynchronously, influenced by such implementation dependent features
as the number of processors available,. Eence, when a process
terminates itself with concomitant termination of dependents, there is
in general no way to make valid assertions concerning the - state of
data items —updated by those dependents. This is significant only
where gleobal data 1is involved, Therefore, HAL/S/V 4includes the
restriction that no process may be terminated if it updates global
data., This implies alsoc that no process may terminate itself if any
dependent (or dependent of a dependent, etc.) updates global .data.

Examples:

]
| TERMINATE == =m=wrameeecmnne- self termination

| TERMINATE BETA;=w=-wmr== =-=termination of dependent
|

If a number of processes are to be terminated simultaneously, the
TERMINATE statement can specify a list of process names:

l
| TERMINATE ALPHA, BETA, GAMMA;
|

13.5.2 Wait sStatement

The WAIT statement is used to force the process executing it into
a2 waiting state until some condition is met, whereupon it returns to
the ready state., Three forms, each with a different condition, are
described below.

WAIT for a duration:
i
} WAIT interval;
|

1. The statement indicates that the process is to be placed in
the waiting state for a specified duration.

2, intervel is an integer expression specifying the duration in
seconds.

3. A negative or zero value results in the process not leaving
the ready state. :
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WAIT until some time:

| .
| WAIT UNTIL time;
i

1. The statement indicates that the process .is to be placed in
the waiting state until some given time,

2. time is an integer expression speclfying the time of return
to the ready state, in seconds.*

3, Specification of a time in the past results in the process
not leaving the ready state.
WAIT for dependents
| .
| WAIT FOR DEPENDENT;
i
1. The statement indicates that the process is to be placed in
the waiting state until all 1its dependent processes have
terminated.

2. If there are no dependents, the statement has no effect.

Examples:

WAIT UNTIL DELTA + 107
WAIT 1i5;
WAIT FOR DEPENDENT;

i3.,5.3 Update Priority Statement
No UPDATE PRIORITY statement is allowed in HAL/S/V.,

NOTE: For the reasons cited in Section 13.4 it 1s undesirable that
processes be able teo tamper with the priorities of other processes
except in very .contreolled ways. To be consistent with the
restrictions imposed there, we could regujre that any modifications of
the priority of a process_only lower it by some constant. However,
this solution is unsatisfactory £for the following reasons. If a8
process is inactive updating its priority in the manner specified
could only lower its priority relative to that of other active
processes and possibly result in’ delaying its wuse of the CPU or
changing 1its state from executing to walting. But unless the process

D e W

b

¥ See the discussion on the SCHEDULE statement in Section 13.4 <for a
footnote remarking on the real time origin.
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shares data with other processes these have no real effect., If it
does share data, the effects of lowering priority can be generated in
a more controlled manner either by scheduling the process with a lower
priority initially or by use of the WAIT statement. Hence UPDATE
PRIORITY is disallowed,

13.5.4 Real Time Built~-In Functions

Two built~in or Xibrary functions are of utility in constructing
real time programs:

Function Comments

RUNTIME returns the current
value of real time as
a scalar, in seconds

PRIO returns the pricrity of
the process invoking the
function as an integer

NOTE: As noted earlier, certain system functions may not be
invoked by procedures and functions since they return time
dependent values. RUNTIME and PRIQO are two such system functions
and are subject to the restrictions described in Section 11.4.4,

13.5.5 Major State Indication

HAL/S/V allows the use of a process name as & Boolean
variable which returns true if and only if the process is in an
active state. This is not allowed in HAL/S/V.

NOTE: Any attempt to synchronize processes by such a mechanism
presents dgrave difficulties for verification since it makes the
behavior of a program depend upon other, possibly independent
processes whose rate _of execution may differ under differing
circumstances and on different machines.

The constructs described above
enable real time processes to
be manipulated according to

time criteria., Other
constructs enable their
manipylation according to
"eyent!" criteria. HAL/S/V

"events <¢an signal conditions
to the RTE. Their values can
be manipulated by the user
thus indirectly controlling
the real time process states.
See:; (uidesz4.

The problem of controlling the
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sharing of data by two or more
processes is also important.
See: Guide/26.4.



CHAPTER 14

SUMMARY OF PART I

Part I of the Programmer’s Guide has presented a wide variety of
the simpliler constructs of the HAL/S/V language. It has laid
sufficient ground work for the understanding of more compleXx language
forms which are to be presented in Part I1.
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CHAPTER 15

COMPOODOLS AND COMSUBS

15.1 RELATIONS BETWEEN PROGRAMS, COMPOOLS AND COMSUBS

The compools and comsubs referenced by & program are themselves
separately <compilable entities. For example, when a program invokes
an external procedure, which shares with it the wuse of data in a
single compool, then a total of three separate compilation units is
involved, ¥

Section 3 of the Guide described cone kind of compilation unit =~
the program block = but there are four kinds of compilation units 1in
the HAL/S/V language:

1. PROGRAM, the only independently executable compilation unit;

2. EXTERNAL PROCEDURE, callable from a program or any other
COomsub;

3. EXTERNAL FUNCTION, also callable from a program or any other
comsub;

4, COMPOOL, defining data shared by prodrams and comsubs, but
containing no executable code,

The HAL/S/V language insists upon a full declaration of all data,
and invariably checks the compatibility of function and procedure
definitions with their invocations. These precautionary measures are
specifically extended to compool data and comsubs through the use of
so~called "block templates™,.

Every program or comsub which references compools or other
comsubs must be provided with block templates of the compilation units
referenced,

* COMPOOL TEMPLATE -~ contains data declarations

e

* The object modules resulting from their compilation have to be
"link=~edited" to produce a single executable load module.

15 -1
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identical with those of the compocl itself, so
that the referencing compilation unit possesses a
1 complete description of the data,

3t

EXTERNAL FUNCTION TEMPLATE =~ contains an 1input
parameter list identical with that of the external
function itself, so that the compatibility of its
invocations by the referencing compilation unit
can be verified.

k3

EXTERNAL PROCEDURE TEMPLATE =~ contalns input and
assign parameter lists identical with those of the
external procedure itself, 50 that the
compatibility of its invogations by the
referencing compilation unit can be verified.

The required block templates are included In the compilation
units which reference the corresponding compoels and comsubs. No
external procedure or functioh unit may use a compool block directly,
because no global referencing 1is allowed In HAL/S/V. This implies
that compool templates do not appear with the external procedures and
functions,

To summarize, when the term "compillation unit" was introduced iIpn
Section 3 of the Guide, its meaning was the same as "program block"
because the existence of compools anhd comsubs had not been considered.
New it 1is apparent that a compilation unit does not necessarily
contaln eXecutable code (it may be a compoal), and nelither 1is it
necessarily Jjust a single block of eyxecutable code {(one or more
templates may be included in it),

In HAL/S/V block templates are designed to eliminate
incompatibility between separately compiled modiles as a source of
software ynreliability. It may be objected however that no language
construct can force the properties of a compool or comsub to he
reflected correctly in the corresponding block template,* The use of
correct templates is generally insured by an implementation dependent
software management scheme, Part of such & scheme would be the
automatic generation of block templates during compilation of the
corresponding compools and comsubs.

15.2 THE COMPOOL BLOCK

The compool bleck has been Introduced as an external block of
data accessible to programs and comsubs with which the appropriate
block template is included. It consists .0f opening and closing
statements delimiting a segquence of data declarations.

¥ Neither can it ensure that the object modules "link-edited" together
are the correct versions.
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15.2.1 Compool Opening
The statement opening a compool block takes the form:

|
| label: COMPOOL:;
|

1. label is any legal identifler name, and constitutes the name
of the block.

15.2.2 Compool Closing
The compool block is closed with the statement:

[
i CLOSE label;
t

1. The identifier label 1is optional.

2, If label is supplied, it must be the label supplied on the
opening statement of the block.

15,2,3 Conmpool Data Declarations

Peclaration of data in a compool differs in no respect from data
declarations in a program, as described in Section 4. 1In particular,
there is no objection to the initialization of data in a compool.

The identifier names used to declare data in a compocl body
should not be used to declare any other data item in outer most levels
0f the programs using that compool block.

15,3 EXTERNAL PROCEDURE AND FUNCTION' BLOCKS

Comsubs have been introduced as external function and procedure
blocks which mav be called from programs or other comsubs.

The forms of external function and procedure blocks are identical
with crdinary function and procedure blocks, whose definitions were
described in Section 11. Likewise, they are invogked in & manner
identical with that described in Section 11. However, the external
procedures and functions do not contain any compool templates because
no direct accessing of global data is allowed in HAL/S/V.
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i5.4 BLOCK TEMPLATES

Block templates indicate the properties of compcols and comsubs
to the program or comsub referencing them. Their form .is similar to
the corresponding compool or comsub.

15.4,1 Compocl Templates

A compool template is identical with its corresponding compool
block except that the opening statement is modified by the keyword
EXTERNAL:

|
llabel: EXTERNAL COMPOOL;
I

1. label is the name of the corresponding compcol bhlock.

Example:

Compool Block:

i POOL: COMEOQOL;

! DECLARE INTEGER DOUBLE, I, J, K:
] DECLARE CC CHARACTER(10);

i CLOSE POOL; .

Corresponding Template:
|
i POOL: EXTERNAL COMPOOL;
| DECLARE INTEGER DOUBLE, I, J. K:
|
|

DECLARE CC CHARACTER(10);
CLOSE POOL;

15,4.2 External Procedure Templates

An eXternal procedure template differs from 1its corresponding
procedure block in the following respects:

1, The body ¢f the block 1s empty except for declarations
describing the attributes of input and assign parameters;

2. The opening statement is modified as shown below by the
keyword EXTERNAL,
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f
| label: EXTERNAL PROCEDURE(I1, 12,004)
ASSIGN(A1,R2,...)} ]
i

1. 1label is the name .of the corresponding procedure block,

2. 11,i2,... and ai,a2s;e¢.. are lists of input and assign
parameters respectively, identical with those in the
corresponding procedure block, -

Example:
External Procedure:

| FIXIT: PROCEDURE (INCR) ASSIGN (RESULT);
| DECLARE RESULT INTEGER,

i INCR INTEGER;

| DECLARE DELTA CONSTANT INTEGER (14);
| RESULT = RESULT + DELTA INCR;

| CLOSE FIXIT;

Corresponding Procedure Template:

I FIXIT: EXTERNAL PROCEDURE (INCR) ASSIGN (RESULT);
i DECLARE RESULT INTEGER, ‘
| INCR INTEGER:;
I CLOSE FIXIT;C=wm=—w~ ke
i
no local data or executable code.

15.4.3 External Function Templates

An external function template differs £rom its corresponding
function block in the following respects:

1. the body of the block 1is empty except for declarations
describing the attributes of input parameters;

2. the opening statement is modified as shown below by the
keyword EXTERNAL.

|
| label: EXTERNAL FUNCTION(il,i2,...} attributes;
i

1., 1label is the name of the corrésponding function block,

2. il,i2,... 1is a list of input parameters identical with those
of the corresponding function block.
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3. attributes defines type, precision and size attributes, of
the corresponding function block.,

Example:?

External Function:

I
| SWITCH: FUNCTION(ARG) BOOLEAN; -
| DECLARE ARG INTEGER DOUBLE;
} IF ARG<0 THEN RETURN FALSE;
| RETURN TRUE?

| CLOSE SWITCH;

Corresponding Functlon Template:
SWITCH: EXTERNAL FUNCTION(ARG) BOOLEAN;

DECLARE ARG INTEGER DOUBLE;
CLOSE SWITCH;

——— o —— Ao

Function templates, like procedure templates, may also contain
structure template definitions.



CHAPTER 16

ADDITIONAL DATA INITIALIZATION FORMS

This Section supplements the discussion in Section 4.3 on
initialization by introducing the following topics:

3

the implied repeated use of initial lists;

other ways of reducing the length of an initial 1list;

b3

Ll

partial initialization of a data item;

¥ control of the actual occurrence of initislization.

16.1 IMPLIED INITIAL LIST REPETITION

Section 4.3 stated that for single~valued data items, only one
literal wvalue <can be supplied in an INITIAL/CONSTANT specification.
It stated that for multi-valued data items, two alternatives are
possible:

i. The nunber of literal values specified in the
INITIAL/CONSTANT specification matches the total number of
elements implied by the data declarationy

2. Only one literal value is supplied, in which case that same

initial value is given to all elements implied by the data
declaration.

16,2 USE OF REPETITIGN FACTORS

If a number of consecutive wvalues in an INITIAL/CONSTANT
specification are identical, they may be replaced by one value and a
repetition factor:

r r+l1 1r+2 r+n
.-.i pi ;i ’...i Fosae

Jb-!
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Iy r+1
occi pn#i feraw

1. In both forms, i represents a literal value in
INITIAL/CONSTANT specification.

2. In the first form i(r+ll},...,i(r+n) are literal values.
3. The second form shows the replacement of i(r+i),...,i(r+n)

n#i{r+l3), where n is a positive nonzZero integer.

I£f a seguence of values 1is repeated ogver and over, they may

treated 1in a similar way. The segquence is written once, enclosed
parenthesis, and prefaced with a repetition factor. ——
Example:

i

{ DECLARE S ARRAY(103) INTEGER

| INITIALC1,2,3,4,5,6,3,4,5,6);
may be replaced by:

{ DECLARE S ARRAY(10) INTEGER
| INITIALCL,2,24(3,4,5,6));

The factored form may be nested if necessary, and can

an

be
in

be

especially convenient in the initialization of multi-dimensional

arrays.
Example:

i
i DECLARE V ARRAY(3,2,2)
I INITIAL(1’213’2'3;1’2’3'2'3'1'2):

may be replaced by:

| DECLARE Vv ARRAY(3,2,2) .
I INITIALC24#(¢1,2,3,2,3),1,2);

which may in turn be replaced by:

!
| DECLARE V ARRAY (3,2,2)
i INITIALC2#C1,2402,3)),1,2)7
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16.3 PARTIAL INITIALIZATION

In HAL/S/V, partial initialization of data is not permitted. The
partial initialization makes the proof methods more cumbersome because
of the introduction of the type "undefined".

16.4 STATIC AND AUTOMATIC INITIALIZATION

Although initialization has been discussed at length, the
circumstances under which it actually is effective have not been

considered. In particular, it has not been stated whether
initialization 1s effective only oh the first entry of execution into
a block, or on every such entry,

STATIC initialization is initialization effective onlvy on first
entry into a block. It is-called static because generally it results..
in the generation of initialized data areas by a compiler, rather than
executable code,

AUTOMATIC initialization is intialization on every entry into a

block. It generally results in executahle code being generated by a
compiler.

In HAL/S/V both "STATIC" and "AUTOMATIC" initialization features
0of HAL/S have been retained. The resson for retaining STATIC
initialization feature is to enable construction o¢f abstract data
types in the language. However, it does not permit reentrent
pProcedures to have STATIC initislization thereby not allowing sharing
0f a single copy of data by multiple invocations of s procedure.. In
case of AUTOMATIC initiaglization at each invocatlon of the procedure a
new copy o0f data is created and initialized, "automatically" can be
asserted at every entry into a procedural block.

The keywords STATIC or AUTOMATIC attached to the declaration of
an initialized data item serve teo distinguish between two forms.

16,4.1 1legal Use Of Specification

No STATIC/AUTOMATIC specification may be used in the declaration
of initialized data items in a compool (see Section 15.2). A COMPOGCL
black is not executable, so the guestion of entry does not arise,
Initialization is viewed as taking place before execution of a progranm
begins. ’

No data item initialized by the CONSTANT specification may
possess a STATIC/AUTOMATIC specification. Such data items are viewed
as being similar to literals, 'so that the guestion of entry again does
not arise.

STATIC/AUTOMARIC speciiications can appear, then, in data

declarations in any kind of block except for COMPOOL blocks,
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16,4.2 Form Of Static Specification

. In the absence of any explicit indication, static initialization
1s assumed. Alternatively, the Kkeyword STATIC may be used, placed
either before or after the INITIAL specification.

Examples:
DECLARE I INTEGER STATIC INITIAL{5},

J INTEGER INITIAL (0) STATIC,
K INTEGER INITIAL (11}

16,4.3 Form Of Automatic Specification

The keyword AUTOMATIC is used, placed either before or after the
INITIAL specification.

t
f DECLARE I INTEGER AUTOMATIC INITIAL(S),
! J INTEGER INJTIALCQ) AUTOMATIC:



CHAPTER 17

BIT STRINGS

The form and use 0f Boolean data was discussed at various points
in Part I of the Guide. Their stated purpose was the manipulation of
binary valued (logical) quantities. The ability to handle strings of
binary values is often useful. In BHAL/S/V, this ability 1is
characteristic of the "bit string" data type, which is essentially a
generalization of the Boolean data type already described., .

17.1 BIT STRING LITERALS

Boolean literals were described in Section 2. These are the
corresponding literal forms for bit string gquantities:

BIN'bbbbbb"’
OCT oo0000 "
HEX’hhhh*
DEC’dddd’

1. In the above fornms,

~ binary digit

~ octal digit

~ hexadecimal digit
decimal digit

nLIJo o

~

2. The number of binary digits represented must not exceed 32,%

Examples:

BIN*10110°
HEX"FAC2'
gcrr7771”

¥ This number may vary between implementations. See appropriate
User’s Manual.

17-1
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Note that BIN’0’ = FALSE = OFF and BIN’1‘ = TRUE = ON

17.2 DECLARATION OF BIT STRING DATA ITEMS

The basic declaration statement for bit string data items is
showh below:

DECLARE name BIT(n);
1. name is any legal identifier.
2., n specifies the length of the bit string (i.e, the number of
binary digits in it). It must be in the range 1 <= n <= 32.,%
EXamples:
|
| DECLARE B1 BIT(16);
|
Note that the following two forms are egquivalent:

!

| DECLARE B2 BIT(1);
| DECLARE B2 BOOLEAN;
] .

Declarations of pit string data items can be 1integrated into
compound declarations as described for other data types in Section
4,2,

17.2.0.1 1Initialization =-

Initialization of bit string data items follows the rules given
in Section 4.3, wusing bit string 1literals in the list of initial
values,

Examples:
DECLARE B16 BIT(16) INITIAL(HEX'FFFF‘);

DECLARE B1 BIT(1l) .CONSTANT(TRUE];
DECLARE B ARRAY(2) BIT(3) INITIAL(OCT'7°,0CT'5%);

- e e

b

* This value may vary between implementatjons. See appropriate User’s
Manual.
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Literals are padded or truncated as required to fit the data item
initialized:

|

| DECLARE B8 BIT(8) INITIAL(OCT®770°);
| DECLARE B11l BIT(¢11) INITIAL(HEX'FF*);
|

results in

B8 = 11111000, Bi1 = 00011111111

17.3 BIT STRING SUBSCRIPTING

Subscripting forms Eor bit string data items are similar to those
for character data items, as desc¢ribed in Section 6,

17.3.1 Unarraved Bit Strings

In pit strings, bit pgsitions are indexed left to right starting
from 1. In the subscript forms given below, STRING represents an
unarrayed bit string data item of length L.
To select the ath bit from STRING:

STRING
a

1. a is an integer expression in the range 1 <= a <= L,

To select & bits from STRING, starting from the Bth:
STRING
a at B
i. @ is an integer literal value in the range 1 <= a <= L,
2. B is an integer expression in the range 1 <= B <= L = a + 1.
To select a substring starting with the ath bit of STRING, and ending
with the Bth:
STRING
a to B
1. a and B are integer literal values in the range 1 <= (a,B) <=

L.
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2. B => a,

If a data item is declared to be Boolean, it is really defined as
a 1=bit string. It may therefore possess component subscripting
consistent with the above rules, even though in this case it performs
no useful purpose,

17,3.2 Arrayed Bit Strinqs

The subscripting forms for arraved bit string data items are as
described 1in Section 6.2, The colonh following an array subscript is
mandatory.

17.4 BIT STRING OPERATIONS

Section 7.3 of the Guide outlined the logical operations which
could bpe performed on Boolean data. Operations on bit strings are an
extension of these. HAL/S5/V recognizes the following operations:

Symbol Purpose

& conjunction
and

i disjunction
or )

- complement
not

I catenation
ca

17.4.1 Complement

The complement operation complements the logical value of every
bit in the bilt string.

Symbolic form: = R

1. The operand R is a bit string.

Example:

If B Is an 8~bit string with B = 11000101
then =B = 00111010
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17.4.2 pDisjunction

The disjunction péeration causes the logical values of
corresponding bit positions in the operands to be OR"ed together,

Symbolic form: L | R
1. The L and R operands are bit strings.

2. The two coperands must be 0f egual lendih.,

Example:
If B is a 5-bit string with B = 00100
and BB is a 5-bit string with BB = 10110
then B&BB = 00100 -

Note that a 5~bit result is obtained.

17.4,3 Catenation
The two operands are catenated to form one longer pbit string.
symbolic form: L |l R
1. The L and R operands are bit strings.
2. The L operand is catenated to the left of the R operand,
3, If the sum of the lengths exceeds 32 ¥ the L coperand is left
truncated as required.
Example:
I1f B is a 12~bit string with B = 7EC
and BB is a 24~bit string with BB = 42F508

then BJIBBE = EO042F50R ’ -
the left-most 4 bits of B being truncated.

17.4.4 Precedence

The following table summarizes the precedence rules for Dbit
string operations, and 1s an extension of the table for Boolean
operations given in Section 7.4.

* This value may vary between implementations., See appropriate User'’s
Manual. .
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symbol PrecedencCe Purpose
FIRST

-, NOT 1 complement

1t, CAT 2 catenation

&, ARD 3 conjunction

i, OR 4 disjunction
LAST

Seguences of uycrations of the same precedence are evaluated left
to right.

17.5 BIT STRING ASSIGNMENT

Bit string assignment is an extension cf Boolean assignment as
described In Section 8.4.

1. The operand types are both bit string:
L-type R=tvype
BIT STRING BIT STRING

2., The logical value of each bit position of the R~=operand is
transferred to the receiving data item.

3. Both operands must be of egual length.

Examples:

I B is a 6=bit_string,

and BB is a 6=bit string with BB = 101101,
then

B = BIN "110110°;
results in B
and

1§

110110,

[ws]
n
jus]
o

results in 8 = 101101

17.6 BIT STRINGS IN CONDITIONAL CONSTRUCTS

Execution of the HAL/S/V IF statement described in Section 9.1%,
and of the DO WHILE statement described In Section 10.2, are
controlled by the logical value of an expression which was stated to
be elither Boolean or relational in type, Bit string expressions may
be used directly in place o©of Boelean expressions or as parts of
relational eXpressions in such statements,



BIT STRINGS Page 17~7

17.6.1 Direct Use 0f Bit strings

If a bit string expression is wused instead of a Boolean

expression in an IF statement or DO WHILE statement, the following
rule applies: .

The bit string expression is considered to be
evaluated as FALSE i1f the right=-most bit is 0 and
TRUE if it is 1.

Exampleg:

Let B be a 4=bit string with B = 1101
and BB be a 4~bit string with BB = 0010

|

| IF BIBB THEN X = 07
I ¥ = 1;

|

The ceondition RIBB = 1111 : the right=-most bit is 1, so that the
statement

is executed.
The statement group

DO WHILE B?

I .
| .
| .

END;

is executed repetitively until the right-most bit of B becomes 0. The
values of other bits in B do not affect this process.

17.6.2 Bit Strings In Relational Expressions

Section 9.2 showed how data items of each type, including
Boolean, could be combined into relational expressions which evaluated
to either TRUE or FALSE._ Using the same nomenclature as that section,
bit strings can be used in Class II comparative operations only:
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Symbol Purpose class
= eguals

not =
- = not equals I1

The rules for bit string comparisons are given below:
Symbolic form: L NOT = R
1. The only legal type combination for the L and R operands is:
L-type R=type
BIT STRING BIT STRING

2. The result is FALSE if the L and R operands are of unegual
lengths.,

Examples:

If B is a 4-bit string with B = 1141,
and BB is a 3-bit string with BB = 101,
then

B = BIN®1101" is TRUE

and

B = BB is FALSE

The above comparative operations can be combined as described in
Section 9.2, wusing the given precedence rules. Note that the
important rule that Boolean and relational expressions cannot be mixed
extends to bit string expressions as well. However, this may impose
serious limitations on writing assertions.

The following are some examples clarifying the use of bit string
relations.

Examples:

Let B be a 3~bit string with B = 110,
and I be &n integer with I = 5

IF (B=BIN'110°)&(I>4) THEN I = 0;
In the above IF statement, both comparative operations
evaluate to TRUE so that the condition is Itself TRUE so
that the and the assignment

I = 0;

is executed. The statement
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IF (B~=BIN’01’)&BIN’11’ THEN I = 0;

is illegal becayse a relational expression 1is belng mixed
with a bit string literal to form the condition of the IF
statement.

Note that the 'statement

IF B~=BIN’101" & BIN’11’ THEN I = 0;

is also illegal because the syntax is ambiguous.
Parentheses must be used to specify 1its only legal
interpretation:

IF B==(BIN’01° & BIN'11°) THEN I = 0;

17.7 BIT STRING ARGUMENTS AND PARAMETERS

Section 11 described procedure and function blocks and how they
were invokKed. Procedures and functions may be defined with bit string
parameters, and be passed bit string arguments.

17.7.1 Form Of Bit String Parameters

Any Input parameter of a function or any input or assign
parameter o0f & procedure may be declared to be of bit string type,
using the forms of declaration described in Section 17.2.

Example:
FLAGS: PROCEDURE(B1)} ASSIGN(B2);
DECLARE B1. BIT(16),
B2 BIT(8);

} procedure body

CLOSE FLAGS:

17.7.2 Argument Passage

An argument cf a function or procedure Invocation corresponding
to a bit string parameter must conform to the following rules:

INPUT PARAMETER. The transmission of the argument can be
viewed as its assignment to the input parameter. The
following rules apply to both procedures and functions:
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1, The corresponding argument must be of bit string type.

2. The input parameter must be 0f the same length as the
argument.

ASSTIGN PARAMETER. The following rules apply for the

matching of arguments to bit string assign parameters:

1. The assign argument must be a declared HAL/S/V bit
string data item.

2. The length of the argument must be the same as that of
the parameter,

3. The argument may not pcssess sybscripting.

These rules are only relevant to procedures,

17.8 BIT STRING FUNCTIONS
In Section 11.2 it was stated that functions of any legal HAL/S/V

type c¢ould be created, Accordingly, it is legal to define functions
of bit string type.

17.8.1 Block Definition
The opening statement of the function block takes the form:
label! FUNCTIONCiI, i,...) BIT(n);
1. label is the name of the function.
2. i, i,... 1s the 1ist of input parameters.
3. n indicates the number of bits, and 1lies in the range
1 <= n <= 32.,%
The closing statement is as described in Section 11.2.
éxample:
I F1: FUNCTION(B) BIT(5);

]

i } function body
* This value may vary between implementations. 3See appropriate User's
Manual.



BIT STRINGS Page 17~11

! CLOSE F1i;

17.8.2 Return Of Bit String Quantities

The RETURN statement should contain a bit string of the same
length specified in the function declaration. No implicit length
conversion by truncating or padding with zeroes is permitted,

17.9 BIT STRINGS IN INPUT/0OUTPUT

Bit strings may participate in input/output in the same way as
other data types, as_ described .in Section 12, The format of bit
string data fields for input and output are described in Appendix F.
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MULTI~DIMENSIONAL ARRAYS

Section 4.1 stated that it was possible to declare an array or
table of any given data type. Section 4.2 showed the form of
declaration for l-dimensional arrays. HAL/S8/V actuyally supports
arrays of multiple dimensions.

First, the general form of declaration is presented. Then, some
remarks on the order of initiallzatlon precedes a discussion of the
subscripting of multi~dimensional arrays.

18.1 DECLARATION

To declare an array of any data tvpe and of any legal dimension,
the following form of declaration is used:

DECLARE name ARRAY{(n, n,...J) attributes;
1. name is the name of the data item declared.

2. attributes are the attributes appropriate to the data {ype
being declared.

3. n, i =1, 2... are the sizes .corresponding to each array
dimension. The upper 1limit on 1 1is 3.% The number of
elements In any dimension must lie in the range
1 <= n <= 32768 . %%

Examples:

e WP Wy v

¥ The limiting number of dimensions may vary between implementations;
See appropriate User’s Manual.

¥*% This value may vary between implementations. 38ee the appropriate

User’s Manual. In some implementations, there may a&also be
restrictions uponh the contexts in which very larde arrays may be used,

1g- 1
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|
| DECLARE S ARRAY(5,5) INTEGER,

j W ARRAY(2,2,1000) INTEGER?
!

18.2 ORDER OF INITIALIZATION

Section 4.3 stated the order of 1initialization of elements of
i~dimengional arrays _of any  data type. The = order for
multi-dimensional arrays is generated by the rules given in Appendix
c.

The following examples illustrate the effect of these rules in
initialigation of 2- and 3~dimensional arravs.

Example:
I

| DECLARE I ARRAY(2,3) INTEGER INITIAL(1,2,3,4,5,6);
I .

18,3 SUBSCRIPTING

Section 6.2 gave the forms of array subscripting -for
l=dimensional arrays. To summarize, the following kinds of subscript
could be used:

i. simple indexing, to select one array element;

2. AT-partitioning, to select a sub-array of a given size
starting from a given index value;

3. TO-partitioning, to select a sub~array starting from one
given Index value and ending on a second,

in multi~dimensional arrays, such subscripting can be applied to
each dimension of the arrav.

i8.3.1 Array Subscripting Only

Let TABLE be an n-dimensional array. The general subscripting
form is then:

TABLE
array l,...,a8rray n:
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1. array stands for any array subscript of the form given in
Section 6.2.

2. The colon is optional for integer data types only.

3. Any array may be replaced by an asterisk to denote
specification of every element .ipn that dimension.

18.3.2 Array And Component subscripting

If TABLE represents an n-dimensionsl array of vector, matrix,
character or bit string type, then the general form when component and
array subscripting is present is:

TABLE
Array 1,....,array n:component

1. array stands for any array subscript of the form given in
Section 6.2.

2. component represents any form of component subscripting legal
for the data type of TABLE, as described in Section 6.1 and
17.3.

3. Any array may be replaced by an asterisk to denote
specification of every element .in that dlmension.

18.3.3 Component Subscripting Only

When only component subscripting is required, array subscripting
cannot be totally omitted, but must rather be replaced with asterisks,
If, as before, TABLE represents an n=dimensional array of vector,
matrix, character or bit string type, then the general form is:

TABLE
¥reew¥rcomponent
1. n asterisks correspond to¢ n dimensions of absent array

subscripting.

2. component represents any form of component subscripting legal
for the data type of TABLE,

———— e g pp
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Literal subscripts may alternatively be
expressions computable at compile time,
See; Guides/Appendix D.

For a complete description of all subscript forms
see Spec./5.3.



CHAPTER 19

STRUCTURES

_ Section 4.1 of the guide introduced some of the types of data
definable in the HAL/S/V language, It further made reference to the
fact that "hierarchical organizations of data items" exist in the
languade. It is the purpose 0f this Section to describe the form and
use of these so-called "structures" data.

The HAL/S/V array feature is & useful construct for forming
. aggregates of data items, 1f they are homogenecus in attributes.
Frequently, however, it is of great convenience to be able to form
aggregates of data items with heterogeneouys attributes. In addition,
reguirements may exist to reference not only the aggregate as an
entity, but alsoc subsets o©of 1it, or subsets of subsets of it. The
HAL/S/V STRUCTURE data type fulfills both of these reguirements.

19.1 HAL/S/V STRUCTURE CONCEPTS
HAL/S/V data structures have two characteristic properties:

1. Data items or arrays of almost any type can be combined to
form a structure,

2. The data items can be organized into a tree-=like hierarchy
{(similar in concept to a geneclogical tree, for example.)

The tree consists of nodes connected by "branches". Every "leaf"
node of the tree corresponds to one of the actual data items making up
the agdregate, The whole tree can be referenced by using the name of
the "root" node., Subsets of the tree can be referenced by using the
name of the appropriate "fork" node,

The conversion consists of recording the name of each node (root,
fork or leaf) and its level when the tree walk passes it in a simple
pre-order traversal,

The reverse conversion consists of the following steps. First

draw the “"root" node appearing at the tep of the list. Then, treat
each of the remaining nodes ih order as follows:

191
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1. Draw the node to the right of previocus node with the same
leve]l number (if any), and under nodes with smaller level
numbers,

2., Connect it by a "branch" to the last~connected node with a
level number one smaller.

In HAL/S/V landuage, the specification of a structure tree
organization is separated from the declaration of the structure or
structures possessing that organigation.

STRUCTURE TEMPLATES are used to speclfy structure
tree organizations in a linear list
representation. & structure template specifies
all nodes In a tree from level one downwards.

STRUCTURE DECLARATIONS are used to declare
structures possessing pre~defined templates. For
reasons which _will become apparent when the
referencing of structure is considered, the
declared name of the strucutre is assignhed as the
"root® node name of the tree organization,

In the remainder of the section, structures will be referred to
as data items, since even though they are aggregates of data items,
they can be manipulated as entities in themselves.

19.2 STRUCTURE TEMPLATES

The structure template is the HAL/S/V construct which defines the
structure tree organization in the form of a linear list, It defines
by name and level all "fork" and "leaf" nodes in a tree from level one
downwards. ‘ .

In the BAL/S/V implementation of structure trees, the following
nomenclature is used.

TEMPLATE NAMES are names identifving structure
templates, The appear a&as part of the template
specification, and also in structure declarations.

MINOR STRUCTURE NODES are the "fork" nodes of a
structure template,

STRUCTURE TERMINALS are the "“"leaf" nodes of a
structure template. Every structure terminal is
one of the data items comprising the structure
aggregate,
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19,2.1 General Form 0Of A Template

The form of a structure template consists of its name followed by

a specification of all its minor structure and structure terminal
nodes.

19.2.1.1 OVERALL FORM -

i,

2'

The overall form is as follows:

i
i STRUCTURE name 3

| node, node, ceee
! «s s NOde ;

]

name is the structure template name, and is any legal
HAL/S/V identifier name.

1 2 n .
node , node ,...node Is a list of nodes forming the
tree organization,

19.2.1,2 MINOR STRUCTURE NODES -

The form of a minor structure node of a template is as follows:
n name
1., n is the level number of the node.

2. name is the name of the minor structure node, and may be any
legal identifier name.

19,2,.1.3 STRUCTURE TERMINAL NODES -

The form of a structure terminal node of a template is as

follows:

n name attributes
1. n is the level number of the node,

2. name is the name of the structyre termlnal node, and may be
any legal identifier name.

3. attributes consists_of array, tvype, size and other attributes
applicable to data items.
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4, The folliowing data types are legal as structure terminals:

INTEGER BOOLEAN
BIT STRING
CHARACTER
STRUCTURE

There 1s never any confuslon as tec whether & node is a structure
terminal or a minor structure since the level number sequence is
sufficient to distinguish_ the two cases. Structure terminals of
structure type are a special case which is discussed later.

19.2.2 Restrictions

The attributes attached to the specification of a structure
terminal node are written in the same form and order as in a
declaration statement (described in Section 4 and expanded in Sections
16, 17.2, and 18,1). Hovwever, the following restrictions are made:

i. No INITIAL/CONSTANT speéification ¢an be applied to a
structure terminal. -

2. No STATIC/AUTOMATIC specification can be appllied to a
structure terminal.

Example:

STRUCTURE Q:

1 QT CHARACTER(80),

i ON1,
2 QI INTEGER
2 05 ARRAY(100)

i ON2,
2 OM ARRAY(3,3) OF CHARACTER;
2 QB BOOLEAN;

— e —— —— — — — — ——r—

19.2.3 Location 0f Structure Templates

Structure templates are essentlally parts of data declarations
and therefore must appear before the first executable statement of the
program or other block in which thev are coded.
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19.3 STRUCTURE DECLARATIONS

Structure declarations are used to declare structure data with a
tree organization defined by a pre-existing structure template.
Structure declarations are in the same general form as declarations of
other Kinds of data items, as described in Section 4.

19.3.1 Basic Form Of Declaration
The basic form of structure declaration is shown below!
DECLARE name a=STRUCTURE;

1. name is the name of the structure data item, and may be any
legal identifier name,

2. a 1s the name given to a pre=-existing structure template
which specifies the tree corganization of the structure being
declared,

Note that the structure template referenced by a structure
declaration must have been defined previously in the same block, or
have been declared in a block enclosing the block containing the
declaration.

Examples:

form of declaration =

I

! STRUCTURE O3

I i Q2 INTEGER,
| 1 0B CHARACTER(80),
| 1 oC BOOLEAN;
l -

!

I

|

I

DECLARE ZZ1 Q-STRUCTURE?
DECLARE ZZ22 Q STRUCTURE;

Structure declarations can be integrated into compound
declarations of the kind described in Section 4.2,

Example:
DECLARE A INTEGER,

B 0~STRUCTURE,
C CHARACTER(80);
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19,.3.2 Multiple Copy Structures

Structures can be declared to have multiple copies of the data
specified by the tree organization. Although the form of
specification is different f£rom HAL/S/V arrays, they can in sone
contexts be viewed as arrays of structures.

The data declarations for a multiple~copy structure takes the
following modified form:

DECLARE name a=STRUCTURE(n):
1. name is the name of the structure.
2. a Is the name of the predefined structure template,

3, D iIs the number of copies of the data required. It must lie
in the range 1 <= n <= 32768,%

19.3.,3 1Initialization 0Of structures

Structures are initialized by supplying an INITIAL/CONSTANT
specification with the structure declaration, rather than with the
template. The specification 1s added to the declaration as described
in Section ¢,3.

Example:

STRUCTURE Q:
1 QI INTEGER
1 08 CHARACTER(2);

|

I

|

I

I .
!

l .

I DECLARE Z Q«STRUCTURE INITIAL(S,"ME");
|

The order of initialization for structures is as follows:

SINGLE=COPY STRUCTURES. The number of 1literal
values in the list (or implied by the use of
repetition factors) must equal the total number of
elemnents summed over a&all the structure terminal
nodes, Each structure terminal is initialized 1in
the order it appears in the structure tempiate,
according to the yules given in Section 4.3 and
further expanded in Sections 16 and 18.2.

- -

e

¥ This value may vary betwyeen .implementations. See appropriate User’s
Manual.



STRUCTURES Page 19-7

MULTIPLE-COPY STRUCTURES. The number of 1literal
values in the initial list mey either match the
total number of elements summed over all <coples,
or match the number in one copy, In which case all
copies are identically initialized. Each copy is
initialized in turn in order of 'Increasing index,
according to the rules for singlie-copy ‘structures,

These orderling rules are_a restatement of those given in Appendix C.
The supplementarv initialization forms described in Section 16 are
fully applicable to structure data types,

19.4 HNESTED STRUCTURES

Sectien 19,2 stated that structure terminal nodes could
themselves be o0f structure type. The effect of this is to nest a
second template into the first, thus expanding the tree organization
of the former.

Example:

STRUCTURE A:
1 AT INTEGER,
i A1,
2 AC .CHARACTER (8O,
2 AB BOOLEAN;

i
i
i
}
i
|
]
| STRUCTURE B:
] 1 BS INTEGER,
| 1 Bi,
| 2 BV ARRAY(3) OF BOOLEAN,
| 2 BA A=-STRUCTURE;
I

The structure template B is in many aspects like a template (
given by:

STRUCTURE C:
1 BS INTEGER,
1 B1,
2 BV ARRAY(3) OF BOOLEAN,
2 B3,
3 AT INTEGER,
3 at,
4 AC CHARACTER(BO0)},
4 AB BOOLEAN;

]
which has superficially the same tree organization.
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19.4.1 Restrictions
A structure terminal of structure type may not possess
CODLES e
Example:
The following template is illegal:
STRUCTURE Q:

i

!

! 1 QI INTEGER,

i 1 0S T=STRUCTURE(20);
|

NOTE: Recursion definitions are explicitly prohibited in
Therefore, a structure template may never possess a node of
structure type.

Example:
The following is illegal:
STRUCTURE Q3

|

t

t 1 QI INTEGER?

i 1 00 Q~STRUCTURE;
i

As is the following:

|
| STRUCTURE Q:
l 1 QT T-STRUCTURE;
| STRUCTURE T:
| 1 TQ0 0 STRUCTURE;
|

12.5 QUALIFICATION AND STRUCTURE REFERENCING

Page 19~8

multiple

HAL/S/V,
that same

The basic types of data item introduced in Section 4 are

referenced merely by stating their names in the desired context.
same way.
because in

structure in its entipety «<can be veferred to in the
Referring to part of a structure is more .complex, however,

A

general more than one structure may possess the tree organization

expressed by a particular template.
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19.5,1 The Qualified Reference Concept

Any node of a structure other .than the "root" node 1is referred to
by a composite or "qualified" name which is generated conceptually in
the following way, A tree walk is starteg at the ‘"root" node, and
continued down to the node to be referenced, The names of all the
nodes traversed, including the "root" and final nodes, are 1listed.
The resulting composite or "qualified"™ name 1is an unambiguous
reference to the desired "leaf" node (given certain restrictions on
duplicate naming which are to be described). '

19.5.2 Referencing Structure Terminals

The gualified name gf a structure terminal 1is generated by
catenating the names of &all nodes between the "root" node and the
desired "leaf" node of the tree organization.

1 2 n
name .name - .--..name

1
1. name is the name of the structure as declared.

n
2. name 1s the name of the structure terminal to
be referenced.

2 n-1
3. nName, ... .namne are the names of intervening minor

structure nodes
if anv.
.end list
.bjExamples:
«tp10.lmb.bolit
i
] STRUCTURE ©Q:
| 1 QI INTPEGER,
] 1 01, .
| 2 0S5 BOOLEAN,
| 2 QC CHARACTER(80);
I »
|
|
|
i

DECLARE ZQ Q-STRUCTURE;
To reference QI and 0C in ZQ reguires the following ‘ names,
respectively:

2Q.91
Z0.01.0C
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19.5.3 Referencing Minor Structure Nodes

If it is required to perform an operation on a sub-tree of a
structure (i.e. all parts of the tree beneath a certain "fork" node),
the ¢ccasion arises to refer to a miner structure node name, The
qualified name is generated by catenating the names of nodes between
the "root" noede and the desired "fork" node.

name_1 .name.Z . .= sNAME_n
1., name_i1 is the name of the structure as declared.

2. name_n is the name of the minor structure node to be
referenced.

3. name.2,...name_.n-1_ are the names of intervening minor
structure nodes, if any,

Example:;

STRUCTURE Q:
1 QI INTEGER,
1 01 ‘
2 05 BGOLEAN,
2 QC CHARACTER(80);

DECLARE ZQ Q=STRUCTURE;

To reference 91 in 20, requires the name Z0.,01.

19,5.,4 Naming Unigueness

The node names used in a structure tree specification need only
be unigue In so far as all tree walks used to generate qualified names
must be distinguishable, This means that some node names may actually

duplicate others without error.
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Examples:

STRUCTURE O:
1 g1,
2 Q08 INTEGER,\
1 92, >=====legal duplication names
2 08 INTEGER:;/

DECLARE ZQ Q=-STRUCTURE;

S — —— —— AT M—— — ——— —

The above duplicate names are legal because gualified references

to each are distinguishable:

ZQ.01.Q8
20.02.08

]
} STRUCTURE R:
t 1 Rl, <(mresmmcormma-- --

i 2 RS BIT(4); >=-illegal duplicate names
| 1 R1 CHARACTER(BO);<~-~

[ -

I

i

i

i

-

DECLARE ZR R-STRUCTURE;
The above duplicate names are illegal., ZR.R1 might be referring
fto a minor structure node or & structure terminal of character type,
The following situatlons are also permitted:
¥ The name of minor structure or terminal node may

duplicate the_ name of any wminor structurs or
ferminal node in a different structure template,

¥

The name of a minor structure or terminal node may
duplicate the name of any ordinary data item.

19,5.5 Unqgualified References

Qualified referencing of parts 0f structures can become laborious
if the node names assigned are long, or there are many levels in the
structure. By accepting certain restrictions, ungqualified, or direct
naming of minor structure or terminal nodes is permissible,

To be able to refer to a structure in an ungualified manner the
following must apply?


http:ZQ.Q2.QS
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it fo
for any te

Examples:

Psge 19=-12

Unqualified reference may only be made to a
structure whose name is the same as the template
defining its ftree organization.

liows that onlv one ungqualified structure may be declared

mplate,

STRUCTURE Q¢
1 OI INTEGER,
1 0t,
2 QS BOOLEAN,
2 0C CHARACTER(80);

DECLARE ZQ Q=-STRUCTURE;
DECLARE Q Q-STRUCTURE;

— — — —— — — — — —

QC in ZQ must be referred to as:
7Z0.01.0QC
QC in QO may be referred to simply as:

QC

More restrictive rules apply to the construction of

structure template used to declare an ungualified structure.

The name 0f each node in the template must be
unigue t¢o the block in which the template is
def ined,

The template must be defined in the same block as
the unqualified structure is itself declared,

The template may_contain no structure terminals of
structure type (i.e. nested structures).

19.6 SUBSCRIPTING IN STRUCTURES

A structure terminal may possess "terminal" subscripts as
result of its type (character, bit string) or its array property.
any reference to the whole or part of a structure with
multiple copies can introduce a level of "structure" subscripting.

addition,

The discussion on subscripting is divided into two parts:

subscripting on references to the entire structure
or to minor structure nodes;

a
In
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subscripting on references to terminal data items.

19.6.,1 Subscripting Of Structure Data Items

A reference to an entire structure or to one
of 1its minor_ _structure nodes may only possess
subscripting if the structure 'is declared to
possess multiple coples.

In the - subscripting forms below, TREE
represents any data item of structure type (i.e.
either a "root" or "fork" node of the structure
treel, the reference being unqualified or
gualified, It is assumed that the entire
structure 1s declared to possess L copies.

To select the ath -copy from TREE:

TREE
ai

1. & is an integer expression in the range 1 <= a3
<= L. .

2. The semicolon is optional.
To selec¢t a subset of a copies starting from the
Bth copy of TREE: -

TREE
a AT B;

1. & is an integer Yiteral valye in the range 1
k= a <= L,

2, B is an integer expression in the range 1 <= B
<=L =-a+ 1,

3. The semicolon is optional.
To select a subset of copies starting from the
a8’th copy and ending with the Bth copy ¢of TREE:

TREE
a T0 B

i. a, B are integer literal values in the range 1
<= (a, B) <= L.

2. B >/ a,

Page 19-13
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3. The semicolon is optional,

Examples:
Given

|
I STRUCTURE Q:
1 91 INTEGER,
1 01, ,
2 95 BOOLEAN,
2 0C CHARACTER(80);

i

i

|

i

| .
H

| .
| DECLARE ZQ Q~STRUCTURE(3);
then ZQ ; selects copy 2.

Z0.G1 selects copies 1 and 2 of the subtree under ¢1.

07%,01 selects copy 1 of the subtree under Q1.

19.6.2 Subscripting 0f Structure Terminals

If a structure terminal is part of a singdle copy structure, then
it can only possess sybscripting by virtue of its type or array
property. Such subscripting is the same as for ordinary data items,
and has been described in Sections 6, 17.3, and 18.3.

I£f, on the other hand, a structure terminal is part of a multiple
copy sStructure then it may possess subscripting by virtue of its type
or array property, and by virtue of the multiple copy property. Three
cases of subscripting thus arise:!

STRUCTURE SUBSCRIPTING ONLY. The form of
subscripting 1is 'the same as for structure data
‘items, as described above. The only difference 1is
that the terminating semicolon is optional only if
the structure terminal is o©of integer type, and
unarraved,

STRUCTURE AND  TERMINAL SUBSCRIPTIRNG. The
structure subscripting takes the same form as
before., Términal subscripting (consequent on type
or arravness) follows the mandatory semicolon, and
takes the forms described .in Sectlons 6, 17.3 and -~
18.3.

TERMINAL SUBSCRIPTING ONLY., The subscript forms
are the same as In the previous case except that
the structure subscript 1is replaced by an


http:described.in
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asterlsk.

Literal subscripts may alternatively be
eXpressions computable at compile time,
Seet Guide/Appendix D.

19.7 TREE EQUIVALENCE OF STRUCTURES

Most operations involving more than one operand of structure type
require their operands to possess tree organizations which are in most
respects identical. Two structures which are compatible in this sense
are said to be "tree-equivalent". Two basic requirements have to be
satisfied to establish tree-equivalence:

1. The actual shape of the trees must be eguivalent;

2. The attributes of corresponding structure terminal nodes must
be the same. .

19.7.1 Eqguivalence 0f Tree Shape

The equivalence of tree shape c¢an be achieved 1in a number of
different ways:

USE OF SAME TEMPLATE =~ If twe structures are
declared using the same template, they cannot
avoid meeting both reguirements for tree
equivalence,

Example:

| STRUCTURE 0:

| 1 0I INTEGER,

i 1 Ql’:

| 2 QB BOOLEAN,
} 2 QC CHARACTER(80);
!

J

!

DECLARE Z¢1 Q-STRUCTURE,
Z¢2 Q~STRUCTURE(20);

Z01 and ZQZ2 are treee-equivalent, (notwithstanding the mismatch in
number of copies), :

USE OF TEMPLATE OF SAME SHAPE - If two structures
are declared using distinct templates which do,
howvever, have_ the same shape, then the first
redquirement of tree~egqguivalence is met.

Example:
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STRUCTURE 0:
1 0I INTEGER,
1 01, )
2 OB BODLEAN,
2 OC CHARACTER(80);

DECLARE ZQ Q~STRUCTURE;

STRUCTURE Rz
1 RI INTEGER,
1 R1,
2 RB BOOQLEAN,
2 RC -CHARACTER(S80);
DECLARE ZR R~STRUCTURE;

— e W e Aran Teem e e e wwre e e e ki e e e

The tree shapes of ZR and 7ZQ are the same.

MATCHING OF SUBR=-PREES « If the ‘tree shape of a
sub~-tree o©of one structure matches the same of
another structure, or sub~tree therecf, then the
first requirement of tree~equivalence is met,

Examples:

I

|  "STRUCTURE Q:

! 1 QI INTEGER,

I 1 01,

i 2 OB BOOLEAN,

] 2 QC -CHARACTER(8Q);
| DECLARE ZQ Q~-STRUCTURE;
|

t

|

!

|

!

STRUCTURE_R:

1 RB BOOLEARN,

1 RC CHARACTER(80);
DECLARE ZR R-STRUCTURE;

The tree shapes of Z0 and ZR clearly are not the same. However,
the tree shapes 0f Z0.01 and ZR are the same.

19,7.2 Matching Of Terminal Node Attributes

Once matching of tree shape has been established, t¢ obtain
tree~equivalence, corresponding structure terminal nodes of each tree
must be verified as having -identical attributes. Generally, terminal
nodes must match exactly in their type and array property (if any).
Additionally, for each type the following matching reguirements must
be met:
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TYPE

BIT STRING

CHARACTER
INTEGER
STRUCTURE

Examples:

f
i
;
f
i
!
f
i
i
|
;
!
}
f

MATCHING REQUIREMENTS

humber of bits

Page 19=-17

(BOOLEAN is equivalent to BIT(1))

maximum declared lendth

precision

specified structure template

STRUCTURE Q:
1 QI INTEGER,
101,
2 QC CHARACTER(80);
DECLARE 'Z2Q Q=STRUCTURE};

STRUCTURE R:
1 RI INTEGER DOUBLE,
1 Ri,
2 RC CHARACTER(80);
DECLARE ZR R=STRUCTURE;

ZQ fails to be tree~equivalent to ZR solely due to one
mismatch: ZQ0.QI is single precision, while ZR.RI is double precision.

However, Z0.Q1 is completely tree-eguivalent to ZR.RI1
offending terminal node is not present.

Note that
structure type

|
}
I
I
I
]
!
!
f
}
t
I
!
!

matching requirement for terminal

STRUCTURE Q:

1 0B BOOLEAN,
1 QC CHARACTER(BO0);

STRUCTURE R:

1 RI INTEGER,
1 RQ Q=STRUCTURE;

DECLARE ZR R-STRUCTURE;
STRUCTURE §:

1 SI INTEGER,
1 s1,
2 5B BOOLEAN,
2 SC CHARACTER(80);

DECLARE ZS S-STRUCTURE;

precision

since the

nodges of

preclude tree~equivalence 1in cases typified by the
following example:

Z5 is not tree-equivalent to ZR although their tree organizations

are superficially

alike (see Section 19.4). Z5

would be
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tree~equivalent to ZR only if the template S had been specified as:

|

1 STRUCTURE S:

| 1 SI INTEGER,

! 1 80 Q=STRUCTURE?
i

Where structure_ templates are declared with
additional attributes such as RIGID, DENSE, LOCK,
etc., matching extends to these also,

See Spec./4.3 and 4.5.

19.7.3 STRUCTURE ASSIGNMENTS

Values of one structure data item* may be
transferred to another in a body using a structure
assignment, Structure assignments have the sane
general form as other assignments: this form has
been described in Section 8.1,

19.8 BASIC FORM

As applied to structures, the rules become:

T W R N A RN W R v o e Gt T T W YA T R W M A T MR KR i (R P A S ek me e S ik A e Iy A W e T O W T o B T e YR M Em R e

Symbolic form: L -= R;

1. L is the .receiving structure dats
item. It may possess structure
subscripting.

2. R is either a second structure data
item, subscripted or not, or
alternatively a structure function
(see Section 19,11).

3. L, R must be tree~equivalent in the
sense described 1in Section 19.7.

* Unless specifically stated in Sections 19,8 through 19.12, a
structure data item may elther be a declared structure, or a minor

structure node.
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19.9 MULTIPLE ASSIGNMENTS

Several structure data ltems may be assigned values at
one assignment by the following construction first presented
in Section 8,5:

Symbolic form:
Ll’ LZ, L3; L B Y anRr‘

1. Li,... Ln are receiving structure data items,

2. Any L must be tree-equivalent to the R structure
operand,

3. No particular order cof assignment is assumed,

4, No variable may appear on the subscript line if it
4ls50 appear on the main 1line.

Examples:

Givens
|
! STRUCTURE Q:
| 1 QI INTEGER,
i 1 0B BOOLEAN;
{ DECLARE O0~STRUCTURE, Z01, ZQ2, ZQ3 (20):
| DECLARE I: INTEGER;
then
!
| 201, ZQ2 = ZQ3
i 5
assigns the values of the 5th copy of ZQ3 to ZQl and 7202,

But
l
I I, 203.91 = 10;
I - 5

is illegal.

19.9.1 Structures In Conditional Constructs

Relational exXpressions appear In the 1IF statement
described in .Section 9,1 and the D0 WHILE statement
described 1in Section 10,2, Such expressions may contain
comparative operations with structure operands.

Using the same nomenclature as in  Section 9.2,

structures can be used in Class II comparative operations
only:

-3
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Symbol Purpose Class N
= equals II
NOT = not eguals

The rules for structure comparisons are:

Sympolic form: L NOT

I I
ey

1. The L and R operands are elither structure data
items or structure functions (see Section 19.11).

2. The operands must be tree=-equivalent,

3. Two structures are_equal If, and only 1If, all
corresponding terminals have equal values,

19.9.2 Structure Arguments And Parameters

HBL/8/V procedures and functions may be defined with
structure parameters, and be passed structure arguments.

19.10 FORM OF STRUCTURE PARAMETERS

Any parameter of a function, or any input or assign
parameter of a procedure, may be declared to be a structure
using the forms 0f declaration described in Section 19.3.

Example:

ANALYZE: PROCEDURE(S1) ASSIGN(S2);
STRUCTURE S:
1 S INTEGER,
1 SN,
2 SB BOOLEAN,
2 5C -CHARACTER({(80);
DECLARE S1 S=S3TRUCTURE;
52 S8~STRUCTURE;

. ‘executable code

Page 19-20
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| CLOSE ANALYZE?

Observe the position.of the structure template.

19.11 ARGUMENT PASSAGE

Any argument of a function or procedure invocation
corresponding to a structure parameter must cConform to the
following rules:

INPUT PARAMETER, The transmission of the argument
can be viewed _as its assignment to the input
parameter, The following rules apply:

1. The corresponding argument must be a structure data item or a
structure function.

2, The argument and parameter must be tree equivalent,

3. Additionally, the input arguments must conform to those for
parameters of other types as specified in Chapter 11. The
input and assign ltists must be strictly disjoint - it is not
permissible for _one part of a structure to be in the input
1ist and another in the assign list.

ASSIGN. PARAMETER. The following rules apply for
matching of arguments to structure assign
parameters:

1, The assign argument must be a structure data item,

2. The argument and parameter must be tree-eguivalent.

3. The argument may only be subscripted if it 1is a declared
structure as opposed to a minor structure, and only then if
the subscript reduces the number of copies to ane,

4, The additional reguirements on assign parameters enumerated
in Chapter 11 _apply to structure arguments as well. For
instance, no assign parameter may be any part of an input
parameter 0f an enclosing function ¢r procedure block.

These rules are only relevant to procedures.
Examples:
Let the following be declared:
|

| STRUCTURE Q:
| 1 g1 INTEGER,
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I 1 Q1.

l 2 0B BOOLEAN,

t 2 QC CHARACTER(80)
| STRUCTURE R:

: 1 RB BODOLEAN,
!

I

!

LT

1 RC CHARACTER(80) ;
DECLARE ZQ Q-STRUCTURE,
ZR R=STRUCTURE,

YO Q-STRUCTUREC(10) ;

and let the following procedure be defined
TREE: PROCEDURE{D1) ASSIGN(DZ);

DECLARE D1 R=STRUCTURE,

P2 Q=-STRUCTURE,

|

|

I

i

I .
| : . procedure body
i

|

f

i

CLOSE TREE:

Both legal and illegal invocations of this procedure are
shown below:

] CALL TREE(ZR) ASSIGN(ZzQ):
] CALL, TREE(ZR) ASSIGN(YQ};
isS 4
i CALL TREE(Z(Q.01) ASSIGN (ZQ); illegal, input
and
and assign lists must
be disjoint
| CALL TREE(ZR) ASSIGN (ZR); illegal = no tree-
equivalence, and
knput and assidn
lists not disjoint.

19,11.1 Structure Functions

In HAL/S/V user functiogs may return & structure result type.
Such functions can be used .instead of structure data items in many of
the structure cperaticns described above.

Structure functions _follow similar patterns for their block
definitions and invocations as given in Section 11 f£for other data
types.
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19.12 BLOCK DEFINITION

As usual, the block 1is opened with @& characteristic opening
statement of the form:

----- S W gy oy e W B St W Ty e far Tl U W S gy e T W SN EE MM U TR G WS g R e A W e

label: FUNCTION (il1,i2, ...) a=STRUCTURE;
1. label 1is the name of the function.

2. 11,i2, ... 1ls the list of ilnput para-
meters. The entire parenthesized list
may of course be omitted.

3., a is the name of the template describking
tree oganization of the function. The
template must be defined in a block
visible (according to usual HAL/S/V scoping
ruies) to the opening statement. Note
in particular that the template cannot
be defined in a greoup of declaration
statements inside the function.

NOTE: For external procedure and function blocks this
is the only time when they may need compool templates
since they may not access variables except those which
are passed as parameters, as noted in Chapter 15.
Thus, compools containing only structure templates may
have templates 1in external bprocedure and function
blocks.

Example:

STRUCTURE Q:
1 Q1 INTEGER,
101,
2 0B BOOLEAN,
2 0C CHARACTER(80);

TREE: FUNCTION(I,J) QO-STRUCTURE;

LS mmn A A WA bt Wby, —— errn

function body

I CLOSE TREE;
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19,13 RETURN OF STRUCTURE QUANTITIES

The RETURN statement_of a structure function folliows the general
form described In Section 11.6, The return is similar to the
transmission of structure input arguments, the function itself playing
the role of parameter, _The relevant rules are the same as those
described for the passage of input arguments, as diven 1in Section
19,10, ;

Examples:

STRUCTURE S:
1 SB BOOLEAN,
1 SC CHARACTER(80);
STRUCTURE 0:
1 Q1 INTEGER,
1 Q1 S-STRUCTURE;

|

i

i

|

|

i

i

!

i

|

| .

| TREE: FUNCTION(D1) S=STRUCTURE;
| DECLARE D1 Q~STRUCTURE;
' L}
{

!

J

!

]

|

!

|

!

I

!

RETURN D1.Q1:

RETURN D1;
. mmeescsweae illegal, lack of
. ftree equivalence

CLOSE TREE?;

19.14 INVOCATION OF STRUCTURE FUNCTIONS

A structure funcfion is invoked in the same way as a function of
any other data type, as described .,in Section 11.4. It should be
noted, however, that the function may only be referenced as a whole No
reference, dgqualified or undgualified, may be made to minor structure
terminal nodes of its tree. )

Example:



STRUCTURES Page 19-25

STRUCTURE Q:
1 Q1 INTEGER,
1 91,
2 QS BOOLEAN,
2 QC CHARACTER(80);
DECLARE ZQ QO-STRUCTURE;
TREE: FUNCTION QO-STRUCTURE;

function body

S W ey B TR TR N O W

CLOSE TREE?

ZQ = TREE; legal invocation
7ZQ0.01 = TREE.Q1:; illegal iInvocation

RS MR weeeh e TS WA T W T M MY — —— — — o i——

19.14.1 Structures In Input/output

Inéut/output is not being considered in this document.



CHAPTER 20

HAL/S/V ARRAY PROCESSING FEATURE

The constraints described in Chapter 20 of the HAL/S programmer’s
Guide are primarily of the nature of programming cenveniences, That
is, any alleowable HAL/S operation one can perform on an array can be
done without them on a component by component basis in a loop. Though
somewhat less convenlient, this appreoach has several advantages.

1, Implementation dependencies arising from the ambiguity in the
order in which component operations are performed is
eliminated since the serial order of the operations 1is made
exXplicitly,

2, Operations such as "+" may be treated by the verification
system as non-generic and subject to a set of axioms which is
not dependent upon the tvpes of the operands.

3. Verification is greatly simplified. For instance, the number
of times a function is invoked is cobvious from the text and
not dependent upon the dimensionality of its arguments as it
may be in HAL/S. '

For these reasons, the constructs described in Chapter 20 have
been removed £rom HAL/S/V even though several or sll ¢f them may be
theoretically verifiable, Future work may relnstate some or all of
these constructs

20 - |



CHAPTER 21

EXPLICIT CONVERSIONS

Section 7.5 in Part i1 of the Guide introduced some of the Tmore
common explicit conversions of BAL/S/V and explicit precision
conversion was described., were described, The language contains many
more kinds of explicit conversions, however, which provide a
controlled and highly visible interface between the varlous data
tvypes.

This section deals with conversion functions, classifying them
according to the date type of their results.

2.1 INTEGER CONVERSIONS

The INTEGER conversion function converts to integer type, The
behavior of this functions varies, depending on whether it possesses a
single expression as argument, or a list of expressions,

SIMPLE FORM
The simple form of the INTEGER conversion function is:

INTEGER(exp)

1, exp is an expreésion of any of the following types:
BIT STRING (and BOOLEAN) INTEGER
‘CHARACTER

2. eXp may possess arrayness, in which case the arrayness must
match that of the expression of which the conversion forms a
part. The result is te cause an elemental conversion for
every elemental evaluation of the outer expression (See
Section 20.,2).

3. Conversions to integer type proceed according to the rules
given in Appendiyx A,

21 -
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LIST FORM

The list form ¢f the integer conversion function creates an array
result, 1In addition to tvpe converting the 1list of expressions
constituting its arguments, Its form is as follows:

INTEGER (eXp , XD seus)
1 2
n ln "o

1., The subscripts ni for i = 1,2 ... are positive integers
specifving the nymber and size of dimensions of the resulting
array. _The total number of values summed over all the
expressions in the list must be consistent with the number of
array elements implied, The upper 1limif on I is 3.%

2, The subscripts may be omitted entirely, in which case a
linear 1-dimensional array is created, whose length is eqgual
to that total number of values summed over all the
expressions,

3. Each exp is an expression of any of the following types:

INTEGER
BIT STRING (and BOOLEAN)
CHARACTER

and may optionally possess arrayness.

4. Cconversions to integer type proceeds according to the rules
given in Appendix A.

Note that the 1ist form can only have one expression in the 1list
without reverting to the simple form if explicit subscripting of the...
function is present,

The ordering of values of the expression list in the resulting
array is specified by the following:

1. The values of each expression in turn are converted to &
linear list by applving the rules of Appendix C.

2. The lists are catenated from left to right forming a single
linear list of values.

3. The linear list is regenerated to an array of the given
dimensions by applving the rules of Appendix C.

Nete that even though the function appears in an

* This number may vary between implementations. ©See the appropriate
User's Manual,
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arrayed ‘expression, in this and all other cases
involving the 1list form, the implementation is
generally to precompute the entire array result,
and theén evaluate the expression containing the
conversion on an element-by-element basis.

EXPRESSION REPETITION

The expressions in the 1list of an INTEGER conversion may be
repeated using the form:

1
eee NI CXD ,eeuw

i. n is a positive non-zero integer literal specifying the
number of times the value or values of the expression to
repeated.

SIMULTANEQUS PRECISION SPECIFICATION

In the absence of any explicit indication, the result of an
INTEGER conversion is always single precision.

1f no subscripting is present, the forms are:

INTEGER (eeee
@SINGLE

INTEGER (oune
@DOUBLE :

i. The first form forces a single precision result; the second
double precision.

2. Precision conversion .is carried out for each expression in
turn before assembly of the result.

If subscripting is present, the corresponding forms are:

INTEGER | PP
1 2
@SINGLE;B fn ..’.

INTEGER (eana
) 1 2
@DOUBLE,n , N 4.
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Examples:

INTEGER {x) simple form
@DOUBLE

INTEGER (°15°,BIE’1011°) 1ist form
@DOUBLE,?,2

21.2 BIT CONVERSION

Conversions to bit string type are carried out by the BIT
conversion function,  There are two forms: the simple form converts
other data types to bit string type using the standard conversion
rules; the radiXx form _can only convert character data type to bit
string type, and uses different conversion rules,

Both forms are similar to the simple form of INTEGER functions,
in that they have one expression only.

SIMPLE FQORM
The simple form of BIT conversion is as follows:

BIT .. Cexp)
subscript

1. exp is an expression of any of the following types:

INTEGER
BIT STRING (and BOOLEAN)
CHARACTER

2. exp may possess arravness in which case the arrayness wmust
match that of the expression of which the conversion forms a
part. The result is to cause an elemental conversion for
every elemental evaluation of the outer expression. f{see
Section 20.2)

3. Conversion to bit string type proceeds according to the rules
given in Appendix A. The result is always a 32-bit string.¥*

4, subscript represents component subscripting on the result of
the conversion., _ It possesses the same forms as component
subscripting on bit string data items as described in Section
17.3.

5. 1If subscript is absent, the result of the function is the
entire bit string generated by the conversion.

- - -y

¥ This value may vary between implementations. See appropriate User’s
Manual.
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Examples:

If I is a halfword integer with f= 5

then BIT (I} = 000005 -
16
If € is a character data item with ¢ = “10110011101"°
then BIT(C) = (0000000000000000000001011000112101)

‘ 2
BIT (C) = (000001011011101)
16 to 32 2
and BIT (C) = (11101)
28 to 32 2

RADIX FORM

The radix form of BIT conversion is used when & character value
is to be «converted by an explicit rule to a bit string. A radix
specifying the conversion rule is supplied in place of a subscript.
The possible forms are as follows:

BIT {exp)
@BIN

BIT {exp)
goCT

BIT (exp)
@DEC

BIT {exp)
LHEX

1. exp is an expression of character type whose value must
consist -.entirely of a string of digits 1legal <for the
specified radix.

2., The radices have the following meanings:

radix i “digit string
@BIN | pinary
L0CT ! octal
@DEC 1 decimal
| hexadecimal

BHEX

3. exXp may poessess arrayness with the same implications as in
the simple
form of BIT conversion.
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4, The conversion generates the binary representation of the
input
digit string. The binary representation is truncated or
padded with
binary zeroes on the left to create a 32«bit string.%*

Examples:

BIT ('FAG’) = 00000FAQ

@HEX 16
BIT (710247) = 00000400

@DEC 16
BIT ("177777°) = O0000FFF

8CGCT 16

BIT {("FOF1F2F3F4') = FIF2F3F4
@HEX 16

21.3 CHARACTER CONVERSION

Conversions to character type are carried out by the CHARACTER
conversion function. As with the BIT conversion, there are two fornms:
the simple form converts other data types to character form using the
standard conversion rules; the radix form can only convert bit string
data to character type, and uses different conversion rules.

STMPLE FORM
The simple form of CHARACTER conversion is as follows:

CHARACTER (eXp3
subscript

1, exp is an expression of any of the following tvpes:

INTEGER
BIT STRING (and BOOLEAN}
CHARACTER

2. exXp may possess arravness, with the same implications as in
the BIT conversion function. (See Section 21.3),

3. Conversion to character type proceeds according to the rules
given in Appendix A. The length of the result of conversion

¥ This value may vary between implementations.  See appropriate User’s
Manual.
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depends on the tvpe of the input data.

4. subscript represents component subscripting on the result of

the conversion, It possesses the same forms as component
subscripting on character data items as described in Section
6'1-

5. If subscript is absent, then the result of the function is
the entire string of characters generated by the conversion,
Examples:

If I is a halfword integer with I = 173
then CHARACTER(I) = 7173’ -

CHARACTER (1 = *17° -

i to 2
CHARACTER (1) = *173° -
170 5
1f B is a bit string of length 4 with
B = (0101) -
2

then
CHARACTER(B) = 101 -
{note removal of leading zeroces]

RADIX FORM

The radix form of CHARACTER conversion is used when a bit string
value 1is to be converted by an explicit rule to a character string.
Analogous to the radix form_of BIT function, & radix specifying the
conversion rule is supplied in place of a subscript. The possible
forms are as follows:

CHARACTER (exp)
@BIN

CHARACTER (EXP)
@OCT

CHARACTER {exp)
@DEC

CHARACTER (exp)
@HEX

i. exp is an expression of bit string type, and possibly
possessing arravpness with the same implications as in the BIT
conversion function.

2. The value of the kit string is coverted to a string of digits
as specified by the radix, removing leading zeroes.
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3. The radices have the following meanings:

radix I digit string

@RIN ] binary

@0OCT | octal

@DEC ]  degimal
@HEX | hexadecimal

4, The length of the resulting string varies depending on the
value of exp.

Lxamples:

CHARACTER (BIN‘001010°) = *1010

RBIN

CHARACTER (BIN'CO1010") = "1i2°
@CoCt

CHARACTER (BIN*C010107) = "10°
@DEC

CHARACTER (BIN"001010°) = 'A’

@HEX



CHAPTER 22

INPUT AND OQUTPUT

HAL/S/V incorporates entirely the input/output mechanisms of
HAL/S. Therefore, Chapter 22 of this document is omitted, being
identical to Chapter 22 of the HAL/S Programmer’s Guide.

2.2 -1



CHAPTER 23

REAL~TIME PROGRAMMING II

23.1 PROGRAM PROCESSES

Section 13.1 explained that at run time, the dynamic counterpart
0f HAL/S/V program is a real time process executing under control of a
Real Time Executive (RTE). It stated that this “primal process" could
treate other processes whose static .counterparts are task blocks
embedded in the program block, However, it is also possible to create
bprocesses whose static counterparts, rather than being task blocks,
are other program blocks, In order to avoid confusion, in the
remainder of this Section the prodram block corresponding to the
primal process will be called the "primal program".

The program blocks are the same in every respect as the primal
program block: they are separately compiled blocks of code., The
scheduling of program processes therefore, reguires the bringing
together of a number of compilation units at run time.¥*

This situation is analogous to the Iinvocation of external
procedures and functions as described in Section 15.

A prodram may inveike any other program in the same assemblage of
compilation units, or invoke any task block within itself, in order to
¢reate a nNew process. The prodrams Will probably need to share data
in one or more compocls, and may also share the use of comsubs,.®

Any program which creates a program process, obtherwise controls
its execution, perforce contains references to the program block which
is the process’ static counterpart. The first program must, under
these circumstances, bhe provided with a block template of the program
block referenced, The program template is inciuded in the compilation
unit of the first program in the same way as iIf it were a compool or

* The object modules resulting from their compilation have to be
"link~edited" to produce_a single executable load module. The way in
which the primal program is distinguished from the others iIn such a
load mogule is extra-lingual and implementation dependent.

¥ Interfaces with compools and comsubs have been described in Section
15,

23%-1
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comsub template, and is digcussed subsequently. Note however, that
since no recursion is permitted in HAL/S/V it would be useless for two
program blocks each to contain templates for the other and this may
not bhe done,

Program template should appear just before compoel templates.

External procedure and function blocks, as well as program
blocks, may contain SCHEDULE statements for creating processes.
However, because external procedure and function blocks may not
contain task block definitions, only program procCesses may be created
therebv,

To ensure correctness of version, program templates would be

subject to the same implementation dependent software management
scheme as for compool and consub templates (see Gection 15.1).

23.2 PROGRAM TEMPLATES

If a program template is included with a compilation unit, then
that compilation unit may invoKe the corresponding program to create a
new real time process,

A program template differs in the following respects from its
corresponding program:

the body of the block is empty;

the opening statement is modified as shown by the
keyword EXTERNAL,

: label: EXTERNAL PROGRANM;
|
1. label is the name of the corresponding program.
Example:
program block

ONE: PROGRAM?
DECLARE I INTEGER7;

¢ s w
"
i
+
[ry
~e

At s b bk r VNN e e e e m— A
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| CLOSE ONE;
corresponding program template:

ONE: EXTERNAL PROGRAM;
CLOSE ONE;

23.3 CREATING AND CONTROLLING PROGRAM PROCESSES

Processes created by invocation of & program differ very little
from processes created by invocation of a task block. Only the notion
of process dependency need by updated to allow for the existence of
preodgram processes,

23.3.1 Program Processes And Process Dependency

Section 13.1 introduced the concepts of the dependency of one
Process upon another. The basic notioen of dependency still stands:

When a process A creates process B, the latter may be specified as
"dependent" on the former, or "independent" of it. If B is dependent
on A, then it depends for its existence on the existence of A. If B
is independent of A, then A may cease to exist without affecting the
existence of B,

If£f B is a program process, these rules are always unequivocally
true, However, 1if B is a task process, as stated in Section 13,%,
there exists an overriding rule. Reinterpreted, this rule states that
a task process C, however created, 1s always dependent on the program
process whose static counterpart contains the task block whose
invocation caused C to be created.

By the use of program processes one can override somewhat the
restriction that tasks may not be nested. That is, if tasks are
actually written as external programs, one can produce the effect of
nesting to an arbitrary degree. To do so, however, is usually
indicative of poor program structure.

23,4 CYCLIC PROCESSES

Hitherto, a real time process has heen characterized as being in
the active state for some duration, wherein it is either ready,
executing, or waiting., As described in Section 13.3, such a process
finally returns to the inactive state when one of two conditions are
met:

the process is terminated by a TERMINATE
statement.
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execution reaches a RETURN or CLOSE of the related
static program or task block.

In either circumstance, the process makes only one pass through
the HAL/S/V code contained 1in the related prodgram or task block.
Subsegquent passes through the same code would thus require the
scheduling of a new procegss for each pass, Because of the unigueness
requirement stated in Section 13.4, each new process could only be
created when the previous one returned to the inactive state.

To avoid the burden of continual intervention otherwise required
to maintain cyclic execution of a program or task real time processes
are created by an extension of the SCHEDULE statement described in
Section 13.4, Without further intervention, the process will, during
execution, make an arbitrary number of passes through the code in the

related program or task block until some predetermined condition is
met.

23.4.1 states O0f A Cyclic Process

The possible states of a cyclic process are the same as those of
a non-cyclic process, as described in Sectjon 13,1, )

When a cyclic process is created by invoking a program or task
block from a SCHEDULE statement, the process makes a transition from
the inactive state to the active state. It is entered on the process
gueue in the ready or waiting state, according to the same criterion
as for a non-c¢yclic process.

When the cyclic process is first elevated to the executing state
by the RTE, it begins the first pass through the code of the related
program or task block. Unless otherwise prevented, execution will
eventually reach a RETURN or CLOSE statement in the block, whereupon
.the process will go into & waiting state until predetermined
conditions for the beginning of the next c¢ycle are met. At the
expiration of this waiting period, the process is returned to the
ready state, The relative priority of the c¢yclic process then
determines when the next cycle of eXecution begins,

A cvycle process can return to the inactive state in one of two
wayss:

by being terminated through eXecution of a
TERMINATE statement;

by being "cancelled" at the end of the current
cycle of execution, either because some
prespecified condition 1is met, or through the
execution of a CANCEL statement.

The implications of "cancellatlion" as opposed tc termination will
be examined in Section 23.6.
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23,5 SCHEDULE STATEMENT FOR CYCLIC PRCGCESSES

The form of a SCHEDULE statement for creating cyclic processes is
an extension of that for creating non~-cyclic processes. The cyclic
SCHEDULE statement conveys two additional items of information:

a4 condition for starting each new cycle of
execution;

& cancellation condition.

There are several versions, depending on the way in which the
above conditions are specified.

23.5.1 Immediate Recycling

The simplest version_of cyclic SCHEDULE statement is one in which
a new cycle of execution of the process is specified to start
immediately after the end of the previous cycle. This form is shown
below:

4 .
| SCHEDULE label initiation, REPEAT UNTIL time;
|

1. & process called label 1is created from the correspending
program or task block,

2. lnitiation specifies a priority, and optionally an initiation
condition and dependency of the new process, as described in
gection 13.4.

3. The kKeyword REPEAT signifies that the process is to be
cyclic. By default one c¢ycle is to follow another with no
interval in the waiting state,. }

4, UNTIL time specifies a cancellation condition. time is an

integer eXpression which when evaluated at the time of

scheduling gives the time in seconds* at which the process is
to be cancelled.

5. If the UNTIL phrase 1s absent, execution cycles indefinitely
until inhibited by other means.

Cancellation actually takes place at the end of the first cycle
which finishes later than the specified time.

Example:

s

* After the real time origin.
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|
! SCHEDULE A AT 1600 PRIORITY (40);

a non~cyclic schedule statement creating a process A to be initiated
1600 seconds after the real time origin,

|
| SCHEDULE B at 1600 PRIORITY (40), REPEAT UNTIL 3200;

A ¢vclic schedule statement creating a cyclic process B to be

initiated 1600 seconds after the real time origin, and to cease

cycling at the end of the first cycle completed after 3200 seconds.
Note that the following case causes a run time error:

{
| SCHEDULE C AT 1600 PRIORITY(40), REPEAT UNTIL 1000;

because the initiation time is ilater than the time at which cycling is
t0 cease, ’

23.5.2 Constant Intercycle Delay

The second version of <cyclic SCHBEDULE statement specifies a
constant delay between cycles of execution, This form is shown below:

i SCHEDULE 1label initiation, REPEAT AFTER delay UNTIL time;

1. A process called label 1is created from the corresponding
program or task block.

2. The meaning of initiation and time are the same as for the
previocus version of cyclic SCHEDULE statement,

3., AFTER delay specifies a constant delay between the end of one
cycle of execution and the start of the next. delay is an
integer expression whose value at the time of scheduling

B

specifies the delay in seconds.

Cancellation takes place in the same way as before, with the
provision that If the ¢ancellation condition is met in the interval
between cycles, cancellation takes place immediately,.

Example:
| SCHEDULE A AT 1600 PRIDRITY(49), REPEAT AFTER 100 UNTIL 3200;

A cyclic process A is scheduled, specifying a delay of 100
seconds between cycles of execution.



REAL-TIME PROGRAMMING II Page 23-7

23,5,3 Recycling At Specified Intervals

The third and last version of cyclic SCHEDULE statement specifies
that each new c¢ycle 1is to start a fixed interval of time after the
start of the previous cycle. This form is shown below:

| SCHEDULE label initiation, REPEAT EVERY interval UNTIL time;

1. A process called label is created from the corresponding
program or task block.

2. The meaning of injtiation and time are the same as for the
previous two versions of the cvclic SCHEDULE statement,

3. EVERY interval specifies that each cycle is to start a given
interval after the start of the previous cycle. interval is
an integer expression whose value at the time of scheduling

T e e e ek e A e

specifies the interval in seconds,

Cancellation takes place in exactly the same manner as with the
previous version of the SCHEDULE statement, '

Example:

| SCHEDULE A AT 1600 PRICRITY(40), REPEAT EVERY 200 UNTIL 3200;
|

A cyclic process A is schedule, specifying that cycles are to
succeed each other at intervals of 200 seconds. Note that if a cvcle
takes longer than 200 seconds to execute, the next cycle cannot start
on time and a run time error occurs.

An UNTIL phrase can also be used in & non-cyclic
SCHEDULE statement., See: Spec./8.3.

23.6 TERMINATING AND CANCELLING CYCLIC PROCESSES

When & cyclic statement is terminated by execution of the
TERMINATE statement described in Section 13.5, both the process and
its dependents are terminated, possibly in mid~cycle, subject to the
same restrictions described there. In the case of cyclic program
processes, anh additional restriction is described in Section 23.3.

Cancellation is a more graceful way of termination, It cannot
occur when a process is 1In mid~cycle, Further, when a process is
cancelled, its dependents &re not terminated immediately: the

following happens instead:

non~cyclic dependents are allowed to execute until
their normal termination;

cyclic dependents are allowed to finish their own
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current cycle of execution,

The process being cancelled is put in a waiting state until all
its dependents have become inactive; it then becomes inactive itself,
Cancellation conditions in SCHEDULE statements canncet be dynamically
modified, To cancel a cyclic process arbitrarily, the CANCEL
statement must therefore he used,

23.6.1 Cancel Statement

A CANCEL statement specifies the cancellation of a process, Its
form is as shown below:

|
i CANCEL label;

1, The appearance of label is optional. if present, the
statement causes cancellation of the active process called
label.

2. If label 1is absent, the process executing the CANCEL
statement is itself cancelled.

3. A process may cancel only itself or its dependent processes.

The effect of a CANCEL statement is as fellows:

I1f the process has not vet been initiated, it 1is
terminated and removed f£rom the proCess queye,

I1f the process is in a cycle of execution, it is
cancelled at the end of the cycle.

If the process is waiting between cycles, it is
cancelled immediately.

NOTE S The effects of cancellation are somewhat implementation
dependent. Namely, depending upon how many processors are available
on & particular machine and how fast processes run, dependent
processes may have cycled a variable number of times. The programmer
should pe aware of this fact when accessing shared data after
cancellation.

CANCEL statements c¢an actually be applied to non=cyclic
processes, Dbut unless the process has not yet initiated they have no
effect., If the process has not been initjated, the process is removed
from the process queue, just as if it were cyclic.

Examples:
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| CANCEL; self cancellation
| CANCEL BETA;

If a number of processes are to be cancelled simultaneously,
CANCEL statement can specify a list of process names: -

| CANCEL ALPHA, BETA, GAMMA;
|

the



CHAPTER 24

REAL TIME PROGRAMMING = III

This section concludes the description of HAL/S constructs for
real time programming, which was begun in Section 13 and continued in
Section 23. The remaining topic of discussion is a HAL/S/V construct
called the "event", and its use in real time programming.

The original idea behind the HAL/S/V "event" was that it should
serve as an interface between HAL/S/V software and hardware
interrupts; that 1is, the medium through which the arrival of
interrupts wWould be signalled to the HAL/S/V program. Hence, the
HAL/S/V vevent" was concejved as a Boolean-valued data item, normally
FALSE in value, but becoming TRUE, on the arrival of the interrupt.¥
The assumption was that the values of "events" at any given time could
control the execution of real time processes by the RTE.

An extension of this idea was the definition of the ability to
simulate the arrival of interrupts by changing the values of "events"
within the HAL/S software itseilf.

However, the underlying operating systems of most machines do not
allow for interfaces with interrupts ¢f the above nature. Hence, the
simulation property of "events" has become theilr major role: the
apility to signal a software condition in one real time process
asynchronously to other processes by use of HAL/S "events" has become
a real time programming tool ¢f considerable importance.

24,0,1 Hal/s Events

A HAL/S event is a Boolean-valued data item whose value is
visible at any instant to the RTE, Except for this latter
gualification, whose importance will be appreciated later, an event
differs 1little from the Boolean data item f£irst introduced in Section
4 of Part I.

¥ Clearly, there would need to be some extra~lingual,

implementation dependent way of relating Pparticular "events" to
particular hardware interrupts.

24 -1
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A HAL/S event possesses & "latching" property and may be set in
value to either TRUE or FALSE. The values of events can only be
changed by special HAL/S statements, hot by simple assignment.

Event expressions consisting of logical operations on event data
items can be synthesized: the instantaneous values of such event
expressions can be used to modify the activity of the RTE in

controlling real time processes. Event expressions can be used in the
following circumstances:

in a BSCHEDULE statement, to specify a condition  for
initlating a process:

in a cyclic SCHEDULE statement, to specify a cancellation
condition;

in a WAIT statement, to specify a condition for ending the
period a process is to remain in the waiting state,

24,0.2 Declaration 0f Event Data Items

The declaration of event data items is similar to the declaration
of Boolean data items as described in Section 4.2 o0f the Guide. The
basic forms are as follows:

DECLARE name EVENT LATCHED:

name is any legal HAL/S identifier,

Note: the word LATCHED is retained to make the HAL/S/V subset
compatible with HAL/S.

Examples:
I

i DECLARE EVZ EVENT LATCHED;
!

COMPOUND DECLARATIONS

Declaration of events may be mixed with declarations of other data
types in compound declarations:

DECLARE I INTEGER DOUBLE,
E EVENT LATCRED;

The keyword LATCHED is an attribute which may be factored.
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Example:

| DECLARE El EVENT LATCHED,
! E2 EVENT LATCHED,
f E3 EVENT LATCHED,

may be rewritten more compactly as

| DECLARE EVENT LATCHED, E1, E2, E3:
|

INITIALIZATION

All declared event data items are implicitly initialized to a
FALSE value¥. An event data .item may possess explicit initialization.

It is initialized as if it were a Boolean data ltem, as described in
Section 4.3.

Examnples:

I DECLARE EV1 EVENT LATCHED INITIAL (TRUE):;

| DECLARE EVZ2 EVENT LATCHED CONSTANT (OFF);

| .

i (Note: a constant event is 0f little use
even though legal in HAL/S.

ARRAYS OF EVENTS

An event data item may be arrayved, its array property being
specified in the same way as described in Sections 4.2 and 18.1.
Event arrays with the latching property may be initialized as
described in Sections 4.3 and 18.2,.

Exanple:

i

| DECLARE EZ ARRAY(2,2) EVENT LATCHED INITIAL (44TRUE);
i

EVENTS IN STRUCTURES

A terminal node in a structure may not be an event. (See Section

19.3

¥ fThis is the only HAL/S data type which is implicitly
initialized.
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24,0.3 Event EXpressions

An event expression is an expression composed 1in general of a
series of logical operations upon event operands in.the.

e sl g e il gy

context.of_a-.SCHEDULE..or_WAIT.statement. The simplest case of aNe—-
event expression is a lone event operand,

An event expressiocon has the curious property that its evaluation
is under control of the RTE and may take place more than once at times
other than that of execution of the SCHEDULE or WAIT statement it
appears in.,

OPERATIONS AND OPERANDS

The operations legal in an event expression are the Boolean
operations described in Section 7.3.

.,.[,.--—- ----- ok s gy wE W A W AW gy B T WY W W SN W WY AW A A T RN EN M W P MR W W +

I Symbol i Purpose i
| i
1 & | logical intersection ]
i AND | i
| i i
i | | logical conjunction |
| OR | |
| I |
i - l logical complement |
I NQOT f |

+ --------------- ek ey S W W e T R W W AR e e W Ay e e - T e e B +

The behavior of the operations is eXactly as 1f the operands were of
Boolean data type rather than event.

The operands in an event expression are solely event data items.
Operands which are event arravs must possess array subscripting which
selects onhe, and only one, array element, Such array subscripting is
the same &s used for the selection of array elements from Boolean
arrays, and has been described in Section 6.2 and 18,3, with the
exception that the ending colon is optional rather than mandatory.

EXECUTION OF EVENT EXPRESSIONS

It was stated earlier that event expressions are evaluated under
direct control of the RTE, and not necessarily only at the time of
execution of the SCHEDULE or WAIT statement in which they appear. The
reason for this can now be explained.

Event expressions are placed in SCHEDULE and WAIT statements to
provide dynamic cenditions for controlling the execution of processes.
0n a basic level the conditions control the transition of processes
from state to state, and thus the activity o0f the RTE iIn swapping
pProcesses.



REAL TIME PROGRAMMING =~ III Page 24-5

Hence, it is approprjate to evaluate an event expression, not
only &t the time of execution of the SCHEDULE or WAIT statement it
appears in, but subsequently whenever the value of any of its event
operands 1s modifled. This is why the values of events are visible to
the RTE., Not only each event operand, but the entire event expression
has to be accessible to the RTE so that it can perform re-evaluations
when required.

If an event expression contains subscripting which has to be
evaluated at run time, then the subscript calculation takes place only

Sty s e

once, when the event expression itself is first evaluated upont them—.

execution of the SCHEDULE or WAIT statement it appears in.
Example:

DECLARE EV ARRAY(5) EVENT LATCHED;
DECLARE 1 INTEGER INITIAL(C1);

f
]
|
|
]
]
l
| .
I WAIT FOR EV ;

IS I

| I=1+1;

]

The RTE first evaluates EV(I) when the WAIT statement is executed,
and thus 1is interested in the value of EV{i) since I=1, Whenever

the expression is re=-evaluated, it i1s the value of EV(1) vwhich 1is
examined, even though the value ©of I may since have changed.

24.0.4 CHANGING VALUES OF EVENTS

HAL/S uses a special terminology for the operation of changing
event values,

An event with the latching property is said to be “set" when
its wvalue 1is forced TRUE, and "reset" when its value is
forced FALSE,

These c¢perations are carried out by the HAL/S SET and RESET statements
respectively. Changes 1in value of an event data item as a result of
one of these statements is visible to the RTE for the reason outlined
in Section 24.3.

SET AND RESET

The forms of the SET and RESET statements are shown below.
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i SET var;
i RESET var;

1. In either form, var is a latched event data item.
If it is arraved, it must possess array subscripting
«causing the selection of one and only one array
element,
(See Sections 6,2 and 18.3).

2. SET causes the value of var to be forced TRUE;

RESET causes it to be forced FALSE.
e e e - o

Note that the SET statement does not c¢ause an event which is
already FALSE to change in value, Hence, the RTE does not necessarily..a.
always sense an event change when such a statement is exXecuted,

24.0.5 EVENT EXPRESSIONS IN SCHEDULE STATEMENT

Event expressions may appear in a SCHEDULE statement for two
reasons:

to specify a condition for initiating a processj

to specify a condition for ceasing to cycle a process,

INITIATION OF AN EVENT CONDITION

Section 13.3 descrived two time conditions under which the
initialization of a process created by the SCHEDULE statement could be
delayed., A third means of delaying:initiation is to delay it pending
the value of some event expression becoming TRUE. The basic form of
SCHEDULE statement for this is shown below.
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SCHEDULE label QN exp PRIORITY(a) DEPENDENT;

1. A process label is created from the corres-
ponding program or task block and placed on the
process queue.

2. PRIORITY(a} and DEPENDENT have the saime
meanings as described in Section 13.3 for
other forms of SCHEDULE statement.

is TRUE, when the SCHEDULE statement is
eyecuted, the process is placed in the
ready state,

4. If its value is [FALSE, the process is placed
in a waiting state until its value becomes
TRUE, whereupon it is transferred to the
ready state,

R A W EE AT WO I AN N W TEN S Al U mr W S M amt S T W g o n wer A e SR AR M A A U W VT e o vy U my S e me v TR W am A A ue .l.
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i

|

i

]

|

I

|

!

i

| .
I 3. exp 1s any event expression. TIf its value
|

|

|

i

|

|

f

|

+

CANCELLATION ON AN EVENT CbNDITIUN

Section 23,5 described three versions of cyclic  SCHEDULE
statement, in each of which the cancellation could be specified at a
certain time. There are two ways of causing cancellation on an event
condition:

Cyeling may be allowed to proceed while an event expression

remains TRUE.

Cvcling may be allowaed to proceed until an event expression

becomes TRUE.

¥ CYCLING while TRUE

The following form of cyclic SCHEDULE statement causes cycling of
execution to proceed while an event exXpression remains TRUE.
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|SCHEDULE label initiation, REPEAT cycle WHILE exp;

1. A process called label is created from the
corresponding program or task block,.

2. initiation specifies a priority, and optionally
an initiation condition, and the dependency of
the new process, as described in Section 13.4.

3. cycle optionally specifies a criterion for
recycling execution as déscribed in Section 23.5.

while the value of exp remains TRUE. eXp is any
event expression,

S. If the value of exp becomes FALSE before the
process is initiated, it 1s merely removed
again from the process queue, and hecomes

]
[
|
|
|
]
I
|
I
|
I
. |
4, WHILE exp specifies that cycling is te continue |
I
|
|
i
]
|
inactive, '

+

f
|
!
;
|
i
i
!
i
|
t
[
|
!
i
|
|
i
|
i
+

Cancellation of the process actually occurs at the end of the
first c¢ycle in which the event expression becomes FALSEX, TIf the
event expression becomes FALSE 1iIn the Interval betweep cyciles,
cancellation takes place immediately.

¥ CYCLING until TRUE

& modification ¢0f the above form allows cycling of executicn to
proceed until an event expression becomes TRUE, This is not merely a’
simple inversion of logic since the value of the event expression 1is-
not allowed to take effect until after the first cycle of execution of
the process has started., In contrast to the above form, the following
modification always allows at least one cycle of execution to be
completed.

L

* Even if it subsequently becomes TRUE again during the same
cycle.
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|SCHEDULE label initiation, REPEAT cycle UNTIL exp:

1. A process called label initiation is created
from the corresponding program or task block.

i
i
|
f
. |
2. The meanings of initiation and c¢ycle are as {
for the previous form of SCHEDULE statement. ]
|
|
i
i
}
|

3, UNTIL exp specifies that cycling is to
continue until the value of exp becomes
TRUE, with the provision that at least one
cycle shall be execufed. exXp is anv event
expression.

o o S ——— - D e e - P L L L L . ] e WY W e +

Cancellation of the ﬁrocess occurs at the end of the first cycle
in which the event expression becomes TRUE%. If it becomes TRUE in
the interval between cycles, cancellation takes place immediately.

24,0.6 EVENT EXPRESSIONS IN WAIT STATEMENT

Section 13,5 explained how the WAIT statement could bpe used to
force a process into a waiting state until some timing condition is
satisfied. The WAIT statement can alternatively specify an event
condition. This causes a process to remain in a waiting state until
some event expression becomes TRUE, whereupon the process returns to
the ready state.

The form of this version of the WAIT statement is as follows.
1— ———————————————————— = W R W e B S R -y W G WEER R G W NE YR N W A W W -
i WATT FOR exp?;

1, exp is any event eXpression,
2, The process executing the WAIT statement

.is placed in the wvaiting state

until the value of exp becomes TRUE.
3. If exp is already TRUE when the WAIT

statement is executed, the statement has
no effect,

+-—-—-——-—-—w——-—-—m-——-———

¥ Even 1f it subsequently becomes FALSE again during the same
cycle,
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24.0.7 PROCESS EVENTS

Section 13.5 stated that the name 0f a process could be used as
1f it were a Boolean data item in order to determine the major state
of the process. The names of processes .can also be used 1in event
expressions as 1f they were event data items., In this context they
are called "process events."

The truth table shows again the correspondence between logical
value and major state.

oo - -
| State | Value |
|=mme- e ———— tremm - —————— el

- ACTIVE | TRUE i
f INACTIVE | FALSE |



CHAPTER 25

ERROR RECOVERY AND SIMULATION

HAL/S compilations can be created which, althoudgh seen as legal
at compile time, violate the rules of the language during execution,
Such violations give rise to "run time errors", Run time errors are
also produced when abnormal hardware conditions are encountered during
execution,

HAL/S has a comprehensive and flexible mechanism for detecting
and recovering from run time errors. It 2lso has the capability of
simulating rTun time errors, which can be extremely useful for checkout
purposes. Another feature of the language is the ability to specify
and signal user-defined run time .errors.

This section explains_how run time errors are handled as part of
the activity of the Real Time Executive (RTE) and describes statements
by which HAL/S programmers can extend or modify this activity.

25.1 HAL/S RUN~TIME ERROR CONCEPTS

Each HAL/S implementation possesses 3 defined set of run time
errors which are detectable during execution. These errors are called
"system-defined" errors. The HAL/S user may, at will, create a
certain limited number of supplementary "user-defined” errors for his
OWn purposes, Each run time error, whether system~defined or
user-defined, possesses a unique numerical "error code" by which it
may be referenced in a HAL/S compilation. This error code consists of
two partis:

* an error number;

¥ an error member number ¥

T ey

ke

¥ The classification into groups and the assignment of error codes 1is
implementation dependent., 35ee appropriate User’s Manual.

25-1
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25.2 ERROR DETECTION AND RECOVERY

The activity of detecting and recovering from run time errors is
handled by an Error Recovery EXecutive (ERE) which in practice is part
of the Real Time Executive (RTE). For every error group, and
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implementation-dependent, standard, system recover action is defineds,
On detecting an error belonging toe a certain group, the ERE takes the
appropriate system recover action <for the group, unless otherwise
directed by the user.

Depending upon the kind of error, the system recovery action may
be any one 0f the following:

. Lo execute a fix~up routine and continue;
« to terminate execution abnormally:?
. Lo ignore the error.

25,3 ERROR ENVIRONMENT OF A PROCESS

The behavior of the ERE In detecting and recovering from run time
errors must be viewed from fthe standpoint of HAL/S as & :real time
programming language.

Every active real time process possesses its own so-called “error
environment", which is essentially a description of the recovery
actions in force for all possible run time errors the process could be
subject to. On initiation of the process, the system recovery action
is in force for all run time errors. During the life of a process,
its error environment may be modified by the specification of a "user
recovery action" f£or some error or error group. The user recovery
action is enforced by the execution of specific¢ HAL/S error control
statements which will be described later.

A process may only modify its own error environment, never that
of another process.

25.4 DYNAMIC SCOPING OF ERROR ENVIRONMENTS

Puring its execution, & process may invoke procedures and
functions,which may in turn invoke further procedures and functions,
and so on to an arbitrary depth of nesting. made to the error

environment during execution of & procedure or function remain iNao.-.
force only until return from it. Thus, execution of HAL/S eErrora.—..

-— e W —

control statements has an inherent dynamic scoping property.

Consider an eXample where process A 1is 1invoking procedure B
during execution, which in turn invokes procedure .C.

. Modifications to the error environment made in
A remain in force for the remainder of &’s
execution unless countermanded by removal -
or further modification.

. Modifications made in B remain in force until
¥ See appropriate User's Manual.
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return from B unless countermanded by removal
or further modification B.

. Modifications made in C remain in force until
return from C unless countermanded by removal
or further modification in C.

It is stressed that this 1s a dynamic scoping property, that 1is

not related to whether or not, £for example, procedure blocgck C is
physically nested inside procedure block B, -

Further clarification is required in cases where more than onhe
process can invoke the same procedure or function. If two processes
Al and A2 both execute the same procedure B, then error control
statements executed in B affect the error environment of whichever
‘process is executing B,

The error environment in force for each process on invocation of
B is reinstated on return from B, There 1is no cross-coupling effect

between the two error environments.

25.4.1
Error Environment Modification

HAL/S possesses two statements which c¢an alter the error
environment of the process which executes them,

» The ON ERRUR statement modifies the error
recovery action for a particular error or
error group.

+ The OFF ERROR statement causes the removal
of a previously~applied modification for
a particular error 0r errorn droup,

Both statements have an identical construct for representing the
error droup and member numbers involved,

25.5 ERROR GRQUP AND MEMBER NUMBER SPECIFICATION

Error group and member numbers appearing in the HAL/S ON 'ERROR
and OFF ERROR statements are specified by appropriately subscripting
the Keyword "ERROR". Three basic froms exist. Each form 1s dealt
with in order of decreasing generality.

+« SPECIFICATION OF ALL ERRUORS
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To specify all errors, the keyword ERROR, without
subscript, is used:

ERROR

1. Liack of subscript implies all
members of all error droups.

SPECIFICATION OF ALL ERRORS IN A GIVEN GROUP

To specify all members in & given error group the
following form is used:

ERROR
ms:

i. m is an unsigned integer literal.

2., All members In group m are
specified.

3. The colon is optional.
SPECIFICATION OF A GIVEN ERROR

To specify a given error member of an error
group, the following form is used:

ERROR
min

1. m, n are uynsigned integer literals.

2. Error member n in group m is
specified.

25,6 ON ERROR STATEMENT

The ON ERROR statement is used to modify the error environment
with respect to the error or errors specified., The statement can
modify the error environment in the following ways:

« Dy causing the error or errors to be
lgnored; .+« CASE 1

. by causing the standard system recovery
action to be taken; »ee CASE 2

« Dby causing execution to branch to specified

HAL/S code on occurrence of the error. ee» CASE 3
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In addition, in the first two forms, the value O0f an event data
item c¢an be changed on occurrence af the error or errors.

An ON ERROR statement may specify system~defined or user-defined
errorsw,

CASES 1 2 : SYSTEM AND IGNORE ACTIONS

The basic form of the ON ERROR statement is as shown below:

| ON specification SYSTEM:;
i ON specification IGNORE;

1. specification is an error specification
of the form previously described.

2. The keyword SYSTEM states that stan-
standard svstem recover action is to
ftake place,

3. The keyword IGNORE implies that
errors specified in the specification
are to be ignored,

Examples:

| ON ERROR SYSTEM; revert to standard system

| recovery action for all errors.
i

I ON ERROR IGNORE; ignore error member 4 in

) 1:14 group 1.

{

| ON ERROR SYSTEM: revert to standard system

1S 3 recovery action for all

]

errors in group 3.

If the value of an event is to be changed in addition to the
actions specified above, one of the following clauses is added after
the keyword SYSTEM or IGNORE.

ess AND SET var ...
eas AND RESET var ...
ese BND SIGNAL var ...

1. SET, RESET, and SIGNAL have the same
actions as described in Section 24.4
¢0f the Guide.

e .

¥ For reasons of software security, some implementations may prohibit
the modiftication of the error environment with respect to certain

errors. ©See appropriate User’s Manual.
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2. If var contains run time subscript
. evaluations, they are carrled out
at the time of execution of the
ON ERROR statement rather than on

the occurrence of the specified
error or errors.

On the occurrence of_ an error covered by the error specification,
the value o0f fhe specified event date item is modified before the

T o e g e o

SYSTEM or IGNORE is taken by the ERE.
Examples:

| ON ERROR IGNORE AND SET EV1:;

] ON ERROR SYSTEM AND SIGNAL EV2 ;

IS 1:1 5

! ON ERROR SYSTEM AND SIGNAL EV3

) 5 I

|
I is evaluated on execution of
the ON ERROR statement, not on
the occurrence of an error in
group 5.

* CASE 3 ¢ USER~SUPPLIED ACTION

The user can supply the action to be performed on an error
occurrence by means of the following form of ON ERRUOR statement.

| ON specification statement;
i

1. specification iIs an error specification
in the form previously described.

2. statement is an executable HAL/S
statement with which execution 1s
resumed after occurrence of the
specified error condition.

3. statement may possess a statement
label but cannot be branched to
from outside the ON ERROR statement

4, This kind of ON ERROR statement may not
form by itself the "truye part' of an
IF statement. {See Section 9.1).

It is important to understand the flow of execution implied by
the above form, both when the ON ERROR 1is exXecuted, and on the
cccurrence ¢f an indicated error. The following example shows this in
detail,
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Example:
| On ERROR Do;
IS 5:1 user~supplied error
| recovery action is
i this entire DO..,.END
| group.
i
| END;
| I = I+1;
I -
| .
I -
I »
l -
] .
| ¥ error 5:1 oocurs.
i

The ON ERROR 5:1 DO...END; statement modified the ERE‘'s action
for ERROR 5:1, During the ©prodgram execution, wen ERROR 531 is
encountered, ERE dirscts the flow of execuytion toe the statement ON
ERRORS5:1 D0O...END; in the program block,

In HAL/S/V, we make it mandatory that the first executable
statement in the block be:

ON ERROR RETURN; (for procedure)
ON ERROR RETURN expression; (for functions)

This will prevent the execution flow from branching to any error
handling block outside the current procedure or function block. In
HAL/S, depending on the dynamic structure of the error-specification
environment, a process can jump outside the block in which the error
is encountered.

The exlt assertions for a block can be written by taking into
account &all the possible points, inside the block, where the errors
can occur. In a similar fashion the entry assertions, for the
error-handling blocks In ON ERROR statements, can be specified,

25,7 PRECEDENCE OF ON AND OFF ERROR STATEMENTS

Some additional information needs to be supplied 1n order to
understand in detail how successive execution of several ON and OFF
ERROR statements modifies the error -environment ¢of a process.

In general, an executing process A is executing code in some
block several nesting levels of invocation depth, as 1llustrated
below:
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A invokes B invokes C

O — O — —

The ERE keeps cqntinuously updated lists of all error
environments modifications iIn £force at any instant of time.¥ When
execution of the process A described above is in the body of block (C,
the FERE possesses three linked lists of ON ERROR modifications, each
corresponding to a block not yet returned from:

A LIST A

i ERE’s lists of

i . error environment
B LIST B modifications.

i

|

C LIST C

When block C is returned from, LIST ¢ is deleted, leaving LIST &
and LIST B in force. When block B is returned from, LIST B is deleted
leaving only LIST & in force.

Each 1lit is diveded into three sublists as illustrated below for
LIST C: .

LI LR R R L B X

sublist C modification applic~
i able to all errors
LIST C sublist C modification for
-~ 2 given error group
sublist C modifications for
3 glven error code

. Sublist €3 contains modifications generated
by an DN/ERRDR statements of the form:

ON ERROR  vcesse
msn

« Sublist C2 contains modifications geherated
by ON ERROR statements of the form:

b

* This description of the ERE’s behavior is representational only: an
actual implementation of the ERE may employ different algorithms
producing the same result,
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ON ERROR +.ees
m

. Sublist Cl can contain at most one entry,
the modification generated by an ON ERROR
statement of {he form:

0N ERROR.....

. If a new ON ERROTr statement in block € is executed, then one of
the feollowing happens:

» i1f an entry in the appropriate sublist exists
for the given error specification, the entry is
replaced with the new information gained, thus
erasing memory of the previous recover action
specified;

. otherwise a new entry is added at the end of
the sublist.

With this background, the behavior of ithe ERE in recovering from
a run time error can now be des ribed in more detail, Suppose that a
run time error occurs while execution is in block C, O0On detecting the
error, the ERE gains contreol and scans backwards through the lists
until it finds an entry applicable to the error which occurred, The
ERE may find such an entry in any of the lists A, B, or C, in which
case it takes the indicated recovery action; or it may £find no such
entry, in which case it takes the standard system recovery action.

Bearing in mind how entries are made intc the sublists of error
environment modifications, up to three entries may be applicable to a
given run time error:

. an entry applicable only to the given error;

. an entry applicakle to the whole group of
which the glven error is a member;

. an entry applicakle to all errors.

Given the sublist scanning order described, it is clear that
there is an inherent precedence order of ON ERROR statements.

S W W S R W A e W v v W YE OE M B MR W MR M R W YW e e oo VR B n e apw per ik wm R R R MY M W WE R W o

Errar I Precedence
Specification |
| | FIRST
ERROR I error coge ] 1

m:n | specification |



ERROR RECOVERY AND SIMULATION

ERROR error group 2
m specification
3

|
i
|
|
ERROR | specification
| of all errors
]
|

Example:

Page 25«11

If the following statements have been executed in a

block:

i ON ERRQR GO TO ALPHA:;
1S 5:1

| ON ERROR GO 'TO BETA;
|3 54

| ON ERROR IGHORE;

|

Then if error 5:1 occurs, eXecution branches te ALPHA,

It

error 533 occurs, execution branches to BETA. If error 6:1

occurs, the error is ignored,

The above are true no matter in what order the ON
statements have besn executed.

The behavior of an OFF ERROR statement now also becomes
On execution of an OFF ERROR statement in, say, block C, the
through the whole of LIST C and on finding an entry with
error specification, removes it from its sublist. This may
the scanning process another modification in another sublist
or a modification in LIST A or LIST B.

Example:

ERROR ~

clearer,
ERE looks
the same
expose to
of LIST C

If the following statements have been executed

in a block:

| ON ERROR GO TO ALPHA:;
s 5:1

{ ©ON ERROR GO TO BETA:;
I8 51

i

then if error 5:1 occurs, execution will branch

to ALPHA. If now the following statement is
executed:

i OFF ERROR ;

18 5:1

|
and afterwards error 5:1 cccurs, eXecution
branches to BETA,
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25.7.1
ERROR SIMULATION

At the beginning of Section 25 it was stated that run time errors
could ke simulated. 1In fact, the same HAL/S construct is used both to
simulate "system-~defined" errors and to signal "user-defined" errors.
This construct 1s the SEND :‘ERROR statement, whose form is shown below:

] SEND ERROR H
| m:n
|

1. m and no are unsigned-integers
representing an error group
number, and an error member
number respectively.

2., If the error code m:n represents
a system~defined error, that error
is being simulatedx,

3. If the error code min represets a
user-defined error, that error is
being signalled.

The recover action taking place on execution of a SEND ERROR
statement 1is as 1f the .«corresponding run time error had really
occurred.

Example:

ON ERROR GO T0 ALPHA;
S 5:

-

*

SEND ERROR H
S 5:2

— t w—— aren e b e Al o

Error 5:2 is simulated or signalled: a previous
ON ERRDR statement has modifled the recovery
action for error group 5, so that the result

is a branch to ALPHA.

In this example, 1t is immaterial whether error

* For reasons of software security, some implementations

may prohibit certain system-defined errors from being simulated.,

See appropriate User’s Manual.
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512 is system-defined or user-defined,



CHAPTER 30

MANAGERIAL CONTROL OF ACCESS TO DATA AND CODE

The constructs for access control described in Chapter 30 of the
HAL/S Programmer ‘s Guide are noet relevant tTo verifiability.
Therefore, HAL/S/V makes no changes to this material.

However, there is another varlety of access control for which no
constructs are provided by HAL/S. This involves the protection of
data types, procedures, program and task blocks, etc., on a more
selective basis than_ that provided by the HAL/S ACCESS construct, For
instance, one may wish to permit the use of a module without
disclosing its internal structure. Use of the HAL/S keyword ACCESS is
suited to "all or nothing" protection of sensitive data or code, but
net to selective control,.

There exist well=~understood techniques for implementing such
access control. These Include capabilties, access lists, and data
abstractions. Future enhancements to HAL/S/V will undoubtedly contain
some such facility.

The benefit for verifiability derives from the fact that verified
modules can be treated as "black boxes" whose behavior is completely
specifled as a function of the input parameters. The internal
workings of such modules are of no concern to the user and may be made
completely inaccessible to him. Moreover, :the ways in which modules
can be utilized can be carefully controlled.

20 - |



CHAPTER 31

INTERFACES WITH NON-HAL/S/V CODE

HAL/S/V makes no changes to the material in Chapter 34 of the
BAL/S Programper's Guide, The ability to call subroutines written in
non~HAL/S/V code is a valyable feature of HAL/S/V.

The prodrammer is cautioned, however, that the verifiabllity of a
program is highly dependent upon the programming language in which it
is written. Assembly language, for instance, makes no restrictions on
the accessing of storage locatlons, aliasing, etc. Hence, in assembly
language programming, the structured appreach so ¢riticar to writing
verifiable programs 1is left entirely to the discipline of the
individual programmer rather than enforced by the scope rules, block
structuring, etc., present in HAL/S/V. )

The HAL/S/V programmer concerned with the verifiability of his.
pregram must consider the possibilty that non-HAL/S/V code segments
may be extremely difficult to verify. If such code blocks could be
regarded as "black boxes" computing a known functiom of the input
parameters, they would not adversely affect the verifiability of the
calling routine, However, the difficulty involved in verifving these
code segments is precisely the Inability to confidently assert that
such a function 1is computed. Modular programming becomes crucial.
The programmer must take care that the interfaces with non-HAL/S/V
code segments be well-defined and as narrovw as is feasible.

The Gypsy programming languadge enhances the ability to write
verifiable programs since it includes specification capabilities and
restricts troublesome constructs. The apility to define iInterfaces
with Gypsy c¢ode would permit formal verification of crucial code
segments written in Gypsy and .called by a HAL/S/V main routine,.
Alternatively, designing a facility for automatic translation from
HAL/S/V to Gypsy and vice=-versa, would permit the verificaion
facilities designed for Gypsy to serve for HAL/S/V as well, Future
enhancements to HAL/S/V might consider such features,

3|



CHAPTER 26

DATA STORAGE AND ACCESS

Given the purposes for which HAL/S/V 1s intended, the way in
which declared data is physically located in the core of the object
machine will often be an important concern. In particular, 1in the
design of HAL/S software, the following gquestions must often be
addressed?

1. Dges the declared data occupy as sm&ll an area of core
as is practical?

2. Is the data physically ordered as it was declared?

3. Can some non-critical data be relegated to segments of
core addressable by slower methods to make more room for
critical data?

4, Can use bhe made of registers or temporary storage areas
for some data?

HAL/S/V contains constructs by whose means some dedree of control over
each one of these factors can be achieved., Necessarily, the degree of
control is implementation dependent.

26.1 PACKING DENSITY OF STORED DATA

The efforts that any HaL/S/V compiler makes to optimize the
density of storage of data items are Iimplementation dependent.
Generally speaking, however, the default assumption is that
optimization is relatively unimportant compared with speed of access.

The attribute DENSE, when applied in the declaration of data
itenms, causes more emphasis to be placed on storage density
cptimizatien at the expense of rapid access. Potentially, the
attribute DENSE may be applied to data of any type, although it is a
matter of implementation as to when it causes packing density to
increase. )

26-1
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26.2 DENSE STRUCTURES

Packing density optimization is most commonly applied to HAL/S/V
structures, If the packing density of a structure data item is to be
optimized, the Keyword DENSE must appear in the specification of the
structure template defining :lts tree organization. The form of such a
template is as follows:

|  STRUCTYRE name DENSE:

i .
| 1 2 n
i node , node ;... ,n0de

1. name is the structure template name.

2. The nodes are a list of nodes forming the tree organization,
as described in Section 19.2.

3. The keyword DENSE Indicates that the storage packing density
0f all the structure terminals is to be optimized.*

Note that such optimization may cause the physical ordering of
structure terminals to differ from that given in the template
specification.

Example:
STRUCTURE £ DENSE:

i
:
f 1 AL,

; 2 A1l BIT(i6),

} 2 Al2 INTEGER,

| 2 A13 ARRAY(10) BOOLEAN,
! 1 A2 CHARACTER(802;

| DECLARE ZA A~STRUCTURE;

All the structure terminals Iin ZA have their stdérage packing density
optimized.

When the keyword DENSE 1is used as described above, storage
packing density is optimized for the whole structure., If the DENSE
kKeyword is used of a fork_ or leaf node of a structure template, such
optimization can be restricted to a3 part of the structure.

Ncdes connected below a "fork"™ node on which the keyword DENSE
appears inherit the property from it.

The keyword ALIGNED can be used to prevent Iinheritance of the
property. The following example shows how the kKeywords are actually
specified iIn a structure template. ’

LR X L F. 3

¥ See appropriate User’s Manual for packing algorithms,
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Example:

{ STRUCTURE A :

1 1 Al DENSE,

! 2 Ali BIT (163,

! 2 A12 INTEGER,

i 2 A13 ARRAY (10) BOOLEAN ALIGNED,
i 1 A2 CHARACTER (80) ;

| DECLARE ZA A-STRUCTURE;

!

The ALIGNED keyword on Al3 prevents the inheritance of the DENSE
property from Al, .

Detailed rules for the appearance of DENSE and ALIGNED on fork
and Jleaf nodes ©of structure tenplates, and on data items c¢f other
types are glven in Spec./4.5.

26.3 CRDERING OF STORED DATA

The HAL/S/V language does not guarantee that the physical order
in which data is stored is the same as the order of appearance of data
items in a compilation, either globally or 1locally. Nor does HAL/S/V
quarantee that +the physical order o¢of structure terminals iIn a
structure data item is the same as the order of their definition in
its structure tenplate, Indeed, some implementations will
deliberately reorder data so that access to it can be optimized.

In most cases such reordering is hot of importance to the HAL/S/V
programmer. However since there are eXceptions, HAL/S/V has a
capabkility for specifying the non-reordering of data in storage.

Reordering may be inhibited in the following constructs:

-~ an entire compool;

-~ a structure template.

26.4 NON~REORDERING OF COMPOOLS
To prevent the reordering of data items in a compool, the keyword
RIGID is placed in the opening statement of the compool block as shown
helow,
label: COMPOOL RIGID;
1. label is the name of the compool.
2. The keyword RIGID denotes that the physical order of storage

of data items is the same as the order of their appearance in
the compool,
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The corresponding compool template must possess the Keyword RIGID
also.

26.5 NON=REORDERING OF STRUCTURE TERMINALS

The potential reordering of structure terminals may be Eknhibited
by use of the keyword RIGID on the structure template, as shown below!

i STRUCTURE name RIGID:
j node 1 , node 2, c.c...
' ----..-.-DOde I'l;

1. name is the structure template name.

2. node 1, node 2, ... node n is a list of nodes forming
the tree organization, as described in Section 19.2.

3. The keyword RIGID denotes that the physical order of
structure terminals 1s dguaranteed to be the same as the
order of appearance of the terminals in the template,

Both the keywords RIGID and DENSE may appear on a structure template
(in any order). The effect of RIGID takes precedence over storage
packing density optimization,

Y WA L M W VIR WK TR Af gy e o S M e v o W e B N e e O R O

The KkKeyword RIGID may appear on
form and leaf nodes of a template.
See: Spec,/4.5
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26.6 TEMPORARY AND REMOTE STORAGE

The data accessing characteristics of some object machines are
such that most efficient use of core is made by dividing data into two
categories:

1. Data which needs to be accessed guickly and often;

2, Data which needs to be accessed seldom, and where speed is
not c¢ritical,

Normally all declared data in & HAL/S/V conmpilation 1is treated
alike, as falling into the first of these categories, However, by
appropriate specification, a HAL/S/V data item can be relegated to the
second category; such data items are termed "“remote'.

Sometimes in HAL/S/V code, data items are used only as temporary
storage in an-extremely localized seguence of statements, and have no
significance as far as the algorithm implemented is concerned, If



DATA STORAGE AND ACCESS Page 26~5

such data items were declared normallv, then the core area they occupy
would remain unused for a substantial part of the duration of
execution of the code. This waste can be avoided by declaring them as
"temporary" data items, whereupon the HAL/S/V compller can be allowed
to locate them in some reusable "scratch pad" areax.

Control variables in repetitive DO groups are a particular
instance of data items used for temporary storage purposes. However,
in this instance a consideration is the speed with which the value of
the control variable can be accessed, since it may be required for
many subscript evaluations within the D0 group. Here 1t 1s more
appropriate to set aside a register than to locate the data item in a
scratch pad area. Declaration of such variables as "temporary" can
allow a HAL/S/V compiler to perform this kind of allocation also.

26.7 SPECIFICATION OF REMOTE DATA

A data item is declared to be remote by use of the Keyword REMOTE
in 1its declaration. Data 1items of any type except event may be
designated REMOTE. The position of the Keyword in a declaration is
illustrated by the following examples.

Example:

DECLARE 1 INTEGER REMOTE;
DECLARE B BOOLEAN INITIAL (TRUE) REMOTE AUTOMATIC;
DECLARE ARRAY (4) INTEGER REMOTE, I, K, L}
STRUCTURE Q:

1 01 INTEGER H

1 9B BIT (16);
DECLARE ZQ Q~STRUCTURE REMOTE;

If remote data items appear in a RIGID compool, then the remote
data Jitems appear in the rencote storage area in the same order as they
were declared; the other data items appear in the regqular storage area
in the same order as theyv were declared.

e W P W W W T e me - e o P B N T AR o w W PROWE S e

For more ©precise rules on posi-
tioning the Kkevword REMQTE, sec
Spec./4.5.
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¥ The nature and usage of such areas is implementation specific.
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26,8 DECLARING AND USING TEMPORARY DATA

The HAL/S/V landuage enforces localized use of temporary data
items by redaquiring them to be declared and used within D...END
Statement groups {(See Section 10.}, The END statement of a group
signals to the HAL/S/V compiler that "scratch pad" storage allocated
to temporary data defined in the group is available for other use,

Temporary data items are declared by TEMPUORARY statements which
are declaration statements in which the kevword DECLARE has been
replaced by the keyword TEMPORARY. The basic form is thus:

f TEMPORARY name attributes;
1. name is a legal HAL/S/V identifier name,
2, attributes describe the type, array property, precision and

other properties of the data item as in a declaration
statement.

All TEMPORARY statements must appear immediately after the DO
statement and before the first statement inside the group.

Examples:

DO;
TEMPORARY 1 INTEGER DOUBLE;
TEMPORARY B BIT

zQ O0~STRUCTURE

END;

The structure tenmplate ¢ cannot be defined in the DC...END group.
Its definition must appear at the beginning of the code block in which
the DD...END group 1s embedded.

The contrel variable in a DO FOR statement can also be designated
& temporary data 1item by preceding its appearance in the DO FOR
statement by the keyword TEMPORARY. In this context, the control
variable 1s faken implicitly to be a single precision (halfword)
integer.

Example:

DO FOR TEMPORARY I =1 TO 18 BY 2 ;

|
|
I -

I END;
!

The declaration of temporary data items is subject to the following

restrictions:

¥ they may not be initialized;
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4t

they may not be declared remote;
¥ they may not be of event type;

the name of a temporary data item may not duplicate the
name of another temporary data item in +the same

-

S Y g

DO...END group;

¥ the name of a temporary data item may not duplicate the
name of an ordinary data item known by the scoping
rules of Section $.2 to the body of the DO...END group.

26.9 ACCESS TO SHARED DATA

Generally at run time, an arbitrary number of real time processes
are able to share global data and data defined in compools. Thus, it
is entirely possible that one process may be in the act of modifying
such data while another process is referencing it. It may be crucial
to the integrity of the algorithm implemented in the second process
that this be guaranteed not to take place.

To handle this situation, it is mandatory to designate such data
items as protected, or '"locked", Such data items can only be accessed
from within areas of code called "update blocks". The boundaries of
update blocKks are visible to the Real Time Executive (RTE} which can
therefore control entry into them and exit f£from them on a process-
by~process basis.

26,10 LOCK GROUPS

The protection of data_could be carried out on an individual
basis data item by data item. Consider two processes A and B, each
Tequiring to use protected data item Z. Process A accesses 2 in an
update block UA, and B accesses it in update block UB.

If process A began eyxecuting update block UA first, and thus
began wusing 2, then process B would be prevented from beginning
execution ¢f update blogk UB until A had finished executing U&.

Protection of data on an individual basis would Impos€ an
arbitrarily large burden on the RTE depending on the number of data
items to be protected, and the number of processes required to share
them.

In order to 1limit this overhead of effort, HAL/S/V applies
protection on a group basis rather than an individual one. - Every
compool or global data item is designated as belonging to one of a
limited number of "lock groups". The above 1illustration can be
restated for HAL/S/V as follows. ’

Consider two processes A and B, each requiring te use protected



data In 1lock group N. 1If process A begins execufing UA £irst, then
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all protected data in lock group N become unusable by process B which
therefore cannot begin executing UB until A finishes executing UA.

For more global protection, some protected data items can be
designated as belonging to all lock groups simultanecusly,

If in the above illustration, for example, process A required to
use a protected data item belonging to all groups, and execution
reached UA first, then process B could not enter UB to use protected
data from any lock group until A had finished executing UA. ' ——

26,11 LOCK GROUP SPECIFICATICN

A data 1item in a compool is designated as protected at the time
of its declaration, The following construct 1is inserted in its
declarations

cveesLOCK(N) eues
'vl.LOCK(*)!.o-

1. In either form, the keyword LOCK indicates that the data
item is to be protected,

2. nh is a positive integer denoting. that the data item is
to belong to lock group n, where 1< n< 15%,

3, * denotes that the data item 1is to be considered as
belonging to &11 lock groups simultaneously,

The following examples illustrate the positioning of the
construct within declarations:

Examples:

I DECLARE I INTEGER DOUBLE LOCK (3};

} DECLARE B ARRAY (1000) BOOLEAN LOCK (%) ;
I STRUCTURE Q DENSE:

| 1 Q1 INTEGER,

| 1 0B BIT (16) :

| DECLARE ZQ QO-STRUCTURE (20) LOCK (3);

For more precise rules concerning the location of
the locking attribute see Spec./4.5.
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# This value may vary between implemeﬁtations. See User’s Manual.
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26,12 UPDATE BLOCK DEFINITIONS

An update block is an explicitly delimited body o0f code
wherein locked data may be referenced or modified.
Superficially, an update block looks similar to any other kind of
code block in the HAL/S/V language. Its delimiting statements
are of the form shown beloWw:

label : UPDATE;

I
I
I
| L]

| CLOSE label;
|

1. 0On the opening statement label is any HAL/S/V
identifier, and represents the name of the update block.

2. The update block may be unlabelled, in which case label:
is omitted.

3. If the update block is labelled, the «<¢losing statement
may optionally possess a matching label.

An update block is unigue in that it is never invoked as are
other kinds of <c¢ode blocks: rather it is executed when it is
encountered in the path of execution,., Consistent with this, the
labe)l on the opening statement of the block may be treated as a
statement label.

The following rules govern the .contepnts of any update block:

1. The opening statement may be immnediately followed by the
declaration of local data, as if it were a program block
(see Section 3.2).

2. Input/output statements of any kind are illegal.-

3. SCHEDULE, WAIT, CANCEL, TERMINATE and UPDATE PRIORITY
statements are illegal. This rule ensures that a
process does not remain in an update block indefinitely,
thereby holding certain resources,

4, Procedure and function blocks, but neither task nor
other update blocks may be nested within it, An update
block is not allowed to have any other update bleck in
its body to eliminate possibility of deadlock. It may
call a function or procedure inside the block only 1£f it
is declared within the block.

5. The only procedure or function invocations which are
legal are those referencing procedure or function blocks
defined within it,
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26.13 EXECUTION OF UPDATE BLOCKS

The behavior of processes on encountering update blocks has
already been described in this section, but c¢nly superficially by
example, This behavior is now re-examined in more detail.

The simplest case is that of two processes wishing to use
data items from the same locK group. Each process has to execute
an update block to use the protected data items. The following
activity takes place: )

If both of the processes require data items f£rom
the -same lock grouyp to be modified then the first
process to enter its update block .must complete
execution o0f it before the second process can enter its
own update block., The RTE places the second process in
a waiting state for this period of time.

If one or both of the processes only reguire to
reference the data then in some implementations of
HAL/S/V, the behavior of the RTE will be the same as
before, Alternatively, 1in other implementations, tec
reduce the second process’ waiting time, the RTE may
allow partial overlap 1in execution of the update
blocks, consistent with exclusive use of data by the
process modifying it¥,

I1f the two processes wish to use data from more than one 1lock
group, the RTE tracks the use of each lock group in the above way. If
one or both processes use data protected by LGOCK (%), then the
situation 1is equivalent to one in which the process or processes wish
to use date in every lock group.

I1f data is shared by more than two processes, then all processes
except one are put in a waiting state by the RTE. The eventual order
in which the processes complete execution of their update blocks will
depend on the contents of the process gueue and the relative priority
of the processes, '

26,14 LOCKED ASSIGN ARGUMENTS

The rule that locked data items can only appear in update blocks
has one scle exception: it is possible for locked data items to
appear as assign arguments in procedure invocations. This provides
the ability to '"parameterize" update blocks, as will be shown in an
ensuing example,

¥ This alternative entails more work by the RTE, thus "stealing” time
from the processes’ productive WOTK. The behavior of any
implementation is therefore the result of a trade~cff to¢ achieve an
acceptable RTE performance.
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The f£ollowing rules govern the passage of locked assign
arguments:

1. If the argument is a data item belonging to 1ock group
n, then the corresponding parameter must be declared
LOCK (n) or LOCK (%).

2. If the argument is a data item belonging 'to all lock
groups, the corresponding parameter must be declared
LOCK (%),

3, Argument and parameter must &lso match In the senses
described in Sections 1.5, 17.7, cor 19.10 as
applicablie.

4., I1f any assign argument 1s locked, then the entire
procedure body should be treated as an update block,



CHAPTER 27

HAL/S/V AND REENTRANCY

This section deals with another indirect implication of
multi-processing in real time: reentrancy.* In HAL/S/V, reentrancy
arises because more than one real time process at a time c¢an use a
procedure or function, The HAL/S/V language possesses constructs by
which reentrancy c¢an be allowed or inhibited 1in procedures and
functions.

27.1 DETERMINING REENTRANCY REQUIREMENTS

A HAL/S5/V user intending to code a procedure or function (either
internal or external) to be invoked in a real time context, should
first determine which of the following two categories it falls into:

1. The places where it is invoked are such that it can never be
in use by more than one process at a time,

2. The places where it 1is 1invoked are such that 1t c¢an
potentially be in use by more than one process at a time.

If the user determines that the procedure or function falls I1Into
the first category, then the procedure or function block is coded
following the rules given in Section 11l.

If, on the other hand, it falls into the second category, the
user must make a choice between the following courses-of action:

1. to insure that during execution, the Real Time Executive
(RTE) allows only one process at a time to use it;

Z. o insure that during execution, more than one process can
use it at a time,

A procedure or function in whose respect the first course of
action is taken, 1is called ‘'Mexclusive", OUne in whose respect the
second courseof action is taken is called ‘"reentrant®, The opening

-

¥ The term "reentrancy" denotes the property ©of being reentrant.

27~ 1
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statements of such procedures and functions must contain specific
indication .of their exclusive or reentrant prcperty.

27.1.1 EXclusive Procedures And Functions
An eXclusive procedure or function is one in which the RTE.allows
only one process Lo use at any given time. A procedure or function is

designated .exclusive by the presence of the keyword EXCLUSIVE in the
opening statement of its block definition,

27.1.2 Defining An Exclusive Procedure

The form of the opening statement of an exclusive procedure is as
shown below:

| label:; PROCEDURE(il,i2,.,..) ASSIGN{al,aZ,...)
; EXCLUSIVE;
1. label is a legal BHAL/S/V identifier constituting the

procedure name,

2. i1, i2,... and a1, az... are ists of input and assign
* parameters as described in Section 11.2.

3. The keyword EXCLUSIVE designates an exclusive procedure.

Example:

P: PROCEDURE(A) EXCLUSIVE?
DECLARE A INTEGER;

!

i

! .
1 .

! .

{ CLOSE P;
I

The template corresponding to an exclusive external procedure must
also bear the kKevword EXCLUSIVE.

Example:
The template corresponding to P would be:
P: EXTERNAL PROCEDURE(A) FEXCLUSIVE;

DECLARE A INTEGER?

i
i
! CLOSE P;
|
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27.2 DEFINING AN EXCLUSIVE FUNCTION

The form of the opening statement of an exclusive function is as
shown below:

| label : FUNCTION (ii,i2,...) attributes EXCLUSIVE;;
|

1. 1label is a legal HAL/S/V jidentifier constituting the function
name,

2. 11,12 is a list of input parameters as described in Section
11.2'

3, attributes defines the type and, where applicable, precisiocon
of the function, as described in Section 11.2,

4, The keyword EXCLUSIVE designates an exclusive function.,

The template corresponding to an eXclusive external function must alsg
bear the keyword EXCLUSIVE.

Example:

The template corresponding to:
| F: FUNCTION BOOLEAN EXCLUSIVE;
i .

I -I
i .
i CLOSE F;

would be:

i Fi: EXTERNAL FUNCTION BOOLEAN EXCLUSIVE;?
i CLOSE F:

27.3 BEHAVIOR OF EXCLUSIVE PROCEDURES AND FUNCTIONS

If an exclusive procedure or function Is 1n use by process A, and
a4 process B tries to invoke it, then the RTE places process B in the
waiting state until process A returns from its use. .

27.3,1 Reentrant Procedures And Functions

A reentrant procedure or function is one in which deliberate
steps are taken by the programmer to ensure correct execution when the
RTE allows more than one process to use it simultaneously. A
procedure 0r function which is intended to be reentrant must possess
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the keyword REENTRANT in its opening statement.
This 1s a2 necessary, but not sufficient condition %o ensure
reentrancy. The prodgrammer must observe certain additional guidelines

unenforceable by a HAL/S/V compiler to ensure that a procedure or
function is truly reentrant in all relevant respects.

27,4 DEFINING A REENTRANT PROCEDURE

The form of the opening statement of a Treentrant procedure is
shown belows

|
| label : PROCEDURE(ii,i2,...) ASSIGN(al,az2;...)
| REENTRANT;

|

1. label is a egal HAL/S/V identifler constituting the
procedure name,

2. 11,12, and 381,a2r.s. are 1lists of 1input and assign
parameters as described in Section 1l.2.

3., The keyword REENTRANT indicates that the procedure is to be
considered reentrant.

27,5 DEFINING A REENTRANT FUNCTION

The form of any opening statement of & reentrant function is
shown below:

|
| label : FUNCTION(il,i2,...) attributes REENTRANT;
|

1. label is a legal HAL/S/V identifier constituting the function
name,

2. i1,i2,... 1is a list of input parameters as described in
Section 11.2.

3. attributes defines the type and, where applicable, precision
of the function as -described in Section 11.2.

4, The keyword REENTRANT indicates that the function 1is to be
considered reentrant. .

The template corresponding to an external reentrant function must also
possess the Keyword REENTRANT.
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27.6 BEHAVIOR OF REENTRANT PROCEDURES AND FUNCTIONS

'If a reentrant procedure or function is in use by a process A,
and a process B tries to .invoke it, the RTE allows the invocation to
proceed without restriction.

27.7 LOCAL DATA IN REENTRANT BLOCKS

The most important consideration in writing reentrant procedures
and functions Is that of deciaring 1local data, The issue that
confronts the programmer is whether for each local data item he merely
wants ' one Ycopy' of it, to he shared by all processes concurrently
executing the block; or whether a separate "copy" for each process 1is
wanted. Normal reentrant ©procedures reguire that execution by cohe
process be completely decoupled from execution by another. Unlike
HAL/S, in HAL/S/V we don’t have the first alternative.

Separate <copies of a local data item for each pDrocess
concurrently executing a reentrant block are generated by the RTE,

Because 1in HAL/S/V we don’t permit sharing of one single copy of
data by concurrently executing muliple instances of a procedure (or
function) use of words AUTOMATIC or STATIC is not required.

27.8 OTHER CONSIDERATIONS IN REENTRANT BLOCKS

To preserve complete reentrancy of the code inside a reentrant
procedure or function, this guideline must be adhered to:
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Any procedure or function invoked
by the reentrant block should also
be reentrant.
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It should be noted that no update block in a reentrant procedure
or function can itself be reentrant because of the inherent properties
of an wupdate block (see Section 26.4), Howevel, the processes
executing the reentrant procedure or function can only pass through
the update block serially, Hence, it appears as 1f process swaps vere
inhibited pending passage through the uypdate block by each process,
and cross=-coupling of computational results in different processes
still cannot occur. Hence, complete reentrancy is still effectively
being preserved,



CHAPTER 28

THE HAL/S/V NAME FACILITY

The ability to maintain "pointers"™ to specified data items is a
valuable feature of many programming languages. However, 1f presents
a problem for verification.

If the pointer value is treated as merely another name for an
object, as in HAL/S, aliasing of the worst kind can result. In such a
case, the object has a declared name and any number of other aliases.
Moreover, access 1is permitted via any of these names and assertions
regarding the object may be written using any one of the aliases.
Assertions made using any of the aliases may be falsified by accessing
the object via any other - a fact which 1is not apparent from the
program text, Therefore, the verification system is constrained to
Keep track of all aliases for every data object. For this reason,
HAL/S/V permits no name data item to be gdeclared.

2g-4



‘CHAPTER 29

REPLACE MACROS AND IN-LINE FUNCTIONS

It was stated in Chapter 5 of Part I that the REPLACE statement
of HAL/S had been removed £rom HAL/S/V. This also applies to the
parameterized version called REPLACE MACROS, and for the same reasons.

The behavior of a program and, hence the verifiability, is
governed by the program text. The HAL/S REPLACE facility allows
arbitrary changes to be made to the program text. Such c¢hanges
generate essentially new programs for which a previous verification
may be invalid. Thus, complete verification requires that each
possible program text be considered individually. The workK involved
is potentially exponential in the number of replace statements,

"In-line functions" in HAL/S are parameterless functions designed
to enhance the versatility of the parametric replacements. However,
without REPLACE MACROS, they are of .l1ittle use. They are executed
in=line and cannot be invoked elsewhere in the program. Moreover,
according to the HAL/S/V scoping requirements outlined in Chapter 11,
a function may access non~local data onliy 1f 1t is passed as a
parameter at the call site, Hence, a parameterless function 1is
essentially a constant. For these reasons, in~line functions are
disallowed in HAL/S/V.
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