
L~ ._ _ _. - --- ~--" "_..~--
(cNASA-CR-162R,14) DESIGN OF A VERIFIisi£·---- N80-18751
SUBSET FOR HAL/S Final Report. {Texas Univ.
at A ustin.l 264 p HC A12/MF A01 CSCL 09B

unclas
G3/61 4.73.09

Design of a Verifiable Subset for HALlS

James C. Browne
Donald I. Good

Anand R. Tripathi

william D. Young

fINAL REPORT

December 31, 1979

INSTITUTE FOR COMPUTING SCIENCE AND COMPUTER APPLICATIONS

The University of Texas at Austin

Austin, Texas 78712

liffiioDUCED-SY- - -- ----I
' NATIONAL TECHNICAL
; INFORMATION SERVICE I
, us DEPARTMENT OF COMMERCE
, SPRINGFiElD. VA. 22161 I , . --

TABLE OF CONTENTS

1.0 INTRODUCTION..................... 	 1

2.0 CRITERIA OF EVALUATION................. 	 3

2.1 Aliasing..................... 	 3

2.2 Axiomatizability............. 	 4

2.3 Simplicity Of Verification. 5

2.4 Non-determinacy And Implementation Dependency . . . 5

2.5 Textual Clarity.................. 	 6

3.0 EVALUATION OF HAL/S................... 	 6

3.1 Data Types And Structures............... 6

3.1.1 Data Types	 6

3.1.1.1 SCALAR, VECTOR, And MATRIX Data Types 	 7

3.1.1.2 NAME Data Items - 	 8

3.1.1.3 EVENT Data Items 	 9

3.1.2 Data Initialization..	 -........... 	 10
..
3.1.2.1 Partial Initialization 10

3.1.2.2 	 Static Initialization For Reentrant

Procedures 11

3.2 Arithmetic And Computation ..i............11

3.2.1 Expressions -	 12

3.2.2 Assignments 	 13

3.2.2.1 Coercion Across Assignments 	 13

3.2.2.2 Multiple Assignments 	 14

3.2.3 Array Processing 	 14

3.3 Concurrency	 16

3.3.1 Access Control	 16

3.4 Flow Of Control............. 17

3.4.1 Program Flow-control 	 17

3.4.2 Error Recovery 	 18

3.4.3 Real-Time Programming -. 	 19

3.5 Program Units	 21

3.5.1 Procedures And Functions 21

3.5.1.1 Non-local Referencing -. 21

3.5.1.2 Parameter Passing - 22

3.5.1.3 Procedures And Shared Data 23

3.5.1.4 Run-time Dependency 26

3.5.2 Tasks And Programs 26

3.5.3 External Declarations -. 27

3.6 Textual Integrity 28

4.0 CONCLUSIONS 28

II

Page I

1.0 INTRODUCTION

Program verification has been a topic of intense research

interest in recent years. The desire to construct proveably correct

software has impacted computer science in various ways, for instance

by. motivating the use of program design methodologies such as modular

programming. Various languages, e.g. Gypsy [I] have been designed

with the prinary intention of constructing formally verifiable

software. This was accomplished by incorporating into these languages

only features amenable to modern verification techniques or, in many

cases, by inventing new verification techniques for desirable

constructs.

The research described in this report and the accompanying

documents was an attempt to evaluate the applicability of such

techniques to an existing programming language, HAL/S [2,3). HAL/S is

a general purpose high level language designed to accomodate the

software needs of the NASA Space Shuttle project. This goal mandated

a diversity of features for scientific computing, concurrent and

real-time programming, error handling, etc. Many of these features,

however, are not susceptible to existing techniques of program

proving. Our concern was to examine the various features of HAL/S and

evaluate them according to certain, criteria for verifiability. The

result, HAL/S/V, is a subset of the language which we believe consists

only of those constructs which lend themselves to program

verification.

Our task was viewed only as one of subsetting--that is, we have

eliminated or restricted existing features and imposed a discipline on

Page 2

the programmer rather than suggested new language constructs. This

approach insures that the verifiable subset is downwards compatible

with HAL/S and readily implementable utilizing existing HAL/S

compilers and support facilities. Of course, to formally verify

HAL/S/V programs it would be necessary to augment the language with

specification capabilities and, preferably, design an automated

verification system in the mode of the Gypsy verification system [1)

designed and implemented at the University of Texas.

This report consists oi three sections in addition to this

introduction. The following section describes the criteria by which

features were evaluated for inclusion into the verifiable subset.

Section 3 examines individual features of HALS with respect to these

criteria and provides justification for the omission of various

features from the subset. In the final section, conclusions drawn

from this research are presented and recommendations made for the use

of HAL/S with respect to the area of program verification.

The documents which should be considered along with this one are

the following.

1. HAL/S/V: A Verifiable Version of HAL/S: This document is

the HAL/S/V counterpart of the HAL/S Programmer's Guide [2)

and is derived by editing that document to reflect -the

changes which define HAL/S/V.

2. "An Overview of Differences Between HAL/S and HAL/&/V": This

document. is a list of these, differences along with the

justification for each. Entries are grouped according to the

corresponding chapters in the HAL/S Programmer's Guide.

Page 3

3. "Evaluation of Verifiability in HAL/S": This paper was a

preliminary version of much of the material in this report.

It was presented to the AIAA/NASA/ACM/IEEE Computers in

Aerospace Conference II and published in the preceedings of

that conference [4].

2.0 CRITERIA OF EVALUATION

Before examining individual features for inclusion into the

verifiable subset it was necessary to establish criteria of selection.

A few obvious criteria were readily available--aliasing was to be

avoided, programs should be deterministic, language features should be

axiomatizable. Other desirable characteristics from a verifiability

standpoint were more subjective. Verifications should be of

manageable complexity; programs should be readable; modularity was to

be encouraged. The following emerged as areas to be considered in

evaluating language features for verifiability: aliasing,

axiomatizability, simplicity of verification, non-determinacy and

implementation-dependency, and textual clarity.

2.1 Aliasing

In most program proof methods, assertions are made about the

state of computation at certain points in the program. These

assertions reference program variables. However, if there are various

paths to reference a variable--various "aliases"--then an assertion

made using one name may be invalidated by changing the value of the

Page 4

variable using some other name. For instance, if x and y refer to the

same storage location, then f-or the code sequence

I 2

I 7= 3

1 /* Assert: x:2 and y=3 */

the given assertion is false. Such aliasing complicates the

verification process by requiring the verifier to keep track of all

aliases for each storage location.

2.2 Axiomatizability

Axiomatizability of a language feature refers to the ability to

write a collection of rules which completely and unambiguously

describes the results of applying that feature to any data item. Such

descriptions are essential for automatic verification because the

verification system manipulates symbolic quantities which represent

arbitrary input values. One technique for assuring axiomatizability

is to insist that language constructs which have mathematical

counterparts conform to them as closely as possible. They will not,

in general, conform entirely. Integer addition in HAL/S, for

instance, is axiomatizable from a verification point of view with

axioms borrowed from the mathematical domain. These can be assumed to

hold even though the associative law of addition may be violated near

the maximum integer representable on a given machine.

Page 5

2.3 Simplicity Of Verification

In many cases even if it is possible to axiomatize a certain

feature of the language and give a complete mathematical definition of

its semantics, it may turn out to be a very tedious job to verify

programs involving the construct.- Language constructs should be easy

to grasp and simple to axiomatize. Simplicity of axiomatization leads

to ease in applying proof methods.

2.4 Non-determinacy And Implementation Dependency

It is desirable that the semantics of the language specify

completely and unambiguously the results of an computation. This is

unfortunately not always possible. For instance, in concurrent

programming the order in which operations are performed may be

non-deterministic. However, non-determinacy which results from the

incomplete specification of the language semantics is unacceptable.

The result is lack of clarity, possibility of error, and

implementation dependency which requires the verifier to be concerned

with implementation details. Escape from such considerations is one

of the primary advantages of high level languages, not only from the

point of view of the programmer but also from the point of view of the

verifier.

Page 6

2.5 Textual Clarity

Textual clarity has long been recognized as important in the

design of programming language constructs; witness the long-standing

desire for "self-documenting" languages. Language constructs should

in every way encourage textual clarity. Operators should perform a

clear and simple function with a minimum of hidden effects.

Information should be available locally to decipher any language

fragment. A statement which is so obscure as to be understandable

only by resort to global declarations and the language manual probably

indicts some language feature as too complex. A feature which is so

complex that its meaning cannot be easily grasped is probable too

complex to be easily verified.

3.0 EVALUATION OF HAL/S

3.1 Data Types And Structures

3.1.1 Data Types -

A primary determinant of the utility of any general purpose

programming language is the ease with which different classes of data

can be represented and operated upon. HAL/S addresses this issue by

incorporating a diverse set of built-in data types with associated

operations. Some of these data types (INTEGER, BOOLEAN, CHARACTER,

BIT STRING) require only minor modifications to make them accessible

to existing verification techniques. Others (EVENTS, NAMES) would be

verifiable but only in a particularly restricted and disciplined form.

Finally, for still others (SCALAR, MATRIX, VECTOR) no manageable

Page 7

verification techniques are currently available. The data types which

are either eliminated or significantly restricted in HAL/S/V are the

SCALAR, MATRIX, VECTOR, EVENT, and NAME data types.

3.1.1.1 SCALAR, VECTOR, And MATRIX Data Types -

Most existing verification techniques require that assertions

about the values of variables be inserted at various points in the

program body. These values are manipulated according to well-defined

axioms to yield results which are invariantly true of the computation

whenever control reaches that point. Scalar (floating point)

arithmetic does not lend itself well to these techniques.

The values which result from scalar operations are seldom exact.

Each instance of a scalar operation potentially introduces an error

the magnitude of which depends upon the type of operation, size of the

operands, implementation, etc. Sophisticated numerical techniques and

error analysis are needed to make valid and useful assertions about

the results.

The axioms of real arithmetic do not in general apply to scalar

operations. In this regard scalar arithmetic is unlike integer

arithmetic for which there is a "ready-made" axiomatization available

which yields exact values except at very large positive and negative

values. Only a very complex set of axioms would suffice for scalar

arithmetic. Such an axiomatization still would be of doubtful value

since even a "correct" algorithm may yield vastly inaccurate results

due to accumulating errors, catastrophic cancellation, etc. Such data

dependent difficulties cannot easily be dealt with in axioms.

Page 8

These considerations indicate that any scalar operation probably

is not verifiable with existing techniques. Therefore, the SCALAR

data type has been omitted from the verifiable subset.

The VECTOR and MATRIX data types of HAL/S are composed of scalar

components. Consequently, they inherit all of the difficulties of

scalars and, like scalars, are not present in the verifiable subset.

3.1.1.2 NAME Data Items -

The HAL/S NAME facility permits the declaration of "pointers" to

data items, data structures, tasks, and program units. The ability to

maintain pointers is a valuable feature of many programming languages.

However, it presents a problem for verification unless the facility is

severely restricted and disciplined. PASCAL, for instance, allows

pointers only to un-named dynamically created objects. This permits

aliasing of a limited sort since there may be several pointers to one

data object. However, the verifier is assured that no named data item

is also accessible via pointers.

In contrast, HAL/S treats a NAME data item as merely another name

for the designated object. Consequently aliasing of the worst kind

can result. Access is permitted to an object via any number of names

and assertions regarding the object can be written using any of them.

Assertions made using any of the aliases may be falsified by accessing

the object via any other, a fact not apparent from the program text.

Therefore, the verifier is constrained to keep track of all aliases

for every data object. To eliminate these difficulties, the HAL/S

NAME facility has not been included in the verifiable subset.

Page 9

3.1.1.3 EVENT Data Items -

A HAL/S event is a Boolean valued data item whose value is

visible at any instant to the HAL/S run-time executive; An event with

the optional latching property may be set to either true or false. An

event without this property is normally false but may become

transiently true when so specified.

HAL/S/V permits declaration only of events with the latching

property for the following reason. Events are useful primarily for

scheduling and synchronization purposes--a process may be scheduled

when the value of some event data item is set to true. If el and e2

are event data items and T a task, the following is legal.

Schedule T on (not el and e2);

However, for transient events which become true for at most an

"infinitesimal" time, such expressions do not make sense. There is no

obvious interpretation for "not el" when el is only transiently-true.

Therefore, the primary utility of events is lost for transient events.

Transient events do not seem to serve an additional useful purpose in

the language and have been excluded.

An additional restriction is necessary for event data items. Any

variables, including events, in HAL/S are permitted to belong to lock

groups whose members may be accessed only within update blocks. This

is the HAL/S mechanism for implementing mutual exclusion. However, no

Page 10

WAIT or SCHEDULE statements are allowed within update blocks.

Therefore, the obvious use one would make of events is not permitted

if they belong to lock groups. In HAL/S/V event data items are not

allowed to belong to any lock group.

3.1.2 Data Initialization -

HAL/S allows optional initialization of almost any declared data

items including arrays and structures. Most initializations are

verifiable, being semantically equivalent to a block of assignment

statements inserted just after the declarations. However, two areas

present problems for verication: partial initialization and static

initialization for reentrant procedures.

3.1.2.1 Partial Initialization -

Partial initialization of arrays and structures violates our

criterion of simplicity of verification. Consider the following code

segment:

I Declare A array (50) integer

Initial (1,2,3,45#,4,5);

Ip Assert: A$i = A$i 4'/

The given assertion is a tautology and should be uniformly true.

However, the elements of A indexed 4 through 48 have undefined values.

To verify a program containing such partially initialized data

structures the verifier must have rules for dealing with undefined

values of every type and keep track of all locations which contain

Page 1i

undefined values. A substantial simplification can be gained if data

structures are such that either all component values have been

initialized or all are undefined. To gain this simpification, partial

initialization is not included in HAL/S/V.

3.1.2.2 Static Initialization For Reentrant Procedures -

HAL/S permits data to be initialized in either of two ways. The

keyword AUTOMATIC specifies that initialization is to take place upon

each entry to a block. STATIC signifies that initialization occurs

only upon the first entry, with each subsequent entry inheriting

whatever values were left in the data items by its predecessor.

HAL/S/V permits both types of initialization with the single

restriction that static initialization is not permitted for any

procedure that is declared to be REENTRANT. This stipulation ensures

that two activations of a procedure are not updating a common data

store concurrently. Such updating introduces all of the difficulties

of concurrency into procedures, an area where the simpler verification

techniques for sequential programming should be applicable.

3.2 Arithmetic And Computation

Arithmetic in HAL/S/V is substantially simplified by the

omission, cited earlier, of the SCALAR, MATRIX, and VECTOR data types

and the associated operations--scalar multiplication, matrix

multiplication, matrix inversion, vector cross product, etc. However,

the remaining computational resources of the language still involve

features and permit interactions which violate the criteria of

Page 12

verifiability outlined in section 2. We discuss these in the areas of

expressions, assignments, and array processing.

3.2.1 Expressions -

One of our criteria in evaluating for verifiability is textual

clarity. HAL/S violates this criterion in the evaluation of

expressions principally in its wide range of implicit type and

precision conversions. mixed operations are a convenience for the

expert programmer but present a pitfall for everyone else. Such

operations have effects which are textually indicated only in the

sense that they are implicit in the data declarations and the

definitions of the operations. But the individual instance of an

operation is far enough removed from these to be susceptible to error

and difficult to decipher if implicit conversions are present.

Therefore, HAL/S/V disallows any type of implicit conversions. The

implications for expression evaluation are the following.

1. 	There is no "mixed-mode" arithmetic in HAL/S/V. The presence

in the language of a comprehensive set of explicit type

conversion functions ensures that this restriction is at

worst an inconvenience and not a significant loss in language

utility.

2. 	There is no mixed precision arithmetic. Again explicit

conversion functions can effect the result of mixed precision

with a substantial gain in clarity and programmer control.

Page 13

These restrictions are intended to be comprehensive. The absence

of the SCALAR data type in HAL/S/V removes the possibility of

scalar-integer operations but there are other mixed mode operations in

HAL/S. HAL/S/V forbids, for instance, catenation of character and

non-character data items and relational comparisons of bit strings of

differing lengths.

3.2.2 Assignments

3.2.2.1 Coercion Across Assignments -

In keeping with the principle espoused above that all conversions

should be explicit, HAL/S/V permits no implicit type or precision

conversions across assignments. Such conversions constitute changing

information under the guise of transferring information. In many

cases information is lost and in some cases spurious information is

added as, for instance, when a bit string is assigned to a bit string

variable whose declared length is greater. Requiring explicit

conversions does not alter this process but at least guarantees that

the programmer as well as the users and readers of his program are

aware of it. As with expressions, a complete set of type and

precision operators in HAL/S provides any capability which might

otherwise be lost by disallowing implicit conversions.

Page 14

3.2.2.2 Multiple Assignments -

Multiple assignments present a difficulty for verification only

if the results cannot be translated in a straightforward fashion into

a sequence of single assignments. This is not always possible since

HAL/S does not specify an order in which multiple assignments are

performed. Consider the code sequence:

I
I i = 2;
IM A ,i = 3;
IS.I i

Whether 3 is assigned as the value of A(2) or of A(3) depends upon the

order in which the multiple assignment is performed.

The simplest way to eliminate this non-determinacy is to insist

upon some set order of assignment. However, this would be an addition

to the language semantics and in keeping with the view that HAL/S/V

should be strictly a subset of HAL/S we impose the following rule

instead: no variable which appears on the left hand side of a

multiple assignment may appear on both the main line and the subscript

line.

3.2.3 Array Processing -

HAL/S contains extensive array processing capabilities which have

been excluded from the verifiable subset. HAL/S allows nearly all

operations which can be legally performed on the components to be

applied to an entire array. For instance, if Al, A2, and A3 are

declared to be arrays of dimensionality 3 x 4, the statement

Page 15

1 	 A3 = Al + Div UA2, 5);

has 	the same effect as the sequence of statements

I Do for i = 1, 3;

I Do for j = 1, 4;

IM A3 = Al + Div (A2 , 5);

Is ij i,j ii

I End;

I End;

I

However convenient the iirst version may be, the second is to be

Preferred on the basis of textual clarity.

1. 	The number of times operations are performed is textually

apparent and not dependent merely on the dimensionality of

the operands.

2. 	The order in which operations are performed is determined by

the programmer rather than by the compiler. For operations

such as assignment which may have side effects on the

operands, this may affect the result of the computation. It

is not enough that information about the order of assignment

is available somewhere in the language description.

3. 	The operations involved need not be treated as generic

operations and the proof rules can simplified accordingly.

4. 	In the above example, either Of Al or A2 could have been

single valued data items. In such a case the addends would

have been size-mismatched and a form of implicit coercion

required to make the operands compatible.

page 16

These considerations along with the fact that little additional effort

is involved in explicitly programming the operations on a

component-wise basis has led to the exclusion of such array processing

features from HAL/S/V. The only operation permissible on an entire

array in HAL/S/V is assignment to another array of identical

dimensionality.

3.3 Concurrency

HAL/S has certain explicit as well as implicit (at least

conceptually) provisions for concurrent processing. Multiprocessing

can be specified explicitly using the scheduling of concurrent

processes, whereas certain other language constructs such as the array

processing facility provide implicit concurrency. These array

processing features have been discussed in Section 3.2.

3.3.1 Access Control

HAL/S provides two mechanisms for synchronizing processes, UPDATE

blocks and EVENTS. Events have been discussed in Section 3.1.1.3.

Update blocks are like critical sections. A shared data object

declared to belong to some lock group may only be accessed inside an

update block. During the execution of an update block a lock is

placed on all data belonging to those lock-groups which are accessed

inside the update block. At any instant at most one process can be

accessing data belonging to a particular lock-group. In HAL/S the use

of such locK-groups on shared data is optional; however, in the

verifiable subset we make it mandatory that all shared data (global

Page 17

and compool data) belong to some lock-group. This insures that all

sharing is done within update blocks. There are two reasons for this.

It textually isolates the places where the concurrency impacts the

proof process. Also, it guarantees that accesses to shared data be

within indivisible program blocks. This prohibits many of the

problems commonly associated with proving concurrent programs and

allows proofs on the level of update blocks rather than on the

individual statement level.

Update blocks in HAL/S cannot contain any i/o, wait, or schedule

statements or calls to routines declared outside the update block.

Additionally, task blocks cannot be defined inside an update block.

In HAL/S/V, because direct accessing of non-local data is not

permitted to routines this restriction could be relaxed; an update

block could call routines defined outside the update block. However,

such routines must not contain any i/o, wait, or schedule statements

or call any other routines containing such statements. This kind of

checking could be done at compile time.

3.4 Flow Of Control

3.4.1 Program Flow-control -

The flow of control facilities in HAL/S present few difficulties

for verification. One feature which has been omitted from the

verifiable subset is the GOTO statement. GOTOs in HAL/S are actually

quite controlled allowing branches only within or out of a

block--never into a block. However, with GOTOs present in the

language, it is difficult to assert the values of variables after any

Page 18

labelled statement since control may have branched from various places

within the block. Although programs with this feature probably could

be proved, because of the complexity involved GOTOs have been omitted

from HAL/S/V. As compared to the GOTO, the EXIT statement is much

more restricted in changing the flow of execution; this statement

always branches to the end of a block. This form of branching has

been retained.

All forms of repetitive statements in HAL/S except for one are

acceptable from the verification point of view. Statements of the

form

I DO FOR var = expl, exp2, ..., expn

I

are not retained in HAL/S/V. In this kind Of iteration the control

variable is successively assigned the values of the given expressions

and the following statement group is executed for that value of the

control variable. The characteristic method for verifying loops,

however, is to use an inductive proof rule which assumes that the

control variable is assuming some arithmetic progression of values.

If this is not the case, each iteration must be separately verified.

The increase in generality does not justify this increase in

complexity of verification. Therefore, this feature has been omitted.

3.4.2 Error Recovery -

HAL/S provides mechanisms for user-level specification of error

handling routines. Besides the system defined error conditions, there

can be user-defined error conditions. Recovery under error conditions

Page 19

is specified using an ON ERROR statements by which the programmer can

state what actions need to be taken if a given error condition is

raised. When the error occurs, control is transferred to this error

handler after which execution resumes at the following executable

statement.

In HAL/S/V we suggest the following discipline on the programmer

in order to write verifiable programs. All ON ERROR (or OFF ERROR)

statements must be placed in the beginning of the block (or routine)

following the declaration of local variables. ON ERROR statements

would normally be preceded by the some "back-up" block to store the

values of ASSIGN parameters and some critical local variables which

might be needed to be restored in case of any attempt at roll-back and

recovery. Additionally, inclusion of error-recovery mechanisms in the

verifiable subset mandates the need for specification methods to

distinguish between normal exits and exits under error conditions.

3.4.3 Real-Time Programming -

A task block is the static counterpart of a process. HAL/S has

numerous real-time scheduling constructs. One process is designated

as the primal process which schedules other task or program processes.

These in turn can schedule other tasks or program processes names of

which are visible according to the scoping rules.

The problems associated with the proof of real-time programs have

two dimensions, the proof of concurrent programs and the proof of

time-dependent constructs. The set of problems associated with the

second dimension are hard to approach because of their sensitivity to

Page 20

the hardware underlying the imlementation.

The most promising approach to the Proof of concurrent programs

in HAL/S seems to be the use of the proof methods of Owicki and Gries.

Proofs of this kind necessitate knowledge of all the concurrent

processes at any given instant which operate on some shared data.

This can become a very complex problem in HAL/S because of the quite

general scheduling rules of HAL/S. Any process may schedule another

task or program process. In HAL/S/V all scheduling is restricted to

the primal process level. This makes it possible to assert at any

Point in the primal program the possibly active concurrent processes.

Processes can be assigned priorities at the time of scheduling

which can be changed dynamically. HAL/S does not restrict which

processes have the capability to change the priorities of other

processes. In the subset no process other than the primal process can

change its own or any other proccess' priority.

At the time of scheduling a process can be either declared

INDEPENDENT or DEPENDENT. The existence of a dependent process is

contingent on the scheduling process being in the active state. In

HAL/S/V there is no need to make this disinction since all processes

are dependent on the primal process alone. A process can terminate

itself or can be terminated by the primal process only. On abnormal

termination a process must execute a "clean-up" block of code which

might be specified by some construct such as ON TERMINATION similar to

ON ERROR specifications.

Page 21

3.5 Program Units

3.5.1 Procedures And Functions -

Considerations of modularity and incremental development make it

desirable that we should be able to prove procedures and functions

independently of the context in which they are called. In other

words, we would like to see the abstraction facilities of these units

retained during proofs as well as during program development.

Starting with the"entry" specification one must be able to prove the

"exit" specification only with reference to the code of the routine

body. Some features of HAL/S which prohibit this are non-local

referencing, the passing of shared data objects as parameters, and the

run-time dependency of some HAL/S constructs.

3.5.1.1 Non-local Referencing -

The static lexical structure of HAL/S programs is block-oriented

like Pascal and Algol. The name-scope rules are determined by the

block-structure rules such as in those languages. Such scope rules

permit a routine to access non-local variables other than those passed

as parameters. Non-local referencing causes serious difficulties for

verification primarily because it permits aliasing. A data item which

is passed as a parameter may be referenced via the formal parameter

name or may be referenced directly. Also, non-local referencing

violates the principle that routines should be understandable and

verifiable as much as possible in isolation. If such referencing is

allowed, it is impossible to verify routines without a knowledge of

the global environment in which they will be called. This inhibits

Page 22

factoring the proofs of programs into manageable subunits and can make

the proof of large systems prohibitively complex.

Non-localreferencing also makes HAL/S functions unlike their

mathematical counterparts in the sense that the value returned is not

dependent solely upon the values of the parameters. This allows

functions to have side-effects and complicates the verification

substantially.

3.5.1.2 Parameter Passing

HAL/S has facilities to provide two kinds of parameters to

routines, INPUT and ASSIGN parameters. For input parameters the

routine has read-only capability and these parameters cannot be

altered during the course of routine's execution. In contrast, assign

parameters can be assigned new values and thereby can be changed by

the routine. In order to avoid side effects, both in HAL/S and in the

verifiable subset functions are not allowed assign parameters.

HAL/S does not specify whether input parameters are implemented

by passing a copy to the routine or by passing a pointer to the

original copy with a read only capability. If the implementation uses

the second alternative then side effects due to aliasing may occur if

the same variable is passed as both an input and an assign parameter

to a routine at one invocation. in order to overcome such

implementation dependent non-determinacy in the results, in HAL/S/V

the input and assign parameter lists must be disjoint. Again to avoid

any aliasing, the actual parameters in the assign parameter list at

any call point must all be distinct.

Page 23

What happens if a procedure, inside its body, passes one of its

input parameters as an assign parameter to a procedure called within?

Such a situation potentially causes difficulties if input parameters

are passed by setting pointers (reference) with read-only capability.

No side-effects occur if input parameters are implemented by giving a

new copy to the called routine. In HAL/S/V we require that an input

parameter to a routine cannot be passed as an assign parameter to any

procedure called within the routine's body.

3.5.1.3 Procedures And Shared Data -

In HAL/S the access-control of shared data in a concurrent

execution environment is achieved using lock-groups as discussed

earlier. A procedure or function can be declared to have formal

parameters belonging to certain lock-groups. At the call point the

lock-group of the actual parameter must match the lock-group of the

formal. In HAL/S lock-group parameters can only be referenced within

UPDATE blocks which enforce mutual exclusion on the variables of the

lock group during its execution.

Proving procedures with shared data as parameters poses severe

problems; such procedures must be proved for each invocation since, in

order to prove the correctness of the procedure, one must know which

other concurrent processes may operate on that shared object during

the procedure call. Such information depends on the point where the

procedure is being called and also depends on the shared data object

passed as parameters. This implies that in order to prove the

Procedure one must prove it for each call in which a shared data item

Page 24

is passed to it as a parameter. This destroys during proof time the

abstraction and modularization facilities provided by routines. To

alleviate this difficulty we suggest that in HAL/S/V procedures (or

functions) with lock-group parameters be executed as critical sections

thereby enabling their proofs as stand-alone units. We propose to use

the UPDATE (lock-group) facility, as provided in HAL/S, for this

purpose.

One implication of this rule is that a procedure or function with

locked parameters must adhere to the following five restrictions which

are imposed by the language upon update blocks. An UPDATE block may

not contain statements of the following kind:

1) input/output

2) wait or schedule statements

3) another update block

4) task blocks, but it may contain definition of new

procedures or functions

5) any procedure or function defined outside the

update block.

In order to make these restrictions effective an additional

restriction must be placed on procedures called within these

"update-procedures". One alternative is to insist that a procedure

with formal parameters belonging to a lock group cannot call any

procedure or function defined outside its block which does not have

any lock-group parameters--such a procedure may contain a 'schedule'

or 'wait' statement in its body. An alternative is to refuse to

permit any procedure or function to have 'wait' or 'schedule'

statements in its body. However, in itself that would not be

Page 25

sufficient and one would have to further disallow i/o statements

within procedures. Either alternative is unattractive because of the

loss of useful facilities such as Procedures for scheduling and

synchronization.

A third alternative is enforced in HAL/S/V. Though the

procedures and functions with lock-group parameters are treated as

UPDATE blocks, they may call other procedures and functions provided

the called routines conform to the restrictions on update blocks

mentioned earlier. To clarify, a procedure with lock-group parameters

can call another procedure with lock-group parameters although both

these are treated as update blocks. This is unlike the general case

in which update blocks within update blocks may lead to potential

deadlock situations because of the scope rules of HAL/S/V. Since the

only variables accessible within a routine are those which are

explicitly passed as parameters to it, the only procedures or

functions which can be called are those which need parameters of

exactly the same lock-groups (or a subset of these) as those passed to

the calling routine. Also, a compile-time check can be made to ensure

that a procedure with lock-group parameters does not call any routine

which contains statements of the five categories prohibited in update

blocks. This effectively creates two classes of routines one, which

contain statements like wait, schedule, i/o, etc., and other routines

which don't contain such statements.

Page 26

3.5.1.4 Run-time Dependency

Run-time dependent system functions, like RUNTIME and DATE, cause

certain unique problems for verification as do non-memoryless

functions like RANDOM. Such functions have results which are not

dependent solely upon the values of the parameters. Hence two

invocations of the function will return different values even with

identical parameter lists. If a user-defined function during its

execution calls some system-defined, run-time dependent function, then

it is possible for the user-defined function also to return different

values at different invocations even though the same parameter values

are passed to it. Therefore in HAL/S/V one is not allowed to

reference run-time dependent functions within routines. This implies

that run-time depehdent functions can only be called at the outermost

level.

3.5.2 Tasks And Programs -

The outermost level of programs may contain task declarations and

definitions. The proof of a task block is highly dependent on the

scheduling in the program. In order to prove a task one must have

knowledge of which other tasks execute concurrently and share data

with it. More about these problems in discussed in the sections on

real-time scheduling.

In HAL/S (and also in the subset) tasks are the static

counterpart of processes. A task block may not be nested within

another task block. In HAL/S, a task can schedule another task.

Although a very useful feature from a functional abstraction point of

Page 27

view, this makes the proof of concurrent tasks very complex. In

HAL/S/V we propose to restrict all scheduling to the outermost level

of programs. In this way, when proving concurrent tasks one does not

have to worry about any subtasks which may be scheduled within them.

The most promising way to approach the proof of concurrent tasks

in HAL/S seems to be the use of the techniques proposed by Owicki and

Gries. In this method, in order to prove concurrent programs, one has

to show that the execution of statements in one program does not

change the pre or post conditions of statements in the other programs.

This is called non-interference between the programs. In HAL/S/V,

this kind of non-interference only needs to be shown between programs

at the level of update blocks. After showing non-interference, each

of the programs can be proved separately as a sequential program.

3.5.3 External Declarations -

In HAL/S external declarations permit users to define external

program units, Procedures, functions, and global data within

separately compiled blocks called compools. In HAL/S/V these have all

been retained except that all compool data items must be declared to

belong to some lock-group. Also, procedures and functions may not

contain templates for compool data since no non-local referencing by

procedures or functions is allowed in HAL/S/V.

Page 28

3.6 Textual Integrity

The behavior and hence the verifiability of a program is entirely

dependent upon the program text. Changing one token or even one

letter can lead to incorrect results or invalidate a previous

verification. Therefore, features are to be avoided which lead to

textual alterations. The major offenders in HA/S are replace

statements and replace macros.

These facilities permit almost unrestricted textual modification.

The effect of each such statement is to present the verifier with two

programs to verify--the original and the modified version. Depending

upon the extent of replacement these verifications may be nearly

identical or quite different. In the worst case the difficulty of

verification may be exponential in the number of replace statements

appearing. Such a severe penalty seems to outweigh the benefits of

these facilities. Therefore, there are no replace statements or

replace macros in HAL/S/V.

4.0 CONCLUSIONS

It is clear that the verifiable subset, HAL/S/V, contains much

less than the full HAL/S language. The absence of the scalar, matrix,

and vector data types, replace statements, partial initialization, the

name facility, replace macros, inline functions, transient events,

general array processing features, all non-local referencing, and

function side-effects are major omissions. There is, however, much

that has been retained in HAL/S/V including the integer, character,

Boolean, and bitstring data- types, most control features of HAL/S,

Page 29

arrays and structures, subprogram definitions, real-time and

concurrent programming constructs, and all input/output facilities of

HAL/S. There are many significant programs that can be expressed

entirely in HAL/S/V. Also because HAL/S/V is a strict subset of

HAL/S, it is possible to express in HAL/S/V critical segments of a

complete HAL/S program.

In order to obtain verified programs, a language that will

support verification effectively is required. Is HAL/S/V such a

language? In principle, "Yes". By expressing programs strictly

within HAL/S/V, certain limited amounts of manual verification could

be done. However, any sizeable amount of verification will require

verification tools (verification condition generators, algebraic

simplifiers, theorem provers, etc.). The building of these tools is a

large effort, and it is doubtful that building such tools for HAL/S/V

would be cost effective in view of the other alternatives.

One alternative that should be considered is the translation of

an existing verifiable language with existing tools. Gypsy, for

example, is a fully verifiable language with an extensive set of

verification tools. Building verified programs in Gypsy using

existing tools and then mechanically translating the verified Gypsy

program into HAL/S is an alternative that should be weighed against

the sizeable cost of building verification tools for HAL/S/V.

Another alternative that should be considered seriously is the

use of the Ada language in place of HAL/S. We have begun a

verifiability analysis of Ada similar to the study of HAL/S. Although

Ada is by no means fully verifiable, it appears to be significantly

Page 30

more supportive of verification than HAL/S. Although there are

currently no more verification tools for Ada than for HAL/S/V,0 it is

almost certain that some of these tools will be developed. Ada also

provides several important dvantages in addition to verifiability.

Ada appears to provide all of the capability provided by HAL/S. Ada

programs can be interfaced to existing HAL/S programs. Ada is a much

more modern language design than HAL/S. It incorporates much of the

structured programming and software engineering technology that has

been developed in the last 5-10 years. Ada is expected to receive

widespread use and support within the DoD. The general use of Ada in

favor of HAL/S, therefore, is an alternative that, we believe, should

be seriously considered.

Page 31

REFERENCES

1. 	Good, D.I., R.M. Cohen, C.G. Hoch, L.W. Hunter, D.F.

Hare, "Report on the Language Gypsy, Version 2.0", The

University of Texas at Austin, ICSCA-CMP-10 (September,

1978).

2. 	HAL/S Programmer's Guide - Vol. 1 2", Intermetrics Inc., 701

Concord Ave., Cambridge, Massachusetts 02138, December 16,

1974.

3. 	HAL/S Language Specification", Intermetrics Inc., 701 Concord

Ave., Cambridge, Massachusetts 02138, June 16, 1976.

4. 	Young, W.D., A.R. Tripathi, D.I. Good, d.C. Browne,

"Evaluation of Verifiability in HAL/S", Proceedings of

Computers in Aerospace Conference I, 1979, pp.359-366.

Overview

Overview of Differences

Between HAL/S and HAL/S/V

James C. Browne

Donald I. Good

Anand R. Tripathi

William D. Young

December 31, 1979

INSTITUTE FOR COMPUTING SCIENCE AND COMPUTER APPLICATIONS

The University of Texas at Austin

Austin, Texas 78712

O-I

Overview of Differences Between HAL/S and HAL/S/V

This document lists all changes to HAL/S incorporated in the

HAL/S/V verifiable subset. Changes are grouped according to the

chapters of the HAL/S Programmer's Guide. Reasons for the changes are

included though more elaboration and examples can be found with the

descriptions of the constructs in the document "HAL/S/V: A Verifiable

Version of HAL/S."

0-i;

Pageo4

1.0 STRUCTURE OF HAL/S

1. 	A procedure or function block can reference a non-local

variable only if it is passed as an actual parameter at the

call site. This does not apply to global constants.

There are several reasons why this restriction is imposed.

First, verification of large programs is a difficult process.

This difficulty is compounded if the program is not written

in such a way that it can be decomposed into smaller modules

which can be independently verified. An unrestricted

facility to reference global data inhibits such decomposition

since the behavior of every module which references global

data is affected by the global environment in ways which may

be evident only with detailed analysis of the progam text.

In the case of functions, it is desirable that the behavior

be 	 describable in terms of a time invariant functional (in

the 	mathematical sense) relationship between the parameters

and 	the output value. This becomes impossible with non-local

referencing.

Finally, one of the most pernicious problems in the way of

verifying any program is aliasing--data items having more

than one name by which they can be referenced. Assertions

made concerning a variable under one name then may be

invalidated by changing the value of that variable under any

of 	 the aliases. Non-local referencing allows aliasing since

global data may be referenced directly and also through the

parameter list.

2.0 HAL/S SYMBOLOGY

1. 	Arithmetic literals are of the form +ddddd where ddddd

represents an arbitrary number of decimal digits.

The INTEGER data type is the only arithmetic data type of

HAL/S/V. Therefore, scalar constants are not required.

3.0 A HAL COMPILATION--THE PROGRAM BLOCK

HAL/S/V makes no explicit changes to the material in Chapter 3 of

the HAL/S Programmer's Guide.

Pageo-2

4.0 DATA DECLARATION

1. HAL/S/v possesses no SCALAR, MATRIX, or VECTOR data types.

Automatic verification of a program requires that the effect

of 	 every language construct upon the program state be

symbolically representable in an exact way. Only in that way

can meaningful assertions be constructed to describe the

progam state. The SCALAR data type (the HAL/S representation

of 	 floating point numbers) is not so representable. SCALAR

operations usually introduce some error term whose magnitude

depends upon the particular object machine, the magnitudes of

the 	operands, the operation involved, etc. Verification

techniques cannot handle such contingencies. Therefore, the

SCALAR data type is not included in HAL/S/V.

The MATRIX and VECTOR data types, being composed of SCALAR

elements, are perforce also not present in HAL/S/V.

5.0 REPLACE STATEMENTS

1. 	There is no replace statement in HAL/S/V.

The HAL/S replace statement permits almost unrestricted

textual modification. The effect of each such statement is

to present the verification system with two programs to

verify--the original and the modified version. Depending

upon the extent of replacement these verifications may be

nearly identical or quite different. In the worst case the

difficulty of verification may be exponential in the number

of replace statements appearing. Such a severe penalty seems

to outweigh the benefits of this facility.

6.0 DATA REFERENCING AND SUBSCRIPTING

1. 	Component subscripting applies only to CHARACTER data items

since MATRIX and VECTOR data items are not permitted in

HAL/S/V.

ORIGINAL PAGE IS
OF POOR QUALITY

7.0 EXPRESSIONS

1. 	The only arithmetic operations recognized in HAL/S/V are

exponentiation (with positive exponents), multiplication,

addition, and subtraction or negation. Division is integer

division using the system function DIV. The following

operations do not appear because they operate on data types

or return data types not supported in HAL/S/V:

exponentiation with negative or fractional exponents,

Pageo-3

inversion, transposition, vector cross product, and floating

Point division.

2. No implicit precision conversion is permitted in HAL/S/V.

We feel that a reasonable requirement on any programming

language be that the effects of each construct be

transparent. This leads to Programs which are more likely to

be correct and which are easier to read and understand.

Operands of differing precision are essentially of different

types. Implicit conversions mask from the Programmer and the

reader the fact that in the conversion process information

may be lost or spurious information added. Requiring that

the programmer explicitly perform all precision conversions

explicitly using the conversion functions provided by the

language forces him to recognize this possibility and perhaps

compensate for it.

3. 	The operation of catenation operates on CHARACTER data items

only.

Catenation of non-character data items is useful primarily

for output purposes. However, it violates the principle

espoused above that all conversions should be explicit.

Operators exist in the language for explicitly converting

between data types.. Therefore, no power is lost by imposing

this requirement while a great deal of clarity is gained.

8.0 ASSIGNMENTS

1. 	HAL/S/V allows no implicit type conversions across assignment

statements. Therefore, the declared type of the receiving

data item must be that of the expression on the right hand

side of the assignment statement.

This requirement is in keeping with our view that language

constructs can be powerful yet without doing anything behind

the programmer's back. Type and precision conversions across

assignment statements constitute changing information under

the guise of transferring information. The change should be

clearly indicated, A complete set of type and precision

conversion operators in HAL/S provides any capability which

might be lost by disallowing implicit conversions.

2. 	Arithmetic assignments are only of type INTEGER since MATRIX,

VECTOR, and SCALAR data types are not part of HAL/S/Y.

3. 	In accordance with 8.1, the right hand side of CHARACTER

assignments must be CHARACTER valued expression.

4. 	No variable appearing on the left hand side of a multiple

assignment may appear on both the main line and the subscript

line.

Pageo-4

9.0 CONDITIONAL STATEMENTS AND BRANCHES

1. 	To make Section 9.1 consistent with Section 9.3 the ability

to label the "true part" or the "false part" of a conditional

has been removed.

2. 	No comparisions involving operands of type INTEGER of

differing precision are allowed.

Operands of differing precision are essentially of differing

types. Therefore, implicit conversion is required for the

comparison to take place. All implicit conversions are

disallowed in HAL/S/V for the reasons cited in 7.2 and 8.1.

10.0 STATEMENT GROUPS

1. 	Since SCALAR is not a legal data type in HAL/S/V the initial,

and final values of the DO FOR statements must be INTEGER

valued expressions and the control variable must be an

unsubscripted INTEGER data item.

2. 	The increment may be +1 or -1 only. This simplifies

construction of loop assertions without severely restricting

the programmer.

3. 	At the end of the final cycle, the control variable has the

value received after that cycle.

Although it is bad programming Practice to do so, there is no

language imposed requirement that the loop control variable

not be used after exitting from the loop. For assertion

purposes then it is desirable that the value be determinate.

4. 	A second form of the DO FOR statement in which values of var

are listed is disallowed in HAL/S/V.

This alternate form does not in general permit specification

of a loop invariant in any clear way. This is because the

value assumed by the control variable may be such that one

execution of the loop is related to the next execution in a

very tenuous way, if at all. Also, the control variable

assumes for each cycle the value of an expression which is

evaluated immediately prior to that cycle of execution.

Hence, the behavior of any loop execution may be dependent

upon prior executions in very unclear ways.

5. 	The exp of a CASE must be an INTEGER valued expression since

the SCALAR data type is iot present in HAL/S/V.

Pageo-5

11.0 PROCEDURES AND FUNCTIONS

1. 	In contrast to HAL/S, there is no default type for functions.

The HAL/S default type is single precision SCALAR. This data

type does not exist in HAL/S/V.

2. 	Since HAL/S/V allows no implicit type or precision

conversions, actual parameters to a function or procedure

must match the formal parameters exactly in- type and

precision.

3. 	There are no SCALAR, MATRIX, or VECTOR parameters since these

data types are absent from HAL/S/V.

4. 	The notion of a function is restricted to make it conform to

the mathematical notion of function in the following ways:

HAL/S/V allows accessing of non-local data only if it is

explicitly passed as parameters. Since functions have only

input parameters, this prohibits functions from having side

effects. An additional restriction is necessary to enforce

this. Namely, procedures called, inside function blocks may

not have as assign parameters the input parameters of the

function. Functions should return values which depend only

on 	 the values of the input parameters and are not time

dependent. Therefore, functions may not call time dependent

system routines such as RUNTIME, DATE, PRIO, etc. Also they

may not call user defined procedures which call these

routines.

These restrictions permit the behavior of functions to be

completely described in terms of a functional (in the

mathematical sense) relationship between input and output

values. Thus, HAL/S/V functions become implementations of

mathematical functions in a true sense. The advantage of

this is that, once proved, the behavior of the function is

entirely circumscribed no matter what the circumstances of

call. In such a case a function may be considered as a

"black box" which produces a unique output value for values

in the input domain. Any details of implementation can be

hidden from the calling environment.

5. 	For procedures, the input and assign parameter lists must be

strictly disjoint. This prohibits the altering of any input

parameter during the execution of the procedure and preserves

the distinction between input and assign parameters.

It is desirable that the effects of a function can be

registered solely by the value returned and the effects of a

procedure can be described solely in terms of a set of

changes to the assign parameters. Acheiving this ideal is

the reason for several of the restrictions we have imposed.

One way it can be violated is if the input parameters to a

routine can be altered during the execution of the routine.

If a data item appears as both an assign and an input

parameter then it can be changed during execution even though

it appears as an input parameter. This possibility is

Page-6

disallowed.

6. 	No more than one part of a structured object may appear in

the list of assign arguments and no part of a structured

object may appear in the input list if any part of the object

appears in the assign list.

For structured objects two parts which are ostensibly

distinct (for instance A$i and A$j) may in fact refer to the

same storage locations. If these appear one in the input

list and one in the assign list, then the problem mentioned

above may occur. In any case, dangerous aliasing would

result. Hence only one part of a structured object may

appear in these situations.

7. 	-No assign argument may be an input argument or any part of an

input argument of an enclosing procedure block.

Without this restriction an input parameter could be changed

in value by a called routine.

8. 	The expression returned by a function must match exactly the

declared type and precision of the function.

No implicit precision conversion is allowed in HAL/S/V.

12.0 INPUT/OUTPUT STATEMENTS

Chapter 12 is concerned with the input/output facilities of

HAL/S. HAL/S/V incorporates these entirely. Hence, this chapter has

been left out of the HAL/S/V manual, being identical to Chapter 12 of

the HAL/S Programmer's Guide.

13.0 REAL TIME PROGRAMMING I

1. 	Statements involving a task block must always follow the

block definition.

2. 	The priority assigned a process at scheduling must be
strictly lower than that of the scheduling process.
Assigning a priority of (PRIO - c) where c is some
non-negative integer such that (PRIO - c) > 0 is the
suggested means of accomplishing this.

3. 	All of the numeric parameters in SCHEDULE and WAIT statements

are INTEGER valued expressions rather than SCKLAR

expressions.

HAL/S/V contains no SCALAR data type.

4. 	No process may be terminated by execution of a TERMINATE

statement if it or any of its dependent processes updates

Page0-7

global data.

5. 	There is no UPDATE PRIORITY statement allowed in HAL/S/V.

6. 	As noted in Section 11.4.4, the functions RUNTIME and PRIO

may not be invoked by any function or any procedure called by

any function.

7. 	The use of a Process name as a Boolean variable to indicate

the state of a process is not permitted in HAL/S/V.

14.0 SUMMARY OF PART I

Chapter 14 is simply a summary of the contents of Part I, the

first 13 chapters.

15.0 COMPOOLS AND COMSUBS

1. 	No external function or external procedure may have compool

templates or access compool data. This is implied by the

HAL/S/V scoping rules which do not allow procedures or

functions to access non-local data except that passed

explicitly as parameters.

2. 	Identifier names use-d to declare data in a compool body may

not duplicate the names of identifiers used to declare data

at the outermost level of programs having a template for that

compool.

To allow duplication leads to ambiguity of reference in the

program block. An appearance of the duplicated name in the

main program may refer to either the program's global data

item or to the compool data item. HAL/S scoping rules

apparently are not sufficient to disambiguate this situation.

3. 	Replace statements are disallowed in external procedures as

in other places in the language.

16.0 ADDITIONAL DATA, INITIALIZATION FORMS

1. 	Partial initialization of data is not permitted.

2. 	STATIC initialization of data is not permitted for reentrant

procedures.

Static initialization for a procedure implies that each entry

is saddled with whatever data values the previous entry left

behind. This presents a problem for verification generally

since the procedure's proof must take into account the

Page0-8

effects preceeding calls may have had upon local data.For

reentrant Procedures the difficulty is enhanced since the

data may be being acessed by several invocations

concurrently. Thus the proof requires knowledge not only of

preceeding calls which have completed but also of preceeding

and suceeding calls which are concurrently active. Thus the

difficulties which adhere to the proving of concurrent

programs are inherited by procedures--which should be

proveable sequentially. Therefore, it is required that every

entry to a reentrant procedure have its own copy of the local

data. This is accomplished by allowing only AUTOMATIC

initialization.

17.0 BIT STRINGS

1. 	The operations called "conjunction" and "intersection" in the

HAL/S Programmer's Guide are called "disjunction" and

"conjunction," respectively, in the HAL/S/V document to

conform to standard logical usage.

2. 	Two bit string operators compared by the OR or AND operations

must be of equal length.

3. 	The operands of a bit string assignment must be of equal

length.

4. 	Two bit strings are considered unequal if they are of unequal

length.

5. 	A bit string actual parameter to a function or procedure must

be of the same length as the declared length of the formal

parameter. This applies both to input and assign parameters.

6. 	A bit string value specified at the RETURN statement of a

function must match in length the declared value of the

function.

18.0 MULTI-DIMENSIONAL ARRAYS

HAL/S/V makes no explicit changes to the material in Chapter 18

of the HAL/S Programmer's Guide.

19.0 STRUCTURES

1. 	A structure template may never possess a node of the same

structure type. Whether or not this is possible in HAL/S is

unclear from the Programmer's Guide.

If such a situation were permissible then that node would in

Pageo-9

turn have a subnode of the same structure type, etc. Thus

there would be an infinite branch on the tree.

20.0 HAL/S/V ARRAY PROCESSING FEATURE

The material contained in Chapter 20 of the HAL/S Programmer's

Guide is not available in the HAL/S/V programming language.

Any allowable HAL/S operation one can perform on an array can be

done without these features on a component by component basis in a

loop. Though somewhat less convenient, this approach has several

advantages.

1. 	Implementation dependencies arising from the ambiguity in the

order in which component operations are performed are

eliminated since the serial order of the operations is made

explicit.

2. Operations such as "-+" may be treated by the verification
system as non-generic and subject to a set of axioms which

are not dependent upon the types of the operands.

3. 	Verification is greatly simplified. For instance, the number

of times a function is invoked is obvious from the text and

not dependent upon the dimensionality of its arguments, as

may be the case in HAL/S.

For these reasons, the constructs described in Chapter 20 have

been removed from HAL/S/V even though several of them mey be

theoretically verifiable.

21.0 EXPLICIT CONVERSIONS

Functions for conversion to and from scalar, vector, and matrix

types have been ommitted because objects of these types are not

allowed in HAL/S/V. Subbit psuedo-conversion does not exist in

HAL/S/V because of the complexities which overweigh its usefulness.

22.0 ADDITIONAL INPUT/OUTPUT FEATURES

Chapter 22 is concerned with the additional input/output

facilities of HAL/S. HAL/S/V incorporates these entirely. Hence,

this chapter has been left out of the HAL/S/V manual entirely, being

identical to Chapter 22 of the HAL/S/V Programmer's Guide.

Page,1 0

23.0 REAL TIME PROGRAMMING II

1. 	Two program blocks may not contain templates for each other.

This is implicit in the requirement that recursion is not

permitted in HAL/S.

2. 	All or the time and delay conditions in SCHEDULE statements

are specified by INTEGER rather than SCALAR expressions.

3. 	No program process may be terminated if it or any dependent

process updates compool data.

4. 	A process may only cancel itself or dependent processes.

24.0 REAL TIME PROGRAMMING III

In the verifiable subset only latched type of events are

permitted. Therefore event expressions can not contain transient

events; operation such as "signal" is of no meaning in HAL/S/V.

:1.

HAL/S/V does not contain transient events; the reason

for not having these in the subset is mainly because the

semantics of certain logical operations on this type of

events is not well defined. Secondly, they seeem to be

redundant as the programs can be written by using the latched

events only which are like conditions.

example:

not EV {where EV is a transient event}

does not have any well defined meaning. Similarly "EVI

and EV2" where both are transient events.

2.

All th events are of latched type therefore default type

taken in declaration is latched type.

3.

Boolean expressions can not contain items of the type

event; if it is permitted then it not possible to assert the

expression as true or false because the value of the latched

event might be changed by some other concurrent process.

Pageol

25.0 ERROR RECOVERY AND SIMULATION

This part of HAL/S has been retained in the subset but it needs

further thoughts. This could possibly be redesigned on the lines of

error recovery in Ada which would lead to substantial simplification.

26.0 DATA STORAGE AND ACCESS

1. 	All data items which are shared by more two or more tasks or

programs must belong to some lock group. This rule does not

apply to objects of "event" type.

27.0 HAL/S/V AND REENTRANCY

1. 	HAL/S/V does not permit multiple copies of reentrant

procedures or functions to share local data items.

Therefore, the keyword STATIC may not be used in conjunction

with the keyword REENTRANT in defining procedures and

functions.

See 16.2 of this document for justifications.

28.0 THE HAL/S NAME FACILITY

1. 	fo NAME data item may be declared in HAL/S/V.

The ability to maintain "pointers" to specified data items is

a valuable feature of many programming languages. However,

it presents a problem from the point of view of verification.

If the pointer value is treated as merely another name for an

object, as in HAL/S, aliasinf of the worst Kind can result.

In such a case, the objecthas a declared name and any number

of other aliases. Assertions made using any of the aliases

may be falsified by accessing the object via any other--a

fact which is not apparent from the program text. Therefore,

the verification system is constrained to keep track of all

aliases of every data object. For this reason, HAL/S/V does

not permit any name data item to be declared.

29.0 REPLACE MACROS AND INLINE FUNCTIONS

1. There are no REPLACE macros or inline functions in HAL/S/V.

It was stated in 5.1 that the REPLACE statement of HAL/S had

been removed from HAL/S/V. This applies as well to the

Pageo-1 2

parameterized version called REPLACE MACROS and for the same

reasons.

The behavior of a program and, hence the verifiability, is

governed by the program text. The HAL/S Replace facility

allows arbitrary changes to be made to the program text.

Such changes generate essentially new programs for which a

previous verification may be invalid. Thus, complete

verification requires that each possible program text be

considered individually. The work involved is potentially

exponential in the number of replace statements.

"In-line functions" in HAL/S are parameterless functions

designed to enhance the versatility of the parametric

replacements. However, without REPLACE MACROS, they are of

little use. They are executed in-line and cannot be invoked

elsewhere in the program. Moreover, according to the HAL/S/V

scoping requirements outlined in Chapter 11, a function may

not access non-local data unless it is passed as a parameter

at the call site. Hence, a parameterless function is

essentially a constant. Eor these reasons in-line functions

are disallowed in HAL/S/V.

30.0 MANAGERIAL ACCESS OF CONTROL TO DATA AND CODE

HAL/S/V makes no explicit changes to the material in Chapter 30

of the HAL/S Programmer's Guide.

31.0 INTERFACES WITH NON-HAL/S CODE

HAL/S/V makes no explicit changes to the material in Chapter 31

of the HAL/S Programmer's Guide.

32.0 SUMMARY OF PART II

Chapter 32 is simply a summary of the contents of Part II,

Chapters 15 through 31 of the Programmer's Guide.

Manual 1 1

HAL/S/V:
A Verifiable Version of HAL/S

Volume - 1

James C. Browne

Donald 1. Good

Anand R. Tripathi

William D. Young

December 31, 1979

INSTITUTE FOR COMPUTING SCIENCE AND COMPUTER APPLICATIONS

The University of Texas at Austin

Austin, Texas 78712

A-'

VERIFIABLE SUBSET OF HAL/S/V

This document defines the preliminary verifiable subset of the

HAL/S/V language. Those features in the original HAL/S/V language

which make the proof methods cumbersome have been deleted in selecting

this subset. This document has been prepared by editing the HAL/S

Programmer's Guide. For purposes of comparing HAL/S and HAL/S/V, the

same section numbers have been retained in both documents.

TABLE OF CONTENTS

Chapter 1 	STRUCTURE OF HAL/S/V 1-1

1.1 STRUCTURING AND HIGHER ORDER LANGUAGES . . . 11

1.2 THE BLOCK STRUCTURE OF HAL/S/V 	 1-2

1.2.1 Scoping Of Data. . .	 . 1-2
........

1.2.2 Scoping Of Block Names 1-3

1.3 STATEMENT GROUPING IN HAL/S........ 1-4

1.3.1 	 Statement Groups And Go To

Statements....... 1-4

1.3.2 Interaction With Block Structure . . . 1-4

Chapter 2 HAL/S/V SYMBOLOGY 2-i

2.1 THE CHARACTER SET 	 2-1

2.2 RESERVED WORDS, IDENTIFIERS, AND LITERALS . . 2-2

2.2.1 Reserved Words 	 2-2

2.2.2 Identifiers 	 2-2

2.2.3 Literals 	 2-3
2.2.3.1 ARITHMETIC LITERALS 	 2-3

2.2.3.2 CHARACTER STRING LITERALS	 2-4

2.2.3.3 BOOLEAN LITERALS -. 	 2-4

2.3 FORMAT OF SOURCE TEXT 	 2-5

2.3.1 Single-Line Format. 2-5

2.3.2 Multi-Line Format 	 2-6

2.4 STATEMENT DELIMITING 	 2-6

2.5 COMMENTS IN HAL/S/V 	 2-7

2.5.1 Imbedded Comments...... 2-7

2.5.2 Comment Lines. 2-7

Chapter 3 A HAL/S/V COMPILATION - THE PROGRAM BLOCK 3

3.1 OPENING AND CLOSING THE PROGRAM BLOCK 3-1

3.1.1 Program Opening.. 	3-1

3.1.2 Program Closing.. 3-1

3.2 POSITION OF DATA DECLARATIONS 	 3-2

3.3 FLOW OF EXECUTION IN THE PROGRAM 3-2

M_ill

Chapter 4 DATA DECLARATION 4-1

4.1 HAL/S/V DATA TYPES 	 4-1

4.2 SIMPLE DECLARATION STATEMENTS 4-2

4.2.1 Integer 	 4-2

4.2.2 Character.. 	4-3

4.2.3 Boolean 	 4-3

4.2.4 Arrays	 4-4

4.2.5 Compound Declarations 	 4-4

4.3 INITIALIZATION OF DATA. 	 4-5

4.3.1 Uni-Valued Data Items 	 4-6

4.3.2 Multi-Valued Data Items	 4-6

4.3.3 Order Of Initialization 4-7

Chapter 5 REPLACE STATEMENTS.. 5-1

Chapter 6 DATA REFERENCING AND SUBSCRIPTING......... 6-1

6.1 SUBSCRIPTS OF UNARRAYED DATA TYPES 6-1

6.1.1 Character 	 6-2

6.2 SUBSCRIPTS OF ARRAYED DATA TYPES 6-3

6.2.1 Array Subscripting Only... 	 6-3

6.2.2 Array And Component Subscripting	 6-4

6.2.3 Component Subscripting Only 6-4

Chapter 7 EXPRESSIONS7-1

7.1 ARITHMETIC OPERATIONS 	 7-1

7.1.1 Negation 	 7-2

7.1.2 Addition And Subtraction 	 7-2

7.1.3 Multiplication 	 7-2

7.1.4 Exponentiation 	 7-2

7.1.5 Note On Precision Conversion....... 	 7-3

7.2 CHARACTER OPERATIONS.............. 	 7-3

7.2.1 Concatenation 	 7-3

7.3 BOOLEAN OPERATIONS 	 7-4

7.3.1 Complement 	 7-4

7.3.2 Conjunction 	 7-4

7.3.3 Intersection 	 7-5

7.4 COMBINING OPERATION AND PRECEDENCE 7-6

7.4.1 	 Arithmetic And Character Precedence

7-6

7.4.2 Boolean Precedence"	""........ 	 ..
 7-6

7.4.3 Overriding Precedence Order 	 7-7

7.5 SOME EXPLICIT CONVERSIONS 	 7-8

7.5.1 Precision Conversion 7-8

Chapter 8 ASSIGNMENTS............... 8-1

8.1 GENERAL FORM OF ASSIGNMENT 8-1

8.2 ARITHMETIC ASSIGNMENTS 8-2

8.2.1 Integer. 8-2

8.2.2 Note On Precision Conversion 8-2

8:3 CHARACTER ASSIGNMENTS. 8-2

8.4 BOOLEAN ASSIGNMENTS 8-5

8.5 MULTIPLE ASSIGNMENTS 8-5

Chapter 9 CONDITIONAL STATEMENTS AND BRANCHES 9-1

9.1 THE CONDITIONAL STATEMENT 9-1

9.1.1 Simple IF Statement. 9-1

9.1.2 Augmented If Statement 9-2

9.2 RELATIONAL EXPRESSIONS 9-3

9.2.1 Comparative Operations 9-4

9.2.2 Note On Precision Conversion 9-4

9.2.3 Combining Comparative Operations . . . 9-5

9.2.4 Precedence 9-6

9.3 LABELS AND BRANCHES 9-7

9.3.1 Labels. 9-7

9.3.2 Go To Statement"............ 9-8

9.3.3 Eliminating Go To Statements 9-8

Chapter 10 STATEMENT GROUPS 10-1

10.1 DELIMITING STATEMENT GROUPS 10-1

10.1.2 The End Statement 10-2

10.2 REPETITIVE EXECUTION OF STATEMENT GROUPS . . . 10-3

10.2.1 The Do While Statement 10-4

10.2.2 The Do For Statement 10-5

10.3 SELECTIVE EXECUTION OF STATEMENT GROUPS . . 10-7

10.4 BRANCHING IN STATEMENT GROUPS 10-8

10.4.1 The Exit Statement 10-8

10.4.2 The Repeat Statement 10-10

Chapter 11 PROCEDURES AND FUNCTIONS....... 11-1

ffi-V

11.1 INTRODUCTION .	 11-1

11.1.1 	 Relative Position Of Block

Definitions..... 11-1

11.2 BLOCK 	DEFINITIONS 11-2

11.2.1 Procedure Opening 	 11-2

11.2.2 E-unction Opening 11-2

11.2.3 Block Closing	 11-3

11.3 DECLARATION OF PARAMETERS AND LOCAL DATA . . 11-3

11.3.1 Character Parameter Declarations - - 11-4

11.4 FUNCTION INVOCATIONS 	 11-5

11.4.1 Integer Parameter 	 11-5

11.4.2 Character Parameter 	 11-5

11.4.3 Boolean Parameter 11-6

11.4.4 	 Note On Function Restrictions In

HAL/S/V 11-6

11.5 PROCEDURE INVOCATIONS 	 11-7

11.5.1 Assign Arguments 	 11-8

11.6 RETURNS FROM PROCEDURES AND FUNCTIONS 11-9

11.6.1 Procedure Return. 11-9

11.6.2 Function Return 11-10

Chapter 12 INPUT/OUTPUT STATEMENTS. 12-1

Chapter 13 REAL TIME PROGRAMMING -I 13-1

13.1 HAL/S/V REAL TIME CONCEPTS 	 13-1

13.1.1 Multi-Processing In HAL/S/V 13-i

13.1.2 States Of A Process 13-2

13.1.3 Process Swapping & Breakpo-ints 13-4

13.1.4 Priority Scales 	 13-4

13.1.5 Process Dependency 	 13-4

13.2 TASK BLOCK DEFINITIONS 	 . 13-5
...... 	

13.2.1 	 Relative Position Of Task

Definitions.. 13-5

13.2.2 Task Opening 	 13-5

13.2.3 Task Closing 	 13-5

13.2.4 Local Data Declarations 13-6

13.3 FLOW OF EXECUTION IN PROGRAM AND TASK
BLOCKS.........
 .
.........
 13-7

13.3.1 Form Of Return Statement 13-7

13.4 THE SCHEDULE STATEMENT 	 13-8

M4-VI

13.4.1 Immediate Initiation 13-8

13.4.2 Delayed Initiation....... . 13-9
...

13.5 OTHER REAL TIME FEATURES OF HAL/S/V .. 13-10

13.5.1 Terminate Statement .
.... 13-10

13.5.2 Wait Statement. 13-11

13.5.3 Update Priority Statement 13-12

13.5.4 Real Time Built-In Functions 13-13

13.5.5 Major State Indication 13-13

Chapter 14 SUMMARY OF PART I 14-1

- l

CHAPTER I

STRUCTURE OF HAL/S,/V

This section gives an overview on an abstract level of the

overall properties of HAL/S/V compilations, and tries to relate these

properties to the need for good programming practice. Later sections

of the guide interpret these-properties in terms of actual HAL/S/V

language constructs.

1.1 STRUCTURING AND HIGHER ORDER LANGUAGES

A common method of problem solving is the so-called "top down"

approach. The algorithm for solving the problem is first outlined

broadly, then delineated step-by-step in successively deeper level of

greater detail. The success of the algorithm in arriving at the

solution lies as much in its ability to break the problem down to

simple components as in its ability to resolve the problem as a whole.

If a problem is to be solved by programming it in a higher order

language, then the "top down" approach is of special interest since it

lends insight into how the program can be organized. Specifically,

the organization takes the form of an outer program block enclosing

numerous nested subroutines. On the outermost level, the program is

only concerned with the broad outlines of the solution and relegates

the first level of detail to the outer set of subroutines. These, in

turn, relegate the next level of detail to the inner sets of

subroutines until each level of the problem has been relegated to the

appropriate set of subroutines.

This particular programming technique is partly what is meant by

"structured programming". The term also implies an ability to form

nested groups of executable statements inside a program or subroutine.

On each level of nesting, a statement group has the ability to behave

as if it were a single executable statement.

Structured programming techniques introduce an order into the

writing of programs whichnot only makes the programs easier to read

but also less susceptible to error. Most modern high order languages

possess constructs out of which structured programs can be created:

the constructs of HAL/S/V have been defined deliberately with
structured programs in mind.

I-I

STRUCTURE OF HAL/S/V Page 1-2

1.2 THE BLOCK STRUCTURE OF HAL/S/V

The structure of a HAL/S/V compilation generally consists of a

program block with Procedure and function blocks nested within it.

These blocks constitute the HAL/S/V interpretation of the

"subroutines" mentioned in section 1.1. The more deeply such a block

is nested, the greater the detail of the problem solution it is meant

to handle. The blocks at each level contain executable code

implementing the appropriate part of the problem solution.

Both kinds of block are similar in that they contain code which
is executed by a call or "invocation", and which returns execution to
the caller upon completion. However, procedure and function blocks
differ in the way they are invoked. A procedure is invoked by a CALL
statement while a function (like its mathematical counterpart) is
invoked simply by its appearance in an expression and returns a
result. *

Generally, the code in any block may invoke a procedure or

function block defined at the same level, or in a surrounding outer

level. The rules defining the place where a block may be invoked are

discussed later in this section.

The forms of procedure and function blocks and the constructs for

invoking them are described in Section 11 of this guide. The form of

the outer program block is described in Section 3.

1.2.1 Scoping Of Data

In HAL/S, all data must be defined in "data declarations". An

important consequence of the structural properties of HAL/S is its

ability to place data declarations to bound the regions in a program

which may reference the declared data. This feature is called

"scoping".

The scoping rules in HAL/S/V have been modified so that a

Procedure or function block can reference a non-local variable only if

it is explicitly passed to it as an actual parameter at the call site.

Further, to avoid any side effects of the function calls, we retain

the restriction imposed on the original HAL/S; by which functions can

only have INPUT parameters and cannot possess any ASSIGN parameters.

Restricting the non-local variable referencing only to those

variables which are passed explicitly as parameters, helps in avoiding

any aliasing of variables during a procedure call. In case of

accessing constant identifiers the scope rules of block structured

languages, as given for HAL/S, still remain valid.

A procedure is therefore like a Fortran SUBROUTINE, and a function

is like a Fortran FUNCTION. Note, however, that while Fortran

SUBROUTINES and FUNCTIONS are always exterior to the program calling

them, this is not true for HAL/S/V.

STRUCTURE OF HAL/S/V Page 1-3

Reasons: -------

In a procedure block no variable can be referenced using more

than one name, which ensures that the assertions on the value of an

identifier remain valid. This is achieved by restricting the

non-local references to the actual parameters passed to a procedure at

the call site. If unrestricted accesses are permitted to the

non-local variables then it is very hard to make assertions at the

call site involving these non-local variables.

Similarly, the type of parameters to a function are restricted to

input (value) parameters so that function calls do not modify any

non-local variable.

1.2.2 Scoping Of Block Names

The program block, and every procedure of function within it are

named: block names have scoping rules identical with the data scoping

rules as in a block structured language like PASCAL. The name of any

procedure or function block is deemed to have been "declared" in the

surrounding block in which the procedure or function is nested. This

bounds the region where its name is known, and therefore determines

where it may be invoked. Thus, the name of any procedure or function

nested at the program level is known anywhere in the program.

However, since in HAL/S/V recursion is not allowed, such a procedure

or function may be invoked from anywhere in the program except inside

itself. Similarly, inner procedures and functions may be invoked from.

anywhere in the block enclosing them except within themselves. It

should be noted that all forms of recursion in HAL/S/V are illegal.

The form of recursion not prevented by the rules given above is that

in which procedures P and 'Q are not contained in each other, but P
calls Q and Q calls P.

NOTE: HAL/S/V does not support the passing of function or procedure

names as parameters. Therefore, the rules governing the "visibility"

of block names must be more liberal than those governing variable

names. Otherwise, functions and procedures could never call each

other. Thus, the original HAL/S scoping rules concerning block names

were retained in HAL/S/V whereas the scoping rules concerning variable

names were modified.

It is also possible for a program (or

any block within it) to invoke entities

outside the compilation unit; i.e.

other compilation units. Procedures and

functions may be compiled independently

for this purpose.

See: Guide/15.

STRUCTURE OF HAL/S/V Page 1-4

1.3 STATEMENT GROUPING IN HAL/S

In HAL/S/V, the actual step by step solution of a problem is

performed by executable statements contained in the blocks comprising

the program. Sequences of executable statements may be grouped

together and treated as a single compound statement. Such statement

groups are said to be "well-bracketed" -.they begin with a special

statement (a "DO" statement), and end with another special statement

(an "END" statement). Execution of the sequence of statements in the

group can be controlled in various ways depending on the form of the

opening "DO" statement:

* the sequence may be executed once only;

* the sequence may be executed repetitively until specified

conditions are met;

* one statement in the sequence may be selected as the only one

to be executed.

Sequences of compound statements may also be grouped together in

the same way and, in turn, be treated as a more complex compound

statement, and so on to an arbitrary degree of nesting.

Use of this grouping property in conjunction with other HAL/S/V

constructs can substantially eliminate the need for a "GO TO"

statement (in the Fortran sense, for example), which from the

structured programming viewpoint is recognized to be "dangerous"

because it destroys the readability of a program, and makes it more

error-prone.

1.3.1 Statement Groups And Go To Statements

The design of HAL/S/V minimizes the dangers of "GO TO" statements

by limiting the regions which can be branched by them, in a way

analogous to the limits imposed on data by the scoping rules described

in Section 1.2. While groups can be branched out of, or branched

within, they may not be branched into....

1.3.2 Interaction With Block Structure

Since procedure and function blocks may appear anywhere in a

program, including inside statement groups, the problem arises of

branches by means of "GO To" statements in and out of such blocks.

In HAL/S/V, the destinations of "GO TO" statements are labels

attached to executable statements. Because the scope rules for

statement labels are the same as for declared data, it follows that it

is impossible to branch into a Procedure or function block.

Additionally, a rule is made that branches may not be made out of a

block (since by scope rules the label of the destination is not

visible).

STRUCTURE OF HAL/S/V Page 1-5

This leaves the reciprocal processes of call and return-to-caller

the only ways of entering and leaving procedures and functions, which

is in accordance with structured programming principles.

,CHAPTER 2

HAL/S/V SYMBOLOGY

HAL/S/V source text has its own particular characteristics; a

specific character set, special combinations of characters set aside

as reserved words, and certain rules dictating the form of statements.

This section is an introduction to these characteristics of the

HAL/S/V Language.

2.1 THE CHARACTER SET

The HAL/S/V -language uses the following character set:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abddefghijklmnopqrstuvwxyz

0123456789

+--./~&<>@S,;:'")..%"cent sign"

(blank)

This character set is a subset of the standard character sets

ASCII and EBCDIC.

Although the user really needs only the above character set when

writing a HAL/S/V program, there are additional special characters

which can be used in comments and in character string literals

(described later in this section).

[) { I ! ?

The output listings produced by a HAL/S/V compiler may use these extra

special characters for annotation.

2-i

HAL/S/V SYMBOLOGY Page 2-2

2.2 RESERVED WORDS, IDENTIFIERS, AND LITERALS

The HAL/S/V language uses
basic constructs:

four kinds of primitive elements as

1. 	RESERVED WORDS are a fixed part of the language and consist

of combinations of upper case alphabetic characters;

2. 	IDENTIFIERS are user-defined names used for data or labels,

and consist of combinations of the alphanumeric characters;

3. 	LITERALS express actual values, and can consist of any of the

symbols in the character set;

4. 	SPECIAL CHARACTERS serve as delimiters, separators or

operators, and consist of the non-alphanumeric characters of

the HAL/S/V set.

2.2.1 Reserved Words

Reserved words are words having a standard meaning in the HAL/S/V

language. As their name suggests, the user cannot use reserved words

as identifier names. There are two major categories of reserved

words:

1. 	KEYWORDS are used to express parts of HAL/S/V statements, for

example: GO TO, DECLARE, CALL, and so on. A complete list

can be found in Appendix E.

2. 	BUILT-IN FUNCTION NAMES are used to identify a library of

common mathematical and other routines, for example; SINE,

SQRT, TRANSPOSE, and so on. (A complete list can be found in

Appendix B.)

2.2.2 Identifiers

An identifier name is a user-assigned name identifying an item of
data, a statement or block label, or other entity. The following
rules must be observed in the creation of any identifier name 4.

1. 	The total number of characters in the name must not exceed

32;

2. 	The first character must be alphabetic;

3. 	The remaining characters may be either alphabetic or numeric;

4. 	Any character except the first or last may be an

underscore(-).

HAL/S/V SYMBOLOGY Page 2-3

Examples:

ElephantAndCastle \

Al > legal

P /

1B

X-X/ illegal

2.2.3 Literals

The three basic kinds of literals described here are arithmetic,

character string, and Boolean. The utility of arithmetic literals is

obvious. In simple programming problems, character string literals

find most use in the generation of output. Boolean literals are used

to state logical truth or falsehood.

2.2.3.1 ARITHMETIC LITERALS -

These express numerical values in decimal notation. The generic

form of an arithmetic literal is:

+ ddd...

1. ddd represents an arbitrary number of decimal digits.

2. The + signs are optional.

3. The maximum number of digits is implementation dependent.-,

Arithmetic literals in HAL/S/V all express integer values.

Floating point numbers have been discarded in choosing the subset for

reasons discussed in Section 4.1.

Examples:

-4

Some implementations of HAL/S/V may place extra restrictions upon

the names of identifiers. see appropriate User's Manual.

* See appropriate user's manual.

HAL/S/V SYMBOLOGY 	 Page 2-4

2.2.3.2 CHARACTER STRING LITERALS

These consist of strings of characters chosen from the entire

HAL/S/V character set. The generic form is:

'ccccccc'

1. 	The quote marks delimit the beginning and end of the literal.

2. 	cccc represents an arbitrary number of characters in any

combination.

3. 	Quote marks within the literal must be represented by a pair

of quote marks to avoid confusion with the delimiting quotes.

4. 	The minimum number of characters is zero (a 'null' string),

the maximum is 255.

Examples:

'ONE two THREE

'DOGS''

If a literal consists of a s.ingle
character , or character sequence
repeated many times, a condensed form of
literal using a repetition factor may be

used.

See: Spec./2.3.3.

2.2.3.3 BOOLEAN LITERALS -

These express logical truth or falsehood, and are generally used

to set up the values of Boolean data items. Their forms are:

TRUE

> expressing truth, or binary "1"

ON

FALSE

> expressing falsehood or binary "0"

OFF

Literal strings of binary values also

exist.

4 This value may vary between implementations. See appropriate User's

Manual.

HAL/S/V SYMBOLOGY Page 2-5

See: Guide./17.1.

2.3 FORMAT OF SOURCE TEXT

HAL/S/V is a "stream-oriented" language, that is, statements may

begin anywhere on a line (or card), and may overflow without special

indication onto succeeding lines or cards. several statements may be

written on one line (or card) as required.

HAL/S/V is among the very few languages which permit subscripts

and exponents to be represented as they are mathematically, using

lines below and above the main line respectively as needed. This

multi-line format is an optional alternative to the HAL/S/V

single-line format.

Even when multi-line format is not used, the first character

position of each line Cor card) is reserved for a symbol denoting the

kind of line format, subscript, main, or exponent.

2.3.1 Single-Line Format

In single-line format, the first character position of each line

is left blank, denoting a main line. An M can alternatively be used

but is generally not preferred by users.

EXPONENTS are denoted by the operator; *

Example:

t+2
x is coded as:

IM X*(t+2)

SUBSCRIPTS are denoted by parenthesizing the subscript and

preceding it with the symbol: $.

Example:

a is coded as:

i+

IM A$(Iti)
I

HAL/S/V SYMBOLOGY Page 2-6

2.3.2 Multi-Line Format

In multi-line format, the first character of a main line is

either left blank or M is inserted as before. The first character of

an exponent line is E, and that of a subscript line is S.

EXPONENTS are written on an exponent line (E-line) immediately

above the main line.

Example:

t+2

x is coded as:

IE T+2

IM X

SUBSCRIPTS are written on a subscript line (S-line) immediately

below the main line.

Example:

a is coded as:

ili

IM A

IS 1+1

When using multi-line format, the user must take care that nothing on

the E- and S-lines overlaps anything on the M-line.

Exponents of exponents and subscripts of

subscripts use extra exponent and

subscript lines. Special rules apply if

exponents are subscripted, or if

subscripts possess exponents.

See: Spec./2.4.

2.4 STATEMENT DELIMITING

As Section 2.3 indicated, HAL/S/V statements may be written in

free form without regard for line (or card) boundaries. Because of

this there is the need to explicitly indicate the end of each

statement with a special symbol. HAL/S/V uses a semicolon for this

purpose. The following statements arbitrarily selected from the

language show the placement of the semicolon.

HAL/S/V SYMBOLOGY 	 Page 2-7

Examples:

I DECLARE I INTEGER;

II = I + 1;

I CALL P(I,J);

2.5 COMMENTS IN HAL/S/V

The use of Comments is a sine qua non of good programming

practice. HAL/S/V possesses two mechanisms for the inclusion of

comments in a compilation

* 	 IMBEDDED COMMENTS may be placed anywhere on main, exponent or
subscript lines of HAL/S/V text.

* 	 COMMENT LINES may appear between main, exponent and subscript
lines of HAL/S/V text.

2.5.1 Imbedded Comments

An 	imbedded comment takes the form:

/* 	... any text (except */) .../

Such comments may appear between HAL/S/V statements or imbedded in a

statement. They may not appear in the middle of a literal, reserved

word, or identifier. Nor may they overlap any source text or other

comments on other lines of a group written in multi-line format. As

far as the sense of the source text is concerned, an imbedded comment

is treated as if it were a string of blank characters.

Examples:

I 	 M X X + 1; /* ADD ONE TO X/

I M X Y;
S I/ BAD*/

illegal-controverse overlap rule

2.5.2 Comment Lines

Comment lines are input lines specially reserved solely for

comments by placing the character C in the first charac.ter position of

the line. The rest of the line may contain any desired text.

HAL/S/V SYMBOLOGY Page 2-8

Examples:

MN X=X + I;
I C ADD ONE.TO X
I C THEN CARRY ON

CHAPTER 3

A HAL/S/V COMPILATION - THE PROGRAM BLOCK

The structuring of HAL/S/V programs was dealt with on the

conceptual level in Section 1. Section 3 begins to interpret this

information in terms of actual HAL/S/V language constructs.

For the purposes of Part I, an entire HAL/S/V unit of compilation

is known as the "program block". The term "block" has a special

connotation in this Guide. It is taken to mean a coherent body of

data declarations and executable statements enclosed in statements

delimiting its opening and closing, and identified with a name.-

3.1 OPENING AND CLOSING THE'PROGRAM BLOCK

The first statement of a HAL/S/V program is a statement defining

the name of the program and opening the program block. The last

statement of a HAL/S/V program is a statement closing the program

block. Between the two are all the statements comprising the body of

the program.

3.1.1 Program Opening

The 	statement opening a program block takes the form:

I label : PROGRAM;

1. 	label is any legal identifier name, and constitutes the name

of the program.

3.1.2 Program Closing

The 	program block is closed with the statement:

3;,

I CLOSE label

A HAL/S/V COMPILATION - THE PROGRAM BLOCK 	 Page 3-2

1. 	The identifier label is optional.

2. 	If label is supplied, it must be the program name, i.e., the

label on the opening statement of of the program block.

3.2 POSITION OF DATA DECLARATIONS

Normal HAL/S/V programs require the use of data. The names used

to identify this data must be declared before use by the means of data

declaration statements. Data declarations (and, additionally, certain

other kinds of statements) must be placed after the program opening

statement and before the first executable statement.

3.3 FLOW OF EXECUTION IN THE PROGRAM

The program begins execution at the first executable statement

after the data declarations, and thereafter follows a path determined

by the kinds of executable statements encountered. Unless statement

groups, branches, or conditional statements intervene, execution is

sequential. Finally, the path either reaches a statement terminating

execution of the program block, which has the same effect.

As described in Section 1, procedure and function definition

blocks may be interspersed between the statements in a program block.

The only way of executing such blocks is by explicit invocation: if

they are encountered in the path of execution they are passed over as

if non-existent.-

I

CHAPTER 4

DATA DECLARATION

Programming largely consists of the manipulation of numerical

data. The diversity of the data types in a language determines its

utility for any required task. HAL/S/V contains an exceptionally

diverse set of data types.

This set has been considerably restricted in defining HAL/S/V.

This was done primarily because operations on certain types of data

lend themselves to verification methods more readily than others.

Identifiers of the kind described in Section 2 are used to name

items of data. Identifier names used to represent data items must

be defined in data declarations appearing in the appropriate program,

procedure or function block. The effect of placing data in different

blocks is described in Section 1. The position of data declarations

within a program block is described in Section 3.

This Section now proceeds to describe the detailed construction

of data declarations.

4.1 HAL/S/V DATA TYPES

In the HAL/S/V language, arithmetic data must be expressed as

type INTEGER for the representation of integer-valued quantities.

The integer data type may be specified in either single or double

precision. The precision determines the maximum absolute value the

identifier may take on.

NOTE: Other arithmetic data types which are found in HAL/S have been

omitted from HAL/S/V. The SCALAR data type (floating point) has been

omitted because of the difficulty of axiomatizing floating point

arithmetic. Hence, the VECTOR and MATRIX data types are also omitted

since they are composed of scalar elements. In the subsequent

sections anything involving these data types has been discarded or

4:The HAL/S/V language prohibits the use of implicitly declared data

items, considering it to be an undesirable programming practice.

4-1

DATA DECLARATION Page 4-2

modified.

In addition, HAL/S/V also possesses the following data types:

* CHARACTER for the representation of strings of text;

BOOLEAN for the representation of binary-valued (logical)

quantities.

It is possible to declare arrays (or tables) of any of the above three

types.

HAL/S/V possesses other data types.

The Boolean data type is a degen
erate form of the' HAL/S/V "bit

string" type.

See: Guide/l7.

HAL/S/V also possesses hierarchical

organizations of data items of any

type, known as "structures".

See: Guide/19.

Reasons: Verification is primarily concerned with discrete data; but

the representation of real numbers as discrete quantities introduces a

degree of complexity which makes verification extremely difficult.

Sophisticated numerical techniques and error analyses are often needed

to make valid assertions about the results of floating point

operations.

4.2 SIMPLE DECLARATION STATEMENTS

Data declaration statements define identifiers used to name data.

The simplest forms of declaration statement for each data type listed

above are examined on the following pages.

4.2.1 Integer

DECLARE name INTEGER;

I DECLARE name INTEGER SINGLE;

I DECLARE name INTEGER DOUBLE;

1. In each of the forms, name is any legal HAL/S/V identifier.

2. Presence of the keyword SINGLE specifies single precision.

3. Presence of the keyword DOUBLE specifies double precision.

DATA DECLARATION 	 Page 4-3

4. 	Absence of either keyword implies default of single

precision.

For the integer data type, SINGLE precision usually implies

halfword and DOUBLE precision implies fullword, depending on the

implementation.*

Examples:

IDECLARE I INTEGER;

I DECLARE BIGI INTEGER DOUBLE;

4.2.2 Character

IDECLARE name CHARACTER (n);

1. 	name is any legal identifier.

2. 	n specifies the maximum length of the string that the data

type may carry (i.e. the maximum number of characters). It

must lie in the range of i <= n <= 255.V

3. 	The actual length of the string of text carried may vary

during execution between zero (a "null" string) and the

maximum n.

Example:

IDECLARE Cl CHARACTER(80);

4.2.3 Boolean

IDECLARE name BOOLEAN;

See 	appropriate User's Manual.

This value may vary between implementations. See appropriate User's

Manual.

DATA DECLARATION 	 Page 4-4

1. 	name is any legal identifier.

4.2.4 Arrays

The properties of a data item, (its type, precision, and size),

as expressed in its declaration are called the "attributes" of the

data item. In any of the above declarations, the attributes are

specified following the name of the data item.

To declare an array of any data type an ARRAY specification is

inserted between the name of the data item and its attributes:

I

I DECLARE name ARRAY(n) attributes;

I

1. 	attributes stand for any legal form of attributes for any

data type described. It is possible-that none appear.

2. 	n denotes the number of elements in the in the array (i.e.

entries in the table) and must lie in the range I < n <

32768.*

Examples:

I DECLARE AS1 ARRAY(500) INTEGER;

I DECLARE AMI ARRAY(20) CHARACTER(5);
I

HAL/S/V also supports multidimensional

arrays of any data type.

See: Guide/18.1.

4.2.5 Compound Declarations

If a program contains declarations of many data items it is

tedious to repeat the keyword DECLARE in every declaration. Many

separate declarations may be condensed into one compound declaration

as shown below:

Example:

Separate Declarations:

I
i DECLARE S;

* This value may vary between implementations. See appropriate User's

Manual.

DATA DECLARATION 	 Page 4-5

I DECLARE I INTEGER DOUBLE;

I DECLARE B BOOLEAN;

I DECLARE C ARRAY(5) CHARACTER(20);

Equivalent 	Compound Declarations:

DECLARE S,

I INTEGER DOUBLE,

B BOOLEAN,

C ARRAY(5) CHARACTER(20),

Note commas separating the declaration of each data item.

If the identifiers in compound declarations have some attributes

in common, a third, even more compact form called a FACTORED

DECLARATION is possible.

Example:

I DECLARE 	 Ii INTEGER,

12 INTEGER DOUBLE,

13 INTEGER DOUBLE;

can be rewritten in the factorial form:

I DECLARE INTEGER, I,

I 12 DOUBLE,

13 DOUBLE;

Note the comma separating the factored attribute, and the first data

item.

4.3 INITIALIZATION OF DATA

A HAL/S/V data item of any type may be initialized by

incorporating the appropriate specification into its declaration.- The

form of such a specification differs depending on whether the data

item is "uni-valued".

UNI-VALUED data items are those having only one element:

unarrayed booleans, and characters.

MULTI-VALUED data items are those having more than one

element: arrayed data items of any type.

See Guide/16 for certain restrictions and additional forms of

initialization.

DATA DECLARATION 	 Page 4-6

In either case, the specification is placed after the type,

precision, and size attributes of a declaration. This positioning

will become apparent in the examples to follow.

4.3.1 Uni-Valued Data Items

The two variations of the construct for initializing uni-valued

data items are:

INITIAL (value)

CONSTANT (value)

1. 	The two forms have the same effect in that the data item is

initialized to the literal indicated by value.

2. 	The form using the keyword CONSTANT is required only if the

user wishes never to change the initial value during

execution.*

3. 	The type of the literal value must be compatible with the

type of the data item as determined from the following table:

data type 	 literal value

CHARACTER character string

BOOLEAN boolean

INTEGER 	 arithmetic

Examples:

IDECLARE A INTEGER INITIAL(3),
I C CHARACTER(80) INITIAL('YES'),

D BOOLEAN INITIAL(TRUE);

Note: initial working length of C becomes 3.

4.3.2 Multi-Valued Data Items

There are two corresponding variations of the INITIAL/CONSTANT

specification for multi-valued data items:

INITIAL(valuel value2)

CONSTANT(valuel , value2)

1. 	The meaning of the keyword CONSTANT is the same as for

uni-valued data items.

In many respects a data item initialized this way is akin to a

literal.

DATA DECLARATION 	 Page 4-7

2. 	The type of each literal value must be compatible with the

type of the data item, as determined from the following

table.

data type 	 literal value

CHARACTER character string

BOOLEAN boolean

INTEGER arithmetic

3. 	The number of literals in the list must equal the total

number of elements implied by the data declaration.

Note that if all the elements of a multi-valued data item are to

be 	 initialized to the same
value then the form used for uni-valued

data items may be used.

Examples:

IDECLARE S ARRAYC2) CONSTANTC1,O),

IDECLARE S ARRAY(199) INTEGER INITIAL(256);

(all elements of these data items

are identically initialized)

4.3.3 order Of Initialization

To complete the specification of initialization, the order of

initialization of the elements of multi-valued data items needs to be

defined.

The following ordering rule, applied here to the initialization

of multi-valued data items, holds true whenever the ordering of

elements is called into question.

ARRAY data items are initialized array element by array

element in order of increasing index where the array elements

are themselves multi-valued, each array element is initialized

completely according to the previous rules before going on to

the next.

Literal values appearing in initial

lists may be expressions computable at

compile time rather than literals.

See: Guide/Appendix D.

Additional, more compact initialization

forms are available if only partial

initialization is required, or if

subsets of the initial values are

identical.

See: Guide/16.

CHAPTER 5

REPLACE STATEMENTS

HAL/S/V does not contain any form of replace statements.

Reasons: Replace statements in HAL/S/V modify the text of the

program, and verification of a program containing a replace statement

is valid only in the context of that particular replace statement.

Any change in the replace statement amounts to generating a totally

new program.

6 -1

CHAPTER 6

DATA REFERENCING AND SUBSCRIPTING

Any appearance of the name of a previously-declared data item in

an executable statement constitutes a reference to its value (and

possibly causes a change in its value).* Sometimes it is necessary to

be able to reference elements of arrays, and also to reference parts

of character strings. HAL/S/V has a wide range of subscript froms

designed for this purpose.

Two kinds of subscripting are relevant to the data types

described in Section 4.

1. 	COMPONENT SUBSCRIPTING allows the user to select substrings

from character data items.

2. 	ARRAY SUBSCRIPTING allows the user to select elements or

subsets of elements from arrays of any data type.

Depending on the nature of a particular data item, either or both

kinds of subscripting may be affixed to it.

6.1 SUBSCRIPTS OF UNARRAYED DATA TYPES

Unarrayed data types, i.e. those whose declarations contain no

array specification, may at most possess only component subscripting.

Unarrayed data items of integer, and Boolean types may not possess any

subscripting. Allowable subscripts of the remaining type - CHARACTER

- are described.

This Section, for convenience, includes appearance causing change in

value under the term "reference", even though this is not the most

usual meaning of the term.

DATA REFERENCING AND SUBSCRIPTING Page 6-2

6.1.1 Character

In a character data item, character positions are indexed left to

right starting from 1. In the subscript forms given below, STRING

represents an unarrayed data item of character type with current

working length L.A

4 To select the a-th character from STRING:

STRINGa

1. a is an integer expression in the range 1 < a < L.

To select a characters from STRING, starting from the b-th:

STRINGa AT b

1. a and b are integer expressions.

2. b is in the range I < b < L.

3. a is in the range 0 < a < L - b + 1.

To select a substring starting with the a-th character of STRING,

and ending with the b-th:

STRINGa TO b

1. a and b are integer expressions in the range 1 <(a, b)< L.

2. b >/ a.

Examples:

if C = 'ABCDEF' then:

C5 = 'E"

C2 AT 2 = 'BC'

C4 TO 6 = "DEF'

In the case where reference of a subscripted character data type

causes a change in its value (e.g. on the left hand side of an

assignment), somewhat different interpretations of the subscript forms

hold true. An account of these is given in Section 8.3.

DATA REFERENCING AND SUBSCRIPTING 	 Page 6-3

6.2 SUBSCRIPTS OF ARRAYED DATA TYPES

Arrayed data types, I.e. those whose declarations contain an

array specification, may possess array subscripting. If the data type

is character, then it may, in addition, possess component

subscripting.

6.2.1 Array Subscripting Only

Arrays are indexed starting from 1. In the array subscript forms

given below, TABLE represents an array of length L of any data type.

To select the a-th array element from TABLE:

TABLE(a)

1. 	a is an integer expression in the range 1<=a<= L.

2. 	The colon is optional if the data type of TABLE is integer.

To select a sub-array of length a starting from the b-th array

element of TABLE:

TABLE(a at b)

1. a is an integer literal value in the range i<= a <= L.

2. 	b is an integer expression in the range I <= b <= L = a + 1.

3. 	The colon is optional if the data type of TABLE is integer.

To select a sub-array starting from the a-th array element of TABLE

and ending with the b-th:

TABLE(a to b)

1. 	a and b are integer literal values in the range

1<=(a, b)<= L.

2. 	b > a.

3. 	The colon is optional if the data type of TABLE is integer.

Examples:

if T is a 4-array of booleans with

T2: =.FALSE (unarrayed)

T3 TO 4: = (TRUE,TRUE) (still arrayed)

if T is a 4-array of integers with T = (1 2 3 4) then:

DATA REFERENCING AND SUBSCRIPTING Page 6-4

T2 = 2 (unarrayed) } optional colon

T3 TO 4 = (3,4) (still unarrayed) } omitted

if C is a 3-array of characters, with

C = 'YES' (selects first array element)

C2 TO 3: = ('NO','MAYBE') (still arrayed)

6.2.2 	 Array And Component Subscripting

The following rule shows how array and component subscripting are

juxtaposed 	if TABLE represents an array of character data type.

TABLE array:component

1. 	array represents array subscripting of any of the forms

previously described.

2. 	component represents any form of component subscripting legal

for the data type of TABLE, as described in Section 6.1.

The 	purpose of the colon now becomes clear: it is required to

distinguish and separate array and component subscriPting.

Examples:

if C is a 	3-array of characters, with

C = 	('YES' 'NO' 'MAYBE') then:

C = 	'Y' (selects 3rd character from third array element)

Apparently, the colon should be optional

on Boolean data types also. It is not

because the Boolean data type is a

degenerate case of a, bit string data

type which may possess component

subscripting.

See: Guide/17.3.

6.2.3 Component Subscripting Only

When an arrayed data item of character type is required to be

given only component subscripting, array subscripting cannot be

totally ommitted. Rather, it must be replaced by an asterisk. Let-----.

TABLE represent such a data item; the subscripting form is then

required to be:

TABLE':component

1. component .represents any form of component subscripting legal

for the data type of TABLE, as described in Section 6.1.

DATA REFERENCING AND SUBSCRIPTING Page 6-5

Examples:

if C is a 3-array of characters with

C = ('YES', 'NO', 'MAYBE') then:

C = 'Y', 'N', 'M') (makes 3-array from first character of

each item)

HAL/S/V allows more general forms of

subscript expressions than just those

stated above.

See Spec./5.3

In particular, a symbolic form of

reference to the last array or other

element of a data type is allowed.

See Spec./5.3.2

More complex subscripting forms apply to

multi-dimensional arrays, (See

Guide/18.3); and to the organization of

data called "structures".

See Guide/19.6

Subscript forms stated to be literals

may in fact be expressions computable at

compile time.

See Guide/Appendix D

CHAPTER 7

EXPRESSIONS

Section 6 dealt with the referencing of declared data items. At

this Point it is appropriate to describe how the values of these data

items can be manipulated.- In HAL/S/V the construct which specifies

operations on data items is called an "expression"*. In many cases it

is very close in form to the generally accepted notion of a

mathematical expression.

Generally, expressions consist of sequences of operations,

possibly parenthesized in places to override the precedence rules of

HAL/S/v. Each operation is comprised of one or two operands and an

operator. The very simplest form of expression is one in which there

are no operations and just one operand. An operand may be a data

item, possibly subscripted, or a built-in function, or an explicit

conversion function. This section begins by describing the legal

HAL/S/V operations, and then continues to show how they are combined

into expressions.

Previous sections of the Guide have divided data items and

literals into three broad classes: arithmetic, character, and

Boolean. It is convenient to divide the operations to be described

into the same three classes. The TYPE of an expression is the type of

the value resulting from its execution, and may, in general, be

different from the types of some of its operands.

7.1 ARITHMETIC OPERATIONS

Arithmetic operations are the most numerous of all operations in

the HAL/S/V language. They comprise operations on integer data type.

HAL/S/V recognizes the following operations:

Symbol Purpose

exponentiation, positive exponent

(blank) multiplication

+ addition
subtraction, negative

NOTE: Since all arithmetic operands will be composed of integer
valued data items, no real division is needed. The function DIV is
the appropriate integer division function.

-7-1

EXPRESSIONS 	 Page 7-2

7.1.1 	 Negation

Negation is a binary operation applicable to any arithmetic data

type:

Symbolic form: - R

1. The legal data types for R are given by the following table:

R-type

Integer

Examples:

if I is an integer and I = 5
then -I = -5

7.1.2 	 Addition And Subtraction

Addition and subtraction can only take place between integer data

types:

Symbolic form: L + R

7.1.3 Multiplication

The HAL/S/V language has no explicit symbol for multiplication:

the adjacency of two operands signifies this operation.

Multiplication can take place with arithmetic operands of integer
type.

The symbolic form for multiplication is shown as:

Symbolic form: L R

1. At least one blank character must separate the L and R
operands.

7.1.4 Exponentiation

This 	operation takes the general symbolic form:

Symbolic form: L ** P

1. This is the one-line format version. In multi-line format

the operator symbol is omitted and R is placed on an exponent

line. R has to be a positive integer. See Section 2.3.

EXPRESSIONS 	 page 7-3

2. 	The operand types are:

L -type 	 R -type

INTEGER 	 INTEGER

3. 	The L operand is Integer and the R operand is a non-negative

integral-valued literal.

Examples:

If I is an integer with I = 5

then * 2 = 25 	 Cinteger result)

7.1.5 Note On Precision Conversion

No implicit precision conversion is allowed in HAL/S/V.

Operations between operands of differing precision requires the

explicit conversion of all similar precision before the operation is

performed.

Reasons: Operands of differing precision are essentially of different

type. Implicit precision conversion masks from the programmer the

fact that in the conversion process information that may be lost or

spurious information may be added. Having the programmer perform the

conversion explicitly forces him to recognize this change and possibly

compensate for it.

7.2 CHARACTER OPERATIONS

There is only one character operation in HAL/S/V: the catenation

of character strings.

Symbol 	 Purpose

I I catenation

CAT

7.2.1 Concatenation

The utility of catenating character strings is obvious in the

generation of output listings. Concatenation is guided as follows:

Symbolic form: L I I R

CAT,

The L and R operands are restricted to character types, with the

following types being legal:

EXPRESSIONS Page 7-4

L -type R -type

CHARACTER CHARACTER

Examples:

If C is a character item with C = 'UNITS'

then 'TEN' I I C = 'TEN UNITS'

7.3 BOOLEAN OPERATIONS

Boolean operations are logical (binary) transformations on

Boolean operands. HAL/S/V recognizes the following operations:

Symbol Purpose

& logical intersection

AND

I logical disjunction

OR

-_ logical complement

NOT

7.3.1 Complement

The complement operation complements the logical value of a

Boolean operand. It takes the following form:

Symbolic form: -- R

NOT

1. The R operand is of Boolean type.

Example:

If B is Boolean with B = TRUE

then -B = FALSE

7.3.2 Conjunction

The conjunction 4 operations causes the logical values of two

Boolean operands to be bR'ed together.

Symbolic form: L I P

* The term conjunction as used here, means disjunction in the
terminology of logic.

EXPRESSIONS Page 7-5

OR

1. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean is as follows:

T=TRUE L

F=FALSE T F

T T T
R

F T F

Examples:

If B is Boolean with B = FALSE

then BIB = FALSE

BITRUE = TRUE

7.3.3 Intersection

The intersection * operation causes the logical values of two
Boolean operands to be AND'ed together.

Symbolic form: L & R

AND

1. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean is as follows:

T=TRUE- L

F=FALSE T F

R T T F

F F F

Examples:

If B is Boolean with B = FALSE

then B & TRUE = FALSE

B & B = FALSE

The term intersection, as used here, actually means conjunction in

the language of logic.

EXPRESSIONS 	 Page 7-6

7.4 COMBINING OPERATION AND PRECEDENCE

It is obviously desirable to be able to combine operations so as

to create expressions of any required complexity. In combining

operations, the following information is necessary:

1. 	The ORDER in which operations are executed (the order of

"precedence");

2. 	The WAY in which the precedence order can be overridden.

7.4.1 Arithmetic 	And Character Precedence

The precedence of HAL/S/V operations on arthmetic and character

data types are shown in the following table:

Symbol Precedence 	 Purpose

FIRST

F I
 exponentiation, etc.

(blank) 2 multiplication

+ 	 6 addition

6 subtraction, negation

11, 	 CAT 7 catenation

LAST

Two 	rules clarify and modify this information:

1. 	Sequences of operations of the same precedence are evaluated

left to right,

2. 	EXCEPT for *4:which is evaluated right to left.

7.4.2 Boolean Precedence

The precedence rules for Boolean operations are stated separately

because there are no implicit conversions causing interaction with

arithmetic and character operations.

Symbol Precedence Purpose
FIRST

NOT 1 complement
&, AND 2 intersection
I, OR 3 conjunction

LAST

Sequences of operations of the same precedence are evaluated left to

right.

Examples:

EXPRESSIONS 	 Page 7-7

In the following expression, the numbered pointers show the order

of operations:

-B1IB2 & -B3

1 4 3 2

7.4.3 overriding Precedence Order

In HAL/S/V, the order of precedence can be overridden at will by

the use of parentheses, nested to any arbitrary depth.

Examples:

In 	the following Boolean expression,

B11B2 & B31B4 & B5

I I I I

2 1 4 3

parentheses may change the precedence order as shown:

(B11B) & ((B31B4) & B5)

A

I I 	 I I
1 4 	 2 3

In the following arthmetic expression,.

Si + S2(2) + S3/2

2 1 4 3

parentheses may change the precedence order as shown:

((SI + 82)2 + S3)/2

1 2 3 4

HAL/S/V allows the operands in an

expression to be arrayed, causing

parallel evaluation on an

element-by-element basis.

See: Guide./20.1.

EXPRESSIONS 	 Page 7-8

7.5 SOME EXPLICIT CONVERSIONS

As evidenced in Section 7, there are no implicit type conversions

in the HAL/S/V language. However, there is a comprehensive range of

explicit conversions, some of which are now described.

7.5.1 Precision Conversion

Any arithmetic expression may have its precision explicitly

changed as follows;

(expression)

@ DOUBLE

(expression)

@ SINGLE

I. 	In the first form, if expression is a single precision

arithmetic expression, it is converted to double precision.

If it is already double precision, the conversion has no

effect.

2. 	In the second form, if expression is a double precision

arithmetic expression it is converted to single precision.

If it is already single precision, the conversion has no

effect.

See 	Appendix A.

Examples:

If A and B are single precision, then the result of

(A + B)

@ DOUBLE

is double precision, the type remaining unchanged.

The explicit conversions described are

those most commonly required for

numerical analysis. However, HAL/S/V

contains many other explicit conversion

function forms corresponding to

conversions between most data types.

See; Guide/21.

CHAPTER 8

ASSIGNMENTS,

Section 7 described, in detail, the creation of HAL/S/V

expressions used in numerous place-s. in the language. The assignment

statement is one such instance in which the value of an expression is

assigned to a data item.

For convenience, an assignment is classified according to the

type of the receiving data item; that is, the data item being assigned

into.

ic ARITHMETIC ASSIGNMENTS are assignments to integer data items.

CHARACTER ASSIGNMENTS are assignments to character data items.

BOOLEAN ASSIGNMENTS are assignments to Boolean data items.

NOTE: HAL/S/V allows no implicit type conversions. Therefore, this

type is the same as that of the expression whose value is used in the

operation. See Section 8.2.2.

8.1 GENERAL FORM OF ASSIGNMENT

The assignment statement is an instance of a HAL/S/V executable

statement. It has a general form applicable to all types of

assignment:

Symbolic Form: L = R;

1. 	L is the receiving data item. It may be subscripted or

unsubscripted.

2. 	Usually, R is an expression whose resultant value is to be

used in the assignment. It may, of course, consist merely of

a single operand.

Additional assignment rules are applicable which differ according to

assignment type.

ASSIGNMENTS Page 8-2

8.2 ARITHMETIC ASSIGNMENTS

Arithmetic assignments are those in which the receiving data type

is an integer.

NOTE: Matrix, vector, and scalar data types which are part of the

HAL/S language have been removed from HAL/S/V. Arithmetic assignment,

therefore, describes a more limited class of operations in HAL/S/V.

8.2.1 Integer

The operand type is:

L -type R -type

Integer Integer

8.2.2 Note On Precision Conversion

One may wish to assign an expression to a data item of differing

precision. HAL/S/V prohibits any such assignment without explicit

conversion according to the rules of Section 7.5.

Example:

If Ii and 12 are double precision data items and we wish to add

them in double precision and store the result in a single precision

data item 13, then:

I
I 13 = (12 + Il)

I @ single

is the appropriate command.

Reasons: One desirable characteristic for any programming language is

consistency. The stipulation that precision conversion in expressions

be explicit suggests a similar stipulation for assignments.

Apart from that, implicit conversion in an assignment statement

sometimes disguises the loss of significant digits when assigning a

double precision value to a single precision data item. Explicit

conversion forces the programmer to recognize this possibility and

perhaps compensate for it.

8.3 CHARACTER ASSIGNMENTS

The receiving data item is character type.

The operand types are:

ASSIGNMENTS Page 8-3

L -type R -type

CHARACTER CHARACTER

NOTE. In contrast to HAL/S, HAL/S/V requires that the right hand side

be of type character. Integer values must be explicitly converted to

character values before they can be assigned to a character data item.

This is in accord with Section 8.2.2.

Examples:

If C is a character with C = °ABCDE' and C2 is a character,

then

1C2 = C ; results in C2 = 'C'

1 3

These apparently straightforward rules can become more complex in some

situations.

Generally, when the receiving data item is unsubscripted, its

working length becomes the same as the length of the R-expression.

However, if this would cause the declared maximum length of the
receiving data item to be exceeded, then truncation of the excess from
the right takes place.

Examples:

If Cl is character of maximum length 10

C2 is character of maximum length 1,

then

I C1 = 'ABCDE';
I
results in C1 = ABCDE' of working length 5 but

I C2 = 'ABCDE';

results in C2 = 'A' of working length 1

If the receiving data item is subscripted, then this causes an

additional complication. The rules applicable in such a case are as

follows:

Let

STRING

a

denote a receiving data item of character type:

N is declared maximum length

and

n is working length before assignment

ASSIGNMENTS 	 Page 8-4

I. 	The range of the subscript expression a is presumed to be in

the range 1-N; otherwise an error results.

2. 	The length of the R-expression is adjusted to the length

implied by a, either by truncation of the excess from the

right, or by Padding on the right with blanks.

3. 	If the range of a lies inside the range 1-n, then simple

substitution of the character positions implied takes place.

4. 	If the range of a lies partly beyond the range 1-n, then the

working length of STRING is increased appropriately.

5. 	If the range of a lies totally beyond the range 1-n, the

working length of STRING is increased appropriately, and the

gap between the n-th character and the first position implied

by a (if any) is filled with blanks.

Examples:

Let 	C1 be character oi declared maximum length 10 with value C1 =

'ABCD'

Then by rules 2 and 3:

1

I Cl = QQ';

i 2 TO 3

results in Cl = "AQQD'

I

I Cl = '1234';

I 2 TO 3

results in Cl = 'A12D
I
I C1 = ;X';

I 2 T0 3

results in Cl = 'AX D'

By Rules 2 and 4:
1
I C1 = 'QQ';

I 4 TO 5

results in C1 = 'ABCQQ'

(working length increased by 1)

I Cl = xI;

I 4 TO 5

results in Cl = 'ABCX'
(working length increased by 1)

By Rules 2 and 5:

1

i Cl =

1 5 T0 6

results in Cl 'ABCDQQ'

(working length increased by 2)

ASSIGNMENTS Page 8-5

I Ci = 'FGH';
I 	 7 TO 9

-results in C1 = "ABCD FGH'

I
I C1 = FGH';
I 	 6

results in C1 = 'ABCD F'

8.4 BOOLEAN ASSIGNMENTS

The 	receiving data item is of a Boolean type.

1. 	The operand types are:

L -type 	 R -type

BOOLEAN 	 BOOLEAN

2. 	 The logical balue of the R-expression is transferred to the

receiving data item.

Example:

If B is Boolean, then

I B 	= FALSE;

results in B FALSE

8.5 MULTIPLE ASSIGNMENTS

Several data items may be assigned to the same R-expression in

the same statements. The general form of such a multiple assignment

is as follows:

Symbolic form: Li, L2, Ln = R;

1. 	The value of the R-expression is assigned to all Li ... Ln in

turn.

2. 	Any L-type must be compatible with the R-type according to

the rules stated in Sections 8.2 through 8.4.

3. 	No particular order of assignment is guaranteed.

4. 	No variable appearing on the left-hand side of a multiple

assignment may appear on both the main line and the subscript

line. A variable may, however, appear an arbitrary number of

.times on any one line.

ASSIGNMENTS Page 8-6

In HAL/S/V, the receiving data item or

items maybe arrayed. This can produce

varying effects depending on whether or

not the R-expression also is arrayed

(i.e. has arrayed operands).

See: Guida/20.3.

CHAPTER 9

CONDITIONAL STATEMENTS AND BRANCHES

Section 9 is primarily concerned with the HAL/S/V conditional

statement by which other executable statements may be conditionally

executed (or by which their execution may be conditionally avoided).

Together with statement groups, which will be described in Section 10,

they form a crucially important part of the HAL/S/V language.

The 	HAL/S/V language encourages programmers to avoid using GO TO

statements to cause branches in execution. Their total elimination,

however, is not desirable. This Section therefore also describes the

HAL/S/V GO TO statement, and statement labels, which are their

destinations. Statement labels are, in addition, needed for other

constructs to be described in section 10.

9.1 THE CONDITIONAL STATEMENT

In HAL/S/V, the simple version of the conditional statement is an

"IF clause" containing an expression evaluable as either TRUE or

FALSE, followed by a "true part" which is executed only if the IF

clause is TRUE. The simple version may be augmented by a "false part"

which is executed only if the IF clause is FALSE.

9.1.1 Simple IF Statement

The 	form of the simple version is:

I
I IF exp THEN statement;

1. 	exp is an expression which is evaluable as either TRUE or

FALSE. It may be either a BOOLEAN expression or a relational

expression (these are described in Section 9.2).

2. 	statement constitutes the true part of the conditional

statement. Except as noted in Rule 3 it may be any

executable statement, either simple or compound.

q-1

CONDITIONAL STATEMENTS AND BRANCHES 	 Page 9-2

3. 	statement may not be another conditional statement.

4. 	statement may not possess a label.

5. 	If exp is FALSE, execution proceeds to the next statement.

If TRUE, statement is executed first.

NOTE: In contrast to 4., the HAL/S Programmer's Guide states

that "statement may possess a label but cannot be branched to

from outside the IF statement". However, this contradicts

section 9.3 of that document.

Examples:

I IF BI THEN X = 0;
I Y = 1;

X is set to 0 if either B or C or both is true:

I
I IF BIC THEN DO;

I X X -1;

I Y Y + 1;

I END;

The true part is a compound statement containing two

assignments.

I
I IF B THE IF C THEN D = 0;

Illegal because true part is a conditional statement,

in violation of Rule 3.

9.1.2 Augmented If Statement

When argumented with a false part, the IF statement takes the

form:

I IF exp THEN statement

I ELSE else statement ;

1. 	The form of the IF clause and true part are the same as in

the simple conditional statement.

2. 	ELSE statement constitutes the FALSE part of the conditional

statement. It may be any executable statement either simple

or compound.

CONDITIONAL STATEMENTS AND BRANCHES 	 Page 9-3

3. 	ELSE statement may not possess a label.

4. 	If exp is FALSE, execution proceeds to the next statement via

else statement. If TRUE, it proceeds to the next statement

via statement.

NOTE: As with the simple IF statement the HAL/S Programmer's Guide is

inconsistent on whether the else statement may possess a label.

Number three has been made consistent with Section 9.3 which states

that the "false part" of a conditional may not possess a label.

Examples:

I IF BIC THEN X = 0;

I ELSE X = 1;

X is set to 0 if B or C or both is true, otherwise

X is set to 1.

I If BIC THEN Do;

I X =1;

I Y =2;

1 END;

ELSE DO;

I X 2;

1 Y=1

I END;

Here, both true and false parts are compound statements

each containing two assignments each.

I

I IF B THEN X = 0;

I ELSE IF C THEN X = 1;

I Y = 2;

This is legal: the false part of a conditional statement

may itself be another conditional statement....

9.2 RELATIONAL EXPRESSIONS

As was stated in Section 9.1, there are two valid forms of

expression in an IF clause, BOOLEAN, and relational. BOOLEAN

expressions were described in Section 7; relational expressions only

appear in a limited number of HAL/S/V constructs, among them

conditional statements, and are now described.

The simplest form of a relational expression is merely a

comparison between two like quantities. The result is either TRUE or

FALSE. More complex forms of relational expressions result from

CONDITIONAL STATEMENTS AND BRANCHES 	 Page 9-4

combining comparisons with the BOOLEAN operators &, I, and

9.2.1 Comparative Operations

HAL/S/V recognizes the following comparative operators:

Symbol 	 Purpose Class

> greater than

< less than

<= less than or equals

NOT 	> not greater than I

>= greater than or equals

NOT < } not less than

equals II
NOT = not equals

The operands of comparative operations may, in general, be

expressions of any of the types described in Section 7. Depending on

the type of operand, the operators may be restricted to Class II only,

or may be either Class I or Class II.

CLASS II ONLY

Symbolic form: L NOT R

1. 	The L-type and R-type are both Boolean.

NOT >

Symbolic form: L -> R

NOT 	<

NOT 	

2. 	Legal combinations of data types are indicated by the

following table:

L -type 	 R -type

CHARACTER CHARACTER

3. 	For character comparisons, a shorter string is "less" than a

longer one. For strings of equal length, a string earlier in

CONDITIONAL STATEMENTS AND BRANCHES Page 9-5

the collating sequence is "less" than one later in the

sequence.*

Examples:

If I is an integer with I = 5

then I = 5 is TRUE

I < 4 is FALSE

I >= 5 is TRUE

If C is a character data item with C = 'ABC'
then C = 'ABC' is TRUE

C = 'BCD' is FALSE
C > 'AB' is TRUE

9.2.2 Note On Precision Conversion

Comparisons of operands of different precision is prohibited in

HAL/S/V. Therefore, explicit precision conversion may be required

when both operands are integer.

NOTE: HAL/S/V allows no implicit precision conversions in expressions

or assignment statements. To preserve consistency, that prohibition

is extended to comparisons. See Section 7.5 for the explicit

conversions.

Example:

Let X be a single precision data item and y be double precision.

IF Y < X THEN Z = 1; is illegal

IF Y < (X) @ DOUBLE THEN Z = 1; is legal.

9.2.3 Combining Comparative Operations

Comparative operations may be combined as if they were BOOLEAN

operands, using the rules for Boolean operations described in Section

7. It is important to note however, that comparative operations are

not BOOLEAN operands in the sense that they can be mixed with actual___

BOOLEAN data items.

BOOLEAN EXPRESSIONS may contain no comparative operations.

RELATIONAL EXPRESSIONS may contain no Boolean operands.

The collating sequence is implementation dependent. See appropriate

User's Manual.

CONDITIONAL STATEMENTS AND BRANCHES Page 9-6

Examples:

If Ii and 12 are integer data items with

Ii = 17 and 12 = 8

and C is character with C = 'ABC'

then

Ii = 12 I Ci = 'A' is TRUE

I1 = 12 & Cl = 'A' is FALSE

If B is Boolean then

B i 11 = 12 is illegal

9.2.4 Precedence

The following table shows the precedence of operations

involved in a relational expression:

Symbol Precedence Purpose

FIRST

I Operations involving

operands of comparisons

>

NOT >, > 2 Comparative operations

NOT <, -<

NOT , -=
-,NOT 3

&, AND 4 Logical operations
on comparisons

I, OR 5

Any operand of this operator must

always be parenthesized.

Example:

In the following expression, the numbered pointers show the order

of execution of operations;

IF Si + S2 = 0 1 CS3 > 0) & - (4 < 0 1 35 > 0) THEN

I I I I I I I I I
1 2 10 4 3 9 8 5 7 6

CONDITIONAL STATEMENTS AND BRANCHES 	 Page 9-7

Relational expressions may be arrayed, additional

rules being required to determine if the result

is TRUE or FALSE.

See: Guide/20.4.

9.3 LABELS AND BRANCHES

In HAL/S/V, there are two entities involved in the branching

operation: a GO TO statement, which when executed causes the branch;

and a "statement label" which is the destination of such a branch.

HAL/S/V also uses statement labels for other purposes, which will

become clear in Section i0.

9.3.1 Labels

Labels are names chosen by the programmer and attached to

statements. More than one label may be attached to a statement. The

way of attaching a single label to a statement is as follows:

I label : statement

1. 	statement is any executable statement or statement group (see

Section 10), with two exceptions.

2. 	statement may not be the "true part" or "false part" of a

conditional statement.

3. 	label is a user-defined identifier name (see Section 2.2).

Examples:

I ONE: X = X + 1;
I TWO: Y = 0;

The 	following are illegal since they violate Rule 2:

1
I IF X = 0 THEN ONE: y = 0;

I IF X = 0 THEN X = 1;

I ELSE TWO: X = 3;

However, the conditional statement itself may be labelled:

I

I THREE: IF X = 0 THEN Y = 1;

I

If more than one label is required, then they follow each other

in sequence.

CONDITIONAL STATEMENTS AND BRANCHES 	 Page 9-8

Example:

I ONE: TWO: THREE: X = X + 1;

9.3.2 Go To Statement

The GO TO statement specifies the label to which execution

branches. It takes the form:

I
I GO TO label
I

1. 	label is a label attached to some statement to which

execution is to branch.

Examples:

I GO TO ONE;

The 	GO TO statement itself may be labelled:

I TWO: GO TO THREE;

It is important to note that HAL/S/V places relatively severe

restrictions on the placement of GO TO statements and where they may

cause execution to branch to. Section 1.3 described this on the

abstract level, and Section 10 further discusses it in connection with

statement groups.

9.3.3 Eliminating Go To Statements

The Guide has stressed throughout that, according to structured

programming principles, GO TO statements are inherently undesirable

because they tend to disguise the program's flow of execution.

It will be found that HAL/S/V contains a sufficient number of

other cons.tructs to allow GO TO statements to be substantially

eliminated from a program. The following is an example showing the

elimination of GO TO statements

Examples:

CONDITIONAL STATEMENTS AND BRANCHES 	 Page 9-9

IF X > I THEN GO TO ALPHA;

IF X < 1 THEN GO TO BETA;

y =y + 1;

GOb TO GAMMA;

ALPHA: X =X -1;

GO TO GAMMA;

BETA: X= X + 1;

I GAMMA:

This example is programmed in HAL/S/V in the simplest way

(possibly having been translated from Fortran or an assembly

language).

The same algorithm is more clearly programmed as follows:

I IF 	X > I THEN

X = X -1;

ELSE

IF X < I THEN

X X + i;

ELSE

I Y Y +1;

CHAPTER 10

STATEMENT GROUPS

Section 1.3 of the Guide introduced, on an abstract level, the

idea of "statement groups", which could be treated as if they were

simple executable statements, and could be nested one inside the

other. The power of such a facility can be seen, for example, when it

is used in conjunction with the conditional statement: (this is
demonstrated later in Section 10.1).

There is, in fact, a second, equally important reason for
grouping statements in HAL/S/Y: the execution of such groups can be

controlled in a variety of ways. If no explicit specification is

made, the sequence of statements is executed once only. By explicit

specification:

The sequence may be repetitively executed until some condition

is satisfied;

A single executable statement (or nest statement group) of the

group, selectable at execution time, may be executed.

Section 10 explains in detail how statements are grouped, and how

execution control of the groups is specified.

10.1 DELIMITING STATEMENT GROUPS

In HAL/S/V groups of statements are said to be "well-bracketed":

they are delimited explicitly by opening and closing statements which

are themselves considered executable.

10.1.1 The Do Statement

Every statement group is opened with a "DO" statement which is

also used to specify control of execution within the group. It takes

the generic form:

I
I DO control

10-1

STATEMENT GROUPS 	 Page 10-2

1. 	control is a construct to be described. It specifies the

manner in which the sequence of statements is to be executed.

2. 	Control is optional. If it is absent, the sequence of

statements within the group is executed in order once only.

3. 	The DO statement is executable in that it may be labelled

according to the Rules of Section 9.

The particular instances of DO statements will be explained in

Section 10.2

10.1.2 The End Statement

Every statement group is closed with an END statement:

I END label

1. 	The END statement is executable in that it may be labelled

according to the Rules of Section 9.

2. 	label is optional: if present, the opening DO statement of

the group must be labelled with label.

The 	label specification in an END statement is never functionally

necessary in HAL/S/V. However, it should be regarded as good

programming practice because it facilitates cross-checking by the

compiler.

Examples:

(Two instances of statement groups are shown below. Even though

details of execution control have not yet been explained, the form of

the construct should be clear.)

DO WHILE I > 0; } opening DO statement
I = I - 1; }
A = 0; } group of statements

Is 	 I

END; 	 } closing END statement

FIX: DO FOP I I TO 10;

A = -A ; } one statement in group

S 	 I I }
END FIX; } label specification in

END matches label of DO

The following examples show the importance of being able to group

statements together for use in conjunction with a conditional

statement.

STATEMENT GROUPS Page 10-3

1 IF S = 0 THEN I = 2;

1 C = 'RESET VALUE OF I TO'

It 	 is required to conditionally execute both assignments: one

solution might be -

I 	 IF S - = 0 THEN GO TO NOSET;
I = 2;
C = 'RESET VALUE OF I TO"

NOSET:

This solution is error prone and not in accordance with structured
programming concepts: a better solution would be -

I IF S = 0 THEN DO;
1 =2;
C = 'RESET VALUE OF I TO ';

I END;

The whole of the group enclosed by DO ... END is subject to

conditional execution.

10.2 REPETITIVE EXECUTION OF STATEMENT GROUPS

The sequence of statements in a group can be executed

repetitively until some condition is satisfied. In this section, two

basic forms of DO' statement causing repetitive execution are

described:

The DO WHILE statement, in which execution is

repeated while a relational or boolean expression

remains true in value;

The 	DO FOR statement, in which the sequence is

executed once for each of a set of assigned values

of a "control variable".

STATEMENT GROUPS Page 10-4

10.2.1 The Do While Statement

The 	form of the DO WHILE statement is:

I
[DO WHILE condition;

1. 	condition is any relational or BOOLEAN expression. It is

evaluated prior to each cycle of execution of the statement

sequence in the group.

2. 	The next cycle of execution of the group proceeds if the

value of condition is TRUE.

3. 	If the value of condition is FALSE, the stopping.condition is

satisfied. Execution proceeds to the statement following the

END statement of the group.

Examples:

I = 9;

I DO WHILE I -> 0;

I I = I - 2;

I END;

Here the group is executed five times, after which the value of I is

It is possible for a group never to be executed:

I DO WHILE FALSE;

I I = I - 2;

1 END;

It is also possible for a group to be executed forever:

I0

1 DO WHILE TRUE;

I I 	= I - 2;
END;

Normally in this case, the programmer would insert statements in the

group removing this possibility:

I I= 9;

I DO WHILE TRUE;

I = I - 2;

IF I < 0 THEN GO TO ALL-DONE;

STATEMENT GROUPS Page 10-5

I END;

I.

If the keyword UNTIL is substituted for the keyword WHILE, then the

group is always executed at least once. After the first cycle, the

relational or Boolean expression is evaluated at the beginning of each

cycle as in the DO WHILE, except that the logic of the test is

inverted: cycles of execution continue until the result of the

expression becomes TRUE.

Example:

I = 0;

DO UNTIL I <= 0;
I I = I - i;

END;

The 	group is execated once, and the final value of I is -1.

10.2.2 The Do For Statement

The 	most widely used form of the DO FOR statement is:

I
I DO FOR var = initial TO final BY increment;
I

1. 	var is an unarrayed and unsubscripted INTEGER data item. It

is called the "control variable" of the DO FOR statement.

2. 	initial and final are integer expressions: initial is the

initial value asigned to var; final is the value against

which var is tested at the start of every cycle to determine

if the stopping condition is satisfied.

increment is the amount by which var is incremented on

each cycle of execution of the sequence of statements in the

group.

All 	three expressions are evaluated once prior to the

first cycle of execution.

3. 	The stopping condition is met when the value of var lies

outside the range bounded by initial and final.

4. 	increment may be either +1 or -I-.- The phrase:

BY increment

is optional. If omitted, the implied increment is ±1.

STATEMENT GROUPS 	 Page 10-6

5. 	At the end of the final cycle var has the value it received

after that cycle.

NOTE: Since HAL/S/V has no scalar data type, initial and final must

be integer expressions and var is INTEGER variable.

The increment may be only +1 or -1. This simplifies loop

assertions without restricting the programmer significantly. Finally,

the addition of 5 simply makes explicit the value of the control

variable upon leaving the loop. Though it is bad programming practice

to do so, no language requirement prohibits the programmer from

subsequently using the control variable for other purposes. In such a

case it is desirable for program verification that its value be

determinate.

Examples:

I DO FOR I = 1 TO 10;

I X=

I 	 END;

Here the group is executed 10

times. I is initially 1, and

increments each time until 10

is reached. At the end of

execution of the group, the

value of I is 11.

I = 7;

1 DO FOR I = I + 5 TO I - 3 BY -1;

X=X+I;
END;

This example demonstrates some

of the subtleties of the DO

FOR statement. The initial

and final values are

precomputed as 12 and 4

respectively. Then I is

reused as the control

variable: the group is

executed 9 times, and after

the last cycle of execution, I

retains the value 3.

This DO FOR statement may

possess a WHILE or UNTIL

clause which furnishes a

STATEMENT GROUPS 	 Page 10-7

supplementary stopping

condition.

See: Spec./7.6.5.

NOTE: A second form of DO FOR statement is allowed in HAL/S which is

not permitted in HAL/S/V: that is, one in which the values of the

control variable do not form a regular progression and are listed

explicitly.

REASONS: This second form of the DO FOR statement does not in general

permit specification of a loop invariant In any clear way. This is

because the values assumed by var may be such that one execution of

the loop is related to the next execution in a very tenuous way if at

all. Also, since var assumes the immediately prior to the cycle of

execution in which they are used. The behavior of any loop execution

may be dependent upon prior executions of the loop in very nuclear

ways.

10.3 SELECTIVE EXECUTION OF STATEMENT GROUPS

One statement of a group may be selected for execution by means

of the DO CASE statement. The form of the DO CASE statement is:

I DO CASE exp

1. 	exp is an integer expression.

2. 	If its value is k then the kth statement of the group is

selected for execution.

3. 	A run time error results if k < 0

or k is greater than the number of

statements in the group.

The flexibility of a DO CASE statement lies in that the

selected statement may be a compound statement (i.e. it may

itself be a statement group).

Example:

I = 	3;

DO CASE I;

X = 	4; -case I

X = 	3; case 2

DO;

X = 7; } case 3
Y = 3; }

END;

X = 1; 	 case 4
STATEMENT GROUPS 	 Page 10-8

X = 0; 	 case 5

END;

Execution results in the third statement being scheduled for

execution, and the following values being set:

X=7, Y=3 	 -

An ELSE clause may be added to

the DO CASE statement which is

executed instead of an error

being signalled, if the value

of the case variable is

outside the legal range for

the statement group.

See: Spec./7.6.2.

10.4 BRANCHING IN STATEMENT GROUPS

Execution may branch out of any statement group via a GO TO

statement. In those cases where the group is being repetitively

executed, execution obviously ceases before the stopping criterion is

satisfied. Because GO TO statements are viewed unfavorably from the

standpoint of structured programming, HAL/S/V possesses two statements

expressly for executing controlled branches in statement groups.

The EXIT statement is, in

effect, a controlled branch

out of a statement group.

The REPEAT statement only

applies to statement groups

executed repetitively, and is

a controlled branch back to

the beginning of the group.

10.4.1 The Exit Statement

The 	simplest form of the EXIT statement is:

I EXIT;

1. 	Its execution causes an immediate branch

out of the innermost statement group in

which it is enclosed.

2. 	Execution is directed to the first

statement following the END of the group

branched out of.

STATEMENT GROUPS 	 Page 10-9

Examples:

I DO:

I X1

I YY 2;

IF X = 3 THEN EXIT; ---------
ZZ 4;

END;

X = X + 1;<--------------------

Arrow shows branch in execution if Z '&\& 3

1 DO WHILE X > 0;

X = X -1;

IF X > 2 THEN DO;

IF Y = 3 THEN EXIT;-----
Y=y+1;

END; I

END;<--------------------------

Arrow shows branch in execution if
Y = 3: execution branches to the end, but not out
of DO WHILE group.--

There exists a second form of the EXIT statement

to allow branches out of other than the innermost

statement group:

I
I EXIT label

I

1. Its execution causes a branch out of the

enclosing statement group whose DO

statement possesses the label label.

2. Execution is directed to the first

statement after the END of the group

branched out of.

Example:

I ONE: DO 	WHILE X > 0;
X = X - 1;
DO FOR I = I TO 10;

A = A + X;
IS I I

IF X = I THEN EXIT ONE; ---
IF X = 0 THEN EXIT: ---

END; I

END;<-----------------------

I X = 0;< --------------------- -

STATEMENT GROUPS 	 Page 10-10

The first EXIT statement causes a branch out of

the outer group rather than the inner, by virtue

of 	its label.

10.4.2 The Repeat Statement

The 	simplest form of the REPEAT statement is:

I REPEAT;

1. 	It must be enclosed in a DO FOP or DO WHILE group.

2. 	 Its execution causes an immediate branch to the beginning of

the innermost enclosing DOFOR or DO WHILE group.

3. 	The next cycle of execution of the group then starts Cunless

of course the stopping condition is satisfied).

Examples:

I DO WHILE X > 0;
X = X -1;
IF X = 4 THEN DO;

Y Y+X;
IF Y = I THEN REPEAT;

END;
END;

If Y = I then a branch back to
the beginning of the DO WHILE
is made. Note that although
the DO WHILE is not the
innermost group, it is the
innermost repetitive group.

I X 	= 4;

DO 	WHILE X > 1;

X X -1;

IF X = I THEN REPEAT;

Y =X;

is x

I END;

When X = 2 the REPEAT branch

is executed: a new cycle of

execution does not begin

however, because the initial

test shows that the stopping

condition is satisfied.

STATEMENT GROUPS 	 Page 10-11

As with the EXIT statement, there exists a second form of the repeat

statement allowing branches back to the beginning of other than the

innermost DO WHILE or DO FOR group: ---------

I

I REPEAT label ;
I

1. 	Its execution causes an immediate branch to the beginning of

the enclosing DO FOR

or DO WHILE group whose DO statement possesses the label

label.

2. 	The next cycle of execution of the group then starts (unless

the stopping condition is satisfied).

Example:

ONE: DO FOR I = I TO 10;

DO WHILE J > 0;
J = J - 1;
X = X + J;is J3 .

IF X = 25 THEN REPEAT;IS J3
IF X = 0 THEN REPEAT ONE;

Is a
I END;
I END;
II

Z = 0;

The second REPEAT statement restarts the outer DO FOR group rather

than the inner DO WHILE by virtue of its label.

CHAPTER ii

PROCEDURES AND FUNCTIONS

Section 1.2 of the Guide introduced the block structure of

HAL/S/V programs on the abstract level. To summarize, any program can

contain nested procedure and function blocks, which are two levels of

"subroutines" characterized by the sequence:

invocation --> execution --> return to caller

The invocation of procedures and functions is governed by well-defined

name scoping rules.

This section explains how, in practice, procedure and function

blocks are defined in HAL/S/V, and describes how they are invoked

returned from.

11.1 INTRODUCTION

A procedure is a subroutine block invoked by a CALL statement.

It may have two kinds of parameters:

* 	INPUT PARAMETERS - by which values may be passed

into a procedure only.

ASSIGN PARAMETERS - by which values may be passed

into and out of.a procedure.

A function is a subroutine block invoked by the appearance of its

name in an expression. It returns a value and therefore has a defined

HAL/S/V data type. It may possess input parameters only.

11.1.1 Relative Position Of Block Definitions

Section 1.2 described the scoping rules which determine the

regions of a program where any given procedure or function block may

be invoked.

An important consequence of these rules is that a procedure

invocation may either follow or precede its block definition.

I)- I

However, for other reasons, the invocation of a function block should

PROCEDURES AND FUNCTIONS Page 11-2

always follow its block definition.

A number of rules restrict the

kind of function which may be

invoked preceding its block

definition.

See: Spec./9

11.2 BLOCK DEFINITIONS

Procedure and function block definitions have forms very similar

to the form of a program block, which was described in Section 3. The

first statement is one defining the name and type of block, and

listing its parameters. The last statement is a statement closing the

block.

11.2.1 Procedure Opening

The 	statement opening block takes the form:

Ilabel: PROCEDURE Cil,i2,...) ASSIGN (al,a2,...);
I

1. 	label is any legal identifier name, and constitutes the name

of the procedure.

2. 	il, i2,... are legal identifier names defining input

parameters. If the entire parenthesized list is omitted,

then the procedure has no input parameters.

3. 	al,a2,... are legal identifier names defining assign

parameters. If the entire parenthesized list and the keyword

ASSIGN are omitted, then the procedure has no assign

parameters.

11.2.2 Function Opening

The 	statement opening a function block takes the form:

i label: FUNCTION (il,i2,...J attributes;

1. label is any legal identifier name, and constitutes the name
of the function.

2. il,i2,... are legal identifier names defining input

parameters. If the entire parenthesized list is omitted,

PROCEDURES AND FUNCTIONS Page 11-3

then the function -has no input parameters.

3. 	attributes defines the type of attributes and, where

applicable, precision and size. The form specification is

the same as used in data declarations (see Section 4.2).

NOTE: In contrast to HAL/S, there is no default type for Functions.

This is because the HAL/S default type, scalar, is not legal in

HAL/S/V.

Also, it is good programming practice to make explicit the type

of value being returned, particularly in light of the HAL/S/V

prohibition of implicit conversion between data types, which requires

a function RETURN value to be of the same type as the function.

11.2.3 Block Closing

Both procedure and function blocks are closed with the statement:

I
I CLOSE label;
I

1. 	The identifier label is optional;

2. 	If supplied, it must be the name of the procedure or function

block.

11.3 DECLARATION OF PARAMETERS AND LOCAL DATA

Procedures and functions commonly require the use of

locally-defined data. As with program-level data, all data names must

be declared before use, by means of declaration statements. In

addition, all input and assign parameters must appear in local

declaration statements.

Data and parameter declarations must be placed after the

procedure or function opening statement, and before the first

executable statement. It is good practice, and mandatory in some

inplementations*, to place parameter declarations before local data

declarations. The forms of local data and parameter declarations are

identical, and are as described in Section 4.

See 	the User's Manual for any given implementation.

PROCEDURES AND FUNCTIONS 	 Page 1,1-4

Examples:

General positioning -

I ONE: PROCEDURE (ARGl) ASSIGN (ARG2)

(PARAMETER DECLARATIONS)

(LOCAL DATA DECLARATIONS)

(EXECUTIVE STATEMENTS}

Particular instance -

I ONE: PROCEDURE (ARGl) ASSIGN (ARG2);

I DECLARE ARGi INTEGER;

)--parameters

I DECLARE ARG2 ARRAY(100) INTEGER DOUBLE;}

I DECLARE TEMP INTEGER; }--local

data

I CLOSE 	ONE;

1

11.3.1 Character Parameter Declarations

Parameters of character type may be declared to possess an

indefinite maximum length which is bounded by 255.* By this means

problems of truncation of character data during argument passage can

be avoided.

The basic 	form of declaration is:

DECLARE name CHARACTER C4);

1. The asterisk denotes an indefinite maximum length.

Example:

I ONE: PROCEDURECA);

DECLARE A CHARACTER(*);

This value may be implementation dependent. Consult user's manual

for any given implementation.

PROCEDURES AND FUNCTIONS 	 Page 11-5

11.4 FUNCTION INVOCATIONS

A function is invoked by the appearance of its name as an operand

in an expression. If the function is defined with input parameters, a

list of arguments to be passed must follow the appearance of the name.

The precise form of invocation is:

label(il,i2,...)

1. 	label is the defined name of the function.

2. 	il,i2,... is a list of arguments, which must correspond in

number with the parameters of the function invoked. Each

argument is a HAL/S/V expression.

3. 	If the function has no parameters, then the entire

parenthesized argument list must be absent.

NOTE: Since no implicit type or precision conversions are allowed in

HAL/S/V the actual parameters must match the formal parameters exactly

in type and precision.

The transmission of the argument list'during function invocation

may be viewed as the assignment of the value of each expression in

turn to its corresponding input parameter (although in any given

implementation this may not actually be the mechanism of transmittal).

11.4.1 Integer Parameter

1. 	The corresponding argument must be of integer type.

2. 	Explicit precision conversion is necessary if the precision

of the formal parameter varies from that of the actual

parameter.

11.4.2 Character Parameter

1. 	The corresponding argument must be character type.

Generally, the working length of the parameter becomes equal to

the length of the expression (after conversion, where applicable).

However, if this would cause the declared maximum length of the

parameter to be exceeded, truncation of the excess from the right

takes place.

PROCEDURES AND FUNCTIONS 	 Page 11-6

11.4.3 Boolean Parameter

I. The corresponding argument must be of Boolean type.

11.4.4 Note On Function Restrictions In HAL/S/V

The mathematical notion of a function specifies that every

invocation of a given function with a given set of arguments should

return the same value.. For verification purposes it is desirable that

the programming language concept of function have a similar attribute.

One feature of HAL/S/V which helps ensure this is the requirement that

no function can access non-local data except that which is explicitly

passed in the input argument list.

Since any function has only input parameters and not assign

parameters this implies that functions have no side effects, a

desirable result for verification purposes. To enforce this,

additional restrictions must be placed on pnocedures that can be

called inside a function block. These additional restrictions are

noted in Section 11.5.1.

In particular, problems can arise if a function calls some

procedure or function which returns time dependant results. For

example, if a call is made within the function body to CLOCK, DATE, or

RANDOM functions, then the function could return different values for

the same input parameters.

Example:

i F: 	FUNCTION (X) INTEGER;

DECLARE X INTEGER;

RETURN CLOCK;

I CLOSE F;

Then 	F(X1,) ne F(X2) even if Xl = X2.

In order to ensure the consistency of user defined functions,

HAL/S/V restricts the use of system functions-, such as RUNTIME, DATE,

PRIO, to the outermost block of the program or the task. Therefore, a

function or procedure in its body, -will never use a system function

returning time dependent results. In case an integer valued random

number generator is defined, a similar restriction would apply.

The use of "function" in this context is misleading. Rather these

can be thought of as system co-routines accessing variables which are

continually updated.

PROCEDURES AND FUNCTIONS 	 Page 11-7

Arguments may possess

arrayness. The effects of

this depend otn whether or not

the corresponding Parameter is

declared to be an array.

See; Guide/20.5

11.5 PROCEDURE INVOCATIONS

A procedure is invoked by the use of a CALL statement, which may

in the case of a procedure with parameters, also specify the arguments

to be passed. The precise form of invocation is:

I CALL label Cil,i2,...) ASSIGN(al,a2,...);

1. 	label is the defined name of the procedure.

2. 	il,i 2 ,.., is a list of input arguments which must correspond

in number with the input parameters of the procedure invoked.

Each input argument is a HAL/S/V expression.

3. 	If the procedure has no input parameters, then the entire

parenthesized argument list must be absent.

4. 	al,a2,... is a list of assign arguments which must

correspond in number with the assign parameters of the

procedure invoked. Each argument must be a HAL/S/V data

item.*

5. 	If the procedure has no assign parameters, then the entire

parenthesized list of assign arguments, and the ASSIGN key
word, must be absent.

6. 	The input and assign parameter lists must be disjoint, also,

no more than one part of any structured object may appear in

the list of assign arguments and no part of a structured

object may appear in the input list if any part appears in

the assign list.

The transmission of the input argument list during procedure

invocation is identical in nature to function argument list

transmission. The related rules are given in Section 11.4.

The transmission of the assign argument list follows stricter

rules since values are passed both into and out of a procedure by this

mechanism.

t Or an assign parameter, if the invocation is nested within a
procedure block.

PROCEDURES AND FUNCTIONS 	 Page 11-8

NOTE: By the HAL/S/V scoping requirements outlined in Section 1.2, no

changes can be made in any variable in any enclosing block unless that

variable is explicitly passed as an assign paraleter. This prevents a

Problem of aliasing which could occur in PASCAL, for instance, when an

argument to a procedure is identical to a global variable referenced

by the procedure.

11.5.1 Assign Arguments

1. 	An assign argument must be a declared HAL/S/V data item.*

2. 	An assign argument must match the corresponding assign

parameter in type and precision.

3. 	No structure may have more than one component appear in the

assign argument list.

4. 	No assign argument may be an input argument of any enclosing

function or procedure block or any part of a structured

object which is an input argument to an enclosing function or

procedure block.

Reasons: One should be able to assert of any procedure that the input--
parameters are unchanged after the procedure execution. This is not

the case if arguments are allowed to appear both as input parameters

and as assign parameters. Moreover, whether the value of an input

parameter remains constant throughout the procedure execution becomes

dependent upon whether input parameter passing is implemented by a

read only reference to a variable or by copying into loca.l storage

hence, the truth value of certain assertions becomes implementation

dependant.

The requirement that several components of structured objects not

appear prevents the possibility of aliasing. For instance, let A be

an array of integers and EXAMPLE be a procedure of one input and two

assign parameters. Then the procedure call

I
I CALL EXAMPLE (A) ASSIGN (A ,B)

IS I J

strictly violates the rule that the parameter lists be disjoint only

if 	 I = J. However, which assertions one can make about the procedure

become dependant upon the equality or non-equality at call time of

variables external to the program in a way that is not readily

apparent. Hence such a call is disallowed in the verifiable subset.

Consider the following call:

I
I 	 CALL EXAMPLE (B) ASSIGN (A ,A 3

IS 	 I .1

PROCEDURES AND FUNCTIONS Page 11-9

This is also disallowed. If I = J at call time aliasing occurs.
Apart from the general undesirability of aliasing, any assertions made
about EXAMPLE would require that the case where I = J be explicitly
treated. But no feature in the procedure definition would indicate
this since the formal parameters are all distinct.

Finally, an assign argument should not be an input argument of

any enclosing block because this violates our earlier requirement that

input parameters not be changed by procedure execution. Moreover, it

allows functions to have side effects by calling procedures whose side

effects are not confined to variables local to the function block.

Both input and assign

arguments may possess

arrayness, in which case the

corresponding parameters must

have an array declaration.

See: Guide/20.5.

11.6 RETURNS FROM PROCEDURES AND FUNCTIONS

When execution reaches the CLOSE statement of a procedure block,

an automatic return to caller takes place. However, if execution

reaches the CLOSE statement of a function block, a run time error

results since the function has no value to return to the caller.

Hence a function block needs an explicit RETURN statement to cause the

return to take place. In addition, if returns are required from parts

of the code in a procedure block other than at the CLOSE, an explicit

RETURN statement is required.

11.6.1 Procedure Return

The RETURN statement of a procedure takes the form:

I RETURN;

Example:

I CHOICE: PROCEDURE (FLAG) ASSIGN (DIR);

DECLARE FLAG BOOLEAN;

DECLARE DIR INTEGER;

IF FLAG THEN RETURN;

DIR = 1;

I CLOSE;

If FLAG = TRUE then procedure

merely returns execution at

RETURN. If FLAG = FALSE then

DIR is set equal to 1, and

PROCEDURES AND FUNCTIONS 	 Page 11-j0

Procedure returns execution at

CLOSE.

11.6.2 Function Return

The 	RETURN statement of a function takes the form:

I
I RETURN exp

I

1. 	The resultant value of the expression exp is returned when

the function returns to its caller.

NOTE: The type and precision of exp must match exactly the declared

type and precision of the function. This is in accord with the

HAL/S/V prohibition of implicit conversions.

The return of an expression by a function is similar in ,nature to

the transmission of an input argument of a function to the

corresponding parameter, the function itself playing the role of

parameter.

Note that since a function block may not be defined with an array

specification, no function may return an array result.

CHAPTER 12

INPUT/OUTPUT STATEMENTS

HAL/S/V incorporates entirely the Input/Output mechanisms of

HAL/S. Therefore, Chapter 12 of this document is omitted, being

identical to Chapter 12 of the HAL/S Programmer's Guide.

jz-J

CHAPTER 13

REAL TIME PROGRAMMING - I

So far the Guide has made no reference to the dynamic properties

of HAL/S/V programs. Clearly, any program will take a finite time to

execute but none of the constructs hitherto described depend on any

sense of time for their operation.

However, the HAL/S/V language does contain constructs which

depend on a sense of time for their operation., This is what is meant

by the statement that HAL/S/V programs is a "real time programming

language". In other words, HAL/S/V Programs can be written which,

when executed, cause operations to be carried out at desired points or

during desired intervals in "real time".

In some implementations of HAL/S/V, "real time" may be just what

the phrase implies, real clock time. In others, the "real time" may

be simulated in some way by the operating environment of a HAL/S/V

program: in this case, it can be referred to as "pseudo-real time".

This section of the Guide explains the basic HAL/S/V concepts of

real time programming, and describes some of the more elementary real

time programming language forms.

13.1 HAL/S/V REAL TIME CONCEPTS

The true HAL/S/V concept of a program at run time is an entity

executing over some interval in "real time", directed and controlled

by a Real Time Executive (RTE). At the outset, the RTE begins

execution of the Program. When program execution is completed,

control is returned to the RTE. In HAL/S/V terminology, the dynamic

counterpart of the static program block which is executing under RTE

control, is called a "real time process".

13.1.1 Multi-Processing In HAL/S/V

Multi-processing is the simultaneous handling of more than one

"real time process". With most present-day machines, "simultaneous"

really means interleaved, because most machines can at one time only

support the execution of a single machine instruction sequence.

However, this distinction has no significance at the higher level of

13-I

REAL TIME PROGRAMMING - I Page 13-2

the HAL/S/V language.

NOTE: This is not strictly true. A priority driven scheme can have

very different results on an actual multi-processing system if

processes update shared data items.

The RTE of HAL/S/V can simultaneously handle an arbitrary# number

of processes created by the user. A number is attached by the user to

each process, called its "priority". The RTE maintains processes in a

"process queue" ordered by priority, and always endeavors to execute

the processes in order of priority, highest first.

The HAL/S/V program itself, beginning execution under the RTE,

constitutes the first or "primal process". All other processes are

brought into existence by the execution of SCHEDULE statements coded

into the program. Just as the primal process has a static

Counterpart, which is the program block coded by the user, so must the

other processes have their static counterparts. These are so-called

task blocks, which are coded inside the program block in a very

similar way to procedure blocks. Each time a task block is invoked by

execution of a SCHEDULE statement, a new process is created and queued

by the RTE.

13.1.2 States Of A Process

It is now possible to represent the behavior of the RTE by a more

formal description of the possible states** in which a process can

exist. This in turn will introduce other HAL/S/V constructs for

controlling the activities of the RTE. A process can be in either of

the following two major states at a given time:

ACTIVE STATE: a process is in

an active state when it exists

in the RTE's process queue.

The state acutally comprises

three substates or minor

states in any one of which an

active process may be at a

given time.

INACTIVE STATE: a process is

defined for completeness as

being in the inactive state if

it does not exist in the

See the User's Manual for the maximum number supported in any given

implementation.

** The states to be defined do not correspond one-to-one with the RTE

states described in the Language Specification document. The latter

are defined for the convenience of the formal description of language

constructs. The former are defined with user convenience in mind.

REAL TIME PROGRAMMING - I Page 13-3

process queue.

The minor states of an active process are as follows:

EXECUTING: an active process

is "executing" when it has

actually been put into

execution by the RTE,

operating on the priority

principle already described.

The number of processes which

can be in this state

simultaneously is

implementation dependent.*V4:

READY: an active process is

"ready" if it is available for

execution, but higher priority

processes in execution are

currently barring it. The

occurrence of a process first

entering the ready state will

be called its "initiation".

WAITING: an active process is

"waiting" if it is neither

ready nor executing. Some

condition set up by the user

prevents it being available

for execution by the RTE.

When a process is created by invoking a task block by a SCHEDULE

statement it makes a transition from the inactive state to an active

state. It is entered into the process queue in either the ready or

the waiting state, depending on the form of the SCHEDULE statement.

If it is entered in the ready state, then depending on its priority,

it may immediately be elevated to the executing state.

A process is caused to make a transition from an active state to

the inactive state (or removed from the process queue) by a TERMINATE

statement. The process is said to have been "terminated".

A process may be forced into the waiting state by execution of a

WAIT statement.

NOTE: In HAL/S the priority of an active process can be changed by an

UPDATE PRIORITY statement. This facility has been removed from

HAL/S/V.

The statements outlined above are among the real time programming

language torms to be described later in this section.

* In most imp-l-ementations it is likely to be 1, but see the User's

Manual for a given implementation.

REAL TIME PROGRAMMING - I Page 13-4

13.1.3 Process Swapping & Breakpoints

A process swap is a pair of state transitions in which one

process leaves the executing state, and second enters it from the

ready state. The process swap may occur because the first process has

been forced into the inactive state or the waiting state, or because

the second process has a higher priority than the first.

The HAL/S/V language itself makes no assumptions on where process

swapping can occur. However, most implementations, depending on the

object machine characteristics, limit Process swapping to given places

in the HAL/S/V code seguences under execution by the RTE. These

places are called "breakpoints". The determination of breakpoints is

a function of the HAL/S/V compiler for a given implementation, and no

language construct exists to modify their existence4.

The effect of breakpoints is to superimpose a kind of time

granularity on the operation of the RTE.

13.1.4 Priority Scales

The number specifying the priority P of a process is an integer

in the range:

0 < P < 2554*

The primal process is assigned a priority of 504* by the RTE on

beg-inning execution.

NOTE: Because of a restriction to be discussed subsequently (Section

13.4.1) the priorities which can be assigned to a process in HAL/S/V

are less than or equal to 50.

13.1.5 Process Dependency

Suppose that there are two processes, A and B, and that A creates

process B during the course of its execution. At the time of

creation, B may be specified to be either "dependent" on or

"independent"of A. If B is dependent, it means that it depends for

its existence on the existence of A. If B is independent, then A may

cease to exist without affecting B's existence.

As an example, in the HAL/S/V-360 implementation, breakpoints occur

at the end of every executable statement.

l4 These values are, however, implementation dependent. See

appropriate User's Manual.

REAL TIME PROGRAMMING - I 	 Page 13-5

However, an overriding rule is that all other processes are

always dependent on the Primal process for their existence.......

The consequences of dependency will be seen when the flow of

execution through Program and task blocks is described in Section

13.3, and again when the TERMINATE statement in introduced in Section

13.5.

13.2 TASK BLOCK DEFINITIONS

A task block is a static block of code interior to a program,

from whence processes can be created by means of the SCHEDULE

statement. Task blocks may only be defined at the program level, and

not nested inside procedure or function blocks or other task blocks--
defined in a program.

Task block definitions are similar to program block definitions

as described in Section 3, and have similar opening and closing

statements.

13.2.1 Relative Position Of Task Definitions

Statements invoking a task block should always follow its block

definition.

NOTE: In a language such as PASCAL which allows two processes to call

each other, this is not always possible and necessitates some

mechanism for forward referencing. But HAL/S/V specifically disallows

this and all other forms of recursion. Hence, no forward referencing

of functions and procedures is necessary or allowed.

13.2.2 Task Opening

The 	statement opening a task block takes the form:

I
I label:TASK;

1. 	label is any legal identifier name, and constitutes the name

of the task block.

13.2.3 Task Closing

The 	statement closing a task block takes the form:

I

I CLOSE label;

REAL TIME PROGRAMMING - I 	 Page 13-6

1

1. The identifier label is optional.

2. If supplied, it must be the name of the task block.

Example:

I DISPLAY:TASK;

I I I
iI I task body

I I I

i I I

I CLOSE DISPLAY;

13.2.4 Local Data Declarations

Local data can be declared in a task block in exactly the same

way as it is declared in a procedure or function block. The

declarations appear after the task opening statement, and before the

first executable statement of the block. The forms of the

declarations have been described in Section 4.

Examples:

General Positioning -

DISPLAY: TASK;

I

I I local data declarationsI 	I

I 	I
I I executable statements
i

I CLOSE DISPLAY;

REAL TIME PROGRAMMING - I Page 13-7

Particular Instance -

I,
I DISPLAY: TASK;

DECLARE S CHARACTER(10),}------ local data

I INTEGER;

I CLOSE DISPLAY;

13.3 FLOW OF EXECUTION IN PROGRAM AND TASK BLOCKS

The flow of execution through program and task blocks is subject

to a new interpretation, based on the concepts of real time

programming introduced in this section. Programs and tasks are

treated together since their representations at run time are in both

cases real time processes.

Execution of a process begins with the first executable statement

in the corresponding static program or task block. It continues, and

if not terminated by some other process, ends in one of the following

ways:

1. by execution of a TERMINATE statement terminating itself;

2. by reaching the CLOSE statement of the block;

3. by execution of a RETURN statement in the- block;

If execution ends by self-termination, the process goes into the

inactive state and is removed from the process queue. All dependents

of the process are treated likewise. This is subject to certain

restrictions described in Section 13.5.

If execution ends on a CLOSE or RETURN statement, the process

goes into the inactive state directly only if it has no dependents.

Otherwise, it goes into a waiting state until the dependents have in

their turn terminated.

13.3.1 Form Of Return Statement

The form of RETURN statement for programs and tasks' is the same

as for procedures:

RETURN;

REAL TIME PROGRAMMING - I 	 Page 13-8

13.4 THE SCHEDULE STATEMENT

The SCHEDULE statement is an executable statement causing a new

Process to be placed in the process queue, or "initiated". The

SCHEDULE statement specifies a task block from which the process is to

be created, and the priority which it is to be given. A condition for

the 	initiation of the process can be supplied.

Only one process derived from a given task block may be active at

any given time.

13.4.1 Immediate Initiation

The following variant of the SCHEDULE statement is the simplest.

It causes the creation of a process which is placed in the process

queue in the ready state. The process is thus available for execution

immediately.

I SCHEDULE label PRIORITY(a) DEPENDENT;

1. 	A process is created from the task block label and placed in

the process queue in the ready state. The process created is

also known by the name label.

2. 	a is an integer expression specifying the priority of the

newly-created process. It must lie in the legal range for a

given implementation. Moreover it must be lower than the

priority of the scheduling process.

3. 	The keyword DEPENDENT is optional. Its presence denotes the

dependency of the process created on the process executing

the SCHEDULE statement. In its absence, the processes are

independent.

NOTE: From a verification standpoint it is desirable that the effects
of a process be "localized" affecting the global state only in
definite and apparent ways. The ability of a low priority process to
schedule other processes with arbitrary priority is counter to this
goal. It renders even a very low priority process the ability in
effect to usurp the CPU from any other process whatsoever by
scheduling another task with high priority. Thus the restriction is
placed on the SCHEDULE statement in HAL/S/V that the priority assigned
to a scheduled process be lower than that of the scheduling process.
This effect can always be achieved by assigning a priority of (PRIO -
C) where PRIO is a system function returning the priority of the
calling process and C is a positive integer such that PRIO - C > 0.

From a methodological viewpoint this restriction has the

additional benefit that process priority is determined relative only

to the scheduling process and not in relation to possibly unrelated

processes in the global environment. Thus the generation of a

priority driven scheme is discouraged though not entirely prevented.

REAL TINE PROGRAMMING - I 	 Page 13-9

Another effect of this restriction is that no process ever has

priority more than 50* since the primal process is assigned priority

50 by the RTE.

13.4.2 Delayed Initiation

The following form of the SCHEDULE statement causes a process to

be placed in the process queue in the waiting state. The process is

transferred to the ready state on a specified time criterion being

met. There are two variants, each with a different time criterion.

INITIATION after some duration:

I
I SCHEDULE label IN interval PRIORITY(a) DEPENDENT;
I

1. 	A process called label is created from the corresponding task

bloc6 and placed in the process queue in the waiting state.

2. 	PRIORITY(a) and DEPENDENT have the same meanings as described

in the previous form of SCHEDULE statement.

3. 	The phrase IN interval indicates that the process is to be

put in the ready state after a specified interval in the

waiting state. interval is an integer expression whose value

specifies the duration in seconds.

4. 	If the value is negative or zero, the process is put in the

ready state immediately.

INITIATION at a given time:

I
ISCHEDULE label AT time PRIORITY(a) DEPENDENT;
I

1. 	A process called label is created from the corresponding task

block and placed in the process queue in the waiting state.

2. 	PRIORITY(a) and DEPENDENT have the same meanings as described

in the previous forms of SCHEDULE statement.

3. 	The phrase AT time &indicates that the process is to be put in

the ready state at a specified real time. time is an integer

expression whose value specifies the time in seconds.*

4. 	If the indicated time is in the past, the process is placed

in the ready state immediately.

This value is implementation dependent.

REAL TIME PROGRAMMING - I 	 Page 13-10

NOTE: The introduction of time into programming present a difficulty

for verification. Programs run at different rates on different

machines and often at varying rates on the same machine. The

Programmer in general should minimize the dependence of his results on

time.

SCHEDULE statements can also

specify the cyclic execution

of a process until a stopping

criterion is met. An explicit

specification of the interval

between cycles can also be

given.

See: Guide/23.4 & 23.5.

13.5 OTHER REAL TIME FEATURES OF HAL/S/V

Three other real time programming statements which have already

been mentioned are now described. These are the TERMINATE, WAIT, and

UPDATE PRIORITY statements. Certain other useful constructs are also

introduced.

13.5.1 Terminate Statement

A process is forced to the inactive state (removed from the

process queue) by means of the TERMINATE statement. Its form is shown

below:

I TERMINATE label ;

t. 	The appearance of label is optional. If present, the

statement terminates an active process called label.

2. 	If label is absent, then the process executing the TERMINATE

statement is terminating itself.

3. 	No process may be terminated by execution of a TERMINATE

statenent if it or any of its dependent processes updates

global data.

In order to make independent processes truly independent, HAL/S/V

places an added restriction on the operation of the TERMINATE

statement. A process is only allowed to use it to terminate itself or

its 	dependents.

The real time origin is not speicified by the language. The origin

is normally coincident with the initiation of the primal process.

Some implementations allow its value to be preset at run time. See

appropriate User's Manual.

REAL TIME PROGRAMMING - I 	 Page 13-11

Note that when a process is terminated by execution of a

TERMINATE statement, all its dependents are automatically terminated

at the same time.

NOTE: The ability of a Process to terminate itself and its dependents

presents a problem for verification if any global data items are

updated by those processes. In general the synchronization of a

process with its dependents occurs only by the SCHEDULE statement.

Beyond scheduling, the actual execution of the processes occurs

asynchronously, influenced by such implementation dependent features

as the number of processors available. Hence, when a process

terminates itself with concomitant termination of dependents, there is

in general no way to make valid assertions concerning the state of

data items updated by those dependents. This is significant only

where global data is involved. Therefore, HAL/S/V includes the

restriction that no process may be terminated if it updates global

data. This implies also that no process may terminate itself if any

dependent (or dependent of a dependent, etc.) updates global-data.

Examples:

I TERMINATE; ---------------- self termination

I TERMINATE BETA;----------- termination of dependent

I

If a number of processes are to be terminated simultaneously, the

TERMINATE statement can specify a list of process names:

I TERMINATE ALPHA, BETA, GAMMA;

13.5.2 Wait Statement

The 	WAIT statement is used to force the process executing it into

a waiting state until some condition is met, whereupon it returns to

the ready state. Three forms, each with a different condition, are

described below.

WAIT for a duration:

I WAIT interval;
- I

1. 	The statement indicates that the process is to be placed in

the waiting state for a specified duration.

2. 	interval is an integer expression specifying the duration in

seconds.

3. 	A negative or zero value results in the process not leaving

the ready state.

REAL TIME PROGRAMMING - I 	 Page 13-12

WAIT until some time:

I WAIT UNTIL time;

1. 	The statement indicates that the process .is to be placed in

the waiting state until some given time.

2. 	time is an integer expression specifying the time of return

to the ready state, in seconds.*

3. 	Specification of a time in the past results in the process

not leaving the ready state.

WAIT for dependents

I

I WAIT FOR DEPENDENT;

1. 	The statement indicates that the process is to be placed in

the waiting state until all its dependent processes have

terminated.

2. 	If there are no dependents, the statement his no effect.

Examples:

I WAIT UNTIL DELTA + 10;

I WAIT 15;

1 WAIT FOR DEPENDENT;

1

13.5.3 Update Priority Statement

No UPDATE PRIORITY statement is allowed in HAL/S/V.

NOTE: For the reasons cited in Section 13.4 it is undesirable that

processes be able to tamper with the priorities of other processes

except in very controlled ways. To be consistent with the

restrictions imposed there, we could require that any modifications of

the priority of a process only lower it by some constant. However,

this solution is unsatisfactory for the following reasons. If a

process is inactive updating its priority in the manner specified

could only lower its priority relative to that of other active

processes and possibly result in' delaying its use of the CPU or

changing its state from executing to waiting. But unless the process

See the discussion on the SCHEDULE statement in Section 13.4 for a

footnote remarking on the real time origin.

REAL TIME PROGRAMMING - I 	 Page 13-13

shares data with other processes these have no real effect. If it

does share data, the effects of lowering priority can be generated in

a more controlled manner either by scheduling the process with a lower

priority initially or by use of the WAIT statement. Hence UPDATE

PRIORITY is disallowed.

13.5.4 Real Time Built-In Functions

Two built-in or library functions are of utility in constructing

real time programs:

Function 	 Comments

------- ------------- ------------ ------------- W--------

RUNTIME 	 returns the current

value of real time as

a scalar, in seconds

PRIO 	 returns the priority of

the process invoking the

function as an integer

NOTE: As noted earlier, certain system functions may not be

invoked by procedures and functions since they return time

dependent values. RUNTIME and PRIO are two such system functions

and are subject to the restrictions described in Section 11.4.4.

13.5.5 Major State Indication

HAL/S/V allows the use of a process name as a Boolean

variable which returns true if and only if the process is in an

active state. This is not allowed in HAL/S/V.

NOTE: Any attempt to synchronize processes by such a mechanism

presents grave difficulties for verification since it makes the

behavior of a program depend upon other, possibly independent

processes whose rate of execution may differ under differing

circumstances and on different machines.

The constructs described above

enable real time processes to

be manipulated according to

time criteria. Other

constructs enable their

manipulation according to

"event" criteria. HAL/S/V

"events can signal conditions

to the RTE. Their values can

be manipulated by the user

thus indirectly controlling

the real time process states.

See: Guide/24.

The problem of controlling the

REAL TIME PROGRAMMING - I Page 13-14

sharing of data by two or more

processes is also important.

See: Guide/26.4.

CHAPTER 14

SUMMARY OF PART I

Part I of the Programmer's Guide has presented a wide variety of

the simpler constructs of the HAL/S/V language. It has laid

sufficient ground work for the understanding of more complex language

forms which are to be presented in Part II.

1q-T
1

Manual 2

HAL/S/V:

A Verifiable Version of HAL/S

Volume - 2

James C. Browne

Donald I. Good

Anand R. Tripathi

William D. Young

December 31, 1979

INSTITUTE FOR COMPUTING SCIENCE AND COMPUTER APPLICATIONS

The University of Texas at Austin

Austin, Texas 78712

J9- I

TABLE OF CONTENTS

Chapter 15 COMPOOLS AND COMSUBS 	 15-1

15.1 	 RELATIONS BETWEEN PROGRAMS, COMPOOLS AND

COMSUBS 15-1

15.2 THE 	COMPOOL BLOCK.. 15-2

15.2.1 Compool Opening 	 15-3

15.2.2 Compool Closing 	 15-3

15.2.3 Compool Data Declarations 15-3

15.3 EXTERNAL PROCEDURE AND FUNCTION BLOCKS . . . 15-3

15.4 BLOCK TEMPLATES.. 	 15-4

15.4.1 Compool Templates..... 15-4

15.4.2 External Procedure Templates 15-4

15.4.3 External Function Templates 15-5

Chapter 16 ADDITIONAL DATA INITIALIZATION FORMS 16-1

16.1 IMPLIED INITIAL LIST REPETITION 16-1

16.2 USE 	OF REPETITION FACTORS 16-1

16.3 PARTIAL INITIALIZATION 	 16-3

16.4 STATIC AND AUTOMATIC INITIALIZATION 16-3

16.4.1 Legal Use Of Specification 16-3

16.4.2 Form Of Static Specification. 16-4

16.4.3 Form Of Automatic Specification 16-4

.
Chapter 17 BIT STRINGS . 17-1

17.1 BIT 	STRING LITERALS 17-1

17.2 DECLARATION OF BIT STRING DATA ITEMS 17-2

17.2.0.1 	 Initialization 17-2

17.3 BIT STRING SUBSCRIPTING 	 . ,
................. 17-3

17.3.1 Unarrayed Bit Strings 	 17-3

17.3.2 Arrayed Bit Strings... 17-4

17.4 BIT 	STRING OPERATIONS 17-4

17.4.1 Complement 	 17-4

17.4.2 Disjunction....... 17-5

)-1

17.4.3 Catenation 	 17-5

17.4.4 Precedence.. 	 17-5

17.5 BIT STRING ASSIGNMENT
 17-6

17.6 BIT STRINGS IN CONDITIONAL CONSTRUCTS . 17-6

17.6.1 Direct Use Of Bit Strings 17-7

17.6.2 	 Bit Strings In Relational

Expressions 17-7

17.7 BIT STRING ARGUMENTS AND PARAMETERS 17-9

17.7.1 Form Of Bit-String Parameters 17-9

17.7.2 Argument Passage 17-9

17.8 BIT STRING FUNCTIONS 17-10

17.8.1 Block Definition 17-10

17.8.2 Return Of Bit String Quantities . . . 17-11

17.9 BIT STRINGS IN INPUT/OUTPUT 17-11

Chapter 18 MULTI-DIMENSIONAL ARRAYS...... 18-1

18.1 DECLARATION 	 18-1

18.2 ORDER 	OF INITIALIZATION 18-2

18.3 SUBSCRIPTING 	 18-2

18.3.1 Array Subscripting Only...
. 18-2

18.3.2 Array And Component subscripting 18-3

18.3.3 Component Subscripting Only 18-3

Chapter 19 STRUCTURES 19-1

19.1 HAL/S/V STRUCTURE CONCEPTS...
. 19-1

19,2 STRUCTURE TEMPLATES 19-2

19.2.1 General Form Of A Template 19-3

19.2.1.1 OVERALL FORM 	 19-3

19.2.1.2 MINOR STRUCTURE NODES	 19-3

19.2.1.3 STRUCTURE TERMINAL NODES ... 19-3

19.2.2 Restrictions 19-4

19.2.3 Location Of Structure Templates . . . 19-4

19.3 STRUCTURE DECLARATIONS 	 19-5

19.3.1 Basic Form Of Declaration 19-5

19.3.2 Multiple Copy Structures 19-6

19.3.3 Initialization Of Structures 19-6

19.4 NESTED STRUCTURES
 19-7

19.4.1 Restrictions
 19-8

19.5 QUALIFICATION AND STRUCTURE REFERENCING . . . 19-8

16- }i

19.5.1 The 	Qualified Reference Concept . 19-9

19.5.2 Referencing Structure Terminals . 19-9

19.5.3 Referencing Minor Structure Nodes 19-10

19.5.4 Naming Uniqueness 19-10

19.5.5 Unqualified References 19-11

19.6 SUBSCRIPTING IN STRUCTURES 	 19-12

19.6.1 	 Subscripting Of Structure Data

Items 19-13

19.6.2 	 Subscripting Of Structure

Terminals
 19-14

19.7 TREE EQUIVALENCE OF STRUCTURES 19-15

19.7.1 Equivalence Of Tree Shape 19-15

19.7.2 	 Matching Of Terminal Node

Attributes 19-16

19.7.3 STRUCTURE ASSIGNMENTS.. 19-18

19.8 BASIC 	FORM....... 19-18

19.9 MULTIPLE ASSIGNMENTS 	 19-19

19.9.1 	 Structures In Conditional

Constructs 19-19

19.9.2 	 Structure Arguments And Parameters

...... 19-20

19.10 FORM 	OF STRUCTURE PARAMETERS 19-20

19.11 ARGUMENT PASSAGE.. 	 19-21

19.11.1 Structure Functions 	 19-22

19.12 BLOCK DEFINITION.	 19-23
.....

19.13 RETURN 	OF STRUCTURE QUANTITIES 19-24

19.14 INVOCATION OF STRUCTURE FUNCTIONS 19-24

19.14.1 Structures In Input/output 19-25

Chapter 20 HAL/S/V ARRAY PROCESSING FEATURE 20-1

Chapter 21 EXPLICIT CONVERSIONS 21-1

21.1 INTEGER 	CONVERSIONS
 21-1

21.2 BIT CONVERSION
 21-4

21.3 CHARACTER CONVERSION 21-6

Chapter 22 INPUT AND OUTPUT 22-1

Chapter 23 REAL-TIME PROGRAMMING II............
 23-1

23.1 PROGRAM 	PROCESSES 23-1

23.2 PROGRAM TEMPLATES 	 * 23-2

23.3 	 CREATING AND CONTROLLING PROGRAM

PROCESSES...... 23-3

23.3.1 	 Program Processes And Process

Dependency
 23-3

23.4 CYCLIC PROCESSES 	 23-3

23.4.1 States Of A Cyclic Process 23-4

23.5 SCHEDULE STATEMENT FOR CYCLIC PROCESSES . . 23-5

23.5.1 Immediate Recycling 	 23-5

23.5.2 Constant -Intercycle Delay 23-6

23.5.3 Recycling At Specified Intervals . . . 23-7

23.6 	 TERMINATING AND CANCELLING CYCLIC

PROCESSES. 23-7

23.6.1 Cancel Statement 23-8

Chapter 24 REAL TIME PROGRAMMING - III 24-1

24.0.1 Hal/s Events . *. 	 24-1
....

24.0.2 Declaration Of Event*Data Items 24-2

24.0.3 Event Expressions 24-4

24.0.4 Changing Values of Events 24-5

24.0.5 EVENT EXPRESSIONS IN SCHEDULE STATEMENT.. ... 24-6

24.0.6 EVENT EXPRESSIONS IN WAIT STATEMENT 24-9

24.0.7 PROCESS EVENTS 24-10

Chapter 25 ERROR RECOVERY AND SIMULATION 25-1

25.1 HAL/S 	RUN-TIME ERROR CONCEPTS 25-1

25.2 ERROR 	DETECTION AND RECOVERY 25-2

25.3 ERROR 	ENVIRONMENT OF A PROCESS........ . 25-3

25.4 DYNAMIC SCOPING OF ERROR ENVIRONMENTS . . . 25-3

25.4.1 Error Environment Modification . . . 25-4

25.5 	 ERROR GROUP AND MEMBER NUMBER

SPECIFICATION 25-4

25.6 ON ERROR STATEMENT 	 25-5

25.7 PRECEDENCE OF ON AND OFF ERROR STATEMENTS

S.25-8

25.7.1 Error Simulation
 25-12

Chapter 26 	 DATA STORAGE AND ACCESS
 26-1

26.1 PACKING DENSITY OF STORED DATA 26-1

)5-1

26.2 DENSE STRUCTURES 	 26-2

26.3 ORDERING OF STORED DATA
 26-3

26.4 NON-REORDERING OF CONPOOLS 	 26-3

26.5 NON-REORDERING OF STRUCTURE TERMINALS . . . 26-4

26.6 TEMPORARY AND REMOTE STORAGE 	 26-4

26.7 SPECIFICATION OF REMOTE DATA	 26-5

26.8 DECLARING AND USING TEMPORARY DATA 26-6

26.9 ACCESS TO SHARED DATA 	 26-7

26.10 LOCK GROUPS 	 26-7

26.11 LOCK GROUP SPECIFICATION 	 26-8

26.12 UPDATE 	BLOCK DEFINITIONS 26-9

26.13 EXECUTION OF UPDATE BLOCKS 	 26-10

26.14 LOCKED 	ASSIGN ARGUMENTS 26-10

Chapter 27 HAL/S/V AND REENTRANCY 	 27-1

27.1 DETERMINING REENTRANCY REQUIREMENTS 27-1

27.1.1 Exclusive Procedures And Functions

..........	 27-2

27.1.2 Defining An Exclusive Procedure'. .*. 27-2

27.2 DEFINING AN EXCLUSIVE FUNCTION 	 27-3

27.3 	 BEHAVIOR OF EXCLUSIVE PROCEDURES AND

FUNCTIONS 27-3

27.3.1 	 Reentrant Procedures And Functions

.... 27-3

27.4 DEFINING A REENTRANT PROCEDURE 27-4

27.5 DEFINING A REENTRANT FUNCTION 	 27-4

27.6 	 BEHAVIOR OF REENTRANT PROCEDURES AND

FUNCTIONS.. .
.............. 	 27-5

27.7 LOCAL DATA IN REENTRANT BLOCKS	 27-5

27.8 OTHER CONSIDERATIONS IN REENTRANT BLOCKS . . 27-5

Chapter 28 THE HAL/S/V NAME FACILITY
 28-1

Chapter 29 REPLACE MACROS AND IN-LINE FUNCTIONS 29-1

Chapter 30 MANAGERIAL CONTROL OF ACCESS TO DATA AND

CODE
 30-1

5tVi

CHAPTER 15

COMPOOLS AND COMSUBS

15.1 RELATIONS BETWEEN PROGRAMS, COMPOOLS AND COMSUBS

The compools and comsubs referenced by a program are themselves

separately compilable entities. For example, when a program invokes

an external procedure, which shares with it the use of data in a

single compool, then a total of three separate compilation units is

involved.*

Section 3 of the Guide described one kind of compilation unit
the program block - but there are four kinds of compilation units in

the HAL/S/V language:

1. 	PROGRAM, the only independently executable compilation unit;

2. 	EXTERNAL PROCEDURE, callable from a program or any other

comsub;

3. 	EXTERNAL FUNCTION,, also callable from a program or any other

comsub;

4. 	COMPOOL, defining data shared by programs and comsubs, but

containing no executable code.

The HAL/S/V language insists upon a full declaration of all data,

and invariably checks the compatibility of function and procedure

definitions with their invocations. These precautionary measures are

specifically extended to compool data and comsubs through the use of

so-called "block templates".

Every program or comsub which references compools or other

comsubs must be provided with block templates of the compilation units

referenced.

COMPOOL TEMPLATE - contains data declarations

The object modules resulting from their compilation have to be

"link-edited" to produce a single executable load module.

15 -i

COMPOOLS AND COMSUBS Page 15-2

identical with those of the compool itself, so

that the referencing compilation unit possesses a

complete description of the data.

EXTERNAL FUNCTION TEMPLATE - contains an input
parameter list identical with that of the external

function itself, so that the compatibility of its

invocations by the referencing compilation unit

can be verified.

EXTERNAL PROCEDURE TEMPLATE - contains input and

assign parameter lists identical with those of the

external procedure itself, so that the

compatibility of its invocations by the

referencing compilation unit can be verified.

The required block templates are included in the compilation

units which reference the corresponding compools and comsubs. No

external procedure or function unit may use a compool block directly,

because no global referencing is allowed in HAL/S/V. This implies

that compool templates do not appear with the external procedures and

functions.

To summarize, when the term "compilation unit" was introduced in

Section 3 of the Guide, its meaning was the same as "program block"

because the existence of compools and comsubs had not been considered.

Now it is apparent that a compilation unit does not necessarily

contain executable code (it may be a compool), and neither is it

necessarily just a single block of executable code (one or more

templates may be included in it).

In HAL/S/V block templates are designed to eliminate

incompatibility between separately compiled modules as a source of

software unreliability. It may be objected however that no language

construct can force the properties of a compool or comsub to be

reflected correctly in the corresponding block template.* The use of

correct templates is generally insured by an implementation dependent

software management scheme. Part of such a scheme would be the
automatic generation of block templates during compilation of the
corresponding compools and comsubs.

15.2 THE COMPOOL BLOCK

The compool block has been introduced as an external block of

data accessible to programs and comsubs with which the appropriate

block template is included. It consists of opening and closing

statements delimiting a sequence of data declarations.

Neither can it ensure that the object modules "link-edited" together

are the correct versions.

COMPOOLS AND COMSUBS 	 Page 15-3

15.2.1 Compool Opening

The 	statement opening a compool block takes the form:

I label: COMPOOL;

1. 	label is any legal identifier name, and constitutes the name

of the block.

15.2.2 Compool Closing

The 	compool block is closed with the statement:

I

I CLOSE label;
I

1. 	The identifier label is optional.

2. 	If label is supplied, it must be the label supplied on the

opening statement of the block.

15.2.3 Compool Data Declarations

Declaration of data in a compool differs in no respect from data

declarations in a program, as described in Section 4. In particular,

there is no objection to the initialization of data in a compool.

The identifier names used to declare data in a compool body

should not be used to declare any other data item in outer most levels

of the programs using that compool block.

15.3 EXTERNAL PROCEDURE AND FUNCTION'BLOCKS

Comsubs have been introduced as external function and procedure

blocks which may be called from programs or other comsubs.

The forms of external function and procedure blocks are identical

with ordinary function and procedure blocks, whose definitions were

described in Section 11. Likewise, they are invoked in a manner

identical with that described in Section 11. However, the external

procedures and functions do not contain any compool templates because

no direct accessing of global data is allowed in HAL/S/V.

COMPOOLS AND COMSUBS 	 Page 15-4

15.4 BLOCK TEMPLATES

Block templates indicate the properties of compools and comsubs

to the program or comsub referencing them. Their form is similar to

the corresponding compool or comsub.

15.4.1 Compool Templates

A compool template is identical with its corresponding compool

block except that the opening statement is modified by the keyword

EXTERNAL:

Ilabel: EXTERNAL COMPOOL;

1. 	label is the name of the corresponding compool block.

Example;

Compool Block:

I POOL: COMPOOL;

I DECLARE INTEGER DOUBLE, I, J, K;

I DECLARE CC CHARACTER(10);

I CLOSE POOL;

Corresponding Template:

I

I POOL: EXTERNAL COMPOOL;

I DECLARE INTEGER DOUBLE, I, J. K;

I DECLARE CC CHARACTER(10);

I CLOSE POOL;

15.4.2 External Procedure Templates

An external procedure template differs from its corresponding

procedure block in the following respects:

1, 	The body of the block is empty except for declarations

describing the attributes of input and assign parameters;

2. 	The opening statement is modified as shown below by the

keyword EXTERNAL.

COMPOOLS AND COMSUBS 	 Page 15-5

1
Ilabel: EXTERNAL PROCEDURE(If, 12,...)

ASSIGN(AI,A2,...);

I

1. 	label is the name .of the corresponding procedure block.

2. 	il,i2,... and al,a2,... are lists of input and assign

parameters respectively, identical with those in the

corresponding procedure block.

Example:

External Procedure:

I FIXIT: PROCEDURE (INCR) ASSIGN (RESULT);

DECLARE RESULT INTEGER,

INCR INTEGER;

DECLARE DELTA CONSTANT INTEGER (14);

RESULT = RESULT + DELTA INCR;

I CLOSE FIXIT;

Corresponding Procedure Template:

I FIXIT: EXTERNAL PROCEDURE (INCR) ASSIGN (RESULT);

I DECLARE RESULT INTEGER,

INCR INTEGER;

I CLOSE FIXIT;<--------

no local data or executable code.

15.4.3 External Function Templates

An external function template differs from its corresponding

function block in the following respects:

1. 	the body of the block is empty except for declarations

describing the attributes of input parameters;

2. 	the opening statement is modified as shown below by the

keyword EXTERNAL.

I label: EXTERNAL FUNCTION(ili2,...) attributes;

1. 	label is the name of the corresponding function block.

2. 	il,i2,... is a list of input parameters identical with those

of the corresponding function block.

COMPOOLS AND COMSUBS 	 Page 15-6

3. 	attributes defines type, precision and size attributes, of

the corresponding function block.

Example:

External Function:

I SWITCH: FUNCTION(ARG) BOOLEAN;-

DECLARE ARG INTEGER DOUBLE;

IF ARG<O THEN RETURN FALSE;

RETURN TRUE;

CLOSE SWITCH;

Corresponding Function Template:

I
I SWITCH: EXTERNAL FUNCTIONCARG) BOOLEAN;

I DECLARE ARG INTEGER DOUBLE;

I CLOSE SWITCH;
I

Function templates, like procedure templates, may also contain

structure template definitions.

CHAPTER 16

ADDITIONAL DATA INITIALIZATION FORMS

This Section supplements the discussion in Section 4.3 on

initialization by introducing the following topics:

the implied repeated use of initial lists;

other ways of reducing the length of an initial list;

partial initialization of a data item;

control of the actual occurrence of initialization.

16.1 IMPLIED INITIAL LIST REPETITION

Section 4.3 stated that for single-valued data items, only one

literal value can be supplied in an INITIAL/CONSTANT specification.

It stated that for multi-valued data items, two alternatives are

possible:

1. 	The number of literal values specified in the

INITIAL/CONSTANT specification matches the total number of

elements implied by the data declaration;

2. 	Only one literal value is supplied, in which case that same

initial value is given to all elements implied by the data

declaration.

16.2 USE OF REPETITION FACTORS

If a number of consecutive values in an INITIAL/CONSTANT

specification are identical, they may be replaced by one value and a

repetition factor:

r r+1 r+2 r+n

...i i ,i ...i lb ...

ADDITIONAL DATA INITIALIZATION FORMS 	 Page 16-2

r r+d

... i ,n#i

1. 	in both forms, i represents a literal value in an

INITIAL/CONSTANT specification.

2. 	In the first form i(r+1),...,i(rtn) are literal values.

3. 	The second form shows the replacement of i(r+l),...,i(r+n) by

n#i(r+l), where n is a positive nonzero integer.

It a sequence of values is repeated over and over, they may be

treated in a similar way. The sequence is written once, enclosed in

parenthesis, and prefaced with a repetition factor.----------

Example:

I DECLARE S ARRAY(10) INTEGER

I INITIAL(I,2,3,4,5,6,3,4,5,6);

may 	be replaced by:

I DECLARE S ARRAY(10) INTEGER

I INITIAL(1,2,2#(3,4,5,6));

The factored form may be nested if necessary, and can be

especially convenient in the initialization of multi-dimensional

arrays.

Example:

I DECLARE V ARRAY(3,2,2)

I INITIAL(i,2,3,2,341,2,3,2,3,1,2);

may be replaced by:

I DECLARE V ARRAY(3,2,2)
I INITIAL(2#(1,2,3,2,3),1,2);

which may in turn be replaced by:

I
I DECLARE V ARRAY (3,2,2)

1 INITIAL(2#(1,2f(2,3)),1,2);

ADDITIONAL DATA INITIALIZATION FORMS Page 16-3

16.3 PARTIAL INITIALIZATION

In HAL/S/V, partial initialization of data is not permitted. The

partial initialization makes the proof methods more cumbersome because

of the introduction of the type "undefined".

16.4 STATIC AND AUTOMATIC INITIALIZATION

Although initialization has been discussed- at length, the

circumstances under which it actually is effective have not been

considered. In particular, it has not been stated whether

initialization is effective only on the first entry of execution into

a block, or on every such entry.

STATIC initialization is initialization effective only on first

entry into a block. It is called static because generally it results-.

in the generation of initialized data areas by a compiler, rather than

executable code.

AUTOMATIC initialkzation is intialization on every entry into a

block. It generally results in executable code being generated by a

compiler.

In HAL/S/V both "STATIC" and "AUTOMATIC" initialization features

of HAL/S have been retained. The reason for retaining STATIC

initialization feature is to enable construction of abstract data

types in the language. However, it does not permit reentrent

procedures to have STATIC initialization thereby not allowing sharing

of a single copy of data by multiple invocations of a procedure. In

case of AUTOMATIC initialization at each invocation of the procedure a

new copy of data is created and initialized, "automatically" can be

asserted at every entry into a procedural block.

The keywords STATIC or AUTOMATIC attached to the declaration of

an initialized data item serve to distinguish between two forms.

16.4.1 Legal Use Of Specification

No STATIC/AUTOMATIC specification may be used in the declaration

of initialized data items in a compool (see Section 15.2). A COMPOOL

block is not executable, so the question of entry does not arise.

Initialization is viewed as taking place before execution of a program

begins.

No data item initialized by the CONSTANT specification may

possess a STATIC/AUTOMATIC specification. Such data items are viewed

as being similar to literals, 'so that the question of entry again does

not arise.

STATIC/AUTOMATIC specifications can appear, then, in data

declaratigns in any kind of block except for COMPOOL blocks.

ADDITIONAL DATA INITIALIZATION FORMS 	 Page 16-4

16.4.2 Form Of Static Specification

In the absence of any explicit indication, static initialization

is assumed. Alternattvely, the keyword STATIC may be used, placed

either before or after the INITIAL -specification.

Examples:

I DECLARE 	I INTEGER STATIC INITIAL(5),
J INTEGER INITIAL (0) STATIC,
K INTEGER INITIAL (1);

16.4.3 Form Of Automatic Specification

The keyword AUTOMATIC is used, placed either before or after the

INITIAL specification.

I
I DECLARE I INTEGER AUTOMATIC INITIAL(5),

I J INTEGER INITIAL(O) AUTOMATIC;

CHAPTER 17

BIT STRINGS

The form and use of Boolean data was discussed at various points

in Part I of the Guide. Their stated purpose was the manipulation of

binary valued (logical) quantities. The ability to handle strings of

binary values is often useful. In HAL/S/V, this ability is

characteristic of the "bit string" data type, which is essentially a

generalization of the Boolean data type already described.

17.1 BIT STRING LITERALS

Boolean literals were described in Section 2. These are the

corresponding literal forms for bit string quantities:

BIN'bbbbbb'

OCT'oooooo'

HEX'hhhh'

DEC'dddd'

1. In the above forms,

b binary digit

0 octal digit

h hexadecimal digit

d decimal digit

2. The number of binary digits represented must not exceed 32.*

Examples:

BIN'10110'

HEX'FAC2'

OCT'777"

This number may vary between implementations. See appropriate

User's Manual.

17-1

BIT STRINGS 	 Page 17-2

Note 	that BIN'O' = FALSE: OFF and BIN'1' = TRUE = ON

17.2 	 DECLARATION OF BIT STRING DATA ITEMS

The basic declaration statement for bit string data items is

shown below:

DECLARE name BIT(n);

1. 	name is any legal identifier.

2. 	n specifies the length of the bit string (i.e. the number of

binary digits in it). It must be in the range I <= n <= 32.*

Examples:

I DECLARE B1 BITC16);

I

Note 	that the following two forms are equivalent:

I
I DECLARE B2 BIT(i);

I DECLARE B2 BOOLEAN;

Declarations of bit string data items can be integrated into

compound declarations as described for other data types in Section

4.2.

17.2.0.1 Initialization

Initialization of bit string data items follows the rules given

in Section 4.3, using bit string literals in the list of initial

values.

Examples:

I DECLARE B16 BIT(16) INITIAL(HEX'FFFF');

I DECLARE B1 BIT(1) CONSTANT(TRUE);

I DECLARE B ARRAY(2) BIT(3) INITIAL(OCT'7',OCT'5");

This value may vary between implementations. See appropriate User's

Manual.

BIT STRINGS 	 Page 17-3

Literals are padded or truncated as required to fit the data item

initialized:

I DECLARE B8 BIT(8) INITIAL(OCT°770');

I DECLARE Bl1 BIT(11) INITIAL(HEX'FF');

results in

B8 = 11111000, Bi1= 00011111111

17.3 	 BIT STRING SUBSCRIPTING

Subscripting forms for bit string data items are similar to those

for character data items, as described in section 6.

17.3.1 	 Unarrayed Bit Strings

In bit strings, bit positions are indexed left to right starting

from 1. In the subscript forms given below, STRING represents an

unarrayed bit string data item of length L.

To select the ath bit from STRING:

STRING

a

1. a is an integer expression in the range I <= a <= L.

To select a bits from STRING, starting from the Bth:

STRING

a at B

1. a is an integer literal value in the range I <= a <= L.

2. B is an integer expression in the range I <= B <= L - a + 1.

To select a substring starting with the ath bit of STRING, and ending

with the Bth:

STRING

a to B

1. a and B are integer literal values in the range I <= (a,B) <=

L.

BIT STRINGS Page 17-4

2. B => a.

If a data item is declared to be Boolean, it is really defined as

a i-bit string. It may therefore possess component subscripting

consistent with the above rules, even though in this case it performs

no useful purpose.

17.3.2 Arrayed Bit Strings

The subscripting forms for arrayed bit string data items are as

described in Section 6.2. The colon following an array subscript is

mandatory.

17.4 BIT STRING OPERATIONS

Section 7.3 of the Guide outlined the logical operations which

could be performed on Boolean data. Operations on bit strings are an

extension of these. HAL/S/V recognizes the following operations:

Symbol Purpose

& conjunction

and

I disjunction

or

- complement
not

II catenation

cat

17.4.1 Complement

The complement operation complements the logical value of every

bit in the bit string.

Symbolic form: - R

1. The operand R is a bit string.

Example:

If B is an 8-bit string with B = 11000101

then -B = 00111010

BIT STRINGS 	 Page 17-5

17.4.2 	 Disjunction

The disjunction operation causes the logical values of

corresponding 	bit positions in the operands to be OR'ed together.

Symbolic form: L I R

1. 	The L and R operands are bit strings.

2. 	The two operands must be of equal length.

Example:

If B is a 5-bit string with B = 00100
and BB is a 5-bit string with BB = 10110
then B&BB = 00100

Note 	that a 5-bit result is obtained.

17.4.3 Catenation

The two operands are catenated to form one longer bit string.

Symbolic form: L 11 R

1. The L and R 	operands are bit strings.

2. 	The L operand is catenated to the left of the R operand.

3. 	If the sum of the lengths exceeds 32 * the L operand is left
truncated as required.

Example:

If B is a 12-bit string With B = 7E0
and BB is a 24-bit string with BB = 42F50B
then BIlBB = E042F50B
the left-most 4 bits of B being truncated.

17.4.4 Precedence

The following table summarizes the precedence rules for bit

string operations, and is an extension of the table for Boolean

operations given in Section 7.4.

4 This value may vary between implementations. See appropriate User's

Manual.

BIT 	STRINGS page 17-6

Symbol Precedence 	 Purpose

FIRST

-, NOT 1 complement

II, CAT 2 catenation

&, AND 3 conjunction

I, OR 4 disjunction

LAST

Sequences of uwttations of the same precedence are evaluated left

to right.

17.5 	 BIT STRING ASSIGNMENT

Bit string assignment is an extension of Boolean assignment as

described in Section 8.4.

1. 	The operand types are both bit string:

L-type 	 R-type

BIT 	STRING BIT STRING

2. 	The logical value of each bit position of the R-operand is

transferred to the receiving data item.

3. 	Both operands must be of equal length.

Examples:

It B is a 6-bit string,

and BB is a 6-bit string with SB = 101101,

then

B = BIN '110110;

results in B = 110110,

and

B = BB;

results in B = 101101

17.6 BIT STRINGS IN CONDITIONAL CONSTRUCTS

Execution of the HAL/S/V IF statement described in Section 9.1,

and of the DO WHILE statement described in Section 10.2, are

controlled by the logical value of an expression which was stated to

be either Boolean or relational in type. Bit string expressions may

be used directly in place of Boolean expressions or as parts of

relational expressions in such statements.

'
BIT STRINGS Page 17-7

17.6.1 Direct Use Of Bit Strings

If a bit string expression is used instead of a Boolean

expression in an IF statement or DO WHILE statement, the following

rule applies:

The bit string expression is considered to be

evaluated as FALSE if the right-most bit is 0 and

TRUE if it is 1.

Examples:

Let B be a 4-bit string with B = 1101

and BB be a 4-bit string with BB = 0010

I
I IF BIBB THEN X = 0;

IY = 1;

I

The condition BIBB = 1111 : the right-most bit is 1, so that the

statement

X = 0;

is executed.

The statement group

I DO WHILE B;

I END;

is executed repetitively until the right-most bit of B becomes 0. The

values of other bits in B do not affect this process.

17.6.2 Bit Strings In Relational Expressions

Section 9.2 showed how data items of each type, including

Boolean, could be combined into relational expressions which evaluated

to either TRUE or FALSE. Using the same nomenclature as that section,

bit strings can be used in Class II comparative operations only:

BIT STRINGS 	 Page 17-8

Symbol Purpose 	 Class

equals

not =

- - not equals II

The 	rules for bit string comparisons are given below:

Symbolic form: L NOT = R

1. The only legal type combination for the L and R operands is:

L-type 	 R-type

BIT 	STRING BIT STRING

2. 	The result is FALSE if the L and R operands are of unequal

lengths.

Examples:

If B is a 4-bit string With B = 1101,

and BB is a 3-bit string with BB = 101,

then

B = BIN°I101 is TRUE

and

B = BB is FALSE

The above comparative operations can be combined as described in

Section 9.2, using the given precedence rules. Note that the

important rule that Boolean and relational expressions cannot be mixed

extends to bit string expressions as well. However, this may impose

serious limitations on writing assertions.

The following are some examples clarifying the use of bit string

relations.

Examples:

Let B be a 3-bit string with B = 110,

and I be an integer with I = 5

IF (B=BINUIO0')&(I>4) THEN I = 0;

In the above IF statement, both comparative operations

evaluate to TRUE so that the condition is itself TRUE so

that the and the assignment

I = 	0;

is executed. The statement

BIT STRINGS Page 17-9

IF (B-=BIN;01')&B-IN'11' THEN I = 0;

is illegal because a relational expression is being mixed

with a bit string literal to form the condition of the IF

statement.

Note that the-statement

"
IF B-=BIN'I0I' & BINf1 THEN I = 0;

is also illegal because the syntax is ambiguous.
Parentheses must be used to specify its only legal
interpretation:

IF B-=(BIN'01' & BIN'1I7) THEN I = 0;

17.7 BIT STRING ARGUMENTS AND PARAMETERS

Section 11 described procedure and function blocks and how they

were invoked. Procedures and functions may be defined with bit string

parameters, and be passed bit string arguments.

17.7.1 Form Of Bit String Parameters

Any input parameter of a function or any input or assign

parameter of a procedure may be declared to be of bit string type,

using the forms of declaration described in Section 17.2.

Example:

I FLAGS: PRdCEDURE(B1) ASSIGN(B2);
DECLARE Bl BIT(16),

B2 BIT(S);

} procedure body

I CLOSE FLAGS;

17.7.2 Argument Passage

An argument of a function or procedure invocation correspondkng

to a bit string parameter must conform to the following rules:

INPUT PARAMETER. The transmission of the argument can be

viewed as its assignment to the input parameter. The

following rules apply to both procedures and functions:

BIT STRINGS 	 Page 17-10

1. 	The corresponding argument must be of bit string type.

2. 	The input parameter must be of the same length as the

argument.

ASSIGN PARAMETER. The following rules apply for the

matching of arguments to bit string assign parameters:

1. 	The assign argument must be a declared HAL/S/V bit

string data item.

2. 	The length of the argument must be the same as that of

the parameter.

3. 	The argument may not possess subscripting.

These rules are only relevant to procedures.

17.8 BIT 	STRING FUNCTIONS

In Section 11.2 it was stated that functions of any legal HAL/S/V

type could be created. Accordingly, it is legal to define functions

of bit string type.

17.8.1 Block Definition

The 	opening statement of the function block takes the form:

label: FUNCTION(i, i,...) BITtn);

1. 	label is the name of the function.

2. 	i, i,... is the list of input parameters.

3. 	n-indicates the number of bits, and lies in the range

1 <= n <= 32.4

The 	closing statement is as described in Section 11.2.

Example:

I Fl: FUNCTION(B) BIT(5);

} function body

* This value may vary between implementations. See appropriate User's

Manual.

BIT STRINGS Page 17-11

I CLOSE Fl;

17.8.2 Return Of Bit String Quantities

The RETURN statement should contain a bit string of the same

length specified in the function declaration. No implicit length

conversion by truncating or padding with zeroes is permitted.

17.9 BIT STRINGS IN INPUTIOUTPUT

Bit strings may participate in input/output in the same way as

other data types, as described in Section 12. The format of bit

string data fields for input and output are described in Appendix F.

CHAPTER 18

MULTI-DIMENSIONAL ARRAYS

Section 4.1 stated that it was possible to declare an array or

table of any given data type. Section 4.2 showed the form of

declaration for 1-dimensional arrays. HAL/S/V actually supports

arrays of multiple dimensions.

First, the general form of declaration is presented. Then, some

remarks on the order of Initialization precedes a discussion of the

subscripting of multi-dimensional arrays.

18.1 DECLARATION

To declare an array of any data type and of any legal dimension,

the following form of declaration is used:

DECLARE name ARRAY(n, n,...) attributes;

1. 	name is the name of the data item declared.

2. 	attributes are the attributes appropriate to the data type

being declared.

3. 	n, i = 1, 2... are the sizes corresponding to each array

dimension. The upper limit on i is 3.* The number of

elements in any dimension must lie in the range

1 <= n <= 32768.**

Examples:

The limiting number of dimensions may vary between implementations;

See appropriate User's Manual.

** This value may vary between implementations. See the appropriate

User's Manual. In some implementations, there may also be

restrictions upon the contexts in which very large arrays may be used.

MULTI-DIMENSIONAL ARRAYS 	 Page 18-2

I DECLARE S ARRAY(5,5) INTEGER,
W ARRAY(2,2,1000) INTEGER;

18.2 ORDER OF INITIALIZATION

Section 4.3 stated the order of initialization of elements of

1-dimensional arrays of any data type. The order for

multi-dimensional arrays is generated by the rules given in Appendix

C.

The following examples illustrate the effect of these rules in

initialization of 2- and 3-dimensional arrays.

Example:

I DECLARE I ARRAY(2,3) INTEGER INITIAL(i,2,3,4',5,6);

18.3 SUBSCRIPTING

Section 6.2 gave the forms of array subscripting for

1-dimensional arrays. To summarize, the following kinds of subscript

could be used:

1. 	simple indexing, to select one array element;

2. 	AT-partitioning, to select a sub-array of a given size

starting from a given index value;

3. 	TO-partitioning, to select a sub-array starting from one

given index value and ending on a second.

In multi-dimensional arrays, such subscripting can be applied to

each dimension of the array.

18.3.1 Array Subscripting Only

Let TABLE be an n-dimensional array. The general subscripting

form is then:

TABLE

array 1,...,array n:

MULTI-DIMENSIONAL ARRAYS 	 Page 18-3

1. 	array stands for any array subscript of' the form given in

Section 6.2.

2. 	The colon is optional for integer data types only.

3. 	Any array may be replaced by an asterisk to denote

specification of every element in that dimension.

18.3.2 Array And Component Subscripting

If TABLE represents an n-dimensional array of vector, matrix,

character or bit string type, then the general form when component and

array subscripting is present is:

TABLE

array 1,...,array n:component

L. 	array stands for any array subscript of the form given in

Section 6.2.

2. 	component represents any form of component subscripting legal

for the data type of TABLE, as described in Section 6.1 and

17.3.

3. 	Any array may be replaced by an asterisk to denote

specification of every element in that dimension.

18.3.3 Component Subscripting Only

When only component subscripting is required, array subscripting

cannot be totally omitted, but must rather be replaced with asterisks.------

If, as before, TABLE represents an n-dimensional array of vector,

matrix, character or bit string type, then the general form is:

TABLE

1,...,*:component

1. 	n asterisks correspond to n dimensions of absent array

subscripting.

2. 	component represents any form of component subscripting legal

for the data type of TABLE.

MULTI-DIMENSIONAL ARRAYS Page 18-4

Literal subscripts may alternatively be

expressions computable at compile time.

See: Guide/Appendix D.

For a complete description of all subscript forms

see Spec./5.3.

CHAPTER 19

STRUCTURES

Section 4.1 of the guide introduced some of the types of data

definable in the HAL/S/V language. It further made reference to the

fact that "hierarchical organizations of data items" exist in the

language. It is the purpose of this Section to describe the form and

use 	of these so-called "structures" data.

The HAL/S/V array feature is a useful construct for forming

aggregates of data items, if they are homogeneous in attributes.

Frequently, however, it is of great convenience to be able to form

aggregates of data items with heterogeneous attributes. In addition,

requirements may exist to reference not only the aggregate as an

entity, but also subsets of it, or subsets of subsets of it. The

HAL/S/V STRUCTURE data type fulfills both of these requirements.

19.1 HAL/S/V STRUCTURE CONCEPTS

HAL/S/V data structures have two characteristic properties:

1. 	Data items or arrays of almost any type can be combined to

form a structure.

2. 	The data items can be organized into a tree-like hierarchy

(similar in concept to a geneological tree, for example.)

The tree consists of nodes connected by "branches". Every. "leaf"

node of the tree corresponds to one of the actual data items making up

the aggregate. The whole tree can be referenced by using the name of

the "root" node. Subsets of the tree can be referenced by using the

name of the appropriate "fork" node.

The conversion consists of recording the name of each node (root,

fork or leaf) and its level when the tree walk passes it in a simple

pre-order traversal.

The reverse conversion consists of the following steps. First

draw the "root" node appearing at the top of the list. Then, treat

each of the remaining nodes in order as follows:

STRUCTURES 	 Page 19-2

1. 	Draw the node to the right of Previous node with the same

level number (i any), and under nodes with smaller level

numbers.

2. 	Connect it by a "branch" to the last-connected node with a

level number one smaller.

In HAL/S/V language, the specification of a structure tree

organization is separated from the declaration of the structure or

structures possessing that organization.

STRUCTURE TEMPLATES are used to specify structure

tree organizations in a linear list

representation. A structure template specifies

all nodes in a tree from level one downwards.

STRUCTURE DECLARATIONS are used to declare

structures possessing pre-defined templates. For

reasons which will become apparent when the

referencing of structure is considered, the

declared name of the strucutre is assigned as the

"root" node name of the tree organization.

In the remainder of the section, structures will be referred to

as data items, since even though they are aggregates of data items,

they can be manipulated as entities in themselves.

19.2 STRUCTURE TEMPLATES

The structure template is the HAL/S/V construct which defines the

structure tree organization in the form of a linear list. It defines

by name and level all "fork" and "leaf" nodes in a tree from level one

downwards.

In the HAL/S/V implementation of structure trees, the following

nomenclature is used.

TEMPLATE NAMES are names identifying structure

templates. The appear as part of the template

specification, and also in structure declarations.

MINOR STRUCTURE NODES are the "fork" nodes of a
structure template.

STRUCTURE TERMINALS are the "leaf" nodes of a
structure template. Every structure terminal is

one of the data items comprising the structure

aggregate.

STRUCTURES 	 Page 19-3

19.2.1 General Form Of A Template

The form of a structure template consists of its name followed by

a specification of all its minor structure and structure terminal

nodes.

19.2.1.1 OVERALL FORM -

The 	overall form is as follows:

I

I STRUCTURE name

I node, node

I ...node ;
I

1. name is the structure template name, and is any legal

HAL/S/V 	identifier name.

1 2 n

2. node , node ,...node is a list of nodes forming the

tree organization.

19.2.1.2 MINOR STRUCTURE NODES

The form of a minor structure node of a template is as follows:

n name

1. 	n is the level number of the node.

2. 	name is the name of the minor structure node, and may be any

legal identifier name.

19.2.1.3 	 STRUCTURE TERMINAL NODES -

The form of a structure terminal node of a template is as
follows:

n name attributes

1. 	n is the level number of the node.

2. 	name is the name of the structure terminal node, and may be

any legal identifier name.

3. 	attributes consists of array, type, size and other attributes

applicable to data items.

STRUCTURES 	 Page 19-4

4. 	The following data types are legal as structure terminals:

INTEGER 	 BOOLEAN

BIT STRING

CHARACTER

STRUCTURE

There is never any confusion as to whether a node is a structure

terminal or a minor structure since the level number sequence is

sufficient to distinguish the two cases. Structure terminals of

structure type are a special case which is discussed later.

19.2.2 Restrictions

The attributes attached to the specification of a structure

terminal node are written in the same form and order as in a

declaration statement (described in Section 4 and expanded in Sections

16, 17.2, and 18.1). However, the following restrictions are made:

1. No INITIAL/CONSTANT
structure terminal.

specification can be applied to a

2. 	No ST-ATIC/AUTOMATIC specification can be applied to a

structure terminal.

Example:

I STRUCTURE Q:

I QT CHARACTER(80),

1 1 QNi,

2 Qt INTEGER

2 QS ARRAY(100)

I QN2,

1 2 QM ARRAY(3,3) OF CHARACTER;

2 QB BOOLEAN;

19.2.3 Location Of Structure Templates

Structure templates are essentially parts of data declarations

and therefore must appear before the first executable statement of the

program or other block in which they are coded.

STRUCTURES 	 Page 19-5

19.3 STRUCTURE DECLARATIONS

Structure declarations are used to declare structure data with a

tree organization defined by a pre-existing structure template.

Structure declarations are in the same general form as declarations of

other kinds of data items, as described in Section 4.

19.3.1 Basic Form Of Declaration

The 	basic form of structure declaration is shown below:

DECLARE name a-STRUCTURE;

1. 	name is the name of the structure data item, and may be any

legal identifier name.

2. 	a is the name given to a pre-existing structure template

which specifies the tree organization of the structure being

declared.

Note that the structure template referenced by a structure

declaration must have been defined previously in the same block, or

have been declared in a block enclosing the block containing the

declaration.

Examples:

form of declaration -

I STRUCTURE Q:

I I QA INTEGER,

I I QB CHARACTER(80),

I I QC BOOLEAN;

I DECLARE ZZI Q-STRUCTURE;

I DECLARE ZZ2 Q STRUCTURE;

Structure declarations can be integrated into compound

declarations of the kind described in Section 4.2.

Example:

I
 DECLARE A INTEGER,

IB Q-STRUCTURE,

I C CHARACTER(80);

STRUCTURES 	 Page 19-6

19.3.2 Multiple Copy Structures

Structures can be declared to have multiple copies of the data

specified by the tree organization. Although the form of

specification is different from HAL/S/V arrays, they can in some

contexts be viewed as arrays of structures.

The data declarations for a multiple-copy structure takes the

following modified form:

DECLARE name a-STRUCTURE(n);

1. 	name is the name of the structure.

2. 	 a is the name of the predefined structure template.

3. 	n is the number of copies of the data required. It must lie

in the range I <= n <= 32768.*

19.3.3 Initialization Oi Structures

Structures are initialized by supplying an INITIAL/CONSTANT

specification with the structure declaration, rather than with the

template. The specification is added to the declaration as described

in Section 4.3.

Example:

I STRUCTURE Q:

I Q1 INTEGER

I QS CHARACTER(2);

I 	 DECLARE Z Q-STRUCTURE INITIAL(5,"ME');

The 	order of initialization for structures is as follows:

SINGLE-COPY STRUCTURES. The number of literal

values in the list (or implied by the use of

repetition factors) must equal the total number of

elements summed over all the structure terminal

nodes. Each structure terminal is initialized in

the order it appears in the structure template,

according to the rules given in Section 4.3 and

further expanded in Sections 16 and 18.2.

This value may vary between implementations. See appropriate User's

Manual.

STRUCTURES Page 19-7

MULTIPLE-COPY STRUCTURES. The number of literal

values in the initial list may either match the

total number of elements summed over all copies,

or match the number in one copy, in which case all

copies are identically initialized. Each copy is

initialized in turn in order of increasing index,

according to the rules for single-copy structures.

These ordering rules are a restatement of those given in Appendix C.

The supplementary initialization forms described in Section 16 are

fully applicable to structure data types.

19.4 NESTED STRUCTURES

Section 19.2 stated that structure terminal nodes could

themselves be of structure type. The effect of this is to nest a

second template into the first, thus expanding the tree organization

of the former.

Example:

I STRUCTURE A:

I AI INTEGER,

I Al,

1 2 AC CHARACTER(80),

2 AB BOOLEAN;

I STRUCTURE B:

1 BS INTEGER,

1 B1,

2 BV ARRAY(3) OF BOOLEAN,

2 BA A-STRUCTURE;

The structure template B is in many aspects like a template C

given by:

I STRUCTURE C:

I BS INTEGER,

I B1,

1 2 BV ARRAY(3) OF BOOLEAN,

2 BA,

3 Al INTEGER,

3 Al,

4 AC CHARACTER(80),

4 AB BOOLEAN;

which has superficially the same tree organization.

STRUCTURES Page 19-8

19.4.1 Restrictions

A structure terminal of structure type may not possess multiple

copies.......

Example:

The following template is illegal:

I
I STRUCTURE Q:
I I QI INTEGER,
I 1 QS T-STRUCTURE(20);

NOTE: Recursion definitions are explicitly prohibited in HAL/S/V.

Therefore, a structure template may never possess a node of that same

structure type.

Example:

The following is illegal:

I.

I STRUCTURE Q:

I I QI INTEGER;

i I QQ Q-STRUCTURE;

As is the following:

STRUCTURE Q:

1 QT T-STRUCTURE;

STRUCTURE T:

1 TQ Q STRUCTURE;

19.5 QUALIFICATION AND STRUCTURE REFERENCING

The basic types of data item introduced in Section 4 are

referenced merely by stating their names in the desired context. A

structure in its entirety can be referred to in the same way.

Referring to part of a structure is more complex, however, because in

general more than one structure may possess the tree organization

expressed by a particular template.

STRUCTURES Page 19-9

19.5.1 The Qualified Reference Concept

Any node of a structure other than the "root" node is referred to

by a composite or "qualified" name which is generated conceptually in

the following way. A tree walk is started at the "root" node, and

continued down to the node to be referenced. The names of all the

nodes traversed, including the "root" and final nodes, are listed.

The resulting composite or "qualified" name is an unambiguous

reference to the desired "leaf" node (given certain restrictions on

duplicate naming which are to be described).

19.5.2 Referencing Structure Terminals

The qualified name of a structure terminal is generated by

catenating the names of all nodes between the "root" node and the

desired "leaf" node of the tree organization.

1 2 n

name .name name

1

1. name is the name of the structure as declared.

n
2. name is the name of the structure terminal to

be referenced.

2 n-i

3. name.name are the names of intervening minor

structure nodes

if any.

.end list

.b;Exampl-es:

.tplO.1m6.b.lit

STRUCTURE Q:

I QI INTEGER,

I Q1,

2 QS BOOLEAN,

2 QC CHARACTER(80);

DECLARE ZQ Q-STRUCTURE;

To reference Q1 and QC in ZQ requires the following names,

respectively:

ZQ.QI

ZQ.Qi.QC

http:ZQ.Qi.QC

STRUCTURES 	 Page 19-10

19.5.3 Referencing Minor Structure Nodes

If it is required to perform an operation on a sub-tree of a

structure (i.e. all parts of the tree beneath a certain "fork" node),

the occasion arises to refer to a minor structure node name. The

qualified name is generated by catenating the names of nodes between

the "root" node and the desired "fork" node.

name.1 .name-2 ...name-n

1. 	name-1 is the name of the structure as declared.

2. 	name-n is the name of the minor structure node to be

referenced.

3. 	name2,...name.n-i are the names of intervening minor

structure nodes, if any.

Example:

I STRUCTURE Q:

I QI INTEGER,

1 01

2 QS BOOLEAN,

2 QC CHARACTERC80);

I 	 DECLARE ZO Q-STRUCTURE;

To reference Q1 in ZQ, requires the name ZQ.Q1.

19.5.4 Naming Uniqueness

The node names used in a structure tree specification need only

be unique in so far as all tree walks used to generate qualified names

must be distinguishable. This means that some node names may actually

duplicate others without error.

STRUCTURES Page 19-11

Examples:

I STRUCTURE Q:

I 1 01,

2 QS INTEGER,\

I Q2, >-----legal duplication names

2 QS INTEGER;/

I DECLARE ZQ Q-STRUCTURE;

The above duplicate names are legal because qualified references

to each are distinguishable:

ZQ.Q1.QS

ZQ.Q2.QS

STRUCTURE R:
1 Ri, < -------------
2 RS BITC4); >--illegal duplicate names

I Ri CHARACTER(8O);<--

I DECLARE ZR R-STRUCTURE;

The above duplicate names are illegal. ZR.R1 might be referring

to a minor structure node or a structure terminal of character type.

The following situations are also permitted;

The name of minor structure or terminal node may

duplicate the name of any minor structure or

terminal node in a different structure template.

The name of a minor structure or terminal node may

duplicate the name of any ordinary data item.

19.5.5 Unqualified References

Qualified referencing of parts of structures can become laborious

if the node names assigned are long, or there are many levels in the

structure. By accepting certain restrictions, unqualified, or direct

naming of minor structure or terminal nodes is permissible.

To be able to refer to a structure in an unqualified manner the

following must apply:

http:ZQ.Q2.QS
http:ZQ.Q1.QS

STRUCTURES Page 19-12

Unqualified reference may only be made to a

structure whose name is the same as the template

defining its tree organization.

It follows that only one unqualified structure may be declared

for any template.

Examples:

STRUCTURE Q:

I QI INTEGER,

I1 Q1,

2 QS BOOLEAN,

2 QC CHARACTER(80);

I DECLARE ZQ Q-STRUCTURE;

I DECLARE Q Q-STRUCTURE;

QC in ZQ must be referred to as:

ZQ.Q1.QC

QC in Q may be referred to simply as:

QC

More restrictive rules apply to the construction of a

structure template used to declare an unqualified structure.

The name of each node in the template must be

unique to the block in which the template is

defined.

The template must be defined in the same block as

the unqualified structure is itself declared.

The template may contain no structure terminals of

structure type (i.e. nested structures).

19.6 SUBSCRIPTING IN STRUCTURES

A structure terminal may possess "terminal" subscripts as a

result of its type (character, bit string) or its array property. In

addition, any reference to the whole or part of a structure with

multiple copies can introduce a level of "structure" subscripting.

The discussion on subscripting is divided into two parts:

subscripting on references to the entire structure

or to minor structure nodes;

http:ZQ.Q1.QC

STRUCTURES 	 Page 19-13

subscripting on references to terminal data items.

19.6.1 Subscripting Of Structure Data Items

* 	 A reference to an entire structure or to one

of its minor structure nodes may only possess

subscripting if the structure is declared to

possess multiple copies.

In 	 the *subscripting forms below, TREE

represents any data item of structure type (i.e.

either a "root" or "fork" node of the structure

tree), the reference being unqualified or

qualified. It is assumed that the entire

structure is declared to possess L copies.

To select the ath copy from TREE:

TREE

a;

1. 	a is an integer expression in the range 1 <= a

<= L.

2. 	The semicolon is optional.

To select a subset of a copies starting from the

Bth copy of TREE:

TREE

a AT B;

1. 	a is an integer literal value in the range I

<= a <= L.

2. 	B is an integer expression in the range I <= B
<= L - a + 1.

3. 	The semicolon is optional.

To select a subset of copies starting from the

a'th copy and ending with the Btb copy of TREE:

TREE

a TO B;

1. 	a, B are integer literal values in the range 1

<= (a, B) <= L.

2. 	B >/ a.

STRUCTURES Page 19-14

3. The semicolon is optional.

Examples:

Given

I
 STRUCTURE Q:

1 QI INTEGER,

I Q,

2 QS BOOLEAN,

2 QC CHARACTER(80);

I DECLARE ZQ Q-STRUCTURE(3);

then ZQ ; selects copy 2.

ZQ.Q1 selects copies I and 2 of the subtree under Q1.

QZ.Q1 selects copy 1 of the subtree under Qi.

19.6.2 Subscripting Of Structure Terminals

If a structure terminal is part of a single copy structure, then
it can only possess subscripting by virtue of its type or array
property. Such subscripting is the same as for ordinary data items,
and has been described i-n sections 6, 17.3, and 18.3.

If, on the other hand, a structure terminal is part of a multiple

copy structure then it may possess subscripting by virtue of its type

or array property, and by virtue of the multiple copy property. Three

cases of subscripting thus arise:

STRUCTURE SUBSCRIPTING ONLY. The form of

subscripting is the same as for structure data

items, as described above. The only difference is

that the terminating semicolon is optional only if

the structure terminal is of integer type, and

unarrayed.

STRUCTURE AND TERMINAL SUBSCRIPTING. The

structure subscripting takes the same form as

before. Terminal subscripting (consequent on type

or arrayness) follows the mandatory semicolon, and

takes the forms described.in Sections 6, 17.3 and

18.3.

TERMINAL SUBSCRIPTING ONLY. The subscript forms

are the same as in the previous case except that

the structure subscript is replaced by an

http:described.in

STRUCTURES 	 Page 19-15

asterisk.

Literal subscripts may alternatively be

expressions computable at compile time.

See: Guide/Appendix D.

19.7 TREE EQUIVALENCE OF STRUCTURES

Most operations involving more than one operand of structure type

require their operands to possess tree organizations which are in most

respects identical. Two structures which are compatible in this sense

are Said to be "tree-equivalent". Two basic requirements have to be

satisfied to establish tree-equivalence:

1. 	The actual shape of the trees must be equivalent;

2. 	The attributes of corresponding structure terminal nodes must

be the same.

19.7.1 Equivalence Of Tree Shape

The equivalence of tree shape can be achieved in a number of

different ways:

USE OF SAME TEMPLATE - If two structures are
declared using the same template, they cannot
avoid meeting both requirements for tree
equivalence.

Example:

I STRUCTURE Q:

I I QI INTEGER,

2 QB BOOLEAN,

2 QC CHARACTER(80);

I DECLARE ZQ1 Q-STRUCTURE,
ZQ2 Q-STRUCTURE(20);

ZQ1 and ZQ2 are tree-equivalent, (notwithstanding the mismatch in

number of copies).

USE OF TEMPLATE OF SAME SHAPE - If two structures
are declared using distinct templates which do,
however, have the same shape, then the first
requirement of tree-equivalence is met.

Example:

STRUCTURES Page 19-16

I
 STRUCTURE Q:

1 Q1 INTEGER,

1 Q1,

2 QB BOOLEAN,

2 QC CHARACTER(80);

I
 DECLARE ZQ Q-STRUCTURE;

I STRUCTURE R:

1 1 RI INTEGER,

I I RI,

2 RB BOOLEAN,

2 RC CHARACTER(80);

I DECLARE ZR R-STRUCTURE;

The tree shapes of ZR and ZQ are the same.

MATCHING OF SUB-TREES - If the tree shape of a
sub-tree of one structure matches the same of
another structure, or sub-tree thereof, then the
first requirement of tree-equivalence is met.

Examples:

I STRUCTURE Q:

1 QI INTEGER,

I I Q1,

2 QB BOOLEAN,

2 QC CHARACTER(80);

I DECLARE ZQ Q-STRUCTURE;

I STRUCTURE R:

I I RB BOOLEAN,

I 1 RC CHARACTER(80);

I DECLARE ZR R-STRUCTURE;

The tree shapes of ZQ and ZR clearly are not the same. However,

the tree shapes of ZQ.Q1 and ZR are the same.

19.7.2 Matching Of Terminal Node Attributes

Once matching of tree shape has been established, to obtain

tree-equivalence, corresponding structure terminal nodes of each tree

must be verified as havingidentical attributes. Generally, terminal

nodes must match exactly in their type and array property (if any).

Additionally, for each type the following matching requirements must

be met:

STRUCTURES Page 19-17

TYPE MATCHING REQUIREMENTS

BIT STRING number of bits
(BOOLEAN is equivalent to BIT(1))

CHARACTER maximum declared length

INTEGER precision

STRUCTURE specified structure template

Examples:

I STRUCTURE Q:

I QI INTEGER,

I Q11,

2 QC CHARACTER(80);

I DECLARE ZQ Q-STRUCTURE;

STRUCTURE R:

I RI INTEGER DOUBLE,

I Ri,

2 RC CHARACTER(80);

DECLARE ZR R-STRUCTURE;

ZQ fails to be tree-equivalent to ZR solely due to one precision

mismatch: ZQ.QI is single precision, while ZR.RI is double precision.

However, ZQ.Q1 is completely tree-equivalent to ZR.R1 since the

offending terminal node is not present.

Note that the matching requirement for terminal nodes of

structure type preclude tree-equivalence in cases typified by the

following example:

I STRUCTURE Q:
1 QB BOOLEAN,
1 QC CHARACTER(80);

STRUCTURE R:
I RI INTEGER,
I RQ Q-STRUCTURE;

I DECLARE ZR R-STRUCTURE;
I STRUCTURE S:
I I SI INTEGER,

1 SI,
2 SB BOOLEAN,
2 SC CHARACTER(80);

I DECLARE ZS S-STRUCTURE;

ZS is not tree-equivalent to ZR although their tree organizations

are superficially alike (see Section 19.4). ZS would be

STRUCTURES 	 Page 19-18

tree-equivalent to ZR only if the template S had been specified as:

I
I STRUCTURE S:

I 1 SI INTEGER,

I 1 SQ Q-STRUCTURE;

Where structure templates are declared with

additional attributes such as RIGID, DENSE, LOCK,

etc., matching extends to these also.

See Spec./4.3 and 4.5.

19.7.3 STRUCTURE ASSIGNMENTS

Values of one structure data item* may be

transferred to another in a body using a structure

assignment. Structure assignments have the same

general form as other assignments: this form has

been described in Section 8.1.

19.8 BASIC FORM

As applied to structures, the rules become:

Symbolic form: L-= R;

1. L is the receiving structure data

item. -It may possess structure

subscripting.

2. 	R is either a second structure data

item, subscripted or not, or

alternatively a structure function

(see Section 19.11).

3. L, R must be tree-equivalent in the

sense described in Section 19.7.

Unless specifically stated in Sections 19.8 through 19.12, a

structure data item may either be a declared structure, or a minor

structure node.

STRUCTURES 	 Page 19-19

19.9 MULTIPLE ASSIGNMENTS

Several structure data items may be assigned values at

one assignment by the following construction first presented

in Section 8.5:

Symbolic form:

Li, 	L2, L3, Ln = R;

1. 	Li,... Ln are receiving structure data items.

2. 	Any L must be tree-equivalent to the R structure

operand.

3. 	No particular order of assignment is assumed.

4. 	No variable may appear on the subscript line if it

also appear on the main line.

Examples:

Given:

I STRUCTURE Q:

I QI INTEGER,

1 QB BOOLEAN;

I DECLARE Q-STRUCTURE, ZQ1, ZQ2, ZQ3 (20);
1 DECLARE I: INTEGER;

thenI
I ZQI, ZQ2 = ZQ3
1 5

assigns the values of the 5th copy of ZQ3 to ZQ1 and ZQ2.

But

I I, ZQ3.QI = 10;
I 5

is illegal.

19.9.1 Structures In Conditional Constructs

Relational expressions appear in the IF statement

described in Section 9.1 and the DO WHILE statement

described in Section 10.2. Such expressions may contain

comparative operations with structure operands.

Using the same nomenclature as in Section 9.2,

structures can be used in Class II comparative operations

only:

STRUCTURES 	 Page 19-20

Symbol Purpose Class

equals 	 II

NOT'= not equals

The 	rules for structure comparisons are:

Symbolic form: L NOT R

1. 	The L and R operands are either structure data

items or structure functions (see Section 19.11).

2. 	The operands must be tree-equivalent.

3. 	Two structures are equal if, and only if, all

corresponding terminals have equal values.

19.9.2 Structure Arguments And Parameters

HAL/S/V procedures and functions may be defined with

structure parameters, and be passed structure arguments.

19.10 FORM OF STRUCTURE PARAMETERS

Any parameter of a function, or any input or assign

parameter of a procedure, may be declared to be a structure

using the forms of declaration described in Section 19.3.

Example:

I ANALYZE: PROCEDURE(S1) ASSIGN(S2);

STRUCTURE S:

I SI INTEGER,

1 SN,

2 SB BOOLEAN,

2 SC CHARACTER(80);

DECLARE S1 S-STRUCTURE;

S2 S-STRUCTURE;

-executable code

STRUCTURES 	 Page 19-21

I 	 CLOSE ANALYZE;

Observ-e the position of the structure template.

19.11 ARGUMENT PASSAGE

Any argument of a function or procedure invocation

corresponding to a structure parameter must conform to the

following rules:

INPUT PARAMETER. The transmission of the argument

can be viewed as its assignment to the input

parameter. The following rules apply:

1. 	The corresponding argument must be a structure data item or a

structure function.

2. 	The argument and parameter must be tree equivalent.

3. 	Additionally, the input arguments must conform to those for

parameters of other types as specified in Chapter 11. The

input and assign lists must be strictly disjoint - it is not

permissible for one part of a structure to be in the input

list and another in the assign list.

ASSIGN PARAMETER. The following rules apply for

matching of arguments to structure assign

parameters:

1. 	The assign argument must be a structure data item.

2. 	The argument and parameter must be tree-equivalent.

3. 	The argument may only be subscripted if it is a declared

structure as opposed to a minor structure, and only. then if

the subscript reduces the number of copies to one.

4. 	The additional requirements on assign parameters enumerated

in Chapter 11 apply to structure arguments as well. For

instance, no assign parameter may be any part of an input

parameter of an enclosing function or procedure block.

These rules are only relevant to procedures.

Examples:

Let 	the following be declared:

I STRUCTURE Q:

1 Q1 INTEGER,

STRUCTURES 	 Page 19-22

1 QI,

2 'QB BOOLEAN,

2 QC CHARACTER(80) ;

STRUCTURE R:

1 RB 	BOOLEAN,

I RC 	CHARACTER(80) ;

DECLARE ZQ Q-STRUCTURE,

ZR R-STRUCTURE,

YQ Q-STRUCTURE(10)

and let the following procedure be defined

TREE: PROCEDURE(DI) ASSIGN(D2);

DECLARE Dl R-STRUCTURE,

D2 Q-STRUCTURE,

procedure body

CLOSE TREE;

Both 	legal and illegal invocations of this procedure are

shown below:

I 	 CALL TREE(ZR) ASSIGN(ZQ);

I 	 CALL TREE(ZR) ASSIGN(YQ);

Is 	 4

I 	 CALL TREE(ZQ.Q1) ASSIGN (ZQ); illegal, input

and

and assign lists must

be disjoint

CALL TREECZR) ASSIGN (ZR); illegal - no tree
equivalence, and

input and assign

lists not disjoint.

19.11.1 Structure Functions

In HAL/S/V user functions may return a structure result type.

Such functions can be used instead of structure data items in many of

the structure operations described above.

Structure functions follow similar patterns for their block

definitions and invocations as given in Section 11 for other data

types.

http:TREE(ZQ.Q1

--

STRUCTURES Page 19-23

19.12 BLOCK DEFINITION

As usual, the block is opened With a characteristic opening

statement of the form:

label: FUNCTION (il,i2, ...) a-STRUCTURE;

1. label is the name of the function.

2. ili2, ... is the list of input para
meters. The entire parent'hesized list

may of course be omitted.

3. a is the name of the template describing

tree oganization of the function. The

template must be defined in a block

visible (according to usual HAL/S/V scoping

rules) to the opening statement. Note

in particular that the template cannot

be defined in a group of declaration

statements inside the function.

NOTE: For external procedure and function blocks this

is the only time when they may need compool templates

since they may not access variables except those which

are passed as parameters, as noted in Chapter 15.

Thus, compools containing only structure templates may

have templates in external Procedure and function

blocks.

Example:

STRUCTURE Q:

I Q1 INTEGER,

1 Q1,

2 QB BOOLEAN,

2 QC CHARACTER(80);

TREE: FUNCTION(I,J) Q-STRUCTURE;

function body

CLOSE TREE;

STRUCTURES Page 19-24

19.13 RETURN OF STRUCTURE QUANTITIES

The RETURN statement of a structure function follows the general

form described in Section 11.6. The return is similar to the

transmission of structure input arguments, the function itself playing

the role of parameter. The relevant rules are the same as those

described for the passage of input arguments, as given in Section

19.10.

Examples:

STRUCTURE S:

I SB BUOLEAN,

I SC CHARACTER(80);

STRUCTURE Q:

I Qi1 INTEGER,

I Q1 S-STRUCTURE;

TREE: FUNCTIONCDI) S-STRUCTURE;

DECLARE DI Q-STRUCTURE;

RETURN DI.Q1;

RETURN Dl;
----------- illegal, lack of

tree equivalence

CLOSE TREE;

19.14 INVOCATION OF STRUCTURE FUNCTIONS

A structure function is invoked in the same way as a function of

any other data type, @s described in Section 11.4. it should be

noted, however, that the function may only be referenced as a whole No

reference, qualified or unqualified, may be made to minor structure

terminal nodes of its tree.

Example:

STRUCTURES 	 Page 19-25

STRUCTURE Q:

1 Q11 NTEGER,

I 1 01,

2 QS BOOLEAN,

2 QC CHARACTER(80);

DECLARE ZQ Q-STRUCTURE;

TREE: FUNCTION Q-STRUCTURE;

function body

CLOSE TREE;

IQ = 	TREE; legal invocation

ZQ.Q = TREE.Q1; illegal invocation

19.14.1 	 Structures In Input/output

Input/output is not being considered in this document.

CHAPTER 20

HAL/S/V ARRAY PROCESSING FEATURE

The constraints described in Chapter 20 of the HAL/S programmer's

Guide are primarily of the nature of programming conveniences. That

is, any allowable HAL/S operation one can perform on an array can be

done without them on a component by component basis in a loop. Though

somewhat less convenient, this approach has several advantages.

1. 	Implementation dependencies arising from the ambiguity in the

order in which component operations are performed is

eliminated since the serial order of the operations is made

explicitly.

2. 	Operations such as "+" may be treated by the verification

system as non-generic and subject to a set of axioms which is

not dependent upon the types of the operands.

3. 	Verification is greatly simplified. For instance, the number

of times a function is invoked is obvious from the text and

not dependent upon the dimensionality of its arguments as it

may be in HAL/S.

For these reasons, the constructs described in Chapter 20 have

been removed from HAL/S/V even though several or all of them may be

theoretically verifiable. Future work may reinstate some or all of

these constructs

2o-I

CHAPTER 21

EXPLICIT CONVERSIONS

Section 7.5 in Part I of the Guide introduced some of the more

common explicit conversions of HAL/S/V and explicit precision

conversion was described, were described. The language contains many

more kinds of explicit conversions, however, which provide a

controlled and highly visible interface between the various data

types.

This section deals with conversion functions, classifying them

according to the date type of their :results.

21.1 INTEGER CONVERSIONS

The INTEGER conversion function converts to integer type. The

behavior of this functions varies, depending on whether it possesses a

single expression as argument, or a list of expressions.

SIMPLE FORM

The 	simple form of the INTEGER conversion function is:

INTEGER(exp)

1. 	exp is an expression of any of the following types:

BIT STRING (and BOOLEAN) INTEGER

CHARACTER

2. 	 exp may possess arrayness, in which case the arrayness must

match that of the expression of which the conversion forms a

part. The result is to cause an elemental conversion for

every elemental evaluation of the outer expression (See

Section 20.2).

3. 	Conversions to integer type proceed according to the rules

given in Appendix A.

21j

EXPLICIT CONVERSIONS 	 Page 21-2

LIST FORM

The list form of the integer conversion function creates an array

result, in addition to type converting the list of expressions

constituting its arguments. Its form is as follows:

INTEGER 	 (exp , exp ,...)

1 2

n ,n ...

I. 	The subscripts ni for i = 1,2 ... are positive integers

specifying the number and size of dimensions of the resulting

array. The total number of values summed over all the

expressions in the list must be consistent with the number of

array elements implied. The upper limit on i is 3..

2. 	The subscripts may be omitted entirely, in which case a

linear 1-dimensional array is created, whose length is equal

to that total number of values summed over all the

expressions.

3. 	Each exp is an expression of any of the following types:

INTEGER

BIT STRING (and BOOLEAN)

CHARACTER

and 	may optionally possess arrayness.

4. 	Conversions to integer type proceeds according to the rules

given in Appendix A.

Note that the list form can only have one expression in the list

without reverting to the simple form if explicit subscripting of the_.

function is present.

The ordering of values of the expression list in the resulting

array is specified by the following:

1. 	The values of each expression in turn are converted to a

linear list by applying the rules of Appendix C.

2. 	The lists are catenated from left to right forming a single

linear list of values.

3. 	The linear list is regenerated to an array of the given

dimensions by applying the rules of Appendix C.

Note that even though the function appears in an

This number may vary between implementations. See the appropriate

User's Manual.

EXPLICIT CONVERSIONS 	 Page 21-3

arrayed expression, in this and all other cases

involving the list form, the implementation is

generally to precompute the entire array result,

and then evaluate the expression containing the

conversion on an element-by-element basis.

EXPRESSION REPETITION

The expressions in the list of an INTEGER conversion may be

repeated using the form:

i

... n# exp....

1. 	n is a positive non-zero integer literal specifying the

number of times the value or values of the expression to

repeated.

SIMULTANEOUS PRECISION SPECIFICATION

In the absence of anv explicit indication, the result of an

INTEGER conversion is always single precision.

If no subscripting is present, the forms are:

INTEGER C....

@SINGLE

INTEGER -
@DOUBLE

1. 	The first form forces a single precision result; the second

double Precision.

2. 	Precision conversion ds carried out for each expression in

turn before assembly of the result.

If subscripting is present, the corresponding forms are:

INTEGER C....
1 2

@SINGLE,n ,n .,.

INTEGER C....
1 2

@DObUBLE,n , n ...

EXPLICIT CONVERSIONS 	 Page 21-4

Examples:

INTEGER (X) simple form

@DOUBLE

INTEGER 	 ('15',BIB'101.';) list form

@DOUBLE,2,2

21.2 BIT CONVERSION

Conversions to bit string type are carried out by the BIT

conversion function. There are two forms: the simple form converts

other data types to bit string type using the standard conversion

rules; the radix form can only convert character data type tobit

string type, and uses different conversion rules.

Both forms are similar to the simple form of INTEGER functions,

in that they have one expression only.

SIMPLE FORM

The 	simple form of BIT conversion is as follows:

BIT (exp)

subscript

1. 	exp is an expression of any of the following types:

INTEGER

BIT STRING (and BOOLEAN)

CHARACTER

2. 	exp may possess arrayness in which case the arrayness must

match that of the expression of which the conversion forms
a

part. The result is to cause an elemental conversion for

every elemental evaluation of the outer expression. (see

Section 20.2)

3. 	Conversion to bit string type proceeds according to the rules

given in Appendix A. The result is always a 32-bit string.#

4. 	subscript represents component subscripting on the result of

the conversion. I It possesses the same forms as component

subscripting on bit string data items as described in Section

17.3.

5. 	If subscript is absent, the result of the function is the

entire bit string generated by the conversion.

This value may vary between implementations. See appropriate User's

Manual.

EXPLICIT CONVERSIONS 	 Page 21-5

Examples;

If I is a haifword integer with I= 5

then BIT (I) = 000005

16

If C is a character data item with C = '10110011101'

then BIT(C) = (000000000000000000000101100011101)

2
BIT (C) = C000001011011101)

16 to 32 2

and BIT (C) = (11101)

28 to 32 2

RADIX FORM

The radix form of BIT conversion is used when a character value

is to be converted by an explicit rule to a bit string. A radix

specifying the conversion rule is supplied in place of a subscript.

The possible forms are as follows:

BIT (exp)

@BIN

BIT (exp)

@OCT

BIT (exp)

@DEC

BIT (exp)

.@HEX

1. 	exp is an expression of character type whose value must

consist -entirely of a string of digits legal for the

specified radix.

2. 	The radices have the following meanings:

radix I digit string

.@BIN I binary

@OCT octal

@DEC decimal

@HEX hexadecimal

3. 	exp may possess arrayness with the same implications as in

the simple

form of BIT conversion.

EXPLICIT CONVERSIONS 	 Page 21-6

4. 	The conversion generates the binary representation of the

input

digit string. The binary representation is truncated or

padded with

binary zeroes on the left to create a 32-bit string.-

Examples:

BIT ('FAO') = OOOOFAO

@HEX 16

BIT ('024') = 00000400
@DEC 	 16

BIT ('177777') = OOO0FFF

@OCT 16

BIT ('FOF1F2F3F4') = F1F2F3F4

@HEX 16

21.3 CHARACTER CONVERSION

Conversions to character type are carried out by the CHARACTER

conversion function. As with the BIT conversion, there are two forms:

the simple form converts other data types to character form using the

standard conversion rules; the radix form can only convert bit string

data to character type, and uses different conversion rules.

SIMPLE FORM

The 	simple form of CHARACTER conversion is as follows:

CHARACTER (exp)

subscript

1. 	exp is an expression of any of the following types:

INTEGER

BIT STRING (and BOOLEAN)

CHARACTER

2. 	exp may possess arrayness, with the same implications as in

the BIT conversion function. (See Section 21.3).

3. 	Conversion to character type Proceeds according to the rules

given in Appendix A. The length of the result of conversion

* This value may vary between implementations. See appropriate Userrs

Manual.

EXPLICIT CONVERSIONS 	 Page 21-7

depends on the type of the input data.

4. 	subscript represents component subscripting on the result of

the conversion. It possesses the same forms as component

subscripting On character data items as described in Section

6.1.

5. 	If subscript is absent, then the result of the function is

the entire string of characters generated by the conversion.

Examples:

If I is a halfword integer with I = 173

then CHARACTER(I) = '173'

CHARACTER (I) = '17'

I to 2

CHARACTER (I) = '173'

I TO 5

If B is a bit string of length 4 with

B = (0101)

2

then

CHARACTER(B) = '101

(note removal of leading zeroes)

RADIX FORM

The radix form of CHARACTER conversion is used when a bit string

value is to be converted by an explicit rule to a character string.

Analogous to the radix form of BIT function, a radix specifying the

conversion rule is supplied in place of a subscript. The possible

forms are as follows;

CHARACTER (exp)

@BIN

CHARACTER (EXP)

@OCT

CHARACTER (exp)

@DEC

CHARACTER (exp)

@HEX

1. 	exp is an expression of bit string type, and possibly

possessing arrayness with the same implications as in the BIT

conversion function.

2. 	The value of the bit string is coverted to a string of digits

as specified by the radix, removing leading zeroes.

EXPLICIT CONVERSIONS 	 Page 21-8

3. 	The radices have the following meanings:

radix I digit string

@BIN I binary

@OCT I octal

@DEC I decimal

@HEX I hexadecimal

4. 	The length of the resulting string varies depending on the

value of exp.

Examples:

CHARACTER (BIN'O01010;) = "10kO

@BIN

CHARACTER (BIN'001010') = '12'

@OCT

CHARACTER (BIN'001010') = '10'

@DEC

CHARACTER (BIN'001010') = 'A'

@HEX

CHAPTER 22

INPUT AND OUTPUT

HAL/S/V incorporates entirely the input/output mechanisms of

HAL/S. Therefore, Chapter 22 of this document is omitted, being

identical to Chapter 22 of the HAL/S Programmer's Guide.

CHAPTER 23

REAL-TIME PROGRAMMING II

23.1 PROGRAM PROCESSES

Section 13.1 explained that at run time, the dynamic counterpart

of HAL/S/V program is a real time process executing under control of a

Real Time Executive (RTE). It stated that this "primal process" could

create other processes whose static counterparts are task blocks

embedded in the program block. However, it is also possible to create

Processes whose static counterparts, rather than being task blocks,

are other program blocks. In order to avoid confusion, in the

remainder of this Section the program block corresponding to the

primal process will be called the "primal program".

The program blocks are the same in every respect as the primal

program block: they are separately compiled blocks of code. The

scheduling of program processes therefore, requires the bringing

together of a number of compilation units at run time.*

This situation is analogous to the invocation of external

procedures and functions as described in Section 15.

A program may invoike any other program in the same assemblage of

compilation units, or invoke any task block within itself, in order to

create a new process-. The programs will probably need to share data

in one or more compools, and may also share the use of comsubs.*

Any program which creates a program process, otherwise controls

its execution, perforce contains references to the program block which

is the process' static counterpart. The first program must, under

these circumstances, be provided with a block template of the program

block referenced. The program template is included in the compilation

unit of the first program in the same way as if it were a compool or

The object modules resulting from their compilation have to be

"link-edited" to produce a single executable load module. The way in

which the primal program is distinguished from the others in such a

load module is extra-lingual and implementation dependent.

Interfaces with compools and comsubs have been described in Section

15.

25-I

REAL-TIME PROGRAMMING II Page 23-2

comsub template, and is discussed subsequently. Note however, that

since no recursion is permitted in HAL/S/V it would be useless for two

program blocks each to contain templates for the other and this may

not be done.

Program template should appear just before compool templates.

External procedure and function blocks, as well as program

blocks, may contain SCHEDULE statements for creating processes.

However, because external procedure and function blocks may not

contain task block definitions, only program processes may be created

thereby.

To ensure correctness of version, program templates would be

subject to the same implementation dependent software management

scheme as for compool and comsub templates (see Section 15.1).

23.2 PROGRAM TEMPLATES

If a program template is included with a compilation unit, then

that compilation unit may invoke the corresponding program to create a

new real time process.

A program template differs in the following respects from its

corresponding program:

the body of the block is empty;

the opening statement is modified as shown by the

keyword EXTERNAL.

II label: EXTERNAL PROGRAM;

1. label is the name of the corresponding program.

Example:

program block

I ONE: PROGRAM;

I DECLARE I INTEGER;

S= I + 1;

REAL-TIME PROGRAMMING II Page 23-3

I CLOSE ONE;

corresponding program template:

ONE: EXTERNAL PROGRAM;

CLOSE ONE;

23.3 CREATING AND CONTROLLING PROGRAM PROCESSES

Processes created by invocation of a program differ very little

from processes created by invocation of a task block. Only the notion

of process dependency need by updated to allow for the existence of

program processes.

23.3.1 Program Processes And Process Dependency

Section 13.1 introduced the concepts of the dependency of one

Process upon another. The basic notion of dependency still stands:

When a process A creates process B, the latter may be specified as

"dependent" on the former, or "independent" .of it. If B is dependent

on A, then it depends for its existence on the existence of A. If B

is independent of A, then A may cease to exist without affecting the

existence of B.

If B is a program process, these rules are always unequivocally

true. However, if B is a task process, as stated in Section 13.1,

there exists an overriding rule. Reinterpreted, this rule states that

a task process C, however created, is always dependent on the program

process whose static counterpart contains the task block whose

invocation caused C to be created.

By the use of program processes one can override somewhat the

restriction that tasks may not be nested. That is., if tasks are

actually written as external programs, one can produce the effect of

nesting to an arbitrary degree. To do so, however, is usually

indicative of poor program structure.

23.4 CYCLIC PROCESSES

Hitherto, a real time process has been characterized as being in

the active state for some duration, wherein it is either ready,

executing, or waiting. As described in Section 13.3, such a process

finally returns to the inactive state when one of two conditions are

met:

the process is terminated bY a TERMINATE

statement.

REAL-TINE PROGRAMMING II Page 23-4

execution reaches a RETURN or CLOSE of the related

static program or task block.

In either circumstance, the process makes only one pass through

the HAL/S/V code contained in the related program or task block.

Subsequent passes through the same code would thus require the

scheduling of'a new process for each pass. Because of the uniqueness

requirement stated in Section 13.4, each new process could only be

created when the previous one returned to the inactive state.

To avoid the burden of continual intervention otherwise required

to maintain cyclic execution of a program or task real time processes

are created by an extension of the SCHEDULE statement described in

Section 13.4. Without further intervention, the process will, during

execution, make an arbitrary number of passes through the code in the

related program or task block until some predetermined condition is

met.

23.4.1 States Of A Cyclic Process

The possible states of a cyclic process are the same as those of

a non-cyclic process, as described in Section 13.1.

When a cyclic process is created by invoking a program or task

block from a SCHEDULE statement, the process makes a transition from

the inactive state to the active state. It is entered on the process

queue in the ready or waiting state, according to the same criterion

as for a non-cyclic process.

When the cyclic process is first elevated to the executing state

by the RTE, it begins the first pass through the code of the related

program or task block. Unless otherwise prevented, execution will

eventually reach a RETURN or CLOSE statement in the block, whereupon

the process will go into a waiting state until predetermined

conditions for the beginning of the next cycle are met. At the

expiration of this waiting period, the process is returned to the

ready state. The relative priority of the cyclic process then

determines when the next cycle of execution begins.

A cycle process can return to the inactive state in one of two

ways:

by being terminated through execution of a

TERMINATE statement;

by being "cancelled" at the end of the current

cycle of execution, either because some

prespecified condition is met, or through the

execution of a CANCEL statement.

The implications of "cancellation" as opposed to termination will

be examined in Section 23.6.

REAL-TIME PROGRAMMING 11 	 Page 23-5

23.5 SCHEDULE STATEMENT FOR CYCLIC PROCESSES

The form of a SCHEDULE statement for creating cyclic processes is

an extension of that for creating non-cyclic processes. The cyclic

SCHEDULE statement conveys two additional items of information:

a condition for starting each new cycle of

execution;

a cancellation condition.

There are several versions, depending on the way in which the

above conditions are specified.

23.5.1 Immediate Recycling

The simplest version of-cyclic SCHEDULE statement is one in which

a new cycle of execution of the process is specified to start

immediately after the end of the previous cycle. This form is shown

below:

I SCHEDULE label initiation, REPEAT UNTIL time;

1. 	A process called label is created from the corresponding

program or task block.

2. 	initiation specifies a priority, and optionally an initiation

condition and dependency of the new process, as described in

Section 13.4.

3. 	The keyword REPEAT signifies that the process is to be

cyclic. By default one cycle is to follow another with no

interval in the waiting state.

4. 	UNTIL time specifies a cancellation condition, time is an

integer expression which when evaluated at the time of

scheduling gives the time in seconds* at which the process is

to be cancelled.

5. 	If the UNTIL phrase is absent, execution cycles indefinitely

until inhibited by other means.

Cancellation actually takes place at the end of the first cycle

which finishes later than the specified time.

Example:

After the real time origin.

REAL-TIME PROGRAMMING II 	 Page 23-6

I 	 SCHEDULE A AT 1600 PRIORITY (40);

a non-cyclic schedule statement creating a process A to be initiated

1600 seconds after the real time origin.

I SCHEDULE B at 1600 PRIORITY (40), REPEAT UNTIL 3200;

A cyclic schedule statement creating a cyclic process B to be

initiated 1600 seconds after the real time origin, and to cease

cycling at the end of the first cycle completed after 3200 seconds.

Note that the following case causes a run time error:

I SCHEDULE C AT 1600 PRIORITY(40), REPEAT UNTIL 1000;

because the initiation time is later than tle time at which cycling is

to cease.

23.5.2 Constant Intercycle Delay

The second version of cyclic SCHEDULE statement specifies a

constant delay between cycles of execution. This form is shown below:

I SCHEDULE label initiation, REPEAT AFTER delay UNTIL time;

1. 	A process called label is created from the corresponding

program or task block.

2. 	The meaning of initiation and time are the same as for the

previous version of cyclic SCHEDULE statement.

3. 	AFTER delay specifies a constant delay between the end of one

cycle of execution and the start of the next. delay is an

integer expression whose value at the time of scheduling

specifies the delay in seconds.

Cancellation takes place in the same way as before, with the

provision that if the cancellation condition is met in the interval

between cycles, cancellation takes place immediately.

Example:

I SCHEDULE A AT 1600 PRIORITY(49), REPEAT AFTER 100 UNTIL 3200;

A cyclic process A is scheduledr specifying a delay of 100

seconds between cycles of execution.

REAL-TIME PROGRAMMING II 	 Page 23-7

23.5.3 Recycling At Specified Intervals

The third and last version of cyclic SCHEDULE statement specifies

that each new cycle is to start a fixed interval of time after the

start of the previous cycle. This form is shown below:

I SCHEDULE label initiation, REPEAT EVERY interval UNTIL time;

1. 	A process called label is created from the corresponding

program or task block.

2. 	The meaning of initiation and time are the same as for the

previous two versions of the cyclic SCHEDULE statement.

3. 	EVERY interval specifies that each cycle is to start a given

interval after the start of the previous cycle, interval is

an integer expression whose value at the time of scheduling

specifies the interval in seconds.

Cancellation takes place in exactly the same manner as with the

Previous version of the SCHEDULE statement.

Example:

I SCHEDULE A AT 1600 PRIORITY(40), REPEAT EVERY 200 UNTIL 3200;

A cyclic process A is schedule, specifying that cycles are to

succeed each other at intervals of 200 seconds. Note that if a cycle

takes longer than 200 seconds to execute, the next cycle cannot start

on time and a run time error occurs.

An UNTIL phrase can also be used in a non-cyclic

SCHEDULE statement. See: Spec./8.3.

23.6 TERMINATING AND CANCELLING CYCLIC PROCESSES

When a cyclic statement is terminated by execution of the

TERMINATE statement described in Section 13.5, both the process and

its dependents are terminated, possibly in mid-cycle, subject to the

same restrictions described there. In the case of cyclic program

Processes, an additional restriction is described in Section 23.3.

Cancellation is a more graceful way of termination. It cannot

occur when a process is in mid-cycle. Further, when a process is

cancelled, its dependents are not terminated immediately: the

following happens instead:

non-cyclic dependents are allowed to execute until

their normal termination;

cyclic dependents are allowed to finish their own

REAL-TIME PROGRAMMING II 	 page 23-8

current cycle of execution.

The 	process being cancelled is put in a waiting state until all

its dependents have become inactive; it then becomes inactive itself.

Cancellation conditions in SCHEDULE statements cannot be dynamically

modified. To cancel a cyclic process arbitrarily, the CANCEL

statement must therefore be used.

23.6.1 Cancel Statement

A CANCEL statement specifies the cancellation of a process. Its

form is as shown below:

I
I CANCEL label;
I

1. 	The appearance of label is optional. If present, the

statement causes cancellation of the active process called

label.

2. 	If label is absent, the process executing the CANCEL

statement is itself cancelled.

3. 	A process may cancel only itself or its dependent processes.

The 	effect of a CANCEL statement is as follows:

If the process has not yet been initiated, it is

terminated and removed from the process queue.

If the process is in a cycle of execution, it is

cancelled at the end of the cycle.

If the process is waiting between cycles, it is

cancelled immediately.

NOTE: The effects of cancellation are somewhat implementation

dependent. Namely, depending upon how many processors are available

on a particular machine and how fast processes run, dependent

processes may have cycled a variable number of times. The programmer

should be aware of this fact when accessing shared data after

cancellation.

CANCEL statements can actually be applied to non-cyclic

processes, but unless the process has not yet initiated they have no

effect. If the process has not been initiated, the process is removed

from the process queue, just as if it were cyclic.

Examples:

REAL-TIME PROGRAMMING II Page 23-9

1 CANCEL; self cancellation

I CANCEL BETA;

If a number of processes are to be cancelled simultaneously, the

CANCEL statement can specify a list of process names:

I CANCEL ALPHA, BETA, GAMMA;
 I

CHAPTER 24

REAL TIME PROGRAMMING - III

This section concludes the description of HAL/S constructs for

real time programming, which was begun in Section 13 and continued in

Section 23. The remaining topic of discussion is a HAL/S/V construct

called the "event", and its use in real time programming.

The original idea behind the HAL/S/V "event' was that it should

serve as an interface between HAL/S/V software and hardware

interrupts; that is, the medium through which the arrival of

interrupts would be signalled to the HAL/S/V program. Hence, the

HAL/S/V "event" was conceived as a Boolean-valued data item, normally

FALSE in value, but becoming TRUE, on the arrival of the interrupt.4

The assumption was that the values of "events" at any given time could

control the execution of real time processes by the RTE.

An extension of this idea was the definition of the ability to

simulate the arrival of interrupts by changing the values of "events"

within the HAL/S software itself.

However, the underlying operating systems of most machines do not

allow for interfaces with interrupts of the above nature. Hence, the

simulation property of "events" has become their major role: the

ability to signal a software condition in one real time process

asynchronously to other processes by use of HAL/S "events" has become

a real time programming tool of considerable importance.

24.0.1 Hal/s Events

A HAL/S event is a Boolean-valued data item whose value is

visible at any instant to the RTE. Except for this latter

qualification, whose importance will be appreciated later, an event

differs little from the Boolean data item first introduced in Section

4 of Part I.

* Clearly, there would need to be some extra-lingual,
implementation dependent way of relating particular "events" to

particular hardware interrupts.

24L-1

REAL TIME PROGRAMMING -III Page 24-2

A HAL/S event possesses a "latching" property and may be set in

value to either TRUE or FALSE. The values of events can only be

changed by special HAL/S statements, not by simple assignment.

Event expressions consisting of logical operations on event data

items can be synthesized: the instantaneous values of such event

expressions can be used to modify the activity of the RTE in

controlling real time processes. Event expressions can be used in the

following circumstances:

in a SCHEDULE statement, to specify a condition for

initiating a process;

in a cyclic SCHEDULE statement, to specify a cancellation

condition;

in a WAIT statement, to specify a condition for ending the

period a process is to remain in the waiting state.

24.0.2 Declaration Of Event Data Items

The declaration of event data items is similar to the declaration

of Boolean data items as described in Section 4.2 of the Guide. The

basic forms are as follows:

DECLARE name EVENT LATCHED;

name is any legal HAL/S identifier.

Note: the word LATCHED is retained to make the HAL/S/V subset

compatible with HAL/S.

Examples:

I
I DECLARE EV2 EVENT LATCHED;

COMPOUND DECLARATIONS

Declaration of events may be mixed with declarations of other data

types in compound declarations:

I DECLARE I INTEGER DOUBLE,

E EVENT LATCHED;

The keyword LATCHED is an attribute which may be factored.

REAL TIME PROGRAMMING - III 	 Page 24-3

Example:

I DECLARE El EVENT LATCHED,

E2 EVENT LATCHED,

E3 EVENT LATCHED,

may be rewritten more compactly as

I DECLARE 	EVENT LATCHED, El, E2, E3;

INITIALIZATION

All declared event data items are implicitly initialized to a

FALSE value*. An event data.item may possess explicit initialization.

It is initialized as if it were a Boolean data item, as described in

Section 4.3.

Examples:

I DECLARE 	EVi EVENT LATCHED INITIAL (TRUE);

I DECLARE 	EV2 EVENT LATCHED CONSTANT (OFF);

I (Note: 	 a constant event is of little use

even though legal in HAL/S.

ARRAYS OF EVENTS

An event data item may be arrayed, its array property being

specified in the same way as described in Sections 4.2 and 18.1.

Event arrays with the latching property may be initialized as

described in Sections 4.3 and 18.2.

Example:

I DECLARE 	E2 ARRAY(2,2) EVENT LATCHED INITIAL (4#TRUE);

EVENTS IN STRUCTURES

A terminal node 	in a structure may not be an event. (See Section

19.)

This is the only HAL/S data type which is implicitly

initialized.

-------------- -------------------------------

------ ---------------------------------------

REAL TIME PROGRAMMING - III Page 24-4

24.0.3 Event Expressions

An event expression is an expression composed in general of a

series of logical operations upon event operands in-the_

context-of-a-SCHEDULE-orWAIT-statement. The simplest case of an--

event expression is a lone event operand.

An event expression has the curious property that its evaluation

is under control of the RTE and may take place more than once at times

other than that of execution of the SCHEDULE or WAIT statement it

appears in.

OPERATIONS AND OPERANDS

The operations legal in an event expression are the Boolean

operations described in Section 7.3.

Symbol I Purpose

I--------------- -----------------------------I

I & I logical intersection

AND

SI logical conjunction

OR

logical complement

I NOT

The behavior of the operations is exactly as if the operands were of

Boolean data type rather than event.

The operands in an event expression are solely event data items.

Operands which are event arrays must possess array subscripting which

selects one, and only one, array element. Such array subscripting is

the same as used for the selection of array elements from Boolean

arrays, and has been described in Section 6.2 and 18.3, with the

exception that the ending colon is optional rather than mandatory.

EXECUTION OF EVENT EXPRESSIONS

It was stated earlier that event expressions are evaluated under

direct control of the RTE, and not necessarily only at the time of

execution of the SCHEDULE or WAIT statement in which they appear. The

reason for this can now be explained.

Event expressions are placed in SCHEDULE and WAIT statements to

provide dynamic conditions for controlling the execution of processes.

On a basic level the conditions control the transition of processes

from state to state, and thus the activity of the RTE in swapping

processes.

REAL TIME PROGRAMMING -III Page 24-5

Hence, it is appropriate to evaluate an event expression, not

only at the time of execution of the SCHEDULE or WAIT statement it

appears in, but subsequently whenever the value of any of its event

operands is modified. This is why the values of events are visible to

the RTE. Not only each event operand, but the entire event expression

has to be accessible to the RTE so that it can perform re-evaluations

when required.

If an event expression contains subscripting which has to be

evaluated at run time, then thesubscript calculation takes place only

once, when the event expression itself is first evaluated upon the....

execution of the SCHEDULE or WAIT statement it appears in.

Example:

I DECLARE EV ARRAY(5) EVENT LATCHED;

I DECLARE I INTEGER INITIAL(i);

I WAIT FOR EV ;
IS I
I I=I+i;

The RTE first evaluates EV(I) when the WAIT statement is executed,

and thus is interested in the value of EV(1) since I=1. Whenever

the expression is re-evaluated, it is the value Of EV(1) which is

examined, even though the value of I may since have changed.

24.0.4 CHANGING VALUES OF EVENTS

HAL/S uses a special terminology for the operation of changing

event values.

An event with the latching property is said to be "set" when

its value is forced TRUE, and "reset" when its value is

forced FALSE.

These operations are carried out by the HAL/S SET and RESET statements

respectively. Changes in value of an event data item as a result of

one of these statements is visible to the RTE for the reason outlined

in Section 24.3.

SET AND RESET

The forms of the SET and RESET statements are shown below.

------------------------------- ---------------------------

REAL TIME PROGRAMMING - III Page 24-6

I SET var;

I RESET var;

I 1. In either form, var is a latched event data item.

I If it is arrayed, it must possess array subscriptingi

causing the selection of one and only one array

element.

I
 CSee Sections 6.2 and 18.3).

1 2. SET causes the value of var to be forced TRUE;

I RESET causes it to be forced FALSE.

Note that the SET statement does not cause an event which is

already FALSE to change in value. Hence, the RTE does not necessarily_

always sense an event change when such a statement is executed.

24.0.5 EVENT EXPRESSIONS IN SCHEDULE STATEMENT

Event expressions may appear in a SCHEDULE statement for two

reasons:

to specify a condition for initiating a process;

to specify a condition for ceasing to cycle a process.

INITIATION OF AN EVENT CONDITION

Section 13.3 described two time conditions under which the

initialization of a process created by the SCHEDULE statement could be

delayed. A third means of delaying initiation is to delay it pending

the value of some event expression becoming TRUE. The basic form of

SCHEDULE statement for this is shown below.

---------------------- ------------------------------- ----------

REAL TIME PROGRAMMING - III 	 Page 24-7

SCHEDULE label ON exp PRIORITY(a) DEPENDENT;

i1. A process label is created from the corres
ponding program or task block and placed on the

process queue.

1 	2. PRIORITY(a) and DEPENDENT have the same

meanings as described in Section 13.3 for

other forms of SCHEDULE statement.

1 	3. exp is any event expression. If its value

is TRUE, when the SCHEDULE statement is

executed, the process is placed in the

ready state.

1 4. 	If its value is FALSE, the process is placed I

in a waiting state until its value becomes

TRUE, whereupon it is transferred to the

ready state.

CANCELLATION ON AN EVENT CONDITION

Section 23.5 described three versions of cyclic SCHEDULE

statement, in each of which the cancellation could be specified at a

certain time. There are two ways of causing cancellation on an event

condition:

Cycling may be allowed to proceed while an event expression

remains TRUE.

Cycling may be allowed to proceed until an event expression

becomes TRUE.

CYCLING while TRUE

The following form of cyclic SCHEDULE statement causes cycling of

execution to proceed while an event expression remains TRUE.

--

REAL TIME PROGRAMMING - III 	 Page 24-8

t---

I 	 ISCHEDULE label initiation, REPEAT cycle WHILE exp;

I1. A Process called label is created from the

corresponding program or task block.

1 	 2. initiation specifies a priority, and optionally

an initiation condition, and the dependency of

the new process, as described in Section 13.4. 1

1 	 3. cycle optionally specifies a criterion for

recycling execution as described in Section 23.5. I

4. 	WHILE exp specifies that cycling is to continue

while the value of exp remains TRUE. exp is any I

event expression.

5. 	If the value of exp becomes FALSE before the I

process is initiated, it is merely removed

again from the process queue, and becomes

inactive.

Cancellation of the process actually occurs at the end of the

first cycle in which the event expression becomes FALSEr'. If the

event expression becomes FALSE in the interval between cycles,

cancellation takes place immediately.

CYCLING 	until TRUE

A modification of the above form allows cycling of execution to

proceed until an event expression becomes TRUE. This is not merely a

simple inversion of logic since the value of the event expression is

not allowed to take effect until after the first cycle of execution of

the process has started. 1n contrast to the above form, the following

modification always allows at least one cycle of execution to be

completed.

Even if it subsequently becomes TRUE again during the same

cycle.

- - - -
- -

REAL TIME PROGRAMMING -III 	 Page 24-9

-
 -
 - - - -	 -; ; - -
ISCHEDULE label initiation, REPEAT cycle UNTIL exp;

i1. A process called label initiation is created

from the corresponding program or task block.

1 	 2. The meanings of initiation and cycle are as

for the previous form of SCHEDULE statement.

1 	 3. UNTIL exp specifies that cycling is to

continue until the value of exp becomes

TRUE, with the provision that at least one

cycle shall be executed. exp is any event

expression.

+---	 ------ ------------- ±

Cancellation of the process occurs at the end of the first cycle

in which the event expression becomes TRUE%. If it becomes TRUE in

the interval between cycles, cancellation takes place immediately.

24.0.6 	EVENT EXPRESSIONS IN WAIT STATEMENT

Section 13.5 explained how the WAIT statement could be used to

force a process into a waiting state until some timing condition is

satisfied. The WAIT statement can alternatively specify an event

condition. This causes a process to remain in a waiting state until

some event expression becomes TRUE, whereupon the process returns to

the ready state.

The form of this version of the WAIT statement is as follows.

±---	 --------------- +

I WAIT FOR exp;

i1. exp 	is any event expression.

1 2. 	The process executing the WAIT statement

is placed in the waiting state

until the value of exp becomes TRUE.

I 3. 	If exp is already TRUE when the WAIT

statement is executed, the statement has

no effect.

--------------------------- ------------------ ------------------- ±

4 Even if it subsequently becomes FALSE again during the same

cycle.

REAL TIME PROGRAMMING -III Page 24-10

24.0.7 PROCESS EVENTS

Section 13.5 stated that the name of a process could be used as

if it were a Boolean data item in order to determine the major state

of the process. The names of processes can also be used in event

expressions as if they were event data items. In this context they

are called "process events."

The truth table shows again the correspondence between logical

value and major state.

I State I Value I

------------- +---------------------I
I ACTIVE I TRUE I

i INACTIVE I FALSE I

+------------- ----------------

CHAPTER 25

ERROR RECOVERY AND SIMULATION

HAL/S compilations can be created which, although seen as legal

at compile time, violate the rules of the language during execution.

Such violations give rise to "run time errors". Run time errors are

also Produced when abnormal hardware conditions are encountered during

execution.

HAL/S has a comprehensive and flexible mechanism for detecting

and recovering from run time errors. It also has the capability of

simulating run time errors, which can be extremely useful for checkout

purposes. Another feature of the language is the ability to specify

and signal user-defined run time errors.

This section explains how run time errors are handled as part of

the activity of the Real Time Executive (RTE) and describes statements

by which HAL/S programmers can extend or modify this activity.

25.1 HAL/S RUN-TIME ERROR CONCEPTS

Each HAL/S implementation possesses a defined set of run time

errors which are detectable during execution. These errors are called

"system-defined" errors. The HAL/S user may, at will, create a

certain limited number of supplementary "user-defined" errors for his

own purposes. Each run time error, whether system-defined or

user-defined, possesses a unique numerical "error code" by which it

may be referenced in a HAL/S compilation. This error code consists of

two parts;

an error number;

an error member number

The classification into groups and the assignment of error codes is

implementation dependent. See appropriate User's Manual.

2g-J

ERROR RECOVERY AND SIMULATION Page 25-2

25.2 ERROR DETECTION AND RECOVERY

The activity of detecting and recovering from run time errors is

handled by an Error Recovery Executive (ERE) which in practice is part

of the Real Time Executive (RTE). For every error group, and

ERROR RECOVERY AND SIMULATION Page 25-3

implementation-dependent, standard, system recover action is defined*.

On detecting an error belonging to a certain group, the ERE takes the

appropriate system recover action for the group, unless otherwise

directed by the user.

Depending upon the kind of error, the system recovery action may

be any one of the following:

to execute a fix-up routine and continue;

to terminate execution abnormally;

to ignore the error.

25.3 ERROR ENVIRONMENT OF A PROCESS

The behavior of the ERE in detecting and recovering from run time

errors must be viewed from the standpoint of HAL/S as a real time

programming language.

Every active real time process possesses its own so-called "error

environment", which is essentially a description of the recovery

actions in force for all possible run time errors the process could be

subject to. On initiation of the process, the system recovery action

is in force for all run time errors. During the life of a process,

its error environment may be modified by the specification of a "user

recovery action" for some error or error group. The user recovery

action is enforced by the execution of specific HAL/S error control

statements which will be described later.

A process may only modify its own error environment, never that

of another process.

25.4 DYNAMIC SCOPING OF ERROR ENVIRONMENTS

During its execution, a process may invoke procedures and

functions,which may in turn invoke further procedures and functions,

and so on to an arbitrary depth of nesting, made to the error

environment during execution of a procedure or function remain in--

force only until return from it. Thus, execution of HAL/S error--

control statements has an inherent dynamic scoping property.--------------

Consider an example where process A is invoking procedure B

during execution, which in turn invokes procedure C.

Modifications to the error environment made in

A remain in force for the remainder of A's

execution unless countermanded by removal

or further modification.

Modifications made in B remain in force until

4 See appropriate User's Manual.

ERROR RECOVERY AND SIMULATION Page 25-4

return from B unless countermanded by removal

or further modification B.

Modifications made in C remain in force until

return from C unless countermanded by removal

or further modification in C.

It is stressed that this is a dynamic scoping property, that is

not related to whether or not, for example, procedure block C is

physically nested inside procedure block B.

Further clarification is required in cases where more than one

process can invoke the same procedure or function. If two processes

Al and A2 both execute the same procedure B, then error control

statements executed in B affect the error environment of whichever

process is executing B.

The error environment in force for each process on invocation of

B is reinstated on return from B. There is no cross-coupling effect

between the two error environments.

25.4.1

Error Environment Modification

HAL/S possesses two statements which can alter the error

environment of the process which executes them.

The ON ERROR statement modifies the error

recovery action for a particular error or

error group.

The OFF ERROR statement causes the removal

of a previously-applied modification for

a particular error or error group.

Both statements have an identical construct for representing the

error group and member numbers involved.

25.5 ERROR GROUP AND MEMBER NUMBER SPECIFICATION

Error group and member numbers- appearing in the HAL/S ON ERROR

and OFF ERROR statements are specified by appropriately subscripting

the keyword "ERROR". Three basic froms exist. Each form is dealt

with in order of decreasing generality.

SPECIFICATION OF ALL ERRORS

ERROR RECOVERY AND SIMULATION 	 Page 25-5

To specify all errors, the keyword ERROR, without

subscript, is used:

ERROR

1. Lack of subscript implies all

members of all error groups.

SPECIFICATION OF ALL ERRORS IN A GIVEN GROUP

To specify all members in a given error group the

following form is used;

ERROR

m

1. 	m is an unsigned integer literal.

2. 	All members in group m are

specified.

3. The colon is optional.

SPECIFICATION OF A GIVEN ERROR

To specify a given error member of an error

group, the following form is used:

ERROR

m:n

1. 	m, n are unsigned integer literals.

2. 	Error member n in group m is

specified.

25.6 ON ERROR STATEMENT

The ON ERROR statement is used to modify the error environment

with respect to the error or errors specified. The statement can

modify the error environment in the following ways:

by causing the error or errors to be

ignored; ... CASE 1

by causing the standard system recovery

action to be taken; ... CASE 2

by causing execution to branch to specified

HAL/S code on occurrence of the error. ... CASE 3

ERROR RECOVERY AND SIMULATION 	 Page 25-6

In addition, in the firs-t two forms, the value of an event data

item can be changed on occurrence of the error or errors.

An ON ERROR statement may specify system-defined or user-defined

errors*.

CASES 1 2 SYSTEM AND IGNORE ACTIONS

The basic form of the ON ERROR statement is as shown below:

I ON specification SYSTEM;

I ON specification IGNORE;

1. 	specification is an error specification

of the form previously described.

2. 	 The keyword SYSTEM states that stan
standard system recover action is to

take place.

3. 	The keyword IGNORE implies that

errors specified in the specification

are to be ignored.

Examples;

I ON ERROR SYSTEM; 	 revert to standard system

recovery action for all errors.

I ON ERROR IGNORE; ignore error member 4 in

IS 1:4 group 1.

I
I ON ERROR SYSTEM; revert to standard system

IS 3 recovery action for all

I errors in group 3.

If the value of an event is to be changed in addition to the

actions specified above! one of the following clauses is added after

the keyword SYSTEM or IGNORE.

... AND SET var

... AND RESET var ...

... AND SIGNAL var ...

1. 	SET, RESET, and SIGNAL have the same

actions as described in Section 24.4

of the Guide.

SFor reasons of software security, some implementations may prohibit

the modification of the error environment with respect to certain

errors. See appropriate User's Manual.

ERROR RECOVERY AND SIMULATION 	 Page 25-7

2. If var contains run time subscript

evaluations, they are carried out

at the time of execution of the

ON ERROR statement rather than on

the occurrence of the specified

error or errors.

On the occurrence of an error covered by the error specification,

the value of the specified event date item is modified before the

SYSTEM or IGNORE is taken by the ERE.

Examples:

I ON ERROR IGNORE AND SET EVi;

I ON ERROR SYSTEM AND SIGNAL EV2

IS 1:1 5

I ON ERROR SYSTEM AND SIGNAL EV3

is 5 	 I

I is evaluated on execution of

the ON ERROR statement, not on

the occurrence of an error in

group 5.

CASE 3 USER-SUPPLIED ACTION

The user can supply the action to be performed on an error

occurrence by means of the following form of ON ERROR statement.

I ON specification statement;
I

1. 	specification is an error specification

in the form previously described.

2. 	statement is an executable HAL/S

statement with which execution is

resumed after occurrence of the

specified error condition.

3. statement may possess a statement

label but cannot be branched to

from outside the ON ERROR statement

4. This kind of ON ERROR statement may not

form by itself the "true part" of an

IF statement. (See Section 9.1).

It is important to understand the flow of execution implied by

the above form, both when the ON ERROR is executed, and on the

occurrence of an indicated error. The following example shows this in

detail.

ERROR RECOVERY AND SIMULATION Page 25-8

Example:

I On ERROR DO;

IS 5:1 user-supplied error

recovery action is

this entire DO.. END

group.

END;

I I = I+1;

error 5:1 occurs.

The ON ERROR 5:1 DO...END; statement modified the ERE's action

for ERROR 5:1. During the program execution, wnen ERROR 5:1 is
encountered, ERE directs the flow of execution to the statement ON
ERPOR5:1 DO...END; in the program block.

In HAL/S/V, we make it mandatory that the first executable
statement in the block be:

ON ERROR RETURN; (for procedure)

ON ERROR RETURN expression; (for functions)

This will prevent the execution flow from branching to any error

handling block outside the current Procedure or function block. In

HAL/S, depending on the dynamic structure of the error-specification

environment, a process can jump outside the block in which the error

is encountered.

The exit assertions for a block can be written by taking into

account all the possible points, inside the block, where the errors

can occur. In a similar fashion the entry assertions, for the

error-handling blocks in ON ERROR statements, can be specified.

25.7 PRECEDENCE OF ON AND OFF ERROR STATEMENTS

Some additional information needs to be supplied in order to

understand in detail how successive execution of several ON and OFF

ERROR statements modifies the error environment of a process.

In general, an executing process A is executing code in some

block several nesting levels of invocation depth, as illustrated

below:

ERROR RECOVERY AND SIMULATION Page 25-9

A

B A invokes B invokes C

C

The ERE keeps continuously updated lists of all error

environments modifications in force at any instant of time.* When

execution of the process A described above is in the body of block C,

the ERE possesses three linked lists of ON ERROR modifications, each

corresponding to a block not yet returned from:

A LIST A

ERE's lists of

error environment

B LIST B modifications.

C LIST C

When block C is returned from, LIST C is deleted, leaving LIST A

and LIST B in force. When block B is returned from, LIST B is deleted

leaving only LIST A in force.

Each lit is diveded into three sublists as illustrated below for

LIST C:

sublist C modification applic
1 able to all errors

LIST C sublist C modification for

2 given error group

sublist C modifications for

3 given error code

Sublist C3 contains modifications generated

by an ON/ERROR statements of the form:

ON ERROR

m:n

Sublist C2 contains modifications generated

by ON ERROR statements of the form:

This description of the ERE's behavior is representational only: an

actual implementation of the -ERE may employ different algorithms

producing the same result.

ERROR RECOVERY AND SIMULATION 	 Page 25-10

ON ERROR

m

Sublist C1 can contain at most one entry,

the modification generated by an ON ERROR

statement of the form:

ON 	ERROR

If a new ON ERROr statement in block C is executed, then one of

the following happens:

if 	an entry in the appropriate sublist exists

for the given error specification, the entry is

replaced with the new information gained, thus

erasing memory of the previous recover action

specified;

otherwise a new entry is added at the end of

the sublist.

With this background, the behavior of ithe ERE in recovering from

a run time error can now be des ribed in more detail. Suppose that a

run time error occurs while execution is in block C. On detecting the

error, the ERE gains control and scans backwards through the lists

until it finds an entry applicable to the error which occurred. The

ERE may find such an entry in any of the lists A, B, or C, in which

case it takes the indicated recovery action; or it may find no such

entry, in which case it takes the standard system recovery action.

Bearing in mind how entries are made into the sublists of error

environment modifications, up to three entries may be applicable to a

given run time error:

* 	an entry applicable only to the given error;

" 	an entry applicable to the whole group of

which the given error is a member;

" 	an entry applicable to all errors.

Given the sublist scanning order described, it is clear that

there is an inherent precedence order of ON ERROR statements.

ErrQr I Precedence

Specification

I I FIRST
ERROR I error code I 1

m:n I specification I

ERROR RECOVERY AND SIMULATION Page 25-11

ERROR
m

I
I

error group
specification I

2

ERROR I specification
of all errors

I 3

Example:

If the following statements have been executed in a

block:

I ON ERROR GO TO ALPHA;

IS 5:1

I ON ERROR GO TO BETA;

IS 5:

I ON ERROR IGNORE;
 I

Then if error 5:1 occurs, execution branches to ALPHA. If

error 5:3 occurs, execution branches to BETA. If error 6:1

occurs, the error is ignored.

The above are true no matter in what order the ON ERROR

statements have been executed.

The behavior of an OFF ERROR statement now also becomes clearer.

On execution of an OFF ERROR statement in, say, block C, the ERE looks

through the whole of LIST C and on finding an entry with the same

error specification, removes it from its sublist. This may expose to

the scanning process another modification in another sublist of LIST C

or a modification in LIST A or LIST B.

Example:

If the following statements have been executed

in a block:

I ON ERROR GO TO ALPHA;

IS 5:1

I ON ERROR GO TO BETA;

IS 5:

then if error 5:1 occurs, execution will branch

to ALPHA. If now the following statement is

executed:

I OFF ERROR

IS 5:1

and afterwards error 5:1 occurs, execution

branches to BETA.

ERROR RECOVERY AND SIMULATION 	 Page 25-12

25.7.1

ERROR SIMULATION

At the beginning of Section 25 it was stated that run time errors

could be simulated. In fact, the same HAL/S construct is used both to

simulate "system-defined" errors and to signal "user-defined" errors.

This construct is the SEND ERROR statement, whose form is shown below:

I SEND ERROR ;

m:n

1. 	m and no are unsigned integers

representing an error group

number, and an error member

number respectively.

2. 	If the error code m:n represents

a system-defined error, that error

is being simulated*.

3. 	If the error code m:n represets a

user-defined error, that error is

being signalled.

The recover action taking place on execution of a SEND ERROR

statement is as if the corresponding run time error had really

occurred.

Example:

I ON ERROR GO TO ALPHA;

iS 5:

I SEND ERROR

IS 5:2

Error 5:2 is simulated or signalled: a previous

ON ERROR statement has modified the recovery

action for error group 5, so that the result

is a branch to ALPHA.

In this example, it is immaterial whether error

4 For reasons of software security, some implementations

may 	prohibit certain system-defined errors from being simulated.

See 	appropriate User's Manual.

ERROR-RECOVERY AND SIMULATION Page 25-13

5:2 is system-defined or user-defined.

CHAPTER 30

MANAGERIAL CONTROL OF ACCESS TO DATA AND CODE

The constructs for access control described in Chapter 30 of the

HAL/S Programmer's Guide are not relevant to verifiability.

Therefore, HAL/S/V makes no changes to this material.

However, there is another variety of access control for which no

constructs are provided by HAL/S. This involves the protection of

data types, procedures, Program and task blocks, etc., on a more

selective basis than that provided by the HAL/S ACCESS construct. For

instance, one may wish to permit the use of a module without

disclosing its internal structure. Use of the HAL/S keyword ACCESS is

suited to "all or nothing" protection of sensitive data or code, but

not to selective control.

There exist well-understood techniques for implementing such

access control. These include capabilties, access lists, and data

abstractions. Future enhancements to HAL/a/V will undoubtedly contain

some such facility.

The benefit for verifiability derives from the fact that verified

modules can be treated as "black boxes" whose behavior is completely

specified as a function of the input parameters. The internal

workings of such modules are of no concern to the user and may be made

completely inaccessible to him. Moreover, the ways in which modules

can be utilized can be carefully controlled.

30-I

CHAPTER 31

INTERFACES WITH NON-HAL/S/V CODE

HAL/S/V makes no changes to the material in Chapter 34 of the

HAL/S Programmer's Guide. The ability to call subroutines written in

non-HAL/S/V co'e is a valuable feature of HAL/S/V.

The programmer is cautioned, however, that the verifiability of a

program is highly dependent upon the Programming language in which it

is written. Assembly language, for instance, makes no restrictions on

the accessing of storage locations, aliasing, etc. Hence, in assembly

language programming, the structured approach so critical to writing

verifiable programs is left entirely to the discipline of the

individual programmer rather than enforced by the scope rules, block

structuring, etc., present in HAL/S/V.

The HAL/S/V programmer concerned with the verifiability of his.

program must consider the possibilty that non-HAL/S/V code segments

may be extremely difficult to verify. If such code blocks could be

regarded as "black boxes" computing a known function of the input

parameters, they would not adversely affect the verifiability of the

calling routine. However, the difficulty involved in verifying these

code segments is precisely the inability to confidently assert that

such a function is computed. Modular programming becomes crucial.

The programmer must take care that the interfaces with non-HAL/S/V

code segments be well-defined and as narrow as is feasible.

The Gypsy programming language enhances the ability to write

verifiable programs since it includes specification capabilities and

restricts troublesome constructs. The ability to define interfaces

with Gypsy code would permit formal verification of crucial code

segments written in Gypsy and called by a HAL/S/V main routine.

Alternatively, designing a facility for automatic translation from

HAL/S/V to Gypsy and vice-versa, would permit the verificaion

facilities designed for Gypsy to serve for HAL/S/V as well. Future

enhancements to HAL/S/V might consider such features.

:3,-I

CHAPTER 26

DATA STORAGE AND ACCESS

Given the purposes for which HAL/S/V is intended, the way in

which declared data is physically located in the core of the object

machine will often be an important concern. In particular, in the

design of HAL/S software, the following questions must often be

addressed:

1. 	Does the declared data occupy as small an area of core

as is practical?

2. 	 Is the data physically ordered as it was declared?

3. 	Can some non-critical data be relegated to segments of

core addressable bY slower methods to make more room for

critical data?

4. 	 Can use be made of registers or temporaTy storage areas

for some data?

HAL/S/V contains constructs by whose means some degree of control over

each one of these factors can be achieved. Necessarily, the degree of

control is implementation dependent.

26.1 PACKING DENSITY OF STORED DATA

The efforts that any HAL/S/V compiler makes to optimize the

density of storage of data items are implementation dependent.

Generally speaking, however, the default assumption is that

optimization is relatively unimportant compared with speed of access.

The attribute DENSE, when applied in the declaration of data

items, causes more emphasis to be placed on storage density

optimization at the expense of rapid access. Potentially, the

attribute DENSE may be applied to data of any type, although it is a

matter of implementation as to when it causes packing density to

increase.

DATA STORAGE AND ACCESS 	 Page 26-2

26.2 DENSE STRUCTURES

Packing density optimization is most commonly applied to HAL/S/V

structures. If the packing density of a structure data item is to be

optimized, the Keyword DENSE must appear in the specification of the

structure template defining tits tree organization. The form of such a

template is as follows:

I STRUCTURE name DENSE:

1 2 n
I node , node ,...,node

1. 	name is the structure template name.

2. 	The nodes are a list of nodes forming the tree organization,

as described in Section 19.2.

3. 	The keyword DENSE indicates that the storage packing density

of all the structure terminals is to be optimized.'

Note that such optimization may cause the physical ordering of

structure terminals to differ from that given in the template

specification.

Example:

I STRUCTURE A DENSE:

1 Al,

2 All BIT(16),

2 A12 INTEGER,

2 A13 ARRAY(10) BOOLEAN,

I A2 CHARACiER(80);

I DECLARE ZA A-STRUCTURE;

All the structure terminals in ZA have their storage packing density

optimized.

When the keyword DENSE is used as described above, storage

packing density is optimized for the whole structure. If the DENSE

keyword is used of a fork or leaf node of a structure template, such

optimization can be restricted to a part of the structure.

Nodes connected below a "fork" node on which the keyword DENSE

appears inherit the property from it.

The keyword ALIGNED can be used to prevent inheritance of the

property. The following example shows how the keywords are actually

specified in a structure template.

See 	appropriate User's Manual for packing algorithms.

DATA STORAGE AND ACCESS Page 26-3

Example:

I STRUCTURE A

I 1 Al DENSE,

2 All BIT (16),

2 A12 INTEGER,

2 Ai3 ARRAY (10) BOOLEAN ALIGNED,

I A2 CHARACTER (80) ;

I DECLARE ZA A-STRUCTURE;

The ALIGNED keyword on A13 prevents the inheritance of the DENSE

property from Al.

Detailed rules for the appearance of DENSE and ALIGNED on fork

and leaf nodes of structure templates, and on data items of other

types are given in Spec./4.5.

26.3 ORDERING OF STORED DATA

The HAL/S/V language does not guarantee that the physical order

in which data is stored is the same as the order of appearance of data

items in a compilation, either globally or locally. Nor does HAL/S/V

guarantee that the physical order of structure terminals in a

structure data item is the same as the order of their definition in

its structure template. Indeed, some implementations will

deliberately reorder data so that access to it can be optimized.

In most cases such reordering is not of importance to the HAL/S/V

programmer. However since there are exceptions, HAL/S/V has a

capability for specifying the non-reordering of data in storage.

Reordering may be inhibited in the following constructs:

- an entire compool;

- a structure template.

26.4 NON-REORDERING OF COmPOOLS

To prevent the reordering of data items in a compool, the keyword

RIGID is placed in the opening statement of the compool block as shown

below.

label: COMPOOL RIGID;

1. label is the name of the compool.

2. The keyword RIGID denotes that the physical order of storage

of data items is the same as the order of their appearance in

the compool.

DATA STORAGE AND ACCESS 	 Page 26-4

The corresponding compool template must possess the keyword RIGID

also.

26.5 NON-REORDERING OF STRUCTURE TERMINALS

The potential reordering of structure terminals may be inhibited

by use of the keyword RIGID on the structure template, as shown below:

I 	 STRUCTURE name RIGID:

I node I , node 2

I..........node n;

1. 	name is the structure template name.

2. 	node 1, node 2, ... node n is a list of nodes forming

the tree organization, as described in section 19.2.

3. 	The keyword RIGID denotes that the physical order of

structure terminals is guaranteed to be the same as the

order of appearance of the terminals in the template.

Both the keywords RIGID and DENSE may appear on a structure template

(in any order). The effect of RIGID takes precedence over storage

packing density optimization.

The keyword RIGID may appear on

form and leaf nodes of a template.

See: Spec./4.5

26.6 TEMPORARY AND REMOTE STORAGE

The data accessing characteristics of some object machines are

such that most efficient use of core is made by dividing data into two

categories:

1. 	Data which needs to be accessed quickly and often;

2. 	Data which needs to be accessed seldom, and where speed is

not critical.

Normally all declared data in a HAL/S/V compilation is treated

alike, as falling into the first of these categories. However, by

appropriate specification, a HAL/S/V data item can be relegated to the

second category; such data items are termed "remote".

Sometimes in HAL/S/V code, data items are used only as temporary

storage in an-extremely localized sequence of statements, and have no

significance as far as the algorithm implemented is concerned. If

DATA STORAGE AND ACCESS Page 26-5

such data items were declared normally, then the core area they occupy

would remain unused for a substantial part of the duration of

execution of the code. This waste can be avoided by declaring them as

"temporary" data items, whereupon the HAL/S/V compiler can
be allowed

to locate them in some reusable "scratch pad" area*.

Control variables in repetitive DO groups are a particular

instance of data items used for temporary storage purposes. However,

in this instance a consideration is the speed with which the value of

the control variable can be accessed, since it may be required for

many subscript evaluations within the DO group. Here it is more

appropriate to set aside a register than to locate the data item in a

scratch pad area. Declaration of such variables as "temporary" can

allow a HAL/S/V compiler to perform this kind of allocation also.

26.7 SPECIFICATION OF REMOTE DATA

A data item is declared to be remote by use of the keyword REMOTE

in its declaration. Data items of any type except event may be

designated REMOTE. The position of the keyword in a declaration is

illustrated by the following examples.

Example:

DECLARE I INTEGER REMOTE;

I DECLARE B BOOLEAN INITIAL (TRUE) REMOTE AUTOMATIC;

DECLARE ARRAY (4) INTEGER REMOTE, I, K, L;

STRUCTURE Q:

1 1 Q1 INTEGER H

1 1 QB BIT (16);

1 DECLARE ZQ Q-STRUCTURE REMOTE;

If remote data items appear in a RIGID compool, then the remote

data items appear in the remote storage area in the same order as they

were declared; the other data items appear in the regular storage area

in the same order as they were declared.

For more precise rules on posi
tioning the keyword REMOTE, see

Spec./4.5.

The nature and usage of such areas is implementation specific.

DATA STORAGE AND ACCESS page 26-6

26.8 DECLARING AND USING TEMPORARY DATA

The HAL/S/V language enforces localized use of temporary data

items by requiring them to be declared and used within D...END

statement groups (See Section 10.). The END statement of a group

signals to the HAL/S/V compiler that "scratch pad" storage allocated

to temporary data defined in the group is available for other use.

Temporary data items are declared by TEMPORARY statements which

are declaration statements in which the keyword DECLARE has been

replaced by the keyword TEMPORARY. The basic form is thus:

I TEMPORARY name attributes;

1. name is a legal HAL/S/V identifier name.

2. attributes describe the type, array property, precision and

other properties of the data item as in a declaration

statement.

All TEMPORARY statements must appear immediately after the DO

statement and before the first statement inside the group.

Examples:

DO;

TEMPORARY I INTEGER DOUBLE;

I TEMPORARY B BIT

ZQ Q-STRUCTURE

I END;

The structure template Q cannot be defined in the DO.. .END group.

Its definition must appear at the beginning of the code block in which

the DO...END group is embedded.

The control variable in a DO FOR statement can also be designated

a temporary data item by preceding its appearance in the DO FOR

statement by the keyword TEMPORARY. In this context, the control

variable is taken implicitly to be a single precision (halfword)

integer.

Example:

I DO FOR TEMPORARY I = I TO 18 BY 2

I.

I END;

The declaration of temporary data items is subject to the following

restrictions:

* they may not be initialized;

DATA STORAGE AND ACCESS Page 26-7

they may not be declared remote;

they may not be of event type;

the name of a temporary data item may not duplicate the

name of another temporary data item in the same

DO...END group;

the name of a temporary data item may not duplicate the

name of an ordinary data item known by the scoping

rules of Section 1.2 to the body of the DO...END group.

26.9 ACCESS TO SHARED DATA

Generally at run time, an arbitrary number of real time processes

are able to share global data and data defined in compools. Thus, it

is entirely possible that one process may be in the act of modifying

such data while another process is referencing it. It may be crucial

to the integrity of the algorithm implemented in the second process

that this be guaranteed not to take place.

To handle this situation, it is mandatory to designate such data

items as protected, or "locked". Such data items can only be accessed

from within areas of code called "update blocks". The boundaries of

update blocks are visible to the Real Time Executive (RTE) which can

therefore control entry into them and exit from them on a process
by-process basis.

26.10 LOCK GROUPS

The protection of data could be carried out on an individual

basis data item by data item. Consider two processes A and B, each

requiring to use protected data item Z. process A accesses Z in an

update block UA, and B accesses it in update block US.

If process A began executing- update block UA first, and thus

began using Z, then process B would be prevented from beginning

execution of update block UB until A had finished executing UA.

Protection of data on an individual basis would impose an

arbitrarily large burden on the RTE depending on the number of data

items to be protected, and the number of processes required to share

them.

In order to limit this overhead of effort, HAL/S/V applies

protection on a group basis rather than an individual one.. Every

compool or global data item is designated as belonging to one of a

limited number of "lock groups". The above illustration can be

restated for HAL/S/V as follows.

Consider two processes A and B, each requiring to use protected

data in lock group N. If process A begins executing UA first, then

DATA STORAGE AND ACCESS Page 26-8

all protected data in lock group N become unusable by process B which

therefore cannot begin executing UB until A finishes executing UA.

For more global protection, some protected data items can be

designated as belonging to all lock groups simultaneously.

If in the above illustration, for example, process A required to

use a protected data item belonging to all groups, and execution

reached UA first, then process B could not enter US to use protected

data from any lock group until A had finished executing UA.

26.11 LOCK GROUP SPECIFICATION

A data item in a compool is designated as protected at the time

of its declaration. The following construct is inserted in its

declaration:

....LOCK(n)

....LOCK(-)

1. 	In either form, the keyword LOCK indicates that the data

item is to be protected.

2. 	n is a positive integer denoting that the data item is

to belong to lock group n, where 1< n< 15*.

3. 	* denotes that the data item is to be considered as
belonging to all lock groups simultaneously.

The 	following examples illustrate the positioning of the

construct within declarations:

Examples:

I DECLARE I INTEGER DOUBLE LOCK (3);

1 DECLARE B ARRAY (1000) BOOLEAN LOCK (4)

I STRUCTURE Q DENSE:

I QI INTEGER,

I QB BIT (16)

I DECLARE ZQ Q-STRUCTURE (20) LOCK (3);

For more precise rules concerning the location of

the locking attribute see Spec./4.5.

This value may vary between implementations. See User's Manual.

DATA STORAGE AND ACCESS Page 26-9

26.12 UPDATE BLOCK DEFINITIONS

An update block is an explicitly delimited body of code

wherein locked data may be referenced or modified.

Superficially, an update block looks similar to any other kind of

code block in the HAL/S/V language. Its delimiting statements

are 	of the form shown below:

label: UPDATE;

I CLOSE label;

1. 	On the opening statement label is any HAL/S/V

identifier, and represents the name of the update block.

2. 	The update block may be unlabelled, in which case label:

is omitted.

3. 	If the update block is labelled, the closing statement

may optionally possess a matching label.

An update block is unique in that it is never invoked as are

other kinds of code blocks: rather it is executed when it is

encountered in the path of execution. Consistent with this, the

label on the opening statement of the block Way be treated as a

statement label.

The 	following rules govern the contents of any update block:

1. 	The opening statement may be immediately followed by the

declaration of local data, as if it were a program block

(see Section 3.2).

2. 	Input/output statements of any kind are illegal.

3. 	SCHEDULE, WAIT, CANCEL, TERMINATE and UPDATE PRIORITY

statements are illegal. This rule ensures that a

process does not remain in an update block indefinitely,

thereby holding certain resources.

4. 	Procedure and function blocks, but neither task nor

other update blocks may be nested within it. An update

block is not allowed to have any other update block in

its body to eliminate possibility of deadlock. It may

call a function or procedure inside the block only if it

is declared within the block.

5. 	The only procedure or function invocations which are

legal are those referencing procedure or function blocks

defined within it.

DATA STORAGE AND ACCESS Page 26-10

26.13 EXECUTION OF UPDATE BLOCKS

The behavior of processes on encountering update blocks has

already been described in this section, but only superficially by

example. This behavior is now re-examined in more detail.

The simplest case is that of two processes wishing to use

data items from the same lock group. Each process has to execute

an update block to use the protected data items. The following

activity takes place:

If both of the processes require data items from

the -same lock group to be modified then the first

process to enter its update block must complete

execution of it before the second process can enter its

own update block. The RTE places the second process in

a waiting state for this period of time.

If one or both of the processes only require to

reference the data then in some implementations of

HAL/S/V, the behavior of the RTE will be the same as

before. Alternatively, in other implementations, to

reduce the second process' waiting time, the RTE may

allow partial overlap in execution of the update

blocks, consistent with exclusive use of data by the

process modifying it*.

If the two processes wish to use data from more than one lock

group, the RTE tracks the use of each lock group in the above way. If

one or both processes use data protected by LOCK (Cf, then the

situation is equivalent to one in which the process or processes wish

to use date in every lock group.

If data is shared by more than two processes, then all processes

except one are put in a waiting state by the RTE. The eventual order

in which the processes complete execution of their update blocks will

depend on the contents of the process queue and the relative priority

of the processes.

26.14 LOCKED ASSIGN ARGUMENTS

The rule that locked data items can only appear in update blocks

has one sole exception: it is possible for locked data items to

appear as assign arguments in procedure invocations. This provides

the ability to "parameterize" update blocks, as will be shown in an

ensuing example.

This alternative entails more work by the RTE, thus "stealing" time

from the processes' productive work. The behavior of any

implementation is therefore the result of a trade-off to achieve an

acceptable RTE performance.

DATA STORAGE AND ACCESS Page 26-11

The following rules govern the passage of locked assign

arguments:

1. If the argument is a data item belonging to lock group

n, then the corresponding parameter must be declared

LOCK (n) or LOCK C).

2. If the argument is a data item belonging to all lock

groups, the corresponding parameter must be declared

LOCK (4).

3. Argument and parameter must also match in the senses

described in Sections 11.5, 17.7, or 19.10 as

applicable.

4. If any assign argument is locked, then the entire

procedure body should be treated as an update block.

CHAPTER 27

HAL/S/V AND REENTRANCY

This section deals with another indirect implication of

multi-processing in real time: reentrancy.4 In HAL/S/V, reentrancy

arises because more than one real time process at a time can use a

procedure or function. The HAL/S/V language possesses constructs by

which reentrancy can be allowed or inhibited in procedures and

functions.

27.1 DETERMINING REENTRANCY REQUIREMENTS

A HAL/S/V user intending to code a procedure or function (either

internal or external) to be invoked in a real time context, should

first determine which of the following two categories it falls into:

1. 	The places where it is invoked are such that it can never be

in use by more than one process at a time.

2. 	The places where it is invoked are such that it can

potentially be in use by more than one process at a time.

If the user determines that the procedure or function falls into

the first category, then the procedure or function block is coded

following the rules given in Section 11.

If, on the other hand, it falls into the second category, the

user must make a choice between the following courses of action:

1. 	to insure that during execution, the Real Time Executive

(RTE) allows only one process at a time to use it;

2. 	to insure that during execution, more than one process can

use it at a time.

A procedure or function in whose respect the first course of

action is taken, is called "exclusive". One in whose respect the

second courseof action is taken is called "reentrant". The opening

4'The term "reentrancy" denotes the property of being reentrant.

27-i

HAL/S/V AND REENTRANCY 	 Page 27-2

statements of such procedures and functions must contain specific

indication of their exclusive or reentrant property.

27.1.1 Exclusive Procedures And Functions

An exclusive procedure or function is one in which the RTE.allows

only one process to use at any given time. A procedure or function is

designated exclusive by the presence of the keyword EXCLUSIVE in the

opening statement of its block definition.

27.1.2 Defining An Exclusive Procedure

The form of the opening statement of an exclusive procedure is as

shown below:

I label: 	PROCEDURE(il,i2,...) ASSIGN(al,a2,...)

EXCLUSIVE;

1. 	label is a legal HAL/S/V identifier constituting the

procedure name.

2. 	il, i2,... and al, a2.-.. are lists of input and assign

parameters as described in Section 11.2.

3. The keyword EXCLUSIVE designates an exclusive procedure.

Example:

I P: PROCEDURECA) EXCLUSIVE;

I DECLARE A INTEGER;

CLOSE P;

The 	template corresponding to an exclusive external procedure must

also bear 	the keyword EXCLUSIVE.

Example:

The 	template corresponding to P would be:

I P: EXTERNAL PROCEDURE(A) EXCLUSIVE;

I DECLARE A INTEGER;

I CLOSE P;
I

HAL/S/V AND REENTRANCY 	 Page 27-3

27.2 DEFINING AN EXCLUSIVE FUNCTION

The form of the opening statement of an exclusive function is as

shown below:

I label : FUNCTION (il,i2,...) attributes EXCLUSIVE;;

1. 	label is a legal HAL/S/V identifier constituting the function

name.

2. 	 il,i2 is a list of input parameters as described in Section

11.2.

3. 	 attributes defines the type and, where applicable, precision

of the function, as described in Section 11.2.

4. 	 The keyword EXCLUSIVE designates an exclusive function.

The template corresponding to an exclusive external function must also

bear the keyword EXCLUSIVE.

Example:

The 	template corresponding to:

I 	F: FUNCTION BOOLEAN EXCLUSIVE;

I 	CLOSE F;

would be:

I 	F: EXTERNAL FUNCTION BOOLEAN EXCLUSIVE;

CLOSE F;

27.3 BEHAVIOR OF EXCLUSIVE PROCEDURES AND FUNCTIONS

If an exclusive procedure or function is in use by process A, and

a process B tries to invoke it, then the RTE places process B in the

waiting state until process A returns from its use.

27.3.1 Reentrant Procedures And Functions

A reentrant procedure or function is one in which deliberate

steps are taken by the programmer to ensure correct execution when the

RTE allows more than one process to use it simultaneously. A

procedure or function which is intended to be reentrant must possess

HAL/S/V AND REENTRANCY 	 Page 27-4

the keyword REENTRANT in its opening statement.

This is a necessary, but not sufficient condition to ensure

raentrancy. The programmer must observe certain additional guidelines

unenforceable by a HAL/S/V compiler to ensure that a procedure or

function is truly reentrant in all relevant respects.

27.4 DEFINING A REENTRANT PROCEDURE

The form of the opening statement of a reentrant procedure is

shown below:

I label 	 PROCEDURE(Ci,i2, ...) ASSIGN(al,a2,...)
REENTRANT;

1. 	 label is a legal HAL/S/V identifier constituting the

procedure name.

2. 	 il,i2, and al,a2,... are lists of input and assign

parameters as described in Section 11.2.

3. 	 The keyword REENTRANT indicates that the procedure is to be

considered reentrant.

27.5 DEFINING A REENTRANT FUNCTION

The form of any opening statement of a reentrant function is

shown below;

I label : FUNCTIONCI,i2,...) attributes REENTRANT;

1. 	 label is a legal HAL/S/V identifier constituting the function

name.

2. 	 il,i2,... is a list of input parameters as described in

Section 11.2.

3. 	 attributes defines the type and, where applicable, precision

of the function as described in Section 11.2.

4. 	 The keyword REENTRANT indicates that the function is to be

considered reentrant.

The template corresponding to an external reentrant function must also

possess the keyword REENTRANT.

HAL/S/V AND REENTRANCY Page 27-5

27.6 BEHAVIOR OF REENTRANT PROCEDURES AND FUNCTIONS

If
a reentrant procedure or function is in use by a process A,

and a process B tries to invoke it, the RTE allows the invocation to

proceed without restriction.

27.7 LOCAL DATA IN REENTRANT BLOCKS

The most important consideration in writing reentrant procedures

and functions is that of declaring local data. The issue that

confronts the programmer is whether for each local data item he merely

wants one "copy" of it, to be shared by all processes concurrently

executing the block; or whether a separate "copy" for each process is

wanted. Normal reentrant procedures require that execution by one

process be completely decoupled from execution by another. Unlike

HAL/S, in HAL/S/V we don't have the first alternative.

Separate copies of a local data item for each process

concurrently executing a reentrant block are generated by the RTE.

Because in HAL/S/V we don't permit sharing of one single copy of

data by concurrently executing muliple instances of a procedure (or

function) use of words AUTOMATIC or STATIC is not required.

27.8 OTHER CONSIDERATIONS IN REENTRANT BLOCKS

To preserve complete reentrancy of the code inside a reentrant

procedure or function., this guideline must be adhered to:

Any Procedure or function invoked

by the reentrant block should also

be reentrant.

------ M---------------- W --- -- m

It should be noted that no update block in a reentrant procedure

or function can itself be reentrant because of the inherent properties

of an update block (see Section 26.4). However, the processes

executing the reentrant procedure or function can only pass through

the update block serially. Hence, it appears as if process swaps were

inhibited pending passage through the update block by each process,

and cross-coupling of computational results in different processes

still cannot occur. Hence, complete reentrancy is still effectively

being preserved.

CHAPTER 28

THE HAL/S/V NAME FACILITY

The ability to maintain "pointers" to specified data items is a

valuable feature of many programming languages. However, it presents

a problem for verification.

If the pointer value is treated as merely another name for an

object, as in HAL/S, aliasing of the worst kind can result. In such a

case, the object has a declared name and any number of other aliases.

Moreover, access is permitted via any of these names and assertions

regarding the object may be written using any one of the aliases.

Assertions made using any of the aliases may be falsified by accessing

the object via any other - a fact which is not apparent from the

program text. Therefore, the verification system is constrained to

keep track of all aliases for every data object. For this reason,

HAL/S/V permits no name data item to be declared.

CHAPTER 29

REPLACE MACROS AND IN-LINE FUNCTIONS

It was stated in Chapter 5 of Part I that the REPLACE statement

of HAL/S had been removed from HAL/S/V. This also applies to the

parameterized version called REPLACE MACROS, and for the same reasons.

The behavior of a program and, hence the verifiability, is

governed by the program text. The HAL/S REPLACE facility allows

arbitrary changes to be made to the program text. Such changes

generate essentially new programs for which a previous verification

may be invalid. Thus, complete verification requires that each

possible program text be considered individually. The work involved

is potentially exponential in the number of replace statements.

"In-line functions" in HAL/S are Parameterless functions designed

to enhance the versatility of the parametric replacements. However,

without REPLACE MACROS, they are of .little use. They are executed

in-line and cannot be invoked elsewhere in the program. Moreover,

according to the HAL/S/V scoping requirements outlined in Chapter 11,

a function may access non-local data only if it is passed as a

parameter at the call site. Hence, a parameterless function is
essentially a constant. 'For these reasons, in-line functions are
disallowed in HAL/S/V.

