NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Shuttle Orbit IMU Alinement

Single-Precision Computational Error

```
(NASA-TM-80793) SHOTILE CEEIT InU
    N80-22379
ALIMEMENT. SINGLE-PGECISICN COMPUTATICN
ERROR (NASA) 31 p HC AO3/MF AC1
Unclas
G3/12. 18480
```

Mission Planning and Analysis Division March 1980

National Aeronautics and Space Adiministration

Lyndon B. Johnson Space Center Houston. Te, as

SHUTTLE PROGRAM

SHUTTLE ORBIT IMU ALINEMENT

SINGLE-PRETISION COMPUTATIONAL ERRUR

By C. R. McClain, McDonnell Douglas Technical Services Co.

JSC Task Monitor: T. J. Biucker, Mathematical Physics Branch

4pproved: $\frac{2 \text { Enili Re Schiesser, Chief }}{\substack{\text { Enithematical Physics Branch } \\ \text { Mathen }}}$

Approved:

Mission Planning and Analysis Division
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas
March 1980

CONTENTS

Section Page
1.0 SUMMARY 1
2.0 INTRODUCTION 2
3.0 DISCUSSION 3
3.1 determination of the measured present-Cluster- TO-M50-MATRIX 3
3.2 COMPUTATION OF THE MISALINEMENT MATRIX AND ASSOCIATED ERROR QUATERNION 4
3.3 dESCRIPTION OF EIGEN nuTATION ANGLE EXTRACTION METHODS 5
3.3.1 Arc Cosine Method 5
3.3.2 Arc Sine Method 6
3.4 description of test setup and runs 6
4.0 RESULTS 8
5.0 CONCLUSIONS AND RECOMMENDATIONS 9
APPENDIX A - hal/S CODE IN SINGLE PRECISION 13
APPENDIX B - HAL/S CODE IN COUBLE PRECISION 20
Table Page
1.0 SUMMARY OF IMU ONORBIT ALINEMENT HAL/S SIMULATION RESULTS 10

FIGURES

FigurePage1.0 Misalinement error versus input misalinement angle 12
1.0 SUMMARY

This paper presents the results of a study to determine the source of computational error in the IMU onorbit alignment software as specified by the Level C IMU SOP FSSR. Simulation runs were made on the IBM 360/70 computer with the IMU onorbit alignment software coded in HAL/S. The results indicate that for small IMU misalignment angles (less than 600 arc seconds), single precision computations in combination with the arc cosine method of eigen rotation angle extraction introduces an additional misalignment error of up to 230 arc seconds per axis. Use of the arc sine method, however, produced negligible misalignment error. As a result of this study, the arc sine method has been recommended by means of a software change request (CR) for use in the IMU onorbit alignment software. This CR has been approved for STS-1 and beyond.

2.0 INTRODUCTION

During IBM's Level 2 IM! onorbit alignment testing, it was first suspected that the largest source of software produced alignment error for small torquing angle misalignments might be the flight control utility routine MAT TO_QUAT. After review of these initial test results, it was decided by JSC, ${ }^{-1 B M}$ and MDTSCO that detailed stidies of this problem be made at MDTSCO to confirm the initial conclusion. The proposed studies were aimed at determining whether the additional computational error was in fact caused by MAT TO QUAT or by the IMU alignment software design. The questionable design centered around the use of single precision computations in combination with the arc cosine method for extracting the eigen rotation angle from the error quaternion, from which torquing angles were computed. The results from these studies indicated that th. iatter was the cause of the error. Based on this conclusion, change reques: is120 $\begin{gathered}\text { was submitted and approved }\end{gathered}$ to change the eigenaxis rotation anstle extraction method from the arc cosine method to the arc sine method for STs aissions number 1 and beyond.

Section $3 . n$ contains a discussion of the equations which define the IMU onorbit alignment software and a description of the simulation runs actually made. Section 4.0 contains a discussion of the results, and Section 5.0 presents the conclusions and recommendations.

3.0 DISCUSSION

The IBM 360/70 computer was used in simulating the HAL/S version of the IMU onorbit alignment torquing angle software for this study. This computer was used for the following reasons: (1) the IBM 360/70 computer implements a HAL/S compiler which enables the simulation software to be coded in HAL/S, (2) this computer emulates the word size of the AP101 flight computer. Although the word size is equivalent for both computers, AP101 double precision computations are not as accurate as the IBM 360/70 computer; therefore, the double precision results presented in this study are not representative of AP101 double precision accuracy.

The following sections describe the simulation software and test runs for determining the source of computational error in the onorbit alignment software design.

3.1 DETERMINATION OF THE MEASURED PRESENT-CLUSTER-TO-M50-MATRIX

In order to determine the measured transformation matrix from present cluster to M50 coordinates, the onorbit alignment software obtains measurements of two star LOS (Line of Sight) unit vectors in present cluster coordinates by means of the STAR_TRACK or the COAS_SIGHT mode, that is

$$
\begin{align*}
& S_{m}=S_{x m} \bar{i}_{p c}+S_{y m} \bar{j}_{p c}+S_{z m} \bar{k}_{p c} \tag{1}\\
& \bar{T}_{m}=T_{x m} \bar{i}_{p c}+T_{y m} \bar{j}_{p c}+T_{z m} \bar{k}_{p c} \tag{2}
\end{align*}
$$

In addition, the computer has stored in memory the exact $L O S$ unit vectors in M50 coordinates of these two stars as follows:

$$
\begin{align*}
& \bar{S}_{e}=S_{x e} \bar{i}_{M 50}+S_{y e} \bar{j}_{M 50}+S_{z e} \bar{k}_{M 50} \tag{3}\\
& \bar{T}_{e}=T_{x e} \bar{i}_{M 50}+T_{y e} \bar{j}_{M 50}+T_{z e} \bar{k}_{M 50} \tag{4}
\end{align*}
$$

These two sets of unit vectors, measured and exact, are used to compute the desired transformation matrix.

First, the exact LOS unit vectors given in M50 coordinates are used to form three unit vectors defining a star coordinate system expressed in the M50 coordinate system as follows:

$$
\begin{align*}
& \bar{U}_{x e}=\bar{S}_{e} \tag{5}\\
& \bar{U}_{y e}=U N I T\left(\bar{S}_{e} \times \bar{T}_{e}\right) \tag{6}\\
& \bar{U}_{z e}=U N I T\left(\bar{U}_{x e} \times \bar{U}_{y e}\right) \tag{7}
\end{align*}
$$

Next, the three unit vectors are used to form the columns of the transformation matrix from star to M50 coordinates:

$$
\left[T_{S}^{M 50}\right]=\left[\begin{array}{lll}
u_{x e^{(1)}} & u_{y e}(1) & u_{z e^{(1)}} \tag{8}\\
u_{x e^{(2)}} & u_{y e^{(2)}} & u_{z e^{(2)}} \\
u_{x e^{(3)}} & u_{y e}(3) & u_{z e}(3)
\end{array}\right]
$$

In a similar manner, the measured LOS unit vectors (given in present cluster coordinates) are used to form this same star coordinate system expressed in the present cluster coordinate system as follows:

$$
\begin{align*}
& \bar{U}_{x m}=\bar{S}_{m} \tag{9}\\
& \bar{U}_{y m}=\operatorname{UNIT}\left(\bar{S}_{m} \times \bar{T}_{m}\right) \tag{10}\\
& \bar{U}_{z m}=\operatorname{UNIT}\left(\bar{U}_{x m} \times \bar{U}_{y m}\right)
\end{align*}
$$

These unit vectors are then used to form the rows of the measured* transformation matrix from present cluster to star coordinates:

$$
\left[\begin{array}{l}
r_{S} \tag{12}\\
T_{P C}
\end{array}\right]=\left[\begin{array}{lll}
U_{x m}(1) & U_{x m}(2) & U_{x m}(3) \\
U_{y m}(1) & U_{y m}(2) & U_{y m}(3) \\
U_{z: m}(1) & U_{z m}(2) & U_{z m}(3)
\end{array}\right]
$$

Finally, the measured transformation matrix from present cluster to M50 coordinates is formed by the following matrix multiplication:

$$
\left[\begin{array}{l}
\imath_{M 50} \tag{13}\\
T_{P C}
\end{array}\right]=\left[\begin{array}{c}
M 50 \\
T_{S}
\end{array}\right]\left[\begin{array}{l}
\imath_{S} \\
T_{P C}
\end{array}\right]
$$

3.2 COMPUTATION OF THE MISALIGNMENT MATRIX AND ASSOCIATED ERROR QUATERNION

The misalignment matrix is computed as a function of the stored transformation matrix from M50 coordinates to desired cluster coordinates (desired REFSIMMAT) and the measured transformation matrix from present cluster to Mj0 coordinates, that is

$$
\left[\begin{array}{l}
\cup D C \tag{14}\\
T P C
\end{array}\right]=\left[\begin{array}{l}
D C \\
T_{M 50}
\end{array}\right]\left[\begin{array}{l}
{[M 50} \\
T_{P} P C
\end{array}\right]
$$

* The tilde over the matrix indicates that the matrix is derived using onboard measured quantities and is to be distinguished from matrices without the tilde which are considered exact.

The error quaternion ΔQ is defined by the followiny convention

$$
\Delta Q=\left[\begin{array}{l}
\Delta Q S \tag{15}\\
\overline{\Delta Q V}
\end{array}\right]=\left[\begin{array}{ll}
- & \cos \omega / 2 \\
-\hat{u} & \sin \omega / 2
\end{array}\right]
$$

where $\triangle Q S$ is the scalar part of the quaternion, $\overline{\Delta Q V}$ the vector part, a the eigen rotation angle about the eigenaxis, and u the eigenaxis unit vector. In order to compute the error quaternion associated with the misalignment matrix (14), the utility routine MAT_TO_QUAT is called, that is

```
CALL MAT_TO_QUAT ( \(T_{P C}\) )
```

ASSIGN (ΔQ)
This error quaternion is the basis for determining the torquing angles for platform realignment. The eigenaxis direction is obtained by extracting a unit vector* from the vector part of ΔQ. The eigen rotation angle can theoretically be obtained either from the scalar part of $\Delta 0$ or the magnitude of the vector part of $\triangle Q$. The methods of extracting the eigenaxis rutation angle are described in more detail in the next section. At the time this study was performed, the eigen rotation angle was extracted by use of the scalar of the error quaternion.

3.3 DESCRIPTION OF EIGEN ROTATION ANGLE EXTRACTION METHODS

There exist two methocs for extracting the eigenaxis rotation angle: (1) Arc cosine method (using the error quaternion scalar) and (2) Arc sine method (using the error quaternion vector). The equations for both methods are now presented.

3.3.1 Arc Cosine Method

The first method initially used by the IMU alignment software design is the arc cosine method. This method uses the scalar part of the error quaternion $\triangle Q S$ from equation (15), that is

$$
\begin{equation*}
\cos \omega / 2 \triangleq \Delta Q S \tag{16}
\end{equation*}
$$

* Although this paper does not discuss problems associated with this extraction process, it should be mentioned that for values of misalignment eigen rotation angles less than 10 arc seconds, the unit vector associated with the eigenaxis direction can be in error as much as 100 degrees. However, for such small eigenaxis rotation angles the direction of rotation is irrelevant.

After taking are cosine of both sides of this equation and multiplying by two, the eigenaxis rotation angle is given by

$$
\begin{equation*}
\omega=2 \cos ^{-1}(\triangle Q S) \tag{17}
\end{equation*}
$$

3.3.2 Arc Sine Method

The second method for extracting the eigenaxis rotation angle $\dot{\sim}$ is the arc sine method. This method uses the magnitude of the vector part of the quaternion $\bar{\Delta} Q V$ from equation (15), that is

$$
\begin{equation*}
\sin u 1 / 2=|\Delta Q v| \tag{18}
\end{equation*}
$$

After taking arc sine of both sides of the equation and multiplying by two, the eiculax rotation angle is given by

$$
\begin{equation*}
\omega=2 \sin ^{-1}|\Delta Q V| \tag{19}
\end{equation*}
$$

3.4 DESCRIFTION OF TEST SETUP AND RUNS

For simulation purposes, the ex. $\mathrm{F} i \mathrm{~L}$ LOS unit vectors are arbitrarily defined as follows: \bar{S}_{e} is defined by an azimuth angle of 60 degrees and an elevation angle of 30 degrees, T_{e} is derined by an azimuth angle of -60 degrees and an elevation angie of 30 degrees. The measured LOS unit vectors are derived by rotating the exact LOS unit vectors (\bar{S}_{e}, \bar{T}_{e}) from the M50 frame to actual platform coordinates, that is

$$
\begin{align*}
& \bar{S}_{m}=\left[\begin{array}{c}
D C \\
T_{\text {MSO }}
\end{array}\right]\left[\begin{array}{c}
\text { M5C (MEASURED })
\end{array}\right]\left[\begin{array}{c}
- \\
T_{\mathrm{S}} \\
\text { M50 (ACTUAL) }
\end{array}\right] \tag{20}\\
& \bar{T}_{m}=\left[T_{M 50}^{D C}\right]\left[\begin{array}{l}
\text { M50(MEASURED) }
\end{array}\right]\left[\bar{T}_{\text {M50(ACTUAL) }}\right] \tag{21}
\end{align*}
$$

The input misalignment eigenaxis direction is defined by an azimuth angle of 45 degrees, and an elevation angle of 30 degrees. The eigenaxis rotation or input misalignment for each specific test case is given in Table 1. For each case, an input misalignment quaternion is formed from these two input quantities and then a call to QUAT_TO MAT results in the input misalignment matrix. Also, for each case, the measüred and exact LOS unit vectors are unitized to IBM $360 / 70$ single and double precision since they were generated using HP9825A precision. The stored REFSMMAT is defined by a quaternion which has an eigenaxis direction and eigenaxis rotation angle. The eigenaxis direction is arbitrarily defined by an azimuth angle of 45 degrees and an elevation angle of -30 degrees. The eigenaxis rotation angle between the M50 frame and desired
cluster coordinates is taken to be 90 degrees. A call to QUAT_TO_MAT results in the stored transformation matrix from M50 to desired cluster cōordinates. For each case, this REFSMMAT is orthogonalize! in IBM 360/70 double precision before being used in the onorbit alignment flight software.

Each test run used the onorbit alignment software design as described in sections 3.1 and 3.2. For each input misalignment angle case, both single and double precision versions of the HAL/S code were exercised (Appendix A and Appendix B, respectively) and an error computed by taking the difference between the input misalignment angle and the o:!tput misalignment angle for both eigenaxis rotation angle extraction methods. This error became the standard of measure for determining the best method.

4.0 RESULTS

A summary of the IMU onorbit alignment HAL/S simulation results is presented in Table 1 . The output misalignment angle α_{0} and the misalignment error $\delta \omega$ are given as functions of the input misalignment angle ω_{I} for both precision versions (single, double) and both angle extraction methods (arc cosine, arc sirie). The range of ω_{I} is from 0 to 648000 arc seconds (180 degrees). As incicated in the last column of the iable, both extraction methods result in zero misalignment software error over the entire range of input rotations when double precision is used. The single precision error column of $\delta \omega$ indicates that the arc cosine method has a sizeable errer for small misalignment angles. In order to visuaily show the amount of misalignment error for both methods when codec in single precision, a graph of misalignment error S_{i} versus input misalignment ω_{I} for the arc cosine and arc sine rotation angle extraction methods is presented in Figure 1. For the arc cosine method, Figure 1 shows approximately 400 arc seconds of misalignment error for input misalignment angles near 0 arc seconds. This 400 arc seconds of misalignment error would result in approximately 230 arc seconds per axis of additional misalignment error to the current IMU alignment error budget. For increasing input misalignment angles, a gradual decrease in misalignment error can be seen. For the arc sine method, Figure 1 shows that for input misalignment angles near 0 arc seconds, the misalignment error is negligible (i.e., . 03 arc seconds). For large input misaligiment angles (near 648000 aic seconds), the maximum misalignment error is 340 arc seconds. This amount of misalignment error would result in approximately 196 arc seconds (per axis) of additional misalignment error to the IMU alignment error budget.

5.0 CONCLUSIONS AND RECOMMENUATIONS

For small IMU misalignment angles (less than 600 arc seconds), single precision computations in combination with the arc cosine method introduces additional misalignment error of up to 230 arc seconds per axis. The arc sine method, on the other hand, produces results equivalent to double precision accuracy. The misalignment error δw, obtained during this study, is clearly a function of the eigenaxis rotation angle extraction method and the precision used in the HAL/S code. The presence of MAT TO QUAT did not significantly influence the amount of misalignment errör.

It is therefore recomnended that the arc sine method of eigen rotation angle extraction be implemented into the onorbit alignment software at the earliest possible date. This software change would eliminate a known computationally-induced bias error.

TABLE 1.0 - SUMMARY OF IMN ONORBII ALIGNMENT HAL./S SIMULATION RESULIS

INPUT MISALIGN - OUTPUT MISALIGNMENT ANGLE, ω_{0} MENT ANGLE, (1) (arc seconds) (arc seconds) Single precision Double Precision

MISALIGNMENT ERROR, $\delta(w$
(arc seconds)
Single Precision Double Precision

TABLE 1.0 - SUMMARY OF IMU ONORBIT ALIGNMENT HAL/S SIMULATION RESULTS - Conc luded

INPUT MISALIGN- OUTPUT MISALIGNMENT ANGLE, ω_{0} MENT ANGLE, $\omega_{\text {I }}$ (arc seconds) (arc seconds) ${ }^{(1)}$ Ingle Precision Double Precision			$\begin{array}{r} \text { MI SALIGNMENT } \\ \text { (arc s } 6 \\ \text { Single Precision } \end{array}$	\qquad
647800	$\cos ^{-1}=647799.93$	647800.0	$\cos ^{-1}=0.07$	0.0
	$\mathrm{sin}^{-1}=647549.37$	647800.0	$\mathrm{sin}^{-1}=250.63$	0.0
647850	$\cos ^{-1}=647849.81$	647850.0	$\cos ^{-1}=0.19$	0.0
	$\mathrm{sin}^{-1}=647549.37$	647850.0	$\mathrm{sin}^{-1}=300.63$	0.0
647870	$\cos ^{-1}=647869.56$	647870.0	$\cos ^{-1}=0.44$	0.0
	$\mathrm{sin}^{-1}=647549.37$	647870.0	$\mathrm{sin}^{-1}=320.63$	0.0
647890	$\cos ^{-1}=647889.68$	647890.0	$\cos ^{-1}=0.32$	0.0
	$\sin ^{-1}=647549.37$	647890.0	$\mathrm{sin}^{-1}=340.63$	0.0
647915	$\cos ^{-1}=647914.75$	647915.0	$\cos ^{-1}=0.25$	0.0
	$\mathrm{sin}^{-1}=647715.00$	647915.0	$\sin ^{-1}=200.00$	0.0
-647965	$\cos ^{-1}=647964.62$	647965.0	$\cos ^{-1}=0.38$	0.0
	$\sin ^{-1}=647715.00$	647965.0	$\sin ^{-1}=250.00$	0.0
648000	$\cos ^{-1}=647999.81$	648000.0	$\cos ^{-1}=0.19$	0.0
	$\sin ^{-1}=647753.18$	648000.0	$\sin ^{-1}=246.82$	0.0

APPENDIX A
(HAL/S CODE IN SINGLE PRECISION)

0

APPENDIX B
(HAL/S CODE IN DOUBLE PRECISION)

Riginal PAgE IS OF. POOR QUALITY

0

$\frac{1}{1}$

13:39:6.31

-

$0261 \cdot 5$

- 518
nguember
$=A 4$
CE
$.-\quad-\quad--$
- .-.........

