

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

(NASA-CR-160910;	 HAL/S LANt.UAGE
SPECIFICATION. VERSION IR-542
(Intermetrics, Inc.)	 338 p HC A15 /8F AU1

CSCL 09B

N81-tb759

Unclas
G3/61 14251

HAL/S
LANGUAGE

SPECIFICATION

VERSION IR-542

1 SEPTEMBER 1980

PREPARED BY:

F-10M

111TERMETRIES

r---^—^'-----------^^

NASA APPROVAL

Susan K. McMahon
Chairperson, HAL/5 Language Group

^

Û

`

[`

A

I

PREFACE

The HAL Programming Language has been developed by
the staff of Intermetrics, Inc. based on many years of exper-
ience in producing software for aerospace applications.

01

	 HAL accomplishes three significant objectives:

• increased readability, through the use of a
natural two-dimensional mathematical format;

• increased reliability, by providing for
selective recognition of common data and sub-
routines, and by incorporating specific data-
protect features;

• real-time control facility, by including a
comprehensive set of real-time control commands
and signal conditions.

Although HAL is designed primarily for programming on-beard
{	 computers, it is general enough to meet nearly all the needs

in the production, verification and support of aerospace, and
other real-time applications.

The design of HAL exhibits a number of influences, the
greatest being the syntax of PL/l and ALGOL, and the two-
dimensional format of MAC/360, a language developed at the
Charles Stark Draper Laboratory. With respect to the latter,
Intermetrics wishes to acknowledge the fundamental con-
tribution to the concept and implementation of MAC, made by
Dr. J. Halcombe Laning of the Draper Laboratory.

The HAL/S Language Specification was prepared
by the staff of Intermetrics, Inc. under the direction
of Dr. Philip Newbold, the document's principal author.
Contributions were also made by Arra Avakian, Carl
Helmers, Andy Johnson, Ron Kole, Dan Lickly, Fred
Martin, Joe Saponaro, and Woody Vandever.

Editorial assistance was provided by Lee Hotz,
and the typescript tiTas prepared by the Documentation Department.

w 1, I11TRODUCTION

PEE
1-1

1.1	 Purpose of the Document 1-1

1.2	 Review of the Language 1-1

1.3	 Outline of the Document 1-3

' 2. SYNTAX DIAGRAMS AA11) HAL/S PRIMITIVES 2-1

f

2.1	 The HAL/S Syntax Diagram 2-2

2.2	 The HAL/S Character Set 2-4

` 2.3	 HAL/S Primitives 2-5

2.3.1	 Re6enved Glands 2-6

2.3.2	 T denti6iem 2-7

2.3.3 Numbens 2-7

2. 3, 3	 Litekats 2-8 	 1

j
I

2.4	 On-e- and Two-Dimensional Source Formats 2-12

2.5	 Comments and Blanks in the Source Text 2-14

3, HAL/S BLOCK STRUCTURE AND ORGANIZATION (Diags.l- lo) 3-1

3.1	 The Unit of Compilation 3-2	 9,

L 3.2	 The PROGRAM Block 3-4	 3

3.3	 PROCEDURE, FUNCTION, and TASK Blocks 3-6

f
3.4	 The UPDATE Block

i

3-8

3.5	 The COMPOOT Block 3-10	 1

!	 - 3.6	 Block Templates 3-11

f^
1

3.7	 Block Delimiting Statements 3-13

F

L	 ^ ;

L:r

b

3.7.1	 S.cmpte. HeadeA Statements 3-14

3.7.2	 The PAoceduAe. Meader Statement 3-16

,,3.7.3	 The Function Header Statement 3-19

3.7.4	 The CLOSE Statement 3-22

3.8 Name Scope Rules 3_23

4,	 DATA AND OTHER DCCLARATIONS (Dia g s. 11-18) 4-1

4.1 The Declare Group 4-3

4.2 The REPLACE Statement 4- 4

4.2.1	 Fow of REPLACE Statempon 4-4

4.2.2	 RejeAe ac i.n.g REPLACE Statements 4-6

4.2.3	 Identi6ien Genenati:on 4-8

4.2.4	 Identi jim Generation With Mauro Pa&ametetus 4-8

4.3 The Structure Template 4-9 j
_^

4.4 The DECLARE Statement 4-14

4.5 Data Declarative Attributes 4-15

^	 4.6 babel Declarative Attributes 4-21
i

4.7 Type Specification 4-22_

4.8 Initialization 4-26

5.	 DATA REFERENCING CONSIDERATIONS 5- :

5.1 Referencinq Simple Variables 5-2

5.2 Referencing Structures 5-3
E 5.3 Subscripting 5-5 ^

5.3.1	 Ct",6U o	 StL5.6chipting 5-7f;

5.3.2	 The GeneAa.Z Eow , J?6 Subsni.pting
,.

5-11
o

5.3.3	 Stku:c tute Subs c 4ipt i.ng 5-13

5.3.4	 AAu y Subscxiptfng 5-14 J

a

., 5.3.5	 Component Subsnipting 5-15

5.4 The Property of Arrayness 5-17

5.5 The Natural Sequence of Data Elements 5-18
j.

6.	 DATA MANIPULATION AND EXPRESSIONS 6-1

6.1 Regular Expressions 6-2

6.1.1	 Ani thmeti.c Exp4mi ionb 6-3

l 6.1.2	 Six Expx"4 ions 6-8

6.1.3	 Chahacte,% Exp ►c"ziorvs 6-11

i 6.1.4	 St u.:i.ctute Expneas.ion6 6-13 i
` 6.1.5	 Annay Pnopent.i.eh	 o6 Exphezzionz

i
6-13

6.2 Conditional Expressions 6-14

'` 6.2.1	 Akithmeti.c Compa i6on6 6-16

6.2.2	 Ut CompaA"orvs 6-18

6.2.3	 Chaucta CompaA"onus 6-19

6.2.4	 Stuictuhe Compatisons 6-20

6.2.5	 Compaxi sons be A)een Annayed OpeAand6 6-21

" 6.3 Event Expressions 6-22

6.4 Normal Functions 6-24

6.5 Explicit Type Conversions 6-27

6.5.1	 Ani thmeti.c Convem.ion Functi ms 6-28

6.5.2	 The Sit Convem i.on Function 6-32

6.5.3 The Chonacten Convemion Function 6-34

6.5.4	 The SaBBIT Pseudo-vaAi.abee 6-36

6.5.5	 Summary 06 Argument	 Types 6-38

6.6 Explicit Precision Conversion 6-39

6.7" Scaling 6-40
l

ORIGINAL PAGE

h

OF pooh CILIALIT"i

1	 R

7.	 EXECUTABLE STATEMENTS (Diggs. 44-56) 7-1

7.1 Basic Statements 7-2

7.2 The IF Statement 7-3

7.3 The Assignment Statement 7-5

7.4 The CALL Statement 7-9

7.5 The RETURN Statement -7-13

7.6 The DO ... END Statement Group 7-15

7.6.1	 The Simpte DO Statement 7-16

7.6.2	 The DO CASE Statement 7-17

7.6.3	 The DO WHILE and UNTIL Statements 7-18

7.6.4	 The DizcAete DO FOR Statement 7-20

7.6.5	 The Itetative DO FOR Statement 7-22

7.6.6	 The END Statement 7-24

7.7 Other Basic Statements 7-25

8,	 REAL TIME CONTROL (Diggs. 57-62) 8-1

8.1 Real Time Processes and the RTE 8-2

8.2 Timing Considerations 8-3

8.3 The SCHEDULE Statement 8-4

8.4 The CANCEL Statement 8-8

8.5 The TERMINATE Statement 8-10

8.6 The WAIT Statement 8-11

8.7 The
i
 UPDATE PRIORITY Statement 8-13

8.8 Event Control 8-14

8.9 Process-events 8-17

8.10 Data Sharing and the UPDATE Block
i

9. ERROR RECOVERY AND CONTROL 9-1

9.1 ON ERROR Statement 9-2

9.2 :The \°SEND ERROR Statement 9-7

10. INPUTAUTPUT STATEMENTS 10-1

10.1 Sequential I/O Statements 10-2

10.1.1	 The READ and REAVALL Statement6 10-3

10.1.2	 The WRITE Statement 10-6

10.1.3	 1/0 ContAoe Function6 10-8

10.1.4	 FORMAT L%.ata 10-10

10.1.4.1	 FORMAT Chanaeten ExOne6zionz 10-11

10.1.4.2	 FORMAT Item.6	 .10-13

10.1.4.3	 1	 FORMAT	 Item 10-15

10.1.4.4	 F and E FORMAT Items 10-16

10.1.4.5	 A	 Fonmat	 I.tem,6 10-18

10.1.4.6	 It	 Format	 Ttemz
10-19

10.1.4.7	 X Format Items 10-20

10.1.4.8	 FORMAT Quote Stxin.g4 10-21

10.1.4.9	 P	 Fon.ma.t	 Items' 10-22

10.2 Random Access I/O and the FILE Statement. 10-25

11. SYSTEMS LANGUAGE FEATURES 11-1

11.1 Introduction 11-1

11.2 Program Organization Features 11-1

11.2.1	 Inti.ne Function Uochz 11-2

1 145

11.2.2 o-mama Rebenenw	 11-5

'	 11.2.3 Operand Rebenenee Invvcation.6	 11-7

11.2.4 The MacAo CaU Sxaz.^nent	 11-12

i

11.3	 Temporary Variab'1es 11-13

If. 3.1 Regutzm TEMPORARY Vani.abZeb 11-13

11.3.2 Loop TEMPORARV Vaniab.Z" 11-15

11.4	 The NAME Facility 11-17

11.4,1 Tdentijieu with the NAME AtViibute 11-17

11.4.2 The NAME AttAi.bute in Stnuctwte Temptate6 11-22

11.4.3 DecCahations o6 Temponanieb 11-24	 R

11.4.4 The 'UeneSeneneed' U.ae o6 Sampte NAME
T,denti 6 ena 11-25

11.4.5 Rejenene ng NAME Values 11-26

11.4. & Changing NAME Va.2ue6 11-29

11.4.7 NAME A6.6 ignment Statement6 11-29

11.4. k NAME Vatue Compak"oVL6 11-30

11,4.9 Argument Pa6saga eond.idmationa 11-31

11.4.10 In.i,t i.aUzatcon 11-33

11.4.11 Noted on NAME Data StAgctuRea 11-34

11.5	 The EQUATE Facility 11-40

11.5.1 The EQUATE Statement 11-40

11.5.2 EQUATE Statement Pta.cement 11-42

f

APPENDICES

f	 A. SYNTAX DIAGRAM SUMMARIES
	

A-1

K '

	 B. HAL/S KEPWORDS
	

B-1

C. BUILT-IN FUNCTIONS	 C-1

D. STANDARD CONVERSION FORMATS	 D-1

E. STANDARD EXTERNAL FORMATS	 E-1

F. COMPILE-TIME COMPUTATIONS
	

F-1

i	 G, WORKING GRAMMAR	 G-1

i

	

	 H. SUMMARY OF OPERATORS	 H-1

BIBLIOGRAPHY

INDEX

r	 -	 _

y

r

k

i r

fi

I`

V

3

1.	 INTRODUCTION

HAL/S is a programming language developed by
Intermetrics Inc:., for the flight software of NASA 	 1143
programs. HAL/S is intended to satisfy virtually all
of the flight software requirements of NASA programs.
To achieve this, HAL/S incorporates a wide range of
features, including applications-oriented data types and
organizations, real time control mechanisms, and constructs
for systems programming tasks.

As the name indicates, HAL/S is a dialect of,-the
original HAL language previously developed by Intermetric4
Changes have been incorporated to simplify syntax, curb
excessive generality, or facilitate flight code emission.

i

1.1 Purpose of the Document.

This document constitutes the formal HAL/S Language
Specification, its scope being limited to the essentials of
HAL/S syntax and semantics. Its purpose is to define
comp eteiy and unambiguously all aspects of the language.
The Specification is intended to serve as the final arbiter 	 +
in all." questions concerning the HAL/S language. It will be	 i
the purpose of other documents to give a more informal,

r	 tutorijil presentation of the language, and to describe the
operat''ional aspects or the HAL/S programming system.

1.2 Review of the Language.

„

	

	 HAL/S is a higher order language designed to allow
programmers, analysts, and engineers to communicate with
the computer in a form approximating natural mathematical
expression. Parts of the English language are combined with
standard notation to provide a tool that readily encourages
programming without demanding computer hardware expertise.

HAL/S compilers accept two formats of the source text: 	 l
the usual single line format, and also a`multi-line format	 i
corresponding to the natural notation of ordinary algebra.

AtItAl Vf 1; 14,

f

1-1	 '

i

1-2

DATA TYPES AND COMPUTATIONS

HAL/S provides facilities for manipulating a number
of different data types. Its integer, scalar, vector, and
matrix types, together with the appropriate operators and
built-in functions,provide an extremely powerful tool for
the implementation of guidance and control algorithms. Bit
and character types are also incorporated.

HAL/S permits the formation of multi-dimensional
arrays of homogeneous data types, and of tree-like structures
which are organizations of non-homogeneous data types.

REAL TIME CONTROL

HAL/S is a real time control language. Defined blocks
of code called programs and tasks can be scheduled for
execution in a variety of different ways. A wide range of
commands for controlling their execution is also provided,
including iaechanisms for interfacing with external interrupts
and other environmental conditions.

ERROR RECOVERY

HAL/S contains an elaborate run time error recovery
facility which allows the programmer freedom (within the
constraints of safety,) to define his own error processing
procedures, or to leave control with the operating system.

SYSTEM LANGUAGE

HAL/S contains a number of features especially
designed to facilitate its application to systems programming.
Thus it substantially eliminates the necessity of using an
assembler language.

PROGRAM RELIABILITY

Program reliability is enhanced when software can, by
its design, create effective isolation between various
sections of code, while maintaining ease of access to commonly
used data. HAL/S is a block oriented language in that blocks
of code may be established with locally defined variables that

are not visible from outside the block. Separately
compiled program blocks can be executed together and
communicate through one or tore centrally managed and
highly visible data pools. In a real time environment,
HAL/S couples these precautions with locking mechanisms
preventing the uncontrolled usage of sensitive data or areas
of coda.

1.3 Outline of the Document.

The formal Specification of HAL/S is contained
in Sections 3 through 10 of this document. Section 2

_	 introduces the notation to be used in the remainder.

The global structure of HAL/S is presented in
Section 3. Data declaration and referencing are presented
in Sections 4 and 5,respectively. Section 6 is devoted to
the formation of different kinds of expressions. Sections
7 through 10 show how these expressions are variously used
in executable statements.

Section 7 gives the specification of ordinary
executable statements such as IF statements, assignments,
and so on. Section 8 deals with real time programming.
Section 9 explains the HAL/S error recovery system and
Section 10 the HAL/S I/O capability.

^^ v

Finally, Section 11 is devoted to system language
features of HAL/S.

k

2. SYNTAX DIAGRAMS AND HAUS PRIMITIVES

In this Specification, the syntax of the HAL/S
language is represented in the form of syntax diagrams.
These are to be read in conjunction with the associated
sets of semantic rules. Sometimes the semantic
rules modify or restrict the meaning inherent in the
syntax diagrams. Together the two provide a complete,
unambiguous description of the language .. The syntax
diagrams are mutually dependent in that syntactical terms
referenced in some diagrams are defined in others. There
are, however;, a basic set of syntactical terms for which no
definition is given. These are the HAL/S "primitives".

This Section has two main purposes: to explain how
to read syntax diagrams, and to provide definitions of the
HAL/S primitives. Various aspects of HAL source text which
impact upon the meaning of the diagrams are also discusp-d
briefly:

2.1 7te HALLS Syntax Diagram.

Syntax diagrams are, essentially, flow diagrams
representing the formal grammar of a language. By tracing
the paths on a diagram, various examples of the language -
construct it repreqents may be created. In this Specification,
the Syntax Diagrams, together with the associated Semantic
Rules, provide a complete and unambiguous definition of the
HAL/S Language. The syntax diagrams are, however, not meant
to be viewed as constituting a "working" grammar (that is,
as an analytical tool for compiler construction).

A typical example of a syntax diagram is illustrated
below. Following the diagram, a set S)f rules for reading
it correctly is given. The rul&s app,11 y generally to all
syntax diagrams presented in the ensuing Sections.

I

(i

RULES:

1. Every diagram de°ines a syntactical term. 	 The name
of the term being defined appears in the hexagonal box O1 .
The title of the syntax d:4a.,;ram 2D is usually a discursive
description of the syntacriw ;al term.	 In. the ease illustra-
ted, the language construct depicted is a particulariza-
tion of the syntactical term defined (a "WAIT statement"
is an example of(D)

2. To generate samples of the construct, the flow path is
to be followed from left to right from box to box,
starting at the point of juncture of the definition box
D , and ending when the end of the path (D is reached.

3. The path is moved along until it arrives at a black dot
®..	 No "backing up" along points of convergence such
as O5 is allowed.	 A black dot denotes that a choice of
paths is to be made.	 The possible number of divergent
paths is arbitrary.

4. Potentially infinite loops such as O7 may sometimes be
encountered.	 Sometimes there are semantic restrictions

i
upon how man, times such loops may be traversed.

1
5.

,
Every tLme a box is encountered, the syntactical term
it represents is added to the right of the sequence of
terms generated by moving along the flow path.	 For
example, moving along the path paralleling the dotted
line ® generates the sequence "WAIT <arith exp>;" (see
Rule 7.)

6. Boxes with squared corners ,such as D represent syntactical
terms defined	 other diagrams.	 Boxes with circular
ends, such as	 , represent HAL/S primitives.	 Circular
boxes ,such as	 ,contain special characters (see
Section 2.2).

7. In the text accompanying the syntax diagrams, boxes
containing lower case names are represented by enclosing
the names in the delimiters <>.	 Thus box U9 becomes
<arith exp>.	 Upper case names are reserved words of the
language.

8. The example given at 0 is an example of HAL/s_code
which may be generated by Applying the syntax diagram
(since some boxes,such as 99 for example, are defined in
other syntax diagrams, reference to them may be necessary
to complete the generative process).

2-3

2-4

u

2.2 The HAUS Character Set.
4l'

The
s,

HAL/S character set consists of the 52 upper and
laver case alphaberio characters, the numerals zero through
nine, and other symbols. The restricted character set is
the set necessary for the generation of constructs depicted
by the syntax diagrams The extended character set includes,
in addition, ,certain other symbols -egal in sucYi °places as
comments and character literals, and is used chiefly for the
purpose of compiler listing annotation.

The following table gives -a complete list of the
characters in the ex;-ended set, with a brief indication of
their principal usage.

81

alphabetic alphabetic special ch aractersa

±8 k
c 1

ID m
E _ n
F ° operators.
G p literals,
H q identifiers
I r
J s <
X t >
L u i

identifiers, w SN literals,
reserved words

Y
'P P separators

z
R blank)
s pseudo-alphabetic

V
l

delimiters
-	 identifiers

V
•	 macros 1

W
C	 text generatio:

escape additional-extended-setnumericX symbolsY
0

IZ

a
b 2

3 identifiers
l
{

c 4 literals }
d 5e

6
?

f 7
9 g
h y
i (-

r

fl
it

2.3 HAUS Primitives.

HAL/S syntax diagrams ultimately express all syntac-
tical elements in terms of a small number of special charac-
ters and pre-defined primitives. Primitives are constructed
from the characters comprising the HAL/S restricted character}	 seta There are three broad classes of primitives: "reserved
words", "identifiers", and "literals".

I

2.3.1 Rea enved WoA&

As their names suggest, reserved words are names
recognized to have standard meanings within the language
and which are unavailable for any other use. With the
exception of %-macro names, they are constructed from
alphabetic characters alone. Reserved words fall into
three categories: keywords, %-macro, and built-in function
names. In the syntax diagrams, and in the accompanying
text, reserved words are indicated by upper case characters.
A list_of keywords is given in Appendix B, and of built-in
function names in Appendix C.

2.3.2 Identi 6i.m.

An identifier is a name assign pd;'by the programmer to
be a variable, label, or other entity Before its attributes
are defined, it is syntactically known as an <identifier>.
Each valid, <identifier> must satisfy the following rules:

e the total number of characters must not exceed 32; 	 f

e the first character must be alphabetic

k	 e any character except the first may°be alphabetic
or numeric;

9 any character ,,except the first or the last may be
I	 a "break character" ().

The definition of an <identifier> generally establishes its
l	 attributes and ,in particular ,its type. Thereafter because	 °

its type is known,it is given one of the following syntac-
tical names, as appropriate:

<label>

<process-event name >, 	arith (arithmetic)
char (character)

<§ var name > 	where §	 bit
event

<template name > 	structure

The manner in '-which its attributes are established is
discussed in Section 4. The manner in which it is thereafter
referenced is discussed in Section 5.

2.3 ..3 Numb¢nb	
)	

1

HAL/S supports three numeric types: INTEGER, SCALAR, and
FIXED.	

1

INTEGER type provides all the signed integers in some
finite range. INTEGER DOUBLE supports alarger range than	 '
INTEGER single.	 0	 147

SCALAR type is represented as floatingt, oint numbers. As
such they are an approximation to the signed^,`reals (engineering
numbers) within some finite range and with some,finite precision.
SCALAR DOUBLE supports, a larger range and/or greater precision .
than SCALAR single.

W	
2-7

F	 _

a
r

	

,....^,y...a.: v,.. a 	'u,.:ss .»_....s..._..._..,..._....`....m.t.n......,.a-.:.ut^	 ^';B,.L _'n.c.,.e«r, 	 :.

FIXED type provides an approximation to the reals in the
range minus one to one with some finite precision. FIXED DOUBLE
supports a greater precision than FIXED single. FTXEDs are used
when the computer provides relatively inefficient support for
SCALARS. Jn general, an engineering number = fraction * scaling.

147 For each engineering number the programmer must choose a scaling
sufficiently large to guarantee that the fraction will always be
in (-1, 1). When performing calculations involving FIXED types,
the programmer must manipulate the scalings to maintlin precision
and guarantee that the scaling of the operands are compWLible.

2.3.4 Li te&aZ6 .

Literals are groups of characters expressing their own
values. During the execution of a body of HAL code their
values remain constant. Different rules apply for the forma-
tion of literals of differing type.

RULES FOR ARITHMETIC LITERALS:

1.' No distinction is made between integer, scalar, and fixed

147

	

	
valued literals. They take on either integer, scalar, or
fixed type according to their context. Similarly, no
distinction is made between single and double precision.
Consequently, arithmetic literals can be represented by the
single syntactical form <number>.

2. The generic form of a <number> is

tdddddd.dddddddd<exponents>

where d = decimal digit.

Any number of decimal digits to an implementation depen-
dent maximum, including none, may appear before or
after the decimal point. The sign and decimal point
are both optional. Any number of <exponents> `o an
implementation dependent maximum may optionally follow.

3. The form of any of the <exponents> may be:

B<power>	 2<power>

F<power>	 10<power>

H<power>	 -16<power>

where <power> is a signed integer number. The valid
range of values of <power> is implementation dependent.

2-8

i j

4. A literal has an assoc4ated scale factor of one.	 147

examples:

0.123E16B-3
45.4
-4

RULES FOR BIT LITERALS

1. Literals of bit type are denoted syntactically by
<bit li.teral> .

2. They have one of the forms shown below;

BIN <repetition> 'bbkbbbb' 	 b binary digit

OCT <repetition> '0000000'

	

	 o = octal digit
where

HEX <repetition> 'hhhhhhh' 	 h = hexadecimal digit

DEC	 'ddddddd'	 d = decimal digit	 1153

The <repetition> is optional and consists of a parenthesized
positive integer number. It indicates how many times
the following string is to be used in creating the value.
The number of digits lies between 1 and an implementation
dependent maximum.

3. The following abbreviated forms are allowed:

TRUE = ON F BIN' l'

FALSE = OFP= BIM 1 0'

examples:

BIN'11011000110'
HEX(3)'F'

2-9

118

128

j

RULES FOR CHARACTER LITERALS:

1. Literals of character type are denoted syntactically
by <char literal>.

2. They have one of the two following forms

'ccccccc'

CHAR <repetition> 'ccccccc'

where c is any character in the HAL/S extended
character set. The < repetition > consists of a
parenthesized positive integer literal. It
indicates hn=!'many times the following string is
to be used in creating the value. The number of
characters lies between zero and an implementation
dependent maximum.

3. A null character literal (zero characters iongy _is
denoted by two adjacent apostrophes.

4. Since an apostrophe delimits the string of characters
inside the literal, an apostrophe must be represented
by two adjacent apostrophes; i.e. the representation
of "dog's" would be 'DOG " S•.

5. Within a character literal, a special "escape"
mechanism may be employed to indicate a character other
than one in the HAL/S extended character set. "t" is
defined to be the "escape" character within this context.
In accordance with an implementation dependent mapping
scheme, HAL/S characters will be assigned alternate charac-
ter values. Inclusion of these alternate values in a string
literal is achieved by preceeding the appropriat; HAL/S
character by the proper number of "escape" characters.
The specified character with the "escape" character(s)
jreceeding it will be interpreted as a single character
whose value is defined by the implementation,

Since "C" is used as the "escape" character, specifica-
tion of the character " ^" as a literal itself must be
done via the alternate character mechanism, i.e. an
implementation will designate an alternate value for
some HAL/S character to be the character "0".

.

2-10

examples:

'ONE TWO THREE'

'DOG ''S'

'AB4OAD' The implication is that OA

'ABOOA

D, I
and 04A have been defined
as alternate characters.

1 128	 1

f

j

Z4 One- and Two-Dimensional Source Formats.

In preparing HAL source text,either single or multiple
line format may be used. In the single line or "l-dimensional"
format, exponents and subscripts are written on the same line
as the operands to which they refer. In the multiple line or
"2-dimensional" format exponents are written above the
line containing the operands to which they refer, and subscripts
are written below it. Of the two formats, the 2-dimensional
is regarded as standard since it closely parallels usual
mathematical practice.

RULES FOR EXPONENTS:

1. In the syntax diagrams, the 1-dimensional format is
assumed for clarity. The operation of taxing an exponent
is denoted by the operator **.

examples:

Aj 	A••J

A JK —^► A**J**K

2. Operations are evaluated right to left (see Section 6.1.1).

3. If an exponent is subscripted, the subscript must be
written in the 1-dimensional format.

RULES FOR SUBSCRIPTS:

1. in the syntax diagrams, the 2-dimensional format is
assumed for clarity. Two special symbol% are used to
denote the descent to a subscript line, and the return
from it •

S	 descent to subscript line

C yid	 return from subscript line

Effectively they d limit the beginning and end of
a subscript expression,respectiwely.

2-12

2. The 1-dimensional format of a subscript expression
consists of delimiting it at the beginning by $ 1, and
at the end by a right parenthesis.

example:

AK+2 -► A;(K+2)

3. For certain simple forms of subscript,the parentheses
may be omitted. These forms are:

• a single <number>

• a single <arith var name> (see Section 5.3).

example:

AJ	A$J

4. If a subscript expression contains an exponentiation
operation, the latter must be written in the 1-dimensional
format.

k

2-13

ti

2. S Comments and Blanks- in the Source Text.
}

Any HAL source text consists of sequences of HAL/S
primitives interspersed with special characters. It is
obviouely of great importance for 'a compiler to be able to
tell the end-of one text element from the beginning of the
next. In ma.iy cases-the rules for the formation of primitives	 E
are sufficient to define the boundary. In others,a blank
character is required as a separator.'-`Blanks are legal in
the following situations:

• between two primitives;

• between two special characters;

._,• between a primitive and a special character.

Blanks are necessary (not just legal) between two primitives.
With respect to string ('bit and character) literals, the single
quote mark serves as a legal separator.

Comments may be imbedded within HAL source text
wherever blanks are legal. A comment is delimited at the
start by the character pair /*, and at the end by the
character pair */. Any characters in the extended character
set may appear in the comment (except, of course, for
followed by /). There are implementation dependent restric-
tions on the overflow of imbedded comments from line to _line
of the source text.

3. HAUS BLOCK STRUCTURE AND ORGANIZATION

The largest syntactical unit in the HAL/S language
is the "unit of compilation". In any implementation, the
HAL/S compiler accepts "sourcemodules" for translation,
and emits "object modules" asf^s'result. Each source module
consists of one unit of compi.tation, plus compiler direc-
tives for its translation.

At run time,an arbitrary number of object modules are
combined to form an executable "program complex" l . Generally,
a program complex contains three different types of object
modules

• program modules - characterized by being independ-
ently executable.

• external procedure and function modules - charac-
terized by being callable from other
modules.

• compool modules - forming common data pools for
the program complex.

Each module originates from a unit of compilation of corres-
ponding type.

A

1 A program complex is executable within the framework of an
executive operating system, and a run time utility library.

3

i
i

3- 1

t

program template

function template

procedurR template

compool template —T—

function block	 r-

procedure block

compool block

program block

function

4	 procedure
compool
program

3.1 The Unit of Compilation.

Each unit of compilation consists of a single PROGRAM,
PROCEDURE, FUNCTION, or COMPOOL block of code, possibly
preceded by one or more block templates. Templates, in effect,
provide the code block with information about other code
blocks with which it will be combined in object module form
at run time.

SYNTAX:

unit of compilation
	

61

SEMANTIC RULES:

1. A program `compilation> is one containing a <program block>.
Its object module in the program complex may be activated
by the Real Time Executive (see Section 8), or by other
means dependent on the operating system. The <program
block> is described in Section 3.2.

2. A procedure or function <compilation> is one containing
a <procedure block> or <function block>, respectively.
Its object module in the program complex is executed by
being invoked by other program, procedure or function
modules. Both <procedure block>s and <function block>$
are described in Section 3.3.

i
q

F

3. A compool <compilation> is one containing a <compool block> 	
3

specifying a common data pool potentially available to
ti	 any program, procedure or function module in the program

complex. The <compool block> is described in Section 3.5.

4. The code block in any< compilation> except a compool
-compilation> may contain references to data in a compool
<compilation>,references to other< program block>s, and
invocations of external< procedure block>s or< function

l	 block>s in other <compilations>s. A <compilation> making
such references must precede its code block with a
block template for each such< program block.>,< procedure

E	 block>, <function block> or <compool block> referenced.
Block templates are described in Section 3.6.

i

1

3.2 The PROGRAM Block.

The PROGRAM block delimits a main, independently
executable body of HAL/S code.

SYNTAX:

PROGRAM Mock

t label & Program":M header ^dftlsm^",p

example:

ALPHA: PROGRAM;
DECLARE 0-.

CALL BETA ASSIGN (0 ► ;

BETA: PROCEDURE ASSIGN (W):
DECLARE W;
W - W + 1;
CLOSE BETA;

CLOSE ALPHA;

.	 I

I statement	 I

closing

task block

update block

function block

procedure block.

SEMANTIC RULES:

1. The name of the <program block> is given by the <label>
prefacing the block.

2. The <program block> is delimited by a <program header>
statement at the beginning, and a <closing> at the end.
These two delimiting statements are described in Sections
3.7.1 and 3.7. 1j respectively.

3. The contents of a <program block> consist of a <declare
arouu> used to define data local to the <nroaram block>.

r

4.1^_J The normal flow of execution, of the <statement>s in the
block is sequential; various types of <statement> may
modify this normal sequencing in a well-defined way.

5. PROCEDURE, FUNCTION, TASK, and UPDATE blocks may appear
nested within a <program block >. The blocks may be
interspersed between the <statement>s of the <program. block>,
and with the exception of the UPDATE block are not
executed in-line.

6. Execution of a <program block> is accomplished by schedul-
ing it as a process under the control of the Real Time
Executive (see Section 8.).

f

3.3 PROCEDURE, FUNCTION, and TASK Blocks.
	 V

PROCEDURE, FUNCTION, and TASK blocks share a-common
purpose in serving to structure HAL/S code into an interlock-
ing modular form. The major semantic distinction between the
three types of block is the manner of their invocation.

SYNTAX:

PROCEDURE
§	 FUNCTION	 block

TASK

§ block

statement

label	 § header	 declare group	 closing

update block

procedure block

example:

	

	 function block
NEW: TASK;

I-1;
CLOSE NEW;

SEMANTIC RULES:

1. The name of the block is given by the <label> prefacing
the block. The definition of a block :label is considered
to be in the scope of the outer block containing the
block in question. Block names must be unique within
any compilation unit.

2. The block is delimited at its beginning by a header
statement characteristic of the type of block, and at the
end by a <closing>. The delimiting statements are
described in Sections 3,7.1 through.3.7.4,

3. The contents of the block consist of a <declare group>
used ;Ito declare data local to the block, followed by

t,

R

R

4. The normal flow of execution of the <statement>s in the
block is sequential; various types of <statement> may
modify this normal sequence in a well-defined way.

5. The block may contain further nested PROCEDURE, FUNCTION,
and UPDATE blocks. An UPDATE block may not appear within
an UPDATt' -^tilock at any level of nesting. The nested blocks 153
may appear interspersed between the <statement>s of the
outer block, and except for the UPDATE block are not
executed in-line. A consequence of this rule is that
PROCEDURE and FUNCTION blocks may be nested'-within each
other to an arbitnLry depth.

6. Execution of <task block> is invoked by scheduling it
as a process under the control of the Real Time Executive
(see Section 8). Execution of a <procedure block> is
invoked by the CALL statement (see Section 7.4.). Execution
of a <function block> is invoked by the appearance of its
name in an expression (see Section 6.4).

7. A <procedure block> or <function block> may result in
either a single out-of-line expansion or an in-line expan- 146
sion at each ' invocation. The semantics of a block invoca-
tion is independent - of the way it is expanded. 	 1

8. A <task block> may not appear within a DO ... END group.	 1150

9. In the <declare group> of a PROCEDURE of FUNCTION block
which forms the outermost code block of a <compilation unit>,
some implementations may require all formal parameters to be
declared before any local data.

f.

e

F

The UPDATE block is used to control the sharing of data
by two or more real time processes. Its functional charac-
teristics in this respect are described in Section B.

SYNTAX:

UPDATE Mock	 O
UP"

4

Mock

snament

upda fttoe o	 dala n Woup	 dofino

law	 proadurn Nods

function block

SEMANTIC RULES:

1. If present, the <label> prefacing the <upuate block>
gives the name of the block. If <label> is absent, the
<update block> is unnamed.

2. The block is delimited at its beginning by an <update
header> statement, and at the end by a <closing>. The
delimiting statements are described in Sections 3.7.1
and 3.7.4.

3. The contents of the block consist of a <declare group>
used to declare data local to the <update block>,
followed by any number of executable <statement>s.

4. The normal flow of execution of the <statement>s in the
block is sequential; various types of <statement> may

modify this normal -,equencing in a well-defined way.

5. Only PROCEDURE and FUNCTION blocks may be nested within
an 1 :.pdate block>. The nested blocks may appear inter-
spersed between the <statement>s of the block, and are
not executed in-line.

3-8

w
t
i

a
6

1

6. An <update block> is treated like a <statement>
in that it is executed in-line. In this respect
it is different from other code blocks.

7. The following <statement>s are expressly forbidden in3__
an <update block> in view of its special protective
function:

I/d statements (see Section 10.);

* invocations of <procedure block>s or <function block>s
not themselves nested within the <update block>;

e real-time programming statements, except for the
SIGNAL, SET,and RESET statements(see Section 8.8)•

f

3.5 The COM POOL Block.

The COMPOOL block specifies data in a co
to be shared at run time by a number of program
or function modules.

SYNTAX:

kwmpool

	 COMPOOL block	 O

blocs

Ubel	 compool header 	 deelere group	 closing

I

SEMANTIC RULES:

1. The name of the block is given by the <label> prefacing
the block.

2. The block is delimited at its beginning by a <compool
header> statement, and at its end by a <closing>. The
delimiting statements are described in Sections 3.7.1
and 3-7.4.

3. The contents of the block consist merely of a <declare
group> used to define the data constituting the compool.
In no sense is a <compool block> to he regarded as an
executable body of code.

4 • The maximum number of <compool block>s existing in a
program complex is implementation dependent.

!1

3-10

,^-za

In a <compilation>, block templates are used to provide
the outermost code block of the <compilation > with informa-
tion concerning external code or data blocks. Depending
upon the implementation, the translation of program, procedure,
function, and compool <compilation >s may automatically
generate the corresponding block templates, to be included
in other <compilation>s by compiler directive.

'there are four kinds of block templates, PROGRAM,
PROCEDURE, FUNCTION, and COMPOOL templates, all being
syntactically similar (see Section 3.1).

SYNTAX:

PROGRAM	
OS	 ;[CPROCEDURE	 templatetemplate	 FUNCTION

OMPOOL

label	 ;	 EXTERNAL	 g header	 declare gr^dosiing

example:
ETA:. EXTERNAL COMPOOL;

DECLARE S SCALAR;
CLOSE ETA;

SEMANTIC RULES:

1. The <label> of the template constitutes the template
name. It is the same name as that of the code block to
which the template corresponds.

2. The block template is delimited at its beginning, by a
header statement identical with the header statement of
the corresponding code block, and at the end by a
<closing>. The delimiting Statements are described in
Sections 3.7.1 through 3.7.4.

F

3. The contents of the block template consist only of a
<declare group, which has the following significance;'

• in a <program template>, the <declare group> contains
no statements. All information about external programs
is contained in the <program header>;

• in a <compool template>,`the <declare group> is used to
declare a common data pool identical with that of the
corresponding <compool block>;

w
• in a <procedure template> or <function template>, the

<declare group? is used to declare the formal parameters
of the corresponding <procedure block> or <function
block> (see Sections 3.7.2 and 3.7.3).

4. The keyword EXTERNAL preceding the header statement of
the block template , 'distinguishes it from an otherwise
identical code block. To a HAL/S compiler the keyword
is in effect a,%ignal to prevent the compiler from
generating object code for the block and setting aside
space for the data declared.

3-12

3.7 Block Delimiting Statements.

Both code blocks and block templates are delimited
at the beginning by a header statement characteristic of
their type, and at the end by a <closing> statement. In
all code blocks except fpr the COMFOOL block, the header
statement is the first statement of the block to be executed
on entry. A COMPOOL block, containing only declarations of 	 124
data, is, of course, not executable at all.

3-13

s

3.7.1 S.impte Header. Statemewta
t

Simple header statements are those which specify no
parameters to be passed into or out of the block. They
are the compool, program, task and update header state-
meats .

SYNTAX:

J

COMPOOL
PROGRAM header

statementsTASK	 O
UPDATE	 7

update
header

task
	 UPDATEPDATE

program	 TASKheader

ACCESS

	

cornpoot	 PROGRAM

	

header	 i

ACCESS

i
COM.

RIGID

a

_	

y

J

3-14

0

;i

SEMANTIC RULES:

1. The type of the code block or template is determined
by the type of the header statement, which is in turn
indicated by one of the keywords COMPOOT, PROGRAM,
TASK and UPDATE.

2. The keyword ACCESS causes managerial restrictions to
be placed upon the usage of the block in question. The
manner of enforcement of the restriction is implementa-
tion dependent.

3. The keyword RIGID causes Compool data (except for
data with the REMOTE attribute) to be organized in
the order declared and not rearranged by the compiler. 	 90 i

i
t

E

3.7.2 The Phocedwce HeadeA Statement.

The procedure header statement delimits the start of
a <procedure block> or <procedure template>.

SYNTAX:

.r

'C

i.!

PROCEDURE header saeeme"t

hem

PROCEDURE

(kh"for

REENTRANT

— —	 i

ASSIGN	 (identifier	 1	 EXCLUSIVE	 ACCESS

example:.
PROCEDURE ASSIGN (B);

SEMANTIC RULES:

1. The keyword PROCEDURE identifies the start of a <procedure
block, or <procedure template>. it is optionally
followed by lists of "formal parameters" which correspond

124	 to "arguments" in the invocation of the procedure by a
CALL statement (see Section 7.4).

2. The <identifier>s in the list following the PROCEDURE
keyword are called "input parameters" because they may not
appear in any context inside the code block which may
cause their values to be changed.

1

3-16

3. The <identifier>s in the list following the ASSIGN keyword
are called "assign parameters" because they may appear
in contexts inside the code block in which new values may
be assigned to them. They may, of course, also appear in
the same contexts as input parameters.

4. Data declarations for all formal parameters must appear
in the <declare group> of the <procedure block> or
<procedure template>.

5. If the <procedure header > statement specifies neither of
the keywords REENTRANT or EXCLUSIVE, then only one real
time process (see Section 8.) may be executing the
<procedure block> at any one time;. however there is no
enforcing protective mechanism. If the keyword EXCLUSIVE
is specified, then such a protective mechanism does exist.
If an EXCLUSIVE <procedure block> is already being executed
by a real time process when a second process tries to
invoke it, the second process is forced into the stall
state (see Section 8.) until the first has finished execu-
ting it If the keyword REENTRANT is specified, then two
or more processes may execute the <procedure block>
"simultaneously".

^gg
6. The keyword REENTRANT indicates to the compiler that 	 B

reentrancy is desired. However, other attributes and
conditions may conflict with this overall objective.

(The following effects should be noted:

e STATIC data is allocated statically and initialized
statically. There is only one copy of STATIC data
which must be shared by all processes simultaneously	 107
executing the block. Hence, in coding REENTRANT
blocks care must be taken not to assume that STATIC
variables participate in the reentrancy.

• AUTOMATIC data is allocated dynamically and initialized
dynamically. Every process simultaneously executing
the block gets its own initialized copy of the data
or entry into the block. In general, all local data
in a REENTRANT block should be declared with the
AUTOMATIC attribute.

• Procedures and functions defined within a REENTRANT
block must also possess the REENTRANT attribute if
they too declare local data which is required to
participate in the reentrancy.

3

3-17

u1`

	

	 In addition, for reentrancy to be preserved, the following
rules must be observed:

• Update blocks* and inline functions within a. REENTRANT
107__	 block may not declare any local data, STATIC or

AUTOMATIC, because the update block does not inherit
141	 the reentrant attribute from the enclosing procedure

l	 declaration

9 A procedure or function called by a REENTRANT block
must itself also be .T.ENTRANT.

i

7. The keyword ACCESS may be attached to the <procedure
header> of a <procedure template> and its corresponding
external <procedure block>. It denotes that managerial

'	 restrictions are to be placed on which <compilation>s
may reference the <procedure block>. The manner of enforce-
ment is implementation dependent.

I

1

y

f

r

F

i

(

* Any use of update blocks and LOCK data, or of EXCLUSIVE
141

	

	 procedure or function blocks should be carefully analyzed
with respect -! unfavorable timing problems if a
procedure is reentered by a nigher priority process.

3-18

f

3.7.3 The Function HeadeA Statement.

The function header statement delimits the start of
a <function block> or <function template>.

SYNTAX:

FUNCTION header statement 	 O
TEXCLUSIVE

FUNCTION W 	 type spe

17

	

(identifier	 !	 REENTRANT

e

ACCESS

example: FUNCTION (A) SCALAR REENTRANT;

SEMANTIC RULES:

1. The keyword FUNCTION identifies the start of a <function
block> or <function template>. It is optionally followed
by a list of "formal parameters" which are substituted
b	 d,,	 t f,	 4-1, t 4	 f 4-1,

	

X correspon AI	 go
 	 s in e invoca ion o	 e

<function block> (see S';ection 6.4).

2. The <identif ier>s in the list following the FUNCTION
keyword art. "input parameters" since they may not appear
in any context inside the <function block> which may cause
their values to be changed.

3-1.9

r t'a IS

ti\

V
3. Data declarations for all the formal parameters must

appear in the <declare group> of the <function block>
or <function template>.

4. <type spec> identifies the type of the=<function block>
or <function template>. A <function block > may be of
any type except evert. A formal description of the type
specification given by <type spec > is given in Section 4.7

5. If the <function header > statement specifies neither of
the keywords REENTRANT or EXCLUSIVE, then only one real
time process (see Section 8.) may be executing the
<function block > at any one time; however there is no
enforcing protective mechanism. If the keyword EXCLUSIVE
is specified, then such a protective mechanism does exist.
If an EXCLUSIVE < function block> is already being executed
by a real time process when a second process tries to
invokej't, the second process is forced into the stall
state ;;(see Section 8.) until, ,, , , , the first has finished exe-
cuting it. If the keyword REENTRANT is specified, then
two or more processes may execute the <function block>
"simultaneously".

6. The keyword REENTRANT indicates to the compiler that
reentrancy is desired. However, other attributes and
conditions may conflict with this overall objective.

a	 The following effects should be noted:

• STATIC data is allocated statically and initialized
statically. There is only one copy of STATIC data
which must be shared by all processes simultaneously
executing the block. Hence, in coding REEd`I ANT
blocks care must be taken not to assure that STATIC

107	 variables participate in the reentrancy.

• AUTOIMATIC data is allocated dynamically and initialized
dynamically. Every process simultaneously executing
the block gets its own initialized copy of the data
on entry into the block. In general, all local data
in a REENTRANT block should be declared with the
AUTOMATIC attribute.

'	 o Procedures and functions defined within a REENTRANT
block must also possess the REENTRANT attribute if
they too declare local data which is required to
participate in the reentrancy.

Y ^

i
y

3-20

In addition, for reentrancy to be preserved, the following
rules must be observed:

0 Update blocks* and inline functions within a REENTRANT
l	 block may not declare any local data, STATIC or

AUTOMATIC, because the update block does not inherit
the reentrant attribute from the enclosing function
declaration.

• A procedure or function called by a REENTRANT block
must itself also be REENTRANT.

7. The keyword ACCESS may be attached to the < function header>
of a <function template> and its corresponding external
<fun^tion block>. It denotes that managerial restrictions
are to be placed on which compilation s may reference
the <function block>. The manner of enforcement is imple-
mentation dependent.

147

114

M	

* Any use of update blocks and LOCK data, or of EXCLUSIVE
procedure or function blocks should be carefully analyzed 	 141
with respect to unfavorable timing problems if a function
is reentered by a higher priority process.

3-21

J

AW u. W Ot t.

e

3.7.4 The CLOSE Statement.

For all code blocks, COMPOOL blocks, and block templates,
the CLOSE statement h is the <closing> delimiter of the block.

SYNTAX:

SEMANTIC RULES:

1. The <closing> of a code block or block template is
denoted by the CLOSE keyword followed by an optional
<label>. If present, <label> must be the name of the
block.

2. Execution of the CLOSE statement causes a normal
exit from a PROGRAM, PROCEDURE, TASK, or UPDATE

124	 block, and a run time error from a FUNCTION block.
Exit from a FUNCTION block must be achieved via
the RETURN statement (see Section 7.5).

3. The <closing> of a PROGRAM, PROCEDURE, FUNCTION,
TASK, or UPDATE block may be labelled as if it were
a <statement>. The <closing>s of COMPOOL blocks
and block templates cannot be labelled.

rt

3-22

1

3.8 Name Scope Rules.

By using the code blocks described, and by taking
advantage of their nesting property, the modularization of
HAL/S <compilation>s may be effected. An important consequence
of the nesting property is the need to determine the "name
scope" over which names defined in a code block are potentially
known. Names (i.e. <identifier>s) to which name scope rules
apply are generally either labels or variable names.

GENERAL RULES:

1. The name scope of a code block encompasses the entire
contents of the block, including all blocks nested within
it.

2. A name defined in a name-scope is known, and therefore
able to be referenced, throughout that name-scope,
including all nested blocks not redefining it. A name
defined in a name -scope is not known outside that name-
scope.

3. Names defined in all common data pools used by a
<compilation> are considered to be defined in one name
scope which encloses the outermost code block of the
<compilation>.

QUALIFICATIONS:

1. The name of a code block is taken to be defined in
the name scope immediately enclosing the block. A
PROCEDURE or FUNCTION label defined at the outermost
level of compilation can be invoked from anywhere
within the compilation.

2. The <label> of a statement- is effectively unknown in
blocks contained in the name scope where the <label>
is defined. This is because a code block cannot be
branched out of by using a GO TO statement (see Section
7.7)

Block labels must be unique throughout a unit of compila-
tion.

Under particular, limited circumstances described in
Section 4.3, the names of structure template nodes and
terminals need not be unique.

3-23

example:

ALPHA: PROGRAM;
DECLARE X; X known everywhere

outer name
scope DECLARE Y; this %, known everywhere

except in $ETA.

BETA: PROCEDURE;-*- BETA is known everywhere;

DECLARE Y; new Y known in BETA only
inner
scope n\ DECLARE Z; ^— Z known in BETA only

CLOSE BETA;

DELTA: Y -0; DELTA not known in BETA

CLOSE ALPHA;

i

1

4. DATA AND OTHER DECLARATIONS

The HAL/S language provides a comprehensive set of
data types. To encourage clarity and decrease the frequency
of errors of omission, all data is required to be declared in
specific areas of a HAL compilation called "declare groups
Occasionally the demands of a particular algorithm also
reauire other kinds of declarations to be made. The diagram
on the following page summarizes the relationship among the
types and organizations.

TYPES

arithmetic

HAL DATA TYPES AND ORGANIZATIONS

ORGANIZATIONS

string	 array	 structure

character	 individual	
arraytypes

bit	 combination

special

event

process
event

scalar

integer

147 1
	

fixed

vector

vectorf

matrix

matrixf

* Component Subscripting (see Section 5.3.5) Allowed.

** Array Subscripting Allowed

*** Structure Subscripting Allowed.
1

r

4-2

..OSNIAL PACE
OF POOR QUALITY

4.1 The Declare Group.

A <declare group> is a collection of data and other
declarations. The position of <declare groups within code
blocks and block templates has been described in Section 3.

c v%Tmvk v

dedwe group

l

declare
4roup

replace statement

structure template

declare statement

SEMANTIC RULES:

1. A <declare group> may simply be empty, or it may contain
<replace statement>s, <structure template>s, and <declare
statement>s. The form of each of these constructs is
defined in this Section.

2. The "name scope (see Section 3.8) of <identifier>s
defined in a <declare group> is the code block contain-
ing the <declare group> and potentially all code blocks

i' nested within it.
P

—.'I

4.2 The REPLACE Statement.

The REPLACE statement is used to define an identifier
text substitution which is to take place wherever the identifier
is referenced within the same name scope after its definition.
The REPLACE statement constitutes a "source macro" definition.

4.2.1 Form o6 REPLACE Statement

SYNTAX:

npiea stettement
12

replay
statement

identifier

REPLACE	 identifier

141	 BY	 ^^	 text	 +^

examples;
REPLACE ALPHA BY "J+1"
REPLACE BETA (X, ANGLE) BY "SIN (X ANGLE) • EXP (X)/X";

1
GENERAL SEMANTIC RULES:

1. The <identifier> following the keyword REPLACE is
called the REPLACE name.

2. A REPLACE name may not appear as a formal parameter
in a <procedure header> or <function header>.

3. A REPLACE name in an inner code block is never
"replaced" as a result of another REPLACE statement
located in an outer code block.

4. Nested replacement operations to some implementation
dependent depth are allowed (i.e. the <text> of a
<replace statement> may contain a further <identifier>
to be replaced).

SEMANTIC RULES: Simple Replacements

1. A simple replacement is a REPLACE statement with no
parameter list following the <identifier>.

2. whenever it is referenced, an <identifier > defined in
a simple REPLACE statement is to be replaced by <text>
of the definition as if <text> had been written directly
instead of the source macro reference. Enclosing the 	 81
reference within ^ signs (e.g. ^ALPHA4) makes the-
<text> visible in the compiler listing.

3. <text> may consist of any HAL/S characters except
instances of an unpaired double quote (") character.
A double quote character (") is indicated within
<text> by two such characters in succession

SEMANTIC RULES: Parametric Replacemesits

1. A parametric replacement is defined by a REPLACE statement
with a list of one or more parameters following the <identifier>.
The maximum number of parameters allowed is an implementa-
tion dependent limit. Each parameter is itself a HAL/S
<identifier>. It is known only locally to the REPLACE
statement: its name may therefore be duplicated by
names used for ether <identifier>s in the name scope
containing the REPLACE statement.

2. The <text> of a parametric REPLACE statement is composed of
any HAL/S characters except instances of an unpaired double
quote (") character. A double quote character may be
indicated within <text> by coding two such characters
in succession. The <text> may contain, but is not
required to contain, instances of the parameters of
the REPLACE statement.

4-5

M

i

4.2.2	 ReSenencfng REPLACE S.tatement6

SYNTAX:

prunetric replan nfrema	 fZ

parametric	 f
replace
reference

identifier	 argument

i
J

SEMANTIC RULES:

1. A reference to a parametric REPLACE statement consists
mof the REPLACE name followed by a series of <argument>s

enclosed in parentheses. The REPLACE name must have
been def finedpreviously within the name scope of the
reference. The number of <argument>s must correspond
to the number of parameters of the REPLACE statement
being referenced. Enclosing the reference within C signs
(e.g., (^CBETA(A,B)4) Hake the <text> visible in the compiler
listing.

2. The <argument>s supplied in a parametric REPLACE
reference are substituted for each occurrence of the
corresponding parameter within the source macro
definition's <text>. Note that if the parameter in
question does not occur within the source macro
definition <text>, the <argument> is ineffective.
<text> substitution is always completed before parsing.

Example:

124	 REPLACE BETA(X,ANGLE) BY "SIN(X ANGLE) 	 EXP(X)/X";

Z • = BETA (Y, ALPHA) ; WILL GENERATE SIN (Y ALPHA) 	 EXP (Y) /Y

4-6

i

3. In general, the <argument>s supplied in a parametric
REPLACE reference comprise <text> separated by commas
(subject to the specific exceptions listed, below).
As such, they conform to the preceding semantic rules
for <text> with the following emendations.

• Blanks are significant in <argument>s. Only the
commas used to separate <argument>s are excluded
from the <text> values substituted into the macro
definition.

• The <text> string comprising an <argument> may be
empty. The value substituted in such a case is a
null string,

• Within each <argument> there must be an even number
of apostrophe characters ('). The effect of this
rule is to require that each character literal used
must be completely contained within a single <argument>.

• Within each <argument> there must be an even number
of quotation mark characters (°). The effect of this
rule is to require that the substitution of a nested
REPLACE statement include the entire text of the
replacement within a single <argument>.

• Within each <argument> there must be a balanced number
of left and right parentheses: for each opening left
parenthesis there must be a corresponding right
parenthesis.

• Commas are not separators between <argument>s under the
following circumstances:

within a character literal.

within REPLACE <text>.

nested within parentheses.

4-7

4.2.3 Identi6.ien Genenati.on

New identifiers may be generated by enclosing a
reference to a simple REPLACE statement within t signs.
The effect is to make visible in the compiler listing,
the catenation of the REPLACE < text> with the characters
surrounding the construct. For example , REPLACE ABLE BY "BAKER";
then:

1) X = fiABLVYZ

becomes X = BAKERYZ

2) CALL P 4ABLEC (Q,R,S);

becomes CALL P BAILER (Q, R, S)

4^ signs are taken in pairs, thus CXCY4Z^ is interpreted
as 4 XV YOV:.

4.2.4 Idewtc;6ieA GeneAati.on With MacAo PaAwneteu
l

New identifiers may be generated for text substitution
within a source macro text by enclosing references to macro
parameters within ^ signs. The effect is the compile-time
catenation of the corresponding macro argument with the
characters surrounding the G-enclosed parameter (a blvnk
is considered as a character). For example:

REPLACE ABLE(XPY)BY
"P = 4 XVQRS+Y;
CALL SUB 2V;

Then the reference ABLE(V,A) causes the
following substitutions.

P = VQRS+A;
CALL SUB V;

Enclosing the entire reference within ^ signs, i.e. 4ABLE(V,A)4
makes the text with the new identifiers visible in the
compiler listing (see Section 4.2.2).

4-8

81

81

_	 y

4.3 The Structure Template.

In HAL/S, a "structure" is a hierarchical organization
of generally nonhomogeneous data items. Conceptually the
form of the organization is a "tree", with a "root",
"branches", and with the data as "leaves". The definition of
the "tree organization" (the manner in which root is connected
to branches, and branches to leaves) is separate from the
declaration of a structure having that organization. The
tree organization is defined by a <structure template>
described below. The description of the declaration of
structures is deferred to later subsections.

The following figure illustrates a typical tree
organization.

start of	 end of

tree walk ,r	 tree walk

1 l
	

-- "root"
tt
t t	 - — NAME

i

fork"
fi	 -	 1

2

-	 "branch"

r -

0 structure terminal
O minor structure
	 "leaf"

Q template name	
1 /
	

\>'	
.`^_
	 `	 4

tree diagram for a typical structure template

INTERPRETATIONS:

1. The "template name" is at the root of the tree organization.

2. The named "leaves" and "'forks" in the branches are at
numbered levels below the root. Leaves and forks are
called "structure terminals" and "minor structures'
respectively.

4-9

SIG
OF F^Z I 041.`k QTY

i
_t

3. The "tree walk" shown can provide an unambiguous linear
description of the tree organization. The syntactical
form of the <structure template> corresponding to a tree
organization calls for the names of minor structures and
structure terminals to be -defined in the same order that
the tree walk passes them on the left, as indicated by
the arrow at * in the diagram.

4. The tree organizations of two templates are considered to
be equivalent for the purposes of various HAL/S statement
contexts only if the tree forms are identical, and the type
and attributes of all nodes in the tree agree. An implication
of this rule becomes apparent: if two corresponding terminal
nodes of otherwise equivalent structures reference different
structure template names , then the structure templates
containing these terminal nodes are not identical.

The syntactical form of a <structure template> is now given:

SYNTAX:

structure template statement
_13

structure
template

9C	
DENSE	 RIGID

STRUCTURE	 identifier

ALIGNED

number	 identifier	 attributes
1S

4-10

k-

l ^t
^ y

GENERAL RULES:

1. The <template name> of the <structure template> is
given by the <identifier> following the keyword STRUCTURE.

2. The operational keywords DENSE and ALIGNED denote
data packing attributes to be applied to all <identifiers>
declared with the <structure template>. At each level of
a <structure template >, either the DENSE or ALIGNED
packing attribute is in effect, subject to modification
by use of DENSE and ALIGNED as minor <attributes>. The
choice used in the <structure template> gives the default
value for the whole template. This packing attribute
is then inherited from higher to lower levels in the
structure unless the <attributes >' of a minor structure
or terminal element modify the choice. Details of the
allocation algorithm used for DENSE and ALIGNED data
are implementation dependent.

3. The keyword RIGID causes data to be organized in
the sequential order declared within the <structure
template>. This attribute is then inherited from
higher to lower levels in the structure. Details of
the allocation algorithm used for RIGID are implementa-
tion dependent. (Note that the absence of the keyword
RIGID permits compiler reorganization of data).

4. In each definition,<number> is a positive integer
specifying the level of the tree at ^T:Yhich the definition
is effective. Numbering is sequential starting with 1.

5. The level of definition in conjunction with the order
of definition is sufficient to distinguish between a
minor structure and a structure terminal.

6. In the form <identifier><attributes>, <identifier> is
the name of the minor structure or structure terminal
defined. The applicable <attributes> are described in
Section 4.5,

7. If the <attributes> specify a structure template <type
spec> (see Section 4.7), then the template of the
structure is being included as part of the template
being defined.

8. The minor structures and structure terminals of the
template (and forks and leaves) are sequentially defined
following the colon. The order of definition has already
been described.

9. Each definition of a minor structure or structure
terminal is separated from the next by a comma.

4-11

153

NAME UNIQUENESS RULES:

1. <template names> may duplicate <identifiers> of any
other kind within a given name scope, but may not
duplicate other <template names>.

2. In a? given name scope, if a <template name> is used
exclusively in qualified structure declarations,
duplications of the'<identifiers> used for nodes
may occur under the following circumstances:

2

_ 3

.- — - 4

A

iii) equivalent form of template Y with-^ut nesting

STRUCTURE Y:
1 F,

2 X,
3A SCALAR,	 F
3 B VECTOR(4),	 x
3 C,

4 D MATR I X (4,, 4) ,

4 E BIT(3),	 A	 B

2 G INTEGER,
1 .4 CHARACTER(10) 	 D	 E 0

l

I

a

• Any < identifier> used for a node in one template may
duplicate an< identifier> used for a node in another
template.

• Any < identifier > used for a node in a given template
may duplicate another <identifier > used for a different
node in the same template, provided that a qualified
reference can distinguish the two nodes.

3. In a given name scope, if a template is ever used for a
non-qualified structure variable declaration, the duplications
allowed under rule #2 within that template become illegal.

examples:

i) definition of a template 2

STRUCTURE Z:
1 A SCALAR,
1 B VECTORM,
1 C,

2 D MATR I X(4, 4),
2 E B I T(3);

ii) definition of a template Y
with Z nested within it

STRUCTURE Y:
1 F,
2 X Z-STRUCTURE,
2 G INTEGER,

1 H CHARACTER(10);

Z

CA AB

D	 E	 2

x a

. ,

4.4 The DECLARE Statement.

The DECLARE statement is used to declare data names
and labels, and to define their characteristics or
<attributes >.

SYNTAX:

SEMAINTIC RULESt

1. Each <identifier> and its following <attributes> consti-
tute the declaration of a data name or label.	 Each
definition is separated from the next by a comma.

2. The generic characteristics if any, of all <identifier >s
to be declared are given by the "factored" <attributes>
immediately following the keyword DECLARE.	 The
<attributes> of a particular <identifier> must not
conflict with the factored <attributes>.

3. The name scope of any of the <identif ier>s defined in a
<declare statement> is the code block containing the
<declare group> of which the <declare statement> is a
part (see Section 3.8). 	 In any name scope all such
< identifiers> must be unique.

4. There are two forms of <attributes>; data declarative, and
label declarative.	 The form determines whether an
<identifier> is defined as a data name or a label.

4-14

r	 8

4

4-15

4.5 Data Declarative Attributes.

Data declarative attributes are used to define an
<identifier> to;be a data name or part of a structure template,
and to describe its characteristics. If <attributes > appears
in a <declare statement >, the <identifier> defined is a.
"simple variable", or a "major structure" with predefined
template. If <attributes > appears in a <structurre template>,
the <identifier> defined is either a minor structure, or a
structure'terminal. Structure terminals have very similar
properties to simple variables.

SYNTAX;

90

142

1 148

► 	 RK-IN L PACE E9	 .:.^JNAL PAGE I-
OF PCOR	 OF POOR QUALITY

F'

^. ..	 -x^. ^au.mx<axnx«u....^...^er_ 	 m+a.s-.+r•.^uver^e oa.	 '

t,

TFn

JS

GENERAL SEMANTIC RULES:

1. The <type spec> determines the type and possibly the
precision of the <identifier> to which the <attributes>
are attached. Type specifications are discussed in
Section 4.7.

2. An optional array specification can precede the <type
spec. It starts ,-Vith the keyword ARRAY; the following
parenthesized list specifies the number of dimensions
in the array, and the size of each dimension. The number N
of <arith exp>s gives the number of dimensions of the array.
<arith exp> is an unarrayed integer or scalar expression
computable at compile time l . The value is rounded to the
nearest integer, and indicates the number of elements in a
dimension. Its value must lie between 2 and an

153	
implementation-dependent maximum. The maximum value of N
is implementation dependent. A single asterisk denotes
a linear array, the number of elements of which is greater
than 1 but unknown at compile time.

3. Following the <type spec> a number of minor attributes
applicable to the <identifier> can appear. These are:

STATIC/AUTOMATIC - the appearance7^of one of these key-
words is mutually exclusive of the other.. STATIC and
AUTOMATIC refer to modes of initialization of an
<identifier>, not to the allocation of its storage.
The AUTOMATIC attribute causes an <identifier> with
the <initialization> attribute to be initialized on
every entry into the code block containing its
declaration. The STATIC attribute causes such an
<identifier> to be initialized only on the first
entry into the code block. Thereafter its value on
any exit from the code block is guaranteed to be
preserved for the next entry into the block. STATIC
data is not reinitialized whenever a program is re-
entered (executed again). Values are preserved in
this way even though a STATIC <identifier> has no
<initialization>. Preservation of values is not
guaranteed for AUTOMATIC <dentifier>s. If ne ther
keyword appears, then STATIC is assumed.

1 See Appendix F.

4-16

• DENSE/ALIGNED - The appearance of one of these keywords
is mutually exclusive of the other. Although legal
in other contexts, the keywords are only effective
when appearing as <attributes> in a <structure template>.
DENSE and ALIGNED refer to the storage packing density	 124
to be employed when a <structure var name> is declared
using the template. If neither keyword appears, then
ALIGNED is assumed.

y	 a ACCESS - This attribute causes implementation
dependent managerial restrictions to be placed
upon the usage of_the <identifier> as a variable
in assignment contexts. The manner of enforce-
ment of the restrictions is implementation
dependent.

• LOCK - This attribute causes use of the <identifier>
to be restricted to the -interior of UPDATE blocks,
and to assign argument lists. <number> indicates
the "lock group" of the <identifier> and lies
between 1 and an implementation-dependent maximum.
"*" indicates the set of all lock groups. Specifying 	 153
LOCK (*) for a formal parameter overrides the LOCK
attribute (if any) of the corresponding argument in
the invocation. The purpose of the attribute is de-
scribed in Section 8.10.

• LATCHED - see Section 4-.7.

• <initialization> - This attribute describes the
manner in which the values of an <identifier>
are to be initialized. It is described in
Section 4.8.

• REMOTE - This attribute identifies data which is
to be located in areas separate from normal data. 	 124
Its implementation is machine dependent. Its
purpose is to provide information to the compiler so
that proper addressing to the data can be generated.
Generally, this addressing requires longer and slower
access methods. REMOTE data cannot be AUTOMATIC.

• RIGID —Although legal on other contexts, the keyword
is only effective when appearing as an <attribtue> 	 90
in a <structure template> or in a Compool. It causes
data to be organized in the order it is defined within
the <structure template>.

4-17

s
1
a

0 RANGE - This attribute is used to specify the range
of values of the variable. If only one < arith exp>

	

148'	 is specified, it must be greater than zero and the
specification is equivalent to a RANGE (-<arith exp>
TO <arith exp>). <arith exp> is an unarrayed integer
or scalar expression computable at compile time.l
<<rith exp> 1 must be less than <arith exp> 2*

'	 - For INTEGERS, the <arith exp>s are converted to
integers 2 and may be used to perform compile
time and/or runtime checks. One such check is that

	

142	 the magnitude of each <arith exp> must be no
larger than the largest value of type <type spec>.
RANGE information may also be used in an implemen-
tation dependent manner to pack integers (cf. the

j	 DENSE attribute).

- For SCALARs, the <arith exp>s are converted to
scalars 2 and may be used to perform compile time
and/or runtime checks.

- For FIXEDs, the <arith exp>s must be literals or
FIXEDs and may be used to perform compile time
and/orsruntime checks.

For matrice and vectors, the RANGE is interpreted

i as an assertion about each component.

i	 .

r

1 See Appendix F.

2 See Appendix D.

B
'4. LLr

RESTRICTTQNS FOR SIMPLE VARIABLES AND MAJOR STRI

1. The asterisk form of array specification can only be
applied to an <identifier> if it is a formal parameter
of a procedure or function. The actual length of the
array is supplied by the corresponding argument of an
invocation of the procedure or function.

2. An array specification is illegal if the <identifier>
is defined by the <type spec> to be a major structure.

3. The ACCESS attribute may only be applied to <identifier>
names declared in a <compool block> or <compool template>. 1153
The LOCK attribute may only be applied to <identifier>
names declared in a <compool block>', <compool template>
or <program block>, or to the assign parameters of
procedure blocks.

4. The LATCHED attribute only applies to event variables
(see Section 4.7) .

5. The REMOTE and AUTOMATIC attribute's are illegal for any
<identifier> of EVENT type. They are also illegal if
<identifier> is the input parameter of a PROCEDURE or 	 153
FUNCTION block.

6. The attributes DENSE, ALIGNED, and RIGID are illegal
for major structures. (90

7. The <initialization> attribute may not be applied to
formal parameters of procedures and functions.

8. The RANGE attribute may be applied only to integer, scalar,
1142fixed, vector(f) and matrix(f) variables. I

RESTRICTIONS FOR STRUCTURE TERMINALS;

1. The asterisk form of array specification is not allowed.

2. The <identifier> may not be defined to be an unqualified 1153
structure by the <type spec>. 	 Otherwise, the type
specification is the same as for simple variables.

3. The appearance of any minor attributes except DENSE,
ALIGNED, RIGID, and RANGE is illegal. 	 Appearances of DENSE 142
and ALIGNED override such appearances on the minor 90
structure levels or on the <structure template> name
itself.

4. An array specification is illegal if the <identifier>
is defined by the <type spec> to be a major structure. 153

(

4-19

^N

90 1

RESTRICTIONS FOR MINOR STRUCTURES:

1. The <type spec > for a minor structure name must be
empty (see Section 4.7).

2. No array specification is allowed.

3. No attributes except DENSE, ALIGNED and RIGID are allowed.
Appearances of DENSE and ALIGNED at any level of the structure
override such appearances at higher levels or on the
<structure template > name itself. The appearance of
RIGID causes structure terminals within the minor
structure to be organized in the order in which they
are declared. However, RIGID at the minor structure
level will not affect the order of data within an
included template specified by a structure template
<type spec>.

EXAMPLE:

STRUCTURE Y:

1 A SCALAR,
1 B VECTOR M ,

1 D MATRIX(4,4);

STRUCTURE Z RIGID;

1 F BIT(13),

1 G Y-STRUCTURE,
1 H CHARACTER(10);

The order within Z will be: F,G,H, but the order
within G will not necessarily be as declared by Y.

L-

4

.	
t^

4-20

4.6 Label Declarative Attributes.

A label declarative attribute defines an <identifier>
to be a <label> of some specific type.

SYNTAX:

Wml claclaradve attd`bute. 16

Iributaa

PROCEDURE	 NONHAL	 numbs

FUNCTION	 type spec 17

TASK
example:
FUNCTION. VECTOR (4) NONHAL (14

SEMANTIC RULES:

1. The form FUNCTION <type spec> is used to define the name
and type of a <function block>. Such a definition is
only required if the function is referenced in the source 	 124
before the occurrence of its black definition.

Functions requiring definition this way are subject to the
following restrictions:

• they must have at least one formal parameter;

• none of their formal parameters may be arrayed.

The type specification of the function declared is given by
<type spec> (see Section 4.7). A function may be of any
type except EVENT.

2. The NONHAL (<number>) indicates that an external routine
written in some other language is being declared. NONHAL
(<number>) may be a factored attribute applied to a list
of label declarations. The <number> is an implementation-
dependent indication of the type of NONHAL linkage.

3. The form TASK is used to define the name of a <task ,rj2 ock> .
It may be required if a <task block> is referenced before
the occurrence of its definition.

_i

(. 4-21 F t	 ,
s .,j

ORIGINAL PAGE 1w
Off- POOR

QUALITY

147

EtI:

41-3 TYPE SPECIFICATION

The type specification or <type spec> provides a
means of defining the type (and precision where applicable)
of data names and parts of structure templates.

1. If <type spec> is empty (i.e. there is no specification 	 z
present) then the interpretation is as follows:

153
I	

• If the <type spec> is that of a simple variable , f=ction
or structure terminal, then the implied Hype is
SCALAR with.SINGLE,precision.

4-22
rr	 h

i

i

k (9 The <type spec> is otherwise that of a minor
E

structure of a strucute template.

2. If the <type spec> is empty except for the keyword SINGLE
or DOUBLE, the implied type is SCALAR with the indicated

i precision.

3. The precision keywords only 	 apply to VECTOR, VECTO,IRF,
MATRIX, MATRIXF, SCALAR, FIXED, and INTEGER.<type spec>s. 	147
In the last case SINGLE implies a halfword integer,,, andt
DOUBLE a fullword integer. 	 In the absence of a precision
keyword, SINGLE is presumed.

4. Any <arith exp> in a <type spec> is an unarrayed :integer
or scalar expression computable at compile time (s.ee
AppendiN F).	 Its value is rounded to the nearest integer• 1153

i (Specifying a scalar expression is exactly the same as
specifying its integer equivalent.)

4

5. The <scaling> attribute defines the scale factor (see
Section 2.3.3) of the <type spec>.	 The scale factor must
be compile time computable (see Appendix F).

RULES FOR INTEGER, SCALAR, AND FIXED TYPES:

1. Integer, scalar, and fixed types are indicated by the key-
words INTEGER, SCALAR, and FIXED respectively. 	 Note that

' scalar type can be indicated implicitly as described in
General Semantic Rules 1 and 2.i

RULES FOR VECTOR, VECTORF, MATRIX, AND MATRIXF TYPES:

1. The keywords MATRIX and MATRIXF are used to indicate matrices 147
containing scalar and fixed components respectively. 	 If
present, the two <arith exp>s in parentheses give the row
and column dimensions of the matrix respectively. 	 In the
absence of such a size specification, MATRIX(3,3) is implied. 1153

2. The keywords 'VECTOR and VECTORF are usecd..to_ indicate vectors
containing scalar and fixed components.respectively. 	 If
present, the parenthesized <arith exp> indicates the length
of the vector.	 In the absence of a length specification,
VECTOR(3) is implied. 153

3. The row and column dimensions of a matrix, and the length
r	

_ii of a vector may range betwen 2 and an implementation dependent
maximum.

4. In the remainder of this specification, the word vector is
used generically for VECTOR and VECTORF where no confusion
could arise.	 The word matrix is used generically for MATRIX
and MATRIXF when no confusion could arise.

l'
4-23

2

4

I;

i\

1

^I

I!

RULES FOR CHAMACTER TYPES:

1. Character type is indicated by the keyword CHARACTER.
A character variable is of varying length; the
parenthesized <arith exp> following the keyword
CHARACTER denotes the maximum length that the
character variable may take on. A length must be
specified.

2. The working length of a character data type may range from
zero (the "null" string) to the defined maximum length.

3. The defined maximum length has an upper limit which is
implementation dependent.

4. The asterisk form of character maximum length specification
must be applied to an <identifier> if it is a formal para -
meter of.a procedure or function. The actual length infor-
mation o$ the character string is-supplied by the corres-
ponding argument in the invocation of the procedure or
function.

RULES FOR BIT, BOOLEAN, AND EVENT TYPES:

1. The keyword BIT indicates type. The following parenthe-
sized <arith exp> gives the length in bits. Its value
may range between 1 and an implementation dependent upperlimit.

2. The keyword BOOLEAN indicates a knit type of !-bit length..

3. The keyword EVENT indicates an event type, similar to
BOOLEAN, but which differs in that it has real time
programming implications (see Section 8). An <identifier>
of event type is the only type to which the attribute
LATCHED is applicable. The implications of the LATCHED
attribute are discussed in Section 8.8. An <identifier>
of event type may not be used as an input formal Para-
meter, nor may it be a structure terminal.

RULES FOR STRUCTURE TYPE:

1. The condition for the <type spec> indicating a minor
structure are described in General Semantic Rule 1.

2. The phrase <template name>-STRUCTURE defines an <identifier>
to be a major structure whose tree organization is
described by a previously defined template called
<template name>.

4-24

7

3. The parenthesized expression or asterisk optionally
following the keyword STRUCTURE specifies the structure
to have multiple copies. The value specifies the number
of copies, which may range from 2 to an implementation
dependent maximum.

4. The copy specification may only be an asterisk if the
structure is a formal parameter of a procedure or function.
The actual number of copies is supplied by the corresponding
argument of an invocation of the procedure or .function 	 153
and must be greater than 1.

5. If the <identifier > name defined is the same as the
<template name> of the template of the structure,

_	 then the structure is said to be unqualified . Otherwise
the structure is said to be qualified. Te^ap'lates used for
non-qualified declarations may not contain nested
structure references. * Section 5.2 contains material on
some further implications of structure qualification.

6. If the <type spec> of a function is STRUCTURE then no
specification of multiple copies is allowed.

7. If the <type spec> of a structure terminal is STRUCTURE,
then no specification of multiple copies is allowed.

Declarations of non-qualified STRUCTURES must occur in the same name scope
as the template definition.

4-25

4.8	 Initialization.

The <initialization> attribute specifies the initial
values to be applied to an <identifier>. The circumstances
under which the attribute is legal have been described in
Section 4.5.

SYNTAX

initialization specification

initialization	 13

	

CONSTANT	 (initial list)

INITIAL

initial
list

expression

arith exp	 (initial list)

Cl)

	

example:	 9; see below
INITIAL (2,# (1, 3#5))

GENERAL SEMANTIC RULES

1. The <initialization> starts with the keyword INITIAL
or CONSTANT. If it starts with CONSTANT, the value of
the <identifier> initialized may never be changed. It
is illegal for <identifier>s with CONSTANT <initialization>
to appear in an assignment context.

4-26

f.

^6^4r	 +'Yxlj 11f Y r 1

i

tS

a

2. The simplest form of an <initial list> is a sequence
of one or more <expression>s computable at compile time.
(See Appendix F).

3. A simple <initial list> of the form given in Rule 2. may
be enclosed in parentheses, and preceded by <arith exp >##,
where <arith exp> is any unarrayed integer or scalar
expression computable at compile time. The value, rounded
to the nearest integer, is a repetition factor for the
initial values contained within the parentheses. This
repeated <initial list> may itself become a component
of an <initial list>, and so on to some arbitrary nesting
depth.

4. In addition to preceding a parenthesized <initial list>,
<arith exp>#p may also precede certain unparenthesized
items denoted collectively in the syntax diagram by g.
These items are:

• a single literal;

• a single unsubscripted variable name;

blank (i . e
.1,
the component(s) of the <identifier>

should not be initialized).

5. The presence of an asterisk at the end of the <initial list>
implies the partial initialization of an <identifier>.

6. The order of initialization is the "natural sequence"
specified in Section 5..5.

RULES FOR INTEGER, SCALAR f AND FIXED TYPES z	 147

1. If the <identifier> has no array specification, the.
<initial list> must contain exactly one value.

2. If the <identifier> has an array specification, then one
of the following must hold:

• the number of values in the <initial list> is
exactly one, in which case all elements of the
array are initialized to that value;

• the number of values in the <initial list> is
ractly equal to the number of array elements to

be initialized;

• the <initial list> ends with an asterisk, in which
case the number of values must be less than the

4-27

t

I

•

number of array elements to be initialized, and
partial initialization is indicated. 	 u

3. <expression> must be an unarrayed INTEGER• , SCALAR, or FIXED
expression computable at compile time (see Appendix F). Type
conversion between INTEGER and SCALAR is allowed where
necessary.

4. If the <identifier> is of type FIXED, <expression> must be a
147	 literal or of type FIXED. If the scaling of the expression

and the <identifier> are both defined, they must be equal.

RULES FOR VECTOR, VECTORF, MATRIX, AND MATRIXF TYPES:

1. If the <identifier> has no array specification, then one
of the following must hold

the number of values in the <initial list> is
exactly one, in which case all components of the
VECTOR or MATRIX are initialized to that value;

the number of values in the <initial list> is
exactly equal to the number of components to be
initialized;

the <initial list> ends with an asterisk, in which
case the number of values must be less than the
number of components to be initialized, and partial
initialization is indicated.

2. If the <identifier> has an array specification, then
one of the following must hold:.

the number of values in the <initial list> is
exactly one, in which case all the components of all
the array elements of the VECTOR or MATRIX are
initialized to that value;

the number of values in the <initial list> is
exactly equal to the number of component: of the
VECTOR or MATRIX, in which case every array
element takes on the same set of values;

the number of values in the <initial list> is
equal to the total number of components in all
array elements;

4-28

the <initial list> ends with an asterisk, in
which case the number of values must be less
than the total number of components in all array
elements, and partial initialization is indicated.

3. <expression> must be an unarrayed integer, scalar, or fixed
expression computable at compile time. Type conversion be-
tween integer and scalar is allowed where necessary.

4. If the identifier is of type MATRIX' or VECTORF, expression
must be a literal or be of type FIXED. if the scaling of	 147
the components and the scaling of the <expression> are both
defined, they must be equal.

RULES FOR BIT, BOOLEAN, EVENT AND CHARACTER TYPES:

1. If the <identifier> has no array ;pecification, the
<initial list> must contain exactly one value.

2. If the <identifier> has an array specification, then one
of the following must hold:

0 the number of values in the <initial list> is
exactly one, in which cae all elements of the
array are initialized to that value;

0 the number of values in the <initial list> is
exactly equal to the number of array elements to
be initialized;

0 the <initial list> ends with an asterisk, in which
case the number of values must be less than the
number of array elements to be initialized, and
partial initialization is indicated.

3. If an <identifier> of Bit, Boolean, or Event type is
being initialized, <expression> must be an unarrayed
<bit exp> computable at compile time (see Appendix F.).
If an Event <identifier> has the LATCHED attribute, then
it may be initialized to the value TRUE or FALSE (or
their equivalent). If it does not have the LATCHED
attribute, it can not be initialized. (see Section 8.8).
In the absence of <initialization> all events are implicitly
initialized to FALSE.

4. if an <identifier> of CHARACTER type is being initialized,
<expression> must be an unarrayed <char exp> computable
at compile time (see Appendix F.)..

4-29

I

'.y

RULES FOR STRUCTURE TYPES:

1. Only a major structure <identifier> may be initialized.

2. If the <identifier> has only one copy, then one of the
following must hold:

• the number of values in the <initial list> is equal
to the total number of data elements in the whole
structure;

• the <initial list> ends with an asterisk, in which
case the number of values must be less than the number
of data elements in the whole structure, and partial
initialization is indicated.

3. If the <identifier> has multiple copies, then one of the
following must hold:

• the total number of values in the <initial list> is
exactly equal to the total number of data elements
in one copy of the structure, in which case each copy
is identically initialized;

• the number of values in the <initial list> is equal
to the total number of data elements in all copies
of the structure;

• the <initial list> ends with an asterisk, in which
case the number of values must be less than the total
number of data elements in all the copies of the
structure, and partial initialization is indicated.

3. The type of each <expression>.must be legal for the type
of corresponding structure terminal initialized (see the
Semantic Rules for initialization of sim ple variables
of each type) .

4

5.	 DATA REFERENC I NG CONS I DERATI ONS

Central to the HAL/S language is the ability to
access and change the values of variables. Section 4 dealt
comprehensively with the way in which data names are defined.
This section addresses itself to the various ways these names
can be compounded and modified when they are referenced.

5-1

^ L^ i -7

5.1 Referencing Simple Variables.

In Section 4.5 the term "simple variable" was intro-
duced to describe a data name which was not a structure, or
part of one. When a simple variable is defined in a <declare
group>, it is syntactically denoted by the <identifier>
primitive. Thereafter, since its attributes are known, it
is denoted syntactically by the <§var name> primitive, where
§ stands fcr any of the types arithmetic, bit, character,
or event.

5.2 Referencing Structures.

When an < identif 'ier> is declared to be a structure,
its tree organization is that of tine template whose <template
name> . appears in the Structure declaration (see Section 4.7).
References to the structure as a whole (the "major structure"),
are obviously made by using the declared <identifier>, which
syntactically becomes a <structure var name-.s The way in
which parts of the structure (its minor structures and
terminals) are referenced depends on whether the structure
is "qualified" or "unqualified" (see Section 4.7).

If a structure is "unqualified", then any part of
it, either minor structure or structure terminal,
may be referenced by using the name of the part as it
appears in the <structure template >. If a minor
structure is referenced, the name becomes syntact-
ically a <structure var name >. If a structure
terminal is referenced, then syntactically the name
becomes a < §var name >, where § stands for any of the
types arithmetic, bit, character, or event, as
specified in its <attributes> in the template.

• If a structure. is "qualified then any part of it,
either minor structure or structure terminal, is
referenced as follows. First the major structure
name is taken. Then starting at the template name,
the branches of the template are traversed down to
the minor structure or structure terminal to be
referenced. On passing through every intervening
minor structure, the name is compounded by right
catenating a period followed by the name of the minor
structure passed through. The process ends with the
catenation of the name of the minor structure or
structure terminal to be referenced. If a,minor
structure is being referenced, the resulting "quali-
fied" name becomes syntactically a <structure var
name>. If a structure terminal is referenced, then
syntactically it becomes a <§var name>, where §
stands for any of the types arithmetic, bit, character,
or event, as specified in its <attributes> in the
template.

5-s

PAGE 1^i

example:

STRUCTURE A:
I B,

2 C,
3 E VECTORM,
3 F SCALAR,

2 G,	 Structure template

3 H EVENT,
3 1 INTEGER,

1 1 B I T(16);

unqualified"

DECLARE A A-STRUCTURE,

	

Z A-STRUCTURE; 	 "qualified"

i) references to parts of structure A -

G	 I	 i

ii) references to corresponding parts of structure Z

Z.B.G	 Z.B.G.I	 Z.j

1_) I

5.3 SubsCriptiny.

For the remainder of this section,a data name with
known <attributes> is denoted syntactically by <§var name>,
where § stands for any of the types arithmetic, bit, charac-
ter, event, or structure.	 It is convenient to introduce
the syntactical term <§var> to denote any subscripted or
unsubscripted <§var name>.

SYNTAX':

arith
bit	 l9

§	 char	 variables
§ var	 structure

event

§ var name

subscript }
example:

Al TO 10

It is also useful to introduce the syntactical term
<variable> as a collective definition meaning any type of
<§var>.

SYNTAX:

variable

event var	
2 0

variable	 bit var

arith var

bit pseudo•var

char var

structure var

SEMANTIC RULES:

1. <bit pseudo-var> is a reference to the SUBBIT pseudo-
variable. An explanation of its inclusion as a
<variable> is given in Section 5.5.4.

k

f

Y

5.3.1	 CtaAsee ob Subb exipti.ng.

In HAL/S,there are three classes of subscripting
which may be potentially applied to < §var name >s ; structure,
array, and component subscripting.

•_ Structure subscripting can be applied to
arithmetic, bit, character, and event variables
which are terminals of a structure which has
multiple copies. It can also be applied to the
major and minor structure variable names of such
a structure. Structure subscripting is denoted
syntactically by <structure sub>.

• Array subscripting can be applied to any arith-
metic, bit, character, and event variables which
are given an array specification in their declara-
tion. This includes both simple variables and
structure terminals. Array subscripting is
denoted syntactically by <array sub>.

• Component subscripting can be applied to simple
variables and structure terminals which have one
or more component dimensions (i.e. which are made
up of distinct components). The applicable types
are vector, matrix, bit and character. Component
subscripting is denoted syntactically by <component
sub> .

The three classes of subscript are combined according to a
well-defined set of rules.

V

SEMANTIC RULES:

1. The syntax diagram shows 10 different ways of
combining the three classes of subscripting. The
following table shows when each of these combinations
is legal for simple variables and structure terminals.

i	 In the table, the following abbreviations are used:
i

<component sub>	 C

<array sub>	 A

<structure sub>	 S

}

5-

Interpreta ,tion of < § var name >

data unarrayed arrayed unarrayed arrayed

type simple
variable

simple
variable

struc ture
terminal O1

structure
terminal (D

integer none A S S;
scalar A: S; S;A
event S;A:
fixed

vector C A: S; S;
matrix A:C S;C S;A:
bit S;A:C
charac-
ter

147

O1 It is assumed that the structure has multiple copies.
If not, corresponding columns for simple variabes
apply.

2. In the rase of a <structure var name> relating to a
major structure with multiple copies, or to a minor
structure of such a major structure, the following
forms are legal:

S

S;

No subscript is possible if the major structure has no
multiple copies.

examples:

Xt-	
P is any arrayed simple variable

<array sub>

equivalent form -

P	
____ .4 equivalent only if P is of

X	 linteger, scalar, or event type

QX	 JQ is any simple variable of integer
<component sub>	 scalar, or event type

<array sub > 	see example i)

<structure sub>^Q is any unarrayed structure ter-
minal* of integer, scalar, or evct
type

a
i

RX,

<structure sub> —^ R is any structure terminal*

equivalent forms =

RX	 equivalent only if R is of unarrayed
linteger, scalar, or event type

iv) 5
X,
,y
	

is is an arrayed structure terminal
:Z^_ <component sub> 	 of vector, matrix, bit, or

<array sub>	 character type

<structure sub>

of a structure with multiple copies

i

{i

T j-{

^	 ^ f

5.3.2	 The Genenae Fcnm o6 SuN cA i.pti.ng .

The three classes of subscripting, <structure sub>,
<array sub>, and <component sub>, have an identical syntac-
tical form; however, the semantic rules for each differ.

SYNTAX:

compwmt,array,and structure subscripts

zz
array
sub

omponent	 structure
sub	 sub

F-71 sub axp

arith exp	 AT	 sub exp

sub exp	 TO	 sub exp

sub axp

a9th exp

example:
n	 +	 3AT#-5

GENERAL SEMANTIC RULES:

1. A <structure sub>, <array sub>, or <component sub>
consists of a series of "subscript-expressions"
separated by commas. Each subscript expression
corresponds to a structure, array, or component
dimension of the <§var naime> subscripted.

5-11

€'

2. There are four forms of subscript expression:

i the simple index;

* the AT-partition;

• the TO-partition;

• the asterisk.

3. The simple index form is denoted in the diagram by a
single sub exp . its value specifies the index of a
single component, array element, or :structure copy 	 K

to be selected from a dimension.

4, The AT-partition is denoted by the form <arith exp> AT
<sub exp>. The value of <arith exp> is the width of the
partition, and that of <sub exp> the starting index.

5. The TO-partition is denoted by the form <sub exp> TO
<sub exp>. The two <sub exp> values are the first and
last indices, respectivelyof the partition.

6: The asterisk form, denoted in the diagram by *, specifies
the selection of all components, elements, or copies
from a dimension.

7. <sub exp> may take any of the forms shown. The value of
is taken to be the maximum index-value in the revelant
dimension. (For character variables, this is the current
length) .

149	
8. Any <arith exp> in a subscript expression is an unarrayed

integer or scalar expression. values are rounded to the
nearest integer.

5-12

'K r

5.3.3	 StAuc take Subb c/%ipti ng .

Major structures with multiple copies, or the minor
structures or structure terminals of such structures may
possess a <structure sub>. Since there is only one dimension
of multiple copies, the <structure sub> may only possess one
subscript expression. The effect of such subscripting is to
eliminate multiple copies, or at least to reduce their number.

a	 RESTRICTIONS:

1. Errors result if any index value implied by a subscript
expression lies outside the range 1 through N, where N
is the number of copies specified for the major structure.

2. If the subscript expression is a TO- or AT-partition,
the width of the partition must be computable at compile
time. This is ,,aaranteed by enforcing the following
restrictions.

s in the form <arith exp> AT <sub exp>, the value of
<arith exp> must be computable at compile time
(see Appendix F.).

i in the form <sub exp> TO <sub exp>, the values of
both <sub exp>s must be computable at compile time.

examples:

STRUCTURE A:
1 '6 SCALAR,
1 C INTEGER,
1 D VECTORW;

DECLARE A A-STRUCTURE(20);

A20	
20th copy of A

A	 10th and 11th copies of A
2 AT 10;	 (semicolon optional)

C1	 C from lst copy of A

D from 4th through 6 th copies of A
^4 TO b;	 (semicolon enforced)

Note: D*, 4 7 0 6	
components 4 through 6 of L from

^	 all copies of A

5-13

T TV

5.3.4	 AAAay Sub.e,.hcptikig.

Any simple variable or structure terminal with an
array specification (see Section 4.5) may possess an <array
sub>. The number of subscript expressions in the <array sub>
must equal the number of dimensions given in the array speci-
fication. The leftmost subscript expression corresponds to
the leftmost dimension of the array specification, the next
expression to the next dimension, and so on.

RESTRICTIONS:

1. Errors result if any index value implied by a subscript
expression lies outside the range 1 through N, where N
is the size of the corresponding dimension in the array
specification.

2. If the subscript expression is a TO- or
AT-

partition,
the width of the partition must be computable at compile
time. This is guaranteed by enforcing the following
restricrions:

• in the form <arith exp> AT <sub exp>, the value of
<arith exp l> must be computable at compile time;

0 in the form <sub exp> TO <sub exp>, the value of
of both <sub exp>s must be computable at compile
time.

examples:

STRUCTURE P:

1 Q ARRAY(5) SCALAR,
1 R SCALAR;

DECLARE P P-STRUCTURE(10)
DECLARE S ARRAY(5) SCALAR,

T ARRAY(5) VE , TORM;

Q*.5 5th array element of Q in all copies of P

Q I 2nd and 3rd array elements of Q in lst
1;2 TO 3: copy of P	 (colon optional)

S4 TO ^^
4th through 5 th array elements of S

(colon optional)

T2 AT 2
2nd and 3rd array elements. of T

(colon enforced)

Note- 	
2 HY 2

components 2 and 3 in all array elements
of T

5-i4

5.3.5	 Component Sub.ecAipt ng.

Simple variables and structure terminals of vector,
matrix, bit and character type may possess component sub-
scripting becauaQ they are made up of multiple distinct
components.

• Those of bit, character, and vector types must
possess a <component sub> consisting of one
subscript expression only;

• Those of matrix type must possess a <component
sub> consisting of two subscript expressions.
In left to right order these represent row and
column subscripting respectively.

RESTRICTIONS:

1. Errors result if any index value implied by a se,bscript
expression lies outside the range 1 through N, where N
is the size of the corresponding dimension in the type
specification.

2. For bit, Vector and matrix types, if the subscript
expression is a TO- or AT-partition, the width of the
partition must be computable at compile time. This is
guaranteed by enforcing the following restrictions:

in the form <arith exp> AT <sub exp>, the value
of <arit.h exp> must be computable at compile
time;

• iYi the form <sub exp> TO <sub exp>, the values
of both <sub exp>s must be computable at compile
time.

3. The subscript expressions of a character type need not
be computable at compile time.

SPECIAL RULES FOR VECTOR, VECTORF, MATRIX, AND MATRIXF TYPES: 1147

The < component sub> of a variable of vector or matrix type
can sometimes have the effect of changing its type. The
following rules apply:

5-15

e.
-.'.	 _...-.	 -.......	 .	 _	 ..	 -...	 -.	 __	 _.	 __	 -	 -	 __

	 I_	 -	 -	 _	 ..-	 _...

i
t

}	
11 ;,

t

' 1.	 If a VECTOR or VECTORF type is subscripted with a simple
r index <component sub> ! then since bne' component is being

selected, the resulting <arith var> is of SCALAR or FIXED
type_ respectively,)

f .

t

II} 'scr	 ° in	 "omponent
I

t ex
P

res^^^ions2.	 If only one of the two subscr ipt	 a <csub>
147 of a , MATRIX or MATRIXF, t	 e isyp	

'

simple indexl then one row or
-- -6fore„ column is being ° selected, and the result is ,5 Sheran

<Arifh var> of VECTOR or VECTORF type respectively. ' If both
subscript°expressions are of simple index form, then one com-
onent °of the MATRIX or MATRIXF 4s being selected, and the

t : J, result^,is an < arith'var> of SCALA2*^ or FIXED type respectively.

3. =`'The < scaling> attribute defines the scale , factor (see
Section"2.3.3) of the <type spec>. 	The scale factor must
be compile time computable ,;(pee Append x F)

;. example

DECLARE M MATRIX(3, 3),
C ARRAY(2) CHARACTERM ;

f -C	 characters 2 through 7 of 1st
1:2 TO 7

{ array element of C

(Ho 1	 column 1 of matrix M 	 (vector)

M	 3rd Tomponent of 3 rd row
3,3 of M	 (scalar)

a

d

l J

 ^ d

^.	 yr -	 fa
.

j

^ a	 ,

5-16
t

r:

t

5.4 The Property of Arrayness

A <Syar nameP- which is a simple variable is said to
be "arrayed-", or to possess--,"arrayness", it any array specie'

}	 fication app ars in iti declaration. The number of dimensions
of arrayness is the number of dimensions given in the array	 c

a '	 speci.ficati

A <§var name> which is a structure terminal . is said to
be arrayed or to possess arrayness if either or both of the
following ho1,d

• an array specification ay p	 ppears in ts'declaration
in a structure template;

• the structure of which <§var name> is a-terminal;
has multiple copies.

The number of dimensions of arrayness is the sum of the
dimensions originating from each source.

f\	 Appending structure or array subscripting to a
^,<§var name> may reduce the number and size of array dimensions
of the resulting <§'var>.

The arrayness of HAL/S expressions originates ultimately
from the <§var>s contained in them. It is a-general rule
that all arrayed <§var>s in an expression must possess identical
arrayness (i.e. the number of dimensions of arrayness, and
their corresponding sizes must be the same). , Although the
forms ofsubscript distinguish between array dimensions, and

I	 structure copy dimensions-, no distinction between them is
mad-;e as far as this matching of arrayness is concerned

r

i
i

x

R

5.5 The Natural Sequence of Data Elements.

There , are several kinds of ope ion in the HAL/S
language which require operands with multiple components,
array elements, and structure copies to be unraveled into
a linear string of data elements. The reverse process of
"reraveling" a linear string of data elements into components,
array elements, and structure copies also occurs. Two major
occurrences of these processes are in I/O (see Section 10),
and in conversion functions (see Section 6.5).

The standard order in which this unraveling and
reraveling takes place is called the "natural sequence".
By applying the following rules in the order they are stated,

°	 the natural sequence of unraveling is obtained. 	 By applying
the rules in reverse orfr, and replacing "unraveled" by
"reraveled", the natural--sequence for reraveling is,obtained.

RULES FOR MAJOR AND MINOR STRUCTURE:

1.	 If the operand isa major structure with multiple copies,
each copy is unraveled in turn, in order L of increasing {
index.	 If the operand is a minor structure of a multiple-
copy structure, then the copy of the minor structure in
each . structure copy ,is,unraveled in turn in order of
increasing index.

2.	 The method of unraveling a copy is as follows. 	 Each
structure terminal on a "branch" connecting back to the
given major or minor r;tructure operand is unraveled in
turn.	 The order taken is the order of`-,appearance of the
terminalsin the st,ru_cture template.

3.	 Each structure terminal is unraveled according to the j
Rules given below.

example:

STRUCTURE A:
1 B,

2 C SCALAR,

2 D VECTORN,	 ^f

1 E I NTEGER;
DECLARE A A-STRUCTUREN-

. order of unraveling of B _ is B i , _i -1,2,3

• order of unraveling of each B is Ci s DI

f

I)

RULES FOR OTHER OPERANDS:

1. An operand of any type tinteger, scalar, fixed, vector,
matrix, bit, character, or event) may possess arrayness,.as 	 147
described in Section 5.4. Each dimension of arrayness,
starting from the leftmost is unraveled in turn, in order

a	 of increasing index.

2. Integer, scalar, xed^ bit, character, and event types	 1147
are considered for-unraveling purposes as having only one
q6t& element.

3. Vector types are unraveled component by component, in
order of increasing index.

J	 4. Matrix types are unraveled row by row, in order of
f

	

	 increasing index. The components of each row are 	 t
unraveled in turn in order of increasing index.

i

L

i
n

r

	

6.	 DATA MAN PULATI ON AND EXPRESS IONS

F

	

	 An expression.,is- an algorithm used for computing a
vlue. In HAL/Sy expressions are formed by combining together
ojierAtors with , operands in a well-defined manner. operands
gilnerally -are, ,variable s, literals, other expressions, and
;"i=t-ions The type of an expression is the type of its+	 r:	 yP	 P	 yP
result, which is not necessarily the same as the types of
its operands.	 ^f(

M	

nti

In,,HAL/S, expressions cre divided into three major

	

E	 classes according to their usage,
^r

°s reguiar expressions: -̂ ppear in a very large number

	

I	 of contexts through ti:e language; . e.g.
In assignment statements, as arguments to proce-
dures and functions, and in I/O statements.
Typical regular expressions are arithmetic,,bit,

	

`	 and character expressions. ,, They are collectively
denoted by <expression>.

e conditional expressions are used to express
combinations of relationships between quantities

	

r	
and are found in IF statements, and in WHILE and 	 -
UNTIL phrases They are denoted by <condit.on>

e event expressions are`used eWclusively in real time
programming statements.

r

6-1	
1

i	 ,	 z

aU

^f
u

'-anti

(l

r	

1p

6	 Ij

6.1 Regular Expressions.

\Regular expressions comprise arithmetic expressions,
,

	

	 bit expressions and character expressions, together with a
limited form of structure expression. As a generic form,
<expression> appears in the assignment statement, as the input
arguments of procedure and function blocks, and in the WRITE
statement.

" SYNTAX:

1

µ

ri

rr\\

V

J

i

U S

1

1

kk
	 ,

e	 (I	
a

6.1.1	 Ak thme ti c Exp&e.64ion6

Arithmetic expressions include integer, scalar, fixed, 	 147
vector, and matrix expressions. 	 Collectively they are known

'	 by the syntactical term <arith exp>.

SYNTAX.

arithmetic-expression

o^	 ^ ^	 J	 +	 i1	 24

i

arith exp	 i
I

arith operaW
25	 "

124

tl

_	

]{	 Q

examples:
l+J • 1K+2)3
M.IM-NI

9

SEMANTIC RULES: J

L	 1.	 An <arith exp> is a sequence of <arith operand>s,
separated by infix arithmetic operators, and possibly

'	 preceded by a unary plus or minus.

2.	 The form < > is used to show that the-two <a_ -- th `, n a

operand-,s are separated by one or moje snaès.	 124

It signifies a product,between .the <4ri,th'operand>s.

jll	
ter,	 i

it

.	

6_3
:t

r
I

I	 ^

3. The'syntax diagraih:fo.r <arith exp> produces a,sequence
r!

F	 extensible on the right. Any sequence produced is not
124

	

	 necessarily to be considered as evaluated from left to
right. The order of evaluatiori'of each operation
in the sequence is dictated by operator precedence'.

4.. Not all types of <arith operand> are legal in every infix
operation. The following table summarizes all possible

I forms, by indicating the result of each lectal_ operation.

OPEAANDS of IX MERAIOR

ITT]	 RIGNT + —
() * 1	 •

VICTOR	 VECTOR VICTOR VIC10R MATR _IX I VECYOOR 21 SCALAR

VICTOR[VICIORF VECTOR[VECIORF MATRIX[VECTORF FIXED

VECTOR	 MATRIX VICTOR

VICTOR[MATRIXF VICTDRF

MATRIX	 VICTOR VICTOR

MATRIXF VECTpRF VECTORF

INIIGER
VECTOR	 SCALAR VECTOR VECTOR'

VECTORF 	 FI XED
IIIfD VECTOR[VECTORF

SCALAR	 VECTOR VELTOR^

INIIGER	
VECTORF

FIXED
VECTORF

MATRIX	 MATRIX MATRIX MATRIX MATRIX

MATRIXF MATRIXF MATRIXi MATRIXF

- -

MATRIX[

MATRIX	 SCALAR MATRIXA MATRIX .MATRIX
INTEGER

MATRIXF	 FIRED A'ATRTXF MATRIX MATRIX;
INTEG
SCALAR	 MATRIX

A
MATRIX

INIEUR
FIXED	 MATRIXF ;MATRIXF

SCALAR	 SCALAR SCALAR SCALAR SCALAR SCALAR SULAR

FIXED	 FIXED I FIXED FIXED FIXED FIXED

SCALAR	 INTEGER SCALAR SCALAR, SCALAR SCALAR SCALAR

FIXED	 INTEGER FIXED FIXED - FIXED

INTEGER:	 SCALAR SCALAR SCALAR: SCALAR SGLAR SCALAR

INTEGER	 ` FIXED rmm-, FIXED

SCALARINTEGER	 INTEGER INTEGER INTEGER INTEGER

' b
J

r	 ^

I

s
r

1

I	
-

Notes:

In opera ions with vector and matrix operands, the sizes of the operands
must bo compatible with the operation involved, in the usual mathematical
sense!

F

lO outer product.

j

a

'=	 I

6-4

_	 - -	 -a....	 -	 .a.e.	 -	 -	 ^ Yz.r.Srm_	 -- .ar^a2	 n^..wu_.. ... ffin. sr._r 	 ._..... _	 3l Yat3 a$ihi_c au.r

0

;,	 r

cross product - valid for 3-vectors^pnli .

O dot product.

t	 €
element of the vector or matrix 	 multiplied by the integer;

^
147

o	 (9ca] r, or fixed.

` Overy element of the vector or matrix ;'s divided by the integer
` scalar.	 f

'

0	 t

O if the right operand is literally "T"^ the transpose is indicated.
If the right operand.is literally "Q" the result is an identity
matrix.	 If the right operand is a positive integer number, a
repeated product is implied.	 If the right operand is a negative
integer number, repeated product ofthe inverse is implied.	 These
are the only legal forms. `J

F 7D the operands are converted to scalar before division.

I the operation is undefined if thevalue of the left operand is0
negative, and the value of the right operand is nonintegral.

^^ the result is a scalar except if the right operand is a non- 147t
negative integral compile time constant in which case the result
is integer.

©0 , the right operand must be a positive integral compile time constant.
1

'	 5. Except.as noted in Rule 4 (+), if one operand in an operation
isof INTEGER type and the other operand is of SCALAR, ?LECTOR, 147or

MATRIX type, the INTEGER is converted to a SCALAR before
performing the operation.	 -

i

6. If one operand in :an operation is- INTEGER and the other
F operand is FIXED, VE.CTORF, or MATRIXF, the typecif neither

operand is converted before performing the opera/Z.-Ton.

7. If the two operands of an operation are of differing precision,
the result is double precision; otherwise the precision of the
result is the same as the precision of thif operands. 	 This is
true in all cases except where one operand only is of integer ,
type;	 In this case the precision of the result is the same as
the precision of the non-integer operand.

8. For the purpose of determining the scaling of an expression
involving an INTEGER and a FIXED, VECTORF,- or MATRIXF,,an
INTEGER`is defined to have a scaling of 20.

`	 9. When performing additions or subtractions with operands of
FIXED, VECTOR', or MATRIXF type, if the scaling of both
operands is defined then,t^`g scalings must be equal and the
scaling of, the

'.L.
,result is dei^" ned to be the same as the scaling 147

of the op'eranr'
6-5

.7878.ii
r

^...^.... _..	 _b.:e -	 -	 _x....L:as.._4......._..........a....._, 	 ..v...... .0 ^ ,..a._a._.. 	_ _	 .._. _..	 ._	 r My	.n... 	 ,

Operator. Precedence Operation

FIRST
**	 G 1 exponentiation'
<> 2	 - multiplication
* 3 cross-product

4 dot-product
5 l	 division

+ 6 addition and unary plus"

- 6 subtraction and unary
minus

LAST

c^

9

r	 -

FI

l	 {

i

10. When performing multiplication or division with at 1Last one
?perand of type FIXEt` VECTORF, or MATRIXF, if the scali49
pf both operands is defined then the scaling of the result is^l
defined to be the product or quotient of the scaling of the'

ipperands.

11.. When performing exponentiation of a FIXED or MATRIXF,
if the scaling of the operands is defined then the scaling
lof the result is defined to be, the scale factor of t`he left
joperand taken to the power of the might operand.

12. If either or both of the operands of an operation have
RANGE attributes, the semantics of the operation are
unchanged, but a compiler may detect and report range
incompatibilities.

PRECEDENCE RULES:

1. The following table summarizes the precedence ules
for arithmetic operator:

n	 0

14

1421

2.0 If two operations with the same precedence follow each
other, then the following rules apply:

operators **, / are evaluated right-to-left;

J

r/

SY14-TAX:

1,	 -'-

3. Overtiding Rules 1 and 2, the operators <>, *, and
are evaluated so as to minimize the total number of
elemental multiplications required. Howev4r, o this -rule
does not modify the y;eH ec ve r recedence order in cases^
where it would cause the sult to be numerically
different, or the op

e 	

to b",,.-.qal.
r

An <arith operand> appearing in an !tor^th,i^xp> has the
following form:

0

with	

aMVx

WA

Z6

nuntbx

function 35

	
^^,5	

Pksgn ' ^^

	

I Man" i

example;

(A+61
0 DOUBLE

SOWN271C RULES

1.	 An <arith operand> may be an arithmetic variable,, an
arithmetic expressiop, , enclosed in parentheses,'a
<normal function> of the appropriate type (see Section
6.4), an <arith conversion> function (see Section 6.5.17),
or a literal <number>.

2.	 The precision of an <arith operand> may be converted
by subscripting it with a <precisj3n> specifier (see
Section 6.61'.	 If the operand is an <arith var>,this is
true only if it has no<subscrip t>.l

3.	 only integer, scalar, and fixed <arith operand>s may
have the form <number>,.

4.	 The scaling of an <arith operand> may be converted by
subscripting,it with a <scaling> specifier (see Section 147
6.7).	 If the operand is an <arith var> this is true only
if it has no <subscript>. 1 Scaling operators are defined
for arith operands which are numbers or are of type
FIXED, VECTORF, or MATRIXF.

an1 Since a subscripted <arith var> is an example pr
<arith exp>, the <precision> or <scaling> specifier may be
applied by first enclosing the <arith exp> in parentheses.

6-7

G-RiGli-`IAL PA* cL
OF POOR QUALITY

6.1.2 Bit Exp4e&6 i.om.

A bit expression is known by the syntactical term
<bit exp>.	 ,r

i

bit expreNi4m

26

bit exp	 AND

ct

bit operr+d

OR

CAT

example:
B&CIFID

9

G	 ^

e	

^ggjj

1

i

SEMANTIC RULES:

1. A <bit exp> is a sequence of <bit operand>s separated
by bit operators.

,i	 2. The syntax diagram for <bit exp> produces a sequence
extensible on the right. Any sequence produced is

it	 not necessarily to be considered as evaluated from left
'$

	

	 to right.. The order of evaluation of each infix operation
is dictated by operator precedence:

6-8

i

n

Operator	 Precedence

FIRST

CAT,

AND, & 2

OR,	 j 3

LAST
k[

9V,

{

If two operations with the same precedence follow each
other, they are evaluated from left to right.

3. The operator CAT (11) denotes c4tenation of <bit operand>s.
The length of the result is the sum of the lengths of the
operands.

!	 4. The operators AND (&) and OR (1) denote logical inter-
!

	

	 section and union respectively. The shorter of the two
<bit operand> s is left padded with binary zeroes to match
the length of the longer.

A <bit operand> appearing in a <bit exp> has the following
corm.

SYNTAX:

7

J

(

r

F	 '

r
.r

3

I

^i

f:	 1
U

iii

r

r

j

SEMANTIC RULES:

1. A <bit operand > may be a <bit var>, a <bit exp> enclosed
in parentheses, a <bit literal >, a <normal function> of

Y

j bit type (see Section 6.4),,a <bit conversion > function,
or a <bit pseudo-var> (see Sections 6.5.3 and 6.5,4).

' 2. In addition a <bit operand> may be an <event var> or
h a°<process-event name >' 	 (see Section 8.9). 	 Events and
F process -events are treated as BOOLEAN (1-bit) <bit operand>s.

3. Any form of <bit operand> may be prefaced with the NOT
'(-•) operator causing its logical complement to^be evaluatedC
prior to " use, within an expression.	 Note that associating

i the NOT operation with the <bit operand > syntax achieves,
an effect similar to pla" 'ing the NOT operator in the bit
expression syntax at the highest levCl of precedence.

I

I

^/	
a

- i
z

1
a

a

6-1Q

r

I L

r^

=

s
v

G'

v

t

t'

3

l'

1

3
1

r

_	
6.1.3 Cha= ten ExpkeUiOM .	 J

A character expression is known by the syntactical
term <char exp>.

h	 r,.

SYNTAX:
E

b

SEMANTIC RbLES

1. A <char exp> is a sequence of operands separated by the
,t catenation operator CAT (^,}. Each operand may be a

<char operand> or an integer or scalar <arith exp>.

2. The sequence of catenations is evaluated from left to
i	

night.f

3. Integer and scalar <arith exp>s are converted to character
r$	 - strings according to the standard conversion rules given
r	 in Appendix D

4	 r
t

r,

f

6-11

t

AL PAGE t
°	 OR	 '

FCC xx QUALIT,OF

k	 y

ti

i	 clj
A'<char operand> appearing iii a <char exp> has the following
form..

SYNTAX:

"acar operand
\	

ehr
OPWWW	

g

char slxp)

a

char var
i

normal function

char literal

example:
char conversio `_ All	 i

(AILB)
a

1

SEMANTIC RULES:>

1. A <char operand> may be a character variable, a
<char eap> enclosed in parentheses, a <char literal>,
a <normal function> of character type (see Section 6.4),

f	 or a <char conversion> function (see Section 6.5.3)•
{

`f

r	
3

6-12	 t

)

all
f

6.1.4 ^StAuc take Expteuiond
o Since there are no manipulative expressions for
structures, a <structure exp> merely consists of one
structure operand.	 -

SYNTAX:

SEMANTIC RULES: I

1,_	 A <structure exp> consists.of one structure, operand which_
!1 may be either a"<structure `var>, or a <normal function> of

} structure type	 (see Section 6.4),

6.1. 5	 An tay Pnopexti,es o6 €xrvr.ee sioko .

Any regular expression may have an array property
;s	 by virtue of possessing one or more arrayed pperands. 	 The

r evaluation of an arrayed regular expression inplies element-
by-element evaluation of the expression. 	 For any infix opera-
tion with an array property the following must be true.

SEMANTIC RULES:

1.	 if one of the two operands of an infix operation are
x arrayed, them evaluation of the operation using the

unarrayed operand and each element of the arrayed operand
is implied.	 The resulting array has the same dimensions

k as the arrayed operand.

p 2.	 If..both of the operands of an infix operation are arrayed,
^ then both operands must have the same array dimensions.

Evaluation of the operation for each of the corresponding,.
s elements of the operands is implied.	 The_^r,,esulting array

{ has the same dimensions as the operands.

F	 6-13

.r

d
k

i

6.2 Conditional Expressions.

Conditional expressions express combinations of relation
ships between quantities. The HAL/S representation of aala-
tion between quantities is a <comparison>c <comparison-s are
combined with logical operators to form conditional expressions,
or <condition>s.	

^.

SYNTAX:

w

SEMANTIC RULES'

1. A conditional expression or ^condition > is a sequence

	

of <conditional operand>s separated by logical operators. 	 ' 124

2. The syntax diagram for <condition> produces a sequence
extensible on the right. Any sequence produced is not
necessarily to be considered as evaluated from left to
right. The order of evaluation of each infix operation
is dictated by operator precedence.

r

6-14

r

.	 _. ._v...asuaun,L. ,^.: :1.4^^.e...•fe:.. ..._m::.^..._ .. :...:_ - 	 .a 	 -. i^ .. -_. e4	 ..

OpeOpeerato^ Precedence

FIRST
AND, &

OR, 2

LAST
c

ri

k"

i

If two operations with the same precedence follow each
other, they are evaluated from left to right.

r
3. The operations AND^„(&) and OR (1) denote logical :inter-

section and union \`respectively.
rj

A <conditional operand > appearing in a;;<condition > has the
following form

SYNTAX:

f

	

conditional operand	
'a	 31,,-

conditional
operand

comparison
32-5

	

{	 condition)
30

LC >jNOT
example:

^fA >B1

a.,
i

SEMANTIC RULES

1. A <conditional operand> is either a <comparison> or
a parenthesized <condition>. The latter form may be
preceded by the logical NOT (') operator.

2. A <comparison> is a relationship between the values of4	
two arithmetic, bit, character or structure operands'.
The result of a <comparison> is either TRUE o

r

	

	 but cannot be used as a boolean operand in a r it expres-
sion.

r	
j)

6-15

6.2.1 Atithmetie Compmi6on6.

An arithmetic <comparison> is a comparison between
two arithmetic expressions.

SYf4TAX:

SEMANTIC RULES:

1. The types of <arith exp> 9perand must in general match,
with the following exception: in a comparison with
mixed integer and scalar opi^rands, the integer operand
is converted to scalar.

2. If the precisions of the <arith exp> operands are mixed
then the single precision operand is converted 'to double
precision.

6-16

^jRIGINAL PAGE IS

R QUALITYOF POO

CY

3. Not all types of <arith exp> are legal for every type
F of arithmetic comparison. 	 The unshaded boxes in the

I, following table indicate all legal forms.

.
Operator	 f

operands - '^ _ "^ > 	 <

. NOT= >	 <	 NOT >	 NOT <
<	 >

i

I.

i

14 VECTOR 3 3

i VECTORF

MATRIX '^ 3

MATRIXF 2

INTEGER ^/ <- - no arrays - - - -

SCALAR
FIXED

If the operands are vectors or matrices, the	 147
<comparison> is carried out on an element-by-element
basis.

?

f.

!	 If the <comparison> operator i s =, the result is
TRUE only if all the elemental comparisons are TRUE.	 s

•	 If^the <comparison> 	 operator is NOT= ("i=), the
result is TRUE if any elemental comparison is
TRUE.

j^
5. If one or both of the <arith. 6xp s are arrayed then only 	 n

the operators = and NOT= (-n=) ai'e legal, and the result
is an arrayed <comparison>	 (seeSection 6.2.5)..

I 6. If the type of the <arith exp>s is FIXED,- VECTORF, or
MATRIXF, and the scaling of both <arith exp>s is defined, 0247
then the scalings must be equal.

4 ^
j

a

t1	 `' 06-17

6.2.2	 Compak"ona rte;.

\l

	

	 A bit comparison is _a comparison between two bit
expressions.

SYNTAX:
I	 }

c	 _

k	 ^

3
a

s

SEMANTIC RULES:

1. If the lengths of the operands are the same,`their
values are equal if and only if they have identical bit
patterns.

2. If the lengths of the operands differ, the <bit exp>
of shorter length is left padded With binary zeroes
to match the length of the longer before comparison
takes place.

3. If one or both of the <bit exp>s are arrayed, then the
result is an arrayed <comparison> (see Section 6.2.5)

t`

t

6-18

r
'ver

bit eampenwn	 3 3 >

WmWWM

F 7bit expbit sxp
26	 ^21

NOT	 ,

example:
8-1-61N'110'

115

i

^,	 c

ChanacteA CompaA"on6 ,

A character Vnparson is a comparison between two
character expressions'.

0

17

1. The two strings are compared left-to-right through as
many characters as are contained in the shorter string.

2. If a difference in any character is detected, the value
of the comparison is determined by the internal
character represexCations of the differing characters

F	 (n.b. this is machine dependent)

'	 3. If the shorter string is identical to the longer one	 115
truncated to be the same length as the shorter, then
it is less than the longer one.

r

4. If one or both of the <char exp>s are arrayed then the
,t	 result is an arrayed <comparison> (see Section 6.2.5)

6-19

z

U j

,6-2.4	 State Lute GompaA"on6

A structure comparison is a comparison between two
structure expressions. +

U	
//I

SYNTAX:	 o

structure eanpMian	 3 5
compsriton

structure exp structure oxp

NOT	 ^^	 o

SEMANTIC RULES:

1.	 The tree organizations of both <structure exp >s must be
identical in all respects.

2.	 The number of copies possessed by each <structure expo
must be the same. 	 If the number of copies is greater than
one, then the following holds:

• if thee-ecomparison> operator is =, the result is TRUER
only 2/,Z it is TRUE for all copies..	 f

• if the' <comparison> operator is '= (NOT=) , the result
is TRUE if it is TRUE for at least one pair of corresponding
copies.

i

r

6-20
{f

Y

,L

""'taw'.®n^..^.M:+M'^E+A^w..•M^...'w.^

^i

, wry_

:f

{

r
~ C6.2.5' CompaWonA between Amwjed dpenanda .

A <comparison> of one of the forms described may have
arrayed operands. When one or both of the operands is arrayed,
the <comparison> operators are restricted to = and = (NOT=).
In any arrayed <comparison>, the following must be true.

SEMANTIC S*JLES : 	 o
I

1. If one of the two operands of a <comparison> is arrayed
then evaluation of the <comparison> using the unarrayed
operand and each element of the arrayed operand is
implied.

2. If both of the operands are arrayed, then both operands
must have the same array dimensions. Evaluation of the
operation for each of the corresponding elements of the
operands is implied.

^.	 , - --son>z5 -3. The 'result of an arrayed <comp azz	 . ^r:arra -ed . If
Y	 " r	 the operator is = then the res-u"t is TRUE only it it is

TRUE for all elements of the <comparison>. If the
operator is = (NOT=) then the result is TRUE if it is
TRUE for at least one element of the <comparison>.

G-27	 f

0

I

0

6.3 Event Expressions.

Event expressions appear in real time programming
-titements (see Section g.), and are denoted by the syntacti-
cal term <event exp>.

SYNTAX:

C

t^ 1

r	 SEMANTIC RULES : ,,,

1. An <event exp> is a sequence of <event operand>s separated
by a subset of bit operators. An <event exp> may not be

!	 arrayed.,

2. The syntax diagram - for <event expy `produces a sequence
extensible on the right. Any sequence produced is not 	 s
necessarily to be considered as 'evaluated from left to
right.,' The order of evaluation of each infix operation
is d-ctated'by operator precedence

r-

b-22

n	 \

O

Operator Precedence

FIRST
,	 AND, l

OR, 2

LAST

^a

,c

If two operations with- , the same precedence follow each
other, they are evaluated from left, to right.

3. The operators AND , (;&) and OR (() denote logical inter
section and union,respectively.

An <event operand> appearing in an <event exp> has the
following form.

SYNTAX:

event operand	 3 7
event	 o

operand.

NOT	 [event exp	 1
36

event va,
19

process-event name

example:
-1 (A& B)

SEMANTIC RULES:
i

1. An <event operand> may be an event variable, an <event exp>
enclosed in parentheses, or a <process-event name>, in
which case it is the name of a program or task event.

2. The arrayness of any <event var> must have been removed
by suitable subscripting (see Sections 5.3.3 and 5.3.4).

3. The <event operand> may be optionally prefaced by the
logical complementing operator NOT (^J.

4. If the <process event name> used as an event operand is
that of an external PROGRAM, then a <PROGM*4 template> must

,. be included,in the compilation unit -.The <process event name>
for a TASK block is defined by the occurrence of the TASK
block within a PROGRAM block.

6-23

4

_...^...-6...a..^.

6.4 Normal Functions.
c

Sections 6.1.1 through 6.1;3 have made references to
normal functions which may appear as'operands in various types
of <expression >. Normal functions comprise all those functions
which are not conversion functia:zs, 'and fall into two classes:

• "built-in" fun-tions defined as part of the HAL/S
1p,,nguage;

• "user-defined" fuzed or^.p, defined by the presence
of <function block>s in ,compilation>s.

The manner of invoking each class of function"is, essentially
the same.	 o-

SYNTAX ::

{

s^

{	 expression

23

l

normal
fun.^ion

.label ^'

example:

_SIN(2 X)

normal function

3$..

u

SEMANTIC RULES:	 a

1. <label> invokes execution of 'a function with name<label>.

2 } If <libel> is a reserved .word which is a- ,built-in function
name then that built-in function is invoked. A list 'of
built-in function names is given in Appendix C.

{J
3. If a <funetion block> with name <label> appears in, such a

name scope that <label> is known to the invocation, then,4
that block is invoked.

I 4. if no such <f unction block> exists, then the <function block>
is assumed to be external to the . <compilation> containing
the invocation. A <function template> for that <function	 ci C
block> must therefore.be present in the <compilation>
(see Section 3.6).

4.5. If a Sfunction block> is declared inside a DO ... END
group, it may only be invoked by a <normal function> call	 l^
contained in the same DO ... END group.

pp

k

6-24	 r,.
_	

f	
M

Y

ORIGINAL PAGE 1.A

OF jPQ QUALITY

a ..:..+.	 .mow ...,.,.,u.;.-.a. _.

1147

0

5. The type of the < normal function > must be appropriate to
the type of the <expression> containing it (see Sections
6.1.1 through 5.1.3).

6. Each of the < expression> s in the syntax diagram is an
"input argument" of the function invocation. Input argu-
ments are "call-by-reference" or "call-by-valued.

<< ii

7. Each input argument of a <normal .function>'must match the
corresponding input parameter of the function definition2
exactly in type, dimension, and tree°organization, as
applicable, except for the following relations:

124

r%\

0 precisions need not match, precision conversions are allowed
,

*, the lengths of bit ^ iguments need not match;

0 CHARACTER arguments must be declared CHARACTER(*); 	 1154

9 implicit integer to scalar and scalar to integer
conversions are allowed

• implicit integer and scalar to character conversions
are allowed.

A^ tionally,° if the parameter is of type FIXED, VECTORF
OT M TRIXF, and the scaling of both the input argument and
formal parameter are defined, they must be equal.

Input arguments Day be viewed as being assigned to their
respective input parameters on invocation of°the function.
The rules applicable in the above relaxations thus parallel
the relevant assignment rules given in Section 7.3.

B. If the appearance of an invocation o k a user-defined fund-
tion precedes the appearance of its !unction block>,
the name and type of th6 function mus+ be declared at the
beginning of the containing name scope (see Section 4.6).

9 Special considerations relate to arrayed input arguments
to the <normal functi,on> If the corresponding input
parameter is arrayed, then the arraynesses must match in
all respects. In this case, the function is invoked once.
If the corresponding parameter is not arrayed, then the
arrayness inust match that of the <expression> containing
the function. In this case, the <normal function> is
invoked once for each array element.

See Section 7.4
2	 1^	 the parameter specifications for built-in functions is part	 124

example:

DECLARE X ARRAYM SCALAR;

• SIN evaluated once
IXI SI N(IXI);	 for each element of X

ADD:FUNCTION (P) SCALAR;
DECLARE P ARRAYM SCALAR;

RETURN P1+P2+P3;

CLOSE ADD;	 i	 a

ADD evaluated once
only: formal parameter
P has same arrayness

IXI n IXI + ADD(IXI);	 as argument X.
(ADD must be defined

•	 `f	 before its invocation).

Note: (j enclosing a variable name indicates -that it has
been declared to be arrayed.

^f

6.5	 Explicit Type Conversions.

The limited implicit,type conversions offered byoHAL/S)
are described elsewhere in this Specification (see Sections
6.1.1 and 7.3).	 HAL/S contains a comprehensive set of
function-like explicit conversions, some of which also have
the property-of being able to shape lists of arguments into
arrays of arbitrary dimensions. 	 For this reason, conversion
functions are sometimes referred to as "shaping functions". t
HAL/S contains conversion functions to integer, scalar, vector,

r	 _ matrix, bit and character types, j

3
i

i

s

1

a

y	 ,:

t	 ^	 r

if	 6-27

arithmetic conversion function
VECTOR

VECTORF
j,k

-	 MATRIX -

U

MATRIXF

!SCALAR S	 p.aition	 !	 feNin,	 7 whvaipt M
of zt

FIXED ..

INTEGER

i

23

-	
with exp

.4

///

example;
INTEGER 2r 2(4#1±J)

x
i

.	 3

` 6.5.1 A)Uthmetie Convehs. on Functi.ona

Pa,rIthlRetlC conversion functions include Conversions to
integer, scalar, fixed, vector, and matrix types.

SYNTAX:	

o

U^

GENERAL SEMANTIC RULES

1. The"keyword INTEGER, SCALAR, FIXED, VECTOR, VECTORF,
MATRIX, or MATRIXF gives the result type of the conversion.

`2. The conversion keyword is optionally followed by a
<precision> specifier giving the precision of the result'

<scaling> specifier giving the(see Section 6. 6) , by a 	 ,
scaling to be performed during conversion (see Section 6,..7),

(?'	 and by a . <subsbript> specifying its dimensions.

6-28

.,	 .. :	 '..	^.^ ,...	 ,.	: -.,,e-.ta., _.^..:,: 	 ^,....ta._mu.''..u, ;^r..etnw.yel:':•_	 :.u..... v.:...	 .tlLk^: ',.'^® .,..ura^_ 	 _

k

h

i

i

i

I

f

'^

J

P
C)	 o

0

3. The ,conversion has one or more < expression >s as arguments.
The total number of data elements implied by the argument(s')
are shaped according to well-defined rules to generate the
result. The data elements in each < expression> are 	 is
unraveled in their "natural sequence"1. The result cif
doing this for each argument in turn is a single linear
string of data elements . —This string is then reformed or
'reraveled" to generate the result.

4. Any <expression> may be preceded by the phrase <arith exp>#,
where <arith exp > is an unarrayed integer or scalar
expression computable at compile time (see Appendix F.).
The value of <arith exp> is rounded to the nearest integer
and must be greater than zero. It denotes the number of
times the following <expression > is to be used in they
generation of the result of the conversion.

5. The nesting of <arith conversion>s is subject to implemen-
tation dependent restrictions.

6. In the context of an <arith conversion>, integers, scalars,
vectors, and matrices have a defined scaling of 2 0 . 0 All
<express:ion>s with defined scalings must have the same
scaling.

k

SEMANTIC RULES (INTEGER, SCALAR, AND FIXED):

1.	 If INTEGER, SCALAR ! or FIXED are unsubscripted, and have
only one unrepeated argument of integer, scalar, fixed,
bit, or character type, then if the argument is arrayed, the
result of the conversion is identically arrayed.

2.	 If INTEGER, SCALAR, or FIXED are unsubscripted, and Rule 1
does not apply, then the result of the conversion is a linear 147
(1--dimensional) array	 whose length is equal to the total
number of data elements implied by the;argument(s).

3. Tf INTEGER, SCALARf or FIXED are subscripted,;the form of
the < subscript> must be a sequence of 4 arith exp>s separated
by commas The number of <arith exp>s is the dimensionality
of the array produced. Each <arith exp> is an unarrayed
integer or scalar expression computable at compile time.
Values are rounded to the nearest nteger.,and must be greater
than one. They denote the size of each array dimension pro-

^^	 duced, Their product must therefore match the total number of
elements implied by the argument(s) of the conversion.

4. INTEGER, SCALAR, and FIXED may have arguments of any type
(subject to general rule 6 above) except structure. Type
conversion proceeds according to the ,'standard conversion rules
set out in Appendix D'.

6-291See Section 5.5.

.a

s

F

r S. The precision of the result isSINGLE un ess forced by the
precision of a <precision specifier.

'	 !	 6. , A <scaling> specifier is permitted on IN EGER and SCALAR only
;. if all the <expression>s are composed of numbers, FIXEDs,

VECTORFs, or MATRIXFs.
t

7. When converting	 IXEDs	 MATRIXFs	 and VECT^'g	 r	 r	 JRs, to INTEGERs, ^
SCALARs, VECTORs, or MATRIXs, the scaling of the result of
the conversion (if known) must be 20.

SEMANTIC RULES (VECTOR, VECTORF, MATRIX, AND MATRIXF);

1. In the absence of a <subcript>0 VECTOR or VECTORF produces
f a single 3-vector result; MATRIX or MATRIXF produces a
M single 3-by-3 matrix restit.	 The number of data elements

implied by the argument(s),must therefore be equal to 3
E and 9t,respectively.

2. VECTOR, VECTORF, MATRIX, and MATRIXF cannot produce arrays
of vectors and matrices.	 `Consequently, ersubscript> may
only indicate terminal subscripting.

o

3. In VECTOR or , VECTORF, the <subscript> must be an <arith exp>,
<arith. exp> is an unarrayed integer or scalar expression
computable at compile time (see Appendix F). 	 Its value
is rounded to the nearest integer, and must be greater than

r one.	 It denotes the length of the vector produced by the
conversion.	 It must therefore match the total number of
data elements implied by the argument(s) of the conversion.

4. In MATRIX or MATRIXF, the form of the <,subscript> must be

t

<arith exp>, <arith exp>

Each <arith exp> is an unarrayed integer or scalar expression
computable at compile time. 	 Values are rounded to the nearest

141 integer,. and must be greater than one.	 They denote the row
and column dimensionsres ectivel 	 of the matrix produced bP	 y^-	 P	 Y

t
;

the conversion.,	 Their product must therefore match the total
number of data elements implied by t-Ae argument(s) of the
conversion.

5. VECTOR, VECTORF, MATRIX, and MATRIXF may have arguments of
integer, scalar, fixeds, vector, and matrix type only.

6, The precision of the result is SINGLE unless forced by the
presence of a <precision> specifier.

7. A <scaling> specifier is permitted on MATRIX and VECTOR only
^• if all the <expression>s-are composed of numbers,'FIXEDs,
E VECTORs, or MATRIXst

6-30

x

ORIGINAL PAGE IF

OF
pOoR QUALITY	 :r

fi

Y

ri

examples:

DECLARE "k ARRAY(2, 3) SCALAR,
V VECTOR(3);

INTEGER('IX _., 2,3result is	 array of integers

INTEGERUXI, IXD result is linear 12-array of
integers

SCALAR(V)	
J,l v

result is linear 3-array of
scalars

INTEGER2 '6(2#[Xl) result is 2,6 array of integers*

MATRIX(3#V) result is 3 by 3 matrix, each row
being equal to V

VECTOR 6([XD vector of length 6
Note: 	 A variable enclosed in [] denotes that it is

arrayed

124

* sFor example:

Let [XJ - 114 2
5

31
6. 124

1.	 Argument 2#[X] is "first unraveled", i.e,
[j 2 3 4 5 6	 1-_2 3	 4	 5	 6,1

s 2".	 Linear string is>then,,"rnraveled" into.2x6 array:

(1	 2	 3	 4 5 61
1	 2	 3	 4 5: 6J

t

if
rC

y
6-31	

,,

6.5.2 The Ut ConveJt ion FunWon.

Conversion to bit type is carried out by the BIT
conversion function,. 	 o
SYNTAX;

bit conversion function	 4 0
bit

conversion

S	 radix	 M	 Char txp
2e

BIT	 {	 expression)

-//
	

23

S	 subscript	 M
2r

example:
BIT 0 +J)

GENERAL SEMANTIC RULES:

1. The keyword BIT denotes conversion to bit type.-

2. The conversion has one argument of integer, scalar, fixed,
bit or character type.	 if the argument is arrayed, the

147 result of the conversion is identically arrayed. f

J	 SEMANTIC RULES (without	 radix); x
t

o	 1. Conversions of the argument proceed according to the x
standard conversion rules given in Appendix D. 	 The
resulting bit string is of maximum,' length for the
implementation and the significant aAta is right
justified within the word. zy

r:
2. <subscript> represents component subscripting upon the

results of the conversion.	 <subscript> has the same
semantic meaning and restrictimis in the current context
as it does in the subscripting of bit <variable>s (see
Section 5..3.5). vnx

u

a

6-32

i

s

0

J

o

0

3

_-	 SEMANTIC RULES (with <radix>):

1. The single argument of the <radix> version of the BIT
conversion must be a <char exp>. <radix > specifies a
radix of conversion, and has one of the,following syntac-
tical forms:

@HEX	 (hexadecimal)

@DEC nr F^	 (decimal)
@OCT	 (octal)

@BIN	 (binary)

2. The < char>. exp> must consist of a string (or array of
strings) of digits legal for the specified < radix>
otherwise a run time error occurs _. The conversion generates
the binary representation of the digit string

3. During conversion, if the length of the result is too
long to be represented in an implementation, left truncation
occurs.

,

0

nveu ion Function.

character type is carried out by the
n.

GENERAL SEMANTIC RULES:

1. The keyword'CHARACTER denotes conversion to character
type.

2. The conversion has,/ 	argument of integer, scalar, fixed,
147

	

	 bit, or characte^£ype. If the argument is arrayed, the
result of the-conversion is identically arrayed.,

k

-

r'
6-34

SEMANTIC RULES (without <radix>):
`'	 p

],^.. Conversion of the argument proceeds according to the
standard conversion rules given in Appendix D.

2. <subscript> represents component subscripting upon the
results of the conversion. It has the same semantic
meaning and restrictions in the current context as it
does in the subscripting of character <variable>s (see
Section 5.3-5).

3. A <acaling> specification is allowed only if the 	 147
<expression> is of type FIXED.

J

SEMANTIC RULES (with <radix>): v

1. The single argument of the <radix >" version of the
CHARACTER conversion must be a <bit exp>. <radix>	 VP-
specifies a radix of conversion, and has one of the	 ^4
following syntactical forms:"

@HEX	 (hexadecimal)
r

@DEC	 (decimal)

@QC's''	 (octal-)

@BIN	 (binary)
I	 ^

2. The value of <bit exp> is converted to the representation
indicated by the <radix >, left padding the value with
binary zeroes as required. The result is a character
string consisting of the digits of the representation;

examples;

DECLARE X ARRAY(2, 3) ,SCALAR;

CHARACTER(M) ,

	

	 result is a 2,3 array of character
strings

CHARACTER 2(W)	 same as above except that only the
•	 second character of each array
F '	 element is taken

CHARACTER	 (B IN ' 101101')
result is decimal representation of
the bit pattern of the argument

1

Note: A variable enclosed in C] denotes that it is
,.. +	 arrayed

., 6-135

d

6.5.4 'The SUBBIT Neudo-va4i.abte.

The SUBBIT pseudo-variable-.is a way of making the t

bit representation of other data types directly accessible
without conversion. It may appear in an assignment context
(see Section 7.3) as well as part' 'of an <expression>. It
is denoted., syntactically by <bit pseudo -var>.

SYNTAX:

SUBBIT pseudo-rariabla

bit

i

o	 1

SUBBIT	 ----^	 (--I:\wriabN	 -	 —
l_a	u

S	 subscript	 M	 expression

example:
SUBBITSTOe dU

SEMANTIC RULESz`

1. The keyword SUBBIT denotes 	 pseudo-variable.^	
i

2. SUBBIT has one argument only. If it appears in an
assignment context, the argument must be a <variable>.
If it appears as an operand of a. bit expression, the

r	 argument must be an <expression>.

147	
"3. The argument may be of integer, scalar, fixed { bit,

or character type, and may optionally be arrayed.
r

4. The effect of SUBBIT is to make its argument look like
an operand of bit type. (if the argument is arrayed, then
it looks like an arjayed bit operand.)

5. <subscript> represents component subscripting upon the
pseudo-variable. It has the same semantic meaning as if

k	 it were subscripting a bit variable (see Section 5.3.5) j

9

6-36

i	 6. The length of the argument in bits may in some implemen-
tations be greater than hhe maximum length of a bit

n	 operand. 'Let the maximum length of a bit operand be
N bits. If SUBBIT is unsubseripted, only the N leftmost
bits of the machine representation of the data-type of
the argument are visible. If the representation is less
than N, the number of bits visible is equal to thef	 length of the particular data argument.

Z. Partitioning subscripts of SUBBIT may make between 2 and
N bits from the representation of the argument type

i

	

	 visible at any time (i.e. the partition size is < V.)
The partition size must be known at compile time. If
the representation is less than the specified partition
size, binary zeros are added on the left.

i

8. In an assignmen t context, SUBBIT functions may not be
nested within SUBBIT functions. Neither may they
appear as assign arguments, or in READ or READALL
statements.

^i
J

r

x	 6. 5.5. Sunrat y o S 4tqument T 3pe6 .

^	 a

The asterisks in the following table idAicate the
legal argument types for each conversion function.

ConveNon
F innion

ARGUMENT TYPE	 -
INTEGER SCALAR FIXED- VECTOR VECTORF MATRIX MATRIXF 811 CHARACTER

I NTEgR ^k *')je ^(c * ^k ak c

SCALAR * * * ?k ^k

FRACTION

VECTO^,^ ^k * * * * _

VECTORF ^k ^k ^k ^ ^k ^ * ^k

MATRIX ^k plc ^k; ^k)(r ^c)(c

MATRI XF ^k ? ^k ^k $e ,^

BIT ak ^k

BIT with
(radix)

CHARACTER * * * ,.

CHARACTER
with	 radix

SUBS 17

- a

r

i

1^

w

o	 c,

6.6 ExPL^YCIT PRECISION CONVERSION.

The precision specifier may be used to cause explicit 147
precision conversion of integer, scalar, fixed, vector,
and matrix data types

SYNTAX

e

I(

SEMANTIC RULES:

1. If <precision> is specified as^a subscript to an
<arith operand> (see Section 6.1.1), a conversion to
the precision specified takes place.

2. If <precision> is specified. as a subscript to an
<arith conversion> then the result of the conversion is
generated with the indicated precision.

3. if referring to integer type, SING^

	

	 g	 g	 yp	 LE implies ay.halfword,
and DOUBLE a fullword. The interpretation is machine
dependent.

rv'	 6-39

AL

LL

t

Ai

f!

6.7 SCALING

FIXEDs, VECTORFs, and MATRIXFs contain values between
minus one and one. It is the programmer's responsibility
to define appropriate scale factors for all fractional objects
and to explicitly specify all scaling operations. The scaling
specifier is used to define the scale factor associated with a
FIXED, VECTQRF, or MATRIXF, and'-to- specify any required
changes in that scaling. Scaling specifiers may be'used as
attributes in declarations (Section 4.5), to specify changes
in the scaling of literals, FIXEDs, VECTORFs, and MATRIXFs
(Section 6.1.1), and to specify changes in scaling while
performing conversions (Sections 6.5.1. and x:.5.3)

SYNTAX:

scaling
SCALING	 si

S22:4

T24

r

SEMANTIC RULES

1.	 <arith exp> must be of either integer or scalar type.

<arith exp>2.	 The form @<arith exp> specifies a scaling of 2	 ,
When used as an attribute in a declaration, it defines the
scale factor of the associated objects to be 2<arith exp>.
When used as an operator, it specifies a change in the sca eQ
factor by 2<ari.th exp> Which is equivalent to -a multiplica-
tion by 2-<ari.t exp>.

3.	 The form @@<arith exp> specifies a s^.ialing of <arith exp>.
When used as an attribute in a declaration, it defines
the scale factor of the associated objects to be <arith exp>.,-
When used as an operator~' it specifies a change in the scale
factor by	 arith exp	 which is equivalent to a - multiplication
by <arith exp>-1•

6-40 j

E

-	 -_. _•.	 .,_....,__...._.,.w	 r.,a^..^....._a.	 -	 _	 :. ^.;.__	 _....z,._._.w, 	 „_..	 ..	 -x crti	 mss:	 ,._.	 -	 ^N...

r

7. EXECUTABLE STATEMENTS

Executable statements are the building blocks of the
HAL/S_language. They include assignment, flow control, real
time programming, error recovery, and input/output statements.
Syntactically a statement of the above type is designated by
<statement>. The manner of its integration into the general
organization of a HAL/S ` compilatien was discussed in Section. 3.

a

f

w,

t

i

s	 ,

7
_ 1	 tf

i

O

r.

O	 ^

c Statements.

ai4 forms of <statement> except the IF statement
and certain°forms of the ON ERROR statement (Section 9.1),
fall into the category of a <basic statement>.

SYNTAX
11

A

Y. sutlmMt

44
fatement

basic statement

f	 ^A

Any <basic statement>, unless it is imbedded in an IF_
tl statement or ON ERROR statement, may optionally be labelled

with any number of <label>s. Not all forms of <basic
statement> are described in this Section. Real time
programming statements are described in Section 8, error

k	 recovery statements in Section 9, and input/output statements
r	 in Section 10.

F	 ^.

7-2

n

ID

f	
,

7.2 The IF Statem en!',

'

	

	 The IF Statement provides for the unconditional exec
tion of seg tints of HAL/S code.

SYNTAX:

y

i

^r

7

sttarewnt
45

IF	 condition 30 THEN	 - -

hbN	 bit exp
26

— —	 statement
 44	 e.

-- bas r4tt^dm6nt	 ELSE	 •tat^rtwnt
44	 44

example;	 IF J > 0 THEN K =] ;

ELSE K=2p

i

a	 SEMANTIC RULES;

1. The IF statement, unless it is imbedded in another
IF statement or in an ON ERROR statement, may
optionally be labelled with any number of <label>s.

f 2. The°option to label the <statement> or <basic statement> 129
of an IF statement is not disallowed. 	 However, such

s labels may only be referenced by REPEAT or EXIT state-
ments within Eathe (compound) <statement> or.<basic statement>
thus labelled,

i=

j 3. If <bit exp> appears in the IF statement, then it must
F	 x' be Boolean (i.e. of 1-bit length).

4. If the <condition> or <bit exp> is TRUE,"then the <statement>
or <ba'sic statement> following the keyword THEN is executed.-
If <bit exp> is arrayed, then it is considered to be TRUE
only if all its array elements are TRUE.	 Execution then
proceeds to the <statement> following the IF statement.

7-3

r

0alGINAL 'PAGE IS
Of pQQR QUALITY

t

a,

=^C

.5.	 If the <condition > or <bit exp> is FALSE then the
<statement > or <basic statement> following the keyword
THEN is not executed.	 If the ELSE clause is present
then the <statement> following the keyword ELSE is
executed instead, and then execution:- proceeds to the
<statement> following the IF statement. 	 If the ELSE]
clause is absent, execution merely proceeds to the next
<statement>.

NOTE:	 If the ELSE clause is present, a <basic statement>
rather than a <statement > precedes the keyword ELSE.	 A
nested IF statement therefore cannot appear in this position,
thus preventing the. well-known ' dangling ELSE' problem.

j

q

1

7-4

d

h

t

0

7.3 The Assignment Statement.

The assignment statement is used to change the current
s value of a <variable> or list of <variable>s to that of an

expression evaluated in the statement.

SYNTAX:
u

	

assgnmtrrt ttsument	
Obasic

loom

statement

	

variable	 =e 	 •

label	 !

`^ r
	 _	

example:
ETA^ . KAPPA = LAMBDA + 1;

GENERAL SEMANTIC RULES;

1. <variable>;.may not be an event variable or an input
parameter of a procedure or function block.	 j

tj
2. The ef'fectivo order of execution of an assignment state- 	 .;

ment is as follows.; 	
'

• any subscript expressions on the left-hand side are
evaluated;

• the right-hand side <express ^^n> is evaluated;

• the values of the left-hand side <variable>s are
changed.	

J	 J

3. If the <expression> on the right-hand side is array rf
then all the <variable>s on the left-hand side must be^^^
arrayed. The number of dimensions of arrayness on each
side must be the same, and corresponding dimensions on

N	 either side must match in size.
^	 u

7-5	 j

If the <expression> on the right-han4 side is not arra3^e
then it is still possible for one or Snore <variable>s°oi^
left7hand side to be arrayed. If more than one <variable>
is arrayed, the arraynesses must match in the sense of
General Semantic Rule 3, above. The single unarrayed value
will be assi ned to every element of arrayed targets.

Generally, the =vpe of the <expression> must match the
types of the <varile>s on the left-hand side. Specific
exceptions to th is, ule' are listed below. The type of
an assignment is taken to be the same as the type of the
<variable> whose value is being changed.

If a variable has a RANGE attribute then the runtime value
of the expression must fall within the range. An out of
range assignment may lead to compile time and/or runtime
error messages--its effect is undefined.

4.

6.
14 2_

f

SEMANTIC RULES (integer and scalar assignments):

1. The following implicit type conversions are allowed
during assignment:

143 !	 a Assignment of an integer <expression> to a -scalar-
<variable> is allowed;

143)

	

	 Assignment of a scalar <expression> to an inteaer
<variable> is allowed.

2. If the left- and right-hand sides of a scalar assignment
have differing precisions, precision conversion is freely
allowed. Conversion from DOUBLE to SINGLE precision
implies truncation of an implementation dependence number
of binary digits from exponent, mantissa, or troth.

f

r
SEMANTIC RULES (fixed assignments):

.1. Both the <variable> and the <expression> must be of type FIXED. 	 f

147	 2. If the scaling of both the <variable> and the <expression> are
defined they must be equal.„

h

3. If the <variable> and the <expression> have different` ,orecisions,	 a
F	 the value of the <expression> is truncated on the right or zero

extended on the right to conform with the precision of the 	 T
<variable>.

1

7-6

w

o

i

i

SEMANTIC RULES (vector and matrix assignments):

1. The <expression> must normally be a vector or matrix
expression with the same type and dimension(s) as the
<variable>s on the left-hand side. One relaxation of

;.,

	

	 this rule is permitted. Matrix or vector <variable>s may
be set null by specifying literal zero for the <expression>.
In this case only, both matrices and vectors of any,
dimension (s) may appear mixed in the list of <variable>s.

2. If the left- and right-hand-sides of an assignment have
differing precisions, precision conversion -is freely allowed, 147
according to the^,sema'ntic rules for scalar and fixed as.-
signments given above.

I	 3. For VECTORF and MATRIXF assignments, if the scaling of both
the <variable > and the <expression> are defined they must be

Eequal.

i
SEMANTIC RULES (bit assignments):

i
1. If the length of the bit <expression> is unequal to that

of the left-hand side bit <variable>, then the result of
the <expression> is left-truncated if it is too long, or
left-padded -with binary zeroes if it is too short.

2.. The effect of a left-hand side <variable> being a
<bit pseudo-var> is described in Section 6.5,.4.

SEMANTIC RULES (character assignments):

1. Assignment of an integer or scalar <expression> to a
character <variable> is allowed. During assignment't'he
integer or scalar value is converted to a character string
according to the conversion formats given in Appendix D.

2. If <variabley is a character variable with no component
subscripting,. then:

e If the length of the <expression> is greater than the
declared maximum length of the <variable>, the
<expression> is right-truncated to that length.. The
<variable> takes on its maximum length.

e If the length of the <expression> is not greater than
the declared maximum length of the <variable>, then
<variable> takes on the length of the <expression>.

a	 .'

7-7!

a

yy y

Q:)	
_.^.

i

3.	 If <variable> is a character variable with component sub-)
scripting then:

" e" If the length of the <expression> is greater than the
length implied by the component subscript, then its
right-truncated to the implied 'length. 	 v

/heif	 length of the <expression> is less than the
length implied by the component subscript, then it is
right-padded with blanks 	 o the implied length.

After assignment the <variable> takes on.the length
imp'lied by the upper index of the component subscript,
or retains its original length, whichever is the
greater.	 If the upper index of the subscript implies

t a length greater than the declared maximum for that
i <variable>, right-truncation to the maximum length
E occurs.

If the lower index is greater than the length of the
<variable> before assignment, then the intervening
gap is filled with blanks.

SE..M.N?'IC_RULES (structure assignments)

t 1.	 <expression> can only be a <structure exp>. 	 The tree°
organization of the structure operands on both sides
of the assignment must match exactly in^all respects. wThe sense in which tree organizations of two structures'
are said to match is described in Section 4.3.

a

t

7-g

i

.<__..:...^..^^_:,..... vas..__...	 .as......_..:, ^1.....	 _....•.	 .__	 _-	 -v

J ^:

CAL
L----^

ASSIGN	 (variable
20

example:
CALL EPSILON (A • B) ASSIGN (C);

e

7.4 The CALL Statement.

The CALL statement is used to invoke execution of a
Procedure. The PROCEDURE block may be in the same <compilation>
as the CALL statement or external to it.

SYNTAX;
_	 1

a
I
)
i

rr
SEMANTIC RULE.?

G

1. CALL <label> invokes execution of a procedure with name
<label>.

tE 2. If a <procedure block> with name <label> appears in such
a name scope that <label> is known to the CALL statement,
then CALL <label> invokes that block,

25. If a tprocedure block> is declared inside a DO ... END

x	 group{. it may only be invoked by .,a CALL statement contained 	 150
in the same DO...END group.

7_g

y
9

am r . u^... _ 	 d __._ems

3. if no such <procedure block> exists, then ,the <procedure
block> is assxuned to be external,^o the <compilation>
containing the CALL statement. A <procedure template>
for that <procedure block> must therefore be present in
the <compilation> (see Section 3:6).

4. Each of the <expression>s is an "input argument" of the
procedure call.

5. Each of- the <variable>s is an "assign argument" of the
procedure call. Only assign arguments may have their
values changed by the procedure. If <variable> is sub
scripted, it must be restricted in form to V e following:

•' No component subscripting for bit and character types.

• If component subscripting is present, <variable> must
be subscripted so as to yield a single (unarrayed)
element of the <variable>.

• If no component subscripting is present, but array
subscripting is, then all arrayness must be subscripted
away.

6. Assign arguments are "call-by-reference". Input arguments
are eith eL t^cali-by-rerere*^ce" or "call-by-value

7. Each assign argument must match its corresponding procedure
block assign parameter exactly in type, precision, dimension,
arrayness, structure tree organization, and DENSE and
REMOTE attributes, as applicable. CHARACTER lengths
are an exception; they must be declared CHARACTER(*).
The reason is that character types are or varying length
and the actual length is available at execution. If an
assignment argument has the LOCK attribute, then the
following must apply:

• If it is of lock group N, then the correspondingassign
parameter must be of lock group N, or *:

• If„it is of lock group *, then the corresponding
parameter must also be of group *.

k`	 1 In this context "call-by-reference” means the arguments
are pointed to directly. "Gall-by-value" means the

124	 _; value of an input argument, at the invocation of a
procedure, is made available to the procedure.

µ
7-10

r

6. Two types of indentifiers may not be used as assign argu-
ments of a CALL statement when they are part of structure
variables and have a DENSE attribute. They are integer 	 l42type identifiers with a specified RANGE attribute and bit

s	 ^^	 type identifiers. All other types of structure terminals
with the DENSE attribute may be used as ASSIGN arguments.
See Sections 4.3 and 4.5 for further explanation of the -
DENSE attribute. Note, 'however, that an entire structure
with the DENSE.a;!;tribute may be passed providdd that
template matching rules are observed".

i
M

I^

1
1

A

tr

r

t

7-11
i	 t �

q^
	

_	 r

1
I	

''i	

1

v

9. For input arguments, the following'z^laxations of
rules 7 and 8 are permitted;

rec sions need not match;p

the lengths of bit arugments need not match;

i 1 '	 a CHARACTER ai^;guments must be declared CHARACTER(*) ;

0 implicit integer to scalar.and scalar to integer
conversions are allowed;

a implicit integer and scalar to character conversions
are allowed;

matching of the attributes...DENSE and REMOTE is not 	 .=
required.

Input arguments may be viewed as being a s̀̀ signed to their
respective input parameters on invocation of the procedure.
The rules applicable in the above relaxations thus
parallel the relevant assignment rules giver. in
Section 7.3.

147 10," If the formal parameter and actual argument are both
FIXEDs, VECTORS, or MATRIXs with defined scaling,

C	 then the scalings must be equal.

11. If an assign argument is a structure terminal or a
minor structure node (but not if it is a mayor structure) 	 p
and if the structure possesses multiple copies, then the
number of copies must be reduced to one by subscripting.

F

is

i

/f
f

7.5 The-, RETURN Statement.

The RETURN statement is used to cause return of
execution from a TASK, PROGRAM, PROCEDURE, or FUNCTION block.
In the case of the FUNCTION block it also specifies an
expression whose value is to be returned.

SYNTAX:

GENERAL SEMANTIC RULES;	 -

1. The effect of the RETURN statement is to cause normal
exit (return of execution) from a TASK, PROGRAM,
PROCEDURE, or FUNCTION block. (Also see the CLOSE
statement, Section 3.7.4). -

2. <expression> may„only appear in a RETURPI,statement of
a <function>. Its value is the returned value of the 	 124function, and is evaluated prior to returninga

s

t a

3

7-13

ORIGINA1L. PAGE 15

OF POOR QUALITY

r

3.	 <expression> must match the function definition in type	 -	 1
and dimension, with the following exceptions:

the lengths of bit expressions need not match;

°	 the lengths of character expressions need not match;

implicit integer to scalar and scalar to integer
'	 conversions are allowed;

implicit integer and scalar to character conversions
are allowed.

i

The return of the function values may be viewed as the
assignment of the <expression> to the function name.0
The rules applicable in the above exceptions thus
parallel the relevant assignment rules given in Section 7.3.

4.:	 ii the <expression> and the function are both FIXEDs,
147	 VECTORFs, or MATRIXFs with defined scalings, the scalings

must be Equal.	 r-

124	 5•	 <expression> must always appear in RETURN statements of
3 	 <function block>s.	 Execution must always end on logically

reaching a RETURN statement of such a block, and not by
logically reaching the -delimiting "CLOSE statement.`-

I

i

F
	 n

3

7-14

1

d	

^

t	 i
1

^\yam •̂ e_nvtdlr•..Nr J+si'^W.1a..+c.++:w^s....^1_. _, i. 	 si._..'.'iaa A. s+-.	 .
,....	 v	 m._.	 ..rz . .	 _..."iJ.v.:a..ertxa..wl .•_••.•••sA"Lm_.aiilr:.s.:a..9ia.+'e_.••

f

i

I

i

r

F

P

k

`t	 7.6 The DO... END Statement Group.

The DO ... END statement group is a way of grouping a
sequence of <statement >s°together so that they collectively
look like a single <basic statement >. Additionally, some
forms of DO..END group provide a means of executing a sequence
of <statement>s either iteratively, or conditionally, or both.

SYNTAX:

7

^	 a

I

	

	 The DO ... END statement group is opened with a <do statement>
and closed with an <end statement> In between may appear
any number of <statement>s interspersed as required with
FUNCTION, PROCEDURE, or UPDATE blocks. The form of the 	 1 150
<do statement> determines how the <statement>s within the
group are executed.

7-15

a

i
7.6.1	 The Simpte DO Statement.

1

+	 The simple DO statement merely indicates that the follow-
ing sequence of <statement>s comprising the group is to be
viewed as a single <basic statement>. The sequence is executed
once only.

SYNTAX:

The DO CASE statement indicates that in the following
sequence of <statement>s comprising the group, only one
specified <statement> is to be executed.

SYNTAX:

DO CASE Statement
do

statement

DO CASE	 arith exP	 i

0

label	 ELSE	 statement
example:
ALPHA: DO CASE J • 1;

9 SEMANTIC RULES:

1. <arrth ex > is an 	 unarra ed integer or scalar F	 Y	 y	 gexpression.
The value of a scalar expression is rounded to the nearest

y

integer before use.,

" 2. Let the value of <arith exp> be denoted by K. 	 If K is
greater than zero, but not greater than the number of
<statement>s in the group, then the K th <statement> of
the group is executed.

3. If the value of K is;outside the range defined in Rule 2,
and no ELSE clause appears in the DO CASE statement,
then an error condition exists.	 The result of such' 134

n an error is implementation dependent.

4. If the value of K is outside the range defined in Rule 2,
but an ELSE clause does appear., the <statement> following
the ELSE keyword is executed instead of one of those in the 	 1.29
group.	 The option to label<statement> is not disallowed.
However, such labels may only be referenced by EXIT or
REPEAT statements within the (compound) <statement> thus
labelled.

5. The presence of any code block definition in the group of
<statement>s does not c jhange the K-indexing of the <statement>s
except for UPDATE bleats (which are considered as single 154
statements).

7-17

t

i-

7.6.3	 The DO WHILE and UNTIL Statements.

The DO WHILE and UNTIL statements cause repeated
execution of the sequence of <statement>s in a group until
some condition is satisfied.

SYNTAX

DO WHILE and UNTIL satenwtt 	 `t

do	
5 2

statertwnt

condition

-	 DO	 WHILE	 bit exp	 i

t
Isbal	 UNTIL

oxampta:
00 WHILE 1 > 0;

J

t ->

iA
l SEMANTIC RULES:

1.	 There is no semantic restriction on <condition>.
<bit exp> must be boolean and unarrayed (i.e., of
1-bit length).	 The <condition> or <bit exp> is re-
evaluated every time the group of <statement >s is
executed.

2.	 In the DO WHILE version, the group of <statement>s is
repeatedly executed until the value of <condition> or
<bit exp> becomes FALSE.	 The value is tested zit the
beginning of each cycle of execution.	 This implies that
if <condition> or <bit exp> is initially FALSE the 'group
of °<statement>s is not executed at all.

9

7-18

3. In the DO UNTIL version, the group of <statement>s is
repeatedly executed until the value of <condition> or =
<bit exp> becomes TRUE-. The value is not tested before

'

	

	 the first cycle of execution. on the second and all
subsequent cycles of execution, the value is tested at the
beginning of each cycle. Use of the UNTIL version there-
fore guarantees at least one cycle of execution.

j

F

4

3

s

O

1

t

7-19

r^

i.

0

dhcrate r0 FOR statement

do	 3statement

DO FOR	 arith var	 arith exp

`?	 labs!	 -

WHILE	 condition

UNTIL	 bit exp

examples
DO FOR 1- 10, 20 WHILE J > 0;	 fir'

7.6.4	 The Vi6chete DO FOR Statement.

9 The discrete DO FOR statement causes execution of the
sequence of <statement>s in a group once for each of a list
of values of a "loop variable". The presence °of a WHILE or
UNTIL clause can be used to cause such execution to be depend-,,
ent on some condition being satisfied.

SYNTAX;

i

i
3

X

r

SEM?INTIC RULES:	 r	
#

1.	 <arith var> is the loop variable of the DO FOR statement. 143,,

I41 It may be any unarrayed integer, scalar, or fined 147	 j
147 variable.	 The initial loop variable, determined after all

required subscripting and NAME dereferencing, is used
throughout,	 i

2.	 The maximum number of times of execution of the group of
<statement>s is the number of <arith exp>s in the assign-
ment list.

'	 147.t 3•	 <arith exp> is an unarrayed INTEGER, SCALAR, or FIXED 	 147
'_	 (expression.

I

f{
4

7-20
$E Aft

OR1q'6P'L PAGE 15

OF POOR QUAL ITY

a____..u,_,_ "	 _. ^3."^"' —•	 MSr.-•,^ ^.	 : 	 ti '.-in.n.r*.aYiT-.uiitr..	
.........

 •	 .

4. FIXED	 may be used only if the < arith var > and all
the <arith exp>s are fixed.	 If more than one`'of the 147
FIXEDs in the DO statement has a defined scaling, the
scalings must be equal.

5. At the beginning of each cycle of execution of the group
If the next <arith exp> in the list (starting from the left-

most) is evaluated and assigned to the loop variable. 	 The
assignment follows the relevant assignment statement rules
given in Section 7.3.

6. Use of the WHILE or UNTIL clause-,causes continuation of
cycling of execution to be dependent on the value of
<condition> or <bit exp>.

C%

J' 7. , There is no semantic restriction. or <condition>.

UI <bit exp> must be boolean and unarrayed (i.e. of
1-bit length).	 The <condition> or <bit exp> is re-
evaluated every time the group of <statement>s is'/
executed.

C

If the WHILE. clause is. used, cycling of -execution i s
abandoned when the value of <condition , or <bit exp>
becomes FALSE.	 The value is tested at the beginning of

s each cycle of execution after the assignment of the loop
variable.	 This implies that if <condition> or <bit exp>
is FALSE prior to the first cycle of execution of the group,
then the group will not be executed at all.

9. If the UNTIL clause is used, cycling of execution is
abandoned when the value of <condition> or <bit exp>
becomes TRUE.	 The value is not tested before the first
cycle of execution.	 On. the second and all .,subsequent

tcycles of execution, the value is tested at' 	 beginning
= of each cycle after the assi nment of the loo 	 variable.Y	 g	 P	 _

Use of the UNTIL version ther.efd^/e always guarantees at
least one cycle of execution.

i

r

7-21
u
x.

Y

OL

. 1

ituative DO FOR starannt

DO FOR-- j arith var arith Op	 1'0	 —

do
statement

label

0

v

7.6.5	 The Itoutive DO FUR Statement.

The iterative DO FOR statement is similar in intent and
operation to the discrete DO FOR statement, except that the
list of values that the loop variable may take on is replaced
by an initial value, a final value, and an optional increment.

SYNTAX:
C^

j

3

J	 SE14ANTIC RULES

1, <arith var> is the loop variable of the DO FOR statement.
It may be any unarrayed integer, scalar, or fixed

14? variable. The initial loop variable, determined after
all required subscript;ing and,NAME dereferencing, is used
`throughout.

2. Each <arith exp> is any unarrayed integer, scalar, or
147	 fixed expression. All are evaluated prior to the first

F	 cycle of execution of the group.

c,

7-22	 ^:

example:
DO FOR I = 1 TO 30 BY 2 UNTIL J < 0;

t

F

3. FIXEDs may be used only if the <arith var> and all
the <arith exp>s are fixeds. If more than one FIXED
in the,DO statement has'a defined scaling, the	 147
scalings must be equal. When FIXEDs are used, the
BY clause must appear.

4. If a BY clause appears in the DO FOR statement, the value
assigned to the loop variable prior to the Kth cycle of
execution is a- al to its value on the K-1t cycle plus4
the value of <arith exp> following - the BY keyword (the
,iincrement").

5.	 Assignment of values to the loop variable follows the
relevant assignment rules given in Section 7.3.	 In
particular, if the loop variable is of integer type,
and an initial value or increment is of scalar type, the
latter will be rounded to the nearest integer in the
assignment process. 	 The effect,of the loop variable assign-	 ?a
ment is identical to that of an ordinary assignment state-
ment:	 the loop variable will retain the last value computed
and assigned when the DO statement execution is completed.

o, J) After the value -f the loop variable has been c hanged, it
is checked against the value of the <arith exp> following
the TO keyword (the "final value").

7.	 If the sign of the increment is positive, the next cycle
is permitted to proceed only if the current value of the
loop variable is less than or equal to the final value.

S.	 If the sign of the increment is negative, the next cycle is
permitted to proceed only if the current value of the loop
variable is greater than or equal to the final, value.

9.	 If the WHILE clause is used, cycling of execution is
abandoned when the value of <condition> or <bit exp>
becomes FALSE.	 The value is tested at the beginning of
each cycle of execution after the assignment"

,
 of the loop

variable.	 This implies that if <condition> or <bit exp>
is FALSE prior to the first cycle of execution of the group,
then the group will not be executed at all.

i 10.	 If the UNTIL clause is used, cycling of execution is
abandoned when the value of <condition> or <bit exp>
becomes TRUE.	 The value is not tested before the first
cycle of execution. 	 on the second and all subsequent
cycles of execution, the value is tested at the beginning

E of each cycle after the assignment of the loop variable.
t Use of the UNTIL version therefore always guarantees at

least one cycle of execution.	 J,.

-	 7-23	 1
:_

it

^•5

7.6.6	 The END StaUement.

The END statement closes a DO. , . END statement group.

t

s	 SYNTAX:	 o

ENO gtenNnt	 a

statement	 [5 51V
i

i
END

LO labs(label

example:

ENO LOOP;

r

SEMANTIC RULES:

1^ If <label> follows the END keyword, then it must match a
<label> on the <do statement> opening the DO ... END group.

2. The fiend statement> is considered to be part of the group,
in that if it is branched to from a <statement> within the
group, then depending on the form of the opening <do
statement>, another cycle of execution of the group may

154

	

	
begin. (The END statement closing a DO CASE is not counted
as another case.)

_	 x	 s
N

v
7-24

M NM 1 00416 _0 91000041

i

a a": AL. a ..,.,.

F^

L

fJ

7.1 Other Basic statements.

Other <basic statement>s are the GO TO, "null",f^
EXIT, and REPEAT statements.

SYNTAX:,

basic
	 GO TO, "null", EXIT, and REPEAT'state:nents

	

el
statements

^_ 	 GO TO	 "abal

j

isGai
example..

ONE. DO FOR I = 1 TO 10;
TWO: DO FOR - 37 TO 43;

IF BI ,j = FALSE THEN REPEAT ONE

END;
END;

t

EXIT

REPEAT T__r_1Z11__*Nr

SEMANTIC RULES:

1. The GO TO <label> statement causes a branch in execution
to an executable statement bearing, the same <label>
The latter statement must be within the same name scope
as the GO TO statement. A GO TO statement may not be
used to cause execution to branch into a DG.,.END'croup,
or into or out of a code block.

2. The "null" statement (where no syntax except possible
<label>s precede the terminating semicolon) has,-no effect	 y
at run time..

f.	 7-25r

i

'cB^"	 PC f

r

F	
r `^.

3.	 The;4 EXIT statement is legal only within a DO ... E14D group,
or within such groups nested. The 7- ,)r;;n EXIT <label> controls
execution relative to' the enclosing OO...END gro^ip 4 i:ose

` <DO statement > bears <label> . The form EXIT controls
execution relative to the innermost enclosing ` DO ... END group.
Execution is caused to branch out of the DO ... END group
specified or implied, to the. first executable statement 	 ='

' after they group.

4. ,	The REPEAT statement is;jegal only within a DO ... END group
opened with a DO FOR, DO WHILE, or DO UNTIL statement, or
within such groups nested. The form REPEAT <label > controls _
execution relative to the enclos ing such group whose<DO
statement>bears <label>. The form REPEAT controls execution
relative to the innermost such group. Execution is caused
to abandon the current c ycle of the DO ... END-group. If the
conditions of the opening <DO statement> are still satisfied,
the next cycle of execution begins normally.

y

5.	 Code blocks (procedures, functions, etc.) may appear within
DO. , .END groups. However, EXIT, REPEAT, and GO TO statements
may not be used to cause execution to branch into or out of

i such code blocks.	 -

C-1	 3

F 1'

F

a ,

s
1	 7-26

6

P

F

R
3i

f
8.	 REAL TIME CONTROL

HAL/S contains a comprehensive facility for creating
' a multi-processing job structure in a real time programming

epvironment.	 At run time a"Real Time Executive (RTE) con-
trols the execution of processes held in a process queue. 	 a
HAL/S contains statements which schedule processes (enter	 3

{ them in the process queue), terminate them (remove them from
the process queue), and otherwise direct the RTE in its
controlling function. HAL/S also contains means whereby the

_ use of data by more than one process at a time is managed in
a safe,protected manner'at specific, localized points within

Gthe processes.
s

M

of

V

II
7

1	
1

j

' 	 a

ny

3

1

,

4

^

8-1

'	
t'

i

8.1	 Real Time Processes and the RTE.

In HAL/S, a program or task may be scheduled as
a process and placed in the process queue. Although the
process created is given the same name as the program or task,
it is important to distinguish the static r'nGRAM or TASK
block from the dynamic program or task pr fl°- pr created. Two
processes are actually involved in the crea ^:^ of a process:
the scheduling process, or "father" and the scheduled process,
or "son".1

A process is said to be either "dependent" or "independ
ent"',^as -designated when created. A program, or task process
is "dependent" if it is absolutely dependent for its existence
upon the existence of its father. If a program process is
"independent" its existence is independent of that
of all other processes. If a task process is "independent',

-= its existence is generally independent of that of all other
processes with an important exception: the program process in
whose static PROGRAM block the static TASK block of the task
process is defined.

Each process in the RTE's process queue is at any
instant in one of a number of states. For the urposes of
this Section, the following states are defined.

• "active" a process is said to be in the active
state if it is actually in execution. Depending{
on the implementation it may be possible for
several processes to be in execution simultaneously.

• "wait" - a process is said to be in the wait state if
it is ready for execution but the RTE has decided
on a priority basis that its execution should.be
delayed or suspended.

e "ready" - a process is said to be in the ready state
if it is in either the active or the wait states.

• stall	 a process is said to be in the stall state
if some as yet unsatisfied condition prevents it
from being in the ready _state.

The occurrence of a pro&ess being brought into the active
state for the first time is called its "initiation"."

x
F

except of course for the first or "primal" process which
must be created by the RTE itself

these states are not necessarily definitive of those actually
existing in any particular,implementation of the RTE.

8-2

0

Execution of a CLOSE or RETURN statement by an active
process causes the following sequence of events:

1. CANCEL commands are issued for all DEPENDENT process
still on the process queue. (See Section 8.4)

2. The processs enters a stall state until all DEPENDENT 151
processes have finished.

3. The current cycle is deemed finished. Control reverts
to the RTE which may or may not remove the process from the
process queue.

8.2 Timing Considerations.

in the HAL/S system, the RTE contains a clock measuring
elapsed time ("RTE-clock" time). Time is measured in "machine
units" (MU) whose correspondence with physical

-
time is imple-

mentation dependent. HAL/S contains several instances of timing
expressions which in effect make reference to the RTE-clock.

Simultaneous occurren,bes produce implementaIL-in dependent 1151,
results.

J 	 8-3

I

R

^'ti

761

3

G	 "'
t

F,

8.3 The SCHEDULE Statement.

Processes are scheduled (placed in the process queue)
by means of the SCHEDULE statement. The statement has many
variant forms and off6rs the following features:

• A process may be scheduled"so that the RTE immediately
places it in a ready state, or so that the RTE places
it in a stall state pending some condition being satis-

76	
fied.

fT	 • Aprocess-may be designated dependent or independent.

i The cyclic execution of a process may be specified. 	 i

e Conditions of future .removal of a process from the
process queue may be' specified. 	 7

SYNTAX

g
1 .

SEMANTIC, RULES
A

I. SCHEDULE <label> schedules a program or task with the
name <label>, placing a new process with name <label> in
the process queue. A run time error results if a
process of that name already exists in the process queue.
Unless otherwise specified the RTE puts the new process
in the ready state immediately after execution of the
SCHEDULE statement.

2. The phrase IN <arith exp> is used to cause the process
to be put in the stall state for a fixed RTE -clock dura-
tion. <arith exp> is any unarrayed integer or scalar
expression evaluated once at the time of execution of the
SCHEDULE statement. If the value is not greater than
zero then the process is put immediately in the ready 	 j
state.

3. The phrase AT <arith exp> is used to cause the process
to be put in the stall state until a fixed RTE-clock
time. <arith ekp> is any unarrayed integer or scalar
expression evaluated once at the time of execution of
the SCHEDULE statement. if the value= is not greater than
`the current RTE-clock time and the REPEAT;EVERY option_
is not specified, then the process is put immediately
in the ieady state. If the value is less than the current

I

	

	 RTE time and the REPEAT EVERY option was specified, then 	 125
phased scheduling takes place. The process is put in a
stall state until a future time computed by the expression
CT + RE - ((CT-AT)MOD RE), where CT - current time, RE = RE- 	 14`1
PEAT EVERY cycle time, and AT =originally specified AT time.

4 The phrase ON <event exp> is used to cause the process
to be put in the stall state until some event condition

ll` :

	

	 is satisfied. Starting from the time of execution of
the SCHEDULE statement, the <event exp> is evaluated at
each "event change point" 1 until its value becomes TRUE.
At that time the process is placed in the ready state.

it	 if the value of <event exp> is TRUE upon execution of the
l̂

	

	SCHEDULE statement, then the process is immediately
put in the ready state.

^

	

	
Ara

F	 i the meaning of an "event change point" is defined in
.,__=Section 8.8.r„

8-5

'

ORIGINAL PAGE
-	 OF POOR QUALITY

Q^;

O

t

5. The initiation priority is set by,means of the phrase
PRIORITY (<arith exp>) where <arith exp> is an unarrayed
integer or scalar expression which is evaluated once on
execution of the SCHEDULE statement. Scalar values,-are
rounded'to the nearest integral value. Its value must:,
be consistent with the priority numbering scheme set up

761 for any implementation, otherwise a run time error results.
A priority value must be present in the SCHEDULE statement.
Interpretation ofpriority is implementation dependent.

151
6. When the keyword DEPENDENT is specified, the process created

by the SCHEDULE statement is dependent upon the continued
existence of the scheduling process. Note, however, that
a TASK process is Al_ ways ultimately dependent upon the en-
closing PROGRAM process. Thus when scheduling a TASK from
the PROGRAM level of nesting, the keyword DEPENDENT is re ,
dundant and need not be specified.

i
i

7. The REPEAT phrase of the SCHEDULE statement is used to
specify a process which is to be executed cyclically by
the RTE until some cancellation criterion is rbt. If the"
REPEAT phrase is not qualified, k,-en cycles of execution
follow each other with no intervening time delay. To
cause execution of consecutive cycles to be separated by
Z4 fixed intervening RTE-e3ock time delay, the qualifier
AFTER <arith exp> is used. <arith exp> is an unarrayed

147	 integer, scalar, or FIXED expression evaluated once at the
time of execution of the ,SCHEDULE statement. If the value
is not greater than zero then no time delay results. To
cause the beginning of successive cycles of execution to
be separated by a fixed RTE-clock time delay, the qualifier
EVERY <arith exp> i s used. <arith exp> is an unarrayed
integer or scalar expression evaluated once at the time
of execution of the SCHEDULE statement. If the value is
such as to cause a cycle to try to start execution before
the previous cycle has finished execution, then a run-
time error results.

8. Between the successive cycles of executic,`of a cyclic
process, the process is put in a stall state and retains
the machine resources the RTE reserved for it. It is
not temporarily removed from the process queue.

9. The WHILE and UNTIL phrases provide a cancellation cri-
terion for a cyclic process. Before the cyclic process is

F

	

	 initiated, they also provide a means of removal of the
process from the"process queue.- In this latter capacity,
they also apply to non-cyclic processes.

8-6	 il

f ^

i

l/)1	 r7 `+•^^' '	 -	 O	 - - rs0.sr..xr,	 w,.- ,.." a., c .. 	_r3S.^$ ^^ yTa . Pk..

"t
a

10.	 The UNTIL <arith exp> phrase specifies a cancellation
criterion based on RTE-clock time.	 <arith exp> is an 	 (147unarrayed integer, scalar or fixed expression evaluated
once at the time of execution of the SCHEDULE statement.
For any process, cyclic or non-cyclic, the following is
true.? If the value of <arith exp> is not greater than
the current RTE-clock time, then the process is	 ever

^ 	 entered in the process queue. 	 Otherwise	 CANCEZ command 1,;1
is issued if the RTE-clock equals <arith exp> while the

'z	 process is still on the process queue (see Section 8.4).

i'	 11.	 The WHILE <event exp> phrase specifies a cancellation (^
criterion based on an event condition. For any process,
cyclic or non-cyclic ,, the following is true.	 If the

(value of <event exp> is FALSE at the time of execution
of the SCHEDULE statement, then the process is neveri placed in the process queue. 	 If not, then ,;event exp> J
is evaluated at every "event change point" until its -'
value becomes FALSE.	 At this time a CANCEL command is 151
issued if the process is still on the process queue (See
Section 8.4).

12.	 The UNTIL ,^ vent exp> phrase also specifies a canceller-
tion criterion based on an event -condition.	 However, it
-differs ,_fundamentally _from the WHILE <event exp> phrase
in that it always allows at least one cycle of a cyclic

i	 process to be executed. 	 Consistent with this, the phrase,
-ehas no meaning and therefore no -..ffect in the ca:se of a,-

t	 non-cyclic process.	 For a cyclic process, the value of
the

<	 n	
P	 y	 point"

from 	 oflexecution eofathevSCHEDULEnsta'temen,statement.

o	 n

S. 4 The CANCEL Statement.

Cancellation of a process may be the result of the
enforcement of a cancellation criterion in the SCHEDULE
statement which created the process, or alternativelymay
be the result of executing a CANCEL statement. 	 o

SYNTAX':

CANCEL

a

`^	 label	 label

example:
FINISHING: CANCEL ETA, NU;

`	 9

SEMANTIC RULES

106 I 1• CANCEL <label> causes cancellation of : the process <label>.
A run time error results if the process queue contains no

151	 process with that name. 1' The CANCEL-statement can be used
to cancel any number of processes s*multaneously.

106 2 If the CANCEL statement has no <label>? cancellation
of the process executing the CANCEL statement is implied.

151

1-the default action taken by the Error Recovery Executive
for this and other similar errors may be to ignore the
error'

8-8

r	 `i

iA

R

3,,. If at the time of execution of the CANCEL statement, a
ilk process to be cancelled has notoyet been initiated, then

the process is merely removed from the process queue.
This applies to both cyclic and non-cyclic processes. 	 y

4.	 If at the time of execution of the CANCEL statement a
°	 process to be cancelled has already been initiated, then

the following ensues:	 If the process is non-.cyclic
and it has already been initiated, the CANCEL statement
has no effect;	 if the process is cyclic, then the"
process ,is removed from the process queue at the end of the
current cycle of execution. 	 151

ri

t'.

ti

8.5 The TERM I NATE Statement. un

The termination of a process results in the immediate)
cessation of execution of the process, TERMINATE's of depen-
dents, and removal from the process queue. The TERMINATE

151. statement is used to direct the RTE to terminate specified
processes or the process issuing the TERMINATE.

CVNTSY.

U'

J

SEMANTIC RULES:

1. TERMINATE <label> causes termination of the process
<label>. A run time error results if a process of that
name is not in the process queue, or if it is not a
dependent son of the process currently executing the
TERMINATE statement. The TERMINATE statement can be used
to terminate any number of processes simultaneously.

2. If the TERMINATE statement has no <label>, termination of
the process currently executing the TERMINATE statement
is implied.

fR

0

8.6 The WAIT Statement

The WAIT statement allows the user to cause the RTE
to place a process in the stall state until some condition
is satisfied.

SYNTAX:

WAIT statement

basic	 fi n
statement

a► h exp

WAIT	 FOR	 DEPENDENT,

label	 event exp

UNTIL	 anth exp

example:
NOW: WAIT UNTIL T+7.5;

SEMANTIC RULES-:

1. The WAIT <arith exp> version specifies that the process
executing the WAIT statement is to be.placed in the stall
state for an RTE-clock duration fixed by the value of
the expression. <arith exp> is an unarraye& integer,
scalar or fixed expression evaluated once at the time of 1147
execution of the WAIT statement. If the valu.4 is not
greater than zero, the WAIT statement has no Offect.

2• The WAIT UNTIL <arith exp> version specifies that the
process executing the WAIT statement is to be placed in

i

	

	 the stall state until an RTE-clock time fixed by the
value of the expression.- <arith exp> is an unarrayed
integer, scalar or fixed expression evaluated once;- at the) 147
time of execution of the WAIT statement. If the value
is not greater than the current RTE-clock time, the WAIT
statement has no effect, q

8-11	 a

4

,...

G

3.	 The WAIT FOR DEPENDENT version specifies that the process ..
executing the WAIT statement is to be placed in the stall
state until all its dependent sons have terminated.	 If g
there are no such processes, the WAIT statement has no

e	 effect.

4.	 The WAIT FOR <event exp> version specifies that the,pro-
cess executing the WAIT statement is to be placed in the
stall state until an event condition is satisfied. 	 Start-
ing„ from the time of execution of the WAIT statement,
the <event exp> is evaluated at every "event change point”

t	 until its value becomes TRUE, whereupon the process is
returned to the READY state.	 If the value of <event exp>

'	 is TRUE upon execution of the WAIT statement, then the
statement has no effect.

I

i

n

r

w

w
t

8-12

Hk

{ 8.7 The 1 1 PDATE PRIORITY Statement.

The SCHEDULE statement which creates a process can
also specify the priority of its initiation. At any time
between the scheduling and the termination of the process,
that priority may be changed'by means?of the UPDATE PRIORITY
statement.

SYNTAX:

UPDATE PRIORITY statenxnt

4

baste	 51statement

UPDATE PRIORITY	 TO	 arith ex

Jebel	 label

exampiet
UPDATE PRIORITY GAMMA TO PRiO+ a;

SEMANTIC RULES:

1.	 UPDATE PRIORITY <label> is used to change the priority
of the process with name <label>. 	 The new priority is
given by the value of <arith exp>.	 <arith exp> is an
unarrayed integer or scalar expression whose value must
be cons^.stent with the priority numbering scheme set up
for any implementation, otherwise a run time error results.
Scalar values are rounded to the nearest integral value.
A run time error results if there is no process with name
<label> in the process queue.

2.	 UPDATE PRIORITY with no <label> specification is used to
change the priority of the process executing the UPDATE
PRIORITY statement. 	 <arith exp> has the same meaning as
before.

R

8-13

0

8.8 Event Control

Although a formal specification of events and event	 T'
expressions has already been given in Sections 4 and 6.3, the
Specification has not yet made their purpose clear in the con-
test of real time programming. Superficially event variables
are closely akin to boolean variables in that they are binary-
valued. Conceptually the two forms of HAL/S events (latched
and unlatched) may be thought of as the software counterparts

k	 of hardware discretes and timing lines, respectively.

e a latched event may be thought of as a boolean system

i

	

	 state which may be SET or RESET by appropriate actions,
or momentarily changed for signalling purposes.

an unlatched event may be thought of as the software-
p	 a timing line which is used purely for

signalling it is normally FALSE but becomes TRUE

i momentarily when a signal aotion is executed.

This analogy is no - accident, since event variables can actually
G

	

	 form the interface between HAL/S software and such hardware
control signals. The design and operation of this interface
is implementation dependent.

r

	

	 At any inatant of time the RTE may be viewed as having a
knowledge of all existing events. Whenever the value of an
event changes, the RTE senses this so-called "event change
point", and may in response perform the evaluation of certain"

y

	

	 <event exp>s. Depending on the results of the evaluations, the
states of,.;ope or more processes may be changed. This response
of the F E to changes in event variables is termed an "event
action". ;The value of an event variable can change,n response
to the enX^Jironment external to the HAL/S software; depending
upon the type of event (see SEMANTIC' RULES), a SET, RESET, or
SIGNAL statement may also be, " <used to alter the state of an event
variablee. The only event change actions possible are to ready
or cancel-one or more process.

SET,SIGNAL and RESET statements

basic
statementA	 ...

SET .

SIGNAL	 event var

y 6C label	 RESET

example:

SIGNAL "'IOTA;
y	

,t.

8-14

:u

j^

q

GENERAL SEMA-"ITIC RULE

`
1. <event var> denotes any unarrayed event variable, subscripted

or unsubscripted. r -

SEMANTIC RULES (latched <event var>s',:

1. SET changes the value ofgthe <event var> to TRUE and initiates
all event actions depending upon the TRUE state of this event.
No action is taken if the <event var> is already TRUE.

2.° RESET changes the value of the <event var> to FALSE and ini-
tiates all event actions depending upon the FALSE state`,^-Nr
this event.	 No action is taken if the <event vacrX is already
FALSE.

3. SIGNAL does not change the state of a latched event.

4. If a latched event is TRUE, SIGNAL initiates all event actions
4 depending upon the FALSE state of this event.

5. If a latched event is FALSE, SIGNAL initiates all event',
actions, depending upon the TRUE state of this event.

i
SEMANTIC RULES (unlatched <event vans):

¢ 1. SET and RESET are illegal. for unlatched <event var>s.

2.
r

When used in a <hit expression>, an unlatched ^tTent variable,
^

is equivalent to a literal "FALSE".

3. SIGNAL initiates all event actions depending upon the TRUE
state of this event.	 Note that when an event expression
depenis upon a_logical product of multiple <event var>s,

r at most one such <event var> can be unlatched if th6 eve n t-
action is ever to be taken,

t

3

;z

y

8-15
1

:

K

f

I

`r

A

f

SET RESET SIGNAL

Take all event
unlatched event ,illegal illegal actions depending

on TRUE state of
<event var>

1. Set event state ',Take all event
old

to TRUE '1 actions depending
latched

value
on TRUE state of

event
is 2. Take all event

. no action <event var>
FALSE

actions cQepending
on TRUE state of
<event vary

old 1. Set event Take all event
value, state to FALSE actions depending

latched
is no action on FALSE state of

event
'TRUE 2. Take all <event var>

event actions
depending on
FALSE state of
<event var>

C

U

8.9 Process,-even,

Every program or, task bilock has associated with it
} a "process-event" of the same name. This process=event behaves

in every way like a latched event exc'it that it may not
appear in SET, RESET'`or-.SIGNAL statements. Its purpose is
to indicate the Existence of its associated program or task
process. If a process of the same name as the process-event

`

	

	 exists in the process queue, the value-of°the process-event
is TRUE, otherwise it is FALSE.

C	
_

i

^	 a

f

r

a,

o

8.10 Data Sharing and the UPDATE Block.

_	 v
lie UPDATE block provides a controlled environment

fo
`
r-=the use of data variables which are shared _ by two or more

processes. If controlled sharing of certain variables-is
desired , «<theymust possess the LOCK(N) attribute, where N
indicates the "lock group" of the variable (see Section 4.5).
LOCKed variables may only be used inside UPDATE blocks. A
LOCKed variable appearing inside an UPDATE block is said to
be "changed" within the block if it appears in one or more
statements which may change its value (the left-hand-side
of an assignment for example) 	 It is said to be " accessed"
if it only appears in contexts other than the above.,

A formal specification of the UPDATE block appears in
Section 3 . 4. The manner of operation of an UPDATE block is
implementation dependent, but'is-such as to provide certain
safety measures.

`/
OPERATIONAL RULES:-:
	 v

1. If two processes both require variables from the same
lock group,to be changed, then the first process entering
its UPDATE'block must complete execution of the block before
the other process can enter its own UPDATE block. The
second process is placed in a stall state for the duration.

2. If one process entering an UPDATE block requires a
variable(s) with the attribute LOCK(*) to be changed,
then the situation is equivalent to one in which the 	 124
process requires use of a variable from every lock group. 	 <'

3. If only one of the processes requires a variable of a
lock group -to be chanupd, the other merely requiring it
to be accessed, then depending on the implementation,

1< either Rule 1 or 2 holds, or some overlap in execution
of the two processes' UPDATE blocks is allowed.	 The '.
nature of such overlap must be such as to provide
exclusive use of the lock group by the process requiring
its change between the point where the variable is changed`
and the close of the UPDATE block.,

4. If both processes only require a variable of the same lock
group accessed, then'execution of the two processes' UPDATE
block may be allowed to over 	 depending upon implementation.

'	 5. If there are several simultaneous conflicts'!in using
shared variables because of the participation of--more
than two processes, or more than one lockgroup, then
the most restrictive of Rules 1 through 4'r	 A,,recl is
applied to resolve the conflicts. 	 1^„

' 	 f

C

1

9.	 ERROR RECOVERY AND CONTROL"

'run	 e^haveReferences to so-called	 time 	 been
made elsewhere in this Specification. Such errors arise at
execution time through the occurrence of abnormal hardware
or system software conditions.	 Each HAL/S implementation
possesses a unique collection of such errors. 	 The errors
in the collection, are said tobe "system-defined". 	 In any
implementation"every possible system-defined error is assigned
a unique "error code".	 In addition, a number of other legal
error codes not assigned to system-dened errors may exist..
These can be used by the HAL programmer to create "user-
defined" errors.	 All run time errors, both system- and user-
defined, are classified into "error groups". - The error code
for an error consists of two positive integer numbers, the
first representing the error group to which it belongs_., and
the second uniquely"id.entifying it within its group. 	 The
method of classification is implementation dependent..p

" rot run time an Error Recovery Executive (ERE)- senses
errors, both system-defined and user-defined, and determines
what course of action to take. 	 For every error group, a
standard system recovery ` action'is^defined which the ERE will
take unless error recovery has been otherwise directed by the 	

{

user.	 Depending on the error and the implementation, the
standard system recovery action may be to terminate execution
abnormally, to execute a fix-up routine and continue, or to
ignoreF'the error.

In a real time programming context, every process in
` the process queue has a separate, independent "error environ=^

__merit"which`is°continuous from the time of initiation of 	 S

the process to the time of its termination.	 At any instant
of time the "error environment" of a cprocess is the totality
of error recovery actions in force at that time for all
possible errors.	 M -the time of initiation of the	 1;`
process, the stand:,:.rd system recovery action is in force for
all errors,

^^
N HAL/S possesses two error recovery and control state-

F JJI merits.	 The ON, ERROR statement-is used to modify the error
environment of a process at any time during its life. 	 The

i1	 SEND ERROR statement is used for the two-fold purpose of
l creating user-defined error occurrence-, and simulating system-"

defined error occurrences.

9-1

1E

9.1 The ON ERROR Statement

The error environment upon>entry to a code block (other
than PROGRAM or TASK) is unchanged from that of the previous

jk 152	 statement executed. If a code block changes the error environ-
ment, the entry environment is restored upon exist from the code
block.

s

The ON ERROR statement is used to.change the error
15	 environment°prevailing at the time of its execution.

Itcan change the error recovery action for one selected
error code, fot^ ':.;one selected error group, or for all
gt6^ips simultan^c^usly. There are two basic forms of
the'"-statement: ON ERROR and OFF ERROR..

If an ON ERROR with a given specification is executed in
152	 a particular code block, then the modified 'recovery action

remains in force until one of three things happen:

• the moat(- %ation is superseded by execution of

-_ -J :?secopr .-QZj ERROR with the _Game error speci.:fi.cation. 	 l
1r	 ^

• the modificatj6.7 is removed
by-e ecut oionf	 theaP OFF ERROR with ^^i.he same error

recovery action thereupon reverting to that in
force on entry into the code block.	 y£

• the modification is automatically removed by exit
from the code block.

J

i

^..	 9-2

h

it

0

Si
ri	 ..

SYNTAX:

ON ERROR ^at«rrnt	 A

G"CW spK	 go

.f	
ERROR- 	 S	 " nwn6w	 M

SEMANTIC RULES:

1. The O1N-ERROR statement consists of two parts:	 a
E specification of an error action to be taken by the

ERE, preceded by an <error spec> specifying,thn
' error number, error group or , groups ;k6o which the

action is to apply.

2. There are three forms of <error spec >, for specifying o
either all error groups, or a selected error group,
or a selected error code.

The form of <error spec > without subscript is
used to specify all error groups.

•	 The subscript construct <number> with optional
j following colon is used to specify a selected

<error group>.	 The value of <number> is restricted
{ to the set of error group numbers defined for a

particular implementation.

w •	 The subscript construct <number>: <number> is used
to specify a selected error code.	 The leftmost
<number> designates the error grtiup number; the
rightmost <number> the selected .error number within
the group.	 Values are- restricted to the.-set of
error codes defined for a particular implementation.

`	 3. The form ON ERROR specifies the modification of 7
the error recovery actions for the given <error spec>.
OPF ERROR specifies the removal of a modification
previously activated in the sar.:e name scope for the
same <errorispec>.. 	 If no such modification exists, f;a

the OFF EiRZT1 is effectively a no-operation.

4. The presence of the IGNORE clause specifies that in the
event of occurrence of a specified error, the ERE is
to take no action other than allow execution to proceed
as if the error had not occured. 	 The IGNORE action may
not be permitted for certain errors.

5. The presence of the SYSTEM clause specifies that in the
,s

event of the occurrence of a,;-specified error, the ERE
is to take the standard system recovery action.

11 r
^

ii

a

9- 4
G

' J

`^°^=9=+'w _ .+^+_a^ :._»_.w: vua3.0 __:.tea 	 ':rt bti	 .YCad' .,	 ..	 - a	 ^.:.

Qtl

6. The :Form ON^ ERPOR ... <statement> specifies that
<statement> is to be executed on the occurrence of a
specified error. <statement> may optionally be
labelled. However, such labels may only be referenced
by EXIT or REPEAT statements within the (compound)
<statement> thus labelled. After execution of <statement>,'
execution normally restarts from the executable statement
following the OIL ERROR statement. Execution of <statement>
itself may of course modify this.

7` It is important to note that the form ON ERROR
<statement> is itself a <statement> while other forms
of ON ERROR are <basic statement>s. The fora ON ERROR ...
<statement>:may therefore not be the true part of an
IF ... T7N ... ELSE statement

8. If an ON ERROR possesses a SYSTEM or IGNORE Clause,
it may also possess an additional SIGNAL, SET, or
RESET clause. The purpose is to cause the value of
an <event var> to be changed on the occurrence of a
specified error. Its semantic rules are the same
as those described for the corresponding SIGNAL, SET
and RESET statements in Section 8.8. Note that if
<event var> contains a subscript expression, then that
expression will be evaluated at the time of execution
of the ON ERROR statement, not on the occurrence of the
error.

PRECEDENCE RULE:

I. An ON ERROR executed within a code block always^,^otally
supersedes an ON ERR01I executed before entering the code
block.';	 ,\

0

2-. Within a code block the action specified by an ON ERROR
is only superseded by another if the two <error spec>s
^^ e of identical form. Similarly an OFF ERROR nullifies
the effect of a previous ON ERROR only if the two <error
spec>s are of identical form. However, different forms
of 4_error spec> may involve the same error group or error
code-. It is logically possible for up to three ON ERRORS,
each with a different form of terror spec>'as described
in Rule 2 above, to be active simultaneously and involve
the same error code The ON ERROR precedence order for
determining the recovery action in the event of an error,

t	 occurrence is as follows:

9_5
(

i
129

152

^r

r

s

;y.

Error
Specification

<error spec>
subscript
construct	 'o Precedence

all groups -

a°
FAST

1

selected group ^^'number>	 :1
<number>

2

selected error <number>:<n=ber> 3
code

DEC jT _. 	
;;-J

r

9.2 The SEND ERROR Statement.

The SEND ERROR statement is used to announce a selected
error condition to the ERE. If the error selected is $system
defined' then in effect that error is being simulated.

'SYNTAX:

f.i _	
SEMANTIC RULES

i

1. <number> : <number> is a subscript construct consisting
of two unsigned integer, litfrals. The leftmost <number>
designates the error group rAo which the selected error
condition belongs. The rightmost niraber denotes the
error number within the designated group. Values are
restricted to the set of error codes defined for a
particular implementation. If the error code corresponds
to a system-defined error, then that error is simulated
by the ERE. Simulation of certain system-defined errors
may not be.permitted.

2. The action taken by the ERE after'•.announcement of the
selected error condition is dictated_by the error
environment prevailing at the time of execution of
the SEND ERROR statement.

I^

g-7

OPRIGI AL PAGE IS
OF POOR QUALITY

•. 	 t vas .t_}.:

10.	 INPUT/OUTPUT STATEMENTS
F

The HAL/S language provides for `ti,40 forms of L/0z
sequential I/O with conversion to and from an external
character string representation, and random-access record-
oriented I/0.

All HAL/S I/4 is directed to one of a number of
input/output "channels".	 These channels are the means used
to interface HAL/S software with external devices in " a run
time environment.	 In any implementation each channel is
assigned a unique unsigned integer identification number.`

i	 The input/output, statements described in this section
are intentionally general-purpose. 	 They provide ;a basic

{	 support facility for applications programming on 'the Shuttle
project.	 Specialized hardware-oriented I/O commands may
be created via features of the HAL/S Systems Language.

lip

J
+	 i

1

10-1
f

^

r

s
F
e

10.1 Sequential 110 Statements.

All sequential I/O in HAL/S is to or from character
'-' oriented files. HAL„/S pictures these files'as consisting of

lines of character data similar to a series of printed lines
or punched car s. Ati-%"Tunpaged" file simply cpnsists of an

`

	

	 unbroken series of such lines. In a "paged" file the lines
are blocked into pages, each a fixed, implementation depend-
ent number of lines in length. The choice of paged or =>
unpaged file organization for each sequential I/O channel is
specified in an implementation dependent manner.

HAL/S pictures the physical device as moving across
the file a read or write "device mechanism" which actually
performs the data transfer. The device mechanism has at
every .instant a definite column and line pos3 tion on the .le.
The action of transmitting one character to or from the file
is followed by the positioning of the device mechanism to

I	 the next column on the same line. When the And of the line
`	 is reached the device mechanism moves on to the first

(leftmost) column of the next line.

'

	

	 The_HAL/S sequential I/O statements are the READ,
READA L, and WRITE statements. Within these statements I/O
control functions can be used to cause explicit positioning
of the device mechanism on the file.

r

j
4

l
P

. a o

0

10.1.1	 The Rĉ-.-AV and R6AVALL S.tatement6

The sequential input of data is accomplished in HAL/S
by employing either a -READ or a READALL statement. ;,,The choice
depends upon:the format of -the character input an 	 the conver-
sions (if any) which are to be performed:'

A READALL statement is used _j^bereverĵarbitrary character
imagesstring	 are to be'; input wit conversion,- otherwise READ ^.

is used.f
yy

F

„<format list>s may be used with READ statements when data
not in a standard external format	 e.g. if two numbers areL

^^located.in consecutive columns without separation.

Syntax._

REAP AND RWALL STATEMENTS

basic	 ((6rJ
Ol statement

arith exp --0^
4'ibel	 READALL

a
n

k 145 9

T

82

 ^ 0

l
..,

ex^)Imple :	 READ (5) VAR, (y , Z) IN	 ' F5. 2 i^ , DELTA 3

GENERAL SEMANTIC RULES:

1. <arith exp> is an unarrayed scalar or integer arithmetic"
expression.	 The value is treated as an integer: scalar
°values are rounded to the nearest dnteger prior to use.
The value must representa legal I/O channel number.

2. <i/o! control> is any legal I/O control function used to
p position the device mechzersm explicitly.

10-3

OR IGINAL PACE IS

QF POOR QUALITY

.%..aKr:..e...iLBwk..r4Tae.5	 ..	 -.m. a..ra	w.....c.:1.t,.a..vec' 	 _	 _	 .ems„ra._......k.a.....ar,.ud.v..ra.. ".L,i........^a1.-	 .e..4..,	,	airli.-.AJ.	W..	 ..	 >	 .	 .._ .

3. Unless overridden by explicit <i/o control> or <format list>,
the device mechanism is automatically moved to the leftmost
column position and advanced to the next line prior to reading
the first <Variabl,e>. A SKIP, LINE, or PAGE before the first

l'	 <variable> overrides the automatic 1i,ne advancement. A,;
o TAB,or COLUMN overrides the automatic column positioning.

4. An unexpected end of file reached during the reading of
data from the input file causes 'a runtime error.	 a

G	 154 1 	 S. <variable>'s Jare read in order. Each <variable>'s subscript
is evaluated just prior to Its input.

SEMANTIC RULES (READALL Version):

_ 1. <variable> may be any character or structure variable
in an assignment context. This specifically excludes
input parameters of functions and procedures. If it
is of structure type, all the terminals of the template
it references most be of character type. In this case,,,
also no nested structure template references are allow;gd

2. Xf <variable> is an array or Structure each element
s ^^	 thereof is filled sequentially in its "natural sequence".

3. Data is read from the ,input file character by character
from left to right $ each <variable> element being filled

f in turn. Filling of an element is completed either when
J

	

	 the end , of a line on the file is reached, or when the	 l
element has reached its declared maximum length, which-
ever happens sooner.

145	 4. <format list> may not be used with READALL,.

r	 SEMANTIC RUi,ES {READ Version}

1. <variable> is any variable which may be used in. an assignment
context. This specifically excludes input parameters of
functions and procedures

'	 2. If <variable> is a vector or matrix, or an away or structure,
each element thereof is filled sequent _9clly in its "natural
sequence".

3 When reading data specified in a format list the device
► 	 mechanism is positioned by the format list 4 All the
.	 ;	 145	 characters in the field determined by the format. are

transmitted and converted to the internal RAL/S data type.
If the width of the spf^_,ified 'field is greater than the
number a* characters rgmaining on the line, an implementa-

► 	 , tion dependent mechanic; is invoked, 	 =+

r.

10-a
F	 ^
M

G

4, In the absence of a <format list>, the device mechanism	 145
(S4 ject to <i/o controla) scans the input file left to right,«
from line to line, looking	 fields of contiguous characters\\
separated by commas, semicolons or blanks. Each field found
is in turn transmitted and converted from its standard exter-
nal format to an appropriate HAL/S data value. Fields may	 r^

dot cross line boundaries except when reading character
strings.	 p

5.. When not under control of & <format list>, a semicolon field 	 11,451)
separator encountered during a normal sequential scan to
fill a variable element terminates the READ statement as
.follows;

it

• The current variable element is left unchanged;

• unchanged;Tall remainir y,F <varxable>s in the statement are

• All remaining control functions in the statement are
ignored.

<ijo control> functions can force the device mechanism over
the semicolon without causing early terminations.

o a

`6.	 When not under control of a	 format lista, a null field is 1145
transmitted whenever 	 comma or a-semicolon_,is detected when

! data is expected.	 This occurs when a comma or semicolon is:

• preceded by a, comma or semicolon;
rll

• preceded by o^ie or more blanks following the last comma
or semicolon.

When under control of a tformat"lists, a null field is 3
transmitted and an error sent whenever the field being 145
read is entirely b1m k.

A null field causes the corresponding variable element to
remain unchanged following transmission:, s

7.	 For PXADjtat
f
 meets, fields must either be read using`

<format li ,, ':* or else the'^	 Y must appear in a standard. 145
external format.	 A last of standard external formats is
given in Appendix E.	 A type mismatch cause's a runtime error. i

R•

i

Imo.

i

expression

23i
Vo
cont"l

67'^ Pformat
list

10.1.2 The WRITE Statement

The sequential output of data is accomplished in NAL/S
by employing the WRITE statement.

<format list>s may be used to output data in non-standard
form.

SYNTAX:

WRITE STATEMENT
basin	 ^^	 i^	 67
statement

WRITE	 aritl4 e-

24
LABEL

r,

i
3

i7
WRITE (6) 'ANS =' IIA+B,SKIP(2)

SEMANTIC RULES:

1. <arith exp> is an unarrayed scalar or integer arithmetic
' expression. The value is treated as an integer: scalar

values are rounded to the nearest integer prior to use.
The value must represent a legal 1/0 channel number.

2. <i/o control> is any legal I/O control function used to
position the device mechanism explicitly.

3. There are no semantic restrictions on <expression> 	 1

4. If <expression> is of,vector or matrix type, or is an-array
or structure, then each element thereof is transmitted se-
quentially lin its "natural sequence".

10-6 e;

,;	 r

J

1

.	 S. Unless overridden by explicit <i/o control> orPa
<format list>, the device mecb4nism is; autQi,^atically
moved to the leftmost column pok tion and advanced to 145
the next line prior to transmitting the first <expression>.
A SKIP, TINE, or PAGE <i/o control> before the first
<expression> overrides the automatic line ad,ancement.
A TAB or COLUMN <i/o control > overrides , the automatic''
column,,positioning

6.J Each.<expression> in turn is converted to its standard
external format before being trans^^^tted to the output
file.	 A list of standard external formats is given in
Appendix E.

"	 7., <format listas may specify additional <expression>s to be
transmitted in non-standard formats.

145
Example;

Output INTEGZRS h? and. K2+K3 in columns 1 -5 and 6-10,
respectively:o

WRITE M	 (K1;' K2+K3) IN 12151;

-	 S . when not under control of 4 <format` li§!'> , the device	
T

mechanism is moved to the right by an implement6tion de-
pendent number of columns between the transmission of two
consecutive elements.	 If a TAB r .̂;^--COLUMN <i/o control>
,separates two consecutive	 expression>s then this over-
rides the automatic movement between transmission of the
last elemehnt o	 the? first <expression> and the first element
of the seond ^ddkpression>.c

9. Wben. a line has been filled to the point where the next
converted 	 output field will not fit in the remaining columns,
a wrap-around condition occurs. 	 The actions taken in such a M
case are implementation dependent.

10-7

c:

J	 o 	 (j

r

10.1.3	 I/O Con w. t FuneUom .

;.

	

	 An I/O control function is introduced into a READ,
READALL, or WRITE statement tc, cause explicit movement of the
device 4mechanism. Note that the interpretation of each I/O
control 'function differs depending upon whether the file is
paged or unpaged.

SYNTAX:

A

Y

E

I

SEMANTIC RULES:

1. <arith exp> is an unarrayed scalar or integer arithmetic
expression specifying a value to the'control function.
The value is treated as an integer scalar values are
rounded to the nearest integer prior to use. In the^,^
following rules, let the value of <arith exp> be denoted
by K.

2. TAB (`K) specifies-relative movement of the device mech-
anism across the current line by , 'K character positions
(columns). Motion is to the right (increasing column
index) if K is positive, to the left if K is negative.k

	

	 Positioning to negative or zero column index values, or
to a positive index grater than an implementation depen-

t	 dent maximum causes a run time error. z
r

	

	 ,

y;

10-8
k

d

QRIG4i L PAGE 1

OF POOR
^

I

0

3.° COLUMN (K) specifies absolute movement of the device
mechanism to column K of the current line. 	 Values of
K may range from 1 to an implementation dependent maxi-
mum value.	 Column -indices outside the legitimate range

r cause run time errors.

4.	 SKIP (K) specifies line movement relative to the current
line of the file.	 A positive val}} a of K will cause for-
ward movement.	 Subject to implementation and hardware
restrictions, backward movement is indicated by a negative

t, value of K.	 Error conditions will be indicated if a
skip c-auses, , movement past either epd of the file, or
movemA^tin violation of any implementation restriction

l on t" direction of the	 skip.

S.	 LINE (K) specifies line movement to a specified line
number, K.	 Two interpretations occur depending upon -

M
whether the file is paged or unpaged.

•	 Paged files - LINE (K) advances the file uncondition-
ally.	 K may not be less than 1 or greater than the
implementation and hardware dependent number of lines
per page, otherwise an error condition will be indi-
cated.	 If K is not less than the current line number,

i print-position is 'on the current, if Rthe new print	 page-,
i is less than the current line number, the device

mechanism is advanced to line K of the next page.

'' •	 Unpaged files -- LINE (K) positions the device mechan-
ism at some absolute line number in the file. 	 On
input K must be greater than zero, but not greater
than the total number of lines in the file. 	 On output,
K must merely be greater than zero. 	 In either case,,

r values outside the indicated ranges cause run time
errors..	 Depending on the implementation, values of
K causing backwards movement may be illegal.

6.	 PAGE' (K) is only applicable to paged files and specifies
page„ movement relative to the current page. 	 If, K is c,
positive the movement is forward, towards the end of	 a

-	
_

implementation;file. 	ve pagefile.	 Depending upon the
values may or may note le, d1.	 The line value relative
to the beginning of th6 ,̂ page remains unchanged.

U

10-9

F

I

117.1.4 FIVAT W tb

FORMAT; lists present' , powerful way to perform 1/0 opera-
tions with complete explicit control of all,conversion and lay-
out functions.

SYNTAX:

FORMAT LISTS	 r	 82
variable

format	 20
list	

1

expression
1

23	
IN	 format character

expression
i

	

83
	

{
variable

20
145)	 i.

4

A	 23	 c	 1

! .	 f	 examples: (A. B, C) IN 'F4--2'	 I FYORM
D IN 'E15.6'

r.

SE ANTIC RULES

1. A <format list> used with a READ may only contain <variable >'s.
-not <expression>'s.

2. <format character expression> is any character expression.
A runtime check is made for legality.

i

3. All variables in the <format character -expression> -are
evaluate before any 1/0 takes place involving the FORMAT
lost.

4. Each <expression> or <variable> is handled according to
<format character expression>. > It the <expression> or

}	 <variable> represents an aggregate of-elements, - then each
element is handled sequentially in itsfnaturual sequence,

Example: DECLARE V VECTOR INITIAL(2.12, 3.4, -7),
'

	

	 F CHARACTERUO INITIAL('F4.2, F5,1_, F4.1')
then.
WRITE (6) V IN E

2.12 j63. 4,-7 Q
produces:	 }

I

	

eo&mn	 1	 5	 10

10-10

F	 i

Fg

Yj 	 10.1.4.1 FORMAT Character Ex ressions.
FORMAT character expressions etermine h^N items in FORMAT lists are
read or written.

1
.	 SYNTAX:	 f:

7ter
	 FORMAT 6HARACTER EXPRESSION	 U

c
e

number	 format
item"

	

	 a^

'e4

format
t	 character)

!	 expression e3

example: F4, 3E10.2 // 5(X4,A6/)

D

1145

SE_IAIANTIC RULES

1. <number>must be an unsigned, non-negative integer.
r	 2. Each item input or output is handled according to a pa/^ticular

format item.	 If <number> precedes a format item, it isinter-
preted as if <umber> copies of the format item had been writ-
ten.	 If <numbe'-r> precedes , a parenthesized <format 	 character
expression> , it is interpreted as if <number>.-..npies of the
<format character expression> had been ,written,

3. Each invocation of a READ or WRITE statement containing a
<format list> interprets the <format character expression>
starting from the beginning,

_ a
r	 4. If the <format character expression> is exhausted and addi-

tional items remain to be input or output, control is returned
to the <format character expression> corresponding to the

,,last closed parenthesis encountered. 	 A preceding <number> is
` taken into account if present.	 If no embedded <format 	 char-
r acter string>'s are present, _conCol reverts to the beginning.

5. '/' is interpreted as.' ,SKIP (1) ,CO ^^MN (1)

10-11

a

_	
•rte	 ,

3

6.	 Consecutive comma.iare ignored.

Example:

DECLARE ARRAY(20), DIM VECTOR, ANIMAL CHARACTER(15)

WRITE(6)	 ('ANIMAL',	 'LENGTH',='WIDTH', 'HEIGHT'

145 IN	 'A15,	 (A10)',

DO FOR TEMPORARY I = 1 TO 20;

WRITE(6)	 (ANIMALx , DIMI) IN 'A15,	 (F10.1)0;

END;

produces

ANIMAL	 LENGTH	 WIDT1; HEIGHT
CENTIPEDE	 3.1	 .3 .2

AA :ZDVARK	 A2.7	 -12.6 9.2

column	 15	 15	 3S

i

i

r

, a

10-12

a :_

0	 i

10.1.4.2 FORMAT ItemEs, Ede.)FIORMAT,,:;-'u^i'^-i^-! M . . conceptually repre-
sents a single 1/0 Up—eratl&rf,

SYNTAX:

145

P

r

SEMANTIC RULES:

1. At the beginning of the READ or WRITE statement and after'
processing an item, X format items, quote strings, and I/O
control are processed until some other format item,is reached.

2. The"semantics of <I/0"control> were defined in Section
>10.1.3,.

3. The following table briefly describes the formats. See
individ'ual items for fuller applications.

10-13

AVr- I"ORIGINAL P
a K01F ji0OR

FORMAT ITEM

O
format item

I formal item

F format itern
86

E format item

A format item
87

U format it
E332

T"N -

P Format itern

format quot string

i/o control

r	
,,

I
f

I^

145

Rv

co
'_ S N f

Qr NPR
tt Q^ N.r{'

v a ON N "T :Q to r

1-1

eT

r'1

1
tDr-i N n

wwa :, N 1! w cv w
q. ^Y 11100 ^ et U N

A a1 n Nk ii L o^ I

00

C14 w

.-1 t

U n
ca 0

4
r-4 M

W
sr NH w F:g X w vr`

X
W

^'

1
43

W
O.^

O
ro

r nv^ °x a aS w o„r

^

a El

a
w

a
o w^

^ `^^.^ cna

H ^a H Ma H2 U UX Z x .-q 0 2UH m ar H O U .0 a .^ H cn

4J 4J 4J 4J 4J 4J 4J

^ ^ >a sa sa N

H w W` b a+	
1

^k

v

- i

l

i

1

i

M

^4	 J

J

2
10,1.4.3 I FORMAT Item. I FOM%AT items are used for XNTtGER1/0."

i
d

J;

a

f	 SEMANTIC RULES:

{	 1. <number> is the length of the field being transmitted. 	 145
It.is an unsigned positive integer.

2. Implicit INTEGER/SCALAR conversion is allowed

For READ Statements,,.
t

A sign may preceed the input quantity.
E	 ^

l	 2. In input data, blanks before a sign or between a sign
and the first digit are allowed. All other positions
must contain digits between 0 and 9, otherwise a runtime
error occurs.

For WRITE Statements:

1. A sign is printed only if the number is negative.

2. If ' the number of print positions required t6 represent
c;

	

	 the quantity is^less than number , leftmost positions
are filled with blanks. Lf greater than number , a
runtime error is sent and asterisks are printed in place
of the quantity.

Example:	 '	 =

r	 DECLARE A INTEGER T,NITIAL M

WRITE (6) (A, 2, A--2) IN 'I2';
f	 ,^

produces:

)63-2)61	

(f

%

r-

	

'	 ry	 1

' 	 „yam 	 _	
...r . e^.tr22IMh'!ML'I	

.` .:...	 ..	
._.. .. __L.4la. ^'v

=number

^i
format

itemi

r

jti f

0
examples: F9.2

E14.3

•	 number	 --^

C	
c-

10.11.4.4 F and E FORMAT,Items. F JFORMAT items are used for
decimal quantities. EFORMT items are used for decimal
quantities written in scientific notation (i.e.,with exponents)
SYNTAX:	 3

145

F and E FORMAT Items ;.::^l

^I

SEMANT,:IC RULES:

1. The first <number> is the width of the field being transmitted.
The optional second < number> specifies the number of decimal,
VL^des to the right of the decimal point; if it is omitted,
it'-Is' assumed to be zero.	 Each <number>,, if present, is an
unsigned positive integer.

2 Implicit INTEGER/SCALAR conversion is allowed.
_For READ Statements:
1. Input is an optionally signed quantity.
2. if an explicit decimal point appears in the input, it overrides

the format; otherwise, decimal position, is implied by the*
<format :item>:
Example:	 READ (5)	 (A,B,C)	 IN	 'F6.3';

interprets:
1612.34	 as	 12.34
1601234	 as	 1.234
b.1234	 as	 .1234....

10-16

0

^i

R

F	 ,
3, An exponent may be supplied of the form:

E	 <number)

If either E or ± is specified, the other may be omitted.

''4. for input quantities, blanks are allowed preceding the sign, the
first digit, E, ± , and the first digit of the exponent. Other
blanks cause a runtime error.

5 There is no difference between E and F formats in READ statements. 145

For WRITE Statements:

1. For F format items, the stri ng printed i s:
i

aaaa..bbb

I	 m	 n

where n is determined by the second number in the format, and m is _,
k	 determined by the magnitude of the quantity to be printed. The minus

sign is printed only'if the quantity is negative, If the number of
print posd±ions required to represent the quantity is less than the
field length, a zero is added to the left of the decimal if no other
digits are present there. Any additional positions are filled with
blanks from the left._

2. For E format items, the quantity printed is

-a. bbhE-fcc

iI	
n

The minus sign is printed only ifithe quantity is negative. One
` f`	 t dfi 't	 t d t th 1 ft f +1, d	1	 Th.s7gn^ ican	 gj	is grin e	 o	 e e	 o	 e ectma point.	 is

is zero if the quantity = 0 	 n is taken from the format item.

3 If the field length is insufficient, an error is sent and asterisks
are printed in the field,.

i

\	
a	 r\

I

9

10-17

7.77775	 -Z;.;,

10.1.4.5 A Format Items. A format items are used fo^ character
data,

P
SYNTA)6 o

11
A FOMAT ITEM

A format i tem

examples- A7

SEMANTIC RULES:

1.	 -<number> is an unsigned positivL14 integer representing the%
field length.

^45
For, READ' Statements

1.	 If the field specified is greater than the declared
length of the variable, the rightmost characters in the
field are selected.	 Otherwise, the length of the CHARACTER
variable is set to the field le,,qgth.

For WRITE Statements:

1.	 If the field length written is greater than the -number of
characters in the variable, blanks are added to the left.
Otherwise, the leftmost characters are written,to fill the
field.

Example:,

WRITE(6)	 (PERSON,, HEIGHT,) 	 IN I A10, X2 t F5.21

would produce:

BAGLEY
	

55 67

Note:	 BIT aAd CHARACTER conversion functions can be 9sed
with-•A format items for I/O involving bit variables. 	 See
Sections 6.5.2 and 6.5.3.

10-18

OR jC41NAL PAGE 1,

OF POOR QUALITY

10.1.4.6 U Format Items. U format items ar& used for integer,
j^calar,,and character data I/p,	 a

SXNT tX	 O

U FORMAT ITEM

U format item
A

U	 number

example: U16
145

n	
1

SEMANTIC RULES:,.

1. <number> is an unsigned positive integer =repre,pentng the
field width •	

^l

2. The interpretation of the <U format item> depends upon the data
type of the-,associated <variable> or <expression>

for character strings, U<number> is equivalent to A<number>; p

for integers, V<number> is equivalent to I<number>;

for scalars, U<number> is equivalent to E<number>.<number>-7.	 a

10-19

10.1.4. 7 X Format Items. X format items are-'used to skip
columns on input and output.

SYNTAX:

X FORMAT ITEM	
O

f' ^' - =- X format item

"	 X	 pumbat

0

example. XI

145 9EMAN`11C RULES;

1. <number> is an unsigned positive integer,

2. The effect is ;:.he same ass ?'AB (,number>) .

Example.

t' READ(5) A in	 'X5,	 I 31; ti

If the input is:

r^ 12345678

r

then A becomes;

678.

~	
i

10-20

'f

°

v

10.1.4.8 FORMAT Quot't Strings. FORMAT quote"itrings are
used for character output.

:,	 t
SYNTAX;

o

G	 FORMAT QUOTE STRING
=90

format quote stria

].^ 5

 characters	 ^

example: "NOTHING IS MORE PRECIOUS THAN INDEPENDENCE AND FREEIT "'

SEMANTIC RULES:,

For READ Statements; l A

1. Columns corresponding to FORMAT quote strings are skipped
in READ statements.

For WRITE $2ta tements :

1. A double quote in the text is represented by a pair of
double quotes.

2. <characters> is copied to the output line.

Example

WRITE(6) ANS IN " 'ANSWER 	 I2'/

would produce:n

ANSWER = 21	 /r

co.Cu,nn	 f

ct

t

10-21	 r	 ^

M1	 ^	
_

145

°	 I

i

91

	 I I

10.1.4.8 P Format Items. P format items can be employed for
most types ofnumeric I O They can be very useful for mixing
character and numeric output data and specifying column align-
ment.

SYNTAX:

r

example:	 P the answer is $$.;
I	

k"

SEMANTIt'r" RULESJ

1.	 The P format item runs from the first character following
the P to the first ',' or '/' encountered (or the end of
the format character string),

2.	 Each set of consecutive '$' s,	'.'s, and ' *' s defines a
numeric field corresponding to an INTEGER or SCALAR item.

defines the^,^beginni .ng of an exponent.	 If more than one
or '*' is present in a given numeric field, a runtime

error is sent,

3.	 More than on^ field is allowed, e.g.

WRITE (6) (N6% ARG1, ARG2, ARG1+P^RG2) IN 'P TEST#$$; $ $$*$$$ +

f!	 For READ Statements;

1.	 Each field length isthe number of '$', 	 '.', and ' *' present.
Other characters cause corresponding columns, to be skipped.

c'

10-22

i
i

1

2. A decimal in the input field takes precedenge. other-
wise, a decimal is placed by the '.', if present.

°	 3. An exponent may be suppli^ of the form_:

E ± <number>

If either E or ± is specified, the other may be omitted.

4. Blanks are°al-lowed preceding the sign, the first digqit,
n	 E, ±, and the„first digit bf the exponent. Other blanks

cause a runti^6 error.

Example

READ(5)"(X,Y) IN IPXXX$$•$$X$$'F'

then if the input is:

01234567890

0	 0

o,

o:.

t

then X would be set to 345.67 and Y to 90.

.....ITEFor WRITE State7Fients

1.	 If a quantity°to be printed is smaller than the specified
;field width, blanks are appended to the left. 	 If the
quantity to be printed (including '-' if needed) is larger
than the specified field width field, a runtime error is sent
and the first is filled with asterisks.

2.	 All characters except '$'	 '*', and ',' are printed...

3.	 If-'an exponent is called for, the number takes the form:

-a.bbbticc

i	 j	 k

A non-negative quantity prints a blank in place of the
sign.	 The leftmost digit printed will be non-zero unless
the value to be printed is exactly zero. 	 The field widths

p i, j, and k are taken from the number of "$” signs in, the^
picture.	 i must be greater than zero and k must be large

. enough to hold the exponent.

Example:

r- DECLARE CHARACTER(100),
T INITIAL('P	 TITLEI	 TITLE2	 TITLE3f1)r
D INITIAL(, P	 $$•$$	 $'$$$	 $$•$$/');

IS	
iĵa

WRITE(6)	 IN T;
WRITE(6) DAT4 ARRAYI TO 9SIN D;

10-23

^ r

10. 2 . Random ACHE S 110 and the FI LE Statement,

o
Random access I/O is handled by means of the FILE

statement. In his access method individual records on a.
file ay be written, retrieved or updated. A unique "record
address" is used to specify the particular .record on the
file referenced.0

SYNTAX:

FILE new ft

file exp

F̂ILE l ^ 	 }

Zl
example:

FILE (3, J + 2) = ALPHA i To 1000;

68

rte^

i

SEMANTIC RULES:

t	 1. The statement is an output FILE statement if <file exp>
is -on the left of the assignment. If <file'exp> is on 	 i
the right,-then-- ,,the statement is an input FILE statement.

r

10-25

ORIC-NAL PAGE k;
OF pooR QUAUT

u

=
1

1

2.	 <file exp> s	 ceifies the random access I/O channel and
record address to be referenced. 	 <number> is any legal {
random access channel number.	 <arith exp> is any unarrayed
integer or scalar expression.	 If the expression -is scalar,
its value is rounded . to the nearest integer before use.
A run time error occurs if its value is not a legal reFPrd,'I
address.

3.	 Any record on a random access file may be transmitted by
a FILE statement.

4.	 In the input FILE statement, <variable> is any variable
usable in an assignment context. 	 This specifically
excludes input parameters of function and procedure blocks.
Moreover, <variable> is also subject to the following

t rules sj o

No component subscripting for bit and character
f; types.

" •	 If component subscripting is present,,, <variable>
must be subscripted so as to yield a single

i (unarrayzd) element of the <variable>.

•	 If no component subscripting is present, but away
subscripting is, then all arrayness must be subscribted
away.	 ,

0	 BIT type structure terminals which have the DENSE
attribute may not be used, due to packing implications.+:
However, an entire structure with the'DENSE attribute
may be ,used.

•	 If the <variable> is a structure terminal or a
minor structure node (but not if it is a major
structure) and if the structure possesses multiple
copies, then the number of copies must be reduced
to one by subscripting,

5.	 In the output FILE statement, there are no semanti41^l,
res	 `fictions on <expression>.

6• Com atibility between data written by an output FILE x

statement, and later reference to it by an input FILE
statement is assumed	 The exact interpretation of compa-
tib?l ty is implementatL ,1 dependent. 	 In general, the

F FILE statement transmits binary,images'of the internal
data forms, so that compatibility will be guaranteed. ifw
"'the <expression> of the output FILE statement and the
<variable> .„of the input FILE statement have the same data
type andorganization.,

10-26

LL^^

r ;

s	 ;

i

11, ; SYSTEMS LANGUAGE FEATURES t
II

11.1	 INTRODUCTION

The systems language features of HAL /S are described in this
"	 section.	 The features presented here are in three sections..

The new Program Organization features are "Znline Function
Blocks" and " %-macros";.	 A data-related feature of this
systems language extension is the concept of "TEMPORARY
variables".	 The NAME Facility concerns a new concept in
HAL/S, the addition of NAME variables pointing to data or
blocks of code.

The information contained in this section constitutes
an extension of material presented earlier.	 Accordingly,
many of the syntax diagrams presented here are
modified versions of earlier diagrams reflecting the
extended features.	 Such modified diagrams are indicated
by appending the small leter " s" to the diagram number.

4	 11.2	 PROGRAM ORGANIZATION FEATURES I

The addition of Inline Function Blocks and "%-macros" to
HAL/S extends the information presented, in Section 3
concerning program organization. 	 Inline functions are a
modified kind of user function, in whichinvocation is
simultaneous with block definition. „ %-macros may be
viewed as a class of special purpose implementation
dependent built-in functions.

F

F

^C

777	 t	 The title indicates that the usage of these constructs
is more suited to systems programming r ^Cher tKAn

G	 applications. programming. 	 The programitl`ejis warned
that unrestrained and indiscriminate>^:^se of certain of
these constructs can lead to software unreliability. v,

11-1

U
a

o

11.2.1 inUne Function Mcke

The HAL/S Inline Function Block is a method of.;
,simultaneously defining and invoking a restricted version
of the ordinary user function construct. Its primary purpose
Is to widen the utility of the parametric REPLACE statement
described in Section 4.2. Its appearance is generally in the
form of an operand of an expression.

An Inline Function Block, like other blocks, has a new
154	 level of name scoping and error recovery.

SYNTAX:

{

a

with

Tjo
	

ts"truct

i<3

:FUNCTION	 type spec
ii

statement
10

declare group	 closing
14

11

update block

example;
IF X	 Y THEN R FUNCTION VECTOR

DECLARE A,B;
A= 3X +Y;
B = XJY,
RETURN VECTOR(A,B4O;
CLOSE;

/JT R*V;

SEMANTIC RULES:

1 The syntactic form
is`,.^

^`^ctually equivalent ,,to' that^^.of a
k	 function block except that:

a) The <§ inline function > has no label

b) The <§ inline function> has no parameters;

c) The <§ inline function > definition becom6s an operand
in an expression.

-3

k

.—..-	 W1.	 .ascr:,.d ier.,.s.u..^3bc.u.."e..., 	 _.: .n_..._ . .	 X	 R.i'a.;

\J

2. The semantic rules for an O inline function >" block
defi nition are the same as those for the <function
Jo`ck>	 'describeddefinition	 in Section 3.3, subject

restrictions; l isted- below,`

- 3. A <Bihline function>.may not contain the following
isyntac tical fo&41S.

i All forins of `I/O statements;

0	 All forms of re.terence ` to user-defined PROCEDURE
and FUNCTION blocks;

" Real Tine Statements.

4.> A < § inline. function >' may'^only contain- , one form of°'
nested block, the <dpdate- bl,ock> .	 The following:
block ;,forms are thus excluded;

•! <function block > definitions;

0	 <Procedure block> definitions;

•	 Further nested <§ inline function>s.	 a

5. In use,, the°following semantic restriction holds:
! <§inline function >s may not appear as operands of

the subscript or exponent exprp-ssions.

6.° The <§inline function> falls into one of the following
four " categories:

<arith inline>	 - <type spec> specifies an
14? ^

inline function of an arith-
metic data type. SCALAR,
FIXED, INTEGER, VECTOR,	 c
VECTORF ,i MATRIX, or:;MATRIXF.

,::	 0

<bit inline> 	 - < type spec> specifies an
j inline function of a bit

..type: BOOLEAN or BIT.
r

h
x p

9

y C

(1.

11-4

-.-

f	
o

<char inline> 	- <type spec> specifies^an
inline function of the
CHARACTER data type.

<struct inline> 	- <type spec > specifies an
inline function with a

f	 structure type specifica-
tion.-

*

Y

The use " of inline functions a si'̂ 11operands of HAL/S
 1

expressions is discussedin Seci.ion 11.2.3,
ji

11.2.2	 $-macamo Re6eheltceb

The HAL/S %-macro facility provides a means of
adding functional, special-purpose: extensions to the
language without requiring syntax changes or extensive
rewriting of the compiler programs;. 	 The details of the
implementation of any'l'given %-macro will depend upon
its nature and purpose. 	 Possible options include inline
generation of code or links to an external routine
performing the processing of the %-macro.

The syntax of the %-macro reference is presented
in this section.	 The invocations of %-macro routines in
various expression or statement contexts. is described
below in Sections 11.2.3 and 11.2.4j:

Y

S

11--5

V

A

f
"	 SYNTAX

7r 4ftro Statement,	
^uO,

with
bit
dw

% fnwro	 f street	 <% macro-wq>)
typo

% label

SEMANTIC RULES:
t	 ,

1. The 9-macro reference falls into one of the iAlowing 	 t
five categories based upon data type:

• <arith %-macro> is a reference to a 9-macro which
147	 returns an arithmetic value of INTEGER, SCALAR,

FIXED, /VECTOR, vECTORF, MATRIX,, or _KA-TRIXF	f	
data type.

t

• <bit .%-macro> is a reference to a §-macro which-, 	 i
returns a bit string value.

i
<char%-macro> is a reference to a 9-macro which

returns a value of the CHARACTER data type.

<struct %-macro> is a reference to a §-macro which
returns a structure data value.

<typeless %-macro> is a reference to a §-macro
which performs some systems function but 	 rr
returns no value and may only be referenced
from a !-macro call statement	 (See Section
11.2.4 below),	 ^4

Available %-macros in any implementation will be
provided in the appropriate Users Manual.P	 - User's

w	 2. The <glabel> is a reserved word beginning with the
character, 'W' which identifies the -%-macro in question.
The character "$ " distinguishes %-macro names from all
other reserved words in the HAL/S language.

	

.-	 rt

11- 6
u
s;

ORIGINAL PAGE IS

Of POOR QUALIFY

	

^	 a'

x^

I

3.	 A series of one or more arguments of the %-macro
reference may be supplied.	 The type, organization
and-number of the arguments supplied to the %-macro
must be consistent with the requirements of the
r6atine.

4.	 Details of <`%-macro arg>s will be supplied y4th the
r' definition of a given %-macro.	 °` 117

a

J

1 .2.3 0 Opeund Re6aence,, Tnvocat,%ona

Inlne Function Blocks are always invoked at the
point of their definition as operands of <expression>s.
%-macros are also invoked as operands of <expression>s
whey/, they are of a definite data type and thus return

value.a	 Similar modifications of several syntax
diagrams from Section 6 add these features to arithrcetic,
bit, and character operands, and to structure expressions:

r+ .
r

z J

n

j

11-7

n

,.	 G

C^	 SYNTAX OF ARITHMETIC OPERAND:

With	 J	 aritA rr	 —
opwand	 lam_

with oup	 j.

4	 W—W

.	 IIOItM^ ♦'11nCtiW1

with con"n	 S	 praision
43	

1	 "irp ^^ M

arith inlina

with74macro 	 ^^''

 ^ 	 J {

Sr3MANTTC PULES:

r	 1. This 'syntax diagram is a systems language extension
of the arithmetic operand diagram in Section 6.1.1.
The semantic rules of Section 6.1.1 apply to this
revised diagram.

2. <arith inline> is an ,inline function block which has an
arithmetic <type spec> in its header statement.

3. <arith %-macro> is a reference to a -macro which
retu ns an.arthme tic value (See 11.2'.2.abov^e).

' aa
r

JJ

!11

._	 ..E	 .. __....._ u._	 —	 - ^^.. .^....._.... a .r:. _+e.:^a prat.._.. w..	 _.........^-......

Q

SYNTAX OF

F
NOT (bit txp)

1

bit vu

U

1 event vsr

process• "M nsma

bit literal

normal (unction

btt conversion +^ a

bitpseudo<var

^a bit inline
i

bit	 macro

l SEMANTIC RULES:

1 1.	 This syntax diagram is a systems language extension
of the bit operand diagram in Section 6.1.2.	 The
corresponding semantic rules found in Section 6.1.2
also apply to this revised diagram.

2.	 <bit inline> is an inline function block 4'hich has d
bit string (BOOLEAN or BIT) <type spec> irn its header
statement.

ry

r

oJ^

3.	 <bit %macro> is a reference to a %—macro which'returns
a value of the ,BIT or BOOLEAN data types.

11-9
a,

a 0	 0

SYNTAX OF CHARACTER OPERAND:

i
dWWW opWwA

dw
Z9

operand

chu exp)
r

char vs►`'

norm ^1 function ^S

° ehu literal ° ^' ,
3

'± ^ '^ehar eonvenion
r

char inline

c:iar tmacro

SEMANTIC RULES:
t

1	 This _syntax diagram is a systems language extension
of the character operand diagram in Section 6.1.3.

4 The corresponding semantic rules found in Section
6..1.3 also apply to this revised diagram.

2.	 <char inline> is an inline function block which has
a CHARACTER <-type spec> in its header statement.

3.	 <char %macro> is a reference to a %-macro which returns
a value of the CHARACTER data type:;

<f R
`I m

f
J

1

11-1U

i

a

j
structure fxpnsion	 a	

29•

	 q

WSstructure
expression	 \.,	 r4

structure vW.	 -^

p

functiair

9

structure in fine

struct % mao

t	 SEMANTIC RULES:i

k	 1. This syntax diagram is a systems language extension of)^
the structure expression diagram found in Section 6.1.4
The semantic rules found in Section 6.1.4 also apply to
this revised diagram.

2. <struct inline> is an -'inline function block which has a
r	 structure <type spec> in its header statement.

3. <struct %macro> is a-reference to a %-macro which returns
a value of a structure data type.

11-11	 _

u

t	 J

1,1

r
11 2.4 The I-Macao CaU Statement

The invocation of a typeless •-macro is
performed by a <%-macro call statement>.

SYNTAX

s rb

SEMANTIC RULES:

1. The <%-macro call statement> invokes execution of the
typeless %-macro being referenced-, --.-.. A

2. The effect of this statement is depende^it upon the
details of the %-macro being referenced.

f	
},

k
r	

w

t
n

l_

11-12

{

i

II.3 Temporary Variables

k The extension of HAL/S data concepts to include a
TEMPORARY variable form for use within DO groups is defined
within the systems language facilities. The object of

K	 incorporating the TEMPORARY variable is to increase the
i

	

	 optimization and efficiency of the object code produced by the
compiler. Depending upon the details of the object machine,
a temporary variable might be stored in a CPU register or a
highspeed, scratchpad memory location rather than in the
slower main storage. Coding efficiency may also be achieved
with temproary variable because the instructions needed -to
access register or scratchpad memory values are generally more
compact. Since the existence of a temporary variable is

i

	

	 confined to a DO group (from Do header statement to the END
statement), these forms become highly localized,control variables.

If a temporary variable appeare in a REENTRANT block,'
each process simultaneously executing the block gets its	 154
own temporary variable.

11.3.1 Regueax TEMPORARY Vax&btu

it Regular TEMPORARY variables are declared in-TEMPORARY
f

	

	 statements following the DO statement which begins a DO...END
statement group and preceding the first executable ;,statement of

s

	

	 the DO ... END statement group The following diagram is a
systems language extension of the DO...END statement group
in Section 7.6,

SYNTAX:

d

s	 SEMANTIC RULE:

1.	 The TEMPORARY declaration ma	 be included asy	 part of any
DO group except a DO CASE group.	 ve of TEMPORARY
variables within ''nested DO groups ofjf a DO CASE is all owed'.

The TEMPORARY statement°is a special purpose data declar-
j

ation used to create TEMPORARY variables for general use within
the DO group syntax as described-.above..	 Its form compares very
closely to 'that of the DECLARE statement in Section 4.4.

SYNTAX'
k

AMY	 TT^aq^wnt
n

,;	 _
racemn

—'.	 TIMPOPARY dmtifi^r rsibo/w i 1

1

SEMANTIC RULES

1.	 In the <temporary statement>, <attributes> may _define
the <identifiers > to be of any data type except EVENT.

147 i 2.	 <attrabutes> may on]// 	type, precision, scaling
and arrayness.

r.,	

f

3.	 No minor attribute is legal.

4•	 The name of <identifi:er> may not duplicate the name
of another <identifier> in the same name sbope
(procedure, function, or other block name) or of another
temporary in the same DO ... END group.

a

_	 11-14

ORIGINAL PAGE I
,.

OF POOR QUALITY

,^ o

11`.3,2 Loop TEMPORARV Vani,abtu

The Loop TEMPORARY variable form is used in the context
of the DO FOR group and is declared by its specification in a
DO FOR statement,	 The following two syntax diagrams are modifi-
cations of the discrete DO FOR and the iterative DO FOR

i
syntax: diagrams.

SYNTAX:

S3dlNwr oo FOR sith MN TEMPORARY wriYitM LoinD	 " o

"

14P
TEMPO, ANY	 iirMifia

a

DO FOR ritA pr. s

LAN

V

f.
tritlt aip j

t	 „_ WHILE)

UNTIL

condition

bit amp

SYNTAX:,

SEMANTIC RULES.

1. All the semantic rules for DO FOR.statement 's which are
given in Section 7.6.4 and 7.6.5 apply as well to the
corresponding Loop TEMPORARY forms. Additional rules for
Loop TEMPORARY variables are;,given below.	 E;

2. The Loop TEMPORARY variable is defined in the DO FOR
statement, a loop TEMPORARY variable is always a
single precision INTEGER variable.

3. The scope of the Lbop TEMPORARY is the DO FOR group of
the DO FOR statement which defines the variable.

4. The <identifier> name used for the loop TEMPORARY may not
duplicate the name of another < identifier> in the same
name scope, nor may it duplicate the name of another
TEMPORARY variable in the same DO . END'gr?up.

1

11-16

e	
^

L-7-

f

11.4 The NAME Facility

r	 This section gives a definitive description of the
A

	

	

HAL/S NAME facility. This facility is designed to fill
the system programmer's need for a "pointer" construct.
Its basic entity„is the NAME identifier. a NAME identifier
"paints to" an ordinary HAL/S identifier of like attributes.

<<

	

	 The "value" of the NAME identifier is thus the location of the
identifier pointed to. (.fin "` idinary" identifier is a HAL/S
Identifier without the NAME attribute).

{	 11.4.1 TdenU6ieu with the NAME att4 Bute
I

Identifiers declared with the NAME attribute become
NAME identifiers. NAME identifiers may be declared with
the following data types:

INTEGER	 CHARACTER
SCALAR	 EVENT
FIXED	 STRUCTURE	 126!
VECTOR	 „PROGRAM
VECTORF	 TASK	 147r	 _	
MATRIX l
MATRIXF
BIT
BOOLEAN

The-following diagram is an extension of the DECLARE state-
ment syntax,diagram in Section 4.4. The modification shows
how the keyword NAME is used in such a declaration.to state
the NAME attribute.

SYNTAX'

i,

GENERAL SEMANTIC RULES:

1 The following <attribute>s apply to the NAME ^r,^riable
itself and bear no relationship to the ordinary	 E
dentf^x wtich is pointed to at any given time during

execution:'_

• The <initialization > attribute (if supplied) refers
to the initial pointer value of the NAME variable 	 ,}
itself.

• STATIC/AUTOMATIC refer to the mode of initialization
of the NAME variable itself ow entry into a HAL/S
block.

• -DENSE/ALIGNED apply to the actual NAME variable when
it is defined by inc-lusion in a structure template.

7) All other legal attributes desgitibe the characteristics
u of the 'ordinary variables td -^^iich the NAME var iable may
'point. Except as noted below, these other attributes must
a ways match the corresponding attributes of the ordinary
variables

to
which the NAME variable points; compilation

errors will ensue if this is not the case.

2. The ACCESS attribute is illegal for 'NAME variables; its
absence does not prevent NAME identifiers from pointing
to ordinary identifiers with the ACCESS attributes and
matching is not required in this case.

3. There- must still be consistency between deolared type,	 ?)
attributes, and factored attributes just as is the case
for ordinary identifiers as" described in Chapter 4^ j of this	 .
Specification.

r

j,

0

SEMANTIC RULES (Data NAME Identifiers);

1. Arrayness Specification - in general the arrayness
specification of a NAME identifier must match that
of the ordinary identifiers pointed to, in both
number and size of dimensions.

2., Structure Copy Specification in general the number
•	 of copies of a NAME identifier of a structure type

must match that of the ordinary identifiers pointed
to.

3. The use of the "*" array specification or structure
copies specification is excluded from declarations
of NAME formal parameters.

4. "Structure Type - if a NAME identifier is a structure
type it may only point,to ordinary identifiers of
structure type with the same structure template.

examples of data NAME variables

DECLARE X ARRAY(3) SCALAR,

Y ARRAY(4),
Z NAME ARRAYW SCALAR;

DECLARE P EV€NT•

r	 ^^
i

d

DECLARE EVENT LATCHED, V, VV NAME;

Z may point to Y but not X

5. For any unarrayed character string name variable, the
form of maximum length specification maybe use

This is an extension of the use of the "*" notation
which applies now in general to character name variables'
as well as to formal parameters,

, G. Range Specification- if the NAME identifier has a range
specification, then it must match that of the ordinary	 142

F

	

	 identifiers pointed to. If the NAME identifier has no
range specification, then no match is _required.

7. Scaling specification - if the NAME identifier and the
ordinary identifier pointed to both have defined scalings, 	 147 -
the scalings must agree.

11-19

The Label Declarative Attributes available for,use in declaring,
NAME identifiers which point to HAL/S block forms have been

126 modified to include P90GRAM and TASK keywords and to exclude
PROCEDURE and FUNCTION keywords. The following syntax diagram
is substituted for the Label Declarative Attributes diagram in
Section 4.6 when declaring NAME identifiers which point to
HAL/S blocks.

SYNTAX:

` 12.6

TROOIIAM

idtlaliation

d
7

^^STATIC
5l

AUTOMATIC

DENSE

F^

^

A ,IGN,ED

11-20

ORIGINAL PAGE, 10

urry

M	 p

lf	 j

r	 .f	 J

SEMANTIC RULES (Label NAME Identifiers):

'1.	 <`initialization>, STATIC or AUTOMATIC, DENSE or ALIGNED
may only be applied to the <label declarative attributes>
of identifiers with the NAME attribute. 	 They are
properties of the NAME and not of the identifiers
pointed to.

-	 2• The following rules apply to NAME <identifiers> of the PROGRAM
and TASK types:

a	 The NAME <identifier> of a PROGRAM or TASK type always
points to'a PROGRAM or TASK block, respectively. 	 AM
corollary of this rule is that <process event>s are never	 -
referenced by NAME identifiers of the PROGRAM or TASK
types.

The only form of PROGRAM label declarations allowed
are those with the NAME attribute. K;

Theo	 program NAME <identif ier> must always point to anI o 	 p	 g	 y
external PROGRAM. block name; therefore a^block template is
required for each PROGRAM which may be referencedby a'
NAME value, ..

L
y

N , „

11-21	
f

.

a

e

k	
a

r

11.4.2	 The NAME Att A i.bwte in Sxnur-tote Tempta tea

The NAME attribute may appear on any structure terminal
of a structure template. The following syntax diagram shows
how the keyword NAME is used to:,state the NAME attribute. This
diagram is a systems language extension of the Structure Template
diagram.

SYNTAX:

GENERAL SEMANTIC RULES:

1. Restrictions on atti ibutes discussed in Section 11.4.1 generally
also°apply to structure terminals with the NAME attribute.

2. No <initializat^b n> may be applied to terminals;()neither
may the attributes STATIC/AUTOMATIC appear.

3. NAME identifiers of any type (including,,program and task)

	

may appear as structure terminals. Note that the NAME 	 1541_,
of an EVENT may appear in a structure even though the
EVENT itself may not.

4. The°REMOTE attribute may be applied to a structure
terminal with the NAME attribute unless it is of
EVENT type.

`	 SEMANTIC RULES: Nested Structure Template References

1. Nested structure template references are special instances
of structure"terminals. The manner of their incorporation
into structure template definitions is as described in
Section 4.3 via the <type'spec>

a

1	 —
2. Such references are permitted to use

^,
 the NAME attribute.

If the NAME attribute is present, the following points are
to be noted:

Specification of multiple copies is still _-nnot permitted.

• The reference maybe to the structure template being;f

	

	 defined (and of which the reference is a part) . The
implications of this are discussed later.

^s

v

'l

O

J

J

examples of structure NAME identifiers:

STRUCTURE A:
1 X NAME PROGRAM,

1 Y SCALAR,
1Z NAME SCALAR,
1 ALPHA NAME A-STRUCTURE;

DECLARE P A-STRUCTURE;
DECLARE PP NAME A-STRUCTURE;

P.Z is a NAME identifier which may point to
P.Y

PP is a NAME identifier which may point to

P^
PP.Z is a NAME identifier which may point to

P.Z which is itself a NAME identifier
pointing somewhere. This is an instance
of double indirection.

P.ALPHA is a NAME identifier of A-structure type.
The consequences of this are discussed later. 	 f

11.4.3	 VecUtattonb o6 TempouAieA

No identifier declared in a TEMPORARY statement may
possess the NAME attribute. No such identifier of structure 	 (1
type may have a template which contains one or more structure
terminals bearing the NAME attribute.

i

f

1. r

it

11.4.4	 The 'VeAe6enenced' W e o5 SifiAe NAME Identi6ieu

Simple NAME identifiers are those which are not parts
of structure templates.

If a simple NAME identifier appears in a HAL/S
expression as if it were an ordinary identifer, then the value
used in computing the expression is the value of the ordinary
identifier pointed to by the NAME identifier. Similarly, if
a simple NAME identifier appears on the left-hand side of an
assignment, as if it were an ordinary identifier, then the value
of the :right-hand side^l is assigned to the ordinary identifier
pointed to by the NAME identifier. These are examples' of the

„ ' de' eferenced' use of NAME identifiers.

Whenever a NAME identifier appears in a HALLS
construct as if it were an ordinary identifier, the

M	 dereferencing process (to find the ordinary identifier
pointed to) is implicitly being specified. Specifically
this still takes place when a subscripted NAME identifier
appears as if it were an ordinary identifier. Here
the dereferencing takes place first, and then the
subscripting is applied-to the ordinary identifier
pointed to:

p3	
111

-	 -

A special construct to be described in)Sections 11.4.5-
and 11.4.6 is required to reference or change the value

Ct	 of a NAME identifier (as opposed to referencing or
changing the value to which it points)

11-25

G

11. #. S Rejenenei.ng NAME Vatueb

The value of a NAME identifier is referenced or
changed by using the NAME pseudo-function. This pseudo
function must a so be used in order to gain access to
the locations oFordinary HAL/S identifiers. The locations

f,or values so indicated will be called NAME values. The
necessity also arise for specifying Null NAME values.

The following syntax diagram shows both the NAME
pseudo-function construct as used for referencin NAME
values, and the constructfor specifying Null	 values.

SYNTAX:	 °

na. manna	
7}

[I
 NULL

sub namm id

T

NAME	 }

c	
_	

sub id	
22

4

f

4

SEMANTIC RULES:

1. <sub id> is any ordinary identifier, except an input
r -'	 parameter, a minor structure, an identifier declared

with CONSTANT initialization, or an ACCESS-controlled

	

identifies to which assignment access is "denied" or	 o
not asked ,for. <sub name id> is any NAME identifier.

I'

	

	 -;2. Either of the above forms may possibly°be modified by
subscripting legal for its type and organization. Note,
however, the following specific exceptions:

.1

E
11-26

r
,,	 z

0

h1

U i

i
i^

4

NULL

c;

• No component subscripting is allowed for bit
and character types.

• if component subscripting is present, <sub id> or
<sub name id> must be subscripted so as to yield
a single (unarrayed) element.,

• if no component subscripting i^ present, but array
subscripting is, then all arrayness must be sub-
scripted away.

example:

DECLARE V NAME ARRAYM VECTOR;

NAMEW	 is illegal since it
violates the second excep-
tion of semantic rule 3 above.

3. Any <sub id> must have the ALIGNED attribute.

4. NAME <identifier>s may not be declared with the ACCESS
attribute (see Section 11.4.1, rule 2). This does not,
however, imply that the NAME facility is independent of
the ACCESS control: NAME references to <sub id>s with
ACCESS control will compile without error only if
implementation dependent ACCESS requirements fov*

'I-<sub id> are satisfied.

5. if <sub id> is unsubscripted, the construct delivers
the location of the ordinary identifier specified. If
it is subscripted, the construct delivers the location
of the part of the specified identifier as determined
by the t^r^^ of the subscript. Subscripting can change
the type and dimensions of <sub id> for matching purposes.

6. If <sub name id> is unsubscripted, the construct delivers
the value of the NAME identifier specified. if

'
it is

subscripted, the value of the NAME identifier is taken
to be the location of an ordinary identifier of compatible
attributes, and the subscripting accordingly modifies the
location delivered by the construct.

11-27

i

t

s

b

1`. The two equivalent forms NULL and NAME(NULL)
specify null NAME values.

e^

,y

i

b t

11.4.6	 Changing NAME Vatuea

'

	

	 The value of a NAME identifier is changed by using
the NAME pseudo-function in an assignment context. The
following syntax diagram shows the NAME pseudo-function
used for assigning NAME values:

°	 SYNTAX:

1

SEMANTIC RULE:

1. <name id> spedifies' any `NAME identifier except an
input parameter, whose NAME value is to be changed.
<name id > may not be subscripted (except as noted
in 'Section 11.4.11)

11.4.7 NAIL{E Mzigmnent Statemext6

The NAME assignment statement is the construct by
which NAME values are assigned into NAME identifiers-.

s

11--29

PAGE i"

OF Poch ^ ";".^lT^t

9

is

r`

1

SEMANTIC RUNES:

i

	

	 1. The <name reference> and <name assign>s must possess:;
arguments whose attributes are compatible in the
sense described in Section 11.4.1.

11.4.8 NAME Vatue Comp"Onz

The values of two <name reference>s may be compared
to one another.

name conditional expreuion 	 76

condition
NOT

name reference	 '^; z	 name reference

c

SEMANTIC RULES:

1. This <comparison> may be used in any syntax where
ether forms of <comparison> may be used, for example
in <a <conditional operand> or as the <condition>
controlling a DO WHILE.

11-30

a

ti

I
F

°

2. Both <name reference> s must possess auments whose
<attributes> are compatible in the sense described
in Section 12.4.1.

--:

	

	 NAME values may be passed into procedures and 	 a

functions provided that the corresponding formal para-
meters of the blocks in question have the NAME attribute. 	 !
The following two syntax diagrams are systems language
extensions of the earlier <normal function> and <call
statement> syntax diagrams.

SYNTAX:

r	 77	 '

normal
nrie reference

function

expression

s	
label

I1=31

FI
^	

s

S

ii

r „

F	

W

Co
rt j

r

SYNTAX: 	 .

SEMANTIC RULES:

1. The formal parameters corresponding to <name reference>
or <name assign> arguments of these block invocations
must possess the NAME attribute,

ir

2. The attributes of <name reference> and <name assign>
arguments supplied in the <norial function> reference
or <call statement> must be compatible with those of
the formal parameters in the same sense--as described in
Section 11.4.1. a

3. If the argument of the procedure or function invocation
tis no a <name reference> then the corresponding formal

parameter must not have the NAME attribute. 	 y;..

11-32

IA	 4

s

u

y

examples:

DECLARE X1 SCALAR,
X2 NAiME'SCALAR;

P: PROCEDURRA, B) ASS IGN(C, D);
DECLARE SCALAR, A NAME,

B,
C NAME,
D;

NAME(C) • NAME(A);
NAME(C) n NA ME(B); "	 illegal - s is an

input parameter

CLOSE;

NAMEW) • NAIAE(XI);
CALL P (NAME(XI); XI) ASS IGN(NAMEW), XI);

a

11.4. 10 1nUt'ae zat .on

NAME Identifiers may be declared with initiali-
zation o point to some particular identifier. The
form of NAME initialization is as follows;

SYNTAX;

.ti

3. Uninitialized NAME identifiers will have a NULL
NAME value until the first NAME assignment.

4. The argument of a <name reference> may not itself
possess the NAME attribute.

11.4.11 No,tea on NAME Data and S.tw tme b

0	 The previous sections , have introduced the various
syntactical forms and uses of the NAME attribute , <name
assign>s, and <name reference>s. The use of these NAME
facilities with structure data merits further explanation
since the implications of the various legal combinations are
not always immediately apparent. Therefore, the purpose of
this section is,to continue further discussion of various
aspects of NAME and structure usage by providing several
examples.

STRUCTURE TERMINAL REFERENCES

Consider the structure template "and 'structure-data
declaration below;

a

STRUCTURE A:
1 C SCALAR,:. --
I B NAME A,,STRUCTURE;

DECLARE•A-STRUCTURE, Zl, Z2, Z3;

Zl.B is a NAME identifier of A-structure type: its NAME
value may be set to point to Z2 by she assignment

NAME(Z1.B)	 NAME(Z2)

If this is done then it is legal to specify ZI.B.0 as a
qualified structure terminal name. The appearance of B in
the qualified name causes an implicit dereferencing process
to occur such that if Zl.B.0 is u.%ed in a dereferencing context,
the ordinary structure ter_rninal;,' tually referenced is Z2.C.
If the NAME value of ZI:B is changed by	 .

F

NAME(Zl.B)	 NAME(Z3):

then the appearance of Zl-.B.0 in a dereferencing context
causes"Z3.0 to be referenced.

t;
1.1r34

i

tJ I

,11

Pictorially:

z
r

I

/rr.

lZ2

R

Now Z1.B.B is itself in turn a NAME identifier of A-Structure

	

j:	 type, so that if the NAME assignment
f

NAME (Z1 B.B) = NAME (Z2) ;

is executed,` then Z2.C.may be referenced by using the qualified
name Zl.B.B.0 in a,dereferencing context.

r„
Pictorially:

(,	
a

i
Zl	 -ar z3	 Z2

	

ZlC Zl.B	 Z3.0 Z3.B	 Z2.0 Z2.B

r

Clearly this 'implicit dereferencing in qualified names can extend
chains of reference indefinitely. A particular consequence is
thecreation of a'closed circular chain. if the following NAME
assignment statements:

NAME(Z1.B) = NAME(Z2);
NAME(Zl.B.B) = NAME(Zl);

are executed, then pictorially the following closed loop is
4	 set up

	

Z 1	 Z2

	

#	 Zl.0 Zl.B	 C.0 Z2.B

11^35

^s

	

^,	 H

oI

Care must clearly be taken when using this implicit multiple
dereferencing, sp that all links in the chain have previously

^ E

	 been set up.
h

` IMPLICATIONS OF SUBSCRIPTING& STRUCTURE TERMINALS

Using the same A-structure template as before,
F the following declarations are legal:

DECLARE A-STRUCTURE (3), Yl,Y2,Y3,Y4;

One or more copies of Yl.0 may be referred to by subscripting,
for example: v

E Yl.0	 (optional semicolon for clarity)
^ 2 AT 2 ; .,

Note that now Yl.B is a NAME identif ier of A-structure type
with 3 copies.	 One or more copies of it may therefore be
assigned a NXIE-value at one time. For example:

NAME) -2 AT 2	 - NAME {Y22 AT 1)'

In this assignment, the left hand side has arrayness: two
copies of the Yl structure. As &result, two values will
be defined by the statement. However, the right hand side
has no arrayness, because the object pointed to is Y2:2 AT 1.
This>:is a two copy section of the structure Y2', withoa
unique starting location.

Pictorially: J

Y	 Y2	 !'	 -

Y1	 Y2
Y1	 Y2

.'^	 Y1.B	 ^.1	 Y2.B
Y1; C	 Y1. B	 Y2. C	 2.B

Yl ,	 Yl .	 Y2_. C	 Y2 . B

{ Notice that in the above NAME assignment a subscripted <name id>
appears as argument of the left-hand side NAME pseudo-function.
Subscripts so appearing are legal only if they can have the

<.- interpretation exemplified. The subscripting employed must
also be unarraved, as was mentioned earlier.

r,

cam`	 11-36
r	 "

OR IGINA - PAGE 15	 ^

OSpoll	 UALiTY

._ r
-_ =	 o	 _

'J

Further indirection may then be set up; Q thus for example:

NAME(Y1.B.B2) 	 NAME(Y31);

Here the subscript 2 on the left.-hand argument refers to copies
f of Yl (this can be its only interpretation).	 Hence., by virtue

of the fact that Yl.B2 has previously been set up to point to
Y21, this assignment causes Y2.B1, to point to`-Y31.

Arrayness will appear on both sides of a NAME Assignment
Statement only when the assigned reference terminals of
both sides possess the NAME attribute within structure

°	 variables with copies.
Consider the template:

i
STRUCTURE AA:

1 C NAME SCALAR,
r

("l D NAME VECTOR;

And the declaration;

DECLARE AA-STRUCTURE(3), YY1,YY2,-

If the terminal element YY2.D is assigned to the terminal
element YY1 D, the NAME assignment is arrayed since both
sides contain three copies,	 o

Thus:

i NAME (YY1. D) _ NAME (YY2 . D`)

causes the name values of YY2.D found in the three copies
of YY2 to be transferred to the corresponding name variables
in M.D.	 All the usual rules governin g arrayed assignments
apply in this case.

Y,
)	 11.37

,t
a

i

`	 MANIPULATING STRUCTURES CONTAINING NAME TERMINALSt	 ^r

Since the NAME attribute may be applied to structure
terminals, a definition of operations performed on such
NAME terminals in ordinary structure assignments, compari-
sons and I/O operations is required. The following general
rules are applicable:

• For assignment statements and comparisons involving
structure data with NAME terminals, operations are
performed on NAME values without any dereferencing<<

i
r

examples:

STRUCTURE IOTA:

1 LAMBDA NAME VECTOR,

1 KAPPA SCALAR;

DECLARE ALPHA IOTA-STRUCTURE(10);

DECLARE BETA IOTA-STRUCTURE;

ALPHA
40

BETA;
As apart of this assignment, the vector
identifier (or NULL) pointed to by BETA.LX%1nDA
becomes the vector identifier pointed to
by ALPFIA L7%%1BDA 4 as if a <name assignment
statement> had been used.

IF ALPHA = BETA THEN CALL QUE_UPDATE;

In th;s IF statement, the structure compari-
son between the two variables (ALPHA 5 and
BETA) is performed terminal by terminal as
usual. For the NAME terminal LMIl , ;,)A of each
structure operand, the effect is t ̀he same
as if a <name comparison> had been used; Equality
for the corresponding NAME terminals exists if
they both point to the same ordinary :identifier.

3

1

1

{

4

4

^f

• For sequential 1/0 Operations, all NAME terminals are 	 13tatal y, ignored, Name terminals can take part in F= 1101

examples:

STRUCTURE OMICRON:

1 ALPHA SCALAR,

1 BETA ARRAY(25) INTEGER SINGLE,

1 GAMMA NAME MATR IX(10, 10);

STRUCTURE TAU:

1 ALPHA SCALAt? };

1 BETA ARRAY(25) INTEGER S INGLE;

DECLARE X OMICRON-STRUCTURE;

DECLARE Y TAU-STRUCTURE;

READ(5) X;
The structure variable X is an OMICRON

STRUCTURE, whose template includes the NAME
of a 10 x 10 matrix (GAMMA)_. Only the
ordinary terminals are transferred from
Channel 5 by this READ operation - the value
of.X.ALPHA and the 25 values required for
X.BETA. The NAME terminal X.GArL%1A is ignored.

READ(5) Y;

whoj^
The structure variable Y is a TAU-STRUCTURE,

'p template omits the NAME terminal GAWNA
fouiid in the OMICRON-STRUCTURE, but is otherwise
identical. The effect of this READ statement is
the same as the previous statement as far as
Channel 5 is concerned	 one value is read for
Y.ALPHA and 25 values are read for Y.BETA.

i

I

u

i

11.5 The EQUATE Facility

This section describes the HAL/S EQUATE facility which
allows a system programmer to assign an external name to an
element of a `IAL/S'data area.

Reference to HAL/S data items by HAL/S code is achieved
by use of HAL/S identifiers. ' When such references occur across
compilation unit boundaries, the Block Template provides the
information necessary to generate the reference properly. If,
however, the unit making reference to a HAL/S data item is not
a HWS code block, the Block Template facility is unavailable.
It^-xs under these latter circumstances that the HAL/'S EQUATE
facility may be used to make the location of a HAL/S data item
available to an external, non-HAL/S code block.

11.5.1 The EQUATE_ Statement
	 {

SYNTAX:

EQUATE Statement	 o

EQUATE

statement

EQUATE	 identifier	 TO	 variable	 •
EXTERNAL J	

f

(r
example;	 l

EQUATE EXTERNAL. XYZ TO A;
EQUATE EXTERNAL QRS TO S. T

0	 5:,4, 3: 1, 6;

t	 ?a

3+^

J

3

!1

SEMANTIC RULES:	 i

1. The EQUATE statement causes <identifier > to become an
externally recognizable label of the HAL/S <variable>
The manner in which this is done is implementation depen-
dent. The EQUATE statement has the effect of raising

c.	 the name of <dentifier > to a global external level
such that it is known to whatever binders, loaders, 	

1link-editors, etc. t are used by an implementation.

2. The number of characters of the <identifier> which
participate in the external name created is implementation
dependent.

i
3.„ The EQUATE statement does not constitute a HAL /S declara-

tion. This implies that <identifier> may appear in a
declare .statement and be used in any manner consistent
with that declaration. In the absence of such a:
declaration, <identifier> is not declared anci may not
be used anywhere else in the HAL/S code.

i4	 4. Duplication of <identifier >s among multiple EQUATE statements
within a single compilation unit'is subject to implementation
dependent rules.

5. <variable > may be any HAL/S data item previously declared
'	 in the innermost scope containing the EQUATE statement.

6. If <variable > is subscripted, all subscripts must be
computable at compile time.

7. The external name created by the EQUATE statement will be
associated with the memory location of the first or only)
element specified by;<variable>.}

=	 8. Attempts to associate exterp^l names with HAL/S data
items which are not located integrally at addressable
memory locations orrdiscont°iguous memory locations are
subject to implementation restrictions.

ta

r

11.5.2 EQUATE Statement Placement

declare
Woup

k

replace
statement

2

structure template
1

declare
statement	 1̂4

equate
statement	

8̂0

The following diagram is a system language extension
of the Declare Group syntax diagram in Section 4.1. The
modification shows how the EQUATE statement fits into the
declaration structure of HAL/S.

SYNTAX

declaregoup	 !S	 11
S

U

^ ._.	 _...^__ TM
_

_

^^

i,

F 1" {

Syntactical	 Diagram
Primitive	 Number	 Page

<arith var name> 1191 5-5'
20 5-5

<argument> 12.1 4-6

<bit literal> 19 5-5
20 5-5

<char literal> (181 4-26
29 6-12

<char Var name > (l8) 4_2319
20

5-5
5-5

<event var name? 19
20 5-5

5-5
<identifier> B

9 3-16
12 3-19
13 4- 4
14 4-10
15 4-14
145 4-1513. 11-17

<labcli ^2 11-22

3
4 3- 4

5 3-6
6 3-8

10 3-10
[is], 3-11
38 3-22
45 4-26
46 6-24
47 7-3

7-5
7-9

syntactical Diagram
Primitive Number Page

<label> 48 7-13

(continued) 50 7-16
51 7-17
S2 7-18
53 7-20
54 7-22
55 7-24
56 7-25
57 8-4
58 8-8
s7 8-10
60 8-11
61 8-13
6263 8-11
64 9-3

65

9-3

66 10-3
68 10-6
53s 10-10
54s 11-15
77 11-15
47s 11-31

11-;02
<numbcr> 13

15 4-10
16
(181 4-15

25 4-21

63
4-26

64 6-6
65 9-2
66 9-3
68 10-3
16s 10-6
135 10-10

11-20
<process-event name 27 11-22

37

<temnlate nawe> 17
6-9
6-23

<text> 12 4-4
12.1 4-G

t

t

A-1

sir

A. SYNTAX DIAGP.AM SUMMARIES

A.l SYNTAX PRIMITIVE ' REFERENCES

o

The syntax diagrams in this Specification are numbered
sequentially. The"CONTENTS of the_ Specification state
which diagrams are in each section.

The following table shows where the ' Y.AL/S syntactical
primitives (excluding reserved Words and special characters)
are referred to.

NOTES.,

1. Primitives are listed in alphabetical order.

2. Numbers enclosed in [A denote indirect references to
the primitive. Explanations are given in the accompany-
ing Semantic Rules.

+ ' . ter:; ,.. «,. ..J„,^._.._:_	 .._	 .,....,._..,:•.....^.,—.^—...,.•+^,.^-e+^--.crn,+w:a .»w..mv>^:-x,.,..,,.-^	 .,. --^.^<

c el	
_:

A.2	 SYNTAX DIAGRAM CROSS REFERENCES:

r

The following table shows where non-primitive syntactical
terms are defined and referenced.

NOTES:

1. Terms are listed in alphabetical order.

e	 2. <radix>,rs included even though it has no syntactical
i diagram, because for the purposes of the Specification

it was not regarded as a primitive. 	 Its definition is
included in the Semantic Rules accompany.ina 'the syntax
diagrams where it is referred to.

3. Note that an "s" suffix `, identifies a' modified systems
C Language Diagram.

r

'
l

J

rte''^r

1

A-2

Mf^
RtCt1^AL„ j?AGE IS

0	
p©©R QuA,LITY

,°
^i

l

;^_._,

L	
-

Syntactical
Definition

Defined in
References

Diagram Section P7-!e

6-28<arith conversion> 39 6 25, 259

<arith expo 24 6 6-3 15,17,18,22,23,25,28,32,39,51,
53,54,57,60,61,67,68,25s,54s

<arith operand> 25 6
6_6

24,2Ss

<arith var> 19 5 5-5 20,25,53,54,25s,54s

<array sub> 22 5 5-11 21

<arith inline >., 25s 11 11-$ 25

<arith 1 macro> 25s 11 11-8 25

<attributes>:

data 15 4 4-15:,

label 16 `' 4 4-21 16s

name	 ,l 16s 11 11-20 44,45

<basic statement>:

assianment 46 7 7-5

name 75 11 hil-27 47s

CALL 47 7 7-9 47s

name 47s 11 11-32

CANCEL 58 8 8-8

DO...END> _ 7 7-15

EXIT 56 7 7-25

FILE 68 10 10-10

GO To 56 7 7-25

name assign 74 11 +- 11-27

null 56 7 7-25 75, 76, 77 47s

ON ERROR 63 9 9-3

l

E _

r

i

;t

i

4

a	
_'

1

r

f

t^

Syntactical
Definition

Defined in
References

Diagram
-

Section Page

READ 65 10 10-3
^i

READALL 65 r 10 10-3

REPEAT 56 7 7- 25.

,:7` RESET 62 8 8-14

RETURN 48 7 7^13

SCHEDULE 57 8 8-4

SEND-ERROR 64 9 9-7

SET 62 B 814.

SIGNAL 62 8 8-14,

TERMINATE 59 8 8-10

UPDA7 ^RIORITX 61 8 8-13,

WAIT 60 8 8=11

WRITE 66 10 10- 6

<bit conversion> 40 6 6x32 27,27s

<bit exp> 26 6 6-8 23,27,33,41,45,52,53,54,27s(154s

<bit inline> 27s 11 11-,9 27,

<bit	 macro> 27s 11 11-9 27

<bit operand> 27 6 6-9 26,27s

<bit pseudo-var> 42 6 6 - 36. 20, 27, 27s

<bit var> 19 5 5 -5 20, 27, 27s

<char conversion> 41 6 6--34 29,29s

<char exp> 28 6 6-11 23,29,34,3.0,,29s

<char operand> 29- 6 6-12 28,29s

<char vara 19 5 5-5 20, 29, 29s

I

4

fI	
.f

^ M1

K

^j

K

i

r
r,

Syntactical
Definition

Defined in
Refeences

Diagram Section Page

<char inline> 29s 11 11-10 29

<char t macro> 29s 11 11•-10

"I<closing> 10 3 3-22 2, 3, ", 5, 6, 69

<comparison>: 31

arithmetic 32 6 6,-16

bit 33 6 6-18

character 34 6 6-19

structure 35' 6 6-19

<compilation> 1 3 6-20

<component sub> 22 5 3-2 21

<compool block> 5 3 511 1

<compool header>. 7 3 3,10 5,6

<compool template> b 3 3^ 14 1

<condition> 30 6 3w11 31,45,52,,53,54,54s

name 76 11 6 - 14

<corditional ; operand> 31 6 11,30 30

<declare group> 11 4 6,15 2,3,4,5,6,69

<declare statement> 14 4 4-3 11,14s, is

name 14s 11 4=14

<do statement>: 11-17 49,49s

CASE 51 7 7 -17
ti	 \^

discrete FOR 53 ,7 7-20

temporary 'var 53s -11 11 — 15

iterative FOR 54 ^	 `l 7 7-22

0

d'

Syl&tactical Defined in
` Definition -	 - References

G
Diagram Section Page

temporary var 54s 11 11-15

simple 50 7 7-16

UNTIL 52 7 7-17 i

kj
WHILE 52 7 7-18

<end s"tatement> 55 7 7-24 4949s
135 <equate statement> 80 11 11-40 lls

<event exp> 36 6 37,57,60
6-22

<event operand> 37 6 36
4 6-23 :.

<event var> 19 5 20,27,37,62
5- 5

<expression> 23 6 18,38,39,40,41,42,46,47,48,66,
6-2 68,70

<file exp> 68 10 10 -10 68

' <function block> 3 3 3-6 1, 2, 3, 4, 49, 49s

<function header> 9 3 3-19 3,6

<function template> 6 1r1(3 3

<inline funct on> 69] l 11-2

<initial list> _18^ 4 4-•23 18

it <initialization> 18 4 4-26 15

name ,,	 79- 11 11-33 16s

<i/o control> 67 10 10-8 65,66

<name>:, 14s 11 11-17

<name reference> 75 11. 11=30

' <normal function> 38 61 6 -24 25,27,29,77

..
name 77 11

<precision> 43 6 6- 39 1,2,3,4,49,,49s

<procedure block> 3 3, 3-6 3,6.

A-6

\\	 1

Syntactical
Definition

Defined in
References

Diagram Section Page

<procedure : header> 8 3	 " 3-16 3,6

<procedure template> 6 3 3-11 1

<program block> 2 3 3-4 1

<program header> 7 3 3-14 2

<t macro> 70 11 11-6 25s

typeless i macro 71 11 11-12

<radix> Note 2. 6 40,41

<replace statement> 12 4 4-,4 11,11s
parametric 12.1 4 4-6

<scaling> 81 6 6-40 23
<statement>:

basic 44 7 7-2

IF 4S 7 7-3

temporary 72 11 ll -14

<structure -exp> 29.1 6 6-13

<structure sub> . 22 5 5-11 21.

<struct inline> 29.1s 11 ,11-1.1 29.

<struct % macro> 29.1 11111 29.1

<structure template> 13 4 4-10 ll,lls

name 13s 11 .11-22

<Structure var> 19 5 5-5 20,23,35,29,i3,29.1

<sub exo> 22 5 5--11 22 c_

<sub name 'id> 73 11 j1-26

<Subscr .pt>, 21 5 5-'8 19, 39, 40, 41, 42

< as}: b ock> 3 3 3-6 2	 c	 s

Syntactical
Definition

Defined in
References

Diagram Section Page

<task hdader> 7 3 3-14 3

<type spec> 17 4 4-22 9,15,16,69

<update block> 4 3 3-8 2, 3, 49, G9, 49s

<update header> 7 3 3-14 4

<variable> 20 5 5-5 42,46,47,65,68

<temporary statement> 49S 11 11-13 53s,54s
72 11 11-14

C1

r

i
1

1

i

.I

J	 ()

♦ 	 L^	 1

A.3 SYNTAX DIAGRAM LISTING

DIAGRAM #	 TITLL')	 PAGE

1 unit of compilation 3-2
2 PROGRAM block 1-4 \,
3 PROCEDURE, FUNCTION and TASK blocks 3-6
4 UPDATE block 3-8
5 COMPOOL block 3-10

j 6 block templates:	 PROGRAM, PROCEDURE; 3-11
FUNCTION and COMPOOL templates

7 simple header statement 3-14

I 8 PROCEDURE header statement 3-15
9 FUNCTION header statemen-t 3-17

10 Closing of block 3-19
11 declare group 4-3
lls EQUATE statement PlacemeW	 in declare group 11-42
12 REPLACE statement 4-4
13 structure template statement 4-9
13s structure template statement/NAME attribute '11-22
14 declare statement 4-12
14s declaration statement/NAME attribute 11-16
15 data declarative attributes 4-13

16 label declarative attributes 4-18
16s label declarative attributes/PROGRAM-TASK 11-19
17 type specification 11-19
18 ;initialization specification 4-23

'19 <var>:	 arithmetic, bit, character, 5-5
structure, event variables

20• variable 5-5

21 subscript construct 5-8
22 component, array, and structure 5-11 i!

subscripts
23 expression 6-2
24 arithmetic expression 6-3
25 arithmetic operand 6-6f
25s arithmetic operand inline function block/ 11-7

0%-macros'

*Note that an "s" saffix identifies a modified Systems
Language diagram.

4

A-9

C

PAGE

26 bit expression 6-7
27 bit operand 6-8
27s bit operand inline function block/ 11-8

%-macros	 '?
28 character expression 6-10
29	 `^ character operand 6-11'	 i
29s character operand inline function block/ 11-9

%-macros
29.1 structure expression, 6-12	

i

%	 29.1s structure expression inline function block/ 11-10
%-macros

30 conditional expression 6-13

3.1 conditional operand i 6-14
32 arithmetic comparison -15
33 bit comparison "6-17
34 character comparison 6-18
35 structure comparison 6'-19

36 event expresso 6-21
37 event operand 6-22
38 normal functo 6-23
39 arithmetic conversion,,functicn -27
40 bit conversion funcion 6-31

41 character conversion-function 	 °'
a

6-33
€	 42 SUBSI?` pseudo-variable 6-35

43 precision specifier 6-38
44 basic statement 7-2
45 IF statement 7-3

46 assignment statement 7-5
47 CALL statement 7-9
47s- CALL statement with NAME 11-32
48 RETURN statement 7-12
49 DO ... END statement group 7-14
49s DO...END statement group/temporary 11-12

variable
50 simple DO statement 7-15

51 DO CASE statement 7-16
52 DO WHILE and UNTIL statements 7-17
53 discrete DO FOR statement 7-18
53s discrete DO FOR statement/temporary 11-14

variable	 -
54 iterative DO FOR statement 7-21
54s' iterative DO FOR statement/temporary 11-14

n
variable

55 - END statement
7-23

a

A-10

F f

;i
d

DIAGRAM r TITLE PxGE

f 56 other basic statements: GO TO, "null", 7-24
EXIT and REPEAT statements

57 SCHEDULE statement 8-4
58 CANC1l::L statement 8-9	 ,1
59 TERMINATE statement 8-11
60 WAIT statement s 	- 8 =12

G 61 UPDATE PRIORITY statement 8-14
62 SET, SIGNAL, and RESET statement 8-15
63 ON ERROR statement 9-3	 l
64 SEND ERROR statement 9-7
65	 - READ and READALL statements 10-3

1

66 WRITE STATEMENT 10-6
67 '^Yo control function 10-8

68 FILE statements 10-25
69 inline function block 11-2
70 %-macro statement 11-5

71 %-macro call 11-11_
72 temporary statement 11-13
73 N1-101E reference 11=-26	 j

> 74 NAME assign 11-29

75 NAME assignment statement 11-30

76 NAME conditional expression 11-30
77 normal function reference 11-31

79.-> NAME initialization attribute 11-33
80 EQUATE ,statement 11-4 0
81 scaling 6-39	 I?43

82 FORMAT LISTS 10-10
83 FORMAT CHARACTER EXPRESSION 10-11
84 FORMAT ITEM 10-13
85 I FORMAT ITEM 10-15

r 86 F and E FORMAT Items ` 10-16
87 A FORMAT ITEM 10-18	 i
88, U FORMAT ITEM 10-1.9
89	 - X FORMAT ITEM 10-20
90 FORMAT QUOTE STRING 10=-21
91 P FORMAT ITEM 10-22

A-11
3

r
ry 	 PAGE

POOR Q l#ALI 1 {OF P

BEL

;

i I

I

B.	 HALES KEYWORDS

The following table of keywords exclgOes built-in functions
!a^ and W^-tnacro names. jl !

ACCESS EXCLUSIVE	 j RANGE (142
AFTER EXIT READ
ALIGNED EXTERNAL	 ;; READALL 3

AND REENTRANT
ARRAY FALSE REPEAT

R ASSIGN FILE REPLACE"
AT FIXED RESET 1147
AUTOMATIC FOR RETURN

FUNCTION REMOTE
RIGID

j BIN GO SCALAR
BIT SCHEDULE
BOOLEAN SEND
BY HEX SET

SIGNAL
CALL IF SINGLE

f CANCEL IGNORE SKIP
CASE _	 IN STATIC

f CAT INITIAL STRUCTURE
-,T CHAR INTEGER SUBBIT

CHARACTER SYSTEM
CLOSE LATCHED
COLUMN LINE

` COMPOOL LOCK TAB
CONSTANT TASK

MATRIX	 = TEMPORARY
^ 14 7

MATRIXF — TERMINATE ^^
^s

DEC THEN
DECLARE NAME TO
DENSE NONHAL TRUE
DEPENDENT NOT
DO NULL
DOUBLE UNTIL

OCT UPDATE
^. OFFk ELSE ON VECTOR 147` END OR VECTORF I

EQUATE
ERROR _v, PAGE WAIT

_ EVENT PRIORITY - WHILE
j EVERY PROCEDURE WRITE

PROGRAM

{

r

f

J,

ARITHMETIC FUNCTIONS

o arguments may be INTEGER or SCALAR types

o functions marked with an * also accept FIXED type arguments

o in functions with one argument, result type matches argument type
(except as specifically noted)

o in functions with two arguments, unless specifically specified,
result type is scalar if either or both arguments are scalar;
otherwise the result type is integer

o arrayed arguments cause multiple invocations of the function, one
for each array element arrayness of arrayed arguments must match

Name, Arguments Comments

ABS (a) a

If a is of type fixed with a defined
scaling, then the result is defined
to have the same scaling.

CEILING smallest integer ? a

DIV (a integer division a/,6	 (arguments
rounded to integers

FLOOR (a) largest integer(`!

MIDVAL the value of the argumentwhich is
algebraically between the other two.
If two or more arguments are equal,
the multiple value is returned.
Result is always scalar.

MOD a MOD 0

ODD TRUE	 1 if a odd	 result is
FALSE	 0 if a even	 BOOLEAN

REMAINDER
	

a signed remainder of integer divisi6n
a//3 (argument rounded to integer)

1
147

140

147

C. BUILT-IN FUNCTIONS

HAL/S typically supports the following set of built-in functions.
Minor variations may arise between implementations.

ARITS

Name, Argument

ROUND (a)

*SIGN (a)

*SIGNUM(a)

TRUNCATE (a)

154
147

147

O ALGEBRAIC FUNCTIONS

• arguments may be integer, scalar, or fixed types
conversion to scalar occurs with integer arguments

• result type is scalar unless argument is fixed, in
which case result type is fixed

arrayed arguments cause multiple invocations of the
function, one for each array element

• only those functions marked with an * accept fixed
arguments

• angular values are supplied or delivered in radians

• angular values of FIXED type are scaled by, 7r

Name	 Arguments Comments

• ARCCOS (a) cos-la	 l of < l
this returns an angular
value.

ARCCOSH(a) cosh-la 	> 1

• ARCSIN(a) sin la ,	 to	 e 1_
this returns an'angular
value.

ARCSINH(a) sinh-1 a

-n < tan-1 (aM <_ iT
ARCTAN2(a.,o) Proper Quadrant ifs

a = k sin 6	 k>
^ = k cos 6^

U

this returns an angular
value. a

ARCTAN (a) - tan-1 a

ARCTANH (a) tank la	 lal	 < l

*COS (a) Cos a
this takes'an angular
value.

COSH (a) cosh a

EXP (a) ea

LOG (a) loges a ,	 a	 0

f

r

F

t

F

t

i

14?

` 1:47

r
i

147

147

SIN (a) sin a
this takes an angular

j	 o	 value.

SINH(a)

i

sinh a

*SQRT (a) /a 	 a _ 0
=the scaling of the resul,
is implementation de-
pendent if a is of tape
FIXED

TAN (a) tan a

TANH (a) tanh a

)

i

Y

i

r.

t

a;

k	 ;_

VECTOR-MATRIX FUNCTIONS

• arguments are vector or matrix types "as indicated
c	 4

• result types areas -implied by mathematical, operation
• arrayed arguments cause multiple invocation of the
function, one for each array element

Name, Arguments Comments

ABVAL (a) length of vector a,.,

For VECTORF argument with a
defined scaling,`ARVAL(a) has

° the same defined scaling

DET(a) determinant of square matrix: a.
The scaling for MATRIXF argu-
ments is implementation-de-
pendent

l
INVERSE (a) ' inverse of a nonsingular square
_ matrix a.

The scaling for MATRIXF argu-
ments is implemetation depen-t 	 _ dent

TRACE(a) sum of diagonal elements of
square ,matrix a.-,.,

^ For MATRIXF agruments with a
defined scaling, the result is
defined to have the same seal-=
ing

TRANSPOSE (a) transpose of matrix a.

= For MATRIXF arguments with a
defined scaling,,,-she result is
defined to have the same scaling

UNIT(a) unit vector in same direction .as
vector a.

For VECTORF argument, the result
is scaled at 2 1

MISCELLANEOUS FUNCTIONS

• arguments are as indicated; if none are= "indicated
the function has no arguments

e result type is° as indicate

ame,	 Result Type Comments
Arguments

CLOCKTIME	 scalar returns time of day

DATE	 integer returns ddte (implementatio'
- dependent format).

ERRGRF integer returns group number of last
error detected, or zero

F.RRNU1 integer ! returns number of last error
detected, or zero

FRIO integer returns priority of process
calling function

RANDOM scalar returns random number from
- rectangular distr bution 'over

range 0 -1

RANDOMF fixed
C"

The scaling of the result of
RANpOMF is undef ;red

RANDOMG scalar returns ramdom number from
Gaussian distribut=ion mean
zero, variance one

RUNTIME scalar returns Real Time Executive'
clock time (Section 8.)

RUNTIMEF fixed The scaling of the result of
RUNtIMEF is implementation

J	 dependent

NEXTIME scalar <label> is the name of a pro-
gram or task.	 The value re-(<label`

_)NEXTVAE , f xed turned is determined as fol-
{< abel>) lows-,

a)	 If the specified process

, was scheduled with the
REPEAT ENTRY option and
has begun at least one
circle of execution T then
the value is the time
the next cycle will.
begin.

F

r

t

t	 ^

t^

RR

	 A

k'

f	 ^^

I.r

Cl	 r

1 _	

l

MISCELLANEOUS FUNCTIONS (CONTINUED)

Dame, Argument Result Type Comments

(m, ^) Same as a 0^ nay k	 integer or	 scalar type.!
v -	 0 muse be integer type.

If	 is integer type, the re-
suit is an integer whose
internal binary representationr
is ;that of a ,shifted left by
bit locations.	 The signed

xia^ure of the integer a is
taken into agcount. in an
implementation dependent
manner which depends upon the
number system and word size
of the target computer.
If a is bit type, the result
is a bit string containing
the value of a shifted left
by 5,bit locations: a is treated
as-- an unsigned logical, quantity.
The size of the result is
implementation dependent.

Arrayed arguments produce <mtlti-
ple-invocations of the function,
one for each array element -
arrayness of arrayed arguments
must match.

SHR Same as a a may be integer or	 scalar type.
s must be integer type.

Results are as defined for the
SHL function except that all
shifting occurs to the right.

Arrayed arguments produce
multiple invocations of the
function, one for each . array;"
element - arrayness of arrayed
arguments must-match.

NORMALIZE(a) FIXED a must be FIXED type.	 IThe
= scaling on a is reduced until

a is normalized._ - The scaling
of the result is -undefi^

NORMCOUNT Cal
-^^

INTEGER a must be FIXED type. ' I the re-
sult: is the number ofleft

1` shifts 'necessary to normalize a.

0

r--
,>i`-

CHARACTER FUNCTIONS.

•	 first argument is character type - second argument
is. as indicated (any argument indicated as character
type may also be integer or scalar, whereupon conver-
sion to character type is implicitly assumed)

0	 result type is as indicated
•	 arrayed arguments, produce multiple invocati.o--Gof

the function, one for eacharray element - arraynesses
of arrayed arguments must match

" Name, Arguments. Result Type comm -ints

INDEX(a,a) integer a is character type - if string S
appears in string a, index point-
ing to the first character of 5 is
returned; otherwise zero is re-
turned

LENGTH a)- integer returns length _of,c..haracter
string

LJUST(a,O) character Vis integer type - string a is
expanded to length S by padding_;
on the right with blanks
> length	 a

RJUST(a,$) rcha acter is integer type - string a is
?expari3ed to length 	 by padding
on the left with :blanks
5	 >	 length	 .(a) ,.

TRIM(a) character leading and trailing blanks are <.
stripped from a

M lop

• ; arguments ai

• result is bi
r'

arrayed argt
of the funct
arrayness of

Name, Arguments Re:

XOR (a , S)

ARRAY FUNCTIONS

e arguments are n-dimensional arrays where n is
arbitrary

a arguments are integer, scalar, or fixed type

e result ty-pe marches argument type and is
unarrayed

Name, Parameters Comments

MAX (a) maximum of al,̀i element-of a.
-s	 _^ If a ks FIXED`'with a defined

scaling, then the result is defined
to have the same scaling.

MIN(a) minimum of all elements of a.

If ,aa is FIXED, then the scaling of
the result is undefined.

PROD (a) product of- all elements of a.

IF a is FIXED then the scaling of
the result is undefined.

SUM(a) sum of all elements of a.
If a i:s FIXED with a 'defined seal-
irg then the scaling of the result
is the same.

i

44

r

^l

SIZE FUNCTION

Name, Argument Comments

One of the following must hold:

•	 a is an unsubscripted arrayed
variable with a one-dimension-
al array specification -
function returns 'length of

SIZE(a) array.

•	 a is an unsubscripted major
structure with a multiple
copy specification -
function returns number of
copies.

•	 a is an unsubscripted
structure terminal with a
one--dimensional array speci-

-^ fcaton - function returns
,length of array.

Result is ointeger type

I

,r

t

l

J

LL	 V

^
}

#	 D. STANDARD CONV,7,,RSION FORMATS

In releatively limited circumstances HAL/S allows conversion
between scalar, integer, bit and character types. 	 The follow-
ing rules govern such conversions.

CONVERSIONS TO 'INTEGER TYPE:_

•	 A bit type is converted to integer type by regarding it ^(
as the bit pattern,of a signed integer of the desired
precision° (halfwo*;d ^ Ur f,ullword) .	 Left padding with

°binary 'zeros, or left truncation may occur.

• ' A scalar type is converted to integer type by rounding
to the nearest whole number. 	 Overflow errors may occur
if the absolute value of the scalar.type is too large
to be represented av an.integer of the desired precision.

!_	 .`, fixed type may be converted to an integer only by
Using the INTEGER conversion function.	 The specified 147
scaling is performed and the resultant number is rounded
to'the nearest integer.

•	 A. character type is convertible to integer type _only __J
if its value represents a ` signed whole number (e.g.
-604 1 1 otherwise an error condition occurs.	 An error 137

cor.^n", tion also occurs if the whole number is too large
to be represented as an integer of the desired precision.

r CONVERSIONS TO SCALAR TYPE;

9	 An integer type is converted directly to scalar-form.
Depending on the implementation, and the precisions,
some decimal places of accuracy may be lost during conver-
sion.

•	 A bit type is converted to scalar-type by first converting
it to double precision integer 'type according to the role
previously given, and then applying the integer to scalar
conversion.

•	 A character type is convertible to scalar type only if
its value represents a legal scalar--or integer-valued 141
literal	 (e.g.	 '-1.5E-7').	 ,See Section 2.3.3 for details of
arithmetic literals..	 Other values cause error conditions
to arise.

•	 A fixed type may be converted to a scalar only by using
the SCALAR conversion function.	 The specified scaling
is performed and the':-.esultant number is then converted 147
to internal scalar-format'.	 Some precision may be lost
during conversion.

D-1

CONVERSIONS TO FIXED TYPE:

4 A bit type is converted to fixed type by„`regarding
it as the bit pattern of a sign`ad fraction of the desired
precision.	 Left padding with binary zeros or left trun-
cation may-occur.	 Padding or truncation have the dffec't
of a scaling operation.

A scalar t;pe is converted to fixed type by-performing
any specified scaling and then transforming'the internah^ X

` representation from scalar to fixed form.	 The value

147 of the scaled number must lie between --1 and 1.

An integer type is converted to fixed type by performing
any specified scaling and then transforming the internal
representation to fixed form. 	 The value of the scaled
number must lie between -1 and 1, {

A character type is convertible to fixed type only if
its value represents a signed number which will lie in the

- range -1 to 1 after scaling. 	 e

CONVERSIONS TO BIT TYPE;

k	 *
114A

An integer or fixed type is converted to ; a bit string of
maximum length.	 The value is the bit pattern of ,the integer.

4 t

• A scalar type is first converted to double precision
integer type according to the rule already given, and the
integer to bit conversion rules are then applied.

• A character type is convertible to bit type only - if its
value is a string of 'l's and "0's, and blanks, 	 (but not

w all blanks)	 otherwise an error condition arises. 	 The
result of the conversion is always a maximum length bit
string, irrespective of the argument type., 	 If the argument
has more then N bits,`'where N is"the maximum allowable length
of a bit operand, then only the N right .-most are used.	 If
the argument has fewer than N bits, the string is padded on
the left with binary zeros.

>	 ,. a

D-2	
<.,

_.1:	 _,...__....d,n........^,^_^..,,i .' ""		 •...ta3s.._^...a:ma..,^sv..<y....._._ .:.__ _	 _..:	 ea ^3	 ria. F.v.s.o:,_. . ,...

CONVERSION TO CHARACTER TYPE:

• An integer type is''converted to the representation;

dddd	 (positive)
-dddd	 (negative)

where dddd represents an arbitrary number of decimal
digits. Leading zeros are suppressed yielding a variable
length result.

• `A scalar type is converted to the representation:

)6d.ddddE±dd	 (positive)
-d.ddddEtdd	 (negative)

(except, scalar 0 is converted to 0.0).

The number of decimal digits d in the fractional part and
exponent are implementation and precision dependent. The
digit to the left of the decimal point is non-zero. There
are no imbedded blanks. Leading zeros in the exponent are
not suppressed. The representation includes a"leading 	 ;^)
blank Od) if the scalar is positive. In all castes, the re-
sult is fixed in length.

• A fixed is converted to chracters using the CHARACTER
conversion function.. After the specified scaling,- s performed,
the conversion i`s performed according to the sam&'rules as
for scalars.

• A bit type is converted .;to a character string of '1's and
4 0's;,corresponding to the binary representation of the bit
string argument.

137

tv1_`

-147

J

,f f,

D-3

'i

iF	 .^ _	 .^^	 ,Z 3z-a.-.s*u.̀ tl	o^	 •$.a-..._2v..^.._.:_?'w^,..r .>.__.. _^'f.,Kffi t.vdi.dv^.w.+:'^._

E. ST

Corresponding to each data type there exists a "standard
external format" for the representation of its values on
sequential I/O files. In any implementation the standard
external formal on output is fixed; on input the user has
a certain flexibility in the format he can use.^j

t1

OUTPUT FORMAT

1. Integer 	 es

• The value of an integer is represented by -a
string of decimal digits, preceded if it is negative
by a sign. Leading zeroes are suppressed.

• The string of digits is right justified in a field
of fixed width. The width depends on the implemen-
tation, and on the precision of the integer.

2_. Scalar Type:

{.	 • If the value of ,,a scalar is positive it is represented
by	 .

j6d.dddddddEtdd

where d represents a decimal digit. One non-zero
digit appears bafpre the decimal point. The numbers

r

	

	 of digits in the fractional part and exponent are
fixed, and depend on the implementation and the
precision of the scalar. Leading zeroes in the
exponent are not suppressed. The representation

i	 includes a leading blank (0).

• A negative value has the same form except that a sign
precedes.the first decimal digit

w if the value is exactly zero, it is represented as
0.0.

• Tne representation of a scalar is contained in a field
of fixed width. The width is dependent on the imple-
mentation and the precision ,of the scalar. Justifica-
tion is such that the decimal point occupies a fixed,
precision dependent position in the field.

r	 ;, E-1

K

Qr POOR quALIT '

	

r	 ,

r

Fixed Type

0 The value of a fixed is represented by a string of
j digits preceded by a decimal point and a minus sign
`
F

if the number is negative.

0 The string of digits is contained in a field of fixed
h width:	 The width depends upon the implementation and

the precision	 of the FIXED.	 Justification is per-
147 formed so that the decimal point occupies a fixed

position in the field.

4.	 Bit Type(including BOOLEAN):	 Y

r. There are two different representations	 of values of_
bit variables.

The first representation consists of „'^L string of
binary,.;diaits corresponding to the bit variable.	 Lead-

M ing biharly' , zeros are not suppressed. 	 The ,field width i

is equal to the number of binary digits in the string
plus an inserted blank following every fourth digit

° (to enhance readability).	 This form is not compatible
wPch the READ input (see Section 10.1.1).

• In the alternate representation, the string of binary
digits plus ;inserted blanks is enclosed in the apostro=
phes.	 The field width is equal to the total of the
number cf digits, blanks and two apostrophes.

5.	 Character Type:

0 There are two different representations of values
of character variable'.

• The first representation merely consists of the
string of characters comprising the value." The
field width-is equal to the number of characters

4 in the string.	 This representation is not compatible
with READ input (see,Section 10.1.1).

• In the alternate representaition,,the string of
characters is enclosed in apostrophes, and all
internal apostrophes are converted to apostrophe
pairs.	 The field width is equal to the total number

k.. of characters in the string, including added
. apostrophes:

NOTE: The two alternate representations for bit and character
types occur on paged a^'d upaged output respectively.

'J1

E-2

f
;j

INPUT FORMATS

1, Ocalar, Intecger, and Fixed Types:

• There are three basic representatwons,,whole-number,
floating-point, and fraction.

• The whole number representation"consists of a string
of decimal digits preceded by an optional 1 -' sign. The
maximum number of digits allowed is implementation
dependent. Conversion to mantissa -exponent form takes,
place for scalar types.

• The floating-point representation is either

v

add.dddd

t	 or

E

dddd. dddd	 B	 -add 	 `^

where d is a decimal digit. Any number of digits
is allowed in the mantissa to an implementation
dependent maximum. The decimal point may appear in
any position. E,B, and H represent the exponent
digits to be powers of 10,2 and 16 respectively.
A choice of one is indicated. The maximum number of
digits in the exponent is implementation dependent.
For bit and integer types, the representation i s
.rounded to the nearest integral value. For bit
types the binary representation of the result is
taken.

i'
• The floating-point representation may be prefixed

by + of signs to indicate the sign of the value.
Without such prefix the value is positive .

2. Character Type:

• The representation of character type is a string
of characters from the HAL/S extended set enclosed
in apostrophes The number of characters may vary

"

	

	 between zero (a "null string") and an implementation
dependent maximum. Within the string apostrophes
must be represented by an apostrophe pair.

i
E-3

j

F.	 COMPILE-TIME COMPUTATIONS

References are made in the text to expressions which must be
computable at compile time.,	 in particular the followings „<>
constructs make use of them:

•	 declaration of di lI,Iensions;	 -,	 o

^^°^ •	 initialization;

^`^ °^ ' •	 subscripting. o

^1 Subsets of= arithmetic, f-bit, and character ,, expressions are
guaranteed to be computable at compile time.,

ARTIHMETIC EXFRESSION8 (see Section 6.1.1)

1.	 Sarith exp>s of integ^^, yscalar, and fixed type 147
only can be computable at compile time.

2.	 The operators of such <arr,' h exp>s are limited to

<>	 (mul-tiply)

(scaling)
x' 147

E @@	 (scaling)

j 3.' The Sarith operand > s of such <arith exp>s may either
be <number>s or unarrayed unsubscripted simple variables)
&f,inte3er, scalars or fixed "type.	 Such variables i147`must previously have been declared, and initialized
using the CONSTANT form.

(See Section 3.8
..)

:154

0

 hs^1 see ct^. 5 ^^

a y

Ael
d-

! > F-1

4

4. The following built-in functions are falso legal:

SIN	 EXP	 DATE

U /	 COS	 LOG	 CLOCKTIME

TAN	 SORT	 ^l

s

	

	 DATE and CLOCKTIME are only computed at compile Mime if
they4pea` in an <initializat.on> construct.

147 1 	 BIT EXPRESSIONS (see Section 6.1. 2)
_	 r

1. The operators which may appear in <bit exp>s computable
at compile time are:

The <bit operand>s of such <bit exp>s must be either
<bit literal>s or unarrayed un:subscripted simple variables

f%=1

	

	 of bit type,,; Such variables must previously have been 	 J
declared, and initialized using_ the CONSTANT for2,,n^

!	 CUARACTER EXPRESSIONS (see Section 6.1.3)

1'. The catenation operator (11) only may appear in <char exp>s
computable at compile time.

2. Thel<char operand>s of such <char exp>s must be either
<^har literal>s, ^arith exp>s computable at compile time,
or unarrayed unsubscripted simple variables of character
type, Such variables must	 y	 ,Yp	previously have been declared
and initialized using the,,,CONSTANT form..

2 some implementations, additional .forms may also be computedi	 '
a compile time. They will not, however, be regarded as legal
ink contexts where compile time computability is enforced
s antical.ly,

i6dS. iYdil'	 rvLtaY	 aat a.rvrve.w..u^...e..._ .^w._^.^,.vYu$Z1t_... ^ ui.xz.L[..

0 0

A pendix G

Working_ Grammar

EDITED GRAMMAR

{
w

I <COMPILATION> ;:_ <COMPILE LIST> .I	
I)

2 <CoMPILE LIST> ; ta <BLOCK DEFINITION>
3 1,<COt1PILE LIST> QLOCX DEFINITION>

4 <ARITH EXP>)Itt: <TERM>
5 1 +,<TERM>

1 b 1	 <TERM>
7 fps ,	 (<ARITH EXP> + <TERM>
b I <ARITH EXP> - <TERM>

N 9 <TERM> ::	 <PRODUCT>
10 I CPRODUCT> I <TERM>

11 <PRODUCT>	 M <FACTOR>	
z'12 (<FACTOR>	 <PRODUCT>

13 1 <FACTOR>	 <PRODUCT>
14 I <FACTOR> <PRODUCT>

15 <FACTOR> t;a <PRIMARY>
lb I _ ^PRZMAH}	 ti <FACTOR>

1	
! 17 <AA> :- AA

18 <PRE PRIMARY:0	<ARITH.EXP> 1

l0 1 -CCOMPOWD NUMBER

21 <ARITH"+ft NEAR} t: < <ARIT11 FUNC>

1 zz I <ARITH CONV.N <SUBSCRXPT>

^•I $3 <ARITH CONY> ;:= INTEGER,

a'i1 E4 (SCALAR
I5 I VECTOR
Eb I MATRIX

`^27 1 FIXED
25 1 VECTORF
29 I MATRIXF

!I'
30 <PRIMARY > t;r. <ARITH VAR>	 ,>

33_ 4PRA PRIMARY> i t= <ARITH FUNC NEAD> (<CALL LIST> 1

' p	MARY> tt- <MODIFIED ARITH FUNC>
33 1 <ARITH INLINE DEF> <BLOCK BODY), <0 SING>
34 1 <FRE PRIMARY>	 ,{r

y 35 1 PRE PRIMARY	 <QUALIFIER>

36 <OTHER STATEMENT> ::= <ON PHRASE> <STATEMENT>

37 1 CIF STATEMENT>

i -

ORIGINAL PAGE If

O^ ` POOR QUAL1't`lf
a;

t —

t

s

„	 38 1 <LABEL DEFINITION> <OTHER STATEMENT>

39 <STATEMENT> ::= <DASIC STATEMENT>
40 I <OTHER STATEMENT>

41 <ANY STATEMENT> tt x <STATEMENT>
42 I;kBLOCK DEFINITION>

BUJ	 t^

43 <BASIC STATEMENT S ttx <LABEL DEFINITION> <BASIC STATEMENT>
^t	 44 (<ASSIGNMENT> ;

4S 1 EXIT i
46 (((1 EXIT <LABEL> ;
47) 1 REPEAT
44 I REPEAT <LABEL>';;
49 I GO TO <LABEL>
50 I ;i

51 1 <CALL KEY>
$2 I <CALL KEY> fi <CALL LIST>) ;
53 ”	 1 <CALL KEY> <ASSIGN> t <CALL ASSIGN LIST>)
54 1 <CALL KEY> t <CALL LIST>) <ASSIGN> i <CALL ASSIGN LIST> a
55 I RETURN
56 1 RETURN <EXPRESSION> i

F	 57 i <DO GROUP HEAD> <ENDING>

j1	 58 I <READ KEY>
59 1 <READ PHRASE>

60 <WRITE KEY>
61 <WRITE PHRASE>
62 (<FILE EXP> x <EXPRESSION>
63 _ 1 <VAR. IA61E> x <FILE. EXP>
64 (<WAIT KEY> FOR DEPENDENT
65 (<WAIT KEi> <ARITH EXP> ;
66 1 <WAIT KEYS UNTIL <ARITH EXP>
67 1 <WAIT KEY> FOR <BIT EXP>
68 I <TERHINATOR>
69 i <TERMINATOR> <TERMINATE LIST> e

(UPDATE PRIORITY TO <ARITH EXP> i	 /J70
71 I UPDATE PRIORITY <LABEL VAR> TO <ARITH EXP>
7Z I <SCHEDULE FHRASE> i
73 1 <SCHEDULE PHRASE> <SCHEDULE CONTROL>

74 i <SIGNAL CLAUSE>
75 I SEND ERROR <SUBSCRIPT> r

76 I <ON CLAUSE> ;
}

77 (<ON CLAUSE> AND <SXGNAL CLAUSE>
78 I OFF ERROR <SUBSCRIPT>
79 I <L MACRO NAME>

$0 1 <? MACRO READ> <% MACRO ARG>) ;

81 <:: MACRO HEADS t:- <X MACRO NAME> t
42 °.	 1 <X MACRO HEAD.', <% MACRO ARG>

E	 83 <X MACRO ARG> :t= <NAME VAR>
84 ,_.	 (<CONSTANT>'	 ('

85 -*IT PRIM><BIT VAR>
86 I <LABEL VAR>	 ^l x

87 I <EVENT VAR>
as I <BIT CONST>
89 I (<SIT EXP>
90 I <MODIFIED BITFUNC>
91 I <BIT INLINE DEF.'- <BLOCK BODY> <r' 	 ING> ; f`

i

,- G^

iF

n
^

a y

1

92 1 <iknzT
HEA

D), 0xpRE33I0N> t
93 1 <BIT FUNC HEAO> t <CALL LI3Ta±II{^

94 <OIT FUNC HEAO > :: ar <BIT FUNC>
95 1 BIT <SUB OR QUALIFIER?

% tEIT CAT), ,,s <BIT fRIM>
1

97 1 <BIT CAT> <EAT> <BIT PRIM
1

98 1 <NOT> 451T PRIM>	 C-'
99 1 <BIT CAT> <CAT>',<NOT> <BIT PRIM'>

100 <BLT FACTOR> ::	 <BIT CAT>
101 1 <BIT FACTORI <AND> 461T CAT>	 '>

102 <EIT EXP> :,r <EIT FACTOR> 	 a
103 1 <EIT EXP> 40R> <OIT FACTOR), (^

" 104 <RELATIONAL. OPT ;•_ a " 	 ^	 l

4 105 1 <NOT.
106 1	 <	 t	 '
107 1••i	

_ l08 I	 t ^^

l09 1
r YI0 a

1 -NOT> <
111 1 <NOT> >

112 <COMPARISON> 	 <ARZTH EXP>"<RELATI@NAL OP> <ARITH EXP>
113 I °<CHAR EXP> <RELATIONAL OP> <;}BAR EXP>
114 1 <BIT CAT> <RELATIONA, OP> <BIf CAT>
115 (4STRUCTURE EXP> <RELATIONAL OP> <STRUCTURE EXP>^
116 1 4NAHE EXP> <RELATIONAL Opa rNAME EXP>

117 <RELATIONAL FACTOR> :.^ <REL PRI""-p	j
lie 1,, <RELATIONAL FACTOR), <ANO> 4REL PRIM>

119 <RELATIONAL EM, :^= <RELATIONAL FACTOR>
120 (<RELIkTIONAL	 P> <OR> <RELATIONAL FACTOR>)	 x

121 <REL PRIM > 	 t <RELATIONAL EXP> D
122 I <NOT> t <RELATIONAL EXP> > 	 „,>
123 I <COMPARISONa r

124 <CHAR F	 M> ,;= <CHAR VAR>^
j 125 l	 I <CHAP CCNST>
r 1°^ I <NGOIFIEL! CHAR FUt,'C>

C ll!l I <CHAR mm DEF> , <HLOCK BODY> <CL03ING>
128 I <CHAR FUNC HEAD> t <CALL LIST>
lL9 1 t <CHAR EXP>

130 <CHAg^FUNC HEAO> -=_ <CHAR FUNC>
131 t-'	 I CHARACTER <SUS OR QUALIFIER>

r
132 <SUB OR quALIFIEp>	 :_ <SUBSCRIPTa
133 I <BIT QUALXFIEFI>

134 <CHAR EXP> :t= <CHAR PRIM>
135 I <CHAR EXP> <CAT> <CHAR PRIM>
136 I <CHAR EXP> <CAT> <ARITH EXPO

r
137 I <ARITH EXP> <CAT> <ARITH EXP?

r, 133 l -ARITH EXP> <CAT .- <CHAR PRIM>

139 <ASSIGNMENT> -1:= tVARIABLE> <=1> <EXPRESSION>
140 f° {4ARIABLE>	 <ASSIGMENT>

:141 <IF STATEMENT>	 <IF CLAUSE> <STATEMENT>
141 I <TRUE PART> <STATEMENT>

143 <TRUE PART> 1_24 <IF CLAUSE> <BASIC STATEMENT> ELSE

144 <IF CLAUSE> :.a <IF> <RFLATIOHAL EXP> 'THEN
145` f <IF> <BIT EXP> THEN

146 <IF> : s IF
r;
r	 147 <DO GROUP HEAD> ::x 00

148 I DO <FOR LIST,>
149 I DO <FOR LIST> <W41LE CLAUSE>
150 (00 <WHILE CLAUSE>
1SI.) 00 CASE <ARITH EXP>
132 f <CASE ELSE> <STATEMENT>
153 I <00 GROUP HEAD> <ANY STATEMENT>
154 I ADO GROUP HEAD> <TEMPORARY STMT>

1SS <CASE ELSE> ::= 00 CASE <ARITN EXP> a ELSE`

156 <IWHILE KEY> 2:= WILE
157 f UNTIL	 --

156 <WHILE CLQUSE> ;:- <WHILE KEY> <BIT EXP>
159 f <WNILE KEY> <RELATIONAL EXP>

160 <FOR 1\LIST>-: : = <FOR KEY> <ARITH EXP> <ITERATION CONTROL>
161 1 <FOR KEY> <ITERATION BODY>	 n _

142 <ITERATION BODY> :-_ <ARITH EXP>
F	 163 f <ITERATION BODY> , <ARITH EXP>

164 <ITERATION CONTROL>	 TO <ARITH EXP>w
165 I TO <ARITH EXP> BY <ARITN EXP>

166 <FOR KEY> ::= FOR <ARITH VAR>
167 I FOR TEMPORARY <IDENTIFIER>

168 <ENDING>	 a END
169 1 ENO <LABEL>
110 j <LABEL DEFINITION> 4ENDING>

171 <ON PHRASE> ::^ ON ERROR <SUBSCRIPT>

e 172 <ON CLAUSE>	 := ON ERROR <SUBSCRIPT> SYSTEM
173 f ON ERROR <SUBSCRIPT> IGNORE

174 <SIGNAL CLAUSE>	 SET <EVENT VAR>
175 f RESET <EVENT VAR>
176 f SIGNAL;<EVENT VAR>	 -

177 , <FILE EXP>	 :_ <FILE	 Ada P <ARITH EXP>)H
178 <FILE HEAD> :; a FIVW i <NUMBER>

r	 179 <CALL KEY> ;:_ CALL <LABEL VAR>

z
G-

o

^- -	 0

180 <CACL LIST> ; :: <LIST FA'XP>	 (;
181 1 <CALL `LIS'T> i <LIST EXP>	 ,

182 <CALL ASSIGN LIST>	 <VARIABLE>
183 1 <CALL ASSIGN LIST> , <VARIABLE>

d

j 184 <EXPRESSION> I:= <ARITH EXP>
185 I <BIT UP,*
186 1 <CHAR EXP>„
187 1 ;STRUCTURE EXP>
188 1 <NAME EXP>y

189 <STRUCTURE EXP>	 <STRUCTURE VAR>
190 1 <MODIFIED STRUCT FUNC>
191 4 <STRUG INLINE DO> <BLOCK BDDY> <CLOSING>

+'	 M	 192 STRUCT FUNC HEAD> 4 <CALL LIST>)	 c

1933 <STRUCT FUHC gcmA	 - <,#RUCT FUNC>

if/.4 <LI^T EXP> :_- <EXPRESSION>
95 I <ARITH EXP> N <EXPRESSION>

<VARIABLE> :sz <ARITH VAR>
t97 (<STRUCTURE VAR>
198 l <BIT VAR>
199 I <EVENT VAR>
800' C <SUBBIT HEAD> <VARIABLE>
201 I <CHAR VAR>
202' 1 <NAME KEY>	 <NAME VAR> !

€03, <NAME VAR> ::= <VAR1A'S1E>
204 I <LABEL VAR>

r	 205 (<MODIFIED ARITH 1UNC>
`	 206 I <MODIFIED BIT FUNC>

207 (<MODIFIED CHAR FUNC>
IF`	 208 I 01001FIED STRUCT FUNC>

204 <NAME EXP> ::- <NAME KEY> 4 <NAME VAR>) o
210 1 NULL
11 1 <NAME KEY> 4 NULL)

212 <NAME KEY> ::_ NAME

_	 213 <LABEL VAR> : I = <PREFIX> <LABEL> <SUBSCRIPT>

214 %MODIFIED ARITH FUNC> %I= <PREFIX> <NO ARG ARITH FUNC> <SUBSCRIPT>

4	 CIS <MODIPTED BIT FUNC> ::= <PREFIX> <NO ARG BIT FUNC> <SUBSCRIPT> {.

216
}

<MODIFIED CHAR FUNC> :;= <PREFIX> <NO - ARG CHAR FUNC> <SUBSCRIPT>'
d

£17 010DIFIED STRUCT FUNC> ':= <PREFIX> <NO ARG STRUCT FUNC> <SUBSCRIPT>

218 <STRUCTURE VAR , ::= <QUAL STRUCT> <SUBSCRIPT> C

' 219 <ARITH VAR> ::= <PREFIX> <ARITH ID> <S BSCRW(>

220 <CHAR VAR>	 :=<PREFIX> <CHAR 10> <SUBSCRIPT>.

O
221 <BIT VAR>'/I= <PREFIX> <BIT ID> <SUBSCRIPT>

n

f
i

r	 ii Lr

Q`ft1GIN ,

Cap -pooR QUALVT

0

222 <EVENT VAR> ::# <PREFIX> <EVENT I0>'<SL'BSCRIPT>

223 <QUAL STRUM II a <STRUCTURE 30>	 J
224 1 <QUAL STRUCT> . <STRUCTURE IO>

225 <PREFIX> ::_
226 1 <QUAL STRUCT>

227 4SUBBIT HEAD> ::a <SU881T KEY> <SUBSCRIPT>

228 <SUBBIT KET> ::= SUBBIT,

229 <SUBSCRIPT> ::= <SUB HEAD> 1
230 LL	 I <QUALIFIER>
231 1 <f> <N MER>
232 I <f> <ARITH VAR>
233 I	 j

234 <SUB START> :' a <0
235 1 «% C 8 <PREC SPEC>
236 1 <f> # 0 <PREC SPEC> < <SCALING> r t
237 I <f> f <SCALING> r
238 1 <SUB HEAD>
239 I <SUB HEAD>
240 I <SUB HEAD> r

241 <SUB HEAD> :== <SUB START>

`

242 c	 I <SUB START> <SUB> j

243 <SUB> ::= <SUB EXP> 3
244 F
245 J <SUB RUN HEAD> <SUB EXP>
246 -, -	 0 ITH_ EM > AT	 -c-LIB , EXP>

247 <SUB RUN HEAD> ::= <SUB EXP> TO l'

248 • •-.._<SUB EXP>	 <ARITN EXP>
249 I <0 EXPRESSION>

11250 0 EXPRESSION> ::	 R
251) <0 EXPRESSION> a <TERM> d
252 -	 1 <((EXPRESSION> - <TER"> s

3

254 <0	 = f

255 <AND>	 = i
256 •1 AND 4

257 <OR> ;:a l
258 1 OR

259 <NOT>	 t	 ;;i r
260 i I NOT r•

261 <CAT`
262- 1 CAT

263 <QUALIFIER> ::= <A> (4 <PREC SPEC> I w	 ,

'r

}

G-6

9i

(<i> t auPRI^ Î r	 ^265 EC SPEC>'^	 <SCALING), l

6 <SCALE HEAD> r.z a

:
x? a a

O3 \1

268 <SCALING> ::_ <SCALE HEAD> <ARITH EXP> J
h

269 <BIT QUALIFIER> :;s 0> t a <RADIX> 1

270 <RADIX> ::_ HEX
271 I OCT
272 1 BIN

}273 l DEC

?274 <BIT CONST HEAD> :;_ <RADIX>
275 j <RADIX>(<NUMSER:-

276 <BIT CONST> ::_ <BIT CONST HEAD> <CHAR STRING> 1
r 277 1	 TRUE	 i;}
l ,, 278 1 FALSE

279 F ON

I
280 I OFF

281 <CHAR CONST> ::= <CHAR STRING>
282 1 CHAR t <NUMBER> 1 <CHAR STRING.>

283 <10 CONTROL> ::= SKIP t <ARITH EXP> ?
284 TAB t <ARITH EXP>)
285) COLUMN t <ARITH EXP>) 9
286 LINE t <ARITH EXP> 1 ^^
287 -PACE	 CAR	 Ey J

k 288 <READ PHRASE> :-= <READ KEY> <READ ARG>
269 I <READ PHRASE> , <READ ARG>

290 <WRITE PHRASE> :-= <WRITE KEY> <WRITE ARG>
291 I <WRITE PHRASE> , <WRIYE ARG>

292 <READ ARG> ::= <VARIABLE>
293 I <IO CONTROL> = i
294 1 <READ FORMAT LIST>

r

„	

295 <VARIABLE IN> :;= <VARIABLE> IN

296 <READ FORMAT LIST> : = IN <CHAR EXP>
297 I <VARIABLE IN> <CHAR EXP>
298 (t <CALL ASSIGN LIST> 1 IN <CHAR EXP>

299 <WRITE ARG>	 <EXPRESSION>
300 (<10 CONTROL>„
301 1 <WRITE FORMAT LIST>	 ^` u

302 <WRITE FORMAT LIST>	 = IN <CHAR EXP>
303 I <EXPRESSION IN> <CHAR 2XP>
304 I <WRITE FORMAT LIST BEGIN> <CHAR EXP>

30S <EXPREP:SION IN> ::= <EXPRESSION> IN y
r

306 <WRITE FORMAT LIST BEGIN> ::= <WRITE FORMAT LIST HEAD> <EXPRESSION>) IN

i

f -

^l

U

^,SI
307 <WRITE FORMAT LIST HtAD> : a (<EXPRESSION> i

308 I <WRITE FORMAT LISV HEAO> <EXPRESSION> •

309 <READ KEY> ::= READ (<ARITH EXP>)
310 1 READALL (<ARITH EXP>

311 <WRITE KEY> =-_ WRITE i CARITH EXP> 1]

312 <BLOCK DEFINITION, :;_ <BLOCK STMT> <BLOCK BOOY> <CLOSING),

313 <BLOCK BODY,
!' I 314 I <DECLARE GROUP>

i
315 <BLOCK BODY, <ANY 3TATEMENT>

Y

316 <ARITH INLINE OEF>: = FUNCTION <ARITH SPE6,i
317 •(FUNCTION

V	 318 <BIT MINE OEF> ;:= FUNCTION <BIT SPEC>
i

319 <CHAR INLINE OEF>	 == FUNCTION <CHAR SPEC,

i 320 <STRUC INLINE DEF> ::= FUNCTION <STRUCT SPEC > i	 ~ ,.

321 <BLOCK STMT> :;= <BLOCK STMT TOP>

` 322
n

<BLOCK STMT TOP>	 ;_ <BLOCK STMT TOP> ACCESS
323 <BLOCK STMT TOP> RIGID a
324 I <BLOCK STMT HEAD>
32S <BLOCK STMT HEAD> EXCLUSIVE
326 I<BLOCK STMT HEAD> REENTRANT r^^

327 <LA@EL OEFINITION> ::= <LABEL>

328 <LASEL EXTERNAL> ::= <LABEL DEFINITION>
329 <LABEL DEFINITION> EXTERNAL ;(=K

330 <BLOCK STMT HEAD>	 <LABEL EXTERNAL> PROGRAM
331 <LABEL EXTERNAL, COMP00L
332 I <LABEL DEFINITION> TASK
333 <LABEL ?EFINITION> UPDATE
334 I UPDATE	 ,l
335 I <FUNCTION NAME>
336 (<FUNCTION NAME> <FUNC STMT BODY> f
337 <PROCEDURE NAME,
338 I <PROCEDURE NAME> <PROC STMT BODY> ^-

<FUNCTION NAME> ::= <LABEL EXTERNAL> FUNCTION/339

340 <PROCEDURE NAME> : = <LABEL EXTERNAL, PROCEDURE

341 <FUNC STMT BODY> ::= <PARAMETER LIST>
342 <TYPE SPEC,
343 1 <PARAMETER LIST> <TYPE SPEC,

344 <PROC STMT @t?3DY> ::— <PARAMETER LIST>
345 <ASSIGN LIST,
346 <PARAMETER LIST> <ASSIGN LIST,

r

f
347 <PARAMETER LIST> ::= <PARAMETER HEAD> <IDENTIFIER>

' G-8

f

1f

{yI^

0

0

i

348 <PARAMETER HEAD

^
A

349 I.A PARAMETER HEAD	 AsOENTIFIE6^

°350 .	 <PARAME'^E	 ISY<ASSIGN LIST>	 .a <ASSIGN>

351 <ASSIGN> ::= ASSIGN

352 <DECLARE ELEMENT> :;; <DECLARE STATEMENT'> 	 G;%
353 I <REPLACE STMT> ;
354 I <STRUCTURE STMT>
355 1 EQUATE EXTERNAL <IDENTIFIER> TO <VARIABLE>

3S6 <REPLACE STMT> :t= REPLACE <REPLACE'HE0-;* BY <TEXT>

3S7 <REPLACE HEAD>	 <IDENTIFIER>
358 (<IDENTIFIER> t <ARG LIST>)

I 359 <ARG LIST> :;_ <IDENTIFIER>
j 360 <ARG LIST> , (IDENTIFIER>

361 <TEMPORARY STMT> ::= TEMPORARY <DECLARE BODY> »"
3

` 362 <DECLARE STATEMENT> ::= DECLARE <DECLARE 9O0Y>

t 363 <DECLARE BODY> :.- <DECLARATION LIST>
364 <ATTRIBUTES> , <DECLARATION LIST>

365 <DECLARATION LIST> 	 <DECLARATION>
366 . I.,	 <DCL LIST ,> <DECLARATION>

367 <DCL LI`,. _ <DECLARATION LIST> t
"+

368 <DECLARE GROUP>^'. : =<DECLARE ELEMENT>
369 I <DECLARE GROUP> <DECLARE ELEMENT>

370 <STRUCTURE STMT> ,^---,STRUCTURE <STRUCT STMT HEAD> <STRUCT STMT TAIL>

371 <STRUCT STMT HEAD> .:_ <IDENTIFIER> ; <LEVEL>
372 i <IDENTIFIER> <MINOR ATTR LIST> : <LEVEL>

,, 373 <STRUCT STMT HEAD> <DECLARATION> ► <LEVEL> ^,'	 aJ

374 <STRUCT STMT TAIL> ::= <DECLARATION>
r

375 <STRUCT SPEC> ::= <STRUCT TEMPLATE> <STRUCT SPEC BODY-$

376 <STRUCT SPEC !BODY> ::_ — STRUCTURE
377 <STRUCT SPEC HEAD> <LITERAL EXP OR M> !

378 <STRUCT SPEC HEAD> ::= — STRUCTURE t

379 <DECLARATIOW,	:=,.<NAME ID>
t 380 1r,<NAME ID> <ATTRIBUTES>

361 <NAME ID> ::= <IDENTIFIER>
,.; 382 I-<IDENTIFIER> NAME

}

'
383 <ATTRIBUTES> ::= <ARRAY SPEC> <TYPE A MINOR ATTR>

-384 <ARRAY SPEC>
385 <TYPE A MINOR'ATTR>

w G-9

o

...	 ...	 :_.,tats...,# ._.. 	 ..,.^.

l^\

J

!j

386 ;ARRAY SPEC> it: <ARRAY HEAD> <LITERkl EXP OR *>)'
387	 1 FUNCTION
386 ?.'	 1 PROCEDURE
389	 I PROGRAM
390	 I TASK

391 <ARRAY HEAD> .': ARRAY t`^
392	 t <ARRAY HEAD> <LITERAL EXP OR *>

393 <TYPE\4 MINOR ATTR>	 <TYPE SPEC>
394	 i <TYPE SPEC> <MINOR ATTR LIST>

i
39S	 <MINOR ATTR LIST>

396 <TYPE SPEC> :;s <STRUCT SPEC>
397	 I <SIT SPEC>
398	 1 <CHAR SPEC>	 s
399	 I <ARITH SPEC>
400	 1 EVENT

401 <BIT SPEC> t+ BOOLEAN	 `4
402	 I BIT (<LITERAL EXP OR *>

403 <CHAR SPEC> it= CHARACTER (<LITERAL EXP OR >) 	 ^,;^

404 <ARIT" SPEC> :.' <PREC OR SCALE>
405	 1 <SQ OQ NAME>
406	 1 <SQ OQ NAME> <PREC OR SCALE>

407 <SQ Dq NAME> ::_ <OOUBLY QUAL NAME HEAD> <LITERAL EXP OR *>
408	 (INTEGER
409	

1 SCA

410) VECTOR

1	
411	 I MATRIX
412	 1 FIXED	 7
413	 (VECTORF
414	 1 MATRIXF

415 <DOUBLY QUAL NAME HEAD>	 VECTOR (
416	 i MATRIX (<LITERAL EXP OR M>
417	 1 VECTORF t
418	 (MATRIXF (<LITERAL EXP OR *>

419 <PREC OR SCALE> tt <SCALING>
!	 420	 1 <PREC SPEC>

421	 1 <PREC SPEC> <SCALING>

422 <LITERAL EXP OR *> :: <ARITH EXP>
423	 1

424 <PREC SPEC> :a= SINGLE
425	 1 DOUBLE

426 <MINOR ATTR LIST> t:= <MINOR ATTRIBUTE>

427	 1 <MINOR ATTR LIST> <MINOR ATTRIBUTE>

428 <MINOR ATTRIBUTE> : <MINOR ATTRIBUTE 1>
429	 1 <MINOR ATTRIBUTE 2>

r	
r

j	 430 <MINOR ATTRIBUTE 1>	 STATIC
431) AUTOMATIC

ORIGINAL

{

cavay
OF CR.

i!	

G-10

\i

432	 !<`j DENSE
433	 j ALIGNED
434	 i ACCESS
435	 1 LOCK t <LITERAL EXP DR *> }
436	 j REMOTE	 "r
437	 RIGID
438	 1 <INIT/CONST HEAD> <REPEATED CONSTANT>)
439	 j <INIT/CONST HEAD>)	 y
440	 I LATCHED^^
1441	 I NONHAL t <LEVEL>

442 <MINDR ' ATTRIBUTE 2> == <RANGE HEAD > <ARITH EXP> I

444	

-HEAD> t= RANGE t443 <RANGE	
<RANGE HEAD> <ARITf^ EXP> TO

445 <INIT/CONST HEAD> - INIT64i1 t
446	 j CONSTANT 1

447	 j <INIT/CONST HEAD> <REPEATED CONSTANT>

444 <REPEATED CONSTANT> -= <EXPRESSION>
449	 I <REPEAT HEAD> <VARIABLE>
450	 1 <REPEAT HEAD> <CONSTANT>
451	 I <NESTED REPEAT HEAD> <REPEATED CONSTANT> !
452	 1 <REPEAT HEAD>

453 <REPEAT HEAD> ::= <ARITH EXP> N 	
/

454 <NESTED REPEAT
P
HEAD> _ <REPEAT HE4D> t

455	 j <NESTED REPEAT HEAD> <REPEATED- ONSTA,NT!^,

456 <CONSTANT>	 <NUMBER>
f	 457	 P <COMPOUND NUMBER>
r	 45S	 1 <BIT CONST>

459	 (<CHAR CONST>

460 <NUMBER>	 <SIMPLE NUMBER>
461	 I <LEVEL>

462 <CLOSING> ::= CLOSE
463	 I CLOSE <LABEL>
464	 I <LABEL OEFIt?ITION> <CLOSING>

465 <TERMINATOR> = TERMINATEu	
465	 I CANCEL	 4'

i
467 <TERMINATE LISis-": : = <LABEL VAR>
408) <TERMINATE LIST> <LABEL VAR>

469 01AIT KEY>	 WAIT

470 <SCHEDULE HEAD> ::c SCHEDULE <LABEL VAR>
471	 I <SCHEDULE HEAD> AT <ARITH t/XP>
472	 (<SCHEDULE READ> IN <ARITH EXP>
4?	 j <SCHEDULE HEAD> ON <BIT EXP>

474 <SCHEDULE PHRASE>	 <SCHEDULE HEAD>
!	 475	 <SCHEDULE HEAD> PRIORITY (<ARITH EXP>

476	 I <SCHEDULE PHRASE> DEPENDENT

f	

,;l	

I,r

t

G-11

t.

a

7
J

477

,

<SCHEDULE CONTROU	 :_ <STOPPING>

1

470 I <TIMING>
479 (<TIMING> <STOPPING),

480 <TIme>	 <REPEAT> EVERY <ARITH EXP>
481 1 <REPEAT> AFTER <ARITN EXP>
482 <REPEAT> i

483 <REPEAT> +:= r REPEAT

484 <STOPPING> ssz <WIILE ' KEY> <ARITH EXP>
'

l

485 1 <WHILE KEY> <DIT EXP>
Y

111

,: A u
F

}

x

tl

r
3

6r
_

G-12

`^	

S

i^ 	

^lf^"

AY

F

^ fur x

H. sumtARY of opEnATT^F,s ^

This section contains a series of tables which explicitly
r: summarize the possible arithmetic, bit, character, and conditional

operators used in forming expressions in the HAL/S Language.
The information found in this appendix has been abstracted

from chapter 6 of this specification.

r

r

l

3
8

t

iJ
i

s ,

f

H-1

f

= .I

110

OPERATORS Ne1M ;;ARIT^l7?TICj ' PRECEDENCE roml COb3MENTS

Exponentiation l x**x ordinary exponentiation
n* 0i, Repeated Multiplication

I\ m**O Identity matrix
I m"R-i nepaated mules of inverse

m** T Transpose of matrix

(blank' <> Product 3 m m , matrix-matrix product
M v matrix-vector product
V m vector-matrix product

1 V v outer productx m

m x scalar or integer product
V x with matrix/vector
X
v,x scalar or integer product

All with scalar or integer

* Goss Product 3 v*v cross product of two 3-vectors

Dow Product a	 L1'J v.v dot product of two vos^,tors

J	 „" Division 5
M/X

division of left-hand term

VJx by scalar or integer

+ Audition. 6. x+x. .

m+m -Algebraic addition or
Subtraction

v+v subtractions binary ,plus
X_X ;and minus
m-M
V_v
+x
+ln
+v

l/

_v

The following abbreviations apply:

i -'positive integer literal
x - scalar, integer, or fixed
M - matrix
v - vector

6

JĴ

Q	

jg

j

i

G

;
777

k

H.2 CHARACTER OPERATQR*

FORM„

concatonation	 re I su t —^. resu t

*Note that this table coA^^?s information found in Section 6.1.3.

H.3 BIT OPERATORS

J")
R

^r
i

j

t,

i

OPERATORS f. ME BIT OPERATOR FORM COW-1ENTS	 ?
PRECEDENCE

concatenation 1 Bj(B EE	 Ql0 —•^ 1110101fl

A..1D I logical product 2 B&B Parallel operation bit by bit

OR logical sum 3 DI D Pr allel operation bit by bit

NOT lag3cal rhost implie2
complement by syntax ^B Parallel operation bit by bit=

The !olletaiwc abbreviations apply:

B = bit string or boolean

$.	 9

a

_J

HA CONDITIONAL AND EVENT OPERATORS*

r

OPERATOR NAME CONDITIONAL RM ^	 N
PRECEDENCE

i CiC True it both "C"s true
AND logical product 1 C AND C

logical sum 2 CIC True if either "C" is true
OR (S C OR C

NOT logical 'C
complement

1-^7t,!Iqhest
implied by, Operand
syntax

The following abbreviations apply:

"C" ^ any conditional .operand.M

*Note that this table contains information found in Sections:6.2
and 6.3,.

J

Ii 5 COMPARISON OPERATORS*-

OPERATOR USE

!t

COMMENTS

> A > B
>: A >= B
< A < B magnitude comparsions: apply only to
{ A< : B unarrayed scalar and integer data A and B...^ A -•> B

NOT>
< A^<B

NOT <

AB
NOT- eau 4ity/inequality for general data A and B..._	 } A ,= B

i
G

o

MACROS
AW

The specific details of %-macro.,operation as well as
4	 the % macros available are implementation dependent.	 A	 J

generic description of % macro syntax can be found in

i

Section 11.2 of this document.

Individual implementations of the HAL /S language
"^.	 may contain %macro capabilities.	 the documentation for

each implementation (such as a User ' s Manual) will contain	 -/
the detailed descr iptions of the available % macros.

r

kr	
-	 -

^	 r

t

o

o

r

C

a

INDEX

ACESS 3-14 to 3-21
4-15,4-17, 4=19

to NANE variables 11-18,11-27

w	 active process 8-2

ALIGNED 4-10, 4-11, 4-15
4-17, 4-19, 4-20
11-21, 11-27

AND 6-8, 6-9
r 6-14, 6-22
M
C	 apostrophe 4-7	 j

argument type summary (chart) 6-38-

arithmetic comparison 6-16
syntax 3iagram #32

4	 legal arithmetic comparisons 6-11

k	 arithmetic conversion function 6-27, 6-38
r s m- tax diagram #39

<arith <onverson> 6-6, 6-29

,,.	 arithmetic eapre s! ions 6-3
syntax-diagr. fn #24

4.arith exp> 6-3, 6-16, 7-22
8-11

syntax diagram #24 6-3
in subscript 5-12
in type spec 4-22,	 4-23

<arith ex^^># 4-27,	 6-29, 6-4

<arith inline>	 - 11-4, 11-8

y	 arithmetic literals 2:-8

<arith %-macron=?' 11-6, 11-8
't

<arith operand -6-3,'6-6
syntax diagram #25

s	 arithmetic operand 11-8	 t
arith %-macro
syntax diagram #25s

ti
n

_	
O

Index-1 l;t,

L

r.

<arith var>	 5-16

ARRAY	 4-15, 4-1,6
^i
r #	 array dimension	 5-17

array properties of expressions	 6-13

array specification	 4-16, 4-19, 4-20	 10
4-2&, 4-29, 5-17

F
<array sub>	 5-7, 5-8, 5-14

0
array subscripts	 5-11

syntax diagram #22
t
C	 Array Subscrip .ting	 4-2, 5-7, 5-14-

7-10 '

arrayed <comparison > 	6-19, 6-18

arrayed infix operations 	 6-13
C

arrayed operand comparison	 6-21 -

Arrayness	 _	 _	 5-17,- 5-19

Assignment statements 	 7-5

event variables 	 6-23, 6-25'

of NAME identifiers	 11-19

ASSIGN	 3-16, 7-9, 7-10
o

as,^3ign,,parametcr	 ";	 7-10

a^ signment	 I	 7-1

^sa i menu

	

	 m	 -statementn

I,

_gn	 t e t	 7 5
syntax diagram #46

j)	 C

asterisk, use of	 4-1-9, 4-24, 4-25
4-27, 4-30, 5-11

0
.	 * 	 ,11-19

**	 °2-12

r	 {

Index-.2

i

'	 I 	 Y

LY

0

AT 5-11

\̂,.T <arith exp> 8;,

AT-partition 5-12r 5-13, 5-14
f

-
5-15

<attrp,butes> 4-14
factored <attributes> 4-14

AUTOMATIC 3-17, 3-18, 3-20
^^15

^
l)
II

rt,

basic statement 7-2
syntax diagram #44

<basic statement> 7-25

'. BIT 4,,24, 4-29, 6-3.2
O	 :, 11=4

bit argument length 6-25

bit assignments 7-7

bit comparison	 - 6-18 t

syntax diagram #33 '^

bit conversion function 6-3,/ a
syntax diagram #40

<bit conversion> 6-9

bit expression 6-8
syntax diagram #26

<bit exp> 4-29, 6-8, 6-9

6-18, 6-35, 7-3
7-18, 7-19

bit expression length 7-14

4 <bit inline> 11-4, 11-9

bit literals 2-9

<bit lteral> 6-9, 6-10 t,

Index-3

bit operand 6-9
syntax diagr^'^m #27
bit inline .
bit%-macro

`	 syntax diagram #27s 	 " 11-9

i	 bit operator precedence 6-9

<bt $-macro>;. 1i-6 • 11-9

<bit-pseudo var> 6-36, 7-7

<bit var> 6-10, 6-9

BIN
2-9, 6-32

{	 @BIN 6-33, 6-35
F ^

k	 blanks
2-14', 47 ^,1 4-27

Block delimiting statements 3-13 t.

block name uniqueness 3-23

-	 _	
Block Templates 3-13

syntax diagram #6 3-11
s

BNF Grammar of HAL/S Appendix G

BOOLEAN 4-22,	 4-24,,,4-29
11-4

r

built- in functions 6

i

built-in function names 2-6

a

built:-in function parameters 6-25

r
BY 7-23

Index-4

:. ORIGINAL PA,	^`

OF POOR QUALITY

<f
d

Statement 7-10CALL
syntax diagram #47

7_9,
.- with NAME,

syntax 7Jdiagram #47s 11-32

call-by-reference 6-2, 7-10

w	 I call-by-value 6-25, 7-10

R
CANCEL statement =	 8-9

0 syntax diagram #58 8-8

cancellation

CAT 6-8, 6-9, 6-11

c«ltenation
a

6-11

channels 10-1

HAL/S czaracter set 2-4	 u	 a

CHAR
=--	 2-10

► 	 -, -CHARACTER 4-24, 4-29, 6-34
6-2.5, 7-10,- 11-10

p
character argument length 6-25

character comparison 6-19
syntax diagram #34

character conversion function 6-34
f syntax diagram #41

<char conversion> 6-12	 9

character expression -11l
l	 syntax diagram #284

character expression lengthi	 9 7-14

<char exp>	
1. 4-29,	 6--11,	 6-19`;
	 I

6-33

character initialization 4-29

<char ;inline> 11-5, 11-10
r character length 4-24

r	 character literal	
V

2-10, 4-7
r <character literal> 2-10, 6-1`2

kI <character %-macro> 11-7, 11-10

sndex-5" if

t

character operand 6-12
syntax diagram 929
char inline
char •-macro'

syntax diagram 0 29s 11-10

' character operator precedence 6-15
i

character string 6-11

" character type 4-24

<char var>	 0 6-12, 7-7

CLOSE Statement 3-22
syntax diagram #10

CLOSE 7-13, 7-14

closing
3-4

<closin >g
3-13, 3-22

code blocks 3-13

colon, use of 4-11, 5-14, 9-4

COLUMN 10-3, 10-7, 10-8^
10-'9'

comma, use of 4-7, 4-11, 6-12
10-6

comments (imbedded) 2-14r

<comparison > 6-14, 6-21

<compilation > 3-2, 3-23, 7-9

Wiuponent` Subscripting 4-2, 6-7, 6 -36
7-7, 7-10, 7-11	 w

component subscripts 6-12
syntax diagram #22

K
<component sub> -6- 8, v-9,	 6-17

c

Index-6

R

E

11

COMPOOL 3-2,

1

3-14

k COMPOOL block
3-13,'3 22

syntax diagram #5 3-10
r	 ^

<coiapool block> 4-19

COMPOOL block' template 3-11
f

<compool -header> 3-10

compool header statement 3-14

compool modules < 3-1 j

<compool template> 4-19

<condition> 6-1 6-15,	 7f4	 !
7-181 7-21	 7-23

I

^

l conditional expression 6-1
syntax diagram #30 6-14

Yk

conditional operand 6-15 1
syntax .diagram #31

1 <conditional operand > 6-14 -^

^y

CONSTANT 4-26

conversion 6-25

conversion functions. 6-38

summary of argument types

cyclic execution 8-4 8-6

i
Data. declarative attributes 4-15

syntax diagram #15
w J,

daia declarative <attributes > 4-1

Data Manipulation 6'-1

Index-7

s ^I

Data NAME identifiers ` 11-1y

Data referencing	
5-1 t'?1

Data Sharing and the UPDATE Blocki, 8-x18

data types	 1-2

DEC	 2-9, 6-33

@DEC	 6-34,6-33# 6--35

DECLARE Statement	 4-14
syntax diagram 414
with NAME

syntax diagram #14s	 11-17 -	 TM

<declare statement>	 43,- 42:.

declare group	 3-4, 3-6, 4 -i^

4

	

	 syntax diagram #11-	 4-3
with EQUATE

syntax diagram .#115	 11-42

<declare . group>	 3-12, 5-2

Declarations of Temporaries	 11-14'

Declaration of NAME temporaries 	 11-24

DENSE/ALIGNED	 4-17, 11-18

DENSE	 4-10, 4-11, 4-15	

y

4-19, 4-20, 7-10
7-11, 7-12, 11-18
11-21, 11-22	 j

DEPENDENT	 $-6, 8-11

A	 dependent processes	 8-2

DO	 11-13

DO statement	 7-16
syntax diagram #50

<do statement>	 7-15, 7-24
d

D© CASE statement	 7-17
syntax diagram 451

DO ... END statement group	 7-15
syntax diagram #49

Index-8

,.	 s

I

_	 y

DO... END 7-2C 7-25, 7--R*

DO...END statement 1:1-13
 TEMPORARY statement -

syntax diagram #495
c-

J DO FOR	 1` 11-16

Discret ' DO roA Statement ,: 7`-20`
sy2itax 38i^r^atSt #53

dsrrete DR FOP.	 ^ 11-15
9

with loop TEMPORARY variable index
syntax" di :lgram'

iterative DO r-,dR ..,	
0

7-22

DO WHILE and UNTIL statements 7-18
syntax diagram #52 =

'DO UNTIL 7-19

PO WHILE 11-30

DOUBLE ,. 4-22,	 4-23,	 6-39	 i
7-6

douYile, precision 6-16

double quotes	 - 4-5

r
a ELSE 7-3,	 7-4,	 7-17

dangling ELSE 7-4
y

ENb 7-24

END statement 7-24
syntax diagram #55

>}

p

<end statement >

G

7-15, 7-24

E

Index-9

omwa MGF. 11,

Of POOR QUA ITY

v _.

0

EQUATE Statement 11-40
syntax diagram 480 11-40 ^!

errors	 / ^^ 9-1
system-defined
user-defined

h error code 9-1'; 9-5, 9-7

error environment__—. y-1
y

(a

error groups 9-1

error number,

t Error precedence (chart) 9-6

<error spec>^ 9-3, 9-4, 9-5
t

Error Recovery 1-2,;7-1

Error Recovery Executive (ERE) 9-4, 8-8, 9-1,
9-?

EVENT 4-21, 4 -22, 4-24
4-29, 11-14, 11-23

t event change point 8-5, 8-7, 8-8
8-14

i
Event Control 8-14- f

,event expression- 6-1
^.	 syntax diagram #3 `6- 6-22

r <event exp > 6-22, 8-12
p

event infix operator precedence 6-22, 6-23
. ^	 t

event operand 6-23^
syntax diagram #57

<event operand > 6-22
n

<event var> 6-1 0 i

latched 8-15

unlatched
`.:

8-15

e J

i

G Index-10

t

f	 ^

_

,
1

Moo i

tp L31it

EVERY <ari.th exp>
8-6

EXCLUSIVE 3-16 to 3-21	 =

executable statements 7'1

EXIT statement 7-25

syntax diagram #56

+	 r EXIT 7-26

explicit conversion functions 6-31, 6-27, 6-28
r 6-32, 6-34

t	 - expl cit type conversion 6-25,	 -	 ,

exponent 7-6
n

1
<exponents> 2-8

exponentiation . 13
^

<expression > 6-1,	 7-5, 7-13
-a

external procedure 3-1

E
EXTERNAL 3-12, 11-40

extended character set 2-4

FALSE •7-4,2-9,	 4-29,
7-18, 8-15

r ^,

father 8-2

FIL 10-11

<file exp> 10-10,	 10-11	 1

1^1-10	 1' FILE- statement	
7

syntax diagram #68

r paged file 10-2

unpaged file„ 10-2

Index-11

4

o

FIXED	 2-7, 4-22, 4-23
6-28, 4-27, 6-28

,	 6-29, 7-6

147	 fixed valued literals 	 °2-8

V	
\^

v	 flow control	 7-1

!	 flow of execution	 -	 3-5, 3-7

flow path	 2-3

format	 1 j
3-16, 3-19,4-19formal parameters	
4-21

FUNCTION	 3-2, 3-5, 3-7
3-8, 3-19, 3-23
4-21, 7-13, 11-4
11-20, 11-21

<function>	 7-13
,

FUNCTION block	 3
_6,

¢	 syntax diagram #3

<function block>	 3-19, 6=24' 6-25

FUNCTION block template 	 41
.a	

3

Function header statement	 3-19
syntax diagram #9

f	
<function header>	 319, 4-4

function modules	 3-1

'<function template> 3-12 , 3-19, 6-24

user defined	 6-25, 6-28	
Y

(1	 ,

GO TO	 7-25, 7-26

a	
GO TO Statement	 7,,,,-2 5j	

syntax diagram 456

r	 Index-12r

r,

.s .	 .;.m;.'	 :.^.,_. ^.	 ^a..^^.^E^.:_=^..^•^:,z.^.	:. 	 ^ emu, .:^„. ,,.

Hardware discretes

header statements
syntax diagram #17

HEX

@HEX

identifiers "^•,^-^

I <identifier> ^3-,16 ,> 3-19,	 4-3
4-ll, 4-13, 4-28
11--40,	 11-41

identifier generation with REPLACE 4'-8

identifiers with NAME attribute 11-11

IF 7-	 6-1	 a

IF statement

j
^^3

syntax diagram #45

f IGNQRE 9-4,

,f implicit conversion 7-12, 7-14

implicit type conversion 6-27, 7-6

IN <arith exp> 8-5

independent processes 8-2

infix operators	
;- 6-3, 6-4

(chart) 6-4

INITIAL 4-26

initial list 4-26

<initial list> 4-27,	 4-28,	 4-29
4-30

 zr a

a

Index-1,

y

Q

c

G
initialization J 4-15

<ni:tialization> 4-16, 4-1.7, 4-19
4-26, 11-18 11-27

partial initialization 4-30 y

initialization specification 4-26
-	 syntax diagram #18"

` initiation 8-2

inline function 11-1
<inline function>

syntax diagram #69 11-2

Inline function blocks 11-2

input argument 7-10, 7-12
M ;

input/output 7-;1

I/O channel number 10-6

I/O control function 10-8
_	 syntax diagram #67

k <I/O controls 10-3, 10-4' 10-6
10-7

random access I/O 10 -11 10-10

I/O statements 10-1

input parameters	 _ 3-16, 3-19, 6-25

r INTEGER 4-22,.4-23, 4-27,
6-28, 6-29

integer

integer-valued literal 2_8

Introduction 1-1

Iterative DO FOP, statement 7-22 r
syntax diagram #54

r

iterative DO FOR 11-15 *'
with, hoop TEMPORARY variable index
synta	 diagram 454s

\

0

C

Index-14

..	
tro]

keywords 2-6

<label? 2-7, 3-8, 3-10
` 3-11,"3-22, 3-23

c 4-21, 6-24, 7-2
J 7-3, 7-9, 7-23

7-25, 7-26, 8-5
8-13

<%label 11-6
s

Label declarative attributes 4`21
syntax diagram ##16 G`

with NAME
syntax diagram (#16s 11-20

label declarative <attributeIs> 4-14

Label Name identifiers 11-21`

LATCHED 4-15, 4-17, 4-24
4-29

=1
f latched event 8-14

LINE 10-3, 10-7, 10-8
104e9

linear array 4-16

literals 2-5, 2-8

literal. zero 7-6

LOCK 3-16, 3-21, 4-15
4-19, 7-10, 8-18

LOCK(*) 8-1$

lock group 7-10_
i

_ Loop 'TEMPORARY variable 11-16
syntax diagram #53s, 11-15
syntax diagram #54s 11-15

t

Index-15

ORIGINAL RAGE
OF POOR O-UAL.!T`r

r

loop variable 7-20, 7-21, 7-23

^ o

3

machine units 8-3

-macro 2-6, „1111-1,-7 I,

arith 11-6
bitbit 11-6 4
(,char 11-6

1 si V_tdt 11-6
typeless 11'6

%-macro references 11-5
syntax '3iagram #70 11-6

%-macro CALL statement 11-12
syntax diagram #71

<%-macro call statement> 11-6, '11-12 3

major structure 4-15, 4-19, 5-3
5-9, 5-1.8

mantissa,, 7-6'

Matrix 6-224 7-6

MATRIX 4.-22, 4-23, 4-28
5-15, 6-213, 6-30

MATRIXF 4-22, 4-23, 4-28
147

_
4-29, 5-15, 6-28

maximum index value 6-13

minor structure 4-S,, 4-11, 4-20
6-3,,, 6-21

minor structure node 7--12, 10-11

MU 8-3`

multiple copies 4,25, . 5^9 5--13
5-17, 5-18p 7-12

,,

Index-16

t

U	 ^^

3-23, 4-3, 4-4
4-5 4-11 A-1A

name scope.

j
•	 r

7-9
o

Name Scope Rules 3-213'

naive uniqueness 4-12, 4-14

'	 NAME facility 11-17

NAME argument passage 11-31	 JJ

NAME assign 11-29
i	 syntax diagram #74
I

NAME assignment statement 11-29
syntax diagram #75 11-30

name assign> 11-30, 11-32, 11-34

NAME assignment 11-35

NAME attribute 11-17
syntax diagram #14s

NAME attribute in structure templates 11-22
syntax diagram #13s

NAME attribute 11-23, 11-24

NAME conditional expression 11'30
diagram #76T`	 syntax

o	 NAME data and structures 11-34

NAME facility 11-17

name identifier 11-20
syntax diagram #16s

NAME identifier .. label	 -'	 ^j
1^

11-21

NAME identifier	 ^ 11-21? 11-23, 11-24

simple NAME identifiers 11-25
1

dereft enced use of simple NAME
identiers -2511

n	 _

Index-17 i
a

u

3

<NAME id> 11-29

NAME initialization attribute 11-33
syntax diagram #79

in I/O operations 11-34	 1

NAME reference 11-26
syntax diagtpm #73

<name reference> „ 11-300 11-34

NAME (NULL) 11-28

Null NAME value ` 11-2,6

NAME pseudo-function 11-29

A

Referencing NAME values 11-26

NAME structure 11-34, 11=38

NAME variable 11-18 -

f	 s
natural sequence 4-27	 5-18, 6-29

rested blocks 3-8-

Nested Structure Template References 11-23

NONHAL 4-21
r

normal :function 6-6, 6-25
syntax diagram # 38 6-24

<normal function > ,;	 6- 25=	 11-31
with NAME

/
Syntax Diagram #77	 =:)

NOT 6-9, 6-10, 6-15
6-20,	 6-21

Null 4-7, 7=6, 11-21`

Null character literal 2-10

Null field 10-5

f Null statement 7-25
syntax diagram #56

Index-18

r

s

°	 —	 .°ma.L _.a....v	 e....L^.....,.	 a	v,	i...	,m..... r._	 __.	 .Sit	 ,..b.«	° .	 r

0

r
l

0 j

Null string A 24 t
r.

<number> 4.	 1, 6-6	 1

p

object modules 3-1

OCT 2-9, 6-33
0

QOOT 6-33, 6-35

k VOFF ERROR 9-2, 9-4

ON ERROR 7-21 7-3 0 9-1
F 9-4, 9-5

6W ERROR Statement 9-2
syntax diagram #63 9-3

u	
ON <event exp> 8-5,

s

one-dimensional source format 2-12

operand 5-181 6-1

22,
.

OR - 6-8,
^	 1f

6-9,-	 14

6-22

packing attribute 4-11

r	 PAGE	 ;7 10-3, 10-7,•10-8
10-9

parametric replace reference
_

4- 7`%
syntax diagram #12.1 4- 6

parentheses
f.
 2-13, 4--7

partitioning SUBBIT subscripts 6-37

pointer 11-17

1 F^

Index-19

i

f <power>
r/

precedence. 6--5

precision specifier 6-39

syntax diagram #43

<precision> 6-6, 6-28, 6-30
6-39

precision 6-39

precisiiz^ conversion 7-6,.

primal process 8-2

HAL/S Primitives 2-1, 2-5

PRIORITY 8-6

PROCEDURE 3-2, 3- 5, 3-7
3-8, .3-16, 3-23
7-9, 7-13, 11-4f

' 11-20

►- avnnc^r,^rtt;F blockPROCEDURE 3-4
syntax diagram #3 	

_
s`6

PROCEDURE block template 3-11"
a

Procedure Header Statement 3-16
syntax diagram #8 3-16

Anrocedure header> 4-4

<procedure template> 3-12, 3-16, 7-10

process events 8-17

<process event> 11-21

<process-event name> 2-7, 6-9, 6-10
6-23

process queue 8-41 8-9: -̂.

r

Index-20

it

nn

Q

Program 3-2, 3-14, 6-23
7-13, 8-2, 11-20
11-21

PROGRAM block ° 3-4

syntax diagram #2
Ii

<program b'lock> 3-5

Program block template 3-11

' prograw complex 3-1
^

program header 3_4

progrrm headexi statement 3-14

t

qualified structure 4-25, 5-3, 5-4

<radix> 6-32, 6-33, 6-34e 6-35

'- random-access T/O 10-1, 10-10	 3

RANGE
4-15, 4-18, 4-19 142
6-5, 7-6,	 7-11

G

READ	 j 6-37, 10-2, 10-4	 d
10-8

READ and READALL statements 10-3
syntax diagram #65

READALL 6-37, 10-2, 10-4
10-8

ready	
,.

8-2

ready state 8-4

real time 3-8, 7-1, 11-4

real time control 1-2, 8-1

Real Time Executive 8-1

' real time processes 8-2

Index-21

S

REENTRANT 3-16, 3-17, 3-20

referencing simple variables 6-2 3

refegencing structures	 _ 6-3

regular expression 6-1
syntax., diagram 073 6-2

REMOTE 3-15, 4-15, 4-19
7-10, 7-12, 11-23

REPEAT 7-26, 8-6

REPEAT statement 7-25
syntax diagram #56

REPEAT EVERY 8-5 G

REPLACE 4-5, 4-6, 4-7
11-2

syntax diagram #12 4-4

<replace statement> 4-31 11-42

reraveling	 _ 6-2.9
>

6-,21,

t reserved words 2-25, 2-6

RESET 3-15
syntax diagram # 62 8-14

restricted character set 2-4

RETURN 3-19, 3-22, 7-14

RETURN statement 7-13
syntax diagram #48

RIGID 3-14, 3-15, 4-10
4-11, 4-15, 4-17
4-19, 4-20

` rounding 6-29

row and column dimensions . (Matrix) &-=23, 6-30

8)
1,

RTE
8-2, 8-3

8-4, 8-10, 8-14

Index-22
r

E
f
t
C	

^r

G	 0

0

RTE-clock=
8-3, 8-5, 8-6

A

run time errors 9-1

_

5-9

S; 5-9

SCALAR 2--7, 4-22, 4-23
4-27, 6-28, 6-29
7-6

scalar Va lued literals 2- 8

i 3caling 2-8

<sc-,iling> 4-15 4-17, 6-7
6-28 1

syntax diagram	 ^^^^ y 6-40

SCHEDULE	 o 8-5, 8-7

SCHEDULE statement 	 _ 8-4
syntax diagram #57

semicolon	 use of 6-1.4 7=25, 10-4 3
10-5

SEND ERROR 9-1-
syntax diagram # 64 9-7

' SET statement 8-15
syntax diagram #62 8-14

0

SET S SIGNAL, and. RESET " 8-14
syntax diagram #62 1

SET, SIGNAL, and RESET 'summary 816

Sequential I/O 10-1

Sequential I/O statements 10-2
8

shaping functions 	 _ 6-27

SIGNAL statement 8-15
.: syntax diagram #62 8-15

simple index 6-13

single precision 6-17

Index-23

t

„_ ^^_ ^ ^ ^tau.r3..s:	 -	 .s	 —	 __	 ..,i.^. rsarvew.c..vm...aais..i t : ",..	 rrrF	 _	 .	 ..	 _ ,,,., z....,._	 _	 ^.^ ^►.e.^a..J^__

1

SINGLE 4-22,	 4-23,(6-30

SINGLE (default) 4-, 3

SKIP 10-3, 10-7, 10-8
10-9

son 8-2

aou ce macro 4-4,	 4-6

source modules

source text 2-14

stall 8-2

stall state 8-4,	 8-6

statement 3,4

statement 7-2 *^ 9-5'c

STATIC 3-17, _3-18, 3.-20
4-15

STATIC	 (default)., 4-16

S i A ,^
r PLC/AUTO1`Y' XIC .3-18,	 4-16, 11-1811-21`

STRUCTURE	 o 4-9,' 4-11, 4-22
4-24,	 4-25-

K Btructure assignments 7-8

structure, comparison 6-20
syntax diagram 435

subscript construct 6-9
syntax diagram #21

structure Qopies 4-30, 6-20
4

`
sirUCtur? Cop1mE'.YiJI^11 ,̀,̀ "1

structure copy specaf-er^4ion N' .ME 11-19

structure expression
6-13Syntax Diagram 429.3

struct a,nli.ne 11-11
struct % macro 11-11

syntax diagram #29.1s 11-11

index-24

OR

^N

OF POOH	 ' y

i

<structure exp> 6-13, 6=20, 7-8

k <struct inline> 11-5, 11-11

<struct %-macro> 11-6, 11-11

structure subscripts 5-11
syntax diagram #22

structure template statement 4-10
` F syntax diagram #13

structure template 4-9
tree diagram 4 a:

structure template statement 11-22
with NAME
syntax diagram #1.3s

<structure template> 4-3, 4-11,	 4-1:9
4-20, 11-42

structure terminal" 4-11, 4-15, 4-19

structure terminal refernces 11-34

subscripting structure terminals O, 11-36

structures containing NAME terminals 11-38

unarrayed structure terminal 5-9array structure terminal

r
structure type 11-19

structure types 4-30

Structure Subscripting 4-2,

ji

5-7, 5-13 4

<structure sub> 5-7, 5-8, 5-13

z " non qualified structure variable ri,
} declaration 4-13

si
} <structure var names 5-3

<structure var> '6-13

Index-25 }

<f

SUBBIT

SUBSIT pseudo-variable
syntax diagram #42

Subscripting
syntax diagram 019

Y ^I

G

5-6, 6-36

„6-36

5-5

subscriptng classes 	 5-7

component subscripting 	 5-8

legal subscript combinations 	 5-8

<subscript>	 6-6, 6-28,, 6-29
6-30, 6-32, 6-35

J
<sub exp>	 5-13, 5-14	 r

<sub ides 	11-26, 11-27, 11-33

<sub name id>	 11-,26, 11-27, 11-33

subscript line	 2-12
J

syAtak diagrams	 2-11 2-2,

syntax diagram summaries	 2- 1, 2-2, Appendix A

SYSTEM	 _	 9-4

systems language features	 11-1

1

<template name> 2-7, 4-9, 5-3 i

f TEMPORARY 11-13	 11-14
?l

>t TEMPORARY statement
syntax diagram 0499 11-13
syntax diagram #72 11-14

a Temporary Variables 11-13

regular TEMPORARY variables 11-13

f "'
TERMINATE statement 8-10 ?

syntax diagram 4 9 i

<text> 4-4,	 4 -5,	 4-6-

THEN 7-3,	 7-4

timing cry siderations 8-3
i

i timing lines 8-14

TO -`	 5-11,	 7-23

TO-partition 5-12	 5-13, 5-14
P 5-15

j,
transpose 6-4

tree organization 6-20,	 7'

TRUE 2-9, 4-29, 8-15

{ two dimensional Source. Format 2 -12

type conversion 4-28

j. type specification 4-22
syntax diagram #17

.
j

<type spec> 4-15,-4-16, 4-19
x

4-20, 4-22,	 4-23
4-25, 11-4

k

t z typeless	 macro 11-12

r

Index-27
jj

A

N

lu
f

unary minus 6-5
1

j	 unary plus 6-5
^1

unit of compilation 3-2
syntax diagram 41 3-2

unlatched event 8-14

unqualified structure 4-25, 5-3, 5-4

unraveling) 5-18, 6-29, 6-31

UNTIL 6-10 7-19, 7-20
v 7-2.1, 8-6, 8-7

UNTIL <arith exp> „	 8-7, 8-8

UPDATE 3-5, 3-7, 3-14 j
8-18

UPDATE block 3-8
syntax 'diagram #4

update,block 3-4

<update block> 3-9

<pdate header>

^	 update header statement 3-14
4

UPDATE PRIORITY statement 8-13
syntax diagram #61

r	 variable 5-5
syntax diagram #20

unarrayed simple variable 5-9
arrayed simple variable

<variable> 7-5, 7-6, 10-4
11-40

<§var names 2-7, 5-2, 5-3

r

y

:.	

Index-28

I

<Svar name> (interpretation table 5-19
7

<§var> 5-17

simple variable 4-15, 4-19, 5-2

VECTOR 4-22, 4-23, 4-28
5-15, 5-19, 6-28

" 6-30, 7-6

VECTORF 4- 22, 4- 23, 4-28
1474-29,5-15, 5-19

6-28, 6-30, 7-6

vector length 4-23

wait 8-2'

WAIT statement 8-11
syntax diagram #60

WAIT 8-11

_ WAIT FOR _ 8-12
1-

k WAIT FOR DEPENDENT 8-1 2 1

WAIT UNTIL 8-11

WHILE 6-1, 7-20, 7-21
7-23, 8'6

WHILE	 <event exp> 8-7
1

WRITE 6-2, 10-2, 10-8
syntax diagram # 66 10-6 j

/*... */, use of 2-14

use of 5-11, 5-12

use of 2-4, 2-10, 2-11

use of 2-4, 4-5,	 4-8,
6-40 147

k

F

Index-29

G	 ^< x.

	1981008240.pdf
	0001A01.jpg
	0001A01.tif
	0001A03.jpg
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif
	0001F04.tif
	0001F05.tif
	0001F06.tif
	0001F07.tif
	0001F08.tif
	0001F09.tif
	0001F10.tif
	0001F11.tif
	0001F12.tif
	0001F13.tif
	0001F14.tif
	0001G01.tif
	0001G02.tif
	0001G03.tif
	0001G04.tif
	0001G05.tif
	0001G06.tif
	0001G07.tif
	0001G08.tif
	0001G09.tif
	0001G10.tif
	0001G11.tif
	0001G12.tif
	0001G13.tif
	0001G14.tif
	0002A02.tif
	0002A03.tif
	0002A04.tif
	0002A05.tif
	0002A06.tif
	0002A07.tif
	0002A08.tif
	0002A09.tif
	0002A10.tif
	0002A11.tif
	0002A12.tif
	0002A13.tif
	0002A14.tif
	0002B01.tif
	0002B02.tif
	0002B03.tif
	0002B04.tif
	0002B05.tif
	0002B06.tif
	0002B07.tif
	0002B08.tif
	0002B09.tif
	0002B10.tif
	0002B11.tif
	0002B12.tif
	0002B13.tif
	0002B14.tif
	0002C01.tif
	0002C02.tif
	0002C03.tif
	0002C04.tif
	0002C05.tif
	0002C06.tif
	0002C07.tif
	0002C08.tif
	0002C09.tif
	0002C10.tif
	0002C11.tif
	0002C12.tif
	0002C13.tif
	0002C14.tif
	0002D01.tif
	0002D02.tif
	0002D03.tif
	0002D04.tif
	0002D05.tif
	0002D06.tif
	0002D07.tif
	0002D08.tif
	0002D09.tif
	0002D10.tif
	0002D11.tif
	0002D12.tif
	0002D13.tif
	0002D14.tif
	0002E01.tif
	0002E02.tif
	0002E03.tif
	0002E04.tif
	0002E05.tif
	0002E06.tif
	0002E07.tif
	0002E08.tif
	0002E09.tif
	0002E10.tif
	0002E11.tif
	0002E12.tif
	0002E13.tif
	0002E14.tif
	0002F01.tif
	0002F02.tif
	0002F03.tif
	0002F04.tif
	0002F05.tif
	0002F06.tif
	0002F07.tif
	0002F08.tif
	0002F09.tif
	0002F10.tif
	0002F11.tif
	0002F12.tif
	0002F13.tif
	0002F14.tif
	0002G01.tif
	0002G02.tif
	0002G03.tif
	0002G04.tif
	0002G05.tif
	0002G06.tif
	0002G07.tif
	0002G08.tif
	0002G09.tif
	0002G10.tif
	0002G11.tif
	0002G12.tif
	0002G13.tif
	0002G14.tif
	0003A02.tif
	0003A03.tif
	0003A04.tif
	0003A05.tif
	0003A06.tif
	0003A07.tif
	0003A08.tif
	0003A09.tif
	0003A10.tif
	0003A11.tif
	0003A12.tif
	0003A13.tif
	0003A14.tif
	0003B01.tif
	0003B02.tif
	0003B03.tif
	0003B04.tif
	0003B05.tif
	0003B06.tif
	0003B07.tif
	0003B08.tif
	0003B09.tif
	0003B10.tif
	0003B11.tif
	0003B12.tif
	0003B13.tif
	0003B14.tif
	0003C01.tif
	0003C02.tif
	0003C03.tif
	0003C04.tif
	0003C05.tif
	0003C06.tif
	0003C07.tif
	0003C08.tif
	0003C09.tif
	0003C10.tif
	0003C11.tif
	0003C12.tif
	0003C13.tif
	0003C14.tif
	0003D01.tif
	0003D02.tif
	0003D03.tif
	0003D04.tif
	0003D05.tif
	0003D06.tif
	0003D07.tif
	0003D08.tif
	0003D09.tif
	0003D10.tif
	0003D11.tif
	0003D12.tif
	0003D13.tif
	0003D14.tif
	0003E01.tif
	0003E02.tif
	0003E03.tif
	0003E04.tif
	0003E05.tif
	0003E06.tif
	0003E07.tif
	0003E08.tif
	0003E09.tif
	0003E10.tif
	0003E11.tif
	0003E12.tif
	0003E13.tif
	0003E14.tif
	0003F01.tif
	0003F02.tif
	0003F03.tif
	0003F04.tif
	0003F05.tif
	0003F06.tif
	0003F07.tif
	0003F08.tif
	0003F09.tif
	0003F10.tif
	0003F11.tif
	0003F12.tif
	0003F13.tif
	0003F14.tif
	0003G01.tif
	0003G02.tif
	0003G03.tif
	0003G04.tif
	0003G05.tif
	0003G06.tif
	0003G07.tif
	0003G08.tif
	0003G09.tif
	0003G10.tif
	0003G11.tif
	0003G12.tif
	0003G13.tif
	0003G14.tif
	0004A02.tif
	0004A03.tif
	0004A04.tif
	0004A05.tif
	0004A06.tif
	0004A07.tif
	0004A08.tif
	0004A09.tif
	0004A10.tif
	0004A11.tif
	0004A12.tif
	0004A13.tif
	0004A14.tif
	0004B01.tif
	0004B02.tif
	0004B03.tif
	0004B04.tif
	0004B05.tif
	0004B06.tif
	0004B07.tif
	0004B08.tif
	0004B09.tif
	0004B10.tif
	0004B11.tif
	0004B12.tif
	0004B13.tif
	0004B14.tif
	0004C01.tif
	0004C02.tif
	0004C03.tif
	0004C04.tif
	0004C05.tif
	0004C06.tif
	0004C07.tif
	0004C08.tif
	0004C09.tif
	0004C10.tif
	0004C11.tif
	0004C12.tif
	0004C13.tif
	0004C14.tif
	0004D01.tif
	0004D02.tif
	0004D03.tif
	0004D04.tif
	0004D05.tif
	0004D06.tif
	0004D07.tif

