
N88- 17'237

VERIFYING SHVlTLE ONBOARD SOF'IWARE USING EXPERT SYSTEMS

William B. Wingert
IBM

Federal Systems Division
3700 Bay Area Boulevard
Houston, Texas 77058-1199

ABSTRACT

The Space shuttle uses a complex set of
software to guide, navigate, and control it
through all phases of flight. Adding to the
complexity is the fact that the software is
"reconfiguredl' for each flight. That is,
thousands of constants in the software are
changed to reflect the unique properties of a
given mission (e.g., launch weight, orbit
inclination). In the last level of
test, The software is "flown" through
end-to-end nominal and abort scenarios taking
the shuttle from liftoff to landing. The
analysis of the results of the Level 8
testing is experience and labor intensive. A
set of pass/fail criteria have been defined
for% each testcase and in parallel with the
knowledge acquisition, tools were developed
which allowed the automation of the knowledge
being gathered on paper. A prototype of the
Analysis Criteria Expert System (ACES) has
been put into production in the verification
of the reconfigured onboard flight software.
The system currently uses 3 PL/I pro-
grams, the ESE/VM program product and
two large host systems to accomplish the
task. The total system has approximately
3000 rules. The knowledge acquisition has
begun again to take the knowledge base
beyond simple pass/fail to the ability to
determine the source of the criteria fail-
tires.

I. BACKGROUND

A. Space Shuttle Software

Four IBM AP-1O1B flight computers host a set
of highly critical and complex programs to
guide, navigate and control the Space
Shuttle through all phases of flight (see
Figure 1). The flight software, developed by
IBM under contract to the National
Aeronautics and Space Administration
(NASA), also drives a set of instruments and
graphic displays, accepts keyboard and
other inputs from the astronauts, and
interfaces with various hardware sensors and

effectors. The flight computer operating
system ensures that all active computers
operate simultaneously, each performing
identical functions. A failed computer is
detected automatically and removed from the
set of redundant computers, h e to the
complexity of the avionics and data process-
ing systems, size of the software and
reliability requirements, independent
verification has been employed in all phases
of the software life-cycle to increase
product quality. The goal is flight software
which is "error-free."

E. Flight Software Testing

A software test plan provides for a
structured process to identify and facilitate
correction of software implementation or
requirements errors, leading to demonstration
that the software satisfies all design
requirements. Testing is divided into two
main phases: development tests, which are
concurrent with the software development
and performed by the software development
organization, and verification tests, which
are carried out by the independent test
organization. Figure 2 describes the
elements of the test program.

C. Level 8 Testing

The first seven levels of testing are
performed on the basic set of programs whose
software logic can support many flights.
Thousands of constants in the software are
changed to reflect the unique properties of a
given mission. Level 8 testing consists of
testing the software under simulated flight
conditions and stresses, with the flight
software configured for a particular shuttle
flight. The tests are conducted through
flight simulations exercising the onboard
software and computers in a simulated
flight environment provided by the Software
Production Facility. The volume of simula-
tion data required to adequately analyze
the performance of the flight software
is impressive. Each test generates over two

223

million plotted data points and 30,000 lines
of printed output. There are 15 - 25 tests
.-un for each shuttle mission.

The analysis consists of evaluation of
simulation variables at various events in the
shuttle trajectory, analysis of flight
sequences, and analysis of plots and
cockpit displays. Execution and analysis
of the suite of tests is both labor and
skill intensive and requires up to six weeks
for completion.

The goal of the Analysis Criteria Expert
System (ACES) is to automate the analysis of
the logged data. The benefits are
numerous and include reducing labor costs,
improving the quality and consistency in
interpreting the data, and reducing the total
time currently required to manually analyze
the simulations.

11. KNOWLEDGE ACQUISITION AND ENGINEERING

The knowledge acquisition and engineering
for ACES began in early 1985 when
"pass/fail" criteria were created for a
subset of our verification testcases.
That effort was later extended to include
more criteria and more testcases. In
parallel with the knowledge acquisition, we
began looking into different ways to
automate the evaluation of the criteria.
By the Spring of 1986, we had decided on a
method for criteria automation and completed
the first phase of knowledge acquisi-
tion. The knowledge base consisted of about
250 rules for each of the 14 testcases.

After using the criteria for about a year,
we felt it was a good idea to take these
criteria a step further and document how
criteria violations were analyzed. In this
process, we decided to reorganize the
criteria. This reorganiztion meant duplicat-
iilg some of the previous efforts. However,
we felt that the expected size of the
comprehensive criteria demanded the
reorganization. The final set of the
written criteria weze in a form that could be
picked up and independently implemented into
an expert system. This process has been
completed for about a third of our verifica-
tion testcases.

111. IMPLEMENTATION

Implementing the pass/fail criteria proved to
be much more difficult and complex than we
anticipated. We encountered problems
with automated data transfer from the
simulation to the expert system, volume of
data, rule base creation, and results
presentation.

The problem of data volume turned out to
be the biggest challenge. Each simulation
produces over three million data points and
30,000 lines of printed output. The
expert system shell we were using was the
Expert System Environment (ESE) and was the
only internally available mainframe expert
system software. Due to ESE'S lack of
speed when handling large amounts of
data, some sort of pre-processor would be
necessary. We wrote three PL/I programs to
handle the type of data we analyze.

AutoProg is used to process plotted data.
However, it cannot handle textual data such
as the simulation chronology (the
online) and the textual representations of
the Shuttle's onboard displays (the DEU
images). To handle the Online message
criteria we produced the Online Event
Extractor (OLEVE). This program looks at the
online output for missing, out of order,
and unexpected messages in the chronolo-
gy of the simulation. Each sjmulation
logs images of the Shuttle's displays
and later stores them in a file for
processing by the Display Electronics
Unit Criteria Evaluator (DEUCE). This
PL/I program searches for a particular DEU
based on some criteria such as time or within
a certain amount of time of an event. This
program can look for text strings in a
group of DEUs, perform math operations, and
print DEU images and captions for use in
testcase reports. See figure 1 illustrating
the flow of these programs

I

w I
1 ; ~ . E . X ~ ~ ~ . ~ Y ~ ~ ~ S ~ ! ! ! ~ ~ '
L- - .-_J

R.S"ltS

Fxgure 1 - ACES Flor

The entire process is automated from
start to finish and requires no human
intervention other than to submit the
simulation job. ESE/VPI can handle the
smaller amounts of data produced by the PL/I
programs within a reasonable timeframe.
However, since most of our criteria reside in
the PL/I program the ESE knowledge base
is relatively small with about 20 rules for
each testcase compared to more than 250 PL/I
criteria. We are currently working on
prototypes using other expert systems in
the hopes of enlarging the knowledge base and
producing an integrated expert system.

224 OHGINAL PAGE IS
POOR QUALITY

IV. VERIFICATION OF ACES V. CURRENT USE AND FVrURE PLANS

The Flight Software Certification organiza-
tion uses ACES today in their verification of
the Shuttle onboard flight software. After
a simulation is made, a job is submitted
which automatically executes ACES*and puts
the output in a dataset. Some manual
analysis is still performed on those criteria
which are not yet covered by ACES.

Our main focus for the future centers
on the expert system tools that we are
evaluating. The expert system shell we are
evaluating is ES PL/I, a PL/I-based
imbeddable expert system shell. PL/I has
proven to be faster, but all development is
done using a standard text editor. We have
built a prototype of our knowledge bases
using ES PL/I. We have found it to be faster
than ESE/VM. The main drawback has been
documenting the rules. Rules are documented
with ES PL/I by putting PL/I comments in
line to the knowledge base. However,
if the knowledge is well organized and
catalogued, this poses no major technical
problem. Development using ES PL/I requires
a good understanding of PL/1 and the number
of lines generated is similar to ES PL/I.

In general, we have found it useful to build
a prototype of our knowledge base in
order to evaluate its relative merits. We
try to scope the size of the prototype such
that it can be completed in a two to four
week period. On the other hand, we try to
include a good mix of rule types such that
we can get a good feel for the amount of time
it takes to implement the various types of
rules. With the prototype, we can
analyze the relative merits of an
expert system, provide demonstrations for
our customer, and tailor our paper knowledge
to meet the requirements of a particular
expert system shell, if necessary.

Expert systems can be used successfully
to verify critical software. The time and
resources required can be reduced and the
quality of the verification can be
maintained or improved by applying expert
systems technology to an existing software
verification effort. However, the transi-
tion takes time to perform the proper
knowledge engineering and acquisition. In
addition, with proper planning, it is
possible to insert expert systems technology
into an existing production environment.

The verification of the expert system
was divided into two distinct parts: tool
verification and knowledge base verifkca-
tion. Tool verification concentrated on
verifying AutoProg, DEUCE, and OLEVE.
Knowledge Base verification centered on
testing the rules supplied to the above tools
as well as the knowledge base contained in
the expert system.

A standard test approach was used for the
tool verification. All of the tools went
through a requirements, design, and code
review process. Prior to code review, all of
the tools were put through a set of
unit tests designed to exercise all of the
capabilities of the tool. Known valid inputs
were fed to each of the tools and the
developer analyzed the output for expected
results. This review process, well known on
the onboard Shuttle project, was easily
implemented with very few tool problems.

The knowledge base verification is a differ-
ent story altogether. Since the criteria
were designed to work on any shuttle mission
(of which there are essentially limitless
combinations), we decided each knowledge base
should be applied to at least three
different shuttle flights. This was an
arbitrary number, but we felt three different
flights would give us good coverage over a
range of shuttle trajectories. Wherever
possible we had someone other than the
developer of the knowledge base perform the
testing. The analysts first performed manual
analysis of the testcase using the
written criteria as a guide. All problems
and violations of the criteria were noted.
The analyst then ran the expert system
against the testcase and compared the
results to that of the manual analysis.
Differences were noted and probable source of
the difference was noted, for example,
knowledge base deficiency, knowledge base
error, or tool error. All tool etrors
resulted in a Discrepancy Report or Change
Request against the tool to bring it into
compliance. Knowledge base errors were
returned to the knowledge base developer for
resolution.

As new versions of the tools become avail-
able, they are unit tested and executed with
a small subset of the actual rules to insure
identical results are produced. As
knowledge is added it is tested as a
standalone entity before being merged with
the existing data. In production, if a tool
or knowledge base problem is discovered, a
Discrepancy Report is written to document the
problem.

225

