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ABSTRACT 

This thesis analyzes the growth capability of the Space Shuttle Orbiter's 

Multifunction Electronic Display Subsystem (MEDS), MEDS is a new "glass cockpit" 

system, using Active Matrix Liquid Crystal Displays (AMLCD) to replace the existing 

Orbiter cockpit instruments. The primary goals were to analp:e the MEDS' growth 

capabilities and to propose advanced Orbiter displays using the MEDS. Analysis of the 

Orbiter state vectors resulted in designs for real-time graphical displays for use during the 

ascent, orbital entry and rendezvous phases of the mission 
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The reader is cautioned that the computer programs SHUTTLE and rr-.'1T have not 

been exercised for all cases of interest While every effort has been made within the time 

available to ensure that the programs are free of computational and logic errors, they 

cannot be considered validated. Any application of these programs without additional 

verification is at the risk of the user 
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I. TNTRODUCTTO~ 

A. GENERAL 

The purpose of a cockpit display system is to present pertinent aircraft infonnation 

such as attitude, heading, altitude, airspeed, and engine status to the pilot A 

well-designed flight deck takes into account space and human factors requirements to 

maximize the crew's ability to control the ai rcraft . Cockpit display media have evolved 

from simple needle and dial instruments to current state-of-the-art color multifunction 

Liquid Crystal Displays (LeOs). These computer-generated displays use high speed 

microprocessors and have few limitations to the types of graphical displays that can be 

depicted [Refs. I and 2J 

B. SPACE SHUTTLE COCKPH UPGRADE 

The Space Shuttle program is in the process of upgrading its fleet with a new 

display subsystem, the Multifunction Electronic Display Subsystem (MEDS), using color 

Active Matrix Liquid Crystal Displays (Al\iLCDs). The driving factors in the upgrade are 

the obsolescence of the Shuttle Orbiter's current Cathode Ray Tube (CRT) displays and 

the difficulty of maintaining the electromechanical cockpit instruments 

Rockwell International, Downey, California, is the prime contractor with 

Honeywell Inc., Space System Division, as the major subcontractor. There are two 

separate contracts for development and for production supporting the planned first launch 

with the MEDS in July 1998. The $59.3 million Design, Development, Test, and 

Evaluation (DDT&E) contract includes the qualification of hardware and software, 

integration and verification testing at Johnson Space Center (JSC) laboratories. TIle $85.2 

million production contract includes the fabrication and assembly of modification kits, 

flight and nonflight Line Replacement Units (LRUs), and the procurement of spare Shop 

Replacement Units (SRUs) and piece pans Production began in March 1994 and will 



continue to the end of February 1998. The software architecture and organizational 

responsibilities are divided among Rockwell and Honeywell as shown in Fig. 1.1. [Ref. 31 

A Preliminary Design Review (PDR) and a Critical Design Review (CDR) were 

successfully completed in May 1993 and February 1994, respectively. As of May 1994, 

the LRU's engineering models were completed, a single string test verified that the LRU 

could conununicate via a MIL-STD-15538 data bus, the first production AMLCD panels 

were delivered to Honeywell, the hardware dependent software design was 95% complete, 

the display format design was 100"10 complete, and the configuration control board was 

baselined. [Ref. 3] 

The plan by National Aeronautics and Space Administration (NASA) is to mimic 

the current cockpit display to minimize crew training impacts during the mixed fleet 

operations period from 1998 to the year 2000. However, an Advanced Orbiter Display 

working group was formed in August 1994 to plan for the full utilization ofMEDS The 

purpose of the working group is to implement the advanced capabilities of MEDS and 

develop new display fonnats by the year 2002. The working group consists of 

representatives from JSC's Orbiter Project Office, the Astronaut's Office, Langley 

Figure 1.1. MEDS Softwart Architecture & Organizational R"poosibi lities. (Aiter Rtf. Ill) 



Research Center (LaRC), Ames Research Center (ARC), Honeywell, and Rochvell [Ref 

31 

C. l:XPl:RIENCE TOUR 

The Naval Postgraduate School (NPS) gives students the opportunity to do a 

thesis related experience tour during the course of their studies. The author spent the 

Spring of 1994 at JSC, Houston, researching and developing system architecture and 

hardware requirements for future utilization of the MEDS growth capability_ System 

schematics to link the Shuttle's primary data with MEDS were developed with the 

assistance of JSC's engineers and three Astronauts: Kent Rominger, Chris Hadfield, and 

Brent Jett . Preliminary sketches of future display formats were discussed; more details 

will follow in later chapters of this thesis 

D. SCOPE 

The intent of this thesis is to explore the MEDS' growth capabilities, provide 

altemative methods for incorporating data into MEDS, design proposed displays for use 

during ascent and entry phases of flight, and to analyze the Orbiter's state vector which 

resulted in designs for real-time graphical displays 

Chapter H provides a detailed background description of the Space Transportation 

System (STS) and identifies the Space Shuttle's mission requirements. A description of 

the evolution of the current cockpit shows that it resulted from experience with previous 

space vehicles and technologies available in the seventies. Chapter II also lists reasons for 

the need to upgrade the Shuttle's cockpit 

Chapter Ul contains an explaination of what MEDS entails. The explanation 

contains a discussion of the software and hardware required, then identifies the various 

avionics components that MEDS will replace The implementation of MEnS will result in 

significant weight and power savings_ Major design tradeoff's are discussed 

Chapter IV focuses on cockpit displays optimization and the proposed advanced 

orbiter display There are several options in the implementation of MEDS, each with ils 



advantages and disadvantages_ The validation process and lead time for primary flight 

software provoke resistance to changes in the software codes_ By using the auxiliary 

backplane of the lDP and the downlist information available through the Pulse-Code 

Modulation Master Unit (PCMMU), real-time flight data can be made available to the 

MEDS_ The proposed ascent display developed by the author, which can also be use as 

an entry display, is shown at different times to simulate the dynamics of the problem. With 

feedback from the Astronaut's Office at JSC, the proposed design is depicted 

Chapter V contains data which suggest that by analyzing the orbiter's state vector, 

a real-time graphical display design is possible. By perfonning a numerical analysis of the 

governing equations of motion, a vehicle's impact point can be predicted. The numerical 

analysis shows that this analysis can be done on personal computer (PC) by ""Tiling a 

simple Matlab program. A special case of the three engine out abort mode is analyzed and 

the result is compared with NASA's Downrange Abort Evaluator (DAE) result. The 

comparison showed that a PC can be use to emulate the MEDS processing capabilities 

Chapter \1 contains conclusions and recommendations for future thesis topics 



11. BACKGROUND 

rhe Space Shuttle. developed by NASA and Rockwell International, represents a 

significant advance in tec!mology. Roci-.. ",·ell International was re~ponsible for building the 

orbiter and integrating the Space Transportation System (STS). Xumerous engineering 

and manufacturing contractors were also responsible for building subsystems for the SIS 

A. SPAC}~ SHmTLE'S MISSION REQUJ.R..EMENTS 

rhe basic mission consists of lift-off in a vertical (nose-up) position from NASA 

John F. Kennedy Space Center (KSC), ascent and insertion into low Earth orbit, 

performance of payload operations, and descent to an unpowered landing on a 15000 foot 

runway. The primary landing sites are KSC and Edwards Air Force Base. Alternate 

landing sites with 8000 foot runways can be used in case of an emergem:y. (Ref 4] 

As shov.n in Fig 2.1 , the Space Shuttle system consists of four primary elements 

an Orbiter spacecraft, two Solid Rockel Boosters (SRBs), an External Tank (£T) for the 

fuel and oxidizer, and three Space Shuttle Main Engines (SS~1Es) . The Shuttle payloads, 

carried in a bay 60 feet long and 15 feet in diameter, can be launched into a circular low 

earth orbit of 185 to 570 kilometers. The maximum payload capability is a function of the 

Shuttle altitude and inclination of the orbit. The orbiter can accommodate up to eight 

flight crew members for a nominal mission length of 4 to 16 days in space. Other STS 

requirements include reuse of the orbiter and SRBs and limiting the orbiter's acceleration 

load to less than 3 g's. (Refs_ 4 and 5] 

A typical Space Shuttle launch profile is illustrated in Fig, 2,2 The total thrust at 

lift-ofT provided by the three main engines and the two SRBs is 6,425,000 lbs The three 

main engines provide a total of 1,125,000 Ibs of thrust by burning liquid oxygen and liquid 

hydrogen fuel from the external tank. The main engines are augmented by two solid 

rocket boosters, which bum out approximately two minutes after launch at an altitude of 

43 km. The boosters are jettisoned, parachuted into the ocean, and recovered by ships for 

reuse in later launches. The orbiter and ET continue to ascend using the thrust of the 
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Figure 2.1. Space ShuWe ~,-~Iem. (From Rd. 151) 

three SSh1Es. The SS~'ilEs are shut down (main engine eutoll' or MEeO) just short of 

orbital veh,ity. The ET is jettisoned at MEeD, approximately eight minutes after launch 

and at aT'. altitude of 115 krn, and is burned up as it reenters the atmosphere, At this 

critical point of the launch, the Reaction Control System (ReS) stabilizes the orbiter until 

the Orbiter Maneuvering System (Oto.fS) can place the orbiter into a circular parking orbit 

While on orbit, the crew performs mission objectives. such as satellite deployment or 

retrieval and various scientific experiments. When orbital operations are completed, the 

ReS and OMS are used to reorient and slow the orbiter for deoTbit and fe-entry. TIle 

ReS controls the altitude of the orbiter at re-entry by augmenting the aerodynamic control 

surfa(es This continues until atmospheric density is sufficient for the control surfaces to 

become fully effective. Thele is a period of a few minutes, called blackuut, where all 

communications from the Shuttle are lost during the entry phase During entry, the 



Fil!lm~ 2.2. T~l'iu' S,J3Cr' Shuule '.ulI(h ~queIlH. {From Rd· \."ill 



Orbiter's speed is decreased by energy dissipation due to atmospheric drag As the Orbiter 

approaches the landing site, excess energy is dissipated by perfonning S-tums to slow the 

vehicle even more. Without power, there is no go-around capability, so the Orbiter only 

has one chance for a controlled landing. [Ref 4 J 

B. EVOLUTION Of' CURRENT A VlONICS SYSTEM 

The Space Shuttle avionics system is the result of years of studies, development, 

testing, and analysis conducted by NASA and various contractors. To understand the 

configuration and makeup of the Shuttle, the design environment of the early seventies 

must be understood. During this period of time the functions of switches, push-buttons, 

and input devices were usually hardwired to the box or subsystem. Displays were 

generally mechanical, hardv..ired, and served the dedicated function. Electronically driven 

horizontal and vertical situation displays utilized a mechanical representation. Electronic 

attitude and directional indicators were just emerging and were not commonly used 

Heads-up displays (HUDs) were also just emerging The concept of multifunction 

displays had nevcr been used in an aerospace application and the design issue of a 

redundant system for display had never bcen addressed, The current orbiter's cockpit is 

depicted in Fig 2.3, [Ref. 4] 

It was a major challenge for the designers to integrate all the displays required 10 

operate the orbiter and its subsystems into the space available. All of the switches and 

displays had to be ""1thin reach and visible to the crew. Some of the requirements imposed 

were: safe return with a single crewman from either forward station; nonnal operation, 

except payload management, with a crew of two; accessibility from the two fonvard 

stations of all controls and displays required for ascent and entry; provisions for manual 

override of automated critical functions; and means to annunciate faults in and to 

command safing of hazardous systems. [Ref. 4] 

The significant dilTerence between the Space Shuttle mission and previous manned 

space programs is that the system would have to provide for both space flight and aircraft 

aerodynamic flight . In early design phases, considerations were given to incorporate two 





separate cockpits for the two flight mode~. However, a single, integrated, two-man 

forv.'ard station wa!'. base lined for both regimes. The aft portion of the cockpit was 

equipped with controls and displays for on-orbit proximity and payload operations. From 

the aft cockpit's windows vantage point , the payload bay and aft view are clearly visible 

The aft cockpit served its purpose effectively for satellite operations. Most of the displays 

in the cockpit served a dual purpose, but some, such as air data, the radar altimeter and 

navaid displays, became effective only after blackout during entry. It was decided that the 

leading edge of technology off-the-shelf system would be used wherever possible. The 

system which evolved consists of: control devices including toggle, push-button, 

thumbwheel, and rotary switches; potentiometers; multifunction keyboards; and circuit 

breakers. Displays included circular and vertical meters, tape meters, flight control 

meters, annunciators, electromechanical position and attitude indicators, digital readouts, 

and multifunction Cathode Ray Tubes (eRTs) [Ref 4J 

c. DISPLAY UPGR"-DE REQUIRED 

There have been few changes to the cockpit of the orbiter since the first launch of 

the Space Shuttle Columbia on 12 April 1981. The Space Shuttle is still one orthe most 

intricate and complex aircraft/spacecraft to date, but its cockpit avionics is obsolescent 

The primary reason for upgrading the cockpit is aging and wear of the electromechanical 

de .. ices. The obsolescence of these pans and the high maintenance costs of the eRTs 

drove the Space Shuttle program to updatc the CRTs display subsystem, flight 

instrumcnts, and system mcters subsystem. [Ref 4J 

The upgrade to the Multifunction Electronic Display Subsystem (MEDS) will 

increase the capabilities of the display system, enhance flight safcty, decrease the repair 

cost and decrease turnaround time. By using solid-statc technology and spacc qualified 

avionics componcnts, the systcm reliability will increase and susceptibility to 

electromagnetic interference will decrease. The modularity and use of shop replacement 

unit (SRU) parts will enhance the maintainability on the ground and in-l1ight Another 

benefit of the new MEDS system is significant power and weight savings 

10 



m. MEDS IMPLEMENTATJON 

A. MEDS OVERVIEW 

The Multifunction Electronic Display Subsystem (MEDS), sometimes referred to 

as a glass cockpit, is a state-of-the-art integrated display system which consists of four 

Integrated Display Processors (IDPs). four Analog-to-Digital Converters (ADCs) and 

cleven Multifunction Display Units (MDUs). The MEDS architecture is interconnected 

via a MIL-STD-1553B databus ndwork MEDS replaces the current Orbiter 

electromechanical flight instruments. servo-driven tape meters, the monochrome CRT 

displays and their associated electronics units. The new MEDS system is transparent to 

the existing orbiter's General Purpose Computer (OPC) software and interconnecting 

subsystems. To get a better understanding of what is being replaced by MEDS. a block 

diagram of the existing dedicated display system is shown in Fig 3. J. The MEDS 

archite(.1ure is shown in Fig. 3.2, from Ref. 6, and the new glass cockpit (MEDS) is 

depicted in Fig. 3.3 . 

B. HARDWARE 

1. General Purpose Computer (GPC) 

The heart of the Shuttle's avionics is the General Purpose Computer with 256K of 

random access memory (RA\l). There are five GPCs, all of which are identical ffiM 

AP-IOIS machines Each GPC contains the central processing unit (CPU), the 

input/output processor and the memory. During the critical phases of the mission, such as 

ascent and entry, four of the (iPCs are loaded with the same Primary Avionics System 

Soft-v'lare (PASS) and operate redundant to cach other. The fifth (iPC is loaded with the 

Backup Flight System (BFS) software capable of communicating with aU buses for 

mission completion or safe return from any point during thc mission. The GPC is part of 

the old avionics system and it is not being replaced by the incorporation of MEDS. rRefs 

4 and 7J 

11 



Figure 3.1. E"i~ting Dedicated Oi$pLay ~~stem. (After Ref. /1]) 

2. Display Driver Unit (ODD) 

The ODU js an electronic mechanism that connects the GPCs and the primary 

flight displays. It receives data signals from the computers and decodes them to drive the 

dedicated displays. The unit also provides dc and ac power for the Attitude Director 

Indicator (ADI) and the rotational and translational hand controllers. It contains logic for 

setting system fai lure Oags on the dedicated instruments for such items as data loss and 

sensor failures . The orbiter contains display driver units at three locations at the 

commander's Oight station, the pilot's flight station, and the aft flight station With the 

incorporation ofMEDS, the DDV remains as part of the orbiter's avionics system for the 

sole purpose of providing power to the hand controller. [Refs. 4 and 71 

J. Display Electronics Unit (DED) 

The DEU drives the general-purpose eRIs and accepts data inputs from the 

alphanumeric keyboard Each DEU contains an IBM SP-O special-purpose processor wilh 

12 
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Figllre 3.3. MEDS ro~'ard fligbt panel. (From Ref. 161) 

14 



8K of RAM (1 6-bit words) used to store crit ical CRT fonnals. Dynamic (flight) data are 

provided by the GPCs and integrated into the static format by the DEU. The DEU detects 

a keystroke, evaluates it for validity, and if valid, transmits the data to the OPC [Refs 4 

and 7J 

4. Integrated Display Processor (IDP) 

The mp is the heart oflhe MEDS system The illP replaces the existing orbiter 

Display Electronic Units as well as the Dedicated Display Unit~ and will assume all the 

display processing control functions of the MEDS. The lDP is the interface between the 

MEDS and the orbiter's GPCs. The illP contains a power converter unit to convert the 

orbiter supplied 28 vue power to internal operating voltages as required. The illP has 

its own CPU, volat ile ([oss in case of a power disruption) and non-volati le main memory, 

and non-volatile mass memory storage of 300 megabytes. It houses aU of the MEDS 

required Display Applications Software. For communication with the orbiter's 

DisplayfJ<eyboard (DK) and Flight Critical (Fe) data busses the IDP contains standard 

orbiter Multiplex Interface Adapters (MJAs). For communication with ~1EDS LRUs the 

IDP contains standard 1553B lJO ports. Thtl IDP contains interfactl electronics to receive 

inputs from the orbiter ktl)'boards, panel switchtls and Built-In Test Equipment (BITE) 

For future growth considerations, the IDP contains additional .MIA and 1553B liO ports 

The !DP has two physically isolated OX backplanes consisting of the MEDS DX 

backplane and the auxiliary DX backplane. The split DX backplane provides physical 

isolation between critical display functions and non-critical mission-dependent functions . 

Figure 3.4 depicts the split DX backplane architecture 

The Ocntlral Purpose Processor (OPP) is the heart of the !DP. The OPP is a 

386DX microprocessor rated at 25 rvnIz, but is only operated al approximately 16 MHz 

The GPP uses 32-bit registers, eight general purpose 32-bit registers, and 32-bit data 

paths. The GPP has four levels of user protection wruch provide application and 

operating system isolation For increased processing perfonnance the 386DX uses 

pipelincd instruction execution and address translation caches It is Electromagnetic 

15 



AIlliUar OX BlCk I.ne 

f 
1.111 

, , , , 
i . , , , , , , . · 1 . . · . , , , 

! 
, · , , · . , . , , , , , , , . ' ' . I , , . ! ! 

, , · ! · . , 
! 

, 

t t t 1 I 
MEDS DX B.cllplaat 

Fil!:ure 1.4. lOP Split DX BackplAn~ ArchitecluIT. (hom Ref. 1611 

Interference (EMI) hardened and can support an optional 387DX math coprocessor; see 

Appendix ,. for specifications. {Refs_ 6 and 8] 

5. l\-'lullirunction Disphly Unit (MDU) 

The MDU replaces the existing orbiter Display Units (CRT) and the Guidance 

Navigation and Control (GN&C) dedicated display electromechanical flight instruments 

Attitude Direction Indicator (AOJ); Alpha Mach Indicator (AMI); Altitude Vertical 

Velocity Indicator (AVVI); and Horizontal Situation Indicator (HSI). The following 

servo· driven and vertical tape meters are also being replaced: Main Propulsion System 

(MPS); hydraul ics; Auxiliary Power Unit (APU); Surface Position Indicator (Sri); and 

the Orbital Maneuvering System (OMS)_ The MDU contains a power converter unit. II 

CPU. volatile and non-volatile memory and BITE. For communication with the !UP, the 

MDU contains a standard 155JR 110 port, The MDU has the capability to support 

NTSCfRS-170 video signals, Nine MDUs are located in the forward flighl station lind 

two in the aft flight slation {Refs. 6 and 8J 
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The MOl] uses the state-of-the-art Active Matrix Liquid Crystal Display 

(AM LCD) format The AMlTD display architecture is ll~ed with a Reduced Instruction 

Set Computer (RJSC) processing element and custom graphics accelerator that produces 

two- and three-dimensional (2-0 and ]-0) fully anti-aliased graphical images 

Anti-aliasing filters are resposible for converting the 576 x 576 Video RAM (VRAM) 

image into the 1152 x 1152 addressability required by the LCD. An active display area of 

6.71 x 6.71 in, is achieved with 11 52 x 1152 pixels resolution and 28 shades of gray per 

primary color. A cutaway view of an AMLCD display is shown in fig . .1.5 

A LCD consists of a liquid crystal substrate of long organic crystal threads which 

can be altered hy applying electrical fields The MDU uses Twisted Nematic (TN) threads 

which arc twisted and change fiam reflective to transmissive when charged, The MDU 

uses an active matnx LCD technology. An Active mallix LCD uses an active element. 

usually an amorphous-silicon thin-film-transislor (a-Si TFT), located at each pixel, The 

pixel is addressed hy rows and columns and stays on until il is switched ofT This scheme 

Fil!:ure 3.S. Actin MatriJ LCD. (From Ref_ II]) 
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can refresh (update) the video screen at 60-Hz video ratc. The latest accomplishment in 

A~~CD is a significant improvement in viewing angle. The viewing angle is defined as 

the angle between the screen's normal vector and the vector from the screen to the 

viewer's eyes. The MDU uses a newly implemented technique which controls the optical 

retardation in all three display axes by adding a retardation film. The film is designed with 

less birefringence. parallel to tile display surface than normal to it, which compensates for 

the increased optical path length through the display cell when the cell is viewed from off 

the normal. Another technique - the halftone/gray-scale method- achieves a wide viewing 

angle by dividing the pixel electrode to create subpixels, each of which sees a different 

voltage, using a capacitor divider circuit. The liquid crystal material at each subpixel is 

thus at a different state of rotation, and the complete pixel exhibits a wider viewing angle 

These techniques along with the anti-aliasing which can program and control the color of 

each dot minizes visually detectable image distortions. Active matrix requires placing 

thousands of TFTs on a glass substrate and if one of these TFT or a pair of electrodes are 

defective, it can ruin the entire panel. Honeywell and Optical Imaging System (arS), 

Troy, Michigan are the developers for the AMLCD used by the MEDS system; see 

Appendix A for specifications. [Refs. 8 and 14] 

6. Analog-to-Digital Converter (ADC) 

The ADe provides the Integrated Display Processor (IDP) with the converted 

digital data from analog instruments (MPS, HYD, APU, OMS, and SPf) for processing 

before it is sent to the Multifunction Display Unit (MDU) for display. It contains a power 

converter unit, a CPU, BITE and volatile & non-volatile memory It also houses 

Analog-to-Digital converter electronics sufficient to convert 32 differential analog inputs 

to digital formats For communication with the IDP, the MDU uses a standard 1553B 

110 port. The ADC is an essential piece of hardware acquired for the new MEDS system; 

see Appendix A for specifications. [Ref. 8] 
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7. Keyboard 

The e!<;isting keyboard ""ill be used with the new MEDS system It is the primary 

interface for the crew and the IDP, There are three keyboards in the orbiter Two are 

lucated in the center floor console ufthe faward cockpit and one in the aft cockpit [Ref 

8J 

C. SOFTWARE 

The MEDS software resides in the 11EDS hardware (fiP, MDU, ADe) and 

consists of an operating system kernel and applications. The MEDS software are broken 

down into two categories, Hardware Dependent Suftware (lIDS) and Display Application 

Software (UAS) The HUS is software that is hardware dependent considered as 

Operating System Kernel (OSK). The DAS is software that is use for display purposes and 

referred to as application software [Ref ~q 

D. FAULTTOLERA:KCE 

.MEDS requires a high level of reliability since it is a critical subsystem of the 

orbiter. The :\lliDS architecture incorporates a four string design in order to achieve two 

system level fault tolerance. After sustaining two successive failures, ~fEDS retains the 

capabilities to: maintain data display and GPC command interlace adequate for a safe 

return to earth; display an adequate set, in graphical format, of fJjght instrument 

parameters at both ofthe forward flight stations; and display the assigned set of subsystem 

status parameters at (as a minimum) one of the forward flight stations. The power 

received for the orbiter Electrical Power Distrihution and Control (EPD&C) subsystem is 

distributed such that, after Sllstaining two successive failures (including main dc bus 

failures), h-fEDS retains the display capabilities required for a safe return to earth. [Ref 8] 

E. TRADEOFFS 

A major advantage of implementing :\lliDS is the tremendous savings in weight 

and power required. A total savings ofR4.91bs and 169 watts is achieved with MIDS 

This weight directly translates to more payload that the Shuttle can carry Some of the 
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mc<:hanical switches were replaced by the edge keys on the l\1DUs, [t will cost less to 

maintain the new MEDS avjonic~ compared to the old electromechanical gauges and 

eRTs. From a crew training point or view, a very shallow learning curve is required nuc 
to the fact that .MEDS mimi(;s the co(;kpil displays oflhe existing Shuttle Orbiter cockpit 

One major concern with NlEDS is the AMLCD that is used with the !vIDUs. This 

is the only component that has very linle operational history, The MDU is the pivotal 

human interface portion of MEDS . The color A!vLLCD contains a liquid crystal screen 

and a 30 watt cathode fluorescent lamp in a sealed volume If either fails, the ~1DU is 

useless. 

F. NEW MEDS DISPLA YS 

Some draft design formats arc shown in Fig 3.6 and 3 7 These designs are very 

close to the tinal product since they have been through erew evaluation and human factors 

analysis_ Figure 1.6 shows a composite display with the ADf, HSI, AVVI and other 

instruments showing. Figure 3. 7 shows an ADliAVVI display format. 

~'igurc 3.6. Comptlsitc I\U:US Uisphl)". 
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Figurel.7. MEDS ADlIAVVI Display. 
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IV. COCKPIT OPTlMlZA nON 

This chapter identifies Multifunction Electronic Display Subsystem (11EDS) 

grO\.vth options, crew preferences, optimization methods, and the re~1t of a proposed 

advanced Orbiter display_ The optimization methods arc further explained by analyzing an 

ongoing NASA experiment which uses a laptop computer to depict relative mOlion, By 

incorporating MEDS, the relative motion plot and a new proposed ascent/descent plot can 

now he display via MEDS vice a laptop computer 

A. GROWTH OPTIONS 

Six spare slots in the Integrated Display Processor (!DP) are available for future 

upgrades to !l.1EDS. The illP unit is similar to a personal computer where extra cards can 

be added or replaced to the spare SlOI, to improve its speed and power. There are few 

limitations as to the type of cards that can be added to the IDP, The 80386 radiation 

hardened microprocessor can be replaced by a faster radiation hardened microprocessor if 

required, Multiple CPU~ can al~o be added to the liP as an option Random Access 

Memory (RAM.) can also be increased For gro .... '1h provisions, 200% processor 

throughput margin and 300% main memory margin arc included in the current rvtEDS 

configuration 

B. CREW PREFERENCES 

At the fir~t Advanced Orbiter Display working group meeting the crew proposed 

that ~1EDS be optimized as follows: optimi7.e the flight instruments and systems 

management displays and formats; include checklists for critical malfunctions and standard 

cockpit layouts for each phase of flight; and incorporate additional data such as 

Pulse-Code Modulation Master Unit (PCM:MU) data into J\fEDS 10 provide insight into 

flight state and systems status. These nt-ow displays would be beneficial during time critical 

and communications failure situations [Ref. 9] 
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C. GRID COMPUTER [XPERL'1ENT 

An experiment by NASA uses PC:\1}.1U data to detennine relative motion between 

the Space Shuttle and a target satellite. The experiment shows that data from the 

PCMMU can be used to give the flight crew real-time flight data via laptop computers 

The relative motion displays used on the laptop were developed by Naval Postgraduate 

School (NPS) students; see Ref. 10. An advantage of using PCMMU data is that it 

incorporates some data not available to the Orbiter's General Purpose Computers (GPCs) 

A drawback of the Portable Grid System Computer (PGSe) laptop is that it can not be 

used during ascent and descent. The laptops have to be secured in the lockers fOT these 

phases of flight While in use, the laptop requires long connector cables which restrict 

space and crew movements in the Orbiter's cockpit. A block diagram of the basic setup is 

shown in Fig 4.1. 

PCMJ\1U 

DATA 

fl' I RAM I 

Orb SV I ROM I 

GROUI\D 

128 kbps 

Figure 4. t. PGSC EIptrilQCDt block dlllgram. 
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The source for the 128 Kb)1e data link information comes from the PCMMU 

This data stream is used to down-link and up-link all telemetry information from the 

Shuttle to Mission Command Center (MCC). The PCM}.1U has fou r ports, two are used 

by MCC and two arc spares, which put out identical information, The Graphic Retrieval 

and Information Display (GRill) 1535 laptop computer, linked through a 128 Kbyte data 

link cahle, acts as the interface hetween the PCMMU and the GRill ]5)0 pose The 

GRlD 1535 contains an RS-422 Sea Level card which provides an asynchronous serial 

Input/Output (110) and the PC Decommutator (PCDecom) software package which 

decommutates and selects data for output. Data from the GRill 1535 to the GRID 1530 

is transmitted via the RS-232 communication port. These GRID laptop computers ""111 

soon he replaced with an fBM Thinkpad 700 series laptop. [Ref. 10] 

Data from the GRID 15 35 is used by the NPS software program RendezvousIProx 

Dps Program (RPOP), which resides in the GRID 1530 laptop, to automate rendezvous 

procedures. The NPS RPOP display, shown in fig . 4.2, can be used to view relative 

motion between the target, which is stationary, and the chase vehicle. By adjusting flight 

data, predicted results of upcoming maneuvers are depicted. Detailed information on the 

NPS software and the experiment can be found in Ref. 10. The NPS software has been 

flown on several Shuttle missions starting with STS-51 and have contributed to the use of 

real-time data analysis to increase the crew's situational awareness. The RPOP display is a 

direct result ofa certified rendezvous software, Payload Bay (PLBAy), currently used by 

NASA on the ground. The PLBA Y program is not automated and requires numerous 

inputs from the user. There are indications that various features of the NPS software will 

be incorporated into a certified version of the NASA code in the future [Ref. 10] 

D. PROPOSED INCORPORATION OF MEDS 

The RPOP display is a good example of an advanced Orbiter display preferred by 

the crew during the rendez,"'ous phase. Once the MEDS is incorporated, the RPOP 

display can be depicted on the Multifunction Display Unit (MDU) vice a laptop computer 
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Fil!UTC 4.2. Rt'OP Simple R-barlV· hlr plul. (from Ref. [10]) 

rhere are three options of inCOT[KIrating the MEDS into the Shuttle, each with its 

advantages and disadvantages 

I. Altuing (he Flight Sortwftfe 

The IDP gels information directly from the apc via the data bus Transferring 

adtlili')!lal dat, to the lOP requires altering the orbiter's flight software The advantage of 

this method is that there are no additional hardware or changes necesslll)' to the MEDS 

The major disadvantages of this method arc high costs and time required 10 implement and 

lest any changes in critical flight software. The software validation and certification 

process takes a minimum of one year to complete and NASA management is strongly 

against the idea of altering the flight software. The other disadvantage is that not all of the 

Orbiter's information are available to the GPC Unlike the GPC, the PCMMU gets a1l 

Orbiter information 
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2. PCMMU Link to the Primary Side of the lOP 

The I'CM.f\..fU can he linked to the primary side of the [Dr ira RS-422 Sea Level 

card is added to the spare s[ol in the IDI'. Shown in Fig. 4.3 is the block diagram of how 

this can he implemented. This spare slot is shown as "growth SRU" on the MEDS DX 

Backplane, in Fig 3.4 above. ThcRS-422 Sea Level card, which pcrfonns the same 

function as the onc described in the above experiment, can be acquired from Honeywell 

This method gives the IDP all data available from the GPC plus the PCMMU. However, 

it still has disadvantages such as costs, altering the flight software and certification 
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Figure 4.3. PCMMU 10 Primuy Side of IDP. 
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3. PCMMU Link to the Auxiliary Side of the lDP 

A more feasible approach than the two methods described in section 1 and 2 is to 

link the PCMMU to the spare slots of the AUX OX Backplane of the liP, shown in Fig 

4.4 below. This entails adding the following hardware to the IDP: RS-422 Sea Level 

card; a CPU; and aT ARGAT video card. The MDU also requires a video card for this 

method. Without connecting the bridge, the data can be completely isolated from the 

i\!fEDS DX Backplane of the IDP. This method does not involve altering the flight 

software and opens up a wide range of significant infonnation that can be displayed with 

the MEDS. Certified software would be required if there arc filture intentions of making 

data from the PCMMU flight critical data 

lOP 

-----II PDIMU 

Figure 4A. PCMMU to AuxiJiar)' Side of lOP. 
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E. ASCENT ABORTS 

Before developing the proposed ascent/descent advanced orbiter display, a better 

understanding of the various inflight abort types and procedures are required_ There are 

two types of events that requires the Shuttle to perform an inflight abort: performance 

and system failures_ OUf concern here is with the performance fai lure; the time when a 

Space Shuule Main Engine (SSME) loses thrust or simply fails to funct ion The two types 

of ascent abort modes arc: intact aborts and contingency aborts. The intact aborts provide 

a safe return of the orbiter to a planned landing site. and the contingency aborts follow 

mOfC severe fail ures which usually result in a crew bailout. 

Some oflhe intact aborts include an abort to orbit (ATO), an abort once around 

(ADA), a transoceanic aburt landing (TAL), and a return to launch site (RTLS). An ATO 

occurs late in the ascent phase when the orbiter comes close to achieving a normal orbit, 

but simply goes to a perfectly safe lower orbit. An AOA is used when the ATO cannot be 

achieved. The orbiter is placed into a sub-orbital trajectory leading to a landing after one 

revolution of the Earth. If this can not be achieved, the TALis used. Figure 4.5 shows a 

TAL versus nominal ascent profile. This results in landing on a runway in Europe or 

Africa In the case that one of Ihe SS.\tEs fails after lift-off and before a TAL can be 

achieved, a RTLS is performed . Figure 4.6 shows a typical RTLS profile. During 

powered flight , the crew receive present abort capability calls from the MCC that are 

detennined by a computer program called the Abort Region Determinator (ARD). Some 

MCC calls are given in Ref II. The ARD takes into account real time data to predict real 

time mode boundaries. [Ref 7] 

There are numerous abort mode boundaries and each is time dependent and 

flight-specific rhe mass properties, environmental modeling, and performance 

characteristics change significantly with time. The boundaries are different with higher 

inclination flights than lower inclination flights. Most of the foilowing boundaries are 

based on the orbiter's state vector and available thrust; two-engine TAL, negative return, 
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press to ATD, press to MEeO, DROOP (109), single engine (Sf) TAL (104), SE press, 

last p:e-MECO TAL, and last TAL. [Rer. 7] 

F. ASCENT/DESCENT ADVANCED ORBITER DISPLA \'S 

The purpose of the proposed display is to increase the tlight crcw situational 

awarene~s, simply by displaying the downrange and crossrange capabilities of the Orbiter 

Presently, the abort procedure during the loss of an 5SME engine takes appro:Jmately 

four to five minutes to be identified and resolved. The proposed Orbiter's display will give 

the crew a quick reference as to the type of abort modes available. The display by no 

means replaces or reduces the reliance on ground control, but is used in conjunction with 

MCC The next chapter of this thesis will address the way in which realtime data can be 

processed by MEDS and displayed on the MDUs The displays in Fig. 4,7 and Fig. 4,8 
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Figl1r~ 4.6. RTLS profile. (From Ref. [71J 

are not generated by actual flight data information, but simply slatic pictures used for 

illustration. The two displays below are depicted at different limes to show the dynamic 

orthe range capabili ty 

The display in Fig. 4.7 shows a fcal time landing footprint with predicted abort 

boundaries color coded for the case of one engine out (EO), two EO and three EO All 

information displayed uses real time onboard state vector infonnation. It is important to 

note that the display does 110\ flash at any lime and the geographical map moves with time, 

nOI the abort boundaries. The EO boundaries will change or disappear with lime As an 

example, if a 2 EO occurs, the I EO green boundary will not be displayed and so 00. The 

Mission Elapsed Time (~fET) box displays the time from lill-off During this first one 

minute and forty-five seconds' period, the shuttle is on a venical climb and increasing 
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Figure 4.7. Proposetl Ascent DiSllla}ed at MET 1+45. 

velocity rapidly ('he current status box (LTFTOFF) emulates MeC calls, as described in 

section A above. The status box changes with time based on unboard state vector 

information and predetermined !light data, The decision tree helow the status hox gives 

the nominal abort landing siles or procedures for all three EO cases. Note that the color 

code used by the deci~ion tree is not related to the color coded boundary regions_ The 

display can be magnified when in proximity of a landing sile tor making the bailout 

decision in tight situations [n most 1 EO cases, the Shuttle will continue to press on 

Although bailout zones are not explicitly dt:pictcd, they are the same as EO mnes that do 

not encompass a landing site 

Figure 4. 8 depicts the same scenario as Fig. 4.7, except at !'vIET equals five 

minutes and thil1y seconds Note that as the Orbiter velocity is increased the boundary 
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AFRICA 

Banjul 

Figure t.t!. Proposed AsC~,nt Displayed at (\iU;T 5+-30. 

gets elongated There is an overlapping period just betore NEG Return where the orbiter 

has hoth T Ai. and RTLS capability, The decision tree can display Black zones as "3 EO 

Ulack" when ill proximity to the selected landing site 
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v. DOWNR4.NGE ABORT EVALUATOR (DAE) 

The abort regions shown in Fig. 4.7 and 4.8 can be detennined by integrating the 

equations of motion for a rigid body flying through the atmosphere. A Matlab program 

was developed to show the downrange and crossrange capabilities based on a given 

Orbiter state vector. The resultant output for a specific case is then compared with 

NASA's Downrange Abort Evaluator (OAE) program output 

A. EQUATIONS OF MOTION 

The trajectory of a vehiele can be determined by applying Newton's law of 

motion, F=ma. The dynamic (forces) and kinematic (velocities) equations are given in 

Ref. 12. Some of the equations arc modified to make them consistent with the reference 

frame used. Rewriting Newton's law of motions gives, A"-FiJ + F .. + F tb + G. Figure 5.1 

illustrates forces that are acting on a vehicle as it is flying through the atmosphere 

L 

D 

G 

FigUTt 5.1. VthicJe Force~ During Atmo~pheric [nteraction. 
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I. Rtftrtnre Frame 

A geocentric latitude-longitude reference frame (R, A"" A) is shown in Fig 5.2 

Where R is the geocentric radius from the center of the Earth to the vehicle. AlP is the 

inertial geocentric longitude of the vehicle; measured in equatorial plane from Xl to the 

vehicle at P. A is the geocentric latitude of the vehicle A vehicle coordinates frame is 

shown in Fig. 5.J 

2. Kintmatics 

The kinematic equations of the vehicle are based on the position of the vehicle and 

the linear velocity By using the law of Coriolis, an expression for the acceleration of the 

vehicle is given by 

A= (R - R A'1 ~ R }'r/ cosl A)I, + (d(R1 An,' cos1 A)/dt • l /R cos All. 

+ (R A" + 2 R' A' + R Al/ cos A sin A)I~ 

Fi!o:ure ~.2. Gwcentric I.lItitude-Lonj!itude Reference Frame. (From Ref. 1121) 
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Fii:ure~.J. Vehi(lcConrdinpleFrlme. (FromRcf. 1121) 

3, Gn'lvitatiomd Fon~e 

The gravitational force equation takes into account the oblateness of the Earth and 

the distance from the Earth's center. The gravitational component is given as follow 

G, '" -Osp + 3 v Osp (ReqIR), (1 -3 cos 2 A) 

G,= 0 

0.\'" -6 v Gsp (ReqIRf sin 2 A 

Where Gsp is the spherical gravitational mass of attraction, and Reg is the Radius 

of the Earth at the equator 

4. Drag Force 

Drag fOlces ale produced as the vehicle moves through the sensible atmosphere 

It is highly dependent on the atmospheric density. surface area of the vehicle, and vehicle 
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velocity. The atmospheric model, given in Ref. \3, is based on a two-parameter 

atmosphere model given as, 

p=po exp(-h/H) 

Where h is the altitude and H is the atmospheric scale height Modeling the 1976 

US, Standard Atmosphere, a value of 6,7km is used for H and a value of 1 ,752 kg/m' is 

used for Po- These values are adjustable to give a bl-'ttcr fit over the altitude range of 

interest The drag force components are given as follow 

F, = - P Cd S VamR' 12M 

F~ = - P Cd S Yam R cos A (Aw' - Wio) 12 M 

f..,=-pCdSVamRA'/2M 

Where p is the atmospheric density, Cd is the coefficient of drag, S is the vehicle 

surface area, Yam is the atmosphcric velocity, and M is the mass of the vehicle 

5. Lift f'on:e 

Lift forces are also produced as the vehicle moves through the atmosphere Lift 

force is dependent on the atmospheric density, surface area of the vehicle, vehicle velocity 

and its configuration. The lift force components are given as follow 

f, = P CI S 12 M «VamJ + (VarnA)! )111 Yam cos B 

F~ = P Cl S Vam/2M [VamVam.., sin B - R' Vam~ cos B/( (VamJ + (Vam..,l f2 

F..,= - P CI S Vami2 M [VamVam, sin B + R' Vam.., cos B/( (Vam).Y + (VamS)'1.' 

Where Cl is the coefficient oflift, and B is the bank angle 

6. Thrust Force 

Thrust forces for the Space Shuttle during ascent are available until the External 

Tank separates_ The primary thrust used for maneuver comes from the three SS:MEs 

The thmst force components are given as follow 

F, = - r Ve/M [ cosAe casAd sin), + sinAd cosy sinD + sinAe cosAd cosy cosH] 

F ~ "" - r VefM [ cosAe casAd cosy cosAh - sinAd sinAh cosS 
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• sinAd cosy cosAh sinB + sinAe cosAd sinAh sinB 

• sinAe cosAd siny cosAh cosB 1 

FA = - r VelM [ cosAe cosAd cosy sinN! + sinAd cos.A.h cosB 

- sinAd siny sinAh siill - sinA .. e cosAd cosAh sinB 

- sinAe cosAd siny sinN! cosB 1 

See Appendix B for definition of all symbols 

B.. MATLAR PROGRAM 

The equations of motion given above can be written in state space form, which is 

an integratablc fonnat, and integrated by using a second and third order integrator, This is 

accomplished by using Matlab with Simulink, version 4,0, developed by the Mathworks, 

I" 

The programs SHUTTLE and IN IT, see Appendix B, are a Matlab function fi le 

and script file, respcctively, The program predicts the impact point of the orbiter by 

numerically integrating the trajecto!')', taking into account vehicle aerodynamics and 

gravitational affects. An initial Orbiter state vector is required as the input for both 

programs, The output program INTT gives the geocentric latitude and inertial geocentric 

longitude of the impact point These values are then converted from radians to degrees 

and from inertial geocentric longitude to geocentric longitude, By varying the initial 

conditions, data from each trial run is entered into a spreadsheet and ploned, The 

resultant plot displays the landing footprint that represents the orbiter's maneuvering 

capabil ities 

I. Space Shuttle J EO Case Study 

A specific case of three engines out is analyzed for the Space Shuttle. In this case, 

the decision has been made to penonn a TAL abort and the ET has been separated, At 

this point in the trajectory, no thrust is available to the Shunk. It becomes a glider and 

has only one chance for a controlled landing 
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To effectively compare the Matlah result with NASA's result, the same initial 

condition s must be used . However, not all the init ial condition parameters from the 

NASA code can be put into the form used hy the Matlab code. Therefore, the data are 

interpolated and expressed in a format usable to the Mallah code. All efforts were made 

to simulate these conditions as closely as possible 

There are many Orbiter parameters (e.g. , B, AOA) that can be varied; the limiting 

case of eaeh parameter is used to predict the output All parameters were kept within the 

physical limitations of the Space Shuttle. The maximum bank angle used was +/- 50 

degrees. The angie of attaek varier.! from 0-42 degrees depending on the alti tude. The 

scale height (H) and initial density (h) were varied slightly from the 1976 U.S. Standard 

Atmospheric model to fi t the altitude range from 0 to 360,000 feet. The coefficient of litt 

and drag were also varied to simulated different configurations. A constant frontal surface 

area and mass were used in this case due to the limitations of the code. The Orbiter's 

impact point is determined when the vehicle's altitude is approximately equal to zero 

(within the model), due to the integration method used 

3 Engine Out 

. 
~ 20 

-57.3 -47.3 -37.3 -27.3 -17.3 -7.3 2.7 

Longitude 

Figure 5.4. Matlah Result For 3 EO case. 
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The initial position was at 22N Latitude and 67. 3W, the initial altitude was at 

359,000 ft and the relative velocity is 22,840 fils. The result, given in Fig_ 5.4, shows that 

the maximum downrange longitude is 5W, the minimum is 24W and the crossrange varies 

from 18N \0 27N latitude. The individual points are specific case outputs and thc 

boundary connecting the points is what the boundary would look like if all cases were 

taken into account 

C. DATA COMPARISON 

The result of the Matlab code is overlaid on the NASA DAE output as shown in 

Fig. 5,5, To get a better understanding of the differences in the results, a more in-depth 

analysis of the OAE code is presented and possible differences are discussed 

I. Downrange Abort Evaluator (DAE) 

rhe Downrange Abort Evaluator predicts the impact point by propagating the 

input stale vector to a threshold alt itude, from which point the range to impact is 

computed by a table lookup of energy versus range_ The propagation is followed by a 

numerical integration of the trajectory, taking into account a first order lag flight control 

system. a simplified entry guidance system, vehicle aerodynamics and a central 

gravitational term, This integration is continued until the integrated trajectory converges 

to a built-in drag-velocity profile. at which point the range to impact can be computed 

analytically_ A "canned" drag-velocity profile is used to compute the distance the orbiter 

would fly should that profile be followed. A landing footprint is then generated based on 

the predicted impact point_ The tables used were based on a history of simulation runs 

conducted in the flight simulator at the Johnson Space Center. 

2. Possible Output Differences 

The data output received from the DAE were based on a simulation that takes into 

account a dynamically controlled orbiter and its onboard guidance algorithm. The Matlab 
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model uses only conslanl vehicle paramelers which correlales 10 a sialic configuration 

throughout thc vchicle's trajectory 

One major difference is the use of a simplified entry guidance system by the DAE 

Different drag profiles were used al different phases of flight by the UAE vice a single 

constant drag profile used by the Matlab code. The DAE's range predictions were based 

on solutions to the equations of motion for specified Orbiter drag profiles, which arc a 

function of the Orbiter's velocity. Different Orbiter drag profiles were used for the 

temperature control phase, the equilibrium glide phase, the constant drag phase and the 

transition phase. One particular example is that the scale height is vaned throughout the 

vehicle's trajectory vice the constant scale height used by the Matlab program 

The routine to determine the impact point used by the Matlab code is not precise 

It determines whether the integrated altitude is within a range of the reference altitude of 

zcro. However, this is not a significant error since it only causes a 1-2 degree error in the 

latitude or longitude of the output 

rhe OAf also uses geodetic latitude and longitude vice geocentric latitude and 

longitude as used by the Matlab program. However, this is not a significant difference due 

to the very small eccentricity of the Earth's oblatcness. The error caused by this is less 

than one degree in latitude or longitude [nspite of these differences, the two landing 

footprints are fairly close 

43 





VI. CONCLUSIONS 

The National Aeronautics and Space Administration (NASA) recognized that there 

was a need to upgrade the Space Shuttle's cockpit display subsystem. The result is a 

state-of-the-art Multifunction Electronic Display Subsystem (MEDS) which uses colO! 

Active Matrix Liquid Crystal Displays (AMLCDs). Initially, the mDS display ",ill 

graphically mimic the current cockpit display instruments to minimize crew training 

impacts. However, with the MEDS' intrinsic growth provisions, the advanced capabilities 

of MEDS will be invoked. In order to optimize the Orbiter's cockpit, new advanced 

orbiter display fonnats need to be developed The analysis of the Orbiter's state vectors 

demonstrated that three methods of implementing MEDS allowed for real-time graphical 

displays to be depicted. Optimization of the Orbiter's cockpit using the MEDS allowed 

two displays, currently only used on the ground, to be displayed onboard the Orbiter. The 

two displays are: Rendezvous Proximity/Dps Program (RPOP) display; and the proposed 

ascent/entry display. The processing capability of the MEDS was emulated by using a 

personal computer to demonstrate that prototype advanced orbiter display fonnals can be 

generated 

A. OPTThfAL MEDS IMPLEMENTATION i'\1ETHODS 

A great deal of innovative design went into the development of the T\-fEDS Its 

similarity with a desktop computer allowed room for filture improvements and its 

modularity allowed easy in-flight maintenance. By connecting the Pulse Code Modulator 

Master Unit (PCMM1J) data to the \1EDS, real-time data are available for situational 

awareness to assist the flight crew during critical phases of flight. The optimal method is 

achieved by linking the PCMMU to the AUX side of the Integrated Display Processor 

CIDP). This method is totally isolated from the primary side of the IDP and does not 

involve altering the primary flighl software. NASA is actively pursuing various means of 

full utilization of this real-time data for other Shuttle's subsystems The opportunities for 

future research and development of the !l.1EDS are significant 
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A. FINAL PROPOSED DESIGN 

As a direct result of crew preference. a design for an advanced orbiter display was 

developed , The result is a display showing predicted Orbiter impact landing footprints, for 

three different cases of one, two and three engines out, during the ascent phase of flight 

These graphical displays enhance thc crew's situational awareness and together with 

ground data inputs could increase safety of flight. Many moredisplay designs are needed 

for this phase and other phases of the Shuttle's mission 

B. RESULTS OF MATLAB VS. NASA'S DAE 

A Matlah program, developed and processed on a 486DX personal computer, 

demonstrated that these real-time abort regions can easily be incorporated into the 

~DS_ Results from the Matlab code were compared with NASA Downrange Abon 

Evaluator (DAE) code for a specific case of three engines out. The two regions were 

relatively close despite differences in control and guidance algorithms Much 

improvement can be done ""ith the Matlah program in control and guidance 10 improve its 

accuracy, It is not necessary 10 use Matlab as a program language; any high order 

language such as ADA or C++ or FORTRAN ""ill suffice This program is a stepping 

stone to a critical and powerful concept. 

C. RECOMMENDATIONS 

It is the hope of the author that others will continue to develop new advance<l 

orbiter displays, develop al ternative methods of implementing the MEDS and to make 

improvements to the Matlah (or alternate) program. Another area of the MEDS that 

requires development is the display application software for the propose<l and new 

advanced orbiter displays 
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APPENDlX A. MEDS llARDWARE SPECLFICATiONS 

Dt'sign Paramett'f 

CPU throughput 
RJOSIE 

;\-IDti Performance (Ref. 14) 

20 r.ru>SI7 .4 MFLOPS 

~P~iPC~Ii-~~B~~~, --- -------r.:~~~:W~b~i:~/'---------
Iy~ drawing rate 65.5K vector in./s 

32 ,SK arc in/s 

-.-

3.4Mpointsis 
~iasinglhal0 imaging filter"Cll"C:WC--TJ-c.5"'O"BO"p"'S=---------------1 

~ory -­

RJOS IE 

34020 

L5Mb SRA1-f 
1,0Mb EEPROM 
512Kb SRAM 
J.4MbVRM1 

II 553B interfac·cc' ____________ -c:12='K'-S"'I<AM='-c-=:--cc--c-____ ---" 
~e- 8 in, H x 8.75 in, W x fU5in. D 

\Veight 17.2 1b 

~oOp:~'"l:~_g_Po_ .. _.o_, -_--------~~FO~~~'d~.~·'~(O~.4~I~lb~~~~~)----____ ~ 
", '" .. ,,' Typical \\'orsl Case 

Graphics at 100 fI. SO W 91 W 
Graphics at lamp EOL 92 W 103 W 
Video at 100 fL 84 W 95 W 
~lampEOL 

Environmental 
Vibration 
Shock 
Humidity 
Salt-fog 
EMlIEMC 
Temperature 
Lightning 
Acceleration 

95 W 

7_S5 g rms, each axis 
15gMIL-STD-810C 
SIOC (507_1); Proc IV 
SlOe (509_1); Proc I 
'MlL-STD·461 /462 
-30 to +65 degree C 
:MTL-B50S7B 

l06W 

1

+/- 5g, each axis 
Acoustic exposu~" _____ _ __ -'8:cl:oOC"'-(,,5'"12=.2!'.)/'_P''''oc'_I'__ ________ __I1 
BIT coverage 98% (initiated) 

S3% (periodic) 
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~: Display Parameter MDU Performance (Ref. 14) 

Active view"';'"gcc"cc" '--_ _ ___ j'u,,'C'-1 ,,-x '",_',,1-,,;'"-______ ~ __ ---1 
Color dot resolution 172 dotlin ~ 
ILCD dot matrix 1152 x 1152 

Pixel arrangement 

[VieWing angles 

ROB triad _ _ __ ' 

Horizontal: +1- 60 degrees 
Vertical: -10 deg/+45 deg 

I
lcontrast ratio «I fc) 
ERP >90:1 
H(+/-20):V(OI+20) >65 :1 
H( +1-45):V(-10/+30 >45 :1 
H(+1-60):V(-10/-"-45) >15:1 

Contrast rallO (hIgh ambIent) 1>6" 1 (all angles) 

CD'~-~=I'~Y ~I"~k~~~' _ _____ ~~<3~.5~~~(,,,-1l~m~~~"~) _ _ _ _ ~ 
Specular reflectance 1.00% at 30 deg --------.J 
Diffuse reflectance 0.06% at 30 dcg 

Luminance llnifonnity Red: 11.5% 
Om: 12.9% 
Blu: 16% 
Wht: 16% 
81k 18% 

Color unifonnity (panel to panel and within Primaries: < 0.015 radius 
a panel) Secondaries: <0.021 radius 
1:c-_-,-,-____ ____ I"G="LY'=cales: <0,021 radius 

Chromaticity 
Rod 
Green 
Blue 
White 

Response time 

Image retention 

u' = 0.416/v'=O.S22 
u' = 0. 1\8/v'=O.544 
u' = O.1 46/v'=0,338 
u' = 0.215/v'=0.482 

<18msal25dcgC 

No retained images 
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~----- -:-----~=:-;c- -----c=~;-;c-, 

Design Parameters I , ADC Pe~onllance (~~ 

iOutline dimensions - 8.0 In. L x 5,5 m. W x 2,25 10. H 

Connectors 3 External I\1IL-C-38999 Circular 

~_dicator _ __ jExtemallY mounted __ _ _ 

MountingHoles _ _ 4in. xO.189diameter _ _ 

Weight 12 .51bS _ ___ _ 

Power disssipation 4.5 Watts (typical); 7.5 watts (Max) 

~~~g _ __ __ _ _____ _ -4~CO~".~d"~ct~;o~N~~~d~jM~;O~" _ _ __ 
Chassis/Top and Bottom cover I Aluminum plate components ~ 
Input channel 25 Hz sampled rate 

~r~e tToiFrom J55JB 3% 

Temperature Ind"'ica"to"-' _ __ _ _ _ _ -"-In=::t,::,mru=ly,-,m"-o""-""""'d~'",,,,-, ____ -"1 
Weight ~ " 
Power Dissipation --- 140 Watts Total includes 40 Watts for i 
~ ----------t:'~-~~:hair with conduction/radiation 
~~p~d~-om-'o-v'-,---~~~~~==~~==~~ 
IIIO Ports 

300 MB non-volatile internal mass storage 
Transfer rate of [.2 MB/s 
1MB of EEPROM 
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APPENDlX B. MATLAB PROGRAMS 'SRUTTLE' AND '[NIT' 

SHUTTLE 

This program detelmines the impact point of a vehicle given an initial state vector 

The dynamical equations of motion are based on Newton's law of motion, F=ma. Only the 

atmospheric phase of flight is assumed below. The equations and variables below are from 

Ref 7, Ref II, Ref 12 and Ref 13 . The data for the variables arc extrapolated from 

various tables and graphs in these references 

These variables correspond to the ini tial state vector; position and velocity 

xl =R; x2=lambda; u =Clambda; x4=Rp; x5=lambdap; x6=Clambdap 

function xdot=shuttle(t,x) 

Variables below arc picked so that the problem is over simplified for the purpose 

of illustration, The atmospheric densi ty model used here is based on a two-parameter 

atmospheric model It assumes that the atmospheric layer is isothermal 

h=109400; 

Wio'-"7.2921l5ge-5; 

rhoO=1752; 

H""7.342c3; 

rho=rhoO*exp(-hlH); 

Cd=025; 

C!=0.5 ; 

S=600; 

M=12000; 

B=10; 

Altitude(m) 

Inertial Earth angular vel. (rad/sec) 

kg/m") 

Scale Height (m) varies wi altitude 

Density atmos. model (kg/mA 3) 

Drag Coeff, varies dep. on configuration 

Lift Coefl'. varies dep. on oonfiguration 

Frontal Area of Shutt le I · wings (m"2) 

Mass of Orbiter (kg) 

Angle of Bank (degree) changed to 

rad in equations below 
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These variables apply in cases where thrust is available 

Ganuna=O; 

Ve'"'O; 

Ae=O; 

Ad=O; 

Atmospheric veloci ty 

Mass flow rate offuc1 

- 374 kgls per SS}'1E 

Effective Yel of gases 

- 4465 mls per SSME 

Engine gimbal angle about . ly axis 

Eng. gimbal angle about displaced 

lz axis 

V=[x(4) x(I)*(x(5)-Wio)*cos(x(3» x(I)'x(6)1'; magnitude ory 

Vam=sqrt( x( 4 )"'2+[ x( I ) 'cos( xC 3» ' ( x( 5)-Wio) ]"2+( x( 1 ) 'xC 6 » /\2); 

The forces herein are External specific forces (force per unit mass) assuming a 

no-wind condition and a continuum flow regime 

Drag Force 

Drag forces are produced as a vehicle flies through the atmosphere. Dependent on 

atm. density, Surface area, and vehicle velocity 

Z"'-rho*Cd*S/2fM'Vam; 

rFdr=Z*x(4); 

IFdr=Z*x(1)*cos(x(3»*(x(5)-Wio); 

LFdr=Z*x(I)*x(6); 

Fdr=[rFdr lFdr LFdrl'; 
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Lift Force 

Dependent on atmospheric density, Surface area, and vehicle velocity 

Q=rho"Cl~S·Vaml2/M; 

rfli=Q ~sqn(V(2)"'2+ V (3)"'2 )·cos(B· pi/ISO); 

IFli=Q" (Vam"V (3 )"sin(B "pilI80)-x( 4)' V(2)' cos(B" pill SO »/sqn(v (2)"'2+ V (3)'" 

2), 

LFli=-Q *( Vam' V (2)* sin(B *pi/180)+x( 4)* V(3 )*cos(B ~pil 1 80»/ sq n(V (2)",2+ V (3) 

'2); 

F1i= [rFli IFli LFliJ'; 

Thrust Force 

Thrust forces for the shuttle before External Tank separation comes from the 3 

SSMEs or the 2 OMS engines. The 3 cases are 3 engine oUI(EO), 2.E0 or I EO 

Ah=atan2(V(3), V(2» ; 

gamma=atan2(V( J),sqn(V(2Y2+V(3Y'2»; 

rFtho=-Ganuna*VelM*(cos(Ae)*cos(Ad)*sin(gamma)+sin(Ad)*cos(gamma)*sin(B 

)+sin(Ae)*cos(Ad)*cos(gamma)*cos(B»; 

IFth"'-Gamma*Ve/M*(cos(Ae)*cos(Ad)*cos(gamma)*cos(Ah)-sin(Ad)*sin(Ah)*c 

os(B)-sin(Ad)*sin(gamma)*cos(Ah)*sin(B)+sin(Ae)*cos(Ad)*sin(Ah)*sin(B)-sin(Ae)*co 

s(Ad)*sin(garnma)*cos(Ah)*cos(B»; 

I-Fth=-Gamma*VelM*(cos(Ae)*cos(Ad)*cos(gamma)*sin(Ah)+sin(Ad)*cos(Ah) 

*cos(B)-sin(Ad)*sin(gamma)*sin(Ah)*sin(B)-sin(Ae)*cos(Ad)*cos(Ah)*sin(B)-sin(Ae)*c 

os{Ad)*sin(gamma)*sin(Ah)*cos(B»; 

Fth=[rfth UOth LFthl'; 
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Gravity Force 

These equations helow take into account the ohlateness of the earth and the 

distance from the Earth's center 

Gsp=3, 983ge14/x( 1 )"2; 

Req=6378338; 

Spherical grav, mass atrctn (m/secA2) 

Equatorial radius (m) 

rG=· Osp+O. 893e· 3 '" Gsp '" (Req/x( 1 » A2 *( I· 3 *cos(2 '" x(3 »); 

IG=O; 

LG=-·1.638e·3 *Gsp"'(Req/x( 1 })"'2*sin(2*x(3»; 

FG=[rG IG LG]' ; 

The state space formulations helow are put in a fom] that can he easily integrated 

given an initial condition Included in the formulation are the five pan acceleration 

equation 

xdot(l,l )=x(4); 

xdot(2, 1 )=x(5); 

xdot(3 , l )=x(6); 

xdot( 4, 1 )=x( 1 )*x(6)"'2+x( 1 )*x(5)"'2*cos(x(3»)"'2+Fdr( 1 )+Fli( I )+Fth( l )+FG( I); 

xdot(5,1 )=l/x( 1 ),'2/cos(x(3»"2'"(x( I )"'cos(x(3 »"'(Fdr(2)+Fli(2)+Fth(2)+FG(2»-2 

.. x( I )*x( 4 )'"x( 5)'" cos( x( 3 )),,2.x( 1 )"'2 '"x( 5) '" 2 '"cos( x(3» *( -sine x(3 »)*x( 6 »; 
xdot( 6, I )= I Ix( I )'"( -2 "'x( 4)*x( 6 )-x( I )'" x( 5 )A2 *cos(x(3 W sine x( 3))+ Fdr(3 )+1'1 i( 3)+ F 

th(3)+FG(3»; 
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Jf\;lT 

This program plots and outputs the impact point geocentric latitude and longitude 

Constants~ 

Re-;6378140; 

Wio- 7. 292115ge-5; 

Variables; 

to='0;tf= lOO0; 

h=109400; 

Earth radius (m) 

Earth angular velocity (radians/sec) 

Time varies the tfto get all to - zero 

Altitude (m}--359,OOO ft , nominal all 

after External Tank separation 

An Initial Condition/Initial state vector input is needed for numerical analysis This 

is assuming 22 deg ~lorth Latitude and 67.3 deg West Longitude at 359,000 feet 

Obviously this can be moved to any initial position rhe initial velocity vector only has an 

easterly component for purpose of illustration 

Position; 

RO=Re+h; 

1O=-67 , 3*pi/ 1 80~ 

LO""22*pi/180; 

Velocity (relative); 

Rpinit=O; 

Ipinit=22490; 

Lpinit=J996; 

RpO=Rpinit· pi/60/5 280/180; 

lpO=lpinit *pi/60/5280/ l80; 

m, init. dist from Earth cnlr 

rad, 0 deg Longitude 

rad, 0 deg Latitude 

ftJs, radial component 

fils, Longitudinal component 

fils, Latitudinal component 

converts fils to radls 

oonvens fil s to radls 
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LpO= Lpinit *pi/60/S2 801180; 

xO=[RO 10 LQ RpO IpQ LpOJ'; 

2nd,Jrd order integrator; 

[I,X J--{)de23 (,shuttle' ,to, tf,xO); 

converts fi/s to rad/s 

Ie column vector 

This loop detennines the index value which contains the altitude value closest to 

zero. This is an approximation used only for the purpose of illustration 

for i=l :length(x) 

if(x(i, I)<6391000) & (x(i, I »6.1S&000) 

k=i; 

eod 

eod 

This detennines the altitude, geocentric I,at & I,ong for plotting 

AJt=( \J I OOO*x(1 :k, I »-6318; 

Longitude=(x(k.,2)-Wio*t(k))* 180/pi 

Latitude=x(k,3)* ISO/pi 

Plotting routine which plots the Altitude 'Is. time and the Latitude 'IS, Longitude 

subplot(2ll ), plot(Longilude,Latitude,'o'),grid,ylabel('Lat (deg)'),xlabeJe'Long 

(deg)'),titJe('Lat 'Is. Long') 

subpJot(212), plot( t( I : k ),Alt ),grid,ylabel(, Altitude(km ),),xlabelCtime( s ),),titie(,Alt 

'Is. t') 
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