$$
\begin{array}{lc}
15 & 0.1 \\
& C R-128964
\end{array}
$$

SPACE SHUTTLE GN\&C EQUATION DOCUMENT

No. 20
FINE ALIGNMENT GYRO TORQUING ANGLES
By
Joseph St. Amend

CHARLES STARK DRAPER LABORATORY

SPACE SHUTTLE GN\&C EQUATION DOCUMENT

No. 20

Fine Alignment Gyro Torquing Angles

by
Joseph St. Amand

M. I. T. Charles Stark Draper Laboratory
 Séptember 1972
 NAS9-10268
 for

National Aeronautics and Space Administration
 Systems Analysis Branch
 Guidance and Control Division
 Manned Spacecraft Center, Houston, Texas

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-40800, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS9-1026 8.

The publication of this report does not constitute approval by the National Aeronautics and Space Administration of the findings or the conclusions contained therein. It is published only for the exchange and stimulation of ideas.

FOREWORD

This document is one of a series of candidates for inclusion in a future revision of MSC-04217, "Space Shuttle Guidance, Navigation and Control Design Equations". The enclosed has been prepared under NAS9-10268, Task No. 15-A, 'GN\&C Flight Equation Specification Support', and applies to functions 1 and 2 of the Inertial Reference Module (OS4) as defined in MSC-03690, Rev. B, "Space Shuttle Orbiter Guidance, Navigation and Control Software Functional Requirements - Vertical Flight Operations", dated 15 December 1971.

Gerald M. Levine, Director
APOLL̇O Space Guidance Analysis Division

TABLE OF CONTENTS

Section 1 Introduction
Section 2 Functional Flow Diagrams
Section 3 Input and Output Variables
Section 4 Description of Equations
Section 5 Detailed Flow Diagrams
Section 6 Supplementary Information

NOMENCLATURE

$\underline{i n}_{1 R}$	Unit vector to star number one in reference coordinates.
$\underline{-1}_{\mathbf{i}}^{2}$	Unit vector to star number two in reference coordinates.
$\mathrm{i}_{1 \mathrm{~S}}$	Unit vector to star number one in present stable member coordinates.
$\underline{1}_{2 S}$	Unit vector to star number two in present stable member coordinates.
$\mathrm{M}_{\text {R-DS }}$	Transformation matrix from reference coordinates to desired stable member coordinates.
$\underline{-1}_{1}$ DS	Unit vector to star number one in desired stable member coordinates.
$\underline{\underline{i}}_{2}$ DS	Unit vector to star number two in desired stable member coordinates.
$\begin{aligned} & \stackrel{i}{-}_{\mathrm{XR}}{ }^{\prime}{\stackrel{\underline{i}}{Y R^{\prime}}}^{\underline{\underline{i}}_{\mathrm{ZR}}} \end{aligned}$	Unit vectors of the reference coordinate system.
$\begin{aligned} & \underline{\underline{i}}_{\mathrm{XS}} \\ & \underline{\mathrm{i}}_{\mathrm{ZS}} \underline{\mathrm{i}}_{\mathrm{YS}} \\ & \end{aligned}$	Unit vectors of the present stable member.
$\begin{aligned} & \underline{\underline{i}}_{\mathrm{XD}}{ }^{\prime} \stackrel{\underline{i}}{\mathrm{YD}}^{\prime} \\ & \underline{\underline{Z}}_{\mathrm{ZD}} \end{aligned}$	Unit vectors of the desired stable member.
$\underline{i}_{X U^{0}} \underline{\underline{i}}_{Y U^{\prime}}$	An orthogonal triad of unit vectors defined in terms of
$\underline{i}_{\mathrm{ZU}}$	$\underline{-}_{1 S}$ and $\underline{\underline{i}}_{2 S}$.
$\begin{aligned} & \underline{\underline{i}}_{\mathrm{XUD}}, \dot{\underline{i}}_{\mathrm{YUD}} \\ & \underline{\underline{\mathrm{I}}}_{\mathrm{ZUD}} \end{aligned}$	An orthogonal triad of unit vectors in terms of $-1 D S$ and $\stackrel{1}{2}_{2 S^{\circ}}$
$\theta_{x}, \theta_{y}, \theta_{z}$	Gyro torquing angles
$\begin{aligned} & x_{D j^{\prime}} y_{D j^{\prime}} Z_{D j} \\ & (j=1,2,3) \end{aligned}$	Projections of the desired stable member onto the present stable member.
$\underline{\underline{i}}_{\mathrm{Z}}=\left(\mathrm{z}_{1}, 0, z_{3}\right)$	A unit vector -- in the plane defined by $\underline{i}_{\mathrm{XS}}$ and $\underline{\underline{i}}_{\mathrm{ZS}}{ }^{--}$ used in the final determination of the gyro torquing angles.

1. INTRODUCTION

At various points in a Shuttle mission, the need arises to align the Inertial Reference Unit (IRU). By sighting on two stars and making use of the stored transformation from the optics frame to the navigation base frame, and the gimbal angle transformation from the navigation base to the stable member, unit vectors to the target stars in the present stable member coordinates are generated. Furthermore, as discussed in Ref. 1, the coordinates of these the stars, in the reference coordinate frame, are stored in the computer. Also stored in the computer is the transformation matrix from the reference frame to the desired stable member coordinate system. From the above, unit vectors to the target stars in the desired stable member frame are constructed. This information, when combined with the preceding, is sufficient to express the present stable member in terms of the desired stable member.

This document details how the gyro torquing angles required to go from the present stable member to the desired stable member are determined. The inputs are the transformation matrix from the reference to the desired stable member coordinates and the unit vectors to the two target stars in both the reference and present stable member coordinates. The method of determining the gyro torquing angles is exactly that used in project APOLLO (Ref. 2).

While the equations as derived are correct for arbitrarily large torquing angles, the alignments under consideration are Fine Alignments (i. e., torquing angles $\leqslant 1^{\circ}$).

2. FUNCTIONAL FLOW DIAGRAM

Thesuncitrit flow diagram for the calculation of Fine Alignment Gyro Torquing Angles is shown in Figure 1. The routine is entered after optical sightings have been made on two stars and the sighting data is considered acceptable on the basis of the star angle difference check. Reference 1 details the steps preceding entry into this routine.

Upon derivation of the gyro torquing angles, the angles are checked Gntwe tasis of previous gyro drift rates. Reference l details the logic which checks the reasonableness of the computed angles.

1
1

Figure 1. Fine Alignment Gyro Torquing Angles Functional Flow Diagram.

3. INPUT AND OUTPUT VARIABLES

 IRU.

4. DESC RIPTION OF EQUATIONS

4.1 Introduction

In this section the gyro torquing angles which allow for the fine alignment of the stable member from its present orientation to a desired orientation are described.

The present orientation of the stable member is determined (implicity) by sighting on two known* stars. Upon being processed by the computer, the mark data allows the positions of the stars to be expressed in terms of the present stable member coordinates. The unit vectors to the stars, in present stable member coordinates ($i_{1 S}, \underline{i}_{2 S}$) are given explicitly as:

$$
\begin{equation*}
\underline{i}_{1 S}=s_{1 X} \underline{\underline{i}}_{X S}+s_{1 Y} \underline{i}_{Y S}+s_{1 Z-i}{ }_{Z S} \tag{la}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{i}_{2 S}=s_{2 X-X S}+s_{2 Y}{\underset{-}{i}}_{Y S}+s_{2 Z-\frac{i}{Z S}} \tag{lb}
\end{equation*}
$$

Unit vectors of the same two stars in reference coordinates are given by $\underline{i}_{1 R}$ and $\underline{i}_{2 R}$.

4. 2 Star vectors in terms of desired stable member coordinates

The desired orientation of the stable member is stored in the computer. The unit vectors of the reference coordinate system are given by $\underline{i}_{\mathrm{XR}}{ }^{\prime} \stackrel{i}{\mathrm{i}}_{\mathrm{YR}}$, and i_{ZR} : corresponding unit vectors in the desired stable member are $\underline{i}_{X D S}{ }^{\prime} \underline{i}_{Y D S}$, and $\underline{i}_{Z D S}$. The two sets of unit vectors are related by the relation

$$
\left(\begin{array}{l}
\underline{i}_{\mathrm{XD}} \tag{2}\\
\underline{i}_{\mathrm{YD}} \\
\underline{i}_{\mathrm{ZD}}
\end{array}\right)=\mathrm{M}_{\mathrm{R}-\mathrm{DS}}\left(\begin{array}{c}
\underline{i}_{\mathrm{XR}} \\
\underline{i}_{\mathrm{YR}} \\
\underline{i}_{Z R}
\end{array}\right)
$$

*Here "known". means that the unit vector of the star in the reference coordinate system is stored in the computer.

4.1

where $M_{R-D S}$ is the transformation matrix between the two coordinate systems.

The unit vectors to the two stars are stored in the computer as

$$
\begin{align*}
& \underline{i}_{1 R}=r_{1 X} \underline{i}_{X}+r_{1 Y} \underline{i}_{Y}+r_{1 Z} \underline{i}_{Z} \tag{3a}\\
& \underline{i}_{2 R}=r_{2 X-} \underline{i}_{X}+r_{2 Y}{\underset{i}{y}}+r_{2 Z-\frac{i_{Z}}{}} \tag{3b}
\end{align*}
$$

The same stellar unit vectors, expressed in terms of the desired stable member coordinates, are given by

$$
\begin{align*}
& \underline{i}_{1 D S}=d_{1 X} \underline{i}_{X D}+d_{1 Y}{\underset{-}{i}}_{Y D}+d_{1 Z-Z D} \tag{4a}\\
& \underline{i}_{2 D S}=d_{2 X-X D}+d_{2 Y-Y D}+{\underset{i}{i}}_{2 Z-\dot{i}_{Z D}} \tag{4b}
\end{align*}
$$

where

$$
\left(\begin{array}{c}
d_{1 X} \tag{5a}\\
d_{1 Y} \\
d_{1 Z}
\end{array}\right)=M_{R-D S}\left(\begin{array}{c}
r_{1 X} \\
r_{1 Y} \\
r_{1 Z}
\end{array}\right)
$$

and

$$
\left(\begin{array}{l}
d_{2 X} \tag{5b}\\
d_{2 Y} \\
d_{2 Z}
\end{array}\right)=M_{R-D S}\left(\begin{array}{l}
r_{2 X} \\
r_{2 Y} \\
r_{2 Z}
\end{array}\right)
$$

4.3 Desired stable member in terms of present stable member

At this point we have the position vectors to two stars expressed in terms of both the present stable member and the desired stable member.

It is now desired to express the desired stable member in terms of the present stable member. To this end we define two ortho-normal
coordinate systems; one in the present stable member coordinates and the other in the desired stable member coordinates. The system defined in terms of the present stable member is given by .

$$
\begin{aligned}
\underline{i}_{X U} & =\underline{i}_{1 S} \\
\underline{i}_{\mathrm{YU}} & =\text { unit }\left(\underline{i}_{1 \mathrm{~S}} \times \underline{i}_{2 S}\right) \\
\underline{i}_{\mathrm{ZU}} & =\underline{i}_{\mathrm{XU}} \times \underline{i}_{\mathrm{XY}}
\end{aligned}
$$

while

$$
\begin{array}{ll}
\underline{i}_{\mathrm{XUD}} & =\underline{i}_{1 D S} \\
\underline{i}_{\mathrm{YUD}}= & \text { unit }\left(\dot{i}_{1 D S} \times \underline{i}_{2 D S}\right) \\
\underline{i}_{\mathrm{ZUD}}=\underline{i}_{\mathrm{XUD}} \times \underline{i}_{\mathrm{YUD}} \tag{7c}
\end{array}
$$

defines the system in terms of the desired stable member frame.

Explicitly,

$$
\left(\begin{array}{c}
\underline{i}_{\mathrm{XUD}} \tag{8}\\
\underline{i}_{\mathrm{YUD}} \\
\underline{i}_{\mathrm{ZUD}}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{u}_{\mathrm{X} 1} & u_{\mathrm{X} 2} & u_{\mathrm{X} 3} \\
\mathrm{u}_{\mathrm{Y} 1} & u_{\mathrm{Y} 2} & u_{\mathrm{Y} 3} \\
u_{\mathrm{Z} 1} & u_{\mathrm{Z} 2} & u_{\mathrm{Z} 3}
\end{array}\right) \cdot\left(\begin{array}{c}
\underline{i}_{\mathrm{XD}} \\
\underline{i}_{\mathrm{YD}} \\
\underline{i}_{\mathrm{ZD}}
\end{array}\right)
$$

Because the transformation matrix is orthogonal, $\left(\mathrm{M}^{\mathrm{T}}=\mathrm{M}^{-1}\right)$, we have upon inverting Eq. (8)

At this point it should be recalled that there exists only two physical vectors, albeit expressed in two frames of reference. Accordingly, if in Eq. (9) the set of unit vectors

$$
\left(\begin{array}{c}
\underline{i}_{\mathrm{XUD}} \\
\underline{i}_{\mathrm{YUD}} \\
\underline{\mathrm{i}}_{\mathrm{ZUD}}
\end{array}\right)
$$

is replaced by

$$
\left(\begin{array}{c}
\dot{i}_{\mathrm{XU}} \\
\underline{i}_{\mathrm{YU}} \\
\underline{i}_{\mathrm{ZU}}
\end{array}\right)
$$

we end up with

Thus we have succeeded in expressing the desired stable member in terms of the present. This is so because $\underline{i}_{X U}{ }^{\boldsymbol{i}} \underline{-}_{Y U}$, and $\underline{i}_{Z U}$ are expressed in terms of $\underline{i}_{1 S}$ and $\underline{i}_{2 S}$, each of which in turn is expressed in terms of

Explicitly, the unit vectors of the desired stable member are expressed in terms of those of the present stable member as follows;

$$
\begin{aligned}
\underline{i}_{\mathrm{XD}} & =\mathrm{x}_{\mathrm{D} 1} \underline{\underline{i}}_{\mathrm{XS}}+\mathrm{x}_{\mathrm{D} 2} \underline{\underline{i}}_{\mathrm{YS}}+\mathrm{x}_{\mathrm{D} 3} \underline{\underline{i}}_{\mathrm{ZS}} \\
\underline{\underline{i}}_{\mathrm{YD}} & =\mathrm{y}_{\mathrm{D} 1} \underline{\underline{i}}_{\mathrm{XS}}+\mathrm{y}_{\mathrm{D} 2} \underline{\underline{i}}_{\mathrm{YS}}+\mathrm{y}_{\mathrm{D} 3} \underline{\mathrm{i}}_{\mathrm{ZS}} \\
\underline{\underline{i}}_{\mathrm{ZD}} & =\mathrm{z}_{\mathrm{D} 1} \underline{\underline{i}}_{\mathrm{XS}}+\mathrm{z}_{\mathrm{D} 2} \underline{-}_{\mathrm{YS}}+\mathrm{z}_{\mathrm{D} 3} \underline{\underline{i}}_{\mathrm{ZS}}
\end{aligned}
$$

The oxact expressions for $\mathrm{x}_{\mathrm{D} 1}, \mathrm{x}_{\mathrm{D} 2}$, etc. are obtained by expressing $\underline{i}_{X U}{ }^{\prime} \dot{\underline{i}}_{Y U}$, and $\underline{i}_{Z U}$ in terms of $\dot{\underline{i}}_{X S^{\prime}} \dot{\underline{i}}_{Y S^{\prime}}$ and $\dot{\underline{i}}_{Z S}$ in Eq. 10 .

In the computations of the torquing angles, the coefficients $x_{D 1}$ $\mathrm{x}_{\mathrm{D} 2}$, etc. are used as inputs.

4.4 Calculation of Gyro Torquing Angles

Having expressed the desired stable member in terms of the present stable member, three rotations that bring the two into coincidence are readily defined. The definition of these angles is the same as that given in Ref. 2.

A rotation of θ_{Y} is first performed about the present y axis ($\underline{i}_{\mathrm{YS}}$) yielding $i_{X} \underline{-}_{Y S}$, and \underline{i}_{Z}. Then a rotation of θ_{Z} is performed about $\underline{\underline{i}}_{Z}$ yielding $\underline{i}_{X D}{ }^{\prime} \underline{i}_{Y}$, and \underline{i}_{Z}. Thirdly, a rotation of θ_{X} about $\underline{i}_{X D}$ results in ${\underset{\mathrm{i}}{\mathrm{XD}}}^{\prime} \stackrel{\underline{i}}{-\mathrm{YD}}^{\prime}$ and $\mathrm{i}_{\mathrm{ZD}}{ }^{\text {. }}$

The unit vector ${\underset{-}{Z}}_{Z}$, obtained after the first rotation, is given by

$$
\begin{align*}
& \underline{\underline{i}}_{Z} \equiv\left(z_{1}, 0, z_{3}\right) \tag{12a}\\
& =\left(\frac{-x_{D 3}}{\sqrt{x_{D 1}^{2}+x_{D}^{2}}, 0,} \begin{array}{l}
\sqrt{-x_{D 1}^{2}+x_{D 3}^{2}}
\end{array}\right) \tag{12b}
\end{align*}
$$

Expressed in terms of \underline{i}_{Z} and the projection of the present stable member onto the desired stable member, the rotation angles are given by:

$$
\begin{align*}
& \left\{\begin{array}{l}
\sin \theta_{Y}=z_{1} \\
\cos \theta_{Y}=z_{3}
\end{array}\right. \tag{13a}\\
& \left\{\begin{array}{l}
\sin \theta_{Z}=x_{D 2} \\
\cos \theta_{Z}=z_{3} x_{D 1}-z_{1} x_{D 3}
\end{array}\right. \tag{14a}\\
& \left\{\begin{array}{l}
\sin \theta_{X}=\underline{i}_{Z} \cdot-\dot{i}_{Y}=z_{1} y_{D 1}+z_{3} y_{D 3} \\
\cos \theta_{X}=\underline{i}_{Z} \cdot \underline{i}_{Z D}=z_{1} z_{D 1}+z_{3} z_{D 3}
\end{array}\right.
\end{align*}
$$

5. DETAILED FLOW DIAGRAM

This section contains detailed flow diagrams of the sequential equations used in the calculation of gyro torquing angles by the fine alignment routine.

UNIVERSAL CONST ANTS
$\underline{i}_{1 R}=r_{1 X} \underline{i}_{X R}+r_{1 Y} \underline{i}_{Y R}+r_{1 Z} \underline{i}_{Z R}$
$\underline{\underline{i}}_{2 R}=r_{2 X} \underline{i}_{X R}+r_{2 Y} \underline{\underline{i}}_{Y R}+r_{2 Z} \underline{\underline{i}}_{Z R}$

INPUT VARIABLES

$$
\begin{aligned}
& \underline{i}_{1 S}=s_{1 X} \underline{i}_{X S}+s_{1 Y} \underline{i}_{Y S}+s_{1 Z} \underline{i}_{Z S} \\
& \underline{i}_{2 S}=s_{2 X} \underline{i}_{X S}+s_{2 Y} \underline{i}_{Y S}+s_{2 Z} \underline{i}_{Z S} \\
& M_{R-D S}
\end{aligned}
$$

-

Express star unit vectors in terms of desired stable member coordinates

$$
\underline{i}_{1 D S}=d_{1 X-X D}+d_{1 Y} \underline{i}_{Y D}+d_{1 Z-} \dot{i}_{Z D}
$$

$$
\underline{i}_{2 \mathrm{DS}}=\mathrm{d}_{2 \mathrm{X}-\mathrm{i}} \mathrm{i}_{\mathrm{XD}}+\mathrm{d}_{2 \mathrm{Y}} \underline{\mathrm{i}}_{\mathrm{YD}}+\mathrm{d}_{2 \mathrm{Z}} \mathbf{i}_{Z \mathrm{D}}
$$

$$
\left(\begin{array}{c}
d_{1 X} \\
d_{1 Y} \\
d_{1 Z}
\end{array}\right)=M_{R-D S} \quad\left(\begin{array}{c}
r_{1 X} \\
r_{1 Y} \\
r_{1 Z}
\end{array}\right)
$$

$$
\left(\begin{array}{c}
d_{2 X} \\
d_{2 Y} \\
d_{2 Z}
\end{array}\right)=M_{R-D S} \quad\left(\begin{array}{c}
r_{2 X} \\
r_{2 Y} \\
r_{2 Z}
\end{array}\right)
$$

Figure 2a. Fine Alignment Gyro Torquing Angles

$$
\begin{aligned}
& \left\{\begin{array}{l}
\underline{\underline{i}}_{X U}=\underline{i}_{1 S} \\
\underline{i}_{Y U}=\text { unit }\left(\underline{i}_{1 S} \times \underline{i}_{2 S}\right) \\
\underline{i}_{Z U}=\underline{i}_{X U} \times \underline{i}_{Y U}
\end{array}\right. \\
& \left\{\begin{array}{l}
\underline{i}_{X U D}=\underline{i}_{1 D S} \\
\underline{i}_{Y U D}=\text { unit }\left(\dot{i}_{1 D S} \times \underline{i}_{2 D S}\right) \\
\underline{i}_{Z U D}=\underline{i}_{X U D} \times \underline{i}_{Y U D}
\end{array}\right.
\end{aligned}
$$

$$
\underline{i}_{X D}=\frac{i^{i}}{-} X U D, 1 \underline{i}_{X U}+\underline{i}_{Y U D, 1} \underline{i}_{Y U}+\underline{i}_{Z U D, 1} \underline{i}_{Z U}
$$

$$
=\mathrm{x}_{\mathrm{D} 1} \stackrel{\mathrm{i}}{\mathrm{XS}}+\mathrm{x}_{\mathrm{D} 2} \underline{-}_{\mathrm{i}}^{\mathrm{YS}}+\mathrm{x}_{\mathrm{D} 3} \underline{\mathrm{i}}_{\mathrm{ZS}}
$$

$$
=\mathrm{y}_{\mathrm{D} 1} \underline{i}_{\mathrm{XS}}+\mathrm{y}_{\mathrm{D} 2} \underline{i}_{\mathrm{YS}}+\mathrm{y}_{\mathrm{D} 3} \underline{\mathrm{i}}_{\mathrm{ZS}}
$$

$$
\underline{i}_{\mathrm{ZD}}=\underline{i}_{\mathrm{XUD}}, 3 \underline{\underline{i}}_{\mathrm{XU}}+\underline{\underline{i}}_{\mathrm{YUD}}, 3 \underline{i}_{\mathrm{YU}}+\underline{\underline{i}}_{\mathrm{ZUD}}, 3 \underline{\underline{i}}_{\mathrm{ZU}}
$$

$$
=z_{\mathrm{D} 1} \stackrel{\underline{i}}{\mathrm{X}}+\mathrm{z}_{\mathrm{D} 2} \stackrel{\underline{i}}{\mathrm{YS}}+\mathrm{z}_{\mathrm{D} 3} \underline{\underline{i}}_{\mathrm{ZS}}
$$

Figure 2b. Fine Alignment Gyro Torquing Angles

Figure 2c. Fine Alignment Gyro Torquing Angles
5.3

6. SUPPLEMENT ARY INFORMATION

The equations derived in this document define three rotations which are sufficient to bring the present stable member into coincidence with the desired stable member. Because of the arbitrariness in defining the order of successive rotations and the axes of rotation (i. e., with respect to the present stable member or the desired stable member), care must be exercised in calling the derived angles "gyro torquing angles". It is conceivable that different manufacturers might employ different definitions for "gyro torquing angles".

In that a specific IRU has not been selected for . Shuttle use, no final statement can presently be made as regards "gyro torquing angles" for fine alignment unless there are to be no other routines that might possibly operate under a conflicting definition.

In this document (as in Ref. 2) the rotations were executed in the sequence Y, Z, X. Should for any reason a different sequence be desired (e. g., X, Y, Z), the derived equations are correct provided a proper transformation of variables takes place (i.e., $Y \longrightarrow X, Z \longrightarrow Y$, $X \longrightarrow Z$).

Do not Reproduce

Additional for GN\&C Equation Documents (26)
G. Levine (10)
E. Olsson (5)
J. Rogers BC7
E. Smith (5)

