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NOMENCLATURE

Unit vector to star number one in reference coordinates.
Unit vector to star number two in reference coordinates.

Unit vector to star number one in present stable member

coordinates.

Unit vector to star humber two in present stable member

coordinates.

Transformation matrix from reference coordinates to

desired stable member coordinates.

Unit vector to star number one in desired stable member

coordinates.

Unit vector to star number two in desired stable member
coordinates,

Unit vectors of the reference coordinate system.

Unit vectors of the present stable member,

Unit vectors of the desired stable member.

An orthogonal triad of unit vectors defined in terms of

4y and dpg

An orthogonal triad of unit vectors in terms of__i1DS and
lopg- !

Gyro torquing angles

Projections of the desired stable member onto the

present stable member.

A unit vector -- in the plane defined by iy and i, --
used in the final determination of the gyro torquing

~angles.



1, INTRODUCTION

~ At various points in a Shuttle miésion, the need arises to align the
Inertial Reference Unit (IRU). By sighting on two stars and making use of
the stored transformation from the optics frame to the navigation base
frame, and the gimbal angle tran:»;f;;ormation from the navigation base to
the stable member, unit vectors to'-)the target stars in the present stable
member coordinates are generated. ' Furthermore, as discussed in

Ref. 1, the coordinates of these.lxo stars, in the reference coordinate

frame, are stored in the compute¥. Also stored in the computer is the
transformation matrix from the reference frame to the desired stable
member coordinate system. From the above, unit vectors to the target
stars in the desired stable member frame are constructed. This infor-
mation, when combined with the preceding, is sufficient to express the

present stable member in terms of the desired stable member.

‘This document details how the gyro torquing angles required to go
from the present stable member to the desired stable member are
determined. The inputs are the transformation matrix from the reference
to the desired stable member coordinates and the unit vectors to the two
target stars in both the reference and present stable member coordinates.
The method of determining the gyro torquing angles is exactly that used
in project APOLLO (Ref. 2).

While the equations as derived are correct for'arbitrarily large

torquing angles, the alignments under consideration are Fine Alignments
(i. e., torquing angles£1°). '

1Al



2.  FUNCTIONAi, FLOW DIAGRAM

she: mm‘ﬂ.» wol’flow diagram for the calculation of Fine Alignment
Gyro Torquing Angles is shown in Figure l, The routine is entered after
optical sightings have been made on two stars and the sighting data is
considered acceptable on the basis of the star angle difference check.

Reference 1 details the steps preceding entry into this routine,

Upon derivatiﬁn of the gyro torquing angles, the angles are checked

*ﬁ.ﬂ:t.v m,a'-_ _of previous gyro drift rates, Reference 1 details the logic

2.1
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Optical sightings yield unit vectors - in
present stable member coordinates - to

two known stars le. 125)'

Extract from storage the coordinates of
the target stars in the reference coordinate

frame (-ilR’ —izR)- .

v

Use matrix transformation defining desired
SM orientation to convert 1, and_12R to

star vectors expressed in desired stable

member coordinates QIDS’ -22DS)'

ilS’ —i—ZS’ ilDS a_nd_iZDS' are used to express
desired stable member in terms of present

stable member.

X

Calculate gyro torquing angles.

i

Figure 1, Fine Alignment Gyro Torquing Angles
Functional Flow Diagram.
~



3. INPUT AND OUTPUT VARIABLES

hr
1r

Mg_ps

Input Variables

Unit vector of star number one in present stable member

coordinates.

. Unit vector of star number two in present stable member

coordinates.
Unit vector of star number one in the reference frame,

Unit vector of star number two in the reference frame,

Transformation matrix from reference to desired SM

coordinates.

Output Variables

Gyro torquing angles required for fine alignment of the
IRU.




4, DESCRIPTION OF EQUATIONS

4,1 Introduction

In this section the gyro torquiﬁg angles which allow for the fine
alignment of the stable member from its present orientation to a desired

orientation are described.

The present orientation of the stable member is determined
(implicity) by sighting on two known* stars. Upon being processed by the
computer, the mark data allows the positions of the stars to be expressed
in terms of the present stable member coordinates. The unit vectors to
the stars, in present stable member coordinates (118’ —'}ZS) are given

explicitly as:

dig 7 Sixixs t o Siylys T oSi1zdzs (1a)
and

* Soyiyg t Syzdzg (ib)

igg = Soxixs

Unit vectors of the same two stars in reference coordinates are given

by i;p and i,p.

4,2 Star vectors in terms of desired stable member coordinates

The desired orientation of the stable member is stored in the com-
puter. The unit vectors of the reference coordinate system are given by
lXR’ iyge and_12R: corresponding unit vectors in the desired stable member
are iy, dyps and_}ZDS. The two sets of unit vectors are related by the
relation ’

-

XD z —iX_R

Yp ' ivr| - -

: = Mg _ps : ' (2)
| —ZD B

\ izr

*Here "known' means that the unit vector of the star in the reference

-

coordinate system is stored in the computer.



where MR-DS is the transformation matrix between the two coordinate

. systems.

The unit vectors to the two stars are stored in the computer as

3R
Lr

The same stellar unit vectors, expressed in terms of the desired

iy ¥ nydy vyl

Toxdx * Toyly t Tez

stable member coordinates, are given by

dps * Yxixp * 4y &p * 4zlzp

dops = doxixp t Yoy iyp * daziype
where

le %

dvl=m vy

4z Y/
and

dox Tox

d _ r

2Y |= Mg_pg |72V

doz Tyz

4.3 Desired stable member in terms of present stable member

At this point we have the position vectors to two stars expressed

(3a)

(3b)

(42)

(4b)

(5a)

(5b)

in terms of both the present stable member and the desired stable member,

It is now desired to express the desired stable member in terms

of the present stable member. To this end we define two ortho-normal -



coordinate systems; one in the present stable member coordinates and the

other in the desired stable member coordinates. The system defined in

terms of the present stable member is given by

Ixu

dvu

iy
while

ixup

dyup

2zup

Ais
unit (ilsx —iZS)

Ixg X 2

dips

unit (g % Ippg)

ixup * iyup

defines the system in terms of the desired stable member frame.

Explicitly;
ixup
Yup] *

iZUD

Because the transformation

Uz2

have upon inverting Eq. (8)

dxp

Uy1
Uya
Uy3

uys " [ixp
Uys yp
Uzz | izp

matrix is orthogonal, (MT = M'l), we

u
Uz2 yup
Ugs i;up

At this point it should be recalled that there exists only two physical
‘vectors, albeit expressed in two frames of reference. Accordingly,

if in Eq. (9) the set of unit vectors

(6a)

(6b)

(6¢c)

(7a)
(Th)

(7c)

- (8)

(9



dxup

lyup
izup
is replaced by
dxy
vy
dzu
.we end up with
Ixp Ux1 | uz1 ixy ,
kp| - Uxo Uyo Sz iyy | 10
izp uxs Uys Uz3 izu

Thus we have succeeded in expressing the desired stable member
in terms of the present, This is so because_iXU, Yy and—J:ZU are expressed
in terms of_ils and —i2S' each of which in turn is expressed in terms of
ixgr iygr andizg-

Explicitly, the unit vectors of the desired stable member are expressed
in terms of those of the present stable member as follows;

ixp = %*p; dxs * *p2 iys T *ps izs (11a)
iyp = Yp1ixs * Yp2 iys * Yps lzs (11b)
izp = 2pydxs * Zp2 iys * Zps izs (ic)

The oxact expressions for Xpnp ¥pa etc. are obtained by expressing
igye iy and i4 in te#ms of_1_XS, ig and i,¢ in Eq. 10,

In the computations of the torquihg'a,ngles, the coefficients Xpye
Xpyor ete. arelused as inputs. " ‘

o

1
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4,4 Calculation of Gyro Torquing Angles

Having expressed the desired stable member in terms of the present
stable member, three rotations that bring the two into coincidence are
readily defined, The definition of these angles is the same as that given
in Ref, 2.

A rotation of 8 v is first performed about the present y axis (_i_YS)
_ .y1e1ding_iX, iygr and i,. Then a rotation of OZ is performgd about
-iZ yielding_iXD, iy, and —i—Z‘ Thirdly, a rotation of GX about_iXD
results in iXD’ p and_iZD.

The unit vector iZ' obtained after the first rotation, is given by

i, 5 (2, 0, z3) - (12a)
—D3 . *D1
- 2 2, 0,[ 2 5 |
j *'pp ¥ *p3 j-fxm * Xpg (12b)

Expressed in terms of_iZ and the projection of the present stable

member onto the desired stable member, the rotation angles are given by:

sin PY =2y A | (13a)
{cos 6y = 23 ‘ o - (13b)
{sin 8, = Xp :  (14a)
cos GZ = Z3 Xp - 2] Xpg3 ‘ - ' (14b)
{Si‘? 8x = 1z. —iYi? =% Ym ¥ 23 Yp3 | (15a)
cos GX = —i-Z . iZD = 2y 2y + 2Z3 23 {15b)



5. DETAILED FLOW DIAGRAM

This section contains detailed flow diagrams of the sequential equations

used in the calculation of gyro torquing angles by the fine alignment routine.

UNIVERSAL CONSTANTS

INPUT VARIABLES

YR Nixixr t Niyiyr t Nz izg

g = Tox ixgp * Yoy lyr * T2z izg

Ais ® Sixixs * S1y yg * Siz igs

dgs = Saxixs t Say Lys * Saz lzs

Mg bs

-

[

Express star unit vectors in terms of

desired stable member coordinates

dopg = d

d;x
d

diz

d2X
d
d

27/

dps ® Yxixp * Yy iyp T 4z 17p

2x-ixp * 92y fyp * d2z izp

¥ F Mp.ps

2Y = M

—

Figure 2a. Fine Alignment Gyro Torquing Angles

5.1



Express desired stable member coordinates in terms of present

stable member coordinates,

[(ixu = 4s

{ dyy = wnit (g x dpg)
Lizy = dxy xyy

[ixup * Jbs

{ iygp = wit Gpg x ippg

| izup = ixup x tyup

i

dxp = Ixup, 14xu T tyup, 1lvu * izup, 1 zvu

=xp) ixs * *pg dys * *p3 1z

yp = iup, 2 Xxu t Lyup, 2 2vyu * 2zup, 2 lzu

=¥p1 dxs T Yp2 iys * Yp3 dzs

izp 7 ixup, 3 Xxu T iyup, 3 2vu * lzup, 3 lzu

zp dxs T Zp2 iys t Zp3 lzg

Figure 2b, Fine Alignment Gyro Torquing Angles
. ' 5.2 :




Figure 2c¢. Fine

Calculate gyro torquing angles
iZ = unit (- XDS,V 0, xDl)
= (zl, 0, z3) .
™
{sm v 2
COSeY = 23
in 6 =
{Sm z ° *D2
cos 0, = z5 xp - 2) Xpg
{Si“ b =iz + iyps ° % Zpp T 23 Zp3
cos 6y = i, . i ng = 2) Yy + 23 Ypg3
EXIT

Alignment Gyro Torquing Angles
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6. SUPPLEMENTARY INFORMATION

The equations derived in this document define three rotations which are
sufficient to bring the present stable member into coincidence with the-de-
sired stable member. Because of the arbitrariness in defining the order
of successive rotations and the axes of rotation (i. e,, with respect to the
present stable member or the desired stable member), care must be
exercised in calling the derived angles "gyro torquing angles'. It is
conceivable that different manufacturers might employ different definitions

- for "gyro torquing angles".

In that a specific IRU has not been selected for Shuttle use, no final
statement can presently be made as regards ''gyro torquing angles" for
fine alignment unless there are to be no other routines that might possibly

operate under a conflicting definition.

In this document (as in Ref. 2) the rotations were executed in the
sequence Y, Z, X, Should for any reason a different sequence be desired
(e.g., X, Y, Z), the derived equations are correct provided a proper

transformation of variables takes place (i.e., Y —»=X, Z '

»

X —7).

6.1
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