
Using Formal Methods and Object-Oriented Analysisto Reverse Engineer Shuttle Software�Betty H. C. ChengyMichigan State UniversityDepartment of Computer ScienceEast Lansing, Michigan 48824-1027U. S. A. Brent AuernheimerzCalifornia State University, FresnoDepartment of Computer ScienceFresno, California 93740-0109U. S. A.AbstractCorrectness is an important issue in safety-critical software control systems. Unfortunately,failures in critical segments of software for medical equipment, communications, and defense arefamiliar to the public. Such incidents motivate the use of software development techniques that reduceerrors and detect defects. The bene�ts of applying formal methods in requirements-driven softwaredevelopment (forward engineering) are well-documented; formal notations are precise, veri�able, andfacilitate automated processing. This paper describes the application of formal methods and object-oriented modeling to reverse engineering, in which formal speci�cations are developed for existing,or legacy, code. In this project, several layers of formal speci�cations were constructed for a portionof the NASA Space Shuttle Digital Auto Pilot (DAP), a software module that is used to controlthe position of the spacecraft through appropriate jet �rings. The reverse engineering process wasfacilitated by the Object Modeling Technique (OMT), an informal software development approachthat uses graphical notations to describe software requirements.1 IntroductionCorrectness is necessary in safety-critical software control systems [1]. Critical software failures inmedical equipment, communication networks, and defense systems are familiar to the public. The largenumber of software malfunctions regularly reported to the software engineering community [2], newstatutes concerning liability for such failures, and a recent National Research Council Aeronautics andSpace Engineering Board Report [3], additionally motivate the use of software development techniquesthat reduce errors and detect defects.The bene�ts of using formal methods in requirements-driven software development (forward engi-neering) are well-documented [4]. A formal method is characterized by a formal speci�cation languageand a set of rules that govern the manipulation of expressions in that language.�The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology,and was sponsored by the National Aeronautics and Space Administration. Additionally, the authors' work on this projectwas supported by NASA/ASEE Summer Faculty fellowships. A preliminary version of this paper was presented at theNASA/Goddard Software Engineering Workshop, Greenbelt, Maryland, December, 1993.yThis author is also supported in part by NSF grant CCR-9209873 and CCR-9407318.zThis author gratefully acknowledges the Software Engineering Institute at Carnegie Mellon University for support asa Visiting Scientist, Spring 1994.

One way to take advantage of the bene�ts of formal methods in legacy systems is to reverse engineerthe existing program code into formal speci�cations [5, 6]. The resulting formal speci�cations can thenbe used as the basis for change requests and the foundation for subsequent veri�cation and validation [7].Common reverse engineering methods currently used by software maintenance engineers are observation(for example, test case analysis) and examination of source code. These techniques are often tediousand error-prone. Considering the high cost of re-implementation and the need to preserve criticalfunctionality, reverse engineering of code into formal speci�cations o�ers an alternative to traditionalad hoc approaches to maintaining safety-critical systems.A highly visible example of a legacy system is the software for the NASA Space Shuttle, which wasconceived in the early 1970s and has been operational for over ten years. One component of the Shuttlesoftware is the ight software that provides guidance, navigation, and control for the Space Shuttlewhile it is in orbit. The navigation function determines where the shuttle is, the guidance functiondetermines where it should go next, and the control function determines how to implement the nextmove.Presently, the Space Shuttle ight software project has a well-de�ned process for managing require-ments evaluation. This process is responsible for ensuring that requirements generated by an engineerare consistent, implementable, and will solve the problem at hand. However, this process does notinclude a well-de�ned set of analytical methods and techniques [7, 8]. When a change is needed, adetailed description of the reasons for the change, known as a change request (CR), must be constructedbefore the system can be re-engineered to include the changes. Next, the requirements analyst performsan in-depth analysis of the CR, guided by a list of generic error categories, followed by an inspection ofthe CR by several representatives of the software project, including the author of the CR, requirementsanalyst, developer, veri�er, and so on. When all inspections have been conducted for a CR and allissues (potential errors) have been resolved, a CR is ready for implementation. At this point, a baselinefor the project, a milestone that describes the current system with the accepted changes, is created andscheduled for implementation.The analysis step of the CR process involves studying, understanding, and analyzing the contents ofa CR. Three major de�ciencies in this process have been identi�ed by requirements analysts [8]. First,there is no speci�c methodology for conducting the analysis of the CR. Second, there are no speci�ccompletion criteria to indicate when su�cient information has been obtained for the CR. Third, thereis no speci�c structured mechanism for documenting the results of the analysis process. Moreover, sincethere is no structured approach for documenting the analysis, the understanding of the CR developedby the requirements analyst is not formally recorded for future use.2

This paper describes a project that applies formal methods and object-oriented analysis to a subsys-tem of the DAP of the Shuttle, known as the Phase Plane. This module determines whether jet �ringsare needed to achieve and hold an attitude (position relative to a speci�c frame of reference) speci�edby the crew. The objective of this project is to provide formal speci�cations of the requirements andfunctionality of the system that can be used to facilitate automated veri�cation and validation of futurechanges and to facilitate re-engineering tasks. This project explored the use of formal speci�cationsto derive requirements that are more detailed and precise than an English paragraph, and less obscurethan optimized source code. We developed several layers of formal speci�cations that capture the detailsof the requirements of the Phase Plane module. In order to facilitate the construction of the layersof speci�cations, we constructed a pictorial description of the subsystem using the Object ModelingTechnique (OMT) [9], an informal software development approach that uses graphical notations todescribe software requirements.The remainder of the paper is organized as follows. Section 2 describes the Phase Plane project,including sample speci�cations and a discussion of the object-oriented analysis. Section 3 contains asummary of the process that we used to reverse engineer the Phase Plane subsystem. This section alsoincludes lessons learned from this project and the bene�ts and the limitations of our approach. Finally,conclusions and future investigations are described in Section 4.2 Project DescriptionDue to the criticality and the volume of ight system software, recent ight system projects areincorporating formal methods into the software development process [1, 4]. In order to apply formalmethods to legacy ight software, however, reverse engineering is needed. The Phase Plane project isassociated with a larger multi-NASA site project to apply formal methods to a portion of the ightcontrol software for the NASA Space Shuttle [7, 8]. The criteria that led to the selection of Phase Planeincluded �nding a module whose requirements were di�cult to understand and which will likely be thetarget of future critical change requests.The development of the high-level formal speci�cations was divided into two major tasks. First, weacquired a concise description of the original requirements of the module. Much of this informationwas obtained from a functional requirements document, consisting largely of wiring diagrams similarto those used for circuit design, the (astronaut) crew training manual, source code, informal designnotes, and discussions with Shuttle software personnel. We used the resulting description to develop3

an \as-built" (implementation-biased) formal speci�cation, capturing the functionality depicted in thewiring diagrams.Second, in order to obtain a more abstract speci�cation and eliminate the implementation biaspresent in the as-built layer, we developed object modeling diagrams (OMT) [9] to represent theintegral information from the low-level speci�cations. These diagrams facilitated the identi�cationof abstractions that we introduced into the higher-level speci�cations. This process of developing a levelof formal speci�cation, followed by the construction of the corresponding OMT diagrams, enabled theidenti�cation of the high-level, critical requirements of the Phase Plane module. Sample speci�cationsand OMT diagrams are described below.2.1 Phase PlaneThe Reaction Control System (RCS) Digital Auto Pilot system (DAP) achieves desired positions vianecessary movements through jet �rings. Figure 1 gives a pictorial representation of translation (x, y,and z coordinates of the vehicle) and attitude (rotational position of the vehicle in terms of roll, pitch,and yaw) as they relate to the position of the Shuttle.
x

y

yaw z

roll

pitchFigure 1: Shuttle Translational and Rotational AxesIn order to maintain the Shuttle at a speci�c attitude, the crew speci�es two values: attitude deadbandand rate deadband. Attitude deadband refers to how much drift (positive or negative) will be toleratedin any axis before jets are �red to correct the error. Rate deadband refers to the allowable rate changesof the attitude (positive or negative) before jet �rings are required to null the error. Figure 2 gives ahigh-level view of the DAP; the Phase Plane component compares information from the State Estimatorthat describes current attitude values, taking into consideration spacecraft dynamics (e.g., fuel usage4

and inertia) and the crew supplied values. Depending on the amount of error correction necessary, thePhase Plane component requests jet �rings, where the Jet Select component determines which jet(s)to �re (the topic of the larger multi-NASA site project).
State

 Estimator

Phase Plane
 Logic

Jet Selection
 Logic

 Spacecraft
 Dynamics

Desired
state State

Estimated
 state

DIGITAL AUTO PILOT (DAP)

Figure 2: Context for the Phase Plane moduleFigure 3 gives a simpli�ed graphical representation of the phase plane. A phase plane is representedas a graph plotting spacecraft rate errors against attitude errors for one rotational axis. In anattitude hold situation, deadbanding occurs (indicated by dashed lines), which means that the errorplot cycles around the zero error point with jets �ring each time the limits of the \box" are exceeded.Each \" indicates points that the Shuttle is changing system state with respect to thruster �rings.The shaded coast regions depict situations where the Shuttle needs no corrective action. The remainingregions are known as hysteresis regions, where external factors, such as positive (negative) accelerationdrift, propellant usage, inertia, time lags between �ring commands, and sensor noise, are taken intoconsideration in order to preclude unnecessary jet �rings.The requirements for the Phase Planemodule are described in a functional speci�cation that includesa simpli�ed wiring diagram (see Figure 4), which identi�es the input and output values, as well as severaltables that contain equations from control theory to calculate the boundaries of the phase plane andits regions. For historical reasons, the functional descriptions use notation commonly used for circuitdesign, even though the system being described is software-based. The solid lines represent data owsand dashed lines represent control. In Figure 4, the dashed line indicates that the enable ag must beset by the crew in order to enable the auto pilot mode.5

3

45

1 2

6

+ rate error

− attitude
deadband

Coast Region

Hysteresis Region

Deadbanding Path

+ rate deadband

− rate deadband

+ attitude error

+ attitude
deadband

 No jets fire. Since the rate error is positive, the attitude
 error will grow in a positive direction.

 Jets fire to nullify the positive rotational rate.

1

2

3

4

5

6

 Jets stop firing when the deadband line is crossed, but a little
 negative rate error is inevitable.

 No jets fire. With a negative rate error, the attitude error will
 also drift negatively.

 Jets fire to nullify negative rate error.

 Jets stop firing, but residual positive rate error causes attitude
 error to go positive again and the cycle repeats.

States during Deadbanding

Figure 3: Graphical depiction of the phase plane, with coast and hysteresis regions2.2 Formal Speci�cationsOne aspect of formal methods for software development is the use of a formal speci�cation language,a rigorous notation to precisely de�ne the functionality and requirements of the system. There existsmany types of formal speci�cations, but we can categorize them into two major types: model-orientedand property-oriented. Model-oriented speci�cations de�ne system's behavior directly by constructinga model of a system in terms of mathematical structures, such as tuples, functions, sets, or sequences.Examples include VDM and Z for sequential systems and CSP and Petri Nets for concurrent anddistributed systems [10]. Property-oriented speci�cations de�ne a system's behavior indirectly bystating a set of properties (usually in terms of axioms) that the system must satisfy [10]. Two sub-categories are axiomatic speci�cations typically expressed in terms of pre- and postconditions in �rst-order predicate logic and algebraic speci�cations that use axioms to specify properties, where axiomsare in equation format. The PVS (Prototype Veri�cation Systems) formal speci�cation tools [11](e.g. syntax checker and theorem prover) were used for this reverse engineering project. PVS is6

ON

OFF

Control Logic

 for

Phase Plane

enable

previous thruster commands

deadband limits

attitude error

rate error

thruster commands

rate limitsFigure 4: Simpli�ed wiring diagram for the Phase Plane modulea property-oriented speci�cation language, where a speci�cation comprises a collection of theories.Each theory consists of a signature for the type names and locally declared constants, as well as theaxioms, de�nitions, and theorems associated with the signature. In addition to its property-orientedattributes, which enable the straightforward construction of and reasoning about speci�cations thatdescribe behavior and desired (required) properties, we chose the PVS language for its modularity andthe availability of tools, such as syntax- and type-checkers.In order to obtain a speci�cation of the high-level requirements from the existing documentation andsource code, we constructed several layers of PVS speci�cations, where each layer is more abstract thanthe preceding layer. Speci�cation of a system through increasingly detailed levels of abstraction is awell-established method [10, 12]. Reverse engineering the Phase Plane project involved a mixture ofa bottom-up with a top-down approach. We developed the speci�cations in the following order: low-,high-, and mid-level. High-level natural language descriptions of this portion of the Shuttle DAP wereavailable, as was source code. Given the range of details available from the two types of documentation(prose versus code), we decided to start with the low-level speci�cations to ensure that we captured anaccurate description of the current functionality. Next, we used the high-level descriptions from the crewtraining manual to construct several OMT diagrams, all of which was used to assist in the identi�cationand speci�cation of high-level requirements. Finally, in order to bridge the information gap between the7

low-level, implementation-speci�c and the high-level speci�cations, we constructed a set of mid-levelspeci�cations. The OMT diagrams introduced abstraction into the low-level speci�cations, and thehigh-level speci�cations identi�ed critical properties applicable to the overall component; the combinedinformation provided the constraints for the mid-level speci�cations.2.2.1 Low-level Speci�cationsWe developed the low-level formal speci�cation of Phase Plane from the existing source code, the crewtraining manual, and the low-level wiring diagrams. This speci�cation mirrored the functionality ofthe existing system, but did not o�er an abstract view of the module's functional requirements. Theoptimized source code consisted of several calculations for determining the regions within the phaseplane. In Figure 3, we have provided a high-level depiction of the regions within the phase plane,where, in actuality, the coast and hysteresis regions each have more �ne-grained partitions with a totalof �ve regions as determined by fourteen boundaries (labeled s1-s14). The boundary calculations madeextensive use of several constants stored in a table, which represent initialization values for a given ight.The code also dictated how control actions were calculated depending on which region the shuttle waslocated. In order to calculate the control actions, values of variables that serve as the interface betweenthe Phase Plane and other components within the DAP were used. Example values include error ratelimits, deadband values, current rate error, current position, and the previous jet �ring commands. Forbrevity, we do not include the complete low-level speci�cations here, but the speci�cations may be foundin the appendix.2.2.2 High-Level Speci�cationsNext, we developed a high-level \black-box" speci�cation, which did not include implementation details.At this level, it was straightforward for us to state abstract properties that any software implementingPhase Plane must possess. The high-level speci�cation describes properties that characterize theShuttle's position in terms of attitude and rate deadband values: if the Shuttle travels outside thespeci�ed regions, then the jets need to be �red to bring the Shuttle back into the phase plane region.We de�ned a few predicates to describe general properties of the Shuttle, where Boolean predicates aredenoted by a \?" su�x, and the types of the predicate arguments are enclosed in square brackets. First,the is_deadbanded? predicate determines whether the Shuttle is in a deadbanding state, where thereare four arguments to the predicate corresponding to the attitude deadband, rate deadband, currentattitude error, and current rate error represented by their respective types.8

is_deadbanded? : pred[attitude_deadband_type,rate_deadband_type,attitude_error_type,rate_error_type]Next, two predicates are de�ned to check whether rate and attitude errors are in a region where jetsneed to be �red to decrease rate error (generate positive rate error).decrease_rate_error? : pred[attitude_deadband_type,rate_deadband_type,attitude_error_type,rate_error_type]increase_rate_error? : pred[attitude_deadband_type,rate_deadband_type,attitude_deadband_type,rate_deadband_type]Figure 5 contains an abbreviated version of the top-level speci�cations. In this case, wiring_phase_planerefers to the low-level speci�cations. The referenced states are those depicted in Figure 3.The following high-level axiom, based on the speci�cation for the six states, relates the attitude tothe rate deadbands, as well as the rate and attitude errors. Speci�cally, the axiom asserts the invariantthat if the Shuttle is in the deadband regions, then there is no need to �re jets to increase or decreasethe rate error.AXIOM FORALL(att_db:attitude_deadband_type),(rate_db:rate_deadband_type),(att_err:attitude_error_type), (rate_err:rate_error_type):is_deadbanded?(att_db,rate_db,att_err,rate_err) <=>NOT (decrease_rate_error?(att_db,rate_db,att_err,rate_err) ORincrease_rate_error?(att_db,rate_db,att_err,rate_err))2.2.3 Mid-Level Speci�cationsFinally, we outlined a mid-level formal speci�cation that captures critical aspects of functionalityand requirements at a level that would be useful to Shuttle requirements analysts when reviewingproposed modi�cations to the module. Code developed from this speci�cation would implement the\Phase Plane Logic" box of the low-level wiring diagram (Figure 4). The challenge at the mid-levelwas to omit extraneous implementation details, yet be precise enough to capture necessary propertiesconcerning minimization of fuel usage, thruster �rings, and movement about the desired attitude. Inconstructing the mid-level speci�cations, we made several assumptions. First, we did not considerexternal acceleration disturbances. This assumption means that by taking advantage of symmetry, it issu�cient to specify only the upper (nonnegative rate error) half of the Phase Plane diagram, as shownin Figure 6. Second, the hysteresis region is treated as a coast region. Finally, an implementation biaspreviously imposed in the wiring diagrams to allow the crew to enable the module was removed. Wealso removed the explicit assertion that the calculations will be done once for each axis (roll, pitch, andyaw). 9

%%% Module: High-Level Specifications of Properties for Phase Plane Module%% The following characterize the 6 states of Shuttle when it is deadbanding%%high_level_phase_plane: THEORYBEGINUSING wiring_phase_plane % low-level specifications for phase plane%% No jets fire. Since the rate error is positive, the attitude error will% grow in a positive direction. (State 1)%no_jets_positive_rate?(att_db,rate_db,att_err,rate_err) : bool =is_deadbanded?(att_db,rate_db,att_err,rate_err) &rate_err > 0 & att_err > 0%% Jets are firing to correct positive rotational rate (State 2)%jets_fire_correct_pos_attitude_error? (att_db,rate_db,att_err,rate_err):bool =NOT (is_deadbanded?(att_db,rate_db,att_err,rate_err)) &decrease_rate_error?(att_db,rate_db,att_err,rate_err)%% Jets stop firing when deadband line is crossed, but a little negative% rate error is inevitable. (State 3)%jets_stop_negative_rate_error?(att_db,rate_db,att_err,rate_err) : bool =is_deadbanded?(att_db,rate_db,att_err,rate_err) &rate_err < 0%% No jets fire. With negative rate error, the attitude error will also% drift negatively. (State 4)%no_jets_negative_rate?(att_db,rate_db,att_err,rate_err) : bool =is_deadbanded?(att_db,rate_db,att_err,rate_err) &rate_err < 0 & att_err < 0%% Jets are firing to correct negative attitude error (State 5)%jets_fire_correct_neg_attitude_error?(att_db,rate_db,att_err,rate_err): bool =NOT (is_deadbanded?(att_db,rate_db,att_err,rate_err)) &increase_rate_error?(att_db,rate_db,att_err,rate_err)%% Jets stop firing, but residual positive rate error causes attitude% error to go positive again and cycle starts over (State 6)%jets_stop_positive_rate_error?(att_db,rate_db,att_err,rate_err) : bool =is_deadbanded?(att_db,rate_db,att_err,rate_err) &rate_err > 0...end high_level_phase_planeFigure 5: Sample high-level speci�cations of Phase PlaneFigure 7 de�nes a few deadbanding functions to take advantage of the symmetry and y representsthe vertical axis (absolute value of rate error) and x is the horizontal (attitude error) axis. Thesymmetry property enables us to generalize the calculations to those in the upper half of the deadband10

+ rate error

Coast Region

Hysteresis Region

Rate_Deadband

Lower_Rate_Deadband

Lower_Coast_Limit Upper_Attittude_Limit

y

x
+ attitude error

Lower_Attitude_LimitFigure 6: Upper Half of Phase Planeregion. The adjust_for_symmetry function accounts for symmetry of the phase plane and returnsthe new thruster command given the current rate error and thruster command. The calculations forupper_attitude_limit and lower_attitude_limit are a generalization of a portion of the low-levelspeci�cations. These limits determine the bounds of the hysteresis regions, and, as mentioned previously,are a function of the jet �rings.The tail of the coast region is de�ned by the rate_deadband above and the lower_rate_deadbandbelow. The following speci�cation gives the lower_rate_deadband as a real and asserts that thelower_rate_deadband is at most the rate_deadband.lower_rate_deadband: realrate_deadband_relationship: AXIOM lower_rate_deadband <= rate_deadbandThe lower (left) boundary of the coast region is de�ned by the lower_attitude_limit (a functiondeclared below) and attitude_deadband. The speci�cation asserts only that the lower_coast_limitis at most the lower_attitude_limit.lower_coast_limit: realcoast_limit_relationship: AXIOM lower_coast_limit <= lower_attitude_limitThe primary function control_action returns a thruster command. Thruster hysteresis can beused to minimize thruster �rings due to delays, sensor noise, or movement between state transitionboundaries. Figure 8 gives the speci�cation for calculating the thruster commands. First, it must be11

%% Calculate coordinates for plotting attitude and rate errors% y: absolute_rate_error_type = abs(rate_error)x: real = sign(rate_error)*attitude_error% Because all calculations are done in the upper half of the deadband% region, the calculated thruster command may need to be reversed.adjust_for_symmetry(t: thruster_command_type,re: rate_error_type) : thruster_command_type =IF (t = zero_thrust) OR (sign(re) >= 0)THEN t% re was negative, so thruster commands must be reversedELSE IF t = positive_thrustTHEN negative_thrust% t was negative_thrustELSE positive_thrustENDIFENDIF%% Calculate boundary of hysteresis region based on a function of jet firings% upper_attitude_limit: real = -sqr(y)/(2*thruster_impulse) + attitude_deadbandlower_attitude_limit: real = -sqr(y)/(2*thruster_impulse) - attitude_deadbandFigure 7: Variables and deadbanding functions to adjust for symmetry in phase planedetermined if the spacecraft is outside the deadband area and thrusters should be �red \downward".Second, it must be determined whether the spacecraft is outside the deadband area and thrusters shouldbe �red \upward". Third, if the spacecraft is within the \coast" zone, then do not �re thrusters. If allthe above cases do not apply, then incorporate thruster hysteresis.thruster_hysteresis: thruster_command_type = zero_thrustcontrol_action: thruster_command_type =IF (y > rate_deadband) OR (x > upper_attitude_limit)THEN adjust_for_symmetry(negative_thrust, rate_error)ELSE IF (y < lower_rate_deadband) AND (x < lower_coast_limit)THEN adjust_for_symmetry(positive_thrust, rate_error)ELSE IF (y <= rate_deadband)AND (lower_rate_deadband <= y)AND (x <= lower_attitude_limit)OR (x <= lower_attitude_limit)AND (lower_coast_limit <= x)AND (lower_rate_deadband <= y)THEN zero_thrustELSE thruster_hysteresisENDIFENDIFENDIF Figure 8: Speci�cation of Function to Calculate Thrust Commands12

2.3 Construction of OMT DiagramsIn the early stages of software development, including object-oriented approaches, diagrams are fre-quently used to describe requirements and guide development. The OMT [9] notation combines threecomplementary diagramming notations in order to document system requirements: object models,dynamic models, and functional models. An object model describes the architecture of an overall systemin terms of the elements (objects) of a system and identi�es allowable relationships among objects. Asa result, the object model constrains the set of possible states that the system may enter. A dynamicmodel describes valid transitions between system states and indicates the conditions under which astate change may occur. Dynamic models are described in terms of state transition diagrams. Afunctional model is a data ow diagram that describes the computations to be performed by the system.In a complementary fashion, these three types of diagrams are used to model the properties of thesystem, including ow of control, ow of data, patterns of dependency, time sequence, and name-spacerelationships. The OMT approach is appealing since it o�ers multiple views of software requirements,and since a single notation is not forced to describe many di�erent perspectives of a given system, thenotation for each type of diagram is simple to use and easy to understand.Since the original Phase Plane software was not object-oriented, we began the OMT analysis with thesource code and implementation-speci�c wiring diagram of the Phase Plane module and constructedtwo levels of data ow diagrams. These diagrams assisted in the abstraction process to obtain anarchitectural view of the phase plane as it related to the overall DAP system, thus leading to theconstruction of the object models. Using the functional and object diagrams in conjunction with thedescription of the deadbanding states, we created the dynamic model for the Phase Plane module. Thedynamic model depicts the states between jet �rings as the Shuttle deadbands. We generated a high-level speci�cation based largely on the dynamic model. The object and the functional models o�eredone level of abstraction, which directly enabled us to develop of the next layer of formal speci�cations(mid-level speci�cations describing data structures and operations on the data structures).2.3.1 Functional ModelsData ow diagrams (DFD) facilitate a high level understanding of systems and are used in both forwardand reverse enginering. Static analysis of program code provides information that accurately describesow of data in a system. Process \bubbles" denote procedures or functions of a given system, arrowsrepresent data owing from one process to another, and rectangles represent external entities.13

The simplest functional model is a context diagram, or Level 0 DFD; the Level 0 DFD for thePhase Plane module is shown in Figure 9, where the entire phase plane module is reduced to a processbubble, with the external input and output labeled. The Level 0 DFD closely resembles the structureof the wiring diagram for Phase Plane given in Figure 4.
Phase Plane

 Module

Jet Select

Module

External

Input

Variables

thruster

commands

previous thruster commands

rate error

attitude error

rate deadbands

attitude deadbandsFigure 9: High Level (0) DFD for Phase Plane ModuleFigure 10 gives the next level DFD, which shows the di�erent processes that constitute the Phase Planemodule. As shown in this �gure, the input variables are used to calculate boundaries for the phase plane.The boundaries, the attitude and the rate deadbands, are supplied to the Phase Plane module, whichcalculates thruster commands (jet �rings). The thruster commands are then supplied to the Jet Selectmodule that determines which combination of jets should be used to achieve the desired thruster e�ect.2.3.2 Object ModelsFigure 11 depicts a high-level object model for the entire DAP, consisting of the State Estimator, PhasePlane, and the Jet Select classes, corresponding to the diagram given in Figure 2. Each class consists ofthree parts corresponding to the name of the class, list of attributes, and list of operations, respectively.The diamond symbol denotes aggregation, where the class above the diamond is said to consist of thethree classes below the diamond. If either attributes or operations are not known (or do not exist) fora given class, then the corresponding area is shaded. The Phase Plane class uses the class Crew Supplied14

Input

Variables

External

previous thruster commands

rate error

attitude error
Calculate Boundaries

for
Phase Plane

Generate
Control Actions

for Different Regions of
Phase Plane

Jet Select

Module

thruster

commands

Boundaries

attitude deadbands

rate deadbands

Figure 10: Level 1 DFD for Phase Plane ModuleInformation, which represents the deadband limits that are used in the calculation of the phase planeboundaries.Figure 11 also contains the object diagram for the Phase Plane class,with attributes rate error, attitudeerror, and rotation axis. The operation for this class is calculate thrust commands, based on the di�erencebetween the current rate and attitude error values and those respective limits supplied by the crew.The �lled circle attached to the Phase Plane class, indicates that the DAP contains three phase planecomponents, one to calculate di�erent thrust commands for each of the speci�c rotational axes: roll,pitch, and yaw. There are two components for each Phase Plane object, Coast Region and HysteresisRegion. In the coast region, only the values of the attitude and rate errors are used to determine whetherthe Shuttle is still within the deadband limits. In the hysteresis region, however, additional information,such as fuel usage, sensor noise, and other spacecraft dynamics, is used to calculate thrust commands.2.3.3 Dynamic ModelsThis section gives the dynamic models for the phase plane, which describes the states in which the DAPcan be with respect to the Phase Plane component. Also included are the transitions that take theDAP from one state to another. A pictorial diagram of the position of the Shuttle is given in Figure 3.15

State Estimator

Current Position
Spacecraft Dynamics

Jet Select

List of Jets

Fire Jets
Stop Firing Jets

DAP

Turn on
Turn off

3

Rate Error
Atttitude Error

Calculate thrust

commands

Rotation Axis

Phase Plane

Uses

Crew Supplied
Information

Lower Attitiude Limit
Upper Attitude Limit

Rate Deadband

Fuel Usage
Sensor Noise
Spacecraft Dynamics

Coast Region Hysteresis RegionFigure 11: Object model for DAPSince the Phase Plane module is an event-based system, the state transition diagram is straightforwardto construct.Figure 12 gives a state transition diagram of the states through which the Shuttle transitions whileit is deadbanding. The state transitions are in the form of jets terminate (begin) �ring and the Shuttledrifting into (out of) the deadband region.Note that Figure 3 depicts the clockwise traversal of the states in which the Shuttle cycles through thedeadband limits. It is also possible for the Shuttle to traverse the cycle in a counterclockwise fashion,in which case, the arrows in Figure 12 would be reversed.Finally, a very high-level view of the states in which the Shuttle can be is given in Figure 13. Includedin the diagram are the actions or conditions that cause the Shuttle to transition from one state to thenext: jet �rings and drift. The rectangle containing \Phase Plane" and the labeled arrows pointing tothe states indicate that the state transitions describe the Phase Plane module.16

fire jets

stop firing

positive attitude drift

stop firing

Firing Jets to
correct negative

acceleration

Constant

Negative Rate

Positive

Accelerating rate

negative attitude drift fire jets

Negative

Accelerating rate

Constant

Positive Rate

Firing Jets to

correct positive

accelerationFigure 12: States representing the clockwise deadbanding of the Shuttle
fire jets

In Deadband Region

Outside Deadband Region

Phase Plane Module

is deadbanded

is not deadbanded

driftFigure 13: High-level states for Orbiter with respect to the Phase Plane module3 Summary and Evaluation of Reverse Engineering ProcessThis section summarizes the reverse engineering process and discusses the lessons learned. The bene�tsto the overall project gained from the reverse engineering results are described. Finally, the limitationsand problem areas of this approach are discussed. 17

3.1 Process SummaryThe Phase Plane module consisted of approximately 200 lines of highly optimized code. In order toreverse engineer Phase Plane and understand its context, we had to analyze approximately �ve timesthat amount. While a precise cost analysis was not performed for this project, an estimate of thecost of the analysis and construction of formal speci�cations and accompanying OMT diagrams wasapproximately two person months. This cost includes the time needed to learn PVS and how to useits tools, acquire supporting documentation, gain a minimal understanding of control theory, and re�neseveral times the speci�cations and diagrams. Combining the cost information from the Jet Selectreverse engineering project, it does appear that the costs are within reason and are roughly comparableto the current cost of requirements analysis [7]. When considering highly critical subsystems the costis not prohibitively expensive.The results from this reverse engineering project have provided several lessons for future reverseengineering projects. First, in order to obtain high-level requirements for existing software, it is di�cultto obtain the speci�cations (formal or informal) in a single step. Instead, several layers of speci�cationsshould be developed, starting with the as-built speci�cation. By closely mirroring the programmingstructure of the existing software, this speci�cation provides traceability through the di�erent levels ofspeci�cations.A summary of the overall process used to reverse engineer Phase Plane is given in Figure 14.3.2 Bene�ts to the Software Development ProcessFormal speci�cation languages and their corresponding reasoning systems provide a framework forintegrating disparate sources of project information to describe a system at many levels of detail. Theproject information may be documented in a variety of formats, come from di�erent sources (oftenphysically distributed), and subjected to varying levels of formal review. For this particular project,information was obtained from implementation-speci�c wiring diagrams, de�nitions and instructionsfrom a crew training manual, source code, informal design notes, and discussions with Shuttle softwarepersonnel. We analyzed and distilled the information into speci�cations and OMT modeling diagrams.These products will increase the capability for future analysis of the Phase Plane component. That is,because the requirements information are now described in a formal notation (annotated with easy tounderstand diagrams), automated analysis and validation are possible, which will greatly facilitate futureapprovals of change requests. In addition, the PVS proof system provided an automated mechanismfor checking the completeness and consistency of the speci�cations.18

� Identify components of software to be analyzed.� Gather supporting documentation, including functional requirements, source code,design-level documentation, and user-manuals (as available).� De�ne what the \hard constraints" of the speci�cation are. What documentationshould be used as the source for describing the critical requirements of thesystem? For reverse engineering projects, typically, the source code and functionalrequirements document is used to determine critical requirements.� Create \as-built" layer of speci�cations. This layer of speci�cation should directlymirror the functionality observed from the source code. This mirroring e�ect willprovide traceability from the �nal layers of speci�cations to the source code.� In order to introduce abstraction, create multiple levels of DFDs and begin theobject-oriented (OO) analysis. The OO analysis is used to create an architecturalview of the system, which is applicable even if the original system was not developedwith object-orientation.� Using high-level documentation (e.g. user manual) to identify the high-level systemrequirements, which should then be pictorially represented in terms of the dynamicmodel (state transition diagram).� Based on the state transition diagrams, create high-level speci�cations.� Re�ne the object-models of the system using information from the DFDs, code, andhigh-level documentation.� Construct the mid-level speci�cations by developing properties that providethe linkage between the implementation-speci�c information from the low-levelspeci�cations and the required properties described in the high-level speci�cations.� After constructing the speci�cations, use proof tools to check for consistencybetween speci�cation layers.Figure 14: General process for reverse engineering using formal methods and object-oriented analysisThird, the results of this project demonstrate that bene�ts of object-oriented analysis can be exploitedfor reverse-engineering as well as forward engineering projects. Speci�cally, object-oriented analysisassists in the understanding of large, complex systems. Furthermore, an object-oriented perspectivefacilitates future modi�cations by providing the requirements analyst and the developer with a high-level, abstract view of system components.Finally, a process consisting of the construction of a level of formal speci�cations, followed by a setof corresponding diagrams facilitates the development of several layers of speci�cations. The diagramsintroduce abstractions that can be used to guide the construction of the next level of speci�cations.Furthermore, the three complementary notations in the OMT approach enable the speci�er to representdi�erent components of the system using the best-suited type of diagram.19

3.3 Limitations to this ApproachWhile there are several bene�ts to using an integrated approach consisting of formal speci�cations andOMT diagrams, several limitations exist. Currently, in order to perform consistency and completenesschecks of the PVS speci�cations for a speci�c component or subsystem, theories that describe relatedcomponents may need to be constructed. In our case, we had the advantage that a team had constructedPVS speci�cations for the Jet Select component. Also, the speci�cations have focused thus far onfunctional properties. In future investigations, we will study the amenability of PVS to non-functionalproperties.Second, the speci�cation and diagram construction process is not automated, however, once thespeci�cations are created, they can be analyzed and manipulated using automated tools. This lim-itation is due largely to the current software development practice. First, system requirements aretypically described in documents that may contain ambiguous language. Second, as software ages anddevelopment teams change, information concerning speci�c decisions during the analysis and designprocesses may become more di�cult to �nd. Third, di�erent conventions may be used by di�erentparticipating parties to describe software systems. Therefore, it is di�cult to develop tools to interpretand integrate information from such disparate and wide ranging information. There exist, however,research projects currently investigating several of these issues with the intention of automating asmuch of the reverse engineering process as possible [5, 6, 13].Finally, we found that those projects that involve signi�cant domain-speci�c information or specializedareas of expertise, such as the use of control theory in the Phase Plane project, require additional e�ortto capture the special information in the speci�cations and its corresponding documentation. Thise�ort could be in the form of contacting the original authors, experts in the specialty area, or learningthe necessary knowledge from archived sources, such as textbooks. However, once the appropriateinformation is captured in the requirements speci�cations, future maintenance tasks will greatly bene�tfrom such documented knowledge.4 Conclusions and Future InvestigationsUsing formal speci�cations and object-oriented analysis to describe the software that implements thePhase Plane module of the Space Shuttle DAP has demonstrated that these complementary analysisand development techniques can be used for existing, industrial applications. The di�erent levels ofspeci�cations, with increasing abstraction, supplemented by the OMT diagrams provided a means forintegrating di�erent types of information regarding the Phase Plane module from disparate sources.20

Having access to the formal speci�cations and diagrams will facilitate the veri�cation that the originalrequirements or properties are not violated by any future changes to the software. In addition tofacilitating veri�cation tasks, the formal speci�cations can be used as the basis for any automatedprocessing of the requirements, including checks for consistency and completeness. Interaction with therequirements analyst and other members of the original development team for the project stronglysupport the conclusion that the speci�cation construction process is useful to the overall softwaredevelopment and maintenance processes of legacy (safety-critical) systems [8].Future investigations will continue to re�ne the mid-level and high-level speci�cations and developtheorems to relate the levels of speci�cations. We will continue to investigate the use of automated tech-niques to reverse engineer speci�cations from code using a derivational approach [5]. Technical reportsand other papers relevant to this project may be found by browsing the world-wide web site for the Soft-ware Engineering Research Group atMichigan State University, http://web.cps.msu.edu/~chengb/serg.html.5 AcknowledgementsSeveral people have provided valuable information and assistance during the course of the project.Speci�cally, we would like to thank Rick Covington, David Hamilton, John Kelly, Philip McKinley, andJohn Rushby.Reference herein to any speci�c commercial product, process, or service by trade, name, trademark,manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Govern-ment or the Jet Propulsion Laboratory, California Institute of Technology.References[1] J. Rushby, \Formal methods and the certi�cation of critical systems," Technical Report SRI-CSL-93-07, SRIInternational, Computer Science Laboratory, 333 Ravenswood Ave., Menlo Park, CA 94025-3493, November1993. Available via anonymous ftp from ftp.csl.sri.com.[2] P. G. Neumann and contributors, \Risks to the public," in Software Engineering Notes, ACM Special InterestGroup on Software Engineering, 1993.[3] Aeronautics and Space Engineering Board National Research Council, An Assessment of Space Shuttle FlightSoftware Development Practices. National Academy Press, 1993.[4] S. Gerhart, D. Craigen, and T. Ralston, \Experience with Formal Methods in Critical Systems," IEEESoftware, vol. 11, January 1994.[5] G. C. Gannod and B. H. C. Cheng, \Facilitating the maintenance of safety-critical systems," Int. J. ofSoftware Engineering and Knowledge Engineering, vol. 4, no. 2, pp. 183{204, 1994.[6] M. Ward, \Abstracting a speci�cation from code," Journal of Software Maintenance: Research and Practice,vol. 5, pp. 101{122, 1993. 21

[7] J. C. Kelly, R. G. Covington, and D. Hamilton, \Results of a formal methods demonstration project," inProc. of WESCON, (Anaheim, California), pp. 62{66, September 1994.[8] Jet Propulsion Laboratory, Johnson Space Center, and Langley Research Center, \Formal MethodsDemonstration Project for Space Applications: Phase I Case Study: STS Orbit DAP Jet Select." D-11432,Jet Propulsion Laboratory, Pasadena, California, December 1993.[9] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and Design.Englewood Cli�s, New Jersey: Prentice Hall, 1991.[10] J. M. Wing, \A Speci�er's Introduction to Formal Methods," IEEE Computer, vol. 23, pp. 8{24, September1990.[11] N. Shankar, S. Owre, and J. Rushby, \The PVS speci�cation language and tools," technical report, ComputerScience Laboratory, 333 Ravenswood Ave., Menlo Park, CA 94025-3493, 1993. Available via anonymous ftpfrom ftp.csl.sri.com.[12] C. B. Jones, Systematic Software Development Using VDM. Prentice Hall International Series in ComputerScience, Prentice Hall International (UK) Ltd., second ed., 1990.[13] P. T. Breuer and K. Lano, \Creating speci�cations from code: Reverse-engineering techniques," Journal ofSoftware Maintenance: Research and Practice, vol. 3, pp. 145{162, 1991.A Description of VariablesThis section contains descriptions of variables referenced in the body of the paper.

22

Name DescriptionInputsattitude error Body angle errorbypass open-loop control, by axis, (1=openloop)deadband magnitude of deadbandsdeltav minimp magnitudes of changes in vehicleangular rate due to 80ms RCS �ringcommandforce �re rate damping agphase plane accel magnitude of average control acceler-ation available for each axis, scaled forphase plane useprimary vernier sw ag indicating that primary jets arebeing used for controlRCS RCS (Reaction Control System) modeindicatorrot jet cmd rotation command from previous cyclerate error body angular rate errorrate limit magnitudes of rate error limitsundesired accel total undesired body angularaccelerationOutputsomega e desired desired angular rate datarot jet cmd For primary: command to �re plusor minus jets or no jets. For vernier:command to �re plus or minus jets, nojets, or weighted \preference" for o�-axis commands.B Low Level Formal Speci�cationsThis section contains the \as-built" speci�cations, where there is a direct correspondence to the DFDdiagrams. Also included are the speci�cations describing the calculation for the boundaries (s1-s14)of the di�erent regions of the phase plane. Figure 15 gives the Level 2 DFD for the Phase Plane,where the control actions for �ve regions are calculated, the boundary values are explicitly calculatedat this level. Notice that Figure 10 has one child diagram for the process labeled \region2." Region 2corresponds to the DFD shown in Figure 16. The control logic for Region 2 is much more complicatedand corresponds to a series of nested alternative statements. Region 2 is decomposed into three moreregions, where the input values are made up of boundary values determined by S11, external input. Thismodule generates a value for the thruster command (rot jet cmd). Figure 16 further re�nes Region 2to three more detailed regions. 23

Calculate
Boundaries

(s1−s14)

Calculate
Control for
Region 1

thruster
commands

External Input
Variables

Calculate
Control for
Region 2

Calculate
Control for
Region 3

Calculate
Control for
Region 4−5Figure 15: Level 2 DFD for Phase Plane, detailing calculations of control actions for �ve regions%% %% Module: Phase Plane %% %% Author: Betty H.C. Cheng %% Brent Auernheimer %% %% Created On: Tue June 22, 1993 %% %% Last Modified By: Brent Auernheimer %% %% Last Modified On: Fri July 23, 1993 %% %% This theory is a specification for regions as defined in Table 4.2.2.2.2.1% in PVS for the Phase Plane component.%%%% STS 83-0009D% OI-21% Dated: February 13, 1991%%types: THEORY EXPORTING ALL BEGIN%% %% TYPE DECLARATIONS % 24

Calculate control
for Region CS

Calculate control
for Region CS

Calculate control
for Region CS

Calculate
Boundary
Values

s11

External Input
Variables

Thruster
Commands

Figure 16: Level 3 DFD for Phase Plane% %%%rotation: TYPE = {roll, pitch, yaw}scalar_direction: TYPE = {x: real | -1 <= x & x <= 1} CONTAINING 0scale_factor: TYPE = {x:real | 0 <= x & x <= 1} CONTAINING 0rate_error_type: TYPE = [rotation -> real] % units are deg/sattitude_error_type: TYPE = [rotation -> real] % units are degreesdeadband_type: TYPE = [rotation -> real] % magnitudes of% attitude deadbandsdesired_angular_rate: TYPE = {z: real| -5 <= z & z <= 5} CONTAINING 0scalar_rotation_direction:TYPE = [rotation -> scalar_direction]undesired_ang_accel_type:TYPE = [rotation -> real]phase_plane_accel_type:TYPE = [rotation -> real]deltav_minimp_type: TYPE = [rotation -> real] % magnitudes of changes% in vehicle ang. rate due% to 80 ms RCS firing commandforce_fire_type: TYPE = [rotation -> bool] % rate damping flag%(from Rot_disc)rate_error_limit_type: TYPE = [rotation -> posreal]tuple_type: TYPE = [scalar_direction,desired_angular_rate, bool]END typesi_loads: THEORY EXPORTING ALL BEGIN%%% %% CONSTANT DECLARATIONS %% % 25

%%IMPORTING types% The following are from the I-LOAD Table (4.2.2.2.2-5)wfrate: scale_factor % Scale factor for off-axis vernier preferencewhigh: real % upper target rate error for TVC crossfeedwlow: real % lower target rate error for TVC crossfeedlrl_tvc: real % TVC lower rate limit from I-load tablekledge: real % don't know what this is - see page 4-183END i_loads%nulls_and_undefineds: THEORY EXPORTING ALL BEGIN% notused, null and undefined values used in the specificationnotused: real % used in definition of s4null: real % null valueundefined: real % null valueEND nulls_and_undefineds%external_inputs: THEORY EXPORTING ALL BEGINIMPORTING types%% External Inputs: %%prev_rot_jet_cmd:scalar_rotation_directionbypass: boolu_d: undesired_ang_accel_typeu_c: phase_plane_accel_typedb: deadband_typeforce_fire: force_fire_typercs: boolomega_e: rate_error_typetheta_e: attitude_error_typerl: rate_error_limit_type % magnitudes of rate error limitsprimary_vernier_sw: boolomega_min: deltav_minimp_type % (local name) mag. of changes in% vehicle ang. rate due to 80 ms% RCS firing commandEND external_inputs%utility_functions: THEORY EXPORTING ALL BUT non_neg_real BEGINsign(x: real): integer = IF x >= 0 THEN 1 ELSE -1 ENDIFabs(x: real): real = If x < 0 THEN -x ELSE x ENDIFnon_neg_real: TYPE = {r: real | r >= 0} CONTAINING 0sqrt: [non_neg_real->non_neg_real]sqrt: AXIOM FORALL (x, y: non_neg_real): x*x = y IMPLIES x = sqrt(y)END utility_functions 26

%x_and_y: THEORY EXPORTING ALL BEGINIMPORTING types, external_inputs, utility_functions% x1 and x2 are local variables used in Figure 4.2.2.2.2-2x1(r: rotation): real = sign(omega_e(r)) * theta_e(r)x2(r: rotation): real = abs(omega_e(r))% y1 and y2 are local variables used in Figure 4.2.2.2.2-3y1(r: rotation): real = sign(u_d(r)) * theta_e(r)y2(r: rotation): real = sign(u_d(r))*omega_e(r)END x_and_y%switching_lines: THEORY EXPORTING ALL BUT se, u_cp, kl, c BEGINIMPORTING types, external_inputs, utility_functions, i_loads,nulls_and_undefineds, x_and_y%%% Specification of switching lines (Table 4.2.2.2.2-3) %% se is defined in the note at the bottom of Table 4.2.2.2.2-1%se(r: rotation): real = sign(omega_e(r))% u_cp, kl, and c are defined in the note at the bottom of Table 4.2.2.2.2-3%u_cp(r: rotation): real = u_c(r)-sign(omega_e(r))*u_d(r)kl:real = IF primary_vernier_sw THEN kledge ELSE 0 ENDIFc(r:rotation): real =IF abs(prev_rot_jet_cmd(r)) /= 1 THEN 125/100 ELSE 1 ENDIF% note that the arguments to s1 need to be either x2 or y2%s1(s: [rotation -> real], r: rotation): real = (s(r)*s(r))/(2*u_cp(r))+db(r)s2(s: [rotation -> real], r: rotation): real =(c(r)*s(r)*s(r))/(2*u_cp(r)) - (12/10)*db(r) - kls3(r: rotation): real = rl(r)s4(r: rotation): real =IF not primary_vernier_sw THEN 8/10*rl(r) ELSE notused ENDIFs5(r: rotation): real =IF not rcsTHEN lrl_tvcELSIF not primary_vernier_sw THEN (6/10)*rl(r)ELSIF rl(r)-2*omega_min(r) >= (2/100) THEN rl(r)-2*omega_min(r)ELSE (2/100)ENDIF% no s6 in the requirements% the -1 and +1 are explicit to reflect "K" in the requirements%s7(r: rotation): real =IF y2(r) >= 0 THEN -1 * (sign(y2(r))*y2(r)*y2(r))/2*u_cp(r) -db(r)ELSE (sign(y2(r))*y2(r)*y2(r))/2*u_cp(r) -db(r)ENDIF 27

% s8 is the negation of s3%s8(r: rotation): real = -rl(r)% no s9 in the requirementss10(r: rotation): real = (c(r)*y2(r)*y2(r))/(2*u_cp(r)) + (12/10)*db(r) + kl%% the requirements for s11 imply a two step specification%s11_part1(r: rotation): real =IF (((-12/10)*db(r)-kl <= y1(r)) & (y1(r) < -(1/2)*db(r))) OR (not rcs)THEN 0ELSIF (-(1/2)*db(r) <= y1(r) & (y1(r) <= s10(r))) & rcsTHEN -sqrt(2*abs(u_d(r))*(y1(r) + (1/2)*db(r)))+omega_min(r)ELSE undefinedENDIFs11(r: rotation): real =IF s11_part1(r) > 0 THEN 0ELSIF s11_part1(r) < -rl(r) + omega_min(r)THEN -rl(r) + omega_min(r)ELSE undefined %????ENDIF% no s12 or s13 in the requirementss14(r: rotation): real = (y2(r)*y2(r))/(2*u_cp(r))+db(r)END switching_lines%disturbance_hysteresis_logic: THEORY BEGINIMPORTING types, utility_functions, x_and_y, switching_lines,external_inputs%%% %% These three function calculates disturbance regions defined in %% Table 4.2.2.2.2-2 . These values are used to define Region 2 %% as defined in Table 4.2.2.2.2-1, and its output are values %% for rot_jet_cmd %% %%% Region CS %%%%%%%%%%%%%%region_cs(r: rotation): real =IF rcs THEN sign(u_d(r)) * wfrate* ((s11(r) - y2(r))/(rl(r) + s11(r)))ELSE 0 ENDIF%%%%%%%%%%%%%%% Region HS1 %%%%%%%%%%%%%%%region_hs1(r: rotation): real =IF prev_rot_jet_cmd(r) = -sign(u_d(r)) THEN nullELSIF NOT rcs THEN 0ELSIF force_fire(r) THEN -sign(u_d(r))ELSE -sign(u_d(r)) * wfrate* ((y1(r) - s11(r))/(rl(r) - s11(r)))ENDIF%%%%%%%%%%%%%% 28

% Region HS2 %%%%%%%%%%%%%%%region_hs2(r: rotation): real =IF prev_rot_jet_cmd(r) = sign(u_d(r)) THEN nullELSIF NOT rcs THEN 0ELSIF force_fire(r) THEN sign(u_d(r))ELSE sign(u_d(r)) * wfrate* ((s11(r) - y2(r))/(rl(r) + s11(r)))ENDIF%%% %% Main control logic for determining disturbance hysteresis regions%% %%%disturbance_hysteresis_p_p_regions(r: rotation): real =IF (s2(x2,r) <= y1(r)& y1(r) <= s7(r)& y2(r) >= 0& y2(r) <=s3(r))OR (s14(r) <= y1(r)& y1(r) <= s10(r)& y2(r) >= s8(r)& y2(r) <= s11(r))THEN region_cs(r)ELSIF(s7(r) <= y1(r)& y1(r) <= s1(x2,r)& y2(r) >= 0& y2(r) <= s3(r))OR (s7(r) <= y1(r)& y1(r) <= s10(r)& y2(r) >= s11(r)& y2(r) <= 0)THEN region_hs1(r)ELSIF s7(r) <= y1(r)& y1(r) <= s14(r)& y2(r) >= s8(r)& y2(r) <= s11(r)THEN region_hs2(r)ELSE nullENDIFEND disturbance_hysteresis_logic%%%control_actions_by_region: THEORY BEGINIMPORTING types, external_inputs, switching_lines, disturbance_hysteresis_logic%% %% Main function for control logic for phase plane calculations: %% yields three values: (rot_jet_cmd(r), wed(r), force fire(r)) %% %% This function specifies Table 4.2.2.2.2-1. %% %%control_actions(r: rotation): tuple_type =IF bypass THEN (prev_rot_jet_cmd(r), 0, force_fire(r))%%%%%%%%%%%% 29

% Region 1 %%%%%%%%%%%%%ELSIF x1(r) > s1(x2,r) OR x2(r) > s3(r) THENIF x1(r) <= s3(r)THEN (-sign(omega_e(r)), -se(r) * wlow, false)ELSE (-sign(omega_e(r)), se(r) * whigh, false)ENDIF%%%%%%%%%%%%% Region 2 %%%%%%%%%%%%%ELSIF s2(x2,r) <= x1(r)& x1(r) <= s1(x2,r)& x2(r) <= s3(r)% disturbance_hysteresis_logic function specifies rot_jet_cmd value% wed = 0THEN (disturbance_hysteresis_p_p_regions(r), 0, false)%%%%%%%%%%%%%%%%%%%% Regions 3, 4, 5 %%%%%%%%%%%%%%%%%%%%ELSIF x1(r) < s2(x2,r)%%%%%%%%%%%%% Region 3 %%%%%%%%%%%%%THEN IF x2(r) < s5(r) THEN (sign(omega_e(r)), se(r) * wlow, false)%%%%%%%%%%%%%%%%% Regions 4, 5 %%%%%%%%%%%%%%%%%ELSIF s5(r) <= x2(r) THEN%%%%%%%%%%%%%%%%%%%%%%%%% Region 4, 5 (case a) %%%%%%%%%%%%%%%%%%%%%%%%%IF x2(r) <= s3(r) THENIF primary_vernier_sw THEN (0 ,se(r) * wlow, false)%%%%%%%%%%%%%%%%%%%%%% Region 4 (case b) %%%%%%%%%%%%%%%%%%%%%%ELSIF s4(r) <= x2(r) THENIF prev_rot_jet_cmd(r) = -se(r)THEN (prev_rot_jet_cmd(r), 0, false)ELSE (se(r) * wfrate * ((((8 / 10) * rl(r))- x2(r)) / (2 / 10) * rl(r)), 0, false)ENDIF%%%%%%%%%%%%%%%%%%%%%% Region 5 (case b) %%%%%%%%%%%%%%%%%%%%%%ELSE % x2(r) < s4(r)IF prev_rot_jet_cmd(r) = se(r)THEN (prev_rot_jet_cmd(r), 0, false)ELSE (se(r) * wfrate * (((8 / 10) * rl(r)- x2(r))/(2 / 10) * rl(r)), 0, false)ENDIFENDIFELSE (prev_rot_jet_cmd(r), 0, false)ENDIFELSE (prev_rot_jet_cmd(r), 0, false)ENDIFELSE (prev_rot_jet_cmd(r), 0, false)ENDIFEND control_actions_by_region 30

