
AP 101S Assembly Language -

Introduction
— Reading and Understanding Assembly Code

OTP275.04

Christopher C. Marchant

PASS SSW Development

February, 2004

1/2004
AP 1018S Assembler

United Space Alliance

AP 101S Assembly Language
Introduction

nnn
e CourseLength: 4 hours

¢ Course Number: OTP275.04

¢ Prerequisites: None (although a previous introduction to low level
computer programming is useful)

¢ Intended Audience: Shuttle PASS Flight Software Developers, Verifiers,
and Requirement Analysts

° Objectives:
— Provide a brief AP-101S hardware (CPU) introduction
— Introduce the AP-101S Assembler instruction set

* Content: 2 Training Sessions of 2 hours each

o

004

USAAP 1018 Assembler Page 1

es
:

.

United Space

mek
f

cy)

())
|

)

Suggested References
¢ SPACE SHUTTLE MODEL AP-101S PRINCIPLES OPERATION WITH

SHUTTLE INSTRUCTION SET

— a.k.a. the P.O.0O.

— SFOC-OE0001 (dated 12/18/98)
¢ AP101 ASSEMBLER USER’S GUIDE

— USA000516, O130 (dated 2/27/03)

1/2004 USAAP 101S Assembler
Page 2

—=<
United Space Aiiianca

AssemblyVocabulary- 1

Assembly:The automatic translation of symbolic code into machine

code; An assembly language; Assembly code.

Assembler: A program that produces executable machine code from

symbolic assembly language.

From: The American Heritage® Dictionary of the English Language, Fourth Edition

.

®

vos USAAP 1018 Assembler Page3 es

/
‘

)
,

)
United Space

s

)))

Assembly Vocabulary - 2
Immediate Data: Data which is embedded in the command using it;
especially useful for small numbers which can be represented in fewer
bits than the number needed to list a separate address pointer

Main Storage: (or just plain Storage) GPC RAM

Offset: The difference between two address locations in RAM

Reaister:A data storage region of the CPU; registers can be accessed
at least twice as fast as any location in RAM

Load: The act of copying data from storage to a processor register

Store: The act of copying data from a processor register to storage

Branch: Basically a GOTO statement; can cause non-linear execution
of the Instructions within memory; called a “jump” in some systems

Test (bit): Determine if the bit contains a zero or one

Set (bit): Makes the contents of a bit equal one

Floating Point Number: A real number (mathematics); a scalar (HAL/S)
Fixed Point Number: An integer (or a number made to look like an int)

1/2004 USAAP 101S Assembler Page 4
——=—=—========__—

United Space Aillianea

General Purpose Computer(GPC)Basics — 1
¢ AP-101S model computers first flew on STS-37 in 1991

° The included CPU uses a modified version of the IBMI'System360/370

assembly language instruction set

¢ Supports 32 bit operations
— A “Fullword” is 32 bits long
— A “Halfword” is 16 bits long
— A “Doubleword” is 64 bits long

¢ 40 MHz clock speed
— The P.O.O. has estimated execution times for each instruction

— Because of the CPU microcode design, all instruction execution
times are multiples of 250 nsec. (which is 10 clock ticks)

¢ NOTE: The time required for code to execute (in any system) is

proportional to the number of clock ticks required to complete
each instruction and inversely proportional to the system clock

speed

USAAP 1018S Assembler Page 5
—£_<_—<_<=_=_=_======——

1/2004

United Space AIP- -«

) ‘

)))

General Purpose Computer(GPC)Basics —2

e An AP-101S can be thought of as two separate computers condensed
into one case

— CPU, which contains the main processor and RAM

— Input/Output Processor (IOP), which handles data traffic on:

¢ External buses

—24 in total (ICC, Flight Critical, DK, MMU, PL, LDB, PCMMU)
—Each GPC has its own PCMMU bus, but the remaining 23

busses are shared by all GPCs

e Discretes: crew cabin talkbacks, crew switches,
synchronization lines, etc.

° The original AP-101B GPCs filled two cases each

— The AP-101S upgrade
¢ More than doubled the main memory
° Tripled the CPU speed (measured in MIPS)
® Cut the GPC size roughly in half (in both volume and weight)
° Cut the power consumption (in Watts) by over 10%

.

®

1/2008 Page & USA
EESAP 1018 Assembler

Unitad Space Alliance

system Timers — 1

¢ With manyCPUs, the “program counter” is the name of the register
that holds the address of the next instruction to be executed

— The GPCs DO NOT follow this convention

¢ Each PSW contains an “Instruction Counter” which identifies

the address of the next instruction to be executed

—PSW stands for “Program Status Word” and will be

discussed later
¢ The GPC “Program Counters” are actually timers

e PC1 and PC2 can be used to time events within a single minor cycle
(normally 40 milliseconds in length), and to time the minor cycle itself

1/2004 USAAP 101S Assembler
Page 7 —————

United Space Aiffence

))

)))

Sysiem Timers — 2
e There are 2 Program Counters in each GPC

— They are called
¢ Program Counter 1 (PC1)
¢ Program Counter 2 (PC2)

— They are each 32 bits wide (one Fullword)
° High order Halfword resides in the PSA

—The PSA (or Preferential Storage Area) is in RAM,
addresses 0x000 through 0x13

—The PSA is reserved for hardware use; software or its data

can be loaded into the PSA

°e Low order Halfword resides in CPU Hardware

— Decrementing interval timers

* Once per Microsecond
° Generate an interrupt upon roll over of the complete set of 32

bits from 0000 0000 to FFFF FFFF

®

1/2008 Page 8 USA
AP 101S Assembler —

United Space Ailiance

GPC Main Storage (RAM)— 1

° RAM addressing is on Halfword boundaries

¢ RAM is divided into 16 sectors
|

— Sectors are numbered from 0x0 to OxF (0-15)

— 0x8000 (32,768) Halfwords per sector

— 1 Megabyte of RAM in total

— 19 bits are required for full addressing of RAM

¢ IOP can only handle 18 bit addresses

—Meaning the IOP can only directly access sectors 0-7

° To load the G3 archive during the G901 to G101 OPS

transition, the IOP copies the G3 software into the lower

half of memory, and then the CPU copies that

informationinto the upper half of memory

© CPU instructions can only handle 16 address bits

~The remaining address information is stored for the CPU in

the BSR/DSR/DSE

i oat

o

™ ro USA
————————

AP 101S Assembler
United Space Aifenea

)) >

GPC Main Storage (RAM) —2
¢ Store Protect (SP) bits — three allocated per memory address, but

hidden from the programmer
— SP Bits are physically separated from the storage area

— Set or cleared by the software loader as it fills the GPC RAM, based
on whether that address is in a protected or unprotected load block

¢ Load blocks are sections of memory allocated by the Software
Architect

© Protected blocks contain CPU code file(s), while unprotected
blocks usually contain data (variables and constants)

— Protected blocks can have constants defined within code modules
° These data words are also protected even though they are data

— Related error messages:
° An attempt bYthe CPU to store data into a protected location

resultsin a “Store Protect Error’ which is a type of “Program
ec

33

° An attempt by the CPU to execute non-protected data results in
an “Instruction Monitor’

®

sz USAKAP 1018 Assembler
Page 10 Sa Oe

United Space Alliance

GPC Main storage (RAM)—3

e Store Protect(SP) bits — continued

— IOP code (for both the BCE and the MSC) executes successfully
even though the SP bits are not set (at least for PASS)

¢ BCE (Bus Control Elements)
—One for each external bus, plus one for testpurposes

—BCE programs for bypassable transactions must be un-

protected to allow the efficient bypass of the problem
element (because FCOS has self-modifying code)

¢ MSC (Master Sequence Controller)
—/O Manager which controls and monitors the 24 BCEs with

attached busses, and interfaces with the CPU

1/2004 USAAP 101S Assembler Page 11

—<—<—<—$—$—=_—$_$_$=======>
United Space Milianca

)

)))

GPC Main Storage (RAM) — 4.
¢ Six EDAC(Error Detection And Correction) bits per address

— Used in a scrub of GPC memory (runs every 1.67 seconds)
— If a single bit within a Halfword of memory is flipped

° Likely due to a radiation hit
* The memory scrub detects and corrects that error

—Seen in Telemetry as a single jump in the Soft Error Count
¢* Memory reads prior to a scrub succeed since the EDAC

hardware will correct the memory values sent to the CPU

—The memory location is not corrected until its next scrub

— If two bits within a Halfword are flipped
° Highly unlikely; but could be caused by radiation
¢ GPC hardware detects, but cannot correct, the error

e Registers as a newly detected Soft Error every 1.67 seconds

—Seen in Telemetry as a recurring increase in the Soft Error

Count — The count can max out eventually
¢ An attempt to use such a memory location results in a machine

check and a GPC halt

1/2004 USAAP 101S Assembler
, Page 12

—=z£=££=={=§§=$==

United Space Alliance

CPU Register Basics —1
¢ Two sets of General Purpose, Fixed Point

registers (set 1 used by FCOS, set 0 otherwise)
— Eight registers perset
— 32 bits per register

¢ 16 bit numbers are usually stored in the
high order bits (0-15, numbered from
leftto right), but this varies by
instruction

Register 0 Register 0

Register 1 Register 1

Register 2 Register 2

Register 3 Register 3

Register 4 Register 4

Register 5 Register 5

Register 6 Register 6

Register 7 Register 7

— Each General Purpose register has an TFixedpoint registers t
additional 4 bit DSE register associated with
it, used only for addressing operations Floating point registers

¢ One set of 8 Floating Point registers t Register 0
. 2 Register 1

32 bits per register
Register 2

— Used in pairs for double precision Register 3
calculations Register 4

¢ Consecutively numbered registers must Register 5
be used Register 6

¢ Registers in all sets are numbered from 0 to 7_ Register 7
1/2004
AP 101S Assembler

)

rae USA
United Space Alliance

5 j

CPU Register Basics — 2.
¢ Each PASS process is given access to all Floating Point Registers and

one set of Fixed Point Registers
— Whenever FCOS needs to change which applicationprocess is

active (the process with CPU access), the “context” of the current

application is saved, and the context of the new process is loaded
¢ The context includes the contents of the following when when

the process was interrupted:
—All registers used by applications (8 GPR and 8 FPR)
—DSEs0-3

—

—The PSW (Program Status Word) relating to the application
° The PCT Chain (Process Control Table Chain) holds this data

—

—See the PASS Flight Software AP-101 Dump Analysis for
more information

— Whenever a process is resumed, its saved context is reloaded

— When an application process is interrupted by FCOS, the PSW of

theapplicationis saved, but register values do not need to be
store

¢ FCOS and applications don’t share general purpose registers

AP 101S Assembler Page 14 USA1/2004

United Space Alliance

CPU Program Status Word (PSW)— 1

!
¢ Tracks the basic information required for program execution & control

— Address of next instruction to be executed

— Status of the system in relation to the program executing
* Condition Code

—Changed by some instructions (compare registers, test bit,
etc.) to provide feedback on their execution

—Most often needs to be read after compare instructions and
test instructions

° System / Interrupt Mask

¢ The PSW is updated for every instruction execution

¢ The PSW is swapped out to process hardware interrupts
— The current PSW is stored in the Preferred Storage Area (PSA) of

RAM, in the “Interrupt Old PSW”

¢ PSA begins at address 0x00000

— Anew PSW, defined for the current Interrupt, is loaded

@

vate USA,AP 101S Assembler Page 15
===

United Space Aif=n¢a

))

)))

CPU ProgramStatus Word (PSW)—2

INSTRUCTION ADDRESS CC |CR jOV jO |0 |U |S BSR DSR

M M |M

012345678910 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

INTERRUPT MASK _|EA- HIGH |RS|M |W |PS INTERRUPT CODE

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 5455 56 5758 59 6061 62 63

e Next Instruction Address
:

e Interrupt Mask (PC1, PC2, Instruction Monitor,

e CC - Condition Code
Ext Interrupts 0- 4)"

e CR - Carry Status Bit Indicator
¢ EA-HIGH - SVC High Order EA Bits

¢ OV - Overflow Status Bit Indicator
¢ RS- Register Set Selection

_» OM- Fixed Point Arithmetic Overflow Mask* ¢(By PASS convention: 1 = FCOS, 0 = other)

» UM- Floating Point Exponent Underflow Mask"
* M!- Machine Check Mask"

SM - Significance Mask*
e W- Wait State Bit (1 = WAIT)

¢ BSR - Branch Sector Register
¢ PS (1= Problem, 0=Supervisor)

» DSR - Data Sector Register
e Interrupt Code for Program Check, Machine

Check, and Ext Interrupts, OR 16 Bit

* 0 = Interrupt Inhibited / 1 = Interrupt Allowed

EA for SVC

1/2004
AP 1018 Assembler

Page 16 USA
United Spaco Alliance

CPU Program Status Word (PSW)—3
PSW Bits and Their Uses

° 0 through 15 and 24 through 27: Address of the next instruction to be executed.

® 16,17: Condition code describing the results of certain arithmetic, logical and

1/O instructions (test bit, compare integers, etc.). These are not error codes.

° 18: Carry status bit indicator

— An integer operation resulting in a value longer than 32 bits.

° 19: Overflow status bit indicator

— The final characteristic in a floating point operation exceeds 127 (max value of
7 bits) with a non-zero fraction.

¢ 20: Fixed Point Arithmetic Overflow Mask. Interrupt inhibited for PASS.

— An integer operation resulting in a value with absolute value longer than 31 bits.

¢ 21: Reserved for future use. Interruptinhibited for PASS.

° 22: Floating Point Exponent Underflow Mask. Interrupt inhibited for PASS.

— A floating point operation produces a final characteristic less than zero and a

non-zero fraction. With the interrupt inhibited, the result is made a true zero.

° 23: Significance Mask. Interrupt inhibited for PASS.

— A floating point addition or subtraction resulting in a zero fraction.

USAAP 1018 Assembler
Page 17

ae
1/2004

United Space Alf/-nce

)))

)
|

))

CPU ProgramStatus Word (PSW)——4

‘ PSW Bits and Their Uses

° 24 through 27: Branch Sector Register - replaces the high-orderbit of a branch

address when that bit is a 1. Otherwise, an implied sector register of 0000

replaces the high-order bit.

° 28 through 31: Data Sector Register- replaces the high-order bit of a data
address when that bit is a 1. See "Expanded Addressing" for details when bit 0
is a zero.

° 32 through 47: System Mask —Set to 0xA00C for FCOS and 0xFC05 otherwise.

— 32: PC1 Interrupt Mask. Enabled for PASS.

— 33: PC2 Interrupt Mask. Enabled for PASS when FCOS is not running.
— 34: Instruction Monitor Mask. Enabled for PASS

— 35 through 39: The remaining five interrupt masks include I/O end

conditions, other application dependent interrupts, and timer overflow
conditions. Mask bits 35 through 37 are enabled for PASS when FCOSis
not running. The last two mask bits (38 and 39) are unused.

— 40 through 43: EA-High - For an SVC interrupt, the 4-bit extension to

make a 19-bit effective address. Set to 0000for PASS.

.

,

®

AP 4101S Assembler Page 18 USA1/2004

United Space Alliance

CPU Program Status Word (PSW)— 5,

PSW Bits and Their Uses

— 44; Register Select Field — Determines which of the two sets of general
registers is in current use. When this bit is a zero (for non-FCOS activity),
register set 0 is used; when this bit is one (for FCOS), register set 1 is used.

— 45: Machine Check Mask - When this bit is a zero, machine check

interrupts detected by the CPU are inhibited. For PASS, mask is set to one.

— 46: Wait State - When this bit is a zero, the CPU is in the processing (run)
state. When this bit is a one, the CPU is in the Wait state. Bit only visible

when set to zero (run).

— 47: Problem/Supervisor - When this bit is a zero, the CPU is in the

supervisor state and privileged instructions can be executed. When this bit

is a one, the CPU is in the problem state and attempts to execute privileged
instructions are inhibited and an interrupt is generated. FCOS runs in the

Supervisor state, while all other software runs in the Problem state.

° 48 through 63 are reserved for the interrupt code that uses this PSW.

NOTE: FCOS does not include the UI and SC portions of SSW.

1/2004

AP 1018S Assembler
Page 19 USA

United Spsce Ai?--ca

)

)) | ?

Interrupt Protection
¢ 2HAL/S macros are available which disable interrupts

— INTRPT_PROT_NS(HAL_STMTS);
¢ Where HAL_STMTS is one or more lines of HAL code
* No CS/RS syncing is performed by this SVC

— INTRPT_PROT_DO(LABEL); ... INTRPT_PROT_END(LABEL);
¢ The HAL statements to be protected are placed between these

two lines
e RS syncing is performedwhen the DO statement is executed

(but not when the END statement is executed)
¢ These statements alter the contents of the PSW for the currently

executing process
— Most interrupts are masked off (preventedfrom being processed)

while the interrupt protection is beingprovided
* Instruction Monitor and PC1 timer interrupts are still allowed

—PC1 timer interrupts are significant to PASS only during
initialization and not during normal operations

1/2004

®

AP 1018 Assembler Page 20
. USA

inited Space Ailianea

Instruction Layout
e Instructions have four parts:

MYLOOP LHI R0O,X’0001’ LOAD COUNTER FOR MYLOOP

(optional) Operands Comment
Instruction (optional)
Mnemonic/

Operation

Note: While LHI (Load Halfword Immediate) is a legitimate Assembler

instruction, there is not a corresponding CPU instruction... The

Assembler will replace the LHI instruction with a LA (Load Address)
instruction when producing the actual machine code.

Also Note: The operands used to identify registers can be aliased

differently in each code module. For examples in this class, RO would be

General Purpose Register 0 and FP3 would be Floating Point Register 3.

USA
AP 101S Assembler

Page 21 Se ee1/2004

)
United Space Ai?’--ca

)
SAMPLE CODE — CompilerGenerated
ASSEMBLER LISTING

Address Instruction Resolved Address Label Command Operands
0000088

00088
000008A
000008A

7

DOOBA B39D 0400

OOO8C D

Q00008D
6008D B37D 0001
OOO8F DB18
0000090

B395 0100
‘00092 DBOC
0000093
0000093
0000093
0000093
00093 B29D 0100
0000095
0000095
00095 DFO8
0000096
0000096
00096 B69D FEFF

002

OO1F
009

02
0096

002/77

0098

002]?

ST#301

ST#302
LBL#57

LBi #60

LBL#63

LBL#66
LBL#65
ST #303
ST#304

ST#305
ST #306

LBL#64
ST#307

EQU *

Bi 2L(Ri) 1
EQ
FOU
TB

GCE
£QU
TB

BCF

£OU
TB

BCF

EQU
EQU
EQU
EQU
SB

CQU
FQU
BCF

EQU
EQU
NIST

*

o®

39(R1),1024
A At lO
*

31(R1),1
3, *47
*

39(R1),256
3, *+4
*

*

¥

*

39{R1),256
*

*

7,*43
*

®

39(R1),-257

1/2004
AP 101S Assembler USA

United Space Ailfance

Declaring Variables / ReservingMemory
Space—1

¢ Two waysof defining data

— Define Storage Location (DS) allocates an area of memory for a

certain type of data field without definingthe contents of the

location

¢ Define Storage with 0 items can be used to add in label names

(useful for branches and testing/dumps) or as delimiters

— Define Constant (DC) allocates an area of memory, defines the data

type and defines the initial contents

¢ Note that variables allocated using Define Constant (DC) can be
altered - the data defined is just an initial value

—

Tablet DS 10H (Allocates 10 Halfwords of memory)
Data2 DS F _ (Allocates 1 Fullword of memory)
NOOP DS OH (Allocates NO memory)

Table1 DC 10H’0’ (Allocates 10 Halfwords, each initialized to zero)
Data2 DC F’8’ (Allocates 1 Fullword of memory, initialized to 8)

®

1/2004 USA
. AP 1018 Assembler Page 23

———————

-

.

United Space

ons

DeclaringVariables / ReservingMemory
Space — 2

|

° The availabledata types for DC and DS are
|

— Character (C)
— Hexadecimal Integer (X)
— Binary Integer (B)
— Fixed Point Decimal (base 10) Fullword (F)
— Fixed Point Decimal (base 10) Halfword (H)
— Floating Point, Short — 32 bits (E)
— Floating Point, Long — 64 bits (D)
— Fullword Address (A)
— Halfword Address (Y)
— Fullword Indirect Address, also called a ZCON (Z)

° An Indirect Address is called a Pointer in many high-level
computer languages

®

AP 1018 Assembler
Page 24 USA1/2004

United Space Ailianca

yy |

|

Declaring Variables / Reserving Memory

Space —3

¢ Equates can be used to declare constants

— No memory is used to store the equate
— The Assembler replaces all instances of an equate name with the

value associated with it

— For Example:
FIOFFIUA EQU 10

_

This Equates a Value of 10 with the Variable Name

LHI R4,FIOFFIUA Stores the value 10 in register 4

LHI R4,10 Does the same as the previous instruction

®

me
- USA

SS
AP 1018S Assembler

))
United Space Ai!--ca

) :
) :

)
Declaring Variables /keserving Memory

—

‘Space —4

e An ENTRYcan be placed anywhere in a code module to denote an

actual entry point (for a branch instruction), or to denote a variable

which can be referenced outside of the module in which it is defined

° The EXTRN command is used to reference variables declared in

another code module

— The presence of the EXTRN for a variable lets the assembler know

that the actual Halfword address will be resolved by the linkage
editor & placed into the instruction object code

© This is one way to create a global variable

Module A CSECT ModuleB CSECT
This places the contents of Datal

EXTRN AltEntry, Datal
variable in module A into Register 0;

ENTRY AltEntry
the object code after linkedit will be

AltEntry DS 0H Z| X°98F3yyyy’ Where yyyy=the
:

LH RO,Datal
Halfword address of Data];

ENTRY Datal | Similarly, the address of AltEntry

Datal DC H’45’ B AltEntry
will be placed into the branch

structionat Linkedit time

@

12004 ,

Page 26 USA
‘ —————AP 101S Assembler

United Space Aifiance

Declaring Variables / Reserving Memory

Space — 5,

¢ HAL COMPOOLS use EQUATE EXTERNAL commands to enable

Assembler modules to reference HAL data

— Same as creating an ENTRY point in Assembler code |

— Variable name used in the EQUATE EXTERNAL is not necessarily
the same as the HAL name

* Assembler variable names cannot exceed 8 characters in

length, whereas HAL/S variable names can be longer

1/2004

United Space Allience

))

®

AP 101S Assembler Page 27 USA

yO))

Reading the POO —1
* Section 12 of the POO lists 8 categories of assembler operations

— Six typesof CPU commands
¢ Fixed Point, Branch, Shift, Logical, Floating Point, Special (O/S)

— Internal Control Operations (ICR)
|

¢ Reading Program Counters (timers), Writing Discretes

— I/O Operations/Program Controlled Inputs/Outputs (PCI/PCQ)
¢ Used for CPU Control of and Access to Information in the IOP
¢ Configuring I/O Transmitters & Receivers, Setting Internal

Control Information for the Master Sequence Controller (MSC)

&SpecificBus Control Element (BCE) Processors, Reading
iscretes, ...

e Each category corresponds to a different section of the POO

— Fixed Point: section 4, Branch Operations: section 5, etc.

— Each instruction has its own page(s) of detailed information

¢ The Format deals with how the instruction plus its operands look after

being changed into machine code

AP 10h
Page 28 USA

<<<
AP 1018 Assembler

United Space Ailianca

Reading the POO— 2
¢ Sample Instruction list (from Section 12):

Name Mnemonics Format

Branch Operations

Branch and Link BALR, BAL RR, RS

Branch and Index BIX RS

Branch on Condition BCR, BC RR, RS

Branch on Condition Backward BCB SRS

Branch on Condition (Extended) BCRE RR

Branch on Condition Forward BCF SRS

Branch on Count BCTR, BCT RR, RS

Branch on Count Backward BCTB SRS

Branch on Overflow and Carry BVCR, BVC RR, RS

Branch on Overflow and Carry Forward BVCF SRS

1/2004
AP 1018 Assembler

)

Page 29 USA
United Space Aiffecce

)

)))

Reading the POO—3
|

* More on instruction Format:

— Determines the length of the command
° 16 bits: RR, SRS

|

° 32 bits: RS, Rl, Sl

— Determines the source of the two data inputs
¢ RR: Register and Register
¢ SRS: Short version of Register and Storage
¢ RS: Register and Storage
° RI: Register and Immediate data

° SI: Storage and Immediate data

— Determines the method of main storage addressing
e RR: None
¢ SRS: Base Register contents + a displacement
° RS: Expanded or Indexed (allows more bits in displacement)
° Ri: None
e SI: Base Register contents + a displacement

®

1/2004 USA
AP 101S Assembler

Page 30
—_—_—_—==
United Space Alliance

Reading the POO— 4
¢ Example of detailed instruction information:

5.3 BRANCH ON CONDITION

M1 TR?Op

Lififofofo} | | pijitifofo} | Ly
0 45.478 111213 15

BCR M1R2

Op M1 x B2 Address Specification

ifafofofol | | tijitiatipof | | TET TTT TTT Tt ttt ti
0 45 7 8 Tl 12 13 14 15 16 31

AM. Mnemonic Format Displacement
Extended: 0 BC M1,D2(B2)| | ri} ELE LLL

Xx i}] Displacement
Indexed: 91 = BC[@J [A] = M1,D2(x2,B2)|_ |_| Li ttt ttt tt

¢ Each Instruction description begins with the format(s) of the machine

code version(s) of the instruction

— Branch On Condition can have three different formats, based on the

number of operands (2, 3, or 4) included in the instruction

4/2004 USAAP 101S Assembler Page 31
—————

United Space Aifaenca

}))

)))

Readingthe POO_5.

DESCRIPTION:

This instruction tests the PSW condition cods status bits, Instruction bits 3 through7 (theM1 field)specify
which condition code (bit 16 and 17 of the PSW) is to be tested. Instruction bit 5 tests for a code equal00,
instruction bit 6 tests for a code equal 11,and instruction bit 7 tests for a code equal01, Whenever the

condition code test is successful, the branch is taken. Thus, when more than one bit of the M1 field is a one,

the branch is taken for any successful test (e.g,,M1 = 111 alwaysbranches, MJ = 000 never branches).

The branch address is contained in bits 0 through15 of generalregisterR2 for the RR format. This 16-bit

branch address is expandedto a 19-bit branch address. (SeeExpandedAddressing.)

RESULTING CONDITION CODE;

The condition code was set followingall arithmetic,logical,test and compare instructions, and otherwise

remains unchangedunless the program status word is altered. The code is not changedby this instruction.

INDICATORS:

The overflow and carry indicators are not changedby this instruction,

1/2004 USAAP 101S Assembler
Page 82

eee

United Space Alliance

AP101S Addressing — 1
© AP'1 01SRAM is divided into 16 sectors, each 32,768 Halfwords (0x8000)

Sector _ Address
e Ata given time, data access can be made

0 O- 7FFF ¢ Via normal Halfword addressing to sector 0 &

> be) WEEE one other sector defined by the PSW DSR
- 17FFF ; oe

3 18000 - 1FFFF
° Via Fullword indirect address pointer (ZCON)

4 20000 - 27FFF addressing to any sector (requires RS instruction
5 28000 - 2FFFF format)
6 30000-37FFF . . .

7 38000 -3FFFF
¢ Via use of Data Sector Extension (DSE) register

8 40000 - 47FFF NOTE: To Form Real Address from Halfword Address:
9 48000 - 4FFFF

10 50000 - 57FFF (Use Address X’9561’ , DSR = 5 as Example)
11 58000 - SFFFF a :

12 60000 - 67FFF 1. Convert High Order HEX Digit to Binary (B’1001’)
13 68000 - 6FFFF ; , , ,

14 70000 .77EFF
2. Replace Bit 0 with DSR (B’0101001’)

15 7FO00 - 7FFFF 3. Convert Back to HEX (X’29’)

4, Append to Original Last 3 HEX Digits (X’29561’)

When Using ZCON/DSE or Doing Branch Type Address

(Using BSR), Same Conversion Method Applies

1/2004
AP 101S Assembler

Page 33 USA
—=—=—= ii
United Space Alfienga

)))

AP101S Addressing —2
|

° Data Sector Extension (DSE) Register
— Each general purpose register has a DSE associated with it

¢ Each DSE register is 4 bits in size

— The DSE is used in a non-branch instruction using a base register
which contains a 0 in the 15 bit of the Halfword address

— The address accessed is in the sector of RAM indicated by the DSE

— Unique instructions exist for reading/changing values in the DSEs

— MVH, SCAL, SRET instructions are not part of base register
addressing, but they also use the DSE

— Some instructions change BOTH the base register and the

corresponding DSE

° Check the P.O.O. for more details

1/2004

®

AP 1018S Assembler Page 34 USA
United Space Allfance

AP101S Addressing —3

° Instruction modifiers:

— @: Indirect Addressing
¢ The preliminary address in the instruction points to a memory

location that contains the actual address to be used in the

instruction (Fullword Indirect Address Pointer (ZCON))
— #: Index Modification

¢ Forces the assembler to use an indexed mode of calculation of

effective addresses

— $: Long Format Modifier

¢ Forces the assembler to use the long instruction format for the

operation
—If the long format instruction is not forced, the assembler

automatically generates the shortest format that it can

—Instruction type/length determines the formula to be used in

calculating the effective address of the operand

1/2004 USAAP 1018S Assembler Page 35
———=<=

United Space Al!'--ce

))

)))

AP101S Addressing —4

¢ Fullword Indirect Address Pointer (ZCON)

1 |INSTRUCTION ADDRESS RESERVED | XC] C| CB/CD BSV DSV

012345678910 11 12 1814 15 161718 19 20 21 22 23 24252627 28 29 30 31

XC : Index Control Bit (If 0 Indexing Will Be Done)
C: Control Bit for PSW Modification

CB: Control Bit for Changing PSW’s BSR to the BSV

CD: Control Bit for Changing PSW’s DSR to the DSV

_

IBSV/DSV: Depending on Type of Instruction & Other Control Bit Settings,
Sector to Be Used in Instruction and/or to Replace PSW BSR/DSR

-
oe USA

— ——oEEEAP 101S Assembler

United Space Alliance

AP101S Addressing —5
¢ Examples:

— ZCON Usage (Non-Branch Instruction)
LA R2,AZCON _ This Places the Addressof AZCON into Register 2

LHI R5,2 This Sets Register 5 =2 (actually X’0002 0000’)
STH@# R4,0(R5,R2) Preliminary Effective Address = Base Register + Displacement

(Addr of AZCON + 0)
Effective Address = Contents at PEA (i.e., Loc 8023 in Sector 4) +

Index Register 5 Contents (2) (i.e., 20025)
Results: Register 4 Contents Stored at Location 20025

AZCON DC X’80230004’

— ZCON Usage (BranchInstruction)
LA R2,AZCON _ This Places the Address of AZCON into Register 2

BAL@# R4,0(R5,R2) Preliminary Effective Address = Base Register + Displacement
(Addr of AZCON + 0)

Effective Address = Contents at PEA (i.e., Loc 8023)
Results: PSW BSR Will Be Changed to 3, PSW DSR Will Be Changed to 5,
Branch to 8023 in Sector 3 (18023), & Return Address Placed Into Register 4

AZCON DC X’80230F35’
|

(Note that Index Is Specified but Not Used - the XC Control Bit in ZCON = 1: NO POSTINDEXING)

.

®

van USAAP 101S Assembler Page 37
=—=—[—[—=—$—$—=_$_$_=_$__—=====—

United Space Alfenge

AP101S Addressing — 6.

From the POO:

Data Reference Instructions

16-Bit Operand Address

XYYYYYYYYYYYYYYY

(Bits 28-31)

ZZZZ = PSW DSR

2222 = Base

22Z22Z = 0000 Register DSE

Expanded 19-Bit Address

ZZZZYYYYYYYYYYYYYY

Branch Instructions

16-Bit Branch Address

XYYYYYYYYYYYYYYY

ZZZZ = 0000 ZZZZ = PSW BSR

(Bits 24-27)

Expanded 19-Bit Address

ZZZZYYYYYYYYYYYYYY

1/2004
AP 101S Assembler

Page 38 USA
United Space Ailianee

Base Registers and the USING Statement — 1
¢ Affects where data is loaded from or stored into memory

— The final address used is the sum of the contents of the base

register and the value provided in the actual instruction

¢ All instructions located between a USING command and either a DROP
command or another USING command make use of the base register

¢ The Base Register (General Purpose Register 0, 1, 2, or 3) must be set

up prior to the data reference, by loading an address into the register
— Restrictions on Register 3

¢ Register 3 can only be used as a base register with the SRS

instruction format

¢ If Register 3 is coded as the base register for non SRS

instructions, no base register is used

— Registers 0, 1, and 2 do not have this restriction

®

voto USA,AP 101S Assembler Page 39
‘

————

: United Spaco AMilienca

Base Registers and the USING Statement — 2

e USING statements are processed sequentially - NOT in execution order

Example:
LA R3 , Loc3 Load address of Loc3 in R3

USING *,R3 R3 to be used as a base register
B Al Branch to instruction labeled Al

DROP R3 Stop using R3 as a base register
MIH R2,7 A Multiply instruction

USING Loc2,R2 R2 to be used as a base register
Al DS 0H Just a place holder; not an instruction

LH R5,Loc1 Load an address into R5

DROP R2 Stop using R2 as a base register

Theyay
loaded into register 5 by the LH command is at address (Loc1 +

oc

¢ The compiler must be able to determine address data at compile time,
thus the most recent using statement in the code applies, even if it
looks like that instruction was branched around during execution.

®

1/2004 USAAP 1018 Assembler Page 40
—————— =
United Space Alliance

Compares, Condition Codes, & Branching-1
* Various Assembler Instructions modify the value of the two PSW Condition

Code (CC) bits based on the results of the operation
— Add, Subtract, Test Bits, Compare, etc.

¢ These instructions can be followed by a Branch, or other instruction, which
reads the CC bits and takes an action based on their value

— The M1 bits in the instruction state how the CC bits are interpreted
— The M1 is listed in decimal in the assembly code

— For Example:
¢ CR’ RO0,R1 Compare Values in Registers 0 and 1

°e BCF 2,6 Branch on Condition Forward, M1 = 2,
Displacement = 6

M1 Branch when M1 Branch when
Ee |

0 Never 4 RO =Rt1

1 RO > R1 5 RO2 R1

2 RO < R1 6 RO s R1

3 RO # R11 7 Always

1/2004
AP 101S Assembler rae USA

——————_

United Space Ailianca

;)

)))

Compares, Condition Codes, & Branching-2
Mi FIELD (TEST)

ARITHMETIC & TALLY ©?
‘6?

‘7? In the POO, the M1

values are often listed
ZERO 1 Oo © 5 .

NEGATIVE ° 4 ° in binary :

POSTIVE (20) 0 © 1
,

LOGICAL M1 FIELD = B’111’

ZERO
4 o

° (7 decimal) means
ee ° ,

ALWAYS BRANCH.
TEST

ZERO i © ©

oI RED 3 : ° (CheckP.O.O. for other

ALL ONES ° o 4 M1 Field use, e.g. ISPB

COMPARE , Instruction.)
EQUAL | o oO

OL < OR © i oO

O1 > O2 o o 1

INSTRUCTION BITS 5S THROWGH 7 (THE Mi FIELD) SPECIFY WHICH

CONDITION CODE (BITS 16 AND 17 OF THE PSW) I5 TO BE TESTED.

INSTRUCTION BIT S TESTS FOR A CODE EQUAL TO O09, INSTRUCTION
BIT © TESTS FOR A CODE EQUAL TO 11, AND INSTRUCTION BIT 7

,

TESTS FOR A CODE EQUAL TO O1. -

®

1/2004 Page 42 USA
. =——————SAP 1018 Assembler

‘
United Space Ailiance

Compares, Condition Codes, & Branching-3
4

5.6 BRANCHON CONDITION FORWARD

2hJOt | 1 | | rr " | o| 0
* Displacementsofthe form111X2XXarenot valid.

4 5 7 8 13 14 15

Mnemonic Format
BCF M1,D2

DESCRIPTION:

This instruction tests the PSW condition code status bits. Instruction bits 5 through 7 (the M1 field) specify
which condition code (bits 16 and 17 of the PSW) is to be tested. Instruction bit 5 tests for a code equal 00,
instruction bit 6 tests for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken by adding the Disp to the updated IC. Thus, when more

than one bit of the M1field
i

is a one, the branch iis taken for any successful test (e.g., M1 = 111 always
branches).

NOTE: PSW ADDR is pointing to the next location after the BCF when

Disp. is calculated.

®

1/2008 Page 43 USA
aTAP 101S Assembler

.
United Space Alliance

)))

Compares, Condition Codes, & Branching-4
¢ What will be the machine code generated for the following assembler

command?

BCF 2,6 Branch Conditional Forward

e Answer:

DA14

ifo[o
From the POO: Op

7 af 1f of 1]1 o| o

oO | 4 5 7 8 13 14 15

Mnemonic Format

BCF M1,D2

1/2004
-

AP 1015 Assembler
Page 44 USA

United Space Alliance

Compares, Condition Codes, & Branching-5.
° The M1 is the first operand supplied (which is 2)
¢ The second operand supplied is the offset distance to branch

° The intent of the instruction “BCF 2,6” is to branch, as needed, to an

address which is equal to

— The address of “BCF 2,6” + 6 Halfwords

¢ When the command “BCF 2,6” executes, the PSW changes its next

instruction address to point to the instruction after “BCF 2,6”

— The displacement in the machine code needs to be equal to the

requested displacement minus the size of the instruction needed to

accomplish the branch

— BCF is a Halfword in size

— So, the final Disp.is 6—-1=5

. ®

1/2004 USAAP 101S Assembler Page 45
—<=

United Space Alfance

.

Common Instruction Gotchas — 1

¢ Some instructions assume Fullword boundaries

— A Fullword related command doubles the address index (to convert

the count of Fullwords to Halfwords)
* Some instructions assume Doubleword (64 bit) boundaries

— A Doubleword related command multiplies the address index by
four (to convert the count of Doublewords to Halfwords)

— So an address of 0X0123 + an index of 2 would be

—0x0125 for a HW related instruction

—0x0127 for a FW related instruction

—0x012B for a DW related instruction

1/2004

®

AP 1018 Assembler Page 46 USA
United Space Aiffance

e

¢

Common Instruction Gotchas — 2
‘

Shifting Logical vs. Shifting Arithmetical

Logical Shift (SLL, SLDL, SRL, SRDL)
— Bits that are shifted beyond the length of the register are lost; zeros

fill in vacancies that are introduced at the other end

Arithmetic Shift Right (SRA, SRD)
— Bits that are shifted beyond the length of the register are lost; fills

empty spaces with a value equal to the original sign bit

Shift and Rotate (SRR, SRDR)
— No data is lost; bits rotated outside the right end of the register are

moved into the other (left) end

The only available ShiftLeft instruction is the Logical version

. o

1/2004 USAAP 101S Assembler Page 47
—

,

)
United Space

ws

)))

Common Instruction Gotchas — 3
¢ Multiply (M)

— If multiplyingintegers, and the MIH instruction is not used:

¢ Result must be shifted right arithmetic one position for proper
scaling

e Divide (D)
— If dividing integers:

¢ Result must be shifted /eft logical one position for proper
scaling

¢ Remember, with binary numbers:

— Shifting a number to the right by one is the same as dividing by two

— Shifting a number to the left by one is the same as multiplying by
two

1/2004

®

AP 1018 Assembler Page 48 USA
United Space Alliance

Common Instruction Gotchas — 4

4.17 LOAD FIXED IMMEDIATE

Op Ri 9 OPX

1fofafatay | | trtrfstolxt | |
o 45 7 8 11 12 13 15

,

Mnemonic Format

LFXI R1,Value .

The value that is

DESCRIPTION: in the assembly
A fixed point literal value is loaded into the general register specified by Rig ™command.

The immediate values are -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13. The immediate is loaded into bits O

through 15 of general register R1. Bits 16 through 31 of general register R1 are set to zero.

OPX (Bits 12, 13, 14, & 15) Immediate Value --> R}

(hex) (hex)
oO FFFECCOO

1 FFFFCOOO
2 00000000

00010000 <{[_ The yalue that is
00020000

00030000 ~ joaded into the
00040000 :

00050000

Do cbbbo register.
00070000

00080000

O0090000

©00A.0000

OCOBOCCO

©0OTOOCOO

COORO00CO

®

1/2004
Page 49 USA

————
AP 101S Assembler

The value that ===>

appears in the

machine code

instruction (in bits

12-15).

Snow
rPoevwauan

United Space Al#'--ce

)))

)))

Common Instruction Gotchas — 5

‘ Example:
LFXI 2, 1

(Load into register 2, the value “1”)

Assembles to:

BAE3

3

0;0; 1/1

Op Ri
] o OPX

1J}ofafa]i 1] 1] 1fo}x
O 45 7 8 111213 15

CONSIDER USING LHI -

It uses an extra 16 bits of RAM, but is worth that cost to

avoid the confusionof LFXI.

MP 19)
Page 50 USA

ee
AP 101S Assembler

United Space Ailianes

Common Instruction Gotchas — 6.

¢ What does the following assembly instruction do:

SVC 40,(R1)

— It executes an SVC (supervisor call), but it might not be SVC #40

° An SVC is a request, made by an application, for the operating
system (FCOS) to perform a specific service

— This instruction tells the CPU to look at the contents of main

memory, 40 locations past the value stored in register R1

¢ R1 normally contains a pointer for the starting point of the #D
info for the current process

-
© The memory location being specified contains the ID of the

SVC to be executed
—

anelistof valid SVCs is located in Appendix F of the FCOS User’s

uide
|

2

®

AP 10 Page 51 USA,AP 101S Assembler

»)
United Space

ws

)))

FCOS Macros — 1

° AllowsDevelopers to produce assembly code that looks more

structured

— The Assembler converts the macros into regular assembly code

— Cannot be used for patching FSW

° Contains a variety of useful command structures

— IF THEN ELSE

— DO WHILE and DO UNTIL loops
— CASE statements

-

— PROCedure calls

®

“ - USA
——————————__aAP 1018 Assembler

Unitad Space Milianca

FCOS Macros — 2.
‘

MACRO Mnemonics (abbreviations)

When Used __| Mnemonic Meaning Complement
GT, H reater than, high | LE, NH

after compares | LT, L less than, low GE, NL
|

EQ equal NE

P plus (positive) NP

after arithmetic | M minus (negative) | NM

Z zero NZ

After logic {|Z zero NZ

O ones NO

After test M mixed NM

Z zeros NZ

NOTE: An “O” means one and not zero!

Zero is neither positive nor negative!
®

4/2004 USAAP 101S Assembler Page 53
ler

) ’
Uniied Space

ws

Exercises

®

me USAAP 101S Assembler
Page 54

United Space Alliance

Is this an atomic operation? — 1

XEX"Y;

¢ Atomic: (adj.) Cannot be split into unique parts; indivisible; undividable

e

vata USAAP 1018 Assembler Page 55
————

)
United Space

ws

)))

Is this an atomic operation? —2.
Answer: No!

° A computermust perform a series of step to complete the task:

X=X"y;

Load the value of x into a register (R4, perhaps)
Load the value of y into a different register (R6, perhaps)

Multiply the contents of R4 by the value in R6

Store the new value in R4 back into the memory address for xPY
>

e Remember, what may look like a single operation in a high level

language is often composed of multiple steps
— The Move Halfword (MVH) assembler instruction is composite in

nature and can be interrupted when only partially complete
e %COPY often is compiled to a MVH instruction

— Several other CPU instructions can be interrupted by the IOP

performing DMA (see the P.O.O. for details)
— Only TS & TSB (Test and Set (Bits)) are guaranteed to be atomic

AP 1018 Assembler Page 56 USA1/2004

United Space Alliance

Estimating Execution times — 1

¢ How long might it take the CPU to calculate:

X=x* y;

1/2004

AP 1015 Assembler Page 57 USAUnited Space Ail’

)) “)

)))

EstimatingExecution times — 2
e It depends...

— The following data is taken from the POO: Chapter 17: AP-1015
Instruction ExecutionTimes 7

L: Load M: Multiply S: Store E: Floating Point D: Double H: Halfword

All execution times are estimates, in units of microseconds, and assume the RS format

Instruction Time 3 Instruction Inputs Output Time

L 0.25 1] M Fullword Integers Doubleword Integer 2.40

}
LE 1.20

| M Fullword Integers Fullword Integer 2.15

LED 1.50
1}

ME Fullword Floats Doubleword Float 6.25

LH 0.25

5 025
| ME Fullword Floats Fullword Float 5.75.

. I

]

SE 2.50 2
MED Doubleword Floats | Doubleword Float 19.00

SED 6.50 2MH Halfword Integers Fullword Integer 1.35

SH 0.25 1| MIH Halfword Integers Halfword Integer
|

1.70

1/2004

,

®

AP 101S Assembler Page 58 USA
United Space Alliance

Estimating Execution times — 3
¢ Best case with Halfword e Worst case with Doubleword

integers: floating points:

LH 0.250 (load x) LED 1.50 (load x)

LH 0.250 (load y) LED 1.50 (load y)

MIH 1.750 (multiply) * MED 19.00 (multiply)

+ SH 0.250 (store x) + SED 6.50 (store x)

2.500 microseconds 28.50 microseconds

* NOTE: MIH takes longer than MH,

but does not need to be followed by a

shift instruction.

At 40 clock ticks per microsecond, At 40 clock ticks per microsecond,

this task involves at most 100 CPU this task involves at most 1,140 CPU

microcode steps.

rset USA
—————

United Space Alf="¢a

)))

microcode steps.

1/2004
AP 101S Assembler

™~,

)))

Estimating Execution times — 4

° An easier method — looking at compiled code

1 HAL/S FC-30.0 0I301700.APPL.SRC (GCQORB) RVL=CN

0 Loc CODE EFFAD LABEL INSN OPERANDS SYMBOLIC OPERAND

00000014 STH62 EQU *

0000014 ST#63 EQU *

00014 9A51 0014 LH R2,20 (R1) TIME: 0.25;

00015 B606 BFFF 0001 NIST 1(R2),-16385 TIME: 3.0

0000017 STH64 EQU *

00017 B206 0100 0001 SB 1(R2) ,256 TIME: 3.0

¢ An estimated execution time (in microseconds) is provided for each assembly
instruction in the third copy of any HAL/S code module in a compile output

¢ The first copy of the code shows the deltas

¢ The second copy of the code is the formatted version

¢ The third copy of the code is the assembly version

NIST = aNd Immediate to STorage SB = Set Bits

eS

4/2004 USAAP 1018 Assembler Page 60 Se Qe A

Unitad Space Miliance

Estimating Execution times —5

¢ Another method of calculating execution time

The HAL/S-FC Compiler System Specification, in section 5, has a table

with mathematical HAL/S commands. Many of these are listed with

their execution time in microseconds.

1/2004

®

AP 101S Assembler
Page 61 USA

United Space Alfonca

))

)))

Estimating Execution times — 6.

Duty Cycle considerations

¢ A PASS Major Cycle lasts 960,000 microseconds

— The CPU duty cycle increases by 1% for every 9,600 microseconds
of new code added

— For a process that runs at 25 HZ, the CPU duty cycle increases by
1% for every 400 microseconds of code added

¢ 9,600 / 24 = 400

—A 25 HZ function executes 24 times per major cycle
— If the floating point multiply in this example were to be added to a

25 HZ process, it would increase the CPU duty cycle by 0.07125%

¢ Real time systems like PASS tend to fail (or at least become unstable)
well before their duty cycle reaches 100%

1/2004 USAAP 101S Assembler Page 62
———

United Space Alliance

For Loop — 1

DO FOR TEMPORARY I = 1 TO CZ2V_NBR_GPCS;

CZ2V_G3ARCH MMARFAS$(I;) = 0;

END;

1/2004
AP 101S Assembler

)

rao USA
United Space Ailfer¢ce

)))

For Loop —1b

° The FSW compiler produces a formatted version of HAL/S code with

statement numbers added for reference.

ST#782 DO FOR TEMPORARY I = 1 TO CZ2V_NBR_GPCS;

ST#783 CZ2V_G3ARCH_MM AREA ;
= 0;

ST#7 84 END;

®

1/2004 USAAP 101S Assembler
Page 64

—=—_=_—__=_=_=_=—_—

United Space Alliance

For Loop —2 |

00000C5: —$T#782 EQU *

000C5 EEF3 0001 LHI R6,1

000C7 DF18 00CE BCF 7,¥*+7

00000c8 LBLH94 EQU *

00000C8 STH783 EQU *

000C8 1FE6 LR R7,R6

000C9 9A05 0001 LH R2,1(R1)

OOOCA A1F6 E027 0027 ZH 39(R7,R2)

00000cc STH784 EQU *

000CC BOE6 0001 AHI R6,1

00000CE LBLH93 EQU*

000CE B5E6 0005 CHI R6,5

000D0 DE26 00c8 BCB 6,*-8

00000D1 -LBLH95 EQU *

18 sano pant USA
, mma

)))

For Loop —3

EQU: Equate
- Used to mark a memory location. Only appears

in code listings; does not use any computer memory.

LHI: Load Halfword Immediate - Copy 16 bits from the current

instruction into a CPU register.

Branch Conditional Forward - Check the Condition Code

bits and increase the value in the next instruction
counter if needed.

Ie

|

Q ty

LR: Load Register - Copy a value from one register to

another.

Load Halfword - Load a value from memory to a register.

Zero Halfword - Store a zero in a memory location.

I: Add Halfword Immediate - Add a value included in the

instruction to the contents of a register.
=

IS

IE

Compare Halfword Immediate - Compare register contents

to a value included in the instruction.

oD

[A

Is

le

wo

tH
Branch Conditional Backwards - Check the Condition Code

bits and reduce the value of the next instruction
|

counter if needed.
®

ss USAAP 101S Assembler Page 66
——__———s

United Space Ailfancae

For Loop —4

R6,1 <j (1) Initialize000C5

000C7

000C8

000C9

OO0O0CA

000CC

000CE

000D0

EEF3 0001

DF18

1FE6

9A05

A1F6 E027

BOE6 0001

B5E6 0005

DE26

00CE

0001

0027

00C8

LHI

BCF

LR

LH

ZH

AHI

cHIY

BCB

7,*+7

R7,R6

R2,1(R1)

39 (R7,R2)

R6,1

R6,5

6,*-8

“temporary I”

to 1

(2) (Branch)

1/2004
AP 1018 Assembler

)

Page 67 USA
United Space Aillioree

)

)))

For Loop —5
000C5

000C7

000C8

000C9

OO0CA

000CC

000CE

000D0

EEF3 0001 LHI R6,1

DF18 00CE BCF 7, *+7
1FE6 LR A R7,R6

9A05 0001 LH R2,1(R1)

A1F6 E027 0027 ZH 39 (R7,R2)

BOE6 0001 AHI R6,1

B5E6 0005 CHI R6 , 5 <emms (3) Compare I to 5

DE26 00c8 BCB 6,*-8 (4) If I< 5,

Branch

Note: The machine code version of

this branch has a displacement of

9, When branching backwards, the

machine code value is one larger
than the listed assembler version.

1/2004 USAAP 101S Assembler Page 68
=—====—

United Space Alliance

For Loop —6
000C5 EEF3 0001 LHI R6,1 (5) Perform contents

000C7 DF18 00CE BCF 7, 8+7 of loop

000C8 1FEG6 LR R7,R6 <eem Load array index

000C9 9A05 0001 LH R2,1(R1) <= Load data CSECT

address

OOOCA A1F6 E027 0027 ZH 39 (R7,RQ)@mm Store zero in the

variable contents

000CC BOE6 0001 AHI R6,1

QOOCE B5E6 0005 CHI R6,5

000D0 DE26 00Cc8 BCB 6,¥*-8

AP1018Assembler
Page 69 USA

)
WUnitadSpace Alliance

)))

For Loop —7
000C5 EEF3 0001

000C7 DF18

000C8 1FE6

000C9 9A05

O00CA A1F6 E027

000CC BOE6 0001

000CE B5E6 0005

000D0 DE26

1/2004
AP 101S Assembler

00CE

0001

0027

00C8

LHI R6,1

BCF 7, +7

LR R7,R6
LH R2,1(R1)

ZH 39 (R7,R2)

AHI R6,1 <mee (6) Increment I

CHI R6,5 <Q(7) Check if I <= 5

BCB 6,*-8 (8) If so, Branch

rao USA
United Spaco Alliance

For Loop — 8.
000C5 EEF3 0001

000C7 DF18

000C8 1FE6

000C9 9A05

O00CA A1F6 E027

000CC BOE6 0001

000CE B5E6 0005

000D0 DE26

00CE

0001

0027

00C8

LHI

BCF

LR

LH

ZH

AHI

CHI

R6,4 (9) Repeat loop

7,*+7 contents a total of

R7,R6
5 times

R2,1(R1)

39 (R7,R2)

R6,1 “mmm (10) Increment I to 6

R6,5

continuing to the

=

|
6,*-8 “=m (11) Exit loop by

next instruction and
Execution

continues with the

next instruction...

not branching

1/2004

AP 1041S Assembler

)

®

nage USA
————————

United Space Alliance

)]

