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BASIC HAL/S PROGRAMMING CLASS INFORMATION 

Course Number: 

Course Length: 

Intended Audience: 

Prerequisites: 

Objectives: 

Content: 

  

Craig Schulenberg 

OTPO8O 

Three two-hour classes 

HAL/S Programmers 

Some programming skills, but not necessarily HAL/S 

To provide an overview of the HAL/S language 

Day 1) 

Program structure, name scoping, data types, declares, arrays, 

initialization, replace macros, subscripting, integer/scalar conver- 

sions, expressions, assignments, conditionals and IF statements, 

statement groups (e.g. DO, DO FOR), procedures and functions 

Day 2) 

Bit strings (initialization, subscripting, expressions, assignments, 

comparisons), structures, raveling and unraveling, explicit conver- 

sions 

Day 3) 

Data storage and access (e.g. #D, #P), RIGID, exclusive and reentrant 

procedures and functions, CSECTs, stacks and stack frames, NAME 

variables, real time statements 

Lockheed Martin ernie 

Space Shuttle Systems 1



BLOCKS 

COMPOOL WAYS. SEP ' COnPOOL ALWAYS SEPARATE COMPILATION UNITS 

PROCEDURE “NAY BE SEPARATE COMPILATION UNITS (COHSUBS) -- 
FUNCTION OR NESTED IN A PROGRAM, OR FUNCTION 

f task ALWAYS INTERNAL BLOCKS -- WILL BE DISCUSSED 
UPDATE LATER 

COMPOOLS CONTAIN ONLY DATA (POSSIBLY REPLACE STATEMENTS). 

PROGRAMS ARE "SCHEDULED" AS PROCESSES VIA THE OPERATING SYSTEM. 

PROCEDURES ARE "CALLED". : 

FUNCTIONS ARE "INVOKED" 

'-\



FORMATS 

  

  

      

  

Cl: COMPOOL, Pl: PROGRAM 

DECLARES . DECLARES 

CLOSE C13 po------ + 
NESTED BLOCKS     

. CLOSE Pl; 
[1: PROCEDURE (A, B) ASSIGN(C)s 

PARANETER \ ASSIGN PARAMETER 

DECLARES INPUT PARAMETERS 

  

  

  

  

DECLARES     

NESTED | 
i 1_ BLOCKS 

CLOSE 11; 
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“12s 

FORMATS (Cou T,) - 

  

  

  

    

  

FUNCTION (A)_HATRIX; 
PARAMETER ~ TNX y 
DECLARES INPUT 

7 PARAMETER 

DECLARES 

NESTED. 
BLOCKS 

RETURN MAT; 
CLOSE 123 

NOTE: FUNCTIONS HAVE NO ASSIGN PARAMETERS, BUT MUST HAVE A RETURN 
STATEMENT,



1-4 

“FORMATS (CON’T,) 
  

COMPOOL 
  

USED VIA REFERENCES TO DATA 

PROGRAM 
  

SCHEDULE P1 PRIORITY (100) ; 

PROCEDURE 

CALL 11(X, Y) ASSIGN(Z)5 

i 
INPUT ASSIGN 

ARGUMENTS ARGUMENT 
  

FUNCTION - 
  

FUNCTION NAME 

MATB = 12(S); 

INPUT. . 
ARGUMENT 

 



PROGRAM COMPLEX 

  

  

  

  

            

      

  

    

  
  

      
  

  

                  

          

CONPOOLS 
: Pl: PROGRAM; 

a} |e DECLARE As 
Tl: PROCEDURE; 

DECLARE By 
CLOSE 11) 
12: PROCEDUREs 

DECLARE C3 
CLOSE 123 

CONSUBS 
fd R2 

PROGRAM 
I cone 

yr /) if 

1-5. NESTED PROCEDURES/FUNCTIONS CLOSE Pls     
 



TEMPLATES 

COMPOOL: 

  

Cl: COMPOOL; 
DECLARE A, B; 
DECLARE C MATRIX; 
CLOSE C1; 

  

      

    CONPOOL TEMPLATE: 
COMPILER       

  

Cl: EXTERNAL COMPOOL; 
DECLARE A, Bs 
DECLARE C MATRIX; * 
CLOSE C1; 

D VERSION 3 

    

      

A COMPOOL TEMPLATE IS TEXT THAT IS VIRTUALLY IDENTICAL 
TO THE COMPOOL SOURCE ITSELF -- EXCEPT THAT KEYWORD “EXTERNAL” 
IS ADDED, IN ADDITION, THE COMPILER GENERATES A VERSION NUMBER 
ON AN APPENDED "1)” (DIRECTIVE) CARD,



TEMPLATES (CON’T.) 

PROGRAM: 

PROGRAM 

  

Pl: PROGRAM; 
DECLARE Ry 

1: PROCEDURE; 

CLOSE 11) 
  ee 

CODE 

CLOSE Pl)   
  

TEMPLATE: 
  

Pl: EXTERNAL PROGRAM; 

  

  
COMPILER 

  
    

  

CLOSE Pls 
D VERSION 1      



TEMPLATES (CON’T,) 

PROCEDURE (COMSUB) : 
  

Rl: PROCEDURE(A) ASSIGN(B) 
DECLARE A SCALAR; 
DECLARE B MATRIX; 
me seis seems eters 

1 OTHER 
|_DECLARATIONS - 

  

      ” CLOSE’ R1; 
  

  

  

  COMPILER       y 
  

Rl: EXTERNAL PROCEDURE(A) ASSIGN(B); 
DECLARE A SCALAR; 
DECLARE B MATRIX; 
CLOSE R15 

D__VERSION 7      



I~] 

    

    

  

  
  

      
  

  

@--—-.— 
PROGRAN 
SOURCE 

  

    
  

| 
| 
| 
| 
| 

  

pO ' 4 

; | consus || || conPooL | |. 
: | source |: 1|{ Source | 1 

iil gh 
dE im |! IReey Ive 

| {COMPILER | | | |_COMPILER }- | . 

Le } Lo 

    

  

  

  

  

    

SYMBOLIC 

Ey 
me HAL 

OMPILER 

  

  
      
  

    

TEMPLATE 
* LIBRARY 

| b Soe im 4 \ Ave ° DF 
Ti taaed 

    Neenah) 
Leanne   

  

LINK 
EDITOR     
    OBJECT 

MODULE =p 
LIBRARY     

<=> SYMBOLIC DATA 
-——t OBJECT DATA 

HAL COMPILATION SYSTEM 

    > LOAD 
MODULE 

1 
f 

 



Ile 

. TEMPLATES (CON’T.) 

TEMPLATES ARE “INCLUDED” VIA A COMPILER "D” (DIRECTIVE) CARD, 
E.G., 

col 1 
D INCLUDE-TEMPLATE ¢1 {NoLIsT} 

RULE: FOR ALL COMPOOLS, COMSUBS, AND PROGRAMS REFERENCED BY A 
~~ COMPILATION UN'T, A TEMPLATE MUST BE INCLUDED. 

RULE: ALL. INCLUDED TEMPLATES MUST PRECEDE THE FIRST LINE 
"OF THE COMPILATION UNIT BEING COMPILED,



Ie af 

"SAMPLE. PROGRAM 

coh 2 
~~ me me ml) INCLUDE TEMPLATE C1 NOLIST 

——-+D INCLUDE TEMPLATE R1 NOLIST 
rro->D INCLUDE TEMPLATE PL NOLIST 
1 -P2s_ PROGRAMS 

DECLARE MATRIX, @, Ry Ss 
DECLARE Xs Vo 2s __ 

Tit: PROCEDURECV) ASSIGH(H)s 
DECLARE V, Ws ! 

tee 
I 
| 
i 
i 

CLOSE [13 

— =z — (OTHER INTERHAL BLOCKS) __| 
PROGRAM 

‘~— = SCHEDULE Pl PRIORITY (40); 
ee 

em
 

te 
ot
 

emi
t o
m 

ai 
se

me
 

COMSUB 

~ “CALE'RL(X) ASSIGN(S) 
eee 

COMPOOL VARIABLE 

one 

CLOSE P2;
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SOURCE 

QODAP+POOL REVISION 7 , eeeeee 
OODAP+POOL: CONPOOL: : 890004 
DECLARE PRINT¢DFCS€DATA INTEGER SINGLE INITIALCO); 606082 
DECLARE JSLECT¢PRINTFL BOOLEAN INITIALCOFF, 896002 

860003 
eeeen4 

ehtok FROM ENGINE¢PRETHRUST¢TRIM, OMS¢ENGECHD, DELTAFOMEGACOMS+ENGINE, 200005. 
ENGINE¢CG+CMD tk hk GH0G06: 

890007 
DECLARE VECTORC3) SINGLE INITIALCS. 3,6,.3), eoneos 
OMS1¢CG, OMS2+CGs ¢* VEH COORDS, OMS TO CG */ eoeaas 
DECLARE LBN¢TOCKG CONSTANTC4. 72. 2046); eeBoe9 
DECLARE G¢TOtNTRS+¢PERtSECtSA CONSTANT 9. 8066); 666609 
DECLARE LBFtTO¢N CONSTANTCLEM*TOCKG GETOENTRS+PERESECESO D5 eagnns 
DECLARE VEHICLE4¢CG VECTOR SINGLE INITIAL(9. 9974, -. G85,. 6858); egoga9 
DECLARE VEHICLE¢MASS INITIAL( 122470); 860609 
DECLARE ARRAYC 44) BOOLEAN INITIALC OFF), JERIL, JONLST: , G00ag9 
DECLARE VEHICLE¢INVERSE¢INERTIA MATRIXC3,3) SINGLE; seoe16 
DECLARE VEHICLE¢INERTIA MATRIX SINGLE BOGO11 

INITIALCL956182, » 4867. 454, ~-216930. 9.4067, 454, 7424747. , e0G011 
“1353. 818, -246930. 8, 1355, 818,.7721383. 9) OG0G414 
DECLARE RAD¢TOCDEG SCALAR SINGLE CONSTANT(57. 2957795); aenat2 
DECLARE DEG+TO¢RAD: SCALAR SINGLE CONSTANTC. 0174532925); 808013 
DECLARE PI SCALAR DOUBLE CONSTANTC3. 141592654); 66806144 
DECLARE THOtPI SCALAR DOUBLE CONSTANTC2. PL: 9900144: 
DECLARE THR SCALAR SINGLE CONSTANT( 26689. 2); 980015. 
DECLARE FTtTOtH CONSTANTC. 3649); 689645 
DECLARE IN¢TOeM CONSTANTCFT¢TOENZ4A2. >) 800645.
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SOURCE (CON'T.) 

eaeh FROM MSEC bbbe 

DECLARE BARBEQUE#RATE SCALAR SINOLE INITIALC2, DEG*TOFRAD Ds 

DECLARE BOCLEAN INITIALCON), RCS+ROTATION, 

ATT¢MNYR, RCSETRANSLATION, ROSETRANS+AUTO*MANUAL 

OFCERESTART, RCS*ROTeRUTOSNANUAL, TVC+RUTOSMANUAL, 

CLOSED+OPENtLOOP+TRIM, ACCLFS*#NEEDED: 
DECLARE BOOLEAN INITIALCOFF 2, THOFAXIS, THREEFAXIS 

LOLEVERTEATT, PAYLOGSUP4CMDS, TRACKING, BBQ, ONS+FAILEDETECT, 

OMS4¢ON*CHD, OMS2¢ONECND, ONS#PRETHRUST 
OMSAEFAIL, OMS2EFAIL; 

DECLARE ARRAYC2) BOOLEAN INITIALCOFF),OMS¢ARMtREG, OMS#ONeREQs 

DECLARE VECTOR SINGLE INITIALC BD, POINTINGtVECTORECHD. 

POSITION, VELNCITY, BODY+POINTING¢VECTOR) 

DECLARE ELF SCALAR SINGLE CONSTANT(14, DEG+tTOFRAD >) 

DECLARE COSELF SCALAR SINGLE CONSTANTCCOSCELF))s 

DECLARE SINELF SCALAR SINGLE CONSTANTCSINCELF >); 

DECLARE BODY+TOCNB MATRIX SINGLE CONSTANTCCOSELF, 0. ,SINELF, 
@.,4..8,,~SINELF, @. , COSELF >) 

DECLARE NATRIX SINGLE, NB¢TOCSM, NBETOFOR: 

DECLARE SCALAR SINGLE INITIAL( 8), SINOGA, SINMGA, COSOGA, COSHGA) 

DECLARE ARRAYC3) SCALAR SINGLE INITIAL( A), GAEDESIRED, 

AUTO*OA+DESIRED, GA+MANEUVER+TERMINAL) 

DECLARE NEWORD1 BITCL6) INITIALC BIN 70111086800111000 * >; 

DECLARE HEWORD2 BITC46) INITIALCBIN’80004111000000114 7); 

DECLARE WENORDZ BITC46) INITIALCB1N/9901011001008111 7): 

DECLARE ROT#OPTION¢ACK ARRAYC3) INTEGER INITIALC Od; 

DECLARE TRANS¢OPTIONCACK ARRAVCZ) BITCL) INITIALC OFF): 

DECLARE VECTOR SINGLE, OMEGAEC: 

CLOSE OODAP+POOL: 

890847 

886018 
800019 
980028 
goaeet 
860822 
840923 
8uG024 
e0be25 
Onoe26 
808027 

608628 
eoeg29 
goeor9 
BbGO31 
HeBer2 
8000323 
O60034 
890635 
600036 
880037 
980038 
660039 
8e6546 

a00044 
8a0042 
860843 
eg0g44 
800045 
e08046 
oo004d7



SYMBOLS 
MACROSI2ZE 

LITSTRINGS 
COMPUNIT 
XREFSIZE 
CARDTYPE 

LABELSIZE 

HAL?S COMPILATION 
SRN STMT 

eosces Ct 
BAL/S COMPILATION 
SRN STHT 

6ageot 4 
e0gnes 4 
eogc02 2 Mt 
200802 3 Mt 
800683 ct 
ooGHad et 
908605 ct 
988006 ct 
800067 ct 
G68608 4 Mt 
600008 4 Nt 
8006009 3 Nt 
600069 6 Nt 
200809 7? Mt 
9g0609 @ Mt 
806089 a Mt 
800009 48 Nt 
enoces 48 Mt 
860610 4i Mt 
800811 412 Mt 
800841 42 Mt 
866612 43 Mt 
§@0013 44 Mt 
803044 45 Mt 
oo00i14 46 Nt 
8030135 1? Ht 
90815 ig Mt 
900615 49 Nt 

hay 

OUTPUT WRITER LISTING 
= 208 
= 300 
= 2008 

8 
2608 

u
e
s
 

4298 

INTERMETRICS, Puce 
SOURCE 

OODAP+POOL REVISION 7 
INTERMETRICS, Inc... 

SOURCE 
Mt GCODAP+POOL: 
Mt COMPOOL) 

DECLARE PRINTeDFCS#DATA INTEGER SINGLE INITIALCO); 
DECLARE JSLECT¢PRINTFL BOOLEAN INITIALCOFE); 

#hee FROM ENGINE ¢PRETHRUST¢TRIM, OHSENQECHD, DEL TAFOMEGAEOMS ENGINE, ENGINE+CG¢CHD #400 

DECLARE VECTOR(3> SINGLE INITIALCS. 3, 8, . 23>, 
OMS4+CQ, ONS2¢CG; 

DECLARE LBM¢TO*KG CONSTANTC4. ¢ 2, 2046); 
DECLARE G+TOCHTRS+PER+SEC+SQ CONSTANTCS, 8966); 
DECLARE LBF¢TOeN CONSTANTCLEM+TOEKG GtTOCNTRS+PERESECESQ): DECLARE VEHICLE+CO VECTOR SINGLE INITIALCS. 9974, ~, 85, DECLARE VEHICLE¢MASS INITIAL(122470)1 
DECLARE ARRAVC44) BOOLEAN INITIALCOFF), 

JFAIL, JONLST: 
DECLARE VEHIOLECINVERSECINERTIA HATRIXC3, 3) SINGLE DECLARE VEHICLECINERTIA MATRIX SINGLE INITIALC£056182., 4 71355. 818, ~246930.9, ~1255. 818, 7724383. ); 
DECLARE RADETO*DEG SCALAR SINGLE CONSTANT( 57, 2957798); DECLARE DEG¢TO+RAD SCALAR SINGLE CONSTANTC, 0174532925 9) DECLARE PI SCALAR DOUBLE CONSTANTC3. 141592654) 
DECLARE THO*PL SCALAR DOUBLE cONSTANTC2. PI); 
DECLARE THR SCALAR SINGLE CONSTANT( 26689. 2); 
DECLARE FT¢TOeM CONSTANTC. 20483; 
DECLARE IN¢TO+M CONSTANTCFTeTOeN ¢ 42, 93 

6858); 

OCTOBEF 

OCTOBE! 

867, 454, ~216938. 9, , 

4067, 454, 7424747, ,



  
by 

COMPILATION TEMPLATES (COMPOOL) 

aaQ0DAPP 
OODAP¢POOL: EXTERNAL COMPOOL 5 DECLARE PRINT#¢DFCS¢DATA INTEGER SINGLE I 
NITIAL € @ >} DECLARE JSLECTEPRINTFL BOOLEAN INITIAL € OFF 9 5 DECLARE 
VECTOR ( 3 > SINGLE INITIAL ( 9.3, @. .3 >, OMS44CQ , ONS24CG s DEC 

LARE LBM¢TO*KG CONSTANT ¢€ 4. 7 2.2046 > + DECLARE GeTOCMTRS¢PERtSECESO 
CONSTANT € 9,8@66 > + DECLARE LBF¢TOeN CONSTANT (€ LBM¢TOeKG GeTO+NTRS+P 
ER¢SEC4SQ > + DECLARE VEHICLE¢CQ VECTOP SINGLE INITIAL ¢€ 9.9974, = .6@ 
S , .6858 } 3 DECLARE VEHICLE¢MASS INITIAL ¢€ 422476 ) 7 DECLARE ARRAY ¢ 
44) BOOLEAN INITIAL -<¢ OFF 2. JFAIL « JONLST + DECLARE VEHICLE¢INVERS 

E¢INERTIA MATRIX ( 3, 3 > SINGLE + DECLARE VEHICLE+INERTIA MATRIX SING 
LE INITIAL ¢€ 1056282, , 4867.454 . - 216938.9 , 4067.434 , 7421747. 4 - 
1355,818 , = 216930,9 , ~ 4255. 848 . 7721383. > 1 DECLARE RADETO+DEG § 

CALAR SINGLE CONSTANT ¢€ 57. 25957795 > + DECLARE DEG+TO4¢RAD SCALAR SINGLE 
CONSTANT € . 0474332925 >) + DECLARE PI SCALAR DOUBLE CONSTANT ( 3.141459 

2654 ) 3 DECLARE THOCPI SCALAR DOUBLE CONSTANT ¢ 2. PI > 4 DECLARE THR 
SCALAR SINGLE CONSTANT ¢€ 26669.2 > 5 DECLARE FY+¢TO¢N CONSTANT ¢ . 3048 > 

» DECLARE IN¢TO+M CONSTANT ( FT¢TO#N 7 12. 9 5 DECLARE BARBEQUE+RATE $ 
CALAR SINGLE INITIAL ¢€ 2. GEG+TO+RAD > 3 DECLARE BOOLEAN INITIAL ¢€ ON > 

» RCS#ROTATION . ATTEMNVR , RCSETRANSLATION , ROS+TRANS¢AUTOCNANUAL , 
OFC+CRESTART . RCS#ROTEAUTOCMANUAL » TYCHAUTOFMANUAL » CLOSED+OPEN¢L DOPE 
TRIM . ACCLFS¢NEEDED 3» DECLARE BOOLEAN INITIAL ( OFF >, THOCRKIS , THR 
EECAXES » LELEVERTCATT » PAVLD*#SUPECNDS . TRACKING » BBO , OMS#FAILEDET 
ECT , QNSA+ON+CHD , ONS2eON¢CMD , ONS*PRETHRUST , OMSA+FAIL » OMS24FAIL 

3 DECLARE ARRAY ( 2 > BOOLEAN INITIAL ¢ OFF > » GNS#ARMN+REG . ONStONER 
EG 5 DECLARE VECTOR SINGLE INITIAL € @ >» POINTINGtVECTORECHD . POSIT! 
ON » VELOCITY , BODY+POINTINGEYVECTOR » DECLARE ELF SCALAR SINGLE CONSTA 
NT ¢€ 44. DEG+TO*RAD > + DECLARE COSELF SCALAR SINGLE CONSTANT ¢ COS ¢ E. 
LF > 25 DECLARE SINELF SCALAR SINGLE CONSTANT ¢ SIN € ELF > > 3 DECLAR 
E BODV¢TOENB MATRIX SINGLE CONSTANT € COSELF . @ . SINELF, 6, 4. ; 
@. » ~ SINELF . 9. . COSELF > 5 DECLARE NATRIX SINGLE , NBCTO*SN , NECT 

Gear ; DECLARE SCALAR SINGLE INITIAL ¢( 6 >). SINOGA , SINMGA , COSOGA , 
COSNGA 1 DECLARE ARRAY ¢ 3 > SCALAR SINGLE INITIAL ( @ >, GAFDESIRED 

» RUTOCGAEDESTRED , GREMANEUVER+TERMINAL 5 DECLARE NEWORDi BIT ( 16 2 Tf 
NITIAL ¢ BIN °8411900000411000" ) 3 DECLARE NENORD2 BIT ¢ 46 ) INITIAL 
C BIN 7@080411000080211° > + DECLARE NEWORDS BIT ¢ 16 > INITIAL ¢ BIN ¢ 
0001011001060114~° 5 5 DECLARE ROT¢OPTIOHeACK ARRAY € 32) INTEGER INITIA 
L ¢ ® > 5 DECLARE TRANS¢OPTION+ACK ARRAY € 3 > BIT ¢ 4 > INITIAL ¢ OFF 
} + DECLARE VECTOR SINGLE » OMEGAtC » . 
CLOSE 3: 1 

D VERSION : apn 
PROGRAM) 

AGOFCREC 
OFCeRECON: EXTERNAL PROGRAM } 
CLOSE } :
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COMPILATION TEMPLATES (COMSUBS) 

@GECLITOG 
ECITOGEO: EXTERNAL PROCEDURE ( T. R 
Mo. AZIM > 5 DECLARE T SCALAR DOUBLE 
LAT , LONG . VMAG » GAMM . AZIM» 
CLOSE 3 

D VERSION :4 

» ¥V >) ASSIGN CH, LAT, LONG , YNAG , GAM 
» R VECTOR DOUBLE . V VECTOR DOUBLE. HH. 

QQ ReTAT. 
ROTATE: EXTERNAL FUNCTION ¢ RZERO , 
LE , DLONG s DECLARE VECTAR DOUBLE , 
CLOSE 3 

D VERSIUN :4 

DLoNa > VECTOR DOUBLE : 
RZERO ; 

DECLARE SCALAR DoUP



COMPOOLS 

COMSUBS 
(PROCEDURE/ 
FUNCTION) 

PROGRAMS 

PROGRAM COMPLEX 

  

  

  

  
  

  

  

C1 (2 (3 

R1 R2 R3 

Pl P2 P3           
  

  

‘Cn 

  

  

Rrn 

  

  

  Pr   
  

"SHARED DATA 

POOLS” 

"EXTERNAL 

SUBROUTINES” 

"PROCESSES" 

EACH OF THESE REPRESENT SEPARATE COMPILATION UNITS AND WILL PRODUCE 
TEMPLATES.



WV 

COMPILATION ORDER 

     

    

       
COMPOOL 

C3 

    

COMPOOL 
2 

       
   

   

   
COMSUB 

R3 
COMSUB 

R1 

COMSUB 
Ra, 

PROGRAM 
Pl        

  

COMSUB 
R5 

PROGRAM 
P3 

     

    

A CORRECT ORDER: 

Cl C3 C2 RL R2 AB RY RS Pl P2 P3 PY PS



NAME-SCOPE 

DEFINITION: THE NAME-SCOPE OF A BLOCK IS THE REGION WITHIN WHICH DATA 

DECLARED IN THE BLOCK IS VISIBLE, THE NAME-SCOPE ENCOMPASSES 

THE ENTIRE CONTENTS OF THE BLOCK INCLUDING ALL BLOCKS NESTED 

WITHIN IT. 

RULES 

(1) A NAME DEFINED IN A NAME-SCOPE IS KNOWN, AND THEREFORE ABLE TO BE REFERENCED, 

THROUGHOUT. THAT NAME-SCOPE, INCLUDING ALL NESTED BLOCKS NOT REDEFINING IT, 

A NAME DEFINED IN A NAME-SCOPE IS NOT KNOWN OUTSIDE THAT NANE-SCOPE. . 

(2) ALL COMPOOL DATA IS CONSIDERED TO BE DEFINED IN ONE NAME-SCOPE WHICH 
-ENCLOSES THE OUTERMOST CODE BLOCK OF THE COMPILATION UNIT. 

ALSO, 

THE NAME OF A CODE BLOCK IS CONSIDERED TO BELONG TO THE NAME-SCOPE IMMEDIATELY 
ENCLOSING THE BLOCK, 

  

I-\4



OUTER 

NAME 

SCOPE" 

\- a0 

HAME-SCOPE (CON'T.) 

EXAMPLE: 

ALPHA: PROGRAM; 

DECLARE X; X KNOWN EVERYWHERE 

DECLARE Ys} +——m—-——————_ ¥ KNOWN EVERYWHERE EXCEPT BETA 

  

BETA: PROCEDURE; «———-—— nea 1 KNOWN EVERYWHERE 

  

DECLARE Ys - NEW Y 18 KNOKN-IN BETA ONLY! 
inner | DECLARE Z3 <7 1s. KNOWN IN HETA ONLY 
NAME ‘ 

SCOPE ' 

CLOSE BETA; 

DELTA Y = 0; DELTA NOT KNOWN IN BETA 

CALE BETA)   CLOSE ALPHA;



{- 

NAME-SCOPE (CON’T.) 

WHY IS BETA CONSIDERED TO BE IN THE NAME-SCOPE OF ALPHA? 

BECAUSE .... IF IT WERE OTHERWISE 

TALPHA: PROGRAM ; 
DECLARE Xs 
DECLARE Ys 

" PROCEDURE; 

CLOSE BETA; 

CALL BETA3; «~~~ ILLEGAL -- NAME BETA IS NOT VISIBLE!! 

CLOSE ALPHAs  



aX 

NAME-SCOPE (CON'T,) 

VISUALIZE IT THIS WAY. sseaees 
  

COMPOOL DATA 

  

PROGRAM DATA 
ALPHA’ 
  

PROCEBURE DATA 
BETA: 
  

  
MAL 
—_ 

        

          

OMEGA: 
  

  

| 
  

  

                        

OUTERMOST NAME-SCOPE



ae
 

“NAME-SCOPE (CON’T,) 

ALL RECURSION IS ILLEGAL IN HAL/S. OBVIOUS RECURSION IS DETECTED 

AT COMPILATION TIME, DEVIQUS RECURSION IS DETEETED BY HALLINK OR 

AP-101 LINKAGE EDITOR DURING STACK CALCULATION, 

EXAMPLE: 

Q: PROCEDURE 

CALL Q3 RECURSIVE CALL (DETECTED BY COMPILER) 

CLOSE Qs 
t 
‘



Is AN 

  

NAME-SCOPE (CON’T.) 

FURTHER COMMENTS: 

(1) 

(2) 

(3) 

(4) 

AS A GENERAL RULE, DATA MUST BE DECLARED (DEFINED) BEFORE 

IT CAN BE USED, 

BLOCKS CAN BE CALLED FROM A POINT PRIOR TO THEIR DEFINITION, 
BUT WE RECOMMEND ALWAYS DEFINING A BLOCK BEFORE USING IT. 

BLOCK LABELS MUST BE UNIQUE THROUGHOUT A UNIT OF COMPILATION, 

AS AN EXCEPTION TO THE NAME-SCOPE RULES, STATEMENT LABELS 

ARE NOT VISIBLE WITHIN BLOCKS NESTED IN SCOPE WHERE LABEL 

1S DEFINED,



WS 

NAME-SCOPE (CON’T.) 

THIS IS LEGAL, 

CALL 9; 

Q: PROCEDURE. 
' 
a 
' 

CLOSE Q; 

BUT WE PREFER, 
1‘ 
1 

Q: PROCEDURE; 

CLOSE 95 

CALL 9;



NAME=SCOPE (CON‘T,) 

WHY (2) 

(1) UNLIKE HAL/S, MANY LANGUAGES DO NOT ALLOW FORWARD 
REFERENCES, 

(2) A FORWARD REFERENCE USES UPA SYMBOL. TABLE ENTRY. 

(3) FORWARD REFERENCES TO FUNCTIONS REQUIRE AN ADDITIONAL 
DECLARE: 

DECLARE F FUNCTION SCALAR; 

  

§ = F(X); 

F: FUNCTION(ARG) SCALAR; 

CLOSE F;



‘NAME=SCOPE (CON’T.) 

Q: WHY THE SPECIAL RULE FOR STATEMENT LABELS? 

A: SO ONE CANNOT USE "GO TO” T) EXIT A BLOCK, 

EXAMPLE 

  

F: FUNCTION SCALAR; 

DECLAPE Us 

G0 TX 

RETURN Us 

CLOSE Fs 

  
I UE]



A. 

C. 

HAL/S PRIMITIVES 
3 MAJOR CLASSES 

RESERVED WORDS (NAMES NITH SPECIAL MEANING TO THE COMPILER) 
(1) KEYWORDS 

exampLes: ‘IF, ELSE, GO, TO, VECTOR, TASK, IN, LOCK, 
TRUE, READ... . 

(2) %-MACRO NAMES 
"EXAMPLES: COPY, ZSVC, %NAMECOPY 

(3) BUILT-IN FUNCTION NAMES 
EXAMPLES: ABS, SIGH, COS, LOG, UNIT, DET, RANDOM, 

TRIM, SHR, XOR 
IDENTIFIERS (NAMES INVENTED BY THE PROGRAMMER) -- LABELS AND 
VARIABLES 
EXAMPLES: 

[ALPHA]: PROGRAM; 
DECLARE @) SCALAR; 
REPLACE (D) BY "6", 

LITERALS (THINGS THAT EXPRESS THEIR QKN VALUED 
-EXAMPLES: 6 4,95E3 ‘ABC!



pr ok 

A. 

B. 

- PRIMITIVES (CON'T,) 

RESERVED WORDS - 
SEE APPENDICES B, C, AND 1 OF LANGUAGE SPECIFICATION. 

IDENTIFIERS - 
RULES: 

(1) MUST HOT CONFLICT WITH RESERVED WORDS! ! 
(2) MUST BE 32 CHARACTERS OR LESS 
(3) FIRST CHARACTER MUST BE AZ 
(4) BREAK CHARACTER '_* (UNDERSCORE) MAY BE USED -- BUT MUST 

NOT BE FIRST OR LAST CHARACTER. . 
(5) ONLY ALPHANUMERIC CHARACTERS APE LEGAL. 

  

  

EXAMPLES: 

LEGAL ILLEGAL 

STATE_VECTOR 3xY 

174X203 PTL 

B_LA_CYAL VECTOR_ 

R VECTOR 

W 

A#B
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ink 
DIAN 

Errors Detected: 

Error # Cause 
Fixup li Argument outside range: Return | 

IXle*250 
12 Argument too near a Return maximum Singularity of the positive floating 

tangent function point number 
Comments: 

Error gets very large near a singularity, before error #12 is sent. 

The value used in the routine for x*250 is hex’4DC90FDA’ = 3.53711870600810E+15. 
Registers Unsafe Across Call: FO,F 1,F2,F3,F4,F5. 

Algorithm: 

Multiply X by 4 , and give the characteristic of this to X*0000000000000008" for use as 
a comparand to determine heamess to a singularity. 
The integer part of eS is the octant. 

If the octant is even, let w = fraction part of IxI* 4 Gc 5 
If the octant is odd, let w= -(1 -fraction) part of IXl* < 

Next, compute two polynomials P(w) and Q(w). 

If w > 2-6, then the forms of the polynomials are: 
Pw) = w(aq + aw? + a,w4 + we) 
Q(w) = by + byw? + byw4 + b,ws 

If w < 2-6, then withu=w if [XI* <a, and u = -w otherwise. 

P(w) = w(ay + u) 

Qtw) = by + bu 

where the values of the constants are: 

@p = X'CS8AFDD0A41992D4" = -569309.04006345 
a; = X°44AFFA6393159226" = 45050.3889630777 
az = X'C325FD4A87357CAF’ = -607.8306953515 
bp = X’CSBOF82C871A3B68" = -724866.7829840012 
b, = X'4532644B1E45A133’ = 206404.6948906228 
bz = X’C41926DBBBIF469B’ = -6438.8583240077 

5-129



C. 

‘ PRIMITIVES (CON’T,) 

LITERALS - 

ARITHMETIC 

(NO DISTINCTION MADE BETWEEN INTEGERS AND SCALARS) . 

EXAMPLES: 

+6 ~80,5E-6 

9 B30 

3,0 ~GH-4 

-3,14159 3106245 

GENERIC FORM: 

tdddd.dddd<exponents> 

SIGNS AND DECIMAL POINT OPTIONAL 

B ~ POWER OF 2 

E ~ POWER OF 10 

H ~ POWER OF 16
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PRIMITIVES (CON'T.) 

C. LITERALS - 
CHARACTER 

TWO FORMS: 

"CCCCCCCC «4, C’ 
: OR 

CHAR <repetition> "CCC ,,, CC! 
ae 

OPTIONAL 

EXAMPLES i 

_ NULL STRING " 
ABC "ABC! 

CHAR’ ABC’ 
ABCABC "ABCABC' 

CHAR(2) ‘ABC! 
ISN'T "ISN'T! 

-Qaaaaa CHAR(6)'Q! 
"gagaga’ 

NOTE: IF A SINGLE QUOTE IS DESIRED IN THE CHARACTER STRING, USE 2! 

ALSO, CHARACTERS DO NOT HAVE TO BE ALPHANUMERIC NECESSARILY; 

i, a, Save
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C, 

PRIMITIVES (CON‘T.) 

  

LITERALS - 

BOOLEAN 

TRUE =ON =BIN'1’ 

FALSE = OFF = BIN’O’ 

BIT 

TRUE = ON = BIN’000.., 01’ 

FALSE = OFF = BIN’000 ... 00" 

BIN <repetition>'bbbb’ b = BINARY DIGIT 

OCT <repatition>'oocd' o ™ OCTAL DIGIT 

HEX <repetition>thhhh! ho = HEX DIGIT 

DEC <repetition> 'dddd' 6 ™ DECIMAL DIGIT 

<repetition> = {n)} OPTIONAL 

EXAMPLES: 

BIN'10110' ~~~ 101105 

BIN(4)'101’ ———» 1011011011015 

DEC(3)'9' > 99949 

HEX(7)'F! 0 > FFFFFFF 15 

OCT'2037" +2037



SOURCE FORMAT 

(ORIENTED TOWARD {BM) 

GENERALLY, 

Coll 2 72 73-78 
ff 1 tor , HAL/S TEXT | [sen]... 

COL1 =~ BLANK 
2-72 -- HAL/S STATEMENT 

73-78 -- STATEMENT REFERENCE NUMBER (SRN) 
79 ~~ DEFINED FOR USE AT IBM/HOUSTON 

THERE ARE 2 SPECIAL TYPES OF EXCEPTIONS: 
(1) COMMENT CARDS 

cor 1 COLS 2-80 ARBITRARY 
. © THIS IS A COMMENT ,,.. 

(2) COMPILER DIRECTIVE CARDS 
Col, 1 

) INCLUDE TEMPLATE ALPHA .., 

(FOR OTHER "D" CARDS, SEE USER’S GUIDE)



I> B\}; 

(1) 

(2) 

(3) 

(4) 

~ SOURCE FORMAT (CON‘T,) 

NOTE: IF CARD NUMBERS (SRNs) ARE PRESENT, OPTIONS ‘SDL’ 
OR SRN’ MUST BE SPECIFIED TO THE COMPILER -- OTHER- 
WISE, THE COMPILER WILL GO ONT TO COL. 80 LOOKING FOR 
TEXT, : 

ALTHOUGH THE STREAM-ORIENTED ASPECT OF THE HAL/S SCANNER ALLOWS 
MULTIPLE STATEMENTS ON ONE CARD, THIS IS NOT GENERALLY RECOMMENDED. 
IN FACT, SINCE AN "IF .., THEN” CONSTRUCTION IS CONSIDERED TO 
BE 2 SEPARATE STATEMENTS, THINGS GET SLIGHTLY COMPLICATED, 

TT IS QUITE PERMISSABLE, ON THE OTHER HAND, TO EXTEND A SINGLE 

STATEMENT ACROSS MANY CARDS. 

ENDS OF STATEMENTS ARE INDICATED BY A SEMICOLON (;),



SOURCE FORMAT (CON'T,) 

  

DO THIS: 
2 73 
Y Y 
A= 2; 003100 
B= 3; 903105 

NOT THIS: 
A=2;B=3; 003100 

THIS IS OK: 

i 
A=Q+R+S+SINCT) — 004000 

tUtV Ws 004005 
AS LONG AS YOU DO NOT BREAK UP IDENTIFIERS AND RESERVED WORDS 
THIS IS NOT: 

A = CGIK_QVECTOR_ 005000 
FINAL + 6; 005005 

  

ALSO, (MORE ON THIS LATER) 

WE PREFER : TO: 

A, B, C = 03 A=0; B=0; C=0;



PROGRAM BLOCK 

EXAMPLE: 

THIS IDENTIFIER IS REQUIRED! 

ALPHA: PROGRAM; 
  

  

  

  

  

       

  

  

"DECLARES 

NESTED CONSIDERED AN 
EXECUTIO BLOCKS 

FLOW EXECUTABLE 

N STATEMENT 

; PROGRAM 
/ CODE 

ZL 

LOSE ALPHA; 

OPTIONAL ~~ BUT IF PRESENT MUST MATCH 

LABEL ON PROGRAM DECLARATION, 

| NOTE: A PROGRAM CAN BE EXITED BY A “RETURN” STATEMENT -~ 

BUT NORMALLY THIS IS...



PROGRAM BLOCK (CON'T,) 

vee ACCOMPLISHED BY HITTING THE “CLOSE” STATEMENT, 

ALSO, A "CLOSE" STATEMENT CAN HAVE A LABEL CAND CAN BE JUMPED To 
VIA A "GO TO” STATEMENT) 

"EXAMPLE 
  

wwe EXIT VIA RETURN 

a
e
 

IF A = 0 THEN RETURN; 

IF A = 2 THEN 

DO; 

Be B+; EXIT VIA JUMP TO CLOSE! 

GO TO EXEUNT; 
END; | 

B= SIN(C) + PI; . | EXIT BY FALLING 
EXEUNT: CLOSE ALPHA; INTO “CLOSE”



HAL/S DATA TYPES AND ORGANIZATIONS 
  

  

  

  

                

    

  

    
  

  

      
  

  
      

            

  
  

  

        

  

  

  

  

        
          

TYPES ORGANIZATIONS 

ARITHMETIC STRING | | ARRAY** STRUCTURE *** 

| . 

SCALAR -| CHARACTER® | LL ywprvipual ARRAY** 
| TYPES 

- BIT* | COMBINATION ITEG 
INTEGER (BOOLEAN) I “—— OF TYPES 

| 
VECTOR® SPECIAL | - COMPONENT SUBSCRIPTING 

| ** _ ARRAY SUBSCRIPTING 
EVENT *** _ STRUCTURE SUBSCRIPTING 

MATRIX* 
| 

|_| PROCESS 
EVENT | 

|
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DECLARES (CON’T,) 
  

FOR THE TIME BEING WE WILL RESTRICT ATTENTION TO THE FOLLOKING 
DATA TYPES: 

ARITHMETIC STRING 

INTEGER CHARACTER 

SCALAR , BOOLEAN 

VECTOR 

MATRIX 

AS FOR DATA ORGANIZATIONS, ONLY ARRAYS WILL BE CONSIDERED NOW,. 

A. INTEGERS 

© ESSENTIALLY FIXED-POINT “WHOLE” NUMBERS (SIGNED) 

o TWO CHOICES OF PRECISION 

360 FC 

SINGLE 2 BYTES 1 HALFHORD 

DOUBLE 4 BYTES (j HALF HORDS 
1 FULLWORD 

at



DECLARES 
  

(1) ALL DATA MUST BE DECLARED BEFORE IT CAN BE USED -- HAL/S HAS NO IMPLICIT 

DECLARATIONS. 

(2) DATA IS DECLARED WITHIN A DECLARE GROUP WHICH FOLLOWS THE COMPOOL, 

PROGRAM, ETC; HEADER AND PRECEDES THE FIRST REAL EXECUTABLE STATEMENT, 

NOTE (1): WITHIN A DECLARE GROUP, PARAMETERS SHOULD BE DECLARED FIRST. 

  

NOTE (2): IT IS ALSO GOOD PROGRAMMING PRACTICE TO PLACE DATA DECLARED 

WITH THE GONSTANT ATTRIBUTE BEFORE OTHER DATA (THIS WILL BE 

DISCUSSED: LATER UNDER THE SUBJECT OF COMPILE-TIME COMPUTA- 

TIONS). 

 



  

DECLARES (CON’T.) 

RANGES : 

SINGLE  -32,768 <4 < 32,767 
DOUBLE : 

-2,147,483,648 <4°< 2,147,483, 647 

USAGE: 

SINGLE PRECISION INTEGERS ARE GENERALLY USED FOR LOOP VARIABLES. 

CAUTION: 

IT IS COMMONLY OBSERVED: THAT USERS OVERESTIMATE THE RANGE OF 

A SHORT INTEGER, E.6., 

DECLARE I INTEGER; 

DO FOR I = 1 T0 99999, 

END;



  

DECLARES (CON'T,) 
  

  
NOTE: ALTHOUGH HAL/S DOES NOT HAVE IMPLICIT DECLARATIONS, 

IT BOES HAVE DEFAULTS: 

(1) DEFAULT PRECISION IS 

SINGLE 

(2) DEFAULT DATA TYPE IS 

SCALAR 

  

  
INTEGER PECLARATIONS 

DECLARE I INTEGER; 

DECLARE 1 INTEGER SINGLEs | 

EQUIVALENT FORMS -- YIELDS SHORT INTEGER 

DECLARE I INTEGER DOUBLE; 

NOTE: ORDER COUNTS. YOU CANNOT SAY 

DECLARE I DOUBLE INTEGER; 

 



DECLARES (CON'T,) 
  

B. SCALARS 

@ ESSENTIALLY FLOATING-POINT <SCIENTIFIC WOTATION) NUMBERS 

© TWO CHOICES OF PRECISION 
360 FC 

G - - 12 HALFWORDS SINGLE 4 BYTES 2 FULLWORD 

DOUBLE 8 BYTES = 2 FULLWORDS 

RANGES: 

BOTH SINGLE AND DOUBLE HAVE A DYNAMIC RANGE FROM 
Nx 10779 To N x 107° 

ACCURACY : 

SINGLE ~~ 7 DECIMAL DIGITS 

DOUBLE ~~ 17 (OR LESS)



DECLARES (CON’T,) 
  

DECLARE S; 

DECLARE S SCALAR; 

DECLARE S SCALAR SINGLE; 

EQUIVALENT -- ALL YIELD SHORT SCALAR 

DECLARE S DOUBLE; 

DECLARE $ SCALAR DOUBLE; 

EQUIVALENT -- ALL YIELD LONG SCALAR 

  

NOTE: MATRICES AND VECTORS ARE CONSIDERED TO BE 

’ MADE UP OF SCALARS. 

  

[~“t8]
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DECLARES (CON‘T,) 
  

VECTORS 

@ TWO CHOICES OF PRECISION 

© LENGTHS MAY RANGE FROM 

2<L< 64 

NOTE: DEFAULT LENGTH IS 3 

VECTOR DECLARATIONS 

DECLARE V VECTOR; 
DECLARE V VECTOR(3); 
DECLARE V VECTOR SINGLE; 

DECLARE V VECTOR DOUBLE; 

DECLARE V VECTOR(64) DOUBLE; 

DECLARE V VECTOR(2) DOUBLE; 

SINGLE-PRECISION 3-VECTORS 

NOTE: HALAS DOES NOT DISTINGUISH BETWEEN (NOR IS THERE A 

NEED TO) ROW AND COLUMN VECTORS. 

~~ MORE ON TH"S LATER --
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DECLARES (CON’T.) 
  

MATRICES 

o THO CHOICES OF PRECISION 

@ . ROW AND COLUMN LENGTHS MAY RANGE FROM 

2<L< 64 

NOTE: DEFAULT ROW AND COLUMN LENGTHS ARE 3, 

MATRIX DECLARATIONS 

DECLARE M MATRIX; 

DECLARE M MATRIXG,3); ‘SINGLE~PRECISION 3x3 MATRICES 

DECLARE M MATRIX SINGLE; 

DELCARE M MATRIX DOUBLE; 

DECLARE M MATRIX(2,64) DOUBLE; 

DECLARE M MATRIX(2,2) DOUBLE;



DECLARES (CON'T,) 

E. CHARACTER STRINGS 

PHYSICAL FORMAT: 

  

360 
  

                  

  

  

              

I Jo BYTE /CHAR ———_________ > 

|e sone 
FC 
1H <———— 1 HW/(2. CHARS) 
max | CHAR 

et ! eeee ! 
i £ > 

POSSIBLY AN 

UNUSED SLOT 

CHARACTER DECLARATIONS 

DECLARE STRING CHARACTER(4); 
NOTES: (1) DECLARED LENGTH OF CHARACTER STRING MAY RANGE FROM 

1 10 255 

(2) ACTUAL LENGTH MAY RANGE FROM 

0 (NULL) TO 255
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DECLARES (CON'T,) 
  

F, BOOLEANS | 

© ESSENTIALLY DEGENERATE RIT STRINGS CBIT(L)) 

_ © ONLY TWO POSSIBLE VALUES 

TRUE = ON = BIN’]’ 

FALSE = OFF = BIN’O’ 

ak
 

BOOLEAN DECLARATIONS — 

DECLARE BOOL BOOLEAN; 

NOTE: ALTHOUGH WE WILL DEFER DISCUSSION OF BIT STRINGS, 

NOTE THAT IT IS ENTIRELY EQUIVALENT TO SAY, 

DECLARE BOOL BIT(1);



wn 

ARRAYS 

INTEGERS, SCALARS, VECTORS, MATRICES, CHARACTERS, AND BOOLEANS 
MAY BE ARRAYED (OR POSSESS ARRAYNESS). 
  

TO CREATE AN ARRAY, INSERT 
ARRAY (1) 1-DIN 
ARRAY (Ny yt) 2-DIM 
ARRAY (Ny ,Np,N3) 3-DIM 

FOLLOWING THE IDENTIFIER IN THE DECLARE STATEMENT, 
EXAMPLE : . 
  

DECLARE QMAT ARRAY(100) MATRIX; 

DECLARE B ARRAY(50) BOOLEAN; 

DECLARE S ARRAY(10,5) MATRIX(16,16) DOUBLE; 

NOTE: ARRAY(,) MUST PRECEDE THE ATTRIBUTES, 

ILLEGAL 

DECLARE B BOOLEAN ARRAY(3);



ARRAY (CON’T,) 

IN THE FORMS: 

ARRAY (NN) 
ARRAY (Ny, Np) 
ARRAY (Ny, No» Hg) 

2 < Ny < 32,767 
2 < Np < 32,767 
2 < Nz < 32,767 

THE BIGGEST DATA ITEM WE CAN THINK oF AT THIS POINT IS: 

DECLARE A ARRAY (32767, 32767, 32767) NATRIX(64, 64) DOUBLES 
= 1,15 x 1018 pytes



vd 

INTEGERS AND SCALARS 

~COMMENTS- 

HAL/S UTILIZES CONTEXT TO DECIDE WHETHER LITERALS ARE INTEGERS 
OR SCALARS. IN GENERAL, WHENEVER A USER HAS A SCALAR THAT IS 
INTEGRAL IN FORM, WE ENCOURAGE WRITING IT AS THOUGH IT WERE AN 
INTEGER. 

EXAMPLES: 

Five 

DECLARE A, B, Cs 

THEN WRITE 

A=23; 

INSTEAD OF 

A= 2.0 Bs 

IN OTHER WORDS, ONE DOES NOT NEED TO APPEND ”.0” TO WHOLE-NUMBER SCALARS,



INTEGERS AND SCALARS 

~COMMENTS~ 

~ HAL/S IS VERY FORGIVING ABOUT MIXING INTEGERS (SINGLE OR DOUBLE) 

AND SCALARS (SINGLE OR DOUBLE) IN EXPRESSIONS, IMPLICIT CONVERSIONS 

ARE AUTOMATICALLY PERFORMED SO AS TO MAINTAIN MAXIMUM ACCURACY, OF 

COURSE, SINCE THESE CONVERSIONS AFFECT CPU AND CORE, USERS SHOULD 

BE AWARE OF THE POTENTIAL COST THAT CAN RESULT FROM THIS FREEDOM, 

(HORE ON THIS WHEN WE DISCUSS EXPRESSIONS AND ASSIGNMENTS.) 

  

 



w
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COMPOUND DECLARATIONS 

SIMPLE DECLARATION 

DECLARE S; 

DECLARE M MATRIX DOUBLE; 

DECLARE C CHARACTER(6); 

COMPOUND DECLARATION 

DECLARE S, 

M MATRIX DOUBLE, 

C CHARACTER(G); 

(OR, ON ONE CARD) 

DECLARE S, M MATRIX DOUBLE, C CHARACTER(6); 

NOTE: IN A COMPOUND DECLARATION THE KEYWORD DECLARE APPEARS ONCE 
AND INDIVIDUAL ELEMENTS ARE DELIMITED BY ",”, 
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FACTORED DECLARATIONS 

IF THE IDENTIFIERS IN A COMPOUND DECLARATION HAVE SOME ATTRIBUTES 

IN COMMON, A FACTORED FORM MAY BE EMPLOYED: 

THUS, THE PROGRESSION IS: 

SIMPLE DECLARE V1 VECTOR(4) INITIAL(O); 

DECLARE V2 VECTOR(A) INITIAL(O); 

DECLARE V3 VECTOR(4) INITIAL(O); 

To 

COMPOUND DECLARE V1 VECTOR(4) INITIAL(O), 

V2 VECTOR(4) INITIAL(O), 

V3 VECTOR(4) INITIAL(O); 

To 

FACTORED DECLARE VECTOR(4) INITIAL(O), V1, V2, V3; 

THIS IS A BIG KEYPUNCH SAVER: 

  

  

DECLARE ARRAY(16) MATRIX(4, 4) DOUBLE 

INITIAL(O), ML, M2, M35 
J 

NOTE: THE COMMA MUST BE PRESENT! 

     



DATA INITIALIZATION 

DECLARE ORDER: 

DECLARE « <array> <type> <precision> <initialization> 

UNARRAYED DATA 

INTEGER: 

DECLARE I INTEGER INITIAL(O)5 

DECLARE J INTEGER DOUBLE - 

INITIAL(-20)5 

DECLARE K INTEGER INITIAL(4**3); 

SCALAR: _— 

DECLARE S INITIAL(O): 

DECLARE PI SCALAR DOUBLE 

CONSTANT (3, 14159265) 

NOTE: DO NOT NEED 0,0! 

  

NOTES: 

INITIAL AND CONSTANT BOTH CAUSE INITIALIZATION OF DATA, BUT 
SOMETHING DECLARED WITH THE CONSTANT ATTRIBUTE CANNOT EVER BE 
CHANGED.



DATA INITIALIZATION (CON’T.) 

ALSO, DATA DECLARED CONSTANT “MAY” TURN OUT TO BE INACCESSIBLE TO 

RUN-TIME DIAGNOSTICS, 

ON THE OTHER HAND, SOME DATA DECLARED CONSTANT, SINCE THE VALUE 1S 

KNOWN BY THE COMPILER, MAY BE USED IN COMPILE-TIME EXPRESSIONS. 

REFERENC- ASSIGN- DIAGNOSTICS 
ABLE ABLE (i.e, pump) COMPILE-TIME EXP, 

CONSTANT YES NO MAYBE MAYBE 

INITIAL YES YES YES No 

  

NOW, TO BE MORE PRECISE! 

IF UNARRAYED INTEGERS, SCALARS, BIT STRINGS, OR CHARACTER STRINGS, ARE 
DECLARED CONSTANT, THEN THESE ITEMS CAN BE UTILIZED IN COMPILE-TIME EXPRES- 
SIONS -- AT THE SAME TIME THIS IMPLIES THAT THE DATA ITEM IS UNAVAILABLE 
TO DIAGNOSTICS, 

  

*** NOTE THAT VECTORS AND MATRICES ARE INELIGIBLE!



DATA. INITIALIZATION (CON'T.) 

THE REASON THESE ITEMS ARE UNAVAILABLE TO DIAGNOSTICS IS THAT THEY 

ARE PUT IN-A SPECIAL LITERAL AREA BY THE COMPILER -- SUCH ITEMS DO 

NOT OCCUPY STORAGE WHERE THEY ARE DECLARED. 

FINALLY, USE OF CONSTANT ALLOWS A GREATER RANGE OF COMPILER 
OPTIMIZATION: 

EXAMPLE 1 
DECLARE PI SCALAR DOUBLE 

CONSTANT (3, 1415926535) ; 
DECLARE RAD_TO_DEG SCALAR 

| DOUBLE CONSTANT(180/P1) ; 
DECLARE SINS SCALAR 

CONSTANT (SIN(15/RAD_TO_DEG)). 

EXAMPLE 2 

DECLARE V1 VECTOR CONSTANT(L, 1, 1); 

(DECLARE V2 VECTOR CONSTANT(V)s) 

ILLEGAL! 
 



DATA INITIALIZATION (CON‘T.) 

EXAMPLE 3 

DECLARE Kil INTEGER CONSTANT (3); 

DECLARE S1 SCALAR CONSTANT (16.5); 

' 
e 
, 

W = SQRT(SL) ** Ki; 

THE EXPRESSION “SQRT(S1) ** K1” WILL BE EVALUATED AT COMPILE 

TIME, THE CODE WILL LOOK LIKE: 

LE 0, {COMPILER CALCULATED 
CONSTANT 

STE 0, W



DATA INITIALIZATION (CON‘T.) 

BOOLEAN INITIALIZATION 

DECLARE BOOL BOOLEAN INITIAL(ON); 

EQUIVALENT DECLARE BOOL BOOLEAN INITIAL(BIN‘'1'); 

DECLARE BOOL BOOLEAN INITIAL(TRUE); 

DECLARE BOOL BOOLEAN INITIALCOFF); 

EQUIVALENT DECLARE BOOL BOOLEAN IMITIAL(BIN'0’); 

DECLARE BOOL BOOLEAN INITIAL(FALSE); 

AND OF COURSE; — | 
DECLARE BOOL BOOLEAN CONSTANT (TRUE) 

(ALTHOUGH THIS HARDLY MAKES SENSE



DATA INITIALIZATION (CON’T.) 

CHARACTER INITIALIZATION 

(1) DECLARE C CHARACTER(3) INITIAL(''); 

(2) DECLARE C CHARACTER(12) INITIAL(CHAR(3)‘ABCD‘);. 

(3) DECLARE C CHARACTER(255) INITIAL(CHAR(255)‘A'); 

IN (1) WE GET (ON THE 360) 

  

              

MAX CUR 

CA 
|) Ag 
1 1 1 1 1 

IN (2) HE GET (ON THE 360) 

  

      
BWyWlA;B;C; DAT BY C] DI AY BI Ci} OD 

                        
  

I.E., A CHARACTER STRING REQUIRES 2 BYTES PLUS 1 BYTE PER CHARACTER,
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DATA INITIALIZATION (CON'T.) 

MULTI-VALUED DATA ITEMS 

A VECTOR OR MATRIX IS CONSIDERED TO RE A MULTI-VALUED DATA ITEM, 

ARRAYS ARE OBVIOUSLY MULTI-VALUED. 

IMPORTANT NOTE -- HAL/S MAKES LIFE EASY IF AN ENTIRE MULTI-VALUED 

ITEM 1S TO BE INITIALIZED TO A SINGLE VALUE: 

DECLARE Q MATRIX(16, 16) INITIAL(O); 

DECLARE R ARRAY(400) SCALAR DOUBLE INITIAL(6); 

IF THE FOREGOING IS NOT SUITABLE THEN YOU MUST SUPPLY THE 

REQUISITE NUMBER OF DATA ITEMS. 

VECTOR INITIALIZATION 

DECLARE X_VECT VECTOR CONSTANT(1, 0, 0) 

DECLARE R_VECT VECTOR DOUBLE INITIAL(6, -3.5, 44,82);



DATA INITIALIZATION (CON’T.) 

MATRIX INITIALIZATION 

DECLARE 13 MATRIX CONSTANT(1, 0, 0, 0, 1, 0, 0, 0, 1); 

DECLARE I4 MATRIX(4, 4) DOUBLE CONSTANT(1, 0, 0, 0, 0 1, 

0, 0, 0, 0. 1, 0, 0, 0, 0, 1; 

ARRAY INITIALIZATION 

FOR AN ARRAY, EACH ELEMENT IS INITIALIZED IN TURN: 

DECLARE C ARRAY(6) CHARACTER(4) CONSTANT(’ABCD’, "EFGH’, 'IJKL', 

MN’, 'OPQ', 'RST’); 

DECLARE M ARRAY(2) MATRIX(2,2) INITIAL(6, 1, 2, 3, 0, L 4, 5); 
’ eee etme Serta 

My No



DATA INITIALIZATION (CON‘T,) 

INITIALIZATION ORDER: 

VECTOR -- ‘BY INCREASING INDEX 

MATRIX -- -ROW-BY-ROW 

ARRAY -~- ELEMENT-BY-ELEMENT IN ORDER OF INCREASING INDEX, 

IF AN ELEMENT 1S MULTI-VALUED IT IS INITIALIZED 

IN FULL BEFORE GOING TO THE NEXT ELEMENT. 

MATRIX ORDER EXAMPLE: 

Azy Agg ARIN 

1.E., THE MATRIX IS STORED IN CORE AS 
[ALL A12 A13 A2i AZZ A23 ABL A32 A33)



REPLACE STATEMENT 

THERE ARE TWO KINDS OF REPLACE STATEMENTS: SIMPLE AND PARAMETERIZED 

SYNTAX 

SIMPLE: . ©@)must BE PRESENT 

REPLACE IDENTIFIER BY "ANY TEXT" s 

EXAMPLES! (LEGAL USAGES) 

(1) REPLACE PREC BY "SINGLE" 
 # 6 

DECLARE SCALAR PREC, A, B, C; 

(2) REPLACE S BY "A + B + LOG(C)"s 
eoefe 

DECLARE SCALAR, A, B, C, Ds 

D=5; 

(3) REPLACE DV BY "VECTOR DOUBLE INITIAL (O)" 

DECLARE VECI DV, 
VEC2 DV, 
VEC3 DV; 

(4) REPLACE N BY "4"; 

DECLARE V1 VECTOR(N), 
ML MATRIX(N, ND, 
M2 MATRIX(2, N)s



REPLACE STATEMENTS (CON‘'T.) 

(ILLEGAL USAGES) 

(5) REPLACE SINGLE BY "DOUBLE"; 

tpeserven worD (KEYWORD) 

(6) REPLACE SIN BY “SINH’; 

RESERVED WORD (BUILT-IN FUNCTION) 

(7) REPLACE + BY “/’; —~mrssine(“) 
E vot AN IDENTIFIER 

(8) REPLACE,16.2E3 BY "18,4E3"; 

Z apttuveric LITERAL (NOT AN IDENTIFIER) 

REPLACE STATEMENTS RESULT IN SQURCE-LEVEL SUBSTITUTION, THE ACTUAL 

SUBSTITUTIONS CAN BE SEEN IN THE LISTING IF CENT (¢) SIGHS ARE USED 

AROUND THE REPLACE NAME, I.E., 

D = ¢S¢; 

WILL RESULT IN 

D=A+B + LOG(C); 

IN THE LISTING,
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REPLACE STATEMENTS (CON'T,) 

NOTES: 

(1) A REPLACE STATENENT TAKES EFFECT ONLY AFTER IT APPEARS, 

(2) A REPLACE STATEMENT ADHERES TO NAME-SCOPE RULES, 

(3) A REPLACE CAN CAUSE TROUBLE BECAUSE IT CAN ONLY BE OVER- 
RIDDEN BY ANOTHER REPLACE. 

EXAMPLES: . : 

(1) DECLARE V1 VECTOR(N); ~~ *** ERROR UNDECLARED IDENTIFIER 
REPLACE N BY "4" | 
DECLARE V2 VECTOR(N) 5 

(2) ALPHA: -PROGRAM). 

REPLACE M BY "6" 

SINCE REPLACE IS AT PROGRAM LEVEL, IT WILL BE 
’ CLOSE ALPHA; EFFECTIVE EVERYWHERE



(3) 

REPLACE STATEMENTS (CON'T,) 

POTENTIAL TROUBLE 

GAMMA: EXTERNAL COMPOOLs 
ote 

REPLACE I BY “8"5 

CLOSE GAMMA; 

ALPHA: PROGRAM 
DECLARE I INTEGER *** ERROR 
tt £ 

DO FOR 1 = 1 TO 103 

ENDs 

CLOSE ALPHA;



REPLACE STATEMENTS (CON'T.) 

REPLACE STATEMENTS CAN BE OVERRIDDEN, 

EXAMPLE: 

ALPHA: PROGRAM; 

REPLACE X BY "6"; 

WRITE(X) A, By Cs 

BETA: PROCEDURE; 

REPLACE X BY "773 

WRITE(X) A, Bs Cy 

CLOSE BETA; 

CLOSE ALPHA;



REPLACE STATEMENTS (CON'T.) 

  

NOTE: WHENEVER ‘REPLACE TEXT IS SUBSTITUTED FOR AN IDENTIFIER, THE 

IDENTIFIER IS UNDERLINED BY THE OUTPUT WRITER. (¢ SIGNS THAT 

CAUSE PRINTING OF THE ACTUAL TEXT DO NOT RESULT IN UNDERLINING.) 

EXAMPLES : 

(1) SOURCE 

REPLACE @ BY "A + SIN(B)**2"5 

§=Q; 

OUTPUT WRITER 

MS = Qs 

(2) SOURCE 

-§ = Ot; 

OUTPUT WRITER 

E 2 
MH S =A + SIN(B) s



SUBSCRIPTING 

HAL/S ALLOWS THREE DISTINCT TYPES OF SUBSCRIPTING: (ALL SUBSCRIPTING 

STARTS AT 1), ' 

WD COMPONENT -- APPLICABLE TO STRINGS (1.E., BIT STRINGS* AHD CHARACTER 

STRINGS) AS WELL AS VECTORS AND MATRICES. 

(2) ARRAY 

(3) STRUCTURE (DEFERRED UNTIL LATER) 

* SINCE BOOLEANS ARE IN EFFECT DEGENERATE BIT STRINGS, USERS MUST CONSIDER 

THIS WHEN SETTING UP SUBSCRIPTS FOR ARRAYS OF BOOLEANS (MORE ON THIS 

LATER), , 

IN 1-LINE SOURCE FORMAT, SUBSCRIPTING IS INDICATED 
BY A "$", . 

EXAMPLES: | VECT$7 W$I1 = MAT$(2,4) —-X$(C14#2J41) 

NOTE THAT PARENTHESES ARE ONLY REQUIRED WHEN SUBSCRIPT IS MORE THAN ONE TOKEN!!!



SUBSCRIPTING (CON’T.) 

THE OUTPUT WRITER OF PHASE 1, HOWEVER WILL ALWAYS PRINT SUBSCRIPTS 

(PARENTHESES REMOVED) ON AN "S" CARD: 

EXAMPLE: . 

SOURCE: 1= Q$(2J + 1); 
LISTING: M %I=Q. ; 

- § sed 

COMPONENT SUBSCRIPTING 

CHARACTER STRINGS , 

l<L < 255 

DECLARE STRING CHARACTER (L); 

© TO SELECT ITH CHARACTER FROM STRING: 

-— STRINGSI 
WHERE I IS AN INTEGER EXPRESSION AND 

le<t«l 

EXAMPLE STRINGS (21) 
STRINGS 
STRINGS (1**3-1) 

I a 

oy



SUBSCRIPTING (CON’T.) 

© TO SELECT ‘I’ CHARACTERS STARTING AT ‘J’: 
STRING$UI AT J) 

WHERE I AND J ARE INTEGER EXPRESSIONS AND 

leJ<b . 

O<T<L-J+1 

0 WILL PRODUCE A NULL STRING, 
EXAMPLE: 

STRINGS(3 AT K) 
STRINGS (I**2 AT 2L) 

© TO SELECT A SUBSTRING STARTING WITH THE ITH CHARACTER AND ENDING 
WITH THE JTH; 

STRINGS(I TO J) 
WHERE I AND J ARE INTEGER EXPRESSIONS AND 

IT<J 

l<LJdet



eG 

SUBSCRIPTING (CON'T.) 

EXAMPLES! STRING$(1 TO J) 

STRINGS(3 TO 4) 
STRING$(1**2 TO 8) 

MORE EXAMPLES 

ASSUME: 

(a) 
(Bp) 

(c) 

(p) 

(e) 
(F) 
(6) 
(H) 

(1) 
(a) 
(k) 

DECLARE STRING CHARACTER(10) INITIALCABCDEFGHIJ’); 

DECLARE I INTEGER CONSTANT (2), 
J INTEGER CONSTANT (8), 
K INTEGER. [HITIAL(2)3 

STRINGS4 = -D'  - 
STRINGSO = ILLEGAL 
STRING$11 ILLEGAL 
STRINGSI = ’B' 
STRING$S(1**2) = 'D’ 
STRINGS(K**4) = RUN-TIME ERROR 
STRINGS(I**4) = COMPILE-TIME ERROR 
STRINGS (COS(0)+1) = 'B’ 
STRINGS(5 AT 3) = 'CDEFG’ 
STRING$(L AT J) = ‘HI! 
STRINGS(J AT 3) = ‘CDEFGHIJ’ 

ia 
2
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SUBSCRIPTING (CON’T.) 

(L) STRINGS(S TO 8) = ‘EFGH' 

(m) STRINGS(4 TO 3)  ELLEGAL 

VECTOR 

ELEMENTS (WHICH ARE SCALARS OF COURSE) ARE INDEXED STARTING FROM 1 

DECLARE V VECTOR(L) 5 —2<L< 6 

e TO SELECT ITH SCALAR FROM VECTOR: 

V$I (A SCALAR) 

WHERE 1 1S AN INTEGER EXPRESSION AND 

T<teb 

® TO SELECT A SUB-VECTOR OF LENGTH I STARTING FROM THE STH ELEMENT: 

V$(1 AT J) (A VECTOR) 

WHERE 1 1S AN INTEGER LITERAL AND 
Pr eer 

2<1«eL 

AilD J IS AN INTEGER EXPRESSION WITH 

l<eJdebl-I+1 

  

 



-SUBSCRIPTING (CON'T.) 

@ TO SELECT A SUB-VECTOR (PARTITION) STARTING FROM THE I74 ELEMENT AND 

ENDING WITH THE JTH: 

    

  

  

V$(1 TO J) (A VECTOR) 

‘WHERE 1, J ARE INTEGER LITERALS AND 

let<J«eL 

Q. WHY IN THE ..AT.. AND ..70,. SUBSCRIPTING FORMS, CAN THE LIMITS 

BE INTEGER EXPRESSIONS FOR CHARACTER STRINGS, BUT ARE REQUIRED 

TO BE INTEGER LITERALS FOR VECTORS? — 

A. BECAUSE CHARACTER STRINGS IN HAL/S ARE INNATELY OF DYNAMIC LENGTH 

WHEREAS VECTOR LENGTHS MUST BE KNOWN ABSOLUTELY.



SUBSCRIPTING (CON’T.) 

A. EXAMPLES OF LEGAL VECTOR SUBSCRIPTING 

J 2.0 
LE V pny ‘ 3,5 

T ~1,4 

6.9 

(1) V$1 = 2.0 _ (SCALAR) 

(2) V$4 26.9 (SCALAR) 

3) 

(4) 

(5) 

(6) 

. 3 
V$(2 AT aye| (2-VECTOR) 

5 ; 

oo
 
o
u
 

V$(1 TO m[3s (3-VECTOR) 
“1.4 . 

IF ADDITIONALLY WE HAVE 
  

  
DECLARE F INTEGER CONSTANT(3); 

    

THEN THE ‘FOLLOWING ARE ALSO VALID: 

3,5 
V$(1 AT 2)21-1,4) — (3-VECTOR) 

: 6.9 

2.0 
V$(1 TO 12] 3.5]  (3-VECTOR) 

K-14



LAS] 

B, 

SUBSCRIPTING (CON'T.) 

EXAMPLES OF ILLEGAL VECTOR SUBSCRIPTING 

SUPPOSE : 

DECLARE V VECTOR(5) INITIAL(2,3,4,6,8)3 
DECLARE I INTEGER INITIAL(4); 
DECLARE J INTEGER CONSTANT(S); 
DECLARE K INTEGER INITIAL(); 

lsEus 2 
3 

v=. [4 
6 
8 

THEN THE FOLLOWING ARE ILLEGAL: 
(D ¥80 
(2) V6 
(3) V$(J+1) J+] > LENGTH 
(4) V$(K AT 1) 
(5) V$(1 TO KD, 

SUMMARY OF VECTOR COMPONENT SUBSCRIPTING: 

(1) COMPONENT SUBSCRIPTING OF A VECTOR RESULTS IN A SCALAR 
OR A SMALLER VECTOR, 

(11) IF SUBSCRIPTING RESULTS IN A VECTOR, ITS LENGTH MUST BE 
COMPUTABLE AT COMPILE TIME!!! 

{



SUBSCRIPTING (CON'T.) 

MATRIX 

: (MOST OF THE SUBSCRIPTING RULES ARE GENERALIZATIONS OF THE VECTOR RULES.) 

2) COMPONENT SUBSCRIPTING OF A MATRIX CAN RESULT IN A SCALAR, A VECTOR, 

OR A SUBMATRIX, IF A VECTOR OR MATRIX RESULTS, THE VECTOR LENGTH 

OR MATRIX ROW/COLUMN LENGTHS, RESPECTIVELY, NUST BE COMPUTABLE AT 

COMPILE TIME. 

(@) MATRIX SUBSCRIPTING INVOLVES TWO DIMENSIONS: ROW AND COLUMN. AGAIN, 

ELEMENTS ARE INDEXED FROM 1. . 

e TO EXTRACT THE SCALAR ELEMENT IN THE 1TH RoW AND JT4 COLUMN OF THE 

Mx NH MATRIX @ WHERE I, J ARE INTEGER EXPRESSIONS (I.E, NEED NOT BE 

KNOWN AT COMPILE TIME), AND 1s I <M lsJ<Qe 

asa, J) 

 



SUBSCRIPTING (CON'T,) 

| . 33 ¢ TO SELECT THE IT! RoW; ay ¢ 
asc, *) (AN N-VECTOR) 

© TO SELECT THE JT COLUMN: 
as(*, J) (AN M-VECTOR) 

e 70 SELECT A SUBMATRIX OF DIMENSIONS a x 8; 
Q$(a AT I, 8 AT J) 

  

EXAMPLES 

LET Q BE THE 4 x 5 MATRIX: 

6 3 9 9 |] 
2 4 6 2 8 

, [1 0 0 6 3 
5 7 10 6 2 

THEN 

(1) Q$(1,1) = 6 (SCALAR) 
(2) Q$(4,5) = 2 (SCALAR) 

2 
i} 

(3) Q$(2,*) =16 (5-VECTOR) 
21. 

8 

La



| Vy 

SUBSCRIPTING (CON’T.) 

AGAIN, 
, 6 39 0 1 

Q- 2 4 6 2 8 
100 6 3 
5 710 6 2 

9 
(4) as(*,3) =| 6 

10 
9 

(5) Q$(3 AT 1,3)2 16 
: 0 

_{6 2 8 (6) 9$(2 103, 3 10 5)= (é 2 4 

3 9 0 
(7) as, 3aT 24 & 2 

Tet Oo 6 
7 10 6 

SS 
217



  

PARTITIONING 

EXAMPLE: HATRIX fis 

reeenne- m4 7% 
O—-, Ny Nhe thy | ! My ! 

1 1 
Hy ta Hs 1 My 
1 1! 

O-line ie} | mw 
JIT IIt 

Hcy Ug His 1 ; Hy 

Udy tint Hey Ngo Hes | | Mey | 

6 

YD th to 3, 1103 
’ 

2) Hey 

3) Neg 

4) 5 40 6,2 t0 3 5) My, 1 t03 | 

33 
a 

Nhe 

6 

N56 

Nig 

9 

‘Meg +@ 
{ 1



. 32. 
ARRAY SUBSCRIPTING 2 Ly 

ARRAYS MAY BE OF 1, 2, OR 3 DIMENSIONS CWITH.A MAXIMUM RANGE OF 

1 TO 32767 IN EACH DIMENSION). HERE WE WILL ONLY CONSIDER SINGLE 

DIMENSTON ARRAYS, 

ARRAY SUBSCRIPTING 1S EASY FOR ARRAYS OF INTEGERS AND SCALARS 

SINCE NO COMPONENT SUBSCRIPTING IS POSSIBLE. FOR ARRAYS OF CHARACTER 

STRINGS, BIT STRINGS (AND BOOLEANS), VECTORS, AND MATRICES, LIFE 

IS MORE COMPLICATED. 

  

SUBSCRIPTING AN ARRAY CAN RESULT IN-A SINGLE ELEMENT OR A SUB-ARRAY 

OF ELEMENTS. IN THE LATTER CASE (AS WAS TRUE FOR VECTOR AND MATRIX 

COMPONENT SUBSCRIPTING) THE ARRAYNESS (1.E., RANGES OF ALL ARRAY 

DIMENSIONS) MUST BE COMPUTABLE AT COMPILE TIME,



33 
220 

ARRAY SUBSCRIPTING (CON‘T.) 

LET “TABLE” BE AN ARRAY OF LENGTH | OF ANY DATA CINTEGER, 

SCALAR, BOOLEAN, CHARACTER, VECTOR, MATRIX, BIT. STRING) 

© TO SELECT THE 174 ARRAY ELEMENT: 

TABLE$(1:)<+———- PARENTHESES NEEDED BECAUSE “1” AND “:” ARE 2 

TOKENS 

WHERE 1 1S AN INTEGER EXPRESSION AND 
Letst 

NOTE: IF TABLE 1S AN ARRAY OF INTEGERS OR SCALARS SO THAT KO 
COMPONENT SUBSCRIPTING 1S POSSIBLE, THEN THE COLON MAY BE 
OMITTED, THUS: 

TABLES! SUFFICES, 

@ TO SELECT A SUB-ARRAY OF LENGTH 1 STARTING AT THE J™4 ARRAY ELEMENT 

OF TABLE: 
*TABLES(1 AT Ih couon OPTIONAL FOR INTEGER/SCALAR 

WHERE I IS AN INTEGER LITERAL WITH 

leet 

AND J IS AN INTEGER EXPRESSION WITH 

-i<Jeb-141



ARRAY SUBSCRIPTING (CON’T.) 

e TO SELECT A SUB-ARRAY STARTING FROM THE I74 ARRAY ELEMENT 

AND ENDING WITH THE JT; 

TABLES$(I TO Sh oprionat FOR INTEGER/SCALAR 

WHERE I AND J ARE BOTH INTEGER LITERALS AND 

leleJel 

EXAMPLE) 

DECLARE $ ARRAY(3) VECTOR(2) INITIAL(6, 9, 4, 2, 0, 8): 

COMPONENT ye [6 
OF ARRAY ———— §$(1:) = | | (aN UNARRAYED VECTOR) 

  

  

9 

6 4 
, S$(2 arax(| , [ }) STILL AN ARRAY 

eaerition ; . , 

OF ARRAY 5$(2 r030+([3| : 2] STILL AN ARRAY 

NO COMPONENT SUBSCRIPTING HERE, 

ye] 

53 
22/



Ss3 
ARRAY SUBSCRIPTING (CON’T.) olat 2 

EXAMPLE (2) 

_ {DECLARE A ARRAY(4) INTEGER INITIAL(9, 0, -6, 3)5 

{ASL = 9 
N . - 
NEEDED ASH = 3 

A$(1 TO 3) 

A$(2 AT 2) 

(3, 0, -6) 

(0, -6) 

EXAMPLE G) 
DECLARE C ARRAY(3) CHARACTER(4) INITIAL('THIS’, ‘IS’, 'HARD'); 
C$(2:) = ‘IS! 
C$(2 AT2:) = (TIS', "HARD’) 

| EXAMPLE (4) 
DECLARE BOOL ARRAY(5) BOOLEAN INITIAL(TRUE, FALSE, ON, OFF, BIN’O"); 
BOOL$(4:) = OFF 
BOOLS(3 AT 3:) 
BOOLS(1 TO. 4) 

(ON, OFF, BIN'O’) 

(TRUE, FALSE, ON, OFF) 

u
t



ARRAY ‘AND COMPONENT SUBSCRIPTING 
  

GENERIC FORM: 

"TABLES (ARRAY: COMPONENT) 

IN OTHER WORDS, THE ”:” IS USED TO ISOLATE THE ARRAY SUBSCRIPTS 

FROM THE COMPONENT SUBSCRIPTS. 

EXAMPLE (2) 
DECLARE S ARRAY(3) VECTOR(2) INITIAL(6, 9, 4, 2, 0, 8)3 

$$(1:2) = 9 (A SCALAR) 

$$(2 AT 2:1) = (4,0) AN ARRAY OF 2 SCALARS 

. EXAMPLE (2) . 

DECLARE C ARRAY(3) CHARACTER(H) INITIAL('THIS', ‘IS', ‘HARD')s 
C$(2:2) = 'S" 
C$(3:3) = ‘RI 
C$(2 AT 11 110 2) = CTH’, 'IS") 
C$(2 TO 3: 2) = C'S", 'AN) 

it
 

nt
 

Ww 

$2 
223



er ONY 

MS(3: 3,3) 

ARRAY AND COMPONENT SUBSCRIPTINGS (CON'T.) 
  

EXAMPLE (3) 

DECLARE M ARRAY(3) MATRIX INITIALG,2,3,4,5,6,7,8,9,10,11,12,13,14,15 

16,17,18,19,20,21,22,23,24,25,26,27)3 

I.E. 

1 2 3 lo H 2 1g 20 21 

N= h 5 6], {13 WW I], [22 23 24 

7 8 9 16 i/7 18 25 26 27 

M$(2: 2,1) = 13 

27 

M$(e: 3,3) = (9, 18, 27) 

LLiwotcates DO FOR EACH ELEMENT OF ARRAY 

We(2 AT Ls 2-AT 2, 2 AT) a([3 el. | 15]) 

Mt
 

ty
 

uJ 

8 9} U7 18 

33 

tay



COMPONENT SUBSCRIPTING ONLY a2 s 

IF THE BATA TO BE COMPONENT - SUBSCRIPTED (BIT AND CHARACTER STRING, 

VECTOR, OR MATRIX) IS ALSO ARRAYED, A TOKEN AMOUNT OF ARRAY SUBSCRIPTING 

MUST BE KEPT, IF TABLE [S AN ARRAYED DATA ITEM AND WE WISH TO PERFORM 

COMPONENT SUBSCRIPTING SIMULTANEOUSLY ON ALL ARRAY ELEMENTS THEN WE 

NEED THE FOLLOWING FORM: 

TABLES(*: COMPONENT SUB) 

WITH THIS FORM WE WILL PRODUCE A NEW ARRAY (WITH THE SAME NUMBER OF 

DIMENSIONS AND SAME RANGE IN EACH DIMENSION AS THE ORIGINAL) WITH EACH 

ELENENT THEREOF BEING A COMPONENT-SUBSCRIPTED VERSION OF THE ORIGITIAL 

ELEMENT. 

EXAMPLE (1) 

DECLARE C ARRAY(3) CHARACTER(4) INITIALC'THIS’, ‘IS’, HARD‘); 

C$(#:2) 2 CH, 'S', A‘)



“ye Th 

COMPONENT SUBSCRIPTING ONLY (CON'T.) 33 
R2E 

EXAMPLE (2,) 

LET M BE AN ARRAY 3 OF 3 x 4 NATRICES: 

1234 
mMe{]5 6 7 8 

9 10 1 12] 
THEN 

B W 15 16] [25 2 27 28 
,{7 18 19 2}, |29 30 31 32 

21 22 23 24) 133 3H 35 36 ]/. 

MS(2: 3,4) = 24 . 
1 27 

M$(2 AT 2: *,3) =| 19] ,/31 
23| 135 

wans2nssmne((x s)8 31.2 2) 
MS(*: 2 703, 3 104) = (THe same) 

7 J E 20] E 2 
1 12}.123 24).[35 36



SUBSCRIPTING SUMMARY 

RECOMMENDATION: EVEN WHERE OPTIONAL, I.E., ARRAY SUBSCRIPTING ON INTEGERS 

AND SCALARS, USE THE TRAILING “COLON”. 

  

- UNARRAYED DATA ~ 

COMPONENT SUBSCRIPTING: 
VARS(7 AT 1) 
VARS3 

. VARS(4 TO 5, 3 TO 4) 
- ARRAYED DATA - . 

NO COMPONENT SUBSCRIPTING: 
_VARG(7:) «——+-—- NEED PARENTHESES SINCE "7" AND "!” ARE 2 TOKENS. 

VAR$(3 AT 2:) 
ARRAY AND COMPONENT SUBSCRIPTING: 

VAR$(7:3) 
VARS(4 AT 1: 3 TO 4, 1 TO 2) 

COMPONENT SUBSCRIPTING ONLY: (ARRAYNESS UNCHANGED) 
VARS(*: 3 TO 4, 1 TO 2) 
VARS(*: 7)



| 3/ 
MORE DATA INITIALIZATION aAaly 

SUMMARY OF OLD MATERIAL: 

() TO INITIALIZE A SINGLE-VALUED DATA ITEN, SUPPLY 1 LITERAL VALUE 
Til THE INITIAL/CONSTANT LIST: 

DECLARE [. INTEGER INITIAL(7)s 

" DECLARE S. CONSTANT(9,3E-4) 

@ TO INITIALIZE A MULTI-VALUED DATA ITEM, (ARRAY, VECTOR, MATRIX) 
WE HAVE 3 CHOICES: 

A. INITIALIZE EVERYTHING TO THE SAME VALUE: (1 ITEM IN LIST) 
DECLARE M MATRIX INITIAL(O)s 

* DECLARE A ARRAY(15000) INITIAL(6.5); 

B. INITIALIZE TO DIFFERENT VALUES: (NEED 1 LITERAL FOR EVERY ELEMENT) 
“DECLARE M MATRIX INITIAL(1,0,0,0,1,0,0,0,1); 
DECLARE A ARRAY (15000) INITIAL(3.5, 6.5, 3.5, 6.5, 3.5, 

6.5, 3.5, 6.5, 3.5, 6155 ssrvery 615)3 

15000 oF THEM!



t 

MORE DATA INITIALIZATION (CON’T.) 229 

C, IF THE DATA IS ARRAYED, SUPPLY EXACTLY ENOUGH LITERALS TO 

INITIALIZE A SINGLE ELEMENT OF THE ARRAY, IN THIS CASE ALL 

ELEMENTS OF THE ARRAY WILL BE INITIALIZED IDENTICALLY. 

EXAMPLE: 

INSTEAD OF 
DEGLARE MM ARRAY(3) MATRIX(2,2) INITIAL(1,0,0,1,1,0,0,1,1,0,0,1); 

CODE . 
DECLARE MM ARRAY(3) MATRIX(2,2) INITIAL(L,0,0,0) 

I BOTH “CASES 

m=(( iC +f al) 

  

 



MORE DATA INITIALIZATION (CON'T.) 

~ SHORT CUTS - 

(2) USE OF REPETITION FACTOR # 
EXAMPLES 

DECLARE C ARRAY(6) CHARACTER(S) INITIAL(3#'ABC’, 3#'DEF')s 

C = ('ABC', ‘ABC’, ‘ABC’, ‘DEF’, ‘DEF’, 'DEF’) 

  

DECLARE 14 MATRIX(4,4) INITIAL, 3#(0,0,0,0,1))s 

‘1000 
0100 

4 lo 010 
0001 

1.E., A SEQUENCE OF LITERALS CAN BE REPEATED. 

  

230
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MORE DATA INITIALIZATION <CON’T.) 

REPEATED GROUPS CAN EVEN BE NESTED 

DECLARE 14 MATRIX(4,4) INITIALCL, 3#(4#0,1)); 

1000 
01 
0 0 

=
 a
 

m
o
O
 

Q
o
 

0001 

DECLARE V ARRAY(S,2,2) INITIAL(L,2,3,2,3,1,2,3,2,3,1,2)5 
V/ 

DECLARE V ARRAY(3,2,2) INITIAL(2#(1,2,3,2,3),1,2)s 

DECLARE V ARRAY(3,2,2) INITIAL(2#(1,2#(2,3)),1,2); 

23]



MORE DATA INITIALIZATION (CON'T.) 

(2) PARTIAL INITIALIZATION 

® SKIP OVER VALUES NOT TO BE INITIALIZED (JUST USE f#) 

DECLARE M MATRIX(4,4) INITIAL, 3#(4#,1))3 

lx x x 

1 x X + NOT INITIALIZED 
x l 
xX X M

x
 

e
x
 

OX
 

© LEAVE REMAINDER OF LIST UNINITIALIZED (USE OF * SYMBOL) 

DECLARE M MATRIX(4,4) INITIAL(,2,3,*)3 

123 x 
+ 

Xx X X X 

Xx X X X 

i 

x<I2



  

AUTOMATIC/STATIC INITIALIZATION ‘S/ 

| A33 
TO DESCRIBE THE WAY IN WHICH DATA INITIALIZATION IS EFFECTED, HAL/S 

HAS 2 INITIALIZATION ATTRIBUTE KEYWORDS THAT ARE OPPOSITE IN MEANING: 

STATIC AND AUTOMATIC, 

MOST DATA IS OF THE STATIC TYPE AND TIIIS IS THE DEFAULT. STATIC DATA 

IS INITIALIZED WHEN THE DATA MODULES ARE BROUGHT INTO CORE (I.E., THE 

DATA IS ALREADY EXISTENT IN THE LOAD MODULES), COMPOOLS ALWAYS CONSIST 

OF STATIC DATA. 

THE KEYWORD STATIC CAN BE SPECIFIED BY THE USER, BUT THIS IS NOT RECOMMENDED 

SINCE IT CLUTTERS THE LISTING: , , . 

DECLARE: I INTEGER INITIAL(5) STATIC; 

DECLARE I INTEGER STATIC INITIAL(5)s 

DECLARE I INTEGER INITIAL(5)3 

ALL EQUIVALENT! NOTE THAT STATIC CAN PRECEDE OR FOLLOW THE INITIAL LIST.
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aay 
AUTOMATIC/STATIC INITIALIZATION (CON’T.) 

AUTOMATIC DATA GENERALLY RESULTS IN EXECUTABLE CODE IN THE PROLOGUE OF 

CODE BLOCKS TO INITIALIZE THE DATA EACH TIME THE BLOCK IS ENTERED. 

FOR MULTI-VALUED DATA THIS CAN BE VERY EXPENSIVE -- AND AUTOMATIC, 

IN GENERAL, SHOULD BE SPECIFIED ONLY WHEN IT IS REALLY NEEDED. THIS 

WILL BE DISCUSSED IN: MORE DETAIL LATER WHEN REENTRANCY IS CONSIDERED. 

THE FOLLOWING ARE EQUIVALENT: 

DECLARE 1 INTEGER AUTOMATIC IWITIAL(5), 

DECLARE J INTEGER INITIAL(5S) AUTOMATIC; 

RESTRICTIONS ON USE OF STATIC/AUTOMATIC 

© DATA INITIALIZED CONSTANT MAY NOT POSSESS EITHER THE STATIC OR 

AUTOMATIC KEYWORD. 

© COMPOOL DATA MAY NOT HAVE EITHER A STATIC OR AN AUTOMATIC SPECIFICATION,



AUTOMATIC/STATIC INITIALIZATION (CON’T.) Sx 
  

  

| 2as~ 
EXAMPLES 

1 A: CONPOOL; 
DECLARE I INTEGER INITIAL(A) STATIC) ——1LLesaL 

CLOSE As 
2 B: PROGRAM; : 

DECLARE M MATRIX INITIAL(O) STAI (wer aut) RECOMMEND NEVER SPECIFYING 

sae , STATIC 

CLOSE Bs 
~ COMSUB EXAMPLE - 

3 (C: PROCEDUREs 

DECLARE 1 INTEGER INITIAL(10); —— 

‘' tt FIRST CALL I 

  

= 10 

Pes E fey CLOSE C3 ON SECOND .cALL I = 

C: PROCEDURE 

DECLARE 1 INTEGER INITIAL(10) AUTOMATIC; 

1 ‘ he I = 10 ALWAYS UPON ENTRY 

CLOSE Cs (PROLOG OF COMSUB WILL CONTAIN CODE, I.E. 
LA rx, 10 ) 
ST RX, ft



ee 

3) 

INTEGER/SCALAR CONVERSIONS a> 

INTERPRETATION 

@) Ii HAL/S EXPRESSIONS, ARBITRARY MIXTURES OF INTEGERS AND SCALARS 

(BOTH OF EITHER SINGLE OR DOUBLE PRECISION) CAN OCCUR. 

(2) THE FOLLOWING CONVERSIONS ARE CHEAP (I.E., DONE VIA INLINE CODE) 

SINGLE INTEGER > DOUBLE INTEGER 

SINGLE SCALAR DOUBLE SCALAR 

  

ALL OTHER CONVERSIONS REQUIRE CALLS TO LIBRARY ROUTINES. 

(3) EXPLICIT CONVERSIONS ARE NEITHER MORE NOR LESS EFFICIENT THAN 

IMPLICIT ONES, 

CG CONVERSIONS ARE PERFORMED ON THE RIGHT SIDE OF AN = SIGN WITHOUT 

REGARD FOR WHAT 1S ON THE LEFT SIDE. ONLY UPON ASSIGNMENT, IS THE 

LEFT SIDE TAKEN INTO ACCOUNT.



sme 
INTEGER/SCALAR CONVERSIONS (CON’T.) 
  

  

INTERPRETATION (CON'T.) 

G) WHEN ONLY INTEGERS APPEAR IN AN EXPRESSION, ALL INTEGERS ARE 

CONVERTED TO THE PRECISION OF THE MOST PRECISE INTEGER. 
  

EXCEPTION: , IN °J/J" ALL INTEGERS ARE. CONVERTED TO SCALARS. — 

6) WHEN ONLY SCALARS APPEAR IN AN EXPRESSION, ALL SCALARS ARE 

CONVERTED TO THE PRECISION OF THE NOsT PRECISE SCALAR, 

@ IF INTEGERS AND SCALARS ARE MIXED, ALL INTEGERS ARE CONVERTED 

TO SCALARS OF THE REQUISITE PRECISION, 

3 

237



EXPRESSIONS = 2 xy 

EXPRESSION = A MEANINGFUL COMBINATION OF OPERATORS AND OPERANDS 
THAT RESULTS IN SOMETHING BELONGING TO A LEGAL HAL/S 

DATA TYPE -- THIS DEFINES THE TYPE OF THE EXPRESSION. 

ARITHMETIC OPERATIONS 

7 EXPONENTLATION #83 
_ 4 INVERSION Mee(-1) 

TRANSPOSITION MeT 
(BLANK) MULTIPLICATION rans 

| (VECTOR OUTER PRODUCT) Vy 
(MATRIX MULTIPLICATION) HN 

. VECTOR CROSS PRODUCT Vii 
° VECTOR DOT PRODUCT Vell 
fo DIVISION 

ADDITION 
- SUBTRACTION A - B 

(HEGATION -- UNARY OP) \ -B



32 
EXPRESSIONS (CON'T.) | 239 

NEGATION 

~ MATRIX (ALL ELEMENTS) 

~ VECTOR (ALL ELEMENTS) 

~ SCALAR 

- INTEGER 

ADDITION AND SUBTRACTION 

MATRIX + MATRIX (muST BE CONFORMABLE) 
VECTOR + VECTOR (MUST BE CONFORMABLE) 

SCALAR + SCALAR 
SCALAR + INTEGER® 
INTEGER + INTEGER . 

* RESULT IS SCALAR. THE INTEGER IS CONVERTED TO A SCALAR OF REQUISITE 

PRECISION, 

NOTE: LEFT AND RIGHT-HAND SIDES CAN BE SUBSCRIPTED VARIABLES OR MORE 

COMPLEX EXPRESSIONS PROVIDED THEY ARE OF THE CORRECT TYPE.



33 EXPRESSIONS (CON’T, 
ayo 

DECLARE M ARRAY (3) MATRIX INITIAL(1,2,3,4,5,6,7,8,9,10,11,12,13,14, 19-16417,18,18,20,21,22,23,24,25,26,27) 
1 2 3 10 11 12] 19 200 2] M= [4 5 6] , 3 1 15] , foo 923 24 f 7 8 9 146 17 18 25 26 27 DECLARE V VECTOR INITIAL(1,5, 2.5, 3,5); 

DECLARE $ INITIAL(50,3), 
DECLARE I INTEGER :INITIAL(5) 

P+] = 6 (INTEGER RESULT) I+ 0.3 = 5.3 (séatar RESULT) S44 = 54.3 (ScaLaR resuLT) [+s = 55.3 (scatar RESULT) S+V ILLEGAL (TYPE MISMATCH) S + V$2 = 52,8 (SCALAR RESULT) - V+ figc2s) ILLEGAL (TYPE MISMATCH) 

weno BA fs 
V+Ms(2:" 2) = 2.5) +114) = [16.5 

3.5 i7 20,5 
(VECTOR RESULT)



Bey 

$2 

  

EXPRESSIONS (CON’T.) . 2y/ 

DIVISION 
MATRIX/SCALAR OR MATRIX/ INTEGER" 
VECTOR/SCALAR oR VECTOR/INTEGER* 
SCALAR/SCALAR oR SCALAR/ INTEGER" 
INTEGER*/SCALAR oR INTEGER*/ INTEGER" 

* INTEGER WILL BE CONVERTED TO A SCALAR OF REQUISITE PRECISION. 

NOTE: IF USERS HANT A TRUE INTEGER DIVISION, E.G., IN THE FORTRAN 

SENSE, THE Div FUNCTION SHOULD BE USED: 

T= DIVGLADs 

IF J?210, 1 WILL BE 2. 

EXAMPLES 

1/3 IS 0.333333 (A SCALAR -- NOT AN INTEGER 0) 

10 5 
IF V= 20; THEN V/2 = {10 

30 15
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EXPRESSIONS (CON'T,) RYQ 

DOT PRODUCT Vell 

STANDARD MATHEMATICAL DEFINITION WITH THE FOLLOWING EQUIVALENCE: 
T; . ~~ — 

vin = Vel 

CLEARLY V AND W MUST HAVE IDENTICAL LENGTHS. THE RESULT IS A 

SCALAR AND-OF SAME PRECISION AS MOST PRECISE VECTOR. 

CROSS PRODUCT - Vell 

STANDARD MATHEMATICAL DEFINITION, BOTH V AND W MUST BE 3-VECTORS 

AND THE RESULT IS A 3-VECTOR, 

NOTE: HAL/S DOES NOT ALLOW THE FORM V! (1.E,, THE TRANSPOSE OF A 

VECTOR). AS WILL BE SEEN LATER, CONTEXT IS USED TO DETERMINE 

MEANING, ,



EXPRESSIONS (CON’T.) | '3Q 

“MULTIPLECATION ~ ABB 

MULTIPLICATION {$ INDICATED BY LOGICAL ADJACENCY, I.E., A BLANK, 

THE BLANK IS NOT NEEDED PRIOR TO A PARENTHESIZED EXPRESSION, BUT 

IT IS MANDATORY IN ALL BUT A FEW SPECIAL CASES, 

EXAMPLES: 

qed 
NO BLANK NEEDED 

xl 

COMPARE tov aNk’ Nor NEEDED BUT IS DESIRABLE 

3E): , 
3B WOULD LOOK LIKE ILLEGAL ARITHMETIC LITERALS 

3H 
n 

fA 
L. BLANK NEEDED 

 



EXPRESSIONS (CON'T.) zy 

MULTIPLICATION ASSUMES 5 FORIS: 

@ INTEGER SCALAR 
SCALAR —_INTEGER™ 
INTEGER INTEGER 
SCALAR SCALAR 

* INTEGER WILL BE CONVERTED TO A SCALAR OF THE REQUISITE PRECISION. 

@ INTEGER® VECTOR 
. SCALAR VECTOR © 

VECTOR — INTEGER* 
VECTOR SCALAR ELEMENT~BY~ELEMENT 
INTEGER® MATRIX : MULTIPLICATION 

SCALAR MATRIX . 

MATRIX _INTEGER* 

MATRIX SCALAR 
* INTEGER WILL BE CONVERTED TO A SCALAR OF THE REQUISITE PRECISION,



EXPRESSIONS (CON’T.) AVK— 

G) VECTOR VECTOR 
DEFINES THE DYADIC PRODUCT (VECTOR OUTER PRODUCT) 

Vi 
IS EQUIVALENT TO THE MATHEMATICAL FoR v HT 

EXAMPLE : 
errr . 

1 1 
= 2 = |3 

v 3 Wes 
4 

13 5 
__ 2 6 10 
Vi= [3 9 35 

4 12 20 

@) MATRIX MATRIX 
DEFINES STANDARD MATRIX MULTIPLICATION, I.E., 

AN 
WHERE MIS A MxN MATRIX AND WIS A xP MATRIX, AGAIN, NOTE 

THAT M AND N COULD BE SUBSCRIPTED EXPRESSIONS, E.G,, PARTITIONS 

OF LARGER MATRICES. ; 
Ne 

 



@ 
EXPRESSIONS (CON’T.) 

VECTOR MATRIX 

MATRIX VECTOR 

DEFINES STANDARD VECTOR-MATRIX MULTIPLICATION. 

A. 

B. 

IF V iH THEN IF V HAS LENGTH L, M MUST HAVE DIMENSIONS LxP, 

THE RESULT IS A VECTOR OF LENGTH P, EQUIVALENT MATHEMATICALLY 

10 

vin = fRow vector] [vrei] 

IF MV THEN IF V HAS LENGTH L, M MUST HAVE DIMENSIONS MxL. 

THE RESULT IS A VECTOR. OF LENGTH M, EQUIVALENT MATHEMATICALLY 

T0 

MV os [MATRIX] [cou vecroa|



EXPRESSIONS (CON'T,) SA 
247 

EXPONENTIATION (INTEGERS AND SCALARS) 

@ _INTEGER**INTEGER 
(2) INTEGER**SCALAR 

G)  SCALAR** INTEGER 

@®  SCALAR**SCALAR 

IN CASE @ IF THE EXPONENT I$ A NON-NEGATIVE INTEGER, THE 

RESULT OF THE EXPRESSION IS AN INTEGER, IN CASE (2) - G) 

THE RESULT IS ALWAYS A SCALAR. . 

  

EXAMPLES 

IF 1 IS AN INTEGER WITH I = 5 THEN 

[ee2 #25 (INTEGER RESULT) 

1**(-1) 20.2 | (SCALAR RESULT) 

aee,5 V2 (SCALAR RESULT) 

NOTE: AN EXPONENT OF .5 (OR 1/2) IS RECOGNIZED AS A SPECIAL 

CASE AND 1S ENTIRELY EQUIVALENT TO USING THE SQRT 

BUILT-IN FUNCTION, 

S**,5 = SQRT(S)



EXPRESSIONS (CON’T.) | SL 
245 EXPONENTIATION (SQUARE MATRIX TO AN INTEGRAL POWER) 

Mew] 

MIS A SQUARE MATRIX (NxM) 

TTS AN INTEGER LITERAL 

  

I RESULT 

-2 REPEATED PRODUCT OF INVERSE 

-1 MATRIX INVERSE : 

0 UNIT MATRIX 

1 NO-OP 

122 REPEATED PRODIICT 

  

NOTE THAT THE VALUE OF 1 MUST BE KNOWN AT COMPILE-TIME, 

Me*(-1) TS EQUIVALENT TO USING THE MATRIX INVERSION FUNCTION: 

INVERSE (M) 

M**Q IS A FAST WAY OF BUILDING AN NxM UNIT MATRIX DYNAMICALLY,



33 

EXPRESSIONS (CON’T. ) 

Mee (-2) = (Me#(-1)) #2 
ex 2 AAA wg 

1 ie 

. 1 0 Med = \e, 

EXAMPLE 

IF A MATRIX M HAS CHARACTERISTIC EQUATION 

M2 + B+ C= 0 
WE COULD CODE THE FOLLOWING IN HAL/S: 

AM**2+BM+C MeO 

THE RESULT WILL BE AN Nx ZERO MATRIX.



EXPRESSIONS (CON’T.) ; tS 

EXPONENTIATION (TRANSPOSE OF A MATRIX) 

MT 

THIS IS EXACTLY EQUIVALENT TO USING THE BUILT-IN FUNCTION 

TRANSPOSE 

Me*T = TRANSPOSE(M) 

IF MIS AN MXN MATRIX, M! WILL BE AN NxM MATRIX, 

NOTE: VECTORS CANNOT BE TRANSPOSED. Ve*T IS ILLEGAL. 

“NOTE: EVEN IF THE USER HAS DEFINED T TO BE A VARIABLE, N**T 

MEANS TRANSPOSE -- IT IS NOT THE SAME "T"!



Sn UY 

32 COMMENTARY ON VECTOR/MATRIX OPS a2 S/   

RULE: IF A VECTOR TRANSPOSE (I.E,, ROW VECTOR) APPEARS IN A 
MATHEMATICAL STATEMENT, LEAVE THE TRANSPOSE OPERATION 
OFF WHEN CODING THE HAL/S STATEMENTS, 

  

  

  

  

MATH HAL/S 
DOT T 

PRODUCT vw . Vel 

CROSS 
PRODUCT Vxw Vel 
OUTER To 

PRODUCT vw . vu 

MATRIX/ ” 
VECTOR ORY NV 

PRODUCT 

VECTOR/ 1 VN 
MATRIX 

PRODUCT 
  

NOTE: THE MATRIX TRANSPOSE OPERATION IN HAL/S IS EXPENSIVE; AVOID 
IT IF YOU CAN.
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COMMENTARY ON VECTOR/MATRIX OPS (CON’T.) 2sQ 

| EXAMPLES 

(@) MATH: Ken ¥ 

HAL/S: X= Mey Y 

BUT THIS CAN BE IMPROVED UPON! IN THE MATH CASE WE COULD WRITE 

= cl HT = YT 
IN HAL/S THIS WOULD BECOME 

X= YM (ELIMINATION OF A MATRIX TRANSPOSE) 

SINCE VECTOR TRANSPOSE IS ILLEGAL (AND NOT NEEDED!). 

ACTUALLY, THE LATEST RELEASE OF THE COMPILER (WITH THE GLOBAL OPTIMIZATION 

OF PHASE 1,5) MAKES THIS SUBSTITUTION AUTOMATICALLY! 

(2) MATH: Ken al p ys ali 
HAL/S: X = (MeeT)(Ne*T) PY + (Q**T) R 

BUT BETTER IS: 

HAL/S: X= (PT) NM+RQ 

“he o
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MATRIX/VECTOR OPTIMIZATION 

Wh PROGRAM: 
Nt DECLARE MATRIX, 
ht NM OIMITIALCL 
Nt N INITIALC2), 

Mt P INITIALC3), 

ht Q INITIALC4)) 
Mt DECLARE VECTOR, 
Nt x, 
Mt VY INITIALCS, 2, 

Nt R INITIALC4, 5, 

ct 
Et .o- #TATh - *T- 
Mt Xe MNP Y + OR 

LA 3,72¢0,10) 
tA 4,156¢0,10) 
LA 2,76(0,13) 
BAL 44,184¢8,42) 
LA 4,36¢9,10) 

, LA 2,88¢8,13) 
BAL 44,176€@,12) 
tA 4,8¢8,10) 
LR 2,76(0,413) 
BAL 414,176060,12) 
LA 3,4168¢0,16) 
LA 4,108(6,10) 
LA 2,88¢0,143) 
BAL 14,17600,12) 
LA 3,76¢8,43) 
CR 4,88(8,43) 
LA 2,10608,43) 
BAL. 44,112¢6,12) 
LA 3,48008,43) 
LA 2,144(6,410) 
BRL 44,4800,12> 

P. 
Y 

NV6S3 
N 

¥M6S 
N 

VM6S3 
R 
a 

VMES3 

¥V2S3 

x 
VViS3 

32 
as3
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MATRIX/VECTOR OPTIMIZATION (CON’T.) 

Et ~  s aTR KO - 
6 Nt Xe ¥Y PUN FR BG 

LA 3,100¢08,43> 
LA 2.144¢8,10) x 
BAL 14,48(6,42) VVAS3



-E IONS (CON’T.) 3/ XPRESS 'T, _— 
—_ wAod 

CHARACTER OPERATIONS 

CATENATION [1 OR CAT 

CHARI | INTEGER* 

INTEGER* | ICHAR 

INTEGER*| | INTEGER® 

CHAR] ICHAR 

CHARI ISCALAR* 

SCALAR*|1CHAR 

SCALAR* | | SCALAR* 

INTEGER* | | SCALAR” 

SCALAR*| | INTEGER*® 

* INTEGERS AND SCALARS ARE IMPLICITLY CONVERTED TO CHARACTER 

STRINGS: 

LE: EXAMPLE WILL BE CONVERTED TO CHARACTER 

WRITE(6) ‘THRUST OF ENGINE “HISIL ’1S'114009511 POUNDS’; 

WILL. BE CONVERTED TO CHARACTER



EXPRESSIONS (CON'T,) 

BOOLEAN OPERATIONS 

1 & = AND (LOGICAL INTERSECTION) 
2 |#20R (LOGICAL CONJUNCTION) 
3 1 = NOT (LOGICAL COMPLEMENT) 

ASSUME: 

DECLARE B1 BOOLEAN INITIAL(TRUE); — 
DECLARE B2 BOOLEAN INITIAL(TRUE); 
DECLARE B3 BOOLEAN INITIAL(FALSE) 3 
DECLARE B4 BOOLEAN INITIAL(FALSE)s 

COMPLEMENT. (>) UNARY OPERATION 

“1B1 = FALSE 

CONJUNCTION ()) BINARY OPERATION 
B1IB2 = TRUE oTitet 
B11B3 = TRUE TIF eT 
B31B1 = TRUE FIT 2 T 
B31B4 = FALSE FIF = F 

AIL



  

EXPRESSIONS (CON’T,) as 

INTERSECTION (8) BINARY OPERATION - fF 

Bl & B2 = TRUE Tel = T 
Bl & B3 = FALSE TF = F 
B3 & Bl = FALSE: Fat = F 
B3 & BY = FALSE Far = F 

OTHER EXAMPLES 

Bl & FALSE = FALSE 
B3 | TRUE = TRUE 

—1B1 | B28B3 |—1B4 = TRUE 
Seer am Sayin romain pnt 

FALSE FALSE TRUE
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EXPRESSIONS (CON'T,) 3/ 

  

ARITHMETIC AND CHARACTER PRECEDENCE | 2sy 
HI 

** 1 EXPONENTIATION 
H 2 MULTIPLICATION 
. 3 CROSS PRODUCT 
. 4 DOT PRODUCT 
/ 5 DIVISION 
+ 6 sOADDITION = T 
1-___ 6 _ __ SUBTRACTION, NEGATION ! 

al 7 CHARACTER CATENATION 
Lo : 
® SEQUENCES OF OPERATIONS OF THE SAME PRECEDENCE ARE EVALUATED FROM LEFT 

FO RIGHT -- EXCEPT FOR ** AND /, WHICH ARE EVALUATED FROM RIGHT TO LEFT, 

I.E., 

A/B/C/D = (AC)/(BD) —A/B(C/D) = A/(BD/C) = AC/BD 

e SEQUENCES OF MULTIPLICATIONS ARE SOMETINES REORDERED T9 MINIMIZE. THE 

NUMBER OF ELEMENTAL PRODUCTS INVOLVED. 

   



OE
 
R
P
S
 

PO
 

be
 

ut 
Nt 
Nt 

Nt 

Ct 
ut 

  

gngenza 
sNces 

¢ 7305 
6000 
6015 

@3g0c 60106 
QI90b 6025 

    

   

@59CE 602) 
CQSGnF 6435 
G3810 €03D 
O01 6245 
enn12 604d 
09913 TAL? 
On014 6234 

6244 
6239 
6224 

c e244 
6209 
6249 

& 6229 
& 

BE0.9 FCES 

    

$ 

WLC 4D, 
S2, 53, $4, 

0a82 
8886 
800A 
GOOE 
e012 
OFA 
OO4A 
GOLE 
6022 
8026 
9gec 

. 8018 
0nggs 
o681C 
90108 
8820 
9004 
ee24 
e014 
gd28 

S53, $6, 

DIVIDE EXAMPLE 
——— 

S?, $8 

ST#4 
SOTESTA 

$9, $19, 

EQU 

Sit, $42, $43, Sid, 

* 

CSECT . 

HE 
@, 21) 
@,6¢41> 
@,4004) 
@,414¢1) 
0, 48¢4) 
@, 2264) 
B, 2664) 
8,304) 
8,34¢4) 
0,38¢1) 
2,41201) 
22,2404) 
2,804) 
22,2861) 
21601) 

2,32¢4) 
2,464) 
2, 3604) 
2,2804) 
2.4064) 

4,8 
4,2 
4,42¢4) 

ESDID= 0861 

$45, S16, 

Si 
$3 
ss 
S7 
s3 
S11 
£13 
S45 
$17 
S19 
S6 
$12 
54 
S44 
52 

S16 

“$2 
sig 
£16 
$26 

Si?) $18, S13,
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DIVIDE EXAMPLE (CON'T.) 

22 ¢ 54 ¢ 55 ¢ 56 ¢ SP ¢ SBC SI / S10 7 SAA / S42 7 S13 7 S44 ¢ S45 7 S46 Y S47 / } : oy 
& 

  

ST#5 — «EQU * 

  

‘ DER 92 . 
8B2AR ; STE 0,42¢1) T 

: STa6 EQu * 
LBLR2 EQu & : 

aBec svc 444) H°247



  

MATRIX INVERTER (dx!t) 

INVERTER :PROGRAM} 

REPLACE PREC BY ™S INGLE" $ . 

DECLARE MATREX(4 54) PREC sQ.QL,Q23 777 —eo 

DECLAVE .1 MATRIX (4, 4).-PREC-CONSTANT Ly 38 (0-90-9050 9-L315 

DECLARE MATREX (242) PREC CeSe Te MeN 

INVERTIF UNC TIONCIN MA TP MATREXE2 92) PREC 

DECLARE MATREX(2:2) PREC, IN_MAT$ 9 0  me 

RETURN MATRIXS (QFREC 2 92) CE N_MAT $1252 )_-EN_MAT Stl e2)5 

-m INLMAT $25 Ly ENMATSE Le LP CIN MATSC LoL) UN MATS (292) 

~TALMATS (2d ERLMATS (2 oh S05 

CLuse wert ee 

—ON ERRORS (10151—FETURNG 

  

  

10 WHILE TRUE Ss 

READIS1Q: 

Q1-08#(- 5 

-S INVERT (QS (L—-TO—27-1—-1)—2-)-44 

T2$ Qs (tL TO 2 43 3049 

C2=9$(3 TO 4¢1 TO 233 

NSENVERT(Q$ (3 TO 453 TE 4i-c¢ Tip 
~MaeN-C- S$ 

Q2sth TO 2,L TO 2)=S-T Mp” 

Q2seh 12 253 19 4)=- TN; 

Q2$13 TO 4el TO 2) 

-Q28(3-T2 4,3 TO 4)SNG-- ------ —-———-—— + 

  

 



MATRIX. INVERTER CUxls) (CONT. 

WRITE(OD9Q = eC ySKIPIZ03 

WRITEC 6) (DETCQ) = #,DETIQ) SKIP 2)3 

WALTE(SDOQL = Sg CLySKIPC2)¢ (7 Um 

WRI TECH) (DE TEQL)--=- | pDETOGL Dp SKIP (2-2§————- > 

WRITE(6) $Q2 = ¢ 402 sSKIPEZ) 

ARETELG) *DET(Q2) = "DETIO2IsSKIPC2ZI§ 7° 

-WRITE(G) EL =-G-Cl—= 4, 1-0-Q1,SK-1P(2-35- 

WRITELG) TE ~ O Q2 2 f41-Q Q2 sSKIP(2)3 

EAs 

CLOSE $e mete en



MATRIX INVERTER (4x4) 

  

  

  

  

  

  

  

  

  

  

HAL/S COMPILATION , UN TERM ETRICS,s INC. UCTOBER 18, 1975 

srr NS 

Loy ENVERTERS ee ceeeteees cee pepe eeeettmne seen a a 

1M} PROSRAMS 

2 I REPLACE PREC BY "§ INGLE" 3 

3 Nn] JECLARE MATRIX(4s 4) BRECS Q¢ CLF Q2T 

4 MI HECLARE E WATREXC4s 4) PREG CONSTANTULs 34.0009 04 De. 2993 ee 

5 MI cLARE MATREXEZ ¢ 2) BRECe Us So Ts My NE : . neon 

8 vl INears Ss fa en nn meee 

6M} FUNCTEONCIN MAT) MATRIX(2, 2) PRECS nner . _ 

7 MI DECLARE MATRIXU 2p. 2) PREC» INMATE 

aM} “RETURN MATRIX” UINLMAT os TINLM AT) INDMAT. oy INLMAT OO} J CINMAT —OINMAT, ~ 

5 @PREC 9 2¢2 2m eR ak 212 

6 ff INMAT) OI BANAT Vt ec ce cenit eet te ene teeteee meenee nuts penne enna ete 

9 Mi CLCESE INVERT?



MATRIX INVERTER (4x4) 

4 ON ERROR 
Pe! - 
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MATRIX INVERTER (4x4) 

1ST MATRIX 

    
~2.0837659E4CC 

  

pertay = 

ais 
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MATRIX INVERTER 4x4) 

2ND MATRIX 

Q   
L.OOOOLTIE+ CE: DETIQ) = 

5 

" Qi 

i 

1.000045 7E+00 . DETCQL} = - 

+01 
+00 
+00 
HO 

  

NETCQ2) = 1.000056 26 #00       
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EXPRESSIONS (CON’T. ) 
  

PRECEDENCE EXAMPLE: 
(FROM PROGRAMMER’S GUIDE) 

"RESULT OF bb bb & ~ V1,V2/2/2 

DOGO 
ALSO, 

VileX- = VieX) | (A SCALAR) 
VeileX (Vai eX 

Qeezee? = 2*9(34a2) = 2*Q = 517 

NOT! (2*#3)"92 = (8)*#2 = 64 
4/3/10/3 = 4/3/(10/3) = 4/(9/10) = 40/9 

NOT! (4/3)/10/3 = (4/30)/3 = 4/90 

sy



EXPRESSIONS (CON’T.) 

BOOLEAN PRECEDENCE 

Hl 
“NOT = 1 COMPLEMENT 

a, AND 2 INTERSECTION 
1, OR . 3 CONJUNCTION 

Lo 

© SEQUENCES OF OPERANDS OF THE SAME PRECEDENCE ARE EVALUATED 

- FROM LEFT TO RIGHT, 

EXAMPLES 

@ IF B1IMB2]B387B4 THEN DOs 

- EQUIVALENT TO: 

IF (B1) 1 B2)1(B38CB4)) THEN DO; 

  

(2) IF BlaB21B3eB4I~BSEABE. . 
EQUIVALENT TO: 

IF (B19B2) | (B3@B4) | (O85) &4B6)) +.



EXPRESSIONS (CON’T.) 

OVERRIDING PRECEDENCE ORDER 
  

© PRECEDENCE ORDER CAN ALWAYS BE ALTEREN BY USE OF 

PARENTHESES, 

"EXAMPLES 
IF (B1I7(B21B3))87B4 THEN DOs 

IF B1&(B21B3)&(B4I7B5)27B6 .., 

(AS*B)**C 

C
R
S
 

OM
S)

 

(A/B)/(C/D) 

32 
Qhy
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EXPLICIT CONVERSIONS 3/ 
VECTOR CONVERSION 

VECTORS CAN BE DYNAMICALLY CONSTRUCTED VIA THE CONSTRUCTION AG! A- 

VECTORS (£) (exp, OXPgr see exp,) 

TO CREATE AN £-VECTOR, IF THE DEFAULT 1S DESIRED THE LENGTH 

SPECIFICATION CAN BE OMITTED, I.E., 

’ VECTOR(exp,, exp, exP3) 

IF exp IS-AN ARRAY OF £ INTEGERS OR SCALARS, WE CAN SAY: 

VECTORS$ (2) (exp) 

© ALL EXPRESSIONS (exp,) MUST BE OF INTEGER OR SCALAR TYPE. 

(AGGREGATES OF THESE TYPES MAY ALSO BE USED.) 

© THE RESULT OF THE VECTOR CONVERSION FUNCTION IS A SINGLE-PRECISION 

VECTOR. IF A DOUBLE-PRECISION VECTOR IS NEEDED USE THE FORM: 

VECTOR$(aDOUBLE,£) (exp,, expgr +++) 

CLEARLY 2<t< 64



EXPLICIT CONVERSIONS (CON’T.) 

VECTOR EXAMPLES 

1 
VECTOR(1,0,0) - (y SINGLE PRECISION (3-VECTOR) 

0 

l 
VECTOR$ (QDOUBLE) (1,0,0) =|0 DOUBLE PRECISION (3-vEcToR) 

dg 

@) 3 
VECTORS4(3, 2*#2, 8-6, SIN(O)) = } SINGLE PRECISION (4-VECTOR) 

0 

_ VECTORS (@DOUBLE,4)(3, 2**2, 8-6, SIN(O)) 
3 

= ; DOUBLE PRECISION (4-vEcToR) 

0 

G) DECLARE 9 ARRAY(12) INITIAL(1,2,3,4,5,6,7,8,9,10,11,12)) 
5 

VECTOR$(aDOUBLE, 5)(Q$(5 AT 6))   
7 
8 
9 

0] 

52 
262
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EXPLICIT CONVERSIONS (CON’T.) 32 

MATRIX CONVERSIONS awh 3 

MATRICES CAN ALSO BE CONSTRUCTED DYNAMICALLY, USE THE 
CONSTRUCTION: 

MATRIX$(x,c) (exp ys expg, ++ -exP,,) 

TO CREATE AN x x © SINGLE PRECISION MATRIX, 

2<r < 64 

2s0< 64 | 
x AND ¢ DEFAULT TO A 3x3 MATRIX, E.6., 

MATRIX(éxp,- EXP, ++ +€XPg) ) 

’ WILL CREATE A 3x3 MATRIX (SINGLE PRECISION), 

IF exp IS AN ARRAY OF re INTEGERS OR SCALARS WE CAN SAY 

MATRIX$ (x, ¢) (exp) 

© ALL EXPRESSIONS (exp,) MUST BE OF INTEGER OR SCALAR TYPE. 

@ IF A DOUBLE-PRECISION MATRIX IS NEEDED, USE THE FORM: 

MATRIX$(@DOUBLE,©,0)(expys +++ exp,.) 

oh 

 



EXPLICIT CONVERSIONS (CON'T.) 33 ——e—— aby 
@ MATRICES ARE ASSEMBLED ROW-BY-ROW FROM THE LIST (JUST AS IS 

DONE IN INITIAL LISTS IN DECLARE STATEMENTS) 

MATRIX EXAMPLES 

ROW 1 Row 2 row 3 100 
a Nett, fae thin, nt eatin, 

A 3x3 SINGLE-PRECISION 
MATRIX 

© MATRIX(1,0,0,0,1,0,0,0,1) © {0 1 0 
001 

MATRIX$(@NOUBLE) (1,0,0,0,1,0,0,0,1) 

10 0 
= 10 1.0 A 3x3 DOUBLE-PRECISION 

; 001 MATRIX 

@ MATRIX$(2,2)(4,5,7,9) = E | A 2x2 SINGLE-PRECISION 
79 MATRIX 

MATRIX$ (@DOUBLE,2,2)(4,5,7,9) = f j A 2x2 DOUBLE-PRECISION 
73 MATRIX



eT 

EXPLICIT CONVERSIONS (CON’T.) 

MATRIX EXAMPLES 

@) DECLARE 9 ARRAY(50) SCALAR DOUBLE INITIAL(1O#1, 10#2, 

10#3, 10#4, 10#5); 

MATRIX$ (@NOUBLE, 4,5) (Q$ (20 AT 6)) 

111 

m”
 

11 
2.2 
2 2 
3 3 L

A
E
 

NS
 
R
O
 

N
E
R
O
 
R
O
 

L
A
E
 
B
O
 

PO
 

CH) MATRIXGH(1/2, SQRT(2)/2, SQRT(3)/2)) 
ie 1/2" 28 
v2 1/2N2—12T3 
v2 weir 12s 

NOTE THAT THE REPETITION SYMBOL ’#*, PREVIOUSLY INTRODUCED 

IN INITIAL LISTS, IS ALSO APPLICABLE HERE, 

353 
bos
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S/ ASSIGNMENTS 

THERE ARE 3 CLASSES OF ASSIGNMENTS DEPENDING ON WHETHER THE LEFT- Rob 

HAND SIDE OF THE STATEMENT IS: 

@ ARITHMETIC (MATRIX, VECTOR, INTEGER, OR SCALAR) 

(@) CHARACTER 

@) BIT/BOOLEAN’ 

GENERAL FORM: 9 Ee R 
WHERE THE RECEIVER £ IS A (POSSIBLY SUBSCRIPTED) DATA ITEM AND 

R 1§ EITHER A DATA ITEM OR AN EXPRESSION, . 

ARITHMETIC ASSIGNMENTS: WE WILL CONSIDER LEFT-HAND SIDES OF MATRICES, 

VECTORS, INTEGERS, AND SCALARS IN TURN. 

NATRIX 
MATRIX = MATRIX 
MATRIX = 0 (CREATES A NULL MATRIX) 

NOTE: MATRIX = 6 IS INVALID! 
BOTH LEFT AND RIGHT MATRICES MUST MATCH IN ROW AND COLUMN 

DIMENSIONS, PRECISIONS, HOWEVER, NEED NOT MATCH!



ASSIGNMENTS (CON'T.) 

EXAMPLES: 
1 2 3 

ML IS 3x3 4 5 6 
7 8 

M2 1S 2x2 [2 A 
60 89 
“1-2 -3 WIS 23 |") oe lg 

Ml=0 | RESULTS IN fo 0 0 
000 
lo 0 0 

Ml = 6 TLLEGAL 

M1 = MATRIX(2,2,2,3,3,3,4,4,4) 

‘ RESULTS IN 

P
e
 
w
n
s
!
 

W
h
 

a
N
 

H2 = M3 ILLEGAL 

M2 = -MB$(*, 2 AT 1) .   RESULTS IN Bl “| 

. Ut4 #5 

M1$(2 AT 2, *) = 3 RESULTS IN Li 
-1 
-l 

2 3 
2-3 
~5 -6 

Dad 
267
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ASSIGNMENTS (CON'T.) 

VECTOR 

VECTOR = VECTOR . 

VECTOR = 0 (CREATES A ZERO VECTOR) 

NOTE: VECTOR = 6 IS INVALIDI 

BOTH LEFT AND RIGHT VECTORS MUST HATCH IN LENGTHS. PRECISIONS, 

HOWEVER, NEED HOT MATCH! 

EXAMPLES : 

“5 
VIS |10/ v2 Is 

(po 
Vl = 0 RESULTS IN V1 = f 

. 0 

  

V3 IS EY 

O
o
 
M
w
 N
O
 

Vl=6 ILLEGAL 
Vl = V2 ILLEGAL | ; 
VI = V2$(3 AT 2) RESULTS IN 

V1 = V3. ILLEGAL : 
V18(2 AT 2) = V3 RESULTS IN fc 

20 

eR



ASSIGNMENTS (CON'T.) 

NTEGER/SCALAR 

THIS HAS ALREADY BEEN COVERED IN SOME DETAIL. WE WILL MERELY POINT 

OUT THE FOLLOWING: 

@ INTEGER = INTEGER 
@ _ INTEGER = SCALAR 

@) SCALAR = INTEGER 
@ SCALAR = SCALAR 

“KIN TYPES @) AND G) A CHANGE OF DATA WILL BE ADE. SCALARS ARE 

CONVERTED TO INTEGERS BY ROUNDING, 

EXAMPLES: 
LET 1 BE AN INTEGER; 

S BE A SCALAR, 
MA 3x3 MATRIX, 

THEN 
l= 3; RESULTS IN | = 3 

111.2) resucts in [ = 11 

‘T= 11,93 results in | = 12 

$= 16.45 , RESULTS INS = 16.4 
M$G,*) = 53) ILLEGAL 

NS(3,3) = 5; RESULTS IN f x | 

BNO x x5



BOOLEAN ASSIGNMENTS 

ASSIGNMENTS (CON’T,) 

BOOLEAN = BOOLEAN EXPRESSION. 

EXAMPLES : 
  

DECLARE BOOLEAN, Bl, B2, B3, B4, B5s 
* @ 6 

Bl = TRUE; 

B2 = OFF; 

B3 = BIN’1' 

B4 = BIN'O’s 

BS = Bl; 

B5 = Bl & B2s 

BS = 83] 784; 

” BS = B2 OR B3y 

B5 = Bl AND 33; 

B5 = NOT Bly 

(SAME AS Bl = ON) 

(SAME AS B2 = FALSE) 

(SAME AS B3 = TRUE) 

(SANE AS B4 = FALSE) 

BS = TRUE 

B5 = FALSE 

B5 = TRUE 

BS = TRUE 

B5 = TRUE 

B5 = FALSE 

a
 

270



ASSIGNMENTS (CON’T.) $2 

MULTIPLE ASSIGNMENTS , | 7 / 

MULTIPLE ASSIGNMENTS ARE RECOMMENDED BECAUSE THEY REDUCE THE 

NUMBER OF SEPARATE STATEMENTS OCCURRING IN A PROGRAM, AND THUS 

ENHANCE READABILITY. 

FORM: 
Ly bo, Lz, eae BR 

REQTS: EACH Ly = R MUST BE A LEGAL TYPE OF ASSIGNMENT, 

NOTE: THE EXACT ORDER IN WHICH THE ASSIGNMENTS ARE MADE IS HOT 
. EASILY PREDICTED, 

. EXAMPLES 

LET ML BE A 2x2 MATRIX, M2 a 3x3 MATRIX, SL anp S2 SCALARS, AND I1 

AND 12 INTEGERS. 
- MULTIPLE ASSIGNMENT 

ee at 

@ IF S1=6 THEN M1, M2, SL, S2, 11, 12 = 0; 

  

he “WY



  

ACT 

ASSIGNMENTS (CON'T.) 

CONTRAST THIS WITH: 

IF S1 = 6 THEN DOs 

Ml = 0) 

M2 = 0; 

Sl = 0; 

$2 = 0; 

I1 = 0; 

12 = 03 

END) 

@) MI, S1 = 63 IS ILLEGAL BECAUSE M1 = 6 IS I 

M1, SL = 0) IS OK 

G) POTENTIAL HAZARD: 

M1$(I1, 12), IL = 125 
ASSUME I1 = 2, 12 = 3 BEFORE ASSIGNMENT, 
PICK BEST ORDER ON A MULTIPLE ASSIGNMENT. 

M1$(2, 3)-OR M$(3, 3) 
HILL BE ASSIGNED IN THIS CASE, 

LLEGAL; 

COMPILER IS FREE TO 

EITHER 

33 
272



CONDITIONAL 
SIMPLE IF STATEMENT | s/ 

IF exp THEN [seme] ; | AlZ 

WHERE exp IS EITHER A BOOLEAN EXPRESSION (1,E., EVALUATED AS TRUE 

OR FALSE) OR A RELATIONAL EXPRESSION (1.E,, A= 0), THE KEY POINT 

1S THAT exp MUST BE SOMETHING THAT CAN BE EVALUATED AS TRUE OR FALSE. . 

  

      

NOTES: 

@ [stmt] 18 EXECUTED ONLY IF exp EVALUTES TO TRUE. 
[seme] CAN HAVE A STATEMENT LABEL. 

@ IF exp IS FALSE, {stmt} IS BYPASSED, 

  

  

  

  

    
  

  

      

e1s | 

 



32 CONDITIONALS (CON'T.) 27 

EXAMPLES (SIMPLE. IF) Vf 

ASSUME Bl, B2, B3 ARE BOOLEANS. 

S1, $2, $3 ARE SCALARS, 

@ IF.BL & B2 THEN NOTE THAT THE “IF” PART AND "TRUE" PART 

$1, $2 = 0) ARE 2 STMTS. 

@ IFB3 THEN. 
Bl = B2s 

G) IF Bl & B2 THEN 
IF S1 = 6 THEN 

IF 7B3|B2 THEN 
SL = $25 

HOTE: IF STATEMENTS CAN BE NESTED. 

Gj) IF $1 < 41S2 > 6 THEN 

DO; 

S1 = SIN(S2)**25 

$2 = $2 + $3; 

END: 

ENTIRE STATEMENT 

GROUP IS TRUE PART 
  

 



CONDITIONALS (CON’T.) ais” 

AUGMENTED IF STATEMENT 

TIS IS LIKE A SIMPLE IF EXCEPT THAT IT HAS AN ELSE CLAUSE THAT 

1S EXECUTED ONLY IF THE “exp” IS FALSE. 

AN AUGMENTED IF CAN BE PLACED WITHIN NESTED SIMPLE IFs, BUT AN 

AUGMENTED IF CAN NEVER NEST INSIDE ANOTHER (WITHOUT A STATEMENT 

GROUP ACTING AS AN INSULATOR). 

EXAMPLES (AUGHENTED IF) 

ASSUME B1, B2, B3 ARE BOOLEANS, 

$1, $2, $3 ARE SCALARS, 

Il, 12, 13 ARE INTEGERS. 

CG) IF Bl THEN 
S] = S2ea2 + $3**2; 

ELSE S1 = SIN(S2 $3)3 

114



33 CONDITIONALS (CON’T, ) 2 
(2) IF Sl < $2 THEN 6 

ZERO_IT: S1 = 0; 
ELSE $1 = $2##2; 

G) IF B1 THEN 
B2 = FALSEs 

ELSE TROUBLE: B2 = TRUE 
(4) IF BL & B2IB3 THEN | stMpLe tes 

IF $1 < 5|S1 >9 THEN 

IF Sl = 0 & S2 = 4 THEN 
ll = 6) “AUGMENTED IF 

ELSE [1 = 10; 

| TRUE PART CAN HAVE A LABEL — 

FALSE PART CAN HAVE A LABEL, ALSO 

~NOTE: DANGLING ELSEs ARE NOT A PROBLEM BECAUSE ELSE GOES WITH 

THE INNERMOST IF. 

bfnwc
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CONDITIONALS (CON’T,) 93 
IF BIIB2 THEN . A777 

B3 = FALSE; 

ELSE IF B2 & B3 THEN ; 
B3 = TRUE; ELSE CLAUSE MAY ALSO BE AN IF STMT 

‘ELSE IF $1 * 0 THEN 

Sl = 1; 

IF $1 = 4 THEN 

§2= ]) ° 

ELSE IF $1 + 6 THEN 
$2 = 23 

ELSE IF $1 & 8 THEN 

§2 = 3; 

+———CONTROL JUMPS HERE AFTER COMPLETION OF ANY TRUE PART, 
ANY LABELS PUT ON TRUE PART OR FALSE PART (ELSE) MAY NOT BE BRANCHED 

TO FROM ANYWHERE OUTSIDE OF THE IF STATEMENT,



_ 
fc. SA 

CONDITIONALS (CON’T.) da 
aA 

RELATIONAL EXPRESSIONS 1 

RELATIONAL EXPRESSIONS CAN BE USED IN CONDITIONAL STATEMENTS 
(E.G., IFs) AS CAY BOOLEAN EXPRESSIONS, A RELATIONAL EXPRESSION 
1S SOME SORT OF A COMPARISON THAT HILL EVALUATE TO A.TRUE OR A 
FALSE CONCLUSION, 

RELATIOHALS ARE EXPRESSIONS LINKED BY COMPARATIVE OPERATORS: 

>, <, <a, omy, =, t=, RELATIONALS, IN TURN, MAY BE 

COMBINED USING THE 3 BOOLEAN OPERATORS: & |, AND . 

-RELATIONALS, HOWEVER, ARE NOT QUITE BOOLEANS. 

COMPARATIVE OPERATORS ARE LOOSELY GROUPED INTO 2 CLASSES: 

CLASS I: >, <, S8,7P, 9,716 

“CLASS Ii: =, 7=



  

33 CONITIONALS (CON’T,) 

CLASS II OPERATORS (=,~7=) ARE THE ONLY ONES THAT CAN BE USED 

WITH: VECTOR, MATRIX, BOOLEAN, AND BIT STRING DATA TYPES, 

e VECTOR AND MATRIX COMPARES ARE PERFORMED ELEMENT-BY-ELEMENT. 

@ VECTORS AND MATRICES MUST HAVE THE SAME "SHAPES", I.E., VECTORS 

MUST BE OF IDENTICAL LENGTHS, AND MATRICES MUST HAVE THE SAME 

NUMBER OF ROWS AND COLUMNS. 

EXAMPLES : . 

1) y i 2 6 
ane [i V2 = f ML = i 3 m- pis 

‘ 6): - 

() Vl= v2 ILLEGAL (VECTORS # IN LENGTH) 
(2) M1 = M2 ILLEGAL (MATRICES HAVE DIFFERENT COLUMN CT) 
(3) V1 = M2$(1,*) TRUE 
(4) V1$(2 AT 2) = V2- TRUE 

(5) V2 = Mis, 1). FALSE



Lyn 

CONDITIONALS (CON’T.) 

FOR INTEGERS, SCALARS, AND CHARACTER STRINGS, BOTH CLASS I AND 

CLASS [1 CONDITIONAL OPERATORS CAN BE USED, 

® AS WE WOULD EXPECT, IN AN INTEGER/SCALAR COMPARISON, THE 

INTEGERS ARE FIRST CONVERTED TO SCALARS. 

° CHARACTER STRIHG COMPARES ALLOW US TO SORT STRINGS ALPHABETICALLY. 

SUPPOSE I1=5 © 125 -3 I3=0 
$1=-80 S2=6.5 ° $3 = 10,3 
Cl='Z’ C2 = ‘ABC’ G3. = 'B’ 

THEN , 
I> 12_ © TRUE 
‘We B * FALSE 
I= 5 "= TRUE 
Cl < (2 = FALSE 
(2$2 = (3 = TRUE 
Il < 82 "© TRUE 
13 < CL ILLEGAL ‘ 

(13-12) « 11 = TRUE 
[1**2 < -S1 = TRUE 
(2 < C3 = TRUE



  

ty~y 

33 
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® COMPARATIVE OPERATIONS CAN BE COMBINED CAS IF THEY WERE 

BOOLEAN OPERANDS), USING THE BOOLEAN OPERATORS &, |, AND-. 

~ STILL, COMPARATIVE OPERATIONS ARE NOT BOOLEANS AND THEY 

CANNOT BE MIXED WITH BOOLEANS IN A CONDITIONAL STATEMENT. 

EXAMPLES 
” ASSUME: Bl, B2, B3 BOOLEANS, 

Il, 12, 13 INTEGERS, 
S1, 82, $3 SCALARS, 
VL, V2, V3 VECTORS. tec 

IF Bi [>B2](B28B3) THEN... 
IF V1 = V2IS1 < S2 THEN .4. 
IF 11 + 12 < OSL < $2**2 THEN .., 
IF V1 - V2 = V3.8 S1 <2 +2 THEN... 
ILLEGAL 
IF BIIBZIS1 < $2 THEN... 
IF “B21S1 = $2 THEN... 
IF VL = V2 & B3 THEN w,



Ly 

CONDITIONALS (CON’T,) 

BUT WE CAN GET OUT OF TROUBLE BY TURNING THE BOOLEAN EXPRESSIONS 

INTO RELATIONAL EXPRESSIONS: 

IF (B11B2) = TRUE | S1 < S2 THEN... 

IF B2 = FALSE | S1 = $2 THEN ... 

IF V1 = V2 & B3 = TRUE THEN ... 

PRECEDENCE 

1 — ARITHMETIC OPERATIONS (E.G.,°/, *, ©) +, -. **, MULT, 

(BLANK)). 

2 COMPARATIVE OPERATIONS (E.G., <, >» =,7=,7> 4 , 

“K, >=, <=), 

3 =6NOT (>) 
LOGICAL 

OPERATIONS 4 AND (2) 
5 OR (1) 

33 
At P2,
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EXAMPLES (PRECEDENCE IN RELATIONAL EXPRESSION) 

IF td. [-(S3 > 0) 8 (SH < 0185 >0) .., 

$4 db bh¢ 
ARROHS INDICATE ORDER OF EXECUTION OF OPERATIONS 

  

IF Ve AW | Sl = s2ee2 | BL TD nea 

apiteye



CONDITIONALS (CON’T.) 5a, 

LABELS AND BRANCHES . 

LABELS ARE NAMES CHOSEN BY THE PROGRANNER AND ATTACHED TO 

EXECUTABLE STATEMENTS. WE CAN DISTINGUISH BETWEEN BLOCK 

LABELS (MANDATORY LABELS ON BLOCKS). 

ALPHA: PROGRAM; 
BETA: COMPOOL; 
GAMMA: PROCEDURE, 
DELTA: FUNCTION; 
EPSHLON:—TASK; 
ZETAs—UPDATEs 

AND STATEMENT LABELS, ONLY THE LATTER MAY BE BRANCHED TO. 

-@ A STATEMENT MAY HAVE 0, 1, OR MORE LABELS -~ THERE 1S NO 

CORE OR CPU PENALTY FOR SUCH LABELS AND THEY MAY BE USEFUL 

FOR DIAGNOSTIC PURPOSES (AS WILL BE SEEN), 

fled 
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EXAMPLES ; 

(1) SET_X: X= SINGY)s 

(2) SETX: BOMBLOUT: X = SQRT(-1); 

(3) 

(H) 

(5) 

(6) 

BIT_LOOP: BO FOR I = 1 TO 10000; 

DEPART: CLOSE ALPHAs 

IF A = 3 THEN 

CALL_PROC: CALL UPDATER(A); 

ELSE DONE: 60 TO END_ALL; 

CHECK_FAIL: IF Z = 0 THEN 

CALL FLASH_DISPLAY (6); 

GO_TO STATEMENT 

GENERIC FORM: 

GO TO Label, 

23 
2 PS- 

THIS DOES THE OBVIOUS -- CONTROL I$ TRANSFERRED TO THE STATEMENT 

WITH LABEL fabeé (PROVIDED STRINGENT CONDITIONS ARE MET).
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96 
ALTHOUGH STRUCTURED PROGRAMMING PRACTICE DISCOURAGES USE OF "GO TO” 

STATEMENTS, THEY ARE SOMETIMES PREFERABLE TO A DAY OF WORK TO 

ELIMINATE ONE. THE FOLLOWING EXAMPLE, HOWEVER, SHOWS HOW EASY 

: HAL/S MAKES THE ELIMINATION OF GO TO’S, 

EXAMPLE 
IF VALUE < LOW_LIMIT THEN GO TO LOW; - 
IF VALUE > HI_LIMIT THEN GO TO HIs 

IN_LIMITS: GOOD_FLAG = TRUE; 

OUT_VAL = VALUE; 

GO TO FINISHs 

LOW: GOOD_FLAG = FALSE; 
OUT_VAL = LOW_LIMITs 

. GO TO FINISH; 
HI:  GOOD_FLAG = FALSE; 

OUT_VAL = HE_LIMITs. 

FINISH: 

TY
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BECOMES 

IF VALUE < LOWLIMIT THEN 

DOs 

GOOD_FLAG = FALSE, 

OUT_VAL = LOW_LIMIT; 

ENDs : 

ELSE IF VALUE > HI_LLIMIT THEN 

DO; 

GOOD_FLAG = FALSE 

OUT_VAL = HI_LIMITs 

ENDs 

-ELSE DOs 

GOOD_FLAG = TRUE: 

OUTVAL = VALUE: . 

END: 
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3/ 
STATEMENT GROUPS ‘ ary 

A STATEMENT GROUP IS A SET OF HAL/S STATEMENTS THAT ARE CONSIDERED 

AS A UNIT FOR THE PURPOSES OF CONDITIONAL OR REPETITIVE EXECUTION, 

STATEMENT GROUPS BEGIN WITH A “DO” STATEMENT, CLOSE WITH AN “END” 

STATEMENT, AND CAN CONTAIN OTHER STATEMENT GROUPS (OR EVEN. CODE 

BLOCKS) NESTED WITHIN, THE “DO” STATEMENT IS CONSIDERED TO BE AN 

EXECUTABLE STATEMENT (ALTHOUGH CODE IS NOT ALWAYS GENERATED FOR IT) 

AND AS SUCH CAN POSSESS A STATEMENT LABEL, THE “DO” STATEMENT HAS 

THE FORM: 

DO (controz); 

(contxot) 1$ OPTIONAL AND WILL BE DESCRIBED NEXT, IF (contro) IS 

OMITTED THE STATEMENT GROUP DO... END IS EXECUTED ONCE.



{14 

  

STATEMENT GROUPS (CON'T. ) 9 STATEMENT GROUPS (CON’T, 2 
THE “END” STATEMENT IS ALSO CONSIDERED TO BE AN EXECUTABLE STATEMENT 
(AGAIN, IT MIGHT NOT ALWAYS RESULT IN CODE) AND MAY BE LABELLED, THE 
GENERIC FORM OF THE “END” STATEMENT IS: 

END fabet, 

fabet I$ OPTIONAL, BUT IF IT IS PRESENT IT MUST MATCH THE LABEL ON 
THE CORRESPONDING "DO" STATEMENT. THUS, 

OPTIONAL — — — — — — “> MUST MATCH IF 
CYCLE:) DO FOR I = 1 T0 5; U7 PRESENT 

toi ~ OPTIONAL 
END_CYCLE: END (res 

USE OF THESE OPTIONAL LABELS 1S RECOMMENDED FOR THE FOLLOWING REASONS: 
(1) ALLOWS CROSS-CHECKING BY THE COMPILER THAT ENSURES EVERY "Do” 

IS PROPERLY CLOSED, 

(2) A LABEL PROVIDES A FIXED REFERENCE POINT FOR DIAGNOSTICS, 
(3) MEANINGFUL LABELS INCREASE PROGRAM READABILITY,



ay 
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DO WHILE , 
  

DO WHILE (condition) ; 
sor ft 

ENDs 

e THE STATEMENT GROUP IS REPETITIVELY EXECUTED AS LONG AS 

THE (condition) REMAINS TRUE. 

© IF (ondition) IS FALSE, THEN THE STATEMENT GROUP IS NOT EXECUTED 

AT ALL. 

© (condétton) 1$ A RELATIONAL OX A BOOLEAN EXPRESSION (NOT A 

MIXTURE OF COURSE) AND IS EVALUATED PRIOR TO EACH CYCLIC . 

EXECUTION OF THE STATEMENT GROUP. 

e@ WHEN (condétéon) BECOMES FALSE, CYCLIC EXECUTION HALTS AND 

CONTROL IS PASSED TO THE STATEMENT FOLLOWING THE “END” STATEMENT. 

EXAMPLE 
I = 50; 
DO WHILE 1 > Os 

TABLESI = 1**2; 

T=] - 23 
END; 

 



STATEMENT GROUPS (CON’T.) S J 

DO UNTIL a 9 / 

DO UNTIL (condition) ; 

END; 

© THE STATEMENT GROUP IS EXECUTED CYCLICALLY UNTIL (condition) 

BECOMES TRUE (1.E,, THE REVERSE OF DO...WHILE). 

e THE TEST OF (condétion) I$ MADE AT THE END OF THE CYCLES 

SO THE STATEMENT GROUP WILL ALWAYS BE EXECUTED AT LEAST 

ONCE. | 

e. AS WAS THE CASE WITH DO...WHILE, @ondétton) [S$ A RELATIONAL OR A 

BOOLEAN EXPRESSION. 

  

LOOPS THAT WILL CYCLE FOREVER: 

(a)- DO WHILE (FRUEs + THIS BOOLEAN EXPRESSION WILL NEVER BECOME 
FALSE, 

END) 

(8) DO UNTIL ALSE)«—— THIS BOOLEAN EXPRESSION WILL NEVER BECOME 
TRUE s 

END;
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DO FOR 2. 

THERE ARE 2 BASIC FORMS: ITERATIVE AND DISCRETE: 
  

ITERATIVE 

DO. FOR (loop var) = {inttia£) TQ (final) BY (increment); 

© (Loop var) IS AN UNARRAYED INTEGER OR SCALAR, IT IS THE 

CONTROL VARIABLE (THE VARIABLE COULD BELONG TO AN ARRAY, 

BUT IF SO ITS ARRAYNESS MUST BE SUBSCRIPTED AWAY). 

© (initial), ({inat), AND (éncrement) ARE INTEGER OR SCALAR 

EXPRESSIONS. : 

© ON THE FIRST CYCLE, (oop var) WILL HAVE THE VALUE (inétéar), 

© - ON EACH SUCCEEDING CYCLE, (oop var) WILL BE AUGMENTED BY 
(inerement), 

@ CYCLIC EXECUTION CONTINUES UNTIL @oop vax) LIES OUTSIDE THE 

RANGE BOUNDED BY (énitiat) AND (ginat),
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NOTE: (1) INCREMENT IS ASSUMED TO BE +1 IF NOT SPECIFIED, I.E., Ald 
il THIS CASE THE "BY Cxcrement)” 1$ OPTIONAL. 

@ (initia), (final), AND (nerement) ARE EVALUATED ONCE 

(AND THEIR VALUES SAVED) PRIOR TO INITIATION OF THE 

LOOP, I.E., VALUES CANNOT BE CHANGED WITHIN THE LOOP. 

EXAMPLES — 

(@) , DO FOR I = 110 20; 

END; 

DO FOR 1 = 1 TO 20 BY I) 
a tf 8 

  

“EQUIVALENT 

ENDs 
(2) DO FOR I = 2d TO (J*#2-1) BY 5) 

d= J - 1p) ————————__—. cannot AFrect Loop TERMINATION. 
6 A t a 

END: 

| - |
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DISCRETE 

DO FOR (oop var) = expy, expy, «++ exP,! 

@ (foop ver) 1S AN UNARRAYED INTEGER OR SCALAR -- THE CONTROL 
VARIABLE. 

© THE LOOP WILL BE EXECUTED n TIMES, WITH (Loop var) = exp, 

ON THE 4°” EXECUTION, 

HOTE: EACH’ EXPRESSION exp, 1S EVALUATED JUST ran TO USING 

IT, 1.E., ON THE 2° EXECUTION, 

EXANPLES 
G) DO FOR = 1, 3, 5, 9% 

fob hos 

END; 

@ DO FOR S = SIN(30), SINC45), SIN(60)) 
sft 

END; 

g) Jel ‘ lel 8T 

DO FOR 1 = J, J+2, Uti, J-6) 4 ND ryote 

tas 10 -3RD evcre 
J= JGHDs 36 NTH cycLe 

END; 

SY DD 

any
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BOTH THE ITERATIVE AND DISCRETE "DO FOR” STATEMENTS MAY HAVE 

Ail ADDITIONAL “WHILE” OR "UNTIL" CLAUSE ACTING AS A FURTHER 

EXECUTION QUALIFIER: 

DO FOR 1 = 170 J WHILE I < 50; 

ENDs 

DO FOR I = 1 TO 10000 UNTIL J = 0; 

IFA>OTHENJ=J- 1) 

END; 

DO FOR f= 1, 3, 7, 9 WHILE. By 

IF SINCQ) < .4 THEN B = FALSE; 

toa 

ENDs 

33 
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DO CASE -- USED TO SELECT ONE STATEMENT TO BE EXECUTED BASED 27 ( 
ON A CALCULATION (ROUGHLY EQUIVALENT TO A FORTRAN 
COMPUTED GOTO), 

FORM: 

DO CASE (exp); 

® (exp)-1$ AN INTEGER OR SCALAR EXPRESSION. (SCALAR WILL BE CONVERTED 

TO AN INTEGER. BY ROUNDING). 

© IF (exp) EVALUATES TO 1, 2, 3, +++ K THEN:THE 187, 2D, 38D, ,., 
KTH STATEMENT: (OR STATEMENT GROUP) FOLLOWING THE "DO CASE” WILL 
BE EXECUTED. | 

e IN THIS SIMPLE FORM OF THE "NO CASE” NO ERROR CHECKING IS PERFORMED, 

I.E., UNPREDICTABLE AND DISASTROUS BEHAVIOR WILL RESULT IF (exp) 

* EVALUATES TO < 0 OR > K. 

Way



STATEMENT GROUP (CON’T.) 

A DO CASE 1S POWERFUL BECAUSE A SPECIFIC CASE CAN RANGE FROM A 

SIMPLE STATEMENT TO A COMPLEX "DO...END” GROUP CONTAINING AN 

ARBITRARY NUMBER OF STATEMENTS. 

EXAMPLE 

DO CASE Is 
Js fy +————_—_——. CASE 1 
DO; ) 

{ohana f o8e2 
* ENDs 

J = 3) + CASE 3 
no; 

ALPHA: PROCEDUREs 
ore 

CLOSE ALPHA; \ CASE 4 (ANY DO,..EHD GROUP CAN HAVE 
ba NESTED BLOCKS) 

CALL ALPHA, 
one 

END 

J = 5) ———_—_—_cs 5 
DO FOR K= 1, 3, 5; ] 

END, CASE 6 
ENDs <——-____. run) gg DO CASE; 

  

ares
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ERROR CHECKING ON THE CASE VARIABLE IS PERFORMED IF AN “ELSE” <277 

CLAUSE IS ADDED TO THE “DO CASE”. 

DO CASE (exp); ELSE jstmt] + 
(case 1) : 

(cabe 2) 

  

      

teade K) 

END; 

IF (exp) EVALUATES TO < 0 OR > K THEN jstmt | IS EXECUTED (WHICH 

COULD OF COURSE SIGNAL AN ERROR CONDITION). 

  

      

‘@ AN ELSE CLAUSE SHOULD ALWAYS BE PROGRAMMED IF THERE IS A POSSIBILITY 

THAT THE CASE VARIABLE COULD EVER MISBEHAVE! 

NOTE: A DO CASE MAY HAVE A MAXIMUM OF 256 CASES. 
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BRANCHING (GO TO, EXIT, REPEAT) 

A STATEMENT GROUP, I.E. DO...END, DO WHILE, DO UNTIL, DO FOR, DO CASE, 

MAY BE BRANCHED OUT OF VIA A GO TO, BUT SUCH A GROUP MAY HOT BE 

BRANCHED INTO. BRANCHING WITHIAL, OF COURSE, IS LEGAL, 

LEGAL 

Xs 

- DOs; 
tea 

- END) 

r DOs 
one 

GO TO Xy 

END 

r Bd; 

GO TO Xs 

  

  © END: 
Ke= 1; 

  

60 TO Xs , 

ie 

WITHIN 

~ TO THE END 

TO THE OUTSIDE 

ayy
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LESH ® DOs 27) . 

DO; 

GO TO Xs 

END; OK BECAUSE ALREADY 
Xe ted oA, IN THE OUTER DO! 

ae 

END; 

ILLEGAL =) GO TO X; 

DO; 

’ x: fel: ? 

L END; 

@ . DO; 

GO TO Xs CANNOT BRANCH INTO 
tae (EVEN IF NESTED) 

CANNOT BRANCH INTO 

  

a 

Xs lel 

  

Lew} 7 

Na ay ENDs
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SINCE BRANCHING WITHIN (OR OUT OF) “DO” GROUPS IS INVARIABLY 

NECESSARY, AND SINCE "GO TOs” ARE UNDESIRABLE IN STRUCTURED 

PROGRAMMING, HAL/S OFFERS TWO ATLERMATE CONSTRUCTIONS : 

EXIT & REPEAT 
EXIT 

FORM 1: EXIT; 
© CAUSES IMMEDIATE BRANCH OUT OF THE INNERMOST 

STATEMENT GROUP IN WHICH IT IS ENCLOSED. 
© EXECUTION IS DIRECTED TO THE FIRST STATEMENT 

FOLLOWING THE "END" OF THE GROUP BRANCHED OUT OF. 

FORM 2: EXIT tabet, 

‘@ CAUSES BRANCH OUT OF THE ENCLOSING STATEMENT 

GROUP THAT POSSESSES THE LABEL fabee ON ITS 

"DO" STATEMENT. 

@ EXECUTION IS DIRECTED TO THE FIRST STATEMENT 

FOLLOWING THE “END” STATEMENT OF THAT GROUP. - 

       



OUTER: 

MIDDLE 

THIS SHOWS THE ADVANTAGES IN LABELING DO,..END GROUPS, 

  ~LEND 

‘ 
te - J 

STATEMENT GROUPS (CON’T.) 

(DO WHILE J < 03 

J=J- 2; 

Q = SIN(X)##J3 

DO FOR I = 1 T0 10; 

ASL = AST ~ 53 

DO FOR J = 1 TO 203 

BSJ = BSJ - 15 

IF 1 = 5 THEN EXIT; 

ELSE IF Q = 0 THEN 

EXIT OUTER; 

  

END:   

      

LENDS 

NOTE THAT THE 

EXIT STATEMENT ACTS LIKE A GO TO, BUT IS A MORE SECURE (AND STRUCTURED) 

CONSTRUCTION. 

yy ~30 

  

3o/
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REPEAT (MUST BE ENCLOSED WITHIN DO FOR, DO WHILE, OR DO UNTIL GROUP), 

FORM 1: REPEATS 

® MUST BE ENCLOSED WITHIN A DO FOR, DO WHILE, OR 

DO_UNTIL GROUP (1.E., A REPETITIVE GROUP). 

e CAUSES IMMEDIATE BRANCH TO THE BEGINNING OF THE 

INNERMOST REPETITIVE GROUP, 

FORM 2: REPEAT 2abet; 

_ @ MUST BE ENCLOSED WITHIN A REPETITIVE’ GROUP THAT 

HAS LABEL abet ON ITS "DO" STATEMENT, 

@ CAUSES IMMEDIATE BRANCH TO THE BEGINNING OF SAID 

REPETITIVE GROUP,



Cpe. ay 
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EXAMPLES 

  

(REPEAT 
DO WHILE 1 < 1s 

IF A = 0 THEN 

DO; 

IF K = 1 THEN REPEAT; 

END; 

LENDs 

    

   

  
DO FOR I = 1 TO 100; 

IF J > 50 THEN REPEAT; 

END; 

NON-REPETITIVE GROUP 

52 
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(2) REPEAT 2abee 

ONE: 

\ 
       

  

     

  

STATEMENT GROUP (CON’T.) 

DO FOR I = 1 TO 10; 

Je=Ts 

DO WHILE J > 0; 

Je=J-1; 

X$J = X$J + dy 

IF X$J = 25 THEN REPEAT; 

IF X$J = 0 THEN REPEAT ONE; 

304
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PROCEDURES AND FUNCTIONS ARE THE TWO MOST COMMON CODE BLOCKS. 

* ~~ E 
* 

PROCEDURES AND FUNCTIONS oe +/ 

3035 

IF PROCEDURES/FUNCTIONS ARE COMPILED SEPARATELY THEY ARE CALLED 

  

COMSUBs (COMMON SUBROUTINES). OTHERWISE, THEY ARE NESTED IN 

A PROGRAM, 

o 

THE MAXIMUM NESTING DEPTH OF CODE BLOCKS IS 16. 

THE MAXIMUM NUMBER OF BLOCKS (CODE AND DATA) IN A COMPILATION 

IS 256 (INCLUDING EXTERNAL TEMPLATES). 

PROCEDURES/FUNCTIONS MAY NEST WITHIN PROGRAM, TASK, UPDATE, 

PROCEDURE, AND FUNCTION BLOCKS (1.E.. ALMOST ANYTHING). 

A PROGRAM BLOCK CANNOT NEST WITHIN A PROGRAM BLOCK. 

  

THIS IS NOT NESTING THIS IS 

*Pl: EXTERNAL PROGRAM; Pl: PROGRAM; 
CLOSE Pl) tan 

D VERSION 6 P2: PROGRAM; 
P2: PROGRAM tan 
DECLARE NN NAME PROGRAM CLOSE P25 

INITIAL CNAME(P1)) 5 toe 

CLOSE P2; CLOSE P1; 

 



  

  

PROCEDURES AND FUNCTIONS (CON’T,) 3 oO G 

THE MAXIMUM NEST DEPTH HERE IS 4, 
  

Pl: PROGRAM ; 
  

  

  

    
  

    
a INTERNAL 
ee ) —————] ea BLOCKS 
  

  

  

  

          
  

CLOSE Ply     
  

PARAMETERS 

PROGRAM BLOCKS CANNOT HAVE PARAMETERS -~ ONLY PROCEDURE AND FUNCTION BLOCKS MAY, 
(THE OTHER BLOCKS NOT COVERED SO FAR -~ UPDATE BLOCKS AND TASK BLOCKS ~~ ARE ALSO 
PARAMETERLESS, ) 

PARAMETERS ARE EITHER INPUT OR ASSIGN PARAMETERS, OF THESE, ONLY A PROCEDURE CAN 

HAVE AN ASSIGN PARAMETER,
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PROCEDURES AND FUNCTIONS (CON’T.) S2 

o INPUT PARAMETERS ARE USED TO PASS DATA INTO A PROCEDURE OR 3 07 
FUNCTION (THEIR VALUES CANNOT BE CHANGED BY THE PROCEDURE/ 
FUNCTION) . 

e ASSIGN PARAMETERS CAN BE USED BOTH TO PASS DATA IN AND OUT 

* OF A PROCEDURE BLOCK. A FUNCTION DOES NOT HAVE ASSIGN PARAMETERS ; 

FUNCTION RESULTS ARE PASSED OUT VIA A RETURN STATEMENT. 

AGAIN, IT 1S RECOMMENDED THAT ALL BLOCKS (BUT ESPECIALLY FUNCTIONS 

AND TASKS) BE DEFINED PRIOR TO THEIR POINTS OF INVOCATION. 

  

    PROCEDURE BLOCK (OPTIONAL) INPUT PARAMETERS 
Pete nate neil 

tabet; PROCEDURE(4,» 4g, «+» 4,) 

ASSIGN(Qy, Gyr +++4y)3 
Snecma” 

  

MANDATORY 

IDENTIFIER : (OPTIONAL) ASSIGN PARAMETERS 

 



  

PROCEDURES AND FUNCTIONS (CON‘T,) $3 

FUNCTIOH BLOCK 30 

cement, tinting? met tm 

MANDATORY (OPTIONAL) THE TYPE AND 
IDENTIFIER INPUT PARAMETERS PRECISION OF THE 

DATA RETURNED BY 

THE FUNCTION 

NOTE: IF (@tértbutes) 1S OMITTED, THE FUNCTION IS PRESUMED 

TO RETURN A SINGLE PRECISION SCALAR (1.E., THE SAME 
DEFAULTS AS IN A DECLARE STATEMENT). 

PROCEDURE AND FUNCTION BLOCKS MUST HAVE A CLOSE STATEMENT AS THE 
FINAL STATEMENT, THE CLOSE STATEMENT IS AN EXECUTABLE STATEMENT 
OF THE FORM: 

CLOSE; 

OR CLOSE Labee; 

IF (abet) 1S PRESENT, IT MUST MATCH THE LABEL ON THE PROCEDURE/ 
FUNCTION BLOCK HEADER,
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A PROCEDURE IS EXITED EITHER BY FALLING INTO COR-BRANCHING-TO) 

THE CLOSE STATEMENT, OR BY USE OF A RETURN STATEMENT. A FUNCTION 

MUST EXIT VIA A RETURN (exp) STATEMENT, I.E., NOT ONLY A RETURN, 

BUT ONE THAT RETURNS A VALUE OF THE PROPER DATA TYPE AND 

PRECISION CIMPLICIT CONVERSIONS ALLOWED). 

  

e PARAMETER DECLARATIONS SHOULD ALWAYS PRECEDE LOCAL DATA 

DECLARATIONS. IN THE CASE OF COMSUBS THIS IS REQUIRED. 
  

INPUT PARAMETERS - PASSED BY “VALUE” IN THE CASE OF INTEGERS AND 

SCALARS, ALL OTHER DATA PASSED BY “NAME” (I.E., REFERENCE), 

ASSIGN PARAMETERS - ALWAYS PASSED BY "NAME", 

THE CONCEPT OF A STACK, WHICH WILL BE DISCUSSED IN DETAIL LATER, 

IS A KEY PART OF THE MACHINERY FOR PARAMETER PASSAGE. 

3/ 
309 
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  anne © is SRO 3/0 
erm neti mm Smet, 

ALPHA: PROCEDURE(I, Sl, V) ASSIGN(S2, W); 

DECLARE INTEGER, 13. oananeren 
DECLARE SCALAR, Sl, $2 DOUBLE; 
DECLARE V VECTOR, W MATRIX; DECLARATIONS 
DECLARE VECTOR, X, Ys 
DECLARE SCALAR, T, Us DECLARATIONS 
DECLARE MATRIX, A, B, Cs 

AN_ASSIGN PARM CAN BE USED AS 
IF $2 —= 0 THEN INPUT AS WELL AS OUTPUT, 

DO; 

$270; _ 
f=s1V V+ 12 XY; 

END; 
ELSE 

DO; 
S2e]; _ — 
f=siVX+ i277; 

ENDs 
IF | = 0 THEN .- 

Hefl+ABe1 C; 
CLOSE ALPHA; «——--_--_-——-. CAUSES A RETURN TO THE CALLER, 

cpa be
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a $3 

EXAMPLE , 

© INPUT FUNCTION WILL RETURN A 3x3 3B it 
PARM DOUBLE PRECISION MATRIX 

BETA: FUNCTIONCM) MATRIX DOUBLE; 

DECLARE M MATRIX DOUBLE: \ ———--— PARAMETER DECLARATION 

DECLARE M1 MATRIX DOUBLE 

INITIAL CHL, 3#2, 34#3)3 ———— LOCAL DATA DECLARATIONS 
DECLARE M2 MATRIX DOUBLE 

INITIAL(3#2, 3#1, 313) 

RETURN ML + 2 sy 
CLOSE BETA; < WILL NEVER BE EXECUTED 

BECAUSE OF RETURN STMT, 
  

NOTE: A RUN-TIME ERROR WILL OCCUR IF THE CLOSE STATEMENT IS EVER REACHED 
IN A FUNCTION. 

PROCEDURES ARE ENTERED VIA A CALL, STATEMENT THAT MAY OR MAY WOT HAVE 
INPUT OR ASSIGN ARGUMENTS -- DEPENDING ON WHETHER THE PROCEDURE HAS INPUT 
OR ASSIGH PARAMETERS. ASSIGN 

ARGUMENTS 

CALL ALPHACJ, X, V1) ASSIGN(T, W)s 
nome vom 

INPUT 
ARGUMENTS



  

PROCEDURES AND FUNCTIONS (CON'T.) 3/ 

12. 
FUNCTIONS ARE ENTERED BY INVOCATION, I.E., BY USING THE NAME OF THE 
FUNCTION AS THOUGH IT WERE A DATA TYPE. IF THE FUNCTION HAS INPUT 
PARAMETERS, THEN THE INVOCATION MUST SPECIFY CORRESPONDING INPUT 
ARGUMENTS, 

is = BETA); 

FUNCTION BETA TAKES MATRIX M2 aS 

AN INPUT ARGUMENT AND RETURNS A 

A NEW MATRIX THAT IS THEN ASSIGNED 
to M3. 

IF THE FUNCTION HAS NO PARAMETERS, THEN THE PARENTHESIZED LIST IS 
OMITTED. ; 

© MORE FREEDOM (E.G. MISMATCH OF DATA TYPES AND/OR PRECISION) 

IS ALLOWED FOR INPUT ARGUMENTS<——~INPUT PARAMETERS THAN IS 

ALLOWED FOR ASSIGN ARGUMENTS ~——> ASSIGN PARAMETERS, 
S
e
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INPUT PARAMETERS - 3 1s 

REMEMBER THAT PARAMETERS ARE DECLARED DATA ITEMS, BUT ARGUMENTS 

(INPUT, AT LEAST) CAN BE EXPRESSIONS: 

ALPHA: PROCEDURE(I, S)5 

DECLARE I INTEGER, S SCALAR: 
eae 

CLOSE ALPHAs 

CALL ALPHA(K? + 3 + SIN(7), LOG(COSH(H)) + 3.14159); 
  

VALUE WILL BE COMPUTED Laue WILL BE COMPUTED 
AND PHYSICALLY ASSIGNED AND PHYSICALLY ASSIGNED 
To I, TO S, 

IF INPUT ARGUMENTS ARE EXPRESSIONS THAT RESULT IN NON-INTEGER OR SCALAR 

RESULTS, HAL/S PUTS THE EVALUATED EXPRESSION IN A TEMPORARY LOCATION 

AND PASSES THE ADDRESS OF THIS TEMPORARY LOCATION TO THE PROCEDURE. 

MP.



PROCEDURES AND FUNCTIONS (CON'T.) 

IMPLICIT CONVERSIONS (INPUT PARAMETERS) 

[to IMPLICIT CONVERSIONS LEGAL FOR ASSIGN PARAMETERS] 

INPUT PARM INPUT ARG 

SCALAR SINGLE) © : SCALAR SINGLE 

SCALAR DOUBLE Cd SCALAR DOUBLE 

INTEGER SINGLE INTEGER SINGLE 

INTEGER DOUBLE INTEGER DOUBLE 

CHARACTER CHARACTER 

VECTOR SINGLE — VECTOR SINGLE 

VECTOR DOUBLE | VECTOR DOUBLE 

(LENGTHS MUST MATCH, OF COURSE) 

MATRIX SINGLE { MATRIX SINGLE 

MATRIX DOUBLE as (MATRIX DOUBLE 

(ROW/COL SIZES MUST MATCH) 

BOOLEAN CT) BOOLEAN 

NOTE THAT THE LEGAL CONVERSIONS FOR INPUT ARG > INPUT PARM 

ARE THE SAME AS FOR ASSIGNMENT STATEMENTS. 

Mpurxy 
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ASSIGN PARAMETERS 

ASSIGN ARGUMENTS MUST BE HAL/S DATA ITEMS -- THEY CANNOT BE EXPRESSIONS, 

ASSIGN ARGUMENTS MUST MATCH THE CORRESPONDING PARAMETER IN TYPE AND 

PRECISION, 
MATRIX/VECTOR DIMENSIONS MUST MATCH EXACTLY, 

IF THE ASSIGN ARGUMENT IS AN ARRAY IT MUST EXACTLY MATCH THE NUMBER 
OF DIMENSIONS (AND RANGES) OF THE ASSIGN PARAMETER, 

AN ASSIGN ARGUMENT OF VECTOR OR MATRIX TYPE CAN BE COMPONENT 
SUBSCRIPTED -- PROVIDED THE EFFECT IS TO REDUCE THE VECTOR/MATRIX 
TO A SINGLE SCALAR. 

AN ARRAY CAN.BE SUBSCRIPTED -- BUT ONLY IF ALL ARRAYNESS IS 
SUBSCRIPTED AWAY, I.E,, THE ARRAY IS REDUCED TO A SINGLE ELEMENT, 
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EXAMPLES 

(FROM PROGRAMMER'S 

GUIDE) 

DECLARE M1 MATRIX (3,3), 
. MZ MATRIX(3,3) DOUBLE, 

M3 MATRIX(4,4),5 
S SCALAR, 
I INTEGER, 
ID INTEGER DOUBLE}. 

St- 4 7 

TUN: mm on 
rprocepores; ih SY TE EVE 

  

  

‘TWO: PROCEDURE (A,B) ASSIGN(C); 
DECLARE A MATRIX(3,3); 
DECLARE B INTEGER; 
DECLARE C INTEGER; 

  

  

¢ 
XM 

32 
3/b
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LEGAL: 

S = § + ONE; 

S=S+M ? Note: subscripts may be 

1, ONE 

M2 = TWO(M2,S) + M2; 

  

M2 = TWO(M2,1)7 

ILLEGAL: 

M2 = TWO(M3,1.5)5 

M2 = TWO(ML,! ARGUMENT! |[I); 

\y-y iC 

a nieinemencetilnniCihSD, 

  

" integer expressions of . 
any kind. 

M2 is converted to 
single precision 
during transmission. 

I is converted to 
sealar type during 
transmission. 

row and column 
" dimensions of M3 do 

not match those of 
parameter A, 

transmission of character 
type argument to scalar 
parameter B incurs an 
illegal type conversion.
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EXAMPLES 

(FROM PROGRAMMER’ S 

GUIDE) 

PROCEDURES AND FUNC110NS (CON’T.) 

  

ONE: FUNCTION INTEGER; 
Py 

tia 

GLH 
CLOSE} 

  

   
     

TWO: FUNCTION(A,B) MATRIX(4,4) DOUBLE; 
DECLARE A MATRIX (4,4); 
DECLARE B SCALAR; 

      

DECLARE M1 MATRIX (4,4), 
M2 MATRIX (4,4) DOUBLE, 
M3 MATRIX(3,3), 
S SCALAR, 
I INTEGER; 

52 
3p
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CALL ONE; 
CALL ONE (I) ;~<—+—.--_--_—. illegal: ONE possesses no 

: parameters, 
T 

CALL TWO(M2 ,S4+1) ASSIGN(I); 
. Lee Values may be passed in 

\ and out of TWO through I. 

type conversion required here. 

‘precision conversion required 
here. 

CALL TWO(M3, ID) ASSIGN(S); 

type conversion illegal for 
assign arguments. 

precision conversion required. 

dimension mismatch: parameter is 
a 3x 3 matrix, 

CALL TWO(M1,I) ASSIGN(I); 

appearance in both places 
is legal. :
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PROCEDUPE QUIRKS 
THIS IS ILLEGAL: 

ALPHA: PROCEDURE(A) ASSIGNCA) 
DECLARE A; 
Fons 

CLOSE ALPHAs 
BUT THIS IS.0K: . 

ALPHA: PROCEDURE(A) ASSIGH(B) 
DECLARE A, Bs 

CLOSE ALPHA, 
CALL ALPHA(Q) ASSIGN(Q); 

IN THIS LATTER CASE, NO HIDDEN DANGERS EXIST IF @ IS AN INTEGER OR 
SCALAR OR A BIT (BOOLEAN) -- SITICE Q WILL BE PASSED BY VALUE ON THE 

INPUT SIDE AND ASSIGNED VIA REFERENCE ON THE ASSIGN SIDE, FOR OTHER 

DATA, HOWEVER, MODIFICATION OF THE ASSIGN PARAMETER CAN RESULT IN 
MODIFICATION OF THE INPUT PARAMETER! 

y os y 4 
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THIS PROBLEM WILL NOT OCCUR IF A “TEMPORARY” COPY HAD TO BE MADE 

FOR THE INPUT ARGUMENT, £.G., BECAUSE A PRECISION CONVERSION WAS 

NECESSARY. 

EXAMPLE . 

ALPHA: PROCEDURE(V) ASSIGN(H), 
DECLARE VECTOR DOUBLE, V, Us 
W = 2s 
X = V + VECTORS (@DOUBLE) (1,1,2)5 

CLOSE ALPHAs 

DECLARE VECTOR DOUBLE, Us 
TROUBLE rea 

-( CALL ALPHACH) ASSIGN(D); 

THIS WOULD NOT BE A PROBLEM IF, WITHIN ALPHA, V WERE DECLARED 

VECTOR SINGLE INSTEAD!
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FUNCTION RETURN . 322 

A FUNCTION IS EXITHED VIA. 
RETURN (exp); 

WHERE (exp) 1S AN EXPRESSION WHICH MATCHES THE DECLARED TYPE OF 

THE FUNCTION -- EXCEPT THAT THE STANDARD IMPLICIT CONVERSIONS ARE 

ALLOWED: 

    

SCALAR INTEGER 

INTEGER ~<————— SCALAR 

CHARACTER = INTEGER 
SCALAR 

NOTE THAT PRECISIONS HEED NOT MATCH SINCE HAL/S WILL GENERATE CODE 

NECESSARY TO ACCOMPLISH PRECISION MATCHING. 

NOTE: REMEMBER THAT WE CANNOT SAY 

BETA: FUNCTION(I, J) (ARRAY (6)/SCALAR; 

I.£., NO ARRAY DECLARATION IS POSSIBLE. THEREFORE, A FUNCTION 

CAN NEVER RETURN AN ARRAY!
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EXAMPLE 3 2 3 

BETA: FUNCTIONC!, M, V) SCALAR; 

DECLARE I INTEGER, 

M MATRIX DOUBLE, 

V VECTOR; 

  

RETURN 1#*2 + 6) “~~~ WILL. BE CONVERTED TO A SINGLE 
PRECISION SCALAR 

RETURN M$(3,2)) <————————-—-——— Le BE CONVERTED FROM DOUBLE’ TO 
GLE 

RETURN ‘T= ' IIT; 

' ——— ERROR ~~ CHARACTER STRINGS DO NOT 
‘ 

CONVERT TO SCALAR IMPLICITLY, 
CLOSE BETA;
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CHARACTER STRINGS AS PARAMETERS: 32 ¥ 

ALL INPUT AND ASSIGN PARAMETERS OF CHARACTER TYPE 

MUST BE DECLARED AS: 

CHARACTER (#) 

-TVE., SPECIFYING AN INDEFINITE LENGTH, THIS AVOIDS 

TRUNCATION PROBLEMS DUE. TO DYNAMICALLY VARYING SIZES 

OF STRINGS, 

EXAMPLES 

(@ ALPHA: PROCEDURE(C1) ASSIGN(C2), 

"DECLARE CHARACTER(*), C1, C2, 

  

fo ee 

(@) ALPHA: PROCEDURE ASSIGN(C); 
DECLARE C CHARACTER(7) ; <————— ILLEGAL 

G) BETA: FUNCTION CHARACTER(8) 5 

@) BETA: FUNCTION CHARACTER(*);~«——— ILLEGA 

NOTE THAT FUNCTIONS OF CHARACTER TYPE MUST SPECIFY THEIR MAXIMUM 

LENGTH JUST AS A STANDARD DECLARE HAS TO! 
~-
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ARRAYS AS PARAMETERS: Bas 
2- AND 3-DIMENSIONAL ARRAY ARGUMENTS/PARAMETERS MUST ALHAYS 

MATCH EXACTLY IN DIMENSION AND RANGE: 

ALPHA: PROCEDURE(B) ASSIGN(C); 
DECLARE B ARRAY(2,4) INTEGER, 

C ARRAY(3,4,5)3 

CLOSE ALPHA; ' 
DECLARE U ARRAY(8) INTEGER, 

V ARRAY(2,4) SCALAR, 
W ARRAY(3,4,5)5 

CALL ALPHACID ASSIGN (Ws 
ILLEGAL: Urs 1-D, B ts 2-D 

CALL ALPHACY) ‘ASSIGN (HDs 

OK! ARRAY TEMPORARY WILL BE CREATED (EXPENSIVE) 

“CALL ALPHA (WS(2 AT 1, *, 3)) ASSIGN(W)s 

even THIS WILL WORK SINCE AN ARRAY (2,4) 

WILL RESULT ~~ WHICH WILL THEN REQUIRE 

CONVERSION TO INTEGER,
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ONE DIMENSIONAL ARRAYS ARE MORE FLEXIBLE -~ IF THE PARAMETER IS 326 
DECLARED AS: 

ARRAY (n) 
WHERE 

2 <n < 32767 
THEN THE CORRESPONDING ARGUMENT MUST ALSO BE ARRAY(n), I.E,, MUST 

MATCH EXACTLY AS IN THE 2-D AND 3-D CASES, IF: 

ARRAY (*) 

IS SPECIFIED, HOWEVER, THEN THE ARGUMENTS CAN BE 1-D ARRAYS OF ANY 

LEGAL LENGTH. THIS ALLOWS PROCEDURES TO OPERATE ON ARRAYS OF 

VARIABLE SIZE. 

EXAMPLES: 

(@) ALPHA: PROCEDURECA); 
DECLARE A ARRAY(6) INTEGER; 

CLOSE ALPHAs + 

ALPHA CAN ONLY BE CALLED WITH AN ARRAY(6) INPUT ARGUMENT: 

DECLARE B ARRAY (6) INTEGER; 

CALL ALPIIA(B); 

  

  

     



as 

PROCEDURES AND FUNCTIONS (CON’T.) 

(2) ALPHA: PROCEDURECA)s 
DECLARE A ARRAY(*) INTEGER: 
ere 

CLOSE ALPHA; 

DECLARE C ARRAY(6) INTEGER, 

D ARRAY(30000) INTEGER DOUBLE, 

E ARRAY(4) SCALAR: 

CALL ALPHA(C)s 

CALL ALPHA(D) THESE ARE ALL LEGAL! 

“CALL ALPHA(E) s 

WITHIN THE PROCEDURE, THE ACTUAL LENGTH OF THE ARRAY(*) 

ITEMS CAN BE FOUND BY MEANS OF THE BUILT-IN FUNCTION 

SIZE(o) 

33 
327 

 



PROCEDURES AND FUNCTIONS 

EXAMPLE 
  

ALPHA: PROCEDURE(A) ASSIGN(B); 

DECLARE ARRAY(*) SCALAR, A, By 

DECLARE I INTEGER; 
eee 

DO FOR I = 1 TO SIZECA)s 
BSI = SINH(ASI); 

END; 
a# ¢ 

B = SINH(A)s <——————-_ AN EXAMPLE OF AN ARRAYED ASSIGNMENT 

(WILL BE DISCUSSED LATER) 
     

  

CLOSE ALPHAs 
IMPORTANT POINT! THE COMPILER 
CAN ALSO OBTAIN THE SIZES OF ARRAY(*) 

AT RUN-TIME. 

Ua 7
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C. BUILT-IN FUNCTIONS 3249 

HAL/S typically supports the following set of built-in functions. 
. Minor variations may arise between implementations. . 

  

ARITHMETIC FUNCTIONS 
  

@ arguments may be INTEGER or SCALAR types i 
@ in functions with one argument, result type matches : 

argument type (except as specifically noted) | 

@ in functions with two arguments, unless specifically 
specified, result type is scalar if either or both 
arguments are scalar; otherwise the result type is 
integer . 

140 

@ arrayed arguments cause multiple invocations of 
the function, one for each array element - arrayness 
of arrayed arguments must match 

  

  

  

  

  

  

  

Name, Arguments Comments 

ABS (a) , jal 

CEILING (a) smallest integer > a 

DIV (ca,B) integer division a/8 (arguments 
rounded to integers) 

FLOOR (a) largest integer < a 

MIDVAL (a,8,Y) the value of the argument which 
is algebraically between the 
other two. If two or more argu- 
ments are equal, the multiple 
value is returned. Result is 
always scalar. 

  

  

MOD (a, 8) a MOD 8B 

. ODD (a) TRUE 1 if a odd \ result is 
FALSE 0 if a even BOOLEAN 

  

REMAINDER (a,8) signed remainder of integer di- 
. vision a/B (argument rounded 

to integer)     
  
  

C-1 
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BAL/S-FC LIBRARY ROUTINE DESCRIPTION Bb 

Source Member Name: _ DMDVAL Size of Code Area: 20 aw 

Stack Requirement: 18 Ew Data CSECT Size: Q Bw 

£— intrinsic Q) procedure 

Other Library Modules Referenced: None   
  

ENTRY POINT DESCRIPTIONS 

Primary Entry Name: DMDVAL 

Function: Finds mid value of three double precision scalar 
: arguments. 

Invoked by: . -- 

[2] compiler emitted code for HAL/S construct of the form i 

MIDVAL(A,B,C) where A,B,C are double precision scalars. 
. 

C Other Library Modules: — 

" ¥xecution ‘Time (ederoseconds) : 41.4 

  

Input Arguments: ‘ . , . 

Pype Precision Row Passed Units 

scalar DP FO i 
scalar DP F2 : 

out ittithaes: DP mo i 
Type Precision How Passed — Units i 

scalar ‘ DP. : FO 

Errors Detected: ° 
Error @ [+ +) Cause” oo. Fixup 

i 

Comments: : 

Registers Unsafe Across Call: ¥0,¥F1,F2,F3,F4,"5. 

Algorithm: IF A = B THEN RETURN -A; i 
IF A < B THEN DO; - o wl 

IF B <= C THEN RETURN B; ‘ 
ELSE IF A <= C THEN RETURN C; : : ' 

ELSE RETURN A; 
END; . . : 

ELSE po; se . 
IF C <= B THEN RETURN B; . . : _t 
ELSE IF ¢ <= A THEN RETURN C; : . ‘ : — 

ELSE RETURN A; . 
END; so . ‘ 

5-55" Con ; 
INTERMETRICS INCORPORATED « 701 CONCORD-AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 = (617) 661-1860:
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ARITHMETIC FUNCTIONS (CONTINUED) 

Name, Arguments Comments 

ROUND (a) nearest integral value to a 

SIGN (a) +21 a>o 
~1 a <0 

SIGNUM (a) +1 a>o 
0 a= 0 
1 a 0 

TRUNCATE (a) largest integer < ja] times 
SIGNUM (integer (c))     

“METRICS INCORPORATED #701 CONCORIAVENLE » PAMBRINTE aMMBACHLSETTS 12s MOTT REL wAEn 
c~2 

53 
330 
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ALGEBRAIC FUNCTIONS 

  

® arguments may be integer or scalar types - conversion 
to scalar occurs with integer arguments 

@ xresult type is always scalar 

@ arrayed arguments cause multiple invocations of the 
function, one for each array element 

@ angular values are supplied or delivered in radians. 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

Name, Arguments Comments 

[ ARCCOS (a) cost a jaf-< 1 

ARCCOSH (a) cosh”? q a>l 

ARCSIN (a) sinto, fal <1 

ARCSINH (a) sinh} a 

=n < tan (0/8) < 1 

ARCTAN2 (2,8) Proper Quadrant if: j 

pre Soe otk 
ARCTAN (a) tan"+ a j 

ARCTANH (a) tanht a fal < 1 

cos (a) cos a 

COSH (a) cosh a 

EXP (a) e 

LOG (a) log, a » a@>o 

SIN(a) . sin a 

SINH (a) sinh a 

SORT (a) va 1 . @20 - 

TAN (a) tan a 

TANH (a) tanh a   
    

c-3- 
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VECTOR-MATRIX FUNCTIONS 

  
@ arguments are vector or matrix types as indicated 

@ result types are as implied by mathematical operation 

@ arrayed arguments cause multiple invocations of the function, one for each array element 

  

  

  

  

  

  

Name, Arguments Comments . cee CRN NENTS SNe 
ABVAL (a) length of vector a 

DET (a) determinant of square matrix a , 

inverse of nonsingular square INVERSE () matrix « 
sum of diagonal elements of square TRACE (a) matrix a 

TRANSPOSE (a) transpose of matrix a - 

UNIT (a) unit vector in same direction ° as vector a       
  

TPE LL en ei



  

MISCELLANEOUS FUNCTIONS 

Version IR~6l=7 3) 

  

@ arguments are as indicated; if none are indicated 

the function has-no arguments 

e result type is as indicated 

  

  

  

  

  

  

  

  

  

116 

    

ne eguments Result Type Comments 

CLOCKTIME scalar returns time of day gt 

DATE integer returns date (implementation 

dependent format) 

ERRGRP integer returns group number of last 

error detected, or zero 

ERRNUM integer returns number of last error 

. detected, or zero 

PRIO integer returns priority of process 

calling function 

RANDOM scalar returns random number from 

rectangular distribution over 

range 0-1 

RANDOMG scalar returns random number from 

Gaussian distribution mean 

zero, variance one. 

RUNTIME scalar returns Real Time Executive 

Clock time (Section 8.) 

NEXTIME scalar <label> is the name of a pro~ 

(<label>) gram or task. The value re- 

  
turned is determined as follows, 

a) If the specified process was 

scheduled with the REPEAT 

EVERY option and has begun 

at least one cycle of execu~ 

tion, then the value is the 

time the next cycle will 

begin. . 

b) If the specified process was 

scheduled with the IN or AT 

phrase, and has not yet begun 

execution, then the value is 

the time it will begin execu- 

tion. 

ec) Otherwise, the value is equal 

to the current time (RUN-   TIME function). 

  

co ARTE AEP AMAA BAR 5. 

136 
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MISCELLANEOUS FUNCTIONS (CONTINUED) 

  

Name, Arguments Result Type Comments 

  

  

SEL (a,8) 

  
Same as a a may be integer or bit 

type. & must be integer type. 

If a is integer type, the re- 
sult is an integer whose 
internal binary representation 
is that of a shifted left by 
6 bit locations. The signed 
nature of the integer a is 
taken into account in an 
implementation dependent 
manner which depends upon the 
number system and word size - 
of the target computer. 

‘If a is bit type, the result 
is a bit string containing 
the value of a shifted left 
by 8 bit locations. «a is 
treated as an unsigned logical 
quantity. The size of the 
result is implementation de- 
pendent. 

. Arrayed arguments produce multi- 
ple invocations of the function, 
one for each array element - 
arrayness of arrayed arguments 
must match. 

  

SHR (a,8) 

  
APEINe WIAMOONOATEN. INCONCORD. 

Same as a   
c-5 

  a may be integer or bit type. 
B must be integer type. 

Results are as defined for the 

SHL function except that all 

shifting occurs to the right. 

Arrayed arguments produce 
multiple invocations of the 

function, one for each array 

-element - arrayness of arrayed 

-argquments must match. 

MLE « CAMBRIDOE WAUGACKUSETIS 92128 > SIT S00) 
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CBARACTER FUNCTIONS 

  
@ first argument is character type - second argument 

is as indicated (any argument indicated as character 
type may also be integer or scalar, whereupon conver- 
gion to character type is implicitly assumed) 
result type is as indicated 

‘@, arrayed arguments produce miltiple invocations of 
the function, one for each array element < arraynesses 
of arrayed arguments must match 

  
Name, Arguments Result Type Comments 

INDEX (a,8) integer 8 is character type ~ if string 8 
. eppears in string a, index point- 

ing to the first character of B is 
returned; otherwise zero is re-- 

  

  

turned 

LENGTH (a) integer returns length of character 
string ae : 

Bis integer type - string a is 
LUST (a +B) character expanded to length 8 by padding 

on the right with planks 
8 > length (a) 
B 18 integer type ~- string a is 

RIUST (a8) character expanded to length 8 by padding 
ga the left with blanks 

> length (a) 

TRIM (a) character | leading and trailing blanks are 
stripped from a 

  

          
  

c-7 - 
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BIT FUNCTIONS 
  

arguments are bit type 

@ result is bit type 

arrayed arguments produce multiple invocations | 
'of the function, one for each array element - 
arrayness of arrayed arguments must match 

  

Name, Arguments | Result Type Comments 
  

  

XOR(a,B) bit Result is Exclusive OR of a 
and 6. Length of result is 
length of longer argument. 
Shorter argument is left 
padded with binary zeros 
to length of longer argu- 
ment. .           

  

ARRAY FUNCTIONS 
  

@ arguments are n-dimensional arrays where n is 
arbitrary 

@® arguments are integer or scalar type 

@ result type matches argument type and is 

  

  

  

    
unarrayed 

Name, Parameters Comments 

(eee wecameeceene rome nents SAP ae enn NCEE I ES 

MAX (a) - maximum of all elements of « 

MIN (a) minimum of all elements of a 

PROD (a) product of all elements of a 

SUM (a) : gum of all elements of a       
c-8 

ad 
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SIZE FUNCTION 

  

Name, Argument 

pcr I NNN ET AS 

SIZE (a) 

    

Comments 

One of the following must hold: 

@ a is an unsubscripted arrayed 

: variable with a one~dimension- 
al array specification - 
function returns length of 

array. 

@ e@ ‘s an unsubscripted major 

: acture with a multiple 
© * specification - 
£ tion returns number of 
Cc .88. 

® oa 48 an unsubscripted 

structure terminal with a 

one-dimensional array speci- 

fication ~- function returns 

length of array. 

Result is of integer type   
  

c-9 
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BIT STRINGS 
REMEMBER THAT BOOLEAN = BIT(1) 

@® BIT STRING LITERALS 
BIN(n)'bbbb,,,5? on BIN’ bbbb,, ,b! 

OCT(n)’o000,,,07 OR OCT’ o000,,,0' 

HEX(n)‘hhhh,,.h! on HEX'hhhh,, ,h! 

. DEC(n)'dada,,,4’ on DEC‘daad,, ,a’ 

e THE REPETITION COUNT (m) IS OPTIONAL 

© THE RESULTING BIT LITERAL MUST HAVE BETWEEN 1 AND 32 BITS, 

_ EXANPLES 
a LENGTH 
BIN'1011' = 4011 y 
BIN(3)'101" = 101101101 9 
HEX(2)"FRE* = 111111911110111111111110 24 
oct'714" = 111001100 9 
DEC'25° = 11001 

  tn ete ent a ne mt 
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BIT DECLARATION 
  

DECLARE name BIT(n)s 
      

WHERE lens 32 

AGAIN, NOTE THAT: 

DECLARE B BIT(1)s 

AND 

DECLARE B BOOLEAN; 

ARE EQUIVALENT. BIT DECLARATIONS CAN BE COMBINED HITH OTHER 

DECLARED DATA IN COMPOUND AND FACTORED DECLARES, E.G., 

DECLARE BIT(4), Bl, B2, B3; 

DECLARE I INTEGER, Bl BOOLEAN, 

B2 BIT(32), $ SCALAR DOUBLE, 

B3 BIT(6);
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BIT STRINGS (CON‘T.) 

(©) BIT STRING INITIALIZATION 

BIT STRINGS ARE INITIALIZED VIA AN INITIAL/CONSTANT LIST 
CONTAINING BIT STRING LITERALS: 

DECLARE BL BIT(16) INITIALCHEX'33F*), 
B2 BIT(1) CONSTANT (FALSE), 

B3 BIT(8) CONSTANT(BIN‘ 11100111’), 
BY ARRAY(3) BIT(2) INITIAL(BIN’10°, BIN'OO’, BIN’11’); 

LITERALS ARE PADDED ON THE LEFT WITH ZEROS OR TRUNCATED ON THE 
LEFT AS REQUIRED, 

- DECLARE B1 BIT(8) INITIAL(BIN'1‘), 
B2.BIT(4) INITIAL CHEX’EF*)s 

RESULTS. IN: 
Bl: 00000001 . 
B2-= 111 (4 BITS LOST) 
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(G) BIT STRING SUBSCRIPTING rb 3 ¥/ 

~ COMPONENT SUBSCRIPTING - 

(UNARRAYED BITS) 

e TO SELECT THE 174 BIT FROM A BIT STRING (RESULT IS A 

BIT(1)): 

—*s BIT_STRINGSI 

WHERE 

l<elet - + + (L = LENGTH OF BIT_STRING) 

"1 CAN BE VARIABLE, 1.£., AN EXPRESSION, 

e TO SELECT 1 BITS FROM A BIT STRING STARTING AT THE JTH 

(RESULT IS A BIT(I)): 

BIT_STRINGS(I AT J) 

WHERE 

1<1< AND IS KNOWN AT COMPILE TIME 

AND 1 < J < 4-1 +1 AND MAY BE VARIABLE (AN EXPRESSION). 

 



  

342. 
BIT STRINGS (CON’T.) 

© TO SELECT A SUBSTRING STARTING WITH THE ITH BIT AND 
’ ENDING WITH THE JTH, 

BIT_STRING$(I TO J) 
WHERE . 

1 AND J ARE KNOWN AT COMPILE TINE, AND 
leIcJdce 

NOTE (1): THE ESSENCE OF THE RULES FOR SUBSCRIPTING I$ THAT 
THE RESULTANT BIT STRING MUST HAVE A LENGTH KNOWN 
AT COMPILE TIME (AND OF COURSE LIE WITHIN 1 AND 32). . 

NOTE (2): SIHCE BOOLEANS ARE EQUIVALENT TO BIT(L), THEY MAY 
‘ BE COMPONENT SUBSCRIPTED -- ALTHOUGH THIS I$ SENSELESS, 

THIS EXPLAINS, HOWEVER, THE FACT THAT ARRAY SUBSCRIPTS 
ON BOOLEAN ARRAYS MUST HAVE A TRAILING COLON: 

- BOOLTABLES(1:)



BIT STRINGS (CON’T.) | 3/ 

- ARRAYED BIT STRINGS ~ 3 43 

BIT STRINGS (AND BOOLEANS) MAY, OF COURSE, BE 

ORGANIZED INTO ARRAYS OF 1, 2, OR 3 DIMENSIONS. 

  

    
  

ASSUNE: | 
-B 1S AN ARRAY(4) OF BIT(5) STRINGS: 

B = (101105, 000007, 01100), 11111) 

THEN 
BS(2:) = 00000, A BIT(S) 

 BE(213) = 0p ~ ABITCD 
BS(Li2 AT 3) = 1p -— ABIT@) 
BS(2 AT 2: 3 AT 3) = 

(000, 10>) ARRAY (2) BIT(3) 
_BE(*11) = (1ys Og, Oy, 1p) — ARRAY(H) BITC) 
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©) BIT STRING OPERATIONS 

LEGAL OPERATIONS: (SAME AS BOOLEANS WITH THE ADDITION OF 

CATENATION) 

ay INTERSECTION 

. on CONJUNCTION 

ar CONPLENENT 

te CATENATION 

COMPLEMENT - INVERTS THE LOGICAL VALUE OF EVERY BIT IN THE STRING, 

IF B = 101101011 

THEN “B= 010010100 

5) 
344
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CONJUNCTION -- OR’s ALL CORRESPONDING BITS TOGETHER 

(BINARY OPERATION). 

IF Bl = 11101011 

B2 = 10011100 

THEN B1IB2 = 11111111 

NOTE: IF THE THO BIT STRINGS ARE OF UNEQUAL LENGTH, THE 
SHORTER IS PADDED ON THE LEFT WITH ZEROS BEFORE ORrnc, 
THE RESULTANT BIT STRING HAS THE LENGTH OF THE LONGER 

+ STRING, 

IF Bl = 101 

_ -B2 = 111000 
B1IB2 = 111101 (A BIT(6))



BIT STRINGS (CON’T.)- 

INTERSECTION ~ AND’s ALL CORRESPONDING BITS TOGETHER 

(BINARY OPERATION). 

IF Bl = 1101001 

B2 = 0110010 

THEN Bi AND B2 = 0100000 

NOTE: IF THE THO BIT STRINGS ARE OF UNEQUAL LENGTH, THE 

SHORTER 1S PADDED ON THE LEFT WITH ZEROS REFORE ANDinc. 

THE RESULTANT BIT STRING HAS THE LENGTH OF THE LONGER 
STRING, 

IF Bl'= 101 
B2 = 110110 

- THEN B1 AND B2 = 000100 (BIT(6))



wt
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CATENATION - TWO BIT STRINGS (BOOLEANS) CAN BE CHAINED 347 

(CATENATED) TOGETHER TO FORM A SINGLE (LONGER) 

BIT STRING. THE SECOND STRING IS APPENDED TO THE 

END OF THE FIRST. IF THE RESULTANT BIT STRING 

EXCEEDS 32, THEN THE LEFTMOST EXCESS BITS ARE 

TRUNCATED. 

IF Bl = TRUE = BIN’L’ 
B2 = 10110 

THEN B1 CAT B2 = 110110 BIT(6) 

IF Bl = 11011 
B2 = 10101 

THEN B1I1B2 = 1101110101 BIT(10) 
. IF Bl = 10101010101010101 BIT(17) 

b2 = 110110110110110110 pitas) 
  B1{ |B2 *<ootno OANA 

t 

THROWN , 

AWAY 

B1I1B2 = 01010101010101119110110110110110 A BITG2)



BIT STRINGS (CON'T.) 

(F) PRECEDENCE 

HI 
—, HOT 1 — COMPLENENT 

“1b CAT =. 2s CATENATION 
g, AND 3 INTERSECTION 
1, OR 4 CONJUNCTION 

LO 
SEQUENCES OF OPERATIONS OF THE SAME PRECEDENCE ARE 
EVALUATED LEFT TO RIGHT. 

EXAMPLE! 

IF (Bill—7B2 | B3 & Ba | B511B6)=ON 

606600 
I.E.» EQUIVALENT TO: 

IF (¢(BLI| 782)! (B3eB4) | (B51 1B6))=0N 
(WHICH 1 EASIER TO READ) 

s) 
a4y
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(6) BIT STRING ASSIGNMENTS 

L_STRING = R_STRING 

@ NEITHER, EITHER, OR BOTH MAY BE SUBSCRIPTED. 

@ IF L_STRING > R_STRING IN LENGTH, THEN R_STRING IS 

LEFT PADDED WITH ZEROES PRIOR TO ASSIGNMENT 

© IF L_STRING < R-STRING IN LENGTH, THEN R_STRING 

TS TRUNCATED FROM THE LEFT AS NEEDED. 

EXAMPLES! 

LET Bl BE A BIT(8) 

B2 BE A BIT(6) = 110110 

THEN Bl = B2 RESULTS IN - 

Bi = 00110110 

IF B3 1S A BIT(10) = 1010111101 

THEN Bl * B3 RESULTS IN 

Bl = 10111101 

  

379:
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IF Bl = 11001110 BIT(3) 

B2 = 110110 BIT(6) 

THEN 

A) B1$(3 AT 2) = B2 RESULTS 
IN Bl = 11101110 

TEs , 

oud, v . 

1001110 > _ 11101110 

B) B1S(5 AT 3) = B2$(2 TO 4) RESULTS 
IN B1 = 11001010 

o> TEs 

110110 
{ 

si LEFT PADDED 

11001110 —-——->11001010 

C) Bi$3 = B2 RESULTS 

IN-Bl = 11001110 

LBs 

110110 LEFT TRUNCATED 
11001110 ——> 11001110
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337/ 

(1) BIT STRINGS IN CONDITIONAL STATEMENTS 

o IF BIT STRINGS ARE COMPONENT SUBSCRIPTED DOWN TO A SINGLE BIT, 

THEN THEY, MAY BE MIXED WITH BOOLEANS TO FORM BOOLEAN EXPRESSIONS, 

EXAMPLES! 

Bl BIT(4) == 1101 

B2 BIT(8) = 10110100 

B3 BOOLEAN = TRUE 

B4 BOOLEAN = FALSE 

Po 

IF Bl THEN X = 03 

IF B1$] THEN X = Os 

mt
 

ILLEGAL ~- Bl IS NOT A BOOLEAN, 

TRUE Laut BE EXECUTED 

IF cordaos2) THEN KS — ILLEGAL -~ Bl 1S NOT A BOOLEAN. 

IF (B1$28B2$38B3| BA) THEN X = 0; 

TRUE FALSE WILL BE EXECUTED 

~ANy i



BIT STRINGS (CON'T.) 

e BIT STRINGS MAY BE COMPARED FOR = OR—V= (CLASS II OPERATORS) 

‘TO FORM RELATIONAL EXPRESSIONS. 

E.Gs, 

"DO WHILE B1 = B23 
IF B2 = BIN'101" THEN DOs 

_ IF THE BIT OPERANDS ARE OF UNEQUAL LENGTH THEN, OF COURSE, 

THE SHORTER 1S LEFT~PADDED WITH THE REQUISITE NUMBER OF 

ZEROES PRIOR TO THE COMPARISON. 

EXAMPLES! 

Bl = 101 

B2 2 11 

B3 = 1100101 

B4 = 00101 

THEN BL = BY 1S TRUE 
Bl =B2 . 18 FALSE 
BI B2 1S TRUE 
B3 =B4 1S FALSE 

B3$(3 TO 7) = Ba IS TRUE 

(B2| 1B4) = B3 1S TRUE 

q- 107
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BIT STRING COMPARISONS 

TRUE = ON 

FALSE = OFF 

AN
 0000 .., 0001 

0000 ... 0000 a
 

SUPPOSE: 

(a) 

(B) 

(c) 

(p) 

(Ee) 

(F) 

DECLARE Bl BIT(8) INITIAL(BIN’11011101'); 
DECLARE B2 BIT(4) INITIAL(BIN’1010"); 

IF BL.THEN DO; (ILLEGAL) 

IF Bl = TRUE THEN DOs 

— FALSE BECAUSE ‘11011101’ # ‘oQQ00001' 
IF B2 = FALSE THEN DO; 

FALSE Because '1010' # ‘0000! 

IF B1$8 THEN DO;- 

TRUE 

IF B2$(2 AT 2) = TRUE THEN DO; 

———— TRUE BECAUSE ‘Ol’ = ‘01’ 
IF B1$(3 AT 4) = BIN'111" THEN DO; 

———— TRUE 

  

3 <3



BIT STRINGS (CON’T.) 

SUMMARY 

A CONDITIONAL EXPRESSION, £.6. 

IF (cond exp) THEN ... 

mo DO WHILE (cond exp); 
DO UNTIL (cond exp); 

1S MADE UP OF COMBINED RELATIONAL EXPRESSIONS, E.G. 

(A <0) & (B= BIN1O1')IS < 2 
OR COMBINED BOOLEAN EXPRESSIONS, E.G. 

(B1I(B2. @—1B3))e(B21 B3) 
"WHERE Bl, ... B3 ARE BOOLEANS 

NOTE: A BIT STRING THAT IS SUBSCRIPTED DOWN TO 1 
BIT CAN BE USED AS A BOOLEAN, 

BUT, A CONDITIONAL EXPRESSION CANNOT BE A MIXTURE: 
IF @lapaidh=e fo. - 

Is ILLEGAL! RELATIONAL EXPRESSION 

BIT EXPRESSION 

TAG 

3/



S~1Gil 

     

       

DO WHILE 

DO UNTIL 

CLARIFICATION 

  

RELATIONAL 
EXP - 

  

  

  BOOLEAN 
EXP     

  

RELATIONAL 
EXP 

  

  

* 

BOOLEAN 
EXP 

  

  

RELATIONAL 
EXP 

  

    BOOLEAN 
EXP     

   



CONDITIONAL EXPRESSIONS (CON'T.) 

CONDITIONAL EXPRESSION IS EITHER A RELATIONAL EXPRESSION OR A 

BOOLEAN EXPRESSION: 

RELATIONAL: (Ae3) | R= fy @ (S = T**2). 

BOOLEAN: Bl & (1B2[B3) & B4|B5 

S~'G,3 

ae
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- CONDITIONAL EXPRESSIONS (CON’T.) ~— 

KEY POINT: A BIT(L) IS EXACTLY EQUIVALENT TO A BOOLEAN AND 

MAY BE USED IN A BOOLEAN EXPRESSION 3 

EXAMPLE 1: (MIXING BIT(L) AND BOOLEAN) 

DECLARE BA BIT(1), BB BOOLEAN, 
BC BOOLEAN: 

IF BAI(-BBEBC) THEN... 

EXAMPLE 2: (MAKING A BIT(1) BY SUBSCRIPTING 
DECLARE SBITS BIT(8), BB BOOLEAN, 

BC BOOLEAN; 
IF OBITS$3 |(BBSBC) THEN ... 

EXAMPLE 3: (ILLEGAL USAGES) 
IF QBITS THEN ... (THIS WILL NOT WORK EVEN THOUGH THE 

PROGRAMMER’S GUIDE IMPLIES THAT IT WILL 
EVALUATE TO TRUE IF THE LOWEST BIT IS A 
Wy) 

EXAMPLE 4: © (FIXUP OF EXAMPLE 3) 

IF OBITS = TRUE ... (NOW IT IS A RELATIONAL EXP)



CONDITIONAL EXPRESSIONS (CONT'D. ) 

4 Mt BOOL: 
1 Mt PROGRAM: 

2 ut DECLARE BOOLEAN INITIALC FALSE), . 
ent BA, 88, BC, 6D, BE, BF; 

3 Nt DECLARE INITIALCBIN‘O’), 
3 Nt Bi BITC4), 
3 Nt 62 BITC2), 
3 Mt BS BITC3), 
3 Nt 84 BITC 4), 
3 Nt BS BIT(S), 
3 Nt ‘ Bé BITC6), 
3 Mt B? BIT<?), 
3 Nt B8 BITCS), 
3 Nt BS BITC9), 
3 Nt Bid BITC 10), 
3 Nt Bid BITC11), 
3 Nt B12 BITCL23, 

~ 3 Nt B13 BITCL3>, 
3 Nt Bi4 BITC14), 
3 Nf *~ B15 BITC415), 

3 Mt B16 BITC16), 
3°Nt Ba? BITC17); 
4 Nt > DECLARE GO BITCS) INITIALCBIN ’411110101010101010101017)) 

ct 
Et . : : . ' 

3S mt IF BA & BB f BC & (\B8D t BE) THEN 
. 6 Mt DO; 

7 Ht END, 

S-IG.y



Et 
8 Nf 
9 Nf 

10 Mt 
ct 
Et 

Li Nt 
42 Nt 
13 Mt 

: ct 
Et 

14 Mt 
45 Mf 
46 Nt 

ct 
Et 

17 Nt 
18 Mt 
19, Mt 

ct 
Et 

28 Mt 
beak OBL 

IF 

IF 

IF 

1F 

CONDITIONAL EXPRESSIONS (CONT’D.) 

(Bi = B2) t (B2 \© B4) & (\BS = BG) THEN 
DO; . 

END) 

(pa = BB) ¢ (BC = BD) & (BR \= BE) THEN 
DO: . 

END: 

(BA \= BB) t (BC \# BD) & (BE \= BB) THEN 
bo; 
END, : 

_JF.BA THEN 
0; 
END) 

B4 THEN 
ERROR #41 OF SEVERITY 1, shane 

Akee BIT EXPRESSION IN IF CLAUSE MUST BE BOOLEAN 

2i Mt 
22 "ft 

f~ On 

00; _ 
END;



  

S-1G,.G 

Ct 
Et 

23 Mt 
St 

24 Nt 
HAL/S 

TMT 
25 Mt 

ct 
Et 

26 Nt 
St 

27 Nt 
28 Mt 

ct 
Et 

29 Nt 
dehe GBL 

’kAde BIT EXPRESSION IN IF CLAUSE MUST BE BOOLEAN 

dkae LAST ERROR WAS DETECTED AT STATEMENT, 28. 

30 Ht 
34 Mt 

ct 
Et 

32 Mt 
33 Mt 
34 Mt 

35 Ht 

36 MT 
37 Mt 

Ef 
38 Mt 

St 
vkbhk OBL 

bkbb BIT EXPRESSION IN IF CLAUSE NUST BE SOOLEAN 

habs LAST ERROR WAS DETECTED AT STATEMENT 29. +4444 

LUAU PUMA 

IF 84 THEN 
i 

00; 
FC- 9.24 

END) 

1F ¢B6 t 87 > THEN 
2 3 

DO; 
END; 

IF BA t Bi & B2 t BB THEN 
"ERROR #2 OF SEVERITY 4. 

D0; 
ENDs 

“WOLUND WOU! 

ehhh 

uel 

INTERMETRICS, 
SOURCE 

I 

If (BA ‘® TRUE) ? (BB = FALSE) ¢ (4 = BIN‘’4O44°> THEN 
DO: 
END: 

IF BS = TRUE THEN 
2 AT 2 

60; 
END: 

IF Bie THEN. 
4709 : 

ERROR #3 OF SEVERITY 4. rryrrs 

N
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BIT STRINGS (CON'T.) 

CE) BIT STRING ARGUMENTS & PARAMETERS 

© BIT STRINGS MAY BE INPUT PARAMETERS (ARGUMENTS) 

OF PROCEDURES AND FUNCTIONS AND ASSIGN PARAMETERS 

(ARGUMENTS) OF PROCEDURES, 

EXAMPLE ! 
FLAGS: PROCEDURE(B1) ASSIGN(B2) 

DECLARE Bl BIT(16), 

B2 BIT(8); 

CLOSE FLAGS; 

RULES (INPUT PARAMETERS) 

© BOTH PARAMETER AND ARGUMENT MUST BE OF BIT TYPE 

(NO IMPLICIT CONVERSIONS), 

© THE ARGUMENT IS PADDED/TRUNCATED ON THE LEFT AS 

NECESSARY TO FIT THE INPUT PARAMETER, 

  

a 
3s}y 

ed



    

Sig 

RULES: 
  

BIT STRING ‘CON'T.) 

(ASSIGN PARAMETERS) 

@ THE ASSIGN ARGUMENT MUST BE A DECLARED BIT DATA ITEM: 

@ ARGUMENT AND PARAMETER LENGTHS MUST MATCH EXACTLY! 

@ NO SUBSCRIPTING (COMPONENT) IS ALLOWED ON THE ARGUMENT. 

Examples: 

Let the following data be declared: 

DECLARE B) BIT(16), 
B2 BIT(3);   

and let the following procedure be defined: 
‘ . 

; SWITCHES: PROCEDURE(D2). ASSIGN(D1); 
DECLARE Dl B1IT(3), 

D2 BIT(B); 

  

eet 

| CLOSE SWITCHES; 

Both legal and. illegal invocations of this procedure are 
shown below: 

t CALL SWITCHES (B1L|[BIN'1001') ASSIGN (B2) +3. 
' . 

this 16-bit quantity truncated 
to 9 bits on passage 

{ 
| CALL SWITCHES (B2) ASSIGN (B1): 
' 

illegal - length mismatch 

““this 3-bit quantity padded to 8 
' bits on passage 

; CALL SWITCHES (BIN'L"} ASSIGN(FALSE): ; 

illegal - not a declared 
Lo bit string data item,



  

BIT STRINGS (CON’T.) 

@ BIT STRING FUNCTIONS ag 

fabel; FUNCTION(4,+ 45+ +++) BIT(n); 
Nanni, stan 

OPTIONAL INPUT len < 32 

PARAMETERS 

AN INVOCATION OF SUCH A BIT FUNCTION BEHAVES LIKE A BIT(n) DATA 

ITEM IN ALL CONTEXTS! 

EXAMPLES! 

@)_ Fs FUNCTION(B) BIT(3); 

DECLARE B BIT(8)s 

RETURN By ~————— LeFrmost 5 BITS TRUNCATED - 

RETURN B$43~——~—— resuLT PADDED (oN Lert) To 3 BITS 

RETURN 6; ~———-— ILLEGAL! BIT STRING QUANTITY NOT BEING 
RETURNED, 

CLOSE F; 

S-1g9



  

A Cs 

BIT STRIN * (CON’T.) 
@) G: FUNCTION(B) BIT(6)s | dQ 

CLOSE 63 | 36/ 

IF BL | (B2 & G(B3)) | G(B4) = BIN’1OL101' THEN DO; 

CX ceruns a BIT(6) 

XOR FUNCTION 

YOR IS A RECENTLY ADDED BUILT-IN FUNCTION THAT PERFORMS AN 

EXCLUSIVE OR ON THO INPUT BIT STRINGS AND RETURNS THE RESULT 

AS A BIT STRING, , 

SYNTAX! 

BIT_STRING = XOR(BIT_STRINGI, BIT_STRING2)s 

=. OR a 
IF B1 | XOR(B2, B3) | (BY & BS) = BIN'O11010" THEN .,. 

  

  

NOTE: IF THE THO INPUTTED BIT STRINGS ARE UNEQUAL IN LENGTH, 

THE SHORTER IS LEFT-PADDED WITH ZEROES, THE RESULT IS 

A BIT STRING EQUAL IN LENGTH TO THE LONGEST INPUTTED 

STRING,



STRUCTURES 3 G 2. 

HAL/S ALLOWS TWO TYPES OF DATA ORGANIZATIONS: ARRAYS & STRUCTURES, 

© ARRAYS: I1-, 2-, on 3-DIMENSIONAL PATTERNS OF HOMOGENEOUS DATA 

ITEMS, . 

EXAMPLE! 

DECLARE AX ARRAY (3,2,100) INTEGER INITIAL(5); 

EACH ARRAY DIMENSION CAN RANGE FROM 2 TO 32,767, 

  

© STRUCTURES: HIERARCHICAL (TREE-LIKE) COLLECTIONS OF HOMOGENEOUS 

. OR HETEROGENEOUS DATA ITEMS. A STRUCTURE IS MORE GENERAL THAN 

N ARRAY SINCE IT CAN CONTAIN ARRAYS (AND EVEN OTHER STRUCTURES). 

A STRUCTURE MUST REFERENCE A STRUCTURE TEMPLATE (THINK OF IT AS 

A DSECT IN 360 TERMINOLOGY) THAT WAS PREVIOUSLY DEFINED. 
 



  

/ 
STRUCTURES (CON'T.) 363 

A STRUCTURE TEMPLATE IS A TREE: 

START STOP 

+ £] "rect" 

/ . O "fork" 

“© eas 

  San



  

STRUCTURES  (CON’T. ) 23 

HOTE: THE PROGRAMMER’S GUIDE MAY BE CONSULTED FOR AN ABSTRACT 36 { 

DESCRIPTION OF STRUCTURE TEMPLATES, HERE WE WILL DEVELOP 

THE CONCEPT USING CONCRETE EXAMPLES, 

@ STRUCTURE TEMPLATE: TEMPLATE. NAME 

egn ° STRUCTURE namer. node’, node”, node, ... node” ; 

WHERE? 

node’ Zn name 

(MINORSTRUCTURES OR FORKS) 

_ nodeX =n name attributes 

(STRUCTURE TERMINAL) 

NOTE: THE STRUCTURE LEVEL 'n’ MUST SATISFY 1 <n 

a 
CURRENT LIMITATION 

Ja
 5



STRUCTURES (COH'T.) 
  

EXAMPLE 1 
    
  

NOTE THE coLon! 

STRUCTURE aa 

‘TA INTEGER, 
i1)B BOOLEAN, 

11s MATRIX(4,4) DOUBLE, 
lat La'c BIT(6); 
“ note THE SEMI-COLON! 

4 STRUCTURE TERMINALS ALL AT LEVEL 1. 

  

  EXAMPLE 
2   

  

STRUCTURE RR: 

1 Z1, «~~ A MINOR STRUCTURE HAS NO ATTRIBUTES 

2 1 INTEGER, |— cACH MIN | 

J INTEGER, OR STRUCTURE HAS 2 TERMINALS 

1 72, . 
2 1 INTEGER, | 
2 J INTEGER; 

2 MINOR STRUCTURES 

OR FORKS 

32 
36s~



  

STRUCTURES (CON’T, ) 
  

  
EXAMPLE 3 

    

STRUCTURE SS: 

12,——_--—_—_#) 
2 SL, 
09), a 
2 221,.—-——) 

3 222,+———_-—-) 
4 773,~———_—-) 

5 I INTEGER,<—() 

2 $3, 
1 22, ————_®) 

2 SH, 

2 $5 DOUBLE; 

() TERMINAL 
©) Fork (MINOR STRUCTURE) 

NOTE (1): FORK (MINOR STRUCTURE) IS EASILY SEEN BY OBSERVING THAT 

THE LEVEL # OF THE NEXT NODE GOES UP BY 1! 

366



  

  

      

STRUCTURES (CON’T.) 367 

AS A TREE, EXAMPLE 3 TAKES THE FOR: -. 

$s (ROOT OR TEMPLATE. HARED 

A n LEVEL 
1 

$1 s2 71 $3 st $5 , 

m2 3 

7B 
' 

1 5 

oo 
eee ee

e TTT 

O = FORK (MINOR STRUCTURE) = LEAF (TERMINAL)



  Say 

STRUCTURES (CON’T.) oo $3 

NOTE (2): IF A TERMINAL HAS NO ATTRIBUTES IT IS CONSIDERED TO 36 } 

BE A SCALAR (JUST LIKE DECLARES). 

NOTE (3): IF AH INTEGER, SCALAR, VECTOR, OR MATRIX TERMINAL HAS 

HO PRECISION SPECIFICATION, IT IS ASSUMED TO BE SINGLE 

(JUST LIKE DECLARES), 

THE FOLLOWING DATA TYPES ARE LEGAL IN A STRUCTUR® ©“ MPLATE: 

INTEGER BOOLEAN 

SCALAR BIT 

VECTOR CHARACTER 

MATRIX - STRUCTURE 

ALSO, NANE VARIABLES OF THESE TYPES ARE LEGAL, PLUS: 

MAME EVENT 
WILL BE DISCUSSED NAME PROGRAM | 

NAME TASK



  
STRUCTURES (CON'T.) * 

RESTRICTIONS: mo, 

(1) TEMPLATE NAMES MUST BE UNIQUE WITHIN THE NAME SCOPE. 

(2) NAMES WITHIN THE TEMPLATE DO NOT NECESSARILY HAVE TO 

BE UNIQUE. 

(3) INITIAL/CONSTANT LISTS CANHOT BE PRESENT IN A TEMPLATE. 

(4) STATIC/AUTONATIC CANNOT BE SPECIFIED IN A TEMPLATE. 

(5) CHARACTER(#), ARRAY(*), AND STRUCTURE(*) ARE ALSO 

PRECLUDED, 

(6) A STRUCTURE TERMINAL CANNOT HAVE COPIES. 

WILL BE DISCUSSED 
LATER 

STRUCTURE TEMPLATES ARE ESSENTIALLY DECLARE STATEMENTS -- AS A 

RESULT THEY MUST BE PLACED WITHIN A DECLARE GROUP (AND PRIOR, 

OF COURSE, TO ANY STRUCTURE DECLARATIONS REQUIRING THE TEMPLATE). 

ae



STRUCTURES (CON‘T.) 

@) STRUCTURE DECLARATION: 

SIMPLE STRUCTURE 
  

      

DECLARE name a-STRUCTURES 
  

MULTI-COPY STRUCTURE 
      

DECLARE ane a-STRUCTURE(N) 5 

WHERE name 1$ THE STRUCTURE (OR MAJOR STRUCTURE) NAME AND o 

IS THE NAME OF A PREVIQUSLY-DEFINED TEMPLATE, -N IS THE 

NUMBER OF COPIES DESIRED. 

2 <N < 32,767 

EXAMPLE 

STRUCTURE Q: 

1 QA SCALAR, or vust 1 QA 

1 QB INTEGER, 

1 QC BOOLEAN; 

DECLARE @ Q-STRUCTURE(3); 

DECLARE R Q-STRUCTURE; 

DECLARE 1 INTEGER, S SCALAR, W Q-STRUCTURE; 

HYPHEN 

LAY 

3/ 
370
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| Bei 
EXAMPLE 

CPL: EXTERNAL COMPOOLs 

STRUCTURE @: 

LA, 

1B DOUBLE, 

1 C INTEGER; 
ee 

CLOSE CPL; . 
PROG: PROGRAM; 

STRUCTURE R: 
11 INTEGER DOUBLE, 
1 V ARRAY(6,5) VECTOR(A), 
1D CHARACTER(80); 

  

DECLARE R R-STRUCTUREs 
DECLARE $ Q-STRUCTURE(1O), 
DECLARE T T-STRUCTUREs ) 

STRUCIURE It \ ILLEGAL - TEMPLATE MUST PRECEDE 

1 E INTEGER, STRUCTURE



STRUCTURES (CON’T.) 2 s/ 

© STRUCTURE INITIALIZATION 72. 

INITIAL/CONSTANT LISTS ARE ATTACHED TO THE STRUCTURE 

DECLARATION -~ NOT TO A TEMPLATE OR ITS INNARDS.. 

TERMINALS ARE INITIALIZED BY THE ORDER OF APPEARANCE 

IN THE TEMPLATE. . 

= STRUCTURES WITH NO COPIES - 

STRUCTURE 9: , 
1A, 

2 I INTEGER, 

* 2.8 SCALAR, 

1B, 

' 2d INTEGER, 

2 K INTEGER, 

2 L INTEGER, 
20 ARRAY (10) INTEGER; PARTIAL INITIALIZATION 

DECLARE Z Q-STRUCTURE INITIAL(4, 6.95, 342, *) 

124 $2695 Jj2#kK2l22 

MIS UNINITIALIZED



WIAD 
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~ STRUCTURES WITH COPIES - 373 

TWO CHOICES: 

© PUT ENOUGH LITERALS IN THE INITIAL/CONSTANT LIST TO 

INITIALIZE THE FIRST COPY -- ALL REMAINING COPIES 

WILL BE INITIALIZED LIKE THE FIRST AUTOMATICALLY, 

© PUT ENOUGH. LITERALS IN THE INITIAL/CONSTANT FOR ALL 

TERMINALS OF ALL COPIES. EACH COPY IS FULLY 

INITIALIZED BEFORE PASSING TO THE NEXT. 

EXAMPLES 

STRUCTURE Q: 
* 11 INTEGER, 

1S SCALAR; 

. @ “DECLARE Q Q-STRUCTURE(5) INITIAL(6, 81,45); 

(2) DECLARE R Q-STRUCTURE(3) INITIAL(, 84,0, 2, -15.4, 4, 350.8); 
ese tment en pea” er cm 

(3) DECLARE $8 Q-STRUCTURE (20000) INITIAL(S, ~40.6, 3, 119.2, *) 
Neen een” ttn ter” 

copy | copy 2. coptes 3-20,009 
UNINITIALIZED



STRUCTURES (CON'T.) 3 7¢ 

INITIALIZATION EXAMPLE 

STRUCTURE Q; 
J QV VECTOR(3), 
1M, 

2 QI INTEGER, 
‘2 QC CHARACTER(80)s 

DECLARE Z1 Q-STRUCTURE INITIAL(1.5, 2.5, 3.5, -2, 'ALPHA’); 

DECLARE Z2 Q-STRUCTURE(2) INITIAL(4.5, 5,5, 6.5, -4, 'BETA’); 

DECLARE 23 Q-STRUCTURE(2) INITIAL(3#1.5, 1, ‘GAMMA’, 

3#2.5, 2, "DELTA’)s - 

OM 

  

QC 2. ALPHA



Sy 

STRUCTURES (CON'T.) 

QlZ -4.. gc ‘petat 

  

gc = 

  

both copies 
identically 

‘dnitialized 

‘BETA’ 

'DELTA‘ 

_ 53 
37x-
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STRUCTURES ¢CON'T.) 
(E) QUALIFIED REFERENCES 

STRUCTURE Q: 
1A, 

2 1 INTEGER, 
2B, 

3 J INTEGER, 
3 $1 SCALAR, 
3, 
4M MATRIX(H,4), 
4 V VECTOR(H), 

_ 3-82 SCALAR, 
2D, ; 

3 CHARX CHARACTER(10), 
3 BB ROOLEAN, 

2 K INTEGER, 
1 MM X-STRUCTURE, 
1 W°VECTOR(3)3 

DECLARE R Q-STRUCTURE INITIAL(,..)s 

(1) ENTIRE STRUCTURE 1S REFERENCED VIA NAME 'R’, I,E,, THE MAJOR STRUCTURE NAME. 
(2) ATERMINAL IS-REFERENCED BY: Ranl.n2, .., nx, terminal _ne=-o 

MINOR STRUCTURES ENCOUNTERED 
i}



I vere RAD 

J rere RAB 

$1 coos RAALBLSI 

N rice RALBSCM 

V core RABCY 

$2 veve RAAB S2 

CHARX: 1... RsAeD.CHARX 

BB soos RAD BB 

K aeoe RAK 

NM vere RAM 

Wve RAW 

R REFERENCES THE WHOLE STRUCTURE 

RA. . 

R,A.B REFERENCE SUB-STRUCTURES (MINOR STRUCTURES) OF 

R.A.B.C VARYING COMPLEXITY 

RAD 

STRUCTURES (CON’T.) 3o2. 
377
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STRUCTURE NESTING: 

Mt PROG: 
Nt PROGRAM: 
Nt 
Nt 
Nt 
ut 
Nt: 
Nt - 
Nt 
Nt 
Nt 
Nt 
Nt 
Nt 
ut 
Nt 
Nt 
Nt 
Nt 
Mt 

“Mt 
Ht 
ut 
Nt: 
Nt 
Nt. 
ct 

STRUCTURE A: 
4 AI INTEGER, 
1 Ad, 

2 AC CHARACTERC EA), 
2 AB BOOLEAN: - 

STRUCTURE 8B: 
4 8S SCALAR, 
4 Bd, . 

2 BY VECTORC3), 
2 BA A~STRUCTURE? ~~CANNOT HAVE coples! 

STRUCTURE C: 
4 BS SCALAR, 
4 B41, . 

2 BY VECTORC3), 
2 BA, 

3 AL INTEGER, . 
3 AL, 

4 AC CHARACTERC 86), 
4 RB BOOLEAN; 

DECLARE @ A-STRUCTURE) 
DECLARE R B-STRUCTURE: 
DECLARE S$ C=-STRUCTURE; 
DECLARE T C-STRUCTURE; 

DECLARE U A- STRUCTURE: 

37¢
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Et + + 

40 Ht R# Si 
beh AVE. ERROR #41 OF SEVERITY 4. ke kit 
hhh’ TREE ORGANIZATIONS DO NOT MATCH ACROSS ASSIGNMENT 
"et 

Et + + 

sant Sats 3 
tt . 
e+. + + 

42 Ht 2, B4.8A = Gs 

et 
Et + + 

42 Nt $.84.BA = Us 
44 Mt CLOSES 

S-3G 

o
o
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STRUCTURES (CON'T.) 

THE QUALIFIED REFERENCE SYSTEM MUST BE USED FOR QUALIFIED STRUCTURES, 

BUT 1S OPTIONAL FOR UNQUALIFIED STRUCTURES. 

DEFN. A STRUCTURE IS UNQUALIFIED IF IT HAS THE SAME NAME AS ITS 

TEMPLATE -- OTHERWISE, IT IS A QUALIFIED STRUCTURE, 

EXAMPLE 

STRUCTURE Q: . 

1 1 INTEGER, 

1S SCALAR, 

1M MATRIX DOUBLE, 

1T; 

DECLARE @ Q-STRUCTURE; 

DECLARE R Q-STRUCTURE; 

THEN @ IS UNQUALIFIED. 

THEN R IS QUALIFIED, 

3¥o



STRUCTURES (CON'T.) .§ a 

IF A STRUCTURE IS UNQUALIFIED, THEN RATHER THAN USE THE QUALIFIED . 3¥ / 

REFERENCE MECHANISM, TERMINALS AND MINOR STRUCTURES CAN SIMPLY BE 

REFERRED 10 BY THEIR NAMES, 

IN THE PRECEDING EXAMPLE: 

a. ——-—--— SHORT FORM (SINCE @ 1S UNQUALIFIED) 

I I or G1 ” 
S or 0,8 

H Moor QM 

T or QT 

R 
I RI 
$ R.S HORM MUST USE QUALIFICATIONS, 

T R.T 

UNQUALIFIED STRUCTURES ARE NICE ... BUT NOT EVERY STRUCTURE CAN BE 

UNQUALIFIED. 

NOTE: IN TERMS OF CPU OR CORE, THERE IS NO DIFFERENCE BETWEEN A 

QUALIFIED OR AN UNQUALIFIED STRUCTURE.



STRUCTURES (CON’T. ) — Sf 

(1) BOTH THE TEMPLATE AND THE STRUCTURE MUST BELONG TO THE 
SAME NAME-SCOPE: 

RULES FOR UNSUALIFIED STRUCTURES: 3$2. 

  

LEGAL ILLEGAL 

P: PROGRAM; CPL: COMPOOL; 

STRUCTURE Q; STRUCTURE Q: 

1A, 1A, 

1B; 1B; TEMPLATE IS IN 
roe tn DIFFERENT NAME~ 
DECLARE Q Q-STRUCTURE; CLOSE CPL; SCOPE 

CLOSE P; | P: PROGRAM 

DECLARE @ Q-STRUCTURE ; 
(2) -THE TEMPLATE CAN CONTAIN NO NESTED STRUCTURES, I,E., STRUCTURE 

TERMINALS, 

FOR EXAMPLE, THE FOLLOWING IS ILLEGAL: 

STRUCTURE Q: 
1A, 
1 | INTEGER, 
1 M R-STRUCTURE; ~-————caNnnoT HAVE NESTED STRUCTURE 

DECLARE 9 Q-STRUCTURE(4)s



STRUCTURES (CON'T.) Py 

(3) ALL NAMES (IDENTIFIERS) WITHIN THE TEMPLATE MUST BE UNIQUE. #3 

IN THE NAME-SCOPE. 

KEY IDEA: IDENTIFIERS WITHIN A TEMPLATE ARE NORMALLY INVISIBLE TO 

THE OUTSIDE ENVIRONMENT, BY MAKING THE STRUCTURE UNQUALIFIED, 

THESE HIDDEN NAMES SUDDENLY BECOME VISIBLE. 

EXAMPLE 

DECLARE I 

STRUCTURE Q: 

1 1 INTEGER, 

1s, 

1M MATRIX; 

SO FAR ... NO PROBLEM (THE TWO I's CANNOT “SEE” EACH OTHER) 

DECLARE R Q-STRUCTURE(10) ; 

STILL NO PROBLEM... 

DECLARE @ Q-STRUCTUREs 

NOW WE WILL HAVE A MULTIPLY-DEFINED SYMBOL "I",



“"] 

STRUCTURES (CON‘T.) 

IF THE STRUCTURE TEMPLATE IS NEVER INTENDED TO BE UNQUALIFIED, 

THEN DUPLICATION OF IDENTIFIERS CAN OCCUR WITHIN THE TEMPLATE 
AS LONG AS NO AMBIGUITY RESULTS WHEN USING THE QUALIFIED REFERENCE 
SYSTEM, 

EXAMPLE: 1 

STRUCTURE @: 

1 Ql, 

2 QS, 

1 Q2, ~~ LEGAL DUPLICATE NAMES 

DECLARE ZQ Q-STRUCTURE; 

BECAUSE Z29,.Q1,.0S CANNOT BE CONFUSED WITH 20.02.05 

  

NOTE THAT: 
DECLARE @ Q-STRUCTURE 

WOULD RESULT IN MULTIPLY-DEFINED as, 

23 
S*+¢¥



STRUCTURES (CON‘T.) s — 
EXAMPLE 2 3 - By ) 

STRUCTURE R: 

1 Ri~---————"__ ILLEGAL DUPLICATE NAMES 

2 RS SCALAR, —-—— 
1 RI CHARACTER(80) 3 

DECLARE ZR R-STRUCTURE; 
WHAT IS ZR.R1? | 

SUMMARY OF HAME UNIQUENESS — 

(1) WITHIN THE SAME NAME~SCOPE, ALL TEMPLATE AND STRUCTURE NAMES 
~— MUST BE UNIQUE (UNLESS, OF COURSE, WE ARE DEFINING AN UNQUALIFIED 

STRUCTURE -~ IN WHICH CASE A TEMPLATE NANE AND A MAJOR STRUCTURE 

NAME WILL MATCH) 

(2)° CLEARLY, FOR A GIVEN TEMPLATE, THERE CAN BE AT MOST ONE UNQUALIFIED 
STRUCTURE WITH THAT NAME, 

(3) IF A TEMPLATE IS UNQUALIFIED, ALL IDENTIFIERS WITHIN IT MUST 
BE UNIQUE IN THE NAME~SCOPE.
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(4) IF A TEMPLATE IS QUALIFIED, SOME DUPLICATION OF IDENTIFIERS 

(1) 

(2) 

(3) 

(4) 

CAN OCCUR IF NO AMBIGUITY RESULTS, 

EXAMPLES 

DECLARE St «wy tipe DEFN, OF 8. 
STRUCTURE Si<— 

less 

STRUCTURE S: 

1A, ~ 

1 By 

STRUCTURE ge 
1A, 

1 B; 

MULTIPLE DEFN. OF S$ 

_ STRUCTURE S: 

1A, 

1B; 

DECLARE $ S-STRUCTURE; 

DECLARE M MATRIX; +—__ MULTIPLE DEFN, 
DECLARE M S-STRUCTURE;“—— 

OF M 

52. 
3+
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(5) 

(6) 

(1) 

(2) 

(3) 

STRUCTURES (CON'T.) s 3 
STRUCTURE S: . 3 7 

1A, OK AS LONG AS WE DO NOT SAY 
21, DECLARE $ S~STRUCTURE 

2 J, 

1B, 

21, 

2 Js 

DECLARE | INTEGER; 

STRUCTURE S: 

1 1 INTEGER, 
DITTO 

1 J INTEGER;   

  

MISCELLANEOUS COMMENTS 

A TEMPLATE DECLARATION DOES NOT SET ASIDE CORE MEMORY --. ONLY THE 

STRUCTURE DECLARATION DOES THAT. 

QUALIFIED AND UNQUALIFIED STRUCTURES ARE EQUIVALENT IN TERMS 
OF CORE AND CPU, 

THERE IS NO INHERENT INEFFICIENCY IN COLLECTING RELATED DATA 

INTO A STRUCTURE.



(4) 

STRUCTURES (CON'T,) 

IN TERMS OF CORE AND CPU EFFICIENCY WE CAN WRITE: 

  > LESS EFFICIENT 

SIMPLE VARIABLE > ARRAY > STRUCTURE 

THIS MEANS THAT A SIMPLE VARIABLE GENERALLY MIGHT BE MORE 

_ EFFICIENT THAN AN ARRAY,- AND AN ARRAY IN TURN MIGHT BE 

MORE EFFICIENT THAN A STRUCTURE --.IN MANY IMPORTANT CASES, 

HOWEVER, EQUALITY HOLDS (MORE ON THIS LATER....).
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SUMMARY OF TERMINOLOGY 
pov ea 

{ 
re EN 

‘ STRUCTURE @? y CGHELATE CAME 
(TW, +. nor structure on FoRK 

| 
\ 
{ pete . | 
| stRucTURE —-~! 2 IyINTEGER, > 

a Neh TERMINAL 
: 2d INTEGER, TT 

| 
\. _ QS SCALAR; 

a ad 

LEVEL w—————-—~ MAJOR STRUCTURE NAME 

DECLARE @ Q-STRUCTURE; 

DECLARE R Q-STRUCTURE 

INITIAL(6, 9, 15.4); 

  

TEMPLATE 
ees 
a 

    

STRUCTURE DECLARATIONS 

Q = UNQUALIFIED STRUCTURE 

R = QUALIFIED STRUCTURE 

R 
a> RA 

: QUALIFIED NAMES 

——> RAJ 

a 
A 
1 —— RA 
J 
S ——~ RS ) Gera, 

af
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A. STRUCTURE SUBSCRIPTING 

e COPY SUBSCRIPTING ONLY 

SUPPOSE WE HAVE A MULTI-COPY STRUCTURE: 

DECLARE Q Q-STRUCTURE(L) ; 

(1) TO SELECT THE ITH Copy 

Q$1 OR Q$(is) 

WHERE I IS AN INTEGER EXPRESSION (SCALAR IF YOU 

WANT) THAT HAD BETTER LIE IN THE RANGE 

lect 

AT RUN-TIME. 

NOTE: SEMICOLON IS ONLY MANDATORY WHEN TERMINAL 

SUBSCRIPTING IS TO BE DONE ALSO, 

s/ 
390



Cy VY 

320 
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(2) TO SELECT A SUBSET OF I COPIES STARTING WITH THE JTH; 

Q$(1 AT J) OR Q$(1 AT Jy) oa 

WHERE I IS AN INTEGER LITERAL (1.E,, VALUE KNOWN AT 

COMPILE-TIME) AND J IS AH INTEGER EXPRESSION WITH: 

l<Jet-J]+1 

    

  

(3) TO SELECT A SUBSET OF COPIES STARTING FROM THE I™* AND 

ENDING WITH THE JTH; 

Q$(1 TO J) OR Q$C1 TO Js) 

WHERE BOTH I AND J ARE INTEGER LITERALS AND: 

lsleJcgt
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STRUCTURES (CON’T.) 

COPY SUBSCRIPTING EXAMPLES: 

GIVEN 

| STRUCTURE Q: 
| 11 INTEGER, 
; 1 Ql, 
i 2-8 SCALAR, 

-1 2 QC CHARACTER(80) ; 
I 
! 

{ DECLARE ZQ Q-STRUCTURE(3) ; 

WITH THE FOLLOWING VALUES: 

  

392,



33 
STRUCTURES (CON'T.) 
—— | 393 

THEN ZQ5, SELECTS COPY 2 WITH VALUES: 

  
Gar \Ge
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GIVEN 

| STRUCTURE @: 
; 1 QI INTEGER, 
i 1 Ql, 

! 2 QS SCALAR, 
2 QC CHARACTER(80) ; 

! 
] 

1 
DECLARE ZQ Q-STRUCTURE(3)s 

WITH THE FOLLOWING VALUES: 

  
” “4 

re



$3 
39s" 

STRUCTURES (CON'T,) 

ZQ.Q1; tg 2, SELECTS COPIES 1 AND 2 OF THE 

SUB-TREE UNDER Q1 
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GIVEN 

| STRUCTURE Q: 
1 QI INTEGER, 

| 1 Ql, 
| 2 QS SCALAR, 

2 QC CHARACTER(80); 

| DECLARE ZO Q-STRUCTURE(3) 

WITH THE FOLLOWING VALUES: 

  

OS = 1S ocz tat 
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QZ.Q1z SELECTS:



STRUCTURES (CON’T.) 

© SUBSCRIPTING OF STRUCTURE TERMINALS ental 

(1) IF THE STRUCTURE HAS NO COPIES THEN THE TERMINAL IS 

SUBSCRIPTED EXACTLY AS THOUGH IT WERE NOT IN A 
STRUCTURE, 

STRUCTURE Q: 
' 1B BIT), - 

LM MATRIXG,4), 
1 C CHARACTER(8), 
1 V VECTOR; 

~ DECLARE Q Q-STRUCTURE, <————— S&.ESBLES 
THEN: 

B14 on Q,B1$4 
BI$(3 AT 3) @.B1$(3 AT 3) 
NE(2,4) Q.H$(2,4) 
HS (#,3) 0.NS(*,3) 
C35 a.c$5 
C$(4 TO 6) 0.¢$(4 TO 6) 
V$3 0,V$3 
V$(2 AT 1) Q.V$(2 AT 1) 

3/ 
ST



STRUCTURES (CON'T.) 

STRUCTURE OQ: — STG 
1 I ARRAY(10): INTEGER, 
1 B ARRAY(6) BOOLEAN, 
1M ARRAY(2,4,6) MATRIX, 
1 Ba ARRAY(8) BITCH); 

DECLARE R Q-STRUCTURE; 
THEN: 

R.1$5 R.[$(2 AT 3} ETC. 
“R.BS(3:) —-R.BS(3- TO 5:) ETC. 
R.M$(#,*, *: 2,3) 
RM$(1,3,5: *,1) 
RoM$(2,*,6:) 
R.MS(#,*,3: 1 70 2, 2 AT 1) 
R.B4$(5:) 

_ R.B4$(5:3) 
R.B4$(2 TO 5: 3 AT 1) 
pore 

THEREFORE, THERE 1S NOTHING NEW TO SAY ABOUT SUBSCRIPTING 

“IF THE STRUCTURE HAS NO COPIES.
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(2) IF THE STRUCTURE HAS COPIES THEN WE HAVE THREE MODES 3/ 
OF TERMINAL SUBSCRIPTING: Se oO 

(A) STRUCTURE (COPY) SUBSCRIPTING ONLY 

=> NEED TRAILING “3” UNLESS TERMINAL IS AN 

UNARRAYED INTEGER OR SCALAR, 

EXAMPLE 

STRUCTURE 0: 
1 1 INTEGER, 

J IT ARRAY(5) INTEGER, 

1 B BOOLEAN, 

1M MATRIX: 

DECLARE @ Q-STRUCTURE(59) ; 

THEN: 
1$5 sets I From 574 copy 

11$(53) cers I] array From 574 copy 
TI$(10 AT 43) BEHAVES LIKE A 2-DIMENSIONAL ARRAY 

SEMI-COLON NEEDED ———7——"__\ 
BECAUSE BOOLEAN = BIT(1) —- B$(3)) GETS BOOLEAN FROM 3D copy 

M$ (63) GETS MATRIX FROM 674 copy
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STRUCTURE AND TERMINAL SUBSCRIPTING 

==> COPY SUBSCRIPT; TERMINAL SUBSCRIPTS 

EXAMPLE 

STRUCTURE Q:. 

1 II ARRAY(2,3) INTEGER, 
1 BB ARRAY(6) BIT(9), 
1 MM ARRAY(5,10,15) MATRIX(4,5), 

1 N ARRAY(10) INTEGER, 
1 1 INTEGER; 

DECLARE R Q-STRUCTURE (20000) 
THEN: . 

R,11$(432,2) 
R.11$(100 AT 307; 2,*) 
R.BB$(60; 4: 5 TO 8) 
R.BB$(3135:) 
R.MMS(5 AT 93 5,*,7: 3,*) 
RMM$(27; * ty *,5) 

~ RLN$(6310) 
R. 1$(50) 

  

3 2.
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© TERMINAL SUBSCRIPTING ONLY 

“> +5 TERMINAL SUBSCRIPTS 
EXAMPLE 

STRUCTURE Q: 
1 IT ARRAY(10) INTEGER, 
1 M ARRAY(10,5,6) MATRIX; 

STRUCTURE 09: 
1 Z1 Q-STRUCTURE, 
1 J ARRAY(5) BIT(16),, 
1A, 

2 BOOL ARRAY(10) BOOLEAN, 
2 C ARRAY(S) CHARACTER(80); 

DECLARE P QQ-STRUCTURE(20) ; 
THEN: 

P.Z1,11$(*; 6 TO 10) 
P.Z1.M$(*; 1 TO 3, 2 70 5, 4s #,3) 
P.Z1LM$(«#y *iH iF 2,3) 

P.J$(#; 4 AT 1: 3 AT 1) 
P,A.BOOL$(#; G;) 
PA.CS$(*; 3 TO 5: 10 AT 24) 

You.
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EXAMPLES OF TERMINAL SUBSCRIPTING 

GIVEN 
1! STRUCTURE Q: 

I QV VECTOR(3), 
1aQ. 

2 QB ARRAY(2) BIT(4), 
2 QM MATRIX(3,3); 

  

DECLARE ZQ Q-STRUCTURE; . 

WITH THE FOLLOWING VALUES: 

| 
| 
| 

| 
1 
| 

   “fi 2.3] - 
QM EH 56 

B89 

) 9 LOL,



THEN: 
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70.0, = 1 

avo 0.01.0) 19 3 9 193% f J
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FURTHER, GIVEN 
| 

| STRUCTURE @: 
1 QV VECTOR(3), 
1 Ql, 

2 QB ARRAY(2) BITCH), 
2 OM MATRIX (3,3) 

; 
DECLARE YQ Q-STRUCTURE (3); 

WITH THE FOLLOWING VALUES: 
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then . Ceopy 1) Copy 3) 

“¥O.0V 5 €(3 6 9). result is scalar type 

(copy 2) 

¥Q.Q1.0B) a7 mo 2° (11, 105) 

L sevey Property unmodified
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¢07 
TREE (TEMPLATE) EQUIVALENCE a 

THO STRUCTURES (OR MINOR STRUCTURES) ARE EQUIVALENT (TREE- 

EQUIVALENT) IF: 

  

  

(1) THE ACTUAL "SHAPES" OF THE TREES (ORGANIZATION OF NODES) 
ARE THE SAME, AND 

(2) CORRESPONDING NODES AGREE EXACTLY IN ATTRIBUTES, 

OBVIOUSLY, TWO STRUCTURES ARE EQUIVALENT IF THEY USE THE 

SAME TEMPLATE: 

| STRUCTURE @: 
| 1 QT INTEGER, 
1 «1 OL, 
, 2 QS SCALAR, 

2 QC CHARACTER(80); 
| DECLARE Z01 Q-STRUCTURE, 

702 Q-STRUCTURE (20); 

ZQ1 AND ZQ2 ARE TREE-EQUIVALENT, (NOTWITHSTANDING 

THE MISMATCH IN NUMBER OF COPIES),



STRUCTURES (CON'T.) 

STRUCTURES ARE ALSO EQUIVALENT IF THEIR TEMPLATES DIFFER 
ONLY IN THE IDENTIFIERS: 

STRUCTURE Q: 
A QI INTEGER, © 
1 Ql, : 

2 QS SCALAR,” 
2 QC CHARACTER(80)} 

DECLARE Z2Q Q-STRUCTURE; 

STRUCTURE R: 
1 RI INTEGER, 
1 Ri, 

2 RS SCALAR, 
2 RC CHARACTER (80); 

DECLARE 2R -R-STRUCTURE;   
The trea shapes of ZR and ZQ are the same: ~ 

  

os
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(©) MINOR STRUCTURES CAN BE EQUIVALENT EVEN IF THE 

MAJOR STRUCTURES ARE NOT. 

STRUCTURE Q: 
1 QI INTEGER,. 
1 ql, . 

2.05 SCALAR, . 
2 QC CHARACTER (80); 

' DECLARE ZQ Q-STRUCTURE) . 

STRUCTURE fs 
1 RS SCALAR, oe 
1 RC CHARACTER(80); - 

DECLARE ZR R-STRUCTURE; 

The tree shapes of ZQ and ZR clearly are not the 
same. However, tha tree shapes of 20.Q1. and ZR 
are the same: oo , 

QL 2R 

gs ge RS RC 

$3 
{o?
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ADDITIONALLY, HOWEVER, CORRESPONDING NODES MUST AGREE IN ALL ATTRIBUTES, 

E.G. DATA TYPE, PRECISION, ARRAYNESS «11. 

  

  

      
  

TYPE MATCHING REQUIREMENTS . 

BIT STRING number.of bits 
(BOOLEAN is equivalent to. BITtl)i 

CHARACTER - maxiinum declared’ length 

INTEGER precision 

SCALAR precision 

VECTOR precision, length’ 

MATRIX preciaion,: row and, column dimen— 
sions 

STRUCTURE ‘specified structure template 

Examples: 

STRUCTURE Q: | 
i 
' 

| 
| 

. DECLARE 20 Q-STRUCTURE! 

1 QI INTEGER, 2Q AND ZR ARE NOT TREE EQUIVALENT 
lal, 

2 QM MATRIX (3/3), 
2 QC CHARACTER (80). 

    

      

   

BUT, 20,01 AND ZR.RL ARE 
TREE EQUIVALENT, 

STRUCTURE ft 
1 RI INTEGER(DOUBLE, 
1 Rl, 

2 RM MATRIX(3,3), 
2 RC CHARACTER(D0)} 

DECLARE 2R R-ST TURE}



an
y 

STRUCTURES (CON’T.) 

FOR TREE EQUIVALENCE, CORRESPONDING TERMINALS OF STRUCTURE TYPE MUST 

IN TURN USE TREE-EQUIVALENT TEMPLATES: 

EXAMPLE 

STRUCTURE P: 
1S SCALAR, 
1 T SCALAR DOUBLE; 

STRUCTURE Q: 
1 U SCALAR, 
1 V SCALAR DOUBLES 

STRUCTURE PP: 
1A, 
1 B P-STRUCTURES 

* STRUCTURE QQ: 
1F, 
1 G Q-STRUCTUREs 

DECLARE X PP-STRUCTURE; 
DECLARE Y QQ-STRUCTURE; 

THEN X 1S EQUIVALENT TO Y, 
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A NESTED STRUCTURE IS NOT THE SAME AS A SIMILAR MINOR STRUCTURE. 472. 

STRUCTURE Q1 
108 SCALAR, 
1 QC CHARACTER (80)} 

See aRL INTEGER FUNCTIONALLY THE SAME, 
Cty Oe eeaiE, BUT NOT EQUIVALENT 
DECLATE “2 R-sTkuCTure, 
STRUCTURE $: 

1 SI_ INTEGER, 
: sl, ~ Sse « 
« ‘2 SS SCALAR, * 

| “s .2 SC CHARACTER(90);: 
|. pectAte"”s s-sixtctuRe;” 

ZS AND ZR ARE NOT EQUIVALENT! 

{ 
t 
i 
| 
1 
[ 
i 

st 
1 

| 
‘ 

IF WE REDEFINE S WE ARE OK: 

STRUCTURE S: 
1 SI INTEGER, 

1 SQ Q-STRUCTURE; 

e
n
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STRUCTURE ASSIGNMENTS _ W13 

SYMBOLIC FORM: LeR 

(1) £ IS RECEIVING STRUCTURE DATA ITEM WITH POSSIBLE 

STRUCTURE SUBSCRIPTING, 

(2) R IS EITHER A (POSSIBLY SUBSCRIPTED) STRUCTURE DATA 

ITEM, OR A STRUCTURE FUNCTION. - ~ 

(3) IF £ AND R ARE MAJOR OR MINOR STRUCTURES, THEY MUST 

BE TREE-EQUIVALENT,



STRUCTURES (CON'T.) 

  

EXAMPLES 

Given: 
{ 

STRUCTURE Q: 
1° QI INTEGER, 

‘2 QS SCALAR, 

. 2 QC CHARACTER(80); 
" DECLARE 2Q1 Q-STRUCTURE; 

DECLARE 2Q2 Q-STRUCTURE (2); 

  

  
where 202 has the values: 
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then 
{ 

1° 20h = 202 3 
is . 2 

results in 2Q1 having the values: 

  

Yax~
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Givens 

STRUCTURE @: 
1 QI INTEGER, 
1 Ql, 

| 2 QS SCALAR, 

  

_ 2 QC CHARACTER (80); 
DECLARE 2Q1 Q-STRUCTURE) 
DECLARE 2Q2 Q+STRUCTURE (2) } 

where 202 has the values: 
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and if then the following is executed 

2Q1.Q1 = 202. Ql + 
8. 1 

- the values of 701 are modified to: 

 



MULTIPLE ASSIGNMENTS 
  

A HUMBER OF STRUCTURE DATA ITEMS (MAJOR OR MINOR STRUCTURES) 52 

MAY BE ASSIGNED THE SAME VALUES BY MEANS OF A MULTIPLE W ¥ 

ASSIGNMENT: 

2,17, 2... the R* 

WHERE! 
it 

ARE STRUCTURE DATA ITENS, AND EACH 4“ ARE TREE-EQUIVALENT TO ® , 

NOTE: NO PARTICULAR ORDER OF ASSIGNMENT CAN BE GUARANTEED! 

EXAMPLE! 

STRUCTURE 9: 

11 INTEGER, 

1S; 

DECLARE 9 Q-STRUCTURE(100) ; 

Q$3, Q$9, Q$10 = Q$47; 

* R MAY ALSO BE A STRUCTURE FUNCTION, 

 



STRUCTURES IN RELATIONAL EXPRESSIONS 

CL) STRUCTURE COMPARISONS CAN BE MADE IN RELATIONAL EXPRESSIONS, 
WHICH IN TURN MAY BE USED IN 

IF vas 
DO WHILE ... 

ann DO UNTIL ws. CONSTRUCTS; 

@) ONLY CLASS IT COMPARATIVE OPERATIONS MAY BE EMPLOYED-ON STRUCTURE 
DATA ITEMS, I,E., MAJOR AND MINOR STRUCTURES, CLASS II OPERATIONS 
ARE: 

= 4s 

EG 
IF L=R THEN DO; 
DO WHILE L-1= R; 

RULES: 

1) 1 AND R ARE EITHER STRUCTURE DATA ITEMS OR STRUCTURE FUNCTIONS, 

2) £ AND MUST BE TREE~EQUIVALENT. 

. 32 
Wy



STRUCTURES IN RELATIONAL EXPRESSIONS (CON’T.) 
  

QB TWO STRUCTURES ARE EQUAL <e=}>ALL CORRESPONDING TERMINALS 

HAVE EQUAL VALUES. \ 

EXAMPLES} 

STRUCTURE Q: 
11 INTEGER, — 

1 $ SCALAR; a 

DECLARE Q-STRUCTURE INITIAL(6, 18.0), L,R; 
et 

IF L = R THEN DOs 

OS TRUE 
END3 

LI= 4; 

DO WHILE L 7=R,; 

me TRUE 
END; 

53 
Y20
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S/ frst STRUCTURE ARGUMENTS AND PARAMETERS 

INPUT PARAMETERS — (PROCERURES/FUNCTIONS) 

A STRUCTURE DATA ITEM (MAJOR STRUCTURE) CAN BE AN INPUT 

PARAMETER OF A PROCEDURE OR A FUNCTION, THE TEMPLATE DECLARATION FOR 

THE STRUCTURE MUST PRECEDE THE STRUCTURE DECLARATION. 

THE CORRESPONDING INPUT ARGUMENT CAN BE A MAJOR STRUCTURE, MINOR 

STRUCTURE OR STRUCTURE FUNCTION -~ AND MUST BE TREE-EQUIVALENT! 

ASSIGN PARAMETERS (PROCEDURES ONLY) 

AN ASSIGN ARGUMENT CAN BE A MAJOR OR MINOR STRUCTURE -~ AND MUST BE TREE- 

EQUIVALENT TO THE CORRESPONDING PARAMETER. 

TERMINALS AND MINOR STRUCTURES CAN POSSESS NO "COPYNESS” -- IF THEY ARE 

CONTAINED IN A MULTI-COPY STRUCTURE, THEN SUBSCRIPTING MUST BE USED TO 

ISOLATE A SINGLE COPY. 

MAJOR STRUCTURES WITH COPIES CAN BE LEFT UNSUBSCRIPTED (FULL COPYNESS) 

~~ OR MUST BE SUBSCRIPTED TO A SINGLE COPY!!



STRUCTURE ARGUMENTS AND PARAMETERS (CON‘T.) 
  

EXAMPLE 1: POSITION OF TEMPLATE 

ANALYZE: PROCEDURE(S1) ASSIGN(S2); 
STRUCTURE St! 

1 SI INTEGER, 
1 SN, 

2 SS SCALAR, 
-- 2 SC CHARACTER (80); 
DECLARE $1 S~-STRUCTURE, 

$2 S-STRUCTURE; " 

y executable code 
Wa ’ 

    

      
GILLD, es 3 
eae re

 e
e
 

wn 
t
s
 

e
a
e
 

“CLOSE ANALYZE: 

RULE: 

  

PARAMETER STRUCTURE TEMPLATES BEFORE PARAMETER 

DECLARATIONS BEFORE LOCAL DATA DECLARATIONS,       

Yaz



STRUCTURE ARGUNENTS AND PARAMETERS (COH’T.) 
  

EXAMPLE 2: TEMPLATE CAN BE IN AN OUTER SCOPE (E.G, COMPOOL) 

CPL: EXTERNAL COMPOOL; 
STRUCTURE 0: 

1 I INTEGER, 
1 V VECTOR; 

CLOSE CPL; , 
COMSUB: PROCEDURE (STRUC)s 

DECLARE STRUC Q-STRUCTURE; 

CLOSE COMSUBs 

#23 
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0 ¥ ~f
, 

EXAMPLE 3: LEGAL AND ILLEGAL INVOCATIONS 

STRUCTURE Q: 
1 QI INTEGER, 
1 Ql, 

2 QS SCALAR, 
2 QC CHARACTER (80)? 

STRUCTURE R: 
- 1 RS SCALAR, 

1 RC CHARACTER (80) + 
DECLARE 2Q Q-STRUCTURE, 

ZR R-STRUCTURE, 
YQ Q-STRUCTURE(10)1 

eoe 

TREE: PROCEDURE(D1) ASSIGN(D2)1 
DECLARE Dl R-STRUCTURE, 

D2 O-STRUCTURE}    
procedure body 

  

 



THEN: 

  

STRUCTURE ARGUMENTS AMD PARAMETERS (CON'T.) 
  

CALL TREE(2R) ASSIGN (2Q); 
CALL TREE(ZR) ASSIGN(YQ )} 

4 
CALL TREE(Z2Q.Q1) ASSIGN(ZQ); 
CALL TREE(2R) ASSIGN (ZR); 

illegal - no tree~_ 
equivalence 

Y2\~
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EXAMPLE 4: LEGAL AND ILLEGAL INVOCATIONS 726 

4 Nt TESTS: 

4 Nt PROGRAM 

2 Nt STRUCTURE @ 

2 Hf 4. 

2nt 2 1 INTEGER, 

2 Nt 2 5 SCALAR, 

2 Nt 4 8, 

2 ut 2 J INTEGER, 

2 Nt 2 T SCALAR: . 

3 Ht DECLARE @ Q-STRUCTUREC19) INITIALCAL, 2, 3, 4295 

4 Mt DECLARE R Q-STRUCTURE( 5 > INITIALCS, 6, 7, 9): 

5 Mt DECLARE P @-STRUCTURE: 

6 Mt PROCS: . 

6 Nt PROCEDURE RASSIGNCU, Y; Ws 

7 Nt DECLARE U INTEGER: 

.8 Nt PECLARE V Q-STRUCTURECS): 

9 Nt STRUCTURE X: 

3 NT “ 4 INTEGER, 

9 MT 4 55 SCALAR: 

10. Nt . DECLARE fH X-STRUCTURE (10); 

L4 Nt CLOSE: 

Et - * t 
42 Nt CALL PROCL ASSIGNCI » CRI, €A2): 

St 3 
akbk FSQ - ERROR @4 OF SEVERITY 1. kk dctok 

Joniok THE STRUCTURE COPIES OF ASSIGN ARGUNENT A NUST BE SUBSCRIPTED 

kek AWAY | 
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hook 

tok ke 

hhh 

kkk 

toh bk 

tek ke 

doth ke 

ak hk ok 

REAL 

wh bS 

ehhh 

  

  

"S's 
STRUCTURE ARGUMENTS AND PARAMETERS (CON’T.) Y27 

Et + . + 

Nt CALL PROCS ASSIGNCR.ALT « C8) » CAI); 

St 7 S AT 2 

SR3 ERROR #2 OF SEVERITY 4. kéddk 

INDEX VALUE IN SUBSCRIPT OF R.AL I 15 GREATER THAN THE LEGAL MAXINUM 

SVL ERROR #3 OF SEVERITY 4. kktke 

SUBSCRIPTING OF @ IS ILLEGAL IN CONTEXT OF USE AS AN ASSIGN ARGUNENT 

FS2 ERROR #4 OF SEVERITY 4. hktak 

THE STRUCTURE COPIES OF ASSIGN ARGUNENT Q NUST BE SUBSCRIPTED 
AWAY 

FS2 ERROR #5 OF SEVERITY 4, kkkER 
THE STRUCTURE COPIES OF ASSIGN ARGUNENT A NUST BE SUBSCRIPTED 
AWAY 

LAST ERROR NAS DETECTED AT STATEMENT 12. kkkK&



  

STRUCTURE ARGUMENTS AND PARAMETERS (CON‘T.) Fa ¥ 
  

  
STRUCTURE (#*) 

    

JUST AS IN THE CASE OF 1-DIMENSIONAL ARRAYS, A STRUCTURE 

INPUT OR ASSIGN PARAMETER IS ALLONED TO HAVE A VARIABLE 

NUMBER OF COPIES, I.E., THE NUMBER OF COPIES IS PASSED 

TO THE PROCEDURE IN THE STACK AT THE TIME OF INVOCATION, 

THE BUILT-IN FUNCTION SIZE MAY LIKEWISE BE USED FOR SUCH 

UNKNOWN-COPYNESS STRUCTURES TO OBTAIN THE ACTUAL NUMBER 

OF COPIES, 

  

 



  

STRUCTURE ARGUMENTS AND PARAMETERS (CON’T.) 

EXAMPLE 1 

DECLARE R Q-STRUCTURE (10); 
DECLARE $ Q-STRUCTURE(5O) ; 

PROC: PROCEDURE ASSIGN(D); 
DECLARE D Q-STRUCTURE(*); - 

DO 1 = 1 T0 SIZE(D); 

END: 

CLOSE PROC) 

CALL PROC ASSIGN(R)) 
CALL PROC ASSIGN(S) 

127



  

  

STRUCTURE ARGUMENTS AND PARAMETERS (CON'T.) 52 

EXAMPLE 2: ARRAY PROCESSING FEATURE CAN LIKEWISE BE USED ¥30 

STRUCTURE Q: 

1 SCALI, 

1 SCAL2, 

1 VECTX VECTOR; 

* DECLARE Q Q~-STRUCTURE(50); 

DECLARE R Q-STRUCTURE(20)3 _ 

PROC: PROCEDURE ASSIGN(E), 

DECLARE E Q-STRUCTURE(*) s 

E,SCALI, E.SCAL2 = 03«——————- ARRAYED MULTIPLE ASSIGNMENT STMT 

CLOSE PROC; 

CALL PROC ASSIGN(Q); 

t £ 

CALL PROC ASSIGN(R) 5 
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STRUCTURE FUNCTIONS 3/ 

¢3/ HAL/S ALLOWS FUNCTIONS OF STRUCTURE TYPE WHICH MAY BE 
SUBSTITUTED FOR DECLARED STRUCTURES IN MANY OF THE 
PREVIOUSLY DEFINED STRUCTURE OPERATIONS. 

FORM: 
"| kabets FUNCTION(4?, £2, ...) o-STRUCTURE; 

RETURN stnuctures 
CLOSE; 

NOTES: 

(1) A STRUCTURE FUNCTION CANNOT HAVE COPYNESS (REMEMBER 

“THAT ORDINARY FUNCTICNS CANNOT HAVE AN ARRAY DECLARATION). 

(2). THE TEMPLATE « MUST BE DEFINED IN AN OUTER SCOPE PRIOR 

TO THE FUNCTION HEADER, 

(3) THE INPUT PARAMETER LIST IS OMITTED ENTIRELY IF THERE 

ARE NO PARAMETERS,



dee 

STRUCTURE FUNCTIONS (CON’T.) Jae 
. z 

EXAMPLES j 
  

(A) ALPHA: FUNCTION B-STRUCTURE(A); ~~ ULE 

(B) ALPHA: FUNCTION B-STRUCTURE; 
STRUCTURE B: TEMPL 

ATE MUST BE 1 } : INTEGER, OUTER SCOPE " 

(C) STRUCTURE Q: 
1 QI INTEGER, 
1 Q1, 

QS SCALAR, 
QC CHARACTER(80) 1 

TREE: FUNCTION (I,J) Q-STRUCTURE; 

ie “ 4 

Yee function body 
LOE lde 
i MELEE ELE . 

CLOSE TREE} 
  

 



  

STRUCTURE FUNCTIONS (CON'T.) 

a 433 
AS 1S THE CASE WITH ALL FUNCTIONS, A STRUCTURE FUNCTION 

MUST ACTUALLY RETURN A STRUCTURE OF THE REQUISITE TYPE: 

STRUCTURE S: 
1 SS SCALAR, 

1 SC CIARACTER (80); 
STRUCTURE Q: 

1 QI INTEGER, 
1 Q1 S-STRUCTURE) 

TREE: FUNCTION (DL) S-STRUCTURE; 
DECLARE D1 Q-STRUCTURE; 

RETURN D1.Q1; 

RETURN Dl; 

: fllegal - lack of © 
CLOSE TREE; tree-equivalence 

NOTE: REMEMBER THAT AGGREGATE DATA (VECTORS, MATRICES, CHARACTER 

STRINGS, ARRAYS, AND STRUCTURES) ARE NEVER PHYSICALLY 

PASSED TO OR FROM A PROCEDURE OR FUNCTION. AGGREGATES 

ARE ALWAYS PASSED BY NAME (REFERENCE) -~ NEVER BY VALUE!



si 

STRUCTURE FUNCTIONS (CON’T.) 

A STRUCTURE FUNCTION IS INVOKED BY EMPLOYING ITS NAME 

IN A REFERENCE CONTEXT, IT SHOULD BE CLEAR, HOWEVER, THAT 

A STRUCTURE FUNCTION IS NOT REALLY A STRUCTURE -- I.E., 

MINOR STRUCTURES OR TERMINALS OF IT CANNOT BE REFERENCED, 

STRUCTURE Q: . 
1 QI INTEGER, 
1 Ql, 

2 QS SCALAR; 
2 QC CHARACTER (80); 

DECLARE 2Q Q-STRUCTURE; 
EE 2 Q-STRUCTURE} 

‘ | function body 

  

ZQ = TREE; legal invocation 
Z2Q.Q1 = TREE.QL; illegal invocation 

- ALSO, 

IF ZQ = TREE THEN DO; 

 



  

ARRAY PROCESSING 

EXAMPLE 

STRUCTURE Q: 

1 I INTEGER, 

» 1A ARRAY(4,9) SCALAR, 

1M ARRAY(6,10,4) MATRIX, 

1 € ARRAY(6) CHARACTER(9); 

DECLARE @ Q-STRUCTURE (16); 

DECLARE J ARRAY(20) INTEGER; 

DECLARE B ARRAY(16,4) SCALAR; 

  

DECLARE N ARRAY(16,10,4) MATRIX; 

DECLARE D ARRAY(6) CHARACTER(S); 

_/
 , 

3/ 
{3s"
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ARRAY PROCESSING (CON’T.) 

a 

(1:16) 

(1:16) 

{3:16,4,9} 

{4:16,6,10,4) 

{2:16,6} 

{1:20) 

{2:16,4) 

{3:16,10,4) 

(1:6) 

  

TYPE 

MAJOR STRUC 

INTEGER 

SCALAR 

MATRIX 

CHARACTER 

INTEGER 

SCALAR 

MATRIX 

CHARACTER 

32 

$36.
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ARRAYNESS 1S A FUNCTION OF SUBSCRIPTING! 
a 

AS(#; *,3) > {2:16,4) 

MS(*; 3,*,#:) + (3:16,10,4) 

TWO OPERANDS HAVE MATCHING ARRAYNESS IF THE N-TUPLES ARE IDENTICAL: 

A$(#; #3) = B= (2:16,4) 

MS(*#s 3,",%:) = N = (3:16,10,4} 

rt
) 

Ht
 

ARRAYED EXPRESSIONS 

AN ARRAYED EXPRESSION IS AN ORDINARY EXPRESSION IN WHICH THE 
OPERANDS HAVE ARRAYNESS, AN ARRAYED EXPRESSION CAN BE ASSIGNED 
TO (OR COMPARED AGAINST) AN ARRAYED DATA ITEM,



ARRAY PROCESSING (CON’T,) J3 ¥ 

EXAMPLE 

DECLARE ARRAY(50), S, Ta Soe, 

DECLARE 1 INTEGER: 4 fl 

DO FOR 1 = 1 TO 50; 
S$] = $1; <———-— ORDINARY ASSIGNMENT 

END; 
' ¢ € 

§ = Ty) +-—————__—_______ ARRAYED ASSIGNMENT STATEMENT 

e IN AN ARRAYED EXPRESSION, EACH OPERAND MAY OR MAY HOT HAVE 

ARRAYNESS -- BUT ALL OPERANDS THAT HAVE ARRAYNESS MUST MATCH 

IN ARRAYNESS,



  

ARRAY PROCESSING (CON'T.) ” 93P 

EXAMPLE : 

DECLARE ARRAY(3,6) INTEGER, I, J; 

DECLARE K ARRAY(4,10,4) INTEGER; 

DECLARE S ARRAY(3,6) SCALAR; 

I + J 1S LEGAL (ARRAYNESSES ARE (2:3,6}) 

I + J +6 18 LEGAL (ARRAYNESSES ARE {2:3,61) 

1+ K ts rtesat (arrayness of K 1s (3:4,10,47) 

I + K$G AT 1, 6 AT 2,3) Is LEGAL 

(K HAS BEEN REDUCED TO ARRAYNESS {2:3,6)} BY SUBSCRIPTING) 

[+ J +S 18 Legal (RESULT WILL BE AN ARRAY(3,6) OF SCALARS) 

IJ § 18 LEGAL (RESULT WILL BE AN ARRAY(3,6) OF SCALARS) 

 



4-34 

ARRAY PRULESS LO. Wurth ves 

USER-DEFINED FUNCTIONS INVOLVED IN AN ARRAYED EXPRESSION 

WILL BE INVOKED ONLY ONCE UNLESS AN ARRAYED ARGUMENT IS BEING 

PASSED TO A FUNCTION WHICH ACCEPTS UNARRAYED ARGUMENTS. 

DECLARE ARRAY(10), I, Js 

DECLARE Ks 

Fl: FUNCTIONCARG) s 

DECLARE ARG; 

CLOSE Fl; 

F2: FUNCTIONCARG) 3 

DECLARE ARG ARRAY (10); 

CLOSE F2s 

DRI 
. 

. —F] INVOKED ONCE 

ped + 20s 
F2 INVOKED ONCE 

DASH RLDS 
“ Fl invoxep 10 TIMES 

peal tilt F2CK)3 

Len ERROR-PARAMETER
 MISMATCH 

  

$2 
¥Jfo
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BUILT-IN FUNCTIONS, E.6., SQRT, SIN, «ses ARE BETTER BEHAVED -- v9] 
THE COMPILER KNOWS THAT THEY CANNOT INFLUENCE “EXTERNAL” DATA, 

© A BUILT-IN FUNCTION WITH NO ARGUMENTS OR WITH ARGUMENTS 

THAT ARE NOT ARRAYED MAY ULTIMATELY BE EVALUATED ONLY ONCE 

IN AN ARRAYED EXPRESSION 

EXAMPLE 

DECLARE C SCALAR INITIAL(5)s 

DECLARE ARRAY(20) SCALAR, S, Ts 

$= T + SIN(C); 

  

CURRENTLY WILL BE EVALUATED 20 Times 

\ ULTIMATELY THE EFFECT MAY BE .,., 

COMPILER-TEMPORARY = SIN(C) 
S = T + COMPILER-TEMPORARY 

AGAIN, IF SIN HAD BEEN A USER FUNCTION SUCH OPTIMIZATION IS NOT 
POSSIBLE. 

my mS , 

 



Spe 
ARRAY PROCESSING (CON’T.) - 

nn Y¥2. 
e@ [F THE BUELT-IN FUNCTION HAS ARRAYED ARGUMENTS (AND 

THE ARRAYNESSES OF ALL ARGUMENTS MATCH THE ARRAYNESS OF 

THE EXPRESSION -- AN ERROR WOULD OTHERWISE RESULT) THEN 

_ JHE FUNCTION IS INVOKED ONCE PER ELEMENTAL EVALUATION, 

ON EACH EVALUATION THE FUNCTION OPERATES ON SUCCESSIVE 

ELEMENTS OF THE ARRAYED INPUT ARGUMENTS. 

EXAMPLE 

DECLARE ARRAY(20), S$, T, Uy 

S = ARCTAN2(T,U) 

THIS IS EQUIVALENT TO: 

DO FOR 1 = 1 T0 20; 

- $$] = ARCTAN2(T$I, UST); 

END; 

 



  

ARRAY PROCESSING (CON’T,) $2 

IMPORTANT NOTE: 

IF THE BUILT-IN FUNCTION NORMALLY TAKES AN ARRAYED ARGUMENT 

THEN THE FUNCTION ACTS ON THE WHOLE ARGUMENT EACH CYCLE THROUGH 

THE ARRAYED EXPRESSION, 

SUCH BUILT-IN FUNCTIONS ARE: 

(2 IS Al-, 2-, or 3-DIMENSIONAL ARRAY OF INTEGERS OR SCALARS) 

MAX (a) MAXIMUM (GREATEST) ELEMENT OF THE ARRAY 

MIN(e) MINIMUM (LEAST) ELEMENT OF THE ARRAY 

PROD(«) PRODUCT OF ALL ELEMENTS OF THE ARRAY 

_ SUM(e) - _ SUM OF ALL ELEMENTS OF THE ARRAY 

Wey



EXAMPLE 

DECLARE ARRAY(20), S, Ts Us 

S = T+ SUN(); TarrAvness oF U NEED Nor matcH S & T, 

THIS 1S EQUIVALENT TO: 

DO FOR 1 = 1 TO 20; 

S$I-= TSI + SUN(U)s 
END; ~ pers LIKE A CONSTANT 

  

| 53 
ARRAY PROCESSING (CON'T.) ¢4¢ 

C. ARRAYED ASSIGNMENTS 

AN ARRAYED ASSIGNMENT IS OF ONE OF THE FOLLOWING THO FORMS: 

@ _ARRAYED UNARRAYED 
DATA ITEM EXPRESSION 

@ _ARRAYED* . ARRAYED* 
DATA ITEM EXPRESSION 

* - IN THIS CASE, OF COURSE, ALL ARRAYNESSES MUST MATCH, 

 



  

-. 52 ARRAY PROCESSING (CON’T.) 

AMY S 
IN CASE @) » ALL ELEMENTS OF THE ARRAY ON THE LEFT-HAND~SIDE 

OF THE ASSIGNMENT STATEMENT ARE IDENTICALLY SET EQUAL TO THE 

RIGHT~HAND EXPRESSION: 

DECLARE ARRAY(10), A, Bs 

A= 0; ALL 10 ELEMENTS OF A ARE ZEROED 

A = SUM(B); ALL 10 ELEMENTS OF A ARE SET EQUAL To 
THE SUM OF ALL “ELEMENTS OF B 

A = C0S(15), ALL 10 ELEMENTS oF A ARE SET EQUAL TO THE 

SCALAR CO0S(15) 

IN CASE: (2) » SUCCESSIVE ELEMENTS OF THE LEFT-HAND-SIDE ARRAYED 

DATA ITEM ARE SET TO CORRESPONDING EVALUATIONS OF THE RIGHT-HAND- 

SIDE ARRAYED. EXPRESSION:



ARRAY PROCESSING (CON'T.) 

DECLARE ARRAY(10) INTEGER, 

M, NL Ps 

DECLARE ARRAY(5,10), S, T, Us 

fra 

P= M+ Nj 

1S EQUIVALENT TO: 

DO FOR I = 1 TO 10; 

PSI = MSI + NST; 
ENDs 

U=ST 

IS EQUIVALENT TO: 
_ DO FOR I =1 105; 

DO FOR J = I TO 10; 
USCLd) = S$(LJ) T$(1ad)s 
ENDs 

END; 

  

/¥¢



  

ARRAY PROCESSING (CON’T,) 3/ 
447 

Ch THAT OF RIGHT HAND SIDE 

1 Nt TESTD: 

1 Nt PROGRAM; 
2 4t STRUCTURE Q: 
2t 1 IE ARRAYC2, 3) INTEGER, 
2 Nt 1 8B ARRAYCS) BITC9), 
2 Nt 1 MM ARRAYC5S, 10, 45) MATRIXC4, 5), 
aut. 1 N ARRAYC40) INTEGER, 
2 Nt 4 Ut INTEGER; : 
3 Mt DECLARE Q Q-STRUCTUREC 38) INITIALC 684, GABIN-4-, (SOHC 20HG), 1944, 59; 4 Nt STRUCTURE S: : 
4oNt 1 C ARRAYC10) VECTORS); 
S Nt DECLARE § S-STRUCTURE(5); ‘ 
& Mt DECLARE T APRAYCS, 10) VECTQR(S)) 
PONT DECLARE U ARRAYCS, 16, 5) SCALAR: 

ct 
Et - - 

a8 ont CCC) = C£MM91 i 
St | S AT 955, 4,7:3,% 
Et - - 

3 Nt €T2 = CONMI2 3 St SAT 935.4,27:3,4 
Et - 

40 NT CW] = COMMI2. 3 
St 5 AT 315, #,7:3,% 

hak AAD ERROR #1 OF SEVERITY 4, &kkhen 
tok ARRAYNESS OF LEFT -HAND SIDE OF ASSIGNMENT DOES NOT NAT the AY ERROR #2 OF SEFERITY 4, bhkkS 
Aah T YPE OF U IS ILLEQAL FUR ASSIGNNENT FROM GIVEN RIGHT-HAND SIDE.
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ARRAY PROCESSING (CON’T.) 

DO FOR TEMPORARY I & 4 TO SEZECLEI): 

E.SCAL4 , E.SCAL2 = QO: 

I I 

END: 

STS EQu * 
L 7.4208) 
STH 7,4700) 

LEXI 2.4 
LBLA6 Eau * 

STAD 

ST#410 
LBL&S 

LBLA7 

STH 71600) 
CH Fil?) * 
ec 4.48445 
EQu * , 
NIH 7, 70704) 
LR 6,7 
SRA 6.4 
SRA os 
SER 0,8 
LH 2,18¢8) 
STE 8, 807,2> 
STE 8,266.2) 
EQu * 
Eau * 
LFXI 7.4 

fi 741600) 
BC 7) #16 
EQu & 

  

+ 

20 
yw 

Et2 

LBL@? 

H°40° 

LEL&6
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12 

13 

44 

Er 

Nt 

Nt 
St 
Nt 
St 
Nt 

45 Mt 

ARRAY PRu      

  

UD FOR TEMPORARY I 8 4 TO SIZECLEI)s 

E,SCALL 9 8: 
I 

E.SCAL2 = @5 
1 

ENO; 

ST#4id Eou 
tL . 

STH 
‘ LFAI 

LBLa9 EQU 
STH 
CH 
BC 

sT#42 0 EGU 
NTH 
SRA 
SER 
LH 
STE 

ST#12 EQu 
LH 
MIH 

SRA 
STE 

ST#14 EQU 
LBL#i4 Eau 

LFXI 
RH 
Bc 

LBL#10 | EAU 

CLOSE PROM; 

ST#45 EQu 
LBLa4 EQu 

Ltt 
BER 

ANG (LON'I.) 

+ 

* 

7.1200) 
714708) 
Mra 
* 

7 1606) 
7, 1708) 
4, eta? 
* . 

7, 7O7C4 
fod 
9,8 
2, 4000) ao 
e OC7,2> HW 

7, 1608) 
7, 70764) 
toh 
8,207.2) 
* 

* 
P74 

7.4608) 
7, #-13 
* 

# 
x 
Ay @> 
eed 

E+2 

I 

LBL#i9a 

H?10~ 

LELaS
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ARRAY PROCESSING (CON'T.) 

+ 

CALL PROC ASSIGNCL OI); 
+ 

CALL PROC ASSIGNCER I): 

ST#i6 EQuU ee 
LA 5,~8¢41) 
LHI 6,59 

: BAL 4,0¢3) 
ST#17 Eau * 

LA 5,492¢4) 
LHI 6,28 
BAL 4,6¢3) 

  

Q 

A2TESTC 

R 

R2TESTC
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FURTHER ARRAYED ASSIGNMENT EXAMPLES 
  

Given: 

DECLARE INTEGER, 
Il ARRAY (2,3), 
12, 
I3 ARRAY (2,3), 
I4 ARRAY (4)3 

then . 

_ PAYED -2_ UNARRAYED 
Ths 12; (Ag eOYED a Expeession) 

is an arrayed assignment in which all elements of 
Il are assigned the value of I2. 

‘ ED 
se ARRAYED = ARRAVE 

thes 73 DATA ITEM EXPRESSION 

assigns each element of I3 to the corresponding 
element of Il. 

Tl = 34;   
is illegal because the arrayness of the receiving 
data item is {2:2,3} while that of the right hand 
side is {1:4}, 

I2 = Il;   
is illegal because the right hand side has arrayness 
while the recaiving data item has none.



ARRAY PROCESSING (CON’T.) 
    

NOTE THAT THE FOLLOWING ARE ALSO POSSIBLE: 

Il = 11 + 13; 
ll = 11 13; 
I1 = [3«#2; 

“TL = 13/123 

 



  

ARRAY PROCESSING (CON'T,) 

Further given: 

| STRUCTURE Q: 
| 1 QI INTEGER, 
j Lai, 
i 2 QS ARRAY (4) SCALAR, 
' 2 QC CHARACTER (80); 
| DECLARE 2Q1 Q-STRUCTURE (2); 
| DECLARE 2Q2 Q-STRUCTURE (2); 
| DECLARE § ARRAY (2,4) SCALAR; 

the following assignments are legal: 

{ 
i 2Q1 = 202; 
} 291.091 = 202.01; 
1 201.01.QS = 202.01.05; 
| 201-91.98 = 8;



ARRAY PROCESSING (CON'T,) 

D. MULTIPLE ASSIGNMENTS 

MULTIPLE ASSIGNMENTS HAVE BEEN DISCUSSED PREVIOUSLY, 

TO EXTEND THEM TO ALLON ARRAYED BEHAVIOR WE NEED THE 

FOLLOWING ADDITIONAL RULE: 

  

IF ONE RECEIVING DATA ITEM POSSESSES 
ARRAYNESS, THEN ALL MUST POSSESS 

MATCHING ARRAYNESS, .   
  

 



  

ARRAY PROCESSING (CON'T.) 

EXAMPLES OF MULTIPLE ARRAYED ASSIGNMENTS: 

Given: 

! 

! DECLARE INTEGER, 
Il ARRAY (2,3), 
I2, 
I3 ARRAY(4), 
I4 ARRAY (2,3)} 

then 

. Tl, I4 = 12; 

is legal since the arrayness of Il and 14 match. 

However, both of the following are illegal: 

Il, 12 = 12; 
Il, I3 = 14;  



“Ps NM pe. 

ARRAY PROCESSING (CON'T,) 
  

DECLARE I ARRAY(3) INTEGER, 
M MATRIX(2,2)4 
MA Anna) MATRIX 62,2}, 
MB ARRAY(2) MATRIX(2,273 

Let WF (3:78 0.25] and [ = /2 
0.75 1.25. 1 

1 

= {4 { .78 1,25] then = 2,8 a (=::) (tas 0.25] 
Me 11.75 0,25) 

~ 4@ linear J-array of 2-vectors: subscripting 
has reduced M from a matrix to a row~vector, 
but since I is arrayed, the entire operand has 
an effective arrayness even though M itself has 
not. - . 

 



. 
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ARRAY _PROt 

Given: 

DECLARE ARRAY (2,3), — 
V VECTOR (3), 
I INTEGER; 

with v 2/ [1.5] [4.5} [7.5 
2.5; 15.5] |a.5 . 
3.5} 16.5| 19.5 

-0.5| |-3.5} |-6.5 
=1.5] [4.5] |-7.5 
-7.5| |-sis| |-a's NOTE THAT THE ARRAYNESS OF 

and I (j 2 3) _ V$Cs,*:) MATCHES THE 
3 12 

ARRAYNESS oF | 
then 

Vnarl << V¢ (ok, ; T). 

is equivalent toe 

. Ven dTy, for l<i¢2,1l1¢f<3



aos, 

ARRAY PROCESSING (CON‘T.) 

The arrayed vector subscript I selects an array of 

scalars from the vector array V as shown below: 

' 

  

In assignment context, the following values of V 

would be changed:- 

Vyjarn Va,2:2 ay323 

Vo,u:3 Y2,a:1 2,322 

 



E, 

  

ARRAY PROCESSING (CON’T.) 

ARRAYED SUBSCRIPTING 

Q, WHAT HAPPENS WHEN A SUBSCRIPT IS ITSELF AN ARRAY 

OR HAS ARRAYNESS? 

A. THAT IS A GOOD QUESTION. 

SOME RULES: 
(1) IF BOTH THE OPERAND (I.E,, DATA ITEM) AND THE SUBSCRIPT 

HAVE ARRAYNESS THEN THE ARRAYNESSES MUST MATCH! IN 
, THIS CASE, THE WHOLE OPERAND IS CONSIDERED TO HAVE THAT 

SAME ARRAYNESS, 

(2) IF ONLY THE SUBSCRIPT IS ARRAYED, THEN THE OPERAND 

ITSELF BECOMES ARRAYED, 1.E., IT INHERITS THE ARRAYNESS 

OF ITS SUBSCRIPT.



ARRAY PROCESSING (CON'T,) 

NOTES: 

(A) 

(B) 

NOW, 
(1) 

(2) 

EXPONENTS CAN HAVE ARRAYNESS ALSO, 

SUBSCRIPTS, OF COURSE, CAN IN TURN HAVE SUBSCRIPTS 

AD INFINITUM, ONE OR MORE OF THESE CAN BE ARRAYED -- 

PROVIDED ALL ARRAYNESSES MATCH, 

IF THE SUBSCRIPTED OPERAND IS PART OF AN ARRAYED 
EXPRESSION (E.G. IN AN ARRAYED ASSIGNMENT) THEN 
THE ARRAYED SUBSCRIPT(S) ARE EVALUATED ONCE PER 
ELEMENTAL EVALUATION OF THE EXPRESSION, NOTE THAT 
ALL ARRAYNESSES MUST MATCH, 
IF THE SUBSCRIPTED OPERAND IS A RECEIVING DATA ITEM 
IN AN ASSIGNMENT (LEFT-HAND SIDE) THEN THE ARRAYED 
SUBSCRIPT IS EVALUATED ONCE DURING EACH ELEMENTAL 
ASSIGNMENT. AGAIN, ARRAYNESSES MUST MATCH, 

  

 



  

ARRAY PROCESSING (CON’T.) : 

IF 

DECLARE I ARRAY(2,3) INTEGER 

INITIAL(1,2,3,3,1,2)5 

SO THAT 
l= 1 2 > ~ 

3 12 

Note that an arrayed subscript can actually generate 
arrayness in an unarrayed data item, . For example, if - 

ae 

C is an unarrayed character string with C ='ABCD! 

then 

C, has the arrayneas of I. 

The values are selected ag follows: 

a ‘ 

yt tpt ‘s) 

'XBCD' tot tar age 
” 

Then c||c, would be an arrayed expression with 
values: 

‘ABCDA' 'ABCDB' tapcpc! 
"ABCDC' 'ABCDA' 'apcpB!



ARRAY PROCESSING (CON’T.) 

In an assignment context, the following values of 

C would be changed: 

Note that values of Cyr Cy and Cy would be each 

changed by two elemental assignments. The results 

of this assignment are therefore likely to be implemen- 

tation dependent.
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Let MA = [2-0 9-9] 
3.0 2.6 @ y= 2 
4.0 7,0 

(8:8 Bal @ tal 
(i3 373] @r=1 
4.0 9.0 3 

Mosn,e 

Myi.,e 
is also a linear 3~array of 2-vectors: now 

» however MA and [ both have arrayness (which 
correctly match). Three parallel subseript 
evaluations are effectively performed using 
corresponding array elements of MA and | 
each time. . : 

: HM 13.0 2.0] 1t2,6 Then MAgi) 9 2 er ) £ (« ra] 
{8.0 _ 3.0) 

” Note MBo ste 4s illegal since the array~ 
ness of MB does not match the 
arrayness of |, 

However MB, a is legal since array subscripting » 
‘*. 70 24° has been used on ! to force array~ 

necs matehing. . 
’ 

If MB 2 /f0.5 0.5 I, #2 
[o:3 | Oy 
0.2 -0.7 r= 

[ora 08 ®t 

then MBY, az volt? | 2 {0.1 0,3) 
thy po 22% (t!2** [0.2 0.7) 
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ARRAY PROCESSING (CON’T.} s/ 
ARRAYED COMPARISONS 7¥ $ 

ARRAYED OPERANDS MAY BE USED IN RELATIONAL EXPRESSIONS -- o # 

BUT IF ONE OR BOTH OPERANDS OF A COMPARISON HAVE ARRAYNESS, 

THEN ONLY THE CLASS I] COMPARATIVE OPERATORS MAY BE USED, 

LE, = AND 75, 

ADDITIONALLY, OF COURSE, THE ARRAYNESSES MUST MATCH, 

FURTHERMORE, A BOOLEAN EXPRESSION IN A CONDITIONAL CLAUSE 

CAN BE ARRAYED: . 

DECLARE BOOL ARRAY(10) BOOLEAN; 

iF [Bool] THEN DO; 

IN THIS CASE THE THEN CLAUSE WILL BE EXECUTED IF AND ONLY IF 

ALL 10 BOOLEANS ARE TRUE.



  

ARRAY PROCESSING (CON’T.) 

EXAMPLES 

DECLARE I ARRAY(4) INTEGER 

INITIAL(1,2,0,3), 

J ARRAY(4) INTEGER 

INITIAL(1,2,0,3), 

: K ARRAY(4) INTEGER 

INITIAL(3,1,2,6), 

L ARRAY(2) INTEGER 

INITIAL(O,3)3 

(1) IF T= J THEN 
TRUE 

(2) IF J = K THEN 

  

FALSE 

(3) IF J = K THEN 
ett stmt 

_ TRUE



(4) 

(5) 

ARRAY PROCESSING (CON'T.) 

  

IF I < J THEN 
ILLEGAL 

IF 1$3 < J$2 THEN 

LEGAL 

IF K = L THEN 

ILLEGAL 

IF K$(2 AT 1) = L THEN SS eee 

FALSE 

é e . 

{vo



  

ARRAY PROCESSING (CONT'D. ) 
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INTEGER, 
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ARRAY PROCESSING (CON'T.) 

3/ 
REVIEW OF INDEFINITELY ARRAYED PARAMETERS y oJ 

INDEFINITELY ARRAYED PARAMETERS 

THE PARAMETERS OF FUNCTIONS AND THE INPUT OR ASSIGN PARAMETERS 

OF PROCEDURES MAY BE DECLARED TO BE INDEFINITE ARRAYS. THE 

FORM OF ARRAY SPECIFICATION IS: 

ARRAY (*) 

Examples: 

TWICE: PROCEDURE (A) ASSIGN (B); 

DECLARE A ARRAY («) VECTOR (3); 

soe B ARRAY (+) BIT (16); 
Be Yee Mey ae 

Yi procedure body 

  
CLOSE TWICE; . 

REMEMBER THAT THE SIZE FUNCTION CAN BE USED TO FIND THE 

ACTUAL SIZE OF THE ARRAY AT RUN TIME.



» AKKAT PRULCOOLNO (LUN Ta? 
  

THE NUMBER OF MULTIPLE COPIES IN A STRUCTURE PARAMETER 
MAY ALSO BE MADE INDEFINITE USING THE FOLLOWING FORM: 3/ 

STRUCTURE (*) 
Example: Ys-2, 

FUN: FUNCTION(C) SCALAR; 
STRUCTURE Q: 

1 QI INTEGER, 
1 QS SCALAR; 

  

HERE, T00, THE SIZE FUNCTION CAN BE USED, 

Note that the ability to define an indefinite array does 

not extend to an arrayed structure terminal. 

Example: 

BAD: FUNCTION(C) SCALAR; 
STRUCTURE Q: 

1 QL INTEGER, 
1 QS ARRAY (s) SCALAR; + illegal 

DECLARE C Q-STRUCTURE; 

ea ay oe ee 

LE Re 

CLOSE BAD}; 
    | function body 

  

{ 
i 
1 
1 
t 
' 
1 
1 to 

i 
! 
| 
{ 
i 
| 
{ 
1 
1 
{ 

 



  

ARRAY PROCESSING (CON'T.) © S/ 

H. ARRAYED PROCEDURE ARGUMENTS : AS 3 
BOTH INPUT AND ASSIGN ARGUMENTS OF A PROCEDURE INVOCATION 

MAY POSSESS ARRAYNESS, HOWEVER, THE CORRESPONDING PARAMETERS 

OF THE PROCEDURE MUST BE ARRAYED ALSO -- AND HAVE THE SAME 

ARRAYNESS, 

  

IF THE PARAMETER IS ARRAY(*) THEN ONE SHOULD PASS IN A 1- 

DIMENSIONAL ARRAY. 

© INPUT ARGUMENTS 

THE INPUT PARAMETER CAN BE VIEWED AS BEING ASSIGNED INTO 

FROM THE INPUT ARGUMENT, ARRAYNESSES MUST MATCH, BUT 

FLEXIBILITY IS ALLOWED IN THAT THE INPUT ARGUMENT MAY BE 

A NON-CONTIGUOUS ARRAY AND/OR OF DIFFERING PRECISION, 

IT MAY EVEN BE OF DIFFERING DATA TYPE IF AN APPROPRIATE 

IMPLICIT CONVERSION CAPABILITY EXISTS,



ARRAY PROCESSING (CON’T.) 
52 

EXAMPLE: ¢s 4 

STRUCTURE Q: 

1 I INTEGER, 

1S SCALAR DOUBLE, 

1M MATRIXs 

DECLARE Q Q-STRUCTURE(100) 5 

ALPHA: PROCEDURE(T)s 

DECLARE T ARRAY(50) SCALAR; 

CLOSE ALPHA ; 

# 8 6 

CALL he AT 27))3 

  

HAS DATA TYPE INTEGER (IMPLICITLY CONVERTIBLE 

TO SCALAR) AND ARRAYNESS {1:50} 

 



© ASSIGN ARGUMENTS 

RULES 

1. 

3. 

4. 

  

ARRAY PROCESSING (CON'T,) aj 

fss~ 
(SIMILAR TO THOSE FOR NON-ARRAYED ASSIGN PARAMETERS) 

The arrayness of the argument must 
match that of the. corresponding para~ 
meter, 

If the parameter is an indefinite 
array, arrayness matching is ensured 
if the corresponding argument is a 
1-dimensional array, — 

If the argument is part of a structure 
which has multiple copies, structure 
subscripting must be used to limit the 
number of copies in the argument to one, 

If array subseripting is present it 
must be such as to select one array 
element only, 

If component subscripting is present, 
where necessary array subscripting must 
be used to limit the number of array elements in the argument to one, \



ARRAY PROCESSING (CON‘T.) 

NOTE: THE MORE STRINGENT RULES FOR ASSIGN PARMS/ARGS 

RESULT FROM THE FOLLOWING FACTS: 

D 

2) 

WHETHER INPUT OR ASSIGN, ARRAYS 

ARE PASSED BY POINTER (REFERENCE). 

ON THE INPUT SIDE THIS MAY BE A 

POINTER TO AN ARRAY TEMPORARY 

CREATED BY THE COMPILER TO MAKE 

DATA CONTIGUOUS, CHANGE PRECISION, 

ETC. 

ON THE ASSIGN SIDE, THE PROCEDURE 

MODIFIES THE ORIGINAL DATA DIRECTLY. 
  

 



  

a ARRAY 

  

PESSING (CON’T.) 

EXAMPLE 1: 

‘ 

| ONE:: PROCEDURE (A) ASSIGN (B); / 
DECLARE A ARRAY(2,3) SCALAR, 

B ARRAY (4) BIT(16); 

procedure body    
_ CLOSE ONE; 

and the following data declarations: 

DECLARE Pl ARRAY (2,3) SCALAR, 
. P2 ARRAY (2,5) SCALAR, 

P3 ARRAY (4) BIT (16), 
P4 SCALAR, 
P5 ARRAY (2,5) BIT(16), 
P6 BIT(16)}   

“6 then some legal and illegal invocations of the 
procedure are as follows: 

CALL GNE(P1) ASSIGN(P3); 
CALL ONE (P2 ) ASSIGN (P3); 

: *,1 TO 3 
| 
Is ' 
| CALL ONE (P2. + Pl - PA) ASSIGN(P6); 

. Is. , *,3 TOS | illegal - not arrayed 
| CALL ONE(P4) ASSIGN(PS ys 
'g 1,1 TO 4 

enareein, eee 

Lutegai arrayness but 
illegal subscript 

illegal - not arrayed



ARRAY PROCESSING (CON’T.) 

EXAMPLE 2: 

| 

| 
| 

  

TWO: PROCEDURE (A) ASSIGN (B); 
DECLARE A ARRAY(s*) SCALAR, 

B ARRAY (w) BIT(16); 

WY) VY) = body 

CLOSE TWO; 

  

      

CALL TWO(P1 ) ASSIGN(P3); 
. 1,* 

s 1,* 
" GALL THO(P2 —-) ASSIGNIP3); 

{ 

CALL TWO(P1) ASSIGN(P6): 

Illegal ~ not arrayed 

Illegal ~ wrong number 

of array dimensions 

 



  

ARRAY PROCESSING (CON’T.) 

I, ARRAYED FUNCTION ARGUMENTS Y¢SY 

RULES 

(@) IF A PARAMETER IS ARRAYED, THEN THE CORRESPONDING 

ARGUMENT MUST BE IDENTICALLY ARRAYED, 

IF THE PARAMETER 1S UNARRAYED IT IS POSSIBLE FOR THE 

ARGUMENT TO HAVE ARRAYNESS -- IN THIS CASE, PROVIDED 

ALL ARRAYNESSES MATCH UP IN THE REST OF THE STATEMENT, 

THE FUNCTION WILL BE INVOKED ONCE PER ELEMENTAL 

EVALUATION, 

EXAMPLE 1 ve THE FUNCTION EXPECTS AN ARRAY THEN v1. 

ALPHA: FUNCTION(R)5 IT MUST GET ONE! 

DECLARE R ARRAY(10); 

RETURN SUM(R)s 

CLOSE; 
' 8 

DECLARE. $, T3 
T = ALPHA(S);<—— ILLEGAL -- S 18 NoT AN ARRAY(10) 

 



ARRAY PROCESSING (CON'T, )- 34 

EXAMPLE 2 #60 
ALPHA: FUNCTION(R); 

DECLARE R; 

RETURN R**2 COS(R)y 

CLOSE; 

DECLARE ARRAY(10), S, T, Us 

DECLARE V; 
o 8 ot 

a 

(A) [s] = (1) + aLPHac(u}), 
(B) [s] = [1] + ALPHACY)s 

| -®_ eauivatent To DO FOR I = 1 10 10; 
S$] = TSI + ALPHACUSI) 

END; 

  
  

U MUST HAVE SAME ARRAYNESS as S AND T 

  

  

  

EQUIVALENT. TO DO FOR I = 1 TO 10; 
S$I = T$I + ALPHACY); 

ENDs       

  

 



  

RAVELING & UNRAVELING 

(NATURAL SEQUENCE) 

EXCERPT FROM LANGUAGE SPEC, 

There are several kinds of operation in the HAL/S 
language which require operands with multiple components, 
array elements, and structure copies to be unraveled into 
a linear string of data elements. The reverse process of 
“reraveling" a linear string of data elements into components, 
array elements, and structure copies also occurs. ‘Two major 
occurrences of these processes are in 1/0 (see Section 10), 
and in conversion functions (see Section 6.5). 

The standard order in which this unraveling and 
reraveling takes place is called the “natural sequence" 
By applying the following rules in the order they are stated, 

. the natural sequence of unraveling is obtained. By applying 
the rules in reverse order, and replacing "unraveled" by 
"reraveled", the natural sequence for reraveling is obtained. 

‘ 

RULES FOR MAJOR AND MINOR STRUCTURE: 

1. If the operand is a major structure with multiple copies, 
each copy is unraveled in turn, in order of increasing 
index. If the operand is a minor structure of a multiple- 
copy structure, then the copy of the minor structure in 
each structure copy is unraveled in turn in order of 
increasing index. 

The method of unraveling a copy is as follows. Each 
structure terminal on a "branch" connecting back to the 
given major or minor structure operand is unraveled in 
turn. The order taken is the order of appearance of the 
terminals in the structure template. 

Each structure terminal is unraveled according to the 
Rules given below.



RAVELING & UN’ “LING (CON’T.) 

  

  

example: 

STRUCTURE A: 
1B, 

2 C SCALAR, 
2 D VECTOR(3), . 

1 E INTEGER; 
DECLARE A A-STRUCTURE(3); 

« order of unraveling of B Is B, , £91,2,3 

® order of unraveling of each B, Is C.D,   
  

RULES FOR OTHER OPERANDS: 

i. An operand of any type (integer, scalar, vector, matrix, 

bit, character, or event) may possess arrayness as 

described in Section 5.4. Each dimension of arrayness, 

starting from the leftmost is unraveled in turn, in order 

of increasing index. : 

Integer, scalar, bit, character, and event types are 
considered for unraveling purposes as having only one 
data element. 

Vector types aré unraveled componerit by component, in 
order of increasing index. 

Matrix types are unraveled row by row, in order of 
increasing index. The components of each row are 
_unraveled in turn in order of increasing index. 

er, 

 



  

RAVELING & UNRAVELING (CON’T,) 

  

  

example: 

DECLARE V ARRAY(2,2) VECTOR(3) ; 

e order of unraveling of V Is Vie 7 11,2 

« order of unraveling of each Vy oe Is Vy he j=1,2 

e order of unraveling of each vi he Is Vy, Ik k=1,2,3 

(standard NAL/S subscript notation used) 

   



a I 

RAVELING & UNRAVELING (CON‘T,,) 
{ i t 

IF 

STRUCTURE Q: 

LA, 

2 | INTEGER, 

25, 

1B, 

2 V1 VECTOR, 

. 273 

DECLARE Q Q-STRUCTURE(2) 

INITIAL (2,4.0,1,2,3,6.7,-2,8.4,4,5,6,9.5)5 

DECLARE M MATRIX INITIAL(1,0,2,2,0,-1,1,0,3); 

DECLARE A ARRAY(7) BOOLEAN 

INITIALCTRUE, FALSE, TRUE, 4#FALSE)s 

THEN 
(@, M, A) UNRAVELS INTO THE LINEAR STRING: 

ee COPY L nee a COpy 2 

2, 4.0, 1, 2, 3, 6.7, -2, 8.4, 4, 5, 6, 9.5, 
@*row l-» «row 2-> «row 3-- 

L 0, 2, 2, 0, -l, 1, 0, 3, TRUE, 

’ FALSE, TRUE, FALSE, FALSE, FALSE, 

FALSE 

 



A. 

  

EXPLICIT CONVERSIONS (CON‘T.) 

REVIEW AND EXTENSION OF VECTOR/MATRIX CONVERSTONS 

WITH THE VECTOR AND MATRIX CONVERSION FUNCTIONS, 

VECTORS AND MATRICES CAN BE DYNAMICALLY MANUFACTURED. 

  

THESE CONVERSION FUNCTIONS ACCEPT AS INPUT A LINEARIZED 

LIST OF SCALARS (OR INTEGERS) THAT MAY HAVE BEEN THE 

RESULTS OF UNRAVELING OTHER DATA ITEMS.’ THE CONVERSION 

FUNCTIONS THEN SHAPE THIS LINEAR STREAM INTO A VECTOR OR 

MATRIX -- THIS IS WHY THESE FUNCTIONS ARE ALSO KNOWN AS. 
  

SHAPING FUNCTIONS 
    
 



EXPLICIT CONVERSIONS (CON'T.) 

THE EXPLICIT CONVERSIONS ALLOW FAIRLY GENERALIZED INPUT 

STREAMS, BUT ARE MORE RESTRICTIVE THAN, SAY, A WRITE 

STATEMENT, FOR EXAMPLE, THE INPUT STREAM TO AN 

EXPLICIT CONVERSION FUNCTION MAY NOT CONTAIN A STRUCTURE, 

The argument list of a VECTOR or MATRIX conversion may take 
the following general form: 

  

, (exp, exp” sence ss) 

1. Each exp is an expression of any 
of the following types: 

MATRIX INTEGER 
VECTOR SCALAR 

2, Any expression may possess array~- 
ness in the sense desoribed in 
Section 20.2. 

3. The total number of values summed 
over all expressions must match 
the length of the vector result, 
or the product of the row and 
column dimensions of the result, 
as appropriate.       
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EXPLICIT CONVERSIONS (CON'T.) 

EXAMPLE (ILLEGAL USAGE) 

Nt SHAPE: 
Nt PROGRAM 
Ht STRUCTURE @: 
Nt a Af 
Nt \ 2 Vi VECTOR, 
Nt 2 M4 MATRIX, 
Nt 1B, 
Nt » 2@ ¥2 VECTOR, 
Nt 2 "2 MATRIX: 
Nt DECLARE @ Q-STRUCTUREC4) INITIALC 344, 982, 383, 944); 
Nt DECLARE S ARRAY(4) SCALAR DOUBLE INITIALC10, 44, 12, 4393 
Nt DECLARE MN MATRIXC1@, 18) DOUBLE: 
ct 
Et * + 
Nt MN = MATRIX C£Q1, €S3)s 
St ODGUBLE, 18,198 
OX ERROR @41 OF SEVERITY 1. kkkES 
CONVERSION FUNCTIONS NAY NOT HAVE ARGUNENTS OF STRUCTURE TYPE 
Add ERROR #2 OF SEVERITY 4, #hbde 
DINENSIONS OF VECTOR/HATRIX CONVERSION FUNCTION DO NOT AGREE NITH THE NUMBER 
OF DATA ELEMENTS SUPPLIED IN THE ARGUMENT LIST 

Nt CLOSE:



C
G
A
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W
A
N
N
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EXPLICIT CONVERSIONS (CON’T,) 

EXAMPLE (PROPER USAGE) 

Nt SHAPE: 
Nt PROGRAM 
ut DECLARE VECTORC3) INITIALC4, 21 3, 
Nt . Vi, V2, V3. V4, V5s V6. V7, ¥8, V9, V4@) 

Nt DECLARE MATRIXC3, 3) INITEALCA, @, 8, 8, 1+ 8 8 @ 1), 
ht Na, H2, N3, N4, NS) 
Nt DECLARE S ARRAYCS, 5) SCALAR DOUBLE INITIALC2): 
Nt DECLARE NM MATRIXC1@, 40) DOUBLE) 
Ct 
Et * - * - * ~ * ~ * 

6 Nt NM = MATREX CV¥4i, M4, £52, V2, M2, VY3e M3, V4, M4, 
st @DOUBLE, 10,190 . 

? Nt closes 34 rr -; 
( V5, MS, V6, Y7, V8, V3, vid>s 

WeiTTEN AS 

MM = MATRIX $ (Q@DoUBLE 10, 40)(v4i, M4 
cer 

 



  

EXPLICIT CONVERSIONS (CON’T, ) 

IT IS ALSO POSSIBLE TO MIX IN ‘#! FORM OF REPETITION: 

DECLARE V VECTOR INITIAL(1,2,3)3 

DECLARE M MATRIX INITIAL(L)s 

DECLARE’ HM MATRIX(4,4) 

NM = MATRIX$(4,4) CV, 486, s 
OR 

MM = MATRIX$ (4,4) (16#0), 

BOTH WILL RESULT IN SINGLE PRECISION MATRICES, 

ALSO, 
V = VECTOR(6,8,9)3



EAFLIULL] LUN’ MOLUNS (LUNE) 

  

  

MATRIX/VECTOR SHAPING (CONVERSION) FUNCTION DEFAULTS ARE: 

VECTOR(3) 

MATRIX(3,3) & SINGLE PRECISION 

B. INTEGER AND SCALAR CONVERSIONS 
  

SIMPLE FORM 

The simple form of the INTEGER and SCALAR ‘conversion functions 
dis: 

  

INTEGER (exp) 
SCALAR (exp) 

1. exp is an expression of any of the 
following types: . 

BIT STRING (and BOOLEAN) INTEGER 
CHARACTER SCALAR 

. 2. exp may possesS arrayness, in which 
case the arrayness must match that of 

. the expression of which the conver- 
sion forms a part. The result is to 
cause an elemental conversion for 
every elemental evaluation of the 
outer expression (See Section 20.2). 

3. Conversions to integer or scalar type 
‘proceed according to the rules given 
in Appendix A,       

 



a, 

     

EXPLICIT CONVERSIONS (CON'T,) 

WHAT DOES ALL THAT MEAN? 

REMEMBER THAT WE 

SCALAR SINGLE 

INTEGER SINGLE 

INTEGER DOUBLE j. 
+ 

SCALAR DOUBLE 

INTEGER SINGLE 

INTEGER DOUBLE | 

SCALAR SINGLE 

SCALAR DOUBLE 

INTEGER SINGLE | 

“SCALAR SINGLE 

SCALAR DOUBLE 

INTEGER DOUBLE. | 

IN ASSIGNMENT STATEMENTS AND IN INPUT ARGUMENT =>INPUT PARM. 

HAVE IMPLICIT CONVERSIONS FOR 

p> SCALAR DOUBLE 

+ >SCALAR SINGLE 

| >> INTEGER DOUBLE 

}— > INTEGER SINGLE   
 



EXPLICIT CONVERSIONS (CON’T.) 

FOR ALL OTHER CASES, THE CONVERSION FUNCTION IS AVAILABLE. 

ONE CAN, OF COURSE, USE A CONVERSION FUNCTION EVEN WHEN AN 

IMPLICIT CONVERSION CAPABILITY EXISTS: 

DECLARE S SCALAR. DOUBLE, 

TL -INTEGER; 
ONE CAN USE: 

$=]; 

OR 

S = SCALAR$(aDOUBLE) (1); 

EQUIVALENT CODE WILL RESULT. 

 



an 

  

EXPLICIT CONVERSIONS (CON’T.) 

EXAMPLES 
  

“© DECLARE ARRAY(20), S SCALAR, 
T SCALAR, I INTEGER, 

Ses CONVERSIONS (ARRAYED DATA) 
I= 5S; 

“OR 

S = SCALAR(I)3 

I = INTEGER(S); 

AND ALSO, 

S#T+ly 

OR 

S = T + SCALAR(I)s 

EXPLICIT CONVERSIONS (ARRAYED DATA) 

  

THE OUTPUT WRITER, OF COURSE, WILL SHOW 

[s] = [1] 
[1 = [s] 
[s] = SCALAR ({1])s 
[tJ = inteserc(s})s 

Is} = (t] + [1] 
Is} = [T] + scacarc{i});   
   



EXPLICIT CONVERSIONS (CON’T.): 

CONVERSIONS TO INTEGER: 

—_____- BIT STRING/BOOLEAN 

‘A BIT STRING IS CONVERTED TO INTEGER BY REGARDING IT 

AS THE BIT PATTERN OF A SIGNED INTEGER OF THE DESIRED 

‘ PRECISION. LEFT PADDING WITH ZEROS, OR TRUNCATION 

ON: THE LEFT MAY OCCUR. 

1+ SCALAR 

A SCALAR IS CONVERTED BY ROUNDING TO THE NEAREST 

WHOLE NUMBER (OVERFLOW MAY RESULT), 

|____--_-© CHARACTER 

A CHARACTER STRING IS CONVERTIBLE TO INTEGER ONLY IF ITS 

VALUE REPRESENTS A SIGNED HHOLE NUMBER -- OR IS A NULL 

STRING IN WHICH THE INTEGER IS SET TO ZERO, (RUN TIME 

ERRORS MAY OCCUR, )   
INTEGER 

pe 

 



  

EXPLICIT CONVERSIONS (CON’T.) 

CONVERSION TO SCALAR: 

——__——eBIT STRING/BOOLEAN 

FIRST IS CONVERTED TO A DOUBLE PRECISION 

INTEGER! 

TF ee | 
INTEGERS ARE CONVERTED DIRECTLY TO SCALAR. ON 

THE AP-101 THERE 1S SGiE MICROCODE ASSISTANCE, 

~<——_———---—--@ CHARACTER . 

A CHARACTER STRING IS CONVERTIBLE TO SCALAR ONLY. 

IF ITS VALUE REPRESENTS A LEGAL SCALAR - OR INTEGER - 

VALUED LITERAL -~ OR IS A NULL STRING IN WHICH CASE   
~ SCALAR 

THE SCALAR IS SET TO ZERO. (RUN TIME ERRORS MAY OCCUR, )



©o
e®
@ 

EXPLICIT CONVERSIONS (CONTA) 

FURTHER EXAMPLES (SIMPLE INTEGER & SCALAR CONVERSIONS) 

DECLARE I INTEGER, 

S SCALAR: 

I = INTEGER(’306’); 

‘T = INTEGER(’-402')5 

I = INTEGER('ABC’); 
Neen yorece 

Q
O
O
 

ILLEGAL 

§ = SCALAR('10) 
§ = SCALAR('-6,9UE-31'), 
§ = SCALAR('AB’); 

eee! 

  

ILLEGAL 

@ I= INTEGER(**); nue STRING 

S = SCALAR(''); 

1& S$ WILL BE 0. 

 



  

EXPLICIT CONVERSIONS (CON’T.) 

ALSO, IF 

DECLARE B BIT(8) INITIAL(BIN’10110101'), 

1 INTEGER: 

THEN 

T= B) 1S ILLEGAL 

BUT 

I = INTEGER(B); 

RESULTS IN 
1 =181



EXPLICIT CUNY KSIUNS (LUN’ 1.) 

LIST FORM 

The list form of the INTEGER and SCALAR conversion functions 

creates an array result, in addition to type converting the 
list of expressions constituting its arguments. 

as follows: 

Its form is 

  

1. 

2.   

‘INTEGER., 5 (exp, exp" pees) 
Ty poe 

1 
SCALAR., 5 (exp’, exp, vee) 

Ayn peas 

The subscripts n* for i = Li2yess 
are positive integers specifying the 
number and size of dimensions of the 
resulting array. The total number 
of values summed over all the expres- 
sions in the list must be consistent 
with the number of array elements 
implied. The upper limit on i is 
3*, ° . 

The subscripts may be omitted 
entirely, in which case a linear 1- 
dimensional array is created, whose 
length is equal to the total number 
of values summed over all the déxpres- 
sions. : 

  

 



4. 

  

EXPLICIT CONVERSIONS (CON’T.) 
erent iit 

Each exp is an expression of any of 

the following types: 

INTEGER MATRIX 

SCALAR BIT STRING (and BOOLEAN) 

' VECTOR , CHARACTER 

and may optionally possess arrayness. 

Conversions to integer or scalar type 

proceed according to the rules given 

in Appendix A. 

 



THE LIST FORM THUS ALLOWS CREATION OF INTEGER/SCALAR ARRAYS OF 
FROM 1 TO 3 DIMENSIONS, 

AS IN THE CASE OF THE VECTOR/MATRIX CONVERSION FUNCTIONS, A 
PRECISION MAY BE SPECIFIED (DEFAULT IS SINGLE) FOR THE INTEGER 
AND SCALAR CONVERSION FUNCTIONS: 

EXAMPLES . 

(1) DECLARE A ARRAY(5) INTEGER 

INITIAL(1,2,3,4,5), 

B ARRAY(5) INTEGER 

INITIAL(6,7,8,9,10)5 

INTEGER(A, B) CREATES, AN ARRAY (10) 
. (1,2,3,4,5,6,7,8,9, 10) . 

INTEGER$ (@DOUBLE) (A,B) CREATES AN ARRAY(I0) oF DP INTEGERS 

(1,2,3,4,5,6,7,8,9,10) 
INTEGERS (@DOUBLE,10)(A,B) creates aN ARRAY(10) oF DP INTEGERS 

= (1,2,3,4,5,6,7,8,9,10) 
SCALARS (@DOUBLE,2,5)(A,B) CREATES A 2-D ARRAY OF DOUBLE PRECISION SCALARS, 

  

1
 

4H
 

 



-,1 

(2) 

(3) 

(4) 

  

EXPLICIT CONVERSIONS (COH’T.) 

DECLARE B ARRAY(3,4)3 

_ B= SCALARS(3,4) (#1, 42, 4i#3)s 

N
E
R
D
 
b
e
 

W
N
 R
e CREATES 11 

2 2 
3 3 

DECLARE C ARRAY(4,4,4) DOUBLE: 

C= SCALARS (@DOUBLE, 4, 4,4) 

(446 15#9, 2743, 1880) 5 

DECLARE V VECTOR INITIAL(1,2,3); 

DECLARE B BIT(8) INITIAL(BIN(8)'1’); 

DECLARE NM MATRIX INITIAL(O); 

SCALAR$(aDOUBLE) (V,B,M) CREATES AN ARRAY(13) oF DOUBLE 

PRECISION SCALARS 

= (1,2,3,255,0,0,0,0,0,0,0,0,0)
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. 
REAVALL(S) CAROLY 

+ T = SCALAR (CARD Mt DOOUBLE 1 To 20 

Ro = VECTCR (SCALAR (cane. @DOUELE a00UBLE 21 10 

HEADALL{S) CARDTE 
~_ 

t Vv = vEcTOR (SCALAR CcaRDt woourLe aDCUBLE 1 
+ EPHGMT = SCALAR (carol ) aDOUBLE 61 Te 86 

IF FPHGMT a2 0 TREN 
pny 

cd READALLI5) CARDLY 

* READALL(3) CARD? 
. 

READALLIS) Ct 
* 

RNP = MATRIX {SCALAR {car RDOUALE EDOUBLE 
9 

ry . 

« CARD? . Roa * To 80 1 To 20 21 to 40 
& * T 

PNP = RNP 3 

END} 

To 2c 

‘ 
CARD1 

41 To 60 

* 

ARO 

. 

CARDI doe 
61 TG 680 

’ 
s CARDI 

21 To 40 
ve 

41 To 60



  

EXPLICIT CONVERSIONS (CON’T.) 

C. BIT CONVERSION FUNCTION 

THERE ARE THO DISTINCT MODES OF THE BIT CONVERSION FUNCTION: 

(1) BIT [Simece] [BIT STRING/BOOLEAN 
STRING © <—————— } INTEGER 

  

SCALAR 
CHARACTER 

(2). BIT CHARACTER 
STRING <“———__(WITH SPECIFICATION OF A RADIX) 

KEY POINTS: 

© BIT ALWAYS PRODUCES A 32 BIT VALUE, ALTHOUGH THE FUNCTION 

ITSELF ALLOWS SUBSCRIPTS THAT MAY CHOP THIS DOWN, 

© BIT CANNOT CREATE AN ARRAY OF BIT STRINGS (CONTRAST TO THE 

INTEGER & SCALAR CONVERSION FUNCTIONS) -~ BUT IT MAY BE 

USED IN THE ARRAY PROCESSING SENSE TO CONVERT AN ENTIRE 

ARRAY,



EXPLICIT CONVERSIONS (CON'T.) 

SIMPLE FORM 

THE SIMPLE FORM oF BIT CONVERSION IS AS FOLLOWS: 

. ONENT. 
f_ Come scePT 
  

1. 

2. 

3. 

4. 

5.   
_|a dé-bit string*, 

BIT suasoript (OP) 

exp is an expression of any of the 
following types: 

INTEGER BIT STRING (and BOOLEAN) 
SCALAR CHARACTER 

exp may possess arrayness in which 
case the arrayness must match that 

. of the expression of which the coh-" 
version forms a part. The result is 
to cause an elemental conversion for 
every elemental evaluation of the 
outer expression (sea Section 20.2). 

Conversion to bit string type proceeds 
according to a 
Appendix The result is always 

  

subscript represents component sub- 

scripting on the result of the coh- 
version. It possesses the same forms 
ag component subscripting on bit string 
data items-as described in Section 17.3. 

If subseript is absent, the result of 
. the function is the entire bit string 
generated by the conversion,     

 



  

EXPLICIT CONVERSIONS (CON’T.) 

SINCE THERE ARE NO IMPLICIT CONVERSIONS FROM INTEGER OR 

SCALAR TO BIT STRINGS, THE BIT CONVERSION FUNCTION IS 

IMPORTANT, 

EXAMPLES: (SIMPLE BIT CONVERSION) 
  

If I is a halfword integer with I 2 5 

then BIT(1) = 00000005, 
If C is a character data item with C = '10110011101' 

then BIT(C) = 00000000009000000000010110011101, 

BIT) mq 32(C) # 0000010110011101,, 

and BITZ9 wo 32(C) = 11101,



EXPLICIT CONVERSIONS (CON'T.) 

RADIX FORM (mosTLy USEFUL IN 1/0) 

The radix form of BIT conversion is used when a character 

value is to be converted by an explicit rule to a bit string. 

A radix specifying the conversion rule is supplied in place 

of a subscript. The possible forms are as follows: 

  

. BIT gry (xP) 
‘ BIT, oct (exp) 

. : BIT gy gg P) 

BIT gupy xP) 

u exp is an expression of character 
type whose value must consist 
entirely of a string of digits 
legal for the specified radix. 

2. The radices have the following 
meanings: . 

radix digit strin        
@BIN binary 
eocr octal 
@DEC decimal 

@HEX hexadecimal 

3. exp may possess arrayness with the 
same implications as in the simple 
form of BIT conversion.. 

4.. The conversion generates the 
binary representation of the 

‘  dnput digit string. ‘The bindry 
. representation is truncated or 

padded with binary zeroe 
the left to create apebte string*, |       
 



  

EXPLICIT CONVERSIONS (CON’T.) 

EXANPLES ALL 32-bit 
oer coy 

' ty s BIT gumy ( FAO') = O0000FA0,, 

s ' ’ = BITgp pg ('1024") = 00000400,, 

('177777') = OOOOFFFF, BIT 16 
eocT 

('POFIF2F3F4') = FIF2F3F4,, ( 
TRUCATION ON THE LEFT 

BIT onEx



EXPLICIT CONVERSIONS (CON‘T.) 

  

D, CHARACTER CONVERSION FUNCTION 

AS IS THE CASE WITH THE BIT CONVERSION FUNCTION, THERE ARE 

TWO DISTINCT MODES OF THE CHARACTER CONVERSION FUNCTION: 

  

(1) CHARACTER BIT STRING/BOOLEAN 

oe SCALAR 

CHARACTER 

(2) CHARACTER RADIX BIT STRING     
  

STRING § << (WITH SPECIFICATION OF A RADIX) 

 



hoa 

SINPLE FORM 

  

EXPLICIT CONVERSIONS (CON‘T.) 

The simple form of CHARACTER conversion is as follows: 

  

26 

2. 

  

CHARACTER jut goripe (OP) 

exp igs an expression of any of the 

following types: 

INTEGER BIT STRING (and BOOLEAN) 

SCALAR CHARACTER 

exp may possess arrayness, with 

the same implications as in the BIT 

conversion function. (See Section 

21.3). 

Conversion to character type proceeds 

according to the rules given in 

Appendix aA. The length of the result 

of conversion depends on the type of 

the input data. 

_ subscript represents component sub~ 
seripting on the result of the con- 
version, It possesses the same forms 
as component subscripting on charac~ 
ter data items as described in 
Section 6.1. 

T£ subscript ‘is absent, then the 
result of the function is the entire 
string ef characters generated by 

the conversion. . 

  

  

 



EXPLICIT CONVERSIONS (CONT. ) 

  

EXAMPLES 

If I is a halfword integer with I = 173 

then CHARACTER(I) = '173' 

= of ' CHARACTER, TO 2) 2 t17 

= ' CHARACTER, TO 3 (Tt) = '173 

“I£ Bis a bit string of length 4 with 

B= 0101, 

then 

CHARACTER (B) = '101' 

(note removal of leading zeroes) 

NOTE THAT THE LENGTH OF THE RESULTANT CHARACTER STRING 

IS DATA DEPENDENT, WHEREAS FOR THE BIT CONVERSION 

. FUNCTION IT IS ALWAYS 32 BITS, 

 



on 

  

EXPLICIT CONVERSIONS “(CON'T.) 

RADIX FOR 
The radix form of CHARACTER conversion is used when a bit 

string value is to be converted by an explicit rule to a 

character string. Analogous to the radix form of BIT 

function, a radix specifying the conversion rule is supplied 

in place of a subscript. tthe possible forms are as follows: 

  

CHARACTER gy ry (exp) 

CHARACTER a gap fexp) 

CHARACTER ange (exp) 

CHARACTER gipey ( exp) 

1. exp ia an expression of bit string type, 

and possibly possessing arrayness, with 

the same implications as in the BIT 

conversion function. . 

2, The vatue of the bit string is converted 

to a string of digits as specified by the 

radix, removing leading zeroes. 

3. The radices have the following meanings: 

    
radix 

binary 

. @OCT octal 

@DEC decimal 

@HEX hexadecimal 

4, The length of the resulting string 

varies depending on the value of 

exp.      



EXPLICIT CONVERSIONS (€CON'T.) 
  

EXAMPLES : 

CHARACTER , 7» (BIN'001010') = 1001010" 

st CHARACTER go¢q,(BIN'001010') = "12" 

= "10! CHARACTER gy (BIN' 001010") 

CHARACTER (BIN'G01010') = 'QA' 
@HEX 

 



  

PRIME NUMBER GENERATOR 

/7CUSAGHBT JOB 7404, SCHUL ONBERG, C, TIME®4, PRTV=4, REGION=350K, of NOTIFY=CNS41840 
: ¢ 7 HAL EXEC HALSCLD, ACCT=NOTIFY, OPTION=°LIST~ 

77HAL. SYSPRINT DD SY¥SOUT=2 
7CHAL. SYSIN DD & 
ERATOSTHENES: PROGRAM: 
REPLACE N BY- "5ega"; 
DECLARE INTEBER, 3,3, COUNT INITIALC4)3 
DECLARE SIEVE ARRAYCH)D INTEGER: 
DO FOR I = 2°TO N; . 
STEVESI = 1) 

END; 
DO FOR 1 = 2 To Np 

IF SIEVESI \= @ THEN DOs 
HRITE €6) COUNT, SIEVEST) 
COUNT = COUNT + 4; 

00 FOR J = 21 TO N BY 15 
SIEVES] = @; 

ENDs 
Enos 

END; 
CLOSE ERATOSTHENES: 

fe 

f7Q0, CHRUNELE DD S¥SnuT=z 
7700. REQUESTS DD * 

EXECUTE TENPNAME: 
AT END: PROFILE: 

fk



SobM 

HAL@ZS COMPILATION TeTERNETRICS, IN 

HALZS COMPILER PHASE 4 ~~ VERSION 43.42 OF SEPTEMBER 14, 4975. 

TODAY IS OCTOBER 44, 1975. CLOCK TIME = 13:34:2.16 

PARMN FIELD: LIST 

COMPLETE LIST OF COMPILE-TINE OPTIONS IN EFFECT 

tok TYPE 4 OPTIONS *k# 

NODUMP INSTERD OF DUMP 

HOLISTING2 INSTEAD OF LISTING2 
LIST INSTEAD OF NOLIST 

TRACE INSTEND OF NOTRACE 
HODECK INSTEAD OF DECK 
TABLES INSTEAD OF NOTABLES 

NOTABLST INSTEAD OF THBLST 
NOADDRS INSTEAD OF ADDRS 

NOSRN INSTEAD OF SRN 
HOSDL INSTEAD OF SDL 

NOTABDMNP INSTEAD OF TABONP 
ZCON INSTEAD GF NOZCON 

NOFCDATA INSTEAD OF FCDATA 

eke TYPE 2 OPTIONS #46 

TITLE = 
LINECT = 593 
PAGES = 258 

SYMBOLS = 288 
NACROSIZE = 598 

LITSTRINGS = 2090 
CONPUNIT = 6 
HREFSIZE = 2608 
CARDTYPE 3 

= 1260 LABELSIZE 

  

Cc. 

clo



HALZS COMPILATION 

STUNT 

o
N
 

OH
 

Go
 
R
W
 

A
W
W
 
t
e
 

44 

12 
13 

a4 

45 

1? 
18 

  

Mt ERATOSTHENES: 
Nt PROGRAM: 
Nt 
Mt 
Nt 
nt 
Nt 

Nt 

Mt 
St 
Nt 
Nt 

Mt 
St 

“Nt 
nt 
St 
Nt 
Nt 

Mt 
St 
Nt 
Nt 

Nt 

REPLACE NOBY "Sag0") 
DECLARE INTEGER, 

1, Ji 

COUNT INITIALC 41 95 
» DECLARE SLEVE ARRAYCN) INTEGER: 

€ 

OO FOR I #= 2 TON; 
€ 

SIEVE = 13 
! 

END; , 

DO FOR I = 2 TO Ns 
t 

IF SIEVE \= @ THEN 
I 

bo: 

WRITEC6> COUNT, SIEVE ; 
I 

COUNT = COUNT + 4) 

DO FOR J = 2 1 TON BY I; 
€ 

SIEVE = 6) 
J 

END: 
END) 

END) 
Mt CLOSE ERATOSTHENES; 

INTERMNETRICS, 

_ SOURCE 

I N 7



thet COMP ILA T TON LAY OU T thaw 
ERATOSTHENES: PROGRAM: 
HAL/S COMPILATION INTERNETRICS, Ine. OCTOBER 411, 41975 

SYMBOL & CROSS REFERENCE TABLE LISTING: 
CCROSS REFERENCE FLAG KEY: 4 = ASSIGNNENT, 2 = REFERENCE, 4 = SUBSCRIPT USE, @ = DEFINITION) 

DCL HANE TYPE ATTRIBUTES & CROSS REFERENCE 

3. CQUNT INTEGER © SINGLE, ALIGNED, STATIC, INITIAL REF: © ©8603 2 8011 6 Gare2 
1 ERATOSTHENES PROGRAM MREF: @ 8064 
3 #2 . -" INTEGER SINGLE, ALIGNED, STATIC KREF: @ 0863 4 88605 3 Ob66 4 enDB 1 CHAD 

: 1 0044 2 9813 : 
3 INTEGER SINGLE, ALIGNED, STATIC XREF: @ 66603 4 6813 4 OG44 : 
2ou REPLACE MACRO MACRO-TEXT INDEXK=4 KREF: @ 0802 2 0084 2 G085 2 8888 2 8813 
4 SIEVE INTEGER ARRAY ARRAYCSA99), SINGLE, ALIGNED, STATIC XREF: @ 0684 4 8696 2 6809 

-2 0644 4 9044 

HAC RO TERT LISTING: 
Loc TEX 

1 3900 

HAL/S COMPILATION INTERMETRICS, ruc. OCTOBER 41, 1975 

OPTIONAL TABLE SIZES 
NAME REQUESTED USED 
EEE EEE CEEEE wEeEEE 

SYMBOLS 209 6 
NAGROSIZE 500 5 
LITSTRINGS 2008 8 
KREFSIZE 2000 24 

yn 6 

 



  

CALLS TO SCAN = 187 
CALLS TO IDENTIFY = 28 
NUMBER OF REDUCTIONS = 368 
MAX STACK SIZE w 4g 
HAX IND, STACK SIZE = 6 
END IND, STACK SIZE = 4 
END ARRAY STACK SIZE = 8 
NAX EXT¢ARRAY INDEX = 3 
STATEMENT COUNT * 18 
MINOR COMUALTIFIES . @ 
MAJOR CONPACTIFIE®S = @ 
MAX NESTING DEPTH = 4 
FREE STRING AREA = 39643 

END OF HAL/S PHASE 4. OCTOBER 44, 4975. CLOCK TIME =°423:34:4, 62 

47 CARDS HERE PROCESSED 
NO ERRORS WERE DETECTED HURING PHASE 1. 

TOTAL CPU TIME FOR PHASE 1 8:60:68. 69. 
CPU TIME FOR PHASE 4 SET uP 8: 6:6. 69. 
CPU TIME FOR PHASE 4 PROCESSING 6:08:08, 54. 
CPU TINE FOR PHASE 4 CLEAN UP @: 8: 8, 86. 
PROCESSING RATE: 1898 CARDS PER MINUTE 

seeahoe TEMPLATE LIBRARY MEMBER @@ERATOS NOT FOUND - ADDED , VERSION®4 
HAL/S COMPILATION IRTERMETRICS, Ine. 

HAL/S COMPILER PHASE 2 we VERSION 268-13.44 OF SEPTEMBER 15, 1975 

HAL/S PHASE 2 ENTERED OCTOBER 4%, 1975. CLOCK TIME » 43:34:8, 04 

HAL/S COMPILATION IHTERMETRICS, mae, 

ESDID NAME TYPE LENGTH BLOCK NAME 

@6G1 SBERATOS G000- 080126 ERATOSTHENES 
@002 #FERATOS goed 08048 
BOO? ATERATOS 8000: 969048 
@004 SPERATOS g000 B82746 
9805 EGERATOS ane2 
§006 IOINIT 8882~ 
ean? LGUT 8602



HAL¢S COMPILATION 

LOCCTR 

ageogg 
908080 
990000 
e6e8n0 
990054 
gosagg 
HOORGR 
SQOHGE 
gcnni2 
609016 
600917 
eoceis 
o0081C 
£00029 
9909024 
g00G26 
900828 
900028 
990804 
en0004 
069006 
Boekes 
a9g028 
206028 
eoegec 
9age2t 
£90030 
68632 
600834 
800038 
eoae3e 
80803C 
BODO3E 
980842 
990046 
800048 
@G0R4A 

CODE 

47 FOF O18 

peg0o128 

8058 
SCCSD9ICL 
EIDGE2E3 
cecspscs 
E2 
8D 
SSBOrae4 
S86AB029 
92010008 
OS5SEB 

9004 

0864 

42908602 

40ganeda 
OSEB 
0803 
49908046 
472F 0056 

angst. 
4820A800 
4029n084 
OSEB8 
2ees 

CL 
G9084A 
BOOGdE 
608052 
eoo0ss 
600056 
no60S8 

44906004 
4nsonged 
47FFSO2C 

SSEB 
e007 

LABEL 

STat 
SOERATOS 
ERATOSTH 

ST#2 
sta2 
#DERATOS 

STa4 
Stas 
#0ERATOS 

LBLa2 

ST#6 

STA? 
tered 

LBLAT 

INSH 

eau 
CSECT 
Eau 
BC 
oc 
BC 
oc 
oc 
oC 
oc 
DC 
L 
in 
NVI 
BALR 
oc 
Eau 
Eau 
csect 
oc 
Eau 
EQu 
csect 
LA 
equ 
STH 
BALR 
bec 
cH 
BC 
Eau 
AR 
LH 
STH 
BALR 
oc 
EQu 
equ 

“LA 
AH 
Bc 
Eau 
BALR 

oC 

‘ 

INTERMETRICS, 

. OPERANDS 

‘ TIME = 443 
ESDID= 9004 

* 

15,248, 45) 
A‘oceneize 
x00587 
X/OCCSDSCL’ 
XESD6E2E3° 
X/CRCSDSCS’ 
x*E2? 
X780° 
44,4¢€9,43) 
6,40. 4844) 
OC43)-4 
14.44 
xpaes ¢ 
4 TINE = 9 
‘ TINE = 8 

ESDID= e004 
x-egos? 
* TIME = 8 
‘ TIHE = 98 

ESDIDe 9004 
9,268,8) 
* 

9,8¢0,40)° 
44,44 
X 7808S ¢ 
9,7060,449 
2, 86C15, 0) 
* TIME = 54 
9.9 
2,0¢8, 48) 
2,4¢9, 18) 
44,44 
K 9086 ¢ 
& TIME = 5@ 
a 

9,408,909 
9,8(8, 19) 
45,4448, 89 
* 

44,44 
x78807/ 

  

rac. 

SYMBOLIC OPERAND 

ERATOSTHENES 

#FERATOS 

H-Sea07 
880856 LBLES 

SIEVE 

! 
eeee2c LBLH2



  

eoeesA STS equ & TIME = 98 
aoeesA 419e¢082 LA 9,200,089 
G0065E LBLas eau * 
QB8GG5E 4890n008 STH 9, 8¢8,18> I 
600062 BSB BALR 414,44 
860064 8808 oc x°6088~" 
800066 49908846 cH 9,78(8,44) H*Se887 
GOOREA 472F 014A . aC 228245, 8) BGG11A LBLEG 
BO0D6E sTas eau & TIME = 72 
QOOGEE BSEB BALR 44,44 
gee07e 8009 pc x°e009/ 

HAL/S COMPILATION : INTERMETRICS, tree, 

LOCCTR CODE. LABEL INSN = OPERANDS SYMBOLIC OPERAND 
B80672 1A99 AR 9,9 
eec074 4829R804 “LH 21409, 48> SIEVE 
o00078 1222 ~ LTR 2/2 . 
BG007A 478FG18E ac 8, 278015, 8) OOB18E LBLE? 
BOOO7E sTaeie EQu 0 & TIME = @ , 
OOOG7E O5EB BALR 14,44 
888080. BHA oc K “HOCH ~ 
epeaa2 ST#44 Eau * TINE « 465 
B80G82 41198006 LR 1,6¢8,8) 
Beooes 41008083 LA 8, 3¢8,8) 
GebGBA BSEC BALR 414,42. 
Bosaec aeocaege oc A-aeoeeeea’ TOINIT 
800050 4800Ke64 LH 4,400,408) COUNT 
@88994 B5EC BALR 414.412 
680096. eane8Rne bc A7e0b808eB ~ {out 
Q0009R 1882 TLR 8,2 
BB809C BSEC BALR 14,42 
BO0OSE anncaee8 oc A-egeedeea’ TOUT 
@G00A2 B5ER BALR 44,44 
ebGNR4 O008 bc X’OGOB7 
BeO0ORE STH12 Equ * TIME = 64 
GeOORG 4830Rn004 Lu 3,408,146) COUNT 
OGBOAR 4A268044 Al 3, 68(0, 44) Hae 
OBOORE 4030R804 STH 3,4¢0,18) COUNT 
GO0GB2 OSER BALR 44,14 
eoagBd beet bc R-ROOC ” 

wus



HOAHBS 
BOH0BE 
egeoRA 
BOOOBE 
eoogce 
gn00Cé 
@O08CE 
geeecA 
BG00CC 
@BOBCE 
900002 
H606D6 
e908R8 
G990DC 
BHOGEO 
OBBRE2 
GONOE4d 
QB05E8 
BOQ0EC 
GOBOEE 
GBOOEE 
BOOOFO 
Q900F2 
QBNOFE 
GOOFS 
BBGOFA 
BaQBFA 

41409802 
4C4QAn008 
4a50A0e8 
465eDe50 

4040A002 
BSEB- 
8090 
412F 0106 
918006590 
GSEO 
4780E010 
4940BB46 
ar4d2 
GSES 
47FGEQOAR 
49408846 
O722 

1A44 
41B22 
4024A004 
@5EB8 
GOOE 

eaerA 4840De5e 
BOGOFE 4A40nae2 

ST#413 

LBL#8 

sT#ei4 

ST#15 
LBL #418 

HAL/S COMPILATION 

EQu 
LA 
MH 
LH 

co STH -. 
. EQU 
STH 
BALR 
bc 
LA 
TH 
BALR 
BC 
CH 
BCR 
BALR 
BC 
CH 
BCR 
Eau 
AR 
SR 
STH 
BALR 
oc 
Eau 
Eau 

LH 
fH 

  

* TINE = 335 
4,2¢8,8) 
4,060,180) 
5,8¢(8,108) 
§,88¢0,13> 
* 

4,2¢8,16>) 
14,44 
%7B00D7 
2,262¢15,0> 
8OC13)-128 
14,8 
8.16¢0,14) 
4,76(0,413 

4,2 
14,9 
15,10¢0,14) 
4,76¢08,44) 
2:2: 

* TIME = 47 
4,4 
2:2 

2,404,410) 
14,41 
XOOBE/ : 
* TIME = 52 
* 

4,80¢8,123) 
4,2(0,18) 

06186 LBLHS 

BORGES #416 
H‘S8607 

OBO0EE 
H75e08" 

*+40 

STEVE 

J 
IN TERMETRICS, Inc.



LOCCTR 
UNO192 
6601086 
Ge0106 
080168 
HOG1BA 
GGG10A 
BGO10C 
BOO1HE 
BOBLGE 
O8910E 
BOR1LOE 
090112 
066116 
GOG141 
OGG1L4A 
oee1ic 
BOBLLE 
OROL1E 
o0e1296 
600122 

CODE 
47FFOOCE6 

O5E8 
800F 

OSEB 
89108 

LABEL 

LBLES 

ST#46 

. STHL7 

44900084 
4A98A008 
47FFOQ5E 

8SEB 
eo4t 

O5EB 
9012 
47FOC804 

LBLa? 
LBL#14 

LBLaG 

ST#418 

INSN 
BC 
EQU 
BALR 
bc 
EQu 
BALR 
bec 
EQU 
EQU 
EQUu 
LA 
AH 
ec 
EQu 
BALR 
oc 
EQu 
BALR 
oC 
BC 

  

OPERANDS SYMBOLIC OPERAND 

45,198¢45, 8) B0B8C6 
* 

14.44 
X/OGQF ¢ 
* TINE = 8 
44,44 
x700484 
* TINE = 56 
* 

* 

9,4¢8,8) | 
9,8¢0,48) I 
45, 94(45, 8) B0005E 
; 
44,44 
x-R044¢ 
& TIME = 48 
44,44 
X/0012°, 
45, 4(0,42) 

LBLES8 

LBL&aSs



WUVLZS 47 FUCLTA + BC 15, 372¢0, 42> STRACE 
ON812C BH000GG0 pc Os ‘8HBHRB0R7 #DERATOS 
909139 Go909170 pc no /OG0081707 #TERATOS 
@60134 FFHO916C DC A’FFOOGLEC* &TERATOS 
996133 850000000 oC A‘OGEos st on 
GUGL3S0 age. Dc X/00041 7 
HOOL3E G612 bc X780427 
Hoolde eeogeqdes _0C % 780005890 ~ 
699144 N9009000 oc 4 “OB906988 ” 
GHOILde geogcdg9 BC X 789898000 ¢ 
H80014C BHoG0008 DC % “80000008 7% 
9691590 G09G5n99 De A’eoggeeR8n- #DERATOS 
009154 90000008 oc / A’GOGHHO0G~’ RDERATOS 

- 086159 SH9NGK08 be A-gongegaa’ HDERATOS 
QGB15C ob000009 bc A‘SOGREROR" #DERATOS 
8035168 99906009 oc A’60008008~ fDERATOS 
600164 B008g001 oc 490008001 7 
600168 89000000 Dc A’ageoegag’ @GERATOS 
Ga0i16C 9001 | oc X69617 
BO01EE 1398 . oc A7ESBE “ 

£501b= go0s 
END * 

HAL/?S COMPILATION INTERMETRICS, Ine 

RLD POS REF FLAG ADDRESS 

6e01 8002 88 
6901 0006 ~- 98 
6001 0897 63 
9901 B007 08 
H982 9004: 88 
8002 9003 68 
8002 8803 083 
0882 0801 48 
8002 e094 28 
8902 0004 68 
8062 6904 08 
BG02 4804 68 
8902 6984 08 
8902 6005 08 

eea0as 
690980 
909897 4 
Q0009F 
696120 
890131 
GO9425 
0004133 
Gne154 
000155 
686159 
@9015D 
680464 
660169 

en Yay 

 



“MYT 

  

Loc B DISP NAME 
UNDER ERATOSTHENES STACK=88 

e06680 16 808 1 
eo0e02 48692 J 
600304 10 694 COUNT 
800006 18 804 STEVE 
INSTRUCTION FREQUENCIES 
INSH COUNT 
BALR 
BCR 
LTR 
LR 
AR 
SR 
STH 
La 
gC 
LH 
cH 
An 
MH 
L 
TH 

e
e
 

e
e
 
S
e
 

ee
 

e
e
 

» 

Lh. 

48 HALHMAT OPERATORS CONVERTED 

S58 INSTRUCTIONS GENERATED 

368 BYTES OF PROGRAM, 10086 BYTES OF DATA 

HAX. OPERAND STACK SIZE ag 
END OPERAND STACK SIZE =O 

HAL/S COMPILATION INTERMETRICS, Ine, 

NUNBER OF STATENENT LABELS USED wit 
HAK. STORAGE DESCRIPTOR STACK SIZE #4 
END STORAGE DESCRIPTOR STACK SIZE #0 
NUNBER OF MEINDR COMPACTIFIES 28 
NUMBER OF MAJDR COMPACTIFIES 28 
FREE STRING AREA #34336



tiil! Ur rth > FHisG € UUEMoORR hte tote WWI EAE OO a re 

TOTAL CPU TINE FOR PHASE 2 6:0. 49 

ePU TINE FOR FHASE 2 SET UP a: 0:0. 04 

CPU TINE FOR PHASE 2 GENERATION 8:6:0.48 
CPU TINE FOR PHASE 2 CLEAN UP 6:68:09. 35 

HAL/S CONPILATION : INTERNETRICS, Tue 

HAL@S COMPILER PHASE 3 -- VERSION 415.9 OF SEPTEMBER 24, 1975. 

HAL¢@S PHASE 3 ENTERED OCTOBER 14, 1975. CLOCK TINE = 43:34:46. 66 

SIMULATION DATA FILE ##ERATOS HAS BEEN CREATED 

PAGING ARENA SIZE CPAGES) = 97 
NUNBER OF LOCATES: = 204 

PREDICTED SDF SIZE (PAGES) ed 

RCTUAL SDF SIZE (PAGES) a 4 

DIRECTORY FREE SPACE (BYTES) = 72 

DATA FREE SPACE (BYTES) ~ = 920 

SDF SIZE (BYTES) = 688 

SUF DENSITY C2) = 40 

HUNBER OF BLOCK NODES efi 

NUNGER OF SYMBOL NODES a 5 

NUMBER OF STATENENT NODES = 18 

NUMBER OF BLOCKS DELETED 2 6. 

NUMBER OF SYNBOLS DELETED ad 

NUMBER OF TEMPLATES DELETED = @ 

NUNBER OF HINGR COMPACTIFIES e @ 

NUNSER OF MAJOR COMPACTIFIES = 

ENO OF HAL/S PHASE 3 OCTOBER 44, 4975. CLOCK TIME = 43:34:44. 61 

TOTAL CPU TINE IN PHASE 3° 6:9:4. 18 

CPU TINE FOR PHASE 3 INITIALIZATION 0: 8:6. 82 

CPU TINE FOR PHASE 3 FILE GENERATION @:8:@, 05 

CPU TINE FOR PHASE 3 FILE EMISSION 6:60:90. 44 

ox~ | 4 

 



PONS 

HAL 7S-26@ V43.8 START TIME: 
2 
3 
5 
? 

44 
13 
17 
193 
23 
29 
34 
37 
4i 
43 
4? 
53 
59 
Gt 
67 
74 
e3 
73 
83 
89 
97 

4184 
163 
167 
163 
443 
127 
434 
137 
439 
149 

454 
157 

- 163 
167 
173 
179 
184 
194 
4193 
19? 

  

43:34:46. 608 BAY: 737284



Do SaMG 

° ® 
9 a 

647 4804 
648 48123 ° 
649 4817 
658 4834 
651 4861 
652 4874 
652 4877 
654 4889 
655 49nz 
656 4909 
65? 4919 
658 4934 
659 49323 
660 4937 
664 4943 
662 4954 
663 4957 
664 496? 

» 665 4969 
666 4973 
667 4987 
668 4933 
669 4993 

*ee AT END 

STATEMENT PROFILE FOR PROGRAM 
STATEMENTS USE AND & OF 

4 4 8. 
2 70 4 NOT EXECUTED 

3 46 8. 
6 4,999 48. 
? 4 a, 
8 3,608 19. 
3 4,593 18. 

je * 669 
Ad 669 4, 
12 669 4. 
43 44,738 25. 
14 14,969. 23. 

* 45 669 i 
16 669 

‘ 1? 4 
48 4 

COMPILATION UNIT USE SUNHARY 
STATEMENTS USE AND 4% OF 

46,1454 400. 

46,154 188, 

4. 

1. 
a 
a 

ERATOSTHENES 
TOTAL = TIME 
80 - 44 

a3 18 
83 
80 5 

83 40 
a3 ? 
44 
44 a4 
44 6 
43 34 

98 5 
44 5 
44 
ee 5 
aa 2 

TOTAL TINE 
80 

00 

COST AND % OF TOTAL 
44 @. 88 

160 8. 82 
24,995 3.97 

5 8. a9 
50, 098 7.94 
34,993 5. 56 

Q 6,99 
7,359 4.16 
4,014 8. 63 

399, 892 2.43 
55,245 8.79 
3,345 8. 53 

a 0. 08 
5 6. 09 
2 6. 00 

COST AND % OF TOTAL 
629,169 100. 08 

629,169 100. 08



  

DATA STORAGE AND ACCESS 

@ DATA IS NOT NECESSARILY PHYSICALLY ALLOCATED IN THE ORDER 

IN WHICH THE USER MAKES THE DECLARES, - 

EXAMPLE 
  

CPL: COMPOOL; 
DECLARE ARR1 ARRAY(3,6) SCALAR; 
DECLARE ARR2 ARRAY(20) INTEGER; ” 
DECLARE 1 INTEGER; . 
DECLARE $1 SCALAR DOUBLE; 
DECLARE $2 SCALAR; 
DECLARE $3 SCALAR; 

  

  

  

  

  

  

CLOSE CPL; 

“ WOULD PROBABLY BE ALLOCATED AS! 

$l 

$3 #PCPL 
$2 SIMPLE DATA 

I] 

ARR2 
AGGREGATE DATA 

ARRI       

3/ 
Fe/



DATA STORAGE AND ACCESS (CONTINUED) ‘ S32 

GENERAL ALLOCATION RULES: — 

1) HAL REORDERS DATA IN AN ATTEMPT TO PROVIDE ADDRESSING COVERAGE 

FOR THE DATA USING A MINIMUM OF DISTINCT BASE REGISTER VALUES, 

2) SIMPLE DATA (OFFSET = 0) COMES BEFORE AGGREGATE DATA (OFFSET # 0). 

SIMPLE DATA: INTEGER, SCALAR, STRINGS (BIT & CHARACTER). 

AGGREGATE DATA: ARRAYS, VECTORS, MATRICES AND STRUCTURES. 

3) WITHIN EACH OF THE TWO GROUPS, DATA IS ORDERED SUCH THAT ITEMS 
_ REQUIRING THE SAME BOUNDARY ALIGNMENTS ARE ADJACENT -- THUS 

MINIMIZING WASTED SPACE. , 

4) WITHIN THE AGGREGATE GROUP SINGLE DIMENSIONAL ARRAYS COME BEFORE 

MULTI-DIMENSIONAL ARRAYS, 

 



  

DATA STORAGE AND ACCESS (CONTINUED) 

5) STRUCTURE TEMPLATES ARE INTERNALLY ORDERED SUCH THAT THE 

MINIMUM BOUNDARY ALIGNMENT WITHIN ANY NODE LEVEL IS REQUIRED, 

(MORE ON THIS LATER.) 

GENERALLY, THEN, DATA IS NOT ALLOCATED IN THE DECLARED ORDER 

EXCEPT IN SOME OBVIOUS CASES, E.G. 

DECLARE VECTOR ‘DOUBLE, V1, V2, V3, V4, V5, V6, V7, V8, V9; 

IN SUCH A CASE THE COMPILER WILL NOT ALTER THE ORDER SINCE NOTHING 

WOULD BE GAINED. 

NONETHELESS, WHEN THE HAL/S COMPILER IS GIVEN FREE REIN TO REORDER 

DATA, USERS SHOULD NEVER TRY TO PREDICT THE RESULTING ORDER, NOR 

ASSUME THAT THE ORDER GENERATED WILL NOT CHANGE WHEN COMPILER 

IMPROVEMENTS ARE MADE. 

33 
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DATA STORAGE AND ACCESS (CON’T.) 

WHEN USERS MUST CONTROL THE PHYSICAL LAYOUT OF DATA (E.G, FOR 

INTERFACING TO EXTERNALLY DEFINED DATA LAYOUTS), THE RIGID 

KEYWORD MAY BE USED. 

RIGID TELLS THE COMPILER TO ALLOCATE DATA IN THE DECLARED ORDER. 

IT MAY BE SPECIFIED ONLY ON COMPOOL BLOCK HEADERS, AND ON STRUCTURE 

TEMPLATES, . 

EXAMPLE 1: 

CPL: COMPOOL RIGID; 
DECLARE ARRI' ARRAY(3,6) SCALAR: 
DECLARE ARR2 ARRAY(20) INTEGER; 
DECLARE I INTEGER; 
DECLARE $1 SCALAR DOUBLE, 
DECLARE $2 SCALAR; 
DECLARE $3 SCALAR DOUBLE; 

CLOSE CPL; 

S2 
o4



a a” 

  

DATA STORAGE AND ACCESS (CONTINUED) 

RESULTS IN 
  

‘RRL 
  

ARR2 

  

  

__ __ 

space —> GQ 
  

  

  

| 82 
WASTE > SASS N     
  

NOTES: 

18 SCALARS = 36 HW 

20 INTEGERS = 20 HW 

1 HW 

3 HW 

4 HW 

2 HW 

2 HW 

4 HW 

1) UNLESS USERS ARE CAREFUL, RIGID CAN CAUSE WASTED SPACE. 

2) ON THE FC, DOUBLE PRECISION SCALARS ARE ALLOCATED ON DOUBLE- 

WORD BOUNDARIES EVEN THOUGH THE HARDWARE (AP-101) DOES NOT 

REQUIRE IT, 

WHY? FOR STORAGE LAYOUT COMPATIBILITY WITH THE 360, 

53 
¥o3



EXAMPLE 2: 

om 

DATA STORAGE AND ACCESS (CONTINUED) 

STRUCTURE @ RIGID; 

1 S1 SCALAR, 

i 11 INTEGER, 

1 Bl BIT.(16), 

1 $2 SCALAR DOUBLE, 

1 V VECTOR; 

DECLARE @ Q-STRUCTURE 

RESULTS IN? 
  

DOUBLE WORD -——~"-7 S] 
BOUNDARY 

Sr" Y ) 

  

I] 
  

Bl 
  

$2 
  

V$1 
  

V$2 
  

V$3       

 



~Jt
 

  

DATA STORAGE AND-ACCESS (CONTINUED) 6 7 

NOTES 

D 

2) 

3) 

4) 

5) 

USE OF RIGID ON STRUCTURE TEMPLATES IS ESPECIALLY LIKELY TO CAUSE 

~ WASTE OF MEMORY UNLESS CARE IS TAKEN, 

RIGID MUST BE SPECIFIED ON THE TEMPLATE DECLARATION -- OR A 

MINOR STRUCTURE THEREOF. RIGID MAY NOT BE APPENDED TO A STRUCTURE 

DECLARATION. 

WHETHER A STRUCTURE TEMPLATE IS RIGID OR NOT, THE BOUNDARY ALIGNMENT 

SELECTED FOR THE TEMPLATE IS DETERMINED BY THE TERMINAL WITH THE 

MOST RESTRICTIVE BOUNDARY ALIGNMENT REQUIREMENTS, 

MINOR STRUCTURES ARE ALWAYS ALLOCATED AS SEPARATE, DISCRETE UNITS 

WITHIN THE OVERALL STRUCTURE, 

THE KEYWORD “RIGID” ON A COMPOOL BLOCK HEADER DOES NOT GUARANTEE STRUCTURE 

RIGIDITY -- ONLY WHEN RIGID IS APPLIED TO A TEMPLATE DOES IT PENETRATE. 
 



DATA STORAGE AND ACCESS (CONTINUED) %C y 

EXAMPLE 3: 

. CPL: COMPOOL RIGID; 

DECLARE SCALAR, S1, S25 

DECLARE ARRAY(10) INTEGER DOUBLE, 11, 12, 133 

STRUCTURE Q: 

1 V VECTOR, 

1 SS SCALAR, 

1 J INTEGER; 

DECLARE @ Q-STRUCTUREs 

DECLARE W MATRIX(9,9) DOUBLE: 

CLOSE CPLs 
  

  

  

  

  

  

RESULTS IN?! Si 
$2 . . 

i ALL DATA HAS BEEN ALLOCATED IN 
R THE DECLARED ORDER, 

13 

a INTERNAL TO Q, TERMINALS 4, ss, 
  

AND J MAY BE REORDERED! 

f —      



  

DATA STORAGE AND ACCESS (CONTINUED) % 7 

EXAMPLE 4: 

STRUCTURE 0: 
1A, 
2 BI BIT(H), 

2 B2 BIT(8), 
2 I INTEGER, 

1B RIGID, 
2S1 SCALAR, 
292 SCALAR DOUBLE, THIS MUCH OF Q WILL BE RIGID 

2 J INTEGER, 
1¢, 

2°V1 VECTOR, 
2 V2 VECTOR DOUBLE; 

WE CALL A, B, AND C MINOR STRUCTURES OR FORKS. RIGID MAY BE APPLIED 

TO MINOR STRUCTURES IN WHICH CASE IT PROPAGATES DOWNWARDS TO ALL 

LOWER TERMINALS.



DATA STORAGE AND ACCESS (CONTINUED) 3/ 

470 
e THE PHYSICAL ALLOCATION OF RIGID STRUCTURES IS FAIRLY SIMPLE 

TO GRASP ONCE THE IDEA OF DATA ALIGNMENT AND INDEPENDENCE 

OF MINOR STRUCTURES IS UNDERSTOOD, 

© AS WILL BE SEEN THE CONCEPT OF DENSE STRUCTURES MAKES THINGS 

SLIGHTLY MORE COMPLICATED, 

© BUT AS TO WHAT HAPPENS WHEN HAL/S IS FREE TO REORDER STRUCTURES -- 
THAT IS A MUCH MORE COMPLEX TOPIC THAT WILL BE TAKEN UP AT A 
LATER TIME. 

BEFORE DISCUSSING DENSE WE NEED SOME FACTS ABOUT PHYSICAL ORGANIZATIONS 

OF DATA: 

 



  

DATA STORAGE AND ACCESS (CONTINUED) 

    

            

  
  

          
  

    

            
    

  

              

360 FC 
INTEGER 

LHW 1 WW 
(2 BYTES) 

INTEGER 
DOUBLE 

2 Hit 2 Ii 
(FULLNORD) (FULLWORD) 
(4 BYTES) 

SCALAR 8 24 8 24 
2 HW 2 HW 

(FULLWORD) (FULLWORD) 
(4 BYTES) 

SCALAR 
DOUBLE Ts 56 8 56 

4 Hi 4 HN 
(DOUBLE WORD) (DOUBLE. WORD) 

(8 BYTES) 

SUMMARY: EXACT CORRESPONDENCE IN LENGTH AND BOUNDARY ALIGNMENTS 
  

BETWEEN FC AND 360, 

SriP 
$7)
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DATA STORAGE AND ACCESS (CONTINUED) SKIP 

CHARACTER STRINGS: 
HH eH em eH me eH eH 

FC MICTXEXTXEXPXEXP XEXEXEXPXEX 

SIZE 

INFO 

M = MAX NUMBER OF CHARACTERS 

C = CURRENT NUMBER OF CHARACTERS 

  

                  

NOTE: AN FC CHARACTER STRING ALWAYS OCCUPIES AN INTEGRAL NUMBER 

OF HALFWORDS (2 CHARACTERS PER HW). AN UNUSED 8 BITS MAY 

EXIST AT THE END. 

B B B B B B B B B B B 

360 AMECEXT XE XE X EXE XY] XE X 
  

                          

A 360 CHARACTER STRING IS BYTE-ORIENTED. NO WASTED SPACE AT 
THE END, 
BUT, THE FC bara OPTION (SPECIFIABLE TO THE 360 COMPILER) 
WILL RESULT IN THE GENERATION OF FC-EQUIVALENT CHARACTER STRINGS, 

 



  

SAP 
7273 

DATA STORAGE AND ACCESS (CONTINUED) 

BIT STRINGS: 

A) BITC) BOOLEAN 

THROUGH BIT(8) BIT STRING IS 
RIGHT-JUSTI FIED 
  

  
  

  

  
  

      
  

  

    

FC 0 LO 1 HW 

3600 foes 1 BYTE 

360 — 
(FC DATA) ° LEE] i 

B) BIT(9) - BIT(16) RIGHT-JUSTIFIED 

FC . 0 ee 1 HN 

360 ZZ 1 HW     
  

C) BITCI7) - BIT(32) _ RIGHT=JUSTIFIED 
FC 0 ALLL I 1 FW 

360 0 Lo 1 FW 
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DATA STORAGE AND ACCESS (CONTINUED) 

NOTES: 

(1) HAL/S ALWAYS CAUSES IMPLICIT INITIALIZATION OF BIT’STRINGS 

TO ZERO. 

(2) AT RUN TIME, HAL/S ASSUMES PORTION OF WORD NOT OCCUPIED BY THE 

BIT STRING IS ZERO, 

(3) BIT STRINGS ARE ALWAYS (EXCEPT FOR DENSE BIT STRINGS) RIGHT- 

JUSTIFIED IN THEIR MEMORY LOCATION -- COMPONENT SUBSCRIPTING 

STILL STARTS WITH “1 BEGINNING WITH THE LEFT-MOST BIT OF THE 

ACTUAL STRING, 

DECLARE B12 BIT(12) INITIAL(BIN'110111110010" ); 

01234 5 67 8 9 101112 13 1415 

O07;0)/O0;O;14)1)/ 0) 2] 1] 1} 1] 140) 0; 1] 0 

UNUSED BI? 

B12$1 B12$12 

  

                                 



  

DATA STORAGE: AND ACCESS (CONTINUED) SKIL 

¢7s— 
EVENT VARIABLES (ACTS LIKE A BOOLEAN) 

0 15 

FC USED BY FCOS “OE 1 HW 

7 
360 0 E 1 BYTE 

360 (Fc DATA) 0 E STII /, ‘| 3 Hi 

  

    
  

  

    

  

      
    

Sane eee 

I BYTE 
FILLER 

NAME VARTABLES* (POINTER DATA) 
r 

FC 16 BIT ADDRESS 1 HW 
  

      

  

360. 0 [| 24 BIT ADDRESS 1 FW 
      

* NAME VARIABLES REPRESENT AN ALLOCATION INCOMPATIBILITY BETWEEN THE FC 

AND 360 COMPILERS THAT FCDATA CANNOT OVERCOME!



DATA STORAGE AND ACCESS (CONTINUED) 

DENSE/AL!GNED 
THE KEYWORD DENSE IS ONLY EFFECTIVE WHEN APPLIED TO 
STRUCTURE DATA (FORKS OR TERMINALS) AND EVEN THEN ONLY 
CONTROLS PACKING OF BIT AND BOOLEAN DATA. 

DENSE ALLOWS BIT STRINGS WITHIN STRUCTURES TO BE COMPRESSED -- 

SAVING CORE MEMORY: BUT INCREASING ACCESS TIME GENERALLY. 

EXAMPLE 1: 

DECLARE $ SCALAR DENSE; <—-——__ 
"DECLARE BG BIT(6) DENSE) meres 

STRUCTURE DENSE: 
1 BY BITC), 
1 B10 BIT(O), 
1 B2 BIT(2)) 

DECLARE @ Q-STRUCTURE; 
DECLARE R Q-STRUCTURE DENSE;<———— ILLecat 
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DATA STORAGE AND: ACCESS (CONTINUED) Dh STORE ACES 4499 
ALL DATA IS INHERENTLY ALIGNED (UNLESS DENSE IS SPECIFIED) 

THUS THERE IS NO NEED TO SPECIFY ALIGNED ON DECLARED 

DATA -- ALTHOUGH THE KEYWORD ALIGNED WILL BE AUTOMATICALLY 

SUPPLIED IN THE CROSS-REFERENCE TABLE, 

DECLARE | INTEGER Tr 16NED: 

LEGAL BUT WASTED KEYPUNCHING 

ALIGNED, HOWEVER, CAN BE USED WITHIN A STRUCTURE TEMPLATE 

TO “TURN OFF” A DENSE SPECIFICATION THAT MAY. BE IN FORCE.



DATA STORAGE AND ACCESS (CONTINUED) y 7 y 

iO STORAGE PACKING DENSITY OPTIMIZATION 
a IN FORCE 

ALIGNED 

EXAMPLE: 

STRUCTURE. A: 
1 Al DENSE, 

2 ALL BIT), 
2 Al2 INTEGER, 
2 A13 MMAY(10) Booneett 
a ALIGNED, ry Oy rt 

Li CHARACTER(80); 

NOTE Cie ML SCRAPE Eb AP BLT - FAULT YOLEN - DECLARE ZA A-STRUCTURE; 

THAT DENSE NEVER HAS AN EFFECT ON . 

ARRAYS OF BIT STRINGS! 

  

   



    

DATA STORAGE AND’ ACCESS (CONTINUED) SQ 
NOTES: 

1) DENSE IS ONLY EFFECTIVE ON SINGLE (UNARRAYED BIT STRINGS) 
WITHIN STRUCTURES, 

2) BOTH DENSE AND RIGID CAN BE SPECIFIED FOR A STRUCTURE TEMPLATE, 

  

  

  

        

RIGID] eee 
DENSE ADJACENT BIT STRINGS BIT STRINGS ARE SORTED 

ARE PACKED WHEN (WITHIN-A MINOR STRUC- 
POSSIBLE TURE) AND PACKED TO- 

GETHER. 

ALIGNED | NO PACKING OF BITS WITHIN A MINOR STRUC- 
TAKES PLACE, ALL TURE, DATA IS SORTED 
DATA IS ALLOCATED TO SAVE SPACE, NO 
AS DECLARED, BIT PACKING OCCURS, 
  

A FURTHER COMPLICATION EXISTS IN THAT STRUCTURES MAY BE 
PARTIALLY DENSE AND/OR PARTIALLY RIGID, 

THE DETAILED RULES FOLLOWED BY THE COMPILER ARE TOO COMPLEX To 
BE TREATED HERE,



o™ 
t . 

DATA STORAGE AND ACCESS (CONTINUED) 

EXAMPLE: 

STRUCTURE @ DENSE RIGID: 
1A, 

2 BL BITCH), 
2 B2 BIT(8), 

2 B3 BIT(2), 
2 Ba BIT(6), 

1B, 
2 BS BIT(5), 
2 BG BIT(S), 

1¢, 
2 B7 BIT(3), 

1D, 
2 B8 BIT(5); 

  

        

    

    

  
        

| ZG B2 B3}1 = MINOR STRUCTURE 

PLL BM A 
LY BG __------B 
LMETTTTIL 487} C 
VLLLLLLLLLA BN D 
  

NOTE THAT MINOR STRUCTURES ARE INDEPENDENTLY ALLOCATED! ! 
enter ae 

-~ 

—Y¥0
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DATA STORAGE AND ACCESS (CONTINUED) 

A PROGRAMMER USES A DENSE BIT STRING THE SAME WAY A NON- 

DENSE ONE IS USED... 

STRUCTURE @ DENSE: 

1 BOOLI BOOLEAN, 

“1 BOOL2 BOOLEAN, 

1 B10 BIT(10), 

1 Ba BIT(4); 

DECLARE @ Q-STRUCTURE INITIAL (TRUE, FALSE, BIN'111', BIN’) 

IF BOOL1 AND NOT BOOL2 THEN DOs 

IF BY = BIN'1011’ THEN DO; 

¢¥7



DATA STORAGE AND ACCESS (CONTINUED) 

INSTEAD OF THIS, 

STRUCTURE @ DENSE RIGID: 

1 ENGINE_ON BOOLEAN, 

1 LOW_FUEL’ BOOLEAN, 

1 WHEELS_DOWN BOOLEAN, 

1 SOMETHING_IS_BURNING BOOLEAN. 

DECLARE @ Q-STRUCTURE; 

DO THIS: 

STRUCTURE Q: 

1 DISCRETES BIT(16); 

DECLARE Q Q-STRUCTURE; 

REPLACE ENGINE_ON BY "DISCRETES$1”; 

REPLACE LOW_FUEL BY “DISCRETES$2"; 
ao 

REPLACE SOMETHING_IS_BURNING BY "DISCRETES$16"; 

FRA
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DATA STORAGE AND ACCESS: (CONTINUED) 

TEMPORARY DATA 

@ NORMAL DECLARE’D DATA IS PERMANENTLY ALLOCATED TO A STATIC 

DATA AREA, 

© THE. TEMPORARY FACILITY ALLOWS USERS TO OBTAIN SCRATCH SPACE FOR 

LOCALIZED CALCULATIONS THAT WILL BE OBTAINED FROM THE STACK, 

* TEMPORARY VARIABLES EXIST OWLY WITHIN THE DO... END GROUP 

WITHIN WHICH THEY ARE DEFINED. 

© THO FORMS EXIST: 
TEMPORARY S SCALAR; . NORMAL FORM 
TEMPORARY MATRIX DOUBLE, M1, M2; 

S/ 
#3. 

. AND 

~ DO FOR TEMPORARY I = 1 TO 9; 

A SPECIAL LOOP VARIABLE FORM,



D 

2) 

3) 

4) 

5) 

om, 

DATA STORAGE AND ACCESS (CONTINUED) f ey 

RESTRICTIONS 

TEMPORARY DATA ITEMS MAY NOT BE INITIALIZED, 

TEMPORARY EVENT VARIABLES AND NAME VARIABLES ARE NOT ALLOWED. 

THE NAME OF A TEMPORARY MAY NOT DUPLICATE THE NAME OF 

ANOTHER TEMPORARY DATA ITEM IN THE SAME DO,..END GROUP, 

THE NAME OF A TEMPORARY DATA ITEM MAY NOT. DUPLICATE THE NAME 

OF AN ORDINARY DATA ITEM KNOWN BY THE SCOPING RULES TO THE 

BODY OF THE DO,..END GROUP, 

TEMPORARY VARIABLES CAN ONLY BE DEFINED IMMENIATELY FOLLOWING 

ANDO... AND PRIOR TO THE NEXT EXECUTABLE FORM (EXCEPT FOR 

- THE LOOP TEMPORARY).



Ge
 

nes
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DATA STORAGE AND ACCESS (CONTINUED) ie 

6) TEMPORARY VARIABLES MAY NOT BE DEFINED FOR A DO CASE BLOCK, fs 

EXAMPLES 
  

“DO FOR TEMPORARY I = 1 TO 10; 
t tore 

| MST = M$1 +4; 
I 

END 

I IS ONLY KNOWN WITHIN THE DO..+END BLOCK. I IS ALWAYS 

A SINGLE PRECISION INTEGER IN THIS LOOP VARIABLE SPECIAL 
FORM: 

“DO; 

TEMPORARY I INTEGER DOUBLE; 
TEMPORARY MATRIX, Ml, 2, M3, 
toro 

l=l+l 

Ml = M2 + MB; 

/ enp, | 
I, ML, M2, M3 ARE ONLY KNOWN WITHIN THIS DO...END GROUP (AND 
ANYTHING NESTED WITHIN IT), 

' 
| 
| 
| 
| 
| 
| 
{ 

 



WRONG: 

RIGHT: 

DATA STORAGE AND ACCESS (CONTINUED) 

DO; 
T= [+]; 
TEMPORARY INTEGER Js 
J= 21; 

END; DOES NOT IMMEDIATELY FOLLOW DO 

DO; 

TEMPORARY INTEGER J; 
T=[+1; 
J= 2; 

END; 
  

WRONG: 

RIGHT: 

DO; 

TEMPORARY INTEGER J INITIAL(3); 
oe 

END; TEMPORARIES CANNOT BE INITIALIZED 
  

  

DO; 
TEMPORARY INTEGER J; 

= 3; . 

END;



- 37 

WRONG: 

RIGHT: 

  

DATA STORAGE AND ACCESS (CONTINUED) 

DO; 

STRUCTURE Q: 
1 A SCALAR, 
1 B SCALAR; 

TEMPORARY R Q-STRUCTURE; 

END; 

1 A SCALAR, 
1 B SCALAR; 

DOs 
TEMPORARY R Q-STRUCTURE; 

END; 

STRUCTURE Q: 
IN DECLARE GROUP OF ANY OUTER BLOCK 

  

WRONG: 
DO; 

TEMPORARY INTEGER I; 

DO; 

TEMPORARY INTEGER I; 

/ END? 
ENDs 

TWO 1’S IN SAME DO...END GROUP



a 

DATA STORAGE AND ACCESS (CONTINUED) $3 

RIGHT: | tr 
DO; 

TEMPORARY INTEGER I; 

DO; . 

TEMPORARY INTEGER [13 

- END; 
END; 

  
THIS IS OK! 

DO; 
TEMPORARY: MATRIX M1; 

END; 
ak 2 SEPARATE (NON-NESTED DO...END 

DO; a GROUPS) 

. TEMPORARY MATRIX MLs 
aono4 

END; 

NOTE: IN A CASE LIKE THIS, NOT ONLY WILL M1 AND M2 BE ALLOCATED IN THE 
STACK, BUT Mi AND M2 WILI. QUITE LIKELY OCCUPY THE SAME LOCATIONS. 

 



  

DATA STORAGE AND ACCESS (CONTINUED) 

THIS IS WRONG: 

DO CASE J: 
TEMPORARY MATRIX Mls 
DO; 

tea ae case 1 

END; 

DOs 
ena meme CASE 2 

END: 

END, 

BUT. THIS IS OKI 

DO CASE Js 
DO; 

_ TEMPORARY MATRIX Ms 

END; 
DQ; 

ENDs 

END; 
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DATA STORAGE AND ACCESS (CONTINUED) 

WRONG: 
PROC: PROCEDURE 

DECLARE 1 INTEGER; DUPLICATE IDENTIFIER 

DO FOR TEMPORARY I = 1 TO 5; 

END; 

TENPORARIES SCOPE INTO NESTED DO...END GROUPS ALSO --- 

DO: 

TEMPORARY Z ARRAY(10) INTEGER, 

7$1 - 3; 

DO FOR TEMPORARY I = 1 TO 105— 
IF Z$1 = 0 THEN .., 

END; 

ENDs 

VIo
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DATA STORAGE AND ACCESS (CONTINUED) yo 

TEMPORARIES ALSO SCOPE INTO NESTED BLOCKS BUT SINCE TEMPORARIES ARE 9/ 

IN THE STACK WE HAVE THE SAME STACK "WALK-BACK"” PROBLEM THAT EXISTS 

FOR PARAMETERS . 

  

  

EXAMPLE: 

DO; 
TEMPORARY. MATRIX My 

CALL PROC_A; 

PROC_A: PROCEDURE; 

IF M$(2,3) = 0 THEN .., 

CLOSE PROC_A; M IS VISIBLE BECAUSE WE ARE STILL IN THE 
toe DO.++END GROUP WHERE M WAS DEFINED, A 

” | ENDs STACK WALK-BACK LOOP WILL BE GENERATED, 
HOWEVER,



3/ 
DATA STORAGE AND ACCESS (CONTINUED) $72 

  

  
LOCK GROUPS 
    

THE CONCEPT OF A LOCK GROUP IS LINKED TO THAT OF AN UPDATE BLOCK. 

THIS IS DUE TO THE FACT THAT A DATA ITEM WHICH HAS BEEN DECLARED 10 

BE LOCKED CAN ONLY BE ACCESSED (REFERENCED OR MODIFIED) WITHIN AN 

UPDATE BLOCK, 

ALTHOUGH ANY DECLARED DATA ITEM MAY HAVE A LOCK GROUP SPECIFICATION, 

IN PRACTICE ONLY CERTAIN COMPOOL VARIABLES WILL NEED SUCH PROTECTION, 

THE CURRENT IMPLEMENTATION ALLOWS FOR 15 SEPARATE LOCK GROUPS. 

CONTROLLING CRUCIAL VARIABLES ON A GROUP BASIS TURNS OUT TO BE FAR 

MORE PRACTICAL THAN PROTECTING THEM INDIVIDUALLY. 

IF A VARIABLE IS TO BE PROTECTED THEN IT IS GIVEN A LOCK SPECIFICATION 

AT THE TIME IT IS DECLARED,
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173 EXAMPLE : 

DECLARE WVECT VECTOR(3), 
QVECT VECTOR(3) LOCK(7), 
RVECT VECTOR(3) LOCK(4), 

HERE WVECT IS UNPROTECTED, QVECT IS LOCKED AND BELONGS TO GROUP 7 
AND RVECT IS LOCKED AND BELONGS TO GROUP 4, WVECT CAN BE REFERENCED 
OR ASSIGNED ANYWHERE, QVECT AND RVECT CAN ONLY BE ACCESSED WITHIN 
AN UPDATE BLOCK, 

FOR THE SAKE OF FLEXIBILITY, A VARIABLE CAN BE DECLARED AS LOCK(*), 
THIS TECHNICALLY SIGNIFIES THAT THE VARIABLES BELONGS TO ALL LOCK 
GROUPS SIMULTANEOUSLY, 

EXAMPLE: 

DECLARE VEHICLE POSITION VECTOR DOUBLE LOCK(*);
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THE FOLLOWING EXAMPLES ILLUSTRATE THE POSITIONING OF THE CONSTRUCT. 

WITHIN DECLARATIONS: ° 

EXAMPLES : 

| DECLARE I INTEGER DOUBLE LOCK(3)s 
| DECLARE $ SCALAR INITIAL(5.5) LOCK(*); 

DECLARE V VECTOR(3) LOCK(1) INITIAL(O); 
DECLARE B ARRAY (1000) ‘BOOLEAN LOCK(*); 

| STRUCTURE © DENSE: 
| 1 QI INTEGER, 
| 1.08 SCALAR, 

| 1 0B BIT); 
| DECLARE 20 Q-STRUCTURE(20) LOCK(3)s 
  

UPDATE BLOCKS 
      

AN UPDATE BLOCK IS AN EXPLICITLY DELIMITED BODY OF CODE WHEREIN LOCKED 

DATA MAY BE REFERENCED OR MODIFIED, AN UPDATE BLOCK SUPERFICIALLY LOOKS 

LIKE ANY OTHER HAL BLOCK. 

fabel: UPDATE 

CLOSE Label; 
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THE UPDATE BLOCK, HOWEVER, IS UNIQUE IN SEVERAL RESPECTS: 

1) THE BLOCK LABEL IS OPTIONAL. IF IT IS OMITTED THE COMPILER 
AUTOMATICALLY GENERATES LABELS, I.E. 

~ SUPDATEL, $UPDATE2, etc. 

2) UPDATE BLOCKS CANNOT BE CALLED, INVOKED, OR SCHEDULE. INSTEAD, 
THEY -ARE EXECUTED WHEN THEY ARE ENCOUNTERED IN THE PATH OF 
EXECUTION, 

NOTE: ALTHOUGH ONE “FALLS INTO” UPDATE BLOCKS (AND THAT IS 
; WHY A LABEL IS OPTIONAL) THEY STILL ARE SEPARATE CSECTS 

(CONTROL SECTIONS) LIKE ANY OTHER BLOCK AND THUS THERE 
TS A HIDDEN BRANCH TO THE BLOCK WHICH LOOKS LIKE A 
NORMAL PROCEDURE CALL. THIS CAN BE SEEN IN THE GENERATED 
CODE,
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3) A BLOCK LABEL, IF THE USER SUPPLIES ONE, MAY BE CONSIDERED 

AS A STATEMENT LABEL, I.E. IT IS POSSIBLE TO USE A GO TO 

STATEMENT TO GET TO AN UPDATE BLOCK, 

{ T=I+1; 
IF 1 <0 THEN GO TO ENTER; 

veJ+th 
ENTER: UPDATE; 

m= M+ UU WN, 
CLOSE ENTER; 

E 

a 

t 

| 
| 
| 
| 
| 

| 
| 
| 

4) AT THE BEGINNING OF THE EMITTED CODE FOR AN UPDATE BLOCK THERE 

IS A SUPERVISOR CALL (SVC) TO THE FCOS DESCRIBING WHICH LOCK 

GROUPS WILL BE USED BY THE UPDATE BLOCK, EXECUTION MAY BE HELD 

UP AT THIS POINT IF ONE OR MORE OF THE REQUESTED GROUPS ARE 

ALREADY IN USE.
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5) 

6) 

7) 
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AT THE END OF THE EMITTED CODE FOR AN UPDATE BLOCK THERE — 

TS AN SVC WHICH INFORMS THE FCOS THAT THE LOCK GROUPS ARE 

NOW FREE. 

AN UPDATE BLOCK CAN HAVE DECLARED LOCAL DATA JUST LIKE ANY 

OTHER BLOCK, 

THE FOLLOWING (UNUSUAL) RESTRICTIONS APPLY, HOWEVER: 

e NO 1/0 STATEMENTS OF ANY KIND ARE LEGAL, E.G, READ, WRITE, 

_ ETC, (HAL/S WILL NOT STOP ZSVC, HOWEVER). 

© MOST REAL-TIME STATEMENTS ARE JLLEGAL, NAMELY: 

SCHEDULE, WAIT, CANCEL, TERMINATE, 

AND UPDATE PRIORITY,
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e AN UPDATE BLOCK CAN HAVE NESTED PROCEDURES AND FUNCTIONS 

BUT NO UPDATE BLOCKS OR TASK BLOCKS, 

0 THE ONLY PROCEDURE OR FUNCTION INVOCATIONS WHICH ARE LEGAL 

ARE THOSE REFERENCING PROCEDURE OR FUNCTION BLOCKS DEFINED 

WITHIN IT, 

UPDATE BLOCKS SHOULD GENERALLY BE AS FAST AS POSSIBLE SINCE THEY 

TIE UP LOCK GROUPS THAT MAY KEEP MORE CRITICAL UPDATE BLOCKS FROM 

BEING EXECUTED, . 

NOR SHOULD UPDATE BLOCKS BE TOO FREQUENT SINCE THERE IS NOT ONLY 

THE OVERHEAD OF 2 FCOS SERVICES BUT ALL GPC’S ARE USUALLY SYNCHED 

UPON ENTRY TO AN UPDATE BLOCK. 

47k
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UPDATE; 
DECLARE I INTEGER, 

& SCALAR; 
Vi= V/S; 

WRITE (6) V; —_——— = illegal 

INNER: PROCEDURE; 

CLOSE INNER} 
. 

  

    
  

CALL INNER; 
CALL OUTER; +———— illegal ~ outer not defined in 

update block’ 
UPDATE PRIORITY ALPITA TO 50; «-——————— illegal 

CLOSE; 

32
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NOTE: THE COMPILER AUTOMATICALLY INFORMS FCOS ON WHICH LOCK GROUPS 

TO LOCK BASED ON WHICH LOCKED VARIABLES ARE REFERENCED. 

FURTHERMORE, IF LOCKED DATA IS ONLY REFERENCED (NOT 

ASSIGNED) FCOS IS INFORMED OF THIS ALSO -~ ALTHOUGH 

REFERENCE-ONLY UPDATE BLOCKS ARE NOT CURRENTLY GIVEN ANY 

FAVORED TREATMENT,
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EXECUTION OF UPDATE BLOCKS 

THE BEHAVIOR OF PROCESSES ON ENCOUNTERING UPDATE BLOCKS HAS ALREADY 

BEEN DESCRIBED IN THIS SECTION, BUT ONLY SUPERFICIALLY BY EXAMPLE, 

THIS BEHAVIOR IS NOW RE-EXAMINED IN MORE DETAIL, 

THE SIMPLEST CASE IS THAT OF THO PROCESSES WISHING .TO USE DATA 
ITEMS FROM THE SAME LOCK GROUP. EACH PROCESS HAS TO EXECUTE AN 

UPDATE BLOCK TO USE THE PROTECTED DATA ITEMS, THE FOLLOWING 

ACTIVITY TAKES PLACE: ~ : 

® IF BOTH OF THE PROCESSES REQUIRE DATA ITEMS FROM THE SAME 

_ LOCK GROUP TO BE MODIFIED THEN THE FIRST PROCESS TO 

ENTER ITS UPDATE BLOCK MUST COMPLETE EXEUCTION OF IT BEFORE 

THE SECOND PROCESS CAN ENTER ITS OWN UPDATE BLOCK, THE 

RTE PLACES THE SECOND PROCESS IN A WAITING STATE FOR THIS 

PERIOD OF TIME, 

  

  

© IF ONE OR BOTH OF THE PROCESSES ONLY REQUIRE TO REFERENCE THE 
DATA THEN IN SOME IMPLEMENTATIONS OF HAL/S, THE BEHAVIOR OF THE 
RTE WILL BE THE SAME AS BEFORE, ALTERNATIVELY, IN OTHER IMPLE- 
MENTATIONS, TO REDUCE THE SECOND PROCESS’ WAITING TIME, THE 
RTE MAY ALLOW PARTIAL OVERLAP IN EXECUTION OF THE UPDATE BLOCKS, 
CONSISTENT WITH EXCLUSIVE USE OF DATA BY THE PROCESS MODIFYING 
IT*,     
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TO |   

IF THE TWO PROCESSES WISH TO USE DATA FROM MORE THAN ONE LOCK 

GROUP, THE RTE TRACKS THE USE OF EACH LOCK GROUP IN THE ABOVE 

WAY. IF ONE OR BOTH PROCESSES USE DATA PROTECTED BY LOCK(*), THEN ‘. 

THE SITUATION IS EQUIVALENT TO ONE IN WHICH THE PROCESS OR 

PROCESSES WISH TO USE DATA IN EVERY LOCK GROUP, 

IF DATA IS SHARED BY MORE THAN THO PROCESSES, THEN ALL PROCESSES 

EXCEPT ONE ARE PUT IN A WAITING STATE BY THE RTE. THE EVENTUAL 

ORDER. IN WHICH THE PROCESSES COMPLETE EXECUTION OF THEIR UPDATE 

BLOCKS WILL DEPEND ON THE CONTENTS OF THE PROCESS QUEUE AND THE 

RELATIVE PRIORITY OF THE PROCESSES, 
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EXAMPLE SO 

IN SOME REAL TIME APPLICATION, IT IS REQUIRED THAT A PROCESS ALPHA 

PRINT THE VALUES OF A COVARIANCE MATRIX M ONCE EVERY 19 SECONDS, 

a’.
 

  

“THE VALUES ARE UPDATED ONCE EVERY 1.5 SECONDS BY A SECOND PROCESS 

BETA, THE IMPLEMENTATION MUST GUARANTEE THAT A.PARTIALLY UPDATED 

COVARIANCE MATRIX NOT BE PRINTED, 

THE COVARIANCE MATRIX M IS DECLARED THUS: 
| 

| DECLARE M MATRIX(3,3) LOCK(L)s 
| 

TWO TASK BLOCKS CORRESPONDING TO ALPHA AND BETA ARE SHOWN BELOW:
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EXAMPLE CONTINUED: 

| ALPHA: TASK: 
| DECLARE M_LOCAL MATRIX(3,3)s 

U1: UPDATE; 
| | MLocaL = Mi, 
| CLOSE us 
| WRITE (6) "COVARIANCES", LOCAL; 
| close ALPHA; 
Ic 

| BETA TASK; 
| DECLARE VT VECTOR(3); 

U2: UPDATE) 

le T 
| V = (PHIM PHI + OADZ; 

M = V V/(OB + Z.V); 
| CLOSE U2; 
| CLOSE BETA; 
| 

$2 
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EXAMPLE CONTINUED! $00 “4 

ALPHA: TASK; 

DECLARE M_LOCAL MATRIX(3,3)3 

Ul: UPDATE; 

M_LOCAL = My 

CLOSE UL) 
WRITE(B) ‘COVARIANCES’, MLOCAL; 

CLOSE ALPHAs ° 

C 

DECLARE VT VECTOR(3); 

U2: UPDATE; 

E T 
V = (PHI M PHI + QA)Z; 

N= V V/(QB + Z.V); 

CLOSE U2) 

| 

| 

| 

| 
| 

| 
| 

| BETA TASK; 

| 

| 

| 

| 

| close BETA; 
| 

Ty
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EXAMPLE CONTINUED: 

PROCESSES ALPHA AND BETA COULD BE CREATED BY INVOKING 

THESE TASK BLOCKS WITH CYCLIC SCHEDULE STATEMENTS 

OF THE FOLLOWING FORM: 

| SCHEDULE ALPHA PRIORITY(10), REPEAT EVERY(19) 5 

| SCHEDULE BETA PRIORITY(20), REPEAT EVERY(1,5); 

THE FOLLOWING DIAGRAM SHOWS THE STATE TRANSITIONS OF 

THE PROCESSES: . 

33 
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EXAMPLE CONTINUED: 

exacuhion of 
update bleck UL 

~ em 19sec ——>| 

  

    

  
  

              

! “= executing 

I 
ALPHA | 

i _ “ —— ready 

1 | 
einen - — 1 cree Lteenteerenmene WAItLAg 

| 1 Sed pel L.5sec —~>{ 
1 ‘ 

i + . —- exceuting 
| | | | I 

BETA L - J - 7” -- + t oo reetedy 

ri ! A . pL. 1. tJ wailing 
1 | prot i i — i to | 

xeccution of vom yr execution oF 
update block U2 a update block U2 

process walting end of execution 

at entry to U2 of update block U1 

a 

NOTE THAT IF IN THIS EXAMPLE PROCESS SWAPS OCCURRED ONLY ON 
STATEMENT BOUNDARIES, UPDATE BLOCKS WOULD NOT BE NEEDED SINCE 
ALPHA COULD NOT EVER BE BROUGHT INTO EXECUTION WITH COVARIANCE 

MATRIX M PARTLY UPDATED, 
T-Nio
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LOCKED ASSIGN ARGUMENTS 

    

THE RULE THAT LOCKED DATA ITEMS CAN ONLY APPEAR IN UPDATE 

BLOCKS HAS ONE SOLE EXCEPTION: IT IS POSSIBLE FOR LOCKED 

DATA ITEMS TO APPEAR AS ASSIGN ARGUMENTS IN PROCEDURE 

INVOCATIONS, THIS PROVIDES THE ABILITY TO "PARAMETERIZE” 

UPDATE BLOCKS, AS WILL BE SHOWN IN AN ENSUING ~ EXAMPLE, 

_ THE FOLLOWING RULES GOVERN THE PASSAGE OF LOCKED ASSIGN 

ARGUMENTS: ,
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LOCKED ASSIGN ARGUMENTS (CONTINUED)! 

  

1, IF THE ARGUMENT 1S A DATA ITEM BELONGING TO 

LOCK GROUP Ny THEN THE CORRESPONDING PARAMETER 

‘MUST BE DECLARED Lock(N) or Lock(*), 

2, IF THE ARGUMENT IS A DATA ITEM BELONGING TO . 
ALL LOCK GROUPS, THE CORRESPONDING PARAMETER 

MUST BE DEGLARED LocK(*), 

3, ARGUMENT AND PARAMETER MUST ALSO MATCH IN THE 

SENSES DESCRIBED, AS APPLICABLE,     
  

oye OP



ra 

EXAMPLE: 

1 
1 
! 
t 
! 
' 
1 
1 
j 
t 
i 
' 
1 
i 

| 
' 
{ 
{ 
1 
1 
{ 

For 

the 

+ 

The 
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DECLARE A SCALAR LOCK (1), 

B SCALAR LOCK (2), 

cs CALAR LOCK (4); 
PICK: PROCEDURE (P) ASSIGN (Q,R); 

7 DECLARE P SCALAR, 
Q SCALAR LOCK(1), 

R SCALAR LOCK(*); 
  

  TT body of procedure 

  eee
,
 

  

CLOSE PICK; 

the above procedure definitions and declarations, 

following invocations are legal: 

CALL PICK(1.0) ASSIGN (A,B) 

CALL PICK (2,0) ASSIGN (A,C) 

: 
t 
: 
t 

following are illegal; 

Pore data item as input arqument 

t : 1 ko gr 
CALL PICK(N) ASSIGN (IGE); > steed Jock group 
CALL PICK(3..0) ASSIGN(C,B); 

Fa 
$00e-9
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EXAMPLE CONTINUED: 

‘tthe procedure PreK may Contain an update block chanying the values of Q and R: 

PICK: PROCEDURE (P) ASSIGN(Q,R); 
DECLARE P SCALAR, 

. Q SCALAR LOCK (1), 
R SCALAR LOCK («#); 

Us Ot Pp; 

R= R- p; 
CLOSE Us; 

! 
' 
' 
' 
! 
! 
i 
t 
' 
i 
| . 
{ Ur UPDATE: 

! 
' 
' 
’ 
t 
! 
' 
' 
t 
i 
t CLOSE PICK; 

. HECK may be invoked with different Locked assign 
Ardumonts, thus effectively parameterizing the — 
update block. 

| CALL PICK(L) ASSIGN (A,h); Updates A and 
! CALL PICK(2) ASSIGN(A,C); udpates A and t 

SVO—4
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FURTHER NOTES: 

1) STRUCTURES MAY BE LOCKED: 

STRUCTURE. Q: 
1 A, 

2 AL SCALAR, 
2 A2 SCALAR, 

1B, | 
2 Bl INTEGER, 
2 B2 INTEGER; 

DECLARE @ Q-STRUCTURE LOCK(5) 

IN WHICH CASE AN UPDATE BLOCK IS NEEDED TO ACCESS ANY PART OF THE 

STRUCTURE. ° 

2) THE KEYWORD LOCK MAY NOT APPEAR WITHIN THE TEMPLATE ITSELF, 

T,E., EQTHER THE ENTIRE STRUCTURE IS LOCKED OR NO PIECE OF IT IS. 

THIS TURNS OUT TO BE AN UNFORTUNATE RESTRICTION IN THE CASE OF 

NAME VARIABLES (AS WE WILL SEE LATER), I.E. THE FOLLOWING IS 

ILLEGAL (ALTHOUGH LOGICALLY REASONABLE).



3) 

4) 
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STRUCTURE Q: 
1 A SCALAR, 
I NM NAME MATRIX LOCK(3), 
1 V VECTOR; 

A DISADVANTAGE OF LOCK GROUPS IS THAT AN UPDATE BLOCK IS LEGALLY 

REQUIRED EVEN. WHEN THE SOFTHARE DESIGN GUARANTEES THAT CERTAIN 

"SAFE" TIMES EXIST WHEN ONLY ONE PROCESS WILL BE ACCESSING THE 

LOCKED DATA, 

ILLEGAL! 

THE NEW ZCOPY FACILITY DOES ALLOW LOCKED DATA TO BE COPIED OR 

UPDATED WITHOUT THE NEED FOR AN UPDATE BLOCK,
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EXCLUSIVE PROCEDURES/FUNCTIONS 
  

AN EXCLUSIVE PROCEDURE OR FUNCTION (USUALLY A COMSUB) I$ ONE WHICH 

POSSESSES A SPECIAL FCOS INTERFACE THAT GUARANTEES THAT ONLY ONE . 

PROCESS AT A TIME MAY ENTER THE BLOCK, I.E. THE FIRST PROCESS TO 

ENTER THE BLOCK LOCKS OUT ALL OTHER POTENTIAL CALLERS UNTIL IT HAS 

FINISHED AND HAS EXITED THE BLOCK, 

DEFINING AN EXCLUSIVE PROCEDURE 
  

‘THE FORM OF THE OPENING STATEMENT OF AN EXCLUSIVE PROCEDURE IS AS 

SHOWN BELOW! 

  

| j : 
| Label: PROCEDURE (i7,47,...) ASSIGN(a,a”,...) EXCLUSIVE; 

1, tabef is a legal HAL/S identifier constituting the 
procedure name. ‘ 

2. Be... and ata?,.., are lists of input and 
assign parameters as described. 

3. The keyword EXCLUSIVE designates an exclusive 
procedure.   
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EXCLUSIVE PROCEDURES/FUNCTIONS (CONTINUED) 
  

NOTE: ALTHOUGH IT IS FAR EASIER TO MAKE A BLOCK EXCLUSIVE THAN REENTRNT, 

- EACH EXECUTION OF AN EXCLUSIVE BLOCK CARRIES THE OVERHEAD OF 2 FCOS * " 

SUPERVISOR CALLS, ‘ 

EXCLUSIVE BLOCKS ALSO MAY RESULT IN TEMPORARY "LOCK-OUT” OF MORE 

CRITICAL PROCESSES, 

THIS IS ALL IT TAKES TO MAKE A BLOCK EXCLUSIVE 

Example: 

' Pp: PROCRDURE(A) EXCLUSIVE; 
DECLARE A SCALAR; 

| 
1 . 

| 

! VU). _— _ { 
$ 
f CLOSE P; 

The template corresponding to an exclusive external 
procedure must also bear the keyword EXCLUSIVE. 

Goce
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Example: 

‘the template corresponding to 
t 
i 
t Pr PROCEDURE (A) EXCLUSIVE; 

4 DECLARE A SCALAR; 
' 

. 

| YHA ! proceedure body 

\ | 
1 CLOSE P; 

would be: 

Yo opr BXYERNAL PROCEDURE (A) EXCLUSIVE; 

! DECLARE A SCALATG 

' CLOSE P; :
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EXCLUSIVE PROCEDURES/FUNCTIONS (CONTINUED) 

DEFINING AN EXCLUSIVE FUNCTION 

THE FORM OF THE OPENING STATEMENT OF AN EXCLUSIVE FUNCTION IS AS SHOWN 

BELOW: 

  VI 
! Label: FUNCTION (i7,17,...) attributes EXCLUSIVE; 

1. abel is a legal HAL/S identifier constituting 
the function name. 

2. Oi .. is a list of input parameters as 
described earlier. 

3. attributes defines the type and, where applic- 
able, precision of the function. 

4. "The keyword EXCLUSIVE designates an exclusive 
function.   
  

S2 
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Example: 

Fi FUNCTION BOOLEAN EXCLUSIVE; 

| 
LA | 

function body 

  

1 
1 
1 
f 
I 
4 
t 
t 
' 
| f 

; CLOSE P; 

The template corresponding to an exclusive external 
function must.also bear the keyword EXCLUSIVE. 

Rxamples 

The template corresponding to: 

' Pr RUNCETOH NOOLKAN EXCLUSIVE; 

' I WY 
' Yy . function body 
i | i 
! CLOSE F; 

woudl fee: 

| FP: EXTERNAL FUNCTION RNOOLEAN EXCLUSIVE: 

1 CLOSE Fr - 
t 

q-S I~ 

  

500-17



  

EXCLUSIVE PROCEDURES/FUNCTIONS (CONTINUED) 
  

PEHAVIOR OF EXCLUSIVE PROCEDURES AND FUNCTIONS 

if an exclusive prucedure or function is in use by a 
process A, and a process B tries to invoke it, then 
the RTE places process 8 in the waiting state until 
process A returns from its use, 

Example: 

Two processes ALPHA and BETA can ‘invoke the following 
procedure: 

P: PROCEBURE EXCLUSIVE: 

procedure body 

CLOSE DP; 

    

Soo -1¥
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Suppose that ALMIA invokes YP first and during 
its execution, BETA tries to invoke it. The state 
transitions for this situation is shown below: 

‘ 

  

  

, ! ' . 
_ =ae ! . - - mw executing 
other I | | 

. tirelated , | 
ALMA transitiong}.L. — — “lores ne ready 

| foo4- : 
eee eee a te Pe ey os waiting 

ALPHA eriters | fo. LALPHA Leaves 
r r : 

. | 1 4 
! ' 

i executing 

other 

Hera unrelated | ! 
transitions “| — ee ee ee fam Cay 

| 

ame eee eee a > waiting         
| KL RTA Leaves P 

| 

NETA trios A RTE allows BETA 
to enter P ‘to anter P 

\e
 
ee
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REENTRANT PROCEDURES/FUNCT IONS 
  

o DUE TO THE HAL/S STACK MECHANISM AND THE METHOD OF PARAMETER 

PASSAGE AND PROCEDURE CALL, EVERY PROCEDURE/FUNCTION IS ALMOST 

REENTRANT 

o TO MAKE A BLOCK LEGALLY REENTRANT IT IS NECESSARY TO APPEND 

THE KEYWORD .REENTRANT TO THE BLOCK HEADER. 

* TO MAKE A BLOCK ACTUALLY REENTRANT REQUIRES MORE WORK AND A 

LOT OF CARE! ° 
  

  

REENTRANCY MEANS, OF COURSE, THAT TWO OR MORE PROCESSES 

(PROGRAMS OR TASKS) MAY BE “SIMULTANEOUSLY” EXECUTING 

THE BLOCK,       

ea



REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) 
  

DEFINING A REENTRANT PROCEDURE 

THE FORM OF THE OPENING STATEMENT OF A REENTRANT PROCEDURE IS SHOWN 

BELOW; 

  ' . 

| fabek: PROCEDURE (i", 47,2...) assten(at,a?,...) REENTRANT}; 

1. abel is a legal HAL/S identifier constituting the 
procedure name. 

2. os, and at ja7 yee. are lists of input and assign 
parameters. 

3. The keyword REENTRANT indicates that the procedure 
is to be considered reentrant.     
  

Examples 

Ps PROCEDURE REENTRANT 

   
ep 

“ yyy | procedure body 

LAA 

i 
‘ 
! 
1 
' 
i 
! 
! 
' 
J 
' 
I CLOSE P; 

Tf P were an external procedure, the corresponding 
template would be: , 

\ Vi EXTRRNAL PROCEDURE REENTRANT ; 
! CLOSE P; 

52 
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REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) 

DEFINING A REENTRANT FUNCTION 

The form of an opening statement of a reentrant function 
is shown below: 

  

  

; : 
| fabet:; runcTion(é!, 2”,,..) attributes REENTRANT; 

Label is a legal HAL/S ‘identifier consti tu- 
ting the function name, 

o, is a list of input parameters 
as described in Section 11.2, 

attubutes defines the type and, where applic- 
able, precision of the function as described 
in Section 11.2. 

The keyword REENTRANT indicates that the 
function is to be considered reentrant. 

  

The template corresponding to an external reentrant Function 
must also possess the keyword REENTRANT. 

G-C2 

$00-23 
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Example: t 

Fi: PUNCTPLION MATRIX(4,4) REENTRANT; sy
 

  

function -body 

} 
If F were an oxternal funetion, the corresponding 
template would be: 

{ PV EXTERNAL FUNCTION MATRIX (4,4) REENTRANT; 
! CLOSE F; 

      

CLOSE PF; 

9 ~ yo } ‘ ion



  

REENTRANT PROCEUDRES/FUNCTIONS (CONTINUED) 
  

BEHAVIOR OF REENTRANT PROCEDURES AND FUNCT LONS 

If a reentrant procedure or function is in use by a 
process A, and a process 8 tries to invoke it, the 
RTE allows the invocation to proceed without restriction. 

3 

Example: 

Iwo processes, ALPHA and BETA, can invoke the 
following procedure: 

P: PROCEDURE REENTRANT; * 
  

      

CLOSE P;_ 

Suppose that ALPHA invokes P first and during 
its execution, BETA invokes it, ‘The state 
transitions for this situation is as shown 
below (compare corresponding example for 
exclusive procedure): 

$2 
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800-235 

  

  

. ! t 
me : t we executing 

t other 
| unrelated 

‘ ! transitions 
ALPHA cays y77c On ready 

| 
ewe el ee pam nm wee He 2 ~~ waiting 
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enters P 

| | ( 
‘. _. . ‘ . 

“ ‘other t 7 ps executing 
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trans]. fF RETA ransltions ' | 

wae fine eee eee eS poTTy we ee ee OPOY 

| 
{ { 

' i 
ea -- yb - Hon itis 

RETA enters te al oo LTA Leaves P 

e (OL aneiia and BETA both executing P 

os
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TRUE REENTRANCY GENERALLY REQUIRES THAT EVERY PROCESS ENTERING 

A REENTRANT BLOCK BE GIVEN ITS OWN COPY OF ANY LOCAL DATA THE 
- BLOCK MAY USE, THIS IS ACCOMPLISHED BY SOMEHOW CAUSING THE 

LOCAL DATA TO BE ESTABLISHED IN THE STACK OF THE CALLING PROCESS 

(AKIN TO USING A GETMAIN’ED AREA) RATHER THAN HAVING A SINGLE 

COPY OF THE DATA PERMANENTLY ALLOCATED IN A STATIC AREA, 

NOTE: PARAMETERS PASSED TO THE BLOCK ARE ALREADY IN THE STACK 

OF THE CALLING PROCESS SO NO PROBLEM EXISTS HERE, 

LOCAL DATA WHICH IS TO BE DYNAMICALLY ALLOCATED (FROM THE 
CALLER’S STACK) MUST BE DECLARED WITH THE AUTOMATIC ATTRIBUTE,



REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) ae - az 

‘IN A NON-REENTRANT BLOCK THE KEYWORD AUTOMATIC, IN CONJUNCTION 

WITH AN INITIAL LIST, SIMPLY MEANT THAT CODE WAS TO BE AUTO- 

MATICALLY GENERATED BY THE COMPILER TO CAUSE THE INDICATED 

"INITIALIZATION AT EACH ENTRY TO THE BLOCK, IT THUS MADE NO 

SENSE TO NOT HAVE AN INITIAL LIST. 

  

WITH A REENTRANT BLOCK, HOWEVER, AUTOMATIC ADDITIONALLY MEANS 

THAT THE ALLOCATION OF THE DATA IS TO BE MADE FROM THE WORK 

AREA (STACK) PROVIDED BY THE CALLER. IN THIS CONTEXT AUTOMATIC 

MAKES SENSE EVEN WITHOUT AN INITIAL LIST, 

NOTE: IN MOST NON~CONTRIVED CASES, ALL DATA DECLARED LOCAL 10 A 

REENTRANT PROCEDURE SHOULD BE DECLARED AS AUTOMATIC, THE DEFAULT 

(WHICH IS STATIC) WOULD MEAN THAT ALL USERS ARE ASYNCHRONOUSLY 

MODIFYING THE SAME MEMORY LOCATION, 

¥
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REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) 
  

EXAMPLES: 

IN THE REENTRANT PROCEDURE: 

P: PROCEDURE(A) ASSIGN(B) REENTRANT; 

DECLARE A VECTOR; |__ ote: A AND By BEING PARAMETERS, 
DECLARE B SCALAR; ARE ALREADY IN A DYNAMICALLY 

DECLARE V VECTOR(3) AUTOMATIC; ALLOCATED AREA. 

  

t 

V = VECTOR(B, 0, 0)3 

| 

| 
| 
| 
| ‘ 
| 
| 
| B=V.A; 

| 
| 

7-Oy
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REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) 500 ~- aj 
  

IN CONTRAST, SUPPOSE THE NUMBER OF TIMES A REENTRANT . 

PROCEDURE IS INVOKED IS REQUIRED TO BE KNOWN AND PRINTED 

EVERY 10 INVOCATIONS, IN THIS UNUSUAL, AND RATHER ARTI- 

FICIAL CASE, IT WOULD BE APPROPRIATE TO USE A LOCAL 

DATA ITEM NOT DECLARED AUTOMATIC: 
| 
1 P2: PROCEDURE(A,B) ASSIGN(C) REENTRANT; 
| DECLARE VECTOR, A, B, Cs 
| DECLARE COUNT INTEGER INITIAL(O)s 
j COUNT = COUNT + 1; 
| IF REMAINDER(COUNT, 10) = 0 THEN 
i WRITE(6) ‘NUMBER OF ENTRIES='| |COUNT; 

| 

! CLOSE P23 
IN AN IMPLEMENTATION WHERE PROCESS SWAPS CAN ONLY OCCUR AT THE 
END OF EVERY EXECUTABLE STATEMENT, THE CODE SHOWN WOULD MAINTAIN 
A CORRECT COUNT OF THE NUMBER OF INVOCATIONS.,



  

  

REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) S00 o 3d 

HISTORICAL NOTE: 

AT VARIOUS TIMES IN THE PAST IT HAS BEEN SUGGESTED THAT THE 

DEFAULT BE AUTOMATIC FOR DATA DECLARED IN A REENTRANT PROCEDURE 

. INSTEAD OF THE NORMAL STATIC, THIS HAS NOT BEEN DONE. 

  

FURTHER CONSIDERATIONS FOR ACHIEVING REENTRANCY: 

1) PROCEDURES AND FUNCTIONS DEFINED WITHIN A REENTRANT BLOCK MUST 

ALSO POSSESS THE REENTRANT ATTRIBUTE IF THEY TO POSSESS 

LOCAL DATA WHICH IS REQUIRED TO PARTICIPATE IN THE REENTRANCY. 

2) UPDATE BLOCKS WITHIN A REENTRANT BLOCK MUST NOT DECLARE ANY 

LOCAL DATA (STATIC OR AUTOMATIC), 

3) A PROCEDURE OR FUNCTION CALLED BY A REENTRANT BLOCK MUST ITSELF 

ALSO BE REENTRANT.
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IN GENERAL, A HAL/S COMPILATION RESULTS IN THE GENERATION OF A 

NUMBER OF CSECTS (CONTROL SECTIONS). WE MIGHT CALL THIS A 

CSECT FAMILY SINCE ALL CSECTS EMITTED BY A SINGLE COMPILATION 

WILL SHARE 6 (OR LESS) LETTERS -- THE GENERIC NAME. 

THE GENERIC NAME IS ESTABLISHED BY TAKING THE FULL NAME OF THE 

COMPILATION BLOCK ITSELF, REMOVING ALL UNDERSCORES, AND THEN 

TAKING THE FIRST 6 CHARACTERS OF WHAT REMAINS (RIGHT-PADDING 

WITH BLANKS IF NECESSARY). FOR THIS REASON, COMPILATION UNIT 

NAMES SHOULD BE CHOSEN SUCH THAT THE GENERIC NAMES WILL BE 

UNIQUE, 

CG1.GNC: CONPOOL: 

CLOSE) 
THE GENERIC NAME WILL BE 

CG1GNC | 
  

  

qo!



  

HAL/S CSECTS (CONTINUED) sf 
  

. &00-32 
ASSUMING THE GENERIC NAME IS NNNNNN HAL/S PRODUCES THE FOLLOWING 

CSECTS: 

(MAJOR DECLARED DATA CSECTS) 

#PNNNNNN A COMPOOL DATA CSECT 

HDNNNNNN A PROGRAM OR COMSUB DATA CSECT 

(OUTER CODE BLOCKS) 

SONNNNNN A PROGRAM CODE BLOCK 

#CNNNNNN A COMSUB CODE BLOCK 

CINTERNAL CODE BLOCKS) 

anNNNNNN INTERNAL PROCEDURES, FUNCTIONS, UPDATE BLOCKS, 

a = (A-z) 

n= (1-9) 

SCNNNNNN TASK CODE BLOCKS. 

C = 1-9, tHen A-Z 

ows



#FNNNNNN 

#TNNNNNN 

#ZENNNNNN 

#ENNNNNN 

AXNNNNNN * 

#RNNNNNN 

$2. 
HAL/S ‘CSECTS (CONTINUED) 300-3 3 

(360 ONLY - FSIM TYPE CSECTS) 

(FC ONLY) 

FSIM CSECT 

(ALSO CONTAINS LITERALS AND ADCONS) 

COST/USE CSECT 

ZCON CSECT FOR COMSUB OR REMOTE DATA 

PROCESS DIRECTORY ENTRY (PROGRAMS AND 

TASKS ONLY) 

CONTROL AREA FOR EXCLUSIVE BLOCK(S) 

DATA AREA FOR REMOTE DATA



  

HAL/S CSECTS (CONTINUED) 

IN ADDITION, HAL/S SPECIFIES INFORMATION TO HALLINK (360) 

AND THE AP-101 LINKAGE EDITOR THAT ENABLES THE PRODUCTION 
OF STACK CSECTS (ONE PER PROCESS), 

SONNNNNN PROGRAM STACK 

_ OCNNANNN TASK STACK 

C = 1-9, THEN A-Z 

ALSO, THE COMPILER GENERATES A BLOCK TEMPLATE 

; @aNNNNN 

AND A SIMULATION DATA FILE (SDF) 

HANNNNNN



HAL/S CSECTS (CONTINUED) 

FURTHERMORE, IN AN FC LOAD MODULE THE FOLLOWING TYPES OF 

CSECTS WILL BE SEEN: 

aaNNNNNN 

HONNNNNN 

#LNNNNNN 

#ONNNNNN 

7S 

HAL/S LIBRARY ROUTINE OR NON~HAL 

(E.G, FCOS) ROUTINE. 

a = (A-z) 

ZCON FOR “LIBRARY ROUTINE, 

DATA FOR A LIBRARY ROUTINE. 

SECTOR # LIBRARY ROUTINE, 

S3 
200 -38
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DATA CSECTS S00 - 3 

#PNNANNN COMPOOL DATA CSECT 

A COMPOOL COMPILATION RESULTS IN THE GENERATION OF A SINGLE 

’ CSECT AND ITS CONTENTS ARE THE SAME FOR BOTH FC AND 360. 

A #P CONTAINS CONPOOL DECLARED DATA AND USERS CAN CONTROL 

THE ORDER OF DATA ALLOCATED WITHIN IT BY MEANS OF THE RIGID 

KEYWORD. . ‘ 

KEY POINTS: 

D REPLACE MACROS TAKE UP NO SPACE, 

2) ENTRY POINTS CAN BE CREATED BY THE USER (VIA THE EQUATE EXTERNAL 

FACILITY) WHICH ALLOW NON-HAL MODULES TO ACCESS COMPOOL DATA, 
  

  

TEXARPLE 
DECLARE ARR ARRAY(10) SCALAR DOUBLE; 
EQUATE EXTERNAL EXTNAME TO ARRS4; 

  

    
  
AN EQUATE EXTERNAL TAKES UP NO SPACE IN THE #P. WHAT IT DOES IS ...,



Cy 
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DATA CSECTS (CONTINUED) SCO - 37 

TO GENERATE AN ESD RECORD IN THE OBJECT DECK WHICH MARKS THE 

SPECIFIED VARIABLE AS AN ENTRY POINT (NAMED BY EXTNAME IN THE 

_ PREVIOUS EXAMPLE) OF THE CSECT IN WHICH THE VARIABLE IS 

LOCATED, 

THE EQUATE: EXTERNAL IS DESIGNED FOR EXTERNAL .(NON-HAL) USE ONLY. 

IT 1S ALSO NOT RESTRICTED TO COMPOOL DATA, BUT MAY BE USED WITH 

ANY DECLARED (STATIC) DATA. THE EQUATE MAY POINT TO ANY PREVIOUSLY 

DEFINED HAL VARIABLE AND COMPLEX SUBSCRIPTING IS ALLOWED PROVIDED 

ALL SUBSCRIPTING CAN BE EVALUATED AT COMPILE TIME. 

THE #P (LIKE ALL OTHER HAL/S DATA CSECTS) CONTAINS DATA HHICH 

IS, IN GENERAL, MODIFIED. AS A RESULT THE ENTIRE #P IS UNPROTECTED 

EVEN WHEN PORTIONS OF IT CONTAIN CONSTANT DATA. AT RUN-TIME, THEN, 

CONSTANT DATA IS NO MORE SACRED THAN VARIABLE DATA. 

 



  

DATA CSECTS (CONTINUED) S00 - 3 3 

CONSTANT DATA | (A DIGRESSION) 
  

IN A COMPOOL, ALL DECLARED DATA WITH INITIAL LISTS WILL BE 

PHYSICALLY ALLOCATED IN THE #P CSECT. 

DATA DECLARED WITH A CONSTANT LIST, ON THE OTHER HAND, IS A 

MORE COMPLEX STORY: 

  

  

  

  

  

  

  

  

  

  

  

            

  

    

  

  

  
  

  

  

    

      

          

  

CONPOOL - 
DATA > INITIAL - ii: 

L CONSTANT tp 

ARRAY 

STRUCTURE 

VECTOR 

MATRIX DATA TYPES THAT CAN PARTICIPATE 
IN COMPILE-TIME EXPRESSION 
EVALUATION, 

eecnnenansnencenneen- Vo nnennne 
} SCALAR, t 

1 iy STRINGS “LITERALS* 
1 BOOLEANS ' 
4 CHARACTER STRINGS 1
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DATA CSECTS (CONTINUED) SHO -37 

THUS, SIMPLE COMPOOL CONSTANT DATA IS NOT GIVEN SPACE IN THE 

#P ~~ SUCH DATA IS OFTEN (INCORRECTLY) CALLED LITERAL DATA, 
  

SINCE ALL OF THE SOURCE LINES OF THE COMPOOL DO GET PUT IN 
ITS TEMPLATE, HOWEVER, THE ACTUAL VALUES OF THE LITERAL DATA 
ARE VISIBLE TO ALL COMPILATIONS THAT INCLUDE THE COMPOOL. 

  

  

  
NOTE: ALL SUCH LITERAL DATA IS INACCESSIBLE (ALMOST) TO 

DIAGNOSTICS. 
    

Q. IF LITERALS ARE NOT IN THE #P, WHERE DO THEY G0? 

A. WHEN A COMPOOL IS INCLUDED IN A PROGRAM, THE COMPILER SEES 
BOTH ITS LITERALS PLUS ANY SIMILAR LITERALS THAT MAY HAVE 
BEEN DECLARED IN THE PROGRAM -- ALL ARE TREATED ALIKE, 
THEN THE FOLLOWING HAPPENS; 

 



D 

2) 

3) 

  

TA CSECTS (CONTINUED) 

a 500 -Y¥0 
IF A LITERAL IS NOT USED, IT IS SIMPLY FLUSHED. 

IF THE LITERAL IS USED, IT WILL BE ALLOCATED IN THE #D 

CSECT (DATA AREA OF THE PROGRAM/COMSUB) UNLESS ITS USE 
IS SO SPECIALIZED THAT IT ACTUALLY GETS BUILT IN TO AN 

INSTRUCTION, 

IF THE LITERAL 1S ALLOCATED IN THE #D THEN IT NAY: 
A) BE OF DIFFERENT TYPE (E.G, THE ITEM WAS DECLARED 

AS AN INTEGER BUT USAGES WERE IN A SCALAR CONTEXT). 

B) BE OF DIFFERENT PRECISION OR SCALING (E.G. IF PI 
1S DECLARED CONSTANT(3.14) BUT (2 PI) IS USED, THEN 
THE VALUE STORED WILL BE 6.28). 

C) SHARE WITH ANOTHER LITERAL, I.E. TWO LITERALS WITH 
EXACTLY THE SAME VALUE WILL SHARE THE SAME SPACE, 
 



DATA CSECTS (CONTINUED) 
' Soo -9/ 

#DNNNNNN PROGRAM/COMSUB DATA CSECT 

SIMILAR TO #P 

1) EQUATE EXTERNAL CAN BE USED, 

2) CONTAINS ALL DATA DECLARE'D IN THE PROGRAM/COMSUB INCLUDING . 
LOCAL DATA OF ALL INTERNAL BLOCKS. 

BUT DIFFERENT: 

1) RIGID CANNOT BE USED. 

2) MAY CONTAIN A MIXTURE OF BOTH COMPOOL LITERALS (PROVIDED | 

THEY ARE USED) AND ITS OWN LITERALS (AGAIN, ONLY IF USED). 

3) ALSO CONTAINS SPECIAL DATA NEEDED BY FCOS OR THE COMPILER, 

E.G, 
ADDRESS CONSTANTS 

LOCAL BLOCK DATA AREAS 

AGAIN, ALTHOUGH INVARIANT DATA MAY RESIDE IN THE #D, IT IS 

COMPLETELY UNPROTECTED FROM WRITES,
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S/ DATA CSECTS (CONTINUED) eet $00 -Y2 aONNNHNN PROGRAM STACKS | 
a NAINA TASK STACKS 

aZNNNHINN TASK STACKS 
WE HAVE NOT YET DISCUSSED THE TASK BLOCK BECAUSE IT IS VIRTUALLY 
UNUSED IN THE CURRENT SHUTTLE DESIGN, 

FOR THE CURRENT DISCUSSION WE WILL THEREFORE LIMIT ATTENTION TO 
HAL/S PROGRAMS AND THEIR ASSOCIATED STACK. 

Q, WHAT IS A STACK? 

A, A STACK IS A SPECIAL DATA CSECT WHICH IS DEDICATED TO A SINGLE 
PROCESS, I.E, HAL/S PROGRAM, THE STACK HAS DYNAMICALLY CHANGING 
CONTENTS -- THE SAME LOCATION WILL GENERALLY CONTAIN DIFFERENT 
DATA AS A FUNCTION OF TIME, THE STACK IS USED FOR THE FOLLOWING 
PURPOSES:



1-8 

(1) 

(2) 

3) 

(4) 

(5) 

DATA CSECTS (CONTINUED) 

REGISTER SAVE AREAS 

PARAMETER PASSING 

SCRATCH SPACE NEEDED BY THE COMPILER 

USER DEFINED TEMPORARIES 

AND OTHER THINGS. 

300-43
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SOME FACTS: 

D 

2) 

3) 

  

DATA CSECTS (CONTINUED) I3 
_ tvo-4y 

THE COMPILER NEVER GENERATES A STACK. STACKS ARE EITHER 

GENERATED AT LINK EDIT TIME (VIA HALLINK ON THE 360 AND 

THE AP-101 LINKAGE EDITOR ON THE FC) -- OR ARE DOLED OUT 

BY THE FCOS AT THE TIME A PROGRAM IS INITIATED. 
  

THE COMPILER DOES INFORM THE LINKAGE EDITOR OF THE SIZE 

OF THE STACK FRAME REQUIRED BY EACH CODE CSECT, THIS IS 

DONE VIA SYM CARDS ISSUED IN THE OBJECT DECK, 

A STACK IS DYNAMICALLY DIVIDED INTO STACK FRAMES, EACH CODE 

BLOCK (GENERALLY) HAS A STACK FRAME PROVIDED FOR IT WHILE 

IT 1S. IN EXECUTION. THE STACK FRAME IS ALWAYS THE SAME 

SIZE FOR A PARTICULAR CODE BLOCK BUT MAY OCCUPY DIFFERENT 

LOCATIONS IN THE STACK CSECT DEPENDING ON THE CALL CHAIN 

BY WHICH THE CODE BLOCK WAS REACHED.



s/ 
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DATA CSECTS (CONTINUED) 

A STACK AT ONE POINT IN TIME: 

aw STACK FRAME 

-——- STACK FRAME 

UNUSED. PORTION OF STACK 

NOTE: IF THE LINKAGE EDITOR EVER CALCULATES A REQUIRED STACK LENGTH 

4-57 INCORRECTLY, THERE 1S NOTHING AT FLIGHT TIME TO KEEP US FROM 

. FALLING OFF THE END. 
wy \ 

  

  

AND LATER: 

  

OR
S)
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DATA CSECTS (CONTINUED) 

STACK SIZE CALCULATION 

1) A SPECIAL SYM CARD IS GENERATED (FOR EACH CODE BLOCK) IN THE OBJECT 
MODULE DEFINING THE SIZE OF THE STACK FRAME REQUIRED BY THE CODE 
BLOCK (ON THE FC THE MINIMUM SIZE IS 18 HALFHORDS). 

2) THE LINKAGE EDITOR PERFORMS AN ANALYSIS OF ‘ALL CALLS AND FUNCTION 
INVOCATIONS (BUILDS A CALL TREE) AND CALCULATES THE SIZE NEEDED 
FOR EACH PROGRAM (PROCESS) STACK, 

3) THE LINKAGE EDITOR THEN EITHER EMITS AN APPROPRIATELY NAMED STACK 
CSECT OF THE RIGHT LENGTH OR INFORMS THE FCOS (VIA THE #E CSECT) OF 
WHAT SIZE STACK WILL BE NEEDED WHEN THE PROGRAM 1S SCHEDULED, 

NOTE: ONLY PROGRAMS ARE GIVEN STACKS SINCE THEY ARE PROCESSES, 

(TASKS ARE TOO!) ANY INTERNAL OR EXTERNAL BLOCKS (COMSUBS) 
CALLED BY THE PROGRAM UTILIZE THE STACK OF THE PROGRAM -- 
AND THE LINKAGE EDITOR HAS TAKEN ALL OF THIS INTO ACCOUNT. 
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DATA CSECTS (CONTINUED) 3500 -Y¥ ¥ 

TF WE FOLLOW THE LONGEST PATH THE STACK FRAMES WILL LOOK 

LIKE: 

100 PL 

18 P2 

55 P3 

100 P7 
of aONNNN iE AL NNANNN 

18 A3 

40 Bl 

18 B2 

100 B3 

“——~ stack 18 FULLY UTILIZED 

NOTES: 

1) IN ACTUAL EXECUTION A STACK WOULD RARELY BE COMPLETELY USED. 

2) IT IS EASY TO SEE WHY ‘RECURSION IS NOT ALLOWED, 

Te
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DATA CSECTS (CONTINUED) 

STACKS SAVE CORE BECAUSE ... ook 

1) LOCAL (TRANSIENT) SPACE NEEDS WITHIN A SINGLE PROCESS 

ARE SATISFIED FROM A REUSABLE AREA, 

2) DEPENDING ON THE FCOS IMPLEMENTATION, STACKS THEMSELVES 

CAN SHARE THE SAME STORAGE IF THE PROCESSES CAN NEVER 

BE SIMULTANEOUSLY ACTIVE. 

USERS CAN PUT SCRATCH DATA IN THE STACK VIA THE TEMPORARY 

“FACILITY, THIS WOULD ONLY INCREASE THE SIZE ‘OF THE STACK 

NEEDED IF THE CORE BLOCK INVOLVED IS IN THE MAXIMAL CHAIN -- 

THAT IS, THE GREATEST AMOUNT OF STACK SPACE. 

 



  

THE HAL/S STACK MECHANISM 

' THE HAL/S RUNTIME STACK PROVIDES: 

2 A SIMPLE MEANS FOR SAVING AHD RESTORING ENVIRONMENTS FOR CALLS. 

© A DYNAMIC RECORD OF ERROR ENVIRONMENTS, 

e EFFICIENT TEMPORARY STORAGE ALLOCATION (COMPILER AND USER) 

- o THE MEANS BY WHICH SEPARATE PROCESSES MAY SIMULTANEOUSLY 
, EXECUTE THE SAME CODE BLOCK AND YET MAINTAIN INDEPERMDENT 

DATA, 

  

  EACH HAL/S PROCESS HAS ITS OWN STACK,     

EACH STACK IS A CONTIGUOUS AREA OF MEMORY LARGE ENOUGHT TO SERVE ITS 
PROCESS’ NEEDS, - 

MNASA =f = {



nares 
THE HAL/S STACK MECHANISM (CONTINUED) 

A SINGLE PROCESS STACK 

  

    

oO 

AREA OF THE STACK 
CURRENT Previgs STACK FRAMES BEING USED FOR 
STACK > CURRENTLY EXECUTING 
POINTER REGISTER SAVE AREA CURRENT BLOCK WITHIN THIS 

|. AND PARAMETERS STACK ———-S, PROCESS (PROGRAM, 
wereens ON ERROR DATA FRAME 7” PROCEDURE FUNCTION, 

el ETC.) 
TEMPORARY SPACE FOR 
CURRENT BLOCK 

pr OTHER THINGS? 

, Ln pene rel 

THE srack 

mish aw 
on,



   THE HAL/S STACK MECHANISM (CONTINUED) 
neem einen eerie 

HHEH A JUMP TO A NEW BLOCK IS MADE: 

   

   

  

CALL X(A) ASSIGN(B) ; 
PREVIOUS ~*[P~-~=~~~~ 
STACK 
POINTER OLD STACK FRAME (PREVIOUS ENVIRONMENT) 

NEW 
STACK ~* 
POINTER 

NEW STACK FRAME 

* THE STACK AREA ADDRESS IS INCREMENTED BY THE SIZE OF. THE CURRENT STACK 
FRAME, , 

@ ANEW STACK FRAME IS USED FOR THE NEWLY ENTERED ROUTINE, 

© THE NEW STACK FRAME CONTAINS ALL THE INFORMATION NECESSARY TO RESTORE 
THE PREVIOUS ENVIRONMENT, 

ILS Cy -f-3



THE HAL/S STACK MECHANISM (CONTINUED) 
ttm 

MHEN THE CALLED ROUTINE IS FINSIHED: 

RESTORED __,, 
STACK 
POINTER 

RETURN; | OLD ENVIRONMENT RESUMED 

STACK 1S “POPPED” 
BY RESTORING — 
PREVIOUS STACK POINTER I DISCARDED STACK FRAME 

_ (MAY BE USED BY ANOTHER CALL) 

M1 se to ¥ oy
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HAL/S STACK MECHANISM (CONTINUED) . 

o 
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DATA DECLARED TO BE STATIC IN THE CURRENT BLOCK IS NOT ALLOCATED 

IN THE STACK AREA, 

REENTRANT PROCEDURES HAVE ANY AUTOMATIC DATA ALLOCATED IN THE STACK, 

ANY TEMPORARY DATA EITHER DECLARED (TEMPORARY STATEMENT) BY THE 

PROGRAMMER OR IMPLICITLY NEEDED BY THE COMPILER IS IN THE STACK AREA, 

THE COMPILER KNOWS EXACTLY HOW MUCH STACK AREA EACH CODE BLOCK REQUIRES 

THAT SIZE INFORMATION IS PLACED IN THE OBJECT DECK, 

THE HALLINK PROGRAM BUILDS A TREE OF ALL BLOCK REFERENCES. 

© RECURSION IS DETECTED HERE, 

© BY ADDING STACK REQUIREMENTS FOR EACH LIMB OF THE TREE, THE 

CALLING SEQUENCE WHICH REQUIRES THE MOST TOTAL STACK AREA IS 

FOUND: 

® A STACK OF PROPER SIZE 1S CREATED AND MADE PART OF THE PROGRAM, 

® A SEPARATE CALCULATION IS NADE FOR EACH POTENTIAL PROCESS (PROGRAM OR TASK).



THE HAL/S STACK MECHANISM (CONTINUED) 

“e THE MECHANIZATION OF THE STACK REQUIRES AN INTERFACE BETWEEN THE 

OPERATING SYSTEM AND THE GENERATED CODE. 

© HOW IS STACK LOCATION ESTABLISHED? (PASSED AT INITIATION OR LOADED BY CODE.) 

© WHAT IS THE STACK LAYOUT? (NEEDED FOR ERROR HANDLING.) 

© HOW ARE STACK FRAMES CHAINED TOGETHER? (STACK WALK.) 

© OTHER INTERFACES. 

AUS i-G



  

ASSEMBLY LANGUAGE ROUTINES MUST 

SYSTEM 

TERFACEN TO THE HAL/S 

® QBJECT MODULE (RESULT OF ASSEMBLY) MUST BECOME PART 

OF HALLINK INPUT. 

_ © HAND-WRITTEN TEMPLATE MUST BE INCLUDED IN COMPILATION 

OF HAL/S CALLER. 

  

// EXEC HALSCLD 
//HAL/SYSIN DD * 

ASMSUB: EXTERNAL PROCEDURE(A) s 
DECLARE A INTEGER; . 

“CLOSE AMSUBs 

TEST: PROGRAM; 
t 
‘ 

CALL ASMSUB(23) 5 
4 
t 

CLOSE TEST; 

DUS 6-7 //LKED.SYSIN DD <assembiy object module>



ASSEMBLY LANGUAGE ROUTINES MUST OBEY HAL/S LINKAGE CONVENTIONS 
  

ASSEMBLY LANGUAGE MACROS ARE PROVIDED TO HELP. 

#CASMSUB HMAIN 

’ 

' 

a 

(ACCESS ARGUMENTS IN REGISTERS OR VIA R13) 

s 

' 

HCALL HALSUB 

HEXIT 

END 

MOS 1-& 

, )
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HAL/S-360 LINKAGE CONVENTIONS 
  

PROCEDURE CALLER R12 ——» SYSTEM INTRINSICS (E.G. procenune exten) 
R13 ———— CURRENT STACK FRAME 

R14 ———> RETURN ADDRESS 

R15 ———» ENTRY POINT ADDRESS 

FO, F2, F4 ———® 187 THREE SCALAR ARGUMENTS 

RO, RL, R2,___. 1ST FIVE INTEGER OR BIT ARGUMENTS ... OR ..< POINTERS 

  

RS, Ri TO ARGUMENTS OF OTHER DATA TYPES 

EXAMPLE® CALL SUBI(A, B, C) ASSIGN(D)s 
* LH ROA A INTEGER 

[A sR, B B VECTOR 
LE FO, C C SCALAR 
LAR, D D BIT(6) 
BALR R14, R12 GO TO PROCEDURE CALLER 
DC -ACSUBL) ENTRY POINT ADDRESS



HALLINK STACK CALCULATION 

Pl: PROGRAM; 
STACK = 100 

  

    

    

    
  

    

P2: PROGRAM; 
STACK = 110 

B00 _ 280 

m/ Na 
  

  

  

    
  

  

  

  

300 280 

200 180 

Sl: PROC vs. $3: FUNC +». | [S5: PROG... 

= 80 STACK = 100} | STACK = 110 

120 80 80 
$2: PROC, a 

STACK = 120 

S4: PROC... Ri: PROC... 
STACK = 80 REENTRANT 3 

STACK = 80             

  

  

S6: FUNC... 
STACK = 90 

    

10 

    

  

87: FUNC... 
STACK = 10 

    

ACTION; CREATE SEPARATE STACKS OF LENGTH 300 FOR BOTH Pl AND P2. 

PUIS & r-10 
oy



Pl's FRAME < 

P2’s FRAME ~ 

P3's FRAME <   
Mise f-t 

  

THE ERROR ENVIRONMENT IS REPRESENTED ON THE STACK 

  

  
  

  

  

    
  

  

  

  

  

  

  
  

  

  

  

  

  

  

    
  

  

INCLUDES “AcTIVE” 

            

ae BIT - TURNED ON BY 

— 5 ACTION |~< — — —ON ERROR, OFF BY 

| oe 2:3 | ACTION OFF ERROR 
Ces 

3: ACTION 

e + 

e@ 

© 

| 1:6 ACTION 

-———— 2:8 ACTION | ~ 

Gil ACTION 

° 
2 

. EE 1:5 ACTION ERROR RECOVERY 

3:1 ACTION EXECUTIVE SEARCHES 

—\< UP THE STACK FOR 

° 3:7 ACTION ERROR HANDLING 
| ° SPECIFICATIONS 

ne



EXECUTION OF UPDATE BLOCKS AND EXCLUSIVE PROCEDURES IS 

ALSO REPRESENTED ON THE STACK, 

  

  

  

  

  

  

  

  

it . T an ot - 
7 3 Ne 1 

pot — gr TO OPERATING SYSTEM REPRESENTATION 
: y UPDATE BLOCK | OF LOCK GROUPS 
Py 4+ |. o—__——] Oh STACK’ FRAME : 

° 
o 

EXCLUSIVE | __-w TO OPERATING SYSTEM REPRESENTATION 
PROCEDURE ——— OF EXCLUSIVE PROCEDURE LOCKS 
STACK FRAME 8 

e   
  

  

FOR TERMINATE AND ON ERROR 

<statement>, MUST "PEEL BACK" 
THE STACK AND FREE LOCK GROUPS 

AND EXCLUSIVE PROCEDURES, 
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ERROR RECOVERY FEATURES 

ON ERROR | nv ,caeck 
Me 

A 

OFF ERROR ° 

+ SEND ERROR e-vsed 

e USED FOR SPECIAL HANDLING OF UNUSUAL CONDITIONS, 

e SYSTEM-DEFINED ERRORS 

ARITHMETIC OVERFLOW, END OF FILE, ETC. 

e USER-DEFINED ERRORS 

SIGNALLED WITH SEND ERROR STATEMENT 

SYSTEM-DEFINED ERRORS CAN ALSO BE SIMULATED



NY ON ERROR <statement> 

e WHEN wo un OCCURS, EXIT ANY CALLED BLOCKS, EXECUTE 

THE <statement>, AND CONTINUE WITH THE STATEMENT FOLLOWING 

THIS ONE IN THE PROGR 

OW ERROR, 5 \ LIGHOREs 

@ CONTINUE FROM THE POINT WHERE THE ERROR OCCURRED, USING 

A "STANDARD SYSTEM FIXUP” FOR THE ERROR, 
\ 

ON ERROR,,., SYSTEM; 
” N\ 

e A STANDARD ACTION (USUALLY PRINT A MESSAGE AND USE THE 

"STANDARD SYSTEM FIXUP” IS TAKEN, 

(MISC pose 

_ . ~,)
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A IGNORE 
ON ERROR, sn SYSTEM 

\ 

SET 
AND } SIGNAL} <event> 3 

RESET 
— —N ae 

ae (SEND ERROR, , \ 
ie . “4 

(SIMULATE A SYSTEM- OR useR-DEFINED ERROR) 

\ 
\ 

NN 

/~k&S



o EACH ERROR IS ASSIGNED A GROUP NUMBER AND A NUMBER 

WITHIN THE GROUP, 

‘s EACH BLOCK CAN HANDLE A CERTAIN SET OF ERRORS (ON ERROR 

SOMEWHERE IN THE BLOCK). , 

e HANDLING OF ERRORS CAN BE ACTIVATED AND DEACTIVATED DYNAMICALLY 

(THROUGH EXECUTION OF ON/OFF ERROR STATEMENTS). 

ISO 1 Le -:
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THE ERROR ENVIRONMENT IS ESTABLISHED THROUGH THE 

DYNAMIC NESTING OF CALLS 

  

Pl: PROCEDURE; 

HANDLES ERRORS 

1:5, 2:8, 3:     
  

[ 
CALL P2; 

  

P2: PROCEDURES 
HANDLES ERRORS 

1:6, 2:8, 4:1     
CALL 3; 

¥ 
  

P3: PROCEDURE 

“HANDLES ERRORS 

1:5, 3:1, 3:7       

  

BEFORE AND AFTER 

CALL P23 ERROR 2:8 

18 HANDLED HERE. 

  
  

DURING P2 AND P3 
ERROR 2:8 IS HANDLED 
HERE. 

ERRORS 3:1 AND 3:7 

HANDLED HERE; OTHERS 

IN GROUP 3 HANDLED IN 

Pl.



Loney 

Q., WHAT IS IN 

A. AN ADDRESS 

0 

NAME VARIABLES 

A NAME? 

(POINTER). 

78 31 
  

360: 00 24 BIT ADDRESS 
  

78 31 
  

360:   
-Q 
‘+. 00. FQ000 Oj   
  (NULL) 
O. ib 
  

FC: 
  

0 

‘116 BIT ADDRESS 

15 
    FC: 7° 

(NULL) 0000   
  

"\—— ILLEGAL ADDRESS 

é NO ADDRESSES ARE ILLEGAL 

ON AP-LOL 

FC NAME VARIABLES ARE. ALHAYS HALFHORDS AND 360 NAME VARIABLES ARE ALWAYS 

FULLWORDS (AND FULLWORD ALIGNED). «THIS IS THE ONE FUNDAMENTAL INCONSISTENCY 

BETWEEN FC AND 360 STORAGE ALLOCATIONS AND IS NOT SURMOUNTABLE BY USE OF THE 

FCDATA OPTION,



  

NAME VARIABLES (CONTINUED) 

PROPERTIES: 

* NAME VARIABLES ARE A CLASS OF DATA ITEMS WHOSE VALUES ARE POINTERS 

’ (ADDRESSES) TO OTHER DATA ITEMS, 

¢ A NAME VARIABLE IS ESTABLISHED BY DECLARING IT AS THOUGH IT WERE 

A DATA ITEM EXCEPT THAT THE KEYWORD NAME IS USED. 

© A NAME VARIABLE CAN ONLY POINT AT DATA THAT MATCHES IT IN nme, 

PRECISION, ARRAYNESS, ETC, 

© A MECHANISM EXISTS FOR INITIALIZING A NAME VaRiABLE TO POINT TO A 

GIVEN DATA ITEM. NAME-VARIABLES MAY ALSO BE DYNAMICALLY "RE~DIRECTED” 

_ TO OTHER DATA ITEMS, 

o DATA ITEMS MAY BE MANIPULATED IN THE NORMAL WAYS THROUGH REFERENCES 

TO NAME VARIABLES POINTING TO THEM, 

. 

\c 
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HARDWARE ‘LEVEL 

HAL/S LEVEL 

NAME VARTABLES (CONTINUED) 

  

  

101 “104 oo 

102 

103 ‘ 

104 3° 

105 
106 

  

    
  

  

      - te 

DECLARE I INTEGER INITIAL(3), 
NI NAME INTEGER INITIAL CRANE CID) 3 

NDS NE #1) Lene Ku. 

pe ae 

ano 

/* SAME AS T= [ + us



   
NAME VARIABLE® CONTINUED) 

USES FOR NAME VARIABLES 
nn: 

o MOVE AROUND A POINTER TO A BLOCK OF DATA (OR CODE) 

RATHER THAN THE WHOLE BLOCK, 

© ACCOMMODATE DATA STRUCTURES OF DYNAMICALLY VARYING 

SIZE IN A FIXED-SIZE MEMORY, 

PROBLEMS WITH UNRESTRICTED-POINTERS 
  

DECLARE 1 INTEGER; os 
S SCALAR, = yl 
WANAMEs 7 

NAMEN) = NAMECIY; & /* POINT N AT I */ 

cL: NN +4; i /* WHAT CODE IS COMPILED? */ 
" WAME(N) = NAME(S); - /* POINT N AT S */ 

IFN <S THEN GO TOLs — /* CONVERSION REQUIRED? */ 
yo -Y



NAME VARIABLES (CONTINUED) 

  

SO,-A NAME VARIABLE 1S DECLARED TO POINT TO VARIABLES 

OF A GIVEN DATA TYPE ... . 

DECLARE NI NAME INTEGER, 
NS NAME SCALAR, 
NV NAME VECTOR (4), 

NA NAME ARRAY(2,2) BOOLEAN, 
~ DECLARE INTEGER DOUBLE, 

L, J K 
N NAME, /* FACTORED ATTRIBURES */



  

NAME VARIABLES (CONTINUED) 

HENCE THE COMPILER CAN CHECK FOR TYPE: COMPATIBILITY, 
  

DECLARE 1 INTEGER, 
S SCALAR, 

N NAME INTEGER; 

NAME(N) = NAMECT); _ /* POINT NAT I */ 

Li NeEN4+1 /* CODE FOR INTEGER ADDITION */ 

NAME(N) = NAME(S); /* ERROR-TYPE MISMATCH */ 

IF N<S THEN GO-TO L; 7* N DEFERENCED AND CONVERTED 
TO SCALAR */ 

\Os om



NAME VARIABLES (CONTINUED) 

NAME VARIABLES CAN POINT TO DATA (OR-CODE) WITH 

THE FOLLOWING ATTRIBUTES: 

  

  

P—SINGLE OR DOUBLE) Cor oN 

  
( INTEGER CHARACTER (n) ARRAY (nm,£) 

SCALAR BIT(n) a~STRUCTURE (n) 

~~”) VECTOR(n) - BOOLEAN PROGRAM 

MATRIX(n»m) EVENT © TASK 
prerele

ase i ae my at 

DECLARE MATRIX(2,3), A, B, NB NAME INITIALCNAME(B)) 5 

DECLARE MATRIX(3,3), Cy D, ND NANE INITIAL(NAME(D))s 

_ A= NBS /* SAME AS A = Bs */ 

A = ND; /* ERROR-DIMENSION MISMATCH */ 

NAME (NB) = NAME(ND)s _/* ERROR-DIMENSION MISMATCH */ 

NB = NDS(2 AT 14); /* SAME AS B= DS(2 AT 1.*)3 */



  

NAME VARIABLES (CONTINUED) 

NAME DATA ITEMS POINTING TO DATA 

beclarations of NAMB data items for pointing to data 
have exactly the same form as declarations of ordinary 
data items, except that the keyword NAME immediately 
follows the identifier name declared. 

Examples: 

DECLARE A NAME ARRAY (100) SCALAR; 
DECLARE MATRIX (3,3) DOUBLE, Ml NAME, M2 NAME; 
DECLARE B NAME BIT(16), 

C NAME CHARACTER (86) } 
STRUCTURE Q: : 

_ 1 O% INTEGER, 
1 OS SCALAR, 
102, 

2 QU BIT(L6), . 
1 2 QC CHARACTER (80) 1 
| DECLARE 2Q NAME Q-STRUCTURE: 

Given the above declarations: 
. 

A may dniy point to l-dinensional single precision 
scalar arrays of size 100. 

M1, M2 may only point to 3x3 double precision 
matrices, 

DB may daly point to 16-bit strings, 

C may only point to character strings of 
maximum length 80, 

2Q may only point to Q-STRUCTURES with a 
w- 8 single copy,



co . 

NAME VARIABLES (CONTINUED) 

  

NAME DATA ITEMS POINTING TO CODE BLOCKS 

Declarations of NAME data items for pointing to programs 
and tasks have the following basic form: 

  

DECLARE nane NAME PROGRAM; 1 

DECLARE name NAME TASK; 

l. nae Lis any legal HAL/S identifier 
name.     
  

Such declarations can‘be part of a compound or factored 
declaration statement. 

Examples: 

{ DECLARE PJ NAME PROGRAM; 

) DECLARE T] NAME ‘TASK; 
| DECLARE P2 NAME PROGRAM, 
' t2 NAME TASK, 

Sl NAME SCALAR; 

Given the above declarations: 

Pl, 02 may only point to program blocks, 
Tl, may only point to task blocks. 

Vor va A : eo
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NAME VARIABLES (CONTINUED) 

POINTERS TO CODE BLOCKS 

Pli EXTERNAL PROGRAM) 

CLOSE P13 

P2: EXTERNAL PROGRAM) 

CLOSE P23 

P3t EXTERNAL PROGRAM) 

CLOSE P33 

TEMPLATES , 

MASTER! PROGRAM 

DECLARE NP NAME PROGRAM, 

  

  

    

  

I INTEGER) 
  

NP e       

DO WHILE TRUE}: 
pO FOR 1 =1 70% 

DO CASE 13 
wame(NP) = HAMe(P2)s 
NAME(NP) = NAME(P2); 
NAME(NP) = NAME(P3)3 

ENDJ 

UPDATE PRIORITY NP TO 200; =, /* PROMOTE P1, P2, P3 IN TURN */ 
WAIT 13 . /* To HIGH PRIORITY FOR 1 sec */ 
UPDATE PRIORITY NP. TO 503 /* THEN REVERT TO NORMAL PRI, */ 

“ENDS 

END} 

CLOSE MASTERS 

  

CODE BLOCK 

  
 



NAME VARIABLES (CONTINUED) 

  

NAME DATA ITEMS AS STRUCTURE TERMINALS 

Examples: 

} STRUCTURE 0: 
; 1 OS HAME SCALAR, 
i Lal, 
\ 2 OC NAMM CHARACTER (80), 
i 2 QR NAMB PROGRAM, 
' 2.QR NAME BOOLFAN, 
1 1 02, 
I 2 OA ARRAY(4) BIT(16); 

Note that HAMB data items for pointing to events can 

appear in a structure template, even though events 

themselves cannot, Note also that NAMB data items in 

a template A may point to structures, even those possessing 

A as template.



  

NAME VARIABLES (CONTINUED) 

Examples: 

The following are legal ‘definitions: . 

STRUCTURE R: 

1 QR NAME R-STRUCTURE, 
1 QE NAME EVENT; 

DECLARE ZR R-STRUCTURE; 
DECLARE NZR NAME R-STRUCTURE; 

In this exaniple NZR may point to ZR. ZR.QR 
may also point to ZR. The implications of this 
ability will be investigated later. 

yorla
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NAME VARIABLES (CONTINUED) 
  

PROPERTIES OF DECLARED NAME DATA ITEMS 

  

ATTRUBUTE 

OF NAME PATA ITEM 

Applies to 
Data or Code 
Block Pointed To 

Applies to 
HAMA Data 
item Itsolf Comments 

  

  

ApRAY( ) 
BIT( )° 
noOLcAN 
CHARACTER(.} 
VENT 
vecror( ) 
NATHRIK( ) 
TNITGEN 
SCALAR 
u-SPRUCTURE( ) 
PROGRAM 
TASK 

SLEGLE 

  

  
L
W
 
B
W
W
 

V
W
 

  

See note (i) 

See note () 

See note (2) 

  
  

DOUBLE ‘ 

DEUSH y J) Affects NAME data item 
ALTGHED , as Jf it were an or- 
RIG 7 inary data item. See 

. Sections 26.1 & 26,2. 

y Cause initlalization of 
INITIAL ) 4 pointer value, To be 
CONSTANT ( } described in Section 28.6 

STATIC v \ ienet the kind of initial~ 
pUTO! ization, as for ordinary 
AUTOMATIC y data items, See Section 16.4 

NOTES: 

“Phe forms ARRAY Ee) of a-BTRUCTURE(*) are Lllegal. 

@ the form cnaracren(®) vhen need for a tame data 
ftem, enables fe te point to a character data'itenm 
OF any maxdmear length, 

  

 



  

NAME VARIABLES (CONTINUED) 

HAME DATA ITEMS AND TEMPORARIES 

The nature and purpose of temporary data items were 
described in Section 26.3. The following rules 

’ summarize relationships between temporary data items 
and NAME data items. 

  

1.. No NAME data item may point to 
‘ a temporary data item. 

2. NAME data items may not them- 
selves be declared as temporary 
data items,     
  

EXAMPLE: 

DOs 

TEMPORARY INTEGER, I, Js 
- ILLEGAL.» TEMPORARY NV NAME VECTOR; 

ste 

END; 

Jory



NAME VARTABLES (CONTINUED) 

INDIRECT ACCESS THROUGH NAME DATA ITEMS 

Examples: 

DECLARE VECTOR(3), V, NV NAME; 
DECLARE SCALAR, S, NS NAME; 
DECLARE NT NAME TASK; 
. 

* 

T: TASK; 

| WY Yy task body 

CLOSE T; 

  

    
  

‘ 

If NV > Vv, NS + S and NT + 1, then 

| NS = NV.NV; 
| SCHEDULE NT IN NS PRIORITY (50); 

effectively performs the operations: 

t 
1 S =V.V; 
I SCHEDULE T IN S PRIORITY (50); 
t 

: 

* In this and following examples "+" means “points to", 

yore . om, me
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NAME VARIABLES (CONTINUED) 

The fereqoing statements about appearances of NAMB data items, while appearing simple and unequivocal, contain a number of subtle implications arisiny Erom: 

© interactions in structure data items; 

e the effects of subscripting. 

‘



NAME VARIABLES (CONTINUED) 

INDIRECT ACCESSING AND STRUCTURES 

The subtleties of indirect accessiny in conjunction with 
structures arise as a consequence of these two 
facts: 

e Any structure may possess NAME structure terminals 
some of which may point to structure data items, 

6 Such a NAME structure terminal can actually 
‘point back to the structure containing it. 

These subtleties are best illustrated by the extended 
examination of an apparently very simple example. 
By the rules given in Section 20.2, the following are 
legal structure declarations: 

STRUCTURE A: 

1 ¢C SCALAR, 

1 B NAME A-STRUCTURE; , 

DECLARE A-STRUCTURE, 21, 722, 23; 

DECLARE 24 NAME A-STRUCTURE; 

. 21.B is a NAME structure terminal of A~STRUCTURE type, 
1 which may therefore legally point to 42. Pictorially: 

  ta-Vy



{ors 

  

NAME VARIABLES (CONTINUED) 

Because 21,B points to 22, any appearance of 22 may be 
substituted by 21.5, so achte eving indirect access to 22, 

It is crucially important at this point to understand 
that because 21.B points to 22, parts of 22 as well as 22 
itselE may be indirectly accessed. For example, to achieve 
indirect access to 42.C, the appearance of 22 in the qualified . 
hame is substituted by nl. mn, That is, indirect access to 
Z2,C is achieved by the qualified €orm 21.8.C.



{Ow 1 hoo, 

NAME VARIABLES (CONTINUED) 

To illustrate this substitution process further, if 24 
points to 22, then 22.C’is indirectly accessed by the 
qualified form 24,C, and if 24 points to Z1, then 22.C 
is indirectly accessed by the qualified form 24.B.C. 

Multiple leveld of indirection are handled in the same 
way. Suppose for example that in addition 22.B points to 
23. Then pictorially: 

  



(Qe 4 
‘ry 

  

NAME VARIARLES (CONTINUED) 

. Using the same kind of substitution as before, 23 may be 
indirectly accessed by the qualified form 21.B.B, so that 
in’ its.turn, structure terminal C in 23 may. be indirectly 
accessed by the qualified reference 2%1,B.B.C, 

Restating how ‘the form 21.8.8.C was arrived at, the 
following steps were taken: 

© substitution of 22.B.C for 23. c (since 22.B 
points to 23); 

© substitution of 21.B.B.C for 22,B.C {since 
21.B points to 22).



NAME VARIABLES (CONTINUED) 

There are other curious consequences arfsing from the 

interaction of indirect accessing with structures. 

Suppose now, for example, that 22.B points to 21 rather 

than 23, Then, pictorially: 

  

Now 22.C can be indirectly accessed by the qualified form 

21.B.C, since 21.B points tu 22. Since -22,.8 points to 21, 

the following forms are also possible: 

y 

This example illustrates the logical consequence of a closed 

indirection loop between two structures. 

wo-ad) 
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NAME VARIABLES (CONTINUED) 

Nt ALPHA: 
Nt PROGRAN; 

STRUCTURE A: 
4 C€ SCALAR, - 
4 B NAME A-STRUCTURE: 

DECLARE A-STRUCTURE, 
Zi, 22, 233 

DECLARE 24 WANE A-STRUCTURE: 
. 4 + : 

NAMEC 24. 8> = NANECZ2)3 

Z2.C = Si ° 
Z4.B.C = 63 
MRITEC6)> 22.C, 24.8. Ci 

+ + 

NAMECZ2. 8) = NANEC 23): 
23.0 2 7 
22.8.0 = 3: 
21.8.8.0 = 9; 

WRITEC6) Z3.C, 22.B8.C, 24,8. 8. Cs 

44 Nt CLOSE: 
‘ 

‘ALL NANE2 ' - 
TENPHANE ASSUMED AS A MENBER NANE 
HAL/S-260 V¥i5.0 START TIME: 

& GAHBBOBE+AD 
4, OOGQOD0E+OR 

(a+ ad 

22:34:02. 23 DAY: 
6. 009990E+00 
9. OBBODBBEt+B0 

76/075 - 

9, BPAVOHDE+OR
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NAME VARIABLES (CONTINUED) 

  

Nt BETR: 
if PROGRAM: 

Mt STRUCTURE A: 
ut 1 ¢ SCALAR, 
ut _ 2 B NAME A-STRUCTURE; 
Nt DECLARE A-STPUCTURE. 
Mt 24: 22; 
.. + + 

Nt NANECZ1.B).= NAMNECZ2 94, 
Et + . + 

Nt NAMECZ2 ‘BOTs NANECZ1)) . 
ue 24,8: 60% 41° 
Mt 22 8.8.6 =-25 
Nt 24 BLE: Bove 3; 
Nt Z22.B:8,8.B10 = 43 
Nt 72.8.8,.8.8/8.C = 5: 
Nt - 24. BI BEB. Ble: Be = 
Ne?) 72. 8° 878, 88.8. 8.8.6 
MP CLOSE: 

8.8, 8, 8, 8,8, 8,8. 8,8, 8.¢6 = 20;



NAME VARIABLES (CONTINUED) 

INDIRECT ACCESS AND SUBSCRIPTING 

“tn this discussion, for simplicity, subscripting in 
connection with structures or structure terminals will 
at first be excluded, With this restriction, subscripting 
on NAME data items is straightforward in its meaning. 

  

Subscripting is effective on 
the data item that is being 
indirectly accessed, 

    
  

With this interpretation, it is clear that such subscripts | 
must be legal for the data’ type pointed to. In particular, 
NAME data items pointing to programs and tasks may not be 
subscripted. 

jor aye on



tor 

  

NAME VARIABLES (CONTINUED) 

Examples: 

1 DECLARE VECTOR(3), V, NV NAME; 
| DECLARE ARRAY (2) CHARACTER(4), C, NC NAME; 
| DECLARE BIT(4), B, NB NAME; 
i 

0.5 . 
Let V = E35] , C = ('ABCD' 'EFGH'), B= 1010, 

2.5 

Then if NV+ Vv, NC + C, NB + B: 

NV, = 2.5 since v, is indirectly referenced, — 

NC) 43 Zc! since C13 is indirectly referénced, 

= O01, since B 2 70 3 2 is indirectly referenced, 2 TO 3 

We, NB, are illegal since the subseripting is 

illegal for V and B respectively. Such subscripting 
dis always illegal since NV can only point to 3-vectors, 
and B to 4-bit strings. -



NAME VARIABLES (CONTINUED) 

The complexities arising from structure subscripting 
are best studied by another apparently simple example. - 
Suppose that the following declarations are made: 

STRUCTURE A: 

1 C MATRIX (3,3), 
1 B NAME A-STRUCTURE; 

-| DECLARE A-STRUCTURE(3), 21, 22, 23 NAME; 

Let copies 1, 2 and 3 of 21.8 point respectively to 
copies 2, 3 and 1 respectively of 22, Pictorially: 

 



  

yor 2% 

  

NAME VARIABLES (CONTINUED) 

  

According to the substitution process previously described, 
the three copies of structure terminal C and 22 can be 
indirectly accessed by specifying the three copies of 21.B.C: 

Z1.B.C,, indirectly actesses 22.¢ } , 
21.B.C), indirectly accesses .22.C 

Z1.B.C 

23 

3; 
3, indirectly accesses 22.C),



NAME VARIABLES (CONTINUED). 

Using the terminology of Section 20.1, 22.C is an 
operand with arrayness {1:3}. Indirectly accessed 
as Z21.B.C, the operand still has arrayness (1:3) 
but the order of the individual elements is different. 
In general of course the three copies of Z1.B may point 
to three different structures (all with template A), resulting 
in operand 21.B.C being synthesized from three different sources. 

Note that the structure subscript is effective before - 
indirection not after. As a further illustration, in 

B1.B.Cy 4 4 

the structure subscript selects copy 1 of the pointers 
21.B. Note, however, that in contrast the component 

subscript, selects the component in row 3 and column 3 
of C in the structure to which 21.8 points. 

This is not always true for structure subscripts, For 
example, let 23 point to 22, Then in . 

23.B.C) 1313 

the structure subscript selects copy 1 of 22, which is 
pointed to by 23.



far3oO 

    
NAME VARIABLES (CONTINUED) 

These examples illustrate the following general rule: 

  

A structure subscript may either 
be effective on the data being 
indirectly accessed, cr upon 
the NAMB data item accessing it, 
depending on whather the data 

¥, pointed ‘to has copies, or whether 
, the NAME data item itself has 

copies*,       
¥~Wote that since:a structure terminal which is itself a . 

structure (or a NAME data item pointing to a structure) 
cannot possess copies, the two forms of structure . 
subscripting are mutually exclusive,



NAME VARIABLES (CONTINUED) 

THE NAME PSEUDO-FUNCTION 

© ORDINARY REFERENCE TO NAME VARIABLE ACCESSES THE 

VARIABLE WHICH IT POINTS TO, (A DEREFERENCED USAGE.) 

o NAME PSEUDO-FUNCTION IS USED TO ACCESS OR CHANGE 

THE (POINTER) VALUE OF THE NAME VARIABLE ITSELF, . 

DECLARE SCALAR, S1, S2, NS NAME, NS1_NAME INITIAL(NAME (S4)) 3 
  

  

    

    

S2=NWSl ogy AT “sf asi [S 

_NAME(NS).= NAMEQNSL)3 Ns Lethe an 
  

    aN — NAME(S) = NAME(S2)3 yg ["—] SF of   
  

NAME (NS) = NSLs ERROR-TYPE MISMATCH! 
NS = NAMECHSL)s



  

NAME VARIABLES (CONTINUED) 

IN GENERAL: 

  

© NAME VARIABLE BY ITSELF DENOTES THE ORDINARY 

“VARIABLE WHICH IT POINTS TO. 

a NAME VARIABLE 

  

      
  

“ORDINARY VARIABLE 

© NAMEC NANE VARIABLE ) OBTAINS THE POINTER CONTENTS OF 

"THE NAME VARIABLE, . 
ey 

\ 
  

      

NAME VARIABLE 

. © NAMEC ORDINARY VARIABLE ) CREATES A POINTER TO THAT 

  

    “CREATED. POINTER 
  

ORDINARY VARIABLE 

Nay 

 



NAME VARIABLES (CONTINUED) 

Examples: 

Given: 

DECLARE S SCALAR, 

‘ NS NAME SCALAR, 
NT NAME TASK, 
NA NAME ARRAY (1000) INTEGER; 

STRUCTURE Q: 
1 QS SCALAR, ~* 
1 QN NAME Q-STRUCTURE; 

DECLARE 2Q Q-STRUCTURE; 

nm
 

ee 
Sa 

eZ
 

se
 
ah

 i
 

* tHe following are legal: 

NAME (S) \ 
NAME (2Q.QS) 

NAME (NS} 

NAME (NT) 

NAME (NA) 

NAME (2.0.0N) 

reference only 

the following are illegal: 

NAME (1.5) 
NAME (5/2) 

 



   NANE VARIABLES (CONTINUED) 

SUBSCRIPTING AND NAME VARTABLES 

   ® SUBSCRIPTING OF DEREFERENCED NAME VARIABLES 1S ALLOWED 

E.G," DECLARE ARRAY(3) VECTOR, V, NV NAME INITIALCNAME(V)) 5 

V4.3 = NV5 435 /* SAME AS V4.3 = V9.3) */ 

; . NOT QUITE TRUE 

e SUBSCRIPTING INSIDE A REFERENCE TO THE NAME PSEUDO-FUNCTION a 
& 

CAN ONLY APPEAR IN REFERENCE CONTEXT (NOT IN ASSIGNMENT CONTEXT). 

SUBSCRIPTING APPLIES TO THE VARIABLE BEING POINTED TO, 

E.6, DECLARE INTEGER 
A ARRAY (10), 
NA NANE ARRAY(1O) INITIAL(NANE(A)), 
NL NAN, /* HL 1S NANE OF, SEALAR. 4 | 

, , @ 

NAME CHI) = NAME(A3,)5 ‘“ oN] =. 
: Ay 
  

  

    
  

    
    

  

  

      

NAME(NE) = NAME(NAz,)3 
= . A, 

NI ag] 
hy 

Ag 

Ag 

1-34 ! 

Aro) 

Wd



NAME VARIABLES (CONTINUED) 

COMPONENT SUBSCRIPTING INSIDE NAMEC ) 
  

0 ILLEGAL FOR BIT AND CHARACTER STRINGS 12345 
  

E.¢, DECLARE B BIT(16); —NAME(Bs) |                             

e MUST SELECT A SINGLE SCALAR FROM VECTORS AND 
MATRICES (ALSO SINGLE ELEMENT FROM ARRAYS) 
E.G, DECLARE M MATRIX; 

M l,l 

  

  

  

  

  

  

ot 1,2          

M3 

Moot 

2,2 
M243 

M 

  

  

      

3,2 

M3, 
. M33    



wr 2G 

  

NAME VARIABLES (CONTINUED) 

  

STRUCTURE SUBSCRIPTING INSIDE NAMEC ) - 

IN ASSIGNMENT CONTEXT, OK ONLY IF NAMEC ) IS APPLIED TO 

A NAME VARIABLE IN A STRUCTURE WITH MULTIPLE COPIES - 

THEN IT SELECTS THE APPROPRIATE COPY OF ‘THE NAME 

VARIABLE ITSELF | 
  

[ E.G. STRUCTURE S: 1 .N NAME SCALAR; - 
DECLARE S S~STRUCTURE(10); 

NAME(N, ») = NAME(NS D3 
a   

  

IN REFERENCE CONTEXT, ONLY ONE CAN APPLY: 

~ NAME VARIABLE DEFINED IN A STRUCTURE WITH, COPIES, 

“SUBSCRIPTING IS EFFECTIVE ON THE NAME VARIABLE ITSELF, 
  

“~ NAME VARIABLE POINTING 10 A STRUCTURE WITH COPIES, - 
  

SUBSCRIPTING IS EFFECTIVE ON THE VARIABLE BEING 
POINTED TO, ay 

STRUCTURE S$! 1 N NAME rructure(10); ~~ ILLEGAL!



NAME VARIABLES (CONTINUED) 

INTERACTION WITH STRUCTURES 

STRUCTURE A: 
1 C SCALAR, - 
1 B NAME A-STRUCTURE; 

DECLARE A-STRUCTURE, Z1, 22, 23; 
DECLARE 24 NAME A-STRUCTURE; 

Let 21.B point to 22, and 22.5 point to 23, as shown 
pictorially below: 
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NAME VARIABLES (CONTINUED) 

s 

A pointer value to 23,C can be Created by the construct: 

NAME (Z3.C) 

And also by ese nave(z2.8.c) 
Now 21.B points to 22 so that 23.C is aecessed through two 
levels of indirection by 21.B.B.C, A third way of ~— 
creating a pointer value to 23.€ is therefore: 

NAME (21.5.B.C) 

If furthermore, 24 points to 21, then 

NAME (24,B,.B.C) 

also has the same effect,



EN ged, peek 4 

NAME VARIABLES (CONTINUED) 

STRUCTURE A: 
1 C SCALAR, 
1 A OWAME A-STRUCTURE; 

DECLARE A-STRUCTURE, ZL, 22, 233 
DECLARE 24 WAME A-STRUCTURE; 

    

In each of the above cases, the argument of the NAME pseudo- 

function is 23.C which is an ordinary data item, even though 

indirect access is used, Each of the above instances may 

therefore only be used in a reference context, 

The pointer value of 22.B can itself be set up by using 

NAME (22.3)
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NAME VARIABLES (CONTINUED) 

in an appropriate assignment context to be described, 
The NAME structure terminal 22.B may be indirectly 
accessed by the qualified form 21.B.B, since 21,B 
points to 22, Nence, the pointer value of 22.B can 
also be set up by using: 

‘ NAME (21.3.8) 

in assignment context. With 24 again pointing to 21, 

NAME (24.3.5) - 

has the same effect, since 22.B is again accessed, this 
time through two levels of indirection.



NAME VARIABLES (CONTINUED) 

ARGUMENTS WITH SUBSCRIPTS 

Examples: 

Given the following declarations: 

| DECLARE V VECTOR(3), 
| NV NAME VECTOR(3), 

{ S ARRAY (100} SCALAR, 

| NS NAME ARRAY(100) SCALAR, 

\ M ARRAY (5) MATRIX (3,3), 

\ NM NAME ARRAY (5) MATRIX(3,3), 

| C CHARACTER(80), 

{ NC NAME CHARACTER (80); 

suppose that NV + V, NS * S, NM + M and NC + C, 

‘The following are legal in contexts causing reference 

of pointer values:- wee 

NAHE (V3) éreates pointer to scalar value which 

js 3rd element of vector V 

NAHE (NV 3) yame as above since NV + V 

NAME (5,) creates pointer to 5th array element 

of array §



  

NAME VARIABLES (CONTINUED) 

  

NAME (is,) . same as above since NS + 5 

NAME (My. 2) creates pointer to séalar value in row 1, 
and column 1 of 3rd array element of M 

NAME (NM same as above since NM > MN 
3:1, 3) 

NAME (M, ) creates pointer to 4th array element in M 

The following are illegal: 

NAME (C) | subscripting on character strings 

NAME (NC) ) illegal 

NAME (V, To 2) \ more than one element of V selected 

one scalar value selected from‘more than one 
array element : 

NAME (My. 4) } 
* 

.



NAME VARIABLES (CONTINUED) 

FURTHER RULES: 

  

2. 

  

When a NAME pseudo-function is used 
to assign pointer values, only 

‘structure subscripting effective on 

the pointer copies is legal. 

For NAME pseudo-functions in reference 

context, array and component sub- ~ 

seripting is always effective on the 

ordinary data item specified or in- 
directly accessed. Structure sub- 
scripting is effective in the 
ordinary data item specified or 
indirectly accessed, or upon the 

NAME data item indirectly accessing 
it, depending on which possesses 
the multiple copies. 

  

 



    

NAME VARIABLES (CONTINUED) 
  

Example: 

Given the following declarations 

STRUCTURE As 
1 M ARRAY (5) MATRIX(3,3), 
1 CG CHARACTER (80), 
1 V VECTOR (6), 
1 B NAME A-STRUCTURE? . 

DECLARE 2 A~STRUCTURE? . , 
DECLARE A~STRUCTURE(3), Z1, 22, 23 NAME; 

let 21.By > 22, 

BLLB, + 22, 

21.5, + 22 
3 

23+ 21 

1 

reference context <- 
Tliustrations for NAME pseudo-functions in a 

(a) Array and component subscripting: 

NANE(Z.My 13, 3) 

+ NAME(2.My 114) 

NAME(2Z.Cy 9 79 15). 

NAME (2.V5) 

e-Yy NAME (ZY) pg 3) 

oreates @ polnter to the scalar 
value -in row 3, column 3 of the 
first array element of 2.4- 

is illegal since the subscript 

selects a scalar value from more 

than one array element of 2.4 

fa illeyal since character strings 
may not possenn component subscripts 

ereaten a pointer to the Int element 
of vector 7.V 

ds Llteqnl since more than one element 

of Z.V in selected by the subscript



NAME VARIABLES (CONTINUED) 

Example: 

Given the following declarations 

STRUCTURE A: 

1 M ARRAY (5) MATRIX (3,3), 

1 C CHARACTER (00), 
1 V VECTOR (6), 

“1 °B NAME A-STRUCTURE? 
DECLARE Z A-STRUCTURE; - . 
DECLARE A-STRUCTURE (3), 21, 22, 23 NAME; 

let Z1.By * a2, 

Z1.Bo + AQ 

21.3, * a2, 

23> 21 

3 

Tllustrations for NAME pseudo~functions in a 
reference context - , 

’ (b) Structure subscripting effective upon the 

data item pointed to or directly specified: 

NAME (21.,) creates. 4 pointer to the second 
a . copy of Zl since the subscript 

acts directly on 21 

NAME (23.) since Z3 is a single pointer, 
2 pointing to the whole of Z1, the 

subscript is effective on 21 rather 
than 23; hence a polinter to the 
sgrend copy of Z1 ib again created Pato 
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NAME VARIABLES (CONTINUED) 

NAME (Z1.M,,) 

NAME (23.M,_) 
23 

NAME (21.4 ) 
1 TO 2; 

NAME (23.M, TO 2;) 

“NAME (Z1.M) 

creates a pointer to the array of 

matrices M in the second copy of 21 

as before, the structure subscript 

is effective on 21 rather than 23; 

hence as before a pointer to the 

array of matrices M in the second 

copy of 21 is created 

ds illegal since the subseript 

selects more than one copy of © 

structure 21 * 

is illegal for the same reason 

is illegal since subscripting to 

select one copy of 21.M must ‘be 

ured .



NAME VARIABLES (CONTINUED) 

Example: . 

Given the following declarations 

STRUCTURE A: 
LM ARRAY (5) MATRIX(3,3), 
1 C CHARACTER (80), . 
1 V VECTOR (6), 
1 B NANE A-STRUCTURE; 

DECLARE 2 A-STRUCTURE; 
DECLARE A-STRUCTURE (3), 21, 22, 23 NAME; 

let Z1.By > 22, 

71.B, + 22, ‘ 

2B, + 22) . 

2730+ 21 

Illustrations For NAME pseudo-functions in a 
reference context - ‘



(ly 

(c) 

  

NAME VARIABLES (CONTINUED) 

Structure subscripting effective on a pointer value: 

The following examples use the fact that 21.B, 

points to 22, 

NAME (21.B,) references the pointer value Z1.3,, 

. f.e, it creates the pointer. to 22, 

NAME (21.B.My ) the subseript is effective of 21.0, 

; so that a pointer to the array of 

matrices in the second copy of 22 is 

: created 

NAME (Z1.B.¥),4) the structute subscript is 
‘ effective on 21.B as before so 

that o pointer to the first 

component of the vector in 

the second copy of Z2 is created 

Note that there is no restriction on the selection 

of one pointer only by a structure subscript 

effective on pointer data: 

NAME (21. 8B) "simultaneously" references three 

pointer valucs 

NAME (21.38.44 ) “simultaneously” creates two pointers, 

to matrices 72M, and 22.0, respectively 1 TO 2;



NAME VARIABLES (CONTINUED) 

INITIALIZATION OF AME ‘VARIABLES 
  

‘ 

 eonsTaN | (Name Rererence) 
CONSTANT 

NAME. REFERENCE HAS THE FORM: 

NAME ConDINARY VARIABLE) 

NAME (NULD or NULL 
  

   

  

“NULL POINTER’ - POINTS TO 

NOTHING AT ALL. UNINITIALIZED 

NAME VARIABLES ALSO HAVE THIS 

VALUE. 

UNLESS SUBSCRIOCTS 

Age Known AT , 
Comne~ TINE - 

     

    nent 

© PREVIOUSLY DECLARED o SUBSCRIPTED 
o WITH DATATYPE MATCHING eo DEREFERENCED THROUGH ANOTHER - 

THAT OF NAME VARIABLE , NAME VARIABLE 

  

ORDINARY VARIABLE MUST BE: AND MUST NOT BE:



lo- $0 

1, 

2. 

3, 

ANE. VARIABLES: (CONTINUED) 

  

INITIALIZATION OF NAME VARIABLES 

DECLARE S SCALAR, 

NS MANE SCALAR INITIAL(NAME(S))5 

NANE VARIABLES IN STRUCTURES: WILL BE DISCUSSED LATER. 

STRUCTURE A: . 

1 B SCALAR, 
1 C NAME A-STRUCTUREs 

DECLARE A-STRUCTURE, 
ZL, 
72 INITIALS, MANE(ZD))3° 

DECLARE NB NAME SCALAR INITIAL (NAME(Z1.B))s 

DECLARE A ARRAY(5) INTEGER INITIAL(O), 

NI NAME INTEGER INITIALCHAMECAZ,))3



Examples: 

NAME VARIABLES (CONTINUED) 

The following are legal initializations of NAME 

data items: : 
e
e
 ne
 e

e 

s 

DECLARE S SCALAR, : 

Y ARRAY (4) VECTOR DOUBLE; . 

DECLARE NS1 NAME SCALAR INITIAL (NAME(S) )} 

DECLARE NV1 NAME ARRAY (4) VECTOR DOUBLE 

INITIAL (NAME (V)) 3° 

STRUCTURE A: 
1 C SCALAR, 

1 B NAME A-STRUCTURE; 

DECLARE: Z1 A-STRUCTURE; 

DECLARE 22 A-STRUCTURE INITIAL (1.5, NAME (Z1)); 

DECLARE NA NAME SCALAR INITIAL (NAME (Z1.C)); 

DECLARE V VECTOR(4)} 
DECLARE TV NAME SCALAR INITIAL(NAME(V )); 

3 

 



te
, ~ 

  

NAME VARIABLES (CONTINUED) 

The following are illegal initializations of NAME 
data items: 

DECLARE T SCALAR; 
DECLARE NT NAME SCALAR DOUBLE 

INITIAL (NAME (T)) + 
: NT cannot legally 

.. point to T 

DECLARE NTL NAME SCALAR INITIAL(NAME(T1)); 

DECLARE T1 SCALARY fl is not previously 
defined 

STRUCTURE X: 
1 ¥ SCALAR, 
1 2 NAME X-STRUCTURE; 

DECLARE XX1 X-STRUCTURE; 
PECLARE XX2 X-STRUCTURE INITIAL (1.5,NAME(XX1)); 
DECLARE NX NAME SCALAR INITIAL (NAME (XX2.2.Y) ); 

e
e
 
e
e
 
o
e
 
e
e
 

contains implicit 
indirection since 

XM2,2% °> XX1 through 

previous initdalization



NAME VARIABLES (CONTINUED) 

NULL INITIALIZATION 

All NAME data items which are hot explicitly initialized, are 

implicitly initialized with null pointer values. The following 

examples show the explicit initialization to null pointer values. 

Examples: 

_ DECLARE LV NAME VECTOR INITIAL (NULL) : 

STRUCTURE A: 
1 C SCALAR, 

| 1 B NAME A-STRUCTURE 

  

DECLARE 2 A-STRUCTURE (20) ‘INITIAL (208 (7,53, NULL)); 

each copy of B initialized 
to a null pointer value



  

NAME ASSIGNMENTS 
erent 

i 
ji 2 en ae EACH L” AND R IS A NAME 

pees j PSEUDO~FUNCTION, 

E.G. NAME(NSL), NAME(NS2) = NAME (NS) 3 

  

NS1 NS2 NS NY 
            

  

NAME COMPARISONS 

L=R L AND R ARE BOTH NAME 

PSEUDO-FUNCTIONS. — 

e.6, IF NAME(NSL) = NAMECNS2) THEN os 

EQUALITY IF BOTH NAME VARIABLES POINT TO THE SAME 

"ORDINARY VARIABLE! 
"NS NS2 

  

    
    

[|   

w-5 9



NAME ASSIGNMENTS 

Examples: 

NANE VARIABLES (CONTINUED) 

Given the declarations 

then 

NAME (NSD) = NULL; 
NAME(NS) = NAME(S)+ 
NAME(NSD) = NAME(NS); 

NAME (NZ) = NAME(21); 
‘NAME (NZ.B) = NAME(22); results in 21.B + 22 because of 

, implied indirection in qualified 
reference 1Z,B, in which NZ + 21 

NAME(NS) = NAME(NZ.B.C); results in NS + 22,C because of 
2 levels of implied indirection 

in qualified form UZ.n.C, in which 

and ZLB} 22 

DECLARE S SCALAR, 
NS NAME SCALAR, 
NSD NAME SCALAR DOUBLE; 

DECLARE V VECTOR (3), 
NV NAME VECTOR(3)} 

STRUCTURE A: 
1 Cc SCALAR, 
1 B NAME A-STRUCTURE?: * 

DECLARE 21 A-STRUCTURE, 
22 A-STRUCTURE, 
NZ NAME A-STRUCTURE; 

. S itself 

NAME (NV) = NAME (V); 

NAME(NS) = NAME(V ); results in HS + Vo- note that 
2 V2 is a scalar value, which 

is why NS may legally point 

to it 

NZ ZL 

results in NSD + gf 
results in NS + S : 

is illeqal since NS * S and 

NSD may not legally point to 

results in Wo+Vv 

results in NZ + 21



  

NAME VARIABLES (CONTINUED) 

MULTIPLE ASSIGNMENTS 

Example: 

Given 

! DECLARE § SCALAR, 
\ NS NAME SCALAR, 
\ NT NAME SCALAR; * 
| STRUCTURE U: 
| 1 US NAME SCALAR, 

{ 1 UN NAME U-STRUCTURE; 

| DECLARE 2 U-STRUCTURES- 

The following is a legal multiple NAME assignment: 

§ . . 

' ! NAME(NS), NAME(NT}, NAME(Z.US) = NAME(S); 

w- Y&



NAME VARIABLES (CONTINUED) 

  

POINTER ARRAYNESS IN NAME ASSIGNMENTS 

Examples: 

! STRUCTURE A: 
| 1 B NAME SCALAR, 

{4s ¢ SCALAR: . 

| DECLARE Z1 A-STRUCTURE (3) + 

22 A~STRUCTURE (5); 

| DECLARE S SCALAR; 

then 3 copies of 21.B exist, and 5 copies of 22.3 

exist. Hence in 
“ 

{ 
| NAME(Z1.B) = NAME(S); 

the pointer arrayness on the'left is (3) whilst 

the right hand operand has none. The result of 

this assignment is: 

aL.By, Ay 

Z1.By, 77 Ss 

21.B3, A



  

NAME VARIABLES (CONTINUED) 

HAME COMPARISONS 

Examples: 

Given 

DECLARE S SCALAR} , 
DECLARE NS NANE SCALAR INITIAL (NAME(S)), 

NT NAME SCALAR INITIAL (NULL); 

NAME(NS) = NAME(S) is TRUE; 
NAME (NS) = NAME(NULL) is FALSE; - 
NAME(NT) “= NAME(NULL) is FALSE; 
NAME(NT) ~= NAME(NS) is TRUE; g
o



lo> Ss ae 

_ 

NAME VARIABLES (CONTINUED) 

POINTER ARRAYNESS IN NAME COMPARISONS 

Examples: 

Given 

1 P NAME 
“STRUCTURE Ar 

SCALAR, 
1 C SCALAR; 

DECLARE 41 
22 

A-STRUCTURE (3), 
A-STRUCTURE (5); 

DECLARE S SCALAR; 

After execution of 

1 
i 
i] 
! 
i 
! 
j 
i 
i 
j 
I 

t 

1 
' 
t 

then 

since 

NAME(Z1,D) = NAME(S); 

the result of the comparison 

NAME(21.D) = NAME(S) is TRUE 

Z1.D,, 

71d pes 

21.5,"



yo-GO 

  

NAME VARIABLES (CONTINUED) 

Further, 

NAME (22.B) = NAME (21.3); 

is illegal since the left and right hand pointer 

arraynesses are (5) and (3) respectively which 
do not match. However, 

{ NAME (22.8 ) = NAME(Z1.B); 
is 3 TO 5; 

is leqal since the left hand arrayness has been 

reduced to {3}, The result of the assignment is 

22.3,, 5 Z1.By (Lee. they both have the same 

' ; pointer value} 
22.04, = Z1.Bo, 

22,B,, = 2Z1.B,, ‘



(G-Gtl gos 

NAME VARIABLES (CONTINUED) 

Given 

STRUCTURE A: 

" 1 D NAME SCALAR, 
1 C SCALAR: 

DECLARE 21 A-STRUCTURE (3), 
: 22 A-~STRUCTURE (5); 
DECLARE S SCALAR; ‘ 

After subsequent execution of 
' : 
i NAME(Z1.D. ) = NULL; 
1s lt. 

then the result of the comparison 

NAME(Z1,.D) = NAME(S) is. FALSE 

because 21.D).—> 6 

21.D 

Z1.D4, 

The comparison 
f 

NAME(21.D) = NAME (22.D) 

is illegal because the pointer arraynesses of the 
left and right operands are {3} and (5) respectively, 
which do not match, However, the comparison 

. NAME (21.D) = NAME(22.0 ) 
3 TO 5; 

is legal since the pointer arrayness of the right 
hand operand has been reduced to [3]. 

-



to-Ge 

  

NAME ARGUMENTS AND-PARAMETERS. 
  

P; -PROCEDURE(NA) ASSIGN¢NB) ; 

DECLARE NA NAME INTEGER, 

NB NAME ARRAY (10) SCALAR; 

CLOSE P3; 

o ARGUMENT MATCHING NA: NAMB PSEDUO-FUNCTION IN REFERENCE 

CONTEXT (OR NULL), . 

o ARGUMENT. MATCHING NBs NAME PSEUDO-FUNCTION IN 

ASSIGNMENT CONTEXT. a 

DECLARE 1 INTEGER; 

DECLARE ARRAY(10) SCALAR,’ A, N NAMEs 

CALL P(NAME(T)) ASSIGN(NAMEC(N))s 

CALL P(NULL) ASSIGN(NAME(ND) ; Leon ; 

CALL PC(NAME(I)) ASSIGN(NAME(A))s 
; ILLEGAL’ 

CALL P(NULL) ASSIGN(NAME(N, .))s . 
L 

™, cr “ ive 
Niime ¢ N= N65



NAME VARIABLES (CONTINUED) 

INPUT ARGUMENTS 

The effect of using a pointer value as an input argument of 
a procedure or function is as if the pointer value were being 
assigned to the corresponding NAME input parameter, The 
attributes of the NAME input parameter must therefore allow 
legal acceptance of that pointer value, 

Examples: 

DECLARE S SCALAR; 
DECLARE NS NAME SCALAR; 
DECLARE NT NAME TASK; 

Fr FUNCTION (A,B) SCALAR; ‘ 

DECLARE A NAME SCALAR, 
B BOOLEAN; 

UY} | _ function body 

  u 

CLOSE F; 
* 
° 
. 

 



  

NAME VARIABLES (CONTINUED) 

NAME(NS) = NAME(S); 
1 
i 

. 

| S = F(NAME(S), TRUE): invocation results in input 
' parameter A pointing to 5 i 

} § = F(NAME(NS), FPALSE); has the same effect: A gets © 
{ . same pointer value as NS, 
1 leew A+S 
1 
| S = F(NAME(NT), TRUE)? . is illegal since pointer values 
| . legal for NT are not legal for A 

| S$ = F(NULL, FALSE); results in A+ 9 

Note that although ordinary input parameters are prevented 
from appearing in NAME pseudo~functions, NAME input 
parameters are only prevented from appearing in NAME” 
pscudo~functions in assignment: context. 

Lo-lsy



s ae 

NAME VARIABLES (CONTINUED) 

ASSIGN ARGUMENTS 
' 

A pointer value may be passed both into and out of a procedure by the appearance of a NAME pseudo~function in the assign argument list of the procedure's invocation, The class of data items which can be pointed to by the NAME data item appearing in the NAME pseudo-function must be the same as that which can be pointed to by the corresponding NAME assign parameter. 

 



10-&& 

  

NAME VARIABLES (CONTINUED) 
  

Examples: 

  

DECLARE NS NAME SCALAR} 
DECLARE NT NAME TASK; 
STRUCTURE A: 

1 B NAME A-STRUCTURE, 
1 C SCALAR; 

DECLARE % A-STRUCTURE 

. 

P: PROCEDURE ASSIGN(U,V)? 
DECLARE U NAME TASK, 

V NAME A-STRUCTURE: 

CLOSE P; 
* 
* 

  

    
  

. 
. 

CALL P ASSIGN (NAME (NT) , NAME (Z2.B))+ 

causes passage of pointer values 
between NT and U, and between 2.3 
and v, 

CALL P ASSIGN (NAME (115) , NAME (2))7 

illegal beeause NL Lilegal because % is not a 
NS points to NAMS data item 

; scalar data Ltoms 

but NT points to 
tasks 

 



NAME VARIABLES (CONTINUED) 

POLITER ARRAYNESS IN ARGUMENTS 

' Examples: 

  

STRUCTURE A: 

1 B NAME SCALAR; 
DECLARE % A-STRUCTURE (20); 
DECLARE 81 ARRAT(20) SCALAR, 

S2 ARRAY (10) SCALAR; 

P: PROCEDURE{U) ASSIGN(V); 
DECLARE U.NAME SCALAR, 

V NAME SCALAR; 

Yy 
  

    \\
 
  

* CLOSE P; 

F: FUNCTION(W) SCALAR; 
DECLARE W NAME SCALAR; 

  
| function body \ “ 

CLOSE F; 

  

fo, & :,



  

NAME VARIABLES: (CONTINUED) 

  

CALL P (NAME (2. By, )) ASSIGN (NAME (Z.B)); 
one 

‘ 
' 
t . Seep cathe te tet 

\ 
' . legal because pointer Jliegal because pointer 

nU' arrayness subscripted arrayness exists 

{ a away 

ion + F(MAME(2.B)) 3 
, . 

;~ > 4 
legal because pointer arrayness {20} matches 

arrayness (1:20) of S1 

The above is eguivalent to 

+81, = 81, + F(NAME(Z.B,))? for 1 < ig 20 

wherein each of 20 invocations of F cause transmission 
of a different pointer value, 

tu -S& 

 



NAME VARIABLES (CONTINUED) 

USES OF STRUCTURES ‘AND NANE ‘VARIABLES 

"(DA PRIORITY-ORDERED. QUEUE 
STRUCTURE QUEUE! ” 

1 IDNO INTEGER, 
1 PRTY INTEGER, 
1 LINK NAME QUEVE-STRUCTURES 

DECLARE QUEUE QUEUE-STRUCTURE (10), 
ANCHOR NAME QUEUE-STRUCTURE) 

DECLARE INTEGER, I, NEW_ID, NEN_PRTY? REFEREN ces. 
' 
+ 
' 

DO FOR 1 ™ 1 TO 93° 

IDNO,, PRTY, @ 13 

- NAME (LINK) = NAME (QUEUE, 45)4 
END} 
IDNOy 92 PRTYy9 * 103 

- NAMECANCHOR), NAME (LINK, 9) = NAME (QUEUE, )5 

: Peowem. sey: 

Queve cannot SE 
UNQUALRIED BEChUSE 

of NeEsTED STRUCTURE 

‘ 

  

  

            
  

              
  

IDNO pPRTY . . 

ANCHOR i} 1. : 2 2 . , 10 10 

: vA if eee S| 
LINK o- ' oe on] 

 



    

NAME VARIABLES 

  

USES OF STRUCTURES AND: NAME VARIABLES 
  

DECLARE NAME QUEUE-STRUCTURE, THIS) PREV} 

/* FIND IDNO IN QUEUE’ */ 
  

PROBLEM #2: CANNOT FACTOR 
NAME DECLARES 

IONO PARTY "  IQXO Paty 
  

2 1 2 

    
2 

  

  

NAME (PREV) = NAMECANCHOR) 3 ay // 
- 

NAME (THES) = HAMECANCHOR, LINK) s 
prev * 
  

DO WHILE THIS, IDNO™* NEW IDNOJ 

NAME (PREV). = NAME(THIS);3 

NANE(THIS) = NAME(THIS.LINK)) 
END; 

  

this +4       

  
  

(“ SET NEW PRIORITY, AND TEMP- 
      

  

  

          

    

DINK LINK 

    

            

  

THIS. PRTY = NEW_PRTY} ; 

NAME (ANCHOR), NAME (PREV.LINK) ® NAME(THIS.LINK)J 

1e her . 

ORARILY UNLINK FROM Queue */ / oe Pscwon tS 
* IDNO DPATY . _IDNO  PRTY “ IDNo pary 

N 
  

  

    
  

  

            
/* FIND PROPER PLACE TO RE-LINK IN’ 

‘ QUEUE ACCORDING TO PRIORITY */ Linx 
  

7 6, 

LINK LINK 
  

DO UNTIL PREV. PRTY <* NEW_PRTY_ AND NEWPRTY <e THIS, PRTYS 

NAME(PREV) = NAMECTHIS)) 
_ NAME (THIS) = NAMECTHIS. LINK) 5 

ENDJ 
NAME(PREV.LINK) = NAME(ANCHOR)) 
NAME (ANCHOR LINK) = NAME(THIS)3 . 

wATG
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NAME VARIABLES (CONTINUED) 

MY PRIOGQ: 
Me PROGRAM: 
"t 
ut 
nt 
Nt 
‘ut 
ut 
Nt 
Nt 
Nt 
nt 
Nt 
Kt 
st 
Et 

@ Nt 

it 

st 
Nt 
Nt 
St 
Et 
Mt 
St 
ct 
ct 

STRUCTURE NODE: 
2 TDUQ INTEGES. 
L PRT? INTEGER, 
2 LINK RAME NODE-STRUCTURE; 

DECLARE GUEVE NODE-STRUCTUREC 18). ; 
ANCHOR NANE NODE-STRUCTURE: 

, DECLARE THIS HANE RODE-~STRUCTURE, 
PREV NAME NODE-STRUCTURES 

DECLARE INTEGER, , 
i, NEN¢ID, NENEPRTY: 

bo FOR t= 4 70 9: 
QUEUE. [ONO . QUEUE. PRTVY = f3 

! t 
+ + 

NAHEC QUEUE. LINK > © NAMEC QUEUE 7] 
! : tea 

END; 
QUEUE. IONO , QUEUE. PRTY = 10; 

18 18 
+ + + 

THANECAHCHOR), NAMEC QUEUE. LINK ) = NANECQUEVE ); 
19 , 4 

FIND 1ONO IN QUEUE 

 



    

NAME VARTABLES (CONTINUED) 

et 

‘ Et + : + 
12 Nt NAHEC PREY) = HANECRUCHOR ); 

Et 
+ 

43 Mf. NAMEC rHIS) ® NAMECANCHOR, LINK)» 14 Mf DO WHILE THIS. TON <= NEWSTD; 
et + + 15 Nt NAREC PREV) ® NANECTHIS); Et + 16 Mt NAMEC THIS) = NANEC THIS. LINK); 147 Nt END: 
ct 
ct SET HEH PRIORITY, AND TEMPORARILY UNLINK FROM QUEUE ct 

12 Nt THIS PRIVY = NEHePPTY. 
Et + + + 19 Nt NAMECANCHOR), NANECPREV. LINK) = RAMEC THIS. LINK); cr 
ct FIND PROPER PLACE TO RE-LINK IN QUEUE AccoRDING TO. PRIORITY: ct 

20 Nt do uNTIL PREV, PRIVY Ca NEWCPRTY AND NENGPRTY Ce THIS. PRIY; Et 
ot out nner PEey> ® SANE ETHES : et 
22 Nt MAMECTHTS) ® HANEC THIS, Link), 23 mt Eno; 

Et + . ‘ 
ad ome NAMEC PREY. Links = HAMECANCHAR >: E° + 25 a: NANECANTHOR Lines = MAMEC THIS); £6 MP Shoce, 

{om
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NAME VARIABLES (CONTINUED) 
  

+ + 

NANEC PREY) . NARECANCHOR )1 

NAMEC THIs) = MAMEC ANCHOR, Links 
OG WHILE THIS, oN Ss NEWET Ds 

+ + 
NAME PREV) * NANEC THIS): 

+ 
NAME ris» ® NANECTHIS-LINK); 

ENO; 

SET WEM PRIORITY, AND TERPORARILY UNLINK FROM QUEUE 

THIS PRTY = NENCPRTY. 

+ 
HAMEC ANCHOR), NAMES PREV, bre SVNAMEC THIS. LINK); 

FIND PROPER PLACE To RE-LINK IN QUEUE ActoRb rus TO PRIORITY 
-0O UNTIL PREV PRTY Cx HEHSPRTY AND NEN+PRTY C= THIS. PRIV: + 

NANECPREV) = NAME crnts 
4+ 

NANEC THIS) & HAMECTHIS. LINK, 

4 
NANECPREY. LINK) = fahedanedde); 

+ + 
BANEC AN THOR LINK? = NAMEC THIS); MD Close 
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PREV 

THIS 
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PREV 
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PREV 
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+ THIS 

LeLs42 
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NAME VARIAbCC 
  

USES OF STRUCTURES AND NAME VARIABLES 
  

  

(CONTINUED) 

  

    

    

  

    
  

  

  

    

  

  

  

    

  

(2) TREE-STRUCTURED SYMBOL TABLE Parosrem #1: 
STRUCTURE TREE! ( Tace caunoy GE noo? | 

1 SYMBOL CHARACTER(32), UNGUAL HED BECAUSE 
1 LESS NANE TREE-STRUCTURE, OF NESTED SrRVCTURE pO 

"y GTR NAME TREE-STRUCTURE} REFERENCES. 2 |e 
DECLARE TREE TREE-STRUCTURE(100), » 

NEW_SYMBOL CHARACTER(32), PRaBLemez* . 
1 INTEGER INITIAL(O), ° CANNOT FACTER,. ‘BETA‘ ‘THETA! 
WAS_LESS BOOLEAN} NAME DECLARE | Ue | a NULL | NULL 

DECLARE NAME TREE~STRUCTURE, a NN 
ROOT INITIAL(NULL), OLD_LEAF, THISJ 4 

‘ALPHA! *IOTA' 

NAME (THIS) = HAME(ROOT)) nuut| NULL NULL 
DO WHILE NAME(THIS) I= NAME (NULL) ) 

NAME COLD_LEAF) = NAMEC(THIS)s 
IF NEW_SYMBOL < THIS,SYMBOL 

      
      

THEN DOJ WAS_LESS = TRUEJ NAME(THIS) = NAME(THIS.LESS); END; 

END; 
= [+13 SYMBOL, = NEW_SYMBOLJ 

nave (Less p+ NAME(GTR,) = NAME (NULL) J 
1F nate (Root) = NAME(NULL) THEN NAME (ROOT) = NAME(TREE,)3 
ELSE IF WAS_LESS THEN NAME(OLD LEAF.LESS) = NANe (TREE) 4 
ELSE NANE(OLD_LEAF.GTR) = NAMECTREE,); 

ELSE DO} WAS_LESS = FALSE, NAME(THIS) © NAME(THIS.GTR)} END; 

a 
"KAPPA! 
NULL | NULL 
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NAME VARIABLES (CONTINUED) 

  

TREES+P ROB: 
MP PROGRAM: 
nt 
st 
Mt 
nt 
ut 
a 
se 

Nt 
Nt 
Nt 

Nt 
ht 

ct 
Et 

Nt 
Et 
Ne 
Et 
Nt 
Et 

7 Mt 

Nt 

Et 

Nt 

Et 
"ft 

Ht 
7 NT 

at 

STRUCTURE NODE: 
$ SYMBOL CHARACTER( 32), 
1 LESS NAME NODE-STRUCTURE, 
4 GTR NAME NGDE-STRUCTURE:; 

DECLARE TREE NOSE-~STRUCTUREC LOB >, 
NEMESVNZOL CHARACTERC 329, 
LP INTEGER INITIALCO), 
NAStLESS EGOLEAN; 

DECLARE ROOT NAME NODE-STRUCTURE INITLALCHULL 

DECLARE QLDELEAF NAME HODE-STRUCTURE: 
DECLARE THIS NAME NOGE-STRUCTURE; 

+ + 

NANEC THIS) = NAMECROOT); 
+ 

OG HHILE NANECTHIS) \= NANECNULL): 
+ ¢ 

NANECOLD¢LEAF) = NAMEC THIS); 

’ ’ . 

TF NEN¢SYMNBML ¢ THES. SYMBOL THEN 
00; / 

HASELESS © TRUE: 
+ . + 

MAMECTHIS) = NANEC THIS, LESS); 
END; 

ELSE 
po. 

 



NAME VARIABLES (CONTINUED) 

c* 
. 

1é Mt WAS4LESS = FALSEs 

ET 
+ + 

Lv it MANEC THIS) = NAMECTHIS, OTRO: 

Af OME . END: 

4a Mt END; 

2m NT tom — + 4 

at : ; 

oe TREE. SYMBOL = NEWESYMBOL: 

at Ts 

Et 
+ 

+ . 

ae Mt NAMECTREE. LESS =» NANEC TREE. GTR > = HAMNEC HULL D3 

Bf 
i 1 

ét + 

grout LE MAMECROOT) = NANECHULL) THEN 

-it 4 . + 

Paout MAMECROGT MANEC TREE >. 

st . . 1 

25 Nt ELSE 

Et foe “fe . . ‘ 

es Mt IF WAUELESS THEN 

gt 
+ + 

met HHINEC OLOSLEAF. LESS) = HAMNEC TREE 3 

at 
i 

m7 Nt ELSE 

Et + + 

27 Nr NAMECGLDELEAF. GTR? = NANECTREE 03 

% 
1 

yo ss
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NAME VARIABLES (CONTINUED) 

EXTERNAL COMPOOL > 

STRUCTURE, @ DENSE: 

Bi gIT¢s>, 

B2 BITC), 

MN NATRIX, 
ARE @ Q-STRUCTURE( 10>) 

4 
DECLARE OQ NAME Q-STRUCTURES 

€ ARRAYCLA), 
SCAL SCALAR: 

BITS BITCSs 

-00 FOR TEMPORARY I = 4 TO 403 
. + 

alts © Bt tt B2 
. bu 

po FOR TEMPORARY I = 4 TO 18) 
° + + 

WANECUG) «= MAMECO 9 
fe 

Seal « NOS ane.v + NON 

I 2 

no, B41 FP Na. B2
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NAME VARIABLES (CONTINUED) — 
  

    
BNAMECOPY - 
  

ANAMECOPY (a, 8) 3 

PERFORMS. THE EQUIVALENT OF: 

NAME (e) = NAME(8)s (*) 

EXCEPT . 

- a MUST BE A NAME STRUCTURE AND 8 IS EITHER A STRUCTURE OR 

A NAME STRUCTURE. 

  

4 

Q. SINCE THIS 1S MORE RESTRICTIVE THAN A REGULAR NAME ASSIGN 

(LIKE (*)), WHAT IS THE ADVANTAGE? 

A. NO TEMPLATE, COPYNESS, OR LENGTH CHECKING IS DONE. 

SNAMECOPY ALLOWS UTILIZATION OF A SINGLE MEMORY AREA FOR 

A NUMBER OF DISTINCT PURPOSES, 

 



  

NAME VARTABLES (CONTINUED) 

NATURALLY, 2NAMECOPY MUST BE USED WITH GREAT CAUTION. 

EXAMPLE: 

STRUCTURE Q: 
1A SCALAR DOUBLE; 

DECLARE @ Q-STRUCTURE (50) ; 
STRUCTURE Ry 

1 B SCALAR; 
DECLARE R NAME R-STRUCTURE(100) 3° 

  

# 9 € 

INAMECOPY(R,Q)3 /* THE A AND B ARRAYS NOW ARE PHYSICALLY 
COINCIDENT */ 

ASS = A$3;] 
an ——— BOTH ACCOMPLISH THE SAME THING! 

BS9 = BSS; |-— 
BS10 = BS6;
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NAME VARIABLES (CONTINUED) 

Nt CPL: 
Nt EOKPOOL RIGID: 

Nt DECLARE I ARRAYC4L0) INTEGER INITIALC4, 3, 5, 2.3, 44; 43, 15, 47, 19): 

Nt OECLARE VECTL VECTOR INITIALCAG, 20, 3935 - 

Nt PERLARE VECT2 VECTOR INITIALC46, 5@, 60)) 

Nt STRUCTURE INT RIGID: 
Nt -4 TYPE INTEGER, 
Mt 41 OP¢CODE INTEGER, 
Nt 4 VARENAMEL NAME INTEGER, 

Mt <1. VARENANE2 NAHE INTEGER: 
Nt STRUCTURE VECT RIGID: 
nt “4 TYPE INTEGER, ‘ 

Mt 4, OP ¢CODE INTEGER, 

Nt 4 VARSHANEL NAME VECTOR: 

nt L-VRRENANES NANE VECTOR: 

Nt DECLARE S4 INT-STRUCTURE INITIALC1, “4, MANECT. 9, MANECT 02 

St 2. 4 

at DECLARE $2 INT-STRUCTURE INITIALCL, 2, NANECT >, NAMECT 0) 

£ 5 ? 

E 

be
 DECLARE 33 VECT-STRUCTURE INITIALC2, 1, NANECVECTIO, NANEC VECT29); 

DECLARE $4 INT-STRUCTURE INITIALCS, 3. NANECT 0, NAMECT 3 
1 2 

ed
 

<b
 
b
P
 

me
 
> 

Mm 
4 
d
a
e
 

a
e
 

o
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y
 

4 

CLARE $5 VECT-STRUCTUFE INITIALC2, 2, MANECVECTID, NAMEC VECT2902 

oO
 

-
 
o
 

ut
 

m
o
n
y



  

NAME VARIABLES ¢CONTINUED) 
LIONtT INTER? 
AR ME PRAGERE 
ta 14 
Le Ls 

  

set DECLARE NetNT WANE INT-STRUCTUSEC S 3; 

at PECLAFE NeVECT NAME MECT-STRUCTURES 53 

£ b+ be 

La Mt MNANECOPYCMEINT, S407 

£ + + 
Pons MMANECOPYCNEVECT, S29) 

49.Nt po FOR TEMPORARY T 2 4:70 Si 
L240 TF OMSINT TYPE = 4’ THEN 

$° , 1 
20 Nt bo: ‘ 7# INTEGER TYRE H/ 

22 mt DO CASE NéINT, OPECODE ; 
gt 

1 
nt 

ag + 905 2& ADDITION A! 

23 Ht ARITECE) NEIUT, VARSHANES + NeINT, VARCHAMED 
St 

: 

24 nt END: .. 

25 ut i . 7* SUBTRACTION 47 

26 ut WRITECE) METNT: VAREWAEL ~ NEINT. vaReugned i 
st 

. 

ar ont END: 
. 

23 Nt DOr : 
eek MULTIPLICATION #7 

23 ut HRITECS) NEINT. VARCNANES NOLNT, VARERANE2 

St , I 

20 Nt «END: 
3A Nt END: 
22 Mt END; 
23 Nt ELSE 

. 

33 Nt bo) f+ VECTOR TYPE +7 

34oNt QO CASE NFVECT. OP+CODE + ots 
gt ’ I ; 

35 Mt 00) 
?* DOT PRODUCT #/ 

36 Nt HRITECG) NEVECT, VARCHAMNEL . HEVECT, VARtHAHE2 
St , i iu 

27 Nt END; : 
. 

38 ME . 00; 
. . ?* CROSS PRODUCT #7 

39 Nt WRITEC6) NEVECT, VARENANES & NEVECTAVAREHAHE?: 
st u ti 

40 Nt END) : ‘ 
44 Ht END: 

we-k 42 Mt END 
43 Nt END:



os 

HAN VARIABLES (COUT EHUED) 
ett ii t 

HAL/$-360 V4.0 START TIME: 92:43:09, 61 DAY: 767075 
ARM FTE, D: MCKALeS 
HCP HAL/ DRIVER FOR IBM SHUTTLE GPC SIMULATOR *SINLO4* 

HCPA: LOAD: GO. EHD ‘ 

HOPS. THE FOLLOWTND LOAD PARAMETERS ARE IN EFFECT 

HORA: BOWEN © Loabhor: 

HCPA: MENBER® G0 

HEPA: REGLONeSgk BYTES (#60 CORED 

HCPA: SIMREDIONRAK HALTNURDS CAPLOL CORED 

HEPL: SIMPLEESH4 COORS RESIDENT 4K PAGES) 

uePd: HAL/S-FC HOpNLE, LOADED 

     

    

19 
pond 

3. 200DANOF +O. 

HEPA: HAL?S DRIVER FOR.1BN SHUTTLE GPC SINULATOR *SInLos" 
HESSAGE # 65 DURING: SIMULATION INTERRUFT #16 | OLD PSH=OLE74A00 080 

    
   

  

Hed: SVC OLD PSN’® OLE7ARGO ONGL01FB 

HCPL: INSTRUCTION COUNT* 336 

HCP4: SIMULATION TIE). #. 3919999999999900E-04 

HOP4: END OF HALSS-FCPROURAM 

ERROR SYSTEN CSTATEMENTS 
10: 9 4 

2, aneoncoroas eS 3s, +02 -2, eaodnacetag 
RETURN CROT t _ ‘   
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FOR REAL TIME PROCESS CONTROL 
° High-Level Problem-Oriented Real Time Features 

® Careful Definition of Semantics -- for Easy 
User Comprehension 

® Guarariteed Orderly Access to shared Data 
and Code 

© Hierarchical Relationships Among Processes 

SVO- ST



, MWS £00-S/ 
Wo a\ 4) PROGRAM and TASK Blocks 

  

A: PROGRAM ; 

  

B: TASK; 

CLOSE 8B;   
  

  

C: TASK; 
SCHEDULE B... ; 

CLOSE C;     
  

SCHEDULE C ... ; ’ 

CLOSE A;       
4.9 

 



  

A PROCESS IS: | 

¢ The Execution of a PROGRAM or TASK Block 

e® Made ACTIVE through Execution of a 
SCHEDULE Statement - 

e Made INACTIVE through Execution of a 
CLOSE, CANCEL or TERMINATE Statement 

33 
500-38]
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aN /S Process State Transitions . S0I0-S3 

    

INACTIVE © =-AERUEE WAITING 

J 
Cs, v 
= ¢ 21 oe 

uy ee RY 31S 

Sl fg ={E 
8 3 aT R 

8 = Al q y. 
WR we s it 

prrecity Process 

: peeomes ready =) 
EXECUTING READY 

ter process 
+. 

fring or inact® 

  

Pyne, |



  

32 

Scheduling of PROGRAM and TASK Blocks 500 -s+$ 

  

g
u
s
 

  

PRIMAL PROGRAM 

  
  

>| TASK BLOCK . PROGRAM 
  

  TASK BLOCK 

TASK BLOCK “I SNvOCATION OF 
= TASK BLOCK 

i INVOCATION OF 
a PROGRAM BLOCK 

it nl. PROGRAM 

: : - - DATA 
REFERENCES 

        

      

  

w
o
               

  

  

INVOCATION 
OF TASK 
BLOCKS / 

* COMPOOL 

INVOCATION | 
OF PROGRAM (shared data) ‘[- 
_ BLOCK     
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EACH PROCESS: HAS A PRIORITY 
(An Integer Value ) 

e Initially Specified in SCHEDULE Statement : 

SCHEDULE ALPHA PRIORITY (50); 

« Dynamically Changed by UPDATE PRIORITY 
Statement : 

UPDATE PRIORITY ALPHA TO (1 +5); 

aa | 
S00-33
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a /f SCHEDULING IN REAL TIME = 500 —5G 

  

1600 

v executing 
transitions 
during 

oe _2xecution me eee oe OY 

A 

poe wee eee ee ee mee ee ee eC Walking     

    
initiated 

scheduled terminated 

me te mee L . | en inactive 

\ 4 

SCHEDULE A AT 1600 PRIORITY (50); 

Alternatively, 

SCHEDULE process IN Interval . PRIORITY (n); 

 



Wis 

Jy~ = 

| “L/S 
THE WAIT STATEMENT 

© Process Is Temporarily Placed 
in the WAITING State 

. © WAIT Interval ; 

© WAIT UNTIL time 

WAIT UNTIL IGNITION +5; 

32 
500-357
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~ PROCESS DEPENDENCY 

  

A: PROGRAM; 

  

B: TASK; 

CLOSE .B; 
  

  

C: TASK; 

  CLOSE C;     

CLOSE A;       
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FURTHER PROCESS DEPENDENCY 

  

  

A: PROGRAM ; 

  

B: TASK; 

CLOSE B; 

SCHEDULE C ... 
DEPENDENT ; 

  

  

C: TASK; 

CLOSE C; 
  

  

D: TASK;   CLOSE D;   
  

CLOSE A;   
  

 



  

a) CYCLIC SCHEDULING 500-60 

A Process can he Scheduled to Execute 
Its PROGRAM or TASK Block Repeatedly, 
Until it Is: 

e Terminated by Execution of a TERMINATE 
Statement 

® "Cancelled" through Execution of a 
CANCEL Statement, or Because a 

_"Cancellation Condition" has been Met 

4-14



ue | SQ 
“| Pan SS RECYCLING AT FIXED INTERVALS 600 -G/ 

  

              

1600 mo 3200 

Co 200-———»| (f |<—— 200 ——}| 
gee executing 

transitions os . 

during : 

_— execution oof Poh) J - i _ ready 

a 
- feared ne me pres meee on | fm en ene me ee oe bees ms waiting 

~ —_— . eens, orm seee 

| cycle 1 : cycle n 

* t . \ initiated 3 s+ inactive 

scheduled terminated 

SCHEDULE A AT 1600 PRIORITY (50), REPEAT EVERY 200 UNTIL 3200;



ly- 72 

oon, 

52 7 5 

PROCESS SYNCHRONIZATION I00-62 

  

EVENT Vartables 

Used for Process Synchronization 

e Value TRUE or FALSE 
} 

® Combined with Operators AND, OR, NOT 
to Form EVENT Expressions



o
o
m
 

ly ~ bi 

LATCHED 

UNLATCHED 

33 

  

  
  

  

300-43 

EVENT Varlables May Be Matched” or "Untatched" 

me a TRUE 

FALSE ‘ 
le ee ie en eee TRUE 

FALSE 

  

 



  

SET, SIGNAL, and RESET 

e Must Be Used to Change Values 
of EVENT Varlables 

© Cause Re-evaluation of EVENT 
Expressions 

e SET and RESET for LATCHED 
Variables 

® SIGNAL for LATCHED or UNLATCHED 
Variables . 

500-64



L 

AA (7 | | 300-68” 
Lo BO 4) _ Effect of SIGNAL 
wT : ; . 

DECLARE EV1 EVENT , . 
EV2 EVENT LATCHED INITIAL (TRUE); 

  

  

co ee ee my ee ee ee ee mr TRUE 

SIGNAL EV]; , 

FALSE 

TRUE 

SIGNAL EV2; 

we i dee ene ate me mem FALSE 

 



  

  

  

  

  

  

  

      
  

    
  

    

n S00-6% 
if T = TRUE, F = FALSE 

Statement Event Actual Value | Change sensed by RTE 

execution 

: tT —~—| 7 

. F+#et 

SET latched ¢ F aT 
. {LT evemermenememamaan 

none 
Fo-—-—-—-F 

. ( Tso T 
none 

RESET | latched F F 
Ley = oe = T 

Ts FP 
\[F--- F 

t--q--T 
Fr 

latched F F 

T T 

SIGNAL en | Tor 

T—-—nyn-- T 
unlatched 

Fr F FT                 
  

Ist~1)



mony 
otek / (( WAIT FOR EVENT-Expresston; 

bo ce luets 

  

  we rec me 

  

    
  

   
other 
porelated 
ransitions J { | | 

    
  

Kate executed t 

EVL&EV2 becomes TRUE 

WAIT FOR EV1 & EV2; 

wo 

  

TRUE 

FALSE 

TRUE 

FALSE 

executing 

ready 

waiting



  

S2. 

  

  

  
  

  

  

non ‘ ~ 

SES ! /§ INITIATION ON AN EVENT CONDITION 300 -G7 
tok Taf RS 

| TRUE 

Ev1 { bn ee gee eee es ees ame FALSE 

i i TRUE 

EV2 I f 
j | ee ee mn ee oe FALSE 

7 t 

w b OS punssnssnn executing 

, | : eo ready 

| eee waiting 

ALPHA . 
( _ ae inactive 

scheduled EV) & Ev2 
becomes TRUE 

~ SCHEDULE ALPHA ON EV1 & EV2 PRIORITY (50); 

Iya



Ip penn ee 

| | : $2. 
non fa —  $VO -6} | rs I CANCELLATION ON AN EVENT CONDITION 

  

  

  

  
  

  

  

      
    

    

TRUE 
—oeO 

mv | meee eee eee mere een memes me FALSE 

| t , 

Lo ee ee peweeneneee TRUE 

ev2 | | 
- on oon om FALSE 

o 100 @ - 50-4, 80 ot . 
. ret ~~ | -— = executing 

: s 
| Hiring on L 

~ —pxecution_ 4. - — hee te ready 

BETA | 
“qeomrwweel ne a eee Ne -|j-i — —-{ —-]- — walting 

Nena cima” ee ed 

a [ cycle 1 cycle n Linn inactive 
- 

. initiated { \ 
scheduled . terminated 

EVL&EV2 becomes TRUE 

SCHEDULE BETA IN 100 PRIORITY (50), REPEAT AFTER 50 
“UNTIL EV & EV2:



  

-Shar Data Protection LAAN /f 
HL afte | for Ryne amie Processes | s/ 

500-6) 

DATA MUST BE PROTECTED AGAINST 
SIMULTANEOUS ACCESS AND MODIFICATION: 

® Data fs Accessed fn an Orderly Way 

e Results are Not Dependent on Timing 
Coincidences 

DATA 1S PROTECTED BY MEANS OF: 

* LOCK Groups 

oe UPDATE Blocks 

PY- aq
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52 
S00 -70 

i 

Shared Data Pretoction 
for Dynamic Prececcss ie 

DECLARE LOCK (1), A, B INTEGER, C VECTOR, D MATRIX; 

DECLARE LOCK (2), W, X VECTOR, Y MATRIX; 

  

  

        
  

  

  

  

    

PROCESS A PROCESS B PROCESS C 

o 
o 

e 

e 8 8 

UPDATE; UPDATE; UPDATE: 

A=B; A=W; — oR 

C=P+Q; X=Dp C3 

oe 
° 

o 
3 

CLOSE; CLOSE; | 

SWAP TO: 
A B c 

. A ~ STALL | RUN 

‘DYNAMICS E> ACTIVE B {STALL |. ~ STALL 

, c| RUN [STALL -     
    

  

     

    
     

|



oy 

  

Pe GP Shared Data Protection 
mo for Dynarnic Processes 

33 
S00 - 7) 

Poke ay by 

PROTECTION IS GUARANTEED 

® Compiler Allows References to LOCKED 
Varlables Only in UPDATE Blocks 

¢ RTE Reserves LOCK Groups at Entry 
, fo. UPDATE Block 

« Simultaneous Reservation of All 
Required LOCK Groups Avoids Deadlock 

 



of 

sVO-72 

S
T
A
Y
 

ie / 

A SHARED BLOCK MAY BE PROTECTED : 

© By Problem-Related Synchronization 

Measures 

© By Preventing Concurrent Execution 

@ By Allowing Concurrent Execution 

In Independent Environments 

THESE PROTECTION METHODS APPLY TO: 

® Ordinary PROCEDUREs and FUNCTIONs 

® EXCLUSIVE PROCEDURES and FUNCTIONs 

© REENTRANT PROCEDUREs and FUNCTIONs 

 



  

Pr t P rt oq . . , ~ yeu t a) _ Action. for EXCLUSIVE Blocks _ S°0O-73 

. ow executing   

  

! ! 
--s 

other I | | 
. unrelated | L 

ALPHA transitions|[. . rato ready 

| 1 4 
we le ey ee ating 

ALPHA enters | farpHa leaves 
Pp P 

l- [4 . 
i { 

| executing 
other , : 

BETA unrelated | ] 
, transitions 2 ae mo (fe ready 

I 

—~ ae lw eH ee -- le vatting   
| i 

| | AL BETA 1 1 | eaves P 

BETA tries 2? A RTE allows BETA 
- to enter P to enter P 

P: PROCEDURE EXCLUSIVE ; 

I> ay 
_



$3 
S00 -74 action for REENTRANT Blocks 

fe 

  

  

t 

oo ae | aw executing 

| 
other 

\ | unrelated 

ALPHA eeepc — 5 ~~ + transitions, ready 

| | 
de eee ef ee ee cen mee me ome] me ee ee --— waiting 

ALPHA ? i ALPHA leaves P 

enters P \ | 
“ ‘ 

mo ether { T f executing 

. unrelated | | | 

BETA transitions ' \ ready 

I rT | 

{ \ 
| | 
~ —+ —_— ae 4-7 ~ — waiting 

BETA leaves P 

[yet 

BETA enters AT 
{ 

P ALPHA and BETA both executing P 

P: PROCEDURE REENTRANT ; 

 



  

rea ? | | —S/ 

: ol] J - — $00-74¢ 4. 

LOCAL DATA IN REENTRANT BLOCKS 

- @ STATIC Data is Unique to the Block 
and Common to All invocations” 

e AUTOMATIC Data Is Unique to Each 
Invocation of the Block 

« Parameters and Compiler Temporaries 
are Effectively AUTOMATIC 

 



fe Conclusions 

HAL/S Has Been Designed and Implemented to Enhance Software Reliability 

SUMMARY OF REAL TIME FEATURES : 

® Program Structure and Name Scope 

Process States, Priority, Real Time, Dependency 

‘Cyclic Scheduling 

EVENT Expressions, SET, SIGNAL, and RESET 

LOCK Groups and UPDATE Blocks , 

EXCLUSIVE and REENTRANT Code Blocks 

 



  

NAME VARTABLES 

HARDWARE ‘LEVEL 

  

  

  

  

  

  

      

101 104 o 
102 
103° 

104 3 L 
105 
106 

HAL/S LEVEL: DECLARE I INTEGER INITIAL(3), 
“ NI NAME INTEGER INITIAL (NAMECI)) 

NI = NT +1) 
/* SAME AS T= 1+ 13 */ 

we



USES FOR NAME VARIABLES 

© MOVE AROUND A POINTER TO A BLOCK OF DATA (OR CODE) 
RATHER THAN THE WHOLE BLOCK, " 

© ACCOMMODATE DATA STRUCTURES OF DYNAMICALLY VARYING 

SIZE IN A FIXED-SIZE MEMORY. 
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PROBLEMS WITH UNRESTRICTED POINTERS 
  

DECLARE I INTEGER, 

S SCALAR, 
H NAME, 

NANE(H) = NAMECI)s 
N=N +4; 

NAME(N) = NAME(S) 3 

IF N <S THEN GO TO L; 

/* POINT NAT 1 */ 
/* WHAT CODE 1S COMPILED? */ 
/* POINT N AT S */ 

/* CONVERSION REQUIRED? */ 

   



SO, A NAME VARIABLE Is DECLARED: TO POINT TO VARIABLES 

OF A GIVEN DATA TYPE 4s 

  

  

DECLARE NI NAME INTEGER, 
NS NAME SCALAR, 
NV NAME VECTORC4), 
NA NANE ARRAY(2,2) BOOLEAN | 

DECLARE INTEGER DOUBLE, 
I, Jy K 

»~ N NAME; /* FACTORED ATTRIBURES */ 

 



  

HENCE THE COMPILER CAN CHECK FOR TYPE: COMPATIBILITY. 
  

DECLARE I INTEGER, 

S SCALAR, 

N NAME INTEGER; . 

NAME(N) = NAMECI)s 

lL: Ne=N 4]; 

NAME(N) = NAME(S) 5 

IF N<S THEN GO TO L; 

- - 

I 
~ 

/* POINT HAT I */ 

/* CODE FOR INTEGER ADDITION */ 

/* ERROR-TYPE MISMATCH */ 

/* N DEFERENCED AND CONVERTED 
TO SCALAR */



NAME VARIABLES CAN POINT TO DATA (OR CODE) WITH 

THE FOLLOWING ATTRIBUTES: 
eee erties 

  

  

-—(Sinete or povste) Cor *)\ 

INTEGER CHARACTERGD ARRAY (xt.10,2) 

} SCALAR BIT(n) a-STRUCTURE(n) 

—"Y VECTOR(n) BOOLEAN PROGRAM 

MATRIX(A,m) EVENT TASK 
ses ee nt ek ca et he St ft i ee me ny et ye i ce =I eam te et i 

DECLARE MATRIX(2,3), A, B, NB NAME INITIAL(NAME(B))s 

DECLARE MATRIX(3,3), C, D, ND ‘NAME INITIAL (NAME (D)); 

A =NBy /* SAME AS A= B; °/ - 

A = ND; /* ERROR-DIMENSION MISMATCH */ 

NAME (HB) = NAMECND) 3 /* ERROR-DIMENSION MISMATCH */ 

NB = ND$(2 AT 1,*)3 /* SAME AS B = D$(2 AT 2,*); */
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RESTRICTIONS 

NAME VARIABLES CANNOT POINT THEY MAY POINT TO STRUCTURES   

  

  

      

TO NANE. VARIABLES BUT | CONTAINING NAME VARIABLES 

CANNOT DECLARE AN ARRAY ——1 THEY HAY APPEAR THA STRUCTURE 
OF NAME. VARIABLES WITH COPIES 

(SUBTLE) A NAME VARIABLE IN A STRUCTURE WITH COPIES CANNOT 

POINT TO A STRUCTURE WITH COPIES ~ CONVERSELY, A NAME VARTABLE 

WHICH POINTS TO A STRUCTURE WITH COPIES CANNOT BE IN A STRUCTURE 

WITH COPIES.



OTHER ATTRIBUTES: FOR NAME: VARIABLES 
  

DENSE 

ALIGNED 

- RIGID . 
STATIC . 

AUTOMATIC 

/ “INITIALC > 

Sar 

TO BE DESCRIBED 
ea 

  

THESE APPLY TO THE NAME 

VARIABLE ITSELF, NOT TO THE: 
VARIABLE WHICH IT POINTS To,



    

INITIALIZATION-OF* NAME VARIABLES 
  

INITIAL oo 
ne | (NAME, REFERENCE, NAME REFERENCE, ...) 

NSTAY 

EACH NAME REFERENCE WAS THE FORM: 

NAMECoRDINARY VARIABLE) 

NAHE (NULD or HULL 

  

“NULL POINTER” - POINTS TO 
NOTHING AT ALL, UNINITIALIZED 
NAVE VARIABLES ALSO HAVE THIS 

  

  

    

VALUE,” 

ORDINARY VARIABLE MUST BE: , AND MUST NOT BE: 

© PREVIOUSLY DECLARED © SUBSCRIPTED 

. © WITH DATATYPE MATCHING e DEREFERENCED THROUGH ANOTHER 

THAT OF NAME VARTABLE NAHE VARIABLE



2 

3, 

INITIALIZATION OF NAHE VARIABLES 
  

DECLARE S SCALAR, - 

NS NAME SCALAR INITIAL(NAME(S)); 

NAME VARIABLES IN STRUCTURES WILL BE DISCUSSED LATER. 

STRUCTURE A: 

1B SCALAR, 
1 C NAME A-STRUCTURE, 

DECLARE A-STRUCTURE, 
Zl, . 7 

72 INITIAL(L.5, MANE(Z1))3— 

DECLARE NB HAME SCALAR INITIAL(NAME(Z1.B))s 

DECLARE A ARRAY(5) INTEGER INITIAL(O), 

NI NAME INTEGER INITIALCHAME (Az ,)); 

 



  

THE NAME PSEUDO-FUNCTION 

@ ORDINARY REFERENCE TO NAME VARIABLE ACCESSES THE 

VARIABLE: WHICH IT POINTS TO. 

© NAME PSEUDO-FUNCTION IS USED TO ACCESS OR CHANGE 

THE (POINTER) VALUE OF THE NANE VARIABLE ITSELF. 

DECLARE SCALAR, $1, $2, NS NAME, NS1 NAME INITIAL(NAME(S2)); 
  a ~. 

Tas PY S2 = NS1s — §2 OT si. 
  

  

  

  

    NANE(NS) = NAME(NS1); 

HAMECNS) = NANE(S2)3 yg LNs 1 92f- 

    

    
    

NAME (NS) = NS1s 
HST ERROR-TYPE MISMATCH! 

NS = NAME(NS1)s



IN GENERAL: 

© NAME VARIABLE BY ITSELF DENOTES THE ORDINARY 

VARIABLE: WHICH IT POINTS TO, 

[S| NAME VARIABLE 

ORDINARY VARIABLE 

  

  

      
  

© NAME( NAME VARIABLE ) OBTAINS THE POINTER CONTENTS OF 

THE NAME: VARIABLE, 

<a 
~\ 
  

      
. NAME VARIABLE 

e NAMEC ORDINARY VARIABLE ) CREATES A POINTER TO THAT 

ORDINARY VARIABLE, 

CREATED POINTER 

  

      

ORDINARY VARIABLE 

te



Ce 

  

NAME ASSIGNMENTS 

i ‘ . tl, 12 "= R, EACH L” AND R IS A NAME 
coe aes PSEUDO~FUNCTION, 

E.G. NAME(NS1), NAME(NS2) = NAMECNS); 

  

            

NS2 NS2 Ns} oN 

NAME COMPARISONS 

LeR LAND R ARE BOTH NAME 
Lr=R , PSEUDO-FUNCTIONS, 

er 

E.G. IF-NAME(NS1) = NAME(NS2) THEN v3 
‘EQUALITY IF BOTH NAME VARIABLES POINT TO THE SAME 
ORDINARY VARIABLE! 

NS1 ——NS2 

    

  

      

 



  

NAME ARGUMENTS AND PARAMETERS 

Ps PROCEDURECNA) ASSIGN (NB); 

DECLARE NA NANE INTEGER, 

NB NAME ARRAY (10) SCALARs 

CLOSE’ P; | 

© ARGUMENT MATCHING NA; ANE PSEDUO-FUNCTION IN REFERENCE 
CONTEXT (OR NULL). 

© ARGUMENT MATCHING NB: NAME PSEUDO-FUNCTION IN 

ASSIGNMENT CONTEXT. 

DECLARE 1 INTEGERs 
DECLARE ARRAY(1O) SCALAR, A, NV NAMEs 
CALL P(NAME(L)) ASSIGN (NAME (N))s 

CALL P(NULL) ASSIGN(NAME(N))s 

CALL P(NAME(I)) ASSIGN(NAME (A); | 
EGA 

CALL P(NULL) ASSIGN(NAMECN, .))s ILLEGAL 

 



  

POINTERS TO CODE BLOCKS 

Pl: EXTERNAL PROGRAM} 

CLOSE P13 

P2: EXTERNAL PROGRAM; TEMPLATES 

CLOSE P23 

P3: EXTERNAL PROGRAM; 

CLOSE P3; 

MASTER! PROGRAM} . 

DECLARE NP NAME PROGRAM, 

1 INTEGER; 
‘ 
t 
4 

DO WHILE TRUE} 

pO FOR It =1 Tox 
*S pO CASE 13 

NP | 

NAME(NP) = NAME(PL)) 

NAME(NP) = NAME(P2)) 
NAME(NP) = NAME(P3)3 

ENDS 
UPDATE PRIORITY NP TO 200; 
WAIT 13. 

UPDATE PRIORITY NP TO 50}; 
END} 

END; 
! 

CLOSE MASTER} 

u 

  

CODE BLOCK 

  

  
  

  

  
    

___________I 

/* PROMOTE Pl, P2, P3 IN TURN 
/* TO HIGH PRIORITY, FOR 1 SEC 

/* THEN REVERT TO NORMAL PRI. 

*/ 
“/



5 - f ™ 

” NAME VARIABLES“IN STRUCTURES 
  

o NAME VARIABLES MAY POINT TO VARIABLES DECLARED WITH 

STRUCTURE TEMPLATES. 

o NAME VARIABLES MAY BE TERMINAL NODES OF A STRUCTURE 

TEMPLATE DEFINITION, — 

© A TAME VARIABLE IN A STRUCTURE TEMPLATE MAY POINT To 

THE TEMPLATE CURRENTLY BEING DEFINED. 

STRUCTURE LIST: 

1 VALUE INTEGER, - 

1-LINK NARE LIST-STRUCTURE; 

 



HAS WRAP AULL OO Looe Pui 

  

  

STRUCTURE LIST: 
1 VALUE INTEGER, 

1 LINK NAME LIST-STRUCTUREs 
DECLARE LIST-STRUCTURE, 

ZL,LINK.VALUE or I 
[wr «VALUE J 

U—dereferencing 

Zi, 22, 73, 

Z0 WANE; 

, NAME(Z0) 7 7 
Y . NAME (21.LINK) or 

0 CTI 6 Z AME (D0 TEN 

/ dereferencing 

LINK,“ _, NAME(22.DINK) ox 
VALUE —g— 32 , NAME(21.LINK.LINK) or 

f . NAME (Z0- [LINK LINK) 

/. oh 
foo Lari / v 

/ VALUE —o—— 23 

Z1.VALUE or f 
ZO.VALUE | | 

dereferencing / LINK 
VALUE ———+ NULL 

22.VALUE or 

23.VALUE or 

Z2.LINK.VALUE or 

dereferencin 21. LINK. LINK. VALUE or cing. 

ZO. Lik. “Link. VALUE 

RON CT 
darefereancing 

 



BEST WAY TO THINK OF THIS: 

o ANY APPEARANCE OF A NAME VARIABLE IMPLIES DEREFERENCING. 

© APPLICATION OF NAME PSEUDO-FUNCTION IMPLIES OWE LEVEL OF 

”"RE-REFERENCING” 
  

      
THUS 

Z0 IS A REFERENCE TO THE STRUCTURE Z1 

NAME(Z0) "BACKS UP” TO ZO ITSELF 

Z1, LINK, LINK IS A REFERENCE TO THE STRUCTURE Z3 

NAME (Z1, LINK, LINK) "packs UP” TO Z2.LINK (OR Z1,LINK, LINK) 

ITSELF 

NOTE THAT ZO.VALUE IS THE SANE AS ZL.VALUE SINCE ZO 1S A 
HANE VARIABLE BUT Z1 IS NOT, 

FURTHER, NAME(ZO.VALUE) 1S THE SAME AS NAME(Z1, VALUE) 
= 

1.£, A POINTER TO THE VALUE FIED IN Zl. 

 



  

USES’ OF'’STRUCTURES ‘AND NAME VARIABLES 

@) A PRIORITY-ORDERED QUEUE 

STRUCTURE QUEUE: 

1 IDNO INTEGER, 

1 PRTY INTEGER, 

1 LINK NAME QUEUE-STRUCTURE} 
DECLARE QUEUE QUEUE-STRUCTURE(10), 

ANCHOR NAME QUEUE~STRUCTURE) 

DECLARE INTEGER, I, NEW_ID, NEW_PRTY) 
' 

DO FOR 1 = 1 TO 93 

IDNO,, PRTY, = 1) 

NAME (LINK,) = NAME (QUEUE, 4, )3 

ENDS 
IDNOy9 PRTY,9 = 103 
NAME (ANCHOR), NAME(LINK, g) = NAME(QUEUE, )5 

IDNO PRIY 
  

  
ANCHOR 

      

  
    

    
10 

  

de | elite 

          
    

  
 



USES OF STRUCTURES AND NAME VARIABLES 
  

DECLARE NAME QUEUE-STRUCTURE, THIS, PREV} 

(/* Fiup rpNo In queue */ ) [| _ ps0 PaTY ToNO PREY 
  

  

  

  
  

        
  

  

        
  

  

        

  
  

  
  

              

  
  

  

  

      
  

  

            
  

nANE (PREV) = MAMECANCHOR) 3 laxcrok | 2] 2 

wane (THIS) = NAME CANCHOR. LINK) 3 
. prey & or 

20 WHILE THIS, IDNOT= NEW_IDNO} - Liss a 
NAME (PREV). = NAME(THIS) 3 mars 

NAMECTHIS) = NAME(THIS, LINK) 3 
END} 

/* SET NEW PRIORITY, AND TEMP- “ C 

ORARILY UNLINK FROM QUEUE */ Prey ANCHOR a THIS 

THIS. PRTY = NEW_PRTY3 _ pADNO_PRTY IDNO__PATY IDNO_ PREY 

NAME (ANCHOR), NAME(PREVsLINK) = NAME (THIS «LINK) 3 

/* FIND PROPER PLACE TO RE~LINK IN a 

___ QUEUE ACCORDING TO PRIORITY */ LINK LINK LINK 
  

DO UNTIL PREV. PRTY <= NEW_PRTY AND NEWLPRTY <= THIS«PRTY; 

NANE(PREV) = NAME(THIS)3 
NAME(THIS) = NAME(THIS«LINK)3 | 

END} 
NAME (PREV, LINK) = NAME (ANCHOR) J 

NAME CANCHOR+LINK) = Name (THIS) 3 

 



  

USES OF STRUCTURES AND NAME VARIABLES 
  

TREE-STRUCTURED SYMBOL TABLE 

STRUCTURE TREE! 
1 SYMBOL CHARACTER(32), 

1 LESS NASE TREE-STRUCTURE, 
1 ‘GTR NAME TREE-STRUCTURES 

DECLARE TREE TREE-~STRUCTURE(100), 
NEW_SYMBOL CHARACTER(32), 
1 INTEGER INITIAL (0), 

WAS_LESS BOOLEAN 
DECLARE NAME TREE~STRUCTURE, 

ROOT INITIAL(NULL), OLDULEAF, THIS) 

NAME (THIS) = NAME(ROOT)s 
DO WHILE NAME(THIS) 7= NAMECNULL)3 

NAME (OLD_LEAF) = NAME (THIS) 3 
IF NEW_SYMBOL < THIS«SYMBOL 

  

  

  

    

  

"ALPHA! 

  

  

  

  NULL| NULL 
  

    
  

    
  

THEN DO; WAS_LESS = TRUE} NAME(THIS) = NAME(THIS,LESS); END; 
ELSE DO} WAS_LESS = FALSE, NAME(THIS) = NAME(THIS.GTR)3 END: 

END3 
1 = I41} SYMBOL, = NEW SYMBOL; 
NAME(LESS,), NAME(GTR,) = NAME(NULL) 3 
IF AME (ROOT) = NAME(NULL) THEN NAME(ROOT) = NAME(TREE,)3 
ELSE IF WAS_LESS THEN NAME(OLD_LEAF.LESS) = NAME(TREE,); 
ELSE NAME(OLD_LEAF,.GTR) = NAME (TREE 1) 3 

  

  

wot | rutn|   

  

pkULE { NULL | 
 



SUBSCRIPTING AND NAME VARIABLES 
  

© SUBSCRIPTING OF DEREFERENCED NAME VARIABLES IS ALLOWED 

E.G. DECLARE ARRAY(3) VECTOR, V, NV NAME INITIAL(NANE(V)), 

V1 53 = NVo 33 /* SAME AS V4 43 = Vo 433 */ 

© SUBSCRIPTING INSIDE A REFERENCE TO THE NANE PSEUDO-FUNCTION 

CAN ONLY APPEAR IN REFERENCE CONTEXT (NOT IN ASSIGNMENT CONTEXT), 

SUBSCRIPTING APPLIES TO THE VARIABLE BEING POINTED TO, 

E.G. DECLARE INTEGER 

A ARRAY(10), 

NA NANE ARRAY (10) INITIAL (NANE.(A)) , 

ONE RANE; /* WEIS RANE OF SCALAR #7 
NAME (NI) = HAVE (As), xafe d 
NAME(NT) = NAME(NAZ,)3 Ay 

  

  

  

  

    
NI 

  

    
  

 



  

COMPONENT SUBSCRIPTING INSIDE NANEC ) 
  

o ILLEGAL FOR BIT AND CHARACTER STRINGS = 12345 
E.G, DECLARE B BIT(16); — NAME(Bs) li | 

foe} > 

e MUST SELECT A SINGLE SCALAR FROM VECTORS AND 

MATRICES (ALSO SINGLE ELEMENT FROM ARRAYS) 

e.G, DECLARE M MATRIX; © 

— M 
NAME(M, 4) | [7 Led 

' M Coe 1,2 

NAME (My 1) 

  

    TMT       

  

      

  

  

Z| My 3 

? _——— 14 
  

   



STRUCTURE SUBSCRIPTING INSIDE NAME( ) 
  

IN ASSIGNMENT CONTEXT, OK ONLY IF NAMEC ) IS APPLIED 10 

A NAME VARIABLE IN A STRUCTURE WITH MULTIPLE COPIES - 

THEN IT SELECTS THE APPROPRIATE COPY OF THE NANE 

VARIABLE ITSELF! 
  

[E.G. | STRUCTURE S: 1 N NAME SCALAR; 
DECLARE S S~STRUCTURE(10) 5 
NAME(N, ,) = NAME(H, 54   
  

IN REFERENCE CONTEXT, ONLY ONE LAN 

~ NAME VARIABLE DEFINED IN A STRUCTURE WITH COPIES. 

SUBSCRIPTING IS EFFECTIVE ON THE NAME VARIABLE ITSELF, 

~ NAME VARIABLE POINTING TO A STRUCTURE WITH COPIES, 

SUBSCRIPTING IS EFFECTIVE ON THE VARIABLE BEING 

POINTED TO. 

STRUCTURE Si 1 N NAME-STRUCTURE(IO); ~~ ILLEGAL! : 

  

 


