
R-19

BASIC HAL/S PROGRAMMING

06/23/97

Craig Schulenberg

SPACE SHUTTLE SYSTEMS

LOCKHEED MARTIN

Space Information Systems

1812 Space Park Drive ’

P.O. Box 58487

Houston, TX 77258

w 06/23/97

BASIC HAL/S PROGRAMMING CLASS INFORMATION

Course Number:

Course Length:

Intended Audience:

Prerequisites:

Objectives:

Content:

Craig Schulenberg

OTPO8O

Three two-hour classes

HAL/S Programmers

Some programming skills, but not necessarily HAL/S

To provide an overview of the HAL/S language

Day 1)

Program structure, name scoping, data types, declares, arrays,

initialization, replace macros, subscripting, integer/scalar conver-

sions, expressions, assignments, conditionals and IF statements,

statement groups (e.g. DO, DO FOR), procedures and functions

Day 2)

Bit strings (initialization, subscripting, expressions, assignments,

comparisons), structures, raveling and unraveling, explicit conver-

sions

Day 3)

Data storage and access (e.g. #D, #P), RIGID, exclusive and reentrant

procedures and functions, CSECTs, stacks and stack frames, NAME

variables, real time statements

Lockheed Martin ernie

Space Shuttle Systems 1

BLOCKS

COMPOOL WAYS. SEP ' COnPOOL ALWAYS SEPARATE COMPILATION UNITS

PROCEDURE “NAY BE SEPARATE COMPILATION UNITS (COHSUBS) --
FUNCTION OR NESTED IN A PROGRAM, OR FUNCTION

f task ALWAYS INTERNAL BLOCKS -- WILL BE DISCUSSED
UPDATE LATER

COMPOOLS CONTAIN ONLY DATA (POSSIBLY REPLACE STATEMENTS).

PROGRAMS ARE "SCHEDULED" AS PROCESSES VIA THE OPERATING SYSTEM.

PROCEDURES ARE "CALLED". :

FUNCTIONS ARE "INVOKED"

'-\

FORMATS

Cl: COMPOOL, Pl: PROGRAM

DECLARES . DECLARES

CLOSE C13 po------ +
NESTED BLOCKS

. CLOSE Pl;
[1: PROCEDURE (A, B) ASSIGN(C)s

PARANETER \ ASSIGN PARAMETER

DECLARES INPUT PARAMETERS

DECLARES

NESTED |
i 1_ BLOCKS

CLOSE 11;

1-3

“12s

FORMATS (Cou T,) -

FUNCTION (A)_HATRIX;
PARAMETER ~ TNX y
DECLARES INPUT

7 PARAMETER

DECLARES

NESTED.
BLOCKS

RETURN MAT;
CLOSE 123

NOTE: FUNCTIONS HAVE NO ASSIGN PARAMETERS, BUT MUST HAVE A RETURN
STATEMENT,

1-4

“FORMATS (CON’T,)

COMPOOL

USED VIA REFERENCES TO DATA

PROGRAM

SCHEDULE P1 PRIORITY (100) ;

PROCEDURE

CALL 11(X, Y) ASSIGN(Z)5

i
INPUT ASSIGN

ARGUMENTS ARGUMENT

FUNCTION -

FUNCTION NAME

MATB = 12(S);

INPUT. .
ARGUMENT

PROGRAM COMPLEX

CONPOOLS
: Pl: PROGRAM;

a} |e DECLARE As
Tl: PROCEDURE;

DECLARE By
CLOSE 11)
12: PROCEDUREs

DECLARE C3
CLOSE 123

CONSUBS
fd R2

PROGRAM
I cone

yr /) if

1-5. NESTED PROCEDURES/FUNCTIONS CLOSE Pls

TEMPLATES

COMPOOL:

Cl: COMPOOL;
DECLARE A, B;
DECLARE C MATRIX;
CLOSE C1;

 CONPOOL TEMPLATE:
COMPILER

Cl: EXTERNAL COMPOOL;
DECLARE A, Bs
DECLARE C MATRIX; *
CLOSE C1;

D VERSION 3

A COMPOOL TEMPLATE IS TEXT THAT IS VIRTUALLY IDENTICAL
TO THE COMPOOL SOURCE ITSELF -- EXCEPT THAT KEYWORD “EXTERNAL”
IS ADDED, IN ADDITION, THE COMPILER GENERATES A VERSION NUMBER
ON AN APPENDED "1)” (DIRECTIVE) CARD,

TEMPLATES (CON’T.)

PROGRAM:

PROGRAM

Pl: PROGRAM;
DECLARE Ry

1: PROCEDURE;

CLOSE 11)
 ee

CODE

CLOSE Pl)

TEMPLATE:

Pl: EXTERNAL PROGRAM;

COMPILER

CLOSE Pls
D VERSION 1

TEMPLATES (CON’T,)

PROCEDURE (COMSUB) :

Rl: PROCEDURE(A) ASSIGN(B)
DECLARE A SCALAR;
DECLARE B MATRIX;
me seis seems eters

1 OTHER
|_DECLARATIONS -

 ” CLOSE’ R1;

 COMPILER y

Rl: EXTERNAL PROCEDURE(A) ASSIGN(B);
DECLARE A SCALAR;
DECLARE B MATRIX;
CLOSE R15

D__VERSION 7

I~]

@--—-.—
PROGRAN
SOURCE

|
|
|
|
|

pO ' 4

; | consus || || conPooL | |.
: | source |: 1|{ Source | 1

iil gh
dE im |! IReey Ive

| {COMPILER | | | |_COMPILER }- | .

Le } Lo

SYMBOLIC

Ey
me HAL

OMPILER

TEMPLATE
* LIBRARY

| b Soe im 4 \ Ave ° DF
Ti taaed

 Neenah)
Leanne

LINK
EDITOR
 OBJECT

MODULE =p
LIBRARY

<=> SYMBOLIC DATA
-——t OBJECT DATA

HAL COMPILATION SYSTEM

 > LOAD
MODULE

1
f

Ile

. TEMPLATES (CON’T.)

TEMPLATES ARE “INCLUDED” VIA A COMPILER "D” (DIRECTIVE) CARD,
E.G.,

col 1
D INCLUDE-TEMPLATE ¢1 {NoLIsT}

RULE: FOR ALL COMPOOLS, COMSUBS, AND PROGRAMS REFERENCED BY A
~~ COMPILATION UN'T, A TEMPLATE MUST BE INCLUDED.

RULE: ALL. INCLUDED TEMPLATES MUST PRECEDE THE FIRST LINE
"OF THE COMPILATION UNIT BEING COMPILED,

Ie af

"SAMPLE. PROGRAM

coh 2
~~ me me ml) INCLUDE TEMPLATE C1 NOLIST

——-+D INCLUDE TEMPLATE R1 NOLIST
rro->D INCLUDE TEMPLATE PL NOLIST
1 -P2s_ PROGRAMS

DECLARE MATRIX, @, Ry Ss
DECLARE Xs Vo 2s __

Tit: PROCEDURECV) ASSIGH(H)s
DECLARE V, Ws !

tee
I
|
i
i

CLOSE [13

— =z — (OTHER INTERHAL BLOCKS) __|
PROGRAM

‘~— = SCHEDULE Pl PRIORITY (40);
ee

em

te
ot

emi
t o
m

ai
se

me

COMSUB

~ “CALE'RL(X) ASSIGN(S)
eee

COMPOOL VARIABLE

one

CLOSE P2;

{7

SOURCE

QODAP+POOL REVISION 7 , eeeeee
OODAP+POOL: CONPOOL: : 890004
DECLARE PRINT¢DFCS€DATA INTEGER SINGLE INITIALCO); 606082
DECLARE JSLECT¢PRINTFL BOOLEAN INITIALCOFF, 896002

860003
eeeen4

ehtok FROM ENGINE¢PRETHRUST¢TRIM, OMS¢ENGECHD, DELTAFOMEGACOMS+ENGINE, 200005.
ENGINE¢CG+CMD tk hk GH0G06:

890007
DECLARE VECTORC3) SINGLE INITIALCS. 3,6,.3), eoneos
OMS1¢CG, OMS2+CGs ¢* VEH COORDS, OMS TO CG */ eoeaas
DECLARE LBN¢TOCKG CONSTANTC4. 72. 2046); eeBoe9
DECLARE G¢TOtNTRS+¢PERtSECtSA CONSTANT 9. 8066); 666609
DECLARE LBFtTO¢N CONSTANTCLEM*TOCKG GETOENTRS+PERESECESO D5 eagnns
DECLARE VEHICLE4¢CG VECTOR SINGLE INITIAL(9. 9974, -. G85,. 6858); egoga9
DECLARE VEHICLE¢MASS INITIAL(122470); 860609
DECLARE ARRAYC 44) BOOLEAN INITIALC OFF), JERIL, JONLST: , G00ag9
DECLARE VEHICLE¢INVERSE¢INERTIA MATRIXC3,3) SINGLE; seoe16
DECLARE VEHICLE¢INERTIA MATRIX SINGLE BOGO11

INITIALCL956182, » 4867. 454, ~-216930. 9.4067, 454, 7424747. , e0G011
“1353. 818, -246930. 8, 1355, 818,.7721383. 9) OG0G414
DECLARE RAD¢TOCDEG SCALAR SINGLE CONSTANT(57. 2957795); aenat2
DECLARE DEG+TO¢RAD: SCALAR SINGLE CONSTANTC. 0174532925); 808013
DECLARE PI SCALAR DOUBLE CONSTANTC3. 141592654); 66806144
DECLARE THOtPI SCALAR DOUBLE CONSTANTC2. PL: 9900144:
DECLARE THR SCALAR SINGLE CONSTANT(26689. 2); 980015.
DECLARE FTtTOtH CONSTANTC. 3649); 689645
DECLARE IN¢TOeM CONSTANTCFT¢TOENZ4A2. >) 800645.

S
A
R
K

R
R
M

R
A
V
E
R

A
A
V
R
R
R
E

T
A
R
T

R
A
O
N
O
G

SOURCE (CON'T.)

eaeh FROM MSEC bbbe

DECLARE BARBEQUE#RATE SCALAR SINOLE INITIALC2, DEG*TOFRAD Ds

DECLARE BOCLEAN INITIALCON), RCS+ROTATION,

ATT¢MNYR, RCSETRANSLATION, ROSETRANS+AUTO*MANUAL

OFCERESTART, RCS*ROTeRUTOSNANUAL, TVC+RUTOSMANUAL,

CLOSED+OPENtLOOP+TRIM, ACCLFS*#NEEDED:
DECLARE BOOLEAN INITIALCOFF 2, THOFAXIS, THREEFAXIS

LOLEVERTEATT, PAYLOGSUP4CMDS, TRACKING, BBQ, ONS+FAILEDETECT,

OMS4¢ON*CHD, OMS2¢ONECND, ONS#PRETHRUST
OMSAEFAIL, OMS2EFAIL;

DECLARE ARRAYC2) BOOLEAN INITIALCOFF),OMS¢ARMtREG, OMS#ONeREQs

DECLARE VECTOR SINGLE INITIALC BD, POINTINGtVECTORECHD.

POSITION, VELNCITY, BODY+POINTING¢VECTOR)

DECLARE ELF SCALAR SINGLE CONSTANT(14, DEG+tTOFRAD >)

DECLARE COSELF SCALAR SINGLE CONSTANTCCOSCELF))s

DECLARE SINELF SCALAR SINGLE CONSTANTCSINCELF >);

DECLARE BODY+TOCNB MATRIX SINGLE CONSTANTCCOSELF, 0. ,SINELF,
@.,4..8,,~SINELF, @. , COSELF >)

DECLARE NATRIX SINGLE, NB¢TOCSM, NBETOFOR:

DECLARE SCALAR SINGLE INITIAL(8), SINOGA, SINMGA, COSOGA, COSHGA)

DECLARE ARRAYC3) SCALAR SINGLE INITIAL(A), GAEDESIRED,

AUTO*OA+DESIRED, GA+MANEUVER+TERMINAL)

DECLARE NEWORD1 BITCL6) INITIALC BIN 70111086800111000 * >;

DECLARE HEWORD2 BITC46) INITIALCBIN’80004111000000114 7);

DECLARE WENORDZ BITC46) INITIALCB1N/9901011001008111 7):

DECLARE ROT#OPTION¢ACK ARRAYC3) INTEGER INITIALC Od;

DECLARE TRANS¢OPTIONCACK ARRAVCZ) BITCL) INITIALC OFF):

DECLARE VECTOR SINGLE, OMEGAEC:

CLOSE OODAP+POOL:

890847

886018
800019
980028
goaeet
860822
840923
8uG024
e0be25
Onoe26
808027

608628
eoeg29
goeor9
BbGO31
HeBer2
8000323
O60034
890635
600036
880037
980038
660039
8e6546

a00044
8a0042
860843
eg0g44
800045
e08046
oo004d7

SYMBOLS
MACROSI2ZE

LITSTRINGS
COMPUNIT
XREFSIZE
CARDTYPE

LABELSIZE

HAL?S COMPILATION
SRN STMT

eosces Ct
BAL/S COMPILATION
SRN STHT

6ageot 4
e0gnes 4
eogc02 2 Mt
200802 3 Mt
800683 ct
ooGHad et
908605 ct
988006 ct
800067 ct
G68608 4 Mt
600008 4 Nt
8006009 3 Nt
600069 6 Nt
200809 7? Mt
9g0609 @ Mt
806089 a Mt
800009 48 Nt
enoces 48 Mt
860610 4i Mt
800811 412 Mt
800841 42 Mt
866612 43 Mt
§@0013 44 Mt
803044 45 Mt
oo00i14 46 Nt
8030135 1? Ht
90815 ig Mt
900615 49 Nt

hay

OUTPUT WRITER LISTING
= 208
= 300
= 2008

8
2608

u
e
s

4298

INTERMETRICS, Puce
SOURCE

OODAP+POOL REVISION 7
INTERMETRICS, Inc...

SOURCE
Mt GCODAP+POOL:
Mt COMPOOL)

DECLARE PRINTeDFCS#DATA INTEGER SINGLE INITIALCO);
DECLARE JSLECT¢PRINTFL BOOLEAN INITIALCOFE);

#hee FROM ENGINE ¢PRETHRUST¢TRIM, OHSENQECHD, DEL TAFOMEGAEOMS ENGINE, ENGINE+CG¢CHD #400

DECLARE VECTOR(3> SINGLE INITIALCS. 3, 8, . 23>,
OMS4+CQ, ONS2¢CG;

DECLARE LBM¢TO*KG CONSTANTC4. ¢ 2, 2046);
DECLARE G+TOCHTRS+PER+SEC+SQ CONSTANTCS, 8966);
DECLARE LBF¢TOeN CONSTANTCLEM+TOEKG GtTOCNTRS+PERESECESQ): DECLARE VEHICLE+CO VECTOR SINGLE INITIALCS. 9974, ~, 85, DECLARE VEHICLE¢MASS INITIAL(122470)1
DECLARE ARRAVC44) BOOLEAN INITIALCOFF),

JFAIL, JONLST:
DECLARE VEHIOLECINVERSECINERTIA HATRIXC3, 3) SINGLE DECLARE VEHICLECINERTIA MATRIX SINGLE INITIALC£056182., 4 71355. 818, ~246930.9, ~1255. 818, 7724383.);
DECLARE RADETO*DEG SCALAR SINGLE CONSTANT(57, 2957798); DECLARE DEG¢TO+RAD SCALAR SINGLE CONSTANTC, 0174532925 9) DECLARE PI SCALAR DOUBLE CONSTANTC3. 141592654)
DECLARE THO*PL SCALAR DOUBLE cONSTANTC2. PI);
DECLARE THR SCALAR SINGLE CONSTANT(26689. 2);
DECLARE FT¢TOeM CONSTANTC. 20483;
DECLARE IN¢TO+M CONSTANTCFTeTOeN ¢ 42, 93

6858);

OCTOBEF

OCTOBE!

867, 454, ~216938. 9, ,

4067, 454, 7424747, ,

by

COMPILATION TEMPLATES (COMPOOL)

aaQ0DAPP
OODAP¢POOL: EXTERNAL COMPOOL 5 DECLARE PRINT#¢DFCS¢DATA INTEGER SINGLE I
NITIAL € @ >} DECLARE JSLECTEPRINTFL BOOLEAN INITIAL € OFF 9 5 DECLARE
VECTOR (3 > SINGLE INITIAL (9.3, @. .3 >, OMS44CQ , ONS24CG s DEC

LARE LBM¢TO*KG CONSTANT ¢€ 4. 7 2.2046 > + DECLARE GeTOCMTRS¢PERtSECESO
CONSTANT € 9,8@66 > + DECLARE LBF¢TOeN CONSTANT (€ LBM¢TOeKG GeTO+NTRS+P
ER¢SEC4SQ > + DECLARE VEHICLE¢CQ VECTOP SINGLE INITIAL ¢€ 9.9974, = .6@
S , .6858 } 3 DECLARE VEHICLE¢MASS INITIAL ¢€ 422476) 7 DECLARE ARRAY ¢
44) BOOLEAN INITIAL -<¢ OFF 2. JFAIL « JONLST + DECLARE VEHICLE¢INVERS

E¢INERTIA MATRIX (3, 3 > SINGLE + DECLARE VEHICLE+INERTIA MATRIX SING
LE INITIAL ¢€ 1056282, , 4867.454 . - 216938.9 , 4067.434 , 7421747. 4 -
1355,818 , = 216930,9 , ~ 4255. 848 . 7721383. > 1 DECLARE RADETO+DEG §

CALAR SINGLE CONSTANT ¢€ 57. 25957795 > + DECLARE DEG+TO4¢RAD SCALAR SINGLE
CONSTANT € . 0474332925 >) + DECLARE PI SCALAR DOUBLE CONSTANT (3.141459

2654) 3 DECLARE THOCPI SCALAR DOUBLE CONSTANT ¢ 2. PI > 4 DECLARE THR
SCALAR SINGLE CONSTANT ¢€ 26669.2 > 5 DECLARE FY+¢TO¢N CONSTANT ¢ . 3048 >

» DECLARE IN¢TO+M CONSTANT (FT¢TO#N 7 12. 9 5 DECLARE BARBEQUE+RATE $
CALAR SINGLE INITIAL ¢€ 2. GEG+TO+RAD > 3 DECLARE BOOLEAN INITIAL ¢€ ON >

» RCS#ROTATION . ATTEMNVR , RCSETRANSLATION , ROS+TRANS¢AUTOCNANUAL ,
OFC+CRESTART . RCS#ROTEAUTOCMANUAL » TYCHAUTOFMANUAL » CLOSED+OPEN¢L DOPE
TRIM . ACCLFS¢NEEDED 3» DECLARE BOOLEAN INITIAL (OFF >, THOCRKIS , THR
EECAXES » LELEVERTCATT » PAVLD*#SUPECNDS . TRACKING » BBO , OMS#FAILEDET
ECT , QNSA+ON+CHD , ONS2eON¢CMD , ONS*PRETHRUST , OMSA+FAIL » OMS24FAIL

3 DECLARE ARRAY (2 > BOOLEAN INITIAL ¢ OFF > » GNS#ARMN+REG . ONStONER
EG 5 DECLARE VECTOR SINGLE INITIAL € @ >» POINTINGtVECTORECHD . POSIT!
ON » VELOCITY , BODY+POINTINGEYVECTOR » DECLARE ELF SCALAR SINGLE CONSTA
NT ¢€ 44. DEG+TO*RAD > + DECLARE COSELF SCALAR SINGLE CONSTANT ¢ COS ¢ E.
LF > 25 DECLARE SINELF SCALAR SINGLE CONSTANT ¢ SIN € ELF > > 3 DECLAR
E BODV¢TOENB MATRIX SINGLE CONSTANT € COSELF . @ . SINELF, 6, 4. ;
@. » ~ SINELF . 9. . COSELF > 5 DECLARE NATRIX SINGLE , NBCTO*SN , NECT

Gear ; DECLARE SCALAR SINGLE INITIAL ¢(6 >). SINOGA , SINMGA , COSOGA ,
COSNGA 1 DECLARE ARRAY ¢ 3 > SCALAR SINGLE INITIAL (@ >, GAFDESIRED

» RUTOCGAEDESTRED , GREMANEUVER+TERMINAL 5 DECLARE NEWORDi BIT (16 2 Tf
NITIAL ¢ BIN °8411900000411000") 3 DECLARE NENORD2 BIT ¢ 46) INITIAL
C BIN 7@080411000080211° > + DECLARE NEWORDS BIT ¢ 16 > INITIAL ¢ BIN ¢
0001011001060114~° 5 5 DECLARE ROT¢OPTIOHeACK ARRAY € 32) INTEGER INITIA
L ¢ ® > 5 DECLARE TRANS¢OPTION+ACK ARRAY € 3 > BIT ¢ 4 > INITIAL ¢ OFF
} + DECLARE VECTOR SINGLE » OMEGAtC » .
CLOSE 3: 1

D VERSION : apn
PROGRAM)

AGOFCREC
OFCeRECON: EXTERNAL PROGRAM }
CLOSE } :

“AMG

COMPILATION TEMPLATES (COMSUBS)

@GECLITOG
ECITOGEO: EXTERNAL PROCEDURE (T. R
Mo. AZIM > 5 DECLARE T SCALAR DOUBLE
LAT , LONG . VMAG » GAMM . AZIM»
CLOSE 3

D VERSION :4

» ¥V >) ASSIGN CH, LAT, LONG , YNAG , GAM
» R VECTOR DOUBLE . V VECTOR DOUBLE. HH.

QQ ReTAT.
ROTATE: EXTERNAL FUNCTION ¢ RZERO ,
LE , DLONG s DECLARE VECTAR DOUBLE ,
CLOSE 3

D VERSIUN :4

DLoNa > VECTOR DOUBLE :
RZERO ;

DECLARE SCALAR DoUP

COMPOOLS

COMSUBS
(PROCEDURE/
FUNCTION)

PROGRAMS

PROGRAM COMPLEX

C1 (2 (3

R1 R2 R3

Pl P2 P3

‘Cn

Rrn

 Pr

"SHARED DATA

POOLS”

"EXTERNAL

SUBROUTINES”

"PROCESSES"

EACH OF THESE REPRESENT SEPARATE COMPILATION UNITS AND WILL PRODUCE
TEMPLATES.

WV

COMPILATION ORDER

COMPOOL

C3

COMPOOL
2

COMSUB

R3
COMSUB

R1

COMSUB
Ra,

PROGRAM
Pl

COMSUB
R5

PROGRAM
P3

A CORRECT ORDER:

Cl C3 C2 RL R2 AB RY RS Pl P2 P3 PY PS

NAME-SCOPE

DEFINITION: THE NAME-SCOPE OF A BLOCK IS THE REGION WITHIN WHICH DATA

DECLARED IN THE BLOCK IS VISIBLE, THE NAME-SCOPE ENCOMPASSES

THE ENTIRE CONTENTS OF THE BLOCK INCLUDING ALL BLOCKS NESTED

WITHIN IT.

RULES

(1) A NAME DEFINED IN A NAME-SCOPE IS KNOWN, AND THEREFORE ABLE TO BE REFERENCED,

THROUGHOUT. THAT NAME-SCOPE, INCLUDING ALL NESTED BLOCKS NOT REDEFINING IT,

A NAME DEFINED IN A NAME-SCOPE IS NOT KNOWN OUTSIDE THAT NANE-SCOPE. .

(2) ALL COMPOOL DATA IS CONSIDERED TO BE DEFINED IN ONE NAME-SCOPE WHICH
-ENCLOSES THE OUTERMOST CODE BLOCK OF THE COMPILATION UNIT.

ALSO,

THE NAME OF A CODE BLOCK IS CONSIDERED TO BELONG TO THE NAME-SCOPE IMMEDIATELY
ENCLOSING THE BLOCK,

I-\4

OUTER

NAME

SCOPE"

\- a0

HAME-SCOPE (CON'T.)

EXAMPLE:

ALPHA: PROGRAM;

DECLARE X; X KNOWN EVERYWHERE

DECLARE Ys} +——m—-——————_ ¥ KNOWN EVERYWHERE EXCEPT BETA

BETA: PROCEDURE; «———-—— nea 1 KNOWN EVERYWHERE

DECLARE Ys - NEW Y 18 KNOKN-IN BETA ONLY!
inner | DECLARE Z3 <7 1s. KNOWN IN HETA ONLY
NAME ‘

SCOPE '

CLOSE BETA;

DELTA Y = 0; DELTA NOT KNOWN IN BETA

CALE BETA) CLOSE ALPHA;

{-

NAME-SCOPE (CON’T.)

WHY IS BETA CONSIDERED TO BE IN THE NAME-SCOPE OF ALPHA?

BECAUSE IF IT WERE OTHERWISE

TALPHA: PROGRAM ;
DECLARE Xs
DECLARE Ys

" PROCEDURE;

CLOSE BETA;

CALL BETA3; «~~~ ILLEGAL -- NAME BETA IS NOT VISIBLE!!

CLOSE ALPHAs

aX

NAME-SCOPE (CON'T,)

VISUALIZE IT THIS WAY. sseaees

COMPOOL DATA

PROGRAM DATA
ALPHA’

PROCEBURE DATA
BETA:

MAL
—_

OMEGA:

|

OUTERMOST NAME-SCOPE

ae

“NAME-SCOPE (CON’T,)

ALL RECURSION IS ILLEGAL IN HAL/S. OBVIOUS RECURSION IS DETECTED

AT COMPILATION TIME, DEVIQUS RECURSION IS DETEETED BY HALLINK OR

AP-101 LINKAGE EDITOR DURING STACK CALCULATION,

EXAMPLE:

Q: PROCEDURE

CALL Q3 RECURSIVE CALL (DETECTED BY COMPILER)

CLOSE Qs
t
‘

Is AN

NAME-SCOPE (CON’T.)

FURTHER COMMENTS:

(1)

(2)

(3)

(4)

AS A GENERAL RULE, DATA MUST BE DECLARED (DEFINED) BEFORE

IT CAN BE USED,

BLOCKS CAN BE CALLED FROM A POINT PRIOR TO THEIR DEFINITION,
BUT WE RECOMMEND ALWAYS DEFINING A BLOCK BEFORE USING IT.

BLOCK LABELS MUST BE UNIQUE THROUGHOUT A UNIT OF COMPILATION,

AS AN EXCEPTION TO THE NAME-SCOPE RULES, STATEMENT LABELS

ARE NOT VISIBLE WITHIN BLOCKS NESTED IN SCOPE WHERE LABEL

1S DEFINED,

WS

NAME-SCOPE (CON’T.)

THIS IS LEGAL,

CALL 9;

Q: PROCEDURE.
'
a
'

CLOSE Q;

BUT WE PREFER,
1‘
1

Q: PROCEDURE;

CLOSE 95

CALL 9;

NAME=SCOPE (CON‘T,)

WHY (2)

(1) UNLIKE HAL/S, MANY LANGUAGES DO NOT ALLOW FORWARD
REFERENCES,

(2) A FORWARD REFERENCE USES UPA SYMBOL. TABLE ENTRY.

(3) FORWARD REFERENCES TO FUNCTIONS REQUIRE AN ADDITIONAL
DECLARE:

DECLARE F FUNCTION SCALAR;

§ = F(X);

F: FUNCTION(ARG) SCALAR;

CLOSE F;

‘NAME=SCOPE (CON’T.)

Q: WHY THE SPECIAL RULE FOR STATEMENT LABELS?

A: SO ONE CANNOT USE "GO TO” T) EXIT A BLOCK,

EXAMPLE

F: FUNCTION SCALAR;

DECLAPE Us

G0 TX

RETURN Us

CLOSE Fs

I UE]

A.

C.

HAL/S PRIMITIVES
3 MAJOR CLASSES

RESERVED WORDS (NAMES NITH SPECIAL MEANING TO THE COMPILER)
(1) KEYWORDS

exampLes: ‘IF, ELSE, GO, TO, VECTOR, TASK, IN, LOCK,
TRUE, READ... .

(2) %-MACRO NAMES
"EXAMPLES: COPY, ZSVC, %NAMECOPY

(3) BUILT-IN FUNCTION NAMES
EXAMPLES: ABS, SIGH, COS, LOG, UNIT, DET, RANDOM,

TRIM, SHR, XOR
IDENTIFIERS (NAMES INVENTED BY THE PROGRAMMER) -- LABELS AND
VARIABLES
EXAMPLES:

[ALPHA]: PROGRAM;
DECLARE @) SCALAR;
REPLACE (D) BY "6",

LITERALS (THINGS THAT EXPRESS THEIR QKN VALUED
-EXAMPLES: 6 4,95E3 ‘ABC!

pr ok

A.

B.

- PRIMITIVES (CON'T,)

RESERVED WORDS -
SEE APPENDICES B, C, AND 1 OF LANGUAGE SPECIFICATION.

IDENTIFIERS -
RULES:

(1) MUST HOT CONFLICT WITH RESERVED WORDS! !
(2) MUST BE 32 CHARACTERS OR LESS
(3) FIRST CHARACTER MUST BE AZ
(4) BREAK CHARACTER '_* (UNDERSCORE) MAY BE USED -- BUT MUST

NOT BE FIRST OR LAST CHARACTER. .
(5) ONLY ALPHANUMERIC CHARACTERS APE LEGAL.

EXAMPLES:

LEGAL ILLEGAL

STATE_VECTOR 3xY

174X203 PTL

B_LA_CYAL VECTOR_

R VECTOR

W

A#B

IR-95-17 HAL/S-FC Compiler System Specification 12/01/95

ink
DIAN

Errors Detected:

Error # Cause
Fixup li Argument outside range: Return |

IXle*250
12 Argument too near a Return maximum Singularity of the positive floating

tangent function point number
Comments:

Error gets very large near a singularity, before error #12 is sent.

The value used in the routine for x*250 is hex’4DC90FDA’ = 3.53711870600810E+15.
Registers Unsafe Across Call: FO,F 1,F2,F3,F4,F5.

Algorithm:

Multiply X by 4 , and give the characteristic of this to X*0000000000000008" for use as
a comparand to determine heamess to a singularity.
The integer part of eS is the octant.

If the octant is even, let w = fraction part of IxI* 4 Gc 5
If the octant is odd, let w= -(1 -fraction) part of IXl* <

Next, compute two polynomials P(w) and Q(w).

If w > 2-6, then the forms of the polynomials are:
Pw) = w(aq + aw? + a,w4 + we)
Q(w) = by + byw? + byw4 + b,ws

If w < 2-6, then withu=w if [XI* <a, and u = -w otherwise.

P(w) = w(ay + u)

Qtw) = by + bu

where the values of the constants are:

@p = X'CS8AFDD0A41992D4" = -569309.04006345
a; = X°44AFFA6393159226" = 45050.3889630777
az = X'C325FD4A87357CAF’ = -607.8306953515
bp = X’CSBOF82C871A3B68" = -724866.7829840012
b, = X'4532644B1E45A133’ = 206404.6948906228
bz = X’C41926DBBBIF469B’ = -6438.8583240077

5-129

C.

‘ PRIMITIVES (CON’T,)

LITERALS -

ARITHMETIC

(NO DISTINCTION MADE BETWEEN INTEGERS AND SCALARS) .

EXAMPLES:

+6 ~80,5E-6

9 B30

3,0 ~GH-4

-3,14159 3106245

GENERIC FORM:

tdddd.dddd<exponents>

SIGNS AND DECIMAL POINT OPTIONAL

B ~ POWER OF 2

E ~ POWER OF 10

H ~ POWER OF 16

~ 7

PRIMITIVES (CON'T.)

C. LITERALS -
CHARACTER

TWO FORMS:

"CCCCCCCC «4, C’
: OR

CHAR <repetition> "CCC ,,, CC!
ae

OPTIONAL

EXAMPLES i

_ NULL STRING "
ABC "ABC!

CHAR’ ABC’
ABCABC "ABCABC'

CHAR(2) ‘ABC!
ISN'T "ISN'T!

-Qaaaaa CHAR(6)'Q!
"gagaga’

NOTE: IF A SINGLE QUOTE IS DESIRED IN THE CHARACTER STRING, USE 2!

ALSO, CHARACTERS DO NOT HAVE TO BE ALPHANUMERIC NECESSARILY;

i, a, Save

{~ 32

C,

PRIMITIVES (CON‘T.)

LITERALS -

BOOLEAN

TRUE =ON =BIN'1’

FALSE = OFF = BIN’O’

BIT

TRUE = ON = BIN’000.., 01’

FALSE = OFF = BIN’000 ... 00"

BIN <repetition>'bbbb’ b = BINARY DIGIT

OCT <repatition>'oocd' o ™ OCTAL DIGIT

HEX <repetition>thhhh! ho = HEX DIGIT

DEC <repetition> 'dddd' 6 ™ DECIMAL DIGIT

<repetition> = {n)} OPTIONAL

EXAMPLES:

BIN'10110' ~~~ 101105

BIN(4)'101’ ———» 1011011011015

DEC(3)'9' > 99949

HEX(7)'F! 0 > FFFFFFF 15

OCT'2037" +2037

SOURCE FORMAT

(ORIENTED TOWARD {BM)

GENERALLY,

Coll 2 72 73-78
ff 1 tor , HAL/S TEXT | [sen]...

COL1 =~ BLANK
2-72 -- HAL/S STATEMENT

73-78 -- STATEMENT REFERENCE NUMBER (SRN)
79 ~~ DEFINED FOR USE AT IBM/HOUSTON

THERE ARE 2 SPECIAL TYPES OF EXCEPTIONS:
(1) COMMENT CARDS

cor 1 COLS 2-80 ARBITRARY
. © THIS IS A COMMENT ,,..

(2) COMPILER DIRECTIVE CARDS
Col, 1

) INCLUDE TEMPLATE ALPHA ..,

(FOR OTHER "D" CARDS, SEE USER’S GUIDE)

I> B\};

(1)

(2)

(3)

(4)

~ SOURCE FORMAT (CON‘T,)

NOTE: IF CARD NUMBERS (SRNs) ARE PRESENT, OPTIONS ‘SDL’
OR SRN’ MUST BE SPECIFIED TO THE COMPILER -- OTHER-
WISE, THE COMPILER WILL GO ONT TO COL. 80 LOOKING FOR
TEXT, :

ALTHOUGH THE STREAM-ORIENTED ASPECT OF THE HAL/S SCANNER ALLOWS
MULTIPLE STATEMENTS ON ONE CARD, THIS IS NOT GENERALLY RECOMMENDED.
IN FACT, SINCE AN "IF .., THEN” CONSTRUCTION IS CONSIDERED TO
BE 2 SEPARATE STATEMENTS, THINGS GET SLIGHTLY COMPLICATED,

TT IS QUITE PERMISSABLE, ON THE OTHER HAND, TO EXTEND A SINGLE

STATEMENT ACROSS MANY CARDS.

ENDS OF STATEMENTS ARE INDICATED BY A SEMICOLON (;),

SOURCE FORMAT (CON'T,)

DO THIS:
2 73
Y Y
A= 2; 003100
B= 3; 903105

NOT THIS:
A=2;B=3; 003100

THIS IS OK:

i
A=Q+R+S+SINCT) — 004000

tUtV Ws 004005
AS LONG AS YOU DO NOT BREAK UP IDENTIFIERS AND RESERVED WORDS
THIS IS NOT:

A = CGIK_QVECTOR_ 005000
FINAL + 6; 005005

ALSO, (MORE ON THIS LATER)

WE PREFER : TO:

A, B, C = 03 A=0; B=0; C=0;

PROGRAM BLOCK

EXAMPLE:

THIS IDENTIFIER IS REQUIRED!

ALPHA: PROGRAM;

"DECLARES

NESTED CONSIDERED AN
EXECUTIO BLOCKS

FLOW EXECUTABLE

N STATEMENT

; PROGRAM
/ CODE

ZL

LOSE ALPHA;

OPTIONAL ~~ BUT IF PRESENT MUST MATCH

LABEL ON PROGRAM DECLARATION,

| NOTE: A PROGRAM CAN BE EXITED BY A “RETURN” STATEMENT -~

BUT NORMALLY THIS IS...

PROGRAM BLOCK (CON'T,)

vee ACCOMPLISHED BY HITTING THE “CLOSE” STATEMENT,

ALSO, A "CLOSE" STATEMENT CAN HAVE A LABEL CAND CAN BE JUMPED To
VIA A "GO TO” STATEMENT)

"EXAMPLE

wwe EXIT VIA RETURN

a
e

IF A = 0 THEN RETURN;

IF A = 2 THEN

DO;

Be B+; EXIT VIA JUMP TO CLOSE!

GO TO EXEUNT;
END; |

B= SIN(C) + PI; . | EXIT BY FALLING
EXEUNT: CLOSE ALPHA; INTO “CLOSE”

HAL/S DATA TYPES AND ORGANIZATIONS

TYPES ORGANIZATIONS

ARITHMETIC STRING | | ARRAY** STRUCTURE ***

| .

SCALAR -| CHARACTER® | LL ywprvipual ARRAY**
| TYPES

- BIT* | COMBINATION ITEG
INTEGER (BOOLEAN) I “—— OF TYPES

|
VECTOR® SPECIAL | - COMPONENT SUBSCRIPTING

| ** _ ARRAY SUBSCRIPTING
EVENT *** _ STRUCTURE SUBSCRIPTING

MATRIX*
|

|_| PROCESS
EVENT |

|

\~Sb €

DECLARES (CON’T,)

FOR THE TIME BEING WE WILL RESTRICT ATTENTION TO THE FOLLOKING
DATA TYPES:

ARITHMETIC STRING

INTEGER CHARACTER

SCALAR , BOOLEAN

VECTOR

MATRIX

AS FOR DATA ORGANIZATIONS, ONLY ARRAYS WILL BE CONSIDERED NOW,.

A. INTEGERS

© ESSENTIALLY FIXED-POINT “WHOLE” NUMBERS (SIGNED)

o TWO CHOICES OF PRECISION

360 FC

SINGLE 2 BYTES 1 HALFHORD

DOUBLE 4 BYTES (j HALF HORDS
1 FULLWORD

at

DECLARES

(1) ALL DATA MUST BE DECLARED BEFORE IT CAN BE USED -- HAL/S HAS NO IMPLICIT

DECLARATIONS.

(2) DATA IS DECLARED WITHIN A DECLARE GROUP WHICH FOLLOWS THE COMPOOL,

PROGRAM, ETC; HEADER AND PRECEDES THE FIRST REAL EXECUTABLE STATEMENT,

NOTE (1): WITHIN A DECLARE GROUP, PARAMETERS SHOULD BE DECLARED FIRST.

NOTE (2): IT IS ALSO GOOD PROGRAMMING PRACTICE TO PLACE DATA DECLARED

WITH THE GONSTANT ATTRIBUTE BEFORE OTHER DATA (THIS WILL BE

DISCUSSED: LATER UNDER THE SUBJECT OF COMPILE-TIME COMPUTA-

TIONS).

DECLARES (CON’T.)

RANGES :

SINGLE -32,768 <4 < 32,767
DOUBLE :

-2,147,483,648 <4°< 2,147,483, 647

USAGE:

SINGLE PRECISION INTEGERS ARE GENERALLY USED FOR LOOP VARIABLES.

CAUTION:

IT IS COMMONLY OBSERVED: THAT USERS OVERESTIMATE THE RANGE OF

A SHORT INTEGER, E.6.,

DECLARE I INTEGER;

DO FOR I = 1 T0 99999,

END;

DECLARES (CON'T,)

NOTE: ALTHOUGH HAL/S DOES NOT HAVE IMPLICIT DECLARATIONS,

IT BOES HAVE DEFAULTS:

(1) DEFAULT PRECISION IS

SINGLE

(2) DEFAULT DATA TYPE IS

SCALAR

INTEGER PECLARATIONS

DECLARE I INTEGER;

DECLARE 1 INTEGER SINGLEs |

EQUIVALENT FORMS -- YIELDS SHORT INTEGER

DECLARE I INTEGER DOUBLE;

NOTE: ORDER COUNTS. YOU CANNOT SAY

DECLARE I DOUBLE INTEGER;

DECLARES (CON'T,)

B. SCALARS

@ ESSENTIALLY FLOATING-POINT <SCIENTIFIC WOTATION) NUMBERS

© TWO CHOICES OF PRECISION
360 FC

G - - 12 HALFWORDS SINGLE 4 BYTES 2 FULLWORD

DOUBLE 8 BYTES = 2 FULLWORDS

RANGES:

BOTH SINGLE AND DOUBLE HAVE A DYNAMIC RANGE FROM
Nx 10779 To N x 107°

ACCURACY :

SINGLE ~~ 7 DECIMAL DIGITS

DOUBLE ~~ 17 (OR LESS)

DECLARES (CON’T,)

DECLARE S;

DECLARE S SCALAR;

DECLARE S SCALAR SINGLE;

EQUIVALENT -- ALL YIELD SHORT SCALAR

DECLARE S DOUBLE;

DECLARE $ SCALAR DOUBLE;

EQUIVALENT -- ALL YIELD LONG SCALAR

NOTE: MATRICES AND VECTORS ARE CONSIDERED TO BE

’ MADE UP OF SCALARS.

[~“t8]

C,

DECLARES (CON‘T,)

VECTORS

@ TWO CHOICES OF PRECISION

© LENGTHS MAY RANGE FROM

2<L< 64

NOTE: DEFAULT LENGTH IS 3

VECTOR DECLARATIONS

DECLARE V VECTOR;
DECLARE V VECTOR(3);
DECLARE V VECTOR SINGLE;

DECLARE V VECTOR DOUBLE;

DECLARE V VECTOR(64) DOUBLE;

DECLARE V VECTOR(2) DOUBLE;

SINGLE-PRECISION 3-VECTORS

NOTE: HALAS DOES NOT DISTINGUISH BETWEEN (NOR IS THERE A

NEED TO) ROW AND COLUMN VECTORS.

~~ MORE ON TH"S LATER --

D,

DECLARES (CON’T.)

MATRICES

o THO CHOICES OF PRECISION

@ . ROW AND COLUMN LENGTHS MAY RANGE FROM

2<L< 64

NOTE: DEFAULT ROW AND COLUMN LENGTHS ARE 3,

MATRIX DECLARATIONS

DECLARE M MATRIX;

DECLARE M MATRIXG,3); ‘SINGLE~PRECISION 3x3 MATRICES

DECLARE M MATRIX SINGLE;

DELCARE M MATRIX DOUBLE;

DECLARE M MATRIX(2,64) DOUBLE;

DECLARE M MATRIX(2,2) DOUBLE;

DECLARES (CON'T,)

E. CHARACTER STRINGS

PHYSICAL FORMAT:

360

I Jo BYTE /CHAR ———_________ >

|e sone
FC
1H <———— 1 HW/(2. CHARS)
max | CHAR

et ! eeee !
i £ >

POSSIBLY AN

UNUSED SLOT

CHARACTER DECLARATIONS

DECLARE STRING CHARACTER(4);
NOTES: (1) DECLARED LENGTH OF CHARACTER STRING MAY RANGE FROM

1 10 255

(2) ACTUAL LENGTH MAY RANGE FROM

0 (NULL) TO 255

i y

DECLARES (CON'T,)

F, BOOLEANS |

© ESSENTIALLY DEGENERATE RIT STRINGS CBIT(L))

_ © ONLY TWO POSSIBLE VALUES

TRUE = ON = BIN’]’

FALSE = OFF = BIN’O’

ak

BOOLEAN DECLARATIONS —

DECLARE BOOL BOOLEAN;

NOTE: ALTHOUGH WE WILL DEFER DISCUSSION OF BIT STRINGS,

NOTE THAT IT IS ENTIRELY EQUIVALENT TO SAY,

DECLARE BOOL BIT(1);

wn

ARRAYS

INTEGERS, SCALARS, VECTORS, MATRICES, CHARACTERS, AND BOOLEANS
MAY BE ARRAYED (OR POSSESS ARRAYNESS).

TO CREATE AN ARRAY, INSERT
ARRAY (1) 1-DIN
ARRAY (Ny yt) 2-DIM
ARRAY (Ny ,Np,N3) 3-DIM

FOLLOWING THE IDENTIFIER IN THE DECLARE STATEMENT,
EXAMPLE : .

DECLARE QMAT ARRAY(100) MATRIX;

DECLARE B ARRAY(50) BOOLEAN;

DECLARE S ARRAY(10,5) MATRIX(16,16) DOUBLE;

NOTE: ARRAY(,) MUST PRECEDE THE ATTRIBUTES,

ILLEGAL

DECLARE B BOOLEAN ARRAY(3);

ARRAY (CON’T,)

IN THE FORMS:

ARRAY (NN)
ARRAY (Ny, Np)
ARRAY (Ny, No» Hg)

2 < Ny < 32,767
2 < Np < 32,767
2 < Nz < 32,767

THE BIGGEST DATA ITEM WE CAN THINK oF AT THIS POINT IS:

DECLARE A ARRAY (32767, 32767, 32767) NATRIX(64, 64) DOUBLES
= 1,15 x 1018 pytes

vd

INTEGERS AND SCALARS

~COMMENTS-

HAL/S UTILIZES CONTEXT TO DECIDE WHETHER LITERALS ARE INTEGERS
OR SCALARS. IN GENERAL, WHENEVER A USER HAS A SCALAR THAT IS
INTEGRAL IN FORM, WE ENCOURAGE WRITING IT AS THOUGH IT WERE AN
INTEGER.

EXAMPLES:

Five

DECLARE A, B, Cs

THEN WRITE

A=23;

INSTEAD OF

A= 2.0 Bs

IN OTHER WORDS, ONE DOES NOT NEED TO APPEND ”.0” TO WHOLE-NUMBER SCALARS,

INTEGERS AND SCALARS

~COMMENTS~

~ HAL/S IS VERY FORGIVING ABOUT MIXING INTEGERS (SINGLE OR DOUBLE)

AND SCALARS (SINGLE OR DOUBLE) IN EXPRESSIONS, IMPLICIT CONVERSIONS

ARE AUTOMATICALLY PERFORMED SO AS TO MAINTAIN MAXIMUM ACCURACY, OF

COURSE, SINCE THESE CONVERSIONS AFFECT CPU AND CORE, USERS SHOULD

BE AWARE OF THE POTENTIAL COST THAT CAN RESULT FROM THIS FREEDOM,

(HORE ON THIS WHEN WE DISCUSS EXPRESSIONS AND ASSIGNMENTS.)

w
t

COMPOUND DECLARATIONS

SIMPLE DECLARATION

DECLARE S;

DECLARE M MATRIX DOUBLE;

DECLARE C CHARACTER(6);

COMPOUND DECLARATION

DECLARE S,

M MATRIX DOUBLE,

C CHARACTER(G);

(OR, ON ONE CARD)

DECLARE S, M MATRIX DOUBLE, C CHARACTER(6);

NOTE: IN A COMPOUND DECLARATION THE KEYWORD DECLARE APPEARS ONCE
AND INDIVIDUAL ELEMENTS ARE DELIMITED BY ",”,

\- > 4

FACTORED DECLARATIONS

IF THE IDENTIFIERS IN A COMPOUND DECLARATION HAVE SOME ATTRIBUTES

IN COMMON, A FACTORED FORM MAY BE EMPLOYED:

THUS, THE PROGRESSION IS:

SIMPLE DECLARE V1 VECTOR(4) INITIAL(O);

DECLARE V2 VECTOR(A) INITIAL(O);

DECLARE V3 VECTOR(4) INITIAL(O);

To

COMPOUND DECLARE V1 VECTOR(4) INITIAL(O),

V2 VECTOR(4) INITIAL(O),

V3 VECTOR(4) INITIAL(O);

To

FACTORED DECLARE VECTOR(4) INITIAL(O), V1, V2, V3;

THIS IS A BIG KEYPUNCH SAVER:

DECLARE ARRAY(16) MATRIX(4, 4) DOUBLE

INITIAL(O), ML, M2, M35
J

NOTE: THE COMMA MUST BE PRESENT!

DATA INITIALIZATION

DECLARE ORDER:

DECLARE « <array> <type> <precision> <initialization>

UNARRAYED DATA

INTEGER:

DECLARE I INTEGER INITIAL(O)5

DECLARE J INTEGER DOUBLE -

INITIAL(-20)5

DECLARE K INTEGER INITIAL(4**3);

SCALAR: _—

DECLARE S INITIAL(O):

DECLARE PI SCALAR DOUBLE

CONSTANT (3, 14159265)

NOTE: DO NOT NEED 0,0!

NOTES:

INITIAL AND CONSTANT BOTH CAUSE INITIALIZATION OF DATA, BUT
SOMETHING DECLARED WITH THE CONSTANT ATTRIBUTE CANNOT EVER BE
CHANGED.

DATA INITIALIZATION (CON’T.)

ALSO, DATA DECLARED CONSTANT “MAY” TURN OUT TO BE INACCESSIBLE TO

RUN-TIME DIAGNOSTICS,

ON THE OTHER HAND, SOME DATA DECLARED CONSTANT, SINCE THE VALUE 1S

KNOWN BY THE COMPILER, MAY BE USED IN COMPILE-TIME EXPRESSIONS.

REFERENC- ASSIGN- DIAGNOSTICS
ABLE ABLE (i.e, pump) COMPILE-TIME EXP,

CONSTANT YES NO MAYBE MAYBE

INITIAL YES YES YES No

NOW, TO BE MORE PRECISE!

IF UNARRAYED INTEGERS, SCALARS, BIT STRINGS, OR CHARACTER STRINGS, ARE
DECLARED CONSTANT, THEN THESE ITEMS CAN BE UTILIZED IN COMPILE-TIME EXPRES-
SIONS -- AT THE SAME TIME THIS IMPLIES THAT THE DATA ITEM IS UNAVAILABLE
TO DIAGNOSTICS,

*** NOTE THAT VECTORS AND MATRICES ARE INELIGIBLE!

DATA. INITIALIZATION (CON'T.)

THE REASON THESE ITEMS ARE UNAVAILABLE TO DIAGNOSTICS IS THAT THEY

ARE PUT IN-A SPECIAL LITERAL AREA BY THE COMPILER -- SUCH ITEMS DO

NOT OCCUPY STORAGE WHERE THEY ARE DECLARED.

FINALLY, USE OF CONSTANT ALLOWS A GREATER RANGE OF COMPILER
OPTIMIZATION:

EXAMPLE 1
DECLARE PI SCALAR DOUBLE

CONSTANT (3, 1415926535) ;
DECLARE RAD_TO_DEG SCALAR

| DOUBLE CONSTANT(180/P1) ;
DECLARE SINS SCALAR

CONSTANT (SIN(15/RAD_TO_DEG)).

EXAMPLE 2

DECLARE V1 VECTOR CONSTANT(L, 1, 1);

(DECLARE V2 VECTOR CONSTANT(V)s)

ILLEGAL!

DATA INITIALIZATION (CON‘T.)

EXAMPLE 3

DECLARE Kil INTEGER CONSTANT (3);

DECLARE S1 SCALAR CONSTANT (16.5);

'
e
,

W = SQRT(SL) ** Ki;

THE EXPRESSION “SQRT(S1) ** K1” WILL BE EVALUATED AT COMPILE

TIME, THE CODE WILL LOOK LIKE:

LE 0, {COMPILER CALCULATED
CONSTANT

STE 0, W

DATA INITIALIZATION (CON‘T.)

BOOLEAN INITIALIZATION

DECLARE BOOL BOOLEAN INITIAL(ON);

EQUIVALENT DECLARE BOOL BOOLEAN INITIAL(BIN‘'1');

DECLARE BOOL BOOLEAN INITIAL(TRUE);

DECLARE BOOL BOOLEAN INITIALCOFF);

EQUIVALENT DECLARE BOOL BOOLEAN IMITIAL(BIN'0’);

DECLARE BOOL BOOLEAN INITIAL(FALSE);

AND OF COURSE; — |
DECLARE BOOL BOOLEAN CONSTANT (TRUE)

(ALTHOUGH THIS HARDLY MAKES SENSE

DATA INITIALIZATION (CON’T.)

CHARACTER INITIALIZATION

(1) DECLARE C CHARACTER(3) INITIAL('');

(2) DECLARE C CHARACTER(12) INITIAL(CHAR(3)‘ABCD‘);.

(3) DECLARE C CHARACTER(255) INITIAL(CHAR(255)‘A');

IN (1) WE GET (ON THE 360)

MAX CUR

CA
|) Ag
1 1 1 1 1

IN (2) HE GET (ON THE 360)

BWyWlA;B;C; DAT BY C] DI AY BI Ci} OD

I.E., A CHARACTER STRING REQUIRES 2 BYTES PLUS 1 BYTE PER CHARACTER,

6

DATA INITIALIZATION (CON'T.)

MULTI-VALUED DATA ITEMS

A VECTOR OR MATRIX IS CONSIDERED TO RE A MULTI-VALUED DATA ITEM,

ARRAYS ARE OBVIOUSLY MULTI-VALUED.

IMPORTANT NOTE -- HAL/S MAKES LIFE EASY IF AN ENTIRE MULTI-VALUED

ITEM 1S TO BE INITIALIZED TO A SINGLE VALUE:

DECLARE Q MATRIX(16, 16) INITIAL(O);

DECLARE R ARRAY(400) SCALAR DOUBLE INITIAL(6);

IF THE FOREGOING IS NOT SUITABLE THEN YOU MUST SUPPLY THE

REQUISITE NUMBER OF DATA ITEMS.

VECTOR INITIALIZATION

DECLARE X_VECT VECTOR CONSTANT(1, 0, 0)

DECLARE R_VECT VECTOR DOUBLE INITIAL(6, -3.5, 44,82);

DATA INITIALIZATION (CON’T.)

MATRIX INITIALIZATION

DECLARE 13 MATRIX CONSTANT(1, 0, 0, 0, 1, 0, 0, 0, 1);

DECLARE I4 MATRIX(4, 4) DOUBLE CONSTANT(1, 0, 0, 0, 0 1,

0, 0, 0, 0. 1, 0, 0, 0, 0, 1;

ARRAY INITIALIZATION

FOR AN ARRAY, EACH ELEMENT IS INITIALIZED IN TURN:

DECLARE C ARRAY(6) CHARACTER(4) CONSTANT(’ABCD’, "EFGH’, 'IJKL',

MN’, 'OPQ', 'RST’);

DECLARE M ARRAY(2) MATRIX(2,2) INITIAL(6, 1, 2, 3, 0, L 4, 5);
’ eee etme Serta

My No

DATA INITIALIZATION (CON‘T,)

INITIALIZATION ORDER:

VECTOR -- ‘BY INCREASING INDEX

MATRIX -- -ROW-BY-ROW

ARRAY -~- ELEMENT-BY-ELEMENT IN ORDER OF INCREASING INDEX,

IF AN ELEMENT 1S MULTI-VALUED IT IS INITIALIZED

IN FULL BEFORE GOING TO THE NEXT ELEMENT.

MATRIX ORDER EXAMPLE:

Azy Agg ARIN

1.E., THE MATRIX IS STORED IN CORE AS
[ALL A12 A13 A2i AZZ A23 ABL A32 A33)

REPLACE STATEMENT

THERE ARE TWO KINDS OF REPLACE STATEMENTS: SIMPLE AND PARAMETERIZED

SYNTAX

SIMPLE: . ©@)must BE PRESENT

REPLACE IDENTIFIER BY "ANY TEXT" s

EXAMPLES! (LEGAL USAGES)

(1) REPLACE PREC BY "SINGLE"
 # 6

DECLARE SCALAR PREC, A, B, C;

(2) REPLACE S BY "A + B + LOG(C)"s
eoefe

DECLARE SCALAR, A, B, C, Ds

D=5;

(3) REPLACE DV BY "VECTOR DOUBLE INITIAL (O)"

DECLARE VECI DV,
VEC2 DV,
VEC3 DV;

(4) REPLACE N BY "4";

DECLARE V1 VECTOR(N),
ML MATRIX(N, ND,
M2 MATRIX(2, N)s

REPLACE STATEMENTS (CON‘'T.)

(ILLEGAL USAGES)

(5) REPLACE SINGLE BY "DOUBLE";

tpeserven worD (KEYWORD)

(6) REPLACE SIN BY “SINH’;

RESERVED WORD (BUILT-IN FUNCTION)

(7) REPLACE + BY “/’; —~mrssine(“)
E vot AN IDENTIFIER

(8) REPLACE,16.2E3 BY "18,4E3";

Z apttuveric LITERAL (NOT AN IDENTIFIER)

REPLACE STATEMENTS RESULT IN SQURCE-LEVEL SUBSTITUTION, THE ACTUAL

SUBSTITUTIONS CAN BE SEEN IN THE LISTING IF CENT (¢) SIGHS ARE USED

AROUND THE REPLACE NAME, I.E.,

D = ¢S¢;

WILL RESULT IN

D=A+B + LOG(C);

IN THE LISTING,

t
a

:
ae

n
z

i

u
F

7
*

a
t
,

a
n
B
e
r
z
o
n
r
e
d

z
e
e

aha
v
t
o
l
e

s
t

r
a
g
a

O
L
D

ph
bE

m
e
e
e

ey e
r
i
n
g

E
C

A
A
A
S

* wus
t
s
!

>
>
s
!
>
n
a
r
e

5
h
g

F
E

emt md
ig

ge
N
I
N
N

Naninnindd
P
I
U

Q
U
O

G
U
Y

gtd
}

cs
’

t
w
t

A
G

gg H

e
h

p
y

od

Read sl

ce

 ~

“
a
u
l
a

PL p
n
 ee

o
t
e

Sap o
h

S
h

TF be
Bri

t
a
d
)

a
s

w
aed
F
l

F
e
.

S
>
4

‘
s
a

OF
t
h
y

s
u
n
g

t
o
:

“
2

:
hmeN

a

M
A
D
Y

x
m
2
:

&
Q
U
>

«
«
a
0

r
e
x

p
o
w

Nowe
U
n
s
t
e

3

e
o

P
E

e
a
e

ww
eM

r
a
e
!

L
o
m
e
b
e

pe te omer
b

uy
Q
u
:

P
I
V

-
r
e
e

I
O

(hd
age:

'
a

>
4

>
>

n
o
o

fs
~

a
o
a
.

:
w
e
e

a
.
a
l
l

i
w

e
S

g
t

<
xe

=
~d

s
FE

t
n
g

4
-

b
a

S
a
s
s
y

‘
~a

U
r

4
N
N

a
2

8
.

&

N
y
e

'
—2

j
y

~
rs

w
o
e

a

z

s
a
n
s

.
d

&

2

we
ed

W
E
N

ae
N
E

p
t
h

wa
7

&
_

w
o

a

s
4
0
o
v
e
w

G
S
y
s

fa}
ce

G6
M
n

pub
.

4
a

a
o
t

os

my
fe

ag
:

2a
a
n

rey
“
t
w
p

g
O

pated
z

.
yb

d
a

S
e

Oo
b

s
h
e
g
e
e

+
a
w

2
G
e

a.
ad

“
p
e
g

t
e

4.0
tad

ge
3

d

a
=

F
e
e
g
e
u
w

a
s
,

i
t

Oy
.
#

.
>

—

w
e
e
k
s

t
e

.
tnd

a
f

w
a
t

~
.

to
a

f
a
e

/
P
W

i
y

,
2 -

b
e
s
t

B
D

Bact Coe IE 3). TORECCE

a
a

493804

MBER_DEUS)

w
h

O
r
r

m
m

4~
E
O

.
M
R
T

T
a
m

~
~

g
m

-

-
e
n
e

we

we
r

2 "ATTACHMENT (page 3 ef 3)

0 l 2 3 ’ y {snesenesclzaaserestizaqserustizsssevesdlcesavesel234507 7890123656787].
‘CCLATE EXTERN AL FICLCE RP TO C2ZLALC_OLT_MSC _FEADR SC 2593 , EGuf TE EXTERNAL FICOBESP TO CZ BET BIT NS ect E Apu (333
ECuéTeé ExTEKIAL FJULBELB TO QZ BLOT DE LUMSG_HURSL 1344 EQLATE EXTERNAL FICOBF2@ TO E2l ELCTCHUTMS OT rons ko 298 ng EUATE EXTERNAL FISDBF28 T) CZ ib ~DIUE LNSCTWR SI S505

crs SYSTEM CONTROL ,
DECLARE CZ1V_A_TSIP SCALAR UOLSLE INTIAL Geol § TECLAKE CZlv ASECS_ENGEGE INTEGER INITIALC ON 3 cee ECLARE “C2BLALTMLETST AT wITL16) INITIAL CmEK*vOUOeS

et EQUATES FOR FCCS
pESUATE EXTERVAL FIOUFCSE TO CZIV_A - SFCS_ENGAGEs

cre ac oo o we, us
" PEC LaRe CZ1V_G_SLM_ WD INTEGER goo 2

— C218 V_VALIC_CES BCCLEAN aE a CL ARE Cr tr V HUA BOOLEAN ia ts ALUCFF) CKCUT SHFT RARE ACTIVE FLA ‘ .

Lar
] ALY PLE EUILE

ING SCR TS tsea dat o
H
 4

CLL ALR
FROM™ LAD NOIR

1, CCWMON
COM 4 Chin UDE = Oe HES aves
3 Qudduuue = . m

o
n

ad

~

t
a
t
e

a
m

m
W

b
e

REPLACE STATEMENTS (CON'T,)

NOTES:

(1) A REPLACE STATENENT TAKES EFFECT ONLY AFTER IT APPEARS,

(2) A REPLACE STATEMENT ADHERES TO NAME-SCOPE RULES,

(3) A REPLACE CAN CAUSE TROUBLE BECAUSE IT CAN ONLY BE OVER-
RIDDEN BY ANOTHER REPLACE.

EXAMPLES: . :

(1) DECLARE V1 VECTOR(N); ~~ *** ERROR UNDECLARED IDENTIFIER
REPLACE N BY "4" |
DECLARE V2 VECTOR(N) 5

(2) ALPHA: -PROGRAM).

REPLACE M BY "6"

SINCE REPLACE IS AT PROGRAM LEVEL, IT WILL BE
’ CLOSE ALPHA; EFFECTIVE EVERYWHERE

(3)

REPLACE STATEMENTS (CON'T,)

POTENTIAL TROUBLE

GAMMA: EXTERNAL COMPOOLs
ote

REPLACE I BY “8"5

CLOSE GAMMA;

ALPHA: PROGRAM
DECLARE I INTEGER *** ERROR
tt £

DO FOR 1 = 1 TO 103

ENDs

CLOSE ALPHA;

REPLACE STATEMENTS (CON'T.)

REPLACE STATEMENTS CAN BE OVERRIDDEN,

EXAMPLE:

ALPHA: PROGRAM;

REPLACE X BY "6";

WRITE(X) A, By Cs

BETA: PROCEDURE;

REPLACE X BY "773

WRITE(X) A, Bs Cy

CLOSE BETA;

CLOSE ALPHA;

REPLACE STATEMENTS (CON'T.)

NOTE: WHENEVER ‘REPLACE TEXT IS SUBSTITUTED FOR AN IDENTIFIER, THE

IDENTIFIER IS UNDERLINED BY THE OUTPUT WRITER. (¢ SIGNS THAT

CAUSE PRINTING OF THE ACTUAL TEXT DO NOT RESULT IN UNDERLINING.)

EXAMPLES :

(1) SOURCE

REPLACE @ BY "A + SIN(B)**2"5

§=Q;

OUTPUT WRITER

MS = Qs

(2) SOURCE

-§ = Ot;

OUTPUT WRITER

E 2
MH S =A + SIN(B) s

SUBSCRIPTING

HAL/S ALLOWS THREE DISTINCT TYPES OF SUBSCRIPTING: (ALL SUBSCRIPTING

STARTS AT 1), '

WD COMPONENT -- APPLICABLE TO STRINGS (1.E., BIT STRINGS* AHD CHARACTER

STRINGS) AS WELL AS VECTORS AND MATRICES.

(2) ARRAY

(3) STRUCTURE (DEFERRED UNTIL LATER)

* SINCE BOOLEANS ARE IN EFFECT DEGENERATE BIT STRINGS, USERS MUST CONSIDER

THIS WHEN SETTING UP SUBSCRIPTS FOR ARRAYS OF BOOLEANS (MORE ON THIS

LATER), ,

IN 1-LINE SOURCE FORMAT, SUBSCRIPTING IS INDICATED
BY A "$", .

EXAMPLES: | VECT$7 W$I1 = MAT$(2,4) —-X$(C14#2J41)

NOTE THAT PARENTHESES ARE ONLY REQUIRED WHEN SUBSCRIPT IS MORE THAN ONE TOKEN!!!

SUBSCRIPTING (CON’T.)

THE OUTPUT WRITER OF PHASE 1, HOWEVER WILL ALWAYS PRINT SUBSCRIPTS

(PARENTHESES REMOVED) ON AN "S" CARD:

EXAMPLE: .

SOURCE: 1= Q$(2J + 1);
LISTING: M %I=Q. ;

- § sed

COMPONENT SUBSCRIPTING

CHARACTER STRINGS ,

l<L < 255

DECLARE STRING CHARACTER (L);

© TO SELECT ITH CHARACTER FROM STRING:

-— STRINGSI
WHERE I IS AN INTEGER EXPRESSION AND

le<t«l

EXAMPLE STRINGS (21)
STRINGS
STRINGS (1**3-1)

I a

oy

SUBSCRIPTING (CON’T.)

© TO SELECT ‘I’ CHARACTERS STARTING AT ‘J’:
STRING$UI AT J)

WHERE I AND J ARE INTEGER EXPRESSIONS AND

leJ<b .

O<T<L-J+1

0 WILL PRODUCE A NULL STRING,
EXAMPLE:

STRINGS(3 AT K)
STRINGS (I**2 AT 2L)

© TO SELECT A SUBSTRING STARTING WITH THE ITH CHARACTER AND ENDING
WITH THE JTH;

STRINGS(I TO J)
WHERE I AND J ARE INTEGER EXPRESSIONS AND

IT<J

l<LJdet

eG

SUBSCRIPTING (CON'T.)

EXAMPLES! STRING$(1 TO J)

STRINGS(3 TO 4)
STRING$(1**2 TO 8)

MORE EXAMPLES

ASSUME:

(a)
(Bp)

(c)

(p)

(e)
(F)
(6)
(H)

(1)
(a)
(k)

DECLARE STRING CHARACTER(10) INITIALCABCDEFGHIJ’);

DECLARE I INTEGER CONSTANT (2),
J INTEGER CONSTANT (8),
K INTEGER. [HITIAL(2)3

STRINGS4 = -D' -
STRINGSO = ILLEGAL
STRING$11 ILLEGAL
STRINGSI = ’B'
STRING$S(1**2) = 'D’
STRINGS(K**4) = RUN-TIME ERROR
STRINGS(I**4) = COMPILE-TIME ERROR
STRINGS (COS(0)+1) = 'B’
STRINGS(5 AT 3) = 'CDEFG’
STRING$(L AT J) = ‘HI!
STRINGS(J AT 3) = ‘CDEFGHIJ’

ia
2

: 44

SUBSCRIPTING (CON’T.)

(L) STRINGS(S TO 8) = ‘EFGH'

(m) STRINGS(4 TO 3) ELLEGAL

VECTOR

ELEMENTS (WHICH ARE SCALARS OF COURSE) ARE INDEXED STARTING FROM 1

DECLARE V VECTOR(L) 5 —2<L< 6

e TO SELECT ITH SCALAR FROM VECTOR:

V$I (A SCALAR)

WHERE 1 1S AN INTEGER EXPRESSION AND

T<teb

® TO SELECT A SUB-VECTOR OF LENGTH I STARTING FROM THE STH ELEMENT:

V$(1 AT J) (A VECTOR)

WHERE 1 1S AN INTEGER LITERAL AND
Pr eer

2<1«eL

AilD J IS AN INTEGER EXPRESSION WITH

l<eJdebl-I+1

-SUBSCRIPTING (CON'T.)

@ TO SELECT A SUB-VECTOR (PARTITION) STARTING FROM THE I74 ELEMENT AND

ENDING WITH THE JTH:

V$(1 TO J) (A VECTOR)

‘WHERE 1, J ARE INTEGER LITERALS AND

let<J«eL

Q. WHY IN THE ..AT.. AND ..70,. SUBSCRIPTING FORMS, CAN THE LIMITS

BE INTEGER EXPRESSIONS FOR CHARACTER STRINGS, BUT ARE REQUIRED

TO BE INTEGER LITERALS FOR VECTORS? —

A. BECAUSE CHARACTER STRINGS IN HAL/S ARE INNATELY OF DYNAMIC LENGTH

WHEREAS VECTOR LENGTHS MUST BE KNOWN ABSOLUTELY.

SUBSCRIPTING (CON’T.)

A. EXAMPLES OF LEGAL VECTOR SUBSCRIPTING

J 2.0
LE V pny ‘ 3,5

T ~1,4

6.9

(1) V$1 = 2.0 _ (SCALAR)

(2) V$4 26.9 (SCALAR)

3)

(4)

(5)

(6)

. 3
V$(2 AT aye| (2-VECTOR)

5 ;

oo

o
u

V$(1 TO m[3s (3-VECTOR)
“1.4 .

IF ADDITIONALLY WE HAVE

DECLARE F INTEGER CONSTANT(3);

THEN THE ‘FOLLOWING ARE ALSO VALID:

3,5
V$(1 AT 2)21-1,4) — (3-VECTOR)

: 6.9

2.0
V$(1 TO 12] 3.5] (3-VECTOR)

K-14

LAS]

B,

SUBSCRIPTING (CON'T.)

EXAMPLES OF ILLEGAL VECTOR SUBSCRIPTING

SUPPOSE :

DECLARE V VECTOR(5) INITIAL(2,3,4,6,8)3
DECLARE I INTEGER INITIAL(4);
DECLARE J INTEGER CONSTANT(S);
DECLARE K INTEGER INITIAL();

lsEus 2
3

v=. [4
6
8

THEN THE FOLLOWING ARE ILLEGAL:
(D ¥80
(2) V6
(3) V$(J+1) J+] > LENGTH
(4) V$(K AT 1)
(5) V$(1 TO KD,

SUMMARY OF VECTOR COMPONENT SUBSCRIPTING:

(1) COMPONENT SUBSCRIPTING OF A VECTOR RESULTS IN A SCALAR
OR A SMALLER VECTOR,

(11) IF SUBSCRIPTING RESULTS IN A VECTOR, ITS LENGTH MUST BE
COMPUTABLE AT COMPILE TIME!!!

{

SUBSCRIPTING (CON'T.)

MATRIX

: (MOST OF THE SUBSCRIPTING RULES ARE GENERALIZATIONS OF THE VECTOR RULES.)

2) COMPONENT SUBSCRIPTING OF A MATRIX CAN RESULT IN A SCALAR, A VECTOR,

OR A SUBMATRIX, IF A VECTOR OR MATRIX RESULTS, THE VECTOR LENGTH

OR MATRIX ROW/COLUMN LENGTHS, RESPECTIVELY, NUST BE COMPUTABLE AT

COMPILE TIME.

(@) MATRIX SUBSCRIPTING INVOLVES TWO DIMENSIONS: ROW AND COLUMN. AGAIN,

ELEMENTS ARE INDEXED FROM 1. .

e TO EXTRACT THE SCALAR ELEMENT IN THE 1TH RoW AND JT4 COLUMN OF THE

Mx NH MATRIX @ WHERE I, J ARE INTEGER EXPRESSIONS (I.E, NEED NOT BE

KNOWN AT COMPILE TIME), AND 1s I <M lsJ<Qe

asa, J)

SUBSCRIPTING (CON'T,)

| . 33 ¢ TO SELECT THE IT! RoW; ay ¢
asc, *) (AN N-VECTOR)

© TO SELECT THE JT COLUMN:
as(*, J) (AN M-VECTOR)

e 70 SELECT A SUBMATRIX OF DIMENSIONS a x 8;
Q$(a AT I, 8 AT J)

EXAMPLES

LET Q BE THE 4 x 5 MATRIX:

6 3 9 9 |]
2 4 6 2 8

, [1 0 0 6 3
5 7 10 6 2

THEN

(1) Q$(1,1) = 6 (SCALAR)
(2) Q$(4,5) = 2 (SCALAR)

2
i}

(3) Q$(2,*) =16 (5-VECTOR)
21.

8

La

| Vy

SUBSCRIPTING (CON’T.)

AGAIN,
, 6 39 0 1

Q- 2 4 6 2 8
100 6 3
5 710 6 2

9
(4) as(*,3) =| 6

10
9

(5) Q$(3 AT 1,3)2 16
: 0

_{6 2 8 (6) 9$(2 103, 3 10 5)= (é 2 4

3 9 0
(7) as, 3aT 24 & 2

Tet Oo 6
7 10 6

SS
217

PARTITIONING

EXAMPLE: HATRIX fis

reeenne- m4 7%
O—-, Ny Nhe thy | ! My !

1 1
Hy ta Hs 1 My
1 1!

O-line ie} | mw
JIT IIt

Hcy Ug His 1 ; Hy

Udy tint Hey Ngo Hes | | Mey |

6

YD th to 3, 1103
’

2) Hey

3) Neg

4) 5 40 6,2 t0 3 5) My, 1 t03 |

33
a

Nhe

6

N56

Nig

9

‘Meg +@
{ 1

. 32.
ARRAY SUBSCRIPTING 2 Ly

ARRAYS MAY BE OF 1, 2, OR 3 DIMENSIONS CWITH.A MAXIMUM RANGE OF

1 TO 32767 IN EACH DIMENSION). HERE WE WILL ONLY CONSIDER SINGLE

DIMENSTON ARRAYS,

ARRAY SUBSCRIPTING 1S EASY FOR ARRAYS OF INTEGERS AND SCALARS

SINCE NO COMPONENT SUBSCRIPTING IS POSSIBLE. FOR ARRAYS OF CHARACTER

STRINGS, BIT STRINGS (AND BOOLEANS), VECTORS, AND MATRICES, LIFE

IS MORE COMPLICATED.

SUBSCRIPTING AN ARRAY CAN RESULT IN-A SINGLE ELEMENT OR A SUB-ARRAY

OF ELEMENTS. IN THE LATTER CASE (AS WAS TRUE FOR VECTOR AND MATRIX

COMPONENT SUBSCRIPTING) THE ARRAYNESS (1.E., RANGES OF ALL ARRAY

DIMENSIONS) MUST BE COMPUTABLE AT COMPILE TIME,

33
220

ARRAY SUBSCRIPTING (CON‘T.)

LET “TABLE” BE AN ARRAY OF LENGTH | OF ANY DATA CINTEGER,

SCALAR, BOOLEAN, CHARACTER, VECTOR, MATRIX, BIT. STRING)

© TO SELECT THE 174 ARRAY ELEMENT:

TABLE$(1:)<+———- PARENTHESES NEEDED BECAUSE “1” AND “:” ARE 2

TOKENS

WHERE 1 1S AN INTEGER EXPRESSION AND
Letst

NOTE: IF TABLE 1S AN ARRAY OF INTEGERS OR SCALARS SO THAT KO
COMPONENT SUBSCRIPTING 1S POSSIBLE, THEN THE COLON MAY BE
OMITTED, THUS:

TABLES! SUFFICES,

@ TO SELECT A SUB-ARRAY OF LENGTH 1 STARTING AT THE J™4 ARRAY ELEMENT

OF TABLE:
*TABLES(1 AT Ih couon OPTIONAL FOR INTEGER/SCALAR

WHERE I IS AN INTEGER LITERAL WITH

leet

AND J IS AN INTEGER EXPRESSION WITH

-i<Jeb-141

ARRAY SUBSCRIPTING (CON’T.)

e TO SELECT A SUB-ARRAY STARTING FROM THE I74 ARRAY ELEMENT

AND ENDING WITH THE JT;

TABLES$(I TO Sh oprionat FOR INTEGER/SCALAR

WHERE I AND J ARE BOTH INTEGER LITERALS AND

leleJel

EXAMPLE)

DECLARE $ ARRAY(3) VECTOR(2) INITIAL(6, 9, 4, 2, 0, 8):

COMPONENT ye [6
OF ARRAY ———— §$(1:) = | | (aN UNARRAYED VECTOR)

9

6 4
, S$(2 arax(| , [}) STILL AN ARRAY

eaerition ; . ,

OF ARRAY 5$(2 r030+([3| : 2] STILL AN ARRAY

NO COMPONENT SUBSCRIPTING HERE,

ye]

53
22/

Ss3
ARRAY SUBSCRIPTING (CON’T.) olat 2

EXAMPLE (2)

_ {DECLARE A ARRAY(4) INTEGER INITIAL(9, 0, -6, 3)5

{ASL = 9
N . -
NEEDED ASH = 3

A$(1 TO 3)

A$(2 AT 2)

(3, 0, -6)

(0, -6)

EXAMPLE G)
DECLARE C ARRAY(3) CHARACTER(4) INITIAL('THIS’, ‘IS’, 'HARD');
C$(2:) = ‘IS!
C$(2 AT2:) = (TIS', "HARD’)

| EXAMPLE (4)
DECLARE BOOL ARRAY(5) BOOLEAN INITIAL(TRUE, FALSE, ON, OFF, BIN’O");
BOOL$(4:) = OFF
BOOLS(3 AT 3:)
BOOLS(1 TO. 4)

(ON, OFF, BIN'O’)

(TRUE, FALSE, ON, OFF)

u
t

ARRAY ‘AND COMPONENT SUBSCRIPTING

GENERIC FORM:

"TABLES (ARRAY: COMPONENT)

IN OTHER WORDS, THE ”:” IS USED TO ISOLATE THE ARRAY SUBSCRIPTS

FROM THE COMPONENT SUBSCRIPTS.

EXAMPLE (2)
DECLARE S ARRAY(3) VECTOR(2) INITIAL(6, 9, 4, 2, 0, 8)3

$$(1:2) = 9 (A SCALAR)

$$(2 AT 2:1) = (4,0) AN ARRAY OF 2 SCALARS

. EXAMPLE (2) .

DECLARE C ARRAY(3) CHARACTER(H) INITIAL('THIS', ‘IS', ‘HARD')s
C$(2:2) = 'S"
C$(3:3) = ‘RI
C$(2 AT 11 110 2) = CTH’, 'IS")
C$(2 TO 3: 2) = C'S", 'AN)

it

nt

Ww

$2
223

er ONY

MS(3: 3,3)

ARRAY AND COMPONENT SUBSCRIPTINGS (CON'T.)

EXAMPLE (3)

DECLARE M ARRAY(3) MATRIX INITIALG,2,3,4,5,6,7,8,9,10,11,12,13,14,15

16,17,18,19,20,21,22,23,24,25,26,27)3

I.E.

1 2 3 lo H 2 1g 20 21

N= h 5 6], {13 WW I], [22 23 24

7 8 9 16 i/7 18 25 26 27

M$(2: 2,1) = 13

27

M$(e: 3,3) = (9, 18, 27)

LLiwotcates DO FOR EACH ELEMENT OF ARRAY

We(2 AT Ls 2-AT 2, 2 AT) a([3 el. | 15])

Mt

ty

uJ

8 9} U7 18

33

tay

COMPONENT SUBSCRIPTING ONLY a2 s

IF THE BATA TO BE COMPONENT - SUBSCRIPTED (BIT AND CHARACTER STRING,

VECTOR, OR MATRIX) IS ALSO ARRAYED, A TOKEN AMOUNT OF ARRAY SUBSCRIPTING

MUST BE KEPT, IF TABLE [S AN ARRAYED DATA ITEM AND WE WISH TO PERFORM

COMPONENT SUBSCRIPTING SIMULTANEOUSLY ON ALL ARRAY ELEMENTS THEN WE

NEED THE FOLLOWING FORM:

TABLES(*: COMPONENT SUB)

WITH THIS FORM WE WILL PRODUCE A NEW ARRAY (WITH THE SAME NUMBER OF

DIMENSIONS AND SAME RANGE IN EACH DIMENSION AS THE ORIGINAL) WITH EACH

ELENENT THEREOF BEING A COMPONENT-SUBSCRIPTED VERSION OF THE ORIGITIAL

ELEMENT.

EXAMPLE (1)

DECLARE C ARRAY(3) CHARACTER(4) INITIALC'THIS’, ‘IS’, HARD‘);

C$(#:2) 2 CH, 'S', A‘)

“ye Th

COMPONENT SUBSCRIPTING ONLY (CON'T.) 33
R2E

EXAMPLE (2,)

LET M BE AN ARRAY 3 OF 3 x 4 NATRICES:

1234
mMe{]5 6 7 8

9 10 1 12]
THEN

B W 15 16] [25 2 27 28
,{7 18 19 2}, |29 30 31 32

21 22 23 24) 133 3H 35 36]/.

MS(2: 3,4) = 24 .
1 27

M$(2 AT 2: *,3) =| 19] ,/31
23| 135

wans2nssmne((x s)8 31.2 2)
MS(*: 2 703, 3 104) = (THe same)

7 J E 20] E 2
1 12}.123 24).[35 36

SUBSCRIPTING SUMMARY

RECOMMENDATION: EVEN WHERE OPTIONAL, I.E., ARRAY SUBSCRIPTING ON INTEGERS

AND SCALARS, USE THE TRAILING “COLON”.

- UNARRAYED DATA ~

COMPONENT SUBSCRIPTING:
VARS(7 AT 1)
VARS3

. VARS(4 TO 5, 3 TO 4)
- ARRAYED DATA - .

NO COMPONENT SUBSCRIPTING:
_VARG(7:) «——+-—- NEED PARENTHESES SINCE "7" AND "!” ARE 2 TOKENS.

VAR$(3 AT 2:)
ARRAY AND COMPONENT SUBSCRIPTING:

VAR$(7:3)
VARS(4 AT 1: 3 TO 4, 1 TO 2)

COMPONENT SUBSCRIPTING ONLY: (ARRAYNESS UNCHANGED)
VARS(*: 3 TO 4, 1 TO 2)
VARS(*: 7)

| 3/
MORE DATA INITIALIZATION aAaly

SUMMARY OF OLD MATERIAL:

() TO INITIALIZE A SINGLE-VALUED DATA ITEN, SUPPLY 1 LITERAL VALUE
Til THE INITIAL/CONSTANT LIST:

DECLARE [. INTEGER INITIAL(7)s

" DECLARE S. CONSTANT(9,3E-4)

@ TO INITIALIZE A MULTI-VALUED DATA ITEM, (ARRAY, VECTOR, MATRIX)
WE HAVE 3 CHOICES:

A. INITIALIZE EVERYTHING TO THE SAME VALUE: (1 ITEM IN LIST)
DECLARE M MATRIX INITIAL(O)s

* DECLARE A ARRAY(15000) INITIAL(6.5);

B. INITIALIZE TO DIFFERENT VALUES: (NEED 1 LITERAL FOR EVERY ELEMENT)
“DECLARE M MATRIX INITIAL(1,0,0,0,1,0,0,0,1);
DECLARE A ARRAY (15000) INITIAL(3.5, 6.5, 3.5, 6.5, 3.5,

6.5, 3.5, 6.5, 3.5, 6155 ssrvery 615)3

15000 oF THEM!

t

MORE DATA INITIALIZATION (CON’T.) 229

C, IF THE DATA IS ARRAYED, SUPPLY EXACTLY ENOUGH LITERALS TO

INITIALIZE A SINGLE ELEMENT OF THE ARRAY, IN THIS CASE ALL

ELEMENTS OF THE ARRAY WILL BE INITIALIZED IDENTICALLY.

EXAMPLE:

INSTEAD OF
DEGLARE MM ARRAY(3) MATRIX(2,2) INITIAL(1,0,0,1,1,0,0,1,1,0,0,1);

CODE .
DECLARE MM ARRAY(3) MATRIX(2,2) INITIAL(L,0,0,0)

I BOTH “CASES

m=((iC +f al)

MORE DATA INITIALIZATION (CON'T.)

~ SHORT CUTS -

(2) USE OF REPETITION FACTOR #
EXAMPLES

DECLARE C ARRAY(6) CHARACTER(S) INITIAL(3#'ABC’, 3#'DEF')s

C = ('ABC', ‘ABC’, ‘ABC’, ‘DEF’, ‘DEF’, 'DEF’)

DECLARE 14 MATRIX(4,4) INITIAL, 3#(0,0,0,0,1))s

‘1000
0100

4 lo 010
0001

1.E., A SEQUENCE OF LITERALS CAN BE REPEATED.

230

De y

©

MORE DATA INITIALIZATION <CON’T.)

REPEATED GROUPS CAN EVEN BE NESTED

DECLARE 14 MATRIX(4,4) INITIALCL, 3#(4#0,1));

1000
01
0 0

=
 a

m
o
O

Q
o

0001

DECLARE V ARRAY(S,2,2) INITIAL(L,2,3,2,3,1,2,3,2,3,1,2)5
V/

DECLARE V ARRAY(3,2,2) INITIAL(2#(1,2,3,2,3),1,2)s

DECLARE V ARRAY(3,2,2) INITIAL(2#(1,2#(2,3)),1,2);

23]

MORE DATA INITIALIZATION (CON'T.)

(2) PARTIAL INITIALIZATION

® SKIP OVER VALUES NOT TO BE INITIALIZED (JUST USE f#)

DECLARE M MATRIX(4,4) INITIAL, 3#(4#,1))3

lx x x

1 x X + NOT INITIALIZED
x l
xX X M

x

e
x

OX

© LEAVE REMAINDER OF LIST UNINITIALIZED (USE OF * SYMBOL)

DECLARE M MATRIX(4,4) INITIAL(,2,3,*)3

123 x
+

Xx X X X

Xx X X X

i

x<I2

AUTOMATIC/STATIC INITIALIZATION ‘S/

| A33
TO DESCRIBE THE WAY IN WHICH DATA INITIALIZATION IS EFFECTED, HAL/S

HAS 2 INITIALIZATION ATTRIBUTE KEYWORDS THAT ARE OPPOSITE IN MEANING:

STATIC AND AUTOMATIC,

MOST DATA IS OF THE STATIC TYPE AND TIIIS IS THE DEFAULT. STATIC DATA

IS INITIALIZED WHEN THE DATA MODULES ARE BROUGHT INTO CORE (I.E., THE

DATA IS ALREADY EXISTENT IN THE LOAD MODULES), COMPOOLS ALWAYS CONSIST

OF STATIC DATA.

THE KEYWORD STATIC CAN BE SPECIFIED BY THE USER, BUT THIS IS NOT RECOMMENDED

SINCE IT CLUTTERS THE LISTING: , , .

DECLARE: I INTEGER INITIAL(5) STATIC;

DECLARE I INTEGER STATIC INITIAL(5)s

DECLARE I INTEGER INITIAL(5)3

ALL EQUIVALENT! NOTE THAT STATIC CAN PRECEDE OR FOLLOW THE INITIAL LIST.

“i

aay
AUTOMATIC/STATIC INITIALIZATION (CON’T.)

AUTOMATIC DATA GENERALLY RESULTS IN EXECUTABLE CODE IN THE PROLOGUE OF

CODE BLOCKS TO INITIALIZE THE DATA EACH TIME THE BLOCK IS ENTERED.

FOR MULTI-VALUED DATA THIS CAN BE VERY EXPENSIVE -- AND AUTOMATIC,

IN GENERAL, SHOULD BE SPECIFIED ONLY WHEN IT IS REALLY NEEDED. THIS

WILL BE DISCUSSED IN: MORE DETAIL LATER WHEN REENTRANCY IS CONSIDERED.

THE FOLLOWING ARE EQUIVALENT:

DECLARE 1 INTEGER AUTOMATIC IWITIAL(5),

DECLARE J INTEGER INITIAL(5S) AUTOMATIC;

RESTRICTIONS ON USE OF STATIC/AUTOMATIC

© DATA INITIALIZED CONSTANT MAY NOT POSSESS EITHER THE STATIC OR

AUTOMATIC KEYWORD.

© COMPOOL DATA MAY NOT HAVE EITHER A STATIC OR AN AUTOMATIC SPECIFICATION,

AUTOMATIC/STATIC INITIALIZATION (CON’T.) Sx

| 2as~
EXAMPLES

1 A: CONPOOL;
DECLARE I INTEGER INITIAL(A) STATIC) ——1LLesaL

CLOSE As
2 B: PROGRAM; :

DECLARE M MATRIX INITIAL(O) STAI (wer aut) RECOMMEND NEVER SPECIFYING

sae , STATIC

CLOSE Bs
~ COMSUB EXAMPLE -

3 (C: PROCEDUREs

DECLARE 1 INTEGER INITIAL(10); ——

‘' tt FIRST CALL I

= 10

Pes E fey CLOSE C3 ON SECOND .cALL I =

C: PROCEDURE

DECLARE 1 INTEGER INITIAL(10) AUTOMATIC;

1 ‘ he I = 10 ALWAYS UPON ENTRY

CLOSE Cs (PROLOG OF COMSUB WILL CONTAIN CODE, I.E.
LA rx, 10)
ST RX, ft

ee

3)

INTEGER/SCALAR CONVERSIONS a>

INTERPRETATION

@) Ii HAL/S EXPRESSIONS, ARBITRARY MIXTURES OF INTEGERS AND SCALARS

(BOTH OF EITHER SINGLE OR DOUBLE PRECISION) CAN OCCUR.

(2) THE FOLLOWING CONVERSIONS ARE CHEAP (I.E., DONE VIA INLINE CODE)

SINGLE INTEGER > DOUBLE INTEGER

SINGLE SCALAR DOUBLE SCALAR

ALL OTHER CONVERSIONS REQUIRE CALLS TO LIBRARY ROUTINES.

(3) EXPLICIT CONVERSIONS ARE NEITHER MORE NOR LESS EFFICIENT THAN

IMPLICIT ONES,

CG CONVERSIONS ARE PERFORMED ON THE RIGHT SIDE OF AN = SIGN WITHOUT

REGARD FOR WHAT 1S ON THE LEFT SIDE. ONLY UPON ASSIGNMENT, IS THE

LEFT SIDE TAKEN INTO ACCOUNT.

sme
INTEGER/SCALAR CONVERSIONS (CON’T.)

INTERPRETATION (CON'T.)

G) WHEN ONLY INTEGERS APPEAR IN AN EXPRESSION, ALL INTEGERS ARE

CONVERTED TO THE PRECISION OF THE MOST PRECISE INTEGER.

EXCEPTION: , IN °J/J" ALL INTEGERS ARE. CONVERTED TO SCALARS. —

6) WHEN ONLY SCALARS APPEAR IN AN EXPRESSION, ALL SCALARS ARE

CONVERTED TO THE PRECISION OF THE NOsT PRECISE SCALAR,

@ IF INTEGERS AND SCALARS ARE MIXED, ALL INTEGERS ARE CONVERTED

TO SCALARS OF THE REQUISITE PRECISION,

3

237

EXPRESSIONS = 2 xy

EXPRESSION = A MEANINGFUL COMBINATION OF OPERATORS AND OPERANDS
THAT RESULTS IN SOMETHING BELONGING TO A LEGAL HAL/S

DATA TYPE -- THIS DEFINES THE TYPE OF THE EXPRESSION.

ARITHMETIC OPERATIONS

7 EXPONENTLATION #83
_ 4 INVERSION Mee(-1)

TRANSPOSITION MeT
(BLANK) MULTIPLICATION rans

| (VECTOR OUTER PRODUCT) Vy
(MATRIX MULTIPLICATION) HN

. VECTOR CROSS PRODUCT Vii
° VECTOR DOT PRODUCT Vell
fo DIVISION

ADDITION
- SUBTRACTION A - B

(HEGATION -- UNARY OP) \ -B

32
EXPRESSIONS (CON'T.) | 239

NEGATION

~ MATRIX (ALL ELEMENTS)

~ VECTOR (ALL ELEMENTS)

~ SCALAR

- INTEGER

ADDITION AND SUBTRACTION

MATRIX + MATRIX (muST BE CONFORMABLE)
VECTOR + VECTOR (MUST BE CONFORMABLE)

SCALAR + SCALAR
SCALAR + INTEGER®
INTEGER + INTEGER .

* RESULT IS SCALAR. THE INTEGER IS CONVERTED TO A SCALAR OF REQUISITE

PRECISION,

NOTE: LEFT AND RIGHT-HAND SIDES CAN BE SUBSCRIPTED VARIABLES OR MORE

COMPLEX EXPRESSIONS PROVIDED THEY ARE OF THE CORRECT TYPE.

33 EXPRESSIONS (CON’T,
ayo

DECLARE M ARRAY (3) MATRIX INITIAL(1,2,3,4,5,6,7,8,9,10,11,12,13,14, 19-16417,18,18,20,21,22,23,24,25,26,27)
1 2 3 10 11 12] 19 200 2] M= [4 5 6] , 3 1 15] , foo 923 24 f 7 8 9 146 17 18 25 26 27 DECLARE V VECTOR INITIAL(1,5, 2.5, 3,5);

DECLARE $ INITIAL(50,3),
DECLARE I INTEGER :INITIAL(5)

P+] = 6 (INTEGER RESULT) I+ 0.3 = 5.3 (séatar RESULT) S44 = 54.3 (ScaLaR resuLT) [+s = 55.3 (scatar RESULT) S+V ILLEGAL (TYPE MISMATCH) S + V$2 = 52,8 (SCALAR RESULT) - V+ figc2s) ILLEGAL (TYPE MISMATCH)

weno BA fs
V+Ms(2:" 2) = 2.5) +114) = [16.5

3.5 i7 20,5
(VECTOR RESULT)

Bey

$2

EXPRESSIONS (CON’T.) . 2y/

DIVISION
MATRIX/SCALAR OR MATRIX/ INTEGER"
VECTOR/SCALAR oR VECTOR/INTEGER*
SCALAR/SCALAR oR SCALAR/ INTEGER"
INTEGER*/SCALAR oR INTEGER*/ INTEGER"

* INTEGER WILL BE CONVERTED TO A SCALAR OF REQUISITE PRECISION.

NOTE: IF USERS HANT A TRUE INTEGER DIVISION, E.G., IN THE FORTRAN

SENSE, THE Div FUNCTION SHOULD BE USED:

T= DIVGLADs

IF J?210, 1 WILL BE 2.

EXAMPLES

1/3 IS 0.333333 (A SCALAR -- NOT AN INTEGER 0)

10 5
IF V= 20; THEN V/2 = {10

30 15

“|

EXPRESSIONS (CON'T,) RYQ

DOT PRODUCT Vell

STANDARD MATHEMATICAL DEFINITION WITH THE FOLLOWING EQUIVALENCE:
T; . ~~ —

vin = Vel

CLEARLY V AND W MUST HAVE IDENTICAL LENGTHS. THE RESULT IS A

SCALAR AND-OF SAME PRECISION AS MOST PRECISE VECTOR.

CROSS PRODUCT - Vell

STANDARD MATHEMATICAL DEFINITION, BOTH V AND W MUST BE 3-VECTORS

AND THE RESULT IS A 3-VECTOR,

NOTE: HAL/S DOES NOT ALLOW THE FORM V! (1.E,, THE TRANSPOSE OF A

VECTOR). AS WILL BE SEEN LATER, CONTEXT IS USED TO DETERMINE

MEANING, ,

EXPRESSIONS (CON’T.) | '3Q

“MULTIPLECATION ~ ABB

MULTIPLICATION {$ INDICATED BY LOGICAL ADJACENCY, I.E., A BLANK,

THE BLANK IS NOT NEEDED PRIOR TO A PARENTHESIZED EXPRESSION, BUT

IT IS MANDATORY IN ALL BUT A FEW SPECIAL CASES,

EXAMPLES:

qed
NO BLANK NEEDED

xl

COMPARE tov aNk’ Nor NEEDED BUT IS DESIRABLE

3E): ,
3B WOULD LOOK LIKE ILLEGAL ARITHMETIC LITERALS

3H
n

fA
L. BLANK NEEDED

EXPRESSIONS (CON'T.) zy

MULTIPLICATION ASSUMES 5 FORIS:

@ INTEGER SCALAR
SCALAR —_INTEGER™
INTEGER INTEGER
SCALAR SCALAR

* INTEGER WILL BE CONVERTED TO A SCALAR OF THE REQUISITE PRECISION.

@ INTEGER® VECTOR
. SCALAR VECTOR ©

VECTOR — INTEGER*
VECTOR SCALAR ELEMENT~BY~ELEMENT
INTEGER® MATRIX : MULTIPLICATION

SCALAR MATRIX .

MATRIX _INTEGER*

MATRIX SCALAR
* INTEGER WILL BE CONVERTED TO A SCALAR OF THE REQUISITE PRECISION,

EXPRESSIONS (CON’T.) AVK—

G) VECTOR VECTOR
DEFINES THE DYADIC PRODUCT (VECTOR OUTER PRODUCT)

Vi
IS EQUIVALENT TO THE MATHEMATICAL FoR v HT

EXAMPLE :
errr .

1 1
= 2 = |3

v 3 Wes
4

13 5
__ 2 6 10
Vi= [3 9 35

4 12 20

@) MATRIX MATRIX
DEFINES STANDARD MATRIX MULTIPLICATION, I.E.,

AN
WHERE MIS A MxN MATRIX AND WIS A xP MATRIX, AGAIN, NOTE

THAT M AND N COULD BE SUBSCRIPTED EXPRESSIONS, E.G,, PARTITIONS

OF LARGER MATRICES. ;
Ne

@
EXPRESSIONS (CON’T.)

VECTOR MATRIX

MATRIX VECTOR

DEFINES STANDARD VECTOR-MATRIX MULTIPLICATION.

A.

B.

IF V iH THEN IF V HAS LENGTH L, M MUST HAVE DIMENSIONS LxP,

THE RESULT IS A VECTOR OF LENGTH P, EQUIVALENT MATHEMATICALLY

10

vin = fRow vector] [vrei]

IF MV THEN IF V HAS LENGTH L, M MUST HAVE DIMENSIONS MxL.

THE RESULT IS A VECTOR. OF LENGTH M, EQUIVALENT MATHEMATICALLY

T0

MV os [MATRIX] [cou vecroa|

EXPRESSIONS (CON'T,) SA
247

EXPONENTIATION (INTEGERS AND SCALARS)

@ _INTEGER**INTEGER
(2) INTEGER**SCALAR

G) SCALAR** INTEGER

@® SCALAR**SCALAR

IN CASE @ IF THE EXPONENT I$ A NON-NEGATIVE INTEGER, THE

RESULT OF THE EXPRESSION IS AN INTEGER, IN CASE (2) - G)

THE RESULT IS ALWAYS A SCALAR. .

EXAMPLES

IF 1 IS AN INTEGER WITH I = 5 THEN

[ee2 #25 (INTEGER RESULT)

1**(-1) 20.2 | (SCALAR RESULT)

aee,5 V2 (SCALAR RESULT)

NOTE: AN EXPONENT OF .5 (OR 1/2) IS RECOGNIZED AS A SPECIAL

CASE AND 1S ENTIRELY EQUIVALENT TO USING THE SQRT

BUILT-IN FUNCTION,

S**,5 = SQRT(S)

EXPRESSIONS (CON’T.) | SL
245 EXPONENTIATION (SQUARE MATRIX TO AN INTEGRAL POWER)

Mew]

MIS A SQUARE MATRIX (NxM)

TTS AN INTEGER LITERAL

I RESULT

-2 REPEATED PRODUCT OF INVERSE

-1 MATRIX INVERSE :

0 UNIT MATRIX

1 NO-OP

122 REPEATED PRODIICT

NOTE THAT THE VALUE OF 1 MUST BE KNOWN AT COMPILE-TIME,

Me*(-1) TS EQUIVALENT TO USING THE MATRIX INVERSION FUNCTION:

INVERSE (M)

M**Q IS A FAST WAY OF BUILDING AN NxM UNIT MATRIX DYNAMICALLY,

33

EXPRESSIONS (CON’T.)

Mee (-2) = (Me#(-1)) #2
ex 2 AAA wg

1 ie

. 1 0 Med = \e,

EXAMPLE

IF A MATRIX M HAS CHARACTERISTIC EQUATION

M2 + B+ C= 0
WE COULD CODE THE FOLLOWING IN HAL/S:

AM**2+BM+C MeO

THE RESULT WILL BE AN Nx ZERO MATRIX.

EXPRESSIONS (CON’T.) ; tS

EXPONENTIATION (TRANSPOSE OF A MATRIX)

MT

THIS IS EXACTLY EQUIVALENT TO USING THE BUILT-IN FUNCTION

TRANSPOSE

Me*T = TRANSPOSE(M)

IF MIS AN MXN MATRIX, M! WILL BE AN NxM MATRIX,

NOTE: VECTORS CANNOT BE TRANSPOSED. Ve*T IS ILLEGAL.

“NOTE: EVEN IF THE USER HAS DEFINED T TO BE A VARIABLE, N**T

MEANS TRANSPOSE -- IT IS NOT THE SAME "T"!

Sn UY

32 COMMENTARY ON VECTOR/MATRIX OPS a2 S/

RULE: IF A VECTOR TRANSPOSE (I.E,, ROW VECTOR) APPEARS IN A
MATHEMATICAL STATEMENT, LEAVE THE TRANSPOSE OPERATION
OFF WHEN CODING THE HAL/S STATEMENTS,

MATH HAL/S
DOT T

PRODUCT vw . Vel

CROSS
PRODUCT Vxw Vel
OUTER To

PRODUCT vw . vu

MATRIX/ ”
VECTOR ORY NV

PRODUCT

VECTOR/ 1 VN
MATRIX

PRODUCT

NOTE: THE MATRIX TRANSPOSE OPERATION IN HAL/S IS EXPENSIVE; AVOID
IT IF YOU CAN.

$3

COMMENTARY ON VECTOR/MATRIX OPS (CON’T.) 2sQ

| EXAMPLES

(@) MATH: Ken ¥

HAL/S: X= Mey Y

BUT THIS CAN BE IMPROVED UPON! IN THE MATH CASE WE COULD WRITE

= cl HT = YT
IN HAL/S THIS WOULD BECOME

X= YM (ELIMINATION OF A MATRIX TRANSPOSE)

SINCE VECTOR TRANSPOSE IS ILLEGAL (AND NOT NEEDED!).

ACTUALLY, THE LATEST RELEASE OF THE COMPILER (WITH THE GLOBAL OPTIMIZATION

OF PHASE 1,5) MAKES THIS SUBSTITUTION AUTOMATICALLY!

(2) MATH: Ken al p ys ali
HAL/S: X = (MeeT)(Ne*T) PY + (Q**T) R

BUT BETTER IS:

HAL/S: X= (PT) NM+RQ

“he o

W
W
W

WR
N

P
O
P
?

P
e

MATRIX/VECTOR OPTIMIZATION

Wh PROGRAM:
Nt DECLARE MATRIX,
ht NM OIMITIALCL
Nt N INITIALC2),

Mt P INITIALC3),

ht Q INITIALC4))
Mt DECLARE VECTOR,
Nt x,
Mt VY INITIALCS, 2,

Nt R INITIALC4, 5,

ct
Et .o- #TATh - *T-
Mt Xe MNP Y + OR

LA 3,72¢0,10)
tA 4,156¢0,10)
LA 2,76(0,13)
BAL 44,184¢8,42)
LA 4,36¢9,10)

, LA 2,88¢8,13)
BAL 44,176€@,12)
tA 4,8¢8,10)
LR 2,76(0,413)
BAL 414,176060,12)
LA 3,4168¢0,16)
LA 4,108(6,10)
LA 2,88¢0,143)
BAL 14,17600,12)
LA 3,76¢8,43)
CR 4,88(8,43)
LA 2,10608,43)
BAL. 44,112¢6,12)
LA 3,48008,43)
LA 2,144(6,410)
BRL 44,4800,12>

P.
Y

NV6S3
N

¥M6S
N

VM6S3
R
a

VMES3

¥V2S3

x
VViS3

32
as3

a
|

#4 CSE= (PYNM4RO

MATRIX/VECTOR OPTIMIZATION (CON’T.)

Et ~ s aTR KO -
6 Nt Xe ¥Y PUN FR BG

LA 3,100¢08,43>
LA 2.144¢8,10) x
BAL 14,48(6,42) VVAS3

-E IONS (CON’T.) 3/ XPRESS 'T, _—
—_ wAod

CHARACTER OPERATIONS

CATENATION [1 OR CAT

CHARI | INTEGER*

INTEGER* | ICHAR

INTEGER*| | INTEGER®

CHAR] ICHAR

CHARI ISCALAR*

SCALAR*|1CHAR

SCALAR* | | SCALAR*

INTEGER* | | SCALAR”

SCALAR*| | INTEGER*®

* INTEGERS AND SCALARS ARE IMPLICITLY CONVERTED TO CHARACTER

STRINGS:

LE: EXAMPLE WILL BE CONVERTED TO CHARACTER

WRITE(6) ‘THRUST OF ENGINE “HISIL ’1S'114009511 POUNDS’;

WILL. BE CONVERTED TO CHARACTER

EXPRESSIONS (CON'T,)

BOOLEAN OPERATIONS

1 & = AND (LOGICAL INTERSECTION)
2 |#20R (LOGICAL CONJUNCTION)
3 1 = NOT (LOGICAL COMPLEMENT)

ASSUME:

DECLARE B1 BOOLEAN INITIAL(TRUE); —
DECLARE B2 BOOLEAN INITIAL(TRUE);
DECLARE B3 BOOLEAN INITIAL(FALSE) 3
DECLARE B4 BOOLEAN INITIAL(FALSE)s

COMPLEMENT. (>) UNARY OPERATION

“1B1 = FALSE

CONJUNCTION ()) BINARY OPERATION
B1IB2 = TRUE oTitet
B11B3 = TRUE TIF eT
B31B1 = TRUE FIT 2 T
B31B4 = FALSE FIF = F

AIL

EXPRESSIONS (CON’T,) as

INTERSECTION (8) BINARY OPERATION - fF

Bl & B2 = TRUE Tel = T
Bl & B3 = FALSE TF = F
B3 & Bl = FALSE: Fat = F
B3 & BY = FALSE Far = F

OTHER EXAMPLES

Bl & FALSE = FALSE
B3 | TRUE = TRUE

—1B1 | B28B3 |—1B4 = TRUE
Seer am Sayin romain pnt

FALSE FALSE TRUE

yey

EXPRESSIONS (CON'T,) 3/

ARITHMETIC AND CHARACTER PRECEDENCE | 2sy
HI

** 1 EXPONENTIATION
H 2 MULTIPLICATION
. 3 CROSS PRODUCT
. 4 DOT PRODUCT
/ 5 DIVISION
+ 6 sOADDITION = T
1-___ 6 _ __ SUBTRACTION, NEGATION !

al 7 CHARACTER CATENATION
Lo :
® SEQUENCES OF OPERATIONS OF THE SAME PRECEDENCE ARE EVALUATED FROM LEFT

FO RIGHT -- EXCEPT FOR ** AND /, WHICH ARE EVALUATED FROM RIGHT TO LEFT,

I.E.,

A/B/C/D = (AC)/(BD) —A/B(C/D) = A/(BD/C) = AC/BD

e SEQUENCES OF MULTIPLICATIONS ARE SOMETINES REORDERED T9 MINIMIZE. THE

NUMBER OF ELEMENTAL PRODUCTS INVOLVED.

OE

R
P
S

PO

be

ut
Nt
Nt

Nt

Ct
ut

gngenza
sNces

¢ 7305
6000
6015

@3g0c 60106
QI90b 6025

@59CE 602)
CQSGnF 6435
G3810 €03D
O01 6245
enn12 604d
09913 TAL?
On014 6234

6244
6239
6224

c e244
6209
6249

& 6229
&

BE0.9 FCES

$

WLC 4D,
S2, 53, $4,

0a82
8886
800A
GOOE
e012
OFA
OO4A
GOLE
6022
8026
9gec

. 8018
0nggs
o681C
90108
8820
9004
ee24
e014
gd28

S53, $6,

DIVIDE EXAMPLE
———

S?, $8

ST#4
SOTESTA

$9, $19,

EQU

Sit, $42, $43, Sid,

*

CSECT .

HE
@, 21)
@,6¢41>
@,4004)
@,414¢1)
0, 48¢4)
@, 2264)
B, 2664)
8,304)
8,34¢4)
0,38¢1)
2,41201)
22,2404)
2,804)
22,2861)
21601)

2,32¢4)
2,464)
2, 3604)
2,2804)
2.4064)

4,8
4,2
4,42¢4)

ESDID= 0861

$45, S16,

Si
$3
ss
S7
s3
S11
£13
S45
$17
S19
S6
$12
54
S44
52

S16

“$2
sig
£16
$26

Si?) $18, S13,

wh

u
o
t

DIVIDE EXAMPLE (CON'T.)

22 ¢ 54 ¢ 55 ¢ 56 ¢ SP ¢ SBC SI / S10 7 SAA / S42 7 S13 7 S44 ¢ S45 7 S46 Y S47 / } : oy
&

ST#5 — «EQU *

‘ DER 92 .
8B2AR ; STE 0,42¢1) T

: STa6 EQu *
LBLR2 EQu & :

aBec svc 444) H°247

MATRIX INVERTER (dx!t)

INVERTER :PROGRAM}

REPLACE PREC BY ™S INGLE" $.

DECLARE MATREX(4 54) PREC sQ.QL,Q23 777 —eo

DECLAVE .1 MATRIX (4, 4).-PREC-CONSTANT Ly 38 (0-90-9050 9-L315

DECLARE MATREX (242) PREC CeSe Te MeN

INVERTIF UNC TIONCIN MA TP MATREXE2 92) PREC

DECLARE MATREX(2:2) PREC, IN_MAT$ 9 0 me

RETURN MATRIXS (QFREC 2 92) CE N_MAT $1252)_-EN_MAT Stl e2)5

-m INLMAT $25 Ly ENMATSE Le LP CIN MATSC LoL) UN MATS (292)

~TALMATS (2d ERLMATS (2 oh S05

CLuse wert ee

—ON ERRORS (10151—FETURNG

10 WHILE TRUE Ss

READIS1Q:

Q1-08#(- 5

-S INVERT (QS (L—-TO—27-1—-1)—2-)-44

T2$ Qs (tL TO 2 43 3049

C2=9$(3 TO 4¢1 TO 233

NSENVERT(Q$ (3 TO 453 TE 4i-c¢ Tip
~MaeN-C- S$

Q2sth TO 2,L TO 2)=S-T Mp”

Q2seh 12 253 19 4)=- TN;

Q2$13 TO 4el TO 2)

-Q28(3-T2 4,3 TO 4)SNG-- ------ —-———-—— +

MATRIX. INVERTER CUxls) (CONT.

WRITE(OD9Q = eC ySKIPIZ03

WRITEC 6) (DETCQ) = #,DETIQ) SKIP 2)3

WALTE(SDOQL = Sg CLySKIPC2)¢ (7 Um

WRI TECH) (DE TEQL)--=- | pDETOGL Dp SKIP (2-2§————- >

WRITE(6) $Q2 = ¢ 402 sSKIPEZ)

ARETELG) *DET(Q2) = "DETIO2IsSKIPC2ZI§ 7°

-WRITE(G) EL =-G-Cl—= 4, 1-0-Q1,SK-1P(2-35-

WRITELG) TE ~ O Q2 2 f41-Q Q2 sSKIP(2)3

EAs

CLOSE $e mete en

MATRIX INVERTER (4x4)

HAL/S COMPILATION , UN TERM ETRICS,s INC. UCTOBER 18, 1975

srr NS

Loy ENVERTERS ee ceeeteees cee pepe eeeettmne seen a a

1M} PROSRAMS

2 I REPLACE PREC BY "§ INGLE" 3

3 Nn] JECLARE MATRIX(4s 4) BRECS Q¢ CLF Q2T

4 MI HECLARE E WATREXC4s 4) PREG CONSTANTULs 34.0009 04 De. 2993 ee

5 MI cLARE MATREXEZ ¢ 2) BRECe Us So Ts My NE : . neon

8 vl INears Ss fa en nn meee

6M} FUNCTEONCIN MAT) MATRIX(2, 2) PRECS nner . _

7 MI DECLARE MATRIXU 2p. 2) PREC» INMATE

aM} “RETURN MATRIX” UINLMAT os TINLM AT) INDMAT. oy INLMAT OO} J CINMAT —OINMAT, ~

5 @PREC 9 2¢2 2m eR ak 212

6 ff INMAT) OI BANAT Vt ec ce cenit eet te ene teeteee meenee nuts penne enna ete

9 Mi CLCESE INVERT?

MATRIX INVERTER (4x4)

4 ON ERROR
Pe! -

lL Mo . URE TURN 3 | eee _ _

12 MI po WHILE TRUE

13 il READ(5) at

~ 1 ee: a Ge
4K a 20 3 ; _

a €

H NVERT . Mo ek es ene a ei Fe “i to2a 10 2 :

ts f oe $a. ~ =

_ L 10 293 104" oo ;

t7 "| ta = ite oa sacs a

sf 930, 4y1 10 2!

ye Be iE TTS Ctl = =
1 h— - AUCs pape

* ee @

19 fi . ' Me ANC OSE. . mye ee eect cae wee

hi te got . acre mettre ie nee | meee rcaeenenmmenmmn ME oe Fe Dever

20 i) 1 TO 2,1 102

iy a Tat ~ ~ eee 4 2 2-7 Ky
2 i) . . a 1 TU. 2,3 10.4

th) a 2M
22 po Rem ee

Bl 8 . co cee ae Oe
a NS

23 ‘| a, TO 4,3 TO 4 _ . . covets oe

fit *
~24 Mp. ~~. WRE TE (6 }—* Ca 5-4 05-5 RIPH2H a

.
25 i WRITE(G) TOET(Q) = ', NET CQ 54 IPI2ZIs

774A

MATRIX INVERTER (4x4)

f

— *
25 fi , HRITE(6) QL = 4% Ole SKIPE2ZD: | cee we mee nna tie dome ioe ie nee

*
eT if -— — -WRETECO) "DEMO LD = fy DETCQI, SKIP(2)p.00

E * ‘ 28M | -—_wat TE (VO) 1 Q 24-9 Cg -S KEP (2-44

F * .
29 fit “oT MRETE (S20 DET (02 be" DET LOZ > SKIP (22 fot ee

al vie semen wage gee pee cate
30 M WRITE (8) TT = Oa et, 1 = QOL, Sk POZE

cone E tne mee uw sane ee * —

31 fl WRITE(G) "2 ~ 0 92 = % fT - @ 929 SKIPC2)3
32 mI vee ENDS oe See aa eet ee ee ems tee see nt ont nei tee cn eon

33 HI CLOSES

MATRIX INVERTER (4x4)

1ST MATRIX

~2.0837659E4CC

pertay =

ais

“he TOBISTEE<C1 OETIQL) =

deTO2) *

4 oTIDIESLE-O1

f-¢ Q2 2

Be ag

MATRIX INVERTER 4x4)

2ND MATRIX

Q
L.OOOOLTIE+ CE: DETIQ) =

5

" Qi

i

1.000045 7E+00 . DETCQL} = -

+01
+00
+00
HO

NETCQ2) = 1.000056 26 #00
Ne

w yy

EXPRESSIONS (CON’T.)

PRECEDENCE EXAMPLE:
(FROM PROGRAMMER’S GUIDE)

"RESULT OF bb bb & ~ V1,V2/2/2

DOGO
ALSO,

VileX- = VieX) | (A SCALAR)
VeileX (Vai eX

Qeezee? = 2*9(34a2) = 2*Q = 517

NOT! (2*#3)"92 = (8)*#2 = 64
4/3/10/3 = 4/3/(10/3) = 4/(9/10) = 40/9

NOT! (4/3)/10/3 = (4/30)/3 = 4/90

sy

EXPRESSIONS (CON’T.)

BOOLEAN PRECEDENCE

Hl
“NOT = 1 COMPLEMENT

a, AND 2 INTERSECTION
1, OR . 3 CONJUNCTION

Lo

© SEQUENCES OF OPERANDS OF THE SAME PRECEDENCE ARE EVALUATED

- FROM LEFT TO RIGHT,

EXAMPLES

@ IF B1IMB2]B387B4 THEN DOs

- EQUIVALENT TO:

IF (B1) 1 B2)1(B38CB4)) THEN DO;

(2) IF BlaB21B3eB4I~BSEABE. .
EQUIVALENT TO:

IF (B19B2) | (B3@B4) | (O85) &4B6)) +.

EXPRESSIONS (CON’T.)

OVERRIDING PRECEDENCE ORDER

© PRECEDENCE ORDER CAN ALWAYS BE ALTEREN BY USE OF

PARENTHESES,

"EXAMPLES
IF (B1I7(B21B3))87B4 THEN DOs

IF B1&(B21B3)&(B4I7B5)27B6 ..,

(AS*B)**C

C
R
S

OM
S)

(A/B)/(C/D)

32
Qhy

A,

EXPLICIT CONVERSIONS 3/
VECTOR CONVERSION

VECTORS CAN BE DYNAMICALLY CONSTRUCTED VIA THE CONSTRUCTION AG! A-

VECTORS (£) (exp, OXPgr see exp,)

TO CREATE AN £-VECTOR, IF THE DEFAULT 1S DESIRED THE LENGTH

SPECIFICATION CAN BE OMITTED, I.E.,

’ VECTOR(exp,, exp, exP3)

IF exp IS-AN ARRAY OF £ INTEGERS OR SCALARS, WE CAN SAY:

VECTORS$ (2) (exp)

© ALL EXPRESSIONS (exp,) MUST BE OF INTEGER OR SCALAR TYPE.

(AGGREGATES OF THESE TYPES MAY ALSO BE USED.)

© THE RESULT OF THE VECTOR CONVERSION FUNCTION IS A SINGLE-PRECISION

VECTOR. IF A DOUBLE-PRECISION VECTOR IS NEEDED USE THE FORM:

VECTOR$(aDOUBLE,£) (exp,, expgr +++)

CLEARLY 2<t< 64

EXPLICIT CONVERSIONS (CON’T.)

VECTOR EXAMPLES

1
VECTOR(1,0,0) - (y SINGLE PRECISION (3-VECTOR)

0

l
VECTOR$ (QDOUBLE) (1,0,0) =|0 DOUBLE PRECISION (3-vEcToR)

dg

@) 3
VECTORS4(3, 2*#2, 8-6, SIN(O)) = } SINGLE PRECISION (4-VECTOR)

0

_ VECTORS (@DOUBLE,4)(3, 2**2, 8-6, SIN(O))
3

= ; DOUBLE PRECISION (4-vEcToR)

0

G) DECLARE 9 ARRAY(12) INITIAL(1,2,3,4,5,6,7,8,9,10,11,12))
5

VECTOR$(aDOUBLE, 5)(Q$(5 AT 6))
7
8
9

0]

52
262

B,

EXPLICIT CONVERSIONS (CON’T.) 32

MATRIX CONVERSIONS awh 3

MATRICES CAN ALSO BE CONSTRUCTED DYNAMICALLY, USE THE
CONSTRUCTION:

MATRIX$(x,c) (exp ys expg, ++ -exP,,)

TO CREATE AN x x © SINGLE PRECISION MATRIX,

2<r < 64

2s0< 64 |
x AND ¢ DEFAULT TO A 3x3 MATRIX, E.6.,

MATRIX(éxp,- EXP, ++ +€XPg))

’ WILL CREATE A 3x3 MATRIX (SINGLE PRECISION),

IF exp IS AN ARRAY OF re INTEGERS OR SCALARS WE CAN SAY

MATRIX$ (x, ¢) (exp)

© ALL EXPRESSIONS (exp,) MUST BE OF INTEGER OR SCALAR TYPE.

@ IF A DOUBLE-PRECISION MATRIX IS NEEDED, USE THE FORM:

MATRIX$(@DOUBLE,©,0)(expys +++ exp,.)

oh

EXPLICIT CONVERSIONS (CON'T.) 33 ——e—— aby
@ MATRICES ARE ASSEMBLED ROW-BY-ROW FROM THE LIST (JUST AS IS

DONE IN INITIAL LISTS IN DECLARE STATEMENTS)

MATRIX EXAMPLES

ROW 1 Row 2 row 3 100
a Nett, fae thin, nt eatin,

A 3x3 SINGLE-PRECISION
MATRIX

© MATRIX(1,0,0,0,1,0,0,0,1) © {0 1 0
001

MATRIX$(@NOUBLE) (1,0,0,0,1,0,0,0,1)

10 0
= 10 1.0 A 3x3 DOUBLE-PRECISION

; 001 MATRIX

@ MATRIX$(2,2)(4,5,7,9) = E | A 2x2 SINGLE-PRECISION
79 MATRIX

MATRIX$ (@DOUBLE,2,2)(4,5,7,9) = f j A 2x2 DOUBLE-PRECISION
73 MATRIX

eT

EXPLICIT CONVERSIONS (CON’T.)

MATRIX EXAMPLES

@) DECLARE 9 ARRAY(50) SCALAR DOUBLE INITIAL(1O#1, 10#2,

10#3, 10#4, 10#5);

MATRIX$ (@NOUBLE, 4,5) (Q$ (20 AT 6))

111

m”

11
2.2
2 2
3 3 L

A
E

NS

R
O

N
E
R
O

R
O

L
A
E

B
O

PO

CH) MATRIXGH(1/2, SQRT(2)/2, SQRT(3)/2))
ie 1/2" 28
v2 1/2N2—12T3
v2 weir 12s

NOTE THAT THE REPETITION SYMBOL ’#*, PREVIOUSLY INTRODUCED

IN INITIAL LISTS, IS ALSO APPLICABLE HERE,

353
bos

24 :

S/ ASSIGNMENTS

THERE ARE 3 CLASSES OF ASSIGNMENTS DEPENDING ON WHETHER THE LEFT- Rob

HAND SIDE OF THE STATEMENT IS:

@ ARITHMETIC (MATRIX, VECTOR, INTEGER, OR SCALAR)

(@) CHARACTER

@) BIT/BOOLEAN’

GENERAL FORM: 9 Ee R
WHERE THE RECEIVER £ IS A (POSSIBLY SUBSCRIPTED) DATA ITEM AND

R 1§ EITHER A DATA ITEM OR AN EXPRESSION, .

ARITHMETIC ASSIGNMENTS: WE WILL CONSIDER LEFT-HAND SIDES OF MATRICES,

VECTORS, INTEGERS, AND SCALARS IN TURN.

NATRIX
MATRIX = MATRIX
MATRIX = 0 (CREATES A NULL MATRIX)

NOTE: MATRIX = 6 IS INVALID!
BOTH LEFT AND RIGHT MATRICES MUST MATCH IN ROW AND COLUMN

DIMENSIONS, PRECISIONS, HOWEVER, NEED NOT MATCH!

ASSIGNMENTS (CON'T.)

EXAMPLES:
1 2 3

ML IS 3x3 4 5 6
7 8

M2 1S 2x2 [2 A
60 89
“1-2 -3 WIS 23 |") oe lg

Ml=0 | RESULTS IN fo 0 0
000
lo 0 0

Ml = 6 TLLEGAL

M1 = MATRIX(2,2,2,3,3,3,4,4,4)

‘ RESULTS IN

P
e

w
n
s
!

W
h

a
N

H2 = M3 ILLEGAL

M2 = -MB$(*, 2 AT 1) . RESULTS IN Bl “|

. Ut4 #5

M1$(2 AT 2, *) = 3 RESULTS IN Li
-1
-l

2 3
2-3
~5 -6

Dad
267

Aw YY

ASSIGNMENTS (CON'T.)

VECTOR

VECTOR = VECTOR .

VECTOR = 0 (CREATES A ZERO VECTOR)

NOTE: VECTOR = 6 IS INVALIDI

BOTH LEFT AND RIGHT VECTORS MUST HATCH IN LENGTHS. PRECISIONS,

HOWEVER, NEED HOT MATCH!

EXAMPLES :

“5
VIS |10/ v2 Is

(po
Vl = 0 RESULTS IN V1 = f

. 0

V3 IS EY

O
o

M
w
 N
O

Vl=6 ILLEGAL
Vl = V2 ILLEGAL | ;
VI = V2$(3 AT 2) RESULTS IN

V1 = V3. ILLEGAL :
V18(2 AT 2) = V3 RESULTS IN fc

20

eR

ASSIGNMENTS (CON'T.)

NTEGER/SCALAR

THIS HAS ALREADY BEEN COVERED IN SOME DETAIL. WE WILL MERELY POINT

OUT THE FOLLOWING:

@ INTEGER = INTEGER
@ _ INTEGER = SCALAR

@) SCALAR = INTEGER
@ SCALAR = SCALAR

“KIN TYPES @) AND G) A CHANGE OF DATA WILL BE ADE. SCALARS ARE

CONVERTED TO INTEGERS BY ROUNDING,

EXAMPLES:
LET 1 BE AN INTEGER;

S BE A SCALAR,
MA 3x3 MATRIX,

THEN
l= 3; RESULTS IN | = 3

111.2) resucts in [= 11

‘T= 11,93 results in | = 12

$= 16.45 , RESULTS INS = 16.4
M$G,*) = 53) ILLEGAL

NS(3,3) = 5; RESULTS IN f x |

BNO x x5

BOOLEAN ASSIGNMENTS

ASSIGNMENTS (CON’T,)

BOOLEAN = BOOLEAN EXPRESSION.

EXAMPLES :

DECLARE BOOLEAN, Bl, B2, B3, B4, B5s
* @ 6

Bl = TRUE;

B2 = OFF;

B3 = BIN’1'

B4 = BIN'O’s

BS = Bl;

B5 = Bl & B2s

BS = 83] 784;

” BS = B2 OR B3y

B5 = Bl AND 33;

B5 = NOT Bly

(SAME AS Bl = ON)

(SAME AS B2 = FALSE)

(SAME AS B3 = TRUE)

(SANE AS B4 = FALSE)

BS = TRUE

B5 = FALSE

B5 = TRUE

BS = TRUE

B5 = TRUE

B5 = FALSE

a

270

ASSIGNMENTS (CON’T.) $2

MULTIPLE ASSIGNMENTS , | 7 /

MULTIPLE ASSIGNMENTS ARE RECOMMENDED BECAUSE THEY REDUCE THE

NUMBER OF SEPARATE STATEMENTS OCCURRING IN A PROGRAM, AND THUS

ENHANCE READABILITY.

FORM:
Ly bo, Lz, eae BR

REQTS: EACH Ly = R MUST BE A LEGAL TYPE OF ASSIGNMENT,

NOTE: THE EXACT ORDER IN WHICH THE ASSIGNMENTS ARE MADE IS HOT
. EASILY PREDICTED,

. EXAMPLES

LET ML BE A 2x2 MATRIX, M2 a 3x3 MATRIX, SL anp S2 SCALARS, AND I1

AND 12 INTEGERS.
- MULTIPLE ASSIGNMENT

ee at

@ IF S1=6 THEN M1, M2, SL, S2, 11, 12 = 0;

he “WY

ACT

ASSIGNMENTS (CON'T.)

CONTRAST THIS WITH:

IF S1 = 6 THEN DOs

Ml = 0)

M2 = 0;

Sl = 0;

$2 = 0;

I1 = 0;

12 = 03

END)

@) MI, S1 = 63 IS ILLEGAL BECAUSE M1 = 6 IS I

M1, SL = 0) IS OK

G) POTENTIAL HAZARD:

M1$(I1, 12), IL = 125
ASSUME I1 = 2, 12 = 3 BEFORE ASSIGNMENT,
PICK BEST ORDER ON A MULTIPLE ASSIGNMENT.

M1$(2, 3)-OR M$(3, 3)
HILL BE ASSIGNED IN THIS CASE,

LLEGAL;

COMPILER IS FREE TO

EITHER

33
272

CONDITIONAL
SIMPLE IF STATEMENT | s/

IF exp THEN [seme] ; | AlZ

WHERE exp IS EITHER A BOOLEAN EXPRESSION (1,E., EVALUATED AS TRUE

OR FALSE) OR A RELATIONAL EXPRESSION (1.E,, A= 0), THE KEY POINT

1S THAT exp MUST BE SOMETHING THAT CAN BE EVALUATED AS TRUE OR FALSE. .

NOTES:

@ [stmt] 18 EXECUTED ONLY IF exp EVALUTES TO TRUE.
[seme] CAN HAVE A STATEMENT LABEL.

@ IF exp IS FALSE, {stmt} IS BYPASSED,

e1s |

32 CONDITIONALS (CON'T.) 27

EXAMPLES (SIMPLE. IF) Vf

ASSUME Bl, B2, B3 ARE BOOLEANS.

S1, $2, $3 ARE SCALARS,

@ IF.BL & B2 THEN NOTE THAT THE “IF” PART AND "TRUE" PART

$1, $2 = 0) ARE 2 STMTS.

@ IFB3 THEN.
Bl = B2s

G) IF Bl & B2 THEN
IF S1 = 6 THEN

IF 7B3|B2 THEN
SL = $25

HOTE: IF STATEMENTS CAN BE NESTED.

Gj) IF $1 < 41S2 > 6 THEN

DO;

S1 = SIN(S2)**25

$2 = $2 + $3;

END:

ENTIRE STATEMENT

GROUP IS TRUE PART

CONDITIONALS (CON’T.) ais”

AUGMENTED IF STATEMENT

TIS IS LIKE A SIMPLE IF EXCEPT THAT IT HAS AN ELSE CLAUSE THAT

1S EXECUTED ONLY IF THE “exp” IS FALSE.

AN AUGMENTED IF CAN BE PLACED WITHIN NESTED SIMPLE IFs, BUT AN

AUGMENTED IF CAN NEVER NEST INSIDE ANOTHER (WITHOUT A STATEMENT

GROUP ACTING AS AN INSULATOR).

EXAMPLES (AUGHENTED IF)

ASSUME B1, B2, B3 ARE BOOLEANS,

$1, $2, $3 ARE SCALARS,

Il, 12, 13 ARE INTEGERS.

CG) IF Bl THEN
S] = S2ea2 + $3**2;

ELSE S1 = SIN(S2 $3)3

114

33 CONDITIONALS (CON’T,) 2
(2) IF Sl < $2 THEN 6

ZERO_IT: S1 = 0;
ELSE $1 = $2##2;

G) IF B1 THEN
B2 = FALSEs

ELSE TROUBLE: B2 = TRUE
(4) IF BL & B2IB3 THEN | stMpLe tes

IF $1 < 5|S1 >9 THEN

IF Sl = 0 & S2 = 4 THEN
ll = 6) “AUGMENTED IF

ELSE [1 = 10;

| TRUE PART CAN HAVE A LABEL —

FALSE PART CAN HAVE A LABEL, ALSO

~NOTE: DANGLING ELSEs ARE NOT A PROBLEM BECAUSE ELSE GOES WITH

THE INNERMOST IF.

bfnwc

“yp.

CONDITIONALS (CON’T,) 93
IF BIIB2 THEN . A777

B3 = FALSE;

ELSE IF B2 & B3 THEN ;
B3 = TRUE; ELSE CLAUSE MAY ALSO BE AN IF STMT

‘ELSE IF $1 * 0 THEN

Sl = 1;

IF $1 = 4 THEN

§2=]) °

ELSE IF $1 + 6 THEN
$2 = 23

ELSE IF $1 & 8 THEN

§2 = 3;

+———CONTROL JUMPS HERE AFTER COMPLETION OF ANY TRUE PART,
ANY LABELS PUT ON TRUE PART OR FALSE PART (ELSE) MAY NOT BE BRANCHED

TO FROM ANYWHERE OUTSIDE OF THE IF STATEMENT,

_
fc. SA

CONDITIONALS (CON’T.) da
aA

RELATIONAL EXPRESSIONS 1

RELATIONAL EXPRESSIONS CAN BE USED IN CONDITIONAL STATEMENTS
(E.G., IFs) AS CAY BOOLEAN EXPRESSIONS, A RELATIONAL EXPRESSION
1S SOME SORT OF A COMPARISON THAT HILL EVALUATE TO A.TRUE OR A
FALSE CONCLUSION,

RELATIOHALS ARE EXPRESSIONS LINKED BY COMPARATIVE OPERATORS:

>, <, <a, omy, =, t=, RELATIONALS, IN TURN, MAY BE

COMBINED USING THE 3 BOOLEAN OPERATORS: & |, AND .

-RELATIONALS, HOWEVER, ARE NOT QUITE BOOLEANS.

COMPARATIVE OPERATORS ARE LOOSELY GROUPED INTO 2 CLASSES:

CLASS I: >, <, S8,7P, 9,716

“CLASS Ii: =, 7=

33 CONITIONALS (CON’T,)

CLASS II OPERATORS (=,~7=) ARE THE ONLY ONES THAT CAN BE USED

WITH: VECTOR, MATRIX, BOOLEAN, AND BIT STRING DATA TYPES,

e VECTOR AND MATRIX COMPARES ARE PERFORMED ELEMENT-BY-ELEMENT.

@ VECTORS AND MATRICES MUST HAVE THE SAME "SHAPES", I.E., VECTORS

MUST BE OF IDENTICAL LENGTHS, AND MATRICES MUST HAVE THE SAME

NUMBER OF ROWS AND COLUMNS.

EXAMPLES : .

1) y i 2 6
ane [i V2 = f ML = i 3 m- pis

‘ 6): -

() Vl= v2 ILLEGAL (VECTORS # IN LENGTH)
(2) M1 = M2 ILLEGAL (MATRICES HAVE DIFFERENT COLUMN CT)
(3) V1 = M2$(1,*) TRUE
(4) V1$(2 AT 2) = V2- TRUE

(5) V2 = Mis, 1). FALSE

Lyn

CONDITIONALS (CON’T.)

FOR INTEGERS, SCALARS, AND CHARACTER STRINGS, BOTH CLASS I AND

CLASS [1 CONDITIONAL OPERATORS CAN BE USED,

® AS WE WOULD EXPECT, IN AN INTEGER/SCALAR COMPARISON, THE

INTEGERS ARE FIRST CONVERTED TO SCALARS.

° CHARACTER STRIHG COMPARES ALLOW US TO SORT STRINGS ALPHABETICALLY.

SUPPOSE I1=5 © 125 -3 I3=0
$1=-80 S2=6.5 ° $3 = 10,3
Cl='Z’ C2 = ‘ABC’ G3. = 'B’

THEN ,
I> 12_ © TRUE
‘We B * FALSE
I= 5 "= TRUE
Cl < (2 = FALSE
(2$2 = (3 = TRUE
Il < 82 "© TRUE
13 < CL ILLEGAL ‘

(13-12) « 11 = TRUE
[1**2 < -S1 = TRUE
(2 < C3 = TRUE

ty~y

33
abl

CONDITIONALS (CON'T.)

® COMPARATIVE OPERATIONS CAN BE COMBINED CAS IF THEY WERE

BOOLEAN OPERANDS), USING THE BOOLEAN OPERATORS &, |, AND-.

~ STILL, COMPARATIVE OPERATIONS ARE NOT BOOLEANS AND THEY

CANNOT BE MIXED WITH BOOLEANS IN A CONDITIONAL STATEMENT.

EXAMPLES
” ASSUME: Bl, B2, B3 BOOLEANS,

Il, 12, 13 INTEGERS,
S1, 82, $3 SCALARS,
VL, V2, V3 VECTORS. tec

IF Bi [>B2](B28B3) THEN...
IF V1 = V2IS1 < S2 THEN .4.
IF 11 + 12 < OSL < $2**2 THEN ..,
IF V1 - V2 = V3.8 S1 <2 +2 THEN...
ILLEGAL
IF BIIBZIS1 < $2 THEN...
IF “B21S1 = $2 THEN...
IF VL = V2 & B3 THEN w,

Ly

CONDITIONALS (CON’T,)

BUT WE CAN GET OUT OF TROUBLE BY TURNING THE BOOLEAN EXPRESSIONS

INTO RELATIONAL EXPRESSIONS:

IF (B11B2) = TRUE | S1 < S2 THEN...

IF B2 = FALSE | S1 = $2 THEN ...

IF V1 = V2 & B3 = TRUE THEN ...

PRECEDENCE

1 — ARITHMETIC OPERATIONS (E.G.,°/, *, ©) +, -. **, MULT,

(BLANK)).

2 COMPARATIVE OPERATIONS (E.G., <, >» =,7=,7> 4 ,

“K, >=, <=),

3 =6NOT (>)
LOGICAL

OPERATIONS 4 AND (2)
5 OR (1)

33
At P2,

CONDITIONALS (CON‘T,)

EXAMPLES (PRECEDENCE IN RELATIONAL EXPRESSION)

IF td. [-(S3 > 0) 8 (SH < 0185 >0) ..,

$4 db bh¢
ARROHS INDICATE ORDER OF EXECUTION OF OPERATIONS

IF Ve AW | Sl = s2ee2 | BL TD nea

apiteye

CONDITIONALS (CON’T.) 5a,

LABELS AND BRANCHES .

LABELS ARE NAMES CHOSEN BY THE PROGRANNER AND ATTACHED TO

EXECUTABLE STATEMENTS. WE CAN DISTINGUISH BETWEEN BLOCK

LABELS (MANDATORY LABELS ON BLOCKS).

ALPHA: PROGRAM;
BETA: COMPOOL;
GAMMA: PROCEDURE,
DELTA: FUNCTION;
EPSHLON:—TASK;
ZETAs—UPDATEs

AND STATEMENT LABELS, ONLY THE LATTER MAY BE BRANCHED TO.

-@ A STATEMENT MAY HAVE 0, 1, OR MORE LABELS -~ THERE 1S NO

CORE OR CPU PENALTY FOR SUCH LABELS AND THEY MAY BE USEFUL

FOR DIAGNOSTIC PURPOSES (AS WILL BE SEEN),

fled

CONDITIONALS (CON'T.)

EXAMPLES ;

(1) SET_X: X= SINGY)s

(2) SETX: BOMBLOUT: X = SQRT(-1);

(3)

(H)

(5)

(6)

BIT_LOOP: BO FOR I = 1 TO 10000;

DEPART: CLOSE ALPHAs

IF A = 3 THEN

CALL_PROC: CALL UPDATER(A);

ELSE DONE: 60 TO END_ALL;

CHECK_FAIL: IF Z = 0 THEN

CALL FLASH_DISPLAY (6);

GO_TO STATEMENT

GENERIC FORM:

GO TO Label,

23
2 PS-

THIS DOES THE OBVIOUS -- CONTROL I$ TRANSFERRED TO THE STATEMENT

WITH LABEL fabeé (PROVIDED STRINGENT CONDITIONS ARE MET).

CONDITIONALS (CON’T.) 32

96
ALTHOUGH STRUCTURED PROGRAMMING PRACTICE DISCOURAGES USE OF "GO TO”

STATEMENTS, THEY ARE SOMETIMES PREFERABLE TO A DAY OF WORK TO

ELIMINATE ONE. THE FOLLOWING EXAMPLE, HOWEVER, SHOWS HOW EASY

: HAL/S MAKES THE ELIMINATION OF GO TO’S,

EXAMPLE
IF VALUE < LOW_LIMIT THEN GO TO LOW; -
IF VALUE > HI_LIMIT THEN GO TO HIs

IN_LIMITS: GOOD_FLAG = TRUE;

OUT_VAL = VALUE;

GO TO FINISHs

LOW: GOOD_FLAG = FALSE;
OUT_VAL = LOW_LIMITs

. GO TO FINISH;
HI: GOOD_FLAG = FALSE;

OUT_VAL = HE_LIMITs.

FINISH:

TY

CONDITIONALS (CON’T.)

BECOMES

IF VALUE < LOWLIMIT THEN

DOs

GOOD_FLAG = FALSE,

OUT_VAL = LOW_LIMIT;

ENDs :

ELSE IF VALUE > HI_LLIMIT THEN

DO;

GOOD_FLAG = FALSE

OUT_VAL = HI_LIMITs

ENDs

-ELSE DOs

GOOD_FLAG = TRUE:

OUTVAL = VALUE: .

END:

WAG

3/
STATEMENT GROUPS ‘ ary

A STATEMENT GROUP IS A SET OF HAL/S STATEMENTS THAT ARE CONSIDERED

AS A UNIT FOR THE PURPOSES OF CONDITIONAL OR REPETITIVE EXECUTION,

STATEMENT GROUPS BEGIN WITH A “DO” STATEMENT, CLOSE WITH AN “END”

STATEMENT, AND CAN CONTAIN OTHER STATEMENT GROUPS (OR EVEN. CODE

BLOCKS) NESTED WITHIN, THE “DO” STATEMENT IS CONSIDERED TO BE AN

EXECUTABLE STATEMENT (ALTHOUGH CODE IS NOT ALWAYS GENERATED FOR IT)

AND AS SUCH CAN POSSESS A STATEMENT LABEL, THE “DO” STATEMENT HAS

THE FORM:

DO (controz);

(contxot) 1$ OPTIONAL AND WILL BE DESCRIBED NEXT, IF (contro) IS

OMITTED THE STATEMENT GROUP DO... END IS EXECUTED ONCE.

{14

STATEMENT GROUPS (CON'T.) 9 STATEMENT GROUPS (CON’T, 2
THE “END” STATEMENT IS ALSO CONSIDERED TO BE AN EXECUTABLE STATEMENT
(AGAIN, IT MIGHT NOT ALWAYS RESULT IN CODE) AND MAY BE LABELLED, THE
GENERIC FORM OF THE “END” STATEMENT IS:

END fabet,

fabet I$ OPTIONAL, BUT IF IT IS PRESENT IT MUST MATCH THE LABEL ON
THE CORRESPONDING "DO" STATEMENT. THUS,

OPTIONAL — — — — — — “> MUST MATCH IF
CYCLE:) DO FOR I = 1 T0 5; U7 PRESENT

toi ~ OPTIONAL
END_CYCLE: END (res

USE OF THESE OPTIONAL LABELS 1S RECOMMENDED FOR THE FOLLOWING REASONS:
(1) ALLOWS CROSS-CHECKING BY THE COMPILER THAT ENSURES EVERY "Do”

IS PROPERLY CLOSED,

(2) A LABEL PROVIDES A FIXED REFERENCE POINT FOR DIAGNOSTICS,
(3) MEANINGFUL LABELS INCREASE PROGRAM READABILITY,

ay

on

3/
29 0

STATEMENT GROUPS (CON’T.>

DO WHILE ,

DO WHILE (condition) ;
sor ft

ENDs

e THE STATEMENT GROUP IS REPETITIVELY EXECUTED AS LONG AS

THE (condition) REMAINS TRUE.

© IF (ondition) IS FALSE, THEN THE STATEMENT GROUP IS NOT EXECUTED

AT ALL.

© (condétton) 1$ A RELATIONAL OX A BOOLEAN EXPRESSION (NOT A

MIXTURE OF COURSE) AND IS EVALUATED PRIOR TO EACH CYCLIC .

EXECUTION OF THE STATEMENT GROUP.

e@ WHEN (condétéon) BECOMES FALSE, CYCLIC EXECUTION HALTS AND

CONTROL IS PASSED TO THE STATEMENT FOLLOWING THE “END” STATEMENT.

EXAMPLE
I = 50;
DO WHILE 1 > Os

TABLESI = 1**2;

T=] - 23
END;

STATEMENT GROUPS (CON’T.) S J

DO UNTIL a 9 /

DO UNTIL (condition) ;

END;

© THE STATEMENT GROUP IS EXECUTED CYCLICALLY UNTIL (condition)

BECOMES TRUE (1.E,, THE REVERSE OF DO...WHILE).

e THE TEST OF (condétion) I$ MADE AT THE END OF THE CYCLES

SO THE STATEMENT GROUP WILL ALWAYS BE EXECUTED AT LEAST

ONCE. |

e. AS WAS THE CASE WITH DO...WHILE, @ondétton) [S$ A RELATIONAL OR A

BOOLEAN EXPRESSION.

LOOPS THAT WILL CYCLE FOREVER:

(a)- DO WHILE (FRUEs + THIS BOOLEAN EXPRESSION WILL NEVER BECOME
FALSE,

END)

(8) DO UNTIL ALSE)«—— THIS BOOLEAN EXPRESSION WILL NEVER BECOME
TRUE s

END;

MI .

STATEMENT GROUPS (CON'T.) 29. /

DO FOR 2.

THERE ARE 2 BASIC FORMS: ITERATIVE AND DISCRETE:

ITERATIVE

DO. FOR (loop var) = {inttia£) TQ (final) BY (increment);

© (Loop var) IS AN UNARRAYED INTEGER OR SCALAR, IT IS THE

CONTROL VARIABLE (THE VARIABLE COULD BELONG TO AN ARRAY,

BUT IF SO ITS ARRAYNESS MUST BE SUBSCRIPTED AWAY).

© (initial), ({inat), AND (éncrement) ARE INTEGER OR SCALAR

EXPRESSIONS. :

© ON THE FIRST CYCLE, (oop var) WILL HAVE THE VALUE (inétéar),

© - ON EACH SUCCEEDING CYCLE, (oop var) WILL BE AUGMENTED BY
(inerement),

@ CYCLIC EXECUTION CONTINUES UNTIL @oop vax) LIES OUTSIDE THE

RANGE BOUNDED BY (énitiat) AND (ginat),

STATEMEHT GROUPS (CON’T,) 5a

NOTE: (1) INCREMENT IS ASSUMED TO BE +1 IF NOT SPECIFIED, I.E., Ald
il THIS CASE THE "BY Cxcrement)” 1$ OPTIONAL.

@ (initia), (final), AND (nerement) ARE EVALUATED ONCE

(AND THEIR VALUES SAVED) PRIOR TO INITIATION OF THE

LOOP, I.E., VALUES CANNOT BE CHANGED WITHIN THE LOOP.

EXAMPLES —

(@) , DO FOR I = 110 20;

END;

DO FOR 1 = 1 TO 20 BY I)
a tf 8

“EQUIVALENT

ENDs
(2) DO FOR I = 2d TO (J*#2-1) BY 5)

d= J - 1p) ————————__—. cannot AFrect Loop TERMINATION.
6 A t a

END:

| - |

STATEMENT GROUPS (COH’T.)

DISCRETE

DO FOR (oop var) = expy, expy, «++ exP,!

@ (foop ver) 1S AN UNARRAYED INTEGER OR SCALAR -- THE CONTROL
VARIABLE.

© THE LOOP WILL BE EXECUTED n TIMES, WITH (Loop var) = exp,

ON THE 4°” EXECUTION,

HOTE: EACH’ EXPRESSION exp, 1S EVALUATED JUST ran TO USING

IT, 1.E., ON THE 2° EXECUTION,

EXANPLES
G) DO FOR = 1, 3, 5, 9%

fob hos

END;

@ DO FOR S = SIN(30), SINC45), SIN(60))
sft

END;

g) Jel ‘ lel 8T

DO FOR 1 = J, J+2, Uti, J-6) 4 ND ryote

tas 10 -3RD evcre
J= JGHDs 36 NTH cycLe

END;

SY DD

any

& {-

STATEMENT GROUPS (CON'T.)

BOTH THE ITERATIVE AND DISCRETE "DO FOR” STATEMENTS MAY HAVE

Ail ADDITIONAL “WHILE” OR "UNTIL" CLAUSE ACTING AS A FURTHER

EXECUTION QUALIFIER:

DO FOR 1 = 170 J WHILE I < 50;

ENDs

DO FOR I = 1 TO 10000 UNTIL J = 0;

IFA>OTHENJ=J- 1)

END;

DO FOR f= 1, 3, 7, 9 WHILE. By

IF SINCQ) < .4 THEN B = FALSE;

toa

ENDs

33
eu? 37

STATEMENT GROUPS (CON'T.) 3/

DO CASE -- USED TO SELECT ONE STATEMENT TO BE EXECUTED BASED 27 (
ON A CALCULATION (ROUGHLY EQUIVALENT TO A FORTRAN
COMPUTED GOTO),

FORM:

DO CASE (exp);

® (exp)-1$ AN INTEGER OR SCALAR EXPRESSION. (SCALAR WILL BE CONVERTED

TO AN INTEGER. BY ROUNDING).

© IF (exp) EVALUATES TO 1, 2, 3, +++ K THEN:THE 187, 2D, 38D, ,.,
KTH STATEMENT: (OR STATEMENT GROUP) FOLLOWING THE "DO CASE” WILL
BE EXECUTED. |

e IN THIS SIMPLE FORM OF THE "NO CASE” NO ERROR CHECKING IS PERFORMED,

I.E., UNPREDICTABLE AND DISASTROUS BEHAVIOR WILL RESULT IF (exp)

* EVALUATES TO < 0 OR > K.

Way

STATEMENT GROUP (CON’T.)

A DO CASE 1S POWERFUL BECAUSE A SPECIFIC CASE CAN RANGE FROM A

SIMPLE STATEMENT TO A COMPLEX "DO...END” GROUP CONTAINING AN

ARBITRARY NUMBER OF STATEMENTS.

EXAMPLE

DO CASE Is
Js fy +————_—_——. CASE 1
DO;)

{ohana f o8e2
* ENDs

J = 3) + CASE 3
no;

ALPHA: PROCEDUREs
ore

CLOSE ALPHA; \ CASE 4 (ANY DO,..EHD GROUP CAN HAVE
ba NESTED BLOCKS)

CALL ALPHA,
one

END

J = 5) ———_—_—_cs 5
DO FOR K= 1, 3, 5;]

END, CASE 6
ENDs <——-____. run) gg DO CASE;

ares

Spo DG

STATEMENT GROUPS (CON’T.) 33

ERROR CHECKING ON THE CASE VARIABLE IS PERFORMED IF AN “ELSE” <277

CLAUSE IS ADDED TO THE “DO CASE”.

DO CASE (exp); ELSE jstmt] +
(case 1) :

(cabe 2)

teade K)

END;

IF (exp) EVALUATES TO < 0 OR > K THEN jstmt | IS EXECUTED (WHICH

COULD OF COURSE SIGNAL AN ERROR CONDITION).

‘@ AN ELSE CLAUSE SHOULD ALWAYS BE PROGRAMMED IF THERE IS A POSSIBILITY

THAT THE CASE VARIABLE COULD EVER MISBEHAVE!

NOTE: A DO CASE MAY HAVE A MAXIMUM OF 256 CASES.

q-ay

STATEMENT GROUPS (CON’T.)

BRANCHING (GO TO, EXIT, REPEAT)

A STATEMENT GROUP, I.E. DO...END, DO WHILE, DO UNTIL, DO FOR, DO CASE,

MAY BE BRANCHED OUT OF VIA A GO TO, BUT SUCH A GROUP MAY HOT BE

BRANCHED INTO. BRANCHING WITHIAL, OF COURSE, IS LEGAL,

LEGAL

Xs

- DOs;
tea

- END)

r DOs
one

GO TO Xy

END

r Bd;

GO TO Xs

 © END:
Ke= 1;

60 TO Xs ,

ie

WITHIN

~ TO THE END

TO THE OUTSIDE

ayy

STATENENT GROUPS (CON'T.) 52

LESH ® DOs 27) .

DO;

GO TO Xs

END; OK BECAUSE ALREADY
Xe ted oA, IN THE OUTER DO!

ae

END;

ILLEGAL =) GO TO X;

DO;

’ x: fel: ?

L END;

@ . DO;

GO TO Xs CANNOT BRANCH INTO
tae (EVEN IF NESTED)

CANNOT BRANCH INTO

a

Xs lel

Lew} 7

Na ay ENDs

STATEMENT GROUPS (CON’T.) 3/

SINCE BRANCHING WITHIN (OR OUT OF) “DO” GROUPS IS INVARIABLY

NECESSARY, AND SINCE "GO TOs” ARE UNDESIRABLE IN STRUCTURED

PROGRAMMING, HAL/S OFFERS TWO ATLERMATE CONSTRUCTIONS :

EXIT & REPEAT
EXIT

FORM 1: EXIT;
© CAUSES IMMEDIATE BRANCH OUT OF THE INNERMOST

STATEMENT GROUP IN WHICH IT IS ENCLOSED.
© EXECUTION IS DIRECTED TO THE FIRST STATEMENT

FOLLOWING THE "END" OF THE GROUP BRANCHED OUT OF.

FORM 2: EXIT tabet,

‘@ CAUSES BRANCH OUT OF THE ENCLOSING STATEMENT

GROUP THAT POSSESSES THE LABEL fabee ON ITS

"DO" STATEMENT.

@ EXECUTION IS DIRECTED TO THE FIRST STATEMENT

FOLLOWING THE “END” STATEMENT OF THAT GROUP. -

OUTER:

MIDDLE

THIS SHOWS THE ADVANTAGES IN LABELING DO,..END GROUPS,

 ~LEND

‘
te - J

STATEMENT GROUPS (CON’T.)

(DO WHILE J < 03

J=J- 2;

Q = SIN(X)##J3

DO FOR I = 1 T0 10;

ASL = AST ~ 53

DO FOR J = 1 TO 203

BSJ = BSJ - 15

IF 1 = 5 THEN EXIT;

ELSE IF Q = 0 THEN

EXIT OUTER;

END:

LENDS

NOTE THAT THE

EXIT STATEMENT ACTS LIKE A GO TO, BUT IS A MORE SECURE (AND STRUCTURED)

CONSTRUCTION.

yy ~30

3o/

Ay 7

5/

STATEMENT GROUPS (CON’T,) 302.

REPEAT (MUST BE ENCLOSED WITHIN DO FOR, DO WHILE, OR DO UNTIL GROUP),

FORM 1: REPEATS

® MUST BE ENCLOSED WITHIN A DO FOR, DO WHILE, OR

DO_UNTIL GROUP (1.E., A REPETITIVE GROUP).

e CAUSES IMMEDIATE BRANCH TO THE BEGINNING OF THE

INNERMOST REPETITIVE GROUP,

FORM 2: REPEAT 2abet;

_ @ MUST BE ENCLOSED WITHIN A REPETITIVE’ GROUP THAT

HAS LABEL abet ON ITS "DO" STATEMENT,

@ CAUSES IMMEDIATE BRANCH TO THE BEGINNING OF SAID

REPETITIVE GROUP,

Cpe. ay

oN

STATEMENT GROUPS (CON’T.)

EXAMPLES

(REPEAT
DO WHILE 1 < 1s

IF A = 0 THEN

DO;

IF K = 1 THEN REPEAT;

END;

LENDs

DO FOR I = 1 TO 100;

IF J > 50 THEN REPEAT;

END;

NON-REPETITIVE GROUP

52

303

(2) REPEAT 2abee

ONE:

\

STATEMENT GROUP (CON’T.)

DO FOR I = 1 TO 10;

Je=Ts

DO WHILE J > 0;

Je=J-1;

X$J = X$J + dy

IF X$J = 25 THEN REPEAT;

IF X$J = 0 THEN REPEAT ONE;

304

Y ms
Vy

PROCEDURES AND FUNCTIONS ARE THE TWO MOST COMMON CODE BLOCKS.

* ~~ E
*

PROCEDURES AND FUNCTIONS oe +/

3035

IF PROCEDURES/FUNCTIONS ARE COMPILED SEPARATELY THEY ARE CALLED

COMSUBs (COMMON SUBROUTINES). OTHERWISE, THEY ARE NESTED IN

A PROGRAM,

o

THE MAXIMUM NESTING DEPTH OF CODE BLOCKS IS 16.

THE MAXIMUM NUMBER OF BLOCKS (CODE AND DATA) IN A COMPILATION

IS 256 (INCLUDING EXTERNAL TEMPLATES).

PROCEDURES/FUNCTIONS MAY NEST WITHIN PROGRAM, TASK, UPDATE,

PROCEDURE, AND FUNCTION BLOCKS (1.E.. ALMOST ANYTHING).

A PROGRAM BLOCK CANNOT NEST WITHIN A PROGRAM BLOCK.

THIS IS NOT NESTING THIS IS

*Pl: EXTERNAL PROGRAM; Pl: PROGRAM;
CLOSE Pl) tan

D VERSION 6 P2: PROGRAM;
P2: PROGRAM tan
DECLARE NN NAME PROGRAM CLOSE P25

INITIAL CNAME(P1)) 5 toe

CLOSE P2; CLOSE P1;

PROCEDURES AND FUNCTIONS (CON’T,) 3 oO G

THE MAXIMUM NEST DEPTH HERE IS 4,

Pl: PROGRAM ;

a INTERNAL
ee) —————] ea BLOCKS

CLOSE Ply

PARAMETERS

PROGRAM BLOCKS CANNOT HAVE PARAMETERS -~ ONLY PROCEDURE AND FUNCTION BLOCKS MAY,
(THE OTHER BLOCKS NOT COVERED SO FAR -~ UPDATE BLOCKS AND TASK BLOCKS ~~ ARE ALSO
PARAMETERLESS,)

PARAMETERS ARE EITHER INPUT OR ASSIGN PARAMETERS, OF THESE, ONLY A PROCEDURE CAN

HAVE AN ASSIGN PARAMETER,

(3

PROCEDURES AND FUNCTIONS (CON’T.) S2

o INPUT PARAMETERS ARE USED TO PASS DATA INTO A PROCEDURE OR 3 07
FUNCTION (THEIR VALUES CANNOT BE CHANGED BY THE PROCEDURE/
FUNCTION) .

e ASSIGN PARAMETERS CAN BE USED BOTH TO PASS DATA IN AND OUT

* OF A PROCEDURE BLOCK. A FUNCTION DOES NOT HAVE ASSIGN PARAMETERS ;

FUNCTION RESULTS ARE PASSED OUT VIA A RETURN STATEMENT.

AGAIN, IT 1S RECOMMENDED THAT ALL BLOCKS (BUT ESPECIALLY FUNCTIONS

AND TASKS) BE DEFINED PRIOR TO THEIR POINTS OF INVOCATION.

 PROCEDURE BLOCK (OPTIONAL) INPUT PARAMETERS
Pete nate neil

tabet; PROCEDURE(4,» 4g, «+» 4,)

ASSIGN(Qy, Gyr +++4y)3
Snecma”

MANDATORY

IDENTIFIER : (OPTIONAL) ASSIGN PARAMETERS

PROCEDURES AND FUNCTIONS (CON‘T,) $3

FUNCTIOH BLOCK 30

cement, tinting? met tm

MANDATORY (OPTIONAL) THE TYPE AND
IDENTIFIER INPUT PARAMETERS PRECISION OF THE

DATA RETURNED BY

THE FUNCTION

NOTE: IF (@tértbutes) 1S OMITTED, THE FUNCTION IS PRESUMED

TO RETURN A SINGLE PRECISION SCALAR (1.E., THE SAME
DEFAULTS AS IN A DECLARE STATEMENT).

PROCEDURE AND FUNCTION BLOCKS MUST HAVE A CLOSE STATEMENT AS THE
FINAL STATEMENT, THE CLOSE STATEMENT IS AN EXECUTABLE STATEMENT
OF THE FORM:

CLOSE;

OR CLOSE Labee;

IF (abet) 1S PRESENT, IT MUST MATCH THE LABEL ON THE PROCEDURE/
FUNCTION BLOCK HEADER,

qr fe

PROCEDURES AND FUNCTIONS (CON'T.)

A PROCEDURE IS EXITED EITHER BY FALLING INTO COR-BRANCHING-TO)

THE CLOSE STATEMENT, OR BY USE OF A RETURN STATEMENT. A FUNCTION

MUST EXIT VIA A RETURN (exp) STATEMENT, I.E., NOT ONLY A RETURN,

BUT ONE THAT RETURNS A VALUE OF THE PROPER DATA TYPE AND

PRECISION CIMPLICIT CONVERSIONS ALLOWED).

e PARAMETER DECLARATIONS SHOULD ALWAYS PRECEDE LOCAL DATA

DECLARATIONS. IN THE CASE OF COMSUBS THIS IS REQUIRED.

INPUT PARAMETERS - PASSED BY “VALUE” IN THE CASE OF INTEGERS AND

SCALARS, ALL OTHER DATA PASSED BY “NAME” (I.E., REFERENCE),

ASSIGN PARAMETERS - ALWAYS PASSED BY "NAME",

THE CONCEPT OF A STACK, WHICH WILL BE DISCUSSED IN DETAIL LATER,

IS A KEY PART OF THE MACHINERY FOR PARAMETER PASSAGE.

3/
309

PROCEDURES AND FUNCTIONS (CON’T.) $ at

 anne © is SRO 3/0
erm neti mm Smet,

ALPHA: PROCEDURE(I, Sl, V) ASSIGN(S2, W);

DECLARE INTEGER, 13. oananeren
DECLARE SCALAR, Sl, $2 DOUBLE;
DECLARE V VECTOR, W MATRIX; DECLARATIONS
DECLARE VECTOR, X, Ys
DECLARE SCALAR, T, Us DECLARATIONS
DECLARE MATRIX, A, B, Cs

AN_ASSIGN PARM CAN BE USED AS
IF $2 —= 0 THEN INPUT AS WELL AS OUTPUT,

DO;

$270; _
f=s1V V+ 12 XY;

END;
ELSE

DO;
S2e]; _ —
f=siVX+ i277;

ENDs
IF | = 0 THEN .-

Hefl+ABe1 C;
CLOSE ALPHA; «——--_--_-——-. CAUSES A RETURN TO THE CALLER,

cpa be

(
\

PROCEDURES AND FUNCTIONS (CON’T.)

a $3

EXAMPLE ,

© INPUT FUNCTION WILL RETURN A 3x3 3B it
PARM DOUBLE PRECISION MATRIX

BETA: FUNCTIONCM) MATRIX DOUBLE;

DECLARE M MATRIX DOUBLE: \ ———--— PARAMETER DECLARATION

DECLARE M1 MATRIX DOUBLE

INITIAL CHL, 3#2, 34#3)3 ———— LOCAL DATA DECLARATIONS
DECLARE M2 MATRIX DOUBLE

INITIAL(3#2, 3#1, 313)

RETURN ML + 2 sy
CLOSE BETA; < WILL NEVER BE EXECUTED

BECAUSE OF RETURN STMT,

NOTE: A RUN-TIME ERROR WILL OCCUR IF THE CLOSE STATEMENT IS EVER REACHED
IN A FUNCTION.

PROCEDURES ARE ENTERED VIA A CALL, STATEMENT THAT MAY OR MAY WOT HAVE
INPUT OR ASSIGN ARGUMENTS -- DEPENDING ON WHETHER THE PROCEDURE HAS INPUT
OR ASSIGH PARAMETERS. ASSIGN

ARGUMENTS

CALL ALPHACJ, X, V1) ASSIGN(T, W)s
nome vom

INPUT
ARGUMENTS

PROCEDURES AND FUNCTIONS (CON'T.) 3/

12.
FUNCTIONS ARE ENTERED BY INVOCATION, I.E., BY USING THE NAME OF THE
FUNCTION AS THOUGH IT WERE A DATA TYPE. IF THE FUNCTION HAS INPUT
PARAMETERS, THEN THE INVOCATION MUST SPECIFY CORRESPONDING INPUT
ARGUMENTS,

is = BETA);

FUNCTION BETA TAKES MATRIX M2 aS

AN INPUT ARGUMENT AND RETURNS A

A NEW MATRIX THAT IS THEN ASSIGNED
to M3.

IF THE FUNCTION HAS NO PARAMETERS, THEN THE PARENTHESIZED LIST IS
OMITTED. ;

© MORE FREEDOM (E.G. MISMATCH OF DATA TYPES AND/OR PRECISION)

IS ALLOWED FOR INPUT ARGUMENTS<——~INPUT PARAMETERS THAN IS

ALLOWED FOR ASSIGN ARGUMENTS ~——> ASSIGN PARAMETERS,
S
e

PROCEDURES AND FUNCTIONS (CON'T.)

INPUT PARAMETERS - 3 1s

REMEMBER THAT PARAMETERS ARE DECLARED DATA ITEMS, BUT ARGUMENTS

(INPUT, AT LEAST) CAN BE EXPRESSIONS:

ALPHA: PROCEDURE(I, S)5

DECLARE I INTEGER, S SCALAR:
eae

CLOSE ALPHAs

CALL ALPHA(K? + 3 + SIN(7), LOG(COSH(H)) + 3.14159);

VALUE WILL BE COMPUTED Laue WILL BE COMPUTED
AND PHYSICALLY ASSIGNED AND PHYSICALLY ASSIGNED
To I, TO S,

IF INPUT ARGUMENTS ARE EXPRESSIONS THAT RESULT IN NON-INTEGER OR SCALAR

RESULTS, HAL/S PUTS THE EVALUATED EXPRESSION IN A TEMPORARY LOCATION

AND PASSES THE ADDRESS OF THIS TEMPORARY LOCATION TO THE PROCEDURE.

MP.

PROCEDURES AND FUNCTIONS (CON'T.)

IMPLICIT CONVERSIONS (INPUT PARAMETERS)

[to IMPLICIT CONVERSIONS LEGAL FOR ASSIGN PARAMETERS]

INPUT PARM INPUT ARG

SCALAR SINGLE) © : SCALAR SINGLE

SCALAR DOUBLE Cd SCALAR DOUBLE

INTEGER SINGLE INTEGER SINGLE

INTEGER DOUBLE INTEGER DOUBLE

CHARACTER CHARACTER

VECTOR SINGLE — VECTOR SINGLE

VECTOR DOUBLE | VECTOR DOUBLE

(LENGTHS MUST MATCH, OF COURSE)

MATRIX SINGLE { MATRIX SINGLE

MATRIX DOUBLE as (MATRIX DOUBLE

(ROW/COL SIZES MUST MATCH)

BOOLEAN CT) BOOLEAN

NOTE THAT THE LEGAL CONVERSIONS FOR INPUT ARG > INPUT PARM

ARE THE SAME AS FOR ASSIGNMENT STATEMENTS.

Mpurxy

Cy. vaG

C 5

’ : > PROCEDURES AND FUNCTIONS (CON’T.) 37 ~

ASSIGN PARAMETERS

ASSIGN ARGUMENTS MUST BE HAL/S DATA ITEMS -- THEY CANNOT BE EXPRESSIONS,

ASSIGN ARGUMENTS MUST MATCH THE CORRESPONDING PARAMETER IN TYPE AND

PRECISION,
MATRIX/VECTOR DIMENSIONS MUST MATCH EXACTLY,

IF THE ASSIGN ARGUMENT IS AN ARRAY IT MUST EXACTLY MATCH THE NUMBER
OF DIMENSIONS (AND RANGES) OF THE ASSIGN PARAMETER,

AN ASSIGN ARGUMENT OF VECTOR OR MATRIX TYPE CAN BE COMPONENT
SUBSCRIPTED -- PROVIDED THE EFFECT IS TO REDUCE THE VECTOR/MATRIX
TO A SINGLE SCALAR.

AN ARRAY CAN.BE SUBSCRIPTED -- BUT ONLY IF ALL ARRAYNESS IS
SUBSCRIPTED AWAY, I.E,, THE ARRAY IS REDUCED TO A SINGLE ELEMENT,

L

PROCEDURES AND FUNCTIONS (CON’T,)

EXAMPLES

(FROM PROGRAMMER'S

GUIDE)

DECLARE M1 MATRIX (3,3),
. MZ MATRIX(3,3) DOUBLE,

M3 MATRIX(4,4),5
S SCALAR,
I INTEGER,
ID INTEGER DOUBLE}.

St- 4 7

TUN: mm on
rprocepores; ih SY TE EVE

‘TWO: PROCEDURE (A,B) ASSIGN(C);
DECLARE A MATRIX(3,3);
DECLARE B INTEGER;
DECLARE C INTEGER;

¢
XM

32
3/b

=>3

PROCEDURES AND FUNCTIONS (CON’T.) 3 a;

LEGAL:

S = § + ONE;

S=S+M ? Note: subscripts may be

1, ONE

M2 = TWO(M2,S) + M2;

M2 = TWO(M2,1)7

ILLEGAL:

M2 = TWO(M3,1.5)5

M2 = TWO(ML,! ARGUMENT! |[I);

\y-y iC

a nieinemencetilnniCihSD,

" integer expressions of .
any kind.

M2 is converted to
single precision
during transmission.

I is converted to
sealar type during
transmission.

row and column
" dimensions of M3 do

not match those of
parameter A,

transmission of character
type argument to scalar
parameter B incurs an
illegal type conversion.

SEY y

EXAMPLES

(FROM PROGRAMMER’ S

GUIDE)

PROCEDURES AND FUNC110NS (CON’T.)

ONE: FUNCTION INTEGER;
Py

tia

GLH
CLOSE}

TWO: FUNCTION(A,B) MATRIX(4,4) DOUBLE;
DECLARE A MATRIX (4,4);
DECLARE B SCALAR;

DECLARE M1 MATRIX (4,4),
M2 MATRIX (4,4) DOUBLE,
M3 MATRIX(3,3),
S SCALAR,
I INTEGER;

52
3p

53
PROCEDURES AND FUNCTIONS (CON’T.) 3 / 9

CALL ONE;
CALL ONE (I) ;~<—+—.--_--_—. illegal: ONE possesses no

: parameters,
T

CALL TWO(M2 ,S4+1) ASSIGN(I);
. Lee Values may be passed in

\ and out of TWO through I.

type conversion required here.

‘precision conversion required
here.

CALL TWO(M3, ID) ASSIGN(S);

type conversion illegal for
assign arguments.

precision conversion required.

dimension mismatch: parameter is
a 3x 3 matrix,

CALL TWO(M1,I) ASSIGN(I);

appearance in both places
is legal. :

PROCEDURES AND FUNCTIONS (CON’T.)
PROCEDUPE QUIRKS
THIS IS ILLEGAL:

ALPHA: PROCEDURE(A) ASSIGNCA)
DECLARE A;
Fons

CLOSE ALPHAs
BUT THIS IS.0K: .

ALPHA: PROCEDURE(A) ASSIGH(B)
DECLARE A, Bs

CLOSE ALPHA,
CALL ALPHA(Q) ASSIGN(Q);

IN THIS LATTER CASE, NO HIDDEN DANGERS EXIST IF @ IS AN INTEGER OR
SCALAR OR A BIT (BOOLEAN) -- SITICE Q WILL BE PASSED BY VALUE ON THE

INPUT SIDE AND ASSIGNED VIA REFERENCE ON THE ASSIGN SIDE, FOR OTHER

DATA, HOWEVER, MODIFICATION OF THE ASSIGN PARAMETER CAN RESULT IN
MODIFICATION OF THE INPUT PARAMETER!

y os y 4

oN

PROCEDURES AND FUNCTIONS (CON’T.)

THIS PROBLEM WILL NOT OCCUR IF A “TEMPORARY” COPY HAD TO BE MADE

FOR THE INPUT ARGUMENT, £.G., BECAUSE A PRECISION CONVERSION WAS

NECESSARY.

EXAMPLE .

ALPHA: PROCEDURE(V) ASSIGN(H),
DECLARE VECTOR DOUBLE, V, Us
W = 2s
X = V + VECTORS (@DOUBLE) (1,1,2)5

CLOSE ALPHAs

DECLARE VECTOR DOUBLE, Us
TROUBLE rea

-(CALL ALPHACH) ASSIGN(D);

THIS WOULD NOT BE A PROBLEM IF, WITHIN ALPHA, V WERE DECLARED

VECTOR SINGLE INSTEAD!

S}-

or

PROCEDURES AND FUNCTIONS (CON’T.) Ss /

FUNCTION RETURN . 322

A FUNCTION IS EXITHED VIA.
RETURN (exp);

WHERE (exp) 1S AN EXPRESSION WHICH MATCHES THE DECLARED TYPE OF

THE FUNCTION -- EXCEPT THAT THE STANDARD IMPLICIT CONVERSIONS ARE

ALLOWED:

SCALAR INTEGER

INTEGER ~<————— SCALAR

CHARACTER = INTEGER
SCALAR

NOTE THAT PRECISIONS HEED NOT MATCH SINCE HAL/S WILL GENERATE CODE

NECESSARY TO ACCOMPLISH PRECISION MATCHING.

NOTE: REMEMBER THAT WE CANNOT SAY

BETA: FUNCTION(I, J) (ARRAY (6)/SCALAR;

I.£., NO ARRAY DECLARATION IS POSSIBLE. THEREFORE, A FUNCTION

CAN NEVER RETURN AN ARRAY!

PROCEDURES AND FUNCTIONS (CON’T.) Ss 2

EXAMPLE 3 2 3

BETA: FUNCTIONC!, M, V) SCALAR;

DECLARE I INTEGER,

M MATRIX DOUBLE,

V VECTOR;

RETURN 1#*2 + 6) “~~~ WILL. BE CONVERTED TO A SINGLE
PRECISION SCALAR

RETURN M$(3,2)) <————————-—-——— Le BE CONVERTED FROM DOUBLE’ TO
GLE

RETURN ‘T= ' IIT;

' ——— ERROR ~~ CHARACTER STRINGS DO NOT
‘

CONVERT TO SCALAR IMPLICITLY,
CLOSE BETA;

PROCEDURES AND FUNCTIONS (CON’T.) | af
CHARACTER STRINGS AS PARAMETERS: 32 ¥

ALL INPUT AND ASSIGN PARAMETERS OF CHARACTER TYPE

MUST BE DECLARED AS:

CHARACTER (#)

-TVE., SPECIFYING AN INDEFINITE LENGTH, THIS AVOIDS

TRUNCATION PROBLEMS DUE. TO DYNAMICALLY VARYING SIZES

OF STRINGS,

EXAMPLES

(@ ALPHA: PROCEDURE(C1) ASSIGN(C2),

"DECLARE CHARACTER(*), C1, C2,

fo ee

(@) ALPHA: PROCEDURE ASSIGN(C);
DECLARE C CHARACTER(7) ; <————— ILLEGAL

G) BETA: FUNCTION CHARACTER(8) 5

@) BETA: FUNCTION CHARACTER(*);~«——— ILLEGA

NOTE THAT FUNCTIONS OF CHARACTER TYPE MUST SPECIFY THEIR MAXIMUM

LENGTH JUST AS A STANDARD DECLARE HAS TO!
~-

ad Y

PROCEDURES AND FUNCTIONS (CON'T.) — 3/

ARRAYS AS PARAMETERS: Bas
2- AND 3-DIMENSIONAL ARRAY ARGUMENTS/PARAMETERS MUST ALHAYS

MATCH EXACTLY IN DIMENSION AND RANGE:

ALPHA: PROCEDURE(B) ASSIGN(C);
DECLARE B ARRAY(2,4) INTEGER,

C ARRAY(3,4,5)3

CLOSE ALPHA; '
DECLARE U ARRAY(8) INTEGER,

V ARRAY(2,4) SCALAR,
W ARRAY(3,4,5)5

CALL ALPHACID ASSIGN (Ws
ILLEGAL: Urs 1-D, B ts 2-D

CALL ALPHACY) ‘ASSIGN (HDs

OK! ARRAY TEMPORARY WILL BE CREATED (EXPENSIVE)

“CALL ALPHA (WS(2 AT 1, *, 3)) ASSIGN(W)s

even THIS WILL WORK SINCE AN ARRAY (2,4)

WILL RESULT ~~ WHICH WILL THEN REQUIRE

CONVERSION TO INTEGER,

PROCEDURES AND FUNCTIONS (CON’T,) ad

ONE DIMENSIONAL ARRAYS ARE MORE FLEXIBLE -~ IF THE PARAMETER IS 326
DECLARED AS:

ARRAY (n)
WHERE

2 <n < 32767
THEN THE CORRESPONDING ARGUMENT MUST ALSO BE ARRAY(n), I.E,, MUST

MATCH EXACTLY AS IN THE 2-D AND 3-D CASES, IF:

ARRAY (*)

IS SPECIFIED, HOWEVER, THEN THE ARGUMENTS CAN BE 1-D ARRAYS OF ANY

LEGAL LENGTH. THIS ALLOWS PROCEDURES TO OPERATE ON ARRAYS OF

VARIABLE SIZE.

EXAMPLES:

(@) ALPHA: PROCEDURECA);
DECLARE A ARRAY(6) INTEGER;

CLOSE ALPHAs +

ALPHA CAN ONLY BE CALLED WITH AN ARRAY(6) INPUT ARGUMENT:

DECLARE B ARRAY (6) INTEGER;

CALL ALPIIA(B);

as

PROCEDURES AND FUNCTIONS (CON’T.)

(2) ALPHA: PROCEDURECA)s
DECLARE A ARRAY(*) INTEGER:
ere

CLOSE ALPHA;

DECLARE C ARRAY(6) INTEGER,

D ARRAY(30000) INTEGER DOUBLE,

E ARRAY(4) SCALAR:

CALL ALPHA(C)s

CALL ALPHA(D) THESE ARE ALL LEGAL!

“CALL ALPHA(E) s

WITHIN THE PROCEDURE, THE ACTUAL LENGTH OF THE ARRAY(*)

ITEMS CAN BE FOUND BY MEANS OF THE BUILT-IN FUNCTION

SIZE(o)

33
327

PROCEDURES AND FUNCTIONS

EXAMPLE

ALPHA: PROCEDURE(A) ASSIGN(B);

DECLARE ARRAY(*) SCALAR, A, By

DECLARE I INTEGER;
eee

DO FOR I = 1 TO SIZECA)s
BSI = SINH(ASI);

END;
a# ¢

B = SINH(A)s <——————-_ AN EXAMPLE OF AN ARRAYED ASSIGNMENT

(WILL BE DISCUSSED LATER)

CLOSE ALPHAs
IMPORTANT POINT! THE COMPILER
CAN ALSO OBTAIN THE SIZES OF ARRAY(*)

AT RUN-TIME.

Ua 7

Version Ik-61-7 .

C. BUILT-IN FUNCTIONS 3249

HAL/S typically supports the following set of built-in functions.
. Minor variations may arise between implementations. .

ARITHMETIC FUNCTIONS

@ arguments may be INTEGER or SCALAR types i
@ in functions with one argument, result type matches :

argument type (except as specifically noted) |

@ in functions with two arguments, unless specifically
specified, result type is scalar if either or both
arguments are scalar; otherwise the result type is
integer .

140

@ arrayed arguments cause multiple invocations of
the function, one for each array element - arrayness
of arrayed arguments must match

Name, Arguments Comments

ABS (a) , jal

CEILING (a) smallest integer > a

DIV (ca,B) integer division a/8 (arguments
rounded to integers)

FLOOR (a) largest integer < a

MIDVAL (a,8,Y) the value of the argument which
is algebraically between the
other two. If two or more argu-
ments are equal, the multiple
value is returned. Result is
always scalar.

MOD (a, 8) a MOD 8B

. ODD (a) TRUE 1 if a odd \ result is
FALSE 0 if a even BOOLEAN

REMAINDER (a,8) signed remainder of integer di-
. vision a/B (argument rounded

to integer)

C-1

Smee
TERMETRICS INCORPORATED + 701 CONCORD AVENUE +: CAMBRIDGE, MASSACHUSETTS 02136 + (617) 661-1840

<)

5

HAL/S-FC COMPILER SYSTEM

SPECIFICATION

IR-95"5

iL March 1976

INTERMETRICS APPROVAL

Sally

_ Avs \. Wats |
Dr. F. H. Martin
Shuttle Program Manager

||

LJ INTERMETRICS

 |

__— INTEAMETRICS.!

Daniel 3. Ackly AL
Head, anguage Compiler Department

DMDVAL 239

BAL/S-FC LIBRARY ROUTINE DESCRIPTION Bb

Source Member Name: _ DMDVAL Size of Code Area: 20 aw

Stack Requirement: 18 Ew Data CSECT Size: Q Bw

£— intrinsic Q) procedure

Other Library Modules Referenced: None

ENTRY POINT DESCRIPTIONS

Primary Entry Name: DMDVAL

Function: Finds mid value of three double precision scalar
: arguments.

Invoked by: . --

[2] compiler emitted code for HAL/S construct of the form i

MIDVAL(A,B,C) where A,B,C are double precision scalars.
.

C Other Library Modules: —

" ¥xecution ‘Time (ederoseconds) : 41.4

Input Arguments: ‘ . , .

Pype Precision Row Passed Units

scalar DP FO i
scalar DP F2 :

out ittithaes: DP mo i
Type Precision How Passed — Units i

scalar ‘ DP. : FO

Errors Detected: °
Error @ [+ +) Cause” oo. Fixup

i

Comments: :

Registers Unsafe Across Call: ¥0,¥F1,F2,F3,F4,"5.

Algorithm: IF A = B THEN RETURN -A; i
IF A < B THEN DO; - o wl

IF B <= C THEN RETURN B; ‘
ELSE IF A <= C THEN RETURN C; : : '

ELSE RETURN A;
END; . . :

ELSE po; se .
IF C <= B THEN RETURN B; . . : _t
ELSE IF ¢ <= A THEN RETURN C; : . ‘ : —

ELSE RETURN A; .
END; so . ‘

5-55" Con ;
INTERMETRICS INCORPORATED « 701 CONCORD-AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 = (617) 661-1860:

Version IR-61~7

ARITHMETIC FUNCTIONS (CONTINUED)

Name, Arguments Comments

ROUND (a) nearest integral value to a

SIGN (a) +21 a>o
~1 a <0

SIGNUM (a) +1 a>o
0 a= 0
1 a 0

TRUNCATE (a) largest integer < ja] times
SIGNUM (integer (c))

“METRICS INCORPORATED #701 CONCORIAVENLE » PAMBRINTE aMMBACHLSETTS 12s MOTT REL wAEn
c~2

53
330

UO

102

~ S37

ALGEBRAIC FUNCTIONS

® arguments may be integer or scalar types - conversion
to scalar occurs with integer arguments

@ xresult type is always scalar

@ arrayed arguments cause multiple invocations of the
function, one for each array element

@ angular values are supplied or delivered in radians.

Name, Arguments Comments

[ARCCOS (a) cost a jaf-< 1

ARCCOSH (a) cosh”? q a>l

ARCSIN (a) sinto, fal <1

ARCSINH (a) sinh} a

=n < tan (0/8) < 1

ARCTAN2 (2,8) Proper Quadrant if: j

pre Soe otk
ARCTAN (a) tan"+ a j

ARCTANH (a) tanht a fal < 1

cos (a) cos a

COSH (a) cosh a

EXP (a) e

LOG (a) log, a » a@>o

SIN(a) . sin a

SINH (a) sinh a

SORT (a) va 1 . @20 -

TAN (a) tan a

TANH (a) tanh a

c-3-

INTERMETRICS INCORPORATED -701:CONCORD AVENUE - CAMBRIDGE, MASSACHUS ETTS 02128 G17) 861-1840

 vk

ote oe csr th, Te the

St.

VECTOR-MATRIX FUNCTIONS

@ arguments are vector or matrix types as indicated

@ result types are as implied by mathematical operation

@ arrayed arguments cause multiple invocations of the function, one for each array element

Name, Arguments Comments . cee CRN NENTS SNe
ABVAL (a) length of vector a

DET (a) determinant of square matrix a ,

inverse of nonsingular square INVERSE () matrix «
sum of diagonal elements of square TRACE (a) matrix a

TRANSPOSE (a) transpose of matrix a -

UNIT (a) unit vector in same direction ° as vector a

TPE LL en ei

MISCELLANEOUS FUNCTIONS

Version IR~6l=7 3)

@ arguments are as indicated; if none are indicated

the function has-no arguments

e result type is as indicated

116

ne eguments Result Type Comments

CLOCKTIME scalar returns time of day gt

DATE integer returns date (implementation

dependent format)

ERRGRP integer returns group number of last

error detected, or zero

ERRNUM integer returns number of last error

. detected, or zero

PRIO integer returns priority of process

calling function

RANDOM scalar returns random number from

rectangular distribution over

range 0-1

RANDOMG scalar returns random number from

Gaussian distribution mean

zero, variance one.

RUNTIME scalar returns Real Time Executive

Clock time (Section 8.)

NEXTIME scalar <label> is the name of a pro~

(<label>) gram or task. The value re-

turned is determined as follows,

a) If the specified process was

scheduled with the REPEAT

EVERY option and has begun

at least one cycle of execu~

tion, then the value is the

time the next cycle will

begin. .

b) If the specified process was

scheduled with the IN or AT

phrase, and has not yet begun

execution, then the value is

the time it will begin execu-

tion.

ec) Otherwise, the value is equal

to the current time (RUN- TIME function).

co ARTE AEP AMAA BAR 5.

136

GER TOL PANED RE AVENE SAAN bd SEAM IOETIR SET = AT, MOWED.

J

Version IR-61-7

MISCELLANEOUS FUNCTIONS (CONTINUED)

Name, Arguments Result Type Comments

SEL (a,8)

Same as a a may be integer or bit

type. & must be integer type.

If a is integer type, the re-
sult is an integer whose
internal binary representation
is that of a shifted left by
6 bit locations. The signed
nature of the integer a is
taken into account in an
implementation dependent
manner which depends upon the
number system and word size -
of the target computer.

‘If a is bit type, the result
is a bit string containing
the value of a shifted left
by 8 bit locations. «a is
treated as an unsigned logical
quantity. The size of the
result is implementation de-
pendent.

. Arrayed arguments produce multi-
ple invocations of the function,
one for each array element -
arrayness of arrayed arguments
must match.

SHR (a,8)

APEINe WIAMOONOATEN. INCONCORD.

Same as a
c-5

 a may be integer or bit type.
B must be integer type.

Results are as defined for the

SHL function except that all

shifting occurs to the right.

Arrayed arguments produce
multiple invocations of the

function, one for each array

-element - arrayness of arrayed

-argquments must match.

MLE « CAMBRIDOE WAUGACKUSETIS 92128 > SIT S00)

©)

D

CBARACTER FUNCTIONS

@ first argument is character type - second argument

is as indicated (any argument indicated as character
type may also be integer or scalar, whereupon conver-
gion to character type is implicitly assumed)
result type is as indicated

‘@, arrayed arguments produce miltiple invocations of
the function, one for each array element < arraynesses
of arrayed arguments must match

Name, Arguments Result Type Comments

INDEX (a,8) integer 8 is character type ~ if string 8
. eppears in string a, index point-

ing to the first character of B is
returned; otherwise zero is re--

turned

LENGTH (a) integer returns length of character
string ae :

Bis integer type - string a is
LUST (a +B) character expanded to length 8 by padding

on the right with planks
8 > length (a)
B 18 integer type ~- string a is

RIUST (a8) character expanded to length 8 by padding
ga the left with blanks

> length (a)

TRIM (a) character | leading and trailing blanks are
stripped from a

c-7 -

NTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 681 “1840

BIT FUNCTIONS

arguments are bit type

@ result is bit type

arrayed arguments produce multiple invocations |
'of the function, one for each array element -
arrayness of arrayed arguments must match

Name, Arguments | Result Type Comments

XOR(a,B) bit Result is Exclusive OR of a
and 6. Length of result is
length of longer argument.
Shorter argument is left
padded with binary zeros
to length of longer argu-
ment. .

ARRAY FUNCTIONS

@ arguments are n-dimensional arrays where n is
arbitrary

@® arguments are integer or scalar type

@ result type matches argument type and is

unarrayed

Name, Parameters Comments

(eee wecameeceene rome nents SAP ae enn NCEE I ES

MAX (a) - maximum of all elements of «

MIN (a) minimum of all elements of a

PROD (a) product of all elements of a

SUM (a) : gum of all elements of a
c-8

ad

5

-ERMETRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02158 « (617) 881-1840

SIZE FUNCTION

Name, Argument

pcr I NNN ET AS

SIZE (a)

Comments

One of the following must hold:

@ a is an unsubscripted arrayed

: variable with a one~dimension-
al array specification -
function returns length of

array.

@ e@ ‘s an unsubscripted major

: acture with a multiple
© * specification -
£ tion returns number of
Cc .88.

® oa 48 an unsubscripted

structure terminal with a

one-dimensional array speci-

fication ~- function returns

length of array.

Result is of integer type

c-9

METRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661 “1840

wet x.

S|
33Y

BIT STRINGS
REMEMBER THAT BOOLEAN = BIT(1)

@® BIT STRING LITERALS
BIN(n)'bbbb,,,5? on BIN’ bbbb,, ,b!

OCT(n)’o000,,,07 OR OCT’ o000,,,0'

HEX(n)‘hhhh,,.h! on HEX'hhhh,, ,h!

. DEC(n)'dada,,,4’ on DEC‘daad,, ,a’

e THE REPETITION COUNT (m) IS OPTIONAL

© THE RESULTING BIT LITERAL MUST HAVE BETWEEN 1 AND 32 BITS,

_ EXANPLES
a LENGTH
BIN'1011' = 4011 y
BIN(3)'101" = 101101101 9
HEX(2)"FRE* = 111111911110111111111110 24
oct'714" = 111001100 9
DEC'25° = 11001

 tn ete ent a ne mt

3/
BIT STRINGS (CON'T.) 337

BIT DECLARATION

DECLARE name BIT(n)s

WHERE lens 32

AGAIN, NOTE THAT:

DECLARE B BIT(1)s

AND

DECLARE B BOOLEAN;

ARE EQUIVALENT. BIT DECLARATIONS CAN BE COMBINED HITH OTHER

DECLARED DATA IN COMPOUND AND FACTORED DECLARES, E.G.,

DECLARE BIT(4), Bl, B2, B3;

DECLARE I INTEGER, Bl BOOLEAN,

B2 BIT(32), $ SCALAR DOUBLE,

B3 BIT(6);

s/

BIT STRINGS (CON‘T.)

(©) BIT STRING INITIALIZATION

BIT STRINGS ARE INITIALIZED VIA AN INITIAL/CONSTANT LIST
CONTAINING BIT STRING LITERALS:

DECLARE BL BIT(16) INITIALCHEX'33F*),
B2 BIT(1) CONSTANT (FALSE),

B3 BIT(8) CONSTANT(BIN‘ 11100111’),
BY ARRAY(3) BIT(2) INITIAL(BIN’10°, BIN'OO’, BIN’11’);

LITERALS ARE PADDED ON THE LEFT WITH ZEROS OR TRUNCATED ON THE
LEFT AS REQUIRED,

- DECLARE B1 BIT(8) INITIAL(BIN'1‘),
B2.BIT(4) INITIAL CHEX’EF*)s

RESULTS. IN:
Bl: 00000001 .
B2-= 111 (4 BITS LOST)

4

BIT STRINGS (CON’T.) 3/

(G) BIT STRING SUBSCRIPTING rb 3 ¥/

~ COMPONENT SUBSCRIPTING -

(UNARRAYED BITS)

e TO SELECT THE 174 BIT FROM A BIT STRING (RESULT IS A

BIT(1)):

—*s BIT_STRINGSI

WHERE

l<elet - + + (L = LENGTH OF BIT_STRING)

"1 CAN BE VARIABLE, 1.£., AN EXPRESSION,

e TO SELECT 1 BITS FROM A BIT STRING STARTING AT THE JTH

(RESULT IS A BIT(I)):

BIT_STRINGS(I AT J)

WHERE

1<1< AND IS KNOWN AT COMPILE TIME

AND 1 < J < 4-1 +1 AND MAY BE VARIABLE (AN EXPRESSION).

342.
BIT STRINGS (CON’T.)

© TO SELECT A SUBSTRING STARTING WITH THE ITH BIT AND
’ ENDING WITH THE JTH,

BIT_STRING$(I TO J)
WHERE .

1 AND J ARE KNOWN AT COMPILE TINE, AND
leIcJdce

NOTE (1): THE ESSENCE OF THE RULES FOR SUBSCRIPTING I$ THAT
THE RESULTANT BIT STRING MUST HAVE A LENGTH KNOWN
AT COMPILE TIME (AND OF COURSE LIE WITHIN 1 AND 32). .

NOTE (2): SIHCE BOOLEANS ARE EQUIVALENT TO BIT(L), THEY MAY
‘ BE COMPONENT SUBSCRIPTED -- ALTHOUGH THIS I$ SENSELESS,

THIS EXPLAINS, HOWEVER, THE FACT THAT ARRAY SUBSCRIPTS
ON BOOLEAN ARRAYS MUST HAVE A TRAILING COLON:

- BOOLTABLES(1:)

BIT STRINGS (CON’T.) | 3/

- ARRAYED BIT STRINGS ~ 3 43

BIT STRINGS (AND BOOLEANS) MAY, OF COURSE, BE

ORGANIZED INTO ARRAYS OF 1, 2, OR 3 DIMENSIONS.

ASSUNE: |
-B 1S AN ARRAY(4) OF BIT(5) STRINGS:

B = (101105, 000007, 01100), 11111)

THEN
BS(2:) = 00000, A BIT(S)

 BE(213) = 0p ~ ABITCD
BS(Li2 AT 3) = 1p -— ABIT@)
BS(2 AT 2: 3 AT 3) =

(000, 10>) ARRAY (2) BIT(3)
_BE(*11) = (1ys Og, Oy, 1p) — ARRAY(H) BITC)

BIT STRINGS (CON’T.) —

©) BIT STRING OPERATIONS

LEGAL OPERATIONS: (SAME AS BOOLEANS WITH THE ADDITION OF

CATENATION)

ay INTERSECTION

. on CONJUNCTION

ar CONPLENENT

te CATENATION

COMPLEMENT - INVERTS THE LOGICAL VALUE OF EVERY BIT IN THE STRING,

IF B = 101101011

THEN “B= 010010100

5)
344

BIT STRINGS (CON’T,) 3 is

CONJUNCTION -- OR’s ALL CORRESPONDING BITS TOGETHER

(BINARY OPERATION).

IF Bl = 11101011

B2 = 10011100

THEN B1IB2 = 11111111

NOTE: IF THE THO BIT STRINGS ARE OF UNEQUAL LENGTH, THE
SHORTER IS PADDED ON THE LEFT WITH ZEROS BEFORE ORrnc,
THE RESULTANT BIT STRING HAS THE LENGTH OF THE LONGER

+ STRING,

IF Bl = 101

_ -B2 = 111000
B1IB2 = 111101 (A BIT(6))

BIT STRINGS (CON’T.)-

INTERSECTION ~ AND’s ALL CORRESPONDING BITS TOGETHER

(BINARY OPERATION).

IF Bl = 1101001

B2 = 0110010

THEN Bi AND B2 = 0100000

NOTE: IF THE THO BIT STRINGS ARE OF UNEQUAL LENGTH, THE

SHORTER 1S PADDED ON THE LEFT WITH ZEROS REFORE ANDinc.

THE RESULTANT BIT STRING HAS THE LENGTH OF THE LONGER
STRING,

IF Bl'= 101
B2 = 110110

- THEN B1 AND B2 = 000100 (BIT(6))

wt

BIT STRINGS (CON’T,) 52
CATENATION - TWO BIT STRINGS (BOOLEANS) CAN BE CHAINED 347

(CATENATED) TOGETHER TO FORM A SINGLE (LONGER)

BIT STRING. THE SECOND STRING IS APPENDED TO THE

END OF THE FIRST. IF THE RESULTANT BIT STRING

EXCEEDS 32, THEN THE LEFTMOST EXCESS BITS ARE

TRUNCATED.

IF Bl = TRUE = BIN’L’
B2 = 10110

THEN B1 CAT B2 = 110110 BIT(6)

IF Bl = 11011
B2 = 10101

THEN B1I1B2 = 1101110101 BIT(10)
. IF Bl = 10101010101010101 BIT(17)

b2 = 110110110110110110 pitas)
 B1{ |B2 *<ootno OANA

t

THROWN ,

AWAY

B1I1B2 = 01010101010101119110110110110110 A BITG2)

BIT STRINGS (CON'T.)

(F) PRECEDENCE

HI
—, HOT 1 — COMPLENENT

“1b CAT =. 2s CATENATION
g, AND 3 INTERSECTION
1, OR 4 CONJUNCTION

LO
SEQUENCES OF OPERATIONS OF THE SAME PRECEDENCE ARE
EVALUATED LEFT TO RIGHT.

EXAMPLE!

IF (Bill—7B2 | B3 & Ba | B511B6)=ON

606600
I.E.» EQUIVALENT TO:

IF (¢(BLI| 782)! (B3eB4) | (B51 1B6))=0N
(WHICH 1 EASIER TO READ)

s)
a4y

BIT STRINGS (CON'T,)

(6) BIT STRING ASSIGNMENTS

L_STRING = R_STRING

@ NEITHER, EITHER, OR BOTH MAY BE SUBSCRIPTED.

@ IF L_STRING > R_STRING IN LENGTH, THEN R_STRING IS

LEFT PADDED WITH ZEROES PRIOR TO ASSIGNMENT

© IF L_STRING < R-STRING IN LENGTH, THEN R_STRING

TS TRUNCATED FROM THE LEFT AS NEEDED.

EXAMPLES!

LET Bl BE A BIT(8)

B2 BE A BIT(6) = 110110

THEN Bl = B2 RESULTS IN -

Bi = 00110110

IF B3 1S A BIT(10) = 1010111101

THEN Bl * B3 RESULTS IN

Bl = 10111101

379:

BIT STRINGS (CON'T.)

IF Bl = 11001110 BIT(3)

B2 = 110110 BIT(6)

THEN

A) B1$(3 AT 2) = B2 RESULTS
IN Bl = 11101110

TEs ,

oud, v .

1001110 > _ 11101110

B) B1S(5 AT 3) = B2$(2 TO 4) RESULTS
IN B1 = 11001010

o> TEs

110110
{

si LEFT PADDED

11001110 —-——->11001010

C) Bi$3 = B2 RESULTS

IN-Bl = 11001110

LBs

110110 LEFT TRUNCATED
11001110 ——> 11001110

BIT STRINGS (CON'T.) +
337/

(1) BIT STRINGS IN CONDITIONAL STATEMENTS

o IF BIT STRINGS ARE COMPONENT SUBSCRIPTED DOWN TO A SINGLE BIT,

THEN THEY, MAY BE MIXED WITH BOOLEANS TO FORM BOOLEAN EXPRESSIONS,

EXAMPLES!

Bl BIT(4) == 1101

B2 BIT(8) = 10110100

B3 BOOLEAN = TRUE

B4 BOOLEAN = FALSE

Po

IF Bl THEN X = 03

IF B1$] THEN X = Os

mt

ILLEGAL ~- Bl IS NOT A BOOLEAN,

TRUE Laut BE EXECUTED

IF cordaos2) THEN KS — ILLEGAL -~ Bl 1S NOT A BOOLEAN.

IF (B1$28B2$38B3| BA) THEN X = 0;

TRUE FALSE WILL BE EXECUTED

~ANy i

BIT STRINGS (CON'T.)

e BIT STRINGS MAY BE COMPARED FOR = OR—V= (CLASS II OPERATORS)

‘TO FORM RELATIONAL EXPRESSIONS.

E.Gs,

"DO WHILE B1 = B23
IF B2 = BIN'101" THEN DOs

_ IF THE BIT OPERANDS ARE OF UNEQUAL LENGTH THEN, OF COURSE,

THE SHORTER 1S LEFT~PADDED WITH THE REQUISITE NUMBER OF

ZEROES PRIOR TO THE COMPARISON.

EXAMPLES!

Bl = 101

B2 2 11

B3 = 1100101

B4 = 00101

THEN BL = BY 1S TRUE
Bl =B2 . 18 FALSE
BI B2 1S TRUE
B3 =B4 1S FALSE

B3$(3 TO 7) = Ba IS TRUE

(B2| 1B4) = B3 1S TRUE

q- 107

Sry

BIT STRING COMPARISONS

TRUE = ON

FALSE = OFF

AN
 0000 .., 0001

0000 ... 0000 a

SUPPOSE:

(a)

(B)

(c)

(p)

(Ee)

(F)

DECLARE Bl BIT(8) INITIAL(BIN’11011101');
DECLARE B2 BIT(4) INITIAL(BIN’1010");

IF BL.THEN DO; (ILLEGAL)

IF Bl = TRUE THEN DOs

— FALSE BECAUSE ‘11011101’ # ‘oQQ00001'
IF B2 = FALSE THEN DO;

FALSE Because '1010' # ‘0000!

IF B1$8 THEN DO;-

TRUE

IF B2$(2 AT 2) = TRUE THEN DO;

———— TRUE BECAUSE ‘Ol’ = ‘01’
IF B1$(3 AT 4) = BIN'111" THEN DO;

———— TRUE

3 <3

BIT STRINGS (CON’T.)

SUMMARY

A CONDITIONAL EXPRESSION, £.6.

IF (cond exp) THEN ...

mo DO WHILE (cond exp);
DO UNTIL (cond exp);

1S MADE UP OF COMBINED RELATIONAL EXPRESSIONS, E.G.

(A <0) & (B= BIN1O1')IS < 2
OR COMBINED BOOLEAN EXPRESSIONS, E.G.

(B1I(B2. @—1B3))e(B21 B3)
"WHERE Bl, ... B3 ARE BOOLEANS

NOTE: A BIT STRING THAT IS SUBSCRIPTED DOWN TO 1
BIT CAN BE USED AS A BOOLEAN,

BUT, A CONDITIONAL EXPRESSION CANNOT BE A MIXTURE:
IF @lapaidh=e fo. -

Is ILLEGAL! RELATIONAL EXPRESSION

BIT EXPRESSION

TAG

3/

S~1Gil

DO WHILE

DO UNTIL

CLARIFICATION

RELATIONAL
EXP -

 BOOLEAN
EXP

RELATIONAL
EXP

*

BOOLEAN
EXP

RELATIONAL
EXP

 BOOLEAN
EXP

CONDITIONAL EXPRESSIONS (CON'T.)

CONDITIONAL EXPRESSION IS EITHER A RELATIONAL EXPRESSION OR A

BOOLEAN EXPRESSION:

RELATIONAL: (Ae3) | R= fy @ (S = T**2).

BOOLEAN: Bl & (1B2[B3) & B4|B5

S~'G,3

ae

S~16,4

- CONDITIONAL EXPRESSIONS (CON’T.) ~—

KEY POINT: A BIT(L) IS EXACTLY EQUIVALENT TO A BOOLEAN AND

MAY BE USED IN A BOOLEAN EXPRESSION 3

EXAMPLE 1: (MIXING BIT(L) AND BOOLEAN)

DECLARE BA BIT(1), BB BOOLEAN,
BC BOOLEAN:

IF BAI(-BBEBC) THEN...

EXAMPLE 2: (MAKING A BIT(1) BY SUBSCRIPTING
DECLARE SBITS BIT(8), BB BOOLEAN,

BC BOOLEAN;
IF OBITS$3 |(BBSBC) THEN ...

EXAMPLE 3: (ILLEGAL USAGES)
IF QBITS THEN ... (THIS WILL NOT WORK EVEN THOUGH THE

PROGRAMMER’S GUIDE IMPLIES THAT IT WILL
EVALUATE TO TRUE IF THE LOWEST BIT IS A
Wy)

EXAMPLE 4: © (FIXUP OF EXAMPLE 3)

IF OBITS = TRUE ... (NOW IT IS A RELATIONAL EXP)

CONDITIONAL EXPRESSIONS (CONT'D.)

4 Mt BOOL:
1 Mt PROGRAM:

2 ut DECLARE BOOLEAN INITIALC FALSE), .
ent BA, 88, BC, 6D, BE, BF;

3 Nt DECLARE INITIALCBIN‘O’),
3 Nt Bi BITC4),
3 Nt 62 BITC2),
3 Mt BS BITC3),
3 Nt 84 BITC 4),
3 Nt BS BIT(S),
3 Nt ‘ Bé BITC6),
3 Mt B? BIT<?),
3 Nt B8 BITCS),
3 Nt BS BITC9),
3 Nt Bid BITC 10),
3 Nt Bid BITC11),
3 Nt B12 BITCL23,

~ 3 Nt B13 BITCL3>,
3 Nt Bi4 BITC14),
3 Nf *~ B15 BITC415),

3 Mt B16 BITC16),
3°Nt Ba? BITC17);
4 Nt > DECLARE GO BITCS) INITIALCBIN ’411110101010101010101017))

ct
Et . : : . '

3S mt IF BA & BB f BC & (\B8D t BE) THEN
. 6 Mt DO;

7 Ht END,

S-IG.y

Et
8 Nf
9 Nf

10 Mt
ct
Et

Li Nt
42 Nt
13 Mt

: ct
Et

14 Mt
45 Mf
46 Nt

ct
Et

17 Nt
18 Mt
19, Mt

ct
Et

28 Mt
beak OBL

IF

IF

IF

1F

CONDITIONAL EXPRESSIONS (CONT’D.)

(Bi = B2) t (B2 \© B4) & (\BS = BG) THEN
DO; .

END)

(pa = BB) ¢ (BC = BD) & (BR \= BE) THEN
DO: .

END:

(BA \= BB) t (BC \# BD) & (BE \= BB) THEN
bo;
END, :

_JF.BA THEN
0;
END)

B4 THEN
ERROR #41 OF SEVERITY 1, shane

Akee BIT EXPRESSION IN IF CLAUSE MUST BE BOOLEAN

2i Mt
22 "ft

f~ On

00; _
END;

S-1G,.G

Ct
Et

23 Mt
St

24 Nt
HAL/S

TMT
25 Mt

ct
Et

26 Nt
St

27 Nt
28 Mt

ct
Et

29 Nt
dehe GBL

’kAde BIT EXPRESSION IN IF CLAUSE MUST BE BOOLEAN

dkae LAST ERROR WAS DETECTED AT STATEMENT, 28.

30 Ht
34 Mt

ct
Et

32 Mt
33 Mt
34 Mt

35 Ht

36 MT
37 Mt

Ef
38 Mt

St
vkbhk OBL

bkbb BIT EXPRESSION IN IF CLAUSE NUST BE SOOLEAN

habs LAST ERROR WAS DETECTED AT STATEMENT 29. +4444

LUAU PUMA

IF 84 THEN
i

00;
FC- 9.24

END)

1F ¢B6 t 87 > THEN
2 3

DO;
END;

IF BA t Bi & B2 t BB THEN
"ERROR #2 OF SEVERITY 4.

D0;
ENDs

“WOLUND WOU!

ehhh

uel

INTERMETRICS,
SOURCE

I

If (BA ‘® TRUE) ? (BB = FALSE) ¢ (4 = BIN‘’4O44°> THEN
DO:
END:

IF BS = TRUE THEN
2 AT 2

60;
END:

IF Bie THEN.
4709 :

ERROR #3 OF SEVERITY 4. rryrrs

N

S19

BIT STRINGS (CON'T.)

CE) BIT STRING ARGUMENTS & PARAMETERS

© BIT STRINGS MAY BE INPUT PARAMETERS (ARGUMENTS)

OF PROCEDURES AND FUNCTIONS AND ASSIGN PARAMETERS

(ARGUMENTS) OF PROCEDURES,

EXAMPLE !
FLAGS: PROCEDURE(B1) ASSIGN(B2)

DECLARE Bl BIT(16),

B2 BIT(8);

CLOSE FLAGS;

RULES (INPUT PARAMETERS)

© BOTH PARAMETER AND ARGUMENT MUST BE OF BIT TYPE

(NO IMPLICIT CONVERSIONS),

© THE ARGUMENT IS PADDED/TRUNCATED ON THE LEFT AS

NECESSARY TO FIT THE INPUT PARAMETER,

a
3s}y

ed

Sig

RULES:

BIT STRING ‘CON'T.)

(ASSIGN PARAMETERS)

@ THE ASSIGN ARGUMENT MUST BE A DECLARED BIT DATA ITEM:

@ ARGUMENT AND PARAMETER LENGTHS MUST MATCH EXACTLY!

@ NO SUBSCRIPTING (COMPONENT) IS ALLOWED ON THE ARGUMENT.

Examples:

Let the following data be declared:

DECLARE B) BIT(16),
B2 BIT(3);

and let the following procedure be defined:
‘ .

; SWITCHES: PROCEDURE(D2). ASSIGN(D1);
DECLARE Dl B1IT(3),

D2 BIT(B);

eet

| CLOSE SWITCHES;

Both legal and. illegal invocations of this procedure are
shown below:

t CALL SWITCHES (B1L|[BIN'1001') ASSIGN (B2) +3.
' .

this 16-bit quantity truncated
to 9 bits on passage

{
| CALL SWITCHES (B2) ASSIGN (B1):
'

illegal - length mismatch

““this 3-bit quantity padded to 8
' bits on passage

; CALL SWITCHES (BIN'L"} ASSIGN(FALSE): ;

illegal - not a declared
Lo bit string data item,

BIT STRINGS (CON’T.)

@ BIT STRING FUNCTIONS ag

fabel; FUNCTION(4,+ 45+ +++) BIT(n);
Nanni, stan

OPTIONAL INPUT len < 32

PARAMETERS

AN INVOCATION OF SUCH A BIT FUNCTION BEHAVES LIKE A BIT(n) DATA

ITEM IN ALL CONTEXTS!

EXAMPLES!

@)_ Fs FUNCTION(B) BIT(3);

DECLARE B BIT(8)s

RETURN By ~————— LeFrmost 5 BITS TRUNCATED -

RETURN B$43~——~—— resuLT PADDED (oN Lert) To 3 BITS

RETURN 6; ~———-— ILLEGAL! BIT STRING QUANTITY NOT BEING
RETURNED,

CLOSE F;

S-1g9

A Cs

BIT STRIN * (CON’T.)
@) G: FUNCTION(B) BIT(6)s | dQ

CLOSE 63 | 36/

IF BL | (B2 & G(B3)) | G(B4) = BIN’1OL101' THEN DO;

CX ceruns a BIT(6)

XOR FUNCTION

YOR IS A RECENTLY ADDED BUILT-IN FUNCTION THAT PERFORMS AN

EXCLUSIVE OR ON THO INPUT BIT STRINGS AND RETURNS THE RESULT

AS A BIT STRING, ,

SYNTAX!

BIT_STRING = XOR(BIT_STRINGI, BIT_STRING2)s

=. OR a
IF B1 | XOR(B2, B3) | (BY & BS) = BIN'O11010" THEN .,.

NOTE: IF THE THO INPUTTED BIT STRINGS ARE UNEQUAL IN LENGTH,

THE SHORTER IS LEFT-PADDED WITH ZEROES, THE RESULT IS

A BIT STRING EQUAL IN LENGTH TO THE LONGEST INPUTTED

STRING,

STRUCTURES 3 G 2.

HAL/S ALLOWS TWO TYPES OF DATA ORGANIZATIONS: ARRAYS & STRUCTURES,

© ARRAYS: I1-, 2-, on 3-DIMENSIONAL PATTERNS OF HOMOGENEOUS DATA

ITEMS, .

EXAMPLE!

DECLARE AX ARRAY (3,2,100) INTEGER INITIAL(5);

EACH ARRAY DIMENSION CAN RANGE FROM 2 TO 32,767,

© STRUCTURES: HIERARCHICAL (TREE-LIKE) COLLECTIONS OF HOMOGENEOUS

. OR HETEROGENEOUS DATA ITEMS. A STRUCTURE IS MORE GENERAL THAN

N ARRAY SINCE IT CAN CONTAIN ARRAYS (AND EVEN OTHER STRUCTURES).

A STRUCTURE MUST REFERENCE A STRUCTURE TEMPLATE (THINK OF IT AS

A DSECT IN 360 TERMINOLOGY) THAT WAS PREVIOUSLY DEFINED.

/
STRUCTURES (CON'T.) 363

A STRUCTURE TEMPLATE IS A TREE:

START STOP

+ £] "rect"

/ . O "fork"

“© eas

 San

STRUCTURES (CON’T.) 23

HOTE: THE PROGRAMMER’S GUIDE MAY BE CONSULTED FOR AN ABSTRACT 36 {

DESCRIPTION OF STRUCTURE TEMPLATES, HERE WE WILL DEVELOP

THE CONCEPT USING CONCRETE EXAMPLES,

@ STRUCTURE TEMPLATE: TEMPLATE. NAME

egn ° STRUCTURE namer. node’, node”, node, ... node” ;

WHERE?

node’ Zn name

(MINORSTRUCTURES OR FORKS)

_ nodeX =n name attributes

(STRUCTURE TERMINAL)

NOTE: THE STRUCTURE LEVEL 'n’ MUST SATISFY 1 <n

a
CURRENT LIMITATION

Ja
 5

STRUCTURES (COH'T.)

EXAMPLE 1

NOTE THE coLon!

STRUCTURE aa

‘TA INTEGER,
i1)B BOOLEAN,

11s MATRIX(4,4) DOUBLE,
lat La'c BIT(6);
“ note THE SEMI-COLON!

4 STRUCTURE TERMINALS ALL AT LEVEL 1.

 EXAMPLE
2

STRUCTURE RR:

1 Z1, «~~ A MINOR STRUCTURE HAS NO ATTRIBUTES

2 1 INTEGER, |— cACH MIN |

J INTEGER, OR STRUCTURE HAS 2 TERMINALS

1 72, .
2 1 INTEGER, |
2 J INTEGER;

2 MINOR STRUCTURES

OR FORKS

32
36s~

STRUCTURES (CON’T,)

EXAMPLE 3

STRUCTURE SS:

12,——_--—_—_#)
2 SL,
09), a
2 221,.—-——)

3 222,+———_-—-)
4 773,~———_—-)

5 I INTEGER,<—()

2 $3,
1 22, ————_®)

2 SH,

2 $5 DOUBLE;

() TERMINAL
©) Fork (MINOR STRUCTURE)

NOTE (1): FORK (MINOR STRUCTURE) IS EASILY SEEN BY OBSERVING THAT

THE LEVEL # OF THE NEXT NODE GOES UP BY 1!

366

STRUCTURES (CON’T.) 367

AS A TREE, EXAMPLE 3 TAKES THE FOR: -.

$s (ROOT OR TEMPLATE. HARED

A n LEVEL
1

$1 s2 71 $3 st $5 ,

m2 3

7B
'

1 5

oo
eee ee

e TTT

O = FORK (MINOR STRUCTURE) = LEAF (TERMINAL)

 Say

STRUCTURES (CON’T.) oo $3

NOTE (2): IF A TERMINAL HAS NO ATTRIBUTES IT IS CONSIDERED TO 36 }

BE A SCALAR (JUST LIKE DECLARES).

NOTE (3): IF AH INTEGER, SCALAR, VECTOR, OR MATRIX TERMINAL HAS

HO PRECISION SPECIFICATION, IT IS ASSUMED TO BE SINGLE

(JUST LIKE DECLARES),

THE FOLLOWING DATA TYPES ARE LEGAL IN A STRUCTUR® ©“ MPLATE:

INTEGER BOOLEAN

SCALAR BIT

VECTOR CHARACTER

MATRIX - STRUCTURE

ALSO, NANE VARIABLES OF THESE TYPES ARE LEGAL, PLUS:

MAME EVENT
WILL BE DISCUSSED NAME PROGRAM |

NAME TASK

STRUCTURES (CON'T.) *

RESTRICTIONS: mo,

(1) TEMPLATE NAMES MUST BE UNIQUE WITHIN THE NAME SCOPE.

(2) NAMES WITHIN THE TEMPLATE DO NOT NECESSARILY HAVE TO

BE UNIQUE.

(3) INITIAL/CONSTANT LISTS CANHOT BE PRESENT IN A TEMPLATE.

(4) STATIC/AUTONATIC CANNOT BE SPECIFIED IN A TEMPLATE.

(5) CHARACTER(#), ARRAY(*), AND STRUCTURE(*) ARE ALSO

PRECLUDED,

(6) A STRUCTURE TERMINAL CANNOT HAVE COPIES.

WILL BE DISCUSSED
LATER

STRUCTURE TEMPLATES ARE ESSENTIALLY DECLARE STATEMENTS -- AS A

RESULT THEY MUST BE PLACED WITHIN A DECLARE GROUP (AND PRIOR,

OF COURSE, TO ANY STRUCTURE DECLARATIONS REQUIRING THE TEMPLATE).

ae

STRUCTURES (CON‘T.)

@) STRUCTURE DECLARATION:

SIMPLE STRUCTURE

DECLARE name a-STRUCTURES

MULTI-COPY STRUCTURE

DECLARE ane a-STRUCTURE(N) 5

WHERE name 1$ THE STRUCTURE (OR MAJOR STRUCTURE) NAME AND o

IS THE NAME OF A PREVIQUSLY-DEFINED TEMPLATE, -N IS THE

NUMBER OF COPIES DESIRED.

2 <N < 32,767

EXAMPLE

STRUCTURE Q:

1 QA SCALAR, or vust 1 QA

1 QB INTEGER,

1 QC BOOLEAN;

DECLARE @ Q-STRUCTURE(3);

DECLARE R Q-STRUCTURE;

DECLARE 1 INTEGER, S SCALAR, W Q-STRUCTURE;

HYPHEN

LAY

3/
370

STRUCTURES con't.) : =f -

| Bei
EXAMPLE

CPL: EXTERNAL COMPOOLs

STRUCTURE @:

LA,

1B DOUBLE,

1 C INTEGER;
ee

CLOSE CPL; .
PROG: PROGRAM;

STRUCTURE R:
11 INTEGER DOUBLE,
1 V ARRAY(6,5) VECTOR(A),
1D CHARACTER(80);

DECLARE R R-STRUCTUREs
DECLARE $ Q-STRUCTURE(1O),
DECLARE T T-STRUCTUREs)

STRUCIURE It \ ILLEGAL - TEMPLATE MUST PRECEDE

1 E INTEGER, STRUCTURE

STRUCTURES (CON’T.) 2 s/

© STRUCTURE INITIALIZATION 72.

INITIAL/CONSTANT LISTS ARE ATTACHED TO THE STRUCTURE

DECLARATION -~ NOT TO A TEMPLATE OR ITS INNARDS..

TERMINALS ARE INITIALIZED BY THE ORDER OF APPEARANCE

IN THE TEMPLATE. .

= STRUCTURES WITH NO COPIES -

STRUCTURE 9: ,
1A,

2 I INTEGER,

* 2.8 SCALAR,

1B,

' 2d INTEGER,

2 K INTEGER,

2 L INTEGER,
20 ARRAY (10) INTEGER; PARTIAL INITIALIZATION

DECLARE Z Q-STRUCTURE INITIAL(4, 6.95, 342, *)

124 $2695 Jj2#kK2l22

MIS UNINITIALIZED

WIAD

STRUCTURES (CON’T.)

~ STRUCTURES WITH COPIES - 373

TWO CHOICES:

© PUT ENOUGH LITERALS IN THE INITIAL/CONSTANT LIST TO

INITIALIZE THE FIRST COPY -- ALL REMAINING COPIES

WILL BE INITIALIZED LIKE THE FIRST AUTOMATICALLY,

© PUT ENOUGH. LITERALS IN THE INITIAL/CONSTANT FOR ALL

TERMINALS OF ALL COPIES. EACH COPY IS FULLY

INITIALIZED BEFORE PASSING TO THE NEXT.

EXAMPLES

STRUCTURE Q:
* 11 INTEGER,

1S SCALAR;

. @ “DECLARE Q Q-STRUCTURE(5) INITIAL(6, 81,45);

(2) DECLARE R Q-STRUCTURE(3) INITIAL(, 84,0, 2, -15.4, 4, 350.8);
ese tment en pea” er cm

(3) DECLARE $8 Q-STRUCTURE (20000) INITIAL(S, ~40.6, 3, 119.2, *)
Neen een” ttn ter”

copy | copy 2. coptes 3-20,009
UNINITIALIZED

STRUCTURES (CON'T.) 3 7¢

INITIALIZATION EXAMPLE

STRUCTURE Q;
J QV VECTOR(3),
1M,

2 QI INTEGER,
‘2 QC CHARACTER(80)s

DECLARE Z1 Q-STRUCTURE INITIAL(1.5, 2.5, 3.5, -2, 'ALPHA’);

DECLARE Z2 Q-STRUCTURE(2) INITIAL(4.5, 5,5, 6.5, -4, 'BETA’);

DECLARE 23 Q-STRUCTURE(2) INITIAL(3#1.5, 1, ‘GAMMA’,

3#2.5, 2, "DELTA’)s -

OM

QC 2. ALPHA

Sy

STRUCTURES (CON'T.)

QlZ -4.. gc ‘petat

gc =

both copies
identically

‘dnitialized

‘BETA’

'DELTA‘

_ 53
37x-

3/

STRUCTURES ¢CON'T.)
(E) QUALIFIED REFERENCES

STRUCTURE Q:
1A,

2 1 INTEGER,
2B,

3 J INTEGER,
3 $1 SCALAR,
3,
4M MATRIX(H,4),
4 V VECTOR(H),

_ 3-82 SCALAR,
2D, ;

3 CHARX CHARACTER(10),
3 BB ROOLEAN,

2 K INTEGER,
1 MM X-STRUCTURE,
1 W°VECTOR(3)3

DECLARE R Q-STRUCTURE INITIAL(,..)s

(1) ENTIRE STRUCTURE 1S REFERENCED VIA NAME 'R’, I,E,, THE MAJOR STRUCTURE NAME.
(2) ATERMINAL IS-REFERENCED BY: Ranl.n2, .., nx, terminal _ne=-o

MINOR STRUCTURES ENCOUNTERED
i}

I vere RAD

J rere RAB

$1 coos RAALBLSI

N rice RALBSCM

V core RABCY

$2 veve RAAB S2

CHARX: 1... RsAeD.CHARX

BB soos RAD BB

K aeoe RAK

NM vere RAM

Wve RAW

R REFERENCES THE WHOLE STRUCTURE

RA. .

R,A.B REFERENCE SUB-STRUCTURES (MINOR STRUCTURES) OF

R.A.B.C VARYING COMPLEXITY

RAD

STRUCTURES (CON’T.) 3o2.
377

T+ 2e-

®

“~~.
}

STRUCTURES (CON’T.)

STRUCTURE NESTING:

Mt PROG:
Nt PROGRAM:
Nt
Nt
Nt
ut
Nt:
Nt -
Nt
Nt
Nt
Nt
Nt
Nt
ut
Nt
Nt
Nt
Nt
Mt

“Mt
Ht
ut
Nt:
Nt
Nt.
ct

STRUCTURE A:
4 AI INTEGER,
1 Ad,

2 AC CHARACTERC EA),
2 AB BOOLEAN: -

STRUCTURE 8B:
4 8S SCALAR,
4 Bd, .

2 BY VECTORC3),
2 BA A~STRUCTURE? ~~CANNOT HAVE coples!

STRUCTURE C:
4 BS SCALAR,
4 B41, .

2 BY VECTORC3),
2 BA,

3 AL INTEGER, .
3 AL,

4 AC CHARACTERC 86),
4 RB BOOLEAN;

DECLARE @ A-STRUCTURE)
DECLARE R B-STRUCTURE:
DECLARE S$ C=-STRUCTURE;
DECLARE T C-STRUCTURE;

DECLARE U A- STRUCTURE:

37¢

STRUCTURES (CON‘T.)

Et + +

40 Ht R# Si
beh AVE. ERROR #41 OF SEVERITY 4. ke kit
hhh’ TREE ORGANIZATIONS DO NOT MATCH ACROSS ASSIGNMENT
"et

Et + +

sant Sats 3
tt .
e+. + +

42 Ht 2, B4.8A = Gs

et
Et + +

42 Nt $.84.BA = Us
44 Mt CLOSES

S-3G

o
o

4 i
Mot

STRUCTURES (CON'T.)

THE QUALIFIED REFERENCE SYSTEM MUST BE USED FOR QUALIFIED STRUCTURES,

BUT 1S OPTIONAL FOR UNQUALIFIED STRUCTURES.

DEFN. A STRUCTURE IS UNQUALIFIED IF IT HAS THE SAME NAME AS ITS

TEMPLATE -- OTHERWISE, IT IS A QUALIFIED STRUCTURE,

EXAMPLE

STRUCTURE Q: .

1 1 INTEGER,

1S SCALAR,

1M MATRIX DOUBLE,

1T;

DECLARE @ Q-STRUCTURE;

DECLARE R Q-STRUCTURE;

THEN @ IS UNQUALIFIED.

THEN R IS QUALIFIED,

3¥o

STRUCTURES (CON'T.) .§ a

IF A STRUCTURE IS UNQUALIFIED, THEN RATHER THAN USE THE QUALIFIED . 3¥ /

REFERENCE MECHANISM, TERMINALS AND MINOR STRUCTURES CAN SIMPLY BE

REFERRED 10 BY THEIR NAMES,

IN THE PRECEDING EXAMPLE:

a. ——-—--— SHORT FORM (SINCE @ 1S UNQUALIFIED)

I I or G1 ”
S or 0,8

H Moor QM

T or QT

R
I RI
$ R.S HORM MUST USE QUALIFICATIONS,

T R.T

UNQUALIFIED STRUCTURES ARE NICE ... BUT NOT EVERY STRUCTURE CAN BE

UNQUALIFIED.

NOTE: IN TERMS OF CPU OR CORE, THERE IS NO DIFFERENCE BETWEEN A

QUALIFIED OR AN UNQUALIFIED STRUCTURE.

STRUCTURES (CON’T.) — Sf

(1) BOTH THE TEMPLATE AND THE STRUCTURE MUST BELONG TO THE
SAME NAME-SCOPE:

RULES FOR UNSUALIFIED STRUCTURES: 3$2.

LEGAL ILLEGAL

P: PROGRAM; CPL: COMPOOL;

STRUCTURE Q; STRUCTURE Q:

1A, 1A,

1B; 1B; TEMPLATE IS IN
roe tn DIFFERENT NAME~
DECLARE Q Q-STRUCTURE; CLOSE CPL; SCOPE

CLOSE P; | P: PROGRAM

DECLARE @ Q-STRUCTURE ;
(2) -THE TEMPLATE CAN CONTAIN NO NESTED STRUCTURES, I,E., STRUCTURE

TERMINALS,

FOR EXAMPLE, THE FOLLOWING IS ILLEGAL:

STRUCTURE Q:
1A,
1 | INTEGER,
1 M R-STRUCTURE; ~-————caNnnoT HAVE NESTED STRUCTURE

DECLARE 9 Q-STRUCTURE(4)s

STRUCTURES (CON'T.) Py

(3) ALL NAMES (IDENTIFIERS) WITHIN THE TEMPLATE MUST BE UNIQUE. #3

IN THE NAME-SCOPE.

KEY IDEA: IDENTIFIERS WITHIN A TEMPLATE ARE NORMALLY INVISIBLE TO

THE OUTSIDE ENVIRONMENT, BY MAKING THE STRUCTURE UNQUALIFIED,

THESE HIDDEN NAMES SUDDENLY BECOME VISIBLE.

EXAMPLE

DECLARE I

STRUCTURE Q:

1 1 INTEGER,

1s,

1M MATRIX;

SO FAR ... NO PROBLEM (THE TWO I's CANNOT “SEE” EACH OTHER)

DECLARE R Q-STRUCTURE(10) ;

STILL NO PROBLEM...

DECLARE @ Q-STRUCTUREs

NOW WE WILL HAVE A MULTIPLY-DEFINED SYMBOL "I",

“"]

STRUCTURES (CON‘T.)

IF THE STRUCTURE TEMPLATE IS NEVER INTENDED TO BE UNQUALIFIED,

THEN DUPLICATION OF IDENTIFIERS CAN OCCUR WITHIN THE TEMPLATE
AS LONG AS NO AMBIGUITY RESULTS WHEN USING THE QUALIFIED REFERENCE
SYSTEM,

EXAMPLE: 1

STRUCTURE @:

1 Ql,

2 QS,

1 Q2, ~~ LEGAL DUPLICATE NAMES

DECLARE ZQ Q-STRUCTURE;

BECAUSE Z29,.Q1,.0S CANNOT BE CONFUSED WITH 20.02.05

NOTE THAT:
DECLARE @ Q-STRUCTURE

WOULD RESULT IN MULTIPLY-DEFINED as,

23
S*+¢¥

STRUCTURES (CON‘T.) s —
EXAMPLE 2 3 - By)

STRUCTURE R:

1 Ri~---————"__ ILLEGAL DUPLICATE NAMES

2 RS SCALAR, —-——
1 RI CHARACTER(80) 3

DECLARE ZR R-STRUCTURE;
WHAT IS ZR.R1? |

SUMMARY OF HAME UNIQUENESS —

(1) WITHIN THE SAME NAME~SCOPE, ALL TEMPLATE AND STRUCTURE NAMES
~— MUST BE UNIQUE (UNLESS, OF COURSE, WE ARE DEFINING AN UNQUALIFIED

STRUCTURE -~ IN WHICH CASE A TEMPLATE NANE AND A MAJOR STRUCTURE

NAME WILL MATCH)

(2)° CLEARLY, FOR A GIVEN TEMPLATE, THERE CAN BE AT MOST ONE UNQUALIFIED
STRUCTURE WITH THAT NAME,

(3) IF A TEMPLATE IS UNQUALIFIED, ALL IDENTIFIERS WITHIN IT MUST
BE UNIQUE IN THE NAME~SCOPE.

(y-0

STRUCTURES (CON’T,)

(4) IF A TEMPLATE IS QUALIFIED, SOME DUPLICATION OF IDENTIFIERS

(1)

(2)

(3)

(4)

CAN OCCUR IF NO AMBIGUITY RESULTS,

EXAMPLES

DECLARE St «wy tipe DEFN, OF 8.
STRUCTURE Si<—

less

STRUCTURE S:

1A, ~

1 By

STRUCTURE ge
1A,

1 B;

MULTIPLE DEFN. OF S$

_ STRUCTURE S:

1A,

1B;

DECLARE $ S-STRUCTURE;

DECLARE M MATRIX; +—__ MULTIPLE DEFN,
DECLARE M S-STRUCTURE;“——

OF M

52.
3+

vy

(5)

(6)

(1)

(2)

(3)

STRUCTURES (CON'T.) s 3
STRUCTURE S: . 3 7

1A, OK AS LONG AS WE DO NOT SAY
21, DECLARE $ S~STRUCTURE

2 J,

1B,

21,

2 Js

DECLARE | INTEGER;

STRUCTURE S:

1 1 INTEGER,
DITTO

1 J INTEGER;

MISCELLANEOUS COMMENTS

A TEMPLATE DECLARATION DOES NOT SET ASIDE CORE MEMORY --. ONLY THE

STRUCTURE DECLARATION DOES THAT.

QUALIFIED AND UNQUALIFIED STRUCTURES ARE EQUIVALENT IN TERMS
OF CORE AND CPU,

THERE IS NO INHERENT INEFFICIENCY IN COLLECTING RELATED DATA

INTO A STRUCTURE.

(4)

STRUCTURES (CON'T,)

IN TERMS OF CORE AND CPU EFFICIENCY WE CAN WRITE:

 > LESS EFFICIENT

SIMPLE VARIABLE > ARRAY > STRUCTURE

THIS MEANS THAT A SIMPLE VARIABLE GENERALLY MIGHT BE MORE

_ EFFICIENT THAN AN ARRAY,- AND AN ARRAY IN TURN MIGHT BE

MORE EFFICIENT THAN A STRUCTURE --.IN MANY IMPORTANT CASES,

HOWEVER, EQUALITY HOLDS (MORE ON THIS LATER....).

STRUCTURES (CON'T,)

SUMMARY OF TERMINOLOGY
pov ea

{
re EN

‘ STRUCTURE @? y CGHELATE CAME
(TW, +. nor structure on FoRK

|
\
{ pete . |
| stRucTURE —-~! 2 IyINTEGER, >

a Neh TERMINAL
: 2d INTEGER, TT

|
\. _ QS SCALAR;

a ad

LEVEL w—————-—~ MAJOR STRUCTURE NAME

DECLARE @ Q-STRUCTURE;

DECLARE R Q-STRUCTURE

INITIAL(6, 9, 15.4);

TEMPLATE
ees
a

STRUCTURE DECLARATIONS

Q = UNQUALIFIED STRUCTURE

R = QUALIFIED STRUCTURE

R
a> RA

: QUALIFIED NAMES

——> RAJ

a
A
1 —— RA
J
S ——~ RS) Gera,

af

STRUCTURES (CON’T.)

A. STRUCTURE SUBSCRIPTING

e COPY SUBSCRIPTING ONLY

SUPPOSE WE HAVE A MULTI-COPY STRUCTURE:

DECLARE Q Q-STRUCTURE(L) ;

(1) TO SELECT THE ITH Copy

Q$1 OR Q$(is)

WHERE I IS AN INTEGER EXPRESSION (SCALAR IF YOU

WANT) THAT HAD BETTER LIE IN THE RANGE

lect

AT RUN-TIME.

NOTE: SEMICOLON IS ONLY MANDATORY WHEN TERMINAL

SUBSCRIPTING IS TO BE DONE ALSO,

s/
390

Cy VY

320
37/ STRUCTURES (CON'T.)

(2) TO SELECT A SUBSET OF I COPIES STARTING WITH THE JTH;

Q$(1 AT J) OR Q$(1 AT Jy) oa

WHERE I IS AN INTEGER LITERAL (1.E,, VALUE KNOWN AT

COMPILE-TIME) AND J IS AH INTEGER EXPRESSION WITH:

l<Jet-J]+1

(3) TO SELECT A SUBSET OF COPIES STARTING FROM THE I™* AND

ENDING WITH THE JTH;

Q$(1 TO J) OR Q$C1 TO Js)

WHERE BOTH I AND J ARE INTEGER LITERALS AND:

lsleJcgt

may

STRUCTURES (CON’T.)

COPY SUBSCRIPTING EXAMPLES:

GIVEN

| STRUCTURE Q:
| 11 INTEGER,
; 1 Ql,
i 2-8 SCALAR,

-1 2 QC CHARACTER(80) ;
I
!

{ DECLARE ZQ Q-STRUCTURE(3) ;

WITH THE FOLLOWING VALUES:

392,

33
STRUCTURES (CON'T.)
—— | 393

THEN ZQ5, SELECTS COPY 2 WITH VALUES:

Gar \Ge

STRUCTURES (CON’T,)

GIVEN

| STRUCTURE @:
; 1 QI INTEGER,
i 1 Ql,

! 2 QS SCALAR,
2 QC CHARACTER(80) ;

!
]

1
DECLARE ZQ Q-STRUCTURE(3)s

WITH THE FOLLOWING VALUES:

” “4

re

$3
39s"

STRUCTURES (CON'T,)

ZQ.Q1; tg 2, SELECTS COPIES 1 AND 2 OF THE

SUB-TREE UNDER Q1

STRUCTURES (CON’T.)

GIVEN

| STRUCTURE Q:
1 QI INTEGER,

| 1 Ql,
| 2 QS SCALAR,

2 QC CHARACTER(80);

| DECLARE ZO Q-STRUCTURE(3)

WITH THE FOLLOWING VALUES:

OS = 1S ocz tat

~ 3G

STRUCTURES (CON'T.)

QZ.Q1z SELECTS:

STRUCTURES (CON’T.)

© SUBSCRIPTING OF STRUCTURE TERMINALS ental

(1) IF THE STRUCTURE HAS NO COPIES THEN THE TERMINAL IS

SUBSCRIPTED EXACTLY AS THOUGH IT WERE NOT IN A
STRUCTURE,

STRUCTURE Q:
' 1B BIT), -

LM MATRIXG,4),
1 C CHARACTER(8),
1 V VECTOR;

~ DECLARE Q Q-STRUCTURE, <————— S&.ESBLES
THEN:

B14 on Q,B1$4
BI$(3 AT 3) @.B1$(3 AT 3)
NE(2,4) Q.H$(2,4)
HS (#,3) 0.NS(*,3)
C35 a.c$5
C$(4 TO 6) 0.¢$(4 TO 6)
V$3 0,V$3
V$(2 AT 1) Q.V$(2 AT 1)

3/
ST

STRUCTURES (CON'T.)

STRUCTURE OQ: — STG
1 I ARRAY(10): INTEGER,
1 B ARRAY(6) BOOLEAN,
1M ARRAY(2,4,6) MATRIX,
1 Ba ARRAY(8) BITCH);

DECLARE R Q-STRUCTURE;
THEN:

R.1$5 R.[$(2 AT 3} ETC.
“R.BS(3:) —-R.BS(3- TO 5:) ETC.
R.M$(#,*, *: 2,3)
RM$(1,3,5: *,1)
RoM$(2,*,6:)
R.MS(#,*,3: 1 70 2, 2 AT 1)
R.B4$(5:)

_ R.B4$(5:3)
R.B4$(2 TO 5: 3 AT 1)
pore

THEREFORE, THERE 1S NOTHING NEW TO SAY ABOUT SUBSCRIPTING

“IF THE STRUCTURE HAS NO COPIES.

mo

. wkd

we Uk Awurt fas

(2) IF THE STRUCTURE HAS COPIES THEN WE HAVE THREE MODES 3/
OF TERMINAL SUBSCRIPTING: Se oO

(A) STRUCTURE (COPY) SUBSCRIPTING ONLY

=> NEED TRAILING “3” UNLESS TERMINAL IS AN

UNARRAYED INTEGER OR SCALAR,

EXAMPLE

STRUCTURE 0:
1 1 INTEGER,

J IT ARRAY(5) INTEGER,

1 B BOOLEAN,

1M MATRIX:

DECLARE @ Q-STRUCTURE(59) ;

THEN:
1$5 sets I From 574 copy

11$(53) cers I] array From 574 copy
TI$(10 AT 43) BEHAVES LIKE A 2-DIMENSIONAL ARRAY

SEMI-COLON NEEDED ———7——"__\
BECAUSE BOOLEAN = BIT(1) —- B$(3)) GETS BOOLEAN FROM 3D copy

M$ (63) GETS MATRIX FROM 674 copy

STRUCTURES (CON'T.)

STRUCTURE AND TERMINAL SUBSCRIPTING

==> COPY SUBSCRIPT; TERMINAL SUBSCRIPTS

EXAMPLE

STRUCTURE Q:.

1 II ARRAY(2,3) INTEGER,
1 BB ARRAY(6) BIT(9),
1 MM ARRAY(5,10,15) MATRIX(4,5),

1 N ARRAY(10) INTEGER,
1 1 INTEGER;

DECLARE R Q-STRUCTURE (20000)
THEN: .

R,11$(432,2)
R.11$(100 AT 307; 2,*)
R.BB$(60; 4: 5 TO 8)
R.BB$(3135:)
R.MMS(5 AT 93 5,*,7: 3,*)
RMM$(27; * ty *,5)

~ RLN$(6310)
R. 1$(50)

3 2.

cy

> ana’

!

STRUCTURES (CON‘T.)

© TERMINAL SUBSCRIPTING ONLY

“> +5 TERMINAL SUBSCRIPTS
EXAMPLE

STRUCTURE Q:
1 IT ARRAY(10) INTEGER,
1 M ARRAY(10,5,6) MATRIX;

STRUCTURE 09:
1 Z1 Q-STRUCTURE,
1 J ARRAY(5) BIT(16),,
1A,

2 BOOL ARRAY(10) BOOLEAN,
2 C ARRAY(S) CHARACTER(80);

DECLARE P QQ-STRUCTURE(20) ;
THEN:

P.Z1,11$(*; 6 TO 10)
P.Z1.M$(*; 1 TO 3, 2 70 5, 4s #,3)
P.Z1LM$(«#y *iH iF 2,3)

P.J$(#; 4 AT 1: 3 AT 1)
P,A.BOOL$(#; G;)
PA.CS$(*; 3 TO 5: 10 AT 24)

You.

STRUCTURES <CON’T,)

EXAMPLES OF TERMINAL SUBSCRIPTING

GIVEN
1! STRUCTURE Q:

I QV VECTOR(3),
1aQ.

2 QB ARRAY(2) BIT(4),
2 QM MATRIX(3,3);

DECLARE ZQ Q-STRUCTURE; .

WITH THE FOLLOWING VALUES:

|
|
|

|
1
|

 “fi 2.3] -
QM EH 56

B89

) 9 LOL,

THEN:

STRUCTURES (CON'T.)

70.0, = 1

avo 0.01.0) 19 3 9 193% f J

Gee

STRUCTURES (CON'T.)

FURTHER, GIVEN
|

| STRUCTURE @:
1 QV VECTOR(3),
1 Ql,

2 QB ARRAY(2) BITCH),
2 OM MATRIX (3,3)

;
DECLARE YQ Q-STRUCTURE (3);

WITH THE FOLLOWING VALUES:

STRUCTURES (CON’T.)

then . Ceopy 1) Copy 3)

“¥O.0V 5 €(3 6 9). result is scalar type

(copy 2)

¥Q.Q1.0B) a7 mo 2° (11, 105)

L sevey Property unmodified

STRUCTURES (CON’T,) 3/

¢07
TREE (TEMPLATE) EQUIVALENCE a

THO STRUCTURES (OR MINOR STRUCTURES) ARE EQUIVALENT (TREE-

EQUIVALENT) IF:

(1) THE ACTUAL "SHAPES" OF THE TREES (ORGANIZATION OF NODES)
ARE THE SAME, AND

(2) CORRESPONDING NODES AGREE EXACTLY IN ATTRIBUTES,

OBVIOUSLY, TWO STRUCTURES ARE EQUIVALENT IF THEY USE THE

SAME TEMPLATE:

| STRUCTURE @:
| 1 QT INTEGER,
1 «1 OL,
, 2 QS SCALAR,

2 QC CHARACTER(80);
| DECLARE Z01 Q-STRUCTURE,

702 Q-STRUCTURE (20);

ZQ1 AND ZQ2 ARE TREE-EQUIVALENT, (NOTWITHSTANDING

THE MISMATCH IN NUMBER OF COPIES),

STRUCTURES (CON'T.)

STRUCTURES ARE ALSO EQUIVALENT IF THEIR TEMPLATES DIFFER
ONLY IN THE IDENTIFIERS:

STRUCTURE Q:
A QI INTEGER, ©
1 Ql, :

2 QS SCALAR,”
2 QC CHARACTER(80)}

DECLARE Z2Q Q-STRUCTURE;

STRUCTURE R:
1 RI INTEGER,
1 Ri,

2 RS SCALAR,
2 RC CHARACTER (80);

DECLARE 2R -R-STRUCTURE;
The trea shapes of ZR and ZQ are the same: ~

os

STRUCTURES (CON’T,)

(©) MINOR STRUCTURES CAN BE EQUIVALENT EVEN IF THE

MAJOR STRUCTURES ARE NOT.

STRUCTURE Q:
1 QI INTEGER,.
1 ql, .

2.05 SCALAR, .
2 QC CHARACTER (80);

' DECLARE ZQ Q-STRUCTURE) .

STRUCTURE fs
1 RS SCALAR, oe
1 RC CHARACTER(80); -

DECLARE ZR R-STRUCTURE;

The tree shapes of ZQ and ZR clearly are not the
same. However, tha tree shapes of 20.Q1. and ZR
are the same: oo ,

QL 2R

gs ge RS RC

$3
{o?

$3
YO

STRUCTURES (CON'T.)

ADDITIONALLY, HOWEVER, CORRESPONDING NODES MUST AGREE IN ALL ATTRIBUTES,

E.G. DATA TYPE, PRECISION, ARRAYNESS «11.

TYPE MATCHING REQUIREMENTS .

BIT STRING number.of bits
(BOOLEAN is equivalent to. BITtl)i

CHARACTER - maxiinum declared’ length

INTEGER precision

SCALAR precision

VECTOR precision, length’

MATRIX preciaion,: row and, column dimen—
sions

STRUCTURE ‘specified structure template

Examples:

STRUCTURE Q: |
i
'

|
|

. DECLARE 20 Q-STRUCTURE!

1 QI INTEGER, 2Q AND ZR ARE NOT TREE EQUIVALENT
lal,

2 QM MATRIX (3/3),
2 QC CHARACTER (80).

BUT, 20,01 AND ZR.RL ARE
TREE EQUIVALENT,

STRUCTURE ft
1 RI INTEGER(DOUBLE,
1 Rl,

2 RM MATRIX(3,3),
2 RC CHARACTER(D0)}

DECLARE 2R R-ST TURE}

an
y

STRUCTURES (CON’T.)

FOR TREE EQUIVALENCE, CORRESPONDING TERMINALS OF STRUCTURE TYPE MUST

IN TURN USE TREE-EQUIVALENT TEMPLATES:

EXAMPLE

STRUCTURE P:
1S SCALAR,
1 T SCALAR DOUBLE;

STRUCTURE Q:
1 U SCALAR,
1 V SCALAR DOUBLES

STRUCTURE PP:
1A,
1 B P-STRUCTURES

* STRUCTURE QQ:
1F,
1 G Q-STRUCTUREs

DECLARE X PP-STRUCTURE;
DECLARE Y QQ-STRUCTURE;

THEN X 1S EQUIVALENT TO Y,

i .

STRUCTURES (CON’T,) S/

A NESTED STRUCTURE IS NOT THE SAME AS A SIMILAR MINOR STRUCTURE. 472.

STRUCTURE Q1
108 SCALAR,
1 QC CHARACTER (80)}

See aRL INTEGER FUNCTIONALLY THE SAME,
Cty Oe eeaiE, BUT NOT EQUIVALENT
DECLATE “2 R-sTkuCTure,
STRUCTURE $:

1 SI_ INTEGER,
: sl, ~ Sse «
« ‘2 SS SCALAR, *

| “s .2 SC CHARACTER(90);:
|. pectAte"”s s-sixtctuRe;”

ZS AND ZR ARE NOT EQUIVALENT!

{
t
i
|
1
[
i

st
1

|
‘

IF WE REDEFINE S WE ARE OK:

STRUCTURE S:
1 SI INTEGER,

1 SQ Q-STRUCTURE;

e
n

STRUCTURES (CON’T,)

STRUCTURE ASSIGNMENTS _ W13

SYMBOLIC FORM: LeR

(1) £ IS RECEIVING STRUCTURE DATA ITEM WITH POSSIBLE

STRUCTURE SUBSCRIPTING,

(2) R IS EITHER A (POSSIBLY SUBSCRIPTED) STRUCTURE DATA

ITEM, OR A STRUCTURE FUNCTION. - ~

(3) IF £ AND R ARE MAJOR OR MINOR STRUCTURES, THEY MUST

BE TREE-EQUIVALENT,

STRUCTURES (CON'T.)

EXAMPLES

Given:
{

STRUCTURE Q:
1° QI INTEGER,

‘2 QS SCALAR,

. 2 QC CHARACTER(80);
" DECLARE 2Q1 Q-STRUCTURE;

DECLARE 2Q2 Q-STRUCTURE (2);

where 202 has the values:

STRUCTURES (CON’T.)

then
{

1° 20h = 202 3
is . 2

results in 2Q1 having the values:

Yax~

STRUCTURES (CON'T.)

Givens

STRUCTURE @:
1 QI INTEGER,
1 Ql,

| 2 QS SCALAR,

_ 2 QC CHARACTER (80);
DECLARE 2Q1 Q-STRUCTURE)
DECLARE 2Q2 Q+STRUCTURE (2) }

where 202 has the values:

STRUCTURES (CON’T.)

and if then the following is executed

2Q1.Q1 = 202. Ql +
8. 1

- the values of 701 are modified to:

MULTIPLE ASSIGNMENTS

A HUMBER OF STRUCTURE DATA ITEMS (MAJOR OR MINOR STRUCTURES) 52

MAY BE ASSIGNED THE SAME VALUES BY MEANS OF A MULTIPLE W ¥

ASSIGNMENT:

2,17, 2... the R*

WHERE!
it

ARE STRUCTURE DATA ITENS, AND EACH 4“ ARE TREE-EQUIVALENT TO ® ,

NOTE: NO PARTICULAR ORDER OF ASSIGNMENT CAN BE GUARANTEED!

EXAMPLE!

STRUCTURE 9:

11 INTEGER,

1S;

DECLARE 9 Q-STRUCTURE(100) ;

Q$3, Q$9, Q$10 = Q$47;

* R MAY ALSO BE A STRUCTURE FUNCTION,

STRUCTURES IN RELATIONAL EXPRESSIONS

CL) STRUCTURE COMPARISONS CAN BE MADE IN RELATIONAL EXPRESSIONS,
WHICH IN TURN MAY BE USED IN

IF vas
DO WHILE ...

ann DO UNTIL ws. CONSTRUCTS;

@) ONLY CLASS IT COMPARATIVE OPERATIONS MAY BE EMPLOYED-ON STRUCTURE
DATA ITEMS, I,E., MAJOR AND MINOR STRUCTURES, CLASS II OPERATIONS
ARE:

= 4s

EG
IF L=R THEN DO;
DO WHILE L-1= R;

RULES:

1) 1 AND R ARE EITHER STRUCTURE DATA ITEMS OR STRUCTURE FUNCTIONS,

2) £ AND MUST BE TREE~EQUIVALENT.

. 32
Wy

STRUCTURES IN RELATIONAL EXPRESSIONS (CON’T.)

QB TWO STRUCTURES ARE EQUAL <e=}>ALL CORRESPONDING TERMINALS

HAVE EQUAL VALUES. \

EXAMPLES}

STRUCTURE Q:
11 INTEGER, —

1 $ SCALAR; a

DECLARE Q-STRUCTURE INITIAL(6, 18.0), L,R;
et

IF L = R THEN DOs

OS TRUE
END3

LI= 4;

DO WHILE L 7=R,;

me TRUE
END;

53
Y20

“Py

S/ frst STRUCTURE ARGUMENTS AND PARAMETERS

INPUT PARAMETERS — (PROCERURES/FUNCTIONS)

A STRUCTURE DATA ITEM (MAJOR STRUCTURE) CAN BE AN INPUT

PARAMETER OF A PROCEDURE OR A FUNCTION, THE TEMPLATE DECLARATION FOR

THE STRUCTURE MUST PRECEDE THE STRUCTURE DECLARATION.

THE CORRESPONDING INPUT ARGUMENT CAN BE A MAJOR STRUCTURE, MINOR

STRUCTURE OR STRUCTURE FUNCTION -~ AND MUST BE TREE-EQUIVALENT!

ASSIGN PARAMETERS (PROCEDURES ONLY)

AN ASSIGN ARGUMENT CAN BE A MAJOR OR MINOR STRUCTURE -~ AND MUST BE TREE-

EQUIVALENT TO THE CORRESPONDING PARAMETER.

TERMINALS AND MINOR STRUCTURES CAN POSSESS NO "COPYNESS” -- IF THEY ARE

CONTAINED IN A MULTI-COPY STRUCTURE, THEN SUBSCRIPTING MUST BE USED TO

ISOLATE A SINGLE COPY.

MAJOR STRUCTURES WITH COPIES CAN BE LEFT UNSUBSCRIPTED (FULL COPYNESS)

~~ OR MUST BE SUBSCRIPTED TO A SINGLE COPY!!

STRUCTURE ARGUMENTS AND PARAMETERS (CON‘T.)

EXAMPLE 1: POSITION OF TEMPLATE

ANALYZE: PROCEDURE(S1) ASSIGN(S2);
STRUCTURE St!

1 SI INTEGER,
1 SN,

2 SS SCALAR,
-- 2 SC CHARACTER (80);
DECLARE $1 S~-STRUCTURE,

$2 S-STRUCTURE; "

y executable code
Wa ’

GILLD, es 3
eae re

 e
e

wn
t
s

e
a
e

“CLOSE ANALYZE:

RULE:

PARAMETER STRUCTURE TEMPLATES BEFORE PARAMETER

DECLARATIONS BEFORE LOCAL DATA DECLARATIONS,

Yaz

STRUCTURE ARGUNENTS AND PARAMETERS (COH’T.)

EXAMPLE 2: TEMPLATE CAN BE IN AN OUTER SCOPE (E.G, COMPOOL)

CPL: EXTERNAL COMPOOL;
STRUCTURE 0:

1 I INTEGER,
1 V VECTOR;

CLOSE CPL; ,
COMSUB: PROCEDURE (STRUC)s

DECLARE STRUC Q-STRUCTURE;

CLOSE COMSUBs

#23

STRUCTURE ARGUMENTS AND PARAMETERS (CON’T.) ‘ 32

0 ¥ ~f
,

EXAMPLE 3: LEGAL AND ILLEGAL INVOCATIONS

STRUCTURE Q:
1 QI INTEGER,
1 Ql,

2 QS SCALAR,
2 QC CHARACTER (80)?

STRUCTURE R:
- 1 RS SCALAR,

1 RC CHARACTER (80) +
DECLARE 2Q Q-STRUCTURE,

ZR R-STRUCTURE,
YQ Q-STRUCTURE(10)1

eoe

TREE: PROCEDURE(D1) ASSIGN(D2)1
DECLARE Dl R-STRUCTURE,

D2 O-STRUCTURE}
procedure body

THEN:

STRUCTURE ARGUMENTS AMD PARAMETERS (CON'T.)

CALL TREE(2R) ASSIGN (2Q);
CALL TREE(ZR) ASSIGN(YQ)}

4
CALL TREE(Z2Q.Q1) ASSIGN(ZQ);
CALL TREE(2R) ASSIGN (ZR);

illegal - no tree~_
equivalence

Y2\~

STRUCTURE ARGUMENTS AND PARAMETERS (CON'T.) 32

EXAMPLE 4: LEGAL AND ILLEGAL INVOCATIONS 726

4 Nt TESTS:

4 Nt PROGRAM

2 Nt STRUCTURE @

2 Hf 4.

2nt 2 1 INTEGER,

2 Nt 2 5 SCALAR,

2 Nt 4 8,

2 ut 2 J INTEGER,

2 Nt 2 T SCALAR: .

3 Ht DECLARE @ Q-STRUCTUREC19) INITIALCAL, 2, 3, 4295

4 Mt DECLARE R Q-STRUCTURE(5 > INITIALCS, 6, 7, 9):

5 Mt DECLARE P @-STRUCTURE:

6 Mt PROCS: .

6 Nt PROCEDURE RASSIGNCU, Y; Ws

7 Nt DECLARE U INTEGER:

.8 Nt PECLARE V Q-STRUCTURECS):

9 Nt STRUCTURE X:

3 NT “ 4 INTEGER,

9 MT 4 55 SCALAR:

10. Nt . DECLARE fH X-STRUCTURE (10);

L4 Nt CLOSE:

Et - * t
42 Nt CALL PROCL ASSIGNCI » CRI, €A2):

St 3
akbk FSQ - ERROR @4 OF SEVERITY 1. kk dctok

Joniok THE STRUCTURE COPIES OF ASSIGN ARGUNENT A NUST BE SUBSCRIPTED

kek AWAY |

13

hook

tok ke

hhh

kkk

toh bk

tek ke

doth ke

ak hk ok

REAL

wh bS

ehhh

"S's
STRUCTURE ARGUMENTS AND PARAMETERS (CON’T.) Y27

Et + . +

Nt CALL PROCS ASSIGNCR.ALT « C8) » CAI);

St 7 S AT 2

SR3 ERROR #2 OF SEVERITY 4. kéddk

INDEX VALUE IN SUBSCRIPT OF R.AL I 15 GREATER THAN THE LEGAL MAXINUM

SVL ERROR #3 OF SEVERITY 4. kktke

SUBSCRIPTING OF @ IS ILLEGAL IN CONTEXT OF USE AS AN ASSIGN ARGUNENT

FS2 ERROR #4 OF SEVERITY 4. hktak

THE STRUCTURE COPIES OF ASSIGN ARGUNENT Q NUST BE SUBSCRIPTED
AWAY

FS2 ERROR #5 OF SEVERITY 4, kkkER
THE STRUCTURE COPIES OF ASSIGN ARGUNENT A NUST BE SUBSCRIPTED
AWAY

LAST ERROR NAS DETECTED AT STATEMENT 12. kkkK&

STRUCTURE ARGUMENTS AND PARAMETERS (CON‘T.) Fa ¥

STRUCTURE (#*)

JUST AS IN THE CASE OF 1-DIMENSIONAL ARRAYS, A STRUCTURE

INPUT OR ASSIGN PARAMETER IS ALLONED TO HAVE A VARIABLE

NUMBER OF COPIES, I.E., THE NUMBER OF COPIES IS PASSED

TO THE PROCEDURE IN THE STACK AT THE TIME OF INVOCATION,

THE BUILT-IN FUNCTION SIZE MAY LIKEWISE BE USED FOR SUCH

UNKNOWN-COPYNESS STRUCTURES TO OBTAIN THE ACTUAL NUMBER

OF COPIES,

STRUCTURE ARGUMENTS AND PARAMETERS (CON’T.)

EXAMPLE 1

DECLARE R Q-STRUCTURE (10);
DECLARE $ Q-STRUCTURE(5O) ;

PROC: PROCEDURE ASSIGN(D);
DECLARE D Q-STRUCTURE(*); -

DO 1 = 1 T0 SIZE(D);

END:

CLOSE PROC)

CALL PROC ASSIGN(R))
CALL PROC ASSIGN(S)

127

STRUCTURE ARGUMENTS AND PARAMETERS (CON'T.) 52

EXAMPLE 2: ARRAY PROCESSING FEATURE CAN LIKEWISE BE USED ¥30

STRUCTURE Q:

1 SCALI,

1 SCAL2,

1 VECTX VECTOR;

* DECLARE Q Q~-STRUCTURE(50);

DECLARE R Q-STRUCTURE(20)3 _

PROC: PROCEDURE ASSIGN(E),

DECLARE E Q-STRUCTURE(*) s

E,SCALI, E.SCAL2 = 03«——————- ARRAYED MULTIPLE ASSIGNMENT STMT

CLOSE PROC;

CALL PROC ASSIGN(Q);

t £

CALL PROC ASSIGN(R) 5

> - ra

STRUCTURE FUNCTIONS 3/

¢3/ HAL/S ALLOWS FUNCTIONS OF STRUCTURE TYPE WHICH MAY BE
SUBSTITUTED FOR DECLARED STRUCTURES IN MANY OF THE
PREVIOUSLY DEFINED STRUCTURE OPERATIONS.

FORM:
"| kabets FUNCTION(4?, £2, ...) o-STRUCTURE;

RETURN stnuctures
CLOSE;

NOTES:

(1) A STRUCTURE FUNCTION CANNOT HAVE COPYNESS (REMEMBER

“THAT ORDINARY FUNCTICNS CANNOT HAVE AN ARRAY DECLARATION).

(2). THE TEMPLATE « MUST BE DEFINED IN AN OUTER SCOPE PRIOR

TO THE FUNCTION HEADER,

(3) THE INPUT PARAMETER LIST IS OMITTED ENTIRELY IF THERE

ARE NO PARAMETERS,

dee

STRUCTURE FUNCTIONS (CON’T.) Jae
. z

EXAMPLES j

(A) ALPHA: FUNCTION B-STRUCTURE(A); ~~ ULE

(B) ALPHA: FUNCTION B-STRUCTURE;
STRUCTURE B: TEMPL

ATE MUST BE 1 } : INTEGER, OUTER SCOPE "

(C) STRUCTURE Q:
1 QI INTEGER,
1 Q1,

QS SCALAR,
QC CHARACTER(80) 1

TREE: FUNCTION (I,J) Q-STRUCTURE;

ie “ 4

Yee function body
LOE lde
i MELEE ELE .

CLOSE TREE}

STRUCTURE FUNCTIONS (CON'T.)

a 433
AS 1S THE CASE WITH ALL FUNCTIONS, A STRUCTURE FUNCTION

MUST ACTUALLY RETURN A STRUCTURE OF THE REQUISITE TYPE:

STRUCTURE S:
1 SS SCALAR,

1 SC CIARACTER (80);
STRUCTURE Q:

1 QI INTEGER,
1 Q1 S-STRUCTURE)

TREE: FUNCTION (DL) S-STRUCTURE;
DECLARE D1 Q-STRUCTURE;

RETURN D1.Q1;

RETURN Dl;

: fllegal - lack of ©
CLOSE TREE; tree-equivalence

NOTE: REMEMBER THAT AGGREGATE DATA (VECTORS, MATRICES, CHARACTER

STRINGS, ARRAYS, AND STRUCTURES) ARE NEVER PHYSICALLY

PASSED TO OR FROM A PROCEDURE OR FUNCTION. AGGREGATES

ARE ALWAYS PASSED BY NAME (REFERENCE) -~ NEVER BY VALUE!

si

STRUCTURE FUNCTIONS (CON’T.)

A STRUCTURE FUNCTION IS INVOKED BY EMPLOYING ITS NAME

IN A REFERENCE CONTEXT, IT SHOULD BE CLEAR, HOWEVER, THAT

A STRUCTURE FUNCTION IS NOT REALLY A STRUCTURE -- I.E.,

MINOR STRUCTURES OR TERMINALS OF IT CANNOT BE REFERENCED,

STRUCTURE Q: .
1 QI INTEGER,
1 Ql,

2 QS SCALAR;
2 QC CHARACTER (80);

DECLARE 2Q Q-STRUCTURE;
EE 2 Q-STRUCTURE}

‘ | function body

ZQ = TREE; legal invocation
Z2Q.Q1 = TREE.QL; illegal invocation

- ALSO,

IF ZQ = TREE THEN DO;

ARRAY PROCESSING

EXAMPLE

STRUCTURE Q:

1 I INTEGER,

» 1A ARRAY(4,9) SCALAR,

1M ARRAY(6,10,4) MATRIX,

1 € ARRAY(6) CHARACTER(9);

DECLARE @ Q-STRUCTURE (16);

DECLARE J ARRAY(20) INTEGER;

DECLARE B ARRAY(16,4) SCALAR;

DECLARE N ARRAY(16,10,4) MATRIX;

DECLARE D ARRAY(6) CHARACTER(S);

_/
 ,

3/
{3s"

w
e
r
e

w
o
w

O
O
S

P
e

ARRAY PROCESSING (CON’T.)

a

(1:16)

(1:16)

{3:16,4,9}

{4:16,6,10,4)

{2:16,6}

{1:20)

{2:16,4)

{3:16,10,4)

(1:6)

TYPE

MAJOR STRUC

INTEGER

SCALAR

MATRIX

CHARACTER

INTEGER

SCALAR

MATRIX

CHARACTER

32

$36.

os

ARRAY PROCESSING (CON’T,) ¥37

ARRAYNESS 1S A FUNCTION OF SUBSCRIPTING!
a

AS(#; *,3) > {2:16,4)

MS(*; 3,*,#:) + (3:16,10,4)

TWO OPERANDS HAVE MATCHING ARRAYNESS IF THE N-TUPLES ARE IDENTICAL:

A$(#; #3) = B= (2:16,4)

MS(*#s 3,",%:) = N = (3:16,10,4}

rt
)

Ht

ARRAYED EXPRESSIONS

AN ARRAYED EXPRESSION IS AN ORDINARY EXPRESSION IN WHICH THE
OPERANDS HAVE ARRAYNESS, AN ARRAYED EXPRESSION CAN BE ASSIGNED
TO (OR COMPARED AGAINST) AN ARRAYED DATA ITEM,

ARRAY PROCESSING (CON’T,) J3 ¥

EXAMPLE

DECLARE ARRAY(50), S, Ta Soe,

DECLARE 1 INTEGER: 4 fl

DO FOR 1 = 1 TO 50;
S$] = $1; <———-— ORDINARY ASSIGNMENT

END;
' ¢ €

§ = Ty) +-—————__—_______ ARRAYED ASSIGNMENT STATEMENT

e IN AN ARRAYED EXPRESSION, EACH OPERAND MAY OR MAY HOT HAVE

ARRAYNESS -- BUT ALL OPERANDS THAT HAVE ARRAYNESS MUST MATCH

IN ARRAYNESS,

ARRAY PROCESSING (CON'T.) ” 93P

EXAMPLE :

DECLARE ARRAY(3,6) INTEGER, I, J;

DECLARE K ARRAY(4,10,4) INTEGER;

DECLARE S ARRAY(3,6) SCALAR;

I + J 1S LEGAL (ARRAYNESSES ARE (2:3,6})

I + J +6 18 LEGAL (ARRAYNESSES ARE {2:3,61)

1+ K ts rtesat (arrayness of K 1s (3:4,10,47)

I + K$G AT 1, 6 AT 2,3) Is LEGAL

(K HAS BEEN REDUCED TO ARRAYNESS {2:3,6)} BY SUBSCRIPTING)

[+ J +S 18 Legal (RESULT WILL BE AN ARRAY(3,6) OF SCALARS)

IJ § 18 LEGAL (RESULT WILL BE AN ARRAY(3,6) OF SCALARS)

4-34

ARRAY PRULESS LO. Wurth ves

USER-DEFINED FUNCTIONS INVOLVED IN AN ARRAYED EXPRESSION

WILL BE INVOKED ONLY ONCE UNLESS AN ARRAYED ARGUMENT IS BEING

PASSED TO A FUNCTION WHICH ACCEPTS UNARRAYED ARGUMENTS.

DECLARE ARRAY(10), I, Js

DECLARE Ks

Fl: FUNCTIONCARG) s

DECLARE ARG;

CLOSE Fl;

F2: FUNCTIONCARG) 3

DECLARE ARG ARRAY (10);

CLOSE F2s

DRI
.

. —F] INVOKED ONCE

ped + 20s
F2 INVOKED ONCE

DASH RLDS
“ Fl invoxep 10 TIMES

peal tilt F2CK)3

Len ERROR-PARAMETER
 MISMATCH

$2
¥Jfo

ARRAY PROCESSING (CON’T.) 53

BUILT-IN FUNCTIONS, E.6., SQRT, SIN, «ses ARE BETTER BEHAVED -- v9]
THE COMPILER KNOWS THAT THEY CANNOT INFLUENCE “EXTERNAL” DATA,

© A BUILT-IN FUNCTION WITH NO ARGUMENTS OR WITH ARGUMENTS

THAT ARE NOT ARRAYED MAY ULTIMATELY BE EVALUATED ONLY ONCE

IN AN ARRAYED EXPRESSION

EXAMPLE

DECLARE C SCALAR INITIAL(5)s

DECLARE ARRAY(20) SCALAR, S, Ts

$= T + SIN(C);

CURRENTLY WILL BE EVALUATED 20 Times

\ ULTIMATELY THE EFFECT MAY BE .,.,

COMPILER-TEMPORARY = SIN(C)
S = T + COMPILER-TEMPORARY

AGAIN, IF SIN HAD BEEN A USER FUNCTION SUCH OPTIMIZATION IS NOT
POSSIBLE.

my mS ,

Spe
ARRAY PROCESSING (CON’T.) -

nn Y¥2.
e@ [F THE BUELT-IN FUNCTION HAS ARRAYED ARGUMENTS (AND

THE ARRAYNESSES OF ALL ARGUMENTS MATCH THE ARRAYNESS OF

THE EXPRESSION -- AN ERROR WOULD OTHERWISE RESULT) THEN

_ JHE FUNCTION IS INVOKED ONCE PER ELEMENTAL EVALUATION,

ON EACH EVALUATION THE FUNCTION OPERATES ON SUCCESSIVE

ELEMENTS OF THE ARRAYED INPUT ARGUMENTS.

EXAMPLE

DECLARE ARRAY(20), S$, T, Uy

S = ARCTAN2(T,U)

THIS IS EQUIVALENT TO:

DO FOR 1 = 1 T0 20;

- $$] = ARCTAN2(T$I, UST);

END;

ARRAY PROCESSING (CON’T,) $2

IMPORTANT NOTE:

IF THE BUILT-IN FUNCTION NORMALLY TAKES AN ARRAYED ARGUMENT

THEN THE FUNCTION ACTS ON THE WHOLE ARGUMENT EACH CYCLE THROUGH

THE ARRAYED EXPRESSION,

SUCH BUILT-IN FUNCTIONS ARE:

(2 IS Al-, 2-, or 3-DIMENSIONAL ARRAY OF INTEGERS OR SCALARS)

MAX (a) MAXIMUM (GREATEST) ELEMENT OF THE ARRAY

MIN(e) MINIMUM (LEAST) ELEMENT OF THE ARRAY

PROD(«) PRODUCT OF ALL ELEMENTS OF THE ARRAY

_ SUM(e) - _ SUM OF ALL ELEMENTS OF THE ARRAY

Wey

EXAMPLE

DECLARE ARRAY(20), S, Ts Us

S = T+ SUN(); TarrAvness oF U NEED Nor matcH S & T,

THIS 1S EQUIVALENT TO:

DO FOR 1 = 1 TO 20;

S$I-= TSI + SUN(U)s
END; ~ pers LIKE A CONSTANT

| 53
ARRAY PROCESSING (CON'T.) ¢4¢

C. ARRAYED ASSIGNMENTS

AN ARRAYED ASSIGNMENT IS OF ONE OF THE FOLLOWING THO FORMS:

@ _ARRAYED UNARRAYED
DATA ITEM EXPRESSION

@ _ARRAYED* . ARRAYED*
DATA ITEM EXPRESSION

* - IN THIS CASE, OF COURSE, ALL ARRAYNESSES MUST MATCH,

-. 52 ARRAY PROCESSING (CON’T.)

AMY S
IN CASE @) » ALL ELEMENTS OF THE ARRAY ON THE LEFT-HAND~SIDE

OF THE ASSIGNMENT STATEMENT ARE IDENTICALLY SET EQUAL TO THE

RIGHT~HAND EXPRESSION:

DECLARE ARRAY(10), A, Bs

A= 0; ALL 10 ELEMENTS OF A ARE ZEROED

A = SUM(B); ALL 10 ELEMENTS OF A ARE SET EQUAL To
THE SUM OF ALL “ELEMENTS OF B

A = C0S(15), ALL 10 ELEMENTS oF A ARE SET EQUAL TO THE

SCALAR CO0S(15)

IN CASE: (2) » SUCCESSIVE ELEMENTS OF THE LEFT-HAND-SIDE ARRAYED

DATA ITEM ARE SET TO CORRESPONDING EVALUATIONS OF THE RIGHT-HAND-

SIDE ARRAYED. EXPRESSION:

ARRAY PROCESSING (CON'T.)

DECLARE ARRAY(10) INTEGER,

M, NL Ps

DECLARE ARRAY(5,10), S, T, Us

fra

P= M+ Nj

1S EQUIVALENT TO:

DO FOR I = 1 TO 10;

PSI = MSI + NST;
ENDs

U=ST

IS EQUIVALENT TO:
_ DO FOR I =1 105;

DO FOR J = I TO 10;
USCLd) = S$(LJ) T$(1ad)s
ENDs

END;

/¥¢

ARRAY PROCESSING (CON’T,) 3/
447

Ch THAT OF RIGHT HAND SIDE

1 Nt TESTD:

1 Nt PROGRAM;
2 4t STRUCTURE Q:
2t 1 IE ARRAYC2, 3) INTEGER,
2 Nt 1 8B ARRAYCS) BITC9),
2 Nt 1 MM ARRAYC5S, 10, 45) MATRIXC4, 5),
aut. 1 N ARRAYC40) INTEGER,
2 Nt 4 Ut INTEGER; :
3 Mt DECLARE Q Q-STRUCTUREC 38) INITIALC 684, GABIN-4-, (SOHC 20HG), 1944, 59; 4 Nt STRUCTURE S: :
4oNt 1 C ARRAYC10) VECTORS);
S Nt DECLARE § S-STRUCTURE(5); ‘
& Mt DECLARE T APRAYCS, 10) VECTQR(S))
PONT DECLARE U ARRAYCS, 16, 5) SCALAR:

ct
Et - -

a8 ont CCC) = C£MM91 i
St | S AT 955, 4,7:3,%
Et - -

3 Nt €T2 = CONMI2 3 St SAT 935.4,27:3,4
Et -

40 NT CW] = COMMI2. 3
St 5 AT 315, #,7:3,%

hak AAD ERROR #1 OF SEVERITY 4, &kkhen
tok ARRAYNESS OF LEFT -HAND SIDE OF ASSIGNMENT DOES NOT NAT the AY ERROR #2 OF SEFERITY 4, bhkkS
Aah T YPE OF U IS ILLEQAL FUR ASSIGNNENT FROM GIVEN RIGHT-HAND SIDE.

w
o
w

49

Et
Mt
Nt
St.
Nt

ARRAY PROCESSING (CON’T.)

DO FOR TEMPORARY I & 4 TO SEZECLEI):

E.SCAL4 , E.SCAL2 = QO:

I I

END:

STS EQu *
L 7.4208)
STH 7,4700)

LEXI 2.4
LBLA6 Eau *

STAD

ST#410
LBL&S

LBLA7

STH 71600)
CH Fil?) *
ec 4.48445
EQu * ,
NIH 7, 70704)
LR 6,7
SRA 6.4
SRA os
SER 0,8
LH 2,18¢8)
STE 8, 807,2>
STE 8,266.2)
EQu *
Eau *
LFXI 7.4

fi 741600)
BC 7) #16
EQu &

+

20
yw

Et2

LBL@?

H°40°

LEL&6

44

12

13

44

Er

Nt

Nt
St
Nt
St
Nt

45 Mt

ARRAY PRu

UD FOR TEMPORARY I 8 4 TO SIZECLEI)s

E,SCALL 9 8:
I

E.SCAL2 = @5
1

ENO;

ST#4id Eou
tL .

STH
‘ LFAI

LBLa9 EQU
STH
CH
BC

sT#42 0 EGU
NTH
SRA
SER
LH
STE

ST#12 EQu
LH
MIH

SRA
STE

ST#14 EQU
LBL#i4 Eau

LFXI
RH
Bc

LBL#10 | EAU

CLOSE PROM;

ST#45 EQu
LBLa4 EQu

Ltt
BER

ANG (LON'I.)

+

*

7.1200)
714708)
Mra
*

7 1606)
7, 1708)
4, eta?
* .

7, 7O7C4
fod
9,8
2, 4000) ao
e OC7,2> HW

7, 1608)
7, 70764)
toh
8,207.2)
*

*
P74

7.4608)
7, #-13
*

x
Ay @>
eed

E+2

I

LBL#i9a

H?10~

LELaS

16

a7

Et
Nt
Et
Mt

ARRAY PROCESSING (CON'T.)

+

CALL PROC ASSIGNCL OI);
+

CALL PROC ASSIGNCER I):

ST#i6 EQuU ee
LA 5,~8¢41)
LHI 6,59

: BAL 4,0¢3)
ST#17 Eau *

LA 5,492¢4)
LHI 6,28
BAL 4,6¢3)

Q

A2TESTC

R

R2TESTC

C ;
ARRAY PROCESSING (CON’T.)

FURTHER ARRAYED ASSIGNMENT EXAMPLES

Given:

DECLARE INTEGER,
Il ARRAY (2,3),
12,
I3 ARRAY (2,3),
I4 ARRAY (4)3

then .

_ PAYED -2_ UNARRAYED
Ths 12; (Ag eOYED a Expeession)

is an arrayed assignment in which all elements of
Il are assigned the value of I2.

‘ ED
se ARRAYED = ARRAVE

thes 73 DATA ITEM EXPRESSION

assigns each element of I3 to the corresponding
element of Il.

Tl = 34;
is illegal because the arrayness of the receiving
data item is {2:2,3} while that of the right hand
side is {1:4},

I2 = Il;
is illegal because the right hand side has arrayness
while the recaiving data item has none.

ARRAY PROCESSING (CON’T.)

NOTE THAT THE FOLLOWING ARE ALSO POSSIBLE:

Il = 11 + 13;
ll = 11 13;
I1 = [3«#2;

“TL = 13/123

ARRAY PROCESSING (CON'T,)

Further given:

| STRUCTURE Q:
| 1 QI INTEGER,
j Lai,
i 2 QS ARRAY (4) SCALAR,
' 2 QC CHARACTER (80);
| DECLARE 2Q1 Q-STRUCTURE (2);
| DECLARE 2Q2 Q-STRUCTURE (2);
| DECLARE § ARRAY (2,4) SCALAR;

the following assignments are legal:

{
i 2Q1 = 202;
} 291.091 = 202.01;
1 201.01.QS = 202.01.05;
| 201-91.98 = 8;

ARRAY PROCESSING (CON'T,)

D. MULTIPLE ASSIGNMENTS

MULTIPLE ASSIGNMENTS HAVE BEEN DISCUSSED PREVIOUSLY,

TO EXTEND THEM TO ALLON ARRAYED BEHAVIOR WE NEED THE

FOLLOWING ADDITIONAL RULE:

IF ONE RECEIVING DATA ITEM POSSESSES
ARRAYNESS, THEN ALL MUST POSSESS

MATCHING ARRAYNESS, .

ARRAY PROCESSING (CON'T.)

EXAMPLES OF MULTIPLE ARRAYED ASSIGNMENTS:

Given:

!

! DECLARE INTEGER,
Il ARRAY (2,3),
I2,
I3 ARRAY(4),
I4 ARRAY (2,3)}

then

. Tl, I4 = 12;

is legal since the arrayness of Il and 14 match.

However, both of the following are illegal:

Il, 12 = 12;
Il, I3 = 14;

“Ps NM pe.

ARRAY PROCESSING (CON'T,)

DECLARE I ARRAY(3) INTEGER,
M MATRIX(2,2)4
MA Anna) MATRIX 62,2},
MB ARRAY(2) MATRIX(2,273

Let WF (3:78 0.25] and [= /2
0.75 1.25. 1

1

= {4 { .78 1,25] then = 2,8 a (=::) (tas 0.25]
Me 11.75 0,25)

~ 4@ linear J-array of 2-vectors: subscripting
has reduced M from a matrix to a row~vector,
but since I is arrayed, the entire operand has
an effective arrayness even though M itself has
not. - .

.

~

 SING (CON'T.)

ARRAY _PROt

Given:

DECLARE ARRAY (2,3), —
V VECTOR (3),
I INTEGER;

with v 2/ [1.5] [4.5} [7.5
2.5; 15.5] |a.5 .
3.5} 16.5| 19.5

-0.5| |-3.5} |-6.5
=1.5] [4.5] |-7.5
-7.5| |-sis| |-a's NOTE THAT THE ARRAYNESS OF

and I (j 2 3) _ V$Cs,*:) MATCHES THE
3 12

ARRAYNESS oF |
then

Vnarl << V¢ (ok, ; T).

is equivalent toe

. Ven dTy, for l<i¢2,1l1¢f<3

aos,

ARRAY PROCESSING (CON‘T.)

The arrayed vector subscript I selects an array of

scalars from the vector array V as shown below:

'

In assignment context, the following values of V

would be changed:-

Vyjarn Va,2:2 ay323

Vo,u:3 Y2,a:1 2,322

E,

ARRAY PROCESSING (CON’T.)

ARRAYED SUBSCRIPTING

Q, WHAT HAPPENS WHEN A SUBSCRIPT IS ITSELF AN ARRAY

OR HAS ARRAYNESS?

A. THAT IS A GOOD QUESTION.

SOME RULES:
(1) IF BOTH THE OPERAND (I.E,, DATA ITEM) AND THE SUBSCRIPT

HAVE ARRAYNESS THEN THE ARRAYNESSES MUST MATCH! IN
, THIS CASE, THE WHOLE OPERAND IS CONSIDERED TO HAVE THAT

SAME ARRAYNESS,

(2) IF ONLY THE SUBSCRIPT IS ARRAYED, THEN THE OPERAND

ITSELF BECOMES ARRAYED, 1.E., IT INHERITS THE ARRAYNESS

OF ITS SUBSCRIPT.

ARRAY PROCESSING (CON'T,)

NOTES:

(A)

(B)

NOW,
(1)

(2)

EXPONENTS CAN HAVE ARRAYNESS ALSO,

SUBSCRIPTS, OF COURSE, CAN IN TURN HAVE SUBSCRIPTS

AD INFINITUM, ONE OR MORE OF THESE CAN BE ARRAYED --

PROVIDED ALL ARRAYNESSES MATCH,

IF THE SUBSCRIPTED OPERAND IS PART OF AN ARRAYED
EXPRESSION (E.G. IN AN ARRAYED ASSIGNMENT) THEN
THE ARRAYED SUBSCRIPT(S) ARE EVALUATED ONCE PER
ELEMENTAL EVALUATION OF THE EXPRESSION, NOTE THAT
ALL ARRAYNESSES MUST MATCH,
IF THE SUBSCRIPTED OPERAND IS A RECEIVING DATA ITEM
IN AN ASSIGNMENT (LEFT-HAND SIDE) THEN THE ARRAYED
SUBSCRIPT IS EVALUATED ONCE DURING EACH ELEMENTAL
ASSIGNMENT. AGAIN, ARRAYNESSES MUST MATCH,

ARRAY PROCESSING (CON’T.) :

IF

DECLARE I ARRAY(2,3) INTEGER

INITIAL(1,2,3,3,1,2)5

SO THAT
l= 1 2 > ~

3 12

Note that an arrayed subscript can actually generate
arrayness in an unarrayed data item, . For example, if -

ae

C is an unarrayed character string with C ='ABCD!

then

C, has the arrayneas of I.

The values are selected ag follows:

a ‘

yt tpt ‘s)

'XBCD' tot tar age
”

Then c||c, would be an arrayed expression with
values:

‘ABCDA' 'ABCDB' tapcpc!
"ABCDC' 'ABCDA' 'apcpB!

ARRAY PROCESSING (CON’T.)

In an assignment context, the following values of

C would be changed:

Note that values of Cyr Cy and Cy would be each

changed by two elemental assignments. The results

of this assignment are therefore likely to be implemen-

tation dependent.

—

ARRAY PROCESSING (CONT.)

Let MA = [2-0 9-9]
3.0 2.6 @ y= 2
4.0 7,0

(8:8 Bal @ tal
(i3 373] @r=1
4.0 9.0 3

Mosn,e

Myi.,e
is also a linear 3~array of 2-vectors: now

» however MA and [both have arrayness (which
correctly match). Three parallel subseript
evaluations are effectively performed using
corresponding array elements of MA and |
each time. . :

: HM 13.0 2.0] 1t2,6 Then MAgi) 9 2 er) £ (« ra]
{8.0 _ 3.0)

” Note MBo ste 4s illegal since the array~
ness of MB does not match the
arrayness of |,

However MB, a is legal since array subscripting »
‘*. 70 24° has been used on ! to force array~

necs matehing. .
’

If MB 2 /f0.5 0.5 I, #2
[o:3 | Oy
0.2 -0.7 r=

[ora 08 ®t

then MBY, az volt? | 2 {0.1 0,3)
thy po 22% (t!2** [0.2 0.7)

F,

ARRAY PROCESSING (CON’T.} s/
ARRAYED COMPARISONS 7¥ $

ARRAYED OPERANDS MAY BE USED IN RELATIONAL EXPRESSIONS -- o #

BUT IF ONE OR BOTH OPERANDS OF A COMPARISON HAVE ARRAYNESS,

THEN ONLY THE CLASS I] COMPARATIVE OPERATORS MAY BE USED,

LE, = AND 75,

ADDITIONALLY, OF COURSE, THE ARRAYNESSES MUST MATCH,

FURTHERMORE, A BOOLEAN EXPRESSION IN A CONDITIONAL CLAUSE

CAN BE ARRAYED: .

DECLARE BOOL ARRAY(10) BOOLEAN;

iF [Bool] THEN DO;

IN THIS CASE THE THEN CLAUSE WILL BE EXECUTED IF AND ONLY IF

ALL 10 BOOLEANS ARE TRUE.

ARRAY PROCESSING (CON’T.)

EXAMPLES

DECLARE I ARRAY(4) INTEGER

INITIAL(1,2,0,3),

J ARRAY(4) INTEGER

INITIAL(1,2,0,3),

: K ARRAY(4) INTEGER

INITIAL(3,1,2,6),

L ARRAY(2) INTEGER

INITIAL(O,3)3

(1) IF T= J THEN
TRUE

(2) IF J = K THEN

FALSE

(3) IF J = K THEN
ett stmt

_ TRUE

(4)

(5)

ARRAY PROCESSING (CON'T.)

IF I < J THEN
ILLEGAL

IF 1$3 < J$2 THEN

LEGAL

IF K = L THEN

ILLEGAL

IF K$(2 AT 1) = L THEN SS eee

FALSE

é e .

{vo

ARRAY PROCESSING (CONT'D.)

~
a x o oa
ou

te
ne 2 co
os ~ J
tod

«
os

n
t-

~t
.

om

o

%

~
*

.
7

a
M

o~

Ch
keg

8

OG
t
y
p
o

ve

W
O
W

et
“

wd
OD

sae
Fm

be
obs

OE
ut

3
+

s
e
c
r
e

Pt

re
L
a
b

z
o

N
e
a

SE

u
t
a

~
aa

ee
M
m
m
o
o

“
x

*
we

ot
O
C

e
e
n

a

-

Cc

ie
<i

~
7
%

C
T
O

S
k

ot
<

i
o
n

“
f

tu
4

e
w

:
m
w

C
w

to
Ut

au
_

a
s
:

7
ee

ent
~
-
E
m

.
C
.

a

a7
mg

we
au

_
“

oe
od

a
E

ef
oP

CG
PP

C
P
P

T
P
I
S

a
sas

te

w tu
x

i

mM t-
c ot

a
.c ra

tt

~

fo
te

ee
al

Fr
tn

an

to

Fe

" 7

wt
co
uw

fa
fo

te
a

eo
2

a

cad

iu

-t
a wa

t
t
e

r
o
n

«ft
wt

oO
poy
w
o

Me
ta it

oo wt
<0 oo fm

tm

e
e

cs
o

a
os

we
m
e
s

a
o
”

ae
nm

w

ak

it

-
-

ot
ot

Pex
a

ay
ww

a

ar
4

tu
br

rs
og

<t
“

ro
ia

fw
oe

rol I

its

ARRAY PROCESSING (CONT'D,)

INTEGER,

G,

ARRAY PROCESSING (CON'T.)

3/
REVIEW OF INDEFINITELY ARRAYED PARAMETERS y oJ

INDEFINITELY ARRAYED PARAMETERS

THE PARAMETERS OF FUNCTIONS AND THE INPUT OR ASSIGN PARAMETERS

OF PROCEDURES MAY BE DECLARED TO BE INDEFINITE ARRAYS. THE

FORM OF ARRAY SPECIFICATION IS:

ARRAY (*)

Examples:

TWICE: PROCEDURE (A) ASSIGN (B);

DECLARE A ARRAY («) VECTOR (3);

soe B ARRAY (+) BIT (16);
Be Yee Mey ae

Yi procedure body

CLOSE TWICE; .

REMEMBER THAT THE SIZE FUNCTION CAN BE USED TO FIND THE

ACTUAL SIZE OF THE ARRAY AT RUN TIME.

» AKKAT PRULCOOLNO (LUN Ta?

THE NUMBER OF MULTIPLE COPIES IN A STRUCTURE PARAMETER
MAY ALSO BE MADE INDEFINITE USING THE FOLLOWING FORM: 3/

STRUCTURE (*)
Example: Ys-2,

FUN: FUNCTION(C) SCALAR;
STRUCTURE Q:

1 QI INTEGER,
1 QS SCALAR;

HERE, T00, THE SIZE FUNCTION CAN BE USED,

Note that the ability to define an indefinite array does

not extend to an arrayed structure terminal.

Example:

BAD: FUNCTION(C) SCALAR;
STRUCTURE Q:

1 QL INTEGER,
1 QS ARRAY (s) SCALAR; + illegal

DECLARE C Q-STRUCTURE;

ea ay oe ee

LE Re

CLOSE BAD};
 | function body

{
i
1
1
t
'
1
1 to

i
!
|
{
i
|
{
1
1
{

ARRAY PROCESSING (CON'T.) © S/

H. ARRAYED PROCEDURE ARGUMENTS : AS 3
BOTH INPUT AND ASSIGN ARGUMENTS OF A PROCEDURE INVOCATION

MAY POSSESS ARRAYNESS, HOWEVER, THE CORRESPONDING PARAMETERS

OF THE PROCEDURE MUST BE ARRAYED ALSO -- AND HAVE THE SAME

ARRAYNESS,

IF THE PARAMETER IS ARRAY(*) THEN ONE SHOULD PASS IN A 1-

DIMENSIONAL ARRAY.

© INPUT ARGUMENTS

THE INPUT PARAMETER CAN BE VIEWED AS BEING ASSIGNED INTO

FROM THE INPUT ARGUMENT, ARRAYNESSES MUST MATCH, BUT

FLEXIBILITY IS ALLOWED IN THAT THE INPUT ARGUMENT MAY BE

A NON-CONTIGUOUS ARRAY AND/OR OF DIFFERING PRECISION,

IT MAY EVEN BE OF DIFFERING DATA TYPE IF AN APPROPRIATE

IMPLICIT CONVERSION CAPABILITY EXISTS,

ARRAY PROCESSING (CON’T.)
52

EXAMPLE: ¢s 4

STRUCTURE Q:

1 I INTEGER,

1S SCALAR DOUBLE,

1M MATRIXs

DECLARE Q Q-STRUCTURE(100) 5

ALPHA: PROCEDURE(T)s

DECLARE T ARRAY(50) SCALAR;

CLOSE ALPHA ;

8 6

CALL he AT 27))3

HAS DATA TYPE INTEGER (IMPLICITLY CONVERTIBLE

TO SCALAR) AND ARRAYNESS {1:50}

© ASSIGN ARGUMENTS

RULES

1.

3.

4.

ARRAY PROCESSING (CON'T,) aj

fss~
(SIMILAR TO THOSE FOR NON-ARRAYED ASSIGN PARAMETERS)

The arrayness of the argument must
match that of the. corresponding para~
meter,

If the parameter is an indefinite
array, arrayness matching is ensured
if the corresponding argument is a
1-dimensional array, —

If the argument is part of a structure
which has multiple copies, structure
subscripting must be used to limit the
number of copies in the argument to one,

If array subseripting is present it
must be such as to select one array
element only,

If component subscripting is present,
where necessary array subscripting must
be used to limit the number of array elements in the argument to one, \

ARRAY PROCESSING (CON‘T.)

NOTE: THE MORE STRINGENT RULES FOR ASSIGN PARMS/ARGS

RESULT FROM THE FOLLOWING FACTS:

D

2)

WHETHER INPUT OR ASSIGN, ARRAYS

ARE PASSED BY POINTER (REFERENCE).

ON THE INPUT SIDE THIS MAY BE A

POINTER TO AN ARRAY TEMPORARY

CREATED BY THE COMPILER TO MAKE

DATA CONTIGUOUS, CHANGE PRECISION,

ETC.

ON THE ASSIGN SIDE, THE PROCEDURE

MODIFIES THE ORIGINAL DATA DIRECTLY.

a ARRAY

PESSING (CON’T.)

EXAMPLE 1:

‘

| ONE:: PROCEDURE (A) ASSIGN (B); /
DECLARE A ARRAY(2,3) SCALAR,

B ARRAY (4) BIT(16);

procedure body
_ CLOSE ONE;

and the following data declarations:

DECLARE Pl ARRAY (2,3) SCALAR,
. P2 ARRAY (2,5) SCALAR,

P3 ARRAY (4) BIT (16),
P4 SCALAR,
P5 ARRAY (2,5) BIT(16),
P6 BIT(16)}

“6 then some legal and illegal invocations of the
procedure are as follows:

CALL GNE(P1) ASSIGN(P3);
CALL ONE (P2) ASSIGN (P3);

: *,1 TO 3
|
Is '
| CALL ONE (P2. + Pl - PA) ASSIGN(P6);

. Is. , *,3 TOS | illegal - not arrayed
| CALL ONE(P4) ASSIGN(PS ys
'g 1,1 TO 4

enareein, eee

Lutegai arrayness but
illegal subscript

illegal - not arrayed

ARRAY PROCESSING (CON’T.)

EXAMPLE 2:

|

|
|

TWO: PROCEDURE (A) ASSIGN (B);
DECLARE A ARRAY(s*) SCALAR,

B ARRAY (w) BIT(16);

WY) VY) = body

CLOSE TWO;

CALL TWO(P1) ASSIGN(P3);
. 1,*

s 1,*
" GALL THO(P2 —-) ASSIGNIP3);

{

CALL TWO(P1) ASSIGN(P6):

Illegal ~ not arrayed

Illegal ~ wrong number

of array dimensions

ARRAY PROCESSING (CON’T.)

I, ARRAYED FUNCTION ARGUMENTS Y¢SY

RULES

(@) IF A PARAMETER IS ARRAYED, THEN THE CORRESPONDING

ARGUMENT MUST BE IDENTICALLY ARRAYED,

IF THE PARAMETER 1S UNARRAYED IT IS POSSIBLE FOR THE

ARGUMENT TO HAVE ARRAYNESS -- IN THIS CASE, PROVIDED

ALL ARRAYNESSES MATCH UP IN THE REST OF THE STATEMENT,

THE FUNCTION WILL BE INVOKED ONCE PER ELEMENTAL

EVALUATION,

EXAMPLE 1 ve THE FUNCTION EXPECTS AN ARRAY THEN v1.

ALPHA: FUNCTION(R)5 IT MUST GET ONE!

DECLARE R ARRAY(10);

RETURN SUM(R)s

CLOSE;
' 8

DECLARE. $, T3
T = ALPHA(S);<—— ILLEGAL -- S 18 NoT AN ARRAY(10)

ARRAY PROCESSING (CON'T,)- 34

EXAMPLE 2 #60
ALPHA: FUNCTION(R);

DECLARE R;

RETURN R**2 COS(R)y

CLOSE;

DECLARE ARRAY(10), S, T, Us

DECLARE V;
o 8 ot

a

(A) [s] = (1) + aLPHac(u}),
(B) [s] = [1] + ALPHACY)s

| -®_ eauivatent To DO FOR I = 1 10 10;
S$] = TSI + ALPHACUSI)

END;

U MUST HAVE SAME ARRAYNESS as S AND T

EQUIVALENT. TO DO FOR I = 1 TO 10;
S$I = T$I + ALPHACY);

ENDs

RAVELING & UNRAVELING

(NATURAL SEQUENCE)

EXCERPT FROM LANGUAGE SPEC,

There are several kinds of operation in the HAL/S
language which require operands with multiple components,
array elements, and structure copies to be unraveled into
a linear string of data elements. The reverse process of
“reraveling" a linear string of data elements into components,
array elements, and structure copies also occurs. ‘Two major
occurrences of these processes are in 1/0 (see Section 10),
and in conversion functions (see Section 6.5).

The standard order in which this unraveling and
reraveling takes place is called the “natural sequence"
By applying the following rules in the order they are stated,

. the natural sequence of unraveling is obtained. By applying
the rules in reverse order, and replacing "unraveled" by
"reraveled", the natural sequence for reraveling is obtained.

‘

RULES FOR MAJOR AND MINOR STRUCTURE:

1. If the operand is a major structure with multiple copies,
each copy is unraveled in turn, in order of increasing
index. If the operand is a minor structure of a multiple-
copy structure, then the copy of the minor structure in
each structure copy is unraveled in turn in order of
increasing index.

The method of unraveling a copy is as follows. Each
structure terminal on a "branch" connecting back to the
given major or minor structure operand is unraveled in
turn. The order taken is the order of appearance of the
terminals in the structure template.

Each structure terminal is unraveled according to the
Rules given below.

RAVELING & UN’ “LING (CON’T.)

example:

STRUCTURE A:
1B,

2 C SCALAR,
2 D VECTOR(3), .

1 E INTEGER;
DECLARE A A-STRUCTURE(3);

« order of unraveling of B Is B, , £91,2,3

® order of unraveling of each B, Is C.D,

RULES FOR OTHER OPERANDS:

i. An operand of any type (integer, scalar, vector, matrix,

bit, character, or event) may possess arrayness as

described in Section 5.4. Each dimension of arrayness,

starting from the leftmost is unraveled in turn, in order

of increasing index. :

Integer, scalar, bit, character, and event types are
considered for unraveling purposes as having only one
data element.

Vector types aré unraveled componerit by component, in
order of increasing index.

Matrix types are unraveled row by row, in order of
increasing index. The components of each row are
_unraveled in turn in order of increasing index.

er,

RAVELING & UNRAVELING (CON’T,)

example:

DECLARE V ARRAY(2,2) VECTOR(3) ;

e order of unraveling of V Is Vie 7 11,2

« order of unraveling of each Vy oe Is Vy he j=1,2

e order of unraveling of each vi he Is Vy, Ik k=1,2,3

(standard NAL/S subscript notation used)

a I

RAVELING & UNRAVELING (CON‘T,,)
{ i t

IF

STRUCTURE Q:

LA,

2 | INTEGER,

25,

1B,

2 V1 VECTOR,

. 273

DECLARE Q Q-STRUCTURE(2)

INITIAL (2,4.0,1,2,3,6.7,-2,8.4,4,5,6,9.5)5

DECLARE M MATRIX INITIAL(1,0,2,2,0,-1,1,0,3);

DECLARE A ARRAY(7) BOOLEAN

INITIALCTRUE, FALSE, TRUE, 4#FALSE)s

THEN
(@, M, A) UNRAVELS INTO THE LINEAR STRING:

ee COPY L nee a COpy 2

2, 4.0, 1, 2, 3, 6.7, -2, 8.4, 4, 5, 6, 9.5,
@*row l-» «row 2-> «row 3--

L 0, 2, 2, 0, -l, 1, 0, 3, TRUE,

’ FALSE, TRUE, FALSE, FALSE, FALSE,

FALSE

A.

EXPLICIT CONVERSIONS (CON‘T.)

REVIEW AND EXTENSION OF VECTOR/MATRIX CONVERSTONS

WITH THE VECTOR AND MATRIX CONVERSION FUNCTIONS,

VECTORS AND MATRICES CAN BE DYNAMICALLY MANUFACTURED.

THESE CONVERSION FUNCTIONS ACCEPT AS INPUT A LINEARIZED

LIST OF SCALARS (OR INTEGERS) THAT MAY HAVE BEEN THE

RESULTS OF UNRAVELING OTHER DATA ITEMS.’ THE CONVERSION

FUNCTIONS THEN SHAPE THIS LINEAR STREAM INTO A VECTOR OR

MATRIX -- THIS IS WHY THESE FUNCTIONS ARE ALSO KNOWN AS.

SHAPING FUNCTIONS

EXPLICIT CONVERSIONS (CON'T.)

THE EXPLICIT CONVERSIONS ALLOW FAIRLY GENERALIZED INPUT

STREAMS, BUT ARE MORE RESTRICTIVE THAN, SAY, A WRITE

STATEMENT, FOR EXAMPLE, THE INPUT STREAM TO AN

EXPLICIT CONVERSION FUNCTION MAY NOT CONTAIN A STRUCTURE,

The argument list of a VECTOR or MATRIX conversion may take
the following general form:

, (exp, exp” sence ss)

1. Each exp is an expression of any
of the following types:

MATRIX INTEGER
VECTOR SCALAR

2, Any expression may possess array~-
ness in the sense desoribed in
Section 20.2.

3. The total number of values summed
over all expressions must match
the length of the vector result,
or the product of the row and
column dimensions of the result,
as appropriate.

C
A

W
A
I
N

P
P
D

D
R

6

kh
tak
Ak

td
sek ok

7

EXPLICIT CONVERSIONS (CON'T.)

EXAMPLE (ILLEGAL USAGE)

Nt SHAPE:
Nt PROGRAM
Ht STRUCTURE @:
Nt a Af
Nt \ 2 Vi VECTOR,
Nt 2 M4 MATRIX,
Nt 1B,
Nt » 2@ ¥2 VECTOR,
Nt 2 "2 MATRIX:
Nt DECLARE @ Q-STRUCTUREC4) INITIALC 344, 982, 383, 944);
Nt DECLARE S ARRAY(4) SCALAR DOUBLE INITIALC10, 44, 12, 4393
Nt DECLARE MN MATRIXC1@, 18) DOUBLE:
ct
Et * +
Nt MN = MATRIX C£Q1, €S3)s
St ODGUBLE, 18,198
OX ERROR @41 OF SEVERITY 1. kkkES
CONVERSION FUNCTIONS NAY NOT HAVE ARGUNENTS OF STRUCTURE TYPE
Add ERROR #2 OF SEVERITY 4, #hbde
DINENSIONS OF VECTOR/HATRIX CONVERSION FUNCTION DO NOT AGREE NITH THE NUMBER
OF DATA ELEMENTS SUPPLIED IN THE ARGUMENT LIST

Nt CLOSE:

C
G
A
R
W
A
N
N
H

EXPLICIT CONVERSIONS (CON’T,)

EXAMPLE (PROPER USAGE)

Nt SHAPE:
Nt PROGRAM
ut DECLARE VECTORC3) INITIALC4, 21 3,
Nt . Vi, V2, V3. V4, V5s V6. V7, ¥8, V9, V4@)

Nt DECLARE MATRIXC3, 3) INITEALCA, @, 8, 8, 1+ 8 8 @ 1),
ht Na, H2, N3, N4, NS)
Nt DECLARE S ARRAYCS, 5) SCALAR DOUBLE INITIALC2):
Nt DECLARE NM MATRIXC1@, 40) DOUBLE)
Ct
Et * - * - * ~ * ~ *

6 Nt NM = MATREX CV¥4i, M4, £52, V2, M2, VY3e M3, V4, M4,
st @DOUBLE, 10,190 .

? Nt closes 34 rr -;
(V5, MS, V6, Y7, V8, V3, vid>s

WeiTTEN AS

MM = MATRIX $ (Q@DoUBLE 10, 40)(v4i, M4
cer

EXPLICIT CONVERSIONS (CON’T,)

IT IS ALSO POSSIBLE TO MIX IN ‘#! FORM OF REPETITION:

DECLARE V VECTOR INITIAL(1,2,3)3

DECLARE M MATRIX INITIAL(L)s

DECLARE’ HM MATRIX(4,4)

NM = MATRIX$(4,4) CV, 486, s
OR

MM = MATRIX$ (4,4) (16#0),

BOTH WILL RESULT IN SINGLE PRECISION MATRICES,

ALSO,
V = VECTOR(6,8,9)3

EAFLIULL] LUN’ MOLUNS (LUNE)

MATRIX/VECTOR SHAPING (CONVERSION) FUNCTION DEFAULTS ARE:

VECTOR(3)

MATRIX(3,3) & SINGLE PRECISION

B. INTEGER AND SCALAR CONVERSIONS

SIMPLE FORM

The simple form of the INTEGER and SCALAR ‘conversion functions
dis:

INTEGER (exp)
SCALAR (exp)

1. exp is an expression of any of the
following types: .

BIT STRING (and BOOLEAN) INTEGER
CHARACTER SCALAR

. 2. exp may possesS arrayness, in which
case the arrayness must match that of

. the expression of which the conver-
sion forms a part. The result is to
cause an elemental conversion for
every elemental evaluation of the
outer expression (See Section 20.2).

3. Conversions to integer or scalar type
‘proceed according to the rules given
in Appendix A,

a,

EXPLICIT CONVERSIONS (CON'T,)

WHAT DOES ALL THAT MEAN?

REMEMBER THAT WE

SCALAR SINGLE

INTEGER SINGLE

INTEGER DOUBLE j.
+

SCALAR DOUBLE

INTEGER SINGLE

INTEGER DOUBLE |

SCALAR SINGLE

SCALAR DOUBLE

INTEGER SINGLE |

“SCALAR SINGLE

SCALAR DOUBLE

INTEGER DOUBLE. |

IN ASSIGNMENT STATEMENTS AND IN INPUT ARGUMENT =>INPUT PARM.

HAVE IMPLICIT CONVERSIONS FOR

p> SCALAR DOUBLE

+ >SCALAR SINGLE

| >> INTEGER DOUBLE

}— > INTEGER SINGLE

EXPLICIT CONVERSIONS (CON’T.)

FOR ALL OTHER CASES, THE CONVERSION FUNCTION IS AVAILABLE.

ONE CAN, OF COURSE, USE A CONVERSION FUNCTION EVEN WHEN AN

IMPLICIT CONVERSION CAPABILITY EXISTS:

DECLARE S SCALAR. DOUBLE,

TL -INTEGER;
ONE CAN USE:

$=];

OR

S = SCALAR$(aDOUBLE) (1);

EQUIVALENT CODE WILL RESULT.

an

EXPLICIT CONVERSIONS (CON’T.)

EXAMPLES

“© DECLARE ARRAY(20), S SCALAR,
T SCALAR, I INTEGER,

Ses CONVERSIONS (ARRAYED DATA)
I= 5S;

“OR

S = SCALAR(I)3

I = INTEGER(S);

AND ALSO,

S#T+ly

OR

S = T + SCALAR(I)s

EXPLICIT CONVERSIONS (ARRAYED DATA)

THE OUTPUT WRITER, OF COURSE, WILL SHOW

[s] = [1]
[1 = [s]
[s] = SCALAR ({1])s
[tJ = inteserc(s})s

Is} = (t] + [1]
Is} = [T] + scacarc{i});

EXPLICIT CONVERSIONS (CON’T.):

CONVERSIONS TO INTEGER:

—_____- BIT STRING/BOOLEAN

‘A BIT STRING IS CONVERTED TO INTEGER BY REGARDING IT

AS THE BIT PATTERN OF A SIGNED INTEGER OF THE DESIRED

‘ PRECISION. LEFT PADDING WITH ZEROS, OR TRUNCATION

ON: THE LEFT MAY OCCUR.

1+ SCALAR

A SCALAR IS CONVERTED BY ROUNDING TO THE NEAREST

WHOLE NUMBER (OVERFLOW MAY RESULT),

|____--_-© CHARACTER

A CHARACTER STRING IS CONVERTIBLE TO INTEGER ONLY IF ITS

VALUE REPRESENTS A SIGNED HHOLE NUMBER -- OR IS A NULL

STRING IN WHICH THE INTEGER IS SET TO ZERO, (RUN TIME

ERRORS MAY OCCUR,)
INTEGER

pe

EXPLICIT CONVERSIONS (CON’T.)

CONVERSION TO SCALAR:

——__——eBIT STRING/BOOLEAN

FIRST IS CONVERTED TO A DOUBLE PRECISION

INTEGER!

TF ee |
INTEGERS ARE CONVERTED DIRECTLY TO SCALAR. ON

THE AP-101 THERE 1S SGiE MICROCODE ASSISTANCE,

~<——_———---—--@ CHARACTER .

A CHARACTER STRING IS CONVERTIBLE TO SCALAR ONLY.

IF ITS VALUE REPRESENTS A LEGAL SCALAR - OR INTEGER -

VALUED LITERAL -~ OR IS A NULL STRING IN WHICH CASE
~ SCALAR

THE SCALAR IS SET TO ZERO. (RUN TIME ERRORS MAY OCCUR,)

©o
e®
@

EXPLICIT CONVERSIONS (CONTA)

FURTHER EXAMPLES (SIMPLE INTEGER & SCALAR CONVERSIONS)

DECLARE I INTEGER,

S SCALAR:

I = INTEGER(’306’);

‘T = INTEGER(’-402')5

I = INTEGER('ABC’);
Neen yorece

Q
O
O

ILLEGAL

§ = SCALAR('10)
§ = SCALAR('-6,9UE-31'),
§ = SCALAR('AB’);

eee!

ILLEGAL

@ I= INTEGER(**); nue STRING

S = SCALAR('');

1& S$ WILL BE 0.

EXPLICIT CONVERSIONS (CON’T.)

ALSO, IF

DECLARE B BIT(8) INITIAL(BIN’10110101'),

1 INTEGER:

THEN

T= B) 1S ILLEGAL

BUT

I = INTEGER(B);

RESULTS IN
1 =181

EXPLICIT CUNY KSIUNS (LUN’ 1.)

LIST FORM

The list form of the INTEGER and SCALAR conversion functions

creates an array result, in addition to type converting the
list of expressions constituting its arguments.

as follows:

Its form is

1.

2.

‘INTEGER., 5 (exp, exp" pees)
Ty poe

1
SCALAR., 5 (exp’, exp, vee)

Ayn peas

The subscripts n* for i = Li2yess
are positive integers specifying the
number and size of dimensions of the
resulting array. The total number
of values summed over all the expres-
sions in the list must be consistent
with the number of array elements
implied. The upper limit on i is
3*, ° .

The subscripts may be omitted
entirely, in which case a linear 1-
dimensional array is created, whose
length is equal to the total number
of values summed over all the déxpres-
sions. :

4.

EXPLICIT CONVERSIONS (CON’T.)
erent iit

Each exp is an expression of any of

the following types:

INTEGER MATRIX

SCALAR BIT STRING (and BOOLEAN)

' VECTOR , CHARACTER

and may optionally possess arrayness.

Conversions to integer or scalar type

proceed according to the rules given

in Appendix A.

THE LIST FORM THUS ALLOWS CREATION OF INTEGER/SCALAR ARRAYS OF
FROM 1 TO 3 DIMENSIONS,

AS IN THE CASE OF THE VECTOR/MATRIX CONVERSION FUNCTIONS, A
PRECISION MAY BE SPECIFIED (DEFAULT IS SINGLE) FOR THE INTEGER
AND SCALAR CONVERSION FUNCTIONS:

EXAMPLES .

(1) DECLARE A ARRAY(5) INTEGER

INITIAL(1,2,3,4,5),

B ARRAY(5) INTEGER

INITIAL(6,7,8,9,10)5

INTEGER(A, B) CREATES, AN ARRAY (10)
. (1,2,3,4,5,6,7,8,9, 10) .

INTEGER$ (@DOUBLE) (A,B) CREATES AN ARRAY(I0) oF DP INTEGERS

(1,2,3,4,5,6,7,8,9,10)
INTEGERS (@DOUBLE,10)(A,B) creates aN ARRAY(10) oF DP INTEGERS

= (1,2,3,4,5,6,7,8,9,10)
SCALARS (@DOUBLE,2,5)(A,B) CREATES A 2-D ARRAY OF DOUBLE PRECISION SCALARS,

1

4H

-,1

(2)

(3)

(4)

EXPLICIT CONVERSIONS (COH’T.)

DECLARE B ARRAY(3,4)3

_ B= SCALARS(3,4) (#1, 42, 4i#3)s

N
E
R
D

b
e

W
N
 R
e CREATES 11

2 2
3 3

DECLARE C ARRAY(4,4,4) DOUBLE:

C= SCALARS (@DOUBLE, 4, 4,4)

(446 15#9, 2743, 1880) 5

DECLARE V VECTOR INITIAL(1,2,3);

DECLARE B BIT(8) INITIAL(BIN(8)'1’);

DECLARE NM MATRIX INITIAL(O);

SCALAR$(aDOUBLE) (V,B,M) CREATES AN ARRAY(13) oF DOUBLE

PRECISION SCALARS

= (1,2,3,255,0,0,0,0,0,0,0,0,0)

a r

EXPLICIT CONVERSIONS (CON'T.)

.
REAVALL(S) CAROLY

+ T = SCALAR (CARD Mt DOOUBLE 1 To 20

Ro = VECTCR (SCALAR (cane. @DOUELE a00UBLE 21 10

HEADALL{S) CARDTE
~_

t Vv = vEcTOR (SCALAR CcaRDt woourLe aDCUBLE 1
+ EPHGMT = SCALAR (carol) aDOUBLE 61 Te 86

IF FPHGMT a2 0 TREN
pny

cd READALLI5) CARDLY

* READALL(3) CARD?
.

READALLIS) Ct
*

RNP = MATRIX {SCALAR {car RDOUALE EDOUBLE
9

ry .

« CARD? . Roa * To 80 1 To 20 21 to 40
& * T

PNP = RNP 3

END}

To 2c

‘
CARD1

41 To 60

*

ARO

.

CARDI doe
61 TG 680

’
s CARDI

21 To 40
ve

41 To 60

EXPLICIT CONVERSIONS (CON’T.)

C. BIT CONVERSION FUNCTION

THERE ARE THO DISTINCT MODES OF THE BIT CONVERSION FUNCTION:

(1) BIT [Simece] [BIT STRING/BOOLEAN
STRING © <—————— } INTEGER

SCALAR
CHARACTER

(2). BIT CHARACTER
STRING <“———__(WITH SPECIFICATION OF A RADIX)

KEY POINTS:

© BIT ALWAYS PRODUCES A 32 BIT VALUE, ALTHOUGH THE FUNCTION

ITSELF ALLOWS SUBSCRIPTS THAT MAY CHOP THIS DOWN,

© BIT CANNOT CREATE AN ARRAY OF BIT STRINGS (CONTRAST TO THE

INTEGER & SCALAR CONVERSION FUNCTIONS) -~ BUT IT MAY BE

USED IN THE ARRAY PROCESSING SENSE TO CONVERT AN ENTIRE

ARRAY,

EXPLICIT CONVERSIONS (CON'T.)

SIMPLE FORM

THE SIMPLE FORM oF BIT CONVERSION IS AS FOLLOWS:

. ONENT.
f_ Come scePT

1.

2.

3.

4.

5.
_|a dé-bit string*,

BIT suasoript (OP)

exp is an expression of any of the
following types:

INTEGER BIT STRING (and BOOLEAN)
SCALAR CHARACTER

exp may possess arrayness in which
case the arrayness must match that

. of the expression of which the coh-"
version forms a part. The result is
to cause an elemental conversion for
every elemental evaluation of the
outer expression (sea Section 20.2).

Conversion to bit string type proceeds
according to a
Appendix The result is always

subscript represents component sub-

scripting on the result of the coh-
version. It possesses the same forms
ag component subscripting on bit string
data items-as described in Section 17.3.

If subseript is absent, the result of
. the function is the entire bit string
generated by the conversion,

EXPLICIT CONVERSIONS (CON’T.)

SINCE THERE ARE NO IMPLICIT CONVERSIONS FROM INTEGER OR

SCALAR TO BIT STRINGS, THE BIT CONVERSION FUNCTION IS

IMPORTANT,

EXAMPLES: (SIMPLE BIT CONVERSION)

If I is a halfword integer with I 2 5

then BIT(1) = 00000005,
If C is a character data item with C = '10110011101'

then BIT(C) = 00000000009000000000010110011101,

BIT) mq 32(C) # 0000010110011101,,

and BITZ9 wo 32(C) = 11101,

EXPLICIT CONVERSIONS (CON'T.)

RADIX FORM (mosTLy USEFUL IN 1/0)

The radix form of BIT conversion is used when a character

value is to be converted by an explicit rule to a bit string.

A radix specifying the conversion rule is supplied in place

of a subscript. The possible forms are as follows:

. BIT gry (xP)
‘ BIT, oct (exp)

. : BIT gy gg P)

BIT gupy xP)

u exp is an expression of character
type whose value must consist
entirely of a string of digits
legal for the specified radix.

2. The radices have the following
meanings: .

radix digit strin
@BIN binary
eocr octal
@DEC decimal

@HEX hexadecimal

3. exp may possess arrayness with the
same implications as in the simple
form of BIT conversion..

4.. The conversion generates the
binary representation of the

‘ dnput digit string. ‘The bindry
. representation is truncated or

padded with binary zeroe
the left to create apebte string*, |

EXPLICIT CONVERSIONS (CON’T.)

EXANPLES ALL 32-bit
oer coy

' ty s BIT gumy (FAO') = O0000FA0,,

s ' ’ = BITgp pg ('1024") = 00000400,,

('177777') = OOOOFFFF, BIT 16
eocT

('POFIF2F3F4') = FIF2F3F4,, (
TRUCATION ON THE LEFT

BIT onEx

EXPLICIT CONVERSIONS (CON‘T.)

D, CHARACTER CONVERSION FUNCTION

AS IS THE CASE WITH THE BIT CONVERSION FUNCTION, THERE ARE

TWO DISTINCT MODES OF THE CHARACTER CONVERSION FUNCTION:

(1) CHARACTER BIT STRING/BOOLEAN

oe SCALAR

CHARACTER

(2) CHARACTER RADIX BIT STRING

STRING § << (WITH SPECIFICATION OF A RADIX)

hoa

SINPLE FORM

EXPLICIT CONVERSIONS (CON‘T.)

The simple form of CHARACTER conversion is as follows:

26

2.

CHARACTER jut goripe (OP)

exp igs an expression of any of the

following types:

INTEGER BIT STRING (and BOOLEAN)

SCALAR CHARACTER

exp may possess arrayness, with

the same implications as in the BIT

conversion function. (See Section

21.3).

Conversion to character type proceeds

according to the rules given in

Appendix aA. The length of the result

of conversion depends on the type of

the input data.

_ subscript represents component sub~
seripting on the result of the con-
version, It possesses the same forms
as component subscripting on charac~
ter data items as described in
Section 6.1.

T£ subscript ‘is absent, then the
result of the function is the entire
string ef characters generated by

the conversion. .

EXPLICIT CONVERSIONS (CONT.)

EXAMPLES

If I is a halfword integer with I = 173

then CHARACTER(I) = '173'

= of ' CHARACTER, TO 2) 2 t17

= ' CHARACTER, TO 3 (Tt) = '173

“I£ Bis a bit string of length 4 with

B= 0101,

then

CHARACTER (B) = '101'

(note removal of leading zeroes)

NOTE THAT THE LENGTH OF THE RESULTANT CHARACTER STRING

IS DATA DEPENDENT, WHEREAS FOR THE BIT CONVERSION

. FUNCTION IT IS ALWAYS 32 BITS,

on

EXPLICIT CONVERSIONS “(CON'T.)

RADIX FOR
The radix form of CHARACTER conversion is used when a bit

string value is to be converted by an explicit rule to a

character string. Analogous to the radix form of BIT

function, a radix specifying the conversion rule is supplied

in place of a subscript. tthe possible forms are as follows:

CHARACTER gy ry (exp)

CHARACTER a gap fexp)

CHARACTER ange (exp)

CHARACTER gipey (exp)

1. exp ia an expression of bit string type,

and possibly possessing arrayness, with

the same implications as in the BIT

conversion function. .

2, The vatue of the bit string is converted

to a string of digits as specified by the

radix, removing leading zeroes.

3. The radices have the following meanings:

radix

binary

. @OCT octal

@DEC decimal

@HEX hexadecimal

4, The length of the resulting string

varies depending on the value of

exp.

EXPLICIT CONVERSIONS (€CON'T.)

EXAMPLES :

CHARACTER , 7» (BIN'001010') = 1001010"

st CHARACTER go¢q,(BIN'001010') = "12"

= "10! CHARACTER gy (BIN' 001010")

CHARACTER (BIN'G01010') = 'QA'
@HEX

PRIME NUMBER GENERATOR

/7CUSAGHBT JOB 7404, SCHUL ONBERG, C, TIME®4, PRTV=4, REGION=350K, of NOTIFY=CNS41840
: ¢ 7 HAL EXEC HALSCLD, ACCT=NOTIFY, OPTION=°LIST~

77HAL. SYSPRINT DD SY¥SOUT=2
7CHAL. SYSIN DD &
ERATOSTHENES: PROGRAM:
REPLACE N BY- "5ega";
DECLARE INTEBER, 3,3, COUNT INITIALC4)3
DECLARE SIEVE ARRAYCH)D INTEGER:
DO FOR I = 2°TO N; .
STEVESI = 1)

END;
DO FOR 1 = 2 To Np

IF SIEVESI \= @ THEN DOs
HRITE €6) COUNT, SIEVEST)
COUNT = COUNT + 4;

00 FOR J = 21 TO N BY 15
SIEVES] = @;

ENDs
Enos

END;
CLOSE ERATOSTHENES:

fe

f7Q0, CHRUNELE DD S¥SnuT=z
7700. REQUESTS DD *

EXECUTE TENPNAME:
AT END: PROFILE:

fk

SobM

HAL@ZS COMPILATION TeTERNETRICS, IN

HALZS COMPILER PHASE 4 ~~ VERSION 43.42 OF SEPTEMBER 14, 4975.

TODAY IS OCTOBER 44, 1975. CLOCK TIME = 13:34:2.16

PARMN FIELD: LIST

COMPLETE LIST OF COMPILE-TINE OPTIONS IN EFFECT

tok TYPE 4 OPTIONS *k#

NODUMP INSTERD OF DUMP

HOLISTING2 INSTEAD OF LISTING2
LIST INSTEAD OF NOLIST

TRACE INSTEND OF NOTRACE
HODECK INSTEAD OF DECK
TABLES INSTEAD OF NOTABLES

NOTABLST INSTEAD OF THBLST
NOADDRS INSTEAD OF ADDRS

NOSRN INSTEAD OF SRN
HOSDL INSTEAD OF SDL

NOTABDMNP INSTEAD OF TABONP
ZCON INSTEAD GF NOZCON

NOFCDATA INSTEAD OF FCDATA

eke TYPE 2 OPTIONS #46

TITLE =
LINECT = 593
PAGES = 258

SYMBOLS = 288
NACROSIZE = 598

LITSTRINGS = 2090
CONPUNIT = 6
HREFSIZE = 2608
CARDTYPE 3

= 1260 LABELSIZE

Cc.

clo

HALZS COMPILATION

STUNT

o
N

OH

Go

R
W

A
W
W

t
e

44

12
13

a4

45

1?
18

Mt ERATOSTHENES:
Nt PROGRAM:
Nt
Mt
Nt
nt
Nt

Nt

Mt
St
Nt
Nt

Mt
St

“Nt
nt
St
Nt
Nt

Mt
St
Nt
Nt

Nt

REPLACE NOBY "Sag0")
DECLARE INTEGER,

1, Ji

COUNT INITIALC 41 95
» DECLARE SLEVE ARRAYCN) INTEGER:

€

OO FOR I #= 2 TON;
€

SIEVE = 13
!

END; ,

DO FOR I = 2 TO Ns
t

IF SIEVE \= @ THEN
I

bo:

WRITEC6> COUNT, SIEVE ;
I

COUNT = COUNT + 4)

DO FOR J = 2 1 TON BY I;
€

SIEVE = 6)
J

END:
END)

END)
Mt CLOSE ERATOSTHENES;

INTERMNETRICS,

_ SOURCE

I N 7

thet COMP ILA T TON LAY OU T thaw
ERATOSTHENES: PROGRAM:
HAL/S COMPILATION INTERNETRICS, Ine. OCTOBER 411, 41975

SYMBOL & CROSS REFERENCE TABLE LISTING:
CCROSS REFERENCE FLAG KEY: 4 = ASSIGNNENT, 2 = REFERENCE, 4 = SUBSCRIPT USE, @ = DEFINITION)

DCL HANE TYPE ATTRIBUTES & CROSS REFERENCE

3. CQUNT INTEGER © SINGLE, ALIGNED, STATIC, INITIAL REF: © ©8603 2 8011 6 Gare2
1 ERATOSTHENES PROGRAM MREF: @ 8064
3 #2 . -" INTEGER SINGLE, ALIGNED, STATIC KREF: @ 0863 4 88605 3 Ob66 4 enDB 1 CHAD

: 1 0044 2 9813 :
3 INTEGER SINGLE, ALIGNED, STATIC XREF: @ 66603 4 6813 4 OG44 :
2ou REPLACE MACRO MACRO-TEXT INDEXK=4 KREF: @ 0802 2 0084 2 G085 2 8888 2 8813
4 SIEVE INTEGER ARRAY ARRAYCSA99), SINGLE, ALIGNED, STATIC XREF: @ 0684 4 8696 2 6809

-2 0644 4 9044

HAC RO TERT LISTING:
Loc TEX

1 3900

HAL/S COMPILATION INTERMETRICS, ruc. OCTOBER 41, 1975

OPTIONAL TABLE SIZES
NAME REQUESTED USED
EEE EEE CEEEE wEeEEE

SYMBOLS 209 6
NAGROSIZE 500 5
LITSTRINGS 2008 8
KREFSIZE 2000 24

yn 6

CALLS TO SCAN = 187
CALLS TO IDENTIFY = 28
NUMBER OF REDUCTIONS = 368
MAX STACK SIZE w 4g
HAX IND, STACK SIZE = 6
END IND, STACK SIZE = 4
END ARRAY STACK SIZE = 8
NAX EXT¢ARRAY INDEX = 3
STATEMENT COUNT * 18
MINOR COMUALTIFIES . @
MAJOR CONPACTIFIE®S = @
MAX NESTING DEPTH = 4
FREE STRING AREA = 39643

END OF HAL/S PHASE 4. OCTOBER 44, 4975. CLOCK TIME =°423:34:4, 62

47 CARDS HERE PROCESSED
NO ERRORS WERE DETECTED HURING PHASE 1.

TOTAL CPU TIME FOR PHASE 1 8:60:68. 69.
CPU TIME FOR PHASE 4 SET uP 8: 6:6. 69.
CPU TIME FOR PHASE 4 PROCESSING 6:08:08, 54.
CPU TINE FOR PHASE 4 CLEAN UP @: 8: 8, 86.
PROCESSING RATE: 1898 CARDS PER MINUTE

seeahoe TEMPLATE LIBRARY MEMBER @@ERATOS NOT FOUND - ADDED , VERSION®4
HAL/S COMPILATION IRTERMETRICS, Ine.

HAL/S COMPILER PHASE 2 we VERSION 268-13.44 OF SEPTEMBER 15, 1975

HAL/S PHASE 2 ENTERED OCTOBER 4%, 1975. CLOCK TIME » 43:34:8, 04

HAL/S COMPILATION IHTERMETRICS, mae,

ESDID NAME TYPE LENGTH BLOCK NAME

@6G1 SBERATOS G000- 080126 ERATOSTHENES
@002 #FERATOS goed 08048
BOO? ATERATOS 8000: 969048
@004 SPERATOS g000 B82746
9805 EGERATOS ane2
§006 IOINIT 8882~
ean? LGUT 8602

HAL¢S COMPILATION

LOCCTR

ageogg
908080
990000
e6e8n0
990054
gosagg
HOORGR
SQOHGE
gcnni2
609016
600917
eoceis
o0081C
£00029
9909024
g00G26
900828
900028
990804
en0004
069006
Boekes
a9g028
206028
eoegec
9age2t
£90030
68632
600834
800038
eoae3e
80803C
BODO3E
980842
990046
800048
@G0R4A

CODE

47 FOF O18

peg0o128

8058
SCCSD9ICL
EIDGE2E3
cecspscs
E2
8D
SSBOrae4
S86AB029
92010008
OS5SEB

9004

0864

42908602

40ganeda
OSEB
0803
49908046
472F 0056

angst.
4820A800
4029n084
OSEB8
2ees

CL
G9084A
BOOGdE
608052
eoo0ss
600056
no60S8

44906004
4nsonged
47FFSO2C

SSEB
e007

LABEL

STat
SOERATOS
ERATOSTH

ST#2
sta2
#DERATOS

STa4
Stas
#0ERATOS

LBLa2

ST#6

STA?
tered

LBLAT

INSH

eau
CSECT
Eau
BC
oc
BC
oc
oc
oC
oc
DC
L
in
NVI
BALR
oc
Eau
Eau
csect
oc
Eau
EQu
csect
LA
equ
STH
BALR
bec
cH
BC
Eau
AR
LH
STH
BALR
oc
EQu
equ

“LA
AH
Bc
Eau
BALR

oC

‘

INTERMETRICS,

. OPERANDS

‘ TIME = 443
ESDID= 9004

*

15,248, 45)
A‘oceneize
x00587
X/OCCSDSCL’
XESD6E2E3°
X/CRCSDSCS’
x*E2?
X780°
44,4¢€9,43)
6,40. 4844)
OC43)-4
14.44
xpaes ¢
4 TINE = 9
‘ TINE = 8

ESDID= e004
x-egos?
* TIME = 8
‘ TIHE = 98

ESDIDe 9004
9,268,8)
*

9,8¢0,40)°
44,44
X 7808S ¢
9,7060,449
2, 86C15, 0)
* TIME = 54
9.9
2,0¢8, 48)
2,4¢9, 18)
44,44
K 9086 ¢
& TIME = 5@
a

9,408,909
9,8(8, 19)
45,4448, 89
*

44,44
x78807/

rac.

SYMBOLIC OPERAND

ERATOSTHENES

#FERATOS

H-Sea07
880856 LBLES

SIEVE

!
eeee2c LBLH2

eoeesA STS equ & TIME = 98
aoeesA 419e¢082 LA 9,200,089
G0065E LBLas eau *
QB8GG5E 4890n008 STH 9, 8¢8,18> I
600062 BSB BALR 414,44
860064 8808 oc x°6088~"
800066 49908846 cH 9,78(8,44) H*Se887
GOOREA 472F 014A . aC 228245, 8) BGG11A LBLEG
BO0D6E sTas eau & TIME = 72
QOOGEE BSEB BALR 44,44
gee07e 8009 pc x°e009/

HAL/S COMPILATION : INTERMETRICS, tree,

LOCCTR CODE. LABEL INSN = OPERANDS SYMBOLIC OPERAND
B80672 1A99 AR 9,9
eec074 4829R804 “LH 21409, 48> SIEVE
o00078 1222 ~ LTR 2/2 .
BG007A 478FG18E ac 8, 278015, 8) OOB18E LBLE?
BOOO7E sTaeie EQu 0 & TIME = @ ,
OOOG7E O5EB BALR 14,44
888080. BHA oc K “HOCH ~
epeaa2 ST#44 Eau * TINE « 465
B80G82 41198006 LR 1,6¢8,8)
Beooes 41008083 LA 8, 3¢8,8)
GebGBA BSEC BALR 414,42.
Bosaec aeocaege oc A-aeoeeeea’ TOINIT
800050 4800Ke64 LH 4,400,408) COUNT
@88994 B5EC BALR 414.412
680096. eane8Rne bc A7e0b808eB ~ {out
Q0009R 1882 TLR 8,2
BB809C BSEC BALR 14,42
BO0OSE anncaee8 oc A-egeedeea’ TOUT
@G00A2 B5ER BALR 44,44
ebGNR4 O008 bc X’OGOB7
BeO0ORE STH12 Equ * TIME = 64
GeOORG 4830Rn004 Lu 3,408,146) COUNT
OGBOAR 4A268044 Al 3, 68(0, 44) Hae
OBOORE 4030R804 STH 3,4¢0,18) COUNT
GO0GB2 OSER BALR 44,14
eoagBd beet bc R-ROOC ”

wus

HOAHBS
BOH0BE
egeoRA
BOOOBE
eoogce
gn00Cé
@O08CE
geeecA
BG00CC
@BOBCE
900002
H606D6
e908R8
G990DC
BHOGEO
OBBRE2
GONOE4d
QB05E8
BOQ0EC
GOBOEE
GBOOEE
BOOOFO
Q900F2
QBNOFE
GOOFS
BBGOFA
BaQBFA

41409802
4C4QAn008
4a50A0e8
465eDe50

4040A002
BSEB-
8090
412F 0106
918006590
GSEO
4780E010
4940BB46
ar4d2
GSES
47FGEQOAR
49408846
O722

1A44
41B22
4024A004
@5EB8
GOOE

eaerA 4840De5e
BOGOFE 4A40nae2

ST#413

LBL#8

sT#ei4

ST#15
LBL #418

HAL/S COMPILATION

EQu
LA
MH
LH

co STH -.
. EQU
STH
BALR
bc
LA
TH
BALR
BC
CH
BCR
BALR
BC
CH
BCR
Eau
AR
SR
STH
BALR
oc
Eau
Eau

LH
fH

* TINE = 335
4,2¢8,8)
4,060,180)
5,8¢(8,108)
§,88¢0,13>
*

4,2¢8,16>)
14,44
%7B00D7
2,262¢15,0>
8OC13)-128
14,8
8.16¢0,14)
4,76(0,413

4,2
14,9
15,10¢0,14)
4,76¢08,44)
2:2:

* TIME = 47
4,4
2:2

2,404,410)
14,41
XOOBE/ :
* TIME = 52
*

4,80¢8,123)
4,2(0,18)

06186 LBLHS

BORGES #416
H‘S8607

OBO0EE
H75e08"

*+40

STEVE

J
IN TERMETRICS, Inc.

LOCCTR
UNO192
6601086
Ge0106
080168
HOG1BA
GGG10A
BGO10C
BOO1HE
BOBLGE
O8910E
BOR1LOE
090112
066116
GOG141
OGG1L4A
oee1ic
BOBLLE
OROL1E
o0e1296
600122

CODE
47FFOOCE6

O5E8
800F

OSEB
89108

LABEL

LBLES

ST#46

. STHL7

44900084
4A98A008
47FFOQ5E

8SEB
eo4t

O5EB
9012
47FOC804

LBLa?
LBL#14

LBLaG

ST#418

INSN
BC
EQU
BALR
bc
EQu
BALR
bec
EQU
EQU
EQUu
LA
AH
ec
EQu
BALR
oc
EQu
BALR
oC
BC

OPERANDS SYMBOLIC OPERAND

45,198¢45, 8) B0B8C6
*

14.44
X/OGQF ¢
* TINE = 8
44,44
x700484
* TINE = 56
*

*

9,4¢8,8) |
9,8¢0,48) I
45, 94(45, 8) B0005E
;
44,44
x-R044¢
& TIME = 48
44,44
X/0012°,
45, 4(0,42)

LBLES8

LBL&aSs

WUVLZS 47 FUCLTA + BC 15, 372¢0, 42> STRACE
ON812C BH000GG0 pc Os ‘8HBHRB0R7 #DERATOS
909139 Go909170 pc no /OG0081707 #TERATOS
@60134 FFHO916C DC A’FFOOGLEC* &TERATOS
996133 850000000 oC A‘OGEos st on
GUGL3S0 age. Dc X/00041 7
HOOL3E G612 bc X780427
Hoolde eeogeqdes _0C % 780005890 ~
699144 N9009000 oc 4 “OB906988 ”
GHOILde geogcdg9 BC X 789898000 ¢
H80014C BHoG0008 DC % “80000008 7%
9691590 G09G5n99 De A’eoggeeR8n- #DERATOS
009154 90000008 oc / A’GOGHHO0G~’ RDERATOS

- 086159 SH9NGK08 be A-gongegaa’ HDERATOS
QGB15C ob000009 bc A‘SOGREROR" #DERATOS
8035168 99906009 oc A’60008008~ fDERATOS
600164 B008g001 oc 490008001 7
600168 89000000 Dc A’ageoegag’ @GERATOS
Ga0i16C 9001 | oc X69617
BO01EE 1398 . oc A7ESBE “

£501b= go0s
END *

HAL/?S COMPILATION INTERMETRICS, Ine

RLD POS REF FLAG ADDRESS

6e01 8002 88
6901 0006 ~- 98
6001 0897 63
9901 B007 08
H982 9004: 88
8002 9003 68
8002 8803 083
0882 0801 48
8002 e094 28
8902 0004 68
8062 6904 08
BG02 4804 68
8902 6984 08
8902 6005 08

eea0as
690980
909897 4
Q0009F
696120
890131
GO9425
0004133
Gne154
000155
686159
@9015D
680464
660169

en Yay

“MYT

Loc B DISP NAME
UNDER ERATOSTHENES STACK=88

e06680 16 808 1
eo0e02 48692 J
600304 10 694 COUNT
800006 18 804 STEVE
INSTRUCTION FREQUENCIES
INSH COUNT
BALR
BCR
LTR
LR
AR
SR
STH
La
gC
LH
cH
An
MH
L
TH

e
e

e
e

S
e

ee

e
e

»

Lh.

48 HALHMAT OPERATORS CONVERTED

S58 INSTRUCTIONS GENERATED

368 BYTES OF PROGRAM, 10086 BYTES OF DATA

HAX. OPERAND STACK SIZE ag
END OPERAND STACK SIZE =O

HAL/S COMPILATION INTERMETRICS, Ine,

NUNBER OF STATENENT LABELS USED wit
HAK. STORAGE DESCRIPTOR STACK SIZE #4
END STORAGE DESCRIPTOR STACK SIZE #0
NUNBER OF MEINDR COMPACTIFIES 28
NUMBER OF MAJDR COMPACTIFIES 28
FREE STRING AREA #34336

tiil! Ur rth > FHisG € UUEMoORR hte tote WWI EAE OO a re

TOTAL CPU TINE FOR PHASE 2 6:0. 49

ePU TINE FOR FHASE 2 SET UP a: 0:0. 04

CPU TINE FOR PHASE 2 GENERATION 8:6:0.48
CPU TINE FOR PHASE 2 CLEAN UP 6:68:09. 35

HAL/S CONPILATION : INTERNETRICS, Tue

HAL@S COMPILER PHASE 3 -- VERSION 415.9 OF SEPTEMBER 24, 1975.

HAL¢@S PHASE 3 ENTERED OCTOBER 14, 1975. CLOCK TINE = 43:34:46. 66

SIMULATION DATA FILE ##ERATOS HAS BEEN CREATED

PAGING ARENA SIZE CPAGES) = 97
NUNBER OF LOCATES: = 204

PREDICTED SDF SIZE (PAGES) ed

RCTUAL SDF SIZE (PAGES) a 4

DIRECTORY FREE SPACE (BYTES) = 72

DATA FREE SPACE (BYTES) ~ = 920

SDF SIZE (BYTES) = 688

SUF DENSITY C2) = 40

HUNBER OF BLOCK NODES efi

NUNGER OF SYMBOL NODES a 5

NUMBER OF STATENENT NODES = 18

NUMBER OF BLOCKS DELETED 2 6.

NUMBER OF SYNBOLS DELETED ad

NUMBER OF TEMPLATES DELETED = @

NUNBER OF HINGR COMPACTIFIES e @

NUNSER OF MAJOR COMPACTIFIES =

ENO OF HAL/S PHASE 3 OCTOBER 44, 4975. CLOCK TIME = 43:34:44. 61

TOTAL CPU TINE IN PHASE 3° 6:9:4. 18

CPU TINE FOR PHASE 3 INITIALIZATION 0: 8:6. 82

CPU TINE FOR PHASE 3 FILE GENERATION @:8:@, 05

CPU TINE FOR PHASE 3 FILE EMISSION 6:60:90. 44

ox~ | 4

PONS

HAL 7S-26@ V43.8 START TIME:
2
3
5
?

44
13
17
193
23
29
34
37
4i
43
4?
53
59
Gt
67
74
e3
73
83
89
97

4184
163
167
163
443
127
434
137
439
149

454
157

- 163
167
173
179
184
194
4193
19?

43:34:46. 608 BAY: 737284

Do SaMG

° ®
9 a

647 4804
648 48123 °
649 4817
658 4834
651 4861
652 4874
652 4877
654 4889
655 49nz
656 4909
65? 4919
658 4934
659 49323
660 4937
664 4943
662 4954
663 4957
664 496?

» 665 4969
666 4973
667 4987
668 4933
669 4993

*ee AT END

STATEMENT PROFILE FOR PROGRAM
STATEMENTS USE AND & OF

4 4 8.
2 70 4 NOT EXECUTED

3 46 8.
6 4,999 48.
? 4 a,
8 3,608 19.
3 4,593 18.

je * 669
Ad 669 4,
12 669 4.
43 44,738 25.
14 14,969. 23.

* 45 669 i
16 669

‘ 1? 4
48 4

COMPILATION UNIT USE SUNHARY
STATEMENTS USE AND 4% OF

46,1454 400.

46,154 188,

4.

1.
a
a

ERATOSTHENES
TOTAL = TIME
80 - 44

a3 18
83
80 5

83 40
a3 ?
44
44 a4
44 6
43 34

98 5
44 5
44
ee 5
aa 2

TOTAL TINE
80

00

COST AND % OF TOTAL
44 @. 88

160 8. 82
24,995 3.97

5 8. a9
50, 098 7.94
34,993 5. 56

Q 6,99
7,359 4.16
4,014 8. 63

399, 892 2.43
55,245 8.79
3,345 8. 53

a 0. 08
5 6. 09
2 6. 00

COST AND % OF TOTAL
629,169 100. 08

629,169 100. 08

DATA STORAGE AND ACCESS

@ DATA IS NOT NECESSARILY PHYSICALLY ALLOCATED IN THE ORDER

IN WHICH THE USER MAKES THE DECLARES, -

EXAMPLE

CPL: COMPOOL;
DECLARE ARR1 ARRAY(3,6) SCALAR;
DECLARE ARR2 ARRAY(20) INTEGER; ”
DECLARE 1 INTEGER; .
DECLARE $1 SCALAR DOUBLE;
DECLARE $2 SCALAR;
DECLARE $3 SCALAR;

CLOSE CPL;

“ WOULD PROBABLY BE ALLOCATED AS!

$l

$3 #PCPL
$2 SIMPLE DATA

I]

ARR2
AGGREGATE DATA

ARRI

3/
Fe/

DATA STORAGE AND ACCESS (CONTINUED) ‘ S32

GENERAL ALLOCATION RULES: —

1) HAL REORDERS DATA IN AN ATTEMPT TO PROVIDE ADDRESSING COVERAGE

FOR THE DATA USING A MINIMUM OF DISTINCT BASE REGISTER VALUES,

2) SIMPLE DATA (OFFSET = 0) COMES BEFORE AGGREGATE DATA (OFFSET # 0).

SIMPLE DATA: INTEGER, SCALAR, STRINGS (BIT & CHARACTER).

AGGREGATE DATA: ARRAYS, VECTORS, MATRICES AND STRUCTURES.

3) WITHIN EACH OF THE TWO GROUPS, DATA IS ORDERED SUCH THAT ITEMS
_ REQUIRING THE SAME BOUNDARY ALIGNMENTS ARE ADJACENT -- THUS

MINIMIZING WASTED SPACE. ,

4) WITHIN THE AGGREGATE GROUP SINGLE DIMENSIONAL ARRAYS COME BEFORE

MULTI-DIMENSIONAL ARRAYS,

DATA STORAGE AND ACCESS (CONTINUED)

5) STRUCTURE TEMPLATES ARE INTERNALLY ORDERED SUCH THAT THE

MINIMUM BOUNDARY ALIGNMENT WITHIN ANY NODE LEVEL IS REQUIRED,

(MORE ON THIS LATER.)

GENERALLY, THEN, DATA IS NOT ALLOCATED IN THE DECLARED ORDER

EXCEPT IN SOME OBVIOUS CASES, E.G.

DECLARE VECTOR ‘DOUBLE, V1, V2, V3, V4, V5, V6, V7, V8, V9;

IN SUCH A CASE THE COMPILER WILL NOT ALTER THE ORDER SINCE NOTHING

WOULD BE GAINED.

NONETHELESS, WHEN THE HAL/S COMPILER IS GIVEN FREE REIN TO REORDER

DATA, USERS SHOULD NEVER TRY TO PREDICT THE RESULTING ORDER, NOR

ASSUME THAT THE ORDER GENERATED WILL NOT CHANGE WHEN COMPILER

IMPROVEMENTS ARE MADE.

33
463

DATA STORAGE AND ACCESS (CON’T.)

WHEN USERS MUST CONTROL THE PHYSICAL LAYOUT OF DATA (E.G, FOR

INTERFACING TO EXTERNALLY DEFINED DATA LAYOUTS), THE RIGID

KEYWORD MAY BE USED.

RIGID TELLS THE COMPILER TO ALLOCATE DATA IN THE DECLARED ORDER.

IT MAY BE SPECIFIED ONLY ON COMPOOL BLOCK HEADERS, AND ON STRUCTURE

TEMPLATES, .

EXAMPLE 1:

CPL: COMPOOL RIGID;
DECLARE ARRI' ARRAY(3,6) SCALAR:
DECLARE ARR2 ARRAY(20) INTEGER;
DECLARE I INTEGER;
DECLARE $1 SCALAR DOUBLE,
DECLARE $2 SCALAR;
DECLARE $3 SCALAR DOUBLE;

CLOSE CPL;

S2
o4

a a”

DATA STORAGE AND ACCESS (CONTINUED)

RESULTS IN

‘RRL

ARR2

__ __

space —> GQ

| 82
WASTE > SASS N

NOTES:

18 SCALARS = 36 HW

20 INTEGERS = 20 HW

1 HW

3 HW

4 HW

2 HW

2 HW

4 HW

1) UNLESS USERS ARE CAREFUL, RIGID CAN CAUSE WASTED SPACE.

2) ON THE FC, DOUBLE PRECISION SCALARS ARE ALLOCATED ON DOUBLE-

WORD BOUNDARIES EVEN THOUGH THE HARDWARE (AP-101) DOES NOT

REQUIRE IT,

WHY? FOR STORAGE LAYOUT COMPATIBILITY WITH THE 360,

53
¥o3

EXAMPLE 2:

om

DATA STORAGE AND ACCESS (CONTINUED)

STRUCTURE @ RIGID;

1 S1 SCALAR,

i 11 INTEGER,

1 Bl BIT.(16),

1 $2 SCALAR DOUBLE,

1 V VECTOR;

DECLARE @ Q-STRUCTURE

RESULTS IN?

DOUBLE WORD -——~"-7 S]
BOUNDARY

Sr" Y)

I]

Bl

$2

V$1

V$2

V$3

~Jt

DATA STORAGE AND-ACCESS (CONTINUED) 6 7

NOTES

D

2)

3)

4)

5)

USE OF RIGID ON STRUCTURE TEMPLATES IS ESPECIALLY LIKELY TO CAUSE

~ WASTE OF MEMORY UNLESS CARE IS TAKEN,

RIGID MUST BE SPECIFIED ON THE TEMPLATE DECLARATION -- OR A

MINOR STRUCTURE THEREOF. RIGID MAY NOT BE APPENDED TO A STRUCTURE

DECLARATION.

WHETHER A STRUCTURE TEMPLATE IS RIGID OR NOT, THE BOUNDARY ALIGNMENT

SELECTED FOR THE TEMPLATE IS DETERMINED BY THE TERMINAL WITH THE

MOST RESTRICTIVE BOUNDARY ALIGNMENT REQUIREMENTS,

MINOR STRUCTURES ARE ALWAYS ALLOCATED AS SEPARATE, DISCRETE UNITS

WITHIN THE OVERALL STRUCTURE,

THE KEYWORD “RIGID” ON A COMPOOL BLOCK HEADER DOES NOT GUARANTEE STRUCTURE

RIGIDITY -- ONLY WHEN RIGID IS APPLIED TO A TEMPLATE DOES IT PENETRATE.

DATA STORAGE AND ACCESS (CONTINUED) %C y

EXAMPLE 3:

. CPL: COMPOOL RIGID;

DECLARE SCALAR, S1, S25

DECLARE ARRAY(10) INTEGER DOUBLE, 11, 12, 133

STRUCTURE Q:

1 V VECTOR,

1 SS SCALAR,

1 J INTEGER;

DECLARE @ Q-STRUCTUREs

DECLARE W MATRIX(9,9) DOUBLE:

CLOSE CPLs

RESULTS IN?! Si
$2 . .

i ALL DATA HAS BEEN ALLOCATED IN
R THE DECLARED ORDER,

13

a INTERNAL TO Q, TERMINALS 4, ss,

AND J MAY BE REORDERED!

f —

DATA STORAGE AND ACCESS (CONTINUED) % 7

EXAMPLE 4:

STRUCTURE 0:
1A,
2 BI BIT(H),

2 B2 BIT(8),
2 I INTEGER,

1B RIGID,
2S1 SCALAR,
292 SCALAR DOUBLE, THIS MUCH OF Q WILL BE RIGID

2 J INTEGER,
1¢,

2°V1 VECTOR,
2 V2 VECTOR DOUBLE;

WE CALL A, B, AND C MINOR STRUCTURES OR FORKS. RIGID MAY BE APPLIED

TO MINOR STRUCTURES IN WHICH CASE IT PROPAGATES DOWNWARDS TO ALL

LOWER TERMINALS.

DATA STORAGE AND ACCESS (CONTINUED) 3/

470
e THE PHYSICAL ALLOCATION OF RIGID STRUCTURES IS FAIRLY SIMPLE

TO GRASP ONCE THE IDEA OF DATA ALIGNMENT AND INDEPENDENCE

OF MINOR STRUCTURES IS UNDERSTOOD,

© AS WILL BE SEEN THE CONCEPT OF DENSE STRUCTURES MAKES THINGS

SLIGHTLY MORE COMPLICATED,

© BUT AS TO WHAT HAPPENS WHEN HAL/S IS FREE TO REORDER STRUCTURES --
THAT IS A MUCH MORE COMPLEX TOPIC THAT WILL BE TAKEN UP AT A
LATER TIME.

BEFORE DISCUSSING DENSE WE NEED SOME FACTS ABOUT PHYSICAL ORGANIZATIONS

OF DATA:

DATA STORAGE AND ACCESS (CONTINUED)

360 FC
INTEGER

LHW 1 WW
(2 BYTES)

INTEGER
DOUBLE

2 Hit 2 Ii
(FULLNORD) (FULLWORD)
(4 BYTES)

SCALAR 8 24 8 24
2 HW 2 HW

(FULLWORD) (FULLWORD)
(4 BYTES)

SCALAR
DOUBLE Ts 56 8 56

4 Hi 4 HN
(DOUBLE WORD) (DOUBLE. WORD)

(8 BYTES)

SUMMARY: EXACT CORRESPONDENCE IN LENGTH AND BOUNDARY ALIGNMENTS

BETWEEN FC AND 360,

SriP
$7)

oO

DATA STORAGE AND ACCESS (CONTINUED) SKIP

CHARACTER STRINGS:
HH eH em eH me eH eH

FC MICTXEXTXEXPXEXP XEXEXEXPXEX

SIZE

INFO

M = MAX NUMBER OF CHARACTERS

C = CURRENT NUMBER OF CHARACTERS

NOTE: AN FC CHARACTER STRING ALWAYS OCCUPIES AN INTEGRAL NUMBER

OF HALFWORDS (2 CHARACTERS PER HW). AN UNUSED 8 BITS MAY

EXIST AT THE END.

B B B B B B B B B B B

360 AMECEXT XE XE X EXE XY] XE X

A 360 CHARACTER STRING IS BYTE-ORIENTED. NO WASTED SPACE AT
THE END,
BUT, THE FC bara OPTION (SPECIFIABLE TO THE 360 COMPILER)
WILL RESULT IN THE GENERATION OF FC-EQUIVALENT CHARACTER STRINGS,

SAP
7273

DATA STORAGE AND ACCESS (CONTINUED)

BIT STRINGS:

A) BITC) BOOLEAN

THROUGH BIT(8) BIT STRING IS
RIGHT-JUSTI FIED

FC 0 LO 1 HW

3600 foes 1 BYTE

360 —
(FC DATA) ° LEE] i

B) BIT(9) - BIT(16) RIGHT-JUSTIFIED

FC . 0 ee 1 HN

360 ZZ 1 HW

C) BITCI7) - BIT(32) _ RIGHT=JUSTIFIED
FC 0 ALLL I 1 FW

360 0 Lo 1 FW

32
¥74

-

DATA STORAGE AND ACCESS (CONTINUED)

NOTES:

(1) HAL/S ALWAYS CAUSES IMPLICIT INITIALIZATION OF BIT’STRINGS

TO ZERO.

(2) AT RUN TIME, HAL/S ASSUMES PORTION OF WORD NOT OCCUPIED BY THE

BIT STRING IS ZERO,

(3) BIT STRINGS ARE ALWAYS (EXCEPT FOR DENSE BIT STRINGS) RIGHT-

JUSTIFIED IN THEIR MEMORY LOCATION -- COMPONENT SUBSCRIPTING

STILL STARTS WITH “1 BEGINNING WITH THE LEFT-MOST BIT OF THE

ACTUAL STRING,

DECLARE B12 BIT(12) INITIAL(BIN'110111110010");

01234 5 67 8 9 101112 13 1415

O07;0)/O0;O;14)1)/ 0) 2] 1] 1} 1] 140) 0; 1] 0

UNUSED BI?

B12$1 B12$12

DATA STORAGE: AND ACCESS (CONTINUED) SKIL

¢7s—
EVENT VARIABLES (ACTS LIKE A BOOLEAN)

0 15

FC USED BY FCOS “OE 1 HW

7
360 0 E 1 BYTE

360 (Fc DATA) 0 E STII /, ‘| 3 Hi

Sane eee

I BYTE
FILLER

NAME VARTABLES* (POINTER DATA)
r

FC 16 BIT ADDRESS 1 HW

360. 0 [| 24 BIT ADDRESS 1 FW

* NAME VARIABLES REPRESENT AN ALLOCATION INCOMPATIBILITY BETWEEN THE FC

AND 360 COMPILERS THAT FCDATA CANNOT OVERCOME!

DATA STORAGE AND ACCESS (CONTINUED)

DENSE/AL!GNED
THE KEYWORD DENSE IS ONLY EFFECTIVE WHEN APPLIED TO
STRUCTURE DATA (FORKS OR TERMINALS) AND EVEN THEN ONLY
CONTROLS PACKING OF BIT AND BOOLEAN DATA.

DENSE ALLOWS BIT STRINGS WITHIN STRUCTURES TO BE COMPRESSED --

SAVING CORE MEMORY: BUT INCREASING ACCESS TIME GENERALLY.

EXAMPLE 1:

DECLARE $ SCALAR DENSE; <—-——__
"DECLARE BG BIT(6) DENSE) meres

STRUCTURE DENSE:
1 BY BITC),
1 B10 BIT(O),
1 B2 BIT(2))

DECLARE @ Q-STRUCTURE;
DECLARE R Q-STRUCTURE DENSE;<———— ILLecat

33
47

DATA STORAGE AND: ACCESS (CONTINUED) Dh STORE ACES 4499
ALL DATA IS INHERENTLY ALIGNED (UNLESS DENSE IS SPECIFIED)

THUS THERE IS NO NEED TO SPECIFY ALIGNED ON DECLARED

DATA -- ALTHOUGH THE KEYWORD ALIGNED WILL BE AUTOMATICALLY

SUPPLIED IN THE CROSS-REFERENCE TABLE,

DECLARE | INTEGER Tr 16NED:

LEGAL BUT WASTED KEYPUNCHING

ALIGNED, HOWEVER, CAN BE USED WITHIN A STRUCTURE TEMPLATE

TO “TURN OFF” A DENSE SPECIFICATION THAT MAY. BE IN FORCE.

DATA STORAGE AND ACCESS (CONTINUED) y 7 y

iO STORAGE PACKING DENSITY OPTIMIZATION
a IN FORCE

ALIGNED

EXAMPLE:

STRUCTURE. A:
1 Al DENSE,

2 ALL BIT),
2 Al2 INTEGER,
2 A13 MMAY(10) Booneett
a ALIGNED, ry Oy rt

Li CHARACTER(80);

NOTE Cie ML SCRAPE Eb AP BLT - FAULT YOLEN - DECLARE ZA A-STRUCTURE;

THAT DENSE NEVER HAS AN EFFECT ON .

ARRAYS OF BIT STRINGS!

DATA STORAGE AND’ ACCESS (CONTINUED) SQ
NOTES:

1) DENSE IS ONLY EFFECTIVE ON SINGLE (UNARRAYED BIT STRINGS)
WITHIN STRUCTURES,

2) BOTH DENSE AND RIGID CAN BE SPECIFIED FOR A STRUCTURE TEMPLATE,

RIGID] eee
DENSE ADJACENT BIT STRINGS BIT STRINGS ARE SORTED

ARE PACKED WHEN (WITHIN-A MINOR STRUC-
POSSIBLE TURE) AND PACKED TO-

GETHER.

ALIGNED | NO PACKING OF BITS WITHIN A MINOR STRUC-
TAKES PLACE, ALL TURE, DATA IS SORTED
DATA IS ALLOCATED TO SAVE SPACE, NO
AS DECLARED, BIT PACKING OCCURS,

A FURTHER COMPLICATION EXISTS IN THAT STRUCTURES MAY BE
PARTIALLY DENSE AND/OR PARTIALLY RIGID,

THE DETAILED RULES FOLLOWED BY THE COMPILER ARE TOO COMPLEX To
BE TREATED HERE,

o™
t .

DATA STORAGE AND ACCESS (CONTINUED)

EXAMPLE:

STRUCTURE @ DENSE RIGID:
1A,

2 BL BITCH),
2 B2 BIT(8),

2 B3 BIT(2),
2 Ba BIT(6),

1B,
2 BS BIT(5),
2 BG BIT(S),

1¢,
2 B7 BIT(3),

1D,
2 B8 BIT(5);

| ZG B2 B3}1 = MINOR STRUCTURE

PLL BM A
LY BG __------B
LMETTTTIL 487} C
VLLLLLLLLLA BN D

NOTE THAT MINOR STRUCTURES ARE INDEPENDENTLY ALLOCATED! !
enter ae

-~

—Y¥0

Gy

DATA STORAGE AND ACCESS (CONTINUED)

A PROGRAMMER USES A DENSE BIT STRING THE SAME WAY A NON-

DENSE ONE IS USED...

STRUCTURE @ DENSE:

1 BOOLI BOOLEAN,

“1 BOOL2 BOOLEAN,

1 B10 BIT(10),

1 Ba BIT(4);

DECLARE @ Q-STRUCTURE INITIAL (TRUE, FALSE, BIN'111', BIN’)

IF BOOL1 AND NOT BOOL2 THEN DOs

IF BY = BIN'1011’ THEN DO;

¢¥7

DATA STORAGE AND ACCESS (CONTINUED)

INSTEAD OF THIS,

STRUCTURE @ DENSE RIGID:

1 ENGINE_ON BOOLEAN,

1 LOW_FUEL’ BOOLEAN,

1 WHEELS_DOWN BOOLEAN,

1 SOMETHING_IS_BURNING BOOLEAN.

DECLARE @ Q-STRUCTURE;

DO THIS:

STRUCTURE Q:

1 DISCRETES BIT(16);

DECLARE Q Q-STRUCTURE;

REPLACE ENGINE_ON BY "DISCRETES$1”;

REPLACE LOW_FUEL BY “DISCRETES$2";
ao

REPLACE SOMETHING_IS_BURNING BY "DISCRETES$16";

FRA

3

DATA STORAGE AND ACCESS: (CONTINUED)

TEMPORARY DATA

@ NORMAL DECLARE’D DATA IS PERMANENTLY ALLOCATED TO A STATIC

DATA AREA,

© THE. TEMPORARY FACILITY ALLOWS USERS TO OBTAIN SCRATCH SPACE FOR

LOCALIZED CALCULATIONS THAT WILL BE OBTAINED FROM THE STACK,

* TEMPORARY VARIABLES EXIST OWLY WITHIN THE DO... END GROUP

WITHIN WHICH THEY ARE DEFINED.

© THO FORMS EXIST:
TEMPORARY S SCALAR; . NORMAL FORM
TEMPORARY MATRIX DOUBLE, M1, M2;

S/
#3.

. AND

~ DO FOR TEMPORARY I = 1 TO 9;

A SPECIAL LOOP VARIABLE FORM,

D

2)

3)

4)

5)

om,

DATA STORAGE AND ACCESS (CONTINUED) f ey

RESTRICTIONS

TEMPORARY DATA ITEMS MAY NOT BE INITIALIZED,

TEMPORARY EVENT VARIABLES AND NAME VARIABLES ARE NOT ALLOWED.

THE NAME OF A TEMPORARY MAY NOT DUPLICATE THE NAME OF

ANOTHER TEMPORARY DATA ITEM IN THE SAME DO,..END GROUP,

THE NAME OF A TEMPORARY DATA ITEM MAY NOT. DUPLICATE THE NAME

OF AN ORDINARY DATA ITEM KNOWN BY THE SCOPING RULES TO THE

BODY OF THE DO,..END GROUP,

TEMPORARY VARIABLES CAN ONLY BE DEFINED IMMENIATELY FOLLOWING

ANDO... AND PRIOR TO THE NEXT EXECUTABLE FORM (EXCEPT FOR

- THE LOOP TEMPORARY).

Ge

nes

e

DATA STORAGE AND ACCESS (CONTINUED) ie

6) TEMPORARY VARIABLES MAY NOT BE DEFINED FOR A DO CASE BLOCK, fs

EXAMPLES

“DO FOR TEMPORARY I = 1 TO 10;
t tore

| MST = M$1 +4;
I

END

I IS ONLY KNOWN WITHIN THE DO..+END BLOCK. I IS ALWAYS

A SINGLE PRECISION INTEGER IN THIS LOOP VARIABLE SPECIAL
FORM:

“DO;

TEMPORARY I INTEGER DOUBLE;
TEMPORARY MATRIX, Ml, 2, M3,
toro

l=l+l

Ml = M2 + MB;

/ enp, |
I, ML, M2, M3 ARE ONLY KNOWN WITHIN THIS DO...END GROUP (AND
ANYTHING NESTED WITHIN IT),

'
|
|
|
|
|
|
{

WRONG:

RIGHT:

DATA STORAGE AND ACCESS (CONTINUED)

DO;
T= [+];
TEMPORARY INTEGER Js
J= 21;

END; DOES NOT IMMEDIATELY FOLLOW DO

DO;

TEMPORARY INTEGER J;
T=[+1;
J= 2;

END;

WRONG:

RIGHT:

DO;

TEMPORARY INTEGER J INITIAL(3);
oe

END; TEMPORARIES CANNOT BE INITIALIZED

DO;
TEMPORARY INTEGER J;

= 3; .

END;

- 37

WRONG:

RIGHT:

DATA STORAGE AND ACCESS (CONTINUED)

DO;

STRUCTURE Q:
1 A SCALAR,
1 B SCALAR;

TEMPORARY R Q-STRUCTURE;

END;

1 A SCALAR,
1 B SCALAR;

DOs
TEMPORARY R Q-STRUCTURE;

END;

STRUCTURE Q:
IN DECLARE GROUP OF ANY OUTER BLOCK

WRONG:
DO;

TEMPORARY INTEGER I;

DO;

TEMPORARY INTEGER I;

/ END?
ENDs

TWO 1’S IN SAME DO...END GROUP

a

DATA STORAGE AND ACCESS (CONTINUED) $3

RIGHT: | tr
DO;

TEMPORARY INTEGER I;

DO; .

TEMPORARY INTEGER [13

- END;
END;

THIS IS OK!

DO;
TEMPORARY: MATRIX M1;

END;
ak 2 SEPARATE (NON-NESTED DO...END

DO; a GROUPS)

. TEMPORARY MATRIX MLs
aono4

END;

NOTE: IN A CASE LIKE THIS, NOT ONLY WILL M1 AND M2 BE ALLOCATED IN THE
STACK, BUT Mi AND M2 WILI. QUITE LIKELY OCCUPY THE SAME LOCATIONS.

DATA STORAGE AND ACCESS (CONTINUED)

THIS IS WRONG:

DO CASE J:
TEMPORARY MATRIX Mls
DO;

tea ae case 1

END;

DOs
ena meme CASE 2

END:

END,

BUT. THIS IS OKI

DO CASE Js
DO;

_ TEMPORARY MATRIX Ms

END;
DQ;

ENDs

END;

33
47

TN
4

DATA STORAGE AND ACCESS (CONTINUED)

WRONG:
PROC: PROCEDURE

DECLARE 1 INTEGER; DUPLICATE IDENTIFIER

DO FOR TEMPORARY I = 1 TO 5;

END;

TENPORARIES SCOPE INTO NESTED DO...END GROUPS ALSO ---

DO:

TEMPORARY Z ARRAY(10) INTEGER,

7$1 - 3;

DO FOR TEMPORARY I = 1 TO 105—
IF Z$1 = 0 THEN ..,

END;

ENDs

VIo

“Aye

DATA STORAGE AND ACCESS (CONTINUED) yo

TEMPORARIES ALSO SCOPE INTO NESTED BLOCKS BUT SINCE TEMPORARIES ARE 9/

IN THE STACK WE HAVE THE SAME STACK "WALK-BACK"” PROBLEM THAT EXISTS

FOR PARAMETERS .

EXAMPLE:

DO;
TEMPORARY. MATRIX My

CALL PROC_A;

PROC_A: PROCEDURE;

IF M$(2,3) = 0 THEN ..,

CLOSE PROC_A; M IS VISIBLE BECAUSE WE ARE STILL IN THE
toe DO.++END GROUP WHERE M WAS DEFINED, A

” | ENDs STACK WALK-BACK LOOP WILL BE GENERATED,
HOWEVER,

3/
DATA STORAGE AND ACCESS (CONTINUED) $72

LOCK GROUPS

THE CONCEPT OF A LOCK GROUP IS LINKED TO THAT OF AN UPDATE BLOCK.

THIS IS DUE TO THE FACT THAT A DATA ITEM WHICH HAS BEEN DECLARED 10

BE LOCKED CAN ONLY BE ACCESSED (REFERENCED OR MODIFIED) WITHIN AN

UPDATE BLOCK,

ALTHOUGH ANY DECLARED DATA ITEM MAY HAVE A LOCK GROUP SPECIFICATION,

IN PRACTICE ONLY CERTAIN COMPOOL VARIABLES WILL NEED SUCH PROTECTION,

THE CURRENT IMPLEMENTATION ALLOWS FOR 15 SEPARATE LOCK GROUPS.

CONTROLLING CRUCIAL VARIABLES ON A GROUP BASIS TURNS OUT TO BE FAR

MORE PRACTICAL THAN PROTECTING THEM INDIVIDUALLY.

IF A VARIABLE IS TO BE PROTECTED THEN IT IS GIVEN A LOCK SPECIFICATION

AT THE TIME IT IS DECLARED,

DATA STORAGE AND ACCESS (CONTINUED)

173 EXAMPLE :

DECLARE WVECT VECTOR(3),
QVECT VECTOR(3) LOCK(7),
RVECT VECTOR(3) LOCK(4),

HERE WVECT IS UNPROTECTED, QVECT IS LOCKED AND BELONGS TO GROUP 7
AND RVECT IS LOCKED AND BELONGS TO GROUP 4, WVECT CAN BE REFERENCED
OR ASSIGNED ANYWHERE, QVECT AND RVECT CAN ONLY BE ACCESSED WITHIN
AN UPDATE BLOCK,

FOR THE SAKE OF FLEXIBILITY, A VARIABLE CAN BE DECLARED AS LOCK(*),
THIS TECHNICALLY SIGNIFIES THAT THE VARIABLES BELONGS TO ALL LOCK
GROUPS SIMULTANEOUSLY,

EXAMPLE:

DECLARE VEHICLE POSITION VECTOR DOUBLE LOCK(*);

DATA STORAGE AND ACCESS (CONTINUED)

THE FOLLOWING EXAMPLES ILLUSTRATE THE POSITIONING OF THE CONSTRUCT.

WITHIN DECLARATIONS: °

EXAMPLES :

| DECLARE I INTEGER DOUBLE LOCK(3)s
| DECLARE $ SCALAR INITIAL(5.5) LOCK(*);

DECLARE V VECTOR(3) LOCK(1) INITIAL(O);
DECLARE B ARRAY (1000) ‘BOOLEAN LOCK(*);

| STRUCTURE © DENSE:
| 1 QI INTEGER,
| 1.08 SCALAR,

| 1 0B BIT);
| DECLARE 20 Q-STRUCTURE(20) LOCK(3)s

UPDATE BLOCKS

AN UPDATE BLOCK IS AN EXPLICITLY DELIMITED BODY OF CODE WHEREIN LOCKED

DATA MAY BE REFERENCED OR MODIFIED, AN UPDATE BLOCK SUPERFICIALLY LOOKS

LIKE ANY OTHER HAL BLOCK.

fabel: UPDATE

CLOSE Label;

DATA STORAGE AND ACCESS (CONTINUED) ¥ 7. s

THE UPDATE BLOCK, HOWEVER, IS UNIQUE IN SEVERAL RESPECTS:

1) THE BLOCK LABEL IS OPTIONAL. IF IT IS OMITTED THE COMPILER
AUTOMATICALLY GENERATES LABELS, I.E.

~ SUPDATEL, $UPDATE2, etc.

2) UPDATE BLOCKS CANNOT BE CALLED, INVOKED, OR SCHEDULE. INSTEAD,
THEY -ARE EXECUTED WHEN THEY ARE ENCOUNTERED IN THE PATH OF
EXECUTION,

NOTE: ALTHOUGH ONE “FALLS INTO” UPDATE BLOCKS (AND THAT IS
; WHY A LABEL IS OPTIONAL) THEY STILL ARE SEPARATE CSECTS

(CONTROL SECTIONS) LIKE ANY OTHER BLOCK AND THUS THERE
TS A HIDDEN BRANCH TO THE BLOCK WHICH LOOKS LIKE A
NORMAL PROCEDURE CALL. THIS CAN BE SEEN IN THE GENERATED
CODE,

32
DATA STORAGE AND ACCESS (CONTINUED) sd 7 6

3) A BLOCK LABEL, IF THE USER SUPPLIES ONE, MAY BE CONSIDERED

AS A STATEMENT LABEL, I.E. IT IS POSSIBLE TO USE A GO TO

STATEMENT TO GET TO AN UPDATE BLOCK,

{ T=I+1;
IF 1 <0 THEN GO TO ENTER;

veJ+th
ENTER: UPDATE;

m= M+ UU WN,
CLOSE ENTER;

E

a

t

|
|
|
|
|

|
|
|

4) AT THE BEGINNING OF THE EMITTED CODE FOR AN UPDATE BLOCK THERE

IS A SUPERVISOR CALL (SVC) TO THE FCOS DESCRIBING WHICH LOCK

GROUPS WILL BE USED BY THE UPDATE BLOCK, EXECUTION MAY BE HELD

UP AT THIS POINT IF ONE OR MORE OF THE REQUESTED GROUPS ARE

ALREADY IN USE.

37]

5)

6)

7)

DATA STORAGE AND ACCESS (CONTINUED) {95

AT THE END OF THE EMITTED CODE FOR AN UPDATE BLOCK THERE —

TS AN SVC WHICH INFORMS THE FCOS THAT THE LOCK GROUPS ARE

NOW FREE.

AN UPDATE BLOCK CAN HAVE DECLARED LOCAL DATA JUST LIKE ANY

OTHER BLOCK,

THE FOLLOWING (UNUSUAL) RESTRICTIONS APPLY, HOWEVER:

e NO 1/0 STATEMENTS OF ANY KIND ARE LEGAL, E.G, READ, WRITE,

_ ETC, (HAL/S WILL NOT STOP ZSVC, HOWEVER).

© MOST REAL-TIME STATEMENTS ARE JLLEGAL, NAMELY:

SCHEDULE, WAIT, CANCEL, TERMINATE,

AND UPDATE PRIORITY,

DATA STORAGE AND ACCESS (CONTINUED)

e AN UPDATE BLOCK CAN HAVE NESTED PROCEDURES AND FUNCTIONS

BUT NO UPDATE BLOCKS OR TASK BLOCKS,

0 THE ONLY PROCEDURE OR FUNCTION INVOCATIONS WHICH ARE LEGAL

ARE THOSE REFERENCING PROCEDURE OR FUNCTION BLOCKS DEFINED

WITHIN IT,

UPDATE BLOCKS SHOULD GENERALLY BE AS FAST AS POSSIBLE SINCE THEY

TIE UP LOCK GROUPS THAT MAY KEEP MORE CRITICAL UPDATE BLOCKS FROM

BEING EXECUTED, .

NOR SHOULD UPDATE BLOCKS BE TOO FREQUENT SINCE THERE IS NOT ONLY

THE OVERHEAD OF 2 FCOS SERVICES BUT ALL GPC’S ARE USUALLY SYNCHED

UPON ENTRY TO AN UPDATE BLOCK.

47k

EXAMPLE t

e
e

oe

oo
n

ee

et
 s
c

e
S

H
n

a

t
h

m
e

t
e
t

a
e
m

a

DATA STORAGE AND ACCESS (CONTINUED)

UPDATE;
DECLARE I INTEGER,

& SCALAR;
Vi= V/S;

WRITE (6) V; —_——— = illegal

INNER: PROCEDURE;

CLOSE INNER}
.

CALL INNER;
CALL OUTER; +———— illegal ~ outer not defined in

update block’
UPDATE PRIORITY ALPITA TO 50; «-——————— illegal

CLOSE;

32

DATA STORAGE AND ACCESS (CONTINUED) 33

NOTE: THE COMPILER AUTOMATICALLY INFORMS FCOS ON WHICH LOCK GROUPS

TO LOCK BASED ON WHICH LOCKED VARIABLES ARE REFERENCED.

FURTHERMORE, IF LOCKED DATA IS ONLY REFERENCED (NOT

ASSIGNED) FCOS IS INFORMED OF THIS ALSO -~ ALTHOUGH

REFERENCE-ONLY UPDATE BLOCKS ARE NOT CURRENTLY GIVEN ANY

FAVORED TREATMENT,

WISHFUL
THINKING

TM

DATA STORAGE AND“HCCESS (CONTINUED)

EXECUTION OF UPDATE BLOCKS

THE BEHAVIOR OF PROCESSES ON ENCOUNTERING UPDATE BLOCKS HAS ALREADY

BEEN DESCRIBED IN THIS SECTION, BUT ONLY SUPERFICIALLY BY EXAMPLE,

THIS BEHAVIOR IS NOW RE-EXAMINED IN MORE DETAIL,

THE SIMPLEST CASE IS THAT OF THO PROCESSES WISHING .TO USE DATA
ITEMS FROM THE SAME LOCK GROUP. EACH PROCESS HAS TO EXECUTE AN

UPDATE BLOCK TO USE THE PROTECTED DATA ITEMS, THE FOLLOWING

ACTIVITY TAKES PLACE: ~ :

® IF BOTH OF THE PROCESSES REQUIRE DATA ITEMS FROM THE SAME

_ LOCK GROUP TO BE MODIFIED THEN THE FIRST PROCESS TO

ENTER ITS UPDATE BLOCK MUST COMPLETE EXEUCTION OF IT BEFORE

THE SECOND PROCESS CAN ENTER ITS OWN UPDATE BLOCK, THE

RTE PLACES THE SECOND PROCESS IN A WAITING STATE FOR THIS

PERIOD OF TIME,

© IF ONE OR BOTH OF THE PROCESSES ONLY REQUIRE TO REFERENCE THE
DATA THEN IN SOME IMPLEMENTATIONS OF HAL/S, THE BEHAVIOR OF THE
RTE WILL BE THE SAME AS BEFORE, ALTERNATIVELY, IN OTHER IMPLE-
MENTATIONS, TO REDUCE THE SECOND PROCESS’ WAITING TIME, THE
RTE MAY ALLOW PARTIAL OVERLAP IN EXECUTION OF THE UPDATE BLOCKS,
CONSISTENT WITH EXCLUSIVE USE OF DATA BY THE PROCESS MODIFYING
IT*,

$2
DATA STORAGE AND ACCESS (CONTINUED) $8.
TO |

IF THE TWO PROCESSES WISH TO USE DATA FROM MORE THAN ONE LOCK

GROUP, THE RTE TRACKS THE USE OF EACH LOCK GROUP IN THE ABOVE

WAY. IF ONE OR BOTH PROCESSES USE DATA PROTECTED BY LOCK(*), THEN ‘.

THE SITUATION IS EQUIVALENT TO ONE IN WHICH THE PROCESS OR

PROCESSES WISH TO USE DATA IN EVERY LOCK GROUP,

IF DATA IS SHARED BY MORE THAN THO PROCESSES, THEN ALL PROCESSES

EXCEPT ONE ARE PUT IN A WAITING STATE BY THE RTE. THE EVENTUAL

ORDER. IN WHICH THE PROCESSES COMPLETE EXECUTION OF THEIR UPDATE

BLOCKS WILL DEPEND ON THE CONTENTS OF THE PROCESS QUEUE AND THE

RELATIVE PRIORITY OF THE PROCESSES,

]-43

DATA STORAGE AND ACCESS (CONTINUED) . 3/

EXAMPLE SO

IN SOME REAL TIME APPLICATION, IT IS REQUIRED THAT A PROCESS ALPHA

PRINT THE VALUES OF A COVARIANCE MATRIX M ONCE EVERY 19 SECONDS,

a’.

“THE VALUES ARE UPDATED ONCE EVERY 1.5 SECONDS BY A SECOND PROCESS

BETA, THE IMPLEMENTATION MUST GUARANTEE THAT A.PARTIALLY UPDATED

COVARIANCE MATRIX NOT BE PRINTED,

THE COVARIANCE MATRIX M IS DECLARED THUS:
|

| DECLARE M MATRIX(3,3) LOCK(L)s
|

TWO TASK BLOCKS CORRESPONDING TO ALPHA AND BETA ARE SHOWN BELOW:

Toye

DATA STORAGE AND ACCESS (CONTINUED)

EXAMPLE CONTINUED:

| ALPHA: TASK:
| DECLARE M_LOCAL MATRIX(3,3)s

U1: UPDATE;
| | MLocaL = Mi,
| CLOSE us
| WRITE (6) "COVARIANCES", LOCAL;
| close ALPHA;
Ic

| BETA TASK;
| DECLARE VT VECTOR(3);

U2: UPDATE)

le T
| V = (PHIM PHI + OADZ;

M = V V/(OB + Z.V);
| CLOSE U2;
| CLOSE BETA;
|

$2
500-4

DATA STORAGE AND ACCESS (CONTINUED) $2
EXAMPLE CONTINUED! $00 “4

ALPHA: TASK;

DECLARE M_LOCAL MATRIX(3,3)3

Ul: UPDATE;

M_LOCAL = My

CLOSE UL)
WRITE(B) ‘COVARIANCES’, MLOCAL;

CLOSE ALPHAs °

C

DECLARE VT VECTOR(3);

U2: UPDATE;

E T
V = (PHI M PHI + QA)Z;

N= V V/(QB + Z.V);

CLOSE U2)

|

|

|

|
|

|
|

| BETA TASK;

|

|

|

|

| close BETA;
|

Ty

. oy

DATA STORAGE AND ACCESS (CONTINUED)

EXAMPLE CONTINUED:

PROCESSES ALPHA AND BETA COULD BE CREATED BY INVOKING

THESE TASK BLOCKS WITH CYCLIC SCHEDULE STATEMENTS

OF THE FOLLOWING FORM:

| SCHEDULE ALPHA PRIORITY(10), REPEAT EVERY(19) 5

| SCHEDULE BETA PRIORITY(20), REPEAT EVERY(1,5);

THE FOLLOWING DIAGRAM SHOWS THE STATE TRANSITIONS OF

THE PROCESSES: .

33
500-5

533
S00-<

DATA STORAGE AND ACCESS (CONTINUED)

EXAMPLE CONTINUED:

exacuhion of
update bleck UL

~ em 19sec ——>|

! “= executing

I
ALPHA |

i _ “ —— ready

1 |
einen - — 1 cree Lteenteerenmene WAItLAg

| 1 Sed pel L.5sec —~>{
1 ‘

i + . —- exceuting
| | | | I

BETA L - J - 7” -- + t oo reetedy

ri ! A . pL. 1. tJ wailing
1 | prot i i — i to |

xeccution of vom yr execution oF
update block U2 a update block U2

process walting end of execution

at entry to U2 of update block U1

a

NOTE THAT IF IN THIS EXAMPLE PROCESS SWAPS OCCURRED ONLY ON
STATEMENT BOUNDARIES, UPDATE BLOCKS WOULD NOT BE NEEDED SINCE
ALPHA COULD NOT EVER BE BROUGHT INTO EXECUTION WITH COVARIANCE

MATRIX M PARTLY UPDATED,
T-Nio

DATA STORAGE AND ACCESS (CONTINUED) -~ Yl 00-7

LOCKED ASSIGN ARGUMENTS

THE RULE THAT LOCKED DATA ITEMS CAN ONLY APPEAR IN UPDATE

BLOCKS HAS ONE SOLE EXCEPTION: IT IS POSSIBLE FOR LOCKED

DATA ITEMS TO APPEAR AS ASSIGN ARGUMENTS IN PROCEDURE

INVOCATIONS, THIS PROVIDES THE ABILITY TO "PARAMETERIZE”

UPDATE BLOCKS, AS WILL BE SHOWN IN AN ENSUING ~ EXAMPLE,

_ THE FOLLOWING RULES GOVERN THE PASSAGE OF LOCKED ASSIGN

ARGUMENTS: ,

DATA STORAGE AND ACCESS (CONTINUED)
a 500-9

LOCKED ASSIGN ARGUMENTS (CONTINUED)!

1, IF THE ARGUMENT 1S A DATA ITEM BELONGING TO

LOCK GROUP Ny THEN THE CORRESPONDING PARAMETER

‘MUST BE DECLARED Lock(N) or Lock(*),

2, IF THE ARGUMENT IS A DATA ITEM BELONGING TO .
ALL LOCK GROUPS, THE CORRESPONDING PARAMETER

MUST BE DEGLARED LocK(*),

3, ARGUMENT AND PARAMETER MUST ALSO MATCH IN THE

SENSES DESCRIBED, AS APPLICABLE,

oye OP

ra

EXAMPLE:

1
1
!
t
!
'
1
1
j
t
i
'
1
i

|
'
{
{
1
1
{

For

the

+

The

DATA STORAGE AND ACCESS (CONTINUED)

DECLARE A SCALAR LOCK (1),

B SCALAR LOCK (2),

cs CALAR LOCK (4);
PICK: PROCEDURE (P) ASSIGN (Q,R);

7 DECLARE P SCALAR,
Q SCALAR LOCK(1),

R SCALAR LOCK(*);

 TT body of procedure

 eee
,

CLOSE PICK;

the above procedure definitions and declarations,

following invocations are legal:

CALL PICK(1.0) ASSIGN (A,B)

CALL PICK (2,0) ASSIGN (A,C)

:
t
:
t

following are illegal;

Pore data item as input arqument

t : 1 ko gr
CALL PICK(N) ASSIGN (IGE); > steed Jock group
CALL PICK(3..0) ASSIGN(C,B);

Fa
$00e-9

DATA STORAGE AND ACCESS (CONTINUED)

EXAMPLE CONTINUED:

‘tthe procedure PreK may Contain an update block chanying the values of Q and R:

PICK: PROCEDURE (P) ASSIGN(Q,R);
DECLARE P SCALAR,

. Q SCALAR LOCK (1),
R SCALAR LOCK («#);

Us Ot Pp;

R= R- p;
CLOSE Us;

!
'
'
'
!
!
i
t
'
i
| .
{ Ur UPDATE:

!
'
'
’
t
!
'
'
t
i
t CLOSE PICK;

. HECK may be invoked with different Locked assign
Ardumonts, thus effectively parameterizing the —
update block.

| CALL PICK(L) ASSIGN (A,h); Updates A and
! CALL PICK(2) ASSIGN(A,C); udpates A and t

SVO—4

3/
$00 -1)

DATA STORAGE AND ACCESS (CONTINUED)

FURTHER NOTES:

1) STRUCTURES MAY BE LOCKED:

STRUCTURE. Q:
1 A,

2 AL SCALAR,
2 A2 SCALAR,

1B, |
2 Bl INTEGER,
2 B2 INTEGER;

DECLARE @ Q-STRUCTURE LOCK(5)

IN WHICH CASE AN UPDATE BLOCK IS NEEDED TO ACCESS ANY PART OF THE

STRUCTURE. °

2) THE KEYWORD LOCK MAY NOT APPEAR WITHIN THE TEMPLATE ITSELF,

T,E., EQTHER THE ENTIRE STRUCTURE IS LOCKED OR NO PIECE OF IT IS.

THIS TURNS OUT TO BE AN UNFORTUNATE RESTRICTION IN THE CASE OF

NAME VARIABLES (AS WE WILL SEE LATER), I.E. THE FOLLOWING IS

ILLEGAL (ALTHOUGH LOGICALLY REASONABLE).

3)

4)

DATA STORAGE AND ACCESS (CONTINUED) 800-1 a

STRUCTURE Q:
1 A SCALAR,
I NM NAME MATRIX LOCK(3),
1 V VECTOR;

A DISADVANTAGE OF LOCK GROUPS IS THAT AN UPDATE BLOCK IS LEGALLY

REQUIRED EVEN. WHEN THE SOFTHARE DESIGN GUARANTEES THAT CERTAIN

"SAFE" TIMES EXIST WHEN ONLY ONE PROCESS WILL BE ACCESSING THE

LOCKED DATA,

ILLEGAL!

THE NEW ZCOPY FACILITY DOES ALLOW LOCKED DATA TO BE COPIED OR

UPDATED WITHOUT THE NEED FOR AN UPDATE BLOCK,

. | S/

S$vO -13
EXCLUSIVE PROCEDURES/FUNCTIONS

AN EXCLUSIVE PROCEDURE OR FUNCTION (USUALLY A COMSUB) I$ ONE WHICH

POSSESSES A SPECIAL FCOS INTERFACE THAT GUARANTEES THAT ONLY ONE .

PROCESS AT A TIME MAY ENTER THE BLOCK, I.E. THE FIRST PROCESS TO

ENTER THE BLOCK LOCKS OUT ALL OTHER POTENTIAL CALLERS UNTIL IT HAS

FINISHED AND HAS EXITED THE BLOCK,

DEFINING AN EXCLUSIVE PROCEDURE

‘THE FORM OF THE OPENING STATEMENT OF AN EXCLUSIVE PROCEDURE IS AS

SHOWN BELOW!

| j :
| Label: PROCEDURE (i7,47,...) ASSIGN(a,a”,...) EXCLUSIVE;

1, tabef is a legal HAL/S identifier constituting the
procedure name. ‘

2. Be... and ata?,.., are lists of input and
assign parameters as described.

3. The keyword EXCLUSIVE designates an exclusive
procedure.

52.
500 -/4

EXCLUSIVE PROCEDURES/FUNCTIONS (CONTINUED)

NOTE: ALTHOUGH IT IS FAR EASIER TO MAKE A BLOCK EXCLUSIVE THAN REENTRNT,

- EACH EXECUTION OF AN EXCLUSIVE BLOCK CARRIES THE OVERHEAD OF 2 FCOS * "

SUPERVISOR CALLS, ‘

EXCLUSIVE BLOCKS ALSO MAY RESULT IN TEMPORARY "LOCK-OUT” OF MORE

CRITICAL PROCESSES,

THIS IS ALL IT TAKES TO MAKE A BLOCK EXCLUSIVE

Example:

' Pp: PROCRDURE(A) EXCLUSIVE;
DECLARE A SCALAR;

|
1 .

|

! VU). _— _ {
$
f CLOSE P;

The template corresponding to an exclusive external
procedure must also bear the keyword EXCLUSIVE.

Goce

S33 an
EXCLUSIVE PROCEDURES/FUNCT IONS (CONTINUED) $00 o§>

Example:

‘the template corresponding to
t
i
t Pr PROCEDURE (A) EXCLUSIVE;

4 DECLARE A SCALAR;
'

.

| YHA ! proceedure body

\ |
1 CLOSE P;

would be:

Yo opr BXYERNAL PROCEDURE (A) EXCLUSIVE;

! DECLARE A SCALATG

' CLOSE P; :

T-S¥6 1

EXCLUSIVE PROCEDURES/FUNCTIONS (CONTINUED)

DEFINING AN EXCLUSIVE FUNCTION

THE FORM OF THE OPENING STATEMENT OF AN EXCLUSIVE FUNCTION IS AS SHOWN

BELOW:

 VI
! Label: FUNCTION (i7,17,...) attributes EXCLUSIVE;

1. abel is a legal HAL/S identifier constituting
the function name.

2. Oi .. is a list of input parameters as
described earlier.

3. attributes defines the type and, where applic-
able, precision of the function.

4. "The keyword EXCLUSIVE designates an exclusive
function.

S2
3 00-/6

EXCLUSIVE PROCEDURES/FUNCTIONS (CONTINUED)

Example:

Fi FUNCTION BOOLEAN EXCLUSIVE;

|
LA |

function body

1
1
1
f
I
4
t
t
'
| f

; CLOSE P;

The template corresponding to an exclusive external
function must.also bear the keyword EXCLUSIVE.

Rxamples

The template corresponding to:

' Pr RUNCETOH NOOLKAN EXCLUSIVE;

' I WY
' Yy . function body
i | i
! CLOSE F;

woudl fee:

| FP: EXTERNAL FUNCTION RNOOLEAN EXCLUSIVE:

1 CLOSE Fr -
t

q-S I~

500-17

EXCLUSIVE PROCEDURES/FUNCTIONS (CONTINUED)

PEHAVIOR OF EXCLUSIVE PROCEDURES AND FUNCTIONS

if an exclusive prucedure or function is in use by a
process A, and a process B tries to invoke it, then
the RTE places process 8 in the waiting state until
process A returns from its use,

Example:

Two processes ALPHA and BETA can ‘invoke the following
procedure:

P: PROCEBURE EXCLUSIVE:

procedure body

CLOSE DP;

Soo -1¥

$2
EXCLUSIVE PROCEDURES/FUNCTIONS (CONTINUED) SOO -j

Suppose that ALMIA invokes YP first and during
its execution, BETA tries to invoke it. The state
transitions for this situation is shown below:

‘

, ! ' .
_ =ae ! . - - mw executing
other I | |

. tirelated , |
ALMA transitiong}.L. — — “lores ne ready

| foo4- :
eee eee a te Pe ey os waiting

ALPHA eriters | fo. LALPHA Leaves
r r :

. | 1 4
! '

i executing

other

Hera unrelated | !
transitions “| — ee ee ee fam Cay

|

ame eee eee a > waiting
| KL RTA Leaves P

|

NETA trios A RTE allows BETA
to enter P ‘to anter P

\e

ee

$/
Sv0-2¢

REENTRANT PROCEDURES/FUNCT IONS

o DUE TO THE HAL/S STACK MECHANISM AND THE METHOD OF PARAMETER

PASSAGE AND PROCEDURE CALL, EVERY PROCEDURE/FUNCTION IS ALMOST

REENTRANT

o TO MAKE A BLOCK LEGALLY REENTRANT IT IS NECESSARY TO APPEND

THE KEYWORD .REENTRANT TO THE BLOCK HEADER.

* TO MAKE A BLOCK ACTUALLY REENTRANT REQUIRES MORE WORK AND A

LOT OF CARE! °

REENTRANCY MEANS, OF COURSE, THAT TWO OR MORE PROCESSES

(PROGRAMS OR TASKS) MAY BE “SIMULTANEOUSLY” EXECUTING

THE BLOCK,

ea

REENTRANT PROCEDURES/FUNCTIONS (CONTINUED)

DEFINING A REENTRANT PROCEDURE

THE FORM OF THE OPENING STATEMENT OF A REENTRANT PROCEDURE IS SHOWN

BELOW;

 ' .

| fabek: PROCEDURE (i", 47,2...) assten(at,a?,...) REENTRANT};

1. abel is a legal HAL/S identifier constituting the
procedure name.

2. os, and at ja7 yee. are lists of input and assign
parameters.

3. The keyword REENTRANT indicates that the procedure
is to be considered reentrant.

Examples

Ps PROCEDURE REENTRANT

ep

“ yyy | procedure body

LAA

i
‘
!
1
'
i
!
!
'
J
'
I CLOSE P;

Tf P were an external procedure, the corresponding
template would be: ,

\ Vi EXTRRNAL PROCEDURE REENTRANT ;
! CLOSE P;

52
500-2)

REENTRANT PROCEDURES/FUNCTIONS (CONTINUED)

DEFINING A REENTRANT FUNCTION

The form of an opening statement of a reentrant function
is shown below:

; :
| fabet:; runcTion(é!, 2”,,..) attributes REENTRANT;

Label is a legal HAL/S ‘identifier consti tu-
ting the function name,

o, is a list of input parameters
as described in Section 11.2,

attubutes defines the type and, where applic-
able, precision of the function as described
in Section 11.2.

The keyword REENTRANT indicates that the
function is to be considered reentrant.

The template corresponding to an external reentrant Function
must also possess the keyword REENTRANT.

G-C2

$00-23

$3
REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) £00 ~ a 3

Example: t

Fi: PUNCTPLION MATRIX(4,4) REENTRANT; sy

function -body

}
If F were an oxternal funetion, the corresponding
template would be:

{ PV EXTERNAL FUNCTION MATRIX (4,4) REENTRANT;
! CLOSE F;

CLOSE PF;

9 ~ yo } ‘ ion

REENTRANT PROCEUDRES/FUNCTIONS (CONTINUED)

BEHAVIOR OF REENTRANT PROCEDURES AND FUNCT LONS

If a reentrant procedure or function is in use by a
process A, and a process 8 tries to invoke it, the
RTE allows the invocation to proceed without restriction.

3

Example:

Iwo processes, ALPHA and BETA, can invoke the
following procedure:

P: PROCEDURE REENTRANT; *

CLOSE P;_

Suppose that ALPHA invokes P first and during
its execution, BETA invokes it, ‘The state
transitions for this situation is as shown
below (compare corresponding example for
exclusive procedure):

$2
Soo -ay

REENTRANT PROCEUDRES/FUNCTIONS (CONTINUED)

800-235

. ! t
me : t we executing

t other
| unrelated

‘ ! transitions
ALPHA cays y77c On ready

|
ewe el ee pam nm wee He 2 ~~ waiting

ALIA 2 A ALPUA Leaves P
enters P

| | (
‘. _. . ‘ .

“ ‘other t 7 ps executing

unre lated | | |

trans]. fF RETA ransltions ' |

wae fine eee eee eS poTTy we ee ee OPOY

|
{ {

' i
ea -- yb - Hon itis

RETA enters te al oo LTA Leaves P

e (OL aneiia and BETA both executing P

os

2.
REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) SvVO ~~ and

TRUE REENTRANCY GENERALLY REQUIRES THAT EVERY PROCESS ENTERING

A REENTRANT BLOCK BE GIVEN ITS OWN COPY OF ANY LOCAL DATA THE
- BLOCK MAY USE, THIS IS ACCOMPLISHED BY SOMEHOW CAUSING THE

LOCAL DATA TO BE ESTABLISHED IN THE STACK OF THE CALLING PROCESS

(AKIN TO USING A GETMAIN’ED AREA) RATHER THAN HAVING A SINGLE

COPY OF THE DATA PERMANENTLY ALLOCATED IN A STATIC AREA,

NOTE: PARAMETERS PASSED TO THE BLOCK ARE ALREADY IN THE STACK

OF THE CALLING PROCESS SO NO PROBLEM EXISTS HERE,

LOCAL DATA WHICH IS TO BE DYNAMICALLY ALLOCATED (FROM THE
CALLER’S STACK) MUST BE DECLARED WITH THE AUTOMATIC ATTRIBUTE,

REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) ae - az

‘IN A NON-REENTRANT BLOCK THE KEYWORD AUTOMATIC, IN CONJUNCTION

WITH AN INITIAL LIST, SIMPLY MEANT THAT CODE WAS TO BE AUTO-

MATICALLY GENERATED BY THE COMPILER TO CAUSE THE INDICATED

"INITIALIZATION AT EACH ENTRY TO THE BLOCK, IT THUS MADE NO

SENSE TO NOT HAVE AN INITIAL LIST.

WITH A REENTRANT BLOCK, HOWEVER, AUTOMATIC ADDITIONALLY MEANS

THAT THE ALLOCATION OF THE DATA IS TO BE MADE FROM THE WORK

AREA (STACK) PROVIDED BY THE CALLER. IN THIS CONTEXT AUTOMATIC

MAKES SENSE EVEN WITHOUT AN INITIAL LIST,

NOTE: IN MOST NON~CONTRIVED CASES, ALL DATA DECLARED LOCAL 10 A

REENTRANT PROCEDURE SHOULD BE DECLARED AS AUTOMATIC, THE DEFAULT

(WHICH IS STATIC) WOULD MEAN THAT ALL USERS ARE ASYNCHRONOUSLY

MODIFYING THE SAME MEMORY LOCATION,

¥

 ae

Sb2

$00 -a¥
REENTRANT PROCEDURES/FUNCTIONS (CONTINUED)

EXAMPLES:

IN THE REENTRANT PROCEDURE:

P: PROCEDURE(A) ASSIGN(B) REENTRANT;

DECLARE A VECTOR; |__ ote: A AND By BEING PARAMETERS,
DECLARE B SCALAR; ARE ALREADY IN A DYNAMICALLY

DECLARE V VECTOR(3) AUTOMATIC; ALLOCATED AREA.

t

V = VECTOR(B, 0, 0)3

|

|
|
|
| ‘
|
|
| B=V.A;

|
|

7-Oy

q ~6. Vy

Sz,
REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) 500 ~- aj

IN CONTRAST, SUPPOSE THE NUMBER OF TIMES A REENTRANT .

PROCEDURE IS INVOKED IS REQUIRED TO BE KNOWN AND PRINTED

EVERY 10 INVOCATIONS, IN THIS UNUSUAL, AND RATHER ARTI-

FICIAL CASE, IT WOULD BE APPROPRIATE TO USE A LOCAL

DATA ITEM NOT DECLARED AUTOMATIC:
|
1 P2: PROCEDURE(A,B) ASSIGN(C) REENTRANT;
| DECLARE VECTOR, A, B, Cs
| DECLARE COUNT INTEGER INITIAL(O)s
j COUNT = COUNT + 1;
| IF REMAINDER(COUNT, 10) = 0 THEN
i WRITE(6) ‘NUMBER OF ENTRIES='| |COUNT;

|

! CLOSE P23
IN AN IMPLEMENTATION WHERE PROCESS SWAPS CAN ONLY OCCUR AT THE
END OF EVERY EXECUTABLE STATEMENT, THE CODE SHOWN WOULD MAINTAIN
A CORRECT COUNT OF THE NUMBER OF INVOCATIONS.,

REENTRANT PROCEDURES/FUNCTIONS (CONTINUED) S00 o 3d

HISTORICAL NOTE:

AT VARIOUS TIMES IN THE PAST IT HAS BEEN SUGGESTED THAT THE

DEFAULT BE AUTOMATIC FOR DATA DECLARED IN A REENTRANT PROCEDURE

. INSTEAD OF THE NORMAL STATIC, THIS HAS NOT BEEN DONE.

FURTHER CONSIDERATIONS FOR ACHIEVING REENTRANCY:

1) PROCEDURES AND FUNCTIONS DEFINED WITHIN A REENTRANT BLOCK MUST

ALSO POSSESS THE REENTRANT ATTRIBUTE IF THEY TO POSSESS

LOCAL DATA WHICH IS REQUIRED TO PARTICIPATE IN THE REENTRANCY.

2) UPDATE BLOCKS WITHIN A REENTRANT BLOCK MUST NOT DECLARE ANY

LOCAL DATA (STATIC OR AUTOMATIC),

3) A PROCEDURE OR FUNCTION CALLED BY A REENTRANT BLOCK MUST ITSELF

ALSO BE REENTRANT.

3/
HAL/S CSECTS 8060 - ¥y

IN GENERAL, A HAL/S COMPILATION RESULTS IN THE GENERATION OF A

NUMBER OF CSECTS (CONTROL SECTIONS). WE MIGHT CALL THIS A

CSECT FAMILY SINCE ALL CSECTS EMITTED BY A SINGLE COMPILATION

WILL SHARE 6 (OR LESS) LETTERS -- THE GENERIC NAME.

THE GENERIC NAME IS ESTABLISHED BY TAKING THE FULL NAME OF THE

COMPILATION BLOCK ITSELF, REMOVING ALL UNDERSCORES, AND THEN

TAKING THE FIRST 6 CHARACTERS OF WHAT REMAINS (RIGHT-PADDING

WITH BLANKS IF NECESSARY). FOR THIS REASON, COMPILATION UNIT

NAMES SHOULD BE CHOSEN SUCH THAT THE GENERIC NAMES WILL BE

UNIQUE,

CG1.GNC: CONPOOL:

CLOSE)
THE GENERIC NAME WILL BE

CG1GNC |

qo!

HAL/S CSECTS (CONTINUED) sf

. &00-32
ASSUMING THE GENERIC NAME IS NNNNNN HAL/S PRODUCES THE FOLLOWING

CSECTS:

(MAJOR DECLARED DATA CSECTS)

#PNNNNNN A COMPOOL DATA CSECT

HDNNNNNN A PROGRAM OR COMSUB DATA CSECT

(OUTER CODE BLOCKS)

SONNNNNN A PROGRAM CODE BLOCK

#CNNNNNN A COMSUB CODE BLOCK

CINTERNAL CODE BLOCKS)

anNNNNNN INTERNAL PROCEDURES, FUNCTIONS, UPDATE BLOCKS,

a = (A-z)

n= (1-9)

SCNNNNNN TASK CODE BLOCKS.

C = 1-9, tHen A-Z

ows

#FNNNNNN

#TNNNNNN

#ZENNNNNN

#ENNNNNN

AXNNNNNN *

#RNNNNNN

$2.
HAL/S ‘CSECTS (CONTINUED) 300-3 3

(360 ONLY - FSIM TYPE CSECTS)

(FC ONLY)

FSIM CSECT

(ALSO CONTAINS LITERALS AND ADCONS)

COST/USE CSECT

ZCON CSECT FOR COMSUB OR REMOTE DATA

PROCESS DIRECTORY ENTRY (PROGRAMS AND

TASKS ONLY)

CONTROL AREA FOR EXCLUSIVE BLOCK(S)

DATA AREA FOR REMOTE DATA

HAL/S CSECTS (CONTINUED)

IN ADDITION, HAL/S SPECIFIES INFORMATION TO HALLINK (360)

AND THE AP-101 LINKAGE EDITOR THAT ENABLES THE PRODUCTION
OF STACK CSECTS (ONE PER PROCESS),

SONNNNNN PROGRAM STACK

_ OCNNANNN TASK STACK

C = 1-9, THEN A-Z

ALSO, THE COMPILER GENERATES A BLOCK TEMPLATE

; @aNNNNN

AND A SIMULATION DATA FILE (SDF)

HANNNNNN

HAL/S CSECTS (CONTINUED)

FURTHERMORE, IN AN FC LOAD MODULE THE FOLLOWING TYPES OF

CSECTS WILL BE SEEN:

aaNNNNNN

HONNNNNN

#LNNNNNN

#ONNNNNN

7S

HAL/S LIBRARY ROUTINE OR NON~HAL

(E.G, FCOS) ROUTINE.

a = (A-z)

ZCON FOR “LIBRARY ROUTINE,

DATA FOR A LIBRARY ROUTINE.

SECTOR # LIBRARY ROUTINE,

S3
200 -38

TG

. >/
DATA CSECTS S00 - 3

#PNNANNN COMPOOL DATA CSECT

A COMPOOL COMPILATION RESULTS IN THE GENERATION OF A SINGLE

’ CSECT AND ITS CONTENTS ARE THE SAME FOR BOTH FC AND 360.

A #P CONTAINS CONPOOL DECLARED DATA AND USERS CAN CONTROL

THE ORDER OF DATA ALLOCATED WITHIN IT BY MEANS OF THE RIGID

KEYWORD. . ‘

KEY POINTS:

D REPLACE MACROS TAKE UP NO SPACE,

2) ENTRY POINTS CAN BE CREATED BY THE USER (VIA THE EQUATE EXTERNAL

FACILITY) WHICH ALLOW NON-HAL MODULES TO ACCESS COMPOOL DATA,

TEXARPLE
DECLARE ARR ARRAY(10) SCALAR DOUBLE;
EQUATE EXTERNAL EXTNAME TO ARRS4;

AN EQUATE EXTERNAL TAKES UP NO SPACE IN THE #P. WHAT IT DOES IS ...,

Cy

3)

32
DATA CSECTS (CONTINUED) SCO - 37

TO GENERATE AN ESD RECORD IN THE OBJECT DECK WHICH MARKS THE

SPECIFIED VARIABLE AS AN ENTRY POINT (NAMED BY EXTNAME IN THE

_ PREVIOUS EXAMPLE) OF THE CSECT IN WHICH THE VARIABLE IS

LOCATED,

THE EQUATE: EXTERNAL IS DESIGNED FOR EXTERNAL .(NON-HAL) USE ONLY.

IT 1S ALSO NOT RESTRICTED TO COMPOOL DATA, BUT MAY BE USED WITH

ANY DECLARED (STATIC) DATA. THE EQUATE MAY POINT TO ANY PREVIOUSLY

DEFINED HAL VARIABLE AND COMPLEX SUBSCRIPTING IS ALLOWED PROVIDED

ALL SUBSCRIPTING CAN BE EVALUATED AT COMPILE TIME.

THE #P (LIKE ALL OTHER HAL/S DATA CSECTS) CONTAINS DATA HHICH

IS, IN GENERAL, MODIFIED. AS A RESULT THE ENTIRE #P IS UNPROTECTED

EVEN WHEN PORTIONS OF IT CONTAIN CONSTANT DATA. AT RUN-TIME, THEN,

CONSTANT DATA IS NO MORE SACRED THAN VARIABLE DATA.

DATA CSECTS (CONTINUED) S00 - 3 3

CONSTANT DATA | (A DIGRESSION)

IN A COMPOOL, ALL DECLARED DATA WITH INITIAL LISTS WILL BE

PHYSICALLY ALLOCATED IN THE #P CSECT.

DATA DECLARED WITH A CONSTANT LIST, ON THE OTHER HAND, IS A

MORE COMPLEX STORY:

CONPOOL -
DATA > INITIAL - ii:

L CONSTANT tp

ARRAY

STRUCTURE

VECTOR

MATRIX DATA TYPES THAT CAN PARTICIPATE
IN COMPILE-TIME EXPRESSION
EVALUATION,

eecnnenansnencenneen- Vo nnennne
} SCALAR, t

1 iy STRINGS “LITERALS*
1 BOOLEANS '
4 CHARACTER STRINGS 1

S49

DATA CSECTS (CONTINUED) SHO -37

THUS, SIMPLE COMPOOL CONSTANT DATA IS NOT GIVEN SPACE IN THE

#P ~~ SUCH DATA IS OFTEN (INCORRECTLY) CALLED LITERAL DATA,

SINCE ALL OF THE SOURCE LINES OF THE COMPOOL DO GET PUT IN
ITS TEMPLATE, HOWEVER, THE ACTUAL VALUES OF THE LITERAL DATA
ARE VISIBLE TO ALL COMPILATIONS THAT INCLUDE THE COMPOOL.

NOTE: ALL SUCH LITERAL DATA IS INACCESSIBLE (ALMOST) TO

DIAGNOSTICS.

Q. IF LITERALS ARE NOT IN THE #P, WHERE DO THEY G0?

A. WHEN A COMPOOL IS INCLUDED IN A PROGRAM, THE COMPILER SEES
BOTH ITS LITERALS PLUS ANY SIMILAR LITERALS THAT MAY HAVE
BEEN DECLARED IN THE PROGRAM -- ALL ARE TREATED ALIKE,
THEN THE FOLLOWING HAPPENS;

D

2)

3)

TA CSECTS (CONTINUED)

a 500 -Y¥0
IF A LITERAL IS NOT USED, IT IS SIMPLY FLUSHED.

IF THE LITERAL IS USED, IT WILL BE ALLOCATED IN THE #D

CSECT (DATA AREA OF THE PROGRAM/COMSUB) UNLESS ITS USE
IS SO SPECIALIZED THAT IT ACTUALLY GETS BUILT IN TO AN

INSTRUCTION,

IF THE LITERAL 1S ALLOCATED IN THE #D THEN IT NAY:
A) BE OF DIFFERENT TYPE (E.G, THE ITEM WAS DECLARED

AS AN INTEGER BUT USAGES WERE IN A SCALAR CONTEXT).

B) BE OF DIFFERENT PRECISION OR SCALING (E.G. IF PI
1S DECLARED CONSTANT(3.14) BUT (2 PI) IS USED, THEN
THE VALUE STORED WILL BE 6.28).

C) SHARE WITH ANOTHER LITERAL, I.E. TWO LITERALS WITH
EXACTLY THE SAME VALUE WILL SHARE THE SAME SPACE,

DATA CSECTS (CONTINUED)
' Soo -9/

#DNNNNNN PROGRAM/COMSUB DATA CSECT

SIMILAR TO #P

1) EQUATE EXTERNAL CAN BE USED,

2) CONTAINS ALL DATA DECLARE'D IN THE PROGRAM/COMSUB INCLUDING .
LOCAL DATA OF ALL INTERNAL BLOCKS.

BUT DIFFERENT:

1) RIGID CANNOT BE USED.

2) MAY CONTAIN A MIXTURE OF BOTH COMPOOL LITERALS (PROVIDED |

THEY ARE USED) AND ITS OWN LITERALS (AGAIN, ONLY IF USED).

3) ALSO CONTAINS SPECIAL DATA NEEDED BY FCOS OR THE COMPILER,

E.G,
ADDRESS CONSTANTS

LOCAL BLOCK DATA AREAS

AGAIN, ALTHOUGH INVARIANT DATA MAY RESIDE IN THE #D, IT IS

COMPLETELY UNPROTECTED FROM WRITES,

j-

;

S/ DATA CSECTS (CONTINUED) eet $00 -Y2 aONNNHNN PROGRAM STACKS |
a NAINA TASK STACKS

aZNNNHINN TASK STACKS
WE HAVE NOT YET DISCUSSED THE TASK BLOCK BECAUSE IT IS VIRTUALLY
UNUSED IN THE CURRENT SHUTTLE DESIGN,

FOR THE CURRENT DISCUSSION WE WILL THEREFORE LIMIT ATTENTION TO
HAL/S PROGRAMS AND THEIR ASSOCIATED STACK.

Q, WHAT IS A STACK?

A, A STACK IS A SPECIAL DATA CSECT WHICH IS DEDICATED TO A SINGLE
PROCESS, I.E, HAL/S PROGRAM, THE STACK HAS DYNAMICALLY CHANGING
CONTENTS -- THE SAME LOCATION WILL GENERALLY CONTAIN DIFFERENT
DATA AS A FUNCTION OF TIME, THE STACK IS USED FOR THE FOLLOWING
PURPOSES:

1-8

(1)

(2)

3)

(4)

(5)

DATA CSECTS (CONTINUED)

REGISTER SAVE AREAS

PARAMETER PASSING

SCRATCH SPACE NEEDED BY THE COMPILER

USER DEFINED TEMPORARIES

AND OTHER THINGS.

300-43

~~
) “FY

SOME FACTS:

D

2)

3)

DATA CSECTS (CONTINUED) I3
_ tvo-4y

THE COMPILER NEVER GENERATES A STACK. STACKS ARE EITHER

GENERATED AT LINK EDIT TIME (VIA HALLINK ON THE 360 AND

THE AP-101 LINKAGE EDITOR ON THE FC) -- OR ARE DOLED OUT

BY THE FCOS AT THE TIME A PROGRAM IS INITIATED.

THE COMPILER DOES INFORM THE LINKAGE EDITOR OF THE SIZE

OF THE STACK FRAME REQUIRED BY EACH CODE CSECT, THIS IS

DONE VIA SYM CARDS ISSUED IN THE OBJECT DECK,

A STACK IS DYNAMICALLY DIVIDED INTO STACK FRAMES, EACH CODE

BLOCK (GENERALLY) HAS A STACK FRAME PROVIDED FOR IT WHILE

IT 1S. IN EXECUTION. THE STACK FRAME IS ALWAYS THE SAME

SIZE FOR A PARTICULAR CODE BLOCK BUT MAY OCCUPY DIFFERENT

LOCATIONS IN THE STACK CSECT DEPENDING ON THE CALL CHAIN

BY WHICH THE CODE BLOCK WAS REACHED.

s/
300 -fs"

DATA CSECTS (CONTINUED)

A STACK AT ONE POINT IN TIME:

aw STACK FRAME

-——- STACK FRAME

UNUSED. PORTION OF STACK

NOTE: IF THE LINKAGE EDITOR EVER CALCULATES A REQUIRED STACK LENGTH

4-57 INCORRECTLY, THERE 1S NOTHING AT FLIGHT TIME TO KEEP US FROM

. FALLING OFF THE END.
wy \

AND LATER:

OR
S)

32
S00 -4

DATA CSECTS (CONTINUED)

STACK SIZE CALCULATION

1) A SPECIAL SYM CARD IS GENERATED (FOR EACH CODE BLOCK) IN THE OBJECT
MODULE DEFINING THE SIZE OF THE STACK FRAME REQUIRED BY THE CODE
BLOCK (ON THE FC THE MINIMUM SIZE IS 18 HALFHORDS).

2) THE LINKAGE EDITOR PERFORMS AN ANALYSIS OF ‘ALL CALLS AND FUNCTION
INVOCATIONS (BUILDS A CALL TREE) AND CALCULATES THE SIZE NEEDED
FOR EACH PROGRAM (PROCESS) STACK,

3) THE LINKAGE EDITOR THEN EITHER EMITS AN APPROPRIATELY NAMED STACK
CSECT OF THE RIGHT LENGTH OR INFORMS THE FCOS (VIA THE #E CSECT) OF
WHAT SIZE STACK WILL BE NEEDED WHEN THE PROGRAM 1S SCHEDULED,

NOTE: ONLY PROGRAMS ARE GIVEN STACKS SINCE THEY ARE PROCESSES,

(TASKS ARE TOO!) ANY INTERNAL OR EXTERNAL BLOCKS (COMSUBS)
CALLED BY THE PROGRAM UTILIZE THE STACK OF THE PROGRAM --
AND THE LINKAGE EDITOR HAS TAKEN ALL OF THIS INTO ACCOUNT.

7 S/
DATA CSECTS (CONTIHHED) | 300 —_ ¥?

EXAIPLE opocnat SCIIEDULE

ee ee _ 5

Fa | 100 {PROGRAM CODE
| fRotcco i j “buoek

r2 | 8 |

| gy |
les Pes 7] ay 1 PE gg {

| Lb HH id \

| nt 6 i
1m 30

| iN iw |

+ | { |

Loo hp oe iL at

__crsD A i {.. __| consun a _” OSU CODE BLOCK

| { t a \

NT 05 Oa \
\ wf | emake on
\ ; tr! | | |

,* ri ed Ce |
ww mw || W |

| ~ { | Tt {

| we (A Ba {

i 135) a0 80

| \ 1 Low weil

{ ' '

LONGEST tte= « 554 HALFHORDS

A-¥7

DATA CSECTS (CONTINUED) 3500 -Y¥ ¥

TF WE FOLLOW THE LONGEST PATH THE STACK FRAMES WILL LOOK

LIKE:

100 PL

18 P2

55 P3

100 P7
of aONNNN iE AL NNANNN

18 A3

40 Bl

18 B2

100 B3

“——~ stack 18 FULLY UTILIZED

NOTES:

1) IN ACTUAL EXECUTION A STACK WOULD RARELY BE COMPLETELY USED.

2) IT IS EASY TO SEE WHY ‘RECURSION IS NOT ALLOWED,

Te

$3

goo-47
DATA CSECTS (CONTINUED)

STACKS SAVE CORE BECAUSE ... ook

1) LOCAL (TRANSIENT) SPACE NEEDS WITHIN A SINGLE PROCESS

ARE SATISFIED FROM A REUSABLE AREA,

2) DEPENDING ON THE FCOS IMPLEMENTATION, STACKS THEMSELVES

CAN SHARE THE SAME STORAGE IF THE PROCESSES CAN NEVER

BE SIMULTANEOUSLY ACTIVE.

USERS CAN PUT SCRATCH DATA IN THE STACK VIA THE TEMPORARY

“FACILITY, THIS WOULD ONLY INCREASE THE SIZE ‘OF THE STACK

NEEDED IF THE CORE BLOCK INVOLVED IS IN THE MAXIMAL CHAIN --

THAT IS, THE GREATEST AMOUNT OF STACK SPACE.

THE HAL/S STACK MECHANISM

' THE HAL/S RUNTIME STACK PROVIDES:

2 A SIMPLE MEANS FOR SAVING AHD RESTORING ENVIRONMENTS FOR CALLS.

© A DYNAMIC RECORD OF ERROR ENVIRONMENTS,

e EFFICIENT TEMPORARY STORAGE ALLOCATION (COMPILER AND USER)

- o THE MEANS BY WHICH SEPARATE PROCESSES MAY SIMULTANEOUSLY
, EXECUTE THE SAME CODE BLOCK AND YET MAINTAIN INDEPERMDENT

DATA,

 EACH HAL/S PROCESS HAS ITS OWN STACK,

EACH STACK IS A CONTIGUOUS AREA OF MEMORY LARGE ENOUGHT TO SERVE ITS
PROCESS’ NEEDS, -

MNASA =f = {

nares
THE HAL/S STACK MECHANISM (CONTINUED)

A SINGLE PROCESS STACK

oO

AREA OF THE STACK
CURRENT Previgs STACK FRAMES BEING USED FOR
STACK > CURRENTLY EXECUTING
POINTER REGISTER SAVE AREA CURRENT BLOCK WITHIN THIS

|. AND PARAMETERS STACK ———-S, PROCESS (PROGRAM,
wereens ON ERROR DATA FRAME 7” PROCEDURE FUNCTION,

el ETC.)
TEMPORARY SPACE FOR
CURRENT BLOCK

pr OTHER THINGS?

, Ln pene rel

THE srack

mish aw
on,

 THE HAL/S STACK MECHANISM (CONTINUED)
neem einen eerie

HHEH A JUMP TO A NEW BLOCK IS MADE:

CALL X(A) ASSIGN(B) ;
PREVIOUS ~*[P~-~=~~~~
STACK
POINTER OLD STACK FRAME (PREVIOUS ENVIRONMENT)

NEW
STACK ~*
POINTER

NEW STACK FRAME

* THE STACK AREA ADDRESS IS INCREMENTED BY THE SIZE OF. THE CURRENT STACK
FRAME, ,

@ ANEW STACK FRAME IS USED FOR THE NEWLY ENTERED ROUTINE,

© THE NEW STACK FRAME CONTAINS ALL THE INFORMATION NECESSARY TO RESTORE
THE PREVIOUS ENVIRONMENT,

ILS Cy -f-3

THE HAL/S STACK MECHANISM (CONTINUED)
ttm

MHEN THE CALLED ROUTINE IS FINSIHED:

RESTORED __,,
STACK
POINTER

RETURN; | OLD ENVIRONMENT RESUMED

STACK 1S “POPPED”
BY RESTORING —
PREVIOUS STACK POINTER I DISCARDED STACK FRAME

_ (MAY BE USED BY ANOTHER CALL)

M1 se to ¥ oy

Aiisked

HAL/S STACK MECHANISM (CONTINUED) .

o

(-s"

DATA DECLARED TO BE STATIC IN THE CURRENT BLOCK IS NOT ALLOCATED

IN THE STACK AREA,

REENTRANT PROCEDURES HAVE ANY AUTOMATIC DATA ALLOCATED IN THE STACK,

ANY TEMPORARY DATA EITHER DECLARED (TEMPORARY STATEMENT) BY THE

PROGRAMMER OR IMPLICITLY NEEDED BY THE COMPILER IS IN THE STACK AREA,

THE COMPILER KNOWS EXACTLY HOW MUCH STACK AREA EACH CODE BLOCK REQUIRES

THAT SIZE INFORMATION IS PLACED IN THE OBJECT DECK,

THE HALLINK PROGRAM BUILDS A TREE OF ALL BLOCK REFERENCES.

© RECURSION IS DETECTED HERE,

© BY ADDING STACK REQUIREMENTS FOR EACH LIMB OF THE TREE, THE

CALLING SEQUENCE WHICH REQUIRES THE MOST TOTAL STACK AREA IS

FOUND:

® A STACK OF PROPER SIZE 1S CREATED AND MADE PART OF THE PROGRAM,

® A SEPARATE CALCULATION IS NADE FOR EACH POTENTIAL PROCESS (PROGRAM OR TASK).

THE HAL/S STACK MECHANISM (CONTINUED)

“e THE MECHANIZATION OF THE STACK REQUIRES AN INTERFACE BETWEEN THE

OPERATING SYSTEM AND THE GENERATED CODE.

© HOW IS STACK LOCATION ESTABLISHED? (PASSED AT INITIATION OR LOADED BY CODE.)

© WHAT IS THE STACK LAYOUT? (NEEDED FOR ERROR HANDLING.)

© HOW ARE STACK FRAMES CHAINED TOGETHER? (STACK WALK.)

© OTHER INTERFACES.

AUS i-G

ASSEMBLY LANGUAGE ROUTINES MUST

SYSTEM

TERFACEN TO THE HAL/S

® QBJECT MODULE (RESULT OF ASSEMBLY) MUST BECOME PART

OF HALLINK INPUT.

_ © HAND-WRITTEN TEMPLATE MUST BE INCLUDED IN COMPILATION

OF HAL/S CALLER.

// EXEC HALSCLD
//HAL/SYSIN DD *

ASMSUB: EXTERNAL PROCEDURE(A) s
DECLARE A INTEGER; .

“CLOSE AMSUBs

TEST: PROGRAM;
t
‘

CALL ASMSUB(23) 5
4
t

CLOSE TEST;

DUS 6-7 //LKED.SYSIN DD <assembiy object module>

ASSEMBLY LANGUAGE ROUTINES MUST OBEY HAL/S LINKAGE CONVENTIONS

ASSEMBLY LANGUAGE MACROS ARE PROVIDED TO HELP.

#CASMSUB HMAIN

’

'

a

(ACCESS ARGUMENTS IN REGISTERS OR VIA R13)

s

'

HCALL HALSUB

HEXIT

END

MOS 1-&

,)

Mise /-7?

HAL/S-360 LINKAGE CONVENTIONS

PROCEDURE CALLER R12 ——» SYSTEM INTRINSICS (E.G. procenune exten)
R13 ———— CURRENT STACK FRAME

R14 ———> RETURN ADDRESS

R15 ———» ENTRY POINT ADDRESS

FO, F2, F4 ———® 187 THREE SCALAR ARGUMENTS

RO, RL, R2,___. 1ST FIVE INTEGER OR BIT ARGUMENTS ... OR ..< POINTERS

RS, Ri TO ARGUMENTS OF OTHER DATA TYPES

EXAMPLE® CALL SUBI(A, B, C) ASSIGN(D)s
* LH ROA A INTEGER

[A sR, B B VECTOR
LE FO, C C SCALAR
LAR, D D BIT(6)
BALR R14, R12 GO TO PROCEDURE CALLER
DC -ACSUBL) ENTRY POINT ADDRESS

HALLINK STACK CALCULATION

Pl: PROGRAM;
STACK = 100

P2: PROGRAM;
STACK = 110

B00 _ 280

m/ Na

300 280

200 180

Sl: PROC vs. $3: FUNC +». | [S5: PROG...

= 80 STACK = 100} | STACK = 110

120 80 80
$2: PROC, a

STACK = 120

S4: PROC... Ri: PROC...
STACK = 80 REENTRANT 3

STACK = 80

S6: FUNC...
STACK = 90

10

87: FUNC...
STACK = 10

ACTION; CREATE SEPARATE STACKS OF LENGTH 300 FOR BOTH Pl AND P2.

PUIS & r-10
oy

Pl's FRAME <

P2’s FRAME ~

P3's FRAME <
Mise f-t

THE ERROR ENVIRONMENT IS REPRESENTED ON THE STACK

INCLUDES “AcTIVE”

ae BIT - TURNED ON BY

— 5 ACTION |~< — — —ON ERROR, OFF BY

| oe 2:3 | ACTION OFF ERROR
Ces

3: ACTION

e +

e@

©

| 1:6 ACTION

-———— 2:8 ACTION | ~

Gil ACTION

°
2

. EE 1:5 ACTION ERROR RECOVERY

3:1 ACTION EXECUTIVE SEARCHES

—\< UP THE STACK FOR

° 3:7 ACTION ERROR HANDLING
| ° SPECIFICATIONS

ne

EXECUTION OF UPDATE BLOCKS AND EXCLUSIVE PROCEDURES IS

ALSO REPRESENTED ON THE STACK,

it . T an ot -
7 3 Ne 1

pot — gr TO OPERATING SYSTEM REPRESENTATION
: y UPDATE BLOCK | OF LOCK GROUPS
Py 4+ |. o—__——] Oh STACK’ FRAME :

°
o

EXCLUSIVE | __-w TO OPERATING SYSTEM REPRESENTATION
PROCEDURE ——— OF EXCLUSIVE PROCEDURE LOCKS
STACK FRAME 8

e

FOR TERMINATE AND ON ERROR

<statement>, MUST "PEEL BACK"
THE STACK AND FREE LOCK GROUPS

AND EXCLUSIVE PROCEDURES,

PUG + ~/3

ERROR RECOVERY FEATURES

ON ERROR | nv ,caeck
Me

A

OFF ERROR °

+ SEND ERROR e-vsed

e USED FOR SPECIAL HANDLING OF UNUSUAL CONDITIONS,

e SYSTEM-DEFINED ERRORS

ARITHMETIC OVERFLOW, END OF FILE, ETC.

e USER-DEFINED ERRORS

SIGNALLED WITH SEND ERROR STATEMENT

SYSTEM-DEFINED ERRORS CAN ALSO BE SIMULATED

NY ON ERROR <statement>

e WHEN wo un OCCURS, EXIT ANY CALLED BLOCKS, EXECUTE

THE <statement>, AND CONTINUE WITH THE STATEMENT FOLLOWING

THIS ONE IN THE PROGR

OW ERROR, 5 \ LIGHOREs

@ CONTINUE FROM THE POINT WHERE THE ERROR OCCURRED, USING

A "STANDARD SYSTEM FIXUP” FOR THE ERROR,
\

ON ERROR,,., SYSTEM;
” N\

e A STANDARD ACTION (USUALLY PRINT A MESSAGE AND USE THE

"STANDARD SYSTEM FIXUP” IS TAKEN,

(MISC pose

_ . ~,)

LWISL

A IGNORE
ON ERROR, sn SYSTEM

\

SET
AND } SIGNAL} <event> 3

RESET
— —N ae

ae (SEND ERROR, , \
ie . “4

(SIMULATE A SYSTEM- OR useR-DEFINED ERROR)

\
\

NN

/~k&S

o EACH ERROR IS ASSIGNED A GROUP NUMBER AND A NUMBER

WITHIN THE GROUP,

‘s EACH BLOCK CAN HANDLE A CERTAIN SET OF ERRORS (ON ERROR

SOMEWHERE IN THE BLOCK). ,

e HANDLING OF ERRORS CAN BE ACTIVATED AND DEACTIVATED DYNAMICALLY

(THROUGH EXECUTION OF ON/OFF ERROR STATEMENTS).

ISO 1 Le -:

seis of Mal, mot uad

THE ERROR ENVIRONMENT IS ESTABLISHED THROUGH THE

DYNAMIC NESTING OF CALLS

Pl: PROCEDURE;

HANDLES ERRORS

1:5, 2:8, 3:

[
CALL P2;

P2: PROCEDURES
HANDLES ERRORS

1:6, 2:8, 4:1
CALL 3;

¥

P3: PROCEDURE

“HANDLES ERRORS

1:5, 3:1, 3:7

BEFORE AND AFTER

CALL P23 ERROR 2:8

18 HANDLED HERE.

DURING P2 AND P3
ERROR 2:8 IS HANDLED
HERE.

ERRORS 3:1 AND 3:7

HANDLED HERE; OTHERS

IN GROUP 3 HANDLED IN

Pl.

Loney

Q., WHAT IS IN

A. AN ADDRESS

0

NAME VARIABLES

A NAME?

(POINTER).

78 31

360: 00 24 BIT ADDRESS

78 31

360:
-Q
‘+. 00. FQ000 Oj
 (NULL)
O. ib

FC:

0

‘116 BIT ADDRESS

15
 FC: 7°

(NULL) 0000

"\—— ILLEGAL ADDRESS

é NO ADDRESSES ARE ILLEGAL

ON AP-LOL

FC NAME VARIABLES ARE. ALHAYS HALFHORDS AND 360 NAME VARIABLES ARE ALWAYS

FULLWORDS (AND FULLWORD ALIGNED). «THIS IS THE ONE FUNDAMENTAL INCONSISTENCY

BETWEEN FC AND 360 STORAGE ALLOCATIONS AND IS NOT SURMOUNTABLE BY USE OF THE

FCDATA OPTION,

NAME VARIABLES (CONTINUED)

PROPERTIES:

* NAME VARIABLES ARE A CLASS OF DATA ITEMS WHOSE VALUES ARE POINTERS

’ (ADDRESSES) TO OTHER DATA ITEMS,

¢ A NAME VARIABLE IS ESTABLISHED BY DECLARING IT AS THOUGH IT WERE

A DATA ITEM EXCEPT THAT THE KEYWORD NAME IS USED.

© A NAME VARIABLE CAN ONLY POINT AT DATA THAT MATCHES IT IN nme,

PRECISION, ARRAYNESS, ETC,

© A MECHANISM EXISTS FOR INITIALIZING A NAME VaRiABLE TO POINT TO A

GIVEN DATA ITEM. NAME-VARIABLES MAY ALSO BE DYNAMICALLY "RE~DIRECTED”

_ TO OTHER DATA ITEMS,

o DATA ITEMS MAY BE MANIPULATED IN THE NORMAL WAYS THROUGH REFERENCES

TO NAME VARIABLES POINTING TO THEM,

.

\c

yee f

HARDWARE ‘LEVEL

HAL/S LEVEL

NAME VARTABLES (CONTINUED)

101 “104 oo

102

103 ‘

104 3°

105
106

 - te

DECLARE I INTEGER INITIAL(3),
NI NAME INTEGER INITIAL CRANE CID) 3

NDS NE #1) Lene Ku.

pe ae

ano

/* SAME AS T= [+ us

NAME VARIABLE® CONTINUED)

USES FOR NAME VARIABLES
nn:

o MOVE AROUND A POINTER TO A BLOCK OF DATA (OR CODE)

RATHER THAN THE WHOLE BLOCK,

© ACCOMMODATE DATA STRUCTURES OF DYNAMICALLY VARYING

SIZE IN A FIXED-SIZE MEMORY,

PROBLEMS WITH UNRESTRICTED-POINTERS

DECLARE 1 INTEGER; os
S SCALAR, = yl
WANAMEs 7

NAMEN) = NAMECIY; & /* POINT N AT I */

cL: NN +4; i /* WHAT CODE IS COMPILED? */
" WAME(N) = NAME(S); - /* POINT N AT S */

IFN <S THEN GO TOLs — /* CONVERSION REQUIRED? */
yo -Y

NAME VARIABLES (CONTINUED)

SO,-A NAME VARIABLE 1S DECLARED TO POINT TO VARIABLES

OF A GIVEN DATA TYPE

DECLARE NI NAME INTEGER,
NS NAME SCALAR,
NV NAME VECTOR (4),

NA NAME ARRAY(2,2) BOOLEAN,
~ DECLARE INTEGER DOUBLE,

L, J K
N NAME, /* FACTORED ATTRIBURES */

NAME VARIABLES (CONTINUED)

HENCE THE COMPILER CAN CHECK FOR TYPE: COMPATIBILITY,

DECLARE 1 INTEGER,
S SCALAR,

N NAME INTEGER;

NAME(N) = NAMECT); _ /* POINT NAT I */

Li NeEN4+1 /* CODE FOR INTEGER ADDITION */

NAME(N) = NAME(S); /* ERROR-TYPE MISMATCH */

IF N<S THEN GO-TO L; 7* N DEFERENCED AND CONVERTED
TO SCALAR */

\Os om

NAME VARIABLES (CONTINUED)

NAME VARIABLES CAN POINT TO DATA (OR-CODE) WITH

THE FOLLOWING ATTRIBUTES:

P—SINGLE OR DOUBLE) Cor oN

(INTEGER CHARACTER (n) ARRAY (nm,£)

SCALAR BIT(n) a~STRUCTURE (n)

~~”) VECTOR(n) - BOOLEAN PROGRAM

MATRIX(n»m) EVENT © TASK
prerele

ase i ae my at

DECLARE MATRIX(2,3), A, B, NB NAME INITIALCNAME(B)) 5

DECLARE MATRIX(3,3), Cy D, ND NANE INITIAL(NAME(D))s

_ A= NBS /* SAME AS A = Bs */

A = ND; /* ERROR-DIMENSION MISMATCH */

NAME (NB) = NAME(ND)s _/* ERROR-DIMENSION MISMATCH */

NB = NDS(2 AT 14); /* SAME AS B= DS(2 AT 1.*)3 */

NAME VARIABLES (CONTINUED)

NAME DATA ITEMS POINTING TO DATA

beclarations of NAMB data items for pointing to data
have exactly the same form as declarations of ordinary
data items, except that the keyword NAME immediately
follows the identifier name declared.

Examples:

DECLARE A NAME ARRAY (100) SCALAR;
DECLARE MATRIX (3,3) DOUBLE, Ml NAME, M2 NAME;
DECLARE B NAME BIT(16),

C NAME CHARACTER (86) }
STRUCTURE Q: :

_ 1 O% INTEGER,
1 OS SCALAR,
102,

2 QU BIT(L6), .
1 2 QC CHARACTER (80) 1
| DECLARE 2Q NAME Q-STRUCTURE:

Given the above declarations:
.

A may dniy point to l-dinensional single precision
scalar arrays of size 100.

M1, M2 may only point to 3x3 double precision
matrices,

DB may daly point to 16-bit strings,

C may only point to character strings of
maximum length 80,

2Q may only point to Q-STRUCTURES with a
w- 8 single copy,

co .

NAME VARIABLES (CONTINUED)

NAME DATA ITEMS POINTING TO CODE BLOCKS

Declarations of NAME data items for pointing to programs
and tasks have the following basic form:

DECLARE nane NAME PROGRAM; 1

DECLARE name NAME TASK;

l. nae Lis any legal HAL/S identifier
name.

Such declarations can‘be part of a compound or factored
declaration statement.

Examples:

{ DECLARE PJ NAME PROGRAM;

) DECLARE T] NAME ‘TASK;
| DECLARE P2 NAME PROGRAM,
' t2 NAME TASK,

Sl NAME SCALAR;

Given the above declarations:

Pl, 02 may only point to program blocks,
Tl, may only point to task blocks.

Vor va A : eo

10 ~\0

NAME VARIABLES (CONTINUED)

POINTERS TO CODE BLOCKS

Pli EXTERNAL PROGRAM)

CLOSE P13

P2: EXTERNAL PROGRAM)

CLOSE P23

P3t EXTERNAL PROGRAM)

CLOSE P33

TEMPLATES ,

MASTER! PROGRAM

DECLARE NP NAME PROGRAM,

I INTEGER)

NP e

DO WHILE TRUE}:
pO FOR 1 =1 70%

DO CASE 13
wame(NP) = HAMe(P2)s
NAME(NP) = NAME(P2);
NAME(NP) = NAME(P3)3

ENDJ

UPDATE PRIORITY NP TO 200; =, /* PROMOTE P1, P2, P3 IN TURN */
WAIT 13 . /* To HIGH PRIORITY FOR 1 sec */
UPDATE PRIORITY NP. TO 503 /* THEN REVERT TO NORMAL PRI, */

“ENDS

END}

CLOSE MASTERS

CODE BLOCK

NAME VARIABLES (CONTINUED)

NAME DATA ITEMS AS STRUCTURE TERMINALS

Examples:

} STRUCTURE 0:
; 1 OS HAME SCALAR,
i Lal,
\ 2 OC NAMM CHARACTER (80),
i 2 QR NAMB PROGRAM,
' 2.QR NAME BOOLFAN,
1 1 02,
I 2 OA ARRAY(4) BIT(16);

Note that HAMB data items for pointing to events can

appear in a structure template, even though events

themselves cannot, Note also that NAMB data items in

a template A may point to structures, even those possessing

A as template.

NAME VARIABLES (CONTINUED)

Examples:

The following are legal ‘definitions: .

STRUCTURE R:

1 QR NAME R-STRUCTURE,
1 QE NAME EVENT;

DECLARE ZR R-STRUCTURE;
DECLARE NZR NAME R-STRUCTURE;

In this exaniple NZR may point to ZR. ZR.QR
may also point to ZR. The implications of this
ability will be investigated later.

yorla

u

NAME VARIABLES (CONTINUED)

PROPERTIES OF DECLARED NAME DATA ITEMS

ATTRUBUTE

OF NAME PATA ITEM

Applies to
Data or Code
Block Pointed To

Applies to
HAMA Data
item Itsolf Comments

ApRAY()
BIT()°
noOLcAN
CHARACTER(.}
VENT
vecror()
NATHRIK()
TNITGEN
SCALAR
u-SPRUCTURE()
PROGRAM
TASK

SLEGLE

L
W

B
W
W

V
W

See note (i)

See note ()

See note (2)

DOUBLE ‘

DEUSH y J) Affects NAME data item
ALTGHED , as Jf it were an or-
RIG 7 inary data item. See

. Sections 26.1 & 26,2.

y Cause initlalization of
INITIAL) 4 pointer value, To be
CONSTANT (} described in Section 28.6

STATIC v \ ienet the kind of initial~
pUTO! ization, as for ordinary
AUTOMATIC y data items, See Section 16.4

NOTES:

“Phe forms ARRAY Ee) of a-BTRUCTURE(*) are Lllegal.

@ the form cnaracren(®) vhen need for a tame data
ftem, enables fe te point to a character data'itenm
OF any maxdmear length,

NAME VARIABLES (CONTINUED)

HAME DATA ITEMS AND TEMPORARIES

The nature and purpose of temporary data items were
described in Section 26.3. The following rules

’ summarize relationships between temporary data items
and NAME data items.

1.. No NAME data item may point to
‘ a temporary data item.

2. NAME data items may not them-
selves be declared as temporary
data items,

EXAMPLE:

DOs

TEMPORARY INTEGER, I, Js
- ILLEGAL.» TEMPORARY NV NAME VECTOR;

ste

END;

Jory

NAME VARTABLES (CONTINUED)

INDIRECT ACCESS THROUGH NAME DATA ITEMS

Examples:

DECLARE VECTOR(3), V, NV NAME;
DECLARE SCALAR, S, NS NAME;
DECLARE NT NAME TASK;
.

*

T: TASK;

| WY Yy task body

CLOSE T;

‘

If NV > Vv, NS + S and NT + 1, then

| NS = NV.NV;
| SCHEDULE NT IN NS PRIORITY (50);

effectively performs the operations:

t
1 S =V.V;
I SCHEDULE T IN S PRIORITY (50);
t

:

* In this and following examples "+" means “points to",

yore . om, me

years

NAME VARIABLES (CONTINUED)

The fereqoing statements about appearances of NAMB data items, while appearing simple and unequivocal, contain a number of subtle implications arisiny Erom:

© interactions in structure data items;

e the effects of subscripting.

‘

NAME VARIABLES (CONTINUED)

INDIRECT ACCESSING AND STRUCTURES

The subtleties of indirect accessiny in conjunction with
structures arise as a consequence of these two
facts:

e Any structure may possess NAME structure terminals
some of which may point to structure data items,

6 Such a NAME structure terminal can actually
‘point back to the structure containing it.

These subtleties are best illustrated by the extended
examination of an apparently very simple example.
By the rules given in Section 20.2, the following are
legal structure declarations:

STRUCTURE A:

1 ¢C SCALAR,

1 B NAME A-STRUCTURE; ,

DECLARE A-STRUCTURE, 21, 722, 23;

DECLARE 24 NAME A-STRUCTURE;

. 21.B is a NAME structure terminal of A~STRUCTURE type,
1 which may therefore legally point to 42. Pictorially:

 ta-Vy

{ors

NAME VARIABLES (CONTINUED)

Because 21,B points to 22, any appearance of 22 may be
substituted by 21.5, so achte eving indirect access to 22,

It is crucially important at this point to understand
that because 21.B points to 22, parts of 22 as well as 22
itselE may be indirectly accessed. For example, to achieve
indirect access to 42.C, the appearance of 22 in the qualified .
hame is substituted by nl. mn, That is, indirect access to
Z2,C is achieved by the qualified €orm 21.8.C.

{Ow 1 hoo,

NAME VARIABLES (CONTINUED)

To illustrate this substitution process further, if 24
points to 22, then 22.C’is indirectly accessed by the
qualified form 24,C, and if 24 points to Z1, then 22.C
is indirectly accessed by the qualified form 24.B.C.

Multiple leveld of indirection are handled in the same
way. Suppose for example that in addition 22.B points to
23. Then pictorially:

(Qe 4
‘ry

NAME VARIARLES (CONTINUED)

. Using the same kind of substitution as before, 23 may be
indirectly accessed by the qualified form 21.B.B, so that
in’ its.turn, structure terminal C in 23 may. be indirectly
accessed by the qualified reference 2%1,B.B.C,

Restating how ‘the form 21.8.8.C was arrived at, the
following steps were taken:

© substitution of 22.B.C for 23. c (since 22.B
points to 23);

© substitution of 21.B.B.C for 22,B.C {since
21.B points to 22).

NAME VARIABLES (CONTINUED)

There are other curious consequences arfsing from the

interaction of indirect accessing with structures.

Suppose now, for example, that 22.B points to 21 rather

than 23, Then, pictorially:

Now 22.C can be indirectly accessed by the qualified form

21.B.C, since 21.B points tu 22. Since -22,.8 points to 21,

the following forms are also possible:

y

This example illustrates the logical consequence of a closed

indirection loop between two structures.

wo-ad)

Nt
Nt
Nt
Nt
Nt
Nt
E?

S Mt
6 Ht
7
8

A
W
A
R
E

Nt
Ne
Et

9 Mt
18 NT
414i Nt

2 Ht
3.Nt

NAME VARIABLES (CONTINUED)

Nt ALPHA:
Nt PROGRAN;

STRUCTURE A:
4 C€ SCALAR, -
4 B NAME A-STRUCTURE:

DECLARE A-STRUCTURE,
Zi, 22, 233

DECLARE 24 WANE A-STRUCTURE:
. 4 + :

NAMEC 24. 8> = NANECZ2)3

Z2.C = Si °
Z4.B.C = 63
MRITEC6)> 22.C, 24.8. Ci

+ +

NAMECZ2. 8) = NANEC 23):
23.0 2 7
22.8.0 = 3:
21.8.8.0 = 9;

WRITEC6) Z3.C, 22.B8.C, 24,8. 8. Cs

44 Nt CLOSE:
‘

‘ALL NANE2 ' -
TENPHANE ASSUMED AS A MENBER NANE
HAL/S-260 V¥i5.0 START TIME:

& GAHBBOBE+AD
4, OOGQOD0E+OR

(a+ ad

22:34:02. 23 DAY:
6. 009990E+00
9. OBBODBBEt+B0

76/075 -

9, BPAVOHDE+OR

pee atoning Ba Eat ne ay eae SL et ns aR ne me

NANE VARIABLES (CONTINUED)

—ggenons a STRS Foy & .

aarne Eo24 noe? LA 4,8¢4) 2

aencA BS29 ONee STH 4, 6¢47 ZLt2

ganenes ’ STRE Equi
29992 Stes LFLE 5
gage 1224 . 8008 STE 0,8¢4) ze2

gngateo star geQu# .

02990 3A19 : 8006 LH 2,644) 2442

AROHE SAREE LFLI 206
OROOF TANZ -, aoe, “ STE 2, 0¢2>

aegegio : sTee equ. 4

399.0 BEES , LFXL 6,6 .

O0011 BDES wo, LEXIE 5.3 -

24012 DOFB 8000 ..- SCAL 0,0¢3) LOUNTT

aagis 784 ‘ . 9088 LE O,8cL) 22

goore pore gone st. SCAL 9,0¢3) + Edut

H9917 -SAL9 +. 9806 LH 2,604) zite

angie 7292 +0 gag LE ,8¢2) : .

00019 DeFE oeoe ©. SCAL 9,0¢3) . * ‘edure

BOOROLE - sTas gEou #

B002B ECI4 oo0c LA 41204) “. 230

HNG2C BC2F * BHoA STH 4, 4004) 2242

cones : sT#io , EQu +
2001D SSE? LFLE 95?
POOLE DOL? oor STE 8, 42C4). 23

eogngiF . crates, Fou &
neaer PARE goon LH * 2,49¢4> 242

aaa bt : LFLE 4.2
99020 8cE8 9

angzi 3002 ooo ste 4, 042)
gganned srai2 EQUA z1+2
agags 9AL9 0006 LH 2,64) 2

29923 9Aa8 . 9802 LH ' 2: ata?

aga2s SEES LFL 68 oy

0e25 3£02 9000 STE '

‘ ae sTH3 EGU
aggtaas
aAnoe LEXT 6,6
gng2e BEES LER] $03

pagar? BOee SCAL 07 8¢3) 1orntT
anes CAFS 8000 * aa 23

os go0t LE @,12¢4)
red? . Scat 9,063) OUT
COFFS 9000 fm, 2, 10¢4) . rete

natn Anan tH eat

"
A
y

Od

B
P
D

pe

fe

M
o
o

42

oh
 O
T

10

42
i3

NAME VARIABLES (CONTINUED)

Nt BETR:
if PROGRAM:

Mt STRUCTURE A:
ut 1 ¢ SCALAR,
ut _ 2 B NAME A-STRUCTURE;
Nt DECLARE A-STPUCTURE.
Mt 24: 22;
.. + +

Nt NANECZ1.B).= NAMNECZ2 94,
Et + . +

Nt NAMECZ2 ‘BOTs NANECZ1)) .
ue 24,8: 60% 41°
Mt 22 8.8.6 =-25
Nt 24 BLE: Bove 3;
Nt Z22.B:8,8.B10 = 43
Nt 72.8.8,.8.8/8.C = 5:
Nt - 24. BI BEB. Ble: Be =
Ne?) 72. 8° 878, 88.8. 8.8.6
MP CLOSE:

8.8, 8, 8, 8,8, 8,8. 8,8, 8.¢6 = 20;

NAME VARIABLES (CONTINUED)

INDIRECT ACCESS AND SUBSCRIPTING

“tn this discussion, for simplicity, subscripting in
connection with structures or structure terminals will
at first be excluded, With this restriction, subscripting
on NAME data items is straightforward in its meaning.

Subscripting is effective on
the data item that is being
indirectly accessed,

With this interpretation, it is clear that such subscripts |
must be legal for the data’ type pointed to. In particular,
NAME data items pointing to programs and tasks may not be
subscripted.

jor aye on

tor

NAME VARIABLES (CONTINUED)

Examples:

1 DECLARE VECTOR(3), V, NV NAME;
| DECLARE ARRAY (2) CHARACTER(4), C, NC NAME;
| DECLARE BIT(4), B, NB NAME;
i

0.5 .
Let V = E35] , C = ('ABCD' 'EFGH'), B= 1010,

2.5

Then if NV+ Vv, NC + C, NB + B:

NV, = 2.5 since v, is indirectly referenced, —

NC) 43 Zc! since C13 is indirectly referénced,

= O01, since B 2 70 3 2 is indirectly referenced, 2 TO 3

We, NB, are illegal since the subseripting is

illegal for V and B respectively. Such subscripting
dis always illegal since NV can only point to 3-vectors,
and B to 4-bit strings. -

NAME VARIABLES (CONTINUED)

The complexities arising from structure subscripting
are best studied by another apparently simple example. -
Suppose that the following declarations are made:

STRUCTURE A:

1 C MATRIX (3,3),
1 B NAME A-STRUCTURE;

-| DECLARE A-STRUCTURE(3), 21, 22, 23 NAME;

Let copies 1, 2 and 3 of 21.8 point respectively to
copies 2, 3 and 1 respectively of 22, Pictorially:

yor 2%

NAME VARIABLES (CONTINUED)

According to the substitution process previously described,
the three copies of structure terminal C and 22 can be
indirectly accessed by specifying the three copies of 21.B.C:

Z1.B.C,, indirectly actesses 22.¢ } ,
21.B.C), indirectly accesses .22.C

Z1.B.C

23

3;
3, indirectly accesses 22.C),

NAME VARIABLES (CONTINUED).

Using the terminology of Section 20.1, 22.C is an
operand with arrayness {1:3}. Indirectly accessed
as Z21.B.C, the operand still has arrayness (1:3)
but the order of the individual elements is different.
In general of course the three copies of Z1.B may point
to three different structures (all with template A), resulting
in operand 21.B.C being synthesized from three different sources.

Note that the structure subscript is effective before -
indirection not after. As a further illustration, in

B1.B.Cy 4 4

the structure subscript selects copy 1 of the pointers
21.B. Note, however, that in contrast the component

subscript, selects the component in row 3 and column 3
of C in the structure to which 21.8 points.

This is not always true for structure subscripts, For
example, let 23 point to 22, Then in .

23.B.C) 1313

the structure subscript selects copy 1 of 22, which is
pointed to by 23.

far3oO

NAME VARIABLES (CONTINUED)

These examples illustrate the following general rule:

A structure subscript may either
be effective on the data being
indirectly accessed, cr upon
the NAMB data item accessing it,
depending on whather the data

¥, pointed ‘to has copies, or whether
, the NAME data item itself has

copies*,
¥~Wote that since:a structure terminal which is itself a .

structure (or a NAME data item pointing to a structure)
cannot possess copies, the two forms of structure .
subscripting are mutually exclusive,

NAME VARIABLES (CONTINUED)

THE NAME PSEUDO-FUNCTION

© ORDINARY REFERENCE TO NAME VARIABLE ACCESSES THE

VARIABLE WHICH IT POINTS TO, (A DEREFERENCED USAGE.)

o NAME PSEUDO-FUNCTION IS USED TO ACCESS OR CHANGE

THE (POINTER) VALUE OF THE NAME VARIABLE ITSELF, .

DECLARE SCALAR, S1, S2, NS NAME, NS1_NAME INITIAL(NAME (S4)) 3

S2=NWSl ogy AT “sf asi [S

_NAME(NS).= NAMEQNSL)3 Ns Lethe an

 aN — NAME(S) = NAME(S2)3 yg ["—] SF of

NAME (NS) = NSLs ERROR-TYPE MISMATCH!
NS = NAMECHSL)s

NAME VARIABLES (CONTINUED)

IN GENERAL:

© NAME VARIABLE BY ITSELF DENOTES THE ORDINARY

“VARIABLE WHICH IT POINTS TO.

a NAME VARIABLE

“ORDINARY VARIABLE

© NAMEC NANE VARIABLE) OBTAINS THE POINTER CONTENTS OF

"THE NAME VARIABLE, .
ey

\

NAME VARIABLE

. © NAMEC ORDINARY VARIABLE) CREATES A POINTER TO THAT

 “CREATED. POINTER

ORDINARY VARIABLE

Nay

NAME VARIABLES (CONTINUED)

Examples:

Given:

DECLARE S SCALAR,

‘ NS NAME SCALAR,
NT NAME TASK,
NA NAME ARRAY (1000) INTEGER;

STRUCTURE Q:
1 QS SCALAR, ~*
1 QN NAME Q-STRUCTURE;

DECLARE 2Q Q-STRUCTURE;

nm

ee
Sa

eZ

se

ah

 i

* tHe following are legal:

NAME (S) \
NAME (2Q.QS)

NAME (NS}

NAME (NT)

NAME (NA)

NAME (2.0.0N)

reference only

the following are illegal:

NAME (1.5)
NAME (5/2)

 NANE VARIABLES (CONTINUED)

SUBSCRIPTING AND NAME VARTABLES

 ® SUBSCRIPTING OF DEREFERENCED NAME VARIABLES 1S ALLOWED

E.G," DECLARE ARRAY(3) VECTOR, V, NV NAME INITIALCNAME(V)) 5

V4.3 = NV5 435 /* SAME AS V4.3 = V9.3) */

; . NOT QUITE TRUE

e SUBSCRIPTING INSIDE A REFERENCE TO THE NAME PSEUDO-FUNCTION a
&

CAN ONLY APPEAR IN REFERENCE CONTEXT (NOT IN ASSIGNMENT CONTEXT).

SUBSCRIPTING APPLIES TO THE VARIABLE BEING POINTED TO,

E.6, DECLARE INTEGER
A ARRAY (10),
NA NANE ARRAY(1O) INITIAL(NANE(A)),
NL NAN, /* HL 1S NANE OF, SEALAR. 4 |

, , @

NAME CHI) = NAME(A3,)5 ‘“ oN] =.
: Ay

NAME(NE) = NAME(NAz,)3
= . A,

NI ag]
hy

Ag

Ag

1-34 !

Aro)

Wd

NAME VARIABLES (CONTINUED)

COMPONENT SUBSCRIPTING INSIDE NAMEC)

0 ILLEGAL FOR BIT AND CHARACTER STRINGS 12345

E.¢, DECLARE B BIT(16); —NAME(Bs) |

e MUST SELECT A SINGLE SCALAR FROM VECTORS AND
MATRICES (ALSO SINGLE ELEMENT FROM ARRAYS)
E.G, DECLARE M MATRIX;

M l,l

ot 1,2

M3

Moot

2,2
M243

M

3,2

M3,
. M33

wr 2G

NAME VARIABLES (CONTINUED)

STRUCTURE SUBSCRIPTING INSIDE NAMEC) -

IN ASSIGNMENT CONTEXT, OK ONLY IF NAMEC) IS APPLIED TO

A NAME VARIABLE IN A STRUCTURE WITH MULTIPLE COPIES -

THEN IT SELECTS THE APPROPRIATE COPY OF ‘THE NAME

VARIABLE ITSELF |

[E.G. STRUCTURE S: 1 .N NAME SCALAR; -
DECLARE S S~STRUCTURE(10);

NAME(N, ») = NAME(NS D3
a

IN REFERENCE CONTEXT, ONLY ONE CAN APPLY:

~ NAME VARIABLE DEFINED IN A STRUCTURE WITH, COPIES,

“SUBSCRIPTING IS EFFECTIVE ON THE NAME VARIABLE ITSELF,

“~ NAME VARIABLE POINTING 10 A STRUCTURE WITH COPIES, -

SUBSCRIPTING IS EFFECTIVE ON THE VARIABLE BEING
POINTED TO, ay

STRUCTURE S$! 1 N NAME rructure(10); ~~ ILLEGAL!

NAME VARIABLES (CONTINUED)

INTERACTION WITH STRUCTURES

STRUCTURE A:
1 C SCALAR, -
1 B NAME A-STRUCTURE;

DECLARE A-STRUCTURE, Z1, 22, 23;
DECLARE 24 NAME A-STRUCTURE;

Let 21.B point to 22, and 22.5 point to 23, as shown
pictorially below:

10-39

NAME VARIABLES (CONTINUED)

s

A pointer value to 23,C can be Created by the construct:

NAME (Z3.C)

And also by ese nave(z2.8.c)
Now 21.B points to 22 so that 23.C is aecessed through two
levels of indirection by 21.B.B.C, A third way of ~—
creating a pointer value to 23.€ is therefore:

NAME (21.5.B.C)

If furthermore, 24 points to 21, then

NAME (24,B,.B.C)

also has the same effect,

EN ged, peek 4

NAME VARIABLES (CONTINUED)

STRUCTURE A:
1 C SCALAR,
1 A OWAME A-STRUCTURE;

DECLARE A-STRUCTURE, ZL, 22, 233
DECLARE 24 WAME A-STRUCTURE;

In each of the above cases, the argument of the NAME pseudo-

function is 23.C which is an ordinary data item, even though

indirect access is used, Each of the above instances may

therefore only be used in a reference context,

The pointer value of 22.B can itself be set up by using

NAME (22.3)

19-40

NAME VARIABLES (CONTINUED)

in an appropriate assignment context to be described,
The NAME structure terminal 22.B may be indirectly
accessed by the qualified form 21.B.B, since 21,B
points to 22, Nence, the pointer value of 22.B can
also be set up by using:

‘ NAME (21.3.8)

in assignment context. With 24 again pointing to 21,

NAME (24.3.5) -

has the same effect, since 22.B is again accessed, this
time through two levels of indirection.

NAME VARIABLES (CONTINUED)

ARGUMENTS WITH SUBSCRIPTS

Examples:

Given the following declarations:

| DECLARE V VECTOR(3),
| NV NAME VECTOR(3),

{ S ARRAY (100} SCALAR,

| NS NAME ARRAY(100) SCALAR,

\ M ARRAY (5) MATRIX (3,3),

\ NM NAME ARRAY (5) MATRIX(3,3),

| C CHARACTER(80),

{ NC NAME CHARACTER (80);

suppose that NV + V, NS * S, NM + M and NC + C,

‘The following are legal in contexts causing reference

of pointer values:- wee

NAHE (V3) éreates pointer to scalar value which

js 3rd element of vector V

NAHE (NV 3) yame as above since NV + V

NAME (5,) creates pointer to 5th array element

of array §

NAME VARIABLES (CONTINUED)

NAME (is,) . same as above since NS + 5

NAME (My. 2) creates pointer to séalar value in row 1,
and column 1 of 3rd array element of M

NAME (NM same as above since NM > MN
3:1, 3)

NAME (M,) creates pointer to 4th array element in M

The following are illegal:

NAME (C) | subscripting on character strings

NAME (NC)) illegal

NAME (V, To 2) \ more than one element of V selected

one scalar value selected from‘more than one
array element :

NAME (My. 4) }
*

.

NAME VARIABLES (CONTINUED)

FURTHER RULES:

2.

When a NAME pseudo-function is used
to assign pointer values, only

‘structure subscripting effective on

the pointer copies is legal.

For NAME pseudo-functions in reference

context, array and component sub- ~

seripting is always effective on the

ordinary data item specified or in-
directly accessed. Structure sub-
scripting is effective in the
ordinary data item specified or
indirectly accessed, or upon the

NAME data item indirectly accessing
it, depending on which possesses
the multiple copies.

NAME VARIABLES (CONTINUED)

Example:

Given the following declarations

STRUCTURE As
1 M ARRAY (5) MATRIX(3,3),
1 CG CHARACTER (80),
1 V VECTOR (6),
1 B NAME A-STRUCTURE? .

DECLARE 2 A~STRUCTURE? . ,
DECLARE A~STRUCTURE(3), Z1, 22, 23 NAME;

let 21.By > 22,

BLLB, + 22,

21.5, + 22
3

23+ 21

1

reference context <-
Tliustrations for NAME pseudo-functions in a

(a) Array and component subscripting:

NANE(Z.My 13, 3)

+ NAME(2.My 114)

NAME(2Z.Cy 9 79 15).

NAME (2.V5)

e-Yy NAME (ZY) pg 3)

oreates @ polnter to the scalar
value -in row 3, column 3 of the
first array element of 2.4-

is illegal since the subscript

selects a scalar value from more

than one array element of 2.4

fa illeyal since character strings
may not possenn component subscripts

ereaten a pointer to the Int element
of vector 7.V

ds Llteqnl since more than one element

of Z.V in selected by the subscript

NAME VARIABLES (CONTINUED)

Example:

Given the following declarations

STRUCTURE A:

1 M ARRAY (5) MATRIX (3,3),

1 C CHARACTER (00),
1 V VECTOR (6),

“1 °B NAME A-STRUCTURE?
DECLARE Z A-STRUCTURE; - .
DECLARE A-STRUCTURE (3), 21, 22, 23 NAME;

let Z1.By * a2,

Z1.Bo + AQ

21.3, * a2,

23> 21

3

Tllustrations for NAME pseudo~functions in a
reference context - ,

’ (b) Structure subscripting effective upon the

data item pointed to or directly specified:

NAME (21.,) creates. 4 pointer to the second
a . copy of Zl since the subscript

acts directly on 21

NAME (23.) since Z3 is a single pointer,
2 pointing to the whole of Z1, the

subscript is effective on 21 rather
than 23; hence a polinter to the
sgrend copy of Z1 ib again created Pato

1G

NAME VARIABLES (CONTINUED)

NAME (Z1.M,,)

NAME (23.M,_)
23

NAME (21.4)
1 TO 2;

NAME (23.M, TO 2;)

“NAME (Z1.M)

creates a pointer to the array of

matrices M in the second copy of 21

as before, the structure subscript

is effective on 21 rather than 23;

hence as before a pointer to the

array of matrices M in the second

copy of 21 is created

ds illegal since the subseript

selects more than one copy of ©

structure 21 *

is illegal for the same reason

is illegal since subscripting to

select one copy of 21.M must ‘be

ured .

NAME VARIABLES (CONTINUED)

Example: .

Given the following declarations

STRUCTURE A:
LM ARRAY (5) MATRIX(3,3),
1 C CHARACTER (80), .
1 V VECTOR (6),
1 B NANE A-STRUCTURE;

DECLARE 2 A-STRUCTURE;
DECLARE A-STRUCTURE (3), 21, 22, 23 NAME;

let Z1.By > 22,

71.B, + 22, ‘

2B, + 22) .

2730+ 21

Illustrations For NAME pseudo-functions in a
reference context - ‘

(ly

(c)

NAME VARIABLES (CONTINUED)

Structure subscripting effective on a pointer value:

The following examples use the fact that 21.B,

points to 22,

NAME (21.B,) references the pointer value Z1.3,,

. f.e, it creates the pointer. to 22,

NAME (21.B.My) the subseript is effective of 21.0,

; so that a pointer to the array of

matrices in the second copy of 22 is

: created

NAME (Z1.B.¥),4) the structute subscript is
‘ effective on 21.B as before so

that o pointer to the first

component of the vector in

the second copy of Z2 is created

Note that there is no restriction on the selection

of one pointer only by a structure subscript

effective on pointer data:

NAME (21. 8B) "simultaneously" references three

pointer valucs

NAME (21.38.44) “simultaneously” creates two pointers,

to matrices 72M, and 22.0, respectively 1 TO 2;

NAME VARIABLES (CONTINUED)

INITIALIZATION OF AME ‘VARIABLES

‘

 eonsTaN | (Name Rererence)
CONSTANT

NAME. REFERENCE HAS THE FORM:

NAME ConDINARY VARIABLE)

NAME (NULD or NULL

“NULL POINTER’ - POINTS TO

NOTHING AT ALL. UNINITIALIZED

NAME VARIABLES ALSO HAVE THIS

VALUE.

UNLESS SUBSCRIOCTS

Age Known AT ,
Comne~ TINE -

 nent

© PREVIOUSLY DECLARED o SUBSCRIPTED
o WITH DATATYPE MATCHING eo DEREFERENCED THROUGH ANOTHER -

THAT OF NAME VARIABLE , NAME VARIABLE

ORDINARY VARIABLE MUST BE: AND MUST NOT BE:

lo- $0

1,

2.

3,

ANE. VARIABLES: (CONTINUED)

INITIALIZATION OF NAME VARIABLES

DECLARE S SCALAR,

NS MANE SCALAR INITIAL(NAME(S))5

NANE VARIABLES IN STRUCTURES: WILL BE DISCUSSED LATER.

STRUCTURE A: .

1 B SCALAR,
1 C NAME A-STRUCTUREs

DECLARE A-STRUCTURE,
ZL,
72 INITIALS, MANE(ZD))3°

DECLARE NB NAME SCALAR INITIAL (NAME(Z1.B))s

DECLARE A ARRAY(5) INTEGER INITIAL(O),

NI NAME INTEGER INITIALCHAMECAZ,))3

Examples:

NAME VARIABLES (CONTINUED)

The following are legal initializations of NAME

data items: :
e
e
 ne
 e

e

s

DECLARE S SCALAR, :

Y ARRAY (4) VECTOR DOUBLE; .

DECLARE NS1 NAME SCALAR INITIAL (NAME(S))}

DECLARE NV1 NAME ARRAY (4) VECTOR DOUBLE

INITIAL (NAME (V)) 3°

STRUCTURE A:
1 C SCALAR,

1 B NAME A-STRUCTURE;

DECLARE: Z1 A-STRUCTURE;

DECLARE 22 A-STRUCTURE INITIAL (1.5, NAME (Z1));

DECLARE NA NAME SCALAR INITIAL (NAME (Z1.C));

DECLARE V VECTOR(4)}
DECLARE TV NAME SCALAR INITIAL(NAME(V));

3

te
, ~

NAME VARIABLES (CONTINUED)

The following are illegal initializations of NAME
data items:

DECLARE T SCALAR;
DECLARE NT NAME SCALAR DOUBLE

INITIAL (NAME (T)) +
: NT cannot legally

.. point to T

DECLARE NTL NAME SCALAR INITIAL(NAME(T1));

DECLARE T1 SCALARY fl is not previously
defined

STRUCTURE X:
1 ¥ SCALAR,
1 2 NAME X-STRUCTURE;

DECLARE XX1 X-STRUCTURE;
PECLARE XX2 X-STRUCTURE INITIAL (1.5,NAME(XX1));
DECLARE NX NAME SCALAR INITIAL (NAME (XX2.2.Y));

e
e

e
e

o
e

e
e

contains implicit
indirection since

XM2,2% °> XX1 through

previous initdalization

NAME VARIABLES (CONTINUED)

NULL INITIALIZATION

All NAME data items which are hot explicitly initialized, are

implicitly initialized with null pointer values. The following

examples show the explicit initialization to null pointer values.

Examples:

_ DECLARE LV NAME VECTOR INITIAL (NULL) :

STRUCTURE A:
1 C SCALAR,

| 1 B NAME A-STRUCTURE

DECLARE 2 A-STRUCTURE (20) ‘INITIAL (208 (7,53, NULL));

each copy of B initialized
to a null pointer value

NAME ASSIGNMENTS
erent

i
ji 2 en ae EACH L” AND R IS A NAME

pees j PSEUDO~FUNCTION,

E.G. NAME(NSL), NAME(NS2) = NAME (NS) 3

NS1 NS2 NS NY

NAME COMPARISONS

L=R L AND R ARE BOTH NAME

PSEUDO-FUNCTIONS. —

e.6, IF NAME(NSL) = NAMECNS2) THEN os

EQUALITY IF BOTH NAME VARIABLES POINT TO THE SAME

"ORDINARY VARIABLE!
"NS NS2

[|

w-5 9

NAME ASSIGNMENTS

Examples:

NANE VARIABLES (CONTINUED)

Given the declarations

then

NAME (NSD) = NULL;
NAME(NS) = NAME(S)+
NAME(NSD) = NAME(NS);

NAME (NZ) = NAME(21);
‘NAME (NZ.B) = NAME(22); results in 21.B + 22 because of

, implied indirection in qualified
reference 1Z,B, in which NZ + 21

NAME(NS) = NAME(NZ.B.C); results in NS + 22,C because of
2 levels of implied indirection

in qualified form UZ.n.C, in which

and ZLB} 22

DECLARE S SCALAR,
NS NAME SCALAR,
NSD NAME SCALAR DOUBLE;

DECLARE V VECTOR (3),
NV NAME VECTOR(3)}

STRUCTURE A:
1 Cc SCALAR,
1 B NAME A-STRUCTURE?: *

DECLARE 21 A-STRUCTURE,
22 A-STRUCTURE,
NZ NAME A-STRUCTURE;

. S itself

NAME (NV) = NAME (V);

NAME(NS) = NAME(V); results in HS + Vo- note that
2 V2 is a scalar value, which

is why NS may legally point

to it

NZ ZL

results in NSD + gf
results in NS + S :

is illeqal since NS * S and

NSD may not legally point to

results in Wo+Vv

results in NZ + 21

NAME VARIABLES (CONTINUED)

MULTIPLE ASSIGNMENTS

Example:

Given

! DECLARE § SCALAR,
\ NS NAME SCALAR,
\ NT NAME SCALAR; *
| STRUCTURE U:
| 1 US NAME SCALAR,

{ 1 UN NAME U-STRUCTURE;

| DECLARE 2 U-STRUCTURES-

The following is a legal multiple NAME assignment:

§ . .

' ! NAME(NS), NAME(NT}, NAME(Z.US) = NAME(S);

w- Y&

NAME VARIABLES (CONTINUED)

POINTER ARRAYNESS IN NAME ASSIGNMENTS

Examples:

! STRUCTURE A:
| 1 B NAME SCALAR,

{4s ¢ SCALAR: .

| DECLARE Z1 A-STRUCTURE (3) +

22 A~STRUCTURE (5);

| DECLARE S SCALAR;

then 3 copies of 21.B exist, and 5 copies of 22.3

exist. Hence in
“

{
| NAME(Z1.B) = NAME(S);

the pointer arrayness on the'left is (3) whilst

the right hand operand has none. The result of

this assignment is:

aL.By, Ay

Z1.By, 77 Ss

21.B3, A

NAME VARIABLES (CONTINUED)

HAME COMPARISONS

Examples:

Given

DECLARE S SCALAR} ,
DECLARE NS NANE SCALAR INITIAL (NAME(S)),

NT NAME SCALAR INITIAL (NULL);

NAME(NS) = NAME(S) is TRUE;
NAME (NS) = NAME(NULL) is FALSE; -
NAME(NT) “= NAME(NULL) is FALSE;
NAME(NT) ~= NAME(NS) is TRUE; g
o

lo> Ss ae

_

NAME VARIABLES (CONTINUED)

POINTER ARRAYNESS IN NAME COMPARISONS

Examples:

Given

1 P NAME
“STRUCTURE Ar

SCALAR,
1 C SCALAR;

DECLARE 41
22

A-STRUCTURE (3),
A-STRUCTURE (5);

DECLARE S SCALAR;

After execution of

1
i
i]
!
i
!
j
i
i
j
I

t

1
'
t

then

since

NAME(Z1,D) = NAME(S);

the result of the comparison

NAME(21.D) = NAME(S) is TRUE

Z1.D,,

71d pes

21.5,"

yo-GO

NAME VARIABLES (CONTINUED)

Further,

NAME (22.B) = NAME (21.3);

is illegal since the left and right hand pointer

arraynesses are (5) and (3) respectively which
do not match. However,

{ NAME (22.8) = NAME(Z1.B);
is 3 TO 5;

is leqal since the left hand arrayness has been

reduced to {3}, The result of the assignment is

22.3,, 5 Z1.By (Lee. they both have the same

' ; pointer value}
22.04, = Z1.Bo,

22,B,, = 2Z1.B,, ‘

(G-Gtl gos

NAME VARIABLES (CONTINUED)

Given

STRUCTURE A:

" 1 D NAME SCALAR,
1 C SCALAR:

DECLARE 21 A-STRUCTURE (3),
: 22 A-~STRUCTURE (5);
DECLARE S SCALAR; ‘

After subsequent execution of
' :
i NAME(Z1.D.) = NULL;
1s lt.

then the result of the comparison

NAME(Z1,.D) = NAME(S) is. FALSE

because 21.D).—> 6

21.D

Z1.D4,

The comparison
f

NAME(21.D) = NAME (22.D)

is illegal because the pointer arraynesses of the
left and right operands are {3} and (5) respectively,
which do not match, However, the comparison

. NAME (21.D) = NAME(22.0)
3 TO 5;

is legal since the pointer arrayness of the right
hand operand has been reduced to [3].

-

to-Ge

NAME ARGUMENTS AND-PARAMETERS.

P; -PROCEDURE(NA) ASSIGN¢NB) ;

DECLARE NA NAME INTEGER,

NB NAME ARRAY (10) SCALAR;

CLOSE P3;

o ARGUMENT MATCHING NA: NAMB PSEDUO-FUNCTION IN REFERENCE

CONTEXT (OR NULL), .

o ARGUMENT. MATCHING NBs NAME PSEUDO-FUNCTION IN

ASSIGNMENT CONTEXT. a

DECLARE 1 INTEGER;

DECLARE ARRAY(10) SCALAR,’ A, N NAMEs

CALL P(NAME(T)) ASSIGN(NAMEC(N))s

CALL P(NULL) ASSIGN(NAME(ND) ; Leon ;

CALL PC(NAME(I)) ASSIGN(NAME(A))s
; ILLEGAL’

CALL P(NULL) ASSIGN(NAME(N, .))s .
L

™, cr “ ive
Niime ¢ N= N65

NAME VARIABLES (CONTINUED)

INPUT ARGUMENTS

The effect of using a pointer value as an input argument of
a procedure or function is as if the pointer value were being
assigned to the corresponding NAME input parameter, The
attributes of the NAME input parameter must therefore allow
legal acceptance of that pointer value,

Examples:

DECLARE S SCALAR;
DECLARE NS NAME SCALAR;
DECLARE NT NAME TASK;

Fr FUNCTION (A,B) SCALAR; ‘

DECLARE A NAME SCALAR,
B BOOLEAN;

UY} | _ function body

 u

CLOSE F;
*
°
.

NAME VARIABLES (CONTINUED)

NAME(NS) = NAME(S);
1
i

.

| S = F(NAME(S), TRUE): invocation results in input
' parameter A pointing to 5 i

} § = F(NAME(NS), FPALSE); has the same effect: A gets ©
{ . same pointer value as NS,
1 leew A+S
1
| S = F(NAME(NT), TRUE)? . is illegal since pointer values
| . legal for NT are not legal for A

| S$ = F(NULL, FALSE); results in A+ 9

Note that although ordinary input parameters are prevented
from appearing in NAME pseudo~functions, NAME input
parameters are only prevented from appearing in NAME”
pscudo~functions in assignment: context.

Lo-lsy

s ae

NAME VARIABLES (CONTINUED)

ASSIGN ARGUMENTS
'

A pointer value may be passed both into and out of a procedure by the appearance of a NAME pseudo~function in the assign argument list of the procedure's invocation, The class of data items which can be pointed to by the NAME data item appearing in the NAME pseudo-function must be the same as that which can be pointed to by the corresponding NAME assign parameter.

10-&&

NAME VARIABLES (CONTINUED)

Examples:

DECLARE NS NAME SCALAR}
DECLARE NT NAME TASK;
STRUCTURE A:

1 B NAME A-STRUCTURE,
1 C SCALAR;

DECLARE % A-STRUCTURE

.

P: PROCEDURE ASSIGN(U,V)?
DECLARE U NAME TASK,

V NAME A-STRUCTURE:

CLOSE P;
*
*

.
.

CALL P ASSIGN (NAME (NT) , NAME (Z2.B))+

causes passage of pointer values
between NT and U, and between 2.3
and v,

CALL P ASSIGN (NAME (115) , NAME (2))7

illegal beeause NL Lilegal because % is not a
NS points to NAMS data item

; scalar data Ltoms

but NT points to
tasks

NAME VARIABLES (CONTINUED)

POLITER ARRAYNESS IN ARGUMENTS

' Examples:

STRUCTURE A:

1 B NAME SCALAR;
DECLARE % A-STRUCTURE (20);
DECLARE 81 ARRAT(20) SCALAR,

S2 ARRAY (10) SCALAR;

P: PROCEDURE{U) ASSIGN(V);
DECLARE U.NAME SCALAR,

V NAME SCALAR;

Yy

 \\

* CLOSE P;

F: FUNCTION(W) SCALAR;
DECLARE W NAME SCALAR;

| function body \ “

CLOSE F;

fo, & :,

NAME VARIABLES: (CONTINUED)

CALL P (NAME (2. By,)) ASSIGN (NAME (Z.B));
one

‘
'
t . Seep cathe te tet

\
' . legal because pointer Jliegal because pointer

nU' arrayness subscripted arrayness exists

{ a away

ion + F(MAME(2.B)) 3
, .

;~ > 4
legal because pointer arrayness {20} matches

arrayness (1:20) of S1

The above is eguivalent to

+81, = 81, + F(NAME(Z.B,))? for 1 < ig 20

wherein each of 20 invocations of F cause transmission
of a different pointer value,

tu -S&

NAME VARIABLES (CONTINUED)

USES OF STRUCTURES ‘AND NANE ‘VARIABLES

"(DA PRIORITY-ORDERED. QUEUE
STRUCTURE QUEUE! ”

1 IDNO INTEGER,
1 PRTY INTEGER,
1 LINK NAME QUEVE-STRUCTURES

DECLARE QUEUE QUEUE-STRUCTURE (10),
ANCHOR NAME QUEUE-STRUCTURE)

DECLARE INTEGER, I, NEW_ID, NEN_PRTY? REFEREN ces.
'
+
'

DO FOR 1 ™ 1 TO 93°

IDNO,, PRTY, @ 13

- NAME (LINK) = NAME (QUEUE, 45)4
END}
IDNOy 92 PRTYy9 * 103

- NAMECANCHOR), NAME (LINK, 9) = NAME (QUEUE,)5

: Peowem. sey:

Queve cannot SE
UNQUALRIED BEChUSE

of NeEsTED STRUCTURE

‘

IDNO pPRTY . .

ANCHOR i} 1. : 2 2 . , 10 10

: vA if eee S|
LINK o- ' oe on]

NAME VARIABLES

USES OF STRUCTURES AND: NAME VARIABLES

DECLARE NAME QUEUE-STRUCTURE, THIS) PREV}

/* FIND IDNO IN QUEUE’ */

PROBLEM #2: CANNOT FACTOR
NAME DECLARES

IONO PARTY " IQXO Paty

2 1 2

2

NAME (PREV) = NAMECANCHOR) 3 ay //
-

NAME (THES) = HAMECANCHOR, LINK) s
prev *

DO WHILE THIS, IDNO™* NEW IDNOJ

NAME (PREV). = NAME(THIS);3

NANE(THIS) = NAME(THIS.LINK))
END;

this +4

(“ SET NEW PRIORITY, AND TEMP-

DINK LINK

THIS. PRTY = NEW_PRTY} ;

NAME (ANCHOR), NAME (PREV.LINK) ® NAME(THIS.LINK)J

1e her .

ORARILY UNLINK FROM Queue */ / oe Pscwon tS
* IDNO DPATY . _IDNO PRTY “ IDNo pary

N

/* FIND PROPER PLACE TO RE-LINK IN’

‘ QUEUE ACCORDING TO PRIORITY */ Linx

7 6,

LINK LINK

DO UNTIL PREV. PRTY <* NEW_PRTY_ AND NEWPRTY <e THIS, PRTYS

NAME(PREV) = NAMECTHIS))
_ NAME (THIS) = NAMECTHIS. LINK) 5

ENDJ
NAME(PREV.LINK) = NAME(ANCHOR))
NAME (ANCHOR LINK) = NAME(THIS)3 .

wATG

Jor]

A
P
O

GE

OT

de

O
O
S

P
O
N
D

PD
 b
e
e

NAME VARIABLES (CONTINUED)

MY PRIOGQ:
Me PROGRAM:
"t
ut
nt
Nt
‘ut
ut
Nt
Nt
Nt
nt
Nt
Kt
st
Et

@ Nt

it

st
Nt
Nt
St
Et
Mt
St
ct
ct

STRUCTURE NODE:
2 TDUQ INTEGES.
L PRT? INTEGER,
2 LINK RAME NODE-STRUCTURE;

DECLARE GUEVE NODE-STRUCTUREC 18). ;
ANCHOR NANE NODE-STRUCTURE:

, DECLARE THIS HANE RODE-~STRUCTURE,
PREV NAME NODE-STRUCTURES

DECLARE INTEGER, ,
i, NEN¢ID, NENEPRTY:

bo FOR t= 4 70 9:
QUEUE. [ONO . QUEUE. PRTVY = f3

! t
+ +

NAHEC QUEUE. LINK > © NAMEC QUEUE 7]
! : tea

END;
QUEUE. IONO , QUEUE. PRTY = 10;

18 18
+ + +

THANECAHCHOR), NAMEC QUEUE. LINK) = NANECQUEVE);
19 , 4

FIND 1ONO IN QUEUE

NAME VARTABLES (CONTINUED)

et

‘ Et + : +
12 Nt NAHEC PREY) = HANECRUCHOR);

Et
+

43 Mf. NAMEC rHIS) ® NAMECANCHOR, LINK)» 14 Mf DO WHILE THIS. TON <= NEWSTD;
et + + 15 Nt NAREC PREV) ® NANECTHIS); Et + 16 Mt NAMEC THIS) = NANEC THIS. LINK); 147 Nt END:
ct
ct SET HEH PRIORITY, AND TEMPORARILY UNLINK FROM QUEUE ct

12 Nt THIS PRIVY = NEHePPTY.
Et + + + 19 Nt NAMECANCHOR), NANECPREV. LINK) = RAMEC THIS. LINK); cr
ct FIND PROPER PLACE TO RE-LINK IN QUEUE AccoRDING TO. PRIORITY: ct

20 Nt do uNTIL PREV, PRIVY Ca NEWCPRTY AND NENGPRTY Ce THIS. PRIY; Et
ot out nner PEey> ® SANE ETHES : et
22 Nt MAMECTHTS) ® HANEC THIS, Link), 23 mt Eno;

Et + . ‘
ad ome NAMEC PREY. Links = HAMECANCHAR >: E° + 25 a: NANECANTHOR Lines = MAMEC THIS); £6 MP Shoce,

{om

{O~T1S-

12

13
14

45

«

1?

hh

reg

r
n

wd
PD

ay

ty
p

n
a

ct
Et
Nt
Et
Nt

nt
Et
Mt
Et
nt
Nt
Ct
Ct
ct
Nt
Et
at
Ct
ct
ct
we Vt

et

Nt
Et

NE
DONT

Et
ES
e-

ue MS

NAME VARIABLES (CONTINUED)

+ +

NANEC PREY) . NARECANCHOR)1

NAMEC THIs) = MAMEC ANCHOR, Links
OG WHILE THIS, oN Ss NEWET Ds

+ +
NAME PREV) * NANEC THIS):

+
NAME ris» ® NANECTHIS-LINK);

ENO;

SET WEM PRIORITY, AND TERPORARILY UNLINK FROM QUEUE

THIS PRTY = NENCPRTY.

+
HAMEC ANCHOR), NAMES PREV, bre SVNAMEC THIS. LINK);

FIND PROPER PLACE To RE-LINK IN QUEUE ActoRb rus TO PRIORITY
-0O UNTIL PREV PRTY Cx HEHSPRTY AND NEN+PRTY C= THIS. PRIV: +

NANECPREV) = NAME crnts
4+

NANEC THIS) & HAMECTHIS. LINK,

4
NANECPREY. LINK) = fahedanedde);

+ +
BANEC AN THOR LINK? = NAMEC THIS); MD Close

WG-14

ga70032
O9GG0S2
00902 9044
O03. 3AL9
HAIL BOSE
Nagas
80935 SAOR
OB936 10k2
O0ar7 RID
GO038 SCOR
90373 BC45
609990h
ONOTA BFA4
9090078
60033 9A1D
HoOlC S0BE
80020 9514
GOOTE D314
O00003F
GOOSF $b44
NUGS9 BAL9
9004. $506
BGG42 b304
GO942 OFAC
H900064
ganand4
NGOG044

ood?

anne

angé

se25

ooe4
80068
“e0nt

eob2

8097
9002
e908

O44

e007
eet
éo04
ood4

opa4
0996
ee84
0844
oo48

NAME VARIABLES (CONTINUED)

Frais EQN
Le
STH

StaLs eau
LH

STAL7 Eau

LBLa7 EQu
ST813 EQu

STei9 eou

STH
STH

STa20 Eau
ec

LeLes EQu
Lk
Lu
cH
ec

LBL ar2 EQu
&
LH,
CH
eC

: ec"
LOLei5 . Eau
LBL#43 EQu
LeLes equ

te
fe

M
I
N
N

 t
1P
>

A
M
A

h
e
e

wo

“

* J

5,462)
3,44)
1, #46
*

5,4¢4)
2,64)
5,4¢2)
1, 4+2
2, #48
a

+
*

PREV

THIS

LELS6

NEWEPRTY
THIS

PREV

ANCHOR

LELAS

PREV

MENEPRTY
LELa13

NEHEPRTY.
+ THIS

LeLs42
LeLgi4

eosonas
gn0se 9nd
gegen LCEr
ontag BeaD
angess7
gO047 SAR
Agas8 1CE2
auaed BOL
GOO0G4A
OOG4A DFA?
2000048
aggagee
O24 2815
ofos¢ 1en2
Aotal SALE
O0ISE BCAA
oogaoeF
engeF git
GeCZe 1CE2
40951 HALS
geese ECR

NAME VARIABLES (CONTINUED)

006

aco?

ager

pone

0038

9025

6907
0002

op06

2005
0602

sT#22.

STR2>

LBLaid
STa24

Ste2s

EOU

fi ue

STH
ety

LR.
STH
eau
eC
cau
EQu
&
uP

STH
Eau
LH
LR
tH

. STH

&

2,604)
Ae?

4,704)
&

2,262)
4.2
4,6¢4)
+

7, kH45
x

%

2,304)
42
2,7¢4>
4,2¢2)
+
2,6¢4)
452
2.564)
4,202)

THIS

ANCHOR

1O-16

NAME VARIAbCC

USES OF STRUCTURES AND NAME VARIABLES

(CONTINUED)

(2) TREE-STRUCTURED SYMBOL TABLE Parosrem #1:
STRUCTURE TREE! (Tace caunoy GE noo? |

1 SYMBOL CHARACTER(32), UNGUAL HED BECAUSE
1 LESS NANE TREE-STRUCTURE, OF NESTED SrRVCTURE pO

"y GTR NAME TREE-STRUCTURE} REFERENCES. 2 |e
DECLARE TREE TREE-STRUCTURE(100), »

NEW_SYMBOL CHARACTER(32), PRaBLemez* .
1 INTEGER INITIAL(O), ° CANNOT FACTER,. ‘BETA‘ ‘THETA!
WAS_LESS BOOLEAN} NAME DECLARE | Ue | a NULL | NULL

DECLARE NAME TREE~STRUCTURE, a NN
ROOT INITIAL(NULL), OLD_LEAF, THISJ 4

‘ALPHA! *IOTA'

NAME (THIS) = HAME(ROOT)) nuut| NULL NULL
DO WHILE NAME(THIS) I= NAME (NULL))

NAME COLD_LEAF) = NAMEC(THIS)s
IF NEW_SYMBOL < THIS,SYMBOL

THEN DOJ WAS_LESS = TRUEJ NAME(THIS) = NAME(THIS.LESS); END;

END;
= [+13 SYMBOL, = NEW_SYMBOLJ

nave (Less p+ NAME(GTR,) = NAME (NULL) J
1F nate (Root) = NAME(NULL) THEN NAME (ROOT) = NAME(TREE,)3
ELSE IF WAS_LESS THEN NAME(OLD LEAF.LESS) = NANe (TREE) 4
ELSE NANE(OLD_LEAF.GTR) = NAMECTREE,);

ELSE DO} WAS_LESS = FALSE, NAME(THIS) © NAME(THIS.GTR)} END;

a
"KAPPA!
NULL | NULL

Tr
y

OF

da

G2

U2

CU

GS

TD

F
O
P

PD

be

be

o

~1

Ww

at

NAME VARIABLES (CONTINUED)

TREES+P ROB:
MP PROGRAM:
nt
st
Mt
nt
ut
a
se

Nt
Nt
Nt

Nt
ht

ct
Et

Nt
Et
Ne
Et
Nt
Et

7 Mt

Nt

Et

Nt

Et
"ft

Ht
7 NT

at

STRUCTURE NODE:
$ SYMBOL CHARACTER(32),
1 LESS NAME NODE-STRUCTURE,
4 GTR NAME NGDE-STRUCTURE:;

DECLARE TREE NOSE-~STRUCTUREC LOB >,
NEMESVNZOL CHARACTERC 329,
LP INTEGER INITIALCO),
NAStLESS EGOLEAN;

DECLARE ROOT NAME NODE-STRUCTURE INITLALCHULL

DECLARE QLDELEAF NAME HODE-STRUCTURE:
DECLARE THIS NAME NOGE-STRUCTURE;

+ +

NANEC THIS) = NAMECROOT);
+

OG HHILE NANECTHIS) \= NANECNULL):
+ ¢

NANECOLD¢LEAF) = NAMEC THIS);

’ ’ .

TF NEN¢SYMNBML ¢ THES. SYMBOL THEN
00; /

HASELESS © TRUE:
+ . +

MAMECTHIS) = NANEC THIS, LESS);
END;

ELSE
po.

NAME VARIABLES (CONTINUED)

c*
.

1é Mt WAS4LESS = FALSEs

ET
+ +

Lv it MANEC THIS) = NAMECTHIS, OTRO:

Af OME . END:

4a Mt END;

2m NT tom — + 4

at : ;

oe TREE. SYMBOL = NEWESYMBOL:

at Ts

Et
+

+ .

ae Mt NAMECTREE. LESS =» NANEC TREE. GTR > = HAMNEC HULL D3

Bf
i 1

ét +

grout LE MAMECROOT) = NANECHULL) THEN

-it 4 . +

Paout MAMECROGT MANEC TREE >.

st . . 1

25 Nt ELSE

Et foe “fe . . ‘

es Mt IF WAUELESS THEN

gt
+ +

met HHINEC OLOSLEAF. LESS) = HAMNEC TREE 3

at
i

m7 Nt ELSE

Et + +

27 Nr NAMECGLDELEAF. GTR? = NANECTREE 03

%
1

yo ss

——

we 4

HINGINS
gonaa
§G999 HASSE
OORGR LCS
Ga00R BLED
BOGE SEL
GO2GN9C

OGO018 25€2
OOOLL BESS

onno012
OEG0012
AG012 SHE
09n13 1082
60914 E559
ngnoois

Oon15 LRE?
00046 EAL
GOAL? Facg

92019 HDIC
g000Gi—A
95900148
2901 B20D
goggaic
GHOLC BPSD
Bo010 SA4E
OSOLE 2CEs
cocir eesp
HEdaALN
8920928
80929 CFist
oononaL
oceao2at
09021 R160
8969022
02922 ARS0
Q90g3 BAIA
ooge4 1CE2
ayor5 ROS

wens

990%

agar

6017

amas

Baer

ae

3018

Babe

OOZL

0092

004?
eoLd

QOL?

0026

gags

ade
6012

NOL?

HAME VARIABLES (CONTINUED)

“LELES
LeLes
STHD

staie

ST#i4
$T#42

ST#13

STR44
sT#io

LeLe?
STa1e

STa4?

EGU
"RO CSECT

LH
LR
STH
EG
ecu
LH
LR
LH
cR
Bc
EU
£QU
EQU
LH
LR
5TH
EQU
LR
LA
BAL
Bt
EoU
EDU
gB
equ
LH
.
.

LR
STH
EQu
Eau
8c
EGU
EQu
é
Eau
LH
+
t

Lk
STH

b

ESOID=
2.244)
4,2
4,23¢1)
*

t

2.2301)
5,2
2,4926¢4>
$,2

ae <4
ke :

£
+

2.2302)
442
4,22¢42
+

32
2,404)
4,863)
5, &+8
*

+

34004
*

2,23¢1)
2,472)
4,2
402304)

4.27264)

THIS

Heo ¢

LELHA

THIS

OLDtLEARF

NEWESYNEOL
CPRC

LELE?

WAS#LESS

THIS

THIS

LeLes

WAS#LESS

THES

THIS

ww -FO

AONGaS
$0000
Hogue
HOULS DFG6E

6600627
GHgOKZ7
Cate? setae

OBES
Bona

oo 28
HORSE MOEF

£
&

G9G20 ERLI-
agaTE EAFS
20029 ECFT
geoaoze
20072 999
WO00L2 SPF?

QCFs
ecrs

972 2075
e9tag3Ee
g2022 FASS
OEOIC IDES
98020 SRFt
QGQ3F 15£2
ago29 DBC
TULLE’

goat

24044 ECFS
90056 ELE5
eonag4ay
goog? Fas
BN9G642
H0048 Sped
Qgods 120

OROC

9002

HAO?

A783
goed
0305

806.
O785

“QS
oar?

O16

+0025

a72e

643

NOOe
a735
90e5
BO1S

0058

oeo2
aO82

NAME VAR ES’ (CONTINUED)

eTare
eETHig
LEL#S

LELRS
+ STe2n

STH2s

CBLaia
cBL ALO
sTae4

STR25

LBLes

Eou
Eau

EQu
BC

Eat
EQu
LH
AKT
STH
Eau

NIH
La
La

Al
cau
LH
NIH

LH
STH
STH
EGY
LH
trk

i

CR.

Eau
Eau
LH

NIH
LA
‘STH
fou

EQU
LH
ee

Eau

*

+

+

71 #26
h

*

5,2¢4)
S.4
S,2¢4>
&

Se 492501>

2,4¢4)
4,55, 4)
4,003)
+

P,2thd
Fr Agesca?

A,182604>
4,2207,4)
442207, 4)
&
2.2404) 5
S.2
2,1926¢4)
5.2
3, #48

¢
+
+
2,24)
7.192504)
4,507, 2)
,eeen)

*
7, +48
+
5.34)
4,849

LELaS

I

1

He49’
HEW*SYHEDL
TREE
cRs
:
HrAR?
H/o"
TREE*LS
TREESLT

FOOT

HO?

LELa9

I
47197
TREE
ROOT

LBLYA2

HAS#LESS
LELHLS

NAME VARIABLES (CONTINUED)

sta]ed Eau #

B2 8982 . La T,2¢L) :

aFEo AT es ares MIH F,S92504) H‘L3

EIFS €OGS A095 LA 4,507,419 TREE

SASS OLS LH 2,22¢4) GLOSLEAF

ered Goes . 2TH S, 4705)

am ST82? EQu k

DRL H959 fC | 7, etd LEeLads

& LEL#L13 eu +

SFO9 0002 tH 7,241) I

eerea apes erss MIH 7.192801) H‘L37

ECF €30o agak La 4,507,429 TREE

CASS Q3Lé LH e,c2Ci% OL De Leake

BCAA OG12 STH 4,43¢2)

Be

GS

D
E
D

F
A
T

RD

AD

be

S
T
E
N

A
A

No

ut
ut
Nt
Nt
nt
Nt
Nt
Nt
Mt

Mt
ut
Nt
ut
Nt
Ht
mt
ut
St
er
nt
st
ut
ct

2 Nt
ter
Nt

St
ut
st
Et
Nt
4 &

eit

NAME VARIABLES (CONTINUED)

EXTERNAL COMPOOL >

STRUCTURE, @ DENSE:

Bi gIT¢s>,

B2 BITC),

MN NATRIX,
ARE @ Q-STRUCTURE(10>)

4
DECLARE OQ NAME Q-STRUCTURES

€ ARRAYCLA),
SCAL SCALAR:

BITS BITCSs

-00 FOR TEMPORARY I = 4 TO 403
. +

alts © Bt tt B2
. bu

po FOR TEMPORARY I = 4 TO 18)
° + +

WANECUG) «= MAMECO 9
fe

Seal « NOS ane.v + NON

I 2

no, B41 FP Na. B2

enogecs
gq003 SFES

- NOGOR DF LE

pogocee
anag00B
09008 1EET
gg0ec 3EF9
HOODE 1DEE
GOOGF F505
0010 FaGS
OfOL1 IABL
agniz TSFé
agois SORE
onoLe ibe?
99017 9EF9
90019 FESS
OG01A SOE
NG91C 3275
HOROOLE
AOOLE FEE?
QOOLF BEI
00521 9oFeG
Ga023 FSI4
00024 BEES
90026 F598
00027 9CF6
60029 F46A
O002AR B6E4
9902C 2pE4
gg02D BOFS
onnno2F
O002F ROE?
goaeg2d
NHO31 EFAS
anor? BSE?
oag24 DEAA
0030025

e626

coed
Row

2626

co12
EaQ0

E076
cate

Bont

COLA

8003

E082

9004

900Rn

NAME VARIABLES (CONTINUED)

Stee

2ert
LOLS

; gtas

oe2e

e24
eoo0
0084

" Q926
adic
four

STAHL

go26
o01R

Boia

0002
STeLt

: LBLAS
agate

noes
_ Leuay

EQuU
LFXE
BC
EQu
EQu

NIH
LR
SRA
SRA

. 5, 26¢6,2)

: 443

667
6, 38C1>
5,6
Sek
6.4
2,36¢19
0,966.2)
0,4¢5,2>

0,48¢6,2)
0, 4207.4)
&

6,7

€,38¢1)

S.5
5.7

3,2
4,26(6,2>
4,2

3.4
5,267,4)
+

7.4
+

1800)
7,40
$, 4-44

_*

LeLas

H’728°

BASEHREGS2

-BITS

LELEs

wo-&4

aaagats

QGLTE DETO
SG3007T7
Geoweie
OOS PFFS
QANTa BAS
GIOIA ECE

HINTe Se0F
DIKBIES

Q00TD SE42
A99TE GAR9
QOOse 7222
onto SOOA
ojos, 5226
00642 7SFS
0090844
OG044 SDA
MOOS FSLE
30048 BEES
goose FSOS
o0049 3CéA
DOO4A FAGR
on04e B6E4
9004D 2vE4
Q004E EBDFS
9909958
H9050 1FE6
00051 BOE?
2900053
ON0S3 EFAS
90054 BSE?
00056 DEe2

caec

Q007

9eng

ceo2

8001

OH0R
“doL2
ate

0037

wy

“4
 an

te
 nh

LSLaS
Svat

ST#14

STe4AS

 sTas6

LBLas

EQU
LEXI

Eau
EQU
NTH
LH
LP
STH
cau

LH
LH
LE
aE

STE
Eau
LH
SRL
NHT
SLL
LH
SRL
NHI
OR
STH
Eau

AHE: .
EQu
‘STH
cH!
Bc

’

(4, 2662)

NAME VARIABLES (CONTINUED)

7, 3804)
2, 36C1)
4,007,2)
4,205)
&

€,49¢0)
2,2¢4)
0,02)
0,402)
6,18¢2)
O,42¢6,43
*

S, 262)
5.5
3.7
S62

4,2 '
4,3,
Sed
5,206.4)

+

Ti6
Tal
ab

7,180)
7,18.
6, #9 3h

Qe

.

LEL#S

Hees

BASECREGHE

NQ

1
nO

SCAL

BITS *

LELAS

.

NAME VARIABLES (CONTINUED) —

BNAMECOPY -

ANAMECOPY (a, 8) 3

PERFORMS. THE EQUIVALENT OF:

NAME (e) = NAME(8)s (*)

EXCEPT .

- a MUST BE A NAME STRUCTURE AND 8 IS EITHER A STRUCTURE OR

A NAME STRUCTURE.

4

Q. SINCE THIS 1S MORE RESTRICTIVE THAN A REGULAR NAME ASSIGN

(LIKE (*)), WHAT IS THE ADVANTAGE?

A. NO TEMPLATE, COPYNESS, OR LENGTH CHECKING IS DONE.

SNAMECOPY ALLOWS UTILIZATION OF A SINGLE MEMORY AREA FOR

A NUMBER OF DISTINCT PURPOSES,

NAME VARTABLES (CONTINUED)

NATURALLY, 2NAMECOPY MUST BE USED WITH GREAT CAUTION.

EXAMPLE:

STRUCTURE Q:
1A SCALAR DOUBLE;

DECLARE @ Q-STRUCTURE (50) ;
STRUCTURE Ry

1 B SCALAR;
DECLARE R NAME R-STRUCTURE(100) 3°

9 €

INAMECOPY(R,Q)3 /* THE A AND B ARRAYS NOW ARE PHYSICALLY
COINCIDENT */

ASS = A$3;]
an ——— BOTH ACCOMPLISH THE SAME THING!

BS9 = BSS; |-—
BS10 = BS6;

re
s

y
e
t
e

t
a
r
e

SE
O

a

he

he

he

T
E

OT

e
t

PO

~

R
D

NAME VARIABLES (CONTINUED)

Nt CPL:
Nt EOKPOOL RIGID:

Nt DECLARE I ARRAYC4L0) INTEGER INITIALC4, 3, 5, 2.3, 44; 43, 15, 47, 19):

Nt OECLARE VECTL VECTOR INITIALCAG, 20, 3935 -

Nt PERLARE VECT2 VECTOR INITIALC46, 5@, 60))

Nt STRUCTURE INT RIGID:
Nt -4 TYPE INTEGER,
Mt 41 OP¢CODE INTEGER,
Nt 4 VARENAMEL NAME INTEGER,

Mt <1. VARENANE2 NAHE INTEGER:
Nt STRUCTURE VECT RIGID:
nt “4 TYPE INTEGER, ‘

Mt 4, OP ¢CODE INTEGER,

Nt 4 VARSHANEL NAME VECTOR:

nt L-VRRENANES NANE VECTOR:

Nt DECLARE S4 INT-STRUCTURE INITIALC1, “4, MANECT. 9, MANECT 02

St 2. 4

at DECLARE $2 INT-STRUCTURE INITIALCL, 2, NANECT >, NAMECT 0)

£ 5 ?

E

be
 DECLARE 33 VECT-STRUCTURE INITIALC2, 1, NANECVECTIO, NANEC VECT29);

DECLARE $4 INT-STRUCTURE INITIALCS, 3. NANECT 0, NAMECT 3
1 2

ed

<b

b
P

me

>

Mm
4
d
a
e

a
e

o
m
y

4

CLARE $5 VECT-STRUCTUFE INITIALC2, 2, MANECVECTID, NAMEC VECT2902

oO

-

o

ut

m
o
n
y

NAME VARIABLES ¢CONTINUED)
LIONtT INTER?
AR ME PRAGERE
ta 14
Le Ls

set DECLARE NetNT WANE INT-STRUCTUSEC S 3;

at PECLAFE NeVECT NAME MECT-STRUCTURES 53

£ b+ be

La Mt MNANECOPYCMEINT, S407

£ + +
Pons MMANECOPYCNEVECT, S29)

49.Nt po FOR TEMPORARY T 2 4:70 Si
L240 TF OMSINT TYPE = 4’ THEN

$° , 1
20 Nt bo: ‘ 7# INTEGER TYRE H/

22 mt DO CASE NéINT, OPECODE ;
gt

1
nt

ag + 905 2& ADDITION A!

23 Ht ARITECE) NEIUT, VARSHANES + NeINT, VARCHAMED
St

:

24 nt END: ..

25 ut i . 7* SUBTRACTION 47

26 ut WRITECE) METNT: VAREWAEL ~ NEINT. vaReugned i
st

.

ar ont END:
.

23 Nt DOr :
eek MULTIPLICATION #7

23 ut HRITECS) NEINT. VARCNANES NOLNT, VARERANE2

St , I

20 Nt «END:
3A Nt END:
22 Mt END;
23 Nt ELSE

.

33 Nt bo) f+ VECTOR TYPE +7

34oNt QO CASE NFVECT. OP+CODE + ots
gt ’ I ;

35 Mt 00)
?* DOT PRODUCT #/

36 Nt HRITECG) NEVECT, VARCHAMNEL . HEVECT, VARtHAHE2
St , i iu

27 Nt END; :
.

38 ME . 00;
. . ?* CROSS PRODUCT #7

39 Nt WRITEC6) NEVECT, VARENANES & NEVECTAVAREHAHE?:
st u ti

40 Nt END) : ‘
44 Ht END:

we-k 42 Mt END
43 Nt END:

os

HAN VARIABLES (COUT EHUED)
ett ii t

HAL/$-360 V4.0 START TIME: 92:43:09, 61 DAY: 767075
ARM FTE, D: MCKALeS
HCP HAL/ DRIVER FOR IBM SHUTTLE GPC SIMULATOR *SINLO4*

HCPA: LOAD: GO. EHD ‘

HOPS. THE FOLLOWTND LOAD PARAMETERS ARE IN EFFECT

HORA: BOWEN © Loabhor:

HCPA: MENBER® G0

HEPA: REGLONeSgk BYTES (#60 CORED

HCPA: SIMREDIONRAK HALTNURDS CAPLOL CORED

HEPL: SIMPLEESH4 COORS RESIDENT 4K PAGES)

uePd: HAL/S-FC HOpNLE, LOADED

19
pond

3. 200DANOF +O.

HEPA: HAL?S DRIVER FOR.1BN SHUTTLE GPC SINULATOR *SInLos"
HESSAGE # 65 DURING: SIMULATION INTERRUFT #16 | OLD PSH=OLE74A00 080

Hed: SVC OLD PSN’® OLE7ARGO ONGL01FB

HCPL: INSTRUCTION COUNT* 336

HCP4: SIMULATION TIE). #. 3919999999999900E-04

HOP4: END OF HALSS-FCPROURAM

ERROR SYSTEN CSTATEMENTS
10: 9 4

2, aneoncoroas eS 3s, +02 -2, eaodnacetag
RETURN CROT t _ ‘

a

=
a

Iy~]

ANY
he

FOR REAL TIME PROCESS CONTROL
° High-Level Problem-Oriented Real Time Features

® Careful Definition of Semantics -- for Easy
User Comprehension

® Guarariteed Orderly Access to shared Data
and Code

© Hierarchical Relationships Among Processes

SVO- ST

, MWS £00-S/
Wo a\ 4) PROGRAM and TASK Blocks

A: PROGRAM ;

B: TASK;

CLOSE 8B;

C: TASK;
SCHEDULE B... ;

CLOSE C;

SCHEDULE C ... ; ’

CLOSE A;
4.9

A PROCESS IS: |

¢ The Execution of a PROGRAM or TASK Block

e® Made ACTIVE through Execution of a
SCHEDULE Statement -

e Made INACTIVE through Execution of a
CLOSE, CANCEL or TERMINATE Statement

33
500-38]

me tee * .

: - wv
Ri iN ! a . -

aN /S Process State Transitions . S0I0-S3

INACTIVE © =-AERUEE WAITING

J
Cs, v
= ¢ 21 oe

uy ee RY 31S

Sl fg ={E
8 3 aT R

8 = Al q y.
WR we s it

prrecity Process

: peeomes ready =)
EXECUTING READY

ter process
+.

fring or inact®

Pyne, |

32

Scheduling of PROGRAM and TASK Blocks 500 -s+$

g
u
s

PRIMAL PROGRAM

>| TASK BLOCK . PROGRAM

 TASK BLOCK

TASK BLOCK “I SNvOCATION OF
= TASK BLOCK

i INVOCATION OF
a PROGRAM BLOCK

it nl. PROGRAM

: : - - DATA
REFERENCES

w
o

INVOCATION
OF TASK
BLOCKS /

* COMPOOL

INVOCATION |
OF PROGRAM (shared data) ‘[-
_ BLOCK

bas om

EACH PROCESS: HAS A PRIORITY
(An Integer Value)

e Initially Specified in SCHEDULE Statement :

SCHEDULE ALPHA PRIORITY (50);

« Dynamically Changed by UPDATE PRIORITY
Statement :

UPDATE PRIORITY ALPHA TO (1 +5);

aa |
S00-33

Loe

a /f SCHEDULING IN REAL TIME = 500 —5G

1600

v executing
transitions
during

oe _2xecution me eee oe OY

A

poe wee eee ee ee mee ee ee eC Walking

initiated

scheduled terminated

me te mee L . | en inactive

\ 4

SCHEDULE A AT 1600 PRIORITY (50);

Alternatively,

SCHEDULE process IN Interval . PRIORITY (n);

Wis

Jy~ =

| “L/S
THE WAIT STATEMENT

© Process Is Temporarily Placed
in the WAITING State

. © WAIT Interval ;

© WAIT UNTIL time

WAIT UNTIL IGNITION +5;

32
500-357

IN 9

~ PROCESS DEPENDENCY

A: PROGRAM;

B: TASK;

CLOSE .B;

C: TASK;

 CLOSE C;

CLOSE A;

c
n
a

ao

nN LG
he)

FURTHER PROCESS DEPENDENCY

A: PROGRAM ;

B: TASK;

CLOSE B;

SCHEDULE C ...
DEPENDENT ;

C: TASK;

CLOSE C;

D: TASK; CLOSE D;

CLOSE A;

a) CYCLIC SCHEDULING 500-60

A Process can he Scheduled to Execute
Its PROGRAM or TASK Block Repeatedly,
Until it Is:

e Terminated by Execution of a TERMINATE
Statement

® "Cancelled" through Execution of a
CANCEL Statement, or Because a

_"Cancellation Condition" has been Met

4-14

ue | SQ
“| Pan SS RECYCLING AT FIXED INTERVALS 600 -G/

1600 mo 3200

Co 200-———»| (f |<—— 200 ——}|
gee executing

transitions os .

during :

_— execution oof Poh) J - i _ ready

a
- feared ne me pres meee on | fm en ene me ee oe bees ms waiting

~ —_— . eens, orm seee

| cycle 1 : cycle n

* t . \ initiated 3 s+ inactive

scheduled terminated

SCHEDULE A AT 1600 PRIORITY (50), REPEAT EVERY 200 UNTIL 3200;

ly- 72

oon,

52 7 5

PROCESS SYNCHRONIZATION I00-62

EVENT Vartables

Used for Process Synchronization

e Value TRUE or FALSE
}

® Combined with Operators AND, OR, NOT
to Form EVENT Expressions

o
o
m

ly ~ bi

LATCHED

UNLATCHED

33

300-43

EVENT Varlables May Be Matched” or "Untatched"

me a TRUE

FALSE ‘
le ee ie en eee TRUE

FALSE

SET, SIGNAL, and RESET

e Must Be Used to Change Values
of EVENT Varlables

© Cause Re-evaluation of EVENT
Expressions

e SET and RESET for LATCHED
Variables

® SIGNAL for LATCHED or UNLATCHED
Variables .

500-64

L

AA (7 | | 300-68”
Lo BO 4) _ Effect of SIGNAL
wT : ; .

DECLARE EV1 EVENT , .
EV2 EVENT LATCHED INITIAL (TRUE);

co ee ee my ee ee ee ee mr TRUE

SIGNAL EV]; ,

FALSE

TRUE

SIGNAL EV2;

we i dee ene ate me mem FALSE

n S00-6%
if T = TRUE, F = FALSE

Statement Event Actual Value | Change sensed by RTE

execution

: tT —~—| 7

. F+#et

SET latched ¢ F aT
. {LT evemermenememamaan

none
Fo-—-—-—-F

. (Tso T
none

RESET | latched F F
Ley = oe = T

Ts FP
\[F--- F

t--q--T
Fr

latched F F

T T

SIGNAL en | Tor

T—-—nyn-- T
unlatched

Fr F FT

Ist~1)

mony
otek / ((WAIT FOR EVENT-Expresston;

bo ce luets

 we rec me

other
porelated
ransitions J { | |

Kate executed t

EVL&EV2 becomes TRUE

WAIT FOR EV1 & EV2;

wo

TRUE

FALSE

TRUE

FALSE

executing

ready

waiting

S2.

non ‘ ~

SES ! /§ INITIATION ON AN EVENT CONDITION 300 -G7
tok Taf RS

| TRUE

Ev1 { bn ee gee eee es ees ame FALSE

i i TRUE

EV2 I f
j | ee ee mn ee oe FALSE

7 t

w b OS punssnssnn executing

, | : eo ready

| eee waiting

ALPHA .
(_ ae inactive

scheduled EV) & Ev2
becomes TRUE

~ SCHEDULE ALPHA ON EV1 & EV2 PRIORITY (50);

Iya

Ip penn ee

| | : $2.
non fa — $VO -6} | rs I CANCELLATION ON AN EVENT CONDITION

TRUE
—oeO

mv | meee eee eee mere een memes me FALSE

| t ,

Lo ee ee peweeneneee TRUE

ev2 | |
- on oon om FALSE

o 100 @ - 50-4, 80 ot .
. ret ~~ | -— = executing

: s
| Hiring on L

~ —pxecution_ 4. - — hee te ready

BETA |
“qeomrwweel ne a eee Ne -|j-i — —-{ —-]- — walting

Nena cima” ee ed

a [cycle 1 cycle n Linn inactive
-

. initiated { \
scheduled . terminated

EVL&EV2 becomes TRUE

SCHEDULE BETA IN 100 PRIORITY (50), REPEAT AFTER 50
“UNTIL EV & EV2:

-Shar Data Protection LAAN /f
HL afte | for Ryne amie Processes | s/

500-6)

DATA MUST BE PROTECTED AGAINST
SIMULTANEOUS ACCESS AND MODIFICATION:

® Data fs Accessed fn an Orderly Way

e Results are Not Dependent on Timing
Coincidences

DATA 1S PROTECTED BY MEANS OF:

* LOCK Groups

oe UPDATE Blocks

PY- aq

ALS

52
S00 -70

i

Shared Data Pretoction
for Dynamic Prececcss ie

DECLARE LOCK (1), A, B INTEGER, C VECTOR, D MATRIX;

DECLARE LOCK (2), W, X VECTOR, Y MATRIX;

PROCESS A PROCESS B PROCESS C

o
o

e

e 8 8

UPDATE; UPDATE; UPDATE:

A=B; A=W; — oR

C=P+Q; X=Dp C3

oe
°

o
3

CLOSE; CLOSE; |

SWAP TO:
A B c

. A ~ STALL | RUN

‘DYNAMICS E> ACTIVE B {STALL |. ~ STALL

, c| RUN [STALL -

|

oy

Pe GP Shared Data Protection
mo for Dynarnic Processes

33
S00 - 7)

Poke ay by

PROTECTION IS GUARANTEED

® Compiler Allows References to LOCKED
Varlables Only in UPDATE Blocks

¢ RTE Reserves LOCK Groups at Entry
, fo. UPDATE Block

« Simultaneous Reservation of All
Required LOCK Groups Avoids Deadlock

of

sVO-72

S
T
A
Y

ie /

A SHARED BLOCK MAY BE PROTECTED :

© By Problem-Related Synchronization

Measures

© By Preventing Concurrent Execution

@ By Allowing Concurrent Execution

In Independent Environments

THESE PROTECTION METHODS APPLY TO:

® Ordinary PROCEDUREs and FUNCTIONs

® EXCLUSIVE PROCEDURES and FUNCTIONs

© REENTRANT PROCEDUREs and FUNCTIONs

Pr t P rt oq . . , ~ yeu t a) _ Action. for EXCLUSIVE Blocks _ S°0O-73

. ow executing

! !
--s

other I | |
. unrelated | L

ALPHA transitions|[. . rato ready

| 1 4
we le ey ee ating

ALPHA enters | farpHa leaves
Pp P

l- [4 .
i {

| executing
other , :

BETA unrelated |]
, transitions 2 ae mo (fe ready

I

—~ ae lw eH ee -- le vatting
| i

| | AL BETA 1 1 | eaves P

BETA tries 2? A RTE allows BETA
- to enter P to enter P

P: PROCEDURE EXCLUSIVE ;

I> ay
_

$3
S00 -74 action for REENTRANT Blocks

fe

t

oo ae | aw executing

|
other

\ | unrelated

ALPHA eeepc — 5 ~~ + transitions, ready

| |
de eee ef ee ee cen mee me ome] me ee ee --— waiting

ALPHA ? i ALPHA leaves P

enters P \ |
“ ‘

mo ether { T f executing

. unrelated | | |

BETA transitions ' \ ready

I rT |

{ \
| |
~ —+ —_— ae 4-7 ~ — waiting

BETA leaves P

[yet

BETA enters AT
{

P ALPHA and BETA both executing P

P: PROCEDURE REENTRANT ;

rea ? | | —S/

: ol] J - — $00-74¢ 4.

LOCAL DATA IN REENTRANT BLOCKS

- @ STATIC Data is Unique to the Block
and Common to All invocations”

e AUTOMATIC Data Is Unique to Each
Invocation of the Block

« Parameters and Compiler Temporaries
are Effectively AUTOMATIC

fe Conclusions

HAL/S Has Been Designed and Implemented to Enhance Software Reliability

SUMMARY OF REAL TIME FEATURES :

® Program Structure and Name Scope

Process States, Priority, Real Time, Dependency

‘Cyclic Scheduling

EVENT Expressions, SET, SIGNAL, and RESET

LOCK Groups and UPDATE Blocks ,

EXCLUSIVE and REENTRANT Code Blocks

NAME VARTABLES

HARDWARE ‘LEVEL

101 104 o
102
103°

104 3 L
105
106

HAL/S LEVEL: DECLARE I INTEGER INITIAL(3),
“ NI NAME INTEGER INITIAL (NAMECI))

NI = NT +1)
/* SAME AS T= 1+ 13 */

we

USES FOR NAME VARIABLES

© MOVE AROUND A POINTER TO A BLOCK OF DATA (OR CODE)
RATHER THAN THE WHOLE BLOCK, "

© ACCOMMODATE DATA STRUCTURES OF DYNAMICALLY VARYING

SIZE IN A FIXED-SIZE MEMORY.

L:

PROBLEMS WITH UNRESTRICTED POINTERS

DECLARE I INTEGER,

S SCALAR,
H NAME,

NANE(H) = NAMECI)s
N=N +4;

NAME(N) = NAME(S) 3

IF N <S THEN GO TO L;

/* POINT NAT 1 */
/* WHAT CODE 1S COMPILED? */
/* POINT N AT S */

/* CONVERSION REQUIRED? */

SO, A NAME VARIABLE Is DECLARED: TO POINT TO VARIABLES

OF A GIVEN DATA TYPE 4s

DECLARE NI NAME INTEGER,
NS NAME SCALAR,
NV NAME VECTORC4),
NA NANE ARRAY(2,2) BOOLEAN |

DECLARE INTEGER DOUBLE,
I, Jy K

»~ N NAME; /* FACTORED ATTRIBURES */

HENCE THE COMPILER CAN CHECK FOR TYPE: COMPATIBILITY.

DECLARE I INTEGER,

S SCALAR,

N NAME INTEGER; .

NAME(N) = NAMECI)s

lL: Ne=N 4];

NAME(N) = NAME(S) 5

IF N<S THEN GO TO L;

- -

I
~

/* POINT HAT I */

/* CODE FOR INTEGER ADDITION */

/* ERROR-TYPE MISMATCH */

/* N DEFERENCED AND CONVERTED
TO SCALAR */

NAME VARIABLES CAN POINT TO DATA (OR CODE) WITH

THE FOLLOWING ATTRIBUTES:
eee erties

-—(Sinete or povste) Cor *)\

INTEGER CHARACTERGD ARRAY (xt.10,2)

} SCALAR BIT(n) a-STRUCTURE(n)

—"Y VECTOR(n) BOOLEAN PROGRAM

MATRIX(A,m) EVENT TASK
ses ee nt ek ca et he St ft i ee me ny et ye i ce =I eam te et i

DECLARE MATRIX(2,3), A, B, NB NAME INITIAL(NAME(B))s

DECLARE MATRIX(3,3), C, D, ND ‘NAME INITIAL (NAME (D));

A =NBy /* SAME AS A= B; °/ -

A = ND; /* ERROR-DIMENSION MISMATCH */

NAME (HB) = NAMECND) 3 /* ERROR-DIMENSION MISMATCH */

NB = ND$(2 AT 1,*)3 /* SAME AS B = D$(2 AT 2,*); */

°

RESTRICTIONS

NAME VARIABLES CANNOT POINT THEY MAY POINT TO STRUCTURES

TO NANE. VARIABLES BUT | CONTAINING NAME VARIABLES

CANNOT DECLARE AN ARRAY ——1 THEY HAY APPEAR THA STRUCTURE
OF NAME. VARIABLES WITH COPIES

(SUBTLE) A NAME VARIABLE IN A STRUCTURE WITH COPIES CANNOT

POINT TO A STRUCTURE WITH COPIES ~ CONVERSELY, A NAME VARTABLE

WHICH POINTS TO A STRUCTURE WITH COPIES CANNOT BE IN A STRUCTURE

WITH COPIES.

OTHER ATTRIBUTES: FOR NAME: VARIABLES

DENSE

ALIGNED

- RIGID .
STATIC .

AUTOMATIC

/ “INITIALC >

Sar

TO BE DESCRIBED
ea

THESE APPLY TO THE NAME

VARIABLE ITSELF, NOT TO THE:
VARIABLE WHICH IT POINTS To,

INITIALIZATION-OF* NAME VARIABLES

INITIAL oo
ne | (NAME, REFERENCE, NAME REFERENCE, ...)

NSTAY

EACH NAME REFERENCE WAS THE FORM:

NAMECoRDINARY VARIABLE)

NAHE (NULD or HULL

“NULL POINTER” - POINTS TO
NOTHING AT ALL, UNINITIALIZED
NAVE VARIABLES ALSO HAVE THIS

VALUE,”

ORDINARY VARIABLE MUST BE: , AND MUST NOT BE:

© PREVIOUSLY DECLARED © SUBSCRIPTED

. © WITH DATATYPE MATCHING e DEREFERENCED THROUGH ANOTHER

THAT OF NAME VARTABLE NAHE VARIABLE

2

3,

INITIALIZATION OF NAHE VARIABLES

DECLARE S SCALAR, -

NS NAME SCALAR INITIAL(NAME(S));

NAME VARIABLES IN STRUCTURES WILL BE DISCUSSED LATER.

STRUCTURE A:

1B SCALAR,
1 C NAME A-STRUCTURE,

DECLARE A-STRUCTURE,
Zl, . 7

72 INITIAL(L.5, MANE(Z1))3—

DECLARE NB HAME SCALAR INITIAL(NAME(Z1.B))s

DECLARE A ARRAY(5) INTEGER INITIAL(O),

NI NAME INTEGER INITIALCHAME (Az ,));

THE NAME PSEUDO-FUNCTION

@ ORDINARY REFERENCE TO NAME VARIABLE ACCESSES THE

VARIABLE: WHICH IT POINTS TO.

© NAME PSEUDO-FUNCTION IS USED TO ACCESS OR CHANGE

THE (POINTER) VALUE OF THE NANE VARIABLE ITSELF.

DECLARE SCALAR, $1, $2, NS NAME, NS1 NAME INITIAL(NAME(S2));
 a ~.

Tas PY S2 = NS1s — §2 OT si.

 NANE(NS) = NAME(NS1);

HAMECNS) = NANE(S2)3 yg LNs 1 92f-

NAME (NS) = NS1s
HST ERROR-TYPE MISMATCH!

NS = NAME(NS1)s

IN GENERAL:

© NAME VARIABLE BY ITSELF DENOTES THE ORDINARY

VARIABLE: WHICH IT POINTS TO,

[S| NAME VARIABLE

ORDINARY VARIABLE

© NAME(NAME VARIABLE) OBTAINS THE POINTER CONTENTS OF

THE NAME: VARIABLE,

<a
~\

. NAME VARIABLE

e NAMEC ORDINARY VARIABLE) CREATES A POINTER TO THAT

ORDINARY VARIABLE,

CREATED POINTER

ORDINARY VARIABLE

te

Ce

NAME ASSIGNMENTS

i ‘ . tl, 12 "= R, EACH L” AND R IS A NAME
coe aes PSEUDO~FUNCTION,

E.G. NAME(NS1), NAME(NS2) = NAMECNS);

NS2 NS2 Ns} oN

NAME COMPARISONS

LeR LAND R ARE BOTH NAME
Lr=R , PSEUDO-FUNCTIONS,

er

E.G. IF-NAME(NS1) = NAME(NS2) THEN v3
‘EQUALITY IF BOTH NAME VARIABLES POINT TO THE SAME
ORDINARY VARIABLE!

NS1 ——NS2

NAME ARGUMENTS AND PARAMETERS

Ps PROCEDURECNA) ASSIGN (NB);

DECLARE NA NANE INTEGER,

NB NAME ARRAY (10) SCALARs

CLOSE’ P; |

© ARGUMENT MATCHING NA; ANE PSEDUO-FUNCTION IN REFERENCE
CONTEXT (OR NULL).

© ARGUMENT MATCHING NB: NAME PSEUDO-FUNCTION IN

ASSIGNMENT CONTEXT.

DECLARE 1 INTEGERs
DECLARE ARRAY(1O) SCALAR, A, NV NAMEs
CALL P(NAME(L)) ASSIGN (NAME (N))s

CALL P(NULL) ASSIGN(NAME(N))s

CALL P(NAME(I)) ASSIGN(NAME (A); |
EGA

CALL P(NULL) ASSIGN(NAMECN, .))s ILLEGAL

POINTERS TO CODE BLOCKS

Pl: EXTERNAL PROGRAM}

CLOSE P13

P2: EXTERNAL PROGRAM; TEMPLATES

CLOSE P23

P3: EXTERNAL PROGRAM;

CLOSE P3;

MASTER! PROGRAM} .

DECLARE NP NAME PROGRAM,

1 INTEGER;
‘
t
4

DO WHILE TRUE}

pO FOR It =1 Tox
*S pO CASE 13

NP |

NAME(NP) = NAME(PL))

NAME(NP) = NAME(P2))
NAME(NP) = NAME(P3)3

ENDS
UPDATE PRIORITY NP TO 200;
WAIT 13.

UPDATE PRIORITY NP TO 50};
END}

END;
!

CLOSE MASTER}

u

CODE BLOCK

___________I

/* PROMOTE Pl, P2, P3 IN TURN
/* TO HIGH PRIORITY, FOR 1 SEC

/* THEN REVERT TO NORMAL PRI.

*/
“/

5 - f ™

” NAME VARIABLES“IN STRUCTURES

o NAME VARIABLES MAY POINT TO VARIABLES DECLARED WITH

STRUCTURE TEMPLATES.

o NAME VARIABLES MAY BE TERMINAL NODES OF A STRUCTURE

TEMPLATE DEFINITION, —

© A TAME VARIABLE IN A STRUCTURE TEMPLATE MAY POINT To

THE TEMPLATE CURRENTLY BEING DEFINED.

STRUCTURE LIST:

1 VALUE INTEGER, -

1-LINK NARE LIST-STRUCTURE;

HAS WRAP AULL OO Looe Pui

STRUCTURE LIST:
1 VALUE INTEGER,

1 LINK NAME LIST-STRUCTUREs
DECLARE LIST-STRUCTURE,

ZL,LINK.VALUE or I
[wr «VALUE J

U—dereferencing

Zi, 22, 73,

Z0 WANE;

, NAME(Z0) 7 7
Y . NAME (21.LINK) or

0 CTI 6 Z AME (D0 TEN

/ dereferencing

LINK,“ _, NAME(22.DINK) ox
VALUE —g— 32 , NAME(21.LINK.LINK) or

f . NAME (Z0- [LINK LINK)

/. oh
foo Lari / v

/ VALUE —o—— 23

Z1.VALUE or f
ZO.VALUE | |

dereferencing / LINK
VALUE ———+ NULL

22.VALUE or

23.VALUE or

Z2.LINK.VALUE or

dereferencin 21. LINK. LINK. VALUE or cing.

ZO. Lik. “Link. VALUE

RON CT
darefereancing

BEST WAY TO THINK OF THIS:

o ANY APPEARANCE OF A NAME VARIABLE IMPLIES DEREFERENCING.

© APPLICATION OF NAME PSEUDO-FUNCTION IMPLIES OWE LEVEL OF

”"RE-REFERENCING”

THUS

Z0 IS A REFERENCE TO THE STRUCTURE Z1

NAME(Z0) "BACKS UP” TO ZO ITSELF

Z1, LINK, LINK IS A REFERENCE TO THE STRUCTURE Z3

NAME (Z1, LINK, LINK) "packs UP” TO Z2.LINK (OR Z1,LINK, LINK)

ITSELF

NOTE THAT ZO.VALUE IS THE SANE AS ZL.VALUE SINCE ZO 1S A
HANE VARIABLE BUT Z1 IS NOT,

FURTHER, NAME(ZO.VALUE) 1S THE SAME AS NAME(Z1, VALUE)
=

1.£, A POINTER TO THE VALUE FIED IN Zl.

USES’ OF'’STRUCTURES ‘AND NAME VARIABLES

@) A PRIORITY-ORDERED QUEUE

STRUCTURE QUEUE:

1 IDNO INTEGER,

1 PRTY INTEGER,

1 LINK NAME QUEUE-STRUCTURE}
DECLARE QUEUE QUEUE-STRUCTURE(10),

ANCHOR NAME QUEUE~STRUCTURE)

DECLARE INTEGER, I, NEW_ID, NEW_PRTY)
'

DO FOR 1 = 1 TO 93

IDNO,, PRTY, = 1)

NAME (LINK,) = NAME (QUEUE, 4,)3

ENDS
IDNOy9 PRTY,9 = 103
NAME (ANCHOR), NAME(LINK, g) = NAME(QUEUE,)5

IDNO PRIY

ANCHOR

10

de | elite

USES OF STRUCTURES AND NAME VARIABLES

DECLARE NAME QUEUE-STRUCTURE, THIS, PREV}

(/* Fiup rpNo In queue */) [| _ ps0 PaTY ToNO PREY

nANE (PREV) = MAMECANCHOR) 3 laxcrok | 2] 2

wane (THIS) = NAME CANCHOR. LINK) 3
. prey & or

20 WHILE THIS, IDNOT= NEW_IDNO} - Liss a
NAME (PREV). = NAME(THIS) 3 mars

NAMECTHIS) = NAME(THIS, LINK) 3
END}

/* SET NEW PRIORITY, AND TEMP- “ C

ORARILY UNLINK FROM QUEUE */ Prey ANCHOR a THIS

THIS. PRTY = NEW_PRTY3 _ pADNO_PRTY IDNO__PATY IDNO_ PREY

NAME (ANCHOR), NAME(PREVsLINK) = NAME (THIS «LINK) 3

/* FIND PROPER PLACE TO RE~LINK IN a

___ QUEUE ACCORDING TO PRIORITY */ LINK LINK LINK

DO UNTIL PREV. PRTY <= NEW_PRTY AND NEWLPRTY <= THIS«PRTY;

NANE(PREV) = NAME(THIS)3
NAME(THIS) = NAME(THIS«LINK)3 |

END}
NAME (PREV, LINK) = NAME (ANCHOR) J

NAME CANCHOR+LINK) = Name (THIS) 3

USES OF STRUCTURES AND NAME VARIABLES

TREE-STRUCTURED SYMBOL TABLE

STRUCTURE TREE!
1 SYMBOL CHARACTER(32),

1 LESS NASE TREE-STRUCTURE,
1 ‘GTR NAME TREE-STRUCTURES

DECLARE TREE TREE-~STRUCTURE(100),
NEW_SYMBOL CHARACTER(32),
1 INTEGER INITIAL (0),

WAS_LESS BOOLEAN
DECLARE NAME TREE~STRUCTURE,

ROOT INITIAL(NULL), OLDULEAF, THIS)

NAME (THIS) = NAME(ROOT)s
DO WHILE NAME(THIS) 7= NAMECNULL)3

NAME (OLD_LEAF) = NAME (THIS) 3
IF NEW_SYMBOL < THIS«SYMBOL

"ALPHA!

 NULL| NULL

THEN DO; WAS_LESS = TRUE} NAME(THIS) = NAME(THIS,LESS); END;
ELSE DO} WAS_LESS = FALSE, NAME(THIS) = NAME(THIS.GTR)3 END:

END3
1 = I41} SYMBOL, = NEW SYMBOL;
NAME(LESS,), NAME(GTR,) = NAME(NULL) 3
IF AME (ROOT) = NAME(NULL) THEN NAME(ROOT) = NAME(TREE,)3
ELSE IF WAS_LESS THEN NAME(OLD_LEAF.LESS) = NAME(TREE,);
ELSE NAME(OLD_LEAF,.GTR) = NAME (TREE 1) 3

wot | rutn|

pkULE { NULL |

SUBSCRIPTING AND NAME VARIABLES

© SUBSCRIPTING OF DEREFERENCED NAME VARIABLES IS ALLOWED

E.G. DECLARE ARRAY(3) VECTOR, V, NV NAME INITIAL(NANE(V)),

V1 53 = NVo 33 /* SAME AS V4 43 = Vo 433 */

© SUBSCRIPTING INSIDE A REFERENCE TO THE NANE PSEUDO-FUNCTION

CAN ONLY APPEAR IN REFERENCE CONTEXT (NOT IN ASSIGNMENT CONTEXT),

SUBSCRIPTING APPLIES TO THE VARIABLE BEING POINTED TO,

E.G. DECLARE INTEGER

A ARRAY(10),

NA NANE ARRAY (10) INITIAL (NANE.(A)) ,

ONE RANE; /* WEIS RANE OF SCALAR #7
NAME (NI) = HAVE (As), xafe d
NAME(NT) = NAME(NAZ,)3 Ay

NI

COMPONENT SUBSCRIPTING INSIDE NANEC)

o ILLEGAL FOR BIT AND CHARACTER STRINGS = 12345
E.G, DECLARE B BIT(16); — NAME(Bs) li |

foe} >

e MUST SELECT A SINGLE SCALAR FROM VECTORS AND

MATRICES (ALSO SINGLE ELEMENT FROM ARRAYS)

e.G, DECLARE M MATRIX; ©

— M
NAME(M, 4) | [7 Led

' M Coe 1,2

NAME (My 1)

 TMT

Z| My 3

? _——— 14

STRUCTURE SUBSCRIPTING INSIDE NAME()

IN ASSIGNMENT CONTEXT, OK ONLY IF NAMEC) IS APPLIED 10

A NAME VARIABLE IN A STRUCTURE WITH MULTIPLE COPIES -

THEN IT SELECTS THE APPROPRIATE COPY OF THE NANE

VARIABLE ITSELF!

[E.G. | STRUCTURE S: 1 N NAME SCALAR;
DECLARE S S~STRUCTURE(10) 5
NAME(N, ,) = NAME(H, 54

IN REFERENCE CONTEXT, ONLY ONE LAN

~ NAME VARIABLE DEFINED IN A STRUCTURE WITH COPIES.

SUBSCRIPTING IS EFFECTIVE ON THE NAME VARIABLE ITSELF,

~ NAME VARIABLE POINTING TO A STRUCTURE WITH COPIES,

SUBSCRIPTING IS EFFECTIVE ON THE VARIABLE BEING

POINTED TO.

STRUCTURE Si 1 N NAME-STRUCTURE(IO); ~~ ILLEGAL! :

