
HAL/S PROGRAMMING FUNDAMENTALS
QUIZ 9

1. True or False. HAL/S will automatically convert BIT strings to INTEGER (and
vice-versa) in assignment statements, comparisons, and parameter passing.

Ans. __________

2. True or False. Conversion of BIT strings to INTEGER will always result in
unsigned (positive) integers. Ans. __________

3. True or False. The INTEGER and SCALAR conversion/shaping functions allow
the construction of 1-, 2-, and 3- dimensional arrays of either single or double precision.

Ans. __________

4. True or False. The INTEGER and SCALAR conversion/shaping functions will
accept arguments of INTEGER, SCALAR, VECTOR, and MATRIX data types. BIT and
CHARACTER strings may be contained as well. Also, any of these data types can be
arrayed. Ans. __________

5. True or False. The BIT conversion/shaping function always produces a 32-bit bit
string (which is the maximum size for a bit string). Ans. __________

6. True or False. The BIT conversion/shaping function can be used to produce 1-, 2-,
or 3-dimensional arrays of bit strings, but no precision qualifier can be specified since it
is meaningless. Ans. __________

7. True or False. The BIT conversion/shaping function cannot accept VECTOR or
MATRIX data types as input. Ans. __________

8. True or False. Although the BIT conversion/shaping function cannot have a
precision qualifier in its subscript position, it can contain a component subscript which
thereby allows bit strings of less than 32 bits to be produced. Ans. __________

9. True or False. The RADIX form of the BIT conversion/shaping function is used to
convert CHARACTER strings into BIT strings. The RADIX may be @BIN, @DEC,
@OCT, or @HEX and is supplied in the subscript position. Ans. __________

10. True or False. Like the BIT conversion/shaping function the CHARACTER
conversion/shaping function cannot accept VECTOR or MATRIX data types.

Ans. __________

11. True or False. The only way that an array can appear in a BIT or CHARACTER
conversion/shaping function is if the function is participating in an “arrayed” assignment
or comparison operation. In this case each iteration through the array causes the
conversion of the next element. Ans. __________

12. True or False. The CHARACTER conversion/shaping function produces a
character string that is exactly long enough to hold the converted data item (up to a max
of 255 characters of course). It may be component-subscripted, however, in the same
manner as the BIT conversion/shaping function so that a smaller character string is
produced. Ans. __________

13. True or False. When BIT strings are converted to CHARACTER via the
CHARACTER conversion/shaping function the subscript position can contain a RADIX
of @DEC, @HEX, @OCT, or @BIN to specify the desired form of the output. In this
case no component subscripting can be performed. Ans. __________

14. True or False. If not overridden by the RIGID keyword, HAL/S attempts to sort
declared data items in order to group unarrayed (simple) integers, scalars, bit strings, etc.,
ahead of aggregate data items like arrays, vectors, matrices, and multicopy structures.
Within a sort grouping HAL/S tries to collect data items that have similar memory
boundary requirements. Ans. __________

15. True or False. The RIGID keyword may be applied only to COMPOOL block
header definitions, STRUCTURE templates, and Minor Structures. Ans. __________

16. True or False. If the RIGID keyword is applied to a structure template then the
entire contents of the structure are rigid (allocated precisely in the declared order). If the
RIGID keyword is applied to a minor structure, however, then only that substructure is
RIGID. If the RIGID keyword is applied to a structure template and the NONRIGID
keyword is applied to one of the minor structures, then that minor structure may have its
elements sorted by the compiler. Ans. __________

17. True or False. HAL/S always places structures (and all minor structures) at
specific memory boundaries (e.g., addresses divisible by 2). Ans. __________

18. True or False. Use of the RIGID keyword may result in “wasted” memory space
since the compiler may have to skip over one or more halfwords (“alignment gaps”) in
order to align the next data item on a suitable memory boundary. Ans. __________

19. True or False. The HAL/S compiler shows memory maps (including alignment
gaps) in its Phase 2 (code) listing. Ans. __________

20. True or False. In a non-RIGID structure template, HAL/S will tend to sort
structure terminals for optimal memory packing – however, it always keeps data
belonging to a given minor structure from mixing with the data of other minor structures.

Ans. __________

21. True or False. A multi-copy structure (even if not RIGID) may have wasted space
(alignment gaps) between each individual copy. Ans. __________

22. True or False. If the RIGID keyword is applied to a COMPOOL block header,
then any structure templates contained within that COMPOOL will be treated as RIGID
also, i.e., their terminals will be allocated in the declare order. Ans. __________

23. What are the number of AP-101 halfwords occupied by the following data items?
INTEGER Ans. __________
INTEGER DOUBLE Ans. __________
SCALAR Ans. __________
SCALAR DOUBLE Ans. __________
BOOLEAN Ans. __________
BIT(7) Ans. __________
BIT(16) Ans. __________
BIT(17) Ans. __________
BIT(32) Ans. __________
VECTOR(3) Ans. __________
CHARACTER(5) Ans. __________

24. What is the value of BVAR$1 in the following case? Ans. __________
DECLARE BVAR BIT(12) INITIAL(BIN’0110010101110’);

25. True or False. BIT strings are never initialized by the compiler. Although they
are right-justified in a AP-101 halfword (or fullword), the compiler always “masks” when
it loads the bit string into a register so that any unallocated bits are safely ignored.

Ans. __________

26. True or False. NAME variables (pointers) always occupy a single AP-101
halfword no matter what kind of data item they point to. NAME REMOTE variables
(long pointers) always occupy an AP-101 fullword (2 halfwords) – again, regardless of
what kind of data item they point to. Ans. __________

27. True or False. EVENT variables act like BOOLEAN variables except that they
have a special structure (defined in the HAL/S-FCOS ICD). They reside in a single
halfword with the upper 15 bits reserved for FCOS use and the low bit containing a 0 or
1. Ans. __________

28. True or False. The opposite of the DENSE keyword is ALIGNED, and the
opposite of the STATIC keyword is AUTOMATIC. Ans. __________

29. True or False. If the keyword DENSE is applied to a COMPOOL block header
then all bit strings within the COMPOOL will be packed with shorter bit strings sharing
a single halfword or fullword. Ans. __________

30. True or False. If the keyword DENSE is applied to a structure template then it
affects the entire template unless it is overridden by the ALIGNED keyword appearing on
a minor structure – or on a bit string terminal. Ans. __________

31. True or False. The DENSE keyword cannot be applied to a structure – only to the
template. Furthermore, if it is applied to any data item other than a bit string it is simply
ignored. And it is even ignored for bit strings unless they are defined within a structure
template. Ans. __________

32. True or False. ALIGNED and STATIC are default attributes. It is therefore
pointless to ever specify STATIC. The ALIGNED keyword can be useful, however, to
locally “turn off” dense packing of bit strings within a DENSE structure template.

Ans. __________

33. True or False. DENSE is only effective on the bit strings contained within a single
minor structure (or the entire structure if it has no ‘forks’ or minor structures). Bit strings
belonging to 2 different minor structures will never be “packed” with one another.

Ans. __________

34. True or False. If a structure template (or minor structure) is declared RIGID then
the benefit of DENSE bit string packing will likely be reduced. Ans. __________

35. True or False. DENSE bit strings may be utilized just like normal bit strings.
They not only save memory but also generally provide speedier code.

Ans. __________

36. Which of the following are FALSE statements about TEMPORARY variables?
a. TEMPORARY variables can be defined within any DO … END

group except for a DO CASE.
b. In the form “DO FOR TEMPORARY I = …”, the variable I will be

equivalent to an INTEGER DOUBLE and will possibly be maintained solely
within a register and have no allocated memory address.

c. The names of TEMPORARY data items must be unique within the
DO…END group within which they are defined so that other TEMPORARY data
items in other DO…END groups can have the same name. However, no
TEMPORARY can have the same name as a normal declared data item that is
visible by the name scoping rules.

d. TEMPORARY data items may have INITIAL or CONSTANT
initialization but only if they are declared as AUTOMATIC.

e. EVENT variables and NAME variables cannot be defined as
TEMPORARY.

Ans. __________

37. True or False. A structure variable can be defined as a TEMPORARY, but this
requires that the template being referenced is contained within some previous DECLARE
group. Ans. __________

38. True or False. TEMPORARY variables are advantageous in that they may reduce
the overall data memory requirements of a code block. This is because such variables are
allocated within a run-time stack and may actually overlay each other.

Ans. __________

39. True or False. Access to TEMPORARY variables is generally as fast as access to
normal declared data items. Ans. __________

40. True or False. A stack “walk-back loop” is produced when a stack-resident
variable (a procedure parameter or TEMPORARY variable) is “scoped-into” a nested
procedure or function. Ans. __________

41. True or False. HAL/S LOCK groups, UPDATE blocks, and TASK blocks are not
utilized by FSW. Ans. __________

42. True or False. To make a HAL/S PROCEDURE or FUNCTION “Exclusive”
simply requires that the EXCLUSIVE keyword be appended to the PROCEDURE or
FUNCTION block definition and that all declared data be marked as STATIC.

Ans. __________

43. True or False. EXCLUSIVE procedures and functions require calls to the FCOS
at their entry and exit points so that FCOS can guarantee that only one process (HAL/S
PROGRAM) has access to that resource. Ans. __________

44. True or False. In order to make a PROCEDURE or FUNCTION truly reentrant
simply requires that the keyword REENTRANT be appended to its block definition.
REENTRANT blocks have no interface with the FCOS. Ans. __________

