-

> b o
[
v, -
[m.:r
VY .
N) P
, m. .
f. ; T
- ’ [B
- L.] wifu s..._, B
e ﬂ ’ as .
> ..\.w .. i .
L3 - LI ’
o
. PYSISIR (S
R . RO
.o e

-
. B
.
P

setoun

BZIEE=ELR

St |
a -n” _Iwu

o
-y

.Buf.«
oS P IS
I SN

...u - Y
G
T

P I Tadk
T ISR

U s voee = o b

I,
Wy RN

B

PSR o ‘.A.rq..l.\!...(.,).l,\J
i i

w\ " e v
Lo Toeed
1}}'.&’..{2' . .u.JJ’.

T

460 TO8J
d sl

SHOYIVERAO ARAOY¥D

Rt o
“n ' 4

00°€S$ OB

(eseR) (Tvos) EOYNAOHYT HO¥480EAV

(1 9569 ~X=RI-YSTN)

Jiers

TION

€
L

'S

RONAUTICS AND SPACE ADME:

WoNNZDY SPACE CENTER
[4

ONAL A

T
L2

N2

PREFACE
GRGUND GPERATIONS ASROSPACE LANGUAGE: (GCAL)

GOAL OVERVIEW

—

///1nls Overview Document relates the history that led to the development

of the GOAL Language ard provic2s a summary of the features and capabilities
of GOAL. \ ‘

OTHER DOCUMENTS TO BE DEVELOPED ARE: Q,q,)

(’,’|\t!
A GOAL Text Book/ic be used in conjunction with instruction. It will be
functionally organized to allow an instructor to COV%é,SlmI]ar statements

together. 5]
wfgc.‘T,“‘

A GOAL Reference Manual to fac$1itate quick access to desired statements.
It will be aiphabetically arranged.

A GDAL Self-Instruction Manual for individuals desiring to learn GOAL
~ithout additional assistance. This manual will probably follow a "building
block" approach.

Prepared for: Director of Center Planning
and Future Programs

By: Checkout Automation and
Programming Office
Launch Vehicle Operations

Paragraph

1.
Ii.
III.
Iv.
V.

TABLE OF CONTENTS

Title

Historical Review

Development Objectives and Requirements
Lanauage Scope and Format

Language Capabilities

Summary

Page

12
12

I. HISTORICAL REVIEW

The initiative to produce z stendarc test ianguage for the Space Shuttle
emergad from the experiences gained in test automation auring the Saturn/Apollo
program. Design of the Saturr launch vehiclie and its associated ground support
equipment was such that most cormands could be issued by, and most vehicle and
ground support status data, ccuid be sensed by the ground support computer com-
plex. Consequently, a high ievel potential for automation existed in this basic
design. Initially, the applicatioas program (test programs) written for execu-
tion in the ground computer complex were alimost entirely fer loading and verify-
ing the onboard guidance and navigation computer, for checkout of the control
system, and for checkout of the emergency detection system. Other systems were
initially cnecked out manually.

For these early automated packages, the typical user-programmer communica-
tions gap wa: experienced firsthand as test personnel attempted to comprehend
the programmer's interpretation of the test requirements. enerally, changes
were difficult to implement and to understand. Full control over the test came
only after much actual experience. Even then the details of some operations
were gbscurely embedded in the test packages sc that the test engineers had
difficulties in comprehending the subtleties of the programmer's logic. At
the time when automatic checkout could have eased the mounting strain associated
with the pressing schedule, the lack of a common language to communicate require-
ments and to describz the computer programs further burdened the launch team.
Problems arose from the lack of concise uniform test notations that could be
readily understood by personnel of all the different engineering elements.

During the Saturn IB launch period, a basic set of coded operators, suit-
able for applications programming, was added to the Ground Computer Operating
System. This source language was entitled ATOLL for Acceptance Test or Launch
Language and was conceived and implemented by Marshall Space Flight Center. In
the early application of this system, it was learned that the success of the
computer language could be strongly dependent upon its method of implementation
through the language processor and its execution through the operating system
(real time executive). The first ATOLL capability employed an on-line trans-
lator, which in the Saturn Ground Computer System, was operationally inefficient.
Changes were made to correct the disadvantages, and a much more efficient sys-
tem was available at the outset of the Saturn V program. Nevertheless, pre-
Judices against test automation lingered for several years until the test
engineers were convinced that automation would prove to be a useful and respons-
ive tool. Now the language has evolved to the point where most vehicle disci-
plines use the lang'':ge extensively for automatic test procedures.

For Saturn/Apollo NASA was in the same category for language development
as most of the other groups who develop test languages within industry or
Government. That is, the language was developed only after the equipment and
applications were firmly established and was among the last items to be imple-
mented. Under this circumstance, the language was subject to criticism as
another new, unfamiliar, troublesome system that complicated the engineer's
life and added to his 1ist of problems.

v fo« nave the opportunity to standardize the basic communications among

so~ts ¢ ground and in-flight testing at a point in the system acquisi-

c.cle where it will become a natural part of the program. This wiil
ost

A properly defined engineer Jrientea language will serve as the basic tool
in insuring commonaiity for Orbiter/Booster/GSt Test and Ground Operations Pro-
cedures while inherently providing the capability to: (1) efficiently automate
manual procedures, (2) readily adapt design procedures for operational use,

(3) reduce supporting documentation, (4) efficiently cross-train test personnel,
\5) minimize impacts from changes, and (6), in general, will be a prime contribu-
tor in support of the rapid turnaround requirements.

Thus, in July 1970 contracts were awarded to Martin-ilarietta, Denver Divi-
sion and M & S Computing, Inc , Huntsville to develop requirements for a standard
test language. From the resulcs of their reports a language requirements docu-
mert was published by KSC in May 1971. Since July, 1971, a detailed language
spec” “ication has been under development by a team of NASA software engineers.
II. DEVELOPMENT OBJECTIVES AND REQUIREMENTS

The development of GOAL was based upon several objectives, namely, the lan-
guage:

a. Requirements must be consistent with and support the design concepts
and requirements of the Space Shuttle.

b. Will not be constrained by specific test equipment.

c. Will allow the same procedure to be used for both manual and automatic
testing.

d. Will provide for a flexible monitoring capability.

e. Will provide the capability for test personnel to communicate with
mission software.

€. Will be easy to use by test-oriented personnel not necessarily skilled
in progranming techniques.

g. Will be easy to read and will be self-documenting.

h. ggst be compatible with the philosophy of performing concurrent
sting. .

From the results of years of ground testina experience and an extensive review
of many existing languages the following language requirements were tabulated:

English-1ike Words, Structure, and Punctuation

The keywords ¢f the test language form the building blocks of the language
and care should be taken to select words natural to the Space Shuttle test-
environment. Abbreviations should generally be avoided and only in cases

where the abbreviation has gained universal acceptance will a deviation be
considered. These xeywords wiil be crdered in & logical English form. This
orderirg will promote learning and retention while allowing comprehensive

error checking. The punctuation symbols and their meaning should be consistent
with generai usage.

Comnents

A comment is an expression which clarifies a particular statement or functional
aspect of a group of statements but is not required to technically detine the
procedural actions of the operation. When automated, comments have no effect
on the operation of the computer performing the assigned tasks. In some appli-
cations comments provide the added flexibility required to allow the computer
listing to be the single control document. Therefore, they should be easily
inserted into the language statements.

Total Control of the System Under Test

The language should allow test personnel to specify test point control to tho
lowest level that is available under tue given system configuration. The

level of access to a Line Replaceable Unit will probably be different in off-
line test environment than in the operational system configurations. The types
of signals used in controlling the test or function operations must not be con-
strained by the standardized test language. For the Space Shuttle System, the
language must recognize the requirement for discrete events, digital codes, and
proportional values (digital representation of analog values).

Data Sampling

The test language should support data gathering consistent with system con-
straints and ground rules. The ability to exercise control over the system
under test and the ability to measure parameters and status of :che test item
are the foundations for testing. Sampling rates should be by a system Timit
and not a language limit. It is possible, after the system corstraints have
been defined, to incorporate the constraints into a language processor which
will alert the user if his procedure conflicts with system constraints. As
with control, data samples may be discrete events (ON/OFF), digital codes
(LRU addresss, or proportional values (0-100%).

Data Ccmparison

Data comparison is the next basic level above the ability to control test items
and the ability to acquire the data from the test article. The comparison may
take many forms (test versus predicted, per cent change from last value,
deviation during time interval) and the results may be saved for use later

or may immediately effact a change in the processing sequence. The data
comparison capability should include arithmetic and doolean terms in a form
familiar to the test environment. '

Time Controlied Events

The extensive use of time factors in sequencing and testing is a salient
feature of test and ground operation procedures. During lauuch preparations,
test and functional operations ire often cortrolled by 2 specific time relative
to Taftoff (COUNTDOWN CLOCK). Other functions are based on given time of day;

§

e.q., usualiy refecenced to Greenwich Mean Time. Mission elapse time may be
usad for inflight test and operations. Mary of the system sequcnces must be
performed in a close time-controlled sequence relative to an occurrence of an
event within the vehicle. There are also those indicators that must be checked
at a periodic rate. The comprehensive use or time in testing warrants major
consideration in selecting the proper keywords to be used in a test language.

Moritoring the System Under Test

Recognizing that detailed checkout philosophies ha'e not been defined for
future vehicles, an increased dependence upon monitoring is an established
trend in the space and airlines industries. Though most of the existing space
system checkout facilities include monitoring capabilities, most of the auto-
mated test languages seem to exclude this capability. Realizing that inter-
action with the real time hardware/softwarc system could dictate some adjust-
ments to a predefined test language, the basic language should be able to
define itums to be monitored; e.g., conditioned by time {start/stop and samp-
limg interval). The general capabilities of the language should also pe avail-
able for specifying monitoring packages.

Tnformation Presentation and Recording

In the automation of test requirements, the manner in which the datz is
presented to the test evaulator can significartly influenc: the efiort re-
quired in deducing the proper action to be taken or determining whether or not
all aspects of the test were completed satisfactorily. The ability to record
or save selected data. usually correlated with time, is also an operation that
is frequently performed throughout system testing and must be supported by the
test language.

Console Interaction

At times during a test, an anomaly may appear that justifies suspending acti-
vity until the system status and integrity can be confirmed. The decision may
he just to resume operating steps, or rerun certain steps, or to deviate in
some way by changing test parameters. The basic language requirements to be
derived from this situation are: (a) the language must be able to suspend
execution until requested to continue, and (b) the language must accommodate
the need to change test parameters from a console for certain predefined
parameturs. This feature is also dependent upon the operational hardware/
ggggware system and refinements to the language may result from later system
initicn.

Data Manipulation

Data manipulation is considered to encompass numeric formulas, relational
formulas, and conputer associated assignment statements. Generally, the
languages that provide arithmetic capabilities provide these capabilities in

a formula type statement (e.g., FORTRAN type statement). This is a reasonably
natural and compact way to describe the required calculations. The relational
formulas are of the comparison type usually expressed in a form of 'EQUAL TO'
or 'NOT EQUAL TO'. For automatic testing, a closely related requirement
exists, which is the moving of data items between storage cells.

Lo .puter-to-Computer Communications

It appears that the Space Shuttle will have inter-computer communication in
<omz form. It could be between the central computers, between a central com-
puter and an engine computer, or between a central computer and an off-vehicle
computer {ground system or space station system). The test language will
provide this capabiiity in a manner that will ensure two-way communication
between digital devices. This wiil then include the capability to transmit
and receivs data Trom scme of the more complex data bus interface units.

.acgrporation of Packages Written in Qther Languages

The need to specify certsin functions in assembly language is not expected to
disappear entirely. It compiicates a language considerably to include every
capability recessary to handle highly exceptional requirements. However, to
ensure that exceptional requirements can be fulfilled, it is necessary to have
some capability to incorporate assembly language programming consistent with
the design intent of the language. This feature will probably be used only

by the soohisticated test programmer and under a higher leve! of control and
validation than required for packages written in the standard test language.
This requirement recognizes that other languages, assembly level or high order,
may be needed and the standard test language must support this concept.

Tesi Sequence Designation

A desired test sequence may be stated in several ways. A test procedure usually
contains many runctional elements. These functional elements are comprised of
a varying number of individual operating steps (statements). If the functional
element must be repeated a number of times, then it may be come a subprocedure
and referenccd by the main procedure, or the steps of the elements may be in-
serted ‘he proper number of times, or direction may be given to repeat the
reauired steps the appropriate number of times. This looping type capability
is even more important whea tne procedure is automated because it often has

a direct impact on storage allocations required for the procedure. This
requi-ement includes the need for directing the sequence based on the condi-
tion of test indicators. -

ngg}ification of Language Packages and Components
This includes the obvious need of the ability to reference a specific test
procedure-for use during testing. For incorporating changes, and for configur-
ation crntrol., Often procedures must reference other procedures. Individual
statesents within the procedure have the same need; therefore, the language will
rrovide for labeling of separate packages as well as individual statements.

Data Bank Reguirement

The data bank concept is the feature of the language that allows the language
to be independent of the test equipment. It 1s basically a cross reference
talle that relates the engiueiring terminology of a test point to the test
equipment parameters requirec to 2-cess the test pofnt. For example: the
precedure might read APPLY BOOSTER MEASURING POWER. The data bank would take
BOOSTZR MEASURING POWER and provide the necessary data for the automatic test

aovioment such 3s data bus number, interface unit address, line replaceable

univ designation, and other system related values necessary to locate the test
point ano to accomplish the desired results. For the Space Shuttle, there will
probaply de a centrally defined and controlled list of test points similar to
Apolle documents; e.g., the Saturn V Discrete Running List, Saturn V IP&CL, and
ACE-S/C Programming Requirements Proces< Specification Parameter List. Such a
cocument for the Space Shuttle would furnish much of the information required in
the data bark. This is the final link between the language and the test system.
It also allows procedures to be written independent of the test cystem and in.
advance of the final configuration.

Table Definition

Special attention should be given to the definition and use of tables. They
should prove to be a significant aid in test preparation. The flexiuility and
usefulness of table operations warrants the inclusion of this capability even
though it might appear more complex than desired. Tables are currently being
used in Saturn checkout procedures and have become an integral part of daily
cperations and major tests. Generally, they support such functions as system
status checks, switch scans, and performance monitoring.

Data Types

Investigation of the Space Shuttle test and checkout applications and previous
efforts at the definition of t2st languages leads to the conclusion that the
following constant and data types are required in the new language.

M Constants

(ag Integer

(b Fixed Point

(c) Boolean

(d Text

(e Binary (Octal or Hexadecimal)

(2) Data Variables

(a Integer
(b Fixed
c Boolean
d Text
e Time

Writer Aids

I1 appears consistent throughout aviation and space vehicle checkout procedures
that the writing task is a relatively small portion of the overall procedure
cycle. Tine number of people using, reading, validating, or changing prccedures
car sometimes become rather large. Therefore, while primary consideration must
be given to the larger group, the test procedures writer is certainly a vital
Hnk in the cycle anu should be afforded the capability required to fnsure
maximum economy without compromising the primary language objectives. The
requicement includes such standard concept as replacing the nawe of one item

8

with another, m:zcro features, and sub:-outing capabilities. Portions of other
language reguirements also may be impiemented in a manner wnich facilitates
procedure writing. The final selection must be constrained by the fact that
the user is ill-sarved by a language wnich allows him to conveniently describe
an erroneous procedure.

Reaction to System Changes

Test and checkout requirements include the basic needs of being able to respond
to.such general system indicators as 'start processing,' 'terminate processing,’
and ‘'suspend processing.' The command could have been originated by a manual
entry, another procedure, or an internally-generated command due to detection
of 2 serious anomaly. Although the Space Shuttle does not appear to be using
system interrupts, the lanauage chou.d be able to accommodate interrupts for
component tyne testing and to preclude a language impact if the Space Shuttle
or Space Stzticn implements interrupts at a later time.

Language Character Set

To promote general applicability of the ianguage to 2s many test applications
and test equipment &s practical, only characters may be used that are common
to the USA Standard Code for Information Interchange Code (ASCII) and the

Extended Binary Code Decimal Interchange Code (EBCDIC). These characters are
as follows:

(1) Capital Letters: A-2
(2) Numbers: 0-9
(3) Special Characters: + :
lank

Ny, S g, V/\-‘; [

ORI ¥} D

I11. LANGUAGE SCOPE AND FORMAT

ROAL, (Ground Operations Aerospace Language) is a test engineer oriented lan-
guage designad to be used to standardize procedure terminology and as the test
programming Yanguage to be used for ground checkout operations in a space vehicle
taunch environment. It encompasses a wide range of testing, including vehicle
systems and subsystems pretlight checkout, ground preflight operation such as

£ opellant transfer, support systems verification, ground power control and
monitoring, etc. The language is compatible with a wide variety of engineering
de~ign, requiring primarily Command/vesponse (analog and digital) to tne systews
to be tested. [t may be used in the checkout of- 1ine replaceabie units, doth
‘on-board preflight, and in the shop. It allows the szme procedure to be used

+ §n both automacic-and manual medes, GOAL permits a high degree of readabilfty

~and revatnability by providing the necessary operators required for testiig, -
expressed 1n a fawiliar notation, -Therefore, it is easily learned and urder-
stood .y personnel not nccessarily skilled ¢n-programming techniques. After

;-Much consfderation 1t was decfded to standardixe the language statements in a

readatle format prior to compilation, rather than requirg language readability
depencency on a conversion program.

Larquage Components

There are five distinct components in GOAL. The two primary componants >: -he
PROGRAM and the DATA BANK.

PROGRAM:

A program is an ordered group of statements which, when executed by
a computer, will progress through the predefined test steps. W:i:lh-
in the program, there are two types of statements: DECLARATION and
PROCEDURAL.

DECLARATION STATEMENTS consist of data, table, or 1ist declarations.
DECLARATION STATEMENTS must be grouped at the beginning of a GOAL
program. They are non-executable statements which reserve storage
and signify data types during program compilation.

PROCEDURAL STATEMENTS comnrise the remainder of the program. These
are the stateme-ts whicnh will actually be executed by the object
machine to perform the desired test operations. PROCEDURAL STATE-
MENTS are further classified into external action and internal action
statements. External action statements stimulate action external to
the program. Internal action statements are used for the more
“programmer oriented” tasks such as directing program control, tim-
ing, and sequencing.

DATA BANK:

Past experience has revealed the need for implementation of a data
bank to supply certain declarations, translations from English
notation to address patterns, calibration data, and other modules
of cormon usage requiring centralized controi. This concept is
vital to minimize the languages dependence ovn the test equipment.

While the initial work has aready been started, the complete defi-
nition of the data bank will be possible only a“ter the necessary
detailed system information is available. However, the GOAL
specification can ba used for test procedure definition indepen-
dently of this work.

The data bank 1s 3 separate software entity from the program. It
contains a collection of specify statements. A datz hank acts as

a central file which provides the 1inkages between the test pro-
cedure and tha system under test. GOAL allows the use of more than
-one data bank for compilation of a program. A data bank is required
‘onty if the tast program is to access system subroutines or external
test puints,

10

Tne three secondary GOAL components are the SUBROUTINE, MACRO, and NON-GOAL.

A SUBROUTINE is a self contained set of statcments which perform

a specific task. It is defined once within e program or data bank
and may be executec by an appropriate perfoim sta.ement. The
suproutine organization is the same c¢s a program, with Declaration
Statements precading the Procedural Statements. The calling state-
ment transfers control back to the main program at the next sequen-
tial step following the call. Subroutines may contain variable
parameter locatiocns which are specified by the call statement, or
they may oe completely independent of outside (main program) data.

A MACRO s a method of allowing the test writer to abbreviate
character strings which must be repeated throughout his program.
The character strings to be repeated may be in the program, data
bank, or subroutines. Each MACRO is assigned a language label.

The writer may call the MACRO in those locations where he wants the
sequence to appear and the compiler will perform the task for him.
The end result on the output listing is the same as if each step
had been individually coded by hand.

A NON-GOAL component must be contained within a subroutine and that
subroutine must be within a data bank. NON-GOAL components can be
used tu provide capabilities that are not inherent in the GOAL
statement renortoire.

GOAL STATEMENTS

The general structure of a GOAL statement is the same as a simple imperat”
English sentence, with the subject understood to be the computer. The: - =
requirement for a GOAL statement is a verb; however, most statements alsv con-
tain an object to receive the action. An optional phrase may be used to modify
Ehe aﬁtion. That is, tell when, how often, or how long to perform the action.
xample:

Optionai Phrase Verb Object
AFTER <GMT> IS 12 HRS 30 MIN, OPEN <INLET SUPPLY VALVED ;

GOAL statements are wiitten in free field format. The free format permits the
writer to pocition elements on the page, as he desires, for clarity. It has
~greater flexibility since fixed fields can later be legislated 1f desired.

A1l procedural statements may have a statement number which consists of up to
six numerals praceded by the word STATEMENT, STEP or S. The statement number
unfquely fdentifies a statement for branching and reference purposes. For
exampie, S14, STATEMENT 651, STEP 3141 could be statement numbers and need
not occur in any particular order,

GOAL notation is in terms of the system under test (SUT) and {s the notation of
the test engineer, A GOAL statement is designed to accomplish a certain test
function, Knowledge of the actual linkage between the computer and SUT is not
required Lecause it is obtained from the data bank. .

n

T/, UL LUAGE CAPABILITIES

“wa GO,.L Frocedural statements provide the basic language capabilities. These
staterents have been grouped into six functional areas which are defined as
follows:

External Tes. Action

These statements provide interaction with and control of the system under
test (SUT). Commands or data may be sent to the test equipment external
to the program and inputs to the program may be acquired.

Internal Secuence Control

These statements control the execution sequence of the program statements.

Arithmetic/Logical Operations

These statements provide the mathematical capabilities of GOAL. They con-
tain the mathematical capability to add, subtract, multiply, divide and
exponentiate using notation compatible with the current FORTRAN IV system.

Execution Zontrol

These statements provide capabilities for concurrent program executi.n and
also for serial exncution of other programs a.d subroutines.

Interrupt Control

These statements control the action to be taken when an interrupt occurs.
Table Controi
These statements enabic selective processing of table entries.

V. SUMMARY

1he necz2ssity for a standard test language must be emphasized. Care should be
exercised in selecting the scope of tasks that a language describes. The
assertion that 'one language chould be used for everything' sounds attractive,
but nder close examination this approach would defeat the objective for sim-
plicity and readability. Many languages have been reviewed to determine if
they would be sufficient to meet the requirements for a ground test and check-
out language. Many (such as BASIC, CAGE, SPL, etc.) were rejected because of
the lack of necessary testing capabilities. Others like FORTRAN required too
many and too complicated statements to perform specified tasks. Test (Ground/
Irflight) and ground operations procedures represent a logical subdivision of
the total task, and the ianguage supporting these areas should be capable of
defining most of the required activities. While pr-~serving the general read-
ability such 2 capability would help minimize the tedious, costly, time-
consuming traditional {interface between the test engineer and the programmer.

12

For the Space Shuttle Program, we mis* make maximum use of the lessons learned
through the years of design and launch expirience. The very nature of the
Space Shuttle design and the essence of the operational concept dictate that
more be accomplished in a shorter period by fewer people than ever before.
Automation, then, becomes a requirement for operations, net an elective. To
effectively apply extensive autometion, a test language has ro suitable alter-
nate.

13

~

REFERENCES
Tre following documents were used in preparing this overview.
Development of a Test and Flight tngineering Oriented Language, Phase III

Report, Martin Marietta Corporation, NASA-KSC, MCR-70-424

Development of a Test and Flight Engincer Oriented Language, Final Report,
Volumes I and II, M & S Computing, Inc., NASA-KSC, Report Number 70-0034

Developzant of 3 Test and Flight Engine2ring Criented Language, Phase II,
Report, Martin Marietta Corporation, NASA-XSC, MCP-70-365

Cevelopment of a Test and Flight Engineer Oriented Language, Phase II,
#* & S Computing, Inc., NASA-XSC, Report Number 70-0031

Development of a Test and Flight Engineer Oriented Computer Language,
Technicat Froposal, M & S Computing, Inc., NASA-KSC, Reference RFP 3-309-0

Requirements For a Standard Language For Test and Ground Operations,
NASA-KSC, KSC-TR-1111

14

NABA/RSC NOV/Y3

