Preliminary CR14217 PAGE 2 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

Space Flight Operations Contract

HAL/S-FC

SDL INTERFACE CONTROL DOCUMENT

September 2005

DRD-1.4.3.8-a

Contract NAS9-20000

USA

United Space Alliance

Preliminary CR14217 PAGE 2 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

HAL/S-FC | SDL

INTERFACE CONTROL DOCUMENT

Prepared by

Peter Koester
USA/Application Tools, PASS Build and
Reconfiguration

Approved by

Monica Leone, Director
USA/Application Tools, PASS Build and
Reconfiguration

DRD —-1.4.3.8-a

Contract NAS9-18817

Preliminary CR14217 PAGE 7 OF 202 USA001556
HAL/S-FC / SDL ICD Baseline
32.0/17.0
REVISION LOG
Rev.
Change Description Date

letter no.

Baseline Total rewrite. Supercedes OB30029 due to 09/2005

SSCR 14217

Preliminary CR14217 PAGE 7 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

LIST OF EFFECTIVE PAGES

The status of all pages in this document is shown below:

Page No. Change No.
32.0/17.0 Baseline

Preliminary CR14217 PAGE 7 OF 202 USA001556

HAL/S-FC / SDL ICD Baseline
32.0/17.0

PREFACE

The HAL/S-FC/SDL Interface Control Document was prepared by the United Space
Alliance (USA), Flight Operations.

The primary responsibility is with USA, FSW Applications Tools and Recon, D/0163500.

Questions concerning the technical content of this document should be directed to
Danny Strauss, (281) 282-2647, Mailcode USH-635L, Department 01635A7.

Preliminary CR14217 PAGE 7 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

“This page intentionally left blank.”

Preliminary CR14217 PAGE 12 OF 202
USA001556

HAL/S-FC/ SDL ICD Baseline
32.0/17.0
CONTENTS

Section Page

1.0 HAL/S-FC | SDL! ICD.....ccttttreemnussssssssssssrmmmmmmnnsssssssssssssssmmmsssnssnsssssnss 1-1
1.1 INTRODUCTION. .. .ot 1-1
1.1 PUIPOSE. et 1-1
R I Yo 0 o PP 1-1
1.1.3 Precedence of DOCUMENLS.........uuuuiiiieeeeiiiieiiiiiiiieee e 1-1

2.0 COMPILERISPEF.........cciiiiiiriimnnnneessssssss s sssssssssssssssss s nsnssssasss 2-1
2.1 PROGRAM MANAGEMENT FACILITY (PMF).......ccuvuuennn... 2-1
2.1.1 Dynamic Invocation of HAL/S-FC Compiler..........c.............. 2-3
2.1.2 Compile-Time OPLIONS........uuuuiiiieeeeeeeiieeeiiiie e eeeeenns 2-5
2.1.3 INPUES e 2-5
2.1.3.1 Primary INPUL.......cooiiiiiiiiiiiii e 2-5
2.1.3.2 INCluded INPUL......ccoiiiiiieeeeee e 2-6
2.1.4 OULPULS.....ee e e e 2-7
2.1 4.1 LIStNGS..uui it 2-7
2.1.4.2 ODJECE COUR....ouiiiiiiiiiie et 2-8
2.1.4.3 TemMPIateS.....ccooiiiiii e 2-8
2.1.4.4 Simulation Data Files (SDFS)......cccooeeiiiiiiiiiiiiiiiiiieeeeeeees 2-8
2.1.4.5 RetUrN COUES.....couuuuiiiiieiie et e 2-8
2.1.5 ACCESS RIGNS.. .ot 2-9
2.2 SIMULATION DATA FILES (SDFS)....cccuuuiiiiiiiiiiiiiiieennns 2-10
2.2.1 Simulation Data File DIreCtory..........cccccceeeieeieeeiiieeeiiiieennn. 2-14
2.2.2 Master Directory Cell..........cooiieiiiiiiiiiiieeeiee e, 2-15
2.2.2.1 SDF FIee SPaCE. ...ttt 2-15
2.2.2.2 Directory ROOt Cell........cooiiiiiiiiiiiiiiii e, 2-17
2.2.2.2.1 Compiler Data..........ccooviieiiiiiiiiiiie e 2-27
2.2.2.21.1 TitleData Cell..........coovieeiiiiii e 2-27
2.2.2.2.1.2 CARDTYPE Data Cell.......ccoovviiiiiiiiiiiiiiiiiiiieeeeeeea 2-28
2.2.2.2.1.3 Initialization Table..........cccoooiii 2-29
2.2.2.2.2 Include TexXt Data........ccoovveeeeiiiiiiiiiiiiie e 2-30
2.2.2.2.3 Block Data StruCtUIeS.........coeeeeeeieiiiiiiiiiiie e 2-33
2.2.2.2.3.1 Block Index Table..........coouuuuiiiiiiiiiiiiieiiiiiee e 2-33
2.2.2.2.3.2 HAL/S Block Data Cell.............cceeiieiiiiiiiiiiiiiiiee, 2-34
2.2.2.2.3.3 Block Symbol Extent Cell.............couvuiiiiiiiniiiiiiieiiiis 2-43
2.2.2.2.4 Symbol Data StruCtures..........cccoeeeeeviiiiiiieeeeeiee e, 2-46
2.2.2.2.4.1 Symbol Index Table..........ooooiiiiiiiiiiiiiiieeeeiii 2-46
2.2.2.2.4.2 Symbol Data Cell...........ccoveeiiiiiiiiii i, 2-48
2.2.2.2.4.3 Constant Value Cells...........oouuviiiiiiiiiiee 2-69

2.2.2.2.4.3.1 String Constant Value Cells..........cccccoeeeviiinninnnen. 2-70
2.2.2.2.4.3.2 Scalar/Integer Constant Value Cells................... 2-71

2.2.2.2.4.4 Replace Text Cells........cooiiiiiiiiiiiiiiiieeie e, 2-71

Preliminary CR14217 PAGE 12 OF 202

USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0
2.2.2.2.4.5 Procedure/Function Formal Parameter Cell............... 2-74
2.2.2.2.4.6 Name Terminal Initialization Cell...........c.cccoeevveiinininnn. 2-76
2.2.2.2.5 Statement Data StrUuCIUIES.........cooevviiviiiiiiiiiieieeee e, 2-82
2.2.2.25.1 Statement Index Table............ccoviiviiiiiiiiiiiiiiies 2-84
2.2.2.25.2 Statement Data Cells........ccccouvviiiiiiiiiiiieeeeee 2-86
2.2.2.2.5.2.1 Executable Statement Data Cell......................... 2-86
2.2.2.25.2.2 DECLARE Statement Data Cell...............cccceun... 2-93
2.2.2.2.5.3 Statement Extent Cell............coovviiiiiiiiiiiieeeee 2-94
2.2.2.2.5.4 Procedure/Function Invocation Cell..............coeevvnneen.n. 2-98
2.2.2.2.6 Expression Variables Cell..............ccooiiiiiiiiiiiinnnnnn. 2-100
2.2.2.2.7 Variable Reference Cell..........coviiiiiiiiiiiiiiiiieiee, 2-103
2.2.2.2.8 FUNCtion TabIeS........oocviiiiiiii e 2-111
2.2.2.2.8.1 Function Index Tables..........cccooveiiiiiiiiiiiiiicieeeen, 2-112
2.2.2.2.8.2 Function XREF Data Cell..........c.cccovvvviiiiiiiiiiieennn, 2-115
2.2.2.2.9 HALMAT Data StruCtUreS........coevvieniiiiiiiiieeeiieeeeen 2-116
2.2.2.2.9.1 HALMAT Cells.....ciiiiiiee e, 2-116
2.2.2.2.9.2 Literal Data.........ccouuiiiiiiieiiieeeeeeee e 2-119
2.2.2.2.9.2.1 Literal Extent Table............ccooevviiiiiiiiiiiiieinenn, 2-120
2.2.2.2.9.2.2 Literal TabIesS......c.ccuviiiiiieiieeee e, 2-121
2.2.2.2.9.2.2.1 Character Literal..........cc.ccoeevviiiiiiiiiniiinenns 2-122
2.2.2.2.9.2.2.2 Arithmetic Literal............cccoveiiviiiiiiiiieinenns 2-123
2.2.2.2.9.2.2.3 BitLiteral.......c.ccovveiiiiiiiiii 2-124
2.2.2.2.9.2.2.4 Template Subscript Literal Cell................... 2-125
2.3 OBJIECT CODE ... oot 2-127
3.0 AP-101 EXECUTION ENVIRONMENT.......ceiirmirmnirrnsnrnnsrsmssrsnssnnnnes 31
3.1 AP-101 REGISTER USE......co i, 3-1
3.2 HAL/S STACK . e 3-2
3.3 STACK AND LOCAL BLOCK DATA ORGANIZATION....... 3-5
3.4 PROCEDURE AND FUNCTION CALLS........coiieieieiennn 3-7
4.0 CSECT/MEMBER NAMING CONVENTIONS........ccooiiiiieeiccieeee, 4-1
Appendix

APPENDIX A EXAMPLE PROGRAM AND SDF DATA STRUCTURES...A-1

APPENDIX B CHANGE HISTORY.ccciiiiiimmmmmmnnnssssssssnsrnsssssssssssssnes B-1

Preliminary CR14217 PAGE 12 OF 202

USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0
FIGURES
Figure
Figure 2-1 HAL/S-FC Interface With Program Libraries..........cccccccccceiinnnnennn. 2-2
Figure 2-2 Partitioned Data Set Directory ENtry.........ccoeeeeiviiiiiiiiiineenneennn. 2-7
Figure 2-3 Naming Convention Cross-Reference Table............ccccccccc... 2-11
FIQUIe 2-4 SDF POINTEL.......ccuuiiiiiiiie e 2-12
Figure 2-5 Simulation Data File Member Organization (Not all
iNterconnNections are SNOWN).............ceiieiiiiiiii e 2-13
Figure 2-6 PDS-Level Organization of the Simulation Data Files.............. 2-14
Figure 2-7 Master Directory Cell..........ooooviiiiiiii e 2-15
Figure 2-8 Free Cell LinKage........ccoooviiiiiiiiieeeeee e 2-16
Figure 2-9 SDF Free Cell Linked LiStS........cccoiiiiiiiiiiiiicieeei e 2-17
Figure 2-10 Master Directory/Directory Root Cell Overview...................... 2-18
Figure 2-11 Directory Root Cell (Part L1 of 3)......ccooovviiiiiiiiiiiie e 2-19
Figure 2-12 Title Data Cell OVEIVIEW............ciiiiiieiiiiieeeiiiceee e 2-27
Figure 2-13 Title Data Cell.........cooevriiiiiiici e 2-28
Figure 2-14 Cardtype Data Cell OVEIVIEW...........ueciiiiieeeiiieeiiiieeei 2-28
Figure 2-15 CARDTYPE Data Cell.........c.ccoviiiiiiiiiici e 2-29
Figure 2-16 Initialization Table OVErvIieW...............ueeiiiieieeiiiieeeeiiiiceeee e 2-30
Figure 2-17 Initialization Table.............ooviiiiiiii e 2-30
Figure 2-18 Include Data OVEIVIEW.uuuuiiiiiaeeeiieeeiiiiee e 2-31
Figure 2-19 Include Data Cell..........cooouviiiiiiiiiic e 2-31
Figure 2-20 Block Data Structures OVEIrVIEW...........ceveeeeeeeeeeeeeiiiiiiaaeeeeeens 2-33
Figure 2-21 Block Index Table........ccccoooiiiiii e 2-34
Figure 2-22 All Symbols Contained on One SDF Page for Block.............. 2-35
Figure 2-23 Symbols Contained on Multiple SDF Pages for Block............ 2-36
Figure 2-24 Example of Block Symbol Extent Cell.............cccciiiiiiiinnnnn. 2-37
Figure 2-25 Block Data Cell............oouuiiiiiiiiiiiiicie e 2-38
Figure 2-26 Alphabetic Name Tree..........uuiiiiiiiii e 2-40
Figure 2-27 Hierarchical BIOCK Tre€.........cccuiiiiiiiiiiii e 2-41
Figure 2-28 Relationship of Block Data Cells, Block Symbol Extent Cells, and
Symbol IndexX Table...........oiiiii 2-44
Figure 2-29 Block Symbol Extent Cell.............ccooiiiiiiiiiiiiiii e, 2-45
Figure 2-30 Symbol Data Structures OVErVIEW.............ceveeeveiiiiieeeeiiiiieeeeennns 2-46
Figure 2-31 Symbol Index Table............cooiiiiiiii e 2-47
Figure 2-32 Symbol Data Cell (Part 1 of 3).......ccccveiiiiiiiiiiiiiii e 2-49

Figure 2-33 Structures and Templates for a Single Structure (Part 1 of 2) 2-52
Figure 2-34 Structures and Templates for Nested Structures (Part 1 of 2)2-54
Figure 2-35 Structure Symbol Cross-Reference Information (Part 1 of 2). 2-56
Figure 2-36 Symbol Data Cell Linked LiStS...........ccccoviiiieiiiiiiiiicciiiiceeeeen 2-57
Figure 2-37 Stack Variable Character String Format.............ccccceeeeeeennnnnn. 2-66

Preliminary CR14217 PAGE 12 OF 202
USA001556
HAL/S-FC/ SDL ICD

Figure 2-38 Array of Character Strings...........cooooooeiimiiiiiiiiiiiiieieieeeeee e 2-67
Figure 2-39 Algorithm for Calculating the Bias Factor...........c.......ccccevenni. 2-68
Figure 2-40 Constant Value Cell OVEIVIEW...........ccoovvviiiiiiiiiiiiiiiiii 2-70
Figure 2-41 String Constant Value Cell.............ccoooviiiiiiiiiiiiee 2-70
Figure 2-42 Scalar/Integer Constant Value Cell.............ccccccceiiin, 2-71
Figure 2-43 Replace Text OVEIVIEW..........c.uuiiiiiiiiiiieee e 2-72
Figure 2-44 Replace Text EXamples.........cocovin 2-72
Figure 2-45 Replace Text Parameter Cell.............cooiiiiiiiiiiiiciiee e 2-73
Figure 2-46 Replace Text Parameter Cell Pseudo Descriptor................... 2-73
Figure 2-47 Replace Text Macro Cell............cooiiiiiiiiiiiiiiee e 2-74
Figure 2-48 Procedure/Function Formal Parameter Cell Override............ 2-75
Figure 2-49 Procedure/Function Formal Parameter Cell.............cccoeeunnen. 2-76
Figure 2-50 Name Terminal Initialization Cell Overview..........ccccccccceunnnn. 2-77
Figure 2-51 Name Terminal Initialization Cell..............ccccoooiiiiiiiinan 2-78
Figure 2-52 Initial Pointer Value Operator............ccccvvvvviiiniiiiiiiiieeees 2-79
Figure 2-53 Initialization Loop Start Operator.............ccouvviieeiiiiiiinieeeeieans 2-80
Figure 2-54 Initialization Loop ENd Operator.............ccooeeeeiiiiiiiiiiiiiiiee 2-81
Figure 2-55 End of Initialization (Cell) Operator..........ccccccoeceviiiiiieiriiiinnnnnn 2-81
Figure 2-56 Name Terminal Initialization Extension Cell.................c......... 2-82
Figure 2-57 Statement Data Structures OVErvVIEW..........cccoeeeevvvviiieeineennennns 2-83
Figure 2-58 Statement/Symbol Relationship Overview................ccccvvveeenen. 2-84
Figure 2-59 Statement IndeX Table...........c.eoiiiiiiiiiii i, 2-85
Figure 2-60 Example of Non-unique SRNS.............oooiiiiiiiiiiiieeee 2-86
Figure 2-61 Block Statement NeSting...........cccuuiiiiiiiiiiiii e 2-86
Figure 2-62 Executable Statement Data Cell..............ccoooiiiiiiiiiiiiiiiiiis 2-87
Figure 2-63 Statement TYPEe......coui i 2-91
Figure 2-64 Left Hand Side (LHS) INdeXes...........ccceeiiiieiiiiiiieeeeiiiicieeeeenn 2-92
Figure 2-65 DECLARE Statement Data Cell............cccoovviiiiiiiiiiiiiiiiii. 2-93
Figure 2-66 Statement Extent Cell OVEIVIEW...........covvvvviiiiiiiiiii, 2-95
Figure 2-67 Relationship of Statement Extent Cells and Statement Index
TaADIE. e 2-96
Figure 2-68 Statement Extent Cell...........cooooiiiiiiiiii e, 2-97
Figure 2-69 Procedure/Function Invocation Cell Overview........................ 2-98
Figure 2-70 Procedure/Function Invocation Cell............ccccceeiiiiiiiiiiiiinnnnnn. 2-99
Figure 2-71 Expression Variables Cell Overview.............cccccccevvvnvvvnnnnnnn. 2-101
Figure 2-72 Expression Variables Cell...........cccooooviiiiiiiiiiieceee 2-102

Baseline
32.0/17.0

Figure 2-73 Variable Reference Cell Overview (Expression Variables Cell)2-104

Figure 2-74 Variable Reference Cell Overview (Name Terminal Initialization

) 2-105
Figure 2-75 Variable Reference Cell Overview (Symbol Data Cell)......... 2-106
Figure 2-76 Variable Reference Cell............ccccoeie 2-107
Figure 2-77 Structure Reference Diagram............ccoevvviieeeiiiiiiiieeeeiiiieeeenn, 2-108
Figure 2-78 Function Data OVEIVIEW............ccceeiiiiiiiiiiiiiieeeeeeeeee e 2-112
Figure 2-79 Function IndexX Table...........ccccoiiiiiiiiiii e 2-113
Figure 2-80 Function XREF Data Cell...........covviiiiiiiee 2-115

Preliminary CR14217 PAGE 12 OF 202
USA001556
HAL/S-FC/ SDL ICD

Figure 2-81 Function XREF Extension Cell................oooooiiiiiiiiiiiiie e 2-115
Figure 2-82 HALMAT Data Cells OVerVIeW.........c.ccoevvviiiieeiiiiiiieeeeeii 2-117
Figure 2-83 HALMAT Cell.....oooiii e 2-118
Figure 2-84 HALMAT Extension Cell.............ccooviiiiiiiiiiieiee e, 2-118
Figure 2-85 Literal Data OVEIVIEW...........ccuviiiiiiiiiiiiiiiiiieeeeeee e 2-120
Figure 2-86 Literal Extent Table...........cccoiiiiiiiiiiii e 2-121
Figure 2-87 Literal Table............ooooiiiiii e 2-122
Figure 2-88 Character Literal Cell.............ccoooiiiiiiii i, 2-123
Figure 2-89 Arithmetic Literal Cell...........ooooviiiii, 2-124
Figure 2-90 Bit Literal Cell..........ccooooviiiiiiiii e 2-125
Figure 2-91 Template Subscript Literal Cell...............oooo oo 2-126
Figure 2-92 ESD Output Record (Card Image)..........ccevvvvieeeeieiiiinieeeennnn, 2-127
Figure 2-93 ESD Data lteM........cooiiiiiiiiiiiiiiiee e 2-128
Figure 2-94 Text Output Record (Card IMmage)........cccceveevveviiieeeiiiineineinan, 2-129
Figure 2-95 RLD Output Record (Card IMage).........cccevvveveiiiiiiiiiininnaannnn. 2-130
Figure 2-96 END Output Record - Type | (Card Image)..........cccceeeeeeeees 2-131
Figure 2-97 END Output Record - Type 2 (Card Image)............ccceeeeeeeeeenn. 2-131
Figure 2-98 IDR Data in a Object Module END Record...............cccevennn.en 2-132
Figure 2-99 TESTRAN (SYM) Output Record - (Card Image)................. 2-132
Figure 2-100 SYM Variable Field Data...........cccccooeevviiiiiiiiiiiiiiiee e, 2-133
Figure 3-1 Stack EIements...........ooooiiiiiiiii e 3-3
Figure 3-2 Stack Organization Cell..............cccooeeiiiiiiiiiiii e, 3-5
Figure 3-3 Local BIOCK Data..........cccevviiiiiiiiiiiiiiiiiieeeee e 3-6
FIQUIE 3-4 EITOr VECION.....cciiiiii e e e 3-8

Baseline
32.0/17.0

Preliminary CR14217 PAGE 12 OF 202

USA001556

HAL/S-FC/ SDL ICD Baseline
32.0/17.0

“This page intentionally left blank.”

Vi

Preliminary CR14217 PAGE 15 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

1.0 HALI/S-FC | SDL*ICD
1.1 INTRODUCTION

1.1.1 Purpose

The purpose of the HAL/S-FC / SDL Interface Control Document (ICD) is to define the
specific interfaces that exist between the HAL/S-FC compiler and Software Production
Facility (SPF) software systems. This document is necessary to control and track changes
in the interfaces since parallel HAL/S-FC and SPF maintenance efforts are taking place.
Its contents impose requirements on the HAL/S-FC compilers.

1.1.2 Scope

The scope of this document covers the following two major HAL/S-FC / SPF interface
areas:

e HAL/S-FC compiler with the SPF

¢ HAL/S-FC compiler with the AP-101/S Linkage Editor

1.1.3 Precedence of Documents

The precedence governing the applicability of various controlling documents is as
follows:

HAL/S Language Specification (USA003088)

HAL/S-FC Compiler System Specification (USA003089)
HAL/FCOS Interface Control Document (USA001460)
HAL/S-FC / SDL Interface Control Document (USA001556)

1. Since this document was originally written, the term Software Development Laboratory
(SDL) has been superceded by the term Software Production Facility (SPF). SPF will be
used throughout this document, except for the document Title.

Preliminary CR14217 PAGE 15 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

“This page intentionally left blank.”

Preliminary CR14217 PAGE 151 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

2.0 COMPILERI/SPF

This portion of the ICD defines the interfaces that exist between the HAL/S-FC compiler
and the SPF. It contains the following major subsections:

e 2.1 PROGRAM MANAGEMENT FACILITY (PMF), page 1
e 2.2 SIMULATION DATA FILES (SDFs), page 10
e 2.3 OBJECT CODE, page 129

2.1 PROGRAM MANAGEMENT FACILITY (PMF)

The system that maintains and controls the disk resident libraries (source, object, and load)
for the SPF is called the PMF. The interface considerations between the PMF and the HAL/S-
FC compiler arise due to the following factors:

¢ Dynamic invocation of the HAL/S-FC compiler by the PMF
e HAL/S-FC compiler's need to access and/or create elements within the program libraries.

Figure 2-1 on page 2 shows the relationship between the program libraries and the
HAL/S compiler.

In the sections that follow, the detailed interface between the PMF and the HAL/S-FC
compiler is established. Section 2.1.1, “Dynamic Invocation of HAL/S-FC Compiler” on
page 3 discusses dynamic invocation of the HAL/S-FC compiler. Section 2.1.2, “Compile-
Time Options” on page 5 discusses Compile-Time options. Section 2.1.3, “Inputs” on
page 5 discusses the source input and how it is formatted. Section 2.1.4, “Outputs” on
page 7 discusses the output from the compiler and how it is formatted. Section 2.1.5,
“Access Rights” on page 9 discusses access rights.

Preliminary
HAL/S-FC/ SDL ICD

CR14217 PAGE 151 OF 202

Update
Statements
Released Released Program
Source Include | Access
Librany Librany File
ry
Update Includes
(PMF) L |
Prima
Updated HAL/S-FC Listin;—‘"
™ Spurce - Compiler -
L
Update 4 A
Listing Y
Temporary -4 Ohject E:T:Ebn
templates | Includes Decks Includes ESDF &5
and’or andior (5)
Create Create
L)
Auto AP-101/5
L'Ea" ™ |inkage Editor
ibrany -
Y
) Mew .
Rur-time = Mapping
Librany Load File
Librany

Figure 2-1 HALIS-FC Interface With Program Libraries

USA001556
Baseline
32.0/17.0

Preliminary CR14217 PAGE 151 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

211 Dynamic Invocation of HAL/S-FC Compiler

The HAL/S compiler can be invoked by the problem program at execution time through
the use of the CALL, LINK, XCTL, or ATTACH macro instructions. If the XCTL macro

instruction is used to invoke the compiler, then no user options may be specified. The
compiler will use the standard default, as set during system generation, for each option.

If the compiler is invoked by CALL, LINK, or ATTACH, the user may supply:

1. The compiler options

2. The DDNAMES of the data sets to be used during processing

3. Field for the compiler to return the control section (CSECT) name generated for this
unit of compilation

Name Operation Operand
symbol CALL MONITOR, (optionlist
{[,ddnamelist]
[,ddnamelist, csectname]}), VL
OR PARAM=(optionlist
ATTACH {[,ddnamelist]
[,ddnamelist, csectname]}), VL=
1
EP - specifies the symbolic name of the compiler. The entry point at

which execution is to begin is determined by the control program
(from the library directory entry).

PARAM - specifies, as a sublist, the address parameters to be passed from
the problem program to the compiler. The first word in the address
parameter list contains the address of the option list. The second
word contains the address of the DDNAME list. The third word con-
tains the address of the field used by the compiler to return the con-
trol section (CSECT) name.

optionlist - specifies the address of a variable length list containing the options. This
address must be provided even if no option list is provided.

The option list must begin on a halfword boundary. The first two
bytes contain a count of the number of bytes in the remainder of the
list. If no options are specified, the count must be zero. The option
list is free form with each field separated by a comma.

Preliminary CR14217 PAGE 151 OF 202 USA001556

HAL/S-FC/ SDL ICD Baseline
32.0/17.0
ddnamelist - specifies the address of a variable length list containing alternate

DDNAMEs for the data sets used during compiler processing. If
standard DDNAMEs are used and the CSECT name return field is
not provided, then this operand may be omitted. If standard
DDNAMEs are used, but the CSECT name return field is provided,
this address must be provided and point to halfword count of zero.

When the standard DDNAMEs are not to be used, the alternate DDNAME list must
begin on a halfword boundary. The first two bytes contain a count of the number of
bytes in the remainder of the list. If any name is less than eight bytes long, it must be
left-justified and padded with blanks. If an alternate DDNAME is omitted, the standard
name will be assumed. If the name is omitted within the list, the 8-byte entry must
contain binary zeros. Names can be omitted from the end merely by shortening the list.
The sequence of the 8-byte entries in the DDNAME list is as follows:

Entry Alternate Name For Data Set Organ. Description
1 SYSIN PS Primary Input
2 INCLUDE PO Include Library
3 ERROR PO Error Messages
4 ACCESS PO Program Access File
5 SYSPRINT PS Primary Listing
6 LISTING2 PS Secondary Listing
7 OUTPUT3 PS Object Deck
8 OUTPUT4 PS Duplicate Object Deck
9 OUTPUTS PO Simulation Data Files (SDFs)
10 OUTPUT6 PO Templates
1n OUTPUT7 PS AP-101 Assembly Listing
12 FILE1 PS Work File
13 FILE2 PS !
14 FILE3 PS !
15 FILE4 PS !
16 FILES PS l
17 FILEG PS !
18 PROGRAM PS Compiler Program Library
19 OUTPUTS PO Define Block Library
20 HALSDF PO Simulation Data Files (SDFs)
21 UNUSED PO
22 UNUSED PS
23 UNUSED PS
24 FILE7 PS Work File
25 UNUSED PO
26 UNUSED PO

Preliminary CR14217 PAGE 151 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline

32.0/17.0
Where PS = Physical Sequential

PO = Partitioned Organization

csectname - specifies the address of an eight byte field into which the compiler moves the
generated control section (CSECT) name of the primary unit of compilation.
If the program invoking the compiler does not need this information, this
operand may be omitted.

VL - specifies that the sign bit is to be set to 1 in the last word of the address
parameter list.
2.1.2 Compile-Time Options

The Compile-Time Options, including special compiler processing for the SPF, are listed
in Section 5.1 of the HALS/S-FC User’s Manual.

An example of special compiler processing for the SPF is:

e Special output requirements on compiler’s primary listing (see Section 2.1.4.1, “List-
ings” on page 7).
2.1.3 Inputs

Source data will come from two major areas. The primary area contains units of
compilation (PROGRAM, PROCEDURE, or COMPOOL) that are passed from an update
step. The other area is the HALSDF library which contains simulation data files (SDFs) and the
INCLUDE library which contains source code that are to be included. Both the primary
input and INCLUDE library may contain concatenated data sets. If data sets are
concatenated, they must have identical characteristics.

2131 Primary Input

The following items relate to the format of the source data coming in via the primary
input stream:

Data Set Organization (DSORG): Sequential
Record Format (RECFM): Fixed Blocked (FB)
Logical Record Length (LRECL): 80

Record Sequence Number: Positions 73 thru 78 of every record are assigned and
controlled by PMF

Record Revision Level: Positions 79 and 80 of every record are assigned and
controlled by PMF

Preliminary CR14217 PAGE 151 OF 202 USA001556
HAL/S-FC / SDL ICD Baseline
32.0/17.0
The source margins on the input records are positions 2 thru 72 of each record.
Positions 73-80 are valid for source data if the NOSRN option is specified and PMF
is not used to compile the source.

2.1.3.2 Included Input

The following items relate to the format of the data coming in via the HALSDF library
input stream:

Data Set Organization (DSORG): Partitioned

Record Format (RECFM): Fixed (F)

Logical Record Length (LRECL): 1680
The following items relate to the format of the data coming in via the INCLUDE library
input stream:

Data Set Organization (DSORG): Partitioned
Record Format (RECFM): Fixed Block (FB)
Logical Record Length (LRECL): 80

When the compiler is retrieving a data set member to be included in the source, the
source revision level is obtained from the PDS directory entry and used on the output listing
(see Section 2.1.4, “Outputs” on page 7).The location of the 2 byte revision level is shown
in Figure 2-2 on page 7.

In the optional user data portion of a PDS directory entry, any user supplied pointers (TTRNS)
must come first.

Bits 1 and 2 of the “C” byte specifies the number of TTRNSs that are present. Each
TTRN is 4 bytes long. The source revision level will follow immediately after the last TTRN. If
no TTRNSs exist, the source revision level will follow immediately after the “C” byte.

Note: If no, revision level field exists, (i.e., PMF was not used to update the included
input) assume the revision level is zero.

Preliminary CR14217 PAGE 151 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

Optional User Drata

Member Manme P C
TTH TTRM TTRM TTRM Rev. Level

Y
{0-31 Halfwords

' . (Max. B2 Bytes)

1If Mo, Of User Mo, Of User
Alias | Data TTRMs Data Halfwords

3.7

Bits 0 1-2
User TTRM entries, if present, are 4 bytes each.

Revision Level consists of two EBCDIC chamcters ina

halfword field.

Figure 2-2 Partitioned Data Set Directory Entry

214 Outputs
Outputs from the compiler have been categorized into the following five classes:

Listings (Primary, Secondary — Not Used, and Tertiary)
Object Code

Templates
Simulation Data Files

Return Codes
2.1.4.1 Listings

The primary listing is the standard HAL/S compiler output listing as described in the
HAL/S-FC User's Manual (USA003090) with the following modifications:

The Statement Reference Number (SRN) (input positions 73 thru 78) and source
record revision level (input positions 79 and 80) are printed adjacent to the compiler's
statement number.

Note: If the statement spans more than one input record, the compiler only prints
the statement reference number and record revision level from the first record.

After encountering an “INCLUDE” statement, the compiler shall print informatory
messages. Message content depends on the source of inclusion. Inclusion from an

SDF results in the following:

“INCLUDED FROM SDF member”
“RVL xx CATENATION NUMBER n”

Preliminary CR14217 PAGE 151 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

Local inclusion and inclusion from a file that is not an SDF results in:

“START OF INCLUDED MEMBER, RVL xx, CATENATION NUMBER n".
“END OF INCLUDED MEMBER, RVL xx, CATENATION NUMBER n”.

Where xx is alphanumeric and n is numeric. If the LIST option is on, the “INCLUDED”
source statements are printed between the appropriate message sets described above.

No requirements have been identified for the secondary listing from the HAL/S compiler
since the type of listing needed (i.e., an accurate reflection of the source records) is
available from the PMF program.

The tertiary listing consists of AP-101 code that is emitted by the HAL/S-FC compiler.

2.1.4.2 Object Code

When producing AP101/S object modules, each object module generated by the HAL/S
compiler is written to a sequential data set for input to the AP101/S linkage editor.
Multiple compilations produce object decks “stacked” in the order they were compiled.

2.1.4.3 Templates
NOTE: The PMF default action is to specify that templates are not generated.

Each template generated by the HAL/S-FC compiler is output to a partitioned data set
defined by the OUTPUTG6 DD card. The member name is derived by eliminating
underscore characters from the source (“unit of compilation”) label, taking the first six
characters (or all of the characters, if there are fewer than six characters) from the resulting
string, and then appending two “@” characters to the beginning of the string. For example, a
compilation unit named MY_PROGRAM generates a Template member named

@ @MYPROG.

Since the templates go into a dataset which may also contain source code members,
the templates are created in the same format as source code (see Section 2.1.3.2, “Included
Input” on page 6), and written using the block size of the existing data set.

All template directory entries, for new or revised templates, are created with two bytes of
user data initialized to X’FOFO’.

2.1.4.4 Simulation Data Files (SDFs)

Each SDF member created by the HAL/S compiler is written to a partitioned data set
defined by the OUTPUTS5 DD card. The member name is derived as described in Section
2.1.4.3, “Templates” on page 8, except that it is preceded by two “#” characters (e.g.,
MY_PROGM becomes #MYPROG).

2.1.4.5 Return Codes

Preliminary CR14217 PAGE 151 OF 202 USA001556

HAL/S-FC / SDL ICD Baseline
32.0/17.0

The compiler passes the results of the compilation process via register 15.The low order
three bytes of register 15 contain the highest severity code encountered during
compilation. The high order byte of register 15 is used as a flag byte with the following bit
settings defined:

1....... This unit of compilation has a template
I Template for this unit of compilation was either changed or newly created
B This unit of compilation has an SDF

2.1.5 Access Rights

The HAL/S language allows managerial restrictions to be placed upon the usage of user-
defined variables and external routines. The existence of such a restriction is indicated
by the use of the ACCESS attribute as described in the HAL/S Language Specification
(USA003088). A detailed description of the manner in which these restrictions are enforced
can be found in HAL/S Compiler System Specification (USA003089). For additional
information, refer to the HAL/S-FC User’s Manual (USA003090).

Preliminary CR14217 PAGE 151 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

2.2 SIMULATION DATA FILES (SDFS)

Simulation Data Files (SDFs) provide the information about symbols and statements necessary
to conduct simulation processes and to reduce simulation output into a convenient and
readable form. An SDF member is produced by the compiler for each unit of compilation,
including COMPOOLs. It is stored, as a member of a PDS, separate from the associated
object code, and therefore can be retrieved as needed by the simulation processors and
DASS/HALSTAT tools. SDFs are also used by the HAL/S Compiler to retrieve included
COMPOOL symbol data. Naming conventions are described in Section 2.1.4.4, “Simulation
Data Files (SDFs)” on page 8.

Several Tables/Cells have been renamed in this document in an effort to standardize
the names of the Tables/Cells between the HAL/SDL ICD, the HAL/S-360 Compiler
System Specification, and the documentation to SDFPKG. Figure 2-3 on page 11
contains a cross-reference between the old names and the new standard ones.

The logical organization of an SDF member for a unit of compilation is portrayed in Figure 2-5
on page 13. The SDF member is logically divided into three major parts as follows:

Directory - which provides the locations of the various component parts of the SDF
member.

Symbol Data - which provides attribute information about the symbols in the compilation.
Also it supplies information on relative memory locations of symbols, structure
template linkages for structure elements, and the statements in which symbols are
declared, referenced, used as a subscript, or modified.

Statement Data - which provides attribute information about the statements in a
compilation. It also provides information on relative memory locations of the first and last
machine instructions in a statement, statement labels, and the variables that are
used and/or modified.

10

Preliminary CR14217 PAGE 151 OF 202 USA001556

HAL/S-FC/ SDL ICD Baseline
32.0/17.0

HAL/S Compiler HAL/SDL ICD Standardized HAL/SDL ICD Figure

Speci-fication and Terminology Table/Cell Names No.

SDFPKG (Revision 8)

Terminology

Directory Root Cell Simulation Table or Master Directory Cell | Section 2.2.2

Directory Header (Figure 2-7)

Directory Root Cell

Simulation Table or
Directory Header

Directory Root Cell

Section 2.2.2.2
(Figure 2-11)

Block Data Cell

HAL/S Block List
Member

Block Data Cell

Section 2.2.2.2.3.2
(Figure 2-23)

Symbol Data Cell

Symbol Data Entry

Symbol Data Cell

Section 2.2.2.2.4.2
(Figure 2-30)

Statement Data Cell
(Executable)

Statement Data Entry

Executable Statement
Data Cell

Section 2.2.2.2.5.2.1
(Figure 2-60)

Statement Data Cell

Statement Data Entry

Declare Statement

Section 2.2.2.2.5.2.2

(Declare) Data Cell (Figure 2-63)

Block Node Block Index Table Block Index Table Section 2.2.2.2.3.1
Entry Entry (Figure 2-19)

Symbol Node Symbol Names and Symbol Index Table Section 2.2.2.2.4.1

Pointers Table Entry

Entry

(Figure 2-29)

Symbol Block Extent
Cell

Symbol Block Extent
Cell

Block Symbol Extent
Cell

Section 2.2.2.2.3.3
(Figure 2-27)

Function Node Table

Function Node Table

Function Index Table

Section 2.2.2.2.8.1
(Figure 2-77)

Function XREF Cell

Function XREF Cell

Function XREF Data
Cell

Section 2.2.2.2.8.2
(Figure 2-78)

Card Type Cell

CARDTYPE Data Cell

Section 2.2.2.2.1.2
(Figure 2-15)

Include Library Mem-
ber Cell

Include Data Cell

Section 2.2.2.2.2
(Figure 2-17)

Replace Text Cell

Replace Text
Parameter Cell

Section 2.2.2.2.4.4
(Figure 2-43)

Replace Text (Exten-
sion) Cell

Replace Text Macro
Cell

Section 2.2.2.2.4.4
(Figure 2-45)

Figure 2-3 Naming Convention Cross-Reference Table

Figure 2-5 on page 13 identifies the various components of the SDF member and
depicts most of the interconnections between these components. One of the relationships
not shown is the connection between the Statement Extent Cells and Block Symbol Extent
Cells and their corresponding Index Tables. This connection is too complex to portray;
therefore the user should reference the sections for the Statement Extent Cells and Block
Symbol Extent Cells to gain an understanding of the connection. The figure should be
referred to as later sections are reviewed in order to keep in mind the relationships of the
various components of the SDF member.

11

Preliminary CR14217 PAGE 151 OF 202 USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
The SDF member for a unit of compilation is blocked into fixed-length physical records in the
SDF partitioned data set (PDS).The organization of these records and of the PDS direc-
tory entry for the member is shown in Figure 2-6 on page 14.Each physical record (“page”) is
1680 bytes long and contains logical records dedicated to specific functions. The physical
records are numbered from zero.

PMF places the revision level of the HAL/S source code member into the first two bytes of the
user-data field of the directory entry. Figure 2-6 on page 14 illustrates the storage of the
revision level for an SDF member.

The logical data segments are fixed or variable in size, but are always fullword aligned.
A logical data segment is referenced by a 4-byte pointer (fullword aligned) which
consists of two 2-byte fields; the first field contains the record number (beginning at 0) of
the physical record to which the logical record belongs, and the second field contains the offset
(also beginning at 0) of the logical record within the physical record (see Figure 2-4 on page 12
for a pointer illustration). It should be noted that the record number is synonymous with the
page number. A pointer is represented in the ICD figures by a vertical arrow “1” and a
notational reference.

All of the data contained within an SDF member is organized into Cells and Tables. A
Cell is a contiguous block of space in a record of an SDF member that is addressable only by an
SDF pointer. A Cell cannot cross a page boundary so it must be < 1680 bytes in length. Tables,
on the other hand, consist of multiple entries and may cross SDF page boundaries, though no
individual table entry can cross a boundary. Table entries may be accessed by either SDF
pointers or by halfword indexes.

Table indexes are two bytes in size and are always halfword aligned. The first index of
any table is always one.

2 Bytes 2 Bytes
FAGE = OFFSET
[in bytes)
FAGE = can range from 0 to Last Data Fage
(Field 20 of Directory Root Cell)
OFFSET can range from O to 1679

Figure 2-4 SDF Pointer

12

Preliminary

HAL/S-

FC/SDL ICD

Directory Root Cell

Y

Block Statement

'I
|
I
i
¥
rry

CR14217 PAGE 151 OF 202 USA001556
Baseline
32.0/17.0

Master Directory

A HAL
> S— Elock List
— Tree
¥
¥ 0

ml] ' Block Data Cell
» £ .4. ! S

i
i
I
i
i
i
I
I
I
I
: .
I) 1
Extent Cell ™ -
1 I p: .
| I
1 1
1
| 1 Block Index
' Table
1 I
R
I I I
: 0 Lo
b Block Symbol
: : Extent Cell
I
N i
: I
: Diirectory i
________________ , N
: Data :
g 4 | 8 4 '
o | iy - Symbol :
l : 1 Data Cell :
Z Statement : = Iy e -
[Drata Cell :
[t -
i p SIrUCture
r-“""_ » Template
——————————— * Linkage

HALZCDR EFGHISF
5-11-52

Figure 2-5 Simulation Data File Member Organization (Not all interconnections are

shown)

13

Preliminary CR14217 PAGE 151 OF 202 USA001556

HAL/S-FC/ SDL ICD Baseline
32.0/17.0
0 =user =user-data
TTRRs heads (7)
bits |0 12 37 |
: I
bytes 8 311, 2 10 2
Mumber
Member Mame TTR C RWL Spare of Last
. Page
User Data
£ L)
<
'|I'|I'|I'|I'|I'|l'|l'|I
LRARRAANY
LLRREANY
'|I'|I'|I'|I'|I'|I'|I'|I
l SR

M-1 | v

Figure 2-6 PDS-Level Organization of the Simulation Data Files

2.2.1 Simulation Data File Directory

The SDF Directory provides information about the organization and location of the
various lists and component tables that make up the SDF member for a unit of
compilation.

The directory consists of:

Master Directory Cell (Figure 2-7 on page 16)
Directory Root Cell (Figure 2-11 on page 20)
Block Index Table (Figure 2-21 on page 35)
Block Data Cell (Figure 2-25 on page 39)

Block Symbol Extent Cell (Figure 2-29 on page 46)
Statement Extent Cell (Figure 2-68 on page 99)

The directory also serves as the means for locating major groupings of data contained
in the physical records of the data set member for the unit of compilation.

14

Preliminary CR14217 PAGE 151 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

15

2.2.2 Master Directory Cell

The Master Directory Cell (Figure 2-7 on page 16) is always found at the very beginning
(Record 0, Byte Offset 0) of the SDF member. It is the initial entry point into the SDF
member. Among other things, this cell is used to determine the SDF Version Number and
the location of the Directory Root Cell (Section 2.2.2.2, “ Directory Root Cell’ on page 18).

Fubword Halfword Ewte Offset Field
Offset Offset Decimal (Hex) Mumber Bytes
»
0o 1 Phase 3 Version Mumber 2
1 202 z Unused 0000 2
First Physical
. . & First Cell of Directory 4 Record of File
! . A Free Cell Chain Cem e
Z 4 B (3 4 4 Directory Root Cell 4
. 4 First Cell of Data
€ 121c) 5 Free Cell Chain 4

Figure 2-7 Master Directory Cell

The fields contained in the Master Directory Cell are described below:

Field No. Description

1 This field contains the version number of Phase 3 (the SDF creation phase) of
the HAL/S compiler used to compile this Compilation Unit. Every time a
significant change is made to the SDFs, this Version Number is
incremented by one.

2 Unused. Contains X'0000'.

3 SDF pointer to the Directory Free Cell Linked List. This list identifies space
that was allocated for directory information, but was never used.

4 Pointer to the Directory Root Cell (Figure 2-11 on page 20)

5 SDF pointer to the Data Free Cell Linked List. Data Cells are cells like the

Symbol Data Cell and Statement Data Cell. This list identifies space that
was allocated for block, symbol, or statement data, but never used.

22.2.1 SDF Free Space

SDF members contain unused free space which is divided into two classes: Directory
Free Space and Data Free Space (see Figure 2-8 on page 17). Each Free Space group
is organized into cells of contiguous space and is a part of either the Data or the Directory Free
Cell Linked List. Both the Directory Free Cell Linked List and the Data Free Cell Linked
List terminate with a zero pointer (hex ‘00000000’).

16

Figure 2-9 on page 18 illustrates the linked lists used in both the Directory Free Cell and
Data Free Cell lists.

FigldMo. Master Directory Cell Bytes FieldMo. Dvirectory Free Cell Ewtes
»> [-
1 Fhase 3 Version i 1 = of Bytes 3
Available (M)
*
2 0 2 2 4 MNextDirectory 4
(Mo Bytes fvailable) Free Cell
3 & 1st Directory a
Free Cell M
4 A Dhirectons
Root Cell
g 'y 1st Data 4 Data Free Cell
Free Cell .
1 = _:-f E.*;tE_E. 4
Available (M)
*
2| & Mext Data 4

Free Cell

I

Figure 2-8 Free Cell Linkage

17

Master

Diirectory
Cell
Page 0 1 M M+1 M+2 M+3 M-1
(Directory
& Dhirectony . Info)
Direct
» Roct o ANext Cell
a Data Free WHITIIIN (Data Area)
Cell HHHTTTIIIT (Directory
[(Directory IAIINIII Info) (Data Area) (Data Area)
Info)
Directol
Bocr ol (Data Area)
[
< # Bytes .
Bytes . ANextCell | »
(Directory © % Bytes
i Infa) % Bytes * ZByes T ry
e Cell P il Ao oo | 0
et ext |
S _ VTR —
ST T A
(Directory I, TAAARAA (Data Area) TR
Infa) SHFTTTIITIIL TN A
Drirectony Cata
Pages Pages

Legend: Directony Free Space it

Ciata Area Free Space TR

Figure 2-9 SDF Free Cell Linked Lists

2.2.2.2 Directory Root Cell

As shown in Figure 2-10 on page 19, the Directory Root Cell is pointed to by Field 4 of
the Master Directory Cell. The Directory Root Cell (Figure 2-11 on page 20) locates
subordinate Cells, locates the Symbol Index Table, and provides general information needed
for statement processing. This latter information includes the location of the
Statement Index Table and the values of the first and last internal statement numbers
(ISNs). This ISN information is used in conjunction with the Statement Extent List to
determine the pertinent physical records of the Statement Index Table. However, the
information can be used directly to locate statement data pointers by means of a binary
search whenever sufficient memory space exists to contain the complete Statement Index
Table.

18

Field 4

Master Directory
Cell

Diirectony
Root Cell

Figure 2-10 Master Directory/Directory Root Cell Overview

19

Fulheord Halfword Evte Offset Field
Diffset Difset Cecimal (Hex) Mumber
i) o Oy 1

1 212 2
1 2 4 (4} 3
2 4 g (8) 4
3 E 120C) 5
7 14 (E) B
4 g 16 (18 7
=] 18 (12]
5 10 20114 =]
] 12 24 (18) 10
7 14 28 (1C) 1la
15 30 1E) 11b
] 1& 321200 12a
17 24 (22) 12k
=] 18 36 (24) 13
10 20 40 (28) 14a
21 42 (2A) 14b
11 22 44 (22 15
1z 24 48 (30) 16
13 26 52 (34 17

Flag Field

Mumber of Last Physical Record

Date of File Creation
Time of File Creation

Mumber of Last Directory
Physical Record

Mumber of EXTERMAL Blocks

&

=0

Number of Block Indices
Mumber of Symbols
Head of Block Index Table

or =F List Head of Compilation
Unit Intemal Symbols

(Address Order) Within =0 or =F

A

Mu

=R List Head of Compilation
rit Remote Data

First SYMBOL Index
Table Entry

mber of Stack Walkback Loops

Relative Address of Literal
Areain =0 CSECT

A Compilation Unit Block Data Cell

[Hierarchical Tree)

A Head of the HAL'S Block Tree

[Alphabetic Tree)
Value of the First ISM in File

Figure 2-11 Directory Root Cell (Part 1 of 3)

20

[T O T T ST r\:..p..p.r\:.r\:'g:

ra

ra

S R]

ra

Fulheord Halfesord Byte Offset Field
Offs et Diffset Decimal (Hex) Mumber
a7 54 (3E) 18
14 28 56 (38) 1%
2% B8 (3A) 20
15] B0 (3C) 21
16 az B4 (40 22
17 24 BE (44 22
18 36 T2 48 24a
g 78 [4E) 24k
20 a0 B0 (500 25a
4z B (56) 25k
2z 44 88 (38 26
45 S0 (5A) 27
23 46 82 (3C) 28
24 48 86 (B 2z
26 52 104 (BE) a0
27 =4 108 (BC) 3l
28 56 112 7 3z
at)] 116 74 33
55 118 (78] 4

A

A

*
*

*

Walue of Last ISM in this Fle
Mumber of Executable Statements
Mumber of Statements
First Statement Index Table Entry

First Cell of the INCLUDE Data
Cell List
First Cell of the Statement
Extent Cell List
First Statement Reference
Mumber (SRM)
Include Count for First SRM

Last Statement Reference
Mumber (SREM)
Include Count for Last SRM

Index of Compilation Unit Block
Cata Cell

User Defined Compilation Unit
Mumber [COMPLMIT)
Title Data Cell

Resensed (User Data)
Tatal Mumber of Symbols

Tota Mumber of Bytes
of REPLACE Text
Tatal Mumber of Characters
In Literal Table
Tatal Free Cell Space

COMSLUE Parameter End

*
*
+

Figure 2-11 Directory Root Cell (Part 2 of 3)

21

ra

ra

rJ

rJ

Fulheord Halfesord Byte Offset Field Bvyies
Offset Offset Cecimal (Hex) Mumber

*

*

*

0 60 120 (78) 3 Mumber of XREF Table Entries 4
31 62 124 (7C) 36 Mumber of Symbas Specified in 4
PARM Field
3z 64 128 (80) a7 Mo. Bytes Specified for REPLACE 4
Text in PARM Figld
33 BB 132 (B4 38 Mo. Characters Specified for Literals .|
In PARM Field
24 G8 136 (BE) 38 Mumber of XEEF Entries -
Specified in PARM Field

= - 140 (8C) 4 Compiler |dentification 12
a8 T [y

= ; 152 (38) A CARDTYPE Data 4
Ele 78 156 (9C) 42 A 4

Initialization Table
40 B0 160 (A0 43 = Halfwords in 4
Initialization Table

41 B2 164 (Ad) 44 .47 Unised 4
q2 84 168 (A8) 48 Offset to Stan of Top 2
Literal Area in =0
8BS 170 (A8 4% Offset to End of Top 2
Literal Area in =0
43 Be 172 (AC) =0 4 Literal Extent Table 4
44 88 176 (B0 51 Mumber of Entries in -
Literal Extent Takle
45 = 180 (B4) e A Functicn Index Table 4
A6 932 184 (BB} 53 Mumber of Entries in 2
Function Index Table
83 186 (BA) 54 Unised 2
47..50 24,100 188 200 (BC..CB) 55.62 Unised 16
Figure 2-11 Directory Root Cell (Part 3 of 3)
The meanings of these fields are as follows:
Field No. Description
1 This is a “flag” field containing binary flags which describe the various compilation

conditions. The placement and meaning of these bits are as follows:

Bit No. Flag Name Meaning When Set

0 SRN_FLAG File contains Statement Reference Numbers
(SRNs). Statement Index Table entries are
12 bytes in size.

1 ADDRS_FLAG Statement Data Cells contain 6 bytes of
address information: relative addresses are
for the first and last lines of the emitted code
for that statement.

22

Field No.

1
(Contd)

Description

Bit No. Flag Name

2 COMPOOL_FLAG

3 FC_FLAG

4 OVERFLOW_FLAG

5 NON_MONOTONIC _
SRN_FLAG

6 NON_UNIQUE_SRN
FLAG

7 NOTRACE_FLAG

8 HIGHOPT

9 BIT_FLAG

10 HALMAT_FLAG

11 FCDATA FLAG

12 SDL_FLAG

13 DATA REMOTE

Meaning When Set

SDF was produced for a COMPOOL
compilation.

Identifies the SDF member as belonging to
an FC compilation.

Indicates one or more overflow directory cells
were allocated from the Data Free Cell Chain
due to insufficient space in the initial
record(s) of the file which were pre-allocated
for directory data (i.e., not all directory
information is on the initial physical records).

SRNs are not monotonic (i.e., one or more
SRNs have values that are less than that of
their predecessor).

SRNSs are not unique (i.e., one or more SRNs
have equal values).

Unused for HAL/S-FC compilations.

Allows the compiler to perform optimizations
that may not be valid when the programmer
uses %MACROSs to bypass the type
checking protection provided by the HAL/S
language.

The current compilation unit contains an
instance of a BIT variable which is assigned
from a multi-instruction masking operation.

SDF includes HALMAT.
Unused for HAL/S-FC compilations.

Identifies the compilation as being compiled
using the SDL option.

SDF produced by compiler with the
DATA REMOTE directive in effect.

23

Field No. Description
1 Bit No. Flag Name Meaning When Set
(Contd)
14 REL6_FLAG Identifies the SDF member as being of the
format specified in Revision 6 of the
HAL/SDL ICD.
15 NEW_FLAG Always set. Used to maintain upward
compatibility of old SDFs.
2 The number (starting with 0) of the last physical record (page) in the SDF file.
3 The date the file was created, in the format:
Day of the year + (1000 *(year-1900)).

4 The time the file was created: the number of the centiseconds since midnight
of the creation date.

5 The number of the last directory page. If the OVERFLOW FLAG is set,
however, some directory information is located in the data area. All directory
information in the data area is referred to by pointers.

6 The number of EXTERNAL blocks. The total number of EXTERNAL blocks
(COMPOOLs, PROGRAMs, PROCEDURESs, NON-HAL) referred to (Included)
in the compilation.

7 The number of HAL/S blocks in the unit of compilation. Also, the number of
entries in the HAL/S Block Index Table.

8 The total number of legitimate symbols for which the SDF file contains data.
Also, the number of entries in the Symbol Index Table.

9 Pointer to the first entry in the Block Index Table.

10 The total number of emitted AP-101 instructions generated in the compilation
(zero for COMPOOL).

11a Index in Symbol Index Table for the name of the Unit of Compilation.
11b List Head (Index into Symbol Index Table) for Linked List of all Internal
Symbols ordered alphabetically.
12a List Head (Index into Symbol Index Table) for Linked List of all internal symbols
residing in #D or #P CSECTS ordered by increasing address.
Field No. Description

24

12b

13
1l4a

14b

15

16

17

18

19

20

21

22

23

Field No.

List Head (Index into Symbol Index Table) for Linked List of all internal symbols
defined in a #R CSECT ordered by increasing address. Note that #R CSECT
cannot exist if the SDL compiler option is specified (SDL_FLAG is TRUE).

Pointers to the first entry (symbol) in the Symbol Index Table.
The number of stack walkback loops generated by Phase 2.

The relative address of the literal area from the beginning of the #D CSECT.
This field contains X“FFFF” when the literal area does not exist.

Pointer to the Block Data Cell which represents the primary block in the unit of
compilation (e.g., the program block in a PROGRAM compilation). Also, this is
a pointer to the root block of the Block Tree Hierarchy (see Section 2.2.2.2.3.2,
“HAL/S Block Data Cell” on page 35).

Pointer to the Block Data Cell containing the largest number of defined
symbols. Also, this is the pointer to the root block of the Symbol Quantity and
Alphabetic Name Tree (see Section 2.2.2.2.3.2, “HAL/S Block Data Cell” on
page 35).

First statement number. This is the internal statement number (ISN), as
assigned by Phase 1, corresponding to the first executable statement in the
compilation unit. Together with Field 21, this value provides the direct
correspondence between internal statement numbers (ISNs) and pointers to
the pertinent statement entries in the Statement Index Table.

Last statement number. This will always be the internal statement number of
the final CLOSE statement.

Number of declare and executable statements. Filed 19 is < Field 20 and

represents the number of statement entries that contain data (i.e., number of
entries which point to a Statement Data Cell).

Number of Statements (Field 18 — Field 17 + 1) of all types, beginning with
the first executable statement. Note that comments and HAL/S compiler
directives are not considered statements and, so, are not counted.

Pointers to the first entry in the Statement Index Table (see description for
Field 17).

Pointer to the first cell of the Include Data Cell List.
Pointer to the first cell of the Statement Extent Cell List.

Description

25

24a

24b

25a

25b

26
27

28

29

30

31
32

33

34

35
36

Field No.

First Statement Reference Number (SRN) contained within the SDF
member.

Include Count associated with the first SRN contained in the SDF member.
See Section 2.2.2.2.5.1, “Statement Index Table” on page 86, for a
description of Include Counts.

Last Statement Reference Number contained within the SDF member.

Include Count associated with the last SRN contained in the SDF member.
See Section 2.2.2.2.5.1, “Statement Index Table” on 86, for a description of
Include Counts.

Index in Block Index Table for the Unit of Compilation.

User supplied compilation unit number (COMPUNIT). This number specifies
the BLOCK ID for a block within a unit of compilation. The compilation unit
number ranges in value from 0 to 511 and is set only if the COMPUNIT
Parameter is specified at compile time.

Pointer to Title Data Cell (see Figure 2-13 on page 29 for description of
contents).

Reserved.

Total number of symbols in the unit of compilation. Actual size of compiler
symbol table.

Actual number of bytes of REPLACE text.
Actual number of characters in the Compiler Literal Table.

Number of unused bytes in the SDF accounted for in the Free Cell Linked
Lists.

This field is zero unless the compilation is a COMSUB. In that case, this
field is the index in the Symbol Index Table of the last symbol entered into
the Phase 1 symbol table at the point in the COMSUB compilation when the
last parameter to the COMSUB is formally declared.

Actual number of XREF Table entries.

Maximum number of symbols (may be specified by the user in the compile-
time parameter string.)

Description

26

37

38

39

40

41

42
43
44
45
46
47
48
49

50

51

52

53

54-62

Notes:

Maximum number of bytes of REPLACE text (may be specified by the user in
the compile-time parameter string.)

Maximum number of characters of literal text (may be specified by the user in
the compile-time parameter string.)

Maximum number of XREF entries (may be specified by the user in the
compile-time parameter string.)

Contains the 10 character EBCDIC string obtained from the ID field of the File
Control Block from the first phase of the compiler. The last 2 bytes of this field
are unused and are 0.

Pointer to the CARDTYPE Data Cell (see Figure 2-15 on page 29 for
description of contents).

Pointer to the Initialization Table.

Number of halfwords in the Initialization Table.

Unused

Unused

Unused

Unused

Offset to start of the literal area from the beginning of the #D CSECT.
Offset to end of the literal area from the beginning of the #D CSECT.

Pointer to Literal Extent Table within SDF (see Section 2.2.2.2.9.2.1, “Literal
Extent Table” on page 122).

Number of entries in Literal Extent Table (see Section 2.2.2.2.9.2.1, “Literal
Extent table” on page 122).

Pointer to Function Index Table for cross-reference of shaping functions. This
field contains X’FFFFFFFF’ if the Function Index Table does not exist (see
Section 2.2.2.2.8.1, “Function Index Tables” on page 114).

Number of entries in Function Index Table (see Section 2.2.2.2.8.1, “Function
Index Tables” on page 114).

Unused

27

Fields 17-25 may have values for COMPOOLs as with other compilation units.

If SRN_FLAG=0 (i.e., no SRNs are present), the fields 23-25 contain zero.

If HALMAT_FLAG=0 then fields 50 and 51 are zero.

Fields 48 and 49 contain X’FFFF if there is no #D CSECT or if the literal area does
not exist, within the #D CSECT.

PoONPE

2.2.2.2.1 Compiler Data

This section describes the SDF Cells which contain the data specified for the TITLE and
CARDTYPE parameters in the compile-time parameter string.

2.2.2.2.1.1 Title Data Cell

This Cell contains the information specified for the TITLE compile-time option.

Field 4
-.-

Field 28 e

Master
Crirectony

Cell

Title Data
Cell
Drirectony
Roa Cell
Figure 2-12 Title Data Cell Overview
The fields contained in this cell are described below:
Fulheord Halfeord Byte Field
Offset Dffset Offset Mumber Eytes
»
o o o 1 Mo. of Characters -
1 Z Title Contents Up to B0 bytes

28

Figure 2-13 Title Data Cell

Field No. Description
This field specifies the number of characters contained in Field 2 below.

1
This field contains the title specified by the TITLE option. This field may

2
contain up to 60 characters.

2.2.2.2.1.2 CARDTYPE Data Cell
This Cell contains the information specified for the CARDTYPE compile-time option.

Field 4
--

Master
Drirectony

Cell

Field 41 -

Cardtype
Data
- -
Drirectony
Root Cell

Figure 2-14 Cardtype Data Cell Overview
The CARDTYPE Compiler Option allows HAL/S statements with non-standard Card
Types to be mapped into the standard types listed in Field 2 below.

Fulheord Halfesord Byie Field
DOffset Diffset Diffset Mumber Evytes
- - - >
< “ “ - Mo, of Characters 1
1 2 Text Up to 100 bytes

Figure 2-15 CARDTYPE Data Cell

Field No. Description

29

1 This field specifies the number of characters contained in Field 2 below.

2 This field contains the character data specified by the CARDTYPE option.
The standard Card Types are:

E — Exponent statement line
M — Main statement line

S — Subscript statement line
C — Comment line

D — Compiler Directive line

The Statement types are mapped using the following format:
CT=VEWMXSYCZD

In this example, statements containing V, W, X, Y, and Z in the first
columns are mapped to the types of E, M, S, C, and D, respectively. Itis
necessary to specify only those Card Types which are non-standard. This
field may contain up to 100 characters.

2.2.2.2.1.3 Initialization Table

This table contains the initialization data for non-NAME variables. The table is
formatted the same as the #D or #P CSECT. #R data is not supported.

Field 4
--
Master

Crirectony

Cell

Field 42

Dhirectony
Root Cell

Initialization
Table

30

Figure 2-16 Initialization Table Overview

Fulbesord Halfeord Byte Field
Offset Offset Diffset Mumber BEytes

- - - 1 Initialization Yalue 1

1 < 1 Initialization Yalue 2

Initialization Walue M

Field No. | Description

1 Each field is a halfword of data formatted like the #D or #P CSECT. The
Symbol data Cell's field 10A is an offset into the Initialization Table, pointing
to the beginning of the initialization data for that symbol. The INITIAL flag
can be used to determine if data was initialized.

Figure 2-17 Initialization Table

2.2.2.2.2 Include Text Data

As shown in Figure 2-18 on page 32, the Include Text Data consists of a linked list of
Include Library Member Cells that is pointed to by Field 22 of the Directory Root Cell.
Each cell in the list provides information about the name, revision level, and catenation
number of a distinct include library member. The cell also indicates the JCL DDname
associated with the PDS library in which the member is located, and a list of the SRNs
containing compiler directives that INCLUDE the member.

31

L

KT ST O]

Field 4 THARIEN S
Master Field 22
Directory - - - -
Cell Field 1 Field 1 0
BRI I KRN SR
SR R LR SRR
SRS SRR TSRS SRR
SR Rt SR SRRy
BRI I KRN SR
SR R LR SRR
SRS SRR TSRS SRR
S SRy SR R LR SRR
SRR SRRy SRS SRR TSRS SRR
Include Data Include Data
Cirectony Cell Cell
Roo Cell
Figure 2-18 Include Data Overview
Fulbword Halfesord Eyte Offset Field
Dffset Offset Cecimal (Hex) Mumber
>
0] O 1 Y Fointer to Mext Member 4
in the Include Cell Chain
1 2 4 (4} 2 Include Library Member g
MName
3 6 12(0) 3 Revision NMumber <
7 14(E) 4 Catenation Mumber .
15 (F) 5 o 1 2 3 4 5 & 7 1Flag Bits
4 g 16 (10) & MNumber of SRNs -
17 (11) 7 SAM 1 E
L]
L]
Ll
7 - E

Figure 2-19 Include Data Cell

32

The meanings of the fields of the Include Data Cell are as follows:

Field No.

Description

1

2

A pointer to the next cell in the list. The cells are linked alphabetically by member name.
The name of the Include Library Member, in EBCDIC.

The Revision Level consists of two EBCDIC characters which are set to 00 (X“FOF0”)
when the member is created.

An Include Library defined by a JCL DD statement may consist of a concatenated list of
PDS libraries. The catenation number is the index in that list of the data set in
which the member was located.

The flag bits indicate the type of the INCLUDE directive, and which JCL DD
statement defines the library in which the member was located. The flag bits are
as follows:

Bit Meaning When Set

0 The member was an SDF.

1 The member was located in the library specified by the OUTPUTS DD
statement.

2 The member was located in the library specified by the HALSDF DD
statement.

3 The member was located in the library specified by the OUTPUT8 DD
statement.

4 The member was located in the library specified by the OUTPUT6 DD
statement.

5 The member was located in the library specified by the INCLUDE DD
statement.

6 TEMPLATE flag. The directive has the form: D INCLUDE TEMPLATE.
7 REMOTE flag. The directive specifies the keyword REMOTE.
The number of SRN entries (field 7).

The SRNs of the compiler directives which INCLUDE this member. Each SRN
consists of 6 EBCDIC characters.

33

2.2.2.2.3 Block Data Structures

The Block Data Structures consist of the Block Index Table, Block Data Cell, and the
Block Symbol Extent Cell. These cells and tables provide the means by which the proper
symbol data can be located in the SDF pages. The HAL/S Block Data Cell also provides
information about the blocks in a unit of compilation. As shown in Figure 2-20 on page
34, several different fields of the Directory Root Cell point to the different HAL/S Block
Data Structures. The next three sections describe the Block Data Structures in more
detail.

|

I OR0IRIIINE HAL'S
Field 4 I ATRITHITNTE BLOCK
o
cds TREES
- .
Master Directony » Fieldlor3
Cell Field 2 or 4
Field 15
Field 16 5
AR SR
I HTTTTTIIN Jrr—
Block
Field 26 Datn
IS0 AOASASS4ITE . y Cel
I ATRITRITNTT
Crirectony
Root -
Cell
Field 5 0
LA S0 A 00000
LN S0 M 300100
Li
Block
Symbol

T =——
-

Block Index Table

Figure 2-20 Block Data Structures Overview

2.2.2.2.3.1 Block Index Table

The Block Index Table (see Figure 2-21 on page 35) locates the various HAL/S Block
Data Cells. Itis ordered in accordance with the alphabetic order of the block CSECT

34

names. The Block Index serves as a convenient reference to identify the HAL/S block to
which a statement or symbol belongs.

Except for COMPOOLs, the CSECT names contained in the Block Index Table are the
names of the Code CSECT generated for each Block. When the Block represents a
COMPOOL, the CSECT name is the name of the COMPOOL CSECT (e. g.,
#PNNNNNN).The CSECT naming conventions are described in Section 4.0,
“CSECT/MEMBER NAMING CONVENTIONS” on page 1 of this document.

A binary search on the Block Index Table can be used to locate a particular block. However, a
direct search of the HAL/S Block List using the linkages which are based upon symbol definition
frequency and alphabetic order (see the following section) is faster.

g Bytes 4 Bytes
Elock 4 Pointer
CSECT Mame te
Block
Cata Cell

Figure 2-21 Block Index Table

2.2.2.2.3.2 HALIS Block Data Cell

The HAL/S Block Data Cell provides the means by which the information about a
symbol unique to a HAL/S Block can be found; it also identifies and supplies information
about the HAL/S Blocks themselves. The HAL/S Block Data Cell, shown in Figure 2-25
on page 39, corresponds to the HAL/S Blocks (COMPOOL, PROGRAM, PROCEDURE,
FUNCTION, TASK, UPDATE) within a unit of compilation. The cells are logically
organized in two different tree structures: one based on the symbol frequency and the
alphabetic block name order of its members (see Figure 2-26 on page 41 for an
example), and the other based upon the hierarchical block structure of its members (see
Figure 2-27 on page 42 for an example). The first tree structure provides an easy and
efficient way to locate a particular block in a unit of compilation. The second tree
structure provides an easy way to locate the variables of a block which are within the
name scope of a block but not in the block where they are being referenced (e.g., the
hierarchical linkages would provide a way to SNAP the active variables of any
encompassing blocks at the time a block terminated). Entry to the list is in one of three
ways: from the Directory Root Cell to the root block of the Alphabetic Name Tree; from

35

the Directory Root Cell to the root block of the Hierarchical Block Tree; and from a
pointer in the Block Index Table.

The HAL/S Block Data Cell and its corresponding Block Symbol Extent Cell serve to

identify the regions of the Symbol Index Table that are pertinent to a HAL/S Block. If all
of the symbols within a unit of compilation lie on a single physical record of the Symbol
Index Table, no Block Symbol Extent Cell is referenced and indexes exist in the Block
Data Cell to identify the first and last symbols in the Symbol Index Table (see Figure 2-
22 on page 36).However, if the symbols do not lie on a single physical record, a four-byte
pointer exists to the Block Symbol Extent Cell which then identifies the regions pertinent
to the block (see Figure 2-23 on page 37 and Figure 2-24 on page 38).

Symbol Index Table
Elock Data Cell
=] Sy bal 1
Field & N :
' 2 2
=1 17 4 4
Fiele 12 Index of First symbaol .
Single
' Fage
£ £ -
Field 14 Index of Last symbol B 3
40
g g
- 4 1

Figure 2-22 All Symbols Contained on One SDF Page for Block

36

= o5 Symibol 1

Field 5 =6 :
= o7 3
ield 13 98 4
Field 12 Index of First Symbaol
39 5
& Page M
ietd 100 B
Figle 14 Index of Last Symbol
114 101
162 g
103 5
104 10 ae M+
Block Data Fage M+l
et 105 11
= 106 12
107 13
108 14
109 15
= 110 16
-
A O Symbol Index Table
HEADER
Extent #1
INFD
Extent #2
INFO

Block Symbaol
Extent Cell

Figure 2-23 Symbols Contained on Multiple SDF Pages for Block

37

Block Symbo

Extent Cell
Field &
Field 13

95

Field 14

110

Elock Data Cell

EMNTRY =1

EMTRY = 2

-
J"FuEIlzlil

Field 2
Field 3
Field 4
Field &
Field &
Field 7

[Pointer to
0 Mext Cell)

2 [2EMNTRIES)
M (PageM)
1584
~ 1RGB

 8YMBDL1

o T SYMBOLY

o
ok

© SYMBOLE

T SYMBOLIR

Block Symbol Extent Cell
[up to 83 entries in the first cell)

DFEESET

1570
1582
1534
1606
1618
1630
1642
1656
1668

LA

Yy

12
24
36
48
&0
72
84

™ 108
120
132
144
156
168
180
182
204
216
228
240
252
264
276

Figure 2-24 Example of Block Symbol Extent Cell

38

113
114
115
116
117
118
118
120
121
122
123
124
125

Page

Page
M+1

Fulbeord Halfweord Ewte Offset Field
Offset DOifset Decimal Hex Mumber

L A Pointer to next higher
memberin HAL'S Block
o o 0o 1 Data Cell Tree 4 Alphabetic Name
1 7 4 (4 7 " FPointer to nest lower Tree Linkages
memberin HAL'S Block 4
Crata Cell Tree
2 q g8 3 A Fointer to 1st nested
block within the scope 4
of this block Hierarchical Block
3 G 12 (C) 4 A Fointer to next block at Tree Linkages
same level or enclosing block 4
4 g 16 (10 5 L Fointer to Block Symbol 4
Extent Cell for block™
5 10 20014 Ea Symbol Index Mumber of Block 2
Mame
11 22 (18] Bl Unused 2
E 12 24 18] 7 0 1 2 3 4 5 B 7 1 Flag Bits
25 (1% g “ersion Mo. of Block 1
Tempate
13 2B (1A) 5 Bleck Index Mumber in the 2
Block Index Table
7 14 281C) 10 Block 1D 2
1t 30 (1E) 11 Block Category 1
31 (1F) 12 Function Type 1
g 16 3220 13 Index to first symbol of block 2
in the Symbel Index Table
17 3422 14 Index to last symbol of block 2
in the Symbol Index Table
] 18 36 (24 15 First Stmt Mo, of HAL'S 2
Block
15 38 (2B) 1e Last Stmt. Mo. of HAL/S 2
Block
10 20 40 (28) 17a 1SM of 1stexecutable stmt. 2
after initial DECLAREs
21 42 [2A) 17k Head of Stack Frame Vari 2
ables (in address order)
11 22 44 2C) 18 Length of Block Mame 1
45 (20 15 Block Mame 1-32

*Note: Thisvalue is setto O if a Block Symbol Extent Cell entry does not exist [i.e., all symbaol refer-
ences for this HAL'S block lie upon a single physical record of the Symbol Index Table.)

Figure 2-25 Block Data Cell

39

The HAL/S Block Data Cell is described in Figure 2-25 on page 39.The meanings of its
fields are as follows:

Field No.

Description

1

Pointer to the next HAL/S Block Data Cell whose name is alphabetically
higher. This field is O if no references exist. This field, in association with
Field 2, define the Symbol Quantity and Alphabetic Tree. This Tree
Structure contains Block Data Cells for both internal and external blocks.
See Figure 2-26 on page 41 for more information.

Pointer to the next member of the HAL/S Block Data Cell whose name is
alphabetically lower. This pointer is zero if no reference exists.

Pointer to the first nested block within the scope of this block. This pointer

is zero if no nested block exists. This field and Field 4 define the Hierarchi-
cal Block Tree. This tree contains only internal blocks. See Figure 2-27 on
page 42 for more information.

Pointer to a block which is at the same level as this block (e. g., in Figure 2-
27 on page 42 for the MERYV, this field would point to the block HENRY;
Field 3 would point to JOHN). If no other block exists at the same level, this
pointer is negative (two’'s complement) and points to the HAL/S Block Data Cell
which has enclosing scope (e.g., for block HENRY in Figure 2-27 on page
42, this field points back to TOM).

40

Block
Mame

Fred
Tom
Many
Alice
Henry
hens
Ben
John
Ellen

Figure 2-26 Alphabetic Name Tree

Muwmber
Symbols

Block
Type

COMFOOL

FROCEDURE
COMFOOL

FROCEDURE
FROCEDURE
FROCEDURE
FROCEDURE
FROCEDURE
FROCEDURE

Alice
(85)

Ben
(42)

Ellen
(30

ExXAMPLE
Directony
Root
Cell 16
Y
Fred Roa of Symbol
(420) - Quantity and
. Alphabetic Tree
Y
Tom
(116)
v -
Mary
(%2)
Y Y
Henry Merv
(73) (60
L
Johin
(35)

41

Directorny

Root
Cell 15
Mested
Block
Example
Tom L)
Mery Tom -
John i Mes ted ‘u‘ (Enclosing Block)
Block) I________________________'"""'_.
L l
Ellen [Same Lavel) |
Men »| Hemry ---J
iMes et + [Mested ‘:'
Block) i [Enclosing Block) Block) 'l
¥ "ot Yy
1 i
[Zame Level) !) |
Ben John = Ben -/ Alice ——'EI i
[Enclosing
i Elock)
[Mested :
Block) | :____| Y
\ (Enclosing Block) "
Herry Ellen -+
L)
Alice
Figure 2-27 Hierarchical Block Tree
Field No. Description
5 Pointer to the Block Symbol Extent Cell, if one exists. If all symbols

belonging to this block lie entirely within a single page of the Symbol
Index Table, then no Extent entry exists and this pointer will be zero.

6a Index in the Symbol Index Table for this block’s name (symbol number).
Field No. Description

42

6b

10

11

Unused

The flag bits identify block characteristics, such as REENTRANT,
EXCLUSIVE, and RIGID. The bit assignments are:

Bit No.

REENTRANT Flag
EXCLUSIVE Flag
ACCESS Flag
RIGID Flag
EXTERNAL Flag
NONHAL Flag
Unused

7 Unused

The version number of the template for his block. This field is only
defined for blocks that are EXTERNAL and for the Compilation Unit
Block.

o o1k WNPEO

The entry number (index) of the block in the Block Index Table.

The Block ID is a unigue number assigned to the block. It occupies the
rightmost 7 bits of the field. When executing the code for this block, this
same number is found in the low order 7 bits of the Block ID in the Local
Block Data area. The Block ID with its Compilation Unit (COMPUNIT)
Number can be used along with an offset to locate a variable in another
“active” stack space. A stack variable may only be used if it is “active”
(i.e., belongs to the same block, or an encompassing block, in which the
action is to be taken).

The category of the HAL/S block (i.e., COMPOOL, PROGRAM, TASK,
PROCEDURE, FUNCTION, and UPDATE).The codes for each of these
block categories are as follows:

No.

PROGRAM
PROCEDURE
FUNCTION
COMPOOL
TASK

UPDATE

O WN B

43

Field No. Description

12 The type of FUNCTION. This field contains a non-zero value only if Field
No.11 contains a 3.The code for each of the FUNCTION types is the
same as the Function Types listed in the Symbol Data Cell. The types
are as follows:

CODE
Decimal Hex
1 1 BIT (16-bits)
2 2 CHARACTER
3 3 MATRIX (SP)
4 4 VECTOR (SP)
5 5 SCALAR (SP)
6 6 INTEGER (SP)
7-8 7-8 Not Used
9 9 BIT (32-bit)
10 A Not Used
11 B MATRIX (DP)
12 C VECTOR (DP)
13 D SCALAR (DP)
14 E INTEGER (DP)
16 10 STRUCTURE
13-14 Indexes to the first and last entries in the Symbol Index Table for the
block.
15-16 First and last internal statement numbers (ISN) of the blocks. These two

fields are zero for a COMPOOL compilation.

17a The ISN of the first executable statement of the block following the initial
DECLAREs in the block.

17b The index in the Symbol Index Table of the initial symbol of the set of
address-ordered symbols referring to stack space variables.

18 The number of characters in the block name. This is a number from one
to 32.

19 The name of the block. This field is variable in length and contains up to

32 characters.

2.2.2.2.3.3 Block Symbol Extent Cell

The Block Symbol Extent Cell (Figure 2-29 on page 46) identifies the first and last sym-
bols for each of the physical records of a HAL/S block in the Symbol Index Table. The

44

Extent Cell identifies the first physical record of the Symbol Index Table pertinent to the
HAL/S Block. The cell then supplies the first eight characters of the names and the off-
sets of the first and last symbols occurring in this record. In turn, the names and offsets
of the first and last symbols for each of the remaining physical records of the Symbol
Index Table are supplied. It should be noted that a one-to-one correspondence exists
between the position of a reference in the Extent Cell relative to the initial reference and
the physical record number to which the reference applies in relation to the first physical
record of the Symbol Index Table (see Figure 2-31 on page 48). This relationship
applies since all of the symbols for a block are grouped together. Since the symbols for
a HAL/S block are organized alphabetically in the Symbol Index Table and their physical
records are contiguous, the Extent Cell can be used to isolate quickly the pertinent
physical record of the Symbol Index Table in which a symbol lies.

|||||||||||||||||||| F
T, T i
A Felds T
T Field 4
Field 13 Field & -
s 0 A4l adaaaaiiaiyaiaiyaaxa F
Field 14 SN B
M Figdd4 0 1 page
— _ SN I
Block Drata Cell Field & -
SN i " . Symhols
LT Y} oty
W ithir
Block Symbaol - Defined
Extent Cell El’cr
NN I o
1 page
-
-
Symbel Index Table

Figure 2-28 Relationship of Block Data Cells, Block Symbol Extent Cells, and
Symbol Index Table

45

Fulheord Halfeord Byite Offset Field

Dffset DOffset Decimal (Hex) Number
i
0] O 1 Successor 4
- - 414 - Mumber of Extent Entries -

3 G (B) 3 Page Mumkber of 1st Physical
Record of Symbol Index Table

ra

2 4 8 (8) 4 First Offset 2
1st Pleysical
5 10 (4 5 Last Offzet 2 Recomd
CI}ITESF-I}FI:IiF'g
3 & 12 (C) & First Symbol on Block 8 to Field 3
5 10 200114 T Last Symbol on Block g
7 14 28 (1C) 4 First Offset 2
15 30 (1E) 5 Last Offset 2 Znd Physical
Record
g 1E 3220 G First Symbel on Block g
10 20 40 (28) 7 Last Symbol on Block 8
12 24 48 (30 4 Firzt Offset .
3rd Physical
25 50032 5 Last Offset 2 b
13 2B 52 (34 & First Symbaol on Block g
15 30 B0 (3C) 7 Last Symbol on Block g
17 34 £8 (44) 4 First Offset 2
E1) 70 [48) 5 Last Offset 2 4th Physical
Record
18 36 T2 (48 & First Symbol on Block 8
20 40 80 (50 7 Last Symbol on Block g

Figure 2-29 Block Symbol Extent Cell

46

2.2.2.24 Symbol Data Structures

The Symbol Data Structures consist of the Symbol Index Table, Symbol Data Cell, Con-
stant Value Cells, Replace Text Cells, Procedure/Function Formal Parameter Cells, and
Name Terminal Initialization Cells. These data structures provide information about
symbol types, attributes, memory locations, and initialization values. The Symbol Data
Structures also provide information about the relative position of a symbol within a
structure, as well as define the statements in which a symbol is declared, modified,
used as a subscript, or referenced.

L Field 1

ST _ T
S
Sym kol

Field 4 Data Cell

Field 13
Master
Directory
Cell
Symbol Index
Table
KT SN
KRN SN
Drirectory
Root Cell

Figure 2-30 Symbol Data Structures Overview

2.2.2.2.41 Symbol Index Table

The Symbol Index Table (Figure 2-31 on page 48) provides the means by which a sim-
ple binary search via a pointer can be established to a symbol's data. The table is organized

47

into physical records which are obtained through application of the Symbol Directory
Tables. Each physical record contains 1680 bytes of information or 140 entries of 12
bytes each. Every entry consists of an 8 byte field containing a maximum of eight
characters of the symbol name and a 4 byte pointer to the Symbol Data Cell. The sym-
bol names in the physical records for a HAL/S Block, not the table itself, are organized
alphabetically. An entry exists for each label and variable declared in the compilation,
except for those variables of the INCLUDEd COMPOOLSs which are not used in the
compiler code (i.e., not referenced or assigned).

As the table carries only the first eight characters of a name, any excess characters are
found in the Symbol Data Cell (see Section 2.2.2.2.4.2, “Symbol Data Cell” on page 49)
at the entry pointed to by the 4 byte pointer. As the first eight characters may not be
unique, it is necessary whenever more than eight characters are represented to check
any excess to insure a proper reference. If a match is not found, it may be necessary to
check both forwards and backwards from this point, especially if this point was realized
from a binary search. Also, it may sometimes be necessary to secure the next physical
record to continue the search for a unique reference.

g Bytes 4 Bytes
First & characters A Pointer tc
of Symbol Name* Symba Data Cell =
L] L
- -
- -
Left-justified and padded on the right with blanks if less than eight chamcters.
Points to Field Mo.1 of the Symbol Data Cell.

Figure 2-31 Symbol Index Table

48

2.2.2.2.4.2 Symbol Data Cell

The Symbol Data Cell is referenced by pointers in the Symbol Index Table and provides
all of the information that is known about a symbol (except the first eight or less characters of
the name). The cell and its symbol data are variable in length. A cell (Figure 2-32 on
page 50) contains information about the symbol type, attributes, relative memory
location, number of bytes of memory occupied, and the block in which it is defined. A
cell may also contain the symbol name continuation, number and range of
dimensionality, structure template linkages, etc.

The Symbol Data Cell may also include a list of the statements in which the symbol is
referenced, assigned, or declared. The statement references are in the form of indexes
(ISNs) to the Statement Index Table and contain flag bits defining whether the statement
DECLARES, References, Assigns, or uses the variable as a subscript (combinations are
possible). If all of the statement references cannot be contained on the physical record
for the Symbol Data Cell, the data is extended to another physical record by means of a
pointer. Whether or not the list is extended is indicated by either a halfword or fullword
of hex’F's immediately preceding the pointer.

49

Fultword Halfeord Byte Offset Field
Offset DOffset DCecimal (Hex) Mumber
-
-5 10 [-A) Od Link to Mext Symbol in
Phase 1 Declared Order
-2 -4 -8 [-8) 0o & Prr to Auxillary
Symbol Information
1 -2 -4 (-4 0a Alphabetic Link
-1 -2 (-2 Ob Link to Mext Sumbal
By Address
-
0 o ()] 1 Block Index (=)
1 22 2 Zero or Offset to
Extension Data
33 3 Ciffset to XREF Data
Offset to Amay
1 2 44 4 (Copi)
S (5 g Offset to Struc Data
3 E(E) B Symbol Class
7 7 Symbaol Type
[[T
2 4 8 (8 g 012|345 |67
| | |
g 8 9|10(11 12|13 (14 15
| | |
g 16/17|18/19 20(21 22 23
g 24|25(26|27|268(29 30|31
3 E 12 (C) g Length of Symba Mame
B 10 Relative Memorny
13 Ptr to Constant
A Value Cel 4 - Address of Symbol
11 Block IDv
13 Ptr to Replace 41':
Text Cell Chain 12 Mumber of Rows
Mumber of Columns
13 Addr of Local 2
Block Data 13 Lock Group Numiber
Area
- OF 14 Mumber of Bytes of
14 Size of Local Memory Occupied
Elﬁl:;ata - Continuation of
0 15 ~ Symbol Mame
Extension

Data Offset 16 Value of Bias or Array

*0, 1, 2, or 3 (alignment padding)

Figure 2-32 Symbol Data Cell (Part 1 of 3)

50

Bytes
2
4 .
Symbol Data
Cel Prefix
2
2
1
1
1
1
1
1
1 Flag Bits Replace Label
1 > 10 Mumber of Bytesof 3B
Replace Text
1
1 Labsgls Only (Class =2 £ 3)
y _|'_|'_|' 1
. 10 Statement Mumber 2':
3 ;?r Cense Bit Strings
2 Alignment 1
Mumber of Bits 1
1 A))
ar Bit and Char Strings
1 Mumber of Bits or Char 2 C
»12 in String
1
Major Structure
3 A Symbol Number 2D
12 (Index) of Template
2-24
Equate Labels
Symbol Mumber 2E
" » 17 (Index) of Extemal
A Eguate Reference

Struc Data

Offset -
17 Link to “Ungualifisd 3 Only if Ungualified Structure
Structure
R Flag =1 (Flag Bit 7)
18 Link to “Eldest Son” 2
Template Binary Tree Linkages
1% Link to “Brother 2 A ! =
Array Data
|:||'-f5;[Eﬂlk Mumber of 5
- Cimensions = 1 if Structure
21 Range of Dim 1 2 Mo. of copies of
= structure if structure
22 Range of Dim 2 2
optional
23 Range of Oim 2 2

XREF Data (When all data fits on physical record of entry)
aae | HReltve SymboiMa. in ~
24a e \ 2
Block (for compiler wse)
® } *
AREF Data Total Mumber of

Offset 24b XREF Entries :
25 Flag Statement =1 2
- St 0 Where each entry is:
ag atement =2
& - Flag
L]
. ARS Stmt3 (13 bis)
. o3 15
Flag Statement =n-1 2 A =1 Variable is assigned
Elan i . R =1‘arable referenced
a0 Slatement = . S =1Variable is used as
26 KEFFF 2 or 4 a subscript
Fulword 27 A Symbel XREF 4 if &, R, 5 = 0 then the statement
o Extension Cell refers to a DECLARE statement

Boundary

Figure 2-32 Symbol Data Cell (Part 2 of 3)
Symbol XREF Extension Cell (when data overflows physical record)

L3
25 Flag Statement 1 2
.

' Flag Statement n
26 XFFFF

o7 4 Symbol XREF
' Extension Cell

Ay pa
)

full word boundary

Figure 2-32 Symbol Data Cell (Part 3 of 3)

The cell provides linkages to structure templates or their members if the symbol is part
of a HAL/S structure organization. In case of a symbol in a structure declaration (e.g.,
DECLARE XY -STRUCTURE;), the symbol (i.e., “X”) is defined as a structure type
(SYMBOL TYPE = X'10'), is, classified as a qualified or unqualified structure name

51

(FLAG BIT 7 = 1 if unqualified and zero if qualified), and will have an index in Field 12 to
the pertinent structure template.

In case of the template itself (i.e.,“Y” in the above example), the entry will identify itself as a
template by having FLAG BIT 6 set on. If an unqualified structure has been declared using the
template, FLAG BIT 7 = 1 and Field 17, Link to Unqualified Structure, is set to point to the
template’s unqualified structure. The template contains an offset (Field 5) to the structure
data and the structure data provides the initial link to the variables defined within the template
(Field 18, Link to Eldest Son). Additionally, Field Ob of the Symbol Data Cell for the structure
template is used as a list head for a linked list chaining all symbols belonging to the template in
order of increasing template-relative address (Field Ob in these other template cells then
identifies the next symbol in address order).

The variables within a template which are identified as belonging to a template by
SYMBOL CLASS = 4 (Field 6), may be classified as qualified or unqualified, and refer to
other templates or variables. If the reference is to another template SYMBOL TYPE =
X“10”, the Link to Eldest Son (Field 18) is zero, and Field 12 contains an index to the
referenced template. Field 19 (link to Brother) may or may not contain a reference
depending on the organization of the structure.

The variables in the template are organized in the form of a tree. The association of
one variable with another can be determined by following the links supplied in Field 18 (Link to
Eldest Son) and Field 19 (Link to Brother). Field 5 (Offset to Structure Data) will always
contain an offset to the structure data (i.e., to the structure linkages). If the information is
present in Field 18 a link exists to a lower level structure variable. If information is presentin
Field 19, a link exists to a following variable at the same structure level. However, if no
following variables exist at the same level, a negative link (2's complement) back to the
nearest parent appears in Field 19.If the variable belongs to an unqualified structure, Field
17 (Link to Unqualified Structure) contains an index to the structure itself.

See Figure 2-33 on page 53 for an example of the brother/son linkages contained in a single
HAL/S Template and Figure 2-33 on page 55 for an example of nested HAL/S Templates.

52

EXAMPLE SYMBOL CLASS TWPE ELAGS

IMU_DATA-STRUCTURE;

STRUCTURE IMU_DATA: | IML_DATA 4 1& TEMELATE.
| URQUALIFIED
1 DELTA_ W WECTOR, DELTA_W 4 4
1 TIME INTEGER COUELE, | TIME 4 14
1 STAT, | STAT 4 1&
2 F1BOOLEARN, | F1 4 1
2 F2ZBOOLEAMN : F2 4 1
1 0P _MODE INTEGER; | OP_MODE 4 E
DECLARE IMU_DATA | MU DATA 1 1& UMOUALIFIED
|
i

Figure 2-33 Structures and Templates for a Single Structure (Part 1 of 2)

53

[Structure)

IML_DATA

(1 16)
<Unqualified=

Field
12

Field 17
[only when structure)

¥

Y

IMU_DATA
(4, 16)
=LInqualified Structure
Exists for this Template=

A
Sor
Y
DELTA_W Brother TIME
(4, 4) - (4, 14)
" *
Notes:

. Ifa*Son” or “Brother” link is not shown, thenitis O
. Structure Teminals are denoted by an astensk(™)

Father

__ -
|
|
Fork or !
Minor :
Structure :
i
|
Brother STAT Brother OP_MODE :
- (4, 16) - (4, 6) I
(=0

+ Father
Son L e A
L :
|
F1 Erother F2 :
(4 1) - (4 1) !
* (=0)

1
2
3. Parenthesized numbers denote symbol class and type
4

. <= genotes symbol attibute Flags

Figure 2-33 Structures and Templates for a Single Structure (Part 2 of 2)

54

SYMBOL CLASS TWPE FLAGS

STRUCTURE A: | A 4 e TEMFLATE
1 A4, : Ab - 16
2 AVECTVECTOR, | WECT 4 4
2 ASCALR SCALAR; | ASCALR - 5
STRUCTURE B: | B 4 16 TEMFLATE
1 EBE, | BB 4 16
2 BSTRUC A-STRUCTURE, : BSTRLUC - 16
2 BVAL SCALAR; | BvAL 4 5
DECLARE PSTRUC B-STRUCTURE; | FSTRLIC 1 16
]

Figure 2-34 Structures and Templates for Nested Structures (Part 1 of 2)

55

[Structure)

PSTRUC (1, 16)
Field 12
rF TS T TS T TS T |
I
. y TEMPLATE |
| B (4, 16) E !
! <TEMPLATE= .
i
l A !
| *-_:.l' Fall-fr]
R | . |
: BB 4, 16) !
| |
1
; n Father |
I ol e 0 i
I Y Bro | !
srother
BSTRUC (4, 1) - BVAL (45 | :
! (=0 i
| 1
S
Field 12
T TSI TSI TSI TSI TSI ST ST ST T |
l y TEMPLATE |
LA (4, 16) A !
! <TEMPLATE=> !
I
: A !
! Son Father I
: Y !
L AA (4,18) !
! |
|
! i Father i
[Son e . |
: Y : 1
| AVECT Brother i !
. 4.4 ASCALR (45 | .
| + | L * -= :
: [=0) I
.
Motes:

L If & *Son” or “Brother link is not shown, thenitis O

. Structure Teminals are denoted by an astensk(™)

3. Parenthesized numbers dencte symbol class and type
4. == denotes symbol attibute Flags

1
2

Figure 2-34 Structures and Templates for Nested Structures (Part 2 of 2)

The statement cross-reference information for structure templates and terminals
contains the references for all structures using that template. In addition, only those
nodes/terminals explicitly specified in the HAL/S source code actually contain the cross-
reference for that statement (see Figure 2-35 on page 57 for more information). It should
also be noted that any structure information is not propagated to other levels (e.g., symbol
flag information is not propagated from the structure to the template terminals).

56

1SN
100
100
100
100
101
102
103

104

STRUCTURE A
1 44,

& AVECT VECTOR,

2 ASCALR SCALAR;
DECLARE A1 A-STRUCTURE;
DECLARE A2 A-STRUCTURE;
Al AVECT =0;

A2 AVECT =0

XREF
A (D, 100) (2, 101) (2, 102)
AA (D, 100)
VECT (0, 100) (4, 103) (4, 104)
ASCALR (0, 100)
Al (D, 101) (4, 103)
AZ (D, 102) (4, 104)

¥REF: (nI5N)where nis a combiration of the folowing:
O- DECLARE 2-REFEREMCE
1- SUBSCRIPT 4- ASEIGH

Figure 2-35 Structure Symbol Cross-Reference Information (Part 1 of 2)

1SN
100
100
100
100
100

131

STRUCTURE A:
1 AA
2 BE,

3 BVECT VECTOR,

2 BwaAL SCALAR;
DECLARE A A-STRUCTURE;
DECLARE AB A-STRUCTURE;
BvAL =
AAN =AB AL,

BVECT =10;
AAMBEBEBVECT =0

XREF
A (D, 1007 (2, 101) (2, 102)
AA (D, 100) (2, 104) (4, 104) (4, 106)
BB (0, 100)
WECT (0, 100) (4, 105) (4, 106)
AL (0, 100) (4, 103)
A (D, 101) (4, 103) (4, 104) (4, 105) (4, 106)
AB (D, 102) (2, 104)

*Eguivalent assignment which genemtes different cross-reference information

Figure 2-35 Structure Symbol Cross-Reference Information (Part 2 of 2)

Figure 2-36 on page 58 illustrates the different linked lists involving the Symbol Data Cells.
The field numbers that make up the linked list are also provided. Note that the #R
linked list cannot exist unless the SDL Flag (Bit 12 of the flags in the Directory Root
Cell) is a zero. #R Remote data is prohibited if the SDL Flag is a one.

57

FIELD 0a

#DjP
ADDRESS > » ¥ - . . o
CROER
DIRECTORY SYMBOL DATA CELLS (INTERMAL) <2DizP:
ROCT [17a M FIELD Da
CELL 176 Y
=R s 3
Mia 11b L DDRESS > N » » » (4]
~ CRLER
SYMBEDL = SYMBOL DATA CELLS (INMTERMAL) <=R:=
CF CL FIELD Ok
SYMBOL
b ~ - S > > > 0
« ALPHA
ORDER
SYMBOL DATA CELLS (INTERMAL) <ALL:=
FIELD Q&
BLOCEK STACK
DATA ADDRESS * | » » » » [1]
CELL 17b QOROER R
SYMBOL DATA CELLS (INTERMAL) <STACK:=
FIELD 0g
IECLAR :
SYMBOL CRDER 4 g g = - " g -
DATA od H
CELL
(COMP UNIT)

SYMEOL DATA CELLS (INTERMAL) =ALL =

Figure 2-36 Symbol Data Cell Linked Lists

The meaning of the fields of the Symbol Data Cell are as follows:

Field No.

Description

Oa

Ob

Index into the Symbol Index Table of next alphabetic symbol. Only internal
symbols (ho COMPOOL or EXTERNAL Procedure/Function symbols) are included
in this chain of symbols. The chain terminates with a zero. The initial symbol
of the chain is defined by Field 11b of the Directory Root Cell.

Within the following categories all internal symbols are linked by address:

#D data

#P data The List Header is defined by Field 12a of the Directory

Root Cell. The last entry is zero.

58

#R data The List Head is defined by Field 12b of the Directory Root
} Cell. The last entry is zero. #R data is prohibited if the
SDL flag is a one.

Stack data The List Head is defined by Field 17b of the HAL/S Block
} Data Cell.

All internal and external symbols defined in a structure template are address
linked. For these categories the field contains an index in the Symbol Index Table
of the next symbol in the address chain.

The pointer to the Auxiliary Symbol Information is always present. Bit 29 of
the Flag Bits (Field 8) is set to indicate the presence of data in Field Oc.

For Equate External labels, the Auxiliary Symbol Information Pointer (ASIP)
refers to a Variable Reference Cell (see Section 2.2.2.2.7, “Variable
Reference Cell” on page 105) describing the variable being equated to.
This cell will be present only when Field 12 of the Symbol Data Cell is
inadequate to describe the HAL/S variable (i.e., when the variable is in a
qualified structure or is subscripted).

For procedure and function names, the ASIP points to a
Procedure/Function Formal Parameter Cell (see Section 2.2.2.2.4.5,
“Procedure/Function Formal Parameter Cell” on page 76.)

Last, the ASIP provides information about the initialization of NAME
variables. For simple NAME variables, the ASIP points to a Variable
Reference Cell (see Section 2.2.2.2.7, “Variable Reference Cell” on page
105) describing the variable initially pointed to by the NAME variable. For
NAME variables which are structure terminals, the ASIP in the Symbol Data
Cell for the major structure name points to a linked list of NAME Terminal
Initialization Cells (see Section 2.2.2.2.4.6, “ Name Terminal Initialization
Cell” on page 78) with one cell for each NAME variable in the structure
template. If the simple NAME variable or the structure is not initialized, the

This field defines a linked list of internal symbols in the order in which
they were entered into the symbol table (in HAL/S Compiler Phase 1
order). The root of this chain is the symbol number of the compilation

Oc
ASIP is absent.
Field No. Description
Od
unit.
1

Index Number of the HAL/S Block in the Block Index Table. This index

serves two primary purposes: 1) to identify the block in which the symbol
is defined, 2) to provide a reference to the CSECT name of a COMPOOL
symbol in the Block Index Table so that, in conjunction with the relative
memory address of the symbol (Field 10), an actual address can be

59

determined.

2 Offset within the cell to the Extension Data (at Field 16). If Extension Data
does not exist, this field is zero. Otherwise, this cell extension contains Bias or
Array data.

3 Offset within the cell to the statement cross-reference data, array dimension

4 data, and structure data, respectively. If the corresponding data is not

5 present, then the offset is zero.

6 Symbol Class and Symbol Type identify the classes of symbols and their

7 attributes. The assigned codes are as follows:

6,7 Class Type
(Cont'd)

Decimal Hex
1 Variable BIT (16-bit) (halfword)
CHARACTER
MATRIX (SP)
VECTOR (SP)
SCALAR (SP)
INTEGER (SP) (halfword)
BIT (32-BIT) (fullword)
Unused
MATIRX (DP)
VECTOR (DP)
SCALAR (DP)
INTEGER (DP) (fullword)
STRUCTURE

EVENT Variable (1 bit right-justified in a
halfword)

PROGRAM
2 PROCEDURE

MOUOmT>O©ooUuhWNLER

o
~N O
o
= O

2 Label

Field No. Description

1
2
6,7 Class Type
(Cont'd)

Decimal

2 Label
(Contd)

Hex

FUNCTION (see class 3)
COMPOOL

TASK

UPDATE

Statement

EQUATE

00N O~ W

60

3 Function

4 Template

O o0k, WDNPR

11
12
13
14

© ook, wWwN PR

11
12
13
14

MmMOOT>OoTabdWNLPR

=
o

MmMOOT®>O©oTapMr~WNLPR

REPLACE Label

BIT (16) (halfword)
CHARACTER

MATRIX (SP)

VECTOR (SP)

SCALAR (SP)
INTEGER (SP) (halfword)
BIT (32-bit) (fullword)
Unused

MATRIX (DP)

VECTOR (DP)

SCALAR (DP)
INTEGER (DP) (fullword)
STRUCTURE

BIT (16-bit) (halfword)
CHARACTER

MATRIX (SP)

VECTOR (SP)

SCALAR (SP)
INTEGER (SP) (halfword)
BIT (32-bit) (fullword)
Unused

MATRIX (DP)

VECTOR (DP)

SCALAR (DP)
INTEGER (DP) (fullword)

61

Field No. Description

6,7 Class Type
(Cont'd)
4 Template Decimal Hex
(Cont'd) 16 10 Template Flag = 1 Template
Template Flag = 0 Minor Structure

a) If Field 18 # 0, it points to first terminal.
b) If Field 18 = 0, Field 12 points to next

template.
17 1 EVENT Variable (1 bit right-justified in a
halfword)
5 Template
Label 1 1 PROGRAM

2 2

3 3

4 4

5 5 TASK

The format of the character string (Type 2 in classes 1, 3, and 4) is as follows:

Byte 0 1 2

Max Char | Characters
Ct Ct

where:
Max Ct is the maximum number of characters in the string, and
Char Ct is the current number of characters in the string.

The characters are blocked into halfwords such that if the number of characters
is odd, the last halfword will contain a blank pad character.

8 The Flag Bits define the characteristics of the symbol. In addition, they
identify Stack and NAME variables and supply information about the use of
the variable in a structure. The Flag Bits are as follows:

Bit Meaning When Set

0 COMPOOL Flag

62

Field No.

8
(Cont'd)

Description _

Bit

10
11

12

13
14

Meaning When Set

Input Parameter

Assign
Parameter

Stack Variables
TEMPORARY
AUTOMATIC

NAME Variable (the NULL NAME variable pointer is a
halfword of zeros)

Template Flag (if on, represents template)

Ungualified Structure Flag

REENTRANT Flag (for the block and its variables)
DENSE Flag

CONSTANT Flag

ACCESS Flag

Indirect Flag

The Indirect Flag is ON only for parameters which refer to:

e Aggregates
e Assign parameters

e Process event variables, which also have the Latched
Flag (bit 13) ON.

LATCHED Flag (for EVENT variables)

LOCKED Flag

63

Field No.

8
(Cont'd)

Description
Bit

15

16
17
18

19

20

21

22

Meaning When Set

REMOTE Flag. This flag, in conjunction with the fields
listed below, has the following meanings:

D If bit 5 (NAME Variable) is ON, then the
variable is a 32-bit pointer.

(2) If bit 24 (INCLUDED REMOTE) is ON and
Field 6 (symbol class) = 2 (label) and Field 7 (symbol
type) = 4 (COMPOOL), then the label is a COMPOOL
that is included remote.

(3) If bit 24 (INCLUDED REMOTE) is ON and
Field 6 (symbol class - = 2 (label), then the symbol
lives in a remote #P (COMPOOL) CSECT.

4) If bit 5 and bit 24 are both OF, then the
variable lives in a #R CSECT. #R data is prohibited
if the SDL flag is a one.

Non-zero Bias Flag
INITIAL Flag (for variable being initialized)
RIGID

Literal. Variable is in literal pool and Field 10 is zero.
Field 14 is a pointer to a Constant Value Cell. The
variable is consequently inaccessible to diagnostics. The
CONSTANT Flag is set ON for literals.

EXTERNAL. Variable belongs to an EXTERNAL block
(e.g., an included COMPOOL).

Stack Variable (variable is in a stack).A variable is a stack
variable if it is an input parameter, an assigned parameter, a
TEMPORARY variable, or an AUTOMATIC variable in a
REENTRANT PROCEDURE.

Local Block Data. This flag is set ON if the block contains a
reference to Local Block Data. When this flag is ON, Fields 13
and 14 of the Symbol Data Cell contain address and size
information.

64

Field No.

8
(Cont'd)

10

Description
Bit

23

24

25

26

27

28

29

30

31

Meaning When Set

EQUATE. When this flag is ON, the symbol is referenced in
an EQUATE statement.

INCLUDED REMOTE Flag. Indicates that the variable lives
in a remote #P (COMPOOL) CSECT.

EXCLUSIVE. This flag identifies the symbol as the name of
a block that is EXCLUSIVE.

Unused

Misc. Name Flag. Indicates that the symbol is the template
of a structure with NAME terminals, or that the symbol is a
variable pointed to by a NAME variable.

Macro Arg. Flag. Indicates that the symbol is the name of a
REPLACE Macro that has arguments.

ASIP Flag. Indicates the presence of Filed Oc, the Auxiliary
Symbol Information Pointer.

Unused

This symbol is a BIT variable which is assigned from a multi-
instruction masking operation.

Total number of characters in the symbol name. If this value is 8 or less,
then all symbol characters are contained within the Symbol Index Table and
thus Field 15 is non-existent. If Field 15 exists at all, then its length, in
bytes, is equal to this value minus 8.

A Relative memory address (in terms of halfwords) of the symbol within a
data CSECT or stack space.

B Ifthe symbol is a REPLACE Label, this field contains the number of
bytes in the SDF representation of the REPLACE Text.

C Ifthe symbol is a Label (as specified by Field 6), then the address is
replaced by the Internal Statement Number corresponding to that label.

65

Field No.

11

12

Description

The Block ID is a compiler generated internal code. If the symbol’'s data is
stored on the stack, the Block ID identifies the stack in which the symbol’s
data exists during execution. If a specified stack symbol’'s data is not in the
current stack space, one can retrieve the data for the symbol at another level
by threading backwards through the stack so long as the symbol has proper
scope.

A For matrices and vectors, the first half of this field contains:

a) The number of rows if the symbol is a matrix.
b) The value one if the symbol is a vector.

The second half of this field contains:

a) The number of columns if the symbol is a matrix.
b) The number of components if the symbol is a vector.

B For DENSE bit strings this field contains:
a) In the first byte an alignment factor as follows:
0 - right aligned and has leading zeroes.

n - where n is greater than zero and less than X“FF”, n indicates the
number of bit positions the string must be shifted to right align the
string: leading bits must be masked.

X“FF” - the string is right aligned; however, the leading bits must be
masked.

b) The second byte specifies the number of bits contained in the string.
C For bit and character strings the field contains:
a) The number of bits if the symbol is a bit string.

b) The number of characters if the symbol is a character string. If
negative, the field then indicates that the number of characters is
unknown. [f this field is negative and Field 16 is zero (the case where
Field 16 is non-zero is discussed in the notes for Field 16), the character
string will be a “*” character string. Information about the character
string will be found in the stack space at the relative address specified
in Field 10 as follows:

66

Fulhword Halfesord
Offset Offset

12C - Character String 4

4 Width of Character String

Figure 2-37 Stack Variable Character String Format

Field No.

12
(Cont’d)

13
[14

13
13

13

14

15

Description

D For astructure, the field contains the symbol number (index to an entry in
the Symbol Index Table) of the structure template (SYMBOL TYPE =
X'107).

E For EQUATE labels, the field contains the index into the Symbol Index
Table of the symbol being equated to.

A Lock Group Number. A hex “FF” signifies LOCK (*).

A The number of halfwords occupied by the symbol.
In case of STRUCTURE, the size includes all copies.
In case of a NAME variable, the size of the symbol pointed to.

B When the LITERAL and CONSTANT flags are set (Field 8, bits 10 and 19),
the symbol is a CONSTANT variable and this field is a 4-byte pointer to a
Constant Value Cell which is described in Figure 2-41 on page 72 and

Figure 2-42 on page 73.

C When the symbol is a REPLACE label, this field is a 4-byte pointer to the
Head of a Chain of Replace Text Cells which are described in Section
2.2.2.2.4.4, “Replace Text Cells” on page 73.

D The relative address of the Local Data Area within the #D CSECT (halfwords).
Fields 13 and 14 refer to Local Block Data only if Bit 22 of Field 8 is ON.

D The length of the Local Block Data area (i.e., 2 or 5 halfwords).

Remainder of symbol name. This can be from 0 to 24 characters.

67

Field No. Description

16 Except for an array of “*’ character strings, a data item may not be pointed to
directly whenever the HAL/S Compiler performs variable indexing or
references data using an indirect pointer (e.g., Parameter Passing or
Name Variable manipulation). The HAL/S Compiler often points to an
address somewhere before the beginning of the actual data. The difference
between the address ahead of the data and the address at the beginning of the
actual data is known as the Bias or Offset. This method is used since it is more
efficient to set the database register to point to a fictitious Oth item of an
aggregate (matrix, vector, multi-copy structure, or array).

For an array of “*” character strings, this field contains an Arrayness Value.
This situation is indicated by a negative character count in Field 12 and a
value contained in this field. In this case, additional information about the
character strings (see Figure 2-38 on page 69) can be found in the Stack
Space specified in Field 10.The true Bias is calculated by multiplying the
Arrayness Value and the width specified in the Stack space. The resulting
Bias will be in halfwords.

Figure 2-39 on page 70 shows the algorithm used to calculate the Bias
Factor.

68

Fulheord Halfeord Byte

Offset Offset Offset
3
o o o 4 Character String (1)
- . 4 Width of Character String (2)
Z 4 B Mumber of Strings
MNotes:

1. This pointer can be a pointer to another indirect pointer
2. Includes header information

Figure 2-38 Array of Character Strings

69

OFFSET=10

" STRUCTURE

M = Y Y
MATRIX/ - COPIES
VECTOR
L Y
DP v OFFSET = ALIGNED
MATRIN OFFSET=2 WIDTHOF A -
VECTOR SINGLE COPY
M
OFFSET=4
Y
v M
y ARRAYED -
ARRAY FACT =1 (1)
=N, +1 (20)
=N,(N,+1)+1 [3D)
SF INTEGER, BOOLEAN, EVEN, BIT(1) - BIT{16)
= | COEF=1
DF INTEGER, SF SCALAR, BIT(L7) - BIT(22)
= | COEF=2
OF SCALAR
= | COEF=4

SPVECTOR/MATRIX

= CODEF=2+«ROWSe COLS
OF WECTOR/MATRIX

= COEF =4+« ROWSe COLS

CHaRACTER w | COEF = (3+MAX_CHARYZ

OFFSET = OFFSET + COEF » ARRAY_FACT = Y
= EXIT

Figure 2-39 Algorithm for Calculating the Bias Factor

70

Field No.

Description

17
18
19

20

21
22
23

24a
24b

25

26

27

Structure Links (see preceding text for explanation).

If the symbol is an array, this field contains the number of dimensions. If the
symbol is a structure, this field contains a one.

Fields 21-23 are the ranges of each of the dimensions of the array. If the
symbol is a structure, Field 21 contains the number of copies of the structure and
fields 22 and and 23 do not exist.

Relative symbol number in block (compiler only).
The total number of statement cross reference entries.

Indexes to the Statement Index Table. They identify the statements in which
the symbol is modified, referenced, used as a subscript, or declared.

This field is present only when all of the symbol’'s cross-reference data does
not fit in the same physical SDF record as the beginning part of the Symbol Data
Cell. This field varies in length (so that Field 27 may start on a full word boundary)
and contains either 2 or 4 bytes of hex “FF".

Like Field 26 above, this field is present only when all of the cross-reference data
will not fit in the same record. The field contains an SDF pointer to the
Symbol XREF Extension Cell.

2.2.2.2.4.3 Constant Value Cells

The Constant Value Cells contain data that was specified using the CONSTANT
attribute in the symbol declaration to set an initial value. There are two types of
Constant Value Cells: character strings and scalars/integers. The two types are
discussed in the following sections.

—_— S 1Y
Field 4 ST 1Y
Master Directory
cel Fieid 13
| 3
ST Y
S Y
Directory Root

Cell

Symbel Index Table

Figure 2-40 Constant Value Cell Overview

2.2.2.2.4.3.1 String Constant Value Cells

Field 1

Field 13

Constant Value Cell

U
ST

Symbol Data Cell

The String Constant Cell shown in Figure 2-41 on page 72 contains initialization data for
character constants and literals. The format of this cell is described below:

Fulhword Halfeord Ewyte Field
Offset Diffs et Dffs et Mumber
>
o] o 1
1 2

Figure 2-41 String Constant Value Cell

Field No. Description

Mo. of Bytes of Text— 1 1

up to

255 ytes

EBCDIC Teut

1 This field contains the number of characters in the string minus 1.

2 This field contains the character data for the string.

2.2.2.2.4.3.2 Scalarlinteger Constant Value Cells

The Scalar/Integer Constant Value Cell shown in Figure 2-42 on page 73 contains
initialization data for numeric symbols declared using the CONSTANT attribute. The
format of this cell is described below.

Fulbesord Halfesord Byte Field
Offset Dffset Diffset Mumber Eytes
SCALAR or
INTEGER >
1 32-bit Drouble Precision
Fleating Point Mumber

Figure 2-42 Scalar/iInteger Constant Value Cell

Field No. Description

1 This field contains the value of the constant stored as a double precision 64-bit
floating point number.

2.2.2.2.4.4 Replace Text Cells

As shown in Figure 2-43 on page 74, the Replace Text Parameter Cell (see Figure 2-45 on
page 75) is pointed to by Field 13 of the Symbol Data Cell; Field 1 of the Replace Text
Parameter Cell, in turn, points to the Replace Text Macro Cell. If all of the Replace
Text will not fit into one Replace Text Macro Cell, Field 1 then points to a list of subse-
guent Replace Text Macro Cells which will contain the remaining Replace Text. Figure 2-44
on page 74 not only shows the different types of Replace Text, but also shows the
information generated for the different Replace Text Cells.

TR iy

Field 4 TR
Master
Directory Cell Field 13
-
Field 1
-
Field 13 Field 1 Field 1 Fieldl O
KN L L
KN KT KT
TR I L KN KT
TR I KRNI KNI KT
TN
TN i Symbol Data Repace Text Replace Text Replace Text
Cell Farameter Cell Macro Cell Macro Cell
Drirectory
Root Cel
Symbol Index Table
Figure 2-43 Replace Text Overview
FParameter
Type Example Result Cell Macro Text
Simple Replacs: REFLACE M BY “4;
CECLARE W1 WVECTOR(M); DECLARE V1 WECTOR(4); MOME 4
Farametnic REFPLACE AX,Y)
Repace: BY “REALD ()Y - i READ (1Y
Replace Macros: REFLACE TEST (A,B,C) IF ATHEM B
BY “IF A THEM B ELSE C ATETC ELSE C

TEST (P=0, 5=1;, 5=2;)

Figure 2-44 Replace Text Examples

IF F=0THEMN S=1; ELSE 5=2;

The Replace Text Parameter Cell is shown in Figure 2-45 on page 75.

Fulbesord Halfeord Byte Field
Offset Offset Offset Mumiber Bytes
>
o o o 1 A Pointer to the Mext -
Repace Text Call
1 2 4 2 -[#ARGS + 1) 2
2 B 3 Mo. of Blank Bytes Z
= 4 E 4 Pseudo-Descriptor 4
4 Pseudo-Descriptor 4
=] EBCDIC As many as nesded to
TEXT represent the arguments
Figure 2-45 Replace Text Parameter Cell
The meanings of the fields are as follows:
Field No. Description
1 Alink to the Replace Text Macro Cell (Figure 2-47 on page 76) in the chain.

Subsequent cells contain the text of the macro.

2 This field indicates the number of Replace Macro Arguments. For a macro with
no arguments, this field has the value X’FFFF.

3 Argument text is stored in the SDF in a compressed format where a string of
consecutive blanks is represented by two bytes: the first having the value
XEE’, and the second byte containing the number of blanks minus one. The
number of blank bytes is the difference between the number of bytes of
compressed text in the SDF and the number of bytes of REPLACE text in the
HAL/S source.

4 There is one pseudo-descriptor corresponding to each Replace Macro argument
and their order corresponds to the order of the arguments in the macro
invocation. Adding the address of the beginning of the cell to the pseudo-
descriptor generates an XPL string descriptor which points to the Replace
Macro argument’'s name in the text field (see Figure 2-46 on page 75).

BITS: o] 31

Farameter Mame Offset Into Cell of Parameter Mame
Length -1

Figure 2-46 Replace Text Parameter Cell Pseudo Descriptor

Field No. Description

5 EBCDIC text containing the Replace Macro argument names.

The subsequent Replace Text Macro Cells have the following format:

Fulbeord Halfeord Bvyte Field Bytes
Offset Offset Offset Mumiber
g F he M
A ‘pinter to the Mext
1 Replace Text Cell 4
1 2 4 2 Mumber of Bytes of Text 2
- \ Up to 1000
n} 1 oy
E 3 TEXT Bytes

Figure 2-47 Replace Text Macro Cell

The meanings of the fields are as follows:

Field No. Description

1 A link to the next Replace Text Macro Cell in the chain. This field has the
value X'00000000’ for the last cell in the chain.

2 The number of bytes of text that follow.

3 Up to 1000 bytes of Replace Macro Text.

2.2.2.2.4.5 Procedure/Function Formal Parameter Cell

As shown in Figure 2-48 on page 77, the Formal Parameter Cell is referenced by the
Auxiliary Symbol Information Pointer (field Oc) of the Symbol Data Cell (see Section , “Symbol
Data Cell’ on page 49) that corresponds to the name of the procedure or function. The cell
indicates the formal parameters (i.e., those defined in the procedure or function header)
associated with the procedure or function.

AT i

Field 4 SRR iy
haster Field Oc
Cirectory Cell Field 13
»- -
Field 1
»- -
N iy
N
Field 4
- SRR By Field 4
—— NN Y
SRR iy Field 4
N iy .]
Symbel Data Cel IS 00
Dlirectony N iy
Roo Cell
Procedure/Function
Formal Pammeter
Cell
-

Symbol Index Table

Figure 2-48 Procedure/Function Formal Parameter Cell Override

Fulbesord Halfweiord Byte Field
Difset Difset DOffs et Mumber Bvtes
>
1 = Bytes in Cell 2
1 2 2 = of Parameters 1
3 = of Input Pams 1
1 2 4 - Farm="* 2
- Farm="* 2
- Farm=* 2
L
L
L
B Parm = 2

* Index in Symbol Index Table

Figure 2-49 Procedure/Function Formal Parameter Cell

The meaning of the fields of the Formal Parameter Cell are as follows:

Field No. Description

1 The number of bytes in the cell.

2 The number of formal parameters defined in the procedure or function.
3 The number of formal parameters which are input parameters.

4 Indexes to corresponding Symbol Data Cells for each parameter. The

parameters are listed in the order of their occurrence in the block (i.e.,
procedure or function) header.

2.2.2.2.4.6 Name Terminal Initialization Cell

The Name Terminal Initialization Cell describes the initial pointer value or values of a
name structure terminal. The cell contains a complete reference to the terminal name
including the structure qualifiers for any nested structures. Unless the NAME
initialization points to a simple variable (i.e., a symbol that is neither subscripted not part
of a structure), this cell is followed by a list of pointers to Variable Reference Cells (see
Section 2.2.2.2.7, “Variable Reference Cell’ on page 105) which describe a variable
pointed to by one or more copies of the name terminal. All of the Name Terminal
Initialization Cells associated with a particular structure are grouped into a linked list.
As shown in Figure 2-50 on page 79, the head of the list is pointed to by the Auxiliary
Symbol Information Pointer (field Oc) of the Symbol Data Cell (see Section , “Symbol
Data Cell” on page 49) that corresponds to the name of the major structure.

[— Field Oc Field 3
I —— ST 1Y
Field 4 SRR iy
- -
Field 1 Field 3 SRR iy
S 2y
_ Master
Directory Cell Field 13 ST
TRy
Field 5C Mame Terminal
S iy Initializ ation
Ty Cell
Symbol Data Mame Terminal
Cell Initializ ation
Cell
SRR iy
ST
Crirectory
Root Cell
Yariable

Symbel Index Table

Figure 2-50 Name Terminal Initialization Cell Overview

Reference Cell

Fulbesord Halfword Byte Field

Offset Offset Offs et Mumiber Buytes
*
0 0] 1 = Bytes in Cell 2
1 2 2 = of Symbol Indexes 2
- A Ptritonext Mame Teminal
1 < 4 = Initialization Cell 4
2 4 g - Symibol = 2
4 Symbol = 2
L]
Ll
L]
- Symbol = 2

0 or 2 or bytes of pad-
ding so that the initial
list is fulleord aligned

5 Initial List Word 4
5 Initial List Word 4
Ll
L]
Ll
5 Initial List Word .
* Indexes in Symbol Index Table

Figure 2-51 Name Terminal Initialization Cell

The meaning of the fields of the Name Terminal Initialization Cell are as follows:

Field No. Description

1 Number of bytes in the cell.

2 Number of symbol indexes (field 4).

3 Pointer to the Name Terminal Initialization Cell for the next name terminal in the
template.

4 Indexes into the Symbol Index Table (see the explanation of the Variable

Reference Cell, field 4 on page 109).

5 The Initial List Words describe the initial pointer values of the various copies
of the NAME terminal. The Initial List Words are grouped into fixed-length
operators which contain either one or two words. The value of the first
halfword of each operator determines its type. The formats of the
operator types are as follows:

INITIAL POINTER VALUE OPERATOR

The Initial Pointer Value Operator contains a pointer to the Variable Reference Cell that
describes the initial (first) NAME Pointer Value. If this operator occurs within Loop Operators
(see below), then several copies of the NAME pointer may be initialized to this value.

Field MNo. Eytes

5C F Symbol Index 4
| ~ or
FPointer to Varable
Reference Cell

Figure 2-52 Initial Pointer Value Operator

The sub-fields for the Initial Pointer Value Operator are listed below:

Field No. Description

5A This field identifies the Operation Operator Type as being an Initial Pointer
Value Operator.

5B This field contains the number of the first copy of the NAME terminal that is
initialized to this value.

5C When the 1-Bit Flag is Off:

Field 5C points to a Variable Reference Cell which describes the Structure
variable or subscripted variable referenced in a NAME Initialization (i.e.,
the symbol referenced in the initialization part of a Declaration).

When the 1-Bit Flag is On:

The last 16 bits of field 5C contain the Symbol Index of the Symbol being
referenced by the NAME pointer. A Symbol referenced in this manner is
a simple variable (i.e., a variable that is neither subscripted nor part of a
structure).

INITIALIZATION LOOP START OPERATOR

The Initialization Loop Start Operator, along with its corresponding Initialization Loop End
Operator, defines a list of initial NAME pointer values that are repeated.

Field Mo.

s0

SE

5F

X1 2

Mest Level 2
Repetition Factor 2
Loop Increment 3

Figure 2-53 Initialization Loop Start Operator

The sub-fields for the Initialization Loop Start Operator are listed below:

This field identifies the Operation Operator Type as being an Initialization Loop

The Nest Level indicates the depth to which this loop is nested within other such
loops and matches the Nest Level in the corresponding Initialization Loop End

The Repetition Factor indicates the number of times the enclosed operator(s)

Field No. Description
5D
Start Operator.
5E
Operator.
5F
is to be repeated.
5G

This field contains the Loop Increment. The Loop increment is added to the
Copy number associated with each Variable Reference Cell every time the loop
is repeated in order to generate all of the copies with that initial value.

If an Initial Pointer Value Operator with a Copy number of n is in an Initialization
Loop Start Operator with a Repetition Factor of x and a Loop Increment of y,
then that Initial Pointer Value Operator applies to copies n, n+y, n+2y, ..., n+(x-

1)y.

INITIALIZATION LOOP END OPERATOR

The Initialization Loop End Operator marks the end of a repeated list of Initial Pointer Values that
was begun by the Initialization Loop Start Operator.

Figld Mo. Ewtes

ZH X 2

| Nest Level 2

Figure 2-54 Initialization Loop End Operator

The sub-fields for the Initialization Loop End Operator are listed below:

Field No. Description

5H This field identifies the Operation Operator Type as being an Initialization
Loop End Operator.

Sl The Nest Level matches the Nest Level in the corresponding Initialization Loop
Start Operator.

END OF INITIALIZATION OPERATOR

This is the last operator in every cell. If the Extension Flag (Field 5K) is zero, then this
operator also marks the end of the initialization data. If there is more initialization data
than will fit in a SDF page, the Extension Flag (Field 5K) is set to one and the remaining
part of the initialization list is contained in an Extension Cell located by the pointer (Field
5L) found in the second word of the operator. The initial list may be divided between
any two operators; no single operator will be split across two cells. The Extension Cell
(Figure 2-55 on page 83) has the same general format as the Name Terminal
Initialization Cell except that fields 2, 3, and 4 do not appear.

Field Mo. Bytes
5] X0y 5
Sk Extension Flag 2
EL 4
A
Extension Call
Pointer

Figure 2-55 End of Initialization (Cell) Operator

The sub-fields for the End of Initialization Operator are listed below:

Field No. Description

5J This field identifies the Operation Operator Type as being an End of
Initialization Operator.

5K In the event more initialization data exists than will fit in an SDF page, this flag is
set ON and will be followed immediately by field 5L.

5L When field 5K is ON, this field will exist. The field contains an SDF pointer to the
Name Terminal Initialization Extension Cell (Figure 2-56 on page 84).

NAME TERMINAL INITIALIZATION EXTENSION CELL

This Cell exists only when the Initialization data will not fit within a single SDF page.
The field numbers correspond to the fields described for the regular Name Terminal
Initialization Cell (Figure 2-51 on page 80).

Fulbesord Halfwrord Byte Field
Offset Offset Diffset Mumber BEytes
1 = Bytes in Cell 2
1 2 Filler 2
1 2 4 5 Initial List Word 4
5 Initial List Word 4
Ll
Ll
L]
=] Initial List ¥Word -

Figure 2-56 Name Terminal Initialization Extension Cell

2.2.2.2.5 Statement Data Structures

The Statement Data Structures consist of the Statement Index Table, Executable
Statement Data Cells, Declare Statement Data Cells, Expression Variables Cells, and
Procedure/Function Invocation Cells. These cells provide information about the statements
and the means by which this data can be addressed.

KRR N

Field 4 ST
Master
Diirectory Cell
Field 21
SN Y
SRR i

Diirectory Root Cell

Declare Statement
Cata Cell

Statement Index Table

Figure 2-57 Statement Data Structures Overview

HARIRSie B

TR 1iE

Executable Statement
Cata Cell

Symbol Cata Cell

Executable | SN LR
Statement SN RN

Diata Cell LABEL ! SN N
-
| |
. NI SN
NI S
1= T e —
SN N
Field 7 SN RN
LHS -
Field 7 - Field 25
Field 25
- Field 25
|
LHZ
-
Statement Index Table Symbol Index Table

Figure 2-58 Statement/Symbol Relationship Overview

2.2.2.25.1 Statement Index Table

The Statement Index Table (Figure 2-59 on page 87) is pointed to by the Directory Root
Cell and consists of 1680-byte physical records which are mapped and pointed to by the
Block Statement Extent Cell. The Statement Index Table provides the means by which
access can be made to the attributes of a statement. Entry to an element of the table
can be through a binary search on statement reference numbers (SRNSs) or by direct
use of the internal statement number (ISN) generated by the compiler.

If the SRN_FLAG in the Directory Root Cell is on, each entry in the table is 12 bytes in
length and consists of a six byte SRN field, a two byte INCLUDE count and a four byte
pointer (page number and offset) field whose contents point to the location of the
Statement Data Cell. If the SRN_FLAG is OFF, only the Statement Data Cell Pointer
exists in the table; the SRN and Include Count Fields do no exist. An entry exists for
each statement beyond the INCLUDES of external modules. The entries are ordered in
accordance with the internal statement numbers generated by the compiler. The SRNs,
which are supplied by the user, are in ascending order in the table unless the
NON_MONOTONIC_SRN_FLAG is ON in the Directory Root cell.

However, INCLUDEd statements which appear immediately after an INCLUDE
statement are represented in the INCLUDE count field by a 16-bit positive integer which
is X'0001’ for the first included statement, X’0002’ for the second, etc. DECLARE

statements are treated in the same manner as executable statements. The pointer field
in the table for a DECLARE statement is a negative pointer (-PTR) and points to a
DECLARE Statement Data Cell. All other pointer fields of non-executable statements
(other than DECLARES) are zero.

& Byies 2 Bytes 4 Byies
Statement Reference IMCLUDE & Fointer to
Mumber (SREM) + count* + Statement Data
- L]
L] L]
L] L]

* 16-hit positive integer
+ These fields appear only when SREMN_FLAG is on [see text).

Figure 2-59 Statement Index Table
It should be noted that:

1. SRNs are not necessarily unique within a Compilation Unit (see Figure 2-60 on page
88 for an example).In this case the NON_UNIQUE_SRN_FLAG will be set to “on” in
the Directory Root Cell.

2. The segment of the Statement Index Table containing the ISNs/SRNs for a particular
block may contain embedded statements belonging to nested blocks (see Figure 2-61 on
page 88 for an example).

Figure 2-60 Example of Non-unique SRNs

ISN BLOCK NAME
204 ALPHA: PROCEDURE; ALPHA
205 DECLARE A SCALAR; ALPHA
206 A=1; ALPHA
207 BETA: PROCEDURE; BETA
208 DECLARE B SCALAR; BETA
209 B=1; BETA
210 CALL GAMMA (BJ; BETA
211 RETURMN; BETA
212 CLOSE BETA; BETA
213 CVAR = A; ALPHA
22 CLOSE ALPHA; ALPHA

Figure 2-61 Block Statement Nesting

2.2.2.25.2 Statement Data Cells

The Statement Data Cells consist of two types: Executable Statement Data Cell and
the Declare Statement Data Cell. These Cells, which are referenced by SDF pointers in
the Statement Index Table, provide information about the statements in a Compilation Unit.

Note: Declare Statement Data Cells do not contain address information; this
information is readily available in the Symbol Data Cell (see Figure 2-32 on page 50).

2.2.2.2.5.2.1 Executable Statement Data Cell

The Statement Data Cell for an executable statement is indicated by a positive SDF
pointer in the Statement Index Table. In addition, the Statement Type Field of both the
Executable and the Declare Statement Data Cells may be used to determine whether
the Cell is a Declare or Executable Cell since they occupy the same location in both
cells. This Cell provides information about the Statement Type (see Figure 2-63 on
page 93), offsets of the first and last machine instructions generated for the statement,
and the indexes into the Symbol Index Table for any labels or assigned variables
appearing in the statement.

Fulbesord Halfword Byte Oifset Field

Offset Offs et Cecimal (Hex) Humber Eytes
-4 -8 -16 (-1 Oa A LHS Statement Variables B
-3 £ 12 (-C)] A RHS Statement Variables - Statement
) Cata
2 E -8 (-8) Oc Flag Field 2 Cell
-3 -6 (-B) Od Unused 2 Frefix
-1 -2 -4 (-4) :-5._ A HALMAT Cell Pointer 4
] 0 00 1 HAL'S Block Index 2
1 22 2 Statement Category 1
33 3 Statement Type 1
1 2 4 (4] - Mumber of Label Indexes 1
5 (5] 5 Mumber of LHS Halfeords 1
E LABEL* 17 2
E LABEL ™ 27 2
LN]
B LABEL *m ™ 2
7 LH5*1 2
7 LHS* 2 2
LN]
7 LHS*n~ 2
0 Memony Address =1 9
- [Relative) -
- Memory Address =2 -
: [Relative) .
10 Crrigiral SRM &
Figure 2-62 Executable Statement Data Cell
The Cell is of variable length and is of the following format:
Field No. Description
Oa A pointer to an Expression Variables Cell (see Section 2.2.2.2.6,

“Expression Variables Cell” on page 102). For real-time
statements (UPDATE PRIORITY, SCHEDULE, CANCEL, and
TERMINATE), the cell lists all processes whose status is changed
For other statement types, the cell describes the statement variables
occurring in a left-hand-side context (i.e., whose values may be
changed by the statement).The pointer is present only when the

0a LHS information (Field 6) is incomplete, that is when some of the LHS

Field No.

Description

(Cont'd)

Ob

Oc

od

Oe

variables are subscripted. When present, the LHS Expression
Variables Cell contains complete information about the LHS
variables, thus duplicating the field 6 data.

The presence of Field Oa is indicated by setting the LHS bit (Field 2B).

A pointer to an Expression Variables Cell (see Section 2.2.2.2.6,
“Expression Variables Cell” on page 102) describing the statement vari-
ables, including control variables, and any procedures or functions
that occur in a right-hand-side context.

The presence of Field Ob is indicated by setting the RHS bit (Field 2C).

Bit No. Description
0-5 Unused

6 1 — Statement contains an occurrence of a multi-instruction
bit masking operation

0 — Statement contains no bit masking operation
7-15 Unused
Unused

Pointer to a HALMAT Cell (see Section 2.2.2.2.9.1, “HALMAT Cells” on
page 118). If there is no HALMAT for the statement (e.qg.,
uninitialized DECLARE statement) the pointer is —1. If HALMAT is
not included in the SDF (HALMAT _FLAG in the Directory Root
Cell is OFF), this field is zero.

Index to the HAL/S Block Index Table. This index into the Block
Index Table makes it possible to obtain the CSECT name of the block
within which the statement lies.

Field No.

Description

2

The Statement Category Field indicates the presence of Fields 10, Oa, and
Ob, as well as the Statement sub-type and Statement Context. This field, in
conjunction with Field 3 below, is also used to resolve certain ambiguous
statement types as defined by Field 3 (see Figure 2-63 on page 93). The
following table shows the correspondence between the field and the data
contained within it:

Number of
Bits: 1 1 1 2 3
Sub-Fields: A B C D E
1 1 1 1 1
Origina LHS RHS Sub- Statement
I type Context
SRN Information
Sub-Field Description
A This indicates the presence of the Original SRN (Field
10).
B This indicates the presence of the pointer to the LHS
Expression Variables Cell (Field 0a).
C This indicates the presence of the pointer to the RHS
Expression Variables Cell (Field Ob).
D This is used to resolve Statement Types 1, 2, 3, 4 and 10
into distinct HAL/S constructs.
E This is used to specify the following Statement Contexts:

Statement Context Information

0 Null

1 ELSE Statement

2 THEN Statement

4 ON ERROR Statement Reference

The Statement Type Field is used to indicate the type of statement this
cell represents. This field is in the same position as the Statement Type
Field in the Declare Statement Data Cell; therefore, this field can be used
to determine the format of the Statement Data Cell (i.e., Declare or

Field No. Description

Executable).

Types:

Decimal Hex
0 0 Null
1 1 EXIT, REPEAT, GO TO
2 2 CALL
3 3 READ, READALL, WRITE
4 4 ASSIGNMENT
5 5 IF Condition
6 6 CLOSE
7 7 RETURN
8 8 END
9 9 SCHEDULE
10 A CANCEL, TERMINATE
11 B WAIT
12 C UPDATE PRIORITY
13 D SET, SIGNAL, RESET
14 E SEND ERROR
15 F ONERROR
16 10 FILE
17 11 DO
18 12 DO WHILE, DO UNTIL
19 13 DO FOR
20 14 DO CASE

Decimal Hex

3 21 15 DECLARE (Used by Declare Statement Data Cell
(Cont'd) 22 16 BLOCK HEADER
23 17 EQUATE (Used by Declare Statement Data Cell)
24 18 TEMPORARY (Used by Declare Statement Data
Cell)

25-30 19-1E Not Used

Field No.

Statement
Subtype:

1

2

Description

31 1F %NAMEBIAS

32 20 %SVC

33 21 %NAMECOPY

34 22 %COPY

35 23 %SVCI

36 24 %NAMEADD
Statement Type (Hex):
1 3 - 10
EXIT REALD Assignment FILE InpLt
REFEAT READALL MAME Assignment FILE Output
GO TO WRITE

Figure 2-63 Statement Type

Field No.

Description

4

Number of label indexes. One such index is provided for each label
attached to the statement. The index identifies the Symbol Index Table
entry corresponding to the label.

Number of left-hand-side (LHS) halfwords.
Label indexes to corresponding symbol data.

LHS indexes to corresponding symbol data and/or sets of indexes which
are keyed by a leading two byte negative value that identifies the number
of following structure qualifiers and symbol indexes in a set. An index
exists for each HAL/S variable that is “modified” by the statement. Thus,
the variable can either be on the left-hand side of an assignment state-
ment or can be the assigned variable in a READ or CALL statement. See
Figure 2-64 on page 94 for an example of LHS Indexes.

DECLARE ¥ SCALAR;
STRUCTURE Qx
1A
2B SCALAR;
2 C SCALAR;
DECLARE £ Q-STRUCTLURE;

Statement Example:

KELAB=D;

I LHS HALFWORDS

17 - SYMBOL INDEX ()

-3

21 - SYMBOL INDEX (Z)
I 2 - SYMBOL INDEX (4]

4 - SYMBOL INDEX (B)

Figure 2-64 Left Hand Side (LHS) Indexes

Field No. Description

8-9 The relative memory address of the first and last emitted lines of code for this
statement (see description for Field 1). These two fields exist only if the
ADDRS_FLAG in the Directory Root Cell is set.

10 This field is only present when the statement is part of INCLUDEd HAL/S
source text. The field contains 6 EBCDIC characters which are the original
SRN of the statement in the INCLUDE file.

2.2.2.25.2.2 DECLARE Statement Data Cell

The Statement Data Cell for a DECLARE statement is indicated by a negative (two’s
complement) SDF pointer in the Statement Index Table. In addition, the Statement Type
Field of both the Executable and the Declare Statement Data Cells may be used to
determine whether the Cell is a Declare or Executable Cell since they occupy the same
location in both cells. The Cell is of variable length and is of the following format:

Fulbesord Halfeord Bate Field

Offs et Diffset Difset Mumber Eytes
1 g HAL/S Block Index 7
1 2 2 Flag Feld 1
Statement Type 1
4 4 Expression Varables Cell Ptr 4
c 4 HALMAT cell Pir 4
g Original SRM E

Figure 2-65 DECLARE Statement Data Cell

Field No. Description

1 Index to the HAL/S Block Index Table of the HAL/S Block in which the declare
statement appeared.
2 The Flag Field indicates the presence of Fields 4, 5, and 6.The following table shows

the correspondence between the flags and the fields.

Number of Bits: 1 1 1 5

Sub-Fields: A B C Unused

Field No. Description

2 Sub-fields Description
(Cont'd) A Indicates the presence of Field 4 (Expression Variables Cell Pointer)
B Indicates the presence of Field 5 (HALMAT Cell Pointer)
C Indicates the presence of Field 6 (Original SRN)
3 The Statement Type Field is used to indicate the type of statement this cell represents.

This field is in the same position as the Statement Type Field in the Executable
Statement Data Cell; therefore, this field can be used to determine the format of the
Statement Data Cell (i.e., Declare or Executable).

Types:
Decimal Hex

21 15 Declare Statement

23 17 Statement contains Equate

24 18 Temporary variable Declaration
25 19 Replace Statement

26 1A Structure definition

4 Points to an Expression Variables Cell listing NAME variables which are

initialized in this statement.

5 Points to a HALMAT Cell if any HALMAT was generated for the statement and if
HALMAT is included in the SDF.

6 The original SRN. Present only if the statement was INCLUDEd.

2.2.2.2.5.3 Statement Extent Cell

The Statement Extent Cell (Figure 2-68 on page 99) allows the rapid location of the
physical records containing statement information from a data set. The Statement
Extent Cell contains six characters for the first and last SRNs followed by the two byte
include counts contained in each of the physical records of the Statement Index Table.
As the statement numbers increase in value from one reference and physical record to the
next, a table look-up can be performed to determine the appropriate Statement Index Table
Record. This table is present for all compilation units (see Figure 2-67 on page 98).

-
R
KR

Field 4

Master Directory
Cell

Field 23

L

L

Directony Root
Cell

;Fieh:ll

ST TS TEREiiE

KT TSI
KT T T iT

Statement Extent
Cell

Figure 2-66 Statement Extent Cell Overview

-
;Fieh:ll

SRR NN
TR AT

Statement Extent
Cell

TR RN

Fieldl O

ST AR

ST AR
TSI A

Statement Extent
Cell

[From Directory

Root Cell

|

A Fied1

BRI ST
RN BT TEE T

Field 4

Field 5

BRI ST

)

BN AT

Field 4

Field 5

RTINS DT

Field 4

Field 5

RIS TER TR

Statement Extent
Cel

A Field 1(0)

ST BT
AETTRTNENT BRI

Field 4

Field 5

ST BT

Field 4

Field 5

Figure 2-67 Relationship of Statement Extent Cells and Statement Index Table

RTINS DT

Statement Extent
Cell

BN AT

BN AT

KNSR TR

KNSR T

Statement Index Table

1 page

1 page

1 page

1 page

1 page

All SRMs
Contained
Within A
Compilation
LInit [CL7

Fulbesord
Offs et

0

1

10

12

13

15

17

18

20

Figure 2-68 Statement Extent Cell

Halfeord
Offs et

0

2

=)

10

13
14

15

16

20

23
24

25

2B

a0

33
24

35

36

40

43

Ewte Offset Field

Decimal (Hex) Munber
0 1
414) 2
E(E) 3
8 (8 4
10040 5
12(C) Ga
18 (12 B
2014 7a
26 [1A) 7h
28 (1C) 4
30 (1E) 5
3220 Ea
38 (26) B
40 (28 7a
46 (2E) 7h
48 (30 -
B0 (35 5
B2 (3 Ea
SE (34 G
B0 (3C) 7a
BE (42 b
B8 (44) -
7048 5
T2 (48 Ea
TE [4E) Gl
80 (30 7a
86 (5E) 7o

-

-T- SUCCEssor

Mumber of Extent Entries

Page Mumber of 1st Physical
Record of Statement Index Table

First Offset

Last Offset

First SEN on Block

First SRN Include Count

Last SRNM on Block

Last SR Include Count

First Offset

Last Offset

First SHN on Block

First SRN Include Count

Last SRNM on Block

Last SR Include Count

First Offset

Last Offset

First SEN on Block

First SRN Include Count

Last SRNM on Block

Last SREM Include Count

First Offset

Last Offset

First SRN on Block

First SRN Include Count

Last SRM on Block

Last SREM Include Count

1st Physical
Record

Comesponding
to Figld 3

2nd Physical
Record

3rd Physical
Record

dth Physical
Record

2.2.2.2.5.4 Procedure/Function Invocation Cell

As shown in Figure 2-69 on page 100, the Procedure/Function Invocation Cell is
referenced by a pointer in an Expression Variables Cell (see Section 2.2.2.2.6,
“Expression Variables Cell” on page 102) or in another Procedure/Function Invocation
Cell. The cell associates each formal parameter with a list of the variables, procedures, and
functions involved in the expression which corresponds to the actual parameter of this partic-
ular invocation.

-
-
Field 0a
-
Field Ob
Field 4
L T -
Field 1 Variable
Jaste Reference Cel
Directory Ce TN
NENRINRINET -
ST [
0| Field4
1| Field4
|- -
0| Fied5s
Expression
Variables
Ce
1| Eelds SRTTTRERETIR Y
Field 21
SERTIRIEERFTRTE
L R
TIREERER R EEE T REER Y
Proceduraf
Function
Directory Foot Ce || Imvacation Ce
-
Procedurs

Function
Imvocation Ce

Statemant Index

able

“Warable
Reference Cal

Figure 2-69 Procedure/Function Invocation Cell Overview

Fubeword Halfeord Byte Field
Offset Offset Offset MNumber
-
0 0 0 1
1 2 2
1 2 4 3
3 B 4
2 4 g 5
I:.
I:.
G
&
Intemal
Blocks
Only
G
* Index in Symbol Index Table

Bytes in Cell

of Parameters

of Input Parameters

Block Mame Symbol # *

A Actual Parameter
Ptr

A Actual Parameter
Ptr

T
A
G

A Actual Parameter
Ptr

Formal Parmameter Symibol #*

Formal Parmameter Symibol #*

Formal Parameter Symbol #*

(%] (%] (%]

(%]

(%]

(=]

(%]

Figure 2-70 Procedure/Function Invocation Cell

The meanings of the fields of the Procedure/Function Invocation Cell are as follows:

Field No.

Description

1

The number of bytes in the cell.

The number of formal parameters. Also the number of pointers.
The number of parameters that are input parameters.
Index into the Symbol Index Table for the procedure or function name.

A fullword zero indicates the actual parameter is a literal value. Otherwise, the
interpretation of the Actual Parameter Pointer is determined by the value of the

2-bit Tag field as follows:

Field No. Description

Tag
5 0 Pointer to a Variable Reference Cell (see Section 2.2.2.2.7,
(Cont'd) “Variable Reference Cell” on page 105.) The actual parameter is
a single variable that is in a qualified structure or is subscripted.

1 A pointer to a Procedure/Function Invocation Cell. The actual
parameter is the result of a function invocation.

2 A pointer to an Expression Variables Cell (see Section 2.2.2.2.6,
“Expression Variables Cell” on page 102).The actual parameter
is a complex expression.

3 The actual parameter is a single simple variable. The pointer
value is an index into the Symbol Index Table.

6 Indexes into the Symbol Index Table for each formal parameter. The

parameters occur in the order of their appearance in the block header of
the procedure or function. The nth formal parameter corresponds to the
nth Actual Parameter Pointer. This field is only present for calls to
internal blocks.

2.2.2.2.6 Expression Variables Cell

The Expression Variables Cell contains a list of references to unsubscripted variables
followed by a list of pointers which refer to Procedure/Function Invocation Cells (see
Section 2.2.2.2.5.4, “Procedure/Function Invocation Cell” on page 100) and to Variable
Reference Cells (see Section 2.2.2.2.7, “Variable Reference Cell” on page 105)
describing subscripted variables. Each pointer has a 2-bit tag indicating what type of
cell is being referenced. As shown in Figure 2-71 on page 103, the Expression
Variables Cell is used in a variety of contexts. When referenced from a
Procedure/Function Invocation Cell, it describes the expression passed as an actual
parameter to the procedure or function. When referenced from a Variable Reference
Cell, it describes the expressions in the subscript list of a subscripted variable. A
Statement Data Cell may refer to two Expression Variables Cells (pointers in fields Oa, Ob).
Field Oa points to an Expression Variables Cell which describes all variables which occur
in a left-hand-side context, that is, whose values might be changed by the statement.
All other variables, including control variables, and any procedure or function calls, are
said to occur in a right-hand-side context and are described in an Expression Variables
Cell pointed to by field Ob. When referred to from a Declare Statement Data Cell, an
Expression Variables Cell contains the symbol index of each NAME variable or structure
with NAME terminals that is initialized in the statement.

-
LHS
- Field 0a
KT Y)
I Field Ob
-
- |
Field 1 I i
— I i
Ficld 4 I T
e TR e 0| Field 4
I T
Master -
Directory Expression
Cel Executable Wariahles
Statement Cell
) Data Cell
Field 21 -
N
I
Diirectony
Root Cell —
K e
I i
1| Field 4
2| Field 4
-
Expression
“ariables
Cell
Statement
Index Table Field 4
Declare
Statement
Cata Cell

Figure 2-71 Expression Variables Cell Overview

-
“fariable
Refersnce
Cell
NI T
2| Field5 |
Expression
IS I Variables
Cell
-
Procedure!
Function
Invecation
Cell
NI T
TSI N Expressicn
“ariables Cell
[Continuation)
Expression
“ariables
Cell

Fubeword Halfeord Byte Field

Dffset Dffset Offset Number

. . . -
1] 0 0 1 # Bytes in Cell 2
1 2 2 #5ymbol Indexes 2
1 2 4 3 Symbol #* 2
3 Symbol #* 2
3 Symbol #* 2
ST IR 0 or 2 bytes padding so that the
U DY 1ES PA OO S0 e £
A pointers are fullword aligned
T "
4 A Pointer 4
G
T ik
4 A Pointer 4
G
T "
4 A Pointer -
G
* Index in Symbol Index Table

Figure 2-72 Expression Variables Cell

The meaning of the fields of the Expression Variables Cell are as follows:

Field No.

Description

1

2

The number of bytes in the cell.
The number of symbol index halfwords (field 3).

Indexes to corresponding symbol data and/or sets of indexes which are
keyed by a leading two byte negative integer whose absolute value is the
number of following structure qualifiers and symbol indexes in the set. See
the explanation of the Variable Reference Cell, in field 4 of Section 2.2.2.2.7,
“Variable Reference Cell” on page 105.

Field No. Description

4 The interpretation of the pointer is determined by the value of the 2-bit Tag
Field as follows:

Tag

0 A pointer to a Variable Reference Cell describing a subscripted variable
(see Section 2.2.2.2.7, “Variable Reference Cell’ on page 105)

1 A pointer to a Procedure/Function Invocation Cell (see Section
2.2.2.2.5.4, “Procedure/Function Invocation Cell’ on page 100).

2 In the highly unlikely event that an Expression Variables Cell did not fit on
a single SDF page, it would be split into two cells and the last pointer of the
first cell would have a Tag value of 2 and would point to the second cell.

3 A Tag value of 3 will only occur in the RHS Expression Variables Cell

pointed to by field Ob of an Executable Statement Data Cell for a
%NAMEADD or a %COPY statement. In this case, the pointer is not a
pointer, it is instead the value of the third argument of the macro. When
%COPY is called without specifying a halfword count, this field will be
absent and the count is determined by the size of the source operand.

2.2.2.2.7 Variable Reference Cell

The Variable Reference Cell gives a complete description of a particular use of a variable.
The cell occurs in a variety of contexts. It can be referenced by a pointer in an
Expression Variables Cell (see Figure 2-73 on page 106) corresponding to an expression
involving the variable. When it is referenced by a Name Terminal Initialization Cell (see
Figure 2-74 on page 107), it describes the variable initially pointed to by one or more copies of
the structure name terminal. For external Equate labels, the Auxiliary Symbol Information
Painter (Field Oc) of the Symbol Data Cell (see Figure 2-75 on page 108), for the label points
to a Variable Reference Cell which describes the HAL/S variable which is equated to the
external label. Finally, for non-structure NAME variables which are initialized, the Auxiliary
Symbol Information Pointer of the Symbol Data Cell (see Figure 2-75 on page 108) for the
NAME variable refers to a Variable Reference Cell describing the variable initially pointed to
by the NAME variable.

L
K BT IR R R0

0 Field 4 L

e

SIS ST IR KT R R T
L LTSRN TR T
Expression Varables Cell Variable Reference Cell

Figure 2-73 Variable Reference Cell Overview (Expression Variables Cell)

-
TSI R
TORTNTTENT RN

Field 4

Master Directory

Cell Field 13

TSI R
TORTNTTENT RN

Directory Root
Cell

Symbol Index Table

Field Oc

Y

Field 1

L

Field 3 HOHTIIENT I

HOHTIIENT I
TSI SRR

Mame Terminal

Field 5c Initialization Cell

TSR RN
TN RN

Symbel Data Cell

Mame Terminal

Inftialization Call ™|

\Variable
Reference Cell

Figure 2-74 Variable Reference Cell Overview (Name Terminal Initialization Cell)

Field Oc

ST TN Ti

Field 4 TS SO IIIIITY

Field 1

Master Directory
Cell

Field 13

RN NIRRT e
SEEITTEIET TN

Symbol Data Cell

ST TN Ti
L

Directory Root Cell

Symbel Index Table

Symbel Data Cell points to Variable Reference Cellwhen:
1. HALS Symbol which points to a MOMNHAL Symbol is subscrpted or is pan of a structure
2. Monr-Structure Mame Variable points to subscrpted or structure variable

Figure 2-75 Variable Reference Cell Overview (Symbol Data Cell)

“ariable Reference
Cell

Fulbeord Halfeord EBvyte Field

Offset Offset Oiffset Mumber BEutes
; ; ~ -
o o o 1 # of Bytes in Cell 2
1 2 2 F
; # of Symbol Indexes =
G
1 p - A Ptr. to Expression 4
. = Variables Cell
2 4 g . Symbol #* 2
. Symbol #* 2
- Symbol #* 7
5 Subscript Descriptor 7
5 Subscript Descriptor 2
5 Subscript Descriptor 2z
* Index in Symbol Index Table

Figure 2-76 Variable Reference Cell

The meaning of the fields of the Variable Reference Cell are as follows (see Figure 2-76
on page 109):

Field No. Description

1 The number of bytes in the cell.

2 The number of symbol indexes (Field 4). The flag bit indicates the presence
of subscript descriptors.

3 A pointer to an Expression Variables Cell (see Section 2.2.2.2.6, “Expression
Variables Cell” on page 102) which lists all the variables, procedures, and
functions involved in the subscript expressions. If all subscript values are
known at compile time, this is indicated by a null pointer.

4 Indexes into the Symbol Index Table which contains the pointers to the Sym-
bol Data Cells. In the case of a simple variable there would be a single Symbol
Index. The case of a structure variable is best illustrated by an example.

Reference to a structure node X.B.C.E.F.Z:

Major
X Structure

Template A A

MNested
C Structure
Reference

Template D

Terminal
Node

Figure 2-77 Structure Reference Diagram

This reference would generate three symbol indexes:

Index for X
Index for C

index for £

Field No. Description

5 This field contains halfwords of subscript type information (Fields 5A, 5B,
5C, and 5D) and of the literal subscript value (Field 5E).

The first halfword is the subscript type information. It is discussed below:

Bits O 5 6 7 8 11 12 15
Element Subscript Expression Subscript
Type Type () Type Continuation
Flag (B)
5A 5B 5C 5D

Sub-Field Description
No.

5A The Element Type sub-field describes the type of item being subscripted. The
valid types are:

Type Description
0 = Component (Vector/Matrix)
1= Array
2 = Structure
5B The Subscript Type (a) describes the type of subscript operation being

performed. The valid types are:
Type Description
0= * operation
1= Index Value
2 = “TQO” partition operation
3 = “AT” partition operation

5C The Expression Type describes the data involved in the actual subscript.
The different types are represented by combinations of the bits described

below:

Sub-Field Description

No.
5C Bits 8 9 10 11
(Cont'd) ;
Number + (plus) - (minus) Literal
Specified Subscript Subscript Value
in Expression Expression Specified
Subscript

The valid expression type values are:

Type Description
= Variable Expression Specified
= Literal Value Specified
= Number + Variable Expression Specified
= Number + Literal Specified
= Number - Variable Expression Specified
= Number - Literal Specified
= invalid
= invalid
= Only Number specified in Subscript

When the Literal Value bit is set, the Subscript Type halfword is followed by an
additional halfword which contains the Literal Value specified in the
subscript (see Field 5E below).

5D The Subscript Continuation Flag () indicates whether the next two Subscript
Descriptor halfwords are a continuation of the current set (i.e., the second part
of a “TO”/*AT” subscript partition).
Type Description
0 = Subscript partition is not continued

Subscript partition is continued in the next two halfwords of the
Subscript Descriptors.

ok Bits: 0 15
16 Bit Signed Literal Value

1=

This field contains the signed 16-bit Literal subscript value specified in the HAL/S

program.

2.2.2.2.8 Function Tables

As shown in Figure 2-78 on page 114, the Function Index Table (see Figure 2-79 on
page 115) is pointed to by Field 52 of the Directory Root Cell. The pointer field within the
Function Index Table points to the Function XREF Data Cell (see Figure 2-80 on page 117).
When necessary, Field 4 of the Function XREF Data Cell points to the Function XREF
Extension Cell (see Figure 2-81 on page 117). The Function Tables are comprised of the
Function Index Table and the Function XREF Data Cell. These cells provide a means of
accessing cross-reference information for Built-In Functions and explicitly invoked HAL/S
Shaping Functions.

|
SRR AT
ESTENEREN TERTERTEEOY

Field 4

Master Cirectory
Cell
ST I
SRR I
ST T
SR IR
SR T
ST I
SRR I
Field 52 ST T

SRR AT
ESTENEREN TERTERTEEOY

Diirectory Root

Cell

Field 4
Function XREF
Cata Cell

METITITI TR
KN TR
HSTITITET RRIRTEIEY

Function XREF
Extension Cell

Function Index Table

Figure 2-78 Function Data Overview

2.2.2.2.8.1 Function Index Tables

The Function Index Table (Figure 2-79 on page 115) consists of a four byte function-type field
followed by an SDF pointer which points to the Function XREF Data Cell (see Figure 2-
80 on page 117 and Figure 2-81 on pa 2-117). This table contains an entry for every
function used in the compilation unit.

4 Bytes 4 Bytes

Function Type A wpEFDATA

Figure 2-79 Function Index Table

The Function types of the Built-in Functions are listed below:

Type Function Description

1 ABS Absolute Value

2 COoSs Cosine

3 DET Determinant

4 DIV Integer Division

5 EXP e

6 LOG Natural Log (Log base €)

7 MAX Maximum Value in array

8 MIN Minimum Value in array

9 MOD Modulus

10 ODD Odd Value (1, 3,5, ...)

11 SHL Bit Shift Left

12 SHR Bit Shift Right

13 SIN Sine

14 SUM Sum of items in array

15 TAN Tangent

16 XOR Exclusive OR

17 COSH Hyperbolic Cosine

18 DATE Current Date

19 PRIO Process Priority

20 PROD Product of items in array

21 SIGN Sign of Value (+1 for non-negative, -1 for negative)
22 SINH Hyperbolic Sine

23 SIZE Length of array or structure

24 SQRT Square Root

25 TANH Hyperbolic Tangent

26 TRIM Remove Leading and Trailing Blanks in String
27 UNIT Unit Vector with same direction
28 ABVAL Length of a vector

Largest Integer <= X

Index in Character String

Left Justify Character String

Right Justify Character String

Round to nearest Integer

Sum of Matrix Diagonal

Inverse Cosine

Inverse Sine

Inverse Tangent

Group Number of Last Error

Number of Last Error

Length of Character String

Middle Value

Random Number between zero and one
Sign of Value (+1 for positive, O for zero, -1 for negative)
Inverse Hyperbolic Cosine

Inverse Hyperbolic Sine

Inverse Hyperbolic Tangent

Inverse Hyperbolic Tangent

Smallest Integer >= X

Matrix Inverse

Task Scheduler

Random Number between zero and one (Gaussian Distribution)
Time since module began running
Truncate to Integer Value

Elapsed Time Since Midnight

Integer Division Remainder

TRANSPOSE Transpose Matrix along Major Diagonal
For explicitly invoked Shaping Functions, the Function Types are as follows:

29 FLOOR

30 INDEX

31 LJUST

32 RJUST

33 ROUND

34 TRACE

35 ARCCOS
36 ARCSIN

37 ARCTAN

38 ERRGRP
39 ERNUM

40 LENGTH

41 MIDVAL

42 RANDOM
43 SIGNUM

44 ARCCOSH
45 ARCSINH
46 ARCTANH
47 ARCTAN2
48 CEILING

49 INVERSE
50 NEXTIME
51 RANDOMG
52 RUNTIME
53 TRUNCATE
54 CLOCKTIME
55 REMAINDER
56

Type Function

60 BIT

61 SUBBIT

62 INTEGER
63 SCALAR

64 VECTOR

65 MATRIX

66 CHARACTER

2.2.2.2.8.2 Function XREF Data Cell

Each Function XREF Data Cell contains the number of XREF entries and a list of the
statements in which the function is invoked.

Fuhword Halfeword Bowte Field

Difset Difset Difset Mumber Bytes
- Where each entry is:
0 0 o 1 Total Mo. of XREF Entries 2
1 2 p FLAG Stmit. #1 2 Flag
FLAG Stmit. #2 2|A|R|S Stmit # (13 bits)

0 3 15
A=1%arable is assigned

R =1 Variable referenced)
S =1%Vanable is used as a subscript

FLAG Stmit. #n-1 2
FLAG Stmt. #n 2 It A, R, 5= 0then the statement
refers to a DECLARE statement
3 XHFFF 2 or 4 Bytes of Alignment Gap

-4 Fulbyvord Aligned
- i Function XREF Extension Cell -

Figure 2-80 Function XREF Data Cell

Fubeword Halfeord Bwyte Field

Dffs et Offset Difset Mumber Evtes
-
0 0 o 2 Flag Stmt. #1 2
2 Flag Stmit. #n 2
3 XFFFF 2 or g Bytes
- Fulhword Aligned

- A Function XREF Extension Cell -

Figure 2-81 Function XREF Extension Cell
The Function XREF Data Cell fields are described below:

Field No. Description

1 This field contains the total number of cross-reference entries stored in the
cell.
2 This field contains the statement cross-reference information in the lower 13

bits of the two-byte field. This information is in the form of indexes into the

Statement Index Table. The upper three flag bits denote the usage of the
function and are the same as those contained in the Symbol Data Cell. For
convenience, these flags are also provided in Figure 2-81 on page 117.

3 If all of the statement references cannot be contained in a single page, the data is
extended to another page by means of an SDF pointer. When this is the case, this
field will be either two or four bytes long (so that Field 4 can start on a full
word boundary) and be filled with hex’FF'.

4 This field contains an SDF pointer which points to the Function XREF Extension
Cell (see Figure 2-81Figure 2-800on page 117) which contains the remainder of the
function cross-reference information.

2.2.2.2.9 HALMAT Data Structures

The HALMAT Data Structures consist of two basic classes of cells and tables: the
HALMAT Cells and the Literal Tables which are used by the HALMAT Cells. Both classes of
data structures are discussed in more detail in the following sections.

NOTE: The HAL/S-FC compiler feature that results in the creation of HALMAT Data
Structures is not used and there are no plans for using it. This feature should be
considered “unverified “ and should not be used in a production environment. The
description of HALMAT Data Structures contained in the subsequent sections may not
accurately reflect what the HAL/S-FC compiler will produce if this feature were to be
used.

2.2.2.2.9.1 HALMAT Cells

The HALMAT Cells consist of the HALMAT Cell (see Figure 2-83 on page 120) and the
HALMAT Extension Cell (see Figure 2-84 on page 120). These cells contain a modified
version of the HALMAT Intermediate Language Data produced by Phase 1 of the HAL/S
Compiler for a single HAL/S statement. In the SDF version of the HALMAT Cells, the Phase 1
Compiler symbol numbers have been changed to Indexes into the Symbol Index Table,
the Virtual Accumulator (VAC) pointers to SDF offsets into the HALMAT Cells, and the
indexes into the Phase 1 Compiler Literal Table to indexes into the SDF Literal Table
(see Section 2.2.2.2.9.2, “Literal Data” on page 121). It should be noted that the
HALMAT SMRK (HALMAT Statement Marker) Operators are removed before the HALMAT
is inserted into the SDF.

- Feld 1

LU

Feld 4

Master Directony
Cel

Feld 13

Feld 21

LU

Diirectory Root
Cel

Symbol Index
Table

|

SRR

Symbol Data
Cel
Field 5 WRRTIRRTURRARMIARR,
WRRTIRRTURRARMIARR,
Feld 4 WRRTIRRTURRARMIARR,
WRRTIRRTURRARMIARR,
LTS W
Declare
Statement
Cata Cell Feld &
HALMAT Cell HALMAT
Extension
Cel
Feld Oe

ST
ST

Statement Index

Table

Figure 2-82 HALMAT Data Cells Overview

ST
ST
ST
ST

ST
ST
ST
ST

Executable
Statement
Cata Cell

Feld 6

HALMAT Cell

HALMAT
Extension
Cel

Fubeword Halfeword EBwte Field
Diffs et Offs et Dffset Number
[

o 0 o 1

1 2 2

1 2 4 3

4

4

4

3

3

4

I:.

B

Figure 2-83 HALMAT Cell

Fubeword Halfeord Byte Field
Dffset Diffset Offset Number
-

0 0 o 3

4

of words of HALMAT for
this statement

Word Offset to last operator
HALMAT Operator #1
HALMAT Operand #1
HALMAT Operand #2

HALMAT Operand #n

HALMAT Operator #2

HALMAT Operator #n

FFF...FF

A Al MAT Extension Cel

HALMAT Operator

HALMAT Operand

Figure 2-84 HALMAT Extension Cell

A

Present onby if
HALMAT is continued

in extension cell

The meaning of the fields in the HALMAT and HALMAT Extension Cells is as follows:

Field No. Description

1 This field contains the number of words of HALMAT generated for the
statement.

2 This field contains the fullword offset to the last HALMAT operator of the cell.

3 This field contains the HALMAT operator.

4 This field contains the HALMAT Operand.

5 This is a pad field of two or four bytes used to force fullword alignment. When

this field contains all X'FF’, it indicates the presence of the HALMAT
Extension Cell Pointer (Field 6 below).

6 This field contains the Pointer to a HALMAT Extension Cell (see Figure 2-84 on
page 120). It and Field 5 above are present only when all of the HALMAT
information for a particular statement will not fit into the current SDF page.

2.2.2.2.9.2 Literal Data

The Phase 1 literal table is rearranged and included in the SDF. The SDF literal table
differs from the compiler’s table in that the three fields (i.e., LIT1, LIT2, and LIT3) are
contiguous. As shown in Figure 2-85 on page 122, the Literal Extent Table (see Figure
2-86 on page 123) is pointed to by Field 50 of the Directory Root Cell; the only field of
this table points to the Literal Table (see Figure 2-87 on page 124). In addition, as is
indicated in the overview, Field 2B of the Character Literal Cell points to a string entry in
the Literal Character Table; furthermore, Field 2 of the Template Subscript Literal Cell
contains the Symbol Number of the Template Symbol.

- Field 1

-
-
TR
Field 4 TR R RITii;
Symbo

Field 13 Data Ca
WMaster
Directory Symbal Index

Cal Table
- -
Field 1 | |
Field 50 SHATTIIIOERI

HIRTTIRTRITY
IR
HOTTRITITY
SRR P
TN | I | i
Directory Field 1 T TR T
Foat Ce RRRE | BRI | R
N | | s
WK | | s
I KT | TG R
L] Baent B | 0T | 109800
KT | TG R
WK | | s

Literal Table

Y
TIREETE THie

NWERRE | EREEE | BRI
FWERRE | FRREEE | RRE
FWERRE | FRREEE | RRE

Literal Character Table

Literal Table

Figure 2-85 Literal Data Overview

2.2.2.2.9.2.1 Literal Extent Table

The Literal Extent Table contains pointers to the pages in the SDF member which are
occupied by the Literal Table. The Literal Extent Table is pointed to by Field 50 of the
Directory Root Cell. This table is present only when HALMAT is contained in the SDF
member.

& Literal Page 4

1 4 Literal Page 4

&
1 Literal Fage 4

Figure 2-86 Literal Extent Table

The Literal Extent Table Field is described below:

Field No. Description

1 SDF Pointer to a part of the Literal Table within an SDF page.

2.2.2.2.9.2.2 Literal Tables

The Literal Table consists of four types of table entries (Character, Arithmetic, Bit, and
Template) and a Literal Character Array. The Literal Table is essentially a reformatted
version of the Literal Table produced by Phase 1 of the HAL/S Compiler. The SDF
Literal Table differs from the compiler’s table in that the three fields, LIT1, LIT2, and
LIT3, are contiguous. The Literal Table and Literal Character Array are present only
when HALMAT is contained in the SDF. The formats of arithmetic and bit literals are
the same as those of the compiler’s literal table.

Field Field Field
1 2 3

1 LIT1 LIT2 LIT3
2 LIT1 LIT2 LIT3
3 LIT1 LTz LIT3
M LIT1 LTz LIT3

Figure 2-87 Literal Table

The fields of the Literal Table are described below:

Field No. Description

1 The LIT1 field contains the information as to the type of cell that is being
represented. (Four byte field of which only the last byte is used.)

2 The LIT2 field generally contains information about the literal data item
contained in the cell. In the case of a character literal, the LIT2 field con-
tains both a length and a pointer into the array LIT _CHAR that has been copied
into the SDF from Phase 1. (Four byte field.)

3 The LIT3 field may or may not be used in the different cells, but may either contain
data (arithmetic) or length of the data (bit). (Four byte field.)

2.2.2.2.9.2.2.1 Character Literal

The Character Literal Cell contains the length of the literal character string minus one
and an offset into the Literal Character Array containing the string. The Literal Character
Array is declared as BIT(8).

Fullword Halfword Evyte Field Field Size

Dffset Difset Difset Mumber {in bytes]
14 Unused Pad Space
- - 3 1B Cell Type (0) 1
1 3 4 24 Length -1 (1-256) 1
_ _ L B A Pointer to LIT_CHAR Amray
2 4 g 3 Unused Filler Area 4

Figure 2-88 Character Literal Cell

The format of the Character Literal Cell is the same as that of the HAL/S Compiler. The
Character Literal Cell fields are described below:

Field No. Description

1 LIT1 Field
1A Unused pad area
1B This field contains the information as to the type of cell that is being

represented. (One byte field.)
2 LIT2 Field

2A This is the length of the literal string minus one (i.e., XPL format where
X'00'=1 character and X’FF’'=256). (One byte field.)

2B This field contains an offset into the array LIT_CHAR that has been copied
into the SDF from Phase 1. (Three byte field.)

3 LIT3 Field
The LIT3 field is not used in the Character Literal Cell. (Four byte field.)

2.2.2.2.9.2.2.2 Arithmetic Literal

The Arithmetic Literal Cell contains either Single or Double Precision Numeric Literals in
either Fixed or Floating Point format. If needed, the LIT3 field is used as a continuation
of the LIT2 field.

Fullword Halfword Bvyte Field Field Size

Offset Offset Offset Mumber {in bytes]
14, Unsed Pad Space
_ - 3 1B Cell Type (1) 1
1 2 4 2 Mumeric Data (see Text) 4
2 4 g 3 Mumeric Dataor Umused 4
(see Text)

Figure 2-89 Arithmetic Literal Cell

The format of the Arithmetic Literal Cell is the same as that of the HAL/S Compiler. The
Arithmetic Literal Cell fields are described below:

Field No. Description

1 LIT1 Field
1A Unused pad area
1B This field contains the information as to the type of cell that is being

represented. (One byte field.)
2 LIT2 Field

This is the data. If the data will fit into four bytes, then the data is contained
solely within the LIT2 field and the LIT3 field is unused (i.e., it is single
precision). If it requires more than four bytes of storage, then the LIT3 field
is commandeered and used to store the surplus data (i.e., it is double
precision). (Four byte field.)

3 LIT3 Field

The LIT3 field is used as an extension of the LIT2 field for double precision
data only and is not used when single precision data is stored. (Four byte field.)
2.2.2.2.9.2.2.3 Bit Literal

The Bit Literal Cell contains up to 32 bits of information along with the appropriate
length information. The LIT3 field is used to convey this length information.

Fullword
Dffset

Halfword Byte Field Field Size

Difset Dffset Mumber {in bytes]
14 Umeed Pad Space
- 3 1B Cell Type () 1
2 4 . Bit Pattem (0-32 Bits) 4
1 g 3 Length (see Text) 4

Figure 2-90 Bit Literal Cell

The format of the Bit Literal Cell is the same as that of the HAL/S Compiler. The Bit Literal
Cell fields are described below:

Field No. Description

1 LIT1 Field

1A Unused pad area

1B This field contains the information as to the type of cell that is being
represented. (One byte field.)

2 LIT2 Field
This field contains up to 32 bits of data that may be in a pattern for
repetition. The length of this bit field is contained in LIT3. (Four byte field.)

3 LIT3 Field

The length field specifies the bit count as determined by the source input. It
is always a multiple of four for hexadecimal. For decimal literals only, the
length represents the number of significant bits in the literal value. For all
others, the length reflects the number of characters in the string specifying
the literal, including leading zeros.

2.2.2.29.2.2.4 Template Subscript Literal Cell

The Template Subscript Literal Cell is generated by the HAL/S Compiler Optimizer during the
processing of structure subscripts. This allows the computation of the product of the
template width and the subscript index to be eligible as a common sub-expression.

Fullword Halfword Byte Field Field Size

Offset Difset Dffset Mumber {in bytes]
O o '}] 14 Umused Pad Space 3
- - 3 1B Cel Type (3 1
1 2 4 2 Template Symbol Mumber 4
2 4 a 3 Umsed Fller Space 4

Figure 2-91 Template Subscript Literal Cell

The format of the Template Subscript Literal Cell is the same as that of the HAL/S
Compiler. The Template Subscript Literal Cell fields are described below:

Field No. Description

1 LIT1 Field
1A Unused pad area
1B This field contains the information as to the type of cell that is being

represented. (One byte field.)

2 LIT2 Field
This field contains the Symbol Number (Index into the Symbol Index Table)
of the Template.

3 LIT3 Field

The LIT3 field is not used.(Four byte field.)

2.3 OBJECT CODE

The object program output appears in both the OUTPUT3 and OUTPUT4 data sets.
Symbol table data is located at the beginning of the object deck. The format of the
various records which will be found in the object programs is as follows:

QUTPUT3 and OUTPUT4 Data Stets

1 2-4 5-10 11-12 13-14 15,16 17-72 73-80

TITLESED

ESD Diata - see following Page

Blank if all ESD items are LD
ESD IDEMTIFIER of first ESD
iten [other than LD

Mumber of bytes of ESD data

ESD

12-8-2 (D000 0010)

Motes:
1. All addresses in these formats are byte addresses.

2. The AP-101 "TITLE™ name field may contain up to eight chamcters. Any columns
remaining inthe seguence field (i.e., name = 8) are used for seguencing.

Figure 2-92 ESD Output Record (Card Image)

1-8] 10-12 13 14-16

Zero - if length is on EMD card

Length of control section (if type is:
S0 PCY N bytes

ESD IDEMTIFIER of S0 entry containing
label references

Elank if type is ER

Included Remote [APES simulator use)
24 bit address (S0, PC, LOY
Type - Hew (00=50 01=L0, (2=ER, 03=LR, 04=FLC)

Mame - when type is: 30, LD, LR, ER
Elank - when type is PC

Figure 2-93 ESD Data Item

1|24 | 5 68 | 9-10 (11,12 | 13,14 | 15-16 | 17-72 | 73-80

TITLE'SED
Text data (machine

language code

ESD ldentifier of SO for control

section of this text

Blank
Mumber of bytes of text data
Blank
24 bit address of first byte of text data
Blank
TIxT CSECT MAMES
12-5-2 (0000 0010 SO - Section Definition

LD - Entry Point

ER - Extemal Refersnce

LR - Label Reference

FPC - Private Code (Unnamed CSECT)

Figure 2-94 Text Output Record (Card Image)

1 2-4 5-10 11-12 | 13-16 17-72 73-80

TITLE/ZED
RLD data - see below

Blank

Mumber of byvtes of RLD data

o
=

LD

12-5-2 (0000 0010

1,2 3.4 5 6, 7,8 ELL data item

]]

Assigned address of address constant (Halfword address)™
Flag field - (TTTTLLSTR)

TTTT = type S = Direction of relocation

000D = standard address type 0 = positive [+)

0001 = branch relocation for 32 bit branch® 1 = negative (-

0100 = data relocation for 32 bit branch® Tn = type of next RLD item

0010 = branch relocation for 32 bit data”® 0 = next RLD item has a

0101 = data relocation for 32 bit data”® different R or P pointer;
LL = Length of address constant they are presentinthe
00 = 2 bytes nest item.
01 = 4 bytes 1 = nextRLD item has the

same R and P
pointers, hencethey

Fosition pointer (F) - ESDID of SOor control AIE OmItEs.

section that contains the address constant

Relocation pointer (R) - ESOID of CESD entry for the symbal
being referred to

*LL =00

Figure 2-95 RLD Output Record (Card Image)

1|24 |5| 68 |914 | 15,16 | 17-28 | 29-32 | 33-72 | 73-80

TITLESED
See Figure 2-58
Control section length for control
section whose length was not
specified in S0 ESD item. Byte 29
is binary zero if length is present.

Blank

M

SOID of S0 item for this control section that contains
55 specified in bytes 6-8.

Figure 2-96 END Output Record - Type | (Card Image)

1| 24 5-16 17-24 25-28 29-32 | 33-72 73-80

TITLE'SEDQ

e

See Figure 2-98
Control section length for control
section whose length was not
specified in S0 ESD item.

Elank

Symbolic entry point name {opticnal)

Figure 2-97 END Output Record - Type 2 (Card Image)

33 34-43 4445 | 4647 | 4849 | 50-52 b3-71 72

When present, same format
as columns 34-52, but data
applies to a processor which
produced the source code for
the processor described in
columns 34-52.

Day of year (date of compilation or

assembhy)

Last two digits of vear (date of compilation or
assembhy)
Medification level of processer (01 to 95)
Yersion level of processor (01-99)
Translator identification - PID order number or eguivalent.
left justified and padded to the right with blanks.

Flag field:
Blank = no IDR information in this record (provides
no compatibility with existing format)
EBCDIC1 = one IDR item follows
EECDICZ = two DR items follow

Figure 2-98 IDR Data in a Object Module END Record

1 2-4 5-10 11-12 | 13-16 | 17-72 | 73-80

TITLESED
Yariable Field (see Figure 2-100)
Blank
Yariable Field Count - number of bytes in Variable
Field (ccl?-72)
Blank
SYM
12-0-2 (D000 0010
Mote: If requested by the user, the assembler punches out symbolic

information for TESTRAN concerning the assembled program.
This cutput appears ahead of all loader text.

Figure 2-99 TESTRAN (SYM) Output Record - (Card Image)

M complete entries
M =1

Variable size entries

Org. | Address Symbol Mame | Data | Length Mol Scale | Org. Symbeol
type factor MName

1 3 0-g 1 1-2 3 2

Figure 2-100 SYM Variable Field Data

The variable field (columns 17-72) contains up to 56 bytes of TESTRAN text. The items
making the text are packed together. However, no item may extend across a record
boundary. Data other than control section data and storage protect data is optional.
Names are not allowed on store protect data. Store protect data is only valid within a
CSECT.

For a COMMON section the assembler will output only one storage protect item--a storage
protect off containing a zero address. For COMMON sections with the same name
(including a blank name) the Linkage Editor will output only the first set of TESTRAN
records (i.e., the set of records attached to that COMMON section which appears first in
the input stream).

The formats of a text card and an individual text item are shown in the two figures
above. The contents of the fields within an individual entry are as follow:

1.0rganization (1 byte)
Bit O:
0 = non-data type
1 = data type
Bits 1-3 (if non-data type):
000 =space
001 = control section
010 = dummy control section

011 =common
100 = instruction

101 = CCW
Bit 1 (if data type):
0 = no multiplicity
1 = multiplicity (indicates presence of M field)
Bit 2 (if data type):
0 = Always
Bit 3 (if data type):
0 = no scaling
1 = scaling (indicates presence of S field)
Bit 4:
0 = name present
1 = name not present
Bits 5-7:
Length of name minus one
2.Address (3 bytes) - displacement from base of control section
3.Symbol Name (0-8 bytes) - symbolic name of particular item
Note: The following fields are only present for data-type items.
4.Data Type (1 byte) - contents in hexadecimal

00 = character

04 = hexadecimal

08 = binary

0C =unused

10 = fixed point, full

14 = fixed point, half

18 = floating point, short
1C =floating point, long
20 = A-type or Z-type data
24 = Y-type data

80 = store protect on

84 = store protect off

5.Length is not present for store protect: (2 bytes for character, hexadecimal, or binary
items; 1 byte for other types) - length of data item minus 1

6.Multiplicity - M field (3 bytes) - equals 1 if not present

7.Scale - signed integer - S field (2 bytes) - present only for F, H, E, D, P type data, and
only if scale is non-zero.

AN EXAMPLE OF THE USE OF SYM CARDS BY HAL/S-FC
Assume:

A. Compilation Unit Name is COMP_UNIT, a COMSUB
B. Version number is 20
C. Stack size is 100

D. References are made to COMSUBS EXT1 of Version 10, and EXT2 of Version
100

Code SYM card information would be:

NAME TYPE ADDRESS COMMENTARY

#CCOMPUN CSECT 0 Defines CSECT

STACK DSECT 0

ARG1 VAR 0 Variables defined in stack

ARG2 VAR 8

STACKEND VAR 100 Address of 100 is stack size.

HAL/S-FC DSECT 20 Invalid label, HAL/S-FC used to indicate

beginning of version data. Address of
HAL/S-FC is the version of COMP_UNIT.

EXT1 DSECT 10 Version of EXT1

EXT2 DSECT 100 Version of EXT2
HALS/END DSECT

#CCOMPUN CSECT 0 Define statement labels

ST#1 LABEL 0

ST#2 LABEL 34

ST#N LABEL 2000
#DCOMPUN CSECT 2010
SPOFF Turn off storage protect
A VAR 2010
B VAR 2012

The information between HAL/S-FC DSECTS and the HALS/END can be generated only by
the compiler; therefore, no template checking of assembly routines can be
accomplished.

The HAL/S-FC compiler must also create a Process Directory Entry (PDE) for each
program and for each task. These will be grouped by the compiler and emitted under a
single CSECT name (see Section 4.0, “CSECT/MEMBER NAMING CONVENTIONS” on
page 1) for each program compilation.

Each PDE consists of six halfwords as described below:

e HALFWORD 1 - binary zeroes. This field is used by the FCOS to store the Process
Event. This field must be on a fullword boundary.

e HALFWORD 2 - binary zeroes. FCOS will use this field (PCT field) to point to the
Process Control Table.

¢ HALFWORD 3 and 4 - Z-CON pointing to the program or task entry point.

e HALFWORD 5 - stack address or stack size. If the stack is preallocated by the
linkage editor, the address is stored here and bit O of halfword 6 is set to 1.If the stack is
not preallocated by the linkage editor then FCOS is to allocate it at run time. The stack size
is stored here and bit O of halfword 6 is set to zero.

¢ HALFWORD 6 - linkage editor and FCOS flags. Bit O is set to 1 if halfword 5 contains
the stack address. Otherwise, it is set to zero. The low order four bits of halfword 6
contain the FCOS major function identification (MFID). The MFID can be overridden
in a parm field option to any value which is < 15.The default MFIDs are based on the
first character of the compilation unit name as follows:

First Character = Major Function MFID
System Control 1
User Interface 2
GNC 3
PAYLOAD 5

ToOO >

R
S
V
any other letter

RMS

SM

VU

not defined

o o 01 ol

‘This page intentionally left blank.’

3.0 AP-101 EXECUTION ENVIRONMENT

The following sections describe the AP-101 execution environment as established by
FCOS and HAL/S-FC compiler conventions and design. They discuss the use of HAL/S stacks
and the form of the procedure and function CALLs. Additional information in regard to
memory and stack content can be found in the HAL/FCOS ICD.

3.1 AP-101 REGISTER USE

The following table describes the use of the AP-101 registers by HAL/S-FC compiler
generated code:

Reg.# Pointer Name Description

0 BT Stack register. This register points to the caller’s register
save area in the run time stack. In addition, all formal
parameters, temporaries, and AUTOMATIC variables in
REENTRANT procedures are based on this register. The lower
half contains the size of the current stack frame.

1 BP Local data (#D) addressing register. This register is used to
address all of the declared variables and literals within a
compilation unit.

2 Work addressing register. This register is used to access
compool (#P) data, pass address parameters, dereference
NAME variables, and set up any other dynamic addressing.

3 BL Compool (#P) or local data (#D) addressing register. This register
is used in SRS instructions only to address a certain subset of
the local data in a block (e.g. internal procedures).

When the DATA_REMOTE directive is in effect, register 2 can
only be loaded with non-local data addresses (e.g. Compool) and
register 3 can only be loaded with local data addresses (i.e., #D).

4 RRET Linkage register. This register records the return address for
all subroutine linkages. It may also be used for an integer
accumulator.

5-7 Used for integer accumulators, index registers, and parameter
passage where applicable.

FO-F5 Used for floating point accumulators and parameters.

F6 - F7 Used for floating point accumulators only.

3.2 HALIS STACK

The HAL/S stack provides temporary storage for work areas, saving of registers, call
and return linkages, passed parameters, and process-specific information for blocks in a
HAL/S process execution. The HAL/S stack is so designed that only the storage actually
required during the execution of a HAL/S block is present and used. A stack CSECT is
created by the AP101/S Linkage Editor process for every program and task in the flight
software load module. How stacks are used in the procedure and function linking pro-
cesses are described in the HAL/S-FC Compiler System Specification.

The format of a stack space element for an executing HAL/S block is shown in Figure 3-101 on
page 3.The element is positioned in the stack space in accordance with the hierarchical scope
relationship of its block with other blocks in the hierarchy. The meanings of the fields of the
element are as follows:

Figld Mo. Size [Bytes)

-
1 Elxk Cumrent Code Base 4
D
N Flag ISM
2 Field 4
Temporary
K g
Doubleword
4 Error Link 4
RO amD
R1 amgl
R2 angz2
R3 am3
R4 amgd
RS
RE
RT
5| RE G0
R10
R11
R12
R13
R14 return address
[previous stack frame)
& FProcedurs Tempomns and “ariable Length

Reentrant Local Data

Figure 3-101 Stack Elements

Preliminary CR14217 PAGE 160 OF 202 USA001556

HAL/S-FC / SDL ICD Baseline
32.0/17.0
Field No. Flag Name Meaning
1 (First Byte) Block ID Block ID is the identification number (one
byte) of the HAL/S block, and is generated
as follows:

1D Block Type

n Program. “n” is the first number
available after Include Blocks have
been assigned.

0 COMSUBS

>n Nested procedures, Tasks, and
library routines.

1 (Bytes 2-4) Current Code Base Current Code Base is the entry point address of
the called procedure or function. It and the
ID are loaded by the Procedure Caller from the
linkage data supplied by the invoking
procedure.

2 (Bytes 1-2) Flag Field When a HAL/S process enters an
EXCLUSIVE block, and successfully gains
control of the block, the high order bit of the
Flag Field is set to “1.” This bit is used during
process termination to free the EXCLUSIVE
resources which a terminating process may
be holding. The remaining 15 bits are zero
or contain a lock group number if it is an
update block.

2 (Bytes 3-4) ISN Internal Statement Number of the statement
referenced last by the Statement Processor.

3 Temporary This field is used as a workspace by some
Doubleword compiler generated subroutines.

4 Error Link Linkage for ON ERROR processing.

5 Save Registers

6 Procedure Provides storage space for temporary data.
Temporary and Reentrant
Local Data

Preliminary CR14217 PAGE 160 OF 202 USA001556

HAL/S-FC / SDL ICD Baseline
32.0/17.0

3.3 STACK AND LOCAL BLOCK DATA ORGANIZATION

The organization of a HAL/S Stack Block is shown in Figure 3-102 on page 5.The
HAL/S Stack Cell contains a save area for the fixed and floating point registers, cells for
various pointers, an area for temporary variables, space for user declared variables that
are not to be assigned to static storage, and entries for the Error Vector. The active
stack space (cell) is pointed to by the pointer BT in register RO.The back link to the
previous stack, OLD BT, is established automatically when a new procedure is entered
via the SCAL instruction. A pointer, NEW BL, is established for any procedure with a

local block data area. If one is not present (e.g. in the case of a HAL/S library routine),
the pointer is set to zero. R3 can be used as an additional base register if it is not being
used for local data.

HALFWORD Loc.
BT o Left Half of PSW
2 Old BT Old Stack Size RO
4 Cid EP Mew BP Rl
= Rz
B Do BL MewBL R3 B register save
area
1 R4
12 RE
14 RE
15 R7
18 Farameter Area
Temporanes
Lser Data
Errow Vector

(see Figure 3-4)

Old BT =
Previous BT, pointer to last stack frame, dynamic stack link (Back Link).This
value is zero for the process stack frame (top level)
OldBL =
Previous R3 (information at time of call)
New BL =
Current R3, pointer to local data area

Figure 3-102 Stack Organization Cell

Preliminary CR14217 PAGE 160 OF 202 USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
The Local Block Data (see Figure 3-103 on page 6) exists to provide information for the
block about the Block ID, error conditions, location of the error vector, Lock ID, and
EXCLUSIVE and UPDATE SVCs. The Block ID of a hierarchical block is used by the
HAL/S code and the Simulation processes to establish appropriate references in the
hierarchical block. All other information in the Local Block Data is primarily used by the
executing code and FCOS.

Fields
BL 1 Block 1T 2
2 AU CMERRS ERRCISF 2
.
4 UMUSED REZERVE ZWC= 2 onty required
P if XU =1
9 UMUSED RELEASE =WC= 2

o LOCK 1D 2

Figure 3-103 Local Block Data

The meaning of the fields of the Local Block Data area are as follows:
Field No.

1 Block ID The Block ID identifies uniquely the HAL/S Block in a unit of
compilation (see Section 3.2, “HAL/S Stack” on page 2). It
consists of a Block Number and a Compilation Unit Number.

2 XU EXCLUSIVE/UPDATE Block Flag.(1-Bit) Set to one if block is
either UPDATE block or an EXCLUSIVE one.

ONERRS (6-Bits) The number of discrete errors for which an ON ERROR
statement exists in the block.

ERRDISP (9-Bits) The displacement in halfwords from the stack register to
the error vector.

3 TYP (1-Bit) The bit will be set to one if the data variables are to be read
only. It will be set to zero if the data variables are to be written.
If this is a reserve/release supervisor call for an EXCLUSIVE
procedure or function, the TYP field will be set to zero.

RESERVE (8-Bits) SVC number for the release supervisor call which is:

SVC# 15 for a code block
16 for a data block.
4 RELEASE (8-Bits) SVC number for the release supervisor call which is:

17 for a code block

Preliminary CR14217 PAGE 160 OF 202 USA001556

HAL/S-FC / SDL ICD Baseline
32.0/17.0

SVC# 18 for a data area.
5 LOCK ID (15-Bits) An identifier indicating which code block or data areas are

being used. The identifier for a code block is the address of the
EXCLUSIVE DATA CSECT generated for the requested
procedure/function.

The identifier for a data area is a bit pattern indicating which
data areas are to be reserved or released. The least signifi-
cant bit corresponds to lock group one. If the master lock was
specified the bit pattern will be all ones.

The Error Vector (see Figure 3-104 on page 8) exists for all procedures (PROGRAMs
and TASKs) which contain ON ERROR type statements. The location of the Error Vector
is determined by a displacement, ERRDISP in the Local Block Data member, off the pointer
BT, register RO.

34 PROCEDURE AND FUNCTION CALLS

The process of calling internal procedures consists of parameter passing followed by a
SCAL. Functions are treated similarly. The form for an external call is identical to an
internal call up to the SCAL instruction. External procedures must be called via the long
indirect mode. This is required because of the possibility of a bank switch in reaching
an external procedure.

SCAL@# 4, #Z Subname (7) Note: Index must not be zero.

Preliminary CR14217 PAGE 160 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

BT -

ERROISF

Error Table Entry (2 half-words)

A Er= Egrp
\ (4 (&) (3

r

Error
Wector ™ -

Address (16 Bits)

A Q000 « GO TO ADDRESS

XX01 + System
¥xlle IGHORE
OO+ Mo BEvent Action
01X e SET
10%X « RESET
11XX e SIGHAL

Egrp: Error group value

Ere Error number fwithin a group)

Address. Address of either (a) GO TOor
(b Event Variable

Figure 3-104 Error Vector

Preliminary CR14217 PAGE 160 OF 202 USA001556

HAL/S-FC / SDL ICD Baseline
32.0/17.0

4.0 CSECT/MEMBER NAMING CONVENTIONS

The following sections define the HAL/S-FC CSECT naming conventions and indicate
how these names are derived.

I. Name notation -~ CCNNNNNN
A. Code - CC

e 1% — alphabetic or national
e 2" _ alphabetic, national, or numeric

B. HAL/S Compilation Unit name — NNNNNN

e Underscores removed
e 6 characters

e Truncated or padded with blanks

Il. CC for CSECT Type

A. CODE ($ = process entry)

1.Program SONNNNNN

2.Task $cNNNNNN where ¢ = (1-F) for a limit of 15
tasks

3.COMSUB #CNNNNNN

4.Internal Procedure anNNNNNN where a = (A-M) and n = (0-9)
for a limit of 130 procedures

5.Library Routine aaNNNNNN where a = (A-Z)

B. DATA
1.Stack @cNNNNNN where ¢ = (0-9, A-Z)

2.DECLARE data #DNNNNNN

3.COMPOOL data #PNNNNNN

Preliminary CR14217 PAGE 163 OF 202 USA001556

HAL/S-FC/ SDL ICD Baseline
32.0/17.0
C. SPECIAL

1.ZCON to COMSUB or REMOTE data #ZNNNNNN
2.ZCON for Library Routine #QNNNNNN
3.Bank zero #ONNNNNN
4.Process Directory Entry (PDE) #ENNNNNN
5.Library data for Library Routine #LNNNNNN
6.EXCLUSIVE data #XNNNNNN

[ll. CC for other member types

A. Simulation Data File ##NNNNNN
B. TEMPLATE @@NNNNNN

IV. Placement of CSECT types
A. CODE (%0, $1, A1, AA) - Sectors 2 and greater
B. DATA (@0, #D, #P, #0, #E, #L, #X)

e SectorsOand 1
e REMOTE compool data (#P) — any sector
e REMOTE data (#D with DATA_REMOTE) - sector 7

C. ZCON (#Z, #Q) - first 2K of Sector O (protected)

Preliminary CR14217 PAGE 163 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

APPENDIX A EXAMPLE PROGRAM AND SDF DATA
STRUCTURES

Appendix A contains an example HAL/S Program, the SDF generated by this HAL/S Program,
and structure diagrams illustrating some of the cell relationships for the HAL/S Program.

A.1 EXAMPLE PROGRAM

The following source program was compiled with the HAL/S-FC Compiler using the

options:

TBD, TBL, TL, T=TEST TITLE

Some of the SDF data structures as well as a “marked-up” SDF member corresponding
to this program are also included. This information illustrates the interaction between the
different SDF cells.

PROG1:

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

DECLARE
DECLARE

DECLARE
DECLARE

A
B
C
E1l
K

PI
STR

SET_STRING
TWOPI

PI2
M

STRUCTURE T:

1 D,
2
2
1 F

E
NE

DECLARE Q

STRUCTURE S:

1 G,
2
2
1 3

DECLARE

H
I

R

PROGRAM;

INTEGER;
INTEGER;
ARRAY (5, 5, 5);

SCALAR INITIAL (2.718);
ARRAY (2,3):
CONSTA (22/7):
CHARAC (15) INITIAL

(*INITIAL STRING’);
CHARACTER (10);

CONSTANT

SCALAR;
INTEGER;

(2 PI);

SCALAR,
NAME SCALAR,
SCALAR;

T-STRUCTURE
(1,NAME(K$(2,1)),2),;

INITIAL

T-STRUCTURE,
INTEGER,
NAME INTEGER;

S-STRUCTURE(5) INITIAL
(5#(1,NAME(C$(1,2,3)),2,3,NAME(A)));

OO0100AA

000200AA
OOO300AA
O00400AA
OO0500AA
OO0600AA
OO0700AA
OOO800AA
OOO900AA
001000AA
O01100AA

001200AA

001300AA
001400AA
001500
O01600AA
001700AA
O01800AA
O01900AA
002000AA
O02100AA
002200AA
002300AA
002400AA
Q02500AA
O02600AA
002700AA
002800AA
0O2900AA
OO3000AA
0O3100AA
O03200AA

Preliminary
HAL/S-FC/ SDL ICD

F1: FUNCTION (X, Y)

DECLARE X INTEGER;
DECLARE Y INTEGER;
DECLARE W INTEGER;
W =X+ Y;

RETURN W;

CLOSE F1;

CR14217 PAGE 163 OF 202

INTEGER;

F2: FUNCTION (Z) INTEGER:

DECLARE Z
RETURN Z,

CLOSE F2;

A, B=1;

INTEGER;

SET.STRING = ‘SET STRING';

M

M

F2 (M + 3) ;

A, C$(A + B, B - Q.D.E +1, 3) =
R.G.H.D.E$(3;) + F1(F2 (Q.F),

CLOSE PROG1;

F1 (5 + 4, A+ B) ;

A.2 STRUCTURE DIAGRAMS

4)- Q.D.E **

USA001556
Baseline
32.0/17.0

OO3300AA
003400AA
OO3500AA
OO3600AA

003700AA
O03800AA
OO3900AA
004000AA
004100AA
004200AA
004300AA
004400AA
004500AA
004600AA
004700AA
O04800AA

004900AA
OO5000AA

005100AA
005200AA
O05300AA
005400AA
OO5500AA
OO5600AA
0O5700AA
OO5800AA
OO5900AA
OO06000AA
O06100AA
O06200AA
OO6300AA
006400AA
OO6500AA
OO6600AA
006700AA
OO6800AA

The following SDF structure diagrams illustrate some of the more interesting SDF cell
relationships. In these example diagrams, the indexes into the Symbol Index Table

are indicated by the convention ‘I(variable name)’.The numbers to the left of the cells

correspond to the field numbers described for each in the appropriate section of this docu-
ment. The SDF pointers are represented by arrows and any null pointers are set to zero.

A.2.1 NAME TERMINAL INITIALIZATION CELL

In the example program presented in Appendix A.1, “Example Program” on page A-1, on

Statement Reference Number 003100, the variable R is an initialized structure

containing NAME terminals. Thus, the Auxiliary Symbol Information Pointer (ASIP,

Field Oc) of the Symbol Data Cell points to the following cells:

Preliminary
HAL/S-FC/ SDL ICD

(=]

LT ST — T 7

(%]

L* 2 I ¥ 1 I ¥ 5 N O ¥ . L]

Symbol Data Cell Field Gc

TF’TR

Mame Terminal
Initalization Cell

40

3

A PR

I(R)

I(H)

I(NE)

R

Mame Terminal
Initialization Loop Stan

+In'rr.ia] Name PTR

Mame Terminal Loop End

Initi aliz ation End

Yariable
Reference Cell

22

HC)

w| P R e e

CR14217 PAGE 163 OF 202

ra

L L

Mame Terminal
Initalization Cell

24

2

A 0

I[R)

IL7)

L

Mame Terminal
Initialization Loop Start

+ Initial Name PTR

Mame Terminal Loop End

Initialization End

Yariable
Reference Cell

10

1

2

1

I{A)

USA001556
Baseline
32.0/17.0

Preliminary CR14217 PAGE 168 OF 202 USA001556
HAL/S-FC/ SDL ICD Baseline
32.0/17.0

A.2.2 EXPRESSION VARIABLES CELL

Statement 006500 in the example program (Appendix A.1, “Example Program” on page
A-1) contains a subscripted assignment in the LHS context; therefore both the LHS
Statement Variables (field 0Oa) and the RHS Statement Variables (field Ob) of the
Statement Data Cell contain pointers to Expression Variables Cells which describe the
variables. These data structures are described below:

Statement Data Cell

Field 0a
APTR
Expression Yariable Reference Expression VWarables
Wariables Cell Cell Cell
- - -
12 1 18 1 16
1 2 ﬂ 1 2 6
1) 3 A PTR 3 I8
L 4 1(C) 3 =)}
0 A pTR 5| 5 0 0 3 -2
5 5 0 0 3 [{e]]
5 5 1 0 3 I(E)
5 3 3 1(B)

A-4

Preliminary CR14217 PAGE 168 OF 202 USA001556

HAL/S-FC/ SDL ICD Baseline
32.0/17.0
Statement Data Cell
Field Ok

Hom

Warable Reference

Expression Vanables Cell Call
»- -
1 20 1 18
2 4 21 3
3 2 3 % 0
3 [{w)} 4 IR}
3 IE) 4 IH)
3 IE) 4 I(E)
1|0 * PTR 5 9 1 0
4|0 $ PTR 5 3
Procedurs/Function Procedure/Function Warable
- Invocation Cell . Invocation Cell - Reference Cell
1 20 1 14 1 12
2 2 2 1 2 0 2
3 2 3 1 3 f 0
4 IF1) 4 IF2) 2 lin))
s 1 ApPm s 0 4 PR 3 B
5 Ao 5 IZ)
B 1)
B)

Preliminary CR14217 PAGE 168 OF 202
HAL/S-FC/ SDL ICD

APPENDIX B CHANGE HISTORY

The HAL-FC/SDL ICD has been revised and issued on the following dates:

Revision Date Sections Changed
R6 December 16, 1975

R7 May 29, 1981

R8 December 16,1991 Total Reprint

R9 August 31, 1992

R10 April 14, 1994

R11 January 16, 1995 Total Reprint

R12 September 8, 1997 Total Reprint

This is the last page of this document.

A-1

USA001556

Baseline
32.0/17.0

