
Preliminary                            CR14217 PAGE 2  OF 202                               USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

Space Flight Operations Contract

HAL/S-FC

SDL INTERFACE CONTROL DOCUMENT

September 2005

DRD- 1.4.3.8-a

Contract NAS9-20000



Preliminary                            CR14217 PAGE 2  OF 202                               USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

HAL/S-FC / SDL 

INTERFACE CONTROL DOCUMENT

Prepared by

Peter Koester
USA/Application Tools, PASS Build and 
Reconfiguration

Approved by

 Monica Leone, Director
USA/Application Tools, PASS Build and 
Reconfiguration

DRD – 1.4.3.8-a

Contract NAS9-18817



Preliminary                            CR14217 PAGE 7 OF 202                                USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
REVISION LOG

Rev.
letter

Change
no. Description Date

Baseline Total rewrite.  Supercedes OB30029 due to 
SSCR 14217

09/2005



Preliminary                            CR14217 PAGE 7 OF 202                                USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
LIST OF EFFECTIVE PAGES

The status of all pages in this document is shown below:

Page No. Change No.
32.0/17.0 Baseline



Preliminary                            CR14217 PAGE 7 OF 202                                USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
PREFACE

The HAL/S-FC/SDL Interface Control Document was prepared by the United Space 
Alliance (USA), Flight Operations.

The primary responsibility is with USA, FSW Applications Tools and Recon, D/0163500.

Questions concerning the technical content of this document should be directed to 
Danny Strauss, (281) 282-2647, Mailcode USH-635L, Department 01635A7.



Preliminary                            CR14217 PAGE 7 OF 202                                USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

“This page intentionally left blank.”



Preliminary                            CR14217 PAGE 12 OF 202                                
USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
CONTENTS

Section Page

1.0 HAL/S-FC / SDL1 ICD.......................................................................1-1
1.1 INTRODUCTION.................................................................1-1
1.1.1 Purpose...............................................................................1-1
1.1.2 Scope..................................................................................1-1
1.1.3 Precedence of Documents..................................................1-1

2.0 COMPILER/SPF...............................................................................2-1
2.1 PROGRAM MANAGEMENT FACILITY (PMF)....................2-1
2.1.1 Dynamic Invocation of HAL/S-FC Compiler.........................2-3
2.1.2 Compile-Time Options.........................................................2-5
2.1.3 Inputs...................................................................................2-5
2.1.3.1 Primary Input.......................................................................2-5
2.1.3.2 Included Input......................................................................2-6
2.1.4 Outputs................................................................................2-7
2.1.4.1 Listings................................................................................2-7
2.1.4.2 Object Code.........................................................................2-8
2.1.4.3 Templates............................................................................2-8
2.1.4.4 Simulation Data Files (SDFs)..............................................2-8
2.1.4.5 Return Codes......................................................................2-8
2.1.5 Access Rights......................................................................2-9
2.2 SIMULATION DATA FILES (SDFS)..................................2-10
2.2.1 Simulation Data File Directory...........................................2-14
2.2.2 Master Directory Cell.........................................................2-15
2.2.2.1 SDF Free Space................................................................2-15
2.2.2.2 Directory Root Cell............................................................2-17
2.2.2.2.1 Compiler Data................................................................2-27
2.2.2.2.1.1 Title Data Cell.............................................................2-27
2.2.2.2.1.2 CARDTYPE Data Cell................................................2-28
2.2.2.2.1.3 Initialization Table.......................................................2-29
2.2.2.2.2 Include Text Data..........................................................2-30
2.2.2.2.3 Block Data Structures....................................................2-33
2.2.2.2.3.1 Block Index Table.......................................................2-33
2.2.2.2.3.2 HAL/S Block Data Cell................................................2-34
2.2.2.2.3.3 Block Symbol Extent Cell............................................2-43
2.2.2.2.4 Symbol Data Structures.................................................2-46
2.2.2.2.4.1 Symbol Index Table....................................................2-46
2.2.2.2.4.2 Symbol Data Cell........................................................2-48
2.2.2.2.4.3 Constant Value Cells..................................................2-69

2.2.2.2.4.3.1 String Constant Value Cells................................2-70
2.2.2.2.4.3.2 Scalar/Integer Constant Value Cells...................2-71

2.2.2.2.4.4 Replace Text Cells......................................................2-71

i



Preliminary                            CR14217 PAGE 12 OF 202                                
USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
2.2.2.2.4.5 Procedure/Function Formal Parameter Cell...............2-74
2.2.2.2.4.6 Name Terminal Initialization Cell................................2-76
2.2.2.2.5 Statement Data Structures............................................2-82
2.2.2.2.5.1 Statement Index Table................................................2-84
2.2.2.2.5.2 Statement Data Cells..................................................2-86

2.2.2.2.5.2.1 Executable Statement Data Cell.........................2-86
2.2.2.2.5.2.2 DECLARE Statement Data Cell..........................2-93

2.2.2.2.5.3 Statement Extent Cell.................................................2-94
2.2.2.2.5.4 Procedure/Function Invocation Cell............................2-98
2.2.2.2.6 Expression Variables Cell............................................2-100
2.2.2.2.7 Variable Reference Cell...............................................2-103
2.2.2.2.8 Function Tables...........................................................2-111
2.2.2.2.8.1 Function Index Tables..............................................2-112
2.2.2.2.8.2 Function XREF Data Cell..........................................2-115
2.2.2.2.9 HALMAT Data Structures............................................2-116
2.2.2.2.9.1 HALMAT Cells..........................................................2-116
2.2.2.2.9.2 Literal Data...............................................................2-119

2.2.2.2.9.2.1 Literal Extent Table...........................................2-120
2.2.2.2.9.2.2 Literal Tables....................................................2-121

2.2.2.2.9.2.2.1 Character Literal.........................................2-122
2.2.2.2.9.2.2.2 Arithmetic Literal.........................................2-123
2.2.2.2.9.2.2.3 Bit Literal.....................................................2-124
2.2.2.2.9.2.2.4 Template Subscript Literal Cell...................2-125

2.3 OBJECT CODE...............................................................2-127

3.0 AP-101 EXECUTION ENVIRONMENT.............................................3-1
3.1 AP-101 REGISTER USE.....................................................3-1
3.2 HAL/S STACK.....................................................................3-2
3.3 STACK AND LOCAL BLOCK DATA ORGANIZATION.......3-5
3.4 PROCEDURE AND FUNCTION CALLS.............................3-7

4.0 CSECT/MEMBER NAMING CONVENTIONS...................................4-1

Appendix

APPENDIX A EXAMPLE PROGRAM AND SDF DATA STRUCTURES...A-1

APPENDIX B CHANGE HISTORY.............................................................B-1

ii



Preliminary                            CR14217 PAGE 12 OF 202                                
USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

FIGURES

Figure

Figure 2-1 HAL/S-FC Interface With Program Libraries................................2-2
Figure 2-2 Partitioned Data Set Directory Entry...........................................2-7
Figure 2-3 Naming Convention Cross-Reference Table............................2-11
Figure 2-4 SDF Pointer...............................................................................2-12
Figure 2-5 Simulation Data File Member Organization (Not all 

interconnections are shown).............................................................2-13
Figure 2-6 PDS-Level Organization of the Simulation Data Files..............2-14
Figure 2-7 Master Directory Cell................................................................2-15
Figure 2-8 Free Cell Linkage.....................................................................2-16
Figure 2-9 SDF Free Cell Linked Lists.......................................................2-17
Figure 2-10 Master Directory/Directory Root Cell Overview......................2-18
Figure 2-11 Directory Root Cell (Part 1 of 3)..............................................2-19
Figure 2-12 Title Data Cell Overview.........................................................2-27
Figure 2-13 Title Data Cell.........................................................................2-28
Figure 2-14 Cardtype Data Cell Overview.................................................2-28
Figure 2-15 CARDTYPE Data Cell..............................................................2-29
Figure 2-16 Initialization Table Overview...................................................2-30
Figure 2-17 Initialization Table...................................................................2-30
Figure 2-18 Include Data Overview...........................................................2-31
Figure 2-19 Include Data Cell....................................................................2-31
Figure 2-20 Block Data Structures Overview.............................................2-33
Figure 2-21 Block Index Table...................................................................2-34
Figure 2-22 All Symbols Contained on One SDF Page for Block..............2-35
Figure 2-23 Symbols Contained on Multiple SDF Pages for Block............2-36
Figure 2-24 Example of Block Symbol Extent Cell.....................................2-37
Figure 2-25 Block Data Cell.......................................................................2-38
Figure 2-26 Alphabetic Name Tree.........................................................2-40
Figure 2-27 Hierarchical Block Tree..........................................................2-41
Figure 2-28 Relationship of Block Data Cells, Block Symbol Extent Cells, and

Symbol Index Table..........................................................................2-44
Figure 2-29 Block Symbol Extent Cell.......................................................2-45
Figure 2-30 Symbol Data Structures Overview............................................2-46
Figure 2-31 Symbol Index Table..................................................................2-47
Figure 2-32 Symbol Data Cell (Part 1 of 3).................................................2-49
Figure 2-33 Structures and Templates for a Single Structure (Part 1 of 2) 2-52
Figure 2-34 Structures and Templates for Nested Structures (Part 1 of 2)2-54
Figure 2-35 Structure Symbol Cross-Reference Information (Part 1 of 2). 2-56
Figure 2-36 Symbol Data Cell Linked Lists................................................2-57
Figure 2-37 Stack Variable Character String Format..................................2-66

iii



Preliminary                            CR14217 PAGE 12 OF 202                                
USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
Figure 2-38 Array of Character Strings......................................................2-67
Figure 2-39 Algorithm for Calculating the Bias Factor...............................2-68
Figure 2-40 Constant Value Cell Overview................................................2-70
Figure 2-41 String Constant Value Cell......................................................2-70
Figure 2-42 Scalar/Integer Constant Value Cell.........................................2-71
Figure 2-43 Replace Text Overview..........................................................2-72
Figure 2-44 Replace Text Examples..........................................................2-72
Figure 2-45 Replace Text Parameter Cell..................................................2-73
Figure 2-46 Replace Text Parameter Cell Pseudo Descriptor...................2-73
Figure 2-47 Replace Text Macro Cell........................................................2-74
Figure 2-48 Procedure/Function Formal Parameter Cell Override............2-75
Figure 2-49 Procedure/Function Formal Parameter Cell...........................2-76
Figure 2-50 Name Terminal Initialization Cell Overview............................2-77
Figure 2-51 Name Terminal Initialization Cell............................................2-78
Figure 2-52 Initial Pointer Value Operator..................................................2-79
Figure 2-53 Initialization Loop Start Operator............................................2-80
Figure 2-54 Initialization Loop End Operator.................................................2-81
Figure 2-55 End of Initialization (Cell) Operator.........................................2-81
Figure 2-56 Name Terminal Initialization Extension Cell...........................2-82
Figure 2-57 Statement Data Structures Overview.....................................2-83
Figure 2-58 Statement/Symbol Relationship Overview..............................2-84
Figure 2-59 Statement Index Table...........................................................2-85
Figure 2-60 Example of Non-unique SRNs................................................2-86
Figure 2-61 Block Statement Nesting........................................................2-86
Figure 2-62 Executable Statement Data Cell.............................................2-87
Figure 2-63 Statement Type......................................................................2-91
Figure 2-64 Left Hand Side (LHS) Indexes................................................2-92
Figure 2-65 DECLARE Statement Data Cell..............................................2-93
Figure 2-66 Statement Extent Cell Overview.............................................2-95
Figure 2-67 Relationship of Statement Extent Cells and Statement Index 

Table...............................................................................................2-96
Figure 2-68 Statement Extent Cell.............................................................2-97
Figure 2-69 Procedure/Function Invocation Cell Overview........................2-98
Figure 2-70 Procedure/Function Invocation Cell........................................2-99
Figure 2-71 Expression Variables Cell Overview.....................................2-101
Figure 2-72 Expression Variables Cell.....................................................2-102
Figure 2-73 Variable Reference Cell Overview (Expression Variables Cell)2-104
Figure 2-74 Variable Reference Cell Overview (Name Terminal Initialization 

Cell)...............................................................................................2-105
Figure 2-75 Variable Reference Cell Overview (Symbol Data Cell).........2-106
Figure 2-76 Variable Reference Cell........................................................2-107
Figure 2-77 Structure Reference Diagram...............................................2-108
Figure 2-78 Function Data Overview.......................................................2-112
Figure 2-79 Function Index Table............................................................2-113
Figure 2-80 Function XREF Data Cell......................................................2-115

iv



Preliminary                            CR14217 PAGE 12 OF 202                                
USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
Figure 2-81 Function XREF Extension Cell.............................................2-115
Figure 2-82 HALMAT Data Cells Overview..............................................2-117
Figure 2-83 HALMAT Cell........................................................................2-118
Figure 2-84 HALMAT Extension Cell........................................................2-118
Figure 2-85 Literal Data Overview.............................................................2-120
Figure 2-86 Literal Extent Table..............................................................2-121
Figure 2-87 Literal Table..........................................................................2-122
Figure 2-88 Character Literal Cell............................................................2-123
Figure 2-89 Arithmetic Literal Cell............................................................2-124
Figure 2-90 Bit Literal Cell.......................................................................2-125
Figure 2-91 Template Subscript Literal Cell.............................................2-126
Figure 2-92 ESD Output Record (Card Image)........................................2-127
Figure 2-93 ESD Data Item......................................................................2-128
Figure 2-94 Text Output Record (Card Image).........................................2-129
Figure 2-95 RLD Output Record (Card Image)........................................2-130
Figure 2-96 END Output Record - Type I (Card Image)..........................2-131
Figure 2-97 END Output Record - Type 2 (Card Image)............................2-131
Figure 2-98 IDR Data in a Object Module END Record...........................2-132
Figure 2-99 TESTRAN (SYM) Output Record - (Card Image).................2-132
Figure 2-100 SYM Variable Field Data....................................................2-133
Figure 3-1 Stack Elements...........................................................................3-3
Figure 3-2 Stack Organization Cell..............................................................3-5
Figure 3-3 Local Block Data.........................................................................3-6
Figure 3-4 Error Vector................................................................................3-8

v



Preliminary                            CR14217 PAGE 12 OF 202                                
USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

“This page intentionally left blank.”

vi



Preliminary                            CR14217 PAGE 15 OF 202                              USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
1.0  HAL/S-FC / SDL1 ICD

1.1 INTRODUCTION

1.1.1 Purpose

The purpose of the HAL/S-FC / SDL Interface Control Document (ICD) is to define the 
specific interfaces that exist between the HAL/S-FC compiler and Software Production 
Facility (SPF) software systems.  This document is necessary to control and track changes 
in the interfaces since parallel HAL/S-FC and SPF maintenance efforts are taking place.  
Its contents impose requirements on the HAL/S-FC compilers.

1.1.2 Scope

The scope of this document covers the following two major HAL/S-FC / SPF interface 
areas:

 HAL/S-FC compiler with the SPF

 HAL/S-FC compiler with the AP-101/S Linkage Editor

1.1.3 Precedence of Documents

The precedence governing the applicability of various controlling documents is as 
follows:

HAL/S Language Specification (USA003088)
HAL/S-FC Compiler System Specification (USA003089)
HAL/FCOS Interface Control Document (USA001460)
HAL/S-FC / SDL Interface Control Document (USA001556)

1

1.  Since this document was originally written, the term Software Development Laboratory 
(SDL) has been superceded by the term Software Production Facility (SPF).  SPF will be 
used throughout this document, except for the document Title.



Preliminary                            CR14217 PAGE 15 OF 202                              USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

“This page intentionally left blank.”

2



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
2.0 COMPILER/SPF

This portion of the ICD defines the interfaces that exist between the HAL/S-FC compiler 
and the SPF.  It contains the following major subsections:

 2.1 PROGRAM MANAGEMENT FACILITY (PMF), page 1 
 2.2 SIMULATION DATA FILES (SDFs), page 10
 2.3 OBJECT CODE, page 129

2.1 PROGRAM MANAGEMENT FACILITY (PMF)

The system that maintains and controls the disk resident libraries (source, object, and load) 
for the SPF is called the PMF.  The interface considerations between the PMF and the HAL/S-
FC compiler arise due to the following factors:

 Dynamic invocation of the HAL/S-FC compiler by the PMF
 HAL/S-FC compiler’s need to access and/or create elements within the program libraries.

Figure 2-1 on page 2 shows the relationship between the program libraries and the 
HAL/S compiler.

In the sections that follow, the detailed interface between the PMF and the HAL/S-FC 
compiler is established.  Section 2.1.1, “Dynamic Invocation of HAL/S-FC Compiler” on 
page 3 discusses dynamic invocation of the HAL/S-FC compiler.  Section 2.1.2, “Compile-
Time Options” on page 5 discusses Compile-Time options.  Section 2.1.3, “Inputs” on 
page 5 discusses the source input and how it is formatted.  Section 2.1.4, “Outputs” on 
page 7 discusses the output from the compiler and how it is formatted.  Section 2.1.5, 
“Access Rights” on page 9 discusses access rights.

 

1



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

Figure 2-1 HAL/S-FC Interface With Program Libraries

2



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
2.1.1 Dynamic Invocation of HAL/S-FC Compiler

The HAL/S compiler can be invoked by the problem program at execution time through 
the use of the CALL, LINK, XCTL, or ATTACH macro instructions.  If the XCTL macro 
instruction is used to invoke the compiler, then no user options may be specified.  The 
compiler will use the standard default, as set during system generation, for each option.

If the compiler is invoked by CALL, LINK, or ATTACH, the user may supply: 

1. The compiler options
2. The DDNAMES of the data sets to be used during processing
3. Field for the compiler to return the control section (CSECT) name generated for this 

unit of compilation

Name

symbol

Operation  

CALL

LINK
OR
ATTACH

Operand

MONITOR,(optionlist
{[,ddnamelist]
[,ddnamelist,csectname]}),VL

 EP=MONITOR,
 PARAM=(optionlist
{[,ddnamelist]
[,ddnamelist,csectname]}),VL=
1

EP - specifies the symbolic name of the compiler.  The entry point at 
which execution is to begin is determined by the control program 
(from the library directory entry).

PARAM - specifies, as a sublist, the address parameters to be passed from 
the problem program to the compiler.  The first word in the address 
parameter list contains the address of the option list.  The second 
word contains the address of the DDNAME list.  The third word con-
tains the address of the field used by the compiler to return the con-
trol section (CSECT) name.

optionlist - specifies the address of a variable length list containing the options.  This
address must be provided even if no option list is provided.

The option list must begin on a halfword boundary.  The first two 
bytes contain a count of the number of bytes in the remainder of the 
list.  If no options are specified, the count must be zero.  The option 
list is free form with each field separated by a comma.

3



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
ddnamelist - specifies the address of a variable length list containing alternate 

DDNAMEs for the data sets used during compiler processing.  If 
standard DDNAMEs are used and the CSECT name return field is 
not provided, then this operand may be omitted.  If standard 
DDNAMEs are used, but the CSECT name return field is provided, 
this address must be provided and point to halfword count of zero.

When the standard DDNAMEs are not to be used, the alternate DDNAME list must 
begin on a halfword boundary.  The first two bytes contain a count of the number of 
bytes in the remainder of the list.  If any name is less than eight bytes long, it must be 
left-justified and padded with blanks.  If an alternate DDNAME is omitted, the standard 
name will be assumed.  If the name is omitted within the list, the 8-byte entry must 
contain binary zeros.  Names can be omitted from the end merely by shortening the list. 
The sequence of the 8-byte entries in the DDNAME list is as follows:

Entry Alternate Name For Data Set Organ. Description
1 SYSIN PS Primary Input
2 INCLUDE PO Include Library
3 ERROR PO Error Messages
4 ACCESS PO Program Access File
5 SYSPRINT PS Primary Listing
6 LISTING2 PS Secondary Listing
7 OUTPUT3 PS Object Deck
8 OUTPUT4 PS Duplicate Object Deck
9 OUTPUT5 PO Simulation Data Files (SDFs)

10 OUTPUT6 PO Templates
11 OUTPUT7 PS AP-101 Assembly Listing
12 FILE1 PS Work File
13 FILE2 PS     ↓
14 FILE3 PS     ↓
15 FILE4 PS     ↓
16 FILE5 PS     ↓
17 FILE6 PS     ↓
18 PROGRAM PS Compiler Program Library
19 OUTPUT8 PO Define Block Library
20 HALSDF PO Simulation Data Files (SDFs)
21 UNUSED PO
22 UNUSED PS
23 UNUSED PS
24 FILE7 PS Work File
25 UNUSED PO
26 UNUSED PO

4



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
Where PS = Physical Sequential

PO = Partitioned Organization

csectname - specifies the address of an eight byte field into which the compiler moves the
generated control section (CSECT) name of the primary unit of compilation.  
If the program invoking the compiler does not need this information, this 
operand may be omitted.

VL - specifies that the sign bit is to be set to 1 in the last word of the address
parameter list.

2.1.2 Compile-Time Options

The Compile-Time Options, including special compiler processing for the SPF, are listed
in Section 5.1 of the HALS/S-FC User’s Manual.

An example of special compiler processing for the SPF is:

 Special output requirements on compiler’s primary listing (see Section 2.1.4.1, “List-
ings” on page 7).

2.1.3 Inputs

Source data will come from two major areas.  The primary area contains units of 
compilation (PROGRAM, PROCEDURE, or COMPOOL) that are passed from an update 
step.  The other area is the HALSDF library which contains simulation data files (SDFs) and the
INCLUDE library which contains source code that are to be included.  Both the primary 
input and INCLUDE library may contain concatenated data sets.  If data sets are 
concatenated, they must have identical characteristics.

2.1.3.1 Primary Input

The following items relate to the format of the source data coming in via the primary 
input stream:

Data Set Organization (DSORG):  Sequential

Record Format (RECFM):  Fixed Blocked (FB)

Logical Record Length (LRECL):  80

Record Sequence Number:  Positions 73 thru 78 of every record are assigned and
      controlled by PMF

Record Revision Level:  Positions 79 and 80 of every record are assigned and
      controlled by PMF

5



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
The source margins on the input records are positions 2 thru 72 of each record.  
Positions 73-80 are valid for source data if the NOSRN option is specified and PMF 
is not used to compile the source.

2.1.3.2 Included Input

The following items relate to the format of the data coming in via the HALSDF library 
input stream: 

Data Set Organization (DSORG):  Partitioned
Record Format (RECFM):  Fixed (F) 
Logical Record Length (LRECL):  1680

The following items relate to the format of the data coming in via the INCLUDE library 
input stream:

Data Set Organization (DSORG):  Partitioned
Record Format (RECFM):  Fixed Block (FB) 
Logical Record Length (LRECL):  80

When the compiler is retrieving a data set member to be included in the source, the 
source revision level is obtained from the PDS directory entry and used on the output listing 
(see Section 2.1.4, “Outputs” on page 7).The location of the 2 byte revision level is shown 
in Figure 2-2 on page 7.

In the optional user data portion of a PDS directory entry, any user supplied pointers (TTRNs) 
must come first.

Bits 1 and 2 of the “C” byte specifies the number of TTRNs that are present.  Each 
TTRN is 4 bytes long.  The source revision level will follow immediately after the last TTRN.  If 
no TTRNs exist, the source revision level will follow immediately after the “C” byte.

Note:  If no, revision level field exists, (i.e., PMF was not   used to update the included 
input) assume the revision level is zero.

6



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

Figure 2-2 Partitioned Data Set Directory Entry

2.1.4 Outputs

Outputs from the compiler have been categorized into the following five classes:

Listings (Primary, Secondary – Not Used, and Tertiary) 
Object Code
Templates
Simulation Data Files
Return Codes

2.1.4.1 Listings

The primary listing is the standard HAL/S compiler output listing as described in the 
HAL/S-FC User’s Manual (USA003090) with the following modifications:

The Statement Reference Number (SRN) (input positions 73 thru 78) and source 
record revision level (input positions 79 and 80) are printed adjacent to the compiler’s 
statement number.

Note: If the statement spans more than one input record, the compiler only prints
          the statement reference number and record revision level from the first record.

After encountering an “INCLUDE” statement, the compiler shall print informatory 
messages.  Message content depends on the source of inclusion.  Inclusion from an 
SDF results in the following:

“INCLUDED FROM SDF member”
“RVL xx CATENATION NUMBER n”

7



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
Local inclusion and inclusion from a file that is not an SDF results in:

“START OF INCLUDED MEMBER, RVL xx, CATENATION NUMBER n”.
  “END OF INCLUDED MEMBER, RVL xx, CATENATION NUMBER n”.

Where xx is alphanumeric and n is numeric.  If the LIST option is on, the “INCLUDED”
source statements are printed between the appropriate message sets described above.

No requirements have been identified for the secondary listing from the HAL/S compiler 
since the type of listing needed (i.e., an accurate reflection of the source records) is 
available from the PMF program.

The tertiary listing consists of AP-101 code that is emitted by the HAL/S-FC compiler.

2.1.4.2 Object Code

When producing AP101/S object modules, each object module generated by the HAL/S 
compiler is written to a sequential data set for input to the AP101/S linkage editor.  
Multiple compilations produce object decks “stacked” in the order they were compiled.

2.1.4.3 Templates

NOTE:  The PMF default action is to specify that templates are not generated.

Each template generated by the HAL/S-FC compiler is output to a partitioned data set 
defined by the OUTPUT6 DD card.  The member name is derived by eliminating 
underscore characters from the source (“unit of compilation”) label, taking the first six 
characters (or all of the characters, if there are fewer than six characters) from the resulting 
string, and then appending two “@” characters to the beginning of the string.  For example, a 
compilation unit named MY_PROGRAM generates a Template member named 
@@MYPROG.

Since the templates go into a dataset which may also contain source code members, 
the templates are created in the same format as source code (see Section 2.1.3.2, “Included 
Input” on page 6), and written using the block size of the existing data set.

All template directory entries, for new or revised templates, are created with two bytes of 
user data initialized to X’F0F0’.

2.1.4.4 Simulation Data Files (SDFs)

Each SDF member created by the HAL/S compiler is written to a partitioned data set 
defined by the OUTPUT5 DD card.  The member name is derived as described in Section
2.1.4.3 , “Templates” on page 8, except that it is preceded by two “#” characters (e.g., 
MY_PROGM becomes ##MYPROG).

2.1.4.5 Return Codes

8



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
The compiler passes the results of the compilation process via register 15.The low order
three bytes of register 15 contain the highest severity code encountered during 
compilation.  The high order byte of register 15 is used as a flag byte with the following bit
settings defined:

1....... This unit of compilation has a template
.1...... Template for this unit of compilation was either changed or newly created
..1..... This unit of compilation has an SDF

2.1.5 Access Rights

The HAL/S language allows managerial restrictions to be placed upon the usage of user-
defined variables and external routines.  The existence of such a restriction is indicated 
by the use of the ACCESS attribute as described in the HAL/S Language Specification 
(USA003088).  A detailed description of the manner in which these restrictions are enforced 
can be found in HAL/S Compiler System Specification (USA003089).  For additional 
information, refer to the HAL/S-FC User’s Manual (USA003090).

9



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
2.2 SIMULATION DATA FILES (SDFS)

Simulation Data Files (SDFs) provide the information about symbols and statements necessary
to conduct simulation processes and to reduce simulation output into a convenient and 
readable form.  An SDF member is produced by the compiler for each unit of compilation, 
including COMPOOLs.  It is stored, as a member of a PDS, separate from the associated
object code, and therefore can be retrieved as needed by the simulation processors and 
DASS/HALSTAT tools.  SDFs are also used by the HAL/S Compiler to retrieve included 
COMPOOL symbol data.  Naming conventions are described in Section 2.1.4.4, “Simulation 
Data Files (SDFs)” on page 8.

Several Tables/Cells have been renamed in this document in an effort to standardize 
the names of the Tables/Cells between the HAL/SDL ICD, the HAL/S-360 Compiler 
System Specification, and the documentation to SDFPKG.  Figure 2-3 on page 11 
contains a cross-reference between the old names and the new standard ones.

The logical organization of an SDF member for a unit of compilation is portrayed in Figure 2-5 
on page 13.  The SDF member is logically divided into three major parts as follows:

Directory - which provides the locations of the various component parts of the SDF 
member.

Symbol Data - which provides attribute information about the symbols in the compilation.  
Also it supplies information on relative memory locations of symbols, structure 
template linkages for structure elements, and the statements in which symbols are 
declared, referenced, used as a subscript, or modified.

Statement Data - which provides attribute information about the statements in a 
compilation.  It also provides information on relative memory locations of the first and last 
machine instructions in a statement, statement labels, and the variables that are 
used and/or modified. 

10



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

HAL/S Compiler 
Speci-fication and 
SDFPKG 
Terminology

HAL/SDL ICD
Terminology
(Revision 8)

Standardized
Table/Cell Names

HAL/SDL ICD Figure
No.

Directory Root Cell Simulation Table or
Directory Header

Master Directory Cell Section 2.2.2
(Figure 2-7)

Directory Root Cell Simulation Table or 
Directory Header

Directory Root Cell Section 2.2.2.2
(Figure 2-11)

Block Data Cell HAL/S Block List 
Member

Block Data Cell Section 2.2.2.2.3.2
(Figure 2-23)

Symbol Data Cell Symbol Data Entry Symbol Data Cell Section 2.2.2.2.4.2
(Figure 2-30)

Statement Data Cell
(Executable)

Statement Data Entry Executable Statement
Data Cell

Section 2.2.2.2.5.2.1
(Figure 2-60)

Statement Data Cell
(Declare)

Statement Data Entry Declare Statement 
Data Cell

Section 2.2.2.2.5.2.2
(Figure 2-63)

Block Node Block Index Table 
Entry

Block Index Table 
Entry

Section 2.2.2.2.3.1
(Figure 2-19)

Symbol Node Symbol Names and 
Pointers Table Entry

Symbol Index Table 
Entry

Section 2.2.2.2.4.1
(Figure 2-29)

Symbol Block Extent 
Cell

Symbol Block Extent 
Cell

Block Symbol Extent 
Cell

Section 2.2.2.2.3.3
(Figure 2-27)

Function Node Table Function Node Table Function Index Table Section 2.2.2.2.8.1
(Figure 2-77)

Function XREF Cell Function XREF Cell Function XREF Data 
Cell

Section 2.2.2.2.8.2
(Figure 2-78)

______ Card Type Cell CARDTYPE Data Cell Section 2.2.2.2.1.2
(Figure 2-15)

______ Include Library Mem-
ber Cell

Include Data Cell Section 2.2.2.2.2
(Figure 2-17)

______ Replace Text Cell Replace Text 
Parameter Cell

Section 2.2.2.2.4.4
(Figure 2-43)

______ Replace Text (Exten-
sion) Cell

Replace Text Macro 
Cell

Section 2.2.2.2.4.4
(Figure 2-45)

Figure 2-3 Naming Convention Cross-Reference Table

Figure 2-5 on page 13 identifies the various components of the SDF member and 
depicts most of the interconnections between these components.  One of the relationships 
not shown is the connection between the Statement Extent Cells and Block Symbol Extent 
Cells and their corresponding Index Tables.  This connection is too complex to portray; 
therefore the user should reference the sections for the Statement Extent Cells and Block 
Symbol Extent Cells to gain an understanding of the connection.  The figure should be 
referred to as later sections are reviewed in order to keep in mind the relationships of the
various components of the SDF member.

11



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
The SDF member for a unit of compilation is blocked into fixed-length physical records in the 
SDF partitioned data set (PDS).The organization of these records and of the PDS direc-
tory entry for the member is shown in Figure 2-6 on page 14.Each physical record (“page”) is 
1680 bytes long and contains logical records dedicated to specific functions.  The physical 
records are numbered from zero.

PMF places the revision level of the HAL/S source code member into the first two bytes of the 
user-data field of the directory entry.  Figure 2-6 on page 14 illustrates the storage of the
revision level for an SDF member.

The logical data segments are fixed or variable in size, but are always fullword aligned.  
A logical data segment is referenced by a 4-byte pointer (fullword aligned) which 
consists of two 2-byte fields; the first field contains the record number (beginning at 0) of
the physical record to which the logical record belongs, and the second field contains the offset 
(also beginning at 0) of the logical record within the physical record (see Figure 2-4 on page 12 
for a pointer illustration).  It should be noted that the record number is synonymous with the 
page number.  A pointer is represented in the ICD figures by a vertical arrow “↑” and a 
notational reference.

All of the data contained within an SDF member is organized into Cells and Tables.  A 
Cell is a contiguous block of space in a record of an SDF member that is addressable only by an 
SDF pointer.  A Cell cannot cross a page boundary so it must be ≤ 1680 bytes in length.  Tables, 
on the other hand, consist of multiple entries and may cross SDF page boundaries, though no 
individual table entry can cross a boundary.  Table entries may be accessed by either SDF 
pointers or by halfword indexes.

Table indexes are two bytes in size and are always halfword aligned.  The first index of 
any table is always one.

Figure 2-4 SDF Pointer

12



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

 

Figure 2-5 Simulation Data File Member Organization (Not all interconnections are
shown)

13



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

Figure 2-6 PDS-Level Organization of the Simulation Data Files

2.2.1 Simulation Data File Directory

The SDF Directory provides information about the organization and location of the 
various lists and component tables that make up the SDF member for a unit of 
compilation.
The directory consists of:

Master Directory Cell (Figure 2-7 on page 16)
Directory Root Cell (Figure 2-11 on page 20)
Block Index Table (Figure 2-21 on page 35)
Block Data Cell (Figure 2-25 on page 39)
Block Symbol Extent Cell (Figure 2-29 on page 46) 
Statement Extent Cell (Figure 2-68 on page 99)

The directory also serves as the means for locating major groupings of data contained 
in the physical records of the data set member for the unit of compilation.

14



Preliminary                            CR14217 PAGE 151 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

15



2.2.2 Master Directory Cell

The Master Directory Cell (Figure 2-7 on page 16) is always found at the very beginning
(Record 0, Byte Offset 0) of the SDF member.  It is the initial entry point into the SDF 
member.  Among other things, this cell is used to determine the SDF Version Number and 
the location of the Directory Root Cell (Section 2.2.2.2, “ Directory Root Cell” on page 18).

 

Figure 2-7 Master Directory Cell

The fields contained in the Master Directory Cell are described below:

Field No. Description

1 This field contains the version number of Phase 3 (the SDF creation phase) of 
the HAL/S compiler used to compile this Compilation Unit.  Every time a 
significant change is made to the SDFs, this Version Number is 
incremented by one.

2 Unused.  Contains X’0000’.

3 SDF pointer to the Directory Free Cell Linked List.  This list identifies space
that was allocated for directory information, but was never used.

4 Pointer to the Directory Root Cell (Figure 2-11 on page 20)

5 SDF pointer to the Data Free Cell Linked List.  Data Cells are cells like the 
Symbol Data Cell and Statement Data Cell.  This list identifies space that 
was allocated for block, symbol, or statement data, but never used.

2.2.2.1 SDF Free Space

SDF members contain unused free space which is divided into two classes: Directory 
Free Space and Data Free Space (see Figure 2-8 on page 17).  Each Free Space group 
is organized into cells of contiguous space and is a part of either the Data or the Directory Free 
Cell Linked List.  Both the Directory Free Cell Linked List and the Data Free Cell Linked 
List terminate with a zero pointer (hex ‘00000000’).

16



Figure 2-9 on page 18 illustrates the linked lists used in both the Directory Free Cell and
Data Free Cell lists.

Figure 2-8 Free Cell Linkage

17



 

Figure 2-9 SDF Free Cell Linked Lists

2.2.2.2 Directory Root Cell

As shown in Figure 2-10 on page 19, the Directory Root Cell is pointed to by Field 4 of 
the Master Directory Cell.  The Directory Root Cell (Figure 2-11 on page 20) locates 
subordinate Cells, locates the Symbol Index Table, and provides general information needed
for statement processing.  This latter information includes the location of the 
Statement Index Table and the values of the first and last internal statement numbers 
(ISNs).  This ISN information is used in conjunction with the Statement Extent List to 
determine the pertinent physical records of the Statement Index Table.  However, the 
information can be used directly to locate statement data pointers by means of a binary 
search whenever sufficient memory space exists to contain the complete Statement Index 
Table.

18



 

Figure 2-10 Master Directory/Directory Root Cell Overview

19



 

Figure 2-11 Directory Root Cell (Part 1 of 3)

20



 

Figure 2-11 Directory Root Cell (Part 2 of 3)

21



Figure 2-11 Directory Root Cell (Part 3 of 3)

The meanings of these fields are as follows:

Field No.  Description  

1 This is a “flag” field containing binary flags which describe the various compilation 
conditions.  The placement and meaning of these bits are as follows:

Bit No.  Flag Name  Meaning When Set  

0 SRN_FLAG File contains Statement Reference Numbers
(SRNs).  Statement Index Table entries are 
12 bytes in size.

1 ADDRS_FLAG Statement Data Cells contain 6 bytes of 
address information:  relative addresses are 
for the first and last lines of the emitted code 
for that statement.  

22



Field No.  Description  

1
(Cont’d)

Bit No.  Flag Name  Meaning When Set  

2 COMPOOL_FLAG SDF was produced for a COMPOOL 
compilation.

3 FC_FLAG Identifies the SDF member as belonging to 
an FC compilation.

4 OVERFLOW_FLAG Indicates one or more overflow directory cells
were allocated from the Data Free Cell Chain
due to insufficient space in the initial 
record(s) of the file which were pre-allocated 
for directory data (i.e., not all directory 
information is on the initial physical records).

5 NON_MONOTONIC_
SRN_FLAG

SRNs are not monotonic (i.e., one or more 
SRNs have values that are less than that of 
their predecessor).

6 NON_UNIQUE_SRN
_
FLAG

SRNs are not unique (i.e., one or more SRNs
have equal values).

7 NOTRACE_FLAG Unused for HAL/S-FC compilations.

8 HIGHOPT Allows the compiler to perform optimizations
that may not be valid when the programmer 
uses %MACROs to bypass the type 
checking protection provided by the HAL/S 
language.

9 BIT_FLAG The current compilation unit contains an 
instance of a BIT variable which is assigned 
from a multi-instruction masking operation.

10 HALMAT_FLAG SDF includes HALMAT.

11 FCDATA_FLAG Unused for HAL/S-FC compilations.

12 SDL_FLAG Identifies the compilation as being compiled 
using the SDL option.

13 DATA_REMOTE SDF produced by compiler with the 
DATA_REMOTE directive in effect.

23



Field No.  Description  

1
(Cont’d)

Bit No.  Flag Name  Meaning When Set  

14 REL6_FLAG Identifies the SDF member as being of the 
format specified in Revision 6 of the 
HAL/SDL ICD.

15 NEW_FLAG Always set.  Used to maintain upward 
compatibility of old SDFs.

2 The number (starting with 0) of the last physical record (page) in the SDF file.

3 The date the file was created, in the format:

Day of the year + (1000 *(year-1900)).

4 The time the file was created:  the number of the centiseconds since midnight 
of the creation date.

5 The number of the last directory page.  If the OVERFLOW FLAG is set, 
however, some directory information is located in the data area.  All directory 
information in the data area is referred to by pointers.

6 The number of EXTERNAL blocks.  The total number of EXTERNAL blocks 
(COMPOOLs, PROGRAMs, PROCEDUREs, NON-HAL) referred to (Included)
in the compilation.

7 The number of HAL/S blocks in the unit of compilation.  Also, the number of 
entries in the HAL/S Block Index Table.

8 The total number of legitimate symbols for which the SDF file contains data.  
Also, the number of entries in the Symbol Index Table.

9 Pointer to the first entry in the Block Index Table.

10 The total number of emitted AP-101 instructions generated in the compilation 
(zero for COMPOOL).

11a Index in Symbol Index Table for the name of the Unit of Compilation.

11b List Head (Index into Symbol Index Table) for Linked List of all Internal 
Symbols ordered alphabetically.

12a List Head (Index into Symbol Index Table) for Linked List of all internal symbols
residing in #D or #P CSECTS ordered by increasing address.

Field No.  Description  

24



12b List Head (Index into Symbol Index Table) for Linked List of all internal symbols
defined in a #R CSECT ordered by increasing address.  Note that #R CSECT 
cannot exist if the SDL compiler option is specified (SDL_FLAG is TRUE).

13 Pointers to the first entry (symbol) in the Symbol Index Table.

14a The number of stack walkback loops generated by Phase 2.

14b The relative address of the literal area from the beginning of the #D CSECT.  
This field contains X“FFFF” when the literal area does not exist.

15 Pointer to the Block Data Cell which represents the primary block in the unit of 
compilation (e.g., the program block in a PROGRAM compilation).  Also, this is 
a pointer to the root block of the Block Tree Hierarchy (see Section 2.2.2.2.3.2, 
“HAL/S Block Data Cell” on page 35).

16 Pointer to the Block Data Cell containing the largest number of defined 
symbols.  Also, this is the pointer to the root block of the Symbol Quantity and 
Alphabetic Name Tree (see Section 2.2.2.2.3.2, “HAL/S Block Data Cell” on 
page 35).

17 First statement number.  This is the internal statement number (ISN), as 
assigned by Phase 1, corresponding to the first executable statement in the 
compilation unit.  Together with Field 21, this value provides the direct 
correspondence between internal statement numbers (ISNs) and pointers to 
the pertinent statement entries in the Statement Index Table.

18 Last statement number.  This will always be the internal statement number of 
the final CLOSE statement.

19 Number of declare and executable statements.  Filed 19 is ≤ Field 20 and 
represents the number of statement entries that contain data (i.e., number of 
entries which point to a Statement Data Cell).

20 Number of Statements (Field 18 – Field 17 + 1) of all types, beginning with 
the first executable statement.  Note that comments and HAL/S compiler 
directives are not considered statements and, so, are not counted.

21 Pointers to the first entry in the Statement Index Table (see description for 
Field 17).

22 Pointer to the first cell of the Include Data Cell List.

23 Pointer to the first cell of the Statement Extent Cell List.

Field No.  Description  

25



24a First Statement Reference Number (SRN) contained within the SDF 
member.

24b Include Count associated with the first SRN contained in the SDF member.  
See Section 2.2.2.2.5.1, “Statement Index Table” on page 86, for a 
description of Include Counts.

25a Last Statement Reference Number contained within the SDF member.

25b Include Count associated with the last SRN contained in the SDF member.  
See Section 2.2.2.2.5.1, “Statement Index Table” on 86, for a description of 
Include Counts.

26 Index in Block Index Table for the Unit of Compilation.

27 User supplied compilation unit number (COMPUNIT).  This number specifies
the BLOCK ID for a block within a unit of compilation.  The compilation unit 
number ranges in value from 0 to 511 and is set only if the COMPUNIT 
Parameter is specified at compile time.

28 Pointer to Title Data Cell (see Figure 2-13 on page 29 for description of 
contents).

29 Reserved.

30 Total number of symbols in the unit of compilation.  Actual size of compiler 
symbol table.

31 Actual number of bytes of REPLACE text.

32 Actual number of characters in the Compiler Literal Table.

33 Number of unused bytes in the SDF accounted for in the Free Cell Linked 
Lists.

34 This field is zero unless the compilation is a COMSUB.  In that case, this 
field is the index in the Symbol Index Table of the last symbol entered into 
the Phase 1 symbol table at the point in the COMSUB compilation when the 
last parameter to the COMSUB is formally declared.

35 Actual number of XREF Table entries.

36 Maximum number of symbols (may be specified by the user in the compile-
time parameter string.)

Field No.  Description  

26



37 Maximum number of bytes of REPLACE text (may be specified by the user in 
the compile-time parameter string.)

38 Maximum number of characters of literal text (may be specified by the user in 
the compile-time parameter string.)

39 Maximum number of XREF entries (may be specified by the user in the 
compile-time parameter string.)

40 Contains the 10 character EBCDIC string obtained from the ID field of the File 
Control Block from the first phase of the compiler.  The last 2 bytes of this field 
are unused and are 0.

41 Pointer to the CARDTYPE Data Cell (see Figure 2-15 on page 29 for 
description of contents).

42 Pointer to the Initialization Table.

43 Number of halfwords in the Initialization Table.

44 Unused

45 Unused

46 Unused

47 Unused

48 Offset to start of the literal area from the beginning of the #D CSECT.

49 Offset to end of the literal area from the beginning of the #D CSECT.

50 Pointer to Literal Extent Table within SDF (see Section 2.2.2.2.9.2.1, “Literal 
Extent Table” on page 122).

51 Number of entries in Literal Extent Table (see Section 2.2.2.2.9.2.1, “Literal 
Extent table” on page 122).

52 Pointer to Function Index Table for cross-reference of shaping functions.  This 
field contains X’FFFFFFFF’ if the Function Index Table does not exist (see 
Section 2.2.2.2.8.1, “Function Index Tables” on page 114).

53 Number of entries in Function Index Table (see Section 2.2.2.2.8.1, “Function 
Index Tables” on page 114).

54-62 Unused

Notes:

27



1. Fields 17-25 may have values for COMPOOLs as with other compilation units.
2. If SRN_FLAG=0 (i.e., no SRNs are present), the fields 23-25 contain zero.
3. If HALMAT_FLAG=0 then fields 50 and 51 are zero.
4. Fields 48 and 49 contain X’FFFF’ if there is no #D CSECT or if the literal area does 

not exist, within the #D CSECT.

2.2.2.2.1 Compiler Data

This section describes the SDF Cells which contain the data specified for the TITLE and
CARDTYPE parameters in the compile-time parameter string.

2.2.2.2.1.1 Title Data Cell

This Cell contains the information specified for the TITLE compile-time option.

Figure 2-12 Title Data Cell Overview

The fields contained in this cell are described below:

 

28



Figure 2-13 Title Data Cell

Field No. Description

1 This field specifies the number of characters contained in Field 2 below.

2 This field contains the title specified by the TITLE option.  This field may 
contain up to 60 characters.

2.2.2.2.1.2 CARDTYPE Data Cell

This Cell contains the information specified for the CARDTYPE compile-time option.

Figure 2-14 Cardtype Data Cell Overview

The CARDTYPE Compiler Option allows HAL/S statements with non-standard Card 
Types to be mapped into the standard types listed in Field 2 below.

 

Figure 2-15 CARDTYPE Data Cell

Field No. Description

29



1 This field specifies the number of characters contained in Field 2 below.

2 This field contains the character data specified by the CARDTYPE option.
The standard Card Types are:

E – Exponent statement line
M – Main statement line
S – Subscript statement line
C – Comment line
D – Compiler Directive line

The Statement types are mapped using the following format:

CT=VEWMXSYCZD

In this example, statements containing V, W, X, Y, and Z in the first 
columns are mapped to the types of E, M, S, C, and D, respectively.  It is 
necessary to specify only those Card Types which are non-standard.  This 
field may contain up to 100 characters.

2.2.2.2.1.3 Initialization Table

This table contains the initialization data for non-NAME variables.  The table is 
formatted the same as the #D or #P CSECT.  #R data is not supported.  

30



Figure 2-16 Initialization Table Overview

Field No. Description

1 Each field is a halfword of data formatted like the #D or #P CSECT.  The 
Symbol data Cell’s field 10A is an offset into the Initialization Table, pointing 
to the beginning of the initialization data for that symbol.  The INITIAL flag 
can be used to determine if data was initialized.

Figure 2-17 Initialization Table

2.2.2.2.2 Include Text Data

As shown in Figure 2-18 on page 32, the Include Text Data consists of a linked list of 
Include Library Member Cells that is pointed to by Field 22 of the Directory Root Cell.  
Each cell in the list provides information about the name, revision level, and catenation 
number of a distinct include library member.  The cell also indicates the JCL DDname 
associated with the PDS library in which the member is located, and a list of the SRNs 
containing compiler directives that INCLUDE the member.

31



Figure 2-18 Include Data Overview

 

Figure 2-19 Include Data Cell

32



The meanings of the fields of the Include Data Cell are as follows:

Field No. Description  

1 A pointer to the next cell in the list.  The cells are linked alphabetically by member name.

2 The name of the Include Library Member, in EBCDIC.

3 The Revision Level consists of two EBCDIC characters which are set to 00 (X“F0F0”) 
when the member is created.

4 An Include Library defined by a JCL DD statement may consist of a concatenated list of 
PDS libraries.  The catenation number is the index in that list of the data set in 
which the member was located.

5 The flag bits indicate the type of the INCLUDE directive, and which JCL DD 
statement defines the library in which the member was located.  The flag bits are 
as follows:

Bit Meaning When Set

0 The member was an SDF.

1 The member was located in the library specified by the OUTPUT5 DD 
statement.

2 The member was located in the library specified by the HALSDF DD 
statement.

3 The member was located in the library specified by the OUTPUT8 DD 
statement.

4 The member was located in the library specified by the OUTPUT6 DD 
statement.

5 The member was located in the library specified by the INCLUDE DD 
statement.

6 TEMPLATE flag.  The directive has the form: D INCLUDE TEMPLATE.

7 REMOTE flag.  The directive specifies the keyword REMOTE.

6 The number of SRN entries (field 7).

7 The SRNs of the compiler directives which INCLUDE this member.  Each SRN 
consists of 6 EBCDIC characters.

33



2.2.2.2.3 Block Data Structures

The Block Data Structures consist of the Block Index Table, Block Data Cell, and the 
Block Symbol Extent Cell.  These cells and tables provide the means by which the proper 
symbol data can be located in the SDF pages.  The HAL/S Block Data Cell also provides 
information about the blocks in a unit of compilation.  As shown in Figure 2-20 on page
34, several different fields of the Directory Root Cell point to the different HAL/S Block 
Data Structures.  The next three sections describe the Block Data Structures in more         
detail.

Figure 2-20 Block Data Structures Overview

2.2.2.2.3.1 Block Index Table

The Block Index Table (see Figure 2-21 on page 35) locates the various HAL/S Block 
Data Cells.  It is ordered in accordance with the alphabetic order of the block CSECT 

34



names.  The Block Index serves as a convenient reference to identify the HAL/S block to 
which a statement or symbol belongs.

Except for COMPOOLs, the CSECT names contained in the Block Index Table are the 
names of the Code CSECT generated for each Block.  When the Block represents a 
COMPOOL, the CSECT name is the name of the COMPOOL CSECT (e. g., 
#PNNNNNN).The CSECT naming conventions are described in Section 4.0, 
“CSECT/MEMBER NAMING CONVENTIONS” on page 1 of this document.

A binary search on the Block Index Table can be used to locate a particular block.  However, a
direct search of the HAL/S Block List using the linkages which are based upon symbol definition
frequency and alphabetic order (see the following section) is faster.

 

Figure 2-21 Block Index Table

2.2.2.2.3.2 HAL/S Block Data Cell

The HAL/S Block Data Cell provides the means by which the information about a 
symbol unique to a HAL/S Block can be found; it also identifies and supplies information
about the HAL/S Blocks themselves.  The HAL/S Block Data Cell, shown in Figure 2-25 
on page 39, corresponds to the HAL/S Blocks (COMPOOL, PROGRAM, PROCEDURE,
FUNCTION, TASK, UPDATE) within a unit of compilation.  The cells are logically 
organized in two different tree structures: one based on the symbol frequency and the 
alphabetic block name order of its members (see Figure 2-26 on page 41 for an 
example), and the other based upon the hierarchical block structure of its members (see
Figure 2-27 on page 42 for an example).  The first tree structure provides an easy and 
efficient way to locate a particular block in a unit of compilation.  The second tree 
structure provides an easy way to locate the variables of a block which are within the 
name scope of a block but not in the block where they are being referenced (e.g., the 
hierarchical linkages would provide a way to SNAP the active variables of any 
encompassing blocks at the time a block terminated).  Entry to the list is in one of three 
ways:  from the Directory Root Cell to the root block of the Alphabetic Name Tree; from 

35



the Directory Root Cell to the root block of the Hierarchical Block Tree; and from a 
pointer in the Block Index Table.

The HAL/S Block Data Cell and its corresponding Block Symbol Extent Cell serve to 
identify the regions of the Symbol lndex Table that are pertinent to a HAL/S Block.  If all 
of the symbols within a unit of compilation lie on a single physical record of the Symbol 
Index Table, no Block Symbol Extent Cell is referenced and indexes exist in the Block 
Data Cell to identify the first and last symbols in the Symbol Index Table (see Figure 2-
22 on page 36).However, if the symbols do not lie on a single physical record, a four-byte
pointer exists to the Block Symbol Extent Cell which then identifies the regions pertinent
to the block (see Figure 2-23 on page 37 and Figure 2-24 on page 38).

Figure 2-22 All Symbols Contained on One SDF Page for Block

36



Figure 2-23 Symbols Contained on Multiple SDF Pages for Block

37



Figure 2-24 Example of Block Symbol Extent Cell

38



 

Figure 2-25 Block Data Cell

39



The HAL/S Block Data Cell is described in Figure 2-25 on page 39.The meanings of its 
fields are as follows:

Field No.  Description  

1 Pointer to the next HAL/S Block Data Cell whose name is alphabetically 
higher.  This field is 0 if no references exist.  This field, in association with 
Field 2, define the Symbol Quantity and Alphabetic Tree.  This Tree 
Structure contains Block Data Cells for both internal and external blocks.  
See Figure 2-26 on page 41 for more information.

2 Pointer to the next member of the HAL/S Block Data Cell whose name is 
alphabetically lower.  This pointer is zero if no reference exists.

3 Pointer to the first nested block within the scope of this block.  This pointer 
is zero if no nested block exists.  This field and Field 4 define the Hierarchi-
cal Block Tree.  This tree contains only internal blocks.  See Figure 2-27 on 
page 42 for more information.

4 Pointer to a block which is at the same level as this block (e. g., in Figure 2-
27 on page 42 for the MERV, this field would point to the block HENRY; 
Field 3 would point to JOHN).  If no other block exists at the same level, this
pointer is negative (two’s complement) and points to the HAL/S Block Data Cell 
which has enclosing scope (e.g., for block HENRY in Figure 2-27 on page
42, this field points back to TOM).

40



Figure 2-26 Alphabetic Name Tree

41



Figure 2-27 Hierarchical Block Tree

Field No. Description

5 Pointer to the Block Symbol Extent Cell, if one exists.  If all symbols 
belonging to this block lie entirely within a single page of the Symbol 
Index Table, then no Extent entry exists and this pointer will be zero.

6a Index in the Symbol Index Table for this block’s name (symbol number).

Field No. Description

42



6b Unused

7 The flag bits identify block characteristics, such as REENTRANT, 
EXCLUSIVE, and RIGID.  The bit assignments are:

Bit No.
0 REENTRANT Flag
1 EXCLUSIVE Flag
2 ACCESS Flag
3 RIGID Flag
4 EXTERNAL Flag
5 NONHAL Flag
6 Unused
7 Unused

8 The version number of the template for his block.  This field is only 
defined for blocks that are EXTERNAL and for the Compilation Unit 
Block.

9 The entry number (index) of the block in the Block Index Table.

10 The Block ID is a unique number assigned to the block.  It occupies the 
rightmost 7 bits of the field.  When executing the code for this block, this 
same number is found in the low order 7 bits of the Block ID in the Local 
Block Data area.  The Block ID with its Compilation Unit (COMPUNIT) 
Number can be used along with an offset to locate a variable in another 
“active” stack space.  A stack variable may only be used if it is “active” 
(i.e., belongs to the same block, or an encompassing block, in which the 
action is to be taken).

11 The category of the HAL/S block (i.e., COMPOOL, PROGRAM, TASK, 
PROCEDURE, FUNCTION, and UPDATE).The codes for each of these 
block categories are as follows:

No.
1 PROGRAM
2 PROCEDURE
3 FUNCTION
4 COMPOOL
5 TASK
6 UPDATE

43



Field No. Description

12 The type of FUNCTION.  This field contains a non-zero value only if Field
No.11 contains a 3.The code for each of the FUNCTION types is the 
same as the Function Types listed in the Symbol Data Cell.  The types 
are as follows:

CODE
Decimal Hex
1 1 BIT (16-bits)
2 2 CHARACTER
3 3 MATRIX (SP)
4 4 VECTOR (SP)
5 5 SCALAR (SP)
6 6 INTEGER (SP)
7-8 7-8 Not Used
9 9 BIT (32-bit)
10 A Not Used
11 B MATRIX (DP)
12 C VECTOR (DP)
13 D SCALAR (DP)
14 E INTEGER (DP)
16 10 STRUCTURE

13-14 Indexes to the first and last entries in the Symbol Index Table for the 
block.

15-16 First and last internal statement numbers (ISN) of the blocks.  These two 
fields are zero for a COMPOOL compilation.

17a The ISN of the first executable statement of the block following the initial 
DECLAREs in the block.

17b The index in the Symbol Index Table of the initial symbol of the set of 
address-ordered symbols referring to stack space variables.

18 The number of characters in the block name.  This is a number from one 
to 32.

19 The name of the block.  This field is variable in length and contains up to 
32 characters.

2.2.2.2.3.3 Block Symbol Extent Cell

The Block Symbol Extent Cell (Figure 2-29 on page 46) identifies the first and last sym-
bols for each of the physical records of a HAL/S block in the Symbol Index Table.  The 

44



Extent Cell identifies the first physical record of the Symbol Index Table pertinent to the 
HAL/S Block.  The cell then supplies the first eight characters of the names and the off-
sets of the first and last symbols occurring in this record.  In turn, the names and offsets 
of the first and last symbols for each of the remaining physical records of the Symbol 
Index Table are supplied.  It should be noted that a one-to-one correspondence exists 
between the position of a reference in the Extent Cell relative to the initial reference and
the physical record number to which the reference applies in relation to the first physical
record of the Symbol Index Table (see Figure 2-31 on page 48).  This relationship 
applies since all of the symbols for a block are grouped together.  Since the symbols for 
a HAL/S block are organized alphabetically in the Symbol Index Table and their physical
records are contiguous, the Extent Cell can be used to isolate quickly the pertinent 
physical record of the Symbol Index Table in which a symbol lies.

Figure 2-28 Relationship of Block Data Cells, Block Symbol Extent Cells, and
                    Symbol Index Table

45



Figure 2-29 Block Symbol Extent Cell

46



2.2.2.2.4 Symbol Data Structures

The Symbol Data Structures consist of the Symbol Index Table, Symbol Data Cell, Con-
stant Value Cells, Replace Text Cells, Procedure/Function Formal Parameter Cells, and
Name Terminal Initialization Cells.  These data structures provide information about 
symbol types, attributes, memory locations, and initialization values.  The Symbol Data 
Structures also provide information about the relative position of a symbol within a 
structure, as well as define the statements in which a symbol is declared, modified, 
used as a subscript, or referenced.

Figure 2-30 Symbol Data Structures Overview 

2.2.2.2.4.1 Symbol Index Table

The Symbol Index Table (Figure 2-31 on page 48) provides the means by which a sim-
ple binary search via a pointer can be established to a symbol’s data.  The table is organized 

47



into physical records which are obtained through application of the Symbol Directory 
Tables.  Each physical record contains 1680 bytes of information or 140 entries of 12 
bytes each.  Every entry consists of an 8 byte field containing a maximum of eight 
characters of the symbol name and a 4 byte pointer to the Symbol Data Cell.  The sym-
bol names in the physical records for a HAL/S Block, not the table itself, are organized 
alphabetically.  An entry exists for each label and variable declared in the compilation, 
except for those variables of the INCLUDEd COMPOOLs which are not used in the 
compiler code (i.e., not referenced or assigned).

As the table carries only the first eight characters of a name, any excess characters are 
found in the Symbol Data Cell (see Section 2.2.2.2.4.2, “Symbol Data Cell” on page 49) 
at the entry pointed to by the 4 byte pointer.  As the first eight characters may not be 
unique, it is necessary whenever more than eight characters are represented to check 
any excess to insure a proper reference.  If a match is not found, it may be necessary to
check both forwards and backwards from this point, especially if this point was realized 
from a binary search.  Also, it may sometimes be necessary to secure the next physical 
record to continue the search for a unique reference.

Figure 2-31 Symbol Index Table

48



2.2.2.2.4.2 Symbol Data Cell

The Symbol Data Cell is referenced by pointers in the Symbol Index Table and provides
all of the information that is known about a symbol (except the first eight or less characters of 
the name).  The cell and its symbol data are variable in length.  A cell (Figure 2-32 on 
page 50) contains information about the symbol type, attributes, relative memory 
location, number of bytes of memory occupied, and the block in which it is defined.  A 
cell may also contain the symbol name continuation, number and range of 
dimensionality, structure template linkages, etc.

The Symbol Data Cell may also include a list of the statements in which the symbol is 
referenced, assigned, or declared.  The statement references are in the form of indexes 
(ISNs) to the Statement Index Table and contain flag bits defining whether the statement 
DECLAREs, References, Assigns, or uses the variable as a subscript (combinations are 
possible).  If all of the statement references cannot be contained on the physical record 
for the Symbol Data Cell, the data is extended to another physical record by means of a 
pointer.  Whether or not the list is extended is indicated by either a halfword or fullword 
of hex’F’s immediately preceding the pointer.

49



 

Figure 2-32 Symbol Data Cell (Part 1 of 3)

50



Figure 2-32 Symbol Data Cell (Part 2 of 3)

Figure 2-32 Symbol Data Cell (Part 3 of 3)

The cell provides linkages to structure templates or their members if the symbol is part 
of a HAL/S structure organization.  In case of a symbol in a structure declaration (e.g., 
DECLARE X Y -STRUCTURE;), the symbol (i.e., “X”) is defined as a structure type 
(SYMBOL TYPE = X’10’), is, classified as a qualified or unqualified structure name 

51



(FLAG BIT 7 = 1 if unqualified and zero if qualified), and will have an index in Field 12 to
the pertinent structure template.

In case of the template itself (i.e.,“Y” in the above example), the entry will identify itself as a 
template by having FLAG BIT 6 set on.  If an unqualified structure has been declared using the 
template, FLAG BIT 7 = 1 and Field 17, Link to Unqualified Structure, is set to point to the 
template’s unqualified structure.  The template contains an offset (Field 5) to the structure 
data and the structure data provides the initial link to the variables defined within the template
(Field 18, Link to Eldest Son).  Additionally, Field 0b of the Symbol Data Cell for the structure 
template is used as a list head for a linked list chaining all symbols belonging to the template in
order of increasing template-relative address (Field 0b in these other template cells then 
identifies the next symbol in address order).

The variables within a template which are identified as belonging to a template by 
SYMBOL CLASS = 4 (Field 6), may be classified as qualified or unqualified, and refer to
other templates or variables.  If the reference is to another template SYMBOL TYPE = 
X“10”, the Link to Eldest Son (Field 18) is zero, and Field 12 contains an index to the 
referenced template.  Field 19 (link to Brother) may or may not contain a reference 
depending on the organization of the structure.

The variables in the template are organized in the form of a tree.  The association of 
one variable with another can be determined by following the links supplied in Field 18 (Link to 
Eldest Son) and Field 19 (Link to Brother).  Field 5 (Offset to Structure Data) will always 
contain an offset to the structure data (i.e., to the structure linkages).  If the information is 
present in Field 18 a link exists to a lower level structure variable.  If information is present in 
Field 19, a link exists to a following variable at the same structure level.  However, if no 
following variables exist at the same level, a negative link (2’s complement) back to the 
nearest parent appears in Field 19.If the variable belongs to an unqualified structure, Field 
17 (Link to Unqualified Structure) contains an index to the structure itself.

See Figure 2-33 on page 53 for an example of the brother/son linkages contained in a single 
HAL/S Template and Figure 2-33 on page 55 for an example of nested HAL/S Templates.

52



Figure 2-33 Structures and Templates for a Single Structure (Part 1 of 2)

53



Figure 2-33 Structures and Templates for a Single Structure (Part 2 of 2)

54



 

Figure 2-34 Structures and Templates for Nested Structures (Part 1 of 2)

55



Figure 2-34 Structures and Templates for Nested Structures (Part 2 of 2) 

The statement cross-reference information for structure templates and terminals 
contains the references for all structures using that template.  In addition, only those 
nodes/terminals explicitly specified in the HAL/S source code actually contain the cross-
reference for that statement (see Figure 2-35 on page 57 for more information).  It should 
also be noted that any structure information is not propagated to other levels (e.g., symbol 
flag information is not propagated from the structure to the template terminals).

56



 

Figure 2-35 Structure Symbol Cross-Reference Information (Part 1 of 2)

 

Figure 2-35 Structure Symbol Cross-Reference Information (Part 2 of 2)

Figure 2-36 on page 58 illustrates the different linked lists involving the Symbol Data Cells.  
The field numbers that make up the linked list are also provided.  Note that the #R 
linked list cannot exist unless the SDL Flag (Bit 12 of the flags in the Directory Root 
Cell) is a zero.  #R Remote data is prohibited if the SDL Flag is a one.

57



Figure 2-36 Symbol Data Cell Linked Lists

The meaning of the fields of the Symbol Data Cell are as follows:

Field No. Description

0a Index into the Symbol Index Table of next alphabetic symbol.  Only internal 
symbols (no COMPOOL or EXTERNAL Procedure/Function symbols) are included 
in this chain of symbols.  The chain terminates with a zero.  The initial symbol 
of the chain is defined by Field 11b of the Directory Root Cell.

0b Within the following categories all internal symbols are linked by address:

#D data
#P data

} The List Header is defined by Field 12a of the Directory 
Root Cell.  The last entry is zero.

58



#R data } The List Head is defined by Field 12b of the Directory Root 
Cell.  The last entry is zero.  #R data is prohibited if the 
SDL flag is a one.

Stack data } The List Head is defined by Field 17b of the HAL/S Block 
Data Cell.

All internal and external symbols defined in a structure template are address 
linked.  For these categories the field contains an index in the Symbol Index Table 
of the next symbol in the address chain.

0c The pointer to the Auxiliary Symbol Information is always present.  Bit 29 of 
the Flag Bits (Field 8) is set to indicate the presence of data in Field 0c.

For Equate External labels, the Auxiliary Symbol Information Pointer (ASIP)
refers to a Variable Reference Cell (see Section 2.2.2.2.7, “Variable 
Reference Cell” on page 105) describing the variable being equated to.  
This cell will be present only when Field 12 of the Symbol Data Cell is 
inadequate to describe the HAL/S variable (i.e., when the variable is in a 
qualified structure or is subscripted).

For procedure and function names, the ASIP points to a 
Procedure/Function Formal Parameter Cell (see Section 2.2.2.2.4.5, 
“Procedure/Function Formal Parameter Cell” on page 76.)

Last, the ASIP provides information about the initialization of NAME 
variables.  For simple NAME variables, the ASIP points to a Variable 
Reference Cell (see Section 2.2.2.2.7, “Variable Reference Cell” on page
105) describing the variable initially pointed to by the NAME variable.  For 
NAME variables which are structure terminals, the ASIP in the Symbol Data
Cell for the major structure name points to a linked list of NAME Terminal 
Initialization Cells (see Section 2.2.2.2.4.6, “ Name Terminal Initialization 
Cell” on page 78) with one cell for each NAME variable in the structure 
template.  If the simple NAME variable or the structure is not initialized, the 
ASIP is absent.

Field No. Description

0d This field defines a linked list of internal symbols in the order in which 
they were entered into the symbol table (in HAL/S Compiler Phase 1 
order).  The root of this chain is the symbol number of the compilation 
unit.

1 Index Number of the HAL/S Block in the Block Index Table.  This index 
serves two primary purposes: 1) to identify the block in which the symbol 
is defined, 2) to provide a reference to the CSECT name of a COMPOOL 
symbol in the Block Index Table so that, in conjunction with the relative 
memory address of the symbol (Field 10), an actual address can be 

59



determined.

2 Offset within the cell to the Extension Data (at Field 16).  If Extension Data 
does not exist, this field is zero.  Otherwise, this cell extension contains Bias or
Array data.

3
4
5

Offset within the cell to the statement cross-reference data, array dimension 
data, and structure data, respectively.  If the corresponding data is not 
present, then the offset is zero.

6
7

Symbol Class and Symbol Type identify the classes of symbols and their 
attributes.  The assigned codes are as follows:

6,7
(Cont’d)

Class Type

Decimal Hex
1 Variable 1 1 BIT (16-bit) (halfword)

2 2 CHARACTER
3 3 MATRIX (SP)
4 4 VECTOR (SP)
5 5 SCALAR (SP)
6 6 INTEGER (SP) (halfword)
9 9 BIT (32-BIT) (fullword)
10 A Unused
11 B MATIRX (DP)
12 C VECTOR (DP)
13 D SCALAR (DP)
14 E INTEGER (DP) (fullword)
16 10 STRUCTURE
17 11 EVENT Variable (1 bit right-justified in a 

halfword)
2 Label 1 1 PROGRAM

2 2 PROCEDURE
Field No. Description

6,7
(Cont’d)

Class Type

2 Label Decimal Hex
(Cont’d) 3 3 FUNCTION (see class 3)

4 4 COMPOOL
5 5 TASK
6 6 UPDATE
7 7 Statement
8 8 EQUATE

60



9 9 REPLACE Label

3 Function 1 1 BIT (16) (halfword)
2 2 CHARACTER
3 3 MATRIX (SP)
4 4 VECTOR (SP)
5 5 SCALAR (SP)
6 6 INTEGER (SP) (halfword)
9 9 BIT (32-bit) (fullword)
10 A Unused
11 B MATRIX (DP)
12 C VECTOR (DP)
13 D SCALAR (DP)
14 E INTEGER (DP) (fullword)
16 10 STRUCTURE

4 Template 1 1 BIT (16-bit) (halfword)
2 2 CHARACTER
3 3 MATRIX (SP)
4 4 VECTOR (SP)
5 5 SCALAR (SP)
6 6 INTEGER (SP) (halfword)
9 9 BIT (32-bit) (fullword)
10 A Unused
11 B MATRIX (DP)
12 C VECTOR (DP)
13 D SCALAR (DP)
14 E INTEGER (DP) (fullword)

61



Field No. Description

6,7
(Cont’d)

Class Type

4 Template Decimal Hex
(Cont’d) 16 10 Template Flag = 1 Template

Template Flag = 0 Minor Structure
a) If Field 18 ≠ 0, it points to first terminal.
b) If Field 18 = 0, Field 12 points to next
    template.

17 1 EVENT Variable (1 bit right-justified in a 
halfword)

5 Template
    Label 1 1 PROGRAM

2 2 ___________________
3 3 ___________________
4 4 ___________________
5 5 TASK

 The format of the character string (Type 2 in classes 1, 3, and 4) is as follows:

Byte 0 1 2

Max
Ct

Char
Ct

Characters

where:

Max Ct is the maximum number of characters in the string, and

Char Ct is the current number of characters in the string.

The characters are blocked into halfwords such that if the number of characters 
is odd, the last halfword will contain a blank pad character.

8 The Flag Bits define the characteristics of the symbol.  In addition, they
identify Stack and NAME variables and supply information about the use of 
the variable in a structure.  The Flag Bits are as follows:

Bit Meaning When Set

0 COMPOOL Flag

62



Field No. Description   

8     
(Cont’d)

Bit Meaning When Set

1 Input Parameter

} Stack Variables

2 Assign 
Parameter

3 TEMPORARY

4 AUTOMATIC

5 NAME Variable (the NULL NAME variable pointer is a 
halfword of zeros)

6 Template Flag (if on, represents template)

7 Unqualified Structure Flag

8 REENTRANT Flag (for the block and its variables)

9 DENSE Flag

10 CONSTANT Flag

11 ACCESS Flag

12 Indirect Flag

The Indirect Flag is ON only for parameters which refer to:

 Aggregates
 Assign parameters
 Process event variables, which also have the Latched 

Flag (bit 13) ON.

13 LATCHED Flag (for EVENT variables)

14 LOCKED Flag

63



Field No. Description

8
(Cont’d)

Bit Meaning When Set

15 REMOTE Flag.  This flag, in conjunction with the fields 
listed below, has the following meanings:

(1) If bit 5 (NAME Variable) is ON, then the 
variable is a 32-bit pointer.

(2) If bit 24 (INCLUDED REMOTE) is ON and 
Field 6 (symbol class) = 2 (label) and Field 7 (symbol 
type) = 4 (COMPOOL), then the label is a COMPOOL 
that is included remote.

(3) If bit 24 (INCLUDED REMOTE) is ON and 
Field 6 (symbol class ¬ = 2 (label), then the symbol 
lives in a remote #P (COMPOOL) CSECT.

(4) If bit 5 and bit 24 are both OF, then the 
variable lives in a #R CSECT. #R data is prohibited 
if the SDL flag is a one.

16 Non-zero Bias Flag

17 INITIAL Flag (for variable being initialized)

18 RIGID

19 Literal.  Variable is in literal pool and Field 10 is zero.  
Field 14 is a pointer to a Constant Value Cell.  The 
variable is consequently inaccessible to diagnostics.  The 
CONSTANT Flag is set ON for literals.

20 EXTERNAL.  Variable belongs to an EXTERNAL block 
(e.g., an included COMPOOL).

21 Stack Variable (variable is in a stack).A variable is a stack 
variable if it is an input parameter, an assigned parameter, a 
TEMPORARY variable, or an AUTOMATIC variable in a 
REENTRANT PROCEDURE.

22 Local Block Data.  This flag is set ON if the block contains a 
reference to Local Block Data.  When this flag is ON, Fields 13 
and 14 of the Symbol Data Cell contain address and size 
information.

64



Field No. Description

8
(Cont’d)

Bit Meaning When Set

23 EQUATE. When this flag is ON, the symbol is referenced in 
an EQUATE statement.

24 INCLUDED REMOTE Flag.  Indicates that the variable lives 
in a remote #P (COMPOOL) CSECT.

25 EXCLUSIVE.  This flag identifies the symbol as the name of 
a block that is EXCLUSIVE.

26 Unused

27 Misc. Name Flag.  Indicates that the symbol is the template 
of a structure with NAME terminals, or that the symbol is a 
variable pointed to by a NAME variable.

28 Macro Arg. Flag.  Indicates that the symbol is the name of a 
REPLACE Macro that has arguments.

29 ASIP Flag.  Indicates the presence of Filed 0c, the Auxiliary 
Symbol Information Pointer.

30 Unused

31 This symbol is a BIT variable which is assigned from a multi-
instruction masking operation.

9 Total number of characters in the symbol name.  If this value is 8 or less, 
then all symbol characters are contained within the Symbol Index Table and 
thus Field 15 is non-existent.  If Field 15 exists at all, then its length, in 
bytes, is equal to this value minus 8.

10 A Relative memory address (in terms of halfwords) of the symbol within a 
       data CSECT or stack space.

B If the symbol is a REPLACE Label, this field contains the number of
       bytes in the SDF representation of the REPLACE Text.

C If the symbol is a Label (as specified by Field 6), then the address is
       replaced by the Internal Statement Number corresponding to that label.

65



Field No. Description  

11 The Block ID is a compiler generated internal code.  If the symbol’s data is 
stored on the stack, the Block ID identifies the stack in which the symbol’s 
data exists during execution.  If a specified stack symbol’s data is not in the
current stack space, one can retrieve the data for the symbol at another level 
by threading backwards through the stack so long as the symbol has proper 
scope.

12 A For matrices and vectors, the first half of this field contains:

a) The number of rows if the symbol is a matrix.
b)   The value one if the symbol is a vector.

The second half of this field contains:

a) The number of columns if the symbol is a matrix.
b) The number of components if the symbol is a vector.

B For DENSE bit strings this field contains:

a) In the first byte an alignment factor as follows:

0 - right aligned and has leading zeroes.

n - where n is greater than zero and less than X“FF”, n indicates the
     number of bit positions the string must be shifted to right align the
     string:  leading bits must be masked.

X“FF” - the string is right aligned; however, the leading bits must be 
masked.

b) The second byte specifies the number of bits contained in the string.

C For bit and character strings the field contains:

a) The number of bits if the symbol is a bit string.

b) The number of characters if the symbol is a character string.  If 
negative, the field then indicates that the number of characters is 
unknown.  If this field is negative and Field 16 is zero (the case where 
Field 16 is non-zero is discussed in the notes for Field 16), the character
string will be a “*” character string.  Information about the character 
string will be found in the stack space at the relative address specified 
in Field 10 as follows:

66



Figure 2-37 Stack Variable Character String Format

Field No. Description

12
(Cont’d)

D For a structure, the field contains the symbol number (index to an entry in 
       the Symbol Index Table) of the structure template (SYMBOL TYPE =   
      X’10’).

E For EQUATE labels, the field contains the index into the Symbol Index 
       Table of the symbol being equated to.

[
13

14

A Lock Group Number.  A hex “FF” signifies LOCK (*).

A The number of halfwords occupied by the symbol.
        In case of STRUCTURE, the size includes all copies.
        In case of a NAME variable, the size of the symbol pointed to. 

13 B When the LITERAL and CONSTANT flags are set (Field 8, bits 10 and 19),
       the symbol is a CONSTANT variable and this field is a 4-byte pointer to a
       Constant Value Cell which is described in Figure 2-41 on page 72 and
       Figure 2-42 on page 73.

13 C When the symbol is a REPLACE label, this field is a 4-byte pointer to the
Head of a Chain of Replace Text Cells which are described in Section
2.2.2.2.4.4, “Replace Text Cells” on page 73.

[ 13

14

D The relative address of the Local Data Area within the #D CSECT (halfwords).
Fields 13 and 14 refer to Local Block Data only if Bit 22 of Field 8 is ON.

D     The length of the Local Block Data area (i.e., 2 or 5 halfwords).

15 Remainder of symbol name.  This can be from 0 to 24 characters.

67



Field No. Description

16 Except for an array of “*” character strings, a data item may not be pointed to 
directly whenever the HAL/S Compiler performs variable indexing or 
references data using an indirect pointer (e.g., Parameter Passing or 
Name Variable manipulation).  The HAL/S Compiler often points to an 
address somewhere before the beginning of the actual data.  The difference 
between the address ahead of the data and the address at the beginning of the 
actual data is known as the Bias or Offset.  This method is used since it is more
efficient to set the database register to point to a fictitious 0th item of an 
aggregate (matrix, vector, multi-copy structure, or array).

For an array of “*” character strings, this field contains an Arrayness Value.  
This situation is indicated by a negative character count in Field 12 and a 
value contained in this field.  In this case, additional information about the 
character strings (see Figure 2-38 on page 69) can be found in the Stack 
Space specified in Field 10.The true Bias is calculated by multiplying the 
Arrayness Value and the width specified in the Stack space.  The resulting 
Bias will be in halfwords.

Figure 2-39 on page 70 shows the algorithm used to calculate the Bias 
Factor.

68



Figure 2-38 Array of Character Strings

69



Figure 2-39 Algorithm for Calculating the Bias Factor

70



Field No.  Description  

17
18
19

] Structure Links (see preceding text for explanation).

20 If the symbol is an array, this field contains the number of dimensions.  If the 
symbol is a structure, this field contains a one.

21
22
23

Fields 21-23 are the ranges of each of the dimensions of the array.  If the 
symbol is a structure, Field 21 contains the number of copies of the structure and 
fields 22 and and 23 do not exist.

24a Relative symbol number in block (compiler only).

24b The total number of statement cross reference entries.

25 Indexes to the Statement Index Table.  They identify the statements in which 
the symbol is modified, referenced, used as a subscript, or declared.

26 This field is present only when all of the symbol’s cross-reference data does 
not fit in the same physical SDF record as the beginning part of the Symbol Data 
Cell.  This field varies in length (so that Field 27 may start on a full word boundary) 
and contains either 2 or 4 bytes of hex “FF”.

27 Like Field 26 above, this field is present only when all of the cross-reference data 
will not fit in the same record.  The field contains an SDF pointer to the 
Symbol XREF Extension Cell.

2.2.2.2.4.3 Constant Value Cells

The Constant Value Cells contain data that was specified using the CONSTANT 
attribute in the symbol declaration to set an initial value.  There are two types of 
Constant Value Cells:  character strings and scalars/integers.  The two types are 
discussed in the following sections.



Figure 2-40 Constant Value Cell Overview

2.2.2.2.4.3.1 String Constant Value Cells

The String Constant Cell shown in Figure 2-41 on page 72 contains initialization data for
character constants and literals.  The format of this cell is described below:

Figure 2-41 String Constant Value Cell

Field No.  Description  



1 This field contains the number of characters in the string minus 1.

2 This field contains the character data for the string.

2.2.2.2.4.3.2 Scalar/Integer Constant Value Cells

The Scalar/Integer Constant Value Cell shown in Figure 2-42 on page 73 contains 
initialization data for numeric symbols declared using the CONSTANT attribute.  The 
format of this cell is described below.

Figure 2-42 Scalar/Integer Constant Value Cell

Field No.  Description  

1 This field contains the value of the constant stored as a double precision 64-bit
floating point number.

2.2.2.2.4.4 Replace Text Cells

As shown in Figure 2-43 on page 74, the Replace Text Parameter Cell (see Figure 2-45 on 
page 75) is pointed to by Field 13 of the Symbol Data Cell; Field 1 of the Replace Text 
Parameter Cell, in turn, points to the Replace Text Macro Cell.  If all of the Replace 
Text will not fit into one Replace Text Macro Cell, Field 1 then points to a list of subse-
quent Replace Text Macro Cells which will contain the remaining Replace Text.  Figure 2-44 
on page 74 not only shows the different types of Replace Text, but also shows the 
information generated for the different Replace Text Cells.



Figure 2-43 Replace Text Overview

Figure 2-44 Replace Text Examples



The Replace Text Parameter Cell is shown in Figure 2-45 on page 75.

Figure 2-45 Replace Text Parameter Cell 

The meanings of the fields are as follows: 

Field No.  Description  

1 A link to the Replace Text Macro Cell (Figure 2-47 on page 76) in the chain.  
Subsequent cells contain the text of the macro.

2 This field indicates the number of Replace Macro Arguments.  For a macro with 
no arguments, this field has the value X’FFFF’.

3 Argument text is stored in the SDF in a compressed format where a string of 
consecutive blanks is represented by two bytes:  the first having the value 
X’EE’, and the second byte containing the number of blanks minus one.  The 
number of blank bytes is the difference between the number of bytes of 
compressed text in the SDF and the number of bytes of REPLACE text in the 
HAL/S source.

4 There is one pseudo-descriptor corresponding to each Replace Macro argument 
and their order corresponds to the order of the arguments in the macro 
invocation.  Adding the address of the beginning of the cell to the pseudo-
descriptor generates an XPL string descriptor which points to the Replace 
Macro argument’s name in the text field (see Figure 2-46 on page 75).

Figure 2-46 Replace Text Parameter Cell Pseudo Descriptor



Field No. Description

5 EBCDIC text containing the Replace Macro argument names.

The subsequent Replace Text Macro Cells have the following format:

Figure 2-47 Replace Text Macro Cell 

The meanings of the fields are as follows: 

Field No.  Description  

1 A link to the next Replace Text Macro Cell in the chain.  This field has the 
value X’00000000’ for the last cell in the chain.

2 The number of bytes of text that follow.

3 Up to 1000 bytes of Replace Macro Text.

2.2.2.2.4.5 Procedure/Function Formal Parameter Cell

As shown in Figure 2-48 on page 77, the Formal Parameter Cell is referenced by the 
Auxiliary Symbol Information Pointer (field 0c) of the Symbol Data Cell (see Section , “Symbol 
Data Cell” on page 49) that corresponds to the name of the procedure or function.  The cell 
indicates the formal parameters (i.e., those defined in the procedure or function header) 
associated with the procedure or function.



Figure 2-48 Procedure/Function Formal Parameter Cell Override



Figure 2-49 Procedure/Function Formal Parameter Cell

The meaning of the fields of the Formal Parameter Cell are as follows: 

Field No.  Description  

1 The number of bytes in the cell.

2 The number of formal parameters defined in the procedure or function.

3 The number of formal parameters which are input parameters.

4 Indexes to corresponding Symbol Data Cells for each parameter.  The 
parameters are listed in the order of their occurrence in the block (i.e., 
procedure or function) header.

2.2.2.2.4.6 Name Terminal Initialization Cell

The Name Terminal Initialization Cell describes the initial pointer value or values of a 
name structure terminal.  The cell contains a complete reference to the terminal name 
including the structure qualifiers for any nested structures.  Unless the NAME 
initialization points to a simple variable (i.e., a symbol that is neither subscripted not part
of a structure), this cell is followed by a list of pointers to Variable Reference Cells (see 
Section 2.2.2.2.7, “Variable Reference Cell” on page 105) which describe a variable 
pointed to by one or more copies of the name terminal.  All of the Name Terminal 
Initialization Cells associated with a particular structure are grouped into a linked list.  
As shown in Figure 2-50 on page 79, the head of the list is pointed to by the Auxiliary 
Symbol Information Pointer (field 0c) of the Symbol Data Cell (see Section , “Symbol 
Data Cell” on page 49) that corresponds to the name of the major structure.



Figure 2-50 Name Terminal Initialization Cell Overview 



Figure 2-51 Name Terminal Initialization Cell

The meaning of the fields of the Name Terminal Initialization Cell are as follows:

Field No. Description

1 Number of bytes in the cell.

2 Number of symbol indexes (field 4).

3 Pointer to the Name Terminal Initialization Cell for the next name terminal in the 
template.

4 Indexes into the Symbol Index Table (see the explanation of the Variable 
Reference Cell, field 4 on page 109).

5 The Initial List Words describe the initial pointer values of the various copies
of the NAME terminal.  The Initial List Words are grouped into fixed-length
operators which contain either one or two words.  The value of the first 
halfword of each operator determines its type.  The formats of the 
operator types are as follows:



INITIAL POINTER VALUE OPERATOR

The Initial Pointer Value Operator contains a pointer to the Variable Reference Cell that 
describes the initial (first) NAME Pointer Value.  If this operator occurs within Loop Operators 
(see below), then several copies of the NAME pointer may be initialized to this value.

Figure 2-52 Initial Pointer Value Operator

The sub-fields for the Initial Pointer Value Operator are listed below: 

Field No.  Description  

5A This field identifies the Operation Operator Type as being an Initial Pointer 
Value Operator.

5B This field contains the number of the first copy of the NAME terminal that is 
initialized to this value.

5C When the 1-Bit Flag is Off:

Field 5C points to a Variable Reference Cell which describes the Structure 
variable or subscripted variable referenced in a NAME Initialization (i.e.,
the symbol referenced in the initialization part of a Declaration).

When the 1-Bit Flag is On:

The last 16 bits of field 5C contain the Symbol Index of the Symbol being 
referenced by the NAME pointer.  A Symbol referenced in this manner is 
a simple variable (i.e., a variable that is neither subscripted nor part of a 
structure).

INITIALIZATION LOOP START OPERATOR

The Initialization Loop Start Operator, along with its corresponding Initialization Loop End 
Operator, defines a list of initial NAME pointer values that are repeated.



Figure 2-53 Initialization Loop Start Operator

The sub-fields for the Initialization Loop Start Operator are listed below: 

Field No.  Description  

5D This field identifies the Operation Operator Type as being an Initialization Loop 
Start Operator.

5E The Nest Level indicates the depth to which this loop is nested within other such 
loops and matches the Nest Level in the corresponding Initialization Loop End 
Operator.

5F The Repetition Factor indicates the number of times the enclosed operator(s) 
is to be repeated.

5G This field contains the Loop Increment.  The Loop increment is added to the 
Copy number associated with each Variable Reference Cell every time the loop 
is repeated in order to generate all of the copies with that initial value.

If an Initial Pointer Value Operator with a Copy number of n is in an Initialization 
Loop Start Operator with a Repetition Factor of x and a Loop Increment of y, 
then that Initial Pointer Value Operator applies to copies n, n+y, n+2y, ..., n+(x-
1)y.

INITIALIZATION LOOP END OPERATOR

The Initialization Loop End Operator marks the end of a repeated list of Initial Pointer Values that 
was begun by the Initialization Loop Start Operator.



Figure 2-54 Initialization Loop End Operator

The sub-fields for the Initialization Loop End Operator are listed below: 

Field No.  Description  

5H This field identifies the Operation Operator Type as being an Initialization 
Loop End Operator.

5I The Nest Level matches the Nest Level in the corresponding Initialization Loop 
Start Operator.

END OF INITIALIZATION OPERATOR

This is the last operator in every cell.  If the Extension Flag (Field 5K) is zero, then this 
operator also marks the end of the initialization data.  If there is more initialization data 
than will fit in a SDF page, the Extension Flag (Field 5K) is set to one and the remaining
part of the initialization list is contained in an Extension Cell located by the pointer (Field
5L) found in the second word of the operator.  The initial list may be divided between 
any two operators; no single operator will be split across two cells.  The Extension Cell 
(Figure 2-55 on page 83) has the same general format as the Name Terminal 
Initialization Cell except that fields 2, 3, and 4 do not appear.

Figure 2-55 End of Initialization (Cell) Operator



The sub-fields for the End of Initialization Operator are listed below:

Field No. Description

5J This field identifies the Operation Operator Type as being an End of 
Initialization Operator.

5K In the event more initialization data exists than will fit in an SDF page, this flag is 
set ON and will be followed immediately by field 5L.

5L When field 5K is ON, this field will exist.  The field contains an SDF pointer to the 
Name Terminal Initialization Extension Cell (Figure 2-56 on page 84).

NAME TERMINAL INITIALIZATION EXTENSION CELL

This Cell exists only when the Initialization data will not fit within a single SDF page.  
The field numbers correspond to the fields described for the regular Name Terminal 
Initialization Cell (Figure 2-51 on page 80).

Figure 2-56 Name Terminal Initialization Extension Cell 

2.2.2.2.5 Statement Data Structures

The Statement Data Structures consist of the Statement Index Table, Executable 
Statement Data Cells, Declare Statement Data Cells, Expression Variables Cells, and 
Procedure/Function Invocation Cells.  These cells provide information about the statements 
and the means by which this data can be addressed.



Figure 2-57 Statement Data Structures Overview



Figure 2-58 Statement/Symbol Relationship Overview 

2.2.2.2.5.1 Statement Index Table

The Statement Index Table (Figure 2-59 on page 87) is pointed to by the Directory Root
Cell and consists of 1680-byte physical records which are mapped and pointed to by the
Block Statement Extent Cell.  The Statement Index Table provides the means by which 
access can be made to the attributes of a statement.  Entry to an element of the table 
can be through a binary search on statement reference numbers (SRNs) or by direct 
use of the internal statement number (ISN) generated by the compiler.

If the SRN_FLAG in the Directory Root Cell is on, each entry in the table is 12 bytes in 
length and consists of a six byte SRN field, a two byte INCLUDE count and a four byte 
pointer (page number and offset) field whose contents point to the location of the 
Statement Data Cell.  If the SRN_FLAG is OFF, only the Statement Data Cell Pointer 
exists in the table; the SRN and Include Count Fields do no exist.  An entry exists for 
each statement beyond the INCLUDEs of external modules.  The entries are ordered in 
accordance with the internal statement numbers generated by the compiler.  The SRNs,
which are supplied by the user, are in ascending order in the table unless the 
NON_MONOTONIC_SRN_FLAG is ON in the Directory Root cell.

However, INCLUDEd statements which appear immediately after an INCLUDE 
statement are represented in the INCLUDE count field by a 16-bit positive integer which
is X’0001’ for the first included statement, X’0002’ for the second, etc. DECLARE 



statements are treated in the same manner as executable statements.  The pointer field
in the table for a DECLARE statement is a negative pointer (-PTR) and points to a 
DECLARE Statement Data Cell.  All other pointer fields of non-executable statements 
(other than DECLAREs) are zero.

Figure 2-59 Statement Index Table

It should be noted that:

1. SRNs are not necessarily unique within a Compilation Unit (see Figure 2-60 on page
88 for an example).In this case the NON_UNIQUE_SRN_FLAG will be set to “on” in 
the Directory Root Cell.

2. The segment of the Statement Index Table containing the ISNs/SRNs for a particular
block may contain embedded statements belonging to nested blocks (see Figure 2-61 on 
page 88 for an example).



Figure 2-60 Example of Non-unique SRNs

Figure 2-61 Block Statement Nesting 

2.2.2.2.5.2 Statement Data Cells

The Statement Data Cells consist of two types:  Executable Statement Data Cell and 
the Declare Statement Data Cell.  These Cells, which are referenced by SDF pointers in
the Statement Index Table, provide information about the statements in a Compilation Unit.

Note:  Declare Statement Data Cells do not contain address information; this
          information is readily available in the Symbol Data Cell (see Figure 2-32 on page 50).

2.2.2.2.5.2.1 Executable Statement Data Cell

The Statement Data Cell for an executable statement is indicated by a positive SDF 
pointer in the Statement Index Table.  In addition, the Statement Type Field of both the 
Executable and the Declare Statement Data Cells may be used to determine whether 
the Cell is a Declare or Executable Cell since they occupy the same location in both 
cells.  This Cell provides information about the Statement Type (see Figure 2-63 on 
page 93), offsets of the first and last machine instructions generated for the statement, 
and the indexes into the Symbol Index Table for any labels or assigned variables 
appearing in the statement.



Figure 2-62 Executable Statement Data Cell

The Cell is of variable length and is of the following format:

Field No. Description

0a

0a

A pointer to an Expression Variables Cell (see Section 2.2.2.2.6, 
“Expression Variables Cell” on page 102).  For real-time 
statements (UPDATE PRIORITY, SCHEDULE, CANCEL, and 
TERMINATE), the cell lists all processes whose status is changed  
For other statement types, the cell describes the statement variables 
occurring in a left-hand-side context (i.e., whose values may be 
changed by the statement).The pointer is present only when the 
LHS information (Field 6) is incomplete, that is when some of the LHS



Field No. Description

(Cont’d) variables are subscripted.  When present, the LHS Expression 
Variables Cell contains complete information about the LHS 
variables, thus duplicating the field 6 data.

The presence of Field 0a is indicated by setting the LHS bit (Field 2B).

0b A pointer to an Expression Variables Cell (see Section 2.2.2.2.6, 
“Expression Variables Cell” on page 102) describing the statement vari-
ables, including control variables, and any procedures or functions 
that occur in a right-hand-side context.

The presence of Field 0b is indicated by setting the RHS bit (Field 2C).

0c Bit No.    Description
0-5         Unused

6            1 – Statement contains an occurrence of a multi-instruction
                    bit masking operation

              0 – Statement contains no bit masking operation

7-15       Unused

0d Unused

0e Pointer to a HALMAT Cell (see Section 2.2.2.2.9.1, “HALMAT Cells” on 
page 118).  If there is no HALMAT for the statement (e.g., 
uninitialized DECLARE statement) the pointer is –1.  If HALMAT is
not included in the SDF (HALMAT_FLAG in the Directory Root 
Cell is OFF), this field is zero.

1 Index to the HAL/S Block Index Table.  This index into the Block 
Index Table makes it possible to obtain the CSECT name of the block 
within which the statement lies.

   



Field No. Description

2 The Statement Category Field indicates the presence of Fields 10, 0a, and 
0b, as well as the Statement sub-type and Statement Context.  This field, in 
conjunction with Field 3 below, is also used to resolve certain ambiguous 
statement types as defined by Field 3 (see Figure 2-63 on page 93).  The 
following table shows the correspondence between the field and the data 
contained within it:

Number of 
Bits: 1 1 1 2 3

Sub-Fields: A B C D E

↑
Origina

l
SRN

↑
LHS

↑
RHS

↑
Sub-
type

↑
Statement

Context
Information

Sub-Field  Description  

A This indicates the presence of the Original SRN (Field 
10).

B This indicates the presence of the pointer to the LHS 
Expression Variables Cell (Field 0a).

C This indicates the presence of the pointer to the RHS 
Expression Variables Cell (Field 0b).

D This is used to resolve Statement Types 1, 2, 3, 4 and 10
into distinct HAL/S constructs.

E This is used to specify the following Statement Contexts:

Statement Context Information

0 Null

1 ELSE Statement

2 THEN Statement

4 ON ERROR Statement Reference 

3 The Statement Type Field is used to indicate the type of statement this 
cell represents.  This field is in the same position as the Statement Type 
Field in the Declare Statement Data Cell; therefore, this field can be used 
to determine the format of the Statement Data Cell (i.e., Declare or 



Field No. Description

Executable). 

Types:
Decimal Hex

0 0 Null

1 1 EXIT, REPEAT, GO TO

2 2 CALL

3 3 READ, READALL, WRITE

4 4 ASSIGNMENT

5 5 IF Condition

6 6 CLOSE

7 7 RETURN

8 8 END

9 9 SCHEDULE

10 A CANCEL, TERMINATE

11 B WAIT

12 C UPDATE PRIORITY

13 D SET, SIGNAL, RESET

14 E SEND ERROR

15 F ON ERROR

16 10 FILE

17 11 DO

18 12 DO WHILE, DO UNTIL

19 13 DO FOR

20 14 DO CASE

3
(Cont’d)

Decimal Hex

21 15 DECLARE (Used by Declare Statement Data Cell
22 16 BLOCK HEADER
23 17 EQUATE (Used by Declare Statement Data Cell)
24 18 TEMPORARY (Used by Declare Statement Data 

Cell)
25-30 19-1E Not Used



Field No. Description

31 1F %NAMEBIAS
32 20 %SVC
33 21 %NAMECOPY
34 22 %COPY
35 23 %SVCI
36 24 %NAMEADD

Figure 2-63 Statement Type 

Field No.  Description  

4 Number of label indexes.  One such index is provided for each label 
attached to the statement.  The index identifies the Symbol Index Table 
entry corresponding to the label.

5 Number of left-hand-side (LHS) halfwords.

6 Label indexes to corresponding symbol data.

7 LHS indexes to corresponding symbol data and/or sets of indexes which 
are keyed by a leading two byte negative value that identifies the number 
of following structure qualifiers and symbol indexes in a set.  An index 
exists for each HAL/S variable that is “modified” by the statement.  Thus, 
the variable can either be on the left-hand side of an assignment state-
ment or can be the assigned variable in a READ or CALL statement.  See
Figure 2-64 on page 94 for an example of LHS Indexes.



Figure 2-64 Left Hand Side (LHS) Indexes



Field No.  Description  

8-9 The relative memory address of the first and last emitted lines of code for this 
statement (see description for Field 1).  These two fields exist only if the 
ADDRS_FLAG in the Directory Root Cell is set.

10 This field is only present when the statement is part of INCLUDEd HAL/S 
source text.  The field contains 6 EBCDIC characters which are the original 
SRN of the statement in the INCLUDE file.

2.2.2.2.5.2.2 DECLARE Statement Data Cell

The Statement Data Cell for a DECLARE statement is indicated by a negative (two’s 
complement) SDF pointer in the Statement Index Table.  In addition, the Statement Type
Field of both the Executable and the Declare Statement Data Cells may be used to 
determine whether the Cell is a Declare or Executable Cell since they occupy the same 
location in both cells.  The Cell is of variable length and is of the following format:

Figure 2-65 DECLARE Statement Data Cell 

Field No. Description

1 Index to the HAL/S Block Index Table of the HAL/S Block in which the declare 
statement appeared.

2 The Flag Field indicates the presence of Fields 4, 5, and 6.The following table shows 
the correspondence between the flags and the fields.



Field No. Description

2
(Cont’d)

Sub-fields Description
A Indicates the presence of Field 4 (Expression Variables Cell Pointer)
B Indicates the presence of Field 5 (HALMAT Cell Pointer)
C Indicates the presence of Field 6 (Original SRN)

3 The Statement Type Field is used to indicate the type of statement this cell represents.
This field is in the same position as the Statement Type Field in the Executable 
Statement Data Cell; therefore, this field can be used to determine the format of the 
Statement Data Cell (i.e., Declare or Executable).

Types:

Decimal  Hex  
21 15 Declare Statement
23 17 Statement contains Equate
24 18 Temporary variable Declaration
25 19 Replace Statement
26 1A Structure definition

4 Points to an Expression Variables Cell listing NAME variables which are 
initialized in this statement.

5 Points to a HALMAT Cell if any HALMAT was generated for the statement and if 
HALMAT is included in the SDF.

6 The original SRN.  Present only if the statement was INCLUDEd.

2.2.2.2.5.3 Statement Extent Cell

The Statement Extent Cell (Figure 2-68 on page 99) allows the rapid location of the 
physical records containing statement information from a data set.  The Statement 
Extent Cell contains six characters for the first and last SRNs followed by the two byte 
include counts contained in each of the physical records of the Statement Index Table.  
As the statement numbers increase in value from one reference and physical record to the 
next, a table look-up can be performed to determine the appropriate Statement Index Table 
Record.  This table is present for all compilation units (see Figure 2-67 on page 98).



Figure 2-66 Statement Extent Cell Overview



Figure 2-67 Relationship of Statement Extent Cells and Statement Index Table



Figure 2-68 Statement Extent Cell



2.2.2.2.5.4 Procedure/Function Invocation Cell

As shown in Figure 2-69 on page 100, the Procedure/Function Invocation Cell is 
referenced by a pointer in an Expression Variables Cell (see Section 2.2.2.2.6, 
“Expression Variables Cell” on page 102) or in another Procedure/Function Invocation 
Cell.  The cell associates each formal parameter with a list of the variables, procedures, and 
functions involved in the expression which corresponds to the actual parameter of this partic-
ular invocation.

Figure 2-69 Procedure/Function Invocation Cell Overview



Figure 2-70 Procedure/Function Invocation Cell

The meanings of the fields of the Procedure/Function Invocation Cell are as follows:

Field No. Description

1 The number of bytes in the cell.

2 The number of formal parameters.  Also the number of pointers.

3 The number of parameters that are input parameters.

4 Index into the Symbol Index Table for the procedure or function name.

5 A fullword zero indicates the actual parameter is a literal value.  Otherwise, the 
interpretation of the Actual Parameter Pointer is determined by the value of the 
2-bit Tag field as follows:



Field No. Description

5
(Cont’d)

Tag

0 Pointer to a Variable Reference Cell (see Section 2.2.2.2.7, 
“Variable Reference Cell” on page 105.)  The actual parameter is
a single variable that is in a qualified structure or is subscripted.

1 A pointer to a Procedure/Function Invocation Cell.  The actual 
parameter is the result of a function invocation.

2 A pointer to an Expression Variables Cell (see Section 2.2.2.2.6, 
“Expression Variables Cell” on page 102).The actual parameter 
is a complex expression.

3 The actual parameter is a single simple variable.  The pointer 
value is an index into the Symbol Index Table.

6 Indexes into the Symbol Index Table for each formal parameter.  The 
parameters occur in the order of their appearance in the block header of 
the procedure or function.  The nth formal parameter corresponds to the 
nth Actual Parameter Pointer.  This field is only present for calls to 
internal blocks.

2.2.2.2.6 Expression Variables Cell

The Expression Variables Cell contains a list of references to unsubscripted variables 
followed by a list of pointers which refer to Procedure/Function Invocation Cells (see 
Section 2.2.2.2.5.4, “Procedure/Function Invocation Cell” on page 100) and to Variable 
Reference Cells (see Section 2.2.2.2.7, “Variable Reference Cell” on page 105) 
describing subscripted variables.  Each pointer has a 2-bit tag indicating what type of 
cell is being referenced.  As shown in Figure 2-71 on page 103, the Expression 
Variables Cell is used in a variety of contexts.  When referenced from a 
Procedure/Function Invocation Cell, it describes the expression passed as an actual 
parameter to the procedure or function.  When referenced from a Variable Reference 
Cell, it describes the expressions in the subscript list of a subscripted variable.  A 
Statement Data Cell may refer to two Expression Variables Cells (pointers in fields 0a, 0b).
Field 0a points to an Expression Variables Cell which describes all variables which occur 
in a left-hand-side context, that is, whose values might be changed by the statement.  
All other variables, including control variables, and any procedure or function calls, are 
said to occur in a right-hand-side context and are described in an Expression Variables 
Cell pointed to by field 0b.  When referred to from a Declare Statement Data Cell, an 
Expression Variables Cell contains the symbol index of each NAME variable or structure 
with NAME terminals that is initialized in the statement.



Figure 2-71 Expression Variables Cell Overview



Figure 2-72 Expression Variables Cell

The meaning of the fields of the Expression Variables Cell are as follows: 

Field No.  Description  

1 The number of bytes in the cell.

2 The number of symbol index halfwords (field 3).

3 Indexes to corresponding symbol data and/or sets of indexes which are 
keyed by a leading two byte negative integer whose absolute value is the 
number of following structure qualifiers and symbol indexes in the set.  See 
the explanation of the Variable Reference Cell, in field 4 of Section 2.2.2.2.7, 
“Variable Reference Cell” on page 105.



Field No.  Description  

4 The interpretation of the pointer is determined by the value of the 2-bit Tag 
Field as follows:

Tag  

0 A pointer to a Variable Reference Cell describing a subscripted variable 
(see Section 2.2.2.2.7, “Variable Reference Cell” on page 105)

1 A pointer to a Procedure/Function Invocation Cell (see Section
2.2.2.2.5.4, “Procedure/Function Invocation Cell” on page 100).

2 In the highly unlikely event that an Expression Variables Cell did not fit on 
a single SDF page, it would be split into two cells and the last pointer of the
first cell would have a Tag value of 2 and would point to the second cell.

3 A Tag value of 3 will only occur in the RHS Expression Variables Cell 
pointed to by field 0b of an Executable Statement Data Cell for a 
%NAMEADD or a %COPY statement.  In this case, the pointer is not a 
pointer, it is instead the value of the third argument of the macro.  When 
%COPY is called without specifying a halfword count, this field will be 
absent and the count is determined by the size of the source operand.

2.2.2.2.7 Variable Reference Cell

The Variable Reference Cell gives a complete description of a particular use of a variable. 
The cell occurs in a variety of contexts.  It can be referenced by a pointer in an 
Expression Variables Cell (see Figure 2-73 on page 106) corresponding to an expression 
involving the variable.  When it is referenced by a Name Terminal Initialization Cell (see
Figure 2-74 on page 107), it describes the variable initially pointed to by one or more copies of
the structure name terminal.  For external Equate labels, the Auxiliary Symbol Information 
Pointer (Field 0c) of the Symbol Data Cell (see Figure 2-75 on page 108), for the label points 
to a Variable Reference Cell which describes the HAL/S variable which is equated to the 
external label.  Finally, for non-structure NAME variables which are initialized, the Auxiliary 
Symbol Information Pointer of the Symbol Data Cell (see Figure 2-75 on page 108) for the 
NAME variable refers to a Variable Reference Cell describing the variable initially pointed to 
by the NAME variable.



Figure 2-73 Variable Reference Cell Overview (Expression Variables Cell)



Figure 2-74 Variable Reference Cell Overview (Name Terminal Initialization Cell)



Figure 2-75 Variable Reference Cell Overview (Symbol Data Cell)



Figure 2-76 Variable Reference Cell

The meaning of the fields of the Variable Reference Cell are as follows (see Figure 2-76 
on page 109):

Field No.  Description  

1 The number of bytes in the cell.

2 The number of symbol indexes (Field 4).  The flag bit indicates the presence 
of subscript descriptors.

3 A pointer to an Expression Variables Cell (see Section 2.2.2.2.6, “Expression 
Variables Cell” on page 102) which lists all the variables, procedures, and 
functions involved in the subscript expressions.  If all subscript values are 
known at compile time, this is indicated by a null pointer.

4 Indexes into the Symbol Index Table which contains the pointers to the Sym-
bol Data Cells.  In the case of a simple variable there would be a single Symbol 
Index.  The case of a structure variable is best illustrated by an example.



Reference to a structure node X.B.C.E.F.Z:

Figure 2-77 Structure Reference Diagram



This reference would generate three symbol indexes:

                    

Field No.  Description  

5 This field contains halfwords of subscript type information (Fields 5A, 5B, 
5C, and 5D) and of the literal subscript value (Field 5E).

The first halfword is the subscript type information.  It is discussed below:

Bits
:

0 5 6 7 8 11 12 15

Element
Type

Subscript
Type (α)

Expression
Type

Subscript
Continuation
Flag (β)

5A 5B 5C 5D

Sub-Field
No.  

Description

5A The Element Type sub-field describes the type of item being subscripted.  The
valid types are:

Type Description
0 = 
1 = 
2 = 

Component (Vector/Matrix)
Array
Structure

5B The Subscript Type (α) describes the type of subscript operation being 
performed.  The valid types are:
Type Description

0 = 

1 = 

2 =

3 = 

* operation

Index Value

“TO” partition operation 

“AT” partition operation

5C The Expression Type describes the data involved in the actual subscript.  
The different types are represented by combinations of the bits described 



below:

Sub-Field
No.  

Description

5C
(Cont’d)

Bits
:

8 9 10 11

Number
Specified
in
Subscript

+ (plus)
Subscript
Expression

- (minus)
Subscript
Expression

Literal
Value
Specified

The valid expression type values are:

Type Description
0 = Variable Expression Specified
1 = Literal Value Specified
2 = Number + Variable Expression Specified
3 = Number + Literal Specified
4 = Number - Variable Expression Specified
5 = Number - Literal Specified
6 = invalid
7 = invalid
8 = Only Number specified in Subscript

When the Literal Value bit is set, the Subscript Type halfword is followed by an 
additional halfword which contains the Literal Value specified in the 
subscript (see Field 5E below).

5D The Subscript Continuation Flag (β) indicates whether the next two Subscript 
Descriptor halfwords are a continuation of the current set (i.e., the second part 
of a “TO”/“AT” subscript partition).
Type Description

0 = Subscript partition is not continued

1 = Subscript partition is continued in the next two halfwords of the 
Subscript Descriptors.

5E

This field contains the signed 16-bit Literal subscript value specified in the HAL/S



program.

2.2.2.2.8 Function Tables

As shown in Figure 2-78 on page 114, the Function Index Table (see Figure 2-79 on 
page 115) is pointed to by Field 52 of the Directory Root Cell.  The pointer field within the 
Function Index Table points to the Function XREF Data Cell (see Figure 2-80 on page 117).  
When necessary, Field 4 of the Function XREF Data Cell points to the Function XREF 
Extension Cell (see Figure 2-81 on page 117).  The Function Tables are comprised of the 
Function Index Table and the Function XREF Data Cell.  These cells provide a means of 
accessing cross-reference information for Built-In Functions and explicitly invoked HAL/S 
Shaping Functions.



Figure 2-78 Function Data Overview

2.2.2.2.8.1 Function Index Tables

The Function Index Table (Figure 2-79 on page 115) consists of a four byte function-type field 
followed by an SDF pointer which points to the Function XREF Data Cell (see Figure 2-
80 on page 117 and Figure 2-81 on pa 2-117).   This table contains an entry for every 
function used in the compilation unit.



Figure 2-79 Function Index Table

The Function types of the Built-in Functions are listed below:

Type Function Description
1 ABS Absolute Value
2 COS Cosine
3 DET Determinant
4 DIV Integer Division
5 EXP ex

6 LOG Natural Log (Log base e)
7 MAX Maximum Value in array
8 MIN Minimum Value in array
9 MOD Modulus
10 ODD Odd Value (1, 3, 5, …)
11 SHL Bit Shift Left
12 SHR Bit Shift Right
13 SIN Sine
14 SUM Sum of items in array
15 TAN Tangent
16 XOR Exclusive OR
17 COSH Hyperbolic Cosine
18 DATE Current Date
19 PRIO Process Priority
20 PROD Product of items in array
21 SIGN Sign of Value (+1 for non-negative, -1 for negative)
22 SINH Hyperbolic Sine
23 SIZE Length of array or structure
24 SQRT Square Root
25 TANH Hyperbolic Tangent
26 TRIM Remove Leading and Trailing Blanks in String
27 UNIT Unit Vector with same direction
28 ABVAL Length of a vector



29 FLOOR Largest Integer <= X
30 INDEX Index in Character String
31 LJUST Left Justify Character String
32 RJUST Right Justify Character String
33 ROUND Round to nearest Integer
34 TRACE Sum of Matrix Diagonal
35 ARCCOS Inverse Cosine
36 ARCSIN Inverse Sine
37 ARCTAN Inverse Tangent
38 ERRGRP Group Number of Last Error
39 ERNUM Number of Last Error
40 LENGTH Length of Character String
41 MIDVAL Middle Value
42 RANDOM Random Number between zero and one
43 SIGNUM Sign of Value (+1 for positive, 0 for zero, -1 for negative)
44 ARCCOSH Inverse Hyperbolic Cosine
45 ARCSINH Inverse Hyperbolic Sine
46 ARCTANH Inverse Hyperbolic Tangent
47 ARCTAN2 Inverse Hyperbolic Tangent
48 CEILING Smallest Integer >= X
49 INVERSE Matrix Inverse
50 NEXTIME Task Scheduler
51 RANDOMG Random Number between zero and one (Gaussian Distribution)
52 RUNTIME Time since module began running
53 TRUNCATE Truncate to Integer Value
54 CLOCKTIME Elapsed Time Since Midnight
55 REMAINDER Integer Division Remainder
56 TRANSPOSE Transpose Matrix along Major Diagonal
For explicitly invoked Shaping Functions, the Function Types are as follows:

Type Function
60 BIT
61 SUBBIT
62 INTEGER
63 SCALAR
64 VECTOR
65 MATRIX
66 CHARACTER

2.2.2.2.8.2 Function XREF Data Cell



Each Function XREF Data Cell contains the number of XREF entries and a list of the 
statements in which the function is invoked.

Figure 2-80 Function XREF Data Cell

Figure 2-81 Function XREF Extension Cell

The Function XREF Data Cell fields are described below:

Field No. Description

1 This field contains the total number of cross-reference entries stored in the 
cell.

2 This field contains the statement cross-reference information in the lower 13
bits of the two-byte field.  This information is in the form of indexes into the 



Statement Index Table.  The upper three flag bits denote the usage of the 
function and are the same as those contained in the Symbol Data Cell.  For 
convenience, these flags are also provided in Figure 2-81 on page 117.

3 If all of the statement references cannot be contained in a single page, the data is 
extended to another page by means of an SDF pointer.  When this is the case, this
field will be either two or four bytes long (so that Field 4 can start on a full 
word boundary) and be filled with hex’FF'.

4 This field contains an SDF pointer which points to the Function XREF Extension 
Cell (see Figure 2-81Figure 2-80on page 117) which contains the remainder of the 
function cross-reference information.

2.2.2.2.9 HALMAT Data Structures

The HALMAT Data Structures consist of two basic classes of cells and tables:  the 
HALMAT Cells and the Literal Tables which are used by the HALMAT Cells.  Both classes of 
data structures are discussed in more detail in the following sections.

NOTE:  The HAL/S-FC compiler feature that results in the creation of HALMAT Data 
Structures is not used and there are no plans for using it.  This feature should be 
considered “unverified “ and should not be used in a production environment.  The 
description of HALMAT Data Structures contained in the subsequent sections may not 
accurately reflect what the HAL/S-FC compiler will produce if this feature were to be 
used.

2.2.2.2.9.1 HALMAT Cells

The HALMAT Cells consist of the HALMAT Cell (see Figure 2-83 on page 120) and the 
HALMAT Extension Cell (see Figure 2-84 on page 120).  These cells contain a modified
version of the HALMAT Intermediate Language Data produced by Phase 1 of the HAL/S
Compiler for a single HAL/S statement.  In the SDF version of the HALMAT Cells, the Phase 1
Compiler symbol numbers have been changed to Indexes into the Symbol Index Table, 
the Virtual Accumulator (VAC) pointers to SDF offsets into the HALMAT Cells, and the 
indexes into the Phase 1 Compiler Literal Table to indexes into the SDF Literal Table 
(see Section 2.2.2.2.9.2, “Literal Data” on page 121).  It should be noted that the 
HALMAT SMRK (HALMAT Statement Marker) Operators are removed before the HALMAT 
is inserted into the SDF.



Figure 2-82 HALMAT Data Cells Overview



Figure 2-83 HALMAT Cell

Figure 2-84 HALMAT Extension Cell



The meaning of the fields in the HALMAT and HALMAT Extension Cells is as follows: 

Field No.  Description  

1 This field contains the number of words of HALMAT generated for the 
statement.

2 This field contains the fullword offset to the last HALMAT operator of the cell.

3 This field contains the HALMAT operator.  

4 This field contains the HALMAT Operand.

5 This is a pad field of two or four bytes used to force fullword alignment.  When 
this field contains all X’FF’, it indicates the presence of the HALMAT 
Extension Cell Pointer (Field 6 below).

6 This field contains the Pointer to a HALMAT Extension Cell (see Figure 2-84 on 
page 120).  It and Field 5 above are present only when all of the HALMAT 
information for a particular statement will not fit into the current SDF page.

2.2.2.2.9.2 Literal Data

The Phase 1 literal table is rearranged and included in the SDF.  The SDF literal table 
differs from the compiler’s table in that the three fields (i.e., LIT1, LIT2, and LIT3) are 
contiguous.  As shown in Figure 2-85 on page 122, the Literal Extent Table (see Figure 
2-86 on page 123) is pointed to by Field 50 of the Directory Root Cell; the only field of 
this table points to the Literal Table (see Figure 2-87 on page 124).  In addition, as is 
indicated in the overview, Field 2B of the Character Literal Cell points to a string entry in
the Literal Character Table; furthermore, Field 2 of the Template Subscript Literal Cell 
contains the Symbol Number of the Template Symbol.



Figure 2-85 Literal Data Overview

2.2.2.2.9.2.1 Literal Extent Table

The Literal Extent Table contains pointers to the pages in the SDF member which are 
occupied by the Literal Table.  The Literal Extent Table is pointed to by Field 50 of the 
Directory Root Cell.  This table is present only when HALMAT is contained in the SDF 
member.



Figure 2-86 Literal Extent Table

The Literal Extent Table Field is described below:

Field No. Description

1 SDF Pointer to a part of the Literal Table within an SDF page.

2.2.2.2.9.2.2 Literal Tables

The Literal Table consists of four types of table entries (Character, Arithmetic, Bit, and 
Template) and a Literal Character Array.  The Literal Table is essentially a reformatted 
version of the Literal Table produced by Phase 1 of the HAL/S Compiler.  The SDF 
Literal Table differs from the compiler’s table in that the three fields, LIT1, LIT2, and 
LIT3, are contiguous.  The Literal Table and Literal Character Array are present only 
when HALMAT is contained in the SDF.  The formats of arithmetic and bit literals are 
the same as those of the compiler’s literal table.



  

Figure 2-87 Literal Table

The fields of the Literal Table are described below:

Field No. Description

1 The LIT1 field contains the information as to the type of cell that is being
represented.  (Four byte field of which only the last byte is used.)

2 The LIT2 field generally contains information about the literal data item 
contained in the cell.  In the case of a character literal, the LIT2 field con-
tains both a length and a pointer into the array LIT_CHAR that has been copied 
into the SDF from Phase 1.  (Four byte field.)

3 The LIT3 field may or may not be used in the different cells, but may either contain 
data (arithmetic) or length of the data (bit).  (Four byte field.)

2.2.2.2.9.2.2.1 Character Literal

The Character Literal Cell contains the length of the literal character string minus one 
and an offset into the Literal Character Array containing the string.  The Literal Character 
Array is declared as BIT(8).



Figure 2-88 Character Literal Cell

The format of the Character Literal Cell is the same as that of the HAL/S Compiler.  The 
Character Literal Cell fields are described below:

Field No. Description

1 LIT1 Field

1A Unused pad area

1B This field contains the information as to the type of cell that is being 
represented. (One byte field.)

2 LIT2 Field

2A This is the length of the literal string minus one (i.e., XPL format where 
X’00’=1 character and X’FF’=256). (One byte field.)

2B This field contains an offset into the array LIT_CHAR that has been copied
into the SDF from Phase 1. (Three byte field.)

3 LIT3 Field

The LIT3 field is not used in the Character Literal Cell. (Four byte field.)

2.2.2.2.9.2.2.2 Arithmetic Literal

The Arithmetic Literal Cell contains either Single or Double Precision Numeric Literals in 
either Fixed or Floating Point format.  If needed, the LIT3 field is used as a continuation 
of the LIT2 field.



Figure 2-89 Arithmetic Literal Cell

The format of the Arithmetic Literal Cell is the same as that of the HAL/S Compiler.  The 
Arithmetic Literal Cell fields are described below:

Field No. Description

1 LIT1 Field

1A Unused pad area

1B This field contains the information as to the type of cell that is being 
represented. (One byte field.)

2 LIT2 Field

This is the data.  If the data will fit into four bytes, then the data is contained
solely within the LIT2 field and the LIT3 field is unused (i.e., it is single 
precision).  If it requires more than four bytes of storage, then the LIT3 field 
is commandeered and used to store the surplus data (i.e., it is double 
precision). (Four byte field.)

3 LIT3 Field

The LIT3 field is used as an extension of the LIT2 field for double precision 
data only and is not used when single precision data is stored. (Four byte field.)

2.2.2.2.9.2.2.3 Bit Literal

The Bit Literal Cell contains up to 32 bits of information along with the appropriate 
length information.  The LIT3 field is used to convey this length information.



Figure 2-90 Bit Literal Cell

The format of the Bit Literal Cell is the same as that of the HAL/S Compiler.  The Bit Literal
Cell fields are described below:

Field No. Description

1 LIT1 Field

1A Unused pad area

1B This field contains the information as to the type of cell that is being 
represented. (One byte field.)

2 LIT2 Field

This field contains up to 32 bits of data that may be in a pattern for 
repetition.  The length of this bit field is contained in LIT3. (Four byte field.)

3 LIT3 Field

The length field specifies the bit count as determined by the source input.  It
is always a multiple of four for hexadecimal.  For decimal literals only, the 
length represents the number of significant bits in the literal value.  For all 
others, the length reflects the number of characters in the string specifying 
the literal, including leading zeros.

2.2.2.2.9.2.2.4 Template Subscript Literal Cell

The Template Subscript Literal Cell is generated by the HAL/S Compiler Optimizer during the 
processing of structure subscripts.  This allows the computation of the product of the 
template width and the subscript  index to be eligible as a common sub-expression.



Figure 2-91 Template Subscript Literal Cell

The format of the Template Subscript Literal Cell is the same as that of the HAL/S 
Compiler.  The Template Subscript Literal Cell fields are described below: 

Field No. Description

1 LIT1 Field

1A Unused pad area

1B This field contains the information as to the type of cell that is being 
represented. (One byte field.)

2 LIT2 Field

This field contains the Symbol Number (Index into the Symbol Index Table)
of the Template.

3 LIT3 Field

The LIT3 field is not used.(Four byte field.)



2.3 OBJECT CODE

The object program output appears in both the OUTPUT3 and OUTPUT4 data sets.  
Symbol table data is located at the beginning of the object deck.  The format of the 
various records which will be found in the object programs is as follows:

Figure 2-92 ESD Output Record (Card Image)



Figure 2-93 ESD Data Item



Figure 2-94 Text Output Record (Card Image)



Figure 2-95 RLD Output Record (Card Image)



Figure 2-96 END Output Record - Type I (Card Image) 

Figure 2-97 END Output Record - Type 2 (Card Image)



Figure 2-98 IDR Data in a Object Module END Record

Figure 2-99 TESTRAN (SYM) Output Record - (Card Image) 



Figure 2-100 SYM Variable Field Data

The variable field (columns 17-72) contains up to 56 bytes of TESTRAN text.  The items 
making the text are packed together.  However, no item may extend across a record 
boundary.  Data other than control section data and storage protect data is optional.  
Names are not allowed on store protect data.  Store protect data is only valid within a 
CSECT.

For a COMMON section the assembler will output only one storage protect item--a storage 
protect off containing a zero address.  For COMMON sections with the same name 
(including a blank name) the Linkage Editor will output only the first set of TESTRAN 
records (i.e., the set of records attached to that COMMON section which appears first in 
the input stream).

The formats of a text card and an individual text item are shown in the two figures 
above.  The contents of the fields within an individual entry are as follow:

1.Organization (1 byte)

Bit 0:

0 = non-data type 

1 = data type

Bits 1-3 (if non-data type): 
   000 =space
   001 = control section
   010 = dummy control section 
   011 =common 
   100 = instruction 



101 = CCW

Bit 1 (if data type):

0 = no multiplicity

1 = multiplicity (indicates presence of M field)

Bit 2 (if data type):

0 = Always

Bit 3 (if data type):

0 = no scaling

1 = scaling (indicates presence of S field)

Bit 4:

0 = name present

1 = name not present

Bits 5-7:

Length of name minus one

2.Address (3 bytes) - displacement from base of control section 

3.Symbol Name (0-8 bytes) - symbolic name of particular item

Note:  The following fields are only present for data-type items.

4.Data Type (1 byte) - contents in hexadecimal

00 = character
04 = hexadecimal 
08 = binary 
0C = unused
10 = fixed point, full 
14 = fixed point, half
18 = floating point, short 
1C = floating point, long 
20 = A-type or Z-type data 
24 = Y-type data 
80 = store protect on 



84 = store protect off
5.Length is not present for store protect:  (2 bytes for character, hexadecimal, or binary
    items; 1 byte for other types) - length of data item minus 1

6.Multiplicity - M field (3 bytes) - equals 1 if not present

7.Scale - signed integer - S field (2 bytes) - present only for F, H, E, D, P type data, and 
only if scale is non-zero.

AN EXAMPLE OF THE USE OF SYM CARDS BY HAL/S-FC

Assume:

A. Compilation Unit Name is COMP_UNIT, a COMSUB 
B. Version number is 20
C. Stack size is 100
D. References are made to COMSUBS EXT1 of Version 10, and EXT2 of Version

        100

Code SYM card information would be:

NAME TYPE ADDRESS COMMENTARY

#CCOMPUN CSECT 0 Defines CSECT

STACK DSECT 0  

ARG1 VAR 0 Variables defined in stack

ARG2 VAR 8

STACKEND VAR 100 Address of 100 is stack size.

HAL/S-FC DSECT 20 Invalid label, HAL/S-FC used to indicate 
beginning of version data.  Address of 
HAL/S-FC is the version of COMP_UNIT.

EXT1 DSECT 10 Version of EXT1

EXT2 DSECT 100 Version of EXT2

HALS/END DSECT

#CCOMPUN CSECT 0 Define statement labels

ST#1 LABEL 0



ST#2 LABEL 34

ST#N LABEL 2000

#DCOMPUN CSECT 2010

SPOFF Turn off storage protect

A VAR 2010

B VAR 2012

The information between HAL/S-FC DSECTS and the HALS/END can be generated only by
the compiler; therefore, no template checking of assembly routines can be 
accomplished.

The HAL/S-FC compiler must also create a Process Directory Entry (PDE) for each 
program and for each task.  These will be grouped by the compiler and emitted under a 
single CSECT name (see Section 4.0, “CSECT/MEMBER NAMING CONVENTIONS” on 
page 1) for each program compilation.

Each PDE consists of six halfwords as described below:

 HALFWORD 1 - binary zeroes.  This field is used by the FCOS to store the Process 
Event.  This field must be on a fullword boundary.

 HALF WORD 2 - binary zeroes.  FCOS will use this field (PCT field) to point to the 
Process Control Table.

 HALFWORD 3 and 4 - Z-CON pointing to the program or task entry point.

 HALFWORD 5 - stack address or stack size.  If the stack is preallocated by the 
linkage editor, the address is stored here and bit 0 of halfword 6 is set to 1.If the stack is 
not preallocated by the linkage editor then FCOS is to allocate it at run time.  The stack size
is stored here and bit 0 of halfword 6 is set to zero.

 HALFWORD 6 - linkage editor and FCOS flags.  Bit 0 is set to 1 if halfword 5 contains 
the stack address.  Otherwise, it is set to zero.  The low order four bits of halfword 6 
contain the FCOS major function identification (MFID).  The MFID can be overridden 
in a parm field option to any value which is  ≤ 15.The default MFIDs are based on the 
first character of the compilation unit name as follows:

First Character Major Function MFID
A System Control 1
D User Interface 2
G GNC 3
P PAYLOAD 5



R RMS 5
S SM 5
V VU 6

any other letter not defined 0



‘This page intentionally left blank.’



3.0 AP-101 EXECUTION ENVIRONMENT

The following sections describe the AP-101 execution environment as established by 
FCOS and HAL/S-FC compiler conventions and design.  They discuss the use of HAL/S stacks
and the form of the procedure and function CALLs.  Additional information in regard to 
memory and stack content can be found in the HAL/FCOS ICD.

3.1 AP-101 REGISTER USE

The following table describes the use of the AP-101 registers by HAL/S-FC compiler 
generated code:

Reg.#  Pointer Name  Description  

0 BT Stack register.  This register points to the caller’s register 
save area in the run time stack.  In addition, all formal 
parameters, temporaries, and AUTOMATIC variables in 
REENTRANT procedures are based on this register.  The lower 
half contains the size of the current stack frame.

1 BP Local data (#D) addressing register.  This register is used to 
address all of the declared variables and literals within a 
compilation unit.

2 Work addressing register.  This register is used to access 
compool (#P) data, pass address parameters, dereference 
NAME variables, and set up any other dynamic addressing.

3 BL Compool (#P) or local data (#D) addressing register.  This register 
is used in SRS instructions only to address a certain subset of 
the local data in a block (e.g. internal procedures).

When the DATA_REMOTE directive is in effect, register 2 can 
only be loaded with non-local data addresses (e.g. Compool) and 
register 3 can only be loaded with local data addresses (i.e., #D).

4 RRET Linkage register.  This register records the return address for 
all subroutine linkages.  It may also be used for an integer 
accumulator.

5 - 7 Used for integer accumulators, index registers, and parameter 
passage where applicable.

F0 - F5 Used for floating point accumulators and parameters.

F6 - F7 Used for floating point accumulators only.



3.2 HAL/S STACK

The HAL/S stack provides temporary storage for work areas, saving of registers, call 
and return linkages, passed parameters, and process-specific information for blocks in a 
HAL/S process execution.  The HAL/S stack is so designed that only the storage actually 
required during the execution of a HAL/S block is present and used.  A stack CSECT is 
created by the AP101/S Linkage Editor process for every program and task in the flight 
software load module.  How stacks are used in the procedure and function linking pro-
cesses are described in the HAL/S-FC Compiler System Specification.

The format of a stack space element for an executing HAL/S block is shown in Figure 3-101 on 
page 3.The element is positioned in the stack space in accordance with the hierarchical scope 
relationship of its block with other blocks in the hierarchy.  The meanings of the fields of the 
element are as follows:



Figure 3-101 Stack Elements



Preliminary                            CR14217 PAGE 160 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
Field No. Flag Name Meaning

1 (First Byte) Block ID Block ID is the identification number (one 
byte) of the HAL/S block, and is generated 
as follows:

ID Block Type

n Program. “n” is the first number 
available after Include Blocks have 
been assigned.

0 COMSUBS

>n Nested procedures, Tasks, and 
library routines.

1 (Bytes 2-4) Current Code Base Current Code Base is the entry point address of 
the called procedure or function.  It and the 
ID are loaded by the Procedure Caller from the 
linkage data supplied by the invoking 
procedure.

2 (Bytes 1-2) Flag Field When a HAL/S process enters an 
EXCLUSIVE block, and successfully gains 
control of the block, the high order bit of the 
Flag Field is set to “1.” This bit is used during 
process termination to free the EXCLUSIVE 
resources which a terminating process may 
be holding.  The remaining 15 bits are zero 
or contain a lock group number if it is an 
update block.

2 (Bytes 3-4) ISN Internal Statement Number of the statement 
referenced last by the Statement Processor.

3 Temporary
Doubleword

This field is used as a workspace by some 
compiler generated subroutines.

4 Error Link Linkage for ON ERROR processing.

5 Save Registers

6 Procedure
Temporary and Reentrant
Local Data

Provides storage space for temporary data.

4



Preliminary                            CR14217 PAGE 160 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
3.3 STACK AND LOCAL BLOCK DATA ORGANIZATION

The organization of a HAL/S Stack Block is shown in Figure 3-102 on page 5.The 
HAL/S Stack Cell contains a save area for the fixed and floating point registers, cells for 
various pointers, an area for temporary variables, space for user declared variables that
are not to be assigned to static storage, and entries for the Error Vector.  The active 
stack space (cell) is pointed to by the pointer BT in register R0.The back link to the 
previous stack, OLD BT, is established automatically when a new procedure is entered 
via the SCAL instruction.  A pointer, NEW BL, is established for any procedure with a 
local block data area.  If one is not present (e.g. in the case of a HAL/S library routine), 
the pointer is set to zero. R3 can be used as an additional base register if it is not being 
used for local data.

Old BT =
          Previous BT, pointer to last stack frame, dynamic stack link (Back Link).This
          value is zero for the process stack frame (top level)
Old BL =
          Previous R3 (information at time of call)
New BL = 
          Current R3, pointer to local data area

Figure 3-102 Stack Organization Cell

5



Preliminary                            CR14217 PAGE 160 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
The Local Block Data (see Figure 3-103 on page 6) exists to provide information for the 
block about the Block ID, error conditions, location of the error vector, Lock ID, and 
EXCLUSIVE and UPDATE SVCs.  The Block ID of a hierarchical block is used by the 
HAL/S code and the Simulation processes to establish appropriate references in the 
hierarchical block.  All other information in the Local Block Data is primarily used by the 
executing code and FCOS.

Figure 3-103 Local Block Data

The meaning of the fields of the Local Block Data area are as follows:

Field No.

1 Block ID The Block ID identifies uniquely the HAL/S Block in a unit of 
compilation (see Section 3.2, “HAL/S Stack” on page 2).  It 
consists of a Block Number and a Compilation Unit Number.

2 XU EXCLUSIVE/UPDATE Block Flag.(1-Bit) Set to one if block is 
either UPDATE block or an EXCLUSIVE one.

ONERRS (6-Bits) The number of discrete errors for which an ON ERROR 
statement exists in the block.

ERRDISP (9-Bits) The displacement in halfwords from the stack register to 
the error vector.

3 TYP (1-Bit) The bit will be set to one if the data variables are to be read 
only.  It will be set to zero if the data variables are to be written.  
If this is a reserve/release supervisor call for an EXCLUSIVE 
procedure or function, the TYP field will be set to zero.

RESERVE
SVC#

(8-Bits) SVC number for the release supervisor call which is: 
15 for a code block
16 for a data block.

4 RELEASE (8-Bits) SVC number for the release supervisor call which is:
17 for a code block 

6



Preliminary                            CR14217 PAGE 160 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
SVC# 18 for a data area.

5 LOCK ID (15-Bits) An identifier indicating which code block or data areas are
being used.  The identifier for a code block is the address of the 
EXCLUSIVE DATA CSECT generated for the requested 
procedure/function.

The identifier for a data area is a bit pattern indicating which 
data areas are to be reserved or released.  The least signifi-
cant bit corresponds to lock group one.  If the master lock was 
specified the bit pattern will be all ones.

The Error Vector (see Figure 3-104 on page 8) exists for all procedures (PROGRAMs 
and TASKs)  which contain ON ERROR type statements.  The location of the Error Vector
is determined by a displacement, ERRDISP in the Local Block Data member, off the pointer 
BT, register R0.

3.4 PROCEDURE AND FUNCTION CALLS

The process of calling internal procedures consists of parameter passing followed by a 
SCAL.  Functions are treated similarly.  The form for an external call is identical to an 
internal call up to the SCAL instruction.  External procedures must be called via the long
indirect mode.  This is required because of the possibility of a bank switch in reaching 
an external procedure.

SCAL@# 4, #Z Subname (7) Note:  Index must not be zero.

7



Preliminary                            CR14217 PAGE 160 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

Figure 3-104 Error Vector

8



Preliminary                            CR14217 PAGE 160 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
4.0 CSECT/MEMBER NAMING CONVENTIONS

The following sections define the HAL/S-FC CSECT naming conventions and indicate 
how these names are derived.

I. Name notation → CCNNNNNN

A. Code → CC

 1st – alphabetic or national
 2nd – alphabetic, national, or numeric

B. HAL/S Compilation Unit name → NNNNNN

 Underscores removed
 6 characters

 Truncated or padded with blanks

II. CC for CSECT Type

A. CODE ($ = process entry)

1.Program $0NNNNNN

2.Task $cNNNNNN where c = (1-F) for a limit of 15
    tasks

3.COMSUB #CNNNNNN

4.Internal Procedure anNNNNNN where a = (A-M) and n = (0-9)
     for a limit of 130 procedures

5.Library Routine aaNNNNNN where a = (A-Z)

B. DATA

1.Stack @cNNNNNN where c = (0-9, A-Z)

2.DECLARE data #DNNNNNN

3.COMPOOL data #PNNNNNN

1



Preliminary                            CR14217 PAGE 163 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
C. SPECIAL

1.ZCON to COMSUB or REMOTE data #ZNNNNNN
2.ZCON for Library Routine #QNNNNNN
3.Bank zero #0NNNNNN
4.Process Directory Entry (PDE) #ENNNNNN
5.Library data for Library Routine #LNNNNNN
6.EXCLUSIVE data #XNNNNNN

III. CC for other member types

A. Simulation Data File  ##NNNNNN
B. TEMPLATE              @@NNNNNN

IV. Placement of CSECT types

A. CODE ($0, $1, A1, AA) → Sectors 2 and greater

B. DATA (@0, #D, #P, #0, #E, #L, #X)

 Sectors 0 and 1
 REMOTE compool data (#P) → any sector
 REMOTE data (#D with DATA_REMOTE) → sector 7

C. ZCON (#Z, #Q) → first 2K of Sector 0 (protected)

2



Preliminary                            CR14217 PAGE 163 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
APPENDIX A EXAMPLE PROGRAM AND SDF DATA 
STRUCTURES

Appendix A contains an example HAL/S Program, the SDF generated by this HAL/S Program, 
and structure diagrams illustrating some of the cell relationships for the HAL/S Program.

A.1 EXAMPLE PROGRAM

The following source program was compiled with the HAL/S-FC Compiler using the 
options:

TBD, TBL, TL, T=TEST TITLE

Some of the SDF data structures as well as a “marked-up” SDF member corresponding 
to this program are also included.  This information illustrates the interaction between the 
different SDF cells.

PROG1: PROGRAM; 000100AA
000200AA

  DECLARE A INTEGER; 000300AA
  DECLARE B INTEGER; 000400AA
  DECLARE C ARRAY (5, 5, 5); 000500AA

DECLARE E1 SCALAR INITIAL (2.718); 000600AA
DECLARE K ARRAY (2,3); 000700AA
DECLARE PI CONSTA (22/7); 000800AA
DECLARE STR CHARAC (15) INITIAL 000900AA

  (‘INITIAL STRING’); 001000AA
DECLARE SET_STRING 
sSSET_STRING

CHARACTER (10); 001100AA
DECLARE TWOPI CONSTANT (2 PI); 001200AA
DECLARE PI2 SCALAR; 001300AA
DECLARE M INTEGER; 001400AA

001500
STRUCTURE T: 001600AA
  1  D, 001700AA
     2  E SCALAR, 001800AA

2  NE NAME SCALAR, 001900AA
1  F SCALAR; 002000AA

002100AA
DECLARE Q T-STRUCTURE INITIAL 002200AA

(1,NAME(K$(2,1)),2); 002300AA
002400AA

STRUCTURE S: 002500AA
1  G, 002600AA

2  H T-STRUCTURE, 002700AA
2  I INTEGER, 002800AA

1  J NAME INTEGER; 0029OOAA
003000AA

DECLARE R S-STRUCTURE(5) INITIAL 003100AA
  (5#(1,NAME(C$(1,2,3)),2,3,NAME(A))); 003200AA

1



Preliminary                            CR14217 PAGE 163 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
003300AA
003400AA

F1: FUNCTION (X, Y) INTEGER; 003500AA
003600AA

DECLARE X INTEGER;  003700AA
DECLARE Y INTEGER; 003800AA
DECLARE W INTEGER; 003900AA

004000AA
W = X + Y; 004100AA

004200AA
RETURN W; 004300AA

004400AA
CLOSE F1; 004500AA

004600AA
004700AA

F2: FUNCTION (Z) INTEGER; 004800AA
004900AA

DECLARE Z INTEGER; 005000AA
005100AA

RETURN Z; 005200AA
005300AA

CLOSE F2; 005400AA
005500AA
005600AA

A, B = 1; 005700AA
005800AA

SET-STRING = ‘SET STRING’; 005900AA
006000AA

M = F1 (5 + 4, A + B) ; 006100AA
006200AA

M = F2 (M + 3) ; 006300AA
006400AA

  A, C$(A + B, B - Q.D.E +1, 3) = 006500AA
R.G.H.D.E$(3;) + F1(F2 (Q.F), 4)- Q.D.E **006600AA

006700AA
CLOSE PROG1; 006800AA

A.2 STRUCTURE DIAGRAMS

The following SDF structure diagrams illustrate some of the more interesting SDF cell 
relationships.  In these example diagrams, the indexes into the Symbol Index Table 
are indicated by the convention ‘I(variable name)’.The numbers to the left of the cells 
correspond to the field numbers described for each in the appropriate section of this docu-
ment.  The SDF pointers are represented by arrows and any null pointers are set to zero.

A.2.1 NAME TERMINAL INITIALIZATION CELL

In the example program presented in Appendix A.1, “Example Program” on page A-1, on 
Statement Reference Number 003100, the variable R is an initialized structure 
containing NAME terminals.  Thus, the Auxiliary Symbol Information Pointer (ASIP, 
Field 0c) of the Symbol Data Cell points to the following cells:

2



Preliminary                            CR14217 PAGE 163 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

 

3



Preliminary                            CR14217 PAGE 168 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
A.2.2 EXPRESSION VARIABLES CELL

Statement 006500 in the example program (Appendix A.1, “Example Program” on page 
A-1) contains a subscripted assignment in the LHS context; therefore both the LHS 
Statement Variables (field 0a) and the RHS Statement Variables (field 0b) of the 
Statement Data Cell contain pointers to Expression Variables Cells which describe the 
variables.  These data structures are described below:

 

A-4



Preliminary                            CR14217 PAGE 168 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0

A-5





Preliminary                            CR14217 PAGE 168 OF 202                            USA001556
HAL/S-FC / SDL ICD Baseline

32.0/17.0
APPENDIX B CHANGE HISTORY

The HAL-FC/SDL ICD has been revised and issued on the following dates:

Revision Date Sections Changed

R6 December 16, 1975

R7 May 29, 1981

R8 December 16, 1991 Total Reprint

R9 August 31, 1992

R10 April 14, 1994

R11 January 16, 1995 Total Reprint

R12 September 8, 1997 Total Reprint

This is the last page of this document.

A-1


