
HAL/S-360 Compiler System

Specification

4 February 1977

IR-60-5

Approved:

Daniel Lickly
HAL La guage/Compiler Dept.

Head

Approved: - \

Dr. Fred H. Martin
Shuttle Program Manager

Prepared by the staff of Intermetrics, Inc.

Transcript by V.L. Cripps.

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

UPDATE SHEET

Enclosed with each update package you receive is a new
update sheet listing the new Version number, the affected
pages, and the date of the update.

As you receive each update, replace the old update sheet
with the new one. It is important that you refer to the
most recent Version number on the update sheet whenever you
correspond with Intermetrics concerning this document.

VERSION AFFECTED MATERIAL DATE

IR-60-5 The following pages have been 2/4/77
updated or added:

1) Title Page/Foreword
2) Table of Contents Page iii/iv
3) Page 1-1/1-2
4) Page 1-3/blank page
5) Page 2-3/2-4
6) Page 2-19/2-20
7) Pages 2-23 thru 2-48
8) Pages 2-53 thru 2-56
9) Pages 2-59 thru 2-64

10) Page 2-67/2-68
11) Pages 2-71 thru 2-89
12) Pages 3-1 thru 3-4
13) Page 3-7/3-8
14) Page 3-11/3-12
15) Page 4-1/4-2
16) Pages 4-5 thru 4-10
17) Pages 4-13 thru 4-18
18) Pages 4-21 thru 4-24
19) Pages 5-5 thru 5-8
20) Page 5-17/5-18
21) Page 5-25/5-26
22) Page 5-33/5-34
23) Page 5-39/5-40
24) Page 5-49/5-50
25) Page 5-57/5-58
26) Pages A-3 thru A-8
27) Page A-93/A-94
28) Page A-103/A-104
29) Pages A-109 thru A-119

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

FOREWORD

This document was prepared for the Johnson Space
Center, Houston, Texas, under contract NAS 9-13864.

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Table of Contents (Con't)

Page

2.1.13 Real Time Statements 2-60

2.1.13.1 WAIT Statement 2-60
2.1.13.2 CANCEL, TERMINATE 2-60
2.1.13.3 SIGNAL, SET, RESET State-

ments 2-61
2.1.13.4 UPDATE PRIORITY Statement 2-61
2.1.13.5 SCHEDULE Statement 2-62

2.1.14 NAME Operations 2-63

2.1.14.1 NAME Comparisons 2-63
2.1.14.2 NAME Assignments 2-63

2.1.15 %MACRO Operations 2-64

2.1.15.1 %SVC 2-64
2.1.15.2 %NAMECOPY 2-64

2.2 Phase III - Simulation Data File Generation 2-65

2.2.1 SDF Generation 2-65

2.2.1.1 Overall SDF Design 2-65

2.2.2 Phase III Printed Data 2-67
2.2.3 Stand-Alone 2-68

2.3 360 Code Generation for the HAL/S Statement
Processor 2-69

2.3.1 Statement Processor Linkage Instruc-
tions (Hooks) 2-69

2.3.1.1 Form of Linkage Instructions 2-70
2.3.1.2 Placement of Linkage

Instructions 2-70

2.3.2 XMON Address Table 2-75
2.3.3 Statement Processor Data Table 2-78

2.4 Phase 1.5 - The Optimizer 2-79

2.4.1 General Description 2-792.4.2 Design Comments 2-792.4.3 Optimizations Attempted 2-80

2.4.3.1 Common Subexpression Elimina-
tions 2-80

2.4.3.2 Matrix Transpose Eliminations 2-84

iii
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

Version IR-60-5 Table of Contents (Cont'd.)

Page

2.4.3.3 Constant Folding 2-84
2.4.3.4 Division Eliminations 2-84
2.4.3.5 Inline Vector/Matrix

Computations 2-84
2.4.3.6 Loop Simplification 2-85
2.4.3.7 Loop Combining 2-87

2.4.4 Scope of Optimization 2-88
3.0 SYSTEM CONCEPTS'AND INTERFACES 3-1

3.1 HAL Object Module Layout 3-13.2 HALLINK 3-5

3.2.1 Stack Size Computation 3-5

3.2.1.1 The Algorithm 3-6

3.2.2 Template Checking 3-7
3.2.3 HALMAP 3-8

3.3 HAL/S Load Module and Operating Environment 3-93.4 Processes and the Stack Mechanism 3-93.5 Procedures and the Procedure Caller 3-10

3.5.1 Calling 3-10
3.5.2 Exiting 3-15

3.6 Intrinsics 3-153.7 User Written Assembly Language Subroutines 3-17

3.7.1 HMAIN 3-17
3.7.2 HENTRY 3-18
3.7.3 HCALL 3-18
3.7.4 HEXIT 3-18
3.7.5 HERROR 3-19

3.8 Include System 3-233.9 ACCESS Rights Implementation 3-24
3.10 Error File 3-27

4.0 USER INTERFACE 4-1

4.1 The Compile Step 4-1

4.1.1 Job Control Language 4-1
4.1.2 Inputs 4-6

4.1.2.1 Compiler Options 4-6
4.1.2.2 Source Input 4-11

4.1.3 Outputs 4-12

4.1.3.1 Source and Object Listings 4-12
4.1.3.2 Other Compiler Outputs 4-13

iv
INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

1.0 INTRODUCTION

1.1 Scope of Document

This document specifies the informational interfaces
within the HAL/S-360 compiler, and between the compiler and
the external environment. An overall description of the
compiler, and the hardware and software compatibility
requirements between compiler and environment are detailed
in the HAL/S-360 Compiler Functional Specificationl. Familiar-
ization with the Functional Specification is presumed through-
out this document.

This Compiler System Specification is for the HAL/S-360
compiler and its associated run time facilities (including
real-time) which implements the full HAL/S language2 . The
HAL/S-360 compiler is designed to operate "stand-alone"
on any compatible IBM 360/370 computer and within the
Software Development Laboratory (SDL) at NASA/JSC, Houston,
Texas.

1.2 Outline of the Document

The HAL/S-360 compiler system consists of:

1) a five phase language processor (compiler) which
produces IBM 360/370-compatible object modules and
a set of simulation tables to aid in runtime
verification.

2) a link edit step which augments the standard OS
Linkage Editor.

3) a comprehensive run-time system and library which
provides the HAL/S operating environment, error
handling, a pseudo-real-time executive, and an
extensive set of mathematical, conversion, I/O,
and diagnostic routines.

The specifications of the information flow and content
for this system are contained in this document and arranged as
follows:

1 HAL/S-360 Compiler System Functional Specification, 13 July 1973,
PDRL #IM004.

2 HAL/S Language Specification, 14 November 1975, IR #61-7.

1-1
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Sec. 2 Compiler Information Content specifies the 360
code generation sequences produced by Phase II, and the simu-
lation tables provided for run-time diagnostic purposes.

Sec. 3 System Concepts and Interfaces describes the
informational links between the compiler as an entity, and
its external system environment. Included are the object
module layout, the "HALLINK-step" required during link-edit,
the stack mechanism, the HAL/S operating environment (and
relationships to OS/360), the interface to assembly language
routines and the INCLUDE and Access Rights systems.

Sec. 4 User Interfaces describes the JCL, input and outputs
for the compiler, link and execution steps. The compiler's out-
put to the user (i.e. the HAL/S listing) is specified.

Sec. 5 Run-Time Library establishes all the interfaces
to the run-time routines viz. matrix-vector arithmetic,
mathematical functions, character string manipulations, I/O
and conversions, pseudo real-time, error and diagnostic routines.
In addition, interfaces to an external monitor are described.
Such a monitor could coordinate environment simulation and
diagnostics.

Appendix A specifies the intermediate code (HALMAT) emitted
by Phase I of the compiler.

Appendix B specifies the internal tables for compilation.

Appendix C specifies the code generation process carried
out during Phase II of the compiler.

1.3 Status of Document

This publication represents an updated Compiler System
Specification. This document, plus the Compiler System
Functional Specification, comprise the complete HAL/S-360
Compiler Specification.

1-2
INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Version IR-60-5

Many features of the HAL/S-360 system are under control
of Interface Control Documents which are subject to update.
When appropriate within this document, references are made
to these companion documents as sources of supplementary
material and in some cases as primary sources of detailed
information.

The following list of documents represents the set
of additional documents which reflect design and control
of the HAL/S-360 compiler system:

* HAL/S-360 Compiler System Functional Specification,
13 July 1973, PRDL #IM004, by Intermetrics, Inc.

o Interface Control Document: HAL/FCOS, Revision 5,
Published by IBM Federal Systems Division,
Houston, Texas.

* Interface Control Document: HAL/SDL, Revision 6,
Published by IBM Federal Systems Division, Houston,
Texas.

* HAL/S Language Specification, IR #61-8, Published
by Intermetrics, Inc.

1-3

INTERMETRICS INCORPORATED -701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Structure templates are internally ordered such that the
minimum boundary alignment within any node level is required.
Template matching requirements guarantee that templates
exhibiting identical properties will be identically reordered.

After all groupings are complete, storage assignments are made,
with the required base-displacement combinations being generated
to properly access the data. Note that the storage addresses
assigned refer to the actual data beginning, but the base-
displacement address includes the negative OFFSET value.

Note that all formal parameters and all AUTOMATIC variables
in a REENTRANT PROCEDURE or FUNCTION are based off the stack
register (13).

For arrays, the offset is computed as follows for the number
of array dimensions: (Ni is the ith array dimension).

Dim Offset

0 0

1 -1

2 (-1 N2)-1

3 ((-1 N2)-l)N 3 -1

The array OFFSET is then multiplied by the total width of the
data type specified. For integers, scalars, bits, and characters,
this is the width in bytes to contain one item of data. For
vector and matrix types, this is the width in bytes for one
item times the total number of items in the vector or matrix.

For structures, the OFFSET is 0 if the structure has no copies.
If the structure has copies, the offset is -W, where W is the
aligned width of one copy of the structure template.

2-3

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Version IR-60-5

Example:

DECLARE A SCALAR,

B INTEGER,

C CHARACTER(7),

D ARRAY(5) DOUBLE;

DECLARE E ARRAY(5),

F ARRAY(3,3) VECTOR,

G MATRIX ;

DECLARE H DOUBLE,

I ARRAY(5,5) INTEGER;

Allocation for the above HAL declarations are as follows
(all addresses are in hex):

(in decimal)
Alignment Name Location Base Displacement Offset
Byte C 000000 A 000 0
Halfword B 00000A A OOA 0
Fullword A 00000C A 00C 0
Doubleword H 000010 A 010 0
Halfword I 000018 A 00C -12
Fullword E 00004C A 048 - 4
Fullword G 000060 A 05C - 4
Fullword F 000084 A 050 -52
Doubleword D 0000FO A 0E8 - 8

2.1.1.3 Addressing Concepts. This section describes the general
addressing rules for data. To the extent possible, data can
be directly addressed via some combination of base register and
twelve bit displacement. This is not possible whenever the data
item is a formal parameter other than a simple integer or scalar,
or any formal parameter scoped in from an outer to an inner
procedure. The skeletal forms given in Section 2.2.2 assume
the most commonly used addressing forms. The rules described
here should be superimposed upon these skeletal forms to
interpret all possible combinations of operations between
operands.

2-4

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Versoin IR-60-5

2.1.3.6 Partitioned Bit Assignments. The following sequences
assume that Rx has already had the required conversions performed
as described in Section 2.1.3.3 or 2.1.3.4. Definitions of I,
Ny, and Nr are as described in Section 2.1.3.3.

Operation Length of Bit String Y Code

Ysubscript=X; Ny < 8 (see note) SR Rx, Rx
IC Rx, X

SLL Rx, Ny-I

XR Rx, Ry
N Rx,=F'mask*'

XR Rx, Ry
STC Rx, Y

9 < Ny < 16 (see note) LH Rx, X

SLL Rx, Ny-I

XR Rx, Ry
N Rx , F'mask*'

XR Rx , Ry
STH Rx, Y

*Mask: The mask used in a bit store is
computed as follows:

(2 Nr_ 1) (2Nx - I

In other words, the mask is a sequence of Nr bits shifted left
Nx-I bits.

2-19

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Operation Length of Bit String Y Code

Ysubscript=X;

(Cont'd) 17 < Ny < 3 2 (see note) L RX, X

SLL Rx, Ny-I

XR Rx, Ry
N Rx,=F'mask'

XR Rx, Ry

ST Rx, Y

Note: If the right hand side of the assignment (X) is a BIT
literal containing either BIN'O' or BIN(NR)'1' then
the following code is generated:

3 TO5 = BIN'O'; N = 8 NI Y, B'11000111'STO 5 y
Y2 = BIN'111'; N = 8 OI Y, B'01110000'2TO 4 y

Y0 TO 12= BIN'O " ; N = 16 LH Rx , Y

N Rx , X'FFFFFF8F'

STH Rx, Y

11 TO 13BIN' '; N = 16 LH Rx', Y

O Rx,=X'38'

STH R, Y

29 TO 31 = BIN'0'; N = 32 L Rx' Y

N Rx,=X'FFFFFFF1'

ST Rx, Y

Y28 TO 30 = BIN'lll'; N = 32 L RxY

0 Rx,=X'lC'

ST Rx , Y

2-20

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Operation Code

CHAR TO I, 12 LA 2, X

HCALL CTOI*

CHAR TO S LA 2, X

HCALL CTOE**

CHAR TO S2 LA 2, X

HCALL CTOD**

CHAR TO CHAR No code generated if unsubscripted.
If subscripted, code same as
component subscripting (see
Section 2.1.4.3).

CHAR TO BIT LA 2, X

HCALL CTOB*

CHAR TO BIT@<radix> Same code as CHAR TO BIT, except
call to CTOB is replaced as
follows:

<radix> routine

BIN CTOB
OCT CTOO
DEC CTOK
HEX CTOX

2.1.4.5 Character String Assignments. The following sequences
assume that X has been converted as per Section 2.1.4.4 if it
is not a character string. Either the receiver variable or the
assigned variable in a character string assignment may be sub-
scripted. The possible forms are shown below. When subscripting
is used, a partitioning of a character string results. The initial
element of this partitioned character string is signified by its
index: Ni. Similarly, the final element has the index Nf. Some
examples of HAL/S subscript forms and the resulting Ni and Nf
values are:

Subscript Form Ni Nf

1 TO 3 1 3
5 AT 2 2 6

LIBRARY routine leaving result in register 1.
** LIBRARY routine leaving result in register FO.

2-23
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Operation Code

Y=X LA 3, X
(Y, X are character LA 2, Y

strings) BAL 14, CAS

Y -X; LA 3, X
Subscript LA 2, Y

LA 1, Ni
LA 0, Nf
HCALL CPAS*

YSubscript=X Subscript ; LA 3, XLA 2, Y
LA 1, Nix
LA 0, Nfx
L 4, =F'Nfy', Niy'
HCALL CPASP*

2.1.5 Vector Matrix Operations

2.1.5.1 Vector-Matrix Operators. Vector-Matrix operators usually
operate on two arguments according to the conventions stated in
Section 5.2. Since 3-vectors, and 3x3-matrices have special
library routines, their code is listed in the column labeled
"3-code", while the code for any other vectors or matrices is
listed in the "n-code" column.

Operation Type n-code 3-code

V1+V2 single LA RL, 1 same as for "n-code"
loop: LR RI, RL with n=3.

SLA RI, 2
LE FR, Vl(R I)
AE FR, V2(R)
STE FR, temp(R)
LA RL, 1(0,RL)
CH RL, =H'n'
BC 12, loop

Vl+V2 double LA RL, 1 same as for "n-code"
loop: LR Ri, RL with n=3.

SLA RI , 3
LD FR, V1(R I)
AD FR, V2(R I)
STD FR, temp(R1)
LA RL, 1 (0,RL f
CH R , =H'n'
BC 1 , loop

V1-V2 Same as for Vl+V2 except that an "SE" instruction
is used in place of the "AE" instruction ("SD"
instead of "AD" for double precision).

HCALL is a standard HAL/S calling sequence - see Section 3.7.3.

2-24
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Operation Type n-code 3-code

-Vl single LA RL, 1 same as for "n-code"

loop: LR RI, RL with n=3
SLA RI , 2
LE FR, V1(R I)
LCER FR, FR
STE FR, temp(R I)
LA RL, 1(0,RL)
CH RL, =H'n'
BC 12, loop

-Vl double LA RL, 1 same as for "n-code"

loop: LR RI, RL with n=3
SLA RI , 3
LD FR, Vl(R I)
LCDR FR, FR
STD FR, temp(RI)
LA RL, 1(0,RL)
CH R, =Hn'
BC 1 , loop

Vi) V2 single LA 3, Vl LA 3, VI
(yielding nxm loop: LA 4, V2 LA 4, V2

matrix) LA 2, temp-storage- LA 2, temp-storage-
area area

LA 0, m HCALL V06S3
LA 1, n

HCALL VO6SN

Vi V2 double Same as for single precision, except that
the routines branched to are VO6DN and VO6D3
for n-vectors and 3-vectors respectively.

Vl *V2 single illegal operation LA 3, Vl
LA 4, V2
LA 2, temp-storage-

area
BAL 14, VX6S3

V1 * V2 single LA 3, Vl LA 3, Vl
LA 4, V2 LA 4, V2
LA 0, n BAL 14, VV6S3*
HCALL VV6SN

Vl . V2 double Same as for single precision, except that
the routines branched to are VV6DN and VV6D3

M1 + M2, Same code as that for adding or subtracting two vectors
'or M1 - M2 of length equal to the product of the row size and

- M1 the column size of M1 and M2.

Vl 1 M1 single LA 3, Vl LA 3, VI
Vl: length n LA 4, M1 LA 4, M1
Ml: n x m LA 2, temp-storage LA 2, temp-storage

area area
LA 0, n BAL 14, VM6S3
LA 1, m
HCALL VM6SN

HCALL is a standard HAL/S calling sequence - see Section 3.7.3.

2-25

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Operation Type n-code 3-code

Vl Ml double Same as for single precision, except that
the rQutines branched to are VM6DN and VM6D3
for the general case and the size 3 case
respectively.

M1 M Vl single LA 3, Ml LA 3, M1
Ml: n x m LA 4, Vl LA 4, Vl
Vl: length m LA 2, temp LA 2, temp

LA 0, n BAL 14, MV6S3
LA 1, m
HCALL MV6SN

Ml M Vl double Same as for single precision, except that
the routines branched to are MV6DN for
n-code and MV6D3 for 3-code.

Vl 0 I*, single LA RL, 1 Same as for "n-code"
V1 0 12*, loop: LR RI, RL with n=3.
Vl M S SLA RI, 2

LE FR, Vl(R I)
ME FR, S
STE FR, temp(R I)
LA RL, 1(0, RL)
CH RL, =H'n'
BC 12, loop

Vi S2 double LA RL, 1 Same as for "n-code"
loop: LR RI, RL with n=3.

SLA RI, 3
LD FR, Vl(R I)
MD FR, S2
STD FR, temp(R I)
LA RL, 1(0, RL)
CH RL, =H'n'
BC 12, loop

Vl/I, Vl/12, Same as for V1 I, etc., except that a 'DE'
Vl/S, Vl/S2 instruction is used instead of 'ME' ('DD' instead

of 'MD' for double precision).

I i Vl, 12 1 Vl, Exactly the same as for Vl 0 I, etc.
S) Vl, S2 0 Vi

Ml 1 I, Ml 0 12, Same as for V1 0 I, etc., except that
M1 1 S, M1 0 S2 the loop maximum, n, is the product of

the row size and the column size of Ml.

Mi/I, Ml/12, Same as for VI/I, etc., except that the loop
M1/S, Ml/S2 maximum, n, is the product of the row size and

the column size of Ml.

Note that in the case of single and double precision integers,
they are first converted to scalar from whose value is in FO.

2-26
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Operation Type n-code 3-code

I M Ml, 12 0 Ml, Same as for Ml)6 I, etc.
S Ml, S3 0 Ml

Ml i single LA 1, i Same as for "n-code"
(where i is either LA 3, Ml where n = 3.
a literal, or a LA 4, temp-storage-area
constant integer) LA 2, temp-storage-area

LA 0 n
HCALL 417SN

M1*l i double Same as for single precision, except branches
to the MM17DN.

M1 ** single LA 3, Ml
LA 2, temp-storage-area
LA 0, n

HCALL MM15SN

M1**0 double Same as for single precision, except branches
to MM15DN.

M1*T single LA 3, Ml LA 3, Ml
Ml: m x n LA 2, temp-storage-area LA 2, temp-storage-

area
LA 0, n BAL 14,MMllS3
LA I, m
HCALL MM11SN

Ml double Same as for single precision, except the routine
branched to is either MM11DN or MM11D3 for
m x n matrices and 3 x 3 matrices respectively.

Ml 0 M2 single LA 3, Ml LA 3, M1
Ml: 1 x m LA 4, M2 LA 4, M2
M2: m x n LA 2, temp-storage-area LA 2, temp-storage-

area
LA 0, 1 HCAIL MM6 S 3
LA l,=F'm,n'
HCALL MM6SN

Ml J M2 double Same as for single precision, except that the
routines'branched to are MM6DN and MM6D3 for
the general case and the 3x3 case respectively.

2-27

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

2.1.5.2 Conditional Operators. The only comparison operators
allowed for comparing vectors and matrices are = or - =. Since
these comparisons are done on an element-by-element basis, the
same routines that are used for size-n vectors are also used for
size n x m matrices which are considered to be vectors of length
n x m. No logical variables are created by comparisons. Instead,
branching to the "not-true-label" occurs with the "not true"
condition.

Operation Type n-code 3-code

V1 <OP> V2 single LA 3, Vl LA 3, Vl
LA 4, V2 LA 4, V2
LA 0, n BAL 14,VV8S3
BAL 14,VV8SN BC COND, not-true-
BC COND, not-true-label label

Vl <OP> V2 double Same as for single precision, except that the
routines branched to are VV8DN and VV8D3 *for
n-vectors and 3-vectors respectively.

M1 <OP> M2 single LA 3, Ml LA 3, Ml
M1,M2: mxn LA 4, M2 LA 4, M2

LA 0, mxn LA 0, 9
BAL 14,VV8SN BAL 14,VV8SN
BC COND, not-true-label BC COND, not-true-

label

Ml <OP> M2 double Same as for single precision, except that the
routine branched to is VV8DN.

2.1.5.3 Component Subscripting. Possiblecomponents of matrices
include submatrices, vectors, and single components. Possible
components of vectors include subvectors and single components.
The resultant type of component is determined by the subscripts
used. Note that double precision operations are not shown - their
code is identical except that: a) the called routines will beVVlDN rather than VVlSN, etc; b) the index multiplier is 8 instead
of 4. Register R4, when used, contains skip values between elements
in partitioned matrices (see Section 2.3.1.3).

2-28

NTERMETRICS INCORPORATFn. 7nl CONCORD AVENUE " CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Operation n-code 3-code

S = Vxi LE Rs, Vx + 4 *i
i: integer literal STE Rs, S

S = Vx LH RI , I
I: integer variable SLL RI, 2LE Rs, Vx (R1)

STE Rs, S

Vy = Vxsubscript LA 3, Vx LA 3, Vx
Where subscript de- LA 2, Vy LA 2, Vy
fines a vector of size LA 0, n BAL 14,VVlS3
n. BAL 14, VVlSN

My = Mxsubscript LA 3, Mx

Where subscript de- LA 2, M
fines a matrix of LA 4, skip-value

size nm LA 0, n
LA 1, m
HCALL 14, MMlSNP

V = M LA 3 , MI LA 3, Mx
Y xsubscript LA 2, Vy LA 2, Vy

WhereLA 4, skip-value LA 4, sKip-value
fines a vector of LA 0, n BAL 14, VVlS3P
length n BAL 14,VVlSNP

S = My. Same as for vectors, except that the displacement
xi,i off Rs is computed to include the use of two

subscripts for matrices.

2-29

INTERMETRICS INCORPORATED 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.5.4 Conversions. MATRIX/VECTOR conversions are done by
considering matrices as vectors, and assigning the required
components to the receiver variable. More than 1 argument
requires multiple calls to the vector assign routine (as shown
in the second sequence below). Use of double precision operands
will cause branches to VVlDN. Otherwise, the code in unchanged.

Operation n-code

VECTOR(Mx) LA 3, Mx
Produces vector of size LA 2, temp-storage-area
equal to produce of LA 0, n*m
dimensions of matrix: BAL 14,VV1SN*
nxm.

MATRIX(Vx,Vy,Vz)** LA 3, Vx
LA 2, temp-storage-area
BAL 14,VVlS3*
A 3, Vy address ofLA 2, temp-storage-area+DELTAl 4th matrix

element
BAL 14,VVlS3*
LA 3, VzLA 3,V address ofLA 2, temp-storage-area+DELTA2 7th matrix

element
BAL 14,VV1S3*

* The pointer to the results of vector-matrix operations are
left in register 3. Thus, the instruction to set up register
3 may be inhibited, if it is the same as the result of the pre-
vious operation.

** This is an example using several vectors to illustrate the multiple
calling of the VVlS3 (or VVISN) routine. It applies to the
VECTOR shaping function.

2-30

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

2.1.5.5 Assignments. Vectors and matrices may be assigned to
other vectors and matrices of the same dimensions. In addition,
they may have all elements set to zero by a statement of the

form: M = 0; or V = 0;.

Operation Type n-code 3-code

V= V single LA R., Y Same as for "n-code"
x y LA R, X with n=3.
MVC 01n*4,RX),0(Ry)

V = V double LA Ry , Y Same as for "n-code"
x y LA R , X with n=3.

MVC 0 n*8,Rx),O(Ry)

Vx = 0 single LA RL, 1 Same as for "n-code"
loop: LR RI , RL with n=3.

SLA RI , 2
SER 'FR, FR
STE FR, V (RI)
LA RL, 10,RL)
CH R, H'n'
BC 1, loop

Vx = 0 double LA RL, 1 Same as for "n-code"
loop: LR R I , RL with n=3.

SLA RI , 3
SDR FR, FR
STD FR, V (R)
LA RL, 110,L)
CH R , H'n' L
BC 1i, loop

M = M Same as for vectors, except that the loop maximum,
Xand yn, is the product of the row size and the column

Mx = 0 size of the matrix.

For the following operations:

VECTOR/MATRIX ADD
VECTOR/MATRIX SUBTRACT
VECTOR/MATRIX NEGATE
VECTOR/MATRIX-SCALAR PRODUCT
VECTOR/MATRIX-SCALAR DIVIDE
VECTOR/MATRIX ASSIGNMENT

2-31

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

In those cases where in-line code is not generated, the
temporary area used to store the result of the last HALMAT
operation before an assignment can be eliminated if
the vector-matrix statement is of a suitable "form" for
optimization and one of four conditions holds. The state-
ment may not have multiple receivers; the single receiver
must be a consecutive partition or be nonpartitioned. The
precision of the right-hand-side of the statement must
match the precision of the receiver. The receiver cannot
be a remote variable, and neither the receiver nor the
operand(s) of the final HALMAT operation can be name
variables, or the terminal of a subscripted structure.
A-so, variable subscripts on any variables do not allow
optimization processing to continue.

2-31.2
INTERMETRICS INCORPORATD I 70 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Statements that meet these basic requirements can then be
checked for the occurrence of a necessary and sufficient
condition for optimization. The result of the final operation
before the assignment will be stored directly in the receiver
if at least one of the following conditions is true:

1) a) The receiver is nonpartitioned and the last operation
before the assignment HAIMAT is a "Class 3" operation.
Class 3 operations include matrix-scalar and vector-scalar
multiplication and division, vector-matrix addition and
subtraction, vector and matrix negation and the built-in
function, UNIT.

b) The last operation is a "Class 1" operation. The
class contains only "matrix raised to Oth power". The
result, the identity matrix, can be stored directly in
any consecutive receiver.

2) The operand(s)' are in temporary work areas. Nonconsecutive
partitions are moved to work areas when the operands are
processed. The result of a previous operation is also in
a work area. Operands in work areas are disjoint from
the receiver. This is important for "class 2" operations
that use the elements of the vector or matrix, vector-vector,
and matrix-matrix arithmetic, and matrix transpose and
exponentiation (also, the built-in functions, TRANSPOSE and
INVERSE). This condition can also hold for class 1 and class
3 operations. If the operation has two operands, both must
be in work areas for this condition to be true.

3) The operand(s) are nonidentical to the receiver. A
receiver-operand pair is nonidentical if the operand is
in a work area, or if neither variable is a formal
parameter and the variables have different symbol table
references, or if only one of the variables in a formal
parameter and the NEST level of the non-parameterized
variable is greater than or equal to the NEST level
of the parameterized variable (again, symbol table
reference cannot be the same).

EXAMPLE1: PROGRAM;
DECLARE MATRIX(3,3), S,T;
PROC: PROCEDURE(A) ASSIGN(B);

DECLARE MATRIX(3,3), A,B,C;
SUBPROC: PROCEDURE(X) ASSIGN(Y);

DECLARE MATRIX(3,3), X,Y,P,Q;

2 TO 3,* = X2 TO 3,* + C2 TO 3,*
B P +Q2 TO 3,* 2 TO 3,* 2 TO 3,*

CLOSE SUBPROC;
CALL SUBPROC(A) ASSIGN(C);
CLOSE PROC;
CALL PROC(S) ASSIGN(T);

CLOSE EXAMPLE1;

2-32
INTERMETRICS INCORPORATED .701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5
where

X&Y are parameters, C is not
NEST LEVEL(Y)=2,
NESTLEVEL(C)=1.

Y can be C - cannot assign directly.
P&Q not parameters - ok to assign directly

NEST LEVEL(P)=2,
NEST LEVEL(A)=l.

4) The operand(s) are disjoint with the receiver. A receiver-
operand pair can be disjoint in two ways. If the pair is
nonidentical it is, by default, disjoint. If both the receiver
and the operand are consecutively partitioned, they are
disjoint if the partitions do not overlap in any way. If
the receiver and the operand have the same symbol table
reference (are identical) then the two partitions can be
disjoint in either "direction". Fo& example, let A
be a 4-by-4 matrix. Then,

1 TO 2,* =3 TO 4,* ... and

A3 TO 4,*= A1 TO 2,* + ... are both disjoint pairs.

If the receiver and operand are possibly identical, then the
pair can only be disjoint if all of the operand partition
comes after the receiver partition.

EXAMPLE2: PROGRAM;
DECLARE MATRIX(6,3), A,D,E;
PROC: PROCEDURE(B,C);

DECLARE MATRIX(4,3), B,C; Pairs A-B & A-C
A1 TO 2,* 3 TO 4,* 3 TO 4,*' disjoint
A B + C Pair A-B not neces-
3 TO 4,* 1 TO 2,* .3 TO 4,* Pair A-B not neces-COERCsarily disjointCLOSE PROC;

CALL PROC(A3 TO 6,*'D3 TO 6,) ; (BI TO 2,* is really

A3 TO 4,*)

3 TO 4,* 3 TO 4,* 1 TO 2,*' A,D,E are, by default,
CLOSE EXAMPLE2; disjoint because they

are nonidentical

If the operation has two operands, both receiver-operand.pairs
must be disjoint for this condition to be true. The non-
identical and disjoint checks are made at the same time,
so this condition also holds if one pair is disjoint by
disjoint partitioning and one pair is disjoint by being
nonidentical.

2-33

METRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

2.1.6 Structure Operations

2.1.6.1 Structure Comparisons. Structure comparisons may only be
= or - =. The comparison is done by comparing corresponding
terminal elements of the two structure operands in order of their
natural sequence. Each terminal element is referenced by adding
the displacement of the element to the address of the structure
(see Section 2.1.1.3). No logical variables are created by
comparisons. Instead, branching to the "not-true-label" occurs
with the "not-true" condition.

Operation Code

X <OP> Y LA Rx, X
LA Ry, Y
CLC x-terminal-l, y-terminal-1
BC COND, not-true-label
CLC x-terminal-2, y-terminal-2
BC COND, not-true-label

CLC x-terminal-n, y-terminal-n
BC COND, not-true-label.

2-34

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE MASSACHUSETTS 02138 * (617) 661-1840

2.1.6.2 Structure Assignments. The assignment of both major and
minor structures consists of loading registers Rx and Ry with the
address of the structure nodes being accessed, followed by a MVC
(move characters) which moves the number of bytes specified by
width from the locations specified by Rx to the location specified
by Ry.

Operation Code

Y = X width < 256 LA Rx, X
LA Ry, Y
MVC 0(width, Ry),O(Rx)

256 width < 1024 LA Rx, X
(n is number of LA Ry, Y
256 byte blocks) MVC 0(256, Ry), O(Rx)

MVC (n-1)*256(256,Ry) ,(n-1)*256(Rx)
MVC n*256(width moa 256,Ry),n*256(Rx)

width > 1024 LA 0, n
LA Rx , X
LA Ry, Y
BALR RL, 0
MVC 0(2 56,Ry),0(Rx)
LA Rx, 2 56 (,Rx)
LA Ry, 2 5 6 (,Ry)
BCTR 0, RL
MVC n*256(width mod 25 6 ,Ry),

n*256(Rx)

2-35

IETRICS INCORPORATED 70 C O.CO. D AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.7 Indexing and Arrayed Statements

2.1.7.1 Linear Array Indexing. Linear array indexing is the
use of subscripts, on an arrayed data type, to produce a one-
dimensional resultant array. In the generated code, only one
register - Ra - is needed to keep track of the index value.
At initial entry to the array loop (see Section 2.1.7.4), Ra
is initialized to a value of 1. On each pass through the loop,
Ra is used to define a DELTA value to index the arrayed data
(see Section 2.1.1.3). Following this, at the end of the loop
Ra is incremented by 1, and is tested to determine if all of the
data has been utilized, as described in Section 2.1.7.4. Ra
is any available indexing register. Its contents may not be
altered during the course of an arrayed statement. If the index
in Ra must be shifted to access word or doubleword data, it
must be moved to another register to perform this shift.

2.1.7.2 Non-Linear Array Indexing. Non-linear array indexing
has more than one index which can change values to produce a
multi-dimensional resultant array. The actual code generated,
though, can only utilize one register - Ra - for indexing. Thus,
temporary storage is needed to store all but the inner-most
index. As with linear indexing, all index values (both in Ra
and temporary storage) are initialized to 1. The DELTA value
defining the index of each arrayed data item is then computed
on the basis of the value of Ra and the index values stored in
memory (see Section 2.1.1.3). Following this, each index value
is tested against the size of the corresponding dimension (of
the resultant array) to determine if all of the data has been
utilized, and/or which indices are incremented for the next iteration.
An example of this is given in Section 2.1.7.4.

2.1.7.3 Array Indexing. Arrays may be used in their entirety in
HAL/S without explicit subscripting (for example assignment of two
equally dimensioned arrays). However, the code generated is very
similar to that for non-linear indexing, except that the indices
are tested against the size of the corresponding declared dimensions
of the arrays, rather than against the size of the corresponding
dimensions of the subscripted array.

2-36

INTERMETRICS INCORFOAT ED 70i CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.7.4 Arrayness and Loop Generation. This section has two
examples of the form of array loops, and how indexing is used
within them. The first example uses linear indexing within the
loop, while the second uses non-linear indexing. An array loop
consists of the following sections: initialization of index
values, use of index values to develop the DELTA values (see
Section 2.1.1.3) of the operands, actual operation performed
on array elements (i.e. assignment, comparison, etc.), and
incrementing and testing index values. Note that non-linear
and array indexing produce more than one loop. However, ohly
Ra is used for indexing, thus requiring temporary storage of the
values of the indices for the outer loops.

Operation Type Code

IX] = [Y]AT [X]: ARRAY(3) SCALAR LA 9, 1 initialize index
[Y]: ARRAY(5) SCALAR loop: LR 8, 9 indexing of Y]

DOUBLE SLL 8, 3 indexing of Y

LR 7, 2 indexing of [X]

LD 2, Y+8(8) assig
assignmentSTE 2, X(7)

LA 9, 1(0,9)
CH 9,=H'3' increment and

BC 12, loop test index

[I] = [V] 2 TO 3,:2 [I]: ARRAY(2,4) LA 9, 1 i n i t i a l i z e &

INTEGER outer-loop: ST 9, temp-storage-

[V]: ARRAY(2,3,4) area index value

VECTOR LA 9, 1 jinitialize 2nd index
inner-loop: L 8, temp-storage-

area indexing of
SLA 8, 2 ndexing of

AR 8, 9

MH 8,=H'12'

L 7, temp-storage-
area

SLA 7, 2

AR 7,7 [I]

LE 0, V+200(8)
BAL 14, FLOATFX assignment
STH 1, I (7)
LA 9, 1(0,9) increment &
CH 9,=H'4' test 2nd
BC 12,inner-loop index value
L 9, temp-storage-

area increment &
LA 9, 1(0,9) £ test Ist
CH 9,=H'2' index value'
BC 12, outer-loop

2-37
TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.8 PROCEDURE/FUNCTION Calls

2.1.8.1 Calls to HAL PROCEDURES and FUNCTIONS. The PROCEDURE/
FUNCTION calling process consists of two parts: argument set
up, and the actual branching to the subroutine's code (see
Section 2.1.9.2). Argument set up uses registers 0-4 (as needed)
for passing integers or bit strings, or pointers to vectors.
matrices, character strings, arrays, or structures; registers
FO, F2, and F4 are used as needed to pass scalar arguments. The
actual code generated sets up the arguments in these registers
in the reverse order that they appear in the HAL/S PROCEDURE or
FUNCTION block definition statement. For example, if the
function is:

F: FUNCTION(integer 1, scalar 1, scalar 2, vector, integer 2);

then the registers are loaded in the order: 2 (using LH or L),
1 (using LA to load address of the vector's pointer), F2 (using
LE or LD), FO (using LE if scalar 1 is single precision, or LD if
double), and 0 (using LH if integer 1 is single precision, or
L if double). Once all of these registers are used, remaining
arguments are stored in the run stack for the procedure or function
being called. The parameters passed via registers are stored in
the stack at the time of invocation. Again, the code will use
appropriate integer or floating point instructions depending on
the type of the subsequent arguments. If the value of any of these
subsequent arguments is in a register, then only a store instruc-
tion is generated. Otherwise, both load and store instructions are
generated (as shown in the code sequences below). Once all para-
meters are set up, a BALR is generated to branch to the subroutine.

Operation No. of ARGS Code Alternate Code

Argument Setup < 5 non-scalar LH 4, arg 5 L 4, arg 5 or LA 4, arg 5
and < 3 scalar LH 3, arg 4 L 3, arg 4 or LA 3, arg 4

LH 0, arg 1 L 0, arg 1 or LA 0, arg 1
LE 4, scalar-arg3 LD 4, scalar-

arg 3
LE 2, scalar-arg2 LD 2, scalar-

arg 2
LE 0, scalar-argl LD 4, scalar-

arg 1
BALR 14, 12

Actual Call DC AL4(Proc. name)

Argument Setup > 5 non-scalar LH R, arg n L R, arg n or L R, arg n
and/or > 3 scalar STH R, temp-stor- ST R, temp-

age* storage*
* Temp-storage is an area in the stack of the routine to be called,
addressed as the stack relative address augmented by the max-stack
size of the calling routine.

2-38
INTERMETRICS INC)PnonATEn -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

LE R, scalar-arg n LD R, scalar-
arg n

STE R, temp-storage* STD R, temp-
storage*

LE 4, scalar-arg 3 LD 4, scalar-
arg 3

LE 0, scalar-arg 1 LD 0, scalar-
arg 1

LH 4, arg 5 LA 4, arg 5 or L 4, arg 5

LH 0, arg 1 LA 0, arg 1 or L 0, arg 1
Actual Call

BALR 14, 12
DC AL4 (proc-fiinc-name)

2.1.8.2 Calls to NONHAL(1) Procedures and Functions. NONHAL(1)
is defined as FORTRAN compatible linkage. All arguments are

passed as addresses. Unlike FORTRAN, however, addresses of
literal values are not passed; instead, addresses of temporary
locations containing the literal value are passed.

Example:

DECLARE FTSUB PROCEDURE NONHAL(1)

CALL FTSUB(A,B,C,I);

Code

Argument Setup LA R, A
ST R, temp-storage-area
LA R, B
ST R, temp-storage-area+4
LA R, C
ST R, temp-storage-area+8
LA R, 1
ST R, work-area
LA R, work-area
ST R, temp-storage-area+12
MVI temp-storage-area+12, X'80'
LA 1, temp-storage-area

Actual Call ST 13, max-temp-area+4
LA 13, max-temp-area
L 15, =V(FTSUB)
BALR 14, 15
L 13, 4(13)
L 15, 0(13)

* Temp-storage is an area in the stack of the routine to be called,
addressed as the stack relative address augmented by the max-stack
size of the calling routine.

2-39

AETRICS INCORPORATED - 701 COnCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

2.1.9 Block Definition Statements

All of the forms of block definition statements in the
following subsections are basically similar so that the following
conventions apply. In the constant where the value "name" appears
in the code, it refers to the name of the block being defined.
If this constant is halfword aligned, the alternate code shown
uses: ,X'O' to force alignment. The value of "a" is the length
in characters of "name" (or for unlabeled UPDATE blocks and INLINE
functions, it is the length of "$NAME"). The value of "n" in
the unconditional branch instructions is the ,relative address of
the first executable instruction following the constants' declara-
tions.

2.1.9.1 PROGRAM and TASK Definition. PROGRAM and TASK definitions
(as well as external procedure and function definitions) are
similar to those for procedures and functions except that the last
two load instructions are needed to provide addressability.

Operation Code Alternate Code

PROGRAM or TASK BC 15, n(O, 15)
Definition DC ALl(0), AL3(FSIM

CSECT #F)
DC AL2 (max-temp-size)
DC ALl(l), C'name' DC ALl(t), C'name',X'0'

L 11, 4(0,15)
LM 6, 10, 128(11)
MVI 0(13),m**

*Appropriate displacement into the run stack for the called
procedure or function.

** m is the code for the ID of the block - see p. 3-12.

2-40

INTERMETRICS iNCGOPORA TE * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.9.2 PROCEDURE and FUNCTION Definition. Both PROCEDURE
and FUNCTION definitions are similar to PROGRAM and TASK
definitions. However, because floating point registers are
not automatically saved, STE instructions are used to save
the values, in a temporary storage area, of any used registers
(see Section 2.3.8 for information on how FO, F2, and F4 are
used in parameter passing).

Operation Code Alternate Code

PROCEDURE/FUNCTION BC 15, n(0,15)
header DC AL1(0),AL3 (FSIM

CSECT address)
DC AL2(max-temp-size)
DC AL1(t), C'name' DC ALl(£), C'name' , X'O'

STE FO, arg 1
STE F2, arg 2
STE F4, arg 3

2.1.9.3 UPDATE and INLINE FUNCTION Definition. The UPDATE
definition process is identical to that for INLINE FUNCTIONs,
except that additional instructions are generated to establish
the lock group numbers in use. Note that both variabled
UPDATE blocks and INLINE functions are referred to with $ left-
catenated to their names.

Operation Code Alternate Code

UPDATE Definition BC 15, n(0,15)
DC ALl(0), AL3 (FSIM

CSECT address)
DC AL2(max-temp-size)
DC ALl(Z), C'$name' DC ALl(Z) C'$name',X'O'
LH RO, lock-group-mask
HCALL14, LOCK

INLINE FUNCTION
Definition BC 15, n(0,15)

DC AL1(0), AL3 (FSIM
CSECT address)

DC AL2(max-temp-size)
DC ALl(t), C'$name' DC ALl(Z), C'$name',X'0'

2-41
IMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.10 Flow of Control Statements

2.1.10.1 IF...THEN...ELSE. The code shown below is for the most
general form of the IF...THEN...ELSE statement. It is assumed
that the condition code from the conditional expression has been
generated (see previous subsections on conditional operations).

Operation Code

IF <cond exp.> THEN <> ELSE <>; BC cond, else-label

then label: {executable code(
Ifor THEN clausef

BC 15, next-statement

else-label executable code
Ifor ELSE clausef

next-statement:

IF <cond exp.> THEN <>; BC cond, next-statement
executable code for

THEN clause

next-statement:

2-42

INTERMETRICS INCORPORATED . 70, CONCORD AVENUE -CAMBRIDGE. MASSACHUSETTS 02138 . (617) 661-1840

2.1.10.2 DO FOR...Loops. The DO FOR loop has two forms: the
iterative, and the discrete. They both may also allow
termination of the loop by use of the clauses UNTIL < >, or
WHILE < >. The use of these clauses is shown for the case of
the iterative DO FOR forms where the additional code needed
has been labeled "UNTIL code" and "WHILE code". This same
additional code is generated for the discrete DO FOR and is
placed immediately before the executable code within the DO
group (the same process as is illustrated with the iterative
DO FOR). Note that the code only shows the use of a single
precision integer index; double precision integers, and single
or double precision scalars follow the same algorithm with the
exception that the corresponding full word, or floating point
instructions are used when dealing with the index variable.

Operation Code

DO FOR I = a TO b BY c;* LA 9, a
test-label:. STH 9, I

CH 9,=H'b'
BC 2, exit-label

: executable code within DO
group

repeat**: LA 9, c
AH 9, I
BC 15, test-label

exit-label: code for statement following

DO group

DO FOR I = a TO b BY c
UNTIL <cond exp>; MVI temp-storage-are,0 UNTIL code

LA 9, a
END; test-label: STH 9, I

CH 9,=H'b'
BC 2, exit-label
TS temp-storage-area
BC 8, first-statement*** UNTIL

code for conditional code
expression

BC cond, exit-label
first-statement: . executable code

. within DO group

* Assumes a, b, and c are literal values.
** This is referenced by the REPEAT statement (see Section 2.3.10.5).
*** This is done to avoid testing the <cond exp> until after executing

through the loop at least once.

2-43
IMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Operation Code

repeat*: LA 9, c
AH 9, I
BC 15, test-label

exit-label: : code for statement following
DO group

DO FOR I = a TO b BY c
WHILE <cond exp>;

LA 9, a
END; test-label: STH 9, I

CH 9,=H'b'
BC 2, exit-label

i code for conditional WHILE
expression (code

BC cond, exit-label I
: executable code within

DO group

repeat*: LA 9, c
AH 9, I
BC 15, test-label

exit-label: :9 code for statement following

DO group

DO FOR I = a,, a2,...,an; label 1: LA 9, a1
BAL 14, test-label

label 2: LA 9, a2
END; BAL 14, test-label

label n: LA 9, an
LA 14,exit-lab61

test-label: ST 14, temp-storage-area
STH 9, I

} executable code within DO
group

repeat*: L 14, temp-storage-area
BCA 15, 14

exit-label: : 1 code for statement fol-
•J lowing DO Group

* This is referenced by the REPEAT statement (see Section 2.3.10.5).

2-44

INTERMETRICS iNCGORORATiED 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Operation Code

DO FOR I = Il to 12 BY I3*; LH 9, 12
STH 9, temp-test
LH 8, 13
STH 8, temp-increment

END; LH 7, Il
test-label: STH 7, I

* (Il, 12, 13 variables) LA 9, exit-label
TM temp-increment, X'80'
BZ positive-test
CH 7, temp-test
BCR 4, 9 negative increment
B loop-begin

positive test:CH 7, temp-test
BCR 2, 9 positive increment

loop-begin: { code for DO group

repeat** LH 7, temp-increment
AH 7, I
BC 15, test-label

exit-label:

** Repeat label.

2-45
INTERMETRICS INCOR PrATD 701V CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.10.3 DO WHILE/UNTIL. Both of these forms of DO groups are
essentially the same except that the DO UNTIL does not test its
conditional expression until it has finished executing the code
once. In both cases, the condition is tested as detailed in
preceeding subsections.

Operation Code

DO WHILE <cond exp> repeat: code for conditional

expression

BC cond, exit-label

within DO group

BC 15, repeat
exit-label: " code for statement

following DO group

DO UNTIL <cond exp> BC 15, first-statement
repeat: code for conditional

expression

BC cond, exit-label
first-statement : code for statements

within DO group

BC 15, repeat
exit-label: code for statement

following DO group

2-46

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE "CAMBRIDGE. MASSACHUSETTS 02138* (617) 661-1840

VersionlR-60-5

2.1.10.4 GO TO, REPEAT, EXIT. All of these statements consist
of unconditional branches. The REPEAT and EXIT statements are
used only in DO groups; REPEAT is restricted to DO FOR, DO WHILE
or DO UNTIL groups, and branches to the code which tests whether
looping is done or not. Refer to Sections 2.1.10.2 and 2.1.10.3
for the locations of "test-label" and "exit-label".

Operation Code

GO TO label BC 15, label

repeat is the
location of the code

REPEAT BC 15, repeat which determines
whether iteration is
finished or not.

exit-label is the
location of the code

EXIT BC 15,exit-label immediately following
the end of the DO
loop.

2.1.10.5 RETURN. This statement will branch back from the code
for a function to the code immediately following the function's
call. The value returned by the function is either an integer
value, or a pointer in Rl, or it may be a scalar value in FO.

Operation Code

RETURN <exp> . evaluation of exp
with scalar results
in FO, otherwise with

Sinteger result, or
pointer in Rl

BC 15, 4(0, 12)

2-47-AETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.10.6 ON ERROR/SEND ERROR,

Operation Code

OFF ERROR MVI temp-storage-area*, 0
m:n

ON ERROR <statement> LA 14, Ii
m:n ST 14, temp-storage-area+4

L 14, =XL4'mmnn0000'
ST 14, temp-storage-area*
BC 15, t2

1l: code for <statement>
t2: next statement

ON ERROR <action>[<event action>]m:n

LA** 14, e
ST** 14, temp-storage-area+4

<action> a L 14, =XL4'mmnnuaaB8'

SYSTEM 1 ST 14, temp-storage area*
IGNORE 2

<event action> 6

none 0
SIGNAL 1
SET 2
RESET 3

SEND ERROR BAL 14, ERRSND
m:n DC X'mmnn'

DC AL4(0)

Area in stack reserved for recording outstanding error

conditions for current block.

** Omitted if <event action> = none.

2-48

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

2.1.11.2 Out of Line Functions. Out of line functions require
branches to the run time library (see Section 5). Parameters
are passed via any or all of registers RO through R4, and/or
registers FO through F4. The actual registers needed, and
the name of the library routine branched to, are specified in
the tables of Section 5. Examples are given for representative
argument types. Scalar results are returned in register FO;
any other types of results are returned by R1.

Operation Type Code

COS(X) scalar, single LE 0, X
HCALL COS

SQRT(X) scalar, double LD 0, X
HCALL SQRT

ABVAL(X) vector(n), single LA 3, V1
HCALL VV9SN

vector(3), double LA 3, Vl
HCALL VV9D3

TRANSPOSE(X) matrix(m,n), double LA 3, X
LA 2, temp-storage-area
LA 0, n
LA 1, m
HCALL MM11DN

matrix(3,3), single LA 3, X
LA 2, temp-storage-area
BAL 14, MM11S3

UNIT(X) vector(n), single LA 3, X
LA 2, temp-storage-area
LA 0, n
HCALL VV1OSN

vector(3), single LA 3, X
LA 2, temp-storage-area
HCALL VVlOS3

RANDOMG HCALL RANDOMG

TRIM(X) character LA 3, X
LA 2, temp-storage-area
HCALL CTRIMV

MAX(X) array(n) LA 3, X
LA O, a
BAL 14, EMAX

2-53

INTERMETRICS INCOHHUHATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Version IR-60-5

2.1.11.3 Shaping Functions. Shaping functions are explicit
invocations of type conversion. The generated code for shaping
functions has been described in previous subsections where
conversions have been described (see Sections 2.1.2.3, 2.1.3.4,
2.1.4.4, and 2.1.5.4).

2.1.12 I/O Statements

2.1.12.1 Initiation. Initiation of either READ, READALL, or
WRITE statements consists of a branch to the IOINIT library
routine. Register 1 contains the I/O channel number, and register
0 indicates the type of I/O to be initiated.

Operation Tyye Code

READ(n)... LA 1, n
SR 0, 0

HCALL IOINIT

READALL (n) ... LA 1, n
LA 0, 1

HCALL IOINIT

WRITE(n) o.. LA 1, n
LA 0, 3

HCALL IOINIT

2-54

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE MASSACHUSETTS 02138 * (617) 661-1840

2.1.12.2 Input. In all cases, the code sequences below follow
the I/O initiation process described in the previous subsection.
It is assumed that any conversions have been done previous to
the code sequences shown; the resultant type determines which
type of code sequence is generated. Note that vector and matrix
partitioning require that the first element of the partition be
known; additionally, matrices require a DELTA value to be known
to skip over those elements (in the "natural sequence") which are
not part of the resulting partitioned matrix (see Section 2.1.1.3).

Operation Type Code

READ()..., I, ... integer, single .
.1 initiation

LA 2, I
HCALL HIN

integer, double . initation

LA 2, I
HCALL IIN

READ(),..., S, scalar, single . initiation

LA 2, S
HCALL EIN

scalar, double . initiation

LA 2, S
HCALL DIN

READ()..., V, vector(n);single i
S initiation

LA 3, V
SR 4, 4
LA 0, 1
LA 1, n

HCALL MM20SNP

2-55

INTERMETRICS INCORPUOA I EU * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Operation Type Code

READ()..., V, ... partitioned vector
of length n whose . initiation
first element is
located at 'V+ LA 3, V+displacement
displacement' SR 4, 4

LA 0, 1
LA 1, n

HCALL MM20SNP

vector(n); double same except branches to MM20DNP
(partitioned or
not partitioned)

READ()..., M, ... matrix(m,n); single initiation
.I initiation

LA 3, M
SR 4, 4
LA 0, m
LA 1, n
HCALL MM20SNP

READ()..., M, ... partitioned matrix
whose resultant . initiation
size is mxn, first
element is M+dis- LA 3, M+displacement
placement. LA 4, DELTA

LA 0, m
LA 1, n
HCALL MM20SNP

matrix(m,n); double Same except branches to MM20DNP
(partitioned or
not partitioned)

READ()..., C, ... character string
or READALL()...,C,. . initiation

LA 3, C
HCALL CIN

READ()*., partitioned
Cm TO n'" character string initiation

or READALL()..., LA
C LA 3, Cm TO n' " LA 1, m

LA 0, n
HCALL CINP

2-56INTERMETRICS INCORPORATED. 701 CONCORD AVENUE o CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Operation Type Code

matrix(m,n); double same except branches to
(partitioned or not MM21DNP
partitioned)

WRITE()..., C,... character string i

S initiation

LA 3, C
HCALL COUT

WRITE()..., C partitioned character i
m TO n string initiation

LA 3, C
LA 1, m
LA 0, n
HCALL COUTP

WRITE()..., Cn,.. single partitioned.
character string . initiation

LA 3, C
LA 1, n
LR 0, 1

HCALL COUTP

WRITE()..., B,... bit string (of length initiation
n) initiation

SR 0, 0
IC 0, B*
LA 1, n
HCALL BOUT

Arrayed Output The actual code generated depends on the type
of array. Thus, the code will consist of an array
loop (see Section 2.1.7.3) to cause iterative
outputting of each array element using the code
shown above (corresponding to the array element
type).

* In the case shown n < 8 so that an IC is used; for 8 < n < 16 a LH
is used; and for n > 16, a L is used.

2-59
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.13 Real Time Statements

2.1.13.1 WAIT Statement. Except for any form of the WAIT FOR
statement, WAIT routines generally require a double precision
scalar in register FO as input arguments. This is shown below
using LD instructions, although other means of loading FO may
actually be used (for example WAIT UNTIL I where I is an integer
will cause a branch to FXFLOAT which will return with the double
precision value properly situated in FO). WAIT FOR <event exp>
uses a pointer to the <event exp> in RO.

Operation Type Code

WAIT n n: literal LD 0, =XL8'floating-point-
form-of-n'

HCALL WAIT

WAIT X scalar, double LD 0, X
HCALL WAIT

WAIT FOR DEPENDENT HCALL WAITDEP

WAIT FOR X event value IA 0, event-expression-con-
HCALL WAITFOR taniing X

WAIT UNTIL X scalar, double LD 0, X
HCALL WAITUNTL

2.1.13.2 CANCEL, TERMINATE. When CANCEL or TERMINATE containthe name of a task or program to be cancelled or terminated, thenthe entry point of the program or task (referred to as: <taskid>in the code below) must be loaded into register RO.

Operation Ty~e Code

CANCEL HCALL CANCEL

CANCEL <taskid> L 0, taskid
HCALL CANCELT*

TERMINATE HCALL TERMIN

TERMINATE <taskid> L 0, taskid
HCALL TERMINT**

* For taskid list, calls CANCELTC for all but last list item.For taskid list, calls TERMINTC for all but last list item.

2-60
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

2.1.13.3 SIGNAL, SET, RESET Statements.

Operation Type Code

SIGNAL <event var> latched or unlatched LA 0, event-var
event HCALL SIGNAL

SET <event var> latched LA 0, event-var
HCALL SET

RESET <event var> latched LA 0, event-var
HCALL RESET

2.1.13.4 UPDATE PRIORITY Statement. UPDATE PRIORITY requires an
integral value to be specified in register RO for the resultant
priority. If the statement specifies via <taskid> a program or
task, then the entry point of this program or task is contained
in register R1.

Operation Type Code

UPDATE PRIORITY TO i integer L 0, i LH 0, i
HCALL UPPRIO

UPDATE PRIORITY <taskid> L 0, i LH 0, i
TO i L 1, taskid

HCALL UPPRIOT

2-61

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

2.1.13.5 SCHEDULE Statement.

SCHEDULE<task id>

S- <no code>
AT Ti LD FO, =D'Tl'
IN Tl LD FO, =D'T1'
ON El LA 2, event expression containing El

PRIORITY P L 3, =F'P'

- <no code>
,REPEAT <no code>
,REPEAT EVERY T2 LD F2, =D'T2'
,REPEAT AFTER T2 LD F2, =D'T2'

<no code>
UNTIL T3 LD F4, =D'T3'
WHILE E3 LA 4, event expression containing E3
UNTIL E3 LA 4, event expression containing E3

L 1, task id
LA 0, flags*
HCALL SCHEDULE

* For description of flags, see Section 5.6.4.

2-62

INTERMETRICS INCORPORATf'l . 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

2.1.14 NAME Operations

2.1.14.1 NAME Comparisons, NAME comparisons may only be
- or -=.

Operation Code

NAME(X) <OP> NAME(Y) L Rx, X
X, Y NAME variables L Ry, Y

CR Rx, Ry
BC COND, not-true-label

NAME(X) <OP> NAME(Y) LA Rx, X
X=declared variable L Ry, Y
Y=NAME variable CR Rx, Ry

BC COND, not-true-label

2.1.14.2 NAME Assignments. The variable Y in the following
examples may only be a NAME variable. The variable X may be
either an actual or NAME variable having declared properties
identical to Y.

NAME(Y) = NAME(X);

where X is declared variable

LA Rx, X
ST Rx, Y

NAME(Y) = NAME(X);

where X is NAME variable

L Rx, X
ST Rx, Y

2-63

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.15 %MACRO Operations

2.1.15.1 %SVC.

Operation Code

%SVC(X) LA Rx, X
ST Rx, temp-storage-area
MVI temp-storage-area, X'80'
LA 1, temp-storage-area
ST 13, max-temp-area+4
LA 13, max-temp-area
L 15, =V(SVC)
BALR 14, 15
L 13, 4(13)
L 15, 0(13)

2.1.15.2 %NAMECOPY. This operation works in the same manner
as NAME assignments except that the operands must be structures,
but not necessarily having identical properties.

Operation Code

%NAMECOPY(Y,X) LA RX, X
X is actual variable ST Rx, Y

2.1.15.3 %COPY. The code is identical to the code for structure
assignments (see Section 2.1.6.2) when the length to move is
known (literal specification or omitted third parameter). For
expression third parameter, the code is as follows:

Operation Code

%COPY(X,Y,I); LH 4, I
AR 4, 4
LA 3, Y
LA 2, X
HCALL PCCOPY

2-64

INTERMETRICS INCORPOATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

In access methods 1) and 2), the SDF directory plays
a key role. When the symbol name and its block are given,
the directory will identify which particular physical record
of the SDF contains the corresponding fixed-length Symbol
Node. Once this record has been read into core, a simple
and fast binary search will locate the symbol node which
in turn "points" directly to the attributes of the symbol
which are contained within a variable-length Symbol Data
Cell. A virtually identical procedure.can be used to locate
statement data when the SRN is given. In this case, the fixed-
length nodes involed in the binary search are called Statement
Nodes, and their corresponding variable-length data cells are
called Statement Data Cells.

In contrast to access methods 1) and 2), which require
directory help followed by binary searches, method 3) is
direct. This is because there is a one-to-one correspondence
between the ISN (compiler-generated Internal Statement Number)
and the order of the Statement Nodes. The HAL/SDL ICD contains
detailed descriptions of the SDF organization.

2.2.2 Phase III Printed Data

For each invocation of Phase III, a set of tabular
data is printed. The information presented deals with
parameters relating to the SDF produced, such as number
of SDF pages, numbers of block, symbol, and statement nodes,
etc.

In addition to the information which is always printed,
two optional printouts are available. Under control of the
TABLST compiler option, the user may request that symbolic,
structured dump of :the SDF be provided. In addition, under
control of the TABDMP compiler option, the user may request
that the contents of the SDF be displayed in a hexadecimal
format, page by page.

2-67

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

,Version IR-60-5

2.2,3 Stand-Alone Entries

The HAL/SDL Interface Control Document (ICD) fully
describes the SDF format. Strictly speaking this ICD
controls the interfaces between the HAL/S compiler and
the Software Development Laboratory. Several stand-alone
items are included for convenience but are explicitly
controlled by this Specification. These items are
listed below:

ICD Para. Reference Item Comment

2.2.1.2.1.1 Field No. 1 FC FLAG, NOTRACE FLAG
(Sim. Table Directory Bit No. 3., 7
Header)

Field No. 33 Total Free Cell Space
(2 bytes)

2.2.1.2.1.2.2 Field No. 17 ISN of 1st executable
(HAL Block List) statement after

DECLARES

2-68

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Type I

The following HAL statements are implemented with the
linkage instructions occurring before the normal statement
code:

CANCEL SCHEDULE
CLOSE SEND ERROR
EXIT SET/RESET
GO TO SIGNAL
IF* TERMINATE
Null UPDATE PRIORITY
ON ERROR WAIT/WAIT FOR
REPEAT
RETURN

For example, a GO TO ALPHA statement might expand into the
following sequence of code:

BALR 14,11
DC XL2'ISN #'
BC 15,DISP ALPHA(RX,RB)

The linkage instructions for the associated THEN or ELSE
statements are placed according to their own type, as
if they were separate statements.

Type II

The following HAL statements are implemented with the
linkage instructions occurring after the normal statement code:

Assignment FILE
CALL READ
DO (simple) READALL
END WRITE

For example, the generated code for a CALL BETA statement
is as follows:

BALR 14,12
DC A'BETA'
BALR 14, 11
DC XL2'ISN #'

2-71

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Type III

The following HAL statements are emplemented with the linkage instructions
occurring at special points within the statement code:

DO FOR DO WHILE
DO FOR UNTIL or WHILE* DO UNTIL
DO CASE
DO END

*Implementation of this is same as for DO FOR.

The in-line code sequences for the type III linkages are as follows:

HAL Statement

ISN 1 label: DO FOR I = 1 TO 10 BY 2;

ISN 2 - ISNk stmts;

ISN k+1 END;

Machine Code Generated

LA R2,1

LBL #1 ST R2,I
BALR 14,11 }XMON link for DO FOR

At includes times for
DC XL2'ISN-1' compare logic

C R2, =F'10'

BH LBL #2

"stmts" with XMON links

LA R2,2
A R2,I
B LBL #1

LBL_#2 EALR 14,11LL2 ALR 14,11 XMON link for END
DC XL2'ISN k+1'

2-72

INTERMETRICS INCORPO rATED - 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

DO WHILE]

HAL Statement

ISN 1 label: DO WHILE (cond);

ISN 2 -- ISN k stmts;

ISN k+l END;

Machine Code Generated

LBL #1 BALR 14,11 XMON link for DO
Indludes execution time

DC XL2'ISN 1' evaluation for "cond"

Machine language for
evaluation of "cond"

BNC ST #2B ST Branch on "cond" not met

Machine language for
"stmts" with XMON links

B LBL #1

LBL #2 BALR 14,11- 11XMON link for END
DC XL2'ISNk+1'

DO UNTIL

HAL Statement

ISN 1 label: DO UNTIL (cond);

ISN 2-ISN k stmts;

ISNk+1 END;

Machine Code Generated

B LBL #1

LBL #2
Machine instructions for
evaluation of "cond"

BC LBL #3
- Branch on condition met

LBL #1 BALR 14,11 XMON link for DO
DC XL2'ISN 1'

Machine instruction for
"stats"

INTERMETRICS INCORPORATED - 701 CONCORD AVENUF • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840
2-73

B LBL #2

LBL #3 BALR 14,11 XMON link for END

DC XL2'ISN k+l'

DO CASE ELSE

HlAL Statement

ISN 1 label: DO CASE J;

ISN 2 ELSE S;

ISN 3 Si:, ;

ISN 4 S2: ;

ISN_5 END;

Machine Code Generated

Evaluation of J

BALR 14.11 XMON link for evaluaton
DC XLZ'ISN 1' of J

BR BR to SI, S2 or S
Machine language for S

BALR 14,11

DC XL2'ISN_2' XMON link for S

SI: i
Machine language for Sl

Depend on
Statement Type BALR 14,11StatementDC XL2'ISN 3' XMON link for Sl

B LBL#1
S2:

j Machine language for S2

BALR 14,11BAR 14,11 XMON link for S2
DC SL2'ISN 4'

B ST #1

LBL#1 BALR 14,11

DC XL2'ISN 5' XMON link for END

Note: Statements S, Sl,and S2 are assumed to be type II
statements,

2--74

INTERMETRICS INC=ORPOkIcuED 7t i CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.3.2 XMON Address Table

The XMON Address Table is a CSECT that contains the
Statement Processor branch instruction mentioned previously
plus a table of addresses that is required by the Statement
Processor and the External Monitor.

CSECT name: #FCCCCCC, where CCCCCC is the first six
characters of the compilation unit name,
underscores removed and padded with blanks,
if necessary.

Byte Length Contents

0 4 Branch Instruction - transfer to Statement
Processor. See below for further information

4 4 Address of 1st byte of DECLARE data CSECT.

8 4 Address of Statement Processor Data Table
CSECT f T CCCCCC).

12 4 Same as above minus 4*F (F=statement number
of 1st executable statement - either the
PROGRAM or PROCEDURE statement).

16 4 Entry address of compilation unit
($OCCCCCC or #CCCCCCC).

20 2 Statement # of 1st executable statement. (DC H'F')

22 2 Statement # of last executable statement. (DC H'L'

24 16 Reserved for external or HAL/System 360
use (zeros).

40 20 Compiler's data addressing register conten
(R6-R10).

2-75

INTERMETRICS INCORPORATF:D - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Version IR-60-5

Byte #FCCCCCC

+0 Branch Instr.

4 A(#DCCCCCC)

8 A(#TCCCCCC)

12 A(#TCCCCCC - 4*F)

16 A ($OCCCCCC)

20 F L

24 0'

40 R6

R7

R8

R9

R10

+60 / .- +60 -

T+1 0

A (STACK1)

A (STACK2)

LITERAL

A(STACKT+1) POOL

LITERAL

POOL

PROGRAM COMSUB
with "T"
Tasks

Figure 2.3-1: XMON Address Table CSECT

2-76

For programs with "T" tasks:

60 4 Total number of stacks (T+1).

64 4 Address of program stack (@OCCCCCC) ,

68 4 Address of task #1 stack (@1CCCCCC)

64 + 4T 4 Address of task #T stack (@TCCCCCC).

68 + 4T Compiler's literal area begins here.

For COMSUBs:

60 4 4 bytes of zeros

64 - Compiler's literal area begins here.

The first entry in the CSECT is the Statement Processor branch instruction.
This is the instruction pointed to by register 11 in the linkage instructions de-
scribed in Section 2.2.1.3.1. It is simply an unconditional branch to the Statement
Processor contained in the HALSYS object module. The form of the instruction is

as follows:

BC 15,DISP(0,12)

Register 12 contains the address (loaded by HALSTART at initialization) of HALSYS
and DISP is the displacement of the Statement Processor into HALSYS. This

instruction does not destroy the contents of register 14, which still points to the

compiler's internal statement number for the particular statement being executed.

A four-byte pointer to the location of the XMON Address Table
CSECT and, hence, to the branch instruction, is contained at a
displacement of four bytes from the start of the CSECT which contains
the executable code for the unit of compilation.

2-77

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.3.3 Statement Processor Data Table

The Statement Processor Data Table for a unit of compilation
is a CSECT that contains the basic information necessary for the
Statement Processor to process each statement in that unit of
compilation. There is an entry in the table for each compiled
HAL source statement and, hence, for each internal compiler state-
ment number, with one major exception. There are no entries in
the table for any COMPOOL declaration statements which precede the
primary unit of compilation. Since the first portion of almost
every unit of compiler consists of these non-executable statements,
a significant space-saving is achieved in this manner. The remainder
of the table is dense with every statement having one entry.

Each entry in the table contains a two-byte statement execution
time (in machine cycles), a statement action flag bit, and a two-
byte utility field for miscellaneous use in any manner desired by
the external environment. The statement action flag bit occupies
the leftmost bit position of the utility field. The format of an
entry is shown in the figure below.

Statement Action Flag Bit

Stmt Execution Utility Field
Time

2----2 bytes i I 2 bytes -

Figure 2.3-2: Format of Statement Processor Data
Table Entry

The name of the Statement Processor Data Table CSECT is of
the form #TCCCCCC, where CCCCCC is the first six characters of
the compilation unit name with any underscores removed and the
name padded with blanks, if necessary.

A pointer to the start of this table is provided in the XMON
Address Table described in Section 2.3.2.

2-78

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Version IR-60-5

2.4 Phase 1.5 - The Optimizer

2.4.1 General Description

The HAL/S Optimizer takes HALMAT produced by Phase I
and performs the following functions:

- Common subexpressions (CSE's) are recognized.

- Additional constant folding is carried out.

- Unneeded divisions are replaced by multiplications.

- Superfluous matrix transpose operations are
eliminated.

- Inline code is generated to replace certain
VECTOR/MATRIX LIBRARY CALLS.

- LOOP invariant HALMAT is pulled outside of DO
and Array loops.

- Adjacent and nested array loops are combined
when possible.

Altered HALMAT is then passed to Phase II for object code
generation.

2.4.2 Design Comments

The most important design consideration is that the
Optimizer does nothing to most HAL/S statements! Thus, the
sooner this is recognized, the less time wasted on a state-
ment and the more efficient is the Optimizer. More concretely,
the following features are of note:

1. The CSE TAB doubly linked list drastically
reduces the number of Nodes searched for CSE's.
This might be compared with FORTRAN H where the
previous ten statements are searched for CSE's,
even though they may contain no common variable
with the present statement.

2. If a Node does not have enough eligible operands
for a CSE, no search is made (SEARCHABLE=FALSE).

3. The Optimizer is quite conservative. For example,
all user procedure and function calls cause ZAPTABLES
to be invoked.

2-79

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Version IR-60-5

2.4.3 Optimizations Attempted

This section describes those optimizations presently
implemented in the HAL/S OPTIMIZER and corresponding Phase II,
and gives appropriate user information.

2.4.3.1 Common Subexpression Eliminations.

a. "Cummutative" Operations

For bits: 6, I

For scalars: +, -, <>,

For integers: +, -, <>

For vectors and matrices: +, -

Example 1:

F = A - D + B - C;

G =D - C - B + A;

becomes*:

CSEl = A - C;

CSE2 = B - D;

F.= CSEI + CSE2;

G = CSE1 - CSE2;

Example 2:

F = (A/B) (C/D);

G = C(B/D) A;

becomes:

CSEl = C/D;

CSE2 = A/B;

F = CSEl CSE2;

G = CSE1/CSE2;

* Often the CSE's are merely retained in registers with no

temporaries created.

2-80
INTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Example 3:

F = A + B + (C D) + E + (B C A);

G = D + (D C) + E + A + (A B);

becomes:

CSE1 = A + E + (C D);

CSE2 = (A B);

F = CSEl + B + (CSE2 C);

G = CSE1 + D + CSE2;

b. Noncommutative Operations

1. For bits: II, --

Built-in functions: XOR.

2. For scalars and integers: **, negation,

conversion to integer or scalar from integer
or scalar.

Built-in functions: ABS, CEILING, FLOOR, ODD,
ROUND, SIGN, SIGNUM, TRUNCATE, ARCCOS, ARCCOSH,
ARCSIN, ARCSINH, ARCTAN, ARCTANH, COS, COSH,
EXP, LOG, SIN, SINH, SQRT, TAN, TANH, DIV, MOD,
SHL, SHR, INDEX, LENGTH, MIDVAL, ARCTAN2,
REMAINDER.

3. For vectors and matrices*: negation, m v,
v m, v*v, v x, x v, v/x, m m, v v, m x, x m,
m/x, m**i.

Built-in functions: ABVAL, DET, INVERSE, TRACE,
TRANSPOSE, UNIT.

i = non-negative integer literal,
x = scalar or integer,
m = matrix, and
v = vector.

2-81
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Example 4:

X_NEW = X COS(THETA) + Y SIN(THETA);

Y_NEW = Y COS(THETA) - X SIN(THETA);

becomes:

CSEl = COS(THETA);

CSE2 = SIN(THETA);

X_NEW = X CSEI + Y CSE2;

Y_NEW = Y CSE1 - X CSE2;

Example 5:

R1 = (-B + SORT(B**2 - 4 A C))/2A:

R2 = (-B - SQRT(B**2 - 4 A C))/2A;

becomes:

CSE1 = -B;

CSE2 = SQRT(B**.2 - 4 A C);

CSE3 = 2 A;

R1 = (CSE1 + CSE2)/CSE3;

R2 = (CSE1 - CSE2)/CSE3;

2-82

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Subscript Common Expressions (CSE)

Subscripting of arrayed data requires the calculation
of a displacement. SCE's are recognized in
these computations with these exceptions:

Character and Bit Types

No SCE's are recognized which only involve
terminal subscripts. (Character type is not
handled at all.)

Structure Subscripts

Only the entire TSUB operator is eligible for
CSE's; no partial computation.

Example 6:

Suppose A is a three-dimensional array of matrices.
Then to reference:

3,J,4: K+, L

code must be generated computing:

(J constant_1) + (K constant_2) + L.

Consider:

F = A3,J,4: K+l, L + A3,J,5: K,L

The subscript computation will be done only once.

Subscript common expressions will also be recognized
between:

3,J,4: K+L, M

and:

Term SCE

1. A1,J+2,1: 1,M (J constant_1) + M

2. F K+L K+L

3. F - (K+L) constant 2 (K+L) constant 2

4. B+L,2 K+L or

(K+L) constant 2 if B is of the
right dimension

Only machine independent information will appear as SCE's.
Phase 2 must still perform shifting for data type and alignment.

2-83
INTERMETRICS INCOnRPORATED- 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

2.4.3.2 Matrix Transpose Eliminations. MT V is changed

to V M and V MT is changed to M V, saving a transpose
operation.

Example 7:

M = M T ((Ml + M2)T V);

becomes:

M = (V (Ml + M2)) M;

2.4.3.3 Constant Folding. Some constant folding not done
by Phase I involving integer and scalar +, -, <>, and +
is performed.

Example 8:

F = (2A)/(4 B C); (all scalars)

becomes:

F = (.5A)/(B C);

CSE's involving folding constants are found.

2.4.3.4 Division Eliminations. Terms are rearranged to
eliminate unneeded divisions.

Example 9:

F = (A/B) (C/D) (E/F);

becomes:

F = (A C E)/(B D F);

2.4.3.5 Inline Vector/Matrix Computations. The following
vector/matrix operations were originally handled by calls
to library routines, each containing an iterative loop.
Optimization generates HALMAT to perform these operations
inline.

Vector Assign
Vector Negate
Vector Add
Vector Subtract
Vector-Scalar Product
Vector-Scalar Divide
Matrix Assign
Matrix Negation

2-84
INTE METRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Matrix Add
Matrix Subtract
Matrix-Scalar Product
Matrix-Scalar Divide

Example 10:

Vl = V2 + V3 + V4; /* ALL VECTORS */

This statement, which would require three calls to library
routines, is accomplished in a single inline loop.
Without optimization, the statement would be executed as
follows:

VTEMP = V2 + V3;

Vl = VTEMP + V4;

2.4.3.6 Loop Simplification. Expressions within iterative
loops, which contain only variables that are loop invariant;i.e., do not have their values changed within the loop, are
evaluated once before the loop is entered.

Example 11:

IF A and THETA are loop invariant then:

DO FOR I = 1 TO Y;

F = A + B + COS(THETA);

END;

would become:

CSE = A + COS(THETA)

DO FOR I = 1 TO Y;

F = B + CSE;

END;

saving needless recomputations of A + COS(THETA).

Exceptions:

It is necessary to guard against run time errors beinggenerated by this process when loops are executed 0 times orwhen statements such as:

IF B # 0 THEN A = 1/B;

appear within the loop.

2-85
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

To prevent most (but not quite all) such errors,
no computation will be pulled involving a variable
referenced in a conditional test.

An assign to a name variable, a call to a user
function, or a real time statement would prevent any
variable in the loop from being pulled. No name variables
can be pulled.

Example 12:

Subscript computations are prime candidates for
this optimization, especially since the programmer cannot
do this. Thus, if J is loop invariant, then for:

A,3

the product:

J constant 1

will be pulled outside the loop.

Example 13:

Array loops will be handled like other loops for
example:

[A] = [B] + C + [D] + E;

will become:

TEMP = C + E;

[A] = [B] + [D] + TEMP;

Example 14:

Array Subscript Loops

For array subscripts only, presense of "AT", "TO",
or "*" subscripts produce loops. Loop invariant computations
can be ber- 'icially pulled before loops. Thus:

iT J,K: L,4

will have J const 1 + K const 2 + L const 3 removed from
the array loop.

2-86
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRID(ir. MASSACI1tJSETrt 0o2138 (617) n61 1840

Version IR-60-5

Example 15:

Common Subexpressions

CSE's will continue to be found within loops. If
the invariant expression pulled from a loop is a CSE out-
side the loop, it will be combined. E.g.

F = A + B + D;

DO FOR I = 1 TO Y;

G = A + B + C;

END;

If A and B are loop invariant, we will get:

CSE = A + B;

F = CSE + D;

DO FOR I = 1 TO Y;

G = CSE + C;

END;

2.4.3.7 Loop Combining. After all other processing is
complete, a pass is made to combine adjacent vector/matrix
or array loops of the same dimension.

Two loops can be combined if all of the following
hold:

1. Neither contain function or procedure calls.

2. Neither contain assignments into name variables,
assign parameters, or DSUBS.

3. If the loops are in different statements,
neither statement contains a TSUB.

Loops are not combined if:

1. Both an assignment and a DSUB reference occur
anywhere within either of the loops.

2. The first loop contains an assignment into a
vector/matrix type variable, and that same variable
appears in a non-assignment context in the second
loop, and the second loop is arrayed or invokes
a vector/matrix routine that cannot be done inline.

2-87
INTERMETRICS !ICOfl-ATED - 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Example 16:

Given vectors VI, V2, and V3, AV ARRAY(3) VECTOR,
and AM ARRAY(3) MATRIX, the following loop pairs would
not be combined:

Vl = V2 + V3; V1 = V2 + V3;

AV = AM Vl; AV = AV + Vl;

De-Nesting Array Loops

Consider the arrayed statement:

F = A + B; (F, A, B ARRAY(3,5))

Two nested loops are generated.

If no DSUB's, TSUB's, or terminals of structures with
copies are present, then one loop replaces the nested loops.
This also saves on multiplications.

2.4.4 Scope of Optimization

Common subexpressions are recognized over approximately
basic blocks of code. No CSE's are recognized across:

labels

user procedure or function calls

assignments into name variables

HALMAT blocks

inline functions

GO TO's

END's of DO FOR's, DO WHILE's, DO UNTIL's
END's for simple DO END if there is a corresonding EXIT
Major or Minor Structure Assignments
READ, READALL, and FILE I/O instructions

program organization operators (e.g. PROCEDURE, CLOSE)
WAIT statements

ERROR statements

IF statement conditionals containing more than one
boolean comparison

ends of the true parts in IF THEN's or IF THEN ELSE's
end of IF THEN ELSE's

2-88
INTERMETRICS INCORPORATED .701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

The presence of any of the following causes the entirestatement to be skipped.

user procedure or function calls
inline functions

I/O instructions

shaping functions

character operations

bit or character conversion to integer or scalar
real time statements

2-89
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

3.0 SYSTEM CONCEPTS AND INTERFACES

3.1 HAL Object Module Layout

Each successful HAL compilation produces a number of
named control sections (CSECTS).

The CSECT name corresponding to the executable code
is derived from the label of the PROGRAM, PROCEDURE, FUNCTION
or COMPOOL being compiled, according to the following rules:

1) Eliminate all underscores from label.

2) Pad or truncate to 6 characters where necessary.
All CSECT names are based on this 6 character name.

3) Prefix 6 character name with "SO" if PROGRAM,
"#C" if PROCEDURE or FUNCTION, or "#P" if COMPOOL.

All TASKS also result in a separate control section.

The name of the CSECT corresponding to a TASK is
derived from the PROGRAM in which it is defined, not from the
label on the TASK declaration itself.

The names are similar to the PROGRAM name, except that
the first task name is prefixed with "$1", the second task
with "$2", etc. The letters "A-Z" follow the digit "9",
thus allowing up to 35 TASKs in a compilation unit,

3-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Other CSECTs are:

1) Data are for HAL variables. Name derived by
prefixing the 6 character name with "#D".

2) FSIM containing FSIM address tables and literals
used in HAL programs. Name derived by prefixing
6 character name by "#F".

3) Cost-use array. Cost and use arrays for statement
timing, hot bits, and SDL/SLS/Stand-Alone specific
information. Name derived by prefixing 6 character
name by "#T". This is present only if TRACE was
specified during compilation.

4) Internally defined PROCEDURES, FUNCTIONS, UPDATE
Blocks, and Inline FUNCTIONS. Name derived by
prefixing 6 character name as follows: "A2" - "A9",
"BO" - "B9"., ... ,"20" - "Z9". The name is derived
from an internally generated block number. Note that
blocks are named with a different convention.

A stack CSECT for each PROGRAM and TASK is generated by
HALLINK. The name of the stack CSECT is obtained by replacing
the $ in the code CSECT name by an at sign (@).

3-2

INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

CODE FSIM DATA

FNAME # DNAME

$ 0 NAMEI
or

#CNAME

$1NAME

(TASK
only)

Internal
Procedures,
functions,
update blocks

A2NAME

COST-USE

A3NAME # TNAME

STACK

'@ONAME
Z9NAME I l1NAME

--.

A separate stack CSECT exists for each
PROGRAM and TASK. The stack CSECTS are generated
by the HALLINK program.

Figure 3-1

3-3

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Version IR-60-5

A typical example:

(PARM.HAL = 'TRACE' specified)
ABC: PROGRAM;

X: TASK; ...CLOSE;
Y: PROCEDURE; ...CLOSE;
Z: UPDATE ...CLOSE;

CLOSE ABC;

CODE FSIM DATA

OABC #FABC #DABC

$1ABC
(Task X)

COST-USE
A2ABC
(Proce-
dure Y] #TABC

STACK

A3ABC
(Update @OABC I
Block _ _ _

Z) ,

I @lABC I
II

Figure 3-2

3-4
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.2.2 Template Checking

Template checking is a technique used to ensure
that definitions of PROGRAMS, COMPOOLS, and COMSUBS
(external procedures and functions) are consistent
throughout a load module at run-time.

Each compilation unit has a template and a version
number associated with it. The version number is contained
within the template. Its range is 1 to 255 inclusive.

The template consists of standardized card images
containing information derived from the compilation unit.
It is laid out as follows:

1) Block header of compilation unit modified by
the keyword EXTERNAL.

2) All declarations, if compilation unit is COMPOOL;
otherwise, if the compilation unit has any para-
meters, all declarations, REPLACE statements, and
structure templates up to, and including, the last
declaration pertaining to those parameters.

3) CLOSE;

4) D VERSION XX

where XX is one byte version number.

The first time a compilation unit is compiled, a template
is generated with the version number 1. If each subsequent
compilation differs from the existing one, a new template is
generated. Upon each regeneration, the version number is
incremented by one, unless it is 255, in which case it is
reset to 1.

Template checking is provided via the "sym" cards ofthe linkage editor.

3-7

INTERMETRICS INCORPORATED -701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

If a compilation unit references other external
compilation units, the compiler determines the version
numbers of their templates (which must be included in the
compilation), and passes them to HALLINK. The version
number of the compilation unit being compiled is also passed
to HALLINK.

When a load module is produced by HALLINK, a check
is made for each external compilation unit referred to by
the compilation unit being compiled. An error
is signalled if the version number of the template of
the external compilation unit is not the same as the version
number of the object module of that external compilation unit.

3.2.3 HALMAP

The control section named HALMAP is inserted into all
load modules by HALLINK. Its length varies according to the
number of compilation units included in the load module.
For each compilation unit, the following information is
included:

1) Type of compilation unit; i.e. PROGRAM, COMSUB,
or COMPOOL;

2) Address of first byte;

3) Name of member in SDF files with pertinent information.

Length of HALMAP is 4+12n bytes, n = number of compilation
units.

Halmap Layout

Location Length (bytes) Description

0 2 # of compilation units (n).
2 2 # of PROGRAMS and TASKS.
4 12n One 12 byte entry for each

compilation set up as outlined
Compilation Entry below.

O 1 Type:
X'00' = COMPOOL
X'01' = PROGRAM
X'03' = COMSUB

1 3 Address of first byte of
control sectinn,

4 8 SDF Member Name.

3-8

NTERMETRICS INCORPORATED. 701 CONCORD AVENUE * CAMBRIDGE MASSACHUSETTS 02138* (617) 661-1840

Figure 3-3

STACK LAYOUT

Procedure Temps

& Reentrant Local Data

80

R14 return address
R13 (previous stack
R12 frame)
R11
R10
R9
R8
R7
R6
R5
R4 arg4
R3 arg3
R2 arg2 !Pcreasin~
R1 argl emnrrn
RO arg0 adress

20

Error Link
16

Doubleword

Temporary

flag statement
field I number

•0 ID Current Code Base
R13

Used

NOTE: High order bit of flag field is "l" if exclusive procedure;
The other 15 bits reoresent the lock groups for an update block,

INI'TERMETRICS INCO.rLC .T 7 CONCORD ALInU- • CAMBRIDGE, MASSACHUSETTS 02138- (617) 661-1640
3-11

Figure 3-4

PROCEDURE AND FUNCTION CALLS

Load RO, Argument 0

Load R1, Argument 1

Load R4, Argument 4

Load FO, Floating Arg. 0

BALR R14, R12 GO TO PROCEDURE CALLER

DC AL1(ID), AL3(Entry-Adcon)

PROCEDURE AND FUNCTION EXITS

B 4(R12) GO TO PROCEDURE EXITER

Notes:
a) The ID-Adcon is a four-byte field aligned on the

halfword immediately following the BALR instruction.

b) The one-byte ID is the unique block ID of the called
procedure or function, as follows:

ID Block Type

N Programs

0 COMSUBS, and library routines

> N Nested procedures

where N is a compiler-assigned internal block
number.

c) The three-byte Adcon is the entry point address of
the called procedure or function.

3-12

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02133 (617) 661-1840

Version IR-60-5

the compiler will attempt to generate in-line code
sequences, including as many operations within a single
loop as possible. In many cases, the stores into temp-
area's, as shown in the prototype instruction sequences,
will not be necessary, unless the resultant VECTOR or
MATRIX needs to be passed from one loop to another, or
to a library routine. For example:

HAL Code

DECLARE VECTOR,V,W,X,Y,Z;

V = V+(W+X)*Y-Z; LA RL, 1
LR R , RL

L1 SLA RI , 2

LE FR, W(RI)

AE FR, W(RI)

STE FR, templ(RI)

LA RL, 1(0, RL)
CH RL , =H'3'

BC 12, L1

LA 4, Y

LA 3, templ

LA 2, temp2

HCALL VX6S3

LA RL, 1
LR RI , RL

L2 SLA RI , 2

LE FR, V(RI)

AE FR, temp2(R)
SE FR, V(RI)

LA RL , 1(0,RL)
CH RL , =H'3'

BC 12, L2

3-31.1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 09138 * (R17) P~1-1P '

4.0 USER INTERFACE

User interfaces are those which are directly related
to the actions which must be taken by a user to communicate
with the HAL/S-360 compiler system. User interfaces do not
include many actions taken automatically by the compiler as
a result of System Interfaces (see Section 3). The interfaces
presented here are primarily related to control card and source
card input and to printed outputs.

The HAL/S-360 compiler system is designed to run in both
a Stand-Alone mode and within the Software Development Laboratory
(SDL). This presentation of user interfaces describes operation
in the Stand-Alone mode. Special sections are included, as
needed, to describe areas in which SDL operation differs from
that in Stand-Alone.

In order to avoid duplication of some information
already contained in other sections, some references to such
sections are made where appropriate.

4.1 The Compile Step

4.1.1 Job Control Language

The JCL necessary to execute the HAL/S-360 compiler is
described below. A list of typical JCL statements to which
the comments apply is shown in Figure 4.1.

* The EXEC card invoking the HAL/S-360 compiler must
specify program name MONITOR. MONITOR handles all
compiler/OS interfaces and also performs the actual
loading and overlaying of the phases of the compiler.
The compiler requires a 350K region. A larger region may
be specified. The compiler will always use all the memory
it is given. A larger region will generally result in
smaller compilation times. A default time limit of 1
minute is shown. This is sufficient for most average size
HAL/S programs (approx. 300 HAL/S statements).

The PARM field contains the compile-time options as
described in Section 4.1.2.

* The STEPLIB DD card specifies the location of the
load module library which contains the module MONITOR
needed to run the compiler. This card may define any
direct access library which contains the proper module
or may be omitted at installations where the module
has been made part of the system library (SYS1.LINKLIB).

4-1
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Figure 4.1

8 //HAL EXEC PGM=MONITOR,REGION=350K,TIME=1,PARM=<compile time options>'
//STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
//PROGRAM DD DISP=SHR,DSN=HALS360.COMPILER
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
//LISTING2 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
//OUTPUT3 DD UNIT=SYSDA,DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
// DSN=&&HALOBJ
//OUTPUT5 DD DISP=(MOD,PASS),DSN=&&HALSDF,SPACE=(TRK, (2,2,1)),
// DCB=(RECFM=FB,LRECL=1680,BLKSIZE=1680),UNIT=SYSDA
//ERROR DD DISP=SHR,DSN=HALS360.ERRORLIB
//FILE1 DD UNIT=SYSDA,SPACE=(CYL,(3))
//FILE2 DD UNIT=SYSDA,SPACE=(CYL,(3))
//FILE3 DD UNIT=SYSDA,SPACE=(CYL, (3))
//FILE4 DD UNIT=SYSDA,SPACE=(CYL,(3))
//FILE5 DD UNIT=SYSDA,SPACE=(CYL, (3))
//FILE6 DD UNIT=SYSDA,SPACE=(CYL,(3))
//INCLUDE DD DISP=OLD,DSN=INCLIB
//OUTPUT6 DD DISP=OLD,DSN=TEMPLATE. LIB
//ACCESS DD DISP=OLD,DSN=ACCESS
//SYSIN DD * or <dsn pointers>
//OUTPUT4 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)

4-2
INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The following JCL defines data which are needed only if certain
of the compiler's features are used.

* The INCLUDE DD card identifies the dataset(s) which will
be searched to resolve requests made on INCLUDE compiler
directives (see Section 3.8 above) and to perform
block template verification (see Section 3.2 above).
Several DD cards may be concatenated to define the INCLUDE
JCL. Each dataset referenced must be of partitioned
organization and must have RECFM=F or FB.

* The OUTPUT6 DD card defines the dataset onto which
block templates will be written (see Section 3.2.2
above). The dataset specified must have partitioned
organization and must specify fixed length records.

* The ACCESS DD card specifies the partitioned dataset
from which the compiler will obtain ACCESS control
information as described in Section 3.1.2 above.
The DSORG must be PO and the RECFM must be F or FB
with LRECL = 80.

" The SYSIN DD card specifies the location of the primary
source input to the compiler. This file must have
sequential organization and must have the following DCB
attributes for Stand-Alone operation:

RECFM = F or FB

LRECL = 80

When operating in an SDL environment, the SYSIN data-
set must still have RECFM=F or FB but may have

80 < LRECL < 132

e The OUTPUT4 DD card specifies the destination of an
object deck output. The object deck will be identical
to that produced by the OUTPUT3 DD card. The OUTPUT4
DD card is generally used to obtain punched card output
of an object deck. Its DCB requirements are identicalto OUTPUT3. This DD card is used if the duplicate object
deck is requested via the DECK compiler option.

4-5

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.1.2 Inputs

User-defined inputs to the compiler step consist of
both compiler options and HAL/S language source statements.

4.1.2.1 Compiler Options. The following is a list of options
which may be coded in the PARM field of the EXEC card which
invokes the HAL/S-360 compiler. In all cases, options are
separated in the PARM field by commas. If an option is
referenced more than once in a PARM field, the last reference
(scanning left to right) will be used to determine the option's
setting.

There are two general classes of options recognized
by the compiler: Type 1 options having a binary value
of "on" or "off", and Type 2 options having a numeric or
string value.

Type 1 Options

Type 1 options are controlled by keywords in the PARM
field. The appearance of the keyword indicates that the
option is to be "on" during the compilation unless the
keyword is preceeded by the characters "NO" in which case
the option is "off". Some Type 1 options have alternate,
shorter spellings which may be used interchangably with
the standard keywords.

When a Type 1 option has an altnerate form, the
negative or "off" value (equivalent to adding 'NO' to
the standard keyword) is specified by preceeding the
alternate form with the charanter 'N'. The 'NO' and
ON' notations may only be used with the standard and
alternate forms respectively. For example, the LIST
option has the alternate form L. If the negative is
to be specified, it may be done as NOLIST or NL; NLIST
or NOL will not be recognized.

The following Type 1 options are recognized. Thedefault settings shown are used in the absence of overriding
PARM field specifications.

4-6
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Keyword Alternate Default Function

LISTING2 L2 off Causes unformatted source
listing to be generated.

DUMP DP off Requests the compiler to
produce a memory dump if
certain internal compiler
errors occur.

LIST L off Produces an assembly listing
from Phase II of the compiler.

TRACE TR on Causes the generation of a
link to the HSS end-of-
statement routine in the
object module. Enables Real
Time execution and debugging.

DECK D off Controls production of an
additional object deck on
the OUTPUT4 DD card.

TABLST TL off Causes Phase III of the
compiler to produce formatted
dump of the simulation data
file (SDF).

SRN none off Causes the compiler to omit
the last eight columns or
characters from the source
scanning. These columns
are then used to print infor-
mation on the listing.

TABLES TBL on Controls generation of Simu-
lation Data Files.

ADDRS A off Indicates the presence of
statement address informa-
tion in the Simulation Data
Files.

TABDMP TBD off Causes Phase III of the compiler
to produce a hexadecimal dump
of the simulation data file.

4-7

INTERMETRICS INCORPnRATF;. 70 CONCORD AVENUE . CAMBRIDGE. MASSACHUSETTS 02138 . (617) 661-1840

Version IR-60-5

Keyword Alternate Default Function

SDL none off Informs the compiler that it
is operating within the SDL.
ACTIONS specific to SDL opera-
tions are keyed to this option
such as inclusion of SRN,
Change Authorization Field and
Source record revision indicator
on primary listing.

FCDATA FD off Causes HAL/S-360 data to be
allocated using a halfword
as the basic memory unit. This
causes data area allocation
which maps directly into HAL/S-
FC data allocation.

SREF SR off Causes special processing of
user-defined symbols which
appear within an EXTERNAL
COMPOOL template which is
included in another compila-
tion. Any items in such a
COMPOOL which are not referenced
by the primary compilation unit
are not printed in the symbol
table listing.

QUASI Q off Causes alternate generation of
double precision multiply and
divide instructions. The pseudo-
instructions cause program excep-
tions which can be trapped by
the HAL/S runtime system as a
means of simulating alternate
floating point precision. See
Section 6.4.

4-8
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Type 2 Options

Type 2 options have "values" which may be altered by
the user. The values are specified by including the pseudo-
assignment statement:

...,<type 2 opt>=<value>,...

in the PARM field where <type 2 opt> is one of the legal
type 2 options, and <value> is the value to be used during
compiler execution. The form of <value> is determined by
the specific .options. Some Type 2 options have alternate,
shorter spellings which may be used interchangably with
the standard forms.

The following Type 2 options are recognized. The
default values shown are used in the absence of overriding
PARM field specifications.

Standard Alternate Default Function

PAGES= P= 250 Sets the maximum page num-
ber to be allowed in genera-
tion of the primary compila-
tion listing.

LINECT= LC= 59 Sets the maximum number of
lines which will be printed
on any one page of either
the primary or secondary
source listing.

TITLE= T= null Specifies 1 to 60 characters
used by the compiler when
printing header information
at the top of each page of
the listing.

SYMBOLS= SYM= 200 Specifies the size of the
compiler's symbol table.

MACROSIZE= MS= 500 Specifies the maximum
number of characters
allowed in text of macro
definitions.

LITSTRINGS= LITS= 2000 Specifies the maximum total
number of characters allowed
in character literals in a
table.

4-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Standard Alternate Default Function

COMPUNIT= CU= 0 Specifies a compilation unit
number to identify the unit
of compilation. The number
is made available in the SDF
and in the Block Data Areas
for code blocks in a HAL/S-
FC compilation.

XREFSIZE= XS= 2000 Specifies the number of cross
reference table entries allo-
cated by the compiler. Each
entry uses 4 bytes of storage.

CARDTYPE= CT= null Specifies pairs of characters
which define a mapping of
arbitrary input record types
(column 1 of the record) into
the standard types (E,M,S,C,
D, and blank). E.g. CT=XCYM
would cause any 'X' records
to be compiled as comments
and any 'Y' records to be
compiled as 'M' records.

LABELSIZE= LBLS= 1200 Specifies the maximum number
of internal label points
which will be maintained by
the code generator.

BLOCKSUM= BS= 400 Specifies the maximum number
of entries in the table used
to accumulate data for the
"BLOCK SUMMARY" printouts
at the ends of blocks.

4-10
INTERMETRICS INCORPUHA I D. 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

A listing of the object code produced by the compiler may be
requested. The result of such a request is a pseudo-assembler
listing which identifies the code produced for the compilation
in both a pure hexadecimal and in a mnemonic op-code format.
References to HAL/S variables are indicated by appropriate
comments on each instruction. Additionally, the time penalty
for each HAL/S statement is indicated. This value is an approx-
imate Shuttle-GPC execution time and is used in the FSIM real
time executive simulation to advance the pseudo timer.

When operating in the SDL, additional information is provided
on the primary source listing. The Record Sequence Number,
Record Revision Indicator, and Change Authorization fields
(see Section 4.1.2.2) are printed on the primary source listing
next to the statements to which they apply.

Under control of the TABLST and TABDMP compiler options, a
formatted and/or hexadecimal dump of the contents of an SDF
may be requested.

4.1.3.2 Other Compiler Outputs. In addition to the listings
described in Section 4.1.3.1, other non-printed outputs are
generated by the compiler. These outputs are generally considered
systems interfaces and are,therefore, dealt with in Section 3.
Their general nature is mentioned here only for completeness.

* object decks

o block templates

* simulation data tables

4-13
INTERMETRICS INCORPORATED -701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.2 The Link Step

The HAL/S-360 compiler system employs a mechanism for the
handling of temporary work areas at execution time which requires
special processing at the time all pieces of a run are linked
together. This processing is achieved by substituting a HAL/S-
360 compiler system routine for the standard OS/360 link editor
in the LKED step in the program generation process. This program
is known as HALLINK.

Temporary work areas and general registers save areas
used by a running HAL/S program are obtained from an area
called the STACK. The STACK is really a CSECT of sufficient
size to allow all routines with temporary data requirements to
obtain memory from the STACK CSECT. One STACK CSECT exists for
each PROGRAM or TASK in a program complex. It is not until
link-edit time that all of the individual routines' requirements
for temporary space are known. The HALLINK program determines
the requirements and creates the STACK for each PROGRAM and/or
TASK. In performing this function, HALLINK makes use of the
standard OS/360 linkage editor. The HALLINK program has been
designed to be essentially transparent to the user (i.e. it
performs functionally the same task as the standard link-editor).

In addition to producing explanatory material, HALLINK also
performs a template matching function. Whenever a compilation
unit is compiled, a template for the unit is created. This
template contains a version number which is maintained by the
compiler. Upon recompilation of any unit, the compiler checks the
compatibility of the new unit with the old by matching the old
template with one created during the recompilation. If an incompat-
ibility is found (such as a difference in arguments between two
compilations of a COMSUB), the old template is replaced by the
new one. The new template has a different version included in it.
If no incompatabilities are found, the old template and version
remain intact. The resulting version number is incorporated into
the object module for the compilation unit and uniquely ties the
compiled code to the specific interface requirements of the
corresponding templates. This is all performed at compilation
time.

Whenever compilation units reference each other, templates
for the referenced units are included by the user. From the
included template, the compiler extracts the version information
placed there during generation of the template. This version
information is incorporated in the object code for the referencingunit, thus linking any references to the external modules to code
of the proper version.

4-14
INTERMETRICS INCORPUHA I At 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

HALLINK uses this version information at link edit time
to verify that all inter-module references are proper. This
checking guarantees that compile time interface checks involving
templates are valid for the object modules actually being
linked together.

If version mis-matches are found, HALLINK prints a
message indicating both the version number expected by a "caller"
and the one presented by the "called" routine.

The processing done in HALLINK is generally broken down into
three phases:

1) Invoke the standard linkage editor thus performing
all library searches and producing a load module
with references to the STACK csects unresolved. This
load module is written to the TEMPLOAD DD card.

2) Analyze the load module which was put on the TEMPLOAD
DD card and create the necessary control sections as
object files on the STACKOBJ DD card.

3) Re-invoke the standard linkage editor to incorporate
the STACK CSECTS into a final load module which is
placed on the SYSLMOD DD card.

4.2.1 Job Control Language

The JCL necessary to execute the HALLINK program is
described below. A list of typical JCL statements to which the
comments apply is shown in Figure 4.2.

Since the majority of the JCL for HALLINK is identical
to that required for the IBM OS/360 Linkage Editor program,
only those JCL statements which have specific HALLINK implica-
tions are discussed here.

0 The EXEC card invoking the link step must specify
"HALLINK" as the program to be executed.

* The STEPLIB DD card specifies the location of theload module library which contains the module HALLINK.
This card may define any load module library which
contains the proper module. The STEPLIB DD card may not
be necessary at installations where the module has beenmade part of the system library (SYSI.LINKLIB).

o The SYSPRINT DD card must specify a BLKSIZE value.

4-15
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Figure 4.2

//LKED EXEC PGM=HALLINK,REGION=100K
//STEPLIB DD DISP=SHR,DSN=HALS360.MONITOR
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1210
//SYSLIB DD DISP=SHR,DSN=HALS360.RUNLIB
//SYSLIN DD DISP=OLD,DSN=HALOBJ
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=HALMOD(GO),DISP=OLD,UNIT=SYSDA,
// SPACE=(CYL,(1,1,1))
//SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//STACKOBJ DD SPACE=(TRK,(5,10)),UNIT=SYSDA
//TEMPLOAD DD SPACE=(CYL, (1,1,1)) ,UNIT=SYSDA

4-16
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

O The SYSLIB DD card should designate the HAL/S-360
run time library (HALS360.RUNLIB) as the primary source
of unresolved external references. Additional libraries
may be concatenated to HALS360.RUNLIB if desired.

o The STACKOBJ DD card specifies a sequential data set
onto which generated object decks are placed by HALLINK.
The JCL should only specify a device and space allocation.
Other parameters are internally determined.

a The TEMPLOAD DD card defines a temporary work partitioned
dataset. This DD card should only specify SPACE and UNIT
parameters.

Some special considerations may arise when attempting to use
features of the OS/360 linkage editor in the HALLINK step. A few
comments on certain of these features follow:

a) Provision has been made to pass load module name
information to the second link edit step if a
NAME card was sent by the user to the first link
edit. If the member name on the TEMPLOAD load module
is not TEMPNAME, the second link edit step is passed
the record:

NAME XXXXXXX(R)

as part of the generated object decks. The TEMPLOAD
member name is determined by the first name found in
the directory of that PDS. If the member name was
TEMPNAME, no such card will be passed to the second
link edit, and it is the user's responsibility to
ensure that a name is specified on the SYSLMOD DD card,
otherwise the link editor will attempt to store the
load module as TEMPNAME.

The user should be fully aware of the consequences of
supplying a NAME card without overriding the member
name on the catalogued SYSLMOD DD card. This situation
will lead to JCL errors if the GO step attempts to use
refer-back (PGM=*.LKED.SYSLMOD) to identify the
module to be executed.

b) The overlay capabilities of the Linkage Editor
should not be used.

c) Any input defined by the SYSLIN DD card, whether
object modules or OS link editor control cards are
available to only the first invocation of the OS link
editor. If it is necessary to make certain link
editor input available to the second link edit, that
input must be defined via a LINKIN DD card. Any data
defined by a LINKIN DD card will be copied unchanged
to the STACKOBJ DD card before the HALLINK object
output (see below) is placed there.

4-17

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.2.2 Inputs

Inputs to the link step are specified directly by object
module and link edit control cards or options indicated via
the PARM field.

4.2.2.1 Options. Parameters may be passed to HALLINK. The
JCL for this is PARM.LKED = 'link parms/HALLINK parms'. The
"PARM.LKED" field may be changed to "LINKOPT" when using the
standard catalogued procedures.

The slash is optional if no HALLINK parameters are
passed.

HALLINK parameters are coded as shown, separated by
commas.

Option Significance

TREE Causes list of control sections,
stack sizes, and immediate sons to
be printed. If omitted, no tree
will be printed.

BOTH Pass the LINKPARM to both link edits.
If omitted, only second will receive
parameters passed by user.

OSLOAD (or NOGO) causes:

a) only link #1

b) output to SYSLMOD

c) PARM= 'NCAL,TEST' passed

These options are used to construct
a user's load library. If either is
specified, then all other parameters
will be ignored.

XREF Lists out control section names and
the names the programmer actually used.

SDL Turns off template version checking.
If omitted, template versions are
checked for consistency.

MSG Allows printing of HALLINK messages.

DDLIST Causes printing of any alternate DD
list passed to HALLINK.

4-18
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

4.2.3.5 The HALMAP CSECT. The HALMAP CSECT contains the
following information about the load module:

1) Number of Process Control Blocks (PCBs) required
by the Real Time Executive to handle all potential
processes in the module.

2) *Address of each PROGRAM, COMSUB, and COMPOOL, and
an indicator as to which type each pointer is
referencing.

3) Simulation Data File (SDF) file member name containing
information about symbols in corresponding compilation
units.

Layout of HALMAP

Loc Length Description

0 2 Number of entries in pointer table.

2 2 Number of PCBs.

4 - Pointer table. 12 byte entries as
outlined below.

Pointer Table

0 1 Type (X'00'=COMPOOL,
X'01'=PROGRAM,
X'03'=COMSUB)

1 3 Address of CSECT.

4 8. SDF member name.

Note that the last entry is not indicated by high order bit
being set in type field. Use halfword at location 0 in HALMAP
to determine number of entries.

4-21
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.2.3.6 HALLINK Return Codes.

Return Codes Description

0,4,8,12,16 As defined by Link Editor.

1,5,9,13,17 Return code of n correspond to Link Editor
return code of (n-1) with recursive calls
detected in load module and HALLINK option
NOREC not specified.

100 Recursive calls and NOREC not specified.

104 Insufficient space for tables. Rerun in
larger partition.

108 Unable to open STACKOBJ or TEMPLOAD.

120+n Corresponds to return code of n from FIND macro.
If 124, most likely caused by allocating TEMPLOAD
to a PDS member.

140 Two version definitions of the same control
section name encountered. Caused by:

a) Re-link editing a.HAL load module.

b) Two compilation units have first 6 characters
of name identical.

144 A control section had a different version number
than the number when compiled. Most likely cause
by recompiling a compilation unit without re-
compiling those which reference it.

148 No version definition received for one or more
control sections for which references were made
with version information.

4-22
INTERMETRICS INCORPUHA ILD. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

4.3 Execution Step

The Execution step is one in which a properly compiled
and linked HAL/S program (or series of programs) is executed.

4.3.1 Job Control Language

Execution of a HAL/S-360 program may occur in two different
ways: 1) in a stand-alone manner,and 2) under control of a monitoring
program. The JCL necessary to operate in these modes is shown in
figures 4.3 and 4.4. Descriptions of additional JCL lines follows.
The details of operation under the HAL/S-360 Diagnostic System
are located in Section 5.9.

The JCL for the execution step contains two distinct groups:
1) that minimal JCL needed to load and begin execution of the
HAL/S program, and 2) that JCL which defines data needed by the
running HAL/S program due to internal HAL/S I/O requests.
Figure 4.3 shows some typical stand-alone JCL to which the comments
apply.

* The EXEC card defines the program to be executed. It
should contain a REGION parameter of sufficient size
to allow execution. The required region is dependent
upon program size. A PARM field may be included to
pass any requests to the HAL/S runtime facility.

* The STEPLIB card is needed to define the location of
the program to be executed, and to define the HAL/S-
360 system library in which the "DUMPALL" routine is
located. The "DUMPALL" program is used to obtain a
formatted HAL/S variable dumpa t the end of-execution
under the Stand-Alone execution system. This
feature, under control of DUMPALL runtime option,
is the only type of dump available under stand-alone
operation. Complete dump and trace features are
available under the Execution Monitoring System.

4-23

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Figure 4.3

Execution JCL (no dumps/traces)

//GO EXEC PGM=HALPROG
//STEPLIB DD DISP=OLD,DSN=HALMOD
// DD DISP=SHR,DSN=HALS360.MONITOR
//STPLIB DD DISP=SHR,DSN=HALS360.STPLIB
//HALSDF DD DISP=OLD,DSN=HALSDF
//CHANNELn DD <parameters>

<other user JCL>

Figure 4.4

Execution JCL (for dump and trace capability)

// EXEC PGM=RUNMON
//STEPLIB DD DISP=SHR, DSN=HALS360.MONITOR
//STPLIB DD DISP=SHR, DSN=HALS360.STPLIB
//PROGRAM DD DISP=SHR,DSN=HALS360.DIAGPROC
//SYSPRINT SYSOUT=ADCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
//HALLIB DD DISP=OLD,DSN=HALMOD
//CHANNEL6 SYSOUT=A
//HALSDF DD DISP=OLD,DSN=HALSDF
//REQUESTS DD Request data set
// <other user JCL>

4-24
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

5.1.5.3.2 Direct Access.

A) OPEN

B) READ DI, DK

C) WRITE DI, DK, DKF, DA

D) CHECK

E) SYNADAF, SYNADRIS

F) GETMAIN, FREEMAIN

G) DCB DSORG = DA, MACRF = (RKIC, WAKIC)

5.1.5.4 Miscellaneous.

A) TIME - provides the time of day and date.

B) For real time executive queue elements

GETMAIN

5-5

INTERMETRICS INCORFORAiATEu 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

5.1.6 List of Names of the Run Time Library

(A indicates alias.)

ALLOW A CTOX EVENTENQ M114D3

ARCCOS CTRIMV EVENTPRO A MM14SN

ARCCOSH DARCCOS EXCLUDE MM14S3

ARCSIN A DARCCOSH EXECTRCE MM15DN

ARCSINH DARCSIN A EXP MM15SN

ARCTAN A DARCSINH FILEIN MM16DNP

ARCTANH DARCTAN A FILEOUT A MM16SNP

BAKTRACE DARCTANH FLUSH A MM17DN

BIN DATAN2 FORMATDA MM17SN

BOUT DATE GETSEED A MM20DNP

BTOC A DCOS HALEODAD A MM20SNP

CANCEL DCOSH HALPRINT A MM21DNP

CANCELT A DEXP HALSIM MM21SNP

CANCELTC A DIN A HALSTART MM6DN

CIN A DISPACHS A HALSYNAD A MM6D3

CINDEX DISPACHT A HALSYS MM6SN

CINP DISPACHW A HIN A MM6S3

CLJUSTV DISPATCH IIN A MOMSTACK

CLOKTIME DLOG INPUT MSGIOINT I
CLOSEHAL DMIDVAL IOINIT MV6DN

COLUMN DOUT A IOUT MV6SN

COS A DSIN A ITOC A OTOC f

COSH DSINCOS A ITOTHEI OUTPUT

COT KTOC A PAGE
COUT A DSINH A LINE PCCOPY
COUTP DSLD LOCK PROGINT
CPAS DSQRT LOG QSHAPQ
CPASP DSST A MIDVAL RANDOM
CPRC DTAN MM1DNP RANDOMG ACPSLD DTANH MMIDSNP RESET ACPSLDP A DTOC A MMISDNP SCHEDULE
CPSST A DTOTHED MMISNP SDATRAP ACPSSTP A DTOTHEI A MM11DN SDCTRAP ACRJUSTV DUMPARM A MM11SN SDETRAP ACSHAPQ DUMPHAL MM12DN SDFTRAP ACSLD EATAN2 MMI2D3 A SDINIT ACSLDP A EIN A MMI2SN SDLDUMMYCSST ENTERTQE MM12S3 A SDLSTACKCSSTP A EOUT MM13DN SDNTRAP ACTOB A ERRGRP MM13D3 SDSTRAP A
CTOD ERRNUM A MM13SN SDTTRAP ACTOE A ERRORMON MMI3S3 SDWTRAP A
CTOI ERRORSUM A MM14DN SETCTOK A ETOC A
CTOO A ETOTHEE

ETOTHEI A

5-6INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

SETSEED A
SIGNAL TERMIN
SIN A TERMI:NT
SINCOS TERMINTC A
SINH A TERMPCB
SKIP TIt-ECA C
SKIPIN A TI E NT
SKIPOUT A TI-NQ
SQRT UNLUCK A
SVBLOCK U;P'RIO
SVBTC UPPRIOT A
SVDTOC VM6DN
SVETOC VM6SN
SVITOC VO6DN
SVPMSG VO6D3 A
SVSIGNL VO6SN
SVSTOP V06S3 A
SVTDEQ VV10DN A
SVTENQ VViOD3 A
SVTIME VV10SN A
SVVSTP VV10S3
TAB A VV16DNP
TAN VV16SNP
TANH VV6DN
TENSTBL VV6SN

VV9DN A
VV9D3
VV9SN A
VV9S3
WAIT
WAITDEP
WAITFOR
WAITUNTL A
WHERE
XTOC

5-7

INTERMETRICS INCORPORT,-v * 701o CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 (617) 661-1840

5.2 Vector-Matrix Operations for HAL/S-360

Conventions Specific to Vector-Matrix Routines

1. General registers 2, 3, and 4 are used for argument

pointers.

a. Result is put into area pointed at by R2.

b. R3 is pointer to left-hand input argument.

c. R4 is pointer to right-hand input argument if
more than one is required.

2. General registers 0, 1, and 4 are used for size
parameters.

a. RO is length of vector arguments.

b. RO is number of rows for matrix arguments.

c. RI is number of columns for matrix arguments.

d. R4 is used for skip values between elements in
partitioned matrices.

3. Scalar inputs and results use FO.

4. System routines (intrinsics) are incorporated into the
HAL System package and addressed directly by HALSYS
(R12).

a. Registers 0 through 4, and FO, F2, and F4 are
available for usage.

b. Return to register 14 (R14).

c. Local branching via HALSYS (R12).

5. Library routines are called via the normal user
procedure caller.

a. Registers are saved automatically.

b. FO, F2, and F4 available.

c. R15 for local addressing.

d. Temporary area off R13 available.

e. Not loaded unless used.

5-8
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 -(617) 661-1840

If C'= B... CPR

WRITE() C; COUT

WRITE() C TO COUTP

READ C; CIN

READ CI TO J; CINP

READALL C; CIN

READALL CI TO J; CINP

Readall calls the same routines; it is differentiated
by the IOINIT input call.

5-17

INTEPlETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

Intrinsic/
Name Routine Library Destination Source Arguments

* CAS Character Assign I data data, vac, Ptr's (R2,R3)
literal

*CASV Character Assign I vac d,v,l Ptr's (R2,R3)

*CASP Partitioned Assign I data partition Ptr's, ist char(Rl),
last char(R0)

* CASVP Partitioned Assign I vac partition Ptr's, ist char(Rl),
last char(R0)

CPAS Character Assign L partition d,v,l Ptr's, Ist char(Rl),
into Partition last char(RO)

CPASP Partition into L partition partition Ptr's, ist char-in(Rl),
Partition last char-in(R0),

last and ist char-
out(R4)

*CAT Concatenate I data d,v,l Ptr's (R2,R3,R4)

*CATV Concatenate I vac d,v,l P.tr's (R2,R3,R4)

CPR Character Compare I d,v,l d,v,l Ptr's (R3,R4)
Result in CC & R1

CPRC Character Compare L d,v,l d,v,l Ptr's (R3,R4)
(based on collating seq) Result in CC

COUT Character Output L output d,v,l Ptr (R3)

COUTP Partitioned Char Output L output d,v,l Ptr (R3), Ist char(Rl),
last char(R0)

CIN Character Input L d,v,l input Ptr (R3)

CINP Partitioned Char Input L d,v,l input Ptr (R3), Ist char(Rl),
last char(R0)

*CLJUSTV L vac d,v,l Ptr's (R2,R3), size (R4)
*CRJUSTV L vac d,v,l Ptr's (R2,R3), size (R4).
*CTRIMV L vac d,v,l Ptr's (R2,R3).
CINDEX L Accum (R1) d,v,l Ptr's (R3,R4), result(R]

NOTE: R3 is the source pointer; R2 is the destination pointer. Routines
marked with "*" set R3 on exit to value R2 had on input to aid in
chained operations,

5-18

INTERMETRICS INCORPO.-ATC - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

B) TERMIINATE STATEMENT

I. TERMINATE; EXTERNAL NAME: TERMIN no parameter

II. TERMIINATE <taskid>; EXTERNAL NAME: TERM4INT
III. TERMINATE <taskid>, , EXTERNAL NAME: TERMINTC
RO: Parameter: entry point of program or task.

C) CANCEL STATEMENT

I. CANCEL; EXTERNAL NAME: CANCEL no parameter

II. CANCEL <taskid>; EXTERNAL NAME: CANCELT
III. CANCEL <taskid>, ... ; EXTERNAL NAME: CANCELTC.
RO: Parameter: entry point of program or task.

D) WAIT <arith exp>; EXTERNAL NAME: WAIT

FO: parameter: # seconds, double precision

t) WAIT UNTIL <arith exp> ; EXTERNAL NAME: WAITUNTL

FO: parameter: # seconds, double precision.

F) WAIT FOR <event exp>; EXTERNAL NAME: WAITFOR

RO: parameter: point to event expression (see event expression).

G) WAIT FOR DEPENDENT; EXTERNAL NAME WAITDEP

to parameters .

H) SIGNAL <event var>; EXTERNAL NAME: SIGNAL

RO: ptr to event variable (latched or unlatched).

1) SET <event variable>; EXTERNAL NAME: SET

RO: pointer to event variable (must be latched).

5-25

INTERMETRICS INC(RPO(ATED - 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

J) RESET <event variable>; EXTERNIAL NAME: RESET

RO: pointer to event variable (must be latched).

K) UPDATE PRIORITY TO <arith exp> ; EXTERNAL NAME UPPRIO

RO: Priority.

L) UPDATE PRIORITY <taskid> to <arith exp>; EXTERNAL NAME UPPRIOT

RO: Priority.

R1: entry point of program or task.

M) RUNTIME function; intrinsic in HALSYS

FO: current time in seconds returned.

N) NEXTIME<task id>; EXTERNAL NAME NEXTIME

RO: entry point of PROGRAM or TASK.

FO: function value on return.

5-26
INTERMETRICS INCORPnRPTE . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.9 Simulation Data File (SDF) Access Package

SDFPKG is an IBM-360 assembly language program comprised
of five CSECTS: SDFPKG, LOCATE, PAGMOD, NDX2PTR, and SELECT.
Its function is to provide a demand paging form of access to
data contained within SDFs. SDFPKG can be separately link
edited and employed as a loadable and deletable service
module, or it may be linked directly with other software.
The latter is the case with the HAL/S-360 stand-alone diag-
nostic system.

5-33
INTERMETRICS INCORPORATFn. 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.9.1 General Considerations

The following is a brief summary of the more important
aspects of SDFPKG:

1) SDFPKG is a modular access method for SDFs built
upon a demand paging virtual memory foundation.
It can be separately linked, loaded, and deleted.

2) All calls to SDFPKG are made through a single ENTRY
point by supplying a mode number. Eighteen different
mode calls are currently provided.

3) SDFPKG employs a paging area of from 1 to 250 1680-byte
pages in size that may be dynamically expanded or
contracted as the core memory situation alters.

4) SDFPKG can support simultaneous access to an un-
limited number of SDFs. The area needed for FCBs
(File Control Blocks) can be automatically provided
by SDFPKG or be under the control of the user.

5) SDFPKG is serially reusable. Following a TERMINATE
call a new INITIALIZE call my be made.

6) SDFPKG allows SDFs to be modified or merely read.

7) SDFPKG provides built-in binary search algorithms
to allow high-level access to data that must be
searched.

8) SDFPKG FREEMAINS all storage at the TERMINATE
call that it may have GETMAIN'ed since the
INITIALIZE call.

9) SDFPKG performs one OPEN (for the HALSDF DD) at
INITIALIZE and one CLOSE (same DD) at the TERMINATE
call.

10) SDFPKG uses only the following OS services: GETMAIN,
FREEMAIN, FIND, BLDL, POINT, READ, WRITE, CHECK, OPEN,
CLOSE.

11) SDFPKG can be configured at INITIALIZE so that it
will perform no GETMAINs.

12) SDFPKG performs complete error checking and will
force an ABEND in case of a legitimate user error
or I/O error. A complete set of return codes is used
to signal off-nominal conditions that are not reflec-
tions of serious user error.

5-34
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Mode # Function

17 Locate a Statement Node given
the statement number.

Note 1) Definitions and layouts for the various data blocks
contained within an SDF can be found in
the HAL/SDL Interface Control Document. Different
terminology is employed, however, so that the following
correspondence may be helpful:

Compiler Spec. Terminology ICD Terminology ICD Figure No.

Directory Root Cell Simulation Table Fig. 2.2.1.2.1.1
Directory Header

Block Data Cell HAL Block List Fig. 2.2.1.2.1.2.2
Member

Symbol Data Cell Symbol Data Entry Fig. 2.2.1.2.2.2

Statement Data Cell Statement Data Fig. 2.2.1.2.3.2
Entry

Block Node Block Index Table Fig. 2.2.1.2.1.2.1

Symbol Node Symbol Names and Fig. 2.2.1.2.2.1
Pointers Table

Statement Node Statement Names and Fig. 2.2.1.2.3.1
Pointers Table

Note 2: DSECTs for the pertinent data blocks can be found as
members of the HALS.DIAGNSTC.MACLIB dataset:

Member Name

Directory Root Cell DROOTCEL

Block Data Cell BLKCELL
Symbol Data Cell SYMBDC

Statement Data Cell STMTDC
Block Node BLCKNODE
Symbol Node SYMBNODE
Statement Node (no SRNs) STMTNODO
Statement Node (SRNs) STMTNOD1

For convenience, listings of these DSECTs follow:

5-39
INTERMETRICS INCORPO~IATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

'EALS. DIAGGNSTC.MACLIB(DROOTCEL)'
00100 lIACHO
00200 DROOTCEL
00300 DhOOTCEL DgECT DIRECTORY ROOT CELL
00400 SDFILAGS DS 2C
00500 LASTFAGE DS HI # OF LAST PACE IN SDF FILE
00600 SmI'DATE DS F DATE'OF CREATION
00700 SEFTIHIE DS F TIME OF CRFATION
00800 LASTDPGE DS H f OF LAST DIRECTORY PAGE
00900 CO!'COOLS DS H # OF INCLUDED COM4POGLS
01000 EL1kODES DS H C OF BLOCK NODES
01100 SY:NODES DS I! i CF SYMBOL NODES
01200 FB1IPTR DS A POINTER TO FIRST BLOCK NODE
01300 LIf:PTR DS A POINTER TO LAST BLOCK NODE
01400 IISTRCNT DS H NO. OF EMITTED MACHINE INSTRUCTIONS
01410 FRF,EEYTE DS 1; TOTAL AIT OF FREE SPACE III SDF
01500 DLSTHEAD DS H LIST HEAD FOR DECLARED VARS (DY ADDR)
01502 RLSTHEAD DS H LIST HEAD FOP REMOTE VARS (BY LDDR)
01600 FSNPTR DS A POIPTER TO FIRST SYMBOL NODE
01700 LSIiPTR DS A POINTER TO LAST SYMlbOL NODE
01800 CULTCPTR DS A PTR TO COMP. UNIT BLOC: DATA CELL
01900 BTREEPTR DS A POINTER TO ROOT OF BLOCK TREE
02000 FSTWTNUI DS H FIRST STATEliFNT NUIiDER
02100 LSTNTNUM' DS H LAST STATEMENIT NUI£EER
02200 EXECSTNT DS H P OF EXECUI'AhLE STATECENTS
02300 STH!TNODE DS Ii f CF STATEMENT NODES
02400 FSTIPTR DS A POIIITFR TO FIRST STATEIIENT NODE
02500 LSTI;PTR DS A POIIITER TO LAST STATEEI;T IIODE
02600 SNELPTR DS A POINTER TO STATEMENT NODE EXTENT LIST
02700 FIHSTSRII DS CL8
02800 LASTSRNl DS CL8
02900 CULTCNUtI DS H DLOCK NUMBER OF UNIT BLOCK
02910 CG;PUNIT DS H COMPILATION UNIT ID CODE
02920 TITLEFTR DS F VIRTUAL MMF.ORY POINTER TO TITLE INFOR
03100 USERDATA DS CL8 FREE FOR USER DATA
03102 SYIBCNTT DS F 'ACTUAL N!U!DER OF SYHBOLS IN COMP.
03104 MACROCNT DS F TOTAL SIZE OF MACRO TEXT (BYTES)
03106 LITSCNT DS F TOTAL IJUMPFR OF LITERAL STRINGS
03108 XREFCPT DS F ACTUAL NU IEER OF XREF ENTRIES
03200 DECLEN ECU *-DROOTCEL
03300 NEND

5-40INTERMETRICS INCORPORATED . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

5.9.7.4 Mode 3 - Rescind Paging Area Augments.

A. Input: MODE 3

B. Output: APGAREA
AFCBAREA 0
NBYTES

NPAGES Number of pages which can yet
be added to the Paging Area.

5.9.7.5 Mode 4 - Select an SDF (Explicitly).

A. Input: DISP 0 (Auto-Select parameter should
not be specified)

MODE 4

SDFNAM 8 character SDF name, e.g. ##NAVIGA

B. Output: R15 0 + Select successful
CRETURN 8 - BLDL unsuccessful (member not

found)
12 - FCB Area is exhausted (only if

user is supplying FCB Areas)

5.9.7.6 Mode 5 - Locate Pointer.

A. Input: DISP {SELECT, MODF, RESV, RELS)

MODE 5

PNTR Virtual memory pointer to be
located

B. Output: R1 (Core address corresponding to
ADDR "located" pointer

5-49
INTERMETRICS INCORPOrAT tU 101 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 " (617) 661-1840

5.9.7.7 Mode 6 - Set Disposition Parameters.

A. Input: DISP {MODF, RESV, RELS}

MODE 6

B. Output None

5.9.7.8 Mode 7 - Locate Directory Root Cell.

A. Input: DISP {SELECT, MODF, RESV, RELS}
MODE 7

B. Output: R1 Core address of Directory Root
ADDR Cell

PNTR Virtual memory pointer to Directory
Root Cell

5.9.7.9 Mode 8 - Locate Block Data Cell given Block Number.

A. Input: DISP {SELECT, MODF, RESV, RELS)

MODE 8

BLKNO Block Number

B. Output: R1 Core address of Block Data
ADDR Cell

PNTR Pointer to Block Data Cell

BLKNLEN Number of characters in block name

CSECTNAM Name of code CSECT of block

BLKNAM Block Name (up to 32 EBCDIC characters)

5-50
INTERMETRICS INCOR rATE u i70i CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

RESERVES Total reserve count (sum of reserve counts
of all active core slots)

The TERMINATE call (mode 1) zeros out this data area
so that the values must be extracted prior to the call. These
parameters are maintained dynamically and may be accessed at
any time between the INITIALIZE and TERMINATE calls.

5.9.9 HAL Variable Dump Module (DUMPALL)

DUMPALL is an IBM-360 assembly language program comprised
of seven CSECTs (DUMPALL, DUMPUNIT, HALCALL, DSTRUCT, DUMPVAR,
FIXSTACK, and RESOLVE) in addition to the five CSECTS of
SDFPKG, which are all linked together to form a single load
module of approximately 21,000 bytes in size.

DUMPALL is constructed from basic elements of the HAL/S-
360 stand-alone diagnostic system and is intended for use in
applications where the full machinery of the diagnostic
system is either not desired or is not available.

The purpose of DUMPALL is to print the names, attributes,
and current values of all HAL variables contained within the
HAL load module on the Message Channel (normally CHANNEL6 which
is assigned to the line printer). In the current implementation,
DUMPALL handles all HAL variables with the exception of stack
variables. Although the intent of DUMPALL is to provide post-
mortem dumps in the absence of the stand-alone diagnostic
system, DUMPALL may be invoked at any time after HALSTART is
called and before it exits.

Since DUMPALL is a self-contained load module, it
may be dynamically loaded and invoked. As mentioned previously,
the main prerequisite for its use is that the Message Channel
still be open. DUMPALL submits character data for printing
by making use of Field 18 (Print Service) of the Simulation
Vector Table (see Figure 2.4.1 of the HAL/SDL ICD). In addition,
DUMPALL makes use of the four character conversion routines
(SVBTOC, SVITOC, SVETOC, SVDTOC) that are also accessible via the
Simulation Vector Table.

The output of DUMPALL is identical to that obtained
when the following command is serviced by the stand-alone
diagnostic system:

AT END: DUMPALL;

5-57

INTERMETRICS INCfORPO~ATED . 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

DUMPALL is called via standard OS-360 linkage conven-
tions with register 1 pointing to a 12 byte data area of
the following form:

Field

1 Address of HALSTART 4

DDNAME of PDS con-
2 taining SDFs 8

(EBCDIC characters)

Field 2 normally would contain the characters HALSDFbb.

Since DUMPALL employs the services of SDFPKG there is
a possibility that some of the SDFPKG Abend codes could result
from a DUMPALL invocation.

If the SDF DCB cannot be opened successfully, then
DUMPALL will return with a return code of 4 in register 15.

DUMPALL performs no GETMAINs and it CLOSEs the SDF DCB
prior to returning control.

5-58
INTERMETRICS INUORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Fields:

D = Operand Field: 16 bits of data with significance
depending upon Q (See table below).

TI, T2 = General purpose tag fields: of 8 bits and 3 bits
respectively. The significance of these fields
depends upon the type of Operator Word preceding
the Operand Word.

Q = Operand Qualifier Tag: 4 bits which determine the
significance of the Operand Field, according to
the following table:

Qualifier
Q (hex) Mnemonics Value of Operand Field

0 - either empty or reserved for
a special purpose.

1 SYT or SYL a symbol table pointer (either
mnemonic is used depending
upon context).

2 GLI or INL an internal flow number
reference (either mnemonic
is used, depending upon
context).

3 VAC "virtual accumulator," a back
pointer to the result of a
previous HALMAT instruction.

4 XPT an extended pointer.

5 LIT a pointer into the literal table.

6 IMD an actual numerical value
used by the operator.

7 AST an asterisk pointer.

8 CSZ component size.

9 ASZ array or copy size.

A OFF an offset value.

This document also uses the following generic mnemonics for the Q field of
operand words:

EXV external variable: may be
any of SYT, LIT, VAC, XPT.

EEV extended external variable:
may be any of SYT, LIT, VAC, XPT,
IMD.

ESV either SYT or XPT.

EVV either SYT, XPT, or VAC.

A-3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The HAL/S source text for an entire program consists of
possible template information and the body of the primaryblock of the compilation. Phase 1 of the compiler convertseach statement to a "PARAGRAPH" of HALMAT text. Each PARAGRAPHof HALMAT text consists of a sequence of HALMAT instructionsderived from the source text followed by a SMRK instruction.If no HALMAT text is generated, then the derived PARAGRAPH con-sists only of the SMRK instruction.

As many whole PARAGRAPHS of HALMAT text as possible are
stored on each "RECORD", which contains at most 1800 OPERANDand OPERATOR WORDS (in each block of a disk file). A PXRCoperator is always the first operator in a RECORD; an XRECoperator follows the last PARAGRAPH on each RECORD. Thefinal XREC in a compilation contains a tag of 1 in the generalpurpose tag field. This situation is presented diagrammatically
in the Figure on the next page, which shows the macroscopicstructure of the HALMAT text for a HAL/S program with noCOMPOOL declarations. The first significant instruction isthe program definition head: MDEF. This is matched by aclosing CLOS instruction at the end of the text.

SBoth Phase I and Phase II of the HAL/S compiler use a diskfile block size of 7200 bytes.

A-4INTERMETRICS INCORPORATED. 701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Word in Word in
Block Block

PXRC 0 0 PXRC 0 0

n 1 1 m 1

progra
name MDEF 0 2 SMRK 0 2

defini-
tion name i 3 42 1 3

SMRK 0

1 1

o SMRK 0

53 1

SSM PK 0

1 2 1 0

SMRK 0 last statement marker

62 1

CLOS 0 program name close

name 1

SMRK 0o
63 1 close statement marker63 1 m

end of block tagged
XREC1 0 m with a "1" to indicate

end of text.

end of
block XREC 0
marker n

nspecified unspecified

1799

Record 1 Last Record

Layout of HALMAT Files

A-5

INTERMETRICS INCORPORA T ED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

A.1.1 Formatting Operators

* NOP No Operation

n 000 0

8 8 12 3 1

* XREC End of HALMAT Record

tag 0 002 0
8 B 12 3 1

tag = 0 for all HALMAT blocks except last.

= 1 for last HALMAT block only.

* SMRK Statement Marker (General)

error tag 1 004 N 0
8 8 12

statement number DEBUG 01

16 e 4 2 1 1

SMRK follows the generated code of each HAL/S
source statement not contained in an Inline Function
Block.

"Error Tag" = maximum statement error severity,
0 if no errors.

"Statement Number" = source statement number generated in

Phase 1.

"C" = 0 for statements with no HALMAT code, 1 otherwise.

"Debug" = number used for compiler testing; normally 0.

A-6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Version IR-60-5

* IMRK Statement Marker (Inline Functions)

error tag 1 003 jN l0

statement numberl DEBUG 0 HIi

16 8 4 2 1 1

IMRK follows the generated code of each HAL/S
source statement within an Inline Function Block.

"Error Tag" = maximum error severity, 0 if no errors.

"Statement Number" = source statement number generated
in Phase 1.

"C" = 0 for statements with no HALMAT code, 1 otherwise.

"Debug" = number used for compiler testing; normally 0.

* PXRC Pointer to XREC

1 005 0 0

8 8 12 3 1

ptr V

16 15 1

PXRC is the first operator in each HALMAT block.
PTR is the index of the XREC for that block.

A-7

INTERMETRICS INCORPUHATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

A.1.2 Program Organization Operators

a MDEF Program Definition Header

1 e02B I 0
S88 12 3 1

operand SYL
16 4 3 1

"Operand" points to the program name in the symbol table.

* TDEF Task Definition Header

1 02A 0 1o0
8 8 12 3 1

Operand $ SYL K I'
16

4

"Operand" points to the task name in the symbol table.

* PDEF Procedure Definition Header

1 I 02D 0 10
8 8 12 3 1

Operand 011 SYL lI

"Operand" points to the procedure name in the symbol table.

* FDEF Function Definition Header

1 1 02C o101
8 8 12 3 1

Operand SYL ~

"Operand" points to the function name in the symbol table.

A-8
INTERMETRICS INCOR.PrAT. - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Version IR-60-5

Kind of Subscript Number of Operands a 8 qual

* 1 8 - AST
index 1 9 - EEV

to-partition 2 A 1 IMD(to ®] A 0 IMD

at-partition 2 B 1 IMD[AT (2] B 0 EEV

The following HALMAT operator specifies both array and component
subscripting.

* DSUB - regular subscript specifier

TYPE n J 019 j. o 0o
8 8 12 3 1

reference LIMESV i6 1
16 8 4

I operand 8number of operands
operand qua n > 2

16 8 4 3 1

6 = 1 for assign context.

"reference" is a direct or indirect reference to the data
item referenced.

"type" is the result type of the data item after possible
modification by component subscripts.

Following the first operand those are between one and five
groups of operands, each group specifying one subscript from
the list of subscripts. Each group may have between one and four
operands - depending on the kind of subscript. The subscript
list is represented in left-to-right order, array subscripting list.

A-93

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

The following table shows the possible forms of an
operand group.

Number of a qual
Kind of Operands character other
Subscript (See Note) array component array component component

* 1 4 0 - AST AST AST
index 1 5 1 - EEV,ASZ EEV, CSZ EEV

to-partition 2 6 2 1 IMD EEV, CSZ IMD
[(to] 6 2 0 IMD EEV, CSZ IMD

at-partition 2 Q 7 3 1 IMD EEV IMD
[(D at] 7 3 0 EEV,ASZ EEV, CSZ EEV

Note: If an operand has a "qual" of CSZ or ASZ tnen ±c may be immediately
followed by an extra subsidiary operand. CSZ/ASZ operands correspond to
specification of # expressions in character subscripting wheh the size is not
known at compile time:

ASZ - * array size

CSZ - character strings

a) # alone:

CSZ I0. 1 a ASE 1
16 8 4 3 1

b) # + expression

ta 1 + expression

tag a tag 2 - expression

16 8 4 3 1

I operand EE extra subsidiary

16 8 4 3 1 specifying expression
reference

A-94'TERMETRICS INCORPORATED *701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

A.2 Index of HALMAT Operators

Operator Mnemonic Page

Class 0:

0 NOP 6

1 EXTN 91
2 XREC 6
3 IMRK 7

4 SMRK 6

5 PXRC 7

7 IFHD 49

8 LBL 49

9 BRA 50

A FBRA 50

B DCAS 51

C ECAS 52

D CLBL 51

E DTST 52

F ETST 53

10 DFOR 54-55

11 EFOR 57

12 CFOR 56

13 DSMP 57

14 ESMP 57

15 AFOR 56

16 CTST 53

17 ADLP 89

18 DLPE 90

19 DSUB 93/101

1A IDLP 90

lB TSUB 92/100

ID PCAL 61

IE FCAL 61

IF READ 62

20 RDAL 62

A-103

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Operator Mnemonic Page

Class 0 (Con't.)

21 WRIT 63

22 FILE 63

25 XXST 58

26 XXND 59

27 XXAR 58/100

2A TDEF 8

2B MDEF 8

2C FDEF 8

2D PDEF 8

2E UDEF 9

2F CDEF 9

30 CLOS 9

31 EDCL 9

32 RTRN 11

33 TDCL 10

34 WAIT 81

35 SGNL 81

36 CANC 82

37 TERM 82

38 PRIO 83

39 SCHD 83/84

3C ERON 80

3D ERSE 80

40 MSHP 76

41 VSHP 76

42 SSHP 74

43 ISHP 75

45 SFST 59

46 SFND 60

47 SFAR .60

4A BFNC 64

A-104
INTERMETRICS INCORPOrATiED 701 CONCORD AVENUE * CAMBRIDGE MASSACHUSETTS 02138 * (617) 661-1840

Operator Mnemonic Page

Class 8: Initialization

01 STRI 85
02 SLRI 86
03 ELRI 86
04 ETRI 85

21 BINT 87

41 CINT 87

61 MINT 87

81 VINT 87

Al SINT 87

C1 IINT 87

E2 TINT 87

El NINT 98/99
E3 EINT 87

A-109

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

A.3 Optimizer HALMAT

The HALMAT produced by the Optimizer differs in manyrespects from the HALMAT as originally produced by Phase1. The augmented formats described in this section arethose which are subsequently utilized by the code generationphase. Code generators which are not equipped to handlethese augmented formats should inhibit optimization frombeing performed.

A.3.1 Changes in Operator Format

TAG n OP iflo
8 8 12 1 11

CSD

Cross Block

Cross Loop

- CSE = 1 if the result is referenced more thanonce. (If OP=XREC, indicates next HALMATblock is expansion of current block, andpotential cross block references exist.)

- Tag = 1 (for vector/matrix operations insidevector/matrix loops) indicates the resultof the operation is referenced outside thevector/matrix loop.

- Cross Block = 1 if the result is referenced in thenext HALMAT block (needed for subscript
common expressions also).

- Cross Loop = 1 inside array loops if the result isreferenced from within a different array loop.

A-110
INTERMETRICS INCORPORATED "71 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

A.3.2 Changes in Operand Format

II PTR LUAL 1111
1 15 8 4 11 1

Cross Block
CSE//

MAT/VEC op

- CSE = 1 if Qual is VAC and operator is referenced
by Inter VAC operands.

- Cross Block = 1 if PTR refers to the last previous
HALMAT block (needed for subscript common
expressions also).

- MAT/VEC op = 1 if operand inside a vector/matrix
loop possesses the vector/matrix arrayness.

A.3.3 Register Tags in Conditionals

The comparison operators are class 7 HALMAT operators
from "725" = BNEQ to "7CA" = ILT.

In OP V
6 11 8 12 3 1

T1 = 1 if only comparison operator in the statement.

T2 = 1 if register environment can be preserved to the
next comparison operator. This is true if the
next comparison operator can only be executed
following the current operation.

A-ill
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

A.3.4 SINCOS Function

1 BFNC I1 0I operator

8 8 12 1 2 1

PTR ITYPE QUAr]1I operand

16 8 4 1 2 1

If 0 = "39" then VAC's point to the operator word forthe SIN and the operand word for the COS.

If # = "3A" then VAC's point to the operator word for
the COS and the operand word for the SIN.

Common subexpressions for the SIN and COS are indicated
(separately) by VAC's in the normal manner.

A.3.5 Subscript Common Expressions

PTR JQUALI B 1I

16 8 4 3 1

A final operand for the DSUB operator may be added havinga = 5 and 8 = 1. This operand is a quantity to be addedto the subscript computation before shifting for type,
alignment, etc. takes place.

The Integer Integer Product operator is changedto:

TAG 2 6CD 0 o
8 8 12 1 2 1

TAG = 1 if the IIPR is generated by the optimizer
in a subscript computation.

A-112
INTERMETRICS INCORPORATED. 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

A.3.6 Inline Vector/Matrix Loops and Loop Combining

Inline vector/matrix loops may be generated for the following
operators:

MASN VASN IASN (e.g. VEC=0)
MNEG VNEG
MADD VADD
MSUB VSUB
MSPR VSPR
MSDV VSDV

The ADLP arrayness specifier is changed:

NEST n 017 11O

8 8 ' 12 121

VALUE a QUAL 10

16 8 4 3 1

CSE = 1 if the loop refers to vector/matrix arrayness

only (i.e. the number of elements in the vector

or matrix).

a - 0 except for the last operand.

For the last operand:

a = 1 if vector/matrix arrayness present (only one
VDLP operand present).

a - 2 if a vector/matrix arrayed operation is
referenced outside the loop or a CSE is referenced
from within a subsequent loop.

a = 4 if the ADLP from Phase 1 has been denested
or vector/matrix arrayness has been denested
in with regular arrayness.

These conditions may be OR'ed.

The DLPE end arrayness specifier is changed:

NEST 0 018 0
8 8 12 1 2 1

CSE - 1 if the loop refers to vector/matrix arrayness
only.

A-113
INTERMETRICS INCORPORATED .701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-18,,

A.4 AUXILIARY HALMAT

A.4.1 Introduction

This section serves as a specification of AUXILIARYHALMAT (AUXMAT) used in the HAL compiler system releases360-17 and FC-12. AUIMAT is produced by the AUXILIARYRALMAT GENERATOR (AUXMATER), a phase of the HAL compilerswhich follows the OPrTIIZER and precedes the code generationphase (Phase 2). AUXMAT is specifically designed to conveycertain types of machine independent information useful formachine dependent optimizations which might be performedduring code generation.

A.4.2.0 General Description

AUXHAT conveys information to Phase 2 of the HALcompiler via 32 bit operator words (AUXRATORs) and 32 bitoperand words (AUIRANDs). Each piece of AUXMAT informationis conveyed via in ordered pair:

AUXRATOR

AUXRAND

The fields and general field descriptions within theRUIRATOR and AUXRAND words are described in this section.Section A.(.3 describes the specific information conveyed byAUXieAT and the actual values associated with the variousfields.

A.4.2.1 AUXRATOR Format

The AUXRATOR has the folloving format:

HALAT 0 Q TAGS OPO0

A-114NTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

The HAL4AT 0 is a 16 bit pointer to the HALKAT operator
or operand for which auxiliary information is being
supplied.

Q is a 5 bit field which, together with the PTR field
supplied in the AUXRAND (see Section A.4.2.2), describe the
piece of data for which information is supplied. In
general, these correspond to the Q and D fields,
respectively, found in a HALMAT operand.

TAGS is a 6 bit general purpose tag field used to
further supplement the information provided by the AUXMAT
ordered pair.

OP is a 4 bit field which specifies the type of
information being conveyed by the AUXNAT pair in question.

The low order bit of an AUXRATOR is always 0 to
distinguish it from an AUXRAND.

A.4.2.2 AUXRAND Format

The AUXRAND has the following format:

PTR N 1

The PTR field (in conjunction with the 0 field) is a
general purpose 16 bit field used to specify a piece of data
for which AUXNAT information is being supplied.

The M field is a general purpose 15 bit field used to
convey the AUXRAT information being supplied.

The lower order bit of an AUXRAND is always 1 to
distinguish it from an AUXRATOR.

A.4.2.3 Passing of AXHAT Between Phases

AUXMAT, like BALIAT, is passed on a disk file. Each
record in the file contains 900 AUXNAT ordered pairs. The
last ordered pair is always an END OF AUXNAT. (see Section
A.4.3) While AUX~AT is designed to be read in parallel with
HALMAT, it is not divided into "PARAGRAPHS". Instead, XREC
synchronization ordered pairs are provided at appropriate
points within the AIJNAT records. Only unused portions of
the particular record containing the END OF AUXNAT remain

A-115
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

unspecified. No IREC synchronization operator is supplied
for the last HALMAT block. In general, fever than 900AUXNAT ordered pairs are generated per HALRAT block. Theresulting parallel structure between AUXMAT and HALMAT isillustrated in Figure 2.1.

A.4.3 AUXMAT Operations

In its current design, AUXRAT conveys 6 different typesof information. These pieces of information are:

1) NEXT USE of a HAL variable or TVC

2) Burn all registers

3) HALRAT XREC synchronization

4) VAC targeted for a HAL built-in function argument

5) Loop invariant HAL variables

6) END OF AXIHAT

Information layout in the AUXHAT ordered pair for each
of the above is supplied below. Any fields which have afired value for that particular ordered pair contain adecimal number denoting that fixed value. A shortdescription of each of the fields vithout fixed values andthe particular meaning of that field is also provided. TheHALMAT 8 field is always as described in Section A.4.2.1.

NEXT USE

j TTGS

PTR B 1,

Q and PTR describe the HAL variable or VAC for whichNEXT USE information is being passed.

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

HALMAT AUXMAT

XREC synchronization

XREC
synchronization

XREC synchronization

XREC synchronization

XRECXREC synchronization
XREC

XREC - q-

XREC
Last AUXMAT block

XREC

Last HALMAT block

Figure 2-1: Parallel Layout of HALMAT and AUXMAT

A-117
INTERMETRICS INCORPORATED 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Version IR-60-5

TAGS may have a non zero value only if Q and PTR
describe a CSE. In these cases, the value of TAGS is:

1 if the HAL data item referred to is a CSE and it is
next used only in the true part of an IF THEN
ELSE statement.

2 if the HAL data item referred to is a CSE and a
reference to it exists beyond an IF THEN ELSE
statement.

3 if both of the above apply.

The value of H is the NEXT USE value of the HAL
variable or VAC.

Burn All Registers

Burning of registers and register environments is
currently handled in the code generation phase of the
compiler. The AUXMATER does not generate this type of
ordered pair.

HALMAT XREC Synchronization

I I
B A L M T 0 - 0 3 0

0 0 1

A-118
INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HALMAT 0 3 TAGS 4
-i

L PTR T

TAGS contains the position number of the HAL built-in
function argument for which the VAC vill eventually be ased.

H contains the number of the built-in function for
which the VAC in question is an argument.

Loop Invariant H~j, Variables

The AUXMATER does not generate loop iavariant
information.

EJD 2Y AUXhAT

32767 0 6 0

0 0 1

NASA-JSC

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 (617) 661-1840

