NASH-CR- /B%jﬁ?
174~ 25747

HAL/S-360 Compiler System
Specification

4 February 1977

IR-60~5

Approved:

VL4
Daniel/ﬂckly /
HAL Larguage/Compiler Dept.
Head

-

L ( B *
Approved: if\h—s\ \f\“ VAWOC WG
' Dr. Fred H. Martin
Shuttle Program Manager

Prepared by the staff of Intermetrics, Inc.
Transcript by V.L. Cripps.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 |



L | IR B8Y073

UPDATE SHEET

Enclosed with each update package you receive is a new
update sheet listing the new Version number, the affected
Pages, and the date of the update.

As you receive each update, replace the old update sheet
with the new one. It is important that you refer to the
most recent Version number on the update sheet whenever you
correspond with Intermetrics concerning this document.

VERSITON AFFECTED MATERIAL DATE

IR-60-5 The following pages have been 2/4/77
updated or added:

1) Title Page/Foreword
2) Table of Contents Page iii/iv
3) Page 1-1/1-2 :
4) Page 1-3/blank page
5) Page 2-3/2-4
6) Page 2-19/2-20
7) Pages 2-23 thru 2-48
8) Pages 2-53 thru 2-56
9) Pages 2-59 thru 2-64
10) Page 2-67/2-68
1l) Pages 2-71 thru 2-89
12) Pages 3-1 thru 3-4
13) Page 3-7/3-8
14} Page 3-11/3-12
15) Page 4-1/4-2
16) Pages 4-5 thru 4-10
17) Pages 4-13 thru 4-18
18) Pages 4-21 thru 4-24
19) Pages 5-5 thru 5-8
20) Page 5-17/5-18
21) Page 5-25/5-26
22) Page 5-33/5-34
23) Page 5-39/5-40
24) Page 5-49/5-50
25) Page 5-57/5-58
26) Pages A-3 thru A-8
27) Page A~93/a-94
28) Page A-103/A-104
29) Pages A-109 thru A-119

INTERMETRICS iINCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840



FOREWORD

This document was prepared for the Johnson Space
Center, Houston, Texas, under contract NAS 9-13864.
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1.0 INTRODUCTION

1.1 Scope of Document

This document specifies the informaticnal interfaces
within the HAL/S-360 compiler, and between the compiler and
the external environment. An overall description of the
compiler, and the hardware and software compatibility
requirements between compiler and environment are detailed
in the HAL/S-360 Compiler Functional Specificationl. Familiar-
ization with the Functional Specification i1s presumed through-
ocout this document. :

This Compiler System Specification is for the HAL/S-360
compiler and its associated run time facilities (including
real-time) which implements the full HAL/S languagez. The
HAL/S-360 compiler is designed to operate "stand-alone"
on any compatible IBM 360/370 computer and within the
Software Development Laboratory (SDL) at NASA/JSC, Houston,
Texas.

1.2 Outline of the Document

The HAL/S-360 compiler system consists of:

1) a five phase language processor (compiler) which
produces IBM 360/370-compatible object modules and
a set of simulation tables to aid in runtime
verification.

2} a link edit step which augments the standard 0OS
Linkage Editor.

3} a comprehensive run-time system and library which
provides the HAL/S operating environment, error
handling, a pseudo-real-time executive, and an
extensive set of mathematical, conversion, I/0,
and diagnostic routines, :

The specifications of the information flow and content
for this system are contained in this document and arranged as
follows:

. HAL/S-360 Compiler System Functional Specification, 13 July 1973,

PDRL #IMOO4.
2 HAL/S Language Specification, 14 November 1975, IR #61-7.
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Sec. 2 Compiler Information Content specifies the 360
code generation sequences produced by Phase II, and the simu-
lation tables provided for run-time diagnostic purposes.

Sec. 3 System Concepts and Interfaces describes the
informational links between the compiler as an entity, and
its external system environment. Included are the object
module layout, the "HALLINK-step" required during link-edit,
the stack mechanism, the HAL/S operating environment (and
relationships to 05/360), the interface to assembly language
routines and the INCLUDE and Access Rights systems.

Sec. 4 User Interfaces describes the JCL, input and outputs
for the compiler, link and execution steps. The compiler's out-
put to the user (i.e. the HAL/S listing) is specified.

Sec. 5 Run-Time Library establishes all the interfaces
to the run-time routines viz. matrix-vector arithmetic,
mathematical functions, character string manipulations, I/0
and conversions, pseudo real-time, error angd diagnostic routines.
In addition, interfaces to an external monitor are described.
Such a monitor could coordinate environment simulation and
diagnostics,

Appendix A specifies the intermediate code (HALMAT) emitted
by Phase I of the compiler.

Appendix B specifies the internal tables for compilation.

Appendix C specifies the code generation process carried
out during Phase II of the compiler. ‘

1.3 Status of Document

This publication represents an updated Compiler System
Specification. This document, plus the Compiler System
Functional Specification, comprise the complete HAL/S-360
Compiler Specification.

1-2 .
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Many features of the HAL/S-360 system are under control
of Interface Control Documents which are subject to update.
When appropriate within this document, references are made
to these companion documents as sources of supplementary
material and in some cases as primary sources of detailed
information, :

The folléwing list of documents represents the set
of additional documents which reflect design and control
of the HAL/S$-360 compiler system:

® HAL/S-360 Compiler System Functional Specification,
13 July 1973, PRDL #IM004, by Intermetrics, Inc.

'8 1Interface Control Document: HAL/FCOS, Revision 5,
Published by IBM Federal Systems Division,
Houston, Texas,.

e Interface Control Document: HAL/SDL, Revision 6,
Published by IBM Federal Systems Division, Houston,
Texas.

© HAL/S Language Specification, IR #61-8, Published
by Intermetrics, Inc, :

1-3
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Structure templates are internally ordered such that the
minimum boundary alignment within any node level is required.
Template matching requirements guarantee that templates
exhibiting identical properties will be identically reordered.

After all groupings are complete, storage assignments are made,
with the required base-displacement combinations being generated
to properly access the data. Note that the storage addresses
assigned refer to the actual data beginning, but the base-
displacement address includes the negative OFFSET value.

Note that all formal parameters and all AUTOMATIC variables
in a REENTRANT PROCEDURE or FUNCTION are based off the stack
register (13).

Fdr arrays, the offset is computed as follows for the number

of array dimensions: (N, is the ith array dimension).
# Dim Offset
0 0
1 -1
2 (-1 NZ)—l
- 3 (1 Ny-1Ng-l

The array OFFSET is then multiplied by the total width of the
data type specified. For integers, scalars, bits, and characters,
this is the width in bytes to contain one item of data. For
vector and matrix types, this is the width in bytes for one

item times the total number of items in the vector or matrix.

For structures, the OFFSET is 0 if the structure has noc copies.
If the structure has copies, the offset is ~-W, where W is the
aligned width of one copy of the structure template.

2-3
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Example:
DECLARE A SCALAR,
B INTEGER,
C CHARACTER(7),
D ARRAY(5) DOUBLE;
DECLARE E ARRAY(S),
F ARRAY(3,3) VECTOR,
G MATRIX ;
DECLARE H DOUBLE,
I ARRAY(5,5) INTEGER:;
Allocation for the above HAL declarations are as follows

(all addresses are in hex):
(in decimal)

Alignment Name Location Base Displacement Offset
Byte C 000000 A 000 0
Halfword B 00000A A 00A 0
Fullword A 00000C A poc 0
Doubleword H 000010 A 010 0
Halfword I 000018 A 00C -12
Fullword E 00004C A 048 - 4
Fullword G 000060 A 05C - 4§
Fullword F 000084 A 050 ~-52
Doubleword D 0000F0 A OER - 8

.2.1.1.3 Addressing Concepts. This section describes the general
addressing rules for data. To the extent possible, data can
be directly addressed via some combination of base register and
twelve bit displacement. This is not possible whenever the data
item is a formal parameter other than a simple integer or scalar,
or any formal parameter scoped in from an outer to an inner
procedure. The skeletal forms given in Section 2.2.2 assume

. the most commonly used addressing forms. The rules described
here should be superimposed upon these skeletal forms to
interpret all possible combinations of operations between
operands,

2-4
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2.1.3.6 Partitioned Bit Assignments. The following sequences
assume that Ry has already had the required conversions performed
as described in Section 2.1.3.3 or 2.1.3.4. Definitions of I,
Ny, and Ny are as described in Section 2.1.3.3,

Operation Length of Bit String Y Code

cript ~F < SR Ry, R
Ysubscrlpt X; Ny < 8 {(see note) x¢ Ry
IC Ry, X

SLL Ry, Ny-I
XR Ry, Ry

N Ry ,=F 'mask*"*
XR Ry, Ry
STC Ry, Y
9 < Ny < 16 (see note) LH Ry, X
SLL Ry, Ny-I
XR Ry, Ry
N Ry, F'mask*’
XR Ry, Ry
STH Ry, Y

*Mask: The mask used in a bit store is
computed as follows:

N N, -I
(27 T-1) (2% 7)
In other words, the mask is a sequence of Ny bits shifted left
Ny-I bits,

2-19
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Operation Length of Bit String Y Code
Ysubscript= ;
@ {(Cont'd) 17 < Ny < 32 (see note) L Ry, X

SLL Ry, Ny-I
XR Ry, Ry
N Ry s=F'mask'
XR Ry, Ry
ST Ry, Y

Note: 1If the right hand side of the assignment (x) is a BIT
literal containing either BIN'0' or BIN(N ) 1' then
the following code is generated:

= rgY. = ' '
Y3 TO 5 BIN'O'; Ny 8 NI Y, B'11000111
= ' ', = ' '
Y2 TO 4 BIN'1l11"'; Ny B. o)} Y, B'01110000
YlO TO 12=BIN'0'; Ny = 16 LH Rxp Y
N Rx, X'FFFFFF8F"'
STH Rx, Y
v -
ll TO 13 =BIN'111"'; NY 16 LH Rx, Y
0 R_,=X'38"
X
STH R _, Y
X
— T, —
ng P0 31 = BIN'O'; NY = 32 P Rx' Y
N Rx,=X'FFFFFFFl'
ST R, Y
Y28 TO 30 " BIN'111"'; Ny = 32 L Rx, Y
' o] Rx,=X'lC'
ST Rx, Y.
2-20
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Operation

CHAR TO I, 12

CﬁAR TO S

"CHAR TO 52

CHAR TO CHAR

CHAR TO BIT

CHAR TO BIT@<radix>

Code

LA 2, X
HCALL CTOI*#

LA 2, X
HCALL CTOE**

IJA 2' x

HCALL CTOD**

No code generated if unsubscripted.
If subscripted, code same as
component subscripting (see
Section 2.1.4.3).

LA 2, X

HCALL CTOB*

Same code as CHAR TO BIT, except
call to CTOB is replaced as

follows: :
<radix> routine
BIN CTOB
OCT CTOO
DEC CTOK
HEX CTOX

2.1.4.5 Character String Assignments. The following sequences
assume that X has been converted as per Section 2.1.4.4 if it

is not a character string. Either the receiver variable or the
assigned variable in a character string assignment may be sub-
scripted. The possible forms are shown below. When subscripting
is used, a partitioning of a character string results. The initial
element of this partitioned character string is signified by its
index: Nj. Similarly, the final element has the index Nf. Some
examples of HAL/S subscript forms and the resulting N;j and Nf
values are: .

Subscript Form Nj N¢

1TO 3 1l 3
5 AT 2 2 6

* LIBRARY routine leaving result in register 1.
*% LIBRARY routine leaving result in register FO.
2-23 :
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Ogeration Code
Y=X LA 3, X
(Y, X are character LA 2, Y
strings) BAL 14, CAS
Y . -X; LA 3, X
Subscript LA 2, ¥
LA l, Ni
LA 0; Nf
HCALL CPAS*
L L= , : 3, X
YSubscrlpt xSubscrlpt ig 2: Y
LA 1, Njx
La 0, Nfy
L 4 =F'ny', Niy'

r
HCALL CPASP*
2.1.5 Vector Matrix Operations

2.1.5.1 Vector-Matrix Operators. Vector-Matrix operators usually
cperate on two arguments according to the conventions stated in
Section 5.2. Since 3-vectors, and 3x3-matrices have special
library routines, their code is listed in the column labeled
"3-code", while the code for any other vectors or matrices is
listed in the "n=-code" column.

Operation Type n-code 3-code
V1+v2 single LA Ry, 1 same as for "n-code"
loop: LR Rz, R with n=3.

LE FR: Vl(RI)
AE FRr, V2(Ryp)
STE Fpg, temp(R )

LA L’ l(olRL
CH Ry, =H'n'
BC IB, loop
vV1i+v2 double LA Rp» 1 same as for "n-code"”
loop: LR Ry, Ry with n=3.
SLA Ry, 3

LD Fg, V1(Ry)

AD FR' VZ(RI)

STD FR, temp(Ry)

LA Ry, 1(0,Ry}

CH Rr, =H'n'
1%,

BC loop
v1-v2 Same as for V1+V2 except that an "SE" instruction
} is used in place of the "AE" instruction ("SD"

instead of "AD" for double precision).

HCALL is a standard HAL/S calling sequence - see Section 3.7.3.
2-24
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE -« CAMBRIDGE, MASSACHUSETTS 02138 « {617) 661-1.840



Operation

-Vl

vl B V2
(yielding nxm
matrix)

V1 B v2

vl

V1

vl

M1
or Ml

V1

Vl:
Ml:

*

V2

- V2

- V2

M2,

M1l

M1
length n
n xm

11

Type

single
loop:

double
loop:

single
loop:

double

single

single

double

-nucode 3-code

LA Ry, 1 same as for "n-code”
LR Ry, Ry with n=3
SLA R, 2 .

LE Fg, V1{Rp)
LCER Fgi., Fg

STE FgR, temp(Ry)
LA Ry, 1(0,Ry)
CH Ry, =H'n'

BC 12, loop

LA Ry, 1 same as for "n-code"
LR Ry, Rp with n=3
SLA Ry, 3

LCDR FR, Fr

STD Fg, temp(Ry)

LA RLf I(OJRL)

CH Ry, =H'n'
13,

BC loop

LA 3, vl LA 3, Vi

La 4, V2 LA 4, V2

LA 2, temp-storage- LA 2, temp-storage-
area area

LA 0, m HCALL VO6S3

LA 1, n '

HCALL VO6SN

Same as for single preciéion, except that
the routines branched to are VO6DN and VO6D3
for n-vectors and 3-vectors respectively.

illegal operation LA 3, vl
LA 4, V2
La 2, temp-storage-
‘ area
BAL 14, VX653
LA 3, V1~ LA 3, V1
LA 4, V2 LA 4, V2
LA 0, n BAL 14, VV6S3*

HCALL VV6SN

Same as for single preéision, except that
the routines branched to are VV6DN and VVéD3
for n-vectors and 3-vectors respectively.

Same code as that for adding or subtracting two vectors
cf length equal to the product of the row size and
the column size of M1 and M2.

single

LA .3, V1 LA 3, V1

LA 4, Ml LA 4, Ml

LA 2, temp-storage LA 2, temp-storage
area o area

La 0, n BAL 14, VM6S3

LA 1, m :

HCALL VM6SN

HCALL is a standard HAL/S calling sequence - see Section 3.7.3.

2-25
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Operation Type n-code 3-code
Vi B Ml double Same as for single precision, except that

the routines branched to are VM6DN and VM6D3
for the general case and the size 3 case

respectively.
Ml p V1 single LA 3, M1 LA 3, M1
Ml: n Xxm LA 4, V1 LA 4, vl
Vl: length m LA 2, temp LA 2, temp
LA 0, n BAL 14, MV653
LA 1. m
HCALL MV6ESN
Ml ¥ V1 double Same as for single precision, except that

the routines branched to are MV6DN for
n-code and MV6D3 for 3-code.

vl ¥ I*, single LA Ry, s 1 Same as for "n-code"
vl ¥ 12%, loop: LR Ry, Ry with n=3.
Vi g S SLA Ry, 2

ME Fp. S

STE Fr, temp(Ry)
CH Ry, =H'n'

BC 12, loop

V1 B Ss2 double LA Ry, 1 Same as for "n-code"
loop: LR Ry, Rp, with n=3.
SLA Ry, 3
LD Fr. V1(Ry)
MD Fg, S2
STD Fr, temp(Ry)
LA RL: 1(0! RL)
CH Ry, =H'n'
BC 12, loop

vi/1i, v1/12, Same as for V1 P I, etc., except that a 'DE’
vl/s, v1/82 instruction is used instead of 'ME' ('DD' instead
of 'MD' for double precision).

IpBvil, 12 B V1, Exactly the same as for V1 § I, etc.

5B V1, S2 B V1

Ml ¥ I, M1 B 12, Same as for V1 ¥ I, etc., except that

Ml B S, M1 ¥ s2 the loop maximum, n, is the product of
the row size and the column size of Ml.

M1/1, M1/12, Same as for V1/I, etc., except that the loop

M1/s, M1/S2 maximum, n, is the product of the row size and

the column size of M1.

* Note that in the case of single and double precision integers,

they are first converted to scalar from whose value is in FO.

2-26
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Operation Type
I p M, I2 ¥ M1,
S B M1, S3 B Ml
M1¥*1 single
(where i is either
a literal, or a
constant integer)
M1**i double
M1**0 single
_ M1**0 double
l’dlM’T single
Ml: mx n
Mlﬁ*T double
M1l B M2 single
Ml: 1 xm
M2 m Xx n
M1l B M2 double

Version IR-60-5

n-code 3-code

Same as for M1 B I, etc.

LA 1, i "
LA 3, M1
LA 4, temp-storage-area

La 2, temp-storage-area

LA 0, n
HCALL MM17SN

Same as for "n-code
where n = 3.

Same as for single precision, except branches
to the MM17DN.

LA 3, M1
LA 2, temp-storage-area
LA 0, n

HCALL MM15SN

Same as for single precision, except branches
to MM15DN.

LA 3, M1 LA 3, Ml

LA 2, temp-storage-area LA 2, temp-storage-
area

LA 0, n BAL 14,MM11S3

LA 1, m

HCALL MM11SN

Same as for single precision, except the routine
branched to is either MM11DN or MM11D3 for

m X n matrices and 3 x 3 matrices respectively.

LA 3, M1 a 3, Ml

LA 4, M2 LA 4, M2

LA 2, temp~storage-area LA 2, temp~-storage-
area

LA g, 1 HCALL MM6S3

LA

1,=F'm,n’'
HCALL MM6SN
Same as for single precision, except that the

routines 'branched to are MMé6DN and MM6D3 for
the general case and the 3x3 case respectively,

2-27
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2.1.5.2 Conditional Operators. The only comparison operators
allowed for comparing vectors and matrices are = or ™~ =, Since
these comparisons are done on an element-~by-element basis, the
same routines that are used for size-n vectors are also used for
size n x m matrices which are considered to be vectors of length
n x m. No logical variables are created by comparisons. 1Instead,
branching to the "not-true-label" occurs with the "not true"

condition.
Operation Type - n-code 3-code
V1l <0P> V2 single LA 3, V1 LA 3, vVl
) LA 4, v2 LA 4, V2
LA 0, n BAL 14, VV8S3
BAL 14, VVBSN BC COND, not-true-
BC COND, not-true-label label
V1 <0P> V2 double Same as for single precision, except that the
routines branched to are VVBDN and VV8D3 for
n-vectors and 3-vectors respectively.
M1 <OP> M2 single LA 3, M1 LA 3, M1
Ml ,M2: mxn LA 4, M2 LA 4, M2
LA 0, mxn LA 0, 9
BAL 14,VV8SN BAL 14, VV8SN
BC COND, not-true-label BC COND, not-true-
: label
M1 <OP> M2 double Same as for single precision, except that the

routine branched to is VVS8DN.

2.1.5.3 Component Subscripting. Possible. components of matrices
include submatrices, vectors, and single components. Possible
components of vectors include subvectors and single components.

The resultant type of component is determined by the subscripts
used. Note that double precision operations are not shown - their
code is identical except that: a) the called routines will be

VVIDN rather than VV1SN, etc; b) the index multiplier is 8 instead
of 4. Register R4, when used, contains skip values between elements
in partitioned matrices (see Section 2.3.1.3).

2-28
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Operation . n-code 3-code

5 = Vg, LE Rg, Vy + 4 *i
. . 1. .
i: integer literal STE Rg, S
0N ggL §§' ;
. 3 1 r
I: integer variable LE Rg, Vx (Rp)
STE Rg, S
Vy = Vxsubscript LA 3., Vy LA g' gx
Where subscript de- LA 2, Vy LA ¢ Vy
fines a vector of size LA 0, n BAL 14,VvV1s3
n. BAL 14, VV1SN
My = Mxgubscript LA 3, Mx
Where subscript de- La 2, My 1
fines a matrix of ii g' z ip-value
si ’
ize nxm LA 1 m
HCALL 14, MM1SNP
Vy = M, - ) LA 3, M LA 3, My
Y Xsubscript 2 VK 2, V
Where subscript de- LA Py LA Y
fines a vecto? of LA 4, skip-value LA 4, skip-value
loncth LA 0, n BAL 14, VV1S3P
°ng BAL 14,VV1SNP
S = Mxi i Same as for vectors, except that the displacement
I

off Rg is computed to include the use of two
subscripts for matrices.

2-29

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617} 661-1840



2.1.5.4 Conversions. MATRIX/VECTOR conversions are done by
considering matrices as vectors, and assigning the required
components to the receiver variable. More than 1 argument
requires multiple calls to the vector assign routine (as shown
in the second sequence below). Use of double precision operands
will cause branches to VV1DN. Otherwise, the code in unchanged.

Operation .h=code
VECTOR (M, ) LA 3, My
Produces vector of size LA 2, temp-storage-area
equal to produce of LA 0, nsm
dimensions of matrix: BAL 14, VV1SN~*
nxm.
MATRIX (Vx,Vy,Vz)** LA 3, Vx
LA 2, temp-storage-area
BAL 14,VV1S83*
I1a 3 Vy
4 address of
- - +
LA 2, temp-storage-area+DELTAL ]4th matrix
element

BAL 14,VV1S3*

LA 3, Ve Iaddress of

7th matrix
element

LA 2, temp-storage-area+DELTA2

BAL 14,VV1s3*

* The pointer to the results of vector-matrix operations are
left in register 3. Thus, the instruction to set up register
3 may be inhibited, if it is the same as the result of the pre-
vious operation.
** This is an example using several vectors to illustrate the multiple
calling of the VV1S3 {or VVISN) routine. It applies to the
VECTOR shaping function.
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2.1.5.5

Assignments.

Version IR-60-~5

Vectors and matrices may be assigned to
In addition,

other vectors and matrices of the same dimensions.
they may have all elements set to zero by a statement of the

3EE

E5

LR
SLA

_ SER
STE
LA
CH
BC

LA
LR
SLA
SDR
STD
LA
CH
BC

n-code
Y

r
y X

’
0 n«x4 Rx) ,O(Ry)
nyr X
X
07n*8 Ry) /0 (Ry)

RL' l
Ry, Ry,
RI'
'FR, F

Frn, (R
, 1?0 %L)
lg: loop

RL, l
RI r RL
RT, 3
Fr:s FR

Fr, Vy(Ry)
Ry, 170,&))
H'n'

1&: loop

3-code

Same
with

Same
with

Same
with

Same
with

as for
n=3.

as for
n=3,.

as for
n=3,

as for
n=3.

"n-code"”

"n-code"

n-code”

"n-code"

Same as for vectors, except that the loop maximum,
n, is the product of the row size and the column

form: ﬁ = 0; or V = 0:.
Operation Type
Vx = Vy single
v =YV double
X ¥y
v, =0 single
X
loop:
V. =0 double
X
loop:
M, = M
xand Y
M, =0

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 -

size of the matrix.

VECTOR/MATRIX

ADD

For the following operations:

VECTOR/MATRIX SUBTRACT

VECTOR/MATRIX NEGATE

VECTOR/MATRIX-SCALAR PRODUCT
VECTOR/MATRIX-SCALAR DIVIDE
VECTOR/MATRIX ASSIGNMENT
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Version IR—EO-S

In those cases where in-line code is not generated, the
temporary area used to store the result of the last HALMAT
operation before an assignment can be eliminated if

the vector-matrix statement is of a suitable "form" for
optimization and one of four conditions holds. The state-
ment may not have multiple receivers; the single receiver
must be a consecutive partition or be nonpartitioned. The
precision of the right-hand-side of the statement must
match the precision of the receiver. The receiver cannot
be a remote variable, and neither the receiver nor the
operand(s) of the final HALMAT operation can be name
variables, or the terminal of a subscripted structure.
A-so, variable subscripts on any variables do not allow
optimization processing to continue.
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Statements that meet these basic requirements can then be
checked for the occurrence of a necessary and sufficient
condition for optimization. The result of the final operation
before the assignment will be stored directly in the receiver
if at least one of the following conditions is true:

1) a) The receiver is nonpartitioned and the last operation
before the assignment HAIMAT is a "Class 3" operation.
Class 3 operations include matrix~scalar and vector-scalar
multiplication and division, vector-matrix addition and
subtraction, vector and matrix negation and the built-in
function, UNIT.

b) The last operation is a "Class 1" operation. The

class contains only "matrix raised to Oth power®. The
result, the identity matrix, can be stored directly in
any consecutive receiver.

2) The operand(s) are in temporary work areas. Nonconsecutive
partitions are moved to work areas when the operands are
processed. The result of a previous operation is also in
a work area. Operands in work areas are disjoint from
the receiver. This is important for "class 2" operations
that use the elements of the vector or matrix, vector-vector,
and matrix-matrix arithmetic, ‘and matrix transpose and
exponentiation (also, the built-in functions, TRANSPOSE and
INVERSE) . This condition can also held for class 1 and class
3 Dperations If the operation has two operands, both must
be in work areas for this condition to be true.

3} The cperand(s) are nonidentical to the receiver. A
receiver-operand pair is nonidentical if the operand is
in a work area, or if neither variable is a formal
parameter and the variables have different symbol table
references, or if only one of the variables in a formal
parameter and the NEST level of the non-parameterized
variable is greater than or egual to the NEST level
of the parameterized variable (again, symbol table
reference cannot ke the same).

EXAMPLE]l: PROGRAM :

DECLARE MATRIX(3,3), S,T;

PROC: PROCEDURE (A) ASSIGN(B);
DECLARE MATRIX(3,3), A,B,C;
SUBPROC: PROCEDURE (X) ASSIGN(Y);

DECLARE MATRIX(3,3), X,Y.F,Q:

Yo103,« %103, 7% 00 3,4¢

By 20 3, “Paro 3,% * 9 g0 3,47
CLOSE SUBPROC;
CALL SUBPROC{A) ASSIGN(C);
CLOSE PKOC;
CALL PROC(5) ASSIGHN (T):
CLOSE EXAMPLE]:
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Version IR=60-~5
where

X&Y are parameters, C is not
NEST LEVEL (Y)=2,
NEST_LEVEL(C)=1.
Y can be C - cannot assign directly.
P&0Q not parameters - ok to assign directly
NEST LEVEL(P)=2,
NEST_LEVEL(A)=1.

4} The operand(s) are disjoint with the receiver. A receiver-
operand pair can be disjoint in two ways. If the pair is
nonidentical it is, by default, disjoint. If both the receiver
and the operand are consecutively partitioned, they are
disjoint if the partitions do not overlap in any way. If
the receiver and the operand have the same symbol table
reference (are identical) then the two partitions can be
disjoint in either "direction®. For example, let A
be a 4-by-4 matrix. Then,

Al TO 2, % = A3 TO 4,% + .. and

A3 TO 4,% = Al 10 2,4 + ... are both disjoint pairs.
If the receiver and operand are possibly identical, then the
palr can only be disjoint if all of the operand partition
comes after the receiver partition.

EXAMPLEZ2: PROGRAM;
DECLARE MATRIX(6,3), A,D,E;
PROC: PROCEDURE (B,C);
DECLARE MATRIX(4,3), B,C; Pairs A-B & A-C

By g0 2, B3 mo 4, T C3 10 4,4 disjoint

A3 00 4,0 ™ B1 10 2,0 * O3 10 4,47 PEITACE not neces-
CLOSE PROC; _
CALL PROC(A3 O 6,*'D3 T 6,*}’ (Bl TO 2,% ;s really) l
) 3 TO 4,%*
2310 4,« ~ P30 4,« t By 10 2,47  A,D,E are, by default,
CLOSE EXAMPLE2; disjoint because they

are nonidentical

If the operation has two operands, both receiver-operand.pairs
must be disjoint for this condition to be true. The non-
identical and disjoint checks are made at the same time,

so this condition also holds if one pair is disjoint by
disjoint partitioning and one pair is disjeoint by being
nonidentical.
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Version IR-60-5

2.1.6 Structure Operations

2.1.6.1 Structure Comparisons. Structure comparisons may only be
= or -~ =, The comparison is done by comparing corresponding
terminal elements of the two structure operands in order of their
natural sequence. Each terminal element is referenced by adding
the displacement of the element to the address of the structure
(see Section 2.1.1.3). No logical variables are created by
comparisons. Instead, branching to the "not-true-label" occurs
with the "not-true” condition.

Operation Code
X <OP> Y LA Ry, X
LA Rya Y

CLC x-terminal-l, y-terminal-l
BC COND, not-true-label
CLC x-terminal-2, y-terminal-2
BC COND, not-true-label

-
-

CLC x-terminal-n, y-terminal-n
BC COND, not-true-label
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2.1.6.2 Structure Assignments.

The assignment of both major and

minor structures consists of loading registers Ry and Ry with the
address of the structure nodes being accessed, followed by a MVC
(move characters) which moves the number of bytes specified by
width from the locations specified by Ry to the location specified

by RYO
Operation
Y = X width < 256
256 width < 1024
(n is number of
256 byte blocks)
width > 1024

2-35

LA
LA
MvVC

MVC

MvVC
MvVC

LA
La
BALR
MVC
LA
LA
BCTR
MVC

Code

Ry, X
Ry, Y
0{width, Ry) ¢ 0 (Ry)
Ry, X

Ry, ¥
07256, Ry), 0(Ry)

(n-1)+256 (256 ,Ry), {(n-1) #256 (Ryx)
nx256 (width mog 256 ,Ry) ,n*256 (Rx)

0, n
R,, X
o

Ry,Y

R r 0

D%RSG,R } 0 (Ry)

Ry, 2567(,Ry)

Ry, 256(,Ry)

0}: Rr, Y

nx256 (width mod 256,Ry),
n*256 (Ry)
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2.1.7 1Indexing and Arrayed Statements

2.1.7.1 Linear Array Indexing. Linear array indexing is the
use of subscripts, on an arrayed data type, to produce a one-
dimensional resultant array. In the generated code, only one
register - Ry - is needed to keep track of the index value.

At initial entry to the array loop (see Section 2.1.7.4), R,

is initialized to a value of 1. On each pass through the loop,
Ry is used to define a DELTA value to index the arrayed data
(see Section 2.1.1.3). Following this, at the end of the loop
Rz is incremented by 1, and is tested to determine if all of the
data has been utilized, as described in Section 2.1.7.4. Rja

is any available indexing register. Its contents may not be
altered during the course of an arrayed statement. If the index
in Ry must be shifted to access word or doubleword data, it

must be moved to another register to perform this shift.

2.1.7.2 Non-Linear Array Indexing. Non-linear array indexing
has more than one index which can change values to produce a
multi-dimensional resultant array. The actual code generated,
though, can only utilize one register - R - for indexing. Thus,
temporary storage is needed to store all but the inner-most
index. As with linear indexing, all index values (both in R,

and temporary storage) are initialized to 1. The DELTA value
defining the index of each arrayed data item is then computed

on the basis of the value of R; and the index values stored in
memory (see Section 2.1.1.3). Following this, each index value
is tested against the size of the corresponding dimension (of

the resultant array) to determine if all of the data has been
utilized, and/or which indices are incremented for the next iteration.
An example of this is given in Section 2.1.7.4.

2.1.7.3 Array Indexing. Arrays may be used in their entirety in
HAL/S without explicit subscripting (for example assignment of two
equally dimensioned arrays). However, the code generated is very
similar to that for non-linear indexing, except that the indices

are tested against the size of the corresponding declared dimensions
of the arrays, rather than against the size of the corresponding
dimensions of the subscripted array.
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2.1.7.4 Arrayness and Loop Generation. This section has two
examples of the form of array loops, and how indexing is used
within them. The first example uses linear indexing within the
loop, while the second uses non-linear indexing. An array loop
consists of the following sections: initialization of index
values, use of index values to develop the DELTA values (see
Section 2.1.1.3) of the operands, actual operation performed

on array elements (i.e. assignment, comparison, etc.), and
incrementing and testing index values. Note that non-linear
and array indexing produce more than one loop. However, only
Ry is used for indexing, thus requiring temporary storage of the
values of the indices for the outer loops.

Operation Type Code
(X1 = ¥l ., [X]: ARRAY(3) SCALAR LA 9, 1 | initialize index
[¥]: ARRAY (5) SCALAR loop: LR 8, 9 indexi £ [y
DOUBLE SIL 8, 3 ndexing of (Y]
LR 7, 9 . .
SLL 7, 2 } indexing of [X]
ID 2, Y+B(8) assi t
STE 2, X(7) signmen
gﬁ g,_;!gzg) increment and
= .
BC 12, loop test index
- . initialize &
(1l Iv]1,2 TO 3,%:2 [I]: ARRAY(2,4) La 9, 1 store first
INTEGER outer-leoop: ST 9, temp-storage- | . a
[Vl: ARRAY(2,3,4) area index value
VECTOR LA 9, 1 }initialize 27 index
: inner-loop: L B, temp-storage-
area . .
S1a B8, 2 indexing of
AR 8, 9 i -
MH 8,=H'l2'
L 7, temp-storage-
area
SIAa 7, 2
AR 7' 5 indexing of
r
AR 7, 7 (1]
LE 0, V+200(8)
BAL 14, FLOATFX assignment
STH 1, I(7) .
LA 9, 1(0,9) increment &
CH 9,=H'4’ test 2nd
BC 12,inner-loop index value

L 9, temp-stcrage-z

area increment &
IA 9, 1(0'9) j test 151:

CH 9,=H'2! . : .
index value
BC 12, outer-loop
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2.1.8 PROCEDURE/FUNCTION Calls

2.1.8.1 Calls to HAL PROCEDURES and FUNCTIONS. The PROCEDURE/
FUNCTION calling process consists of two parts: argument set

up, and the actual branching to the subroutine's code (see
Section 2.1.9.2). Argument set up uses registers 0-4 (as needed)
for passing integers or bit strings, or pointers to vectors.
matrices, character strings, arrays, or structures; registers
F0, F2, and F4 are used as needed to pass scalar arguments. The
actual code generated sets up the arguments in these registers
in the reverse order that they appear in the HAL/S PROCEDURE or
FUNCTION block definition statement, For example, if the
function is: ~

F: FUNCTION(integer 1, scalar 1, scalar 2, vector, integer 2);

then the registers are loaded in the order: 2 (using LH or L),

1l (using LA to load address of the vector's pointer), F2 (using

LE or LD), FO0 (using LE if scalar 1 is single precision, or LD if
double), and 0 (using LH if integer 1 is single precision, or

L if double). Once all of these registers are used, remaining
arguments are stored in the run stack for the procedure or function
being called. The parameters passed via registers are stored in
the stack at the time of invocation. Again, the code will use
appropriate integer or floating point instructions depending on

the type of the subsequent arguments. If the value of any of these
subsequent arguments is in a register, then only a store instruc-
tion is generated. Otherwise, both load and store instructions are
generated (as  shown in the code sequences below). Once all para-
meters are set up, a BALR is generated to branch to the subroutine.

Operation No. of ARGS Code Alternate Code
Argument Setup < 5 non-scalar LH 4, arg 5 L 4, arg 5 or LA 4, arg 5
and < 3 scalar LH 3, arg 4 L 3, arg 4 o LA 3, arqg 4
LH 0, arg 1 L O,arglor1n 0, argq 1
LE 4, scalar-arg 3 LD 4, scalar~
arg 3
LE 2, scalar-arg? LD 2, scalar-
arg 2
LE 0, scalar-argl LD 4, scalar-
arg 1l
BALR 14, 12
Actual Call DC  AL4 (Proc. name)
Argument Setup >5 non-scalar Ly R, arg n L Rr,argnor L R, arg n
and/or > 3 scalar STH R, temp-stor- ST R, temp-
age* storage*

* Temp-storage 1s an area in the stack of the routine to be called,
addressed as the stack relative address augmented by the max-stack
size of the calling routine.
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LE R, scalar-arg n LD R, scalar-

arg n
STE R, temp-storage¥* STD R, temp-
. storage*
LE 4, scalar-arg 3 LD 4, scalar-
: arg 3
LE 0, scalar-arg 1 LD 0, scalar-
arg 1
1H 4, arg 5 1A 4, arg 5 or L 4, arg 5
' . ; IA O, arg 1l or L 0, arg 1
Agtual Call LH 0, arg 1 9 g
BALR 14,12
DC AL4 (proc—-func-name)
2.1.8.2 Calls to NONHAL(1l) Procedures and Functions. NONHAL(1)
is defined as FORTRAN compatible linkage, All arguments are
passed as addresses. Unlike FORTRAN, however, addresses of
literal values are not passed; instead, addresses of temporary
locations containing the literal value are passed,
Example:
DECLARE FTSUB PROCEDURE NONHAL (1)
CALL FTSUB(A,B,C,1);
Code
Argument Setup LA R, A
5T R, temp-storage-area
II.A R' B :
sT R, temp-storage-area+4
LA R, C
ST R, temp-storage-area+8
LA R, 1
ST R, work-area
LA R, work-area
5T R, temp-storage-area+l2
MVI temp-storage-area+l2, X'80°
LA l, temp-storage-area
Actual Call ST 13, max~temp-area+4
LA 13, max~-temp-area
L 15, =V (FTSUB)
BALR 14, 15
L 13, 4(13)

* Temp-storage is an area in the stack of the routine to be called,
addressed as the stack relative address augmented by the max-stack
size of the calling routine.
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2.1.9 Block Definition Statements

All of the forms of block definition statements in the
following subsections are basically similar so that the following
conventions apply. In the constant where the value "name" appears
in the code, it refers to the name of the block being defined.

If this constant is halfword aligned, the alternate code shown
uses: ,X'0' to force alignment. The value of "2" is the length
in characters of "name" (or for unlabeled UPDATE blocks and INLINE
functions, it is the length of "$NAME"). The value of “n" in

the unconditional branch instructions is the relative address of
the first executable instruction following the constants' declara-

tions.

2.1.9.1 PROGRAM and TASK Definition. PROGRAM and TASK definitions
{as well as external procedure and function definitions) are
similar to those for procedures and functions except that the last
two load instructions are needed to provide addressability.

Operation Code Alternate Code
PROGRAM or TASK BC 15, n(0, 15)
Definition DC ALL(0), AL3(FSIM
CSECT #F)
DC AL2 (max-temp-size)
DC ALl1(£), C'name’ DC ALl (£), C'name',X'0Q"

L 11, 4(0,15)
IM 6, 10, 128 (11)

MVI 0(13) ,m**

¥ Appropriate displacement into the run stack for the called
procedure or function.

** m is the code for the ID of the block - see p. 3-12,
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2.1.9.2 PROCEDURE and FUNCTION Definition. Both PROCEDURE
and FUNCTION definitions are similar to PROGRAM and TASK
definiti