Section 1

INTRODUCTION

AP-101S WITH SHUTTLE INSTRUCTION SET

The AP-101S is a high-speed general-purpose computer intended primarily for
real-time applications such as guidance, navigation, control, and data processing.
The AP-101S is a member of the advanced System/4 Pi family of digital computers,
and is software compatible with AP-101C/M, described in IBM No. 6246156B,

30 Jan, 1979. This family shares and is unified by extensive design experience,
proven technology base, and common manufacturing processes.

This Principles of Operation manual provides a direct comprehensive description
of the system structure; the arithmetic, logical, branching, and status switching; and
the interruption system. This publication defines and describes features common to
all AP-101 computers. These features are the basis for IBM-developed support
software and are compatible with compiler development efforts now in process.

Execution times and nonstandard features and functions are described in separate
documents., This is because aerospace computers characteristically include user
defined features such as unique input/output channels, and special discretes. These
will be incorporated into the AP-101S as pluggable options. Furthermore, the
AP-101S is microprogrammed and is designed to permit incorporation of additional
instructions and operations without redesign and requalification. Such extensions are
also described separately.

ote: Thie docemind <o alos apyleialle 72
o ﬁﬁ/a/f/é /zf_g M AN LAttt

o Lhe APIO/S commmgTel.

1-1/1-2

Section 2

AP-101S STRUCTURE

SHUTTLE INSTRUCTION SET

The AP-101S system structure encompasses the functional operation of main
storage, the central processing unit (CPU), and program-controlled 1/0 facilities. The
overall definition is open ended ard includes all the basic facilities necessary to accom-
" modate additional specialized and/or application-dependent 1/0 channels and features.

The modular AP-101S system structure can support configuration alternatives

ranging from a self-contained single processor to a full symmetrical shared-storage
multiprocessing system.

MAIN STORAGE

The functional operation of main storage is unrelated to the physical width of the
information paths or cycle time.

Six evvoy covreetion bty a-d three voted

INFORMATION FORM::V _
The system transmits information between main storagé and the CPU in units of

16 bits, or h‘x}ntegé multiple of 16 bits. Each 16-bit unit of information is called a
halfword. AZparity bit-and-@ storage protection bitsare also associated with each half-
word, but later references in this manual to the size of data fields exclude these bits.

Halfwords may be handled separately or in pairs. A fullword is a group of two
consecutive halfwords. Both halfword and fullword instructions and operands are used.
Their location is always specified by the address of the leftmost halfword. The instruc-
tion length is designated implicitly in every instruction; the operand length is also implicit.

Within any instruction and operand format, the bits making up the format are consecu-
tively numbered from left to right, starting with the number 0, as shown in Figure 2-1.
\

ADDRESSING

Halfword locations in storage are consecutively numbered starting with 0. Each
number is considered the address of the corresponding halfword. The addressing
technique uses a 19-bit binary address to accommodate a maximum of 219 halfword
addresses. This set of main storage addresses includes some locations reserved for
special purposes, such as program status words; consequently, these special locations
should not be used for any purpose not implicitly defined.

Halfword

N N N I O

0 15
Fullword

I 1 1 T T 1 T T (T I O O A
0 15 16 3

Figure 2-1. Instruction and Operand Bit Numbering

INFORMATION POSITIONING

Fullword operands must be located in main storage on even halfword boundaries.
That is, the least significant bit of the operand address, when expressed in binary,
must always be zero. Fullword instructions may begin at any address.

CENTRAL PROCESSING UNIT

The central processing unit (CPU) contains facilities for addressing main storage,
for fetching or storing information, for arithmetic and logical processing of data, for
sequencing instructions in the desired order, and for {nitiating the communication be-
tween storage and external devices.

The control section guides the CPU through the functions necessary to execute the
program,

PROGRAM ADDRESSABLE REGISTERS

Two sets of eig'ht fixed-point general registers and one set of eight floating-point
registers are under explicit program control. The contents of one or more of these
registers (32 bits) participate in most CPU operations.

Conceptually, an additiqnal‘doublewotd status register, called the program status
word (PSW), i3 the focal point for machine status. The contents of the PSW are updated
during each instruction. Consequently, the PSW reflects current machine status fol-

lowing every instruction. The PSW participates implicitly in status switching, branching

operations, and address calculations.
%

In addition to the PSW and the general and floating-point registers, the CPU also
contains working registers used for storage addressing, storage buffering, shift and
iteration counting, and op;erand storage. These registers are of no direct concern to
the programmer and are not described herein.

The contents of the PSW specify which of the two sets of general registers is in
current use. Only the contents of the selected general register set can participate in
arithmetic operations and the contents of unselected sets of general registers can not
be altered by a program. An alternate set of general registers can be selected by
changing the PSW. Only one set of the fixed-point, general-purpose registers and the
floating-point registers are available to the program at any one time.

General register contents can be used interchangeably as operands for arithmetic,
logical, and shifting operations, or as base and index registers for relative addressing.
Each set of general registers is numbered from 0 through 7 and is addressed as shown
in Figure 2-2.

General Register Function

Register

Number Operand Base Index
0 000 00 None
1 001 01 001
2 010 10 010
3 011 11 or None 011
4 100 100
5 101 101
6 110 110
7 111 111

Figure 2-2. General Register Addresses

Note that general registers 4 through 7 cannot contain base addresses and that
general register 0 cannot contain an index.

P For some operations, an even/odd pair of general registers are linked to form a
64-bit doubleword register. The most significant half of a doubleword operand is
contained in the even-numbered register; the least significant half of the doubleword in
the next higher odd-numbered register. Doubleword operands are addressed by speci-
fying the even numbered address of the register containing the most significant portion
of the operand.

Fey a.olc{f:h’f;v? date , 7c.~|.c—ra/ yesss Fev s o - 3 R be a.uy—»qc-n‘f'm{

b\j 7 bit Data Secter A xtension (0515') ryes/85ters eor é] the OSSR
v the PSW Fo addyvess beyond /6 bF capabilifies . Téere

are

/6 DS E ‘s Jome Ffoy cach of Hhe S gemeval/ pPUerpose vey;:fcv "

each of the 7":/.-; sers of gemeral vegisteyr. ThUS featvve shall
e ! e

ra T be vused vy pro;rnm";/e.fs. THB A AR Foil e e

FIXED#POINT DATA REPRESENTATION

Data representation {s fractional, with negative numbers represented in two's
complement form. A halfword operand is 15 bits plus sign; a fullword operand is 31
bits plus sign, as shown in Figure 2-3.

In fractional data representation, the binary point is immediately to the right of
the sign.

Fixed-Point Halfword Operand

S Fraction

NN
0 1 15

Fixed-Point Fullword Operand

S Fraction

I T T T s I
01 3

Figure 2-3. Fixed-Point Operand Formats

INSTRUCTION FORMATS

The length of an instruction format can be either one or two halfwords. Long
format instructions provide maximum range and extended flexibility for addressing
storage operands. Short instructions are used to (1) specify register-to-register
operations, and (2) specify storage operands in cases where a small displacement is
sufficient and complete address modification capability is not required.

Instruction formats overlap. Programs are written so that in many instances any
given operation can be coded using either a halfword or a fullword instruction. In such
cases, maximum use of halfword instructions results in increased storage efficiency
and performance,

The three basic instruction formats are as shown in Figure 2-4. Halfword instruc-
tions are automatically selected by the assembler unless otherwise specilied by the pro-
grammer.

2-4

4.0 HISH LEVEL FUNCTIOMAL DESCRIPTION

4.1 GEMNERAL SYSTEM OPERATION

The AP-101S was formed by the integration of a redesigned B1-B
AP-101F processor and a repackaged Input/Output Processor (IOP) from
the existing Shuttle computer. Redesign and repackaging permits both
of these elements to be housed in & single structure. Figure 2 on
page 4 shows the AP-101S Block Diagram.

The elements utilized from the AP-101F are the CPU, MHU (Memory Man-
agement Unit), and Interrupt sections. The microcode has been modi-
fied so existing shuttle software can be used on the AP-101S. The
Timing page, SDI (Software Development Interface) page and the SIB
bus have been eliminated. The unused circuitry in the MMU has been
removed to permit integration of the timing and SDI functions into
the MHU.

The IOP has been repackaged using medium scale integration to reduce
the number of pages from fourteen to seven. The IOP has maintained
the same timing as the original processor.

All of the pages use Modular Computer System (MCS) page technology.
The repackaging allows the AP-101S to be housed in a single box.

The CPU performs the functions of computation, storage and communi-
cation of data for the Shuttle Orbiter. The CPU executes in-
structions from main store. Main store 'is controlled by the MHU,
which handles all memory access requests from the CPU and I0OP.

High Level Functional Description 3

b

J3d9 2T133nys aoeds SI0I-dV

AP-101S

“8LOCK DIAGRAM —
- - - ' AGE DISCRETE} ccu 1 -
AGE '
< MIA INTF. DISCRETE '
MIA BUFFER - INPUT/OUTPUT
, STATUS & INT —CONTROLS o | ' l
' MICRO SEQ . =al8 g &
‘) T MIA |
DATA FLOW L, | g PORTS
I DATA FLOW _ |
| i ==
' CPU 8
[CMOS
]) 256K x 50 BITS PIVSICAL
«<—»f DATA 32 ADDRESS
ECC 12
cPU P 6
(H-BUS)
MMU ADDRESS | -
U AND DATAFLOw | ccu
O AL <~ AGE SUPPORT :> PARALLEL AGE '
BUS :
MMU AGE ,
\ - g’(‘E‘ (}:\unom - 4 AND CONTROLS
[Exee 3 |
FLow LOGICAL '
dceus ADDRESS (16) : l
| [INSTRUCTION] | | DATA (32) ‘
Tlann l
z|5| |eFFecTive |
ol [ADDRESS ‘
| CPUC . -
|| EXEcuTiON A : l
SEQUENCER ., | INTERRUPTS ccu
i 2901/2910 SERIAL AGE '
e
I e————— i, S

Figure 2. AP-101S Block Diagram - '

The IOP functions as a programmable, time-shared processor that
transmits and receives Shuttle Orbiter subsystems data under control
of the CPU.

The CPU communicates with the IOP by means of Program Controlled
Input/0utput (PCIO) instructions. ~ PCIO transmissions involve a com-
mand word and data from either the CPU or IOP.

The Shuttle Orbiter subsystems are connected to the IOP by 26 serizal,
1-MHz data buses. Data bus~to-I0OP interface is accomplished by 2«
Multiplexer Interface Adapters (MIAs) located in the I10P. The MIAs
perform such functions as parallel/serial conversion, Manchester en-
code and decode, parity generation and detection, and bit count de-
tection. The I0P handles the processing required to service the 24
data buses. '

The 24 data buses each have a Bus Control Element (BCE). The BCEs
are given instructions by the Master Sequence Controller (MSC) on how
to handle data. The MSC executes iistructions from main store as
directed by PCIO instructions from the CPU. The MSC/BCE instructions
and data are fetched from main store through Direct Memory Access
requests. The MSC has a set of programmable registers in Local Store.
These registers include a PCIO register, index register and program
counter.

The BCEs execute programs from main store specified by MSC in-
structions. Each BCE also has a set of programmable registers in
Local Store and can read or write I/0 data into main memory via Direct
Memory Access (DMA). 1Included in the registers is an indicator reg-
ister which contains one bit for each BCE. ~This bit is set and reset
by s BCE to communicate with the MSC.

Each BCE is sequenced by a timing 'wheel' which allows one microin-
struction from each BCE to be executed at a time. The MSC is also
in this timing sequence, but it gets eight slots in a complete turn
of the "wheel' whiie each BCE gets only one. One MSC microinstruction
is executed after three BCE microinstructions. Some MSC and BCE in-
structions may take more than one rotation of the 'wheel' to be exe-
cuted.

The Interrupt page contains a processor to handle intarrupts. The
interrupt processor prioritizes, masks, categorizes and performs any
other processing that is necessary before giving informaticn to the
CPU. A ane byte word is generated to inform the CPU into which cat=—
egory the interrupt falls. Additional information allows the CPU to
formulate a3 six bit address for a PSW sSWap and begin processing the
interrupt. .

Each of the three major components of a GPC (CPU, IOP,. and Intarrupt
Page) is controlled by independent microcode. The CPU microarchi-
tecture is described in detail in "Microcontrol Implementation For
CPU" on page 113, the Interrupt microarchitecture is described in
"Microcontrol Implementation For INT"™ on page 191, and the IQOP

High Level Functional Description '5

microarchitecture is described in "Microcontrol Implementation For
IOP"™ on page 211. .

4.2 AP-101S CENTRAL PROCESSING UNIT

The AP-101S central processor unit is optimized for both MMP and
MIL-STD-1750A Hotice 2 architectures and is comprised of these func-
tional units:

. Instruction Unit (I-unit)

¢ Effective Address Unit (EA-unit)
o Execution Unit (EX-unit) -
o Fractional Data Flowu

s Exponential Dafa Flow

. Sequencer N

These units are organized to execute instructions in a pipeline
fashion designed to provide results at a rate of one per machine cycle
(250 ns) when operating on simple instructions (with the pipe full).
The pipeline is shown in Figure 3 on page 7.

fhe Instruction unit is responsible for prefetching instructions.
It provides a logical instruction address ts the Memory Management
Unit, which then translates this to a physical address hefore fetch-
ing the instructiaon. The EA-unit decodes the instruction to detar-—-
mine what type of addressing the instruction specifies, and uses its
data flow to calculate (if necessary) the effective (logical) address
of the operand. This logical address is translated to a physical
address in the MHMU, and the operand is fetched. The EA-unit provides
the operand and decoded instruction to the Execution unit and selects
the general registers specified by the instruction.

The EX-unit performs the actual execution of the instruction via
microprogramming (i.e., microcode provides the signals that control
the data flow through the hardware). Each macroinstruction corre-—
sponds to one or more microinstructions. At the and of a microcode
routine which implements a macroinstruction, a 1:2S56-way branch in
the microcode is executed in order to access the section of microcode
required for executiocn of the following macroinstruction.

The CPU machine cycle is 250 ns and is the time required to read,
compute, and write the result of a simple register to ragister oper-
ation such as add (RA = RA + RB). Each pipeline operation is com-
pleted in one machine cycle and data can be passed from one stage of
the pipe to the next at this rate when the EX-unit is operating at
its maximum rate. Three additional cycle times for the EX-unit are

6 AP-101S Space Shuttle GPC

e

HBUS (from memory)

—1
v (oa—
INSTRUCTION TRANSLATE (IX)
INSTRUCTION
-> UNIT
v
INSTRUCTION FETCH C(IF)
v ———
EFFECTIVE ADDRESS (EA)
EFFECTIVE
| '> ADDRESS
v UNIT
OPERAND TRANSLATE (0X)
v ps——
EXECUTIO:!
EXECUTION (EX) -> UNIT
Figure 3. ° CPU Pipeline
provided to speed up the execution of multicycle instructions: 125

ns and 150 ns are for microcoded operations which do not raquire a
full machine cycle to execute, and 100 ns is used for high-speed it-
erations typical in operations such as multiplication, division, and
shifting. '

Synchronization of the pipeline is accomplished by means of the ENDOP
command which is issued at the end ot each macroinstruction by the
microprogram. The ENDOP command sigials each stage of the pipeline
to output its results (pass them on to the next stage) and to begin
working on its new input (the output from the previous stage) at the
beginning of the next machine cycle. When the EX-unit is operating
on simple instructions, the ENDOP command may be issued every 250 ns,
one machine cycle. When the EX-unit requires more than 250 ns for
the execution of an instruction, the operation of all other stages
in the pipeline is suspended (no ENDOP is issued) except for the
prefetching of instructions by the I-unit (which continues independ~-
ently until the 16 x lé6-bit instruction file is full). When the EX
unit has completed its operation the microprogram issues an ENDOP and
all stages of the pipeline restart at the beginning of the following
machine cycle. The ENDOP signal also signifies the end of a microcode
routine, causing the EX-unit to branch (1:256-way branch) to the
start of a new routine based on the next macroinstruction.

High Level Functional Description 7

4.3 MAIMN STORAGE

.he AP-101S contains two battery-backed Static RAM CMOS pages, each
containing 128K X 32 bits plus store protect bits and Error Cor-
rection Code (ECC) bits. Associated with each main memory halfuword
are three store protect bits and six Error Correction Code (ECC) bits
which are determined by the 16 data bits.

The CHMOS memory has an access time of 250 ns and a cycle time of 250
ns. This includes error detection and correction (EDC).

The AP-101S is also capable of operation with dynamic memory pages
of the type found in the Bl-B AP-~101F computer. A signal indicating
the t,pe of memory in use is generated on the memory page, and this
signal is used to configure the interface portion of the MMU. Both
memory pages in use must be of the same type. The dynamic memory
configuration provides 128K words of memory. Except for the differ-—
ence in memory size, the type of memory in use is transparent to the
software. Dynamic memory is not battery-backed and will not retain
data in the event of power loss.

4.6 INFOPMATION FORMATS

The system transmits information between main storage and the CPU in

aits .of 16 bits, or in integer multiples of 16 bits. Each lé-bit
unit of ‘information is called a halfword. Six error correction bits
and three voted storage protection bits are also associated with each
halfword for the AP-101S, but later references in this workbook to
the size of the data fields exclude these bits.

Halfwords may be handled separately or in pairs. A fullwora is a
group of two consecutive halfwords. Both halfword and fullword 'n-
structions are used. Their location is alwasys specified by the ad-
dress of the most significant halfword. The instruction length is
designated implicitly in every instruc:ion. The operand length is

also implicit.

Within any instruction and operand format, the bits making up the
format are consecutively numbered from left to right, starting with
the number zero, as shown in Figure 4 on page 9.

8 AP-101S Space Shuttle GPC

7/

Halfword

U RO NN S JUN USSRV JOUUNN NN O NN N

0 15

Fullword :
1NN TSN NS TN TSN UMY TS T UUUOON U U NN TN NN T NN SN T TN VOO U TSNS NSNS U TN N U T N N

0 31
Figure 4. Instruction and Operand Bit Numbering

4.5 ADDRESSING

Halfword locations in storage are consecutively numbered starting
with zero. Each number is considered the address of the correspond=-
ing halfword. The addressing technique uses a 19-bit binmary address
to accommodate a maximum of 512K halfword addresses. This set of main
storage addresses includes some locations reserved for special pur-
poses, such as program status words. Consequently, these special lo-
cations should not be used for any purpose not explicitly del’inea.

6.6 INFORMATION POSITIOMIMG

Unlike previous versions of the AP-101 computer, the AP-101S does not
require either fullword instructions or fullword/doubleword cperands
to be located in main storage on even boundaries.

4.7 _PROGRAM ADDRESSABLE REGISTERS

Two sets of eight fixed-point general registers and one set of eighv
floating-point registers are under explicit program control. The
contents of one or more of these registers (32 bits each) participate
in most CPU operations. Associated with each of the general purpose
registers is a 4-bit addressing extension register (Data Sector Ex-

High Level Functional Description 9

tension or DSE), the use of which is described below in Extended Ad-
dressing. :

onceptually, an additional doubleword status register, called the
Program Status Word (PSW), is the focal point for machine status.
The contents of the PSW are updated during each instruction. Conse-
quently, the PSW reflects current machine status following every in-
struction, The PSHWH participates implicitly in status switching,
branching operations, and address calculatiaons. Condition codes re-
sulting from an instruction are also part of the PSH.

In addition to the PSW and the general and floating—boint registers,
the CPU also contains working registers used for storage addressing,
storage buffering, shift and iteration counting, and operand storage.

The contents of the PSW specify which of the two sets of general
registers is in current use. Only the contents of the selected gen-
eral register set can participate in arithmetic operations and the
contents of unselected sets of general registers cannot be altered
by a program. An alternate set of general registers can be selected
by changing the PSH. Only one set of the fixed point, general purpose
registers and the floating-point registers are available to the pro-
gram at any one time.

General register contents can be used interchangeably as operands for
arithmetic, logical and shifting operations, or as base and index
registers for relative addressing. Each of the general registers is
numbered from 0 through 7 and is addressed as shown in Figure 5.

General "Register Function
Register
Number Operand Base Index
0 000 00 Not Used
1 001 01 001
2 010 10 010
3 011 11 or none* 011
4 100 : . 100
5 101 101
6 110 : 110
7 111 111

#¥11 = Register 3 for SRS; none for RS
Figure 5, General Register Addresses

Note that general registers 4 through 7 cannot contain base addresses
and that general register 0 cannot contain an index.

10 AP-101S Space Shuttle GPC

For addressing data, general registers 0-3 can be augmented by 4-bit
Data Sector Extension (DSE) registers or by the DSR in the PSH to
address beyond l6-bit capabilities. There are 16 DSEs, one for each
of the eight general-purpose registers in each of the two sets of
general registers.)

For some operations, a pair of general registers is linked to form a
64-bit doubleword register. The most significant half of a
doubleword operand is contained in the specified register; the least
significant half of the doubleword is in the next higher-numbered
register (determined by modulo 8 addition of one (1) to the specified
register). Note: If Reg 7 is specified, the least significant half
of the double word operand is contained in Reg. 0. :

One set of eight 32-bit floating-point registers is provided and
these registers are separate and distinct from the general-purpose
registers.

4.8 DA REPRESENTATION

Fixed-point data representation is both integer and fractional, wWwith
negative numbers represented in twos complement form. A halfword
operand is 15 bits plus sign, a fullword operand is 31 bits plus sign,
and a doubleword operand is 63 bits plus sign, as shown in Figure 6
on page 12. In fractional data representation, the binary point is
immediately to the right of the sign. In integer arithmetic, the
binary point is to the right of bit 15. ‘

Unless otherwise stated, fixed-point arithmetic operations assume a
fractional data type. :

Floating point data occupies either a fullword format or a doubleword

format. These formats differ between the MMP and 1750A architectures,
as depicted in Figure 7 on page 13 and Figure 8 on page 14.

High Level Functional DPescription 11

Fixed—Point Halfword Operand

S Fraction

—Radix Point

Radix Point

Fixed—Point Fullword Operand
i

w

Fraction

31
V4l AN
—Radix Point
Fixed-Point Doubleword Operand
S Fraction ceo e
IS SN AN NN NS NN N N O T S AR O N NN S NS NS A A S I I
01 63
7\

‘—Radix Point

Figure 6. Fixed-Point Operand Formats

12 AP-101S Space Shuttle GPC

Short Floating—Pdint Number . (MMP Architecture)

Exponent S Fraction
| N I | | NS IO N TN N N A N N N R N N NN NN M N A N
01 7 8 9 ' 31
/7 |\
lb—Radix Point
Long Floating—Point Number (MMP Architecture)
Exponent S Most Significant Fraction .o
I I I O A [IS NS N IO DO N (N TEUNE S N N N N N O N N N N]
o 7 8 9 31
/N
——Radix Point
Least
Significant Reserved/Ignored
Fraction .
| T I T T | I N IOV DR NN O MO A N N TN LI TR A DO N O T
32 39 63
40
Figure 7. Floating-Point Operand Formats (MMP Architecture)

High Level Functional Description

13

Short Floatiﬁg—Point Number (1750A asrchitecture)

MSB

LSB MSB

LSB

lS Mantissa

Exponent

MR U NN SN U PO NN NN N N

01

/l\ ,
Radix Point

Long Floating—Point Number (1750A Architecture)

31

S Mantissa (HMS) Exponent
RN R IR N B N N TS N N V111 | I N R I I
01 23 | 31
7N\ 24
——Radix Point
.. Mantissa (LS) Unused/Reserved
| TR I NS DU S NVUU JO N N T O A | T IO O NS N A N O I
32 47 63

Figure 8.

.9 INSTRUCTYION FORMATS

The length of an instruction format can be either one or two 16-bit
(halfword)
increased
specification of additional address modification,
conditions
instructions
ana
is sufficient and complete address

words. In Wwith

fullword)

contrast
instructions

the designation of special
structions. Hal fuord

register—-to-register oparstions,
small displacement

cases wWwhere a
modification is not required.

Instruction formats overlap.
instances,
a fullword instruction.

16=-bit
Aprovide

Programs are written so
any given operation can be coded using either a halfword
In such cases,

14 AP-101S Space Shuttle GPC

instructions,
addrassing,
and make
to test for in

are used - to (1)

Floating—-Point Operand Faormats (1750 Architecture)

32-bit
permit

possible
Jump
specify

speciTty storage opersnds

that,

maximum use of

in many

halfword

Nl

11.0 1LOW LEVEL FUNCTIONAL DESCRIPTION

11.1 BACKPANEL FUNCTIONAL DESCRIPTION

The Backpanel provides the means of connecting all the pages in the
AP101S Computer to each other and the outside world. It is a Multi-
layer Interconnection Board (MIB) with connectors for each page, the
Power Converters, and the Input/Qutput (I/0) Wiring Harness.
Figure 130 on page 256 gives a side view of the AP101S Computer
showing the Backpanel and which page is in each connector.

11.1.1.1 Backpanel Lavout

There are 23 slots or places for connectors in the backpanel as de--

fined below. The input voltages available to each slot are also
listed. -
SLOT DESCRIPTION INPUT YOLTAGES
A0l I/0 Harness +5 MEMORY
AD2 AD Page (Age and Discretes) +5V,+12V,+5 MEMORY

AO3 MIA Page (Manchester Inter face Adapter) +5V,+12V,-12V
AQ4 MIA Page (Manchester Interface Adapter) +5V,+12v,-12V
AO0S MIA Page (Manchester Interface Adapter) +5V,+12V,-12V

AO6 MC Page (Master Sequencer Controller) +5V

AQ7 IB Page (I/0 Buffer) +5V

AD8 SI Page (Status and Interrupt +5V

AD9 FT Page (Flow Top) +5Y

ALO Spare Slot =5y

All Spare 3Slort +35V

Al2 FB Page (Flow Bottom) , +5V

Al3 IM Page (Interface and MIA Control) +5V

Alg CC Page (CPU 3) +5V

AlS CB Page (CPU 2) - +5VY

Alé CA Page (CPU 1) +5Y

Al7 IN Page (Interrupt) +5V

Al8 MB Page (MMU 2) +5V

AlS MA Page (MMU 1) +5V

A20 CMOS Memory Page +5 MEMORY

A2l CHM0S Memory Page +5 MEMORY

A2 +5 Yolt Converter (Paower Supply) 28 YDC -

A23 12 Volt Converter (Power Supply) 5 28 vYDC
Figqure 129, Backpanel Slot Input Voltages

All the connectors have 2956 Pins except the I/0 Harness connecrtor
(AO01) which has 300 pins and the +5 Volt and 12 Volt Power Converters
(A22 and A23) which have 125 pins.

Low Level Functional Descriptiaon 255

256

AP-101S Space

Shuttle GPC

AP101S Side View

e 130,

BACKPANEL
11.1.1.2 Backpanel Stackup

The Backpanel consists of 23 layers as shown in Figure 131 on page
257. These include the "0" top and ™"OQ" bottom, eleven signal layers,
and various voltage and ground layers. One signal layer is divided
to provide straight runs for the MIA channels without any interfer-
ence from other signals. This divider separates A0l through AO05 from
the other backpanel slots. Some of the voltage layers are also dij-
vided.

LAYER COPPER DESCRIPTION
NUMBER THICKHNESS
1 1 0z "0" TOP, FOIL
2 2 0z 28V, +5V
3 2 0Z SIG 1 -
4 1 9z SIG 2
5 1 02z +12Y, 28V RETN
6 1 0z -12v, 28V
7 1 0Z SIG 3
8 1 0z SIG 4
9 1 02 +5V, 28V RETN
10 1 0Z BATTERY, +10V CHARGE 1 & 2
11 1 0z SIG 5
12 1 0z , SIG 6
13 1 02 CMOS +5V, CHAS GND
14 1 0z GND, 28V
15 1 0z SIG 7
16 1 0Z SI1G 3
17 1 02z 5ND, 28V RETN
i3 L 0Z +5V, 28V RETN
L9 1 0z 5IG 9
20 2 02 SIG 10
21 2 0Z GND ‘
22 2 0Z SIG 11, MIA
23 1

0z "0"™ BOTTOM

Figure 131. Backpanel Stackup

Low Level Functional Description 257

b

11.2 CPU PAGES

11.2.1 CPU Functional Description

The AP-101S Central Processor Unit is optimized for both MMP and
MIL-STD-1750A Notice 2 architectures, although the 17504 architecture
is not implemented in the standard AP-101S configuration. The
AP-10156-1750, a special groundbase development configuration of the
AP-101S, implements the 1750A architecture and shares with the
AP-101S a common Central Processor Unit. The CPU flow diagrams are
shown in Figure 132 on page 259, Figure 133 on page 260, and
Figure 134 an page 261.

11.2.1.1 1Instruction Unit

The Instruction unit uses its own instruction counter (IU-PC) to
prefetch instructions from memory during unused memory cycles. In-
structions are fetched two words (16 bits =ach) at a time and are put
into a 16 x lé-bit FIFO instruction file, shown in Figure 135 on page
262. N

The 16 word instruction file is organized as two 8 x lé6-bit buffers.
The most significant 16-bit instruction word is plazed in the even
address portion, and the least significant is placed in the odd ad-
dress portion. The file is further divided between the higher order
" Jddresses (A) and the lower order addresses (B) so that it is accessed
35 shown in Figure 135 on page 262.

in 3ddition to “he A and B sats ar burfers, the instruction file also
has & C set oT buffers to Minimize delays winen a branch is taken.
When a branch instructiaon is ancountared, the EA-unit generates *“he
branch address, prefetches two words from that location, and places
them in the C set of buffers. If the branch is not taken, the in-
struction file continues to fill up the A and B sets of buffers as
before. However, when the Execution unit determines that a branch
is taken, it directs the instruction file to switch from the A and B
buffers to the A and ¢ buffers and to start fetching instructions
from the location Tollowing the branch address (branch address plus
two, since the EA-unit has already fetched the two words locateg at
the branch address and olaced them in *he C tuffer). The A and ¢
Surfers are now the s0urcas ST instructions for *he FA-unit, and no
time has been lost by the switen. The next branch taken wihl c3usea
the instruction file to switch from bSuffers A and C back tozbuffers
A 3nd 3 again, and so far+h.

Instructions can e aither one or two 16-hit words long, so two
alignment multiplexers (muxes) at the output of the file ensure that
a lé-bit instruction or the most significant word of 3 32-bit in-
struction is always output from the left mux. To correctly output a
l16-bit instruction at an even or odd address, the left mux ‘'chooses
s even or odd input, respectively. For 12-bit instructions start-

258 AP-101S Space Shuttle GPC.

CPU PAGES

(CPUl.CPU2,CPY3)

N
¥ MUX BUX]
7
4
INTERNAL IN DATA BUS CA219
Foqen =] [
A 2 4 AEC REQ
1818 &1 Caazn-
e {:ﬂ CA223 ! .Gs cA232
EVEN ¢ COD 7 [SCANG
{n CA233-234 ¥ + unuu;
s CA224.227 L3 A
mex a2 CONTRGLS kb CAtrE
AT18 CA242-244 CA228.260
ven cazzeaze ca217-219 RS n
v { aoo VEN aoa
Y fveny yo INTERNAL
21 /- CAlds-1e8 21 OUT OATA 8US
/ - . Y v
| : =2 7 Low L miGr
. i "y g ” ~ SR BERT
a ‘ 2 = | vy
16 ~ 1 8 b 12
Chzsez == cararg
caz3 ca230 ¥ Y aa v o2 - caze1
]
EALS l [OF] A] #c 1] AL '
[* 18 F] N <) -) 4 E™)) n .
18 18
12) L3 E) L PROM
e CA14840 4 . caTA
i CAZ48247 A Y cAl3S INTERNAL
Y) 1 M «1 | carse P |, INDATA 8US
18 1 < >
T0 €A]
umt 2eR0 caz n 18
0eFECT catos
38 28 cat09
1 7 cson cang
ca208
caz9
FAATHEE" 2 8V o3 N
% \/ "7 ! 1 | A T carn
EINITRTY] / I L i i cazio | i
\ FRACTION ALY / i A TR AT 2 v v
: f s H
-2 L a3 i | expacsion | ixPansiON{ | sgcoos ’ | ramiry
h . | | PrOM PROM ' ’ teHECKERS |
' e “ = — ! l | : L :
: cantam | |
15— PXP. ALIGN. v <=
v® care o Llrz‘u‘myu 8| na Y Y
. o 4 Y Y FLow REGISTER TO CC PAGE
. P " CONTROLS CONTROLS FINAL CHECK
' 2 ¥ MUR BUS CAINZ TO.ALY.
o 15y n \ cante :wux.
4 L HAUX
KPONENT cananam 2880 1s CA213-214
AFLow scan | cater cazn| oerecr 0
MEMORY OATA
4 [2 Nz -
}" '1r r e ve o=
ov.- 19,
Y OnM cant cazis 218
ALNORM cani
. Y,
oy
VV"
O CONOITION
BATAS % 1+

Figure 132,

CPULl Flow Diagram

Low Level

Functional Description

259

092

Jd9 8T33nys adeds SIQ01-dv

[Lavio NP P})

«

a

L]
-

LRI

thuOn
On
I PYYYFN
Lo
cs120
Cuin
LS HIG
ALDK “
GHANCH | 4—.
Choe .
rea <

) 4

|

)
CuDE
(41X}

k)

Culde

WHuUs pala

MM
cn

OrLranD
A

oI 6

e 1711
& !(u\?)

trat il an

i

LR AT
Contuor s Loz [ITRTIFTRY |
B2

CPrUM BUS LU~TA
m : iY) Y}
| : S SRS P
i H T D nlinsidid' Rt - corie
i) . ceioe Mt mniv Cais)
] (] OFf KaND CANCH
" i, . R €@ 103 P L8130
] e u L caiiaof ie Vearn
| o . “"‘l e
‘O y caing (183}
] - - —————— coiij n cane 32
Savin aIvin Civii, A CbO & 000 couvd coi cutdr *
‘ L ELERT) S xidna) 8 xutna) § X denap $ K 44na) B X idna) (WTLES CONTHOL
PR R T —_— { caIe H EhaBl
| R - —_ — — cn:_)‘
i . S N S ——— s
- % e - — .Momu' — VIO SWAP . NS TAUCTION
" e "» FiLE
ST RUCTION Ch2ad 28
Focn I aalend
2 I MURIREG LAY l Fimurine § cans “';:'C“‘
cang
[nf
- al
l INTERNAL DUTBUS 1
‘“ siame
LifEcTvE W o— ¢
UXECUTION) 4, ALUNSSSE 1
OrERANION 4 WSTRUCTION "‘
01600E vi COBE karc
. - - cuzn |
"W iyt [R'PR}] P SN —
(Big 1 u242 cun) - [q%F1] .
(w140 o INSTRUCTION coae ca
i ‘ ;“i“ " Va0
Tia T Ta N N
- LR U e DN 18 n 1}
‘ "..- “‘“' [TIBTRTINY .
[T H1TY Prev R IRTEMIAL IN BUS o¥is ofar ofs
LATCH s u] Culss g iy s
CLade
Y cuan jj':“‘ -
. & MU » s)
s l‘\j YO PUIAS
. [SVITERITeTY cuile __sBuS sUDR [caso
cets WWTLIINAL SPLCIAL
Cruaen
: — S
::::I OrLuAND l—-—i E " FUNCTION [4-MisC D INTCRBOP IS "
cin
" cen
Loudnae § €61 N J
st lews ronce cuate 1
e W [)
—— in
T e e TaMAN
— — e e L~ 2 FERY RO Y S .
W]
‘; ZI - 3} ¢ S & Ttats Dured .
] 3kl REG ALDR caval . 4
.- — — . o ce
Has LismG 4 ¥}
PRI A ADDA haux cata ; T
4 e 3 . Fl
CBI4s 1eg . 4
twdd gmo - - . 0
RCGISTIA Coies
AGE SCa . ¥ VL GALE
o » VoL uCat :?.;::::L(m caa TNACKING
R — STUNE ADDHESS
- .) . N
Figure 135, CPU2 Flou Diagram

PROM
4.

CONSTANT

L/
]
EXPONL I
ALy
(.
s 4
8
0¥ ccana {
A
oir e
CARRY s
8IGN s
VI8 BRANCH T 256 BHANCH

192

odae

Taas N LALA B

[{

jur e

136.

— [i - - . _
"W g
i wh " " 4 . b AGt €C150, 268
. i ¥ scans fccass asy
¥ . ~ .
) AGE B4) ccase
CONTHU w N AGE AGE
i [DATA - ADLLES = O iuus
REGIST(L Abinn <4 Ricc b« DATA
ou REG REG ™ LA C)
s [cCaen €Cio cCina
]
- FIPELINE o
N t ' ‘“‘"’_T‘ cLocKs '
s10p 4 -
o L. t Jvﬁﬂ 0LCo0L AL
INTLnner \ PLA €CY3e 128 AN
LockouY " w Vs e
° ﬁ cc128 CruCLOL f— 8 G
— — e s — — T-* PraSEGEn] xy2
INTEANAL IN BUS y EX OPERATION T
i b PHASE D
L onoinion C147 140 ""; [coce J ccr
g 7 ccaen a2 waly star cci
“w ey ape — oGIc
St L CCHABUFF v
/ . y €C120 CSOR
—_—_— q couanease
) €C123 SUB
BUS ADLR [RNTY
] —- RO cciae e
b €can ADDRESS ccizsa
-] Mux €crzen 2
€C22) YveE
€ca28 1,356
N
' " v 7L w«y AGE CSA
A wid ccitecens n
"W
A wy Chon
STOHE 22x8K
hOt DING
REG
. A ccan €cin 3
NS 1} . L)
o wd ccm 22l B 10 £X LY
"w ‘ -
. - - 9
- y
. A e » W] ccane
sTon ccas
wotoba /oL, ceiae ccae
ALL ° - cce 2
cson prees cciie i
RESET — > csoa ccu
LOGKC cain °
W cens]
R — — PARITY
3 wl ccar
e
OFEHRAD Ately CAUPYY
weoniiet § ras msUs I ona wisc A0R S1AT EXP_FLOW Huus
CONTALLS breote DECODE DECODE btCOOE DECUDE HEOULST
CONTHOL
s cig ccan ccieo ccran ccra ccanr ccase
v cciaa ccia? st
N “} PUKGE VO EXPONINT
s LOGKIC DATA FLOW
] CONTHOL
) R E ccras
L) |
. . ' INBUS LIUVE R A
CPU3 Flo“ Di dgram CONTHINS
: i f15R

CPU PAGES

(CcPUl,CPU2,CPU3)

Figure 135,

262

A) 16 WORD FIFQ FILE

15 ITS—™™

[

Q@r-MNLLAENVNG Yy@VWILDMNOMTM

oNnNEL@POAOM

3) ORGANIZED AS AN 8 x 32 3IT FILES

EVEN

ADDRESSES

Qoo
AQDRESSES

U OO

.-

MOST

SIGNIF ICANT

%QRO

LEAST

SIGNIFTICANT

wWORD

C) HIGHER AODRESSES ACCESSED AS A; LOWER AOORESSES AS 8

\
-

IVEN |
!

|
|
|

i
i’

(,
|

[
|
:
!
|

fotols]

X

~

Instruction File

AP-101S Space Shuttle GPC

CPY PAGES (CPU1,CPU2,CPU3)

ing at an even or odd address, the left mux again chooses its even
or odd input, respectively, and the right mux the complementary in-
put, odd or even, respectively. Figure 136 on page 264 shows how the
l6-bit instruction AAFF is output from even and odd locations, and
Figure 137 on page 264 shows the 32-bit instruction AAAA FFFF being
output from even and odd locations.

11.2.1.2 Effactive Address Unit

The SA-unit decodes the instruction and provides this decodad version
to the Execution unit. The .-EA-unit also handles the generation of
the operand addresses and prefetches the operands for the EX-unit.
Operands or addresses can be provided by the instruction as immediate
data, or may need to be calculated by adding any combination 0f the
following:

1. Immediate data

2. Contents of a base register or memory location
3. Contents of an index register ‘

4. Displacement.

The EA-unit and I-unit data flows are shown in Figure 138 on page
265. Instructions sent from the I-unit enter two logic sections in
the EA-unit. In the Execution Operation Decode section, the in-
struction is decoded, convertad into 3n 8-bit code, and sant to the
EX Operation Code File for the EX-unit to access when eaxacuting an
ENDOP 1:256-way branch issued by the microcode. The EA Seauencer and
Controls section generates “he controi signals needed for the ZA-alU
and its associated logic to compute the loyical addressas of the op-
erands and to prefetch those operands when necessary.

To compute operand addresses, the EA Sequencer and Controls sectian
first determines what type of addressing is used in the instruction.
The EA-unit then fetches the contents of any base or index register
or memory location (indirect addressing) specified and selects from
the instruction any displacement or immediate data for input to the
EA-ALU. The EA-unit calculates the address of the operands by sum-
ming register ar memory contents, immediate data and displacement sas
indicated by the type of addressing.
[

The E£A-unit places the results of its calculations i%to the ZA-A
register, then sends them ¢to the Internal Operand File. General
register addressas are sat up v the EA-unit for ussa 5y the EX-unict
as required for the instruction. If an instruction requires an op-
erand from memory, that operand is fetched and placed in the Memory
Operand File by the EA-unit. The operands for the instruction have
thus been prefetched into one of two files (internal or memory), and
the EA-unit controls which of these files will be provided to the
EX-unit.

Low Level Functional Description 263

CPU PAGES (CPU1,CPU2,CPU3)

A) AT AN EYEN ADDRESS 8) AT AN 00D AQDRESS
EVEN ala]s] EVEN co0
AQODRESSES - AQORESSES ADDRESSES ACORESSES

S o=

AAES

GNP AM

Figure 1364.

A) AT AN ZYEN AQDRES3

—LuNwwwom
anbowrnm

Accessing a 16-Bit Instruction

3) AT AN QDD ADORE3S

EVEN Qoo EVEN (ols]s}
ADDRESSES AQODRESSES : AQBRESSES ADORESSES
E F £ |
c 0 ¢ |
A 3 A |
8 LS -4 croc q 8 !
[| 7 6 [t) |
4 * s 41 ‘ Lo '
2 | 13 2 1
3 ! L q L |]
L | | !
IJ \ ;. “ X
' ' y b
1Y-Y-¥ Y SEFF AAAA FrFE

Figure 137.

Accessing a 32-Bit Instruction

264 AP-101S Space Shuttle GPC

U MINR WO T

—~QQunSNowom

13d1J4258(Q0 TEUOL3IDUNY [3A37] MOT

uo

§6¢

“@ET 24n614

weJbelQ MOTJ eBjeq 3lup-v3

e

/

alens

ERife}

n

&5 Dala

e

r‘]um

L

[o

4
S Bog CPJ K By pata
" -
....... e mmn ataman :.---.\.___F.\‘ P—
} e
[¢ 17
, — | an
(HE! : H
lwltl] l hfuvl ' I sn-l.u ! .4 kJ g”‘i
l]’ﬂ-

'
'
'
'
]
]
'
»
'
’
'
H
!
]
"
'
.
.
]
1
]
]
]
]
v
'
'
'
i
'
'
]
i
'
1
'
'
i
]
'
'
]
]
'
'
]
]
'
'
sos oo

e OP¥hay
[4]% ADON

WAD thay

INSTRUCTE
FETCH o
UNIT

LEFECTIVE
ey
it TIon
DECODE

(T Rany auIsus

BrSTR Y Ix
ealip
i
| L LT TS (3
—— !
alxa
1)
s
[1Y

[irE)3 o

S39¥d Nd2

(eNd3*2idI31Nd)

3

CPU_PAGES (CPU1,CPU2,CPU3)

11.2.1.3 Execution Unit

. The Execution unit contains all the logic needed to perform 16- or
. 2-bit fixed point operations and 32-, 40-, or 48-bit floating point
operations. Microcode provides the control signals for the hardware
in this unit and is contained in an 8K x 72 Programmable Read Only
Memory (PROM). Thirty-two x 8-bit Expansion PROMs are used to mini-
mize the width of the microword while still allowing multiple control
signals to the hardware. Five bits in the microword addréss one of
the 32 locations in one or more of the Expansion PROMs to provide a
16— or 264-bit field of control signals. :

The CPU local store (LS) consists . of two duplicate 256 x 1é-bit banks
of registers which are organized as 32 sectors (16 CPU, 16 constant)
of 16 registers each. The general purpose registers are located in
one (1750) or two (MMP) of these sectors, and in MMP another sector
is used for the floating-point register set. The remaining sectors
ar2 used for taemporary storage of partial results or contain con-
stants wnich are loaded from the constant prom during machine recat
and are accessed by the microcode for certain computations. There
are two identical LS banks, a left LS and a right LS arranged as a
dual-port locsl store. To the macroprogrammer, the local store ap-
pears as one set of general purpose registers: but the two halves may
be read independently by the microcoder so that the contents of two
indapendent registers may be used in the same machine cycle. This
allows simple operations, such as add or subtract, involving two
registers to be completed in one 250 ns machine cycle. When writing
to local store, both the left and right halves are written into at
. e same locations to keep the contents of the two sides identical.

3ince both the EX and EA-units may need to access local store durng
“he same machine cycie, orovision has been made for iocal store blle}
se time- shared. “In a 250 ns machine cycle, the SX-unit reads locsal
store during the first 75 ns, the EA-unit reads LS during the second
75 ns, and the EX-unit writes to local store during the last 100 ns
of the cycle. This requires the EX-unit to perform its computations
in the second 75 ns period while the EA is accessing local store.
The EA-unit performs its computations in the last 100 ns of the cycle
Wwhile the EX-unit is Wwriting to local store. This timing is shown
in Figure 139 on page 267.

The EX-unit data flow is shown in Figure 140 on page 268. A 36-bit
Fraction ALU handles computations involving fixed Point numbers and
Zhe mantissa portion of loating point numbners. The 3-hi%* Exponont
ALU calculates *he axponent in floating point azerations and{is used
35 3 counter in it2rative aperations. In addition, *he Exponent ALU
can be usad 3as an 2¥tension Af the Fraction ALU to provide an axpanded
Jata Tlow (43 bLits! for some Extended Floating Point operations in
the MIL-5TD-1750A architecture. ‘ ‘

Input to the Fraction ALU can come from local store, the FA, FB, or
FC registers, and the internal data bus where data from the Internal
and Memory Operand Files and from EX-unit memory reads is placed.

ovision is made for ALU results to be shifted. At the output of

266 AP-101S Space Shuttle GPC

CPU _PAGES (CPU1l,CPU2,CPU3)

the ALU, the Y Mux is capable of passing data directly or shifting
left 1, right 2, left 8, right 8, 16~bit word swaps, 8-bit byte swaps,
or setting up for I/0. Data from the output bus may be sent to local
store, the FA, FB, and FC input registers, and the FD register. The
FD register is dedicated to holding data which will be stored in
memory.

11.2.1.4 Typical Instruction Execution

The following example will illustrate the roles of the EA and
EX-units in the execution of a typical instruction. The instruction
A (add) of MMP is a 32-bit integer add using the base-relative indexed
addressing mode (contents of base register + the displacement (bits
21 - 31 of the instruction) + contents of index register (shifted left

1 for a fullword alignment) = address of the second operand). Rl is
the register containing the first operand, D2 is the displacement,
A2 is the index register, and 32 is the base register. The raesulrt

of the add is stored in R1!.

< 250 ns - >
|

| X READ LS

i

EA READ LS

EX WRITE LS

<

75 ns

> <~—75 ns > < 100 ns—m™>

EX COMPUTE !

EA COMPUTE l

Figure 139, Time-Sharing of Local Store

Low Level Functional Description 267

892

Jd3d ®133nys soeds SIQI-dV

‘01 34nb61 4

"weJdbeiQg MOT4 eB3EQ JLUM UOL3IND3X]

oCidl-1)?

Y .
40 I (LOCKS ____,°
?
IrlERNAL EN DATA BUS . ¥ bUR B3 | 32
- — e []
f . . -
- - - 4.7 Ca220-
Cunsisal '6“LIJZ €a22) ;Efus
FHUs . . -
3
ELEN 2 €a2))-2:4 C4235-238 .
- L-Ls caev-222 [18° R-LS
,#‘f‘fk’, . 256 = 32 “""'—‘ apiss o | {206 = 32| | carnm-s
1} et . . e e =
) t . ca228-229 ' tAjJ% 244 C42139-240 o
—— - even[{000 Cazid-etd even[;000 Yy —
_lb FY) Z(—illi%-luﬁ FIX) out DATE BuUS
2 X - i A,
l -m‘c22 7 :) 32
A 32 Y\ A 22
r —I S L3N Qrov e 1) E AR E
. - LAz}Ll 23042 4— 21 — i
‘ vl l e exe €ans L-LS Fa ‘ [fC
‘a2 N ccats RS | A 5 4 35
o
e .
—_— Ex-EMIT i P e o o KTERMAL
csmI‘ l —_— - . “yht Da¥a pus
al I T 5.0 3%
o (225 B (226 A—
A8l .
E£xONENT
] e
4
8
Tty T 18 .r_j ExP. aLIGH. . CAl21-129
s .’:P“, ‘£%%mq&“
_ b .
F - ¢
atC. fCC222 3 cczz _'_2 _ 3 848 . o
Fhin o} 1350+ 1] 05‘ v e
10250 Litantr, ExP SEL - e Cad13-214
ARG QD SCan { Ca1s) cazis] CEFECT o .
- 32 32 MERORY 0ATA
1 q L——-w~43~+—--b
Ca215-216
ie 10 EA UNIT,
M - | 4

TN

[g¥=]

€B243-230
€Ci50.25%
€C2a56-25%

S29vd Ndl

(eNdI“CnNdo*1Ndal

CPUY PAGES (CPU1,CPU2,CPU3)

Instruction: A R1,D2(X2,B2)
EA-Unit

o Decodes instruction and places an 8-bit value of x'AO0' in the EX
Operation Code File to be used as a vector for the 1:256-way
branch by the EX at ENDOP. This is because the RS format add
instruction begins at microcode location x'02A0".

® Fetches the contents of B2 and adds this to D2, storing the result
(the Preliminary Effective Addres;®) in the EA-A register.

° Fetches the contents of X2, shifts these contents left 1 and adds
them to the contents of the EA-A register, storing the result
(the Effective Address) in the EA-A register.

U Fetches the second operand from the memory address given by the
contents of the EA-A reqg and places i+ in the Memory Operand File

° Selects Rl (instruction bits 5-7) as the left local store regis-
ter address and salects the contents of the Memory Operand fila
rather <than the Internal OJperand file to be placed on the
Internal In Data Bus, or INBUS, when the ENABLE OPERAND signal
from the EX-unit goes high.

EX-Unit
° Selects the left local stoée input for the fraction AI mux and
the INBUS input for the fraction ALU BI mux. The INBUS contains
contents of Memory Operand file by default (s5tath3 must he zern).
. Adds operands

° Outputs operands directly (no shifting) at Y Mux to Y-Bus

o Writes data from Y-Bus to both left and right local store using
Rl as the address of the register to be written into.

11.2.1.5 cConflicts and Hazards

Several fauits are s3ssociateq W4ith the operation af 3 nipelined ma-
chine: ‘
|
l. Register Conflicts
2. Operand Conflicts

3. I-Unit Hazard (Store Within Range)

Low Level Functional Description 269

i

CPY PAGES (CPU1,CPU2,CPU3)

The CPU contains the logic necessary to detect these conflicts and
take appropriate action while minimizing any performance impacts.
These conflicts are explained below. ’

egister Conflicts: A register conflict occurs when the EX-unit
modifies the contents of a register which will be used in the EA
calculation of any of the next three instructions. llhen a registe~
conflict is detected, the EA must wait until the EX-unit has coum-
pleted its register store, then start again using the new contents=
of the register.

Operand Conflicts: An operand conflict occurs when the EX-unit will
modify *the contents af 3 memory lacstion whose contants will be pra-
fetched for any of the next three instructions. When an operand
conflict is detected, the EA-unit must Wwait until the EX-unit has
completed storing into the memory location before it can access that
location.

I-Unit Hazard (Store Within Range): An I-unit hazard occurs when the
ZX-un1t modifies 3 memory .ocation Wwhich miy have been pratetched by
the Instruction unit. When this occurs, the entire pipeline must be
purged 3nd restarted with the instruction following the store.

270 AP-101S Space Shuttle GPC

—

11.2.2 Memory Management Unit Funetijonal Dascription

The AP-101S contains a two page Memory Management Unit (MMU) which
incorporates numerous functions in addition to management of main
memory. The MMU flow diagrams are shown in Figure 141 on fpage 272
and Figure 142 on page 273. Included among the diverse tasks per-—
formed by the MMU are the following functions:

1. The MMU arbitrates and controls the timing and sequencing of the
HBUS.

2. The MMU controls all timing and sequencing to the mainstore in
the AP-i01S compurter.

3. The MMU contains the address expansinn logic for the system. The
address expansion mechanisms are architecturally defined and are
different for each architecture. The MMU accommodates either
under external control.

4. The MMU is responsible for detecting, capturing and posting mom-—
ory related faults. These faul-s vary according to architecture,
system configuration and memory requestor.

5. The MMU directs I./0 commands to the proper system element via
designate generation.

6. The MMU supports testability by:

a. Providing various diagnostic modes of operation under control
of the MMU mode register.

bh. ?roviding saveral searial scan paths.

c. Providing saveral II0 (Internal I1/0) commands which nake
various MMU registers accessible to the diagnostic program-
mer.

d. Further identifying faults detected by the MMU Memory Fault
Extension Register (MFER).

e. Providing an HBUS arbiter port for the tester.

11.2.2.1 MMU Clock Ganeration

|

The MMU generates a3 40 MHz clock common to all the pages %that are
attached to the HBUS and raceives 3 time 9 sync puise from the CPY=3
page. From these two signals, a series of 10 pulses, each 50 ns in
Wwidth is created. The 10 clocks are labeled TO through T9 with the
newly created T9 corresponding to the sync time 9. The MMU clocks
are illustrated in Figure 143 on page 274.

Low Level Functional Description 271

MEMORY MANAGEMENT UNIT PAGES (MMUl, MMU2)

.Figure 141, MMUA Flow figure

272 AP-101S Space Shuttle GPC

R——

MEMORY MANAGEMENT UNIT PAGES (MMU1l, MMU2)

Figure 142, MMUB Flow Diagram

Low Level Functional Description 273

6oy

MEMORY MANAGEMENT UNIT PAGES (MMU1l, MMU2)

The MMU also contains a 24 MHZ oscillator for the 1553 page in the
1750 mode. The oscillator is used to generate 12 MHZ and 24 MHZ clock
for the 1553 Page. :

11.2.2.2 MMU Reset Logic

When an Inhibit Main Store (IMS) is generated, a system reset is js-
sued on the MMU. The Interrupt page generates an IMS pending signal
shortly before issuing an IMS. -When this signal is active, the MMU
5tops all HBUS ac+tivity. “hen IMS becomes active, the MMU rasets
itself and 250 ns later starts all activity again. At this point,
any request to the arbiters will be acknowledged.

11.2.2.3 M™Mode Control

The MMU supports several different modes of operation. To change
these modes, the user must issue the internali I/0 (I1I0) command of

+40 WMHz Ty LT
SYNC T9 J ' L* l

< 250 > |

+T1 —e

+T2 ’ [
+T3 | L
+T4 : L
+T5 1

+T7 : —
- -
+T3 : ‘ J L

Figure 143, MMU Clocks

274 AP-101S Space Shuttle GPC

MEMORY MANAGEMENT UNIT PAGES (MMU1, MMU2)

X'9407°"'. To read the current mode of operation, The II0 code of
X'140B' ‘can be used. There are 10 functions defined by the mode
register (Figure 144 on page 275).) »

Figure 164, MMU Mode Register

WRITE| READ

FUNCTION BIT BIT
INHIBIT DMA'S 06 22
DISABLE STORAGE ERRORS .07 23
BCE DISABLE | 08 26
SPECIAL STORE PROTECT 09 25
TRANSMIT DISABLE 10 26
SYSTEM IPL 11 27
PASSTHRU CMOsS 12 28
SYNDROME/CHECK BIT MODE 13 29
CODE 1IDO 14 - 30
SCRUB DISABLE 15 31

11.2.2.4 Bus Protocol

The Memory Management Unit (MMU) transfers data tetween thea central
Processor and the 0P through +*he HBUS. This is a high-speed syn-
chronous bus developed G0 transfer memory data at high rates of
speed.

11.2.2.5 Memory Address Expansion

The MMU handles 3all memory address expansion requirements for the;
AP-101S computer. The general functions performed by the MMU address
expansion logic are:

1. A 20-bit Advanced Programmable Testar (APT) address| is accommo=-
dated on the lé-bit HBUS address bus !

i <

2. Memory addressing for 512K halfwords (20-bit) is provided.

3. Either halfword (16-bit) or fullword (32-bit) accesses are bér-f
mitted during a single memory cvycle.

i

4. No boundary constraints are imposed on fullword accesses.

Low Level Functional Description 275

C A

MEMORY MANAGEMENT UNIT PAGES (MMU1l, MMU2)

5. The ability to bypass the address expansion logic is provided.

6. Separate address expansion mechanisms are provided for each ar-
chitecture. i

11.2.2.6 Address Interfaces
11.2.2.6.1 IOP Interface

The IOP in the AP-101S computer always provides a physical 18-bit
address on the HBUS.

11.2.2.6.2 cPU

The CPU passes a l6-bit logical address to the MMU via the HBUS. This
address and all requestor generated HBUS tag bits are passed on the
ABUS during any CPU acknowiedge cycle. The CPU unit* sourcing this
address is determined by the particular acknowledge that was granted.
During the address cycle, the lé6-bit logical address is selectad into
the MMU address flow, and must be expanded into a 20-bit physical
address (unless the operation type bits specify "no map™) in the 1750
architecture or a 19-bit physical address in the MMP architecture.

e.2.2.6.3 Avionics Programmable Testar (APT)

dhen an SDI (APT) acknowledge is grantea, 3 20-bit physical address
i5 passed to the MMU. The low order 16 bhits are passed aover the HBUS
via normal HBUS protocol. The high order four bits are serially
scanned into a holding register on MMUl at the same time that the
testers serial interface logic (refer to the SDI description) scans
in the HBUS Simulator register on the interrupt Ppage. During the SDI
ACK, the high four bits and the low 16 bits are concatenated and se-
lected into the MMU address flow. This 20-bit physical address al-
Ways bypasses the address expansion logic.

11.2.2.7 Address Expansion Logic

The requirement to support single cvycle memory accesses for
doublewords on any boundary based on a single address that is passed
to the MMU dictates the following MMU hardware support:

!~ Address adder

276 AP-101S Space Shuttle GPC

SPACE SPACE
SHUTTLE //CPUiop SHUTTLE / cru IOP
AP-101S AP-101B
POV 'ER 560 WATTS 780 WATTS
WEIGHT 64 LBS 117 LES
MEMONY CHMOS: 256 S CORE: 104K FWw's
LSDNs
Ore\e fhceess

HALF WORD

EPEED

0

Hup

BITE

MTBF

o
' fé“’f‘%ﬁ\o& %%
18 DATA BITS &9
6 EDAC BITS
3 STORE PROTEGT

> T000 KOoOpPs

6 RECHARGEABLE
NICADS

TENPERATURE
CHARGER

- BATTERY

SOFT ERROR COUNTER

DESIGN: 6,000 HRS
OCUTLOOK: 10,000 HRS

£250 HRS

P i

<5

SAVE 1100 WATTS
SLEEP MODE: 56 WATTS

SAVE 318 LBS

Ol20 G3 ARCHIVE
ERROR DETECTION
AND CORRECTION

MEMORY SCRUB

C18F 1.7 TO 1

REMOVABLE SRU

CURRENT AP101S: 24,000 HRS

2.1 SHUTTLE INSTRUCTION SET

The AP-101S systam structurs uncompassaes the functional oparation of main storage,
the central pracaessing unit (CPU), &nd program=controlled /0 facilitias.

2.1.1 JInformation Formsts

The system transmits information batween main storage and the CPU in units of 16
bits, or in integar multiple of 16 bits. Each 1é-bit unit of information is callad
a halfword. Six arror corruction bits and three voted storaga protection bits are
also associated with each halfword for the AP-181S but later references in this
manual to the siza of data fialds exclude these bits. The AP-101S/G has two storagae
protact bits per halfword.)

Halfuwords may ba handled separately or in pairs. A fullword is & group of tuo
consacutive halfwords. Both halfword and fullword instructions and oparands are
used. Their location is slways specified by the addrass of the luftmost halfuword
(laftmost halfword is tha numaerically smallest address). Tha instruction length is
designatud implicitly in every instruction; the operand langth is also implicit.

] Within any f{instruction and opaerand format, the bits making up thae format arae

consecutively numbered frum left to right, starting with the number 0, &3 shown in
Figure 2-1. ’ . '

Haitword

A S N T O | : ’

0 15

Fullword

L e e ety et er et
o 15 16 © 3

Figure 2-1. Instruction and Operand Bit Numbaering

il

-‘...(2 Addressing

Halfword locations in storzge are consecutively numbered starting with 0. Each
number |3 considered the address of tha corrasponding halfword. The addressing
technique usas a 19-bit binary address to & wmaximum of 2!? halfwoerd addresses. This
set of main storage addrasses includes some locations resarved for special purposes,
such as program status words; conssquently, these special locations should not be
ussd for any purpose not implicitly defined.

2.1.3 Information Positigning

Unlike previous versions of the AP-101 computer, the AP-101S does not require eithar
fullword instructions or fullword/doubleword oparands to ba locatad in wmain storage
on even boundarias.

2.2 CENTRAL PROCESSIHNG UNIT

The central processing unit (CPU) contains facilitias for addressing main e«torage,
- featching or storing information, for arithmetic snd logical processing oV data,
t... sequencing {instructiens in the desired order, and for {nitiating the
coi nication between storage and extarnal deices. ' ‘

The control ssction guldes the CPU through the functions necessary to exscute the
program.

2.2.1 Prograsm Addressable Registary

Two sets of aight fixed point genersl registers and one set of wight floating point
registers are under explicit programs controsl. Ths contents of one or more of these
registars (32 bits) participate in mast CPU operations. Associsted with each of the
fixed point ragisters {is & 4-blt addressing extension raglster (Data Sactor
Exteansion or DSE), ths use of which is described below in Extended Addraessing.

Conceptually, an additional doubleword ststus register, called the program status
word (PSW), is the focal point for machine status. The contents of the PSU are
updated during wach {instruction. Conssquently, tha PSH reflacts currant machine
status following aevery instruction. The PSW participatas implicitly in status
switching, branching operations, and address ecalculations. Condi “fon codes
rasulting from s&n instruction are slso part of the PSUW.

In addition to the PSH and the gan«rsl and floating point registers, the CPU #lso
¢ tains working registurs used for storage sddressing, storage buffearing, shift and
+ .ration counting, and cperand storage. Thesa registers are of no direct concern
t%“ e programmer and are 70t described harain.

—_—

‘ - ~ gp03s (28

The contants of the PSW spucify which of the two sats of general ragisters is in
current use. Only the contents of the selectaed genaral ragister sat can participate
in arithmatic operations and the contents of unselectud sats of gunaral registers

‘{ ~ cannot bae sltered by a program. An altarnate set of general ragisters can bae

salected by changing thae PSW. Only one sat of the fixad point, genaral-purpose
registers and tha floating point ragisters are availablae to the prograam at any onea
tima. - :

General register contents can be usad interchangeably as epaerands for arithmetic,
logical, and shifting oparations, or as bass and indax registers for ralative
addressing. Each set of punural registers is numbared from O through 7 and is
addressed as shown in Figure 2=2. .

General Register Fuanction

Register

Number Operand Base Index
0 000 00 None
1l 001 0l 001
2 010 10 010
3 01l ll or None' 011
4 100 A 100
H 101 ~101
6 110 110
7 111 111

X1l = Ragister 3 for $RS; none for RS

Figure 2-2. Ganaral Ragister Addre:ﬁes

Note that general registars ¢ through 7 cannot contain base addraessas and that
general registar 0 cannot contain an index.

For addressing data, ganarsl registaers 0-3 can be augmented by é-bit Data Sector
Extansion (DSE) registers or by tha DSR in the PSW to address beyond 16-bit
capabilitias. There are 16 DSEs, one for gach of thae aight ganaral-purposa
registars in each of the two sets of ganaral tagistars.

For soma opaerations, & pair of guneral registers is linked to form a 66-bit
doublaword register. The wost significant half of a doubleword oparand is containad
in the specified register; the least significant half of thae doublewerd is in the
next higher-numbarad ragistar (determinaed by Modulo 8 asddition of ona (1) to thae
specified registar). HNota: If Rug ? is spacified, the least significant half of
the double word operand is contained in Rag. 0.

W
(ge
€
()
c3
gn]
1
«w

2.2(Elxed Point Data Reprssentation

Data reprasentation is Tractionsl, with negative numbers representad in tuos
complement form. A halfword opsrand i3 15 bits plus sign, & fullword operand is 31
bits plus sign, and & doubleword cparsnd is 63 bits plus sign, a3 shown in Figure
2-3.

Fixed-Point Msifword Opersnd

H Fraction

TR NN
[»J] 18

FixedPoint Fuliwerd Operand

l|||l|||||l||lllllllllllllllll
01 . 3

Fixed-Point Doubleword Operand

Figure 2-3. Fixaed Point Opersnd Formats

1

In fractional data ruprﬁs-ntifiuna tha binary point is immediataly to tha right of
the sign. '

2.2.3 Instryction Formats

The length of an instruction format can be &ither one or two halfwords. Long format
instructions provide maximum rangs snd extanded flaxibility for addressing storage
operands. Short instructions sre used to (1) specity register-to-registar
operations, and (2) specify storsge operands in cases where a small displacument is
sufficient and completa address soditication capability is not required.

Instruction formats overlap. Programs are written so that, in wany instances, any
given operation can be codad using either & halfuord or a fulluord instruction. In
such cases, maximum use of halfuword Instructions results in increased storage
afficiency and perforsancs.

The ¢three basic {instruction furmats ars a3 shown In Figure 2-4. Halfword
? <tructions are automatically selected by the assambler unluss otherwise spacified
L+ tha programmer.

.

2-4

90035 C30

RR Format
{0

Op R1 pl R2 .

[AR AR AL .
0 4 5 7 8 11123 15 .
SRS Format -

0o Al Disg" i *Displs f the form 111XXX li

' ‘ ‘ ‘ ‘ ' ' ‘ ' ‘ (3 1-] mso 1 mn are not valid.
0 4 S 7 8 13 14 15
RS Pormat

. o A PP

Oo R1 M 82 Address Specification

[IR ANRRARRRES | T T O T O I O IO 1ot
0 e 5 78 111213141516 ‘ 3

Figure 2-4. Basic Instruction Formats

The fialds within the instruction formats usually are usaed as dascribed below. Thea
ard dascribed in conjunction with the individual formats and
instructions. :

exceptions

Op

Rl

R2

opPX

AM

This S~bit field defines an operation, or tha clasxs of operation, to
ba performed Yy tF- TPU.

This 3-bit field designates the register containing the first operand.
Excapt for operstions which <er main storage, tha rasult usually
replacas tha first oparand. -

This 3-bit fiald appears only in the RR format. It is used to specify
a genaral register containing wither the sucond operand or the addrass
of tha second operand.

This 2-bit fiuld specifies the register containing the base sddress.

In halfword SRS format instructions, this 6-bit field is "callad the
displacement. For thae SRS format, tha displacement is added to the
bsse addruss spacified by the B fiwld to obtain & storege addrass.
This bit is an extensio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>