
Section 1

INTRODUCTION

AP-1015 WITH SHUTTLE INSTRUCTION SET

The AP-1015 is a high-speed general-purpose computer intended primarily for

real-time applications such as guidance, navigation, control, and data processing.
The AP-101S is a member of the advanced System/4 Pi family of digital computers,
and is software compatible with AP-101C/M, described in IBM No. 6246156B,
30 Jan. 1979. This family shares and is unified by extensive design experience,
proven technology base, and common manufacturing processes.

This Principles of Operation manual provides a direct comprehensive description
of the system structure; the arithmetic, logical, branching, and status switching; and

the interruption system. This publication defines and describes features common to

all AP-101 computers. These features are the basis for IBM-developed support
software and are compatible with compiler development efforts now in process.

Execution times and nonstandard features and functions are described in separate
documents, This is because aerospace computers characteristically include user

defined features such as unique input/output channels, and special discretes. These

will be incorporated into the AP-101S as pluggable options. Furthermore, the

AP-101S is microprogrammed and is designed to permit incorporation of additional

instructions and operations without redesign and requalification. Such extensions are

also described separately.

dlote: Thin hocewtnt <c alee egyhecetbe
A

the Aelel S/6 , the gral eee

4 the 4BPIO/S congo le |

1-1/1-2

Section 2

AP-101S STRUCTURE

SHUTTLE INSTRUCTION SET

The AP-101S system structure encompasses the functional operation of main

storage, the central processing unit (CPU), and program-controlled 1/O facilities. The

overall definition is open ended ard includes all the basic facilities necessary to accom-

‘modate additional specialized and/or application-dependent I/O channels and features.

The modular AP-101S system structure can support configuration alternatives

ranging from a self-contained single processor to a full symmetrical shared-storage

multiprocessing system.

MAIN STORAGE

The functional operation of main storage is unrelated to the physical width of the

information paths or cycle time.

Six ervor correction bitsy and three voted
INFORMATION

ee
|

The system trangmits information between main storage and the CPU in units of

16 bits, or inintegermultiple of 16 bits. Each 16-bit unit of information is called a

halfword. A‘parity-bit-and-@storage protection bitrare also associated with each half-

word, but later references in this manual to the size of data fields exclude these bits.

Halfwords may be handled separately or in pairs. A fullword is a group of two

consecutive halfwords. Both halfword and fullword instructions and operands are used.

Their location is always specified by the address of the leftmost halfword. The instruc-

tion length is designated implicitly in every instruction; the operand length is also implicit.

Within any instruction and operand format, the bits making up the format are consecu-

tively numbered from left to right, starting with the number 0, as shown in Figure 2-1.

‘

ADDRESSING

Halfword locations in storage are consecutively numbered starting with 0. Each

number is considered the address of the corresponding halfword. The addressing

technique uses a 19-bit binary address to accommodate a maximum of 219 halfword

addresses. This set of main storage addresses includes some locations reserved for
|

special purposes, such as program status words; consequently, these special locations

should not be used for any purpose not implicitly defined.

Halfword

a a
0

.

15

Fullword

| |i {ft} pt_tit_tepE_Etty tipi ft | ff ft | | tf tl
0

”

15 16 31

Figure 2-1. Instruction and Operand Bit Numbering

INFORMATION POSITIONING

Fullword operands must be located in main storage on even halfword boundaries.

That is, the least significant bit of the operand address, when expressed in binary,
must always be zero. Fullword instructions may begin at any address.

CENTRAL PROCESSING UNIT

The central processing unit (CPU) contains facilities for addressing main storage,
for fetching or storing information, for arithmetic and logical processing of data, for

sequencing instructions in the desired order, and for initiating the communication be-

tween storage and external devices.

The control section guides the CPU through the functions necessary to execute the

program.
|

PROGRAM ADDRESSABLE REGISTERS

Two sets of eight fixed-point general registers and one set of eight floating-point

registers are under explicit program control. The contents of one or more of these

registers (32 bits) participate in most CPU operations.

Conceptually, an additional doubleword status register, called the program status

word (PSW), is the focal point for machine status. The contents of the PSW are updated
during each instruction. Consequently, the PSW reflects current machine status fol-

lowing every instruction. The PSW participates implicitly in status switching, branching

operations, and address calculations.

*

In addition to the PSW and the general and floating-point registers, the CPU also
contains working registers used for storage addressing, storage buffering, shift and
iteration counting, and operand storage. These registers are of no direct concern to

the programmer and are not described herein.

The contents of the PSW specify which of the two sets of general registers is in

current use. Only the contents of the selected general register set can participate in

arithmetic operations and the contents of unselected sets of general registers can not

be altered by a program. An alternate set of general registers can be selected by
changing the PSW. Only one set of the fixed-point, general-purpose registers and the

floating-point registers are available to the program at any one time.

General register contents can be used interchangeably as operands for arithmetic,
logical, and shifting operations, or as base and index registers for relative addressing.
Each set of general registers is numbered from 0 through 7 and is addressed as shown

in Figure 2-2.

General Register Function

Register

Number Operand Base Index

0 000 00 None

1 001 01 001

2 010 10 010

3 O11 ll or None O11

4 100 100

5 101 101

6 110 110

7 lll lll

Figure 2-2. General Register Addresses

Note that general registers 4 through 7 cannot contain base addresses and that

general register 0 cannot contain an index.

fP

Foy

by
2”

fe

Cach

wot

For some operations, an even/odd pair of general registers are linked to form a

64-bit doubleword register. The most significant half of a doubleword operand is

contained in the even-numbered register; the least significant half of the doubleword in

the next higher odd-numbered register. Doubleword operands are addressed by speci-
fying the even numbered address of the register containing the most significant portion
of the operand.

eoldressing data, general veg/sters O-2 can he avgmented7 bit Data Sector A xtensron C OSE) registers er by the OSR
the FIW to address beyond (6 b(4 eapabilithes , 7éere are

OSES ,one Ser each of phe 9 gemereal purpese vesisterr sy
of fhe Tre se Y ef genera/ veg@Stexs. This feature shal//

”
t

1 ev

|

be used Dy CVTOgram” les§S Féan C2 A ev odl saamen ite

FIXED4POINT DATA REPRESENTATION

Data representation is fractional, with negative numbers represented in two's

complement form. A halfword operand is 15 bits plus sign; a fullword operand is 31

bits plus sign, as shown in Figure 2-3.

In fractional data representation, the binary point is immediately to the right of

the sign.

Fixed-Point Halfword Operand

S Fraction

ee
0 1 15

Fixed-Point Fullword Operand

S Fraction

Pi eTeT pee T_ett tt

Oo1
|

|

31

Figure 2-3. Fixed-Point Operand Formats

INSTRUCTION FORMATS

Thelength of an instruction format can be either one or two halfwords. Long

format instructions provide maximum range and extended flexibility for addressing

storage operands. Short instructions are used to (1) specify register-to-register

operations, and (2) specify storage operands in cases where a small displacement is

sufficient and complete address modification capability is not required.

Instruction formats overlap. Programs are written so that in many instances any

given operation can be coded using either a halfword or a fullword instruction. In such

cases, maximum use of halfword instructions results in increased storage efficiency

and performance.
|

The three basic instruction formats are as shown in Figure 2-4. Halfword instruc-

tions are automatically selected by the assembler unless otherwise specified bv the pro-

grammer.
|

o—4

4.0 Hrstl LEVEL FUNCTIONAL DESCRIPTION

4.1 GENERALSYSTEM OPERATION

The AP-101S was formed by the integration of a redesigned B1-B
AP-1O1F processor and a repackaged Input/Output Processor (IOP) from
the existing Shuttle computer. Redesign and repackaging permits both
of these elements to be housed in a single structure. Figure 2 on

page &¢ shows the AP-101S Block Diagram.

The elements utilized from the AP~101F are the CPU, MMU (Memory Man-
agement Unit), and Interrupt sections. The microcode has been modi-
fied so existing shuttle software can be used on the AP-101S. The

Timing page, SDI (Software Development Interface) page and the SIB
bus have been eliminated. The unused circuitry in the MNU has been
removed to permit integration of the timing and SDI functions into
the MHU.

The IOP has been repackaged using medium scale integration to reduce
the number of pages from fourteen to seven. The IOP has maintained
the same timing as the original processor.

All of the pages use Modular Computer System (NCS) page technology.
The repackaging allows the AP-101S to be housed in a Single box.

The CPU performs the functions of computation, storage and communi-
cation of data for the Shuttle Orbiter. The -CPU executes in-
structions from main store. Main store is controlled by the MMU,
Which handles all memory access requests from the CPU and IOP.

High Level Functional Description 3

9

Jd3

FTFANYS
B5edG
STOT—-dv

AP-101S
~ SLOCK DIAGRAM

Se rs
/

__[AGEDISCRETE} ccu
|

-

|
AGE*

ey OMIA INTE.

 iieuou| MIA BUFFER
5 = —)ineutioureur. NTROLS ff{STATUS& INT.

ox re
MIA 3

| MICRO SEQ. {an
DATA FLOW HiAl

DATA FLOW a

Lt.

op
f} |

|
CPU) o-~<

s

CMOS
|

256K x50 BITS
PHYSICAL-«—»| DATA 32

|

ADDRESSECC 12
:

|CPU SP &

|(H-BUS)
|

.
. | lamuADDRESS oo |CFU AND DATA FLOW PARALLELAGE

)

INTERNAL AGE SUPPORT
- |BUS

|

MMU AGE . ||

CPUA
4 AND CONTROLS"| EXECUTION

5 SDI

|
*E DATA |

,

.a] o TIMING |

|FLOW LOGICAL
|,|CPUB ADDRESS {16}

INSTRUCTION ,__
DATA (32)

““TTAND

ziS| lerrective [eo
Of [ADDRESS

. | -| CPUC.

EXECUTION
|

|
P

SEQUENCER
_.

|

INTERRUPTS ccu
|

a

_ | 2901/2910 SERIAL AGE
|| —_2 bieeatenncintemadsee Cites GRE —gereenemmomn AeccemtentrT ——enegamaeltte = Geom =—qageanngtinee =—Ale attain, eeu i

CRAERCD.- mmepee _t

Figure 2. AP-101S Block Diagram - :

{
a

Vou

Sha
Sons

|
|

Satay? eo |
,

The IOP functions as a programmable, time-shared processor that
transmits and receives Shuttle Orbiter subsystems data under control
of the CPU.

The CPU communicates with the IOP by means of Program Controlled
Input/Output CPCIO) instructions. PCIO transmissions involve a com-

mand word and data from either the CPU or IOP.

The Shuttle Orbiter subsystems are connected to the IOP by 24 serial,
1-MHz data buses. Data bus~-to-IOP interface is accomplished by 2.
Multiplexer Interface Adapters (MIAs5) located in the IOP. The MIAs
perform such functions as parallel/serial conversion, Manchester en-

code and decode, parity generation and detection, and bit count. de-
tection. The IOP handles the processing required to service the 24
data buses. :

|

The 24 data buses each have a Bus Control Element (BCE). The BCEs
are given instructions by the Master Sequence Controller (MSC) on how
to handle data. The MSC executes irastructions from main store as

directed by PCIO instructions from the CPU. The MSC/BCE instructions
and data are fetched from main store through Direct Memory Access
requests. The MSC has a set of programmable registers in Local Store.
These registers include a PCIO register, index register and program
counter. ,

The BCEs execute programs from main store specified by MSC in-
structions. Each BCE also has a set of. programmable registers in
Local Store and can read or write I/O data into main memory via Direct
Memory Access (DMA). Included in the registers is an indicator reg-
ister which contains one bit for each BCE. This bit is set and reset
sy a BCE to communicate with the MSC. .

:

Each BCE is sequenced by a timing 'wheel' which allows one microin-
struction from each BCE to be executed at a time. The MSC is also
in this timing sequence, but it gets eight slots in a complete turn
of the ‘wheel’ whiie each BCE gets only one. One MSC microinstruction
is executed after three BCE microinstructions. Some MSC and BCE in-
structions may take more than one rotation of the "wheel’ to be exe-

cuted. “

The Interrupt page contains a processor to handle interrupts. The
interrupt processor prioritizes, masks, categorizes and performs any
other processing that is necessary before giving informaticn to the
CPU. A ane byte word is generated to intorm the CPU into which car-
egory the interrupt falls. Additional information allows the CPU to
formulate a six bit address for a PSW SWap and begin processing the
interrupt. . |

|

Each of the three major components of a GPC CCPU, [0OP,. and Interrupt
Page) is controlled by independent microcode. The CPU microarchi-~
tecture is described in detail in "Microcontrol Implementation For
CPU" on page 113, the Interrupt microarchitecture is described in
"Microcontrol Implementation For INT” on Page 191, and the IOP

High Level Functional Description 5

microarchitecture is described in "Microcontrol Implementation Fer
IOP™ on page 2lil. .

4.2. AP-1015 CENTRAL PROCESSING UNIT

The AP-101S central processor unit is optimized for both MMP and

MIL-STD-1750A Notice 2 architectures and is comprised of these func-

tional units:

e Instruction Unit CI-unit)

e Effective Address Unit (CEA-unit)

® Execution Unit (CEX-unit) ~

® Fractional Data Flow

e Exponential Data Flow

e Sequencer
ows

These units are organized to execute instructions in a pipeline
fashion designed to provide results at a rate of one per machine cycle
C250 ns) when operating on simple instructions (with the pipe full).

The pipeline is shown in Figure 3 on page 7. ,

|

fhe Instruction unit fs responsible for prefetching instructions.
ft provides a logical instruction address to the Memory Management
Unit, which then translates this to a physical address before fetch-

ing the instruction. The EA~unit decodes the instruction to deter-
mine what type of addressing the instruction specifies, and uses its
data flow to calculate (Cif necessary) the effective (logical) address
of the operand. This logical address is translated to a physical
address in the MNU, and the operand is fetched. The EA-unit provides
the operand and decoded instruction to the Execution unit and selects
the general registers specified by the instruction.

The EX-unit performs the actual execution of the instruction via

microprogramming (Ci.e., microcode provides the signals that control
the data flow through the hardware). Each macroinstruction corre-

sponds to one or more microinstructions. At che end of a microcode
routine which implements a macroinstruction, a 1:256-way branch in
the microcode is executed in order to access the section of microcode
required for execution of the following macroinstruction.

The CPU machine cycle is 250 ns and jis the time required to read,
compute, and write the result of a simple register to ragister oper-
ation such as add (RA = RA + RB). Each pipeline operation is com-

pleted in one machine cycle and data can be passed from one stage of
the pipe to the next at this rate when the EX-unit is operating at
its maximum rate. Three additional cycle times for the EX-unit are

6 AP-101S Space Shuttle GPC

mA ad

eee

HBUS (from memory)

V
|

ay

INSTRUCTION TRANSLATE (IX)
.

, INSTRUCTION

|

> UNIT

V

INSTRUCTION FETCH CIF)

V scecinemmneang

EFFECTIVE ADDRESS (EA)

EFFECTIVE

| -> ADDRESS
V UNIT

OPERAND TRANSLATE (OX)

Y cxxsapomseanonanty

,

. EXECUTIO?!
EXECUTION CEX) (> UNIT

Figure 3.
°

CPU Pipeline

Provided to speed up the execution of multicycle instructions: 12s
ns and 150 ns are for microcoded operations: which do not require a

full machine cycle to execute, and 100 ns is used for high-speed it-
erations typical in operations such as multiplication, division, and

shifting.
|

Synchronization of the pipeline is accomplished by means of the ENDOP
command which is issued at the end of each macroinstruction by the
microprogram. The ENDOP command signals each stage of the pipeline
to output its results (pass them on to the next Stage) and to begin
Working on its new input (the output from the previous Stage) at the
beginning of the next machine cycle. When the EX~-unit is operating
on simple instructions, the ENDOP command may be issued every 250 ns,

one machine cycle. When the EX-unit requires more than 250 ns for
the execution of an instruction, the operation of all other stages
in the pipeline is suspended (no ENDOP is issued) except for the
prefetching of instructions by the I-unit (which continues independ-
ently until the 16 x 16-bit instruction file is full). Nhen the EX
unit has completed its operation the microprogram issues an ENDOP and
all stages of the pipeline restart at the beginning of the following
machine cycle. The ENDOP signal also signifies the end of a microcode
routine, causing the EX-unit to branch (1:256-way branch) to the
start of a new routine based on the next macroinstruction.

High Level Functional Description 7

&.3 MAIN STORAGE

~,he AP-101S contains two battery-backed Static RAM CNOS pages; each

containing 128K X 32 bits plus store protect bits and Error Cor-

rection Code (CECC) bits. Associated with each main memory halfword

are three store protect bits and six Error Correction Code (ECC) bits

which are datermined by the 16 data bits.

The CMOS memory has an access time of 250 ns and a cycle time of 250
ns. This includes error detection and correction CEDC). .

The AP-101S is also capable of operation with dynamic memory pages

of the type found in the B1l-B AP-191F computer. A signal indicating
the tspe of memory in use is generated on the memory page, and this

Signal is used to configure the interface portion of the MMU. Both

memory pages in use must be of the same type. The dynamic memory

configuration provides 128K words of memory. Except for the differ-

ence In memory size, the type of memory in use is transparent to the

software. Dynamic memory is not battery-backed and will not retain

data in the event of power loss.

4.4 INFORMATION FORMATS

“he system transmits information between main storage and the CPU in

— aits of 16 bits, or in integer multiples of 16 bits. Each 16-bit

unit of information is called a halfword. Six error correction bits
and three voted storage protection bits are also associated with each

halfword for the AP-101S, but later references in this workbook to

the size of the data fields exclude these bits.
|

Halfwords may be handled separately or in pairs. A fullwora is a

group of two consecutive halfwords. Both halfword and fullword ‘tn-

structions are used. Their location is always specified by the ad-

dress of the most significant halfword. The instruction length is

designated implicitly in every instruc‘:ion. The operand length is

also implicit.
* |

Within any instruction and operand format, the bits making up the

format are consecutively numbered from left to right, starting with

the number zero, as shown in Figure 4 on page 3.

8 AP-101S Space Shuttle GPC

5

oof Halfword

0 15

Fullword -

Lot

0 Sl

Figure 4. Instruction and Operand Bit Numbering

4.5 ADDRESSING

Halfword locations in storage are consecutively mumbered starting
with zero. Each number is considered the address of the correspond-

ing halfword. The addressing technique uses a 19-bit binary address

to accommodate a maximum of 512K halfword addresses. This set of main

storage addresses includes some locations reserved for special pur-

poses, such as program status words. Cansequently, these special ilo-

cations should not be used for any purpose not explicitly defined.

4.6 INFORMATION POSITIONING

Unlike previous versions of the AP-101 computer, the AP-101S does not

require either fullword instructions or fullword/doubleword cperands
to be located in main storage on even boundaries.

G7 PROGRAM ADDRESSABLE REGISTERS

Two sets of eight fixed-point general registers and one set of eight
floating-point registers are under explicit program control. The

contents of one or more of these registers (32 bits each) participate
in most CPU operations. Associated with each of the general purpose

registers is a 4=bit addressing extension register (Data Sector Ex-

High Level Functional Description - 9

tension or DSE), the use of which is described below in Extended Ad-

dressing. , |

_ onceptually, an additional doubleword status register, called the
Program Status Word (PSW), is the focal Point for machine status.

The contents of the PSH are updated during each instruction. Conse-
quently, the PSW reflects current machine status following every in-

struction. The PSW participates implicitly in status switching,
branching operations, and address calculations. Condition codes re-

sulting from an instruction are also part of the PSH.

In addition to the PSH and the general and floating-point registers,
the CPU also contains working registers used for storage addressing»

|

storage buffering, shift and iteration counting, and operand storage.

The contents of the PSN specify which of the two sets of general
registers is in current use. Only the contents of the selected gen-
eral register set can, participate in arithmetic operations and the

contents of unselected sets of general registers cannot be altered
by a program. An alternate set of general registers can be selected
by changing the PSH. Only one set of the fixed point, general purpose

registers and the floating-point registers are available to the pro-

gram at any one time.

General register contents can be used interchangeably as operands for
arithmetic, logical and shifting operations, or as base and index
registers for relative addressing. Each of the general registers is

numbered from 0 through 7 and is addressed as shown in Figure 5.

General Register Function

Register
Number Operand Base Index

0 000 00 Not Used

dl OOl 01 001
2 010 10 010
3 Old ll or nonex O11
4 100 : 100
5 101 .

| 101
6 110 . 110
7 lil

|

Li.

#11 = Register 3 for SRS; none for RS

Figure 5. General Register Addresses

Note that general registers 4 through 7 cannot contain base addresses
and that general register O cannot contain an index.:

10 AP-101S Space Shuttle GPC

For addressing data, general registers O-3 can be augmented by 4G=—bit

Data Sector Extension (DSE) registers or by the DSR in the PSW to

address beyond 16-bit capabilities. There are 16 DSEsS» one for each

of the eight general-purpose registers in each of the two sets of

general registers.
|

For some operations, a pair of general registers is linked to form a

64-bit doubleword register. The most significant half of a

doubleword operand is contained in the specified register; the least

Significant half of the doubleword is in the next higher-numbered
register (determined by modulo 8 addition of one (1) to the specified

register). Note: If Reg 7 is specified, the least significant half

of the double word operand is contained in Reg. O. , :

One set af eight 32-bit floating-point registers jis provided and

these registers are separate and distinct from the general-purpose
registers.

4.8 DATA REPRESENTATION

Fixed~point data representation is both integer and fractional, with

negative numbers represented in twos complement form. A halfword

operand is 15 bits plus sign, a fullword operand is 31 bits plus sign,
and a doubleword operand is 63 bits plus sign, as Shown in Figure 6

on page l2. In fractional data representation, the binary point is

immediately to the right of the sign. In integer arithmetic, the

binary point is to the right of bit 15.
.

Unless otherwise stated, fixed-point arithmetic operations assume a

fractional data type. |

Floating point data occupies either a fullword format or a doubleword

format. These formats differ between the MMP and 1750A architectures,
as depicted in Figure 7 on page 13 and Figure 8 on page 14.

High Level Functional DBescription 11

Fixed-Point Halfword Operand

Fraction

Radix Point

Fixed—Point Fullword Operand

JIN

Loop adix Point

at

Fraction

~

©

fo

be

Radix Point

Fixed~Point Doubleword Operand

S Fraction

Figure 6.

teeRadix Point

® @ 6 6 6

Fixed-Point Operand Formats

12 AP-1901S Space Shuttle GPC

Short Floating—Point Number. (MMP Architecture)

Exponent Ss Fraction

{, fy fF gf f ff f jf f fF Ff F ff F fF fF fF Ff fF fF fF fF fF fF fF fF fF fF ff

789
>

omFatal
|

|
31

_
|

Radix Point

Long Floating~Point Number (MMP Architecture)

Exponent S Most Significant Fraction wee

Ltseptttsytytt ty ttt ttt tt

Radix Point

Reserved/Ignored

/

Least

Significant
Fraction a on a

Lot tt td Li tyyy yy ty fy yt | fT tf fT fT tT ET TY

32
|

39 63

G0

Figure 7. Floating-Point Operand Formats (MMP Architecture)

High Level Functional Description 13

Short Floating—Point Number (1750A architecture) |

MSB
| CO LSB’ NSB LSB

°
|

Mantissa

|

Exponent

0 1 23 | 31

‘|
| 24

Radix Point

|

-

Lang Floating~—Point Number (1750A: Architecture)

S Mantissa CMS)
|

Exponent cee

.

@

fo
NM dn

Radix Point

- Mantissa (LS)

|

Unused/Reserved

Figure 8. Floating-Point Operand Formats (1750 Architecture)

G9 INSTRUCTION FORMATS

The length of an instruction format can be either one or two l6—bit

Words. In contrast with l6-bit Chalfword) instructions, 32-bit
Fullword) instructions provide increased addressing, aermit the

specification of additional address modification, and make possible
the designation of special conditions to test for in Jump in-

structions. Halfword instructions are used. to (1) Specify
register-to-register operations, ana (2) specify storage operands in
cases where a small displacement is sufficient and complete address
modification is not required.

Instruction formats overlap. Programs are written 50 that, in many
instances, any given operation can be coded using either a halfword
“> a fullword instruction. In such cases, maximum use of halfword

14 AP-101S Space Shuttle GPC

21.0 LOW LEVEL FUNCTIONAL DESCRIPTION

11.1 BACKPANEL FUNCTIONAL DESCRIPTION

The Backpanel provides the means of connecting all the pages jin the
AP101S Computer to each other and the outside world. It is a Multi-
layer Interconnection Board (MIB) with connectors for each page, the
Power Converters, and the Input/Output (I/0) Wiring Harness.
Figure 130 on page 256 gives a Side view of the AP1015 Computershowing the Backpanel and which Page iS in each connector.

L1l.1.1.1 Backpanel Layout

There are 23 slots or places for connectors in the backpanel as de--
fined hbelon. The input voltages available to each slot are alsolisted.

.

SLOT DESCRIPTION INPUT VOLTAGES

A0l I/O Harness +5 MEMORY
A02 AD Page (Age and Discretes) +5V,+12V,+5 MEMORY
AQ3 MIA Page (Manchester Inter face Adapter) +5V,+12V,-12V
A0G MIA Page (Manchester Interface Adapter) +5V,+12V,-12Y
AOS MIA Page (Manchester Interface Adapter) +5V,4+12V,-12V
A06 MC Page (Master Sequencer Controller) +5V
A07 IB Page (I/O Buffer) +5V
A08 SI Page (Status and Interrupt +5V
A09 FT Page (Flow Top) +5V
Aid Spare Slot

+5
All Spare Slor

+5V
Ale FB Page (Flow Bottom)

| +5V
Al3 IM Page (Interface and MIA Control) +5V
AlG CC Page (CPU 3) +5V
Al5 CB Page (CPU 2) —

+#5VAl6 CA Page (CPU 1)
|

+5V
Al7 IN Page (Interrupt) +5V
A1l8 MB Page (MMU 2) +5V
Al9 MA Page (MMU 1) +5V
A20 CMOS Memory Page +5 MEMORY
Acl CMOS Memory Page +5 MEMORY
Nee +5 Volt Converter (Power Supply) -8 dC ~

A23 le Volt Converter (Power Supely) (| 28 VDC

Figure 129, Backpanel Slot Input Voltages

All the connectors have 296 DinsS except the I[/9 Harness connector
(AQ1) which has 300 Pins and the +5 Volt and 12 Volt Power ConvertersCA22 and A23) which have 125 pins.

Low Level Functional Description 255

9S¢

Idd

STFINYS
BIVeCS
STOI-dV12V

Conv |

VE

om ‘etoile eigen te mt ed eenareeenentteeen eect ncaa eaenncanttts,Smenicnrraan, teshcemaasanetmeant eect somcet ane ements eieheninnnttsere. elses apecitamecaeeeeommcante serememenacnlremem enaeennnionnd ccnnnmpensansniinaemmemmeentindSmee ‘iteenmementsSerena anette pierce ‘gman

Figure 130, API0O1S Side View

BACKPANEL

l1.1.1.2 Backpanel Stackup

The Backpanel consists of 23 layers as shown in Figure 131 on page
257. These include the "0" top and "0" bottom, eleven signal layers,
and various voltage and ground layers. One signal layer is divided
to provide straight runs for the MIA Channels without any interfer-—-.
ence from other signals. This divider separates AOl through AOS from.
the other backpanel slots. some of the voltage layers are also di-
vided.

LAYER COPPER DESCRIPTION

NUMBER THICKNESS

1 1 02 "oO" TOP, FOIL
2 2 02 28V, +5V
3 2 02 SIG 1 -

4 1 92 SIG 2
5 1 az +12V, 28V RETN
6 1 02 = 12V, 28V
7 1 Oz SIG 3
8 1 oz SIG 4

9 1 OZ +5V, 28V RETN
10 1 oz BATTERY, +10V CHARGE 1 & 2
11 1 oz SIG 5
12 1oz

| SIG 6
13 1.02 CMOS +5V¥, CHAS GND
14 1 02 GND, 28V
15 1 02z SIG 7
16 1 Oz | SIG 8
17 1 92 SND,» 28V RETN
8 1 OZ +5V, 28V RETN
19 1 az SIG 3
20 2 02 SIG 10
21 2 02 GND

|

22 2 02 SIG 11, MIA
23 1 OZ "0" BOTTOM

Figure 131. Backpanel Stackup

Low Level Funetional Description 257

11.2 CPU PAGES

11.2.1 CPU Functional Deseription

The AP-101S Central Processor Unit is optimized for both MMP and
MIL-STD-1750A Notice 2 architectures, although the 1750A architecture1S not implemented in the Standard AP-101S configuration. The
AP-1015G6/1750, a special groundbase development configuration of the
AP-101S, implements the 1750A architecture and shares with the
AP-101S a common Central Processor Unit. The CPU flow diagrams are
Shown in Figure 132 on Page 259, Figure 133 on page 260, and
Figure i134 on page 261.

L1i.2.1.1 Instruction Unit

The Instruction unit uses its Own instruction counter (IU-PC) to
prefetch instructions from memory during unused memory cycles. In-
structions are fetched two ords C16 bits each) at atime and are put
Into a i6 x L6é—-bit FIFO instruction Tile, shown in Figure 135 on pageC62.

_

The 16 word instruction file is Organized as two 8 x 16-bit buffers.
The most significant 16-bit Instruction word is placed in the even
address portion, and the least Significant is placed in the odd ad-

Tress portion. The file is further divided between the higher order
_ ddresses (A) and the lower order addresses (B) so that it is accessed

35 shown in Figure 135 on page. 262.

in addition to «he A and 2 seats arf surfers, the instruction file also
NaS 4 © set of buffers to minimize delays when a branch 1S taken,
When a branch instruction is encountered, the EA-unit generates the
branch address, prefetches two words from that location, and placesthem in the C set of buffers. Tf the branch is not taken, the in-
struction file continues to fill up the A and B sets of buffers as
before. However, when the Execution unit determines that a branchis taken, it directs the instruction file to switch from the A and Bbuffers to the A and eC buffers and to start fetching instructionsfrom the location TOLlawing the branch address (branch address plustwo, sinee the EA-unit has already fetched the two words located at"ne branch address and olaceg them in the C tuffer). The A and ce2uTfers are now the SsOurces cr instructions for the EA-unit, and notime has been lost by the Switch. The next branch taken wild causethe instruction file to switch Frem buffers A and C back to suffersA and 3 again, and so forceh.

Instructions can ‘se either 9ne or two l6—-bit words long», so twoalignment multiplexers (muxes) at the output of the file ensure thata 16-bit instruction or the most Significant word of a 32-bit in-struction is always output from the left mux. To correctly output a
16-bit instruction at an even or odd address, the left mux'chooses

/ S$ even or odd input, respectively. For 2-bit instructions start-

258 AP~101S Space Shuttle GPC.

CPU PAGES (CPU1,CPU2,CPY3)

¥ MUM GUX 2m
-

4

INTERNAL IM DATABUS CAZ18

‘y fots q west cee seeeee c *

y y Vv AEG aEQ

1@¢ 1¢ 4:4 CAZgse-

(Seo
° fz cAzzS |

GE CASEEVEN ¢ COO 7 f SCANSz
.+ CA233-234 V Y cazas.238Y

usL-43 CA224.227 Aas
256 x 32 conrnots 786 X32 .con

CA134-135
; CA242-2446 CA228.240

EVEN
) Cadze-278 CAZ17-219 poe

2
uae

EVEN¥ y yee INTERNAL2:4 pom Ch144-148 2:8 OuT GATA GUS
.

Bere
|

euoophon
rP a -

1
/

=2 7 Low L, iGH

—o ay ony)
y Y

hme Caz4t “ E}

PROM“
‘6 OaTA

VY |
casse IM TEANAL

4:4 CA148
|

y ,
IN OATA BUS

7 YA
2TOGA

weet 2£R0 Caz
2 16O&FECT

, Ca108| a, 3%
CA1081 fos

C30A CAIIG
CAz08

CA2082Vi~ on sV s

a f oN
at "

| vy j carne i CaAtV | 2SAb1S-107 / | iv i | Cagio
!*AACTION ALU

/ | A 1? Vtg $ Yon 7 7
.

:

| !

— “7 —

-@ 4b 3 | eXPAMION EXPANSION|ECOOE | franiry |a |
| PRO PROM i

,

CHECKENS |
‘6 *

_ | bee J
4

; {|—
wa

|

| ns’ 2XP. ALIGN. poet CA1Z1-128 'w®
caste Oyu

“yyy ve% V Y 7ar r_Y r__Y
PLOW AEGISTER TO CC Pac‘ dt34 8:1 CONTROLS COMTROLS BiiaL CHECK+ |

ov mux sus CAN2 TO:aLuoY Y
CANE vaux132.2 yPONENT CANT

ZERO 46 CAI13-214A FLOW SCAM CAIGE caziy! erect
Fo

MEMORY OATA
Vv 12 wfi 1

,
I

pt ~ _
pl peso

1 Ov. - 1.0. Sasa
ALNORG Caagiz

‘

y
many

fcc]

iva

Figure 132.

TO COmGtIOr
SAP PATS

CPUL Flow Diagram

Low Level Functional

i
i

Description 259

092

Jd

STF9NYS
BIEdS
STOI—-dv

e¢ Gus Ata

J»
'

I CHI2S &
Le

basta

Gtimtil kb ad
saree vu22a be bete culo?

HEE SE

yh
Ceut Bus vata

_

c Fa

24] aif.
| po a SSS ay)SSE Sn es -=— 5 = TIT) Nise i4

bed.
. Cera

Cerog {

ortiann COtas
Latce

mT
nas tu be ba *ey

cote certo] Scutidscoun | .

CHUNG corny Cara

. j oan ’

y y curt Vv cea
Cet]

;

'
coe eee

ee ee

coins} 22 Cae 32)
© ODD car

4

rT)
.

4
ow awe ts Qivin Cava. A600 & 000

cutroticy
cue tee ee.

oem pee

care) ap fran

{ q Cae

ae __—__] L
a

G Cee? %.i
7 ecm cmemier acumen gmmecee mame ares sem, nent mame, ue, yt ny ete aah cee ante ms we — or een ee eee, om mane RIN yy meh eh: ecm see NN mcennm

¥
ences —tian arm. mana anes me RO, cannes em metee

sO Svat
J

WU DAIABUS
OT

HO swar J

.

ONSTRUCTION
—_—e

.

t 18 $eChee " { °

ins PRUCTION
.

y
AGE

CH

6 F Ges

Fi cee
ERRUA SCANS

243 Jou
omcy* BR AIC 2b MuURIREG

LRAT 2b MUR IEG Cetse
OETECE

C@t20
| te}

@——
ee

16

aL
bb 6 woeeneeee eeOeLILGiAP bat { Ligecueve t6F 38

~—)>- @

(SHAG
oe

OR
mm

cuhion ALLA SSS teaOR Bs GS Shtaceiid
aeCuls at ’

—

V —r]nance <4
make as

4 ——-— § — — Orfhanion 4 WISTRUC TIONz= cape -tenda ctidhiuh *
orenns DI CODE

kare
a a

- wh | - wm mee -

cu22
_

payee ~« bu Cutt | ouzou cua l
-f-

chia?{ (Bila €u242
-

-L

CH226 °_

-

caree +s
SHSTRUC TION

46 v cali i? ye
t6

t VALIO

fau
a

a I ta Orens tata
: 16

tun pte “

- cuave
ibd

.
Carte 46 y { te

COI09
fais ct . cz

ne
bE RAR 6M BUS

o Vis ' pis
f

ot;

™ —

ory
ayo

Car) Va foa J Laren & cura i*

/ ued
baeace ¢

(225 . b 46 i,/

J
Ge? GR ANCE te

i
yr.

bras TO POS
4

.

«. .
COU btada

Cuide

26 8US ADDR [cateeCais INTLANAL
SPiciar Chu boYo

Cuts OL MANO
te FUNCTION p~€—MISC D INTE RMP ESCuiza £A

Carsz
~

4"16 ut cat?
Cadea dbatany CB136 buy

.Eeadta beowess i —_ Curddue.

|
casa vemim orb te

SG

ema ween ce ee een nae

,

ween eee ems ae
Waaete L

ae .
_

3 ebb e €0.:
.

bs
a

nt 8p ames
rennet

_ at ,
-

[-
et:scmmmmte

| Y‘

oe | ~ °

-

meas% 2 2h 4) af 3 Aas o

'

Set

BER
4

ACG AUOR Cara
. 4Y — __¥ _ a __f Oe CuiadMat eet a?

BeSeag 4 a4 4
aL BOO alban 4

4. ADGK MauR Cablas
4

f

4

e

ap 4 - aq { CHiasy veg
ca

|

f vCuzde tad bn
goon (J ACGISTAA Ce

BU AnCE
‘

Biss
OSE Bar€

Qf bai
.

.
:

cube Avice AGE SCAN Pe Futucas en C6235
TNAC KING

ne
— Slustk ADDAESS

| a5 tn fn,

Figure 135. CPU2 Flow Diagram

CONST any

PROM

4 8

J cc2aa

f 2

6

. yh.
qe

f

Gas | oo

CC2zu CCI

a
¢ ‘s e-

Ag oh bm

Chbate

Gear

V / /
8 Ab 28

CC2as

78

EMP: tat

ALU

{ 4 .

é

a®Y
ccaza

f

y
aeuad4840 ene 4/

oiT. At éGts
CARRY

PAOM
SiGN

&

1 2@ BRANCEE 2 256 GHAteCos ’ fre ia

T92

Make sting tts UADA atee.
ietb Mie ae Qe Fausg

em eo oe

= _eteumiminetieamanmeenttonycnsi, wre ena
oh

:

v

“

. .é . vey Se
ta 4 t AGE

; €C180,265A
coves y '

SCANS | CC256 269

/

,

AGE bu

-

.

CCas4
CONT MU. bee

. .
AGE AGE

Ov. favsREGIST Abin
fx ee CAA top Abbie Pag mice f-<d—— bata | a, icyOut AEG

|

_ oo
REG in

wl C229 cc274?
.

“Cc

{ cca ab ecae coat cra 13s

a

qa

Pre a ANE @40
|

, “E—wTcrocus fy _rete

wr wt cca §
arOP

4 (
~

_

PUNT _

Lease O£COOR
ObaUk thease fF .

OLA Ccvye tay ap
Lou KoOUT bh

w Yas cas

(
|

CO229 chu CL Ola
| —— 8G

wee

oe YF Pn ase Got KYv2
SNYEAKAL IW BUS A &X OPERATION i

4 CODE
Ps ASE O ——

—-

Lo

|9h bconosnond
Oh? 148

wait Ci Oca
ne13esoe mee,

OvE . a
:

€ct39

/ ouE
Cce4s asa

rm
stae

be
QGite— fatead é

Cod eure
t

A
.

€C120 CSOAR
C121 0.256

COh2a sue

#18US ADUK | COH23 1.46

I
—-

C126 0:4
CCl

CHM 1.2

-— coe 2

€Cla) Yves

'

}

CC226 1.256

ww V
"

i g AGE CSA
4

re CCi Ne Cuts 3

e

we 7 PROM

STORE 22K6m
hOt DING

AEG

A ca. cca
:

wf ©6238
2 TO EX UNIT

.
_ 7 bsme,

iv iN8 A as 4 aS A)
CozSGaante

‘ COIShold
Joa, cctae ccaAbu SHa 2.8

——

cctze
iG cs0ua ccs €c116 .

~~ CCI68 ALSES ——— CSDA Cc

tocic €Cid2 °

‘
COMMS 8

— -

PARITYba coy.
.

woRY

a é

| | | | | |
GPE WRAL Alel? *

Va dts
weconreecn | ecoas Rice base biAOR STAT EXP. FLOW tt BUS
CONTHLLS

CONFHAGE OLCOOE OECODE OL COE DECUODE REOULST

: cats €c232 cota cca) cca CCI
; cca? oy

(+) TO EXPONENT

af we DATA Fi Ow

COnTHOL

CPU3 Flow Diagram

1

bees belied st

COuTiina &

Wd

AhASA

CPU PAGES (CPUL, CPU2,CPU3)

A) 16 WORO FIFO FILE

16 sits"

QrenNehamnausu

@wo?e

ODOHOIMNH

Qo

3) ORGANIZED AS AN 8 x 32 3IT FILE

EVEN Qo0
. ADORESSES AQDRESSES

E F
¢ 0
A 3
8 g
3 >
4 5
2 3
0 l

A | |
fu UJ

y

MOST LEAST

SITGNIF[CANS SIGNIFICANT
wORO WORD

|

_
C) HIGHER AODRESSES ACCESSED AS Az LOWER AOORESSES as 8B

|

ZVEN | !
& '

|%

|

ZYEN

3
eanememn
re

‘Abarat
i

themed
or

i
t

!

|
{
f :

CTE asetanencnatenepegemaasneneat
j

i

|

Figure 135, Instruction File

262 AP-101S Space Shuttle GPC

] i

| aso | } ono

a
eee tt‘

monmaenel
i

mervemamipetsin

ne

CPU PAGES (CCPUI,CPU2,CPU3)

ing at an even or odd address, the left mux again chooses its even
Or odd input, respectively, and the right mux the complementary in-
put, odd or even, respectively. Figure 136 on page 264 Shows how the
l6-bit instruction AAFF is output from even and odd locations, and
Figure 137 on page 264 shows the 32-bit instruction AAAA FFFF beingoutput from even and odd locations.

11.2.1.2 Effective Address Unit

The EA-unit decodes the Instruction and provides this decoded versionto the Execution unit. The EA-unit also handles the generation ofthe operand addresses and prefetches the operands for the EY -unit.Operands or addresses can be Provided by the instruction as tmmediatedata», or may need to be Calculated by adding any combination of the
following:

1. Immediate data

¢. Contents of a base register or memory location

3. Contents of an index register ‘

4. Displacement.

The EA-unit and I-unit data Flows ase shown in Figure 138 on page265. Instructions sent from the I-unit enter two logic sections inthe EA-unit. In the Execution Operation Decode section, the in-struction is decoded, converted into an 8-bit code, and sant to theEX Operation Codae File for The EX-unit to access when executing an
ENDOP 1: 2S6-way branch issued by the microcode. The EA Seauencer andControis section generates she controi signals needed for The FA-4aLluand its assaciated logic to compute the loyical addresses of the op-erands and to prefetch those operands when necessary.

To compute operand addresses, the EA Sequencer and Controls sectionFirst determines what type of addressing is used in the instruction.The EA-unit then fetches the contents of any base or index registerOr memory location (Cindirect addressing) specified and selects fromthe instruction any displacement or immediate data for input to theEA-ALU. The EA-unit calculates the address of the operands by sum-ming register or memory contents, immediate data and displacement 34sindicated by the type of addressing. |

|
The €A-unit places the results of its calculations into the EAA
register, then sends them to the Internal Operand File. Generalregister addresses are set UP ay the EA-unit for usa oy the EX-unitc
as required tor the instruction. If an instruction requires an op-erand from memory, that operand is fetched and placed in the MemoryOperand File by the EA-unit. The operands for the instruction havethus been prefetched into one of two files (internal or memory), andthe EA-unit controls which of these files will be Provided to theEX-unit.

Low Level Functional Description 263

eo

CPU PAGES CEPUIL,CPU2,CPU3)

A) AT AN EVEN ADDRESS

EVEN 000

ADDRESSES . AODORESSES

GQ
hnnarenm

AAPF

Figure 136. Accessing a

A) AT AN SVEN AODRESS

8) AT AN OOO AOORESS

EVEN coo

ADDRESSES ACORESSES

em

Cau
wo

OQ

QI
Lowrnam

16-Bit Instruction

3) Af AN ODD AQORESS

264 AP-101S5 Space Shuttle

EVEN ooo EVEN 600
ADORESSES AOORESSES AQORESSES AOORESSES

E F E
CG 0 Cc
A 3 A
8 g 3
6 7 6
4

:

5 4

2 13 Ps
9 1 4 9g

a anucemmasnany
‘ i

am
UX ny

’ :
LAAA ree

_ Figure 137. Accessing a 32-Bit Instruction

GPC

Mm

Cans
om

Oo

yh

th
uy“wo

oo
©

Hh

cant,
elon,

CPU

PAGES

(CPUL,
E€PU2,
CPUS)

oA

|

.

&6
5:

ae

4

3

x

x

.

4

z

sh852525

.

esessaes

yt

€@Iz9 @

om,

G858

j

a

i
¢

jo
u

Ail

~=

‘a

we

pt

sj

|

me

oe

-

ae

od

a
ee

SO
<0

wey

¥e

|

SSSaernees
$

siutteisieienen
i)

:

coEEsers
}

5

‘

lad

'

ws

:

7

=

‘

?

Zu
“

§

=z

t

‘pray

'
ome

by
ta
tl
{4
4

ER ne temeem

Nam aeaeaecansteae onop

8
cs

¢

6

‘Jess

~

CPU WH Bus Data

RIAD Sus

1On

OH

TT OR OR eee tee

4

oor

2a5

F

3s

=

=arg

:

es

2s

bese

as

pea

Mae

Se
bd

2

|

!

|

=

;

‘sey

ig

|

|

fos
|

~

=

2

Sj

Rta
cs

i

.

odoe
|

i

en

J

ite

f

Lat
4

mm

fs

|

a

heli:
13

i

'

-

2

>

tenement
ang

1

4

on

eal.
i

4

t

:

3

i

i

«

$

‘

S

‘

fe

'

|
2

j'‘

§

’

‘

tt

:

‘

’

$

'

i

‘

‘

‘

‘

‘

‘

:

‘

é

1

i

|

Seana,

=<a

§er

ae

eG

,

aaa

<a
Reena

tsa

:

=,

™,

}

sc

i

i

‘age!

:

5

3233

c

3

|

saa

|

ea
so

2¢

|

aun

eieattreaeetonatn

|

41

d

re

wh

eoummenms

®

1

.

Y

y

|

__

Figure
138.

EA-Unit
Data
Flow

Diagram
.

Low

Level

Functional
Description
265

CPU PAGES CCPU1L,CPU2,CPY3)

11.2.1.3 Execution Unit

~The Execution unit contains all the logic needed to perform 16- or|
2-bit fixed point Operations and 32-, 40-, or 48-bit floating point

operations. Microcode provides the control Signals for the hardware
in this unit and is contained in an 8K x 72 Programmable Read OnlyMemory CPROM). Thirty-two x 8-bit Expansion PROMS are used to mini-

mize the width of the microword while Still allowing multiple control
Signals to the hardware. Five bits in the microword addréss one of
the 32 locations in one or more of the Expansion PROMS to provide a
l6~- or 24-bit field of contro] Signals.

The CPU local store (LS) consists-of two duplicate 256 x 16-bit banks
of registers which are organized as 32 sectors (16 CPU, 16 constant)of 16 registers each. The general purpose registers are located in
one (€1750) or two (MMP) of these sectors, and in MMP another sector
is used for the floating-point register set. The remaining sectors
ara used for temporary storage of Partial results or contain con-
stants wnich are loaded from the CONStant prom during inachine resatand are accessed by the microcode for certain computations. There
are two identical LS banks, a left LS and a right LS arranged as a
dual~port local store. To the matroprogrammer, the local store ap-
PearS aS one set of general purpose registers: but the two halves mavbe read independently by the microcoder so that the contents of two
independent registers may be used in the same machine cycle. This
allows simple operations, such as add or subtract, Involving two
registers to be completed in one 250 ns machine cycle. When writing-to local store, both the left and right halves are written into at_

1@ same locations to keep the contents of the two sides identical.

Sinmee both the EX and EA-units may need to access local store duringThe Same machine cycie, 9rOvision has been made for focal store <5
3@ lYime- shared. ‘fn a 250 ns machine cycle, the X-unit reads localstore during the first 75 ns, the EA-unit reads LS during the second75 ns» and the EX-unit Writes to local store during the last 100 nsof the cycle. This requires the EX-unit to perform its computationsin the second 75 ns period While the EA is accessing local store.The EA~unit performs its computations in the last 100 ns of the cycleWhile the EX-unit is Writing to local store. This timing is shownin Figure 139 on page 267.

The EX-unit data flow is shown 1n Figure 140 on page 268. A 36-bitFraction ALU handles computations involving fixed PatnNt numbers an,The Mantissa portion of Floating pnint numpers. The 33-bit ExnonontALY calculates the axponent in Floating point orerations and; is useu
aS a counter in iterative operations. In addition, the Exponent ALU
can be used as an 2axtension 9 the Fraction ALU to provide an expandeddata flow (40 bits! for some Extended Floating Point QPperations inthe MIL-STD-1L750A architecture.

.

Input to the Fraction ALY can come from local store, the FA, FB, orFC registers, and the internal data bus where data from the Internal
and Memory QOperand Files and from EX-unit memory reads is placed.
| ovision is made for ALU results to be shifted. At the output of

266 AP-101S Space Shuttle GPC

%,

oN
ce

CPU PAGES (CPUL,CPU2,CPU3)

the ALU, the Y Mux is capable of passing data directly or shifting
left 1, right 2, left 8, right 8, 16-bit word swaps, 8-bit byte swaps,
or setting up for I/0. Data from the output bus may be sent to local
store, the FA, FB, and FC input registers, and the FD register. The
FD register is dedicated to holding data which will be stored in
memory.

L1.2.1.4¢ Typical Instruction Execution

The following example will illustrate the roles of the EA and
EX-units in the execution of a typical instruction. The instruction
A (add) of MMP is a 32-bit integer add using the base-relative indexed
addressing mode (contents of base register + the displacement (bits
él - 31 of the instruction) + contents of index register (shifted left
1 for a fullword alignment) = address of the second operand). Ril is
the register containing the first operand, D2 is the displacement,
ac is the inagex register, and Bz i's the base register. The result
of the add is stored in Rl.

< 250 ns
.

>

|

|) 2X READ LS

|

EA READ LS

EX WRITE LS

< 75 ns > <~——75 nas 2 oe 100 NS

son
piper,

EX COMPUTE

EA COMPUTE

Figure 139, Time~Sharing of Local Store

Low Level Functional Description e677

89e¢

9d

®133NYS
Beds
STOT-dy"ObT

aunbi4

"we4Seiq
MOTZ
e2e€q
21UM
UoOLansdaxgG

0Ct33-039
cru eg)

8Q MiZ——] CLOCKS
°

—"Vo4

pREgGAnaL §N OATS BUS

yen 68
7

we

nn. ae 0-85 }1e-30

i
_

t —* =
C4220

we a

.
4d. A * AGE

COns dead

b6 uel? Caz23 SC Ang.

6H ws

°

2

J

~

132
ano

, Ca2))-234
CA235-238

;

waeee
L-os Cagar-222 is RLS

|,

“
256 = 32 ADnitSS 256 = 32]) catwW-03s

nin Pace ?
Cazza-229

|

eg Sig
C4239-240

7
yt

ae seld-

ee Even{ [000
EVEN} 4000 327

iw TCANaL

zo

fo
ast Gu oava Bus

ag‘L
- [i

7

¢—-

r| a- 8 &a- » | x-6

‘| ctate
Ls

CCals

a —} .

ee ee
TR TERY AL*

ex-Coat _ th OaTa

ny
4

se

6
6

re

[cee
Set

[niinJ
CC 226

to Ab *

EXPONENTCCZN

:

py Doe wren
carat-ias

“ of 4
Catisd Lh ti2tostbopuak a]es

“a s
6 aei

Fe“oak cC22t
mic. [CC222 _ af

» ft
¥ be BUS

Ftc el 1750/70"
0 as! ¥

~—— ExP SEL
Catpre-63)3 Cadt3-gis

o wba e

tua
Pack bilancns Scam | CANS} Caait site | FO

MAG eed . oe 32 "ygMEMORYOATA

fi ee
|

: Cazi5-216

46
¥O FA UngT,

y
er

sea Monpea,

—

229Vd
Nd

CENdUS
chido!‘
IN]

CPU PAGES (CCPU1,CPU2,CPU3)

Instruction: A R1,D2€X2,B2)

EA-Unit

® Decodes instruction and places an 8-bit value of x'AO' in the EY
Operation Code File to be used as a vector for the 1:256-way
branch by the EX at ENDOP. This is because the RS format add
Instruction begins at microcode location x'O2A0'.

® Fetches the contents of B2 and adds this to D2, storing the result
(the Preliminary Effective Addres;> in the EA-A register.

e Fetches the contents of ¥X2, Shifts these contents left 1 and adds
them to the contents of the EA-~A register, storing the result
(the Effective Address) in the EA-A register.

° Fetches the second operand from the memory address given by the
contents of the EA-A reg and places it in the Memory Operand File

® Selects R1 (Cinstruction bits 5-7) as the left local store regis-
ter address and selects the contents of the Memory Operand file
rather than the Internal Uperand file to be oplaced on the
Internal In Data Bus, or INBUS, when the ENABLE OPERAND signal
from the EX-unit goes high.

EX-Unit

e Selects the left local store input for the fraction AI mux and
the INBUS input for the fraction ALU BI mux. The INBUS contains
contents of Memory Operand file by default (statb3 must be rzerg).

° Adds operands

® Qutputs operands directly (no shifting) at Y Mux to Y-Bus

e Writes data from Y-Bus to both left and right local store using
Rl as the address of the register to be written into.

11.2.1.5 Conflicts and dazards

Several fauits are associategq with the operation oF &AAIlpelined ma-
chine:

L. Register Conflicts

2. Operand Conflicts

3. I-Unit Hazard (Store Within Range)

Low Level Functional Description 269

CPU PAGES (CPUI1,CPU2,CPU3)

The CPU contains the logic nmecessary to detect these conflicts and
take appropriate action while minimizing any performance impacts.
These conflicts are explained below.

— egister Conflicts: A register conflict occurs when the Ex-unit
modifies the contents of a register which will be used in the EA
calculation of any of the next three instructions. llhen a resister
conflict is detected, the EA must wait until the EX-unit has cum-
pleted its register store, then Start again using the new content:
of the register.

Operand Conflicts: An operand conflict occurs when the EX-unit will
modify the contents otf g nemory location whose contents will be ora-
Fetched for any of the next three instructions. When an operand
conflict is detected, the EA-unit must wait until the EX-unit has
completed storing into the memory location before it can access that
location.

|

T-Unit Hazard (Store Within Range): Am I-unit hazard occurs when the
EX-UNIT modifies 3 memory .ocation which miy have been pratetchned bythe Instruction unit. When this occurs, the entire pipeline must be
Purged and restarted with the instruction following the store.

270 AP-101S Space Shuttle GPC

11.2.2 Memory Management Unit Functional Desceription

The AP-101S contains a two page Memory Management Unit (MMU) which
incorporates numerous’ functions in addition to management of main
memory. The MMU flow diagrams are shown in Figure 141 on rage 272
and Figure 142 on page 273, Included among the diverse tasks per-
Formed by the MMU are the following functions:

1. The MMU arbitrates and controls the timing and sequencing of the
HBUS.

2 The MMU controls all timing and sequencing to the mainstore in
Fhe AP~-i01S computer.

3. The MMU contains the address expansion logic for the system. The
address expansion mechanisms are architecturally defined and are
different for each architecture. The MMU accommodates either
under external control.

4. The MMU is responsible for detecting, capturing and POStINg nem
ory related faults. These faulzs vary according to architecture,
system configuration and memory requestor,

5. The MMU directs [7/0 commands to the proper system element via
designate generation.

6. The MMU supports testability by:

a. Providing various diagnostic modes of operation under control
of the MMU mode register.

bb. Praviding several serial scan peaths.

Q. Providing several [19 CInternal [/0) commands whien make
yarious MMU registers accessible to the diagnostic program=-
mer.

d. Further identifying faults detected by the MMU Memory Fault
Extension Register (MFER).

e. Providing an HBUS arbiter Port for the tester.

-<-i MMU Clock Ganeration
79

eB

~y oy,

23 @ tng

ee

A
ey,

The MMU generates a 460 MHz elock common to all the pages that are
attached to the HBUS ~ and receives atime 9 sync suise from che Cea 3page. From these two signals, a series of 10 pulses, each $0 As in
width is created. The 10 clocks are labeled TO through T9 with the
newly created T9 corresponding to the sync time 39. The MMU clocks
are illustrated in Figure 143 on page 274.

Low Level Functional Description o7l

MEMORYMANAGEMENT UNIT PAGES (MMU1, MMU2)

~.Figure 141. MMUA Flow figure

272 AP-101S Space Shuttle GPC

MEMORY MANAGEMENT UNIT PAGES (MMU1, MMU2)

Figure 142, MMUB Flow Diagram

Low Level Functional Description ofS

MEMORY MANAGEMENT UNIT PAGES (MMU1, MMU2)

The MMU also contains a 24 MHZ oscillator for the 1553 page in the
1750 mode. The oscillator jis used to generate 12 MHZ and 24 MHZ clock
for the 1553 page.

11.2.2.2 MMU Reset Logic

When an Inhibit Main Store (IMS) igs generated, a system reset is is-
sued on the MMU. The Interrupt page generates an IMS pending signal
shortly before issuing an IMS. -When this Signal is active, the MMU
scops ali HBUS activity. Nhen INS becomes active, the MMU rasats
itself and 250 ns later starts al] activity again. At this point,
any request to the arbiters will be acknowledged.

l1.2.2.3 Mode Control

The MMU supports several different modes of operation. To change
these modes, the user must issue the internai Iv0O (110) command of

#40 MHz JU LP LEC LI LS LSPS LS Lyi
SYNC T9 Jo LL [

<—50-—>|
< 250 > |

|

r+TO —~ |
!

+T1 3 Le

+T2 | I

+T3 | | L

+15 | LL

+76 ! Lt
+T7 | Le

ot

-—

+73
.

!

.

:

+79 J L

| Figure 143. MMU Clocks

274 AP-101S Space Shuttle GPC

SN YY

MEMORY MANAGEMENT UNIT PAGES (MMU1, MMU?)

X'9407'. To read the current mode of operation, The IIO code of.X'1460B'" ‘can be used. There are 10 functions defined by the mode
register (Figure 144 on page 275).

Figure 1644, MMU Mode Register

WRITE] READ

FUNCTION BIT BIT

INHIBIT DMA'S 06 22
DISABLE STORAGE ERRORS 07 23
BCE DISABLE 1: 98 24
SPECIAL STORE PROTECT 09 25
TRANSHIT DISABLE 10 26
SYSTEM IPL 11 27
PASSTHRU CMOS 12 28
SYNDROME/CHECX BIT MODE 13 29
CODE IDO 14 =|. 30
SCRUB DISABLE 15 31

11.2.2.4 Bus Protocol

The Memory Management Unit (MMU) transfers data between the central .

processor andq the [0P through the HBUS. This is a high-speed syn-
ehAronous bus developed to transter memory data at. Nigh rates of
speed.

|

|

11.2.2.5 Memory Address Expansion

The MMU handles all memory address expansion requirementsfor. theAP-101S computer. The genera] Functions performed by the MMU address.
expansion logic are:

,

L. A 20-bit Advanced Programmable Tester (APT)
address)iS accommo-dated on the 1l6-bit HBUS address bus

|

¢. Memory addressing for 512K halfwords CeO-bit) is provided. ©
3. Either halfword (16-bit) or fullword (32-bit)accesses are per-mitted during a single memory cycle.

|

g

F

4. No boundary constraints are imposed on fullword accesses,

Low Level Functional Description 275.

2 3 ue

MEMORY MANAGEMENT UNIT PAGES ¢ MMU1, MMU2)

5. The ability to bypass the address expansion logic is provided.

6. Separate address expansion mechanisms nre provided for each ar-
chitecture.

L1.2.2.6 Address Interfaces

l1.2.2.6.1 IOP Interface

The IOP in the AP-1015S computer always provides a Physical 18-bit
address on the HBUS.

11.2.2.6.2 CPU

The CPU passes a 16-bit logical address to the MMU via the HBUS. Thisaddress and all requestor generated HBUS tag bits are passed on theABUS during any CPY ackKnownledge cycle, The CFU unit sourcing thisaddress is determined by the Particular acknowledge that was granted.During the address cycle, the l6-bit logical address is selected intothe MMU address flow, and must be expanded into a 20-bit physicaladdress Cunless the operation type bits specify "no map") in the 1750
architecture or a 19-bit Physical address jin the MMP architecture.

4. 2.2.6.3 Avionics Programmable Tester (APT)

Ahen an SDI (CAPT) acknowledge is granted, 3 eO-bit ohysical address1S Passed to the MMU. The low order 16 bits are Passed over the HBUSvia normal HBUS protocol. The high order four bits are seriallyScanned into a holding register on MMUL at the same time that thetesters serial interface logic (refer to the SDI description) scansin the HBUS Simulator register on the interrupt Page. During the SDIACK, the high four bits and the low 16 bits are concatenated and se-lected into the MMU address flow. This 20-bit physical address al-
Nays bypasses the address expansion logic.

11.2.2.7 Address Expansion Logic
.

The requirement to support Single cycle memory accesses fordoublewords on any boundary based on a single address that is passedto the MMU dictates the following MMU hardware support:

} s Address adder

276 AP-101S Space Shuttle GPC

SPACE SPACE)

SHUTTLE /CPU/OP
SHUTTLE / CPU 1OPAP-101S

AP-101B

PO.!'ER 560 WATTS
789 WATTS

WEIGHT 64 LBs
1i7LES

MEMOUY CMOS: s (er CORE: 104K Fw'sLSDNS S
|

Ofcle[Ateess
HALF WORD

SPEED

EATTERY
BACIIUP

BITE

MTBF

»

eohae16 DATA BITS
CY 16 EDAC EITS |

S STORE PROTECT

GRECHARGEABLE == NICADS

TEMPERATURE = — «ees...
CHARGER

| BATTERY
SOFT ERROR COUNTER

DESIGN: 6,000 HRS E2560 HRSCSUTLOOK: 10,000 HRS

SAVE 1100 WATTS
SLEEP MODE: 56 WATTS

©<AVE 318 LBS

©Cji20 G3 ARCHIVE

ERROR DETECTION
AND CORRECTION

MEMORY SCRUB

OC182F 1.7 TO1

REMOVABLE SRU

CURRENT AP101S: 24,000 HRS

Mees,
.

f

:

4

2.1 SHUTTLE INSTRUCTIONSET

The AP-161S systam structure encompssses tha functional operation of main storage,
the central processing unit (CPU, and program-controlled I/0 facilities.

2.1.1 Information Formsts

The system transmits information between main storage and the CPU in units of 16

bits, or in integer multiple of 16 bits. Each Lé-bit unit of information is called

a halfword. Six error correction bits and three voted storage protection bits are

also associated with each halfword for the AP-101S but later references in this

manual to the siza of data fialds excluda thease bits. The AP-101S/G has two storage

protect bits per halfword.
,

Halfwords may be handled separately cr in pairs. A fullword is a group of ttio

consacutive haltwords. Both halfword and fullword instructions and operands are

used. Their location is always specified by the address of the laftmost halfword

Cleftmost halfword is thea numerically smallest address). The instruction length is

designated implicitly in every instruction; the operand langth is also implicit.

Within any Instruction and operand format, the bits making up the format are

consecutively numbered from left to right, starting with the number 0, as shown in

Figura 2-1. |

.

Haltword

tel:
0 : 15

Fultword

bees
0 " 1S 16 |

mo
3

Figure 2-1. Instruction and Operand Bit Numbering

Halfword locations in storege are consecutively numbered starting with 6G. Each

number (ss considered the address of the corresponding halfword. The addressing

technique uses @ L9-bit binary address to @ maximum of 21% halfword sddresses. This

set of main storage addresses includes some locations resarved for special purposes,

such a3 progres status words; consequently, these special lecations should not be

used for any purpose not implicitly dafined.

2.1.3 Information Positisning

Unlike previous versions of the AP-101 computer, the AP-1015S does not require either

fullwoerd instructions or fullword/doubleword operands to be located in main storage

on even boundarias.

2.2 CENTRAL PROCESSING UNIT

The central processing unit (CPU) contains facilities for addressing main etoracge,
¢ fatching or storing information, for arithmetic and logical processing ov data,

te. sequencing instructions in thea desired order, and for initiating the

cof nication between storage and external devices.
:

|

The control section guides the CPU through the functions necessary to execute the

progren.

2.2.1 Program Addressable Registars

Two sets of eight fixed point general registers and one set of eight floating point

registers sere under explicit program control. "ha cuntents of one or more of these

registers (32 bits) participate fn moat CPU operations. Associated with each of the

fixed point registers is a 44-bit addressing extension ragister (Data Sector

Extension or DSE), the use of which is described below in Extendad Addressing.

Conceptually, an additional doubleword ststus register, called the progran status

word (PSW), {s the focal point for machine status. The contents of the PSW are

updated during each inatruction. Consequently, the PSW reflects currant machine

status following every instruction. The PSW participates tmplicitly in status

switching, branching operations, and address calculations. Condi‘ion codes

rasulting from en instruction are slso part of the PS.

In addition to the PSW and the general and floating point registers, the CPU elso

c tains working registers used for storage addressing, storage buffering, shift and

» ration counting, end cperand storage. These registers are of no direct concern

tea e programmer and are rot described herein.
~

en meal

2-2

The contants of the PSW specify which of the two sets of general ragisters is in

current use. Only the contents of the selected general register set can participate

(in arithmatic operations and the contents of unselected sets of general registers

— gannot be sltered by & program. An alternate set of general ragisters can be

selacted by changing the PSwW. Only one set of the fixed point, ganeral~purpose

registers and thea floating point registers sre available to the program at any one

time.
-_-

General register contents can be used interchangeably 4s operands for arithmetic,

logical, and shifting operations, or 3&5 base and index registers for relative

addressing. Each set of general registers is numbered from 0 through 7 and is

addressed a3 shown in Figure 2-2.

General Register Function

Register
:

Number Operand Base Index

0 000 00 None

L 001 Ol O01

2 010 10 010

3 O11 ll or None”| 011

4 100 |} =100

5 101
4101

6 110 110

1 lil
111

N11 = Register 3 for SRS; none for RS

Figure 2-2. Ganeral Ragister Addresses

Note that general registers 4 through J cannot contain base addresses and that

general registar 0 cannot contain an index.

For addressing data, general registers 0-3 can be augmented by 4-bit Data Sector

Extansion (CDSE) registers oF by the DSR in the PSW to address beyond lé-bit

capabilities. There ere 16 DSEs. one for each of tha aight general-purpose

registers in each of the two sets of general fagisters.

For some operations, & pair of general registers is linked to form a 64-bit

doubleword register. The wost significant half of a doubleword operand is contained

in the specified register; the least significant hal# of the doubleword is in the

next higher-numbered register (determined by Modulo & addition of one (1) to the

specified register). Note: If Reg 7 is specitiad, the least significant half of

the double word operand is contained in Reg. 6G.

2-35

COae;€ (odcs omft)co

Data representation ta fractionsl, with negative numbers represented in twos

complement form. A halfword operend is 15 bits plus sign, a fullword operand is 51

bits plus sign. and «@ deubleword sperand is 635 bits plus sign, #3 shown in Figure

2-73.

Fixed-PointHelfwordOperand

tues
rELELELLLitptttw_t

Q 1
18

31Toc euecett teppei
Fixed-PointDoublewordOperand ee ,

:

"oO1 |

|

Figure 2-3. Fixed Point Operand Formats

2 7A

In fractional data representation, the binary point is jmmediataly to the right of

the sign.
|

2.2.3 Instruction Formats

The length of an instruction format can be either one or two halfwords. Long format

instructions provide maximus range end extanded flexibility for addressing atorage

operands. Short instructions sre used to (C1) specity register-to-regi star
operations, and (2) specify storage operands in cases where a smell displacement is

sufficient and complete address woditication capability is not required.

Instruction forwats overlap. Programas sre written so that, in many itnstances, any

given operation can be coded using either «a halfword or e fullword instruction. In

such cases, maximum use of halfword Instructions results. in increased storage

efficiency and performance.
-

The three basic Instruction forests are 83 shown tn Figure 2-4. Kal fword

$ ~atructions are automatically selected by the assembler unlass otherwise speci fied

a the programmer.

£
:

2-4

,

|

=

gh as 630

RA Format
"

10

Lj ttt ry trictrfolXt ts

0 4 5 7 «8 11 12 13 1§ :

SRS Format -
—

i Oe | Rt Dise”
a | *Displs ¢ the form 111XXX li

|

{ { { { | i | ' { { {
is cements0

the form are not valid.

0 4 5§-. 7 & 13 14 15

RS Format
° Ola

vee

Oo R1 Pl 82 Address Soecificstion

ptt Pe Trpiprypiyx | rirptbLepttpt pty | | {

0 4 § 7 8
,

1112 13 14 15 16
° 31

Figure 2-4. Basic Instruction Formats

The fields within the instruction formats usually ere used as dascribed below.

exceptions sere described in conjunction with the individual

instructions.

|

|

Op This S-bit field defines an operation, or the class of cperation,

ba performed by tk- PPU.

formats

The

and

to

Ri This 3-bit field designates the resister eontaining the first operand.

Except for operations which alter main storage, the

replaces the first operand.
°

rasult usually

R2 This 3-bit fiald appears only in the RR format. It is used to speci fy

® general register containing either the gacond operand or the address

of the second cperand.

B2 This 2-bit field specifies the register containing the base address.

Disp In halfword SKS. forwat instructions, this 6~bit field is ealled the

displecement. For the SRS format, the displacement is added to the

base address spacified by the B field to obtain a storage address.

OPXx This bit is en extension of the OP field.

AM This field designates one of two fullword format addressing options.

Address The second halfword sf a fullword instruction is specified as either

(pecifi- extended oe Indexed sddressing.

*
eation

See the Effective Address Generation Summary Chart, page li-l.

2.2.4

The RR format instructions (Figure 2-5) permit the specification of operations that

use two ganeral registers.

op nt Q |prep lL pepe trprprepolx| ptt

0 4 § 7 & WIi2 13 18

Figure 2-5. The RR Instruction Formats

The operation normally uses a3 operands the contents of two genersl registers.

R2 field specifies the second opersend while the Kl specifies the first operand.

_ wit of the operation usually replaces the first sperand.
‘

i

2.2.5 SRS Format Instructions

The SRS instruction format CFigure 2-6) {se coapression cf the KS format.

provides base plus displacement storage addressing.

,

*

Displacements of the form

Op RI Oisp* 62 | 1WIXXX are not valid.| i} | { | | || fff |
|

0 4 § 7 68 13 14 1§

82 AeqistwrContaining Buse
60 Gareral Registay0

ot General Register1

10 GeneralRagsiar2

11 General RegisterJ

Figure 2-é. SRS Instruction Foerwat

2-6

The

The

It

NAS C32
SdeaPo

: Q

Oe The RL field spacifias the first operand register address. The 19-bit effective

| address CEA) ef the second operand is daveloped as follows:

Step 1 First the positive integer contained in the displacement field is

added to the contents of the base contained in the general register

specified by Be.

When addressing halfword operands, tha least significant bit of the

displacement tield Cinstruction_ bit 13) is sligned with bese resister

bit 15. The lé-bit result is the sum of the base and the

displacement, sligned as shown in Figure 2-7.

When sddressing fullword operands using the SRS format, the least

significant bit of the displacement field is aligned with base

register bit 14 ss shown in Figure 2-8. a

Unlike previous versions of this architecture, bit 15 of # base

register is: significant when addressing fullword data. Fullword

storage operands may now be located on odd address boundaries.

Programs which utilize this feature will not be downward compatible.

Step 2 Thea 16-bit result of the addition of the base and displacement is

expanded (see Expanded Addressing) to a 19-bit effactive address (EA),

and this is the address of the second operand.

>
Z pf SS QO SNBase v WWKK CG Base(B82)

rrP EE e_pepeEEpe rrr t Ss : SSRs
0 15 16

7

3

1 °Disp Halfword Displacement

ofosofoyoyofaojojojo; J i tt

0 9 10 1§

i Basa + Disp.
° 168Hit Effective Address

rrr pripebtpetpetcl pout
0 15

|

NNThe low-order half of the general register containing

|

the base does not participate in SRS addressing.

Figure 2-7. SRS Halfword Addressing

2-7

90935 C33

om” a+
0 18 16

Disp | Fuliword Oissiscrmnent

o,oyo;oyoy;orofofjo] | ft tt!

0 8 8 14 18

! Beet Vip 16-Bit EHective Address

rYTErEertbeececLtuoul
0 15

|

The low orderhalf of the general register contaming

the Bese does not participate in SAS addressing.

Figure 2-8. $RS Fullword Addressing

Except for store Instructions. tha result of operation between the first cperand

(the contents of general register Ri) and. the second operand (the contents of the

EA) replaces the first operand for SRS format operations. The first operand

replaces the second cperand for store instructions.

2.2.6 SiInstructions

Direct Initialization, modification, and tasting of main storage is possible through

the use of an twmediate data hal tuord appended to an SRS instruction. Sea Figure

2-9.

| - Op OPxX Dis” 62 lenenediate Osta

ff j jf f j_ | jf} it {if | ,PrL_ELEtit ft tt ot ul

0 45 78 13 14 15 16
|

31

*

Displacementsoftheform111 XXXarenutvalid.
.

Figure 2-9. $I Instructions

(» address of the halfword second operand is developed in the normal manner for SRS
a

instructions using halfword addressing. Except for test Instructions, the result of lo,

{oN operation betwean the hal fword second operand and the immediate data replaces

2-8

nag 0342 Co

the second operand. The second operand is not altered for tast instructions. The

first cperand is never altered for $I instructions.

2.2.7 RiInstructions :

Using an immediate data halfword appended to an RR instruction (Figure 2710) permits

direct initialization, modification, and testing of the. most significant 16 bits

contained in & ganeral register.
,

Ltt
0

OPX
|

A2 lrnemediata Data

1 y frupry1to |_| rErteptert dot | {| {ot

4 § 7 8 W12 13 15 16
.

31

x

FO

Figure 2-10. Rf Instructions

Except for tast instructions, the result of the operation between the second operand

and the immediate data replaces the second operand. Tha sacond operand is not

altered for test instructions. The immediate data first operand is never altered

for RI instructions.

2.2.8 RS Format Instructions

There are two major classes of RS instructions, extendad and indexad addressing

modes, differing in the techniques used to specify the second operand. Sea Figure

erlli.
.

te wl
-

-
| ANBe C35

oy

Oo RI } a B2 AuidressSpecification | ~

td Peete [oe ee

0 46 78 11 12 13 14618 16
.

31

AM |

Exuersied: 6 | Ouplecement ||

Pritt yr fT ft tpt to

16 Ji

t

indexed ; 1 % A J Cisslacemnent |

| Peet ptt!
1 = 18 19 20 21 31

Figure 2-11. K&S Inatruction Forwats

Extended addressing is specified when RS format bit 13 CAM) equals 6. This

e tpessing mode provides a full lé-bit Khaltword displacement. The bese and

 splacement are aligned ss shown in Figure 9-12 when base addressing is performed.

.

e

Figure 2-12. Displacement Alignment for Extended Addressing

Aside from the size and slignwent of the displacement, RS extended addressing

differs from $R3 addrassing in two other respects:
—

1. The alignaent of the displacement [3s the sane whether addressing

doublewerd, fullword or halfword operands.

2. When B2 equals Ll, base eddressing {ts not performed. In this case, the

displacement is instead used directly as the effective eddress.

2-18

_-

|

a Indexed addressing is specified by RS format bit 13 CAM) equal to 1. This

g0n36 C36

addressing mode contains thres additionsl fields. Normally, they contribute to the

effective address generation &3 follows:

x

IA

This 3-bit field specifies one of seven general registers containing

the index. Indexing is not performed when X is equal to Ooo. An

index is contained in the upper halfword of a genersel register. The

index is automatically aligned as jllustrated in Figure 2713. For

additional information on index -alignment, see Saction 14. Consistent

with the restrictions that apply to register usage and indirect

addressing, general register contents can be used interchangeably 45

either a base or an index or both. When indirect addressing i5

specified, indexing follows indirect addressing Cpostindexing).

This format bit, when &@one, specifies indirect addressing. Indirect

addressing is not perforaead when this bit is zero. In the instruction

descriptions, the symbol 2 denotes IA for the assembler.

This format bit, in conjunction with X%and IA, specifies various

address modes which are explained below. In the instruction

descriptions. the symbol # danotes I for the assembler.

The development of the EA for the indexed mode Cincluding IC relative) of operand

addressing is explained in detail in the subsequent steps:
|

i. Indexed addressing is specified by RS format bit 13 CAM) equal to 1. This

addressing moda provides an Li-bit displacement. The base and

displacement sre aligned as shown in Figure 2-14 when indexed addressing

is performed.
,

The displacement is aligned so that bit 31 corresponds to base or index

bit 15 and displacement bit 21 corresponds toa base or index bit 5. The

displacement is axpanded to 16 bits by appending five leading ceros.

If B2 ts not equal to ll, the 16-bit base, contained in the higher order

helt of the specified register, is added to the aligned displacement.

This results in a preliminary effective address (PEA) whereby the PEA =

(8) + Displacement.
-

If B2 is equal to 11, the aligned displacement is added to zero. This

result is the preliminary effactive seddress (PEA) whereby the

PEA=Di splacamant.
.

If the X field is ell zeros, IA (bit 19) ‘ts a zero and I (bit 20) 1s 4

zero, then the 16-bit result of Step 2 is added to the contents of the

updated instruction counter CIC) to form the Lé-bit EA whereby

EAz(updated) Ic + PEA. (This EA ts then expanded to a 19-bit EA, as

explained in the Expanded Addressing saction, with the exception that the

Branch Sector Register CBSR) bits are used instead of the Data Sector

Register (DSR bits).

‘If the X field is all zeros, IA (bit 19) ts @ zero and I (bit 20) is 38

one, the 16-bit result of Step 2 is subtractad from the contents of the

updated Ic to form the, 16-bit EA whereby EA = Cupdated) IC ~ PEA. (This

2-11

peer)

PUES

eee
=

Pee

Cc cS(=COCc}cs2 oJ

7 |Lip t tttf
|

0 18 :

9

ladex (Xo. 9) |

Haltword (DirecttromIndexRegister

a ee rg BraO~18)
0 15

| PEA + Index
-

EA

‘ttt er
0 1S

& Halfword IndexAlignment

| in |[fi petyes ttt tt tt
6 : 18

| Watex(Xqogg) |
Fuilword (indexRegister Sia 0-15

LitLEeti rit tp pt poy ShiftedLae)
0 18

oe

} co PEA+index
a | EA

|

| | oea |

|

0 - |

|

_
15

.

bk FullwordIndexAlignment

| eA || L_tttl ttt
0 15

| Nercirn (Xey_15) | Bouble Word(IndexRegicwr Bits 0-15

Pitti rTteE_Lett tl oto ShittadLate2)
0 13 14 15

|

PEA ¢ Ingsx | EA
_— rt ttt pt

|

0 18

. & DoubleWordIndexAlignment

Figure 2-13. Automatic Index Alignment

2-12

ee:

;

a
ety,
:

|

Dispiacement |. ‘ola ret ttt tt to

16 20 21 31

| Base
~

"

Pee
0 5

.

15

Figure 2-14. Displecement Alignment for Indexed Addressing

EA is then expanded to a 19-bit EA, as explained in the Expanded

Addressing section with the exception that the Branch Sector Register

CBSR) bits are used instead of the Deta Sector Register CDSR) bits.)

If the X field is all zeros, IA (bit 19) is a one and I (bit 20) isa

zero, then Indirect Addressing is performed. The 16-bit result of Step 2

is expanded to a 19-bit address and is used as the address of a main

-. storage halfword.. This halfword is then fetched and expanded to 135 bits

by using expanded addressing to form the EA. EAZMS CPEA). Functional

equivalency to preindaxing capability can be obtained through modification

of the base.

If the X field is all zeros, TA (bit 19) is a one and I (bit 20) is @ one,

Indirect Addressing is performed as described in Step 5 with a fullword

main storage pointer. Then, after the EA has been formed, storase

modification is sutomatically performed. The .indirect address i5

contained in a fullword. A modifier is contained in bits 16 through 31.

An address is contained in bits 06 through 15. The modifier is added to

the address and the resulting moditied address replaces bits 0 through 15

of the indirect address word (sea .Figure 2715).
"

[Address
|

Modifier

PEP ee | j | rr ett pte pE_tet poy pot

1516.
31

Modified Address = MS (PEA)<= MS (PEA) + MS (PEA +1)

Figure 2-15. The Contents of Indirect Address Storage Modification Word

7.

Cae

If the X field is not zeros, IA (bit 19) ts # zero and I (bit 20) is a

zero, the most significant 16 bits of the general register specified by

the X field are aligned, and then added to the lé-bit result of Step 2

CPEA) to form the 16-bit EA (See Figure 2-13). (This EA is then expanded

to se 19-bit EA, as explained in the Expanded Addressing section.)

2-15

ors
ey

_ It the X field is not all zeros, IA (bit 19) is a zero and I (bit 20) is a

one, the sost significant 16 bits of the general register specified by the

X field are sligned, and then added to the 16-bit result of Step 2 (PEA)

to form the lé-bit EA (sae Figure 2-13). (This EA is then expanded to a

L9-bit EA, a8 explained in the Expended Addressing section.) (The

modifier it3 added to the eddress and the resulting modified seddress

replaces bits 6 through 13 of the index register after the EA is

determined.) Figure 2-16 lllustrates the eddress and wodifier format in

the indax register.

Address
) Moditier

Pe tt tf tt Lit | ets

0 15 18 at

Modified Address * Oo .gsSM g-15
+ %)sse31

Figura 2-16. The Contents of Index Ragistar <%

If the X field is not sll zeros, IA Chit 19) is e one and I (bit 20) is

zero, Indirect Addressing CIA) with postindexing is performed. The Lé~bit

result of Step 2 ts expanded to a 19-bit address and is used to fetch a

main storage halfword. The index” contained in the general register

specifiad by X ts aligned and then added to the futched halfword to form

the 16-bit EA (see Figure 2-13). This EA is then expanded to # 19-bit EA

by using expanded eddressing. Functional equivalency to preindaxing

capability can be obtained through modification of the base.

If the % field is not sll zeros, IA Chit 19) is a one and I Cbit 20) is a

one, en tndirect seddressing mode is detined using a 32-bit fullword

indirect eddress pointer as follows:

a. First, the PEA from Step 2 must locate a fullword indirect sddress

pointer, with the furmat as tllustrated in Figure 2-17.

x G

i Address Reserved c BO BSV DSV

tTPPELELLELLLLI| toleloate ; {| { 1 {| _f

GQ 1 18 16 19 20 21 2223 24 27 28 31

Field Function

Xe
-

index Control

C Controlto allow PSW modification .

Cz
: Control BSV Usage

Co
Control OSV Usage

BSV(BranchSectorVector) SelectivelyreplacesBSR in PSW

DSV (Data Sector Vector) Selectively replaces OSR in PSW

Figure 2-17. Fullword Indirect Address Pointer

an

2-14

Fae
a

4

i

too

ON

ie.

tae

eT
:

»

F

a J

:

is

gcc36 CuO

If € (bit 21) equals 6, XC (bit 20) equsels 1, and the instruction is

not 8 branch type tnstruction, the 19-bit EA equals the 44-bit DSV

with the 15-bit address field appended. When © (bit 21) equals 0, xc

(bit 20) equals 6, and the instruction is not a branch type

instruction, the 19-bit EA equals the 15-bit sddress field added to

the index value in indexing -register X with the result sppended to

the DSV. The current PSW's DSR is not changed.

If C (bit 21) equals 6 and the instruction is a branch type

instruction, the current PSW's BSR in conjunction with bits 6 through

15 of the fullword indirect address pointer will be used to form the

branch address (BA). If XC=0, postindexing will occur. When C (bit

21) equals zero, CB and CD are reserved end should be set to zero.

If ¢ Cbit 21) equals 1 and the instruction is a branch type

instruction and the branch is taken, the BSV and DSV fields

selectively replace the BSR and DSR fields in the current PSW, based

on the CB and CD bit values as follows:

ch sD Result

‘Co
0 0 Use current PSW's BSR,fore the BA.

8 1 Replace the current PSW's DSR with the

DSV. Form the BA normally.

1 0° Raplace the current PSW's BSR with the

 BSV before foraing the BA.

1 1 First, replece the current PSW'sDSR with

the DSV. Then, replace the currant PSW's

BSR with the 3SV batore forming the BA. -

When C (bit 21) equals 1 and XC (bit 20) equals 1, postindexing is

not performed. When C (bit 21) equals 1 and XC Chit 20) equals 0,

the BA calculation includes a final addition of the index value in

index registers X.

If C (bit 21) equals 1, XC equals 1, and the instruction is not a

branch, the 19-bit EA equals- the current PSW's DSR and the 15-bit

field appended. If XC=3, postindexing will occur.

The results of indexed mode RS operations normally replace the first operand excapt

for store operation where the first operand raplaces the second operand. The second

operand is unaltered for nonstoce operations, and the first operand is unaltered for

store cperation. .

2.2.9 ExpandedAddressing

The addressing philesophy accommodates 64K halfword sddresses since a full 16-bit

eddress is provided. Extending the addressing range beyond 64K halfword locations

2-15

ww to S12K halfuord lecations 18 previded by utilizing PSM bits end Dstsa Sector

Ext(¢ ion (DSE) registers.
|

Expanding te 1% bits is schlieved by realecitng the highterder bit of & 16-bit address”

with 4b ts, «8 shoon ta Figure 2-18. Dates éperand addr

esne:b485
extended to 19

bits
be “seeettying o@ 4-bit Bats Sectsr Register (OSk), # OBS

7
Jan taplied DSR

teexere. When the high-order bit of » lé-bit date address is %, a 44-bit OSR CPSW

bits 28 through 31) is selected ts reslace the high-erder bIt{ Uhen the high-order

bit of @ Léi-bit data register ts @ and « base register is used te deturnine the

address. the 4-bit DSE for thet bese register Is selected te reslsce she higher

order bit. When the high erder GIt ef ae lb-bit data address is wo 8, snd “0 Lease

register is used. an tuplisd DSR eentatning 0600 Is selected. Hote thet inairec*

addressing locates the Indirect address pointer os Vf the sointer were «@ dua

operand. Second stage expansion ef the tndievct asddrass pointer uses an implied DSR

sf zero If the high order GIt of tia Lé-bit sddress is yn Braench addresses are

also extended to 19 bits. When the high-order bit ef a lé-bit branch address is a 1,

a 44-bit Branch Sector Register ChSR-PSu Bits 24 therough 27) ts selected to replace

thea high-order Bit. Whan the high-order bit isn @ 8. on tupliad BSR containing 0000

is selected. :

AND NO BASE REGISTERIS USED. IF THE Hie ofbza Bit of THE le BIT ADdDREess IS DP AND A BASE

ZeEwISTER 1S USED, THEN THE Ye BIT DSE Fog THATBAe REWSTER 1S SELECTED To tepince THz

icy OfDER BIT pesca

et, |
16 <detbrench Acdreas

KYVYV VY YVVVVVYYVV

/; DSK (orFA) * ~

(r7zz=—Psw vy Hy

Esperded 19-Hi1 Branch Agdreas

LLILVVVVYVVYYVYYYYY

Figure 2°18. Expanded Addressing

2-16

‘ 3

Cae
HONE
NO
Wi
me

an

“

ecrgins
grat
HVE
Hepat
4
ow)

an a

teeny,

gtogs Che

Pictorially, main storage ‘canbe visualized as follows:

BA,°0
. or EA,<0) EA,-0

EA, 20

EA, 0 OSE 80, 1,2 | "OSE60, 1,2
“~) OSE BO,1,2

No Base |

Reg BA,°1 _
EA,*1

PSA .

.

Operating Froblern Probiern ,
Problem Problem PROBLEM

System & Osta instruction _ Date Data DATA

Common Cate Ares Ares
°

Ares Ares AREA

Pool

Oo 32K

»

BSA

>

OSR 512K

|

PSW 24-27 PSW 2831

This permits efficient communication from the problem program to the operating

system, the preferred storage area, (PSA) or & common data area.

It should be cautioned that instruction address incrementing or address calculations

used to form the EA.are performed on tha low 16 bits only, and will not alter the

BSR, DSR» or DSE. The BSR or DSK may be altered only via a PSW swap, special

instruction operations csvc, LPS). or by use of the indirect address pointer

described in this saction. The DSE registers are loaded by the LXA and LDM

instructions.
|

2.3 PROGRAM EXECUTION

The CPU program consists of instruction and control words specifying the operations

to be performed. This information resides in main storege and addressable registers

and may be operated on as data. Instruction axecution control is as dafined under

the section on Machine Status anc General System Operation. Insert Storage Protect

Bits, Load Program Status, Internal Control «snd Set System Mask instructions are

privileged instructions and can only be executed in the Supervisor State. The

Program Status Word datermines the current state of the CPU and the Supervisor Call

instruction can be used by the problem program to enter Supervisor State.

2.4 STORAGE PROTECTION FEATURES

The storage protection feature prevents modification of specific main storage

locations. Any location which cculd, for example, contain constant data or program

instructions can be selactively protected from Store operations without rastrictings

the use of other areas. Traps on store operations to specific data words can be

inserted during program eheckout. A privileged instruction, Insert Storage Protect

Bits, is provided to sat/reset the protection bits associated with each halfword of

2-17

| Atempting+P stovedate.rma.profscliehi,RocahoneweOuw~“stor@,

wl) ptt im >)

ogram interrupt valess—i-t—is—previeusly—neshed—by—
|

ete Pre

e hit-45}-te-eero”In this casa, the store operationdoes not occur.

2.4.1 Instrustis

The storage protection bits described cen also bse used tu flag sn inadvertent
attemat to executa, a3 instructions, data stored in unprotected sreas. The feature

will ansure thet no program will continue to execute data e% program instructions.
An attampt to exacute an instructian word which is unprotectad will result in an

interrupt if FSW bit 34 is a one. The feature can be masked by a System Mask Bit

(bit 34 of the PSW). DBuring program checkout, this feature perwits use of special
software to aid debusging.

An instructio:s Monitor differasice is the state the effective address is laft in

following tha interrupt handling. In the AP-1015, the Instruction Counter is
incremented to point to the next instruction to be executed. The AP-1015 Instruction
Counter is not incremented and is laft pointing to tha offending instruction.

2.5 MACHINE STATUS

wystem status can be altered by the cecurrance of interrupts and by the program. A
do ‘aword ragister within the CPU contains a program status word (PSW) and is the
fotel point tor CPU and systam status conditions.

2.5.1 Program Status Word

The program status word (PSW), contains the basic information required for proper
program execution. The 64-bit PSW includes the next instruction address, the
current condition coda, the cerry and overflow tndicators, the system mask for
interrupts, and other fields significant to CPU operations. In guneral, the PSW is
used to control instruction sequancing and to hold and indicate the status of the
system in reletion to the programs currently being executed. The active or

controlling PSW is callad the “current PSW". By storing the current PSW during an

interruption, the status of the CPU can be preserved for subsequent use. By loading
a new PSW or part of a PSW, the state of the CPU can be Initislized or changed.
Figure 2-19 shows the FSW format.

fo
é

4

2-18

°

é

%

—9tngs ch2

Pictorially, main storage ‘can be visualized a5 follows:

BA,<0
: or EA,°0

‘ EA,°0 .

EA, °0

EA,“0 OSE 60, 1,2 | "DSE60, 1,2
OSE 80,12

No Base

Reg BA,°1 .
EA,*1

PSA
:

Opersting Problem Probiern ,
Problem Problem PROBLEM

System & Bate instruction _ Date Daw DATA

Common Oats Ares Ares
°

Ares Ares AREA

Pool

0 32K BSA
DSR |

512K

PSW 24-27
PSW 28-31

This permits efficient communication from tha problem program to the operatins

system, the preferred storage area, (PSA) or # common data area.

It should be cautioned that instruction address incrementing or address calculations |

used to form the EA are performed on the low 16 bits only, and will not alter the

BSR, DSR» or DSE. The BSR or DSR may be altered only via a PSW swap, special

instruction operations svc, LPS). or by use of the indirect address pointer

described in this section. The DSE registers are loaded by the LXA and LDM

instructions.
|

2.3 PROGRAM EXECUTION

The CPU program consists of instruction and control words specifying the operations

to be performed. This information resides in main storage and addressable registers

and may be dperated on as data. Instruction execution control is as dafined under

the section on Machine Status anc General System Operation. Insert Storace Protect

Bits, Load Program Status, Internal Control and Set System Mask instructions ere

privilegad instructions and can only be executed in the Supervisor State. The

Program Status Word determines the current state of the CPU and the Supervisor Call

instruction can be used by the problem program to enter Supervisor State.

2.4 STORAGE PROTECTION FEATURES

The storsge protection featura prevents modification of specific main storage

locations. Any location which ceuld, for example, contain constant data or program

instructions can be selectively protected from Store operations without restricting

the use of other aress. Traps on store operations to specific data words can be

inserted during program checkout. A privileged instruction, Insert Storage Protect

Bits, is provided to set/resat the protection bits associated with each halfword of

2-17

~P gram interrupt wl~ess
:

me ee fee Lien o-oo —ey SO ee
ewe trt

 -bit—tb}-te-seres” In this case, the store operation dees not occur.

a

2.4.1 Instruction Monitor Fes

The storage protection bits described can also be used to flag an Insedvertent

attempt to execute, a3 fnstructions, data stored in unprotected sreas. The feature

will ensure thet no program will continue to execute data 63 program instructions.

An attempt to execute an instruction word which is unprotected will result in oan

interrupt if FSW bit 34 is a one. The festure can be maskad by a System Mask Bit

(bit 34 of the PSW). During program checkout, this feature perwits use of special

software to aid debugging.

An tnstructio. Monitor difference is the state the effective address is left in

following the interrupt handling. In the AP-131B, the Instruction Counter is

incremented to point ta the next inatruction to be executed. The AP-161S Instruction

Counter is not incremented and is lett pointing to the offending instruction.

2.5 MACHINE STATUS

porsten status can be altered by the occurrence of interrupts and by the program. A

sbleword ragister within the CPU contains a program status word (PSW) and is the

focal point for CPU and system status conditions.

2.5.1 Prosrsm Status Word

The program status word (PSW), contains the basic information required for proper

program exacution. The 64-bit FSW includes the next instruction seddress, the

current condition code, the carry and overflow indicators, the system mask for

interrupts, and other fields significant to CPU operations. In general. tha PSW is

used to control instruction sequencing @nd to hold and indicate the status of tha

system in relation to the progres currently being executed. The active or

controlling PSW is called the “current Ps”. By storing tha current PSW during an

interruption, the status of the CPU can be preserved for subsequent use. By leading

a new PSH or part of a PSW, the state cf the CPU can be initialized or changed.

Figure 2~19 shows tha PSW format.

2-18

ees,
4

“

eggs o4h

InstructionAddress Ie.eRV ANE| rPL_LELELI DL Lp tt td oyM 1]
0

18 16 17 18°19 20.21 22 23 = 2? 28 31.

P
Lo

;
.

System _
SS-SSS / interrupt Code

rit
s

—
(rE p_E_pe_ptprprpett tp

32
43 44 45 46 47

~ 63

Q-1§ Next instruction Address 36 External interrupt 1 Mask

16-17 Condition Code 37 External Interrupt 2 Mask System
*

18 Carry Indicator 38 External interrupt 3 Mask Mask

19 Overtiow Indicator 39 External Interrupt 4 Mask

20 Fixed-Point Arithmetic Overtiow Mask° 4043 Reserved for SVC High Order EA Bits

21 Reserved 44 Register Set (GR set 0 or 1)

22 Floating Point Exponent Underflow Mask® 45 Machine Check Mask °

23 Significance Mask®° 46 Wait State Bit (Wait/Process)° °°
24-27 Branch Sector Register 47 Problem/Supervisor State Control Bit’°

28-31 Daca Sector Register 48-63 Interrupt Code for Program Check, Machine

32 Counter 1 Mask Check, and Special External interrupG,.or

33 Counter 2 Mask System* 16 Bit Operand PEA for SVC Instruction

34 Instruction Monitor Mask Mask
35 External interrupt 0 Mask

“Mask bit = 0, interrupt inhibited
= 1, interrupt sllowed

*°0 = supervisor state .

.

1 = problem state
.

©°°O = process state

,

te wait ste
Figure 2-19. PSW Fields

The overall status of the CPU is preserved in the current PSW and the contents of

the general registers. The PSW is automatically retained upon taking an interrupt.

It is the programmer's responsibility to preserve the contents of the general

registers when necessary.

Certain other conditions that contribute to an overall system status situation are

not automatically preserved when a CPU is interrupted. There conditions involve

additional units and include the dynamic state of all other interrupts, the state of

real time counters, and I/0 system status.

. Masking is accomplished by satting the appropriate PSW bit to zero.

2.5.1.1 PSW Fields

The PSW fields (Figure 2-19) are defined as follows:

2-19

1.

g

ee,

i Address
~- Bits 0 through 15 and 24 through 27 of the PSW

contain the information te determine the address of the next instruction

to ba executed. The wechine architecture makes provision to addrass

262,14% fullwords, and tha AP-1615 ssace shuttle hardware faplementation

provides full addressing capability.
,

Bit Use

16, 17 Condition code for cartain arithmetic, logical
*

sad I/0 instructions

18 Carry status bit indicator

19 Overflow status bit indicator Coverflow can

be reset by testing or by loading the PSW)

20 Fixed Potnt Arithmetic Cverflow Mask

21 Reserved

22
- Blesting Point Exponent Underflow Mask

23 Significance Mask

Branch Sector Register ~ Bits 24 through 27 replace the high-order bit of

a branch eddress when that bit ts a 1. Otherwise, un ftaplied sactor

register of 0000 replaces the high-order bit.

Dats Sector Ragister
~ Bits 28 through 31 replace tha high-order bit of a

data address when that bit is @ i. Sea “Expanded Addressing” for datails

when bit 0 is a zero.

System Mask - Bits Se through 39 are mask bits. The first two bits of the

System Mask are normally assigned to the two counters end the third to tha

inatruction Honitor Fusture. The remaining five wasks include I/0 end

conditions, other spplication dependent items such a3 & manual interrupt

key, and timer overflow conditicns. Tha instruction SET SYSTEM MASK is

provided for woditying this field.

EA-High - For an SVC instruction, the 4-bit extension to wake the 19-bit

effective address is saved in the old PSW bits 45-435.

Resisater Select Eield ~ The register select field, bit 44, controls either

of two sets of general ragisters in current use. When this bit is & zero,

then register set 0 is used; when this bit is one, then register set lis

used. The set of general registers in current use can be sel.ctad when @

ness PSW is loaded. This can result from the execution of the FSW load

instruction or from an interrupt.

Maching Check Mask - Bit 45 is the mask bit which {fs used to inhibit

machine chack interrupts (see Figure 2-20). When this bit is a zerc, then

machine check tnterrupts detected by the CPU are inhibited.

—_——
—_—

2-20

tenn,ee

Pte

rai

CLE

- pgw

“aterrupt old stew Noe Nasa oat. saterrupt CPO/TOP/AGT

Priority | Crass! 750 osu Nasxaple| bit Penaing| code Acceet Tu20 Generated | laterrust

ce powgRr | 9619 -- o — oo M/A cwooP G20 Power Ofreeese? itiecsscoce

'

Put aAwevi

al POWER | om 306064 xe oo oo M/A serves C70 Power Ua

. POWER | 30%4 xee -— oo S/A scryc.t e7u System Aaset

63 POWER | o~ on oo oo oo Mla - oo S/A co Shuttle 15a

co Gc aoeyrre| 0644 oo ag 39 o0ce ncrYcit ¢70 CA Pauit

04 Fa cos4oee*?| 6664 - 45 310 006s MéYClE c7u CPO Micrestere Parity

os nc 0040 3044 | <= 45 #0 0006 =NDOP c7u LZaterrupt Page Pauit .

33 mc 9046 6046 oo 45 Jo 6002 Forced Error | tor BMA Nemory Aulticbit Soros

O6 sc oasa Pf| 3044 | <= 33 xo 6003 forced Cwpor | Crd CDU Mamory Multiceost Sosor

1e se we ewe oo —- ow
oe oe

oe Spare
°

ls nC ous oo oe — oo oo oo —~™ Spare
-

12 nc oosaeee' 3644 x ~~ — 0067 eerCo2 cru ENDOP Pipecut

Lé nc dosoerr| 2044 | = - No 0009 scTfcz.2 cru cro CanaetContiaue

‘ Po aww oo om ~—- a ow ow om Reserv

Lé nc oo oo x ~- oo —~ exoop GE ASZ Breaxpoint (Taster Service!

30 4 oo ~ ~~ —_ ~~ ~- ~_ —_ W/A to Shuttle Isa

36 sc ow oo ow
- o oo om

=
tU Memory Errore e

37 nc o- ~- - -- ~~ - - fu newory Error .

ae 7£ 2070 2073 ~~ 34 oe Wiad Enoop cru ClU Sreexpoant (Lasctrsct.on

Monitor!

3 2 4 6048 e846 | o- 26 ZYece i 6004 rpop crv Pines Posnt Over?

: PE 0068 364C | 2 ~- xe 0008 foreed Epor | cru Flostine Poant Overt.cow

(Exponent)

22 PE 0046 s04c | 22 p 0009 Forced mupor | C70 Yleatang Poant Under?ow

23 PE — oo ~—
o - — —

~ Spare |

ci. 34 PE 0043 5o4¢ x oo %0 0606 scYcut cru Yilewal Yast. or 2/0 soumand

Gs PE 0648 3046 xeesre —_ xe 600% oroor c?7U Provileqed sastruction ==—se
'

ike wit le,
ek es . =

4s arnt
oe

=.-

C3 Pe 4648 364C x oo No 90¢c forces ExvDoP | C?v Divided by sero iFlt. 2t.)

= PE 00a 304¢ ~ o3 No oocs forces CNDOP | C7U Siena licance

“ PE Qoes8 304c x “ ioe wO0A eipoP cru Convert Overtiow

31 PE 0048 204¢ x ~— xo 3002 forcee EnNboP | CPC CPU Addr Sewe 128K. 3 Only

76 - ac 9058 oS3CG x - No (tase) | Suoor cro Supervisor Cali

31 ve o oo -
- “< ~ ~

~ Spare
*

32 re ~ ow “~— we
—_ ~- ~ == n/& to Shactla ISA

33 pe 00468 364¢ | col = 0007 forwed Eypor | Cru Store Protect Violstzon

oT pe ~— oo ad ow — -— ~~
~~ N/& tO Shuttle oSA

40043 sys om —_ ~_ - —_ — o~-
— N/A to Shuttle ISA

44 srs ed or os oa — ow ow or Spare

43 zYs 6060 1064 ~ 32 Yes on EWwooPp cre Iaterveal Timer We. 5

a6 sys 0066 206¢ -< 33 Yes ~ rnoorp cr tatecvel Timer co. ¢

47 sYS oo
on ‘o- ~ —_ = —

~~ w/h to Shuttscea ISA

30 sxs 0078 3o7¢ ~~ 33 Yes 0000 cwooP ror Execernai 0 (10P Voter, >OP

Req. A)

50 s7s 0078 so7¢ oo 3$ Yes 0000 gnooP ZoPp External 0 (C/N Idle. sOF

Req. A)

§¢ SYS 6078 247¢C oo 33 Yes 0000 cxooPr r0P External GO (OP ROS Parity.

o

IOP Reg. aA)

$0 sYs 0078 307¢ oo 33 Yes Go00 ZuDoP roF gxuternal 0 (3OP Faulc. OP
, Req. aA)

$0 sys 0078 so7¢ - 33 Yes 0000 rubor TOP External @ (Weccndog T.ser, -

rIoP Rey. A}

$1 s¥s 0080 3684 - 36 ¥eos 0600 ENpoP tor £xr 1 LOP Data Flow Erreer

Encose| Oseclen LUeerEMPe’ey a tion 1) .

$1 sts 0060 6084 _ 36 Yes e000. mrpor r0P ext 1 0 Owerflow (IOP Reg. &)

Se sYs 0680 9684 - 36 Yes 06000 ENDOP zOP ext 1 DMA Timmout (IOP Reg. 5!

ge SYS 0080 0084 o< 36 Yes 0004 envop crv Ort 1 OMA Store Protect Violation

+2 $3 SYS ooss gosc | — 7 Yes - rxDoP 108 Exc 2 IOP Programmc iaterrupts

” (hel2) &

+n 5 ¥ SYs 0090 9094 38 Yes -< rnDoP r0P Spare Externad J
.

+ 6S sYs 0098 309C 35 Yes - ENOOP oP Spare External 4

56 Sys | COAS ocac | = -— | o- ~ Pe Spare
te $14 svs 0080 9084 oe 36 Yes 0006 EnDOP AGL Shuttle AGE Interrupt

| © CPO gust net be in the

halt aode
ee CPU must be in halt sode

eee psw can vary. Bsavyoe GCpdated

PC or unupdated PC
eeee Only occurs when if

probles state
eeore Valid only during execusion

a8 Diswnose [astruction
wev~ove 34 power off durine lone

Lestructiaon, sC may be

becaed up

(INST) 16 Bit Operana PLA

et SVC ipetruction

Boece | Scarwe bold active

is Psu ld

oa
ear

Figure 2-20.

enel

Interrupt Structure and Priority

T see note in Paragraph
1.9.4.|

a>

eee

bag
Segoe
ae

tet
fae

OE
ee

ee.
é

4

10.

Ss

90336 Chl

Wit Stata
- Bit 46 datarmines the wait or processing Crun) states. When

this bit is a zers, the CPU ts in the processing state. When this bit is

ae ones the CPU is tn the Wait State.

sroblem/Suoerviser
~ Bit 47 daternines the problem or gupervisor states.

When this bit is a zero, the CPU is in the supervisor state and peivileged

instructions can ba executed. When this bit is a one, the CPU is in the

problem state and s«sttempts to execute privileged instructions ara

inhibited resulting fa an interrupt. e

Bits 48 through 63 are reserved for the interrupt eode. Pregram and

machine check) Interruet cenditions and sessocisted interrupt ecdes «are

given in Figure 2725.
.

.

2.5.2 Interrupts

1.

Se

4.

Pover
- This interrupt occurs when primary power is removed from the

system for any reason. The current PSW, the general resister set 1 and 2,

the floating point registers, counters l and 2,» and the current DSEs are

put away (stored) fn mein storage for future rafarance. Figure 2°21 shows

the PSA assignments including putaway. When primary power is restored,

operation is initiated with the "power on PSW" Cif the power-up mode is

dafined es Run). This powar-up condition is explained in General System

Operation.

Maching Check - When not masked, this interrupt class occurs following the

detection ef a malfunction. The current instruction is then terminated

and the interrupt taken. A diagnostic procedure may then be initiated.

When masked the interrupt dows not ramain pending.

Program
- This class of interrupt serises from improper specification or

use of instructions or data. Bits 20, 22, and 25 (ltinterrupt enabled,

Ocinterrupt disabled) in the P$W are provided to parmit masking prograt

interrupts due to arithmatic exceptions such as fixed point overflow. Bit

34 In the PSW is provided to permit masking the Instruction monitor

pre ptotettorr
When wasked, program Interrupts do not remain

pending. When invalid instruction or address dataction is provided, the

resulting program interrupts cannot be wasked.

Supervisor Call (§vVG) - This interrupt results frow the execution sof the

SVC instruction. The four MSBs of the 19-bit «extended EA are placed into

the EAchigh field (bits 40°43) of the old PS, and tha nonextended 16-bit

EA ts placed {nto the interrupt code (bits 45°63) of the old PSW. This

instruction can be used to switch from the problew to the supervisor

wtata.

2-22

July 16, 1987

Update
90635 ChB

0 1 2 3 4 S 6 7 8 8 A 8 c 0 E F =

ooo Res. for Seti Tests

Power ON

Iinterruat PSW

003

Machine Checks Program Checks

004
New PSW

Supervisor Cali SVC)
Reserved

005
New PSW —

Program Counter 3 Program Counter 2

006 Ota °SW
New PSw

Instruction Monitor
Externai Interrupt 0

007 Ola PSw
New PSW

External interruat 1 —

Externai interrupt 2

00s esw
New PSW

Enternal interruot 3 External interruat 4

009 Ole PSWw

Reserved f
1-37) Reserved

New SW

41

Cre. 1

+41

Cre. 2
Reserved

Put Away Locations for General Regster Set 0

Put Away Locations for General Reqruter Set 1

OOE Put-Awev Loceuons for the Floating Porn Reguter Set

OSEs .

Reserved for Fauit Detection

9141
Reserved tor Fault Oerection

OOF Micro Working Registers

1 Awev

106 te 1) Cur 2 Reserved

012 Reserved for Fault Ovtection
+e

013
Reserves for Fauit Oetection

Re
ont

mr

£

. DSE PUTAWAY FORMAT ;

ADDR REGISTER SET 0 REGISTER SET 1

coors | resv | pszo | resv | pse1

|

resv | psEO | RESV | DSE1

oora | RESv | DSE2 | RESV | DSE3 | RESV | DSE2 | RESV | DSE3

oorc | resv | pse4 | resv | DSES | RESV | DSE4 | RESV | DSES

oore | resv | pse6 | RESV | DSE7 | RESV | DSE6 | RSEV | DSE7

BIts|o 3/4 718 11/12 15]16 19| 20 23 24 27128 _31

Figure 2-21.

e

Preferred Storage Area Assignments

2-c3S

ecg26 C43.

S. System
- This class cf tnterrupt results from program counter timeouts and

conditions cutside the CPU. Provision is made for seven interrupt levels

€
2

within this cless. and «sch ts provided with a unique set of PSWs and @

weak Bit. Two are progres counters and five are external interrupts.

Any number of the five external interrupt conditions may be grouped into

*

 gingle Level by the external saquipmaent. In the event of simultaneous

external Interrupt esnditions, the lowest numbered (bit within the system

wask field in the PSW) faterruat Is tekan first. These interrupts remain

pending when wasked.

The two program interval timers are each 32 bits wide end decrement. The lower 16

bits Cleast significant haltword) of each counter resides in lé-bit binary hardwera

counters that count down by one every microsecond. The high 16 bits Cwost

Significant halfword) of each esunter resides in main store. The high halfword lies

in main store location 0080 fer counter 1 and main store location 0081 for counter

29, When the low haltword Cin the hardusre counter) passes from 0000 Chex) to FFFF

Chex) an interrupt occurs which can cause the high halfword in main store (via

microcode) to be decremented by one. This interrupt is transparent to the

programmer until the high haltuord In main store equals 0008 Chex). When such an

interrupt cceurs, the high haltword is decrementad to FEFFF Chax) and a PSW swap

eceurs, telling the programms? that the counter has timed out. Note that if the

interrupt is masked the high heltword will not be decremented by the microcode. The

low halfword continues to count down. The interrupt although, remains pending and

if unmasked within 65 ms, the upper halfword will be decresentad without s loss of a

count.
.

ve
a Ow

)

.

:

|

|

The counters can be loaded and read by the Internal Control instruction, described

| a Section 10.
|

7

|

e

2.5.2.1 Interrupt Handling

The machine check, program, SvC, and each system interrupt have two. related PSWs

called “old” and “new” in unique wsatn store Locations. This zone of main store is

referred to «3 4 preferred storage ares (PSA), which is tllustrated in Figure 2~-2l.

In all cases, an interruption invelves merely storing the current PSW in its old

position and making the PSW at the new position the currant PSW. The old PSW holds

all the necessary status information in the system existing at time of interruption.

If, at the conclusion of the interruption routine, there is an instruction to aaske

the old PSW the currant PSW, the system is restored to the state prior to the

interruption, and the Interrupted routine continues. This means the programmer must

clear the fixed paint overtlow indicator before being reloaded. Note that it is

possible to switch ta the alternate set of general registers when the PS swap takes

place. This sat of registers is defined by bit 44 in the naw PSW.

Interruptions can 6nly be taken when the CPU {fs interruptible for a given source.

The system mask, machine check mask bit, floating point exponent underflow mask, the

significance mask, and the fixed point overflow mask bits in the PSW define the

interruptible state of the CPU with respect ts those sources. When masked, syste

interrupts remain pending while machine check and program interrupts are ignored.

(
° 2-24

¢ iu
'

Tho

ee,
fe

Sy

nA

=

°

90936 C50 July 16, 1987

Update

The power transient, certain program interrupts, and the SVC interrupt cannot be

masked.
)

-

e— cru muti error PSW ade

2.5.a.2 Interrupt Priority —-

Figure 2-20 presents the repertoire of interrupts with approximate priority levels.

Individual interrupts are listed in orden, by classification, rather than by

priority. The priority of each interrupt is represented by a two-digit code, which

is interpreted as follows:

First Digit
- represents the capture latch number Clower-numbered capture

latches are examined first) or, if alphabetic, the fact that the interrupt is

generated by the CPU
- either a Command Interrupt (CC), or a Supervisor Call PSW

swap (CP).

Second Digit
- represents the priority of the interrupt within a grouping

(hardware or “other™).

Conceptually, the order of processing (Cin the case of interrupts received

simultaneously) is 35 follows:

1. Group 9 Interrupts
~

arterrupts—eretest.

2. Command Interrupts
~ These are usually interrupts which demand direct

communicatron from the CPU to the Interrupt Pase Processor. Often, they

ere included within a CPU microcode procedure. Action taken by the CPU is

usually to request the interrupt and then loop at one microword, waiting

for the Interrupt Page to reset the Control Store Data Register, thereby

forcing a branch to zero.

3.
_

Greup i. 2. of 3 Interrypts
- These interrupts differ from the following

two groups -in that the hardware freezes the CPU microcode at the next

ENDOP when one of them is detectad.
"

4. Group 4 er 2 Interrupts
- These interrupts ere the only types that are

held pending until they are unmasked with no additional higher-priority

interrupts present. They are only accepted at ENDOP time and generally

cause only slight CPU processing delays if they are masked OFF.

When more than one unmasked interrupt requests service, the current (old) PSW is

stored into and the new PSW is fetched from two PSA locations assigned to the first

interrupt to be processed. Then, the same procedure is followed using the PSA

lecations of the second interrupt, with the exception that the fold” PSW is the

former new PSW as fetched for the first interrupt. This procadure of “passing” the

PSW is continued until the last interrupt request is acknowledged. Then,

instruction execution is commenced using the PSW lest fetched. The order of

execution. of the interrupt service routines is, consequantly, the reverse of the

order in which the string of "new" PSWs were fetched. Machine Check and Power

Transient interruptions supersede all other interrupts when they are encountered.

2-25

e038 e511

NOTE:

NOTE ON CPU MULTI BIT ERROR OLD PSW

THE PIPELINE IS THE DRIVER FOR CPU MULTI BIT

ERRORS (IU & EA) THEREFORE, THE MACHINE CHECK OLD

PSW FOR CPU MULTI BIT ERROR WILL REFLECT THE

UPDATED PC - NOT THE ADDRESS OF THE MULTI BIT

ERROR. THE FOLLOWING ARE THE WAYS IN WHICH A CPU

MULTI BIT ERROR MAY BE ENCOUNTERED:

1) THE INSTRUCTION UNIT (IU) PREFETCHING

INSTRUCTIONS (UP TO @3 HALFWORDS AHEAD OF THE PC)

2) THE EFFECTIVE ADDRESS UNIT (EA) PREFETCHING

DATA (ANYWHERE IN MEMORY)

3) THE EA PREFETCHING A BRANCH TARGET ADDRESS

(ANYWHERE IN MEMORY)
"

IN THE EVENT OF THIS TYPE ERROR, THE ERROR

DETECTION AND CORRECTION (EDAC) REGISTER MAY BE

READ FOR DETERMINATION OF THE ACTUAL MULTI Sli

ERROR ADDRESS.
.

REWRITE GROUP Q INTERRUPTS SECTION AS FOLLOWS:
“GROUP O INTERRUPTS - THESE ARE THE HIGHEST
PRIORITY - THE POWER/MACHINE CHECK TYPE INTER-

RUPTS. THE POWER, SYSTEM RESET, AND IPL INTER-

RUPTS CLEAR ALL PENDING INTERRUPTS — THE REMAIN—

ING GROUP 0 INTERRUPTS DO NOT. SEE PAGE 2-21

FOR INTERRUPT STRUCTURE AND PRIORITY.

_—

July 16, 1987

Update a0n3s C52

The priority scheme a3 outlined above is used to resulve race eonditions due to

f yltiple fnterrust conditions. However, since in tha case of most normal interrupts

<Cthose expacted? to be encountered during the execution of typical spplication

software) separate wask bits and PSW Locations are previded for each external

source, the pricrity of handling thase Interrupts ia fuether affected by the

contents of the PSs ectually futched during the interrust services overhead. That

is,: as each FSW swap occurs, further action with regard te System Cand Machine

Check) Interrupts is deterwinaed by the wask fields @ncountered within the new PSW.

Two major exceptions ta the above process Invelve the Instruction Honitor Interrupt

and Supervisor Call. Instruction Meniter conditions are wonitored by hardware and

cause no processing delays i? masked GFF, since the Interrupt Page will not even be

notified of the condition in thet event. It could be argued thet Supervisor Call

might not be considared an interrupt at all. since it is not an unexpected condition

and is appropriately handled by the CPU microcode, but it is included in the List

because its execution necessitates @ PSW SWAP and, thacefore, cooperation by the

Interrupt Page processor in that portion of the instruction implementation.

2.5.2.3 Interrupt Masking

Individual masking of several of the interrupt types is possible. When masked off,

the interruption is either ignored of remains pending for later execution. The

masking capability for each ct tha interrupt types is aa follows:

i. Power Transient
~ Cannot be wasked off.

2. Machine Check - Can be maskad off by setting the machine check mask bit 45

- in the PSW equal to zero. When masked off, normal instruction sequencing

occurs, and the intarrupts do not remain pending.

3. Program
- Three of tha 11 program interrupts «era capable of being masked

off: fixed point arithmetic overflow, exponent underflow, and

significance, by setting the appropriate mask bits in the PSW equal to

zero. When maskad off, these interruptions do not remain pending.

EPSW—bit-459% Note thet if @ PSW with both Fixed Point Overtlow Indicetor

and mask (bits 19 and 20) set is used, the interrupt will occur.

4. Supervisor Call ~- Cannot be masked off.

2-26

2

led

z-

96926 C53

5. System
~- Each level of external interrupts can individually be masked off

by setting the corresponding system mask bit in the PSW: equal to zero.

Interrupts that are masked ramain pending.

2.5.2.4 Preferred Storage Area (PSA) Assignments

The contents of the PSA are shown in Figure 2-21 with the main store address

expressed in hexadecimal notation. The following PSA locations must not be store

protected:

1. Power off interrupt PSW

2. All old PSW locations .

-

4, ace 25 Prosser >Terose (Ook¥ o0As)

q3 Counter 1 and 2, high halfword locations 0080 and 00B1

SW. Putaway locations (00C0 through 0102)

63. Diagnostics (104-15F).

2.5.3 General System Operation

The various states entered by the computer and their relationship to the basic

operator controls sre shown in Figure 2-22. The basic controls provided for the

operator are power-on, initial program load CIPL) and the system reset key. Among

the many controls available, these functions have special significance because of

their relationship to an unconditional system reset sequence. These functions each

produca a system reset sequence which applies to the computer, I/0 channels, and

peripherals. Further operation within the system differs, however, as explained in

the following sections.

|

So

2-27

'

Excess PL
Somaru

,
Live

ow rome

-

a

Asun Poa

i

i
{

j ‘

{ !

l
{
l

i lincorewat) i

i |
| | (Wee

imecuesass:neecomeenaamecassnw”

Figure 2-22. CPU Mode Switching

2.5.3.1 Power-On

One of two modes of operation must be specified for the system at power-on. The

first results in ws systemw reset followed by the computer entering the stop state.

In this state, instructions arw not precessed, fnterrupts ere not accepted, and

system timers sre not updated. This system its termed “manual” because further

operation must be detarsined by the operator.

The second mode at power-on enters the run state after the systea reset is complete.

The instruction stream is initiated send interrupts are processed. The computer can

be removed frow the run state by certain tustructions, interruptions, and by danual

intervention.

2.5.3.2 System Reset

The system resat function resets the computer system to a known state such that

processing can be initiated without the presence of machine checks, except for those

used by subsequent machine malfunctions. The systew reset function causes the

evllowing:

2-28

ran

90035 C55

e cPU pending interrupts are reset
e Internal timers area reset to all ones (1's)

_°@

Status registersare reset

e DSE registers are set to zero. i

2.5.3.3 IPL

The use of the IPL function is independent of the prior state of the system. IPL

first causes 4 system reset function and the writing of C6C6 Chex) by the CPU to all

memory locations sbove and including address 20000 Hex with memory store protected.
-

IOP microcode at IPL writes CIFB Chex) to all lecations from 0 to LFFFF Hex, with

memory store protectad.

2.5.4 Operating State
|

_
e .

- +

The run state and wait state shown in Figure 2-22 are collectively tarmed the

operating state for tha system. When the computer is in the run state, instructions

are executed in the normal manner. An instruction may ba encountered or an

interrupt processed that forces the computer into the wait state. The computer does

not execute instructions in the wait state, but it is interruptible when not masked.

System timers are updated and input/output operations continue in tha wait state.

The wait state may also be entered after cempleting IPL or by special operating

intervention via the stop stata (dotted lines on Figura 2-22). This action is the

‘pesult of the wait bit being set in the controlling PSW. .

2.5.%.1 Program State Alternatives

“Op

Cartain other states exist within the CPU that contribute to its overall status.

These states are directly related to program cperation and ara:

1. Masked or Interryptible State - The computer may be masked for certain

interrupt conditions at any given time. Thesa conditions generally remain

peaiding within the system until the masked condition is changed by the

program. Certain error conditions cannot be masked off, while other error

coaditions, such as program checks. ara ignored when specifically masked.

CT«oe —

2. Sy2ervisor or Problem State - In the supervisor state, all ftnstructions

are valid. In the problem state, I/0 and certain other instructions are

invalid, and their use produces an error interrupt. This state is

coatrolled by bit 47 in the PSW. The SVC instruction jis provided to

suitch from problem to supervisor state. Tha LOAD PSW instruction is used

2-29

ars.

Crtoyoe
July 16, 15987 Qn. f
Update

, wh « & 6 “

ts switch from supervisor to problem state.

3. General Ragister Selection ~ Bit 44 is the currant PSW and selects the sat

of geaeral registers in current use.

2.5.38

Throughout this Principles of Operation manual, architecture conventions ere defined
or facilities ere marked "reserved" to retain flexibility for future implumentations
end. extensions. The computer operates in conformance to this manual: when

architecture definitions arw fullowed consistantly. Hardware operation, when these
rules ere viclated, is not datined and is properly outside the scope of this sanual
tea retain flexibility of implementation. "Programmer discovered” operations that
violate or goa beyond tha dafinitisns described hersin, but produce “useful”
functions, should not be used and should be considered "reserved", because thw
results obtsined may vary from computer to computer, or even release levals for one

computer, depending upon optiscns selected or the design ralease Level to which the
hardware is manufactured.

2-350

SN ”

cccy Oo)
> t. Cc Coo.

11.0 AP- HUTT NSTR N

11.1 EFFECTIVE ADDRESS GENERATION SUMMARY CHART

~~RS Format

SRS, SI Extended Indexed Addressing (AM=1)Formats
Addressing

(AM=0) IA}! X=000 X=000
—

PEA#=(B)+DISP

32711 | EA=(B)*DISP | EA#(B)+DISP 00 EA*IC+PEA EA= X)o.1)5*PEA
01 EA®IC-PEA EA=(X)5 “+PEA
10 EA=sMS(PEA) EA®MS(PEA)*(X)o-75

11 EASMS(PEA)**EA*MS(PEA)***+X)o.i5

PEA=DISP

B2=11 | EA=(8)*+DISP | EA=DISP 00 EA®IC+PEA EA" (X)o.15*PEA
"

01 EA®IC-PEA . EA"(X)5_)5tPEA©
10 EA#@MS(PEA) EASMS(PEA}+(X)o_15
il EA#®MS(PEA)** EA*MS(PEA)*"*°+X)o.75

Definitions

‘EA Effective address, main storage address of second operand
PEA Preliminary effective address

(RN) Contents of bits 0-15 of general register N specifiedby B2orX
RN General register "N", where N = 0 to 7

(B) Contents of bits 0-15 of general] register specified by the B2 field
|

B2 5 field of SRS, SI, or RS format instruction
{ MS() Cozstents of the main storage location specifiedby the contents of the

parenthesisDISP Displacement field of instruction
x X field of RS format instruction with indexed mode of addressing
&)o.35 Most significant halfword (its 0-15) of the content of index register X automatic-

ally aligned.
;

AM AM (addressing mode) field of RS formatinstruction
IA LA (indirect address) field of RS format instruction with the indsxed mode of

addressing
I I feldofRSformatinstructionwithinderedmodeofaddressing|

Ic Updated Instruction Counter
° Automatic Index Modification
“*

Automatic Storage Modification
,

ose Direct StorageAddressingwith/withoutPostIndexing
x INDEX VALUE x INDEX VALUE

000 Zero 100
. (R4)

001 (Rl) 101 (R5)
010 (R2) * 110 (6)
011 (3) 111 (R7)

li-1

12.8 P- NSTRUCTION REPER R

12.1 SHUTTLE INSTRUCTIONSET

Fixed Point Operations

Add

Add Halfword

Add Halfword Immediate
Add to Storage

Compare

Compare Between Limits

Compare Halfword

Compare Halfword Immediate

Compare Immediata with Storage

Divide

Exchange Upper and Lower Halfwords

Insert Address Low

Insert Halfword Low

Loed

Load Address

Load Arithmetic Complement

Load Fixed Immediate

Load Halfword

Load Multiple

Modify Storage Halfword

Multiply

Multiply Halfword

Multiply Halfword Immediate

Multiply Integer Hal fword
Store

Store Hal fword
Store Multiple

Subtract

Subtract from Storage
Subtract Halfword

Tally Down

mon}

ARA

AH

AHI

AST

CR.C

CBL

CH

CHI

CIST

DR,D

XUL

IAL

THL

LRoL

LA

LCR

LFXI

LH

LM

MSTH

MRM

MH

MHI

MIH

$T
STH

STM

SR,S
SST

SH

TD

12-1

ft

Egrmat

RR,SRS,RS

SRS,RS

RT

RS

PR, SRS,»RS
RR

SRS,RS

RI

SI

RR,SRS,RS

RR

SRS,RS

RS

SRS,RS

RR

RR

SRS,»RS

RS

SI

RR,-SRS,RS

SRS,RS

RI

RS

SRS,RS

SRS,RS

RS

RR,SRS,RS

RS

SRS,RS

SRS,RS

RR,SRS,RS

: raat ois
i saline oa Pepe eee jm

a am oR we a
im bh es ee a BE >

—

tN
Nome

Floating Point OQpersticons

Add CLong Operand)
Add (Short Operands)

Compare (Short Operand)

Compara CLong Operand)

Convert to Fixed Point

Convert to Floating Point

Divide CExteanded Operand)

Divide (Short Operand)

Load (Long Operand)

Load (Short Operand)
Load Complement (Short Operand)

Load Fixed Register
Load Floating Immediate

Load Floating Register

Midvalue Select (Short Operands)

Multiply (Extended Operand)

Multiply (Short Operand)

Subtract (Long Operand)

Subtract (Short Operand)

Store CLong Operand)

Store (Short Operand)

Diagnose
Store Extanded Address

Store DSE Multiple

Insert Storage Protect Bits*

Load Program Status

Move Halfword Operands

Set Program Mask

Set System Mask*™

Stack Call

Stack Return

Load DSE Multiple

Load Extended Address

Supervisor Call

Test and Set

Test and Set Bits

Internal Control Operations

Internal Control*

1/0 Operations

Program Controlled Input/Output*

*Privileged Instruction

%

+

et>

AEDR,AED

AER, AE
CER,CE

CEDR,CED

CVFX

CVFL

DEDR, DED

DER, DE
LED

LER,LE

LECR

LFXR

LFLI

LFLR

MVS

MEDR,MED

MER, ME
SEDR,SED

SER,SE

STED

STE

STXA

STDM

ISPS

LPS

MVH

SPM

SSM

SCAL

SRET

LDM

LXA

svc

TS

TSB

ICR

PC

12-3

RR,RS

RR,SRS,RS

RR,RS

RR,RS

RR

RR

RR,RS

RR,SRS,RS

RS
|

RR,SRS.RS
RR

RR

RR

RR

RS

RR»RS

RR,SRS,RS

RR»RS

RR,SRS,RS

RS

SRS,RS

RS

RR.RS

RS

RS

RS

RR

RR

RS

RS

RR

RS

RRRS

RS

RS

SI

RR

RR

talong
|

Branch Operations

Shift Operations

Beanch
Branch

Branch

Branch

Branch

Branch

Branch

Branch

Branch

Branch

and Link

and Index

on

on

on

on

on

on

on

on

Condition

Condition

Canditian

Condition

Count

Count Backward
Overflow and Carry

Overtlow and Carry Forward

Backward
CExtended)

Forward

Normalize and Count

Left Logical
Left Double Logical

Shift

Shift

Shift

Shift

Shift

Shift

Shi ft

(> Shift

Right

Right

Right

Right

Right
Right

Arithuetic

Double Arithmetic

Logical
Double Logical
and Rotate

Doubla and Rotate

AND

AND Halfword Immediate

AND Immediate with Storage

AND to Storage

Exclusive-OR

‘Exclusive-OR Halftword Immadiste

Exclusive-OR Iamediate with Storage

Exclusive-0OR to Storage

OR

OR Halfword Immediate

OR to Storege

Search Under Mask

Set Bi ts

Set Hel tuord

Test

Test

Test

zero

Zero

Zerea

Bits

Register Bits

Haltword

Bits

Register Bits

Hal fword

Mnemonics

BALR,BAL
BIX

BCR, BC

BCB

BCRE

SCF

BCTR.BCT
BCTS.

-BVCR,BVC

BVCF

NCT

SLL

SLDL

SRA

SRDA

SRL

SROL

SRR

SROR

WR,N

HHT

NIST

NST -

XR» X
XHTI

XIST

xST

OR,O

OHI

ost

SUM

$8

SHW

TS

TRB

TH

zB

ZRB

2H

ee
12-2

> CadCD
.

fo©oO)

RR,RS

RS

RRRS

SRS

RR

SRS

RR,RS

SRS

RR,RS

SRS

RR

SRS

SRS

SRS

SRS

SRS

SRS

SRS

SRS

RRSRS.RS

RI

SI

RS

RR,SRS»RS

RI

SI

RS

RR,SRS,RS

RI

RS

RR

STI

SRS RS

SI

RI

SRS.RS
$f

RI

SRS,RS

ery,
é

y

JO935 247
16.0 PIPELINE TIMING CONSIDERATIONS

.

The <AP-1015 Computer is wa Pipelined machine which exhibits Significant throughput
improvement over nonpipelinad Sequential machines. The pipeline Which is involved
is based on Prefatching both instructions and cperands from memory. Instructions

end operands are Prefetched essuming sequential instruction execution. This means
that as long as the Sequance of instruction execution is not altered, all prefatched

Some branch instructions elter the Sequence of execution, énd therefore nullify say
Prefetched information. Tha time required to restart the pipeline in this case may

be directly attributed ts the beanch instruction. Instruction exacution times for
branch instructions include sel] Overhead required to rastart the Pipelina, if the
order of axacution is altered.

Other factors @lso exist which have an impact on the throughput of the pipeline.
These factors may not be attributed directly to any one instruction in seneral,
rather they ere » function of the Grder and relationship of instruction @xecution.
Three factors may be classified 43 follows:

Register conflict Modification of base or index registernéaded to Pratfatch an operand

Store conflict Modification of prefetched operand
I unit hazard Moditicatian Of prafatched instruction
Instruction execution times do not include any overhead due to these factors. Any
Penalty fa execution tima wust be considerad independant of instruction execution
time. The total time required to execute a given Sequaenca of instructions must
include any applicable Panelty due to these factors.
It is for this reason t
Presantad. Not only will this description explain the various conflicts and hazards
#3 previously mentioned, jt Will also discuss how the Conflicts and hazards arg

resolved and what the execution time impact is @ssociatad with these events.
Furthermore, numerous conditions, such as branching and stora instructions, will be
discussed with an amphasis of Pipeline Operation. Instructions of this type change
the nature of Pipuline PFOCeSssing near that instruction, but ere not a conflict or
hazard. In order to aid Undarstanding of the AP-1015 computar and theg Pipeline,
these instructions have bean included if this discussion. Any execution time
impacts due to the pipeling have @lready been included in the Stated instruction
execution times.

16.1 INSTRUCTION EXECUTION -

PIPELINE BASICS

0025 248

-oamputed. Next, the second operand ts read from menory using the effective address
JA) during the operand fetch stage. Finally, the Instruction may be executed,

generally resulting in modification of the general purpose registers. In the case

of the AP-1015 computer, two additional stages are required in support of the memory

references. Since the AP-1618 utilizes expanded addressing, an additional stase of
address translation is required for every wsemory operation. Therefore, an

instruction address translation stage and operand address translation stage sre

required. Figure 16-1 shows the relationship between all six stages of the AP-1015

computer.

Each stage represents a specific function which {s relatively independent of the
other functions, except for the given time relationship. It is this independence
and the timing sequence which permits the construction of a six stage pipeline.
Within the pipeline, each function, cr stage, is contained and controlled completaly
by an independent hardware elamant. The timing relationship between an instruction
and each herdware element is shown in Figure 16-2.

The advantage of using a pipelined organization. is obvious when considering the
execution of three simple instructions. Figure 16-3 indicates that a total of 18
machine cycles would be required for a sequential machine to execute just three
instructions, assuming that «sch stage of the instruction could be completed in a

single machine cycle. Each hardware element is capeble of independent operstion,
which perwits pipeline operatian as shown in the figure. Notice thet e totel of 8
machine cycles are required to execute three tnstructions. Considering pipeline
operation for a sequence of «# single type of instruction yields the mean time

? required to execute that instruction. The example shown is for an RS format

‘ instruction. If the example were extended indefinitely, the execution time would

sverage to 2 cycles per instruction. Completing a similar pipeline chart for SRS

wstructions would indicate 1.5 cycles per instruction, and 1 cycle for RR format

instructions. For the AP-1015 computer, tha pipeline cycle time is 0.250
microseconds.

16.2 LONG INSTRUCTIGNS = NON-SINGLE-CYCLE EXECUTION

Not all instructions may be executed by the execution unit within a single pipeline
cycle. These instructions, raferread to as long instructions, force the pipelina to
stop while execution proceeds, ss tndicated in Figure 16-4. This is actuslly
accomplished by postpening further EA calculations until the last machine cycle of
the long instruction. Instruction execution times as indicated include any effects
of long instructions, as necessary. Hotice thet even though the pipeline waits for
@ number of cycles, there are no unused cycles in the execution unit.

16.3 BRANCH INSTRUCTIONS = RESTART THE PIPELINE

Branch instructions, as previously discussed, cause any prefetched Intoragstion to be
discarded send the pipeline must be restarted. The branch tnstructisn shown in
Figure 16-3 indicates that 3 wachine cycles within the execution unit sere unused
during the pipeline restart. Also, notice that the target instruction has

16-2

instruction Execution
ED

instruction

instruction Decoce Operand Instruction

Fetch Opgrand Fetch Execution

Generation

@e

With Expanded Address Generation (Translation)

instruction

Instruction Instruction Decode Operand Cperend Instruction
Address Operand Address

Translation Fetch EA Transstion Fetch Execution

Generation

Figure 16-1. Dissection of Instruction

6 Sequence of 6tunctions—>6 stage pipeline

3 Independenthardwere per stage/function

instruction Instruction Instruction Operand Operand InstructionHardevere Address Fetch Decode Addrets Fetch ExecutesElernent Tronsiate EA Gen Translate

{

x. .

IF
-

Ox

OF

a co
Figure 16-2. Pipeline Hardware Elements

16-3

CL

o Consider the instruction waquence 1,23
G Sequentia mechine operation is:

Ix fie fea tox for fex fix, fie fea] .f . |. F_|Ex[eaforafe*sfo™storfefa] [4a]~|~ |~[esfo*sforal|
6 cycles x 3 instructions © 18 cycies to cornpiete 3 instructions

G Pipeline machine execution is:

Ix IT]

1F Ft al'*sl
EA J&A,[FA2]F5]

a

Ox jox' pox.Ox,
8 cyclesto comotety 3 instructions

OF JOF[OF 1°F3|
" PSSST

Therefore, over & period of time, pipelined instructions would eversge:

2 cycles / RS instruction
1.5 cycies / SAS instruction

1 cycle / RA instruction

Figure 16-3. Pipeline Advantage of

oe Not 6 hazard or conflict

°o instructions which requiremore than 1 pipeline cycle to execute0 Postpones EA calculations until end of instruction
LOC INSTR

L AE
L+2 oo (SHORT FLT PU ADD)
L~4 wn

idpuacone

VigJT| EA, | ea, EA44
, L+6

| ox, lox,., OX,44 OX,4g |

| OF, | OF
ea | OF

Le |

| EX
2 lex...| Ex

6 |

Figure 16-4. Long Instruction

16-4
~

ggg36 251
s

o Nota hazard or conflict

© Harmful to pipeline throughput — 3 cycles to restart

o Example:
.

LOC ‘INSTR

8 BC, T
B+2 e

T

je |
OXs Ox;
Instr@ T | meeeme

OF

inst@T ! OFT |
’ j

EX, Unused | Unused Unused ! EX, |
Brarich |

Figure 16-5. Branch Taken

previously been prefetched by the EA unit in order to minimize the restart time. If
@ conditional branch is not takan, then the pipeline is not restarted. Indicated

instruction execution times include all affects of restarting the pipeline.

16.4 REGISTER CONFLICT - MODIFY BASE OR INDEX REGISTER

Register conflicts can only occur for instructions which use either a base or an

index ragister to computa the effactive address of a memory operand. aA conflict

arises if a preceding instruction Cwithin three instructions) modifies tha contents

of the register which is used for the base or index value. In order to minimize the

panalty involved, register conflicts are datected and totally controlled by hardware

resources. EA unit cperation is postponed, as shown in Figure 16-6, until the

register involved has been loaded with the correct value. At most, three machine

cycles will be unused by the EA unit while waiting for valid register data. This.
results in three unused machine cyclas in the execution unit hardware. This penalty
will decrease, depending upon the number of instructions between the

registar-modifying instruction and the registar-using instruction. Any penalty
involved with register conflicts has not bean included with the stated instruction
execution times, and must be. evaluated separately if necessary.

16-5

,
ae

a

go03s 252

o Caused by loading & using a base/indax register within 3 instructions

© Detected and handled by hardware
|

|

-

o Forces sequential instruction execution within pipeline
0 Postpones fetch of base/index register by 1, 2, or 3 cycles
Oo Exsempile:

INSTR
AHR R3, RS

A+} M 86R1, ACOR(R3)
H+ 3 eneme

nmA j
!

wtizcted! ! j AS used

|

4

| EX, | Unused : Unused | Unused| EX
oe |---

R3
Modified

Figure 16-6. Kegister Conflict

16.5 STORE INSTRUCTIGHS - MULTIPLE MEMORY CYCLES

The pipeline structure has bwen iaplemented to maximize performance for memory read

operations. Memory write operations do not fit into the sama pipeline structure as

read opersetions and, a¢ a@ result, the pipeline is disturbed in the area of a store

instruction. Figure 16-7 indicates that two additional memory cycles are needad to

perform the sctuel memory write operstion. Also notice that the EA unit perforns so
pre-read of the sencry location tn order to assist the memory management unit in

storage protection error detection. At most, two cycles will be unavailable for

instruction execution due to this pipeline disturbance. The sctual number of cyclas

lest is dependent upon the nature oF the instruction following the store

instruction. Therefore, the ifinatruction execution tine presented for store

instructions is a typical value. The corresponding nota for applicable store

instructions indicates some criteria fur detersining the exact tima required ts

execute # specific store instruction. Only siaple store instructions operate in

this fashion. These are; ST, STH, STE and STB.

16.6 STORE CONFLICT ~ MODIFY PREFETCHEDMEMORY OPERAND

Store conflicts are a result sf prefetching cperands froa semory. An ceperand

16-6

gog3s 253

o Not s hezerd or conflict

© Cseuses sdditionsl 2 cycie duiay due to memory — total execution .75 “> 25 us

o Example: Loc - INSTR -

WwW ST AOOR

W+2 AR AI, R4

w+3 oocee

W+4 eoeee

w+5 oooee

EA EA EA EA Waitfor EA

x Ox Ox Ox Ox°
w W+2 W+3 Ww Busy" Wed ws

Prerasd Store |

OF OF OF OF OF OF
|

OF

| w 2 wes w | WN Wed WHS
Preresd Store Store

EX EX . | Extend- EX Ex wx

Ww W+2 | Oo Not W+3 Unused we W+5

| Update PC

Used if EX is Used if EX is
W+2 Ww+2

'

gt least 2 cycies at lest 4 cycles
|

Figure 16-7. Store Instruction

pretatch for a load instruction will actually occur before the memory writa is done

for a store instruction which precedes the load. If the load and store instructions

involve the same memory sddress, then the operand prafatch for the load instruction

must be postponed until tha memory write is completed, as shown in Figure 16-8.

(The operand fetch actually occurs, however, the data is discarded). In order to

minimize the penalty involved, stora conflicts are detected and totally controlled

by hardware resources. Any penalty involved with store conflicts has not been

included with tha statad instruction times, and must be evaluated saparately if

necessary. Store conflicts sre applicable for simple store instructions only.

The store conflict hardware has bean simplified somewhat by assuming that all memory

operations involve two locations, or S32 bits. Therefore, the conflicting

instructions only need to deal with memory locations which are within one location

of each other in order to cause the detection of a store conflict. Furthermore,

store conflicts are detactad on tha 16 bit legical address, and not the 19 bit

physical seddress. In ordar to guarantee proper operation with expanded memory

addressing, store conflicts are datected on the 15 lwast significant bits of the

logical sddress. Addresses 7FFF and 0006 sre considered to be contiguous, as area

addresses FFFF and 8000. At most, two machine cycles will be lost whila the operand

fatch is postponed. This penalty will dacreasa to ons machine cycle if one other

instruction {is executed between the conflicting instructions. No conflict will

exist if there are two or more intervening instructions.

16-7

© Caused by store with successive load frommemorywithin2instructions -

0 Ovwtectedsid hendied by hsrdwere
.

© Exmnpie:

Loc INSTR

Ww ST ADOAR
W+2 i. ADOR

Ved —

| Store |
_ | waitEA EA

 —_s | Contticr f
! | Hs EAwf; Wee Oeiected} | MemoryVed

Ox ox |

> [Pema[eet [mL
au

[% wee fox
Ww (wasted) cw) | Store| (coon) | Wed

|

OF oF oF :

oF wer
|

we? | w wo wer lor
w (wemsted) wasted) Store Store (ooco) Wd

| |Ex Normal Normal |EX Ex| wo Unused | store | Unusid | store W+2 Wd

|

7

Unuseddueto timing
ot the store instruction

Figure 16-8. Store Conflict

46.7 SUCCESSIVESTORES- BACK-TO-SACKSTORES

The execution unit of the CPU: contains ea store pending register which holds the
mamory address for simple store instructions. Since only one register axists, only
one store Instruction can resida in the pipeline at one time. Figure 16-9 indicates
that processing by the EA unit for the second store instruction is postponed until
the memory write for the first store instruction has been initisted. This situation
is mot # conflict cr hazard, it is only a limitation of the hardware. The
guidelines associated with store tnstruction execution tises includes « case for a
successive store condition. A penalty of 2 machine cycles hes been included with
the execution time of the first store instruction. This penalty will decrease to
one machine cycle if one other instruction I{s executed between the store
instructions. No penalty exists if there ere two or more intervening instructions.
The penalty for successive stores is applicable only for simple store instructions.

16.8 I UNIT HAZARD = MODIFICATION OF PREFETCHED INSTRUCTION

An T unit Cinstruction fetch unit) hazard ts the result of a store instruction which
modifies manory in the immediate ares of the current instruction. The I unit can be
at wost 22 wmamcry locations shesd of the current instruction. If «8 store

16-8

ce(>cSC2oD foCrtcl

o Caused by consecutive store instructions within 2 instructions
o Detected & handied by hardware

o Due to existence of one address register for CPU stores

Exarnple: LOC INSTR

W ST ADOR X .

W+2 ST ADDR Y) (2 cycles lost)

W+4

F
Successive,

. .
EA. Stores

<4 pos
Detected| i

.
BAWe2

0 Busy |OX

“Ww| | OXStore
Y

;
We

OF OF 7

W W|OFw | Store Store {°Fwee
Normal Normal

| EX Unused
|

Norm Unused | Store EXwe2|

Unused due to timing

Store pending
register active

of the store instruction

Figure 16-9. Successive Stores

instruction writes to memory in the area from which the I unit may have already

prefeatchad instructions, then an I unit hazard exists. The actual detection

circuitry uses the ranga of IC-1 to 16+23 in order to indicate an I unit hazard.

Once a hazard has bean detected, the entire pipeline is discarded and restarted from

the lecation following the current instruction, as indicated in Figure 16-10.

I unit hazards are detected on the 16 bit logical address, and not the 19 bit

physical sddress. In order to guarantea propar operation with expandad memory

addressing, I unit hezards are dataected on the 15 least significant bits of the

logical address. Addresses 7FFF end 0000 are considared to be contiguous, as are

addresses FFFF and 8000.

The I unit hazard circuitry is provided in order to guard against self<modi fying
code. This circuitry forces a restart of the pipeline to guarantee that the proper

instructions, including modified instructions, are executed. However, it is

possible ta modify a data location «et the end of a program segment and cause an I!
unit hazard. The I unit hazard circuitry cannot distinguish batween memory used for

instructions as opposed to data. Therefore, any stora within the indicated range

will cause an I unit hazard condition whether it is real or not.

16.9 CONFLICT/HAZARD SUMMARY

All effacts of the pipeline on instruction execution times have been includad with

the indicated times excapt far register conflicts, store conflicts, and I unit

16-9

ccCco]C2oO)rt crnmo

o Caused by 6 store into memory within the mmediots sree
of the currant instruction lef « PC «++273)

o Forces a ractart of the l-unit and pipeline.
6 GOeteciadby herdwere. Hendled by micrccude

c
E xempie: LOC INSTR

Ww ST AOOR+ZS

Wie? aaee

” We2

[walWed

vl | EA
sO

_ W442
oe fox

|Ww weet
OF

| |

7

| OF

|w
We2

mt oP oPotf
Microcode 2.25us

La
|

"Lost due to restart

>|
a

— Wdcyel@250m 3ISus
Figure 16-10. FI Unit Hazard

hazards. Below{s & sumaary of the penalties involved with each.

f
|

|

Number of Ilnatervening Instructions
a

@ instr

|

1 inate 2 instr

RegisterConflict 735 us -58 us 25 us

Store Conflict :

50 us 235 us ooo-

Independent of Intervening Instructions

I Unit Hazard $3.33 us

°

16-18

;
COs

.

a

EX
We2

CO©3 C3co) TOcy—d tS anid

S oe oe es a a ee
oe te

>

a eg ee

wf

_ 17.0 AP- T TION TIM

All floating point execution times have been rounded up to the nearest multiple of

250 nanoseconds and are based on the following assumptions:

e Neither operand {s zero, and for the long (64-bit) instructions naither hi

or low words of an operand is zero.

e ALL results will require normalizationof 8 bits (2 hex digits).

e All operands are normalized, hence prenormalization of the divisor in the

divide instructions is unnecessary.

e For instructions requiring prealignment (Add, Subtract, Compare) the

difference in exponents will be 4.

e Operands will not be tha same signs Cexcept for tha COMPARE instructions.

in which operands will have identical signs).

17-1

INSTHUCTION EXECUTION TINE IW US

|

ree WEstrAL _

BOUBLE INDIRECTION sUTO AUTO

INSTRUCTION
- ADGRESS TING xOsG@ | xXC30 | XC21 xC31 STORAGE THO EXING

KOUES C86 / © #1 Cc 86 | C #1 MOG IFICATION .

A RS »256 4.5 | 4.25 | 4.25 | 4.25] 5.5 7.25

AE RS 2.58 6.73 | 6.$ 6.5 6.§ 7.8 9.9

AED RS 6.56 18.8 | 18.25] 16.25) 18.25 11.5 13.25

AFOR RE 6.23 —— aa aan am omamne om

AH RS e258 4.50 | 4.25 | 4.25 | 4.25 5.568 7.9

AST RS. ~ 750 6.0 7.6 5.73 | 7.0 6.25 10.25

BAL RS 3.73
|

7.8 16.6 6.73 (16.6 &.6 9.§

BALR sR BTs3.505 BNT=4.50 wee | mee wef ee | ee —

BC RS SY*1.253 GNI. 258 4.23 7.23 4.9 7.2$ $.25 6.25

BCRE RR BTs5.73; BHTs.356 — neem eam <omew mew <<

aT RS 6Tsi.783 SNTs. 753 4.§ 7.3 4.25 | 7.5 5.5 7.9

ACTS SRS SBTei.753 BWTe. 753 om me nme <___ een om

8Ix RS 6Tsz.53 BHT*i.5 $.7$3 | 8.7 5.5 8.75 6.75 6.25

BVC RS bra) .253 GNTs.355
©

4.9 7.8 3.73 | 7.8 5.9 6.5

BVCR RR 6T#1.28; BHT*#.30 oman — = oman ameme om

¢ RS ~250 4.5 4.25 | 4.25 | 4.25 5.5 7.25

a" RR AVG. & 3.6 nenie ae a me ncn meme

. RS 1.73 6.6 §.73 | 5.75 ; 5.78 6.75 6.5

tio Rs 5.73 9.75 | 9.5 | 9.3 | 9.5 10.73 12.5

cH RS 250 4.50 4 25 4.25 | 4.25 5.598 7.8

D RS (Ri EVEN) AVG. © 4.928 9.08 6.8 8.8 6.8 10.65 11.5

0 RS (R1 GdO) AVG. © 4.675 6.8 7.55 | 7.53 | 7.55 9.5 10.65

d SRS (R11 Even) AVG. B 4.925 “<mnnen ones — —m ome nw

5 SRS (Rl GO) AVG. S&S 4.675 ce om —-_ one onenes <n

DE RS 7.88 FE W1.5 | 13.5 | 11.5 12.75 15.25

deo RS 23.66 27.75: 27.78| 27.78) 27.75; 26.73 29.75

OR RR (RL US) AVG. 8 4.675 eee <a ad omene ome mon

TAL RS 50 4.0 | 5.0 | 3.73 | s.0 6.25 6.0

LAL SRS 58 «a —_ ene ma ennmmases a!

THL RS .50 4.73 | 4.50 | 4.50 | 4.50 | 5.75 7.25

ISPS RS (Rl s 6) $.625 8.8 9.0 7.738 9.9 16.25. 12.0

ISPS RS (Wl 8 1) $.625 &.0 9.0 7.73 9.9 10.25 12.98

ISPS RS (Ri ws Z) 5.625 6.6 9.6 7.738 9.8 16.25 12.9

ISPS RS (Ri 2 ¥) 8.0 9.9 7.73 |} 9.8 10.25 12.05.625

17-2

Wuiy lo, LY¥t

gc} 3S Update
€ wef —

SP 7-vey7 ..

{ 7

~ e |

INSTRUCTION EXECUTION TIME IN US

Ves ae MMP _. NORMAL DOUBLE INOIRECTION AUTO AUTO

‘ INSTRUCTION ADDRESSING xCz0 | xCz0 | XCz1 | xXCz1 STORAGE INOEXING
~

. HOOES C20 | ¢ #1 | C 0 | C 81 | MOOIFICATION

IsPrs RS (R1 s 5) 0125 ‘—— — — — ———_ ~~

IS?B RS (R13 6) 0325
*

ome — oo anew — —

IsPBCORS:SsCR 8 77) 2125 —
|— |— | — | — — "--

L RS a 0258 4.5 4.25 | 4.25 | 4.25 5.5 7.25

L e SSRs .
0250 ‘—_— on —, om — ome

LA .
%xRS «250 ~h.8 5.6 3.75 | 5.90 6.25 8.0

LA a Ses : = _—— aa — ome ame nee

LCR . RR . * __ ane om ed omens ame ed

Lon RS ee 6.95 ‘0 70.0 00 (00 f025 _ 2
LE RS e 1.20 5.0 4.75 4.75 4.75 §.75 8.5 -_

LE . Seas 1.20 oman —
= ne ensues —_

~

LECR RR
a

1.098 eau oem ed —_— — a

LED RS
s

1.58 5.5 5.0 5.0 5.06 6.25 8.75

LER RR 3.60 —_ oem qusass eed omen a °

LFLR RR (2756 .

— ome ome ume oe
a o

Siu
._.

rs 2250 . 4.50 | 4.25 | 4.25 | 4.25 | 5.50 5.0 -:
iH SRS 0250

.

on aueme —_ onens om oma

= Lit RS 8.5 12.25 [13.25 |12.9 [13.25 | 14.5 16.25 ~-
= ips.- RS 10.25 oy

13.25 [14.25 [13.0 [14.25 | 15.5 17.25

LXA S ORS os

ps0 Fessfreerlvad6-50 6.25 625° 625° 6-50 §25-
vn .° RS (CRI EVEN) «40 6.53 | 7.53 | 6.28 | 7.53 8.78 10.53

+ RS (R1 OOD) 2.15 Y 6.28 | 7.28 | 6.03 | 7.28 8.53 10.28

a Mf SRS (Rl EVEN) 2.40 — oa —— —— — —

nH SRS (Ri 600) 2.15 ness a oa omemen — ome

ME RS (RI EVEN) 6.25 16.5 | 10.25] 10.25); 10.25/ 11.5 13.25

ME RS (Rl 00D) 5.75 16.0 | 9.75 | 9.75 | 9.75 11.0 12.75

_
{ ME SRS (Ri EVEN) 5.75 — om <e ome amen —

ME SRS (R1 OOD) §.75 a oa ome — — —

MED RS 19.00 22.5 | 22.25] 22.25, 22.28) 24.25 25.75

MER RR (Rl EVEN) 6.00 — ae o— — — —

MER RR (R1 000) §.50 omens mene cunemme a a eoeneaee

“MH RS ° 1.35
°

§.46 | 5.23 | 5.23 | 5.23 6.48 J.98

MH SRS 1.35 -

’ ae omen am omen ome — meme

rHz RT 1.35
"

** {‘a —_ mame —_ o_o ——
| AIH RS - AVG. 3 1.7 a

5.83 | 5.58 | 5.58 | 5.58 | 6.825 8.025
S-} wm RR)sOCRI EVEN) -

- | 2.60
tes iste

— | — | | — — i—

MVH RR (SRC-DEST=2) 9.5¢01.759N (-2.25 FOR OSR) |.—— — nae — — —

HVH RR (COUNT EVEN) 10.25+.8759N (-2.25 FOR OSR)| —— —— onmanwe —_ meee ——

hHVH RR (COUNT 000) 12.00. 8y75*(N=1)0-2.253 DSR) | ame | aoe ae mame —— —

MVH KR (COUNT ZERO) 7.78 (-2.25 FOR DSR) ome oman comme me — —

HVS RS 4.75
|

9.25 9.90 9.0 9.6 10.5
‘

11.75

N RS 0250 4.75 4.5 4.5 4.5 5.75 6.5

NCT RR 1.05 + (.075 # WN) memes ——_ <__ . a ames —

NST RS 750 6.0 | 7.0 | 5.75 | 7.0 6.25 10.25

0 RS «250 4.75 | 4.5 4.5 4.5 *5:75- 6.5

OHT RI. 2259 nee en omni cemenaions
”

mmmvane emia

17-3

Jone

eyes
yee

rete r HORMAL DOUSLE INDIRECTION
-

auto auto

INSTHUCTION = ADORESSING xezo | xczo | Xcel | xtsl STCRAGE = jj YHOEXIN
2 rOUES © #6] C si © s@; ¢ =) MOOTFICATION

7

ost “xs «739 &.6 7.9 8.73 7.8 6.2% a °

é
46.25

Pc RR 34.28 BUT <22.35 (NO CUR DAD | —— — — eee ew sane

$ RS «258
.

.

4.$ 4.25 4.25 6.25 $.3 72S

SCAL RS 18.128 21.8 [24.3 {21.28 [24.5 22.5 24

$é RS 2.56 4.73 | 4.5 4.5 4.5 4.5 4.3

SED aS 6.53 16.78] 16.3 | 10.35 |] 16.8 11.5 13.5

SetoR Tt| 6.2% a oamuans a mm onmenes nana

su as 2258 4.50 | 4.28 | 4.28 | 4.25 | 5.73 7.25)

SH sxg 25d .
maou nm oan. omnes emmusens eommnies ~s

SHW RS 1.56 4.58 | $.56 | 4.25 | 5.58 é.73 8.55
"

SLL sas 673 6 (6.1 WMS ROD wm | eee | ef ef ee
ous

SR RR 258
°

ona ane aD am eauamme wee

SRA srs 06350 ¢ (6.1 @ WO N50 mame —_ naman name nm onan

SROA sus 1.6 ¢ (8.23 #@WW), HO <me ee mae anmeane cmnaiens <meene

SROL * SxS 1.6 o (G.i & Ws N>d a “sap ae o_o ana» ad

SROR “SHS 2.6 © (6.3 #& WH), N<S2 ctenas essay one onene canna —

SHOR $xs 2.0 ¢ (6.8 @ (H-32))5 NOSIZ | oom <a << — seme ansmnay

SRR. SRS 1650 © (0.2 8 NDS Hod we | ef ee | | ane j

SSH RS 7.7% 26.63 [11.63 [10.38 [11.63 | 12.875 14.625

T
st nS 6.50 4.73 | 3.73 | 4.5 §.75 7.8 9.3

“TON ORS Las | $35 675 50 S2F 30 ws it
ve RS 500 4.75] 4.5 [4.5 14.5 | 4.5 7.5 Oo

STED as 1.900 5.25 | $.0 5.9 5.9 5.8 7.§ ~

STH. WS
~

80 4.50 | 5.50 | 4.25 | 5.50] 6.75 6.50 =
STM nS 7.235

~

.
10.28 [31.25 [190.6 11.25 12.5 14.25

STXA RS
. 259) 6&5 8.0 625 89 §.35° BIS ft

SUM RR 2.5 #© (#8 ELEMENTS TESTED) ommssens une xmas meine ensue cana

SVC RS 20.25. 22.73 [23.78 {22.8 [23.75 | 25.5 26.75

TO RS 3.9 $.7$ $.56 5.358 5.50 6.75 &.2§
To SRS 3.0 <a — _ meus amine emcee

TH aS 1.73 3.23 3.8 $.8 $.8 6.25 7.73

TS RS 3.73 ‘ 6.36 6.23 6.25 6.25 7.86 9.8

x aS 23556 4.73 | 4.33 | 4.58 | 4.56 $.73 7.56

xsTf nS o 753 6.8 7.8 3.75 | 7.8 &.23 16.25

aH RS 1.58 &.58 | 3.50 | 4.23 | §.56 4.7$ 8.36

aH SRS 4.56 Cd ones —_ nd canes manias “

17-4

f!HR#£
FQ

