
S
a
n
y
o

Ay
si
ea
lu
n

pu
e

su
on
oa
lj
o9

Je
lo
ad
s

‘s
au
ei
qr

As
ia
nl
up

ay
ei
g

en
Yo
I\
\

—e Ihe leg .

This, dbo ‘o Seon oar Ya,

Crror on the chang 3

‘|

dt

|
‘|

|

i

v=
s ~
3
oO
® ©
mA

1

3a Oo”
3 0
o
Se
a
°

oO a
o |

29
gx
zoo
zm Cc

SOx wo WR | ae
9 tow |
8 | Q
Cc |

3 |
Oo
3

ey
a

at. Ke
Nw |

[f
ur

l]

Space Shuttle

Model AP-101 C/M Principles of Operation

Prepared Under

P.O. M4J7XMA-483019

30 January 1979

IBM File No. 62461568

DATE: 12/15/74

P.O. NO.: M4J7XMA-483019

IBMNO.: 6246156

: = Federal Systems Division, Owego, New York 13827

Sa
Al
yo
uy

AY
SI
eA

IU
N

Pu

SU
OH
DA
II
OD

Je
Id
ad
g

‘s
au
eI
qK

Ay
Is

IO
AI

UA

B}
eI

S
EY
YO
IN
A

t
(2

8
S
N

80

I
O
F

xo
g

Ch

S]
UB
WN
IO
G

YS
YN

JO

UO
ND
eI

IO
D

oy
Ae
WO
|

“3
se
we
r

Iq

t
oh

44 ~
(

CHANGE HISTORY SHEET |

NUMER | SYM | PAGE REVISION APEROVED DATE
Class II B i Nom chg
Class II B ii New page
Class II B ete New page
Class II B 2-6 Nom chg
Class II B 2-7 Nom chg
Class II B 2-8 Nom chg
Class IT B 2-9 Nom chg
EDCP

79-001 B 2-10 | Add "double words", nom chg
Class IT B 2-12 | Nom chg
Class II B 2-13 | Nom chg
EDCP

58-1

59-8,

59-15 B 2-14 | Add notes
EDCP

58-1,

59-8,

59-15 B 2-15 | Add note on BSR, DSR
EDCP

58-1 B 2-16 | Nom chg, added info on storage protect!
EDCP ,
58-1 B 2-17 | Add note on PSW

Class IT B 2-18 | Nom chg
EDCP

.79-001 B 2-19 | Add notes on PSW, nom chg
EDCP

79-001 B 2-20 | Add notes on interrupts
EDCP

79-001 B 2-21 | Add notes on interrupts
EDCP
79-001 B 2-22 | Add notes on interrupts 2

Class II | B_ | 2-23 | Nom chg §
EDCP 2-25/] Add notes on system reset, IPL, m
79-001 B 26 | growth :

Class II B 3-1 Nom chg
Class II B 3-2 Nom chg
Class II B 4-1 Nom chg

Class II B 4-2 Nom chg

Class II B 4-3 Nom chg

Class II B 4-4 Nom chg PAGE.
Class II B 4-5 Nom chg
Class II B 4-6 Nom chg

iii

sa
ny
ou
y

As
ia
al
ul

pu
e

SU
ON
Da
||
OD

Je
Id
ad
g

‘s
eu
eI

qI
]

Ay
Is
ua
AI
UA

a}
eI
S

EL
UD
IA
A

SJ
UB

UU
ND

OG

Y
S
N

JO

UO
HD
a!
}O
D

oy
Ae

wW
o]

“y

sa
we
r

1g

80
-4
8

SW

9F

ss

ch

OF

xo
g

CHANGE HISTORY SHEET

APPROVED

CeANGE SYM) PAGE] REVISION Ae DATE

‘Class II B 4-7 Nom chg

Class II B 4-8 Nom chg

Class II B 4-9 Nom chg

Class II B 4-10°| Nom chg

Class II B 4-14'| Nom chg

Class IT B 4-15 | Nom chg

Class II B 4-17.) Nom chg

Class II B 4-18.) Nom chg

Class II B 4-19 | Nom chg

Class IT B 4-20 | Nom chg

‘Class II B 4-21 | Nom chg

Class II B 4-25 | Nom chg

Class II B 4-36 | Nom chg
Class II B 4-27/

28 | Nom chg
Class II B 5-1 Nom chg

EDCP : .

79-001 B 5-2 Chg description of BIX
| Class II B 5-3 '| Nom chg
Class II B 5-8 Nom chg

Class II B 5-9 |-Nom’chg
Class II B 5-10 | Nom chg

Class II B 6-1 Nom chg

EDCP .

79-001 B 6-2 Nom chg, add programming note

Class II B 6-8 Nom chg
Class II . B 6-4 Nom chg

’ Class IT B 6-5 Nom chg

_ Class IT B 6-6 Nom chg

Class II B 6-7 Nom chg

Class II B 6-8 Nom chg

Class II B 7-3 Nom chg ze
Class II “B 7-7 Nom chg S

Class II B_ | 7-11] Nom chg m
EDCP o
58-1,

59-12 B 7-12 | Add programming note

Class II B 7-13 | Nom chg

Class II B 7-14 | Nom chg

Class II B 7-15 | Nom chg

Class: IT B 7-16 | Nom chg PAGE

Class II B 7-17 | Nom chg

iv

CHANGE HISTORY SHEET,

1
{

80
-4
8

SW

ly

i
bh
9
£

xo
g

.

‘

s]
Ua
WN
D0
q

Y
S
N

JO

Uo
Ha
!I
05

oy
Ae
WO
!

"3
se
we
r

ug

l

9F

AA

1

S
a
n
l
u

AU
SI

AA
IU

N
Pu
e

SU
ON
DA
I|
OD

Je
ID
ad
g

‘s
au
eI
gI
]

Al
si
eA
lU
A

ay
el
s

eY
YO
IN
\\
,

NOneee PAGE REVISION APPROVED |: DATE

EDCP

79-001 B 8-1 Define normalized number
Class II B 8-2 Nom chg
Class II B 8-3 Nom chg

Class II B 8-4 Nom chg

Class II B 8-5 Nom chg
Class II B 8-6 Clarify floating point condition code
Class II B 8-7 Nom chg
Class II B 8-8 Nom chg

| Class II B 8-9 Nom chg
Class II B 8-10 | Nom chg
EDCP

059-1 B 8-11 | Delete compare (Long Operands)
EDCP

059-1 8-12 | Delete compare (Long Operands)
EDCP
58-1, Add programming and condition code
59-13 8-12 | note

EDCP

58-1,

59-10 8-13 | Add programming note
Class II 8-14 | Nom chg
EDCP

059-2 8-16 | Chg description of DIVIDE
EDCP

59-5, y

59-16 B 8-17 | Modify description of DIVIDE (SHORT)
Class II B 8-19 | Nom chg ‘
Class II B 8-20 | Nom chg

EDCP

58-1,
|

59-11 8-21 | Add programming note 2
EDCP s
59-4 8-22 | Add programming note gS

EDCP

59-4 8-23 | Chg description of Mid Value Select
EDCP
59-4 B 8-24 | Chg description of Mid Value Select

Class IT B 8-25 | Nom chg

Class II B 8-26 | Nom chg
EDCP

PAGE
58-1,

59-14 8-28 | Add programming note

sa
ny
oi
y

As
ia
nl
uy

pu
e

SU
ON
IA
I|
O9

|e
IN
ad
g

‘s
eu
es
q!
7

Ay
sI
eA
lU
A)

a}
EI
S

eY
YO
I\
A

SJ
UB
WU
ND
OG

YS
YN

JO

UO
ND
A!
|O
D

oy
Ae
wW
O|

“y
se
we
r

iq

80
-4
8

SW

If

A
ch

O
F

xo
g

CHANGE HISTORY SHEET

Nowce | SYM | PAGE REVISION AEP HOMED © h BATE

EDCP .
58-1 B 8-30] Add programming note

Class II B 8-31

; 8-32 | Nom chg

EDCP 58 B 9-0. Add description of DETECT
Class IT B 9-1 Nom chg

EDCP

58-1,

59-9 B 9-3 Add programming notes
EDCP

58-1,

59-9 B 9-4 Chg description of MVH
Class IT B 9-5 Add programming notes
EDCP ‘

79-001 B 9-6

Class It B 9-7

Class II’ B 9-8
EDCP :
79-001 B 9-9 Add note on hardware anomaly

EDCP

79-001 B 9-10 | Add note on hardware anomaly
EDCP i
58-1 B 9-11 | Add programming note

EDCP 58 B 10-1 | Chg description of I/O Channel Reset
EDCP ;
58-1, :
59-3, Chg description and programming
59-7 B 10-2 | note

Class II B 11-Y| .
2 | Nom chg

Class II B 12-1] Nom chg

Class II B 12-3/ iz
4) Nom chg s

Class II B 13-1] Nom chg ay
Class IT B 13-2 | Nom chg

Class II B 14-V :
2}. Nom chg

PAGE

vi

80
-4
8

SW

V
A

O
F

x
o
g

S]
UB
WN
DO
G

YS
YN

JO

UO
ND
a]
OD

oy
Ae
WO
]

“Fy

se
we
r

4g

9f

ss

sa
nl
ya
uy

Ai
si
an
lu
n

pu
e

SU
oH
oa
!I
09

Je
IN
ad
g

‘s
au
es
q!
]

AI
sI
eA
IU
A)

a}
EI
g

eY
YO
I\
A

6246156B
5, |
- |

Ns
-

a TABLE OF CONTENTS
‘ {

|
t Section

Page

4} 1 INTRODUCTION oes i .4526,8 Recon e eonue acc vee deeds oe 1-1
+ 2 AP-101 C/MSTRUCTURE ees c cece eeeecececs 2-1

ml MAIN STORAGE... eee eee cee chee c ev uueeucenuas 2-1
a INFORMATION FORMATS (. 0... cece cece ces cous 2-1 ADDRESSING «0.0... ee. b ee cece eeu Blah Laue « 2-1 = INFORMATION POSITIONING Waibaai ’ 2-2

CENTRAL PROCESSING UNIT oo... cece be Seeeececee 2-2
- PROGRAM ADDRESSABLE REGISTERS...;..... 2-2 FIXED-POINT DATA REPRESENTATION .. . 2-4 at INSTRUCTION FORMATS Vaated a 2-4 we | RR FORMAT INSTRUCTIONS. , 2-6 ~ SRS FORMAT INSTRUCTIONS . . 2-6 SIINSTRUCTIONS j 2-8 bo RI INSTRUCTIONS............ 2-8 RS FORMAT INSTRUCTIONS..................... 2-9 EXPANDED ADDRESSING00.000.0...., 2-15
rs PROGRAM EXECUTION 0.20.0) ces cece cececececece, 2-16

STORAGE PROTECTION FEATURES23........., 2-16 wed

INSTRUCTION MONITOR FEATURE........ tists ey 2-17
= | MACHINE STATUS 6. ee ee eeee 2-17

| ' PROGRAM STATUS WORD0....00 0000000004, 2-17.
INTERRUPTS. 24 0.6 3.0 63 374 6. oem oe was o's Caney aos 2-19 | GENERAL SYSTEM OPERATION, 2-23

3 CPUL/O. se eect ee cee e eee re eer esatbctntnnveeeces 3-1 —
®

DIRECT MEMORY ACCESS OPERATION5.0e-eceeue 3-1
PROGRAM-CONTROLLED INPUT/OUTPUT OPERATION. :... 341 ions PROGRAM-CONTROLLED I/O INSTRUCTION wiaews’ B42

Sawa!

” |

vii

al

se
an

ty
ou

y
Aj

si
eA

lu
p

PU
B

SU
OI

}D
a!

|O
D

Je
IN

ed
g

‘s
eu

eI
gI

Al
Is
Ie
Al
UA

al
eI

S
eU
YO
IN

s]
Ua

LU
ND

0G

YS

YN

JO

UO

Nd
eI

|0
D

oy
Ae
WO
|

“Fy

se
we
r

iq

A
OF

xo

g
80

-4
8

SW

9F

ss

nt

6246156B

|
2

. — |
ee

| Table of Contents (cont)
|

| Section . Page ay

4 FIXED-POINT ARITHMETIC...., 4-1

BDD i re aye 4 oan 6 Sue's sens Balad dv all a'wle 4-1 i ADD HALFWORD..........., 4-2 ADD HALFWORD IMMEDIATE 4-3 ADD TO STORAGE......... 4-4 “ COMPARE so... 6. 4-4 Bx<™ COMPARE BETWEEN LIMITS . Betts ide 4-5 PLS COMPARE HALFWORD : ‘ . i 4-6 Ps cf COMPARE HALFWORD IMMEDIATE. niatlacocliterary sats C5 4-7 COMPARE IMMEDIATE WITH STORAGE 2... . eee eae 4-8 DIVIDE 0). foie ek cag doh sah icievsnnintpnealeteravalste ee & % 4-9 EXCHANGE UPPER AND’ LOWER HALFWORDS . sc aeil ga solos 4-10 eh INSERT ADDRESS LOW Caveceloas’ atone ieiven 9 4-11 INSERT HALFWORD DOW tates 3 Latace ue ore fi ate sre 4-12 LOAD ea ey oe ee ges wre le elba ange del Tentative... 4-13 asd | LOAD ADDRESS ccc cee ae ‘ 4-13 = | LOAD ARITHMETIC COMPLEMENT, ebeten ys : 4-14 ~ | LOAD FIXED IMMEDIATE. eteyetty. 4 ieiat every ‘ 4-15 _ i | LOAD HALFWORD oes ea Laceier ein, alia ASE a6 Becl a a eis 4-16 . | : LOAD MULTIPLE oe bisa, Gye ee Nas ae 4-17 | MODIFY STORAGE HALFWORD. .. Si imesh Uieie baw 4-18 ay MULTIPLY ye ere re Pea ie Role ew 4-18 MULTIPLY HALFWORD...,........., Wieulasle Wace Stakes > 4-19 MULTIPLY HALFWORD IMMEDIATE 4-20 MULTIPLY INTEGER HALFWORD .., 4-21 “ STORE
4-22 STORE HALFWORD 4-22

STORE MULTIPLE * 4-23 wal SUBTRACT ieee. eee ce le Rebs dex at 4-24
SUBTRACT FROMSTORAGE, beg Pb WIS $8 BTA GDh» 4-25 SUBTRACT HALFWORD . . ee ielps badd 4-26 fen } TALLY DOWN Diesitigd Sits oes a he ba B 4-27

| 5 BRANCHING) ilnela eater aedbdeeeelé agree casthneds eve bee 5-1 3 \
BRANCH AND LINK 20... ee eee ce tee cues 5-1
BRANCH AND INDEX ... 1... cece cece ence ene ee 5-2 ' BRANCH ON CONDITION ... 0... ccc eee eee ees 5-3 aut BRANCH ON CONDITION BACKWARD.0.04 5-4
BRANCH ON CONDITION (EXTENDED)................. 5-5
BRANCH ON CONDITION FORWARD........, eerie 5-6 wot ‘ BRANCH.ON COUNT) 2... ea "sal wxluedite 5 ‘ 5-7

——

ae

viii

wi

s
a
n
y
o

As

ia
ni

un

pu
e

su
oN

da
I|

O9

je
!9
ad
g

‘s
au

es
g!

]
As

ie
nl

UA

a}
eI

S
eY

YO
IN

Y,

{ Table of Contents (cont)

| Section

NORMALIZE AND COUNT tte eee wee
SHIFT LEFT LOGICAL

ed SHIFT LEFT DOUBLE LOGICAL
SHIFT RIGHT ARITHMETIC0000e0ee
SHIFT RIGHT DOUBLE ARITHMETIC..........
SHIFT RIGHT DOUBLE LOGICAL
SHIFT RIGHT LOGICAL
SHIFT RIGHT AND ROTATE .. eee
SHIFT RIGHT DOUBLE AND ROTATE. toes

| 7 LOGICAL OPERATIONS,- wana weeee

~V AND fee eee c cece ee te teen nes
AND HALFWORD IMMEDIATE,
AND IMMEDIATE WITH STORAGE...
AND TO STORAGE00- or
EXCLUSIVEOR eee eueeeeee
EXCLUSIVE OR HALFWORD IMMEDIATE
EXCLUSIVE OR IMMEDIATE WITH STORAGE ..,
EXCLUSIVE OR TO STORAGE . wee
OR foe tawny ee hieenas ne aimee &
OR HALFWORD IMMEDIATE. Rnemug
OR TO STORAGE. 4 6 be ss wie 6 3 .
SEARCH UNDER MASK 4 see
SET BITS....

(
|

80
-4

8
SW

i wn

& 4 a > 5 ° wm

0

TEST REGISTER BITS

TEST HALFWORD......... cece veces
ZERO BITS eee ee ees
ZERO REGISTER BITS

ZERO HALFWORD............

c+
,
O
F

xo
g

i

S]
UB
WU
ND
OG

Y
S
N

JO

UO

HD
e/

|0
D

oy
Ae
wW
O]

“Fj

se
we
r

4g

9 =

ix

o
a
d

w
o
e

1
1 »

D
R
A
M
R
A
A
R
A
A
D

1
1

1
A
Y
A
A
B
a
A
G
N

x I ws

a
o
t

w
n
r
e

1 »

P
U

P
R
E
F

T
T
s
s

t
t
a
d

D
A
N
A
A
G
A

h
o
w
e

o
o

6246156B

sa
ny
ai
y

Ay
si

an
lu

n
pu

e
Ss
uo
Hd
aI
|O
9

Je
I9
ad
g

‘s
eu

ei
g'

]
Aj

is
eA

lU
L

az
eI
S

eN
YO
IN
\

SJ
US
WN
DO
G

YS
YN

JO

UO
HD
AI
IO
D

oy
he
WO
|

“Fy

se
we
r

iq

h
OF

xo
g

80
-2
8

SI
N

9f

AA

6246156B

- Section

9

10

Table of Contents. (cont)

NORMALIZATION ..

FLOATING-POINT SECOND OPERANDS EE alee eles Wg ee lee
FLOATING-POINT REGISTERS... 2... cee eee eee eae 7
FLOATING-POINT INSTRUCTIONS000 eee eueuae
CONDITION CODE

INDIGATORS jus’ dss alia ei $3 ade duo bu dye Sv we ese b ab
FLOATING-POINT ARITHMETIC EXCEPTIONS 05
ADD (LONG OPERANDS)....... 00.0 cceceeeeeeeeevee
ADD (SHORT OPERANDS)
COMPARE (SHORT OPERANDS)...
CONVERT TO FIXED-POINT........
CONVERT TO FLOATING-POINT
DIVIDE (EXTENDED OPERANDS). .
DIVIDE (SHORT OPERANDS)
LOAD (LONG OPERANDS) ..4.. :
LOAD (SHORT OPERANDS)
LOAD COMPLEMENT (SHORT OPERANDS) . oe e nee
LOAD FIXED REGISTER eee eue
LOAD FLOATING IMMEDIATE00005 eee ee
LOAD FLOATING REGISTER.4.
MID VALUE'SELECT (SHORT OPERANDS)
MULTIPLY (EXTENDED OPERANDS) .
MULTIPLY (SHORT OPERANDS)4..
SUBTRACT (LONG OPERANDS)
SUBTRACT (SHORT OPERANDS) .

STORE (LONG OPERANDS)..... oe ote. oe
STORE (SHORT OPERANDS)° .

SPECIAL OPERATIONS, i obese

DETECT waives eos

- INSERT STORAGE PROTECT ‘BITS | wee

LOAD PROGRAM STATUS 2... ce eee eee eee e eee

SET PROGRAM MASK
SET SYSTEM BASE 6 cis ba eet GW ple alee lack ola d ve ea
STACK GATE beties niin wiatedsereetle eo eas de ask. Fath ete w
STACK RETURN case 9 ura dus abet hiy wats Yaustn bo ole Lbak ads
SUPERVISOR CALL

TEST'AND'SET. 0... cee ae OUND een eee he ete eee

= et

Page “se

8-3
8-3 iis
8-3
8-5
8-6
8-6 “
8-6
8-7

8-9 “
8-12
8-12
8-13 pe
8-14
8-17

8-19 es
8-20
“8-20 ~
8-21
8-21 ee
8-22
8-23
8-24 S
8-26
8-28
8-29 sai
8-30
8-31

9-1 io

9-1
9-1 ~
9-3
9-4
9-6 sais
9-6
9-7
9-9 oe
9-11
9-12
9-13

anal

10-1 }
eed

10-1 st

so
a1
08
e{
__
_

f
I

80
-4

8
SI

N
[

ch

O
F

xo
g

s]
us
UN
D0
q

YS
YN

JO

UO
HD
aI
|O
D

oy
Ae
WO
]

“Fy

se
we
r

ig

L
I

9f

AA

t

Sa
nl
yd
y

As
sa

al
uN

pu

e
SU
ON
DA
I|
OD

Je
I9
ad
g

‘s
au

eI
qI

]
Aj
is
sa
Al
UL

ar
eI
S
B
M
Y

6246156B

Table of Contents (cont)

Section ‘ Page

ll EFFECTIVE ADDRESS GENERATION SUMMARY CHART... ae oR 11-1

12 AP-101 C/M INSTRUCTION REPERTOIRE © tna: We cae ww Sa BE le eee 12-1

13 AP-101 C/M OP CODE ASSIGNMENTS0000ceee 13-1

14 AUTOMATIC INDEX ALIGNMENT DESCRIPTION 14-1

xi

sa
nl
yo
iy

As
ia
nl
un

pu
e

SU
OH
OA
!|
OD

Je
IN
ad
g

‘s
au
es
q!
]

Ay
sI
OA
IU

a}
eI
S

eU
YO
IN
A

sj
ua
WN
d0
q

YS
YN

JO

UO

Rd
aI
IO
D

oy
Ae
wW
O|

“Fj

sa
we
r

iq

80
-4
8

SW

th

O
F

xo
g

Gf

ss

62461568

ie] a 4 @

°
o
e

e
e

to
o

1
D
A
R
N

LIST OF ILLUSTRATIONS

Instruction and Operand Bit Numbering. .

General Register Addresses °
Fixed-Point Operand Formats... , 4. .:.4 we ‘
Basic Instruction Formats..... U6 beca oe .
The RR Instruction Formats000.0. sees
SRS Instruction Format

SRS Halfword Addréssing .

SRS Fullword Addressing

SI Instructions.,.... . toe
Ri Instructions eevee at Ree pase
RS Instruction Formats004 ’ fa ea wee a a Wiese
Displacement Alignment for Extended Addressing ee ce ew wow as So ee
Automatic Index Alignment ester sorinccet i coe & coure “4
Displacement Alignment for Indexed Addressing PO ee Ww caw ae
The Contents of Indirect Address Storage Modification Word .
The Contents of Index Register X, wep
Fullword Indirect Address Pointer ..
Expanded Addressing ing O18
PS We BIGGS nyu tisha) ase! ate are te. dee Aasonre eo ene
Intentupt Codes... ia tie, 4 ele Sah bol Faye. Cavanaies jock, lace
Preferred Storage Area Assignments
CPU Mode Switching 1.0.0... eee eee eee een eee ne ee

Shift Count iis aiare fai b aeueee « ba
Normalize and Count Execution

Floating-Point Second Operand in Main Storage ee
Floating-Point Operands in Registers... 0.00 e cece eee eevee
Combinations of Fractional Precision for Floating-Point
OpSR ENS aes hie e Bol Ee eee Wad de died where 26 PURE Ea aS HE Te aoe

Move Halfword Execution»... 0.0.0... eve eee ete ences
Current. STACK Status — PriortoSCAL cc cess vueeue
STACK Status — Upon Completion of SCAL

r
e
?

a

Page

CP
PT
EY

Pr
e

ee
e

a
e
d
:

O
O

D
a
D
A
A
R
A
A
P

w
h

t B
fo

to

bo
 t
o

to

' B
e
e

ao
n

h
k
w
w
n
y
e

Se

ae

o
t

thy

H
B
a
s

a

t n
e

co

oo

t 0

sus

S
a
n
y
o

AU
ss

an
lU

N
pu

e
SU
O}
Da
II
OD

Je
IN

ed
g

‘s
eu
eg
I

As
ia
nl
Uy

ay
ei

s
eN

YO
I\

\
SJ
UB
LU
ND
OG

YS
YN

JO

UO
ND
a!
}O
D

oy
Ae
WO
]

“3
se
we
r

IG

{
I

80
-4

8
SI

“h

OF
 x

og
L

t
£

L
e 9

Ad

6246156B -

Section 1

INTRODUCTION

The AP-101 C/M (description is for AP-101C and AP-101, monolithic version a high-speed general-purpose computer intended primaril such as guidance, navigation, control,
member of the advanced System/
and is unified by extensive desi
manufacturing processes.

) is
ly for real-time applications

and data processing. The AP-101 C/M isa
4 Pi family of digital computers. This family shares’

gn experience, proven technology base, and common

This Principles of Operation manual provides a direct comprehensive description of the system structure; the arithmetic, logical, branching, and status Switching; and the interruption system. This publication defines and describes features common to all AP-101 C/M computers. These features are the basis for IBM~developed support software and are compatible with compiler development efforts now in process.

Execution times and nonstandard features and functions are described in separate documents. This is because aerospace computers characteristically include user de- fined features such as unique input/output channels, and special discretes. These will be incorporated into the AP-101 C/M as pluggable options. Furthermore, the AP-101 C/M is microprogrammed and is designed to permit incorporation of additional instruc- tions and operations without redesign and requalification. Such extensions are also described separately.

1-1/1-2

Sa
al
yo
uy

AY

Su
eA
lU
N

PU
B

SU
OI
}D
A!
|O
D

Je
IN
ad
g

‘s
eu
eI
gT

Ay
si
eA
lU
A

a}
el
s

eY
Yo
I\
A

s]
Uu
aw
un
d0
q
W
S
N

JO

uo
No
al
I0
g

oy
Ae
WO
Y

“3
se
we
r

ig

.
80
-2
8.

_
SI

N.

el
z
OF

xo
g

9f

Ad

t
[

{
1

[

6246156B

Section 2

AP-101 C/M STRUCTURE

The AP-101 C/M system structure encompasses the-functional operation: of main
storage, the central processing unit (CPU), and program-controlled I/O facilities. The
overall definition is open ended and includes all the basic facilities necessary to accom-
modate additional specialized and/or application-depéndent 1/O channels and features,

The modular AP-101 C/M system structure can support configuration alternatives
ranging from a self-contained single processor to a full symmetrical shared-storage
multiprocessing system.

MAIN STORAGE

The functional operation of main storage is unrelated to the physical width of the
information paths or cycle time.

INFORMATION FORMATS

The system transmits information between main storage and the CPU in units of
16 bits, or in integer multiple of 16 bits. Each 16-bit unit of information is called a
halfword. A parity bit and a storage protection bit are also associated with each half-
word, but later references in this manual to the size of data fields exclude these bits,

Halfwords may be handled separately or in pairs. A fullword is a group of two
consecutive halfwords. Both halfword and fullword instructions and operands are used.
Their location is always specified by the address of the leftmost halfword. The instruc-
tion length is designated implicitly in every instruction; the operand length is also implicit.

Within any instruction and operand format, the bits making up the format are consecu-
tively numbered from left to right, starting with the number 0, as shown in Figure 2-1.

ADDRESSING

Halfword locations in storage are consecutively numbered starting with 0, Each
number is considered the address of the corresponding halfword. The addressing
technique uses a 19-bit binary address to accommodate a maximum of 219 halfword
addresses. This set of main storage addresses includes some locations reserved for
special purposes, such as program status words; consequently, these special locations
should not be used for any purpose not implicitly defined.

2-1

Sa
ny

ou
y

Ay
sJ
AI
UN

PU
B

SU
OH
DA
II
OD

|e
IN
ed
g

‘s
eu
eI
qI
]

Ay
ss

aa
lU

p)

a}
eI
S

eL
UO
IN
\,

sj
ua

ui
nd

0q

W
S
N

JO

Uo

NI
a!
I0
D

oy
Ae
WO
]

“3
sa
we
r

iq

ch

QF

xo
g

9f

ss

80
-2
8

SIN

|6246 1568

. —*

Halfword

eh abd de del {ttt
0 15

wey
Fullword

Leesa) ele d ilee dh a ea Al) Sys) Es Waa Bees De Kes Ec Be dee es Ee te =
0 15 16 31

Figure 2-1, ‘Instruction and Operand Bit Numbering

INFORMATION POSITIONING “

Fullword operands must be ‘located in main storage on even halfword boundaries.
That is, the least significant bit of the operand address, when expressed in binary, Ss
must always be zero. ‘Fullword instructions may begin at any address. oo

CENTRAL PROCESSING ‘UNIT wish

“The central processing unit (CPU) contains facilities for addressing main storage,
for fetching or’ storing information, for arithmetic:and logical’ processing of data, for us
sequencing instructions in the desired order, and for initiating the communication be-

Vpween; storage and external devices.
4 ;

The control section guides the’'CPU through the functions mee eenety to executé the oy
program. : :

wed PROGRAM ADDRESSABLE REGISTERS

Two sets of eight fixed-point general registers and one set of eight floating-point
registers are under explicit program control. The contents of one or more of these a
registers (32 bits) participate in most CPU operations.

Conceptually, an additional doubleword status register, called the program status

during each instruction.

operations, and address calculations.

word (PSW), is the focal point for machine status. The contents of the PSW are updated —
Consequently, the PSW reflects current machine status fol-

lowing every instruction. The PSW participates implicitly in status switching): Dreeling

—

s
a
n
d
y

Ay
su
an
lu
n

pu
e

SU
ON
da
I|
O9
D

Je
I9
ad
g

‘s
eu
es
g!
]

Ay
sJ
en
lu
y

a
e
}

eN
YI
\Y
\

s]
us
Nd
0g

YS
YN

JO

Uo
ND
a!
/0
D

oy
Ae
WO
]

“3
se
we
r

ug

80
-4
8

SI
N

cl

OF

xo
g

9f

AA

U

(
C

f

In addition to the PSW and the general and floating-point registers, the CPU also
contains working registers used for storage addressing, storage buffering, shift and

These registers are of no direct concern to
rein.

iteration countirig, and operand storage.
the programmer and are not described’ he

The contents of the PSW specify which of the two sets of general registers i
current use, Only the contents of the selected general register set can participate in
arithmetic operations and the contents of unselected sets of general registers can not
be altered by a program. An alternate set of general registers can be selected by
changing the PSW. Only one set of the fixed-point, general-purpose registers and the
floating-point registers are available to the program at any one time.

General register contents can be used interchangeably as operands for arithmetic,

sin

6246156B

logical, and shifting operations, or as base and index registers for relative addressing,
Each set of general registers is numbered from 0 th
in Figure 2-2,

General Register Function
Register

Number Operand Base Index

0 000 00 None
1 001 01 001
2 010 10 010
3 011 11 or None O11
4 100 100
5 101 101

‘ 6 110 110
: 7 111 lll

Figure 2-2,

Note that general registers 4 through 7 cannot contain base addresses and that

General Register Addresses

general register 0 cannot contain an index.

For some operations, an even/odd pair of general registers are linked to forma
64-bit doubleword register. The most significant half of a doubleword operand is
contained in the even-numbered register; the least significant half of the doubleword in
the next higher odd-numbered register. Doubleword operands are addressed by speci-
fying the even numbered address of the register containing the most significant portion
of the operand.

2-3

rough 7 and is addressed as shown

sa
ny
oi
y

Ay
si
aa
lu
p

pu
ke

SU
Od
A!
OD

Je
IN
ad
g

‘s
eu
eI
qK

As
Ia
AI
UA
)

a}
e1
S

eY
YO
IY

S]
UB
WU
ND
OG

YS

YN

JO

UO

NI
a!

[O
D

oy
Ae
WO
]

“Fy

se
we
r

ig

80
-4

8
SW

Ch

OF

xo
g

If

As

6246156B

\
FIXED-POINT DATA REPRESENTATION

Data representation is fractional, with negative numbers represented in two's
complement form. A halfword operand is 15 bits plus sign;.a fullword operand is:81
bits plus sign, as shown in Figure 2-3.

In fractional data representation, the bina:
the sign.

Fixed-Point Halfword Operand

Ss Fraction

Je} td Jet ek deb At

o1

Fixed-Point Fullword Operand -

ry point is immediately to the right of ‘

s Fraction

Jed kb bila hte t

Figure 2-3, Fixed-Point Operand Formats

4
INSTRUCTION FORMATS

The length of an instruction format can be either one or two halfwords. Long
format instructions provide maximum range and extended flexibility for addressing

» Storage operands. Short instructions are used to (1) specify register-to-register
operations, and (2) specify storage operands in cases where a small displacement is
sufficient and complete address modification capability is not required.

Instruction formats overlap. Programs are written so that in many instances any
given operation can be coded using either a halfword or a fullword instruction. In such
cases, maximum use of halfword instructions results in increased storage efficiency
and performance,

The three basic instruction formats are as shown in Figure 2-4,
tions are automatically selected by the assembler unless otherwise specified by the pro-
grammer.

2-4

Halfword instruc-

wwe

oe

~e

Donald Schmidt

Sa
ni

yo
uy

AU

si
ea

lu
n

pu
e

su
dl
oa
l|
OD

|e
lN
ad
g

‘s
eu

eI
q

As
Ia

AI
U

a}
e1
g

eY
YO
I\
A

s]
ua
un
o0
g

YS
YN

Jo

Uo
ND
e!
}0
5

oy
Ae
wW
o]

“3
se
we
r

iq

80
-4
8

SI

Vh

OF

xo
g

9F

JA

{
i

I
i

E
{

6246156B

RR Format
~

5 ,

Op R1 Pp R2
Loti t yt trpitijolxt yy

0 4 5 7 8 11:12:13 15

SRS Format

Op RI Disp" 82 |
Lit pj Coy | Displacements of the form 111XXX are not valid.

0 45 7 8 13:14 15

RS Format

O} a ; ; Op Ri Pp m{ 82 Address Specification
Ppt tt tity iy tx Petpet eet pt

oO 45 7 8 11.12 13:14 15 16 31

Figure 2-4. Basic Instruction Formats

The fields within the instruction formats usually are used as described below. The exceptions are described in conjunction with the individual formats and instructi

Op

Rl

R2

B2

Disp

OPX

AM

Address

Specification

ons.

This 5-bit field defines an operation, or the class. of opera-
tion, to be performed by the CPU.

This 3-bit field designates the register containing the first
operand. Except for operations which alter main storage,
the result usually replaces the first operand.

This 3-bit field appears only in the RR format. It is used
to specify a general register containing either the second
operand or the address of the second operand,

This 2-bit field specifies the register containing the base
address.

In halfword SRS format instructions, this 6-bit field is
called the displacement. For the SRS format, the displace-
ment is added to the base address specified by the B field
to obtain a storage address. :

This bit is an extension of the OP field.

This field designates one of two fwllword format addressing
options.

The second halfword of a fullword instruction is specified
as either extended or indexed addressing. _

80
-4
8

SI
N

th

OF

xo
g

SJ
UB
LU
ND
OG

Y
S
N

JO

UO
ND
a!
jO
D

oy
Ae
WO
]

“F
sa
we
r

iq

9f

A

sa
ny
oi
y

Au
si
ea
lu
n

pu
e

su
on
oa
lj
o9

je
ln

ad
s

‘s
eu
ei
gr

Ai
si
en
lu
y

ay
ei
g
e
y
o
,

6240166B
| ,

RR FORMAT INSTRUCTIONS wo. . i) “

The RR format instructions (Figure 2-5) permit the specification of operations
that use two general registers, i

R2

{jot | Py pitti 9. ewslelf tase So
0 4 5 78 1112 13 15

oa

3 »

x
v
O

Figure 2-5. The RR Instruction Formats

The operation normally uses as operands the contents of two general registers.
The R2 field specifies the second operand while the R1.field. specifies.the first-operand:
The result of the operation usually replaces the first operand. :

SRS FORMAT INSTRUCTIONS

The SRS instruction format (Figure 2-6) is a compression of the RS format. It
provides base plus displacement storage addressing.

é a nics * Displacements of the form nell
4 . isp, B2 111XXxX are not valid.

Poh ee oh
oO 45 7 8 13°14 15

B2 Register Containing Base

00 General Register 0
o1 General Register 1
10 General Register 2
W General Register 3

Figure 2-6. SRS Instruction Format

The R1 field specifies the first operand register address. The 19-bit effective
address (EA) of the second operand is developed as follows:

Step 1 First the positive integer contained in the displacement field is
| added to the contents of the base contained in the general register

a specified by B2. a
When addressing halfword operands, the least significant bit

| of the displacement field (instruction bit 13) is aligned with
base register bit 15. The 16-bit result is the sum of the

ho, , base and the displacement, aligned as.shown in Figure 2-7.

When addressing fullwords operands’ using the SRS format,

the least significant bit of the displacement field is aligned : aed
a with base register bit 14 as shown in Figure 2-8.

2-6

s
a
n
d
y

As
ua

ni
lu

n
pu

e
su
oH
oa
l|
O9

je
Is

ad
g

‘s
au
es
g!

As
Je
AI
U

a}
21

S
eY

YO
IN

Y
S}
US
WU
ND
OG

Y
S
N

JO
UO
Hd
aI
IO
D

oy
Ae
WO
|

“3
se
we
r

iq

80
-4

8
SI

N
ch

8
F

xo
g

9f

sd

I
{

6246156B

Base
Base (B2) Lote ttt eye |

0

Disp Halfword Displacement
OL Ojojotojojojojoyo} | yyy y
0 9 10 15

Base + Disp. 16-Bit Effective Address
Peete te ppt pty

0
15

SY The low-order half of the general register containing
the base does not Participate in SRS addressing.

Figure 2-7, SRS Halfword Addressing

AS AS
Base \) \ OY \S Base (B2) x SAN LEP 1 RRA 0 !

15 16
31

1

Disp QO Fullword Displacement
OpOpopojoyojojojof yyy y
0 8 9 14 15

Base + Disp 16-Bit Effective Address
Lititypte ppp iy |

0
15,

 The low order half of the general register containing
the base does not participate in SRS addressing.

Figure 2-8, SRS Fullword Addressing

Sa
nt
yo
uy

Ay
si
an
lu
n

pu
e

Su
oH
aI
|O
D

|e
lp
ad
g

‘s
au
eI
gr

Ay
su
aA
lU
p

ay
es

eY
YO
IN
A

SJ
US
UU
ND
OG

YS

YN

Jo

UO
HI
a!
}O
D

oy
Ae
WO
|

“
s
e
w
e
r

ig

80-
28

SIN
©

h
O
F

xo
g

pe
t

a

Even though the addition of a hase and the fullword displacement 5 sh

in a halfword address, bit.15_is ignored when addressing full-

word second operands. As a result, the same fullword address

is obtained regardless of the contents of base bit position 15.

Step 2. The 16-bit result of the addition of the base and displacement
is expanded (see Expanded Addressing) to a 19-bit effective

address (EA), andthis is the address of the second operand.

Except for store instructions, the result of operation between the first operand

(the contents of general register R1) and the second operand (the.contents of the EA)
replace the first operand for SRS format operations. The first operand replaces the
second operand for store instructions.

SI INSTRUCTIONS

Direct initialization, modification, and testing of main storage is possible through

the use of an immediate data halfword. appended to an SRS instruction. Seé Figure 2-9.

Op " OPX Disp* B2 Immediate Data
Jul bidet bed.) | kssdecbintlobiebeclebatel it oi) fs

0 45 78 13 14 15 16 31

"Displacements of the form 111XXxX are not valid.

Figure 2-9. SI Instructions

» The address of the halfword second operand is developed in the normal manner for

SRS instructions using halfword addressing. Except for test instructions, the result

of the operation between the hglfword second operand and the immediate data replaces

the second operand. The second operand is not altered for test instructions. The first

operand is never altered for SI instructions.

RI INSTRUCTIONS

Using an immediate data halfword appended:to'an RR instruction (Figure 2-10) per-

mits direct initialization, modification, and testing of the most significant 16 bits con-

tained in a general register. ~

[)
Op OPX P R2 Immediate Data

Joel pi trpaprpol™) yy feu fod dsl d bb
0 45 78 14.12.13 1G: 16:4 ee 31

Figure'2-10. RI Instructions

2-8

ad

wat

b.

[
80

-4
8

SW
 t

E
OF

xo

g
>

a}

c
f t

S}
]U
SW
ND
OG

Y
S
N

JO
UO
HD
A!
IO
D

oy
Ae
wW
O]

“3
se
we
r

IG

9F

AA

i

Sa
ny
ou
iy

Ay
su
aA
lu
y

PU
B

SU
ON
DA
I|
OD

Je
Id

ed
g

‘s
eu
eI
gh
]

As
ua
AI
U

ay
eI
S

EN
YO
IN
,

6246156B

Except for test instructions, the result of the operation between the second operand and the immediate data replaces the second operand. The second operand is not
altered for test instructions. The immediate data first operand is never altered
for RI instructions.

RS FORMAT INSTRUCTIONS

There are two major classes of RS instructions, extended and indexed addressing
modes, differing in the techniques used to specify the second operand. See Figure
2-11,

0
PIA se Op RI x! m B2 Address Specification

Lt tt Poy pr pijiys | Ped be beke Pp ey pes
0 45 78 111213 14 15 16 31

AM
Extended : 0 Displacement

Lotte py tee res |
16 : 31

'
Indexed : 1 x “AL! Displacement

|_| Pip | pt
16 18 19 20:21 31

Figure 2-11. RS Instruction Formats

Extended addressing is specified when RS format bit 13 (AM) equals 0. This addressing |
mode provides a full 16-bit halfword displacement. The base and displacement are
aligned as shown in Figure. 2-12 when base addressing is performed.

Displacement

Je ee Pe ey

Figure 2-12. Displacement Alignment for Extended Addressing

2-9

se
ny
ou
y

Au
si
aa
lu
n

pu
e

su
oj
oa
lj
og

|e
lv
ad
s

‘s
ev
ei
qr
)

As
ia
Al
UA

a}
e1
S

eL
YD
IN
Y\
,

S}
UB
WU
ND
OG

YS
YN

JO

UO
HI
Aa
!I
OD

oy
Ae
WO
]

“4
se
we
r

iq

80
-4

8
SW

ch

@
F

xo
g

|
6246156B

Aside from the size and alignment of the displacement, RS.extended addressing bh differs from SRS addressing in two other respects:

_1) The alignment of the displacement is the same whether addressing double word,
fullword or halfword operands.

2) When B2 equals 11, base addressing is not performed. In this case
the displacement is instead used directly as the address. Then the
resulting 16-bit EA is expanded (See Expanded Addressing) to a
19-bit EA. Bit 15 of the operand effective address is always
treated as zero when addressing fullword operands.

Indexed addressing is specified by RS format bit 13 (AM) equal. to.1. : This. addressing
mode contains three additional fields. Normally, they contribute to the effective
address generation as follows:

x This 3-bit field specifies one of seven general registers contain-
. ing the index. Indexing is not performed when X is equal. to 000,

An index is contained in the upper halfword of a general register.
The index is automatically aligned as illustrated in Figure 2-13.
For additional information on index alignment, see Section 14,-
Consistent with the restrictions that apply to register usage and
indirect addressing, general register contents can be used inter-
changeably ag either a base or an index or both. When indirect
addressing is specified, indexing follows indirect addressing.

TA This format bit, when a one, specifies indirect addressing. In-
direct addressing is not performed when this bit is zero.

I THis format bit, in conjunction with X and IA, specifies various
address modes which are explained below.

The development of the EA for the indexed mode of operand addressing is explained in detail in the subsequent. steps:

1) Indexed addressing is. specified by RS format bit 13 (AM) equal to 1.
This addressing mode provides an 11-bit displacement. The base and
displacement are aligned as shown in Figuré 2-14 when indexed address-
ing is performed.

The displacement is aligned so that bit 31 corresponds to base or index
bit 15. and displacement bit 21 corresponds: to*base“or index bit 5. The
displacement is expanded to 16 bits by appending five leading %eros.

sa
ny
oi
y

As
sa
al
uy

pu
e

su
oj
sa
lj
o9

je
ls
ad
s

‘s
eu
ei
gr

As
Ia
AI
UA

ae
1S

eL
YO
I\

5 ea

f

I

on

au | NO

|

9 =
g O~
3
® O09
mw

Le

a O
$ ©
2 =
°° o.|Uw~
2
2 WwW
gO
3s x
2
z |
5 9)

Poe |
De we |
3° |
Q
c

: oO
z | a y=

n

am

PEA

Litititiy

6246156B

Halfword (Direct from Index Register
Bits O—15)

EA

a. Halfword Index Alignment

15

Index (Xp-4 5)

Littvittvtiy ty
15

PEA + Index

Pititittit¢tsity |
15

PEA

Litt titt tippy yt |
15

Index (X4_45)

Litititipttyy | fo
15

PEA + Index

Pottptipye ppt yy |
15

PEA

Litityi pp pee yy |
3 15

é Index (Xo_45)

Litjytit tit yy fofo
13:14 15

PEA + Index

Pott epy ttt py yt
15

Fullword (index Register Bits O—15

Shifted Left 1)

EA

Double Word (Index Register Bits 0-15
Shifted Left 2)

EA

¢. Double Word Index Alignment

Figure 2-13. Automatic Index Alignment

s
a
n
d
y

Aj
ss
en
lu
n

pu
e

Su
oN
da
I|
OD

Je
Id
ad
g

‘s
eu
ei
qr
]

Ai
sJ
aA
lU
y

aV
eI
S

eN
YS
IM
\

S]
U@
WI
ND
OG

YS
VN

JO

UO
Hd
aI
J0
D

oy
Ae
WO
]

“Wy

sa
we
r

iq

80
-2

8
SI
N

&h

@
F

xo
g

9f

AA

He:
6246156B

2)

3)

4).

Displacement . anes

Ofopopopoy PE Epty ppp f
16 20 21 ee ee 31

Base

Pepe p et et pe
0 5 15

Figure 2-14, Displacement Alignment for Indexed Addressing

If B2 is not equal to 11, the 16-bit base, contained in the higher order
half of the specified register, is added to the aligned displacement. This
results in a preliminary effective address (PEA) whereby the PEA = (B) +

Displacement. Le sp j : .

If B2 is equal to 11, the aligned displacement is added to zero. This result
is the preliminary effective address (PEA), whereby the PEA = Displacement.

If the X field is all zeros, IA (bit 19) is a Zero and I (bit 20) is a zero,
then the 16-bit result of Step 2 is added to the contents of the updated
instruction counter (IC) to form the 16-bit EA whereby EA = updated IC...
+ PEA*, (This EA is then expanded to a 19-bit EA, as explained in the
Expanded Addressing section, with the exception that the Branch Sector ~
Register (BSR) bits are used instead of the Data Sector Register (DSR)
bits.)

If the X field is all zeros, LA (bit 19) is a zero and I (bit 20) is a one, the
16-bit result of Step 2 is subtracted from the contents of the updated IC to
form the 16+bit EA whereby EA = (updated) IC - PEA*, (This EA is then
expanded to a. 19-bit EA, as explained in the Expanded Addressing section
with the exception that the Branch Sector Register (BSR) bits are used
instead of the Data Sector Register (DSR) bits.)

If the X field is all zeros, LA (bit 19) is a one and I (bit 20) is a zero,
then Indirect Addressing is performed. The 16-bit result of Step 2
is expanded to a 19-bit address and is used as the address of a main-
storage halfword. This halfwerd is then fetched and expanded to 19-bits
by using expanded addressing to form the EA. EA MS (PEA). Fune-
tional equivalency to preindexing capability can be obtained through modi-
fication of the base.

*Usage of B2 equal to 11 (no base) is encouraged in the relative addressing
mode. Usage of B2 not equal to 11 may be changed in future computers.

2-12

or]

Sa
ny
ai
y

Aj
ss
aA
lu
N

pu
e

SU
O}
Da
I|
OD

Je
!I
Na
dg

‘s
eu
eI
gr
]

Ay
se
Al
u

ay
e}

eN
YO
IN

s]
Ue
WN
D0
G

WS
YN

JO

UO
Nd
a|
J0
D

oy
Ae
WO
]

“F
sa
we
r

Gq

l
t

80
-4

8
SW

Ch
OF
 x

og
t

f
[

t 9F

A

6)

6246156B

If the X field is all zeros, IA (bit 19) is a one and I (bit 20) is a one, ~
Indirect Addressing is performed as described in Step 5 with a full word
main storage pointer. Then, storage modification is automatically per- formed. The indirect address is contained in a full word and must have an even address. A modifier is contained in bits 16 through 31. An
address is contained in bits 0 through 15. The modifier is added to the
address and the resulting modified address replaces bits 0 through 15
of the indirect address word. (See Figure 2-15.)

Address

Modifier Lotte tt yy

7)

8)

15 16 31

Modified Address = MS (PEA) <— MS (PEA) + MS (PEA + 1)

Figure 2-15. The Contents of Indirect Address Storage Modification Word i

If the X field is not all zeros, IA (bit 19) is a zero and I (bit 20) is a
zero, the most significant 16-bits of the general register specified ° by the X field are aligned, ‘and then added to the 16-bit result of Step 2 (PEA) i to form the 16-bit EA (see Figure 2-13). (This EA is then expanded to
a 19-bit EA, as explained in the Expanded Addressing section.)

If the X field is not all zeros, IA (bit 19) is a zero and I-(bit 20) is a one,
the most significant 16 bits of the general register specified by the X
field are aligned, and then added to the 16-bit ‘result of Step 2 (PEA) to
form the 16-bit EA (see Figure 2-13). (This EA is then expanded to a
19-bit EA, as explained in the Expanded Addressing section.) (The
modifier is added to the address and the resulting modified address
replaces bits 0 through 15 of the index register after the EA is determined.)
Figured 2-16 illustrates the address and modifier format in the index
register.

 |
Address

Modifier
ft

9)

15 16

Modified Address = Qo is X)o_y5 + ®i6-31

Figure 2-16. The Contents of Index Register X

If the X field is not all zeros, IA (bit.19) is a one and I (bit 20) isa zero,
Indirect Addressing (IA) with post-indexing is performed. The 16-bit
result of Step 2 is expanded to a 19-bit address and is used to fetch a
main-~storage halfword.: The index contained in the general register specified
by X is aligned-and then added to the fetched halfword to form the 16-bit EA {| (see Figure 2-13). This EA‘is then expanded to.a 19-bit EA by using
expanded addressing. Functional equivalency to preindexing capability
can be obtained through modification of the base.

2-13

Sa
ny
oi
y

Ay
su
aA
lu
N

pu
e

su
oH
oa
I|
O9

Je
IN
ad
g

‘s
eu

ei
g!

]
AU

SJ
OA

IU

a}
eI
S

BY
YO
IY

SJ
US
UU
ND
OG

Y
S
N

JO

UO
HD
E!
|O
D

oy
Ae
wW
O]

“3
se
we
r

iq

80
-4
8

SI
N

Ch

O
F

xo
g

9F

sd

6246156B

10) If the X field is not all zeros, IA (bit 19) is a one and'l (bit 20) is’a‘one, a |
direct addressing modeis defined using a 32-bit fullword indirect ‘address
pointer. as follows:

a) First, the PEA from Step 2 must locate a fullword indirect address
pointer, with the format as illustrated in Figure 2-17.

Address Reserved ©] C B/D BSR DSR

XT [cic

b)

c)

qd)

Lot p ob ee lolololo Ol lb bol ded.
% “15 16 19 20 21 2223 24 27 28 31

Field Function

XC... Index Control
c Control
cB Control BSR. Usage
cD Control DSR Usage

Figure 2-17. Fullword Indirect Address Pointer

TEC (bit 21) equals 0, XC (bit 20) equals 1, and the instruction is not
a branch type instruction, the 19-bit EA equals the 4+bit DSR with the
15-bit address field appended. When C (bit 21) equals 0, XC (bit 20)
equals 0, and the instruction is not a branch type instruction, the 19-bit
EA equals the 15-bit address field added to the index value in indexing
register X with the result appended to the fullword indirect address
pointer's DSR. The current PSW's DSR is not changed.

If C (bit 21) equals 0 and the instruction is a branch type instruction, the
current PSW's BSR in conjunction with bits 0 through 15 of the. fullword
indirect address pointer will be used to form the BA. : If XC = 0, post-
indexing will occur. When C (bit 21) equals zero, CB and CD are re-
served and should be set to zero.

If C (bit 21) equals 1 and the instruction is a branch type instruction and
the branch is taken, the BSR and DSR fields selectively replace the corre-
sponding fields in the current PSW, based on the CB and CD bit: values
as follows: : . Su Sessa

CB cD Result

OSG Use current PSW's BSR to form the BA.

0 1 Replace the current PSW's DSR with this DSR.
Form. the BA normally.

1 0 Replace the current PSW's BSR with this BSR
before forming the BA.

1 1 First, replace the current PSW's DSR with
this DSR. Then, replace the current, PSW's
BSR with this BSR before forming the BA.

When C (bit 21) equals 1 and XC ‘(bit 20) equals 1; postindexing is not per-
formed. When C (bit 21) equals 1 and XC (bit 20) equals:0, the BA calcu-
lation includes a final addition of the index value in index registers X.

If C (bit 21) equals 1, XC equals 1,’ and‘the instruction is not a branch,
the 19-bit EA equals the current PSW's DSR and the 15-bit field appended.

If XC = 0, postindexing will occur.

sa
ny
oi
y

Ay
su
aA
lu
n

pu
e

su
o}
da
I|
O9

Je
IN
ad
g

‘s
eu

eI
g!

]
Ay
si
aA
lU
A

ay
eI

S
eY
YO
IY

Pa

a
5 B~
3
oO
2 CO
mw
tO6O>-
§ ©
g &
=
o

QO —

2
2wW
sO
5 =<
2 it
2
SO)
a”
Pal
BL =
Qa
c

3
oO

Sy
oy

a

Neo

Newt

6246156B

The results of indexed mode RS operations normally ‘replace the first operand ex-
cept for store operation where the first operand replaces the second operand. The
second operand is unaltered for nonstore operations, and the first operand is unaltered
for store operation.

EXPANDED ADDRESSING

The addressing philosophy accommodates 64K* halfword addresses since a full 16-
bit address is provided. Extending the addressing range beyond 64K halfword locations
up to 512K halfword locations is provided by utilizing PSW bits.

Expanding to 19 bits is achieved by replacing the high-order bit of a 16-bit address
with 4 bits, as shown in Figure 2-18. Data operand addresses are extended to 19 bits
by specifying either a 4-bit Data Sector Register (DSR) or an implied DSR. When the
high-order bit of a 16-bit data address is 1, a 4-bit DSR (PSW bits 28 through 31) is se-
lected to replace the high-order bit. When the high-order bit of a 16-bit data address
is a0, an implied DSR containing 0000 is selected. Note that indirect addressing lo-
cates the indirect address pointer as if the pointer were a data operand. Branch ad-
dresses are extended to 19 bits in an equivalent manner; When the high-order bit of a
16-bit branch address is a 1, a 4-bit Branch Sector Register (BSR—PSW bits 24 through
27) is selected to replace the high-order bit. When the high-order bit is a-0, an implied
BSR containing 0000 is selected: The high-order bit of both the BSR and DSR must be

zero. 4

16 Bit Operand Audress 16-Bit Branch Address

XYYYYYYYYYYYYYYY
XYYYYYYYYYYYYYYY

‘
- o 21

DSR
2222 =— 0000 2222'*— PSW 99.3,

Expanded 19.Bit EA Expanded 19-Bit Branch Address

22ZZYYYYYYYYYYYYYYY. ZZZZYYYYYYYYYYYYYYY

Data Operand Addressing Expansion Branch Addressing Expansion

Figure 2-18. Expanded Addressing

*K = 1024

2-15

80
-4

8
SW

CA

OF

xo
g

s]
ua
un
s0
g

YS
YN

JO

uo
ND

a!
/0
D

oy
Ae
WO
]

“Fy

se
we
r

iq

9F

AA

Sa
ny
oy

AU
Is
IB
AI
UN

PU

B
SU
O!
DA
II
OD

Je
IN
ad
g

‘s
au
eI
gI
]

AU
sI

eA
lU

a}
eI
S

eN
YO
I\

|
6246156B

eas

Pictorially, main storage can be visualized as follows: . dl
| ca ‘ . ; —

4 BA, =0
| or ‘
| EA, =0 ‘ &

BA,=1 EA=1 .

i PSA : “ Operating , Problem Problem
System & Instruction Data ‘ | Common Data eee Area es 6 Area oO 8s ait | Poo!

i

a 0 "32K BSR DSR 512k: i
= PSW 24:27 — -PSW 28-31

This permits efficient communication from the problem program ‘to the operating
a system, the preferred storage area, (PSA) or a common data area. ; 3 |

; . ee
| It should be cautioned that instruction address incrementing or address calcula
\ tions used to form the EA are performed on the low 16 bits only and will not alter the

BSR and DSR. This BSR or DSR may be altered only via a PSW swap, special instruc-
tion operations (SVC, LPS) or by use of the indirect address pointer described in this

section, ; zs
a

PROGRAM EXECUTION

| The CPU program consists of instruction and control words specifying the opera- =“ ir tions to be performed. This information resides in main storage and addressable
. registers and may be operated on as data. Instruction execution control is as defined : under the section on Machine Status and General System Operation. . Insert Storage a

Protect Bits, Load Program’Status, Internal Control and Set System Mask instructions
are privileged instructions and can only be executed in the Supervisor State. The
Program Status Word determines the current state of the CPU and the Supervisor Call
instruction can be used by the problem program to enter the Supervisor State.

STORAGE PROTECTION FEATURES wud

The storage protection feature prevents modification of specific main storage loca-
tions. Any location which could, for example, contain constant data or program instruc- ad
tions can be selectively protected from Store operations without restricting the use of

] other areas. Traps on store operations to specific data words can be inserted during
| program checkout. A privileged instruction, Insert Storage Protect Bits, is provided

to set or reset the protection bit associated with each halfword of main storage, Attempt- 7

ing to store data in a protected location will result in a program interrupt unless it is y
previously masked by setting the machine check mask (PSW bit 45) to zero. In this case vena Ee
the store operation does not occur. ‘aus

2-16

t

6246156B

INSTRUCTION MONITOR FEATURE ‘ ~

The storage protection bit described can also be used to flag an inadvertent attempt
to execute, as instructions, data stored in unprotected areas. The feature will ensure
that no program will continue to execute data as program instructions. An attempt to
fetch an instruction word which is unprotected will result in an interrupt if PSW bit 34
is aone. The feature can be masked by a System Mask Bit (bit 34 of the PSW). During
program checkout, this feature permits use of special software to aid debugging.

MACHINE STATUS

System status can be altered by the occurrence of interrupts, by the program, by manual intervention, and by external units such as another CPU. A doubleword register within the CPU contains a program status word (PSW) and is the focal point for CPU and system status conditions. .

PROGRAM STATUS WORD

The program status word (PSW), contains the basic information required for proper program execution. The 64-bit PSW includes the next instruction address, the current condition code, the carry and overflow indicators, the system mask for interrupts, and other fields significant to CPU operations. In general, the PSW is used to control
instruction sequencing and to hold and indicate the ‘status of the system in relation to the program currently being executed. The active or controlling PSW is called the
"current PSW."' By storing the current PSW during an interruption, the status of the
CPU can be preserved for subsequent use. By loading a new PSW or part of a PSW,
the state of the CPU can be initialized or changed. Figure 2-19 shows the PSW format.

The overall status of the CPU is preserved in the current PSW and the contents of the general registers. The PSW is automatically retained upon taking an interrupt. It is the programmer's responsibility to preserve the contents of the general registers when
- hecessary.

80
-4
8

SI
N

t
t

2
F

xo
g

ch

[

sj
ua

wu
no

0q

YS

YN

JO

UO
RD
aI
}0
D

oy
Ae
WO
]

“y
sa
we
r

ig

Sa
ni
yo
uy

Ay
sI
Al
UN

PU
B

SU
OH
DA
I|
OD

je
IN
ad
g

‘s
eu
eI
gI
]

AY
sJ
OA
IU

aV
eI
S

eN
YI
Y\

44

Certain other conditions that contribute to an overall system status situation are not automatically preserved when a CPU is interrupted. These conditions involve additional units and include the dynamic state of all other interrupts, the state of real time coun- ters, and I/O system status.

Masking is accomplished by setting the appropriate PSW bit to zero. a

PSW Fields

The PSW fields (Figure 2-19) are defined as follows:

1) Instruction Address — Bits 0 through 15 and 24 through 27 of the PSW
contain the information to determine the address of the next instruction
to be executed. The machine architecture makes provision to address
262, 144 fullwords. However, the space shuttle hardware implementation i
allows for addressing a maximum of 131, 072 fullwords.

2-17

Sa
ny
oi
y

Aj
su
sA
lU
N

Pu
e

SU
O}
Da
II
OD

Je
IN
ad
g

‘s
eu
eI
gI

As

ie
Al

UA

a}
eI
S
B
Y

sj
ua
un
s0
g

YS
YN

JO

Uo
ND
a!
}0
D

oy
Ae
WO
]

“y
se
we
r

iq

80
-4

8
SW

| O
F

xo
g

a
2

C4

9f

AA

ome 156B

2) CPU Status

Bit Use

16, 17 Condition code for certain arithmetic, logical and
I/O instructions .

Is Carry status bit indicator

19 Overflow status bit indicator

20 Fixed-point Arithmetic Overflow Mask

21 Reserved

22 Floating-Point Exponent Underflow Mask

23 Significance Mask

: clolf NYE Is Instruction Address c c{R{v a Ulm] Bsr DsR de ey eb dg SIM] Tor tt toy jy 0 ie ee we] “1516 17 1819 2021 22 23 24 27 28 31

SS \\ R iF : Interrupt Code System Mask Reserved. s}miw |s Liu yy |) foyozoso eve A ue Cl El Ce es
32 ree 38 39 40 43.44 45 46 47 48 63

’

0-15 Next Instruction Address 3 Exterdal Interrupt 7. Masi 1617 Condition Code : 37 External Interrupt 2 Mask System
18 Carry Indicator 38 External Interrupt 3 Mask Mask
19 Overflow Indicator 39 External Interrupt 4 Mask, 20 Fixed-Point Arithmetic Overflow Mask 40-43 Reserved

21 Reserved 44 Register Set (GR set 0 or 1)
22 Floating Point Exponent Underflow Mask 45 Machine. Check Mask
23 Significance Mask 46 Wait State Bit (Wait/Process)
24-27. Branch Sector Register 47. Problem/Supervisor State Contro! Bit 28-31 Datd Sector Register 48-63. Interrupt Code for Program Machine Check 32 Counter 1 Mask and Special External Interrupts
33 Counter 2 Mask System

34 Instruction Monitor Mask Mask
35 External Interrupt 0 Mask -

Figure 2-19, PSW Fields

2-18

wet

Sa
ni
yo
iy

AU
sI
aA
lU
N

pu
e

SU
OH
Ia
I|
OD

|e
IN
ed
sS

‘s
eu
eI
gI

As
ia
nl
Uy

a}
e1
S
B
M
Y

SJ
US
UU
ND
OG

Y
S
N

JO

UO
ND

A!
|O
D

oy
Ae
wW
o]

“3
se
we
r

iq

2h

O
F

xo
g

80
-4
8

SW

9F

sd

3)

4)

5)

6)

7)

8)

9)

10)

11)

6246156B

Branch Sector Register — Bits 24 through 27 replace the high-order bit of a
branch address when that bit is a1. Otherwise,.an implied sector register.
of 0000 replaces the high-order bit.

Data Sector Register — Bits 28 through 31 replace the high-order bit of a
data address when that bit is al. Otherwise, an implied sector register of
0000 replaces the high-order bit.

System Mask — Bits 32 through 39 are mask bits, The first two bits of the
System Mask are normally assigned to the two counters and the third to
the instruction Monitor Feature. The remaining five masks include I/O end
conditions, other application dependent items, such as, a manual interrupt
key and timer overflow conditions, ‘The instruction SET SYSTEM MASK is
provided for modifying this field.

Reserved — bits 40 through 43 are reserved.

Register Select Field — The register select field, bit 44, controls which of
two sets of general registers is in current use. When this bit is a zero, then

register set 0 is used; when this bit is one, then register set lis used. The |

set of general registers in current use.can be selected when a new PSW is

loaded. This can result from the execution of the PSW load instruction or
from an interrupt.

Machine Check Mask — Bit 45 is the mask bit which is used to inhibit machine
check interrupts. (See Figure 2-20). When this bit is a one, then machine

check interrupts, store protect interrupts, or external 1 interrupts detected |

by the CPU (see *note on Figure 2-20) are inhibited.

Wait State — Bit 46 determines the wait or processing (run) states. When this
bit is a zero, the CPU is in the processing state. When this bit is a one, the
CPU is in the Wait State.

Problem /Supervisor — Bit 47 determines the problem or supervisor states.
When this bit is a zero, the CPU is in the supervisor state and privileged
_instructions can be executed. When this bitis aone, the CPUisinthe = = _
problem state and attempts to execute privileged instructions are inhibited
resulting in.an interrupt.

Interrupt Code — Bits 48 through 63 are reserved for the interrupt code,
Program and machine check interrupt conditions and associated interrupt
codes are given in Figure 2-20.

INTERRUPTS

1) Power — This interrupt occurs when primary power is removed from the

system for any reason. The current PSW, the general register set 1 & 2, the

floating point registers, the counters 1 & 2 and the operational register are

put away (stored) in main storage for future reference. Figure 2-21 shows

the PSA assignments including putaway. When primary power is restored,

operation is initiated with the "power on PSW"' (if the power-up mode-is de-

fined as Run). This power-up condition is explained in General System Opera-
tion.

2-19

Sa
nt

yo
iy

Aj

si
en

lu
n

pu
e

SU
ON
Da
}|
OD

Je

IN
ad

g
‘s

aU
eI

gI
]

AI
sI
BA
IU
A

ay
es

eW
UD
IN
A

1
Oo
]
“
s
e
w
e
r

iq

80
-2

8
SW

s]
Ua

Wu
nd

0q

Y
S
N

Jo

uo
_O
a|
JO
D

oy
Ae

W

©
F

xo
g

h¢

e

9F

ss

interrupt Not. | Mask Interrupt] Interrupt CPU/IOP/AGE
Priority | Class] Old PSW| New PSW| Macksble] Bit | Pending| Code Accept Time Generated Intecrupt

vA [own [- ‘0004 x - = - Immediate cpu Power On
18 |ewr |- }oo14 Ke? ~ - - Immediate cpu [System reset
3 |mc~ Jooao*** Joos s jas - 0003 J End of MS cycle cru ‘CPU (encountered) storage parity for

‘main store (MS) access in the CPU unit
4 [Mc jooso*** |oosa - 6 |- 0002 End of 1/0 cycle cru JOP {encountered) stbrape parity for

§ MS access in either the JOP or CPU units
5 [Mc Joosot** Joos “| - 45 |- 0001, End of MS eyele cpu CPU extended (IOP unit) memory address

Parity
6 |Mc -Jooeo"** Joss = 45. | - 0004 End of MS cycle cpu CPU extended (10P uit) memory data

parity :
9 [uc - 45 |- 0005 jimniedi cru CPU ROS parity
7 |PE x - - 0003 fImmediate cru CPU address specification
8 PE - 45 - 0007 End of MS cycle ‘PU CPU store protection violation

11. |PE fooss' = - | 0000 During instr fetch cpu Wlegal operation
11 |PE fooss Joos = - 0001 | During addr generation | CPU Privileged instruction
11 |Pe Joos —_ooac - zo | ~ 0004 [During instr execution | CPU Fixed point overflow
11 |PE |oos8 Joos - 2a | - 0005. __ | During instr execution | CPU. Sigoiticance
11 [PE foo48 Joos x - - 0006 | During instr execution | CPU Divide or convert inputs not normalized
11>]PE Jooss Joos 2 |- 0009 | During instr execution | CPU Exponent underflow (floating point or

convert) i
11 |PE loose Joos x - - 000A | During instr execution | CPU Exponent overtiow (convert)
11 |PE |oo4B oo4c x = et 0008 [During instr execution | CPU Exponent overflow (floating point)
11 -|PE' Joosa jose x - - 000¢ | During anstr execution -| CPU Invalid divide zero divisor

{floating point]
12 |sc x & - = lAddress generation |. CPU ‘Supervisor call
14 Iss < a2. |x - End of instr cpu Real-time CLK.1
1s {sys - sa |x - End of instr cpu Real-time CLK 2
10. |Pe - 34] - - Beginning of instr tetch | CPU Instruction monitor (Masking can only

be performed in supervisor state.)
164 |sys Joo7s —foo7c - 35 |x - End of inste JOP. Watchdog timer (IOP group 1 exception)
168 |s¥S |oo78 Joo7c - as |x - End of inste JOP. OP voter (IOP group 1 exception)
rec. |sYs |oo7s. joo7c - 5. |x - End of inste 1oP IC/M idle (IOP group: exception)
16D |sys }oo7a ooze ~ 36. |x - End of instr 10P IOP ROS parity (IOP group 1 exception)
16E |svs |oo7s — joo7c - 35 |x - End of inste 1oP JOP fault (IOP group 1 exception)
16F |sys |oo7s —_joorc - 3s |x. = End of instr 1oP Spare (IOP group 1 exception)
17a [sys |o080 — |ooas - 36. |x 0000 End of instr 10P PCI/PCO Channel parity (IOP group

2 exception)
178" |sys_|ooa0 jogs ~ 96 |x 9000.” |End of instr tor DMA instruction read parity (OP group

: 2 exception)
17c |sYs jooeo —_joogs - 36 |x 0000 End of instr 10P DMA data read parity (10P group “ i 2 exception)
170 |sYs_ ooo }oogs * - 96 x 0000 End of instr lor Burst DMA word count excess

{NOP group 2 exception)
“476° |svs |o0e0 — |ooes - 36 x 0000 End of instr 107 }0 overfiow (IOP group 2 exception)

17F |sys jooso —_jooss - 96 |x 9000 During instr top DMA timeout (IOP group 2 exception)
17G_|SYS .}0080 j0064 f= 4968 LX. pnea. _|endotinse-. | CPU. ._ — | OMAaddressspecifiestion — -— —
17H |sYs |ooso —|ooes - 36 |X 0004 End of instr cpu OMA store protect violation
171 |sYs Joao —ooes -- 36845 | x 0002 | End of instr cPu DMA date write parity
171 |svs |oogo —|ooes - 36845 | x 0001 End of instr cpu PCI data parity
17 |svs jog —~ Jooes - 36 |x 0005 fend of instr =] CPU DMA address parity
17K |sys 0080. fooss - 36 |x 0008 End of instr AGE AGE interrupt

18A-18L |SYS ooea 0ogc - s7 x - End of instr 1oP (OP programmed interrupts (1-12)
194-190 |svs loo9o —|ooo4 - ze |x End of inste tor ‘Spare (4)
20A-200 |sYs jooss — joosc - 38 |x = End of inste lop Spare (4)

2a |pwr |- = x ~ - - End of instr cru Power off interrupt
28 |pwr joo |- x - - End of instr + 100u8 | CPU Power off interrupt delayed (POID)

13 Jpwr fooro |- - x. - ~ 4 End of instr cpu Initiate putaway

NOTE: “CPU must not be in halt mode, ‘Contains address of next instruction or second half of existing full-word instruction.
‘**CPU must be in halt mode:

‘Only occurs when in problem state: PSW 47:1

Figure 2-20. ‘Interrupt Codes

6246156B

zt 5
%

{
I

80
-2
8

SIN

t

eh

O
F

xo
g

[

sj
ua

wi
ns

og

WS

YN

JO

UO
RD
E}
|0
D

oy
Ae
WO
|

“y
se
we
r

iq

i
9F

AA

l

Sa
Al
yo
y

Ay
su
sA
lu
l)

Pu

e
SU
OI
}D
aI
IO
D

Je
Id
ad
g

‘s
eu
eI
gh

As
ie
al
uA

a}
eI
S

eU
YO
IN

2) Machine Check — When not masked, this interrupt class occurs following
the detection of a malfunction. The current instruction is then terminated
and the interrupt'taken. A diagnostic procedure may then be initiated. When
masked the interrupt does not remain pending. i

3) Program — This class of interrupt arises from improper specification or
use of instructions or data. Bits 20, 22, and 23 in the PSW.are provided
to permit masking program interrupts due to arithmetic exceptions such as
fixed point overflow. Bit 34 in the PSW is provided to permit masking the
instruction monitor interrupt. Bit 45 of the PSW (Machine Check Mask) masks
a store protection violation. When masked, program interrupts do not i
remain pending. When invalid instruction or address detection is provided,
the resulting program interrupts cannot be masked.

4) Supervisor Call (SVC) — This interrupt results from the execution of the
SVC instruction. The 16-bit effective address is placed in the interruption
code of the old PSW. This instruction can be used to switch from the
problem to the supervisor state, i

5) System — This class of interrupt results from program counter time outs
and conditions outside the CPU. Provision is made for 7 interrupt levels
within this class, and each is provided with a unique set of PSWs and a
mask bit. Two are program counters and 5 are external interrupts.

Any number of the 5 external interrupt conditions may be grouped into a
single level by the external equipment. In the event of simultaneous: exter-
nal interrupt conditions, the lowest numbered (bit within the system mask
field in the PSW) interrupt is taken first. These interrupts remain pending
when masked except when the machine check mask bit is one,

The two program interval timers are each 32 bits wide and decrement. The lower a
-----. ~~ ~16 bits. (least-significant-halfword)-of each counter-resides-in 16-bit binary hardware ~~ —--~~

counters that count down by one every microsecond. The high 16 bits (most significant
halfword) of each counter resides in main store. The high halfword lies in main store
location 00B0 for counter 1 and main store location 00B1 for counter 2. Every 65 ms
when the low halfword (in the hardware counter) passes from 0000 (hex) to FFFF (hex)
an interrupt occurs which can cause the high halfword in main store (via microcode)
to be decremented by one. This interrupt is transparent to the programmer until the
high halfword in main store equals 0000 (hex). When such an interrupt occurs, the
high halfword is decremented to FFFF (hex) and a PSW swap occurs, telling the pro-
grammer that the counter has timed out. Note that if the interrupt is masked the high
halfword will not be decremented by the microcode. The low halfword continues to
count down. The interrupt although remains pending and if unmasked within 65 ms, the
upper halfword will be decremented without a loss of a count.

The counters can be loaded and'read by the Internal Control instruction, described
in Section 10. ‘

2-24

S
a
n
y
o

AU
SI
BA
IU
N

PU
B

SU
OI
DA
I|
OD

Je
II
ad
g

‘s
eu
eI
gI

Al
sI
EA
IU
A

ay
eI
S

BU
YI
N

sj
ua
wi
nd
0q

YS
YN

JO

Uo
ND
aI
I0
g

oy
Ae
WO
!

“3
se
we
r

ug

80
-4

8
SW

)
OF

xo
g

/ b
Se X

9F

AA

6246156B

Interrupt Handling
ee

The machine check, program, SVC, and each system interrupt have two related PSWs called "old" and "new" in unique main store locations. This zone of main store is referred-to as a preferred storage area (PSA), which is illustrated in Figure 2-21,

In all cases and interruption involves merely storing the current PSW in its old posi- : tion and making the PSW at the new position the current PSW. The old _PSW holds all - the necessary status information in the system existing at the time of {nterruption. If, at the conclusion of the interruption routine, there is an instruction to make the old PSW i the current PSW,. the system is restored to the state prior to the interruption, and the — interrupted routine continues: This means the programmer must clear the fixed point overflow indicator before being reloaded. Note that it is possible to switch to the alter- nate set of general registers when the PSW swap takes place. This set of registers is ua defined by bit 44 in the new PSW.

Interruptions can only be taken when:the CPU is interruptable for a given source, The system mask, machine check mask bit, floating-point exponent underflow mask, the significance mask, and the fixed-point overflow mask bits in the PSW define the interruptable state of the CPU with respect to those sources, When masked, system interrupts remain Pending while machine check and program interrupts are ignored.

The power transient, certain Program interrupts, and the SVC interrupt cannot be masked.

Interrupt Priority

Simultaneous interrupt requests are honored by the CPU. The smaller the hard- —) ware priority number the higher the priority. It should be noted that many of the A interrupts listed in Figure 2-20 have the same priority number, this is because these interrupts are mutually exclusive and priority has no meaning.

When more than one unmasked interrupt requests service, the action consists of storing the old PSW and fetching the new PSW belonging to the interruption which is taken first. This new PSW subsequently is stored without any instruction execution and the next interruption PSW is fetched. This process continues until no more inter- ruptions are to be serviced. When the last interruption request has been serviced,... -—. — ---- instruction execution is resumed using the PSW last fetched. The order of execution of the interruption subroutines is, therefore, the reverse of the order in which the PSWs are fetched, Machine check and power transient, when they occur, do not allow. any other interrupt to be taken.

The above priority is used to resolve race conditions due to multiple interrupt conditions, Since separate mask bits and PSW pairs are provided foreach external . i interrupt source, the priority in handling these interrupts is, actually determined by : Pe the content of thé new PSWs. When a PSW swap occurs, further action in regard to system (and: machine check) interrupts is determined by the mask fields in the new PSw.

Interrupt Masking

Individual masking of several of the interrupt types is possible. When masked off, al the interruption is either ignored or remains pending for later'execution. The mask-
ing capability for each of the interrupt types is as follows:

fs

1) Power Transient.— Cannot be masked off.
id

2-22

rnd

sa
ny

oi
y

Ai
ss

an
iu

n
pu

e
su
oN
da
l|
o9

je
!l

sa
dg

‘s

eu
ei

g!
y

As
ie
nl
uy

ay
ei

s
eN
YO
IY

SJ
US
UN
DO
G

Y
S
N

JO

UO
HD
a!
|O
D

oy
Ae
WO
]

“Fy

se
we
r

ig

80
-4
8

SW

O
F

xo
g

hh

9f

ss

(

Se}
=|

[
t

t
t

l

6246156B

2) Machine Check — Can be masked off by setting the machine check mask bit
45 in the PSW equal to zero. When masked off normal instruction sequencing
occurs, and the interrupts do not remain pending.

3) Program — Three of the 11 program interrupts are capable of being masked
off; fixed-point arithmetic overflow, exponent underflow, and significance,
by setting the appropriate mask bits in the PSW equal to zero. When masked
off these interruptions do not remain pending. Also, the storage protect in-
terrupt can be masked via the machine check. mask (PSW bit 45). Note that
if a PSW with both Fixed Point Oyerflow Indicator and mask (bits 19 and 20)
set is used, the interrupt will occur.

4) Supervisor Call — Cannot be masked off,

5) System — Each level of external interrupts can individually be masked off
by setting the corresponding system mask bit in the PSW equal to zero.
Interrupts that are masked remain pending,

Preferred Storage Area (PSA) Assignments B

The contents of the PSA are shown in Figure 2-21 with the main store address
expressed in hexadecimal notation. The following PSA locations must not be store
protected:

1) Power off interrupt PSW

2) All old PSW locations

3) Main store location 0087 (used by microprogram for I/O operations)

4) Counter 1 &2, highhalfword locations 00B0 & 00B1

5) Putaway locations (00CO through 0103),

In addition, MS location 0087 must be set initially to zero for use by self test

= GENERAL SYSTEM OPERATION ;

The various states entered by the computer and their relationship to the basic
operator controls are shown in Figure 2-22. The basic controls provided for the
operator are power-on, initial program load (IPL) and the system reset key. Among
the many controls available, these functions have special significance because of their
relationship to an unconditional system reset sequence. These functions each produce
a system reset sequence which applies to the computer, I/O channels, and peripherals,
Further operation within the system differs, however, as explained in the following
sections.

Power-On

One of two modes of operation must be specified for the system at power-on. The
fiyst results in a system reset followed by the computer entering the stop state. In
this state, instructions are not processed, interrupts are not accepted, and system
timers are not updated. This state is termed "manual" because further operation must
be determined by the operator.

2-23

S
a
n
y
o

AU
sI
BA
IU
N

PU
B

SU
O}
DA
IO
D

Je
IN
ad
g

‘s
ou
eI
gI

As

Je
nl

Up

aV
eI

S
E
Y

SJ
UB
UI
ND
OG

YS
YN

JO

UO
Nd
a!
]O
D

oy
Ae
wW
O]

“yj

se
we
r

4g

tl
,
O
F

xo
g

80
°4
8

SI
N

9F

ss

(6246156B
|

000

002

003

012

013

0 1 2 3 4 5 6 7 8 9 A B Cc o E F

<— Res. for Self-Tests 1 Power On Reserved 4 Reserved
Power Off System “Interrupt PSW Reset PSW reserved .

Reserved

Reserved
Machine Checks |-—————~ Program Checks <= Old PSW i New PSW. Old PSW. ~—— New PSw————»| ; Supervisor Call (SVC) |—____________ p, ig ee Old Psw 1 New PSW Program.Counter 1 : Program Counter 2 Old PSW { New PSW Old PSW. <—— New PSW ——> Instruction Monitor External Interrupt 0 Old PSW 1 New PSW. Old PSW + New PSW.

External Interrupt 1 External Interrupt 2 Old PSW { New PSW. Old Psw. { New PSW
External Interrupt 3 External Interrupt 4 ‘Old PSW 4 New PSW: Qid PSw >}+——— New PSw——_+ |

Reserved
HA
Ctr. 1 Jew. 24 : Reserved

Put Away: Locations for General Register Set) 2
——_—— Put-Away Locations for General Register Set 2 SE

= Put-Away Locations for the Floating-Point Register Set ———__ |
<————_—_——_—__—— Put. Away Locations for Microprogram Working Registers, |

bt —— Put Awa : 7 ier. 1] cr. 2 [Op Rea | 7 Reserved. for Fault Detection ——___-________ —
Reserved for Fault Detection ——A—____________ |

Reserved for Fault Detection ————_______,]
— Rrstived for FauitiDetection

Figure 2-21. Preferred Storage Area Assignments

@ Power-On

@ System Reset
@ IPL

System Reset

Sequence

(IPL) | \ (Powe -On Run Mode)

ao = = = Execute PID 7% * [= _ —

Sequence i

(System Reset) 1
Use
Power-On

: Stop Key Continue Key PSW
Re System ‘Load PSW Key 7 eset PSW 7

‘ \
!

> <— |
I 1
| |
| (Instruction |
\ or Interrupt) |
| (Interrupt) |

I |
| 7 + Tiwait

Le til ainda eee Se ny state PSI

Figure 2-22, CPU Mode Switching

2-24

sa
ny
oi
y

Ai
su
an
lu
N

pu
e

sU
oo
aI
|O
D

je
Id
ad
g

‘s
eu

ei
gr

Ay
ss
en
lu

ay
el
s

eN
YD
IM
Y,

sj
ua
wi
nd
0q

Y
S
N

JO

UO
ND
a}
I0
g

oy
Ae
WO
]

“y
Sa
we
r

JG

[
i

80
-4
8

SI
N

th

OF

xo
g

t
t

f
9F

As

x (

62461568

The second mode at power-on enters the run state after the system reset is com-
plete. The instruction stream is initiated and interrupts are processed. The com-
puter can be removed from the run state by certain instructions, interruptions, and
by manual intervention.

System Reset

The system reset function rests the computer system to a known state such that
processing can be initiated without the presence of machine checks, except for those
caused by subsequent machine malfunctions, The system reset function causes the
following:

e@ CPU pending interrupts are reset

e Internal timers are reset to all ones (1's)

e Status registers are reset

IPL

The use of the IPL function is independent of the current state of the system,
IPL first causes a system reset function,

rating State

The run state and wait state shown in Figure 2-22 are collectively termed the
operating state for the system. When the computer. is in the run state, instructions
are executed in the normal manner. An instruction may be encountered or an inter-
rupt processed that forces the computer into the wait state. The computer does not
execute instructions in the wait state, but it is interruptable when not masked. System
timers are updated and input/output operations continue in the wait state,

The wait state may also be entered after completing IPL or by special operating
intervention via the stop state. (Dotted lines on Figure 2-22). This action is the result
of the wait bit being set in the controlling PSW.

Program State Alternatives

Certain other states exist within the CPU that contribute to its overall status.
These states are directly related to program operation and are

1) Masked or Interruptable State — The computer may be masked for

certain interrupt conditions at any given time. These conditions

generally remain pending within the system until the masked condi-

tion is changed by the program, Certain error conditions cannot be
masked off, while other error conditions such as program checks are

ignored when specifically masked.

2-25

sa
ni
yo
iy

Ay

su
an

lu
n

pu
e

SU
ON

da
!|

OD

Je
IN
ad
g

‘s
eu

eI
q!

AU

sI
AI

UA

ay
eI

S
BY

YO
IN

Y

8
0
-
4
8

SA

Ch

OF

xo
g

s]
Ua

WN
D0

G
W
S
N

40

UO
NO

B|
|O

D
Oy
Ae
WO
]

“g
se
we
r

uq

o
f
 a4

| 6246156B

K
I
N
G

t % .
2) Supervisor or'Problem State — In the supervisor state all instructions

are valid. In the problem state, I/O and certain other instructions are
invalid, and their use produces an error interrupt. This state is con-
trolled by a bit inthe PSW. The SVC instruction is provided to switch
from problem to supervisor state. The LOAD PSW instriction is used
to switch from supervisor to problem state.

3) General Register Selection — Bit 44 in the current PSW selects the set
of general registers in current use,

ARCHITECTURAL GROWTH

Throughout this Principles of Operation manual, architecture conventions are
defined or facilities are marked "reserved" to retain flexibility for future implemen-
tations and extensions. The computer operates in conformance to this manual when
architecture definitions are followed consistently. Hardware operation when these
rules are violated are not defined and are properly outside the scope of this manual
to retain flexibility of implementation. 'Programmer discovered" operations that
violate or go beyond the definitions described herein but produce "useful" functions
should not be used and should be considered "reserved" because the results obtained
may vary from computer to computer or even release levels for one computer de-
pending upon options selected or the design release level to which the hardware is
manufactured. °

2-26

Sa
ny

ou
y

AU
sI
BA
IU
N

PU
B

SU
ON
DA
I|
OD

Je
I9
ed
g

‘s
eu
eI
gI
)

Ay
sJ
aA
lU
P)

A1
eI

S
EN

UD
I\

i
80

-4
8

SW

-2
F

xo
g

I
Ch

SJ
UB
LU
ND
OG

Y
S
N

Jo

UO
nD
a}
]O
D

oy
Ae

WO
],

“3

se
we
r

ig

L
t

9f

AA

t

6246156B

Section 3

CPU I/O

The transfer of information between the channel and input/output devices occurs
in one of two modes:

1) Direct Memory Access (device initiated and controlled)

2) Program Controlled (CPU initiated and controlled).

DIRECT MEMORY ACCESS OPERATION

Direct Memory Access (DMA) operations are externally initiated. Although the
resulting cycle steal memory access preempts CPU accesses, thereby slowing pro-
gram execution, DMA operations are’ not under program control and are transparent to the functional operation of the CPU.

PROGRAM-CONTROLLED INPUT /OUTPUT OPERATION

Program-Controlled I/O operations transfer one fullword between a CPU general register and an I/O device. The operation is initiated by executing the privileged in- struction ''PC Input/Output." A control word (CW), in a second general register speci- a fied by the instruction, defines the specific I/O operation and the specific module or device associated with the operation,

PROGRAM-CONTROLLED 1/0 INSTRUCTION

Op RI R2 oo oo
a

0 4 5 7 8 11:12:13 15

Mnemonic Format

PC R1, R2

DESCRIPTION

The Input/Output instruction transfers a fullword to or from the general register
specified by Rl. Direct I/O operations are defined by a control word (CW) contained in
the general register specified by R2. The CW format is shown below:

Command: (M)

fs Oo;

O
r

s
a
n
y
o

Aj
su
an
il
un

pu
e

su
oH
da
I|
O9

Je
!I

Ne
ds

‘s
ou
eI
gh

As

ia
nl

up
,a

}e
1S

eY

OI
NY

s]
ua
tu
no
0g

YS

YN

JO

Uo

ND
a!
}0
D

oy
Ae
WO
]

“3
se
we
r

ug

Ch

OF

xo
g

80
-4
8

SI
N

9f

AA

The fields of the CW are defined as follows:

ID: For an input operation, bit 0 must be coded as 0. For an out-
put operation, this bit must be coded as 1.

Command (M): . Bits 1-31 specify the particular operation to be performed,
and can be used to expand the basic input and output opera-
tions, For example, they can be coded to specify sense and
control operations. Additionally, DMA I/O operations can
be initialized by a Direct I/O. In executing an input opera-
tion, the channel (1) transmits the 32-bit CW to the external
device; and (2) subsequently loads 32 bits of information,
transmitted from the addressed device, into general register
R1.. In executing an output operation, the channel (1) trans-:
mits the CW to the external device, and (2) subsequently
transmits bits 0-31 of general register R1 to:the addressed
device. The specific definition of the command bits is des= °
cribed in the Principles of Operation for PCI/PCO, MSC,
& BCE, The only restriction placed on the system design
is the definition of bit 0.

Each control unit connected to the channel is required to accept the CW, decode
the control unit and device address, and perform the input or output operation defined
by the command field. The device address field identifies, for example, the flight
control subsystem, the radar altimeter, the navigation sensors, the displays, or the
mass storage unit, The number and the types of devices connected to the channél and
their address assignments depend on the system configuration.

If the IO handshaking operation does not complete within 9 microseconds for CW
& DATA OUT transfers or 6 microseconds for data in transfers, the Program Con-
trolled instruction will terminate and the condition code will be set.to reflect the time-
out, i ;

RESULTING CONDITION CODE ==

00 Operation successful .

01 Interface time-out error: operation not successful

INDICATORS

The overflow and carry indicators are not changed by this instruction.

Program Interrupt — Privileged instruction

PROGRAMMING NOTE

This is a privileged instruction and can only be executed when the CPU is in the
supervisor state. ‘ s

3-2

?
[

80
-4

8
SW

[
i

i
Ch

@F

xo
g

s]
ua

Wi
ns

0q

Y
S
Y
N

JO

UO
NO
Aa
I|
OD

oy
Ae
wW
o|

“Fy
 s
ew
er

ig

I
9

44

t

Sa
ni

yo
iy

AU
SJ
aA
IU
N

PU
B

SU
O}
DA
!I
OD

Je
I9
ad
g

‘s
eu
eI
g!

As
ia
Al
UA

a}
eI
S

eY
YO
I\
Y

6246156B

Section 4

FIXED-POINT ARITH METIC

For all of the following sections, [e] [#] indicates that the use of indirect addres- sing and/or autoindexing is optional. For example, M specifies direct addressing with- out autoindexing, while M# specifies direct addressing with autoindexing.

| The arithmetic instruction set performs binar:
tional operands. Fullword operands are si
are represented in twos complement form,

'y arithmetic on fixed-point, frac-
gned and 32 bits long, Negative quantities

Halfword operands are 16 bits long. Within the CPU, a halfword operand from storage is developed into a fullword operand prior to instruction execution, This is done. by using the contents of the halfword second operand location as the most signi- ficant 16 operand bits and generating 16 low-order zeros, This result is the second

operand,

ADD

Op R1 R2
Opp pof pty yofo} | |
0 45 LBs 11,12 13 15

\ Mnemonic Format
. AR R1, R2

Op R1 Disp* B2 *Displacements of the form 111XXX are not valid. poppe ee !
0 45 78 13.14 15

Mnemonic Format

A R1, D2 (B2)

A
Op R1 M) B2 Address Specification OfOjopopoy Py ttyryiyifo ! Oe DO 0 45 78 111213 14 15 16

31
AM Mnemonic Format

Extended: oO A R1, D2 (B2) Disp
LJ se

Indexed: 1 A@] (#1 R1, D2 (x2, 82) x " Vye Disp
| i

4-1

Se
nl
yo
uy

Ay
si
aA
lu
n)

PU
e

SU
OH
DA
!I
OD

Je
I9
ad
g

‘s
eu
eI
gI
]

AI
SI
AA
IU

BJ
eI
S

EL
YO
IY
,

9=z
5
3
& oo
eo
a0
So
o &
a
°°

QO

2

29
a4

SN zg
SS

8
QO
o

3
oO
2

oom q

nN

6246156B

DESCRIPTION

The fullword second operand is added to the contents of general register Rl. The result replaces the contents of general register Rl. The second operand is not changed.

"RESULTING CONDITION CODE

00 The result is zero-
11 The result is negative
01 The result is positive (>0).

INDICATORS

The overflow indicator is set to one if the magnitude of the sum i8' too large to be represented in the general register; that is, greater than 1-273! or jess than -1, If the overflow indicator already contains a one, it is not altered by-this instruction, (Overflow can be reset by. testing or by loading the PSW,). The carry indicator:is‘set to indicate whether or not there is a carry out of the high-order bit position of the general register,

Program Interrupt — Fixed point overflow

ADD HALFWORD

Op R1 Disp* B2 “Displacements of the form yO OO dy 111XXX are not valid.
o 45 7 8 13:14 15 (i

Mnemonic Format
AH R1, D2 (B2)

, Op RI, i B2 Address Specification
1LOyojojo} pp typ ito be ee ee eg Oo 45 78 AY VIB ATS) 1G peace aaa Sere ee ee Tee age =

AM | Mnemonic Format oN ~
Disp

Pxtended” 0" "AH Btpetpa Ly bob Pe pt
Indexed: I AH[@] [#] R1,02 (X2, B2) x a It Disp

|_| dis bff bed pep

DESCRIPTION

The halfword second operand is first developed into a fullword operand by append- ing 16 low-order zeroes. This fullword operand is then added to the contents of general
register Rl.. The result’replaces the contents of general register Rl. The second
operand is not changed. :

4-2

S]
UB
LU
ND
0G

YS
YN

J0

UO
ND
aI
|0
D

oy
Ae
WO
]

‘
s
e
w
e
r

4g

Se
ni
yo
iy

Ay
si
en
lu
n

pu
e

Su
oN
de
||
O9

Je
lo
ad
g

‘s
au
ei
qT
]

As
ia
al
un

ay
er
s

ey
yo
I\

6246156B

_ RESULTING CONDITION CODE

YQ 00 The result is zero
11 The result is negative
01 The result is positive (>0).

INDICATORS

The overflow indicator is set to one, if the magnitude of the sum is too large to be represented in the general register; that is, greater than 1-2-31 or less than -l. If the overflow indicator already contains a one, it is not altered by this instruction, | J (Overflow can be reset by testing or by loading the PSW.) The carry: indicator is set to.

cm ; Program Interrupt — Fixed point overflow
a

ADD HALFWORD IMMEDIATE ————S MEDIATE

| Op oPx R2 Immediate Data LO Ofopojots siyryo fo |_| Po rp ' 0 45 78 11:12 13 15 16

31
~

Mnemonic Format
-

AHI R2, Data

ay DESCRIPTION

Instruction bits 16 through 31 are treated as immediate data. The halfword im- - mediate data is first developed into a fullword operand by appending 16 low-order zeroes. The resulting fullword operand is then added to the contents of general regis- ter R2. The result replaces the contents of general register R2. The immediate op- Pp =. erand is not changed. n

co RESULTING CONDITION CODE ‘ g.
. :

oO 00 The result is zero oo 11 The result is negative
| ‘ 01 The result is positive (>0). ~ |

*

w INDICATORS
x

iw The overflow indicator is set to one if the magnitude of the sum is too large to be Q represented in the general register; that is, greater than 1-2-31 or less than -1, If 3c the overflow indicator already contains a one, it is not altered by this instruction. er (Overflow can be reset by testing or by loading the PSW.) The carry indicator is set to indicate whether or not there is a carry out of the high-order bit position of the general register.

nm”
’ 71 Program Interrupt — Fixed point overflow

a t
Nr

4-3

Se
nl
yo
y

Ay
ss
an
lu
n

pu
e

su
oN
oa
l|
O5

|e
l9
ad
g

‘s
eu
es
q!
]

Au
su
an
lu
n

a1
e1
S

BY
YO
IN

SJ
UB
LU
ND
OG

VS
VN

Jo

UO
NO
a!
IO
D

oy
Ae
WO
|

“Fy

se
we
r

ig

Ph

OF

xo
g

80
-4
8

SI
N

9f

dA

(62461563

ADD TO STORAGE

A
Op R1 mi B2 Address Specification

OpOyojojoy yyy tps | Poteet pt petty ye i yy
0 4B Pog _17°1213 1415 16 : 31

AM Mnemonic Format

Extended: 0, AST R1, D2 (B2) Disp
: 1 Sa tan Leas Wel i |

Indexed: 1 AST(@] (#]. R1,D2 (x2, B2) 1 Disp

aN Wl Wee Ei

DESCRIPTION

The contents of general register R1 is added to the fullword second operand, The
result replaces the contents. of the second eperand-location; ‘The first operand is not —
changed.

RESULTING CONDITION CODE

00 The result is zero

11 The result is negative

01. The result is positive (>0).

INDICATORS

The overflow indicator is set to one if-the magnitude of the sum is too large to be
represented in the second operand location, That is, greater than 1-273 or less than
-1, If the overflow indicator already contains a one, it is not altered by this instruc-
tion. (Overflow can'be reset by testing or by loading the PSW.) The carry indicator is
set to indicate whether or not there is a carry out of the high-order bit position of the
result,

Program Interrupt — Fixed point overflow

COMPARE

Op Ri R2

OPO po} PE tr yiprjofo} |
a) 45 78 11 1213. 15

Mnemonic Format
cR Ri, R2

Op. RI Disp* B2 *Displacements of the form 111XXX are not valid.
Oj; ojo; jot ft | tt} tf ! :
0 45 78 13.1415

Mnemonic Format.
C R1, D2 (B2)

4-4

Se
nl
yo
ui
y

Au
si
en
lu
n

pu
r

Su
oN
oa
i|
O9

Je
l9
ad
g

‘s
eu
es
q!
]

As
ia
nl
Un

al
eI
s

eL
YD
IN

y

ed

se

Sz:
g On
3
& oO
mv +7
S$ @
o 2 =
°o ie
2
2 W
5 Oo
gE
ok
Zal
SO
n
>is
Oo oe
Qa
Cc

3
OQ
>

B
nm

na

lane

= ; :
Op RI m| 82 Address Specification

O;OpOyiyo] yy La I Jose Fee ep pepo pep
0 45 78 1112131415 16 31

AM’ Mnemonic Format

Extended: 0. Cc R1, D2 (B2) Dae!
| Lijit

\ / Indexed: 1 C{@] [#)R1, 02 (x2,82] x fal, Disp
! Littl

DESCRIPTION

at the end of instruction execution.

RESULTING CONDITION CODE

INDICATORS

00 The contents of general re
1l

01

COMPARE BETWEEN LIMITS COMPARE BETWEEN LIMITS

Op Ri R2

Olofolol a | i titwijolsl | |
0 45 7 8 ~ 17:12:13 15

Mnemonic Format
CBL R1, R2

DESCRIPTION

result of the comparison.

The fullword second operand is algebraicall
eral register R1. The contents of

4-5

gister R1 equals the second operand
The contents of general register Rl are less than the second operand
The contents of general register Rl are greater than the second operand.

The overflow and carry indicators:are not changed by this instruction.

A compare between limits instruction occurs, The condition code reflects the

'y compared with the contents of gen-
general register R1 and main storage are not charged

6246156B

Sa
nt
yo
uy

Ay
si
aa
lu
n

pu
e

Su
oq
oa
||
O9

|e
lo
ad
g

‘s
au
es
g'

Ay
su
an
lu
l

ay
er

s
eY
UD
IN
\\

sj
Us
WI
ND
0q

YS
YN

JO

UO
HD
aI
|0
D

oy
Ae
wW
O|

“J
sa
we
r

gq

eh

OF

xo
g

80
-4
8

SI
N

9%

ds

(6246156B

(R1) Addr of Operand modifier

(R2) | Addr of Limits modifier - |
The address. of-a-16-bit two's complement integer operand is contained in bits 0

through 15 of general register Rl. The address of a fullword with the following format
containing the upper and lower limits is contained in bits Q through 15 of the-general
register R2: es

Upper Limit Lower Limit
PAR ee ep ep ey

15 16 31

These limits are 16-bit two's complement integers.

In bits 16 through 31 of general registers Rl and R2 are 16-bit two's complement integer modifiers. After the addresses in bits 0 through 15 have been used to locate the operands, each modifier is added to the most significant 16 bits of the registers. The result replaces.the most-significant.16 bits. The modifier is not changed, over- flows and carry out of the most~significant address bit ‘are ignored, se

RESULTING CONDITION CODE

00 Within Limits: Lower Limit S Operand < Upper Limit
01 Above Upper Limit: Operand > Upper Limit eae
11 Below Lower Limit: Operand < Lower Limit

INDICATORS

The overflow and carry indicators are not changed by this instruction.

COMPARE HALFWORD

Op RI Disp* B2 "Displacements of the form NO pOprpor tt Lt} | 111XXX are not valid.
0 45 78 13 14 15

Mnemonic Format

CH R1, 02 (B2)

Op Ri ml 82 _ Address Specification
TpOjopt yop ep yt yar fo | Ppt ee tt ttt

0 45 78 11121314 15 16 31

. AM. Mnemonic Format
‘ ae eee Rormagy "St cade} Extended: 0 CH R1, 02 (B2) Disp

Lt Ljept ty i tt

Indexed: 1 CHI@] [#] 1, D2 (X2,B2) x 1A} I Disp
J Pept ttt tt

4-6

sa
ny
al
y

Ay
si
an
lu
n

pu
e

su
o}
oa
||
o9

Je

ls
ad

g
‘s

au
ei

qr
]

Aj
is
aa
lu
p

ay
e}

s
eN
Yo
IM
\

s]
ua

Ui
nd

0q

W
S
N

JO
UO
HD
a1
|0
9

oy
Ae
WO
|

“Fy
 s

aw
er

ig

L
80

-2
8

SW
.

I
t

p
f

a

f:,

“h

@F

xo
g

6246156B

DESCRIPTION

The halfword second operand is first developed into a fullword operand by ap- pending 16 low-order zeros. This fullword operand is then algebraically compared a with the contents of general register Rl. The contents of the general register and main storage are not changed at the end of instruction execution.

RESULTING CONDITION CODE

90 The contents of general register Rl equals the developed fullword operand 11 The contents of general register Rl are less than the developed fullword operand 01 The contents of general register Rl are greater than the developed fullword operand,

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

After development, all 32 bits of the fullword operand participate in the compar- ison,

COMPARE HALFWORD IMMEDIATE ————_—_—__ LH IMMEDIATE

Op OPX R2 Immediate Data
MOP op yori tigiy oto} | 7 pute peepee yy

0 45 7 8 11:12 13 15 16
31

“ Mnemonic Format

CHI R2, Data +

DESCRIPTION

Instruction bits 16 through 31 are treated as immediate data. This halfword of immediate data is first developed into a fullword operand by appending 16 low-order zeros. This fullword operand is then algebraically compared with the contents of : ‘ a general register R2. The contents of the general register and main storage are not changed at the. end of instruction execution.

RESULTING CONDITION CODE

00 The contents of general register R2 equals the developed fullword operand
11 The contents of general register R2 are less than the developed fullword operand
01 The contents of general register R2 are greater than the developed fullword

operand.

sa
ny
ou
y

Ay
si
aa
lu
n

pu
e

su
on
da
lj
o9

je
lp
ad
g

‘s
au
ei
g!

AI
si
an
lU
A

ay
er
s

eU
Yo
I\
\,

9=
5D
3
& oO
nN
a O
$
o
< =
°°

QO
o
2 Ww
20
géx
2

zo B
> Lf

sf
QO
Cc

3
oO

2
oom

TN

N

6246156B

INDICATORS:

The overflow and carry indicators are not changed by this instruction,

PROGRAMMING NOTE

After development, all 32 bits of the fullword operand participate in the comparison,

'

COMPARE IMMEDIATE WITH STORAGE

Op OPX Disp* B2 Immediate Data
Orme yoo | Popp py ee yep ey yy

oO 4 5 78 13°14 15 16
31

Mnemonic Format + “Displacements of the form
CIST D2 (B2), Data 111XXX are invalid.

DESCRIPTION

Instruction bits 16 through 31 are treated as immediate data. This is algebraically
compared with the halfword main storage operand. The immediate data and the contents of
of main storage are not changed ‘at the end of this instruction.

RESULTING CONDITION CODE

00 The immediate data equals the halfword main storage operand
11 The immediate data is less than the halfword main storage operand
01° The immediate data is greater than the halfword main storage operand.

INDICATORS

The overflow and carry indicators are not changed: by this instruction.

PROGRAMMING NOTE.

The Main Storage location containing the halfword operand must not be store pro-
tected. If the location is store protected, execution of this instruction will result in a
store protect violation interrupt.

4-8

L.
.

S
a
n
y
o

AU
sJ
aA
lu

pu
ke

SU
O_
IA
!|
OD

Je
IN
ad
g

‘s
au

eI
g!

]
As
Ie
AI
UA

ay
eI
S

BY
YO
I\
Y

sU
aW
Nd
0q

YS
YN

JO
UO
HD
aI
|O
D

oy
Ae
wW
o]

“yj

sa
we
r

3q

Sh

©
F
,
.
x
0
g
 ,

80
r2
8-

S
N
.

9F

A

DIVIDE
.

Op R1 R2
ee yy ofo Lj
0 4 5 78 11:12 13 15

Mnemonic Format

OR R1, R2

Op Ri Disp* B2 “Displacements of the form Opps; ppt yyy | 111XXX are not valid.
0 45 78 13 14 15

Mnemonic Format

Oo R1, D2 (B2)

Op R1 a B2 Address Specification OPO; ty yt yi fo | poet ep py 0 45 7 8 11:12:13 14 18 16
31

AM Mnemonic Format

Extended: 0 | D R1, 02 (B2) Disp i 5: Ld Jes P feed ay fy
Indexed: 1 D([@] [#] 1, D2 (x2, Bg} x |r dy Disp

; |i JA Pde pipet yy

DESCRIPTION

The first operand, a 64-bit, signed 2's complement dividend, is contained in the _even/odd general register pair Rl and RI@1. The most-significant portion is in R1. When R1 indicates an odd gene,al register, the first operand is developed by appending 32 low-order zeros to the contents of R1. The second operand is the divisor.

The first operand is divided by the second operand, The unrounded quotient re- places the contents of general register Rl, The remainder is not developed, When R1 is even, specifying an even/odd general register pair, the contents of R1Q1 are inde- terminant at the end of instruction execution. When R1 is odd, R1@ 1 is never changed, The second operand is not changed.

When the relative magnitude of dividend and divisor is such that the quotient can- not be expressed as a 32-bit signed fraction, an overflow is generated. In this event, the contents of both R1 (and R1@1 when R1 is even) are indeterminant upon instruction termination.

RESULTING CONDITION CODE

The code is not changed.

6246156B

Sa
ny
ou
iy

Ay
ss
en
lu
n

pu
e

su
oH
da
||
O9

Je
Id
ad
g

‘s
au

ei
q'

]
Aj
si
en
lu
p

ay
e}

S
eY

YO
I\

\
sj
Us
WN
d0
q

YS
YN

JO

UO

HD
aI

|0
D

oy
Ae

wW
O]

“Fy

se
we
r

iq

ch

®
F

xo
g

80
-4

8
SI

N
9f

AA

6246156B

INDICATORS

The overflow indicator is set to one when the quotient cantiot be represented, or
when division by zero is attempted. The diyidend is destroyed inthese-casés: “Ifthe
overflow indicator already contains a one; it is not changed. The carry indication has
no significance following execution and is indeterminate. ;

Program Interrupt — Fixed point overflow

EXCHANGE UPPER AND LOWER HALFWORDS

Op RT R2

Op opoy fy try oti} yy
0 45 7 8 1112 «13 15

Mnemonic Format

XUL R1, R2 Ni ghee leche . ern

DESCRIPTION

The upper halfword of general register Rl is exchanged with the lower halfword
of general register R2. , Bits 0 through 15 of general register Ri replace bits 16 through
31.of general register R2 while simultaneously bits 16 through 31 of general register
R2 replace bits 0 through.15 of general register Rl.

RESULTING CONDITION CODE

The code is not:changed,

INDICATORS

The overflow and carry indicators are not changed,

4-10

Se
nl
ya
iy

Ay
si
an
lu
n

pu
e

SU
ON
d@
II
OD

Je

1N
ad

g
‘s
eu
eI
qT

As
ia
Al
UA

a}
el
s

eU
YD
IN

S]
UB
WN
D0
G

YS
YN

JO

UO
HD
aI
I0
D

oy
Ae
WO
!

“3
se
we
r

iq

80
-4
8

SW

t

t

INSERT ADDRESS LOW

Op R1 Disp” B2

Yitivofol fit yyy yy fy
0 4°65 7 8 13°14 15

* Displacements of the form 111XXX are not valid.
Mnemonic Format

TAL R1, D2 (B2)

A ,
Op Ri M] B2 Address Specification tiititotol | | ta aqitifa Lititistt itty yy yy | 0 4 5 7 8 11121314 15 16 31

AM Displacement

8 Littiteit try yyy |
16 31

|

x ATt Displacement

1 | Liititit) |
16 31

AM Mnemonic Format

Extended: 0 IAL RI, D2 (B2)
Indexed: 1 IAL [@][#] R1, D2 (x2, B2)

DESCRIPTION

A 16-bit effective address is developed in the normal manner without expanding to 19-bits.' This address itself replaces the 16 low-order bits of general register R1. The 16 high-order bits of general register Rl are not changed,

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

4-11

6246156B

Sa
ny
ou
y

Al
ls
Ja
nl
uN

Pu
e

SU
OD
a1
IO
D

Je
Id

ed
g

‘s
eu
ei
gr
]

Aj
si
aA
lU
A

ay
el
g

eN
YS
I\
Y

s]
Ua
WN
d0
G

Y
S
N

JO

UO
Io
aI
|0
D

oy
Ae
WO
]

“3
se
we
r

4g

Ch
 2

F
xo
g

80
-4
8

SW

|
6246 156B

INSERT HALFWORD LOW

A
Ri of. M| B2 Address Specification ; :

iJojo} oo} | | talititi h | bp ty be et ee
0 “4 5 7 8 1112 13 1415 16 2 31

AM +» Displacement

Same cd a Lat se la a el et) sc Rd Ml |
16 . 31

I

z xX Ajl Displacement

1 | I Joe eb pe bt
s 16 31

~AM. Mnemonic — Format

Extended: oO. tHL R1, D2 (B2)

Indexed: 1. IHL (@) {#1 R1, D2(x2, 82)

DESCRIPTION

The halfword second operand replaces the contents of bits 16-31 of general register
Rl. Bits 0-15 of general register Rl are not changed. The second operand is not
changed. :

RESULTING CONDITION CODE

The code is not changed,

INDICATORS

The overflow and carry indicators are not changed by this instruction,

4-12

a

Sa
nl
yo
uy

Ai
si
an
lu
n)

pu
e

SU
OR
dA
!I
OD

Je
I9
ad
g

‘s
au
eI
qK

As
sa
nl
UA

aV
eI
g

eN
YO
IY
,

sj
ua
wn
s0
q

YS
YN

JO

UO
NI
aI
|0
D

oy
Ae
WO
)

“3
se
we
r

iq

t
80
-4
8

SN

{

h
OF

xo
g

t

e i
(

9

As

6246156B

LOAD

Op RI R2

pope petty yofo} yy
0 45 78 11:12 13 15

Mnemonic _ Format

LR R1,R2

Op R1 Disp* B2 “Displacements of the form 0,0} oj 144 L | Lite I 111XXxX are not valid.
0 45 7 8 13 14 15

Mnemonic Format

L “Vi, D2 (B2)

Op R1 al 82 Address Specification
ce yt to ! Je ee EP gy

45 7 8 11121314 1516 :
31

———
eee AM Mnemonic Format

= “themonic. Di Extended: 0 L R1, 02 .(B2) Vf eee a ae

Indexed: 1 L{[@] [#] R1, D2 (x2, B2) x J fll Disp
{| ty ta Putty y

The fullword second operand is placed in general register Rl. The second operand is not changed.
a

RESULTING CONDITION CODE

0C .The second operand is zero
11 The second operand is negative
01 The second operand is positive (>0).

INDICATORS

The overflow and carry indicators are not changed by this instruction,

LOAD ADDRESS

Op R1 Disp* B2 *Displacements of the form
Teton te 111XXX are not valid.
0 45 7 8 1314 15 .

Mnemonic Format

LA R1, D2 (B2)

4-13

sa
ni
ya
iy

Ay
ss
an
lu
n

pu
e

su
oH
oa
I|
OD

Je
la
dg

‘s
au

ei
g!

]
As
Je
nl
Uy

a}
eI
S

eN
YO
I\
\

S}
JU
SU
ND
OG

Y
S
N

JO
UO
RD
E!
]O
D

oy
Ae
wW
O]

“Fy

sa
we
r

ig

80
-4

8
SW

C
h

OF

xo
g

9F

As

6246156

Op RI Al 2 "Address Specification
teagrouit pp tap tol] Vt

0 45 7 8 11121314 15 16 ae . beets bi Lacdti tected 31

- AM Mnemonic Format é sa s
Extended: 0 LA ~ R1, D2 (B2) i Disp

bi) Peel dt ed hf

Indexed: 1 LAL@)(#] R14, D2 (X2, B2) ie x fifi Disp ,
Pepe tA ee fe ik te pd

DESCRIPTION

panding to 19-bits. This address itself replaces the 16 high-order bits of general reg-
ister R1. The 16 low-order bits of général register R1 are zeroed.

a Bi. A 16-bit effective halfword address is developed in the normal manner without ex-
1
|

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

When R1 = B2, it is possible to increment R1 by the displacement field.

a In the RS format when B2 = 11 and AM = 0, this is functionally equivalent to a
LOAD HALFWORD IMMEDIATE instruction. In this case, bits 16 through 31 are
treated as immediate data. The immediate data is expanded to 32 bits by appending
16 low-order zeros. This resulting fullword operand replaces the contents of general

register Rl.

LOAD ARITHMETIC COMPLEMENT

Op RI R2
ee toyty Pe tt polity yy

0 45 7 8 11:12:13 15

Mnemonic Format

LCR R1,R2

DESCRIPTION

The two's-complement of the fullword second ‘operand replace the contents of

general register Rl. Complementation is accomplished by adding the one's comple-

ment of the fullword second operand and a low-order one.

4-14

| |
| | | | | |

|! | | | Pf | |

_ wi

80
-2
48

SI

Ch

@F

xo
g

sJ
US
sU
ND
0G

YS

YN

JO

UO

RI
AI

IO
D

oy
Ae
WO
|

“Fy

se
we
r

iq

sa
nt
yo
uy

Al
si
en
lu
n

pu
e

su
oq
o@
||
O9

je
I9
ad
g

‘s
au
ei
qr

Ay
si
an
lu
A

ay
eI
g

eU
YO
IM
,

sy |
6246156B

9

Js

na RESULTING CONDITION CODE

i| 00 The result is zero
. rh 11 The result is negative

So 01 The result is positive (> 0).

INDICATORS
ae

The overflow indicator is set to one ‘when the maximum negative number is com- plemented, If the overflow indicator already contains a one, it is not altered by this us instruction. The carry indicator is set to indicate whether or not there is a carry out of the high-order bit position of general register, The carry indicator will only be set when the operand is zero,

a Program. Interrupt — Fixed point overflow
a

LOAD FIXED IMMEDIATE oe

=
QO

Op R1 Ec] opx ve
tiotittit | t tat ido fed
0 45 7 8 11.1213 15

Mnemonic Format
‘aa

LFXI RI, Value

] DESCRIPTION
AL

A fixed-point literal value is loaded into the general register specified by R1.

_ The immediate values are a5 1500; 152; 33, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13, The immediate is loaded into bits 0 through 15 of general register Rl, Bits 16 through 31 of general register R1 are set to zero.
ed a

OPX (Bits 12, 13, 14 & 15) Immediate Value—»R1
(hex) (hex) ae

in FFFE0000 |
1 FFFF0000
2 00000000 at
3 00010000
4 00020000
5 00030000 - 6 00040000
7 00050000 | 8 00060000 | 9 00070000 - A 00080000
B 00090000
Cc 000A0000 = D 000B0000
E 000C0000 \
F 000D0000

4-15

Sa
ny
au
y

Aj
sJ
oA
lu
N

PU
e

SU
OH
DA
II
OD

Je
Id
ad
g

‘s
au
ei
g'
]

Aj
is
Jo
nl
UT

ay
eI
S

eN
UD
I\

s]
UB
WN
D0
G

YS
YN

JO

UO
NI
a|
0D

oy
Ae
EW
O]

“Fy

se
we
r

iq

ch

°
F

xo
g

80
-4
8

SW

9f

Ad

|
G88 156B

RESULTING CONDITION CODE *

The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction,

LOAD HALF WORD

Op R1 Disp* B2 *Displacements of the form
tjo jo} iit | | Ltt td l " 111XXxX are not valid.
0 4 5 78 13:14 15

Mnemonic Format

LH R1, D2 (B2)

Op R1 a B2 . Address Specificiation :

Myo pOp ty Py ty ty yt yo | Ped |
0 4.5 7 8 11121314 15 16 31

AM = Mnemonic Format

Extended: 0 LH

Indexed: 1

R1, D2 (B2)

LH(@) [#) © R1, D2 (x2,

B2) x A 9 3

4-16"

cred

tal

‘aut

J owt

sal

ae

Sa
nl
yo
ty

Al
si
en
lu
n

Pu
e

SU
OI
DA
I|
OD

Je

ID
ad

g
‘s
au
eq
r]

Ay
ss
an
lu
A

ay
eI
g

eN
YO
IN
\A

SJ
UB
WU
ND
0G

YS

YN

JO

UO
ND
aI
IO
D

oy
Ae
wW
Oo
]

“yj

se
we
r

iq

80
-2
8

SI
N

Ch

OF

xo
g

9F

AA

6246156B

DESCRIPTION

"
The halfword second operand is developed into a fullword operand by appending 16 low-order zeros. The resulting fullword operand replaces the contents of general register Rl. The second operand is not changed, .

RESULTING CONDITION CODE

00. The fullword operand is zero
11 The fullword operand is negative
01 The fullword operand is PoSitive (>0),

INDICATORS

The overflow and carry indicators are not changed by this instruction,

PROGRAMMING NOTE

This instruction clears the low-order half of general register Rl.

LOAD MULTIPLE

Op oPx B2 Address Specifications
ii jojojiti jojo tiit atats J Pet hse he pe ge py | jo 0 45 78 1112131415 16

31

AM Mnemonic Format . Extended: 0 LM D2 (82) ane : ¥| Jt Titi pt yy ty
Indexed: 1 LM[@] [#) D2 (X2, B2) x ke I Disp

|| Jo eee yy
DESCRIPTION

All eight general registers are loadéd from the eight fullword locations Starting at the fullword, second operand address. The general registers are loaded in ascending order.

RESULTING CONDITION CODE

The code is not changed,

INDICATORS

The overflow and carry indicators are not changed by this instruction,

PROGRAMMING NOTE

This instruction will always have halfword index alignment and will be excluded from automatic index alignment.

4-17

Sa
nl
yo
uy

Al
si
an
lu
n)

pu
e

SU
ON
DA
!I
OD

Je
Io

ad
g

‘s
au
es
ql
y

Ay
si
an
lU
r

ay
eI
S
e
y
o

sj
ua
wn
s0
q

YS
YN

JO

UO
HI
aI
IO
D

oy
Ae
wW
O]

“Fy

se
we
r

iq

80
-4
8

SW

cl
,

O
F

xo
g

9f

AA

MODIFY STORAGE HALFWORD

Op oPx Disp* =| Ba Immediate Data
‘Lolijijofojojo] | yy yy | Lobby ep eee
0 45 7 8. 1314 15 16 31

Mnemonic Format “Displacements of the form
MSTH D2(B2), Data 111XXxX are invalid.

DESCRIPTION.

Instruction bits 16 through 31 are treated as immediate data representing a 2's
complement integer. This immediate data is added to the halfword main storage
Operand, The result replaces the halfword main storage operand, The contents of
the general registers are not changed, Only the contents of the halfword main storage
operand location is altered,

RESULTING CONDITION CODE

00 The result is zero

11 The result is negative

01 The result is positive (>0),

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

_ The MSTH immediate data (mask) is algebraically added.to the halfword operand
in main storage. Tally up and tally down is thus possible.

MULTIPLY

Op R1 R2
Op yopopoh Petty yojol yy
0 45 78 111213. 15

Mnemonic Format “

MR R1,R2

Op RI ~ Disp* 82° | *Displacements of the form 111XXX are not valid. Opi yoyoo yt Jey ed !
0 45 78 1314 15

Mnemonic Format
M R1,02(B2)

4-18

ask

ed

Sa
ny
ou
y

As
IO
AI
U)

PU
B

SU
ON
DA
II
OD

Je

I9
ad

g
‘s

eU
ei

qr
]

Aj
sJ
aA
lU
F

a}
eI

S
eN
YO
I\
\

S}
JU
SU
ND
OG

YS
YN

JO

UO
HD
aI
|O
D

oy
Ae
wW
O|

“3
se
we
r

iq

9

As

80
-2

8
SN

¢

})
@
F

xo
g

ee

6246156B

Op RI | B2 Address Specification Of popopop py tty yiysfo ! tet pi e e te RT 0 465 78 1112 1314 1516 . 31

AM Mnemonic Format pa eS
Disp Extended: o.M R1,02(B2) LI Jeb tt pt tt

‘ 1 Indexed: 1 M [@] [#] R1,02(X2,B2) x All Disp
fed Piytii tie yt

DESCRIPTION

The product of the multiplier (the second operand) and the multiplicand (the first
operand) replaces the multiplicand. Both multiplier and multiplicand are 32-bit signed
2's complement fractions. The product is a 64-bit, signed 2's complement fraction and
occupies an even/odd register pair when the R1 field references an even-numbered gen-
eral register, When R1 is odd, only the most significant 32-bits of the product is saved
in general register R1.

RESULTING CONDITION CODE u

The code is not changed.

INDICATORS

The overflow indicator is set to one when -1 is multiplied by -1. If the overflow
indicator already contains a one, it is not altered by this instruction.

Program Interrupt — Fixed point overflow
E

Op ‘RI Disp” B2 "Displacements of the form 111 XXX are not valid.
TpOpyor at yy J ij i !
O° 45 78 131415

Mnemonic Format

MH R1,D2(B2)

Op RI h B2 Address Specification
Top rporty Py pipipiyifo I Ped sbck dk ee hy fy

0 4 5 78 1112.13 14 1516 31

AM Mnemonic Format "
— —_——_ a Disp Extended: 0 MH ~ R1,02(B2) L | Liyt_yT, yy] |

Indexed: 1 MH[@] [#] R1,02(X2,B2) x IAI Disp

1 tippy

4-19

Se
ni
yo
uy

Al
ls
ie
nl
uN

pu
e

SU
ON
Oa
IJ
OD

Je
l9
ad
g

‘s
aU
Ie
Iq
I]

Ai
sJ
aa
lu
y

ay
eI
g

eN
YO
IN

sj
ua
wn
d0
q

YS
YN

JO
UO
ND
aI
|0
9

oy
Ae
WO
]

“3
se
we
r

ig

eh

OF

xo

g
80
-2
8

SI
N

If

As

|

| 6246156B
|

DESCRIPTION

The seomiat of the halfword multiplier (the halfword second operand) and the half-
word multiplicand (the contents of bits 0 through 15 of general register Rl) replaces
the multiplicand. The product’is a 32-bit signed fraction. This product is saved in
general register R1.

RESULTING CONDITION CODE

The code is not changed,

INDICATORS

The overflow indicator.is set to one when -1 is multiplied by -1, If the overflow
indicator already contains a one, it is not altered by this instruction, i

Program Interrupt — Fixed point overflow

MULTIPLY HALFWORD IMMEDIATE

Op oPx R2 Immediate Data

plop yo ig yy tt peje Ts as eel eet es GM Ue CC
 41-5: 78 111213 15 16 31

Mnemonic = Format

MHI R2, Data

DESCRIPTION

Instruction bits 16 through 31 are treated as immediate data. This. halfword of
immediate data is the multiplier. The contents of bits 0 through 15 of general register
R2 are the halfword multiplicand. The product of the multiplier and the multiplicand
is a 32-bit signed fraction. This product is saved in general register R2.

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow indicator is set to one when -1 is multiplied by -1._ If the, overflow
indicator already contains a one, it is not altered by this instruction.

Program Interrupt — Fixed point overflow

we

wal

sa
ny
oi
y

Ay
si
ea
lu
n

pu
e

su
on
sa
l|
o9

|e
lo
ad
g

‘s
au
el

qr

As

ia
nl

UA

al
el
g

eU
YO
I\
,

SJ
US
WI
ND
OG

YS

YN

JO
UO
HD
aI
|O
D

oy
Ae
WO
|

“yj
 s

ew
er

1g

80
-2
8.

SW
..
.

| O
F

xo
g

[

Cf

{
I
F
A
s

6246156B

MULTIPLY INTEGER HALFWORD

Op R1 i B2 Address Specification

Topo ytyty Py ptt yy yt Jed Ph ed
0 45 '78 111213 14 1516 31

BM Displacement
0

\ Loto ee eT te
16 31

1 x 4 I Displacement

| J ei pe fd |
16 31

AM Mnemonic Format

Extended: 0 MIH R1, D2 (B2)

Indexed: 1 MIH [@] [#] —- R1, D2 (X2, B2)

DESCRIPTION

The product of the multiplier (the two's complement signed integer halfword
second operand) and the two's complement signed integer halfword multiplicand (the
contents of bits 0 through 15 of general register R1) replaces the multiplicand. An
intermediate product is formed as a 31-bit signed integer. This product is algebrai-
cally shifted left 15 places, to form a two's complement signed halfword integer
product. This halfword product replaces bits 0 through 15 of general register R1.
Bits 16 through 31 of general register R1 are zeroed.

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

Program Interrupt — Fixed point overflow

The overflow indicator is set when the upper 16 bits of the intermediate product
does not equal all ones or all zeroes. If the overflow indicator already contains a one, it
it is not altered by this instruction,

PROGRAMMING NOTE

If I, J, and K are halfword operands, the equation I*J+K may be solved with the
following code:

LH R1,I

MIH R1,J
AH R1,K

4-21

Se
nt
yo
uy

Ai
ls
ia
nl
ul

pu
e

SU
OR
DA
!I
OD

Je
ID
ad
g

‘s
au
es
qI
]

As
Ia
AI
UA

a}
eI
g
B
N
O

S]
UB
WN
DO
G

YS
YN

JO
UO
ND
a|
OD

o¥
Ae
WO
|

“
s
e
w
e
r

1g

Ch

OF

xo
g

80
-2
8

SI

9

A
6246156B

Op Ri Disp* m B2 “Displacements of the'torm 111XXX are not valid. OL Ojijijo] yy Jd | | ‘ :
0 4 5 7 8 1314 15,

)
Mnemonic Format |

ST R1,D2(B2)

Op RI a] 82 Address Specification
Cfo prot py tryryryifo | Peet yy
0 45 7 8 1112-13 14 15. 16,

31

AM Mnemonic Format
° Fe Disp Extended: 0 ST R1,02,(B2)

1] putty i tpt |
- ' Indexed: 1 STI@| [#1 R1,D2 (x2,B2) x Al! Disp

i ! } ptt i tt

DESCRIPTION

The contents of general register R1 are stored at the fullword second operand lo-
cation. The contents of general register R1 aré not changed.

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

STORE HALFWORD ‘

Op R1 Disp* B2 “Dis 5 Placements of the form 111XXX are not valid Opt yy yy pet a) |
0 45 7 8 13.14 15

Mnemonic Format
STH R1,02(B2)

Op Ri A) 82 Address Specification
Tpoutpyty ft tpi tifo | Jf ee Pe

0 45 7.8 111213 14 15 16 31

AM Mnemonic Format D
Extended: 0 STH R1,D2 (B2) . aif

| Lop pit py

Indexed: 1 STH [@] (#] R1,02 (X2,B82) x A 1 Disp

| Liti tt jj i |

4-22

ut

we

Sa
ni
yd
iy

As
se
nl
un

pu
e

su
oH
aI
|O
D

Je
Id
ad
g

‘s
au
ei
g'
]

Ay
si
en
lu
p

ay
el
s

eN
YO
I\
\

sj
ue
WN
d0
q

YS
YN

JO

UO
Hd
aI
I0
D

oy
Ae

wW
O|

“Fy

 s
ew
er

iq

80
-4

8
SW

€h

©F

xo
g

9h

43

C
6246156B

DESCRIPTION

The most significant 16 bits (bits 0 through 15) of genéral register R1 are stored
at the halfword second operand location. No other storage location is altered. The
contents of general register R1 are hot changed,

RESULTING CONDITION CODE

The code is not changed by this instruction,

INDICATORS

The overflow and carry indicators are not changed by this instruction.

STORE MULTIPLE

Op oPx a B2 | ._ Address Specification
ATO pops jo pOyop yar ipa | oo Te ey oy 0 45 78 171213 14 15 16 31

AM Mnemonic Format Disp
Extended: 0 STM 02(B2)

|_| el

Indexed: 1 STM {@][#] — _D2(X2,B2) x ik | Disp
{| | |

DESCRIPTION

All eight general registers are stored at the eight fullword locations starting at
the fullword second operand address. The general registers are stored in ascending
order.

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

This instruction is excluded from automatic index alignment. Indexes will always
specify the halfword.

4-23

ky

sa
ni
yo
uy

Ay
si
en
lu
n

pu
e

SU
dH
a|
|O
D

Je
IN

ad
g

‘s
au
eI
qI

Ai
sI
an
lU
A

ay
eI
g

eY
YO
I\
,

Sj
ua
Nd
0G

Y
S
N

JO

UO
ND
aI
|0
9

oy
Ae
EW
O]

“3
se
we
r

ig

ch
eF
xo
g

go
7z
e

SW

9f

As

6246156B

SUBTRACT
|

Op RI R2 .

Bp ojoyo 4 Patty yopoy yy
0 4 8 111213 15

Mnemonic Format
1 SR R1,R2

Op R1 Disp* B2 *Displacements of the form 111XXX are not valid.

OOo pour; ed Leathe af |
0 as 78 131415

| Mnemonic Format
z s R1,D2 (B2)

Op RI a B2 Address Specification
OP Oop oy Pty ty ty fo | Pept yt pep pp te
0 45 78 11.12 13 14,1516 evan to win 31

AM Mnemonic Format Disp
Extended: 0° § R1,D2 (82) : :

‘ Lt fed a bette
Indexed: 1 S[@] [#) R1,02 (X2,B2) :

x IA 4 Disp

fed eet

DESCRIPTION

The fullword second operand is subtracted from the contents of general register
Rl: The result replaces the contents of general register Rl. The second operand is
not changed.

Subtraction is performed by adding the one's-complement of the second operand
and a low-order one to form the two's complement for the fullword. This fullword is
added to the first operand. All 32 bits of both operands participate as in ADD. The
overflow, carry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE

00 The result is zero

ll The result is negative

01 The result is positive (> 0).

4-24

eo

faa

ow

Sa
nl
yo
uy

Al
si
en
lu
n

pu
e

su
oq
oa
lj
og

|e
lo
ad
g

‘s
au
ei
qr

Aj
si
an
lu
p

ay
er
s

en
yo
In
\

ie

WE

wd

al

a

toad

oe =
g O~
3
® 00
ne
3 O~
3 ©
&
S
oom
g

29) a2 s 5 Ag te Sy b
Sc:
Sum
oO
c

3
oO
2

o
a

an

INDICATORS

The overflow indicator is set to one if the
to be represented in R1; that is,
indicator already contains a one, it is not altered by this instruction.
reset by testing or by loading the PSW.) The carry indicator is set to or not there is a carry out of the high-order bit position of R1.
Program Interrupt — Fixed point overflow

SUBTRACT FROM STORAGE

magnitude of the difference is too large
greater than 1-273! or less than -1. If the overflow

(Overflow can be

indicate whether

A
Op RI ml B2 Addiess Specification

Opooporsy Petry yas ! Jed Te yy 0 4.6 2% 1112131415 16 31
AM Mnemonic Format

Extended: O SST R1, D2 (B2) Disp
jie oe Indexed: 1 SST[@}1=] 1021x282)

% ‘ | Dis

1] Jed ef

DESCRIPTION

The contents of general register R1 is subtracted from the fullword second oper-

The first oper-
and. The result replaces the contents of the second operand location.
and is not changed.

RESULTING CONDITION CODE

00 The result is zero

11 The result is negative

01 The result is positive (>0).

INDICATORS

The overflow indicator is set to one if the magnitude of the sum is too 1
represented in the second operand location. That is, greater than 1-2-31 or less than
-1. If the overflow indicator already contains a one, it is not altered by this instruc+

arge to be

tion. (Overflow can be reset by testing or by loading the PSW.) The carry indicator
is set to indicate whether or not there is. a carry out of the high-order bit position of
the result.

Program Interrupt — Fixed point overflow

6246156B

sa
ny
oi
y

Aj
si
an
lu
n

pu
e

su
oH
Ia
I|
OD

Je
IN
ad
g

‘s
au
es
q!
]

Ai
sI
eA
lU
A

a}
eI
g

eL
YO
I\
Y

SJ
UB
WN
DO
G

YS
YN

JO

UO
HD
aI
IO
D

oy
Ae
WO
|

“y
se
we
r

iq

Ch

@F

xo

g
80

-4
8

SI
N

9F

sd

62461568

“waa

| —

bod cued
SUBTRACT HALEFWORD

i i % 4 . ‘ ¢ aa
Op RI Disp’ B2'| ‘Displacéments of the form 111XXX are not valid.

POOL O Vel. bed Jeces) eb. ep es :
0 45 7 8 ABLae oes :

Moemonie. 5. Format Me
SH R1,D2(B2)

Op R1 A B2 Address Specification

YO (O70) Tp fe EEL | [teste feof Tal ht ds tee)
t 0 45 7 8 111213 14 1516 31

AM = Mnemonic Format Disp ia

Extended 0 SH R1,D2,(B2) i tT} ELT y_y Ty yy

lidexed: 1 SH [@] [=] R1,02(X2,82) x IAL Disp ais:

fas Pip tf

DESCRIPTION

Sl wt
The halfword second operand is first developed into a fullword operand by append-

ing 16,low-order zeroes. This second operand is then subtracted from the contents of

general register Rl. The result replaces the contents of general register Rl. The oad

second halfword operand is not changed.

‘Subtraction is performed by adding the ones complement of the developed fullword hgh

operand and a low-order one to form the fullword twos complement. This fullword is

added to the first operand. ‘

RESULTING CONDITION CODE *

00 The result is zero

11 The result is negative =

01 The result is positive (> 0).

INDICATORS

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in R1; that is, greater than 1-27-31 or less than -1. If the overflow indi- sani

cator already contains a one, it is not altered by this instruction. (Overflow can be

reset by testing or by loading the PSW.) The carry indicator is set to indicate whether

or not there is a carry out of the high-order bit position of R1. oa

6 Program Interrupt — Fixed point overflow ae

aut

4-26

aa

80
-2
8

SW

|
L

[
L Ch

O
F

xo
g

 s]
ua
ui
nd
0q

Y
S
N

JO

UO
Hd
a!
|0
D

oy
Ae
WO
|

“3
se
we
r

ig

t
9F

As

Sa
ni
yo
ui
y

Ay
si
an
lu
n

pu
e

Su
oo
a!
|O
9

Je
ls
ad
g

‘s
au
es
q'
]

As
ia
nl
up

ay
el
g

eN
Uo
IY

[

6246156B

Op opx Disp” B2 * Displacement of the form i YO joyofojojo} fyi yy | 111XXX are not valid
0 45.78 13 14 15

Mnemonic Format

TD D2 (B2)

Op OPX Hy B2 Address Specifications
1J0j}1) 9j0 jo ;oyotiy1 yryifo ! Pu yeee ee type ty | 0 45 7 8 1112131415 16 31

AM Mnemonic Format

Extended: 0 TD D2 (B2) - Disp
ee! Ll at oh esr Ee

; | Indexed) 1 TD{@] (#] D2 (X2, B2) x fal! Disp.
LB] ed eh phd

DESCRIPTION

The main storage halfword operand is decremented by one, and the result replaces a the halfword operand. The contents of the general.registers are not changed. Only the contents of the main storage operand is altered.

RESULTING CONDITION CODE

00 The result is zero
11 The result is negative
01 The result is positive (> 0).

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

with an implied operand of all ones, The MSTH instruction should be used instead

This instruction is similar to the MODIFY STORAGE HALFWORD instruction |

of TALLY DOWN when execution speed is important. .

4-27/4-28

sa
ny
ai
y

Al
is
ie
nl
u

pu
e

su
oq
oa
!|
O9

Je

lo
ad

g
‘s
eu
ei
qI
]

As
Ja
Al
UA

ay
eI
S

eU
YO
I\
Y,

sJ
UB
WN
D0
G

YS
YN

JO

UO
HD
a|
|O
D

oy
Ae
WO
]

“y
se
we
r

iq

80
-4
8

SN
.

9F

AA

Ec
Ch

9
F

xo
g

(.
t

t
(

Scetion 5

BRANCHING

Instructions are executed, by the central processing unit, primarily in the sequen-
tial order of their locations, A departure from this normal sequential operation may
occur when branching is performed. The branching instructions provide a means to
make a two-way choice, to reference a subroutine, or to repeat a segment of coding.

Branching is performed by introducing a branch address as the new instruction
address, The 19-bit branch address is generated as described under Expanded Ad-
dressing. Therefore, when a branch is taken, the branch address is used as the ad-
dress of the next instruction. If Instruction Protection Monitor is enabled, an inter- rupt will occur, regardless of the branch address contents, should the branch be at-
tempted and the destination location is not storage protected.

BRANCH AND LINK

Op RI R2
apyojoy py ty yofo} yy

O 4 5 78 191213 15
Mnemonic Eormat

BALR Rt, R2

Op R1 4 B2 Address Specification
et yoyo fp ey yt ifo | Ppt ttt tt

0 45 7 8 1112 13 14 15 16 31

 AM Mnemonic Format

E AL 1, D2 (B2) Bien HERES Ory AY; O2B2 LI boivpryy yy
Indexéd: 1 BAL [@]) [=] R1, 02. (X2, B2) x 1yt Disp

bidAli epee ty yyy

DESCRIPTION

First, the branch address is computed. Then, the first word of the current PSW
(bits 0 - 31) is loaded into general register R1. Thus, the address of the next sequen-
tial instruction is preserved in register R1 (bits 0 - 15). The remaining bits of general
register R1 (bits 16 - 31) will contain the condition code, the carry indicator, overflow
indicator, the fixed-point overflow mask, the exponent ynderflow mask, the significance
mask, and the contents of the branch and data sector registers.

6246156B

se
ni
yo
iy

Au
si
an
lu
n

pu
e

su
on
oa
lj
og

je
lo
ad
g

‘s
eu
ei
ql
]

As
ia
nl
un

ay
er
s

eN
Yo
IN
\A

sj
ua
uN
d0
q

YS
YN

JO

UO
Nd
aI
|0
D

oy
Ae
wW
O,

“Fy
 s

ew
er

iq

80
-2
8

SW

Ch

®F

xo
g

9f

ss

6246156B

For the RR format, the branch address is contained in bits 0 through 15 of general
register R2, ifR2/0. This 16-bit branch address is expanded to a 19-bit branch ad-
dress. (Sce Expanded Addressing.)

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The assembly instruction BALR R1, 0 causes the address (instruction counter

and BSR) of the next sequential instruction to be stored in bits 0 through 15, and 24

through 27 of general register R1. In this particular case, no branch.is taken.

BRANCH AND INDEX

Op R1 . B2 Address Specification i.

Hpop yy Et ty yytfo PL} t yy tt peppy ty |
0 45 7 8 11:12 13 14 15 16 # S 31

—
AM Mnemonic Format Disp

Extended: 0 BIX R1, D2 (B2) tt LEE py py py

l *
Indexed: 1 BIX(@)(#) —-R1, D2 (X2, B2) x falt ne

: Ld tt pf

DESCRIPTION

"Bits 0 through 15 of the general register specified by R1 contain an index. Bits
16 through 31 of general register R1 contain a count. An effective address is computed

in the normal manner for the extended class. (For the indexed addressing mode, the

fullword indirect address pointer must contain zero's in bit locations 22 and 23.)
Next, , the index is incremented by one. Then the count is decremented by one. If

the count prior to update is greater than zero, a branch to the effective address is

taken. If the count prior to update is less than or equal to zero, no branch occurs."

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The carry and overflow indicators are not changed by thig instruction.

eae!

wad

we

Sa
nl
yn
y

As
ia
Al
un

pu
e

SU
OR
IA
I|
OD

Je
I9
ad
g

‘s
au
eI
g!
]

Ay
Is
Ia
AI
UL

ay
eI
g

eU
YO

IN
A

(
80

-2
8

SW

t
Ch

OF

xo

g
[

sU
BL
UN
DO
G

YW
SY

N
JO

UO
ND
aI
|O
D

oy
Ae
WO
)

“Fy

se
we
r

ug

9F

As

BRANCH ON CONDITION

Op M1 R2
OP yt yo fof yy

0 45° 78 111213) 15
Mnemonic Format

BCR M1, R2

A : Op M1 mj 82 Address Specifications
Tet pOpOpop ee ey ty fo | Pope pe ee tet e | 0 45 78 1112 13 14 15 16 31

AM Mnemonic Format

Extended: 0 BC M1, D2 (B2) Disp

| Popp psy ye tet

Indexed: 1 BC(@}{=] M102 (x2, B2) x yA Disp
J yA ppt tt tt

DESCRIPTION

This instruction tests the PSW condition code status bits. Instruction bits 5 through
7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is to be tested,
Instruction bit 5 tests for a code cqual 00, instruction bit 6 tests for a code equal 1i,
and instruction bit-7 tests for a code equal 01. Whenever the condition code test is
successful, the branch is taken. Thus, when more than one bit of the M1 field is a one,
the branch is taken for any successful-test. (e.g., M1 = 111 always branches, M1 = 000
never branches.)

The branch address is contained in bits 0 through 15 of general register R2 for
the RR format. This 16-bit branch address is expanded to a 19-bit branch address.
(See Expanded Addressing.)

RESULTING CONDITION CODE

The condition code was set following all arithmetic, logical, test, and compare in-
structions, and otherwise remains unchanged unless the program status word istaltered,
The code is not changed by this instruction,

INDICATORS

The overflow and carry indicators are not changed by this instruction.

5-3

6246156B

80
-4
8

SN

C
h

OF
 x

og

S}
Ue
WU
ND
0G

YS

YN

JO

UO
da
|I
OD

oy
Ae
wW
o|

“|
se
we
r

iq

9f

AA

sa
ni
ya
iy

Al
ss
en
lu
n

pu
e

su
oN
oa
[j
oD

|e
I9
ed
g

‘s
au
ei
gr
]

As
ia
al
up

ay
er
s

eN
Yo
I\
,

6246156B

PROGRAMMING NOTE

The result and test conditions are shown as follows:

M1 Field (Test)

(5) (6) }, (7)

Arithmetic & Tally

Zero : 1 0 0

Negative 0 1 0

Positive (>0) “0 0 L

Logical

Zero L 0 0
Not Zero 0 1 0

Test

Zero 1 0

Mixed i0 1 0

All ones 0 1

Compare

Equal 1 0 0

01 < 02 o |} 17} 0
01 > 09 0 0 i

It is possible to combine tests. For example, following the MSTH instruction, an
M1 field of 1 0.1 specifies branch on non-negative (zero or positive).

BRANCH ON CONDITION BACKWARD

Op Disp* *Displacements of the form
11 me y4 Loto 140 111XXX are not valid.

0 8 . 13.14 15

Mnemonic Format

BcB m1, 02

“5-4

Sa
ny
oy

Ay

si
@a

lu
N

PU
e

SU
ON
DA
|I
OD

Je
IN
ad
g

‘s
au

ei
gr

]
Aj

is
sa

nl
UA

ay
eI
S

EN
YO
I\
\,

S}
]U

SW
IN

DO
G

YS
YN

JO

UO
HD
a!
}O
D

oy
Ae
wW
O]

“J
sa
we
r

iq

b

OF

xo
g

on
i

80
-2

8.

SI
N

i
R
E
T

_2
F

Ad

6246156B

DESCRIPTION

i
This instruction tests the PSW condition code status bits. Instruction bits 5 through

7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is to be tested.
Instruction bit 5 tests for a code equal 00, instruction bit 6 tests for a code equal 11,
and instruction bit 7 tests for a code equal 01. Whenever the Condition code test is
successful, the branch is taken by subtracting the Disp from the updated IC. Thus,
when more than one bit of the M1 field is a one, the branch is taken for any successful
test (e.g., Ml1=111 always branches).

RESULTING CONDITION CODE

The condition code was set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

BRANCH ON CONDITION (EXTENDED) —_—_—<—_ eee)

Op M1 R2

Tyr poyojoy Py etytytypotsy yy
0 45 78 11:12:13 15

Mnemonic Format
BCRE M1, R2

DESCRIPTION

This instruction tests the PSW condition code status bits. Instruction bits 5 through
7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is to be tested.
Instruction bit 5 tests for a code equal 00, instruction bit 6 tests for a code equal 11,
and instruction bit-7 tests for a code equal 01. Whenever the condition code test is suc-
cesful, the branch is taken. Thus, when more than one bit of the M1 field is a one, the
branch is taken for any successful test. (e.g. M1 = 111 always branches.)

When the branch is taken, PSW bits 0 through 15 and bits 24 through 31 are replaced
by corresponding bits in general register R2.

5-5

sa
ni
yo
y

Al
si

an
lu

N
pu
e

su
o}
Da
I|
0D

je
Io
ad
g

‘s
eu

es
g!

y
Aj
sJ
en
lu

ay
eI

s
eN

YI
\\

,
S]
US
WI
ND
OG

Y
S
N

JO

UO

ND
aI

OD

oy
Ae
WO
]

“3
se
we
r

ig

80
-4

8
SI

N
th

OF

xo

g
9F

As

RESULTING CONDITION CODE

The condition code was set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

This instruction is similar to the RR version of the BRANCH ON CONDITION in-
struction. It is provided to facilitate subroutine returns across sector boundaries after
general register R2 had been initialized by the use of the BRANCH AND LINK instruction.

BRANCH ON CONDITION FORWARD

Op M1 Disp* “Displacements of the form
111XXxX are not valid.

tt tt fey
0 45 78 13 14 15

Mnemonic Format

BCF M1, D2

DESCRIPTION

This instruction iests the PSW condition code status bits. Instruction bits 5 through
7 (the M1 field) specify which condition code (bits. 16 and 17 of the PSW) isto be tested,
Instruction bit 5 tests for a code equal 00, instruction bit 6 tests for a code equal] 11,
and instruction bit 7 tests for a code equal 01. Whenever the condition code test is
successful, the branch is taken by adding the Disp to the updated IC. Thus, when more
than one bit of the M1 field is a one, the branch is taken for any successful test (e.g. ,
M1=111 always branches).

RESULTING CONDITION CODE

The condition code was set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

—

vad

tad

Ast

aid”

aid

Sa
ni
yo
iy

AU
ss
aA
lu
N

pu
e

su
oH
da
I[
OD

Je
l9
ad
g

‘s
au

es
g!

As
Jo
nl
U

ay
eI

S
BN

YO
IN

Y
sJ
US
UN
DO
G

YS
YN

JO

UO
ND
aI
|0
D

oy
Ae
WO
)

“Fy

se
we
r

iq

(
80
-4
8

SI
N

OF

xo
g

..
{

6246156B

BRANCH ON COUNT

Op RI R2

ee op ee}
0 4 5 7 8 111213 15

Mnemonic Format

BCTR R1,R2

Op Rl & B2 Address Specification

Tp op yoy Pe ty yo Ppp ppt ee tt Pt tt
0 4 5 78 1112 1314 15 16 31

AM Mnemonic Format

Extended: 0 BCT R1,02 (B2) Disp
|_| poet | tp tet tt

3 = ' Indexed: 1 BCT (@] [=] RD2(x282)) yh Dik

|| fuji jy jt ty

DESCRIPTION

First, the branch address is computed. The branch address is contained in bits
0 through 15 of general register R2 for the RR format. This 16-bit branch address is
expanded to a 19-bit branch address, (See Expanded Addressing.)

Then, the contents of bits 0 through 15 of general register R1 are reduced by one.
When the result is zero, the next sequential instruction is executed in the normal man-
ner. When thé result is not zero, the instruction counter is loaded with the branch ad-
dress.

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

An initial count of one results in zero, and no branch takes place. An initial count
of zero results in a minus one and causes branching to be executed.

5-7

Sa
ni
yo
iy

Ay
sy
BA
lU
N

PU
B

SU
O}
DA
!I
OD

Je
IN
ad
g

‘s
au

eI
g!

]
AU
sJ
eA
lU

a}
eI

S
BN
YO
I\
Y

s]
UB
UI
ND
0Q

WS

YN

JO

UO

HD
aI

}O
D

oy
Ae
WO
]

“yj

se
we
r

iq

80
-4

8
SW

Uh

@F

xo
g

9F

Ad

6246156B

BRANCH ON COUNT BACKWARD

Op RI Disp* “Displacements of the form 111XXX are not valid.
VOTE Lop pt
0 45 7 8 1314 15° ‘

» Mnemonic Format

BCTB R1,02

DESCRIPTION

First, the branch address is formed by subtracting the displacement from the up-
dated instruction counter. Then, the contents of bits 6’ through 15 of general register
R1 are reduced by one. When the result is zero, the next sequential instruction is
executed in the normal.manner. When:the result is not zero, the instruction counter
is loaded with the branch address.

RESULTING. CONDITION CODE

The code is not changed:

INDICATORS

The overflow and carry indicators are not changed by this instruction,

PROGRAMMING NOTE

An initial count of one results in zero, and no branch takes place. An initial count
of zero results in a minus one and causes branching to be executed,

BRANCH ON OVERFLOW AND CARRY

Op M1 R2

Ppepopop ay | Tey tytyofoy |
O 45 7 8 11:12:13 15

Mnemonic Format

BVCR M1,R2

Op M1 4 B2 Address Specification

Tp yOpop ty Pep yt tyt fo ! Pf eee ee
0 45 7 8 1112 1314 15 16 31

AM Mnemonic Format

.
Disp Extended: 0. BVC M1,02,(B2)

Lot Jt

Indexed: 1 BVC [@] [=] M1,D2 (X2,B2) % £ ' . Disp

{4 Lpy tj} it tt

5-8

dat

one}

aaa

ith

Sa
AI
Yy
oy

AU
SI
BA
IU
P)

PU

B
SU
OI
DA
!|
OD

Je

Id
ad

g
‘s

au
eI

gI

As
en
lu
A

ay
el

s
eY
US
I\

S]
US
UN
D0
G

YS
YN

JO

UO

HD
eI

}O
D

oy
Ae
WO
|

“3
se
we
r

iq

18

SI
N

80

}
Of
 x
og

.
ce

2%

As

6246156B

DESCRIPTION

This instruction tests the PSW overflow and carry indicator status bits. The M1
field, instruction bits 5 through 7 specifies the test. Instruction bit 6 is tested against PSW bit 18 (carry), and instruction bit 7 is tested against PSW bit 19 (overflow), When- ever a specified bit of the PSW is a one, the test is successful and the branch is taken.
Thus, when both indicators are tested by M1 = 011, the branch is taken if either indicator
contains a one. A one in instruction bit 5 inverts the logic, causing bits 6 and 7 to test
the PSW bits for zero.

For the RR format, the branch address is contained in bits 0 through 15 of general
register R2. This 16-bit branch address is expanded to a 19-bit branch address. (See
Expanded Addressing,)

RESULTING CONDITION CODE

The code is not changed,

INDICATORS

The overflow indicator is set 0 by this instruction. The carry indicator is not changed by this instruction.

PROGRAMMING NOTE

The possible combinations of test conditions are shown as follows:

M1 Field Test Conditions

567

Q00 Branch never taken (no operation)
001 Branch on Overflow
010 Branch on Carry
011 Branch either on Overflow or on Carry
100 _ Branch
104.5 Branch On No Overflow
110 Branch On No Carry
111 Branch On No Overflow and No Carry

BRANCH ON OVERFLOW AND CARRY FORWARD

Op M1 Disp* *Displacements of the form
1p 4y0y 11 Ll Pe ie pey oj 111XXxX are not valid.

9 45 78 13-14 15
Mnemonic » Format

BVCF Mt, D2

5-9

sa
my
oi
y

As
ia
nl
un

pu
e

su
o}
oa
l[
O9

je
ls
ad
g

‘s
eu
ei
gr

As
ie
al
uy

ay
el
s
B
U
S
I

s]
Ua
WN
D0
q

WS
YN

JO

UO
Nd
aI
IO
D

oy
Ae
WO
]

“Fy

se
we
r

iq

Sh

@F
xo
g

=

80
-8

SIN

9F

sd

6246156B

DESCRIPTION

This instruction tests the PSW overflow and carry indicator status:bits. . Instruc-

tion bits 5 through 7 specify the test. Instruction bit 6 is tested against PSW bit 18,

and instruction bit 7 is tested against PSW bit 19. Whenever a-specified bit of the PSW
is a one, the test is successful and the branch is. taken by adding the Disp to the updated

IC. Thus, when both indicators are tested by M1 = 011, the branch is taken if éither
indicator contains a one. A one in instruction bit 5 inverts the logic, : causing bits

_ 6 and 7 to test the PSW bits for zero.

The branch address is formed by adding the displacement to the updated instruction
counter. '

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow indicator is set 0 by this instruction. The carry indicator is not

changed by this instruction.

PROGRAMMING NOTE

"The possible combinations of test conditions are shown as follows:

M1 Field Test Conditions

567

000 : Branch never taken (no operation)

001 Branch on Overflow

010 Branch on Carry

oll Branch either on Overflow or on Carry

100 Branch

101 Branch On.No Overflow

110 Branch On No Carry

111 Branch On No Overflow and No Carry

5-10

‘ws

sa
ni
yo
iy

AU
si
an
lu
N

Pu
e

SU
O]
AI
IO
D

|e
IN
ad
g

‘s
eu
eI
gI
]

As
Ja
AI
U

a}
eI
S

BY
YI
\Y
,

as

cai

i

Ss
gs O-
3

® O09
mw
Aa 65> io
§ ©
o i. 2 =
°o

oO lk!
2
°W
20

4
© Wise
2
5 Q

nD a
><
DR mw
Oo
=

3
oO

2 Bi
a

nm

a

e
e

Shift instructions use the halfword format. The shift count is defined by the count
field, as shown in Figure 6-1.

Section 6

SHIFT OPERATIONS

Instruction Bits 8 through 13 Shift Count Determined By

000000 (Zero)

000001-110111 (1 through 55)

111000 ° (56)

111001 (57)

111010 (58)

111011 (59)

111100 (60)

111101 (61)

111110 (62)

111111 (63)

No Operation

Instruction bits 8 through 13

Bits 10 through 15 of general register 0

Bits 10 through 15 of general register 1

Bits 10 through 15 of general register 2

Bits 10 through 15 of general register 3

Bits 10 through 15 of general register 4

Bits 10 through 15 of general register 5

Bits 10 through 15 of general register 6

Bits 10 through 15 of general register 7

i Figure

If the shift count is 56 through 63, bits 10 through 15 of the corresponding general
register (0 through 7) designate the shift count. When specified using the count field,

6-1. Shift Count

6246156B

the maximum shift count allowed for shift operations is 55. Shifts of up to 63 positions
are allowed, when general register 0 through 7 is used to specify a computed shift.

NORMALIZE AND COUNT

Op Ri R2

Tet op op top

0 4 5 7 8 11:12 13 15

Mnemonic — Format

NCT R1,R2

6-1

sa
ni
yo
uy

Ay
si
ea
lu
n

pu
e

SU
OH
Oa
1|
OD

Je
IN
ad
g

‘s
eU

eI
qI

]
Ay
si
en
lU
l

ar
eI
g

eL
YD
IN
\A

SJ
US
WI
ND
OG

YS
YN

JO

UO
Nd
EI
J0
D

oy
Ae
WO
|

“Fy

sa
we
r

iq

80
-2
8

SIN

Ch

OF

xo
g

6246156B

DESCRIPTION

, First, all bits (0 through 31) of general register R1 are set to zero. For each ry
position that the contents of general register R2 are shifted, to the left, the high-order
half of general register R1 bits (0 through 15) is incremented by 1. The shift terminates
when bit position 0 = bit position 1 of general register R2. If the contents of general
register R2 are initially zero, a count of zero is entered in general register Rl. Zeros
are entered ihto the vacated low-order bits of general register R2. Upon completion
of this instruction, the count is contained in bits 0 through 15 of general register R1.

as

RESULTING CONDITION CODE

The code is not changed by this instruction, - : : om

INDICATORS
’

a The carry indicator will be zero at the end of the operation, if general register R2
contains zero, The carry indicator will’ be one at the end of the operation, if the shift
is terminated by the detection of bit position one not equal to bit position 0 of the gen-
eral register R2. The overflow indicator is not changed by this instruction.

PROGRAMMING NOTE

If the initial condition of general register R2 was such that bit position 0 is not
equal to bit position 1, the count in the high-order bit of general register R1 is zero, ~~ the carry indicator is one; and there is no shift, If the initial condition of R2 was all = ones, the count is 31, the carry is one and R2 contains 80000000. ee

This instruction is executed as shown below in Figure 6-2.

 Reset Carry
Indicator
Rl= 0

 Set Carry

aie Indicator Shift R2 To One Lett One Rl—Count

set ea
at

Operation Increment Count Completed By One posal

Figure 6-2. Normalize and Count Execution —

6-2

SA
NY
dJ
y

AU
SI
OA
IU
N

PU
B

SU
OI
}D
AI
|O
D

Je
IN
ad
g

‘s
eu
eI
g!
]

Ay
ss
en
lU
A

ar
eI
S

eN
YO
I\
,

r

80
-2

8
pv

A
oF

xo
g

|
e

S]
UB
WI
ND
OG

YS
YN

JO

UO
ND
eI
|0
5

oy
Ae
wW
O|

“J
sa
we
r

gq

t

6246156B

SHIFT LEFT LOGICAL

gh
45

Op Ri - Count

Tp tpt toy yy { jj jj tojo
0 : 45 7 8 13°14 15

Mnemonic Format

SLL R1,Count

DESCRIPTION

The contents of general register R1 are shifted left, as specified by the shift count
Figure 6-1. Zeros are entered into the vacated low-order bits of general register Rl.
Bits leaving the high-order hit (bit 0 of general register R1) position are entered in the
carry indicator. (See indicators below.) Bits shifted out of the carry indicator are
lost. Only the contents of general register R1 are changed.

RESULTING CONDITION CODE

The code is not changed by this instruction.

INDICATORS

The carry indicator is set.to one for each one, and to zero for each zero, shifted
left from the high-order position of general register Rl. The overflow indicator is
not changed by this instruction. -

PROGRAMMING NOTE ‘

When the shift count n is greater than 31, then the result of the shift of general i
register R1 is zero.

SHIFT LEFT DOUBLE LOGICAL

Op Ri Count

Iptpiy yay | J jj | i jojo
0 45 7 8 13 14 15

Mnemonic Format

SLOL R1,Count

6-3

sa
ny
ou
y

As
ie
nl
up

Pu
e

SU
O!
}D
aI
IO
D

Je
I9
ad
g

‘s
eu
eI
qI
]

Aj
si
an
lU
A

ay
el

s
eN
YO
I\

SJ
UW
ND
0G

YS
YN

JO
UO
ND
aI
|O
D

oy
Ae
WO
|

“y
se
we
r

iq

ch

OF

xo
g

80
-4

8
SW

9f

As

6246156B

DESCRIPTION

The contents of the even/odd pair of general registers (R1 and Rl @ 1) are shifted
left as a 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position zero, of general register R1 ® 1, are entered
into bit position 31 of general register R1. Zeros are entered into the vacated low-order
bits of general register R1 @ 1. Bits leaving the high-order bit position (bit position 0
of general register R1) are shifted into the carry indicator. Bits shifted out of the
carry indicator are lost.

RESULTING CONDITION CODE

The code is not changed by this instruction.

INDICATORS

The carry indicator is set to one for each one, and to zero:for each zero, shifted
left from the high-order bit position of general register Rl. The overflow indicator is
not changed by this instruction.

SHIFT RIGHT ARITHMETIC

Op R1 Count

rH a Be Eee a Poe ee) fol
0 405 78 13-1415

Mnemonic Format

a SRA R1,Count

DESCRIPTION

The contents of general register R1 are shifted right the number of places indi-
cated by the shift count. Bits equal to the sign are entered into vacated high-order bit
positions. Bits shifted out of bit position 31 of general register Rl are lost.

RESULTING CONDITION CODE

The code is not changed by this instruction.

INDICATORS

The. overflow and carry indicators are not-changed by this instruction.

ws

va

wnat

Sa
Al
Uo
y

Ay
sI
eA
lU
l)

PU

B
SU
OI
}D
AI
IO
D

Je
Id

ad
g

‘s
eu
eI
gI
]

AI
sI
aA
lU
A

ay
el

s
eY
YO
IN
\

s]
US

UI
ND

0G

YS

YN

JO
UO
HD
aI
|O
D

oy
Ae
WO
]

“y
se
we
r

sq

\

28

SW

,
7

Gh

O
Z

xo

g
,

980

9f

sa

.

6246156B _

PROGRAMMING NOTE

A shift right of n is‘equivalent to dividing the contents of general register R1 by an, ‘ hs

SHIFT RIGHT DOUBLE ARITHMETIC | ER AA HME LIC

Op RI Count

Iiijiiajif | | ty | tt tots 0 75 78 TH 147
Mnemonic Format

SRDA R1,Count

DESCRIPTION

i

The contents of an even/odd pair of general registers (R1 and R1 @) 1) are shifted a
right as a 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position 31, of general register R1, are entered into bit
position 0 of general register R1 ® 1. Bits equal to the sign are entered into vacated i
high-order bit positions.: Bits shifted out of bit position 31 of general register R1 & 1
are lost. ; Y

RESULTING CONDITION CODE

The code is not changed by this instruction.

_ INDICATORS

The overflow and carry indicators are not changed by this instruction.

SHIFT RIGHT DOUBLE LOGICAL 2 BOGICAL |

Op R1 Count

 Tei yy Jj | jy fifo
0 45 7 8 13°14 15

Mnemonic Format

SROL R1,Count

6-5

S
a
n
y
o

AU
ss
@A
lU
N

Pu
e

SU
ON
AI
IO
D

|e
ID
ad
g

‘s
au

eI
gI

]
AS
JO
AI
U

a}
eI
S

BN
YO
I\
\

s]
U@
UI
ND
OG

YS

YN

Jo

UO
ND
aI
|0
g

oy
Ae
wW
O!

“Fy

se
we
r

ig

80
-4

8
SW

Ch
 O
F

xo
g

9F

As

6246156B

DESCRIPTION Be UPe VOLN

The contents of an even/odd pair of general.registers (R1 and R2 @ 1), are shifted
right, as.a 64-bit register.. The number of positions shifted is specified by the shift
count. Zeros are eritered into all vacated high-order bit positions. Bits shifted out
of bit position 31, of general register R1, dre entered into bit position 0 of general

register R1 @e 1. Bits shofted out of bit position 31 of general register R1@) lare
lost.

The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by'this instruction.

SHIFT RIGHT LOGICAL

Op ; Ri Count :

Tpijijijoy. | | Lod dt 1 jo
0 45 7 8 13°14 15

Mnemonic Format is

SRL R1,Count

DESCRIPTION
a

The contents of general register R1 are shifted right the number of places indi-
cated by the shift count. Zeros are entered into all vacated high-order bit positions.
Bits shifted out of bit position 31 of general ‘register R1 are lost.

RESULTING CONDITION CODE

The code is not changed by this instruction,

INDICATORS

The overflow and carry indicators are not changed by this instruction.

ws

sao

is

sual

sat

S}
US
UI
ND
OG

YS

YN

JO

UO
ND
a!
IO
D

oY
Ke
WO
]

“yj

se
we
r

iq

6246156B

| SHIFT RIGHT AND ROTATE SEE ANY ROTATE

Op R1 Count

‘pip yoy oe ee — } 0 45 7 8 13.14 15
Mnemonic. ‘Format

i SRR R1,Count

DESCRIPTION

~~
The contents of general register Rl are shifted right the number of places indi- cated by the shift count. Bits shifted out of bit Position 31 are entered into bit posi- tion 0, The general register thus becomes a circular register and no bits are lost,

Sa
nl
yo
y

Ay
ss
Je
nl
uN

Pu

e
SU
O}
DA
1|
OD

Je
la
dg

‘s
au
eI
gr
]

Aj
Is
Ia
Al
UA

ay
eI

S
eN
YD
I\

- | RESULTING CONDITION CODE

wi | The code is not changed by this instruction.

| INDICATORS

A I The overflow and carry indicators are not changed by this instruction.

SHIFT RIGHT DOUBLE AND ROTATE EU BLE AND ROTATE |

=
n~

Op R1 Count

Tyryiyisy yy Pept ti tay © 0 45 78 13-147 N
Mnemonic Format oO 3 oo

SRDR R1,Count

| DESCRIPTION D
e

j . a The contents of an even/odd pair of general registers (R1 and R1Q@)1) are shifted } right, as a 64-bit register. The number of positions shifted is specified by the shift | count. Bits shifted out of bit position 31 of general register R1 are entered into bit . ~< | position 0 of general register R1@1. Bits shifted out of bit position 31 of general a ol | register R1Q@1 are entered into bit position 0 of general register R1. Thus, the two i
registers become a single, circular, 64-bit register, and no bits are lost,

m~ |
’ 7 | ‘

tN
DN |

| 6-7

s
a
n
d
y

Ay
si
aa
il
un

pu

e
su
o}
da
l|
O9

je
l9
ad
g

‘s
eu

eg
!]

As
Je
Al
U

ay
eI

S
BN
YO
IN
Y\

S]
UB
UU
ND
OG

YS

YN

JO
UO

HD
EI

|O
D

oy
Ae
WO
|

“J
se
we
r

iq

6246156B

80
-2
8.

SI
N

Ch
 O
F

xo
g

9f

ss

RESULTING CONDITION CODE

The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are ‘not changéd by this "instruction.

PROGRAMMING NOTE

When the shift count equals 32, the contents of general register R1 and R1 @ 1
are exchanged. : ‘

_ 6-8

ad

Mast

ak

Section 7

LOGICAL OPERATIONS

A set of instructions is provided for the logical manipulation of data. Fullword

6246156B

operands consist of 32 bits. Halfword immediate and storage operands are developed
into fullword operands by appending 16 low-order zeros. - The Sign position is treated in the same manner as any other position,

There is no interdependence between bits for logical operations: that is, the re-

Sa
ny
ou
y

AU
si
an
lu
N

Pu
e

SU
O!
}D
aI
|O
D

Je
IN
ad
s

‘s
au
eI
gI

As
Je
nl
uy

ay
el
S

eN
Yo
I\
Y

wa {
She

f=
5 a
2 |
8 oo |

ma
L

a Oo
3 0
o
=

gy
°o 5

2g
sw
= 0
5 xX

°

2
ae)
SS
of
°

oO
te

3
oO

2.
° =

nT,

t \W
OF

sult in position i is independent of bit j in either operand when i # j.

AND

Op R1 R2

Oolijojo; | i tijitijolol 4 4
0 4 5 78 13 15

Mnemonic Format

NR R1,R2

Op R1 Disp* B2 * Displacements of the form Of O}1}o}0 \ rere ' 111XXX ‘are not valid,
0 45 7 8 1712131415

Mnemonic Format,

N R1,D2 (B2)

Op R1 ‘ B2 Address Specification
Ojo joyo, pe tiyyiyijo ! Poteet ey 0 45 7 8 1112-13 14 15 16

AM — Mnemonic Format
Extended: 0 R1,02 (B2) Disp

| Litiitityy |
Indexed: 1 N [@] [=] R1,D2 (X2, B2) x tlt Disp

Put ppt

7-1

S@
AI

yo
uy

AU
SI
SA
IU
T]

PU

B
SU
ON
DA
II
OD

je

ld
ad

s
‘s

eu
eI

gI

Al

si
an

lu
A

ay
el

g
eN
YO
IN
\\
,

s]
Ua
un
d0
q

YS
YN

JO

UO

ND
a!

I0
g

oy
Ae
WO
|

“y
sa
we
r

ug

80
-2

8
SW

)
O
F

xo
g

,
Ce

9F

ss

62461568

DESCRIPTION

The logical product (AND), of the fullword second operand andthe contents of general
register R1, is formed bit-by-bit. The result replaces the contents of general register
Ri. The second operand is not changed. The following table defines the AND operation.

AND

Storage + 1100

Rl : 1010

Result / 1000

RESULTING CONDITION CODE

00 The result is zero

11 The result is not zero,

INDICATORS

The overflow and carry indicators are not changed by this instruction. —

AND HALFWORD IMMEDIATE

Op OPX R2 Immediate Data ;

Of jipolrprpolrjrfrpofol | | Litiyi yi typ yt y |
Oo 45 78 11:12:13 15 16 wee mere é

+ ‘

Mnemonic Format

NHI R2,Data

DESCRIPTION

Instruction bits 16 through 31 are treated as immediate data. The halfword im-
mediate data is first developed into a fullword by appending 16:low-order’ zeros. The
logical product (AND) of this fullword operand and the contents of general register R2
is formed bit-by-bit.' The result replaces the contents of general register R2. The
immediate operand is not changed. The following table defines the AND operation.

AND

Immediate Data | 1100

R2 1010

Result 1000

7-2

we

si

sa
ni
yd
y

Ay
ss
en
iu
n

pu
e

su
o}
oa
||
o9

je
ls
ad
g

‘s
au

ei
g'

y
Ay

si
en

lu

ay
ei
s

eN
Yo
I\
\

s]
UB
UN
0G

W
S
N

JO

UO
Nd
e/
]0
5

oy
Ae
WO
|

“FJ

sa
we
r

ug

_
Ch

O
F

xo
g

80
-2
8

SW

9F

dA

t
‘

J

{
I

G246156B

RESULTING CONDITION CODE

00 The result is zero
11 The result is not zero.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The least-significant 16 bits of the result (bits 16 through 31) will always be zero,

AND IMMEDIATE WITH STORAGE eee ee SEORAGE

Op OPX Disp* B2 Immediate Data
TOPO toy yy pe | Pitititisryy yyy | 0 45 78 13.14 15 16

31

Mnemonic Format * Displacements of the form
NIST 02(B2), Data 111XXX are invalid.

DESCRIPTION

Bits 16 through 31 of this instruction are treated as halfword immediate data, The
logical product (AND) of this immediate data and the halfword main storage operand is formed bit by bit, The result replaces the halfword main storage operand,

RESULTING CONDITION CODE

00 The result is zero

11 The result is not zero.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The zero bits in the immediate data specify the bits of the halfword first operand
that are set to zero. Zero bits in the halfword main storage operand remain unaltered.

7-3

sa
ny
ou
y

Ay
si
oA
lu
N

PU
B

SU
ON
AI
|O
D

Je
Id
ad
g

‘s
eu
ei
qr
]

Ay
se
nl
u

ay
eI
S

eN
Yo
I\
\,

sj
ua
tu
Nd
0q

YS

YN

JO

UO
HD
a|
IO
D

oy
Ae
WO
]

“Fy

se
we
r

iq

9F

A
80
-2
8

SI
N

¥ Ch

O
F

xo
g

6246156B

AND TO STORAGE

A
Op RI m| 82 Address Specification

OO jrporot Pop titrtitits ! fo eh
> 0 45 7 8 1112 13 14 1516 3t

AM Mnemonic Format _.
Extended: 0 NST R1,D2(B2) Disp

|_| Do

Indexed: 1 NST [@] (#] R1,02(X2,B2) Rebel Disp
Lt Peppy te tt ty

DESCRIPTION

The logical product (AND) of the fullword. second. operand-and the ‘contents of ‘gen-
eral register R1 is formed bit-by-bit. The result replaces the second operand. The
contents of the general register is not changed. The following table defines the AND

operation. ; sy ga

AND

Storage 1100

R1 1010

Result 1000

RESULTING CONDITION CODE

_ 00 The result is zero

11 The result is not zero.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

| a
e

‘al

“a

Sa
ni
yo
ui
y

AU
sI
OA
LU
N

PU
B

SU
O}
}D
aI
|O
D

Je
IN
ad
g

‘s
eu
eI
gI
]

Aj
sJ
eA
lU

ay
eI
S

eN
YO
I\
Y

sj
us
Wn
d0
g

YS
YN

JO

UO
HD
aI
}0
9

oy
Ae
WO
]

“Fy

sa
we
r

iq

. f
a
d

ch

QF
xo
g.

~~

-
8
Q
=
L
8
-

SI
N.

i
tp

a

€
I

I
t

t

EXCLUSIVE OR

Op Ri R2

Opty oy Le tp ofvol
0 45 78 13 15

Mnemonic Format

XR R1, R2

Op R41 Disp* B2 * Displacements of the form
O71 pryptype Li ed ee ae I 111XXxX are not valid.

0 4 5 78 11:12 13 1415

Mnemonic Format

x R1,D2(B2)’

A
Op R1 m{| B82 Address Specification

OPT ty OP PE tty tt fo Pept et
O° 4 5 78 11121314 15 16 31

AM Mnemonic Format
Extended: 0 x R1,D2(B2) Disp

! [ij jt i
Indexed: 1 X [@] (#] R1,D2(X2,B2) x Wy Disp

ba TA ee |

DESCRIPTION

The modulo-two sum (Exclusive OR), of the fullword second operand and the con-
tents of general register R1, is formed bit-by-bit. The result replaces the contents
of general register R1. The second operand is not changed. The following table de-
fines the Exclusive OR operation.

Exclusive OR

Storage

R1

Result
1100

1010

0110
RESULTING CONDITION CODE

00 The result is zero

11 The result is not zero.

7-5

6246156B

Sa
ny
ou
y

As
io
al
up
)

PU
B

SU
OI
}D
AI
|O
D

Je
I9

ad
g

‘s
au
ei
q'
]

Aj
Is
aA
IU
A

ae
IS

eN

YO
IN

,
S]
US
UI
ND
OG

Y
S
N

JO

UO

HD
aI

}O
D

oy
Ae
WO
]

“y
se
we
r

iq

80
-4

8
SW

©
F

xo
g

oy
) j
5

70

x

9
d

6246156B

INDICATORS esti watt

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The one's complement of the general register is obtained when the second operand contains all ones.
: :

EXCLUSIVE OR HALFWORD IMMEDIATE

Op OPX R2 Immediate Data s Ae
LPS pg oer aor ae eee er ee cere | Lok 0 45 7.8 111213 15 16 . 37

Mnemomic’ Format

XHI R2,Data

DESCRIPTION

Instruction bits 16 through 31 are treated as immediate data. The halfword of im- mediate data is first developed into a fullword by appending 16 low-order zeros, The modulo-two sum (Exclusive OR) of this fullword operand and contents of general reg-
ister R2 is formed bit-by-bit. The result replaces the contents of general register
R2. The immediate operand is not changed. The following table defines the Exclusive
OR operation. ~

Exclusive OR

Immediate Data 1100

R2 1010

Result 0110

RESULTING CONDITION CODE

00 The result is zero

11 The result is not zero.

INDICATORS

The overflow and carry indicators are not changed by this instruction,

é

S
a
n
y
o

AU
SI

BA
IU

N
Pu
e

SU
OI
DA
!I
OD

Je
ID

ad
g

‘s
eu
eI
gI

Ai
si
eA
lU
A

al
el
s

eY
YO
IN
A,

sJ
U@
WI
ND
OG

YS
YN

JO

UO
HD
A|
IO
D

oy
Ae
WO
|

“3
se
we
r

iq

Z8

SW

i
80

? 4
2
F

xo
g

© &
ef

Ay

6246156B

EXCLUSIVE OR IMMEDIATE WITH STORAGE

Op oPx Disp* B2 Immediate Data
VO POO POL ee eRe eu Pp py ee fey
0 45 78 13-1415 16 . “ 31

Mnemonic Format * Displacements of the form
111XXX are invalid.

XIST D2(B2),Data

DESCRIPTION : |

Bits 16 through 31 of this instruction are treated as halfword immediate data.
The modulo-two sum (Exclusive OR) of this halfword immediate data and the halfword
main storage operand is formed bit-by-bit. The result replaces the halfword main i
storage operand.

RESULTING CONDITION CODE

00 The result is zero

11 The result is not zero.

INDICATORS

The overflow and carry indicators are not changed by this instruction,

EXCLUSIVE OR TO STORAGE

A
Op ‘RI mi B2 Address Specification

SPN Oy pe Ty LEodi tities ee peppy |
0 465 7:8 11.1213 14 15 16 31

AM Mnemonic Format
Extended: 0 XST R1,02(B2) : Disp

jj} foe eb

Indexed: 1 XST[@] [#4] R1,D2(X2,B2) x Wd Disp

A ie ade Coc Ue Ke Be

17

80
-4

8
SW

C
h
@
¥

xo
g

SJ
US
WN
DO
G

Y
S
N

JO
UO
HD
aI
}O
D

oy
Ae
wW
O|

“J
sa
we
r

ig

96

As

sa
ni
yo
iy

Au
si
ea
lu
n

pu
e

su
oj
oa
||
O9

je
lo

ad
s

‘s
eu
ei
ql
y

As
ia
nl
UA

ay
e1

g
eU
YO
I\
\

6246156B

DESCRIPTION

The modulo-two sum (Exclusive OR) of the fullword second operand and the con-,

tents of general register R1 is formed bit-by-bit. The result replaces the second

operand, The contents of the general register is not changed. The following table de-

fines the Exclusive OR operation.

Exclusive OR

Storage

R1

Result
1100

1010

0110

RESULTING CONDITION CODE

00 The result is zero

11: The result is not zero.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

OR

Op RI ; R2
Moor ppt yejol yy
0 45 11:12:13 15

Mnemonies” - Eormet,
OR R1,R2

Op R1 Disp* B2 *- Displacements of the’ form
Oj Oj1joj1 Lf be Keds L 111XXX are not valid,

0 45 1314 15

Mnemonic Format

R1,D2(B2)

A
Op R1 M| B2 Address Specification

OP Opt ty fy pip tito | |_|
0 45 11:12 13.14 15

Extended: 0

Indexed: 1 0 [@] [4]

AM Mnemonic
0

Format
R1,D2(82)

R1,D2(X2,82)

7-8

 L—
 >

wail

id

sa
ny
ou
y

Aj
sJ
en
lu
N

PU
B

SU
ON
DA
I|
OD

Je
Id
ad
g

‘s
eu
eI
gr
]

Ay
Is
en
lU
A

ay
e}

eN
YO
I\
\,

sj
Uu
eW
IN
d0
g

YS
YN

JO

UO
Hd
aI
IO
D

oy
Ae
WO
]

“y
se
we
r

Iq

80
-2
8

SW

I
t

Ch

O
F

xo
g

9F

AA

t,
{

t
t

f

DESCRIPTION

6246156B

The logical sum (OR) of the fullword second operand and the contents of general
register R1 is formed bit-by-bit. The result replaces the contents of general register
Rl. The second operand is not changed. The following table defines the OR operation. ;

OR

Storage 1100

R1 1010

“1110 Result ©

RESULTING CONDITION CODE

00 The result is zero

11 .The. result is not zero. -.

INDICATORS

The overflow and carry indicators are not ‘changed by this instruction,

OR HALFWORD IMMEDIATE

Op. OPX : R2 Immediate Data

Be ead BOS I Ra kes UW Bo Bc J feceaps fa petra Pe pape] Ba
0 45 78 11:12:13 15 16 31

. Mnemonic Format
OHT R2,Data,

DESCRIPTION %

_ Instruction bits 16 through 31 are treated as immediate data. The halfword of im-
mediate data is first developed into a fullword operand by. appending 16 low-order zeroes.
The logical sum (OR) of the fullword operand and the contents of general register R2 is

formed bit-by-bit. The result replaces the contents of general register R2. The im-

mediate operand is not changed. The following table defines the OR operation.

OR

Immediate Data 1100

R2

Result

1010

 1110

Sa
ny
ou
y

Ay
si
aA
lu
f

PU
B

SU
OI
}D
AI
|O
D

Je
I9
ad
g

‘s
eu
eI
gI
]

As
ia
nl
U

ay
el
s

eN
Yo
I\
Y

s]
Ua
uN
d0
q

YS
YN

JO

Uo
a!
I0
9

oy
Ae
WO
!

"J
se
we
r

ig

90
28

SiN
Ch

O
F

xo
g

of
4

6246156B

RESULTING CONDITION CODE

00 The result is zero

11 The result is not zero. ::

INDICATORS

' The overflow and carry indicators are not changed by this instruction:

OR TO STORAGE

Op At Lares s B2 Address Specification
Opopyoyt yy yyy yt | Pe ee ep pe peg 0 45 7 8 17 12 13.14 15 16 3

AM Mnemonic Format
Extended: “0 OST R1,D2(B2) Disp 4

il js eH Ce a a |

Indexed: 1 OST [@] [#] R1,02(x2,B2) x i}t : Disp
Lee Poe yy

DESCRIPTION

The logical sum (OR) of the fullword second ‘operand and the contents of general
register R1 is formed bit-by-bit. The result replaces the second operand, The con-
tents of general register R1 are not changed.’ The following table defines the OR. op-
eration.

. ‘

OR

Storage

Rl

Result
1100

1010

1110

RESULTING CONDITION CODE

00 The result is zero

11 The result is not zero,

INDICATORS

The overflow and carry indicators are not changed by this instruction.

o
k

«
80
78

SW

eh

O
F

xo
g

SJ
UU
IN
DO
G

YS
YN

JO
UO
HD
AI
IO
D

oA
eE
WO
|

“
s
e
w
e
r

iq

If
e

Jd

sa
ni
yd
iy

Ay
si
aa
lu
n

PU
e

SU
ON
DA
]|
OD

Je
ID
ad
g

‘s
eU
Ie
Ig
I]

Ay
sI
sA
IU
A

ay
eI
S

eN
UD

IN
\

6246156B

SEARCH UNDER MASK

Op RI bn tak be bifia es :
1pOpOprty po pefrp rp yopapepep pos ne. a 0 4 6. 78 anaes > Te Saat

Mnemonic Format
SUM R1,R2

DESCRIPTION Tes

A variable search of an array under control of fields in'a mask for specific bit pat- terns is performed. A two's complement ‘16-bit integer count is contained in bits 0 through 15 of the‘general register, specified by ‘R2. (This must be a positive number for correct execution of this instruction). 4 he :

The address.of an array (Ai) is contained in bits 0 through 15 of the even general register of the even/odd pair Specified by Rl. A two's complement integer modifier is contained:in bits 16 through 31. ‘After each Ai-has been located via bits 0 through 15, the modifier is added to the most-significant 16 bits of general register Rl. This result replaces the most-significant 16 bits. The modifier is not changed... A 16-bit mask (M) is contained in bits 0 through 15 of the odd general register specified by R1 ©001 while field values (FV) are contained in bits 16 through 31.

The following equation is solved. ao :

(Ai A M) @(FV-A M) =

’ where ms

i= 1,..., count

A = logical AND function

@= logical Exclusive-OR function.

AiA M extracts bits selected by the mask out of the array. FVAM extracts bits selected by the mask also. These latter bits.are compared with AiA M. “If they are equal, the comparison continues until the count is exhausted. The condition code re- flects the result of this operation.

If the comparison indicates an inequality,’ the instruction is terminated with the address of the inequality operand located in general register R1.

RESULTING CONDITION CODE

00 All array items matched Ate : ‘ ; 11 An array item miss-matched and general register Rl has the address where it failed: : See ta 4

INDICATORS

The overflow and carry are not changed by this instruction.

7-11

Sa
ny
ou
y

AY
SI

OA
IU

N)

PU
B

SU
ON
}D
AI
IO
D

Je
IN
ad
g

‘s
eu

es
qr

]
Aj
is
Ja
Al
UT

aE
IS

eN
YO
IN
\

S]
UB
UU
ND
OG

YS

YN

JO
UO

RD
E!

|O
D

oy
Ae
wW
O|

“yj
 s

aw
er

4q

80
-4
8

SW

‘}
OF

xo
g

C
9F

As

6246156B

PROGRAMMING NOTE id

This is a variable length instruction execution,: Care must be taken to insure
proper interrupt response by using sufficiently small count values. In order to.assure
proper completion of the putaway routine, the programmer must make sure that the

| count values do not exceed eight.

| The following flowchart indicates how this instruction is executed:

C Start J

I YeAi pa — =| Ai = MS(PTR)

it
X+ FVAM
SetCC + 00 .

0-15 Rlgi5 “PTR
INC <.R1 Yes.

ees! PTR PTR+ ING
I icitd

: Yes

No

SET BITS = i

Op OPx Disp”: B2 ‘ Immediate Data ‘

Wyo pty Opry oY py Pope
0 45 7-8 “13° 14-15-16 31

Mnemonic Format * Displacements of the form

a erat " T1IXXX are invalid,
SB » D2(B2),Data

' » DESCRIPTION :

Bits 16 through 31 of this instruction are treated as halfword immediate data.
The logical sum (OR) of the immediate data and the halfword main storage operand
is. formed bit-by-bit. The result replaces the halfword main storage operand,

RESULTING CONDITION CODE

00. The result is zero

11 The-result is not zero.

7-12

Sa
ni
yo
ui
y

Aj
si
ea
lu
n

pu
e

SU
ON
Da
}|
OD

Je

l9
ad

g
‘s
au
eI
g!
]

Ay
si
aa
lu
A

ay
er
s

eY
OI
\\

SJ
UB
IN
DO
G

YS
YN

JO

UO
ND
AI
}O
D

oy
Ae

wW
O]

“y

se
we
r

iq

pe!

89
°2
8

- a

-
t

F
xo
g

{
)

@
Ch

“e

t
ph

t

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The one bits’ inthe halfword mask specify the bits of the halfword second operand
that are set one. The.result.replaces the halfword second operand. The following
table defines this instruction.

SET BITS

Mask 1100

Storage ‘ 1010

Result Lret.0

SET HALFWORD

Op oPpx Disp* B2 * “Displacements of the form
1p 0; 140) 0 oj1jo Li Ld | 111XXX are not valid,

0 a5 7 8 73 14 15

Mnemonic — Format :
SHW 02(B2)

Op opx n| 82 _ Address Specification
TPO Opopoy rola yiyijo | Ppt te tt et tL 0 4 5 76 711273 14 18 16 J 31

AM Mnemonic Format
Extended: 0 SHW D2(B2) : Disp

al fod ee lb Tob

Indexed: 1 SHW(@] [=] D2(X2,82) x i} ; Disp
; [sé Litsitipriy

DESCRIPTION

The halfword main storage operand is:set to all ones.

RESULTING CONDITION CODE

The condition code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction,

6246156B

Sa
ny
ou
y

Al
ss
an
lu
N

pu
e

SU
O}
aI
|O
D

|e
I9
ad
g

‘s
eu
eI
gI
]

Ay
sJ
en
lU
L

a}
eI
S

BN
YI
\Y

SJ
US
WI
ND
OG

YS
YN

JO

UO

RD
aI

|O
D

oy
Ae
WO
]

“y
se
we
r

iq

C
hh
OF

xo
g

80
-2
8

SI

9F

ss

6246156B

PROGRAMMING NOTE

This instruction is similar to the SET BITS instruction with the mask (i.e.,-imme-
diate data) equal to all ones. .

TEST BITS

Op oPpx Disp* B2 Immediate Data :
Opt yoforyy | pe | Jetited Pol fsb pf p feof

0 45 7 8 13° 14°15 16 31

Mnemonic Format * Displacements of the form
111XXX are invalid,

TB D2(B2),Data

DESCRIPTION

Bits 16 through 31 of this instruction are treated as immediate data. This half-
word immediate data is logically tested with the halfword main storage operand. A
one in the immediate data tests the corresponding bit in the halfword main storage
operand, The halfword main storage operand is not changed. The result of the test
is given in the condition code.

RESULTING CONDITION CODE

00 Either the bits selected by the immediate data are Hits or the immediate
data is all zeros

11 The bits selected by the immediate data are mixed with zeros and ones
01 The bits selected by the immediate data are-all-ones.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING. NOTE

' The main storage location containing the halfword operand must not be store pro-
tected. If the location is store protected, execution of this instruction will result in
a store protect violation interrupt.

TEST REGISTER BITS

Op OPX R2 Immediate Data

Solr rpopop te ope Pe
0 75 78 11 1213 15 16 a

Mnemonic Format

TRB R2,Data

DESCRIPTION

Bits 16 through 31 of this instruction is treated as immediate data, A fullword

operand is formed by appending 16 low-order zeros.

7-14

62461568

A one, in this fullword, tests the corresponding bit in general register R2, The
corresponding bit position in general register R2 is not changed. The result of the
test is given in the condition code,

RESULTING CONDITION CODE

00 Either the bits selected by the immediate data are all zeros or the immediate
‘data is all zeros, . oe

11 The bits selected by the immediate data are mixed with zeros and ones,
01 The bits selected by the immediate data are all ones.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

TEST HALFWORD

Sa
ny
oi
y

AU
si
an
lu
N

pu
e

SU
O}
}D
aI
|O
D

Je
IN
ad
g

‘s
eU
eI
gI
]

Ay
sJ

en
lU

a}

eI
S

eN
YO
I\
\

t
89

-4
8

pA

c/

O
F

xo
g

ES

s]
Ua
WN
d0
g

YS
YN

JO

UO
Ho
eI
}0
D

oy
Ae
WO
]

“y
sa
we
r

iq

ot
4

Op OPX Disp* -. ° B2 *. Displacements of the form
1,0 fi yoyo 0) 11 (ye r 111XXxX are not valid.

0 45 7 8 13.14 15

: Mnemonic Format

TH D2(B2)

Op oPx ‘ B2 Address Specification
LPO PMOpO pop rp sp rp fo ! Po eee eh s Ey
0 4°55 7 8 11.12.13 14 15 16

AM Mnemonic Format Disp
Extended: 0 TH
ea nee 14 Litiivirii

Indexed: 1 TH (@] 14] p2(x2.82) x til Disp:
PoutALt i ip y te pi |

DESCRIPTION

All bits in the halfword main storage operand are tested.
changed. The result of the test is:given in the‘condition code.

RESULTING CONDITION CODE

00 The bits are all zeros rs
11. The bits are mixed with:zeros and ones +

01 The bits are all ones. . ‘ :

7-15

This operand is not. °

S@
al
yo
uy

AU
SI
EA
LU
N

PU
B

SU
ON
DA
!|
OD

Je
IN
ad
g

‘s
eu
eI
gK

Al
si
en
lu
N

ay
el

s
eU
Ya
I\

S}
]U

SU
IN

DO
G
Y
S
N

JO

UO

HD
a!

}O
D

oy
Ae
wW
O|

“3
se
we
r

iq

Ch

O
F

xo
g

80
-2
8

SI

9F

Js

INDICATORS _

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

This instruction is the same as the TEST BITS instruction with the mask equal to
all ones.

ZERO BITS

Op oPx Disp* B2 Immediate Data

TOptptyopoyorry pp yy | Dede et pe py
0 4 5 7 8 13 14 15 16 31

Mnemonic Format * Displacements of the form
; 111XXxX are invalid.

ZB D2(B2),Data

DESCRIPTION

The logical complement of bits 16 through 31 of this instruction is ANDed to the
halfword main storage operand and is formed bit-by- ~bit. The result replaces the
halfword main storage operand:

RESULTING CONDITION CODE.

00 The result is zero

11 The result‘is not zero,

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The one bits in the halfword immediate data specify the bits of the halfword main
storage operand that are set zero. ‘The result replaces the halfword main storage op-
erand. The following table defines this instruction:

ZERO BITS

Immediate Data 1100

Storage 1010

Result 0010

sa
nl

yo
iy

Al
is
ia
ni
up

pu

e
Su
oN
oa
l[
o9
D

je
lo

ed
s

‘s
au

ei
qr

Ay
su
ea
iu
n

ey
e1
S

eU
Yo

I\
,

s]
Ua
uN
D0
q

S
Y
N

JO

UO

ND
a!
|0
D

oy
Ae

wW
o]

“y

se
we
r

iq

l
i

8
0
-
2
8
.
.
S
I
N
-

°
OF

xo

g
i

(
{

t
O
F
e
-
A
d

{

6246156B

ZERO REGISTER BITS

Op OPX R2 * Immediate Data

NOM OPOpOr typ oloy pede bee ep py
0 45 7 8 1112 13°. 15 16 3

Mnemonic Format

ZRB__- R2,Data

DESCRIPTION

First, the halfword immeuiate data is.expanded to a fullword by appending 16 low-
order zeros. The logical complement of this fullword is then ANDed to the contents of
general register R2. The result replaces general register R2.

_ RESULTING CONDITION CODE

00 The result is zero

11 The result is not zero,

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The one bits in the halfword immediate data specify the bits in the general reg-
ister that are set zero. Bits 16 through 31 of general register R2 are not changed by
this instruction.

ZERO HALFWORD

Op OPX Disp* B2 * Displacements of the form

1,0) 1;0;0 Oyo}1 Ce te 4 i 111XXX are not valid.

0 45 7.7°8 13 14:15

Mnemonic Format

ZH D2(B2)

Op opx f B2 Address Specification
MOL opopopoy arr to | Jd Pt
0 45 7s 1112 13 14 15 16 31

AM Mnemonic Format

Extended: 0 ZH D2 (B2) Disp

peal fp dt ey tO}

Indexed: 1 ZH[@] |=] D2(X2,B2) x yt Disp

LEE tt dt bt
“7-17

Se
nl
yo
ly

Ai
si
aa
lu
n

pu
e

su
oH
d@
!|
09

|e
l9
ad
g

‘s
au
eg
!]

AI
SI
eA
IU
T

aI
EI
g

BU
YI
N,
 9=z

sn
3
OD

2 ©
may
ot: ot

°
3
g
< =

oO

oO

g
2 w
#0
Ss =<

SS
EQ!
n ™
>
ow
°°
Qo
Cc

3
oO

2
oon

TT

nN

i
6246156B

DESCRIPTION

The halfword. second operand is set'to all-zeros, -

RESULTING CONDITION CODE

The condition code is not. changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

This instruction is similar to the ZERO BITS instruction with the mask equal to

all ones,

ae

Se
nl
yo
iy

AU
si
aA
lU
N

pu
e

SU
ON
Oa
II
OD

Je
IN
ad
g

‘s
aU
eI
q!

A
S
I
E
N

aI
eI
S

eU
YO
IN

sj
ua
wi
nd
0q

WS
YN

Jo

Uo
NS
!|
O9

oy
Ae
wW
o)

“y
se
we
r

1g

80
-4
8

SI
N

ly

O
F

xo
g

L
t Ce

If

As

 ee!

6246156B

Section 8

FLOATING-POINT OPERATIONS

The floating-point instruction set is used.to perform calculations on operands with
a wide range of magnitude and to yield results scaled to preserve precision.

A floating-point number consists of a signed exponent and a signed fraction. The
quantity expressed by this number is the product of the fraction and the number 16
raised to the power of the exponent. The exponent is expressed in excess 64 binary
notation; the fraction is expressed as a sign-magnitude hexadecimal number having a
radix point to the left of the high order digit.

The floating-point instruction set provides for loading, adding, subtracting, com-
paring, multiplying, dividing, and storing. Short operands generally provide faster
processing and require less storage than long operands, On the other hand, long oper-
ands provide greater precision in computation: Operations may be either register to
register or storage to register. All floating-point instructions are part of the floating-
point feature including the two data conversion instructions... A normalized number is
one in which the high-order hexadecimal digit of the fraction is not zero or the fraction
is all zero and the characteristic is the smallest possible value (zero). -

Maximum precision is preserved in addition, subtraction, multiplication, and di-
vision because all results are normalized.

The condition code is set as a result of all compare, add, subtract, and load op-
erations.

DATA FORMAT —_S——eee ee

Floating-point data occupy a fixed-length format which may be either ‘a fullword
short format or a double word long format. Both formats may be used in main stor-
age.

Short Floating-Point Number

Ss Characteristic Fraction.

Psbe ere eek Pp pe Se eee es Ep ep Bape pee
01 78 eee , 31

Long Floating-Point Number

Ss Characteristic Fraction Ny

Jot feet ee AN pT ee |
01 7.8 63

8-1

Se
nt
yo
y

Al
si
aa
lu
n

pu
e

su
oy
da
!I
09

|e
la
dg

‘s
au
ei
qr

Al
si
en
lu
y

B}
EI
S

SH
UI
,

SJ
UB
LU
ND
OG

WS
YN

JO

UO
NO
aI
IO
D

oy
Ae
WO
]

“Fy

se
we
r

iq

80
-4
8

SW

Ch

©
F

xo
g

9f

AA

The first bit in either format is the Sign bit (S). The subsequent seven bit posi- tions are occupied by the characteristic. The fraction field may have either six or fourteen hexadecimal digits.

Although final results have six fraction hexadecimal digits in short-precision, in-
termediate results may have one additional low-order digit. This low-order digit, the
guard digit, increases the precision of the final result.

NUMBER REPRESENTATION

The fraction of a floating-point number is expressed in hexadecimal digits. The
radix point of the fraction is assumed to be immediately to the left of the high-order fraction digit. To provide the proper magnitude for the floating-point number, the
fraction is considered to be multiplied by a power of 16. The characteristic portion,
bits 1 through 7 of both floating-point formats, indicates this power. The bits within
the characteristic field can represent numbers from 0 through 127. To accommodate
large and small magnitudes, the characteristic is formed by adding 64 to the actual ,
exponent. The range of the exponent is thus -64 through +63, This technique produces
a characteristic in excess 64 notation.

Both positive and negative quantities have a true fraction, the difference in sign
being indicated by the sign bit: The number is positive or negative accordingly as the
sign bit is zero or one,

The range covered by the magnitude (M) of a normalized floating-point number is:

in short precision 16-65 mm _ (1-16-6)+ 1663, and

in long precision 16-65 yy (1-16-14) . 1663,

or approximately 5.4+ 10-79 M 7,.2+ 1075,

The short and long precisions contain 6.2 and 15.5 decimal digits respectively,

A number with zero characteristic, zero fraction, and plus sign is called a true
zero. A true zero may arise as the result of an arithmetic operation because of the
particular magnitude of the operands. A true zero is forced when one or both oper-
ands of MULTIPLY or the dividend in DIVIDE has a zero fraction. The sign of a sum,
difference, product, or quotient with zero fraction is positive. The proper represen-
tation of a floating point zero when used for any of the floating point operations is the
true zero form.

8-2

wo

ord

80
-2
8

SW

t
t

th

OF

xo
g

{

S}
U@
WN
DO
G

YS
YN

JO

UO
ND
a|
OD

oy
Ae
UI
O|

“
s
e
w
e
r

1g

q
9

Ad

t

se
ni
yo
iy

Au
si
an
lu
n

pu
e

Su
oN
oa
I|
O9

|e
IN

ad
g

‘s
au
el
g!
]

AI
sI
AA
IU
A

ay
eI
g

eU
YO
IN
A

6246156B

NORMALIZATION wets ; ‘ =

A quantity can be represented with the greatest precision by a floating-point num-
ber of given fraction length when that number is normalized. Therefore, all floating-
point arithmetic operations require normalized operands. A normalized floating-point
number has a nonzero high-order hexadecimal fraction digit... If one or more high-order
fractional hexadecimal digits are zero, the number is said to be unnormalized unless
itis a true zero. The process of normalization consists of shifting the fraction left
until the high-order hexadecimal digit is nonzero and reducing the characteristic by
the number of hexadecimal digits shifted. A zero fraction cannot be normalized, and
its associated characteristic therefore remains unchanged when normalization is called i
for. A floating point word of all zeros is defined as a true Zero.

/ Normalization usually takes place when ‘the intermediate arithmetic result is changed:to the final result: This function is called postnormalization, and it is per- formed as part of instruction execution,

PROGRAMMING NOTE

It is the programmer's responsibility to ensure that floating-point operands are normalized prior to instruction execution. Since normalization applies to hexadecimal digits, the three high-order bits of a normalized number may be zero.

FLOATING- POINT SECOND OPERANDS EE EEL BLOND OPERANDS:

The short 32-bit second operand has a fullword effective address. The long 64-bit second operand must start at an even boundary halfword address. Figure 8-1 illustrates floating-point data placement in main storage.

X00

x01 X10 | X11 | Yoo

(Y=X+1)

Short Operand |
!

| fi Short Operand

Long Operand

| | Long Operand
‘ ! 7

Figure 8-1, Floating-Point Second Operand in Main Storage

FLOATING-POINT REGISTERS

The registers used for floating-point arithmetic are distinct or separate registers
from those used for fixed-point arithmetic.. Register designation may be even or odd
for short operands. |

Se
nl
Yo
y

AS
i@
Al
UN

Pu
e

SU
OR
DA
!I
OD

|e
I9
ad
g

‘s
au
es
gr

Ay
si
en
lu
y

BY
ES

BH
YO
IN

sj
us
uu
nd
0q

YS
YN

Jo

UO
NS
a!
|0
9

oy
Ae
WO
|

“3
sa
we
r

iq

80
-4
8

SI
N

C
h

OF

xo
g

If

AA

6246156B

The first operand is contained in floating-point register R1 when the second oper-
and is a short 32-bit operand. If the second operand is a long or extended operand,
the first operand is contained in the pair of floating-point registers specified by R1 and
R1@) 001, where(+) indicates the Logical OP function. See Figure 8-2.

Floating-Point Register (even or odd)

S| Characteristic Fraction

a ee | Pe de fd deal peda de Popes pep ge y 041 7 8
31

Floating-Point Register R1 Floating-Point Register R1 @ 001

S| Characteristic epi =

Jit | | Joe ty J Ep all
01 BB

63

Figure 8-2. Floating-Point Operands in Registers

A comprehensive set of floating-point instruction is available for both short and
long operands. Figure 8-3 summarizes the various combinations of fractional pre-
cision used for the floating-point operands. For further detail, see the individual in-
structions,

Short 2nd Operand Long 2nd Operand

Instructions Operand Operand

Result 1 2 | Result 1 2

RRs

A/S 24~—24+ 24 56~——56+ 56
c 24: 24
M’ 24/48 =— 24x 24 56—— 31x 31
D 24<—24 +24 31+— 56+ 31
Convert to Floating 24<—__—- 32

Convert to Fixed 32<——— 24

L 24-<-———--24

SRSs

AIS 24——24+ 24
M 24/48 <—.24 x 24

D 24-a— 24 +24
L 24<—>—_24
ST 24 ———_»24

RSs

AIS 24——24+ 24 56+— 56+ 56
Cc 24: 24

M 24/48 ~<+—24 x 24 56<— 31x 31
D 24~—24 + 24 | 31~— 56 + 31
L 24—<——_—_—_ 24 56 = 56

ST 24 ————»- 24 56 ————>56

Figure 8-3. Combinations of Fractional Precision
for Floating-Point Operands

8-4

wu

“asi ~e

ses

FLOATING-POINT INSTRUCTIONS

The floating-point arithmetic instructions and their mnemonics, and descriptions
follow. The following table indicates when the condition code is set and the exceptions
in operand designations, data, or results that cause a Program interruption.

80
-4
8

SW

L
I

t
f

ch

@F

xo
g

{

Mne- Name ponte: Type Exceptions

Add (Long Operands) “ AEDR RRC U,E,S
Add (Long Operands) AED RSC UPE,S
Add (Short Operands AER RRC U,E,S
Add (Short Operands) AE SRS; RS C U,E,S

Compare (Short Operands) CER RRC
Compare (Short Operands) CE RSC
Convert to Fixed-Point CVFX RRC oO
Convert to Floating-Point CVFL RRC Ss

Divide (Extended Operands) [DEDR RR U,E,FK
Divide (Extended Operands) DED RS U,E, FK
Divide (Short Operands) DER RR U,E,FK
Divide (Short Operands) DE SRS, RS U,E, FK

Load (Long Operands) LED RSC
Load (Short Operands) “LE SRS, RS C
Load (Short Operands) § LER RRC

Load Complement (Short Operands) LECR RRC
Load Fixed Register LFXR RR

Load Floating Immediate (Short
Operands) LFLI RR

Load Floating Register (Short :
Operands) } LFLR RR

Mid Value Select (Short Operands) | MVS RSC
Multiply (Extended Operands) i MEDR RR U,E
Multiply (Extended Operands) MED RS U,E
Multiply (Short Operands) MER RR U,E
Multiply (Short Operands) ME SRS, RS U,E
Store (Long Operands) STED RS
Store (Short Operands) STE SRS,RS
Subtract (Long Operands) SEDR RRC U,E,S
Subtract (Long Operands) SED RS C U,E,S
Subtract (Short Operands) SER RRC U,E,S
Subtract (Short Operands) SE SRS,RS,C} U,E,S

S]
UB
WN
DO
G

YS
YN

JO

UO
ND
aI
|0
D

oy
Ae
WO
]

“FJ

se
we
r

ig

t
9F

A

t

se
ni
yo
ly

Au
si
an
lu
n

pu
e

su
og
oa
|j
og

|e
lo
ad
g

‘s
au
ei
qn

A
s
s
e
n
t

ay
e1
S

BU
UO
IN
,

 C_ Condition code is set

E Exponent-overflow exception

FK Floating-point-divide exception
O- Overflow

S Significance exception

U___Exponent-underflow exception

8-5

6246156B

sa
nl
yo
uy

Ai
is
ie
nl
uQ

pu
e

su
oo
a}
|0
9

Je
Io
ad
g

‘s
au
ei
qr
y

AI
ss
aA
lU
F)

93
21
S
B
L
U
,

s]
UB
UN
0q

WS
VN

JO

UO
HO
9!
[O
D

oy
Ae
WO
J

“Fy

s
a
e

ug

80
-4
8

SW

Ch

O
F

xo
g

If

ss

62461568

CONDITION CODE

The results of floating-point add, compare, subtract, convert, load; and mid-value
select operations are used to set the condition code. Multiplication, division, and
storing leave the code unchanged. . The condition code ¢an be used for decision-making
by subsequent branch-on condition instructions.

The condition code can he set to'reflect the type of results for floating-point arith-
metic. The states 00, 11, or 01 indicate that the result is zero, less than zero, or
greater than zero. A zero result is indicated whenever the result fraction is zero, in-
cluding a forced zero, State 10 is never set by floating-point operations. The com-
pare instruction indicates the relative arithmetic magnitude of the first operand (R1)
and the second operand (called $2). (See Figure 8-4).

00 11 01

Add S/L zero <zero > zero
Compare S/L (R1) = (92) (R1) < (42) (R1) > (92)
Load S/L zero <zero > zero
Subtract S/L zero <zero > zero

Converts zero <zero > zero
Mid Value Select within above below

Figure 8-4. Condition Code Setting for Floating-Point Arithmetic

INDICATORS

The overflow and carry indicators are not changed by floating-point instructions.

1
FLOATING-POINT ARITHMETIC EXCEPTIONS

Invalid operation codes, operand designations, data, or results cause a program
interruption, When the interruption occurs, the current PSW is stored as an old PSW,
and a new PSW is obtained, The interruption code inthe old PSW’ identifies the cause
of the interruption. The following exceptions cause a program interruption in floating-
point arithmetic.

Protection: Each halfword in main storage can be protected with a storage pro-
tection bit. The operation is terminated on a store violation.

Addressing: An address designates an operand location outside the available
storage for the installed system. In most cases, the operation is terminated. The
result data and the condition code, if'affected, are unpredictable and should not be
used for further computation,

Exponent Overflow: The result exponent in addition, subtraction, multiplication,

or division exceeds 127 (1663), and the result fraction is not zero. The operation is

terminated and a program interrupt occurs.

8-6

C

U

E
80
-4
8

SI
N

t

°h

OF

xo
g

S]
U@
WN
DO
G

Y
S
N

JO

UO
ND
aI
|O
D

oy
Ae
WO
]

“
s
e
w
e
r

ig

t
IF

As

Se
ni
yo
iy

Au
si
aa
tu
n

pu
e

su
on
da
lj
o9

el
9a
dg

‘s
au
ei
gr

A
s
s
e
n
t

BI
EI
S

BU
YI
N

t
6246156B

Exponent Underflow: The result exponent in addition, subtraction, multiplication,
or division is less than zero (16-64), and the result fraction is not zero. The operation
is terminated, and a program interruption occurs if the exponent-underflow mask bit
(PSW bit 22) is one.

The setting of the exponent-underflow mask also affects the result of the operation.
When the mask bit is zero, the sign, exponent, and fraction are set to zero, thus mak-
ing the result a true zero. When the mask bit is one, the fraction and exponent results
are unpredictable,

Significance: The result fraction of an addition, subtraction, certain multiplies
by zero or convert to floating-point is zero. A program interruption occurs if the {
significance mask bit (PSW bit 23) is one. The mask bit affects also the result of the
operation. When the significance mask bit is a zero, the operation is completed:by
replacing the result with a true zero. When the significance mask bit is one, the opera-
tion is completed without further change to the characteristic of the result. In either
case, the condition code is set to 00. _;

Floating-Point Divide: When division by a true zero is attempted, the division is
suppressed. The condition code and data in registers and storage remain unchanged.

Un-normalized Inputs for Divide: When division is performed with un-normalized
inputs, the un-normalized inputs interrupt will occur. The exception to this rule occurs
when the divisor is un-normalized and the final quotient characteristic exceeds 127. In
this case, the exponent overflow interrupt will occur in lieu of the un-normalized input
interrupt.

ADD (LONG OPERANDS)

Op “RI R2

Opt pOPrpoy Ty yrptyrypofry yy
0 4° 5 78 111213. 15

Mnemonic Format

AEDR R1, R2

5 A 51 a Op R1 M B2 Address Specification

OP pourjoy fy prprpryrya | Pelsbe Pals (ee des bal es bY pacha
0 45 7 8 1112 1314 15 16 eh 31

AM < Displacement ;
0

Pe Pal fash SP ebe sph
16 : 31

1 x 4 ' ‘Displacement
| [er Ee al]

16 31

AM Mnemonic ‘Format

Extended: 0 AED R1, D2 (B2)

Indexed: i AED [@] [#] R1, D2 (X2, B2)

8-7

Se
nl
yo
sy

Ay
si
aa
lu
n

pu
e

su
oH
de
!|
0D

Je
l9
ad
g

‘s
au
Ue
Ig
!]

AU
SI
BA
IU

a}
eI
g

eY
YO
IN
Y

S}
Ua
WN
D0
G

YS
YN

JO

UO
ND
aI
I0
D

oy
Ae
WO
]

“Fy

se
we
r

ig

80
-4
8

SW

Ch
og
¢

xo
g

9f

AA

6246156B

DESCRIPTION

The second operand is.added to the first operand, and the normalized sum is
placed in the first operand location.

The long 64-bit second operand is added with the contents of the even/odd floating-
point-register pair specified by the even register Rl. The normalized result is placed
into even/odd floating-point register R1.

Addition of two floating-point numbers consists of a characteristic comparison and
a fraction addition. The characteristics of the two operands are compared, and the
fraction characteristics of the two operands are compared, and the fraction with the
smaller characteristic is right-shifted; its characteristic is increased by one for each
hexadecimal digit of shift, until the two characteristics agree. The fractions are then
added algebraically to form an intermediate sum. _If an overflow carry occurs, the
intermediate sum is right-shifted one hexadecimal digit, and the characteristic:is in-
creased by one.. If this increase causes a characteristic overflow, an exponent-overflow
exception is signaled, and a program interruption occurs. ;

The long intermediate sum consists of 15 hexadecimal digits and a possible carry.

After the addition, the intermediate sum is left-shifted as necessary to form a
normalized fraction; vacated low-order digit positions are filled with zeros and the
characteristic is reduced by the amount of shift. !

If normalization causes the characteristic to underflow, characteristic and fraction
are made zero, an exponent-underflow exception exists, anda program interruption
occurs if the corresponding mask bit is one, If no-left shift takes place the intermediate
sum is truncated to the proper fraction length.

When the intermediate sum is zero and the significance mask bit is one, a signifi-
cance exception exists, and a program interruption takes place. No normalization
occurs; the intermediate sum characteristic remains unchanged. When the intermediate
sum is zero and the significance mask bit is zero, the program interruption for the
significance exception does not occur; rather, the characteristic is made zero, yielding
a true zero result. Exponent underflow does not occur for a zero fraction.

First, the least-significant part of the intermediate sum replaces the contents of
floating-point register Rl @ 001. Then, the most significant part of the intermediate

sum replaces the contents of floating-point register R1

The sign of the sum is derived by the rules of algebra. The sign of a sum with

zero result fraction is always positive.

8-8

Se
ni
yo
ui
y

Au
si
aa
lu
n

pu
e

su
on
oa
lj
o9

|e
lo
ad
g

‘s
av
ei
q!
]

As
ia
nl
un

ay
er
s
e
y
o

si

| tt

si

ae

we,

i

9=
5 A,
3 4

8 oo
n>
7 Om
3 00
o
<

gy
°o

QO Qh
sO
sé
°°

2
SO
> aN
gshim
Cc

3
oO

a
an

Ths q

oO

haa

ee

RESULTING CONDITION CODE

00 .

11

01

Result fraction is zero d

Result is less than zero

Result is greater than zero

PROGRAM INTERRUPTIONS

Significance

Exponent Overflow
Exponent Underflow

PROGRAMMING NOTE

6246156B

Interchanging the two operands in a floating-point addition does not affect the value
of the sum.

ADD (SHORT OPERANDS)

Op R1 . R2
Oprpoprjoy Ty tipirofol | |
0 45 7 8 1112.13 15

Mnemonic Format

AER R1,R2

Op R1 Disp* B2 * Displacements of the form
ol1 folio (27 Peed | i 111XXxX are not valid.

0 4 5 7 8 13°14 15

Mnemonic.” Format
AE R1,D2(B2)

A
Op R1 mM] B2 Address Specification

OLijojijol | fy trjr yrs jo ! ! Jd pe ey
0 45 7 8 111213 14 15 16 31

AM Mnemonic Format Disp
Extended: 0 A R1,D2(B2) | E2Po pep sp ey ye

Indexed: 1 AE [@] [=] R1,02(X2,82) x ty Disp

LIAL Ppp pp

8-9

Se
nl
yo
uy

Ay
si
aa
lu
n

pu
e

su
oN
oa
ij
og

je
l9
ad
g

‘s
au
ei
g!

Ay
ss
an
lu
r

ay
eI
S

eN
YO
I\

S}
UE
WI
NI
OG

Y
S
N

JO

UO
NO
aI
IO
D

oy
Ae
WO
|

“yj

se
we
r

1g

Sh

eF
xX
G

=
80
-8

SIN

If

Ad

6246156B

DESCRIPTION

The short second operand is added to the short first operand, and the six digit
normalized sum is placed in the first operand location, .

Addition of two floating-point numbers consists of a characteristic comparison
and a fraction addition. The characteristics of the two operands are compared, and
the fraction with the smaller characteristic is right-shifted; its characteristic is in-
creased by one for each hexadecimal digit of shift, until the two characteristics agree.
The fractions are then added algebraically to form an intermediate sum. If an over-
flow carry occurs, the intermediate sum is right-shifted one digit, and the character-
istic is increased by one. If this increase causes a characteristic overflow, an ex-
ponent-overflow exception is signaled’, and a program interruption occurs.

The short intermediate sum consists of seven hexadecimal digits and a possible carry.
The low-order digit is a guard digit retained from the fraction which is shifted right.
Only one guard digit participates in the fraction addition. The guard digit is zero if no
shift occurs.

After the addition, the intermediate sum is left-shifted as necessary to form a norm-
alized fraction, vacated low-order digit positions are filled with zeros and the character-
istic is reduced by the amount of shift. :

If normalization causes the characteristic to underflow, characteristic and fraction
are made zero, an exponent-under flow exception exists, and a program interruption oc-
curs if the corresponding mask bit is one. If no left shift takes place, the intermediate
sum is truncated to the proper fraction length.

When the intermediate sum is zero and the significance mask bit is one, a signifi-
cance exception exists, anda program interruption takes place. No normalization oc-
curs; the intermediate sum characteristic remains unchanged. When the intermediate
sum is zero and the significance mask bit is zero, the program interruption for the sig-
nificance exception does not occur; rather, the characteristic is rade zero, yielding a
true zero result. Exponent underflow does not occur for a zero fraction.

The sign of the sum is derived by the rules of algebra. The sign of a sum with
zero result fraction is always positive. . :

RESULTING CONDITION CODE

00 Result fraction is zero

11 Result. is less than zero

01 Result is greater than zero

8-10

ee)

reed

Se
ni
yo
iy

As
ia
al
un

pu
e

su
on
oa
lj
og

je
lo
ad
g

‘s
au
ei
gr

As
ia
nl
un

ay
el
s

eN
YO
IA

S]
UB
WN
D0
G

YS
YN

JO

UO
HD
eI
I0
D

oy
Ae
WO

“y
sa
we
r

iq

I
Ch

OF

xo
g

,
yo
 t

80
-2
8

SIN

6246156B

PROGRAM INTERRUPTIONS

Significance

Exponent Overflow

Exponent Underflow

PROGRAMMING NOTE:

Interchanging the two operands in a floating-point addition does not affect the value
of the sum. : 4

COMPARE (SHORT OPERANDS)

Op R1 R2

Op pojorry Fp pryryryolr] yy
0 45 7 8 111213 15

Mnemonic Format

CER R1, R2

Op R14 ‘ B2 $ Address Specification

Of fofopry Foy frye yryt ft | Loeb) ete ee Age ey
0 45 78 11.1213 14 15 16 31

AM s
0 Displacement

pede de bee ed
16 31

1 x : ! Displacement

| Pititittt 4
16 31

’
AM. Mnemonic Format

Extended: 0 "CE R1, D2 (B2)

Indexed: 1 CE [@) [#] R1, 02.(X2, B2)

DESCRIPTION }

The first operand is compared with the second operand, and the condition code
indicates the result.

Comparison is algebraic, taking into account the sign, fraction, and exponent of
each number. In short-precision, the low-order halves of the floating-point registers
are ignored. An equality is established-by following the rules for normalized floating-
point subtraction. When the intermediate sum, including a possible guard digit, is
zero, the operands are equal. Neither operand is changed as a result of the operation.

Exponent overflow, exponent’ underflow, or lost significance cannot occur.

8-11

sa
ny
ou
y

Ay
si
@a
lu
n

pu
e

su
on
sa
lj
od

je
ls
ad
g

‘s
eu
ei
gr

As
ia
nl
uy

ay
er
s
E
U
L
A

sj
ue
tU
Nd
0G

YS
YN

JO

UO
ND
aI
|0
5

oy
Ae
WI
O|

“Gy

se
we
r

iq

80
-4

8
SI

Ch

©
F

xo
g

9f

A
6246156B

RESULTING CONDITION CODE

00 Operands are equal

11 First operand is low
01 First opérarid is high

PROGRAMMING NOTE

Numbers with zero fraction compare equal even when they differ in sign or charac-

teristic.

In comparing very small numbers (characteristic of 00 hexadecimal) which would
result in an exponent underflow in a subtract instruction, the condition code will bé set
to 00 (equal) even though the number is visually not equal. For example, a comparision
of 00100000 and 001FFFFF would yield a condition code of 00 (equal).

CONVERT TO FIXED-POINT

Op RI R2

Opop yyy PP ye yt pofoy yt
0 45 78 111213 15

Mnemonic = Format.

CVFX R1,R2

DESCRIPTION

The second operand is normalized short 32-bit floating-point operand using the
sign magnitude floating-point representation. The second operand is converted to

fixed-point by an unnormalization operation in order to have its characteristic equal
to a hexadecimal 44 [1000100 (2)] . Its sign bit is placed into the sign bit of general
register R1. Next, bits 8 through 39 of the intermediate value are converted from

sign-magnitude representation to two's complement and placed into bits 1 through 31

of general register Rl.

A convert overflow occurs when a floating-point second operand is not properly
converted to fixed-point. This occurs when the characteristic is larger than 44 hexa-
decimal 1000100 (2) or when bit 8 of the intermediate value is a 1 unless the number
is negative and bits 9 through 31 are zero. The value of R1 is unchanged.

CONDITION CODE

00 Bits 0 through 15 of the result.in general register R1 is zero,

LL. Bits 0 through 15 of the result in general register R1 is negative

01 Bits 0 through 15 of the result in general register R1 is positive.,

ANOMALY NOTE

A floating-point value of 41100000 is converted to a fixed-point 00010000 but gives
a condition code of 00.

8-12

Sa
nl
yo
uy

Ay

su
ea
lu
l

pu
e

SU
OI
}D
AI
IO
D

Je
Id

ad
g

‘s
au
eI
gI

Ai
si
aA
lU
A

ay
e}
S

eU
YO
IN

s]
U@

WU
ND

0q

YS

YN

JO
UO
ND

a!
}0
5

oy
Ae
WO
]

“3
se
we
r

Ig

&h

@F

xo
g

{
{

f
80

-2
48

SI
N

{
_
9
F

ad

f

INDICATORS , ~

The overflow and carry indicators are not changed.

PROGRAM INTERRUPTS

Convert overflow.

PROGRAMMING NOTE

Refer to the CONVERT TO FLOATING instruction.

CONVERT TO FLOATING-POINT

Op R1 R2

Ofoysy Pt prety yop} yy
0 45 78 1112713 15

Mnemonic Format

CVFL R1, R2

DESCRIPTION

The second operand is a 32-bit two's. complement number with its binary point
considered to be between bits 15 and 16. It is converted to sign magnitude floating-
point representation and placed into floating-point register Rl. .

First, the sign bit of the fixed-point number is placed into the sign bit of the
intermediate result shown below. Then, bits 0 through 31 of the fixed-point number :
are converted from two's complement representation to the magnitude of a sign-
magnitude representation, and then placed into bits 8 through 39 of the intermediate
result. The characteristic in bits 1 through 7 of the intermediate result is set to

- 1000100 (2), Finally, the resulting intermediate number is normalized and only a
short floating-point representation (bits 0 through 31) is developed and placed into
the floating point register R1.

CONDITION CODE

00 The floating-point result is zero.’
11 The floating-point result is negative.
01 The floating-point result is positive (>0).

INDICATORS

The overflow and carry indicators are not changed by this instruction.

8-13

6246156B

sa
at
yo
uy

Al
sI
eA
IU
N

Pu
e

SU
ON
DA
I|
OD

Je

IN
ad

g
‘s
eu
eI
qh

Aj
is
ie
nl
uN

a}
ei
s
e
N
O

s]
U8
WU
ND
OG

Y
S
N

JO
Uo

ND
a|
I0
g

oy
Ae
WO
]

“I
se
we
r

1g

e
h

O
f

x
o
g

8
0
-
4
8

S
W

9f

AA

6246156B

PROGRAM INTERRUPT

Significance

B Fixed Point Halfword Operand (R2)

s Integer Fraction

PEELE? bet i ti titi et et tt
O-1 15 16 2 . 31

Te \ a
\ a

N \ 7
Mee \ Z,

N N 7
ee , ue

Floating Point Number \ Zz

Ss Characteristic Integer s itFraction |

BE Vyopopopr yopop | PEt Ett [jh of opojojo]
01 789 (23:24. * 39 40 63

Intermediate Result Before Normalization Te ee ee), Binary Point

PROGRAMMING NOTE

Since the significance interrupt will occur when converting a zero, the programmer

may want to mask this interrupt before doing a CVFL by setting the significance mask

(bit 23 of the PSW) to zero. Thus, the significance interrupt would occur only for add °

or subtract floating, if not masked during the execution of those instructions.

DIVIDE (EXTENDED OPERANDS)

Op aR R2

Oyoyoyrpol py Pr ytytyoyty tt}
0 45 7 8 11 12.13 15°

Mnemonic Format

DEDR R1, R2

Op RI wm 82 Address Specification

Opoyoryoy jy pyri ity | bibitritti tii ti tt

0 4 5 7 8 1112 13 1415 16 31

AM. Displacement

0
POR ELS P b be pe ab bh |

t 16 31

1 x A | Displacement

| | Lippert iti tt
16 s 31

AM Mnemonic Format

Extended: 0 DED R1, D2 (B2)

Indexed: 1 DED [@] [#] R1, D2 (X2, B2)

8-14

wt

Sa
al
yo
uy

Al

si
en

lu
N

pu
e

SU
ON
DA
|O
D

Je
IN
ad
g

‘s
eu
eI
gK

Ay
si
en
lu
A

ay
el

s
eU
UO
I\
\

SJ
US
UU
ND
OG

Y
S
N

JO

UO
HD
a!
|O
D

oy
Ae

wW
O|

“3

se
we
r

4g

OF xX
0g

80
-2
8

SIN

ch
 O

F
xog

9f

sd

6246156B

DESCRIPTION

The dividend (the long first operand) is divided by the divisor (the quasi-extended second operand) and replaced by the quotient. No remainder is preserved, C

The first operand is located in bits 0 through 63 of the even/odd pair of floating point registers specified by Rl. The first operand is divided by the divisor. This quasi-extended divisor is limited to 31 fraction bits. This quasi-extended divisor is formed from a long floating-point operand by truncating the fraction portion of the sec- ond operand to 31 bits and then rounding into the 31st bit based upon the 32nd bit. The quasi-extended quotient replaces the dividend. This quotient replaces bits 0 through 38 of the even/odd pair of floating-point registers specified by R1. (Bits 39 through 63 are set to zero.)

A floating-point division consists of a characteristic subtraction and a fraction division.. The difference between the dividend and divisor characteristics plus 64 is used as.an intermediate quotient characteristic. The sign of the quotient is deter- mined by the rules of algebra. :

Postnormalizing the intermediate quotient is never necessary with both dividend and divisor being normalized, but a right-shift may be called for. The intermediate quotient characteristic is adjusted for the shifts. All dividend fraction digits partici- pate in forming the quotient, even if the normalized dividend fraction is larger than the normalized divisor fraction. The quotient fraction is truncated to.31 bits,

A program interruption for exponent overflow occurs when the final quotient char- acteristic exceeds 127 and the operation is terminated. This interruption will take precedence over all other program interruptions for this instruction.

A program interruption for exponent underflow occurs if the final-quotient charac- teristic is less than zero. The characteristic, sign, and fraction are made zero, and the interruption occurs if the corresponding mask bit is one. Underflow is not signaled for the intermediate quotient or for the operand characteristics during prenormalization,

When divisiqn by a true zero divisor. is attempted, the operation is suppressed, The dividend remains unchanged, and a program interruption for floating-point divide “occurs, When the dividend is a true zero, the quotient fraction will be zero. ‘The quotient sign and characteristic are made zero, yielding a true zero result without taking the program interruptions for exponent underflow and exponent overflow. The program interruption for significance is never taken for division.

When division is performed with un-normalized inputs, the un-normalized inputs interrupt will occur.

8-15

Sa
ny
ai
y

Aj
si
@a
lu
p)

PU

B
SU
OI
}D
a|
|O
D

|e
IN
ad
g

‘s
eu
eI

gr

Aj
Is

Ja
Al

UT

ay
EI
S

eN
YO
IN
\,

SJ
US

UU
ND

OG

YS
YN

JO
UO
HD
aI
IO
D

oy
Ae
wW
O|

“y
se
we
r

iq

th

O
F

xo
g

80
-2
8

SI
N

9

AA

6246156B

CONDITION CODE

The code remains unchanged. ~

- PROGRAM INTERRUPTIONS

Exponent Overflow

Exponent Underflow
Floating~Point Dividé Exception

Unnormalized inputs

PROGRAMMING NOTES

Fraction division proceeds as in fullword fixed-point division with formation of a
32-bit signed quotient using a 32-bit signed divisor and a 64-bit signed dividend, The
magnitude of the dividend fraction is adjusted to ensure that the magnitude of the divisor
exceeds the magnitude of the dividend. The quotient is converted to a normal extended
precision floating point operand with low-order fraction bits set to zero.

Rounding of the quasi-extended divisor means adding the 32nd bit in the fraction
part of the floating-point operand to the 31st bit and propagating all possible carries,

There are several cases when the quotient fraction may exceed 31 bits. These
situations occur with specific data patterns. The quotient will be correct but the low-
order fraction bits (39-63) will not'be set to zero as stated in paragraph two of-the
description.

» HARDWARE ANOMALY

1. Due to an anomaly in the microcode implementation of this instruction whereby
internal status bit 21 is not cleared when there is a zero dividend, the pro-
grammer must take steps to correct or avoid that condition. Usually, the
best way to do this is to test the dividend before executing the Divide and if
it is zero, do not perform the Divide. Thus, status bit 21 will never be left
set equal to one. Another alternative would be to calculate the reciprocal of
the divisor, then multiply by the reciprocal instead of dividing.

Sa
ny
ou
y

As
JA
lu
)

PU
B

SU
ON
DA
I|
OD

Je
I9
ad
g

‘s
au
eI
gr

Aj
Is
ia
Al
UT

ay
eI
S

EL
UD
IN
A

sj
ua
lu
ns
0g

Y
S
Y
N

JO

UO
ND
aI
I0
D

o
y
A
e
W
O
]

“y

sa
we
r

iq

{
80
-4
8

SW

Ch

OF

xo
g

[

DIVIDE (SHORT OPERANDS)

2.

62461568

The extended form of the floating point divide (DED, DEDR) does not always produce a quotient which is accurate:to 31 bits. The operands which would produce an incorrect result cannot be precisely défined; however, the following observations can be made: :

a. If the divisor's fraction is less than hexadecimal . 8000.0000, then the quotient will be correct. ,
b. If the divisor's fraction is greater than or equal to. 8000 0000, then there exists a possibility of an inaccurate quotient.
c. The value of the dividend does not affect the accuracy of the result.
d. The inaccuracy can occur as early as bit 25 in the fraction (origin 0) and may be in any of the last seven bits, 25-31.

e. The short precision divide (DE, DER) does not have this problem.

For those situations where accuracy to the full 31 bit precision is required, it is recommended that reciprocals of constants be stored and the extended form of the floating point multiply be used instead of the divide. For those conditions where the divisor is a variable, it will be necessary to use a work- around to preserve the accuracy.

The divide instruction interrupt hierarchy for both long and short operands is given in the diagram below:

START

Exponent Overflow (initial exponents test)
Code B

Divisor Not Normal, Floating Point Divide Exception
(divisor is true zero) ¢ 3 Psa Code 6 eedete

Dividend Not Normal : 4 Code 6

. Exponent Underflow Exponent Overflow (final Quotient) (Not masked)
Code B ‘ Code 9

Good Divide

Op

Clr prporsy yy fayryrpofo} | y
RI R2

0 45 @ 8 ua 11:12:13 16

Mnemonic Format

‘DER R1,R2

8-17

sa
ni

ya
y

Ay
ss
an
lu
n

pu
e

su
oj
oa
lj
o9

je
ls
ad
g

‘s
au
ei
g'
y

As
ie
nl
up

ay
ei
s

en
Yo
I\
\

sj
Uu

sW
Nd

0q

YS

YN

JO

UO
Hd
aI
I0
D

oy
Ae

WI
O|

“Fy

se
we
r

iq

80
-4

8
SI

Ch

@F

xo
g

It

dad

6246156B

Op R1 Disp* B2 * Displacements of the form ~
5 111XXxX are not valid. OPV tyoy ty yy eo l ae

0 45 7 8 13.14 15

Mnemonic Format

DE R1,D2(B2)

Op RI a 82 Address Specification /
Op pyor say |p tty yt yp tyo | eee Sry ps be |
0 4°5 7 8 11.1213 14 15 16 ie 31

AM Mnemonic Format F D Extended: 0 DE R1,D2(B2) ‘sp
betel el he

Indexed 1 DE [@] {=] R1,02(x2,B2) x ae Disp
J Jed fp

DESCRIPTION

The dividend (the short first operand) is divided by the divisor (the short second
operand) and replaced by the quotient. No remainder is preserved,

A floating-point division consists of a characteristic subtraction and a fraction di-
vision. The difference between the dividend and divisor characteristics plus 64 is used
as an intermediate quotient characteristic, The sign of the quotient is determined by
the rules of algebra.

Postnormalizing the intermediate quotient is never necessary when both operands
are normalized, but,.a right-shift may be called for. The intermediate-quotient char-
acteristic is adjusted for the shifts. All dividend fraction digits participate in forming
the quotient, even if the normalized dividend fraction is larger than the normalized
divisor fraction. The quotient fraction is truncated to 24 bits.

A program interruption for exponent overflow occurs when the final-quotient char-
acteristic exceeds 127. The operation is terminated. This interruption will take pre-
cedence over all other program interruptions for this instruction. .

A program interruption for exponent underflow occurs if the final-quotient charac-
teristic is less than zero. The characteristic, sign, and fraction are made zero, and
the interruption occurs if the corresponding mask bit is one. Underflow is not signaled
for the intermediate quotient or for the operand characteristics during prenormaliza-
tion.

When division by a true zero divisor is attempted, the operation is suppressed,
The dividend remains unchanged, and a program interruption for floating-point divide
exception occurs. When the dividend is a true zero, the quotient fraction will be zero.
The quotient sign and characteristic are made zero, yielding a true zero result without
taking the program interruptions for exponent underflow and exponent overflow. The
program interruption for significance is never taken for division.

8-18

see

sa
ni
yo
iy

Ay
si
en
lu

pu
e

Su
oN
oa
l|
OD

je
IN
ad
g

‘s
au

eI
gI

]
Ay
si
an
lu

ay
er
s

eN
Yo

IA
A

S}
JU

SW
ND

OG

Y
S
N

JO

UO
HD
aI
|O
D

oy
Ae
WO
]

“Fy

se

we
r

iq

8q
-4

8
SIN

Ch

oF

xO
g
|

6246156B

When division is performed with un-normalized inputs, the un-normalized inputs interrupt will occur,

CONDITION CODE

The code remains unchanged,

PROGRAM INTERRUPTS

Exponent Overflow
Exponent Underflow
Floating-Point Divide Exception
Un-normalized Inputs

LOAD (LONG OPERANDS)

Op R1 e -B2 Address Specification
oe | Potel ey dt ee | 0 45 78 11-12-13 1415 -16« : . : 31

a Displacement

Littitvitityyy yy 16 31

1 ; 1 x A 1 Displacement

! Liditypyy |
16 31

. AM Mnemonic Format

Extended: 0 LED R1, D2 (B2)

Indexed: 1 LED [@][#] | -R1, 02 (x2,B2)
DESCRIPTION

The long second operand is placed in the long first operand register. Thé second a operand is not changed.

First, bits 32 through 63 of the doubleword main storage operand are loaded into floating-point register R1@ 001. Then, bits 0 through 31 of the doubleword main storage operand are loaded into floating-point register'R1. Exponent overflow, ex- ponent underflow, or lost significance cannot occur.

CONDITION CODE

00 The second operand is a true zero . a 11 The second operand is negative
01 The second operand is positive (>0)

8-19

S@
Al
yo
uy

AU
SI
EA
IU
N

PU
B

SU
ON
DA
!I
OD

Je
IN

ad
g

‘s
eu
eI
qT

Ay
ss
en
lU
A

ay
el

s
eN

UO
I\

\
s]
Ua
LU
N0
q

YS
YN

JO

UO
ND

a|
10

5
oy
Ae
wW
O|

“Fj

se
we
r

iq

“/)

OF

xo

g
80
-2
8

SI
N

If

As

6246156B

LOAD (SHORT OPERANDS)

Op RI R2
OLe bitte tl tt ett ofoy | |
0 45 #78 11213 15

Mnemonic Format
c R1R2

Op R1 Disp* B2 * Displacements of the form.
oyrytyayt il eects y i | 111XXX are not valid.

0 45 78 13-14 15

Mnemonic, Format _
LE R1,D2(B2)

Op RI iv B2 Address Specification
OU yt Pe ttt yi fe 1 ee ee | py
0 45 78 1112 13.14 15 16 a1

AM Mnemonic Format Disp Extended: 0 LE RT,02(B2)
! jee ee ee ce ee ee

Indexed: 1 LE [@] [=] R1,D2(x2,B2) i Disp

pt Littittis 4

DESCRIPTION

instruction.

RESULTING CONDITION CODE

00 The second operand is a true zero

11 The second operand is negative

01 The second operand is positive (>0)

LOAD COMPLEMENT (SHORT OPERANDS)

Op R1 R2!

Opt pastry pep pret joyiy tt
0 45 78 1213° 16

Mnemonic _Fo*mat_
LECR R1,R2

8-20

The second operand is placed in floating-point register Rl. The second operand
is not changed. The overflow, underflow, and carry indicators are not changed by this

Sa
ny
ou
y

Aj
si
on
lu
n

pu
e

SU
ON
Da
I|
OD

Je
IN
ad
g

‘s
au
eI
qI

As
Ia
AU
A

ay
eI
S

EU
UD
IN
A,

S]
UB
WN
DO
G

YS
YN

JO

UO
a1
[0
9

oy
Ae

EW
O]

“J

se
we
r

ig

8Q
-z

8
SW

/)

Ff
xo
g

,
t t

9
sa

6246156B

DESCRIPTION

The arithmetic complement of the fullword second operand replaces the contents of floating-point register Rl. The sign bit of the second operand is inverted, while the
characteristic, the fraction, and register Rl @ 001, are not changed. Indicators are unchanged by this instruction. 4

RESULTING CONDITION CODE

00. The result is'a true zero
a 11 The result is negative ‘

01 The result is positive (>0)

PROGRAMMING NOTE

If this instruction is used to load a true zero, the condition code is set to 11 indi-
cating a negative result and the result will equal hexadecimal 80000000. To avoid this
condition, a test for zero operand should be made prior to the LECR and if the operand
is zero, branch around the LECR.

LOAD FIXED REGISTER

Op R1 R2

Opoprp poy Py tyrytpoory yy
0 4 5 7 8 111213 15

Mnemonic Format
LFXR R1, R2

DESCRIPTION

The fullword contents of the floating-point register specified by R2 is loaded into
‘the general register specified by Rl.

"RESULTING CONDITION CODE

The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

LOAD FLOATING IMMEDIATE

oO
Op R1 P OPX

Tyopopors} yy frgryryol*} 4 |
0 4 5 78 11:1213 15

Monemonic Format
LFLI Ri, Value

DESCRIPTION

A floating-point immediate value is loaded into the floating-point register specified by Rl. 8-21

sa
ni
yo
iy

As
ia
ni
lu
n

pu
e

su
o}
da
l|
09

je
la
dg

‘s
eu
ei
g!
y

As
ie

Al
uA

ay

el
s

eY
YO

I\
\

s]
Ua
WI
ND
OG

Y
S
N

JO
UO

Nd
a|
|0
9

oy
Ae
WO
)

“3
sa
we
r

ig

80
-4
8

SW

°h

O
F

xo
g

9f

sd

6246156B

The immediate values are 0, »1.,2., 3.,4.,5.,6., 7
13., 14., and 15.

OPX (bits 12, 13,14, 15)

(hex)

A
M
U
A
W
D
F
L
e
H
o
n
r
M
m
n
b
h
w
n
N
H
o

RESULTING CONDITION CODE

The code is not changed by this instruction.

INDICATORS

» 7, 8, 9,, 10., 11., 12.,

Immediate Values—»R1 ae ee V BIN es —> Ri.

(hex)

4100 0000
4110° 0000
4120 0000
4130 0000
4140 0000
4150.0000
4160 0000
4170 0000
4180.0000
4190 0000
41A0 0000
41B0 0000
41C0 0000
41D0 0000
41E0 0000
41F0 0000

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The result of a LFLZ with zero imm
result.

LOAD FLOATING REGISTER —— ee eee

Op RI R2

Spopnpoyty fy fry ty ty of 1 |
0 45 7 8 111213 15

Mnemonic Format
LFLR R1, R2

DESCRIPTION

The fullword contents of the general re;
floating-point register specified by R1,

8-22°°

ediate value does not produce a true zero

gister specified by R2 are loaded into the

sa
nt
ya
uy

Aj
is
io
ni
un

pu
e

su
oq
oa
|j
O9

el
ad

g
‘s
au
ei
qr

Ai
si
en
lu
p

a
e
s

eN
UO

IN
\

SJ
US
WI
ND
OG

YS
YN

JO
UO
HD
A|
IO
D

oy
AE
WO
|

“y
se
we
r

iq

E
1

°F

xX
og
,

8g
z8

SW

Fr

dd

6246156B

RESULTING CONDITION CODE ~

The code is not changed by this instruction.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

MID-VALUE SELECT (SHORT OPERANDS)

Op RI ml 82 Address Specification
Opt pr popoy fp pry fs Pittpey pete t eter ryt
0 45 78 ~ 111213 1415 16 31

aM Displacement

Litt ttt tt pepe tt
16 r 5 31

1 x i I Displacement

| Lutrpietpit |
16 1819 2021 31

AM Mnemonic Format
Extended: 0 MVS R1, D2 (B2)
Indexed: 1 MVS (@) (#) R1, D2 (X2, B2)

* DESCRIPTION =

The floating point registers specified by Rl and R1 @ 001 each contain a short
(8/24) floating point operand. The third short floating point operand is located
the main storage effective address. The three operands are compared, and the mid-
value operand is selected such that it is less than or equal to the maximum value
operand. This mid-value operand is then placed in the floating. point register speci-
fied by‘R1. Both the main storage operand and the contents of Register R1 @ 001 are
not changed. - ,

RESULTING CONDITION CODE

The condition code is set as'a result of executing this instruction, but its value
is, in general, meaningless when this instruction is used for mid-value selection.
However, see the Programming Note for condition code settings when used as a limi-
ter.

INDICATORS .

The overflow and carry indicators are not changed by this instruction.

8-23

S
a
n
d
y

Ay
ss

@a
lu

n
pu

e
su
oH
oa
I|
OD

Je
Id
ad
g

‘s
au

ei
q'

]
Ay
is
Jo
nl
ul

a}
eI

S
eN
YO
I\
A

s]
US
WU
ND
0q

YS
YN

JO

UO
Hd
e|
|0
D

oy
Ae
WI
O|

“Fj
sa

we
r

iq

th

O
F

xo
g

80
-2

8
SI
N

9

ss

6246156B

PROGRAMMING NOTES

This instruction can also be used as a limiter. The upper limit must be placed
in R1 @ 001; the lower limit must be placed in the main store location. The input
value to be tested must be placed in R1._ The condition code will reflect the result of
the instruction and, if the input value is outside the limit values, the appropriate
limit value will be placed in R1.

When this instruction is used as a limiter, the condition code will be set as follows:

Lower Limit (Main Storage Operand) < Operand
(Initial Contents of Register R1) S Upper Limit
(Contents of Register RI @ 001)

01 Above Upper Limit; Initial RI Operand > Upper Limit (R1 @ 001)
11 Below Lower Limit: Initial R1 Operand < Lower Limit (Main Storage

Operand)

00 Within Limits:

As with all floating-point operations, normalized floating-point numbers are re-
quired prior to execution. Also, the programmer is responsible to insure that the
upper limit is not equal to or less than the lower limit. If these conditions are in-
advertently setup, the result is predictable in that the instruction will perform a
mid-value select. .

MULTIPLY (EXTENDED OPERANDS)

Op R1 g R2

OPOyajryjoy | ft ttpryrjotry | yf
0 45 78 11:12:13 15

Mnemonic Format

MEDR R1, R2

. A ta Op R1 M B2 Address Specification

Ofoprpryoy Yep fepryryr fs | te Kc cs el Eee eC ed eel id
it) 45 78 11.1213 1415 16. es . 31

AM . Displacement
0

Pe eee Pe
16 31

st / Mivitns "é 1 ok Displacement

[2-2 [6 EOE ep Ee
16 31

AM Mnemonic Format

Extended: 0 MED ” R41, D2 (B2)

Indexed: 4 “* “MED T@} [#] Ri, D2 (x2, B2)

8-24

Sa
ni
yd
iy

AU
si
eA
lu
N

pu
e

SU
ON
OA
I|
OD

je
I9
ad
g

‘s
eu

eI
gI

]
Ay

se
Al

UT

a}
eI
S
B
M
Y

}
o
y
A
e
w
o
|

"3

se
we
r

iq

o
F

xo
g

,

s]
U9
UU
ND
0G

YS

YN

JO
UO

ND
ay

IO
:

th

8Q
-2

8
- S

IN
[

oh
6246156B

DESCRIPTION

The normalized product of multiplier (a quasi-extendéd second operand)’ and multi- plicand (a quasi-extended first operand) ‘replaces the multiplicand, . oO

The first operand is located in bits 0 through 38 of the even/odd pair of floating- point register specified, by, the even register R1,. This operand is multiplied by the second operand. For the RR format,. the ‘second:operand is located ‘in bits 0 through 38 of the even/odd pair of, floating-point registers specified by R2. (Bits 39 through 63 do not participate except during rounding. See Programming Notes.) For the RS format, the second operand is located in bits 0:through 38 of the main'storage extended operand. The extended product replaces bits‘.0 through 63 of the even/odd pair of floating-point registers specified by Rl and R1 001.

The multiplication of two floating-point numbers consists of a characteristic addi- i] tion and a fraction multiplication. (Participation of multiplicand'‘and multiplier fraction bits is limited to 31 bits, except as used for. rounding. See Programming Notes. Frac- tion multiplication proceeds as in fixed point full word multiplication, but:produces only a 62-bit fraction product.) The sum of the characteristic less 64 is used as the char- acteristic of an intermediate product.

The sign of the product is determined by the rules of algebra.

The product fraction is normalized by post-normalizing the 62-bit intermediate ‘ product, if necessary, then truncating the product to 56 bits, The intermediate product characteristic is reduced by the number of left-shifts, .

Exponent overflow occurs if the final product characteristic exceeds 127. The op- eration is terminated, and a program interruption occurs. The overflow exception does not occur for an intermediate product characteristic exceeding 127 when the final characteristic is brought within range because of normalization, ‘

Exponent underflow occurs if the final product characteristic is less than zero. If the floating-point \exponent underflow mask is a one, a program interruption occurs. If the mask bit is zero, the result is made a true zero,

When all digits of the intermediate product fraction are zero, the product sign and characteristic are made zero, yielding a true zero result. No interruption for ex- ponent underflow or exponent overflow can occur when the result fraction is zero, The program interruption for lost significance is never taken for multiplication.

CONDITION CODE

The code remains unchanged.

PROGRAM INTERRUPTION

Exponent Overflow
Exponent Underflow (occurs prior to zero operand test)

a

8-25

sa
ny
ai
y

Ay
si
aa
lu
n

pu
e

su
og
oa
lj
og

|e

lo
ad

s
‘s
au
ei
qr
y

Ai
si
an
iu

ay
er
s
E
U
s
,

SJ
US

WU
ND

OG

YS

YN

JO

UO
HD
a!
]O
D

oy
Ae

wW
O|

“Fj

sa
we
r

ig

80
-4

8
SW

Ch

@
F

xo
g

9f

JA

6246156B

PROGRAMMING NOTES

When either the multiplicand or multiplier is a true zero, the’result is normally
forced to a true zero without requiring the hardware to enter the longer multiply-algor-
ithm.

Rounding of both the multiplicand and multiplier occurs prior to entering the actual multiply algorithm. - The quasi-extended operands are formed from a long floating-point operand by truncating the fraction portion to 31 bits and‘then rounding into the 31st bit based upon the 32nd bit. (Rounding means adding the 32nd bit to the 31st bit and propa- gating all possible carries.) Note that exponent overflow will be caused by rounding a
floating point number like 7FFFFFFFFF000000. .

MULTIPLY (SHORT OPERANDS)

Op R1 R2

Opp jojoy PE tryryprypojoy yy
0 4.56 7 8 11:12 13 16

Mnemonic Format
IE R1,R2

Op R1 ' Disp* B2 * Displacements of the form
111XXX t valid. OlLijijoooh pet yep py} oe ae

0 45 7 8 13:14:15

Mnemonic Format
RT,D2(B2)

Op RI 4 B2 Address Specification
Oli ojo, fy tri is jo 1 Pepi yep peepee yy | 0 4 5 7 8 11:12 13 1415 16 31

- AM Mnemonic Format D Extended: “0 ME R1,02,(B2) oe
| J Pe es ep Pe Ty

Indexed: 1 ME [@] (#] R1,D2(X2,B2) x Whi Disp

DUAL Ppt pe

DESCRIPTION

The normalized product of multiplier (the short second operand) and multiplicand
(the short first operand) replaces the multiplicand.

8-26

Sa
ny
ou
y

Ay
si
eA
lu
N

PU
B

SU
ON
DA
I|
OD

Je
IN

ed
g

‘s
eu
e/
qI
]

AS
IA
AI
UT

a}
eI
S

eN
UO

IA
A

su
st
uN
nd
0q

YS

YN

JO

UO
Nd
a|
|0
D

oy
Ae
WO
)

“y
se
we
r

iq

} n
80

-4
8

SI

t
If
e

ss

OF

xo
g

i

6246156B

The multiplication of two floating-point numbers consists of a characteristic addi- tion and a fraction multiplication. The sum of the characteristics less 64 is used as the characteristic of an intermediate product. The sign’ of the product is determined by the rules of algebra.
~

The product fraction is normalized by postnormalizing the intermediate product, if necessary. The intermediate product characteristic is reduced by the number of left-shifts. For short operands (six-digit fractions), the product fraction. has the full 14 digits of the long format with the two low-order fraction digits accordingly always zero,

Exponent overflow occurs if*the final product characteristic exceeds 127. The op- eration is terminated, and a program interruption occurs. . The overflow exception does not occur for an intermediate product characteristic exceeding 127 when the final characteristic is brought within range because of normalization.

Exponent underflow occurs if the final product characteristic is less than zero, If the floating-point exponent underflow mask is a one, a program interrupt occurs. If the mask bit is zero, the result is.made a true zero,

When all 14 digits of the intermediate product fraction are zero, the product sign and characteristic are made zero, yielding a true zero result. No interruption for ex- ponent underflow or exponent overflow can occur when the result fraction is zero. The program interruption for lost significance.is never taken for multiplication.

The least significant part of the product fraction replaces the contents-of floating- point register R1 @® 001. Then, the most Significant part of the intermediate product fraction replaces the contents of floating-point register R1.

CONDITION CODE

The code remains unchanged.

PROGRAM INTERRUPTIONS

Exponent Overflow .
Exponent Underflow (occurs prior to zero operand tests) : Bl

PROGRAMMING NOTES

Interchanging the two operands in a floating-point multiplication does not affect the, value of the product,

When either the multiplicand or multiplier is a true zero, the result is normally * forced to a true zero without requiring the hardware to enter the longer multiply algor- ithm. When multiplying a true zero by another true zero or a true zero by any number with a characteristic less than 64 (hexadecimal 40), the exponent underflow interrupt will occur (if not masked) and the product is not computed. Masking the interrupt will generate a true zero product.

Notice that the MULTIPLY (short) instruction uses two registers for its result if Rl was even. This allows the programmer to use the’additional precision without going to the extended form of the MULTIPLY.

8-27

Sa
nl
yo
uy

Ay
ss
Ja
nl
uN

pu
e

SU
dH
SI
|O
9

|e
Il
oa
dg

‘s
au
eI
g!
]

Ay
ss
an
lu
T

al
eI
g

eN
YO
IN
\A

9=z
5
3

® 00
mn 4a

oO
§ ©
o
< =

oO

°
2
2W
sO
5 x
°°

=
sO
n
Pt
Oy
°
oO
rq

3
oO

=
oon qn

N

6246156B

SUBTRACT (LONG OPERANDS)

Op R1 R2 *
Olrfotr tr} | ft frtrprpof at | |

0 45 7 8. 1112 13 15

Mnemonic Format

SEDR R1, R2

A i. Op R1 IM |B2 Address Specification
Or jotapiy Vey da eds Ltd dy de bt
0 45 7 8 1112 1314 15 16 31

AM Displacement

0 be ee pod
16 " 31

'
1 x All Displacement

fi Piette tiyy |
16 31

AM Mnemonic Format

Extended: 0 SED R1, D2 (B2)

Indexed: 1 SED [@][#] R1, D2 (X2, B2)

DESCRIPTION

The long second operand is subtracted from the long first operand, ‘and the normal-
ized difference is placed in the first operand location.

The long 64-bit second operand is subtracted from the contents of floating-point
register pair specified by the even register R1 and R1 @001. The normalized result
is placed into floating-point registers R1 and R1@001.

The SUBTRACT (long operand).is similar to ADD (long operand), except that the
sign of the second operand is inverted before addition.

The sign of the difference is derived by the rules of algebra. The sign of a dif-
ference with zero result fraction is always positive.

RESULTING CONDITION CODE

00 Result fraction is zero

11 Result is less than zero

01 Result is greater than zero

PROGRAM INTERRUPTIONS

Significance

Exponent Overflow

Exponent Underflow

8-28

von

wu

on

sa
ni
yo
iy

Ay
si
ea
lu

pu
e

SU
OR
Da
I|
OD

Je

Io
ad

g
‘s
eu
eI
gI
]

As
ia
al
uA

ay
er
s

eN
Uo
I\
\

SJ
UB
LU
ND
OG

YS
YN

JO

UO
ND
a|
|O
D

oy
Ae
WO
]

“Fy

se
we
r

ug

28

sn

i
80

G

sy,
i?
 O
F

x0
8

k
ofr

 4

SUBTRACT (SHORT OPERANDS)

Op RI . R2. .
Op Opry ty PE try ryiyofo} | |
0 45 78 1121345

Mnemonic Format
SER R1,R2

Op Ri. Digne PL. Be- PS, 2, Diaplacements\of the torn
111XXxX are not valid. SUV gO peppy pep pep py 0 a5 78 13.14 15

Mnemonic’ » Format
SE R1,D2(B2)

Op RI B2 Address Specification Op out pe tt ty to | Poppi titi eee yy 0 45 78 11121314 15 16

AM Mnemonic Format Disp Extended: 0 SE R1,D2(B2) Lt tlitiyy yyy
Indexed: 1 SE {@] [=] R1,02(x2,82) x ita Disp

11 4 Littitiy ys |

DESCRIPTION

The short second operand is subtracted from the short first operand, and the normalized difference is placed in the first operand location.

The SUBTRACT (short operands) is similar to ADD (short operands), except that
the sign of the second operand is inverted before addition.

The sign of the difference is derived by the rules of algebra. The sign of a differ- ence with zero result fraction is always positive.

RESULTING CONDITION CODE

00 Result fraction is zero

ll Result is less than zero

01 Result is greater than zero

PROGRAM INTERRUPTIONS

Significance

Exponent Overflow

Exponent Underflow

PROGRAMMING NOTE

The technique used to clear a register by subtracting a floating-point register from itself will work even though unnormalized numbers are used in the subtract operation. The reason this works is that the characteristics are compared and found to be equal. Thus, no shifting takes place,. the fractions are subtracted, and the result will be a true zero provided that the significance mask bit is Zero.
8-29

6246156B

Se
Ny
oy

Ay
si
an
lu
n

pu
e

Su
oN
oa
/O
D

Je
l9
ad
g

‘s
au
es
g!
]

AI
SI
aA
IU

aI
eI
g

EU
YO
IY

sU
Bu
ND
0q

YS
YN

JO
UO
HD
a|
|O
D

oy
Ae
WO
|

“Fy
 s

ew
er

ig

80
-4
8

SN

Cl
,

OF

xo
g

9F

AA

6246156B

STORE (LONG OPERANDS)

A
f os Op R1 MIB2 | Address Specification - . Oot trtst | ft fapat ry ata ! Liityti typ tp yy 0 45 78 1112131415 16

31

- . Displacement

Pititivpr typ y yy
16 ' . 31

1 x la I Displacement

14 Poppy et ty yy
16 31

AM Mnemonic Format

Extended: 0 STED : R1, D2 (B2)

Indexed: 1 STED ..@][#] R1, D2 (X2, B2)

DESCRIPTION

The long first operand is stored at the long second operand location, The first operand is not changed.

The first operand is located in the even/odd pair of floating-point registers speci- fied by the even register R1. First, bits 0 through 31 of floating-point register R1@1 are stored into the second fullword of the doubleword storage area starting with the second operand fullword address. Bits 0 through 31 of floating-point register R1 are stored in the fullword specified by the second operand fullword address,

CONDITION CODE

The code remains unchanged.

8-30

Donald Schmidt

Sa
nl
yd
iy

Aj
si
en
lu
N

ue

SU
ON
DA
I|
OD

Je

ID
ad

g
‘s

eu
eg

I]

Ay
ss
aa
lu
A

al
el
g

eN
UO
I,

a

he

aa

w

i

2 =."
5 a~
3
&
mA
a6”
$ ©
o
<
x

o —

QO

2
2 Ww
=O
Sx. 3K"

zo o
> x
g U~
oO
£

3
oO

3
apy

a

uo

STORE (SHORT OPERANDS)

Op R1 Disp* B2 * Displacements of the form oo fifi) LJ Ld Li | 111XXxX are not valid,
0 4 7 8 f 13.14 15

Mnemonic Format
STE R1,D2(B2)

Op Rl a B2 Address Specification OLO tpi at py tigi ys fo ! Ped eg yy 0 45 78 11.12 13 1415 16 31

AM Mnemonic Format Disp Extended: 0 STE R1,02(B2) é [est PE hia fy Sy
Indexed: 1 STEI@) [=] R1,02(x2,82) x hal Disp

Pept i ee. | |

DESCRIPTION

The contents of floating-point reg
The contents of R1 is not changed. Th
by this instruction.

RESULTING CONDITION CODE

The code is not changed.
1

8-31/8-32

ister R1 is stored at the second operand location.
he overflow and carry indicators are not changed

6246156B

Se
nl
yo
y

Ay
sa
nl
uy

pu
e

su
oo
aI
|0
5

je
IN
ad
s

“S
8U
EI
Q
A
s
i
a
n

ee
ls

ey
yo
iy

SJ
UB
WU
ND
O

YS
YN

JO

UO
ND
EI
I0
D

Oy
Ae
WO
|

“3
sa
we
r

iq

B0
-2
8:

SI
N

t
€

b&b

xo
g

dd

(2
h

6246156B

Section 9

SPECIAL OPERATIONS

This section describes the special instructions.. These instructions make: possible
the use of efficient pseudo subroutines, permit the specification of storage protection,
perform status switching, and control l/o.

DETECT

Op Ri A] 82 Address Specification
1p jopojopo jojo} airyryriifo} | fopojopojojojojojojojojojojojojo
0 45 #78 111213 14 15 16 31

DESCRIPTION

The B2 field uniquely selects one of four special microprogram routines, The
selected micro-routine is executed. These routines are used to perform built-in
diagnostic functions to verify the proper functioning of the CPU hardware. ~

Since the instruction is not intended for normal program usage, DETECT has
no mnemonic, This is a privileged operation and can only be executed when the CPU
is in the Supervisor state.

PROGRAM INTERRUPTION

Privileged operation

INSERT STORAGE PROTECT BITS

Op M1 A B2 Address Specification
Tyo yty Ee et ds | poutit itp titer yy |
0 45 7 8 1112 13 14 15 16 31,

AM Mnemonic Format

Extended: 0 ISPB M1,D2(B2) Disp
! {it |i jy t |

Indexed: 1 ISPB [@] [=] M1,D2(X2,B2) x Wt Disp

4 Litditiity ys 3

9-1

@

SH
EN
G

Au
si
eA
lU

e2
15

eY
Yo
I\

1
VS
YN

40
Uo
ND
aI
I0
9

oy
fe
Wo
)

“3
sa
we
r

“ig

S
A
N
Y
Y

Ay
si
an
lu
n

pu
e

su
og
da
II
09

Je
IV
ad
s

‘s
S
}
U
S
W
U
N
D
O
Y

L
f

J
80
-4
8

SW

C
i

xo
g

9-2

6246156B

iy

DESCRIPTION
abs

Bits 5 through 7, the M1 field, are decoded to set or reset the protection bit as-
sociated with each halfword in main-storage as specified by the EA, The contents of
the specified location, however, are not changed. a

The following defines the combinations of the M1 field and the corresponding re-
sult: ' ai!

M1 Field . Result

000 Reset the storage protection bit for the halfword second ‘est
operand.

001 Reset the storage protection bits for both halfwords in the ~
fullword second operand. “

010 Set the storage protection bit for the halfword second
operand. Bats

w
011 Set the storage protection bits for both halfwords in the

fullword second operand,

100 Tllegal ’ 4 ~

101 Mlegal

110 Megal a
111 Illegal

This is a privileged operation and can only be executed when the CPU is in the "
supervisor state.

‘

RESULTING CONDITION CODE
sat

\" The code is not changed by this instruction.
| | al | INDICATORS

| The carry and overflow indicators are not changed by this instruction. Pa

PROGRAM INTERRUPTIONS

Illegal operation =
|

PROGRAMMING NOTES ,

| The low-order bit in the EA is used to specify the halfword when M1 is 000 or 010
When M1 is 001 or 011, the low-order bit of the EA should be 0 and will be ignored.

a * yw

| at
|
|

|
|
|
|

sa
nt
yo
uy

Ay
si
an
lu
Q

pu
e

su
oj
oa
l|
o9

je
Io
ad
s

‘s
au
ei
gr

Au
ss
ie
nt
un

ay
ei
s

ey
yo
in
y,

(
“2
8

SW

ol

7
se
we
r

iq

10
9
m
u

0
AY

P
L

Ko
d

s}
us
wN
D0
q

YS
YN

JO

Uo
:

44
 (

Ai
x

6246156B

This instruction will always have halfword alignment and will be excluded from
automatic index alignment.

The illegal M1 field patterns (100, 101, 110, and 111) leave the storage protect
override bit set on which means that storage protected locations can be written into
without getting a store protect violation. The condition will occur until the next valid
ISPB is executed.

LOAD PROGRAM STATUS

Op OPX A B2 Address Spaaitlestion AO ey ey ! 0 4 5 7 8 11:12 1314 15 16

AM Mnemonic Format
Extended 0 LPS D2(B2) Disp

14 Liiitiyjyiy |
Indexed: 1 LPS[@] [=] D2(X2,B2)

x yt Disp

LI Litesye yyy |
DESCRIPTION

Two fullwords starting at the location designated by the fullword operand address
replace the contents of the program status registers on the CPU,: as described under
Program Status word, (Section 2, Figure 2-19),

RESULTING CONDITION CODE

The code is set or defined by the new PSW,

INDICATORS

The carry and overflow indicators are set or defined by the new PSW.

PROGRAMMING NOTE

This is a privileged operation and can only be executed when the CPU is in the
supervisor state. This instruction will always have halfword index alignment and will
be excluded from automatic index alignment.

PSW bits 40 through 43 are not changed by the load operation.

PROGRAM INTERRUPT

If PSW bits 19 and 20 are both set, a fixed-point overflow will occur.

S
e
a
l
y

AU
sJ
eA
lU
N

pu
e

SU
ON
Da
II
O9

Je
ID
ad
S

‘s
av
ei
gT

Ai
si
en
lu
n

ay
ey
s

ey
yo
iy

SI
UB
WU
ND
OG

YS
YN

JO

UO
NO
BI
IO
9

oy
Ae
WO
|

“¥
sa
we
r

“1
g

6246156B

80
-4
8

SI
N

€
fp

xo
g

MOVE HALFWORD OPERANDS

Op Ri R2

Oyo Ey pty tytyo L | ’ / =
0: 45 7.8 1112413 15 :

Mnemonic Format

MVH .,. R1,R2

DESCRIPTION

Bits 0 through 15 of the general register specified by R1 contain the destination
address. (This is analogous to the RR Format Branch Instructions except when bit 0
of general register R1 is a one; in that case the DSR in the current PSW is used.)
Bits 16 through 31 of R1 contain a count of halfwords to be moved which must be greater
than zero. Since its representation uses a Signed 2's complement integer format,. bit
16 (the sign bit) should be zero. A negative count (bit 16 equals 1) indicates no data
will be moved.

The content of the general register specified by R2 is as follows:

Source Address Reserved . Ignored DSR

LEP tPt pp pp pp pp Pye popo] yp yy yy joy yy
oj1 15 16 27 28 “31

When bit 0 in R2 is zero, the source address uses an implied DSR of all zeros. '
When bit 0 in R2 is one, the source address uses the DSR contained in bits 26-31.

Data (a block of contiguous halfwords) is moved a halfword at a time from a source
whose address is determined by concentrating the value of the DSR in R2 with the Source
Address in R2 and adding to it the value of the count in bits 16 through 31 of R1 which
is decremented by one for each halfword moved. The data is moved to the destination
whose address is determined by adding to the operand address (Bits 0 through 15 of R1)
the current value of the count. The move is completed when the count becomes zero.
See Figure 9-1.

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow and carry indicators are not changed.

PROGRAMMING NOTES

As in all instructions, main.store addresses (for source and destination) must
not be expected to cross 32K sector boundaries, because this instruction will not
modify the DSR's.’ If this is ever attempted, the result is quite predictable in that
operands will be used from the first 32K main storage locations,

9-4

go
-2
8

‘s
w

1
t
A

xo
g

SI
UB
UN
DO

YS
YN

JO

UO
De
}1
09

oy
Ae
WO
|

“¥
sa
we
r

ug

A
 (

e
y

Sa
nl
yo
uy

Ay
si
an
lu
n

pu
e

su
oq
oa
||
09

je
ls
ad
¢

‘s
ae
iq
r

Au
si
en
lu
n

ay
es

ep
Yy
oy

6246156B
Start —_________.

where

Ic
s
o

Instruction Counter
Source Address
Destination
Address

Ds-Rigig -P---4 C = Count of ce Haitwords > 0
MS(X1 = Contents of

Main Store
+>

Location at X

i

S$ R29 15

Aliesr

cee
MS (D+C)-MS(S+C)

Interrupr

Pending

Interrupt Service
Routine Will

IC<-ici P= -—4 Restart This
Instruction

+ at its Beginning

Rie-c
16-31

To Next Instruction
oF Interrupt
(if Pending)

Figure 9-1, Move Halfword Execution

Because the MOVE HALFWORD instruction can execute for a long time, it has been designed to be interruptible. The following interrupts are typical of those interrupts » which may break into the sequence of moves before the instruction is finished:

1. Initial power off signal (POI) from power supply.

2. Counter 1 or 2 interrupts.

When MOVE HALFWORD ends prematurely due to any of the above pending interrupts, the instruction counter will be decremented such that when the interrupt is taken the old PSW contains the instruction address of the move instruction. Also, when this instruction is interrupted, the count in R1 is modified to reflect the number of halfwords remaining to be moved. This will allow returning to the move instruction so that it can continue to be executed from where it was interrupted.

The programmer is encouraged to have both source and destination address low- order bits set the same. This will enable the instruction to accelerate execution by using fullword transfers for the majority of the move.

HARDWARE ANOMALY

External 1 interrupt ."Old-PSW" can be invalid when any of the following interrupts
occur:

1. I/O Interface Address Parity ~
9-5

Sa
nl
yy

Ai
ss
an
lu
n

pu
e

su
oq
oa
I]
09

Je
I9
ad
g

‘s
su
el
q!
]

AI
SI
OA
IU
N)

B}
EI
S

EU
YO
IA
A

S]
US
WU
ND
OG

YS
YN

JO

UO
ND
EI
I0
g

oy
fe
wW
o|

“3
se
we
r

iq

| :
6246 156B

80
-4
8

SW

Ct
xo
g

St
P
f
,
 4

2. DMA Data Parity

3. PCI Data Parity

SET PROGRAM MASK

Op

1} 140 }o] 1
4 5

DESCRIPTION

78

R2

Lijtpoiit |
Tr a1 1815
Mnemonic Format

SPM R2

The contents of bits 16 through 23 of general register R2 replace the corresponding
contents of the current:program status registers on the CPU as follows:

Bits 16 and 17 become the new condition code.

Bit 18 becomes the new carry indicator.

Bit 19 becomes the new overflow indicator.

Bit 20 becomes the fixed-point overflow mask.

Bit 21 (reserved)

Bit 22 becomes the floating-point exponent underflow mask.
Bit 23 becomes the significance mask

RESULTING CONDITION CODE

The code is changed as defined above,

INDICATORS

The carry, overflow, underflow, and significance indicators are changed as defined
above.

1

PROGRAM INTERRUPT

If both bits 19 and 20 are set, the fixed-point overflow interrupt will occur.

PROGRAMMING NOTE

Bits 5 through 7 are not used by this instruction. It is récommended that these
bits be set to zero.

SET SYSTEM MASK

Op Y/ a B2 Address Specification

140 j0 JO) 1PoFoxor ttt jrpryi ! Jeol obs feafel eee apy
0 45 78 11.1213. 14.1616 ; ‘ 31

AM. Mnemonic — Format
Extended: 0 ssM D2(B2) Disp

|_J sot al bl

Indexed: 1 SSM[©] [#] D2(X2,B2) x Wa Disp
i

peat pp tt
9-6

Se
nt
yo
si
y
As
an
lU
N

pu
e

SU
ON
Da
IO
D

je
ID
ad
s

‘s
ae
iq
r

As
ia
nt
uy

ay
e}
S

ey
Yo
I\
y

a |

4 |

. “WL

wd

wd

~

f=
5a
3-
oO

2 ©
mA

L

a Oo
3 ~0o
o
- =
°°

Oo

2
oO

ay
sx
So

et
n $y
0
°°

2 w

3
@O g
Oy ee

wT

WI
ca

DESCRIPTION

The halfword second operand replaces bits 32 to 47 of the PSW. This is a privi-
leged operation and can only be executed when the CPU is in the supervisor state.

RESULTING CONDITION CODE

The code is not changed by this instruction,

INDICATORS

The carry and overflow indicators are not changed by this instruction.

PROGRAMMING NOTE

Bits 5 through 7 are not used by this instruction. It is recommended that these
bits be set to zero.

STACK CALL

Op RI a} 82 | _ Address Specification

‘yr fojrpoy fey papery trys Liddttitt st rtp itt |
0 45 78 111213 14 1516 31

AM
0 Displacement :

Puppet type tei ty |
16 : 31

1 x He 1 Displacement

| Pitti ttt i |
a 16 18 1920 21 31

AM Mnemonic Format

Extended: 0 SCAL R1, D2 (B2)
Indexed: 1 SCAL [@] [#] | R1, D2 (X2, B2)

DESCRIPTION

This instruction for calling subroutines automatically controls saving bits 0 through
31.of the current PSW, the 8 general registers and programmer's temporary work
space in main storage. When the Stack Call (SCAL) instruction is to be used, or the
corresponding Stack Return (SRET), general register R1 must contain a Stack Status
Descriptor word (SSD), as follows:

PTR

Lititt Pitit |
INC

Lititttitt) ft ft
 0

9-7

31

6246156B

SSD

S@
Al
yy

Ay
si
al
un

pu
e

su
oN
d~
aI
I0
9

Je
I9
ad
g

‘s
su
ei
g!
]

Al
si
on
iu
n

ay
er
s
e
y
o
,

SI
US
UI
ND
OG

YS
YN

J0

UO
ND
eI
|0
9

oy
Ke
wW
O|

“Fy
se
we
r

ig

80
-4
8

SW

e J
y

xog

Lf
y-
44

|

|

|
|
|
|

|

|

6246156B

First a branch address is computed. A save area address on the stack is com-
puted from values in the SSD in R1 as: si

SA = PTR+ INC a | ~

(This save area address must be an even boundary halfword address.) Then the first
two halfwords of the current PSW, and eight GPRs are automatically stored in the 18
halfwords beginning at location SA,

The SSD in R1 is now updated, as:

PTR = SA;

INC= 18,

Finally, the next instruction is taken from the branch address. This is essentially
a BAL instruction which provides an automatic call stack function.

PROGRAMMING NOTE

PTR is a normal 16-bit address which is the location of a particular place in the
stack, (The stack utilizes a variable-length portion of contiguous storage.) INC
represents the number of halfwords which have currently been used in the stack beyond
PTR. Since its representation uses a signed 2's complement integer format, its sign
bit should be zero. See Figure 9-2,

(Beginning)

(Yw]
 PTR

 4

Figure 9-2. Current STACK Status — Prior to SCAL

"When SCAL is executed, the new stack save address is calculated from PTR + INC,
(SA), and then the current PSW and eight general registers are automatically saved in
the new stack save area pointed to by SA, so that the stack now appears as in Figure 9-3.
Then the PTR in R1 is updated to the value in SA and INC set at 18.

(Beginning)

 PTR

Linkage andj

IGPR, » [INC = 18 Halfwords: -

Save Area
Figure 9-3, STACK Status — Upon Completion of SCAL

9-8

waa!

Se
al
yo
iy

Ay
si
an
lu
A

pu
e

SU
ON
Da
II
05

Je
IN
ad
s
“
s
a
u
l

Ai
si
an
tu
y

ay
e1
S

ey
yo
iy

80
-2
8!

sw

é
Cv

by

xo
g

I

SJ
UB
LU
ND
OG

YS
YN

JO

UO
ND
EI
!0

oy
Ae
WO
|

“3
se
we
r

iq

t
w
a

i {

The programmer is free to use additional space in the stack, by simply using Rl
as a base, and an offset which is greater than 18 (to avoid destroying the saved GPR
contents). However, this additional information will be lost if he issues another SCAL
without specifically adjusting INC in R1 to include this new space.

When SRET is executed, the first 2 halfwords of the PSW and the eight GPRs are

6246156B

automatically loaded from the save area at location PTR (in R1), Note that this restores
R1 to contain the SSD it had just prior to the last SCAL, which means that the stack is
automatically restored to the state of Figure 9-2,

Refer to STACK RETURN.

HARDWARE ANOMALY

External 1 interrupt 'Old PSW" can be invalid when any of the following interrupts
occur:

1. I/O Interface Address Parity

2. DMA Data Parity

3. PCI Data Parity

PROGRAM INTERRUPTION

Specification

Protection

STACK RETURN

Op M1 R2

1 0 O0j;140 LJ yl yiposi Ll

0 4 5 7 8 111213 15

Mnemonic Format

SRET M1, R2
a

- DESCRIPTION

When SCAL is used to call a subroutine, the complementary branch instruction SRET is used to leave the calling subroutine and return to the conditions prior to the last SCAL.
This is a conditional branch instruction in the RR format which provides the first two
halfwords of the PSW and restores the registers (GPR'
the time of the SCAL.

The instruction execution first matches the M1 field against the condition code to

s) to the same state as existed at

determine if the branch should be taken. If the branch should not be taken, the instruc-
tion terminates at this point. The remaining description applies when the branch
should occur.

The stack pointer address, PTR, is located in bits 0 through 15 of the general
register specified by R2. (This address must be an even boundary halfword address.)
The first two halfwords of the stack are moved into the active PSW. Next, all eight
general purpose registers are loaded from the current stack save beginning at location
PTR +2 as specified in R2, Finally, instruction éxecution continues from the address
indicated by the active PSW.

S
A
N
Y
O

As
ia
al
uN

pu
e

su
oH
Da
!!
09

Je
ID
Nd
g

‘s
su
eI
qr

Al
si
on
iu
y

ay
er
s
e
y
o

S]
UB
LU
ND
0G

YS
YN

JO

UO
ND
aI
IO

oy
Ae
WO
|

“3
sa
we
r

ig

80
-2
48

SW

€
&

xo
g

4
L
e

CONDITION CODE

The value in the corresponding field is loaded from the stack.

INDICATORS

The value in the corresponding field is loaded from the stack.

PROGRAMMING NOTES

The following notes are intended to amplify and clarify the use of the stack and
extended call facility. 4

Since the stack is located in main store, any area of the stack can be
accessed by standard addressing techniques (i.e., using Rl as a base).

While the primary purpose of the stack is automatic register saving and
restoring, it also provides automatic allocation and de-aliocation of tem-
porary work space, a function often required for efficient use.of storage,
and for use of reentrant programs. Note that the INC value in the SSD
does not have to be modified to use this work space; simply addressing
relative to the base in R1 allows this. The INC value only needs to be
adjusted if the information in the stack space needs to be preserved during
a subsequent SCAL. i

The total stack space (i.e., the space taken up by the total stack at any given
time) is variable. It grows and shrinks as a function of the depth of the call
tree and the amount of workspace used by the various programs. However,
in the overall data structure of the total application, there must inevitably
be a fixed limit on the amount of main store which can bé allocated to the
stack. Such limit would presumably be based on either statistics of usage
plus a safety factor, or else on a detailed analysis of the usage of all possible
call chains. In both cases (the latter as an error detection mechanism) itis
important to have some mechanism to'stop the call chain if through some
peculiar circumstances the stack should exceed its allocated space. Un-
fortunately, there does not appear to be any fool-proof scheme, However,
most such situations would be caught by appending a few words at the end
of the allocated space which have the store protect bit.on.. Any attempt to
store into the stack beyond its limit would result in a protection violation
and interrupt.

Since the PSW and the eight general purpose registers are automatically
restored on SRET, it is not possible to, return results directly to the calling
program in the registers. Rather, the value to be returned in a register
must be stored into the appropriate slot in the general purpose register save
area in the stack, Then, when the registers are restored,. the calling pro-
gram will, in fact, find the value in-the register, At the same time, addi-
tional values can be. returned to the calling program in the work space in
the stack, since the calling program can access that: space by addressing
relative to the base in R1 (SCAL). (There must, of course, be an agreed-
upon convention as to the specific locations in the work space.) Note — the
floating-point registers are not affected by SCAL and SRET so variables can
be passed in these registers. et

-10

Se
nt
yo
uy

Al
sJ
an
lU
N

pu
e

SU
ON
DA
!|
OD

JE
ID
ad
s

*s
au
i2
iq
n

Au
si
en
tu
n

ey
ey
s

ey
yo
iy
,

do
-z
e

‘s
w

!

SJ
US
LU
ND
OG

Y
S
N

JO

UO
HD
E]
}0
g

oy
Ke
WO
|

“3
sa
we
r

“i
q

a
p

e
e
e

L
y

6246156B

HARDWARE ANOMALY

External 1 interrupt 'Old PSW" can be invalid when any of the following interrupts occur:
‘

1. DMA Store Protect

2. DMA Address Specification

3. I/O Interface Address Parity

4. DMA Data Parity

5. PCI Data Parity

SUPERVISOR CALL

Op oPx . B2 Address Specification
TL1JO fos] Oop sya yyy afi | bee blk ies fof lf deve og
0 4.5 7 8 111213 1415 16 1 31

AM Mnemonic Eormat Extended: 0 SVC 02(B2) Disp
| || ff ale | pes PP ey

Indexed: 1 SVC [@] [=| 02(X2,B2) x Tih Disp
14 |4 Pitptp ity |

DESCRIPTION

This instruction causes an interruption and a program status word switch. Asa
result of this instruction, the interrupt code for the stored program status is equal to
the 16-bit effective address. This is the only way to enter the supervisor state from
the program state.

RESULTING CONDITION CODE

The condition code in the stored PSW is not changed by this instruction.

INDICATORS

The overflow and carry indicators in the stored PSW are not changed by this
instruction.

PROGRAMMING NOTE

The new PSW sets or defines the condition code, overflow indicator, and carry
indicator as well as all other bits in the new PSW.

9-11

Se
nl
yo
iy

Al
si
an
lu
Q

pu
e

SU
ON
Da
I|
O5

Je
Io
ad
s

‘s
ae
iq
gr

Au
si
@n
lu
n

ay
ei
s

ey
yo
i\
y

SJ
UB
LU
ND
0G

YS
YN

JO

UO
KD
EI
|0

oy
Ae
WO
o|

“F
sa
we
r

iq

80
-4
8

SI
N

€
4

xo
g

d
L
a
s

6246156B

TEST AND SET : ; i

Op Uj , B2 Address Specification :
LPOjr ity ipoyosog 1) sy tft i J ere ee pep -

0 45 7 8. 1112 13 14 15 16 31

AM Mnemonic Format . ew
Extended: 0 TS D2(B2) Disp

14 Pode Wied feo pes bd

Indexed: 1 TS(@] [#1 —_D2(X2,B2) x tt Disp wah
JA Pitidi yyy |

DESCRIPTION “ . ta

Bits in the halfword second operand are tested to set the condition code, and the
second operand is set to all ones. No other access to this location is permitted between is
the fetch and the storing of all ones. i

RESULTING CONDITION CODE i
Eo

00 The bits are all zeros -
11 The bits are mixed with zeros. and ones ran
01 The bits are all ones. eae

INDICATORS

al
The carry and overflow indicators are not changed by this instruction.

PROGRAMMING NOTES i . ss

TS can be used for the controlling and sharing of a common storage area by more
than one program. To accomplish this, a halfword can be designated as control. The
desired interlock can be athieved by establishing a program convention in which a zero

halfword indicates that the common area is available, but a one means that the area is

being used. Each using program then must examine this halfword by means of a Test

and Set before making access to the common area. If the test sets the condition code w
to 00, the area is available for use; if it sets the condition code either 01 or to 11, the

area cannot be used. Because Test and Set permits no access to the test halfword be-

tween the moment of fetching (for testing) and the moment of storing all ones (setting),
Fr

~~

9-12 oe

‘aad

S
A
N
Y
O

As
ia
Al
uN

pu
e

su
dD
a!
|0
5

Je
IN
ed
g

‘s
eu
ei
qr
]

Al
si
on
iu
n

ay
es

e
y
o

go
-2
8

‘s
w

E
e
w

x
o
g
!

S}
US
UI
ND
0G

YS
YN

J0

UO
ND
e}
|0
9

oy
fe
wW
o|

“3
sa
we
r

iq

4
a
o

|

6246156B

the possibility is eliminated of a second program testing the halfword before the first program is able to reset it. Selective bits can be tested by using the TEST AND SET BITS instruction.
~

Bits 5 through 7 are not used by this instruction. It is recommended that these bits be set to zero.

TEST AND SET BITS

Op OPX Disp* B2 Immediate Data 5
1Pourirotiiriit | ey yy ! Litit itt pepe pe y yy 0 45 7 8 1314 15 16

31
Mnemonic Format “Displacements of the form

TSB D2(B2),Data 111XXX are invalid.

DESCRIPTION

Bits 16 through 31 of this instruction are treated as halfword immediate data. The immediate data is logically tested with the halfword second operand, The logical sum (OR) of the immediate data and the halfword second operand is formed bit-by-bit. The result replaces the halfword second operand. No other access to this location is per- mitted between the fetching of the operand and the Storing of the result.

RESULTING CONDITION CODE

00 Either the bits selected by the immediate data are zeros or the
immediate data is all zeros

11 The bits selected by the immediate data are mixed with zeros and
ones

01 The bits selected by the immediate data are all ones.

“INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTE

The one bits in the halfword mask specify the bits of the halfword second operand that are set one. The result replaces the halfword second operand. The following ta- ble defines this instruction.

TEST AND SET

BITS

Mask 1100

Storage 1010 4},

Result 1110

9-13/9-14

Se
nl
yo
uy

Al
si
9A
lU
N

pu
e

SU
ON
DA
I|
O5

Je
IN
ad
s

‘s
al
ie
2i
q?

Ai
si
an
iu
n

ay
er
s

ey
yo
y,

‘ad

fF
4G

o-
ze

‘s
w

!
g

'
e
h

xo
g-

SJ
US
UN
DO
G

YS
YN

JO

UO
ND
a!
10
9

oy
Ae
WO
]

-¥
so
we
|

al,
 f (

O
y

y

6246156B

Section 10

INTERNAL CONTROL OPERATIONS

A CPU instruction will initiate an Internal Control operation that will perform the
following functions, depending on the control word (CW) coding:

e A fullword will be transferred between general register R1 and counter a lor 2, The high halfword of general register R1 (the most significant half-
word) is transferred to or from the main store halfword location 00B0 for
counter 1 or 00B1 for counter 2, The low halfword of general register R1
(the least significant halfword) is transferred to or from a 16-bit hardware
binary counter 1 or counter 2. Section 2 contains a description of counter
operations.

e An AGE command word, specified by bits 16 through 31 of the CW (R2),
will be transferred to the AGE interface, and a halfword will be trans-
ferred to or from bits 0 through 15 of a general register (R1) and the
AGE interface,

e Four discretes will be transferred from bits 0 through 3 of a general
register (R1) to the I/O interface.

0 - XMIT Disable

1 - BCE Disable

2- Sparel

3 - Spare 2

e@ 1/Ochannel reset. The channel reset operation issues a reset to the IO.
The IO and CPU uses the signal to reset the IO/CPU interface logic. If an
external interrupt 0 has occurred, this command must not be executed until
TOP level A interrupt register has been read.

INTERNAL CONTROL

op R1 . R2

TU pouse ty ft tery syofol yy
0 . 4 5 7 8 11:12 13 15

Mnemonic Format
ICR R1,R2

DESCRIPTION

This instruction transfers a fullword to or from the general register specified by
Rl. Operations are further defined by a control word contained in bits 0 through 31 of
the general register specified by R2. The CW format is shown below.

10-1

Sa
nl
yo
uy

Ai
ls
sa
nl
uN

pu
e

SU
ON
DA
II
05

Je
EI
Na
ds

‘s
au
ei
qr

Ai
si
an
iu
n

ay
e}
S

ey
yo
y

SI
US
LU
ND
OG

YS
YN

J0

UO
ND
EI
|0
9

oY
fe
Wo
|

“3
sa
we
r

ig

€
45

xo
g

4
L

by
4

80
-2
8

SIN

6246156B

CONTROL WORD (CW)

D : " Reserved for AGE Command Word
Ppt dp Popp epopopopopopoyo} py PP PP PP

0 45 : 15 16 : ; 31

Legal D

Command Meaning ©

00000 Read Counter 1
00001 Read Counter 2
00101 Read AGE
01000 Write Counter 1
01001 Write Counter 2
01100 Write Discretes
01101 Write AGE
10000 Channel Reset

No data transfer is associated with the Channel Reset operation:

RESULTING CONDITION CODE

The code is not changed.

INDICATORS

The overflow and carry indicators are not changed by this instruction.

PROGRAM INTERRUPTIONS

Illegal operation

PROGRAMMING NOTES

This is a privileged sppneian and can only be executed when the CPU is in the
supervisor state.

The illegal operation program interruption will-occur. if the following illegal
commands are used: 00010, 00011, 00100, 00110, 00111, 01010, 01011, 01110, and
01111.

Commands of the form 1XXXX other than 10000 are reserved and should not be
used. The illegal operation program interruption does not occur; instead a channel

reset is performed.

When using either Counter 1 of Counter 2 as a counter (rather than as an incre-
mental timer), a possibility exists that the counter could be. jn error during a single
read by 65.536 microseconds (low order bit of location 00B0 or 00B1). This problem

can be avoided by doing two consecutive reads and making comparisons to pick the

correct reading.

10-2

suit

S
a
A
y
Y

Ay
si
an
lu
n

pu
e

su
og
oa
|j
09

je
I9
ad
g

‘s
su
eg
!]

Au
ss
an
tu
y

ay
es

e
y
o

Bo
-z
e!

sw

Ch

xoel

uf

SJ
UB
LU
ND
OG

YS
YN

JO

UO
ND
EI
|O
D

oy
Ae
WO
|

“Fy

se
we
r

ig

L
O
R
Y

a
d
 C

6246156B

Section 11

EIFFECTIVE ADDRESS GENERATION SUMMARY CHART

RS Format

SRS, SI Extended Indexed Addressing (AM=1) Formats ‘
Addressing

(AM=0) IA | I X=000 X=000

PEA=(B)+DISP

B2#11_ | EA=(B)+DISP | EA=(B)+DISP | 00 EA=IC+PEA EA=(X)o_15+PEA
01 | EA=IC-PEA EA=(X)§_15*PEA
10° | EA=MS(PEA) EA=MS(PEA)+(X)9_15
11 | EA=MS(PEA)**| EA=MS(PEA)***+(X)q_15

PEA=DISP

B2=11 EA=(B)+DISP | EA=DISP 00 EA=IC+ PEA EA=(X)9_15+PEA

01 EA=IC-PEA EA=(X)$_15*PEA

10 EA=MS(PEA) EA=MS(PEA)+(X)o_15
11 | EA=MS(PEA)** | EA=MS(PEA)***+(X)q_15

Definitions

EA Effective address, main storage address of second operand
PEA Preliminary effective address
(RN) Contents of bits 0-15 of general register specified by B2 or X
RN General register ''N'', where N = 0 to 7
@®) Contents of bits 0-15 of general register specified by the B2 field
B2 B field of, SRS, SI, or RS format instruction
MS() Contents of the main storage location specified by the contents of the parenthesis
DISP Displacement field of instruction
xX X field of RS format instruction with indexed mode of addressing
()9-75 Most significant halfword (bits 0-15) of the content of index register X automatic-

ally aligned. ~
AM AM (addressing mode) field of RS format instruction
IA JA (indirect address) field of RS format instruction with the indexed mode of

addressing

I I field of RS format instruction with indexed mode of addressing
IC Updated Instruction Counter
* Automatic Index Modification
mea Automatic Storage Modification

wee Direct Storage Addressing with/without Post Indexing

x INDEX VALUE x INDEX VALUE
000 Zero 100 (R4)
001 Rl) 101 (R5)
010 (R2) 110 (R6)
011 (R3) 111 (7)

11-1/11-2

Sa
Al
yy

Ay
si
aa
lu
y

pu
e

su
dq
oa
I|
05

je
lo
ad
s

‘s
al
ei
qr

Au
si
en
lu
y

ay
es

e
y
o

SJ
US
LU
ND
O

YS
YN

JO

UO
NS
EI
|O
g

o
A
e
W
O
|

“3
se
we
r

iq

£
BO
-L
8E

SW

Ct
i

C
&

xo
g

4

_
(
2
A
 d
(
—

Name

Fixed-Point Operations

Add
Add Halfword
Add Halfword Immediate
Add to Storage

Compare

Compare Between Limits

Compare Halfword

Compare Halfword Immediate
Compare Immediate with Storage
Divide

Exchange Upper and Lower Halfwords
Insert Address Low

Insert Halfword Low

Load

Load Address

Load Arithmetic Complement
Load Fixed Immediate

Load Halfword
Load Multiple
Modify Storage Halfword
Multiply

Multiply Halfword

Multiply Halfword Immediate
Multiply Integer Halfword
Store

Store Halfword

Store Multiple
Subtract

Subtract from Storage
Subtract Halfword

Tally Down .

Branch Operations

Branch and Link

Branch and Index

Branch on Condition
Branch on Condition Backward
Branch on Condition (Extended)
Branch on Condition Forward
Branch on Count
Branch on Count Backward
Branch on Overflow and Carry
Branch on Overflow and Carry Forward

Section 12

AP-101 C/M INSTRUCTION REPERTOIRE

Mnemonics

AR,A
AH
AHI
AST
CR,C
CBL
CH
CHI
CIST
DR,D
XUL
IAL
IHL
LR, L
LA
LCR
LFXI
LH
LM
MSTH
MR,M
MH
MHI
MIH
ST
STH
STM
SR,S
SST
SH
TD

BALR, BAL
BIX
BCR, BC
BCB
BCRE
BCF
BCTR, BCT
BCTB
BVCR,BVC
BVCF

12-1

Format

RR,SRS,RS
SRS, RS
RI
RS
RR,SRS,RS
RR
SRS,RS
RI
SI
RR, SRS,RS
RR
SRS, RS
RS
RR,SRS,RS
SRS,RS
RR
RR
SRS, RS
RS
SI
RR,SRS,RS
SRS, RS
RI
RS
SRS,RS
SRS, RS
RS
RR,SRS,RS
RS
SRS, RS
SRS,RS

RR,RS
RS
RR,RS
SRS
RR
SRS
RR,RS
SRS
RR,RS
SRS

6246156B

S
e
n
a
y

Ay
ls
Je
nl
un

pu
e

sU
ON
DA
II
OD

Je
IN
ad
g

‘s
eu
eI
qI
]

Al
ss
an
iu
p

ay
es

e
y
o

SJ
US
LU
ND
0q

YS
WN

JO

UO
ND
EI
IO

OY
Ae
WO
!

“Fy

sa
we
r

“i
q

6246156B

80
-4
8

SW

€
4b

xo
g

2

44

Name

Shift Operations

Normalize and Count

Shift Left Logical
Shift Left Double Logical
Shift Right Arithmetic

Shift Right Double Arithmetic

Shift Right Logical
Shift Right Double Logical
Shift Right and Rotate

Shift Right Double and Rotate

Logical Operations

AND

AND Halfword Immediate
AND Immediate with Storage

AND to Storage

Exclusive-OR

Exclusive-OR Halfword Immediate

Exclusive-OR Immediate with Storage

Exclusive-OR to Storage

OR

OR Halfword Immediate

OR to Storage

Search Under Mask

Set Bits

Set Halfword

Test Bits

’ Test Register Bits
- Test Halfword

Zero Bits

Zero Register Bits

Zero Halfword .

12-2

NCT
SLL
SLDL
SRA
SRDA
SRL
SRDL
SRR
SRDR

NR,N
NHI
NIST

_ NST
XR,X.,
XHI
XIST
XST

OR,O
OHI
OST

SB"
SHW
TB

TRB
TH
ZB

ZRB

ZH

Mnemonics Formats

RR
SRS
SRS
SRS
SRS
SRS
SRS
SRS
SRS

RR,SRS,RS
RI
sI
RS
RR, SRS, RS
RI
SI
RS
RR,SRS,RS
RI
RS
RR
SI
SRS,RS
SI
RI
SRS,RS
SI
RI
SRS, RS

‘wal

oud

Sa
nt
yo
iy

Ay
si
an
lu
n

pu
e

su
oN
sa
I|
09

Je
IO
ad
s

‘S
eu
eI
g

Al
si
an
uy

ae
1g

e
y
o
,

SJ
US
UU
ND
OG

YS
YN

JO

UO
ND
e}
|0
9

oy
Ae
wW
o|

“3
se
we
r

iq

0
-
2
8
,

S
W

¢
“eC

ea

xo
g

S
a

|
i

(2
h

Name

Floating-Point Operations

Add (Long Operand)
Add (Short Opérands)

Compare (Short Operand)
Convert to Fixed-Point

Convert to Floating-Point

Divide (Extended Operand)
Divide (Short Operand)

Load (Long Operand)

Load (Short Operand)

Load Complement (Short Operand)

Load Fixed Register

Load Floating Immediate
Load Floating Register

Mid Value Select (Short Operands)

Multiply (Extended Operand)
Multiply (Short Operand)

Subtract (Long Operand)
Subtract (Short Operand)
Store (Long Operand)

Store (Short Operand)

Special Operations

Detect P
Insert Storage Protect BitsP
Load Program StatusP

Move Halfword Operands

Set Program Mask

Set System MaskP
Stack Call

Stack Return

Supervisor Call

Test and Set

Test and Set Bits

Internal Control Operations

Internal ControlP

I/O Operations

Program Controlled Input/OutputP

P: Privileged Instruction

12-3/12-4

Mnemonics

AEDR, AED
AER, AE
CER, CE
CVFX
CVFL
DEDR, DED
DER, DE
LED
LER, LE
LECR
LFXR
LFLI
LFLR
MVS
MEDR,MED
MER, ME
SEDR, SED
SER,SE
STED
STE

ISPB
LPS
MVH
SPM
SSM
SCAL
SRET

SVC
TS
TSB

ICR

PC

Formats

RR,RS
RR,SRS, RS
RR,RS
RR
RR
RR,RS
RR, SRS, RS
RS
RR, SRS, RS
RR
RR
RR
RR
RS
RR,RS
RR, SRS,RS
RR,RS
RR,SRS,RS
RS
SRS,RS

RS
RS
RS
RR
RR
RS
RS
RR
RS
RS
SI

RR

RR

6246156B

Se
nl
yo
uy

Ay
si
an
lu
y

pu
e

su
og
sa
lj
o9

je
le
ds

‘s
au
ei
qr

A
s
s
a
n

ay
ey
S
e
y
o

{
80
-4
8

SW

1
©

4y

xo
gi

SW
US
UI
ND
0G

YS
YN

JO

UO
ND
EI
|0
D

oy
Ae
wW
Oo
|

“Fy
 s

ew
er

ig

2
A
 dd

Section 13

AP-101 C/M OP CODE ASSIGNMENTS

6246156B

OPO, OPL

op

23 00 01 abt 10

OP 04=1

00 | SRS SUBTRACT SRS DIVIDE SRS BROV & CRY SBS SUB HW RR SUBTRACT . RR DIVIDE RR BROV & CRY RR LOAD FLIMM RR» COMP BTWN RR, COMP FL ST RR» SET PROG MSK RR» LOAD FL IMM LMTS RS DIVIDE RS BROV & CRY “RS SUB HW RS SUBTRACT RSp COMP FL ST RS» LM, STP, LPS, RSp SET SYST MASK RSo SUB FRM STO SM, SVC
01 | SRS LOAD SRS SUBTRACT FL ST SRS BR RELATIVE SRS LOAD HW RR LOAD RR SUBTRACT FLST | RRICR 10 RR» SUM RRp SUBTRACT FLLN | RR2 PC RS LOAD HW a RS LOAD RS SUBTRACT FL ST RS BIX RS, MIH RS» SUBTRACT FL LN | RSz

a
11 | SRS STORE FLST SRS LOAD FL ST SRS REG SH DBL SRS STO HW RR CONV TO FXD RR LOAD FL ST SRS COMP SH DBL RR LOAD FX IM RR» LOAD COMP FL RRp LOAD FX IMM | RS STORE FL ST ST RS STO HW RS LOAD FL ST RS» TST & SET 8 RS, LOAD FL LN
10 | SRSOR SRS DIVIDE FL ST SRS LOAD ADDRESS SRS MULTPLY HW | RR OR RR DIVIDE FL ST RR» LOAD ARITH TEST 3 (RR») RR2 LOAD FLTG REG |RR MOVE HALFWORD OP$ COMP RS MULTIPLY RS OR RS DIVIDE FL ST RS LOAD ADDRESS RS, OR TO STORE TEST 2 (LRS) RS» INSTR PROT BITS

OP 04=0

00 | SRS ADD SRS MULTIPLY SRS BR ON COND SRS ADD HW RR ADD RR MULTIPLY RR BR ON COND RR RR, XU&L HW RS MULTIPLY RR2 BR ON COND EXT | Rs ADD HW RS ADD ¥ RS BR ON COND

RSp ADD TO STORE : RS) DETECT
01 | SRS COMP DvD FL | SRS ADD FL ST SRS BR ON CT SRS COMP HW LN RR ADD FL ST RR BR ON CT RR2 STACK RTRN RR COMP RR2 ADD FL LN TEST 4 (RR) RS COMP HW RR RS ADD FL ST RS BR ON CT RS COMP RS2 ADD FL LN RSy STACK CALL RS» DVD FL LN
11 | SRS STORE SRS XOR SRS RG SH SING IEXP RR» MPY FL LN RR XOR SRS COMP SH SING RR, RS RS STORE RS XOR RI = OPxX RSp MPY FL LN RS XOR TO STORE
10 | SRS AND SRS MULTIPLY FLST | SRS INSRT ADD LO IMPL RR AND RR MULTIPLY FLST | RR BR & LNK SRS, RS RR» LOAD FX RG TEST 1 (RR) RR2 NORM & CNT Rl = OPX RS AND RS MULTIPLY FL ST RSp INSRT ADD LO TEST 3 (LRS) RSg AND TO STORE RSp MID VALUE SLCT Notes: OP12 = 1 Causes either RRp or RS» Operations

FL ST — Floating-Point (Short Operands)

Op Code 00011 with OP12 = 1 is reserved

FL LN — Floating-Point (Long Operands)
HW — Halfwords

18-1

Sa
nl
yo
uy

Ai
ls
ia
nl
uA

pu
e

SU
ON
Da
I|
09

Je
IN
ad
s

‘s
ae
iq
r

Au
si
en
tu
y

ey
ey
s
e
y
o
,

SW
US
UN
DO
G

WS
YN

JO

UO
KD
eI
IO
D

oy
Ae
WO
|

“3
sa
we
r

iq

|
6246156B

80
-2
8

SI

-
C
 45

xo
g

a
2
4

|

|

OP

11001

11001

11001

11001

11001

11001

11001

11001

R1=OPX

000

001

010

011

100

101

110

111

AP-101 C/M OP Code Assignments (cont)

RR

Set Program Mask

Reserved
Reserved

Reserved

Reserved
Reserved

Reserved

Reserved

IMPLIED IMMEDIATE

10100

10100

10100

10100

10100

10100

10100

10100

000

001

010

011

100

101

110

111

Tally Down

Zero Halfword

Set Halfword

Test Halfword

Reserved

Reserved
Reserved

Reserved

EXPLICIT IMMEDIATE

OP.

10110
10110
10110
10110
10110
10110
10110
10110

R1=OPX

“000

001

“010

oll

~100

101
110
111

RR

Add Half Immediate

Zero Register Bits

OR Half Immediate

Test Register Bits

“XOR Half Immediate

RS

Store Multiple

Supervisor Call
Reserved

Reserved

Load Multiple

Load Program Status

Reserved

Reserved

SRS,RS
SRS, RS
SRS, RS
SRS, RS

RR2

Reserved

Reserved

Reserved

Reserved

Reserved
Comp Half Immediate Reserved
AND Half Immediate
Mult Half Immediate

Reserved

Reserved

13-2

SRS

Modify Storage Halfword

Zero Bits

Set Bits

Test Bits

XOR Immediate With Store

Compare Immediate With Store

AND Immediate With Store
Test and Set Bits

ale

‘eed

S@
AI
yo
Y

Ay
si
en
iu
n

pu
e

su
oN
da
I|
09

je
Ia
ds

“S
aL
BI
qI
]

Au
si
an
lu
p

ay
er
s

ey
yo
iy

SI
UB
UI
ND
OG

WS
YN

JO

UO
ND
e}
10
9

oy
Ae
WO
o|

“Fy

se
we
r

iq

(
g0
-2
8

«S
I

i
C

Ay
xo
gy

|
2
4

(
—

6246156B

Section 14.

AUTOMATIC INDEX ALIGNMENT DESCRIPTION

Index alignment occurs automatically. That is, bits 0 through 15 of the general register specified by X specify entities. The identity of this entity is explicitly defined by the particular operation being executed.

Halfword operations align index value bit 15 with the least-significant bit of the PEA (described in Section 2) or the ADDRESS portion of an indirect address pointer, (described in Section 2). It should be noted that the LOAD MULTIPLE, STORE MUL- TIPLE, LOAD PROGRAM STATUS, and INSERT STORAGE PROTECT BITS instructions are excluded from automatic index alignment and have a halfword index alignment,

PEA or Address

itis tstitity yyy yy
0

15

Index Value

Lhittttsi py ttre y |
0

15
Likewise, fullword. operations functionally shift the index value one position to the left, prior to alignment. Note that bit 0 of the index-value is lost.

PEAvor Address

Litititivuryiry yp
0 14.15

Index Value :

LiLiytitit ey yyy
1

15

Likewise, doubleword operations functionally shift the index value two positions to the left prior to alignment. Note that bits 0 and 1 of the index value are lost. ‘

PEA or Address

Poet tet tripe trys |
0 13.14 15

Index Value

tititiitiyy ys] ;
2 15

NASA-JSC
14-1/14-2

	Table Of Contents
	Section 1 - INTRODUCTION
	Section 2 - AP-101 C/M STRUCTURE
	Main Storage
	Central Processing Unit
	Program Execution
	Storage Protection Features
	Machine Status
	PSW Fields

	Section 3 - CPU I/O
	Section 4 - FIXED-POINT ARITHMETIC
	Section 5 - BRANCHING
	Section 6 - SHIFT OPERATIONS
	Section 7 - LOGICAL OPERATIONS
	Section 8 - FLOATING-POINT OPERATIONS
	Section 9 - SPECIAL OPERATIONS
	Section 10 - INTERNAL CONTROL OPERATIONS
	Section 11 - EFFECTIVE ADDRESS SUMMARY CHART
	Section 12 - AP-101 C/M INSTRUCTION REPERTOIRE
	Section 13 - AP-101 C/M OP CODE ASSIGNMENTS
	Section 14 - AUTOMATIC INDEX ALIGNMENT DESCRIPTION

