
HAL/S LANGUAGE FORMS |

5 April 1973

INTERMETRICS

HAL/S LANGUAGE FORMS —

5 April 1973

Approved by: es

BY Martin)

Date:

“INTERUETAICS INCORPORATED «701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

FOREWORD

| | This document has been prepared by Intermetrics, Inc. |

under Purchase Order #M3M8XMX-48300 for Rockwell International.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 +, (617) 661-1840,

- PREFACE ©

The purpose of this document is to present the

acceptable forms of the HAL/S language in terms of a |

compendium of syntax diagrams. The. diagrams and a conden-

sation of syntax rules have been abstracted from the HAL/S

Language Specification, while a larger set of examples has

been included to illustrate the use of HAL/S. a

fhe organization of this document follows the HAL/S

Language Specification format exactly from Section 2 through |

Section 10 to allow easier reference. Section 1 provides an

overview of the HAL/S language, Section 2 explains the manner |

in which the syntax diagrams may be read, and includes other

format information such as the accepted character set, etc.

Sections 3 through 10: present the HAL/S syntax as well as

illustrative examples. A series of appendices are included

which list keywords, built-in functions, and conversion _ -

funetions, and summarizes several classes of HAL/S operations.

Additionally, a more complex demonstration program is.

provided. a | | oO oe

It is hoped that this document will serve as a refer-

ence for the HAL/S student, and an interim handbook until

publication of the HAL/S Programmers Reference Manual...

Tn RMDADATEN - 7A) CONCORD AVENUE © CAMBRIDGE, MASSACHUSETTS 02138 © (617) 661 1440.

1.1

1.2

1.4

2.1

2.2
(2.3

2.4

(2.5

3.1

3. 2,

3.3

3.4
3.5

34

“TABLE OF CONTENTS

BRIEF DESCRIPTION OF HAL/S |

Source Input /Source Listing

Data Types and Computations

Real- -Time Control |

Program Reliability

| SYNTAX DIAGRAMS AND ‘HAL/S- PRIMITIVES.

The ‘HAL/S Syntax Diagram

The HAL/S Character Set |

HAL/S— Primitives Sl |

—2.3.1- Reserved Words |

2.3.20 Identifiers _

2.3.3 Literals ~

Single Line and Multiple Line source
Text

Other Aspects

HAL/S BLOCK STRUCTURE, AND ORGANIZATION a

‘the unit of Compilation |

The PROGRAM Block ; : De |

The PROCEDURE, FUNCTION, and TASK Blocks ~
The UPDATE Block = a
‘The COMPOOL Block

Block Delimiting Statements |

Simple Header, Statements

3. 7. 3 “The Function Header Statement |

3.7.4 The CLOSE Statement _

2° The | ‘Procedure “Header ‘Statement ES

o
a

oO

ob
 Oo

Oo
]

“

16

17

17
19
21

/ 23
Be 84

PROCEDURE, “FUNCTION, ‘and compo ‘Templates 25°
gota Dg eo 27

oe 27
mE ge

29
30)

pepe ware i i RE a ae PRR ADTIDIEN OE RUA OAL HOOT TO AANA:

ou
i

uu

W
w
o
w
n
e

KF
.

:

f
e

ea 4) “yy "eae wan,

3.8 Name Scope Rules

DATA AND LABEL DECLARATIONS

4. 1 The Declare Group |

4.2 The Replace Statement

4.3 The Structure Template

4.4 The DECLARE Statement

4.5 Label Declarative Inflections

4.6 Data Declarative Inflections

4.7 Type Specification _

4.8 Initialization

DATA REFERENCING CONSIDERATIONS

(5.1 Referencing Simple Variables

5.2 Referencing Structures

5.2.1 Unqualified Structures

5.2.2 Qualified Structures |

5.3 Subscripting

5.3.1 Kinds of Subscripting

5.3.2 Forms of Subscripting

5.3.3 The Arrayness of Variables and

| Expressions

5.4 The Natural Sequence of Elements

5.4.1 The Natural Sequence of Major and
Minor Structures © | ,

5.4.2 The Natural Sequence of Simple

| Variables and Structure Terminals

DATA MANIPULATION AND EXPRESSIONS

6.1 Regular Expressions © | |

|G Lsiis arithmetic Expressions

~-@.2i2”~ Bit Expressions ©

6.1.3 Character Expressions

err om a TNE PESO OAT RTE ED SO PY ARAPIOVEOVETE NAA CCAMEUACE TIG ON99AN « (AIT) CGI . RAD

31

33

33

35

36

39

40

41

43
45

47

47

47

47
49

50

S1

54

56

57

57.

57

59

59

60.

62

63.

6.1.4 —
6.1.4.1 Arithmetic Operands
Regular Expression. Operands

6.1.4.2 Bit Operands

6.1.4.3 Character Operands

Array Properties of Expressions ©

Conditional Expressions

Arithmetic Comparisons

Bit Comparisons

Character Comparisons

Structure Comparisons"

Comparisons Between arrayed Operands

Expressions _

Normal Functions

Explicit Type Conversions

Arithmetic Conversion Functions

The Bit Conversion Function |

The Character Conversion Function

The SUBBIT Pseudo-Variable |

Explicit Precision Conversion .

EXECUTABLE STATEMENTS —

Basic Statement Definition

‘The IF Statement

The Assignment Statement

6.1.5

6.2

6.2.2
(6.2.3
6.2.4
6.2.5

. ‘Event

6.5.1
6.5.2
6.5.3
6.5.4.

6.6

72.1

7.20
7.3—
7.4
7.5

The CALL Statement

The RETURN Statement

The DO...END. Statemen

7.6.1

| ft 6. 2° |

76239 the DO: WHILE and DO. UNTIL

t Group

The Simple DO Statement

The DO CASE Statement

“Statements ©

The Discrete DO FOR Statement

65

69

70

72

73

a
«64

66
67 |

68

‘FL

72,

74
75
a

- 77
78

79

80

BL

82.

83 a
re

86

86

87

89

90.

Te AOI RAACCACHIICETTS 02438 © (617) 661-1840

10.

7.7

REAL

8.1

8.2

8,3

7. 6. 5 “The Iterative DO FOR Statement

7.6.6. The END Statement —

Other Basic Statements |

TIME CONTROL

Real Time Processes and the RTE

Timing Considerations

The ‘SCHEDULE Statement

8.3.1 The Simple SCHEDULE Statement

8.3.2 - The Cyclic SCHEDULE Statement.

8.4

8.5

8.7
8.8
8.9
8.10

9.1.

9.2

The CANCEL Statement _

The TERMINATE Statement
The WAIT Statement

The UPDATE PRIORITY Statement |

Events and SIGNAL Statement

Process- ~Events

Data Sharing and the update Block

ERROR RECOVERY AND CONTROL

The ON ERROR Statement —
The SEND ERROR Statement

INPUT/OUTPUT STATEMENTS

10.1 Sequential I/O. Statements

‘10. “1. 1 The | READ and READALL Statements

10. 1. 2 The WRITE Statement

10. Il. 3 “1/0 Control Functions:

10.2 Random Access I/O - The FILE Statement

93

94

95

95

95

96

96
98

99
100
100
102
103

104
104

107
107
108

ll

Lil

Wil

113
4314 |

115

ce em eee NPN OR PORE EOE PO ARAOTUIINOO RAACCAMINICL TTA NOUN. fK L7\ CRI | RAN

APPENDICES:

A. HAL/S Keywords 117

B. HAL/S Built-In Functions | 119

C. Summary of HAL/S Operations 121

D. Conversion Functions. 129

E. Sample Program Listing | 131

ITT RIE TRICO INFRDDADATON © INT CANCOQD AVE MEI »s CAMARINGE MASSACHIISETTS 09199 (R17) FGA1-1840

1.0 BRIEF DESCRIPTION OF HAL/S

| ‘HAL/S is a. programming language developed by

Inzermetrics, Inc. for the Space Shuttle. It is intended

tc satisfy the requirements for both on-board and support

scictware. The language contains features which provide for

real-time control, vector-matrix and array data handling,

anc bit and character string manipulations. |

Lei “source Input/Source Listing |

OA _ singular feature of HAL is that it accepts and lists)

scurce code in a multi-line format, corresponding to. the

natural notation of ordinary algebra. An equation which

involves exponents and subscripts will be written, for example ,.

as , | |

: 20 2 2 3/2
Cc % A +YB)_
or os K

instead of (as in FORTRAN or PL/J)

c(t) = (X*A(I) *#24¥*B (K) #42) #8 (3.6/2)

HAZ also permits an. optional single-line input format; its”

econ struction is. similar to. FORTRAN, with some minor changes;

the Ss

Col.= mc ASI**24Y BSK**2) ¥*3/2

-HAL/S source code may be input on cards or by data.

“minal. The input. stream is free- -form in that, for the most —

, card or carriage. column locations have no meaning; — |

ements - are/separated: ‘simply. by: semi-colons..

te
pa:

st.

~~
_

on abe

i

-— a _
a

| In an effort to increase program reliability and promote |

HAL /S as a more direct communications medium between Specifica-.

— INTERMETRICS “CORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 —

tions ‘and code, the HAL/S | program listing is ‘annotated. with

special marks. Vectors, matrices and arrays of data are _

instantly recognized by bars, stars and brackets. Thus, a

vector becomes V, a matrix M, and an array (A) .? Further, —

bit strings appear with a dot, i.@., B and. character strings

with a comma, ©. — With these special marks. as aids, the source

listing is more easily understood and serves as an important

step toward self- -~documentation. In addition to data marks ©

the HAL/S output listing has been standardized; logical para-

graphs, or blocks of code, are automatically indented so that

dependence of one block on another may be seen clearly.

| HAL/S isa higher-order language, designed to. ‘allow -

programmers, analysts and engineers to communicate with the

computer in a form which approximates natural mathematical

expression. Parts of the English language are combined with

standard notation to provide a tool that readily encourages

programming without demanding computer hardware expertise.

1.2 Data Types and Computations

| “HAL/S provides facilities. for manipulating a number of

different data types. Arithmetic data may be declared as

Scalar, vector, matrix or integer (whole number) . Individual

bits may be treated as Boolean quantities or grouped together.

in strings. The language permits the user to manipulate |

character strings, via special instructions. Organizations _

‘of data may. also be constructed; multi- -dimensional arrays of

any single type can be formulated, partitioned, and used in _

expressions. A hierarchical organization called a structure _

can be declared, in which related data of different types -

may be stored and retrieved as a unit: or by. individual — refer-

ence. — a

“The arithmetic data types together with the appropriate

operators and. bull ae functions constitute a useful mathe-_ a

matical subset. — AL/S. may be used ina straightforward manner

as a "“vector- eat ix” language in implementing large portions |

of both on-board and support software. _ For example, a simpli--

“fied” equation of: motion: might appear as

AL = B ACC;

é- MU: UUNIT(R) /B.Rs.

i
e

voor

RDOT,

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (61 7) £41-1840

x |

“sre the matrix B transforms acceleration from measurement

reference coordinates. |
|

By combining data types within expressions and utilizing ©

sth implicit and explicit conversions from one type to another,

-t27>/S may be applied to a wide variety of problems with a

cewerful and versatile capability.

1.3 Real-Time Control

HAL/S is a real-time control language; that is, certain

G2fined blocks of code called programs and tasks can be

s--eduled based on time and/or the occurrence of anticipated

events. These events may include external interrupts, specific

Gata conditions, and programmer-defined software Signals. i

Urzesirable or unexpected events, such as abnormal conditions,

me. be handled by instructions which enable the programmer to

nn

"i

|
ip
 !

Q)

f-
?-

th

<
 © eo re
 Kt O OS
,

r
y
 -

re)

c
t

Oo

gy

Q ct

}
-

Oo

“

L.4 Program Reliability |

Program reliability is enhanced when a software system

ca- create effective isolation for various subsections of code ©

as well as maintain and control commonly used data. HAL/S is

a clock-oriented language in that a block of code can be |

es-ablished with locally defined variables that cannot be

alczered by sections of program located outside the block.

Inzependent blocks can be compiled and run together with

c--munication among the programs permitted through a ccntrally

managed and highly visible data pool. Fora real-time environ-

rent, HAL/S couples these precautions with a protection

mechanism which prevents, by programmer directive, the

urauthorized or untimely use of commonly shared data and/or

‘sproutines. | | | | a

ss sss Phese measures cannot in themselves ensure total soft-

gave veliability but HAL/S does offer the tools by which many

anczicipated problems, especially those prevalent in real-time

control, can be isolated and solved. |

—_ INTFAMETR 72 “CORPORATED © 701 CONCORD AVENUE + CAMBRIOGE, MASSACHUSETTS 02138 + (617) 66 1-18.40

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2.0 SYNTAX DIAGRAMS AND HAL/S PRIMITIVES

In this Specification, the syntax of the .HAL/S.

language is represented in the form of syntax diagrams.

These are to be read in conjunction with the associated sets —

of semantic rules. Together the two provide a complete, 7 a

unambiguous description of the language. The syntax diagrams —

are mutually dependent in that syntactical elements referenced

in some diagrams are defined in others. There are, however,

a basic set of elements for which no definition is given.

These are the so-called "HAL/S primitives". — |

- This Section has two main purposes: to explain how to |

read syntax diagrams, and to provide definitions of the HAL/S

primitives. .- Various aspects of the format of HAL source |

text which impact upon the meaning of the diagrams are also

discussed briefly. | OO oo | :

2.1 The HAL/S Syntax Diagram ©.

Syntax diagrams are a flow-diagram like means of

representing the formal grammar of a language. By tracing .

the paths on the diagrams, various examples of the language

construct represented may be generated. In the context of

HAL/S it is this generational aspect of the syntax diagrams

which is emphasized. It is stressed that although the flow >

diagrams presented in this Language Forms manual are logically |

complete, they are not meant to be viewed as constituting

a"working" grammar (that is, as an analytical tool for — —

compiler construction). Rather they are to be viewed as

purely instructional in nature. | | 7 OC

A typical example of a syntax diagram is illustrated

below. Following the diagram a set of rules for reading _
it correctly are given. The apply generating to all syntax

diagrams to be presented in the ensuing sections.

5

INTERMES 2S INCORPORATED + 701 CONCORD. AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

| WAIT statement

basic L | a zg .

statement | , pr rr? ee
\

i 7

arith exp oo

event exp €9

arith exp -———

©

- RULES:

1. In every diagram there is a syntactical element being

defined. The name of _the element being defined appears

in the hexagonal box(Q). The title of the syntax

diagram is usually a discursive description of the

syntactical element. In the case illustrated, the

language construct depicted is a particularization of

the syntactical element defined (a "WAIT statement"

is an example of (@)). | | 7

2. -° To generate samples of the construct, the line is to be

followed from left to right from box to box, startirg

at the point of juncture of the definition box), and

ending when the end-of the line @) is reached.

3. The line is moved along until a black dot G)is arrived |

at. No "backing up" along points of convergence such as_

45 allowed. A black dot denotes that a choice of

paths is to be made. The possible number of divergent

paths is arbitrary.

4. Potentially infinite loops such as (7) may sometimes be_

encountered. Sometimes there are semantic restrictions

upon how many, times. such loops may be traversed.

5. Every time a box is encountered, the syntactical element

it represents is added to the right of the sequence of

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02198 + (617) 661-1849

elements generated by moving along the line. For example ,

moving along the path denoted by the dotted line @
generates the sequence "WAIT <arith exp>;" (see Rule 7.).

6. Boxes with squared corners such as 6) represent syntactical

elements defined in other diagrams. Circular boxes such

as (Q , or boxes with circular ends, such as () , repre-

sent HAL/S primitives. | |

7. In the text accompanying the syntax diagrams, boxes

containing lower case names are represented by enclosing

the names in the delimiters <>. Thus: box (9) becomes .

<arith exp>. Upper case names are reserved words of the
language.) | |

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2.2 the HAL/S Character set
The HAL/S character set consists of the 26 alphabetic

characters, the numerals zero through

special characters.

nine, and certain

The restricted character set is the

set necessary
to be described.

for the construction of —
The extended character set

the HAL/S primitives —

adds to the |

restricted set certain extra Special characters legal in -

places like comments and character literals, and used chiefly

for the purpose of compiler listing annotation. OO

The following table gives a complete list of the charac-

ters in the extended set,.wi

principal usage. |

“INTERMETRICS INCORPORATCD + 701 CONCORD AVENUE.

th a brief indication of their

8

- CAMBRIDGE, MASSACIIUSLTTS 02138 + (617) 661-1840

alphabetic and numeric | | special character.

7 .

Aa ~T identifiers

B b . + — pwr ~ we beid = | . a TY
C Cc - 0 RQ 7% PhadDe een

| yecto® CAG . l / L~—

OD d kee Aad? # Gee let ee

iE e a EG
F f /

" ' operators ' ol

G 9g | a ee peel M fe 2 pA CEM Lanne Lim

+H h ’ | | |

I i & wenn Lo @LeAaAL AND.

J 5 =

K k identifiers < |
reserved words | : :

>
L 1 literals |

| M om # oo

N n ' @ Oo | . 3k vw

| ee SGD OOM
0 oO $ = |

P p ’

QO gq ; : separators

R 2 $

S os

t t Sf delimiters
U u) .

Vo | | |

Ww ow % keywords. fesacke)

Y .y .
A Zz { extended-set

0 1 characters
1 }

2 !
3 identifiers of 4

4 literals .
5 ¢ ‘

6 rm 7

7 |

9 :

>

9

“INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2.3 HAL/S Primitives

- HAL/S syntax diagrams ultimately express all syntac~

tical elements in terms of a’ small number of undefined primi-.

tives. Primitives are constructed from the characters |

comprising the HAL/S restricted character set. There are

three broad classes of primitives; "reserved words",

"identifiers", and "literals". |

2.3.1 Reserved Words

| As their names suggest, reserved words are names

recognized to have standard meanings within the language, .

anda which are unavailable for any other. use. With only one

or two exceptions they are constructed from alphabetic charac~ »

ters alone. Reserved words fall into two categories, keywords,

and built-in function names. In the syntax diagrams, and in

the accompanying text, reserved words are indicated by upper

case characters. A list of keywords is given in Appendix A-,

and of built-in function names in Appendix B. , -

2.3.2 Identifiers

An identifier is a name assigned by the programmer to

be a data item, label, or other entity. Before its attributes

are specified, it is syntactically known as an <identifier>.

Each valid <identifier>. must satisfy the following rules: |

e the tctal number of characters must not exceed 32;

e the first character must be alphabetic;

® any character except the first may be alphabetic

or numeric;
| | |

@® any character except the first or the last may be

a “break character" (_).- .

whe first appearance of an <identifier> generally establishes

its attributes, and in particular its type. Thereafter

because its type is known, it is given one of the following

syntactical names, as appropriate: ©

10.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

<label>
‘<process-event name?

<i var name> me where § ~ | ?arithmetic

| en Ps, +) character

<structure template> oo “VY bit

So { event
structure

| The manner in which its attributes are established is discussed

in Section 4. The manner in which it is thereafter referenced -

is discussed in Section 5.

2. 3 3 ‘Literals:

Literals are groups. of characters expressing their |

own values. During the execution of a body of HAL code their.

values remain constant. Different rules apply for the forma- °

tion of literals of differing type.

FORMATION RULES (arithmetic literals);

1. No distinction is made between integer- and scalar- valued

literals. They take on either integer or scalar type _

according to their context. Similarly, no distinction be

is made between single and double precision. Consequently, —

arithmetic literals can be represented by the single

_ syntactical form <number>.

2. The generic. forn of a <number> is: a |

+ aaaaada. dddddada “<exponents> d = decimal digit —

Any number of decimal digits, including none, may. appear.

‘before or after the decimal point. The sign and decimal

point are both optional. Any number of <exponents> may

lb

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETIS 02138 + (617) 661-1840

The form of any of the <exponents> may be -

B<power> & _9<power>

E <power> | | = jo<Power>

|
.

H <power?
=~ 16. power> ;

where <power> is a signed integer number.

EXAMPLES : _
0.123E16B-3

45.9

-4

_ FORMATION RULES {bit literals)

i.

2.

INTERMETRICS INCORPORATED +

Literals of bit type are denoted syntactically by

<bit literal>.

They have one of the following forms shown below:

c BIN <repetition> ‘pbbbbbb'

OCT <repetition> 'ooo00c0'

HEX <repetition>. 'hhhhhhh! |

DEC ‘<repetition> “'adadddd' a
p
r
o
n
s
 ow

binary digit (7

octal digit

decimal digit

oe

Jy
vv WA

hexadecimal digit ge

The <repetition> is optional. and) consists of a parerthe-

sized positive integer number. It indicates how many

times the following. string.is to. be used ain creating _

the value. _

12

701 CONCORD AVE NUE > - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

| The following abbrevi
ated forms are allowed:

ON = BIN'L'

O
E
M
 PRUE in

Hi

TF
 FALSE = OFF = BIN'O'

EXAMPLES:

BIN'11011000110" |

“HEX (3) 'F!

: Le

20

; FORMATION RULES (character Literals) / me :
nos hme :

would be "post's", for example) .

The character pair yt is always taken’ ‘to be the. opening 2

uel
_

Literals of character type. are “denoted syntactically

| by <char literal>.

The form of a. character, literal is:

a ‘eecececcceecee'

where c is any character in the ‘HAL/S extended character

set. | ee a 4 eee . a |

A null. character ‘literal (zero, characters long) is
denoted by two adjacent apostrophes. — | co

- Since an apostrophe delimits. the siting. of. characters, _
inside the literal an apostrophe character is denoted by:

an apostrophe pair, (i.e. the representation, of “dog! s"

nt-even- an a. character literal.

EXAMPLES
9g *

‘ONE TWO THREE’
'DON' yt |

_ INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2.4 Single Line and Multiple Line Source Text

In preparing the source text of HAL code, Single or

multiple line format may optionally be used. In the single

line or "l-dimensional" format, exponents and subscripts

are written on the same line as the operands to which they

refer. In the multiple line or "2-dimensional" format —

exponents are written above, and subscripts are written below

respectively, the line where the operands they refer to are

written. Of the two formats, the 2-dimensional is regarded

as standard, since it follows usual mathematical practice.

RULES FOR EXPONENTS:

1. In the syntax diagrams, the 1-dimensional format is

assumed for clarity. The operation of taking an exponent

is denoted by the operator **. |

EXAMPLES :

| AD A®*T

J
at + AxeT eK

2. Operations are evaluated right to left (see Section 6.1.1).

3. If an exponent is subscripted, its subscript must be

given its l-dimensional description.

RULES FOR SUBSCRIPTS:

1. In the syntax diagrams, the 2-dimensional format is assumed

for clarity. Two special symbols are used to denote the

descent to a subscript line, and the return from it:

/ —— descent to subscript

return. from subscript

14

INTERMETRICS INCORPORATED +» 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 66;-1840

Effectively, they delimit: the beginning and end

respectively, ofa ‘subscript expression.

2. In the l- dimensional form of the HAL/S subscript, the.

/ subscript expression is delimited at the ‘beginning by

$C and at the end by a right parenthesis. — |

EXAMPLE:

Ayo * AS (K+2) |

3. For certain simple forms of subscript, the parentheses

may be omitted. These forms are: .

e a single number;

e a single unsubscripted <arith var>

EXAMPLE:

A, 7 AST

4. IF a subscript expression contains an exponentiation

operation, the latter must be given its 1l- dimensional

representation. |

15

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE » CAMBRIDGE, MAS SACHUSETTS 02138 + (617) 661-1840

265 ‘other Aspects of, the Source Text

Any HAL source text. consists of. sequences of ‘HAL/S.

primitives of the types — described. It is obviously of

great importance> for a. compiler to be able to tell the end

of one primitive from the beginning of the next. In many

cases the rules for the formation of primitives are sufficient |

to define the boundary. In others a blank character is

required as a separator.» Generally blanks are required as—

“separators between identifiers, keywords , and literals.

Except 1 in character Literals, consecutive | blanks are

‘syntactically ¢ equivalent _ to a single blank. —

Comments may be imbedded within HAL source text.

wherever blanks are legal. A comment is delimited at the

beginning by the character pair /* and at the end by the -

character pair */. Any characters in the extended character .

set may appear in the comment, (except, of course, for

* followed by /)- | os ee

INTERMETRICS INCORP

16

ORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.0 HAL/S BLOCK STRUCTURE AND ORGANIZATION

The largest syntactical unit in the HAL/S language

is the "unit of compilation". In any implementation, the |

HAL/S compiler accepts “source modules" for translation, and

emits "object modules" as a result. Each source module

consists of one unit of compilation, plus compiler directives

for its translation.
:

At run time an arbitrary number of object modules are.

combined to form an executable "program complex". Generally

a program complex contains three different types of object

modules:
|

@ program modules - characterized by being indepen-

dently executable. .

© external procedure and function modules - charac-

terized by being callable from other modules. |

© compool modules - forming common data pools for

the program complex.

Each module originates from a unit of compilation of corres-~

ponding type. oo

3.1 The Unit of Compilation

Each unit of compilation consists of a single PROGRAM,

PROCEDURE, FUNCTION, or COMPOOL block of code, possibly

preceded by one or more block templates. Templates in effect

provide the code block with information about other code

blocks with which it will be combined in object module form

at run time.
- |

17

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (G17) 661-1840

SYNTAX: |

 |

unit of compilation |

function block

ra procedure block

 compool block —

 f

_

X.

 function template
 L program block

}

procedure template

 Lo
compool template
 a

_INTERME TRICS INCOR PORATED : 701 CONCORD AVE NUE

Nei fe bed nm

owt ee

18

» CAMBRINGE, MASSACI JUSETTS 02138 + (617) Ee":
r

ard i»
 0

3.2. The PROGRAM Block

| “The PROGRAM block. delimits a main, independent body

of HAL/S code consisting of a. <declare group>, and_ any number -

of executable <statement>s and/or. nested PROCEDURE, ‘FUNCTION,

TASK, and UPDATE blocks. Delimiting . is done by a ‘program

header> and a <closing>. | _

SYNTAX:

PROGRAM block _

program
block :

 n
O

-—i statement)

— program header |—1 declare group : a ~— —e _ closing en

kd task block. ty

4 update block"

1 function
block

—_ .

 \Iprocedure block -~

y

—“INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (G17) 661-1840

EXAMPLE: SAMPLE: PROGRAM;
DECLARE A SCALAR;
DECLARE B .VECTOR;

declare group

°

é e

BETA: FUNCTION(Y);
° function block
*

e

CLOSE BETA;

ALPHA: PROCEDURE
procedure block

CLOSE ALPHA;
A = K + BETA(X); |

JL
 L
t

B = R*V;

CALL ALPHA;

CLOSE. SAMPLE;

executable stmts.

20

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMGA 23£, MASSACHUSETTS 02138 + (617) 661-1640

3.3 The PROCEDURE, FUNCTION and TASK Blocks

PROCEDURE, FUNCTION, and TASK blocks share a common

purpose in serving to structure HAL/S code into an interlock-

ing modular form. The major semantic distinction between the |

three types of blocks is the manner of their invocation |

(described in Section 7.4, 6.4, and 8.3 respectively). Each

block is delimited by a header statement of the proper type

and a <closing>. The blocks consist of a <declare group> to

declare data local to the block, followed by any number of

executable <statement>s and/or nested PROCEDURE, FUNCTION,

and UPDATE blocks. |

SYNTAX :

PROCEDURE |

§ FUNCTION block |

TASK

pant statement °) .

§ header declare group [> " closing

4 update block

M4 procedure block [-—

| function block !

21

NTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

EXAMPLE OF NESTING PROCEDURES AND FUNCTIONS:

NEST: PROCEDURE;

| DECLARE A VECTOR;

ALPHA: PROCEDURE; — 7

DECLARE B;

BETA: FUNCTION (X) ; 7
DECLARE X; |

GAMMA: PROCEDURE;

CLOSE GAMMA;

-- CLOSE BETA; | _}

CLOSE ALPHA;

CLOSE NEST;

22

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617; 661-1840

3.4 The UPDATE Block

The UPDATE block is used to control the sharing of ©

data by more than one real time process (see Section 7.) . and.

is invoked when it is encountered in the normal flow of.

execution. The UPDATE block is delimited by an <update header>

and a <closing>. The block consists of a <declare group? to |

declare data local to the UPDATE block, followed by any number

of executable <statement’s (except I/O and real-time statements)

and/or nested PROCEDURE and FUNCTION blocks.

SYNTAX:

UPDATE block

r update °
block

. = y—{ update header }—j declare group > _ cS closing

(:) fo 8 1 procedure block

function block

statement

EXAMPLE: A: TASK;

UPDATE;

M=N+P;

f | - | | ee se

CLOSE; /* END OF UPDATE BLOCK */_
*

®

CLOSE, A;

23

NIERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.5 . The COMPOOL Block

The COMPOOL block specifies data in a common data

pool to be shared at run time by a number of program, proce-

-aure, or function modules. The number of COMPOOL blocks

allowed in a program complex is implementation dependent.

SYNTAX:

COMPOOL block

compoo! header declare group closing |

_ EXAMPLE: MAIN COMPOOL: COMPOOL; _

| ae DECLARE M MATRIX; 7 , Ae’d aycn
7 | declare

DECLARE V VECTOR INITIAL(1,0,0) | group

CLOSE MAIN _COMPOOL;

240

INTERMETRICS INCORPORATE D + 701 CONCORD. AVENUL + CAMBRIDGE, MASSACHUSETTS 021 38 + (617) 661-1849

3.6 PROCEDURE, FUNCTION, and COMPOOL Templates

| Block templates are used to provide the outermost

code block of a <compilation> with information concerning

external code blocks. Both the <label> and the header .

statement must be identical to those of the corresponding

code block, except the keyword EXTERNAL on the leftmost side

of the header statement distinguishes it from an otherwise _

identical code block. A COMPOOL template declares a common

data pool identical to that of the corresponding COMPOOL |

block; a PROCEDURE or FUNCTION template declares the formal ©

parameters of the corresponding PROCEDURE or FUNCTION block.

Depending upon implementation, the compiler system may -

generate and maintain templates automatically. | _

SYNTAX:

{ PROCEDURE _ ,
§ { FUNCTION template —

COMPOOL me

 § header |—{ declare group | closing -— | -

25

INTERMETRICS INCORPORATED. + 701 CONCORD AVENUE + CAMBRIOGE, MASSACHUSETTS 02138 + (617) 661-1840

EXAMPLES:

ETA: EXTERNAL COMPOOL;

DECLARE S SCALAR;

CLOSE ETA;

BUZZ: EXTERNAL FUNCTION ([X]);

DECLARE X ARRAY(4) VECTOR;

CLOSE BUZZ;

BAKER: PROCEDURE(A) ASSIGN (B)

DECLARE VECTOR(6) ,A,B,C; procedure

; block

A= B + C;

' CLOSE BAKER; ~

BAKER: EXTERNAL PROCEDURE(A) ASSIGN(B);_
procedure

DECLARE VECTOR(6) ,A,B; /* NOTE ONLY ARGUMENTS ARE DECLARED */ | template |

CLOSE BAKER; |

ABLE: PROGRAM;

: | program

- CALL BAKER(ZETA) ASSIGN(PHI) ; | block —

“CLOSE ABLE; ~

26

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1846

3.7

Block Delimiting Statements

Both code blocks and block templates are delimited at
the beginning by a header statement
type, and at the end by a <closing>
blocks except for the COMPOOL block
the first statement of the block to
the <closing> statement is the last
exit. A COMPOOL block,
is not executable. —

3.7.1 Simple Header Statements

Simple header statements are
parameters to be passed into or out of the block.

characteristic of their .
statement. In all code
the header statement is
be executed on entry, and _

to be executed before
containing only declarations of data,

those which specify no
They are.

the compool, program, task, and update header statements.

_ SYNTAX:

COMPOOL

PROGRAM

TASK ;

UPDATE block |

header statements

task
header :

program \
header / .

compool
header /

COMPOOL

 PROGRAM }

—(task \-

UPDATE

27

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.7.2 The Procedure Header Statement

| The procedure header delimits the start of. a PROCEDURE

block or PROCEDURE template. The <identifiers> following

the PROCEDURE keyword are "input parameters" whose values

may not be changed within the code block; the. <identifiers>

following the ASSIGN keyword are "assign parameters” whose

values may be altered within the code block. All of these

parameters must have data declarations in the <declare group>

of the PROCEDURE block or template. The keyword REENTRANT |

allows real-time sharing of the PROCEDURE block. The keyword

EXCLUSIVE allows only one real-time process to use the PROCEDURE

block at a given time; any other processes must wait to use

the PROCEDURE block until the first is finished executing it.

The keyword ACCESS places ‘implementation dependent managerial

restrictions on which <compilation>s may reference an external

PROCEDURE block.

SYNTAX:

PROCEDURE header statement

procedure
header

 PROCEDURE

REENTRANT

EXCLUSIVE ACCESS

EXAMPLES: “PROCEDURE ASSIGN(B); | |

. — * — Lo,

PROCEDURE(V,M) ASSIGN(N) EXCLUSIVE;

PROCEDURE(X) ACCESS;

28

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1644

3. 7. 3° The. Function Header. Statement

| The function header delimits the start of a FUNCTION |

“block or FUNCTION. template. The <identifiers> following the

FUNCTION keyword are "input parameters" whose values may not .

be changed within the code block, and whose data type is ©

declared in the <declare group>. of the FUNCTION block or —

template. <type spec> identifies the type of value returned)

by the FUNCTION block (<type spec> may not be an- event type).

The keyword REENTRANT allows real-time sharing of the FUNCTION |

block. The keyword EXCLUSIVE. allows only one real-time process

to use the FUNCTION at a given time; any other process must.

wait to use the FUNCTION block. The keyword ACCESS: places

implementation dependent managerial restrictions on which

<compilation?s may reference an external FUNCTION block.

| SYNTAX:

“FUNCTION header statement

/ function *
| header »

{FUNCTION type speq

{REENTRANT

EXAMPLES : “punerron (A). ‘SCALAR REENTRANT;

FUNCTION (ALPHA, BETA) VECTOR;

29°

NTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.7.4— The CLOSE Statement

| For all code blocks and block templates, the CLOSE

Statement is the <closing> delimiter. If the CLOSE keyword

4s followed by a <label>, the <label> must be the name of -

the block. The <closing>s of the COMPOOL blocks and block

templates cannot have a <label> to the left of the keyword

CLOSE. | 7 |

SYNTAX: |.

closing of block |

EXAMPLES: ALL DONE: CLOSE;

‘CLOSE MAJOR _COMPOOL;

Tt lo

| ww
—

30

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1647

3.8 Name Scope Rules _

As a consequence of the code block structure of HAL/S,

the scope of a name (<identifier>), i.e. a <variable name> or.

<label> is defined as the block in which it is’ declared, and

potentially extends to all contained and nested blocks. ‘The

- scope of a name is therefore the region in which it is poten-

tially recognizable. For example, names defined in a

<compool block> are potentially recognized throughout every _

compilation unit; 1l.e. <program block>s and external procedures

and functions; names defined in a <program block> may be > |

recognized in all enclosed <task block?s, <procedure block>s, |

<function block>s, or <update block>s, etc. Duplicate names

are allowed in different blocks where the outer declaration.

of the name is superseded, in the inner block only, by the

explicit declaration. A name defined only within an inner

block is never recognized in an outer block. | | :

HAL/S does not permit GO TO's between blocks of code,

thus a branch from an inner block to an outer block is speci-

fically disallowed. —
- | |

EXAMPLE :

ALPHA: PROGRAM; _

outer DECLARE X; /* X IS KNOWN EVERYWHERE */

scope DECLARE Y¥;—-_: /* ¥ IS KNOWN ONLY OUTSIDE BETA */_

timer _BETA: PROCEDURE; /* LABEL BETA KNOWN IN ALPHA */

name —~——| DECLARE ¥; = /* NEW Y KNOWN ONLY IN BETA */

BEOPRS oo DECTARE 2; /# Z KNOWN ONLY IN BETA */ 0

~ CLOSE BETA;

|... DELTA: Y=0; /* DELTA NOT KNOWN IN BETA */ — |

CALL BETA; © /* BETA CAN BE CALLED ONLY FROM ALPHA */
|
9

‘LL CLOSE ALRHA;—
31.

NTERMETRICS INCORPORATED © 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

32

INTERMETRICS IMD OF = : = | |

TERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1846

4.0 DATA AND LABEL DECLARATIONS

The HAL/S language possesses a comprehensive set

of data types for use in both applications and systems

programming situations. To encourage clarity and decrease

the frequency of errors of omission, all data is required |

to be defined in specific areas of a HAL/S compilation called

"declare groups”. : : :

4.1 The Declare Group

A <declare group> is a collection of data and label

declarations possibly consisting of <replace statement>s,

<structure template>s, and <declare statement?-s. |

SYNTAX:

declare group

declare |
group

: L - J L - | LE | replace statement }— —structure —— | ideclare statement J

y

EXAMPLES: REPLACE PI BY '3.14159'; | Replace group)

REPLACE MU BY '1234';

STRUCTURE A: |

‘1 B SCALAR,

1 C INTEGER; _

Structure. Template

33

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBIIDGE, MASSACHUSETTS 02138 + (617) 661-1840

DECLARE A A STRUCTURE; ~~

DECLARE INTEGER,M,N; | Declare Group |

DECLARE V VECTOR; _

34

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE +» CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.2 The. REPLACE Statement

The REPLACE statement is used to define a name (i.e.

<identifier>) as a text substitution. Any HAL/S code contain--

ing reference to the <identifier> is treated as if the text

of <char literal> had instead appeared in that position.

<identifier> may not be a formal parameter in a <procedure

header> or <function header>, nor may an <identifier> ina

REPLACE statement be the subject of a replacement itself.

SYNTAX:

REPLACE statement |

replace
statement

char literal

EXAMPLES: REPLACE ALPHA BY 'J+1';

REPLACE TERMINATION BY 'GO TO FINISH';

35

INTERMETRICS INCORPORATED = 701 CONCORD AVENUE. - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.3 The Structure Template

In HAL/S, a "Structure" is a hierarchical organization

of’ generally inhomogeneous data items. Conceptually the form

of the organization is a “tree", with a "root", "branches",

and with the data items aS "leaves". The definition of the

"tree organization" (the manner in which root is connected

to branches, and branches to leaves) is separate from the

declaration of structure data having that organization.

The tree organization is defined by a <structure template>.

The following figure shows a typical tree organization

in its conceptual form: |

start of end of
tree walk Ur >» tree walk

\ ;

@ terminal data item

© minor structure A_ template name

tree diagram for a typical structure template
36

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE : CANBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

| | “phe , keywords DENSE. ‘and ALIGNED denote. data. packing

attributes of all structures possessing the <structure -

| template? as explained in Section 4.6. ao

‘The names of minor structures (i.e. each fork or

diagram) and terminal data items must be defined in the

same order as the tree walk (shown on diagram) passes them

on the left (see example below which shows this in relation —

to the above diagram) . , 7

The. form STRUCTURE identifier appearing after the

colon causes a previously defined <structure template> |

called <identifier> to be incorporated as. part of the

<structure template> being defined.

SYNTAX:

structure template statement

structure
template

DENSE

 identifier }

ALIGNED

 attributes... —0-~-

-(identifier

37
_ INTERMETR.CS INCORPORATED 701 concono AVENUE + - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

EXAMPLE (corresponding to tree diagram shown on. previous page):

STRUCTURE OMEGA DENSE:
1 PHI ARRAY(50) BIT(31),

1 ZETA SCALAR, |

1 ALPHA, |
2 BETA ARRAY(25),
2 GAMMA, >

3 LAMBDA 1,
4. MHOS INTEGER,
4. COND SCALAR,

3.NU,
3 LAMBDA 2, ©

4 OHMS INTEGER,
4 RESIS SCALAR; _

38

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.4 The DECLARE Statement

The DECLARE. statement is used to declare variable

names, and labels, and to define their characteristics, or |

<attributes >. Any <inflections> given immediately after the

keyword DECLARE are characteristics (factored <attributes >) ©

of all <identifier>s in the DECLARE statement. Each - |

<identifier> and associated <attributes > constitutes. the

declaration of the particular <identifier>, and must not.

conflict with any factored <attributes >. The appearance

of either a label or a variable name determines the form of

the < attributes > (see. Sections 4. 2 and 4.6 respectively).

SYNTAX:

declaration statement

 ' declare‘
Statement /

 ¥ identifier attributes t
 DECLARE

- : L attributes.

EXAMPLES : | DECLARE, INTEGER, A, B, “ARRAY (5) 7

DECLARE M ARRAY (10) MATRIX (2, Bye

DECLARE ABLE FUNCTION SCALAR; _

39

-INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.5 Label Declarative Inflections

Label declarations in HAL/S are used to define the

names of PROGRAM, TASK and FUNCTION code blocks. The forms

PROGRAM and PROGRAM EVENT may only appear in the <declare

group> of a <compool block> and its corresponding template

to allow any external <program block> to be referenced.by a

<compilation>. The keyword EVENT allows a process~event

(see Section 8.9) to be attached to the <program block>.

“The form TASK EVENT may only appear in the <declare

'group> of a <program block> to allow the named <task block>

to have attached to it an identically named process~event.

| The form FUNCTION <type spec> is used to define the

name and type of a <function block>. The function defined

this way must have at least one formal’ parameter, none of

which may be arrayed. A function declaration is required

whenever a function is used prior to the appearance of its

code block. |

SYNTAX:

| jabel dectarative attributes

attributes

— PROGRAM }

j—; ~<—_{ PROGRAM }—{ EVENT \— .

Casi) (en)
FUNCTION type spec -—

EXAMPLES: ‘DECLARE ALPHA PROGRAM;

-- DECLARE USER FUNC FUNCTION INTEGER;

DECLARE BETA TASK EVENT;

40

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (617) 647-1840

4.6 Data Declaration Attributes_

Data declaration attributes are used to define an

éidentifier> to be a variable name or part of a structure

template, and to describe its characteristics. If .

< attributes > appears in a.<declare statement>, it defines a

variable name. If < attributes > appears in a <structure

template> it defines either a minor structure, or a terminal

data item of the template. Terminal data items have very

similar properties to variable names. .

. The keyword ARRAY allows the specification of the.

number and sizes of the dimensions in the array. Each.

<arith exp> denotes the integral size of a dimension, while

an asterisk denotes a linear array of unknown length which is used

as a formal parameter of a procedure or function. The actual

length is that of the corresponding argument on invocation. _

| The following attributes are allowed for variable

names: | ,

® AUTOMATIC/STATIC - an: <identifier> with the |

) AUTOMATIC attribute is initialized upon every

entry into the code block containing its oo,

declaration. An <identifier> with the STATIC

attribute is initialized once upon first entry. .

into the code block. Generally if neither key-

word appears STATIC is assumed. |

@ DENSE/ALIGNED - If the <identifier> has the

ALIGNED attribute, its storage is arranged on

natural word or fractional word boundaries

so as to optimize speed of reference. If the

<identifier> has the DENSE attribute its storage

is packed so as to minimize the size of storage

area required. In the absence of either keyword,

ALIGNED is assumed. |

@ ACCESS - causes managerial restrictions to be placed

‘upon the usage of the <identifier> as a variable

‘in assignment contexts, and may, only be used in

the <declare group> of a <compool block> or its

template.

41

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

e LOCKED ~ may only be used in the <declare group? -

of a <compool block> or its template and causes

use of the <identifier> to be restricted to

UPDATE blocks (see Section 8.10).

@ LATCHED - only. applies to event variables as speci-

fied in Section 4, Te Oo

e <initialization> - allows initialization of an

<identifier> as specified in Section 4.8.

Terminal data items and minor structures may only use the

attributes DENSE or ALIGNED. |

SYNTAX 3

(«cributes

data declarative attributes

1 type spec }-— ——

Ge
ov

arith exp

| | , . ww . .

—- AUTOMATIC > , aN \ eet -

—. STATIC OR bah S

=< DENSE OR | a

— ALIGNED oR

aul . en =

| -G ACCESS =} —

 BS

| - initialization

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.7 | Type Specification

| The type specification or <type spec> provides ‘a means
of defining the type (and precision of VECTOR, MATRIX, INTEGER,
and SCALAR type only) of variable names and terminal data.
items of structure templates. If there is no <type. spec>.

given, then the implied type of a variable name or terminal |
data item is SCALAR with SINGLE precision; ‘if <type spec? |
consists only of the keyword SINGLE or DOUBLE then it is.
SCALAR of the indicated. precision, | |

| The <arith exp>. of a VECTOR is its length; the default
value is 3. Similarly, the two <arith exp>s of a MATRIX ©
are its row and column dimensions respectively; the default _
is a 3-by-3 matrix. The <arith exp> of a CHARACTER type
denotes its maximum length. whose default value is 8.

BIT (<arith exp>) indicates a bit type of the specified length.
Both BOOLEAN and EVENT indicate a bit type of l-bit length,
however, EVENT is used in real time programming situations
(see Section 8. 8). |)

| The phrase <identifier>~ ~ STRUCTURE denotes structure
type with a tree organization given by a previously defined
template named <identifier>. If the structure variable name
in the declare statement is the same as the <template name>,
then the structure is said to be unqualified; if they differ
then the structure is said to be qualified (see Section 5. 2).
<arith exp> gives the number of copies of the structure. The
copy specification may only be an asterisk if the structure ©
is a formal parameter of a procedure or function, in which ;

case the actual number of copies is supplied by the correspond-
ing argument on invocation of the procedure or function. |

43

“INTERMETRICS INCORPORATED - 701 CONCORD. AVENUE + CAMBRIDGE, MAS SSACHUSETTS 02138 - (617) 661-1840

SYNTAX:

. type specification

 ~~ ee
+ MATRIX }4 { }+ arith exp HOH arith exp.)

wr VECTOR () arith exp CO}

-MATRIX —— SINGLE

(vector) ——;— ——p~

feratan \. SCALAR
QT

INTEGER
Nee)

BIT (}- arith exp -~)

{ CHARACTER } . > o

CHARACTER (arith exp)

 DOUBLE A.
..

{ eyent \—_ EVENT

, BOOLEAN }

| (lemplata) STRUCTURE}+ — _ —_
name — |

. | arith exp

EXAMPLES : MATRIX (2,2) DOUBLE

oe ~ZrSTRUCTURE(15)
- CHARACTER(7) ~

44

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840.

4.8 Initialization ©

The <initialization> starts with the keyword INITIAL
or CONSTANT. A CONSTANT <initialization> makes it illegal
for <identifiers> to appear in an assignment context since
its value may never be changed.

A simple <initial list> is a sequence of one or more.
<expression>s of the proper type which are computable at

compile-time. A simple <initial list> may be repeated to
form a more complex <initial list> by the phrase <arith exp>#.

<arith exp># may also precede a single literal or a single

unsubscripted variable name ¢ (denoted by § in the syntax diagram) -

In general, the number of values in the <initial list>
must be equal to the total number of components of the
variable. However, an asterisk following the <initial list>
implies the partial initialization of a variable name.

. If the variable has array specification, and is an
integer or a scalar, a single value in the <initial list> may
be used to specify the initial value of all the array elements.
Similarly, for vector, matrix, bit or string initialization
a Single value in the <initial list> can specify the initial
value of each individual component, or of each component of
an array of vector, matrix, bit or character type. If the

variable is an array of vectors or matrices, and the number
of values in the <initial list> is equal to the number of
components of the vector or matrix, then those values are
applied to all array elements alike. If the variable is a
structure with multiple, copies, and the number of values in the
<initial list> is exactly equal to the total number of data
elements in one copy of the structure, then each structure |
COPY is identically initialized with those values.

45

INTERMETRICS INCORPORATED + 701 € CONCORD AVENUE + * CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

SYNTAX:

Initialization specification

Cinitiatization) —

initial list

{ CONSTANT
 {initiac)

 ¢ = initial
dist

| expression + y

 initial list

—e-——| arith exp

 o

|

EXAMPLES : DECLARE A ARRAY (8) INTEGER “INITIAL (2#(1,3#5)) 3
DECLARE B ARRAY (5) | BIT (7) CONSTANT (5 # (BIN! 1020013" 9
DECLARE C CHARACTER(5) INITIAL(*ALPHA') are
DECLARE IDENTITY _MAT ‘MATRIX INITIAL (1, 0, 0,0, 1, 0, 0, 0 Ue
DECLARE. V ARRAY (4) VECTOR(S) | INITIAL (1, 2, 3, 4 SE —

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) £61-1840

5.0 DATA REFERENCING CONSIDERATIONS

Central to the HAL/S language is the ability to
access and change the values of variables. Section 4.
dealt comprehensively with the way in which variable names
are defined. This Section addresses itself to the various
ways these names can be compounded and modified when they
are referenced.

5.1 Referencing Simple Variables

A “simple variable" is any variable which is nota
structure or part of one. When a simple variable is defined
in a <declare group>, it is syntactically denoted by the
<identifier> primitive. Thereafter, since its attributes

are known, it is denoted syntactically by the <8var name>

primitive, where § stands for any of the types arithmetic,

bit, character, or event.

5.2 Referencing Structures

When an <identifier>-is declared to be a structure,
its tree organization is that of the template whose :
<template name> appears in the structure declaration. Refer-

ences to the whole structure are obviously made by. using the
declared <identifier>, which syntactically becomes a |
<structure var name>. The way in which parts of the struc-
ture (its minor structures and terminals) are referenced
depends on whether the structure is "qualified" or “unqualified"
{see Section 4.7).

5.2.1 Unqualified Structures.

= Ifa structure is unqualified, then any part of it,
either minor structure or terminal, may be referenced by
using the name of the part as it appears in the <structure

template> definition. If a minor structure is referenced,
the name becomes syntactically a <structure var name>. IE£

a terminal is ‘referenced, then syntactically the name becomes

47

INTERME TRICS INCORPORATED + 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 © (617) 661-1840

a <$var name>, where § stands. for. any of the types, arithmetic,

bit, character, or event, as appropriate to. the attributes |

of its definition in the, template.

EXAMPLE :

STRUCTURE A:

1 8B, |

2 C VECTOR, =

2 .D SCALAR, | structure template ~

2 H EVENT,

2 G INTEGER,

1H BIT(16);
‘DECLARE A A-STRUCTURE; J] unqualified declaration |

MINOR STRUCT = E7
M=G; | references to parts” of
B BIT = H; | — structure: A

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - . CAMBRIDGE, MA SSACHUSETTS 02138 - (617) 661-1840

5.2.2 Qualified Structures

| f a structure is qualified, then any part of it,

eithe’ inor structure or terminal, is referenced as follows. |

First, che name of the part of the structure is taken. Then _

the "branches" of the structure tree are traversed back from |
it to the "root" or major structure (see Section 4.3). On

r-ssing through each "fork" or minor structure, the name is

2»fixed with a period and then with the name of that minor

‘cucture. This process ends with the prefixing of the major

cucture name. If a minor structure is being referenced,

.ae@ resulting "qualified" name becomes syntactically a
<structure var name>. If a terminal is referenced, then

syntactically it becomes a <8var name>, where §& stands for
any of the types, arithmetic, bit, character, or event, >

as appropriate to the attributes of its definition in the

template.

EXAMPLE:

STRUCTURE As:

lB,

2 C VECTOR,
2 D SCALAR,

1 E,

2 H EVENT, |
2 G INTEGER,

1 H BIT(16);

structure template

DECLAKE Z A STRUCTURE; "| qualified declaration

_J
 MINOR STRUCT = Z.E; ©

M = 2.G.G; references to. parts of
| structure 2)

49

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

5.3 Subscripting

For the remainder of ‘this Section, unsubscripteda
variable names are denoted syntactically by <§var name>,
where § stands for any of the types arithmetic, bit, |
character, event, or structure. It is convenient to intro-_
duce the syntactical terms <$var> to denote a subscripted
or unsubscripted <§var name>, and <variable> to mean any
type of <§var>. <bit pseudo-var> is a reference to the
SUBBIT pseudo- ~variable (see. Section 6.5. 4), |

SYNTAX:

arith
bit |

§ char variables.
| structure —

event

+ {§ varname }—— oo —__—->

an | - Lo subscript oJ .

variable

— event var to

variable)
fo he arith: var

 wd | bit pseudo-var }——+

J. charvar —

50

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMGRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

5. 3. 1 Kinds” of Subseripting

: ‘In: HAL/S there’ are ‘three kinds of subscripting which
may potentially be applied to <§var name>s: ,component, array, |
and Structure subscripting. _ OO

e <component. sub> can “be applied to simple variables

and structure terminals which have one or more

component dimensions (i.e. made up. of distinct a

components). - The applicable types are vector, ©

matrix, bit and character (e.g. Ca).

® <array sub> can be applied:to any arithmetic,
bit, character, and event variables which are

given array specification in their declaration.
This includes both simple variables and structure

‘terminals (e.g gq. *16) °

° éstructure sub> can be applied to arithmetic,
_ bit, character, and event variables which are
terminals of a structure which has multiple |
copies. It can also be applied to the major and

Minor structure variable names of such. a struc- _
ture.

ol

INTERMETRICS INCORPORATED + 701 CONCORD-AVENUE + CAMBRIDGE, MA ASSACHUSETTS 02136 + (617) 661-1840

OYNTAX :

subscript construct

component ,
sub »

array sub | : \ Se

component
sub

f ane ‘

rFomponent eed Structure sub

et
J

Die
_—

component
array sub | “

| G) rey sub

52

INTERMETRICS INCORPORATED «+ 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 62138 - (617) 661-1840

5.3.1.1 Subscripting Data Types and Arrays of Data Types.

Subscripting of an unarrayed vector, matrix, bit or character

is accomplished by use of the form <component sub> and refer-

ences a single component. ~Subscripting of an array of |

integers, scalars, or events is accomplished by use of the

form <array sub> and references a single data’ element (e.g.

fA} ,). an

| Subscripting of an array of vector, matrix, bit, or.

character type has three forms: | a |

e a <component sub> will yield an array (of same

array dimension) of the specified components.

An array of matrices subscripted with a * for one

index will yield an array of vectors; an array of

scalar yectors will yield an array of scalars, etc.

(e.g. [V], or [lg i3)°) ae a . Oe

e@ the form <array sub>:* (where the * is optional) °_

will yield all of the data elements of the speci- —

fied array component (e.g. B= (V1 4.7) |

e the form <array sub>:<component sub> will yield.

_ the specified element of the specified array.

(e.g. B= INY,,*,37 OF C= BM a.2,37) :

Oo MR sy | | Mr 3° 7 |

5.3.1.2 Subscripting Unarrayed Structure Terminals. The

use of the form <Structure sub> specifies which structure

copy is referenced to find the given integer scalar or event |

type structure terminal (e.g. A.By,)- oS a | a

If the structure terminal is of vector, matrix, bit -

or character type, then ee) a o :

e the form <component sub> will yield all of the

copies (in each structure copy) of the specified

component. a SO | |

@ the form <structure sub>; will yield the structure
terminal of the specified structure. © -

© the form <structure sub>;_ <component sub> will

yield the specified component of the structure

terminal of the specified structure. |

53-a

—INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

5.3.1.3 Subscripting Arrayed Structure Terminals. If. the

‘structure terminal is of integer, scalar, or event type,

then: | | : -

® the form <array sub> references the specified

array element of the terminal of each copy of |

the structure. ae ol

e the form <structure sub>; references the arrayed

structure terminal in the given structure copy.

e the form <structure sub>; <array sub> references .

the specified array element of the terminal of the

specified copy of the structure.)

If the structure terminal is an array of vector,

matrix, bit, or character type then:

@e the form <component sub> references the specified

component of each array element of the terminal

of each structure copy. - | |

e the form <array sub>: references the specified

array component (i.e. vector, matrix, bit or

character type) of the terminal of each copy of

the structure. ot .

e the form <structure sub>; references the arrayed

matrix, vector, bit, character data type of the

terminal of the specified copy of the structure.

e@ the form <array sub>:<component sub> references

the specified component of the specified array of

the terminal of each copy of the structure.

@® the form <structure sub>;<component sub> references

the specified component of each array element of

the terminal of the specified copy of the structure.

e the form <structure sub>;<array sub>: references
the specified array component of the terminal of

the specified copy of the structure.

® the form <structure sub>;<array sub>:<c onent sub>

- yeferences the specified component of t. specified

array of the terminal of the specified copy of the

structure. |

53-b

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (G17) 661-°240

EXAMPLES:

1. M3,4 references the matrix- component in the third row,

- fourth column.

2. Aa, 4 xeferences a scalar or integer array elemént in

the second plane, third row, fourth column of array A. :

3. A2,3,4:3,4 references the component in the third row,

coueth: column of the matrix located in the second plane,

third row, fourth column of the array, A.

4; BIT 1¢ (A) references the 16th bit in the bit representation

| of A. |
f * ° . .

5. TEXT, references the 8th character in the string.

*

6. M3 4, references the matrix in the,third row, fourth
column of the array of matrices, [M].

7. STRUCTURE A:

1B,

2 C ARRAY(4,4) MATRIX(3,3),

2 D INTEGER, | |
1 E, |

2 G VECTOR(3),

1 F BIT(1);_

DECLARE A A-STRUCTURE (50);

The following examples refer to the above structure template.

and declaration.
“f,3-

a. Cg, 4 :1,2

This represents the, scalar component in the first row,

second column of the matrix which occupies. the 4,2.
position in the array C. This array 1s in the 8th- ‘copy

of A.

b. {Gh,

This represents the second component of the vector G

in all copies of A.

53-c

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1640

This represents the single 1l-bit, bit-s string in the

25th copy of A. oe -

d. (161) 55, 4, %:

This represents the array of all of the matrices

(specified by *, see Section 5.3.2) in the “4th row"

of the array C, in the 23rd copy of A, |

93-a

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 : (617) 6f 40

5.3.2 Forms of Subscripting

A <structure sub>, <array sub>, or <component sub>.

consists of a series of subscript expressions separated

by commas. Each subscript corresponds to the particular.

structure, array or component dimension to which

it is attached. The form <sub exp> specifies the index ©

of one component, array element, or structure copy to be

selected. The TO phrase may be used to reference (or parti- _

tion) a set of elements by specifying the lower and upper |

index limits respectively. Similarly, the AT phrase may be-

used to reference a set of elements by specifying the size

(or length) of the set, and the lower index limit respectively.

The use of a number sign (#) results in the value of the upper

limit of the particular index. , |

| The use of the * indicates "all-of a particular index"

and can be used to establish a cross section of a matrix

or an array.

54-a

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

SYNTAX:

“structure
sub

component, array, and structure subscripts —

—_ . .
atest L i af

4 — NTS ~

4 arith exp = | ‘sub exp set

 sub exp

+ sub exp

 . LR. —()

=)
- oe

~ te

 o< = , . arith exp

wee eet ub

¢ “

 54=b

-INTERMETRICS INCORPORATED + 701 CONCORD.AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840.

EXAMPLES:
| .

Ma ar5, 4 AT 7

M * 4

[Vl «;

BS To 10..

[A] poeeepe2},1 TO 3:4 TO #

BAT |

55

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

| 563., 3 The’ Arrayness of Variables and: Expressions

A <§var name> which | is a ‘simple variable’ is” said to.
be. "arrayed", or to possess. "arrayness" if an array spect=
fication appears in its declaration. The number of dimen-
sions of arrayness is the number of dimensions given” in the |
array specification. oo | CES

A <§var name> which is a structure terminal is said |
to be arrayed or to possess” arrayness af either or both of |
the following hold: a oe

° an array specification appears: in “its declaration |
ina structure template. — :

e@ the structure of which <§var name> is a terminal,
has” multiple -copies. | :

The number of dimensions of arrayness is the sum of the
dimensions originating from each source.

| “ Appending structure or array subscripting to a

<Bvar name> may reduce the number and size of array dimensions
of the resulting <Svar>. oo

The arrayness of HAL/S expressions originates” from
that of their operands, and thus from the <8var>s appéaring _
in them. Although the forms of subscript cistinguish OO
between array dimensions and structure copies, no
distinction is made between them as Far as arrayness matching
is concerned. | :

EXAMPLE: _ "STRUCTURE Zt
1B ARRAY (5),

1C SCALAR;
DECLARE A Z_ _STRUCTURE (10) ,

© ARRAY (10,5) ;

“INTERMETRICS INCORPORATED 701 | CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 - (617) 661- 1840

£ ~
—
_
—

v ged wea

t
m
,

*
ae

5.4 The Natural Sequence of Elements —

There are several kinds of operations in the HAL/S—

language which require <8var>s with multiple components,

array elements, and structure copies, and also <expression>s,

to be unraveled into a linear array or string of data values.

The reverse process of "reraveling" a linear array or string.

also occurs. The two major occurrences are in I/O (see

Section 10) and conversion functions (see Section 6.) The

order of unraveling is called the "natural sequence” |

5. 4. 1 The Natural Sequence of Major and Minor Structures

@ Each copy of the major or minor structure is |
unraveled in-turn, in order of increasing index.
(e. g- A.B; A. B2i A. B3i etc.)

® Each structure terminal defined under the major .

or minor structure is unraveled in turn, in order

of their appearance in the structure template.

@ Each structure terminal is unraveled according to

the rules given below. .

5.4.2 The Natural Sequence of simple Variables and Structure

Terminals | |

e If a structure terminal has multiple coples, each

copy is unraveled in turn, in order of increasing _

index. : 7

®@ If the simple variable is arrayed, each arruy.

- @imension is unraveled in turn, starting from

the leftmost defined dimension, and in order of

increasing index. (e. g- ° a

2, 3 me a 7 a Ie an » ‘&. a

@ Integers, scalars, characters, bits and events ave

considered as having only one component data

value.

e Vectors are unraveled component by component, in

‘order of increasing index.

@ Matrices are unraveled row by row, in order of
increasing index. The components of each row are

unraveled in turn, in order of increasing index.

This process is similar to that for arrays .above.

57

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

5B

NTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

| ye

6.0 DATA MANIPULATION AND EXPRESSIONS

An expression is an algorithm used for computing a

value. In HAL/S, expressions are formed by combining operators

with operands in a well-defined manner. Operands generally

are variables, literals, other expressions, and functions. |

The type of an expression is the type of its result, which is

not necessarily the same as the types of its operands . Expres-

sions are divided into three major classes according to their

usage: regular expressions, conditional expressions, and event

expressions.

6.1 Regular Expressions

Regular expressions comprise arithmetic expressions,

bit expressions, and character expressions, together with

structure variables. An <expression> can appear in an assign-

ment statement, as an input argument of a procedure or function

block, or in a WRITE statement.

SYNTAX:

expression

expression

2 o~ arith exp , ~_

wf

nn char exp 4

 1 structure var = }-—

59

INTERMETRICS \CORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.1.1 Arithmetic Expressions

- An <arith exp> is a sequence of <arith operandes

(see Section 6.1.4.1) separated by arithmetic operators, —

and possibly preceded by a unary plus or minus.’

The following table summarizes the precedence |

(i.e. order of operation) rules for arithmetic operators:

OPERATOR © PRECEDENCE

xe | (FIRST) —
<>

1

2

. ar:
5
6 (LAST)

T£ the two operations with the same precedence follow

each other then the following rules apply: -

@ operators **, / are evaluated right-to-left;

e operators <> are evaluated so as to minimize the

total number of elemental multiplications required;

e all other operators are evaluated left-to-right. |

Table C. of the appendix summarizes the results of a given

operator applied to all possible types of <arith operand?’s.

60

INTERMETRICS INCORPORATED = 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 ° (G17) 661-1840 -

“SYNTAX:

arithmetic expression:

TT

arith exp

———4 arith operand [—*

 ale

EXAMPLES: =>

tI to (KH2)3 INTEGER EXPRESSION: 1,J,K INTEGERS

(MAN) VECTOR EXPRESSION a

| SCALAR EXPRESSION: -R, P SCALARS

(M + re MATRIX EXPRESSION

A/B CC: "MULTIPLY DONE BEFORE DIVIDE

61

INTERME7= cS INCORPORATED = 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ; (617) 661-1840

6. 1. 2 Bit. Expressions

A <bit. exp> is a sequence of <bit operand>s (see

Section 6.1.4.2) separated by bit operators whose order of

evaluation is:
fF

OPERATION OPERATOR| PRECEDENCE

Catenation cat, || | 1 (FIRST)

Logical Intersection AND, & 2

 Logical Union. oe OR, | 3. (LAST)

L£ two operations with the same precedence Eollow each

other, they a are evaluated from left- to-right. | :

SYNTAX:

‘bit expression
y

en
s

, | bit operand _ v<

EXAMPLES : a
oe péec|| D

AOR (B AND C).

“NTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02136 | (617) 661-1840,

6. 1. 3 Character Expressions

A échar exp> isa sequence of operands separated. by

‘the operators: CAT ox ||. Each operand may be a <char operand>
(see Section 6.1.4.3) or an. integer or scalar’<arith exp>.

The sequence of catenations is evaluated from left- to- right.

SYNTAX:

character expression |

(char exp)

e—— chsr operand |}

L arith exp: J :

F
i
»

+
Vv

 4

EXAMPLES: _ 2 I I tI jobs

exe | HELP’ Halen

| INTERMETRICS INCORPORATED -701 CONCORD AVENUE + CAMBRIDGE, MAS SSACHUS SETTS 02138 + (617) 661-1840

A Regular | xpression Operands |

Operands of the appropriate type are used with

operators to form regular arithmetic, bit or character

expressions. These operands include <sarith operand>s,

“bit / operand?s, and <char operand?s. —

6.1. 4. 1 ‘Arithmetic Operands. An. <arith operand> may be |

an arithmetic variable, an arithmetic expression enclosed -

in parenthesis, a <normal function> of the appropriate ©

type, an <arith conversion> function, or a literal <number>.

Precision may be specified ‘by a <precision> subscript (see_

Section 6. 6 ,

SYNTAX:

arithmetic operand

arith
operand /.

TO - arith exp }~

od — { number }

arith var +

—[rormat tuntion reson

BXAMPLE: (4B) gnouprz
7 SINC)

fay TO 5

INTEGER (x7)

36.047 |

INTERMETRICS NCORPORATED « 704 CONCORD A AVE NUE + » CAMEIRIOGE, MASSACHUS ETTS 07136 - + (617) 661-1840

6. 1. 4. 2. pit operands. —A~ ait operand> may. be a <bit var>,
a <bit exp> enclosed in parenthesis, a <bit literal>, .
<normal function> of bit type, a <bit conversion> Function,

or a <bit pseudo-var>. In real time programming, a <bit >
operand> may be an _<event var> or a <process-event name>

(see Section 8.9). Any form of <bit operand>. may be prefaced

by NOT or ™, causing its logical complement. | |

SYNTAX:

,
| bit operand |

{bit
: era ae

operand /
- -

cal HC) bitexs GO)

; | Tf — bit var _ q

LoJ
“event var

| + process-event name \—— —j

|
a

; normal function | -

—{ bitconversion | J

J bit pseudo-var anen

Bo
BIT (A)

(Alc)
_. @

C1 70 8

gee |

" INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

6.1.4.3 Character Operands. A <char operand> may’be a

¢<char var>, a <char exp? enclosed in parenthesis, a <char

literal>, a <normal function> of character type, or a ©

<char conversion> function. - |

SYNTAX: _

character operand.

1) char exp —O)-

— - |
+ i char var

char
~\ operand / |

 o
e

,

normal function , _———

. char literal _

—————}_ char conversion —

EXAMPLE: 'DELTA'

(STATUS||'O.K.') |

CHARACTER(I+3)

66

- INTERMCTRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1846

6.1.5 ‘Array Properties of Expressions

Any regular expression may have an array property

by virtue of possessing one or more arrayed operands. The

evaluation of an arrayed regular expression implies an |

element-by-element evaluation of the expression. If only

one operand is arrayed, then evaluation of the operation

using the unarrayed operand and each element of the arrayed

operand is implied. If more than one operand ig an array of

equal dimension, evaluation of the operation for each of the.

corresponding elements is implied. In all cases, the result

is an array of the same.dimension as the operand array.

67

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.2 Conditional. Expressions

| | A <condition> is a sequence of <conditignal operand>s
separated by logical operators, whose order of ‘evaluation is:

OPERATION Oo OPERATOR PRECEDENCE

Logical Intersection AND, & 1 (FIRST)

Logical Union | or, | 2° (LAST)

SYNTAX:

conditional expression

y

2 conditional operand

M at —

| conditional operand

conditional : |
operand oo 7 — -

> . comparison

condition |

EXAMPLES: ™ (A>B) | (A>C)

(A<=B)

X>100 AND “(y<3 OR 2>2)

68 —_
TERMETRICS INCORPORATED +» 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1646

6.2.1 Arithmetic Comparisons —

An arithmetic <comparison> is a comparison between

two <arith exp>s whose types must match (except for mixed

integer and scalar operands when the integer operand is

converted to scalar). Valid combinations of ‘types of |

<arith exp>s for comparison may be found in Appendix C. |

If the operands are vectors or matrices, the operator must

be =, “=, NOT=, and is compared element-by-element. |

SYNTAX:

arithmetic comparison .

> arith exp arith exp [-——

EXAMPLES: DS Oe

ea - (MHN) NOT <36 _ +.

K7= 1

I <= (AtP-V)

69

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.2.2 Bit Comparisons

A bit comparison is a-comparison between two <bit exp?s

which are said to be equal if they have identical bit | |

patterns. If the operands have different lengths, the

shorter operand is left padded with binary zeros to .match

the length of the longer <bit exp>. = | a

SYNTAX: |

- bit comparison

bit exp bit exp ———

EXAMPLES: = B= BIN'110" |

D = E-

70

“INTERMETRICS INCORPORATED + 701. CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6. 2. 3 Character Comparisons

A character comparison is a comparison between two.
<char exp>s. If the operands have different lengths, the
<char exp> of shorter length is right padded with blanks to
match the length of the longer operand.

SYNTAX:

character comparison | | |

‘comparison |

Phere Le charexp J

EXAMPLES :_ C='A'

= ‘stop! ns

V1

ST ERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.2.4 Structure Comparisons

A structure comparison is a comparison between two

<structure var>s whose tree’ organizations are identical |

in all respects and whose number of copies are’equal. Ié£ the

<comparison> operator is =, the result is TRUE only if ‘it is

TRUE for each copy; if the <comparison> operator is “= or

NOT=, the result is TRUE if it is TRUE for at least one COPY.

SYNTAX:

aN | structure comparison |

comparison) re : a .

{structure var |

; structure var WD

6. 2. Comparisons Between Arrayed Operands -

A. <comparison> of any one of the forms described may

have arrayed operands, although the <comparison> operators -

are restricted to =, “= and NOT=. The <comparison> is done

on an element- by-element basis produ icing an unarrayed result.

If the operator is = then the result is TRUE only if it is

TRUE. for all elements of the <comp arison>; if the operator is-

“= or NOT= then the result is TRUE if it is TRUE for at |

least. one element of the <comparison? .. v

72.

INTERMETRICS INCORPORATED «701 CONCORD AVENUE CA‘ EAIDGE, MASSACHUSETTS 02136 + (617) 661 ttt

6.3 -Bvent_ Expressions

An. event. expression, used in. real time programming :

(see Section 8.), ‘is an unarrayed sequence of <event. operand>s

separated by a subset of bit operators. The order of evalua~ |

tron of each operation is dictated by operator precedence: |

OPERATION = =—t”™” OPERATOR PRECEDENCE ~

Logical Intersection AND, & — 1 (FIRST)

Logical Union | 7 OR, | 7 3 (LAST)

If two successive opératioris have equal precedence,

they are evaluated from left-to-right. The <event operand>

may be optionally prefaced by the logical complementing

/ operators NOT or °.

“SYNTAX:

an . _ event expression |

event exp pe

> event operand

event operand

/ event \
\ operand

¢ 7 joT }#~ i = ! event exp — | -

4 | nn event var Soe i >

kK G)- 5 Ce event name) —

EXAMPLES: ALPHA OR BETA

*(aéB)
co | . 73 - ;

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + | CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.4 Normal Functions —

Section 6.1.1 through 6.1.3 have made reference to

normal functions which are invoked by appearing as an operand

in an expression. Normal functions fall into two classes:

"built-in" functions named by <label> and defined

as part of the HAL/S language (see Appendix B for

a list of these functions) ; |

@ "user-defined" functions named by <label> and

defined by the presence of <function block>s in

<compilation>s.
—_

Each <expression> or "input argument" of a normal

function must match the corresponding input parameter of

the function definition in type, terminal size, structure

tree organization, etc.

| If a user-defined function is invoked before it is

defined by its <function block>, the name and type of the

function must be declared at the beginning of the containing

name scope.

SYNTAX:

normal function

normal

function

expression

EXAMPLES: SIN (2X)

| UNIT (V) -

USER_COS (A)

74

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (647) 641-1860

6.5 | Explicit Type Conversions

HAL/S contains a comprehensive set of function-like
explicit conversions (see Appendix D.) some of which, called

shaping functions, also have the property of being able to
shape lists of arguments into arrays of arbitrary dimensions.

HAL/S contains conversion functions to integer, scalar, vector,

matrix, bit, and character types. |

6.5.1 Arithmetic Conversion Function

The keyword INTEGER, SCALAR, VECTOR, or MATRIX gives
the result type of the conversion. A <precision> specifier
gives the precision of the result while a <subscript> speci-
fier gives its dimensions. Any <expression>,may be preceded
by the phrase <arith exp># which denotes the number of times
the <expression> is to be used in generating the result of
the conversion.

. - If INTEGER or SCALAR are subscripted, the <subscript>s
denote the size of each array dimension produced. If there
is no subscript, and if there is only one unrepeated arrayed
argument, a linear (l-dimensional) array is produced. In
all cases, INTEGER and SCALAR may have arguments of any type

except structure.

A VECTOR <subséript> is an “arith exp> specifying
the length of the resultant vector. If no subscript
is specified, VECTOR produces a 3-vector result. :

A MA'TRIX supscript has the form: <arith exp>,

<arith exp> denoting the row and column dimensions
respectively of the matrix result. If no subscript is
specified, MATRIX produces a 3-by-3 matrix result.

VECTOR and MATRIX may have arguments of scalar, vector,
and matrix type only.

75

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

SYNTAX:

arithmetic conversion function

arith -

\ conversion

—I—* (MATRIX)

SCALAR | | subscript Le

(INTEGER }- et |

J arith exp

 VECTOR

Y

precision |

_ EXAMPLES: INTEGER, | 2 (Atte)

SCALAR (A, B,C, 158)

VECTOR, al, 0, B E)

| as :
MATRIX, (2 TAL)

“VECTOR (X,Y 2)

760

- INTERMETRICS INCORPORATE D- 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 + (617) 661-1840,

6.5.2 The Bit Conversion Function

BIT converts an argument of integer, Scalar, bit, |
or character type argument to a bit result. If the argument
is. arrayed, the conversion result is identically arrayed.
<surscript> represents terminal subscripting upon the results.
of the conversion. .

<radix> has the following possible forms:

-@HEX . (hexadecimal digits)

@DEC (decimal digits)

@ocr = =— (octal digits) -
@BIN (binary digits)

The <char exp> consists of the legal digits listed to |
the right of each radix form above. The conversion generates
binary representation of <char exp>.

| SYNT

bit conversion function

conversion

: radix | Mo | char exp

° a expression

subscript

EX>PLES: ; BIT (I+J)

| TTaax1 To 3 !A) ..
fa ' Teocr ('657')

: tr ’
BIT HEX (rep)

77

INTERMETRICS ‘2 ORPORATED + 701 CONCORD AVE NUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

6.5.3 The Character Conversion Function

CHARACTER converts an integer, scalar, bit or character

type argument to a character result. If the argument is

arrayed, the conversion result is identically arrayed.

‘<subscript> represents terminal subscripting upon the results

of the conversion. : |

<radix> has the following possible forms:

@HEX - (hexadecimal string result)

Q@DEC (decimal string result)

~@ocT “octal string result) |

@BIN | | (binary string result)

The value of <bit exp> is converted to the character

string representation indicated above after left padding the

value with binary zeroes as required.

SYNTAX:

character conversion function |

/ bit |
conversion /

CHARACTER

radix bitexp }_————

° $e (.)}— expression O)—

Lo. subscript J Oo ;

enex (8)
CHARACTER (A_SCALAR)

EXAMPLES: > CHARACTER

CHARACTER (4567)
@DEC

78

ANTERMETRICS INCORPORATED + 701 CONCORD AVENUE > CAMBRIDGE, MASSACHUSETTS 02138 + (617; £4°-* 840

6.5.4 The SUBBIT Pseudo-Variable

The SUBBIT pseudo- -variable allows access to other

data types without conversion. It may appear in an assign-

ment context with a <variable> argument, or as part of an

<expression> as an operand of a <bit exp>. <subscript> repre~ —

sents terminal subscripting of the pseudo-variable.

savin

OO - SUBBIT pseudo-variable

bit | an
4 pseudo-var / -

SUBBIT

variable

subscript }
4 expression

EXAMPLE SUBBIT, TO g (= H| |A;

Cc = super TO 8 (Ae

79°

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.6 Explicit Precision Conversion -

| If <precision> is.a subscript of an <arith operand>,

a conversion to the precision specified takes place. If ©

<precision> is a subscript of an <arith conversion> then

the conversion result has the indicated precision. In

referring to integer type, SINGLE implies — a halfword and

DOUBLE implies a fullword.. .

SYNTAX:

_ | precision specifier =)
4 SINGLE }——,

‘EXAMPLES ; os

A + ((B+C enousre) >) @sINGLE EeSINGLE

80

| INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617, €61-1840,

7.0 EXECUTABLE STATEMENTS |

Executable statements are the building blocks of the

HAL/S language. They include assignment, flow control, real
time programming, error recovery, and input/output statements.

Syntactically any statement of the: above types is designated by»
the term <statement>. The manner of a <statement>'s integration

_ into the general organization of a HAL/S compilation was -
discussed in Section 3.

7.1 Basic Statement Definition

All forms of éstatement> except.the IF statement fall
into the category of a <basic statement>. Not all of the ©
<basic statement>s are described in this Section. Real time

: programming statements are described in Section 8., error
recovery in: Section De and. input/output in Section ‘10. 7

- SYNTAX:

| | | basic statement

| |

+ —| basic statement |

81

INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

7.2 The IF Statement

The IF statement.provides for the conditional execution

of segments of HAL/S code. If the ELSE clause is present, then

a second nested IF statement cannot appear preceding the key-

word ELSE. | | |

SYNTAX:

IF statement:

(statement)

condition -

bit exp

Le statement E LSE statement |

EXAMPLES: IF J>0 THEN K=1;

| ELSE K=2; |

ABLE: IF K>=d THEN K=Jd-1;

ELSE CALL TIME(V,T) ASSIGN (W) ;

x *

IF A=B AND M=N THEN DO;

- oe | P=Q+l *
2.

END; _

82

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

| 7.3. The Assignment Statement

- he assignment statement is used to change the current

value of a variable or a list of variables to that of an

expression evaluated in the statement. In general, the

dimensionality of <expression>s and <variable>s must match.

Execution is as follows:

e subscript expressions of the left-hand Side are

evaluated Oo

ie the <expression> is evaluated

e@ the values of the <variable>s on the left hand —

side are changed _ Oo

SYNTAX:

assignment statement

basic \ |
statement /

—| variable [o—{ = }—4 expression ©

e
e

EXAMPLES: | ETA,KAPPA=LAMBDA+L;

SUM_ARRAY, 3, = VALUE;

V MeN/xX?;

_
ol = VECTOR, (A,B,C,D); /* SHAPING FUNCTION */

a4

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIOGE, MASSACHUSETTS 02138 + (617) 661-1840

7.4 The CALL Statement _

The CALL statement is used to invoke execution of a
procedure. Each <expression> is an "input argument , while

each of the <variable>s is an “assign argument! whose values ©

may be changed by the called procedure.

SYNTAX:

basic \

statement /

CALL statement |
err

 ()

expression |

_— -

™_

fey

— a om _

 ° CALL label /--<—

| variable |

EXAMPLE:

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE

CALL EPSILON ASSIGN(KAPPA);_

ABLE: CALL GAMMA(ALPHA) ASSIGN(BETA,SIGMA);

CALL PHI(A¥B,X",C) ASSIGN(T,U,V) 7

84.

| CAMBRIDGE, MASSACHUSETTS 02136 +» (617) 661-1840

7.5 | The RETURN Statement |

The RETURN statement is used to cause return of execu-
tion from a task, program, procedure, or function block.
The <expression> may only appear ina <function block> ‘RETURN .

statement.

SYNTAX:

RETURN statement

y

expression JTo-

EXAMPLE: | IF X>0 THEN RETURN;
DONE: RETURN;

IF X>0 THEN RETURN X
ELSE RETURN =X

DONE: RETURN A+B;

85

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 +

pt

PROCEDURE RETURN */
PROCEDURE RETURN */

FUNCTION RETURNS */

FUNCTION RETURN */_

(G17) 661-1840

7.6 | The DO..-END Statement. Group |

The DO. . .END statement group is a way of grouping a

sequence of <statement>s together so that they) collectively

look like a single <basic statement>-. | Additionally, some

forms of DO...END group provide a means of executing a

sequence of <statement?s either iteratively, or conditionally,

or both.

(SYNTAX: —

DO... END statement group |

— procedure block —

| function block b-~

7 basic \ © oo :

statement
oo task block

—4 update block /~A

— do statement , pe ——0+ end statement

Oo 7 | : L statement | | |

| 7. 6. 1 The Simple DO “statement:

| The simple Do statement merely indicates that the

. following sequence of <statement>s comprising the group -

is to be viewed as a single <basic statement>. The sequence

is executed once only. © : Ss es ee |

86

INTERMETRICS INCORPORATED -701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) G61-1840 —

SYNTAX:

- simple DO statement

f/f do |
4 statement |

EXAMPLE: © ABLE: af a9 836 EE |

| _ ALPHA=1;

BETACALPHA/3;

| END; ;

ELSE DO; ee

‘SIG=SIG+1;

END;

y, 6. 2 “The po CASE statement |

The DO CASE statement indicates that if the value of

<arith exp> is an integer K, then of the following sequence

of <statement>s comprising the group, the Kth statement of

the group _ is executed. If K is either less than or equal to |

zero, Or greater than the number of. <statement>s in the group,

then the <statement> following. the ELSE keyword is executed;

if there is no ELSE clause then a run time error occurs for

-guch an invalid K-value. — og os |

87

NTER METRICS INCORPORATED - 701 CONCORD AVENUE _ CAMORIOGE, MASSACHUSETTS. 02138 « 617) G61- 11840

SYNTAX: |

DO CASE statement

do

statement

> ° DO CASE } - arith exp

L
y

{statement |

EXAMPLES : ALPHA: DO CASE J-1;

| a BETA=BETAHTAU;

BETA=BETA/FACTOR+TAU;

BETA=BETA/FACTOR;

END;

pO CASE N-3 ELSE GO TO ERROR1;

SUM=VALUE+TAX ; oe

DIFF= TAX;

DO;
| - POTAL=VALUE+TAX-DISCOUNT

CALL BILLER(VALUE); _

CALL SUMMARY (TAX) ; |

END; -

ERRORL: IF VALUE>=0 THEN GO TO CONTINUE;

88)

INTERMETRICS INCORPORATED «701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSE TTS 02138 + (G17) GOL 185.

7. 6. 3 ‘The DO WHILE and_ DO UNTIL Statements

The DO WHILE statement causes the group of <statement>s |

to be repeatedly executed until the value of <condition> or |

-<bit exp> becomes false. The value is_ tested prior to each:

cycle of execution. | : | |

The DO UNTIL statement causes the group of éstatement>s 7

to be repeatedly executed until the value of <condition> or —_

<bit exp> becomes true. The value is not tested prior to

the first cycle of execution, but is tested before all subse —

quent cycles» of execution. . an . |

SYNTAX:

DO WHILE and UNTIL statements

do \
statement) — {condition -—

| bit exp | a

&

89

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840.

‘EXAMPLES: DO WHILE I>0;- |

—J=0; —

VALUE=VALUE/I;

END; oe

EQUIVALENTLY: DO UNTIL I<=0;>

J=0; | | SS

VALUE=VALUE/T;_

END EQUIVALENTLY 3.

DO WHILE A&(B|C);_

END; |

7.6.4 The Discrete DO FOR Statement

The discrete DO FOR statement causes execution of |

the sequence of <statement>s in a group once for each oF

a list of values of a "loop variable”. Prior to each cycle

of execution, the next <arith exp> in the. list is evaluated

-and assigned to thé loop variable. The presence of a WHILE

or UNTIL clause is used to cause execution to be dependent —

on some condition being satisfied as in Section 7.6.3.

—90-

— INTERMETRICS INCORPORATED + 701 CONCORD AVILNUF - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 657-724

"SYNTAX:

discrate DO FOR statement

| do.

statemont

arith var | arith exp Fe

condition

 | bitexp oF |

EXAMPLE: pO FOR I=10,20,30 WHILE J>0;

a _ NEWVAL=OLDVAL/I+INCRMT;

«S4NEWVAL;

oF

- TERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

7.6.5 The Iterative DO FOR-Statement
Oo The iterative DO FOR statement is similar in'intent _

and operation to the discrete DO FOR statement, except that

the list of values that the loop variable may take on is |

replaced by an initial value, a final value, and an optional

increment (the default value is 1). © | | |

SYNTAX:

fo iterative DO FOR statement

1 do - - Oo ,

| statement /

—_ . m 4 BO FOR arith var (= arith exp K-- TO ae

 ¥

+ — 4 arithexpt-

4 condition
 “BY }-Y arith exp

 —j. bitexp . J |

92,

INTERMETRICS INCORPORATED + 701 CONCOND AVENUE CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840.

EXAMPLE:

EQUIVALENT_TO_LAST_EX: DO FOR I=10 TO 30 BY 10 UNTIL J<s

NEWVAL=OLDVAL/I+INCRMT;
a So

is

s

e

J=NEWVAL;

-END EQUIVALENT_TO_LAST_EX;

DO FOR J=-30 TO 50 BY INCREMENT ; |

END; ~

7.6.6 The END Statement

The END statement closes a DO...END statement group.

If the optional <label> follows the END keyword, then it —

must match the label on the <do statement> opening the |

DO...END group. eh

SYNTAX:

END statement _

J end \

_ (statement.)-

EXAMPLE: LOOP: DO FOR...7 |

FINISH: END LOOP;

93

_ INTERMETRICS INCORPORATED -701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840.

7.7 Other Basic Statements

@ The GO TO <label> causes a branch in execution to

an executable statement bearing the same <label>.

® The "null" statement has no effect at run time.

e The EXIT statement is legal only inside a DO...END

group where it causes a branch to the first execu-

table statement after the end of the CO...END group.

® The REPEAT statement is legal only inside a DO...END

group opened with a DO FOR, DO WHILE or DO UNTIL

Statement. It causes immediate abandonment of the

current cycle of execution of the innernost such

group. oo

SYNTAX:

GO TO, “null” EXIT and REPEAT statements

° o_o q 3)-——

yo -

EXIT -

| REPEAT . -

 basic

statements

EXAMPLES: © DO FOR...}

°

°

ABLE: IF X>0 THEN EXIT;

ELSE REPEAT; a

IF Y<10 THEN GO TO ABLE;
END; | :

94

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACH J ZE TTS 02138 + (617) G61 1840

8.0 REAL TIME. ‘TROL

HAL/S contains a comprehensive facility. for creating.

a multi-processing job structure in a real time programming |

environment. At run time a Real Time Executive (RTE) controls —

the execution of processes held in a process queue. HAL/S ~

contains statements which can schedule processes {enter them.

in the process queve), terminate them (remove them from the _

process queue), and otherwise direct the RTE in its controll-

ing function. HAL/S also contains means whereby the use of ~

data by more than one process at a time is managed in a safe,

protected manner at specific, localized points within the

processes. |

g.l1 Real Time Processes and the RTE

In HAL/S, a program or task block may be scheduled

as a process and placed in the process queue. Although the ©

process created is given the same name as the program or

task, it is important to distinguish the static program

or task block from the dynamic program or task process created.

Two processes are actually involved in the creation of a>

process: the scheduling process, or "father"; and the |

scheduled process, or "son".+ a

8.2 Timing Considerations

| In the HAL/S system, the RTE accesses a clock measur-_

ing elapsed time ("RTE-clock" time). Time is measured in.

Machine Units (MU) whose correspondence with physical time

except of course for the first or "primal" process which

must be created by the RTE itself. a

95

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (G17) 661 1840

is implementation dependent. HAL/S — |

contains several instances of timing expressions which in

effect make reference to the RTE-clock.

8.3 The SCHEDULE Statement

a The SCHEDULE statement is used to recuest initiation

of a program or task) |

a) at a specific time (AT<arith exp>)

b) in an incremental time (IN<arith exp>)

c) on an event expression value of TRUE (ON<event exp?)

The initiation priority is explicitl: set by use of

the phrase PRIORITY (<arith exp>). If INDEF=ENDENT is speci-

fied, the scheduled program or task can continue in an active

(executing) state even after the scheduling block has been

terminated (although a task-son can never be independent of

its program-father).

; There are two forms of the SCHEDULE statement: the

simple SCHEDULE statement and the cyclic SCHEDULE Statement.

8.3.1 The Simple SCHEDULE Statement

The simple SCHEDULE statement initlates a program or

task only once. Initiation will not occur i= the value of

the <arith exp> to the right of the keyword UNTIL is less |

than the RTE-clock time specified for initiation. Similarly,

initiation will not occur if the value of tre <event exp> to

the right of the keyword WHILE is FALSE upc:. execution of

the SCHEDULE statement or at any time before the process is

initiated. The clause UNTIL <event exp> has no effect on a

simple SCHEDULE statement.

96

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, tA LL ACHUSETTS 02138 + (617) 661-1849

SYNTAX: |

Simple SCHEDULE Statement

 — basic
statement arith exp [, ©

| arith exp F~

eventexp ~~.

i arith exp |

7

a

SCHEDULE

arith exphe4}

 { arith exp -—~

EXAMPLES : SCHEDULE IOTA; :
| SCHEDULE RADAR ON R. _RUPT, OR ¢ _RUPT PRIORITY (1ITGH) j

‘SCHEDULE TRACK AT. 15; oe mo.
SCHEDULE TRACK ON TRACK, _FLAG ‘UNTIL 155

07

INTERMETA ~$ INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

(8.3.2 The Cyclic SCHEDULE Statement

The. cyclic. SCHEDULE. statement contains a REPEAT ae
phrase which causes the RTE to cyclically execute the process —
as | long” as one of the following holds: — ce mo

a) UNTIL <arith ‘exp> is greater than the RTE-clock time.

b) UNTIL <event exp> is evaluated to be FALSE...

¢c) WHILE <event exp> is evaluated to be _ TRUE.

| These evaluations are made prior to each cycle, but
UNTIL <event exp> is not evaluated until the second and.
Subsequent cycles. | | :

To cause a fixed RTE-clock time delay between the
completion of the previous and the beginning Of the. next.
cycle, the qualifier AFTER <arith exp> is used. To cause
the beginning of successive cycles of execution to be |
separated by a fixed RTE-clock time delay, the qualifier
EVERY <arith exp> is used. |

sinmaxe

‘The Cyclic SCHEDULE Statement .

arithexp >

 1} arithexp —~

 (SCHEDULE }(

—~jeventexp -—“

carithexp -{) }\ {INDEPENDENT }-

: oe - ae : a . ee WHI | dp event exP}— |

ER): 4 arith exp } we _.. ance exp LA

| | arith exp - -

(}—77 arith exp [7

98 SN ata
INTERMETRICS INCORPORATED + 701 CONCORL AVENUE - CAMBRIDGE, MASSAC c Jk TTS 02138 - + (617) 661-1840

EXAMPLES ¢ | SCHEDULE DELTA INDEPENDENT, REPEAT EVERY 15. 9

UNTIL 75.9;

SCHEDULE STEERING AT TIG-5 PRIORITY (6), REPEAT
EVERY 2 WHILE ENG_ON;

8.4 The CANCEL Statement

When a CANCEL statement is used, if the process is

non-cyclic no action is taken. If the process is cyclic,

then the process is cancelled at the end of the current

cycle of execution after possibly waiting for any dependent

sons to terminate.

SYNTAX:

CANCEL statement

basic
statement

3 = o~ { CANCEL }« > (3.)—

EXAMPLE : CLEAN UP: CANCEL ETA,NU;

(e ° ° ‘

IF A&B&C THEN CANCEL TRACK. JOB;

99 |

INIT FAMETRICS INCORP ORATED = 701 CONCORD AVENUE ° » CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840,

8.5 The TERMINATE Statement

The termination of a process implies the immediate

cessation of execution of the process and all its dependent

sons, and their removal from the process queue’. The TERMINATE

statement is used to direct the RTE to terminate specified |

processes. oo - | } | oe

SYNTAX:

TERMINATE statement

“basic \

statement /
 o { TERMINATE |

EXAMPLE: -IMMED STOP: TERMINATE ALPHA, BETA;

8.6 °#£The WAIT Statement

- The WAIT statement is used by an active program or

“task to suspend and. reactivate itself: | /

a) at a specific time: WAIT UNTIL <arith exp> |

b) after an incremental time: WAIT <arith exp>,

100

INTCRMETRICS INCORPORATED + 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 + (G17) GG1-14s.

INTES

c) upon termination of all dependent sons: WAIT FOR

d) upon a TRUE value of an event expression evaluated
at each "event change point"
WAIT FOR <event exp>.

SYNTAX:

(see Section 8.8):

basic

Statement

WAIT statement

arith exp po

 Or Ts

arith exp

event exp

EXAMPLES: § NOW: WAIT UNTIL T+7.5;
WAIT 5;

WAIT FOR ABLE;

WAIT FOR; /* TERMINATION OF DEPENDENT SONS */

WAIT FOR7 ABLE OR BAKER;

101

WETRICS INCORPORATED - 701 CONCORD AVENUE - . CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 _

8.7 The UPDATE PRIORITY Statement _

The SCHEDULE statement which creates a process can ©

also specify the priority of its initiation. At any time ©

between the scheduling and the termination of the process, |

that priority may be changed to <arith exp> by means of the

UPDATE PRIORITY statement. UPDATE PRIORITY with no <label> —

specification is used to change the priority of the process

executing the UPDATE PRIORITY statement. |

SYNTAX:

UPDATE PRIORITY statement _

basic |
statement

2 (UPDATE PRIORITY } ——— (10)arit exe —(3)

EXAMPLE: _ UPDATE PRIORITY GAMMA TO 10;

UDPATE PRIORITY TO Kt+5;_

102

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE ° CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1644

8.8: Events. and the SIGNAL Statement

At any instant of time the RTE may be viewed as having

knowledge of all existing events whenever the value of an event

changes, the RTE senses this "event change point" and may in

turn perform the evaluation of pending <event exp?s. 7

The value of an event variable can be changed by the —

use of the SIGNAL statement. Depending upon the implementation

and the available computer hardware, event variables shall also

respond to the external environment (either by activation

of the SIGNAL statement Or by special operating system provision).

The operation of the SIGNAL statement is summarized

as follows: | 7 / :

type of event type of SIGNAL statement _. 7

| andinitial value = = SIGNAL..ON = | —s SIGNAL... OFF SIGNAL .. |
$$$; ana 2 ——= rt

, | | —4* fp _ a |

unlatched, FALSE J. . | Se | | en

1 > tf FL ft F t F

| latched, FALSE [> | ee a fo | |

a, ft FL tt Fi] tt J

a PP eee mB Ll HCO
latched, TRUE ft re es ws] | {-

ge

+ The <event Gar is TRUE ‘for a period of time invisible |
to the HAL/S user but long enough to be detectable by _

the RTE. : | | |

NOTE: 1S TRUE
FS FALSE

103

~ INTERMETRICS INCORPORATED + 701 CONCORD AVENUE * CAMBRIDGE, MAS SACHUSETTS 02138 - (617) 661- 1840

SYNTAX:

SIGNAL statement _

basic
. statement /—

 . SIGNAL event var }~-«#«<—— o-- . (3)

bit literal

 «
.

*
*

“EXAMPLE: = ° SIGNAL IOTA ON;

8.9 Process~ Events.

Any | program or task block may have associated with it

a so-called “process~ event" of the same name. This process-
event behaves in every way like a latched event except that
it may not appear in SIGNAL statements. Its purpose is to

indicate the existence of its associated program or task

process. If a process of the same name as the process-event-
exists in the process queue, the value of the process- ~event
is TRUE, otherwise it is FALSE.

Sie Data sharing and the Update Block

The update block provides a. controlled environment >

for the use of data variables which are shared by two or more

_. processes... Tf. controlled sharing of certain variables is. |

desired, they must be declared with the LOCKED attribute.

LOCKED variables may only be used inside update blocks.

A LOCKED variable appearing inside an update block is said

to be "changed" within the block if it appears in one or more

statements: which may change — its value (the: left-hand side

104

INTCRMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (61 7) 661-7250

of an assignment for example) . “It is said to. be "referenced"
if it - only appears in contexts other than the above,

: OA formal specification of the update ‘block appears: in.
Section 3.4. The manner of operation of an update block is
implementation. dependent, but is such as to provide certain
safety measures.

105

NTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

106

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIGZE MASSACHUSETTS 02138 + (617) 661-1447

9.0 ERROR RECOVERY AND CONTROL

References to so-called ‘run time errors' have been

made elsewhere in this document. Such errors arise at execu-

tion time through the occurrence of abnormal hardware or

system software conditions. Each HAL/S implementation

possesses a unique collection of such errors. The errors in

the collection are said to be "system-defined". In any imple-

mentation every possible system-defined error is assigned |

a unique positive integer, called the "error code" of that

error. In addition, a number of other legal error codes not

assigned to system-defined errors may exist. These can be

used by the HAL programmer to create "user-defined" errors.

. At run time an Error Recovery Executive (ERE) senses

errors, both system-defined and user-defined, and determines

what course of action to take. HAL/S possesses two error

recovery and control statements. The ON ERROR statement is

used to modify the error environment of a process at any time

during its. life. The SEND ERROR statement is used for the

two-fold purpose of creating user-defined error occurrences,

and simulation system-defined error occurrences. |

9.1 The ON ERROR Statement

The ON ERROR statement is used to modify the action

of the error defined by <number> prevailing in the current

program, task, procedure, function or update block, in the

following manner: | |

a) the GO TO <label> clause causes the ERE to branch

to <label> when the specified error occurs.

b) the IGNORE clause allows execution as if the error

had not occurred.

c) the SYSTEM clause causes the ERE to take standard
| system recovery action. Oo | |

GO TO and/or IGNORE action may not be permitted for

some errors. . ye

107

INTERWETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

SYNTAX:

basic
statament

ON ERROR statement

SYSTEM

EXAMPLES:

ERRONEOUS: ON ERROR, IGNORE; |

ON ERROR,. GO .TO RECOVERY;

9.2 The SEND ERROR Statement

The SEND ERROR statement is used to announce the error -

condition defined by <number> to the ERE. If <number >

corresponds to a system defined error, then that error. is said.

to be simulated by the ERE. The action of the ERE is dictated by

the error environ

 nent. prevailing. at the time of execution of

the SEND ERROR. statement.

_ INTERMETRICS INCORPORATED -

2108

701 CONCORD AVUNUE » CAMBRIDGE, MASSACHUS af: ITS 2 02138 - (G17) 661. 1840

SYNTAX :

SEND ERROR statement _

basic
statement

3 > (SEND ERROR} —~<S Cy, C;)

EXAMPLE: TEST CONDITION: IF. ERR_FLAG THEN SEND ERROR, ¢;

109

— INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

110 —

—INTERMETRICS INCORPORATED + 704 CONCORD AVENUE + CAMBRIDGE, MASSACHUSIITS 02138 + (617) G61 1840

10.0 INPUT/OUTPUT STATEMENTS

The HAL/S language provides for two forms of I/0:
sequential I/O with conversion to and from an external
character string representation; and random-access record=
oriented I/O. | |

All HAL/S I/O is directed to one of a number of input/
output "channels", These channels are the means used to
interface HAL/S software with external devices in a run time
environment. In any implementation each channel is assigned
a unique unsigned integer identification number,

10.1 Sequential I/O Statements

All sequential I/O in HAL/S is to or from character- |
oriented files. HAL/S pictures these files as consisting ©
of lines of character data similar to a series of printed

lines or punched cards. An "unpaged" file simply consists
of an unbroken series of such lines. Ina "paged" file the
lines are blocked into pages, each being fixed implementation
dependent number of lines in length. The choice of paged or:
unpaged file organization for each sequential .I/O channel is”
specified in an implementation dependent manner.

HAL/S pictures’ the physical device as moving a read |
or write "device mechanism", which actually performs the data

transfer, across the file. The device mechanism has at ©
every instant a definite column and line position on the °
File. The action of transmitting one character to or from
the file is followed by the positioning of the device
mechanism to the next column on the same line. When the end.
of the line is reached the device mechanism moves on to the
first (leftmost) column of the next line.

10.1.1 The READ and READALL Statements ©

The READ. statement is used for the sequential input
of data ina standard external format. Each field of conti~.
guous characters separated by commas, semicolons or blanks
is converted to an appropriate HAL/S data value assigned to

111

NTERMETRICS INCORPORATED +701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

the <variable>. A semicolon field separator terminates the

READ statement with any unassigned <variable>s left unchanged.

The READALL statement is used for the sequential input

of unconverted, arbitrary character string images to be :

assigned to any character variable and/or structure contain-_

ing only character strings. |

<number> is any legal I/O channel number. <i/o control>

is an optional control function used to position the device

mechanism explicitly (see Section 10.1.3).

SYNTAX:

READ end READALL statements

basic

statement

variable

 i/o control

liz

~ INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

EXAMPLES: READ (CARDS) A,B,C,D,[E],{F};

READ (CARDS) COLUMN (20) ,A,B,

SKIP (1), COLUMN(20),C,D,

SKIP(1), COLUMN(20) ,E,F,
ts

°

etc, |
f a

READALL(CARD) C, COLUMN (40) ,D;

READ (CARDS) A, TAB(40) ,C;

10.1.2 The WRITE Statement

, The sequential output of data in standard external
format on the channel specified by <number> is accomplished
by using the WRITE statement. Unless overridden by an
<i/fo control>, between the transmission of two consecutive
elements, the device mechanism is moved.to the right by a
fixed implementation dependent number of columns.

SYNTAX:

WRITE statement |

basic
stetement

b + (nite)-(0)—(oumbe) > —~G)-
. expression J

 ¥

 i/o contro! }

113

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

EXAMPLES: _ | |

“WRITE (LISTING)A,B,C,D,(E)],{F};

WRITE (LISTING) A, TAB (10) ,B, COLUMN (50) ,C;
WRITE(6) ALPHA, SKIP (2), BETA;

10.1.3 I/O Control Functions

An I/O control function ina READ, READALL or WRITE

statement causes the explicit movement of the device mechanism, If _

the value of K is specified by the signed integer value of |
<arith exp>, then: a : | nn

® TAB(K) specifies relative movement of the device

mechanism across the current line. Motion is to

the right by K character positions for positive HK.

e COLUMN(K) specifies absolute movement of the device

mechanism to column K of the current line. |

e@ SKIP(K) specifies line movement of K lines relative

to the current line of the file. Subject to imple- ©

mentation restrictions, backward movement is incica-

ted by negative values of kK. 7 _

.@ LINE(K) specifies line movement: to the specified

- line number: ~_ a | , - SC

paged files - LINE(K) advances the file

unconditionally, advancing to line K ©

of the next page if K is less than the

current line number.

unpaged files - LINE(K), positions the device

mechanism at some absolute line number in

the file. : | an

® PAGE(K) is applicable to paged files only and srec1i-

| fies movement K pages forward relative to the current

page. Subject to implementation restrictions,..

backward movement is indicated by negative values |

of K. In cither case, the line value relative to ~

the beginning of the page is unchanged. ee

eS
INTERM" NICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02124 « £17) 661-1840

SYNTAX:

— 4/o control function

coLUMN)—

 (Pace J
10.2. Random Access 1/0 - - The FILE. Statement|

Individual records, specified by the <file exp?
“record address", on a file may be written, retrieved,
or updated via the FILE statement. <number> is a legal |
random access channel number. <arith exp? is any unarrayed —

_ integer or scalar expression. | Pe 23

“INPUT: “When <file exp> is on “the right- ~hand side
of the assignment, the statement is an input
FILE statement where <variable> is any
variable. usable in. an assignment context.

_ OUTPUT: When <file exp? is on the left- hand side, |
the. statement. is an output. FILE. statement
where there are no semantic restrictions
on <expression>.

(115

_ INTERMETRICS INCORPORATED + 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

. SYNTAX:

FILE statements

basic

statement

f file exp (=) jenrssion

oo variable = On file exp |

arith exp —O

EXAMPLES:

7 7 + = | oo | ; FILE(3,3+2) = ALPHA, “aq 3900!

FILE(TAPE,I) = [A]; /* TAPE IS AN INTEGER LITERAL */

{p} = FILE(DISC,A,); | /* DISC IS AN INTEGER LITERAL */

116

INTERMETRICS INCORPORATLD » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) €61-1640

ACCESS
AFTER
ALIGNED
AND
ARRAY
ASSIGN
AT

BIN
BIT
‘BOOLEAN

BY

CALL .
CANCEL ©
CASE ©
CAT
CHAR
CHARACTER
CLOSE
COLUMN
COMPOOL
CONSTANT

DEC
DECLARE
DENSE
DO
DOUBLE

ELSE
END
ERROR
EVENT
EVERY

AUTOMATIC

- APPENDIX A.
HAL/S Keywords

(not including built-in functions)

EXCLUSIVE
EXIT |

EXTERNAL

FALSE
FILE
FOR |
FUNCTION

GO

HEX

IF
IGNORE
IN

INITIAL ~
INTEGER

LATCHED
LINE
LOCKED

MATRIX

NOT

OCT.
OFF

ON
OR

PAGE
PRIORITY _
‘PROCEDURE,

117

INDEPENDENT

PROGRAM

READ
READALL
REENTRANT
REPEAT _
REPLACE .
RETURN»

SCALAR
SCHEDULE
SEND
SIGNAL |
SINGLE
SKIP —
STATIC
STRUCTURE
SUBBIT _
SYSTEM

TAB
TASK
TERMINATE
THEN
TO
TRUE

UNTIL
UPDATE |

VECTOR _

WHILE

WRITE

_ INTERMETRICS INCORPORATED +701 CONCORD. AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

118

—INTERMETRICS INCORPORATED + 701 CONCORD AVENUF + CAMBRIDGE, MASSACHUSETTS 02136 + (617) 661-122.

APPENDIX B.

HAL/S Built-In Functions*

A. String Functions (Bit or Character String Arguments)

INDEX (string, config)
LENGTH

LJUST
RJUST (character-string, length)

[applies to character-strings only]

B. Arithmetic Functions (Integer or scalar arguments) _

ABS
CEILING
FLOOR

ROUND

SIGNUM

SIGN
TRUNCATE

MOD (numerator, denominator)
DIV |
REMAINDER

MAX

MIN

ODD

C. Mathematical Functions (Integer or scalar arguments)

ARCCOS
ARCSIN
ARCTAN
cos
SIN
TAN
EXP
LOG
SQRT
-ARCCOSH
ARCSINH
ARCTANH
COSH
SINH
TANH

* Note: This list is typical; the actual list in force is

implementation-dependent. All functions require single

arguments except where that or more arguments are shown
in parentheses following the name.

119

INTERMETRICS NCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840.

D. Matrix-Vector Functions.

ABVAL
DET |
INVERSE
TRACE
TRANSPOSE
UNIT

E. Linear Array Functions

SUM
PROD

MAX
MIN
SIZE

F. Miscellaneous Functions

RANDOM
RANDOMG
DATE
RUNTIME
CLOCKTIME
PRIO |

120

INTERMCTRICS INCORPORATED + 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - 14°7 661-1840

APPENDIX C.

Summary of HAL/S Operations

The following tables summarize the allowable operations

between two operands. .In most cases the valid result-type

(or an error) and any implied data conversions are indicated

within the boxes.

121.

INTERMETRICS INCORPORATED = 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

19
9

(4
19
)

+ B
EL

ZO

SL

LI
SN

HO
VS

SV
W

‘J
OC

IN
HW

VO

+
JA
NJ
AV

GU
OO
NO
D

102

+ C
IL
VU
Od
UO
ON
I

SO
UL

IN
UI

LN
I

Ze
t

. ft)

Operation Prefix : (Gop, wee? P ter ix? Q: NOT (7)

OP, | | CHARACTER
| INTEGER SCALAR VECTOR MATRIX BIT STRING STRING

_ P P P P Q

INTEGER SCALAR VECTOR MATRIX BIT
: STRING

Table,C-1

OV
G1
-1
99

(2
19

)
+
BE
LZ
O

SL
LI
SN
HO
VS
SV
W

‘3
OG
IU
GN
VO

*
3N

N3
AV

GU
OO
NO
D

10
Z

- G
AL
VY
OU
UO
OD
NI

SO
IM
L

Bi
se
 2

LN
I

€2
T

Operation Addition & Subtract : Op, + Op,

Op,

op. INTEGER SCALAR | VECTOR MATRIX
Td -

INTEGER INTEGER SCALAR ERROR ERROR
| I+S

SCALAR SCALAR SCALAR ERROR ERROR
| I-s)

VECTOR ERROR ERROR | VECTOR ERROR

| d

MATRIX ERROR ERROR ERROR. MATRIX

-I+*S = conversion of integer to scalar

d = | dimension check

Table C-2

SA
NJ
AY

CH
OD

NO
D

10L
+*

GA
LV
UO
JU
OO
NI

SO
RI

LI
WU

TL
NI

E
|

be
t

ry

&
rZ

1-
19

9
(21

9)
» B

EL
ZO

S
L
L
I
S
N
H
O
V
S
S
V
I
N

“S
OU

IH
GW

V
” a
f

Operation Multiplication: == © OR, OP

_ OPERAND | | a
~ INTEGER | SCALAR “VECTOR | MATRIX

OPERAND.~

‘INTEGER | INTEGER | SCALAR | VECTOR | MATRIX
| | | Tes Iss I+s

SCALAR _ | SCALAR | SCALAR | VECTOR © MATRIX

i Co te - MATRIX (1) | |
"VECTOR | VECTOR | VECTOR { SCALAR(2) | °° VECTOR

- , 1s yo _ VECTOR (3) 4

MATRIX: | MATRIX | MATRIX | VECTOR. MATRIX
| foresee Od ay? ds

| Notes: (1) Vector outer product VV ds dimension check
gd (2) vector DOT product ¥.7(d) | Ivs: integer to scalar conversion

(3). Vector cross product VaeV (d, restricted to.
a : _ 3-element vectors)

Table C- 30

08
1-
19
9

(Z
19
)

+ B
EL
ZO

SL
LA
SN
HO
VS
SW
W
‘
S
O
G
I
N
A
W
V
O

+
JA
NS
AV

GH
OO
NO
D

102
 -

OF
LV
UO
dU
OO
NI

SO
IU
LE
NU
SL
NI

set

Of

eration Division : Op, /Op,

INTEGER SCALAR VECTOR MATRIX

- INTEGER SCALAR ©

/I+S I-s

SCALAR ERROR ERROR

SCALAR SCALAR
— Tes

SCALAR ERROR ERROR

VECTOR VECTOR
I+S

VECTOR ERROR ERROR

 MATRIX | MATRIX
I+S —

MATRIX ERROR ERROR

 I*S: integer to scalar conversion

Table C~4

IN
I

SO
RJ
IL
IW
US
IL
NI

r .
LO
MO
SO
WY
L

CI
DG
IU
SV
IV
O

«
JA
N

JA
V

CH
OO
NO
D

10
2

+ G
3L
VH
Od
HO

o

Ov
gl
-L
99

(2
19
)

«
BE
LZ
O
S
L
L

9¢
T

Operation Exponentiation : Op, **Op.

OP2
Op INTEGER SCALAR VECTOR MATRIX

INTEGER SCALAR (1). SCALAR (1) ERROR ERROR

| I+s I+S

- SCALAR SCALAR SCALAR ERROR ERROR
| I+S

VECTOR ERROR ERROR ERROR ERROR

MATRIX MATRIX - MATRIX ERROR ERROR

o+T

Note (1) Result is Integer if OP, is a whole number literal >

Table C-5

(no I-+S)

Ov
B1
-1
99

(2
19
)

+ B
EL
ZO

SL
LI
SN
HO
VS
SV
W

“J
OU
IU
DW
VO

*
SA
NT
AV

GU
OO
NO
D

10
2 +
 G

IL
VH
OU
OO
N!

SO
IW
LS
WU
SL
NI

‘L
tt

Operation Relational

P
OP) {38 OP2 <=, >=, 74<,7t>

INTEGER — SCALAR VECTOR . - MATRIX BIT STRING
CHARACTER |

STRING _

. INTEGER
I+8

| ERROR ERROR ERROR ERROR»

| SCALAR

L+S |

ERROR» ERROR ERROR ERROR |

VECTOR _ ERROR ERROR ERROR ERROR ERROR

MATRIX _ ERROR ERROR © ERROR - ERROR ERROR ©

BIT STRING ERROR © ERROR ERROR ERROR
(1) ERROR

CHARACTER
STRING ERROR ERROR - ERROR ERROR ERROR (2).

Special: <gtructur e>P<structure>
fable C-6

(2) Operand

_ Notes: (1) Operand padded. on left. to equalize lengths if

7 necessary.
padded on right - to equalize lengths if

necessary.

IN
OD

1LO

L+
GL
VU
OU
UO
ON
!

SO
LI
WY
SL
NI

° Ne

0
SL
LA
SN
HO
VS
SV
W

"J
OO

IU
YN

VS

©
IN
NI
AV

GO

1 at

Ch
e

23

(1
19
)

© 9

i
f
,

a

Be
t

po oo P: | | mide | | 1 Q 2 Q: ||
| 7 =

Operation string : , AND, OR |

INTEGER SCALAR BIT STRING | CHARACTER
| | - STRING

INTEGER iP P ERROR ro
: I+C I-C CHARACTER

I+C S+C I-C

ae ~ |
Pp

P |
+ Pp

SCALAR S*C S+C ERROR. CHARACTER |

Iec S+C

_ BIT STRING ERROR ERROR Qo ERROR
, BIT STRING

_ CHARACTER el JP _ Pl
- STRING CHARACTER CHARACTER ERROR ‘CHARACTER

I+C S*C

Ic: | Conversion from integer to character.

S+C: Conversion from scalar to character

Table C-7 —

APPENDIX D.

Conversion Functions |

1. “Summary of conversion ‘function results when unsubscripted
with single (unrepeated) argument; e.g. SCALAR (V) « |

A, INTEGER, SCALAR, BIT, CHARACTER __

arguments

=
 Se x | XT, | XI, Ve | WI aig] m,n |. a:m,n

INvEGER. | ¥ |[¥], | [v],,] (1, | [y] [y]

axk] mxn axmxn

fy]. | fy). SCALAR | Yj LY} [YJ sob | [Y], : (yy, mxn axmxn 7 axk

BIT | ¥ | {¥l, | [¥], , | Brror | Error [Error Error ; 7 j i> | *ea, or : |

CHARACTER j| Y [y}_ [Y]. , | Error Error |Error |Error
X may be integer, scalar, bit or character type. /

¥ indicates same data type as function. ae

a, b indicate array, shape (in general, “may be a, b, 1C, “ete,).

| L indicates vector length, | oan 7 | oo

m, n indicate matrix. row and - column dimensions: respectively.

x “(lower case x) indicates "by" as in "axmxn" = "q. by. m by nn"

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

B. VECTOR, MATRIX
(arguments may be of integer and scalar type only)

An unsubscripted VECTOR always produces a 3-vector;

therefore the number of elements in the argument
must be exactly 3. :

An unsubscripted MATRIX always produces a 3-by-3

matrix; therefore the number of elements in the

argument must be exactly 9. |

2. Summary of Conversion Function Argument Types. |

The checkmarks in the following table indicate the legal

argument types for each conversion function.

Conversion | | argument type

function integer | scalar lvector |matrix | bit |character

| INTEGER yY | ¥ nd oy y | o¥

| SCALAR / f- ov I oy vy foe

VECTOR / oy voto oy

MATRIX | v- / J Yo |.

BIT / oy / /

| <radix> | | |)

CHARACTER | = ¥- Yo fo - iy yo

‘lcuaracter | fp i
with <radix>| — pe foo

SUBBIT oy yot vd. ye

130

‘iy
_INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02128 + (617; £61 -1B40

APPENDIX E.

Sample Program Listing

- The following program was written in HAL/360, and
is included only as an example of the main features of the
HAL language.

1310

INTERMETRICS INCORPORATED = 701 CONCORD AVENUE - - CAMBRIDGE, MASSACHUSETTS 02136 + (617) 661-1840

HAL COMPILATION -- PHASE 1 == INTER METRICS, INC. | VERSION 360-7 PAGE 1.

HAL COMPILER PHASE 1 -= VERSION OF AUGUST 24, 1972. CLOCK TIME = 18:58:37.08. _

TCDAY IS OCTOBER 1, 1972. CLOCK TIME = 12:31:44.20.
Stat - : las - gouRCcE - | - | CURPENT SCOPE

1 “}. CONIC_STATE_EXTRAP: ae oe ‘| CORNIC_STATE_EXTRAP

T “ft PROGRAM; — oT : | : . oo | | CONIC _STATE_EXTRAP

21 DECLARE UNIVERSAL_XEPLER PROCEDURE, | ' CONIC_STATE_EXTPAP

2 "1 | SECANT_ITER PROCEDURE, 7 a | CONIC STATE _EXTRAP

2 "1 a EXTRAP_STATE PROCEDURE; { CONTC_STATE_EXTRAP

3.4] DECLARE PI CONSTANT(3. 14189) ; - | CONTG_STATE_EXTRAP

asp DECLAP2 MY CONSTANT (1234) 3 | OB | CONIC_STATE_ExTRAP

SM} -~DECLARE DELT, X, DELT_CPRIME, X_CPRIME; | CONIC STATE _EXTRAP
™

6 4) DECLARE VECTOR, * Ps CONIC STATE_EXTRAP

em! 20, VO, Ry Ve or | | | CONIC STATE_EXTRAP

7. DECLARE DELT_C, Lc; Oo | | CONIC_STATE_EXTRAP

SMI UNIVEPSAL_XEPLER: a / | | | | UNIVERSAL_KEPLER

BMY | PROCEDNRE(C1, C2, X, XI, ROMAG) ASSIGN (DELT_C, S_OP_XI, C_OP_XT); | | UNIVE SAL_KEPLE®

Oe) EICLARE C1, C2, X, XI, ROMAG; a | | | ONIVERSAL_KEPLER

10% DECLARE S_OP_XI, ¢_OF_XI, DELT.C; | oo oe { UNIVERSAL KEPLER

wo Oxe = 1; BO | § UNIVEPSAL_KEPLER
12-"4 CLOSE UNIVERSAL_XEPLER; «g:« UNIVERSAL_KEPLER |

BLOCK SUMMARY:

LIYPLIC’TLY DECLARED VARIABLES:
ONE ot Se

md COMPILATION -- PHASE 41 w= YTUTERYFTRICS, INC. VERSION 260-7 ~ PAGE 2

STe7 | SO'NPCE | so CUPPENT SCOPE

13.“ SECANT_ITER: : , | | [SZCANT_ITEB

130%) PTOCEDURE(DEL™_C, DELT_CPPIME, TERR, X) ASSIGN(XMIN, YYAX, DELX, S).3 I SECANT_ITER

1s My DICLART TLERX, DELT_C, DELT_CPPIME, X: a , | | SECAKT_ITER

ie OY DECLARE XMIN, XMAX, DELX, S3 , a | SECANT_ITER

WMD. THO = 2; | a | . | oe | SECANT_ITER

17 44 CLOSE SECKUT_ITER: © a oe - : | | SECANT_ITER

Brg ¢c *¥ SM MERRY

TMOLICITWLY SFCLAPED VASTASLES:
mp rt rN

x Rie OS PITLATION -- P HAS = tow- INTERPRET gre s » INC. | VETSION 360-7 PAGE 3

svt 7 oo mo | ee SOURCE - a . | | ; CURRENT SCOPE

‘TA Vy SXTDAPLSTATE: - 4 ; oe : a = | { EXTRAP_STATE _

13 “] - PROCEDTRE(RO, VO, X, XT, S_OF_XZ, C_O?_XI, DELT_C) ASSIGN(R, Viz sf EXTBAP/ STATE.

19 “4 7 DECLARE XI, ‘S_OP_¥I, C_OP_XI, x, DELT_C; —_ t EXTRAP_STATE |

2041 “DECLARE VECTOR, | oe Re, | || BXTRAP_STATE

20%) 00 OR, Vy RO, TO; {| EXTRAP_STATE

}

2a TRREE = 3 e
e

—
 EXTRAP_STATE

22 "1 CLOSE ZXTRAP_STATE; | EXTRAP_STATE |

BLOCK SUMMARY

(IMPLICITLY DPCLARED VARIABLES:

$TST
a>

Bw

at

a
r
 Ww

“3

4
2
.

‘My RPOLPO ROSE: |

Mf DECLARE VECTOR,

“Po. oORLPHA

yo OXMAK = SORT(-50 / ALPHA) ;
“4b oeyse

ya ery

“} | END;

“f PECL 270, VO) ASSIGN(R, V, ¥

PHASE 1 25 INT

SONPCE

“} -«s's«éDECLARE DELT, DELT_CPRIFE, Y_CPRIME, X;

™~

“I DECLARS EPS_T CO

tb 80, VO, By Ve TLRS
“2 DECLARE DFLTMAXY CONSTANT (35);

NSTANT (22):

“} «= sé DECYARE EPS_X CONSTANT (33):

“f° - DECLARE I_LMAY co

“{ -_ DECLASE BIT, Loc

“1 ete ROL Os S

C2 = ROMAG YO .)

“y TP ALPHA <0 THER

“Eo2)t~—“i~=~éS

“ts a os PO RHTT

“y re —OPELT

— ROMAG = ABVAL(2O

“po IP = UNIT(RO):

(1 - C2) 7 P

ISTANT(12) 5

PING: —

PS

ORT (MI) s

:,

vO / My eo 4s

Tr / SOPT(ALPHA):
ALPHA SOPT(ALPHA MU):

Mo TR € DELTYAY THEN

EOANS(DEET) >= Py

» DYELT = STGN(DELT) Ps

™

de PRMETP TOES,

C, DELT, ¥, DELT_CPRIME, X_CPRIME, DELT_C¢);

VERSION 360-7 PAGE

CURFENT SCOPE .

1 KEPLER_ROUTINE

| KEPLER_SOUTINE

| KEPLER_ROUTINE

| KEPLER_ROUTINE.

1 REPL Ee ponsiE
| KEPLER_ROUTINE

| KEPLER_ROUTINE.

| KEPLER ROUTINE

| KEPLER_ROUTINE

‘| KEPLE8_ROCTINE:

| KEPLER_ROOTINE |

| KEPLEP_ROUTINE

| KEPLER_ROUTINE

Po
{ KEPLER_ ROUTINE

! KEPLER ROUTINE

 { KEPLEB_ROUTINE |

 4 KEOLER_SOUTINE

KEPLER FOUTINE

{ KEPLER POUTINE

"| KEPLER ROUTINE

t KEPLER _POUTINE

[:KEPLER_ROUTINE

KEPLER _FONTINE

1 KEPLE? POUTINE

| KEPLER ROUTINE.

{| KEPLES_ POUTINE

a)

as

uh

63
oA

uo

4

ss 1

ee

57

59

59.
é

t
+

oe “T.

*]

ey

“4

“i

“I

2
.

If ¥ SIGN(DEIT)

LOOPING = ON:

pO FOR I = 0 TO!

*PICATION

DO;

DELT_CPRIM4!

END: .

IF DELT >= 0 THEN

yary = 0:

ELSE

| DOS

MIN = <X4A

XMAX

END; |

XY = ALPHA X-

CALL UNIVERSAL_YEPLER(C1, 52, X, X

TERR = DELT -

IF ABS(TEPR) >= ABS(EPS_T DELT) THIN

DG:

PHASE

03

us

a
e

‘t
d

e
e

, RO“AG)

-~ INT

SOURCE

<= 0 OR (AES (X) ~ XMAX) >= 0 THEN

(TLMAX - 1) @HILE LOOPING;

o
o

t
a

+3

Se
t CS, INC.

ASSIGN (DELT_C, S_OP_XI, ClCP_XI)3

VEFSION 360-7

CURRENT SCOPE

KEPLER ROUTIKE

KEPLER_POUTINE

KEPLER_ROUTINE

KEPLER ROUTINE

KEPLER ROUTINE

| KEPLER ROUTINE.

KEPLER ROUTINE

KEPLER _POUTINE

KEPLER_POUTINE

KEPLER_ROUTINE .

KEPLER ROUTINE ~

KEPLER ROUTINE

KEDLER ROUTINE

KEPLER SONTINE

KEPLER_POUTINE

KEPLER ROUTINE

KEPLER_ROCTINE

KEPLER ROUTINE

KEPLER_ROUTIKE

KEPLER ROUTINE |

“KEPLER RONTINE

pat

CALL SHCANT_ITER(DELT_C, DELT_CPRIME, T_FRP, ¥) ESSTGN(XMIN, XMAY, DELX, S$);

TP ABS(DELX) >= EPS_X THEN — oe - | - - | 7 ;) | | KEPLER ROUTINE

Do; | OB - a 7 . | | | eg KEPLER ROUTINE

NELT_CBOTNE = DELT_C: _— Oo | | Se - Oo | KEPLER ROUTINE

X= X # DELY; - co i | | KEPLER ROUTINE NDP 0 _ Be | KEPLER_ROUTINE

ZRL tOMPILATION -- pHagp 4 cc gye FReE™2ICS, INC. VERSION 360-7 PAGE «g.
0 gta Sag | SOUPCE : | a | CUPPENT SCOPE

685 NE | ELSE a | | — | KEPLER ROUTINE
_ oo

i - ate pe a LOOPING = OFF; _
{ KEPLER_ROUTINE

sett S955 -
«| KPPLER_POUTINE

| 67 y | a ELSE | - ; oe
} KEPLE® ROUTINE

67 tp LCOPING = OPP: 0
{ KEPLER_RONTIKE

sR temps oe co oe
| sf REPLER_Pourine

Sho | em ~~. — y - &o yt - CALL EXTRAP_STATE(RO, VO, X, XI, S_OP_XI,’ CLOF_XI, DFLT_S) ASSIGN(R, VY); oe 4 KEPLE?_ROUTINE
70 tbo} UKE: BO ae re

{| KEPLER ROUTINE |
71 vy - TETNRY | | nn BR

a | XEPLEP_POUTINE 72%) CLOSE KEBSLER PouTrveE: CO | KEPLER _2ONTINE

Brack SUMMA DY

 PTOCEN SES CALLED: | | Oo
UNTYESSALLKEDLER, SECANT_ITER, FY TRAP STATE

— STEP VAPTATLES SOPERPEICED: ="
wot

"vor ~wemy y Ans sy ap ay VARTA RYT Ceo. a . d - wees —— . a+ =~ «Bee & e-4 a os 4 - . . 7 D ee et ee

Yc, “BITS, POMAG, Cl, C2, ALPHA, XEAK, P, XMIN, DELX, I, XI, S_OP_YT, C_OP_XI, TERR, TLEPR, SS

‘An Introduction to: HAL/S oO | April 9-12, 1973
Carl T. Helmers |

-INTERMETRICS, INC.

The Workshop Philosophy

Fach afternoon, I will preside over a HAL/S “workshop"

session which will be of interest to those technically-

oriented individuals attending the course. The primary

purpose of these sessions is to supplement the lectures in

several areas: |

1. In the first portion of each afternoon, I will

Field written and/or oral questions upon the

lecture material or any related HAL/S topic.

2. On Monday, I will present a HAL/S application problem.

to be designed and coded by each student. The :

particular application coded can be either the one

I suggest, or a program with which the individual

student is familiar. The major portion of each

workshop will be devoted to independent work by.

each student on his problem. _ |

3. For those who are interested, I will be available

for informal discussions of HAL/S, the compiler

system, run-time characteristics, and related

topics during the workshop periods.

Due to the time schedule of this course, the workshops

on Monday and Tuesday are pre-mature in relation to the lecture

presentation material. To remedy this, and also to serve as

a guide to the lectures, I am handing out a document entitled,

"HAL/S Language Forms" which outlines the course material and

contains sufficient syntactic and semantic information for each

student to begin designing his application programs. |

In order to make the workshop portions interesting and

informative, for all concerned, I would Like é@ach student to

prepare the following: |

1. During each lecture, a list of questions, so that

all ground will be covered thoroughly during the

question period. These may be given to me just |

prior to the lunch break, or held until the after-

noon session. |

2. During Monday's lecture, think about a HAL/S application

with which he is familiar - to code as a HAL program

during the Monday and Tuesday workshops.

INTERME7S 7S INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053a
	053b
	053c
	053d
	054a
	054b
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	_01

