JSC-08934 (Vol. 1) Revision E

Shuttle Operational Data Book

Volume 1 Shuttle Systems Performance and Constraints Data

January 1988

NVSV

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center Houston, Texas

JSC-08934 (Vol. 1) Revision E

SHUTTLE OPERATIONAL DATA BOOK

VOLUME I

SHUTTLE SYSTEMS PERFORMANCE AND CONSTRAINTS DATA

PREPARED BY

FLIGHT DATA OFFICE

FLIGHT DATA AND EVALUATION OFFICE

ORBITER AND GFE PROJECTS OFFICE

SUBMITTED:

James W. Mistrot Book Manager

CONCURRENCE:

alter J. ager Gat Flight će

APPROVED:

Michael A. Collins, Jr., Manager Flight Data and Evaluation Office

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER HOUSTON, TEXAS

January 1988

FOREWORD

The Shuttle Operational Data Book (SODB) is a single authoritative source of properly validated Shuttle operational performance data and integrated mass properties. The data withn this revision are primarily based on the data from the flight results of the first 24 flights. These data will continue to be updated and expanded as additional flight results and evaluations are completed. Thus, the current data which most accurately and completely describe the Shuttle operational performance are presented. Data qualification will continue to progress until all data results from flight tests and flight operations are incorporated. The data included within the SODB have been validated by the cognizant NASA and contractor subsystem managers.

The Flight Data and Evaluation Office of the Orbiter and GFE Projects Office is the control authority for the SODB. This office is responsible for assuring that data are properly validated and for the preparation and publication of these data. Any need for additional data or to depart from the use of these data should be brought to the attention of the Flight Data and Evaluation Office (VF), Orbiter and GFE Projects Office, Lyndon B. Johnson Space Center.

iv

1.0 INTRODUCTION

1.1 PURPOSE

The Shuttle Operational Data Book (SODB) is the single authoritative source of properly validated data which most accurately and completely describe the Shuttle operational performance capabilities and limitations. These data will be kept current and will be based on the highest level of data qualification available at that time; i.e., specification, estimation, studies, analyses, simulations, ground tests, flight tests, and flight operations. Due to the need for the standardization of Shuttle source data, the SODB shall be used as the standard operational data base for all mission design and planning, simulations, studies, and analyses.

1.2 CONTENT

The SODB consists of five volumes which are defined as follows:

Volume I - Shuttle Systems Performance and Constraints Data

Volume IA - Shuttle Systems Electrical Equipment List

Volume II - Shuttle Mission Mass Properties Data

Volume III - Shuttle Systems Analysis Data

Volume IV - Orbiter Landing Emergency Rescue Data

Volume I is divided into eight sections. The text contains baseline data which are applicable to all vehicles of that type. Unless otherwise indicated, data values in the SODB do not include instrumentation inaccuracies.

Section 1.0, <u>INTRODUCTION</u>. The Introduction describes the purpose and contents of the SODB. The method of updating the SODB and lists of selected abbreviations/acronyms/symbols are also included in the Introduction.

Section 2.0, <u>SHUTTLE SYSTEM CONFIGURATION AND COORDINATE SYSTEMS</u>. This section contains pictorial representations of the Shuttle, showing locations, axes, station lines, dimensions, separation planes, etc. In addition, a standard set of Shuttle program coordinate systems is referenced. These data are intended as reference material for use throughout the book.

Section 3.0, <u>SHUTTLE CONSTRAINTS AND OPERATIONAL LIMITATIONS</u>. The data presented in this section include operational hardware limitations and constraints and the corresponding result if a limit is exceeded or a constraint is violated. The section is arranged by Orbiter subsystem for convenience. Constraints and limitations for the External Tank (ET) and the Solid Rocket Booster (SRB) follow the Orbiter.

Section 4.0, <u>ORBITER PERFORMANCE AND OPERATIONAL DATA</u>. This section contains the supporting discussion for the constraints and limitations presented in Section 3.0. It also contains descriptions of the fundamental performance of subsystems and subsystems components. Typically, fundamental data are used for system analyses and for the formulation of models for computer studies. Consequently, data are defined at a basic level and the user is responsible for properly utilizing the data for evaluation purposes.

Section 5.0, EXTERNAL TANK. This section provides External Tank description, performance capabilities, and consumables and support requirements data.

Section 6.0, <u>SOLID ROCKET BOOSTER</u>. This section provides Solid Rocket Booster description, performance capabilities, and consumables and support data.

Section 7.0, <u>AERODYNAMICS</u>. This section identifies the authoritative source for aerodynamic and flight performance characteristics data for the Shuttle.

Section 8.0, <u>ASTRODYNAMIC CONSTRAINTS AND PARAMETERS</u>. This section provides the values and associated uncertainties of the constants and models used in trajectory prediction.

1.3 AMENDMENTS

This document will be continuously amended to update and provide additional data as required. Amendments will be made as page additions, deletions, or replacements. Technical data changed by amendment will be denoted by an amendment number in the upper right-hand corner of the page and the location of the data change by a vertical bar in the page margin. Where the complete page constitutes a new addition to the SODB, no change bar will be placed in the margin. Since all sections are continuously being amended, it is imperative that amendments be inserted in sequential order.

1.4 ADDITIONAL DATA REQUIREMENTS

Any need for additional data or to depart from the use of data contained in the SODB should be brought to the attention of the Flight Data and Evaluation Office (VF), STS Orbiter and GFE Projects Office, Lyndon B. Johnson Space Center.

1-2

1.5 ABBREVIATIONS/ACRONYMS/SYMBOLS AND UNITS OF MEASURE

1.5.1 Abbreviations and Acronyms

A/amp	ampere
AA	air-to-air
	accelerometer assembly
ABA	dc amplifier, buffer, attenuator
ABE	arm based electronics
ABS	ammonia boiler system
ac	alternating current
accel	acceleration
ACCU	audio central control unit
ACIP	aerodynamic coefficient identification package
ACP	audio control panel
ACS	avionics cooling system
A/D	analog-to-digital
Adc	average direct current
ADC	air data computer
ADI	attitude director indicator
ADS	air data subsystem
ADTA	air data transducer assembly
AEC	automatic exposure control
AFD	aft flight deck
AF	Air Force
	air frame
	audio frequency
	aft fuselage
AFO	abort from orbit
AFSCF	Air Force Satellite Control Facility
AG	air-to-ground
AGC	automatic gain control
A-hr	ampere-hour
AKA	active keel actuator
ALC	automatic light control
A/L	airlock
ALSS	airlock support subsystem
AM	amplitude modulation
AMI	alpha-Mach indicator
AOA	abort-once-around
AOS	acquisition of signal
APCA	aft nover controller assembly
APS	aft propulsion subsystem
	auxiliary power subsystem
APU	auxiliary power unit
APUS	auxiliary power unit subsystem
ARCS	aft reaction control subsystem
ARPCS	atmospheric revitalization pressure control subsystem
ARS	atmospheric revitalization subsystem
ASA	aileron surface actuator
	abort sensor assembly
	aerosurface amplifier
	aerosurface servo amplifier
ASD	Apollo standard detonator
	• • • • • • • • • • • • • • • • • • • •

1-3

ATC	air traffic control
ATCO	ambient temperature catalytic oxidizer
ATCS	active thermal control subsystem
ATM	atmosphere
	auxiliary tape memory
ATO	abort-to-orbit
ATU	audio terminal unit
AUTO	automatic
AVVT	altitude vertical velocity indicator
B5D	buffer 5 Vdc discrete
BER	bit error rate
BF	body flap
BFC	backup flight control
BECS	hackup flight control system
BFS	hackup flight system
BITE	huilt_in test equipment
BOS	bright object sensor
BOT	beginning of tane
BR	bit rate
BRM	booster rocket motor
BSM	booster separation motor
Btu	British thermal unit
	backup
BU	bandwidth
DW RV	boy
DA Co	oltitudo correction
CADDT	antitude correction
CP	capacitor reset integrator
	circuit breaker
CGI	communications and tracking
	caution and warning
CCA	communications carrier assembly
	closed circuit television
	central control unit
	camera control unit
CON	crewman communications umbilical
	chamber coolant valve
CDC	confined detonating cord
CDF	confined detonating fuse
CDW	command data word
c.g.	center of gravity
	controller interface unit
CL	center line
CLA	color lens assembly
CM	common mode
CMIB	chassis - mother interconnect board
CMD	command
CNTLR	controller
C/O	checkout
~~	contamination overpressure
co ₂	carbon dioxide
-	
COAS	crewman optical alignment sight

1-4

	COMSEC	communications security
	CPD	converter, pulse to dc voltage
	CPM	cell performance monitor
	CPR	critical problem report
	CPU	central processing unit
	CRT	cathode ray tube
	CSD	Crew Systems Division
	CSS	control stick steering
	CU	copper
	CVAD	converter, voltage ac to do
•	CVDÁ	converter, voltage de to ac
	CVRD	converter, variable resistance to do voltage
	CV	command word
	CWA	caution and warning annunciator
	CUF	caution and warning electronics
	CULM	caution and warning limit modulo
	CUS	caution and warning status display
	Cw3	differential
		differential program
	ΔF AT	differential temperature
	Δ1 Δ1	differential respective
		differential velocity
	DA	deployment accomply
		distribution assembly
		double emplitude
	DIC	dicular and controls
		displays and controls
		data acquisition camera
	DACBU	data acquisition camera builer unit
	DAM	double aluminized mylar
	DAD	dilver amplifier module
	DAP	
	ЧD	desibel
		data bus coupler
	DDIE	data bus isolation amplifier
		direct current
	DDU	display driver unit
	DECOM	decommutate
	der	deflection
	deg	degree
	DEU	display electronics unit
	DFJ.	development flight instrumentation
		Dryden Flight Research Facility
	dia/DIA	diameter
	DMA	direct memory access
	DWD	drive motor assembly
	DME	distance measuring equipment
	DINA	data not applicable
	DOD	vepartment of verense
	DPS	data processing subsystem
	av/am	specific neat input rate at constant pressure (Btu/lb)

z

7

1-5

۲

	DSC	dedicated signal conditioner
	DSN	deep space network
	DU	display unit
	EAFB	Edwards Air Force Base
	EAS	equivalent airspeed
	ECI	earth centered inertia
	ECL	engine centerline
	ECLSS	environmental control and life support subsystem
	ECO	engine cutoff
	ECU	environmental control unit
	EDV	electro-depressurizing valve
	EEL	electrical equipment list
	EF	earth-fixed
	EGT	exhaust gas temperature
	E.H.	electrohydraulic
	EI	entry interface
	EIC	experiment intercom
	EIRP	effective isotropic radiated power
	EIU	engine interface unit
	EKG	electrocardiogram
		electrocardiograph
		electrocardiography
	EMF	electromotive force
	EMI	electromagnetic interference
	EMU	extravehicular mobility unit
	eng	engine
l	EOS	emergency oxygen system
I	EOT	end of tape, end of track
	ESD	engine shutdown
	EPDC	electrical power distribution and control
	EPS	electrical power subsystem
	EPW	electrical pulse width
	ESD	emergency shutdown
	ET	external tank
	ETR	Eastern Test Range
	ETS	energy transfer system
	EVLSS	extravehicular life support system
	EVA	extravehicular activity
	evap	evaporator
	exp.eff.	expulsion efficiency
	F	Fahrenheit
	FDBK	feedback
	FC	flight control
	FCP	fuel cell powerplant
	FCS	flight control system
	FCV	flow control valve
	FDM	frequency division multiplexer
	FES	flash evaporator system
	Flt	flight
	F.L.	forward link
	FM	frequency modulation
	F/M	flowmeter
	- / 11	L LOWING COL

FMS	food management subsystem	
FOV	field of view	
FPB	fuel preburner	

2 6

.

.

1-6a

full power level FPL feet per minute FPM fuel preburner oxidizer valve FPOV flow proportioning valve FPV forward reaction control subsystem FRCS FRL fuselage reference line felt reusable surface insulation FRSI F Fu thrust fuel Fwd forward antenna gain/system noise temperature G/T gravity g gravity root mean square grms ground operations aerospace language automatic procedure GAP GBR glass bead rating ground command interface logic controller GCILC ground command interface logic unit GCILU ground elapsed time GET government furnished equipment GFE GFP government furnished property GG gas generator GGVM gas generator valve module GH GH₂ gaseous helium gaseous hydrogen G.m.t. Greenwich mean time GN2 gaseous nitrogen G02 gaseous oxygen guidance, navigation, and control GN&C GPC general purpose computer gallon per minute gpm ground grd GRTLS glide return to landing site GRV ground relative velocity GSTDN ground spacecraft tracking and data network GSE ground support equipment Η hysteresis horizontal Ĥ altitude Δ HAC heading alignment circle hydraulic actuated solenoid HAS Hg mercury HGDS hazardous gas detection system h_i indicated altitude ^н2 h¹₂, H₂0 hydrogen water hi rel high reliability HIU headset interface unit He helium history memory system HMS hexanitrostilbene HNS maximum altitude HMX

,

hp	horsepower
HPFP	high pressure fuel pump
HPFT	high pressure fuel turbine
HPFTP	high pressure fuel turbopump
HPM	high performance motor
HPOP	high pressure oxidizer pump
HPOT	high pressure oxidizer turbine
HPOTP	high pressure oxidizer turbopump
HPU	hydraulic power unit
HRA	helmet retention assembly
HRD	high rate dosimeter
HRSI	high temperature reusable surface insulation
HSI	horizontal situation indicator
HUD	head up display
HUDE	head up display electronics
HWT	heavy weight tank
HX	heat exchanger
hyd	hydraulic
ICC	Interstate Commerce Commission
ICD	interface control document
ICOM	intercommunications
ICOM A	intercommunications A
ICOM B	intercommunications B
ID	inside diameter
IDT	image detector tube
IECM	induced environment contamination monitor
I/F	interface
IFOV	instantaneous field of view
I-load	initial-load
IML	inner moldline
IMU	inertial measurement unit
inbd	inboard
INTG	interrogator
1/0	input/output
IOM	input/output module
IOP	input/output processor
IPL	initial program load
ips	inch per second
	inter-range instrumentation group
	inner structural line
lsp	specific impulse
lt	total inertia
1TF	inverse transformation function
	intravenicular activity
IVBC	Integrated Venicle Daseithe configuration
JANNAF	Joint Almy-Navy-All Folice Let Propulsion Laboratory
JLC	Jet repuision Laboratory
JSC	Johnson Space Center
KDL	keyboard unit
	keyboard unit
KCal	K110Calorie
KEAS	knots equivalent allspeed
кон	potassium nyoroxide

KSC	Kennedy Space Center
LCA	load control assembly
LCH	launch
LCVC	liquid cooling and vent garment
	lift to drag
LE	leading edge
LED	light emitting diode
LEH	launch/entry helmet
LES	launch entry suit
	leading edge structural system
	leading edge Structurar System
LG	landing gear
LH	left-hand
LHC	left-hand circular
LH	liquid hydrogen
2	
I COU	lithium hydroxido
LMF	lower midfuselage
LO ₂	liquid oxygen
2	
LON	launch on notice
LOS	loss of signal
200	line of sight
TOV	liquid owngon
LPFP	low pressure fuel pump
LPFT	low pressure fuel turbine
LPFTP	low pressure fuel turbopump
LPOP	low pressure oxidizer pump
LPOT	low pressure oxidizer turbine
LPOTP	low pressure oxidizer turbonump
LDC	Iownsh Dressare Grater
	Launch Flocessing System
LKSI	low temperature reusable surface insulation
LRU	line replaceable unit
LSB	least significant bit
LSC	linear-shaped charge
LV	local vertical
LVDT	linear voltage differential transformer
	linear voltage differentiar transformer
	local vertical, local norizontal
LAL.	light weight tank
MA	master alarm
	metabolic analyzer
	middeck aft
	mission analysis
MAC	moon porodynamia abord
MADO	mean aerouynamic choru
MADS	modular auxillary data system
man	manual
manip	manipulator
max	maximum
MCA	motor control assembly
MCC	main combustion chamber
	Mission Control Contor
Mana	
MCDS	multifunction cathode ray tube display system
MCIU	master control interface unit

8

r

1-9

MCM	MADS control module
MDCA	main distributor control assembly
MDF	mild detonating fuse
MDM	multiplexer/demultiplexer
ME	main engine
MEC	master events controller
MECO	main engine cutoff
m.e.t.	mission elapsed time
MET	mission elapsed time
MFV	main fuel valve
MJCA	midbody jettison controller assembly
MIA	multiplex interface adapter
MIL-STD	military standard
ML	mobile launcher
	moldline
MI.A	monochrome lens assembly
MLG	main landing gear
MLT	multilaver insulation
MLP	mobile launcher platform
M/LR	maintenance/loop recorder
MLS	microwave landing system (MSBLS)
MM	mass memory
••••	main memory
	major mode
	man month
MN	main
ммн	monomethylhydrazine
MMT.	master measurement list
MMII	mass memory unit
MNVR	maneuver
MOV	main oxidizer valve
MPD	main de power distributor assembly
MPI.	minimum pover level
MPM	manipulator positioning mechanism
MPS	main propulsion subsystem
MR	metabolic rate
III	mixture ratio
MRI.	manipulator retention latch
MSR	most significant bit
MSBLS	microwave scanning beam landing system
MSC	mode sequencing and control
MSEC	Marshall Space Flight Center
MSC	message
MSS	mission specialist station
MTEE	mean time environmental extremes
MTU	master timing unit
MUX	multinlexer
N.	nitrogen
N^2	nitrogen tetroxide
1 2 [°] 4	mereo de la contrata
ΝΔςΔ	National Aeronautics and Space Administration
N/A or NA	not applicable
NAV	navigation
ΝΔΥΔΤΠ	navigation aid
NUAUTO	manifaction and

1–10

	NG	nose gear
	NH	ammonia
	3	
	NLG	nose landing gear
	NMT	no more than
	NPSH	net positive suction head
	NPSP	net positive suction pressure
	NR7	non-return to zero
	NST	NASA standard initiator
	NSP	network signal processor
,	NSS	net nositive suction sneed
	NUS	nose wheel steering
	0 0	outside diameter
	0.2.	
	2	oxygen
	0/F	avidizar ta fual ratio
	OFT	onorational flight instrumentation
	OFT	orbital flight test
	OFI	orbital flight program
	OFF	orbital light program
		operational instrumentation
		operational intercom
	OME	outer molaline
	OME	Orbital maneuvering engine
	OME	operational maintenance Requirements and Specification Document
	UMS	orbital maneuvering subsystem
	OPB	oxidizer predurner
	OPF	Urbiter Processing Facility
	OPOV	oxidizer preburner oxidizer valve
	OPS	operations
		operational sequence
		oxygen purge system
		orbiter project schedules
	OR	operations review
	Orb	Orbiter
	OSL	outer structural line
	OSS	optics subsystem
	outbd	outboard
	OV	Orbiter vehicle
	OX	oxidizer
	pF	power factor
	Pac	total pressure
	P	total pressure
	PC	chamber pressure
	P	static pressure
	5	
	PAD	propellant acquisition device
	PAM	pulse amplifier modulation
	PAO	Public Affairs Office
	PBAN	polybutadiene-acrylic acid acrylonitril
	PBK	payload bay kit
	PBP	preburner pump
	PCA	power control assembly
	PCL	power control list
	PCM	pulse code modulation

1 I

•

a.

	PCMMU	pulse code modulation master unit
	PCR	payload changeout room
	pct	percent
	PDA	power distribution assembly
	PDI	payload data interleaver
	PDL	Polymar Development Laboratory
	PDU	power drive unit
		pilot display unit
	PDRS	payload deployment and retrieval system
-	PETN	petaerythrite tetranitrate
	PF	preflight
	PFCS	primary flight control system
	PFS	primary flight system
		percent full scale
	PHF	position hold function
	PIC	pyrotechnic initiator controller
	PL	payload
	PLB	payload bay
_	PLBD OR PBD	payload bay door
	PLBF	payload bay floodlight
	plbk	playback
	PLSS	portable life support system
	PM	performance monitor
		phase modulation
		pulse modulation
	PMBT	propellant mean bulk temperature
	PMS	performance monitoring system
	POGO	longitudinal oscillations
	POP	perpendicular to orbital plane
	POR	point of resolution
	рр	partial pressure
		peak-to-peak
	PPO ₂	partial pressure oxygen
	PRCS	primary reaction control subsystem
	PRD	personal radiation dosimeter
	Pri	primary
	PRLA	payload retention laten actuator
	PKM	payload retention mechanism
	PROM	program read only memory
	PRSA	power reactant storage assembly
	PRSD	power reactant storage and distribution
	r SG	power subsystem group
		phase shift key
		payload signal processor
	Г 5 5 D/T	payload specialist station
		pressure/ temperature
	DTT	push to talk
	DV and D	push-co-cark
	DVT	purge, vent, and urain prosence/volume/temperature
	UDCK	quadratura phase shift bey
	VL 2V	quaurature phase shift key

atv	quantity
Q U J B	radius
RA	radar altimeter
RALT	radar altimeter
DAM	random access memory
PCC	rainforced carbon carbon
RCC P	remote control circuit breaker
	remote control circuit breaker
RCRD	record
	rev data recorder
	ragnance data vord
	response data word
RDX	cyclotrimethyllenetrinitramine
rei	reference
rev	revolution
KF DGA	radio frequency
RGA	rate gyro assembly
RH	right hand
RHC	right-hand circular
	rotation hand controller
RHCS	rotation hand control system
RJD	reaction jet driver
RJDA	reaction jet driver aft
RJDF	reaction jet driver forward
R.L.	return link
RMS	remote manipulator system
rms	root mean square
RPC	remote power controller
RPL	rated power level
RS	redundant set
	redundancy status
	remote station
	right side
RSI	reusable surface insulation
R/SB	rudder/speed brake
RSS	range safety subsystem
	root sum square
RPTA	rudder pedal transducer assembly
RTCC	real time computer complex
RTLS	return to launch site
RTV	room temperature vulcanizing
RVDT	rotary variable differential transducer
RW	runway
S	second
-	side
S&A	safe and arm
S/B	speed brake
SBTC	speed brake thrust control
SC	signal conditioner
SCA	Shuttle carrier aircraft
SCD	specification control document
000	specification control drawings
SCF	satellite control facility
JUL	spacecraft control facility
	spacectate control facility
	sequenced compatibility fifing

,

٢

SCIM	standard cubic inches per minute
SCO	subcarrier oscillator
SCU	sequence control unit
SDC	software development computer
	spares disposition code
SEP	separation
SGLS	space ground link subsystem
SGSC	strain gage signal conditioner
SI	System International d'Unites
SI/O	serial input/output
SIP	strain isolator pad
SLA	support and logistics area
SM	systems management
SMDC	shielded mild detonating cord
SMRD	spin motor rotation detector
	spin motor run detector
SMU	soft mockup
S/N	serial number
S.O.	solenoid operated
SODB	Shuttle Operational Data Book
SOP	secondary oxygen pack
	standard operating procedure
SPA	steering position amplifier
SPAR	SPAR Aerospace Ltd
SPEC	specification
SPI	surface position indicator
SPL	sound pressure level
SPS	samples per second
SPT	steering position transducer
SRB	solid rocket booster
SRM	solid rocket motor
SRSI	simulated reusable surface insulation
SSAT	Space Shuttle access tower
SSME	Space Shuttle main engine
SS0	Space Shuttle Orbiter
SSR	secondary surveillance radar
ST	star tracker
Stbd	starboard
STDN	Spaceflight Tracking and Data Network
STS	Space Transportation System
SW	switch
t	time
Т	threshold
	time
т-0	time zero (lift-off)
TACAN	tactical air navigation
TAEM	terminal area energy management
TAG	technical air-to-ground
TAL	trans-Atlantic abort
tan	tangent

¹See Table 1.6-I for listing of SI related acronyms.

1–14

TRD	to be determined
TRS	to be supplied
TCP	test and checkout procedure
TCS	thermal control subsystem
TD	touchdown
TDM	time division multiplexer
TDRS	Tracking and Data Relay Satellite
TE	trailing edge
TED	trailing edge down
temp	temperature
TEOS	tetraethyl orthosilicate
TEU	trailing edge up
TFOV	total field of view
THC	translation hand controller
tk	tank
TLD	thermoluminescent dosimeter
TLM	telemetry
TM	telemetry
	traffic model
	technical management
	time management
TMC	test monitoring console
TMS	trend monitoring system
TPS	thermal protection subsystem
TRANS DAP	transition digital autopilot
TTL	transistor-transistor logic
	television
100	thrust vector control
typ uA	typical miero empered
μΑ	microgram
	wrine collection assembly
UHF	ultrahigh frequency
USAF	United States Air Force
v	velocity
·	vertical
V	volt
Ve	equivalent velocity
Vmax	velocity. maximum
VAB	Vertical Assembly Building
Vac	volts, alternating current
VAFB	Vandenberg Air Force Base
VCM	volatile condensable material
VCO	voltage controlled oscillator
Vdc	volts, direct current
VERT	vertical
VHF	very high frequency
VOX	voice operated
VS	versus
VSWR	voltage standing wave ratio
W	word
WBSC	wide-band signal conditioner
WCCS	window cavity conditioning system
WCL	water coolant loop

......r

1–15

WLA	wide-angle lens assembly
WM	waste management
WONG	weight on nose gear
WOW	weight on wheels
WP	working pressure
WRT	with respect to
W/WMS	water/waste management subsystem
Xcvr	transceiver
XMT	transmit
XMTR	transmitter
Xpndr	transponder
X-POP	x-axis perpendicular to orbital plane
XTA	expanding tube assembly
ZOTS	ignition in injector passage
ZrKCL04	zirconium potassium perchlorate

1-16

1.5.2 <u>Symbols</u>

>	greater than
<	less than
<u>></u>	greater than or equal to
3	less than or equal to
ē	theta
±.	plus or minus
Q	ohm
μ	micro
~	approximately
2	approximately or equal to
α	varies as
3	infinity
β	beta, magnetic flux density
α	alpha, acceleration (linear)
α_	solar absorptance
ε	permittivity: mean error
ε,	infrared emittance
σ	sigma, conductivity, also uncertainty
φ	radiant flux or magnetic flux
Δ	delta, difference
Ψ	dialectic or electrostatic flux
δ	differential
ω	angular frequency
kΩ	kilohm
MQ	megohm
μΩ	microhm
٨	equivalent conductivity
η	viscosity
1	length
0	degree
%	percent
ρ	density

ĸ

1–17

1.5.3 Units of Measure

A Ah	ampere-hour
bpi	bits per inch
bps	bits per second
cc	cubic centimeters
cc/hr	cubic centimeters per hour
cc/min	cubic centimeters per minute
cm	centimeters
cm/sec	centimeters per second
dB	decibel
dBi	decibel relative to an isotropic radiator
dBm	decibel per meter
dBV	decibel per volt
dBW	decibel per watt
deg	degree
deg/sec	degree per second
dynes/cm	dynes per centimeter
F fps ft ft/min ft/sec	farad Fahrenheit feet per second frames per second foot or feet feet per minute feet per second
ft ³	cubic feet
g	gram
g/cc	gram per cubic centimeter
g/g	gram per gram
GHz	gigahertz
g/m	gram per meter
gpm	gallons per minute
H	henry
hr	hour
Hz	hertz
in	inch
ips	inch per second
in-lb	inch-pound
in ³ /hr	cubic inch per hour

k thousand $= \frac{1}{2} , \qquad = \frac{1}{2} , \quad = \frac{1}{2} , \qquad = \frac{1}{2} , \qquad$ kbps kilobits per second KEAS knots equivalent airspeed kHz kilohertz km kilometer kt knots(s) k₩ kilowatt 1b pound(s) lbf pound force 1b/ft² pound per square foot lbf/sec pound force per second lbm pound mass sealb/minsur spoundsper minute lb/sec. pound per second М Mach m milli Mbps megabits per second mg milligram MHz megahertz mi mile min minute mа milliampere milligram mg mJ millijoule ml milliliter mm millimeter mrad milliradian μ micron usec microsecond microsec microsecond msec millisecond mV millivolt mŴ milliwatt microgravity μg n nano nF nanofarad nmi. nautical mile nsec nanosecond 0-g zero gravity oz ounce р pico peak-to-peak p-p pF picofarad ppm part per million pulses per minute pulse per second pps psf pound per square foot psi pound per square inch psia pound per square inch absolute

1–19

psid psig	pound per square inch differential	
hard	pound per square inch gage	
q	dynamic pressure	
0p	degree Panking	
rad	radian	· · · ·
rad/sec	radians per second	
rmg	root mean square	
rom	revolutions per minute	
- P	revolutions per minute	
5C CS	standard cubic centimeters per second [standard pr temperature are 1 atmosphere (14.7 psi) and 20°C (respectively]	essure and [68° F),
SCC	standard cubic centimeters	
scch	standard cubic centimeters per hour	
scfm	standard cubic feet per minute	
sec	second	
		•
V	volt	
VA	volt-ampere	
Vac	volts, alternating current	
Vdc	volts, direct current	
v	watt(s)	
vr	Vears	

1.6 METRIC CONVERSION

In view of the international aspects of the Space Shuttle Program and that many of the countries participating in the Program have converted to the internationally approved form of the metric system referred to as the SI (Systeme International d'Unites), the required data for using this system are provided.

1.6.1 Names and Symbols of the SI Units

The names and symbols used in the SI system are shown in table 1.6-I.

1.6.2 Conversion Factors

Table 1.6-II provides the multiplication factors required for converting numbers and miscellaneous units into corresponding numbers and SI units. The table is self-explanatory. The listing includes only relationships which are frequently encountered and omits the great multiplicity of unit combinations that are required for specialized purposes.

TABLE 1.6-I.- NAMES AND SYMBOLS OF SI UNITS(Paragraph 1.6.1)

Quantity Name	ame of Unit	Symbol
ST BASE	UNTTS	
length	meter	m
mass	kilogram	k a
time	second	S
electric current	ampere	Å
thermodynamic temperature	kelvin	ĸ
luminous intensity	candela	cd .
amount of substance	mole	mol
SI DERIV	ED UNITS	2
area	square meter	mz
volume	cubic meter	m
frequency	hertz	Hzz
mass density (density)	kilogram per cubic meter	kg/m ³
speed, velocity	meter per second	m/s
angular velocity	radian per second	rad/s
		. 2
	meter per second squared	m/s
	radian per second squared	rad/s
lorce	newton	N D-
pressure (mechanical stress)	pascal	ra
kinematic viscosity	square meter per second	m ² /s
dynamic viscosity	newton-second per sa. meter	$N.s/m^2$
work, energy, quantity of heat	joule	J
power	watt	Ŵ
guantity of electricity	coulomb	C
potential difference, electromotive	volt	V
force		
electric field strength	volt per meter	V/m
electric resistance	ohm	Q
capacitance	farad	F
magnetic flux	weber	Wb
inductance	henry	H
magnetic flux density	tesla	Т
magnetic field strength	ampere per meter	A/m
magnetomotive force	ampere	Α
luminous flux	lumen	lm o
luminance	candela per square meter	cd/m ²
illuminance	lux	lx
vovo numbor	1 non motor	1
wave number	I per meter	M 1 / 12
encropy sponific host consoity	Joure ber Kerkin	J/K
specific near capacity	Joure per Kliogram Kelvin	J/(Kg.K)
inermal conductivity	wall per meter Kelvin	W/(M.K)
radiant intensity	watt per steradian	W/sr
activity (of a radioactive source)	1 per second	s-1
· · · · · · · · · · · · · · · · · · ·	• · · · · · · ·	

TABLE 1.6-I.- NAMES AND SYMBOLS OF SI UNITS (Continued)(Paragraph 1.6.1)

Quantity Name of Unit Symbol SI SUPPLEMENTARY UNIT

plane angle	radian		rad
solid angle	steradian	•	sr

TABLE 1.6-II.- METRIC CONVERSION FACTORS(Paragraph 1.6.2)

PHYSICAL QUANTITY	TO CONVERT FROM	TO	MULTIPLY BY
Acceleration	feet/second ²	<pre>meters/second² (m/sec²)</pre>	0.3048
Area	inches ²	centimeters ² (cm ²)	6.4516
	feet ²	meters ² (m ²)	0.0929
Density	<pre>slug/foot³</pre>	kilogram/meter ³ (kg/m ³)	515.38
Energy	Btu	kilojoules (kJ)	1.055
	kWh	kilojoules (kJ)	3600.0
Force	pounds (force)	newton (N)	4.4482
Length	inches	centimeters (cm)	2.54
	feet	meters (m)	0.3048
·	nautical miles	kilometers (km)	1.852
Luminance	lambert	candela/meter ² (cd/m ²)	3183.0
	foot-candle	lumen/meter ² (lm/m ²)	10.7639
Mass	pound (avoirdupois)	kilogram (kg)	0.45359
	slug	kilogram (kg)	14.5939
Power	Btu/hour	watts (W)	0.292875
	Btu/minute	watts (W)	17.5725
	Btu/hour-foot ²	watts/meter ² (W/m ²)	3.1525

TABLE 1.6-II.- METRIC CONVERSION FACTORS (Concluded)(Paragraph 1.6.2)

.

PHYSICAL QUANTITY	TO CONVERT FROM	TO	MULTIPLY BY
Pressure	psia	millimeters of mercury (mmHg)	51.7147
	psia	newton/centimeter ² (N/cm ²)	0.6895
	psia	newton/meter ² (N/m ²)	6894.8
	pounds/foot ²	newton/meter ² (N/m ²)	47.88
Temperature	Fahrenheit	Celsius (C) t _c = (5/	9) (t _f - 32)
	Fahrenheit	kelvin (K) t _k = (5/9)	(t _f - 32)+273.16
	Fahrenheit	Rankine (R) $t_r = t_f +$	459.7
Viscosity	centipoise	newton-second/meter ² (Nsec/m ²)	0.001
Volume	inch ³	centimeter ³ (cm ³)	16.387
	foot ³	meter ³ (m ³)	0.0283
	pint	liter (L)	0.47317
	gallon (U.S.)	liter (L)	3.7853

2.0 SHUTTLE SYSTEM CONFIGURATION AND COORDINATE SYSTEMS

This section defines the physical characteristics of the Shuttle System, the interface between the Shuttle elements, and certain detailed physical characteristics of those elements. Pictorial representations and descriptions showing station locations, station lines, dimensions, separation planes, and coordinate systems (with conventions and relationships) are provided.

> a. Shuttle System 1. Assembled configuration Figure 2-1 2. Engine numbering designation Figure 2-1 3. Coordinate system inter-Table 2-1 relationships 4. Dynamic body axes Figure 2-2 5. Elevations and stationing Figure 2-3 on launch pad A 6. Elements attach coordinates Figure 2-4 b. Solid Rocket Boosters Configuration Figure 2-5 c. External Tank Configuration Figure 2-6 d. Orbiter 1. Mission configuration Figure 2-7 2. Dimensional parameters Table 2-2 3. Orbiter projected areas Table 2-3 vs. Orbiter attitude variation 4. Motion referenced to body axes Figure 2-8 5. Motion referenced to stability Figure 2-9 axes 6. Body flap elevon deflections Figure 2-10 7. Rudder and speed brake Figure 2-11 deflections 8. Definition of control surface Figure 2-12 deflections, forces, and hinge moments e. Orbiter/Carrier 1. Ferry configuration and attach Figure 2-13 point coordinates

TABLE 2-1.- SHUTTLE COORDINATE SYSTEM INTERRELATIONSHIPS^a

From:	То:		
· · · · · · · · · · · · · · · · · · ·	Orbiter system	Shuttle system/ External tank system	
Orbiter system			
x ₀ , y ₀ , z ₀		$X_0 + 741.0 = X_{S/T}$	
		$Y_0 = Y_{S/T}$	
		$Z_0 + 336.5 = Z_{S/T}$	
Shuttle system/ external tank system			
x _s , y _s , z _s	$X_{S/T} - 741.0 = X_0$		
X _T , Y _T , Z _T	$Y_{S/T} = Y_0$		
	$Z_{S/T} - 336.5 = Z_0$		
Right booster			
X _{RB} , Y _{RB} , Z _{RB}	$X_{RB} - 198.0 = X_0$	$X_{RB} + 543.0 = X_{S/T}$	
	$Y_{RB} + 250.5 = Y_0$	$Y_{RB} + 250.5 = Y_{S/T}$	
	$Z_{RB} + 63.5 = Z_0$	$Z_{RB} + 400.0 = Z_{S/T}$	
Left booster			
X_{LB} , Y_{LB} , Z_{LB}	$X_{LB} - 198.0 = X_0$	$X_{LB} + 543.0 = X_{S/T}$	
	$Y_{LB} - 250.5 = Y_0$	$Y_{LB} - 250.5 = Y_{S/T}$	
	$Z_{LB} + 63.5 = Z_0$	$Z_{LB} + 400.0 = Z_{S/T}$	

^aSee figure 2-1 for Shuttle system element coordinate system relationships.

2-2

TABLE 2-2.- ORBITER DIMENSIONAL PARAMETERS

Component	Parameter	Value	Units
Total Vehicle	Planform area, A _p	4317 T/C On	ft ²
and the second second second	P P	3952 T/C Off	-
1		Table 2-3	
	Planform area. A.	4450	ft ²
	(P/L doors open)	Table $2-3$	
	Frontal area. A	734	ft ²
	F	Table $2-3$	1.C.
1	Side area A	2396	f+ ²
	Side area, ns	$\frac{2370}{23}$	τι
1		2715 T/C Op	
 (body , ovpogod	Surface vetted area	11126	c. 2
(body + exposed	I surrace welled area		
l wing)	Length Overall	122.17 (1466.06)	IT (1n.)
	Reference length	Figure 2-7	<i>c</i> . <i>(</i>)
	Height, gear up	46.14 (553.68)	tt (in.)
1	Height, on gear (static)	53.77 (645.22)	ft (in.)
	Span	/8.06 (936.68)	tt (in.)
воду	Length	Figure 2-/	
	Depth, maximum	19.92 (239)	ft (in.)
	$(X_0 = 1280)$		
1	Width, maximum	22.0 (264)	ft (in.) =
	$(X_0 = 1528.3)$		2
	Planform area	1914.4	ft ₂
	Surface wetted area	5634	ft ₂
	Base area (including	436.7	ft ²
	OMS pods, 71 ft ²)		
	Cargo bay	15 x 60	ft
	(diameter x length)		2
Wing (includes	Planform area	2690	ft ²
body carry	Span	Figure 2-7	
through)	Aspect ratio	2.265	
	Taper ratio	0.20	
	Sweep, leading edge	45 1	deg
	Sweep, trailing edge	-10.056148	deg
	Dihedral (at wing trail-		
1	ing edge)	3.5	deg
	Root chord $(Y_0 = 0)$	i	
	(theoret)		
İ	Length	57.44 (689.24)	ft(in.)
	c/4 station. X	1008.31	in
İ	Tip chord $(Y_{0} = 468.34)$		
İ	Length	11.49 (137.88)	ft(in)
İ	c/4 station. X	1338,8025	in
İ	Incidence	+0.5	den l
i	Airfoil section	0 0012_64 mod	ueg
·		0.0012-04 mou.	

TABLE 2-2.- ORBITER DIMENSIONAL PARAMETERS (Continued)

Component	Parameter	Value	Units
	MAC, \bar{c} (Y ₀ = 182.13)		
	Length	39.57 (474.84)	ft (in.)
	c/4 station, X ₀	1136.83	
Wing, exposed	Planform area (incl. glove)	2012.4	ft ²
	Surface wetted area Root chord $(Y_{2} = 108.0)$	4001.2	ft ²
	Length (incl. glove) c/4 station, X ₀	80.83 (970) 778.5	ft (in.) in.
	Incidence (Y ₀ = 199.045)	+0.5	deg
 	Airfoil section Yo = 199.045	0.0010 mod.	
	Sweep, glove	81	deg
	line, Y ₀		£.2
Elevon (One side)	Area	206.57	
	Aspect ratio	4.03	
	MAC, c length	7.46 (89.5)	ft (in.)
	$\bar{c}/4$ station, X	1409.375	in.
	centroid to hinge line	44./0	1n.
	Deflection (elevon)	Figure 2-10	
Vertical tail	Planform area	413.25	ft ²
and speed brake)	Aspect ratio	20.31 (315.72) 1.675	IC (1n.)
	Taper ratio	0.404	
	Sweep, leading edge	45	deg
	MAC, c length	 16.65 (199.81)	ft (in.)
	Plain, Z _O	635.5	in.
 	c/4 station, X ₀	1463.35	

2-4

 Component	Parameter	Value	Units	
Vertical tail (Concluded)	Root cord length Tip cord length Airfoil section (root - tip)	22.37 (268.44) 9.04 (108.48) 10° sym 60 percent - 40 percent double wedge	ft (in.) ft (in)	
	 Sweep, trailing edge	26.2	deg	
 Rudder and speed brake	Planform area Span	97.148 16.55 (198.61)	ft ² ft (in.)	
	c length Plain, Z _O	6.07 (72.84) 670.41	ft (in.) in.	
	$\bar{c}/4$ station, X_0	1575.77	in.	
	 Deflection, rudder (maximum)	 Figure 2-11 		
	Deflection, speed brake	Figure 2-12		
	Sweep, hinge line	34.83	deg	
Body flap	Planform area Fuselage station of hinge line	135.75 Figure 2-10	ft ²	
	Span (equivalent)	241.33	in.	
	Deflection	Figure 2-10	111.	

TABLE 2-2.- ORBITER DIMENSIONAL PARAMETERS (Concluded)

X₀ (Glove LE intersects body/based on OML, TPS incl) = 500.0 in, $Y_0 = 102.0$ in.

Glove/wing theoretical intersection = 1024 in, $Y_0 = 188.0$ in.

Aφ (roll) ft ² (viewed from the side)			Aα (pitch) ft ² (viewed from the front)		Aβ (yaw) ft ² (viewed from the front)				
		Closed	0pen		Closed	Open		Closed	Open
	deg	doors	doors	deg	doors	doors	deg	doors	doors
	0	2396	2396	0	734	734	0	734	Ì
ĺ	10	3045	3132	10	1409	1495	10	1138	İ
1	20	3603	3772	20	2041	2211	20	1509	
ĺ	30	4050	4300	30	2611	2860	30	1833	
ĺ	40	4375	4695	40	3102	3422	40	2102	
	50	4567	4948	50	3499	3879	50	2307	
	60	4620	5051	60	i 3789	4220	60	2441	
I	70	4533	5000	70	3964	4432	70	2502	
	80	4308	4798	80	4019	4509	80	2487	1
	90	3952	4450	90	3952	4450	90	2396	
						1			1

TABLE 2-3.- ORBITER PROJECTED AREAS VS ORBITER ATTITUDE VARIATION

NOTE: Equations used for projected areas are as follows: A_{α} (pitch) = A_{F} cos α + A_{p} sin α

 $A_{\beta} (yaw) = A_{F} \cos \beta + A_{S} \sin \beta$ $A_{\phi} (roll) = A_{S} \cos \phi + A_{P} \sin \phi$ $A_{F} 734 \text{ ft}^{2}$ $A_{P} \text{ Doors Closed} 3952 \text{ ft}^{2}$ $A_{P} \text{ Doors Open} 4450 \text{ ft}^{2}$ $A_{S} 2396 \text{ ft}^{2}$

 A_F and A_S areas with payload bay doors open are assumed to be approximately the same as A_F and A_S with the doors closed.

2-6

Cause

- + Angle of attack (+ α)
- + Angle of sideslip (+ β)
- + Rudder deflection $(+\delta_r)$
- + Elevon deflection (+ δ_e)
- + Gimbal deflection (pitch) (+ θ)
- + Gimbal deflection (yaw) (+ ψ)
- + Gimbal deflection (roll) $(+\theta)$
- + Force
- + Moment
- + Acceleration
- + Load factor
- + Angular acceleration
- + Velocity

+ Force

- + Y shear
- + Z shear
- + Torque

- Z airload
- Y airload
- + Y rudder force
- Z elevon force
- Z thrust force
- + Y thrust force
- + Moment about X-axis
- + Acceleration and + load factor
- + Angular acceleration
- + Velocity
- Inertia force
- Inertial moment
- + Displacement

When integrating from nose to tail

- + Shear
- + Bending moment about Z-axis
- Bending moment about Y-axis
- + Torsional moment

Figure 2-2.- Shuttle system dynamic body axes.

2-8

Figure 2-3.- Elevations and stationing on launch pad A.

37

*

_

Figure 2-8.- Orbiter motion referenced to body axes.

Elevon hinge line		
x ₀ 1387	Hardware maximum limit	Software maximum limit
ELEVON DEFLECTIONS	A = 36.5° <u>+</u> 0.25 B = 21.5° <u>+</u> 0.25	33° 18°

Figure 2-10.- Body flap and elevon deflections

Amendment 216 R rudder deflection = SB speed brake deflection = AA combined rudder and AA = speed brake deflection SB R Combined rudder and speed brake deflection (In plane normal Hardware Software to rudder hinge line) minimum maximum limit limit 61.5° to 62° 52.9° AA NAa SB 98.6° А NAa 27.1° В NAa 27.1° ^aSee single panel limit SB Hardware minimum Speed brake deflection limit (In plane normal to AA NA rudder hinge line) SB 0° A NA в NA А в Rudder deflection (In plane normal to rudder hinge line)

Positive deflection of	Angle	Force and moments	Hinge moment of surface
δ _e	-θ, -α	_C _m	-C _h e
δ _r	+β, -ψ	+c _y ,-c _n	-C _h
δ _a	+Φ	+C 	
δ _e R	ф	^{-C} ℓ	-c _h eR
δ _e L	+φ	+C _l	-C _h eL
δ _{BF}	-θ, -α	-c _m	-c _{hBF}

Figure 2-12.- Definition of control surface deflections, forces and hinge moments.

2-20

TABLE OF CONTENTS

Section	
3.0	SHUTTLE CONSTRAINTS AND LIMITATIONS
3.1	INTRODUCTION
3 2	CONSTRAINTS
3.3	LIMITATIONS
3.4	ORBITER CONSTRAINTS AND LIMITATIONS
3.4.1	Structures and Thermal Control/Protection
3.4.1.1	Structures Subsystems
3.4.1.2	Thermal Control Subsystem
3.4.1.3	Thermal Protection Subsystem
3.4.1.4	Purge. Vent and Drain Subsystem
3.4.2	Mechanical Subsystems
3.4.2.1	Landing/Deceleration Subsystem
3.4.2.2	Attachment/Separation Mechanism Subsystem
3.4.2.3	Hatches, Payload Bay Doors, Radiators and Associated Mechanisms
3.4.2.4	Hydraulic Subsystems
3.4.2.5	Pavload Deployment and Retrieval Subsystem
3.4.2.6	Operational Seat Subsystem
3.4.2.7	Atmospheric Flight Control Mechanisms
3.4.2.8	Space Shuttle Pyrotechnics
3.4.3	Propulsion Subsystems
3.4.3.1	Main Propulsion Subsystem (MPS)
3.4.3.2	Reaction Control Subsystems
3.4.3.3	Orbital Maneuvering Subsystem
3.4.4	Power Subsystems
3.4.4.1	Fuel Cell Powerplant Subsystem
3.4.4.2	Power Reactant Storage and Distribution Subsystem
3.4.4.3	Auxiliary Power Unit Subsystem
3.4.5	Avionics Subsystems
3.4.5.1	Guidance, Navigation and Control Subsystems
3.4.5.2	Communications and Tracking Subsystems
3.4.5.3	Caution and Warning Subsystem
3.4.5.4	Data Processing Subsystem
3.4.5.5	Instrumentation Subsystems
3.4.5.6	Electrical Power Distribution and Control Subsystem
3.4.6	Environmental Control and Live Support Subsystems
3.4.6.1	Atmospheric Revitalization Subsystem
3.4.6.2	Water/Waste Management Subsystem
3.4.6.3	Active Thermal Control Subsystem
3.4.6.4	Airlock Support Subsystem
3.4.6.5	Smoke Detection and Fire Suppression Subsystem
3.4.7	Crew Systems

3.0-i

TABLE OF CONTENTS

Section

3.5	EXTERNAL TANK CONSTRAINTS AND LIMITATIONS
3.5.1	Structures and Thermal Protection Subsystems
3.5.1.1	Structures Subsystem
3.5.1.2	Thermal Protection Subsystem
3.5.2	Mechanical Subsystems
3.5.2.1	ET/SRB Attachment Separation Subsystem
3.5.2.2	Mechanical Subsystem
3.5.3	Propellant Storage Subsystem
3.5.3.1	Propellant Storage
3.5.4	Avionics Subsystems
3.5.4.1	Range Safety Subsystem
3.5.4.2	Instrumentation Subsystem
3.5.4.3	Electrical Power Distribution and Control Subsystem
3.6	SOLID ROCKET BOOSTER CONSTRAINTS AND LIMITATIONS
3.6.1	Structures and Thermal Protection Subsystems
3.6.1.1	Structures Subsystem
3.6.1.2	Thermal Protection Subsystem
3.6.2	Electrical and Instrumentation Subsystem
3.6.2.1	Electrical Power Distribution and Control
3.6.2.2	Instrumentation
3.6.3	Solid Rocket Motor Subsystem
3.6.3.1	Solid Rocket Motor
3.6.4	Thrust Vector Control
3.6.4.1	Thrust Vector Control Characteristics
3.6.4.2	Auxiliary Power Unit Subsystems
3.6.4.3	Hydraulic Subsystem
3.6.4.4	Servoactuators
3.6.5	Separation Subsystem
3.6.6	Recovery Subsystem

3.0-ii

3.0 SHUTTLE CONSTRAINTS AND LIMITATIONS

3.1 INTRODUCTION

The data presented in this section include operational hardware limitations and constraints for the overall Space Shuttle vehicle and the corresponding result if a limit is exceeded or a constraint violated.

For convenience, the constraints and limitations are discussed in this section under individual subsystem headings. Supporting data are presented under similar headings in Sections 4.0, 5.0, and 6.0.

3.2 CONSTRAINTS

Constraints are defined as those methods of operation or procedures for operation imposed upon hardware components/systems, which if violated, may affect crew safety, result in performance degradation, or affect mission timelines.

3.3 LIMITATIONS

Limitations are defined as those measurable or detectable operational limits, which if exceeded, will affect crew safety or result in performance degradation.

3.4 ORBITER CONSTRAINTS AND LIMITATIONS

The constraints and limitations for the Orbiter subsystems are presented in the following subparagraphs.

Structures and Thermal Control/Protection 3.4.1 Structures Subsystems 3.4.1.1 **RESULT IF EXCEEDED** CONSTRAINTS/LIMITATIONS 1. I-Load Dynamic Pressure. Exceeding this limit The maximum dynamic pressure could cause structural for ascent is limited by damage. figure 3.4.1.1-1. 2. Day of Launch Dynamic Pressure. The day of launch maximum dispersed dynamic pressure for ascent is limited by figure 3.4.1.1-2. The constraint is defined by requirements for TPS loads and by margins for flutter and buffet. Exceeding these limits 3. Day-of-Launch Load Indicators could result in damage Limits. a. Wing load-indicator limits to the structure. are in table 3.4.1.1-1. b. Vertical tail load-indicator limits are in table 3.4.1.1-2. c. Side-window load-indicator limit is -3.4 psid. Refer to table 4.1.1-12 for loadindicator equation. d. OMS pod and aft Orbiter/ET load-indicator limits are in table 3.4.1.1-3. e. Aft fuselage/vertical tail attachment load-indicator limits are in table 3.4.1.1-4. f. ET load-indicator limits are in table 3.4.1.1-5. 4. Structural Loads a. Flight vehicle launch traject-Exceeding this limit can ory axial load factors must result in structural not exceed 3 g's.^a damage. b. Descent and landing phase flight restrictions are found in section 3.4.5.1. c. Orbiter landing weight (1) Orbiter landing weight Possible damage to the limitations: Orbiter primary structure, MLG tires, wheels (a) Landing conditions, and/or struts. sink rate vs. landing weight. See Figure 4.2.1-1. *NASA Data Source ^aThese load factors are static and do not include dynamic effects. These load factors also apply to all intact abort modes. For a failure condition with one SSME throttle stuck at 104 percent, the loads will exceed the 3g limit. This condition is acceptable for a one-time occurrence but is not a design requirement. If this failure occurs, a detailed loads analysis is required. The loads analysis will determine what structural inspection is required.

I

3.4.1.1-1

3.4.1.1

Struc	ctures Subsystems (Cont)	
CC	DNSTRAINTS/LIMITATIONS	RESULT IF EXCEEDED
	(b) Landing conditions.	
	sink rate vs. cross-	
	wind velocity. See	
	Figure 4.2.1-2.	
	(2) Nominal end-of-mission	
	(EOM) Orbiter landing	
	weight in excess of	
	211,000 lb (Figures	4
	4.2.1-1 and $4.2.1-2$ pro-	
	vide sink rate and cross-	
	wind limitations) may be	
	approved by Level II	
	waiver up to a landing	
	weight of 214,000 lb.	
	EOM landing weight in	
	excess of 214,000 lb	
	must be approved by	
	Level I.	
	(3) Abort landing weight	
	in excess of 240,000 lb	
	may be approved by Level	
	II waiver for RTLS aborts	
	up to a landing weight of	
	244,000 lb. Abort landing	
	weights above 244,000 lb	
	for RTLS must be approved	
	by Level I. TAL and AOA	
	landing weights in excess	
	of 240,000 lb must be	
	approved by Level I.	
	(NOTE: For landing weights >	207,000 lb, additional MLG
	restrictions are found	d in Rockwell International
	Report No. STS 82-0574	4; Structural Flight
	Restrictions for Orbit	ter Operational Flights,
F	available from VF2/J.	Mistrot.)
5.	Maximum Cabin Crush Pressure.	Exceeding this limit
	maximum crush pressure is 1.0	could cause structural
C	psid for critical landing case.	damage.
0.	Structural Temperatures.	
	a. The structural bondline	Exceeding this limit
	temperature limit is 350° F.	could cause structural
	h Eom DCT/CTD L. J.	damage.
	tune limit and line tempera-	
	ture limit, see paragraph	
	J•4•I•J•	

3.4.1.1-2

- 3.4.1.1
- Structures Subsystems (Cont) CONSTRAINTS/LIMITATIONS
 - c. To preclude excessive temperature at the vertical tail structure, the maximum APU running times and wind conditions of figure 3.4.1.1-4 apply when there is a burning APU exhaust plume. For FRF APU operations running times can be increased by 4 minutes without causing the structure to exceed 350° F.
 - Payload Bay Vibration. The Orbiter vehicle payload bay attachment vibration environments must not exceed those specified in figure 3.4.1.1-4.
 - 8. Cabin Windows.
 - a. Contact with cabin window glass must be avoided. No equipment experiment, or other items should be attached to any window glass surface. This includes all attachment methods (suction cups, tapes, etc.).
 - b. Protective covers or window shades must be installed on the overhead and rear-viewing windows at all times except when operations require that they be off. They must be installed at all times when the Orbiter is in an orientation and gravitational field in which an object could fall on a window if dropped by the crew.

RESULT IF EXCEEDED Exceeding the temperature limits will result in structural damage.

Exceeding these vibration limits could cause damage to the attachments.

Glass coating may be damaged causing visual and/or strength degradation.

If an object impacts a window, there could be visual and/or strength degradation.

3.4.1.1-3

- 3.4.1.1 <u>Structures Subsystems</u> (Cont) CONSTRAINTS/LIMITATIONS
 - 9. Limit SSME Gimbling When Orbiter <u>Is On Landing Gears</u> Non-oscillatory re-positioning of the SSME may be performed when the Orbiter is on all three landing gears, without chocks, without braking, and without any additional force applied to the wheels, other than vehicle weight. In this configuration, the following restrictions apply:

RESULT IF EXCEEDED

In the event the gear is restrained and these limits are exceeded the gears may be damaged. This condition could result in exceeding the ultimate sideload capability of the nose gear.

Pitch Plane: Gimball rate is 3 degrees per second and the initial step input is less than 1/2 degree. Yaw Plane: Only one SSME at a time

> is moved and the motion is in one direction, i.e., no sinusoidal gimbaling. The yaw motion is less than 2 degrees per second with 25 digital steps per second and the initial step input is less than 1/2 degree.

^aIn the initialization of OPS 9 softeare, a momentary step in excess of 1/2 degree may occur; if the landing gears are unrestrained at the time of the step, this occurrance is permissible.

TABLE 3.4.1.1-1.- WING LOAD-INDICATOR LIMITS (Paragraph 3.4.1.1)

,

Indi-	0V-	099	0V-	102	0V-103	/0V-104	Load indicator
cator	Factor	Limit	Factor	Limit	Factor	Limit	equations
A8	1.0	1000	1,0	1000	(1.05R) (1.20L)	1000	Table 4.1.1-5
A14	1.0	-23644	(1.OR) (1.1L)	24180	(1.05R) (1.15L)	-23644	
A15	1.0	975	1.0	975	1.0	975	
A16	1.0	-16900	1.0	-16900	(1.25R) (1.25L)	-16600	
A17	(1.05R) (1.20L)	588	(1.0R) (1.15L)	600	(1.0 R) (1.15L)	640	
A18	1.0	-13964	1.0	-13964	1.0	-12900	
A19	1.0	496	1.0	544	1.0	465	
A20	(1.0 R) (1.05L)	-798	(1.0R) (1.05L)	-823	(1.0 R) (1.05L)	-820	
A21	1.0	787	1.0	865	1.0	772	
A22	1.0	-580	1.0 Rond	-604		-710	
Bending Moment Limit MX							
0V-103	23.8 x	10 ⁶ - (#	A8-725) x	4600	(As A8	increases,	, M _x decreases)
0V-102	26.4 x	10 ⁶ - (4	A8-815) x	4600			

TABLE 3.4.1.1-2 - VERTICAL TAIL LOAD INDICATOR LIMITS (Paragraph 3.4.1.1)

		Load indicator
Indicator	Limit	equation
VTR-X1 and VTL-X1	-38,880 lb	Table 4.1.1-6
	+63,500 1b	
VTR-Z1 and VTL-Z1	-68,300 lb	Table 4.1.1-6
	+95,000 lb	
VTR-2 and VTL-2	-113,300 lb	Table 4.1.1-7
	+142,860 lb	
VT-3	<u>+</u> 84,400 1b	Table 4.1.1-8
VTR-5 and VTL-5	2 psi	Table 4.1.1-9
VIR-6 and VIL-6	+ 991 1b/in.	Table 4.1.1-10
VIK-/ and VIL-/	-30,300 psi	Table 4.1.1-11
I	+42,900 psi	

3.4.1.1-4

TABLE 3.4.1.1-3.- OMS POD AND AFT ORBITER/ET LOAD-INDICATOR LIMITS (Paragraph 3.4.1.1)

Indicator	Limit	Load indicator equation
OMSR-PT6	6214 lb	Table 4.1.1-13
OMSL-PT6	6214 lb	Table 4.1.1-13
AFTETLPZ	300,000 lb	Table 4.1.1-13
AFTETRPZ	300,000 1b	Table 4.1.1-13

TABLE 3.4.1.1-4.- AFT FUSELAGE/VERTICAL TAIL LOAD INDICATOR LIMITS (Paragraph 3.4.1.1)

Indicator	Limit	Load indicator
AFTFL1	35,457 lb	Table 4.1.1-14
AFTFR1	35,457 lb	Table 4.1.1-14
AFTFL3	209,468 lb	Table 4.1.1-15
AFTFR3	209,468 lb	Table 4.1.1-15
AFTFL4 AFTFR4 	1.0	Table 4.1.1-15 Table 4.1.1-15

TABLE 3.4.1.1-5.- ET LOAD-INDICATOR LIMITS (Paragraph 3.4.1.1)

Limit	Load indicator equation
+10,000,000 lb	Table 4.1.1-16
 +10,000,000 lb	Table 4.1.1-16
456.9 lb	Table 4.1.1-17
-51,179 1b	Table 4.1.1-18
481.0 lb	Table 4.1.1-19
522.0 lb	Table 4.1.1-19
	Limit +10,000,000 lb +10,000,000 lb 456.9 lb -51,179 lb 481.0 lb 522.0 lb

51 3.4.1.1-5

Figure 3.4.1.1-3.- Maximum allowable APU running times with burning plume. (Paragraph 3.4.1.1)

4.1.1-8 54 Note:

Actual vibration input to payloads will depend on transmission characteristics of mid fuselage – payload support structure and interactions with each payload's weight, stiffness and c.g.

Frequency, Hz

These are typical of liftoff, transonic and maximum q flight

Figure 3.4.1.1-4.- Random vibration at mid fuselage main longeron payload attach points interface and in cabin.

- 3.4.1.2
- Thermal Control Subsystem CONSTRAINTS/LIMITATIONS
 - 1. Subsystem Temperature Limits. See applicable subsystem in this section (3.0).
 - 2. Attitude Hold Limits.
 - a. Radiator performance limits. The maximum attitude hold, based on radiator performance, will vary between the limits given in table 3.4.1.2-1 for Beta angles < 60 and table 3.4.1.2-2 for Beta angles > 60.
 - b. Subsystem thermal limits. The maximum attitude hold, based on subsystem thermal limits, at 0° to 20°, 20° to 60°, and 60° to 90° Beta angles for local vertical, orbital rate and solar inertial attitudes are given in table 3.4.1.2-3.
 - 3. Overhead Window Seal Temperature Limit.

Attitude-hold durations are constrained by the overhead thermal window contamination seal lower temperature limit of -55° F (V09T1524).

NOTE

Starting from Z LV attitude and then going to a Tail SI or Tail-Sun Orbital Rate attitude, OI measurement V09T1524 would reach -55° F in about 11.5 hours and 6.5 hours, respectively, for low to intermediate Beta angles.

4. Payload Bay Floodlight Restart Constraint. See Section 3.4.5.6. **RESULT IF EXCEEDED**

Subsystem thermal hardware limits may be exceeded.

Potential window failure or contamination seal breakage.

TABLE 3.4.1.2-1.- ATTITUDE-HOLD DURATIONS FOR BETA ANGLES LESS THAN 60 DEGREES BASED ON RADIATOR PERFORMANCE LIMITS (Paragraph 3.4.1.2)

Payload-bay orientation	Attitude-hold time without radiator kit, ^a hrs	Attitude-hold time with radiator kit, hrs
Direct earth	17	27
 Direct solar (3-axis- inertial) 	21	50

^aDepending upon the combination of the following factors of Orbiter attitude, Orbiter and payload heat-rejection load profile, pre-entry thermal conditioning, stored water, Orbiter altitude and crew size, the maximum attitude-hold capability can be increased above the times given. Attitude-hold durations longer than the given number will impose constraints on mission variables such as vehicle orientations, orbital parameters, etc. Before the above attitude-hold durations can be repeated, the Orbiter must be placed in a preferred attitude to allow fuel-cell generated water accumulation and/or thermal conditioning.

TABLE 3.4.1.2-2.- ATTITUDE-HOLD DURATIONS FOR BETA ANGLES GREATER THAN 60 DEGREES BASED ON RADIATOR PERFORMANCE LIMITS (Concluded) (Paragraph 3.4.1.2)

Payload-bay orientation	Attitude-hold time without radiator kit, hrs	Attitude-hold time with radiator kit, ^a hrs
 Direct earth 	12 accumulative in the 6/3 mode	15 accumulative in the 6/3 mode
Direct solar (3-axis- inertial)(90° Beta angle) 	12	16

^aDepending upon the combination of the following factors of Orbiter attitude, Orbiter and payload heat-rejection load profile, pre-entry thermal conditioning, stored water, Orbiter altitude and crew size, the maximum attitude-hold capability can be increased above the times given. Attitude-hold durations longer than the given number will impose constraints on mission variables such as vehicle orientation, orbital parameters, etc. Before the above attitude-hold durations can be repeated, the Orbiter must be placed in a preferred attitude to allow fuel-cell generated water accumulation and/or thermal conditioning. ^bThe Orbiter is designed for repeated cycles of a maximum 6-hour attitude hold

The Orbiter is designed for repeated cycles of a maximum 6-hour attitude hold with no attitude constraints, followed by 3 hours thermal conditioning. For analysis purposes, thermal conditioning shall be assumed to be barbecue of the Orbiter at 2 to 5 revolutions per hour about the X-axis with the orientation of the X-axis within $\pm 20^{\circ}$ of the perpendicular to the sun vector. Upon reaching the attitude hold accumulative times for direct-earth viewing, the Orbiter must be placed in a preferred attitude to allow fuel-cell generated water accumulation before repeating the 6-hour hold cycles.

3.4.1.2-3

Beta angle	Generic attitudes					
range,	Local vertical	Orbital rate	Solar inertial			
degrees	(Earth inertial)	(Single-axis inertial)	(three-axis inertial)			
0° to 20°	No general constraint - all vehicles	No general constraint - all vehicles	Nose sun constrained to \leq 80 hours			
ا			(MLG).			
	No general constraint -	OV-102 constrained to 27 hours continuous	Nose sun constrained to \leq 80 hours			
		or greater, figure 3.4.1.2-1, or to 6/32 ⁰ (bondlines).	(MLG).			
		Exception: OV-102 unconstrained for				
		tail sun with top-to-space				
		(+50).				
20° to 60°		OV-099 and subsequent constrained to 8.5				
		hours continuous or greater, figure				
		$3.4.1.2-1$, or to $6/3^-$ (bondlines).				
		Tail or nose to sun with bottom to space				
		Constrained to \leq / hours. (NLG lines)				
1 120° to 60° 1	00-102 constrained to 27 hours continue	OV 102 constrained to 27 hours continued	Naca and constrained to (00 hours			
20 00 00	ous or to $6/3^{5}$ (bondlines).	or to $6/3^{\circ}$ (bondlines).	(MLG).			
	OV-099 and subsequent constrained to 8.5 hours continuous or to 6/3 ⁵ (bondlines).	OV-099 and subsequent constrained to 8.5 hours continuous or to 6/3 ^D (bond- lines).	Side sun constrained to \leq 42.5 hours (MLG).			
	Tail or nose toward sun with bottom toward space (i.e., +ZLV) at Beta \geq 75° constrained to \leq 7 hours (NLG lines – OV-099 and subsequent).	Tail or nose to sun with bottom to space constrained to \leq 7 hours (NLG lines - OV-099 subsequent).	OME lines constrained in tail to sun to 9 hours continuous or grea- ter, figure 3.4.1.2-2. Longer tail-to-sun operations must be flown in the 6/11 ^D mode.			
60° to 90° 	Less than 10 accumulative hours hold can be achieved in the $6/3^5$ mode; i.e., 6/3 followed by no more than 4 hours of hold.	Less than 10 accumulative hours hold can be achieved in the 6/3 mode i.e., 6/3 6/3 followed by no more than 4 hours of hold.	Bottom sun requires 8 to 12 (or more) hours PTC prior to EI EI (bottom bondlines).			
	OME lines constrained in tail towards	OME lines constrained in tail to sun to	i			
ļ	sun to 9 hours continuous or greater,	sun to 9 hours continuous or greater,				
	figure 3.4.1.2-2. Longer tail toward	figure 3.4.1.2-2, longer tail-to-sun				
	6/11 mode.	mode.				
	-/					
	Bottom sun requires 8 to 12 (or more) hours PTC prior to EI (bottom bondlines)	Bottom sun requires 8 to 12 (or more) hours PTC prior to EI (bottom bondlines).				

TABLE 3.4.1.2-3.- ATTITUDE-HOLD DURATIONS BASED ON SUBSYSTEM THERMAL LIMITS^{a,b} (Paragraph 3.4.1.2)

^aThe following subsystem issues may constrain these attitudes and durations and a flight-by-flight assessment is required: MPM, payload retention fittings, vernier and primary heaters/firings; payload bay floodlights; PLBD closure; payload/payload bay solar trapping; wing glove structural gradient (OV-102); aft RCS yaw engines (ZOT); and hydraulic circulation pump operation. The Orbiter is designed for repeated cycles of a maximum 6-hour attitude hold with no attitude constraints, followed by 3 hours thermal conditioning. For analysis purposes, thermal conditioning shall be assumed to be barbecue operations of the Orbiter at 2 to 5 revolutions per hour about the X-axis with the orientation of the X-axis within ±20° of the perpendicular to the sun vector. The 6/11 mode replaces the 3 hours of thermal conditioning with 11 hours of thermal conditioning.

5-2.1.4.5° F, Time to reach -170° F,

(Table 3.4.1.2-3)

$$3.4.1.2 - 6$$

- 3.4.1.3
- Thermal Protection Subsystem CONSTRAINTS/LIMITATIONS
- 1. <u>TPS Components Temperature</u> <u>Limits.</u> See table 3.4.1.3-1.
- 2. <u>Structural Bondline Temperatures</u> <u>Prior to Deorbit</u>.
 - a. OV-102 bondline temperatures table 3.4.1.3-2.
 - b. 0V-103 bondline temperatures table 3.4.1.3-3.
- 3. Orbiter Structure Minimum <u>Temperature</u>. Table 3.4.1.3-2 identifies the Orbiter structure temperature measurements in the vicinity of the RSI tile bondline that must be maintained above -170° F.
- 4. <u>RSI/SIP Bondline Maximum</u> <u>Temperature</u>. The RSI/SIP bondline temperature limit is 550° F for 100-mission usage life. For single mission life, the temperature limit is 625° F.
- 5. Subsystem Temperature Limits Prior to Deorbit. The following TPS bondline temperatures must not be exceeded prior to a nominal entry. a. FES topping nozzle, 135° F. b. FES high load nozzle, 333° F. c. Supply water dump nozzle, 85° F. d. Water spray boiler vents, 184° F.
 - e. Waste water dump nozzle, 180° F.f. Vacuum vent exit nozzle, 100° F.g. Ammonia vent, 195° F.
- *6. TPS Dynamic Pressure Limit The TPS must not be exposed to a dynamic pressure greater than shown in figure 3.4.1.3-1.

*7. <u>OV-102 TPS Tile Limits</u>

a. Sink speed at main gear touch-down must not exceed 6.0 ft/sec.
b. Flight load factors during entry are limited to a maximum of 2.0g.

RESULT IF EXCEEDED

Exceeding these limits could result in the bondline temperature exceeding the 350° F limit during entry, resulting in structural damage. The tile RTV bond will become brittle below -170° F. This could result in the loss of RSI tiles.

Exceeding this limit cause damage to the tile attachment system.

Exceeding the RSI/SIP bondline temperature of 550° F (625° F for single mission entry) during entry could cause damage to the tile attachment system. Exceeding the structure bondline temperature limit during entry could result in structural damage. Exceeding this limit could result in damage or loss of TPS.

Undensified tiles may be damaged.

*NASA Data Source

	1	1	L Mawimum			
	1	1	riaximum	1	Maximum	
1	l Minimum	1	Operating	1	Operating	1
1	Operating	 Critical Them	Temperature,		Temperature,	
l Components	Temporature	CIICICAL ICOM	100	Critical Item	•F	Critical Item
componencs	iremperature,		100-Mission	and Results	Single-Mission	and Results
	1		Life	If Exceeded	Life	If Exceeded
High temperature	-200	l Bonding agent	1 1 2200 ^a		acona	
reusable sur-	1 200	(PTV 560) becomes	1 2300b	Performance degra-	2600 b	Performance degra-
face insulation		hrittle balaw	2300	dation, possible	2700	dation, possible
	1			surface cracking		surface cracking,
1		-i/o F with pos-		and shrinkage.		shrinkage, opening
	1	balan 2000 B	1			of gaps, and
1	1	Delow -200° F.				structural over-
I tow townorsture	200					temperature.
Low cemperature	-200		1 1200	ļ ļ	2000	
face incular	1					
tice insula-			1			
	1					
 Felt_reusable	1 .200		700			
surface insul-	-200		1 /00		1200	
suitace insui-	1				t	1
	1					1 1
leading edge			acaod		d	
structural			2080		3400	I I
subsystem	1	1	}		1	1
l	l .	1		1		
Advanced flex-	-200	Bonding agent	1 1200	 Donformonics_donus	1500	
ible reusable	1 200	(RTV 560) becomes	1 1200	detien Rebuin	1 1500	Performance degrada-
surface insul-	1	hrittle below		dation. Fabric		tion. Fusion of
ation		-1709 E with pag		and thread becomes		fibers in thread
1		sible feilung		weak and brittle		and fabric, pos-
				with possible		sible failure of
		Derow -200° r.		failure due to air		thread, fabric
				Loads during		and insulation
1				ascent and descent.		batting during the
						vehicle entry mode.
Thermal window	c	I NZ	1757			
i pane	č		1/33	GIASS TURNS	NA	NA
				Viscous -		
				structural failure.		

TABLE 3.4.1.3-1.- THERMAL PROTECTION SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.1.3)

a9.0 lb/ft³ tile ^b22.0 lb/ft³ tile ^CNo lower limit identified ^MMission life not a direct function of maximum operating temperature. ^eCertification testing to higher temperature levels, which include flight environment phenomena, is currently in process.

3.4.1.3-2 63

		Maximum temperature	ung (1) - (1
	Temperature	prior to a	TPS
Description	measurement	nominal	material
-	nos.	entry, °F	
Pavload hav doors	 V37T1000	185	FRSI
ayroad bay doord	V37T1002	95	FRSI
	V37T1004	95	FRSI
	V37T1006	185	FRSI
Left side	 V09T1724	125	FRSI
	V09T1012	220	HRSI
**	V09T1030	150	FRSI
	V34T1102	210	LRSI
	V34T1106	120	FRSI
	V43T4722	250	HRSI
Right side	 V09T1014	NA	HRSI
	V09T1720	125	FRSI
	V09T1028	150	FRSI
	V34T1108	120	FRSI
	V34T1104	180	LRSI
	V43T5722	250	HRSI
Upper wing and			
fuselage	V09T1510	215	HRSI
	V09T1514	215	HRSI
	V09T1524	160	FRSI
	V09T1004	220	FRSI
	V09T1020	250	HRSI
r	V09T1024	220	FRSI
	V09T1516	250	
Lower wing and	V09T1006	195	HRSI
fuselage	V09T1624	160	HRSI
·	V09T1702	100	HRSI
	V09T1000	160	HRSI
	V09T1002	160	HRSI
,	V09T1016	140	HRSI
	V09T1022	130	HRSI
	V34T1110	135	HRSI
	V34T1112	130	HRSI
	V09T1026	190	HRSI

TABLE 3.4.1.3-2.- VEHICLE OV-102 STRUCTURAL BONDLINE TEMPERATURE PRIOR TO DEORBIT (Paragraph 3.4.1.3)

٠

.

,

3.4.1.3-3

Amemdment 217

TABLE	3.4.1.3-3	VEHICLE	0V-103	STRUCTURAL	BONDLINE	TEMPERATURE
			PRIOR 7	O DEORBIT		
		(1	Paragrap	ph 3.4.1.3)		

Description	Temperature measurement numbers	Maximum temperature prior to a nominal entry, °F	TPS material
Payload bay doors	V37T1000 V37T1002 V37T1004 V37T1006	185 250 250 180	FRSI FI FI FRSI
Left side	V09T1724 V09T1012 V09T1030 V34T1102 V34T1106 V43T4722	250 220 150 205 250 250	FI HRSI LRSI FI FI HRSI
Right-side base heat shield 	V09T1014 V09T1720 V09T1028 V34T1108 V34T1104 V43T5722	250 250 150 250 195 250	HRSI FI FI FI FI HRSI
Upper wing and fuselage	V09T1510 V09T1514 V09T1524 V09T1004 V09T1020 V09T1024 V09T1516	215 215 230 200 250 200 210	HRSI HRSI FI FRSI HRSI FRSI LRSI
Lower wing and fuselage	V09T1624 V09T1702 V09T1000 V09T1002 V09T1016 V09T1022 V34T1110 V34T1112	150 115 140 140 145 140 150 120	HRSI HRSI HRSI HRSI HRSI HRSI HRSI HRSI

3.4.1.3-4

(Paragraph 3.4.1.3)

- 3.4.1.4
 - Purge, Vent, and Drain (PV&D) Subsystem CONSTRAINTS/LIMITATIONS
 - 1. PV&D Component Temperature Limits See table 3.4.1.4-1.
 - 2. Positive Pressure. Positive pressure must be maintained in the Orbiter unpressurized compartments during ground purge operations.
 - 3. Purge Activation. Purge must be activated within 45 minutes after touchdown.
 - 4. Vent Door Operations.
 - a. MPS Propellant Dump During RTLS Abort. All vent doors must be closed during MPS propellant dump.
 - b. Entry.
 - (1) Doors 1/2 and 8/9 on the left-hand side may be open if an oxidizer leak is detected, otherwise, all vent doors must be closed and maintained closed throughout the high heat load phase of entry.

Note: After all possible efforts have been made to close the vent doors, entry may be made with the failed vent doors open. This will not result in loss of crew or vehicle. Such entry will result in:

- (a) Local overtemperature damage to the Orbiter structure
- (b) Possible hazardous gas ingestion
- (c) Possible overtemperature damage to payloads. Secondary effects of payload overtemperature must be considered when accepting vent door open entries.
- (2) All vent doors must be fully open at and below 70,000 ft.
- 5. Descent Propellant Dump During RTLS or TAL Aborts. Utilizing the current dump logic, the post-MECO ARCS dump must be

Below 70,000 ft, the \triangle P across the structure could cause structural damage.

Exceedance can significantly increase the

3.4.1.4-1

RESULT IF EXCEEDED

Compartments will become contaminated with atmospheric air.

Exceeds TCS, safety, and payload requirements.

Ingestion of hazardous gases into the Orbiter.

Structure and payload thermal design limits may be exceeded.

3.4.1.4

Purge, Vent, and Drain (PV&D) Subsystem CONSTRAINTS/LIMITATIONS

5. Descent Propellant Dump (Continued) During RTLS or TAL Aborts. limited to 88 seconds for RTLS and TAL aborts to minimize the potential flammable hazards. The ARCS dump starts at initiation of MM602 + 20 seconds for RTLS and GRV at 8000 ft/sec for TAL. **RESULT IF EXCEEDED**

potential flammable hazards in Orbiter compartments.

		(Paragraph	h 3.4.1	.4)	
Components	Minimum Operating Temperatures, °F	Critical Item and Results If Exceeded	Maximum Operating Temperatures, °F		Critical Item and Results If Exceeded
			Long Term	Short Term	
WCCS relief valve	-70	Specification requirement	300	N/A	Specification requirement

TABLE 3.4.1.4-1.- PURGE, VENT AND DRAIN SUBSYSTEM COMPONENT OPERATING TEMPERATURE LIMITS (Paragraph 3.4.1.4)

TABLE 3.4.1.4-2.- PURGE, VENT AND DRAIN SUBSYSTEM COMPONENT NON-OPERATING TEMPERATURE LIMITS (Paragraph 3.4.1.4)

Components	Minimum Non-operating Temperatures, °F	Critical Item and Results If Exceeded	Maximum Non-operating Temperatures, °F Long Short Term Term		Critical Item and Results If Exceeded
WCCS relief valve	N/A	NA	N/A	N/A	N/A

3.4.2 Mechanical Subsystems

R		7		2		1
-	٠	-	٠	~	٠	+

- Landing/Deceleration Subsystems CONSTRAINTS/LIMITATIONS
- 1. <u>Temperature Limits</u>. See table 3.4.2.1-1.
- <u>Retract/Circulation Valve Operation</u>. The retract/circulation valve should remain closed subsequent to final ET mating except for on-orbit low pressure thermal control hydraulic fluid circulation.
- Landing Crosswind. Maximum landing ground speed is 225 knots. Maximum landing crab angle is 6 degrees.
- 4. Orbiter Landing Weight. See paragraph 3.4.1.1
- 5. MLG Tire Pressure. Landing with tire pressure of < 256 psi in any MLG tire would require landing on concrete, no hard brakin minimum rudder steering, and minimum crosswinds.
- 5a. Best Runway for Tire Failure:^a The following runway priorities, in order of availability, are recommended when a tire "failure" exists:
 - a. Edwards Concrete
 - b. Northrup
 - c. KSC
 - d. Edwards Lakebed
 - 6. <u>Gear Deployment Velocity</u>. The maximum velocity for landing gear deployment is 297 KEAS.
- 7. Landing Velocity, Main Gear Sink Rate, and Nose Gear Loading. a. Landing velocity. The maximum landing velocity is 225 KEAS. Reference figure 3.4.2.1-1 to compare equivalent airspeed (KEAS) to ground speed for specific environmental conditions.

RESULT IF EXCEEDED

High pressure operation increases the malfunction possibility, which would prevent landing gear deployment.

Exceeds ability of tires to resist lateral move-ment.

Degraded landing subsystem performance.

Potential damage or loss of vehicle

Landing gear structural damage may occur.

Tire damage may occur.

^aThe final choice of runway should be a real-time decision based upon actual suspected condition of tires(s), weight of vehicle, and total environmental conditions at potential landing sites.

3.4.2.1

- Landing/Deceleration Subsystems (Cont) CONSTRAINTS/LIMITATIONS
 - b. Sink rate at main gear touchdown.
 Figure 4.2.1-1 shows the maximum main gear sink rate limit.
 Table 4.2.1-1 imposes further limits based on vehicle midfuse-lage strength limitations.
 - c. Nose gear loading. The maximum allowable nose gear load/sink speed/pitching velocity must not exceed either of the limits specified below.
 - The maximum vertical load on the nose gear at touchdown must not exceed 90,000 pounds.
 - (2) The maximum nose gear impact sink speed at nose gear touchdown must not exceed 11.5 ft/sec (9.9 deg/sec). Table 4.2.1-1 imposes further limits based on vehicle payload and weight configuration.
 - 8. Nosewheel Steering Use GPC made for nosewheel steering (engage at entry interface).
 - a. If GPC is not available direct mode can be used (engage direct after nosewheel slapdown).
 - b. Should nosewheel response become abnormal during roll out with nosewheel steering active, nosewheel steering should be turned off. System will revert to free castor and steering can be accomplished by rudder and differential braking.

RESULT IF EXCEEDED Possible main gear and fuselage structural damage.

Possible nose gear and fuselage structural damage.

Engagement of direct nosewheel steering prior to touchdown could cause trip-out to free castor because of handover detection circuit. Vehicle direction may not be compatible with the pilot-selected direction.

3.4.2.1-2

3.4.2.1

L

Landing/Deceleration Subsystems (Cont) CONSTRAINTS/LIMITATIONS

- 9. <u>Turn-over Angle</u>. The static turnover angle must not exceed 63 deg. (See figure 2-7 for definition of turn-over angle.)
- 10. Brakes.

a. Initial velocity for brake application, and primary mode of rollout steering should be in accordance with figures 4.2.1-2 and 4.2.1-3.

b. Any uncommanded brake pressure and/or one brake module applying> 180 psig is a constraint to landing. RESULT IF EXCEEDED Exceeding this angle will cause Orbiter to turn over.

Energy limit of brake exceeded. Possible overrun of runway.

Brakes can develop torque causing reduced or no wheel spin-up resulting in tire wear or tire failure with potentially catastrophic results.
			Opera Opera	ating		 Minimum		opera	um Non- ting	
	Operating	Critical Item	Lembe:	racure,	 Critical Itaa	Nonoper-		Tempe	rature,	
Components	Tempera-	and Results	r	1	and Paculte	Tomoro-	critical item	F	,	Critical Item
	ture.		Long	l Short	If Exceeded	i turo	I If Exceeded	Long	Chart	I AND RESULTS
	٥F		Term	Term		l or		Term	Term	
Main landing gear						1			1	·····
Shock strut	-65	Oil viscosity, sealing of	200	200	Sealing of GN_ and	-65	Sealing of GN, and	200	200	Sealing of GN, and
assembly		GN, and hydraulic fluid		İ	hydraulic fluid	i	hvdraulic fluid			hvdraulic fluid
Extend/retract	-65	Possible bearing problems	200	200	Unknown	-65	Unknown	200	200	Unknown
mechanisms		1		l		Ì	i i		i	
Door open/close	-65	Possible bearing problems	200	200	Unknown	-65	Unknown	200	200	Unknown
mechanisms				1		Ì	1		i	· ·
Wheels/tires	_35°	Tire rubber becomes	b	131	Tire rubber upper	-65	Tire rubber and seals	200	250	Tire rubber limits
		brittle		1	temperature limit	1	become brittle caus-		Local	,
1	l				-	ł	ing greater air loss		1	1
Brakes	-65	Sealing of hydraulic	е	e	Beryllium melts	-65	Sealing of hydraulic	200	200	Sealing of hydraulic
1		fluid		1		1	fliud		1	fluid
Anti-skid	-35	Electrical components	275	275	Electrical	-65	Electrical components	275	275	Electrical com-
(speed sensor		lower temperature limit;			components upper	1	lower temperature		(400)	ponents upper
only)		hydraulic fluid viscosity			temperature limit		limit			temperature limit
Nose landing gear						1	[[1
Shock strut	-65	Oil viscosity, sealing of	200	200	Sealing of GN ₂ and	-65	Sealing of GN ₂ and	200	200	Sealing of GN, and
assembly		GN and hydraulic fluid			hydraulic fluid		hydraulic fluid		1	hydraulic fluïd
Extend/retract	-65	Possible bearing problems	200	200	Unknown	-65	Unknown	200	200	Unknown
mechanisms	65									
Door open/close	65	Possible bearing problems	200	200	Unknown	-65	Unknown	200	250	Unknown
mechanisms	ana				_, ,,				Local	· · · · · ·
wneels/tires	-30	Tire rubber becomes	200	200	Tire rubber upper	-65	Tire rubber and seals	200	250 c	Tire rubber limits
		Drittle			temperature limit		become brittle caus-		Local -	
	a	The descent is a filler in the second second second second second second second second second second second se					ing greater air loss			
sceering damping	-30	Hydraulic fiuld viscosity	1/2	1/2	Electrical	-65	Electrical components	175	175	Electrical components
			ļ		components upper		and seals lower tem-		!	and seals upper
I					temperature limit	I i	perature limits		1	temperature limits

TABLE 3.4.2.1-1.- LANDING/DECELERATION SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.2.1)

^aLimited performance. ^b131° F is maximum touchdown temperature. Temperature may increase during rollout with no effect on function. ^cLocalized heating. ^dLimited performance, however, heat of brakes would result in temperature increase. Note, this does not consider temperature of fluid in the lines to anti-skid valve. ^eDesigned to the heat generated during brake operation.

3.4.2.1-3

2.1-74

Amendment 217

TABLE 3.4.2.1-1	LANDING/DE	CELERATION	SUBSYSTEM	COMPONENT	TEMPERATURE	LIMITS
		(Paragraph	n 3.4.2.1)			

75

1			Max	imum	l	1		Maxim	um Non-	1
		1	Oper	ating	I	Minimum	Į	opera	ting	1
	Minimum	1	Tempe	rature,	1	Nonoper-	1	Tempe	rature,	1
	Operating	Critical Item	•F		Critical Item	ating	Critical Item	°F		Critical Item
Components	Tempera-	and Results		1	and Results	Tempera-	and Results			and Results
1	ture,	If Exceeded	Long	Short	If Exceeded	ture,	If Exceeded	Long	Short	If Exceeded
	°F		Term	Term	1	°F		Term	Term	1
Main landing gear						1			1	
Shock strut	-65	Oil viscosity, sealing of	200	200	Sealing of GN, and	-65	Sealing of GN, and	200	j 200	Sealing of GN, and
assembly	1	GN, and hydraulic fluid		Ì	hydraulic fluid	i	hydraulic fluid		ì	hydraulic fluid '
Extend/retract	-65	Possible bearing problems	200	200	Unknown	-65	Unknown	200	200	Unknown
mechanisms	1	1		İ	l	i	l l		1	
Door open/close	-65	Possible bearing problems	200	200	Unknown	-65	Unknown	200	200	Unknown
mechanisms	Ì			1	•	i	· · · · · · · ·		1	1
Wheels/tires	i – 35 ^a	Tire rubber becomes	ь	1.131	Tire rubber upper	-65	Tire rubber and seals	200	250	Tire rubber limits
	İ	brittle			temperature limit	1	become brittle caus-		Local	
l		i		i		i	ling greater air loss		1	
Brakes	i –65 ^d	Sealing of hydraulic	e	i e	, Bervllium melts	-65	Sealing of hydraulic	200	200	Sealing of hydraulic
i	i	fluid	-	1		1	flind		1 200	fluid
I Anti-skid	, I –35	Electrical components	275	275	' Electrical	-65	Electrical components	275	275	Electrical com-
(speed sensor	1	llower temperature limit:		1	components upper	1	lower temperature	2,5	1(400)	poperts upper
only)	1	hvdraulic fluid viscosity		1	temperature limit		limit		1(100)	Itemperature limit
Nose landing gear	1			1 		1	l		1	
Shock strut	-65	Oil viscosity sealing of	200	200	Sealing of GN and	-65	Sealing of GN and	200	1 200	 Soaling of CN and
assembly		GN and hydraulic fluid	200	1 200	bydraulic fluid	1 -05	bydraulic fluid	200	1 200	ibudraulia fluid
Extend/retract	-65	Possible bearing problems	200	1 200		-65		200	1 200	Inversere
mechanisms	1 05	I Dearing problems	200	1 200	OIKIIOWII	1 -05		200	200	lonknown
Door oper (close	-65	 Possible bearing problems	200	1 200	Unknern	1 65		200	1 250	
mechanisms		i sature seating problems	200	1 200	OURIDWIL	105		200		UIKHOWN
Wheels/tires	_30 ^a	I ITira Tubbar bacaman I	200	1 200	Mine wheels			200	Local	
mieers/tites	_30 	Ibrittle	200	1 200	tomoroture light	1 -03	Tire rubber and seals	200	250 C	Tire rubber limits
1		Introte		1	cemperature 11M1C	1	Decome Drittle caus-		lrocar	1
Steering damaing	_30 ^a	 Wederaulic fluid wighted	175	176			ing greater air loss		1 1 7 5	
sceering damping		Invariantic finite viscosity	1/2	1/5	LIECTICAL	1 -05	Liectrical components	1/5	1 1/5	Electrical components
1					components upper	!	and seals lower tem-		ļ	and seals upper
I					temperature limit	1	perature limits			temperature limits

^aLimited performance. ^b131° F is maximum touchdown temperature. Temperature may increase during rollout with no effect on function. ^CLocalized heating. ^dLimited performance, however, heat of brakes would result in temperature increase. Note, this does not consider temperature of fluid in the lines to anti-skid valve.

Pesigned to the heat generated during brake operation.

3.4.2.1-3

Attachment/Separation Mechanism Subsystem CONSTRAINTS/LIMITATIONS RESULT IF EXCEEDED

- Orbiter/ET Separation.^a The separation of the Orbiter from the external tank will be inhibited by system software inhibit checks when recontact is likely. Exceeding the range of the values shown below will cause an inhibit to occur.
 a. For RTLS: roll rate ±5.0°/sec,
 - a. For RTLS: roll rate $\pm 5.0^{\circ}$ /sec, pitch rate ± 0.25 to -5° /sec, yaw rate $\pm 0.5^{\circ}$ /sec, angle of attack -2° to -89° , angle of sideslip $\pm 2^{\circ}$, roll attitudenone.
 - b. For AOA, ATO and mission continuation: ±0.7°/sec.

c. Deflection of the translation hand controller in any axis during ET separation (ET separation initiated, but not completed), will result in the automatic -Z RCS firing being inhibited or terminated.

2. <u>Structural Release</u>. The disconnect of all Orbiter/ET structural attachments must be initiated simultaneously. The maximum time delay from first to last disconnect release must not be > 20 milliseconds. Exceeding these attitudes or rates for RTLS could cause Orbiter and ET recontact and possible damage after separation.

The limit rates for AOA/ATO and mission continuation were chosen to minimize dispersion at separation while still being well with in the capability of the FCS.

Exceeding this time delay limit could cause Orbiter and ET recontact and possible damage after separation.

^aThe attitude and rate-inhibit magnitudes of the FCS deadbands and separation software, when combined with sensor inaccuracies, will be designed to preclude attitudes and rates greater than those specified above. In RTLS, software will automatically override an inhibit after 6 seconds.

76

3.4.2.2-1

- 3.4.2.2
- Attachment/Separation Mechanism Subsystem CONSTRAINTS/LIMITATIONS **RESULT IF EXCEEDED**
 - 3. SRB/ET Separation. The separation of the SRB's from the Orbiter/ external tank will be inhibited by system software inhibit checks when recontact is likely. Exceeding the range of the values shown below will cause an inhibit to occur.
 - a. Sensed body rates

 - (1) Roll > ± 5°/sec, (2) Pitch > ± 2°/sec,
 - (3) Yaw > $\pm 2^{\circ}/\text{sec}$ b. On-board computed pressure of <u>></u> 63 psf

Exceeding these rates could cause SRB and ET recontact and possible damage after separation.

Ha	atche	s, Payload Bay Doors, Radiators	
a	nd As	sociated Mechanisms	
	102	ISTRAINTS/LIMITATIONS	RESULT IF EXCEEDED
1	$\frac{\mathrm{Ten}}{2}$	iperature Limits.	
~	See	table 3.4.2.3-1.	
2	. <u>Dii</u>	terential Pressures.	Man and at mature]
	a.	Differential pressures across	May cause structural
		each hatch must be in the range	damage.
		shown below before the hatch	
		may be opened.	
		(1) Ingress/egress natch	
		Prelaunch 0 to 0.7 psid	
		Distanting 0 (to 1.6 psid	
		Postlanding -0.4 to 1.0 psid	
		(hatch opening may be initi-	
		ated at pressures > 1.0 psid,	
		but natch fatch actuator	
		nancie must be momentarily	
		(2) Cabin/airlack batch	
		Prolaunch 0 to 0 01 psid	
		0 rbital 0 to -0.2 psid	
		Postlanding 0 to 0.01 psid	
		(3) Airlock/payload bay hatch	
		Prelaunch 0 to 0.01 psid	
		Orbital 0 to 0.2 psid	
	b.	Differential pressures across	May cause structural
		each hatch during hatch closing	damage.
		operations for ingress/egress,	-
		cabin/airlock, and airlock/	
		payload bay hatches must be in	
		the range of 0 to 0.01 psid.	
3	. Pag	load Bay Door Latch Configura-	
	ti	on.	
	а.	All payload bay door latches	Structural damage may
		are required to be latched at	occur to the doors and
		lift-off.	Orbiter primary
			structure.
	b.	Following on-orbit thermal condi-	Structural damage may
		tioning, a benign entry may pro-	occur to the doors and
		ceed without one of the following	Orbiter primary
		latch(es) (single, pair or gang)	structure.
		engaged, if attempts to command	
		engagement are unsuccessful.	
		(1) Any single latch, or	
		(2) Any one pair of latches, or	
		(3) Any one of the eight latch gan	gs
		(4 latenes/gang).	
~ + ~-·		and which avoids off nominal nitch	up and standy state side

^aBenign entry is one which avoids off-nominal pitch up and steady state side slip maneuvers. ^bTo eliminate the possibility of blockage by debris at a door joint, door is to be cycled open to approximately the 50 percent position at least once to dislodge debris.

78

- Hatches, Payload Bay Doors, Radiators, and Associated Mechanisms (Concluded) CONSTRAINTS/LIMITATIONS
- 4. Radiator Mechanism Configuration. All deployable radiators must be stowed and latched prior to payload bay door closure.

RESULT IF EXCEEDED Payload bay doors cannot be closed if radiators are not stowed (EVA or payload, RMS, slide wire, camera, and/or Ku-band antenna jettison required to close doors). Damage to radiator and/or payload may occur if radiators not stowed and latched.

Name Operating Presentation, Pre	1		1	Max	imum	1	1	1	Maximu	n Non-	1
Ninima Operation (Temperature, Components) Critical Iten (Temperature, Press) Temperature, Press) Critical Iten (Temperature, Press) Temperature, Critical Iten (Temperature, Press) Critical Iten (Temperature, Press) Temperature, Critical Iten (Temperature, Press) Critical Tem (Temperature, Press) >ł</td> <td>1</td> <td>1</td> <td>Oper</td> <td>ating</td> <td>i</td> <td>i</td> <td>i</td> <td>operat</td> <td>ting</td> <td></td>	ł	1	1	Oper	ating	i	i	i	operat	ting	
Operating Temperature, ComponentsCritical Tem Temperature, if ExceededCritical Tem and ResultsCong ShortShort and ResultsCritical Tem critical Tem if ExceededCritical Tem critical Tem if ExceededCritical Tem rem if ExceededCritical Tem and ResultsCritical Tem a		Minimum		Temper	ature,	i	Minimum	1	Tempera	ature.	1 1
Critical ItemCritical TemCritical TemComponentsCritical TemCritical TemCritical TemComponentsCritical TemCritical TemTeraCritical TemCritical TemNatches	1	Operating	i i	i	°F	j	Nonoperating		PF	,	
Components**and ResultsLongShortand Resultsregand ResultsLongShortand ResultsHatches-5Attenuator fluid. Excessive damping [cause high loads.27575Attenuator fluid. Institution tamping [cause high loads.NANA275NAAirlock-65Hatch/latch actuator275275Hatch/latch actuatorNANA360NAAirlock-65Hatch/latch actuator275275Hatch/latch actuatorNANA360NAAirlock-65Hatch/latch actuator275275Hatch latch actuatorNANA360NAAirlock/payload-65Hatch/latch actuator275275Hatch latch actuatorNANANANAAirlock/payload-65Hatch/latch actuator275275Hatch actuatorNANANANANAJubricant specification1ubricant specification1ubricant specification1ubricant specificationNANANANANATumel adapter-65Hatch actuator275275Latch actuatorNANANANANATumel adapter-100Actuator lubricant350350Actuator lubricantNANANANANACorestad-100Specification limit115Specification limit23Specification350350Corestad-100Specification limit<	1	Temperature,	Critical Item	i		Critical Item	Temperature.	Critical Item	¦	<u> </u>	Critical Item
If ExceededTermIf ExceededTermIf ExceededIngress/ebgress-65Attenuator fluid, Excessive damping causes high loads.275275Attenuator fluid, insufficient damping causes high loads.NANANA275NAAttenuator fluid perificationAirlock-65Hatch/atch actuator limit.275275Hatch/atch actuator insufficientNANANA360NAHatch/atch instit.Airlock/payload-65Hatch/atch actuator limit.275275Hatch actuator instit.NANANA360NAHatch/atch instit.Airlock/payload-65Hatch/atch actuator limit.275275Hatch actuator it in limit.NANANANANAbay-65Hatch actuator limit.275275Iatch actuator it in limit.NANANANANANATunnel adapter-65Hatch actuator limit.275275Iatch actuator it in limit.NANANANANATornel adapter-65Hatch actuator limit.275275Iatch actuator it con limit.NANANANANATornel adapter-65Hatch actuator limit.275275Iatch actuator it con limit.NANANANATornel adapter-150Actuator lubricant screen dor it con limit.30350Actuator lubricant it con limit.NANA </td <td>Components</td> <td>°F</td> <td>and Results</td> <td>Long</td> <td>Short</td> <td>and Results</td> <td>°F</td> <td>and Results</td> <td>Long</td> <td> Short</td> <td>and Results</td>	Components	°F	and Results	Long	Short	and Results	°F	and Results	Long	Short	and Results
Hatches Ingress/shgress -5 Attenuator fluid. 275 275 Attenuator fluid. Ingress/shgress -65 Attenuator fluid. 275 275 Attenuator fluid. Airlock -65 Hatch/latch actuator 275 275 Hatch/latch actuator Inductor fluid. Airlock/payled -65 Hatch/latch actuator 275 275 Hatch/latch actuator Inductor fluid. Airlock/payled -65 Hatch/latch actuator 275 275 Hatch/latch actuator Inductor fluid. Inductor specification Inductor fluid. Airlock/payled -65 Hatch/latch actuator 275 275 Hatch/latch actuator Inductor fluid. Inductor specification Inductor fluid. Airlock/payled -65 Hatch/latch actuator 275 275 Hatch/latch actuator Inductor fluid. Inductor specification Inductor fluid. Inductor specification Inductor fluid. Tunnel adapter -65 Hatch actuator 275 275 Hatch latch actuator Inductor fluid. Inductor specification Inductor fluid. Tunnel adapter -65 Hatch actuator 275 275 Hatch actuator Inductor fluid. Inductor specification Inductor fluid. Doorn Inductor lubricant specification Inductor fluid. ET door drive -100 Specification limit. ET door drive -100 Specification limit 115 I15 Specification limit. ET door attor. ET door latch- -100 Specification limit 115 I15 Specification limit. ET door latch- -50 Thermal contraction 250 250 Actuator specifica- Inductor specification limit 115 I15 Specification limit. ET door latch- -50 Thermal contraction 250 250 Actuator specifica- Inductor specification limit 115 I15 Specification limit. ET door latch- -50 Thermal contraction 250 250 Actuator specifica- -100 Specification limit 115 I15 Specification limit. -23 Specification 350 350 Specification Inductor specification 330 330 Specification Forward fuselage -100 Specification limit 330 330 Specification 11mit -100 330 330 Int Forward fuselage -100 Specification 120 250 250 Actuator specifica- -100 Specification 11mit 330 330 Specification 11mit -100 330 330 Int Matcharase -100 Specification 11mit 330 330 Specification 11mit -100 330 330 Int Hatcharase -100 Specification 11mit 330 330 Specification 11m	1	1	If Exceeded	Term	Term	If Exceeded	-	If Exceeded	Term	Term	I If Exceeded
Ingress/ebgress -65 Attenuator fluid. Ixvessive damping causes high loads. 275 yx Attenuator fluid. ixvessive damping causes high loads. yx yx hatenuator fluid. ixvessive loads. yx hatenuator fluid. ixvessive loads. yx hatenuator fluid. ixvessive loads. yx hatenuator fluid. ixvessive loads. yx hatenuator fluid. ixvessive loads. yx hatenuator fluid. ixvessive loads. yx hatenuator fluid. loads. yx hatenuat	Hatches			<u>i</u>	1	1	1	1	1	1	
Airlock -65 Hatch/latch actuator 275 275 Match/latch actuator NA NA 360 NA Hatch/latch actuator Init. Airlock/psyload -65 Hatch/latch actuator 275 275 Match/latch actuator NA NA 360 NA Hatch/latch actuator Airlock/psyload -65 Hatch/latch actuator 275 275 Hatch/latch actuator NA NA 360 NA Hatch/latch actuator Init. Pay -65 Hatch/latch actuator 275 275 Hatch latch actuator NA <	Ingress/ebgress	-65	Attenuator fluid.	275	275	Attenuator fluid.	NA	I NA	275	I NA	Attenuator fluid
Airlock -65 Hatch/latch actuator 275 275 Hatch/latch actuator NA NA NA NA NA Hatch/latch Airlock/payload -65 Hatch/latch actuator 275 275 Hatch/latch actuator NA NA NA NA NA NA Hatch/latch Airlock/payload -65 Hatch/latch actuator 275 275 Patch actuator NA NA NA NA NA AGO NA Hatch/latch bay -65 Hatch/latch actuator 275 275 Hatch actuator NA NA NA NA NA NA HAtch/latch bay -65 Hatch/latch actuator 275 275 Hatch actuator NA	1	1	Excessive damping	İ	i	Insufficient damping	i	1	1		specification
Airlock -65 Hatch/latch actuator lubricant specification limit. 1275 1275 Hatch/latch actuator lubricant specification limit. NA NA 360 NA Hatch/latch actuator lubricant cant specification lubricant specification limit. NA NA NA NA NA NA POOTS -55 Hatch/latch actuator lubricant specification limit. 275 275 Latch actuator lubricant specification lubricant specification limit. NA NA NA NA NA POOTS -150 Actuator lubricant specification limit. 350 350 Actuator lubricant specification limit. -23 Specification limit 350 350 Specification limit Td oor canter- str door latch -100 Specification limit 115 Specification limit. -23 Specification limit 350 Specification limit Td oor canter- soro	1	1	causes high loads.	İ	i	causes high shock	1	Ì	1	1	limit.
Airlock-65Hatch/latch actuator275275Match/latch actuatorNANA360NAHatch/latch actuatorlimit.limit.tion limit.tion limit.tion limit.natural control limit.natural control limit.natural control limit.natural control limit.Airlock/payload-65Hatch/latch actuator275275Hatch latch actuatorNANA360NAHatch/latch actuator limit.bay1limit.275275Itatch actuatorNANANANANANANATunnel adapter-65Hatch actuator275275Itatch actuatorNANANANANANANABoors1limit.1Itubricant specification1NANANANANANANAGoors1limit.1specification limit.NANANANANANANAGoors1specification limit.1specification limit23Specification350350Specification111 <td< td=""><td>1</td><td>1</td><td>1</td><td>Ì</td><td>i</td><td>loads.</td><td>İ</td><td>i ·</td><td>1</td><td>ĺ</td><td></td></td<>	1	1	1	Ì	i	loads.	İ	i ·	1	ĺ	
Airlock/payload -65 Hatch/latch actuator 275 Ratch latch actuator NA NA 360 NA Hatch/latch actuator bay -65 Hatch/latch actuator 275 275 Ratch latch actuator NA NA NA NA Hatch/latch actuator NA	Airlock	-65	Hatch/latch actuator	275	275	Hatch/latch actuator	NA	NA	360	NA	Hatch/latch
Airlock/payload-65Hatch/latch actuator175275Hatch latch actuatorNANANASA <t< td=""><td>1</td><td>1</td><td> lubricant specification</td><td></td><td>Í</td><td>lubricant specifica-</td><td>i</td><td>i</td><td>i</td><td>ĺ</td><td>actuator lubri-</td></t<>	1	1	lubricant specification		Í	lubricant specifica-	i	i	i	ĺ	actuator lubri-
Aitlock/payload-65Hatch/latch actuator lubricant specification limit.275Hatch latch actuator lubricant specification lubricant specification limit.275Hatch latch actuator lubricant specification lubricant ANADoors-65Hatch actuator lubricant specification limit75275Latch actuator lubricant specification limit.NANANANANADoors-150Actuator lubricant specification limit.350350Actuator lubricant specification limit.NANANANABoord-00Specification limit limit-23Specification limit350350Specification limitET door center-100Specification limit limit115115Specification limit23Specification limit350350Specification limitET door latch- drive actuator-100Specification limit limit115Specification limit23Specification limit350350Specification limitPayload bay doors mechanise100Specification limit1157157 <td< td=""><td>1</td><td>1</td><td>limit.</td><td>1</td><td>Ì</td><td>tion limit.</td><td>Ì</td><td>1</td><td>i</td><td>i</td><td>cant specifica-</td></td<>	1	1	limit.	1	Ì	tion limit.	Ì	1	i	i	cant specifica-
Airlock/psyload -65 Hatch/latch actuator 275 275 14bricant specification NA 360 NA Interch/latch bay Intercant specification Intercant specification Intercant specification Intercant specification Intercant specification Intercant specification Intercant specification NA <td< td=""><td>1</td><td>1</td><td>1</td><td> </td><td></td><td>1</td><td>1</td><td>1</td><td>i</td><td>1</td><td>tion limit.</td></td<>	1	1	1			1	1	1	i	1	tion limit.
baylubricant specificationlubricant specificationlubricant specificationNA<	Airlock/payload	-65	Hatch/latch actuator	275	275	Hatch latch actuator	NA	NA	360	NA	Hatch/latch
Tunnel adapterImit.Imit.Imit.Cant specifica- tion limit.Tunnel adapter-65Hatch actuator limit275275Latch actuator lubricant specifica- tion limit.NANANANAOverhead-150Actuator lubricant specification limit.350350Actuator lubricant specification limit.NANANANATison vindow access door mechanism.specification limit.115115Specification limit.NANANANAT door center- T door center100Specification limit115115Specification limit23Specification limit350350Specification limitT door center- T door latch- Tor canter100Specification limit115115Specification limit23Specification limit350350Specification limitT door latch- Torvard-100Specification limit115115Specification limit23Specification limit350350Specification limitT door latch- Torvard-100Specification limit115115Specification limit23Specification limit11imitT door latch- Torvard-100Specification limit115115Specification limit23Specification limit350350Specification limitT door latch- Torvard-100Specification limit115115115-23Specificati	bay	1	lubricant specification		1	lubricant specifica-	1		İ	i	actuator lubri-
Tunnel adapter-65Hatch actuator175275<	ł	1	limit.	ł	1	tion limit.	1	1	Ì	İ	cant specifica-
Tunnel adapter-65Hatch actuator275275Latch actuatorNA	1	1			1	1	Ì		l	i	tion limit.
Jubricant specificationIlubricant specifica- tion limitIlubricant specifica- tion limitIlubricant specifica- tion limitIlubricant specificationOverhead-150Actuator lubricant350350Actuator lubricantNANANANAemergency jet- tisso windowspecification limit.specification limit.specification limit.NANANANAaccess door mechanism.Specification limit115Specification limit23Specification350350SpecificationET door center- actuator-100Specification limit115115Specification limit23Specification350350SpecificationET door center- actuator-100Specification limit115115Specification limit23Specification350350SpecificationET door canter- actuator-100Specification limit115115Specification limit23Specification350350SpecificationPayload bay doors Mather Aft-50Imeraal contraction250250Itininit-167Specification330330SpecificationProvard Porvard-50Imeraal contraction250250Itinit-167Specification330330ItinitProvard Porvard-100Actuator specification11mit-16711mit330330ItinitProvard Porvard-100Actuator specificat	Tunnel adapter	-65	Hatch actuator	275	275	Latch actuator	NA	NA	NA	NA	NA
DoorslimitlimitlimitNANANANANAOverhead-150Actuator lubricant350350Actuator lubricantNANANANANAemergency jet-specification limit.specification limit.specification limit.NANANANANAemechanism.ET door drive-100Specification limit115Specification limit23Specification350350SpecificationET door drive-100Specification limit115115Specification limit23Specification350350SpecificationET door center100Specification limit115115Specification limit23Specification350350SpecificationET door latch100Specification limit115115Specification limit23Specification350350SpecificationET door latch100Specification limit115115Specification limit23Specification330330SpecificationPayload bay doorsImat-100Specification250250Actuator specifica167Specification330330ImitPorward-50Imat320250250157157-16711mit330330ImitDrive-65-65157157157-100330330330ImitP	I	1	lubricant specification		1	lubricant specifica-	1		Ì	i	i i
Doors Overhead-150Actuator lubricant specification limit.350350Actuator lubricant specification limit.NA<	1	1	limit	İ	1] tion limit.	1		ĺ	İ	i i
Overhead-150Actuator lubricant350350350Actuator lubricantNANANANANANANANAtison windowspecification limit.specification limit.specification limit.specification limit.specification limit.specification limit.specification limit.specification limit.specification limit23Specification350350SpecificationET door drive-100Specification limit115115Specification limit23Specification350350SpecificationET door center100Specification limit115115Specification limit23Specification350350SpecificationI atch actuator-100Specification limit115115Specification limit23Specification350350Specificationactuator-100Specification limit115115Specification limit23Specification350350Specificationactuator-100Specification limit115115Specification limit23Specification330330Specificationactuator-50Thermal contraction250250Iton limit-167Specification330330SpecificationDrive-65-57157-100330330130130330330130130Vent doors-100Specification limit330 </td <td>Doors</td> <td>1</td> <td>1</td> <td> </td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>İ</td> <td>İ</td> <td></td>	Doors	1	1		1	1	1	1	İ	İ	
emergency jet- tison window access door mechanism.specification limit.specification limit.specification limit.specification limit.BT door drive actuator-100Specification limit115115Specification limit23Specification350350SpecificationET door drive actuator-100Specification limit115115Specification limit23Specification350350SpecificationET door center- actuator-100Specification limit115115Specification limit23Specification350SpecificationET door latch- avaluator-100Specification limit115115Specification limit23Specification350SpecificationPayload bay doors mechanisms100Specification250250Actuator specifica- avaluator-167Specification330SpecificationAft Porward-50Thermal contraction avaluator250250Lion limit-16711mit330330limitDrive Potward-65157-100330330330330330limitPBD/Wing PBD/Wing-100Specification limit330330Specification limit-100330330330PBD/Wing PAD/Wing-100Specification limit330330Specification limit-100330330330Radiator Realisms-100Specification l	Overhead	-150	Actuator lubricant	350	350	Actuator lubricant	NA NA	NA	NA	NA	NA
tison window access door access door access door access door access door mechanism. ET door drive -100 Specification limit 115 115 Specification limit. -23 Specification 350 350 Specification ET door center- -100 Specification limit 115 115 Specification limit. -23 Specification 350 350 Specification ET door center- -100 Specification limit 115 115 Specification limit. -23 Specification 350 Specification ET door latch- -100 Specification limit 115 Specification limit. -23 Specification 350 Specification Payload bay doors Imit 11mit 11mit 11mit 11mit 11mit Payload bay doors Imit -50 Thermal contraction 250 250 Actuator specification 11mit 330 330 Imit Centerline -100 Actuator specification 157 157 -167 11mit 330 330 11mit	emergency jet-	1	specification limit.		1	specification limit.	1	1		Ì	1
access doormechanism100Specification limit115115Specification limit23Specification350350SpecificationET door center100Specification limit115115Specification limit23Specification350350SpecificationIatch actuator.Imit115115Specification limit23Specification350350SpecificationET door latch100Specification limit115115Specification limit23Specification350350SpecificationImit115115Specification limit23Specification350350Specification1Payload bay doorsImit115115Specification11111Payload bay doorsImit-50Thermal contraction250250Actuator specifica167Specification330330SpecificationAft-50Imit250250Icin limit-1671111111Drive-65157157-10033033033011 <td>tison window</td> <td>1</td> <td>1</td> <td>Ì</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>Ì</td> <td> </td>	tison window	1	1	Ì	1	1	1	1		Ì	
mechanism100Specification limit115115Specification limit23Specification350350SpecificationET door center100Specification limit115115Specification limit23Specification350350SpecificationET door center100Specification limit115115Specification limit23Specification350350SpecificationET door latch100Specification limit115115Specification limit23Specification350350Specificationer door latch100Specification limit115115Specification limit23Specification350350Specificationer door latch100Specification limit115115Specification limit23Specification350350Specificationarchanisms100Specification limit115115115Specification11mit30033011mitPorward-50Thermal contraction250250Actuator specification11mit33033011mitDrive-65157157-16711mit33033011mitPB/Wing-100Specification limit330330330330330PB/Wing-100Specification limit330330330330330Aft fuselage-100Specification limit330 <td>access door</td> <td></td> <td>1</td> <td></td> <td>ł</td> <td>1</td> <td>1</td> <td>1</td> <td> </td> <td>Ì</td> <td>1 . 1</td>	access door		1		ł	1	1	1		Ì	1 . 1
ET door drive-100Specification limit115115Specification limit23Specification350350SpecificationactuatorImitImitImitImitImitImitImitImitImitImitET door center100Specification limit115115Specification limit23Specification350350SpecificationIatch actuator.ImitImitImitImitImitImitImitImitBr door latch100Specification limitI15115Specification limit23Specification350Specificationdrive actuatorImitI15115Specification limit23Specification350SpecificationPayload bay doorsImmechaniss.ImitImitImitImitImitImitPayload bay doorsImmechaniss.Imit-50ImitImitImitForward-50Thermal contraction250250Itinit-167Imit330330Drive-65I57157-100340340ImitPoward fuselage-100Specification limit330330Specification limit-100Midfuselage-100Specification limit330330Specification limit-100Midfuselage-100Specification limit330330Specification limit-100Midfuselage-100Specif	mechanism.				1	1		ļ			1
actuatorImitImitImitImitET door center100Specification limit115115Specification limit23Specification350SpecificationI atch actuator100Specification limit115115Specification limit23Specification350350SpecificationET door latch100Specification limit115115Specification limit23Specification350350SpecificationPayload bay doorsImit115115Specification specification11mitImitImitImitmechanisms.Imit-50Thermal contraction250250Icauator specifica167Specification330330SpecificationAft-50Imit-100Actuator specification250250Imit-167Imit330330ImitDrive-65157157Imit-100340340340ImitImitVent doorsImit330330Specification limit-100330330ImitPB/Wing-100Specification limit330330Specification limit-100330330ImitMidfuselage-100Specification limit330330Specification limit-100330330ImitPB/Wing-100Specification limit330330Specification limit-100330330I	ET door drive	-100	Specification limit	115	115	Specification limit.	-23	Specification	350	350	Specification
htt door center- -100 Specification limit 115 115 Specification limit. -23 Specification 350 350 Specification ET door latch- -100 Specification limit 115 115 Specification limit. -23 Specification 350 Specification 11mit	actuator				1	1		limit			limit *
Latch actuator.ImitImitImitET door latch100Specification limit115115Specification limit23Specification350SpecificationPayload bay doorsImitImitImitImitImitImitImitPayload bay doorsImit115115Specification limit23Specification350SpecificationPayload bay doorsImitImitImitImitImitImitImitmechanisms.Forward-50Thermal contraction250250Actuator specifica167Specification330SpecificationAft-50Imit250250Iton limit-167Imit330330ImitCenterline-100Actuator specification157157-167330330ImitPorward fuselage-170Specification limit330330Specification limit-100330330ImitPBD/Wing-100Specification limit330330Specification limit-100330330ImitPBD/Wing-100Specification limit330330Specification limit-100330330ImitPBD/Wing-100Specification limit330330Specification limit-100330330ImitAft fuselage-100Specification limit330330Specification limit-100330330Spec	ET door center-	-100	Specification limit	115	115	Specification limit.	-23	Specification	350	350	Specification
LT door latch- -100 Specification limit 115 Specification limit. -23 Specification 350 Specification Payload bay doors Imit Imit Imit Imit Imit Imit Imit Payload bay doors Imit Imit Imit Imit Imit Imit Imit Imit Payload bay doors Imit -50 Thermal contraction 250 250 Actuator specification Imit 330 330 Specification Aft -50 Imit 250 250 Iton limit -167 Imit 330 330 Imit Imit Drive -65 ISPecification 250 250 Iton limit -167 Imit 330 330 Imit	latch actuator.				1	1		limit			limit
Arive actuator Imit Imit Imit Payload bay doors Imit Imit Imit mechanisms. -50 Thermal contraction 250 250 Actuator specifica- -167 Specification 330 Specification Aft -50 250 250 Itin limit -167 Imit 330 330 Imit Centerline -100 Actuator specification 250 250 itin limit -167 Imit 330 330 Imit Drive -65 157 157 -100 340 340 40 -167 Vent doors -100 Specification limit 330 330 Specification limit -100 330 330 -100 PBD/Wing -100 Specification limit 330 330 Specification limit -100 330 330 -100 Mifuselage -100 Specification limit 330 330 Specification limit -100 330 330 -100 Mechanism -100 Specification limit <td< td=""><td> ET door laten-</td><td> -100</td><td>Specification limit</td><td>115</td><td>115</td><td>Specification limit.</td><td>-23</td><td>Specification</td><td>350</td><td>350</td><td> Specification </td></td<>	ET door laten-	-100	Specification limit	115	115	Specification limit.	-23	Specification	350	350	Specification
Payload bay doorsThermal contraction250250Actuator specifica167Specification330330SpecificationAft-501250250tion limit-167limit330330limitCenterline-100Actuator specification250250-167330330limitDrive-65157157-100340340340Vent doors-65157157-100330330100PBD/Wing-100Specification limit330330Specification limit-100330330100PBD/Wing-100Specification limit330330Specification limit-100330330100Miffuselage-100Specification limit330330Specification limit-100330330100Miffuselage-100Specification limit330330Specification limit-100330330100Miffuselage-100Specification limit330330Specification limit-100330330330Mathematica330330Specification limit-100330330330100PBD/Wing-100Specification limit330330Specification limit-100330330100Mechanisms-100Specification250250Actuator specifica167Specification330330	drive actuator	ļ			1			limit			limit
mechanisms-50Thermal contraction250250Actuator specifica167Specification330330SpecificationAft-50 250250tion limit-167limit330330limitCenterline-100Actuator specification250250init-167limit330330limitDrive-65157157-100340340340340100Vent doors-170Specification limit330330Specification limit-100330330330PBD/Wing-100Specification limit330330Specification limit-100330330330Midfuselage-100Specification limit330330Specification limit-100330330330Aft fuselage-100Specification limit330330Specification limit-100330330330Midfuselage-100Specification limit330330Specification limit-100330330100Mechanisms-100Specification limit330330Specification limit-100330330100Radiator-100Actuator specification250250Actuator specification-167Specification330330100Rechanism.limit-100Specification11001100110011001100Rechanism. </td <td>Payload Day doors</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td> </td>	Payload Day doors	1									
Aft-50Internal contraction250250Actuator specificat-167Specification330330SpecificationAft-50100Actuator specification250250tion limit-167limit330330limitCenterline-100Actuator specification250250-1671imit330330limit1Drive-65157157-10034034034011Vent doors100Specification limit330330Specification limit-1703303301PBD/Wing-100Specification limit330330Specification limit-1003303301Midfuselage-100Specification limit330330Specification limit-1003303301Midfuselage-100Specification limit330330Specification limit-1003303301Midfuselage-100Specification limit330330Specification limit-1003303301Mechanisms-100Actuator specification250250Actuator specifica167Specification3303301Radiator-100Actuator specification250250Actuator specifica167Specification330330SpecificationRechanisms-100Actuator specification250250Actuator specifica	Eorward	50	((mhanna) santas stiss	250	1						1
Alt-5012502501101 limit-167limit330330limitCenterline-100Actuator specification250250-1673303303301Drive-65157157-1003403404040Vent doors-100Specification limit330330Specification limit-10033033040PBD/Wing-100Specification limit330330Specification limit-10033033040PBD/Wing-100Specification limit330330Specification limit-10033033040Midfuselage-100Specification limit330330Specification limit-10033033040Midfuselage-100Specification limit330330Specification limit-10033033040Midfuselage-100Specification limit330330Specification limit-10033033040Mechanisms-100Specification limit-100330330Specification330330SpecificationMechanisms-100Actuator specification250250Actuator specifica167Specification330330SpecificationRadiator-100Actuator specification250250Actuator specifica167Specification330330SpecificationMechanisms<	l set	-50	Inermal contraction	250	250	Actuator specifica-	-167	Specification	330	330	Specification
CenterTifie -100 Actuator specification 250 250 -167 330 330 330 Drive -65 157 157 -100 340 340 340 Vent doors -100 Specification limit 330 330 340 340 340 PBD/Wing -100 Specification limit 330 330 Specification limit -170 Midfuselage -100 Specification limit 330 330 Specification limit -100 330 330 Midfuselage -100 Specification limit 330 330 Specification limit -100 330 330 330 Aft fuselage -100 Specification limit 330 330 Specification limit -100 330 330 330 Mechanisms -100 Actuator specification 250 250 Actuator specification 330 330 330 330 Radiator -100 Actuator specification 250 250 Actuator specification 330 330 330 330 330	ALC	-50		250	250	tion limit	-167	limit	330	330	limit
Vent doors -100 340 340 340 Vent doors -100 Specification limit 330 330 340 340 Forward fuselage -170 Specification limit 330 330 Specification limit -170 PBD/Wing -100 Specification limit 330 330 Specification limit -100 330 330 Midfuselage -100 Specification limit 330 330 Specification limit -100 330 330 330 Aft fuselage -100 Specification limit 330 330 Specification limit -100 330 330 330 Mechanisms Image: Specification limit -100 Actuator specification 130 330 330 Specification Radiator -100 Actuator specification 250 250 Actuator specification 330 330 Specification Rechanisms. Imit Imit Imit Imit Imit Imit Imit Imit Elevon seal panel -140 Specification limit 750 <t< td=""><td></td><td>-100</td><td>Actuator specification</td><td>250</td><td>250</td><td></td><td>-167</td><td></td><td>330</td><td>330</td><td></td></t<>		-100	Actuator specification	250	250		-167		330	330	
Forward fuselage -170 Specification limit 330 330 330 330 Forward fuselage -100 Specification limit 330 330 Specification limit -170 Midfuselage -100 Specification limit 330 330 Specification limit -100 330 330 Aft fuselage -100 Specification limit 330 330 Specification limit -100 330 330 Aft fuselage -100 Specification limit 330 330 Specification limit -100 330 330 330 Mechanisms Imit -100 Actuator specification 11mit 11mit 11mit Elevon seal panel -140 Specification limit 750 Specification limit -140 Tengification 750 Tengification limit 750 Tengification limit 750 Tengification limit 750 Tengification limit 750 Tengification limit 750 Tengification limit 750 Tengification limit 750 Tengification limit 750 Tengification limit 750 Tengification limit	Vent doors	-05		121	1 1 2 1		-100		340	340	
PBD/Wing -100 Specification limit 330 <	Forward fuselage	l 1 _170	Coordification limit	220	1 220						
Midfuselage -100 Specification limit 330 30	DBD Wing	1 -100	Specification limit	330	000	Specification limit	-170		330	330	
Aft fuselage -100 Specification limit 330 30 30 330 30	Midfuselage		Specification limit	330	ן טככן	Specification limit	-100		330	330	
Mechanisms	Aft fuselage	-100	Specification limit	330	0220	Specification limit	-100		025	330	
Radiator -100 Actuator specification 250 250 Actuator specification -167 Specification 330 Specification mechanism. limit limit limit limit limit Elevon seal panel specification 100 100 100 attachment to -140 Specification Imit 100 100 100 100	Mechanisms	-100	Specification timit	220	יננ	specification limit	-100		330	330	
mechanism. mit tion limit 100 Specification 330 330 Specification Elevon seal panel attachment to -140 Specification limit -140 Specification 750 750 Specification	Radiator	-100	Actuator specification	250	250	Actuator crossifi	167				
Elevon seal panel	mechanism.		limit	250	250	tion limit	-10/	specification	330	330	Specification
attachment to -140 Specification limit 750 Specification limit -140 Specification 750	Elevon seal panel		laamat l	1				TTWIC			TIWIC
	attachment to	-140	Specification limit	750		Specification limit	-140	 Chaqifiqation	750	750	Curra de la contra de la
panel.	panel.		i i i i i i i i i i i i i i i i i i i	100		obecuttoriou limit	-140	specification	/50	/50	specification

TABLE 3.4.2.3-1.- HATCHES, DOORS, AND ASSOCIATED MECHANISMS TEMPERATURE LIMITS^a (Paragraph 3.4.2.3)

.•

^aSee table 3.4.5.1–1 for startracker door, air data probe deployment actuator, and yaw and brake panel temperature limits.

80

3.4.2.3-3

Hydraulic Subsystems CONSTRAINTS/LIMITATIONS

1. Temperature Limits.

- a. Hydraulic system temperatures (any/all) less than -40° F (as read in the Mission Control Center) except system 1 landing gear loop, and circulation pump body.
- b. Hydraulic system 1 landing gear loop.
 - (1) MLG actuators and wheel well lines temperature $< -35^{\circ}$ F.
 - (2) Mid-body lines temperature
 < -50° F.</pre>
 - (3) Nose landing gear actuators and lines temperature < -10° F.</p>
- c. Circulation pump body temperature
 (a measure of 1307 bulkhead
 temperature).
 (1) <-10° F</pre>

$(2) < 20^{\circ} F$

- d. Hydraulic system temperatures (any/all) greater than 275° F (as read in the MCC) except as indicated in table 3.4.2.4-1 and except wheel brakes and APU/ pump interface.
 - (1) Wheel brakes $> +325^{\circ}$ F.

(2) APU/pump interface > 300° F.

- 2. Pressures.
 - a. Maximum allowable supply line transient pressures -(1) General: 4050 psig.
 (2) Body flap: 4500 psig^a.
 - b. Maximum allowable return lines transient pressures are 1500 psig.

Exceed ΔP across filter module during main pump operation causing erratic BF and RSB brake action. Exceed start time allowable on circulation pump of 60 seconds. Degrade seals. For wheel brakes, fluid shall be replaced if temperature exceeds 275° F.

Exceeding these transients pressures^a will exceed Orbiter system design criteria.

^aThe specification transient pressure of 4050 psig is relaxed to 4500 psig for the body flap supply line.

81

RESULT IF EXCEEDED

Hydraulic system may not be recoverable with main-pump high-pressure operation.

Exceeding the lower temperature limits at entry interface will negate hydraulic system as primary system for gear deployment.

- 3.4.2.4
- Hydraulic Subsystems (Cont) CONSTRAINTS/LIMITATIONS
- 3. <u>Start-up and Shutdown Sequence</u>. <u>Set flight control electrical</u> controlling servoactuators to null prior to application of hydraulic pressure. Maintain electrical power on until pressure is reduced during APU shutdown interval.
- 4. <u>Fluid Volume</u>. Minimum reservoir fluid volume for servicing (assuming no oil charge in accumulators) is 1040 in³ (56 percent) at 70° F. (Bootstrap and SSME accumulator charge, 100 in³; compressibility, 95 in³; external leakage, 56 in³; intersystem leakage, 507 in³; thermal contraction, 282 in³). For lift-off, the minimum volume is reduced to 884 in³. (48 percent) at 70° F (reduction consists of accumulator oil charges, 61 in³; compliance, 95 in³).
- 5. <u>Bootstrap Accumulator Precharge</u>. The bootstrap accumulator must be precharged to 1650 to 1920 psia at 70° F.
- 6. <u>SSME Return Accumulator Precharge</u>. The SSME return accumulator must be precharged to 80 ± 5 psia at 70° F.
- 7. Minimum Reservoir Pressure On-Orbit. If accumulator gas leakage is apparent, the circulation pump or APU should be started before the reservoir pressure decays below 15 psia. In an emergency, circulation or hydraulic pumps may be started with inlet pressures between 15 and 0.0 psia. Pump shutdown should be initiated if discharge pressure does not increase within 60 seconds (circulation pump) or within 15 seconds (main pump).

Amendment 217 RESULTS IF EXCEEDED Without command, the servoactuators, with exception of the TVC, may move unpredictably and possibly cause damage to the vehicle or personnel. The TVC actuators will move at high velocity to mid-stroke (null). Insufficient reservoir volume lift-off can result in depletion of reservior and pump starvation when APU is started during orbital return operations.

Excessive precharge can prevent the circulation pump from maintaining reservoir bootstrap pressure due to accumulator piston being bottomed out. Inadequate pressure will necessitate continuous circulation pump operation. Improper precharge will allow pressure transients in excess of the SSME ICD limits (270 psig maximum). The pump may fail to operate due to cavitation.

3.4.2.4-2

Hydraulic Subsystems (Cont) CONSTRAINTS/LIMITATIONS NOTE

If the pressure is decaying due solely to oil leaking out of the bootstrap accumulator, the reservoir pressure will decay to a range of 41 to 48 psia (actual value depending on temperature and precharge pressure) at which time the pressure will abruptly drop to zero due to accumulator piston being bottomed out.

- 8. <u>Circulation Pump Operation On-</u> Orbit.
 - a. Hydraulic fluid temperature must not be allowed to decrease below -4° F as determined by any circulation pump temperature control sensor except for the following:
 - System 1 landing gear circuit and body flap lines.
 - (2) Rudder speed brake PDU indications for systems 1, 2 and 3.
 - (3) Body flap PDU indications for system 2 and 3.
 - b. Minimum operating temperature for circulation pump is +20° F. Any circulation pump start below +20° F should be reported and analyzed.
- 9. Isolation Valve Operation.
 - a. To operate landing gear isolation valves or TVC valves or TVC isolation valves when circulation pumps are off, allow 10 seconds for the circulation pump to come up to pressure (>180 psia) and then hold the isolation valve position switch in the desired position for 5 seconds. This allows positive latching of the isolation valve in the desired position.

RESULT IF EXCEEDED

Component and line temperatures could decrease below -10° F (lines and actuators).

Circulation pump starts at less than +20° F may affect the life of the pump.

The isolation valve may not latch in the desired position.

Hydraulic Subsystems (Cont) CONSTRAINTS/LIMITATIONS

- b. To operate the landing gear isolation valves or TVC isolation valves with main hydraulic pump operating, hold the isolation valve position switch in the desired position for 5 seconds. This allows positive latching of the isolation valve in the desired position.
- 10. Main Landing Gear Valves.
 - a. The landing gear retract/ circulation valve must be closed during any main pump high pressure operation.
 - b. The landing gear retract/ circulation valve, dump valve, redundant shut-off valve, and the extend (control) valve must not be energized for more than a total of 30 minutes accumulated "on" time in any 1-hour period of time, for non-flow conditions only.
- 11. Water Spray Boiler.
 - a. GN₂ tank pressure must be > 175 psia.
 - b. GN₂ regulator outlet pressure
 with the WSB GN₂ shutoff valve
 open:
 Minimum = 19.0 psig.
 Maximum = 33.5 psig.
 - c. Vent temperature must be
 > 127° F at APU start
 (sensor does not read
 below 122° F).

84

RESULT IF EXCEEDED The isolation valve may not latch in the desired position.

The landing gear strut actuators retract shuttle valve will be powered into the retract position and will prevent gear extension if it does not return to the extend position. Heat from solenoid may damage valve seals and solder.

Pressure regulator will not perform with inlet pressure < 175 psia. Water spray bar will not operate properly at pressures below 19 psig. Pressure above 33.5 psig will overpressurize the water feed section (if relief valve stays closed). Vent temperature above 127° F indicates a working vent heater. A failed off heater may allow ice formation.

Hydraulic Subsystems (Cont) CONSTRAINTS/LIMITATIONS NOTE

If the pressure is decaying due solely to oil leaking out of the bootstrap accumulator, the reservoir pressure will decay to 31 to 48 psia (depending on temperature and precharge pressure) at which time the pressure will abruptly drop to zero.

- 8. <u>Circulation Pump Operation On-</u> Orbit.
 - a. No more than one circulation pump may be on at any time on orbit.
 - b. Hydraulic fluid temperature must not be allowed to decrease below -4° F as determined by any circulation pump temperature control sensor except for the following:
 - System 1 landing gear circuit and body flap lines.
 - (2) Rudder speed brake PDU indications for systems 1, 2 and 3.
 - (3) Body flap PDU indications for system 2 and 3.
 - c. Minimum operating temperature for circulation pump is +20° F. Any circulation pump start below +20° F should be reported and analyzed.
- 9. Isolation Valve Operation.
 - a. To operate landing gear isolation valves or TVC valves or TVC isolation valves when circulation pumps are off, allow 10 seconds for the circulation pump to come up to pressure (>180 psia) and then hold the isolation valve position switch in the desired position for 5 seconds. This allows positive latching of the isolation valve in the desired position.

RESULT IF EXCEEDED

Electrical power usage will exceed design criteria, if more than one pump is operated at a time. Component and line

temperatures could decrease below -10° F (lines and actuators).

Circulation pump starts at less than +20° F may affect the life of the pump.

The isolation valve may not latch in the desired position.

85

Hydraulic Subsystems (Cont) CONSTRAINTS/LIMITATIONS

b. To operate the landing gear isolation valves or TVC isolation valves with main hydraulic pump operating, hold the isolation valve position switch in the desired position for 5 seconds. This allows positive latching of the isolation valve in the desired position.

10. Landing Gear Retract/Circulation Valve.

- a. The landing gear retract/ circulation valve must be closed during any main pump high pressure operation.
- b. The landing gear retract/ circulation valve must not be energized for more than a total of 30 minutes accumulated "on" time in any 1-hour period of time, for non-flow conditions only.
- 11. Water Spray Boiler.
 - a. GN₂ tank pressure must be > 175 psia.
 - b. GN₂ regulator outlet pressure with the WSB GN₂ shutoff valve open: Minimum = 19.0 psig. Maximum = 33.5 psig.
 - c. Vent temperature must be
 > 130° F at APU start.
 d Water temperature must b
 - d. Water temperature must be ≤ 125° F.
- 12. Orbiter/SSME Interface. Hydraulic fluid temperature must be ≤ 150° F at APU start during prelaunch, assuming a nominal 5 minutes to SSME start.

RESULT IF EXCEEDED The isolation valve may not latch in the desired position.

The landing gear strut actuators retract shuttle valve will be powered into the retract position and will prevent gear extension if it does not return to the extend position. Heat from solenoid may damage valve seals and solder.

Pressure regulator will not perform with inlet pressure < 175 psia. Water spray bar will not operate properly at pressures below 19 psig. Pressure above 33.5 psig will overpressurize the water feed section. Vent temperature < 130° F will allow ice formation. Temperatures > 125° F may cause excessive controller temperature. Output of RVDT could drift and adversely affect opening of the pre-burner valve.

Amendment 220

3.4.2.4

- Hydraulic Subsystems (Concluded) CONSTRAINTS/LIMITATIONS
- 12. Orbiter/SSME Interface.
 - a. Hydraulic fluid temperature must be ≤ 150° F at APU start during prelaunch, assuming a nominal 5 minutes to SSME start.
 - b. Hydraulic fluid temperature must be > 60° F at APU start during prelaunch assuming a nominal 5 minutes to SSME start.
 - c. Must maintain a minimum of 200 psid^a across SSME interface from start of circulation pump for warming flow to APU start during prelaunch.
- 13. Water Spray Boiler Vents Maximum Temperature Prior to Deorbit. Refer to paragraph 3.4.1.3.5d, Thermal Protection Subsystem.
- 14. <u>Circulation Pump Operation</u>. Prelaunch voltage supply to the circulation pump during startup must not exceed 30.5 Vdc.

RESULT IF EXCEEDED

Output of RVDT could drift and adversely affect opening of the pre-burner valve.

May result in damage to crankpins in the HAS valves during initial motion prior to launch.

Risk freezing of hydraulic fluid in HAS valve actuators if continuous flow is not maintained through prelaunch.

May exceed nominal time to achieve full operating pressure (slow start).

^aHydraulic pressure is allowed to drop below 250 psig/200 psid during major mode transition from OPS G9 to OPS G1 (approximately T-19 minutes). During prelaunch, the elevons drift from the null position. At OPS G1, the elevons are commanded to null. This elevon movement creates a momentary pressure drop that will not affect thermal conditioning.

87

				Flight	criteria	Non-flight criteria								
	Components	 Minimum Operating Temperature	Minimum Full Performance	 Critical	 Maximum Performance Operating	 Maximum Operating Temperature.	 Critical Item and	 Minimum Non-	Critical	Maxim opera Temper	m Non- ating rature,	Critical		
		°F	Temperature, °F	Results If	Temperature, °F	oF	Results If	Temperature,	Results If	Long Term	Short Term	Results If Exceeded		
	Main pumps	-40	+35	Viscosity	240	275	Seals	-65	Seal leakage	240	275	Seal/system		
	Electric- motor-dri-	+20	+35 ···	Excessive power	230	230	Electronics	-65	Seal leakage 	240	275 	Seal/system		
	Reservoir	–40 	0	Viscosity	275	275	 Seals 	-65	 Seal leakage 	275	275	Seal/system degradation		
3.4	Elevon actuators	-40	+35	Reduced load/rate	225	250	Seals 	-65	Seal leakage	225	250 	Seal/system degradation		
.2.4-	Body flap PDU	-40	+35 	Reduced load/rate	250	275	Seals	-65	Seal leakage 	225	275	Seal/system degradation 		
ப்	Rudder/ speedbrake	-40	+45	Reduced load/rate	250	255	Seals 	-65	Seal leakage 	225	255	Seal/system degradation		
	TVC	-50	 +60 	Reduced load/rate	230	250	 Seals 	-65	 Seal leakage 	225	250	Seal/system degradation		
	Bootstrap	-65	-50 I	Seal leakage	225	225	Seals	-65	Seal leakage	225	225	Seal/system		
	SSME Return line accu-	-65	65 	Viscosity	250 	250	Seals	-65	Seal leakage 	250 	250	Seal/system		
	Landing gear	-40	+35 	 Viscosity 	275	275	 Seals 	-65	 Seal leakage 	275	275	Seal/system degradation		
	tion valve Landing gear redundant	-40 	 +35 	 Viscosity 	275	275	 Seals 	-65	 Seal leakage 	 275 	275	 Seal/system degradation		

TABLE 3.4.2.4-1.- HYDRAULIC SUBSYSTEM COMPONENT INLET FLUID TEMPERATURE LIMITS (Paragraph 3.4.2.4)

٦

^aFor ground and ferry flight operations. ^bLong term is typically 36 to 72 hours.

1			Flight	criteria		Non-flight criteria ^a									
 Componen	 Minimum ts Operating Temperature.	Minimum Full Performance Operating	Critical	Maximum Performance Operating	 Maximum Operating Temperature.	 Critical Item and	 Minimum Non- operating	Critical	Maximu opera Tempe: 	um Non- ating rature, PF	Critical				
	°F	Temperature, °F	Results If	Temperature, °F	°F 	Results If Exceeded	Temperature, °F	Results If Exceeded	Long Term	Short Term	Results If Exceeded				
Landing g	ear -40	-40	Viscosity	275	275	Seals	65	Seal leakage	275	275	Seal/system				
dump var Landing ge selector	ear -40	+35	Viscosity	275	275	Seals	_65 	 Seal leakage 	 275 	275	degradation Seal/system degradation'				
المعادة المعاملة المعاملة المعادة المعادة	ear -40 n	0	Viscosity	275	275	Seals	–65 	 Seal leakage 	 275 	275	Seal/system degradation				
MPS/TVC	-40 n	+35	Viscosity	275	275	Seals	–65 	 Seal leakage 	 275 	275	Seal/system degradation				
Filter modules	40	+35 	Viscosity 	275	275	Seals	-65 	 Seal leakage 	 275 	275	Seal/system degradation				
Interface main eng: valves 	to +60 ine	+60	Transducer accuracy for control of SSME HAS	240	240 	 Transducer accuracy for control of SSME HAS values	-65 	 Seal leakage 	240 	240	Seal/system degradation				
NLG steering actuator	-10	-10	Viscosity	250	275	Seals	65 	 Seal leakage 	275 	275	Seal/system degradation				
MLG brake valve	65	+30	Seals/ Viscosity	250	275	Seals	-65 	Seal leakage	275 	275	Seal/system degradation				
Line to	-20	-20	Viscosity	250	275	Seals	-65	Seal leakage	275	275	Seal/system				
Line to		+50	Anti-skid	250	275	Seals	-65	Seal leakage	275	275	Seal/system degradation				
MLG Strut actuators	-35	-35	Viscosity	140	250	Seals	-65	Seal leakage	240	250	Seal/system degradation				

.

TABLE 3.4.2.4-1.- HYDRAULIC SUBSYSTEM COMPONENT INLET FLUID TEMPERATURE LIMITS (Continued) (Paragraph 3.4.2.4)

^aFor ground and ferry flight conditions. ^bLong term is typically 36 to 72 hours.

68

1	Flight criteria Non-flight criteria										
	Minimum	Minimum Full	l 1	 Maximum	Maximum		I 	1	Maxim oper	um Non- cating	
Components	Operating	Performance	Critical	Performance	Operating	Critical	Minimum Non-	Critical	Temper	ature,	Critical
1	Temperature,	Operating	Item and	Operating	Temperature,	Item and	operating	Item and	°1		Item and
1	°F	Temperature,	Results If	Temperature,	°F	Results If	Temperature,	Results If	Long	Short	Results If
!	1	°F	Exceeded	°F	1	Exceeded	°F	Exceeded	Term	Term	Exceeded
NLG Strut	-20	-20	Viscosity	160	250	Seals	-65	 Seal leakage	240	250	 Seal/system
actuators	l	1	i -	i i	Ì	i	i	i	İ		degradation
Landing gear	–35 	-35	Viscosity	275	275	Seals		Seal leak 	240	275	Seal/system
actuators	Ì	1	i	i	i	i	i	i	İ		-
Brakes	-20	-10	Viscosity	275	325	Seals	-65	Seal leak	275	325	Seal/system
Water spray boiler	1		1	1	1	1		1			degradation
Hyd fluid	i 0	NA NA	Viscosity	275	275	Seals	—65 	Seal leakage 	275	275	Seal/system
Water tank 	+32	+32 	H ₂ O freezes	125 	125	Controller over tempera- ture	32	H ₂ 0 freezes 	212 	212	H ₂ 0 Boils
Vents	+130	+130	Icing	NA	NA	INA	NA	NA	NA	NA	NA
Hyd Heat exchanger	0	+15 	Low outlet temperature	115 	115	ECLSS full performance constraint	-65	ECLSS flight	150 	150	ECLSS ground
APU/Pump interface	-40	+35	Viscosity	300	300	Seals	-65	Seal leakage	275	275	Seal/system
Lines to BF PDU	-40	+35 	c	275	275	Seals/leakage	-65	Seal leak	275	275	Seal/system
Lines to	-40	+75	c	275	275	Certification	-65	Certifica-	275	275	Certification
elevon	1	Ì	İ	l	İ	limit	i	tion limit	Ì		limit
Lines to	-40	+45	c	275	275	Certification	-65	Certifica-	275	275	Certification
speed brake	1	1	1	1			1				
Svstem 1	1	1	1	1	1		1	1			1
lines to	İ	Í	i	1	Ì	i					İ
landing	Í	1	ĺ	Ì	i	i	i				i
gear	1	1	1 .	I	Ì	1	Ì				1
Mid-body 	-50 	-50 	c	275 	275	Seals/leakage	- 65	Seal leak	275	275	Seal/system degradation
Nose	-10	-10	, c 	275	275	Seals/leakage	-65	Seal leak	275	275	Seal/system
MLG wheel	-35	-35	l c	275	275	Seals/leakage	-65	Seal leak	275	275	Seal/system
Umbilical	0	+35	Viscosity	250	250	Seals	-90	Seal leak	240	250	Seal/system
actuator		1 	1 		1	E					degradation

TABLE 3.4.2.4-1.- HYDRAULIC SUBSYSTEM COMPONENT INLET FLUID TEMPERATURE LIMITS (Paragraph 3.4.2.4) (Concluded)

^aFor ground and ferry flight conditions. ^bLong term is typically 36 to 72 hours. ^CInsufficient response due to high oil viscosity.

- Payload Deployment and Retrieval Subsystem CONSTRAINTS/LIMITATIONS
- 1. <u>Temperature Limits</u>. See table 3.4.2.5-1.
- 2. Maximum Allowable Attach Point Loads. Maximum loads are found in ICD 2-19001, Appendix I.
- Payload Alignment Guides. Payload/ PRLA loadings - Guide contact loads and latch contact loads are provided for in figure 4.2.5-15.
- 4. <u>Maximum Payload Release Limits</u>. a. Orbiter-to-payload rates:
 - (1) Attitude $-\pm 0.5$ deg.
 - (2) Linear tip-off motion less than 2 ft/sec.
 - (3) Angular tip-off rate ± 0.025 deg/sec.
 - b. Orbiter-attached manipulator subsystem-to-payload rates:
 - (1) Linear tip-off motion 0.1 ft/sec.
 - (2) Angular tip-off rate ± 0.015 deg/sec.
- 5. <u>Maximum Payload Dynamics Prior</u> to Retrieval.
 - a. Payload rotation about any axis is limited to ± 0.1 deg/sec.
 - b. Maximum allowable relative velocity of payload and Orbiter at capture is limited to 0.1 ft/sec.
- 6. OMS Burns/RCS Thruster Firings During RMS Operations.
 - a. Refer to table 3.4.2.5-2.
 - b. Keep the RMS away from the RCS plume zones during RCS firings. The regions (stayout zones) are defined in table 3.4.2.5-3.
- Payload Bay Door Restriction. The payload bay doors must be opened to an angle ≥ 85 deg for the payload retention mechanism to operate.

RESULT IF EXCEEDED

Exceeding these loads may result in destruction of a particular retention mechanism and cause subsequent payload damage.

Exceeding these limits may result in payload and/or retention mechanism damage. Exceeding these limits may result in payload instability after release.

Inability to retrieve payload because of possible inadvertent payload/Orbiter contact.

Excessive torque damage or break the RMS. Possible payload/Orbiter contact. Possible damage to the Kapton thermal insulation (temperature >750° F) and possible degraded RMS operation. Possible payload/payload bay door contact.

- Payload Deployment and Retrieval Subsystem (Cont) CONSTRAINTS/LIMITATIONS RESULT I
- 8. <u>RMS End-Effector Operation</u>. The RMS end-effector motor is limited to 120 seconds of continuous operation.
- 9. <u>Maximum Allowable Operating</u> <u>Temperature - LED and ABE</u>.
 - a. Continued operation of the RMS is limited to 15 minutes, if the LED temperature(s) reach 172° F or the ABE temperature(s) reach 144° F.
 - b. Remove all power to the RMS, if the LED temperatures reach 186° F or the ABE temperatures reach 157° F.
- Minimum Allowable Operating <u>Temperature - LED and ABE</u>. Upon receipt of low temperature warning (-4° F) for LED or ABE, heater power must be restored within 25 minutes^a.
- 11. Manipulator Positioning Mechanism (MPM). The MPM must be fully stowed for entry and landing. One of two shoulder indications plus one of four indications from the mid or aft pedestal is required to consider the MPM fully stowed.
- 12. Manipulator Retention Latches (MRL). Two (2) of three (3) MRL's must be latched for entry and landing.
- 13. Orbiter UHF-Band (Underbelly) Antenna Radiating in the Airto-Ground Simplex Mode Only.* The UHF (225 to 400 MHz) system emits a maximum field intensity of 22 V/m at 1 meter. The RMS sensitivity is 13 V/m at this frequency range. The RMS should not be driven closer than 2 meters from the radiating antenna.

^aBased on STS-3 data. *NASA Data Source. RESULT IF EXCEEDED Possible burn out of end effector motor.

Possible overheating, degraded performance or loss of RMS electronics.

The lower survival temperature (ABE -58° F; LED -42° F) of components would be exceeded.

Possible damage to Orbiter structure and/or RMS during entry and landing.

Possible damage to Orbiter structure and/or RMS during entry or landing.

RMS performance degradation and failure indications:

a. Pitch tachometer.

b. Arm-based electronics.

c. End-effector power
 supply.
RMS remoding required.

	 Minimum Operating	 Critical Item	Ma Ope Temp 	erating erature, F	 Critical Item	 Minimum Non-	 Critical Item	Maxim opera Tempe	num Non- ting rature, F	Critical Item	
Components	Temperature, °F 	and Results If Exceeded	Long Term	 Short Term	and Results	operating Temperature, °F	and Results	Long	 Short	and Results	
Remote manipulator subsystem 	0 ^a -20 ^b	LED - May reach survival limit		+250	TBS	-120	TBS	 	 	 	
Manipulator positioning mechanism	-100 	Lubrication limit - may result in latch malfunction	+240	+240	Specification limit-motor - may result in latch	 -120 	Specification limit	+240	+240	Structural	
Payload retention mechanism			 	1		 		<u> </u> !] 	
Keel (AKA)	-100	Lubrication limit - may result in latch	350	350	Test limit - may result in latch malfunction	-200	 Test limit - may result in latch malfunction	350	 NA 	 Test limit 、 	
Longeron (PLRA)	-100	malfunction	275 	275		-200		275	NA	Test limit	
Manipulator retention latch mechanism	-100	Rubber boot hardens 	+240 	+240 	Test limit	-120	Test limit	+240 	+240 	Test limit	

TABLE 3.4.2.5-1.- PAYLOAD DEPLOYMENT AND RETRIEVAL SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.2.5)

(a) Displayed temperature.(b) Allowing for maximum undetected errors.

••

93

3.4.2.5-3

Arm condition	VRCS	PRCS ^a	OMS
Singularity or reach limit zoneArm loadedArm unloadedUnloaded at restLoaded at rest $W \leq 32k$ lb $W \geq 32k$ lbLoaded in motionUnloaded in motionTest modeCapture or release processArm in process of being latch or unlatchedArm within 2 feet of OrbiterArm within 2 feet of Orbiter	None None None None None None None None None	Inhibit Inhibit b Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit	Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit

TABLE 3.4.2.5-2- RMS/RCS/OMS OPERATIONAL CONSTRAINTS. (Paragraph 3.4.2.5)

Notes

^aDuring RMS flight test objectives, the primary RCS may not be fired until 25 seconds after an RMS input has been removed (or 25 seconds after in-progress light is off). RMS flight test objectives may commence or proceed 20 seconds after primary RCS firing.

^bSingle-axis minimum rate (80 millisec) primary RCS firing with interval between firings of sufficient time (3 min) to achieve steady-state condition are permitted.

94 3.4.2.5-4

TABLE 3.4.2.5-3.- RCS PLUME STAY-OUT ZONES FOR RMS(Paragraph 3.4.2.5)

(a) Primary RCS Stay-Out Zones

 Firing rate 											ŝ	Stay-	-01	ıt	zone	sa							
Continuous	X	= '	0,	R	=	200	X	=	425,	R	=	150	X	#	500,	R	=	100	X	=	600,	R	=0
6 sec	X	=	0,	R	=	200	X	=	200,	R	=	100	X	=	340,	R	=	0					
80 msec	X	= (0,	R	=	40	X	=	130,	R	=	40	X	=	160,	R	=	30	X	=	180,	R	=0

(b) Vernier RCS Stay-Out Zones

 Firing rate 		Stay-out zones ^a							
Continuous	X = 0, R =	= 18 X = 50, R =	18 $X = 70, R = 10$	X = 80, R = 0					
80 msec	X = 0, R =	= 5 X = 30, R =	0						

^a X = Distance in inches from thruster in direction of thruster plume. R = Lateral distance in inches from center of thruster.

- 3.4.2.6
- Operational Seat Subsystem CONSTRAINTS/LIMITATIONS
 - 1. <u>Seat Adjustments During Ascent</u> To SSME Shutdown.
 - a. With an ac bus failure, do not operate seat motors while switching alternate loads (cabin fan, H₂0 pump, and bay fan).
 - b. With an ac bus failure, continuous seat adjustments of all 4 seat motors over a 2-minute period may affect the SSME controller.

A SSME controller may switch to channel B in control.

A SSME controller may switch to channel B in control.

Atmospheric Flight Control Mechanisms CONSTRAINTS/LIMITATIONS

Temperature Limits. See table 3.4.2.7-1.

 Components 	 Minimum Operating Temperature, °F	 Critical Item and Results If Exceeded	Max: Opera Temper Long	imum ating rature, F Short	 Critical Item and Results If Exceeded	 Minimum Non- operating Temperature, °F	 Critical Item and Results If Exceeded	Maximu opera Temper Long	Im Non- ating rature, Short	Critical Item and Results If Exceeded
	 		Term 	Term		 		Term	Term 	
Rudder/speed-		1	1	1	1	1	1	1	1	1 1
brake actuation subsystem		1	1				1	1	1	
Rudder/speed- brake PDU	-40	Seal leakage	275	NA	 Seals 	-65	 Seal leakage 	275	NA	Seal/system degradation
Rudder/speed- brake actuators and shafts	-100	Design value	275	NA 	Material strength	-100	 Design value 	275	NA.	Material strength
Body flap actua- tion subsystem		1				 				
PDU	-40	Seal leakage	275	NA	 Seals	 -65	 Seal leakage 	275	NA	Seal/system
Actuators and shafts	-84	Design value	275	NA	Material strength	-84	 Design value 	275	NA	Material strength

TABLE 3.4.2.7-1.- ATMOSPHERIC FLIGHT CONTROL MECHANISMS TEMPERATURE LIMITS (Paragraph 3.4.2.7)

97

Space Shuttle Pyrotechnics CONSTRAINTS/LIMITATIONS

RESULT IF EXCEEDED

No constraints have been identified for this subsystem.

3.4.2.8-1

RESULT IF EXCEEDED

Engine controller will

inhibit a start if the

temperature is > 186.5

a start if LO, engine

inlet temperature is < -289.2 deg F at T-31 seconds.

Engine controller will

inhibit a start.

LO₂ preburner discharge

deg R. GLS will inhibit

3.4.3 Propulsion Subsystems

- 3.4.3.1
 - Main Propulsion Subsystem (MPS). CONSTRAINTS/LIMITATIONS
 - 1. <u>MPS Temperature Limits</u>. See table 3.4.3.1-1.
 - 2. Engine Propellant Pressure and Temperature Limits.
 - a. LO₂. After drainback, the LO₂ engine inlet temperature and pressure must be 170 to 178 deg R and 103 to 111 psia at engine start, respectively (excluding instrumentation error).
 - b. LH₂. The LH₂ engine inlet temperature must be 37 to 40 deg R and 43 to 47 psia at engine start, respectively (excluding instrumentation error).
 - c. Mainstage operation. See figure 4.3.1-7.
 - d. The earliest time that the LH₂ ullage pressure switch can be opened for a 100-percent power level mission is after T+292 seconds with no venting; for a 104-percent power level mission, use T+370 seconds. See figure 3.4.3.1-1.
 - 3. <u>Minimum Operating Net Positive</u> Suction Pressure.
 - a. Nominal operating conditions for fuel.
- Possible pump cavitation and overspeed. Engine shutdown could result. H₂ venting is unacceptable during first stage (below 150,000 ft) operations. Fire hazard, if vent valve fails to reseat.

Low NPSP can cause overspeed conditions and uncontained engine damage. Figure 4.3.1-8.

- b. Predictions for two FCV's failed closed at lift-off.
 - (1) LH₂ NPSP vs. time
 - (a) 100 percent mission
 - (b) 104 percent mission(c) 109 percent mission
 - (2) LH, NPSP vs. SSME HEFT
 - discharge temperature
- Figure 3.4.3.1-2 Figure 3.4.3.1-3 Figure 3.4.3.1-4 Figure 3.4.3.1-5

Amendment 221

3.4.3.1

Main Propusion Subsystem (Cont) CONSTRAINTS/LIMITATIONS

- c. Minimum operating conditions for 0_{2}
 - (1) NPSP requirements vs.
 power level
 - (2) Low level cutoff no stuck throttle
- 4. Engine Shutdown for Lockups An SSME in hydraulic or electrical lockup when coupled with low vehicle performance resulting in low level cutoff may be manually shut down to prevent a violation of the engine LO₂

NPSP requirements near MECO. For low level cutoff with stuck throttle at higher power level:

- a. Three engine operational manually shut down one stuck throttle engine, if approaching low level cutoff.
- b. Two engines operational do not shut down stuck throttle engine, to maintain engine redundancy.
- 5. Engine Positioning After Shutdown. Prior to entry, the upper engine must be at the null position in pitch and yaw and the lower engines positioned parallel to the Orbiter centerline in yaw and up 10° from null in pitch.
- 6. Propellant System Dump.
 - a. For normal mission and AOA/ATO aborts, the propellant must be dumped from the main engines and Orbiter-MPS lines.
 - (1) LO₂ is dumped through the engines and LH₂ must be dumped through the fill/ drain and recirculation/ replenish systems.

RESULT IF EXCEEDED

Figure 4.3.1-7

Table 3.4.3.1-2

Low NPSP can cause HPOT overspeed conditions and uncontained engine damage. Single SSME zero-g shutdown violates NPSP requirement with longer duration.

Minimizes aeroheating on the engine nozzles during entry.

Safes Orbiter for postlanding operations; reduces Orbiter mass for on-orbit operations. Overspinning of the HPOTP will occur, if LH₂ is dumped through the engine.

- 3.4.3.1
- Main Propulsion Subsystem (Cont) CONSTRAINTS/LIMITATIONS
 - (2) Prior to dump, the LH₂ RTLS dump valves are opened to vent the LH₂ feed manifold.
 - During ET/Orbiter separation, Note: the GH₂ pressurization line is vented/vacuum inerted via the pressurization line disconnect. Flight data indicate that the vent time is approximately 2 ± 0.3 seconds. Analysis of the pressure decay data indicate that the 0.006-1b GH, remaining at the end of MECO can all be vented during normal separation of the ET/Orbiter with less than 0.0003-1b GH₂ remaining. Seé figure 3.4.3.1-6.
 - b. For RTLS abort, LH₂ must be dumped through the RTLS valve and fill and drain valves after ET separation. LO₂ must be vented through the engines and fill and drain valves.
 - c. The minimum time between engine shutdown and the start of propellant dumping is 20 sec.
 - d. The dump start is constrained to begin during an OMS or RCS settling burn.
 - e. The maximum time from the engine cutoff signal to completion of propellant dumping is 5 minutes.
- 7. Propellant System Inerting. The LO₂ and LH₂ propellant systems must be inerted by exposing system interiors to space vacuum (through the fill and drain valves). then pressurized with helium prior to atmospheric entry.

RESULTS IF EXCEEDED Loss of redundancy to protect against overpressurization of LH₂ feedline.

Unacceptable quantities of propellants may remain on board resulting in vehicle damage and unacceptable c.g. control.

Inadequate time for engines to complete shutdown sequence. Inefficient dump due to unsettled propellant.

Failure to limits consumables required to provide hydraulic power to the engines. Manual extension of dump time will reduce consumable margins. Unpredictable venting of propellants on-orbit (after completion of propellant system inerting); and system eliminates LH₂ relief during atmospheric entry.

3.4.3.1-3

RESULTS IF EXCEEDED

Main Propulsion Subsystem (Cont) CONSTRAINTS/LIMITATIONS	*
8. Helium Tank Pressure/Temperature	
Limits. The following pressure/	
temperature limits must not be	
exceeded:	
a. Pressure at T-13 seconds.	
(helium fill termination) -	
(1) 4500 psia maximum.	
(2) 4000 psia minimum.	
<pre>b. Helium tank wall temperature (prior to purge sequence 4, approximately T-4 minutes). (1) Aft tanks -5 to +65 °F</pre>	
(2) Midbody tanks	
40 to 135 °F	
9. <u>SSME Power Level</u> ^a . The SSME's car	l
only be commanded by Orbitor CNSC	

- 9. <u>SSME Power Level</u>. The SSME's can only be commanded by Orbiter GN&C to power levels within the range of 65 percent (min) to 109 percent (max) of rated power level.
- 10. <u>SSME Power Level-Sea Level</u>. At altitudes below 8,700 feet, the minimum commanded thrust level is constrained by data shown in figure 3.4.3.1-7.
- 11. <u>Ac Power Loss</u>. Ac power must not fall below 100 Vrms for longer than 500 msec.

Overpressurization of system components. Insufficient mass of helium stored in the MPS helium tank to complete the mission.

Temperature may be lower than -80 °F/390 °R prior to MECO (RTLS extended burn), if the minimum temperatures are less than -5 °F/455 °R aft and 45 °F/505 °R mid. The SSME's are not designed for capability below 65 percent or above 109 percent. The controller will not respond to commands outside this range. High nozzle side loads can result in nozzle damage from separated flow.

Ac power loss exceeding 500 msec will cause channel switchover or engine shutdown.

^aShuttle MPS performance has not been verified beyond a power level of 104 percent. Data in this section pertaining to performance above the 104 percent level is for information only and should not be used for mission planning under normal or intact abort modes. In the event of a contingency abort, flight rules allow manual selection of a maximum power level which may exceed 104 percent. The maximum level allowed by the Avionics is not the same for each flight, but is dependent upon payload mass and other mission requirements.

3.4.3.1-4

3.4.3.1

- Main Propulsion Subsystem (Cont) CONSTRAINTS/LIMITATIONS
 - 12. Application of SSME Hydraulic Pressure Prior to Entry. SSME controller power must be on, or 700-psia helium pressure must be applied prior to to application of hydraulic pressure to SSME. During flight, if above conditions have not been met, helium shall be applied prior to 100,000 ft altitude during entry.
 - 13. <u>Hydraulic Supply to SSME</u>. The pressure of the hydraulic fluid supplied to each SSME shall be 2700 to 3500 psig.
 - 14. ET Separation with Open Disconnect Valves. If after ET/Orbiter after ET/Orbiter umbilical retraction, neither the closed indication for the 17-in. LO₂ disconnect valve nor the closed indication for the LH₂ 17-in. disconnect valve are received, ET/Orbiter separation must be delayed for 6 minutes.

In the nominal/AOA/ATO flight modes per the flight rules, the crew will allow a 6-minute lapse of time following the inhibit to allow the thrust level at the disconnect to decay below 1800 lb (see figures 3.4.3.1-2 and 3.4.3.1-3), and then issue the separation command manually. However, if an underspeed condition exists at MECO which requires an OMS burn prior to the end of the time lapse, ET separation will be commanded at not later than OMS TIG minus 1 minute 30 seconds. or sooner if required.

3.4.3.1-5

RESULT IF EXCEEDED Inadvertent engine valve cycling can result in overspinning engine flowmeter or propellant system contamination.

Improper functioning of engine valves if minimum pressure is not maintained, and component damage if maximum limit is exceeded. Excessive thrust from fail-open disconnect valves in ET can result in potential re-contact with the Orbiter. Figures 3.4.3.1-8 and 3.4.3.1-9. 3.4.3.1 Main Propulsion Subsystem (Cont) CONSTRAINTS/LIMITATION

I

14. ET Separation with Open (Concluded) <u>Disconnect Valves</u>. In the RTLS flight mode, the inhibit will be automatically overridden after 6 seconds have elapsed.

> In the TAL flight mode, the inhibit will be manually overridden as soon as practicable. A manual -Z translation maneuver is required to prevent Orbiter/ ET recontact.

- 15. Engine 1 Gimballing Restriction. The angulation restraint requirement defined by the expression pitch + yaw ≤ 13.7° and pitch <-5°, wherein pitch and yaw are individually limited to not exceed 10.5° pitch and/or 8.5° yaw. This expression is applicable only to the up-pitch half of the gimbal pattern.
- 16. Controller Power Up Restriction. The main engine controller must not be powered up on-orbit, if a controller failure existed during ascent.
- 17. Engine Controller Temperature. The controller power supply temperatures (E41T1150A, E41T2150A, and E41T3150A) must not exceed 175 °F. Power should be removed when ground-monitored temperatures reach 150 °F to provide a margin for uncertainties.

RESULT IF EXCEEDED

Contact with OMS pod could cause tile/nozzle damage.

Controller memory and therefore failure isolation would be lost.

Overheating of electrical system components could occur.

3.4.3.1-6

- 3.4.3.1
- Main Propulsion Subsystem (Cont) CONSTRAINTS/LIMITATIONS
 - 18. <u>Structural Interference Between</u>^a <u>SSME's, SSME and Body Flap, and</u> <u>SSME and OMS Engines</u>.
 - a. SSME to SSME collision. Table 3.4.1.3-3 shows the combinations of engine gimbal angles that result in contact between SSME nozzles.
 - b. Lower-SSME to body-flap collision. Figure 3.4.3.1-10 shows the combinations of body flap deflections and SSME pitch angles that result in contact between the body flap and SSME nozzle.
 - c. Upper SSME to OMS engine collision. Table 3.4.1.3-4 shows the combinations of gimbal angles of the upper SSME and OMS engines that result in contact between the nozzles of SSME 1 and the OMS engines.

RESULT IF EXCEEDED

SSME nozzles could be damaged.

Damage to the body flap and SSME nozzle.

SSME and OMS engine nozzles could be damaged.

^aThe analytical method and equations used to determine the potential collision between SSME's, SSME 2 and 3 and the body flaps; and between SSME 1 and the OMS engine nozzles can be found in Shuttle Operational Data Submittals R-414 and R-415, which may be obtained by contacting J. Mistrot/VF2/483-3314.

3.4.3.1-7

	1			Max	imum		!	1	Maxim	un Non-	1	Ī
	1	 Minimum		Oper Temper	ature.	1	l 1 Minimum		oper Tempe	ating rature		1
	İ	Operating	i	1	°F	i	Nonoperating	1		°F		i
1	Components 	Temperature, °F 	Critical Item or Results If Exceeded	Long Term	Short Term	Critical Item or Results If Exceeded	Temperature, °F	Critical Item or Results If Exceeded	Long Term	 Short Term	Critical Item or Results If Exceeded	
	Engine		1	1	1		1	1		<u> </u>		í
	Nozzle	-435	Nozzle material	NA	NA	NA	NA	NA	1200	NA	Material	ł
	 Hydraulic fluid supply	60 	Hydraulic fluid viscosity	 185 	 240 ^a 	 Seals 	40	 Hydraulic fluid viscosity	NA 	NA.	NA	
	 Orbiter	1		1	1	1		1	1			i
	Prevalves	-435 .	Material	170	NA	Seals	NA	NA	200	NA	Seals	i
	 Recirculation pumps	 -435 	 Material !	NA	150 ^b	 Bearing limit 	NA	NA	200	NA	 Specification limits	
	Liquid level	ı 	1 	 								İ
	LO2 LH2	-363 -435	Ice formation Ice formation	500 360	NA NA	Lead wire Lead wire	NA NA	NA NA	500 360	NA NA	Lead wire	1
									1	1		j
	point sensor	-435	1 1	200	NA	Sensor	NA	Sensor	200	NA	Sensor	1
I	Cryogeni c lin≇s	-363/-435	LO ₂ /LH ₂ temperature	200 ^e	NA	LO ₂ /LH ₂ temperature	NA	NA	200	NA	LO ₂ /LH ₂ temperature	i
	Helium tan ks	-160	 Operating requirements 	200	NA	 Tank pressure limit	-160	 Operating require- ments	200	 NA 	Tank pressure	
	Controll er ^d	65	 Electrical components 	85 ⁰	NA	 Electrical components	NA	NA NA	NA	 NA	NA	1
	GN ₂ supply	100	Pre-firing purging	165	NA	Materials	NA	NA NA	NA	NA	NA	Ì
	MPS pressure lines	-100	LO ₂ temperature 	NA	600	Material integrity	-65	Temperature at altitude	200	NA.	Material integrity	
	ET umbilical	-100	 LO ₂ temperature 	NA	500	 Seal surfaces 	 -65	Temperature at altitude	 200 	NA 	Seal surfaces	

TABLE 3.4.3.1-1.- MAIN PROPULSION SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.3.1)

a After APU shutdown, 240° F may occur during post-rollout circulation pump operation. Five (5) minutes limit without LH2. CLocated in ET tanks. External to components. 105° F with propellants supplied to engine.

106

3.4.3.1-8

Amendment 221

MECO conditions	Nominal (65/65/65) ^a	RTLS (65/0/65) ^a	Press-to-MECO (91/0/91) ^a		
MECO NPSP required, psi	6.0	6.0	7.34		
Minimum MECO NPSP provided, psi	6.14 ^b	7.23	7.34 ^b		
Residual required at MOV closure above Orbiter/SSME interface, lb	240	700	700		
Minimum residual at MOV closure above Orbiter/SSME interface, lb	313	2135	1261		

TABLE 3.4.3.1-2.- MPS LO2 LOW LEVEL CUTOFF(Paragraph 3.4.3.1)

^aSSME shutdown power levels. ^bAny stuck throttle at higher power level will violate NPSP requirement.

107
TABLE 3.4.3.1-3.- COMBINATIONS OF GIMBAL ANGLES FOR SSME 1 AND 2 THAT RESULT IN ZERO CLEARANCE BETWEEN NOZZLES (JUST TOUCHING) (Paragraph 3.4.3.1)

	Combination	s of gimbal an	ngles that rea	sult in	
Case	SSME	1	SSME	2	
 	Pitch (δ _{p1}), degrees	Yaw (δ _{y1}), degrees	Pitch (δ _{p2}), degrees	Yaw (δ _{y2}), degrees	
1	10.5 ^a	0	-10.5 ^a	2.95	
2	10.5 ^a	0	 _7.52	0	
3	10.5 ^a	0	-1.95	-8.5 ^a	
4	10.5 ^a	8.5 ^a	0.69	-8.5 ^a	
5	10.5 ^a	8.5 ^a	0	-5.40	
6	10.5 ^a	8.5 ^a	-1.96	0	
7	10.5 ^a	8.5 ^a	-7.47	8.5 ^a	
8	10.5 ^a	-8.5 ^a	-10.5 ^a	-5.53	
9	10.5 ^a	-8.5 ^a	-7.50	-8.5 ^a	
10	0	8.5 ^a	-10.5 ^a	-5.40	
11	0	8.5 ^a	-9.81	-8.5 ^a	
12	10.5 ^a	-2.94	-10.5 ^a	0	
13	7.52	0	-10.5 ^a	0	
14	1.96	8.5 ^a	-10.5 ^a	0	
15	-0.69	8.5 ^a	-10.5 ^a	-8.5 ^a	
16	0	5.38	-10.5 ^a	-8.5 ^a	
17	1.95	0	-10.5 ^a	-8.5 ^a	
18	7.50	-8.5 ^a	-10.5 ^a	-8.5 ^a	
19	10.5 ^a	5.48	-10.5 ^a	8.5 ^a	
20	7.47	8.5 ^a	-10.5 ^a	8.5 ^a	
21	10.5 ^a	5.38	Q Q	-8.5 ^a	
22	9.81	8.5 ^a	0	-8.5 ^a	

^aCorresponds to thrust vector controller actuator hard stop.

3.4.3.1-10

TABLE 3.4.3.1-3.- COMBINATIONS OF GIMBAL ANGLES FOR SSME 1 AND 3 THAT RESULT IN ZERO CLEARANCE BETWEEN NOZZLES (JUST TOUCHING) (continued) (Paragraph 3.4.3.1)

1

,

Combinations of gimbal angles that result in										
Case	SSME	1	SSME	3						
	Pitch (δ_{p1}) ,	Yaw $(\delta_{v1}),$	Pitch (δ_{p3}) ,	Yaw (δ_{v3}) ,						
 	degree5	degrēes	degrees	degreéš						
1	10.5 ^a	0	-10.5 ^a	-2.95						
2	10.5 ^a	0	-7.52	0						
3	10.5 ^a	0	-1.95	8.5 ^a						
4	10.5 ^a	-8.5 ^a	0.69	8.5 ^a						
5	10.5 ^a	-8.5 ^a	0	5.40						
6	10.5 ^a	-8.5 ^a	-1.96	0						
7	10.5 ^a	-8.5 ^a	-7.47	-8.5 ^a						
8	10.5 ^a	8.5 ^a	-10.5 ^a	5.53						
9	10.5 ^a	8.5 ^a	-7.50	8.5 ^a						
10	0	-8.5 ^a	-10.5 ^a	5.40						
11	0	-8.5 ^a	-9.81	8.5 ^a						
12	10.5 ^a	2.94	-10.5 ^a	0						
13	7.52	0	-10.5 ^a	0						
14	1.96	-8.5 ^a	-10.5 ^a	0						
15	-0.69	-8.5 ^a	-10.5 ^a	8.5 ^a						
16	0	-5.38	-10.5 ^a	8.5 ^a						
17	1.95	0	-10.5 ^a	8.5 ^a						
18	7.50	8.5 ^a	-10.5 ^a	8.5 ^a						
19	10.5 ^a	-5.48	-10.5 ^a	-8.5 ^a						
20	7.47	-8.5 ^a	-10.5 ^a	-8.5 ^a						
21	10.5 ^a	-5.38	0	8.5 ^a						
22	9.81	-8.5 ^a	0	8.5 ^a						

^aCorresponds to thrust vector controller actuator hard stop.

3.4.3.1-11

TABLE 3.4.3.1-3.- COMBINATIONS OF GIMBAL ANGLES FOR SSME 2 AND 3 THAT RESULT IN ZERO CLEARANCE BETWEEN NOZZLES (JUST TOUCHING) (concluded) (Paragraph 3.4.3.1)

	Combinations of gimbal angles that result in zero clearance between nozzles									
Case	SSME	2	SSME 3							
 	 Pitch (δ ₂), degrees	Yaw (ô _{y2}), degrees	Pitch (δ _{p3}), degrees ^{p3}	Yaw (δ _{y3}), degrees						
1 ^b	0	-5.69	0	5.69						
2 ^b	0	-8.5	0	2.89						
3 ^b	0	-2.89	0	8.5 ^a						
4	-9.45	-8.5 ^a	9.45	8.5 ^a						
5	9.45	-8.5 ^a	-9.45	8.5 ^a						
6	-10.5 ^a	-8.5 ^a	8.39	8.5 ^a						
7	-10.5 ^a	-8.5 ^a	0	4.52						
8	10.5 ^a	-8.5 ^a	-8.43	8.5 ^a						
9	10.5 ^a	-8.5 ^a	0	4.49						
10	8.39	-8.5 ^a	-10.5 ^a	8.5 ^a						
11	0	-4.52	-10.5 ^a	8.5 ^a						
12	-8.43	-8.5 ^a	10.5 ^a	8.5 ^a						
13	0	-4.49	10.5 ^a	8.5 ^a						

^aCorresponds to thrust vector controller actuator hard stop. ^bZero clearance exists for given yaw angles δ_{y2} and δ_{y3} for all cases where the pitch angles δ_{p2} and δ_{p3} are equal.

TABLE 3.4.3.1-4.- CLEARANCES BETWEEN NOZZLES OF SSME 1 AND OMS ENGINES (Paragraph 3.4.3.1)

Case 3 - SSME 1 Pitch: $\delta_{p} = -5.6$ degrees Yaw: $\delta_{y}^{p} = 8.5$ degrees

	 	Left OMS pitch angle (δ_{pL}) , degrees							
	\ \δ _{pL} -7° \		-4°	-2°	0°	2°	 4° 	7°	
	δ _{yL} 0°	6.10	5.56	5.26					
Left OMS vaw	_2°	4.46	3.89	3.56	3.28	 			
angle (δ _{yL}), degrees	4°	2.86	2.25	 1.90	1.60	 1.36 	1.15	0.94	
	 -6° 	1.29	0.64	 0.27 	/ / / -0.05 / / /	//// -0.32 ////	/ / / -0.54 / / /	/ / / -0.78 / / /	
	-8°	/ / / -0.24 / / /	//// -0.93 ////	//// -1.32 ////	/ / / -1.66 / / /	/ / / -1.95 / / /	//// -2.27 ////	//// -2.45 ////	

Note:

Diagonally lined blocks correspond to regions of collision between nozzles of OMS and SSME 1.

Clearances between the nozzle of the SSME 1 and the right OMS can be determined from the table by changing the signs of the yaw gimbal angles for SSME 1 and the OMS engine and replacing left OMS with right OMS.

Clearances between the OMS and SSME 1 nozzle are shown in inches.

TABLE 3.4.3.1-4.- CLEARANCES BETWEEN NOZZLES OF SSME 1 AND OMS ENGINES (continued) (Paragraph 3.4.3.1)

Case 4 - SSME 1 Pitch:
$$\delta = -4.5$$
 degrees
Yaw: $\delta_y^p = 8.5$ degrees

	 	Left OMS pitch angle (δ_{pL}), degrees								
	\ \ δ _{pL} -7°		_4°	_2°	0°	 2° 	 4° 	 7° 		
.t.,	δ _{yL} 0°	6.73	6.09	5.72	 	 				
Left OMS yaw angle (δ _{yL}), degrees	_2°	5.11	4.43	4.03	3.69			 		
	_4°	3.51	2.80	2.38	2.01	1.70	1.43	1.11		
	-6°	1.96	1.20	0.76	0.38	0.04	/ / / -0.25 / / /	/ / / -0.59 / / /		
	-8°	0.43	//// -0.35 ////	/ / / -0.81 / / /	/ / / -1.22 / / /	//// -1.58 ////	/ / / -1.89 / / /	//// -2.25 ////		

Note:

Diagonally lined blocks correspond to regions of collision between nozzles of OMS and SSME 1.

Clearances for the right OMS nozzle can be obtained by changing the signs of the yaw gimbal angles for SSME 1 and the OMS engine.

Clearances between the OMS and SSME 1 are shown in inches.

TABLE 3.4.3.1-4.- CLEARANCES BETWEEN NOZZLES OF SSME 1 AND OMS ENGINES (concluded). (Paragraph 3.4.3.1)

Case 5 - SSME 1 Pitch: $\delta_p = 0$ degrees Yaw: $\delta_y^p = 8.5$ degrees

	 	Left OMS pitch angle (δ_{pL}), degrees								
	\ - \ - i - \ \	δ _{pL} -7°	_4°	-2°	0°	2°	4°	7°		
	δ _{yL}									
_	0°	10.3	9.30	8.67						
Left OMS yaw	_2°	8.75	7.68	7.03	6.42					
angle (δ _{yL}), degrees	 _4° 	7.21	6.11	5.43	4.80	4.22	3.68			
	 -6°	5.70	4.57	3.87	3.22	2.61	2.06	1.32		
	-8°	4.24	3.07	2.34	1.55	1.05	0.48	//// -0.28 ////		

Note:

Diagonally lined block corresponds to region of collision between nozzles of OMS and SSME 1.

Clearances for the right OMS nozzle can be obtained by changing the signs of the yaw gimbal angles for SSME 1 and the OMS engine.

Clearance shown between OMS and SSME 1 engine nozzles is given in inches.

Figure 3.4.3.1-1.- GH_2 ullage pressure switch opening time vs. start of GH_2 venting. (2 GH_2 FCV's closed at lift-off)

Amendment 213

3.4.3.1-17

Figure 3.4.3.1–3.– NPSP prediction for LH_2 tank with two FCV's failed closed. (STS 51–G)

117

30

(Paragraph 3.4.3.1)

Figure 3.4.3.1–5.– SSME HPFT discharge temperature versus liquid hydrogen NPSP.

Figure 3.4.3.1-6.- LH_2 pressurization line venting time.

(Paragraph 3.4.3.1)

3.4.3.1-21

3.4.3.1-22

3.4.3.1-23

121

Amendment 221 O

3.4.3.1-24

122

Amendment 221

- 3.4.3.2
- Reaction Control Subsystems CONSTRAINTS/LIMITATIONS
- 1. <u>Temperature Limits</u>. See table 3.4.3.2-1.
- 2. <u>Helium Tank Pressure Temperature</u> Limits. See figure 4.3.2-15.
- 3. ARCS Propellant Landing Loads. No more than 1473 lb of oxidizer and 920 lb of fuel (99 percent of tank design load).
- 4. <u>RCS Thruster Firing During RMS</u> <u>Operations</u>. See table 3.4.2.5-2.
- Launch Constraints. ARCS propellant bulk temperatures at lift-off must be 74° F or above.
- 6. Manifold Repressurization.
 - a. If both the fuel and oxidizer manifold pressures are >130 psia, there is no constraint to repressurizing directly from the tank volume using the manifold isolation valve.
 - b. If either one of the fuel or oxidizer manifold pressures is < 130 psia (liquid in line) and the other is > 130 psia, there is no constraint to repressurizing directly from the tank volume using the manifold isolation valve.
 - c. If both the fuel and oxidizer manifold pressure are < 130 psia (liquid in lines), repressurization must be done using stage repressurization procedure.

RESULT IF EXCEEDED

Possible tank structural damage.

Analysis reflects that the bending moment due to landing with 99 percent tank load will not result in negative margins of safety on the midfuselage skin. Excessive torque could damage or break manipulator arm.

Possible thruster damage during entry.

Engine valve bounce.

Engine valve bounce.

Engine valve bounce.

^aThe specification total landing weight and c.g. constraints (reference SODB Volume II, section 3.0) on the Orbiter still apply. If the maximum allowable specification weight for landing is exceeded due to 99 percent full ARCS tanks, the additional weight must be taken out of the payload.

Amendment 216

d. Evacuated manifolds should be repressurized using a read/write procedure to allow separate oxidizer and fuel pressurization. If read/write procedure is not possible, repressurize directly from the tank using the manifold isolation valve (one manifold at a time). However, repressurization of evacuated manifolds is not allowed unless required for crew/vehicle safety. Surge pressures exceed design limit.

2		4		2		2	
ാ	٠	4	٠	J	٠	4	

Reaction Control Subsystems (Cont) CONSTRAINTS/LIMITATIONS

a. Crossfeed/interconnect valve

7. Crossfeed/Interconnect.

- RESULT IF EXCEEDED
- sequences should not connect propellant tank supplies except for the following cases with the limitations shown: OMS-to-RCS contingency inter-(1) connect -(a) OMS 0-to-50 psid higher Possible failure of tank pressure than RCS is bulkhead or ingestion of allowed, zero-g operagas into propellant distion only. tribution system. (b) RCS pressure higher is Excessive propellant not recommended. transfer from RCS to OMS. (2) RCS-to-RCS contingency cross- Possible failure of tank feed in ascent or entry. bulkhead or ingestion of (a) Acceptable up to 55 psid gas into propellant distank ΔP at anytime, with tribution system. g level < 1.5 and temperatures > 46° F. (b) Acceptable up to 80-psid tank ΔP in ascent or low-g entry, if required for mission success. b. Simultaneous shutdown to a no-flow Excessive surge condition during crossfeed/ pressures. interconnect is limited to 5 thrusters. 8. Thruster Steady-State Firings. a. Nominal case Specification limit. Primary - 150 sec maximum Vernier - 125 sec maximum b. Single mission contingency case Possible structural (Primary thrusters only) damage due to over ARCS (+) X 800 sec maximum heating. FRCS (-) X 300 sec maximum c. Pre-MECO Aborts. Maximum expected burn (Primary thruster only) time. All ARCS - 550 sec. maximum 9. Thruster Duty Cycles. No more than 1000 'ON' commands on Possible overheating of a vernier in 1 hour. pressure transducer. 10. Thruster Minimum Inlet Pressure. a. No primary/vernier thruster Specification limit operation below 185-psia tank possible unsafe thruster pressure. operation. b. Vernier thruster operation shall be terminated whenever the fuel tank pressure is 20 psid greater

than the oxidizer tank pressure.

Amendment 220

3.4.3.2

Reaction Control Subsystems (Cont) CONSTRAINTS/LIMITATIONS

- 11. Safe Operation of Primary Thrusters. a. Aft RCS:
 - 1. Minimum altitude:
 - (a) Yaw thrusters to 70k ft. From 70k ft to 45k ft with minimum propellant temperature of 70° F^a and a >4-second burn time on dormant manifolds prior to 70k ft. If required, to prevent mission impact, temperature limit may be reduced to 67° F with low risk of engine valve damage.
 - (b) All other ARCS thrusters 165k ft.
 - (c) Aborts to 70k ft for continuous burns only. No pulsing.
 - (d) RTLS and TAL post-MECO ARCS propellant dump constraint.
 - Minimum 'on' time 0.08 second Possible thruster damage. 2. above 125k ft and 0.320
 - second below 125k ft.
 - b. FRCS:
 - 1. Minimum altitude:
 - Ascent and abort 165k ft. effects. (a)
 - On-orbit and entry (b) 400k ft.
 - Minimum 'on' time 0.08 second. Possible thruster damage. 2.
 - A minimum altitude constraint Firing of thrusters with 3. of 125,000 feet is applicable titanium oxidizer splitto the following thruster(s) ters are susceptible to firing(s) regardless of pro-ZOTs. pellant temperatures.

POSITION	S/N
F1L	112
F3L	111
F1D	104
F2D	106
F2R	114
F2U	110
F3U	108
F1F	102

^aInstrumentation error included.

^bFiring below 125,000 ft is not currently certified.

RESULT IF EXCEEDED

Possible thruster damage. Valve leakage may not be detectable immediately, or during ground checkout. Valve leakage may occur during next mission when thrusters fired.

See paragraph 3.4.1.4-5

Adverse aerodynamic

Reaction Control Subsystems (Cont) 3.4.3.2 **CONSTRAINTS/LIMITATIONS** 12. Thruster Leak Management. a. Primary Thrusters 1. A primary thruster deselected by RM for a propellant leak may be reselected once the oxidizer and fuel injector temperatures warm up to > 65° F. 2. For the prelaunch loss of an injector temperature, the thruster shall be put into last priority and not reselected unless needed to effect a safe end-of-mission. This provision is limited to one thruster per flight. b. Vernier Thrusters 1. A vernier thruster deselected by RM for a propellant leak may be reselected once the oxidizer and fuel injector temperatures have been greater than 130° F for 3 hours. 2. For the prelaunch loss of a single injector temperature. a thruster can still be used for nominal orbital operations. This provision is limited to one thruster per flight. 13. Thruster Injector Heaters. a. Primary thruster heaters are considered lost if both the oxidizer and fuel injector temperatures exhibit a gradual cool down to $< 50^{\circ}$ F. b. Vernier thrusters: 1. Injector heater operational (a) During vernier operation, the minimum allowable temperature is 130° F. (b) If the thruster has not fired for 1.5 hours, the minimum temperature limit can be reduced from 130° F to 90° F if: (1) Injector temperature decrease is less than 15° F/hr (between 130° F and 90° F)

RESULT IF EXCEEDED

Possible unstable thruster operation.

Possible unstable thruster operation.

Possible propellant leak.

Possible unsafe thruster operation.

Amendment 216

*

3.4.3.2	Reaction Control Subsystem (Cont)				
	CONSTRAINTS/LIMITATIONS	RESULT IF EXCEEDED			
	13. Thrusters Injector Heaters.	a.			
	b. Vernier thrusters: (Cont)				
	(2) Chamber pressure				
	must be zero				
	(3) Thrusters first				
	firing should be				
	at least 10 seconds				
	in duration				
	2. Injector heater failed off				
	(a) Minimum injector tem-	Possible unsafe thruster			
	perature limit can be	operation.			
	reduced from 130° F to				
	90° F 1f;				
	(1) Injector temperature				
	decrease is less than				
	2° F/min (between				
	130° F and 90° F)				
	(2) Chamber pressure must				
	De Zero (2) Thrustons finst fining				
	(5) findsters first firing				
	10 seconds in duration				
	14. Propellant Tank Performance				
	a. Maximum number of primary	Possible man ingestion			
	thrusters firing per tank set	into propellant			
	(1) Normal mission/AOA/ATO	distribution system			
	mated coast/ET separation.	distribution system.			
	on orbit				
	FRCS - Five thrusters				
	ARCS - Four thrusters				
	(2) RTLS. TAL mated coast				
	FRCS - Six thrusters				
	ARCS - Seven thrusters				
	(3) RTLS, TAL ET Separation				
	FRCS - Five thrusters				
	ARSC - Seven thrusters				
	(4) Nominal mission entry				
	ARCS - (PVT gaging >				
	14 percent)				
	Six thrusters for dump burn				
	FRCS - (PVT gaging ≥				
	0 percent)				
	Four thrusters				
	FRCS - Not used				

.

129

•

Amendment 220

3.4.3.2 Reaction Control Subsystems (Cont) CONSTRAINT/LIMITATIONS RESULT IF EXCEEDED 14. Propellant Tank Performance. (Cont) (5) RTLS, TAL, post ET SEP dump burns/entry ARCS - (PVT gaging > 63.5 percent) Seven thrusters ARCS - (PVT gaging > 14 percent) Six thrusters ARCS - (PVT gaging > 0 percent) Four thrusters FRCS - Not used b. System Operation Procedures. (1) No pre-MECO firings. (2) FRCS off-load to 60 percent of tank design load (52 percent PVT) [See table 3.4.3.2-2 and paragraph 3.4.3.2-14d(1)] (3) No translation maneuvering in RCS crossfeed that exceeds firing four ARCS primary thrusters. (4) FRCS and ARCS burn durations are unlimited. c. Aft RCS tank failure management. Possible gas ingestion (1) Normal mission, RTLS, and into propellant TAL-abort ET separation distribution system. must be performed in crossfeed from a good RCS tank, if the pre-MECO failure resulted in the Orbiter PVT gaging quantity < 75 percent. (2) On-orbit primary thruster operations must be performed in crossfeed from a good RCS tank or interconnect from OMS after the OMS-1 burn, if pre-MECO failure resulted in Orbiter PVT gaging quantity < 75 percent. Constraint does not apply to vernier operation or high g (g ≥ 0.05) entry. NOTE Any loss of propellant prior to MECO will decrease the entry expulsion efficiency 11 percent.

3.4.3.2-6

- 3.4.3.2
- Reaction Control Subsystems (Concluded) CONSTRAINTS/LIMITATIONS
 - d. FRCS tank failure management
 (1) Normal mission, RTLS, and
 TAL abort ET separation
 must be performed using
 ARCS only, if the Pre-MECO
 failure or propellant usage
 resulted in the Orbiter PVT
 gaging quantity < 52 percent.^a
- 15. <u>Helium Isolation Valves</u>. Parallel helium isolation valves A and B should not be opened simultaneously.
- 16. Dc Isolation Valves.
 - a. High-pressure helium isolation valve switches must be in GPC position within 1 hour after indication of electrical failure that can power both the open and closed coils.

RESULT IF EXCEEDED Possible gas ingestion into propellant distribution system.

May cause burst disk damage.

When valves are closed and valve control switch is closed, single-point electrical failures can result in continuous power being applied to open and close coils causing close coil to short (high current) with possible additional electrical circuit damage. Will require valve replacement.

^aDoes not protect abort mated coast - ET separtion capability following pre-MECO single main engine roll control usage. TBD lb (TBD percent PVT) additional propellant must be loaded for single engine roll control allocation. For STS-26, 328 lb additional propellant was loaded; this quantity must be loaded for subsequent flights (above 52 percent) until the correct quantity is determined.

TABLE 3.4.3.2-1.- REACTION CONTROL SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.3.2)

	Duri	ing flight temperature 1	imits		Grou	perature limit	its	
Components	Minimum Tempera- ture, °F	Critical Item and Results If Exceeded	Maximum Temperature, °F	Critical Item and Results If Exceeded	Minimum Temperature, °F	Critical Item and Results If Exceeded	Maximum Temperature, °F	Critical Item and Results If Exceeded
Helium lines and components	20 ^a	Propellant freeze	150	Maximum certification temperature	-23	Minimum certifica- tion temperature	150	Maximum certifica- tion temperature
Helium storage bottle	-160	Minimum certification temperature	125/150 ^b	Design limit	-160	Minimum operating blowdown tempera- ture	200	Maximum certifica- tion temperature
Propellant tank (bulk) ARCS	50/70 ^C	Minimum tank certification temperature/zots prevention	100 ^d	Tank expulsion efficiency certification	20	Oxidizer freeze	150	Maximum certifica- tion temperature
Propellant tank (bulk) FRCS	40	Minimum certification temperature	100 ^d	Maximum operating temperature	20	Oxidizer freeze	150	Maximum certifica- tion temperature
Propellant tank (skin)	40	Minimum thruster operating temperature	100 ⁸	Maximum certification temperature	20	Oxidizer freeze	150	Maximum certifica- tion temperature
Propellant distribution system	40/70 ^C	Minimum thruster operating tempera- ture/zots prevention	100/150 ^f	Maximum thruster operating tem- perature	20	Oxidizer freeze	150	Maximum certifica- tion temperature
Thruster, primary mount- ing flange	N/A	N/A	400 ⁹ 500 ^h	Maximum certifi- cation tempera- ture	N/A	N/A	400 ⁹ 500 ^h	Maximum certifica- tion temperature
Nozzle (columbian)	N/A	N/A	2400	Operating limit	N/A	N/A	2400	Maximum specifica- tion temperature
Injector	+20(FU) +30(OX)	Leak detection temperature limit	800 ¹	Operating limit	15 ^j	Oxidizer freeze	800	Maximum specifica- tion temperature
Control valve	50 ^k	Leak prevention	150 ¹	Maximum certification temperature-seal life	50 ^k	Leak prevention	2301	Maximum certifica- tion temperature

^aMinimum temperature of helium flow media; -30° F normal operation, -140° F RTLS, minimum flow media through relef valve - 180° F. ^bPVT ≤ 85%, 150° F with propellant; PVT> 85%, 125° F with propellant. ^cAFT RCS for entry. See section 3.4.3.2-11a. ^dOn-orbit; 85° F for ascent and aborts; 150° F fuel, 125° F oxidizer after last use on entry through safing. ^{e150°} F localized region permissible. ^f150° F - 5 second transient.

 $g_{Mounting flange temperature for \pm Z and \pm Y ARCS thrusters.$

Mounting flange temperature for ±2 and ±1 ARCS thrusters. Mounting flange temperature for ±X and forward RCS thrusters. 1800° F injector face maximum temperature; 250° F maximum leak detection temperature instrument range.

JAllows for AT between injector and control valve.

40° F minimum certification temperature.

See table L.

132

Amendment 219

TA	BLE 3.	4.3.2-1	REACTION	CONTROL	SUBSYSTEM	COMPONENT	TEMPERATURE	LIMITS	(Concluded)
					(Paragraph	3.4.3.2			

	During flight	temperature lim	its	Ground/ferry flight temperature limits					
Components	Minimum Temperature, °F	Critical Item and Results If Exceeded	Maximum Temperature, °F	Critical Item and Results If Exceeded	Minimum Temperature, °F	Critical Item and Results If Exceeded	Maximum Temperature, °F	Critical Item and Results If Exceeded	
Thruster, vernier mounting flange	N/A	N/A	400	Maximum certification temperature	N/A	N/A	400	Maximum certification temperature	
Nozzle (Columbium)	N/A	N/A	2200	Operating limit	N/A	N/A	2400	Maximum specification temperature	
Injector	130	Leak detection temperature limit	800 ⁱ	Operating limit	15 ^j	Oxidizer freeze	800	Maximum specification temperature	
	90 ^m	Orbit minimum cold start							
Control valve and feedlines in AFT com- partment	40	Minimum certification temperature	200 ⁿ	Maximum certi- fication temperature - seal life	20	Oxidizer freeze	250 ^m	Maximum certification temperature	
Test port couplings and lines (helium)	-65	Minimum certi- fication tem- perature	150	Maximum certi- fication temperature	-65	Minimum certi- fication tem- perature	150	Maximum certification temperature	
Test port couplings and lines (prop)	-30 (FU) +20 (OX)	Propellant freeze	150	Maximum certi- fication tem- perature	-30 (FU) +20 (OX)	Propellant freeze	150	Maximum certification temperature	

ⁱ800° F injector face maximum temperature; 250° F maximum leak detection temperature instrument range. ^jAllows for ΔT between injector for control valve. ^mSee section 3.4.3.2.13b. ⁿSee table N.

3.4.3.2-9

.

Mission phase	Note	Temperature,	ΔP across	Time duration	Thruster		
	(See Delow)	~F	valve, psid	per mission	usage		
Prelaunch	d	40 to 100	50 to 320	Unlimited	Non-operating		
Flight (nominal)	e	50 to 150 ^C	175 to 264	Mission duration	duration Operating		
	f	150 to 230 max	175 to 300	1 hour	Non-operating		
light (failure mode 1) ^a	g	40 to 150	175 to 350	1 hour/100 mission	Operating		
light (failure mode 2) ^b	h	40 to 150	175 to 320	6 hours	Non-operating		
light (Failure mode 3) ^C	i	30 (min)	175 to 320	12 hours/100 mission	Non-operating		
	j	230 (maximum)	175 to 320	12 hours/100 mission	Non-operating		
Post Flight	k	230 (maximum)	50 to 320	1 hour	Non-operating		

Failure mode 1: Pressurization system failure

Failure mode 2: Manifold or tank isolation valves closed

^CFailure mode 3: Heater failure

Notes:

3.4. 134

3.2-10

d Pre-launch operations with or without propellant in line (also includes ferry flight)

eNominal flight operations

Entry and descent to landing after last use

^gCn-orbit operations with pressurization system failure

On-orbit operations with manifold or tank isolation valve closed

On-orbit operations with thruster heater failure

 $_{v}^{J}$ Entry and descent to landing after on-orbit thruster heater failure

Post landing operations

¹May increase to 175° F for mission duration (operating) once per 100 missions

		.	······	T	1	
Mission phase	Note (See below)	Temperature °F	ΔP across valve (psid)	Time duration (per mission)	Thruster usage	
Prelaunch	đ	20 to 100	50 to 320	Unlimited	Non-operating	
Flight (nominal)	e	130 to 200	175 to 264	Mission duration	Operating	
	f	200 to 250 max	175 to 300	1 hour	Non-operating	
Flight (failure mode 1) ^a	g	40 to 250	175 to 350	1 hour/100 missions	Operating	
Flight (failure mode 2) ^b	h	40 to 195	175 to 320	6 hours	Non-operating	
Flight (failure mode 3) ^C	i	30 minimum	175 to 320	12 hours/100 missions	Non-operating	
	j	250 maximum	175 to 320	12 hours/100 missions	Non-operating	
Post flight	k	250 maximum	50 to 320	1 hour	Non-operating	

NOTE N: RCS VERNIER THRUSTER CONTROL VALVE TEMPERATURES

Failure mode 1: Pressurization system failure

Failure mode 2: Manifold or tank isolation valves closed

^CFailure mode 3: Heater failure

"Notes:

^dPrelaunch operations with or without propellant in line (also includes ferry flight)

Nominal flight operations

^rEntry and descent to landing

On-orbit operations with pressurization system failure

¹¹On-orbit operations with manifold or tank isolation valve closed

¹On-orbit operationswith thruster heater failure

^JEntry and descent to landing after on-orbit thruster heater failure

Post landing operations

¹May increase to 250° F for 2 hours (operating) per mission. Orbit minimum cold start is 90° F; see section 3.4.3.2.13b

	Percent of full load											
Parameters	60 ^b (52 percent PVT)			70 ^b (63 percent PVT)			80 ^b			90 ^b		
Fluids/pressurant	Oxidizer, lb	Fuel, lb	Helium, psig	Oxidizer, lb	Fuel, lb	Helium, psig	Oxidizer, lb	Fuel, lb	Helium, psig	Oxidizer,	Fuel, 1b	Helium,
Tank, including residuals (PVT)	935.7	591.7	525	1082.1	684.0	450	1228.7	776.4	375	1375.8	869.1	300
Tank, not including residuals	908.5	572.0	525	1055.2	664.3	450	1202.1	757.2	375	1350.4	850.4	300

TABLE 3.4.3.2-2.- REACTION CONTROL SUBSYSTEM CALCULATED LOADING DATA - (FRCS PARTIAL LOAD)^a (Paragraph 3.4.3.2)

Notes: ^a1. The values shown include PVT, PV, totalizer, and residual inaccuracies.

2. Use linear interpolation if load is between the values shown.

3. Loads are based on PV check. Equalization pressure is approximately 185 psig when starting from helium pressure values shown.

4. Load values do not include the propellants in the manifolds, (38 lb for oxidizer manifold and 21 lb for fuel manifold)

5. Load propellants using GSE totalizer.

6. Verify propellant load with PV check

- (A) If difference is less than 30 1b oxidizer and 20 1b fuel, use PV load
- (B) If difference is less than 55 lb oxidizer, 40 lb fuel, rerun PV check
- If the two PV checks are within 30 1b oxidizer and 20 1b fuel, use minimum PV load
- (C) If difference is greater than 55 lb oxidizer and 40 lb fuel, adjust load to be within "6A" requirements. Rerun PV check and use PV load.
- Target load values (1b) assure a minimum of specified percent partial design loads

^CDry or horizontal drain to gas break prior to loading.

]	NOTE N: RCS VE	RNIER THRUSTER C	ONTROL VALVE TEM	PERATURES		
Mission phase Note (See below)		Temperature °F	ΔP across valve (psid)	Time duration (per mission)	Thruster usage	
Prelaunch	đ	20 to 100	50 to 320	Unlimited	Non-operating	
Flight (nominal)	e	130 to 200	175 to 264	Mission duration	Operating	
	f	200 to 250 max	175 to 300	1 hour	Non-operating	
Flight (failure mode 1) ^a	a	40 to 250	175 to 350	1 hour/100 missions	Operating	
Flight (failure mode 2) ^b	h	40 to 195	175 to 320	6 hours	Non-operating	
Flight (failure mode 3) ^C	i	30 minimum	175 to 320	12 hours/100 missions	Non-operating	
	j	250 maximum	175 to 320	12 hours/100 missions	Non-operating	
Post flight	k	250 maximum	50 to 320	1 hour	Non-operating	

^aFailure mode 1: Pressurization system failure Failure mode 2: Manifold or tank isolation valves closed

^CFailure mode 3: Heater failure

Notes:

⁴Prelaunch operations with or without propellant in line (also includes ferry flight)

e Nominal flight operations

Entry and descent to landing

^gOn-orbit operations with pressurization system failure

On-orbit operations with manifold or tank isolation valve closed

On-orbit operationswith thruster heater failure

Entry and descent to landing after on-orbit thruster heater failure

Post landing operations

¹May increase to 250° F for 2 hours (operating) per mission. Orbit minimum cold start is 90° F; see section 3.4.3.2.13b

		Percent of full load											
Parameters	60 ^b		70 ^b		80 ^b			90 ^b					
Fluids/pressurant	Oxidizer,	Fuel,	Helium,	Oxidizer,	Fuel,	Helium,	Oxidizer,	Fuel,	Helium,	Oxidizer,	Fuel,	Helium,	
	1b	lb	psig	lb	lb	psig	lb	1b	psig	lb	lb	psig	
Tank, including residuals (PVT)	935.7	591.7	525	1082.1	684.0	450	1228.7	776.4	375	1375.8	869.1	300	
Tank, not including residuals ^C	908.5	572.0	525	1055.2	664.3	450	1202.1	757.2	375	1350.4	850.4	300	

TABLE 3.4.3.2-2.- REACTION CONTROL SUBSYSTEM CALCULATED LOADING DATA - (FRCS PARTIAL LOAD)^a (Paragraph 3.4.3.2)

3.4.3.2-12

138

Notes: ^a1. The values shown include PVT, PV and totalizer inaccuracies.

2. Use linear interpolation if load is between the values shown.

3. Loads are based on PV check. Equalization pressure is approximately 185 psig when starting from helium pressure values shown.

4. Load values do not include the propellants in the manifolds, (38 lb for oxidizer manifold and 21 lb for fuel manifold)

5. Load propellants using GSE totalizer.

6. Verify propellant load with PV check

- (A) If difference is less than 30 lb oxidizer and 20 lb fuel, use PV load
- (B) If difference is less than 55 lb oxidizer, 40 lb fuel, rerun PV check If the two PV checks are within 30 lb oxidizer and 20 lb fuel, use minimum PV load
- (C) If difference is greater than 55 lb oxidizer and 40 lb fuel, adjust load to be within "6A" requirements. Rerun PV check and use PV load.

^bTarget load values (lb) assure a minimum of specified percent partial design loads

Dry or horizontal drain to gas break prior to loading.

- Orbital Maneuvering Subsystem . CONSTRAINTS/LIMITATIONS
- 1. Orbital Maneuvering Subsystem <u>Temperature Limits</u>. See table 3.4.3.3-1.
- 2. OMS Helium Tank Fill Envelope. See figure 4.3.3-11.
- 3. Maximum Positive Longitudinal Acceleration for Safe Engine Start and Operation. The maximum positive longitudinal acceleration for safe engine start and operation is 3.0g.
- 4. <u>Minimum Altitude for Safe</u> <u>Operation</u>. The minimum altitude for safe engine operation is 70,000 ft.
- 5. Engine ON/OFF Time Limitations.
 - a. With normal shutdown purge:
 1. The minimum engine off-time between firings is 240 sec for normal operation and 30 sec for launch abort operation (after a minimum 15-second burn).
 - 2. Engine firings of < 2 sec are prohibited. If an engine shuts off < 2 sec after starting, it must not be restarted for at least 30 minutes.
 - b. Without shutdown purge:
 - For a burn duration of at least 10 seconds, the engine must not be restarted for at least 10 minutes.
 - For a burn duration of less than 10 seconds, the engine must not be restarted until all residual propellant has dissipated.
 - c. After propellant depletion, the engine must not be restarted.

RESULT IF EXCEEDED

Insufficient helium for mission or tank overpressurization. Exceed design limit.

Separated flow may cause nozzle extension overheating and structural failure or burnthrough.

Possible propellant freezing in injector and/or hard starts.

Possible propellant freezing in injector and/or hard starts.

Possible propellant freezing in injector and/or hard starts.

No test data for this condition; possible propellant freezing in injector and hard starts. Engine may be damaged from depletion shutdown; residual gas in feed system may cause hard start.

Note: Engine hard start may cause uncontained engine damage.

3.4.3.3-1

- 3.4.3.3
- Orbital Maneuvering Subsystem (Cont) CONSTRAINTS/LIMITATIONS
- 6. Propellant Loads.
 - a. Minimum propellant load in the OMS tanks at launch is 2038 lb of fuel and 3362 lb of oxidizer per pod.
 - b. Maximum propellant load in the OMS tanks is 4711.5 lb of fuel and 7743.5 lb of oxidizer per pod.
 - c. An RCS settling burn is required prior to each OMS propellant usage post-MECO, if there is < 1308 lb of fuel and < 2158 lb of oxidizer per tank remaining after the pre-MECO burn. See table 3.4.3.3-2 for RCS settling requirements.
 - d. Minimum propellant load in the tank aft compartment for normal zero-g engine startup and OMS/ RCS interconnect operation is 504 lb of fuel and 831 lb of oxidizer. See table 3.4.3.3-2 for RCS settling requirements.
 - e. At TAEM interface, oxidizer must be < 1707 lb/tank and fuel < 1032 lb/tank (~22 percent of tanked propellant).
- 7. OMS Operation in Interconnect/ Crossfeed.
 - a. OMS tank-to-OMS tank shall not be connected during OMS/RCS interconnect (except for aborts).
 - b. Valve configuration will be such that during non-firing operation, OMS tank-to-OMS tank will not be connected.

RESULT IF EXCEEDED

OMS propellant acquisition screens not immersed in propellant are not certified for launch vibration environment. Exceed maximum load for structural certification.

Screens will dry out during boost and propellant may spill into forward compartment at MECO. Remaining aft compartment propellant may not be sufficient to provide gas-free outflow at engine start. May not have adequate communication between the tank acquisition galleries and aft compartment bulk propellant.

Exceed OMS/RCS pod structural design loads.

Propellant transfer between tanks will increase OMS residual propellants. Same as 7a; also, if differential pressure between tanks exceeds 20 psid, acquisition screen damage may occur.

3.4.3.3-2

- 3.4.3.3
- Orbital Maneuvering Subsystem (Cont). CONSTRAINTS/LIMITATIONS c. OMS tank-to-RCS tank may be connected per subparagraph 7 of paragraph 3.4.3.2 (RCS constraints).
 - d. OMS-to-RCS interconnect is allowed only:

 - (2) during any OMS firing;
 - (3) during on-orbit operations.
 - e. OMS-to-RCS interconnect is not allowed during entry phases when acceleration levels or propellant quantities violate constraints defined in figures 3.4.3.3-1, 3.4.3.3-2, and 3.4.3.3-3.
 - f. OME minimum inlet pressure for pre-MECO interconnected abort dumps:
 - (1) 2 OME + 24 RCS thrusters
 firing:
 - 196 psia (oxidizer)
 - 213 psia (fuel)
 - (2) 1 OME + 18 RCS thrusters firing:
 - 183 psia (oxidizer) 198 psia (fuel)
- 8. Maximum Number of OMS Starts.
 - a. Acquisition system constraint. See subparagraph 16b of paragraph 3.4.3.3.
 - b. Pneumatic system constraint. Nominally 15 starts and purges per OME to reach minimum regulator inlet pressure (depends on mission time and leakage). See figure 4.3.3-16.
- 9. <u>OMS Burns During RMS Operations</u>. Refer to table 3.4.2.5-2.

RESULT IF EXCEEDED See subparagraph 7 of paragraph 3.4.3.2.

Will not maintain bubble-free propellant to RCS.

Same as subparagraph d.

Possible unsafe RCS thruster operation or deselection due to low manifold pressure.

Inability to start engine.

Excessive torque would damage or break the manipulator arm. Possible payload/ Orbiter contact.

3.4.3.3-3

Amendment 218

- Orbital Maneuvering Subsystem (Cont) CONSTRAINTS/LIMITATIONS
 - 10. Helium Isolation Valves. The helium isolation valve switches must be in the GPC position at launch. (Valves must be in closed position during launch vibration, but in a ready-state for RTLS, TAL or ATO abort.)
 - 11. Minimum Chamber Pressure (Pc). a. Pc must be > 80 percent (100 psia) when not in ullage blowdown mode.
 - b. Pc must be > 72 percent^a (90 psia) in ullage blowdown mode. (OME inlet pressure > 158 psia).
 - 12. Propellant Temperature. The absolute ΔT between oxidizer and fuel bulk propellants must not exceed 10° F.
 - 13. OME Start Envelope. See figure 4.3.3-12.
 - 14. Engine Fuel Injector Temperature. The maximum allowable fuel injector temperature during operation of an OME is 260° F.
 - 15. OMS Gaseous Nitrogen Accumulator Pressures.
 - a. Minimum pressure:
 - (1) GN₂ tank isolation valve opěn = 244 psia.
 - (2) GN, tank isolation valve clósed = 283 psia.
 - b. Maximum accumulator leak rate pre-burn and during engine start sequence: 334 sccs

Engine slow response time and combustion instability due to partially open engine ball valve. Leakage through purge valves into fuel circuit could effect engine start transient and cause a hard start.

RESULT IF EXCEEDED

Possible valve damage.

Operation in this regime of unverified cooling and stability margins, accompanied by mixture ratio unbalance, may cause engine damage at mixture ratio extremes. Reduction in engine safety factors may cause engine damage due to overheating and/or combustion instability. Mixture ratio shifts result in decreased usable propellant.

Possible engine damage if operated outside the limit to which it was tested. Possible uncontained engine damage.

a. Instrumentation error included ^bNitrogen tank pressure must be equal to or greater than accumulator pressure.

3.4.3.3-4

142

3.4.3.3

- 3.4.3.3
- Orbital Maneuvering Subsystem (Cont) CONSTRAINTS/LIMITATIONS
- 16. OMS Propellant Acquisition System. a. OMS-to-RCS interconnect:
 - (1) Except for +X RCS, no RCS interconnect shall be made to OMS using a tank with a bulkhead screen failure. A decrease of > 1 percent in the aft compartment quantity (after the 14-second integration period) while the forward compartment still contains propellant is an indication of bulkhead screen failure.
 - (2) When the forward RCS is being used for -X, RCS interconnect usage from OMS is limited by figure 3.4.3.3-4.
 - (3) Subject to previous subparagraph (al and a2), RCS interconnect to OMS is constrained as follows:
 - (a) OMS propellant quantity
 > 45 percent no limi-
 - > 45 percent = no 11m1tation on interconnect usage;
 - (b) OMS propellant quantity > 40 percent - no limitation on interconnect usage for attitude control;
 - (c) OMS propellant quantity of < 45 percent (general use) or < 40 percent (attitude control use only) see figure 3.4.3.3-4.
 - b. OMS engines starts:
 - (1) OMS propellant quantity
 > 40 percent no acquisition
 system constraint;
 - (2) OMS propellant quantity
 < 40 percent see figure
 3.4.3.3-4.</pre>

Depletion of aft compartment propellant will lead to helium ingestion in the RCS engines and the OME (in subsequent OMS burns).

3.4.3.3-5

RESULT IF EXCEEDED

Depletion of aft compartment propellant will lead to helium ingestion in the RCS engines and the OME (in subsequent OMS burns).

Depletion of aft compartment propellant will lead to helium ingestion in the RCS engines and the OME (in subsequent OMS burns). Depletion of aft compartment propellant will lead to helium ingestion in the RCS engines and the OME (in subsequent OMS burns).
3.4.3.3 Orbital Maneuvering Subsystem (Concluded). CONSTRAINTS/LIMITATIONS

c. Maximum lateral acceleration -OMS usage is not allowed when acceleration levels or propellant quantities violate constraints in figures 3.4.3.3-5 and 3.4.3.3-6. RESULT IF EXCEEDED Acquisition screen breakdown will lead to helium ingestion and possible engine damage.

17. OMS Crossfeed Line Usage. The OMS crossfeed line must not be opened to the OMS or RCS tankage when the indicated crossfeed line pressure is less than vapor pressure plus instrumentation error.

Potential component/feedline damage due to line pressure surges.

 Propellant	Vapor pressure, psia	Instrumentation error, psia	Indicated crossfeed line pressure, psia
Fuel		34	35
0xidizer	 . 15 ; 	34	49

18. OMS Engine with Failed-Open Ball Valve.

> An OMS engine with a failed-open ball valve indicating a position of > 5 percent^a and < 70 percent^a open when not firing shall not be be used unless the other engine has failed, and then only for the deorbit burn.

b. An OMS engine with a failed-open ball valve indicating a position of > 70 percent^a and < 100 percent^a open when not firing shall be used only for the deorbit burn.

19. Pod Heater Operation. A and B system heater switches must not be in "AUTO" position at the same time. Loss of heater.

Local overheating of heater patch; failure of heater patch bond.

Failure of the redundant

ball valve in the open

loss of propellant.

position will result in

^aInstrumentation error included

3.4.3.3-6

		During flight temp	erature limits		Ground ferry/flight temperature limits						
Components	Minimum Temperature, °F	Critical Item and Results If Exceeded	Maximum Temperature, °F	Critical Item and Results If Exceeded	Minimum Temperature, °F	Critical Item and Results If Exceeded	Maximum Temperature, °F	Critical Item and Results If Exceeded			
Engine valve	30	Minimum certification temperature	150	Maximum certification temperature	20	Oxidizer freeze	150	Maximum certification - seal life			
Propellant (Fu. and Ox.) Engine feedline and conponents	30 ^b	Engine operating limit for engine start	125 ^a	Engine operating limit	20	Oxidizer freeze	150	Maximum certification · temperature			
Vehicle cross- feed lines and components	40	RCS operating limit	125	Engine operating limit	20	Oxidizer freeze	150	Maximum certification temperature			
Engine fuel injector temperature	N/A	N/A	260	Thrust chamber burnout	N/A	N/A	n/a	N/A			
Propellant tank (bulk)	40/55 ^C	Steady-state engine operating limit	100/85 ^C	Engine operating limit	20	Oxidizer freeze	100	Maximum certifica- tion temperature with propellant			
Propellant tank (skin)	40	Steady-state engine operating limit	100/150 ^d	Structural certification limit	20	Oxidizer freeze	150	Structural certification limit			
Helium lines and components	25	Minimum certification temperature	150	Maximum certification temperature	. –30	Minimum certifica- tion temperature	150	Maximum certification temperature			
Helium storage bottles	-160	Minimum certification temperature	200	Structural limit when bottle is loaded. Tank qualified limit	-160	Minimum certification temperature	200	Maximum certification temperature			
Service panels: Coupling and lines	20 ^e	Minimum certification temperature	150	Maximum certification temperature	20	Minimum certification temperature	200	Maximum certification temperature			

TABLE 3.4.3.3-1.- ORBITAL MANEUVERING SUBSYSTEM TEMPERATURE LIMITS FOR SYSTEM MONITORING (Paragraph 3.4.3.3)

^aEngine hot slug start transient restriction; see 4.3.3.4(d).
 ^bEngine cold slug start transient restriction; see 4.3.3.4(d).
 ^cTemperature limit for ascent phase engine operation.
 ^dPropellant tank skin temperature is 100°F for launch and boost.
 ^eMMH couplings lower limit is -30°F.

.

3.4.3.3-7

Propellant quantity, percent	2 +X settling burn time, seconds	4 +X settling burn time, seconds				
1	9.4	6.7				
2	9.1	6.5				
3	8.8	6.3				
4	8.6	6.2				
5	8.5	6.1				
6	8.3	6.0				
7	8.2	5.9				
8	8.1	5.8				
9	7.9	5.7				
10	7.8	5.5				
11	7.6	5.4				

TABLE 3.4.3.3-2.- BURN TIMES REQUIRED FOR OMS PROPELLANT SETTLING (Paragraph 4.3.3.3)

3.4.3.3-8

ω

.3.3-9

Amendment 218

Figure 3.4.3.3-2.- Forward compartment flow limit - fuel tank. (Paragraph 3.4.3.3)

(.)

.4.3.3-10

(Paragraph 3.4.3.3)

Figure 3.4.3.3-5.- Aft compartment limit, OME only, oxidizer tank. (Paragraph 3.4.3.3)

Figure 3.4.3.3-6.- Aft compartment limit, OME only, fuel tank. (Paragraph 3.4.3.3)

3.4.3.3-14

3.4.4	Power Subsystems	er Subsystems								
3.4.4.1	Fuel Cell Powerplant Subsystem CONSTRAINTS/LIMITATIONS 1. Temperature Limits ^a .	RESULT IF EXCEEDED								
	See table 3.4.4.1-1. 2. FCP Power Output Limits. The FCP power output limits per FCP are as follows: a. 7 kW Continuous (Below 2 kW, the output voltage may be above specification limits). b. 10 kW One hour maximum. c. 12 kW Fifteen minutes maximum (every 3 hr not to ex-	Accelerated performance decay. (See figure 4.4.1-4.) Possible FCP damage.								
	ceed 60 hr over the life of the FCP). d. 16 kW Overload capacity. Ten minutes maximum at 26.5 Vdc. 3. <u>Maximum System Power Output</u> . Maxi- mum system power ou*put must not exceed 36 kW.	Exceeds FCP design capability. Possible FCP damage, including materials overheating and reactant leaking. Exceeds FCP design capability. Power levels >36 kW may exceed the ATCS design capability for some mission								
	4. Purge Limitations. a. Each FCP must be purged for a minimum of 2 minutes.	profiles. Degradation of FCP efficiency will be caused by an inert buildup in the reactant cavities of								
	b. Maximum of 12 hr between purges.	FCP degradation. FCP will not meet transient load and voltage requirements.								

^aInformation only. This capability will not be certified. ^bCapability demonstrated by development data and analyses, but will not be certified. ^CThese limitations may be extended dependent upon detailed mission analysis.

Fuel Cell Powerplant Subsystem (Cont) CONSTRAINTS/LIMITATIONS c. Current output of an FCP during purge must not exceed 350 A (contingency operations- 430A)^a.

- d. Heater operation.
 - (1) Purge line heaters are sequenced "on" for a maximum of 27 minutes or until minimum line temperatures required for purge are attained.
 - (2) Purge line heaters are sequenced to remain on for 30 minutes after completion of purge.
- e. The final in-flight purge sequence must be initiated at least 2.5 hours prior to entry^a.
- f. Maximum sustained purge period limited to 20 minutes.
- 5. FCP In-flight Shutdown/Restart

Environment^a.

- a. Environmental temperature must be maintained at ≥ 40° F for in-flight shutdown/restart. For temperatures < 40° F, FCP's may be placed in standby, but only if further operation is required. (Standby configuration is FCP disconnected from the bus with pumps and heaters operating.)
- b. Following any restart, a fuel cell must be operated on load for a minimum of 3 hours to restore proper electrolyte concentration.
- 6. FCP Degraded Performance^a.
 - a. The "Fuel Cell Cell Performance Monitor" (CPM) provides an analog output for each of three substacks from each fuel cell. Each of these output signals is proportional to the absolute value of the voltage difference

RESULT IF EXCEEDED FCP regulators may malfunction (external venting, leakage, pressure control) due to reactants' temperature being too low. Frozen particles may clog the purge lines.

Possible damage to purge line and nozzle heaters due to entry heating. Frozen particles may clog the purge lines.

Possible FCP damage from water freezing.

Possible power section damage due to uncontrolled electrolyte concentration. May do irreparable damage to the FCP.

^aCapability demonstrated by development data and analysis, but will not be certified.

3.4.4.1

Fuel Cell Powerplant Subsystem (Cont) CONSTRAINTS/LIMITATIONS RESULT IF EXCEEDED between the two halves of its substacks. Any voltage anomaly of 150 mV or greater indicates a failed FCP, which must be shut down. b. A terminal voltage performance shift of > 0.5 volts that is not related to inert buildup or thermal control indicates possible loss of fuel, cell. 7. Consecutive False Starts". The Possible H₂O flooding of total time accumulated for FCP the FCP refidering it consecutive false start attempts inoperative. must not exceed 27 minutes for a 70° F environment or 17 minutes for a 40° F environment. After accumulating this time, the FCP must complete a start sequence and operate a minimum of 3 hours on load. 8. FCP Electrolyte Concentration Limits^b. The fuel cell powerplant electrolyte concentration limits are as follows: a. Operating local concentration: (1) Upper limit 48% KOH Possible FCP failure due to reactant gas crossover through a dry electrolyte matrix. (2) Lower limit 24% KOH Possible FCP failure due to flooding of reactant chambers with electrolyte from a too wet electrolyte matrix. b. Shutdown average concentration: (1) Minimum limit 29% KOH Possible FCP inability to for false starts. meet the consecutive false start constraint. (2) Minimum limit 27% KOH Possible FCP inability to one start. make one start from 40° F.

^aAssumes the FCP is at thermal equilibrium with no internal heaters on. The FCP cell-performance monitor is a much more sensitive indicator of individual cell-performance loss and terminal voltage shift should be considered secondary to the CPM.

Capability demonstrated by development data and analysis, but will not be certified.

155

3.4.4.1-3

Fuel Cell Powerplant Subsystem (Cont) CONSTRAINTS/LIMITATIONS

- 9. Water Vent System. a. One set of H_2O relief system and one set of H_2O line heaters will be on continuously during FCP operation.
 - b. At least one fuel cell water discharge path shall remain open at all times.
- 10. FCP Coolant Return Temperature. Maximum temperature 140° F. For ground operation, a maximum of 110° F at output power conditions from open circuit to 4 kW, and 140° F for power conditions > 4 kW.
- 11. FCP Stack Coolant Exit Temperature^a. Figure 3.4.4.1-1.

12. FCP Condenser Exit Temperature^a. 140 to 160° F. RESULT IF EXCEEDED

Water nozzle and alternate H₀0 system freezing. Loss of all three fuel cells, if primary water line to ECLSS storage tanks lost. Loss of all three fuel cells due to irrecoverable H, pump motor stall. Possible damage to FCP due to overheating and flooding of reactant chambers with electrolyte from a too wet electrolyte matrix.

Possible FCP failure due to reactant gas crossover through a dry electrolyte matrix (high stack coolant exit temperature) or failure due to flooding of reactant chambers with electrolyte from a too wet electrolyte matrix (low stack coolant exit temperature). Possible FCP failure due to reactant gas crossover through a dry electrolyte matrix (low condenser exit temperature) or failure due to flooding of reactant chambers with electrolyte from a too wet electrolyte matrix (high condenser exit temperature).

^aCapability demonstrated by development data and analysis, but will not be certified.

3.4.4.1 Fuel Cell Powerplant Subsystem (Concluded) CONSTRAINTS/LIMITATIONS **RESULT IF EXCEEDED** 13. FCP Shutdown After a pH Discrete Contamination of potable Set^{a,b}. water. FCP's shall be shutdown after 15 Possible FCP damage. minutes of operation with a high pH. 14. Spacelab, FCP3, Power Requirements. Refer to paragraph 3.4.5.6, item 6. 15. Coolant Pump and Hydrogen Pump. Loss of ability to Fuel cell coolant and H₂ pumps maintain proper must be on continuously during electrolyte and thermal control resulting in FCP FCP operation. damage due to overheating and electrolyte flooding. Emergency operation of the FCP without pumps for up to 9 minutes at at 7 kW is permitted during critical phases. 16. FCP Stack Coolant Inlet Temperature. 176° F to 191° F Possible failure due to reactant gas crossover through a dry electrolyte matrix (high stack coolant inlet temperature) or failure due to flooding of reactant chambers with electrolyte from a too wet electrolyte matrix (low stack coolant inlet temperature). 17. FCP H₂ Pump Current Sensor^a 0.28 to 0.65 Vdc Possible fuel cell failure due to H₂ pump loss from motor overload or loss of input power.

^aCapability demostrated by development data and analysis, but will not be certified.

^bIn the absence of confirming cue (e.g., common pH sensor, CPM or H₂ pump current), shutdown may be delayed up to 1 hour total to permit crew check of potable water pH. Confirmation from common pH sensor may require up to eight minutes at nominal loads due to transport time. Transport time to the galley could require up to 20 minutes.

 Components 	 Minimum Operating Temperature, °F 	Critical Item and Results If Exceeded	Maximum (Tempe Long Term	Dperating rature, °F Short Term ^a	Critical Item and Results If Exceeded	 Minimum Non- operating Temperature, °F	Critical Item and Results If Exceeded	operating Temperature, Long Short Term Term		Critical Item and Results If Exceeded
FCP (external)	40 ^{b, c}	Product water may freeze. 	170	220	Loss of proper electrolyte concentration and heat rejection control.	40 ^b (water system wet) -65 (water system drained and dried)	Product water may freeze.	 150 	190 	Exceeds, storage design con- ditions.
Coolant lines	40 ^b	Improper FC-40 inlet conditions	140 (fluid inlet	140 conditions) 	Cannot maintain proper electrolyte concentration and heat rejection control.	40 ⁵	Violates FC-40 inlet conditions	NA 	NA	NA
Water lines	40 ^b	 Product water may freeze.	120	220	Exceeds lesign tempera- tures.	40 ^b	Product water may	NA	NA	NA
 FCP stack 	180 	 Electrolyte is too wet. 	(1) 230	(1) (2) 250	<pre>(1) Electrolyte too dry, (1) and reduced operational (1) life (2) Material degradation</pre>	40 ^b	Treeze. Water may freeze.	150 	190	Exceeds storage de sign condi- tions.
H ₂ O pressure relief valves	40 ^b	Product water may freeze 	220	220	Exceeds design temperatures.d	40 ^b	Product Water may freeze.	NA.	NA 	NA

TABLE 3.4.4.1-1.- FUEL CELL POWERPLANT COMPONENT ENVIRONMENTAL TEMPERATURE LIMITS (Paragraph 3.4.4.1)

١

a ≤ 3 minutes. b Design limit to account for sensor inaccuracies. c Exterior surface temperatures d Since there has been no off-limit thermal testing, the results if exceeded are unknown.

3.4.4.1-5

Figure 3.4.4.1-1.- Fuel cell powerplant stack exit temperature. (Paragraph 3.4.4.1)

Components	Minimum Operating Temperature,	 Critical Item and	Maximum Operating Temperature, °F		 Critical Item and Results If Exceeded	 Minimum Non operating	Critical Item and	Maximum Non- operating Temperature, °F		Critical	
	°F	Results If Exceeded	Long Term	Short Term ^a		Temperature,	Results If Exceeded	Long Term	Short Term ^a	Results If Exceeded	
FCP (external)	40 ^b , c	Product water may freeze. 	170	220	Loss of proper electrolyte concentration and heat rejection control. 	40 ^b (water system wet) -65 (water system drained and	Product water may freeze.	150 	190	Exceeds, storage design con- ditions.	
Coolant lines	40 ^b	 Improper FC-40 inlet conditions	140 (fluid inlet	 140 conditions) 	 Cannot maintain proper electrolyte concentration and heat rejection control.	dried) 40 ^D 	Violates FC-40 inlet conditions	NA	NA	NA I	
Water lines	40 ^b	 Product water may freeze.	120	 220 	 Exceeds design tempera- d tures.	40 ^b	at start-up Product water may	NA	NA	NA 	
FCP stack	 180 	 Electrolyte is too wet. 	(1) 230 	 (1) (2) 250	 (1) Electrolyte too dry, and reduced operational life (2) Material degradation	40 ^b	Treeze. Water may freeze.	150	190	 Exceeds storage de sign condi tions.	
 H ₂ 0 pressure relief valves	40 ^b	 Product water may freeze 	220 	220	Exceeds design temperatures.d	40 ^b	Product Water may freeze.	NA	NA	NA	

TABLE 3.4.4.1-1.- FUEL CELL POWERPLANT COMPONENT ENVIRONMENTAL TEMPERATURE LIMITS (Paragraph 3.4.4.1)

a ≤ 3 minutes. Design limit to account for sensor inaccuracies. CExterior surface temperatures d Since there has been no off-limit thermal testing, the results if exceeded are unknown.

3.4.4.1-5

Figure 3.4.4.1-1.- Fuel cell powerplant stack exit temperature limits as a function of condenser exit temperature.

3.4.4.2

- Power Reactant Storage and Distribution Subsystem CONSTRAINTS/LIMITATIONS
- 1. PRSD Temperature Limits. See table 3.4.4.2-1.
- 2. Hydrogen Tank Maximum Operating Pressure. The maximum hydrogen tank pressure is 335 psia.
- 3. Hydrogen Tank Minimum Operating Pressure. The minimum hydrogen tank pressure is 100 psia.
- 4. Hydrogen Tank Maximum Heater Temperature.
 - a. The hydrogen tank maximum heater temperature is 200° F.
 - b. For the baseline system, (tanks 1 and 2), when the tank quantity reaches 8.8 percent, the "A" and "B" heaters must be switched to "OFF".
 - c. For tanks 3, 4 or 5, when the tank quantity reaches 2.9 percent, the "A" and "B" heaters must be switched to "OFF".
- 5. Oxygen Tank Maximum Operating Pressure. The maximum oxygen tank pressure is 1050 psia.
- 6. Oxygen Tank Minimum Operating Pressure. The minimum oxygen tank pressure is 800 psia.
- 7. Oxygen Tank Maximum Heater Temperature.
 - a. The oxygen tank maximum heater temperature is 350° F.
 - b. When the tank quantity reaches 50 percent, the "A" or "B" heater must be switched from "AUTO" to "OFF" (except for 0, tank 4/5 combination).
 - c. For the baseline system (tanks 1 and 2), when the tank quantity reaches 8.8 percent, the "A" and "B" heaters must be switched to "OFF".
 - d. For tanks 3, 4 or 5, when the tank Heater temperature may quantity reaches 6.0 percent, the exceed 350° F. "A" and "B" heaters must be switched to "OFF".
- 8. Tank Loads.
 - a. Cryogenic oxygen tanks will be loaded to a minimum of 30 percent for a maximum of 25 missions, and \geq 90 percent load for a maximum of 100 additional missions.

RESULT IF EXCEEDED

The relief valve will open and limit pressure.

Loss of H₂ supply to FCP's.

Potential damage to tank structure. Possibility of depleting H₂ due to inaccuracy of qūantity gaging system.

Heater temperature may exceed 200° F.

Relief valve will open and limit pressure.

Degraded flow to the launch entry helmets (LEH's).

Could ignite Teflon.

Heater temperature will exceed 350° F.

Possibility of depleting 0, due to inaccuracy of qūantity gaging system.

Possible structural damage.

3.4.4.2

Power Reactant Storage and Distribution Subsystem CONSTRAINTS/LIMITATIONS RESULT IF

- b. Cryogenic Hydrogen tanks will be loaded to ≥90 percent for a maximum of 100 missions and as a minimum quantity will be pressurized to 200 psia with ambient temperature hydrogen gas for an additional 25 missions.
- 9. Tank Pressure Cycles Per Lifetime (Useful Life)
 - a. Oxygen tanks are constrained to 300 structural pressure cycles^a per lifetime. Cycle threshold pressure (Pth) is 375 psia.
 - b. Hydrogen tanks are constrained to 300 structural pressure cycles^a per lifetime. Cycle threshold pressure (Pth) is 150 psia.

RESULT IF EXCEEDED Possible structural damage.

Lifetime impact.

Lifetime impact.

^aA pressure cycle is defined as a pressurization of a pressure vessel to an absolute value greater than threshold pressure (Pth), followed by a decrease to a value less than Pth, or a pressure change occurring while the pressure vessel is at a pressure greater than Pth, such that there is a decrease in pressure greater in magnitude than Pth followed by an increase in magnitude greater than Pth.

Components	Minimum Operating Temperature, °F	Critical	Maximum Operating Temperature, °F		Critical Item and	 Minimum Non-	 Critical Item and	Maximum Non- operating Temperature, °F		Critical	
 		Results If Exceeded	Long Term	Short Term ^a		Temperature,	Results If Exceeded	Long Term	Short Term	Results'If Exceeded	
 Hydrogen and oxygen pressure relief	NA	NA	140	 197 	Violate thermal design con- straints	NA 	NA	NA 	NA	NA 	
modules and valve modules											
Hydrogen and oxygen	NA	NA	110 ^C	197 ^d	c,d	NA	NA	NA	NA	NA I	
Hydrogen and oxygen signal	-110	Degraded accuracy	110 ^C	197 ^đ	c,d	NA I	NA	NA	NA 	NA ``	
condition- ers of											
gaging systems				 				1			

TABLE 3.4.4.2-1.- HYDROGEN AND OXYGEN ASSEMBLY COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.4.2)

 a_{Δ} 15 minutes. ^bSince there has been no off-limit thermal testing, the result if exceeded is unknown. ^cElectrical components will exceed design temperatures. ^dVent tank and/or destroy insulation.

164

3.4.4.2-3

- 3.4.4.3
- Auxiliary Power Unit Subsystem CONSTRAINTS/LIMITATIONS
- 1. <u>Temperature Limits</u>. See table 3.4.4.3-1.
- 2. Low Fuel Pressure Starts. (Normal) Slow turbine accel The minimum fuel pressure at the fuel (low gas generator pump inlet for APU start-up is 180 psia at sea level and 90 psia above 40,000 ft.
- 3. <u>Cold Oil Starts</u>. The minimum lubrication oil temperature is 35° F at a fuel pump minimum inlet pressure of 100 psia and the hydraulic fluid temperature is 0° F for APU start-up.
- Lubrication Oil. The following two types of MIL-L-23699B oil listed in QPL-23699-8 dated 15 March 1976 are the only types of oil that can be used in the APU lubrication oil system.
 - a. Mobil Jet II manufacturer's designation RM-247A; QUAL. 0-1D, 4 February 1975.
 - b. Mobil Jet II manufacturer's designation RM-246A; QUAL. 0-1E, 5 May 1975.
- 5. Hot Restart. Post-shutdown starts without active cooling must not be made until the turbine gas generator bed temperatures and injector temperatures (V46T0122A, V46T0222A, V46T0322A, V46T0174, V46T0274, and V46T0374) are below 415° F for soakback and 444° F if due to gas generator heater cycling or failure.
 - a. Active cooling of the gas generator is to be used only in contingencies when the normal cooldown period is not available.
 - b. An active-cooled hot restart must be aborted if the injector temperature (V46T0X74) does not give an indication of cooling in the first 150 seconds

RESULT IF EXCEEDED

Slow turbine acceleration pressure) may result in an automatic underspeed shutdown. Utilize auto shutdown inhibit mode to accomplish start when pressure is below limits. Possibility of detonation exists. Excessive gearbox or hydraulic pump drag may result in an automatic underspeed shutdown. Utilize auto shutdown inhibit mode to accomplish start. Rapid lubrication oil filter clogging can occur if hydrazine leaks into the gear box and forms

Explosive decomposition of hydrazine may occur in gas generator injector.

pentaerythritol or

substance.

hydrazide, a wax-like

Active cool restarts increase chamber pressure roughness, reducing gas generator life.

Explosive decomposition of hydrazine may occur in the gas generator injector.

- Auxiliary Power Unit Subsystem (Cont) CONSTRAINTS/LIMITATIONS following start override initiation (V46T0X74 decreasing
 - at T + 150 seconds).
 c. Do not start the APU if the fuel
 pump and GGVM temperature
 (V46T0112, V46T0192, V46T0171,
 V46T0172 and their equivalents
 for APU 2 and 3) exceed 200° F.
 - d. Do not start the APU if the fuel tank pressure is < 100 psia.</pre>
- 6. Fuel Pump and GGVM (gas generator valve module) Cooling System Isolation Valve. The water tank isolation valve must not be powered for a continuous period of longer than 4 hours which is the extent of test data. Should the valve be powered for 4 hours continuously, the time for cooldown to steady state is 10 hours.
- 7. Fuel Isolation Valve Power. Do not power isolation valve for extended periods of time when the APU is not operating. For normal procedures, the isolation valve should be shut off within 5 minutes after APU is shut down; for contingencies, the valve must not remain open for more than 5 minutes after fault annunciation (160° F) on V46T1X75, V46T1X73. For ground testing, use a duty cycle of 20 minutes on, 4 hours off. During 4 hours off time, additional 1 minute on-time may be accumulated.
- 8. <u>Flight Control Loads</u>. The hydraulic pump must be depressurized for APU start.
- 9. Oil Pressure.
 - a. An APU must not be operated for extended periods of time with lubrication oil pressure >150 psia.

3.4.4.3-2

RESULT IF EXCEEDED

Possible detonation may occur for starts with gas bubbles at > 200° F.

Possible detonation may occur for hot restarts at < 100 psia above 40,000 ft. Valve temperature limit may be exceeded leading to possible loss of the cooling system function.

Valve is insulated and with no flow will overheat due to heat from solenoid. Coil temperature and hydrazine decomposition limits may be exceeded.

Hydraulic load demands will increase hydraulic pump cranking torque resulting in possible automatic underspeed shutdown of the APU.

Structural damage to the APU may occur.

Auxiliary Power Unit Subsystem (Concluded) CONSTRAINTS/LIMITATIONS RE

- b. An APU must not be operated for extended periods of time with lubrication oil pressure < 35 psia at sea level or 20.0 psia in orbit.
- 10. Low Gearbox Pressure. The APU should not be operated for extended periods of time with gearbox pressure below 2.0 psia.
- 11. Failed GG Heaters. The minimum safe gas generator/injector temperature for starting is +190° F.
- 12. <u>GG Life</u>. The gas generator reaches its end of life when the chamber pressure roughness is ≥ 300 psi peak-to-peak.
- 13. Exhaust duct. The exhaust duct exceeds its qualification limit at \geq 1160° F.
- 14. Seal cavity drain system. For vacuum conditions with a large range of leakages, hydrazine will flash freeze and plug overboard drain line downstream of relief valve.

RESULT IF EXCEEDED

Inadequate bearing and gear lubrication can cause overheating and failure.

Potential lubrication oil pump damage and/or inadequate gearbox lubrication can occur. Unknown conditions exist.

If accompanied by spiking, possible rupture of gas generator may occur. Possible structural failure of duct.

Loss of APU by flooding of gearbox with hydrazine.

-				Maxir	num			l	Maximu	n Non-	Ι
				Operat	ting				operating		
		Minimum		Tempera	ature,		Minimum Non-	1	Tempera	ture,	
		Operating	Critical Item	°F		Critical Item	operating	Critical Item	°F		Critical Item
	Components	Temperature,	and Results	Long	Short	and Results	Temperature,	and Results	Long	Short	and Results
		°F	If Exceeded	Term	Term~	If Exceeded	°F	If Exceeded	Term	Term	If Exceeded
L	Fuel tank	35	Hydrazine	125	125	Qualification	35	Hydrazine	125	125	Qualification
-			freezes at 35° F		1 F	limit		freezes at 35° F			limit
	Fuel feed lines	35	Hydrazine	150	150	Maximum design	35	Hydrazine	(1)	(2)	(1) Maximum
I	and line filter		freezes at 35° F			fuel inlet temperature to APU		freezes at 35° F	150	290	design fuel inlet tem- perature to APU
					1 1 1						(2) Decompo- sition rate limit
	Fuel isolation valves	35	Hydrazine freezes at 35° F	150	150 	Maximum design fuel inlet temperature to APU	35	Hydrazine freezes at 35° F	(1) 150	 250 	AF-E-411 Séat limit
	Fuel service and test lines (static)	35	Hydrazine freezes at 35° F	220	290 	Decomposition rate limit	35	Hydrazine freezes at 35° F	220	290	Decomposition rate limit
ł	Fuel disconnect couplings: N ₂ and N ₂ H ₄	35	Hydrazine	160	160	Seal degrades	35	Hydrazine	160	160	Seal degrades
ŀ	Sērvicinğ		freezes at 35° F			(leaks).		freezes at 35° F			(leaks)
I	Test and high point bleed	35	Hydrazine freezes at 35° F	200	200	Qualification limit - adiabatic compression	35	Hydrazine freezes at 35° F	290	290 	Decomposition rate limit `
	Fuel pump drain lines and can	35	Hydrazine freezes at 35° F	220	290 	Decomposition rate limit	35	Hydrazine freezes at 35° F	220	290 	Decomposition rate limit
	Fuel pump drain relief valve	35	Hydrazine freezes at 35° F	150	150	Design limit. Hydrazine compatibility	35	Design limit. Hydrazine freezes at 35° F	150	150 	Qualification limit
	Lube oil lines and gearbox	35	Unacceptable lube oil viscosity	325	375	Structural limit of gearbox materials	35	Unacceptable lube oil viscosity	425	425	Unacceptable lube oil viscosity

TABLE 3.4.4.3-1.- AUXILIARY POWER UNIT SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.4.3)

^aContinuous stabilized levels. ^bTransient excursions which return to acceptable stabilized levels.

Amendment 214

.

	Minimum Operating Temperature, °F	Critical Item and Results If Exceeded	Maximum Operating Temperature, °F		Critical Item	Minimum Non- operating	Critical Item	Maximum Non- operating Temperature, °F		Critical Item and Results
Components			Long Term ^a	Short Term ^b	If Exceeded	Temperature, °F	and Results If Exceeded	Long Term ^a	Short Term	and Results If Exceeded
Insulation sur- face	NA	NA	425	425	Autogenous ignition temperature limit (fluids)	NA	NA	NA	 NA 	NA
APU Controller	30	Qualification limit ^h	125	125 	Qualification limit - maximum cold- plate temperature	30	Qualification limit	150	190 (1 hr max) 	Possible com- ponent failure
Fuel pump	35 ^C	Hydrazine freezes at 35° F	200	200	Qualification limit - adiabatic compression	35 [°]	Hydrazine freezes at 35° F	200	275 ^d	Qualification limit
Gas generator valve module	35 ^C	Hydrazine freezes at 35° F	200	200	Qualification limit	35 ^C	Hydrazine freezes at	200	275 ^d	Qualification limit
Gas generator	NA	NA	1700	1750	Exceeds tur- bine and gas generator limits	190 [°] /70 ^f	Reduced catalyst bed life. Slower starts. Hy- drazine free-	NA	NA	NA
Gas generator water cooling							205 at 33° F.		÷	
Tank	32	Water freezes	254	254	Qualification limit	32	Water freezes	254	254	Qualification
Lines	32	Water freezes	NA	212 to 328 ^g	Localized boiling - not critical	32	Water freezes	NA	212 to 328 ^g	Localized boiling -
Valves	32	Water freezes	NA	210	Qualification limit	32	Water freezes	NA	210	Qualification limit

TABLE 3.4.4.3-1.- AUXILIARY POWER UNIT SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.4.3) (Continued)

^gDependent on tank pressure.

Minimum coldplate temperature.

 		1	Maxi Opera	mum ting	1		 	Maximum Non- operating			
	Minimum Operating	 Critical Item	Temper °F	ature,	 Critical Item	Minimum Non- operating	 Critical Item	Temperature, °F		Critical Item	
Components	Temperature, °F	and Results	Long Term ^a	Short Term ^b	and Results If Exceeded 	Temperature, °F	and Results If Exceeded 	Long Term ^a	Short Term	and Results If Exceeded	
Fuel pump/GGVM		1	1	İ	1		1	1	1	<u> </u>	
water cooling Tank 	32	 Water freezes 	254	254	 Qualification limit	32	 Water freezes 	 254 	 254 	Qualification	
 Lines 	32	 Water freezes 	NA	212 to	 Localizes boiling - not	32	 Water freezes 	NA	212 to	Localized	
 Valves 	32	 Water freezes 	NA NA	201	Qualification	32	Water freezes	NA 	210	Qualification limit	
Controller 	-65	Qualification	165 	165	Qualification	-65	Qualification limit 	165	165 	Qualification	

TABLE 3.4.4.3-1.- AUXILIARY POWER UNIT SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.4.3) (Concluded)

^aContinuous stabilized levels. ^bTransient excursions which return to acceptable stabilized levels. ^gDependent on tank pressure.

3.4.5 Avionics Subsystems

3.4.5.1

Guidance, Navigation and Control Subsystems CONSTRAINTS/LIMITATIONS RESULT

- 1. <u>Temperature Limits</u>. See table 3.4.5.1-1.
- 2. <u>GN&C Component Self Test Limits</u>. See table 3.4.5.1-2.
- 3. Star Tracker.
 - a. The object being tracked must be \geq 30 deg from the sun and \geq 20 deg from the sunlit earth horizon.
 - b. Object being tracked must not be brighter than -7 magnitude.
 - c. Tracker must be warmed up for 15 minutes.
 - d. Star tracker door maximum operating time - 14 sec to open or close.

Door motors can be operated for maximum of 120 sec in a stalled condition - followed by a cool-period of one hour. e. Star tracker doors should be closed prior to entry.

f. Sun or horizon must not be in FOV when override is engaged.

RESULT IF EXCEEDED

Probability that system has failed since 3σ endof-life values exceeded. Deselection is crew/ground option.

Shutter will close and tracker will go into the auto mode until the bright source is removed. Shutter will close and remain closed until star tracker power is turned off and back on, or the "shutter open" override is commanded. Degraded performance.

Switch power off after 14 sec if actuation not complete to prevent excessive torque limiter slippage and try again in 10 min. Door motors can possibly overheat.

Possible loss of star tracker(s). Possible loss of portion of Navigation Base. Possible loss of star tracker light shades. Target suppress function will occasionally close and latch protective shutter. Requires crew manual override to unlatch and open. Possible severe damage or loss of star tracker function.

Guidance, Navigation and Control Subsystems (Cont) CONSTRAINTS/LIMITATIONS 4. Air Data Probe Deployment. While the air data probe assembly is deployed, the probe heaters must be turned on when icy conditions may exist. 5. Navigation Sensors "On Time". If the navigation sensors have been turned off, they must be warmed up prior to their operation (data acquisition). Warm up times are as follows: a. Tacan 120 sec b. MSBLS 180 sec c. Radar altimeter 180 sec 6. Inertial Measurement Unit a. Temperature Limits. (See table 3.4.5.1-3). The IMU must be at operating temperature (platform temperature 152° to 168° F; CAPRI temperature 142° to 158° F) prior to operational use. * b. Absolute Launch Limits for IMU Misalignments. TBS 7. Inertial Measurement Unit Voltage Limits. a. Input voltage to the inertial measurement unit must not fall below 15.8 Vdc. b. Inertial measurement unit operate discrete input, 5 ± 1 Vdc, must not be inhibited warm-up/standby mode and for more than 1.0 sec minimum to 15.0 sec maximum while 28 Vdc is applied.

RESULT IF EXCEEDED

Possible ice buildup under icy conditions would cause performance degradation.

Warm up required for filaments and temperature stabilization.

Degraded performance.

Inertial measurement unit will shut down and not return to the operate mode for a period of

+0.75 -0.50 minutes after shutdown. Inertial measurement unit will go into the not return to the operate mode for a period of

 $3.0 \begin{array}{c} +0.75 \\ -0.50 \end{array}$ minutes.

*NASA Data Source.

3.4.5.1

I

3.4.5.1

Guidance, Navigation and Control Subsystems (cont) CONSTRAINTS/LIMITATIONS RESULT IF EXCEEDED

- 8. Primary Flight Control Subsystem.
 - (a) No more than two ASA's and two ATVC's must be powered down with active hydraulic systems.
 - (b) The hydraulic systems must be deactivated before a powered down ASA can be reactivated.
 - (c) A minimum of two (out of four) unbypassed, unfailed channels are required for each actuator with hydraulics active (assuming the other two channels are bypassed).
 - (d) No more than two FCS channels of any one actuator can be in a bypass state concurrently.
 - (e) The allowable mismatch betweem an aerosurface command and the actual zero-surface position at the time the hydraulic systems are actuated is as follows:
 - (1) Speed brake $\pm 2.0^{\circ}$ max
 - (2) Rudder ±1.43° maximum
 - (3) Elevon ±2.03° maximum
 - (4) SSME-TVC ±2.00° maximum
 - ±1.0° maximum with
 - ground hydraulics
 - (f) Elevon/Rudder/Speedbrake/SSME-TVC:
 - (1) If two channels in an actuator have failed hardover with the same polarity and have sequentially been bypassed, these channels shall not be commanded to reset simultaneously.

The flight control system was designed to provide operational performance with a minimum of two active control strings (two ASA's and two ATVC's). The rudder/speed brake power drive unit (PDU) could be overpressurized with resulting damage to the PDU. The loss of one of the last two channels will result in unknown performance degradation. This is considered a three-failure condition and exceeds design requirements. Two channel operation is no-fault tolerant. An additional fault could produce damage to the rudder/speed brake PDU. The required flow may exceed APU pump supply capability with possible

damage to the hydraulic systems. Fluctuations in hydraulic pressure could reactivate the brakes in the rudder/

speed brake PDU, with possible damage to the PDU.

Two-against-two force fight could occur resulting in four channel bypass which may cause loss of actuator/ vehicle control.

Guidance, Navigation and Control Subsystems (cont) CONSTRAINTS/LIMITATIONS

- (2) If any failed channel cannot be bypassed, the the remaining three channels shall be commanded to override so that the FDI function is inhibited.
- (3) If two channels of an actuator have been bypassed, the remaining channels shall be commanded to override so that the FDI function is inhibited.
- (4) Prior to APU power-up which creates high hydraulic pressure (such as power-up before OPS-8 on-orbit checkout and OPS-3 entry operation). any previously failed channel of the effector system shall be manually bypassed.
- (5) If any failed channel cannot be bypassed, the remaining three channels shall be commanded to OVERRIDE to inhibit the FDI function.
- (6) The actuation subsystems shall not be operated with two control channels assigned to one GPC unless one of the two channels is bypassed via the FCS channel switch.
- Elevon: g.
 - (1) The effector system shall not be operated with more than three primarypressure feedback loops open in an actuator.

RESULT IF EXCEEDED One additional channel failure can result in a twoagainst-two force fight which may lead to a three channel bypass and a subsequent loss of actuator/ vehicle control. One additional channel failure can result in a one-against-one force fight which may lead to a fourchannel bypass and a subsequent loss of actuator/ vehicle control. A combination of one failure prior to the power-up and one latent failure (which cannot be detected until the power-up) may cause a twoagainst-two force fight which may lead to a fourchannel bypass and a subsequent loss of actuator/ vehicle control. One additional channel failure can result in a two-against-two force fight which may lead to a fourchannel bypass and a subsequent loss of actuator/ vehicle control. Failure of a GPC commanding two control channels could result in bypass of the remaining two channels and loss of control. In flight, loss of actuator control could result in loss of vehicle.

The effector system can be unstable resulting in possible loss of surface/ vehicle control.

3.4.5.1

3.4.5.1

Guidance, Navigation and Control Subsystems (cont) CONSTRAINTS/LIMITATIONS RESULT IF

- (2) The magnitude of a step command to the effector system shall be limited to 2.03 degrees. The servovalve current prior to activation of the hydraulics with a pressure of 3000 psi shall be limited to 3.0 and 3.25 milliamperes for inboard and outboard elevons, respectively.
- (3) The elevon actuators shall Driver current oscillations not be driven into their could occur causing all four mechanical hardstops. channels of the elevon

h. SSME-TVC

(1) For each of the SSME TVC-actuation subsystems, the magnitude of the incremental change (step) in its position command shall be limited to two degrees for Orbiter hydraulics. Any subsequent change in the command shall be delayed so that the magnitude of the effective commanded rate does not exceed 10 degrees per second. For example, following a two-degree incremental change in the position command of one of the SSME TVC subsystems, no subsequent change in this command can occur for 200 milliseconds [2 degrees/ (10 degrees/second) =200 msec].

RESULT IF EXCEEDED The required hydraulic flow may exceed hydraulic pumpsupply capability creating possible stress in the

hydraulic systems.

Driver current oscillations could occur causing all four channels of the elevon actuation subsystem to be bypassed thus resulting in loss of actuator control and possible loss of vehicle if it should occur during flight.

Four-channel bypasses of the affected SSME TVC actuators could occur resulting in loss of actuator control with possible collision of affected SSME's with other SSME's, body flap, and OMS. In flight, loss of actuator control could result in possible loss of the vehicle.

The required flow may exceed the supply capability of hydraulic pump with possible stress to the hydraulic systems.

3.4.5.1-5

3.4.5.1

- Guidance, Navigation and Control Subsystems (cont) CONSTRAINTS/LIMITATIONS RESULT IF
 - (2) During SSME ignition, the FDI system for the SSME TVC actuators shall be inhibited by issuing Reset/Override commands to all of the SSME TVC channels. Once the chamber pressures of all three SSME's exceed 90 percent of their rated operating values, the FDI system shall be reactivated by removing the Reset/Override commands.
 - (3) During SSME shutdown, the FDI system for all SSME TVC actuators shall be inhibited by issuing Reset/Override commands to the indicated channels.
 - (4) The SSME TVC-actuation subsystem shall not be commanded in a manner such that their SSME's will collide with other SSME's, body flap, or OMS.
 - i. RCS TBS
 - j. OMS TBS
 - 9. <u>Rate Gyro Assembly Warm-up</u>. The RGA must be warmed up 2 minutes prior to its use.

RESULT IF EXCEEDED SSME ignition-induced sideloads acting on the SSME's could momentarily overpower their TVC actuators causing all of their channels to be bypassed, resulting in loss of actuator control and possible collision of affected SSME's with other SSME's, body flap, or OMS.

SSME shutdown-induced sideloads acting on the SSME's when shutdown at low altitudes could overpower their TVC actuators causing loss of actuator control due to four-channel bypasses with collision of affected SSME's with other SSME's, body flap, or OMS. Damage to SSME's body flap,

and OMS could occur. In flight, collisions between effectors could result in loss of vehicle.

Possible degradation of RGA performance prior to temperature stabilization.

3.4.5.1

Guidance, Navigation and Control Subsystems (cont) CONSTRAINTS/LIMITATIONS RESULT IF

10. <u>SRB Rate Gyro Assembly Usage</u> <u>Limit</u>. The SRB rate gyro assemblies shall not be used for more than one flight.

11. ET Separation with Open Disconnect Valves (Nominal/AOA/ATO). Refer to paragraph 3.4.3.1.

- 12. Nominal/AOA/ATO Separation RCS For nominal/AOA/ATO separation, the ET separation sequence must command RCS on one cycle (0.16 sec) prior to structural release and inhibit rotational commands for 2.96 sec starting at the RCS on command time. It can be overridden by the crew. This is not implemented for RTLS ET separation.
- 13. Normal, AOA and RTLS Descent and Landing Phase Structural Flight Restrictions.
 - a. Pitch, Roll and Yaw Maneuvers vs Airspeed. The variation of the maximum allowable load factor for maneuver conditions are found in STS 82-0574.^a
 - b. Rate of Descent. The rate of descent limit is found in STS 82-0574.^a
 - c. Landing Approach. Final flare, just before main gear contact, limits are found in STS 82-0574.^a Main landing gear sink speed restrictions are found in Table 4.2.1-1.
 - d. Landing. Landing limits are found in STS 82-0574.^a Orbiter landing restrictions: Sink rate and velocity at main gear touchdown are found in Table 4.2.1-1.

^aContact J. W. Mistrot/JSC/VF2/483-3314 for access to STS 82-0574.

RESULT IF EXCEEDED Possible degradation of SRB in-flight performance because of the potential for undectable SRB RGA pivot breakage occurring during post-SRB SEP or "towback" environment of previous flight.

To prevent possible <u>Inhibit</u>. recontact between Orbiter and ET.

Orbiter may sustain damage.

3.4.5.1

Guidance, Navigation and Control Subsystems (Cont) CONSTRAINTS/LIMITATIONS RESULT IF

- 14. Landing. The SRB separation switch (S-1) and ET separation switch (S-3) on panel C3 are to be placed into the AUTO position prior to entering MM304 to protect against premature activation of the FC landing SOP due to a jammed or inadvertently activated SEP pushbutton (S-2 or S-4). the switches (S-1, S-3) can safely be placed to the MAN/AUTO (S-1) and MAN (S-3) positions after main gear weight on wheels (WOW) signal.
- 15. Controllers
 - a. The FLT CNTLR POWER switches Inadvertent firings of the (PNLS F6, F8 and A6) cause THC transient outputs when turned on. To prevent jet firings in MM201, the ORBITAL DAP, RCS JETS, VERNIER pushbutton must be lighted prior to switching FLT CNTLR POWER switches (PNSL F6 and A6) to on. Transients cannot be avoided if power switches are thrown in MM104, 105, 106, 301, 302, 303; therefore, procedures must avoid powering up crew station controllers in these modes.
 - b. When the Flight Controller at Power Switch is turned on, turn the "Power Supply Good acceptable Discrete" will go on for one or two samples (0.2 to 0.4 second), go off approximately 1.5 seconds, and then go on and stay on.
 - c. The FLT CNTLR PWR switch should not be turned off after engage of On-Orbit Auto maneuver, or if RCS thrusters should not be fired.

RESULT IF EXCEEDED If either S-2 or S-4 are activated prior to WOW and subsequently, the nose goes below 0° pitch attitude, then the elevons lock-up in the load-relief position at approximately 6° down. This is an irreversible software condition.

RCS thrusters will occur as the power transients travel through the THC, wasting fuel and causing undesirable accelerations.

DDU PS ABC BITE toggling Flight Controller Power on is a normal, acceptphenomenon. BITE measurement indications should be <u>ignored</u> for a minimum of 3.0 seconds.

The DAP will command thrusters to fire and will "Hot Stick" down-mode due to RHC transients larger than breakout threshold.

Guidance, Navigation and Control Subsystems (Concluded) CONSTRAINTS/LIMITATIONS **RESULT IF EXCEEDED**

- 16. Flight Control Channel Switches Simultaneous operation of the Flight Control Channel switches should be avoided to assure that one system is powered up at all times. The manual switching of the FCS channel switches from "override" to "Auto" or "Auto" to "override", due to the breakbefore-make design of the switches, causes power interruption/bypass and subsequent reset of the channel associated with the switch for each ASA and ATVC as follows: a. ASA 3-sigma bypass time duration 0.51 to 1.37 seconds.
 - b. ATVC 3-sigma bypassed time duration 0.210 to 0.520 second.

For more specific detail see SODB Vol. III

Momentary loss of vehicle control may result if four FCS channels are simultaneously bypassed.
TABLE	3.4.5.1-1	GUIDANCE,	NAVIGATION	AND	CONTROL	SUBSYSTEM	COMPONENT	TEMPERATURE	LIMITS
			(Pai	ragra	aph 3.4.5	5.1)			

	 Minimum Operating	 Critical Item	Maxi Opera Temper	mum ting ature,	 (ritical Item	 Minimum Non-	 Critical Item	Maximu opera Temper	m Non- ting ature,	 Critical Iton
Components	Temperature,	and Results If Exceeded	Long Term	Short Term	and Results If Exceeded	Temperature, °F	and Results If Exceeded	Long Term	Short Term	and Results If Exceeded
Rate gyro assem-	 -65 ^a	Ь	165 ^a	165 ^a	d b	 65	 Design test	165	190/1	b
bly Body-mounted accelerometers	0 ^a 	b	145 ^a 	145 ^a	b 	 -65 	limit Design test limit 	122	hr 190/1 hr 156/6	 Design test limit
Inertial measurement unit	 15 	 Below 35° F, possible sys- tem degrada- tion	 125 	125	 Above 120° F, possible sys- tem degrada-	 -65 	 All integrated circuits. Std Military	122	hr 150 	 Fluid filled accelerometers will leak.
Star tracker	40	Degraded ac- [curacy. Inter- [nal thermal [compensation [lower calibra- tion limit is [40° F.	120 ^d 	120 ^d	Image dissect- or tube (IDT). Above 120° F, the star tracker accur- acy will be degraded.	-30	Lens assembly and mounting. Differential thermal con- traction may cause perma- nent optical misalignment with degraded uperformance.	150	150 	 mage dissect- or tube (IDT). At 150° F, the IDT photocat- hode will de- grade and eventually fail.
Door	-100	Specification	150		Specification	_100	Specification	350	350 	 Specification limit
Air data probe	-100 	Possible loss of total sensor calibration	850 ⁰	1000 ^f 	Loss of all air data 	-100 (probe stowed) 	Possible loss of total temperature sensor cali-	350 (P st	350 robe owed)	Loss of total temperature sensor cali- bration
Air data probe deployment	 -100	Electric motor	300	300	 Electric motor (qualified to	-100 (probe	bration Electric motor (qualified to	350 (P	 350 robe	 Electric motor (qualified to
actuator Air data trans- ducer assembly	 35 ^g 	-100° F) System accuracy degradation	 100 ^g 	 100 ^g 	300° F) System accuracy degradation	stowed) -65 	-100° F) Design test limit 	st 122	owed) 150 ^c 	330° F) Design test limit

^aMinimum amd maximum operating temperatures are for ambient air and are applicable if the mounting surface of the package to be cooled (for coldplate-mounted equipment) is maintained within a range of 30° F to 125° F and if the structural temperature (for structuralmounted equipment) is maintained within a range of 35° F to 120° F. Each case in which temperature limits are exceeded will have to be evaluated on an individual basis due to the many variables

involved. Variables include items such as which temperature was exceeded - ambient or coldplate structure; the time duration that the limits were exceeded; and, the command activity and bus voltage during that time period.

Package LRU is subjected to 190° F for 1 hour.

Temperature at the startracker mounting interface.

Temperature at the stattacker mounting interface. Temperature at total temperature sensor location. Probe qualified at 850° F for 2 minutes. Temperature at total temperature sensor location. Local flow conditions to produce 1000° F. Total temperature will exist at the start of probe deployment. However, the total temperature will decay in msec as flow velocities decrease as a function of the _descent trajectory. The probe will heat to temperatures <850° F when deployed.

gADTA transducers are calibrated (compensated) for these temperatures.

		1	Maxi	mum	1		1	Maximu	un Non-	1 1
1	1	1	Opera	ting	1	1	1	opera	ting	
1	Minimum	1	Temper	ature,	l	Minimum Non-	1	Temper	ature,	I .I
1	Operating	Critical Item	°F		Critical Item	operating	Critical Item	F	۲ ۲	Critical Item
Components	Temperature,	and Results	Long	Short	and Results	Temperature,	and Results	Long	Short	and Results
I	°F	If Exceeded	Term	Term	If Exceeded	°F	If Exceeded	Term	Term	If Exceeded
1		l			1	l	1	1	1	
Yaw and brake	35	Actuator	120	120	Actuator	NA	NA	120	NA	Actuator
pedal	1	lubricant		1	lubricant	1	1		1	lubricant
		specification		1	specification			1	1	specification
	۱ .	limit_	Ι,	۱ ,	limit _	1		1	1 4	limit
Aerosurface	-65		165	165		-65	Design test	165	165	Design test
servo amp	. h	l h.c.		1		1	limit			limit
Rotation hand	0 ^{°, 0}	1 0,0	145	145°		-65	Design test	122	150	Design test
controller	a h	l b.c	١,				limit	1	d d	limit
Speedbrake/	1 0 ^a , ^b	1 5,0	145°	145	1	-65	Design test	122	150~	Design test
thrust control-	1	1		1			limit	1		limit
ller	1	l br	Ι,				1	1	Ь	
Rudder pedal	0 0 , 0	l	145	145°	1	-65	Design test	122	150-	Design test
transducer as-	ł	1		1	1	1	limit			limit
sembly		1	۱ ,		1 6	1		1	bd	
Reaction jet	0 1	Ĩ	145	145		-65	Design test	122	150	Design test
driver forward			a	۱ ,		1	limit		d	limit
Reaction jet	65"		165	165		-65	Design test	165	165	Design test
driver aft		1	_a	1		I	limit		d	limit
Ascent thrust	65"	c	165	165	c	-65	Design test	165	165	Design test
control amp	_ h	l bc	۱ ۽	1	_ ۱	1	limit	1	ld	limit
Translation hand	۰ ۵ ا	1 5,0	145°	145	I	-65	Design test	122	150~	Design test
controller		J	1	<u> </u>			limit		_I	limit

TABLE 3.4.5.1-1.- GUIDANCE, NAVIGATION AND CONTROL SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.5.1) (continued)

a Minimum amd maximum operating temperatures are for ambient air and are applicable if the mounting surface of the package to be cooled (for coldplate-mounted equipment) is maintained within a range of 30° F to 125° F and if the structural temperature (for structuralmounted equipment) is maintained within a range of 35° F to 120° F. Each case in which temperature limits are exceeded will have to be evaluated on an individual basis due to the many variables

involved. Variables include items such as which temperature was exceeded - ambient or coldplate structure; the time duration that the limits were exceeded; and, the command activity and bus voltage during that time period. Package LRU is subjected to 190° F for 1 hour. Temperature at the startracker mounting interface.

Component	Lim	its
1. MLS - Range	15.2 nmi. ± .2	
- Azimuth	$ \pm 3.0 \deg \pm .1$	
– Elevation	$6.0 \deg \pm .1$	-
2. TACAN- Range	0.0 nmi. +.5,0	
- Bearing	$180.0 \text{ deg } \pm 2.5$	
3. Radar altimeter	1,000 ft <u>+</u> 100 ft	
4. Accel- Y scale	16.1 ft/sec ² ± 1.7	
– Y bias	$ 0.0 \text{ ft/sec}^2 \pm 0.45$	
- Z scale	$ 64.4 \text{ ft/sec}^2 \pm 6.7$	
- Z bias	0.0 ft/sec ² ± 1.29	
	Test high	Test low
5. RGA - Roll scale	+20.0 deg/sec ±1.12	-20.0 deg/sec ±1.12
- Roll bias	0.00 deg/sec ±0.35	0.00 deg/sec <u>+</u> 0.35
Pitch and yaw scale	+10.0 deg/sec ±0.56	$ -10.0 \text{ deg/sec } \pm 0.56 $
Pitch and yaw bias	0.000 deg/sec ±0.19	0.000 deg/sec ±0.19
	Test high	Test low
6. ADTA - P static	0.814 in. Hg $\pm .001$	24.888 in. Hg $\pm .001$
$- P \alpha$ center	5.475 in. Hg $\pm .002$	29.529 in. Hg $\pm .002$
$- P \alpha$ upper	2.742 in. Hg $\pm .002$	21.710 in. Hg $\pm .002$
$- P \alpha$ lower	1.710 in. Hg $\pm .002$	14.715 in. Hg $\pm .002$
$-T_t$	173.58 °C ± 0.02	18.52 °C ± 0.02
1	1	1
7. RPTA (2)	Full left and right	≥ 91 percent;
	null ≤ 9 percent ^a	

TABLE 3.4.5.1-2.- GN&C COMPONENT SELF TEST LIMITS . (Paragraph 3.4.5.1)

- ^a1. Values shown are for 0 psi compartment pressure differential.
- 2. Flight results for 14.7 psi crew compartment pressure differential listed below (and are repeatable for a given vehicle).
- 3. Flight results for OV-102 from STS-4 and STS-5.
- 4. Null value return to prelaunch value at 40,000 ft. (noted during STS-7 entry) was not confirmed by distortion analysis and geometry of pedal linkage.
- 5. Shifts for any crew compartment pressure differential except 14.7 psi were not analyzed.
- 6.

RPTA	0V-102	percent	OV-103,	percent	OV-104,	percent
test						
condition	L RPTA,	R RPTA,	L RPTA,	R RPTA,	L RPTA,	R RPTA,
	percent	percent	percent	percent	percent	percent
Null shift	L(-)3.5	L(-)3.5		1		
Decr. output		ł				
at right		3.5	3.9	l		
pedal stop			1	To	be suppl:	ied
Incr. output	Limited	Limited		ł		
at left	(>101)	(>101)	1			
pedal stop	1					

TABLE	3.4.5.1-2	GN&C	COMPONENT	SELF	TEST	LIMITS	-	CONCLUDED
		(1	Paragraph	3.4.5	.1)			

ļ		Limits							
ļ	Component								
ļ	8. SBTC (2)	rull alt 2 95 percent;	; full forward ≤ 5						
- !		percent	ton 202						
	9. KHU (2) $-$ Pitch	hard stop	top, 292 percent at						
ļ		nard stop							
	- KOII	1872 percent at sort si	cop, 292 percent at						
.	. Var	Haru Stop	ton NOO managet at						
ļ	- law	there at on the solution of the store sto	top, 200 percent at						
	DHC Null Ditch Doll Vor	147 percent							
	10 Acrosurface foodbacks Budder	$1^{2} dog (3 g)$							
	Channel to channel _ Sneed_	12.2 nercent (3 a)							
	shall not exceed hrake	percent (5 0)							
	_ Rody flan	1 13 percent (3 d)							
	= Elevon(4)	1.3 deg (3 d)							
ł	11. AMI (2)	High	Low						
ł	– Alpha	+30 deg	+2 deg						
	- Accel	+30 ft/sec ²	+20 ft/sec ²						
l	- M/Vel	Mach 3	20k ft/sec						
i	– EAS	300 knots	20 knots						
i	12. AVVI (2)	<u>^</u>	<u> </u>						
i	- Alt accel	+3 ft/sec ²	-2 ft/sec ²						
i	- Alt rate	+300 ft/sec	-200 ft/sec						
Í	- Alt	300k ft	+200 ft						
Ì	- Radar alt	3k ft	200 ft						
Í	13. ADI (3)	High	Low						
Ì	- R Att	300 deg	20 deg						
	- P Att	300 deg	20 deg						
	- Y Att	300 deg	20 deg						
ļ	– R Rate	3 marks right	2 marks left						
ļ	- P Rate	3 marks up	2 marks down						
ļ	- Y Rate	3 marks right	2 marks left						
ļ	– K Att err	3 marks right	2 marks left						
ļ	- PAtterr	3 marks up	2 marks down						
	- I Att err	5 marks right	2 marks left						
	14. $not (2) - bet course$	130 deg	200 deg						
	- neading Dri boaring	130 deg	20 deg						
	- rii bearing	1300 dag							
	- Sec Dearing	13000 aeg	200 aeg						
	- rii mites	3000 nmi	200 mmi						
	- Course dev	1st dot right	lat dat laft						
	- G/S dev	1st dot up	1st dot down						
	$\frac{0.0 \text{ ucv}}{15. \text{ SPI} (2) - \text{LOB}}$	-30 deg	-20 deg						
	- LIB	-30 deg	-20 deg						
i	– RIB	-30 deg	-20 deg						
	– ROB	-30 deg	-20 deg						
	- Body flap	30 percent	20 percent						
i	- Rudder	3 deg right	20 deg left						
i	- Aileron	3 deg right	2 deg left						
i	- Speedbrake	30 percent	20 percent						
j	- Speed brake command	30 percent	20 percent						

	Temperature	
Parameter	sensitivity	Maximum error ^a
Platform ready fail		
at 153.7°F (lower level)	1	
2X accelerometer bias	±5 μg/°F	±31.5 μg
1X accelerometer bias	±40 µg/°F	±252 μg
2X accelerometer scale factor	±50 ppm/°F	±315 ppm
1X accelerometer scale factor	±100 ppm/°F	+630 ppm
Gyro restraint	±.003°/hr/°F	+.0189°/hr
Gyro scale factor Mod II	 +250 ppm/°F	+1575 ppm
Gyro scale factor Mod IIC	±100 ppm/°F	+630 ppm
Platform safe fail	Ĭ	
at 169.7°F (higher level)	İ	
2X accelerometer bias	+5 ug/°F	+48.5 ug
1X accelerometer bias	$+40 \text{ ug/}^{\circ}\text{F}$	+388 ug
2X accelerometer scale factor	+50 ppm/°F	+485 ppm
1X accelerometer scale factor	+100 ppm/°F	+970 ppm
Gvro restraint	+.003°/hr°F	$+.029^{\circ}/hr$
Gyro scale factor Mod II	+250 ppm/°F	+2425 mm
Gyro scale factor Mod IIC	$+100 \text{ ppm/}^{\circ}\text{F}$	+970 ppm
	PP	
CAPRI ready fail		
(138°F)		
Accelerometer bias	+4.9 110/°F	+53.9 ug
Accelerometer scale factor	+53.8 ppm/°F	<u>+</u> 591 8 ppm
		70)1.0 hhw
CAPRI safe fail		
(172,1°F)		
Accelerometer bias	±4 9 μα/°F	+113 2 110
Accelerometer scale factor	$\pm 53.8 \text{ ppm}/9\text{F}$	$\pm 12.62 \ \mu g$
	<u>+</u> 99.6 ppm, 1	±1242.0 ppm
Platform cluster thermostat		
(opens at 178° F)		
Gyro restraint	+.003°/br/°F	$\pm 054^{\circ}/hr$
Gyro scale factor Mod II	± 250 nnm/°F	$\pm .004$ / III
Gyro scale factor Mod IIC	$\pm 100 \text{ ppm/}^{\circ}\text{F}$	<u>+</u> 1800 ppm
2X accelerometer bias	$\pm 5 \mu \sigma / ^{9} F$	±1000 ppm
1X accelerometer bias	$\pm 40 \text{ ym/}^{2}$	$\pm 30 \mu g$
12X accelerometer scale factor	$\pm 40 \mu g/r$	±/20 μg
1X accelerometer scale factor	±00 ppm/°r ±100 ppm/°r	± 900 ppm
IN ACCELETOMETEL SCALE LACIUL	τοο hbuv.t	±1000 ppm
CAPRT thermostat		
(onene at 203° F)		
Accelerometer hiss	. <u>(</u>) u ~ / 9 E	. 264 6
Accelerometer scale factor	1 ±4.7 μg/ τ	±204.0 µg
necerciometer scare factor	t tr dia a c c − t	±2903.2 ppm

TABLE 3.4.5.1-3.- IMU PERFORMANCE DEGRADATION FOR OVER AND UNDER TEMPERATURE . (Paragraph 3.4.5.1)

^aBased on nominal CAPRI operating temperature of 149°F and nominal platform cluster temperature of 160°F.

- Communications and Tracking Subsystems CONSTRAINTS/LIMITATIONS
 - 1. Equipment Temperature Limits. a. See table 3.4.5.2-1.
 - b. The Ku-Band deployed assembly (DA) rate sensor assembly (RSA) heater for the MC409-0025-3006 is a 56 watt heater and will maintain a gyro temperature of $144^{\circ} + 10^{\circ}$ F. The RSA heater for MC409-00250-3007 and up is an 18 watt heater. The 18 watt heater will maintain the gyro temperature, as indicated by telemetry, between 135° F and 160° F except for a cold soak environment which can result in a gyro temperature as low as 100° F. In event the RSA heater is deactivated (or fails off), the gyro temperature will not go below 0° F while the Ku-Band equipment is in STANDBY or ON. The DA is operational with a gyro temperature of 0° F including the capability to lock the gimbal.
 - 2. Television System.
 - a. The TV cameras should not be operated above the caution and warning limit of 113° F.
 - b. Loss of cooling for more than 30 minutes can affect the following television equipment: TV monitor, remote control unit, and video switching unit.
 - c. The TV Laser Ranger must not be pointed directly into the sun.

RESULT IF EXCEEDED

At gyro temperature below O° F the radar angle rate measurement error may exceed specification limits and scan (angle search) patterns may be distorted.

Camera performance degradation may occur starting at this point. Performance degradation may occur.

Possible laser diode and filter damage.

- 3.4.5.2
- Communication and Tracking Subsystem (Cont) CONSTRAINTS/LIMITATIONS RESULT IF EXCEEDED
 - 3. <u>Navigation Sensors "On Time"</u>. Refer to Guidance, Navigation and Control Subsystem (paragraph 3.4.5.1).
 - 4. <u>Ground Command Interface</u> Logic (GCIL).
 - a. GCIL Temperature Limits. See table 3.4.5.6-1.
 - b. A GCIL input voltage level of less than 22 Vdc for a period between 400 microsec and 1.0 millisec shall reresult "Revert To Panel" Mode/flag.
 - 5. Orbiter KU-Band High Gain Steerable Antenna (Communication/Radar System). The KU-Band system can emit a maximum of 10 Volts/meter (V/m) at the periphery of the standard (15-foot diameter) payload envelope for all locations in the payload bay with an X, coordinate greater than 600. Outside the protected obscuration zone, the maximum electric field intensity in the main beam could expose a payload to as much as 254 V/m 3 meters away from the antenna. Although closer proximity to the KU-band radar antenna is possible, thus exposing the payload to higher field intensities, such an approach by a payload to less than 3 meters of the antenna would represent a physical hazard to the Orbiter. For this reason, the exposure of a payload to the peak reactive fields of 304 V/m is not anticipated.
 - 6. Orbiter UHF-Band (Underbelly) Antenna Radiating in the Air-to-Ground Simplex Mode Only.* See paragraph 3.4.2.5.

The "Revert To Panel" flag (measurement) shall remain set until a "Revert To in Panel" reset command is issued.

If payload equipment sensitivity requires 10 V/m or less, antenna angle limitation may be instituded manually or the KU-band transmitter may be turned off.

* NASA Data Source

Communication and Tracking Subsystem (Cont) CONSTRAINTS/LIMITATIONS RESULT IF EXCEEDED

7. <u>Ku-Band Deployed Assembly</u> (Communications/Radar System). The electrical connections between the deployed electronic assembly (DEA) and deployed mechanical assembly (DMA) are provided by a cable wrapped within the gimbal assembly. Antenna (gimbal) motion during pointing, stowing or scanning may introduce excessive cable friction which will degrade antenna performance or during stowing, may cause gimbal lock damage. Pointing. If excessive cable friction occurs from antenna angle designation, the friction will cause the antenna to continue to move (cycle) about the designated angle(s) with ever diminishing amplitude and the entire cycling phenomena lasting approximately 100 seconds. Cycling motion of the antenna about the designated angle(s) will not necessarily be apparent by observing the angle readout display in the crew module. The antenna motion itself (when observable) during cycling is apparent. Cessation of the cycling restores the system to proper operation. Stowing. To avoid the antenna cycling problem during stowing of the deployed assembly and thus prevent potential damage to the antenna gimbal locks, the antenna must be manually slewed to the antenna stowable position of minus 29.4° $\pm 2.5^{\circ}$ in pitch and minus $125.3^{\circ} + 2.5^{\circ}$ in roll prior to initiating the stowing of the deployed assembly. After the antenna has been positioned to these angles, then the deployed assembly may be stowed. To prevent Scanning. deficient performance of the antenna that is caused by excessive friction in the cable wrap when scanning for a target during the SEARCH sequence, the cable wrap should be unwrapped first. This is accomplished by designating the antenna to

the zenith position, i.e.,

Communications and Tracking Subsystems (Cont) CONSTRAINTS/LIMITATIONS RESULT

7. Ku-Band Deployed Assembly

(Comm/Radar System - Cont.)

RESULT IF EXCEEDED roll equal zero $\pm 5^{\circ}$ and pitch equal zero $\pm 5^{\circ}$, by FAST manual steering mode. Then position the antenna ELEV slew switch momentarily up for 14 ± 2 seconds. This cable unwinding motion is intended to remove the excessive friction in the cable wrap. The antenna may now be positioned to the desired location as required and the SEARCH initiated as required.

NOTE: When observing the antenna motion during the ELEV slew up for approximately 14 seconds, the antenna motion should be a near pure alpha rotation of the gimbals to the negative stop, an automatic wrap around wherein the antenna will move to a position very close to the positive alpha stop and return to the original direction of motion.

8. KU-Band Radar Self Test Communication/Radar System). Since To perform a radar system self operative test with the deployed assembly fully deployed, the TWTA self-t must be operating.

9. <u>KU-Band Communications</u> <u>Acquisition (Communication/</u> <u>Radar System)</u>. Acquisition of the TDRS can occur by the Ku-Band antenna by the KU-Band antenna sidelobe with TDRS radiation densities exceeding minus 113.9 dBW/m². Since the TWTA is not operating, the deployed assembly and radar system self-test will fail.

If acquisition of the TDRS occurs on a sidelobe, normal operation (i.e., sequencing to the track mode) will not occur because of the weak signal and improper monopulse angle track functioning. The KU-band is prevented from acquiring on its main lobe whenever a sidelobe detect occurs. Until main lobe acquisition occurs, normal operation is prevented.

Amendment 212

3.4.5.2

- Communications and Tracking Subsystems (Cont)
 - CONSTRAINTS/LIMITATIONS
 - 10. KU-Band Deployed Assembly Stowing (Communication/Radar System). Orbiter accelerations should be limited to ± 0.5 deg/sec and Orbiter rates limited to 5 deg/sec during the gimbal locking sequence to assure proper gimbal locking.
 - 11. <u>KU-Band Radar or Communication</u> <u>Tracking (Communications/Radar</u> <u>System)</u>. The accuracy of the measurement parameters of angle, angle rate, and range rate are reduced as a function of Orbiter tions mode, the allowed loss is exceeded during Orbiter accelerations. Accuracy of measured radar parameters and communications tracking accuracy will be degraded and a breaktrack condition may occur during Orbiter accelerations firing. Measured radar rameter accuracy and communications tracking accuracy
 - 12. <u>Ku-band Radar Data (Communica-</u> <u>tions/Radar System</u>). Radar data from the Ku-band from the Ku-band communication/ radar system is not controlled when the radar operating mode standby power is selected. Radar data from the Ku-band communications/radar system may be invalid if system is in radar operating mode, standby power is selected.

13. <u>KU-Band Radar Self-Test (Com-</u> <u>munications/Radar System)</u>. The radar AGC can be set at a level that will preclude detection of the self-test target, if the equipment has been ON in the radar operating mode, prior to commanding self-test. Damage to the gimbal locking mechanism may occur.

RESULT IF EXCEEDED

Accuracy of measured radar parameters and communications tracking accuracy will track condition may occur resulting from primary RCS firing. Measured radar parameter accuracy and communications tracking accuracy will be within specified limits for Orbiter accelerations resulting from vernier thruster firings (i.e., for accelerations of approximately 0.03 deg/sec²/axis. Radar data from the Ku-band may be invalid if system is in radar operating mode, standby power. The invalid data could include the "data good" status flags as well as range, range rate, etc. In the event invalid radar data should be of concern, and standby operation is desired, the invalid data can be avoided by selecting communications operating mode and standby power. The equipment may fail self-test even though it is operating properly. This problem can be avoided by going to standby power momentarily (i.e. 3 to 5 seconds); send self-test command and and go to radar ON.

- Communications and Tracking Subsystems (Cont) CONSTRAINTS/LIMITATIONS RESULT
 - 14. <u>KU-Band Radar Passive-Coop</u> <u>Switching (Communications/Radar</u> <u>System)</u>. Switching from radar coop (active) target mode to radar passive target mode (or vice versa) while Ku-power is ON can result in EA-2 (Electronics Assembly -2) "hanging up" in the OFF state.
 - 15. <u>KU-Band Switching, Communi-</u> <u>cations OFF or Communications</u> <u>to Radar</u>. The following steps are required prior to switching from comm (communications) ON to OFF or STANDBY and when switching from the comm operating mode to the radar operating mode:
 - Set return link mode 1/mode 2 select to MODE 2.
 - 2. Set the modulation on/off select to ON.
 - 16. KU-Band Steering Mode when Orbiter is Maneuvering, Radar Operations: Select Auto Steering Mode prior to starting orbiter maneuver to the TI burn attitude during rendezvous when using the Ku-Band radar. The Auto Steering Mode (or any Steering Mode other than GPC ACQ) should be selected when operating in radar and the line-of-sight angles to the target are (or may be as a result of orbiter maneuvers) outside of the normal radar operating region -- i.e. outside the 60 deg. half cone centered about the orbiter -Z-axis.

RESULT IF EXCEEDED Radar function is inoperative. This condition can be avoided avoided by selecting the desired radar target mode prior to switching Ku-power ON. In t event it is desired to change target modes after the equipment is ON (in radar operating mode), the problem can be avoided by the following sequence: (1) KU-power to STANDBY. (2) Select desired target mode. (3) KU-power to ON. Failure to follow these steps can result in leakage of the 1.875 GHz IF through the SPA and transmission of 15 GHz signals during radar operations. Anomalous readings of the transmitted rf power measurement may occur.

If the Ku-Band equipment is left in the GPC ACQ steering mode and the maneuver results in a loss of target, Ku-Band equipment will be commanded to perform a scan (angle search). A scan when the beta is large can result in sustained, large angle. oscillation of the antenna. In the event that sustained, large angle, oscillations are experienced, they can be stopped and normal operation restored by switching the power to STANDBY for four to six seconds and then back to ON. If the Ku-Band power is switched to OFF to stop sustained, large angle. oscillations, wait at least 15 seconds before switching / power back to ON. (See 18 below)

Amendment 219

3.4.5.2

Communications and Tracking Subsystems (Cont) CONSTRAINTS/LIMITATIONS RESULT IF

17. Ku-Band Fast Manual Slew: A prolonged fast manual slew maneuver with the beta angle large can result in a sustained, large angle, oscillation of the antenna when the slew command is removed.
This is the same pnenomenon addressed in constraint number 16 except that the prior to entry into sustained large angle oscillations, is different.

RESULT IF EXCEEDED This is the same pnenomenon addressed in constraint number 16 except that the prior to entry into sustained large angle oscillations, is different. This phenomenon occurred one time out of every four or five attempts during System Development Testing while doing FAST Pitch DOWN maneuvers with beta near the negative stop -- i. e. approximately minus 84 degrees. Sustained, large angle, oscillations will not occur as a result of the "cable unwrap" maneuver described in constraint number 7 because the beta angle remains near zero deg. throughout the maneuver. In the event that sustained, large angle, antenna oscillations are experienced, they can be stopped and normal operation restored by switching the Ku-Band power to STANDBY for four to six seconds and then back to ON. If the power is switched to OFF to stop the oscillations, wait at least 15 seconds before switching

power back to ON.

Amendment 219

3.4.5.2

- Communucations and Tracking Subsystems (Cont) CONSTRAINTS/LIMITATIONS RESULT IF EXCEEDED
- 18. <u>Clearing Ku-Band Internal</u> Faults:
 - (a) <u>DEA Transmitter Faults</u>: The DEA has four transmitter fault protection circuits as follows:
 - o Cathode Under Voltage
 - o Cathode Over Voltage
 - o Helix Current (or Body Current)

o Transmitter Current The cathode under voltage fault protection circuit is a non-latching circuit -- normal operation is resumed if/when the under voltage condition goes away. The other circuits are latching circuits and have to be reset. Cathode over voltage and helix current faults can be reset by switching the Ku-Band equipment to STANDBY but the equipment must be switched OFF to reset a transmiter current fault.

(b) Low Voltage Power Supply Faults:

The low voltage power supplies (LVPS's) in the Ku-Band EA-1, EA-2, SPA, and DA (DEA) have internal fault protection circuits as follows:

- o Under Voltage
- o Over Voltage

o Over Current The under voltage protection circuit, which monitors the 28 Vdc input power, is nonlatching; normal operation of LVPS will automatically be resumed when/if the fault condition clears. The other two fault protection circuits are latching and have to be reset by switching the Ku-Band equipment OFF. Failure to follow the procedure for clearing transmitter and/or LVPS faults could result in the following problems:

- o Inability to isolate a transmitter current fault from a helix current fault or a cathode voltage fault.
- o If the Ku-Band power is off less than two seconds (siep 6), the LVPS will not turn off and the transmitter current fault circuit will not be reset.
- o If the power is OFF more than seven seconds, the TWT filament time out will be reset. This will result in approximately four minutes delay before the TWT will come on which could be misinterpreted as a nonclearable fault or failure.
- o Switching the Ku-Band equipment from ON to OFF and then back to ON without waiting in STANDBY for 12 to 15 seconds (step 8) will result in transients on the high voltage wave forms that are considered undesirable.

,

Com	nunucations and Tracking Subsystem	ms (Cont)
	STRAINTS/LIMITATIONS	RESULT IF EXCEEDED
18.	Clearing Ku-Band Internal	
	Faults (Concluded):	
	The procedure for resetting	Note:
	the latching fault circuits	A DEA LVPS fault, either
	in the DEA transmitter and	latching or non latching,
	the LVPS's (and restoring	will result in erratic
	normal operation if the	antenna motion or a
	condition causing the fault	"runaway antenna". It
	circuit to trip has gone	may not be possible to
	away) is as follows:	distinguish between a DEA
	1. Switch Ku-Band power to	LVPS fault and a sustained,
	STANDBY.	large angle, oscillation
	2. Wait four to six seconds.	identified in constraints
	3. Switch Ku-Band power to	16 and 17 above during
	ON.	real time orbital operations
	4. If normal operation is	until after the fault reset/
	restored, the problem	fault clearance procedure
	was probably either a	has been performed.
	cathode over voltage or	
	a nellx (body) current	
	fault and the condition	
	causing the fault has	
	tion is not restand	-
	proceed with stop 5 below	
	5 Switch Ku Band to OFF	•
	6. Wait four to six second	
	7. Switch Ku-Band nover to	
	STANDBY.	
	8. Wait 12 to 15 seconds.	
	9. Switch Ku-Band power to O	Ν.
19.	Ku-Band Equipment Transients	
	On The Transmitted RF Power	
	Measurement (V74E2511A):	
	Cycling of the Ku-Band	Failure to recognize that
	deployed electronic	the DEA heater cycling ON
	assembly (DEA) heater	or OFF causes transients on
	causes transients on	the transmitted RF power
	the Ku-Band RF power	measurement can result in
	measurement. Transient	the following false
	magnitude is dependent	concerns:
	on transmitter operation	o RF power is being radiated
	as follows:	when, in fact, no radia-
	o Transmitter OFF (e.g.	tion is present.
	inhibited as a result	o RF power output is vary-
	of the gimbal position	ing when, in fact, it is
	being within the	stable.
	obscuration zone, the	o RF power output is higher
	transmitter OFF command,	than commanded.

3.4.5.2-9

- 3.4.5.2
- Communucations and Tracking Subsystems (Concluded) CONSTRAINTS/LIMITATIONS RESULT IF EXCEEDED
- 19. <u>Ku-Band Equipment -- Transients</u> On The Transmitted RF Power <u>Measurement (V74E2511A)(Concluded):</u> equipment operating in standby, etc.): Measurement momentarily indicates essentially full power output.
 - o Transmitter on, full
 power output: Measurement may indicate a small
 momentary, increase in
 RF power output.
 - o Transmitter ON, Medium or Low power commanded (radar only): Measurement momentarily indicates essentially full power output.
- 20. <u>Ku-Band Equipment -- DA Wiggle</u> <u>Test:</u> <u>EA 1 will perform a wiggle test</u>

EA-1 will perform a wiggle test on the DA gimbal even though the DA is stowed (i.e. the transmit scan enable signal is LOW) if the Ku-Band equipment is switched to either STANDBY or ON after being OFF and the stow initiate signal is HIGH.

21. <u>Ku-Band Communictions</u> <u>Uplink Command (Communications/</u> <u>Radar System</u>). When the communications system is commanded on via an uplink command, a valid Channel 3 selection must be made. Possible damage to the antenna and/or orbiter.

Possible safety hazard. The DA gimbal motors are not explosion proof.

Failure to switch to Mode 2 Return Link. The Ku-Band is initialized at turn-on for a Mode 1 Return Link. If a Channel 3 seletion is not made after turn-on, the system will remain in Mode 1.

- 22. <u>S-Band Power Amplifier</u> <u>Assembly Temperature</u> <u>Limits.</u> a. Power amplifier assembly (LRU) Table 3.4.5.2-1.
 - b. Collector 1 (V74T4514A)
 c. Collector 2 (V74T4515A)

Irrepairable damage to LRU may result if temperature limits are exceeded. + 230° F maximum + 230° F maximum

]	1	Maxin	num	1			1		Maximur	Non-		
1	1		Opera	ing	1		ļ	i		operat	ing	İ	
1	Minimum		Tempera	ature,	l		Minimum Non-	i		Tempera	iture,	l	
1	Operating	Critical Item	°F		Critica	al Item	operating	Critica	al Item	°F		Critica	l Item
Components	Temperature,	and Results	Long	Short	and Re	sults	Temperature,	and R	esults	Long.	Short	and Re	sults
i	°F ^a	If Exceeded	Term	Term	If Exc	ceeded	°F	If Ex	ceeded	Term	Term	If Exc	eeded
Ì	Í		Ì	i	i		İ	i		1		l	
Audio CCU	-20	Off-limit tem-	120	120	Off-lin	nit tem-	-65	Off-li	nit tem-	150	200	Off-lim	it tem-
		perature test-	Ì		peratu	ce test-	1	peratu	re test-	i i		peratur	e test-
Ì	1	ing has not	Ì	ĺ	ing has	s not	ł	ing ha	s not	1		ing has	not
		been done to	Ì		been do	one to	1	been d	one to	i :		been do	one to
		determine	Ì		determi	ine	1	determ	ine	1		determi	ne
Í	1	critical tem-	1		critica	al tem-	1	critica	al tem-	İ :		critica	l tem-
	1	perature or	Ì		peratu	ce or	Ì	peratu	re or	i i		peratur	e or
		critical item.	Ì		critica	al item.		critic	al item.	j ·		critica	l item.
Television gys-	-20		140	140			-20	İ		140	140	j .	
tem camera			Ì	1			1	Í		i i	ĺ		
Laser ranger	-4	i l	130	130			-5	İ		130	130		
sight			İ	ĺ			1	İ		j I		1	
Video recorder	+60		120	120	Í		-20 ^e	İ		120	120	1	
Payload and net-	-20	i l	120	120	1		65	i		120	190	i i	
work signal			1	ĺ	1		9 1	Ì		1			
processors	1		İ	1	1		1	İ					
FM signal pro-	+35		120	120	1		-65	İ		120	150	i	
cessor	1		Ì		1			Ì		1			
S-band transpon-	+35		110	120	1		-65	Ì		120	150		
der			Ì				1	Ì		1			
S-band power	+35		120	120			-65	Ì		120	150		
amplifier	1		Ì					Ì		i 1			
S-band preampli-	+35		120	120			65	1		120	150	1	
fier	1	1	1		1		1			1			
S-band FM trans-	+35		120	120			-65	1		120	150		
mitter	1	1	1	-				1		1			
S-band antenna	+35		120	120			-65	Ì		120	150		
switch assembly			1		1			Ì		1]
S-band switch	-20		1					1					
beam control	ł	1	120	120	۱ I		-65	1		120	190		
assembly			1		1			1		1		1	
EVA/ATC	-20		120	120	1		65	1		120	190		:
transceiver	1							1					

TABLE 3.4.5.2-1.- COMMUNICATIONS AND TRACKING SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.4.5.2)

^aSurrounded by air - coldplate temperature 35° F ^bIn excess of 6 hrs ^cOne hr maximum ^dOperating temperatures monitored (sit tube sensor) internal to camera. Alarm trips at 115° F and reads out on TV monitor and caution and warning. With tape <u>not</u> installed, with tape installed timit is 60° F.

195

3.4.5.2-11

1			Maxi	mum		1		Maximu	Non-	l
	1	1	Opera	ting		1	1	operat	ing	1
1	Minimum	1	Temper	ature,		Minimum Non-	1	Tempera	ture,	1
	Operating	Critical Item	°₽		Critical Item	operating	Critical Item	°F		Critical Item
Components	Temperature,	and Results	Long	Short	and Results	Temperature,	and Results	Long	Short	and Results
	°F	If Exceeded	Term	Term	If Exceeded	°F	If Exceeded	Term	Term	If Exceeded
Ku-band	-100	Lubricant	160	NA	Test limit		 Test limit	300	NA	Test limit
deployment	1	ì			1		1	1		1050 11410
mechanism ^t			1	1						
Ku-band deployed	g	Off-limit	g	l g	Off-limit tem-	1	Off-limit tem-	i i		Off-limit tem-
assembly	1	temperature	1	1	perature test-		perature test-	i i		perature test-
1. Transmitter	0	testing has	176	200	ing has not	-65	ing has not	176	200	ing has not
2. Receiver	0	not been done	161	200	been done to	-65	been done to	161	200	been done to
3. A-axis gimbal	0	to determine	155	185	determine	-65	determine	155	185	determine
4. B-axis gimbal	0	critical tem-	171	185	critical tem-	-65	critical temp-	171	185	critical tem-
5. Antenna feed	0	perature or	191	250	perature or	-65	erature or	191	250	perature or
6. Gyro	0	critical item.	160	185	critical item.	-65	critical item.	160	185	critical item.
 Ku-band	l o ^a	 Off-limit tem-	1 140 ¹	140 ⁱ	 Off_limit_tom_	-65	Off limit ton		160	
Electronic	-	Iperature test-	1	1 1 10	perature test-	1	Derature test-	1 120 1	100	Dersture test
assemblies	1	ling has not	1	1	ing has not	8	iperature test-	1 1		perature test-
1 and 2	1	lbeen done to	1	1	been done to	ł *	has not			ing has not
1	i	determine	1	1	determine	1 ·	determine	5 1		determine
ì	1	critical tem-	1	1	critical tem-	1	critical ton.			aritical ter
	1	perature or	1	1	perature or	1	lograture or	11		CIICICAI Cen-
	1	critical item	1	1	critical item	1	peracure or			perature or
Ku-band Signal	0 ^a		140 ⁱ	1 140 ¹		1 1 –65	i i i i i i i i i i i i i i i i i i i	1 120 1	150	CIICICAI ICEM.
processor	1					1 00			150	
Payload inter-	35 ^a	i	113 ¹	125 ¹		-65		120	150	
rogator						1	i l	i i		i l i
RALT	35 [°]		140 ¹	140 ¹		-65	i l	160	190	i i
TACAN"	35	1	160	160		-65	i l'	150	190	
MSBLS	-65	None	160	160	None	i70	None	160 i	160	None

TABLE 3.4.5.2-1.- COMMUNICATIONS AND TRACKING SUBSYSTEM COMPONENT TEMPERATURE LIMITS (Continued) (Paragraph 3.4.5.2)

^aSurrounded by air - coldplate temperature 35° F ^bIn excess of 6 hrs ^cOne hr maximum f Mounted in the payload bay. ^gThe deployed assembly should not be operated on the ground or in space unless the indications of the six temperature sensors are within the maximum/minimum operating temperature ranges.

h TACAN must not be operated without air cooling. During a contingency situation in which there is an absence of air cooling, the unit may be operated for 3 minutes, but will probably not operate after 5 to 10 minutes. ¹Surrounding air temperature; maximum cold plate temperature is 120° F.

TABLE 3.4.5.2-1	COMMUNICATIONS	AND	TRACKING	SUBSYSTEM	COMPONENT	TEMPERATURE	LIMITS	(Concluded)
			(Paragra	aph 3.4.5.2	2)			

,

1	1	1	Maxii	ກບມກ	1		1	Maximum	Non-	1 . 1
1	1		Operat	ing	1		1	operat	ing	
1	/ Minimum	1	Tempera	ture	1	Minimum Non-	1	Tempera	ture	i i
1	Operating	Critical Item	05	,	Critical Item	operating	Critical Item	1 °F	,	Critical Item
Components	Topperature	and Results	Tong	Short	and Reculte	Temperature	and Results	Long	Short	and Beculte
	l ora	I If Exceeded	Torm	Torm	I If Exceeded	i or	I If Exceeded	Term	Term	I If Exceeded
1	'r	I II Exceeded	Term	i ierm	I II Exceeded		I II EXCEEDED	i ieim	Teru	I II EXCeeded
Antennas	1			· · ·	1	l				¦
Ku-band micro-	-150	Dielectric	270	350	Dielectric	-150	Dielectric	270	350	Dielectric
, I wave scan beam	1	lens.		1	lens.		lens.	i i		lens.
landing system	ł	Parameter		1	Parameter		Parameter	i i		Parameter
(MSBLS)	1	changes RF		ĺ	changes RF		changes RF			changes RF
1	•	pattern degra-		i	pattern degra-		pattern degra-			pattern degra-
1	1	dation		, I	dation		dation	i i		dation
L-band Tacan	-150	Polvimide foam	270	I 350	Polvimide foam	-150	Polvimide foam	270	350	Polvimide foam
1	1	(cavity fill-			(cavity fill-		Parameter			Parameter
1	1	er). Parameter		ĺ	er). Parameter	1	changes RF			changes RF
1	1	changes. RF			changes, RF	, 	pattern degra-	i i		pattern degra-
	1	pattern degra-	1	1	pattern degra-	1	dation			dation
1		dation.	1		dation			i i		1
IC-band altimeter	-150	Microspheres	270	350 ^j	Microspheres	-150	Micropheres	270	350	Mic ospheres
le build dicimeter	1 100	(cavity fill-	1 2.0	1	(cavity fill-		(cavity fill-	1		(cavity fill-
1	1	ar)	1	1	ler).		ler)	1		ler)
1	1	IBF nattern	1	1	IRF pattern	1	IRF pattern			RF pattern
i 1		degradation	1	1	Idegradation	1	Idegradation			degradation
Incr	-150	Polvimide foam	1 270	350 ^j	Polvimide foam	-150	Polvimide foam	270	350	Polvimide
i one	1.50	l/cavity fill-		1 220	(cavity fill-	1	l(cavity fill-			(cavity fill-)
4	1	(cavity IIII-	1	1	(cuvicy Lill (or) RF	1	ler) PF			ler). RF
1	1	losttern	1	1	inattern	1	nattern			lpattern
1	1	Idegradation	1	1	Idegradation	4	Idegradation			Idegradation
		laegradacion	1	! 						
Hemi	-210	Polyimide	270	350	Polyimide	-210	Polyimide	270	350	Polyimide
MC481-0070	1	glass. RF	İ	1	glass. RF	ļ	glass. RF	1		glass. RF
		pattern	ĺ	Ì	pattern	İ	pattern			pattern
1	1	degradation	1	İ.	degradation	1	degradation	l		degradation
S-band hemi/GPS	-160	Polvimide	270	350 []]	Polyimide	-160	Polyimide	270	350	Polyimide
MC481-0090		glass. RF		İ	glass. RF	ĺ	glass. RF	1		glass. RF
	1	pattern	İ	Ì	pattern	1	pattern			pattern
1	1	degradation	1	i	degradation	1	degradation	Ì		degradation
S-Band Pavload	-210	Polvimide	270	350	Polyimide	-210	Polyimide	270	350	Polyimide
MC481-0071		glass. RF		i	glass. RF	İ	glass. RF	1		glass. RF
	I	pattern	i	i	pattern	1	pattern	1		pattern
Í	1	degradation	İ		degradation	İ	degradation	1		degradation
S-band guad	-160	Polyimide	270	j 350 ⁰	Polyimide	–160	Polyimide	270	350	Polyimide
switched beam		glass. RF	İ	Ì	glass. RF	İ	glass. RF	1		glass. RF
MC481-0088	1	pattern	i	i	pattern	1	pattern	ł		pattern
	1	degradation	i	i	degradation	İ	degradation	1		degradation

a Surrounded by air - coldplate temperature 35° F bIn excess of 6 hrs One hr maximum JRadome window certified at center point to a maximum temperature of 500° F.

197

3.4.5.2-13

- 3.4.5.3
- Caution and Warning Subsystem CONSTRAINTS/LIMITATIONS 1. Maximum system pressure
 - is 30 psia.
 - 2. Minimum system temperature is 35° F.
 - 3. Maximum system temperature is 120° F.

RESULT IF EXCEEDED Data based on hardware analysis. Any degradation or failure outside these parameters is not known at this time.

Equipment will be tested to these limits. Any degradation or failure outside these parameters is not known at this time.

Equipment will be tested to these limits. Any degradation or failure outside these parameters is not known at this time.

- 3.4.5.4
- Data Processing Subsystems CONSTRAINTS/LIMITATIONS
- 1. Data Processing Components Temperature Limits. See tables 3.4.5.4-1 and 3.4.5.4-2.
- 2. <u>DEU/GPC Input Power</u>. Input voltage to the DEU/GPC must not fall below 15 V/17.5 V for more than 400 µsec.

DEU/GPC will initiate shutdown sequence. There is an increased DEU/GPC failure rate (5.4 times steadystate) during the normal 1-hour cooldown and 2-hour warmup due to thermal stress. However, there is no practical reliability penalty for power cycles at rates consistent with meaningful power conservation measures. Violation will cause all IOM subsystem signals to be set to a logic-zero state and the MDM power supplies will then turn off.

3. <u>Multiplexer/Demultiplexer Input</u> <u>Power</u>. Both input power sources must not fall below 24 Vdc for more than 0.2 sec and must not fall below 22 Vdc for more than 2.0 msec.

TABLE 3.4.5.4-1	DATA	PROCESSING	SUBSYSTEM	COMPONENT	TEMPERATURE	LIMITS
		(Paragra	aph 3.4.5.4	1)		

	1		Maxi	mum ting	1	1		Maximu	n Non-	1
	l I Minimum		Opera	aturo	1	 Minimum New		opera	cing	1
	Operating	 Critical Itam	l on	acute,	 Critical Them	Minimum Non-		Temper	ature,	
Components	Temperature	and Pacults	Long	Short	and Baculta	operating	Critical Item		105	Critical Item
componenco	°F	If Exceeded	Term	Term	I If Exceeded	liemperacure,	I and Results	Long	Snort	I and Results
			1	1	II Incoeded	1	II INCEEDED	Term	Term	II Exceeded
General purpose	–20 ^a	None specified	1 120	1 1 2 0	Electronic	-65	 Electronic	1 120	150 ^b	None
computer		Operation not	1	1	components ex-		Components ex-	1 120	1 100	
•		verified below	i	i	ceed maximum	i	ceed manufac-	1	1	
		minimum tem-	i	i	case tempera-	i	lturer's	1	1	1
	1	perature.	İ	i	ture.		Ispecified	i	1	
		1	Ì	i	1	i i	ivalues.	1	1	
Multiplexer/	i –65 [°]	None	160 ^C	160 ^C	Electronic	-65	Electronic	1 165	1 165	None
demultiplexer	1		1	1	components ex-		components	1	1 200	
•	1		1		ceed maximum	1	lexceed manu-	1	1	r I
	1		1	i	case tempera-	, ;	facturer's	1 1	1	
	, I		, I	i	lture.		Ispecified	1	1	
	i		i İ	i	1	ì	lvalues.	1		
Engine interface	-65	None	165	165	Electronic	-65	Electronic	165	1 165	None
unit	i				components ex-		components	1	1 -00	
	i		ĺ	i	ceed maximum	1	exceed manu-	i	1	1
	i	i	1	Ì	case tempera-		facturer's	i		1
	i	i		i	lture.		specified	i	1	1
	i .	i	i	i	1	1	values.	i	i	1
Multifunction	-20 ^d	None specified	120	120	Electronic	-65	Electronic	120	150 ^b	None
CRT display	ĺ	Operation not			components ex-		components	1	1	1
system	İ	verified			ceed maximum	1	exceed manu-	1	1	
-	İ	below minimum			case tempera-	1	facturer's	1	1	
	Ì	temperature.		i	ture.	l	specified	i	1	1
		i -		i	i	i	values.	i	i	• •
Mass memory unit	35 ^e	Magnetic tape	105	105	Magnetic tape	-10	Magnetic tape	i 130	i 130	Magnetic tape
	1	binder degra-		İ	binder degra-	i	binder degra-	i	i	
Multiplexer in-	ĺ	dation		i	dation	i	dation	i	i	Ì
terface adapter	Ì	Ì	i	İ -	İ		i	i.	i	
Serial	-65	None specified	160	196 ^r	Semiconductor	-65	Electronic	122 ^b	i 122 ^e	None
		Operation not		l	components ex-	i	components	i	İ	i
		verified below		l	ceed maximum	i ·	exceed manu-		l	İ
		minimum tem-		l	junction tem-	ĺ	facturer's	i	İ	i
		perature.		1	perature.	1	specified	İ	İ	İ
				_ ا	1	1	values.	İ.	l .	1
Dual	0	None specified	194	2039	Semiconductor	-65	Electronic	122 ^D	122 ^e	None
		Operation not		1	components ex-	Ì	components ex-	ĺ	l	1
		vertified be-			ceed maximum		ceed manufac-	ĺ		j –
		low minimum		I	junction tem-	1	turer's speci-	I	l	ł
		temperature.			perature.	t	fied values.	1	₁	1
Data bus isola—	-65	None specified	165	165	Semiconductor	-65	Electronic	122	150 ^D	None
tion amplifier		Operation not		1	conponents ex-	1	components	1		I
1		verified below			ceed maximum	1	exceed manu-			1
!		minimum tem-		l	junction tem-	1	facturer's			1
I		perature.		l	perature.	1	specified		1	1 .
		1				1	values.	i .		1

Compliance with functional performance requirements at 35° F and above b For 6 hours a day Coldplates operating d Functional compliance at 35° F e Coldplate temperature 35° F to 130° F f Test but not specified g Expected but not specified

		Ambient	Cold-	Coolant	Pressurized Cabin		Depressurized Cabin		
	a	l b	plate	flow-	Maximum	Required	Maximum	Required	
Component	Test Sequence	Temp, ~~	Temp,°F	rate,	operating	cooldown time,	operating	cooldown time,	
		°F		lb/min	time, min	hr.	time, min	hr.	
	Unit initially powered on.	1			1				
l	Following loss of cooling,	80	N/A	[3.1 (IOP)	26	4.5	20	No data	
1	unit allowed to operate until	1	l	2.62(CPU)	1	i	1		
	maximum allowable tempera-	1	İ	1	i		•	1	
	tures achieved, then powered	i	i	i	i				
	off for cooldown.	i	l	i		1			
GPC	i	Ì	I	i	1				
	Unit initially powered off.	1	l	1	1	1			
	Following loss of cooling.	80	I N7/2	13 1 (TOP)	56	d d	1 45		
	junit powered on and allowed			12 62(CDII)	1 50	1 2.2	45	NO GALA	
	to operate until maximum	l t	1	12.02(CE0)	1	1			
	allowable temperatures			1	1				
	achieved C	1	1	1	1				
	achieved.			1	ļ				
	Unit initially neverad on			<u> </u>					
	Following loss of gooling		N (3						
	whit impediately reveal of		N/A	(3.1 (IOP)	NO GATA	3.5	No data	No data	
	ident considerately powered off			[2.62(CPU)	1			1	
	Iter cooldown.								
	Following lang of moline	100							
	rollowing loss or cooling,	100	N/A	0.81 (DU)	68	3	34	4	
	unit allowed to operate until	1		1.93(DEU)	1				
	maximum allowable tempera-			1					
	tures achieved, then powered			I				1	
	off for cooldown.			1		1 1			
				l					
MCDS	Unit initially powered off.					ا بر ا		4	
	Following loss of cooling,	100	N/A	0.81 (DU)	100	3	56	4 ^a 1	
	unit powered on and allow-	ll		1.93(DEU)	ľ	1		i	
	able temperatures achieved.	77	N/A	0.81 (DU)				i i i	
		L I		1.93(DEU)	132	No data	88	No data i	
	Unit initially powered on.			_					
MDM	Following loss of cooling,	145	120	Unknown ^r	No limit ^g	N/A ⁿ	No data ¹	No data I	
	unit allowed to operate.			İ		· · ·			

TABLE 3.4.5.4-2.- DATA PROCESSING SUBSYSTEM COMPONENT OPERATIONAL LIMITS FOR LOSS OF COOLING (Paragraph 3.4.5.4)

Test sequences began with all conditions at steady-state prior to loss of force cooling.

^CMaximum allowable temperature defined as a component junction temperature limit of 125° C (257° F). This temperature reflects a component specification limit and not an actual component destructive limit. ^dTest sequence did not include a timed cooldown period. Required cooldown time for this case (unit initially powered off) is assumed

Test sequence did not include a timed cooldown period. Required cooldown time for this case (unit initially powered off) is assumed to be the same test sequence with the unit initially powered on because in both cases, the unit is powered off when maximum temperatures achieved.

^eMaximum allowable temperatures defined as a component junction temperature limit of 150° C (302° F). Actual testing was constrain- f_{-}^{e} to a junction temperature of 125° C (257° F) and data have been extrapolated to the 150° C (203° F).

Flow rate as appropriate to maintain coldplate temperature of 120° F.

After 2.5 hours, unit stabilized 11° F below the maximum allowable Singer MIA mounting surface temperature limit of 196° F (91° C). Although maximum temperatures were never achieved for this case, unit was powered off for cooldown. Temperature stabilized in 2 hours.

¹Prior to the loss of forced cooling for this case, unit stabilized 11° F above the maximum allowable Singer MIA mounting surface temperature limit of 196° F (91° C). No further testing was done. Coldplate temperature was 125° F and coolant flow rate was appropriate to maintain a constant coldplate temperature.

- 3.4.5.5
- Instrumentation Subsystems CONSTRAINTS/LIMITATIONS
- Instrumentation Components <u>Temperature Limits</u>. See table 3.4.5.5-1. For MADS equipment temperature management data, see table 3.4.5.5-2 for OV-103 and OV-104.
- 2. Master Timing Unit.
 - a. The master timing unit requires a 12-hour warmup period prior to operation.
 - b. The master timing unit oscillator frequency shift is ±1 part in 10' per day maximum.
 - c. The MTU bite bits for "Voted Demand" accumulator channels A, B and C (3 BSR bits) may toggle, in any combination, as a result of PCM demand time sequence following time initialization.
- 3. Pulse Code Modulation Master Unit.
 - a. The 28 Vdc input power must not be interrupted for more than 400 µsec.
 - b. Input power to PCMMU must not fall below 22.0 Vdc.
 - c. The 128 kbps programmable TLM formatter can not be updated by the GPC until the 128 kbps "fixed" TLM formatter is selected to output 128 kbps downlink.
 - d. Payload data interleaver (PDI) not on Orbiter or turned off.

RESULT IF EXCEEDED

Specific accuracy and stability will not be achieved until the unit reaches operational temperature. Accuracy required to maintain time precision and keep the number of time updates to a minimum. No affect on time signals from MTU. Cycling power on operating PCM or switching to alternate PCM may correct condition.

PCMMU internal memories may be affected.

PCMMU communications with all external devices may be immediately inhibited. PCMMU internal control logic will block GPC access to 128 kbps programmable memory.

PCMMU bi	it status register
(BSR) ma	ay indicate bad for
the foll	lowing bits:
Bit no.	Nomenclature
4	128 kbps TLM
	downlink good
5	64 kbps TLM downlink
	good
11	OI ram parity good
12	PDI RAM parity good
15 ^a	No response MDM or
	PDI

^aOnly bit 15, if PDI is turned on then turned off.

202 3.4.5.5-1

. . . .

- 3.4.5.5 Instrumentation Subsystems (Cont) CONSTRAINTS/LIMITATIONS
 - e. Spacelab not on Orbiter. But with PCMMU PN/MC476-0130-07XX installed.
 - 5. MADS Operating Temperature. The OV-099 Orbiter midbody MADS equipment shelf temperature monitored by measurements (V78T9606A and V78T9607A on flights 1 through 5 and V78T9608A and V78T9607A on flights 6 and subsequent) is to be between 30° F and 140° F during all prelaunch. on-orbit. entry/landing and postlanding operations, that require data acquisition periods. Shelf temperature shall be 100° F maximum at MADS power-up prior to entry (about 1 hour prior to touchdown) to insure equipment temperature does not exceed the 140° F redline temperature at landing. The Orbiter OV-103 and OV-104 midbody MADS equipment shelf temperature is monitored by measurement V78T9607A, and shall be maintained within the same temperature limits specified for OV-99.
 - 6. Pulse Code Modulation Multiplexer-MADS. The input power to the multiplexer must not fall below 22 Vdc or go above 37 Vdc.
 - 7. Data Recorder MADS.
 - a. The steady-state limits for recorder input power is 25 Vdc to 31 Vdc.
 - b. Input power ranges of 22 Vdc to 25 Vdc and 31 Vdc to 35 Vdc are acceptable. (Capability to control the recorder completely will be maintained.)
 - c. Input power levels below 22 Vdc and above 35 Vdc.

ŔESULT IF EXCEEDED

- PCMMU BSR will indicate bad for the following bit:
- Bit no. Nomenclature
 - 15 No response MDM or PDI

Multiplexer output may become inhibited.

May result in degradation of operating performance.

May result in degradation of operating performance and/or damage to recorder. Recorder BITE good signal will be deactivated.

Instrumentation Subsystems (Cont) CONSTRAINTS/LIMITATIONS

- d. GSE interlock erase connector (at MCM J7 or associated cable harness connector) must be removed and flight connector (at MCM J8 or associated cable harness connector) must be installed prior to flight or data recording.
- e. Data recorder must be erased and the tape repositioned to BOT prior to crew compartment closeout or before beginning each new data taking run.
- f. Flight connector must be removed Record amplifier bias on MCM (at J8) or associated cable harness connector prior to on the erased tracks. initiation of erase mode.
- g. Tape should reach BOT at the end Total record time for pass of the second tape pass before issuing recorder pass no. 3 command (V78K9626Y).
- h. Recorder tape may require repo- Loss of data will result. sitioning to assure a minimum of 1-hour continuous record time during entry through landing phase.
- i. Recording of 32 kbps PCM data on Driver amplifier module data recorder at 3 3/4 ips must be played back through driver amplifier module (C70-1181) at a tape speed of 15 ips.
- j. Data recorder playback must be accomplished in the same direction as record.
- k. If, while recording in pass no. 2, a playback forward command (manual-V78K9624E or uplink-V78K9624Y) is activated, the recorder must be allowed to reach EOT to reenable pass no. 2 prior to repositioning and resumption of recording.
- 1. The +28 Vdc input power must not be interrupted for more than 0.5 second while operating at a tape speed of 60 ips (rewind).

RESULT IF EXCEEDED No data will be recorded on data recorder.

Recorder does not erase-before-write. Data write-over will result in data loss.

frequency may be recorded Incomplete erasure will result.

no. 3 will be reduced.

adjusted to optimize recorder playback at a speed of 15 ips. Playback at 3 3/4 ips will not provide adequate output. To preserve wideband data phasing and time correlation. Pass no. 1 data write-over will result in loss of data.

Tape reel drive brake activation at 60 ips can cause tape mis-threading which results in permanent tape damage and data loss.

3.4.5.5 - 3

- 3.4.5.5 Instru
- Instrumentation Subsystems (Concluded) CONSTRAINTS/LIMITATIONS
 - 8. Frequency Division Multiplexer.
 - a. FDM must be powered up for a minimum of 10-seconds prior to application of calibrate command.
 - b. The FDM auto-calibrate function command (manual or uplink) must be maintained for 1-second minimum to initiate the calibration cycle.
 - 9. Payload Data Interleaver.
 - a. The IRIG time tag attached to every minor/master frame of payload data increments incorrectly.
 - b. The PDI 1.152 MHz receiver can distort duty cycle of the PCMMU 1.152MHz clock signal.

RESULT IF EXCEEDED

Calibration cycle may not enable.

Calibration cycle not enabled.

Seconds count - The count increments as follows: --17, 18, 19, 0, 21-- and --37, 38, 39, 60, 41--. Minutes count - Same as seconds count. PDI BSR Bit 15 "PCM 1.152 MHz GOOD" can either toggle between good and bad or show solid bad.

			Maxi	mum	1	1	1	Maxim	un Non-	
	1	1	Opera	ting	Ì	1	ļ	opera	ating	1
	Minimum	Ì	Temper	ature,	Ì	Minimum Non-	1	Temper	ature,	İ
	Operating	Critical Item	°F		Critical Item	operating	Critical Item	1.01	7	Critical Item
Components	Temperature,	and Results	Long	Short	and Results	Temperature,	and Results	Long	Short	and Results
	°F	If Exceeded	Term	Term	If Exceeded	°F	If Exceeded	Term	Term	If Exceeded
Pulse code	35	Parameters for	120	120	Parameters for	-65	Design limit	120	150	Delamination
modulation	1	integrated	1	1	integrated	1		1	1	of printed
master unit	1	circuits will	1	1	circuits will	1	1	i i	İ	circuit
	1	change with	1	1	change with	1	1	1	1	boards.
	1	temperature.	Ì	1	temperature.			i	i	İ
Payload data	35	Parameters for	120	120	Parameters for	-65	Design limit	120	150	Delamination
interleaver		integrated	Ì	Í	integrated	1	-	i	i	of printed
	Ì	circuits will	i	i	circuits will	i		i	i	circuit
l	1	change with	i	i	change with	Ì	1	i	i	boards.
	1	temperature.	i	i	temperature.	i	i	i	i	1
GFE magnetic	40	Magnetic tape	127 ^a	140 ^a	Magnetic tape	35	Magnetic tape	i 127	1 140	Magnetic tape
tape recorder	i	binder degra-	i	i	binder degra-	i i	binder degra-	1	1	binder degra-
•	i	dation.	i	i	dation.	ľ	dation	i	ì	Idation.
Master timing	35	Parameters for	i 120	i 120	Parameters for	I -65	Design limit	120	1 150	Delamination
unit (fwd)	i	integrated	i		integrated	1	1	1	1	lof printed
	i	circuits will	i	i	circuits will	1	1	i	i	circuit
	i	change with	i	i	change with			i	1	iboards.
		temperature.	i	i	temperature.	1		i	i	1
Dedicated signal	i –65	Design limit	160	160	Design limit	-65	Design limit	200	200	Design limit
conditioner	i	1	1	1	1		1	1	1	1
(fwd and aft)		ì	200	200	Output error	i	1		i	i
•••••••••••••••••••••••••••••••••••••••	1	i	1	1	may increase	•	1	1	ł	ì
	1	1	i .	i .	to 2.0 percent	1	1	1	ł	
Pulse code mod-	-45	, Design limit	1 150 ^b	1 150 ^b	Design limit	-65	Design limit	230	230	Design limit
ulation multi-	·			1	1	1	1		1	1
plexer (MADS)	, I	i . ·	1	i	1	1		1		
Data recorder	I 35	Magnetic tape	120	1 120	Magnetic tape	, i 35	Magnetic tape	120	1 120	IMagnetic tane
(MADS)		lbinder		1	binder	1	binder	1	1	lbinder
	, _	degradation.	1	1	degradation.	i i	degradation	1		degradation.
Strain gage	20 ^b	Bias stability	165 ^b	165	Bias stability	-65	Temperature	1 165	165	Temperature
signal condi-	·	will change	1	1 - 1	will change	1	compensated	1		compensated
tioner (MADS)		1	i	1		Ì	components	i	i	components
				i	i .	i	will change	i	i	[will change
Wideband	20 ^b	Bias stability	165 ^b	165	Bias stability	-65	Temperature	165	165	Temperature
signal condi-		will change			will change	1	compensated	1	1	compensated
tioner (MADS)	i		i	1		1	components	ì	1	components
(/	i		i	i	1	• 1	will change	1	i	will change
		1	1	1		1	Inser onounds	1	1 .	inter chanda.

TABLE 3.4.5.5-1.- INSTRUMENTATION COMPONENTS TEMPERATURE LIMITS (Paragraph 3.4.5.5)

^aLong-term operating temperatures are at telemetry-indicated temperatures less than 120° F (127° F less 7° instrument error). Short-term operating temperatures above 120° F will shorten magnetic tape life. The extent of tape-life loss depends on the actual tape transport temperature, tape speed and duration of temperature exposure. Proper recorder operational management must be implemented in real-time to minimize operation of tape speeds above 60 ips of erase mode at temperatures above 120° F. Actual degradation at 140° F (bite-trip level) is not catastrophic and data record/playback to accomplish flight test objectives for any given flight should take precedence over a total number of missions required per tape life. A comparative analysis of playback data can provide justification for tape replacement and/or recorder maintenance. If OPS recorder redundancy is available, temperature management should be performed by placing the "hot" recorder in the standby mode when the head temperature telemetry indicates 120° F or higher. Component mounting heat sink "redline" maximum operating temperature is 140° F. Operation shall be terminated for cool-down cycle at 140° F.

Component mounting heat sink "redline" maximum operating temperature is 140° F. Operation shall be terminated for cool-down cycle at 140° F. If the red-line is exceeded, damage to components may occur. The redline minimum operating temperature is 30° F for the components mounted on shelf 8 heat sink for data acquisition. Power application to these components will cause temperature rises as shown in table 3.4.5.5-2.

	 Minimum Operating	 Critical Item	Maxi Opera Temper	mum ting ature,	 Critical Item	 Minimum Non-		Maximu opera Temper	m Non- ting ature,		
Components	Temperature, °F	and Results	Long Term	Short Term	and Results	Temperature,	and Results	Long Term	Short Term	Critical Item and Results If Exceeded	
Wideband FDM (MADS)	-65 (air)	 Oscillator drift	165 ^b (air)	 165 ^b (air)	 Oscillator drift	-65	 Temperature compensated	 165	 165 	 Temperature compensated	
MADS Control module	0	 Design limit 	 125 	 125 	Sample timing intervals will increase.	-65	components will change Design limit 	 165	 165 	components will change Design limit 	

TABLE 3.4.5.5-1.- INSTRUMENTATION COMPONENTS TEMPERATURE LIMITS (Concluded) (Paragraph 3.4.5.5)

^bComponent mounting heat sink "redline" maximum operating temperature is 140° F. Operation shall be terminated for cool-down cycle at 140° F. If the red-line is exceeded, damage to components may occur. The redline minimum operating temperature is 30° F for the components mounted on shelf 8 heat sink for data acquisition. Power application to these components will cause temperature rises as shown in table 3.4.5.5-2.

TABLE 3.4.5.5-2. - MADS EQUIPMENT TEMPERATURE MANAGEMENT (Paragraph 3.4.5.5)

<u> </u>		Temperature	Operating	Co	ol down
Site/	System	at initial	thermal rate		Thermal rate
msn	equipment	activation,	increase time,	Method	decrease time
phase	operating	°F	minute $/\Delta 1^{\circ}$ F		minute ∕∆1º F
OPF	Full system	System opera	ation not con-	Power	↓ 3.8
	PCM/SGSC	strained by	operating time	down	↓ 5.2
	FDM/WBSC	with compart	tment opened and	equipment	↓ 7.5
	PCM only	circulating	ambient air by	(PDE)	↓ 9.6
		portable blo	ower.		
VAB	Full system	< 100	↑ 2.4	PDE	↓ 7.6
	Full system	< 100	↑ 3.0	PDE	↓ 7.6
Pad	PCM/SGSC	< 100	↑ 6.0	PDE	↓ 6.7
	FDM/WBSC	No constrair	nt to operating	PDE	↓ 9.7
	PCM only	time.		PDE	↓ 11.0
1 hr					
43 min	Full system				
launch	(2 hr. opera-	85	↑ 1.8	PDE	N/A
hold	tion)				
launch	Full system				
(no	(17 min. oper-	85	↑ 2.4	N/A	N/A
hold)	ation)				
0n-	PCM - Snapshot	No system th	nermal con-	System cool	ldown prior to
orbit"	(with/without	straint for	operation in	entry can l	oe achieved in
	SGSC)~	the snapshot	: mode within	either sna	oshot or power-
		the operatin	ng temperature	down mode t	to assure a 🔰
		from 30° F t	:o 140° F.	shelf tempe	erature of
				≤100° F pri	lor to entry
				initiation	The differ-
				ence in the	e shelf temper-
İ			4	ature rate	between the
İ				snapshot ar	nd power-down
i				modes is in	significant
i				hecause of	the extremely
				low snansh	the extremely
				with all of	t uuty cycle,
					the ZIV state
				equal. In	the ZLV atti-
				tude and th	ie snelt temp-
				erature at	140° F, it
				will requir	e 15 hours to
	Full gygtom	100	A 1 E	reach 100°H	with the MADS
	rull system-	100	т 1.5	system powe	ered-off. In
	continuous			the top-sur	attitude, for
	DCM an las	100 1		the same co	onditions, 38
	rum only- b	100	т 9.5	hours is re	equired to
The Association	continuous	(100		reach 100°	F
Entry/	rull system	< 100	τ 2.3	MADS system	powered down
I ag.				at touchdow	<u>m + 5 minutes.</u>

^aMADS continuous component operation on-orbit is not recommended (except just prior to entry) because of the rapid temperature rise rate associated with this condition. bOV-103 (flights 1-6) incorporates an interim MADS control panel which does

~OV-103 (flights 1-6) incorporates an interim MADS control panel which does not contain the capability to control the SGSC independent of the MADS PCM MUX, during PCM MUX operation.

3	•	4	•	5	•	6

Electrical Power Distribution and Control Subsystems CONSTRAINTS/LIMITATIONS RESULT IF EXCEEDED 1. EPDC Components Temperature Limits. See table 3.4.5.6-1.

 Dc Voltage Limits. Voltage limits at load interfaces are:

The extent of degradation to a subsystem as a result of exceeding the limits is subsystem dependent.

- a. Minimum steady-state (1) Intermittent 23 Vdc loads
 - (2) Continuous 24 Vdc loads
- b. Maximum steady-state (1) Main and 32 Vdc
 control buses (2 kW minimum
 - (2) Essential bus 38.5 Vdc (FCP
 - open circuit volts)
- c. Ripple voltage (1) 0.9 V peak-to-peak
 - maximum, any frequency.
 - (2) 1.6 V peak-to-peak
- total integrated. d. Transient limits:
 - (1) Voltage -
 - (a) Inter-21 to 36.7 Vdc mittent (Normal switching) 37.0 Vdc (Abnormal and emergency switching). (b) Contin-22 to 36.7 Vdc uous (Normal switching) 37.0 Vdc (Abnormal and emergency switching). (2) Recovery < 200 msec.

- 3. Inverter Ac Bus Voltage Limits Ac voltage limits (each phase) are as follows: a. Steady-state
 - (1) Continuous 115 ±5 Vrms. duty (2) Inter- 115 +5 Vrms. mittent -7 Vrms. duty equipment

Exceeding these limitations will cause overvoltage or undervoltage conditions at the spacecraft subsystem using loads or static power inverter disconnect from the ac bus. This may result in subsystem degradation or interruption of power to the using loads.

Amendment 215 Electrical Power Distribution and Control Subsystems (Continued) **RESULT IF EXCEEDED** CONSTRAINTS/LIMITATIONS b. Transient: (1) Continuous 115 ± 15 Vrms Exceeding these limitations duty 20 msec rewill cause overvoltage or undervoltage conditions at equipment covery to steady-state the spacecraft subsystem limits. using loads or static power 115 + 15 Vrms inverter dusconnect from (2) Inter--17 mittent the ac bus. This may re-20 msec sult in subsystem degradaduty tion or interruption of equipment recovery to power to the using loads. steady-state limits. 4. Ascent Minimum and Maximum Bus Voltages. The bus voltages in Critical SRB and Orbiter table 3.4.5.6-2 must not be LRU's may be shutdown or violated during ascent. damaged. 5. Spacelab, FCP3, Power Requirements. Opening the structure FC3 STRUCT RTN power conreturn contactor could tractor must remain closed for Spacelab. result in damage to fuel cell 3 since Spacelab loads rely on Orbiter to provide structural return connection. 6. Payload Bay Floodlight No hazards exist, but Restart Constraint restart will be delayed. (a) Unblocked configuration-Cool-down time is required a minimum of 10 minutes for the pressure of the is required before gas in the lights to decay. This will allow attemptimg to restart enough potential to be lights. (b) Blocked configurationgenerated for the lights for payload configurations to turn on. that block radiation exchange between the PLBF and space (as determined by analysis): (1) The nominal minimum off-time before restarting should be

extended to 12 minutes

for all payloads, including cylindrical payloads of 160 in. diameter or less.

Amendment 215

- Electrical Power Distribution and Control Subsystems (Continued) CONSTRAINTS/LIMITATIONS RESULT IF EXCEEDED
 - (2) The minimum off-time should be extended to 16 minutes for cylindrical payloads with a diameter greater than 160 in.

3.4.5.6-2a

		1		Qualification A		Accep	tance	1	1
	1	Coldp	late	l tes	test test		t	i	i ·
•	i	tempe:	rature.	temper	ature.	L tempe	rature.	i	i
Components LRH ^a	1		,	1 00	,		rucuro,	l Critical itam	1
	1 Out the back			1 .	• • • •		r	CLICAL ICem	
	Switched			(on col	apiate)			and	Thermal
	Power	Min	Max	Min	Max	Min	Max	rationale	instrumentation
Static inverter	Yes	30	125	0	145	35	135	None	Yes (DFI)
 Ground command interface logic 	Yes	 30 	 125 	0	 140 ^b	20	120	 None	No
EMU battery charger and power supply	Yes	30	125	0	145	20	125	None	No
Inverter distribution and controller assembly	Yes	 30 	 125 	–45 ^C	165 ^C	d 	d	None	 No
 Forward hybrid load controller assembly	No	 30 	 125 	-65 ^C	 165 ^C 	 -45 	 145 	 None 	 No
 Forward power controller assembly	No	 30 	125	-45 ^C	 165 ^C	d 	l d	None	No
 Forward motor controller assembly	Yes	30	 125	 -45 ^C	165 ^C	d	l d	 None 	No
Mid-power controller assembly	No	30	125	 -45 	 165	d 	đ	None	 No
Mid-motor controller assembly	Yes	30	125	-45	165	d	 a	 None	No
Main distribution controller assembly	No	30	125	 -45	165	d	<u> </u>	None	No
Cryo Heater controller assembly	No	30	125	-45 ^C	165 ^C	_ d	d	None	No
Hybrid load controller assembly	No	30	125	 -65	165	-45	145	None	No
Power controller assembly	No	30	125	–45 ^C	165 ⁰	đ	d	None	No
Motor controller assembly	Yes	30	125	–45 ^C	165 ^C	đ	d	None	No
Master events controller	Yes	30	125	-65	165	20	120	None	No
assembly	No	30	125	-45	165	d	đ	None	No
Promimity switch electronics	Yes	30	125	0	145	20	125	None	No
Backup flight controller	Yes ^e	30 1	125	0	140	20	120	None	No

TABLE 3.4.5.6-1.- ELECTRICAL POWER DISTRIBUTION SUBSYSTEM COMPONENTS TEMPERATURE LIMITS (Paragraph 3.4.5.6)

All listed LRU's are mounted on coldplate. Operational degradation due to LRU base temperatures exceeding coldplate limit will result. No data exists to permit determination of time from coldplate temperature limit exceedance to operational

degradation. b Application to maximum operating temperature and maximum short term and long term temperature. Qualified by similarity. d Rockwell fabricated assemblies - acceptance vibration test performed at room temperature = 70° F. e

eCPU/IOP power is also switched with this function.

3.4.5.6-3

Ttem	Design v	oltages,
		C
	Minimum	Maximum
Fuel cell		-
V45V0100A	27.5	32
V45V0200A	27.5	32
V45V0300A	27.5	32
Main distribution control assembly		
V76V0100A	27.0	32
V76V0200A	27.0	32
V76V0300A	27.0	32
 Forward power control assembly		
V76V3071A	i 26.2 i	32
V76V3072A	i 26.2 i	32
V76V3073A	26.2	32
Aft power control assembly (4.5.6)		
V76V3091A	26.1	32
V76V3092A	26.1	32
V76V3093A	26.1	32
Aft power control assembly (1,2,3)	26.1	32
Essential bus		
V76V0130A	25.5	38
V76V0230A	25.5	38
V76V0330A	25.5	38
Orbiter/SRB interface		
B76V1600C	26.15	32
B76V1601C	26.15	32
B76V2600C	26.15	32 j
B76V2601C	26.15	32
Control bus		ļ
V76V0120A	24.8	32
V76V0121A	24.8	32
V76V0122A	24.8	32
V76V0220A	24.8	32
V76V0221A	24.8	32
V76V0222A	24.8	32
V76V0320A	24.8	32
V76V0321A	24.8	32
V76V0322A	24.8	32
Panel ML86B	25.5	32
Overhead panels, (014, 015, and 016)	25.5	32
Ac circuit breaker panels	114.8 Vac	120 Vac

TABLE 3.4.5.6-2.- MINIMUM AND MAXIMUM BUS VOLTAGES DURING ASCENT-NO FAILURES (Paragraph 3.4.5.6)

^aUnless specified otherwise.

3.4.6	Environmental Control and Life Support	Subsystems
3.4.6.1	<pre>Atmospheric Revitalization Subsystem CONSTRAINTS/LIMITATIONS 1. ARS Temperature Limits. See table 3.4.6.1-1. 2. Maximum Carbon Dioxide Partial Pressure</pre>	RESULT IF EXCEEDED
· .	a. Long term 7.6 mm Hg	The partial 0, level will result in functional degra- dation, if the mask is re-
	b. Maximum of 2 hr 15 mm Hg	posure. Limited physiological degradation due to extended exposure.
	 Minimum Oxygen Partial Pressure. The minimum O₂ partial pressure is 1.95 psia in an 8-psia cabin and 2.7 psia in a 14.7-psia cabin. 	Hazardous N ₂ level if mask is removed.
	4. <u>Minimum Cabin Pressure Limit</u> . The minimum cabin total pressure is 8 psia.	Lower pressure requires crew to prebreathe.
	5. Water Coolant Loops. Water in the dormant loop will be cycled for 6 minutes every 4 hours.	Water in the dormant loop may freeze.
	6. Water Separator Operation. The water separator will be "on" be- fore and at least 5 minutes after ARC cabin fan activation/deactiva-	Possibility of excessive water in separator when separator is non-operative. This will damage motor and
	 Maximum percentage of Oxygen in Cabin. The maximum percentage of O₂ allowed in the cabin is 30 percent^a. 	Material flammability limit of 30% O ₂ actual during prebreathe for EVA with 10.2 psia cabin pressure provides no margin for materials certified for
	 8. Water Coolant Pump Operations. a. H₂O pumps will be shutdown if one power phase is lost. b. Minimum inlet pressure is 	use within cabin. Mismatch in H ₂ O/Freon flow rates and increased power consumption. (Pump can be restarted, if required.) Cavitation may occur.
<u>*NASA</u> Data	9.*Toxic Exposure Limits in the Shuttle Cabin Breathing Atmosphere. a. Freon-21 (Dichoromono- fluoromethane (CHCL ₂ F). A colorless, odorless, non- flammable gas at standard temperature and pressure. a Source	Crew would have to abort the mission and/or don respirators. Toxic effects are central nervous system (CNS) depression resulting in mental impairment and a decrement in hand-eye coordination, liver toxicity and cardiac arrhythmias.
*NASA Data	a Source	

The 30-percent figure is the limit and does not include cumulative tolerances from the PPO₂ sensor(s) and total cabin pressure sensor. The maximum <u>indicated</u> allowable percentage of oxygen is 28.5 percent to prevent exceeding the limit.

Atmospheric Revitalization Subsystem (Cont)

(2) It is recommended that

even if the concentra-

tion remains below the

emergency limits, the

Pilot and Commander should don respirators at least 1 hour before

CONSTRAINTS/LIMITATIONS

landing.

- (1) Emergency exposure limits. See table 3.4.6.1-2.
- RESULTS IF EXCEEDED Symptoms of exposure to moderate concentrations include light headedness, shortness of breath, and narcosis. Cannot ensure optimal mental alertness and manual dexterity for landing the Orbiter.

3.4.6.1 Atm
	1	1	Maxi	mum	· · · · · · · · · · · · · · · · · · ·			Maximu	m Non-	1
	İ	1	Opera	ting	1	1		opera	ting	
1	Minimum		Temper	ature,	1	Minimum Non-		Temper	ature,	1
	Operating	Critical Item	i ok		Critical Item	operating	Critical Item	°F		Critical Item
Components	Temperature,	and Results	Long	Short	and Results	Temperature,	and Results	Long	Short	and Results
i -	°F	If Exceeded	Term	Term	If Exceeded	°F	If Exceeded	Term	Term	If Exceeded
O, storage tank	-65	Exceeds speci-	160	160	Exceeds quali-	NA	NA	NA	NA	NA
2		fication	1	1	fication test	1			1	
	1 · · · ·	design limit	1	1	limits	1		1	1	
N ² storage tank	-65	Exceeds speci-	150	150	Exceeds quali-	NA	NA	NA	NA	NA
-	1	fication	(b,c)	(b,c)	fication test			1		i 1
l	1	design limit	Ì	1	limits	1		1	1	
Cabin humidity	35	Exceeds speci-	120	120	Exceeds quali-	NA NA	NA	NA	NA	NA
control heat		fication	1	1	fication test			1	1	
exchanger	Ì	design limit	1	1	limits		1	1	1	
Water gas	35	Exceeds speci-	120	120	Exceeds quali-	NA	NA	NA	NA	NA
separators	1	fication	1	1	fication test	ļ			ł	1
	1	design limit	1	1	limits		1	1		1
Water coolant	35	Exceeds speci-	120	120	Exceeds quali-	NA	NA	NA	NA	NA NA
pump assembly	E	fication	1	1	fication test			1	ŀ	
	1	design limit	1	1	limits	1		1		
Avionics heat	35	Exceeds speci-	130	130	Excess quali-	NA NA	NA	NA	NA	NA
exchanger		fication	1	1	fication test	1		1	1	
		design limit			limits	1	ŧ			
 Structural	35	Exceeds speci-	120	120	 Exceeds quali-	NA NA	NA NA	NA	NA	NA
heating loops	1	fication	1	1	fication	1			1	
1	1 4	design limit"		1	test limits	l				
Water Chiller	35 ^{°°}	Freezing of	NA	NA	NA	NA	NA	NA	NA	NA
1		water in sys-		ł	1	1	1	1		
	1	tem will	1		1			1		
1		damage equip-	1	1	1		1	ł		
1	1	ment and cause	1	1	1	1	1	1	1	
1		loss of opera-	1	1	1	1	1	1	1	ļ
	1	tion.	1		1		1	1		
Avionics air	1	Exceeds speci-	1		Exceeds quali-	NA	NA	NA	NA	NA
coolant		fication			fication	l		1	1	
1	1	design limit"	t	1	test limits	1	1	1	1	ļ
Inlet	40	1	95	95		1		1	1	
Outlet	NA	1	130	130			1	ļ	ļ	
Avionics cold-	1	Exceeds speci-	1	1	Exceeds quali-	NA	NA NA	NA	NA	NA
plate H ₂ O	1	fication	L	ł	fication test	1	1		1	I
coolant ⁺	1	design limit ^a	1		limits	1	I	ļ		
Inlet	35	1	120	120	1	1	1	1		
Outlet	NA NA	1	130	130	1	1	1	1	1	I

TABLE 3.4.6.1.1.- ATMOSPHERIC REVITALIZATION SUBSYSTEM TEMPERATURE LIMITS (Paragraph 3.4.6.1)

a_Since there has been no off-limit thermal testing, the results if exceeded are unknown. bAt 3600 psig. c165° F for pressure < 3300 psig. dDue to sensor inaccuracy, temperature could be as low as 32° F.

3.4.6.1-3

	Concentration						
Time	Percent	PPM					
0 – 2 hours	0.06	600					
2 - 5 hours	0.048	480					
5 - 8 hours	0.03	300					
8 – 16 hours	0.02	200					
16 – 24 hours	0.015	150					
24 - 48 hours	0.005	50					
48 - 72 hours	0.0015	15					
3 – 7 days	0.001	10					

TABLE 3.4.6.1.2.- *RECOMMENDED EMERGENCY EXPOSURE LIMITS FOR
FREON-21 (DICHLOROMONOFLUOROMETHANE (CHCL2F))a(Paragraph 3.4.6.1)

^aThese recommended exposure limits are based on the assumption that the Orbiter Pilot and Commander would don respirators before deorbit so that they will not be mentally impaired during landing procedures, and on the assumption that the crew members would probably never receive such an exposure again. *NASA Data Source

3.4.6.2

- Water/Waste Management Subsystem CONSTRAINTS/LIMITATIONS
 - 1. Water/Waste Management Subsystem $\frac{\text{Temperature Limits}}{3.4.6.2-1.}$ See table
 - 2. <u>Supply water, waste water and</u> <u>vacuum vent dump nozzles maximum</u> <u>temperature limits prior to de-</u> <u>orbit.</u> Refer to paragraph 3.4.1.3, Thermal Protection Subsystem.
 - 3. Fan separator two phase (electrical) operation. Refer to paragraph 4.6.2.2.3b11.

RESULT IF EXCEEDED

TABLE 3.4.6.2-1.- WATER/WASTE MANAGEMENT SUBSYSTEM COMPONENTS TEMPERATURE LIMITS (Paragraph 3.4.6.2)

_	1			Maxi	mun		1	1	Maximu	m Non-	1
		Minimum		Opera	ting			1	opera	ting	
	1	Operating	 Critical Itom	l lember	acure,	i ICritical Itam	Minimum Non-	 Critical Them	Temper	ature,	Cuiting) Then
	 Components	Temperaturo	and Poculta		Chart	i and Beculte	operating	critical item		Ichant	Critical item
		or	Tf Exceeded	Torm	Torm	I If Freeded	liemperature,	I TE Exceeded	Long	Short	and Results
	·	<u>.</u>	I II EXCeeded	Term	1	I II Exceeded	- r 1	I EXCeeded	Iterm	lietm	
	Supply water	50 ^a	Freezing of	120	1 120	Oualification	I NA	I NA	I I NA	I NA	
	tanks		water in the	i	1	tested to		1	1		
			system will		i	120° F.	Ì	1	Ì	Ì	
	1		damage equip-	İ	i	1	İ	Ì	i	i	1
			ment and cause	1	Ì	1		ĺ	i	i	
			loss of opera-	1	1	1		l	İ	Ì	i i
		а	tion.		1	1	i	1	1	1	1
1	Supply water	45	Freezing of	350	350	Structure at	NA NA	NA	350	350	Structure at
	dump nozzle		discharge		1	TPS penetra-		1	1	1	TPS penetra-
		a	water will		1	tion may be			1	1	tion may be
	Lines	50	clog the	NA	NA	damaged.					damaged.
		ena	inozzie and		1 200	Will permit	1	1	1	1	Will permit
1	Valves	50	ifesuit in 1055	200	200	entry of not	1	1	1	1	entry of hot
	ļ		lor operación.		1	prasma to mid-	1	1	1	1	plasma to mid-
	1 l		1	1	1	lentry	i I	1	1	1	body during
	 Vacuum vent exit	32	Nominal	350	1 350	Structure at	i NA		1 350	350	Structure at 1
			mininum		1	TPS penetra-	1	1	1 2 2 0	1	TPS penetra- 1
	Lines	32	operational	b,c	b,c	tion may be			1	1	tion may be
			temperature	·		damaged. Will			i	ł	damaged.
1			for waterbear-		i	permit entry		1	i	i	Will permit
			ing systems.			of hot plasma			İ	i	entry or hot
	l , l				ł	to mid-body		1	1	1	plasma to
					1	during entry.			1	1	middeck during
									1	1	entry.
	Fan/water	32	Freezing of	90	90	Qualification	NA	NA	NA	NA	
	separator		water in the		1	tested to			1	!	
			damage equin-		1	190° F.	-		1	1	
			iment and cause		1	1			1	1	
			loss of opera-		1				1	1	
			tion.			1		6	!	1	
1	Waste water	45 ^a	Freezing of	350	350	Structure at	NA	NA	350	350	Structure at
	dump nozzle		discharge		İ	TPS penetra-			1	1	TPS penetra-
1			water will		Ì	tion may be			i	Ì	tion may be
1	Lines	50 ^{°°}	clog the noz-	NA	NA	damaged.			İ	i	damaged.
.		а	zle and result			Will permit				1	Will permit
	Valves	50°	in the loss of	200	200	entry of hot				1	entry of hot
			operation.			plasma to mid-	l I				plasma to mid-
					ĺ	body during			l		body during
	Wacto water	_{Бо} а	 Freesing -f	1 7 0	1 1 2 2	entry.					entry.
	storage tank	50	Inteezing of	120 Ì	120	Qualification	NA	NA	NA	NA	
	Scorage Lattr		water III	1					1	1	
[damage equip-	1		1120° F.	1		1	1	1 1 I
1			ment and cause						1	1	
ļ			loss of						: 	1	
i			operation.	1					Ì		
a	and an interest of the second s				L	L			I	·	1

^aMinimum temperature at which a successful dump may be accomplished. ^bLine externa¹ ^a cabin +350° F. ^cLine interr cabin +120° F.

219

Amendment 219

3.4.6.3

I

- Active Thermal Control Subsystems CONSTRAINTS/LIMITATIONS
 - 1. <u>ATCS Temperature Limits</u>. See table 3.4.6.3-1.
 - 2. <u>NH3 Boiler System Operation</u> <u>During Atmospheric Entry</u>. <u>In contingency situations</u>, <u>ABS may be activated at entry</u> interface (EI) (0.1 g).
 - 3. Flash Evaporator System During <u>Atmospheric Entry</u>. Operation is restricted to exit pressures ≤ 0.162 psia; ~100,000 ft indicated altitude (h_i).
 - 4. FES Duct Temperatures
 - a. The high-load duct temperatures must exceed 150°F prior to reinitiating highload evaporator operation.
 - b. The duct forward and aft section temperatures must exceed 100°F prior to topping FES activation.
 - 5. <u>Radiator Bypass Valve</u>. While the payload bay doors are open, the radiator bypass valve must not be in the "bypass" position for periods ≥ 60 minutes in an attitude that minimizes earth and sun viewing.
 - 6. FES topping nozzles, FES high load nozzle and ammonia vent maximum temperature limits prior to deorbit. Refer to paragraph 3.4.1.3, Thermal Protection Subsystem.
 - 7. FCL Aft Coldplate Minimum Flow Minimum aft coldplate flow rate with radiators bypassed and flow proportioning module in the interchanger position is 240 lb/hr for 1 loop operation.

RESULT IF EXCEEDED

Loss of He pressurant if activated at <0.1 g.

System performance degradation.

Possible duct icing.

Possible duct icing.

Possible rupture of radiator(s) by coolant freezing.

Thermal limits of critical components may be exceeded if flow rate is less than minimum flow.

TABLE	3.4.6.3-1	ACTIVE	THERMAL	CONTROL	SUBSYSTEM	CONPONENT	TEMPERATURE	LIMITS
			(P <i>i</i>	3.4.6.3)				

1	1	 	Maxi	mum	1		1	Maximu	m Non-	
1	i Minimum		I opera	atura	1	i Minimum Non-	1	opera	cing aturo	1
1	1 Operating	 Critical Item	I or Irember	acure,	 Critical Item	operating	 Critical Itaa	I tember	acure,	1 Critical Them
Components	Temperature.	and Results	Long	IShort	and Results	Temperature	and Results	Long	Ishort	i and Paculte
	°F	If Exceeded	Term	Term	I If Exceeded	i or	I If Exceeded	Dong	Term ^a	I If Exceeded
	-							1	1	
Freon pump	15	Elastomeric	120	180	Freon accumu-	NA	ATCS opera-	NA	NA	ATCS opera-
package	1	seals -	1	1	lator-Maximum	1	tional during	1	1	tional during
1	1	leakage may			allowable	1	all mission	1	1	all mission
ļ	1	occur.		1	pressure may	1	phases.	1	1	phases.
					be exceeded		1			1
rreon/water	32	Water system	INA	NA	Venicle tem-	NA	ATCS opera-	NA.	NA	ATCS opera-
interchanger	1	1055 OF C001-		!	peratures do	1	tional during	1		tional during
1		ling resulting	4	1	not approach		all mission	!	ļ	all mission
		inton freezing	1		maximum limits		pnases.	ļ		pnases.
 Pavload beat	1 32	Water.	 N7N	 N72	or naroware.	873			1 173	
l eychanger	34	lof cooling re-	1 1962	1 114	inerstare cem-		Itional during	INA		AICS Opera-
evenander	1	Isulting from	1	1	iperatures do	1	all mission	1		all mission
	1	Ifreezing water		1	maximm limite		Inhases	1	1	inhacae
1				f I	of hardware.	1	1	1	e J	1 5.14363.
Fuel cell.	NA	ATCS operates	NA	NA	Vehicle tem-	I NA	ATCS opera-	I NA	I NA	ATCS opera-
hvdraulics and	1	labove freezing		1	peratures do		tional during	1		tional during
GSE heat ex-		point of		1	not approach	1	all mission	i	1	all mission
changer	l l	fluids.		i	maximum limits	1	phases.	i	i	phases.
		i		i	of hardware.	1		i	i	[
Flow proportion-	15	Elastomeric	250	250	Actuator -	0	Elastomeric	250	250	Actuator -
ing valves	İ	seals -		İ	hi-rel	İ.	seals -	i	ĺ	hi-rel
module		leakage may		İ	component	l	leakage may	i	İ	component
ĺ	1	occur		l	degradation	l	occur		Ì	degradation
Interchanger and	-40	Electronics -	220	220	Electronics -	NA	ATCS opera-	NA	NA	ATCS opera-
payload heat	ł	hi-rel com-			hi-rel com-	1	tional during		1	tional during
exchanger flow		ponent		l	ponent	1	all mission		l	all mission
sensors		degradation		1	degradation	1	phases.			phases.
Instrumentation	-85	Electronics -	180	220	Electronics -	NA	ATCS opera-	NA	NA	ATCS opera-
signal condi-		hi-rel com-			hi-rel com-	1	tional during			tional during
tioner	1	ponent			ponent		all mission			all mission
		degradation			degradation		phases.			phases.
GSE COOlant	NA	Elastomeric	NA	NA ·	Seals compati-	-250	Elastomeric	500	500	Elastomeric
couplings	1	seals compati-			ble with Freen		seals - seal			seals - seal
	1 1	ble with Freen			cemperatures.	1	degradation	1		degradation
Froop pump and	 ND	Cemperatures.	NT3	MA	Seels commuti	1 373		1 373	NTA	MCC anara
radiator couple	146	legals compati-	IVA	INA.	ble with Freen		AICS Opera-		INA	HICS Opera-
ings		ble with Freen			temperatures	1	all mission			all mission
11195		temperature			comparacutes.		latt mission			These
Freon servicing	I NA	Elastomeric	NA.	NA	Seals compati-	-65	Elastomeric	I NA	NA	Vehicle temp-
couplings		Iseals compatial			ble with Freen				1963	eratures do
•••=F====90		ble with Freen			temperatures.		degradation	1 I		not approach
		temperatures.								maximum temp-
								1		erature limits
NH, boiler	-15	Orbiter cool-	95 İ	95	Increased NH_	-65	Electronics -	95	130	NH, supply -
د		ing - insuffi-			consumption -		hi-rel compo-			relief valve
		cient tank	i		premature tank		nent degrada-	i i		venting would
		expulsion	ĺ		depletion.		tion			deplete supply
		pressure.	i	i			1	i i		

221

3.4.6.3-2

Amendment 220

Components	 Minimum Operating Temperature.	mum ting Critical Item ature, and Results	Maximum Operating Temperature, °F Long Short		Critical Item	 Minimum Non- operating Temperature,	 Critical Item and Results	Maximum Non- operating Temperature, °F Long Short		 Critical Item and Results
	°F	If Exceeded	Term	Term ^a 	If Exceeded 	°F	If Exceeded	Term	Term ^a	If Exceeded
Flash evaporator assembly	32 ^b	 Cabin cooling - loss of cooling re- sulting from freezing water in inter- changer.	131 	131 	Orbiter cool- ing - heat rejection capability of flash evapora- tor exceeded.	-65	 Electronics - hi-rel component degradation 	160	160 	 Elastomeric seals - seal degradation
Steam ducts	40 	Flash evapora- tor - exhaust steam may freeze, clog- ging ducts.	300 	375 	Heaters, insu- lation, and bonding may be damaged.	-100	Heater electronics - hi-rel com- ponents degra- dation	300	375 	Heaters, insu- lation and bonding may be damaged.
Topping and hi- load nozzle as- semblies 	40	Nozzle - exhaust steam may freeze. 	600	600 	Heaters - elements may be damaged.	-100	Heaters electronics - hi-rel components degradation.	600	600	Heaters, ele- ments may be damaged
Radiator panels 	-180	Radiator - Freon 21 freezes at - 211° F. 	NA	NA 	ATCS fluid temperatures do not approach tem- perature limits.	-180	Radiator - Freon 21 freezes at -211° F.	150	185	Freon accumu- lator - capacity may be exceeded.
Radiator flow control assembly 	-100	Electronics - hi-rel component degradation 	NA	NA.	ATCS fluid temperatures do not approach tem- perature limits.	-65	Electronics - hi-rel components degradation.	150	280	Electronics - hi-rel components degradation
FES feedwater lines 	32	H ₂ O freezes.	250 ^C	250 ^C	FES malfunc- tions.	32	H ₂ O freezes.	250	250	H ₂ O boils, résulting in excessive pressure.
FES feedwater accumulators	32	H ₂ O freezes.	100	180	FES malfunc- tions.	32	H ₂ O freezes.	250	250	H ₂ O boils, resulting in excessive pressure.

TABLE 3.4.6.3-1.- ACTIVE THERMAL CONTROL SUBSYSTEM CONPONENT TEMPERATURE LIMITS (Paragraph 3.4.6.3) (Concluded)

a ≤ 1 hour Freon temperatures lower than 32° F can produce freezing of water in ARS interface exchanger. ^COperation above 250° F is allowable for a period of 35 minutes. (Feedline heaters are certified to operate at 350° F continuously and at 400° F for 1 hour.) High-load FES feedwater line temperatures are allowed to remain above 250° F for longer than 35 minutes as long as normal heater cycling is verified by the accumulator feedwater line temperatures.

3.4.6.4

- Airlock Support Subsystem CONSTRAINTS/LIMITATIONS
- 1. Airlock Configuration During EVA's. The thermal hatch cover must be closed during EVA's.

RESULT IF EXCEEDED

May freeze H_2^0 panel and EMU servicing and cooling umbilicals (SCU's).

- 3.4.6.5
- Smoke Detection and Fire Suppression Subsystem CONSTRAINTS/LIMITATIONS RESULT
 - 1. <u>Smoke Detector</u>. Maximum operating temperature is 130° F.
- 2. <u>Smoke Detection</u>. Air circulation through the avionics equipment by fans and cabin fans is required in each compartment for functional smoke detection.
- 3. Freon Tank. Maximum operating temperatures are 130° F long term and 160° F short term.

4. Hand-Held Extinguisher. Maximum

operating temperatures are 120° F long term and 155° F short term. RESULT IF EXCEEDED Pump driver electronics may fail. Loss of smoke detection capability.

Overpressure could result in rupture.

Overpressure could result in rupture.

3.4.7 <u>Crew Systems</u> No constraints have been identified for this subsystem. (3.4.7.1-1)

224

 $a \ge 1$ hour

3.5.1 Structures and Thermal Protection Subsystems

- 3.5.1.1 Structures Subsystem CONSTRAINTS/LIMITATIONS
 - 1. <u>Structures Temperature Limits</u>. See table 3.5.1.1-1.
 - 2. <u>Acoustic Limits</u>. The external tank acoustic overall sound pressure levels are identified at their specified zones in
 - table 3.5.1.1-2.3. Vibration Limits.
 - a. Sinusoidal vibration The sinusoidal vibration limits of table 3.5.1.1-3 apply to all of the external tank.
 - b. Random vibration The random vibration limits are in table 3.5.1.1-4.

RESULT IF EXCEEDED

Not tested or designed to levels in exceedance. Possible component and/or structural failure.

Not tested or designed to levels in exceedance. Possible component and/or structural failure.

1	Max	Critical item	Min	Critical Item
Item	temp, ^a	and results	temp.	and results
İ.	°F	if exceeded	°F	if exceeded
	ĺ			
Nose cone				1
Skin	500	Factor of safety	-300	No impact
GO2 vent fairings,	1600	reduction and/	-300	
lõuvers		or failure		
Conduit fairing	500		-300	
LU2 tank				
Forward Duiknead	500	Factor of safety	-300	No impact
Ugive skin	450	reduction and/	-300	
Barrel SKIN	450	or failure	-300	
AIT DUIKNEAD DOME	U		-300	
 Intertank				
Skin and stringer	450	Factor of safety	200	No impost
Machined panel	250	reduction and (200	i No Impact i
Frames	250	or failure	200	
Thrust beam	250	of failure	-200	
Thrust fitting	250		200	
Access door	250		200	
Imbilical plate	300		-200 //22	
Umbilical plate frame	300		-423	
	500		-425	
LH, tank	-			
Főrward bulkhead	180	Factor of safety	-423	No impact
Cylindrical skin	127	reduction and/	-423	
Aft bulkhead	210	or failure	-423	
Frames	127		-423	
				İ İ
Interface attachments				
ET/ORB fwd strut	350	Factor of safety	-300	No impact
ET/ORB thrust strut	350	reduction and/	-423	
ET/ORB vertical strut	350	or failure	-300	
ET/ORB diagonal strut	400		-300	i i
Crossbeam	350		-300	İ
ET/SRB aft strut	500		-300	
Siructural attachments	250			
LU2 IEEGIINE bracket	350	ractor of safety	-300	No impact
ling (ach) 2 trues	350	reduction and/	-300	
Line/cable tray		or failure		
UTACKETS	250			
bracket	350		-300	
Dracket				1

TABLE 3.5.1.1-1. - STRUCTURAL ALLOWABLE TEMPERATURES(Paragraph 3.5.1.1)

^aAt MECO

TABLE 3.5.1.1-2. - ET MAXIMUM OVERALL SOUND PRESSURE LEVELS (SPL)

Zone	Overall SPL, dB
Aft LH ₂ bulkhead	165.5
Aft LH ₂ tank cylinder, inboard	161.5 ^a
Aft attach crossbeam	165.5 ^a
Aft LH ₂ tank cylinder, outboard	158.0
LH ₂ tank cylinder, inboard	162.0 ^a
LH ₂ tank cylinder, outboard	155.5
Intertank, internal	146.5
Intertank, external (+Z axis)	161.5 ^a
Forward Orbiter attach	170.5 ^a
Intertank, external -Y and +Y axes	175.0 ^a
Intertank, external -Z axis	153.5
LO2 tank cylinder, external	160.5
Aft ogive, external	159.5 ^a
Forward ogive, external	159.5 ^a
ET nose cap, external	163.0
ET nose cap, internal	151.7

[NASA Reference Publication 1074, February 1981 and PCIN 15087] (Paragraph 3.5.1.1)

^aMaximum at protuberance of zone.

TABLE 3.5.1.1-3. - SINUSOIDAL VIBRATION LIMITS

[NASA Reference Publication 1074, February 1981] (Paragraph 3.5.1.1)

Item	Longitudinal Axis	Lateral Axis
For the ET nose cap/cover- plate, LO ₂ ogive coverplate or coverplate support ring. Fwd ogive, X _T 322-537	2 to 5 Hz at 0.6g peak 5 to 40 Hz at 0.6g peak	2 to 6 Hz at 1.4g peak 6 to 40 Hz at 1.4g peak
For all other locations on the ET.	2 to 5 Hz at 0.6g peak 5 to 40 Hz at 0.6g peak	2 to 5 Hz at 0.8g peak 5 to 40 Hz at 0.8g peak

TABLE 3.5.1.1-4. - ET RANDOM VIBRATION COMPOSITES (Paragraph 3.5.1.1)

[This table presents the maximum composites in g(rms) that have been considered in design and test. The actual random vibration criteria are defined in Reference Publication 1004, February 1981 and Change Order 1217, June 1981.]

Zone	Time in	Composite	s, g(rms)
	flight	Radial	Tangential
LH ₂ structural rings	Lift-off	32.2	29.3
(X _T 1624 and X _T 1377Z axis)	Boost	26.1	16.7
LH ₂ structural ring	Lift-off	16.6	25.2
(X _T 1130Z axis)	Boost	10.0	12.4
Intertank (Station X _T 1130 to X _T 852	Lift-off	31.0	22.9
panels and rings near +Z axis)	Boost	76.9	55.4
Intertank (Station X _T 1130 to X _T 852 panels and rings near -Y and +Y axes)	Lift-off Boost	9.7 43.2	14.8 75.3
SRB beam (Station X _T 985)	Lift-off	5.0	5.0
	Boost	19.4	19.7
Intertank (Station X _T 985) in panels	Lift-off	17.1	12.1
and rings at -Z āxis)	Boost	16.0	10.6
Intertank (Station X _T 1130 to X _T 852	Lift-off	29.6	21.0
panels and rings near -Z axis)	Boost	26.7	17.7
LH ₂ forward bulkhead and gores	Lift-off	41.5	16.0
(Station X _T 1130 to X _T 1008)	Boost	48.1	14.2
LH_2 forward cap (Station X_T 1008)	Lift-off	30.2	7.6
	Boost	28.0	7.6
LO ₂ aft bulkhead and cap	Lift-off	11.7	7.3
(Station X _T 963 to X _T 854)	Boost	11.8	6.5
LO ₂ cylinder	Lift-off	13.3	10.4
(Station X _T 852 to X _T 747)	Boost	33.4	23.8
Aft ogive	Lift-off	13.3	11.1
(Station X _T 747 to X _T 537	Boost	33.3	25.0
Ogive forward section	Lift-off	40.1	10.4
(Station X _T 537 to X _T 371)	Boost	128.0	30.4

3.5.1.1-5

	Zone	 Time in	Composite	e a(rme)
ļ		flight	Radial	Tangential
Nos	e cap	Lift-off	38.6	11.5
	$(X_{T} 371 \text{ to } X_{T} 322)$	Boost	167.3	52.9
Nos	e cap coverplate or support rings (Station X _T 371)	Lift-off Boost	23.0 23.0	7.4
LH2	bulkhead	Lift-off Boost	99.3 85.0	83.0 68.4
LH 2	aft bulkhead cap and covers	Lift-off Boost	64.0 28.6	53.3 16.5
LH2	cylinder (X _T 2058 to X _T 1624 inboard +Z axis)	Lift-off Boost	41.1 57.3	19.7 27.7
LH2	cylinder (X _T 1871 inboard)	Lift-off Boost	19.5 27.8	27.6 36.1
LH2	cylinder (X _T 2058 outboard)	Lift-off Boost	41.1 28.3	19.7 7.5
LH2	cylinder (X _T 2058 inboard)	Lift-off Boost	14.1 17.8	19.4 25.1
LH2	cylinder (X _T 1871, -Z axis \pm 90°)	Lift-off Boost	22.1	31.2 10.7
LH2	cylinder (X _T 2058, -Z axis ± 90°)	Lift-off Boost	14.1 5.3	19.4 6.8
^{LH} 2	cylinder (X _T 1624 to X _T 1123 inboard +Z axis)	Lift-off Boost 	41.0 71.2	12.6 21.6
LH2	structural rings (X _T 1624 to X _T 1377 inboard +Z axis)	Lift-off Boost	28.1 72.8	24.2 55.3
LH2	cylindrical (X _T 1624 to X _T 1130, -Z axis)	Lift-off Boost	45.6 28.8	14.0 7.5
LH2	structural rings (X _T 1130 inboard +Z axis)	Lift-off Boost	12.8 24.6	19.1 32.9

TABLE 3.5.1.1-4. - ET RANDOM VIBRATION COMPOSITES - CONCLUDED (Paragraph 3.5.1.1)

3.5.1.1-6

3.5.1.2

- Thermal Protection Subsystem CONSTRAINTS/LIMITATIONS
- RESULT IF EXCEEDED
- 1. Thermal Protection Subsystem <u>Component Temperature Limits</u>. See table 3.5.1.2-1.

3.5.1.2-1

· · · · · · · · · · · · · · · · · · ·	Components	Minimum Operating Temperature, °F	Critical Item and Results If Exceeded	Maximum Operating Temperature, °F	Critical Item and Results If Exceeded
	CPR-488	-423	Potential debond	300	Potential debond
	SLA-561	-423	Potential debond	400	Potential debond
	BX-250	-423	Potential debond	200	Potential debond
	MA-25S	-300	Potential debond	400	Potential debond
	NCFI 22-65	-423	Potential debond	300	Potential debond
	PDL	-423	Potential debond	200	Potential debond
1					

.

TABLE 3.5.1.2-1.- THERMAL PROTECTION SUBSYSTEM MATERIAL TEMPERATURE LIMITS (Paragraph 3.5.1.2)

^aBondline limit

ł

3.5.2 Mechanical Subsystems

3.5.2.1 ET/SRB Attachment/Separation Subsystem CONSTRAINTS/LIMITATIONS

RESULT IF EXCEEDED

No constraints have been identified for this subsystem.

3.5.2.2

Mechanical Subsystems CONSTRAINTS/LIMITATIONS

 Tumbling System Limits. Tumbling system pyrotechnic operating temperature limits range from -150° 200° F. Voltage limits are: a. No fire One watt, one amp b. All fire 5 amps for

2 msec.

 Hazardous Gas Detection System Limits. Interface pressure of 7 psia to ambient is required. Interface flowrate requirements are 0.02 to 0.08 lb/min. RESULT IF EXCEEDED Temperatures in excess of these will cause autoignition (275° F is autoignition temperature). Stray current in excess of these limits may cause autofire. Conditions below these may cause misfire. The ET HGDS is passive. Ground operations pressure and flow rates established by GSE. If flow rates become too low, inadequate gas sampling might occur. 3.5.3 Propellant Storage Subsystem

3.5.3.1 Propellant Storage CONSTRAINTS/LIMITATIONS
1. Propulsion Subsystem Temperature Limits. See table 3.5.3.1-1.

RESULT IF EXCEEDED

I Item '	Temperature, °F				
 	Maximum	Minimum			
LO ₂ subsystem					
Helium injector line check valve and filter	350	-320			
Feedline	160 ^a	-297			
Pressure line	650 (860 aeroheat spike)	-297			
Diffuser	670	-297			
Vent valve Flow media	540	-297			
Local ambient	300	-297			
Vent duct					
Flow media	540	-297			
Local ambient	300	-297			
Louver	950 at 120 sec 1600 at MECO	-297			
Vent valve actuation line	300	-250			
Tumble valve	200 (900 at exit	-320			
Tumble manifold	500	-297			
Tumble cartridge	200	-150			
LH ₂ subsystem					
Feedline – external	350	-423			
Feedline – internal bellows	160 ^a	-423			
Feedline - internal siphon	160 ^a	-423			

TABLE 3.5.3.1-1.- PROPULSION SUBSYSTEM COMPONENT ALLOWABLE TEMPERATURES (Paragraph 3.5.3.1)

^aNon-operating

1

1

Item	Temperature, °F				
	Maximum	Minimum			
LH ₂ subsystem (continued)					
Recirculation line Propellant carrier	100 at 90 sec 350 at MECO	-423			
Shroud (jacket)	1200 at MECO	-423			
Vent valve Flow media	170	-423			
Local ambient	100	-175			
Vent line External	0	-180			
Internal	245	-423			
Pressure line	245	-423			
Diffuser	245	-423			
Vent valve actuation line	300	-160			
Vent valve sense line	300	-160			
Intertank					
Pressure disconnect	340	-60			
GH ₂ vent disconnect	350	-420			
GN ₂ purge manifold	300	-160			
Other					
Carrier-plate separation bolt	275	-200			
Linear-shaped charge	350 (for 30 min.)	-300			
Confined detonating fuse (GFP)	350 (for 30 min.)	-300			
PETN Tip	 250 (for 30 min.)	-300			

TABLE 3.5.3.1-1.- PROPULSION SUBSYSTEM COMPONENT ALLOWABLE TEMPERATURES (Concluded) (Paragraph 3.5.3.1)

3.5.3.1-3

236

~

	Temperature, °F					
Component	Minimum	Maximum				
Directional coupler	-65	165				
Antenna	-40	400				
Hybrid coupler	-65	165				
Integrated receiver decoder	20	135				
Distributor	20	155				
Safe and arm	20	165				
NSD	-410	300				
CDF manifold	-150	250				
CDF assemblies	-319	250				
Batteries	30	120				
Linear-shaped charges	-300	350				
		1				

.

TABLE 3.5.4.1-1.- RANGE SAFETY SYSTEM COMPONENT TEMPERATURE LIMITS (Paragraph 3.5.4.1)

237 3.5.4.1-2

			Maxi	mum			1	Maximu	m Non-	1
		1	Opera	ting	1	Ì	Ì	opera	ting	
1	Minimum	1	Temperature,			Minimum Non-	i	Temperature.		
1	Operating	Critical Item	°₽		Critical Item	operating	Critical Item	°F		Critical Item
Components	Temperature,	and Results	Long	Short	and Results	Temperature,	and Results	Long	Short	and Results
I	°F	If Exceeded	Term	Term	If Exceeded	°F	If Exceeded	i Term	Term	I If Exceeded
Pressure		1	1	1	1		1		1	1 IL INCCOURT
transducer	1		Ì	i	i	i	1	i	1	
(low)	1	Ì	i	i	i	1		4 1		
PD7400106-079	-30	Loss of sensor	240	NA	NA	NA	Electrical	1 N72	I NTA	 Flootnicel
	Í	calibration	i	i	1	1	Component	1		icomponent
	i		i	i	1	1	failuroc	1		for lunes
Absolute and	i	i		1	1	1	larrares		}	Latitutes
differential	i	i	i	i	1	1	1	 *	1	
ullage gas	i	i ·	1	i	1 . 1	1	1	1	1	
pressure	i	i	1	1	1	1	1	1	!	
transducer		ì	1		i i	1	1	1	!	
PD7400098-079	i 40	Loss of sensor	1 140	t NA	 N7A)TD	l Ionalifiashian		1	
	1	calibration					Qualification	NA	NA	NA
PD7400098-039	i . o		75	1 1 N7A						
		i v					Qualification	NA	NA	NA
Crvo liquid gas	0		73	1		1			!	
and hot gas	, v		/3	1		1	Calibrated		1	
temperature	1	1					limit		l	
probe trans-				1						
ducer	1	1								
PD7400095-009	-430	I I I I I I I I I I I I I I I I I I I	200	1						
10/4000000	1	Loss of sensor	200	NA		NA	Wire insula-	NA	NA	1 1
	1	Calibration					tion		1	
PD7400095-139	1 _300		300				degradation			
DD7400005_140	-300		300	NA		NA		NA	NA	[· · ·]
DD74000050-149	1 200		158	NA		NA		NA	NA	
10/100030-009	<u> </u>	V	500	NA	V	NA	V I	NA	NA	1 V I

TABLE 3.5.4.2-1.- ELECTRICAL SUBSYSTEM CONPONENT TEMPERATURE LIMITS (Paragraph 3.5.4.2)

Electrical Power Distribution and Control Subsystem CONSTRAINTS/LIMITATIONS RESULT IF EX

1. <u>Electrical Power</u>. (+28 Vdc) a. Steady-state: (1) Maximum 32 Vdc. (2) Minimum 26 Vdc. RESULT IF EXCEEDED Exceeding these limitations will cause the voltage level to be out of tolerance at the loads, resulting in possible loss in ET instrumentation and/or ET heaters.

- b. Transient with recovery to steady-state limits in 200 msec.
 (1) Maximum 36.7 Vdc.
 (2) Minimum 22.7 Vdc.
- c. Ripple 0.9 V p-p (each frequency)
 including ripple component;
 1.6 V p-p maximum total broadband.
- d. Voltage Spikes. Voltage spikes superimposed on normal line voltage will be two times line voltage or 100 V, whichever is less.
- 2. Tumbling.
 - a. Arm Command Safe and arm relay -10W maximum.
 - b. Fire Command In arm position, pyrotechnic initiation is 200W maximum.

3. Heater Power.

- a. Bipod Heaters
 - Long, 85 Vac at 1.0A.
 - Short, 122 Vac at 1.0A.
- b. Aft strut heaters
 - (1) LO_2 feedline bracket heater 93^2 Vac @ 1.7 A.
 - (2) LO_2 elbow bracket heaters, 93^2 Vac @ 1.7 A.
 - (3) LH₂ feedline bracket heaters, 72^2 Vac @ 0.25 A.

^aIf including loss of fuel cell 1 or 3, the minimum voltage will be 25.3 Vdc. If fuel cell 2 is lost, voltage will be 0 Vdc.

3.6.1	Structures	and	Thermal	Protection	Subsystems

- 3.6.1.1 Structures Subsystem CONSTRAINTS/LIMITATIONS
 - 1. SRB Recovery Velocity. The SRB recovery velocity must not exceed 85 ft/sec (vertical) and 45 ft/ sec (horizontal) at water impact.
 - 2. Frustrum Recovery Vertical and Horizontal Velocity. Frustrum recovery vertical and horizontal velocity must not exceed 55 ft/sec or 45 ft/sec, respectively.
 - 3. Dynamic Pressure Limit. Spent SRB dynamic pressure must be < 200 psf and Mach number < 0.6 at altitude of < 19,000 ft.
 - 4. Spent SRB Tumbling Rates. Body tumbling rates of the spent SRB must not exceed Pitch TBS deg/sec. Yaw TBS deg/sec. Roll
 - TBS deg/sec. 5. Structures Temperature Limits. See table 3.6.1.2-1.
 - 6. Maximum Axial Acceleration. Maximum axial acceleration during ascent must not exceed 3.0g.
 - 7. Maximum Longitudinal Acceleration. Maximum longitudinal acceleration must not exceed 1.2g at lift-off.

RESULT IF EXCEEDED

TBS

Attrition will be excessive for higher velocities.

TBS

TBS

Structural design limit of the SRB.

Structural design limit of the SRB.

		 Critical Item	and Results			SELECTION OF CONTRACT.	AN AN AN AN AN	NA	NA	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	AN	en en en	 EN EN EN EN
-uon =	ting	acure,	Short	TBS	TIBS	SEL SEL SEL SEL SEL SEL SEL SEL SEL SEL	NA NA NA	NA	NA	AN AN AN AN AN AN AN AN AN AN AN AN AN A	YN I		8 8 8
Maximu	opera	iodura.r.	Long		TIBS TIBS	A A A A A A A A A A A A A A A A A A A	N NA NA	AN			NA I	NA NA	NA NA
		 Critical Item	and Results If Exceeded	TBS	TBS	A N N N N N N N N N N N N N N N N N N N	NA TBS TBS	TBS	TBS	Sat Sat Sat Sat Sat Sat	TBS	SET SET	SEL SEL SEL SEL SEL
	 Minimum	operating	Temperature,	SET SET SET SET SET SET	TBS	SET T T T T T T T T T T T T T T T T T T	AN SET SET SET SET	SEL	ar Sar		TBS	SEL SEL	SEL SEL
		Critical Item	and Results If Exceeded	A C C C C C C C C C C C C C C C C C C C	TBS TBS TBS		SEL SEL	TBS		ALL SALE SALE SALE SALE SALE SALE SALE S	TBS		TIBS SELL SELL SELL SELL
	ting	מרחות'	Short				en en en	NA	NA	*****	en en	4 4 4 4	en en en
Maxi	Opera	Jo	Long	000 000 000	900 11BS	200 200 200 80 80	90 150	250	120	122 160 160 TBS TBS		TBS 160 160	104 160 250
		Critical Item	and Results If Exceeded		SEL SEL SEL SEL	TBS TBS TBS TBS TBS TBS TBS TBS TBS TBS	TBS TBS TBS TBS	TBS	TBS	SIBT SIBT SIBT SIBT SIBT SIBT SIBT SIBT	SEL	SEL SEL	TBS
	Minimum	Operating	Temperature, °F	SET SET SET SET SET	Sat 188	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1188 1188 1188 1188 1188 1188 1188 118	40	е е	34 - 40 TBS TBS	Sar		-40 -40 -54
			Components	Structures Nose cone Forward skirt Solid rocket	Aft skirt Aft skirt Attachments Solid rocket motor nozzle	Prechanical Priot parachute Priot parachute Drogue parachute Main parachute Flotation bags Flotation bags Battery Propulsion	Propellant (PBAN) Igniters TVC GN bottles TVC hydraulic oil reservoirs	TVC gimbal actuators	Separation motors <u>Electrical Power</u> System	Avionics Avionics Beacons Flasher Dye marker Solar trans- mitter	Pressure switch	Pressure cartridge Antenna Malfunction detection sys- tem	Flight recorder Sequencers Cabling

ş

•

TABLE 3.6.1.2-1.- SOLID ROCKET BOOSTER TEMPERATURE LIMITS (Paragraph 3.6.1.2) 3.6.3 Solid Rocket Motor Subsystem

3.6.3.1

- Solid Rocket Motor CONSTRAINTS/LIMITATIONS
 - 1. <u>Nominal Thrust Performance</u>. The nominal thrust profile must not exceed the limits as shown in figure 6.3.1-2.
 - 2. <u>Ballistic Dispersions</u>. The ballistic dispersions must not exceed the limits shown in table 6.3.1-1.
 - 3. Thrust Differential.
 - a. Ignition thrust differential must not exceed the limits shown in figure 6.3.1-3.
 - b. Steady-state thrust differential must not exceed the limits shown in figure 6.3.1-4.
 - c. Tailoff thrust differential must not exceed the limits shown in figure 6.3.1-5.
 - 4. Ignition Characteristics.
 - a. The ignition interval must be 170 to 340 msec.
 - b. The pressure rise rate must not exceed 109 psi for any 10-msec interval.
 - c. The thrust rise rate must not exceed 360,000 lbf for any 10-msec interval.
 - d. Variation between SRB-pair ignition must not exceed 9.3 msec.
 - 5. Dynamic Thrust Vector. The dynamic thrust vector must not exceed the limits shown in figure 3.6.3.1-1.
 - Propellant Bulk Temperature. The propellant bulk temperature must not exceed 40° to 90° F during motor operation.

RESULT IF EXCEEDED

Performance requirements will not be met.

3.6.3.1-1

Note: The line of action shall be within 0.5 inches of the nozzle, SRM centerline. The line of action of the thrust vector, during web burning, shall be within 1.0 deg (half angle) of a line coincident with or parallel to the SRM/nozzle centerline

Figure 3.6.3.1-1.- SRB system thrust vector alignment.

3.6.4 Thrust Vector Control

3.6.4.1 T

- Thrust Vector Control Characteristics CONSTRAINTS/LIMITATIONS
- 1. <u>SRB TVC Actuation Subsystem</u> a. The SRB TVC-actuation subsystems shall not be
 - operated with more than two of their four channels bypassed.
 - b. At SRB hydraulic power-up, the magnitudes of the errors between the commanded and actual positions of the SRB TVC actuators must be 0.9 degree or less unless their FDI system is inhibited by issuing Reset/Override commands to all of the SRB TVC channels. Constraint does not apply to low-pressure operations (less than 2000 psi).
 - c. Following bypasses of two channels in the same SRB TVC actuator, the FDI system for the two remaining channels shall be inhibited using Reset/Override commands.
 - d. SRB TVC actuators with multiple failed channels that have been bypassed shall not be reactivated simultaneously. The bypass channels can be reactivated one at a time by issuing a Reset/Override command to one of the bypassed channels for a minimum of 140 milliseconds. A delay following the removal of the Reset/Override of at least an additional 300 millipseconds must be allowed for

RESULT IF EXCEEDED

The SRB TVC actuators were not designed for singlechannel operation. With three channels bypassed, operating with only one active channel, the performance of the affected SRB TVC subsystems could be unacceptable. In flight, this condition could result in loss of the vehicle. Four channel bypasses of the affected SRB TVC actuators could occur resulting in loss of actuator control. During a launch countdown, an on-pad launch abort will result.

Constraint attempts to prevent loss of actuator control due to inadvertent bypasses of the remaining active channels. After bypasses of two of the four channels, the FDI system is no longer capable of discriminating between failed and good active channels. The FDI system for the SRB TVC-channel actuation subsystems is not designed to handle multiple TVC-channel failures that occur simultaneously. Simultaneously reactivating more than one failed channel in a given TVC actuator could cause a four-channel bypass condition resulting in loss of actuator control. Tn flight, loss of actuator

3.6.4.1

CONSTRAINTS/LIMITATIONS

the channel to re-bypass if the failed condition still exists. This procedure can then be repeated for the remaining bypassed channels.

- e. For each of the SRB TVCactuation subsystems, the magnitude of the incremental change (step) in its position command shall be limited to 0.9 degree. Any subsequent change in the command shall be delayed so that the magnitude of the effective commanded rate does not exceed 5 degrees per second. For example, following a 0.9 -degree incremental change in in the position command of one of the SRB TVC subsystems, no subsequent change in this command can occur for 180 milliseconds [0.9 degree/(5 degree/ second) = 180 milliseconds].
- f. If a failed channel cannot be bypassed resulting in the channel being dragged by the remaining three channels, the FDI system for the remaining three channels shall be inhibited by issuing Reset/Override commands to these channels.
- g. The SRB TVC-actuation subsystems shall not be operated with two control channels assigned to one GPC unless one of the two channels is bypassed via the FCS channel switch.

RESULT IF EXCEEDED control could result in loss of vehicle.

Four-channel bypasses of the affected SRB TVC actuator could occur resulting in loss of actuator control. In flight, fourchannel bypass would result in loss of TVC function for the affected SRB axes with possible loss of vehicle.

The FDI system for the SRB TVC-actuation subsystem is not designed to handle any subsequent failure; the subsystem has had two failures with the inability to bypass the failed channel being the second failure. Constraint attempts to prevent loss of actuator control due to a subsequent failure that could result in bypassing the three remaining control channels. Failure of a GPC commanding two control channels could result in bypass of the remaining two channels and loss of actuator control. In flight, loss of actuator control could result in loss of vehicle.

3.6.4.1

CONSTRAINTS/LIMITATIONS

- h. If two channels in the same SRB TVC-actuation subsystem bypass during ground tests, the hydraulic pressure shall be removed as quickly as possible.
- i. Following an SRB HPU failure, the sum of the magnitude of the commanded rates for the two SRB TVC actuators affected by the failure shall not exceed 6 degrees per second.

RESULT IF EXCEEDED Bypass of two channels under test conditions could result in bypass of the remaining channels and loss of actuator control.

Four-channel bypasses of the affected SRB TVC actuators could occur due to excessive position errors caused by exceeding the hydraulic flow capability of the one remaining HPU. A four-channel bypass would result in loss of actuator control with possible loss of vehicle.

- Auxiliary Power Unit Subsystems CONSTRAINTS/LIMITATIONS
- 1. Temperature Limits. See table 3.6.4.2-1.
- 2. Auxiliary Power Unit Heaters Energized. Auxiliary power unit heaters must be energized prior to auxiliary power unit activation to preheat bed at 200° F.

RESULT IF EXCEEDED

Catalyst bed may require preheating to preclude washout and to prolong bed life.

TABLE	3.6.4.2-1	AUXILIARY	POWER	UNIT	SUBSYSTEM	COMPONENT	TEMPERATURE	LIMITS
			(Para	agraph	1)			

1	1	1	Maximum		1	1	1	Maximum Non-			
1			Operating		Ì	1	Ì	opera	ting		
	Minimum		Temper	ature,	1	Minimum Non-	i	Temperature.		1	
1	Operating	Critical Item	°F	•	Critical Item	operating	Critical Item	1 05		Critical Item	
Components	Temperature,	and Results	Long	Short	and Results	Temperature.	and Results	Long	Ishort	and Reculte	
	°F	If Exceeded	Term	Term	If Exceeded	°F	I If Exceeded	Term	iTerm	I If Exceeded	
Fuel tank	45	Hydrazine	150	1	Safe operation	TBS	TRS	TRS	TRC	TPC	
1	1	freezes at	i	i	limit of		· ····		1	1 155	
Ì	i	35° F.	1	i	hvdrazine from	1	1	-	}		
Ì	i	1	i	1	ltank	1	1	1	1		
Fuel lines and	45	Hvdrazine	1 150	1	Safe operation	i TTBC	i mpc				
line filter	İ	freezes at	1	i	llimit of	1 100	1 100	100	100	105	
	İ	135° F.	i	1	lbydrazine from	1		1	1	1	
	1	1	1	1	tank	1	1	1	1		
Isolation valve	45	Hydrazine	1 150		Safe operation	i moc					
	1	lfreezes at	1 100		llimit of	1 103	105	TBS	TBS	TBS	
	Ì	135° F.	1	1	hudrazine from	1	1	1	1		
	1		1	1	tank	1	1	!	1	[
Lube oil lines	45	 Acceptable	1 290	a	lube oil upper	i moc					
1	1	llube oil	1 250	1	llimit	105	TBS	TBS	TBS	TBS	
		lviscosity	1		I	1	1		1		
Exhaust duct	I NA	INA	11400	1	 Strongth limit	 NTN	1		1		
		1	1	1	on duct	i inters	NA NA	INA	NA I	I NA I	
i		1	1	1	imatorial	1		1	1		
Electrical com-	-65	Compartment	1 275	1	Compartment						
ponents/wiring		temperature	1 2/2	1	tomporature	155	105	TBS	TBS	TBS	
APU		leemperacate	1	1	i cemberarare			1	1	! !	
Controller	0	Loss of com-	1 125	1	Components	TRC	 MDC				
i		ponent accura-		i	unner limit	<u>105</u>	105	103	105	155	
i		cv at lower	1		apper rimit				1		
i		temperatures	i f					1	ł		
Fuel pump	45	Hvdrazine	1 155	a	Safe operation	TRC	TTDC				
1		freezes at	1		limit of	<u></u>	105	1.03	105	105	
i i		135° F.	1	1	hydrazine from				1		
i i			Ì	1					1		
Modulating valve	45	Hvdrazine	1 155	a	Safe operation	TAC	mpc -	mpc			
		freezes at	1	r 1 1 1	limit of	105	105	155	TBS	<u>TBS</u>	
i		135° F.	1		hydrazine from				1		
İ		1			nyurazine riom						
Shutoff valve	45	Hvdrazine	155	a	Safe operation	ידעכ ו	TTPC .	mpc			
Ì		freezes at			limit of	105	105	105	105	<u>185</u>	
i i		35° F.			bydrazine from						
i i					nyaruzine riom						
Gas generator	200	Poisoning of	1700		Turbine and	ו ידוב ו	TTDC	TDC			
		catlyst bed	1.00		generator lifel	105	165	105	<u>165</u>	TBS	
i i		occurs below			limits	1				I I	
		200° F.				1					
Turbine housing	NA	NA	350		Compartment I	TTRS I	ייפכ ו	TRC	The	ן יישר ו	
surface					structure			<u>165</u>	103	105	
i i			1		limit	1	1				
Gear box	45	Acceptable	290	a	Lube oil upper	TTBS I	ן איזיי	TRC	יייאכ ו	TTDC	
i i		lube oil	1		limit	<u> </u>	<u></u>			105	
I İ		viscosity		1			1		. 1		
				1					1		

.

a,

^aShort-term excursion to higher temperature after shutdown allowable.

248

3.6.4.2-2

3.6.5

Separation	Subsystem
CONSTRAI	INTS/LIMITATIONS

- 1. Rates. Limit rates at separation: Roll ±5 deg/sec Pitch ±2 deg/sec Yaw ±2 deg/sec
- <u>Dynamic Pressure</u>. Limit dynamic pressure (q) at separation is 75 psf.
- 3. <u>Angle-of-Attack</u>. Angle-of-attack Possible recontact b limit at separation (\propto) is ±15 deg. separating elements.
- 4. Sideslip (β) Limit. Sideslip (β) limit at separation is ± 15 deg.
- 5. <u>SRM Thrust</u>. Maximum residual thrust, each SRB, at separation is 60,000 lbf.

RESULT IF EXCEEDED Possible recontact between separating elements.

Possible recontact between separating elements.

Possible recontact between separating elements. Possible recontact between separating elements. Possible recontact between separating elements.

3.6.4.3 Hydraulic Subsystem and 3.6.4.4. Servoactuators: no constraints

3.6.6

Recovery Subsystem CONSTRAINTS/LIMITATIONS

- Ascent Trajectory. Ascent trajectory shall be designed such that the SRB nominal apogee shall not exceed 255,000 feet for midweight case SRB, 260,000 feet for lightweight case SRB, and 275,000 feet for filament wound case SRB.
- 2. Sea-State.
 - a. Sea-state for SRB flotation must not exceed sea-state code 5. Capability must be provided to insure SRB flotation for at least 72 hours under these conditions.
 - b. Sea-state for retrieval and transportation must not exceed sea-state code 4.

RESULT IF EXCEEDED Exceeding apogee limits will reduce recovery probability below 99 percent.

Exceeds design limit for retrieval.
5.0 EXTERNAL TANK PERFORMANCE AND OPERATIONAL DATA

.

The External Tank (ET) performance and operational data are presented in the following subsections. External tank configuration and coordinate data and ET contraints and limitations are presented in Section 2.0 and 3.0 of this document, respectively.

5.0-1

250 a

	5.1 STRUCTURES AND THERMAL PROTECTION S	SUBSYSTEMS
5.1.1	STRUCTURES SUBSYSTEM Three primary structural elements compri system. They are the LO ₂ tank, an inter ET performs the following functions: a. Provides propellant tanks for the Orb b. Receives and distributes stress loads	se the ET structures tank, and an LH ₂ tank. The piter
	and SRB's	tion and to the orbiter
	c. Provides load path continuity for the flight configuration. See figure 2-6	e total Space Shuttle for this configuration.
5.1.1.1	Liquid Oxygen Tank	
	a. Length	592 in.
	b. Outside diameter (barrel)	331 in. 3
	c. Total volume (including ullage)	19,786 ft ³
5.1.1.2	Intertank	
	a. Length	270 in.
	b. Outside diameter	331 in.
	c. Pressure vents	
	1. Number	2
	2. Size	1.4 jn. x 5.5 in.
	3. Area	6 in ² per v e nt
	 Total leak penetration area including two vents 	53 to 66 in ²
	d. In-flight intertank pressures	15.0 to 0.001 psia
5.1.1.3	Liquid Hydrogen Tank	
	a. Length	1160 in.
	b. Outside diameter	331 in.
	c. Volume (including ullage) under	53,518 ft ³
5.1.1.4	Nose Can	
2121217	a. Length (with lightning rod)	44 in
	b. Outside diameter	56 in
	N. ARTIG ATOMETET	DO TH'

5.1.1-1

²⁵⁰ b

THERMAL PROTECTION SUBSYSTEM

The thermal protection subsystem (TPS) consists of ablators and foams of several compositions applied by different methods. Super light ablator (SLA-561) is applied to components by a process of spraying, vacuum molding, bonding of premolded parts, screen net molding, nitrogen gas pressure net molding, and/or manual hand application (handpacked).

Martin Ablator, 25 sprayable (MA-25S) is sprayed directly onto the part, or built into slabs/panels by a continuous series of overlaying spray passes. This cured raw stock (slab/panel) is subsequently bonded to specific LO_2 and LH_2 cable trays and covers which enclose the RSS linear-shaped charges.

Sprayable Polyisocyanurate foam (CPR-488) is an "acreage foam" used on the LO₂ tank, intertank, and LH₂ tank barrel. Another sprayable polyisocyanurate foam with higher thermal stability characteristics (NCFI 22-65) is used for "acreage coverage" on the LH₂ aft dome.

Polyurethane foam (BX-250) can be applied by either a spray or spray/pour process. This foam is used on the LO_2 tank aft dome, LH₂ tank forward dome, LH₂ aft dome apex closeout, protuberance air load (PAL) ramps, multi-component detail parts, and other closeout functions. Another polyurethane foam (PDL-4034) is injected/poured into molds to form the LO_2 and LH₂ ice-frost ramps at respective cable tray support-bracket locations. The primary usage of this foam is for "in process" repair, closeout and repair of foam test locations.

A commercial grade polyurethane kit foam (Insta-Foam) is only used for off-site closeout of the "third hard point" at the ET aft end -Z axis.

The system also includes the use of phenolic thermal isolators between the LH₂ tank and tank attachments to preclude the liquefaction of air on exposed metallic attachments and to reduce heat flow into the LH₂. See table 5.1.2-1.

Operational characterístics of TPS materials are shown in table 5.1.2-2.

a. TPS materials characteristics

- 1. SLA-561
 - (a) Thermal conductivity at 75° F
 (b) Typical cross section (1) 1506
 (2) 1508, 1509
 (3) 1510 I
 (4) 1510 II
 (5) 10 100
 (6) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 10 100
 (7) 1
 - (5) 1530, 1531 (c) Density

2. CPR-488

(a) Thermal conductivity
 (b) Typical cross section
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Btu/ft-hr-°F
 (c) 0.018 Bt

15-20 lb/ft

 $16 \pm 1 \ lb/ft$

(b) Typical cross section Figure 5.1.2-2(c) Density $2.1 - 2.6 \text{ lb/ft}^3$

5.1.2 - 1

Q

Amendment 217

	*	
	3. NCFI 22-65	
	(a) Thermal conductivity	0.023 Btu/ft-hr-°F
	at 75° F	
	(b) Typical cross section	Figure 5.1.2-2
	(c) Density	$2.8 - 3.1 \text{lb/ft}^3$
	4. BX-250	
	(a) Thermal conductivity	0.018 Btu/ft-hr-°F
	at 75°F	
	(b) Typical cross section	Figure 5.1.2-2,
	(c) Density	$1.8 - 2.6 \text{lb/ft}^3$
	5. MA-25S	
	(a) Thermal conductivity	0.054 Btu/ft-hr-°F
	at 75 °F	
	(b) Typical cross section	Figure $5.1.2-3$ and -4
	(c) Density	25 – 35 lb/ft ³
b.	TPS configuration summary	
	1. Lightweight tank 16, 20,	Note a
	21, 22, and 27	
	(External tank 23, 27,	
	28, 29, and 34)	
	2. Lightweight tank 24, 25,	Note a
	26, and 28 through 43	
	(External tank 31, 32,	
	33, and 34 through 50)	
	3. Lightweight tank 44 and	Note a
	subsequent	
	(External tank 51 and	
	subsequent)	
с. ч	The material thickness and usage	Note a
α.	Thenolic thermal isolators	
	the IPS uses phenolic thermal isolaton	rs between the LH ₂
	tank and tank attachments to preclude	the liquetaction
	into the LU tenk	and to reduce heat flow
	1 Logation and thickness	m-h]- 5 1 0 1
~	Thermal characteristics	Table 5.1.2-1
е.	inermal characteristics	Table 5.1.2-2

^aData on the ET configuration summary were submitted on M1-1471 and are available from J. Mistrot VF2, 713-483-3314.

250 d

I

Amendment 215

Component '	TPS Material	Thickness, in.
Isolator requirements		
ET/SRB aft attachment (4) ET/ORB forward attachment (2) ET/ORB aft vertical attachment (2) ET/ORB aft diagonal attachment (1) LO ₂ feedline attachment (8) GO ₂ pressurization line/cable tray (14) GH ₂ pressurization line/cable tray (15)	Glass phenolic Glass phenolic Glass phenolic Glass phenolic Glass phenolic Glass phenolic Glass phenolic	0.4 0.37 0.4 0.4 0.55 0.5 0.5

TABLE 5.1.2-1.- PHENOLIC THERMAL ISOLATOR (Paragraph 5.1.2)

TABLE 5.1.2.2.-THERMAL CHARACTERISTICS
(Paragraph 5.1.2)

Material	Q Maximum, Btu/ft ² - sec	Bondline temperature, °F		
 		Maximum	Minimum	
BX-250	4	200	-423	
CPR-488	а	300	-423	
SLA-561	30	400	-423	
MA-25S	75	400	-300	
NCFI 22-65	N/A	300	-423	

^aPractical use limits are 18 Btu/ft²-sec for thickness to 2 1/2 in.,

 $(r = 0.000858q^{1.53}$ based on clean/interface flow tests).

D

Figure 5.1.2-1.- SLA-561 typical cross section. (Paragraph 5.1.2)

Figure 5.1.2-2.- CPR-488/BX-250/or NCFI 22-65 typical cross section. (Paragraph 5.1.2)

Figure 5.1.2-4.- Typical cross section of forward bi-pod struts with MA23s sprayed in place. (Paragraph 5.1.2)

250 /g

Figure 5.1.2-1.- TPS configuration summary - Block 6. (Paragraph 5.1.2)

Figure 5.1.2-1.- TPS configuration summary - Block 7 (concluded). (Paragraph 5.1.2)

5.1.2-

σ

-

OGIVE CPR			
STA 371-540	2.0"		
STA 540-570	Tap er 2.0"-1 "		
STA 570-852	1"		

Figure 5.1.2-2.- LO_2 tank SLA panels - Block 7 (Paragraph 5.1.2)

250 j

Figure 5.1.2-3.- Nose cap TPS coverage. Figure 5.1.2-4.- LO₂ tank TPS coverage. (Paragraph 5.1.2) (Paragraph 5.1.2)

Figure 5.1.2-5.- Intertank TPS cross sections. (Paragraph 5.1.2)

252

5.1.2-10

Figure 5.1.2-7.- Liquid hydrogen aft dome TPS configuration (lightweight tanks 4 and up). (Paragraph 5.1.2)

254

5.1.2-11

Figure 5.1.2-8.- ET/Orbiter interface attachments structure-TPS configuration. (Paragraph 5.1.2)

255

LH₂ feedline Ref: See 80971028410

LH₂ recirculation line Ref: See 80971028411

Note: SLA thickness is minimal BX-250 thickness is nominal

> Figure 5.1.2-9.- LH₂ feedline and recirculation line - TPS configuration. (Paragraph 5.1.2)

Figure 5.1.2-10.- Aft upper ET/SKB fitting - TPS configuration. (Paragraph 5.1.2)

257

Figure 5.1.2-12.- CPR-488/BX-250/or NC-FI 22-65 typical cross section. (Paragraph 5.1.2)

Figure 5.1.2-14.- LO₂ feedline thermal isolation. (Paragraph 5.1.2)

5.1.2-1ó

- MECHANICAL SUBSYSTEM
- 5.2.1

5.2

- SRB/ET ATTACHMENT/SEPARATION SUBSYSTEM a. SRB/ET separation system
 - representation 1. SRB/ET attachment locations
 - b. SRB/ET separation system performance characteristics and parameters
- Figures 5.2.1-1 and 5.2.1-2 Figure 5.2.1-3 Paragraph 4.5.1.1.6.2

- 5.2.2
- c. Separation operations Paragraph 4.5.1.1.6 ORBITER/ET ATTACHMENT/SEPARATION SUBSYSTEM See paragraph 4.2.2.

Figure 5.2.1-1.- ET/SRB forward attach fitting. (paragraph 5.2.1)

261

5.2.1-2

Section

5.3	PROPELLANŤ STORAGE SUBSYSTEM
5.3.1	PROPELLANT PROPERTIES
5.3.2	PROPELLANT TANKS
5.3.3	PROPELLANT PRESSURIZATION AND FEED SUBSYSTEM
5.3.4	FLUIDLINE CHARACTERISTICS
5.3.5	PROPELLANT STORAGE SUBSYSTEM THERMAL CONTROL

TABLE 5.3.1-1.-PROPERTIES OF LIQUID OXYGEN
(Paragraph 5.3.1)

Item	Procurement limits	Delivered to interface ^a
Purity	99.6 percent by volume (maximum)	99.2 percent by volume (minimum)
Alkyne as acetylene	0.25 ppm by weight	1.55 ppm by weight (maximum)
Total hydro- carbons	50.0 ppm by volume as methane (maximum)	75.0 ppm by volume as methane (maximum)
Moisture	3.0 ppm by volume (maximum)	26.3 ppm by volume (maximum)
Particulate	1.0 mg/1 (maximum) liquid only	

TABLE 5.3.1-2.- PROPERTIES OF LIQUID HYDROGEN(Paragraph 5.3.1)

Item	Procurement limits	Deliver to interface ^a
Total purity	99.995 percent by volume	99.994 percent by volume
	(minimum)	(minimum)
Total		
gaseous	50 ppm by volume (maximum)	60 ppm by volume (maximum)
impurities		
Selected	9.0 ppm by volume	9.0 ppm by volume (maximum)
impurities	(maximum)	
(nitrogen,		
water and		•
volatile		
hydro-		
carbons)		
Specific		
impurities		
0xygen plus	1.0 ppm by volume	5.0 ppm by volume (maximum)
argon	(maximum)	
Helium	39.0 ppm by volume (maximum)	45.0 ppm by volume (maximum)
Carbon mon-		
oxide plus	1.0 ppm by volume	1.0 ppm by volume (maximum)
Carbon	(maximum)	
dioxide		

^aRequirements per SE-S-0073, Revision C.

 PROPELLANT TANKS							
a. Number	2 (one oxidizer, one fuel)						
 b. Nominal oxidizer tank total volume (See Volume II for actual tank capaci 1. Volume at 22 psig and -297 °F 	ties and loadings) 19,672 ft						
(cryogenic) 2. Volume at O psig and 68 °F unpressurized (ambient)	19,793 ft ³						
c. Nominal fuel tank total volume	Nominal fuel tank total volume						
(See Volume II for actual tank capaci 1. Volume at 29.3 psig and -423 °F	ties and loadings) 53,166 ft						
<pre>(cryogenic) 2. Volume at 0 psig and 68 °F unpressurized (ambient)</pre>	53,545 ft ³						
d. Oxidizer tank pressures ^a							
1. Normal ullage pressure profile	Figure 5.3.2-1						
2. Abort once around (AOA) profile	Figure 5.3.2-2						
3. Return to launch site (RTLS)	Figure $5.3.2-3$ and						
prollie 3a Transatlantia abort (TAL)	5.3.2-4						
Sa. Ilansatiantic abolt (IAL)	$5 3 2_{-6}$						
4. Regulation control band	20 to 22 psig						
5. Maximum relief pressure	25 psig						
6. Factors of safety/proof	Table 5.3.2-1						
factors							
7. Minimum tank ullage pressure	0.0 psig						
during replenish mode of the							
tanking operation							
e. Fuel tank pressures							
2 Minimum allowable liquid	Figure $5.3.2-7$						
hvdrogen ullage pressure	rigule J.J.2 -0						
3. Abort once around (AOA) profile	Figure 5.3.2-9						
4. Return to launch site (RTLS)	Figure 5.3.2-10						
profile	and 5.3.2-11						
4a.Transatlantic abort (TAL)	Figure 5.3.2-12 and						
	5.3.2-13						
5. Regulation control band	32 to 34 psia						
6. Maximum relief pressure	37 psig						
/. Factors of safety/proof factors	Table 5.3.2-1						
8. Minimum tank ullage pressure	0.0 psig						
tanking operation							
f. Maximum facility back pressure for	0 5 peig						
Howent systems at a boiloff rate	0.5 barg						
of 2.9 lb/sec							
g. Oxidizer gaging							
The oxidizer sensors provide $L0_2$ -leve during loading and ≤ 5 percent level	l indication for control indication during flight.						

^aThe ullage profiles shown were predicted for STS-26. Subsequent predictions can be obtained by contacting J. Mistrot/VF2, 483-3314.

5.3.2

Amendment 215

	•			
1. LO ₂ (a)	loading c Type	ontrol senso	rs	Warm-wire liquid-level
(1-)	Marshan			
(b) (c)	Sensor co tank	onfiguration ·	within	o active
Sensor Lev	vel	Qty.	<u>Location</u>	(X _T)
5%		1	917.3	
98%		2	455.0	
100%	_	1	415.5	
100%		2	412.5	
100%		1	412.0	
100%	+ 	1	409.0	
OVERFII	بلانا	T	399.7	
(d)	Accuracy contribut	(ET RSS ion to total		± 0.41 percent
(-)		(0.42
(e)	Accuracy	(overall RSS		± 0.43 percent
	total I	oading error.)	
h. Fuel ga	aging			
One set of during los second set	f fuel sen ading and t of fuel	isors provide a ≤ 5-percen sensors prov	s LH ₂ -leve t level in ides a lov	el indication for control ndication during flight. A w-level indication for
main engin	ne cutoff	and are also	used for	propellant loading. (The
oxidizer	low_level	indication s	ensors are	plopertaint routing, (inc
food line	10#-10701	indication 3	chigors are	e iocated in the orbiter
	·) loodima -			
	Toading C	control senso	rs	
(a)	туре			warm-wire liquid-level
	•			sensors
(b)	Number			12 active
(c)	Sensor co tank	onfiguration	within	
Sensor Lev	vel	Qty.	Location	(X _T)
5%		1	2081.0	
982		2	1102 1	
100%		- 1	10/9 4	
100%	-	⊥ ?	1040.0	
100%		2	1044.6	
100%	+	1	1040.6	
OVERFILL		1	1033.4	

.

	(d)	Accuracy (ET RSS contribu-	± 0.30 percent
	(e)	Accuracy (overall RSS total loading error)	± 0.35 percent
2.	LH _o	low-level sensors (ECO sensors))
	(a)	Туре	Warm-wire liquid-level
			sensors
	(b)	Number	4
	(c)	Configuration within tank	XT - 2144.42
			XT – 2144.45
			XT – 2144.69
			XT - 2144.77
	(d)	Accuracy	
		<pre>1. Response time (wet-to-dry)</pre>	160 ms
		2. Level accuracy	0.02 inch at 0.1 ft/sec
	(e)	LH ₂ outflow at the time	0.65 percent RPL
		of ² low-level signal	(see figure 5.3.4-6)
Pro	opell	lant quantities shown below are	at the uncovered times of
	-		

i. Propellant quantities shown below are at the uncovered times of the 5-percent level sensor under flight conditions. The values are based on ET tank volume/height tables with consideration to the level sensor locations and the induced surface angle at the sensor due to the vehicle acceleration vector.

Propellant level	MPS total	External tank only
Oxygen – 5 percent	75,651 lb	70,850 lb
Hydrogen – 5 percent	11,899 lb	11,534 lb

Component	 Fact'ors of safety		Proof factors ^a	
	Ultimate	Yield	Fracture controlled	Not fracture controlled
General structure		1	1	······································
Limit load	1	ļ		
Well defined	1.25	1.10	1.05 ^D	1.05
Other	1.40	1.10	1.05 ^D	1.05
Main propellant tanks		1	1	
(pressure only)		!		
Limit pressure	N/A	1.10	See note	N/A
Maximum operating	1.25-1.40 [°]	N/A	N/A a	N/A
pressure	1	1	Ì	
Combined pressure and				
loads				
Limit pressure	N/A	1.10	See note ^a	N/A
Maximum operating	1.25–1.40 [°]	N/A	N/A	N/A
pressure				
Loads (other than		[
pressure)				
Well defined	1.25	1.10	See note	N/A
Other	1.40	1.10	See note ^a	N/A
LH ₂ tank aft dome elastic buckling	1.25	N/A	N/A	N/A
Propulsion system	Ì	İ		
Propellant feed lines				
and all other lines	1		İ	
≥1.5 in. diameter,				
whichever is criti-				
cal	1		1	
Limit pressure	1.50	1.25	1.20	1.20
Limit Load	1.40	1.10	See noted	1.05
			See note	l
I Limit program		0 0		
Limit pressure	4.0	2.0	2.0	2.0
proumatic lines				
high pressure				
Vessels actuating				
cylinders, valves			 	
filters. and	ŧ (
switches				
Limit pressure	2.0	1.5	15	15
		1.5	1.5	 د د

5.3.2-1.- DESIGN SAFETY FACTORS AND PROOF FACTORS FOR USE TEMPERATURES (Paragraph 5.3.2)

I

See following page for footnotes a through d.

Amendment 215

TABLE 5.3.2-1.- DESIGN SAFETY FACTORS AND PROOF FACTORS FOR USE TEMPERATURE (Concluded) (Paragraph 5.3.2)

^aTo obtain proof load or proof pressure, multiply the limit load or limit pressure by the proof factor. There shall be no detrimental yielding at proof load or proof pressure.

To determine proof factors for temperature other than use temperatures, use the following equations:

Fracture controlled components:

Proof factor = (test temperature)	K_{IC} of material at proof temperature K_{IC} of material at use temperature	Proof factor (Use temperature)		
Not fracture controlled	components:			
Proof factor = (test temperature)	F _{TY} of material at proof temperature	Proof factor		
	F _{TY} of material at use temperature	(Use temperature)		
^b Aluminum alloys only. ^C Ultimate Safety Factor Application Use Safety Factor = 1.25 for well defined loads. Use Safety Factor = 1.40 for all other loads. The equivalent Factor of Safety (Eq. F.S.) is derived by the equation:				
Eq. F.S. = <u>1.25 (well defined loads) + 1.40 (all other loads)</u> Total Loads				
Eq. F.S. must be between the limits $1.25 > Eq. F.S. < 1.40$. Should the Eq. F.S. exceed 1.40, the total limit load will be multiplied by a F.S. = 1.40. Should the Eq. F.S. be less than 1.25, the total limit load will be multiplied by F.S. = 1.25.				
^d Design Safety Factors off-nominal conditions applied for design pur out. One SSME out sha	- Unless otherwise noted, loads derived f s shall not have the factors defined in Ta poses except for one SSME (Space Shuttle all be based on the same factor of safety	rom ble 5.3.2-1 Main Engine) as no failure		

case.

TIME FROM SRB IGNITION (T-0), (SECONDS)

Figure 5.3.2-1.- Predicted STS-26 liquid oxygen tank ullage pressure, nominal. (Paragraph 5.3.2.)

(Paragraph 5.3.2)

5.3.2-7

(Paragraph 5.3.2)

(Paragraph 5.3.2)

•

Notes:

1. Baseline LH2 ullage pressure control band = 32 to 34 psia 2. Curve maintains minimum LH2 net positive suction pressure of 4.8 at 65 percent 5.3 at 100 percent 5.43 at 104 percent 5.6 at 109 percent 5.6 at 109 percent 3. Best estimate heat load

Figure 5.3.2-8.- Minimum allowable liquid hydrogen ullage pressure. (Paragraph 5.3.2)

Figure 5.3.2-9.- Predicted STS-26 liquid hydrogen tank ullage pressure, ATO. (Faragraph 5.3.2)

277

5.3.2-14

5.3.2-17

a. LO,	tank vent/relief valve	
1.'	Force margins	Figure 5.3.3-1
2.	Open/close time	3 sec/17 sec (block 6)
	•	4 sec/4.5 sec (block 7)
3.	Operating pressure	0 to 25 psig
4.	Ambient temperature	-40° to 160° F
5.	Flow medis temperature	-297° to 540° F
6.	Relief and reseat pressure	24 \pm psig and 22 psig (min)
7.	Main seat leakage	
	(a) Non-vibration	250 scim maximum
	(b) Vibration	350 scim maximum
8.	Vent flow rate	2.0 lb/sec at 2.0 psid
9.	Relief flow rate	9.8 lb/sec at 25 psig
		tank pressure
10.	Valve actuation pressure	750 + 50 psig
10.	(Helium supplied by ground	100 Too Long
	subsystem)	
11	Operating life	
11.	(a) Relief mode	500 cycles
	(a) Nerrer mode	5750 cycles
12	Vibration (with duct)	$X_{axis} 28.6 \sigma(rms)$
12.	VIDIATION (with duct)	V_{-} and Z_{-} avis
		1 - and 2 - axis 8 03 $a(rms)$
D. LH.	. tank vent/relief valve	0.05 g(1
1.	Force margins	Figure 5.3.3-1
2.	Open/close time	1.5 sec/5 sec (block 6)
2.	open cree came	2.0 $sec/2.9$ sec (block 7)
3.	Operating pressure	0 to 40 psig
· 4.	Ambient temperature	-175° to 100° F
5	Flow media temperature	-423° to 170° F
5.	Poliof and reseat pressure	-425 to 170 1 36 \pm nsig and 34 nsig (min)
7	Main soat loakage	$50 \pm psig$ and 54 psig (min)
/•	(a) Non wibration	250 goim maximum
	(a) Non-vibration (b) Wibration	250 seim maximum
0	(b) vibration Negt flow wate (minimum)	0.0 lb/reas at 0.22 paid
8.	Vent flow rate (minimum)	0.9 fb/sec at 0.22 psid
9.	Relief flow rate (minimum)	0.9 lb/sec at 37 psig
		tank pressure
10.	Valve actuation pressure	/50 ±50 psig
	(Helium supplied by ground	
	subsystem)	
11.	Operating life	
	(a) Relief mode	500 cycles
	(b) Vent mode	5750 cycles
		$\mathbf{v} = \mathbf{v} + $
12.	Vibration	x - axis 28.6 g(rms),

--

......

5.3.3

.

æ

for the second s

c.	LO ₂ vent and flow control	
	valve(s) failure effects	Figures 5 2 2 2 through
	1. FCV failed open, vent vaive	5 3 3 5
	2 FCV failed closed vent valve	Figures $5, 3, 3-6$ through
	operational	5.3.3-9
	3. FCV failed open, vent valve	Figures 5.3.3-10 through
	failed closed	5.3.3-12
	4. Interface GO ₂ pressurant	Figure 5.3.4-8
	characteristícs – one entine	
	out, one pressure valve	
_	failed	
d.	LH ₂ vent and flow control valve(s)	
	failure effects	Figures 5 2 2 12 through
	1. FCV fall open, vent valve	5 3 3 16
	2. FCV failed closed, vent valve	Figures $5.3.3-17$ through
	operational	5.3.3-20
	3. FCV failed open, vent valve	Figures 5.3.3-21 through
	failed closed	5.3.3-23
	4. Interface GH ₂ pressurant	Figure 5.3.4-7
	characteristics - one engine out;	
	one pressure valve failed	FI F A A F
e.	ET altitude after MECO	Figure 5.3.3-15
Í.	Post separtion LO ₂ tank history	Figure 5 2 2 16
	after MECO 2 tank ullage pressure	rigule 5.5.5-10
σ.	Post separation LH, tank history	
.6.	Predicted LH, tank ullage pressure	Figure 5.3.3-17
	after MECO	
h.	Internal LH, feedline assembly	
	1. operating pressure	0 to 55 psia maximum
	2. External pressure	0 to 18.3 psid
	3. Operating temperature	120° to -423° F
	4. Proof load	1.05 x limit load

Note: The failure cases shown were predicted for STS 51-B. Subsequent predictions can be obtained by contacting J. Mistrot/VF2, 483-3314.

NASA-JSC

~

5. Leakage

6. Flow rate 7. Operating life 8. Vibration 9. Flow-induced vibration i. External LH, feedline 1. Operating pressure 2. Operating temperature 3. Proof load 4. Leakage a. Annulus b. Pressure carrier 5. Flow rate 6. Life cycle (motion) 7. Vibration 8. Flow-induced vibration j. LH, recirculation line assembly 1. Operating pressure 2. Operating temperature 3. Proof load 4. Leakage a. Annulus b. Pressure carrier

- Flow rate (topping and recirculation)
 Operating life
- 7. Vibration
- 8. Flow-induced vibration
- k. GO, pressurization line
 - 1.⁶Operating pressure
 - 2. Operating temperature
 - 3. Proof load
 - 4. Ultimate load
 - 5. Leakage
 - 6. Flow rate
 - 7. Pressure drop

Bubble tight GN₂ at maximum operating pressure 489 lb/sec 500 cycles linear and angular displacement 23 g(rms) 4 mission cycles (bellows)

0 to 55 psia (maximum) 350° to -423° F 1.05 x limit load

1 x 10⁻⁶ scc/sec Bubble tight at maximum operating pressure 489 lb/sec 500 cycles linear and angular displacement 22.4 g(rms) 4 mission cycles

0 to 55 psia 350° to -423° F 1.05 x limit load

1 x 10⁻⁶ scc/sec Bubble tight at maximum operating pressure 16.0 lb/sec maximum

500 cycles linear and angular displacement 22.4 g (rms) NA (Bellows incorporate liners)

Ambient to 600 psia -297° F to 650° F 1.05 x limit load 1.40 x limit load Bubble tight by film solution or equivalent 8.1 lb/sec GO₂ (Max.) Δ P over system operating pressure range not to cause Interface pressure to exceed 600 psia.

- 8. Operating life
- 9. Vibration
- 10. Flow-induced vibration
- 1. GH₂ pressurization line 1. Operating pressure
 - - 2. Operating temperature
 - 3. Proof load
 - 4. Ultimate load
 - 5. Leakage
 - 6. Flow rate
 - 7. Pressure drop
 - 8. Operating life
 - 9. Vibration
 - 10. Flow-induced vibration

500 cycles linear and angular displacement 4.1 g(rms) to 76.9 g(rms)NA (Bellows Incorporate Liners)

Ambient to 745 psia -423° F to 110° F 1.05 x limit load 1.40 x limit load Bubble tight by film solution or equivalent 4.07 lb/sec GH₂ (Max.) Δ P over system operating pressure range not to cause Interface pressure to exceed 723 psia 500 cycles maximum linear and angular displacement $5.4 - 54.6 \, g(rms)$ NA (Bellows Incorporate Liners)

5.3.3-5

Figure 5.3.3-6.- Predicted STS-26 liquid oxygen tank ullage pressure with three flow control valves failed closed and vent valve operational. (Paragraph 5.3.3)

Figure 5.3.3-8.- Predicted STS-26 liquid oxygen tank ullage pressure with one flow control valve failed closed and vent valve operational. (Paragraph 5.3.3)

Figure 5.3.3-9.- Predicted STS-26 liquid oxygen tank ullage pressure with one flow control valve failed closed and vent valve operational. (Paragraph 5.3.3)

Figure 5.3.3-10.- Predicted STS-26 liquid oxygen tank ullage pressures with three flow control valves failed open and vent valve failed closed. (Paragraph 5.3.3)

Figure 5.3.3-12.- Predicted STS-26 liquid oxygen tank ullage pressure with one flow control valve failed open and vent valve failed closed. (Paragraph 5.3.3)

flow control valves failed open and vent valve operational. (Paragraph 5.3.3)

298

5.3.3-17

Figure 5.3.3-14.- Predicted STS-26 liquid hydrogen tank ullage pressure with two flow control valves failed open and vent valve operational. (Paragraph 5.3.3)

89

5.3.3-18

Figure 5.3.3-15.- Predicted STS-26 liquid hydrogen tank ullage pressure with one flow control valve failed open and vent valve operational. (Paragraph 5.3.3)

Figure 5.3.3-16.- Predicted STS-26 liquid hydrogen tank ullage pressure with one flow control valve failed open and vent valve operational. (Paragraph 5.3.3)

301 5.3.3-20

Figure 5.3.3-17.- Predicted STS-26 liquid hydrogen tank ullage pressure with three flow control valves failed closed and vent valve operational. (Paragraph 5.3.3)

<u>302</u>

Figure 5.3.3-18.- Predicted STS-26 liquid hydrogen tank ullage pressure with two flow control valves failed closed and vent valve operational. (Paragraph 5.3.3)

Figure 5.3.3-19.- Predicted STS-26 liquid hydrogen tank ullage pressure with one flow control valve failed closed and vent valve operational. (Paragraph 5.3.3)

5.3.3-23

Figure 5.3.3-20.- Predicted STS-26 liquid hydrogen tank ullage pressure with one flow control valve failed closed and vent valve operational. (Paragraph 5.3.3)

Figure 5.3.3-21.- Predicted STS-26 liquid hydrogen tank ullage pressure with three flow control values failed open and vent value failed closed. (Paragraph 5.3.3)

Figure 5.3.3-22.- Predicted STS-26 liquid hydrogen tank ullage pressure with two flow control valves failed open and vent valve failed closed. (Paragraph 5.3.3)

Figure 5.3.3-24.- Predicted external tank altitude after MECO. (Paragraph 5.3.3)

Time from MECO, sec

5.3.3-29

Figure 5.3.3-26.- Predicted liquid hydrogen tank ullage after MECO. (Paragraph 5.3.3)

5.3.4

FUITDI THE CHARACTERISTICS

гь	OIDFINE CUMKACIEKI21102	
a.	Orbiter/ET fluid separation	Table 5.3.4-1
	interface conditions	
b.	LO ₂ fluidline characteristics	
	1. Total interface pressure vs.	Figure 5.3.4-1
	interface temperature for	
	prestart	
	2. Total interface pressure vs.	Figure 5.3.4-2
	interface temperature for main	
	engine operation	
c.	LH ₂ fluidline characteristics	
	1. Total interface pressure vs.	Figure 5.3.4-3
	interface temperature for	
	prestart	
	2. ORB/ET separation interface	Figure 5.3.4-4
	LH ₂ temperature vs. ET mass	
	remaining 2 IU moin foodling interface	
	total processo ve IN main	rigure 5.3.4-5
	feedling interface to porature	
	during recirculation	
d.	LH ₋ and LO ₋ main engine operational	Figure 5.3 $4-6$
	flow rate requirements	11gure 2.2.4-0
	1. Orbiter/ET separation inter-	Figure $5.3.4-7$
	face GH, pressurant	
	2. Orbiter/ET interface GO.	Figure 5.3.4-8
	pressurant characteristics	
	3. GHe flow rate vs. temperature	Figure 5.3.4-9
	for GO ₂ pressurization line	·
	4. GHe flów rate vs. temperature	Figure 5.3.4-10
	for GH ₂ pressurization line	
e.	Predicted ² ET/Orbiter LO ₂ interface	
	drainback temperature	
	1. OV-102	Figure 5.3.4-11
_	2. 0V-103 and 0V-104	Figure 5.3.4-12
f.	Predicted engine inlet drainback	
	temperature	
	1. 0V-102	Figure 5.3.4-13
	2. $0V-103$ and $0V-104$	Figure 5.3.4-14

5.3.4-1
(Paragraph 5.3.4)

		ł		Operating flow rate,		Temperature, °R		1	h			
Line and	Function	Flow	Media	lbs/sec		1			Operating pressure,			
number	1	directio	n						psia			
		1	1	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
	1	1	1	I.	1	1	I	I	1	I	l I	1.
ю ₂ (LO ₂ Prechill	CRB to ET	GO2	8	16	32	162	N/A	580	15	25	40
feedline-	LO ₂ Chilldown	ORB to ET	1602/LO	8	24	32	162	168	170	15	30	70
line 1	LO ₂ Fast fill ^C	ORB to ET		174	N/A	790	162	166	170	60	85	105
	LO ₂ Replenish	ORB to ET	102	1 0 ^d	5.5	11	N/A	N/A	181	79	82	84
I	to stabilize	ET to OR	в 110,	l og	6	12	N/A	N/A	181	79	82	84
	LO ₂ Steady state replenish ^e	ORB to ET	ຸເລັ	.55	1.15	1.85	N/A	N/A	183 ^{f,g}	79	82	84
. 1	LO, Drain ^h	ET to OR	B ILO,	300	530	790	162	164	170	20	60	95
	LO, Drainback ⁱ (5 minutes)	ET to OR		18.1	19.85	21.6	170.5	N/A	180.7 ^j	79	92.5	106
1	LO, Engine feed	ET to OR		1680	2658	2945	162	N/A	170 ^g	20	100	201
	LO, Topping	ORB to ET		35	40	45	N/A	N/A	174	79	82	84
	Tank purge	ET to OR	B GN	2.75	N/A	3.10	480	530	580	N/A	N/A	25
1	Tank purge	ET to OR	B GH	0.25	0.30	0.35	480	530	580	N/A	N/A	25
· · · ·		1	· e	1	1	1		1	1	1	1	
		1			1		1	1	1	1	1	1
O. Press.	Ice/frost minimization ^k	ORB to ET	GH	0.006	0.009	0.039	498	579	660	N/A	N/A	50
Line -	0 Pre-pressurization	ORB to ET	∣GH	0.25	0.30	0.35	480	530	580	60	80	106
line 2	0 Pressurization ⁿ	ORB to ET	i e IGO	2.5	4.65	8.1	1300	840	960	100	300	600
	Z Tank purge	ORB to ET	IGN		N/A	3.10	480	530	580	N/A	N/A	600
	Tank purge ^m	ORB to ET	'2 GH		0.30	0.35	1480	. 530	580	I N/A	N/A	106
	LO. Emergency drain pressurization	ORB to ET	'e IGN	. 2.75	N/A	3.10	1480	530	580	I N/A	I N/A	600 `
		1	1 2	1	1	1				1	1	
		· I	 	·/	·	1	- <u> </u>	1	1	1	1	·]
Г.Н.	LH. Facility/ORB/ET/chill	ORB to ET	' IGH.∕T.H	, , 0	I N/A	10	1 38	I N/A	1 560	1 15	I N/A	1 45
feedline-1	LH Fill transition and initial chill	IORB to ET	12/ ILH	1 1	I N/A	1 15	1 37	I NI/A	I N/A	1 15	N/A	1 52
line 7	LH Fast fill ⁰	IORB to ET	12 11.H	1 75	110	1 118	1 36.5	1 37	1 38	1 15	1 20	1 52
11110 /	LH Drain	IFT to OP	·····2	1 50	1 80	1 118	1 36 5	1 37	1 40	1 32	1 34	1 36.5
1	IH Becirculation	IET to OP	2 3 T.H	1 4	1 4 5	1 5	1 36.3	1 37	1 37 3	1 16.9	,	1 48
1	LH Engine feed	IFT to OP	2 3 T.H	1 281	1 444	1 492	1 36 5	1 37	1 40	1 30	1 35	1 50
	Tank purce reev		2 ICH	1 0 75	¹ ¹ ¹ ¹	1 1 5	1480	1 530	1 580	1 NT/A	N/A	1 25
i ı	Tank burde	ION to CO	e lon	1 1 2	1 1 25	1 1 5	1400	1 630	1 590			1 25
I	Tank bride	IET CO OR	e lour	1 1.4	1 1.32	1 1.2	1400	1 220	1 200	I M/A	N/A	1 23

*NOTE - For notes see pages 5.3.4-4.

5.3.4-2

TABLE 5.3.4-1.- ORBITER/ET FLUID SEPARATION INTERFACE CONDITIONS* (Paragraph 5.3.4) (concluded)

1	1	I	1	Opera	ting flow	rate,	Ter	perature,	°R	1		.i.
Line and	Function	Flow	Media ^a	1	lbs/sec		1			Operat	ing ^b pres	sure,
number	l .	direction	1	1			1			1	psia	I
I	<u> </u>	I	1	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
ł	I	I	I			1	1	1	1 ···	1	1	1. 1
H ₂ Press.	H ₂ Pre-pressurization	ORB to ET	GH	1.2	1.35	1.5	480	530	580	120	150	220
Line -	H ₂ Pressurization ⁿ	ORB to ET	GH	0.45	2.10	4.07	300	525	565 ⁿ	100	300	745
line 8	Tank purge ^m	ORB to ET	GH	1.2	1.35	1.50	480	530	580	120	150	220
1	Ice/frost minimization	ORB to ET	GH	0.004	0.006	0.039	494	577	660	N/A	N/A	50
I	I	L				1	l.		1	1	ł.	<u> </u>
1			1			1	1	1	1	1	1	
	LH ₂ Replenish	ORB to ET	LH ^{, p}	0	2 ^q	5	N/A	N/A	38.1	17	18	19
Recircu-	LH ₂ Replenish and recirculation	ORB to ET	៲៶៲ឣ៹៓៝៝	4	6.5	10	N/A	N/A	38.1	17	18	19
lation	LH ₂ Recirculation	ORB to ET	LH ^P	4	4.5	5	N/A	N/A	44.7	17	N/A	48
line -	LH ₂ Topping	ORB to ET		5	9	12	N/A	N/A	41	17	18	55
line 9	LH ₂ Topping and recirculation	ORB to ET	เม _ิ ์p	9	13.5	16	N/A	N/A	41	17	18	55
I	2	1				1	1	1	1	1	1	<u> </u>

314

5.3.4-3

*NOTE - For notes see pages 5.3.4-4.

Table 5.3.4-1 notes:

a Fluid procurement specifications and use limits are per SE-S-0073B.

^bFor line 1, the maximum pressure including surge will not exceed 261 psia and this results from on Orbiter main engine shutting down from full power level prior to SRB burn-out at the maximum steady-state interface total pressure of 201 psia prior to shutdown. The maximum surge pressure of 110 psi results from the Orbiter main engines sequentially shutting down from full power level on the launch pad at a steady-state total pressure of 106 psia prior to shutdown. The minimum pressure during transients is equal to the IO_2 vapor pressure. For line 7, the maximum pressure including surge will not exceed 53 psia and this results from the Orbiter main engines sequentially shutting down from full power level on the launch pad at a steady-state total pressure of 46 psia prior to shutdown with a maximum surge of 7 psi. The total pressure during the engine start-transient shall not drop more than 6.0 psi below subsequent steady-state flow total pressure at the interface. For line 7, the maximum pressure prior to main engine start is not to exceed 55 psia.

There is negligible surge in lines 2, 8, and 9. There is negligible surge in times z_1 , z_2 demonstrate during fast fill shall not

exceed 166° R. Zero flow conditions exists only during transition of flow from Orbiter to ET or ET to Orbiter.

^eUnder steady-state conditions, ET boiloff due to heat leak may vary from 0.55 to 1.75 lb/sec. ET boiloff due to heat input from the Orbiter may vary from

0 to 0.1 lb/sec. fwill be maintained a minimum of 5 minutes prior to start of IO₂ drain-back. Maximum/minimum LO, interface temperatures are based on the range of Orbiter ^gLO, feed system heat loads listed below per Orbiter. See figures 5.3.4-11

through 5.3.4-16 from appropriate Orbiter LO, interface temperatures (ET/Orbiter and Orbiter/SSME) during drainback with anti-geyser line removed.

	Heat leak, Btu/sec			
Orbiter	Minimum	Maximum		
ov-102	13.5	14.2		
OV-103	16.3	17.3		
OV-10 4	16.3	17.3		
	1)		

hpressurization and L0, drain rate limitation is required during L0, drain with L0, vent valve open. L0, drain rate shall not exceed 237 lb/sec. Subsequent to the initiation of L0, drainback, a total of 5,700 lb of L0, that is drained and boiled-off, is lost overboard prior to main engine start. A minimum drainback time of 4 minutes 50 seconds is required.

Operating pressure is not a functional requirement for ice/frost

minimization. Interface pressure from ice/frost minimization flow shall not exceed 50 psia.

Worst case maximum temperature based on the Orbiter having the worst case maximum heat leak (OV-103). See figures 5.3.4-13 and 5.3.4-16 for drainback temperatures for Orbiter OV-103 and OV-104.

^mWhen purging to remove moisture, the purge gas and tank temperature must be 510° R or greater.

ⁿMinimum temperature is transient at Orbiter main engine start. Time to reach 90 percent of steady-state temperature is 15 seconds maximum.

^oTemperature excursions can occur up to 41° R for 200 seconds after initiation of fast fill.

May be 100-percent vapor (1.5 lb/sec maximum) at start of topping, replenish and recirculation, 50-percent vapor of volume maximum for steady-state conditions.

 $^{\mathbf{q}}$ Under steady-state conditions, ET boiloff due to ET heat leak may vary from 0.6 to 0.9 lb/sec. ET boiloff due to heat input from the Orbiter may vary from 0 to 0.2 lb/sec.

Figure 5.3.4-3.- Orbiter/ET separation interface liquid hydrogen prestart requirements. (paragraph 5.3.4)

Figure 5.3.4-4.- Orbiter/ET separation interface liquid hydrogen temperature versus liquid hydrogen mass remaining. (paragraph 5.3.4)

5.3.4-8

Flowrates are for nominal conditions (to be used for

Figure 5.3.4-7.- Orbiter/ET_interface_GH2_pressurant characteristics. (Paragraph 5.3.4)

5.3.4-9

Figure 5.3.4-8.- Orbiter/ET separation interface GO₂ pressurant characteristics. (Paragraph 5.3.4)

5.3.4-10

498, 140 ð GHe flowrate, lbm/hr 579, 32 Ħ ╡╡╡┫╡╡┇╴┨╻┝╡╽ ┶╵┽╺╏╴╴╴╴ 660,22 Interface temperature, °R

Figure 5.3.4-9.- GHe flow rate vs. temperature requirements (GO₂ pressurization line). (Paragraph 5.3.4)

5.3.4-11

Figure 5.3.4-10.- GHe flow rate vs. temperature requirements (GH₂ pressurization line). (Paragraph 5.3.4)

323 ບາ 3.4

Stacked max -. RSS max RSS min Temperature, deg k Stacked min 2.00

 $\ensuremath{\mathsf{Time}}$, seconds from start of drainback

5.3.4-13

Figure 5.3.4-12.- OV-103 and OV-104 predicted ET-orbiter interface drainback temperature.

69

5.3.4-15

326

Time, seconds from start of drainback

Figure 5.3.4-13.- GV-102 predicted engine inlet drainback temperature.

2 4 1 4 OV 100 LOV 104 THE HEAD

Figure 5.3.4-14.- OV-103 and OV-104 predicted engine inlet drainback temperature.

5.3.4-16

Figure 5.3.5-1.- LO_2 tank structural temperatures during ascent (LWT 16 and up). (Paragraph 5.3.5.2)

328

5.3.5-2

Time, sec

Figure 5.3.5-2.- LH₂ tank barrel structural temperatures during ascent. (Paragraph 5.3.5.2)

5.4 5.4.1

AVIONICS SUBSYSTEMS

INSTRUMENTATION a. Measurements Appropriate MML b. Command interface Table 5.4.1-1 characteristics c. Sensor outputs 1. Vent valve 3 26 2. Ullage temperature 3. Ullage pressure 4. LH₂ low level 5. Loading 4 16 6. Nose cap temperature 2 7. Intertank temperature 2 8. LO₂ Low range ullage pressure 9. Tumble system armed 2 1 10. RSS 22

	Point sensor c	heckout		
Characteristics	Tank	Orbiter		
Element	Point sensor controller 22 gage – single conductor	MDM		
Voltage	N/A	28 V <u>+</u> 4V nominal		
Load	20 mA	N/A		
Sensor Impedance	LO ₂ - 130 to 165 ohms LH ₂ - 130 to 165 ohms	N/A		
Cable resistance to sensors	$LO_2 - 0.6$ to 9.5 ohms $LH_2 - 0.1$ to 6.5 ohms	<u>TBS</u>		
Timing	Continuous signal	Continuous signal		

TABLE 5.4.1-1.- COMMAND INTERFACE CHARACTERISTICS. (Paragraph 5.4.1)

5.4.2 5.4.2.

ELECTRICAL POWER DISTRIBUTION AND CONTROL

5.4.2.1	Power Requirements	
	a. Voltage	
	1. Maximum	32.0 Vdc
	2. Minimum	26.0 Vdc
	3. Ripple voltage	0.9 V p-p maximum at any individual frequency 1.6 V p-p broadband (10 Hz to 150 kHz)
	4. Transient limits	$\begin{array}{c} 10 \text{ hz} 10 \text{ 150 khz} \end{array}$
	b. AC voltage	rigute 5.4.2-1
	1. 85 Vac + 0.85 Vac	
	2. 93 Vac \pm 9.3 Vac	
	3. 72 Vac + 7.2 Vac	
	4. 122 Vac + 1.22 Vac	
5.4.2.2	ET Loads	
	a. LO ₂ ullage low-range pressure	40 ma max.
	b. ET heaters	
	1. Bipod heater - Long - Short	1.0 $amp \pm 0.2 amp$ 1.0 $amp \pm 0.2 amp$
	2. LO, feedline bracket heater	1.7 amp + 0.32 amp
	3. $L0_2^2$ elbow bracket heaters	1.7 amp \pm 0.32 amp/ heater
	4. LH ₂ feedline bracket heaters	$0.25 \text{ amp } \pm 0.06 \text{ amp/}$

0.25 amp \pm 0.06 amp/ pair of heaters

Figure 5.4.2-1.- Transient surge of dc voltage step function loci limits during normal equipment switching condition. (Paragraph 5.4.2)

333

5.4.2-2

TUMBLING SYSTEM

As a means of assuring ET impact in a defined landing area, the ET is made to tumble shortly after Orbiter/ET separation (Figure 5.4.3-1). The tumble system is initiated just prior to separation by the Orbiter. The ET receives an electrical signal that, via a relay switch module, fires the NSI detonator in the pyro cartridge. This opens a 2-inch valve mounted on the ogive forward ring forging. The residual GO_2 is vented in the +Z axis, providing the required tumble thrust. The 2-inch pyrotumble valve mounts to the forward ring frame of the LO₂ tank 16 degrees from the +Z axis toward the +Y axis. a. Venting thrust 45 to 100 lbf

b. Thrust location and direction c. Pyro cartridge, valve actuation 45 to 100 lbf Figure 5.4.3-1 Paragraph 4.2.9.2

5.4.3-1

5.4.3-2

Taped on BX 250 premol ded BX-250 Foam foam segments unshaded inner circle_ CENTERLINE 29.37° lh₂ tank Hydrogen vent 30° +Y -Y **VENT CENTERLINE** XT 365.5 4.84 Taped on PDL COVER PLATE premol ded foam segments -LO2 TANK VENT LO₂ TANK AND RELIEF VALVE PRESSURIZATION LINE **PYRO ACTUATED** VENT CENTERLINE **TUMBLE VALVE-** $\begin{array}{c} X_{T} \ 367.9 \pm 1 \\ Y_{T} \ 7.8 \pm 1 \\ Z_{T} \ 27.0 \pm 1 \end{array}$ -16° +Z

> Figure 5.4.3-1.- ET tumble system (concluded). (Paragraph 5.4.3)

336

5.4.3-3

5.5 RANGE	SAFETY	SUBSYSTEM
-----------	--------	-----------

5.5.1 RANGE SAFETY SUBSYSTEM CHARACTERISTICS The range safety subsystem (RSS) provides a means for dispersing the ET propellants from lift-off to ET splashdown. It includes a redundant battery power source, a receiver/decoder and associated antenna and ordnance to provide the range safety capability. See figure 5.5.1-1.

5.5.1.1 <u>Antenna Characteristics</u> Refer to paragraph 6.7.1 for antenna data applicable to both the ET and SRB.

- 5.5.1.2 Couplers
- 5.5.1.2.1 Directional

Refer to paragraph 6.7.1.2.1 for directional coupler data applicable to both the ET and SRB.

- 5.5.1.2.2 Hybrid Refer to paragraph 6.7.1.2.2 for hybrid coupler data applicable
- to both the ET and SRB. 5.5.1.3 <u>Integrated Receiver Decoder</u> Refer to paragraph 6.7.1.3 for integrated receiver decoder data
- applicable to both the ET and SRB.
- 5.5.1.4 ET Distributor Assembly Characteristics The Shuttle RSS uses a single distributor assembly on each SRB and on the ET. The ET distributor is similar to that of the SRB with slight variations in packaging and circuitry. The distributor assembly acts as the control center for the "arm and fire" commands providing the interconnect between the ET and SRB distributors. Refer to paragraph 6.7.1 for distributor assembly data applicable to both the ET and the SRB. 5.5.1.5 Safe and Arm Device Refer to paragraph 6.7.1 for safe and arm device data applicable to both the ET and SRB. 5.5.1.6 **RSS Battery Characteristics** a. Number 2 b. Battery load Figure 5.5.1-2 Refer to paragraph 6.7.1 for other RSS battery data applicable to both the ET and SRB. 5.5.1.7 Linear Shaped Charge a. Explosive charge 750 grains/ft of HMX 350° F b. Operating temperature
 - c. Auto-ignition of HMX ≃450° F
- 5.5.1.8 ET Destruct

Refer to paragraph 4.2.10.3.9 for operational sequence.

338

5.5.1-2

Total flight requirement = .075 A-h Contingency = 8.925 A-h Lift-off requirement = 9 A-h

TABLE OF CONTENTS

Section	
6.0	SOLID ROCKET BOOSTER PERFORMANCE AND OPERATIONAL DATA
6.1	STRUCTURES
6.1.1	STRUCTURES SUBSYSTEM
6.2	ELECTRICAL AND INSTRUMENTATION SUBSYSTEMS
6.2.1	ELECTRICAL POWER DISTRIBUTION AND CONTROL SUBSYSTEM
6.2.1.1	Bus Characteristics
6.2.1.2	Flectrical Power Loads
6.2.1.3	Pyrotechnic Initiator Controllor
6.2	FIECTRICAL AND INSTRUMENTATION SUBSYSTEMS
6 2 1	ELECTRICAL AND INSTRUMENTATION AND CONTROL CUDOWCOTEN
6 2 2	TNEEDIMENTATION SUBSYSTEM
6 2 2 1	Elight Decendence
0.2.2.1	Flight Recorders
0.2.2.2	PCM Data System Multiplexer Format
0.2.2.3	Rate Gyro Assembly
6.3	SOLID ROCKET MOTOR SUBSYSTEM
6.3.1	SOLID ROCKET MOTOR OPERATIONAL CHARACTERISTICS
6.3.1.1	Single Motor Performance
6.3.1.2	SRM Performance Predictions
6.3.1.3	SRB Generic Performance Predictions
6.3.1.3.1	Winter Season
6.3.1.3.2	Summer Season
6.3.1.4	SRB Performance At Any PMBT
6.3.2	PROPELLANT CHARACTERISTICS
6.3.3	IGNITER CHARACTERISTICS
6.3.4	NOZZLE CHARACTERISTICS
6.4	THRUST VECTOR CONTROL
6.4.1	THRUST VECTOR CONTROL CHARACTERISTICS
6.4.1.1	Gimbal Capability
6.4.2	AUXILIARY POWER UNIT SUBSYSTEM
6.4.3	HYDRAULIC SUBSYSTEM
6.4.4	SERVOACTUATORS
6.5	SEPARATION SUBSYSTEMS
6.5.1	BOOSTER SEPARATION MOTORS
6.5.2	ATTACHMENT/RELEASE MECHANISMS
6.6	RECOVERY SUBSYSTEM
6.6.1	PARACHUTE EQUIPMENT
6.6.2	FLOTATION EQUIPMENT
6.6.3	LOCATION AIDS
6.6.4	RECOVERY BATTERIES
6.7	RANGE SAFETY SUBSYSTEM
6.7.1	RANGE SAFETY SUBSYSTEM CHARACTERISTICS
6.7.1.1	Antenna Characteristics
6.7.1.2	Couplers
6.7.1.2.1	Directional
6.7.1.2.2	Hybrid
6.7.1.3	Integrated Receiver Decodor
6.7.1 4	SRB Distributor Assombly Characteristics
6.7.1 5	Safe and Arm Device
6716	Dec Battory Characteristics
6717	Nos Dattery Unaracteristics
U./.I./ 4 7 1 0	CPP Destruct Accept1
0./.1.0	SKB DESTRUCT ASSEMDLY

6.0-i

6.1 STRUCTURES

6.1.1

STRUCTURES SUBSYSTEM

The structural subsystem consists of the nose assembly, forward skirt, aft skirt, systems tunnel, ET attach ring, aft SRB/ET attachment struts, and secondary structure for mounting components of the other subsystems.

- a. Maximum axial acceleration limit 3.0 g during ascent
- b. Maximum longitudinal acceleration 1.2 g
 limit during lift-off
- c. SRB recovery limits

1. Velocity at impact, vertical	85 ft/sec
2. Maximum allowable sea-state	Paragraph 3.6.6
for SRB recovery	5
d. SRB structural lifetime	40 uses

Amendment 217

•	
6.2.1 ELECTRICAL POWER DISTRIBUTION AND CONTROL	
6.2.1.1 Bus Characteristics	
The bus voltage characteristics listed below are applicable t	o
both Orbiter and SRB supplied power.	
a. Battery limits 24 to 32 Vdc	
b. Orbiter bus limits 26.15 to 32 Vdc	
c. Transient limits	
1. Voltage 22 to 36.7 Vdc	
2. Recovery to steady-state limits 200 msec	
d. Ripple	
1. Maximum individual ripple 0.9 V peak-to-peak	
component	
2. Total broadband content	
(a) 0.01 to 7 kHz 1.6 V peak-to-peak	
(b) Decrease per octave 40 dB	
(c) At 150 kHz 0.002 V	
e. Spikes Figure 6.2.1-1	
6.2.1.2 Electrical Power Loads	
a. Maximum power transfer from Orbiter to each SRB	
1. Steady-state 410 W	
2. Intermittent 578 W	
3. LH SRB Bus A 289 W	
4. LH SRB Bus B 289 W	
5. RH SRB Bus A 289 W	
6. RH SRB Bus B 289 W	
6.2.1.3 Pyrotechnic Initiator Controller (PIC)	
The PIC is a single-channel capacitor discharge device capabl	e

The PIC is a single-channel capacitor discharge device capable of firing one pyrotechnic device. Three signals must be present at the input to the PIC to generate the pyro firing output. These are ARM, Fire 1, and Fire 2.

Computer-initiated firing of a pyrotechnic is accomplished by transmitting the ARM, Fire 1, and Fire 2 commands to the master events controller, which translates and reformats these to +28 Vdc signals for use by the PIC. The ARM signal is transmitted first and charges the PIC capacitor to a nominal 40 V (minimum of 20 V). The capacitor arm signal (status) is monitored by the computer to measure this voltage. Fire 1 and Fire 2 are transmitted after a minimum delay of one second following initiation of ARM. The three signals remain on for a minimum of 50 msec. Prelaunch status tests are used to test firing signals. Dummy loads are connected to each PIC output before conducting this prelaunch test.

342

I

Time, microsec

E = 2 times line voltage or 100 V, whichever is less
t = 10 microsec

Figure 6.2.1-1.- Voltage spike characteristics. (paragraph 6.2.1.1)

6.2.1-2

6.2.2	INSTRUMENTATION	
6.2.2.1	Flight Recorders	*
	a. Number	2 (one in each SRB)
	b. Recorder capacity	15 minutes
	c. Recorder speed	60 ips
	d. Playback speed	60 ips
	e. Data format	Records in PCM and FM
		data format
	f. Recorder control	Flight - inhibit/record reverse
		Ground - reproduce, revind off
	g. Temperature limits	$32 - 120^{\circ}$ F
6.2.2.2	PCM Data System Multiplexer Fo	ormat
0.2.2.2	a. SRB DFI PCM multiplexer	Figure $6.2.2-1$
	format	11guic 0.2.2-1
	h. PCM code	Manchester II
		Bi phago I
	c. Bit rate	64 kbps
	d. Word length	8 hits por word
	d. word rengen	(no parity or sign hits)
	e. Minor frame	50 words per miner from
	f. Major frame	16 minor frames por major
	r. hajor frame	frame
	σ. Maior frame rate	10 major frames per second
	h. Sync words (the first three	words of each minor frame)
	1. Sync word 1	11111010
	2. Sync word 2	11110011
	3 Sync word 3	0010000
	i Minor frame ID (fourth word	d of each minor frame) The TD word
	uses 4 bits of the 9 bit w	or boginning with the least
	significant bit (ISB)	ord beginning with the least
	1 Minor frame 1	0000000
	2 Minor frame 16	00001111
	i Sample rate	160 apa
	b Supercom rate	320 and
	1 Subcom sample rates	90 40 20 10 mm
	m Offset	60, 40, 20, 10 sps
	1 Input voltage	Provider a count of
	(a) $\leq -60 \text{ mV}$	0000000 on the output
	$(a) \leq -00 \text{ mV}$	0000000 on the output
		11111100 on the output
	(d) > 5 060 V	11111111 on the output
6222	FM Data System	iiiiiii on the output
0.2.2.3	Those portions of the CDP	shand data that any successful to the
	Orbitor interface and fractions	want data that are presented to the
	signal Not more then and and	b signal (data links) a complex analog

Orbiter interface are frequency multiplexed into a complex analog signal. Not more than one such signal (data links) per SRB is presented to the interface. Capability is provided to stimulate the subcarrier oscillator inputs to determine that the oscillators are functioning within proper tolerances prior to each flight. The output of those SRB FM multiplexers which are supplied to the Orbiter meet the following requirements and/or characteristics as described for individual subcarrier oscillators (SCO's).

a. The data interface and/or characteristics conform to IRIG 106-71 (Frequency Division Multiplexing Telemetry Standard) and contain only SCO's that operate at standard IRIG frequency.

- b. Reference frequency oscillator 240 kHz
- c. Signal level
- One Vrms into a 70 Q load d. Tape recorder bandpass 1.87 to 250 kHz e. Common mode voltage Up to 32 V of command mode voltage acceptable to Orbiter interface
- f. Pre-emphasis each SCO output must be adjusted proportionally to the square root of its own BW to give a final tape-recorded output having approximately equal signal-to-noise ratios for all signals.
- g. Signal-to-noise ratio

> 60 dB at the Orbiter/SRB interface

6.2.2.4 Rate Gyro Assembly

The primary output of each RGA is two independently developed dc analog signals from each of two rate gyros proportional to angular rates about the pitch and yaw axes. These are routed to Orbiter MDM's as hard-wired signals. Rate gyro assembly test capability is provided by individual signals to stimulate gyro outputs in various axes and by spin motor run detection (SMRD) measurements, indicating correct gyro run speed. Both the test stimulation and measurement are routed through the SRB MDM's.

a.	Number per SRB	3
b.	RGA alignment accuracy	± 0.25 deg
c.	Analog dc rate outputs (differential	line driver)
	1. Number per RGA	2
	2. Signal range	±5 Vdc
	3. Impedance	-
	(a) Source (maximum)	100 Q
	(b) Load	500 kg
	(c) Loadoff (minimum)	100 kg
	4. Phasing-positive vehicle rates car	use the following dc analog
	rate output signal at Orbiter MDM	output:
	(a) Yaw	Positive ^a
	(b) Pitch	Positive
	5. Scale factor	
	(a) Pitch - 0.50 Vdc/deg/sec	+10 deg/sec
	(b) Yaw - 0.50 Vdc/deg/sec	±10 deg/sec
	6. Maximum dc offset	
	(a) Vibration environment	0.15 deg/sec
	(b) Non-vibration environment	0.1 deg/sec

^aDue to the SRB RGA mounting configuration, the yaw signal of the RGA LRU will be reversed. To correct this, there is a reversal in the yaw signal lines at the input to the Orbiter MDM so that the resulting Orbiter MDM output is positive for a positive yaw rate about the +Z vehicle body axis.

	7.	Maximum pitch and yaw peak-to-peak noise on the dc analog rate output signal at	0.05 deg/sec
		the MDM over 0.02 Hz to 10 kH	Z
		frequency change	-
	8.	Accuracy	
		(a) Linear range	
		(1) Pitch	±10 deg/sec
		(2) Yaw	±10 deg/sec
		(b) Linearity	± 0.05 deg/sec or ± 2 percent of applied rate to 10 deg/sec
		<pre>(c) Scale factor accuracy at 80° F</pre>	4.3 percent to 10 deg/sec
		(d) Scale factor accuracy	5.1 percent to 10 deg/sec
		over the temperature	
	~	range of 20° to 160° F	
	9.	Frequency-dependent charac-	Figure 4.5.1-6
		angle vs frequency)	
d.	Dis	screte BITE stimuli inputs (bi	nolar)
	1.	Number per RGA	2
	2.	Signal range	-
		(a) Logic "1"	5 ±1.0 Vdc
		(b) Logic "O"	0 ±0.5 Vdc
	3.	Impedance	
		(a) Source	100 2
		(b) Load-minimum in parallel with 500 pF ±10 percent	4000 Q
	4.	rnasing-logic	# O #
		stimulus not present	0
		(b) Gyro torque command	"1"
		stimulus present	*
	5.	Torquing polarity	Table 6.2.2-1
e.	Rat	e gyro spin motor rotation det	tector (SMRD) output signals
	(si	ingle-ended line driver):	
	The	e Orbiter/SRB measurement inter	rface provides discrete SMRD
	out	put signals from the RGA's to	MDM's located in the SRB's.
	Sep	Darate SMKD output signals are	provided for each of the rate
	gyr	os (pitch, yaw) in each SKB KG	
	SMR	ID signal output for that ovro	is a logic "1" (nominal 5
	Vdc	b).	is a logic "I" (nominal)
	1.	Number per RGA	2
	2.	Signal range	_
		(a) Logic "1"	5 ±1 Vdc
		(b) Logic "0"	0 ± 0.5 Vdc
	3.	Impedance	
		(a) Source	100 Q
		(b) Load (minimum in parallel	4800 Q
		with DUUU pF	
		±10 percent)	

.

4.	Phasing logic		
	(a) Spin motor out of sync	*	"0"
	(b) Spin motor in sync		"1"

6.2.2-4

TABLE 6.2.2-1.- TORQUING POLARITY • (Paragraph 6.2.2.4)

 Channel	Pin logic signal connector				Torquing polarity
 	Torque	input ^a	Rate o	output ^b	
	31	(35)	(1)	3	Negative rate (clockwise about plus RGA pitch axis)
Pitch	(31)	35	1	(3)	Positive rate (counterclockwise about plus RGA pitch axis)
Yes	33	(23)	(9)	11	Negative rate (clockwise about plus RGA yaw axis)
18W 	(33)	23	9	(11)	Positive rate (counterclockwise about plus RGA yaw axis)

^aA pin number enclosed by parentheses indicates a potential equal to or more negative than zero Vdc is required.

A pin number not enclosed by parentheses indicates a potential more positive , than 1.0 Vdc is required. ^bA pin number enclosed by parentheses indicates a potential more negative

than zero Vdc.

A pin number not enclosed by parentheses indicates a potential more positive than zero Vdc.
Words

Figure 6.2.2-1.- Solid rocket booster development flight instrumentation pulse code modulation multiplexer format. (paragraph 6.2.2.3)

349

• , •

6.2.2-6

Amendment 216

6.3.1	SOLID ROCKET MOTOR OPERATIONAL CHARAC	TERISTICS [*]				
6.3.1.1	Single Motor Performance (thrust rela	Single Motor Performance (thrust relative to SRM-nozzle				
	centerline)					
	a. Number	2				
1	b. Size	Figure 2-5				
T	c. Thrust profile. HPM	Figure $6.3.1-2$				
	d. Ignition transient	170 to 340 msec				
	e. Maximum rate of buildup	360,000 lbf per msec				
	during ignition transient	soo;ooo ibi pei msee				
	f SRB thrust differential 3					
	thrust time dispersions					
	1 Territion	Et				
		Figure 6.3.1-3				
	2. Steady-state	Figure 6.3.1-4				
	3. Tall-off	Figure 6.3.1-5				
	g. Propellant PMBT range	40° to 90° F				
	h. Operating altitude at PMBT of 40° to 90° F	Sea level to 200,000 ft				
	i. Water entry					
	1. Maximum vertical velocity	Paragraph 3.6.1.1				
	2. Entry angle	0 + 5°				
	3. Maximum horizontal velocity	45 ^{ft/sec}				
	j. Lifetime	20 uses^{a}				
6.3.1.2	SRB Performance Predictions					
	a. Nominal performance summary	Table 6.3.1-1				
	b. Predicted flight dispersions	Table 6.3.1-2				
	c. Eastern Test Range PMBT vs.	Table 6.3.1-3				
	dav-of-vear					
	d. Western Test Range PMBT vs.	Table 6 3 1 $/$				
	dav_of_vear	14010 0.5.1-4				
	e The thrust during ignition transic	ant can be calculated for				
	$0 < t_0$ to t second can be calculate	d by modifying the thrust we				
	t_1 second can be calculate	topo on follows:				
		m tape as forrows:				
	ignition = table	- ¹ t0				
	transient at t ₁					
	at t ₁					
	ignition interval - The ignitio	n interval is defined as the				
	time interval from ignition com	mand to a point where the				
	headend chamber pressure has bu	ilt up to 563.5 psia.				
	f. Thrust vs. time profile reductions	Table 6.3.1-5				
	for STS 51-E and subsequent.					
	g. SRM-17 through SRM-21	Table 6.3.1-6				
	3 sigma dispersions					
	h. Filament-wound case SRM	Table 6.3.1-7				
	performance summary					
	-					
^a Use-fille	ed with propellant plus fired or flown p	lus recovered plus				
refurbis	hed plus tested plus reloaded.	4				

*

•

*NASA Data Source

.

6.3.1.2.1 SRB Thrust-time Performance Predictions STS 51-L - Performance Prediction Data (Block Motor Prediction) (SODS J-766 A8) a. Launch data 1 - 23 - 8660° F b. PMBT (PM) c. Propellant weight, left (WP $_{\Lambda}$) 1,110,161 lb d. Propellant weight, right (WP_p) 1,110,161 lb e. Burn rate, left (RB_{Δ}) @ 70° F .3685 ips f. Burn rate, right (RB_R) @ 70° F .3695 ips g. Burn rate, left @ 60° F .3660 ips h. Burn rate, right @ 60° F .3670 ips i. Baseline motor TC-LT-271-84-Nominal 2 1. Burnrate @ 70° F (RB_N) .3705 ips 70° F 2. PMBT (PM_N) 3. Propellant weight (WP_N) 1,110,273 lb Table 6.3.1-10 j. Performance summary k. t Delay 4.8 seconds The modification of thrust-time data for ΔPMBT, burn rate, and propellant can be calculated using table 6.3.1-12. 6.3.1.3 SRB Generic Performance Predictions 6.3.1.3.1 Winter Season, November 15 to April 15. The SRB motor data have been adjusted by -0.6 percent to be compatible to the IVBC-3 aerodynamics. a. 0V-102 - The thrust-time data are adjusted assuming a December 15 launch date at a PMBT = 63° F. TC-272-83 Winter generic $\Delta PMBT, r_{p}$ Winter ΔPMBT burn rate burn rate @ burn rate generic modification, $@ PMBT = 80^{\circ} F,$ PMBT = 80° F, update, environment, deg F ips ips deg F deg F Left motor .370 .373 12.0 -17 -5 .373 8.0 -17 -9 Right motor .371 The modification of thrust-time data for ΔPMBT can be calculated using table 6.3.1-4. b. 0V-099 and 0V-103 - The thrust-time data are adjusted assuming a December 15 launch date at a PMBT -63° F. TC-61-84 Winter generic Winter ΔPMBT $\Delta PMBT, r_n$ burn rate burn rate @ burn rate generic modification, $@ PMBT = 70^{\circ} F,$ PMBT = 70° F, update, environment, deg F ips ips deg F deg F Left motor .3695 .3705 +4.0 -7.0 -3.0 Right motor .3695 .3705 +4.0-7.0 -3.0 The modification of thrust-time data for $\Delta PMBT$ can be calculated using table 6.3.1-4.

351 6.3.1-2

6.3.1.3.2

Summer Season, May 15 to October 15.

a. OV-102 - A reduction of the SRB motor data are not required. The thrust-time data are adjusted assuming a June 15 launch date at a PMBT = 78° F.

TC-272-83 burn rate @ PMBT = 80° F, ips	Summer generic burn rate @ PMBT = 80° F, ips	ΔPMBT,r _B burn rate update, deg F	Summer generic environment, deg F	ΔPMBT modification, deg F
Left motor .370	.373	12.0	-2.0	10.0
Right motor .371	.373	8.0	-2.0	6.0

The modification of thrust-time data for $\Delta PMBT$ can be calculated using table 6.3.1-4.

b. OV-099 - The SRB motor data have been adjusted by -0.6 percent to be compatible to the IVBC-3 aerodynamics. The thrust-time data are adjusted assuming a June 15 launch date at a PMBT = 78° F.

TC-61-84 burn rate @ PMBT = 70° F, ips	Summer generic burn rate @ PMBT = 70° F, ips	ΔPMBT,r _B burn rate update, deg F	Winter generic environment deg F	ΔPMBT modification, , deg F
Left motor .3695	.3705	4.0	8.0	12.0
Right motor .3695	.3705	4.0	8.0	12.0

The modification for thrust-time data of $\Delta PMBT$ can be calculated using table 6.3.1-4.

Transition season, April 1 to May 31 and October 1 to November 30. The SRB motor data has been adjusted by -0.6 percent to be compatible to the IVBC-3 aerodynamics.

a. 0V-102 - The thrust-time data are adjusted assuming an October 15 launch date at PMBT = 76° F.

TC-356-83 burn rate @ PMBT = 60° F, ips	Transition generic burn rate @ PMBT = 80° F, ips	ΔPMBT,r _B burn rate update, deg F	Transition generic environment, deg F	ΔΡΜΒΤ modification, deg F
Left motor .367	.368	4.0	16.0	20.0
Right motor .366	.368	8.0	16.0	24.0

The modification for thrust-time data for $\Delta PMBT$ can be calculated using table 6.3.1-4.

b. 0V-099 - The thrust-time data are adjusted assuming an October 15 launch date at a PMBT = 76° F.

TC-61-84 burn rate @ PMBT = 70° F, ips	Transition generic burn rate @ PMBT = 70° F, ips	ΔPMBT,r _B burn rate update, deg F	Transition generic environment, deg F	ΔPMBT nodification, deg F
Left motor .369	5.3705	4.0	6.0	10.0
Right motor .369	5.3705	4.0	6.0	10.0

The modification for thrust-time data of $\Delta PMBT$ can be calculated using table 6.3.1-4.

6.3.1-4

	ТС-356-83 @	$PMBT = 60^{\circ} F$	TC-61-84 @ PMBT = 70° F		
	Left	Right	Left	 Right	
Parameter	motor	motor	motor	motor	
Action time total impulse, vac, lb-sec ^a	$ 295.1 \times 10^6$	$ _{1295.2 \times 10^6}$	$ _{295.1 \times 10^6}$	295.1 x 10 ⁶	
Average specific impulse, vac, sec ^a	266.4	266.4	266.0	1266.0	
Web time, sec	112.1	1112.6	110.9	1110.9	
50 psia cue time, sec ^D	121.55	122.00	120.38	1120.39	
Action time, sec	123.81	124.27	1122.64	122.65	
Separation time, sec	128.00	128.00	126.39	1126.39	
Web time average thrust, vac, lb ^a	2,583,400	2,574,200	2,598,900	12.598.400	
Web time average head pressure, psia	660	658	668	1668	
Maximum vacuum thrust, 15	3,242,500	3,234,500	3,314,200	3.315.300	
Maximum headend chamber pressure, psia	918	915	1924	1924	
Action time total impulse, vac, lb-sec ^a	295.3 x 10 ⁶	295.3×10^{6}	295.5×10^6	1295.3×10^{6}	
Average specific impulse, vac, sec ^a	266.0	266.0	266.0	266.0	
Web time, sec	110.4	110.4	109.4	1109.4	
50 psia cue time, sec ^D	119.90	119.86	118.87	118.92	
Action time, sec	122.16	122.12	121.13	121.18	
Separation time, sec	125.90	125.90	124.92	124.92	
Web time average thrust, vac, lb ^a	2,612,200	2,611,900	2.637.100	2.634.100	
Web time average head pressure, psia	671	1672	1679	1678	
Maximum vacuum thrust, 1b ^a	3,332,600	3,332,800	3.366.400	13.362.900	
Maximum headend chamber pressure, psia	1928	1929	1938	1937	

.

TABLE 6.3.1-1.- NOMINAL SOLID ROCKET MOTOR PERFORMANCE SUMMARY. (Paragraph 6.3.1.2)

^aReduction of 0.6 percent incorporated into performance. ^bSeparation cue - The separation cue is defined as the time point at which the headend chamber pressure has decayed to 50 psia. Separation event occurs at 6 seconds after the last SRM to reach 50 psia of head pressure. End action time - The end of action time is defined as the time point at which the headend chamber pressure has decayed to 22.1 psia.

Parameter	Motors A and B	Booster
Web time, percent	3.8	3.7
Web-time average thrust, percent	4.1	4.0
Total impulse, percent	1.0	0.7
Specific impulse, percent	0.7	0.5
Propellant weight, percent	0.3	0.21
Burnout weight, percent	1.4	0.99
Thrust-shape uncertainty, percent	3.0	3.0

TABLE 6.3.1-2.- PREDICTED FLIGHT DISPERSIONS (\pm 3 σ) (Paragraph 6.3.1.2)

Date		PMBT, °F	Date		PMBT, °F
January	1-4	62	July	1–11	77
	5-23	61		12-31	78
	24–31	60			
February	1-26	60	August	1-31	78
ł	27–28	61			
1			September	1-29	78
				30	77
March	1- 9	61			
	10–17	62	October	1- 8	77
	18-24	63		9–17	76
1	25–31	64		18-23	75
1			ļ	24-29	74
April	1- 6	65	1	30-31	73
	7-12	66			
1	13-18	67	November	1- 4	73
1	19–25	68		5-9	72
	26-30	69		10-14	71
				15–19	70
May	1	69	1	20–24	69
	2-8	70		25–29	68
1	9–14	71		30	67
1	15-21	72			
1	22-30	73	December	1- 4	67
1	31	74		5-9	66
1				10-14	65
June	1-7	74	1	15–19	64
	8–15	75		20-27	63
1	16-26	76	1	28-31	62
	27-30	77	Ì		
1			L		

TABLE 6.3.1-3.- EASTERN TEST RANGE PMBT VERSUS DAY-OF-YEAR(Paragraph 6.3.1.3)

Da	te	PMBT, °F	Date	PMBT, °F
 January	1- 3 4-31	52 51	 July 1-13 14-31	55
February	1-28	51	August 1-4	56
1			5-27 28-31	57 58
March	1-31	51	September 1-30	58
April	1-11 12-30	51 52	October 1-30	58
 May 	1-19 20-31	52 53	November 1-11 12-21 22-30	57 56 55
 June 	1- 7 8-24 25-30	53 54 55	December 1- 9 10-19 20-31	54 53 52

TABLE 6.3.1-4.- WESTERN TEST RANGE PMBT VERSUS DAY-OF-YEAR
(Paragraph 6.3.1.3)

357

:

TABLE 6.3.1-5. - SRB THRUST VS. TIME PROFILE REDUCTIONS FORSTS 51-E AND SUBSEQUENT FLIGHTS(Paragraph 6.3.1.2)

Percentage of	
action time ^b	 ∆ Thrust, lb ^b
0	0
1.7	+23,500
4.0	+34,000
5.0	+20,500
8.0	+22,500
11.0	+18,000
15.0	+17,000
20.5	+9,000
29.0	+500
40.0	-5,500
60.0	-5,500
79.5	-6,500
82.0	+500
94.0	-18,500
100.0	0

^aReduce the SRB thrust vs. time profile at all time points by 0.736 percent. This value replaces the 0.6 percent value currently implemented.

^bAdjust the SRB thrust by the increments and action times provided.

6.3.1-9

Parameter	Nominal	Aft Segment	 Aft Segment +10 Mills	Fwd Ctr Segment -10 Mills	Fwd Ctr Segment +10 Mills
Impulse at 20 sec, vacuum 10 ⁶ lb-sec ^b	64.37	63.77	65.02	63.91	65.12
Average specific impulse, vacuum, 10° 1b-sec	172.9	171.0	174.8	171.3	175.2
Web time, sec	111.6	112.4	j 112.0	i 112.2	108.6
50 psia cue time, sec	121.18	121.04	121.39	122.65	118.76
Action time, sec	123.51	123.30	123.65	1 124.91	1 121.01
Separation time, sec	127.18	127.04	127.39	128.65	124.76
Web time average thrust, vacuum, lb	2,596,000	2,580,000	2,590,000	12.566.000	2.656.000
Web time average head pressure, psia	664	660	662	656	678
Maximum vacuum thrust, 1b	3,314	j 3,283	3.359	3.290	3.362
Maximum head end chamber pressure, psia	918	910	926	912	927

TABLE 6.3.1-6. - TC-271-84 PERFORMANCE SUMMARY (\pm 3 SIGMA DISPERSIONS) FOR SRM-17 THROUGH SRM-21 at PMBT = 60° F^a (Paragraph 6.3.1.2)

^aThese dispersed predictions provide the ascent performance community with the expected variation of the thrust-time trace due to possible \pm 3 sigma shifts in propellant burn rate across propellant raw material lots. The \pm 3 sigma burn rate variation is approximately \pm 10 mills.

These dispersed predictions are necessitated due to the casting facility incident at Thiokol on March 2, 1984, which resulted in the loss of a forward segment and an aft center segment from flight set SRM-17. These segments were recast using propellant planned for the aft segments. The aft segments were cast from propellant planned for SRM-18. Until SRM-22, propellant raw materials will continue to be borrowed and cast.

b No reduction incorporated into performance. See table 6.3.1-5, SRB Thrust vs. Time Profile Reductions for STS 51-E and Subsequent Flights.

11.

TABLE 6.3.1-7. - BLOCK 2 FWC-2 PERFORMANCE PREDICTIONS SUMMARY @ 56° F. (TC-FWC-2-298-85 NOM 2) (Paragraph 6.3.1-2)

Parameter	Nominal performance
Action time total impulse, vacuum, 10 ⁶ lb-sec ^a	294.3
Average specific impulse, vacuum, sec ^a	265.8
Web time, sec	112.7
50 psia cue time, sec ^b	121.59
Action time, sec ^C	123.85
Separation time, sec	 127.79

^aReduction of performance based upon table 6.3.1-5, SRB Thrust vs Time Profile Reductions for STS 51-E and Subsequent Flights.

^bSeparation cue - The separation cue is defined as the time point at which the headend chamber pressure has decayed to 50 psia. Separation event occurs at t Delay seconds after the last SRM reaches 50 psia of head pressure.

^CEnd action time - The end of action time is defined as the time point at which the headend chamber pressure has decayed to 22.1 psia.

TABLE 6.3.1-8.- SRB MOTOR PERFORMANCE AT ANY PMBT

Thrust desired = T(Baseline motor) $\cdot_{e}^{\pi K(\Delta PMBT)} \cdot_{e}^{(\sigma K - \pi K)} \cdot \Delta PMBT, r_{B}$ Time desired = t(Baseline motor) $\cdot_{e}^{\sigma K(\Delta PMBT)}$ I_{sp} desired = I_{sp} (Baseline motor) $\cdot_{e}^{(\pi K - \sigma K)} \cdot \Delta PMBT \cdot_{e}^{(\sigma K - \pi K)} \cdot \Delta PMBT, r_{B}$ Where $\pi K = 0.0011$ $\sigma K = 0.001063$ Baseline motors: T_{c} -75-84 @ 70° F T_{c} -117-84 @ 70° F T_{c} -61-84 @ 70° F T_{c} -272-83 @ 80° F T_{c} -356-83 @ 60° F

Table 6.3.1-9. - BLOCK MOTOR PREDICTIONS PERFORMANCE SUMMARY, PMBT = 70° F (Paragraph 6.3.1.2.1)

	Lightweight Case				
Parameter	Nominal	Minimum	Maximum		
Action time total impulse, vac,	295.1 ^a	295.1 ^a	295.1 ^a		
Average specific impulse, vac,	265.8 ^a	265.8 ^a	265.8 ^a		
Web time, sec	110.4	113.7	107.2		
50 psia cue time, sec	119.93	123.35	116.60		
Action time, sec	122.24	125.66	118.91		
Separation time, sec	125.93	129.35	122.60		
Web time average thrust, vac, lb	2,608,700 ^a	2,532,500 ^a	2,686,000 ^a		
Web time average head pressure,	671	650	692		
Maximum vacuum thrust, lb	3,330,100 ^a	3,234,300 ^a	3,428,900 ^a		
Maximum headend chamber pressure,	928	900	957		

(a) TC-LT-271-84

(b) TC-MD-271-84

	Midweight Case				
Parameter	Nominal	Minimum	Maximum		
 Action time total impulse, vac, 10 ⁶ lb-sec	294.8 ^a	294.8 ^a	294.8 ^a		
Average specific impulse, vac,	265.8 ^a	265.8 ^a	265.8 ^a		
Web time, sec	110.4	113.6	107.2		
50 psia cue time, sec	119.91	123.31	116.60		
Action time, sec	122.17	125.57	118.85		
Separation time, sec	125.91	129.31	122.60		
Web time average thrust, vac, lb	2,607,100 ^a	2,532,600 ^a	2,685,200 ^a		
Web time average head pressure,	671	651	692		
psia		_			
Maximum vacuum thrust, lb	3,327,200 ^a	3 ,231,700^a	3,426,100 ^a		
Maximum headend chamber pressure,	928	900	957		
psia					

 a Reduction of 0.6% incorporated into performance

Table 6.3.1-10. - BLOCK 2 MOTOR PREDICTIONS PERFORMANCE SUMMARY, PMBT = 70° F .(Paragraph 6.3.1.2.1)

(a) TC-LT-27	1-84
--------------	------

	Lightweight Case					
Parameter	Nominal 2	Minimum 2	Maximum 2			
Action time total impulse, vac, 10 ⁰ lb-sec ^a	294.7	294.7	294.7			
Average specific impulse, vac, sec ^a	265.4	265.4	265.4			
Web time, sec	110.4	113.7	107.2			
50 psia cue time, sec ^b	119.93	123.35	116.60			
Action time, sec ^C	122.24	125.66	118.91			
Separation time, sec	125.93	129.35	122.60			

(b) TC-MD-271-84

	Midweight Case					
Parameter	Nominal 2	Minimum 2	Maximum 2			
Action time total impulse, vac, 10 ⁰ lb-sec	294.4	294.4	294.4			
Average specific impulse, vac, sec ^a	265.4	265.4	265.4			
Web time, sec	110.4	113.6	107.2			
50 psia cue time, sec ^b	119.91	123.31	116.60			
Action time, sec ^C	122.17	125.57	118.85			
Separation time, sec	125.91	129.31	122.60			

^aReduction of performance based upon table 6.3.1-5, SRB Thrust vs Time Profile Reductions for STS 51-E and Subsequent Flights.

^bSeparation cue - The separation cue is defined as the time point at which the headend chamber pressure has decayed to 50 psia. Separation event occurs at t Delay seconds after the last SRM to reach 50 psia of head pressure.

^CEnd action time - The end of action time is defined as the time point at which the headend chamber pressure has decayed to 22.1 psia.

Table 6.3.1-11.- BLOCK 2 SRB FILAMENT WOUND CASE PERFORMANCE SUMMARY, PMBT = 56° F (Paragraph 6.3.1.2.1)

Parameter	Filament wound case ^a (TC-FWC-271-84)				
	Nominal	Minimum	Max A	Max B	
 Action time total impulse, vac, 10 lb-sec ^a	293.7	293.7	293.7	293.7	
Average specific impulse, vac, sec	265.3	265.3	265.3	265.3	
Web time, sec	112.1	115.5	108.8	106.3	
50 psia cue time, sec ^b	121.74	125.29	118.31	115.70	
Action time, sec ^C	124.00	127.56	120.57	117.96	
Separation time, sec	128.61	132.16	125.18	122.57	

^aReduction of performance based upon table 6.3.1-5, SRB Thrust vs Time Profile Reductions for STS 51-E and Subsequent Flights.

^bSeparation cue - The separation cue is defined as the time point at which the headend chamber pressure has decayed to 50 psia. Separation event occurs at t Delay seconds after the last SRM to reach 50 psia of head pressure.

^CEnd action time - The end of action time is defined as the time point at which the headend chamber pressure had decayed to 22.1 psia.

Table 6.3.1-12. - BLOCK MOTOR PREDICTIONS, PERFORMANCE MODIFICATION EQUATIONS (Paragraph 6.3.1.2.1)

$$T_{A} = T_{N} \cdot e^{K1} \cdot KW_{A}^{1.53846}$$

$$T_{B} = T_{N} \cdot e^{K2} \cdot KW_{B}^{1.53846}$$

$$P_{A} = P_{N} \cdot e^{K1} \cdot KW_{A}^{1.53846}$$

$$P_{B} = P_{N} \cdot e^{K2} \cdot KW_{B}^{1.53846}$$

$$t_{A} = t_{N} \cdot e^{-K3} \cdot KW_{A}^{-.53846}$$

$$t_{B} = t_{N} \cdot e^{-K4} \cdot KW_{B}^{-.53846}$$

$$\omega_{A} = \omega_{N} \cdot e^{K3} \cdot KW_{A}^{1.53846}$$

$$\omega_{B} = \omega_{N} \cdot e^{K4} \cdot KW_{B}^{1.53846}$$

$$Isp_{A} = Isp_{N} \cdot e^{K5}$$

$$Isp_B = Isp_A$$

where

$$K1 = K6 (PM-PM_N) + K7 (PMRB_A)$$

$$K2 = K6 (PM-PM_N) + K7 (PMRB_B)$$

$$K3 = K7 (PM-PM_N + PMRB_A)$$

$$K4 = K7 (PM-PM_N + PMRB_B)$$

$$K5 = K9 (PM-PM_N)$$

$$K6 = .0011$$

$$K7 = .001063$$

$$K9 = .000037$$

$$K10 = 1474.274$$

$$PMRB_A = K10 \cdot \ln (RB_A/RB_N)$$

$$PMRB_B = K10 \cdot \ln (RB_B/RB_N)$$

$$KW_A = WP_A/WP_N$$

$$KW_B = WP_B/WP_N$$

$$A = Left motor$$

$$B = Right motor$$

N = Baseline motor

Figure 6.3.1-2.- HPM nominal performance requirements (vacuum, 60 deg F). (Paragraph 6.3.1.1)

367

6.3.1-18

)
İ	Vacuum	thrust, 10 ⁻) 1b
Time, sec	Minimum	Nominal	Maximum
2.0	2989.4	3081.9	3174.3
3.0	3015.0	3108.3	3201.5
4.0	3023.4	3116.9	3210.4
5.0	3034.6	3128.4	3222.3
6.0	3054.7	3149.1	3243.6
7.0	3077.3	3172.5	3267.6
8.0	3084.3	3179.7	3275.1
9.0	3094.8	3190.5	3286.2
10.0	3105.5	3201.5	3297.6
11.0	3113.6	3209.9	3306.2
12.0	3121.8	3218.4	3314.9
13.0	3131.4	3228.2	3325.1
14.0	3137.7	3234.7	3331.7
15.0	3144.5	3241.8	3339.0
16.0	3151.5	3249.0	3346.5
17.0	3159.1	3256.8	3354.5
18.0	3170.2	3268.3	3366.3
19.0	3177.2	3275.5	3373.7
20.0	3187.7	3286.3	3384.9
21.0	3196.8	3295.6	3394.5
23.0	3151.7	3249.2	3346.7
24.0	3097.0	3192.8	3288.6
25.0	3052.9	3147.4	3241.8
26.0	3010.4	3103.5	3196.6
27.0	2958.9	3050.4	3142.0
28.0	2911.2	3001.2	3091.2
29.0	2873.2	2962.1	3051.0
i 30.0	2842.5	2930.4	3018.3
31.0	2796.7	2883.2	2969.7
32.0	2762.4	2847.8	2933.2
33.0	2728.0	2812.4	2896.8
34.0	2694.3	2777.7	2861.0
35.0	2661.2	2743.5	2825.8
36.0	2630.8	2712.2	2793.6
37.0	2601.4	2681.9	2762.3
38.0	2572.0	2651.6	2731.1
39.0	2543.0	2621.6	2700.3
40.0	2514.1	2591.8	2669.6
41.0	2486.6	2563.5	2640.4
42.0	2463.3	2539.5	2615.7
43.0	2443.7	2519.2	2594.8
44.0	2423.4	2498.3	2573.3
45.0	2402.7	2477.0	2551.3
46.0	2380.4	2454.0	2527.6
47.0	2359.3	2432.3	2505.3
48.0	2342.8	2415.2	2487.7
49.0	2322.9	2394.8	2466.6
I	I	I	

Figure 6.3.1-2.- HPM SRB Nominal Thrust Time Limits (Vacuum, 60° F) (Continued) (Paragraph 6.3.1.1 and paragraph 3.6.3.1)

6.3.1-19

Figure 6.3.1-2.- HPM SRB Nominal Thrust Time Limits (Vacuum, 60° F) (Continued) (Paragraph 6.3.1.1 and paragraph 3.6.3.1)

Time,sec	 Vacuum 	thrust, 10	³ 1b
l	Minimum	Nominal	Maximum
50.0	2292.9	2363.8	2434.7
51.0	2262.8	2332.8	2402.8
52.0	2247.4	2316.9	2386.4
53.0	2243.4	2312.7	2382.1
54.0	2244.8	2314.2	2383.6
55.0	2248.1	2317.7	2387.2
56.0	2258.8	2328.7	2398.5
57.0	2264.2	2334.3	2404.3
58.0	2275.0	2345.4	2415.7
59.0	2289.0	2359.8	2430.6
60.0	2298.5	2369.6	2440.7
61.0	2306.1	23/7.4	2448.7
62.0		2385.2	2456.8
63.0	2329.6	2401.7	
64.0			2482.8
65.0	2341.5		2486.4
66.0		2427.6	2500.4
67.0	23/5./	2449.2	2522./
68.0	2396.4	24/0.5	2544.6
09.0			
70.0			
	2449.8	2525.0	
72.0	2441.3	2510.8	2592.3
	2443.3	2520.9	
74.0		2531.8	
76.0	2451.0	2527.4	
	2403.0	2339.2	
78.0	2472.2	2550 6	2020.3
79.0	2403.0	2557 7	2037.4
80.0	2401.0	2554 0	2034.4
81.0	2458.5	2534 5	
82.0	2430.0	2505.2	2580.3
83.0	2396.5	2470.7	2544.8
84.0	2373.7	2447.1	2520.5
85.0	2353.3	2426.1	2498.9
86.0	2323.2	2395.0	2466.9
87.0	2292.9	2363.8	2434.7
88.0	2263.3	2333.3	2403.3
89.0	2237.2	2306.4	2375.6
90.0	2203.8	2272.0	2340.1
91.0	2196.2	2264.1	2332.0
92.0	2161.4	2228.2	2295.1
93.0	2141.7	2207.9	2274.2
94.0	2121.2	2186.8	2252.4
95.0	2101.5	2166.5	2231.5
	İ		

6.3.1-20

Figure 6.3.1-2.- HPM SRB Nominal Thrust Time Limits (Vacuum, 60° F) (Concluded) (Paragraph 6.3.1.1 and paragraph 3.6.3.1)

Time,sec	 Vacuum	thrust, 10	³ 1b
I	Minimum	Nominal	Maximum
96.0	2071.6	2135.6	2199.7
97.0	2031.6	2094.4	2157.2
98.0	2012.6	2074.8	2137.1
99.0	1979.6	2040.8	2102.0
100.0	1962.8	2023.5	2084.2
101.0	1952.1	2012.5	2072.9
102.0	1927.4	1987.0	2046.6
103.0	1888.4	1946.8	2005.3
104.0	1857.2	1914.6	1972.1
105.0	1830.2	1886.8	1943.4
106.0	1803.3	1859.0	1914.8
107.0	1773.7	1828.6	1883.4
108.0	1743.8	1797.7	1851.7
109.0	1716.3	1769.3	1822.4
110.0	1650.0	1746.7	1799.1
111.0	1477.8	1723.2	1774.9
112.0	1185.1	1715.2	1766.7
113.0	861.3	1678.7	1751.3
114.0	620.4	1563.9	1730.8
115.0	499.7	1332.3	1718.0
116.0	416.0	1012.9	1692.5
117.0	335.8	721.8	1610.7
118.0	281.8	558.2	1449.6
119.0	228.9	463.9	1162.7
120.0	172.6	381.9	858.4
121.0	117.0	312.1	628.5 j
122.0	69.1	264.8	510.1
123.0	41.8	211.7	430.0
124.0	26.5	156.6	351.8 i
125.0	22.0	104.3 j	295.5
126.0		61.7	247.5
127.0	İ	38.2	197.5 İ
128.0		24.1	141.7

Time from ignition, sec

Figure 6.3.1-3.- Maximum allowable ignition thrust differential. (Paragraphs 6.3.1.1 and 3.6.3.1)

371

6.3.1-22

6.3.1-23

Figure 6.3.1-5.- SRM tailoff thrust differential. (Paragraphs 6.3.1.1 and 3.6.3.1)

6.3.1-24

PROPELLANT CHARACTERISTICS a. Type .

- b. Propellant weightc. Grain configuration
- d. Pressure range
- e. PMBT
 - 1. Range
 - 2. Nominal
- f. General Characteristics

TP-H1148, PBAN (polybutadiene-acrylic acid-acrylonitrile) table 6.3.2-1 See Volume II 11 point star and transitional to cylindrical perforate TBS to 950 psia

40° to 90° F 60° F Table 6.3.2-1

6.3.2

TABLE 6.3.2-1.- PROPELLANT CHARACTERISTICS• (Paragraph 6.3.2)

	Percent	Mo	lecular	at	Enthalpy 298.1° K,	Density,	
Formulation	by weight	W	eight	C	al/mole	gm/cc	
Ammonium perchlorate Aluminum Iron oxide PBAN polymer Epoxy curing agent	69.6 16.0 0.4 12.04 1.96	1 1 1 1	77.5 26.981 59.7 00.0 ^a 00.0 ^a	-1 -1 -1	70,590 0 97,300 12,000 28,300	1.95 2.699 5.120 0.931 1.129	
Physical properties (IANNAE uniavia	<u></u>			Temperature		
Initial modulus, psi Strain at max stress, percent Tensile strength, psi		5,953 33 379		646 44 103	502 43 92		
Ballistic properties (P _c = 1,000 psia,		 Chambe 	Chamber Nozzle		Exit		
Flame temperature, °F Molecular weight, lb/lb-mole Specific heat ratio Blowing coefficient, corrosivity index Characteristic ₃ velocity, fps Density, lb/in		5,718 28.48 1.14 0.10	3 42)72	5,351 28.69 1.144 0.1059	3,383 29.33 1.184 0.1038 5,155 0.06347		
Burning rate at 1,000 and limits), in/sec 40° F 60° F 90° F Burning rate coefficie Burning rate exponent Effective nozzle speci Vacuum theoretical spe 1b-sec/lb Expansion ratio Absolute viscosity of 1bf-sec/in-ft	psia (nominal ent fic heat rati cific impulse chamber gas,	02,			0.396 0.408 0.426 0.03787 0.35 1.145 276.2 7.16 1.62 x	± 0.020 ± 0.020 ± 0.022 10^{-7}	

^aAverage molecular weight of polymer and ECA are 3,300 and 360. Values shown in table are consistent with heat of formation data.

6.3.3

IGNITER CHARACTERISTICS

a. Type

b. Number

- c. General performance
- d. Temperature limits
- e. Grain point star 1. Igniter

 - 2. Initiator
- f. Igniter burn time at nominal pressure of 2020 psia g. Initial mass flow rate

TBS

TBS Figure 6.3.3-1 Table 3.6.1.2-1

TBS 30 points 0.270 sec

560 lb/sec

Igniter mass flow rate, lb/sec

 $PMBT = 60^{\circ} F$

(paragraph 6.3.3)

6.3.3-2

6.3.4

NOZZLE CHARACTERISTICS

The nozzle assembly is a convergent-divergent movable design containing an aft pivot point flexible bearing as the gimbal mechanism. The nozzle is partially submerged to minimize erosive conditions in the aft end of the motor and to fit within envelope length limitations. The nozzle provides a suitable interface for the retrieval system, attach points for the TVC actuators, attachment structure to mate with the motor aft closure, capability for jettisoning a part of the aft exit cone after burnout, and an impact cushioning device to minimize potential damage upon water impact to the nozzle flexible bearing. The physical characteristics of the nozzle are listed in table 6.3.4-1. These characteristics are compatible with SRM performance requirements regarding thrust-time, movement constraints, geometric thrust vector, and dynamic thrust vector. The nozzle is a modular-type construction with parts grouped into assemblies to facilitate maximum reuse and refurbishment of structural members.

Amendment 216

Parameter	HPM
Nozzle type	Contoured
Expansion ratio	7.79:1
Unpressurized maximum diameter, in.	152.9
Pressurized maximum diameter, in.	154.91
Initial throat diameter, in.	53.90
Nozzle extension jettisonable	Yes
Nozzle length throat-to-exit, in.	154.195
Nozzle total length, in.	177.7
Submergence ratio	0.226
Initial L/RT	5.28
Exit cone, contoured Initial angle, deg Turnback angle, deg Exit angle, deg	TBD TBD TBD
Nozzle null position-pitch-WRT centerline, deg	0.0
Tolerance on null position - pitch, deg	1.0
Nozzle null position - yaw - away from actuators WRT centerline, deg	a
Tolerance on null position - yaw, deg	0.5

TABLE 6.3.4-1.- SOLID ROCKET BOOSTER NOZZLE CHARACTERISTICS (Paragraph 6.3.4)

^aShifts accordingly with the increase in motor pressure.

6.4.1

6.4.1.1

THRUST VECTOR CONTROL SUBSYSTEM

The thrust vector control (TVC) subsystem of each SRB consists of two servoactuators. These servoactuators serve to provide attitude control for each of the SRB's in response to control commands from GN and C computers via flight control electronics in the Orbiter vehicle. A servoactuator is located in each SRB aft skirt. One is designated rock and the other tilt. Each is driven by a hydraulic power unit (HPU). Gimbal Capability

a. Pitch	Figure 6.4.1-1
b. Yaw	Figure 6.4.1-1
c. Overtravel	Figure 6.4.1-1
d. Velocity	Figure 6.4.1-1
e. Acceleration	2 rad/sec/sec
f. Normal engine position	
1. Static	0 deg (null)
2. Firing	<u>TBS</u> deg
3. Separation	<u>TBS</u> deg
4. Fail	0 deg (null)
g. Minimum time servoactuators	20 sec
retain null after separation	
h. Point of thrust application	
1. SRB left	
$(x) X_{m}$	mp.c
(a) 1 V	185
(b) ¹ T	-250
(c) ^Z T	400
2. SRB right	
(a) ^X T	TBS
(b) Y_{T}	2.50
7	
(c) ⁻ T	400
i. Dynamic and geometric thrust	Figures 6.4.1-2 and
alignment	6.4.1-3
j. TVC lifetime	20 uses

*+4.3°/sec with one APU or actuator failed.

SRM nozzle deflections

7.1° control 0.5° geometrical misalignment 0.4° overtravel 8.0° Total

> See note

View looking fwd

Note: The 7.1°, 0.5° and 0.4° increments are taken in vehicle pitch/yaw axis: actuator travel requirements for flight control are $+5^{\circ}$ travel

Figure 6.4.1-1.- SRM nozzle deflection. (paragraph 6.4.1.1)

(paragraph 6.4.1.1)

6.4.1-4

6.4.2

AUXILIARY POWER UNIT SUBSYSTEM

The auxiliary power unit (APU) is the power source for the HPU. It is nominally controlled to 72,000 rpm's and, at this speed, is capable of delivering 135 hp to the gearbox input drive shaft. The subsystem is comprised of:

- a. Gas generator
- b. Fuel (N₂H₄) pump
 c. Dual-pass reentry turbine
- d. Fixed ratio gear box
- e. Primary speed control valve (normally open)
- f. Secondary speed control valve (normally closed)
- g. Lubrication system
- h. Various check, service, and relief valves used to effect control and safety of the APU.

6.4.2-1
HYI a.	DRAULIC POWER UNIT Components 1. Bootstrap reservoir	
	a. Flight load	70 ± 5 percent
	b. Volume at 70 percent	490 in ³
	2. Fuel supply module	
	a. Volume	1760 to 1790 in ³
	b. N ₂ H ₄ load	825 to 908 in ³
	c. Pressure d. Decay curve (for 120° of	385 ± 10 psia Figure 6.4.3-1
	 A variable displacement hydraulic j Hydraulic manifold Filtors 	pump
	 6. Manual and remote-controlled valves 	5
	7. Relief valves	
	with two servoactuators.	-loop hydraulic system
b.	Capability	
	1. Each HPU is designed to supply prin a single servoactuator in the TVC	nary hydraulic power to
	 Systems design also provides for a both servoactuators at a reduced re 	single HPU to power esponse rate for con-
c.	Location	failure of either HPU. Adjacent to each other in the aft skirt of each SRB
d.	Volume	
	1. A (Rock) System	1792.6 in^3

.

6.4.3

.

1.	A (Rock)	System	1792.6	in^3
2.	B (Tilt)	System	1723.3	in ³

Shuttle Vehicle Maneuver	Rock actuator 45° Tilt actuator	LH SRB	RH SRB	RH SRB Tilt actuator 45° Rock Rock actuator
	Rock	Tilt	Rock	Tilt
+ Pitch	-	+	+	-
- Pitch	+	-	-	+
+ Yaw	+	+		-
- Yaw	-	-	+	+
+ Roll	+	-	+	· –
- Roll	-	+	-	+

TABLE 6.4.4-1.-SRB TVC ACTUATOR POLARITY CONVENTIONS(Paragraph 6.4.4)

- + indicates actuator extension
- indicates actuator retraction

388

Amendment 213

6.4.4

SERVOACTUATORS

The SRB TVC gimbal secondary actuators on the LH and RH SRB's are driven by electrical signals proportional to Orbiter computercommanded gimbal position. For each actuator, three redundant signals are provided by three separate drive amplifiers, one signal for each of the three secondary actuator control channels. With two identical commands, the secondary actuator force sum action prevents a single erroneous command from effecting power ram motion. If the erroneous command persists for more than a predetermined time, pressure detectors activate a bypass valve, removing the defective channel hydraulic pressure, thus permitting the remaining channels to control the ram motion. A second failure with only two remaining active channels results in a force fight which again, if this condition persists for more than a predetermined time, causes a bypass of either or both of the channels. When more than one channel has been bypassed, a spring-loaded shutoff valve is unloaded to the shutoff position and the power ram is allowed to drive to null, with no pressure on the power spool. Failure monitors are provided for each channel to indicate that that channel has been bypassed. An isolation valve on each channel provides the capability of resetting a failed or bypassed channel. Each actuator ram is equipped with position transducers. 2 Number

a. h	Type	- Hydraulic
0.	туре	2
c.	Piston area	32.32 in ⁻
d.	Stroke	12.8 in.
e.	Hinge moments as a function of extension	ion rate and flow rate
	1. Pitch actuators	TBS
	2. Yaw actuators	TBS
f.	Internal leakage	TBS
g.	External leakage	TBS
h.	Temperature limits	Table 3.6.1.2-1
i.	Electrical characteristics	
	1. Actuator gain with ± 50 mA	±5 deg
	input (rock or tilt)	-
	2. Gimbal position vs. command linear:	ity
	(a) No failed channels	5 percent
	(b) One failed channel	7 percent
	3. Maximum current input not initiation	ng gimbal motion from null
	(a) No failed channels	1 mA
	(b) One failed channel	1.5 mA
	4. Polarities	Table 6.4.4-1
	5. TVC failure position	Null
	6. Time to failure position	
	(a) Nominal	TBS
	(b) Limits	TBS to 100 msec
j.	Operational constraint: Single	
5	channel operation of the SRB-TVC	
	actuation system is an unverified	
	flight control mode.	

Shuttle Vehicle Maneuver	Rock actuator 45° Tilt actuator	LH SRB	RH SRB	RH SRB Tilt actuator 45° 45° Rock actuator
	Rock	Tilt	Rock	Tilt
+ Pitch	-	+	.+	-
- Pitch	+	-	-	+
+ Yaw	+	+	-	-
- Yaw	-	_	+	+
+ Ro11	+	-	+	· _
- Roll	-	+	-	+
			1	

TABLE 6.4.4-1.-SRB TVC ACTUATOR POLARITY CONVENTIONS(Paragraph 6.4.4)

- + indicates actuator extension
- indicates actuator retraction

388

6.5.1

BC	OSTER SEPARATION MOTORS	
a.	Number	
	1. Forward	4
	2. Aft	4
b.	Configuration	Figure 2-5
c.	Thrust, vacuum (each motor)	-0
	1. Minimum average (to end	18,500 lbf
	web action time)	
	2. Maximum	29.000 lbf
	3. Nominal curve	Figure $6.5.1-1$
	4. Thrust orientation tolerances	Figure $6.5.1-2$
		lbf - sec
d.	Specific impulse (theoretical)	250
		lbm
e.	Nominal vacuum total impulse over	17 615 Jb
		1/.011 10-546
•••	action time	17,015 1D-Sec
f.	action time Chamber pressure (max. expected	2220 psia
f.	action time Chamber pressure (max. expected operating pressure)	2220 psia
f.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio	2220 psia 5.8:1
f. g. h.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio Nozzle throat area	2220 psia 5.8:1 7.709 in ²
f. g. h. i.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio Nozzle throat area Nozzle locations and angles	2220 psia 5.8:1 7.709 in ² Figure 2-5
f. g. h. i. j.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio Nozzle throat area Nozzle locations and angles Burn time	2220 psia 5.8:1 7.709 in ² Figure 2-5
f. g. h. i. j.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio Nozzle throat area Nozzle locations and angles Burn time 1. Buildup	2220 psia 5.8:1 7.709 in ² Figure 2-5
f. g. h. i. j.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio Nozzle throat area Nozzle locations and angles Burn time 1. Buildup 2. Web action	2220 psia 5.8:1 7.709 in ² Figure 2-5 0.030 to 0.100 sec < 0.805 sec
f. g. h. i. j.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio Nozzle throat area Nozzle locations and angles Burn time 1. Buildup 2. Web action Pa	17,015 1B-sec 2220 psia 5.8:1 7.709 in ² Figure 2-5 0.030 to 0.100 sec ≤ 0.805 sec
f. g. h. i. j.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio Nozzle throat area Nozzle locations and angles Burn time 1. Buildup 2. Web action Pewat ^a	2220 psia 5.8:1 7.709 in ² Figure 2-5 0.030 to 0.100 sec ≤ 0.805 sec
f. g. h. j.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio Nozzle throat area Nozzle locations and angles Burn time 1. Buildup 2. Web action $\frac{P_{ewat}^{a}}{2}$	2220 psia 5.8:1 7.709 in ² Figure 2-5 0.030 to 0.100 sec ≤ 0.805 sec ≤ 1.05 sec
f. g. h. j.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio Nozzle throat area Nozzle locations and angles Burn time 1. Buildup 2. Web action $\frac{P_{ewat}^{a}}{2}$ 3. Time to P = $\frac{2}{2}$	2220 psia 5.8:1 7.709 in ² Figure 2-5 0.030 to 0.100 sec ≤ 0.805 sec ≤ 1.05 sec
f. g. h. j.	action time Chamber pressure (max. expected operating pressure) Nozzle area ratio Nozzle throat area Nozzle locations and angles Burn time 1. Buildup 2. Web action $\frac{P_{ewat}^{a}}{2}$ Operating terms to the pressure of the pres	2220 psia 5.8:1 7.709 in ² Figure 2-5 0.030 to 0.100 sec ≤ 0.805 sec ≤ 1.05 sec

a ewat - end web action time

Figure 6.5.1-1.- Nominal vacuum thrust vs. time. (Paragraph 6.5.1)

390

6.5.1-2

6.5.2

ATTACHMENT/RELEASE MECHANISMS

The vacuum thrust of each cluster of four BSM's reaches 55,500 lb within 30 to 135 msec, and the release of all structural attachments occurs within 30 msec of the time the Fire 2 command crosses the Orbiter/SRB interface.

- a. Mechanical release
- b. Thrust/weight
- c. Separation requirements
- d. Pyrotechnics

 \leq 500 ft-lb-sec TBS Paragraph 5.2 Paragraph 4.2.8.3

6.6 RECOVERY SUBSYSTEM

	-	4	
Ю.	. 0	1	

PARACHUTE EQUIPMENT

Parachute equipment consists of pilot, drogue, and main parachutes.

a. Parachute componentsFigure 6.6.1-1b. Parachute aerodynamic
characteristicsTable 6.6.1-1c. Parachute deployment sequenceFigure 6.6.1-2

14,515 lb

270,000 1b

521,000 lb

Table 6.6.1-2

- d. Limit loads
 - 1. Pilot
 - 2. Drogue
- 3. Mains (cluster)
- e. Reefing strategy

Parameter	Pilot	Drogue	Main, each
Suspension lines, ft	18	108.5	132
Riser, ft	32	-	40
Number of risers	1	-	[•] 8
 Porosity, percent	16	16	16
Diameter (D _o), ft	11.5	54	115
Suspension line (L _S /D _O)	1.57	2.01	1.15
L _s /D _o effective	1.57	1.94	1.45
Trailing distance (X), ft	50	108.5	172
X/D _o	4.35	1.94	1.50
x/d _h	2.88	6.05 (SRB) 8.63 (frustum)	9.91
D _p /D _h	0.44	2.07 (SRB) 2.95 (frustum)	4.24 7.4(3)
с _{D0}	.55 ±.04	0.60 ±0.04 (SRB) 0.60 ±0.04 (frustum)	.60 ± .04

TABLE 6.6.1-1.- PARACHUTE AERODYNAMIC CHARACTERISTICS (Paragraph 6.6.1)

Where X = distance between forebody and leading edge of canopy skirt D_p = canopy projected diameter D_h^p = maximum diameter of forebody

TABLE 6.6.1-2.-REEFING STRATEGY(Paragraph 6.6.1)

.

.

Poofing	Drogue parachute		Main parachutes	
stages	Time,	Percent,	Time,	Percent,
	sec	C _D A	sec	C _D A
Stage I	0.00	0	0.00	0
	0.76	60	2.62	19
	7.00	60	10.00	19
Stage II	7.17	80	11.20	45
	12.00	80	17.00	45
	12.17	100	18.71	100

395

Figure 6.6.1-1.- Parachute components. (paragraph 6.6.1)

396

6.6.1-4

6.6.1-5

6.6.1-6

Figure 6.6.1-2.- Parachute deployment sequence - concluded. (Paragraph 6.6.1)

6.6.2

- FLOTATION EQUIPMENT a. Minimum flotation period in sea-state 5 1. Nominal <u>TBS</u> 2. Range 72 to <u>TBS</u> hours

400

6.6.2-1

6.6.3

LOCATION AIDS

Location aids include a transmitter, antenna, strobe/converter, battery and salt-water switch electronics. With the exception of the flashing light, the location aids are designed for a minimum operating life of 72 hours and are considered usable up to 20 times with refurbishment.

a. SRB

	1.	Radar	transpond	ler	
		(a) Rai	nge		9 nmi.
		(b) Li	fetime ou	it of	24 hrs
		72-	-hour per	iod	·
		(c) Fre	equency		240 MHz – left SRB
		• •			242 MHz - right SRB
	2.	Flashi	ng light		0
		(a) Rai	nge with	unrestricted	5 nmi.
		vis	sibility	and wave	
		he	ights of	2.9 m	
		(b) Act	tuation		Impact
		(c) Coi	ntinuous	operation	72 hrs
		li	fetime	•	
b.	Fru	ıstum			
	1.	RF tran	nsmitter		
		(a) Ran	nge		9 nmi.
		(b) Con	ntinuous	operation	72 hrs
		li	fetime	-	
		(c) Fre	equency		240.8 MHz – left SRB
					241.2 MHz - right SRB
	2.	Flashir	ng light		U
		(a) Ran	nge with	unrestricted	5 nmi.
		vis	sibility	and wave	
		hei	ights of	2.9 m	
		(b) Act	tuation		Impact
		(c) Cor	ntinuous	operation	72 ^{hrs}
		lii	fetime		
		(d) Ope	erating l	ifetime, total.	280 hrs
c.	Mai	n parac	chutes		
	1.	RF tran	nsmitter		
		(a) Rar	nge		9 nmi.
		(b) Cor	ntinuous	operation	72 hrs
		lif	fetime		
	2.	Flashir	ng light		
		(a) Rar	nge with	unrestricted	5 nmi.
		vis	sibility	and wave	
		hei	ights of	2.9 m	
		(b) Act	tuation		Impact
		(c) Cor	ntinuous	operating	72 hrs
		lif	fetime		
	3.	Sonar b	peacons		
		(a) Rar	nge		3 nmi.
		(b) Fre	equency		10 kHz

6.6.4

RECOVERY BATTERY CHARACTERISTICS

The SKB batteries provide all s	subsystem electrical energy after
separation. Orbiter power is p	provided for all operation prior to
separation.	
a. Number	One per SRB
b. Type	Silver/zino
c. Capacity	50 AL
	JU AII
a. Userul life	One flight
e. Storage life	2 yrs
f. Stand time	aveb 00
g. Pressure relief valve	vo days
1. Opens at	24 ± 2 psig
2. Closes at	12 ± 2 pair
h. Voltage	TT TT POIR
1. Under load	28 ⁺⁴ v -2
2. Open-circuit	37.7 V maximum
3. During all discharges	
st sarrie art arscharkes	20 V minimum

.

~

6.6.4-1

	6.7.1	RANGE SAFETY SUBSYSTEM CHARACTERISTICS					
		The range safety subsystem is a triplex configuration which has					
		one completely redundant subsystem on each SRB and a partially					
		simplex system on the ET. Any one or all three subsystems is capable of receiving two command messages transmitted from the Force ground stations. The first of these messages called "AF					
		would allow the onboard logic to enable	a "DESTRUCT" and would				
		activate a light on both the commander a	nd the nilot's display				
		nanals The second message transmitted	to the vehicle would be				
		the "FIRF" command See figure 6 7 1-1	to the vehicle would be				
•	6711	Antenna Characteristics					
	0.7.1.1	a Number	2 ner SRB				
		h. Voltage standing wave ratio	1.5:1 maximum				
		c. Frequency range	406 to 420 MHz				
		d. Polarization	Left_hand circular				
		e Operating life	1000 hr minimum				
		f Heaful life	20 flights minimum				
		a Location	Figure $6.7.1-2$				
	6712	Couplers					
	6 7 1 2 1	Directional					
	0.,.1.2.1	a. Voltage standing wave ratio	1.25:1 maximum				
		h. Frequency range	406 to 420 MHz				
		c. Input impedance	50 0				
		d. Insertion loss	0.30 dB maximum				
		e. Coupling	16 + 3 dB				
		f. Directivity	24 dB minimum				
		a Operating life	1000 hr minimum				
		h. Useful life	20 flights minimum				
	67.1.2.2	Hybrid	20 LIIGHOS MINIMUM				
	01/11/21/2	a. Voltage standing wave ratio	1.25:1 maximum				
		h. Frequency range	406 to 420 MHz				
		c. Input impedance	50 Q				
		d. Power division and insertion loss	3.4 dB maximum				
		a Trajation	24 dB minimum				
		f Operating life	1000 br minimum				
		r Useful life	20 flights minimum				
		b Storage life	5 vrs shaltarad				
	6713	Integrated Receiver_Decoder	J yra shertered				
	0.7.1.5	a Tuned Frequency	416 5 MHz				
		b Frequency deviation (operating)	410.5 MHZ				
		o Operating bandwidth	1/15 KH2				
		d Ouisting	$\frac{1}{15} dR at = 07 dRm$				
		a. Valeting	475 at + 0.25 Vda				
		e. reremetry output	4.75 at ±0.25 Vac				

6.7.1.4	SRB Distributor Assembly Characteristics The Shuttle RSS uses a single distributor assembly on each SRB and the ET. The ET distributor is similar to that of the SRB's with slight variations in packaging and circuitry. The SRB distributor assembly consists of two independent and physically isolated electrical assemblies "A" and "B". System "A" is powered from the range safety battery and controls the "safe and arm" (S & A) position switching of the S & A device. System "B" functions in the same manner with the exception of the S & A control. System "B" is powered by the recovery battery.						
•	including both systems "A" and "B," acts the "arm and fire" commands providing the ET and SRB distributors.	as the control center for a interconnect between the					
	a. Power input voltage range	24 to 32 Vdc					
	b. Input power						
	1. Standby	6 W					
	2. Operating	12 W					
	c. Arm voltage						
	1. Minimum	20 Vdc					
	2 Nominal	28 Vdc					
	3 Mayimum	32 Vdc					
	4 Pice time	10 mass					
	4. Arm ourrent	0.500 A maximum					
	a. Arm duration	1 O goo minimum (uill bo					
	e. Aim duration	maintained 5 maco minimum					
		after beth five corrende					
		arter both fire commands					
	f Demovel of our commond	nave been issued)					
	1. Consisten berk weltere						
	1. Capacitor bank voltage	Decreases to 1.0 Vac					
		maximum in ress (nam 15					
	2 Voltago of arm command in	1 7 Vda mawimum					
	"Off" state	1.7 VGC maximum					
	σ . Fire 1 and Fire 2 commands						
	1 Voltage						
	(a) Minimum	20. Vdo					
	(b) Nominal						
	(b) Nominal	20 VUC					
	2 Current each						
	2. Current, each	10 mA maximum					
	5. Duration 6. Sequencing	IV msec minimum					
	4. Sequencing	Fire I command will					
		either precede or be					
		issued simultaneously					
		with the Fire 2 command					
	n. Removal of fire commands	1./ Vdc maximum (applied					
		to fire command circuits					
	1 Tulkishan fining 7	in the "UII" state)					
	1. Initiator firing pulse energy at	100 mJ minimum within					
	NSI detonator interface	5.0 msec					
	j. Initiator firing pulse current	40 A maximum					
	k. Operating life	5,000 hr minimum					
	l. Useful life	20 flights minimum					
	m. Storage life	10 yrs					
	n. Location	Figure 6.7.1-3					

6.7.1.5	Safe and Arm Device	
	a. Autoignition and melting points	275° F minimum
	b. Insulation resistance	100 MQ minimum at 500 Vdc
	c. Solenoid or motor performance	
	1. Net starting torque	
	(a) 30 Vdc	0.75 ±0.05 in-1b
	(b) 21 Vdc	0.25 ±0.05 in-1b
	2. Operating voltage	28 ±4 Vdc
	3. Operating current	3 A maximum
	4. Rotation	90 to 95° under no load
×		in 50 msec maximum
	d "Sefe" position power on	
	1 Voltage input	28 +4 Vdc
	2 Flanged time	90° rotation in 250 msec
	2. Etapsed time	mayimum
	2 Din to min voltage drop corogg	750 mW maximum at $2.5 A$
	5. FIN-to-pin voltage drop across	750 my maximum at 2.5 A
	G-n, K-N, F-K, and S-1	Onen eineuit
	4. Resistance check across pins	open circuit
	J-H, $K-L$, $K-N$, and $I-U$	
	e. "Armed" position power on	00 (W)
	1. Voltage input	28 \pm 4 Vdc across pins K and M
	2. Elapsed time	90° rotation in 250 msec
		maximum
	 Pin-to-pin voltage drop across J-H. K-L. R-N. and T-U 	750 mV maximum at 2.5 A
	4. Resistance check across pins	Open circuit
	f Inculation registance power off	100 MQ minimum at 500 Vdc
	a "Sefe" position power off	100 Hz minimum at 500 vdc
	g. Sale position power off	750 mV movimum at 2.5 A
	1. Pin-to-pin and pin-to-case	/JO my maximum at 2.J A
	Din U to all other pine	Onen einewit
	2. Pin V to all other pins	Open circuit
	h. Operating life	
	1. Electric	10 missions
	2. Ordnance	1 cycle
	i. Useful life	10 flights
	j. Storage life	10 yrs minimum
	k. Location	Figure 6.7.1-3
6.7.1.6	RSS Battery Characteristics	
	a. Type	Lithium mono-
		fluorographite
	b. Pressure relief valve	
	1. Opens at	12 ±2 psig
	2. Closes at	8 ±1 psig
	c. Voltage	
	1. Under load	26.7 V to 32.3 V
	2. Open circuit	45.0 V maximum
	3. During all discharges	26 V minimum
	d. Operating life	One mission
	e. Useful life	One flight
	f. Storage life	2 vrs
	T. MOLARC TITE	2 920

6.7.1-3

	g. Stand time	90 days
	h. Capacity	18 Ah
	i. Number	One on each SRB
6.7.1.7	Recovery Battery Characteristics	
	Refer to paragraph 6.6.4.	
6.7.1.8	SRB Destruct Assembly	
	Refer to paragraph 4.2.9.3 for linear	-shaped charge (LSC)
	characteristics.	

Figure 6.7.1-3.- RSS control panel mounting. (paragraph 6.7.1.6)

6.7.1=7

Amendment 221

7.0 AERODYNAMICS*

Aerodynamic data are available for the Shuttle vehicle in its various flight configurations.

For the Orbiter vehicle entry aerodynamic data, refer to the <u>Aerodymanic</u> <u>Design Data Book</u>, Volume I - Orbiter vehicle. SD72-SH-0060-1L-8, dated October 1978, and revised April 1982, and Flight Assessment Package for Orbiter Aerodynamics - FAD26 (JSC 22078), dated April 1986^a.

For aerodynamic data on the Orbiter vehicle mated with the ET and SRB's, refer to the <u>Operational Aerodynamic Data Book</u>, Volumes I, II, and IV, STS 85-0118, dated September 1985.

To assist in the computational usage of these data, the basic aerodynamic data for the Orbiter vehicle and the mated vehicle have been digitized and recorded on magnetic tape in the GE MASS format, 1108 Exec II system. Four tapes are required for the Orbiter Vehicle (Volume I) and these are:

a. Tape no. X13702 - FAD 26 - 6250-bpi density
b. Tape no. X16931 - Flex - 6250-bpi density
c. Tape no. X12550 - Rigid - 6250-bpi density
d. Tape no. X23139 - RCS - 6250-bpi density

The tape required for the Orbiter vehicle mated with the ET and SRB (Volume II) is tape no. X12179 - OPS Aerodynamics Data Base - 6250-bpi density.

These data tapes are available from NASA/JSC/ED3/D. B. Kanipe. A review of the data books should be made prior to using these tapes so that the user will be aware of the data limits of the various parameters. In addition, the format of the data on the tapes must be reviewed with JSC/ED3, so that the user may make optimal use of the tapes.

*NASA Data Source ^aMost current data for use in the Shuttle mission simulator. ^bTape no. X12214 - Backup tape - 6250-bpi density

7.1-1

8.0 ASTRODYNAMICS CONSTANTS AND PARAMETERS*

This section presents the values and associated uncertainties of the constants and models used in trajectory prediction. A list of conversion factors and a description of the gravitational potential equation are also included.

Uncertainties (1σ) are presented, if available. For consistent conversion between units, more decimal digits are given for some quantities than are justified by the uncertainties. The values presented are in agreement with those adopted by NASA Headquarters (ref.2).

A list of conversion factors is given in Section 1.0 and applies to all of the following data, with the exception of the constants used for the orientation of the earth's fixed coordinates relative to inertial coordinates. These are defined in Dashiell, J. and deVezin, H. G.: RTCC Requirements for Analytic Determination of Coordinate Transformations for the Earth and Moon for Skylab: MSC Internal Note No. 70-FM-224, January 26, 1971.

*NASA Data Source

8.1 CONSTANTS AND PARAMETERS

8.1.1 Angular Velocity of the Earth's Rotation With Respect to the Vernal Equinox

The earth's angular rotational velocity with respect to a precessing equinox and for inertial equinox for OFT (calendar year 1979) is as follows:

 ω_{p} = .7292115854918357 - 004 radians per second

 $\omega_{\rm T}$ = .7292115146459210 - 004 radians per second

8.1.2 Other Constants

This section defines values for the other constants used in the ground and onboard software. Many of these parameters are not basic constants, but are derived by using some defining assumption.

a. Stellar aberration constant - the maximum aberration of a star observed from the earth occurs when direction of motion of observer is at right angles to line of sight to star. It is found by the following:

$$C_{A} = .993674 \times 10^{-4} \text{ rad}$$

b. Mean molecular weight of air – the mean molecular weight of the 10 air constituents (N₂, 0₂, Ar, CO₂, Ne, He, Kr, Xe, CH₄, and H₂) is found by:

$$M_{o} = \frac{\Sigma (n_{i} \quad M_{i})}{\Sigma n_{i}} = 28.9644 \text{ Kg/Kmol}$$

when n_i is number density and M_i is molecular weight.

c. The gas constant - the constant factor in the equation of state for perfect gases is found by:

 $R^* = 8.31432 \times 10^{-3}$ Newton meter (Kmol · K)

d. $g M_0/R^*$ - derived constant used in onboard calculations of

density involving sea-level gravity, acceleration, mean molecular weight, and the gas constant:

g OVER R = $.01041294 \text{ K}^{\circ}/\text{ft}$

e. Speed of sound constant - derived constant used in the calculation of the speed of sound. The speed of sound is defined by:

$$C_{S} = \left(\frac{\gamma_{R*} T_{m}}{M_{O}}\right)^{1/2}$$

where $\gamma = 1.4$ and is the ratio of the specific heat of air at constant pressure to that at a constant volume (dimensionless).

Because $\gamma,\ R^\star,\ and\ M$ are constants, they are combined for computational ease and the equation is written:

$$C_{S} = K T_{m}$$

where K is the speed of sound constant

.3 Gravitational Potential Function

The classical expression for the gravitational potential V exerted at a point in space located at a distance r from the center of the attracting body of radius R_E and gravitational parameter μ_E is given in equation as:

$$\begin{array}{cccc} & & & & & \\ \mathbb{V}(\mathbf{r}, \ \phi, \ \lambda) & = & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \left(\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) \left[\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) \left[\begin{array}{c} & & \\$$

 ϕ is latitude (geodetic) λ is longitude

where C_{nm} and S_{nm} are the harmonic coefficients of the potential

function and P (sin ϕ) represents the associated Legendre functions of the first kind, of degree of n and order m. Because sin $\phi = z/r = u$, where u is a direction cosine, the associated Legendre functions may be expressed as:

$$p_{nm}(u) = \frac{\cos^{m}\phi \quad d^{n+m}}{2^{n}n! \quad du^{n+m}} (u^{2} -1)^{n}$$

8-3

The constants for real-time operations are: $C_{2,0} = -1082.7 \times 10^{-6}$ $C_{3,0} = 2.56 \times 10^{-6}$ $C_{4,0} = 1.58 \times 10^{-6}$ $C_{22} = 1.57 \times 10^{-6}$ $s_{22} = -.897 \times 10^{-6}$ All others are zero. (Higher order models are sometimes used for analysis and postmission trajectory reconstruction.) 8.1.3.1 Equatorial Earth Radius (Gravitational) 1 E.r. = $.637816000000000 + 007 \pm .50000 + 001$ m $1 \text{ E.r.} = .2092572178477690 + 008 \pm .16404 + 002$ int. ft 1 E.r. = $.3443930885519158 + 004 \pm .26998 - 002$ nmi. .9999992160754699 + 000 ± .78392 - 006 E.r. (MCC) 1 E.r. =<u>Gravitational Parameter</u> (GM_e = μ_e = μ Earth) 8.1.3.2 $\begin{array}{l} \mu_{e} = .398601200000000 + 015 \pm .40000 + 009 \quad m^{3}/sec^{2} \\ \mu_{e} = .1407646853278542 + 017 \pm .14126 + 001 \quad (int. \ ft)^{3}/sec^{2} \end{array}$ $\mu_{p} = .6275027808522208 + 005 \pm .62970 - 001 (nmi.)^{3}/sec^{2}$ μ_{e} = .1990931661816326 + 002 ± .19979 - 004 (E.r.)³/hr² (MCC) 8.1.3.3 Mass of the Earth 8.1.4 Lunar Constants 8.1.4.1 Earth-Moon Mass Ratio $M_{p}/M_{m} = 81.3010 (\pm 0.0010)$ 8.1.4.2 Mean Lunar Radius

8-4

8.1.4.3 Principal Axes

8.1.5

 $a = .173857000000000 + 007 \pm .70000 + 002$ m $a = .5703969816272966 + 007 \pm .22966 + 003$ int. ft $a = .9387526997840173 + 003 \pm .37797 - 001$ nmi. $a = .2725815340305558 + 000 \pm .10975 - 004$ E.r. (MCC) $b = .173821000000000 + 007 \pm .70000 + 002$ m $b = .5702788713910761 + 007 \pm .22966 + 003$ int. ft $b = .9385583153347732 + 003 \pm .37797 - 001$ nmi. $b = .2725250914643945 + 000 \pm .10975 - 004$ E.r. (MCC) $c = .17374900000000 + 007 \pm .70000 + 002$ m $c = .5700426509186352 + 007 \pm .22966 + 003$ int. ft $c = .9381695464362851 + 003 \pm .37797 - 001$ nmi. $c = .2724122063320720 + 000 \pm .10975 - 004$ E.r. (MCC) Where a is directed toward the center of the earth, c is coincident with the moon's rotational axis, and b is perpendicular to a and c. Gravitational Parameter for the Moon ($GM_m = \mu_m = \mu$ Moon) 8.1.4.4 $\begin{array}{l} \mu \ \text{moon} = \ .490278000000000 \ + \ 013 \ \pm \ .60000 \ + \ 008 \ \text{m}^3/\text{sec}^2 \\ \mu \ \text{moon} = \ .1731400417087798 \ + \ 015 \ \pm \ .21189 \ + \ 010 \ (\text{int. ft})^3/\text{sec}^2 \end{array}$ μ moon = .7718260968373028 + 003 ± .94456 - 002 (nmi.)³/sec² μ moon = .2448838571715250 + 000 ± .29969 - 005 E.r.³/hr² (MCC) **General** Constants Astronomical Unit 8.1.5.1 $AU = .149597893000000 + 012 \pm .50000 + 004$ m $AU = .4908067355643045 + 012 \pm .16404 + 005$ int. ft $AU = .8077640010799136 + 008 \pm .26998 + 001$ nmi. $AU = .2345469159233102 + 005 \pm .78393 - 003 E.r. (MCC)$ Velocity of Light in a Vacuum 8.1.5.2 $c = .299792500000000 + 009 \pm .30000 + 003$ m/sec $c = .9835711942257218 + 009 \pm .98425 + 003$ int. ft/sec $c = .161875000000000 + 006 \pm .16199 + 000$ nmi./sec $c = .1692105801590269 + 006 \pm .16933 + 000 E.r./hr (MCC)$ Gravitational Parameters for the Sun 8.1.5.3 m^{3}/sec^{2} (int. ft)³/sec² $\mu \ \text{sun} = .132712499000000 + 021 \pm .15000 + 014$

 $\mu \, \text{sun} = .4686697671960888 + 022 \pm .52972 + 015$ $(nmi.)^3/sec^2$ $\mu \, \text{sun} = .2089242635906454 + 011 \pm .23614 + 004$ $\mu \ \text{sun} = .6628718533157138 + 007 \pm .74922 + 000 \text{ E.r.}^3/\text{hr}^2$ (MCC)

8-5

413

8.2 EPHEMERIS TAPE SYSTEMS

8.2.1 DE19 Tape

The ephemeris tape system to be used for all missions is provided by JPL and is called the JPL Development Ephemeris Number 19 (DE19).

8.2.2 Tape System Conversion Factors

The following values are to be used to convert DE19 units to kilometers:

AU = 149 597 893 km (scale factor for planetary ephemeris)

R_{em} = 6378.1492 km (scale factor for lunar ephemerides)

 μ^{-1} = 81.301 (ratio of earth mass to moon mass)

GE = 398 601.2 km^3/sec^2 (gravitational parameter of the earth)

8-6

8.3 DRAG MODEL

8.3.1 Reference Atmospheres

Seven reference atmospheres to be used are as follows:

a. Jacchia

b. U. S. Standard Atmosphere, 1962

c. U. S. Standard Atmosphere Supplements, 1966

d. Cape Kennedy Reference Atmosphere

e. GLOBAL Reference Atmosphere

f. Edwards Atmosphere

g. Vandenberg Atmosphere

The MSFC-Modified Jacchia Model is a computerized version of Jacchia's Static Diffusion Model. This model and other mechanizations may be used for density computations between 120 and 1000 km. This model is dynamic because the values of the atmospheric parameters vary widely with geomagnetic activity, season, solar activity, and latitude. If predicted values of solar activity or geomagnetic activity are required, they may be obtained from the L. E. Norton, FM2/ Mission Design and Development Branch, Johnson Space Center.

The U. S. Standard Atmosphere (1962) is a static model in that the values of density are fixed with altitude. This model is primarily used as a standard for defining atmospheric properties and is accepted as the worldwide reference for air data devices. Note, however, that for altitudes in the interval of 300 to 500 km, the 1962 standard atmosphere is as much as 75 percent more dense than the Jacchia model. The standard 1962 atmosphere model is used in the MCC for mission operations in the Encke free-flight predictor whenever the spacecraft altitude is between 125 km and entry interface.

The U. S. Standard Atmosphere Supplements (1966) are a dynamic model very similar to the MSFC-modified Jacchia.

The Cape Kennedy Reference Atmosphere, which is sometimes referred to as the Patrick atmosphere, should be used for vehicle launch analysis and for launches from the Eastern Test Range. For launches from the Western Test Range, the Vandenberg reference should be used.

The four D global and Edwards AFB models are used for entry analysis, and the generation of operational profiles and dispersion analyses. 8.3.2

Drag Equations (for Orbit Operations)

$$R_{D} = -\frac{1}{2} C_{D} \rho(A/M)(R - \Omega \times R) |R - \Omega \times R|$$

where

 $C_{D} = (CDF + CDN |\sin \alpha|^{N})(1 - |\sin \beta|) + CDS |\sin \beta| + CDA |\sin 2 \beta \sin \alpha|$ and $\alpha = \text{angle of attack}$ $\beta = \text{angle of side slip}$ CDF, CDN, CDS, CDA, N = fit coefficients associated with vehicleconfiguration $<math>C_{D} = 2.0$ (above 400 000 feet for constant area drag) A = effective cross section area of vehicleM = mass of vehicle $\rho = \text{density of atmosphere at given altitude (Z_1)}$ $\dot{R} = \text{inertial velocity vector of vehicle}$ R = position vector to vehicle from the center of earth $^{R}D = \text{acceleration vector caused by drag}$ $\Omega = \text{earth's rotational vector = (0, 0, \omega)}$ $z_{1} = r - \frac{r}{d}$

$$d = \left(\frac{x^{2} + y^{2}}{a^{2}} + \frac{z^{2}}{b^{2}}\right)^{1/2}$$

r = (x² + y² + z²) 1/2

for the ellipsoid used in the 1962 U. S. Standard Atmosphere,

$$a = 6.378 \ 178 \ x \ 10^6 \ m$$

 $b = 6.356 \ 797 \ x \ 10^6 \ m$

416

8-8

8.4 FISCHER EARTH MODEL

The following constants describe the Fischer earth model (1960), which is used for the location of radar stations and other earth surface features.

8.4.1 Equatorial Earth Radius

a = .637816600000000 + 007 m a = .2092574146981627 + 008 int. ft a = .3443934125269978 + 004 nmi. a = .1000000156784906 + 001 E.r. (MCC)

8.4.2 Flattening

f = flattening = 1 - b/a

 $f = 1/298.30 = 0.3352329869259135 \times 10^{-2}$

8.4.3 Polar Earth Radius

b =	.6356784283607107	+	007	m	
b =	.2085559148165061	+	008	int.	ft
b =	.3432388922034075	+	004	nmi.	
b =	.9966478263900521	+	000	E.r.	(MCC)

8.4.4 Eccentricity of Ellipsoid

$$e = \sqrt{\frac{a^2 - b^2}{a^2}}$$

e = .8181333401693114 - 001

$$e^2 = 2f - f^2$$

 $e^2 = .6693421622965943 - 002$

8-9

E	QUIVAI	LENTS	AND	CON	VERSION	FACTORS	*			
1	int.	ft	-	=	.304800	0000000000	+	000	m	(exact)
1	nmi.				.185200	0000000000	+	001	km	(exact)
1	E.r.			=	.637816	5000000000	+	004 scal: use	km ing)	(exact for for MCC internal
1	lbm			=	.453592	3700000000	+	000	kg	(exact)
1	hr			=	3600.00	0000000000	+	000	sec	(exact)
1	rad			=	180/π de	eg				
1	deg			=	3600 ar	c sec				
1	km			=	.5399568	3034557235	+	000	nmi	•
1	m			=	.3280839	9895013123	+	001	int	. ft
1	nmi.			=	.607611	5485564304	+	004	int	. ft
1	rad			=	.5729577	7951308233	+	002	deg	
- 1	deg			=	.1745329	251994329	-	001	rad	
1	kg			=	.2204622	2621848776	+	001	lbm	
1	int.	stat.	mi.	=	5280 ft	(exact)				
1	lbf			=	32.17404	8556 (int.	f	t/sec	: ²)	lbm
π				=	.3141592	2653589793	+	001	(re	f. 2)

418 END 9 DX 18-10

8.5