JSC-08964

1

NASA TM X-58183 May 1976

NASA TECHNICAL MEMORANDUM

í

3

1

ŧ

.. ..

1

1

CUBIC SPLINE FUNCTION INTERPOLATION IN ATMOSPHERE MODELS FOR THE SOFTWARE DEVELOPMENT LABORATORY:

Į

FORMULATION AND DATA

(NASA-TR-X-58183) CUEIC SPLINE FUNCTION N76-27745 INTEFFCIATION IN ATPOSPHERE MODELS FOF THE SOFTWARE DEVELORMENT IAECFATORY: FORMULATION AND DATA (NASA) 125 p HC \$5.50 Unclas CSCL 04A G3/46 42378

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

<u> </u>					
1.	Report No NASA TM X-58183	2. Government Access	ion No	3 Recipient's Catalog	No
4 Title and Subtitle CUBIC SPLINE FUNCTION		ERPOLATION IN ATMOSPHERE		5 Report Date May 1976	
	MODELS FOR THE SOFTWARE DEVELOPMENT FORMULATION AND DATA		ABORATORY:	6 Performing Organiz JSC-08964	ation Code
7	Author(s)			8 Performing Organiza	ation Report No
	James C. Kirkpatrick		ļ.		
9	Performing Organization Name and Address			10 Work Unit No. 986-16-00-00	-72
	Lyndon B. Johnson Space Cent Houston, Texas 77058	er	11 Contract or Grant No		
			F	13 Type of Report an	d Period Covered
12.	Sponsoring Agency Name and Address			Technical Me	morandum
	National Aeronautics and Space Washington, D.C. 20546	e Administration	Γ	14 Sponsoring Agency	Code
15.	Supplementary Notes				
	A tabulation of selected altitude coefficient of viscosity for each format. Interpolation for the d functions. The recursive relat are derived and implemented in the preprocessor and processo data element, compose the spli FORTRAN listings of the atmos	e-c ·lated valu of the models of esired atmosphere tions necessary to n subroutine form r, are also presen ne fit atmosphere phere package an	es of pressure, den the atmosphere is p ric parameters is pe o compute the cubic n. Three companion ented. These subpr package. Detailed re presented in the a	asity, speed of s presented in bloc rformed by usin spline function a subprograms, ograms, togethe FLOWGM flow c appendix.	ound, and k data g cubic spline coefficients which form r with the harts and
17.	Key Words (Suggested by Author(s)) Atmospheric models Tai Atmospheric density Su Reference atmospheres Alt Interpolation Spling functions	bulation broutines titude	18 Distribution Statement STAR Subject C 46 (Geophysics	Category:	
H-	Converte Classif (of the second	20 Security Class f 1	(21 No of Pros	22 Price*
1.19	accurrcy classif, (or this report)	20. Security Classif (C	n uns hadet	100	A
1	Unclassified	Unclassified		125	\$5.50

ł

ţ

ŗ

ŗ

1

*For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA TM X-58183

ł

ţ

\$

1

CUBIC SPLINE FUNCTION INTERPOLATION IN ATMOSPHERE

1

1

I

MODELS FOR THE SOFTWARE DEVELOPMENT LABORATORY:

FORMULATION AND DATA

James C. Kirkpatrick Lyndon B. Johnson Space Center Houston, Texas 77058

CUBIC SPLINE FUNCTION INTERPOLATION IN ATMOSPHERE

1

MODELS FOR THE SOFTWARE DEVELOPMENT LABORATORY:

FORMULATION AND DATA

By James C. Kirkpatrick Lyndon B. Johnson Space Center

SUMMARY

Six standard reference atmosphere models for the years 1962, 1963 (Patrick Air Force Base), and 1966 (for July and January at latitudes 30° and 60° N) are presented in tabular form. The tabulation, which is presented in block data format, is adequate for the accurate representation of the atmospheric parameters of pressure, density, speed of sound, and coefficient of viscosity as functions of altitude. The range of tabulated altitudes extends from 0 to 205 kilometers. Interpolation for the desired parameters is performed by using cubic spline functions. The recursive relations necessary to compute the cubic spline function coefficients are derived and implemented in subroutine form. Detailed FLOWGM flow charts and FORTRAN listings of the atmosphere package are presented in the appendix.

INTRODUCTION

This report presents a tabulation in block data format of selected altitudecorrelated values of pressure, density, speed of sound, and coefficient of viscosity for each of six atmosphere models. These values were selected such that they adequately represent their respective functions for accurate interpolation by cubic spline functions throughout the range of tabulated altitudes. Three companion subprograms, which form the preprocessor (subroutines SDAT and SPLN1) and processor (subroutine ATMSFL), are presented. These subprograms, together with the data element, compose the spline fit atmosphere package. In the preprocessor, the data for the desired atmosphere model are selected and processed for proper order and unit consistency before SPLN1 is used to compute the spline function coefficients. In the processor, the data table is searched to establish the interval in which the desired altitude lies, and then the values of the previously mentioned parameters are computed by using the cubic spline function coefficients for the appropriate altitude interval.

The cubic spline technique provides an effective, easy-to-use method for the unerring reproduction of a function from tabulated data. The method also ensures continuity in the function and in its first and second derivatives. After the cubic spline function coefficients have been computed, they may be stored for repeated use as long as the tabulated data remain unchanged.

ļ

÷

ţ

ł

ł

ŧ

(Å) 1 =

SYMBOLS

a, b, c, d	edges of the beam
a _k	defined in equation (37)
^b k	defined in equation (38)
c ₁ , c ₂	arbitrary constants of integration
° _k	defined in equation (39)
c ₁ (k)	defined in equation (68)
e ₂ (k)	defined in equation (69)
c ₃ (k)	defined in equation (70)
dA	differential element of a cross-sectional area of a beam
ds	differential element of arc length
dx	differential element of the length of the beam
dθ	differential element of the angle through which a cross-sectional surface of a beam is rotated under load
d _k	defined in equation (49)
E	modulus of elasticity of the beam
EI	flexural rigidity (can be taken as unity for any plane curve without loss of generality)
ef	original unstressed length of the fiber
gh	typical fiber of the beam
hk	defined in equation (1)
I	area moment of inertia
Q	distance from the neutral surface to a deformed fiber of a loaded beam

i

٢

M (x)	bending moment as a function of the distance \mathbf{x} measured from the end of the beam
M _k	bending moment at the kth section of the beam or an approxima- tion to the second derivative at the kth section
Ρ	load that acts upon the beam
Q _k	defined in equation (44)
R ₁ , R ₂	support reactions of the beam
S	stress
s	arc length of a curve
U _k	defined in equation (46)
v _k	shear force at the kth section of the beam
y (k)	defined in equation (24)
y (x)	defined in equation (23)
у'	slope of the deformation curve
y'(x)	defined in equation (22)
З	strain (change in length per unit of length)
ρ	radius of curvature of the neutral surface
φ	angle that the tangent to a curve makes with the axis of abscissas

SPLINE FIT ATMOSPHERE MODEL PACKAGE

Model History

The spline fit atmosphere package discussed in this report, was originally developed for the space vehicle dynamic simulator (SVDS) program in November 1972. In February 1973, the package was incorporated with appreciable modification, into the Shuttle optimal abort program (SOAP). The package presented here is from an early version of the SOAP. For implementation into the SOAP, the SVDS version was modified, at the expense of storage, to improve its performance and execution requirements. The spline fit atmosphere package has performed accurately in both programs.

ŧ

Description of the Models

ł

The spline fit atmosphere package consists of six atmosphere models:

- 1. The 1962 standard reference atmosphere
- 2. The 1966 standard reference atmosphere for July at latitude 30° N
- 3. The 1966 standard reference atmosphere for January at latitude 30° N
- 4. The 1966 standard reference atmosphere for July at latitude 60° N
- 5. The 1966 standard reference atmosphere for January at latitude 60° N
- 6. The 1963 Patrick Air Force Base (AFB) reference atmosphere

Each model consists of a tabulation of altitude-correlated values of the atmospheric parameters of pressure, density, speed of sound, and coefficient of viscosity. All six models are correlated to the same table of altitudes and tabulated in the foregoing sequence. All tabulated atmospheric parameter values are expressed in the meter-kilogram-second (MKS) system of units. Altitude values are given in meters, pressure values are given in millibars, density values are given in kilograms per cubic meter, speed of sound values are given in meters per second, and coefficient of viscosity values are given in kilograms per meter per second. Each atmospheric parameter is represented as a function of altitude by 123 data points. These data have been selected on best-fit considerations, with particular emphasis on those regions in which the tabulation shows that the function is discontinuous in its first derivative. Each model is represented in the 0- to 205-kilometer altitude range. The tabulation was compiled from references 1 to 3.

Because the tabulation for the 1966 atmosphere extends only to 118 kilometers, the last data point is repeated to 205 kilometers for model consistency. If the model altitude boundaries are exceeded, the package returns the last tabulated parameter values at the violated boundary.

Assumptions and Approximations

The spline fit atmosphere model package was developed to accommodate the needs and restrictions of the SVDS program. As a result, temperature, an important atmospheric parameter, was not included in the list of parameters modeled when the package was built. This parameter can be added to any model desired at the cost of tabulating the parameter values required.

The tabulation was performed in the MKS system of units because this system was common to all the references used. A common system of units is advantageous because a single set of conversion factors can be used to place all models in any desired working units. The British engineering system of units was used to convert the atmospheric data in this package (i.e., pressure in pounds-force per square foot, density in slugs per cubic foot, speed of sound in feet per second, and coefficient of viscosity in pounds-mass seconds per square foot).

Atmospheric para	meter function value	es were selected a	t various altitudes.
The increment of altitud	le was varied as a fu	unction of altitude	as follows.

Altitude range, km	Altitude increment, m
0 to 3	250
3 to 5	500
5 to 20	1000
20 to 160	2000
160 to 204	4000
204 to 205	1000

Additional data points were added to mark the location in which the atmospheric parameter functions undergo first-derivative discontinuities. These discontinuities occur only in the speed of sound and coefficient of viscosity functions, which are affected because of temperature variations. As a result, when temperature is added to the atmosphere models, the choice of altitudes should accommodate discontinuities in the first derivative of the temperature functions. Because of the need to intersperse additional points, an ordering scheme is included in the preprocessor SDAT to place all altitude values and associated function values in ascending order of the independent variable. This order must be established before calling subroutine SPLN1 to compute the cubic spline coefficients.

The small altitude increment used at the extremes of the tabulation permitted the approximation of the first derivatives of the function at the initial and terminal boundaries by forming the difference quotient. This assumption of linearity at the extremes of the tabulated function is the only assumption made in the model. (The theoretical arguments on which the algorithm is based result in the additional assumption that the curvature of the function can be represented by its second derivative. The data sample selected is expected to comply with this assumption.)

DERIVATION OF THE RECURSIVE RELATIONS FOR COMPUTING THE COEFFICIENTS OF THE CUBIC SPLINE FUNCTIONS

The mathematical spline is a formal analog of the draftsman's spline, a flexible beam device used to fair out a smooth curve between specified data points. The mechanical spline is anchored on the drawing board at each plotted data point. The curvature of the spline results from the bending moments applied to the beam.

In deriving the recursive relations of the spline algorithm, the elementary theory of elasticity is useful. Consider a simply supported beam (i.e., ends

unrestrained) under the action of an applied load, however distributed. For an elementary analysis, the following assumptions are made:

1. Sections of the beam, which were originally plane, remain plane.

2. The material of the beam is homogeneous and obeys Hooke's law (the deformation is proportional to the applied load).

3. The moduli of elasticy for tension and for compression are equal.

4. The beam is initially straight and is of constant cross section.

Figure 1 shows a uniform homogeneous beam under the action of the load P. The beam is simply supported and is in static equilibrium under the action of the support reactions R_1 and R_2 . The differential element of length dx, bounded by the edges a, b, c, and d, is bent or deformed under load into the exaggerated shape shown in figure 2 where c and d are deflected to c' and d'. The sections ab and cd are shown rotated relative to each other through an angle d θ , but they remain undistorted in accordance with assumption 1. The fibers in the region of ac are contracted, or shortened, in compression, whereas those in the region bd are elongated, or lengthened, in tension. Because the beam is uniform and homogeneous in going from contraction to elongation, a region conceivably exists in which the fibers maintain their original unstressed length. This surface of unstressed fibers is referred to as the neutral surface. In the deformation of a typical fiber gh located at distance ℓ from the neutral surface, the elongation hk is the arc of a circle of radius ℓ , which subtends the angle d θ and is given by the relation

$$hk = \ell \, d\theta \tag{1}$$

The strain ε (the change in length per unit of length) is found by dividing the deformation hk by the original unstressed length of the fiber ef.

$$\varepsilon = \frac{hk}{ef} = \frac{\ell}{ef}$$
(2)

If the radius of curvature of the neutral surface is ρ , the curved length of ef is equal to $\rho d\theta$. The strain can then be expressed as

$$\varepsilon = \frac{\ell}{\rho} \frac{d\theta}{d\theta} = \frac{\ell}{\rho}$$
(3)

Because the material is assumed to be homogeneous and to obey Hooke's law, the stress (force per unit area) in the fiber gh is given by

$$S = E_{\varepsilon} = \frac{E}{\rho} \varrho \tag{4}$$

where E is the modulus of elasticity defined as the ratio of the stress S to the strain ε . Clearly, the sign of S varies with the sign of ℓ : negative or compressive stress for ℓ negative and positive or tensile stress for ℓ positive.

The beam in figure 1 is shown in static equilibrium. As a result, the algebraic sum of all forces and moments acting on the beam must be zero. The bending moment M(x) must be balanced by the resisting moment. The resisting moment is the sum of all stresses S acting on each differential area element of cross section dA multiplied by its moment arm ℓ measured from the neutral axis as shown in figure 3. Hence, the bending moment is

$$M(x) = \int \ell(S dA)$$
 (5)

Replacing S with $E\ell/\rho$ from equation (4) gives

$$M(x) = EI/\rho$$
 (6)

where I is the area moment of inertia.

$$\frac{1}{\rho} = \frac{M(x)}{EI}$$
(7)

The reciprocal of ρ , the radius of curvature of the beam, is called the curvature of the curve. For plane curves, the curvature is defined as the rate at which the tangent to the curve turns compared with the description of arc. Therefore, if ϕ is the angle that the tangent to a curve makes with the axis of abscissas and s is the element of arc length, then the curvature is defined as

$$\frac{1}{\rho} = \frac{d\varphi}{ds} \tag{8}$$

The slope of the tangent to the curve is

$$y' = \frac{dy}{dx} = \tan \varphi$$

Į

or

1

$$\varphi = \arctan y' \tag{10}$$

and

$$d\phi = \frac{dy'}{\left(1 + {y'}^{2}\right)^{\frac{1}{2}}} dx = \frac{y''}{\left(1 + {y'}^{2}\right)^{\frac{1}{2}}} dx$$
(11)

The differential element of arc length ds is defined as

$$ds = (1 + y'^{2})^{\frac{1}{2}} dx$$
 (12)

Therefore,

$$\frac{1}{\rho} = \frac{d\phi}{ds} = \frac{y''}{(1 + y'^2)^2}$$
(13)

and

$$\frac{y''}{(1+y'^2)^2} = \frac{M(x)}{EI}$$
(14)

The assumption is usually made that the slope of the deformation curve y' is small so that ${y'}^2$ can be ignored compared to unity. When this assumption is made, the differential equation of the deformation curve can be written as

$$\mathbf{M}(\boldsymbol{x}) = \mathbf{E}\mathbf{I}\mathbf{y}^{\prime\prime}(\mathbf{x}) \tag{15}$$

8

The assumption concerning the elastic behavior of a beam made at the beginning of this discussion can be realized by a mathematical function of one variable. The assumption that the slope of the curve is small and that its square can be neglected can be realized by an arbitrary mathematical function only over relatively short intervals. Under this condition, the curvature can be approximated by the second derivative of the function. This point must be remembered when selecting a set of data points to represent a function for spline fit. Sufficient data points must be chosen in the appropriate concentration such that in the regions where the curvature is large, each section of the curve can be considered as a simply supported beam (adequately supported so that the slope of the deformation curve is negligible).

The following definitions are required for the discussion that follows.

1. The shear at a section of a beam is the algebraic sum of all external forces acting on one side of the section.

2. The bending moment at a section of a beam is the algebraic sum of the moments of all the external forces on one side of the section.

Hence, if a mathematical function is represented in a region of definition by n data points, the region of definition will have been divided into n - 1 sections (fig. 4). If each section of the curve between given data points is considered to be a beam deflected under load, then the bending moment in the kth section between the kth and (k + 1)th data points will be given by the equatic

$$M(x) = \int_{x_k}^{x} V_k dx + M_k$$

where V_k and M_k are the shear and bending moments at the kth section. Therefore,

$$M(\mathbf{x}) = V_{\mathbf{k}} \left(\mathbf{x} - \mathbf{x}_{\mathbf{k}} \right) + M_{\mathbf{k}}$$
(17)

Clearly, where $x = x_k$, $M(x_k) = M_k$ and where $x = x_{k+1}$, $M(x_{k+1}) = M_{k+1}$ or

$$M_{k+1} = V_k (x_{k+1} - x_k) + M_k$$
(18)

Solving for V_k gives

$$V_{k} = \frac{M_{k+1} - M_{k}}{X_{k+1} - X_{k}} = \frac{\Delta M_{k}}{\Delta X_{k}}$$
(19)

Substituting equation (19) into equation (17) gives

$$M(\mathbf{x}) = \frac{\left(\frac{M_{k+1} - M_{k}}{(x_{k+1} - x_{k})} + M_{k}\right)}{\left(\frac{x_{k+1} - x_{k}}{(x_{k+1} - x_{k})} + N_{k}\right)} + \frac{\left(\frac{x_{k+1} - x_{k}}{(x_{k+1} - x_{k})}\right)}{\left(\frac{x_{k+1} - x_{k}}{(x_{k+1} - x_{k})}\right)}$$
(20)

Substituting the bending moment M(x) by its equivalent from equation (15) (the product EI is known as the flexural rigidity and can be taken as unity for any plane curve without loss of generality) in equation (20) gives

$$y''(x) = M_{k+1} \frac{(x - x_k)}{\Delta x_k} + M_k \frac{(x_{k+1} - x)}{\Delta x_k}$$
 (21)

where $\Delta x_k = x_{k+1} - x_k$. Integrating twice gives

y'(x) = M_{k+1}
$$\frac{(x - x_k)^2}{2\Delta x_k} - M_k \frac{(x_{k+1} - x)^2}{2\Delta x_k} + C_1$$
 (22)

$$y(x) = M_{k+1} \frac{\left(x - x_k\right)^3}{6\Delta x_k} + M_k \frac{\left(x_{k+1} - x\right)^3}{6\Delta x_k} + C_1 x + C_2$$
(23)

where C_1 and C_2 are constants of integration. At $x = x_k$, $y(x_k) = y_k$; at $x = x_{k+1}$, $y(x_{k+1}) = y_{k+1}$. Substituting y_k and y_{k+1} in equation (23) gives

$$y_k = M_k \frac{\Delta x_k^2}{6} + C_1 x_k + C_2$$
 (24)

and

$$y_{k+1} = M_{k+1} \frac{\Delta x_k^2}{6} + C_1 x_{k+1} + C_2$$
 (25)

Subtracting equation (24) from equation (25) gives

ł

$$y_{k+1} - y_k = (M_{k+1} - M_k) \frac{\Delta x_k^2}{6} + C_1 \Delta x_k$$
 (26)

I

1 -1 .

t

Solving for C_1 from equation (26) gives

1

$$C_{1} = \frac{\mathbf{y}_{k+1} - \mathbf{y}_{k}}{\Delta \mathbf{x}_{k}} - \frac{(\mathbf{M}_{k+1} - \mathbf{M}_{k})\Delta \mathbf{x}_{k}}{6}$$
$$= \left(\frac{\mathbf{y}_{k+1}}{\Delta \mathbf{x}_{k}} - \frac{\mathbf{M}_{k+1}\Delta \mathbf{x}_{k}}{6}\right) - \left(\frac{\mathbf{y}_{k}}{\Delta \mathbf{x}_{k}} - \frac{\mathbf{M}_{k}\Delta \mathbf{x}_{k}}{6}\right)$$
(27)

Substituting for C_1 from equation (27) in equation (25) and solving for C_2 gives

$$C_{2} = x_{k+1} \left(\frac{y_{k}}{\Delta x_{k}} - \frac{M_{k} \Delta x_{k}}{6} \right) - x_{k} \left(\frac{y_{k+1}}{\Delta x_{k}} - \frac{M_{k+1} \Delta x_{k}}{6} \right)$$
(28)

Substituting the expressions for C_1 and C_2 from equations (27) and (28) in equations (22) and (23) gives the expression for the cubic spline function in the kth interval as

$$y(x) = M_{k+1} \frac{\left(x - x_{k}\right)^{3}}{6\Delta x_{k}} + M_{k} \frac{\left(x_{k+1} - x\right)^{3}}{6\Delta x_{k}}$$
$$+ \left(\frac{y_{k+1}}{\Delta x_{k}} - \frac{M_{k+1}\Delta x_{k}}{6}\right) (x - x_{k}) + \left(\frac{y_{k}}{\Delta x_{k}} - \frac{M_{k}\Delta x_{k}}{6}\right) (x_{k+1} - x)$$
(29)

and its first derivative is given by

1

$$y'(x) = M_{k+1} \frac{\left(x - x_{k}\right)^{2}}{2\Delta x_{k}} - M_{k} \frac{\left(x_{k+1} - x\right)^{2}}{2\Delta x_{k}} + \left(\frac{y_{k+1}}{\Delta x_{k}} - \frac{M_{k+1}\Delta x_{k}}{6}\right) - \left(\frac{y_{k}}{\Delta x_{k}} - \frac{M_{k}\Delta x_{k}}{6}\right)$$
(30)

ļ.

1

Equations (21), (29), and (30) provide expressions for the values of the cubic spline function and its first and second derivatives in the kth interval. These expressions can be written for the cubic spline function and its first and second derivatives in the (k - 1)th interval by replacing k with k - 1. Therefore, in the (k - 1)th interval,

$$y(x) = M_{k} \frac{\left(x - x_{k-1}\right)^{3}}{6\Delta x_{k-1}} + M_{k-1} \frac{\left(x_{k} - x\right)^{3}}{6\Delta x_{k-1}} + \left(\frac{y_{k}}{\Delta x_{k-1}} - \frac{M_{k}\Delta x_{k-1}}{6}\right) (x - x_{k-1}) + \left(\frac{y_{k-1}}{\Delta x_{k-1}} - \frac{M_{k-1}\Delta x_{k-2}}{6}\right) (x_{k} - x)$$
(31)

$$y'(x) = M_{k} \frac{\left(\frac{x - x_{k-1}}{2\Delta x_{k-1}}\right)^{2}}{\frac{2}{\Delta x_{k-1}}} - M_{k-1} \frac{\left(\frac{x_{k} - x}{2\Delta x_{k-1}}\right)^{2}}{\frac{2}{\Delta x_{k-1}}} + \left(\frac{y_{k}}{\frac{\Delta x_{k-1}}{k-1}} - \frac{M_{k}\Delta x_{k-1}}{6}\right) - \left(\frac{y_{k-1}}{\Delta x_{k-1}} - \frac{M_{k-1}\Delta x_{k-1}}{6}\right)$$
(32)

y"(x) = M_k
$$\frac{(x - x_{k-1})}{\Delta x_{k-1}} + M_{k-1} \frac{(x_k - x)}{\Delta x_{k-1}}$$
 (33)

A cursory inspection of equations (29) and (31) and equations (21) and (33) will show that neither the cubic spline function nor its second derivative will experience discontinuity in going from the (k - 1)th to the kth interval. This may be shown simply be replacing x with x_k in these expressions. To ensure that the cubic spline functions will experience no discontinuity in the first derivative in going from the (k - 1)th to the kth interval, replace x with x_k in equations (30) and (32) and equate the results. Thus,

$$M_{k} \frac{\Delta x_{k-1}}{2} + \left(\frac{y_{k}}{\Delta x_{k-1}} - \frac{M_{k}\Delta x_{k-1}}{6}\right) - \left(\frac{y_{k-1}}{\Delta x_{k-1}} - \frac{M_{k-1}\Delta x_{k-1}}{6}\right)$$
$$= -M_{k} \frac{\Delta x_{k}}{2} + \left(\frac{y_{k+1}}{\Delta x_{k}} - \frac{M_{k+1}\Delta x_{k}}{6}\right) - \left(\frac{y_{k}}{\Delta x_{k}} - \frac{M_{k}\Delta x_{k}}{6}\right)$$
(34)

 \mathbf{or}

$$\frac{\Delta x_{k-1}}{6} M_{k-1} + \frac{\Delta x_{k-1}}{3} M_{k} + \frac{\Delta x_{k}}{6} M_{k+1} = \frac{\Delta y_{k}}{\Delta x_{k}} - \frac{\Delta y_{k-1}}{\Delta x_{k-1}}$$
(35)

where $\Delta y_k = y_{k+1} - y_k$ and $\Delta y_{k-1} = y_k - y_{k-1}$. Equation (35) permits the writing of k equations for the solution of k + 2 unknown values of M. Clearly, two second derivative values must be supplied at any two of the tabulated data points. However, if the second derivatives are not known, first derivative values may be used through equation (30). Further, if both the first and second derivative-tives of the function are known at any one of the tabulated points, the set of simultaneous equations given by equation (35) can still be solved.

Solving for M_{k+1} in equation (35) gives

$$M_{k+1} = -\frac{2\left(\Delta x_{k} + \Delta x_{k-1}\right)M_{k}}{\Delta x_{k}} - \frac{\Delta x_{k-1}}{\Delta x_{k}}M_{k-1} + \frac{6}{\Delta x_{k}}\left(\frac{\Delta y_{k}}{\Delta x_{k}} - \frac{\Delta y_{k-1}}{\Delta x_{k-1}}\right)$$
$$= a_{k}M_{k} + b_{k}M_{k-1} + c_{k}$$
(36)

where

$$a_{k} = -\frac{2\left(\Delta x_{k} + \Delta x_{k-1}\right)}{\Delta x_{k}}$$
(37)

1

ł

1, 1

4

$$\mathbf{b}_{\mathbf{k}} = \frac{\Delta \mathbf{x}_{\mathbf{k}-1}}{\Delta \mathbf{x}_{\mathbf{k}}}$$
(38)

$$\mathbf{c}_{\mathbf{k}} = \frac{6}{\Delta \mathbf{x}_{\mathbf{k}}} \left(\frac{\Delta \mathbf{y}_{\mathbf{k}}}{\Delta \mathbf{x}_{\mathbf{k}}} - \frac{\Delta \mathbf{y}_{\mathbf{k}-1}}{\Delta \mathbf{x}_{\mathbf{k}-1}} \right)$$
(39)

Assume a solution of the form

1

ŗ

$$\mathbf{M}_{k+1} = \frac{1}{\mathbf{Q}_k} \left(\mathbf{M}_k - \mathbf{U}_k \right)$$
(40)

$$M_{k-1} = Q_{k-1}M_{k} + U_{k-1}$$
(41)

Substituting equation (41) in equation (36) gives

$$M_{k+1} = a_{k}M_{k} + b_{k}(Q_{k-1}M_{k} + U_{k-1}) + c_{k}$$

= $(a_{k} + b_{k}Q_{k-1})M_{k} + b_{k}U_{k-1} + c_{k}$ (42)

Comparing equations (40) and (42) gives

$$\frac{1}{Q_k} = a_k + b_k Q_{k-1}$$
 (43)

 \mathbf{or}

$$Q_{k} = \frac{1}{a_{k} + b_{k}Q_{k-1}}$$
 (44)

ı

14

ł

r

and

$$-\frac{U_k}{Q_k} = b_k U_{k-1} + c_k$$
(45)

or

$$U_{\mathbf{k}} = -Q_{\mathbf{k}} \left(\mathbf{b}_{\mathbf{k}} U_{\mathbf{k}-1} + \mathbf{c}_{\mathbf{k}} \right)$$
(46)

Substituting equations (37), (38), and (39) in equations (44) and (46) gives

$$Q_{k} = -\frac{\Delta x_{k}}{2(\Delta x_{k} + \Delta x_{k-1}) + \Delta x_{k-1}Q_{k-1}} = -\frac{\Delta x_{k}}{2(x_{k+1} - x_{k-1}) + \Delta x_{k-1}Q_{k-1}}$$
(47)
$$U_{k} = -Q_{k} \left[-\frac{\Delta x_{k-1}}{\Delta x_{k}} U_{k-1} + \frac{6}{\Delta x_{k}} \left(\frac{\Delta y_{k}}{\Delta x_{k}} - \frac{\Delta y_{k-1}}{\Delta x_{k-1}} \right) \right]$$
$$= \frac{Q_{k}}{\Delta x_{k}} \left[\Delta x_{k-1}U_{k-1} + 6 \left(\frac{\Delta y_{k-1}}{\Delta x_{k-1}} - \frac{\Delta y_{k}}{\Delta x_{k}} \right) \right]$$
(48)

Equations (40), (41), (47), and (48) are the recursive relations that will be used for the solution of the set of simultaneous linear equations given by equation (35). Before this is done, equations (29) and (30) will be put in a more convenient form by using the following difference operators.

$$d_{k} = x - x_{k} \tag{49}$$

$$d_{k+1} = x - x_{k+1}$$
(50)

Adding and subtracting x_k to the right-hand side of equation (50) gives

$$d_{k+1} = x - x_{k+1} + x_k - x_k = d_k - \Delta x_k$$
(51)

Substituting equations (49) and (50) in equations (29) and (30) gives

$$y(x) = M_{k+1} \frac{d_{k}^{3}}{6\Delta x_{k}} - M_{k} \frac{d_{k+1}^{3}}{6\Delta x_{k}} + \left(\frac{y_{k+1}}{\Delta x_{k}} - \frac{M_{k+1}\Delta x_{k}}{6}\right) d_{k} - \left(\frac{y_{k}}{\Delta x_{k}} - \frac{M_{k}\Delta x_{k}}{6}\right) d_{k+1}$$
(52)
$$y'(x) = M_{k+1} \frac{d_{k}^{2}}{2\Delta x_{k}} - M_{k} \frac{d_{k+1}^{2}}{2\Delta x_{k}} + \left(\frac{y_{k+1}}{\Delta x_{k}} - \frac{M_{k+1}\Delta x_{k}}{6}\right) - \left(\frac{y_{k}}{\Delta x_{k}} - \frac{M_{k}\Delta x_{k}}{6}\right)$$

$$= M_{k+1} \frac{d_{k}^{2}}{2\Delta x_{k}} - M_{k} \frac{d_{k+1}^{2}}{2\Delta x_{k}} + \frac{\Delta y_{k}}{\Delta x_{k}} - \frac{\Delta M_{k}\Delta x_{k}}{6}$$
(53)

where $\Delta M_k = M_{k+1} - M_k$.

From equations (49), (50), and (51), when $x = x_k$, then $d_k = 0$ and $d_{k+1} = -\Delta x_k$; when $x = x_{k+1}$, then $d_k = \Delta x_k$ and $d_{k+1} = 0$. Substituting these results in equation (53) gives, for $x = x_k$,

$$y'(x_{k}) = -M_{k} \frac{\Delta x_{k}}{2} + \left(\frac{y_{k+1}}{\Delta x_{k}} - \frac{M_{k+1}\Delta x_{k}}{6}\right) - \left(\frac{y_{k}}{\Delta x_{k}} - \frac{M_{k}\Delta x_{k}}{6}\right)$$
$$= \frac{\Delta y_{k}}{\Delta x_{k}} - \frac{\Delta x_{k}}{6} \left(M_{k+1} + 2M_{k}\right)$$
(54)

and, for $x = x_{k+1}$,

$$y'(\mathbf{x}_{k+1}) = M_{k+1} \frac{\Delta \mathbf{x}_{k}}{2} + \left(\frac{\mathbf{y}_{k+1}}{\Delta \mathbf{x}_{k}} - \frac{\mathbf{M}_{k+1}\Delta \mathbf{x}_{k}}{6}\right) - \left(\frac{\mathbf{y}_{k}}{\Delta \mathbf{x}_{k}} - \frac{\mathbf{M}_{k}\Delta \mathbf{x}_{k}}{6}\right)$$
$$= \frac{\Delta \mathbf{y}_{k}}{\Delta \mathbf{x}_{k}} + \frac{\Delta \mathbf{x}_{k}}{6} \left(\mathbf{M}_{k} + 2\mathbf{M}_{k+1}\right)$$
(55)

The use of these recursive relations is described in the following six cases.

Case 1: Solution of the set of simultaneous equations given by equation (35) when the second derivatives of the function are known at the initial and terminal tabulated boundaries. In this case, $y''(x_1) = M_1$ and $y''(x_n) = M_n$. From equation (41) with k = 2, if $Q_1 = 0$, then $M_1 = U_1$. By using these values for Q_1 and U_1 , equations (47) and (48) can be used to generate values of Q_k and U_k , recursively, for all values of k ranging from 2 to n - 1. After these values are available, then all values of M_k can be computed by using equation (40) written in the form of equation (41)

$$\mathbf{M}_{\mathbf{k}} = \mathbf{Q}_{\mathbf{k}} \mathbf{M}_{\mathbf{k}+1} + \mathbf{U}_{\mathbf{k}}$$
(56)

and propagating the solution backwards with k ranging from n-1 to 2. As M_n and M_1 are known, all n second-derivative values will be available.

Case 2: Solution of the set of simultaneous equations given by equation (35) when the first derivatives of the function are known at the initial and terminal tabulated boundaries. In this case, $y'(x_1) = D_1$ and $y'(x_n) = D_n$. Substitute k = 1 in equation (54) for M_{k+1} from equation (40) and solve for U_1 to get

$$y'(x_{1}) = D_{1} = \frac{\Delta y_{1}}{\Delta x_{1}} - \frac{\Delta x_{1}}{6} \left(\frac{M_{1} - U_{1}}{Q_{1}} + 2M_{1} \right)$$

$$U_{1} = Q_{1} \left[M_{1} \left(2 + \frac{1}{Q_{1}} \right) + \frac{6}{\Delta x_{1}} \left(D_{1} - \frac{\Delta y_{1}}{\Delta x_{1}} \right) \right]$$
(57)

If $Q_1 = -1/2$, then from equation (57),

$$U_{1} = \frac{3}{\Delta x_{1}} \left(\frac{\Delta y_{1}}{\Delta x_{1}} - D_{1} \right)$$
(58)

By using $Q_1 = -1/2$ and the value obtained for U_1 from equation (58), compute all values of Q_k and U_k from equations (47) and (48) for values of k ranging from 2 to n - 1. With the value of Q_{n-1} and U_{n-1} thus computed, substitute equation (41) in equation (55) for M_{n-1} such that at $x = x_n$,

$$y'(x_n) = D_n = \frac{\Delta y_{n-1}}{\Delta x_{n-1}} + \frac{\Delta x_{n-1}}{6} \left(Q_{n-1} M_{n-1} + U_{n-1} + 2M_n \right)$$
 (59)

Solving for M_n from equation (59) gives

$$M_{n} = \frac{\frac{6}{\Delta x_{n-1}} \left(D_{n} - \frac{\Delta y_{n-1}}{\Delta x_{n-1}} \right)^{-} U_{n-1}}{2 + Q_{n-1}}$$
(60)

With the value of M_n known, the solution can be propagated backward by using equation (41) with k ranging from n - 1 to 1. Thus, M_1 will be computed as the last value.

Case 3: Solution of the set of simultaneous equations given by equation (35) when the first and second derivatives of the function are known, respectively, at the initial and terminal tabulated boundaries. In this case, $y'(x_1) = D_1$ and $y''(x_1) = M$. Proceed as in case 2 excluding the computation for M, which is not

 $y''(x_n) = M_n$. Proceed as in case 2 excluding the computation for M_n , which is not needed.

Case 4: Solution of the set of simultaneous equations given by equation (35) when the first and second derivatives of the function are known, respectively, at the terminal and initial tabulated boundaries. In this case, $y'(x_n) = D_n$ and $y''(x_1) = M_1$. Proceed as in case 1 and compute the value of M_n as in case 2.

Case 5: Solution of the set of simultaneous equations given by equation (35) when the first and second derivatives of the function are known at the initial tabulated boundary. In this case, $y'(x_1) = D_1$ and $y''(x_1) = M_1$. From equation (56), if $Q_1 = 1$, then

$$U_{1} = 3M_{1} + \frac{6}{\Delta x_{1}} \left(D_{1} - \frac{\Delta y_{1}}{\Delta x_{1}} \right)$$
(61)

With the value of $Q_1 = 1$ and the value of U_1 given by equation (61), compute all values of Q_k and U_k from equations (47) and (48) for k = 2 to n - 1. With these values of Q_k and U_k known, compute values for the second derivative from equation (40) by propagating the solution forward for k ranging from 1 to n - 1. The last value thus computed is M_n .

Case 6: Solution of the set of simultaneous equations given by equation (35) when the first and second derivatives of the function are known at the terminal tabulated boundary. In this case, $y'(x_n) = D_n$ and $y''(x_n) = M_n$. In equation (55), substitute M_k in equation (41) with k = n - 1 and solve for U_{n-1} to get

$$y'(x_{n}) = D_{n} = \frac{\Delta y_{n-1}}{\Delta x_{n-1}} + \frac{\Delta x_{n-1}}{6} (Q_{n-1}M_{n} + U_{n-1} + 2M_{n})$$

$$U_{n-1} = \frac{6}{\Delta x_{n-1}} \left(D_{n} - \frac{\Delta y_{n-1}}{\Delta x_{n-1}} \right) - M_{n} (2 - Q_{n-1})$$
(62)

If $Q_{n-1} = 1$, then from equation (62),

$$U_{n-1} = \frac{6}{\Delta x_{n-1}} \left(D_n - \frac{\Delta y_{n-1}}{\Delta x_{n-1}} \right) - 3M_n$$
 (63)

) | | |

Solving for Q_{k-1} and U_{k-1} from equations (47) and (48) gives

$$Q_{k-1} = -\frac{1}{\Delta x_{k-1}} \left[\frac{\Delta x_k}{Q_k} + 2(\Delta x_k + \Delta x_{k-1}) \right] = -\frac{1}{\Delta x_{k-1}} \left[\frac{\Delta x_k}{Q_k} + 2(x_{k+1} - x_{k-1}) \right]$$
(64)

$$U_{k-1} = \frac{1}{\Delta x_{k-1}} \left[U_k \frac{\Delta x_k}{Q_k} - 6 \left(\frac{\Delta y_{k-1}}{\Delta x_{k-1}} - \frac{\Delta y_k}{\Delta x_k} \right) \right]$$
(65)

With $Q_{n-1} = 1$ and U_{n-1} given by equation (63), compute all values of Q_{k-1} and U_{k-1} from equations (64) and (65) for values of k ranging from n-1to 2. With the values of Q_k and U_k known, compute values for the second derivatives from equation (40) by propagating the solution backwards for k ranging from n-1 to 1. The last value thus computed will be M_1 . Clearly, the solutions for case 5 and case 6 could have been obtained from equations (54) and (55). In the solution for case 5, M_{k+1} can be obtained from equation (54) and $y'(x_{k+1})$ from equation (55). The solution can be propagated forward recursively with k ranging from 1 to n - 1. In the solution for case 6, M_k can be obtained from equation (55) and $y'(x_k)$ from equation (54). The solution can be propagated backward recursively with k ranging from n - 1 to 1.

If equation (52) is written with d_{k+1} replaced by its equivalent $d_{k+1} = d_k - \Delta x_k$ given by equation (51), the result is

$$\mathbf{y}(\mathbf{x}) = \mathbf{M}_{\mathbf{k}+1} \frac{\mathbf{d}_{\mathbf{k}}^{3}}{6\Delta \mathbf{x}_{\mathbf{k}}} - \mathbf{M}_{\mathbf{k}} \frac{\left(\mathbf{d}_{\mathbf{k}}^{-} - \Delta \mathbf{x}_{\mathbf{k}}^{-}\right)^{3}}{6\Delta \mathbf{x}_{\mathbf{k}}} + \left(\frac{\mathbf{y}_{\mathbf{k}+1}}{\Delta \mathbf{x}_{\mathbf{k}}} - \frac{\mathbf{M}_{\mathbf{k}+1}\Delta \mathbf{x}_{\mathbf{k}}}{6}\right) \mathbf{d}_{\mathbf{k}}$$
$$- \left(\frac{\mathbf{y}_{\mathbf{k}}}{\Delta \mathbf{x}_{\mathbf{k}}} - \frac{\mathbf{M}_{\mathbf{k}}\Delta \mathbf{x}_{\mathbf{k}}}{6}\right) \left(\mathbf{d}_{\mathbf{k}}^{-} - \Delta \mathbf{x}_{\mathbf{k}}^{-}\right) = \mathbf{y}_{\mathbf{k}} + \left[\frac{\Delta \mathbf{y}_{\mathbf{k}}}{\Delta \mathbf{x}_{\mathbf{k}}} - \frac{\Delta \mathbf{x}_{\mathbf{k}}}{6} \left(\mathbf{M}_{\mathbf{k}+1}^{+} + 2\mathbf{M}_{\mathbf{k}}\right)\right] \mathbf{d}_{\mathbf{k}}$$
$$+ \frac{\mathbf{M}_{\mathbf{k}}}{2} \mathbf{d}_{\mathbf{k}}^{2} + \frac{\Delta \mathbf{M}_{\mathbf{k}}}{6\Delta \mathbf{x}_{\mathbf{k}}} \mathbf{d}_{\mathbf{k}}^{3}$$
(66)

Equation (66) is the equation for the cubic spline function coefficients in the kth interval. If there are n data points in the tabulation, there will be n - 1 intervals and n - 1 cubic spline functions to cover the range of tabulated data.

For computation purposes, equation (67) is usually written as

$$y(x) = y_{k} + \left\{ \left[c_{3}(k)d_{k} + c_{2}(k) \right] d_{k} + c_{1}(k) \right\} d_{k}$$
 (67)

where

$$c_{1}(k) = \frac{\Delta y_{k}}{\Delta x_{k}} - \frac{\Delta x_{k}}{6} \left(M_{k+1} + 2M_{k} \right)$$
(68)

$$c_2(k) = \frac{M_k}{2} \tag{69}$$

$$c_{3}(k) = \frac{\Delta M_{k}}{6\Delta x_{k}}$$
(70)

Equations (67) through (70) show that the coefficients are functions of the interval; however, the coefficients need to be computed only once. After the computation is made, the set pertaining to the interval in which the value of the independent variable lies can be brought in to compute the value of the dependent variable needed. Because there are three coefficients for each interval, if there are n data points, there will be n - 1 intervals and 3(n - 1) coefficients.

CONCLUDING REMARKS AND RECOMMENDATIONS

The atmosphere package for the 1962 and 1966 standard atmosphere models is recommended without reservation. When these models were built, it was possible to conduct comparison checks with the layered versions of these models in 250-meter increments. In both packages, these tests revealed errors that were properly corrected. The package for the 1963 Patrick Air Force Base reference standard model was not subjected to such strenuous tests because the layered version of this model was not available. However, with the other models so thoroughly tested, the choice of altitudes was established as adequate, and the only requirement for the Patrick Air Force Base reference standard model was to ensure that the data were tabulated correctly. The laborious task of comparing (digit for digit) each tabulated number in the model printouts with the numbers in the reference source was performed as carefully as possible, and all errors found were corrected. As a result, the accuracy of this model is reasonably ensured.

To test the accuracy of these models after they have been recoded for use in the Software Development Laboratory, the only requirement is to have the package reproduce the tabulated data. Because the interpolation is to be performed in a different set of units, the output must be converted to the units of the tabulated data for ease of comparison. The results should agree within an error of no greater than 10^{-8} . Additional verification can be obtained by evaluating the parameters of the models at various altitudes and comparing the results with those obtained from established operational sources, such as the space vehicle dynamic simulator and the Shuttle optimal abort programs. These tests should be performed for all models.

It is recommended that where the first and second derivatives are known at the same data point the cubic spline functions be used to interpolate data only in a small neighborhood of this point and not be extended for interpolation over the entire range of tabulated data.

Lyndon B. Johnson Space Center National Aeronautics and Space Administration Houston, Texas, June 4, 1976 986-16-00-00-72

REFERENCES

- 1. United States Committee on Extension to the Standard Atmosphere: U.S. Standard Atmosphere, 1962. U.S. Government Printing Office, 1962.
- 2. United States Committee on Extension to the Standard Atmosphere: U.S. Standard Atmosphere Supplements, 1966. U.S. Government Printing Office, 1966.
- 3. Smith, O. E.; and Weidner, Don K.: A Reference Atmosphere for Patrick Air Force Base, Florida, Annual (1963 Revision). NASA TM X-53139, 1964.

Figure 2.- Deformed section of a beam.

F., B

APPENDIX

ł

ļ

ļ ļ

1

PROGRAM FLOW CHAPTS AND LISTINGS

Definitions of the symbols used in the program flow charts and listings are as follows.

SYMBOLS USED IN SUBROUTINE SDAT (IOP)

IOP	an integer parameter used to designate the desired atmosphere based on the following set of values:
	IOP = 0 1962 standard atmosphere
	IOP = 1 1966 standard atmosphere for July at latitude 30° N
	IOP = 2 1966 standard atmosphere for January at latitude 30° N
	IOP = 3 1966 standard atmosphere for July at latitude 60° N
	IOP = 4 1966 standard atmosphere for January at latitude 60° N
	IOP = 5 1963 Patrick Air Force Base reference standard atmosphere
NF	an integer variable used to specify the number of data points used to describe each atmospheric parameter in each model (equal to 123)
NP64	an integer variable used to specify the total number of data points used to describe all atmospheric parameters in each atmosphere model (equal to $6*NP$ or $6 \times 123 \approx 738$)
NP34	an integer variable used to specify the total number of cubic spline coefficients for each atmospheric parameter (equal to $3*(NP - 1)$ or $3*(123 - 1) = 366$)
PRSLST	a column vector array dimensioned by NP64 or 738 containing all pressure data values (in millibars) for all atmosphere models tabulated
RHOLST	a column vector array dimensioned by NP64 or 738 containing all density data values (in kilograms per cubic meter) for all atmos- phere models tabulated
SONLST	a column vector array dimensioned by NP64 or 738 containing all speed of sound data v ies (in meters per second) for all atmosphere models tabulated

.

.

	1 1 7			}		I
	1				•	
		1			1	,
,						, ,
ł	•					3
VISLST	a column vector a cient of viscosi for all atmosphe	array dimer ty data valu ere models	nsioned by N ues (in kilog tabulated	IP64 or 738 c grams per n	containing al neter per sec	l coeffi- ond)
ALTLST	a column vector a data values (in	rray dimer meters) fo	nsioned by N r all atmosp	IP or 123 co here models	ntaining the s tabulated	altitude
WORK	a column vector a array for subro	rray dimer outine SPLN	nsioned by N 11	IP or 123 us	ed as a work	ting
D	a column vector a first (or second tabulated termi for the atmosph	array dimen 1) derivativ nal bounda aere packag	nsioned by 2 ve of the fun ries (only fi ge)	containing ction at eith irst-derivat	the values o her or both o ive values an	f the f the re used
ALTTAB	a column vector a values in the w	rray dimen orking unit	nsioned by N ts of the pro	IP or 123 co gram (feet)	ntaining alti	tude
PRSTAB	a column vector a data values for of the program	array dimer the selecte (pounds-fo	nsioned by N d atmospher prce per squ	IP or 123 co re model in are foot)	ntaining pre the working	ssure units
RHOTAB	a column vector a data values for of the program	array dimer the selecte (slugs per	nsioned by N d atmospher cubic foot)	IP or 123 co re model in	ntaining den the working	sity units
SONTAB	a column vector a of sound data v working units o	array dimen alues for th of the progr	nsioned by N ne selected a ram (feet pe	IP or 123 co atmosphere r second)	ntaining spe model in the	ed
VISTAB	a column vector a coefficient of vi model in the wo seconds per sq	erray dimen scosity dat orking units uare foot)	nsioned by N a values for s of the prog	IP or 123 co the selecte gram (pound	ntaining the d atmospher ds-mass	9
СР	a column vector a cubic spline fui in pounds-forc	array dimen nction coeff e per squar	nsioned by N ficients for t re foot	IP34 or 366 he interpola	containing th ation for pre	ie Ssure
CR	a column vector a cubic spline fui in slugs per cu	array dimer nction coeff bic foot	nsioned by N ficients for t	IP34 or 366 the interpole	containing th ation for den	ne sity
CS	a column vector a cubic spline fu of sound in fee	erray dimer nction coeff t per secon	sioned by N ficients for t d	IP34 or 366 he interpola	containing th ation for the	ne speed

ł

1

4

CV	a column vector array dimensioned by NP34 or 366 containing the cubic spline function coefficients for the interpolation for the coefficient of viscosity in pounds-mass seconds per square foot
J1	an integer variable used to designate the order of the derivative of the function supplied at the initial tabulated boundary (except when $J1 = 4$). It can have the following values:
	J1 = 1 The first derivative of the function at the first tabulated point is supplied in $D(1)$.
	J1 = 2 The second derivative of the function at the first tabulated point is supplied in D(1).
	J1 = 3 The first and second derivatives of the function at the first tabulated point are supplied in D(1) and D(2), respectively.
	J1 = 4 The first and second derivatives of the function at the last tabulated point are supplied in D(1) and D(2), respectively.
JN	an integer variable used to designate the order of the derivatives of the function supplied at the last tabulated boundary. It can have the following values:
	JN = 1 The first derivative of the function at the last tabulated pcint is supplied in $D(2)$.
	JN = 2 The second derivative of the function at the last tabulated point is supplied in $D(2)$.
xs, ys1, ys2, ys3, ys4	Variables used for temporary storage in the ordering process for altitude, pressure, density, speed of sound, and coefficient of viscosity, respectively
SY	MBOLS USED IN SUBROUTINE SPLN1(N,X,Y,J1,JN,D,C,W)
N	an integer variable used to specify the number of data points used to represent the function in the region of definition
x	a column vector array dimensioned by at least N in the calling element containing the values of the independent variable in ascending order
Y	a column vector array dimensioned by at least N in the calling element containing the values of the dependent variable in sequence with the values in the X array
J1	same as J1 defined in SDAT

1

1

A-3

! !

JN	same as JN defined in SDAT
D	same as D defined in SDAT
С	a column vector array dimensioned by at least 3*(N-1) in the calling element containing the cubic spline function coefficients for the first-, second-, and third-degree terms for each interval. A portion of the array is also used to compute and store the values of one of the recursive functions used in the computation of the second derivatives and in the computation of the second-derivative values.
W	a column vector array dimensioned by at least N in the calling element used as a working array to compute and store the values of one of the recursive functions used in the computation of the second deriva- tives and in the computation of the cubic spline function coefficients
	SYMBOLS USED IN SUBROUTINE ATMSPL(V, FANS)
v	a real variable used to specify the altitude from the calling element containing the equations of motion at which values of the atmospheric parameters are desired
IS	an integer variable used to save the interval number in which the specified altitude lies
FANS	a column vector array dimensioned by 8 containing the following:
	FANS(1) the interpolated value for pressure at V altitude in pounds-force per square foot
	FANS (2) the interpolated value for density at V altitude in slugs per cubic foot
	FANS (3) the interpolated value for speed of sound at V altitude in feet per second
	FANS (4) the interpolated value for coefficient of viscosity at V altitude in pounds-mass seconds per square foot
	FANS (5) the ratio c [^] the pressure at V altitude and the pressure at 0 altitude
	FANS (6) the ratio of the density at V altitude and the density at 0 altitude
	FANS (7) the ratio of the speed of sound at V altitude and the speed of sound at 0 altitude

1

:

! !

ł

r

ł

FANS (8) the ratio of the coefficient of viscosity at V altitude and the coefficient of viscosity at 0 altitude

All other variables are defined in subroutine SDAT.

١

۱

1

I

1

,

ļ

ł

ORIGINAL PAGE OF POOR QUALITY

A-6

-

1

i I

1

A-7

ł

ORIGINAL PAGE CF POOR QUALIT

A-8

ſ

SDAT PG 4 FINAL
	SUBROUTINE SPLN1(N.X.Y.J1.JN.D.C.W)
	N - AN INTEGER DENOTING THE NUMBER OF DATA POINTS USED TO
lř	REPRESENT THE FUNCTION IN THE REGION OF DEFINITION
łř	X - A ONE-DEMENSIONAL ARRAY LIMENSIONED BY N CONTAINING THE
١č	VALUES OF THE INDEPENDENT VARIABLE IN ASCENDING ORDER
١č	Y _ A ONE-DIMENSIONAL ARRAY DIMENSIONED BY N CONTAINING THE
١ř	VALUES OF THE DEPENDENT VARIABLE CORRESPONDING IN
	SEDUCATOR THE VALUES IN THE Y ADDAY
١ř	ALLIN - INTEGERS DEFINED AS FOLLOWS
	orrow - intelexis berineb ins roleows
	<u> </u>
C	JI = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE FIRST TABULATED
C	DATA POINT IS SUPPLIED IN D(1)
C	JI = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE FIRST TABULATED
C	DATA POINT IS SUPPLIED IN D(1)
C	JI = 3 - FIRST AND SECOND DERIVATIVES OF THE FUNCTION AT THE FIRST
C	DATA POINT ARE SUPPLIED IN D(1) AND D(2), RESPECTIVELY
C	J1 = 4 - FIRST AND SECOND DERIVATIVES OF THE FUNCTION AT THE LAST
C	GATA POINT ARE SUPPLIED IN D(1) AND D(2). RESPECTIVELY
L	4
	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED
	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2)
	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED
0000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2)
00000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE
00000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN
000000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH 12 AND IN
0000000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3+(N-1) CONTAINING
0000000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3+(N-1) CONTAINING
0000000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3*(N-1) CONTAINING
00000000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3+(N-1) CONTAINING THE CUBIC SPLINE INTERPOLATING COEFFICIENTS FOR EACH
0000000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3+(N-1) CONTAINING THE CUBIC SPLINE INTERPOLATING COEFFICIENTS FOR EACH INTERVAL
0000000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3+(N-1) CONTAINING THE CUBIC SPLINE INTERPOLATING COEFFICIENTS FOR EACH INTERVAL W - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY N USED AS A WORKING
0000000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3+(N-1) CONTAINING THE CUBIC SPLINE INTERPOLATING COEFFICIENTS FOR EACH INTERVAL W - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY N USED AS A WORKING ARRAY ONLY
00000000	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3*(N-1) CONTAINING THE CUBIC SPLINE INTERPOLATING COEFFICIENTS FOR EACH INTERVAL W - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY N USED AS A WORKING ARRAY ONLY COMPUTE THE INITIAL VALUES OF THE RECURSIVE RELATIONS IN
	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3*(N-1) CONTAINING THE CUBIC SPLINE INTERPOLATING COEFFICIENTS FOR EACH INTERVAL W - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY N USED AS A WORKING ARRAY ONLY COMPUTE THE INITIAL VALUES OF THE RECURSIVE RELATIONS IN ACCORDANCE WITH THE SPCIFIED PROPERTY OF THE FUNCTION AT THE
	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3*(N-1) CONTAINING THE CUBIC SPLINE INTERPOLATING COEFFICIENTS FOR EACH INTERVAL W - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY N USED AS A WORKING ARRAY ONLY COMPUTE THE INITIAL VALUES OF THE RECURSIVE RELATIONS IN ACCORDANCE WITH THE SPCIFIED PROPERTY OF THE FUNCTION AT THE INITIAL BOUNDARY
	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3*(N-1) CONTAINING THE CUBIC SPLINE INTERPOLATING COEFFICIENTS FOR EACH INTERVAL W - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY N USED AS A WORKING ARRAY ONLY COMPUTE THE INITIAL VALUES OF THE RECURSIVE RELATIONS IN ACCORDANCE WITH THE SPCIFIED PROPERTY OF THE FUNCTION AT THE INITIAL BOUNDARY
	JN = 1 - FIRST DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) JN = 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE LAST TABULATED DATA POINT IS SUPPLIED IN D(2) D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN ACCORDANCE WITH J2 AND JN C - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 3*(N-1) CONTAINING THE CUBIC SPLINE INTERPOLATING COEFFICIENTS FOR EACH INTERVAL W - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY N USED AS A WORKING ARRAY ONLY COMPUTE THE INITIAL VALUES OF THE RECURSIVE RELATIONS IN ACCORDANCE WITH THE SPCIFIED PROPERTY OF THE FUNCTION AT THE INITIAL BOUNDARY

.

1

P

١

CONT. ON PG 2

SPLN1 PG_1_0F__5

ļ

1

f --- •

•

ļ

, ,

-

. .

APPENDIX

SPLN1 PG_5____EINAL

ł

ľ

• •

CRISINAL PAGE IS UP POOR QUALT

ATMSPL PG 4 FINAL

b.

.

•

1

ł

ļ

ł

i

BLC PAR PAR PAR PAR PAR PAR	CK DATA RAMETER NE RAMETER NE RAMETER NE RAMETER NE RAMETER NE RAMETER NE	P = 123 P11 = 1. NP1 P21=NP11+NP. P31=NP21+NP. P41=NP31+NP. P51=NP41+NP. P61=NP51+NP.	2 = 114. NF NP22=NP124 NP32=NP224 NP42=NP324 NP52=t!9224 NP52=t!9224 NP62=NP54	P13 = 115. NP. NP23=Nf NP. NP33=Nf NP. NP43=Nf NP. NP53=Nf 95. NP63=Nf	NP14 = NP 213+NP, NP2 23+NP, NP3 233+NP, NP3 243+NP, NP5 254+96, NP6	4=NP14+NP 4=NP24+NP 4=NP34+NP 4=NP34+NP 4=NP54+NP 4=NP54+NP
	כ		ALTITUDE	TABULATION	IN NETERS	
		DATA	ALTLST(1).	I=K?11.NP12	217	
C	1	2	3	4	5	6
0	.OEO.	2.5E2.	<u>↓</u> 5.0E2.	7.5E2.	1.053.	1.25E3.
C	7	8	9	10	11	12
[1	.5E3.	1.75E3.	2.0E3.	2.25E3.	2.5E3.	2.7553.
C	13	14	15	16	17	18
E	3.0E3,	3.5E3.	4.0E3.	4.5E3.	5.023.	6.0E3.
C	19	20	21	22	23	24
[7.0E3,	8.0E3.	9.0E3,	1.0E4.	1.1E4,	1.2E4.
C	25	26	27	28	29	30
۵	1.3E4.	1.464.	1.5E4.	1.6E4.	1.7E4.	1.8E4,
C	31	32	· 33	34	رك	36
٢	1.9E4.	2. CE4.	2.254.	2.4E4.	2.6E4.	2.8E4.
C	37	38	39	40	41	42
			4			

I

1

.

I

:

1

1

CONT. ON PG 2

PARTS PG_1_CF__52__

ļ

ł

1

÷.

ł

1

1

ł

			ļ			
	3. 0E4.	3.2E4.	3.4E4.	3.6E4.	3.8E4.	4. DE4.
						40
C	43	44		46		10
	4.2E4.	4.4E4.	4.684.	4.8E4.	5.0E4.	5.2E4.
C	49	50	51	52	53	54
	5.4E4.	5.6E4.	5.8E4.	6.0E4.	6.2E4.	6.4E4,
0	55	56	57	58	59	60
	6.6E4.	6.8E4.	7.0E4.	7.2E4,	7.454.	7.6E4.
כ	61	62	63	64	65	66
	7.8E4.	8.0E4.	8.2E4.	8.4E4,	8.6E4.	8.8E4.
נ	C 67	68	69	70	71	72
	9.0E4.	9.2E4.	9.4E4,	9.6Ë4.	9.074.	1.0E5.
C	C 73	74	75	76	77	78
	1.02E5.	1.04E5.	1.05E5.	1.08E5.	1.1E5.	1.12E5.
Γ	C 79	80	81	82	83	84
	1.14E5.	1.16E5.	1.18E5.	1.2025.	1.22E5.	1.24E5.
Γ	C 85	86	87	88	89	90
-	1.2655.	1.2865.	1.325,	1.3265.	1.34E5,	1.36E5.
Γ	C 91	92	93	94	95	96
•	1.38E5,	1.4E5.	1.4265.	1.44E5.	1.46E5.	1.48E5,
				\$		
			CONT.	ON PG 3		PARTS PG 2 DF

A-20

. . . .

ļ

			l			
C	19	20	21	22	23	24
4.110	52E2. 3.5E	516E2, 3.080	007E2. 2.64	999E 2. 2. 26	99982, 1.939	94E2.
C	25	26	27	28	29	30
1.657	96E2. 1.4	1704E2. 1.21	118E2, 1.03	528E2, 8.84	971E1, 7.565	522E1.
C	31	32	33	34	35	36
6.467	748E1. 5.52	2930E1. 4.04	749E1. 2.97	174E1. 2.18	837E1, 1.616	619E1.
C	37	38	3 9	40	41	42
1.197	703E1. 8.8	9063E0, 6.63	412E0. 4.9F	522E0. 3.77	13820. 2.87	143E0.
C	43	44	45	46	47	48
2.199	67E0. 1.69	0496E0. 1.313	\$ 340E0. 1.02	296E0, 7.97	790E-1.6.222	83E-1.
C	49	50	51	52	53	54
4.849	017E-1,3.76	572E-1.2.91	373E-1,2.24	606E-1.1.72	457E-1.1.315	504E-1.
C	55	56	57	58	59	60
9.94	067E-2,7.4	4483E-2,5.52	2047E-2,4.0	5013E-2.2.9	3758E-2.2.10	45E-2,
C	61	62	63	64	65	66
1.48	77E-2, 1.0	366E-2, 7.16	591E-3, 4.9 ↓	592E-3, 3.4	313E-3, 2.37	4(^-3.
C	67	68	69	70	71	72
1.64	36E-3, 1.1	449E-3. 8.06	683E-4, 5.7	483E-4, 4.1	377E-4, 3.00	75E-4.
C	73	74	75	76	77	78

CONT. ON PG 5

PARTS PG 4 OF 52

ļ

ļ

ŧ

1

ł

1

i

Ţ

2.212	3E-4. 1	.6500E-4.	1.2462E-4.	9.52255-5.	7.3544E-5.	5.7623E-5,
C	79	80	81	82	83	84
4.591	9E-5. 3	3.7137E-5.	3.0426E-5.	5 2.5217E-5.	2.1210E-5.	1.8139E-5.
C ·	85	86	87	5 88	89	90
1.572	26E-5.	1.3791E-5.	1.2214E-5.	1.0909E-5.	9.8151E-G.	8.8882E-6.
C	91	92	93	÷94	95	96
8.09	50E-6.	7.4194E-6,	6.8148E-6.	6.2931E-C,	5.8331E-6.	5.4252E-6.
C	97	98	99	÷10	0 10	1 102
5.06	17E-6,	4.7345E-6.	4.4375E-6.	4.1671E-6.	3.9202E-6.	3.6943E-6.
с	103	10	4 10	5 10	6 10	7 108
3.29	32E-6.	2.9475E-6.	2.64795-6,	2.3851E-G.	2.1536E-6.	1.9491E-6.
<u> </u>	109	11	0 11	↓	2 11	3 114
1.76	BUE-E.	1 60705-6	1 4030E-6.	1 33395-6	1 21795-6	1.19075-6/
<u></u>		DAT	A (PRSLST(1	V).I=NP13.NP	(4)/	
C	115	116	5 117	× 7 11	8 119	9 120
3.315	541E2,	2.09848E2.	3.4668GEi.	9.03367E-1	.7.04580E-1	.5.49540E-1.
		C	121	122	123	_
		8.62	04E-3. 5.96	↓ 24E-3, 1,97	56E-3/	
C		DENSITY VA	LUES TABULA	TED IN KIL	GRAMS PER C	UBIC METER
• •				4	······	
			CONT.	ON PG 6		PARTS PG 5 OF

÷

1

ī.

1

.

· ·

ţ

:

¥

1

ş

		.	ļ			
		DATA	(RHOLST(I)	I=NP11.NP12	2)/	
C	1	2	3	4	5	6
1.	2250E0.	1.195920.	1.16/3E0.	1.1392E0,	1.111720.	1.0846E0.
<u> </u>			¢			
<u> </u>		8	3	, 10		
1.0	0581E0.	1.0321E0.	1.008680.	9.8151E-1.	9.5695E-1.	3.3287E-1.
C	13	14	15	16	17	18
9.0	0925E-1.	8.6340E-1.	8,19355-1.	7.7704E-1.	7.36435-1.	5.60115-1.
			4	·····		
C	19	20	21	22	23	24
5.9	9002E-1.	5.2579E-1.	4.67052-1.	4.1351E-1.	3.6480E-1.	3.1194E-1.
C	25	28	77	28	29	30
		2 27065 1	1 04755 1	1 66475 1	1 42205 1	1 21656 1
	000VE-11	2.2/000-11	1. 547 52-11	1.004/2-1.	1.42306-11	1.210JE-1.
C	31	32	2 33	34	35	36
1.	0400E-1.	8.8910E-2.	6.4510E-2.	4.6936E-2.	3.4257E-2.	2.5076E-2.
	37	/ 3(3 39	40	41	42
		1.05555.0		¢	E 00005 0	0.00572.0
<u> </u>	841UE-2.	1.3000E-2.	9.88/4L-3.	√.25/9E-3,	J. JUUEL-J.	3.995/2-3.
C	43	3 4	4 45	46	47	48
2.	9948E-3.	2.25898-3.	1.7141E-3.	1.3167E-3.	1.0269E-3.	8.0097E-4.
	4	<u>م ج</u>	0 51	52	53	54
				52 52		
6.	.3137E-4,	4.9762E-4	3.9086E-4.	3.0592E-4.	2.3931E-4.	1.8837E-4.

CONT. ON PG 7

PARTS PG 6 OF 52

5

ł

1

ł

}

i

.

1

1

			ļ			
C	55	56	57	58	59	60
ו	.4713E-4.	1.1399E-4,	8.7535E-5.	6.6593E-5.	5.0151E-5.	3.736E-5.
IC.	61	62	63	64	65	66
	2.7505-5	1.9995-5.	1,382E-5,	9,563E-6,	6.617E-6.	4.579E-6.
				5	71	72
C	67	68	69	70	/1	·//
Ε	3.170E-6,	2.137E-6.	1.459E-6.	1.008E-6.	7.044E-7.	4.974E-7.
C	73	74	75	76	77	78
	3.493E-7.	2.492E-7.	1.804E-7.	1.323E-7.	9.8295-8,	7.153E-8.
	79	80	81	÷ 82	. 83	84
Ľ	5 0015 0	4 0255 0	2 1125 0	2 4255-8	1 8445-8-	1,434F-8,
L	5.321E-8.	4.030E-8.	3.1120-0,	2.4302-01	1.0112-01	
	85	86	8	7 88	8 89	90
ſ	1.140E-8.	9.226E-9,	7.589E-9.	6.327E-9,	5.337E-9.	4.5498-9.
ה	: 91	92	2 9	3 9	4 95	5 96
1	3 9135-9.	3. 394F-9.	2,9655-9,	2.608E-9.	2.307E-9.	2.0538-9,
1	515152-57			¥		102
	97	98	9:	÷	10 10	102
	1.836E-9.	1.665E-9.	1.515E-9.	1.3822-9.	1.264E-9.	1.159E-9,
	10	13 10	1	05 10	06 10	07 108
[9.970E-10.	8.624E-10.	7.532E-10	6.633E-10	5.858E-10	5.189E-10,
ก	. 10)9 11	0 1	÷ 11 1	12 1	13 114
Ľ				4		

1

CONT. ON PG 8

PARTS PG_7_OF_52___

ţ

ţ

l

A-27

			-			
1.7	894E-5.	1.78158-5.	1.7737E-5.	1.76588-5.	1.7579E-5.	1.7499E-5,
C	7	8	9	10	11	12
1.7	420E-5.	1.73423-5.	1.7260E-5.	5	1.70995-5.	1.7019E-5.
C	13	14	15	<u>16</u>	17	18
1.6	938E-5,	1.6775E-5.	1.6612E-5.	1.6448E-5.	1.6282E-5.	1.5949E-5,
	C	19	20	21	22	23
	1.561	2E-5, 1.527	1E-5, 1.492	EE-5, 1.457	76-5. 1.422	3E-5,
	L		· · · · · · · · · · · · · · · · · · ·	¢	24 22	
			······································	f	29 - 32	
				9*1.4	1216E-5.	
С	· ·		33	34	35	5 36
ſ			1.4322E-5.	1.4430E-5.	1.4538E-5.	1.4646E-5.
	07			6		
	3/	38	3 35	> 4∪ ↓	4	42
1.4	4753E-5.	1.48598-5-	1.5140E-5,	1.5433E-5.	1.5723E-5.	1.6009E-5.
	C	43	44	45		46 48
	1.629	3E-5, 1.657	35-5, 1.685	↓ 1E-5,	3+1.70	375-5,
				4		
<u>لا</u>	49)	U 51	<u>کر</u>	5.	3 54
1.	6883E-5.	6686E-5 ,	1.6487E-5.	1.6287E-5,	1.6045E-5.	1.5638E-5.
C	55	5	6 5	7 56	5	9 60
П.	5226E-5.	1.4808E-5	1.4383F-5	• 1.3953E-5-	1.3515E-5	1.307E-5-
				•		
			CONT.	ON PG 11		PARTS
						PG_10_0F

.

í

ţ

A-28

i

			1			
C	31	32	33	34	35	36
6.	867E1.	5.846E1.	4.258E1.	3.121E1.	2.300E1.	1.705E1.
C	37	38	39	40	41	42
[].	270E1.	9.51320.	7.163E0,	5.425E0.	4.131E0.	3.16220.
C	43	44	45	. 46	47	48
2.	433E0.	1.881E0.	1.461E0.	1.140E0.	8.908E-1.	6.959E-1.
	49	50	51	52	53	54
5.	424E-1.	4.212E-1.	3.259E-1.	2.512E-1.	:.924E-1.	1.462E-1.
C	55	56	57	58	59	60
1.	102E-1.	8.2265-2.	6.083E-2.	4.452~-2.	3.224E-2.	2.306E-2.
C	61	62	63	64	65	66
	.6295-2.	1.135E-2.	7.792E-3.	5.301E-3.	3.607E-3.	2.455E-3.
C	67	68	69	70	71	72
[]	.671E-3.	1.142E-3.	7.877E-4.	5.488E-4.	3.859E-4.	2.737E-4.
C	73	74	75	÷ 76	5 77	78
	.958E-4.	1.427E-4.	1.005E-4.	8.104E-5.	6.2765-5,	4.935E~5,
	Г	C 79	80	\$	81 - 11	4]
	Ľ	2 9555 5	2 2405-5	¢	4+2 702F-5/	1
		3.5352-5	3.2402-3.	£		2
		DAT	A (PRSLST()),1=NP23,NP ♦	24)/	
			CONT.	CN PG 13		PARTS PG 12 DF

÷

CONT. ON PG 14

PARTS PG 13 OF 52

			l			
1.909E-2.	1.406	-2. 1.	038E-2.	7.709E-3.	5.759E-3.	4.326E-3.
C 4	3	44	45	46	47	48
3.268E-3.	2.482	E-3. 1.	894E-3,	1.460E-3.	1.140E-3.	8.942E-4.
C 4	9	50	\	52	53	54
7 0715-4.	5 573	F-4. 4	3785-4	3. 435F-4.	2.710F-4.	2.123E-4
[/.o/10-11			5702-17	<u>511552 11</u>		
C 5	5	56	57	58	59	60
1.651E-4.	1.273	E-4. 9.	739E-5.	7.380E-5.	5.5392-5.	4.113E-5,
C E	51	62	63	5 64	65	66
3.020E-5.	2.190	E-5, 1.	568E-5.	1.070E-5.	7.2825-6.	4.956E-6.
C (57	68	69	70	71	72
3.374E-6	2.258	E-6, 1	516E-6,	1.030E-6.	7.065E-7,	4.892E-7.
C T	73	74	75	76	77	78
3.392E-7	2.28	BE-7. 1	.588E-7.	1.130E-7.	8.2135-8.	6.087E-8.
•	C	79	80	\$	81 - 11	4
•	A 385	25.9.2	2595-8	34	+2 4865-8/	— ר
	1.300	52-01 3	. 2002-01		-2.1002-07	J
		DATA	RHOLST(1).1=NP23.NP	24)/	
C 1	15	116	11	7 11	9 11	9 120
4.958E-1	. 3.52	9E-1. 5	.823E-2.	⊻ 1.290E-3.	1.00SE-3.	7.955E-4.
•	 Г		121	122	123	
	Ľ	<u> </u>		V		
			CONT.	ON PG 15		PARTS PG_14_0F

ł

ļ

1

A-32

٦

Ŧ

١

1

: ;

		1.85GE	-5. 1.298E	-5, 4.089	E-6/	
Γċ		SPEED OF SU			IN MELERS P	FR SECOND
. <u>L</u>	<u> </u>		×			
		DATA	(SUNLST(1).	I=NP21.NP2	2)/	
C	1	2	3	4	5	6
1	349.9.	348.6.	347.3.	346.0.	344.7.	343.8.
			<u> </u>			
C	7	8	9	10	11	12
l	342.9.	342.0.	341.1.	340.3.	339.4.	338.5.
	13	14	15	16	17	18
Ľ			¥			
	337.7.	335.9.	334.2.	332.5.	330.7.	327.3.
C	. 19	20	21	22	23	24
	322.9.	318 5.	314 0.	309 5.	304 9.	303.3
_						
C	25	26	27	28	29	30
	295.6.	290.9,	286.0.	285.7.	287.2.	288.7.
ار	31	32	23	34	25	26
Ľ		52				
	290.2.	291.7.	294.6,	297.3.	299.9.	302.6.
C	37	38	<u>39</u>	40	41	42
	305.2	307 8.	310.8.	313 9.	216 9.	210 0
		307.01	510.01	513.31	510.31	313.3,
C	43	44	45	4	6 - 47	48
	322.8.	325.8.	3 28.7,	2+330	.7.	330.1.
			· · · · · · · · · · · · · · · · · · ·		······	
			_	-		

ł

4.144

ĩ

i

I

CONT. ON PG 16

PARTS PG_15_0F_52___

ł

ţ

ł

¥

. .

ţ

			ļ	,		
C	1	2	3	4	5	6
Γ	.8682-5.	1.857E-5.	1.846E-5.	1.836E-5.	1.825E-5.	1.818E-5,
	7	8	. 9	10	11	12
	0115 5	1 9025 5	1 7005 5	1 7005 5	1 7025 5	1 7755 5
<u> </u>	.0112-31	1.0032-31	1.7502-51		1.7021-37	1.7752-51
C	13	14		, 16	17	18
	.768E-5.	1.754E-5,	1.739E-5.	1.7258-5.	1.711E-5.	1.6835-5.
C	19	20	21	22	23	24
П	.648E-5.	1.612E-5.	1.575E-5.	, 1.539E-5.	1.501E-5.	1.464E-5.
	28	26	<	20	20	
15	23	20		<u>, 20</u>	23	
L	.426E-5.	1.30SE-5.	1.3492-5.	1.346E-5.	1.358E-5.	1.370E-5.
C	31	32	33	34	35	36
Γ	.3-2E-5.	1.395E-5.	1.418E-5.	1.439E-5.	1.461E-5,	1.482E-5.
	37	38	39	5 40	41	42
r:			1 5 4 0 5 5	5		
	1.501E-5.	1.5256-5.	1.5495-5.	1.5/42-5,	1.5995-5.	1.623E-5+
C	43	44	45	L	46 - 4	7 48
	1.647E-5.	1.671E-5,	1.694E-5.	2	*1.711E-5.	1.706E-5.
C	49	50	51	<u>ک</u> 52	53	54
-	1.687E-5.	1.677E-5.	1.647E-5.	1.6245-5	1.5355-5.	1.547E-5.
	55	56	57	58 5	59	60

.

. 3

I

1

1

CONT. ON PG 18

PARTS PG_17_0F_52__

ľ

ţ

)

1

1

1

A-36

			1			
C	7	8	9	10	11	12
8.	53852.	8.285E2.	8.038E2.	7.798E2.	7.564E2.	7.335E2.
	13	14	15	16	17	18
			·			
7.	11262.	6.682E2,	6.274E2.	5.886E2.	5.517E2.	4.837E2.
C	19	20	21	22	23	24
4.	226E2.	3.679E2.	↓ 3.191E2.	2.757E2.	2.372E2.	2.032E2.
C	25	26	27	28	29	30
1.	734E2.	1.478E2.	1.25762,	1.067E2.	9.040E1.	7.650E1.
C	31	32	33	34	35	36
6.	47921.	5.499E1.	3.984E1.	2.907E1.	2.134E1.	1.575E1.
C	37	38	39	40	41	42
. [1,	169E1.	8.723EC.	6.544E0,	4.939E0.	3.748E0.	2.860E0,
C	43	44	<u>45</u>	46	47	48
2.	194E 0,	1.691E0,	1.310E0.	5 1.019E0,	7.941E-1.	6.187E-1.
C	49	50	51	52	53	54
[4.	808E-1.	3.723E-1.	2.872E-1.	5 2.207E-1.	1.687E-1.	1.281E-1.
C	55	56	· 57	58	59	60
9.	659E-2.	7.231E-2.	5.372E-2.	5 3.959E-2,	2.893E-2,	2.095E-2.
<u> </u>	61	62	63	5 64	65	66
L				v		

1

•

. . .

I

CONT. ON PG 20

PARTS PG 19 OF 52

ų į

1

1

.

i

ļ.

A-38

· ...

			1			
9.	005E-1+	8.565E-1.	8.142E-1.	7.733E-1.	7.340E-1.	6.599E-1.
C	19	20	21	22	23	24
5.	916E-1.	5.288E-1.	4.713E-1.	4.187E-1.	3.707E-1.	3.270E-1.
	25	26	27	28	29	30
[<u> </u>	9295-1	2 4395-1-	±	1.805F-1.	1.549E-1.	1.312E-1.
<u> </u>	0202-11	2.4550-11	<u>+++++++++++++++++++++++++++++++++++++</u>			
C	31	32	33	34	30	30
1.	099E-1.	9.213E-2.	6.520E-2.	4.669E-2.	3.385E-2.	2.440E-2.
C	37	38	40	40	41	42
[].	780E-2.	1.306E-2.	9.603E-3.	705E-3,	5.289E-3.	3.960E-3.
	43	3 44	45	46	47	48
12	9816-3	2.257E-3.	1.717E-3.	1.319E-3.	1.028E-3.	8.038E-4.
		E120/2 07		52	57	54
Ľ	4:	5 50	, <u> </u>	52		
l e	.340E-4,	4.983E-4.	3.903E-4.	3.051E-4.	2.3855-4.	1.86UE-4.
C	5	5 56	5 57	58	59	60
[]	.439E-4.	1.106E-4.	8.441E-5.	6.396E-5.	4.809E-5.	3.596E-5.
C	6	1 6	2 63	¢64	6	5 66
2	.651E-5.	1.942E-5,	1.374E-5.	9.702E-6,	6.853E-6.	4.842E-6,
		7 6	8 69	÷ 3 71) 7	1 72
				× 1525 0	0 2215 7	5 9425-7
E	3.386E-6.	2.335E-6.	1.6302-6.	↓.152E-6+	0.2312-/,	3. 3426-71
			CONT.	ON PG 22		PARTS PG 21 CF

ί

ł

1

ļ

Í

ţ

!

ţ

,

1

i

•

ł

•

A-39

-

					1						
C	7	3	74	75	2		76		77		78
4	.322E-7.	3	.133E-7.	2.305E-7.	1.	7102	-7, 1	.296E-7	•	9.887E-8	
		C	79	80	J			81 - 1	14	3	_
	•	[7	.508F-8.	5.780F-8.	Ŷ		34+4	1.509F-8	7	-	
	·		[DATA		ţ.	-1022		371	J		
				INHULSILI	<u> </u>	=NP3.	5. NF 34		. <u>.</u>		
C	1	15	116	11	7 1		118		119	<u> </u>	20
[.994E-1.		3.483E-1.	5.512E-2.	1.	165E	-3,	9.073E-4	•	7.142E-4	•
			C	121	\$	122		123			
			1.6356	-5. 1.15	45	5.	4 0705				
.					t t			-0/			
6	<u> </u>		SPEED OF S	OUND VALUE	\$ 1	TABUL	ATED	IN METER	S F	ER SECON	D
			DATA	(SONLST(I	<u>).1</u>	=NP3	1.NP32	2)/			
C	· · · · · · · · · · · · · · · · · · ·	1	2	3	<u> </u>		4		5		6
	340.5.		340.0.	339.5,	\$	339.	1.	338.6.		338.1.	ר
					9						ר <u>בי</u>
Ľ	4		8	9	Ŧ		10		<u> </u>		12
	337.6.		337.1.	336.6,	1	335.	6,	334.6,		333.5.]
C		13	14	1	<u> </u>		16		17		18
	332.5.		330.5,	328.5.	<u>\$</u>	326.	4.	324.4.		320.3,	٦
	L				Ł	<u> </u>					
Ľ		13	20	2	। रु		22		23		24
	316.2.		312.1.	307.9.		303.	6.	299.3.		294.9.]
					V	-				01070	
				CONT.	ON	PG	23			PARTS PG_22	OF

ļ

.

ţ

ł

1.2. .

i

A-40

. **.**

Ţ

-

1

ſ

				ļ					
C		25	26	27	2	8	29		30
	293.0,		291.3.	289.5.	287.7.		285.9,	285.7.	ן
c		31	32	33	3	4	35		36
 1				÷					
	287.3.		289.1,	292.5.	295.2.		297.9,	300.6.	1
С		37	38	39	4	0	41		42
	303.2,		305.8,	<u>♦</u> 308.9.	311.9,		315.0.	318.0.]
C		43	44	45 45			46 - 47		48
	321.0.		323.9,	326.8,		2+3	28.9.	328.3.]
C		49	50	<u></u> 51	ç	52	53		54
	325.8.		323.4.		318.3.		314.4.	310.5.	7
C		55	. 56	₹ 57		58	59		
<u> </u>	306 5.		302 5.	298 5	294 4.		24 } 2.	286.0.	<u>ר</u>
	l	C	61	<u> </u>			63 - 6	e	
			281.7.	277.4,			4:277.2.		
C		67	68	69		70	71		72
	278.7.		283.6,	288.4.	293.0.		297.7.	302.2.	
C		73	74	75		76	77		78
	307.0.		314.3.	321.3.	328.2.		335.0.	341.6.	٦
				ŧ				7	
				<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>			81 - 114	J	
				CONT. C	N PG 24			PARTS	_0F

ŝ

A-41

ļ

				l			
		351.0.	360.3.	34	+369.3/		
		DATA		5 1. T=NP33. NP3	177		
				5			
C	115	116	117	/ 	118 - 119	120	J
	308.9.	297.1.	293.9.	2+	328.9,	327.1.	
			, ,	121 - 123			
				<u> </u>			
			3	+277.2/			
C			VISCOSIT	Y COEFFICIEN			
		VALUES	IVROUVIED	IN KILUGRAMS	PER METER	PER EL'INU	
		DATA	(VISLST(:). I=NP31. NP3	2)/		
C	1	2	3	¢4	5	6	
				A			
	.791E-5,	1.787E-5.	1.783E-5.	1.779E-5.	1.7758-5.	1.771E-5,	
C	7	8	9	10	11	12]
Lī.	.767E-5.	1.763E-5.	1.759E-5.	<u>↓</u> 1.751E~5,	1.742E-5.	1.734E-5.	
				÷			•
C	13	14	15	5 <u>16</u>	17	18	J
	.726E-5.	1.709E-5,	1.693E-5,	1.6762-5.	1.660E-5,	1.626E-5.	
	. 19	20	2	<u>↓</u> 22	23	24	1
ر <u>الم</u>				Ą			J
1	.593E-5.	1.5598-5.	1.525E-5,	1.491E-5,	1.456E-5,	1.420E-5.	
С	25	26	2	7 28	29	30]
Π	.405E-5.	1.3915-5.	1.376F-5.	↓ 1.362E-5	1.347E-5.	1.346E-5.	
				▼			-
C	31	32	3:	<u>3 34</u>	35	36	J
			CONT.	ON PG 25		PARIS	-
						CL_ZA_UF	

(

3

A-42

:

ORIGINAL PAGE IS OF POOR QUALITY

A-44

A

٢

i.

•						
C	43	44	45	46	47	48
2.6	54 DE 0.	2.057EC.	1.607E0.	1.259E0.	9.872E-1.	7.742E-1.
	49	50		53	F 2	
Ľ				52		54
6.0	072E-1.	4.751E-1.	3.704E-1.	2.877E-1.	2.218E-1.	1.694E-1.
C	55	56		58	59	60
	2015 1	0 5705 0	4	,		
1.2	COIE-1.	3.3/6E-2.	7.075E-2.	5.160E-2.	3.710E-2.	2.627E-2.
C	61	62	63	64	65	66
1.6	B29E-2.	1.249E-2.	8.3S0E-3.	5.536F-3.	3.667F-3.	2.4305-3.
			3	5		2.4502-51
C	67	68	69	70	71	72
1.6	61 CE-3.	1.075E-3.	7.297E-4.	5.027E-4.	3.512E-4.	2.485E-4.
	73	. 74		76	77	70]
<u>ر</u>				,		/8
1.	782E-4.	1.310E-4,	9.889E-5,	7.633E-5.	6.004E-5.	4.801E-5.
	[C 79	80	2	81 - 114	n -
		2 9025 5	2 22/5 5	5	2 7005 54	
		3. 3032-31	3.729E-3,	34	*2.700E-57	J
		DAT	(PRSLST(1)	. I=NP43. NP4	4)/	
C	115	5 110	5 117	7 116	3 119	120
12	24252	3 10000	0.7500	6	<u> </u>	
<u> </u>	J-1 JE Z 1	2.133t2,	3./33E1.	1.115E0.	8.742E-1.	6.857E-1.
		С	121	122	123	
		1.02	5E-2. 6.80	35-3, 1,976	3F-3/	
				₹		
			CONT.	ON PG 28		PARTS
						PG 27 OF

Ţ

ť,

ORIGINAL PAGE IS OF POOR QUALITY

A-45

To had a way

....
				•		
C		DENSITY VAL	L'ES TABULAT	TED IN KILO	GRAMS PER CL	BIC METER
		DATA	(RHOLSTIL)	I=NDA1 NDA	217	
				• 1 - or - 11 • or - 1	217	
C	1	2	. 3	4	5	6
1.3	20F0.	1.19050.	1,16160	1 13250	1 10/50	1 02750
				1.132200	1.104200	1.07720.
C	7	8	9	10	11	12
1.0	50E0.	1.02350	9.971E-1.	9 7165-1	9 4675 1	9 2255 1
			010/12-11	5.7102-11	3.40/2-1.	5.2252-11
C	13	14	15	16	17	18
8.9	84E-1.	8.521E-1.	B. 0775-1.	7.6515-1.	7 2445-1-	6 5195 1
				2.0512-11	7.2446-11	0.5152-11
C	19	20	21	22	23	24
5.8	49E-1.	5.231E-1.	4.6535-1.	4 142E-1	3 5605-1	2 05 05 1
				5	3.3002-11	3.0802-11
C	25	. 26	27	28	29	30
2.6	31E-1.	2.261E-1.	1.944F-1.	1.6715-1.	1 437E-1	1 2255-1-
				<u>, </u>	1.4576-11	1.2352-11
	31	3,2	33	34	35	36
1.0	G2E-1.	9.132E-2.	6.753E-2.	4.965F-2.	3.639F-2.	2,6785-2.
				5	5.0552-21	2.0702-21
	37	38	39	40	41	42
1.9	79E-2.	1.469E-2.	1.083E-2	8.041F-3.	6.0135-3.	4.5285-3
میں است. مراجع میں اس				5	0.0102-31	4. 5200-51
LC	43	44	45	46		48
3.4	31E-3.	2.630E-3.	2.039E-3.	1.584E-3.	1.241E-5	1 732F-4
				5		5.7522-71
[C	49	50	51	52	53	54
			•	\$		

ł

CONT. ON PG 29

PARTS PG_28_0F__52__

Ţ

2 1 ļ

ŝ

....

ś

					1				
	340.5.		339.6.	338.8.	337.9.	337.0.		336.2.	
C		7	8	9	0 10		11	1	2]
	335.4.		334.5.	333.7.	332.8.	332.0.		331.1.]	
5		12			6				
ك		13		13			17	1	<u>8</u>]
	330.3.		328.6.	326.9,	325.2.	323.5.		319.0.	
			C	19	20	21			
			314	1.6, 310	. 0. 305	5.5.			
		۲.			¢				
		٢			£	22 - 33	บ		
					12	=300.8.			
C					34		35	3	6
	ſ	<u> </u>	·		301.7.	303.7.		305.7.	
		37		2 20	₹				
Ľ					· •		41		<
	307.6.		309.6.	313.3.	317.1.	320.8.		324.5,	
E	С	43		44	45	46		47 - 48]
	328.	2.	330.9.	332.2,	÷		2+33	3.7.	
C		49	5	0 51	¢5:		52		
<u> </u>	222				¥				-
_	333.0.		330.6.	328.2.	324.9.	319.2.		313.3.	
C		55	5	5 57	7 <u>5</u> 8	3	59	6	0
	307.3.		301.3.	295.0,	288.7.	282.2.		275.6.	
	•				\$				
				CONT.	ON PG 31			PARTS PG 30 0	F

A-48

ł

j

يأتدره

- 10

			1			
C	19	20	21	22	23	24
I	3.85382.	3.308E2	2.829E2.	2.418E2.	2.067E2.	1.766E2.
C	25	26	27	28	29	30
Į	1.510E2.	1.291E2.	1.103E2.	9.431E1.	8.058E1.	6.882E1.
C	31	32	33	34	35	36
Ε	5.875E1.	5.014E1.	3.647E1.	2.649E1.	1.922E1.	1.398E1.
C	37	38	39	40	41	42
[1.020E1.	7.464E0.	5.479E0.	4.041E0.	3.001E0.	2.243E0.
כ	43	44	45	46	47	48
C	1.687E0.	1.277E0.	9.714E-1.	7.4345-1.	5.719E-1.	4.414E-1.
C	49	• 50	51	52	53	54
E	3.408E-1.	2.629E-1.	2.021E-1.	1.548E-1.	1.184E-1.	9.050E-2.
ס	55	56	57	58	59	60
[6.909E-2.	5.271E-2,	4.017E-2.	3.051E-2.	2.306E-2.	1.735E-2,
0	61	62	63	64	65	66
E	1.298E-2.	9.661E-3.	7.152E-3.	5.263E-3.	3.851E-3.	2.800E-3.
0	67	68	69	70	71	72
[2.022E-3.	1.460E-3.	1.061E-3,	7.762E-4.	5.715E-4.	4.234E-4.
	73	74	75	76	77	78
				7		

CONT. ON PG 35

PARTS PG_34_0F__52__

1

,

ī,

\$

I.

. . . **i**

۲.

;

2.422E-1.	2.071E-1,	1.770E-1.	1.517E-1.	1.300E-1.	1.113E-1.
C 31	32	33	34	35	36
9.530E-2.	8.156E-2.	5.966E-2,	4.357E-2.	3.157E-2.	2.275E-2.
C 37	38	39	40	41	42
1.645E-2.	1.1932-2.	8.676E-3.	6.264E-3.	4.5518-3.	3.3305-3.
C 43	44	45	46	47	48
2.453E-3.	1.819F-3.	1.357F-3.	1.0185-3-	7 6925 4	5 9115 4
			5	7.0020-41	5.5112-4.
45	<u></u>	51	52	53	54
4.564E-4,	3.559E-4.	2.774E-4.	2.150E-4.	1.651E-4.	1.266E-4.
C 55	56	57	58	59	60
9.708E-5.	7.435E-5,	5.701E-5.	1.408E-5.	3.392E-5,	2.599E-5.
C 61	62	63	64	65	66
1.981E-5.	1.503E-5.	1.134E-5.	8.516E-6,	6.357E-6.	4.717E-6.
C 67	68	69	5 70	71	72
3.480E-6.	2.467E-6.	1.757E-6.	1,260F-6,	9.0935-7.	6 607E-7
L 72	74	75	70		
10 73	/1	/5	/6		78
1.0(32-7.	3.4/9E-/,	2.550E-7.	1.891E-7.	1.417E-7,	1.067E-7.
	. 79	80	8	81 - 114	
	7.890E-8.	5.950E-8,	34	4.567E-8/	
		. CONT	N PG 37		PADTC
			UN FO 37		PG 20 ME

A-54

.

				1			
C		37	38	39	40	41	42
	294.7.		296.0.	297.4.	300.5.	303.8.	307.1.
C		43	44	45	46	47	48
	310.3.		313.5.	316.6.	319.7.	322.8.	323.3.
Ċ		49	50	51	52	53	54
	323.3.		321.6.	319.3.	317.5.	316.9.	316.3.
C		55	56	57	58	59	6
	315.7.		315.0.	314.1.	311.3.	308.5.	305.7,
C		61	62	63	64	65	6
	302.8,		300.0.	297.1.	294.2.	291.2.	288.2.
C		67	68	<u>+</u>	70	71	7
	285.2.		287.8.	290.8.	293.7.	296.6,	299.5,
C		73	74	75	76	77	7
	303.2.		309.2.	315.0.	320.7.	326.4.	332.6.
		C	79	80		81 - 11	4
		-	344.6.	356.1.		4+367.3/	
			DATA	(SONLST(:)	I=NP53.NP5	54)/	
٢	c		115 - 116		7 1	18	119 - 120
				Ą			

ļ

1,

A-56

1			
1.596E-5, 1.	622E-5. 1.	647E-5.	1.651E-5.
\			
51	52	53	54
\			
1.6188-5. 1.	.604E-5. 1.	5998-5.	1.594E-5.
57	58	59	60
<u>+</u>			
1.5/52-5. 1	. 553E-5. I.	530E-5.	1.50/E-5.
\$			
<u>t 3</u>	64	63	66
1 4395 5 1	A145-5 1	2916.5	1 2675-5
1.1302-31 1	· 7176-J/ 1.	551E-J.	1.30/2-31
<u> </u>	70	71	72
<u>_</u>			
1.367E-5. 1	.411E-5. 1.	434E-5.	1.450E-5.
4 75	76	77	78
<u> </u>			
1.583E-5. 1	.630E-5. 1.	676E-5.	1.727E-5.
			~~~~
80		81 - 114	
1.919E-5.	34+2	011E-5/	
<del>\</del>		<u></u>	
A LVISLST(1).	I=NP53,102543		
<del>\</del>	110		119 - 120
<u>-</u>			115 - 120
1, 398E-5-	1.6345-5-	2+1	6515-5
121	-122	123	
<u> </u>			
50E-5. 1.42GE	-5, 1.355E-	-5/	
<del>_</del>		لست	
1963 PATRIC	K AFB REFERE	NCE ATMOS	PHERE
DDESCHOE VALUE	S TARULATED	IN MILLIF	BARS
FRESSORE TREOL	S INDUCINED		
	1.596E-5.       1.         5:       5:         1.618E-5.       1.         57       57         1.575E-5.       1         69       57         1.438E-5.       1         69       57         1.367E-5.       1         69       57         1.367E-5.       1         69       57         1.367E-5.       1         80       57         1.367E-5.       1         1.367E-5.       1         1.367E-5.       1         1.367E-5.       1         1.367E-5.       1         1.367E-5.       1         1.3919E-5.       5         1.398E-5.       5         121       5         50E-5.       1.426E         1963 <patric< td="">       5         1963<patric< td="">       5</patric<></patric<>	1.596E-5, 1.622E-5, 1.0 5: 52 1.618E-5, 1.604E-5, 1. 57 58 57 58 1.575E-5, 1.553E-5, 1. 57 58 1.575E-5, 1.553E-5, 1. 57 58 1.414E-5, 1. 59 70 50 1.367E-5, 1.411E-5, 1. 50 1.583E-5, 1.630E-5, 1. 50 1.919E-5, 34+22 50 1.398E-5, 1.634E-5, 1. 50 1.398E-5, 1.634E-5, 1. 50 1.398E-5, 1.634E-5, 1. 50 1.398E-5, 1.634E-5, 1. 50 1.398E-5, 1.634E-5, 1. 50 1.398E-5, 1.634E-5, 1.355E- 50 1.583PATRICK AFB REFERE PRESSURE VALUES TABULATED	1.596E-5. 1.622E-5. 1.647E-5. 5: 52 53 1.618E-5. 1.604E-5. 1.599E-5. 57 58 59 1.575E-5. 1.553E-5. 1.530E-5. 57 58 59 1.575E-5. 1.553E-5. 1.530E-5. 57 58 59 1.575E-5. 1.553E-5. 1.530E-5. 57 58 59 1.530E-5. 1.530E-5. 1.530E-5. 50 70 71 50 70 71

t

		1			
	0	ATA (PRSLST(1).	1=NP61.NP62	2)/	
C	1	2	3	4	5
.0170	147E+3.9.8829	373E+2.9.602265	1E+2.9.3280	0664E+2.9.0603	418E+2.
C	6	7 2	8	9	10
8, 7989	596E+2.8.5438	573E+2.8.294943	05+2.8.052	168E+2.7.8152	728E+2.
		Ą			
<u> </u>	11	12	13	14	15
7.5843	002E+2.7.3590	0840E+2.7.139506	5E+2.6.716	7869E+ <b>2.6.3</b> 151	745E+2.
C	16	17	18	19	20
5, 9337	050E+2.5.5714	348E+2.4.900991	22+2.4.296	7959E+2.3.7532	2040E+2.
C	21	22	23	24	25
3. 2649	3869F+2, 2, 827	47555F+2, 2, 437314	44F+2.2.090	9281E+2.1.786	068E+2.
		4			
C	26	27	28	29	30
1.519	9026E+2.1.289	2856E+2, 1, 091184	41E+2.9.225	2642E+1.7.809	7365E+1+
		4			
C	31	32	33	34	35
6.626	0092E+1.5.631	5652E+1.4.08991	91E+1,2.991	8759E+1.2.203	B159E+1.
		4			
C	36	37	38	39	40
1.632	7363E+1.1.214	6273E+1.9.09050	80E+C.6.842	29914E+0.5.180	7184E+0.
<b>C</b>			42		AE
L	<u>4</u> 1		43		43
3.944	79952+0.3.020	91805+0.2.32624	11E+0,1.80	04513E+0.1.399	4781E+Q.
•		4	<b>7</b>		
		CONT.	ON PG 42		PARTS

----

۱

1

.

1

Į

A-59

.48

			1		
C	46	47	48	49	50
1.0910	568E+0.8.5180	0215E-1.6.6393	0197E-1.5.1553	1306-1.3.9852	0595-1.
C	51	52	53	54	55
<b>3.0</b> 651	143E-1.2.3442	2082E-1.1.7818	\$466E-1.1.3454	170E-1.1.0086	976E-1.
C	56	57	58	59	60
7.5059	1286-2.5.541	1297E-2.4.057	\$003E-2.2.945E	87.SE-2.2.1200	623E-2.
C	61	62	63	64	65
1.5119	931E-2.1.068	1305E-2.7.479	\$3850E-3.5.1876	32155-3.3.5914	714E-3.
C	66	67	68	69	70
2.4865	045E-3,1.722	44352-3.1.200	3841E-3.8.463	5721E-4.6.033	0423E-4.
C	71.	72	73	74	75
4.344	9711E-4.3.159	7170E-1.2.325	3935E-4.1.735	114SE-4.1.311	1039E-4.
C	76	77	<del>↓</del> 78	79	80
1.002	2554E-4.7.743	8980E- <b>5.6.0</b> 69	6757E-5.4.838	6073E-5.3.914	5232E-5.
C.	81	82	83	84	85
3.208	2435E-5.2.659	771 GE-5.2.237		1913E-5.1.659	9345E-5.
C	86	87	88	89	90
1.456	0872E-5.1.289	18417E-5.1.152	÷ 2650E-5.1.036	9626E-5 <b>.9.3</b> 92	5204E-6.
C	91	92	<del>\</del> 93	94	95
		<u> </u>	<b>♦</b>	••••••••••••••••••••••••••••••••••••••	

CONT. ON PG 43

PARTS PG 42 OF 52

١

ţ

į

1

i

*

!



Ţ

A~61

		l			
1.05376	66E+0.1.02849	222+0.1.00356	7CE+0.9.79028	01E-1.9.5490	1645-10
C	11	12	13	14	15
9.31224	47E-1.9.08003	345E-1.8.85256	581E-1.8.4122	243E-1.7.9915	662E-1.
	16	17	18	19	20
	CATE 1 7 2024	2755-1-5 4983	435E-1.5.8535	153E-1.5.265	1817E-1.
7.5904	64/L-I./.2004	2732-110.4303	5		
C	21	22	23	24	25
L. 22/9	2025-1-4 2255	460E-1.3.7638	429E-1.3.330	2120E-1.2.923	22185-1.
4.7245	3622-114.2233	/1002-1701700-	\$		
C	26	27	28	29	30
2 542	0637F-1-2, 192	0326E-1.1.8717	0665E-1.1.584	5601E-1.1.323	9218E-1.
2. 545			\$		25]
C	31	32	33	34	35
1,109	6236E-1.9.319	37995-2.6.619	3250E-2.4.747	8898E-2.3.43	82489E-2.
			¥		40
C	36	37	<u> </u>	35	
2.511	9029E 2.1.833	4060E-2.1.345	7797E-2.9.93	01028E-3.7.36	54170E-3.
		A2	43	44	45
<u> </u>	41				
5.493	41992-3.4.122	202002-3.3.113	4715E-3.2.36	845592-3.1.81	51546E-3.
	46	47	48	49	50
			÷		ECCOVE A
1.40	15768E-3.1.09	65534E-3.8.65	26723E-4.6.82	53221E-4.5.3	566042-41
C	51	52	53	54	55
L			452225 4 1 99	44483E-4.1.5	352539E-4.
4.22	27457E-4.3.30	469201-4.2.3/	452352-411.53	111002-1110	
·		CANT	ON PG 45		PARTS
					PG 44 DF 32

ł

5 1

ł

i

A-62

4.3.4

----

			ļ		
C	56	57	58	59	60
1.1734	2218-4.8.8997	1403E-5.6.694	\$ 9356E-5.4.9935	5490E-5.3.69	23403E-5.
C	Ũ1	62	<u>63</u>	64	65
2.7007	3895-5.1.5077	1408E- <b>5.1.4</b> 19	44028-5.1.0004	12205-5.6.92	583802-6.
C	66	67	63	63	70
4.7957	760E-6.3.321	5805E-6.2.240	4228E-6.1.5304	16162-6.1.05	79997E-6.
C	71	72	73	74	75
7.3962	724E-7.5.225	4595E-7.3.617	3880E-7.2.620	6711E-7.1.89	79684E-7.
C	76	77		79	80
1.3929	915E-7.1.034	9983E-7.7.534	2182E-8.5.605	5657E-8.4.25	29020E-8.
C	61	82	<u>\$</u> 83	84	85
3.2809	278E-8.2.569	1890E-8.1.945	07746E-8.1.513	31495-8.1.20	30946E-8,
C	86	87	88	89	90
9.7428	983E -9. R. 014	6089E-9,6.682	9568E-9.5 638	7136E-9.4.80	072428E-9,
C	91	92	9.	94	95
4.1362	2113E-9 <b>.3.5</b> 88	1380E-9.3.135		5267E- <b>9.2.4</b> 4	14047E-9/
	Γ	DATA (RHOLST)	↓ 1).1=NP63.NP6	4)/	
C	96	97	<u>\$</u> 58	99	100
2.1726	6345E-9, 1.943	1903E-9.1.762		73538-9.1.40	31480E-9.
			4		·····
		CONT.	ON PG 46		PARTS PG 45 OF

.

7

ş

1

1

t

5 1

i.



· · · ·

5 ° C 1953 · 3	- e	Willing a T			
	4			<u>.</u>	
i sun					
سید≃م در بن به ۱۰۰۰ بری∖همهشدس ب	7				
. Tran		1412 222. 1	3		1 HEANNAET
an a			125	25	સ
Sunto		1. 26555	**************************************	; ;==;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
مرينين منابعة مريون منابعة مريون		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
an an ann a					
· · · · · · · · · · · · · · · · · · ·	· · · · ·			· · · · · · · · · · · · · · · · · · ·	
 6 6 6 6 6 6	<b>85</b> 	ر بی میں ایک			41
s. some in	× / •	5. A Alerter 1 - 5.			
, ,, , , , , , , , , , , , , , , ,	<u> </u>	47	43	44	45
4. ) / <i>14. (17.)</i>	F. 1.	3. 7. 5. 77 9. 8. 3.	7342,4722,	3.252265452.	3.295414522.
مىغەر مەرىمى بىر	<b>4%</b> 	47	48	49	5:
4. 44 <i>15.</i> 1	14 / L	3.731755726-3	.7777.25E2.	3.25:845282.	3.2216108E2.
L .	<b>51</b>	52	53	54	55
4. 1477-57	13 <b>/</b> .	3.101703022.3	.112736522.	3.0731304E2.	3.032873682.
t.	* <b>A</b> ,	57	58	59	60
2.447.14	\$ /.	2.352465622. 2	.912838552.	2.8738653E2.	2.8351977E2.
		co	NT. ON PG	48	PARTS PG 47 OF

1

, T _ _ _ _

;

1

 1

				l			
C	6	61 E	52	6	3	64 -	67
2	7964961E2	. 2.7570998E2	. 2.71	0535E2	, 4+	2.6944122	2.
				6			
L	······			<u> </u>	6	<del></del>	//
			2.7387	919E2.	2.7924640E2.	2.825461	1E2.
C	71	72		<del>0</del> 73	7	4	75
				<u>ب</u>	······································		
2.6	678136E2.	2.9095497E2.	2.9778	102E2.	3.0445407E2	3.109839	5E2.
C	76	77	,	78	7	9	80
2	737952F2.	3 236487452-	3 3593	€ 162552	3 475-257152	3 589720	18E2.
<u> </u>		5.230-107-1221	3.330.		3.4733371621	5, 505720	
C	81	82	2	83	8	4	85
3.6	999789E2.	3.8070451E2.	4.0126	<u>.</u> €162E2+	4.208157022	4.395006	5E2.
L				4			
L	86	d/		<u>88</u>	8	·9	90
4.5	5742298E2.	4.7466910E2.	4.913	021E2.	5.0740585E2	5.230063	37E2,
	91	92	>	97		14	95
,				<u>t</u>			
5.:	3815483E2.	5.5288841E2.	5.672	3942E2.	5.8123620E2	5.94903	77E2/
	-	DATA (SC	CNLST(I	).I=NPE	3.NP64)/		
<u> </u>	30	67		÷ ·		0	100
<u> </u>	50	5/		<del>4</del> 38	3	5	100
6.	082643JE2.	6.2133762E2,	6.309	6486E2.	6.4047440E2	6.49791	59E2.
C	10	1 10	2	÷ 10	3 1	04	105
	590022052	6.600020050		<u>t</u>			
0.	550037622.	P. PR03/38F5.	6.800	1215E2+	6.9173079E2	. 7.01537	/5E2.
			CON C		40	-	DTC
			LUNI.	UN PG	43	PA	48 OF

t

. "



			2		
1.55092	44E-5.1.51080	096E-5.1.47078	42E-5.1.4335	282E-5.1.410	8886E- <b>5</b> .
			<u></u>		
	26		28	29	30
27454	025 5 1 2550S	SUNE 5 1 24570	505 5 1 2447	5705 5 1 250	520CE 5
.3/454	032-5,1.3550.	502-511.345/3	5562-5,1.3447	3/92-3,1.336	23865-21
	31	32	33	34	25
, 			. <u> </u>		
.37246	75E-5.1.38679	377E-5.1.41459	44E-5.1.4389	370E-5.1.458	7102E-5.
			5		
C	36	37	38	36	40
			5		
1.47489	72E-5.1.4982	730E-5.1.5223	539E-5.1.5474	1602-5.1.573	4080E-5.
			5		
<u> </u>	41	42	43	44	45
		1	5		
1.59995	74E-5.1.6263	7782-5.1.65167	764E-5.1.6745	577E-5.1.693	4206E-5.
			¢		
<u>ما</u>	46	47	48	49	50
1 70624	ACE 5 1 7024	0025 5 1 5020	0 1265 5 1 6660	4000 5 1 041	40725 5
1.70034	170E - JI I . / UJ 1	003L-3.1.007U	1 362 - 3, 1. 6660	40UE-J.1.04	40/22-3.
<u> </u>	51	52	52	54	55
1.61386	68E-5.1.5841	407E-5.1.5528	854E-5.1.5206	665E-5.1.48F	10579E-5.
C	56	57	58	59	60
-			£		
1.45540	073E-5.1.4230	412E-5.1.3911	371E-5.1.3597	2756-5.1.328	86809E5.
		· · · · · · · · · · · · · · · · · · ·	÷		
C	61	62	63		64 - 67
			ф		
1.297	6813E-5,1.260	62082E-5,1.233	5131E-5.	4+1.2163	172E-5.
			♦		
C			68	69	70
			<u> </u>		
		1.2516	1261-5.1.2864	14E-5.1.32	08747E-5.
		•	<b>Ý</b>		
		CONT	ON PG 51		PARTS
					PG 50 0

5

i

7

1

A-68

ł

2

, ŧ

,

2

				•	
C	71	72	73	74	75
1.3548	638E-5.1.3884	1397E-5.1.4435	6 101E-5.1.4975	097E-5.1.5504	842E-5.
C	76	77		79	80
1.6024	7675-5.1.653	5285F-5.1 7529	₹	7565-5-1 9421	2305-5.
			4		
<u> </u>	81	82	83 1		85
2.0323	355E-5.2.119	9197E-5,2.2879	253E-5.2.4474	125E-5.2.5994	216E-5.
C	86	87	88	89	90
2.7448	1172-5.2.884	2997E-5.3.0184	3 890E-5.3.1478	926E-5,3.2729	34992-5,
			£		
<u> </u>	91	92	<u> </u>	94	95
3.3940	400E-5.3.511	4925E-5.3.6255	256E-5.3.7366	033E-5.3.844	73952-57
	· [	DATA (VISLST(1		37	
C	96	97	98	99	100
3.9502	20502-5.4.053	1768E-5.4.1288	\$ 666E-5.4.2033	057E-5,4.276	5514E-5,
c	101	102	÷ 103	± 04	1 05
4.3486	565E-5.4.419	6706F-5.4.5127	5 375E-5.4.6040	465E-5.4.680	3460E-5.
			÷		
<u>c</u>	106	107	108	109	110
4.7423	314?E-5.4.803	5293E-5,4.8640	0170E-5,4.9238	014E-5.4.974	5032E-5,
C	111	112	113	114	115
5 010		0005E E E 0001		1025 5 1 520	
1.010		333.2-3, 3, 0991	₩ • • • • • • • • • • • • • • • • • • •	11332-3,1.3/0	
		CONT	ON PG 52		PARTS
					PG 51 0F

ŧ



PARTS PG 52 FINAL

1

×

÷

00101			Succouling Spat(lor)
00100	2+	٢.	
60103		-	PARAMETER NP 0 123, NPA4 4 4989, NP35 0 3489 0 3
84103			
00103		•	
00107	**		IPRSLST(NPA4), RedlST(NP44), SchlST(NPA4), TISLST(NPA4),
99194	7+		24212571473. 49447273. 0127
99104		6	
901US	*•		COMMON /SPLOAT/
08103	140		JACTIANENP) PRSTANENP) RUDTANENPI SOUTANENPI VISTANENPI .
84105			1(01,014) _(01,014) _(01,024) _(01,024)
6010		•	
0010+	13.		51.JU 11.JU
96104	640	c	
0012+	15.	¢	
90104	184	c	
00104	17+	ć	IUP
00104	144	è	THE ATMOSPHERE MODEL TO AT USED
			the electronic case of 24 Atta
66184	40.	e e	IOP + O - IVAE STENDAND ATPOSPHENE
00104	51+	C	
08100	22+	C	10P = 1 = 1964 STANDAPU FOR JULF AT 30 DEGA NA LATITUDE
00100	234	¢	

9691	990910 1176	0001 000040 1254	0001 00005C 1726	BODJ & BOSAIN ALTLET	- 8804 e Bannaa Alttaa
C931 8	001147 CP	000" R 001725 CR	8864 g 282583 CS	0004 K 003241 CV	0003 R (74174 D
000C I	20003 [	0000 j 500004 jJ	8000 000027 imjps	1401 200000 1 0000	4045 I VC4401 7
0944 i	366661 JH	1L 909090 j 00-	0200 į 0000CS k	0007 j ~00009 4	0003 e 500700 Pesisi
0001 8	000173 PRSTAR	003 8 001342 RHOLST	0004 # 000344 ##0148	0003 g 002:04 30%137	0004 # 000541 SeeTas
0603 4	084244 VISLST	0004 # 030754 /1STAB	3003 # 004003 #14g	0000 £ 700010 ES	8000 g 303011 T31
96.19 #	000012 152	0000 a CCCu13 153	0000 x "0001" 15"		

• -

i ţ ÷

1

t

SVBNOWTINE SOAR Euter POLAT 000275

STORAGE ASSIGNMENT INLOCK. TYPE, RELATIVE LOCATION, NAME)

STORAGE USEBI (00011) 6003111 0414(8) 0000541 8LAME (0+454(2) 000000

W PAR SUATISOAT WRITAG IIOR PURTKAR T EREC II LETEL 254 -IEVECA LEVEL EIZOIROIDA: TRIS COMPILATIET RAS BC - Ju II PER 74 AT 20152109

+ 1 *

, v . A

:

. ~

0003 ATDATA 60+260 0001 SPLDAT 601037

П. + SPLN3 С. н. неякзя

C2

11 788 74

<u>к</u> к.

t

19. s

20:52: ** **

* 1.º C

,

00144	24+	C	10P + 2 - 1944 STANDARD FOR JAN. AT 30 DEG. N. LATITUDE
0014	52.	C	
00104	26+	C	10P # 3 - 1966 STANDARD FOR JULY AT 60 DEGO NO LAIITUDE
00104	27+	Ĺ	
30104	444	C	19P = 4 = 1966 STANDARD FOR JAN. AT 6D DEG. N. LATITUDE
00:00	27-	C	
00104	30+	C	10P = 5 - 1963 PATRICK AFB REFERENCE STANDARD
00100	31+	C	
00104	32+	C	
00104	37+	C	
00104	34+	C	SELECT DESTRED ATROSPHERE INDEX ADJUSTOR
C010*	35+	C	-
11100	34+		lop1 = IOP4NP
00111	37+	C	
00111	38+	C	TRANSFER PERTINENT ATHOSPHERE DATA FROM STORAGE ARRAY TO BORLING
00111	39+	C	ARNAY AND CONVERT TO DESIRED BORKING UNITS (BRITISH ENGINEERING)
00111	40+	c	
00112	41+		D0 1 1 = k+NP
00112	424	C	
00112	43+	C	TRANSFER ALTITUDE VALUES LIST TO GURKING ARRAY
00112	44.0	ç	
00115	45.		ALTTABILI = ALTLSTI11/0.3048
00115	16+	C	
00115	47+	ç	TRANSFER PRESSURE VILUES LIST TO BORKING ARRAY
00115	18+	C	
00114	49 .	-	PRSTABLE = PRS STLIDPL + 1342+11422/1+01325
00114	50.	C	
00114	51+	c	TRANSFER DENSITY VALUES LIST TO BORKING ARRAY
00114	\$24	c	
00117	53+	-	RHOTABII) = RHOLST(IGP1 + 1)+7+6474E-2/(1+225+32+174049)
00117	540	c	
00117	55+	c	TRANSFER SPEED OF SUND VALUES LIST TO BOOKING ARGAY
60117	5	Ç	
00120	57 +		50NTAB(1) = 50NIST(10PL + 1)/0+304#
00120	58.	C	
00120	59+	Ç	TRANSFER COEFFICIENT OF VISCOSITY VALUES LIST TO BORKING ARRAY
00120	4Q 4	C	
00121		3	VISTAB(1) = VISLST(1,pP1 + 1)+1+2024/(1+7844+32+1741)
03123	42*		H = NP = 1
03123	+3+	C	
00123		C	REARRANGE DATA IN ACCORDANCE WITH ASCENDING VALUES OF THE
00123	45+	C	INDEPENDENT VARIABLE - ALTITUDE
00123	***	C	
00124	67+		00 1 00 I • I.M
00127			K = 1
00130	49+		1 u 1 + 1
00131	73+		44.LI . L 005 00
00134	712		IF (ALTTABIK) • GT• ALTTAB(J))K · J
00134	724	200	CONTINUE
00140	73•		AS . ALTTABIKI
00141	744		TSI = PRSTAB( )
00142	75+		TS2 . RHGTABIKI
00143	7++		TS3 & SONTAB KI
4+100	77•		TSM . VISTABLES
00115	784		ALTTABIKI - ALTTABIII
001.0	794		PRSTABILI . PRSTABILI
00147	87~		KHJTAJIKI = RHUTARIJJ
00150	81 •		SQUTABLE - SOUTA, LLS

OF POOR QUALITY

00151	#2+		VISTAB(K) - VISTAB(I)
00152	43+		ALTTABLED - RS
00153	89+		PRSTABLED - VSL
00154	85+		RHUTAR(I) - YS2
00155	44+		SONTAB(1) - TSJ
00154	87*	300	VISTAB(1) - YS4
00154		c	
00154	87+	C	
90154	<b>*</b> 0*	C	
99154	41+	¢	APPROXIMATE THE FIRST DERIVATIVE OF THE FUNCTION(S) BT FORMING THE
00154	+2+	ç	FORBARD DIFFERENCE QUOTIENT OF THE INITIAL AND TERMINAL TABULATED
00154	43+	¢	BOUNDARIES. THESE SLOPES ARE STORED IN D(1) AND D(2),
0015+	***	C	RESPECTIVELTO
00154	75+	C	
00154	74*	¢	
90154	<b>7</b> 7*	C	
00160			0{1} = {PP5TAB(2} - pR5TAB(1))/{ALTTAB(2) - ALTTAB(1))
14100	***		O(2) = (PRSTAB(NP) = PRSTAB(NP-1))//ALTTAB(NP) = ALTTAB(NP-1))
00161	109*	C	
00141	101+	۲ ک	COMPUTE CUBIC SPLINE INTERPOLATION COEFFICIENTS FOR PRESSURE (CP)
14100	105+	¢	
20195	107+		CALL SPLN14NP,ALTTAB,PRSTAB,J3,JN,D,CP,WORK3
00142	104+	¢	
00142	195-	¢	•
00143	104.		D(1) = (RHOTAB(2) = RHOTAB(1))/(ALTTAB(2) = ALTTAB(1))
00144	107+		D(2) = {RMOTAB(NP) = RHOTAB(NP+1))/(ALTTAB(NP) = ALTTAB(NP+1))
06149	108+	C	
00147	107+	ç	COMPUTE CUBIC SPLINE INTERPOLATION COEFFICIENTS FOR DENSITY (CR)
00141	110+	C	· · · · · · · · · · · · · · · · · · ·
0014>	111+	-	CALL SPLN1 (NP, ALTTAB, PHOTAS, J1, JN, D, CR, WORK)
00145	112-	č	
0014>	113.	C	•••••
00160	1174		D(1) = (SONTAB(2) - SONTAB(1))/(ALTAB(2) - ALTAB(1))
001+/	113*	-	D(2) = (SONTAB(NP) = SONTAB(NP-1))/(ALITAB(NP) = ALTTAB(NP-1))
00147	114*	Č,	ANALTE A THE FRITE INFERDAL TIG. AREFELLENTE FOR COPER OF FALLE
00147	117•	ç	COMPUTE CUBIC SPLINE INTERPOLATION COEFFICIENTS FOR SPEED OF SOUND
03107	1100	ç	(CS)
00107	120.	· ·	CALL COLNESSO ALTER SOUTAM IL. IN D. FC. COOTS
00170	121-	~	CALL BLUILKE ALLERS SOUTH BLUILS AND ALL STANDARS
00170	1274	č	
00171	1231	•	0/1) = (VISTAR(2) = VISTAR(1))/(A) (TAA(2) = A) (+AR(1))
00172	124+		0(2) = (V) STAB (MP) = V (STAB (MP) (1) / (A) TTAB (MP) = A) TTAB (MP) (1)
00172	1250	C	
00172	124.	č	COMPUTE CUBIC SPLINE INTERPOLATION COFFFICIENTS FOR COFFFICIENT OF
00172	127+	č	VISCOSITY (CV)
00172	128+	č	
00173	129+		CALL SPLNIINP.ALTIAB.VISTAB.JI.JN.D.CV.WORK)
00173	130+	C	
00173	131+	c	
00174	132+		RETURN
00. '5	133+		END

;

.

1

1 ÷

ORIGINAL FACE IS

NO DIAGNOSTICS.

END OF COMPILATIONS

:

: *

ł

n T

۱ د

5 l x

2+ 3+ 4+ 5+ 4+ 7+ 4+ 1+ 1+ 12+ 12+ 13+ 15+ c - COMMON /SPLOA1/ IALTTABINPI -RSTABINPI -RNBTABINPI -SGNTABINPI -YISTABINPI -ZCPINPI -CRINPI -CSINPI -CVINPI ¢ DATA 15 / 1 / ..... ESTABLISH THE INTERVAL IN MICH THE SPECIFIED AUTITUDE LIES 14+ 17+ 10+ 20+ 21+ 22+ 23+ 23+ 23+ 25+ 25+ 24+ [FTV-LE-ALTTABILI)66 TO 500 [FTV-6L-ALTTABINP)968 TO 501 ] = ]5 [FTV-6T+ALTTABILI260 TO 100 19 (0-51-6) (718) (738) (748) 10 (0 1 - 1 19 (0 10 200 100 ( 0 1 - 1 19 (0-51-6) (748) (1) (0 10 1 - 1 200 ( 5 - 1 27+

SUBROUTINE ATHSPLIT,PANST 1. ¢ PARAMETER UP = 123. HP = 3+4P = 3 c

STORAGE ASSIGNMENT ISLOCK, TTPE, RELATINE LECATION, MARES 0001 000023 10L 0003 & 000000 ALTTAN 0000 # 000003 21 0003 # 000340 RH0TAN 0001 200131 500L 0003 8 20.503 CS 0000 1 7 0000 15 0001 800035 1004 0003 0 001147 CP 0000 1 000001 1 0003 0 000561 500748 0001 00050 700L 0003 8 001723 (8 0000 000004 10JPS 0003 8 000754 11578 0001 000151 801L 0003 0 003241 CV 0003 8 000173 PRST45

-----ESTERNAL REFERENCES (BLOCK, MANE)

1

!

-----

SUBROWTINE ATRSPL ENTRY POINT BOOSLS

----

.

1

........... 1FAX3(8)

0 700 4785041478504 -01746 1966 7007544 7 4166 11 46764 264 -188668 44764 81201801841 Tuis confilation 445 9006 on 11 fts 74 47 20182111

STORAGE USEDI COLLEI BOOJET: BATALO, BOOREI: BLANK CONHONIE; BOODOO

,

11 728 74

1

1

ł

-

20152111. 13

.

,

,

1

į

, т 1 1

,

00130	29+		DX = V - ALTTAN(1)
00130	30+	C	
00130	31+	C	ENPLOY CUBIC INTERPOLATION TO CONPUTE PRESSURE/SCA LEVEL RATIO
00130	32+	C	
00131	37.		FANS(1) = PRSTAB(1) + ((CP(3+1)=DX + CP(3+1-1))+DX + CP(3+1-2))+DX
00132	34+		FANS(5) = FANS(1)/PRSTAB(1)
00135	35+	C	
00135	344	ç	EMPLOY CUBIC INTERPOLATION TO COMPUTE DENSITY/SEA LEVEL RATIO
00135	37+	۲	
00177	34+		FANS(2) = RHOTAB[1] + ((CR(3+1)+DX + CR(3+1-1))+DX + CR(3+1-2))+DX
00134	34+	•	FANS(4) = FINS(2)/RHOTAB(1)
00134	404	C .	
00134	414	C	EMPLOY CUBIC INTERPOLATION TO COMPUTE SPEED OF SOUNDISEA LEVEL
0( 34	424	C C	NATIO
00,34	434	C	· · · · · · · · · · · · · · · · · · ·
60132			FANS(3) = SONTAB(1) + ((CS(3)) + DX + CS(3) + (CS(3) + (CS(3)) + DX))
00130	734		PANS(7) = FANS(3)/SUNTABLE
•L100			· · · · · · · · · · · · · · · · · · ·
00134	7/0	C C	EAPLOY COBIC INTERPOLATION TO COMPUTE COEFFICIENT OF VISCOSITY/SEA
00130	484	ç	LEAST KYLLO
00134	500	C	
00137	510		AW2(4) - AI2448(1) + ((CA/2+()+DX + CA(2+(-1))+DX + CA(2+(-5))+DX
00140	214		FANS(8) = FANS(4)/VISTABLI
00141	510	r	KETURN /
00111	5.4.		•
	514	2	
00141	540	č	INITIAL BUONDARY VALUES - FURCTIONSER LEVEL RATIO
00142	57.	500	FAUCION # #PETARIN
00193	5.8.4	-00	TANGIJ - FAJADIJ
00145	5.9.6		FARSTER CONTROLS
00195	60.		FANSISS - SUMMERS
00144	41.		
00147	42+		
00150	434		
00151	64.		
00152	45+		NETURN
00152	6	C	
06152	<b>\$7</b> •	C	
00152	<b>4</b> 8 •	c	TENMINAL BOUNDARY VALUES - FUNCTION/SEA LEVEL RATIO
00152	49+	C	
00153	70+	501	FANS(1) = PRSTAB(NP)
00154	71+		FANS(2) = RHOTAB(NP)
00155	72+		FANS(3) = SONTAB(NP)
00154	73+		FANS(4) = VISTAB(NP)
00157	74+		FANS(5) # FANS(1)/PRSTAB(1)
00100	75+		FANS(6) = FANS(2)/RHOTAB(1)
00141	744		FANS(7) = FANS(3)/SONTAB(1)
00144	77.	-	PANS(8) = PANS(4)/VISTABII)
00164	784	ç	
00164	790	C	Detus.
00103	6 · •		A FION
VU10.			6 M U

i

ENU OF COMPILATION:

NO DIAGNOSTICS.

·...

*

• • •

L AGE 15

A~75

ŝ

.

88101	1.		\$U\$#QUI[HE \$PLN](n,1,1,)(,)n,0,(,e)
80181	2-	C	
88163	3.		014E45104 2113,7115,0123.4113.C111
6619)		ç	
00103	8.	c	
68193	٠.	C	N - AN INTEGER DEMOTING THE NUMBER OF DATA POINTS USED TO
86103	7+	C	REPRESENT THE FUNCTION IN THE REGION OF DEFINITION
00103		C	
00103	**	C	A - A ONE-DEMESSIONAL ARRAY DIMENSIONED AT M CONTAINING ING
60103	18+	C	CALVES OF THE INDEPENDENT VANIABLE IN ASCENSING OPDER
66103	11-	C	
00103	12+	C	T - A ONE-DIRERSIONAL ARRAY DIRENSIONED BY N CONTAINING THE
00103	t3+	c	VALUES OF THE DEPENDENT VARIABLE CORRESPONDING IN
00:03	174	¢	SEQUENCE TO THE VALUES IN THE I ARRAY
0010)	15+	C	
00103	164	C	JI,JH - INTLEERS DEFINED AN FOLLOOS
00103	17+	C	
00103	14+	c	JI + I + FIRST DERIVATIVE OF THE FUNCTION AT THE FIRST TABULATED
99103	144	C	DATE POINT 13 SUPPLIED 14 DI11
0018]	50+	C	
00103	21+	C	JI & 2 - SECOND DERIVATIVE OF THE FUNCTION AT THE FIRST TABULATED
00163	22+	C	DATE POINT IS SUPPLIED IN DIII
06143	53+	ç	
60103	29+	c	JE & 3 + FIRST AND SECOND DERIVATIVES OF THE FUNCTION AT THE FIRST
00107	26+	C	DATA PDINT ARE SUPPLIED IN D:13 AND D:23. RESPECTIVELY
80103	2	C	
60103	27+	C	JI = 4 - FIRST AND SECOND DERIVATIVES OF THE FUNLTION AT THE LAST
00103	28+	٤	DATA POINT ARE SUPPLIED IN OILS AND DIZS, RESPECTIVELY
00103	27+	c	
00103	30+	C C	JN + 8 - FINST DEMINATIVE OF THE FUNCTION AT THE LAST TABULATED
60103	71+	¢	UATA POINT 15 SUPPLIED IN DIEL

9961	88813v 1L	465900 1980	1176 0001	000311 1334	8001 000348	1436 0001	CON\$73 1418
8891	686587 1476	8001 080574	1746 8001	000152 2L	401 res20#	201 0001	P00414 2016
0001	600141 JL	0001 000347	*L 0001	080334 40L.	000: 700540	SAL 0001	200131 706
00J I	000549 71L	\$000   0C0003	1 0000	000819 [NJPS	0008 1 00000	4 0005	1 400002 MM

60c :	88413v 1L	000 l	000234 1176	0001	000311 1354	8801	100361 1436	4001	000473
8001	686557 1476	880 L	000574 1746	8001	000152 2L	8001	100205 2AL	8001	000414
0881	400 LAL 3.	0001	000347 0	8001	080124 40.*	8601		0001	000111

## SUGROUTINE SPLAT ------

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, MANE)

0003 4EX825 0044 56835

÷

W FUN SPLNI-SPLNI VRITAC IING FONTHAR V LIGC II LETEL 254 -IEEECO LEVEL EIZOINDIDA) This cumpilation oas boke un 11 feo 74 at 20152;12

11 748 74

20152112-667

Î

ł

ì

٩ ;

ı.

,

00103	32+	C	
00105	72+	ε	JN # 2 - SECOND DENIVATIVE OF THE FUNCTION AT THE LAST TABULATED
COICJ	340	C	DATA POINT IS SUPPLIED IN D(2)
00103	35 +	C	
00103	<b>7</b> ♦ •	C	D - A ONE-DIMENSIONAL ARRAY DIMENSIONED BY 2 CONTAINING THE
00103	37+	•	VALUES OF THE DERIVATIVES OF THE FUNCTION SPECIFIED IN
00103	39+	C	ACCORDANCE MITH JZ AND JN
00103	390	C	C - A GNE-DIMENSIONAL ARRAY DIMENSIONED BY 3+(N-1) CONTAINING
00103	10.	C	THE CUBIC SPLINE INTERPOLATING COEFFICIENTS FOR EACH
00103	41+	ç	INTERVAL
00103	42+	ç	
00101	13+	ç	A ONE-DIMENSIONAL ARRAY DIMENSIONED BY N USED AS A BORKING
00103	44.	C	ARRAY ONLY
00101	45.4	ç	
00103			
00103		L.	COMPUTE THE INITIAL VALUES OF THE RECURSIVE RELATIONS IN
00103	18.	ç	ACCORDANCE RITH THE SPCIFIED PROPERTY OF THE FUNCTION AT THE
00103		<u> </u>	INITIAL BOUNDARY
00103	50.	ç	
00103	514	Ľ	
00101	524		60 10 (1,2,3,4), J
00105			
	344		$C(1) = 3 \cdot 0^{-1} (C(2) - g(1)) \cdot (C(2) - V(1))^{-1} (g(2) - g(1)) = 0$
00107	54.0		
00110	57.		
00112	58.		
00113	59.		
00114	40.0		(1) = 3 + 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0
00115	41.4		
00115	424		
00115	63+	c	•• " - " - "
00115	69+	č	COMPUTE ALL INTERMIDIATE RECURSIVE RELATION VALUES
00115	<b>65</b> •	c	
00114	66.		M.S. = 1 06 00
15100	67=		n(1) = -ix(1+1) = x(1))/(2+0+(x(1+1) = x(1-1)) + (x(1) = x(1-1)) + 0
00121	48*		x(1-))
00122	<b>47</b> •		$30 \text{ C(1)} = \mathbb{R}\{1\}/\{X(1+1\} - X(1)\} = \{6,0+((Y(1) - Y(1-1))/(X(1) - X(1-1))\}$
00122	70+		x= (Y(1+1) = Y(1))/(x(1+1) = X(1))) + (X(1) = X(1+1))+C(1+1))
00122	71+	C	
00122	72+	C	COMPUTE THE TERMINAL VALUES OF THE RECURSIVE RELATION IN
00122	734	C	ACCORDANCE WITH THE SPECIFIED PROPERTY OF THE FUNCTION AT THE
00122	74+	C	TERMINAL BOUNDARY
00122	75.	C	
00124	74.0		IF (J) + GT + 2) GO TO 73
00124	//•		IF(JN+E9+2)60 TO 40
00130	/8•		$C(N) = \{0, 0/(x(N) - x(N-1)) \in (0/Z) = (Y(N) - Y(N-1))/(x(N) - x(N-1))$
00130	///	-	$x_{1} = C(M_{1})/(2 \cdot 0 + H(M_{1}))$
00130		· ·	
00137	414		
00132	81e	r	70 C(A) = 0727
00134	44.6	2	COMPUTE THE APPEDITINATE SECOND REDIVITIVE VALUES OF THE ENVETTOR
20122		~	AT THE EPECTEEN ATA POINTS
00132	- 3 - B 4 0	č	NI INE STEVITIEU UNIA TUINIS
0013	870	•	
00134	840		
00137	89.		

ORIGINAL PAGE OF POOR QUALT

00141	900	C(1) = D(2)
57100	***	90 73 1 = 1,M
00145	+2+	73 ([1+]) = {( ]) = ({ + })/#(])
00147	+3+	50 TO 71
00150	***	4 M e N = 1
QQ151	95+	*(M) = L+C
00152	74+	$\zeta(n) = D(2)$
00153	*7*	C(N) = 4+0/(X(N) = X(N))+(D(L) = (Y(N) = Y(N))/(X(N) = X(N))) =
00153	78+	x3.0+p[2]
00154		NN • N • 1
00155	100+	IF (NH) . 50,
00140	101+	D0 80 1 - MH.11
00143	102*	n(1) = -1, 0/(1(101) = 1(1)) + ((1(1+2) = 1(1+1))/n(1+1) + 2, 0+(1(1+2))
00143	103+	x) - x(1));
00144	104+	<b>60</b> (11) = 1+0/(X(1+1) = X(1))+(C(1+1)+(X(1+2) = X(1+1)/#(1+1) = 4+0+
00144	1.15+	x(x(1+1) - y(1))/(x(1+1) - x(1)) - (y(1+2) - y(1+1))/(x(1+2) - x(1))
00144	104+	x+1)))
00144	107+	50 D0 40 1 = M,t.+1
00171	108+	40 ((1) = ((1) + =(1)+(1+(1))
00173	107+	71 DO 61 1 . 1.N
00174	110+	61 8(1) - c(1)
00174	1110	c
00174	112+	C COMPUTE THE CUBIC SPLINE INTERPOLATION COEFFICIENTS FOR THE 1+ST
00174	113+	C 2+ND, AND 3-RD DEGREE TERNS, IN THAT ORDER
00176	114+	c
00200	115+	00 62 3 • t.M
00203	114.	C(3+1-2) = {X(1+1) - X(1)}/(X(1+1) - X(1)) - (B(1+1) + 3+0+H(1))+(
00203	117+	12(1+1) - R(1))/6+0 ,
00204	118+	$C(3 \circ 1 - 1) = 0 \circ 5 \circ o(1),$
00205	119+	<b>62</b> ([3+1) → [@[1+1) → @[1)]/[6+0+(x[1+1) → X[1)])
00205	120+	C
00207	121+ 1	METURN
00210	1554	ENU

,

•

٠

1

.

2

3 . .

.

:

•

END OF COMPILATIONS

ļ

NO DIAGNOSTICS.

,

,F	GINAL HE	
r	COR ONLI	

STORAGE SSIGNMENT IBLUCE, TYPE, BELLTIVE LOCATION, NAMES 1 30000 1 00030 1 0000 2003 - 004174 U 0003 - 004244 VISLST 0003 # 001342 ##0LST 0003 # 000000 PR5LST 0003 # 005410 ALTLST 0003 # 202704 SONLST 00101 00101 00102 00103 00103 00105 1* 2* 3* SLOCE DATA ¢ PANANCTER NP = 12) PANANCTER NP = 12) PANANCTER NP11 = 1, NP17 = 119, NP13 = 115, NP14 = NP PANANCTER NP31=NP1, NP22*NP12*NP, NP23*NP13*NP, NP3*NP3*NP PANANCTER NP31=NP31=NP, NP32*NP22*NP, NP3>NP33*NP, NP3*N*NP3*NP PANANCTER NP31=NP1=NP, NP32*NP22*NP, NP3>NP33*NP, NP3*N*NP3*NP PANANCTER NP31=NP31*NP, NP32*NP2*NP, NP3>NP33*NP, NP3*N*NP3*NP PANANCTER NP31=NP3:NP, NP32*NP2*NP, NP3>NP3*N*N, NP3*N*NP3*NP PANANCTER NP3=N*NP, NP32*NP3*N*S, NP33*NP3**Ne, NP3*N*NP3**NP 5 -4 -7 -8 -7 -00104 60107 00110 00110 00111 00111 ¢ 00111 00111 00111 00111 ¢ C C C ALTITUDE TABULATION IN PETLUS 001112 00112 00112 00112 00112 00112 DATA (ALTLSTIL),L++PL1,LPL2)/ 1 2 3 RC-GEO, 2+52, 5,022, 7 7 ¢ 1 80-360, 7+5E2. 13 2+25E3, 4 1+25E3+ 12 2+75E3+ 1.0C). 11 2.5C). ī c 1.1503. 7 11.553, 2.063+ 2 00112 00112 00112 00112 00112 00112 1+ 3+5()+ 20 8+0(3+ 14 4-0L3-24 c 13 16 14 + SEJ, 22 1 - DE 4, 28 1 - AE 4, 34 2 - TE 4, 40 J - AE 4, 40 J - AE 4, 40 J - AE 4, 52 - DE 4, 52 - DE 4, 54 - DE 4, 54 - DE 4, - 12 15 4,003, 21 4,013, 27 1,504, 33 2,204, 34 3,404, 45 4,604, 51 17 5+0E3, 23 1+1E%, 24 1+7E%, 23-063-3 C 17-0E3, 25 21-3E4, 1.264. • ł 24 1.464. 30 1.814, 5 ]. *E... ]2 _-f... ]. 2 [... ]. 2 [... 1-7E4, 35 2-6E4, 41 3-8E4, 17 00112 00112 00112 00112 ¢ 31 21+724, 37 24+ 30+ 32+ 32+ 32+ 34+ 34+ 34+ 34+ 34+ 34+ 3.0 2.8. 92 9.069. 96 969, ٠ ¢ 13.0L4. , 00112 00112 00112 00112 00112 00112 ¢ 4+464, 53 5+464, 54 5.0E*, 53 +.2E*, 57 5.21+, 5* 6.-L+, 60 1. 11. . C 5.4L++ 15. .... •

BLOCK CATA

i

1

Common alocks: -----

ζ

**

1

- 70" 50481,04453,030 Valart 1100 Lokiam a Tsfc 11 flatt 520 - Tfallo France, 61501001001 Luis Cambifeliam av 8006 om 15 Ofc 13 41 13:00:20

STORAGE USED: CODE(1) DEDOGO: DATAIO; CODOOL: BLARE CURRONIZ: 000000

131 4158-22

,

12 UEC 73

1

1

,

1

,

,

ł

,

.

í

.....

÷

.

.

ŧ. r 4 . . ,

. ţ

00112	34.0		14.0L%.	A.864.	7.0L4.	7 . 21 4 .	7.929.	7. <b>6E</b> 4.	16
00112	3	ι	•1	62	• 3	4.4	45	44	
00112	4		17.8E4.	Bigtys	8.2641	8 . YE .	8	8.824.	
00112	414	Ĺ	•7			70	71	72	
00112	4		x9.0E4.	9.26	9.4E4.	9.46 9.	9.8E4.	1.065.	11
00112	414	C	73	74	75	7.	77	78	-
00112			x1+02E5.	1.0965.	1.0465.	1.0465.	1+165-	1.1265.	13
00112	46.4	C	29	80	#1	42	#3		
00112			11.1955.	1.1.4.5.	1 1445.	1.2055.	1.2215	1.2955.	1.1
00112		¢	#5		A7	44	89	90	-
00112	18.	•	x1.24F5.	1.28.5.	1 365.	1.1265.	1.3455.	1.3455.	15
00112			• · · · · · · · · · · · · · · · · · · ·	42	*		46	44	
00112	5	•	*******	1.455.	1 12:51	1.44455.	1.7455.	1.9865.	14
00112	5	C	+7	44		100	101	102	
00112	5	•	11+545+	1+52+5.	1.54151	1+5415.	1.5865.	1.4065.	17
00112	5.1	ć	103	1.3 m	105	134	107	108	
00112	5	•	T1.4985.	1.485.	1 7255.	1.741.5.	1.0025.	1.845.	11
00112	66.9	c	109	110	111	112	113	114	
00112	5.0	•	TIANAFS.	1. \$255.	1 94554	2.055.	2.0465.	2.0515/	11
00112	5.00	,		1	1				-
00112	374	•	0474 (A. T.	4					
00114	5			11.	1119-1411			. 20	
00114	34-	•	114	1		11.	6.164	4.354.	
00114	• • •			1412641	2.3541		311611	313611	
00114		•	141	142	123				
00114			8011671		9.1541				
00114	• 3 •								
00114	• • •	, c		1442	- STANDARD	ATHOSPHERE			
00114		C C	-			<b> .</b>			
00114	54*	C C	•	RESSURE VA	LUES TABULA	TTED IN MILL	IBARD		
00114	47*	C							
00114	48*		DATA IPRSL	STELLENP	11+10/121/				
00114	<u> </u>	L L		2	3	•	5	•	
00114	20*		x1+01325C3+	4+83576E2	+ 9,544!ZE2	**********	1 8.98742EZ	#+71#\$DE2+	
00114	71.	C	,	•	•	10	11	12	
00114	72*		14:45574[2:	8+17988E2	+ 7.75014E2	1+ 7+70++1E2	1 7.46717E2	7+23771E2+	
00114	73*	C	13	1 <b>4</b>	15	1.	17	10	
00114	74*		¥1+01511E5+	4+57#03E2	+ 6,14404E2	L+ 5+77525LZ	. 5.40482[2]	4+7217482+	
00114	75*	C	17	20	21	22	23	24	
00110	74*		X4+1105262+	3+5451462	+ 3.04007E2	! <u>, 2+649+4</u> 65	1 2+26777E21	1.43444551	
00114	77*	C	25	26	27	28	24	30	
00114	7.4 *		x1+65794E2+	1+4173462	1.2111063	1+03258FS	. 8.84771E1	7+5452761+	
0, i≜	7 + *	C	31	12	33	34	72	36	
65.1*	*c*			5+52+30E1	+ 4.04749EI	1+ 2+97174£1	+ 2-18#3761	- 1+#1#19El+	
00114	81+	C	7 د	3.8	3.4	٩0		42	
001:4	B 2 *		x1+19703E1+	8+8*0+3E0	+ 6.03412EC	), 4.7852260	+ 3+77138EO1	2+8714360+	
00114	€j+	Ç	43	4.4	45	۹.6	47	48	
00114	84*		x2+1**47E0+	1+47494E0	1. 1.J1J40E0	. 1-0229460	7+977902-1	1+4+222#3E+1+	
00114	₿ <b>5</b> *	L	49	<b>&gt;</b> 0	51	52	53	54	
00114	8		X4+84211E+1	+3+745726-	1+2.913736-	'}+2+ <u>24606</u> E-	1 1 1 + 7 2 4 5 7 5 * 1	+1+31504E-1+	
00114	#7+	¢	55	54	\$7	54	59	<b>●</b> 0	
64114	8.8*		x9+94047E=2	17+44483E=	215.520476-	2: * + 050136*	2.2.93754(-2	112+10458-2+	
00110	39*	C	<b>a 1</b>	42	43		45	**	
00114	• ₀ •		x1+48776-21	1+03445-5	1. 7.1671E=3	3, 4.45426-3		2+37948=3+	
00114	• I •	٤	<b>₩</b> 7	4.8	69	70	21	72	
00110	+2+		x;+64382-3,	1+14496=3	. 8.06831-	. 5.74836**	+ ++13776-4	3+00752-4+	
00114	<del>• آ (</del> •	C	13	24	75	10	,,	78	
00114	٠		x2+21232-4,	1+85001-4	1 1.24+2L=+	++ ++5225E+5	. 7.35446-5	5.74238-5.	
00116	♦ς.•	C	19	4n	<b>6</b> 1	#2	A 3		
	•								

:

i

00114	***		24.59196-51	3+71176-51	3.04266751	2+52178-51	2+12105-5+	1+81392-5+
00116	97.0	Ĺ	85	BA BA	A)	A#	87	90
00114	9	•	x1.5/201-5.	1.37.016.5.	1 22146-5.		9.4.515+6.	A
00116		C	<b>†</b> 1	9,	91	94	95	94
00116	100.	-	x8+09501-61	7 . 41 . 41 - 61	A. 81485-61	6+29315-6+	5-83315-6.	5+42525-6+
00116	101.	,	47	9.		100	101	102
00116	10.4	•				100	3-43031-64	1.4963584.
00110	102	r	101	1-1	105	104	102	108
80110	101-	L.	- 3 - 3 9 3 3 4 -		103	100	34.534.54.	100
00110	104		13-2-326-01	2	2.04/.2.07	T. JaslE-a.	112 av	1.1.4
0011	105	Ç	107		111	211	1.2179=***	117
00114	101	r	X1	1-00/05 01	1. 48305 01	1.222.6.01	1.21.16	
00.30	10	•	DATA LPRSLS	TTTT. TUNPE	3. NP141/			
00:20	1049	<i>r</i>	115		2 4 7		1.19	120
00120	110	•	13.3154152.	2+09#4852+	1 9448411	9+033475=1	.7.0.45806+1	
00120		r	121	125	193			
00110	11	•	18.42046.03.	5 . 9	1 97646 #7/			
00120	11.0	•	X0102015-31	3110212-31	1 305 31			
00120	11							
00120	114*	,	- DENEITE					* * 8
00120	119-		PENJIII	ANCORD ING	SOLATED TA	NILUGRAPS PI	TH CODIC HE	
00120	116*	L	DATA JAWANE		B. 314			
00122	11/*	r		2 2 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	I INF LZ IF	-	•	
00122	118*	•	1	4	J		3	
00124	1 1 7 -	,	*1*******	141/5/201	1,10/3001	111372231	1.111/201	1.6040501
00124	120	Ľ	/	• , • • • • • • • • •	<b>9</b>	10	11	12
00122	1210	~	71+02e1E01	1.0321E01	1.0000001	A+81215-1+	**36752-11	**328/E-11
00124	122		ij 19.09256-1	14	15	10	1 1 1 1 2 5 5 5 5	18
00122	143-	~		8.03405-11	0.14355-11	/ . / / O . E . I .	1+20426-14	0.0UIIE-I.
00124	124	•	17	40	21	24	23	29
00122	145	r	13110021-11	3+23/76-11	4.0/002-11	4+13516-11	3.84802-11	7+11446-11
00112	126-	•	12-44405-11	46 34376 1	2/	20	27	30
00127	127-	~	XX+000UL-11	2-2/8-2-11	1.14120.11	1007/L' 1	1.42306-11	1+21426-14
00124	128*	•	11.08005.01	32	33	3.	35	30
00124	129*	r	17	0+0 · [UL~2]	0, 1510c - 21	1.07J82-21	3+123/2-21	2+30/01-21
00122	1 3 0 *	•	37 	38 	JV 9 89745ml	70	*1 5. 14445-1	74
00122	1 3 1	•	×1+++10=-21	1+33536-21	······································	1.12116-11	2438885-31	3
00122	1 1 1 1	•	T2.994AF=1.	3.25096#3.	43 1 71416#3.	96	1.01495-1	70 8.00976-4
00122	13	(	49	2-1-2-21	1.1.1.1.1.1.1.1	1471815-34	1102010-31	0100772-41
00122	134	•	*****	20	31	34	53	54
00122	1.2.2	r		6.	3, 10002 - 11	3103126-11	2131316-11	1,003,5-47
00122	137	•	*1.47135.44		3/	30	57	2 2 2 4 5 - 5
00122	1300	r	A1	1.134.6-41	8,15395-31	0102175-21	3+01315-31	3+/302-5,
00122	130	•	#2.75nf=E.	1.9905-5.	. 1836-5.	9.5.4.36.4.	03 A.A.75-A.	••• #.6785+4
00122	1.4		47	1	1.0020-31	102035-01	31	112/75-01
00122		•	13.17.35.44.	34133644.	1 #59584.	10	7.0445-7.	4 9745-7
00124	1 1 1	r	7)	2.13/6-01	1.1572-01	1.0005-01	/ 0442-/1	117/12-/1
00122	141	•	* 3. 49 35 = 7.	74	/3	/ 0	9.8-35-9	70
00122	1.4	r	79	2	1.0042.77	1.75776-11	43	/ 1 3 3 2 - 8 4
00124	1 . 4 . 4	•	15.1716-4.	"0 "	01 31.35-2	3 - H 3		0 4 1
00124	1 15"		AC 2134	**UJ5E-01	2.11%6-01	4.4.7.7.0F=0.	1.0445-01	1+4346484
00124	1 - 6 -	L	03 81.1405-0	<b>8</b>	67 7 6 6 6 7 - 9	88	87	<b>VO</b>
00124	1777	~	A1+1-0F-8+	7•223E=7+	7.3872771	8+JZ/E=++	5+33/2-7+	4+2445-4+
00124	1787	L.	7	7, ·	73	94	75	76
00124	1-4-		****136-*1	3+3+46=++	2.765L")+	<.000€	*+30/F=A+	2+0>JE=9+
00122	1>0.	L.	¥/	78	94	100	101	107
	1214	~	#1+030E-81	[+665£ = Y +	1.5156-9+	1 • 3826 - 9 •	1+2646-41	1-1598-9,
00122	1 > 2 *	Ĺ	103	19 ⁴	105	106	107	108
	1 3 1 7							

ł

1

Į

i

ł

1

,

A-81

ì

ł

 $\mathbf{F}_{i} \propto \mathcal{A}$ 

3

,

1

.
00155	154*	Ç	109	113	111	114	113	114
00122	155*		£1-3804+Px	+ ++115E=10+	3.4426-10	· 3·319F-10	2+4846-10+	2+7102-10/
GC122	156*	۲						
00124	157*		UATA ERHO	LST (1), L=NPL	31481477			
00124	158*	C	115	114	117	110	117	120
00124	159*		X4+9576E-1	· 3+37+3E=1+	5.5004L-2	1 1+16242-3	9.0670E-4.	7+10292-4+
0012*	100	C	121	122	123			
00124	161*		X1+662E-51	1+150+5+	3.0101-0/			
00124	162*	C		-				
0012*	143*	C						
00124	164+	Ċ	SPE	LO UF SOUND	VAL UPS TAN	ULATED IN HI	TERS PER SE	COND
00124	145*	č						
00126	144	-	DATA USON	(\$511).I=NPL	1			
00126	167*	c	1	2	1	"	5	▲
00124	168*	-	x346·294,	239-1231	3-8-3701	347.901.	334.435.	335.443.
00126	169*	c	7	8	-, -, -, -, -, -, -, -, -, -, -, -, -, -	10	11	12
00124	170*		X334+489.	33345111	112.532.	1	110.561.	129.575.
00126	17.+	¢	13	t a	15		: 7	1.
00124	17.9	•	1324-5435	12415921	1.4.687.	12: 525.	120.545.	316.867.
00126	17.0	,	19	2.	3913019		12003.51	31014351
00120	17.4	•	112.104.	10	21	24	195.154.	
00124	176.	¢	¥211.2044	200.1021	10-61696	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2-2112-1	
00126	1731	•	•		27 - 3	2 1 9		
00120	17.0	r	•		7027510	• 7 1	16	14
00120	1708	•			3.1	797 734	33	
00120	1704	~	<b>^</b>	1.	200.3//1	27/1/201	27740303	300+3001
00120	179*		- 10/ 7-8	38	34	40		•2
00120	100-	~	X30101044	303.0521	2001011	310+044+	3 3 . 0 4 5 .	31/+[8*+
00120	161-		*3		45		46 - 48	
00120	1020	_	XJ20+0725	324+ (16+	371.5211		3+324+/44,	
UCIZO	193.	C	• •	, o¢	51	52	53	54
00120	194.		x327+*11+	325+472;	3,3,05#,	220+0041	317+630+	312+628+
00130	185*	Ç	55	56	57	58	59	0 0
0012*	154 *		X307+549+	302+387+	2+7+139+	291+800+	286+345+	280+83+
00126	187*	Ç	<b>6 i</b>			62 - 114		
00126	188*		X275+18;		5	3*269.44/		
00126	189*	۲, C						
02130	190*		DATA ISON	LSTELI,LENPI	3,NP1411			
00130	1919	C	115	110	117	E1 #	- 119	120
00130	192*		<u>x</u> 305+98⊀,	295+969+	297.049,	2*3	29 . 799 .	329+114+
00130	1934	C	121	- 123				
00130	194*		X 3+2-	69.44/				
00130	195*	C						
00130	196 -	C						
00130	197*	C		. 115	COGITY COL	FFICIENT		
00130	1380	¢		VALUES TABUL	ATED IN KI	LOWRAHS PER	NETER PER S	ECOND
00130	199*	C						
00132	200°		DATA (VIS	LST[]}, ]=NP1	11NP121/			
26100	201*	C	1	2	3	4	5	٠
00132	202*		x1+7894E-5	1+74158-51	1.77378-5	1+76588-5	1.7579E-5.	1+74992-51
56100	203.	C	7	8	9	10	11	12
00132	204*		X1+7420E-5	+ 1+7340E=5+	1.72606-5	+ 1+710DE*5	1+7099E-5+	1.70146-5.
00132	205 *	Ĺ	13	14	15	16	; 7	10
00:32	204		X1+6938E=5	1 1+67758-51	1.46121-5		1+62828-5.	1+59498-5+
00132	207*	C	: 9	2 1	21	22	23	
00132	204*		11-56121-5	1 1+52711-51	1.49266+4	1 114572E=L.	1+47235=6.	
00132	209*	C			24 -	32		
00132	210*	•	x		9+1+47	 1860.		
0112	211	c	-		11	14	15	3.4

1

:

}

Ì

1

;

A-82

			16-15/0*2	18+312++9	16-3554168		. 592	0.100
			153	157	121	2		0.100
41-39-1-9	+1-3+/R*/	10016001	1135 89 5	12100111	173766-58	-	. 1 97	0+100
071	A 1 1	el!	111	o 1 1	511	<b>۲</b>	.997	0.100
	• • •		1162.115	7.44 m 1 1 1 1 1 1 5	16841 NIXO	,	.597	6+100
					-3081 414G	•		01100
		26-320/.7		Carll Las	15-3004104	,		-5100
				5-3-46-F		_	7.70	-6100
10 300.00	10.00/000	15 31 81 - 4			64	2	1	41100
********	3-3475.4		*******	• · · · · · · · · · · · · · · · · · · ·	• • • 3 9 • K • I X	-	• • • 2	91100
87	21		54		: 4	2	.092	91100
.H=3767.5	N-3928.5	***	• H= 37 28 2	16-369111	10+3174+18		.652	90100
22	14	υį	59	89	19	>	• 4 5 2	96100
'E+355+'Z	•E-370++E	16-3106+2	12-3291.5	12-3561+1	12-3654+1X			9€100
99	59	F 9	64	29	19	2	• 952	46100
2-3006-2	3.2246-21	12-765010	'Z-3(80'Y	12-3922 <b>.8</b>	+1-3201+1x		• 552	96100
09	65	85	25	95	55	2	0 1 5 2	16100
*1-3296*1	1-3-26-1	+1-7215+2	1-3652'0	*1=3212+#	41-3h2h+5X		.[52	•E100
*5	5	25	15	Ûç	6 1	2	.252	91100
1-3656**	+1-3809.8	+03061+1	10314611	407188+1	X5+433E0*		+15Z	90130
8 🖬	24	9 h	5 h	h h	E h	>	.052	96100
10329116	+03.01+#	10352615	+03591*2	103615+6	413022+1X			90130
2 11	1 10	0 🖌	50	95	15	٦	.8.2	01100
113502+1	\$1300r+z	111121+0	413852 %	11796853	117/98+01	-	4142	00130
75	st	*5	11	25	11	<b>٦</b>	. 4 . 2	95100
113100+8	11352614	123521+1	1.3526.1	12350611	123050114	,	5.57	0.012
20		82	12	97	e7	``		AC 100
1231-112	17300-17	1235/012	173/06*6	1771	1231664.8	,	. 5 . 2	00120
52219152	c7	27	17	0,		•	-7.7	AC 100
	1770.046	12700.00	473150.0	. 77.47.48	473	,	1	V( 100
- C J 6 C 6 - W		61		-2 821.4	-538#1+7#	•	0.7	<b>1</b>
49954544	177.0004	17311000			1	J		<b>4</b> 4 J
.53246.5			123150 8	16319518	* 2 1 9 E 1 * 9 X	_	\$ 16 .	96100
21		1730164			1	2	•*(2	91100
.53837.8	12296016		123025 4	1.59.26.24	Causcianix		•165	91100
9	5	*	E		1	2	• • • • •	96106
			/{<<	S9N=1.(1)12	IZBAI ATAO		.552	96100
						2	5344	HE100
	6 <b>9 4</b> 3	ים זא אוררזו	UEN TAPULATU	AN JAUZZJA	J	)	•[[2	PC100
		_				)	•2(2	#£100
30011183	HTRON 23392	)30+06 TA Y.	106 FOR JUL	RECHTA CRAC	NAT2 0491 .	2	•1CZ	PE100
						2	• ⁰ CZ	NC100
						)	**25	NC100
				/5-3012	•1•E ¥		558.	FE100
				- 153	21	2	.122	NC100
< 5-31864+1	15-31201	5.1.4	15-3925811	15-3912Hel	15-36605+1X		526.	NC100
021	<u>511 -</u>	e11	211	• L ]	SIT	2	.522	
			/1+1a**C	1 an=1*(1)15	JELAL VIVO			LC100
						٦	. ( 7 7	25100
		15-3412+1			15-3202118	•	.172	20175
		611 - 1	•		1.	2	122	20100
16-3/00+1	Is Jeteral	16-JECATAL	Is-Jentate	15- Joloval	16-Jazzesty		0,,	21100
0.0	1997 10 10 10 10 10 10 10 10 10 10 10 10 10	1- 1 101 - I 6C		1	22	•	412	76100
AE Juderal	10 30.0001	16-3/070-1	10 7 00 011	15 300001	77	,		21100
- 3- 287 62 - 1	- 3- 1360411	· ㅋ=»(HCY+) ?#	- 4= 12 MBA - 1	- <u>7</u> - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	- 3+ 11884+1X	•	• <b>ग</b> । <b>८</b>	21100
• <b>5</b>	13	· · ·	10 3100-14	40 30/00-1	64	)	\$110	21100
	- 3-32102-101	L	ישראות-גיי <u></u>	-2+16124+1	.2-10954.18		• • • •	20132
	86 - 76		58	** ** 7.6 · - *	EN .	2	512	20175
• 5-36009+1	5-352251	-5-31 [65+1	*4-10615'l	*2=19288+1	*5-3652**18			56100
2 h	1 N _	<u>J</u> h	34	<b>۳</b> ۲	2 X	2	-212	20132
15-3#N9N+1	*5=38(56*1	19-106+++i	*5-7276+*1		X		•115	20175
			•					

ł

ł

1

۲

, L . . .

-

•

. .

.

i

. 198

ł

1

i

00140	27e+	C						
00140	271+	C						
00140	272+	C	DENSIT	Y VALUES TA	BULATED IN	KILOGRAMS P	ER CUBIC ME	TER
00140	273*	C						
00142	2744		DATA CRHOL	51(1),1=NP2	1+NP221/			
001+2	275+	C	1	2	3	•	e	•
20145	274+		X1+159E0+	1+135EO+	1.11260+	1+0#9E0+	1+044E0+	1+04150+
00142	277+	۲	7	à	•	10	11	12
001=2	278*		X1+014E0+	4+7236-i.	9.486E-11	9+4522-1+	9+222E=1+	8.4476-1,
00142	279+	C	13	1.4	15	1 🔺	17	18
00142	5ª0.		18+776E-1+	0+348E-1+	7, 4376-1+	7+540E-1+	7+157E=1+	4+4436-1+
001 * 2	581.	ç	17	20	21	22	23	24
00142	2 2 2 4	-	15.8146-11	5+2326-1,	4.4948-11	4 - 19 48 - 1 -	J.742E-1.	3.3246-1
00144	2834	ç	23	24	2?	28	27	30
			ACT ([E-[1	T-1.16-11	2.4152-11		1	1.3316-11
00142	2050	L.	31	32	33	34	12	38
00142	2	<i>r</i>	X1+1+2E-1+	***:82-41	A. #/01-21	417442-21	3+3/72-21	2++0/2-2+
			37	38	34	4J 7: 300 - 3	91 5.2585-3.	72
00142	2080	r	x1++C+E+2+	1	1.0306-21	/•/0+L-J.	24/572-34	**3282-3,
00142	39.4	•	***		43	70	1.1.1.000.1.1.	
00144	2.0	r	xJ*20*E JF	2	1	1	E.J.	64742C-11
00192	29.9	•	17.0715-4.	8.57.5-9.	31 # 17#5+6.	32	2.2105-5.	2+123544.
00142	2910	c	55	SA SA	57	58	59	40
00192	2941	-	11+451E-41	1+2735-41	9.7195-51	7+1805-5.	5+5178-51	4.1138-5.
00142	2464	c	<b>61</b>	47	A 3		45	AA
00142	274.	_	x3+020E+5+	2+1905-5+	1.5485-51	1+0705-5.	7+2828-4+	4+9566-6.
00142	2974	c	47		69	70	71	72
C01+2	278*		X3+374E+4;	2+2546-41	1.5146-4+	1-0306-6+	7.0452-7.	4.897E-7.
50147	29++	C	73	74 .	75	76	77	78
80142	300*		13+3426-7.	2+2445-7.	1.5848-71	1+1306-71	8+2132-8.	6+087E-8,
00142	301*	C	79	ŧ.		1 - 114		
00142	302		X4+388E-8+	3+2598-81	34	+2+484E-#/		
0014Z	3030	C						
00144	364.		DATA CANOL	STILL, LENP2	3+NP2+1/			
00147	305*	C	115	114	117	11.	119	120
00144	304*		X4+958E-;+	3+5298-1+	5.8236-21	1+270L-3+	1+008E+3+	7.9558-9,
90144	307*	C	121	122	123			
00144	304*		X1+#54E-5+	1+2988+5+	4.089E-6/			
00144	307*	C						
00144	310*	c						
00144	311+	C	SPEL	IN OF SOUND	VALUES TABU	ILATED IN ME	TERS PER SE	COND
001+4	312*	ç						
00144	313.		DATA (SONL	57(11,1#MP)	21. NP221/			
00144	314*	¢		2	្រ	4	5	•
00194	315*		*3****	348+4+	341+3+	396+0+	344.7,	343-8,
00144	314.	C	7	8	9	10	11	12
00114	317*		x342+7+	345.01	3#1+1+	340+3+	339.4.	338.5,
06144	314.	C	13	14	15	10	17	1.
00144	319-	-	XJ3/+/+	332.41	337+2+	332.5.	336+7+	32/+31
00144	320	Ľ	- 1 - 1	20	21	22	23	29
00140	7512	,	XJZZ+71	318+5+	313.01	104.21	JU7+7)	203•3°
00140	322-	•	23	19.00	27	5	27	JU 388.7
001-4	753-		##73+#J \i	X-C+A+	220.01	ta2+/1	447+6) 3E	7409/ <b>3</b>
00140	324-		JL 1290.7.	37	<b>در</b>	4L 197.1	ڊر . ۹. 40 c	36 102-4
00140	345*	,	247J+41 17	2-1-2-	Z 🗣 🥆 è A A	477838	<u></u>	302+81
001-4	344-	•	31	307.m.	37	90	74 114 - 9	۶ <u>۲</u> ۱۱۹.۹
	1417				3.4.1.4.6.4	34 14 7 4		

ł

1

ł

A-84

1

00144	328-	•	• • • •	44	45		•7	
00144	324		X322++,	325.8.	374+/+	5+370	•7•	330+1+
00140	330-	•		>0	\$1	52	53	
00144	331-		132/1/1	32>•3•	372.01	350+C+	712+3+	710.24
00144	775-	Ľ		24	57	54	5*	<b>4</b> 0
00144	333.		X3C2+1+	300-7+	243.7.	293.6.	285.5.	280.2.
00144	774.	C	<u> </u>	+ 2	63		<u>64 - 67</u>	
001 **	772.	_	X274.0.	269 - 4 -	243.8.		• 2 6 3 . 3 .	
00144	374.	¢		48	69	70	71	72
00140	337*	_	R.	246121	24 4 1 7 1	273111	276+5+	279.94
00144	338.	C	73	74	75	76	77	78
00144	334-		1264+21	275151	344+++	314+9+	32/+1+	336.7.
00144	340.	C C	74	•0		81 - 114		
00144	3414	-	X355+Z,	373+1+	נ	4-340-11		
001**	745.	C						
00150	3434		DATA ISONL	ST(1),Lanpz	13+mP241/			
00150	344.	C	115	11+	117	110	- 119	120
00150	345*		x31++3+	302	295.91	2+.	330•7,	324+9+
00150	344.	C	121	122 - 1	23			
00150	347*		8266+61	2*2630	37			
00150	348*	C						
00150	3444	C						
00150	350*	C		¥ 8 5	COLITY COE	FFICIENT		
00150	351.4	C	۷	ALUES TABUL	ATED IN KI	LOGHANS PER	HETER PER S	ECOND
00150	352"	C						
00152	353.		DATA (VISL	STILL INNEZ	1			
00152	354*	c	1	2	1	•	5	
00152	155*		K1+8+8E-51	1+8571-51	1.8445-51	1.0345-51	1.8256-5.	1.8185+5.
00152	1544	c	7		•	10	11	17
00152	357*	•	X1+#11F=5+	1+8311=51	1.7945-51	1.7895-5.	1.7826-5.	1.7758-5.
00152	1544	c	13	1.	16	14	17	1
00152	359*	-	X1+768F-51	1+75.8-51	1.7194-54	1+7251-5.	1+7115-5.	
00152	340*	C	19	20	21	22	23	24
00152	34.4		21.4485-5.	116126-51	1 5765-5.	115391	1.5015-5.	1.8485-5.
00152	16.2.*	c	25	24	22	1. 3.6-31	39	10.0015-21
00152	161	•	x1+#26c=C+	1.1825-5.	1 1891-5.	1.1845-5.	1.1585-5.	1-3705-5
00152	364*	C	31	39	112172 21	1.240[-21	10000-01	143706-31
00152	365*		11+3825-51	1.1965-6.	. 4185-5.	1.8.196.5.	1.4415.5.	1.4835.66
00152	344*	c	17	38	10 10 20	13-6-34	1	LA 4025-31
00152	347*	•	11.5046-5.	1.5753-53	37 1 6#86+6.	7U 146786-6.	1.5995-5.	1.4775-5
00152	3689	c	43	44		1-3/45-31		114236-31
00152	149*	-	11.6475-5.	1+47.5+5.	13		40 - 47 181.7115+6.	1.7045.05
00152	17.04	c		1-0-10-21	E		(*) ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (	11/002-31
00152	37.0	•			91 	36	33	
00152	37.0	<i>r</i>	F2	£.	1.04/2-31	1.0546-21	1.2025-21	1.34/1-51
00152	17.1	•	33 115672-5.	28 14883685.	5/	38	57	•0
00172	37.4			1	1. 2/6-21	1.30.5-21	1.34.5-31	1.3025-31
00152	37.4	Ľ	* 1 - 369 r = c -	• • • • • • • • • • • • • • • • • • •	63			
00132	3731		*1*43-5-21	1-2186-31	1.1/26-31		4-1-1085-2+	
00152	3/4-	Ľ	_	64 1	64	70	71	12
00134	.,,.	~	* *	1+1-05+2+	1.2186-51	1+2756-51	1+2736-51	1+2446-21
00154	3-8-	L.	/3	/4	/5	76	11	/8
00154		~	¥1+773E_2+	1 ZSE-51	1+2135-2+	1+2446-21	1+0812*51	1+7626*5,
00152	380.	c	/*	30		<b>81 - 114</b>		
00152	741.	-	x1+* 2E-5+	2 0>76-21	נ	4=2+1976-5/		
00152	382+	L						
00154	797.		DATA IVISL	S (1),1=4P2	3+NP2411			
0015	344.	C	115	F 1 🖷	117	118	- 119	120
00154	192.		X1+593E+5+	1+4036-51	1.4296-51	2+	1+7116-5+	1.6966-5.

ı

i

,

•

1

**P** 

Ţ

1

1

----

1

Ŧ

ł

::::

ŧ

١

1 1

A-85

- **A** 

ł

,

t

0013	146-		141	122 - 1	23			
0015	3#7*		X1+194E-5+	291414	1F->/			
00154	388*	C						
00154	389*	č						
0015*	194.	c						
001	3	Č		IANUARY	AT 10 01601	LES NONTH L		
00154	19	č		J - N O K - I	AT 70-924-1			
00154	10.10	, i						
00168	19				ULC TABULA	ICD IN WILL	BTK2	
00154		•						
00130			ULIA LPRS	LATELS, LANPA	11 • MP 3217			
00150	374*	C	1	2	3	•	5	۲
0015-	3434		11.05167	<b>***</b> 12221	9.422EZ+	4+340E2+	9.D4\$E2.	\$.798EZ.
00154	3744	C	1	•	•	10	11	12
0015	3747	_	X8+538EZi	8+2#562+	8.038E2+	7+798E2+	7.564821	7.335EZ.
90150	•02-	C	13	1 4	15	1.	17	1.
00150	•01•		X7+112E2+	4+482EZ1	4,274EZ+	5+884EZI	5+517621	4.837221
00150	402*	C	1.	29	21	22	23	24
0015+	<b>*</b> 03 <b>*</b>		X4+224E2,	3+479621	3.14162+	2+757E21	2.37262.	2.03262.
00154	404*	c	25	26	27	28	29	30
80154	105°		X.+739E21	1-478221	1,25762+	1.067621	9.040E1.	7+450E1.
00154	904*	C	31	32	33	34	15	36
00154	407*		14+479EL1	5+399611	3,787811	2.907E1.	2.134611	1.575811
00154	908°	τ	37	34	39	40	41	12
0015.	<b>404</b>		X1+149E1.	8.723601	6.54450+	4+939601	3.74850.	2.84050.
00154	*1n*	C	43	••	45	4.	47	44
60154	111.		X2+199EG+	1.47120.	1.31060.	1.019.0.	7.9415-1.	6.187F-1.
00154	412*	C	47	50	51	52	61	54
00154	413*		19.8D8E-1.	3+7216-1+	2.8726-1.	2+2075-1.	1.4875-1.	1.2815-1.
00154	414*	C	55	54	57	68	69	40
00154	415*	•	19+659E-21	7+2311-2.	5.3721-21	1.9574-2.	7.8935-7.	3.0955-2.
00156	914*	c	AI	A 9	41		48	
00154	412*		11.5035-2.	1.0445-3.	2 5385+3.	6.1216.1.	1.7405-1.	3.467643
00156			A7	1.6.01.2.1	· • • • • • • • • • • • • • • • • • • •		31/002-31	2103/6-31
00156	11.	•	****79==1.	1.1.1.5			71 5 - 30 <b>5</b> - 5	12
00154	\$2.04	C	71	1-2-16-21	7,483(-11	/	3+2072-11	3.4.45.41
00154	42.4	•	#2.910E-#.	343145-8.	/3			/
00156			19	2 · 2 · 0 L = · 1	1,0116-11	1-1225-11	1+03+5-41	8.5345-21
00154	42.4	•	********	5.1501-5.		1 - 114		
00154			¥4140af-21	2.1247-31	14			
00130	1240	•	Data IBACI					
00140		r	URIN CERS	21.11.10463	318-341/			
00100	424	•	-1	110	117	11.	117	120
	1270	,	231420221	2+1+4=21	3. "OILII		7.010L-1.	5.4578-1.
	-2.5	•	141	122	123			
	4244		X0.4/DE-31	8.3345-3,	2.2336-37			
00100	430-							
00140	431+	C C						
00143	432.	6	DENSIT	Y VALUES TA	BUCATED IN	RILOGRAMS P	ER CUBIC ME	TER
00140	4334	C						
00142	434*		DATA LMHOL	ST(1),1=~P3	L+NP321/			
00162	435*	¢	1	2	3	٩	5	۲
00162	434.		X1+233ED+	1.20010.	1.108EO+	1+13760,	1+107E0+	1+078E0+
00142	437*	C	7	8	9	10	11	12
24100	438.		X1+047E0+	1.05110.	9. ⁹ 34E*1,	9+675E-1.	9•461E-L+	9+231E-1,
00162	439*	ι	13	1 4	15	10	17	18
00142	**o*		x9+30>E-1+	8.5456-1,	8,142E-1+	7+7336-1+	7.3402-1.	6.599E-1.
00162	4414	C	1.*	20	21	22	23	24
00102	442*		<b>£5+914E</b> ™1+	5+28AE-1.	4.7:36-1+	4+187E-1+	3+707E-1+	3.2708-1.
00162	443*	ί	25	2.	>>	28	29	10

ł

,

1

ORIGINAL PAGE IS OF POOR QUALITY

00142	456*	c	61		A 1	64	45	
C0162	454.4		12++51E+5+	1+9421-51	1.3745-51	9+7026-6.	6+853E=6+	4.8426-
00142	4574	ć	▲7	 6 E		20	71	72
20142	458*	•	X3+386E-6.	2.3356-6.	1.0301-01	1+1526+11	8+2312-7,	5.9426-
00162	454.	c	73	· · · ·	75	76	77	78
00142	460*	_	14+322E-7+	3+1316-7.	2.3056-71	1+7181-71	1+2966-7,	9.8876-
00162	4614	c	79	¥0		1 - 114	•	
001+2	462*		17.5098-8.	5+7872-8,	34	*4+509E-#/		
00142	443+	C	• • •	- <b>Q</b> -		•••		
00144	4644		DATA LRHOL	ST(1)_1=NP3	13.45 241/			
00144	465*	C	115	116	117	118	119	125
90144	444.		X4.994E-1.	3+4831-11	5.5126-21	1+165E=31	9.0736-4.	7+142E-
00164	467*	C	121	122 -	123			
00144	448*		X1+035E-5+	1+15+6+5+	.070E-4/			
00144	449*	C	-		• • •			
00149	470+	C						
00149	4714	C	SPEI	ED OF SUUND	VALUES TABL	LATED IN HE	TERS PER SE	COND
00144	4724	c		-				-
00144	473+		DATA ISON	ST(1), 1=NP3	11.089321/			
00164	474*	C	1	2	1	4	5	•
00144	475+		x340+5+	370.01	339.51	339.1.	339.4.	338 . 1 .
00144	4744	C	7	้ลั้	•	10	11	12
80164	4774		2337+61	337+1+	330.01	335+4+	334.4.	333.5,
00144	478+	C	13	14	15	14	17	1.4
00164	479*		x332+5+	330+5+	3,8.5,	320.41	324.4,	320+3.
00144	48 ₀ +	C	19	20	21	22	23	24
00144	481*		X316+2,	312+1+	307.4.	303+6.	299.3.	294.9,
00144	482*	C	25	26	27	28	Z*	30
00144	483.		x293+0+	291+3+	28 ⁹ •5•	287.7.	285	285.7,
00164	484*	C	31	32	33	34	35	36
00144	485*		x287+3,	299-11	742.51	295+21	297.9,	300+4.
00144	486 *	C	37	38	39	40	•1	42
00144	487*		X333+2+	305 9+	3n8.9.	311.9.	315.0.	318+0+
00144	488 *	C	43	۳.4	45	46	- 47	*8
00144	489*		x321+0+	323+9+	376.8.	5+3	28.9,	328+3+
00164	4°c*	¢	49	50	51	52	53	54
00164	49 ₁ 4		X352+9'	323.41	3,1+0+	318+3+	314+4+	3:0+5,
00144	492*	C	55	56	57	58	59	<b>♦</b> 0
00166	493*		X 306+5,	302.5+	298.51	294+4+	290+21	284+0+
00144	4940	C	<b>♦ l</b>	42		63 - 66		
00166	495*		X201+7,	277+41		4+277+2+		
00166	474.*	C	67	<b>4</b> 8	69	70	71	12
00166	4970		x 2 7 8 + 7 +	203.6.	248.4.	293.01	291.7.	302+21
00166	49a+	C	73	7 4	75	76	77	78
00144	4994		x30/+U+	314+3+	321+3+	328.2.	335.0.	341+6.
00146	\$0 <u>0</u> *	C	79	ອີກ		1 • 114		
00.00	-					-		

1

,

ł

,

i

T

t

,

I.

54100	****		X2.4286-1.	2++346-1+	2,1016*1+	1+8056+1+	1+5496-1+	1+3126-11
50100	445+	C	31	3,	دذ	34	35	36
00142	444.4		X1+099F=1+	9-2136-21	6.5201-21	4++++=21	3.3652-2.	2.4406-2.
00142	447+	c	37	3.0	90	10	•1	42
00142	****	•	X1+780E-2+	1+3046-2.	4.403E-3+	7+105+-3+	5+2898-31	3.9405-3.
54100		c	*3	44	45	46	47	48
00142	*5n*	-	X2+981E-3+	2+2576+3+	1.7176+31	1+3192-3+	1-0285-1.	8.0385-4,
54100	45.4	c	49	20	51	52	53	54
001+2	4524	-	##+340E-4+	4+9836-41	3.9031-41	3.0516-41	2+3496-41	1.8405-4.
00142	453* 454*	C	55 X 1+ 3 9 5 = 4 4	56 1*1365***	57	58	59 **80 ⁹ E=51	0 1.586E-5,
00142	455*	c	61	02	<b>A</b> 3	64	45	**
60142	154.		X2++51E+5+	1+9421-5+	1.3745-51	9.7026-6.	6.853E-61	4.8426-6,
00142	4574	¢	67 23.3865-6.	68 2+1355-6-	69 1 8305-81	70	71 8.2315-7.	72 5+9425+7.
00142		r	71	2.2050.00	7.0302 01	74	77	78
00142	440*	•	14+3226-71	3+1336-7.	2.3056-7.	1+7182-71	1+2966-7.	9.687E-8.
00162	461*	C	79	¥0.		1 - 114		
001÷2	462*		x7+509E-8+	5.780L-8,	34	*4+509E-8/		
00142		c	•	•		-		

Ŧ

1

1

ł

1

I

ł

1 

۴

ł

A-87

.

e

661 B	\$117*	c						
(3) 0	501.	-	DATA ENON	STELL LANES	1			
t. 5 / ft	50*	r (	115	114	117	1.1.00	- 119	127
0 70	505	•	x308+9.	297411	203.9.	2• 3	28.9.	327+1+
00.70	1041	L	121 -	123			••••	
01.10	507*	•	R 3+27	12.27				
0() 70	50	C						
63:20	50	č						
C 0 : 10	\$10*	ē		* 1 4		FICLENT		
60170	51.4	è			ATED IN KIL	OGNANS DEM	NETLE PER S	FCOND
50120	6120	è	•	ACACO . NOAC				
2010 2012	5114	•		CTII IAMPI				
0.5.2	5144	¢		2	····N· 32		4	4
01 2	515	•	#1.7915-51		1 7815-5.	1.779	1. 1758-5.	1.7715-5.
2012	514*	C	7	8		10	11	12
£5. Z	517*	•	x1.1475-5.	1.74.1.51	1.7591-51	1.7515-51	1.7428-51	1.7346-5.
001 2	5189	c	11	1	16	14	17	18
00112	5100	-	****	117305+5.	1. 4935-6.	1.4.7.45	1.4405-5.	1.4245-5.
33172	52	C	19	70	21	32	2)	24
00172	52.*	-	*1+593E-5.		• • • • • • • •	1.4916-6.	1.4568-51	1.4206-5.
001.2	57.4	L	25	24	37	74	29	10,202,01
00112	521	-	#1.9056-51	1+19.6+5.	1.3746-51	1 . 3628-5.	1.3476-5.	1.3446-5.
66172	5744	ć	11	3.	11	19	15	14
00172	575*	•	11.3596-5.	111716-51	1.4016-54	1.4215-5.	1.445E-5.	1.4466-5.
00172	6744	C	17	14	101	40	41	42
00172	677*	-		1.5006-5.	1 5336-54	1.6545-5.	1.5836-5.	1.4076-5.
00 77	\$28*	C	43	1-2010-21	1	10 200 20		58
30177	52		*1.4.25=5.	1.4546-5.	1 4795-5.			1.4915.5.
76172	5104	c	49	5.	2. C 1	£ 1 °	61	58
10172	\$3.*	•	x1+671E-5+	114525-5.	1 6125-5-	1.4101-5.	1.5785-5.	1.5478-5.
10:72	61.4	C	55	54	67	6.8	69	40
n: 12	6114	•	111514E-51	1.4835-5.	1 4496+51	144145-5.	1.1836-5.	1.1445-5.
0177	6348	c	A1	4.5	1	1	1.0000	1.2
1 3172	6364	-				• • • • • • • • • • • • • • • • • • • •	***	
( ) ( 7 )	#J5	(	A1431.4C 31	1.5000-21	4.0	70	71	,,
00172	5114	•	11.2901+5.	1.1205-5.	1 1481-54	1.4055-5.	1.8835-5.	1.4795-5.
00172	5300	· r	71	7.	1.0000 31	10,036,021	77	78
0017	538*	•			13	1.4.4.1.5.6.	1.7865+5.	1.8005+5.
00173	550	C	79	1.3.1C 3.	11-246 21		1	1
07172	54.0	•	*1.8775=5.	1.9535-51	34	······································		
00177	64.4	¢			•			
00125	6414	•	DATA LUISI	ST(1) InhPI	11P1a3/			
00175	54	ć	1/5		117	118	- 119	120
00174	6460	•		1.8305-5.	1 412645.	201		1.4818-5.
00174	5 4 4	,	121	1	1. 120 00	• •		
00174	5498	•	3.1	2785+6/				
00174	6444	۲						
00174	6400	7						
00174	55.04		1966 STA	DARIS ATHOSE		ILY AT AD-DE	CREES NURTH	ALATITUDE
60174	66.4	ī						
60174	5524	č	•	RESSURE VA	UFC TANULAS	TED IN NILLI	BARS	
60174	55	č						
00176	55	-	DATA LPPS	STUD. INNPA	11.1.24217			
00170	555.	Ľ	1	2	3		5	<b>é</b>
00114	554.	-	*1+-110F3-	9+83462+	9.516224	9.23462.	8.9.052.	8.49252.
00175		ι	1	d	.1.10001	10	11	12
001/0	558*	-	18.41262.	84177524	7.91012+	7	2. 45 31 2.	7.22462.
r 76	550+	C	13		15	16	17	18
		-	• -				•	

.

1

;

ŧ

.

ļ

ı

ŧ

ţ

ı.

۰ ۱

.

ŧ

,

.

Ŧ

, I

,

.

}

•

00174	540*		R7+000E2+	6+51121	6.164EZ+	5+779E2+	5+414E2+	4.740EZ.
001 +	541*	C	19	25	21	22	23	24
00176	5+2*		X4+134E2+	3+59262+	3.10455+	2+477EZ+	2+301E2+	1.478E2,
00176	543*	C	25	2.	27	28	24	20
00174	544*		X1+700E2.	1.401221	1.25662+	1.080F5.	9.285211	7. <b>783E1</b> .
00174	565*	c	31	32	33	34	35	34
00176	546*		X4+064E1;	5.93261+	4.364E1+	3+22961+	2+398E1+	1.788E1.
60176	547*	c	37	38	38	•0	•1	42
00174	56R*		x1+338£1+	1*C05E1*	7.593EC+	5+775EO+	4+42160+	3.400501
00176	567*	c	43	۹.	45	4.0	₹7	48
00176	\$70*	•	12+040ED+	2.02/60.	1.00/60+	1.25450.	9.872E-1.	7+/426-11
00174	\$71+	C	49	5.0	51	52	53	34
00174	\$72*		X#+C72E~1+	4+7518-1+	3.7046-1+	2+87/6-1+	2.2166-1.	1.0146-11
00174	573+	C	55	56	57	59	57	00
00176	574+		X1+201E-1+	9.5766-2,	7,0756-2+	5+1+0E-2+	3./106-25	2.02/2-21
00174	\$75*	C	<b>6</b>	• 2	63	64	<b>45</b>	00 1.410(-1.
00176	576*		X]+82*E*2:	1.5.66-2.	8,3405-3+	2+2395-31	341415-31	204302-31
00176	577.	C	<b>e</b> 7	56	69	70		1.4857.44
C0174	578*	_	X1+010E=3+	E+C/5E-3+	7.2975-41	5+0276-4.	3.5.25-41	21452-41
00176	579*	C	73		75	76	// 4.00%5+5.	*******
00176	500		X1+/82E-4+	1+3105+	4.0845-21	1.033F-21	•••00*E=30	
00176	581*	¢	/*	90	8			
00176	202-		X3++01E-2+	3.55-21		201002-31		
00174	583*	C			D. Bunt/			
00200	584		UATA TPRSE		·31N-447-	1.1.4		120
00200	58.0		113		1 75 161.	LALISTON	8.7425-1.	4.857E-1.
00200	506-	c	121	1.22	123	1.119601	•••••••••••••••••••••••••••••••••••••••	••••••
00200	5070	•	FL-0755-7.		1.9785-3/			
00200	308-				11.100 01			
00200	589-	2						
00200	591+	č	DENSI	TY VALUES 1	ABULATED IN	KILOGHAMS	PER CUBIC H	ETER
00200	5520	č	•••••					
00202	5930	•	DATA INHOL	STELL, Landa	1. 4P421/			
60202	594.	C	1	2	3	۹	5	٠
60202	\$95*		x1+220EG+	1.19010.	1.161E0+	1+132FD+	1+104E0+	1+077E0+
00202	594 -	c	7		9	10	11	12
00232	597*		<b>x1+050€3</b> +	1+02363+	9_971E=1+	9+710E-1+	9+467E=1+	*+223E=1+
00202	598*	C	13	1.4	15	16	17	18
00202	599•		19.484E-11	E+521E-1+	8.077E-1+	7 · 6516 - 1 ·	7.244E-1.	4+51YE+1,
00202	600°	C	19	2 C	21	22	23	24
00202	401*		X5+849E-1+	5+231E-1+	4.063E-1+	4+142E=1+	3.560E-1.	3+0+05-11
00202	602*	¢	25	26	27	28	27	30
00505	۰03°		XZ+0311-1+	2+2616-1+	1.4445-1+	1+0/16+1+	117375-11	1+2336-11
00202	604	C	31	32	33	34	33	3.478E+2.
00202	005		XI+002E-1+	**1376-24	8.'SJC-21			42
00202	\$06 <b>*</b>	C C	37	- 8	3,4		4.0.15-1.	
00202								
DOZIC	6G7 •		41+4/46-2-	1	1.0836-2.	8+0415-31	8+U[J[-J]	40320 <u>[</u> -3,
	6G7* ♦Q≈*	د	41.4/4E-2.	1. 4691-2.	1.08JE-2. 45	8+041E=3+ 46	47	48 9.7325-4.
00202	607* 608* 609*	L L	x3+431E-J+ 43	5+630E-3+	1.08JE-2. 45 2.039E-3.	8+041E+3; 46 1+5842+3; 52	47 1+241E+3+ 53	48 9+732E-4, 54
00202	607° 608° 610°	c c	41+4/4E-2+ 43 X3+431E-3+ 49	2+620E-3+	1.08JE-2. 45 2.039E-3. 51	8+0412+3+ +6  +5442-3+ 52 1+8155-4+	47 1.24[E=3, 53 3.049E=4.	48 9.732E-4, 54 2.416E-4.
00202	607° 608° 609° 610°	נ נ	41+4/4E-2+ 43 X3+431E-3+ 49 X7+667E-4+ 55	\$+Cq2E-1+ 50 5+C70E-7+ 7	1.08JE-2. 45 2.039E-3. 51 4.814E-4.	8 + 0418 - 3 + 46 1 + 58 4 2 - 3 + 52 3 + 8152 - 4 + 58	47 47 1+241E+3+ 53 3+049E+4+ 59	48 9+732E-4, 54 2+416E-4, 60
00202 00202 00202 00202	607° 608° 609° 611° 612°	נ כ כ	x3+x31E=3+ x3+x31E=3+ x7+667E=4+ 55 x1+4986=4+	2+630E-3+ >0 6+635E-4+ Se	1.083E-2. 45 2_039E-3. 51 4_814E-4. 57	8 • 0 4 1 E + 3 •	47 47 1+24[E=3+ 53 3+0*9E=4+ 59 8+521E=5+	48 9+732E=4, 54 2+116E=4, 60 4-842E=5.
00202 00202 00202 00202 00202	607° 608° 611° 611° 613°		41.47752-2. 43 73.4316-31 49 77.6676-4. 55 71.60986-4.	1	1.08JE-2. 45 2.039E-3. 51 4.814E-4. 57 1.138E-4.	8 • 0 4 1 E + 3 •	47 47 1+241E=3+ 53 3+049E=4+ 59 6+521E=5+ 65	48 9+732E-4, 54 2+416E-4, 60 4+842E-5, 66
00202	607° 608° 609° 611° 611° 613° 613° 614°	נ כ כ	41.477622. 43 73.431673. 49 77.667674. 55 71.609674. 61 73.743675.	1.4092-2. 	1.08JE-2. 45 2.0J9E-J. 51 4.814E-4. 57 1.138E-4. 63 1.000E-5.	8 • 0 4 1 E + 3 •	47 1+241E=3+ 53 3+0+9E=4+ 59 6+521E=5+ 65 7+398E=6+	48 9+732E=4, 54 2+416E=4, 60 4-842E=5, 66 5+233E=6,
00202 00202 00202 00202 00202 00202 00202 00202 00202	607° 608° 609° 611° 611° 613° 613° 614°	נ כ כ נ	41.477622. 43 73.431673. 49 77.667674. 55 71.6098674. 61 73.5743675. 7	1.4692-2. 2.6302-3. 50 6.0852-7. 5. 1.4772-4. 57 2.5512-5. 66	1.08JE-2. 45 2.0J9E-J. 51 4.814E-4. 57 1.138E+4. 6J 1.400CE-5.	8 · 0 4 1 E - 3 ·	47 1+241E=3+ 53 3+049E=4+ 59 6+521E=5+ 65 7+998E=6+ 71	+8 +732E-4, 54 2+416E-4, 60 4+8+2E-5, 66 5+233E-6, 72
00202 00202 00202 00202 00202 00202 00202 00202 00202 00202 00202	6 7 ° 6 0 8 ° 6 1 0 ° 6 1 1 ° 6 1 1 ° 6 1 3 ° 6 1 4 ° 6 1 6 ° 6 1 7 °	נ כ כ נ	41.477622. 43 73.431673. 49 77.667674. 55 71.6098674. 61 73.43675. 73.444574.	1. *** 4 2 - 2 - 1 2. * 6 J 0 E - 3 + 5. 6 5. 6 5 E - 7 + 5. 6 1. * 7 7 E - 7 + 5. 7 2. 5 5 1 E - 5 + 5. 6 2. 7 2 4 E - 0 +	1.08JE-2. 45 2.0J9E-J. 51 4.814E-4. 57 1.138E+4. 63 1.400E-5. 69 1.54E-6.	8 • 0 4 1 E + 3 • 4 • 5 d 4 ± - 3 • 5 2 3 • 8 1 5 ± - 4 • 5 8 8 • 6 6 6 ± - 5 • 6 4 1 • 1 9 2 ± - 5 • 7 0 9 • 6 4 × C ± - 7 •	8+013E-3; 47 1+241E-3; 53 3+049E-4; 59 6+521E-5; 65 7+398E-6; 71 6+491E-7;	*8 *8 *732E=4, 54 2*116E=4, 60 4*8*2E=5, 66 5*233E=6, 72 4*3*E=7,

٠

ł

ŧ

.

1

•

.

ļ

I

ł

1

1

.

:

ł

,

•

ţ

ı.

,

,

t

ł

:

;

ORIGENAL PAGE DO

00202	418*	C	73	/ 4	75	7 <b>a</b>	77	28
00202	4194		x3+3178-7+	2.0335-11	1.4036-1+	1+0016-7+	7+3246-8+	5.4416-8.
20200	•2g*	C	7+	4.6		1 - 114		
00202	4214		##+0#1E-8+	3+1326-0.	34	*2++++2-#/		
\$0200	422*	£		•				
00204	423*		DATA LWHOL	STELL, LANPA	3+NP441/			
P0200	*24*	C	115	1	117	114	119	120
00204	\$25*	•	14.941E-11	1+3012-11	5.0078-21	1.49016-3.	1.0998-3.	8+6195-4
0020 ⁴	424*	c	121	122	123		• •	
00204	\$27*		#2+1506-5+	1+4656-5.	4.26.74-6/			
00204	4284	C	••••					
00204	429	Č						
00204	430*	Ċ	SPEE	D UF SQUND	WALVES TANK	LATED IN HE	TERS PER SE	COND
00204	4314	C						
0020÷	632.	-	DATA ISONI	STELL. LENPS	1.0094217			
00204	631*	C		2	1	-	5	•
00204	43	•	£390.5.	339441	1.8.8.	117	117.0.	114.2.
00204	435*	L	7	8		10	11	12
00204	434*	-	8315.9.	119.6.	1.1.7.	112.4.	112.0.	11141.
00204	A37*	t	13	1	15	1.	17	18
00204	438*	•	#310+1.	128.4.4.4	1.4.9.	125.2.	123.5.	319.0.
00204	4384	c	19	2		343.44	323434	
00254	410*	•		11010	343.51			
00204	49.9	c	***	310-01				
00204	44.94	•			12010			
50204	4.4.4.6	•	~		[4-34		16	
00204	48	•	•			101 7	101 2.	305.1
60204		٢	- <u>1</u> 2	3.0		301071	3031/1	303171
60204	4444	•	#307.8.	109.4.	37	317.1.	120.4.	178.5.
00204		r	a )		212020	21/010	320141	
50204	• • / •	•		**	45	•••		
0020-		r	X.J.Z.V.Z.)	376.41	332+2+	373.21	2*333	**
00200	45.4	•		30	>1		21	31
00404	•>0-		#333401	330.41	390+21	324+4+	317424	313+3+
00200		•	33	34	57	58		•0
00204	4524	•	Kaŭtaat	301-3-	242+01	208071	242+2+	2/5+6,
00204	•5 ]• •5	•	• 3 4 H • A •	• 2		•3 • •7		
00200	034		X . 00 . 01	201041		3.522.01		
		•	-			/0		
0020-			<b>x</b>	257141	543+1+	2/0+2+	2/3+2+	290+[+
00200	657*		73	14	75	76	11	/8
00200	458*	•	X28/+5+	301-1+	314.51	326.71	738.01	350+8.
00200	454.	Ľ		•0		1 - 114		
00200	660*		#392+21	3/4+4+	34	*3*3+2/		
00200	661 ·	C.			<b>.</b> .			
00210	44 <u>2</u> 4	_	DATA ISON	ST[[] _b ]onP4	3+4441/			
00510	6434	C	115	114 *	117	114	- 120	
00510	86 N *	-	¥701.e*	5+ 100	• • •	3.	333+11	
00210	445*	Ľ	121	122 -	123			
00210	444.	-	X258+J1	2+255	• 07			
00210	447*	L.						
00210	468*	ç						
00510		Ē		VIS	CUCITY CUEF	TICIENT		
00210	<b>♦76</b> •	C	,	ALUES TABUL	.ATED IN KIL	UGHLNJ •EX	HETLH PER S	DECONU
00210	47L*	C						
00212	472*		DATA LVISI	STI1,1=NP4	11+484217			
00212	6734	C	1	2	3	٩	5	\$
00212	674*		x1+791E=5+	1+7848+5+	1.7776-51	1+7706-3+	1+7438-5+	1+756E-51
00212	A76.	(	7	8	9	10	11	12

Ī

1

1

ŀ

₽

ļ

51500	474*		x1+744E-5+	1+7+22-3+	1.7352-51	1+7242-5+	1+/218-5+	1-7158-5.
00212	477*	C	13	1.4	15	1.	17	18
00212	47×*		X1+7C#E=5+	1.0946-5.	1.4862-5+	1.0005-5.	1+4528-5+	1-6168-5,
00515		L	1.*	20				
00212	680*		X1+580E-5+	1+5436-5,	1,500£-51			
00212	481*	¢	_		22 - 3	3		
60212		_	X		13+1+46	8E-5,		
00212	¥03.	¢				34	35	36
00212	6 <b>4</b> 4 *	-	1			1.4786-51	1+4455+5+	1+20/5-21
00212	485*	Ç	37	38	39	40	41	42
00214	****	c	x1+523c-51	1.2346-21	1,3012-31	1.0025-31	[10][-5]	- 48
00212	48.4*	-	11.4908-51	1.7176-5.	1.7216-51	1+7146-51	2•1•	7368+5.
00212		C	.9	5.	11·25	62	51	54
00212	49.04	-	11+7305-51	1.7106-51	1.69 16-51	110036-51	1.4176-51	1.5698-5.
00212	A71+	c	55	54	57	58	59	•0
51500	6924		11-5218-51	1.4726-51	1.4218-5+	1+3701-5+	1.3186-51	1+2858-5.
00212	693+	C	<b>61</b>	6,		- <b>د</b> م	67	• • •
00212			x1+211E-5+	1.1566-5.		5+1+1	02E-5,	
51500	695.	C	•	68	69	70	71	72
51500	694.		X	1 . : 41 8-5.	1.1828-5.	1+2226-5.	1.2626-5.	1+302E-5.
00212	697+	C	73	74	75	76	77	75
00212	67A*		x1+340E-5+	1+47cE-5.	1.576E-51	1+6792-51	1.7778-5.	1+875E-5.
00212	699.	C	79	80.	8	1 - 114		
00212	700+		XI.995E-5.	2.111E-5.	34	+2+222E-5/		
00212	701*	C						
00214	702*		DATA LVISL	STELL, LENPA	3+NP44)/			
06214	703*	C	tis	116 -	117	114	- 120	
00214	704*		X1+524E+5+	2+1+4	148 ₆ -5,	•د	1.7368-5.	
00214	705*	C	121	122 -	123			
80514	706*	-	X1+129E-5+	2 • 1 • 1	025-51			
00214	707*	C C						
60214	708*	C C			T. D			
00219	7044			1,90 3	AT AN OFCHE	ES NONE FUR	* * *	
00214	/ . 0	, L		JANUARY	AT 00-014-1	CS NORTH LA	TITUDE	
00214	7:30	č	م	RECSULAE VAL	UES TARULAT		4 + P 5	
002:4	71.58	ī	•	WEDDAKE		en te ofect	<b>BH</b> A <b>B</b>	
00214	713-	•	DATA (PRSI	57[1] 1=N05	1. PS21/			
00218	7	C	1	2	3		c	
00214	714	•	x1+01350F3+	9-8-04F2+	9.48%62%	9.1745.24	8.87852.	8.59082.
41500	717*	C	7	8	•	10	11	12
00214	718*		X8.310E2.	8.03862.	7.775621	7+51962+	7+27182+	7.03122.
00214	719*	C	13	14	15	16	17	10
00214	720*		26.79422:	4+3>262+	5.932621	5+534221	5+158E2+	4.467221
0021	721+	C	19	20	21	22	23	24
00214	722*		#3.453E2.	3+30452+	2,829621	2+41862+	2+047E2+	1+746EZ1
00214	723*	C	25	26	27	26	24	30
0021	724+		11.510EZ,	1+29122+	1.10362,	9+43161+	8.050El.	6.882E1.
00210	725*	C	31	ړد	ננ	34	35	36
00214	726*		X5+875E1+	5+01461+	3,647El:	2+649611	1+92281+	1+39861+
00214	7270	C	37	38	39	*0	41	42
00510	728*		\$1+020E1+	7+40463+	5.479E0,	4+041£0+	3+00150+	2.24360.
00516	729•	Ĺ	43	* 4		46	47	* A
00216	73-1*	-	#1+657E0+	1+27763+	9.7148-1.	7+4346-6+	5.7198-1.	4.4146-1,
00216	731+	C	47	96	51	54	53	54
00210	732		13+404F-1+	2+629L-1+	2.0215-1+	1+5481-1+	+   +   +  -   +   +   +   +   +   +	V.050E-2,
00210	731.	<u>ر</u>	55	24	57	58	54	50

T

1

I

ł

1

Į

ł

1

ł

A-91

00214 734* 24+4045-21 5+2116-21 4.017E-2+ 3+0516-2. 2.3948-21 1+7356-21 00210 735* L .5 ..... • 2 .... ... .... 00214 734* 2781-2 9+641L=3+ 7.1528-11 5-2036-30 3.851E+3. 2.800E-J. **E** 1 737* ¢ 48 49 70 71 72 00210 00210 734* 12-0225-31 1.0616-34 7.7621-41 5.7156-41 4.2348-4, 1.4001-3. 00214 ,3++ 749* C 73 11 78 7 . 75 76 R3+155E-41 2+3756-41 1.8072-41 1+3896-41 1.0786-4. 8.4356-5. 741+ C 79 89 81 - 114 00214 34+4+402E-5/ 742+ 00214 80.0918-5. 5+39 18-5 00214 7439 C 002200 DATA (PRSESTEL), 1+NP53+4P541/ 00220 745+ C 115 117 114 114 110 120 746* 3.8796-1. 00220 13.04012. 1+911E2+ 3.109E1+ 6+514E-1+ 5+02*8-1+ 747+ 748+ 002200 C 121 19+319E-3+ 123 2.381E-3/ 122 6+199E=31 002200 00220 749+ C C 00220 750* TULATED IN KILUSPANS PER CUBIC HETER 00220 751+ c DENSITY VALUES 00220 752* C 55500 753* DATA IRHOLSTIII, 1=NPSI, NPS21/ 00222 7540 c 1+19360+ 00222 755+ A1+372E0 1+32510+ 1.27980. 1.23560. 1+158E0. 11 00222 754* C 7 . 10 12 9 00222 757* RI+123E0. 1.058E0. +++55E=1+ T-454E-1, 1.07010. 1.024FD. 00222 13 17 18 758* C 14 14 15 759* X9+366E-1. 7-4578-11 00222 8.339E-1. 7+888E-1 4+446E+1 8+80AL-1 19 23 ¢ 760* 00222 20 21 22 24 x5+904E*1+ 00272 761. 5+2248-11 4.5396-11 3-8796-1-3+315E-1+ 2.8346-1. 55500 762* C 25 26 27 28 29 30 743* 12.4226-1. 1.3006-1. 00222 2+0711-1+ 1.770L-1. 1+5176-1 1+113E-1. 764* 00222 ¢ 31 32 ננ 34 35 34 5.9661-21 745* x9+530E-2+ 8+154E=2+ 4+357L-21 3+1578-21 2.2756-2. 00222 766* 42 00222 C 37 39 1 38 40 7674 X1+445E-2+ 1+1938-21 00222 8.6742-31 6-2648-3. 4-5512-3. 3+330E-3. 55500 768. C 41 45 44 47 48 12.4535-31 1+019E-31 1.3571-3. 769. 5.9116-4 1+010E-3. 7.6828-4. 22200 77₀• 00222 C 49 50 51 52 53 54 77 i • 3.5598-4. 2.7746-4. 00222 2435645-41 2-1505-41 1.4518-4. 1+2668-4. 00222 772* ٢ 55 57 59 58 58 .0 00222 773+ 19.708E-SI 7+4356-5. 5.7018-51 4.4086-5 1.2028-5. 2.5998-5 774+ ¢ 6 I ٥z 65 6 5 00222 .... 63 x1+981E-5+ 1756 3+357E-6. 4.7178-6. 00222 1.5018-5. 1.1346-51 8.514E-4. 00222 776+ ¢ 67 6 R 49 70 71 72 1.7576-61 9.0932-7, 1770 A+607E-7. X3+480F~61 60222 2-4072-61 1+240E-4. 77 778* 74 73 78 00222 C 75 76 1+8+16-7. X4+805E-7+ 3+4796-71 2.5508-71 1.417E-7, 770* 1.0476-7 00222 00222 780* ¢ 79 80 81 - 114 00222 781* X7+890E-8+ 5+9501-81 34+4+5672-8/ 00222 782+ ¢ 00224 783+ DATA ERHOLSTELT, LENPS3, NPS41/ 00224 784* 116 ¢ 115 117 114 119 120 785+ 14+4045-1+ 3+045E-1+ 8+837E=41 4+728E=41 5+1948+4 00224 5.1002-21 00224 786. 121 122 123 ζ 787* x1+307E=5+ 9.8361-4. 00224 4.0558-4/ C 00224 788* 00224 789* C SPEED OF SUUND VALUES TABULATED IN HETERS PER SECOND 90224 79.7* C 00224 791+ c

1

1

1

5

4

ţ

ł.

00224	772*		DATA ISON	LSTITITEMPS	11NP521/			
00226	79.10	C	1	2	<u>ر</u>	•	5	۵
00224	794+		x321+0+	321.91	322.21	322+5+	322.0,	322+3+
00224	794.4	C	7	8	•	10	11	12
00224	794.		#321+0.	121111	3	320+3+	319.8.	319.3.
00224	797+	c	1.1	1.	15	14	17	18
00714	79.4			1,7,7,	1.5.4.	111.9.	· · · · · · · · · · · · · · · · · · ·	101.8
00226	79	C	19	2.	210101	2124-1	27	10-1-1
00220		•	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	•0				
0922-	°00	•	X 205.21	2		,	3.11	14
00220	001	•	-			28	294.4.	30
0022	802-	C	A 31	1.	11	34	15	34
00124	•03	-		101.4	7.4.	291.7.	291.9.	291.1.
00224	805.	c	17	14	246787	40	41	47
00224	805	•	* 7 9 4 . 7 .	1944.0.0	707.0.	100.5.	101.8.	107.1.
00224		r	A2	<b>2</b> .0.0.	2 <b>4</b> ' • • • •	300+31	.7	
00224		•	***	111.0	73	318.3	122.8.	121.3.
00220	6 () M -	r	N 2 1 U + 2 +	313421	210.01	314414	222.01	323133
00224	834-	•		20	51	34	33	34
90224	\$10*	_	X 7 5 7 * 7 *	321+6+	319.3.	317.5.	310.9.	316.3.
00220	811.	C		56	57	50	54	<b>6</b> 0
00224	612*		x315+7+	315+0+	31"+1+	311+3+	308.5.	305+7+
00224	<b>#13</b> .	C	<b>♦ i</b>	62	63	64	65	6.6
0022 <b>6</b>	814*		¥302+8,	300.01	297+1+	294+2+	291+2+	288+2+
00226	815*	C	67	68	69	70	71	72
20224	#14 *		x285+2+	287+8+ /	290+8+	293+7+	294+4+	299.5,
00226	817*	C	73	74 *	75	76	77	78
00224	818 *		X303+5+	309+2+	3,5.0,	320.7.	325.4.	332+6,
00224	914+	c	79	8 ₀	(	81 - 114		
00224	#20*		X344.6.	356+1+	3,	4*367:3/		
00224	821*	C						
00530	822*		DATA ISON	LSTIII, INNP	53+NP541/			
00230	823*	¢	115	~ 116	117	1,8	i1♥ •	- 120
00530	824*		x 2+2	95.4.	202010	321+3.	2+32	23.3,
00230	825*	C	121	122	123			
00230	826*		X298.5,	295+41	286.7/			
00230	\$27*	c						
00230	828*	¢						
00230	#29 €	¢		V 1	SCORITY COL	FFICIENT		
00230	830.	C		VALUES TABU	LATED IN RES	OGHANS PER	HETLR PER S	SECOND
00230	A31+	c			• •			
56500	832+	_	DATA EVIS	LST(1), ISNP	51. 495211			
00232	8334	c	1	2	3		5	
00212	834*		X1+636E-5+	1+6346+51	1.6478-5.	1.6545-5.	1.4978-51	1.6415-5.
00232	836.	c	7	8	9	10	11	12
00232	834*	•	*1.6395-5.	116346-51	1.4305-51	144745-5.	1.4225-5.	1.4185.5
00232		(	11	1	110101	1.0200.001	17	111110
00232	8344	•	*******	114755451	13	1+5701-5.	1.5575-5.	1.514696.
00131	0 3 0 0	,	10	1.0335 21	113000 31	1-3/02-31		112105-24
00232	8 1 4 - 8	Ľ	17 91-8837.85.	40 1.1 # # 1.5 = 5		, 21	· 2/	
00232			X1.4005-21	1.4.35-31			276-31	
00232			_			20		10
00232	8-2-		*	•		117211-31	1.101-31	1+*132*3+
00232	8	Ľ	33	32	33	34	35	36
00232	8444	-	x1+*11E*5+	1.4085-21	1.4016-21	1+3425-21	1+3405-2+	1+4076-5,
00232	h a d	C	37	JA	39	40	41	42
00232	<b>**</b> **	-	x1+41#E=5>	1+4298=5;	1.4402-5,	1+4642-5;	1-4928-51	1+5198-5,
00232	847*	ſ.	43	44	45	46	47	48
00232	84A •		x1+545E+5+	1+5716-5+	1.5968-5.	1.6222-5,	1+6478-51	1.65(E-5,
00/35	849*	C	49	ט ג	51	52	53	54

ł

.

ţ

, ł

1

I

ł

A-93

<u>،</u> د

.

,

ł

ł

,

ţ

}

,

66535	850*		11++518+5+	1.4376-5.	1.4]88-5,	1.6046-5.	1.5998-5.	1.5946+51
00232	85. *	C	55	5.	57	58	ς <b>γ</b>	•n
00232	85.2*		*1+5396+5+	1+5016-51	1.5756-51	1.5516-5.	1.5108-5.	1.5078-5.
00132	45	C	A 1	1 - J=	4.1	1.2224	A 6	
00212		-			1 4345-5.	1.4.4.4.4.4	1.1015-6.	1.3475-5
00232		•		1	1	11111-21	1.3.12-31	
00232	035.0	•	• • • • • • • • • • • • • • • • • • •	•8	87 	10	/ 1	
00232	334-		¥[+]+35-31	1.2030-21	[.38/2-31	1.4115-21	1.4346-21	1+4285-21
60232	857*		73	14	75	76	77	78
00535	824.4		X1+40/2-5+	1+2795-21	1.5836-5+	1+#306~5+	1+674t-5+	1+7278-5+
00535	85**	C	79	⁶ 0	6	91 - 114		
00232	84g*		X1+824E-5+	1.9196-5.	• ٤	+32+0118-5/		
00232	841*	C						
00234	862*		DATA LVISL	STIL: J=NPS	31NP541/			
00234	863*	C	115 -	114	117	114	119 -	120
00234	864 *		x 2+1+	4248-51	1.3986-5.	1+6346-5.	2*1+	4518-51
00234	865 *	C	121	1.72	123			
00234	844*		\$1.45DE-5.	1+4248-51	1.3556-57			
00214	8478	C		1	110031 40			
00214	84.54	è						
00234		è		104		FRENER . THO		
00234				1493 6414	CLE AND HER	CHENCE ATHUS	FNERE	
00234	•/ŋ•	L L	_					
00234	•/1•	C	۴	RESSURE VAL	UES TABULAT	LED IN WILLIE	LARS	
00234	872+	C						
00234	873*		DATA (PRSL	ST[]],[=NP4	11NP621/			
00234	874 *	C	1	2	3		4	5
00234	875*		XI+0170147E	*3+*+#82937	36+2,9+4022	1451E+214+328	0844E+2.7.	0403418E+2+
00234	874*	C	6	7			9	10
00234	877*		18.7989596E	+2+8+543857	35.2.8.2949	4305+2.8.052	1168E+2.7.	81527288+24
00236	878*	c	11	12		3	14	15
00236	877*		x7+5843002F	+2.7+359084	nr+2.7+1395		78695+7.6.	11517456+2.
0013-		,	14		00			31317 32 21
00236	88.*	L.	+5. 41170504	+ 7 . 5 . 5 7 . 4 3 4	8=.2	9.7647.8.78	17 1968643 3.	20 26 33, 80543
0023-			X31.33.030E	21212111	-5+514004	······································		19320406-21
00235	8924	L.		44	r		24	25
00230	903-		13.10110016	-2.5.85//22	26+5+5+4717	1446.5.5.040	ASATE.511.	78610682+21
00236	884*	c	26	27			29	30
00230	885.	-	X1+5144024E	*2+1+2#52#5	6E+2+1+0411	3416+2,9+225	26428+1.7+	8077365E+1+
00539	884.	L L	31	32	]	13	34	35
00234	887*		X4+6260072E	+1+2+431292	2E+1,4+0899	191E+1,2+941	87592+1+2+	20381598+1+
00230	88g *	č	34	37	3	8	38	40
00236	889•		x1+6327363E	*1+1+214627	36+1,9+0905	J80E+014+842	9914E+0.5.	18071842+0+
00236	<b>89</b> 9	C	41	42	•	13	44	45
00234	891*		13.9447995E	*0+3+ <u>2</u> 20918	0E+0.2+3262	4118+0+1+800	45136+0.1+	39947812+01
00236	892.	C	46	47	•	8	49	50
00234	893.		x1+C910568E	+0+8+518021	SE-1.6.6343	11978-115+155	.3130E-113+	98520598-1.
00236		ç	51	52	9		54	55
00230	87		13+66511436	+1+2+144208	2E-1.1+7618	4668-1.1.345		0084974F-14
(0716	89	C	54	57			E9	40
00236	8979	•	*7*50591285		75 2.4.0574		37 87885=3.3.	1300433643.
00216	894*	c	A	<u>x</u>				12000235-21
00234		-					8	• 3 • • • • • • • • •
00234	0.7.	,	**********	*+1-Dec-20			~~!>=-3+3+	37]7/[9L*3+
00436	900-	<u>د</u>	66 	<b>67</b>			67 533. main 1	70
00110	7017	-	***********	- 3+ 7+ 7 4 4 3	-F-3+1+X001		3/212*416+	03304236-41
00239	405.	C	71	72		' J	74	75
00230	A03.		X4+3+44/FIE	-4+3+124213	DE= 4 . 2 . 3253	17356-411+735	11486-4+1+	31110398-41
00236	904*	C	76	77	,	. 8	79	A D
00236	905*		x1+C022554E	-4,7,743898	0E-5.6.0494	·757E-5+4+828	0073E-5.3.	91452328-51
00236	9 D A *	L	81	82	E	17	8 4	A 5
00236	* t g *		x3+2082435E	-5+2+659771	02-5-2-2377	4145-5+1+914	19138-5+1+	65993458-5.
					-			

A-94

1

,

1

1

1

ï

DRIGINAL P.W. OF POOR QU

00236	908* 908*	C	86 81145608776-6.	87 1		<b>U 9</b>	90
00234	9104	ć	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	*[.12%%a2Qf.2	11.03040505-2	14.345255646-61
00236	•11•	•	10.55616411-4.	7.03459110 4	73.7044944544	**	<b>95</b>
00214		r				15 03003395-0	•••1/1/0/*E=6/
00240	<b>•</b> 1.1•	•	DATA IPRSICTI				
00240	91u.	¢	•	47			
00240	915*	•	15+74173934-61	51.5849436-6	90 . 6 . 0 1 76 36 7	99 	100
00240	9149	~				14101001215-0	144412/4236-01
00240	9,7*	L.		104	101 	107	105
00240	918-	C	104	107		13-15305345-0	12100211135-01
00240	9 9 9 4		12+5279174L-A1	2+28294528-6.	100 	107	110
00240	₹2 ₀ •	C	111	112	113	114	11.0.7.1.1.2.01
00240	921.		x1+5518716E-6+	1 . 4 150844E-6	1+2921892E-6	11.263445AE-A	
00240	922*	C	115	E10	117	118	· · · · •
00240	*2 <u>1</u> *		x3+5024639E+2+	2+ 25874596.2	3+44493046+1	· 9 · 6 365 n 27E - 1	1715234920E+1.
00240	924*	C	120	121	122	123	
00240	925*		#5-8534791E-1+	8 • 9 4 9 9 4 0 1 E - 3 .	6+23558 0E-3	12+06961556-3	1
00240	<b>#24</b> *	C				• • • • •	
00240	927+	C	•				
00240	<b>#28</b> *	C	DENSITY Y	ALUES TABULAT	ED IN KILOGR	AHS PER CUBIC	METER
00240	929*	C					
00242	<b>#</b> 30 <b>*</b>	_	DATA ERHOLSTE	[],[=NP6]+NP6	21/		
00242	931*	¢	1	2	۲	4	5
00242	*32-		X1+1032491E+0+	1+1573534E+0.	1+13120456+0	1+1051789E+0	1-07934622+0+
00242	* 3 3 *	L.	6 	7	•	9	10
00242	• 3 • •		X1+0211080E+0+	1.02844226+0.	1+0035470E+0	++7902801E+1	9.5490568E-1.
00242	• 34 •	C C	11	12	13	14	15
002+2	• • •	,	X	.000342E-11	8+85254818-1	8+4122243E-1	7.99154628-11
00242	9.14*	•	10 17.59044476	17 7	18	19	20
00242	• 30 •	c	21 X····	··?U0+2/3E-11	9.4403435E-1	5+85351532-1	5+2651#17E-1+
00242	9 4 . •	•	19+7249382E=11	22 11.2558605-1.	23	24	25
00242		C	26	27	30,030,7,5-1	-3-330%1%0r-1	2. 2322185-11
00242	942+		X2+54324376-11	2119203265-1.	1.87178855-1.	47 	3U 
00242	943+	C	31	12	11	, 1 4 3 6 4 3 6 U I C - I	11+32345105-11
00242	944+		AL+1096236E+1+	·	6+6193250E-2	37 4+74388988-2.	
00242	945+	C	36	37	38	10	#0
00242	**6*		#2+5119029E-2+	+A334060E_2.	1+3457797E=2	9+9301028E=3	7.14541705-1.
00242	9478	¢	41	42	43	44	45
2+200	948 •		x5.4934199E-3.4	·· 1 220200E-3,	3+11347158-3	2+36845598-3	1+81515446-1.
00242	949+	C	46	47	48	49	50
00242	*5e*		XI+4015768E-3+	+0965534E-3,	8 . 65267238 - 4,	6+8253221E-4	5+37546848-4.
00242	<b>451</b>	۲,	51	52	53	54	55
00242	452.		X4+22274576+41	1·3048920E_4.	2+57452338-4.	1.9944483E-4,	1-53525398-4,
00242	453.	L.	54	57	58	59	<b>6</b> 0
00343	*54*	,	X1+1734236E-4+1	1.88442675	6+6949356E=51	4 • 9 9 3 5 4 9 0 E - 5 .	3+49234038-5+
00242	953	L.	51 • • • • • • • • •	±2	63	64	45
		~	12+/00/3876-51	*9677466E_5.	1.41944026-5.	1.00042548-5.	6+9258360E-6+
00242	954		60 	67	68	69	70
00242	0500	ť	- x ** / * * / * 0 () 2 * 8 + ) * *	·· 32130052-6.	2+24042288-6,	1+53046162-6,	1+05799978-6.
00242	96	•	/ l 	12	73	74	75
00242		c	R' + J ' 4Z' Z * 6 = / 13	··225*575E=/,	3+01/30801-7.	2+62067118-7	1+89796848-/,
60242	96.2*	•	***	//	78	79	80
00242	9610	c	81 81	-034170362/1	/+>J*21#2E=8+	5+606565/E=8:	4+25290206-81
00242	964*	-	13+28092786-0.	20 20 20 20 20 20 20 20 20 20 20 20 20 2	83 94677	84	85
Co2+2	965.	c	86	42 	1+++>//486+81	1.2133144r-8*	1+20309466-8+
-			• -			8.4	40

i.

۶

ī.

ł

ł

1

1

i 🗤

1

ł

ł

C	••	87	88	89	<b>9</b> 0
	#1+45408726-54	1+28984176-5,	1+15220506-51	1+03694268-5.	9+39252045-6+
C	• 1	*2 ⁻	93	94	95
	19-319959555 + AX	7+8345911E-6	7+20669445-6.	6 6566336E-6.	4+17170795+4/
τ			• • •		
	DATA IPRSEST	11.1=NP43.NP6	5437		
C	96	+7	98	99	100
	x5+74173936-61	5+3584943E-6,	5-01203678-41	4+69863578-61	***1274238-61
c	101	102	103	10*	105
	24+15173778-6+	3 . 9 1 204962-61	3.48863992-6,	3+12302346-61	2+8-599938-41
C	104	107	108	109	1.0
	X2+52791746-61	2+24294526-6,	2+04452258-41	1.8747980E-6.	1+70437198-61
C	111	112	113	114	• • • • • •
	X1+551#716E-6+	1+4150844E-6,	1+2921892E-6.	1+26344568-6.	
C	115	E 16	117	118	
	X3+50246396+2,	2+ -5874596.2.	3+49493046+1.	9-63650275-1.	7.52349205-1.
C	120	171	122	123	
	#5-8534791E-1+	8	A+2355810F+3.	143	
C	• • •	0.2200	0.101.01.01	2.00.01225.31	

2

1

I

٠

l

ł

!

t

:

.

.

•

•

c. .

`---

.

τ

:

I

٢

A-95

00242	946*		x*+7424*83E=*+8+g14608*t=*+6429564E=*+5+634713	6J72426E++.
C0242	5474	L	VI V2 V3 V4	95
00242	968*		x4+1362113E-9+3+5#81386E_+,3+1356758E+9+2+7585267-	
00242	769*	C		
00244	<b>#70</b> *		DATA (MHULST(1), I=NP63, NP64)/	
00244	<b>#7</b> 1*	C	96 ¥7 98 \$ <del>9</del>	100
00244	972*		x2+1726345L=9+1+9431403E_9+1+7627216E=9+1+6037353E=9+1+	46315208-93
00244	• ۲ 7	C	101 102 103 104	
00244	9744		x1+3383898E-9+1+2273083F-9,1+0562018E-9,9+1375313E+10+	
00244	975+	ſ	105 106 107 108	
00244	974.0	•	17:98202951-10. 2:030252.5-10. 4.2101A0210. 5.5011415	
00244	9774	r		
002##		•	107 110 111 111 111 14486737114010, 0.363708.co.u. 1.91670040010, 3.6196737	5-10
		-		2-101
00244	98	L.	110 115 110 110 110 110 110 110 110 110	<b></b>
002 **			xasterenie int 3.00,210%E-101 41,01321E-11 31242920%E	-11
00244	401-	Ľ		
00244		_	x>+>+>1114+L=Z+ 1+234/4/4E=3: ++/4035/2E=4: /+685/846E	. – 4 .
30244	493.	C	121 122 123	
00244	<b>#84</b> *		x1+6728017E-5+ 1°2023770E-5+ 3+9910710E-6/	
00244	985.*	C		
00244	487.	C		
00244	987*	C	SPEED OF SOUND VALUES TABULATED IN METERS PER SE	COND
00244	98A*	C		
00244	<b>989</b> *		DATA (SONLST!!), I=NP61, NP421/	
00244	****	C	- 1 2 3 4	5
00246	<b>*</b> • <b>1</b> •		x3+4685752E2+ 3+4577091E++ 3+4474100E2+ 3+4375477E2+ 3+	428197282.
00246	997*	C	6 7 8 <b>9</b>	10
00244		•	13+419137552+ 3+41035275++ 3+401781452- 1+341344452- 1-	1360566672.
00344		•		
00244				13
00240		_	Y2+2+=001551 2+3ea2a+55+ 2+2e055+ 3+321+255+ 3+	7547303511
00244		C	[●  / ;/ ;/ ;/ ;/ ;/ ;/ ;/ ;/ ;/ ;/ ;/ ;/ ;/	32
00244			X3-30-32-1221 3-20-1-10221 3-24-1-1221 3-205/4-2221 3-	1941021621
00246	99A.	ç	21 22 23 24	25
00246	444.		x3+1103#36E2+ 3+0+39732E2+ 3+0115374E2+ 2+9454540E2+ 2+	<b>*25000482</b> +
00246	1000	C	26 27 28 29	30
002+6	1001		x2+#922838E2+ 2+8640521E7+ 2+8565248E2+ 2+8552323E2+ 2+	8723842E2+
00246	1002*	C	31 32 33 34	35
00246	1003.		12+689707662+ 2+9075108E2+ 2+9419972E2+ 2>9721502E2+ 2-	9944127E2.
00244	1004*	C	36 37 3N 39	۹0
00246	1005*		x3.0144194E2, 3.0454824E, 3.0751834E2, 3.1060615E2, 3.	1380529E2.
60246	1004*	C	41 42 43 44	45
00246	1007*		13+1706789E21 3+231579E21 3+2342147E21 1+2622854E2+ 3+	265+14522.
0.246	LOOA.	C	44 47 48 49	50
00246	1000		x1+101255762. 3++9775506++ 1+277559562. 1+25184525 + 3+	2216108F2.
00246	1010*	c		55
00244		-	*1+18779m7F2+ 3++512518F++ 3+112794mF2+ 3+m73130MF2+ 3+	
00244	1011	r	Karlan, Ardin 2. 1915220534 24115 - 20554 240,21204654 24	0320730221
00244	1012	· ·		00
00240	1013	,	XX++, X2X036 %+ X+43X+02063) X+41X040263+ X+8136023654 X+	03517//621
00240	1014	L		<b>\$</b> 7
00440	1015	-	#2+494	4122E2,
00246	1016	Ç	68 69	70
00246	1017*		X 2+738791962+ 2+782464062+ 2+	8254611E2.
00246	1010.	C	71 72 73 74	75
00246	1017*		x2+867913622+ 2+909549752+ 2+977810282+ 3+044540782+ 3+	1098395821
00246	1020*	C	7 <b>6</b> 77 78 79	80
00244	1021*		x3+173795262+ 3+236487467+ 3+358362562+ 3+475967;E2+ 3+	5897208E2.
00246	1022*	C	A) d2 83 84	85
C0246	1023*		13+6999789E21 3+4073451E21 4+0126162E21 4+2081570E21 4.	3950065E2-

l,

}

1

1

ł

į

I

1

ţ

A-96

ł

00246	102	C	36	87	8.7	89	90
00246	1025*		x4.574229812.	4.7466910L	4+9131-21621	5.074058527.	5+230043782.
00244	1024*	C	91	92	9.1	44	95
002**	1027*		15.381548312.	5+528884162+	5+67 - 942821	5+6123 2nE21	5.94"0377E2/
20240	1024*	C		•	-		• • • • •
00250	1029*		TATA (SONLST)	11.1=NP63.NP	N41/		
00250	10370	c	96	97	9 3		100
00250	1031.		X0+0826' \OL2+	6.7133/02521	6,3096486E2.	6.404.44022.	6 . 4979 159E2.
00250	10320	L	101	· o 2	163	104	1:05
00250	1033*		10.20,20,20,20	6+200-198, 31	6+8001215r2+	6+1173079FZ1	7+0153775521
00250	1034*	C	106	197	108	109	110
00250	1035*		x7+0951229t2+	7+1739818E21	7+2519035621	7+3291548E2.	7 . 39 46609 22,
00250	1034+	Ĺ	111	:12	113	114	115
00250	1037*		x7+4488092L2+	7.502568427	7+5559417E2+	7 . 5092207E21	3+1349187E2+
00250	1034.	C	116	117	118	119	120
00250	1034.		X2+9579332E2+	2+9577557E2+	3+305453782,	5+288411962+	3+265328362,
00250	1040*	C	121	122	123		
00250	1041*		x2·7368>4962.	2+6545229E7+	2.6944122621		
00250	1042*	C					
00250	10434	C					
00250	10444	c		V15C0511	TY COLFTICIEN	7	
00150	10-5-	Ľ	VALU	ES TABULATED	IN KILOGRAMS	PER HETER PE	R SECOND
00250	046.	c					
09252	10470		DATA CVISLATI	[], [=NP61, NP6	21/		
00252		Ľ	1	2	3	4	5
	1044-	-	X1+87054316-2+	1+822415/E-5	1.8144444E-2	1+80792998-5	1+#G11441E=5+
00754	1750	L.	• • • • • • • • • • • • • • • • • • •	7	4	•	10
00252	10510		X1+//32850E-2+	1+70814+1E-5	1.1.814361E-2	1+7757524E-5	1.1.76960428-5.
0.7252	1051	· ·	11	12	23	14	15
00252	10540	c	18	1.13.20.05-31	1.1.21013.5-24	1.101.115.2	11.72482452-51
00752	1055*	-	#1+71076210+5+	1144592195.5.	19	17	20
00252	1056.	c	21	22	23	24	1127022172751
00252	1057*		x1+55092441-51	1+51080965-5.		27 	23
00252	1054*	C	23	27	28	29	30
00252	1059*		x1+3745403E=5+	1+15535901-51	1+34579581-5		1.1.1585 1845-C.
00252	1040*	c	31	32	33	34	15
00225	1041*		X1+3724675E-5+	1+38179778+5,	1.41459446-5.	1+4389370E-5	1+45871028-5.
00252	1042*	C	26	37	38	39	40
00252	1043*		11+4748972E=5+	1+4982730E-5,	1+5223539E-5	1.54741608-5	1+57340806-5:
00252	1064*	Ĺ	41	4 2	43	44	45
00252	1045*	-	X1+59995746-51	1•62637786-5:	1.65167646-51	1+67 45577E-5	1+69342068+51
00252	1044	C	46	47	*8	49	50
00152	100		X1+/D034465-51	1+76348835-5.	1.08/01366-5.	1.99904002-21	1+64140726-5+
00192	1098*	C	51	52	53	54	55
00252	107-1		X1. 10000E-21	1.204140/6-21	1.225892 6-21	1+5206885E-5	1.48605796-5,
00252		C C	50	57	58	59	<b>6</b> 0
00252	107.1	c	A1	1-44304146-24	1-3-113/15-21	1+359/2/58-5	1+3286809E-5+
00252	1071	•	11.29768.30-5.	1	63	64	- 67
00752	10740	c		1. Yant Datfes!	1-5-1-17-11	4•1•F	1031 21-51
00252	1075*	-	1		00 1.25161265-5	69	70
00252	1074.	Ĺ	71	7.7	1-1-101505-21	1+200-0146451	1+320#/47E+5+
00252	107/*	-	X1+35486381-5,	1 . 18843975-5.	1.14351015-5.	1.4.49750976-6.	75
00252	1078*	c	76	77	78	1-1-12/15/20	1-350-042E-5+
00252	1074		x1+60247671-51	1+65352051-5-	1+75296325-5.	1+64907545-5.	000 1 • 9 4 2 · 2 · 01 - 5 -
00252	• م 8 ن 1	c	81	82	93		AL.
00252	108,*		x2+0323355E-5+;	2.11441978-5.	2.20142536-51	2+44741252-51	2+599-2168-5+

,

í

i.

į

ł

.

.

>

1

1

ļ

•

HE MAINE OF

A-97

1

.

ī

!

,

;

i

ł

•

. .

,

.

. .

.

,

. . . . . .

¥

e

00252	1082*	ć	84	n 7		84	¥¢
0252	1663.		x2+1- 44117E-5	+2+8#42447E-5	.3.0144090E+5	3+14789242-5	3+27294996-5+
\$2500 00252	10#4* 10#5*	C	14 23-100001-5	+2 +3+5114+25r-5	73	** 1+7366033E-51	75
00257	1084*	C	DATA EVISEST	LIL. TONPA3. UP	··· = · · =		
00254	1048*	C	96	97	78	99	100
6225 *	1089*		x3+95020501-5	+ + + + 5317605-5		4+20330576-5	++ 2745514E-5+
00254	1070*	c	101	102	103	104	105
00254	10 1 1		14+3484565E-5	. 4 . 4194700F-5	. 4. 5127-758-5	+++040445E*5	14-6803460E-S+
00254	10*2*	c	10+	107	168	107	110
00254	1073*		#4+74231436+5	+*++3352*36-5	. 4.8640170E-5	4+72300178-5	4.47450328-51
0025*	1074*	ć	111	112	113	114	115
0025*	1075*		15-01434316-5	+5+n>7#335E-5	.5+0991417E-5	5+10911938-5	1+57084892-5+
0025*	10***	c	114	117	116	119	150
06754	1077		X1+4514921E-5	1 + 427 31 20F-5	.1+70¥77015-5	1+49586588-5	1+4770388E-51
0025*	107#*		121	122	123	• • • •	
0025*	10744		X1+2500495E-5	+1+21440526-5	.1.2163172E-5	,	
8025 4	1100*	C					
00254	1161+		ENL				

Ţ

ł

l

END OF COMPLETION:

**,** •

ł

1

.

ł

4

NO DIAGNOSTICS.

NASA JSC

٠

•

۲

1

1

}

÷

.

.

1

;

,

.