80.FM.-9 JSC-16397

HP-9825A HFRMP Trajectory
Processor (#TRAJ)

Detailed Description

(NASA-TM-80941) HP-9825R HFPRMP TRAJECTORY N8O0-17122
PROCTZSSOR (#TRAJ), DETAILFD DESCRIPTION
(NASA) 277 p HC A13/MF A01 C5CL 2za
Inclas
G3/13 47128
{ q
} Mission Planning and Analysis Division {

! January 1980

} . -
. N 4
. i
. National Aeronautics and S
« Space Administration

Lyndon B. Johnscn Space Center
Houston, Texas




TR T T R vy hEERAIRS Lt b 4 TR

80FM9

80-FM~3 . L | JSC-16397

SHUTTLE PROGRAM

HP-9825A HFRMP TRAJECTORY PROCESSOR (#TRAJ)

'DETAILED DESCRIPTION

By S. M. Kindall, TRW Systems

JSC Task Monitor: J. W. Bell, Flight Planning Branch ):,ﬂﬂ

Approved:
: Edgar C. ALineberry, Chief
Flight Planning Branch

Approved: /M"{\

Ronald L. Berry, Chief
Mission Planning and Analysis Djiwi n

. Mission Planning and Analysis Division

National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas

January 1980




PR i afathue

ABSTRACT

This document contains a detailed description of the computer code for the
trajectory processor (#TRAJ) of the HP-9825A High Fidelity Relative Motion
b sogram (HFRMP). The #TRAJ processor is a 12-degrees-of-freedom trajectory
integrator (6 degrees of freedom for each of two vehicles) which can be used
to generate digital and graphical data describing the relative motion of the
Soace Shuttle Orbiter and a free-flying cylindrical payload. The description
of the processor includes a listing of the code, coding standards and conven-

tions, detailed flow charts, and discussions of the computational logic.




D e e At e

- e

ABSTRACT . . .

CONTENTS

@ 6 4 s 0 e s 6 e b+ ¢ & e 3 s e+ s e ‘. .

TABLE OF CONTENTS . . v ¢ v v v v v v v vt e e v e u s

ILLUSTRATI

TABLES

ONS L L T e I e N 2 T T SR Y SR SR Y S

¢ 4 & s ¢ ¢ = e ¢ 6 & 3 8 s e & s 8 s s e o ¢ o

NOMENCLATURE . . . . . . . . . . ... e e e e e

Abbreviations . . . . . . e e e e e e e e e e
Symbols . . . . . e e e e e e e e e e v e e e s
Subscripts . . . .. L. b e e a e e s e e s e s
Superscripts . . . 000l C ot e e e e e e e

FOREWORD . .

L N Y T T T S A ¢ & & & s e o s s L )

1. INTRODUCTION . .« v ¢ v v v v v v v v v v Ce e e

1.1
1.2

1.3

1.4

GENERAL DESCRIPTION OF #TRAJ . . . . . . .
STATE VECTOR DEFINITIONS . . . « . . . ¢ . ..

1.2.1 Rotational State Vector . . . . . . ..

1.2.2 Translational State Vector . . . . . . . .

BASIC EQUATIONS OF MOTION . . . . . . . o . . .

1.3.1 Rotational Motion . . . . . . . 0 e e e

1.3.2 Translational Motion . . . . . . . . . .

CONVENTIONS AND CODING STANDARDS . . . . . . .

1.4.1 General Arrangement of Program Files .

1.4.2 Branching Conventions . . . . . .. ..

1.4.3 Program Labels . « . ¢« « « ¢« ¢ ¢ v v o

1.4.4 Input/Output Mnemonics . . . .« « « « & « v « .

1.4.5 Data-Register Protocol . . . . . . . . ..

ii

uuuuuu

chchchch

Page

ii
ix
Xi
xii
xii
xiii

XV
XxVi

xvij

10
n
12
13
13
14
18
19

20
20
21



- e (7 S oo ko ae - ki i
O T T R TR R T PR ORIV (et L TR -

CONTENTS (Cont.)

Page

5.1 Simple Variables . . . . . .. .. ... 21
5.2 r-Registers . . 4 |
5.3 Restrictions on Utility Subprograms B 44

4.5,
.4,
4

e Te

2. BASE LINK (#TRAJ) . . . . .. e et e e e e e e e e e e 25

2.1 FUNCTION SUBPROGRAMS & v & v ¢ ¢ 4 ¢ 4 v o v o s s oo o 25
2.1.1 CANGE' L . i e e e e e e i e e e e e e e e e 25
2.1.1.1 Arguments . . . . v v o v i v i e e v e 0. 25

2.1.1.2 Example of Usage . . « + v « ¢ v ¢ ¢« v v ¢ « 25

2.1.1.3 Computations . . . « « v v v ¢ v v ¢ v o e . &5

20102 'ANGZ‘ . . . . . . . . . ] . - L[] - . . . L] . L[] . L] . 27
2.1.2.1 Arguments . . v v v 4 6 0 e b e e e 0w e .. 27

2.1.2.2 Example of Usage e e e e e e e e e e e e e 27

2.1.2.3 Computations . . ¢« & ¢ ¢ ¢ ¢ v o v v o oo 27

2.1.3 ATNI'/'ATNZ' . . o v i e e e e e e e e e e 29

3.7 Arguments . + v 4 v 4 b b e e e e e e e e 29
2 Example of Usage 4

1.
2.1,
1.3.3 Computations . . . « « v ¢« ¢« v v o c eee. 29

2.1.4.1 Arguments . . . . ¢ ¢ s v b0 b s 0. e A
2.1.4.2 Example of Usage P 3
2.1.4.3 Computations . « « « ¢« v v v v v v v o v v A

3.
3.
2.]'4 'HM S. ..... * . ¢« & ® ¢ 8 & 6 & s o s L ] * . 3]
4,
4.

2.1.5 'SECS' . . ... e e e e e e e e e e e e e e e e 33

1.5.1 Arguments . . . 0 v 0 0 s e e e h e e e e w33
.1.5.2 Example of Usage P X
.1.5.3 Computations . . « v « ¢« v ¢ ¢ 4 v « o 0o s o . 33

2.1.6 'DOTP' . ... .. O 1
2.1.6.1 Arguments . . . v ¢ 4 v s 4 s e 0 s 0 0. 35
2.1.6.2 Example of Usage P 11
2.1.6.3 Computations . . . . .+ . « . . c v e e v e 0. 35

i 2.2 UTILITY SUBROUTINES '+ ¢ v v o v o o o o o o o o o v v w w37

et b

el .

M
k, o o e W et T



CONTENTS (Cont.)

2.2.] 'va' . . . [ * . . [ . . . . . L] . . .

2,2,2 'VADD'/'VSUB' . . .. u v e

3

2.2.2.1 Arguments . . . . . . 0 e 0. .
2.2.2.
2,2,2.3 Computations . . . .. . ...

.

2.2.3 'CRSP' . . . i e e e e e e e e

.2.3.1 Arguments . . . . . i 0 0 e e .

2
2.2.3.2 Example of Usage . . . . . . ..

2.2.3.3 Computations . . . ¢« « v ¢ v o 4
2.2.4 'ROT'/'IROT' v v v v v v o v v v v o v

2.2.4.1 Arguments . . . . . . e e e e
2.
2.2.4,3 Computations . . . « + « « « o &

2.2.5 ‘QoOT'/'QXQ'/'QXQC'/'QCXQ' . . . ...

2.2.5.1 Prguments . . . . . v 0 00 .
2.2.5.2 Example of Usage « 4 s 4 2 s 4 s
2.2.5.3 Computations . . . « ¢« o ¢ v o &

2.2.6 '0Q231'/'Q213' . v v v v e e e e e

]A?‘guments... R S T S S S T T

2.2.6.
2.2.6.2 Example of Usage . . . . . . . .
2.2.6.3 Computations . . . . . .« .+ .+ .«

2.2.7 QA3 Lo e e s e e e e e e e e e

2.2.7.1 Arguments . . . . . 0 0. 0o
2.2.7.2 Example of Usage e o s 4 s s s
2.2.7.3 Computations . . . « .« « ¢ « o &

2,2.8 '231Q'/'213Q' . . v e e v e e e e e e

Arguments . . . . . 0 . 0.

2.2.8.1 “ e
2.2,8.2 Example of Usage et s e e e e
2.2.8.3

Computations . . « . « « + . « .

iv

2,2.1.7 Arguments . . . . . 0 0 e e e
2.2.1.2 Example of Usage e e e e e e
2.2.1.3 Computations . . . . .« ¢+ ¢ o .

2 Example of Usage . . . . . . . . .

2.
2.4.2 Example of Usage . . . . . . ...
2.

Page

37
37
37
39
39
39
39
a1
a1
41
41
43
43
43
46
a6
47
49
49
49
49
53
53
53
56
56

56




TISRT VT T TN S T R TR O O By s (Y R TRRS T AT AT e S L e e e e

CONTENTS (Cont.)

2.20]0 ‘IMA g' . . . . . . * . . . . L] . L] . . . . . . L] . .

2.2,10.1 Arguments . . . ¢ v 4t 4 e e b e e e e e e
2.2,10.2 Example of Usage C e e e e e e e e e
2.2.10.3 Computations . . . . . . . . o s v s e e e e

2.3 STATE VECTOR DERIVATIVES SUBROUTINE ('DERIVS') . . . . ...

2.3.1 Input Data . ... ... S 4 e e s s e e e e e e .
2.3.1.1 Argument List . . . « v v ¢« ¢ ¢ ¢ 4 v ¢ o 0 o .
2.3.1.2 r-Registers . . « v ¢ ¢ ¢ ¢t 0 4 0 0 e e e e e
2.3.1.3 Array Variables . . . . . . . . . e e e e e
2.3.2 Qutput Data . . ... ... et e e s e e e e
2.3.3 (Computations . ... ... ... e e e e e e e
2.4 MAIN LOGIC FLOW . . . . .. ... e e e e e e e
3. RESPONSE MATRIX COMPUTATION LINK (%RMAT) . . . . . . . . .. c e
3.1 INPUTDATA . . . . .. et s e e s e e e e e e e e e
3.1.1 Jet Force Table . . . . . ¢« ¢ . ¢ ¢ . e o e s . o
3.1.2 Jet Select Tables . . . .. s 6 s s e e s o e e .
3.1.3 Shuttle Mass Properties . . « « ¢« ¢ ¢ o v ¢« ¢ ¢ o o+ &
; 3.2 OUTPUT DATA  « v v ¢ v v v v v v v s e e e e e e e e
| 3.3 COMPUTATIONS .+ o v v v v v v o v o n e

4, TRAJECTORY INITIALIZATION LINK (%TNIT) . . v v v v v v o 0 o v o s

{ 4.1 FUNCTION SUBPROGRAMS . . . . + s o o+ & & e e e e e e e
- R T | 1 S T T T T T

2.2.9 .3]39' . . . < L] L] . . . . L] L] . ¢ & & & o . L] L] L] .
2.2.9.1 Arguments . . . . . . . .. C et e e e e e A
2.2,9.2 Example of USage . . « ¢« v v o ¢ v v o o o o s
2,2.9.3 Computations . . . « ¢« v ¢« v ¢ o . c e e e e

Page
58
58
58
58
60
60
60
61
65
65
65
66
66
67

75

76

. S ————_ ., ® v i ©




e,

5.

R Ml it ‘i ol 3 - et idiait s do i e iRk A

A AR I e ey i aio S ICJRREEE AR U M A

CONTENTS (Cont.)

. . . * . . . .

4,1,2 'PLOTYP'
1 Argument List . .
2
.2.3 Computations . . .
T
.1.3.1 Argument List . . .
.1.3.2 Example of Usage .
.1.3.3 Computations . . .
4.1.4 'MONTH' . .. .. .. ..
4.1.4.1 Argument List . . .
4.1.4.2 Example of Usage .
4.1.4.3 Computations . . .

40].5 ! ! e & + 0 ¢ & s+ 0 ¢+ e

4,1.5.1 Argument List . . .
4.1.5.2 Example of Usage
4,1.5.3 Computations . . .

41,6 'T' ..o o0 v
Argument List . .
Computations . . .
4,2 MATRIX DIAGONALIZATION SUBROUTINE

4,2.1 Arqument List . . . . . .

4,2.2 Example of Usage . . . .

4.2.3 Computations . . . ...
4,3 MAIN LOGIC . « + ¢ v ¢ v v ¢ o &

ORBITER GEOMETRY LINK (%Sswu) . . . . .

Example of Usage . .

* & & & ¢ ¢ & & &2 & =

6.1
.1.6.2 Example of Usage . .
.6.3

* s 8

'DIAG')

¢ & e s &

* . [ .

Page
99
99
101
101
101
101
103
103
103
103
105
105
105
105
107
107
107
108
110
110
110
111
113
113
113
114

119

127

po ity

R

.



o S RS S L b il A i it e
T TR N —_ TN om 2o soratie s i 0§ Ao s il

CONTENTS (Cont.)

6. FLIGHT SEGMENT INITIALIZATION LINK (%SNIT)

6.1 FUNCTION SUBPROGRAMS . . . & v v v v v v v v v o 0 o o s

60]0] 'KAM‘ . L] * . . . . . * * L] L] L (] L] L) * L] L L] L]
1 Argument List . . ¢« ¢« ¢« v v ¢ ¢ ¢ v v
2 Example of Usage . . ¢« v v ¢ ¢ s o o o

. . -3 computations . . . L] . . . L] L] L] . . . .
L

6.]'2 ‘JSE ! . . . . . . . . * . . . . . . . . . . L] .

6.1.2.1 Argument List . . . .« + ¢ v v ¢ v o .

6.1.2.2 Example of Usage . . . « v ¢ ¢ v v v o o o &

6.1.2.3 Computations . . ¢« « v v v ¢ ¢ e v ¢ o s
6‘]‘3 .COMP‘ . . . . L] . ¢ e & & s . .

Argument List . . .« . . 0 00 00

6.1.3.1 .
6.1.3.2 Exampleof Usage . . « v « ¢« v « v v ¢ o v «
6.1.3.3

Computati ons ¢ & & & 5 & & & s s & 4+
6‘]04 lKTOMS. oooooooo s & & s & e ¢ e s 0

6.1.4.

6.1.4.2 Example of Usage . . . . . . . ¢ ..+ ..
6.1.4.3 Computations . . . ¢« ¢« v v v ¢ ¢ ¢« v 4
6.1.5 'KTRCS' & v v v v i v v e e e e e e e

60]05.] Argument List . * . L] . . * [ ] - L] . . .
6.1.5.2 Example of Usage . . « « v v ¢ ¢« v « o
6.1.5.

. 3 Computations . . . & ¢ v v o 4 v o o v 0 b0

6.1.6 'DATYP' . . .. ... .. ot e e e e e e e e

6.1.6.1 Argument List . . . . ¢ v v v o v v o v

6.1.6.2 Example of Usage . . . « ¢« v ¢« ¢« v ¢ o &

6.1.6.2 Computations . . . ¢« v ¢« v v ¢ ¢ ¢ o o 4

6.2 SEGMENT DEFINITION LISTING ROUTINE ('SLIST') . . .

6.3 MAIN LOGIC . .. .. .. e e e e e e e e e e
7. STATE PROPAGATION LINK (%PROP) v v & v v v o v e v o 0 o o o
vii

1 Argument List . . . . . . ¢ v v v v o v 4

Page
128

127
137
137
137
139
139
139 3
139
140

14

148



- o Cog o e ags cap o dib  aanfadeaeh b liand ol nfin. At e L e Sachi s
T T TR tad TP OY o et i ek e e A R i ol

CONTENTS (Cont.)

Page
: 7.1 ROTATED-ELLIPSE PLOTTING SUBROUTINE ('RELIP') . .. .. .. . 148
; ( 7.1.1 Argument LiSt .+ . . v v v v u 4w e e e e e . .. 150

7.1.2 Example of USQG@ & v v v ¢ o ¢ o « o s o ¢« o o o« s o+ 151

7.1.3 Computations . . . v v v v v v ¢ v v v v v s w0 ... 152
7.2 FOURTH-ORDER RUNGE-KUTTA INTEGRATION SUBROUTINE ('RK4') . . . 153

70201 InEut Dat * . . . [ L] [ L] L] * . . * * [ * . . . L] * . ]53

¢ 7.2.1.1 Argument List . . . . . ¢ ¢ 4 v ¢ v v e o0 .. 183
7‘2‘]02 Others . L] . + . * . [ ] L[] [ ] . . . L) . L] . . * . ]53

7.2‘2 OutEut Data lllll . L ] L] [ ] . [ ] . [ ] [ [ . . * . . L ]54
7.2.3 Example of Usage . .. ... ... ... T 1T
i 7.2.4 Computations . . . . . ¢ ¢ v v v v i e o .. 155

703 MAIN LOGIC . . . . + * . . . + * . * Ld . . . L 4 . . . L4 . L] * ]58

REFERENCES 00000000 . . * L] * . * * . . . L] . . . . . . L] . L ]67

APPENDICES
A BASIC QUATERNION OPERATIONS 2 & & & 6 & & 8 ¢ 5 s o + & o A-]

B
c
D
E
F
G
H

COORDINATE SYSTEMS . + + 4 ¢ v v v v v v o v v v o s oo o o B-1
PROCESSOR CODE . & & v v v v o v v v v o o v v o v v oo C=
MEMORY ALLOCATION . & & v v v v v v v v 6 o v o o v o o o o s D-1
USER-SUPPLIED INPUT DATABASE . . . . v v v v v v v v v v oo E=
USER-SUPPLIED FLIGHT PROFILE DEFINITION . .. .. ... ... F=l
DIGITAL OUTPUT DATA . . . . . . .. ¢ s e e e e e e oo G-l
GRAPHICAL OUTPUT DATA . . . . .« « v v v o o « b e e e s e e H=1




Figure

W 00 ~N OO0 o & W N

N D NN N N = et ed amd ed et ad  amd o et
W N e O W OO N O W NN = O

ILLUSTRATIONS

HFRMP Mainline Logic Flow . . . . . . .
#TRAJ Overlay Structure . . . . . . . .
'ANG1' Function Subprogram Logic Flow .
*ANG2' Function Subprogram Logic Flow .
'ATN1'/'ATN2' Function Subprogram Logic
‘HM.S' Function Subprogram Logic Flow .
'SECS' Function Subprogram Logic Flow .
‘DOTP' Function Subprogram Logic Flow .
'SXV' Subroutine Logic Flow . . . . . .
‘VADD'/'VSUB' Subroutine Logic Flow . .
‘CRSP' Subroutine Logic Flow . . . ..
'ROT'/'IROT' Subroutine Logic Flow . .

‘QDOT'/'QXQ'/'QXQC'/'QCX)' Subroutine Logic

'Q231'/'Q213" Subroutine Logic Flow . .
'Q313' Subroutine Logic Flow . . . . .
'231Q'/'213Q" Subroutine Logic Flow . .

. '313Q" Subroutine Logic Flow . . . . .

'IMATQ' Subroutine Logic Flow . . . .

‘DERIVS' Subroutine Logic Flow . . . . .

ZRMAT Logic Flow . . . ¢+ « ¢ ¢ o 4 &
‘dD' Function Subprogram Logic Flow

'PLOTYP' Function Subprogram Logic Flow
'UNIT' Function Subprogram Logic Flow .
'MONTH' Function Subprogram Logic Flow

ix

. -

Aoan

Page

26
28
30
32
34
36
38
4C
42
45
48

55
57
59
64
68
92
100
102
104
106

_a-ﬁaisli

= - e

— =




’“ﬂ

- ILLUSTRATIONS (Cont.)
Figure Page
25 'C' Function Subprogram Logic Flow . . . . . . « . .. . . 109
i\ . 26 'T' Function Subprogram Logic Flow . . .« « . ¢« v o ¢ o« .+ 112
27 'DIAG' Subroutine Logic FIOW .« « « v o o ¢ ¢ o o v v v o o 117
28 SINIT Logic FIOW « v v o v o o o o e v o s o v v o v v o« 120
. 29 'KAM' Function Subprogram Logic Flow . . . . . . . ¢ .. . 130
30 'JSEL' Function Subprogram Logic Flow . . . . . . . . « . 132
31 'COMP' runction Subprogram Logic Flow . . . « . .+« . . . 134
32 'KTOMS' Function Subprogram Logic Flow . . « . . . . . . . 136
33 'KTRCS' Function Subprogram Lcgic Fiow .« ¢ ¢ o v 0 0 o o v 138
34 ZSNIT LOGic FIOW « « ¢ v v v v v o v o v v v v v v o o v 142
1 35 'RECIP' Ellipse Geometry . « « v v v o v o o o o o o « o » 149
36 'RELIP' Subroutine Logic Flow « . « v « v ¢ ¢« o « v « ¢« « . 153
37 ‘RK4' Subroutine Logic Flow . . « « + « ¢« v v ¢ o v v v o . 157
38 ZPROP Logic FIOW et v v v v v o v o o 6 v a o o o v o v o 159
81 Shuttle Station Coordinates . . « « + ¢« ¢ « v ¢« « v ¢« « + B=3
B2 Payload Station Coordinates . . « . . . . « . v v . ¢« .. B=5
B3 Shuttle Body Coordinates . . . . « « « v « . ¢ v v « o« . B-7
84 Payload Body Coordinates . .« « ¢« « ¢« ¢« v o v v v o « o o o B9
B5 Rectangular Local Vertical Coordinates . . . . .. .. . . B-ll
B6 Curvilinear Local Vertical Coordinates . . . . . . .. .. B8-13
87 Mean of 1950.0 and Mean of launch Date Coordinates . . . . §-15
)
X




Table

A O B W N

10

TABLES

RCS Thruster Data, Disk Files "$JFT" and "$SFTM" . . . . .
Basic RCS Thrust Data (Without Plume Impingement) . . .
Force and Moment Increments Due to Plume Impingement . .
Vernier (V) Jet Select Table, Disk File "$JSv" . . . . .
Primary (P) Jet Select Table, Disk File “$JSP" . . . . .

Primary with +Z Thrusters Inhibited (PZI) Jet

Select Table, Disk File "$JSPZI" . . . + . v ¢« v v v ¢ « .

File Names for Response Matrices . . . « « ¢« ¢ « « v & o

Uncompensated Response Matrix for Jet Select
Option P, Disk File “*P" , ., . . . . . . . . .. .

Rotationally Compensated Matrix for Jet Select

Option P, Disk File “*PR" . . . .. e e e e e e e e

Fully Compensated Matrix for Jet Select Option P,
Disk Fi]e “*PF“ . . + & & & & s » L] . . * L] (]

Page
77
78
79
81
82

83
86

87

88

89

I -

e ko a o



NOMENCLATURE
Abbreviations
BL buttock line (Y coordinate in structural coordinate system)
0] center of gravity
CPLV curvilinear payload-centered local vertical coordinates
DAP digital autopilot
ECI earth-centered inertial (coordinate system)
HFRMP High-Fidelity Relative Motion Computer Program
HPL Hewlett-Packard Language (for the HP-9825A computer)
IMLD “invariant" mean of launch date orbit elements
MLD mean of launch date ECI coordinate system
M50 - mean of 1950.0 ECI coordinate system
OM50 osculating mean of 1950.0 orbit elements
PBY payload body-fixed coordinate system
L PCON propellant consumption
k PL payload
PLV payload-centered local-vertical coordinate system
RCS reaction control system
. RIMP rotational impulse (integral of torque with respect to time)
RSBY rectangular Shuttle body-fixed coordinates
RSLV rectangular Shuttle-centered local vertical coordinates
SBY Shuttle body-fixed coordinate system
SLV Shuttle-centered local vertical coordinate system >
SRM solid rocket motor E}
SS Space Shuttle (Orbiter) j
STA station (X coordinate in structural coordinate system) é
WL water line (Z coordinate in structural coordinate system)
xii




c— - . . A e mae e e s

SR T T T IR T e T T Ry TS ey ST TTIT R T TREIRRERT A T e R a v q

Symbols
.} Tinear acceleration of Shuttle CG
a linear acceleration of payload CG
K\ [I],[I]B Shuttle inertia tensor, referenced to SBY axes

(1]',[1], Shuttle inertia tensor, referenced to principal axes of inertia
P

[i],[i]b payload inertia tensor, referenced to PBY axes

' (il ,[1] payload inertia tensor, referenced to principal axes of inertia
,J,k unit vector aligned with X,Y,Z coordinate axes (i.e., vector base)
. (W4 torque vectors
ﬁgK position vector drawn from point J to point K, resolved onto axes
of system F; 1i.e., 5gk = ng +J ng + K ng
5gK derivative of P _JK with respect to time in coordinate system F; i.e.,
P BN < T B B 4
EkG orientation versor (unit quaternion) defining orientation of coor-
dinate system G with respect to system F

%fG conjugate of qFG’ qFG qGF

R geocentric position vector of Shuttle CG |

R IR] |

R dR/dt

R d2R/dt?

r geocentric position vector of payload CG

r [v]

r dr/dt

" d®r/dt?

t time

t,u unit vectors

v geocentric inertial velocity of Shuttle CG

viii

.
-

. A
e e e i i s et ‘ —
. g L




Lanal U A
B B s i o e S TR

v geocentric inertial velocity of payload CG
4

[a] array of (3) Euler angles 1
2y Keplerian angular velocity magnitude of Shuttle CG, |R x VI/R2

(‘ fy da,/dt
wy Keplerian angular velocity magnitude of payload CG, |r x Vl/r‘2
wy dwK/dt

: %G angular velocity vector of system G with respect to system F,
resolved onto axes of system G

: 1




I A Ao S i debabiins 5ot Ml g chli A S S S L S A A i i o -t et et R R

Subscripts

B Shuttle body-fixed (SBY) coordinate system

b payload body-fixed (PBY) coordinate system

G Shuttle-centered local vertical (SLV) coordinate system
q payload-centered local vertical (PLV) coordinate system
H Shuttle-centered UVW coordinate system

h payload-centered UVW coordinate system

I mean of launch date (MLD) ECI coordinate system

J mean of 1950.0 (M50) ECI coordinate system

P principal axes of inertia of Shuttle

p principal axes of inertia of payload

S Shuttle sensor coordinate system

L ek A% o s ade L e et B 2 e n it el e s adl TR PR L




an o —— fiad H i s aldd P o b st 2 o b i T R A N S
B il et Tha et A Liathlt o S T PR TR T RO bl TES

Superscripts

A actual CG of Shuttle

a actual CG of payload

B Shuttle body-fixed (SBY) coordinate system
b payload body-fixed (PBY) coordinate system
G

Shuttle-centered local vertical (SLV) coordinate system

g payload-centered local vertical (PLV) coordinate system
I (any) inertial coordinate system
N nominal CG of Shuttle (STA 1076.7, BL 0, WL 375)
n “nominal CG" of payload (STA 0, BL 0, WL 0); = center of front
face of payload cylinder
S origin of Shuttle sensor coordinates
T transpose of matrix
t payload targetpoint
a aerodynamic effect
Y gravitational effect
T thrust effect
Product Symbols
] quaternion product
X vector cross product
. vector dot (scalar) pruduct

XVi

IS VERPOL I 200 PR A




FOREWORD

This document contains a detailed description of the trajectory processor

(#TRAJ) of the High Fidelity Relative Motion Program (HFRMP) Version 03T(1229/

10NOV79). The HFRMP is coded in Hewlett-Packard Language (HPL) for the

HP-9825A Desktop Calculator with memory option 002 (23,228 bytes of read/

write memory) and the following peripheral devices and read-only memory {(ROM)

modules:

HP-9885M
HP-9872A
HP-98668

HP-9871A

HP-98210A
HP-98211A
HP-98217A
HP-98216A

HP-98215A

Required Peripheral Devices

Flexible Disk Drive
Plotter

Thermal Line Printer
or

Character Impact Printer

Required ROM Modules

String-Advanced Programming

Matrix Programming

9885M Flexible Disk Drive

9872A Plotter-General 1/0-Extended I/0
or

9872A Plotter-General 1/0

Applicable HPL programming information is contained, along with operating in-

structions for the calculator and its peripheral devices, in the following

HP-9825A manuals published by the Hewlett-Packard Calculator Products Divi-

sion:

xvii

-’ A
R S R e v R T S ERIE T

stk Y

Vo

. ——— P



MRETRTR LT S e TAmReeE S ARG e ot it i e 2 AR AN S S it i i Jie . o L SUMARIAR AT a0 L LA it Il i) o B i S iagic

HP Part No. Title of Manual
09825-90000 Operating and Programming

_ 09825-90020 String Variable Programming

{ 09825-90021  Advanced Programning |

09825-90022 Matrix Programming
09825-90024 General I1/0 Programming

- 09825-90026 9872A Plotter Programming
09871-90000 9871A Printer...Operating Manual

. 09885~90000 Disk Programming

A basic understanding of the contents of the cited manuals is required for a

full comprehension of this program document.

| xviii
) . . N o i Ai“




1. INTRODUCTION

The HP-9825A High Fidelity Relative Motion Program (HFRMP) is a disk-
resident flight design software system specifically intended for the analysis

of Space Transportation System (STS) proximity operations. The mainline logic

flow' is illustrated in Figure 1. The code is divided into several primary
modules that are designated “"processors" and identified as such (according to

HFRMP convention) using the pound-sign (#) symbol as the first character in

their identification strings (i.e., names). Some processors, being too large

to fit in the available read/write memory area, are broken down into subsidiary
links which are identified by the use of the percent (%) symbol as the first

character in their identification strings. Subsidiary links overlay each other

in a shared memory area, as illustrated in Figure 2.
Processors (such as #TRAJ) are called into read/write memory from the

program disk by use of the HPL get command, which erases all variables (numer-

ical data) that may have been stored in memory. Information transfer between

processors is accomplished by means of disk-resident data files that are
stored and retrieved, as necessary, by appropriate commands coded into the
processors. This includes user-supplied input data, which can be manipulated
(edited/saved/recalled) by the user with the aid of interactive input proces-

sors (#DBED and #FPED in Figure 1).

From the preceding remarks it can be seen that every HFRMP processor rep-

resents, in a limited sense, a stand-alone program. Therefore it is possible,

*i.e., that which is invoked by a regular production run of the program. Not

shown are a number of special processors that are used for program mainte-
nance.

P I B U S N ——

MR, TOE e )

PR

At

S s

e e e o i P A



R ab Rl a sk LSl

INPUT PROCESSORS

OEICRIBED IN THIS DOCUMENT

TEST | . BODY-FIXED RELATIVE MOTION PLOTS REQUESTED?
TEST: MORE FLIGHT SEGMENTS?

TESTSI: DIDA PAYLOAD SRM BURN OCCUR 7

TESTH : PLUME TMPINGEMENT DAMAGE ANALYSIS REQUESTED?

TESTS: STARYT A NEW RUN?

Figure 1. HFRMP Mainline Logic Flow

~ne




OVERLAY
REGION

169

N
PROGRAN LINE MSRER

\

\ 346 -

0
TR
(BASE
LINK)

108 0 0 o 0

RMAT [1L s WNIT \PROP
14
138
m
ihed
Figure 2. #TRAJ Overlay Structure
-

154

O ——

P

o e



o T T I Sa SRS i i AN R g o SR i £ Shit o aiat ik an-w—v’\ e e e T T T R 2

for instance, to interrupt the normal HFRMP execution sequence after input
processing has been completed and then later to resume execution by commanding
get "#TRAJ" from the calculator keyboard and pressing the CRUD button. By the
same token, it is not necessary to execute the HFRMP particle impact damage
integrator (#PIDI) immediately after executing #TRAJ. The vehicle ephemeris
data that #PIDI requires is stored on the program disk by #TRAJ, where it is
preserved indefinitely until written over by a subsequent execution of #TRAJ.
Therefore, a user can execute the trajectory processor, shut off the calculator
and remove his program disk, and then initiate a particle impact damage analy-
sis of the subject trajectory at any later date simply by inserting his disk,
commanding get "#PIDI" from the keyboard, and pressing the QU button.

The remainder of this document will be concerned only with the #TRAJ pro-
cessor, which contains the HFRMP dynamic models, the trajectory/attitude inte-
gration logic, and the basic output computations. Detailed program documen-
tation for the HFRMP input processors and the #PIDI output processor are to be
published under separate cover. (Reference 1 contains operating instructions
for the HFRMP, with emphasis on input operations. Reference 2 contains a def-

inition of the basic equations used in the #PIDI processor.)

£ fhem

PP P PRI TURIPORE YIS, . ¥ 3 PO ORI

£ Tu

R

TV RSP DU



AR s R T e i e ke I A ]

1.1 GENERAL DESCRIPTION OF #TRAJ

The #TRAJ processor is a 12-degrees-of-freedom trajectory integrator (6
degrees of freedom for each of two vehicles) which generates digital and graph-
ical data to describe the relative motion of the Space Shuttle Orbiter and a
free-flying payload. These data are obtained by differencing the geocentric
states of the individual vehicles, computed to a numerical precision of 12
decimal digits, with respect to an oblate earth whose gravitational model
includes the second harmonic ccefficient (Jz). The state of the two-vehicle
system is computed as a functi.:i of time by means of a fourth-order Runge-
Kutta numerical integration scheme which uses unit quaternions (versors) to
define both the rotational and the translational states of each vehicle. The
derivation of the versor-based translational state vector is contained in
Reference 3, which is reproduced for the most part (with some changes in
coordinate system definition) in Appendix A and Sections 1.2 and 1.3 of this
report.

The payload is modeled geometrically as a cylinder whose length and diam-
eter are specified by program input. The Orbiter and the payload are treated
as rigid bodies whese individual mass properties (gross weight, moments and
products of inertia, and center of gravity location) are specified by program

input and are assumed to remain constant’ during the HFRMP run. Gravity

gradient torque is included in the rotational equations of motion for both

vehicles. At the user's option, aerodynamic torque and drag can also be

TAn exception is made when integrating the trajectory of an upper stage during
a majocr translational naneuver such as a solid rocket motor burn. In such

a case, the payload gruss weight is decremented during the burn to reflect
the consumption of propellant.

R e AL AR L dhbis o by SasBEEe Seih shants it at ) kA



———

TEE T T

included for either or bcth vehicles. Aerodynamic forces normal to the rela-
tive wind vector are fgnored.

The atmosphere is assumed to rotate with the earth, and is modeled as a
function of geodetic altitude by a curve fit of the 1962 Standard density pro-
file (Reference 4). The curve fit is valid down to a minimum altitude of
approximately 400,000 feet. The density profile can be modified by a program
input factor (Kp) to account for the major effects of solar activity. Aerody-
namic drag and moment coefficients for the Orbiter are computed as curve-fit
functions of its attitude with respect to the relative wind vector (References
5-7).

Aerodynamically, the payload is modeled as a flat plate whose »ize and
shape are determined by projecting its cylindrical outline onto a plane normal
to the relative wind vector. The payload drag coefficient is assumed to be
2.0, based on its projected frontal area. Aerodynamic effects on the Orhiter
and the payload can be modified (o cancelled entirely) by means of input fac-
tors (Ka and ka) which are applied uniformly to all aerodynamic forces and
torques that are computed for the specified vehicle. The possible effects of
aerodynamic shadowing (of one vehicle by the other) are not accounted for in
the internal caiculations ¢f #TRAJ.

Several options are provided for defining the initial state of the two-
vehicle system. The translatiunal state of the Orbiter can be described
either in terms of osculating orbit elements referenced to the Mean of 1950.0
(M50) geocentric equatorial frame, or in terms of invariant orbit elements
(Reference 8) measured in the Mean of Launch Date (MLD) equatorial frame. The
initial attitude of the Orbiter is defined by pitch, yaw, and roll angles

(taken in that order) referenced to the rotating Shuttle-centered local-

BT S Y

o kE e wm



vertical (SLV) coordinate system. The Orbiter's angular velocity, measured
in terms of rate components about its body axes, can be defined with respect
to either the M50 (inertial) frame or the SLV (rutating) frame.

The initial translational state of the payload is defined by rectangular
position and velocity components which are measured relative to the Orbiter's
center of gravity (CG). At the user's option, these components can be mea-
sured in the SLV coordinate system, or in the Shuttle body (SBY) coordinates
system. Tne payload's initial pitch, yaw, and roll angles can be referenced
either to the payload-centered local-vertical (PLV) system, or to the SBY
system. The payload's angular rate componients about its body axes can be
defined relative to the M50, the PLV, or the SBY fra::.

The initial state of the system can be advanced through up to 40 flight
prcfile segments, each of arbitrary length, which are defined by the user in
a pric- execution of the #FPED processor.+ At the beginning of any segment
the user may command the application of an impulsive (i.e., instantaneous)
increment to the angular rate of either or both vehicles.* In this regard,
the user may specify a perticular rate increment (INCR), a desired rate with
respect to inertial space (IR), or a desired rate with respect to the local-
vertical frame of the vehicle in question (LVR). In all cases, the components

of the desired rate or rate increment are measured about the body axes of the

A1l input data, including the flight profile definition, are saved in disk
files whence they can be recalled (and edited, if necessary) for use in
subsequent runs.

*Commanded angular velocity impulses, and the linear velocity impulses which
they may induce as a result of RCS translational cross coupling, are the only
types of state variable discontinuity that are permitted by #TRAJ. These are
aliowed only at the beginning of a flight profile segment.




Ty ST €3 i anad.inAait X ALENL LA o 1

vehicle in question.

After applying the specified angular velocity increment (if any) at the
beginning of the flight segment, #TRAJ then (for each vehicle independently

ik ' of the other) ﬁ
1. allows the attitude to drift (D) under the influence of inertia and
natural torques, or
‘ 2. performs inertial rate hold (IRH) control (i.e., maintains a constant

angular velocity relative to inertial space), or

3. performs local-vertical rate hold (LVRH) control (i.e., maintains a
constant angular velocity relative to the rotating local-vertical
frame of the vehicle being controlled)

for the duration of the segment, depending on the user's specifications for

o P
v

that segment.

When the IRH or the LVRH attitude-maintenance option is specified for the
Orbiter, a simplified RCS/DAP model (Reference 9) is used to compute average
values for the propellant consumption rates and translational cross-coupling
accelerations that result from the intermittent thruster firings which are
required to apply the necessary control torques. The model takes into account
the mass properties of the Orbiter, the electrical width (an integer multiple
of the DAP cycle time) anc the effective width (the duration of steady-state
acceleration) of the RC5 thruster pulses, and the width of the attitude dead-
band about each of the Orbiter's body axes. Deadbands can be changed from
segment to segment in the flight profile, as can the selection of primary or
vernier thrusters and the mode of cross-coupling compensation. Translational
cross-coupling accelerations are integrated along with those produced by

gravity, aerodynamics, and commended translational thrust. They are reflected

in the output data by the flight path deviations they produce. Propellant




Ty

v 4y T A9 T Y e T e

consumption rates are also integrated (but not subtracted from the Orbiter
gross weight), and the accumulated expenditures are tabulated, along with other
data, at user-specified time intervals. Pronellant consumption is broken down
according to source (forward, aft left, or aft right tank) and function (trans-
lational or rotational control).

When the IRH or the LVRH attitude-maintenance option is specified for the
payload, the magnitudes of the necessary control torques are integrated and the
accumulated rotational impulse (measured in pound-foot-seconds) in the positive
and negative direction about each body axis is printed along with the other
digital output data. Since no specific method of implementation is modeled,
it is not possible to compute propellant consumption rates or cross-coupling
effects that may result from payload attitude control.

Translational thrust acceleration of either or both vehicles can be
commanded at the beginning of any flight profile segment. Payload transla-
tional thrust is always applied in the direction of the payload's +X body axis
and is assumed to be directed through the CG. Once initiated, payload thrust
acceleration continues until all of the rocket motor propellant is consumed,
as determined by a table of flow rates versus burn time.

Translational acceleration of the Orbiter is initiated by commanding
ignition of either or both of the OMS engines (L, R, or L+R) and/or by firing
primary RCS thrusters to produce thrust nominally in the positive or negative
directions of the Orbiter body axes (+X, -X, +Y, -Y, +Z, or -Z). Once initi-
ated, Orbiter translational acceleration is applied continuously at the
nominal steady-state level, throughout the duration of the flight profile

segment.



T Ty ergpew T Yy DT T TRERTAT e TR R TR AR e T T T AT R 3 a3 ik St 2 e vt S ad NG famiier e} v SRR Pt ke e e

1.2 STATE VECTOR DEFINITIONS

There are many numerical methods which can be used to integrate the dif-
ferential equations that govern the motion of a rigid body such as the Orbiter
Q. or a free-flying payload. A common requirement of such methods is the defi-
nition of a state vector' along with a set of equations which, given the val-
ues of the state variables at any particular time, permit the calculation of
the first derivative of every state variable with respect to time.

A fourth-order Runge-Kutta numerical integration technique is used in the
#TRAJ processor, However, the state vector definitions and the derivative
calculations (which comprise the bulk of the computations involved in state
vector propagation) are not influenced directly by the integration logic
except in the sense that the integrator determines how frequently the deriv-
atives have to be evaluated. In #TRAJ, the integration logic and the deriva-
tive calculations are isolated from each other in separate subroutines, thus

making it easy to change the numerical integration technique if that should

become desirable.

| The purpose of this section of the report is to describe the state vari-
able that have been adopted for use in #TRAJ. The associated derivative
calculations, described in terms of external forces and torques that act on
the body under consideration, will be covered in Section 1.3. The detailed
calculation of these forces and torques will be described in Section 2.3, and

the Runge-Kutta integration logic will be described in Section 7.2.

A set of variables that define the position and Tinear velocity of the body's
CG (in the case of translational motion) with respect to a chosen system of
reference, and/or the body‘s attitude and angular velocity (in the case of
rotational motion about the CG).

10

PP T "I Gy PURP TR . ST, W WP, 1 W LT Ot T P T =

PP




S ———TE v U TS T TV Lhas ey T
" v

/w\-.

The #TRAJ processor makes use of versors (unit quaternions) as internal
state variables to describe the translational as well as the rotational
motions of the Orbiter and the payload. (The HFRMP user never sees the state
vectors in quaternion form; input and output data are defined in terms of
Euler angles.) The computational advantages of using versors to describe
rotational motion are well known. Certain advantages also accrue from their
use to describe the translational motion of a satellite, as explained in
Reference 3. Versors are also used exfensive]y in #TRAJ for coordinate trans-
formations in general, and a working knowledge of their characteristics and
rules of manipulation is necessary for a good understanding cf the remainder
of this report. A careful _tudy of Appendix A is recommended at this point
for the reader who is not accustomed to the use of quaternions. Even for
those who are familiar with quaternion applications, it probably will be help-
ful to review the conventions and the system of notation defined in Appendix

A. A1l readers should examine the coordinate system definitions in Appendix B.

1.2.1 Rotational State Vector

The rotational state of the Shuttle at any given time t is defined by the
variables [E}B,Egs], where ?IB is a versor that defines the orientation of the
Shuttle body-fixed (SBY) coordinate system B with respect to the geocentric
mean-of-launch-date (MLD) equatorial inertial coordinate system I. The vector
symbol EéB represents the angular velocity of the Orbiter. The double super-
script IB identifies the angular velocity as that of system B with respect to
system I, and the subscript B indicates that the vector is resolved into
components along the axes of the B system. The rotational state of the payload
is similarly defined by the variables [E}b,aib], whose definitions are the
same in all respects except that the lower-case symbol b is used to identify

1

T PR Y. Wy .

vk e S

4 i A e r B k] S



the body-fixed coordinate system of the payload.

1.2.2 Translational State Vector

The translational state of the Orbiter is defined by the variables
[E}G,R,ﬁ,QK]. The symbol E}G represents a versor that defines the orientation
of the Shuttle local-vertical (SLV) coordinate system G with respect to the
inertial system I. The symbol R represents the distance from the center of
the earth to the Shuttle CG, and R stands for its derivative dr/dt. The
symbol QK represents the scalar magnitude of the instantaneous geocentric
angular velocity of the Shuttle CG. The subscript K in this case does not
designate a coordinate system; it merely identifies the angular velocity in
question as that which is associated with Kepler's law of equal areas.

The translational state of the payload is similarly composed of the vari-
ables [E}g’r’}’wK]’ which are defined in the same manner as those described in
the preceding paragraph except for the use of lower-case symbols to repre-
sent the scalar quantities and the coordinate-system designator (g) of the

payload local-vertical (PLV) coordinate system.




1.3 BASIC EQUATIONS OF MOTION

The purpose of this section is ¢o define the equations for caiculating

the derivatives of the #TRAJ internal state variables, assuming the forces and

)
i

torques acting on the bodies are known. Equations for calculating the forces
and torques will be given in Section 2.3.
The only equations that will be defined explicitly in this section are

those that apply to the motion of the Shuttle. The payload equations are

e T e R T Frmihes. T

identical in all important respects, and can be obtained simply by substituting

the lower-case symbols b, g, r, r, and wy for their upper-case counterparts

N B, G, R, R, and g.

1.3.1 Rotational Motion

What is required here are the first derivatives of 313 and GéB with re-

spect to time. The derivative of the orientation versor is equal to one-half

of its quaternion product with ZéB, i.e., |

Py - Y ~ .:_\IB)
Qg = (qIB o wy )/2. (1)

The derivative of BéB is given by the equation

B = g (T - 3P % 1 a).s (2)

where the vector Eé represents the external torque acting on the Shuttle.

The symbol [I]B represents the Shuttle's inertia tensor (a 3x3 matrix whose
elements consist of the moments and negative products of inertia, referenced

to the B system), and [I]é] represents its inverse. For the purpose of comput-

! ing the product of a matrix and a vector, the vector is treated as a column

matrix, e.g.,




VOO WWETY £ ST D ST ST T R Candie: 1 L aieiarl ol

i v i - ——— s

[ 18
“B1

~IB IB
“B2

\ I8
| “B3 |

1.3.2 Translational Motion

We seek now to define the first derivatives of the translational state
variables EEG, R, and 2 with respect to time. (The derivative of the state
variable R is no problem, because it is equal to ﬁ). By definition, the

Shuttle's local-vertical coordinate system G rotates in such a manner that
RG = - kR (3)

and

(Ril)g = - 3IRV] = - § R® ay (4)

at every instant of time, where R and V represent the geocentric position and

inertial velocity vectors of the Shuttle CG.

An expression for the inertial velocity can be obtained by differentiat-
P ing Equation (3) with respect to time. This yields
’ T - I
t VG =-kR- wg X k R, (5)
}

where the vector

6 - gy tdugyt kug
(whose components have yet to be evaluated) represents the total angular

velocity of coordinate system G with respect to the inertial system 1. We

, 14




e TR T TR TS A A R AL N T ST RRRTE R, VT RTINS Gt SRR o s oo a b L ) e e T s A T A T Y T B TS

i - W T ASIICHRS R P Y o A SRRSO < XK~ TP EFR 00 <ot g T
.

i

now differentiate Equation (5) with respect to time and obtain the expression

Rg=-kR-20° xkR
- &éG x kR - wéG ( éG x k R) (7)

for the linear acceleration of the Shuttle CG, where the vector

wg = i wg * j wg2 “63

represents the angular acceleration of coordinate system G.
We now proceed tc evaluate the components of méG and wéG First, we
substitute the expression for wéG from Equation (6) into (5), and expand the

vector cross product. This results in the equation

V.=- iR wég + iR wé? - Kk R. (9)

Using the expression tor ﬁé and Vé from Equations {3) and (9), we form the
cross product

(Rel)g = 1 RZ wgs + § R? ugo. (10)

Equating the vector components of Equations (4) and (10), we obtain

16
“61

"
o

(11)

and

16
“62

12)

which lead to

aé? 0 (13)




o r————t

ru— BT 3 it S

SN

i

d

L
{

rr—— o —— T T TECCTTTRPEY T

- - - - - —
Sk e e L e e

and

5é§ = -y (14)

Substituting (11), (12), (13), and (14) into Equations (6), (8), and (9), we

obtain

gl ==yt kougs, (15)
gl = - 3 8y + kG, (16)

and
Vo= iRg - kR (17)

Using the expressions for ZéG and iéG from Equations (15) and (16), the

cross products appearing in Equation (7) can now be expanded to obtain

.

=  _ 3 . . 4 I6 | ¢ 2

Ry =i (2R e + R QK) + 3Ry ugy + k (R - R). (18)
From Mewtun's second Jaw, we have

Fo = MR, (19)

where M represents the mass of the Shuttle and the vector

P

Fo = 1 Fgp + 3 Fp + k Fog (20)

represents tne external force acting on it. Combining Equations (18), (19),

and (20}, and equating vector components, we obtain the equations

. - )2
R - R LK - Fea/M (2])

16

e P e I et e b

R



g s X P T

= - A e A
S Rt n et 10 i atat At e Ltk A S ahiEh g fadih A

-

-

- B e T

@=(%¢M-zﬁ%wn (22)
and
I6 ¢ 2

Equations (21) and (22) define the derivatives of the translational state

variables R and Q-+ The derivative of the remaining state variable E}G is
given by

A6 = (Agg o g )/2, (24)
where the angular velocity vector

;éG =~ +k Fg/(MRay) (25)

is obtained by substituting Equation (23) into (15).

Equations (21), (22), (24), and (25) are valid for all states of motion
except those where |RxV| = 0, in which case the geocentric flight path would
be vertical, and the orientation of the X and Y axes in the local-vertical

coordinate system would be indeterminate.

17

D . R SR o —
o ,

i Saakrnatdh e 34

it aits s i,

Eoitbl i it salscin.

T



IF-IllllIiiiiiiiiiiiif"

:
|

1.4 CONVENTIONS AND CODING STANDARDS

HP-9825 programs are coded in the Hewlett-Packard Language (HPL), which
is functionally similar to BASIC but unique in terms of its syntax. To
facilitate correlation with the #TRAJ code (Appendix C), some of the syntacti-
cal features of HPL have been carried over into the flow charts (Sections 2-7).

For instance, consider a computation which involves forming the product
of two simple variables A and B, where the resulting value is to be assigned
to a third variable C. In FORTRAN code this operation would be represented by
writing C = A * B, and in most flow charts by writing C = AB. In HPL code,
and in the flow charts that follow, the same operation would be described by
writing AB » C. (Perhaps the most succinct verbalization of the HPL value-
assignment symbol is obtained by substituting the phrase "goes to" for the
right-running arrow "+".)

Another feature of HPL code and the flow charts, which may be confusing
to FORTRAN programmers, is the use of square brackets to enclose the index or
indices of a dimensioned variable. The Jth element of the HPL dimensioned
variable A[*] is designated by writing A[J], whereas in FORTRAN it would be

written A(J). In HPL code, the square brackets are always used to enclose

indexing or dimensioning information about an array (dimensioned) variable,

and for no other purpose. This is necessary in HPL to distinguish, for

t instance, the simple (scalar) variable P from the array variable P[*] whose
dimensions might have been declared by a statement dim P[5,10], which is
analagous to the FORTRAN statement DIMENSION P(5,10). In a FORTRAN program

‘ where such a dimension statement exists, a reference to the variable P is an
implicit reference to P(1,1), i.e., the first element in the P array. However,

this is not the case in HPL, where the simple variable P has no connection

18



M AR Ao e S

whatever with the array variable P[*] or any of its elements. For ‘nstance,

the sequence of HPL statements 2 - P; 3 » P[1,1]; P P[1,1] + X would cause the

number 6 to be assigned to the variable X.

1.4.1 General Arrangement of Program Files

The first 1ine of code (1ine 0) in every HFRMP program file (processor or
processor 1ink) contains, in the form of a label, the name under which the file
is stored on the program disk, followed by the date and time of its most recent
revision. The executable part of this line contains the statement gto "RUN",
where "RUN" is the label of the 1ine where the main logic flow begins. The
next tn lines (1 and 2) contain statements that facilitate an automatic list-
ing of the complete program, and which are never executed in a normal produc-
tion run.

A11 subprograms are located between 1ine 2 and the "RUN" label, and they
are arranged in the following general order:

1. Function subprograms

2. Utility subroutines

3. Special subroutines.

The rationale for this order is to make the program 1istings as insensitive as
possible to corrections or revisions of the logic. Function subprograms and
utiliiy subroutines are revised much less frequently than the main (driver)
logic in a given link. Therefore the code in the top part of each link tends
to remain comparatively stable.

T5 the greatest extent that is practicable, the code in each subroutine
and in the driver logic of each individual 1ink is arranged so that execution
control flows from top to bottom, i.e., from smaller line numbers to greater

ones.

19

. P T L

. i




1.4.2 Branching Conventions

For ease of program maintenance, branching to absolute line numbers 1is
avoided. Relative addressing (e.g., gto + 4) is used whenever practicable;
otherwise, the general rule is to branch to a symbolic label (e.g., gto "RUN").
The jmp statement is used only in the rare instances where it is necessary to
compute a relative address (1line number) at execution time.

To avoid confusion regarding the flow of execution control (and also
generally to permit the transfer of date through an argument list), the

HPL c/f statement is used for branching to a subroutine in lieu of the gsb

statenent,

1.4.3 Program Labels

No lower-case alphabetic symbols are used in program labels (character
strings used to identify branching targets, including the names of subpro-
grams). The purpose of this corvention is to provide a contrast between such
labels and the commands and standard functions of HPL, all of which are spelled

with lower-case alphabetic symbols.

1.4.4 input/Qutput Mnemonics

Although numerical option codes are sometimes used internally by #TRAJ,
it has been adopted as a policy that HFRMP users should not have to memorize
(or look up) obscure numerical codes in order specify logical options in the
input data files, Rather, such options are specified by the user in the form
of mnemonic character strings which, if necessary, are converted to numerical
codes internally.

Mnemonic character strings are also used to identify the HFRMP digital

output data. With regard to all input/output mnemonics, a determined effort

20

I



has been put forth to make them as meaningful and as consistent as possible.

1.4.5 Data-Register Protocol

Because of the limitations of the HPL syntax, it has been ‘ound necessary
to adopt a comparatively rigid protocol to govern the use of named variahles
and of the numbered r-registers. Appendix D contains storage allocation infor-

matfon for the r-registers.

1.4.5.1 Simple Variables

The simple (scalar) variable names, which are limited in HPL to single
upper-case alphabetic charactcers (A thru Z), are used primarily as loop
counters and for the temporary storage of intermediate computational results.
Eight of the 26 simple variables are designated as volatile registers, which
means that they are least rigidly controlled, and that their contents are most
susceptible to frequent change. These are the registers identified by the

characters H,1,J,K and W,X,Y,Z.

1.4.5.2 r-Registers

Because of the limited number of usable names for variables, and also
because array names cannot be passed through the argument 1ists ::° HPL sub-
programs, most of the data that would normally be assigned unique names or
stored in individual arrays (e.g., as in a FORTRAN program) are stored instead
in the numbered r-registers. The correlation between the r-numbers and the
logical symbols, shown in Appendix D, is extremely critical to the understand-
ing of the #TRAJ code.

When there is a need for a utility subprogram to perform a standard compu-

tation involving one or more logical arrays (such as vectors and quaternions),

21




el T T TIREIE R TR TR TR R RPN Lot O v R T Ny R LR T e T e R T T RS AR L T SR T AR, T N

the address of each logical array (i.e., the r-number of its first element) is
passed through the argument 1ist (in lieu of an array name, which is not per-

mitted in HPL). For instance, suppose the components of a vector ﬁé reside

in the registers r1 through r3, the components of another vector Vé reside in

r4 through r6, and it is desired to compute the vector Fé = ﬁé X Vé and store

it in r7 through .2 Symbolically, in the flow charts, this would be written

Rg x Vg > Hg» or possibly as cff 'CRSP' (EG’VG’HG)' In the HPL code, it would

appear as cff 'CRSP' (1,4,7), where 'CRSP' is the name of the vector cross-

product routine, and the numbers 1,4,7 are the addresses of the vectors in-
volved in the operation.

The first 19 r-registers (r0 through r18) arz similar to the simple-vari-
able registers in that they are used mainly to store the intermediate results
of array computations. The first ten r-registers (rO through r9) are analo-
gous to the simple variables H,I.J,K and W,X,Y,Z in that they are designated
as volatile, i.e., most frequently used. Preferential use of the lower-num-
bered registers tends to minimize code-storage requirements, simply because
they entail writing out fewer digits (each of which requires one byte of code
storag2) tc identify the registers. That is to say, the statement cff 'CRSP'
(101,104,107 requires 6 more bytes of code storage space than the statement

cff 'CRSP' (1,4,7).

1.4.5.3 Restrictions on uUtility Subprograms

During the execution of an HPL subprogram, the HP-9825 operating system
allocates temporary storage (only for the duration of subprogram execution) to
numbered p-variables. These variables are numbered sequentially beginning
with p0, into which the operating system loads the number of parameters that

appear in the argument list of the caliing routine's reference to the sub-

22

L o ol




program. If there should be three arguments, then at the beginning of sub-
program execution p0 would contain the number 3. The registers pl, p2, and p3
would contain the values assigned to the arguments of the subprogram by the
calling routine. The subprogram can make use of as many higher-numbered p-reg-
isters (p4, p5, etc.) as it may need for temporary storage of intermediate
computational results. All of the p-registers are de-allocated (in effect,
erased) when execution control is returned to the calling routine.

The operating system also permits the subprogram to reference (get values
from or store values into) any of the registers accessible to the main program
(this includes the simple variables, array variables, string variables, and
r-registers). However, to prevent inadvertent modification of the contents of
registers that the calling routine may be using, certain conventions have been
adopted that 1imit the access of utility subprograms to global variables (i.e.,
any other than the p-variables).

In general, utility (general-purpose) subprograms are not allowed to make

literal reference to «ny r-register. They are allowed to make logical refer-

ence to such registers by means of addresses that may be passed to them
through their argument lists by the calling routine. For example, the charac-
ter strings r0 or r25 are not permitted in the code of a utility subprogram.

However, the character strings rpl and r(p3+3) are permitted, where pl and p3

represent addresses (in this case, the first and third numbers in the argument
1ist) of logical arrays that are passed to the subprogram by the calling
routine.

Function (as distinguished from subroutine) subprograms are not allowed to
make reference to any simple variable., They are required to use p-variables

for any temporary storage they might need. The same restriction applies to

23

Y S o o AR T St e chatfctd AR b b brbe B A o e D sl A el SIS A i ol e dieisbii i tube 2 AU SSIL AR A At e e R O A M



I A e DL i B bl AP L LA i o b s e b AR il i tcaes Tk S Ot

any utility subroutine whose logical argument 1ist contains only scalars and
vectors.

Utility subroutines that perform quaternion and matrix operations are
permitted to use the volatile simple variables (H,I,J,K and W,X,Y,Z), but no
others. Special subroutines such as 'DERVIS' (Section 2.3), whose calculations

generally are more complicated than those of utility subroutines, have no

such general restrictions on their access to storage registers.

PN




- ‘.—yw ":“r’a-'_""»'fa CTRE TP TP AT WW“WWW“W‘“".‘Fr;“-vM Y e e - o o T 3 YT o

2, BASE LINK (#TRAJ)

The "#TRAJ" program file is the base link of the #TRAJ processor, contain-

ing all of the general-purpose subprograms, i.e., all that are used by two or

more subsidiary links. .
2.1 FUNCTION SUBPROGRAMS

2.1.1 ‘ANGT'

The function subprogram 'ANG1‘' converts an input angle to its equivalent

value in the range of 0 to 2.

2.1.1.1 Arguments

pl = Input angle, measured in radians.

2.1.1.2 Example of Usage

The instruction 'ANG1'(-37) > A in the calliing routine would cause the

value of +r to be assigned to the variable A.

2.1.1.3 Computations

The fractional part of pl/2r is multiplied by 2n. If the result is nega-

tive, 2r is added. A flow chart is shown in Figure 3.

25




LI LA S e i SR .
. PR '4.!

PRPIORITS . P TURROI ONGUAY PPV > FPIISFSE - RN

(‘anei‘(pn) )
'

At +re (bi/am) > b2

ORI, T YO 1. L NP T T

> ,
pa>>20 |
<0 j

AT + pa > P2

Figure 3. 'ANG1' Function Subprogram Logic Flow

26

' g™ ae® e AN REE S e e e




2.1.2 'ANG2'

The function subprogram 'ANG2' converts an input angle to its equivalent

value in the range of -n tc +u.

2.1.2.1 Arguments

pl = Input angle, measured in radians.

2.1.2.2 Example of Usaye

The instruction 'ANG2'(-37) -~ A in the calling routine would cause the

value of -m to be assigned to the variable A.

2.1.2.3 Computations

The fractional part of pl/2n is multiplied by 2r. If the result is great-

er than