

16915 El Camino Real, Suite 220, Houston, Texas 77058

22 October 1976

Subject: Contract No. NAS-9-14960, Task Order No. D0510, Task Assignments $C,{ }^{\circ}, E$, and G, Transmittal of Design Note No. 1.4-8-015

To: NASA/Lyndon B. Johnson Space Center Attention: R. T. Savely/FM8 2101 Nasa Road 1 Houston, Texas 77058

Enclosure: (1) Navigation Input to Level C OFT Navigation Functional Subsystem Software Requirements (Rendezvous Onorbit-2)

1. Enclosure (1) presents the rendezvous (onorbit-2) navigation software design requirements for the Orbital Flight Test (OFT) phase of the Space Shuttle. This design note has been prepared in the format of a Functional Subsystem Software Requirements (FSSR) document, and contains not only the recently developed rendezvous design, but also the onorbit-1 requirements. Thus, the contents of this enclosure represent the most recent OFT navigation requirements for the orbit operations computer load. In addition, due to recent decisions to split documentation of OFT navigation requirements into three separate books (one per each computer load), the enclosed represents the first publication of the orbit operations FSSR book. This design note does not constitute an official track task FSSR input. The first such input is currently scheduled for 17 December 1976 (onorbit-1).
2. This letter partially fulfills a deliverable requirement of JSC/MDC Task Order D0510, Task Assignments C, D, E, and G.

ORIGINAL PAGE IS OF POOR QUALITY
W. E. Hayes

Project Manager
Mission Planning, Mission Analysis and Software Formulation

OAL:pa
kc: See attached sheet

dyes

22 October 1976
HAD-1. 4-239

Subject: Contract No. WAS-9-14960, Task Order No. D0510, Task Assignments C, D, E, and G, Transmittal of Design Note No. 1.4-8-015

To:
KASA/Lyndon B. Johnson Space Center Attention: R. T. Savely/FM8 2101 Hasa Road 1 Houston, Texas 77058

Enclosure: (1) Navigation Input to Level C OFT Navigation Functional Subsystem Software Requirements (Rendezvous Onorbit-2)

1. Enclosure (1) presents the rendezvous (onorbit-2) navigation software design requirements fer the Orbital Fight Test (OFT) phase of the Space Shuttle. This design note has been prepared in the format of a functional Subsystem Software Requirements (FSSR) document, and contains not only the recently developed rendezvous design, but also the onorbit-1 requirements. Thus, the contents of this enclosure represent the most recent OFT navigation requirements for the orbit operations computer load. In addition, due to recent decisions to split documentation of OTT navigation requireaments into three separate books (one per each computer load), the enclosed represents the first pusification of the orbit operations FSSR book. This design note does not constitute an official track task FSSR input. The first such input is currently scheduled for 17 December 1976 (onorbit-1).
2. This letter partially fulfills a deliverable requirement of JSC/MDC Task Order D0510, Task Assignments G, D, E, and G.

H. E. Hayes

Project Manager
Mission Plamtrig, Mission Analysis and Software formication

DAL:De
EC: See attached sheet

SPACE SHUTTLE ENGINEERING AND OPERATIONS SUPPORT

DESIGN NOTE NO. 1.4-8-015

NAVIGATION INPUT TO LEVEL C OFT NAVIGATION FUNCTIONAL SUBSYSTEM SOFTWARE REQUIREMENTS
(RENDEZVOUS ~ ONORBIT-2)

MISSION PLANNING, MISSION ANALYSIS AND SOFTWARE FORMULATION

22 October 1976

This Design Note is Submitted to NASA Under Task Order No. D0510,
Task Assignments C, D, E, and G, in Fulfillment of Contract
NAS 9-14960.

PREPARED BY:

$\underset{\substack{\text { J. So se } \mathrm{Sencer} \\ \text { Senior Engineer }}}{\text { Tench }}$

APPROVED BY:
Willing E. Wodlake W.E. Wedlake Integration Manager Orbiter Navigation Software
$\frac{\text { W.64 } 7 \text { Yup }}{\text { W.E. Hayes }}$ Project Manager Mission Planning, Mission Analysis, Software Formulation

CONTENTS

Section Page
1.0 INTRODUCTION 1-1
2.0 APPLICABLE DOCUMENTS (TBD)
3.0 OVERVIEW (TBD)
4.0 DETAILED REQUIREMENTS. 4.0-1
4.1 Navigation and User Parameter Sequencer Principal Functions 4,1-1
4.1.1 Onorbit/Rendezvous Navigation Sequencer. 4.1.1.1
4.1.2 Onorbit/Rendezvous User Parameter Processing Sequencer 4.1.2-1
4.2 Subfunctions Common to Severa 1 Navigation Functions 4.2-1
4.2.1 State Propagation. 4.2.1-1
4.2.1.1 IMU Data Snap 4.2.1-2
4.2.1.2 Acceleration Models 4.2.1-3
4.2.1.2.1 Gravity. 4.2.1-11
4.2.1.2.2 Drag 4.2.1-16
4.2.1.2.3 Venting and Uncoupled RCS Thrusting. 4.2.1-23
4.2.1.3 Integration of State Equations of Motion 4.2.1-28
4.2.1.3.1 Super-g. 4.2.1-30
4.2.1.3.2 Precision. 4.2.1-32
4.2.2 Covariance Matrix Propagation. 4.2.2-1
4.2.3 State Vector Interpolation 4.2.3-1
4.2.4 State and Covariance Measurement Incorporation (Kalman Filter). 4.2.4-1

CONTENTS

Section Page
4.2.5 Ground Updates (auto in-flight). 4.2.5-1
4.2.6 Angle Measurement Partials 4.2.6-1
4.2.7 Conic Solution (F and G Series). 4.2.7-1
4.2.8 Position Velocity Submatrix of Transition Matrix 4.2.8-1
4.2.9 Covariance Initialization 4.2.9-1
4.3 Navigation Processing Principal Functions 4.3-1
4.3.1 Onorbit Navigation 4.3.1-1
4.3.1.1 Onorbit Control 4.3.1-7
4.3.1.2 State and Covariance Setup. 4.3.1-11
4.3.1.3 State Propagation 4.3.1-25
4.3.1.4 Covariance Matrix Propagation 4.3.1-35
4.3.2 Rendezvous Navigation. 4.3.2-1
4.3.2.1 Rendezvous Control 4.3.2-9
4.3.2.2 External Sensor Data Snap 4.3.2-16
4.3.2.3 Sensor Measurement Selection. 4.3.2-26
4.3.2.4 State and Covariance Setup. 4.3.2-34
4.3.2.4.1 Measurement Reconfiguration. 4.3.2-35
4.3.2.4.2 Auto In-Flight Update 4.3.2-47
4.3.2.5 State Propagation 4.3.2-55
4.3.2.6 Covariance Matrix Propagation 4.3.2-68
4.3.2.7 State and Covariance Measurement Incorporation 4.3.2-76
4.3.2.7.1 Rendezvous Radar Range 4.3.2-84
4.3.2.7.2 Rendezvous Radar Range Rate 4.3.2-94

CONTENTS

Section

Page

4.3.2.7.3 Rendezvous Radar Shaft
Angle
4.3.2-101
4.3.2.7.4 Rendezvous Radar Trunion Angle 4.3.2-108
4.3.2.7.5 Star Tracker Horizontal Angle 4.3.2-116
4.3.2.7.6 Star Tracker Vertical Angle 4.3.2-124
4.3.2.7.7 COAS Horizontal Angle 4:3.2-131
4.3.2.7.8 COAS Vertical Angle 4.3.2-139
4.3.2.8 Measurement Processing Statistics. 4.3.2-147
4.4 Subfunctions Common to Several Navigation- Related Principal Functions (Coordinate Transformations)(TBD)
4.4.1 Transformation from Aries Mean of 1950 to Earth-Fixed (TBD)
4.4.2 Earth-Fixed to M50 (TBD)
4.4.3 Geodetic to Earth-Fixed (TBD)
4.4.4 Earth-Fixed to Topodetic. (TBD)
4:4.5 Earth-Fixed to Runway (TBD)
4.4.6 Earth-Fixed to Scanner. (TBD)
4.4.7 Body to M50 (TBD)
4.4.8 Earth-Fixed to Geodetic (TBD)
4.4.9 UVW to M50. (TBD)
4.5 General Requirement Principal Functions. 4.5-1
4.5.1 Site Lookup (TBD)
4.5.2 Onorbit Precision State Prediction 4.5.2-1

CONTENTS

Section Page
4.5.3 Star Tracker SOP Ephemerides (TBD)
4.5.3.1 Solar Ephemeris (TBD)
4.5.3.2 Lunar Ephemeris (TBD)
4.6 User Parameter Processing Principal Functions (Onorbit) 4.6-1
4.6.1 User Parameter State Propagation 4.6.1-1
4.6.2 Onorbit User Parameter Calculations 4.6.2-1
4.7 Specialist Functions Navigation Support Formulations (TBD)
4.8 I-Load Requirements (TBD)
4.9 Down List Requirements (TBD)
APPENDICES
A. NAVIGATION VARIABLE NAMES AND DESCRIPTIONS A-i
B. NAVIGATION SEQUENCER PRINCIPAL FUNCTION
AND NAVIGATION PROCESSING PRINCIPAL FUNCTIONS FLOW CHARTS. B-i
C. GENERAL REQUIREMENT PRINCIPAL FUNCTION AND COORDINATE TRANSFORMATIONS FLOW CHARTS, VARIABLE NAMES, AND DESCRIPTIONS $\mathrm{C}-1$
D. USER PARAMETER FLOW CHARTS, VARIABLE NAMES, AND DESCRIPTIONS. D-i
E. SPECIALIST FUNCTION NAVIGATION SUPPORT FLOW CHARTS, VARIABLE NAMES AND DESCRIPTIONS. (TBD)

1.0 INTRODUCTION

This document provides Level C detailed navigation requirements for review prior to the 8 November 1976 onorbit- 1 and onorbit-2 mode team meetings and the subsequent onorbit operations computer load (i.e. the navigation software for the entire operational sequence 2, and operational sequence 8). The original intention was to issue only rendezvous - unique requirements, but, in the process of generating the rendezvous design, a substantial re-design was necessary for the onorbit-1 software. This, coupled with the recent decision to separate all navigation Level C requirements into three separate books per memory load resulted in the decision to document the entire orbit operations computer load, rather than just rendezvous - unique requirements.

The rendezvous (onorbit-2) requirements are based on revision to MDTSC0 Transmittal Memo 1.4-MPB-323, First Data Dump - Rendezvous (onorbit-2) Navigation Software, dated 30 July 1976, suggested at two TELECON review sessions held on 20 and 26 August. The onorbit-1 (non-rendezvous) requirements are based on the July 1976 FSSR, modified by the 25 June 1976 FSSR input change page document, further modified by changes which came about during the rendezvous software design process, and finally modified by the ascent/
onorbit mode team meeting (August 2 through 6, 1976) decisions. All changes and FSSR section status are identified in the PHASE 4 A Status Log included in this section.

The following assumptions were used in the development of the Level C onorbit-2 (and revised onorbit-1) requirements, and thus represents the combined developmental phases 4 and 4A:

1. No onboard external data are processed during the non-rendezvous portion of operational sequence 2. Oneway Doppler/TDRSS measurement incorporation is not currently planned for the OFT program.
2. The following external data will be processed during the rendezvous coast and TPF stationkeeping navigation phases (no external data will be processed during the rendezvous powered flight navigation phases):
a. Rendezvous radar shafi angle, trunion angle, rarige, and range rate,
b. Star tracker horizontal and vertical angles, and c. COAS (Crew optical Alignment Sight) horizontal and vertical angles.
3. A nine-dimensional state vector is maintained during nonrendezvous portions of operational sequence 2 (three, position; three, velocity; and three, unmodeled acceleration biases).
4. The state vector maintained during rendezvous coast, rendezvous powered flight, and TPF stationkeeping navigation phases is composed of 19 eloments/

1-3 Orbiter position (Aries mean of 1950)
4-6 Orbiter velocity (Aries mean of 1950)
7-9 $\begin{aligned} & \text { Orbiter unmodelled acceleration biases (body. } \\ & \text { coordinate system) }\end{aligned}$
10-12 Target position (Aries mean of 1950)
13-15 Target velocity (Aries mean of 1950)
16-19 Rendezvous tracker biases (sensor coordinate systems)
5. Prestored tables of nominal vehicle attitude, nominal vent magnitude and body-relative thrust directions, nominal RCS .uncoupled thrust magnitudes and body-relative directions, and vehicle/payload area configuration are required for acceleration models.
6. The IMU SOP provides an estimate of the total accumulated IMU velocity at the time of a data snap, in the presence of commfaults.
7. All operational sequence 2 (and 8) floating point variables are assumed to be in double precision.
8. TPF stationkeeping phase includes braking and LOS control phases.
9. External measurement data are selected and processed mutually exclusive on an instrument basis, with the exception of rendezvous radar range and range-rate which
may be processed with COAS, star tracker, or rendezvous radar angles. The DIP (display interface processor) will insure this by activiting the navigation sensor selection "ENABLE" flag for only the most recently crew-selected instrument.
10. All rendezvous tracker bias variances are propagated as exponentially correlated random variables.
11. A 19x19 covariance matrix of Aries mean of 1950 position and velocity (orbiter and target), of body-fixed acceleration bias errors, and of at most four rendezvous tracker (instrument) biases, is propagated during rendezvous coast, rendezvous powered flight, and TPF stationkeeping navigation phases. A 9×9 covariance matrix of Aries mean of 1950 position and velocity (orbiter, only), and of three body-fixed acceleration bias errors, is propagated during onorbit coast and onorbit powered flight navigation phases.
12. Use of sensed velocity in the navigation state propagator is triggered by entrance into the onorbit or rendezvous powered flight navigation phases (ignition time minus TBD seconds, event-68) and a prestored sensed acceleration threshold. Use of sensed velocity during TPS/stationkeeping is triggered by entrance into that major mode (MM 213) and by a prestored sensed acceleration threshold.
13. Extemal measurement data processing shall be inhibited
during rendezvous powered flight navigation phases. Inhibiting shall commence at ignition time minus TBD seconds. This event is independent of the event (\#68) to begin the rendezvous navigation phase, itself.
14. Backward and forward integration capability is provided for state prediction and propagation.
15. Prestored nominal attitude time lines are used for prediction, and current AAM attitude is used for propagation.
16. The precision state prediction function has accuracy comparable to that of the precision state propagation function, and has the option of being executed in a faster but less accurate) conic mode.
17. Acceleration models include attitude-dependent drag and venting, Earth gravity, and uncoupled (RCS) thrusting effects.
18. A one-state vector configuration applies during all navigation phases in operational sequence 2 (and 8).
19. The acceleration due to lift force is assumed to be negligible in the atmospheric drag acceleration model.
20. An automatic inflight update capability will be provided by which the ground can uplink either an orbiter or a target state vector (M1950) and associated time tag, during any navigation phase (rendezvous or non-rendezvous). The following additional assumptions apply to this capability:
a. The ground shall uplink one vehicle state (3 position,

3 velocity, associated time tag, and vehicle ID) at a time.
b. The onboard software receiving this data (ground uplink processor) will set the DO AUTO UPDATE flag to "ON", test the vehicle ID to determine if the uplinked data pertains to orbiter or target, and set up one of the following two variable sets, depending on the results of this test
c. The navigation software has the capability of reinitializing the orbiter and/or target state vectors (and associated covariance matrix) in a single navigation cycle.
d. If a target vector is uplinked during a non-rendezvous navigation phase, it is stored for eventual use in a rendezvous phase.
e. Whenever an orbiter or target state vector is reinitialized because of a ground update, all correlations between orbiter and target vehicle position and velocity errors are zeroed. The respective vehicle (6x6) position/velocity submatrices are re-initialized using prestored UVW values (or uplinked) UVW values. All
in-plane correlation terms, and a single out-of-plane correlation term is included in this re-initialization.
21. Propagation of orbiter position and velocity vectors will be performed by use of the precision integration scheme (during onorbit and rendezvous coasting flight navigation phases), and by use of the super-G integration scheme during onorbit and rendezvous powered flight navigation phases and during the TPF stationkeeping navigation phase. Propagation of the target position and velocity vectors will be performed by use of the precision integration scheme in all rendezvousrelated navigation phases (coasting, powered, and TPF stationkeeping).
22. Upon entry into a rendezvous-related navigation phase from a non-rendezvous-related navigation phase, or, from outside of OPS-2, the target state vector will be initialized according to one of the following four options:
a. Set to ground uplinked value (predicted to current time),
b. Set to last onboard estinate from previous rendezvous phase (predicted to current time),
c. Set to equal to current orbiter state, or
d. Set to pre-mission stored values (predictea to current time).

Option c., above, is included to handle the current OFT rendezvous sequence, in which target and orbiter actually begin in a near stationkeeping configuration, separate, then rendezvous.
23. If the sensor (including IMU) SOP's are not in the same GPC as the navigation filter software:
a. Data and time tag must be preserved as a pair,
b. ICC (inter computer communication) transmission of data must be pairwise, and
c. ICC transmission rate must be fast enough such that the data time tag and "current time: (in NAV GPC) differ by no more than TBD seconds.

If the sensor SOP's and navigation filter reside in the same GPC:
a. Data must be time tagged, and
b. Data must be no more than TBD seconds.

The next FSSR input to the onorbit-1 (non-rendezvous, phase 4) requirements will be on 17 December 1976.

RENDEZVOUS SOFTWARE CHANGE LOG (22 October 1976)

SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
1.0	INTRODUCTION	Revise list of assumptions to include recent rendezvous design, 25 June 1976 onorbit-1 FSSR input change-page document changes, and renuirements for OPS-8 and checkpoint resulting from the recent ascent/onorbit mode team meeting; add page change notice
2.0	APPLICABLE DOCUMENTS	(to be provided)
3.0	OVERVIEW	(to be provided)
4.0	DETAILED REQUIREMENTS	Minor word changes to reflect addition of PHASE 4A requirements (rendezvous)
4.1	Navigation and User Parameter Sequencer Principal Functions	Minor word changes to reflect. single computer load FSSR
4.1 .1	Onorbit/Rendezvous Navigation Sequencer	Modifications to include rendezvous requirements; slight logic re-structuring and initializing procedure to take advantage of software commonality between onorbit and rendezvous functions; incorporate covariance re-initialization module, for use by both onorbit \& rendezvous software for sequencer initialization and ground updates; add logic to operate during OPS-8; and initialization into OPS-2 from a CHECKPOINT: section renumbered
4.1 .2	Onorbit/Rendezvous User Parameter Processing Sequencer	Section renumbered; update to provide scheduling requirements for onorbit user parameter calculations and to reflect changes in scheduling require-

SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
4.2.1.3.2	Precision	Correct errors, bring requirenients up to date based on 25 June 197E onorbit-1 FSSR, and recent rendezvous design
4.2 .2	Covariance Matrix Propagation	New section describing revised mean-conic-partial techique for propagating covariance matrix for both onorbit-1 and rendezvous
4.2 .3	State Vector Interpolation	New section describing rendezvous measurement requirements for state vector interpolation.
4.2 .4	State and Covariance Measurement Incorporation (Kalman Filter)	New section describing revised Kalman filter equations for use during rendezvous navigation
4.2 .5	Ground Updates (auto inflight)	New section describing revised auto inflight update requirements for both orbiter and/or target vector uplinks
4.2 .6	Angle Measurement Partials	New section describing common requirements to several rendezvous navigation subfunctions dealing with Kalman filter angle measurement observation partials
4.2 .7	Conic Solution (F and G Series)	New section, documenting conmon requirements for conic (orbital 2-body problem) solutions used in - precision state propagation/prediction (Pines Method), mean-conic partials technique (currently proposed for transition matrix generation associated with onorbit \& rendezvous covariance matrix propagation, and - rendezvous state vector interpolation
4.2 .3	Position-Velocity Submatrix of State Transition Matrix	New section, documenting onorbit/ rendezvous requirements for computing transition matrix, for use in covariance matrix propagation (note: this technique is proposed to replace old onorbit-1 technique), and involves use of "mean conic partials"

SECTION NO.	SECTION TITLE	DESCRIPTION of CHANGE
4.2 .9	Covariance Initialization	

SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
$\because 4.3 .2 .3$	Sensor Measurement Selection	New section describing sensor. selection of angles data (star tracker, COAS, \& rendezvous radar) independent of radar range \& range rate
4.3.2.4	State and Covariance Setup	New section header describing reconfiguration of state and covariance because of measurement reconfigura.. tion or ground update for rendezvous
4.3.2.4.7	Measurement Reconfiguration	New section describing requirements for state and covariance reinitialization as a result of a new sensor measurement configuration
4.3.2.4.2	Auco In-FIjght update	New section describing requirements for state and covariance reinitialization as a result of either orbiter and/or target ground update during rendezvous
4.3 .2 .5	State Propagation	New section describing requirements for orbiter \& target state vector propagation during powered and coasting flight arcs of rendezvous
4.3 .2 .6	Covariance Matrix Propagation	New section describing requirements for powered and coasting flight covariance matrix propagation during rendezvous navigation phases
4.3.2.7	State and Covariance Measurement Incorpor... ation	New section header describing requirements for state and covariance filter updates during rendezvous
4.3 .2 .7 .1	Rendezvous Radar Range	New section requirements for calculation of Kalman filter partial vector \& residual for rendezvous radar range measurement
4.3 .2 .7 .2	Rendezvous Radar Range.Rate	New section requirements for calculations of Kalman filter partial vector \& residual for rendezvous radar range-rate measurenent

SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
4.3.2.7.3	Rendezvous Radar Shaft Angle	New section requirements for calculation of Kalman filter partia? vector \& residual for rendezvous radar shaft angle measurement
4.3.2.7.4	Rendezvous Radar Trunion Angle	New section requirements for calculation of Kalman filter partial vector \& residual for rendezvous radar trunion angle measument
4.3.2.7.5	Star Tracker Horizontal Angle	New section requirements for calculation of Kalman filter partial vector \& residual for star tracker horizontal angle measurement
4.3.2.7.6	Star Tracker Vertical Angle	New section requirements for calculation of Kalman filter partial vector \& residual star tracker vertical angle measurement
4.3.2.7.7	COAS Horizontal Angle	New section requirements for cal. culation of Kalman filter partial vector \& residual for COAS horizontal angle measurement
4.3.2.7.8	COAS Vertical Angle	New section requirements for calculation of the Kalman filter partial vector \& residual for COAS vertical angle measurement
4.3.2.8	Measurement Processing Statistics	New section; modification of entry measurement processing statistics requirements to satisfy unique onorbit display requirements; include "target confirm" logic (previously done in ST SOP).
4.4	Subfunctions Common to Several Navigation:RelatedxPrincipal Functions (Coordinate Transformations)	(this header and all subsections 4.4.1 through 4.4.9 will be provided at a later date)
4.5	General Requirement Principal Functions	Minor modifications (new FSSR structure)

	SECTION NO.	SECTION TITLE	DESCRIPTION OF CHANGE
-	Appendix C	General Requirement Principal Function Flow Charts	Revise table of contents to contain list of latest onsert and rendezvous flow charts; include only flow chars and variable names for predictor software ... coordinate system flow charts and definitions to be provided later
	Appendix D	User Parameter Flow Charts, Variable Names, and Descriptions	Provide revised taile of contents variable list and flow charts for orbit operations load ... in the area of user parameter processing functions.
	Appendix E	Specialist Function Navigation Support Flow Charts, Variable Names, and Descriptions	(to be provided)

4.0 DETAILED REQUIREMENTS

The various subsections of this section specify the detailed requirements for the Shuttle navigation system flight software package. This document contains OFT detailed requirements for navigation and user parameter processing principal functions for the orbit operations computer load (on-orbit and rendezvous), operational sequence 2. In addition, requirements dealing with navigation software functions during operational sequence 8 and in association with checkpoint storage and retreival are also addressed.

When viewed in the larger context of the total shuttle flight software, the navigation software package documented herein is, itself, a modular system whose function is to supply various parameters required by other major modular systems such as ! guidance, displays, flight control, and others. The requirements placed upon the navigation system by these various users often play a large role in determining the design structure and cyclic rate structure of the navigation system. The required interfaces between the navigation system and the other major software systems that use navigation system data are presented in the Level B CPDS document which controls all the interfaces between principal functions.
4.1 NAVIGATION AND USER PARAMETER SEQUENCER PRINCIPAL FUNCTIONS

The sequencer principal functions shall initialize and sequence the proper navigation and user parameter principal functions to meet navigation and user requirements. For OFT, there shall be one navigation sequencer principal function and one user parameter sequencer principal function that control navigation and user parameter principal functions during operational sequence 2 (orbit operations computer load).
navigation sequencer: on-orbit/rendezvous navigation sequencer
user parameter sequencer: on-orbit/rendezvous user parameter processing sequencer

4.1.1 Onorbit/Rendezvous Navigation Sequencer

The onorbit/rendezvous navigation sequencer principal function shall initialize and sequence the onorbit navigation and rendezvous navigation principal functions during operational sequence 2 (ops-2), while the following major modes are active:

MM 201, orbit coast
MM 202, (orbit coast) maneuver exec.
MM 211, rndz. nav.
MM 212, (rndz. nav.) maneuver exec.
MM 213, TPF stationkeeping

The onorbit/rendezyous navigation sequencer principal function shall also initialize and sequence the onorbit navigation principal function during operational sequence 8 (ops-8, orbital operation checkout).

Detailed requirements for each navigation processing principal function are identified in the specific principal function description sections (4.3.1. and 4.3.2). Cues for performing the proper navigation initialization and sequencing during ops -2 and ops -8 are defined in the Level B-GN\&C CPDS. The particular events and resulting navigation software actions pertaining to the onorbit/rendezvous navigation sequencer principal function are shown in Table 4.1.1-1. Dynamic parameter input/output data flow between the onorbit/rendezvous
navigation sequencer principal function and other principal functions is shown in Tables 4.1.1-2 and 4.1.1-3.

TABLE 4.1.1-1 - ONORBIT/RENDEZVOUS NAVIGATION
SEQUEICER EVENTS

EVENT WUMBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
	transition to MM 201 from MM 107 (ops - I)	"ops 201 pro"	Call: Ops 2 or 3 INITIALIZE Ca11: Onorbit COVINIT.UVW Set: REND NAV FLAG = OFF, USE IMU DATA=OFF Signal: OPS_2_OR-8.INITIALIZE COMPLETE Set: $\text { PWRD FLT NAV }=0 \mathrm{FF}$ Schedule: NAV_ONOREIT; repeat every DT_ONORBIT_NAV
60 A	transition to MM 201 from GN\&C ops-8	"ops 201 pro"	Cal1: OPS_2_OR_B_INITIALIZE Call: ONORBIT COVINIT Set: \quad REND NAV FLAG $=0 F F$, USE IMU DATA $=0 F F$ Signal: OPS_2_OR 3 _INITIALIZE COMPLETE Set: PWRD-FLT NAV- $=0 F F$ Schedule: NAV_ONORBIT; repeat every DT_ONORBIT_NAV
60B	transition to GN\&C ops-8 from MM 201 TERMINATE OPS-2	(refer to VU, level B CPDS)	Store selected parameters in protected memory locations for use by ops-8-or ops-3 navigation sequencer principal functions.

TABLE 4:1.1-1 - ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER EVENTS

TABLE 4.1.1-1 - ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER EVENTS

EVENT RUMBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
66	transition to MM 213 from MM 201	"ops 213 pro"	Cancel: NAV ONORBIT Call: TARGET NAV INIT Set: PWRD FLT MAV $=O N$ USE $\overline{M E A S}$ DATA $=O N$ TARGET VEC AVAIL $=0 N$ Schedule: NAV RENDEZ $\overline{V O U S} ;$ repeat.every DTREND_TPF_NAV
68	initiate powered flight navigation	TB7 y(sec.) (y seconds prior to a burn	if in rendezvous powered flight navigation phase(i.e., if REND_NAV_FLAG = ON) Cancel: NAV RENDEZVOUS Set: \quad PNRD FLT NAV $=O N$ Schedule: NAV $\bar{R} E N D E Z V O U S$; repeat every DT. REND_PWRD_FLT if in onorbit powered flight navigation phase (i.e., REND_NAV_FLAG = OFF):
,			Cancel: NAV ONORBIT Set: PWRD FLT NAV $=$ ON Schedule: NAV ONORBIT; repeat every

TABLE 4.1.1-1 - ONORBIT/RENDEZVOUS NAVIGATION SEquencer events

EVENT NUHBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
73	transition to MM 201 from MM 202	"ops 201 pro"	Cancel: NAV ONORBIT Set: USE IMU DATA $=$ OPF PWRD FLT NAV $=0 F F$ Schedule: NAV ONORBIT; repeat every DT ONORBIT_NAV
74	transition to MM 211 from MM 107 (ops-1)	"ops 211 pro"	
73	transition to MM 211 from MM 212	"ops 211 pro"	Cancel: NAV RENDEZVOUS Set: USE IMU DATA $=$ OFF PWR FLT NAV $=0$ FF USE MEAS DATA $=$ ON TARG VEC AVAIL $=0 N$ Execute: DISPLAY COUNT INIT (CODE) Schedule: NAV RENDEZVOUS; repent every DT REND_NAV

TABIE 4.1.1-1 - ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER EVENTS

TABLE 4.1.1-1 - ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER EVENTS

EVENT AUIGBER	EVENT NAME	NAVIGATION CRITERIA	NAVIGATION ACTION
E]	transition to MM 301 from MM 201 TERMINATE OPS-2	"ops 301 pro"	(same as for event \#60B)
(TBD)	begin inhibiting incorporation of external measurement	$\begin{aligned} & \text { TB7 (sec.) } \\ & \text { (x seconds prior } \\ & \text { to a burn) } \end{aligned}$	Set: USE MEAS DATA $=0$ FF test to see whether èvent \#68 has occurred, and take appropriate action (see above table entry)... both event \#68 and this TBD event may occur simultaneously
50	FOLLOWING EVENTS PERT transition to GNaC ops-8 from MM 106 (ops-1)	N TO SEQUENCER FUN (refer to VU level B CPDS)	SURING OPS 8 Call: OPS 2OR 8INITIALIZE Call: ONORBIT COVINIT UVW Set: USE IMUDATA $=$ OFF Signal: OPS 2 OR 8 INITIALIZE COMPLETE Set: REND NAV FLAE $=0$ OF PWRD FLT NAV $=$ OFF Schedule: NAV ONO DTBIT; repeat every
60 A	transition to MM 201 from GN\&C ops-8 TERMINATE OPS-8	"ops 201 pro"	store selected parameters in protected memory locations for use by ops-2 navigation sequencer initialization functions.

TABLE 4.1,1-1-ONORBIT/RENDEZVOUS NAVIGATION SEqUENCER EVENTS

TABLE 4.1.1-2: ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT LIST

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)	
TBD		$\left[\begin{array}{l} \mathrm{S} \\ \mathrm{~N} \end{array}\right.$	SUBFUNCTION * NAME	SUBFUNCTION INPUT TABLE
	$\begin{aligned} & \text { R FILT INIT } \\ & \text { V-FILTINIT } \end{aligned}$	- Deorbit Lndg NAV Seq. - ASC NAV Seq - Orb/Rnd NAV Seq(Ops-8)		$4.1 .7-4$
	Y LAST FILT INIT TLASTFILTINIT	. TMII RM - Deorbit Lndq NAV Sea - ASC NAV Seq - Orb/Rnd NAV Sea (Ops-8))	4.1.1-4
	E-INIT	- Deorbit Lndg NAV Seq - Orb/Rnd NAV Seq (0ps-8))	4.1.1-4
	$\begin{aligned} & \text { TARG VEC AVAIL } \\ & \text { RTV } \\ & \text { VTV } \\ & \text { TITV } \end{aligned}$	- Onorbit Navigation - REND Navigation	-	4.1.1-4
	T CURRENT FILT	- REND Navigation	-	4.1.1-4
	$\begin{aligned} & \text { R CHECK PT } \\ & \mathrm{V} \text { CHECK PT } \\ & \mathrm{T} \text { CHECK PT } \end{aligned}$. CHECKPOINT SPEC FCN	-	4.1.1-4

* THIS PRINCIPAL FUNCTION CONTAINS NO SUB-FUNCTIONS

TABLE 4.1.1-3: ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

* THIS PRINCIPAL FUNCTION CONTAINS NO SUB-FUNCTIONS

TABLE 4.1.1-3: ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

* THIS PRINCIPAL FUNCTION CONTAINS NO SUB-FUNCTIONS
A. Detailed requirements. For OFT orbital operations (ops_2 and ops 8), navigation requirements can be divided into five navigation phases: onorbit coast, onorbit powered flight, rendezvous coast, rendezvous powered flight, and TPF stationkeeping.

1. Onorbit coast navigation phase - This phase shall use the onorbit navigation principal function and shall be active during operation of major mode 201, and during operation of the orbital checkout operational sequence (ops-8). The onorbit coast navigation phase shall begin in one of the following ways:

- Entry into MM 201 from ops-3 or ops-8 (events 61 or 60 A , respectively,
. Entry into MM 201 from ops-1 or ops-0, via checkpoint (events 60 or 81 , respectively,
. Entry into MM 201 from MM 202 (event 73),
- Entry into MM 201 from MM 211 or MM 213 (events 65 or 80 , respectively),
- Entry into GN\&C ops -8 from ops -1 (event 50), or
- Entry into GN\&C ops-8 from ops -2 , MM 201, event 60B)

If the onorbit coast navigation phase is begun by entry into MM 201 from ops -3 or ops -8 (events 61 or 60A, respectively), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to initialize the orbiter state vector, covariance matrix, and other
required navigation parameters on the basis of prestored computer locations unaffected by the computer program memory load reconfiguration. The following sequence should be followed:
1.1.1-initialize orbiter position and velocity vectors and time tag

R FILT $=$ R FILT INIT
$\underline{V F I L T}=\underline{\text { V FILT_INIT }}$
T_LAST_FILT $=$ TLAST FILT_INIT
1.1.2-initialize accumulated IMU velocity
\underline{V} LAST_FILT $=$ VLAST_FILT_INIT
1.1.3-initialize those parameters required by the user parameter state propagation subfunction (section 4.6.1).

R RESET $=$ RFILT_INIT
\underline{V} RESET $=\underline{V}$ FILT_INIT
V_IMU_RESET $=$ V LAST_FILT_INIT
T_RESET $=$ T_LAST_FILT_INIT
FILT_UPDATE $=0 \mathrm{~N}$
1.1.4 - initialize other parameters as required for the onorbit navigation principal function

$$
\underline{B}=\underline{O}
$$

VENT_THRUST BIAS $=\underline{0}$.
SQR_EMU $=$ SQRT (EARTH_MiU)
C MX AN $=\operatorname{COS}$ (MAX DENS ANGLE)
S MX_AN = SIN (MAX DENS ANGLE)
C_MN AN $=\operatorname{COS}$ (MIN DENS ANGLE)
S_MN AN = SIN (MIN_DENS ANGLE)
4.1.1.14

1.1.5 - zero the total 19×19 dimensional covariance

 matrix$$
E_{1} \text { to } 19,1 \text { to } 19=0
$$

1.1 .6 - initialize the diagonal elements of the covariance matrix pertaining to unmodeled acceleration biases, to premission constants

$$
\begin{aligned}
& E_{I, I}= \text { COV_ACCEL_BODY_INIT } \\
& \text { for } I=7 \text { to } 9
\end{aligned}
$$

1.1.7 - compute the total acceleration vector of the orbiter to match the initial state at the time T_LAST_FILT, for use in the covariance propagation subfunction.

$$
\begin{aligned}
\text { TOT_ACC }= & \text { ACCEL_PERT ONORBIT (GM DEG, GM ORD, } \\
& 1,1,0, \text { R FILT, } V \text { FILT, T LAST FILT) } \\
& - \text { EARTH MU R FILT } / \mid \mathbb{R} \text { FILT }\left.\right|^{3}
\end{aligned}
$$

1.1.8-initialize the 6×6 orbiter position/velocity portion of the covariance matrix to values transferred across the memory transition from ops 3 or ops 8 .

$$
\begin{aligned}
& E_{I, J}=E_{I N I T}^{I, J} \\
& \text { for } I=1 \text { to } 6, J=1 \text { to } 6
\end{aligned}
$$

1.1 .9 - set a flag indicating to subfunctions of the orbit navigation principal function, that rendezvous navigation is de-activated.

$$
\text { REND NAV FLAG }=0 F F
$$

1.1.10 - and, set a second flag indicating that IMU data is not to be used for navigation and user state pro,agation

USE_IMU_DATA $=0$ FF
1.1 .11 - signal that the proper initialization has been accomplished to allow the onorbit/rendezvous user parameter processing sequencer principal function to be scheduled

SIGNAL: OPS 2.OR 8_INITIALIZE COMPLETE
1.1 .12 - set a flag which indicates use of the coasting flight state propagation algorithm

PWRD_FLT_NAV $=0 F F$

After completion of initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT ONORBIT NAV) for coasting flight.

If the onorbit coast navigation phase is begun by entry into MM 201 from ops-1 or ops-0 (via checkpoint initialization), events 60 or 81 respectively, the onorbit/rendezvous navigation sequencer principal function shall provide the capability to initialize the orbiter state vector, covariance matrix, and other required navigation parameters on the basis of prestored data and ops-1 or checkpoint data obtained from protected computer program memory load reconfiguration. The following sequence shall be performed:
1.2 .1 - if re-initialization is to occur based on checkpoint data (event 81), perform the following functions
a. snap current IMU accumulated velocity and associated time tag
(see section 4.2.1.1 for detailed requirements of this SNAP function)
b. envoke the onorbit precision state prediction principal function to bring the checkpoint state vector (R CHECK PT, V CHECK PT) from stored tine (T_CHECK_PT) to current time (T_LAST_FILT_INIT) CALL: ONORBIT PREDICT

INLIST: GM_DEG, GM_ORD, 1,1,1, PREC_STEP,
R CHECK PT, V CHECK_PT, T_CHECK PT,
T_LAST_FILT_INIT
OUTLIST: R FILT_INJT, V FILT_INIT
(see section 4.5 .2 for detailed requirements of the onorbit prediction principal function)

Once this step (1.2.1) is completed, or if event 60 had occurred, instead of 81, proceed to the next step (1.2.2).
1.2 .2 - (perform steps 1.1.1 through 1.1.7, above)
1.2.3-initialize the 6×6 dimensional orbiter position/ velocity covariance matrix to pre-stored UVW standard deviations and correlation coefficients.

CALL: ONORBIT COVINIT UVW
INLIST: SIG UVN OPS 2, COV COR OPS 2,
R FILT, V FILT
DUTLIST: E
1 to 6,1 to 6
detailed requirements for the above subfunction are described in section 4.2.9.
1.2 .4 - (perform steps 1.1.9 through 1.1.12, above) After completion of initialization, the capability shall be provided for sequencing the onorbit navigation princi.pal function at the designated repetition rate (DT_ONORBIT_NAV) for coasting flight.

If the onorbit coast navigation phase is begun by entry into MM 201 from MM 202 (event 73), the onorbit/rendezyous navigation sequencer principal function shall provide the capability to cancel operation of the onorbit navigation principal function. Initialization shall be performed as follows:
1.3.1- set a flag indicating the non-use of IMU data for navigation and user propagation

USE IMU DATA $=$ OFF
1.3 .2 - set a flag indicating the usage of a coasting flight integration algorithm for navigation state propagation

PWRD_FLT NAV $=0 F F$
After completion of this initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT_ONORBIT NAV) for coasting fiight.

If the onorbit coast navigation phase is begun by entry into MM 201 from MM 211 or MM 213 (events 61 or 61A, respectively), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to cancel operation of the rendezvous navigation principal function. The following initializations shall then be performed:
1.4.1 - set a flag indicating the activation of onorbit navigation (and de-activation of rendezvous navigation).

REND NAV FLAG $=0 F F$
1.4.2. - store the current target state vecter time tag (for potential use when re-initialize rendezvous navigation at a later time)
T_TV = T_CURRENT_FILT
1.4 .3 - (perform steps 1.3.1 and 1.3.2, above) After completion of this initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT ONORBIT NAV) for coasting flight.

If the onorbit coast navigation phase is begun by entry into GN\&C ops -8 from ops -1 (event 50) the onorbit/rendezvous navigation sequencer principal function shall provide the capability to initialize the orbiter state vector, covariance matrix, and other required navigation parameters on the basis of prestored data and ops-1 data obtained from protected
computer program memory load reconfiguration. The following initialization sequence shall be performed:
1.5.1 - (perform steps 1.1.1 through 1.1.7: above)
1.5.2 - initialize the 6×6 dimensional orbiter covariance matrix to prestored UVW standard deviations and correlation coefficients:

CALL: ONORBIT_COVINIT_UVW
INLIST: SIG UVW_OPS_2, COV_COR_OPS 2,
R FILT, V FILT
OUTLIST: E
1 to 6, 1 to 6
(see section 4.2.9 for detailed requirements of this common subfunction).
1.5.3 - set a flag to indicate the non-usage of IMU data for navigation and user state propagation

USE IMU DATA $=0$ FF
1.5.4 - indicate completion of initialization of parameters for use by the onorbit/rendezvous user parameter processing sequencer principal function

SIGNAL: OPS_2OR8_INITIALIZE COMPLETE
1.5 .5 - set a flag indicating the activation of onorbit navigation (and de-activation of rendezvous navigation)

REND NAV FLAG $=0 F F$
1.5 .6 - set a flag indicating the use of the coasting flight integration scheme for-state propagation

PWRD FLT NAV $=0 F F$
After completion of this initialization, the capability shall be provided for sequencing the onorbit navigation principal function ai the designated repetition rate (DT ONORBIT NAV) for coasting flight.

If the onorbit coast navigation phase is begun by entry into GN\&C ops-8 from ops-2 (event 60B), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to initialize the orbiter state vector, covariance matrix, and other required navigation parameters on the basis of prestored data and ops-2 data obtained from protected computer locations unaffected by the computer program memory load reconfiguration. The following initialization sequence shall be performed:
1.6.1- (perform steps 1.1.1 through 1.1.7, above)
1.6.2 - initialize the 6×6 dimensional orbiter position/ velocity covariance matrix to values transferred across the memory transition from ops -2 to ops -8
 for $I=1$ to $6, J=1$ to 6
1.6 .3 - (perform steps 1.5.3 through 7.5.6, above) After completion of this initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT ONORBIT NAV) for coasting flight.
2. Onorbit Powered Flight Navigation Phase - This phase shall use the onorbit navigation principal function, and shall be active during MM 202 only, and shall begin upon the occurrence of event 60 (OMS ignition minus Y seconds). The onorbit/rendezvous navigation sequencer principal function will first cancel operation of the onorbit navigation principal fanction (the REND NAV_FLAG will be in the OFF configuration during this navigation phase). The only initialization required is to set a flag indicating the use of the powered flight integration scheme for state propagation

PWRD FLT NAV $=0 N$
After completion of this initialization, the capability shall be provided for sequencing the onorbit navigation principal function at the designated repetition rate (DT ONORBIT_PWRD FLT) for onorbit powered flight.
3. Rendezvous Coast Navigation Phase - This phase shall use the rendezvous navigation principal function and shall be active during operation of major modes 211,212 and 213. The rendezvous coast navigation phase shall begin in one of the following ways:

- Entry into MM 211 from ops-1 (event 74),
- Entry into MM 211 from MM 201 (event 64), or
- Entry into MM 211 from MM 212 (event 78).

If the rendezvous coast navigation phase is begun by entry into MM 211 from ops-1 (event 74), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to initialize the orbiter and target state vectors, covariance matrix, and other required navigation parameters on the basis of prestored data and ops.1 data obtained from protected computer locations unaffected by the computer program memory load reconfiguration. The following initialization sequence shall be performed:

3.1.1-initialize orbiter state vector, covariance matrix and other parameters as indicated by steps 1.1.1 through 1.1.7.

3.1.2- initialize the 5×6 dimensional orbiter position/velocity covariance matrix to prestored UVW standard deviations and correlation coefficients

CALL: ONORBIT_COVINIT UVW
INLIST: SIG UVW OPS 2, COV_COR_OPS 2,
R FILT, V FILT
OUTLIST: E
1 to 6,1 to 6
(see section 4.2.9 for detailed requirements)
3.1 .3 - set a flag indicating that a rendezvous novigation phase has been initialized

REND NAV FLAG $=O N$
3.1 .4 - test a flag (TARG_VEC_AVAIL) indicating the presence (ON) or absence (OFF) of a stored target position/ve locity state vector from which to initialize
the rendezvous coast navigation phase.
3.1 .5 - if the TARG VEC_AVAIL flag is ON, then initialize target state and covariance matrix. according to the following sequence:
a. predict the stored target position vector (RTV) and velocity vector (VTV) from time T_TV to the current time (T_CURRENT_FILT) by use of the onorbit precision state prediction principal function CALL: ONORBIT PREDICT INLIST: GM_DEG, GM_ORD, DRAG_MODE NAV, 0,3, PREC_STEP, RTV, VTV, T_TV, T_CURRENT FILT

OUTLIST: RTV, VTV (see section 4.5.2 for detailed requirements)
b. initialize the 6×6 dimensional target position/ velocity covariance matrix to prestored standard deviations and correlation coefficients

CALL: ONORBIT COVINIT UVW
INLIST: SIG_TV UVW, COV_COR_TV,

$$
\begin{array}{ll}
\text { OUTLIST: } & E T V, V T V \\
& 10 \text { to } 15,10 \text { to } 15
\end{array}
$$

(see section 4.2 .9 for detailed requirements of this common subfunction).
c. compute the current total acceleration vector of the target vehicle for use by the covariance propagation subfunction.

$$
\begin{aligned}
G T V= & \text { ACCEL PERT_ONORBIT (GM_DEG, GM ORD, } \\
& \text { DRAG MODE NAV, } 0,3, \text { PREC STEP, } \\
& \text { R_TV, } \cup T V, T \text { CURRENT_FILT } \\
& \text {-EARTH MU } \mathbb{Z} T V / \mid \text { RTV } \mid
\end{aligned}
$$

(see section 4.2.1.2 for detailed requirements pertaining to usage of the acceleration models)
3.1 .6 - if the TARG VEC_AVAIL flag is OFF, initialize. target state vector ($\mathbf{R T V}, \underline{V} T V)$, total acceleration vector (GTV), and time tag (T_TV) to orbiter values

$$
\begin{aligned}
& \underline{R} T V=\underline{R} \text { FILT } \\
& \underline{V} T V=V \text { FILT } \\
& G T V=\text { TOT_ACC } \\
& T T V=T \text { LAST FILT }
\end{aligned}
$$

also set target position/velocity covariance matrix equal to orbiter matrix.

$$
\mathrm{E}_{10 \text { to } 15,10 \text { to } 15}=\mathrm{E}_{1} \text { to } 6,1 \text { to } 0
$$

3.1.7-regardless of the TARG_VEC AVAIL flag setting, set the following user parameter propagation subfunction target state vectors for use in initialiaation of that subfunction by the onorbit/rendezvous user parameter processing sequencer principal function

RTV_RESET $=\underline{R} T V$
\underline{V} TV_RESET $=\underline{V} T V$
3.1 .8 - set a flag indicating non-usage of IMU data by the navigation and user parameter state propagation subfunctions.

USE_IMU_DATA $=0 F F$
3.1 .9 - indicate the completion of that portion of initialization required for the onorbit/rendezvous user parameter processing sequencer principal function.

SIGNAL: OPS 2 OR 8 INITIALIZE COMPLETE
3.1.10 - set a flag indicating that the coasting flight (precision) propagation scheme shall be used for orbiter state advancement

PWRD FLT NAV $=0 \mathrm{OF}$
3.1.11-see a flag indicating that external measurement data processing is to be permitted in this navigation phase

USE MEAS DATA $=O N$
3.1.12 - set a flag indicating that the target state has been initialized

TARG VEC AVAIL $=0 \mathrm{~N}$
3.1.13-zero counters related to the measurement processing statistics subfunction (see Section 4.3.2.8)
\underline{N} ACCEPT $=\underline{0}$
\underline{N} REJECT $=\underline{0}$
SEQ ACCEPT $=\underline{0}$
SEQ_REJECT $=0$

After completion of this initialization, the capability shall be provided for sequencing the rendezvous navigation principal function at the designated repetition rate (DT_REND_NAV) for the rendezvous coast navigation phase.

If the rendezvous coast navigation phase is begun by entry into MM 211 from MM 201 (event 64), the onorbit/rendezvous sequencer principal function shall provide the capability to initialize target vehicle state vector from one of the following options:

- based on pre-mission values,
- based on ground uplink data,
- based on last value in previous reridezvous navigation phase (predicted to current time), or
- set to orbiter state value at current time.

The onorbit/rendezvous navigation sequencer principal function shall also be capable of initializing the target position/velocity covariance matrix based on pre-stored UVW data. The first action of the sequencer upon occurence of event 64 is to cancel operation of the onorbit navigation principal function. The following initialization sequence shall then be performed:
$3.2 .1-$ initialize target state $\&$ covariance matrix
(perform steps 3.1 .3 through 3.1 .7 , above)
3.2 .2 - set a flag indicating the non-usage of IMU data in the navigation and user state propagation subfunctions for orbiter)

$$
\text { USE IMU DATA }=0 F F
$$

3.2.3- (perform steps 3.1.10 through 3.1.13, above) After completion of this initialization, the capability shall te providec for sequencing the rendezvous navigation principal function at the designated repetition rate (DT_REND_NAV) for the rendezvous coast navigation phase.

If the rendezvous coast navigation phase is begun by entry into MM 211 from MM 212 (event 78), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to cancel operation of the rendezvous navigation principal function. The following initialization is required, once this cancellation has been accomplished:
3.3 .1 - set a flag indicating the non-usage of IMU data in the navigation and user state propagation subfunctions (for orbiter).

USE_IMU_DATA $=0 F F$
3.3 .1 - (perform steps 3.1.10 through 3.1.13, above) After completion of this initialization, the capability shall be provided for sequencing the rendezvous navigation principal function at the designated repetition rate (DT_REND NAV) for the rendezvous coast navigation phase.
4. Rendezvous Powered Flight Navigation Phase- This phase shall use the rendezvous navigation principal function, and shall be active during MM 212, only, and shall begin upon the occurrence of event 68 (OMS ignition minus y seconds).

The onorbit/rendezvous navigation sequencer principal function will first cancel operation of the rendezvous. navigation principal function (the REND_NAY FLAG will be in the $O N$ configuration during this navigation phase). The only initialization required is to set a flag indicating the use of the powered flight, integration scheme for orbiter state propagation

PURD_FLT_NAV $=0 N$
After completion of this initialization, the capability shall be provided for sequencing the rendezvous navigation principal function at the designated repection rate (DT_REND_PWRD_FLT) for the rendezvous powered flight navigation phase.
5. TPF Stationkeeping Navigation Phase - This phase shall use the rendezvous navigation principal function and shall be active during operation of major mode 213. The TPF stationkeeping navigation phase shall begin in one of the following ways:
. Entry to MM 213 from MM 201 (event 66),

- Entry into MM 213 from MM 212 (event 79), or
. Entry into MM 213 from MM 211 (event 82).

If the TPF stationkeeping navigation phase is begun by entry into MM 213 from MM 201 (event 66), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to, first, cancel operation of the onorbit navigation principal function. The following initialization is
required once this cancellation has been accomplished:
5.1.1 - initialize target state and covariance matrix (perform steps 3.1.3 through 3.1.7, above)
5.1.2 - set a flag indicating the usage of the powered flight navigation state propagation algorithm for orbiter position/velocity advancement.

PWRD_FLT_NAV $=0 N$
5.1.3 - set a flag indicating that rendezvous external measurement data incorporation may occur in this navigation phase

USE MEAS DATA $=0 N$
5.1.4 - set a flag indicating that a target state vector has been initialized

TARG VEC AVAIL $=0 N$
After completion of the above initialization, the capability shall be provided for sequencing the rendezvous navigation principal function at the designated repetition rate (DT REND TPF NAV) for the TPF stationkeeping navigation phase.

If the TPF stationkeeping navigation phase is begun by entry into MM 213 from MM 213 (event 79), or by entry into MM 213 from MM 211 (event 82), the onorbit/rendezvous navigation sequencer principal function shall provide the capability to, first, cancel operation of the rendezvous navigation principal function. The following -initialization shall then be
performed:

5.2.1 - set a flag indicating the usage of the powered flight navigation state propagation algorithm for orbiter position/velocity advancement PWRD_FLT_NAV $=0 N$

5.2 .2 - set a flag indicating that rendezvous external
measurements data incorporation may occur in
this navigation phase
USE MEAS_DATA $=0 N$
5.2.3 - set a flag indicating that a target state vector is available for future initialization if re-enter a rendezvous related navigation phase

TARG VEC AVAIL $=0 \mathrm{~N}$
After completion of the above initialization, the capability shall be provided for sequencing the rendezvous navigation principal function at the designated repetition rate (DT_REND TPF NAV) for the TPF stationkeeping navigation phase.
6. Non-Phase-Related Requirements - In addition to the above requirements, which have been described on the basis of entrance into one of the five orbital navigation phases, there are three other categories of requirements to which the onorbit/ rendezvous navigation sequencer principal function shall comply:

- inhibiting of external measurement data incorporation prior to an OMS burn,
- data to be saved in preparation for computer memory load transitions, and
- navigation data required to be saved via CHECKPOINT specialist function (and requirements as to the storage frequency of such data sets).

6.1 Inhibiting of External Data Processing:

The onorbit/rendezvous navigation sequencer principal function shall provide the capability of setting a flag

$$
\text { USE_MEAS_DATA }=0 \text { OFF }
$$

which will be tested by the rendezvous navigation principal function for the purpose of inhibiting processing of external measurement data just prior to an OMS burn (ignition minus X seconds, event TBD). This flag setting shall occur independently of the entrance into the onorbit or rendezvous powered flight navigation phases, which occur at OMS ignition minus Y seconds (event 68).
6.2 - Memory Transition Data Save: -

The onorbit/rendezvous navigation sequencer principal function shall provide the capability to save off (in protected memory locations) certain data sets for transmission accross a memory transition, from one operational sequence to another. The following three cases require such storage:

- transition from MM 201 (ops-2) to GN\&C ops -8 (event 60B),
- transition from MM 201 (ops-2) to ops -3 (event E1), or
- transition from GN\&C ops-8 to MM 201 (ops-2), event 60A.

Prior to termination of ops-2 or ops-8, for the above three cases, the following variables shall be saved off

RFILTT_INIT $=$ R FILT
\underline{V} FILT_INIT $=\underline{V}$ FILT
VLAST_FILT_INIT $=$ VLAST_FILT
$E_{\text {_INIT }}^{I, J}=E_{I, J}$ for $I=1$ to $6, J=1$ to 6
Although the variable names with the "_INIT" have been designated as unique variables, this may not be required if the same physical core location can be used for R FILT (for example) in each memory load. The "_INIT" notation has been used for visibility purposes, only.
6.3 - CHECKPOINT Data: -

Although the VU (Vehcile Utilities) FSSR shall specify detailed requirements for storage and retrieval of GN\&C data in association with the CHECKPOINT specialist function, the onorbit/rendezvous navigation sequencer principal function shall be capable of initializing the onorbit navigation principal function from such data sets. A detailed list of all data required to be stored for purposes of re-initializing the navigation system is provided in section 4.8 of this FSSR. The following additional requirements are to be provided:

- CHECKPOINT data sets shall be stored (via the CHECKPOINT specialist function) periodically, at a TBD rate
- CHECKPOINT data sets shall also be stored as soon as pos sible after each burn, and as soon as possible after each ground update (of orbiter state vector)

> - navigation reinitialization from a CHECKPOINT data set shall always be functionally similar to entrance into ops 2 from ops -1 (with the exception of having to predict CHECKPOINT orbiter position/ velocity vectors to current time)
B. Interface requirements. Input and output parameters are given in tables 4.1.1-4 and 4.1.1-5, respectively.
C. Processing requirements. None.

TABLE 4.1.1-4 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

* ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRZNCIPAL FUNCTION INPUT LIST

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
orbiter position vector (M50) saved across memory transition	R FILT_INIT	*	V	DP	-	ft	As rad
orbiter velocity vector (M50) saved across memory transition	V FILT INIT	*	V	DP	-	$\mathrm{ft} / \mathrm{sed}$	As rqd
total accumulated IMU sensed veiocity saved across memory transition (M50)	$\mathrm{V}_{\text {INIT }} \mathrm{LAST}^{\mathrm{FILT}}$	*	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	As rad
time tag of navigation initialization data saved across memory transition	$T-\underset{\text { INIT }}{\operatorname{LAST} F I L T}-$	*	F	DP	-	sec	As rad
position/velocity (6×6) orbiter covariance matrix (M50) saved across memory transition -	E INIT	*	M	DP	-	vary	As rqd
	* Onorbit/re $1 s$	navigation s	rincip	function	input	ist	

TABLE 4.1.1-4 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

[^0]JABLE 4.1.1-4 - (Continued) ONGRBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

DESCRIPTIOid	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
sequencing time interval for onorbit navigation during onorbit powered flight phase,	$\underset{\text { DTT }}{\text { ONORBIT PWRD }}$	**	F	DP	-	sec	As rad
sequencing time interval for rendezvous navigation during rendezyous powered flight phase	DT REND PWVD	**	F	DP	-	sec	As rqd

TABE 4.1.1-4 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

** PRE-MISSION LOAD

TABLE 4.1.1-4 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

** PRE-MISSION LOAD

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
flag indicating order of gravitational potential model	GM_ORD	**	I	S	0-8	- As	As rad
integration step-size for precision state prediction	PREC_STEP	**	F	DP	-	sec	As rad
Earth gravitational constant	EARTH MU	**	F	DP	-	$\mathrm{ft}_{\mathrm{sec}} /$	As rad
\therefore flag which activates (1) or de-activates (0) the drag acceleration model	$\underset{N \overline{A V}}{\text { DRAG MODE }_{-}}$	**	I	S	0.1	-	As rad
flag which activates (1) or de-activates (0) the venting \& RCS uncoupled thrusting models	VENT MODE NAV	**	I	S	0-1	-	As rad
vector (3×1) of unmodeled acceleration bias error variances (body coord. system)	$\begin{aligned} & \text { COV ACCEL } \\ & \text { BODY_INIT } \end{aligned}$	**	V	DP	-	$\left\lvert\, \begin{gathered} { }^{2} / \\ \mathrm{sec} \end{gathered}\right.$	As rad

[^1]TABLE 4.1.1-4 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER INPUT LIST

** PRE-MISSION LOAD

TABLE 4.1.1-5 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER OUTPUT LIST

* ONORBIT/RENUEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

TABLE 4.1.1-5 - (Continued) ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER OUTPUT LIST

DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
sine of MAX DENS ANGLE (Russian density model)	S MX AN	*	-F	DP	-	-	As rad
vector of total orbiter acceleration (M50)	TOT ACC	*	V	DP	-	$\frac{\mathrm{ft}}{s \in c^{2}}{ }^{\text {2 }}$	As rqd
vector (3×1) of unmodeled acceleration bias errors (body coord. system)	$\frac{\text { VENT_THRUST }}{\text { BIAS }}$	*	V	DP	-	$\frac{f t}{s e c}{ }^{2}$	As rqd
flag indicating the use (OH) or non-use (OFF) of external measurement data processing by filter during burn \& burn targeting	USE MEAS DATA	*	D	-	ON/OFF	-	As rqd
target vehicle position voctor (M50)	RTV	*	V	DP	-	ft	As rad
target vehicle velocity vector (M50)	VTV	*	V	DP	-'	$\mathrm{ft} / \mathrm{sec}$	As rqd

* ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

* ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISIOM	RANGE	- UNITS	COMPUTATION RATE
	orbiter position vector (M50) used to reset user parameter state propasator	R RESET	*	V	DP	-	$f t$	As rad
	orbiter velocity vector (1150) used to reset user parameter state propagator	V RESET	*	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	As rad
$\stackrel{B}{3}$	total accumulated IMU sens velocity (M50) used to res parameter state propagator	$V \text { IMU_RESET }$	*	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	As reqd
	time tag of parameters used to reset the user parameter state propagator at each nayigation cycle completion	T_RESET	*	F	DP	-	sec	As rqd
	flag indicating (Oif) to the user parameter state propa gator to reset to navigation data	FILT UPDATE	*	V	DP	ON/OFF	-	As rad
	target vehicle position vector (1450) used to reset user parameter state propagator.	R TV_RESET	${ }^{*}{ }^{*}$	D	-	ON/OFF	-	As rad

* onorbic/rendezvous navigation sequencer principal function output list

DESCRIPTION	1 SYMBCL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
target vehicle velocity vector (150) used to reset user parameter state propagator	V TV_RESET	*	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	As rad
orbiter position vector (1750) stored for transition to ops -3 or ops-8	R FILTINIT	*	V	DP	-	$f t$	As rad
orbiter velocity vector (150) stored for transition to ops -3 or ops-8	\underline{V} FILTINIT	*	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	As rad
total accumulated IMU sensed velocity stored for transition to ops -3 or ops-8	$\underset{\text { INIT }}{V}{ }^{\text {LAST FLT }}$	*	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	As rad
time tag of V LAST FILT INIT, stored for tran- sition to ops -3 or ops-8	T_LAST FILT	*	F	DP	-	sec	As rad
(6×6) dimensional filter covariance matrix of orbiter position/velocity, stored for transition to ops -3 or ops -8	E_INIT	1	M	DP	-	vary	As rad

* ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION OUTPUT LIST
D. Constraints. None.
E. Supplemental information. A suggested implementation of these requirements is illustrated in appendix B and appendix C.
\(\left.\begin{array}{l}ONORBIT_REND_NAV_SEQUENCER

OPS 2 OR_8_INITIALIZE

CHECKPOINT_INIT (CODE)

ONORBIT_COVINIT

ONORBIT_COVINIT_UVW

TARGET_NAV_INIT

DISPLAY_COUNT_INIT (CODE)\end{array}\right\}\)| APPENDIX |
| :---: |
| B |
| ONORBIT_PREDICT |

4.1.2 On-Orbit/Rendezvous User Parameter Processing Sequencer

This principal function will provide a capability for initialization and control of the principal functions and subfunctions associated with the computations of user parameters during the onorbit/rendezvous operational sequence. This sequencer will provide initialization and control of the on-orbit user parameter state propagation subfunction and those user parameter processing principal functions used for this operational sequence.

Events to be used as cues by the sequencer for performing the required initialization and sequencing are defined in the Levei \bar{B} GN\&C CPDS. The particular events and a summary of the associated user parameter actions pertaining to this user parameter sequencer are given in Table 4.1.2-1.
A. Detailed Requirements. The on-orbit/rendezvous user parameter processing sequencer will be initiated upon the occurrence of any of the following events:

1. Major mode transition from 106 to 201
2. Transition from OPS - 8 to major mode 201
3. Major mode transition from 301 to 201
4. Major mode transition from 106 to 211
5. Transition from OPS-00 to Major Mode 201

This sequencer shall be terminated upon the transition from ops -2 to ops -3 , ops -8 , or ops-00.

TABLE 4.1.2-1 - ONORBIT/RENDEZVOUS USER PARAMETER PROCESSING SEQUENCER EVENTS

EVENT NO.	EVENT NAME/DESCRIPTION	ACTION TAKEN BY SEQUENCER IN RESPONSE TO EVENT
60 or 74	Transition from OPS-1 to OPS-2	Initiate cyclic execution of onorbit user parameter state propagation and onorbit user parameter calculations at a repetition rate of 0.5 Hertz.
61	Transition from 301 to 201	Same as event 60 action.
84	Transition from OPS-00 to 201	Same as event 60 action.
50 A	Transition from OPS-8 to 201	Initiate cyclic execution of onorbit user parameter calculations at a repetition rate of 0.5 Hertz.
73 or 80	Transition from 202 or 213 to 201	Same as event 60A action.
78	Transition from 212 to 211	Same as event 60A action.
76 or 82	Transition from 211 to 212 or 213	Cancel onorbit user parameter calculations module.
66 or 67	Transition from 201 to 202 or 213	Same as event 76 action.
69	Initiate guidance	Cancel onorbit user parameter state propagation. Reschedule cyclic processing of onorbit user parameter state propagation at a repetition rate of 0.5 Hertz.

The following paragraphs specify the detailed requirements that were summarized in table 4.1.2-1. These requirements specify, for each of the event cues to be utilized by the sequencer, the actions that the sequencer is to initiate.

Transition from OPS-1 to OPS-2 - Upon receipt of a signal
SIGNAL: OPS 2_INITIALIZATION COMPLETE cyc?ic execution of the onorbit/rendezvous user parameter state propagator shall commence at a repetition rate of 0.5 Hertz. The signal is the cue that the necessary initialization of certain state parameters has been accomplished within the onorbit/rendezvous navigation sequencer (section 4.1.1). Cyclic processing of the onorbit user parameter calculations shall commence at a repetition rate of 0.5 Hertz.

Transition from OPS-3 to OPS-2 - Same as above. Transition from OPS-00 to OPS-2 - Same as above.

Transition from OPS-8 to OPS-2 - Based upon this cue, cyclic processing of the onorbit user parameter calculations shall commence at a repetition rate of 0.5 Hertz.

Transition from 202 (maneuver execute) or 213 (TPF/stationkeeping) to 201 (orbit coast). - Same as above.

Transition from 212 (maneuver execute) to 211 (reridezvous navigation). Same as above.

Transition from 201 to OPS-8. - Based upon this cue, cyclic processing of the onorbit user parameter calculations shall be cancelled.

Transition from 201 to 202 or 213. - Same as above.

Transition from 211 to 212 or 213. - Same as above.

Initiate guidance - Based upon this cue, the current scheduling of onorbit user parameter propagation is to be cancelled. Cyclic processing of onorbit user parameter processing is to be rescheduled at a repetition rate of 0.5 Hertz beginning with this event.
B. Interface requirements. The input list for this principal function is presented in Table 4.1.2-2.
C. Processing requirements. None.
D. Constraints. None
E. Supplemental information. The purpose of cancelling and rescheduling the onorbit user parameter propagator upon the initiate guidance signal is to get the execution of this module in "sync" with the execution of onorbit guidance which is to be initiated at this time. This cancelling and rescheduling is to be done "y" seconds prior to OMS ignition such that a subsequent user state update will occur, as nearly as possible, at the time of ignition.

A suggested implementation of the onorbit/rendezvous UPP sequencer In the form of detailed flow charts is shown in Appendix D, flow chart ONORBIT REND UPP SEO.

TABLE 4.1.2-2: ONORBIT/RENDEZVOUS USER. PARAMETER PROCESSING PRINCIPAL FUNCTION INPUT LIST

LEVEL B MNEMONIC	DESCRIPTION	LEVEL C SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE/sec
TBD	Transition to MM 201 from M 106 event	Event 60	MSC	BIT		OFF_ON		25
	Transition to MM 201 from OPS-8 event	Event 60A	"	1		"		"
	Transition to MM 201 from M 301 event	Event 61	"	"		11		"
	Transition to MM 213 from M201 event	Event 66	"	"		"	.	"
	Transition to MM 202 from M201 event	Event 67	"	"		"		"
	Guidance initiate event	Event 69	"	"		"		"
	Transition to MM201 from MM 202 event	Event 73	"	"		"		"
	Transition to MM 211 from M106 event	Event 74	"	"		"		"
	Transition to 1 M 212 from M1 211 event	Event 76	1	"		"		"
	Transition to MM 211 from M 212 event	Event 78	"	"		"		"
	Transition to MM 201 from MM 213 event	Event 80	"	"		"		"
	Transition to MM 213 from Mín 217 event	Event 82	"	"		"		"
	Transition to MM 201 from OPS-00 event	Event 84	"	"		1		"
	Nav initialization Complete signal	OPS-2- Initialize Complete	Onorbit/ Rend signal NAV SEQ	SIGNAL		OFF_ON		"

4.2 SUBFUNCTIONS COMMON TO SEVERAL NAVIGATION FUNCTIONS

This section documents detailed requirements for subfunctions identified as being common to two or more navigation principal functions or their major subfunctions. The detailed requirements specified here will be referenced from the sections to which they are common and, when referenced, may be regarded as inserts to paragraph A - Detailed requirements - in these sections.

4.2.1 State Propagation

This subfunction will perform a number of tasks related to propagation of the orbiter and target state vectors. The task of reading (snapping) the IMU's is performed when the total accumulated sensed velocity is required to account for nongravitational accelerations during integration of the orbiter equations of motion. The appropriate modeled nongravitational accelerations (drag, venting, uncoupled thrusting) are computed in those circunstances in which IMU accumulated sensed velocity is not used. The orbiter equations of motion are integrated with the use of either a super-g algorithm designed primarily for powered-flight phases (i.e., those phases in which appreciable nongravitational accelerations are experienced), or a precision propagation algorithm designed specifically for coastingflight phases. The target state vector is always propagated by use of the precision propagation algorithm. The task of propagation of sensor biases is performed in those navigation phases in which the corresponding sensor biases are being estimated by the filter.

4.2.1.1 IMU Data Snap

The IMI data snap task will provide the capability to obtain the orbiter IMU-sensed accumulated velocities, expressed in M50 coordinates, along with their associated GMT time tag. These data will be stored for use in the state propagation subfunction. Data from one good IMU are required as indicated in the following example:

SNAP IMU (V_CURRENT_FILT, T_CURRENT_FILT)
These data are obtained from the IMU RM.

The SNAP statement above implies the assignment of current values to the variable names shown in parentheses.

4.2.1.2 Acceleration Models

During orbital operations gravitational, drag, venting and uncoupled RCS thrusting acceleration models shall be available for state prediction or propagation. These models are to be used in the orbiter state propagation whenever the lMU-sensed accelerations are below a given threshold level. Propagation or prediction of the target vehicle's state shall use the gravitational and drag models.

The currently functioning propagator and a predictor may need different models at the same time. It is therefore necessary that the execution of the acceleration calculations be protected from interruption by other users.

For the computation of the accelerations due to the Earti's gravity, options shall be.provided to include terms derived from various degree and order gravitational potential models. Input flags GMD and GMO shall be set by the user to specify, respectively, the degree and order of the gravitational potential model to be used. Similarly, an input flag, DM, shall be set by the user to indicate whether or not to model drag. Venting acceleration models shall be included to take into account those situations when venting of predictable magnitude, direction, and duration occurs. These models shall include the effects of any residual unbalance in the operation of the RCS thrusters; an input flag, VM, shall be set by the user to control operation of this task.

For the drag, venting, and uncoupled thrusting acceleration computations, it may be necessary to know the vahicle's attitude. Attitude affacts the inertial direction of the acceleration due to venting and determines the cross-sectional area of the vehicle normal to the velocity vector relative to the ambient air for atmospheric drag. Another user defined flag, ATM, shall be used to control the options available in this attitude calculation, as described later in this section and in section 4.2.1.2.2.

The acceleration function shall be called by the user with values of GMD, GMO, DM, VM, ATM, $\underline{R}, \underline{V}$, and T, where \underline{R} and \underline{V} are the position and velocity vectors of the vehicle in an M50 coordinate system and T is the time tag associated with both of these vectors.

It shall then initialize various perturbing acceleration vectors,

$$
\begin{aligned}
& \underline{G}=0 . \\
& \underline{D}=0 . \\
& \underline{R C S}=0 . \\
& \underline{V E N T}=0 .
\end{aligned}
$$

and obtain the transformation matrix from Earth-fixed to M50 coordinates in order to find the Earth-fixed position vector and the corresponding unit vector:

$$
\begin{aligned}
& \text { FIFTY }=\text { EARTH FIXED TO M50 COORD }(T) \\
& R-E F=F I F T Y T \\
& R-I N Y=T . /|R| \\
& U R=R \text { INV } B E F
\end{aligned}
$$

There is no need to calculate the acceieration vector due to the Earth's gravitational attraction as a point mass; that task is performed di:ectly by the prodictors and the propagators. The on-orbit acceleration function determines only perturbing accelerations. This being the case, the disturbing acceleration \underline{G} due to the Earth's non-spherical shape shall be calculated (see section 4.2.1.2.1).

The flags that control the use of drag, venting, and uncoupled RCS chrusting shall then be tested. If all are equal to zero, the vector \underline{G} already contains all the accelerations required. If, however, one or more of these flags has a nonzero value, more calculations shall be needed.

If $D M=1$, a drag acceleration vector \underline{D} shall be determined. If $V M=1$, a vector that accounts for venting and uncoupled thrusting accelerations, VENT, must be obtained. In either one of the latter two cases, or if both flags have value 1 , it may be necessary to determine the attitude matrix of the orbiter. There are circumstances, namely if the acceleration vector to be found is that of the target vehicle, or if the acceleration of the orbiter is required for a simplified state prediction used by guidance, in which the attitude matrix is not needed. The ATM flag shall be assigned values that specity whether or not the attitude matrix is required (see section 4.2.1.2.2). If the matrix is needed, the flag ATM shall
determine how it is to be calculated, depending on whether it is to be used for propogation or prediction purposes.

In brief, the values of the flag ATM are explained in the following table:

VEHICLE	FUNCTION	ATTITUDE MATRIX NEEDED	ATM FLAG SETTING
	Propagation	Yes	0
Orbiter	Prediction	Yes	1
	Simplified prediction (for guidance)	No	
Target	All functions	No	2
Other target vehicles (if required)	All functions	No	

The attitude matrix calculation, if needed, shall occur prior to the calculation of the acceleration vectors due to drag or venting, and shall be done as follows.

For propagation $(A T M=0)$, the current selected body to $M 50$ rotation matrix, avallable from the attitude processing principal function, is required:

$$
M=M M 50 B 00 Y_{K}^{\top}
$$

For prediction $(A T M=1)$, data from the $2 n d, 3 r d, 4$ th, and 5 th rows of a prestored attitude table (ATT ARRAY) are to be used to construct the body to $M 50$ rotation matrix. This rotation matrix shall be constructed in two steps. The first step shall use the Euler angles for the time period containing the given time T, obtained from the 3 rd, 4 th, and 5 th rows of ATT ARRAY, to construct the body to attitude mode matrix (also denoted M), valid at the beginning of the time period (i.e., T_INITIAL):

$$
M=\left[\begin{array}{cc:cc:cc}
C 3 & c 1 & C 3 & s 1 & S 3 & s 2 \\
-S 3 & C 2 & S 1 & +S 3 & c 2 & C 1
\end{array}\right)
$$

where $S 1, S 2$, and $\$ 3$ represent the sines of the Euler angles and C1, C2, and C3 represent the cosines of the Euler angles. This matrix will be a transformation from body to M50 if the attitude mode is an inertial hold, and from body to UVW if the attitude mode is a local-vertical, local-horizontal. Information about the various attitude holds, in the form of settings of a flag called ATT FLAG, are stored in the seçond row of the ATT ARRAY table. Attitude Profile Constants in section 4.8 contains the details of the table lookup.

The second step multiplies the body to attitude mode matrix by an attitude mode to M50 matrix, as appropriate. This attitude mode to $M 50$ matrix and the required body to M50 rotation matrix
shall be determined as follows: If an inertial hold occurs during the time period (ATT_FLAG = 1), the matrix M is, in fact, the required body to $M 50$ rotation matrix. If an inertial hold with rate occurs during the time period (ATT_FLAG $=2$), the matrix M must only be updated from time T_INITIAL to time T since it already transforms from body to M50. This shall be accomplished with use of the theory of quaternions as follows:

1. Transform the unit vector in the eigen-axis direction (in body coordinates), obtained from the ATT_ARRAY, into M50:

$$
\underline{E V}=M\left[\begin{array}{l}
\text { ATT ARRAY } \\
\text { ATT ARRAY }^{6}, \mathrm{J-1} \\
\text { ATT ARRAY }_{8, J-1}
\end{array}\right] .
$$

2. Calculate the quaternion required to transform the matrix M from time T_INITIAL to time T :

$$
\begin{aligned}
& S Q=\operatorname{COS}(\text { HANG }) \\
& \underline{V Q}=\operatorname{SIN}(H A N G) \underline{E V}
\end{aligned}
$$

where

$$
\text { HANG }=-.5 \text { ATT_ARRAY } 9, \mathrm{~J}-1(\mathrm{~T}-\mathrm{T} \text { _INITIAL })
$$

is the angular displacement in radians about the eigen-axis from T_INITIAL to T.
3. Calculate the required body to $M 50$ rotation matrix:

$$
\begin{aligned}
M= & {\left[2 . S Q^{2}-1 .\right) I D \text { MATRIX } 3 \times 3+2 . V Q V Q^{\top} } \\
& +2 . S Q M T E M P] M
\end{aligned}
$$

where

$$
4.2 .1 .-8
$$

$$
M-T E M P=\left[\begin{array}{ccc}
0 . & -\mathrm{VQ}_{3} & \mathrm{VQ}_{2} \\
V Q_{3} & 0 . & -\mathrm{VQ}_{1} \\
-V Q_{2} & \mathrm{VQ}_{1} & 0 .
\end{array}\right]
$$

is the skew-symmetric body axis rotation rate matrix. If a local-vertical, local-horizontal hold occurs during the time period (ATT_FLAG $=3$ or 4) the matrix M, which transforms from body to UVW, must be multiplied by a UVW to M50 transformation. matrix in order to produce the required rotation matrix:

$$
M=M U V W T O M 50(\underline{R}, \underline{V})
$$

Another prerequisite to the calculation of either drag or yenting accelerations is the knowledge of the right ascension and declination of the Sun. For venting accelerations, this is needed in the "inertial with rate" (or "barbecue") attitude mode (see section 4.2.1.2.3); for drag accelerations, it is used in the computation of the atmospheric density (see section 4.2.1.2.2). The solar coordinates shall be obtained by mears of a call to the module SOLAR EPHEM, described in section 4.5.3.1.

When the vectors $\underline{G}, \underline{D}$, and VENT have been obtained, the total modeled perturbing acceleration vector shall be found:

$$
\text { ACCEL PERT ONORBIT }=G+D+\text { VENT }
$$

The following paragraphs (4.2.1.2.1, 4.2.1.2.2, and 4.2.1.2.3) contain the detailed requirements for the calculation of these vectors $-G, D$, and VENT. Interface and processing requirements, constraints, and supplementary information for all these tasks are

$$
4.2 .1-9
$$

to be found in the descriptions of those principal functions that use them.

A suggested implementation in the form of a detailed flow chart may be found in appendix B. The various codes referenced in that flow chart are to be found also in appendix B :

ACCEL_EARTH_GRAV CODE
ACCEL ONORBIT DRAG CODE
ONORBIT DENSITY CODE
ACCEL ATTITUDE CODE
ACCEL_ONORBIT_VENT AND_THRUST CODE
4.2 .1 .10

4.2.1.2.1 Gravity

The gravitational attraction due to the Earth's non-sphericity shall be modeled by using S. Pines' uniform formulation of the spherical harmonics devetopment. This code shall be exercised only if the flag GMD is, net equal to zero.

The following variables are to be set up to serve as starting values for the recursion relations used in the Pines formulation:

$$
\begin{aligned}
& A U X I L I A R Y=0 . \\
& R O Z E R O=\text { EARTH_RADIUS_GRAV R_INV } \\
& R O _=R O Z E R O \text { EARTH MU RINV }{ }^{2} \\
& A_{1,2}=3 . U R_{3} \\
& A_{2,2}=3 . \\
& L=1
\end{aligned}
$$

A is a two-column array used for temporary storage of the Legendre polynomiais and the derived Legendre functions (which are latitudedependent terms), and RO N is the distance-related term. AUXILIARY is an irtemediate scalar variable.

The recursive calculations shall then proceed, using as many comporents of the one-column arrays. ZETA REAL and ZETA IMAG as required to account for the effects. of the tesseral harmonics. IETA REAL and ZETA IMAG are the only terms that depend on the vehicle's longitude.

Do for $I=1$ to GMO:

$$
\begin{aligned}
& \text { ZETA_REAL }_{I+1}=U_{1} \text { ZETA_REAL }_{I}-U_{2} \text { ZETA_IMAG }_{I} \\
& \text { ZETA_IMAG }_{\mathrm{I}+1}=U R_{1} \text { ZETA_IMAG }_{I}+U R_{2} \text { ZETA_IMAG }_{I}
\end{aligned}
$$

ZETA REAL ${ }_{1}$ and ZETA IMAG ${ }_{1}$, needed as starting values for this recursive calculation, are constants described in section 4.8.

The derived Legendre functions shall then be obtained by means of recursion formulas, multiplied by the appropriate combinations of tesseral harmonics (the Legendre polynomials shall be multiplied by the zonal hermonics coefficients), and stored as certain auxiliary variables F1, F2, F3, and F4.

Do for $N=2$ to GMD the following steps (1 through 5):

1. $A_{N+1,1}=0$.
$A_{N+1,2}=(2 . N+1.) A_{N, 2}$
$A_{N, 1}=A_{N, 2}$
$A_{N, 2}=U R_{3} A_{N+1,2}$
$k=2$
2. Do for $J=2$ to N :

$$
\begin{aligned}
& A_{N-J+1,1}=A_{N-J+1,2} \\
& A_{N-J+1,2}=\left(U R_{3} A_{N-J+2,2}-A_{N-J+2,1}\right) / K \\
& K=K+1
\end{aligned}
$$

3. $\mathrm{F} 1=0$.
$F 2=0$.
$F 3=-A_{1,1} Z^{2 O N A L} N$
$F 4=-A_{1,2}{ }^{20 N A L} N$
(These account for the zonal harmonics contributions.)".
4. If the maximum order of tesserals wanted has not been attained
(i.e., if $N \leq G M O$), do for $N 1=1$ to N :

$$
\begin{aligned}
& \mathrm{Fl}=\mathrm{Fl}+\mathrm{N1} \mathrm{~A}_{\mathrm{NT}, 7}\left(\mathrm{C}_{\mathrm{L}} \text { ZETA_REAL} N 1+\mathrm{S}_{\mathrm{L}} \text { ZETA_IMAG }_{\mathrm{N}}\right) \\
& F 2=F 2+N 1 A_{N 1,1}\left(S_{L} Z_{L E T A _R E A L}^{N 1}-C_{L} Z_{N T A} I_{M A G}\right) \\
& D N M=C_{L} \text { ZETA }_{-R_{N A L}}+S_{L} \text { ZETA }_{-1 M A G}^{N T+1} \\
& \mathrm{~F} 3=\mathrm{F} 3+\mathrm{DNM}_{\mathrm{NT}+7,1} \\
& F 4=F 4+\text { DNM } A_{N 1+1,2} \\
& L=L+1
\end{aligned}
$$

(These take into account the contributions of the tesseral and sectorial harmonics.)
5. $R O _=R O _N O$ ZERO

$$
\begin{aligned}
& G_{1}=G_{1}+R O N F 1 \\
& G_{2}=G_{2}+R O N F 2 \\
& G_{3}=G_{3}+R O N F 3 \\
& A U X I L I A R Y=A U Y \text { ILIARY }+R O N F 4 .
\end{aligned}
$$

(These equations multiply the sum of the zonal and tesseral effects by the appropriate distance-related factors, store the results as the components of the acceleration vector \underline{G}, and
prepare for final computation by obtaining the intermediate scalar variable AUxilliary, which accounts for an additional effect proportional to the unit radius vector $\underline{U R}$.)

Once these calculations have been completed ($N=$ GMD) and stored, the Earth-fixed acceleration vector shall be obtained and rotated to the M50 coordinate system.

$$
\begin{aligned}
& \underline{G}=\underline{G}-A U X I L I A R Y \underline{U R} \\
& \underline{G}=F I F T Y \underline{G}
\end{aligned}
$$

This is the gravitational acceleration vector needed for the equations of motion of the shuttle. The values of GMiD and of GMO may be set: by the user independently. However, it is necessary that GMO. \leq GMD. A maximum value of 8 for GMD shall be used, which will make the array ZONAL have 8 components, the arrays \underline{C} and \underline{S} have 35 components each, ZETA REAL and ZETA IMAG have 9 each, and A have a maximum dimension of 9 by 2 .

The terms shown in the Earth's gravity calculations as C_{L} and S_{L} are usually represented by $C_{n, m}$ and $S_{n, m}$, respectively, but were renumbered for single subscript utilization; the terms called $Z^{2} \mathrm{NAL}_{N}$ correspond to $J_{N}=-C_{N, 0}$.

The S. Pines formulation of the gravitational potential may be found, in condensed form, in the paper "Uniform Representation of the Gravitational Potential and its Derivatives," AIAA Journal,
vol. 11, no. 11, November 1973. In expanded form, and with an earlier draft of the computer program herein presented, it may be found in MDC Report No. WOGi3, NASA CR 147473, of 9 February 1976, "Pines' Nonsingular Gravitational Potential: Derivation, Description and Implementation".

4.2.1.2.2 Drag

The computation of drag accelerations will vary according to the . values of an input indicator, designated here as $D M$.

The value \underline{D} of this acceleration shall be set to zero when the acceleration function is called.

If $D M=0$, the value of \underline{D} shall not be changed.

If $D M=1, \underline{D}$ shall be computed as

$$
\underline{D}=-.5 \text { CD AREA RHO }|\underline{V}| \underline{V} R / V E H \text { MASS }
$$

where CD is the vehicle's drag coefficient; VEH MASS is its mass; $\underline{V} _\underline{R}=\underline{V} \operatorname{REL}(\underline{V}, \underline{R})$, where \underline{V} and \underline{R} are, respectively, the velocity and position vectors in M50 coordinates; V _REL is the function that computes the relative velocity of the vehicle with respect to the atmosphere (assuming no wind) -

$$
\underline{V} \underline{R E L}(\underline{V}, \underline{R})=\underline{V}-\text { EARTH RATE (EARTH POLE } \times \underline{R})
$$

RHO is the density of the Earth's atmosphere; and AREA is a certain cross-sectional area of the vehicle, a prestored constant.

The calculations shall be performed in the following order: First, the altitude (needed for the computation of the atmospheric density, RHO) shall be obtained from the expression

$$
A L T=H E L L I P S O I D(\underline{R})
$$

H ELLIPSOID is the function that computes altitude above the reference ellipsoid.

K2, the factor in the mathematical model of the Earth's atmospheric density that has to do with the diurnal effects, shall then be obtained:

$$
\begin{aligned}
& \text { SDEC }=\text { SDEC R_INV } R_{3} \\
& \operatorname{CDEC2}=\text { CDEC1 R_INV } R_{2} \\
& \operatorname{CDECT}=\text { CDECT R_INV } \mathrm{R}_{1} \\
& \text { SGAMI }=\text { SIN_SOL_RA C MX_AN + COS_SOL_RA S_MX_AN } \\
& \text { CGAMT }=\text { COS_SOL_RA C MX AN }- \text { SIN_SOL_RA S MX_AN } \\
& \text { SGAM2 = SIN SOL_RA C MN AN + COS SOL RA S MN AN } \\
& \text { CGAM2 }=\text { COS_SOL_RA C MN AN }- \text { SIN_SOL_RA S_MN_AN } \\
& \text { COS_PSI_i = SDEC + CGAMI CDECT + SGAMM CUECZ } \\
& \text { COS PSI_1 }=\text { DIURN_EFF } 5(1++\operatorname{COS} \text { PSI_1 })^{\text {CORR_POWER_1 }} \\
& \text { COSPSI_2 }=- \text { SDEC }+ \text { CGAM2 } \operatorname{CDEC1}+\text { SGAFi } 2 \text { CDEC2 } \\
& \text { COS PSI_ } 2=\text { DIURN EFF } 6(1 .+\operatorname{COSPSI} 2)^{\text {CORR_PONER } 2} \\
& K 2=1 .+\left(A L T+D I U R N E E F F 1+D I U R N _E F F 2 \operatorname{EXP}\{-[(A L T\right. \\
& \text { + DIURN_EFF 3)/DIURN_EFF_4] } \left.\left.{ }^{2}\right\}\right)(\operatorname{COS} P S I 1+\operatorname{COS} \text { PSI_2) }
\end{aligned}
$$

Where SDEC and CDECT, COS_SOL PA and SIN_SOL_RA, respectively the sine and cosine of the solar declination and the cosine and sine of the solar right ascension, were previousily obtained in the call to the solar ephemeris subfunction.

Two values of DOY EFF needed for the $k 3$ factor of the atmospheric density calculation, which has to do with the semiannual effect, shall be obtained from a table (see sec. 4.8), and $K 3$ shall be
calculated with a linear interpolation between these values:

$$
\text { DAY OF_YEAR }=T / 86400 .
$$

Set

$$
I=1
$$

Increment I in steps of 1 until

$$
\text { DAY OF_YEAR } \leq 10.1
$$

Then, let

$$
\text { DAY ONE }=10 .(I-1)
$$

Finally,

$$
\begin{aligned}
K 3= & 1 .+1(A L T+A N N U A L E E F)\left[\left(D A Y _O F \text { YEAR }- \text { DAY ONE }\right)\right. \\
& \left.\left(D O Y E F F_{I+1}-D O Y E F F_{1}\right)+10 . \text { DOY EFF }_{1}\right]
\end{aligned}
$$

K1 and K4. the factors in the atmospheric density calculations that account for the solar radiation intensity in the 10.7 -centimeter wavelength and for the geomagnetic disturbance, respectively, shall be computed:

$$
\begin{aligned}
& \mathrm{K} 1=1 .+(\text { ALT }+ \text { RAD EFF }) \text { SOL RAD EMIT CORRECT } \\
& \mathrm{K} 4=1 .+(A L T+\text { MAGN EFF) GEOMAG DISTIRB CORRECT }
\end{aligned}
$$

The atmospheric density, RHO, shall then be obtained by the multiplication of these factors and a vighttime altitude/density profile:

$$
\begin{gathered}
\mathrm{PHO}=\mathrm{K} 1 \mathrm{~K} 2 \mathrm{~K} 3 \mathrm{~K} 4 \text { NIGHT PROF } 1 \text { EXP [NIGHT PROF } 2 \text { (ALT }+ \\
\text { NIGHT PROF } \left.3)^{1 / 2}\right]
\end{gathered}
$$

Besides the values of DOY_EFF, which are contained in a table, the values DIURN EFF_1, DIURN_EFF 2, DIURN EFF 3, DIURN EFF_ 4, DIURN_EFF 6, CORR_POWER_1, CORR_POWER_2, ANNUAL EFF; RAD_EFF, MAGN EFF, NIGHT_PROF_1, NIGHT_PROF_2 and NIGHT_PROF 3 are constants contained in another table. There exist various tables of the two types, but only one of each is to reside in the memory load at a time. The tables may be found in section 4.8 , separated into DOY EFF tables and general density tables (for the other variables). The actual pair of tables to be loaded depends on the values of the solar radiation flux at the time of the mission.

Once the atmospheric density has been obtained, the velocity $V R$, relative to the atmosphere but expressed in M50 coordinates, shall be found as explained above.

After the vector $V _$has been calculated, the attitude mode flag ATM shall be tested. This flag is utilized, in this case, to incorporate in the drag equation the appropriate values of the vehicle's mass, area, and drag coefficient. The first tliree values of ATM, 0,1 , and 2, refer to calculation of the orbiter's acceleration vector.

If $A T M=0$ or 1, the current mass of the orbiter and its reference cross-sectional area shall be used in the equations, but its drag coefficient shall be calculated as described below. If ATM $=2$, the
mass and area of the orbiter shall be the same, but the drag coefficient shall be set to a premission stored reference value. This setting is meant for utilization by guidance, for a fast, simplified state vector prediction. If ATM >2, the acceleration vector to be computed is that of the target vehicle. The mass, area, and drag coefficient of this vehicle will therefore be used. For that purpose, these quantities shall be available as components of 3 vectors REF_MASS, REF_CD and REF AREA, premissionstored, of which $R E F M A S S_{1}, R E F C_{1}$ and $R E F$ AREA ${ }_{1}$ pertain to the orbiter, and subsequent ones to as many target vehicles as needed for each particular mission.

The calculation of the orbiter's drag coefficient in the cases where ATM has values 0 or 1 shal1 be preceded by a table lookup to obtain the configuration of the orbiter vehicle. The configuration shall be specified by an integer variable J with values that indicate the external aspect of the shuttle: for instance, $J=1$ for payload bay doors closed, $J=2$ for the same doors open, $J=3$ for manipulator arms extended, $J=4$ for payload deployed, etc. The table lookup and the table itself are described in section 4.8 .

The drag coefficient, in these cases, shall be obtained as a function of the square of the sine of the angle of attack (SA) and of the sine of the angle of sideslip $(S B)$. If $A T M=0$, which indicates the drag acceleration is to be used for orbiter state propagation (that is, for determination of the current state vector), these
sines can be obtained from currently available angles ALPHA and BETA from the attitude applications calculation principal function

$$
\begin{aligned}
& S A=[\operatorname{Sin}(A L P H A)]^{2} \\
& S B=|\operatorname{SIN}(B E T A)|
\end{aligned}
$$

If $A T M=1$, the drag acceleration is to be utilized for orbiter state prediction (determination of the state vector at some time in the future or past) and the sines of the angles of attack and sideslip must be obtained from the velocity vector relative to the atmosphere but expressed in body coordinates:

$$
\underline{V} \text { REL BODY }=M^{\top} \underline{V} \underline{R}
$$

where M is the transformation matrix from body to M50 coordinates.

If the Z-component of this vector is practically zero (smailer in absolute value than some very sma 11 number EPS $V R B$), the sine of the angle of attack shall be set to zero:

$$
S A=0
$$

Otherwise, it shall be found from the formula

$$
\mathrm{SA}=\left|V \mathrm{REL} \mathrm{BODY}_{3}\right|^{2} /\left(V \mathrm{REL} \mathrm{BODY}_{1}^{2}+V_{-} \mathrm{REL} \mathrm{BODY}_{3}^{2}\right)
$$

In either case, the sine of the sideslip angle shall be computed with the expression

$$
S B=\left|V R E L-B O D Y_{2}\right| /|V-R|
$$

The sine of double the sideslip angle is also needed -

$$
S 2 B=2 . \quad \mathrm{SB} \operatorname{SQRT}\left(1 .-S B^{2}\right)
$$

and the drag coefficient for configuration J is given by

$$
\begin{aligned}
C D= & \left(\mathrm{CDF}_{\mathrm{J}}+\mathrm{CDN}_{\mathrm{J}} S A\right. \\
& \mathrm{CDE}_{\mathrm{J}} \mathrm{SB}+\mathrm{CDA}_{\mathrm{J}} \mathrm{~S} 2 B S A
\end{aligned}
$$

where CDF, CDN, CDA, CDS and EXP SHAPE FACTOR are constants described in section 4.8.

Finally, the drag acceleration shall be obtained from the expression

$$
D=-.5 \text { CD AREA RHO }|\underline{V}| \underline{V} \mid V E H \text { MASS }
$$

4.2.1.2.3 Venting and Uncoupled RCS Thrusting

The models for the acceleration due to venting and uncoupled thrusting stall be available for use in both orbiter state propagation and orbiter state prediction. It is assumed that the onboard software will have the capability to access from storage a time line of significant vent sources, as well as an attitude profile. This information shall be used to compute the vector VENT, the acceleration due to venting, which shall be used in the integration of the orbiter's equations of motion.

A flag (VM) shall be set to indicate whether or not venting acceleration shall be computed. A flag setting of $\mathrm{VM}=0$ shall indicate that the IMU-sensed accelerations are being used in state vector integration, and hence the venting acceleration vector shall be set to zero - that is, VENT $=0$. A flag setting of $V M=1$ shall indicate that the acceleration due to venting is to be modeled. (Note that modeling of both venting and uncoupled thrusting is controlled by the same flag (VM).)

Corresponding to each of the MAX NUM VENT vent sources is a tine line of its OFF-ON states. This information is stored in VENT ARRAY, the I-th row containing the NUM VENT, times at which the vent I changes state from OFF to $O N$ or from $O N$ to $O F F$. If the I-th vent ($I=1$ to MAX NUM VENT) is ON at time T, then the vent vector is updated with the value of the acceleration for the 1 -th vent:

$$
\underline{V E N T}=\underline{V E N T}+\underline{V E N T} \text { TABLE(I) }
$$

where VENT_TABLE(I) contains the body-relative thrust vector for the I-th venc. If the I-th vent ($\bar{I}=1$ to MAX_NUM_VENT) is OFF, the value of VENT is not changed. - Section 4.8 contains the details of the table lookup procedure for VENT_ARRAY and VENT TABLE.

The uncoupled thrusting accelerations that occur during attitude maintenance caused by venting shall be incorporated into the total uncoupled thrusting acceleration vector as follows: If the I-th vent is $O N$ at time T, the uncoupled thrusting vector, RCS, shall be updated with the value of the uncoupled thrusting vector (in body coordinates) corresponding to the I-th vent:

$$
\underline{R C S}=\underline{R C S}+\text { VENT DEP_RCS (I) }
$$

If the I-th vent is OFF, the value of RCS is not modified.

Besides trying to compensate for venting accelerations, the RCS thrusters operate to keep the shuttle at special attitude holds during certain phases of the missions. The special attitudes that have been identified are:
a) The vehicle's X body axis oriented along the local vertical (X-local-vertical hold);
b) The vehicle's 2 body axis oriented along the local vertical (Z-local-vertical hold);
c) The three body axes make constant angles with the $M 50$ coordinate axes (inertial hold);
d) The vehicle rotates with constant angular velocity about its X body axis, which is kept almost perpendicular to the EarthSun direction (inertial-with-rate or "barbecue" hold).

The inclusion in the equations of motion of the accelerations caused by the uncoupled thrusting of the RCS engines requires know? edge of the transformation matrix M that converts from body to M50 coordinates. This matrix is obtained in different ways, depending on whether it is to be used for prediction or propagation.

Section 4.2.1.2 describes the computation of the matrix.

The computation of the RCS uncoupled thrusting acceleration vector in body coordinates shall be done as follows. The attitude hold maintained by the vehicle shall be identified, in the case of propagation, by comparing the appropriate columns of the M matrix with the unit position vector of the vehicle or of the Earth-Sun line, or by checking the shuttle's rotation rate. In the case of prediction, the attitude hold shall be identified by the values of a flag (ATT_FLAG), which have been prestored in a table in the form of a time line.

The four cases (one for each of the attitude holds described above) are:

1. If it is determined that the shuttle is maintaining a Z-localvertical attitude hold, the total uncoupled thrusting acceleration
vector shall be updated with a premission-determined Z-local-vertical-hold uncoupled thrusting vector in body coordinates:

$$
\underline{R C S}=\underline{R C S}+\underline{R C S} _Z L V
$$

The 2-local-attitude hold shall be indicated, for prediction, by $A T T$ FLAG $=3$, and for propagation, by

$$
\text { EPS }<\mid M_{1} \text { to } 3,3 \cdot R \mid R_{-} I N V
$$

where \underline{R} is the position vector in M50 coordinates, M is the body to M50 transformation matrix, EPST is the Z-local-vertical hold tolerance, and R_INV is the reciprocal of the magnitude of R .
2. If it is determined that the shuttle is maintaining an X-localvertical attitude hold, the total uncoupled thrusting acceleration vector shall be updated with a premission-determined X-local-vertical-hold uncoupled thrusiting vector in body coordinates:

$$
\underline{R C S}=\underline{R C S}+\underline{R C S} X L V
$$

The x-local-vertical attitude hold shall be indicated, for prediction, by the value ATT FLAG $=4$, and for propagation, by

$$
\text { EPS } 2<\mid M_{1} \text { to } 3,1 \cdot R \mid R_{-} \text {INV }
$$

where EPS2 is the X-local-vertical hold tolerance.
3. If it is determined that the shuttle is maintaining an inertial attitude hold, the total uncoupled thrusting acceleration vector shall be updated with a premission-determined inertial hold uncoupled thrusting vector in body coordinates:

$$
\underline{R C S}=\underline{R C S}+\underline{R C S} I N H
$$

The inertial attitude hold shall be indicated, for prediction, by ATT FLAG $=1$, and for propagation, by

$$
|W B R|<E P S 3
$$

where $W B R$ is the IMU-derived body rate in radians per second and EPS3 is the inertial hold tolerance.
4. If it is determined that the shuttie is maintaining an inertial-with-rate hold the total uncoupled thrusting acceleration shall be updated with a premission-determined inertial-withrate uncoupled thrusting vector in body coordinates:

$$
\underline{R C S}=\underline{R} C S+R_{-S} B B Q
$$

The inertial-with-rate attitude hold shall be indicated, for prediction, by the value $A T T$ FLAG $=2$, and for propagation by

$$
\mid M_{1} \text { to } 3,1 \cdot \operatorname{UR} \text { SUN } \mid<E P S 4
$$

where EPSA is the inertial-with rate tolerance.

The resulting uncoupled thrusting vector shall be incorporated into the total vent and uncoupled thrusting acceleration vector and rotated to M50 coordinates.

VENT_THRUST_BIAS is the body-relative estimated thrust acceleration bias vector.

When this acceleration bias vector is being estimated by the filter, the acceleration vector (also denoted as VENT) due to venting, uncoupled thrusting, and estimated acceleration bias is to be calculated as follows:

$$
\text { VENT }=M(\text { VENT }+ \text { RCS + VENT THRUST BIAS })
$$

When the acceleration bias vector is not being estimated by the filter, the equation remains valid, but the vector VENT THRUST BIAS shall be set equal to 0 by the initialization software.

4.2.1.3 Integration of State Equations of Motion

Two sets of equations of motion shall be utilized for the propagation of the position and velocity vector of the orbiter. Each of these sets is accompanied by its own integration scheme.

During powered flight navigation phases, the equations used have the form of a Taylor series truncated at the term in h^{3}, where h is the step size. The integration scheme, called "Super-g", is an improved version of the aver-age-g method, containing a corrector cycle. During phases in which short arcs of powered flight may be connected by short. arcs of free flight, this integration method shall be in effect throughout. The only difference is that during the powered-flight arcs the non-gravitational accelerations shall be measured by the IMU's whereas in the free-flight arcs they shall be modeled.

During coasting flight navigation phases the equations of motion are to take the form of a variation-of-parameters method devised by S. Pines, where the parameters to be varied are the Cartesian initial conditions of the motion. The integration scheme to be used in connection with these equations is the Gill modification of the Runge-Kutta technique. This same scheme shall be utilized to propagate
the position and velocity vectors of the target vehicle during all rendezvous phases.

The following two subsections, 4.2.1.3.1 and 4.2.1.3.2 describe, respectively, the Super-g and the Precision integration algorithms.

4.2.1.3.1 Super-g

The Super-g integrator contains the following sequence of steps: it shall

1. Obtain, through its calling arguments, the flags required for invoking the acceleration function ACCEL PERT_ONORBIT (that is, the degree and order of the gravitational potential, the drag mode, the vent mode and the attitude mode flag settings), the position and velocity vectors that are to be propagated, the time at which the new state is desired, the time interval of propagation and the difference between the current and the previous IMU accumulated sensed velocities (which could be zero). It shall internally rename these parameters respectively GD, GO, DFL, VFL, ATFL, R SUP, V SUP, T_CUR, DT and DV.
2. Advance the position vector with the use of the previous position and velocity vectors, the time interval DT, the acceleration vector GR NEW saved from the previous cycle, and the value of DV:

$$
\underline{R S U P}=R S U P+D T[V S U P+.5(D V+D T G R \text { NEW })]
$$

3. Evaluate an intermediate modeled acceleration vector with the input flag settings, the new position vector, the previous velocity vector and the new time:
```
GR_INT = ACCEL PERT ONORBIT (GD,GO, DFL, VFL,
    ATFL, R SUP, V SUP, T- CUR)
```

4. Introduce the central force term of the Earth's gravi-
tational attraction, which is not included in the ACCEL PERT ONORBIT function

$$
\text { GR_INT }=\text { GR_INT }- \text { EARTH MU R_SUP } /\left|R_{\text {R SUP }}\right|^{3}
$$

5. Advance the velocity vector with the use of an average modeled acceleration and the sensed velocity change DV:

$$
\underline{V} S U P=\underline{V} \text { SUP }+\underline{D V}+.5 D T \quad(\underline{G R} \text { INT + GR NEW })
$$

6. Correct the value of the position vector:

$$
R S U P=R S U P+(G R I N T-G R N E W) D T^{2} / 6
$$

7. Findia new value of the acceleration vector, based on the advanced position and velocity vectors and their time tag, including the central force term:

GR_NEW = ACCEL_PERT_ONORBIT (GD, GO, DFL, VF, ATFL, - R SUP, V SUP, TCUR)

GR NEW $=\underline{\text { GR_NEW }}-$ EARTH MU R SUP $/|R \operatorname{SUP}|^{3}$
The position and velocity vectors obtained constitute the required propagated state, and shall be placed in the out list of the integrator; GNEW shall also be placed in the out list, for storage in a COMMON location where it can be accessed by Super-g for its next cycle, as well as by other users.

For details of the use of ACCEL_ PERT ONORBIT, see section 4.2.1.2.

4.2.1.3.2 Precision

This subfunction, which provides precision integration of the orbiter or target position/velocity state equations of motion during coasting flight, shall use a fourth-order Runge-Kutta numerical integration technique, modified with Gill's coefficients, in conjunction with an equations-ofmotion formulation developed by S. Pines. Noncentral body accelerations shall be generated by the acceleration models (sec. 4.2.1.2) to account for perturbations due to drag, venting and uncoupled thrusting, and variations in the Earth's gravitational potential. The precision integration computational scheme shall be performed as follows: 1. Gravity (GMD and GMO), drag (DM), venting (VM), and vehicle-attitude (ATM) mode flags shall be obtained, together with the integration step size (DELTA T), initial state and time ($R I N, \underline{V}$, and T IN), and final time at the end of the integration interval (T_FIN).
2. The final time shall be evaluated relative to the initial time to reset the step size (DT STEP) to a positive or negative value, to permit forward or backward integration. If the final time (T FIN) is. less than the initial time (T IN), then:

DT STEP $=-$ DELTA T
Otherwise,

$$
D T S T E P=\text { DELTA } T
$$

3. Since the same Runge-Kutta-Gill integration technique shall be used for the state propagation and prediction functions, the Adams-Moulton flag (AM) is set to OFF, as only Runge-Kutta-Gill integration is performed for propagation. In addition, the integrator time shall be set to zero and the initial state vector shall be renamed for use in the Pines equations-of-motion formulation:

$$
\begin{aligned}
& A M=O F F \\
& T C U R=0 . \\
& X N_{1} \text { to } 3=R I N \\
& X N_{4} \text { to } 6=V I N \\
& X N_{7}=0 .
\end{aligned}
$$

In the above equations, a seventh variable of integration $\left(X N_{7}\right)$ is initialized to zero as required by the Pines technique. This seventh variable is the integrated initial time.
4. Next, the number of integration steps (N_STEPS) required for the input integration interval shall be calculated:

$$
N \leq S T E P S=\operatorname{TRUNCATE}\left(\frac{T \text { FIN }-T \mathrm{IN}}{D T \text { STEP }}\right)+1
$$

5. The actual integration of the orbiter or target state equations (formulated according to the Pines technique) shall now be performed by proceeding as follows for each step in the integration interval. Note that, in the Pines equations-
-of-motion formulation, it is the initial conditions (R IN, VIN, and TIN) that are integratec and then used in the closed-form solution of a two-body, unperturbed orbital problem using an F- and G-series type expression.

On each step, a check shall be made to evaluate the number (I) of the current step. If the integrator is on the final step (i.e., $I=N$ STEPS), then the integration step size (DT_STEP) shall be adjusted such that the last step will complete the integration to the final time:

$$
D T \text { STEP }=\text { T_FIN }-T_{-} \text {CUR }-T_{-} I N
$$

The fourth-order Runge-Kutta-Gill integration technique shall then be invoked in conjunction with the Pines formulation as follows.

The Runge-Kutta-Gill integrator shall first save the initial integrator time of the current step:

T_STOR $=$ T CUR
Then, for each of four (i.e., $J=1$ to 4) Runge-KuttaGill evaluations,

$$
T C U R=T-S T O R+A_{1} B_{J} D T \text { STEP }
$$

The Pines equations-of-motion formulation shall then be exercised to calculate the derivatives of the initial conditions (DERIV), and the Runge-Kutta-Gill integration is continued:

$$
\left.\begin{array}{l}
P=D_{T} \text { _TEP DERIV } \\
X N_{L}=X N_{L}+A_{j}\left(P-B_{J} Q_{L}\right) \\
Q_{L}=c_{J} P+D_{J} Q_{L}
\end{array}\right\} L=1 \text { to } 7
$$

where
$A, B, C, D=$ premission-loaded arrays $(J=1$ to 4$)$ containing coefficients required for this formulation of the Runge-KuttaGill integration technique

XN = an array containing the seven variables of integration (i.e., integrated initial conditions)

DERIV = an array containing the total derivatives of the initial conditions at the current time.

The Pines formulations is evaluated as follows:
a. Several terms used in the F- and G-series calculations for the closed-form two-body equations are computed.

$$
\begin{aligned}
& \text { R_IN }=\mid X N_{1} \text { to } 3 \mid \\
& \text { R_IN_INV }=1 . / R \text { IN } \\
& \text { SMA }=1 . /\left[2 . \mathrm{R}^{\prime} \text { IN INV }-\left(\mathrm{XN}_{4} \text { to } 6^{\circ} \mathrm{XN}_{4} \text { to } 6\right)^{\prime}\right. \\
& \text { EARTH_MU] } \\
& \mathrm{Cl}=\operatorname{SQRT}(\text { SMA }) / \text { SQR EMU } \\
& \text { DELTAT }=T \text { CUR }-X W_{7} \\
& D I N={ }^{\circ} N_{1} \text { to } 3 \cdot X N_{4} \text { to } 6
\end{aligned}
$$

b. The conic solution subfunction (F_AND G) shall then be invoked to calculate several terms used in the computation of the conic velocity vector (X_{4} to 6) and the initial condition derivatives and compute the two-body conic position vector $\left(x_{1}\right.$ to 3) as follows (see section 4.2.7)

CALL: FAND_G
IN LIST: SMA, DELTAT, CI, XN 1 to $3, \underline{0}$, RIN INV, $0 .$, .
$X N_{4}$ to $6, D_{-} I N, 0$.
OUT LIST: F, G, FDOT, GD0T, S0, S1, S2, S3,

$$
x_{1} \text { to } 3, \text { RFIN INV, THETA }
$$

c. The two-body velocity vector shall then be computed:

$$
x_{4} \text { to } 6=\mathrm{FDOT}^{2} \mathrm{XN}_{1} \text { to } 3+\mathrm{GDOT}_{4} \mathrm{XN}_{4} \text { to } 6
$$

d. The perturbation accelerations shall now be calculated and several computations shall then be performed to compute perturbation derivatives for F - and G-series type terms for use in calculating the total derivatives of the seven variables of integration:
$T_{-} A C C E L=T _I N+T C U R$
$\mathrm{P}=$ ACCEL PERT ONORBIT (GMD, GMO, DM, VM, ATM, X_{1} to $3, X_{4}$ to 6, T ACCEL)
$D_{\text {TAU }}=X_{1}$ to $3 \cdot P$
D AUX $=X_{4}$ to $6 \cdot P$
$C 2=C 1^{2} \quad C 3=1 . / C 2 \quad C 4=C 2 \quad D _A X$

$$
\begin{aligned}
& \mathrm{S} 1=\mathrm{Cl} \text { S1 } \quad \mathrm{S} 3=\text { SMA S2 } \quad \mathrm{C5}=\mathrm{C} \quad \mathrm{~S} 1 \\
& S 2=C 2 S 2 \quad S 4=2 . S 3 D_{-A U X \quad S 5=S 2 D _T A U} \\
& D D=S 1 C 3 R_{1} I N\left(S M A R _I N _I N V-1 .\right)+S 0^{\circ} D _I N \\
& S 6=2 . S 2 C 4 D D+S 5 \\
& \text { R_IN_TAU }=\text { S4-C2 S1 D_AUX-ST D_TAU } \\
& \text { R_IN AUX }=\text { R_IN_INV R_IN_TAU } \\
& F_{-} T A U=S 3 C 3 R _I N _I N V R I N \text { AUX }-S 4 \\
& \text { G_TAU }=\text { C5 R_IN }- \text { S6 } \\
& \text { FD_TAU }=\text { FDOT (C4-R_IN_AUX) } \\
& G D \text { TAU }=S 4 \text { R_FIN_INV }
\end{aligned}
$$

e. Finally, the total derivatives of the variables of integration are to be computed as follows:

$$
\begin{aligned}
& \text { DERIV }_{1} \text { to } 3=\text { GD_TAU } X_{1} \text { to } 3-\mathrm{G}^{-T A U} X_{4} \text { to } 6^{-G P} \\
& \text { DERIV }_{4} \text { to } 6=- \text {-D_TAU } X_{1} \text { to } 3+{\text { FTAU } X_{4} \text { to } 6+F P}^{\text {DERIV }} \text {, }=56-3 . \text { C1 C4 SMA THETA -C5/R_FIN_INV }
\end{aligned}
$$

6. After the required number of integration steps (N STEPS) has been completed a final call shall be made to the Pines formulation to calculate the position and velocity vectors (X_{1} to 3 and $X_{4 \text { to } 6}$) by applying the integrated initial conditions to the Pines equations defining the closedform two-body solution.
7. Finally, the position and velocity vectors are to be renamed for output, and a new gravity acceleration vector (G NEW) is to be calculated:

$$
\begin{aligned}
\text { RFIN }= & X_{1} \text { to } 3 \\
\text { VFIN }= & X_{4} \text { to } 6 \\
\text { G NEW }= & \text { ACCEL_PERT_ONORBIT (GMD, GMO, DM, VI, ATM, } \\
& \text { RFIN, V FIN, T_FIN) - EARTH MU R FIN/|R FIN }{ }^{3}
\end{aligned}
$$

4.2.2 Covariance Matrix Propagation

The onorbit covariance matrix propagation subfunction will propagate the covariance matrix forward in time by using the state transition matrix. Additive process noise will be incorporated to account for unmodeled state and dynamic errors. The transition matrix is broken into two parts - PHI, dimensioned 9 by 9 which corresponds to the first nine states (orbiter position and velocity and acceleration bias estimates) in the total transition matrix; and PHI REND, dimensioned 10 by 10, which corresponds to the last ten states (target position and velocity, and rendezvous sensor bias estimates) in the total transition matrix and is used only during rendezvous. So the upper left 9 by 9 portion of the covariance matrix, E, is always propagated onorbit, but the rest of the covariance matrix is propagated only during rendezvous.

The propagation of the upper left 9 by 9 portion of E will be formulated for the free-flight phase differently than for the powered-flight phase. For free flight the full 9 by 9 portion will be propagated, defining uncertainties in position, velocity, and estimated acceleration biases. For powered flight, only the 6 by 6 portion of the covariance matrix associated with position and velocity uncertainties will be propagated.

The components of the state transition matrix are mathematially defined as the partials of the current state with re-

$$
\begin{array}{r}
4.2 .2-1 \\
\times \quad 1
\end{array}
$$

spect to the previous state. For free-flight phases, PHI will be formulated as shown in Figure 4.2.2-1.

$$
\mathrm{PHI}=\left[\begin{array}{cc:c|ccc}
\mathrm{PHI}_{1} & \text { to } 6,1 \text { to } 6 & \mathrm{PHI}_{4} & \mathrm{PH}_{1}, 7 & \text { to } 3,7 \text { to } 9
\end{array}\right]
$$

Figure 4.2.2-1. State Transition Matrix Composition - Free Flight

This matrix is subdivided into the following submatrices:

1. A 6 by 6 submatrix, PHI_{1} to 6,1 to 6 , composed of the crbiter position and velocity portion of the total transition matrix. This submatrix is calculated by the mean conic partials subfunction as described in section 4.2 .8 . The following assignments must be made.

$$
\begin{aligned}
& \text { R ONE }=\underline{\text { R LAST }} \\
& \text { V ONE }=\underline{V} \text { LAST } \\
& \text { G ONE }=\text { TOT_ACC LAST } \\
& \text { R TWO }=\underline{\text { R FILT }} \\
& V \text { TWO }=V \text { FILT } \\
& \text { G TWO }=\text { TOT ACC } \\
& \text { DELTIM }=\text { DT FILT }
\end{aligned}
$$

Then after the mean conic partials subfunction has executed:

$$
\mathrm{PHI}_{1} \text { to } 6,1 \text { to } 6=\text { PHI MC. }
$$

2. A 6 by 3 submatrix, PHI_{1} to 6,7 to 9 , composed of two 3 by 3 matrices, that correlates the position and velocity

$$
4.2 .2-2
$$

with the estimated bias accelerations.
Where
where

$$
\begin{aligned}
& \mathrm{PHI}_{J}+3, I+6=\mathrm{MSBODYM50}_{J, I} \mathrm{DIAG}_{I} \\
& \text { PHIJ, }{ }^{+}+6=M_{S} \text { SBODYM50 }_{J, I} \text { TAU_VENT }_{I} \text { (DT FILT } \\
& -D I A G_{I} \text {) } \\
& \text { for } I=1 \text { to } 3 \\
& J=1 \text { to } 3
\end{aligned}
$$

3. A 3 by 3 diagonal submatrix, PHI_{7} to 9,7 to 9 , that represents the bias portion of the transition matrix.

Where

$$
\mathrm{PHI}_{\mathrm{I}}+6, \mathrm{I}+6=\mathrm{e}^{-\mathrm{DT} \text { FILT/TAU_VENT }} \mathrm{I} \text { (for } \mathrm{I}=1 \text { to } 3 \text {) }
$$

4. Two 3 by 3 null matrices.

The state noise covariance matrix, S, shall be formulated as shown in Figure 4.2.2-2. This matrix is to be used to account for unmodeled state errors and uncertainty in unmodeled accelerations.

$$
s=\left[\begin{array}{ll:l}
s_{1} \text { to } 3,1 \text { to } 3 & s_{1} \text { to } 3,4 \text { to } 6 & 0_{3 \times 3} \\
\hline \mathrm{~s}_{4} \text { to } 6,1 \text { to } 3 & s_{4} \text { to } 6,4 \text { to } 6 & 0_{3 \times 3}, \\
\hdashline-0_{3 \times 3} & 0_{3 \times 3} & s_{7 \text { to } 9,7} \text { to } 9
\end{array}\right]
$$

Figure 4.2.2-2. State Noise Covariance Matrix Composition Free Flight

$$
4.2 .2-3
$$

The entries in Figure 4.2.2-2 will be defined as follows:

$$
\mathrm{S}_{4} \text { to } 6,4 \text { to } 6=\underline{D I A G ~ D I A G ~}^{\top}
$$

where

$$
\begin{aligned}
& \text { DIAG }=\text { DT_FILT D_COE_PCT_ERR D } \\
& S_{4} \text { to } 6,1 \text { to } 3=0.5 \text { DT_FILT } S_{4} \text { to } 6,4 \text { to } 6 \\
& S_{1} \text { to } 3,4 \text { to } 6=S_{4} \text { to } 6,1 \text { to } 3 \\
& S_{1} \text { to } 3,1 \text { to } 3=0.5 \text { DT_FILT } S_{4} \text { to } 6,1 \text { to } 3 \\
& S_{I+6, I+6}=\text { TAU_VENT } \text { VAR_VENT QT }\left(1 .- \text { PHI }^{2}+6, I+6\right) \\
& \text { for } I=1 \text { to } 3
\end{aligned}
$$

The covariance matrix, E, will then be propagated by the following equation:

$$
\mathrm{E}_{1} \text { to } 9,1 \text { to } 9=\text { PHI } \mathrm{E}_{1} \text { to } 9,1 \text { to } 9 \mathrm{PHI}^{\top}+\mathrm{S}
$$

The powered-flight phase will be indicated by the PWRD_FLT_ NAV parameter being set to ON. During this phase, the covariance matrix will be propagated by the following equation:

$$
\begin{aligned}
\mathrm{E}_{1} \text { to } 6,1 \text { to } 6 & \mathrm{PHI}_{1} \text { to } 6,1 \text { to } 6^{\mathrm{E}_{1}} \text { to } 6,1 \text { to } 6^{\mathrm{PHI}_{1}^{\top}} \text { to } 6, \\
& 1 \text { to } 6+\mathrm{S}_{1} \text { to } 6,1 \text { to } 6
\end{aligned}
$$

The 6 by 6 matrix, PHI_{1} to 6,1 to 6, will be defined as being identical to the free-flight phase.

The 6 by 6 state noise matrix, S_{1} to 6,1 to 6 , will be formlated as follows First, the misalinement errors are accounted for by

S_{1} to 3,4 to $6=0.5$ DT FILT S 4 to 6,4 to 6
S_{4} to 6,1 to $3=S_{1}$ to 3,4 to 6
S_{1} to 3,1 to $3^{=} \cdot 5$ DT FILT S_{1} to 3,4 to 6
where
DIAG $_{I}=V A R_{-} I M U A L I G N_{I}+\left(T-L_{1} S_{-F I L T}-T_{-} A L I G N\right)^{2}$ VAR_IMU DRIFT $_{I}$ (for $I=1$ to 3)

The accelerometer errors are then accounted for by

$$
\left.\begin{array}{l}
S_{I, I}=S_{I, I}+N O I S E R \\
S_{I+3, I}+3=S_{I+3, I+3}+\text { NOISE } \\
S_{I+3, I}=S_{I}+3, I+N O I S E R V \\
S_{I, I+3}=S_{I}+3, I
\end{array}\right\} \text { (for } I=1 \text { to } 3 \text {) }
$$

where

$$
\begin{aligned}
& \text { NOISE }=\text { VAR ACC_QUANT }+(\text { VAR_UNMOD ACC_DT }) \text { DT_FILT } \\
& \text { NOISE_R }=\text { NOISE }\left(D T _F I L T\right)^{2} 0.25 \\
& \text { NOISE_RV }=\text { NOISE }\left(D T _F I L T\right) 0.5
\end{aligned}
$$

During rendezvous the rest of the covariance matrix must be propagated. This is accomplished by using a 10 by 10 state transition matrix PHI REND, formulated as shown in figure 4.2.2-3.

$$
\text { PHI_REND }=\left[\begin{array}{lll|l}
\text { PHI REND }^{-}, \\
0_{3 \times 6} & \text { to } 6,1 \text { to } 6 & 0_{3 \times 6} & \\
\mid & \text { PHI REND }_{7} \text { to } 10,7 \text { to } 10
\end{array}\right]
$$

Figure 4.2.2-3. State transition matrix-rendezvous.

This matrix is subdivided into the following submatrices:

1. A 6×6 submatrix, $\mathrm{PHI}^{2} \mathrm{REND}_{7}$ to 6,7 to $6^{,}$composed of the target position and velocity portion of the total transition matrix. The submatrix is calculated by the mean conic parlials subfunction as descrited in section 4.2.8. The following assigninents must be made.

$$
\text { R ONE }=\text { RTV LAST }
$$

$$
\begin{aligned}
& \underline{V} O N E=\underline{V} T V \text { LAST } \\
& \underline{G} O N E=\text { GTV LAST } \\
& \text { RTWO }=\text { RTV } \\
& \underline{V} T W O=\text { VTV } \\
& \text { GTWO }=\underline{G T V} \\
& \text { DELTIM }=\text { DT FILT }
\end{aligned}
$$

Then after the mean conic partial subfunction has executed:

```
PHI_REND 1 to 6,1 to \(6^{=}\)PHI_MC
```

2. A 4×4 submatrix, PHI REND 7 to 10,7 to 10 , composed of the sensor bias portion of total transition matrix.

Where

$$
\text { PHI REND } I+6, I+6=e^{-D T-F I L T / T A U} \operatorname{SENS}_{I} \quad(\text { for } I=1 \text { to 4) }
$$

The state noise matrix is formulated for rendezvous as follows.

$$
\begin{aligned}
& \text { SREND }_{1}+6, I+6=\text { TAU_SENS }_{1} \text { VAR_SENS DTI }\left(1-\operatorname{PHI}_{I}\right. \\
& \left.\operatorname{REND}_{I}^{2}+6, I+6\right) \text { (for } I=1 \text { to 4) }
\end{aligned}
$$

The rest of S_REND is zero.

The remainder of the covariance matrix is propagated as follows.

$$
\begin{aligned}
& \mathrm{E}_{10} \text { to } 19,10 \text { to } 19={\text { PHI REND } \mathrm{E}_{10} \text { to } 19,10 \text { to } 19}^{\text {PHI REND }^{\top}+\text { S REND }} \\
& \mathrm{E}_{1} \text { to } 9,10 \text { to } 19=\text { PHI E }_{1} \text { to } 9,10 \text { to } 19 \text { PHI REND }{ }^{\top}
\end{aligned}
$$

Finally the entire 19 by 19 covariance matrix is made symmetric.

$$
E_{J, I}=E_{I, J} \quad(\text { for } I=1,10 ; J=I+\pi, 19)
$$

4.2.3 State Vector Interpolation

The state vector interpolation subfunction shall provide the approximate position, velocity and acceleration of either the orbiter or the target at a specified time within a given propagation interval, at both ends of which these vectors are known.

The time at which the vectors are desired is the time of an external sensor measurement, and the purpose of the interpolation is to enable the navigation filter to calculate the measurement residuals at that time.

The method utilized for the interpolation shall consist of defining a mean conic on the basis of the positions and velocities of the vehicle in question at both ends of the propagation interval, and obtaining the desired vectors as if the vehicle moved along this mean conic. That is, a calculation shall be made to determine the point on the mean conic corresponding to the time of the measurement, and the velocity and position of such a point shall be taken as the state of the vehicle.

If the time of the measurement is very close to the final time of the propagation interval (that is, within a tolerance that depends on the type of sensor utilized) the position, velocity and time tag will be taken as those of the final time.

The modeled acceleration shall be obtained by invoking the acceleration function with the position, velocity, and time (determined by this process) in the calling arguments, and adding the central force term. The sensed acceleration shall be found by dividing the difference in accumulated sensed velocities at both ends of the propagation interval by the duration of the interval. The total acceleration will be the sum of these two.

In more detail, the state vector interpolation subfunction shall be invoked with a calling list that contains

$$
4.2 \cdot 3-2
$$

Then, the following steps shall be taken

1. A local variable, DELTAT, shall take the place of DTGO with anegative sign (to propagate backwards from the current filter time, along the mean conic)

DELTAT $=-$ DTGO
2. A check of the absolute value of DELTAT against the tolerance corresponding to the sensor type will be performed \mid DELTAT $\mid \leq E P S$ TIME SENSOR_ID
2.1 If it is found that DELTAT in absolute value is less than the tolerance, the values of the position and velocity of the vehicle at the current time shail be used as the state at the measurement time; the time tag at the measurement instant shall also be set equal to the current time:

$$
\begin{aligned}
& \text { R RESID }=\text { RTWO } \\
& \underline{V} \text { RESID }=V T W O \\
& \text { T_RESID }=T \text { TWO }
\end{aligned}
$$

2.2 If, on the other hand, the difference between the time of the measurement and the current time exceeds the tolerance, perform the following:
2.2.1 Certain parameters associated with the mean conic shall be obtained

$$
\begin{aligned}
& \text { R TWO INV }=1 . / \mid R \text { TWO } \\
& \text { SMA }=1 . /[1 . / \mid R \text { ONE } \mid+R \text { TWO_INV }-(V \text { ONE. } \\
& V \text { VONE }+\underline{V} \text { TWO. } V \text { TWO }) /(2 \text {.EARTH MU })]
\end{aligned}
$$

$C 1=$ SQRT (SMA)/SQR_EMU
D_TWO $=$ R TWO $-V$ TWO CT/SMA
and the time tag of the state vector at measurement shall be set;
T RESID $=T _T W O+$ DELTAT
2.2.2 The F and G series subfunction shall then be called (see section 4.2 .7 for the description of this subfunction)

CALL: F AND G
IN LIST: SMA, DELTAT, CT, R TWO, O., O., O., R_TWO_INV, O., V TWO, D_TWO, 0 .

OUT LIST: F, G, FDOT, GDOT, SO, ST, S2, S3, R RESID, R_FIN_INV, THETA

The position vector (\underline{R} RESID) comes out of this call; the velocity vector (V RESID) does not, but it can be calculated on the basis of FDOT and GDOT, which are also obtained from the F and G series call:

$$
\triangle R E S I D=F D O T B T W O+G D O T \cup T W O
$$

3. Finally, the acceleration vector shall be obtained.

$$
\left.\begin{array}{rl}
\text { A RESID }= & - \text { EARTH MU } R \text { RESID } / \mid R \text { RESID }\left.\right|^{3} \text { + ACCEL PERT } \\
& \text { ONORBIT }(I G D, I G O, ~ I D M, ~ I V M, ~ I A T M, ~ R ~ R E S I D, ~
\end{array}\right)
$$

A suggested implementation of this subfunction may be found in Appendix B, with the name ONORBIT SV INTERP.

4.2.4 State and Covariance Measurement Incorporation (Kalman Filter)

This subfunction shall use a Kalman filter to incorporate the measurement data to update the covariance matrix and the state vector. To perform these tasks, the Kalman filter uses the covariance matrix, measurement partials, measurement residual, and the priori measurement variance.

If the measurement data have been judged valid and the proper measurement subfunction has been executed, the following update equations are to de computed. (Note: The measurement subfunction generates the partial vector, the residual, and the a priori variance.)

First, the scalar quantity $B T$ E B is to be calculated from the covariance matrix E and vector measurement partials B

$$
\begin{aligned}
& E B _C O P Y=E B \\
& B T _B=B \cdot E B C O P Y
\end{aligned}
$$

where the second equation requires a dot product. The partials vector B. shall then be set equal to zero so that subsequent measurement subroutines will only be required to calculate non-zero elements. The quantity MS DELQ, which represents the expected variance in the measurement, is then to be computed by

$$
M S D E L Q=B T E B+V A R
$$

A residual edit shall then be performed. The EDIT FLAG is to be set to "ON" to inform the crew if the edit fails that is, if the square of the residual is greater than the quantity RESID_TEST, where RESID_TEST = K_RES_EDIT MS_DELQ and K_RES EDIT is a premision constant; otherwise the flag is set to "processed". However, the residual edit is overridden or inhibited, when the manual edit override for the particular sensor being processed is active. This results in measurement incorporation, and the edit flag is set to "FORCED".

If there is no edit or if a "force" exists, the subfunction shall then compute the Kalman filter gain,

$$
\underline{O M E G A}=E B \quad \text { COPY } / M S ~ D E L Q
$$

and update the covariance matrix,

$$
E=E-\text { OMEGA EB COPY }
$$

Where the implied multiplication of the two vectors denotes the dyadic or "outer" product. This subfunction shall update the state vector by application of the following equations:

$$
\begin{aligned}
& \text { RFILT }=\text { RFILT + OMEGA } 1 \text { to } 3 \text { DELQ } \\
& V F I L T=V F I L T+\text { OMEGA } 4 \text { to } 6 \text { DELQ } \\
& \text { VENT THRUST BIAS = VENT THRUST BIAS + OMEGA } 7 \text { to } 9 \text { DELQ } \\
& R T V=R T V+\text { OHEGA } 10 \text { to } 12 \text { DELQ } \\
& V T V=V T V+O M E G A \text { / } 3 \text { to } 15^{\text {DELQ }}
\end{aligned}
$$

$$
\text { SENSOR_BIAS }=\text { SENSOR_BIAS + OMEGA } 16 \text { to } 19 \text { DELQ, }
$$

Where DELQ corresponds to the appropriate measurement residual. The edit flag corresponding to the appropriate measurement subfunction is then to be set to indicate that the measurement data have been processed rather than edited.

This subfunction shall also be used to compute the residual test quantity for manually selected sensor types whenever the filter is not incorporating data. This quantity, together with residuals calculated by the measurement subfunctions, is required for display purposes. A flag corresponding to the appropriate measurement type shall be set by the navigation sensor selection task to prevent Kalman filter gain computations and state and covariance matrix updates under this condition. The filter edit flag shall be set to "STAT", in this case, to indicate to Measurement Processing Statistics (sec. 4.3 .2 .8) that the data have been computed for display purposes only.

It is required that the residual, the residual test quantity (RESID_TEST), and the residual edit flag corresponding to each measurement subfunction be saved for display purposes.

4.2.5 Ground Updates (auto inflight)

The auto inflight update task shall perform the following functions for orbiter and/or target vehicles:

1. Initialize onboard position and velocity state vectors to upl inked M1950 whole vectors, predicted to current time;
2. Initialize the onboard filter covariance matrix using prestored (or uplinked) position and velocity standard deviations and correlation coefficients (in UVW coordinate system), and using prestored covariance values for unmodeled acceleration bias error (in body coordinate system).

This task shall be available during both onorbit and rendezvous navigation phases, and shall be performed as follows:

1. A flag, DO AUTO UPDATE, shall be tested once per navigation cycle to determine whether an update shall be perfomed. If such an update is to occur (DO AUTO UPDATE $=0 N$, as set by the ground uplink processor), then the update process shall be performed as specified by the remaining steps, below. If an update is not to occur (DO_AUTO UPDATE $=$ OFF), then a second flag (DID AUTO UPDATE) shall be maintained in an OFF status.
2. If the DO_AUTO_UPDATE flag is ON, then an orbiter vehicle uplink flag (OV UPLIMK) is tested to see if the uplinked data pertains to the orbiter vehicle

OV UPLINK $=$ ON, orbiter data uplinked OV_UPLINK = OFF, no orbiter data uplinked If orbiter data has been uplinked, then the following shall be performed to reinitialize the onboard orbiter state vector and associated covariance matrix
a. set the upper left 9×9 portion of the covariance matrix to zero

$$
\mathrm{E}_{1} \text { to } 9,1 \text { to } 9=0
$$

b. if in a rendezvous navigation phase (i.e., if REND_NAV FLAG $=O N$) then all correlation terms between orbiter position/velocity/unmodeledacceleration bias and the remaining elements of the 19x19. rendezvous covariance matrix shall be zeroed

$$
\begin{aligned}
& \mathrm{E}_{1} \text { to } 9,10 \text { to } 19=0 \\
& \mathrm{E}_{10} \text { to } 19,1 \text { to } 9=0
\end{aligned}
$$

c. predict the uplinked position and velocity vectors (R GND, \searrow GND) at time T GND, to current time (T_CURRENT FILT) by use of the onorbit precision state prediction principal function

CALL: ONORBIT PREDICT

IN LIST: GM DEG, GM ORD, DRAG MODE NAV,
VENT MODE NAV, 1, PREC STEP, R GND,
VGGD, T_GND, T_UURRENT_fILT
OUT LIET: R FILT, VFILT
Section 4.5.2 describes the requitements for setting the parameters GM_DEG, GM_ORD, DRAG_MODE NAV, VENT_ MODE NAV and PREC_STEP, for orbiter state prediction.
d. initialize the orbiter position/velocity 6×6 covariance submatrix from prestored (or upl inked) standard deviations and correlation coefficients in UVW coordinates by use of the covariance initialization subfunction described in section 4.2.9

CALL: ONORBIT COVINIT UVW
IN LIST: SIG UPDATE, COV_COR_UPDATE,
R FILT, V FILT
OUT LIST: E_{1} to 6,1 to 6
e. initialize the 3×3 covariance submatrix (duagonal elements) to prestored values (in body-axis coordinates), and zero the corresponding state vector elements

$$
\left.\begin{array}{l}
E_{I}+6, I+6=\text { COV_ACCEL B.ODY_INIT } I \\
\text { VENT_THRUST_BIAS }
\end{array}\right\} \text {. } \quad \text { for } I=1 \text { to } 3
$$

f. compute the total orbiter acceleration vector at current time for use in the state propagation subfunction.
g. and, finally, the OV UPLINK flag shall be set to OFF.

Next (whether or not orbiter data had been uplinked), the target vehicle uplink flag (TV UPLINK) shall be tested in detemining whether the uplinked data pertains to the target vehicle

TV UPLINK $=0 N$, target data uplinked
TV UPLINK $=$ OFF, no target data uplinked
If target data has been uplinked, then the following shall be perfomed to re-initialize the onboard target state vector and associated covariance matrix.
a. if in a rendezvous navigation phase (i.e., if REND NAV FLAG $=$ ON) zero the lower right covariance submatrix pertaining to the target vehicle position and velocity vectors, and the rendezvous sensor systematic biases... and also zero all. correlation terms (covariance elements) between orbiter-position-velocity-unmodeled-acceleration and target-position-velocity-sensor-systematic-bias

$$
E_{10} \text { to } 19,10 \text { to } 19=0
$$

$$
\mathrm{E}_{1} \text { to } 9,10 \text { to } 19=0
$$

$$
\mathrm{E}_{10} \text { to } 19,1 \text { to } 9=0
$$

$$
\begin{aligned}
& \text { TOT_ACC = ACCEL PERT ONORBIT (GM DEG, GM ORD, } \\
& 1,1,0, \text { RFILT, V FILT, T CURRENT FIIT) } \\
& \cdots \text { Luntin_uU R FILT/ } \mid \text { R FILT }\left.\right|^{3}
\end{aligned}
$$

b. also, predict the uplinked position and velocity vector
 (T_CURRENT_FILT) by use of the onorbit precision state prediction principal function

CALL: ONORBIT_PREDICT
IN LIST: GM DEG, GM ORD, DRAG MODE NAV, 0,3 ,
PREC_STEP, RTV_GND, VTV GND,
T_TV GND, T_CURRENT_FILT
OUT LIST: RTV, VTV

- Section 4.5.2 describes the requirements for setting the parameters GM ORD, GM DEG, DRAG MODE NAV and PREC STEP for target state vector prediction.
c. initialize the target position/velocity 6×6 covariance subniatrix from prestored (or uplinked) standard deviations and correlation coefficients in UVW coordiriates, by use of the covariance initialization subfunction described in section 4.2.9

CALL: ONORBIT COVINIT UVW:
IN LIST: SIG TV UPDATE, COV COR TV_ UPDATE, $\mathbb{R} T V, \underline{V} T V$

OUT LIST: E_{10} to 15,10 to 15

d. finally, compute the total target acceleration vector at current time for use in the state propagation subfunction,

$$
\begin{aligned}
& \text { GTV = ACCEL PERT_ONORBIT: (GM_DEG, GM_ORD, DRAG_ } \\
& \text { MODE NAV, } 0,3, \text { PREC_STEP, RTV, VTV, T } \\
& \text { CURRENT FILT) - EARTH HU R TV } /|R T V|^{3}
\end{aligned}
$$

e. If not in a rendezvous navigation phase (see a., above), then the uplinked target vehicle data shall be stored for use in a rendezvous phase

$$
\begin{aligned}
& \text { RTV }=\text { RTVGND } \\
& \text { VTV }=\text { VTVGGND } \\
& T T V=T \text { TV_GND }
\end{aligned}
$$

f. next, whether in a rendezvous navigation phase or not, a flag (TARG VEC AVAIL) shall be set to ON indicating the existence of a target vector (for later use by the orbit/ rendezvous navigation sequencer principal function in initializing the target state)

TARG_VEC_AVAIL $=O N$
and, finally the TV UPLINK flag shall be set to OFF, indicating that the target uplink re-initialization has been completed.
3. Once orbiter and/or target state and covariance matrices have been re-initialized, the following shall be performed:
a. If in a rendezvous navigation phase (i.e., if REND

NAV_FLAG $=O N$), set all sensor processing flags to
the OFF state

> DO RR ANGLES NAV LAST $=0$ FF
> DO RRDOT NAV LAST $=0$ OFF
> DO ST ANGLES NAV LAST $=0$ FF

$$
4.2 .5-6
$$

$$
\text { DO_COAS_ANGLES_NAV_LAST }=0 \mathrm{FF}
$$

b. regardiess of whether in a rendezvous navigation phase or not, a different flag (DID_AUTO_UPDATE) shall be set to the ON state for transmittal back to the ground uplink processor; this setting indicates the update has been performed (orbiter and/ or target).
4. If no update (either orbiter or target) is to be per-

- formed (i.e., the DO AUTO UPDATE flag was tested and found to be in the OFF state) then the flag (DID AUIO UPDATE) shall be maintained as OFF.

The first flag (DO AUTO_UPDATE) shall be reset to OFF by the ground uplink processor before the next navigation cycle.

4.2.6 Angle Measurement Partials

The angle measurement partials common subfunction computes the measurement partials for an angle type measurement during rendezvous navigation.

The angle measurement partial vector is computed with the following equations.

RRHO = RTV_RESID - R RESID
RHO PLANE $=$ R RHO - (R RHO-I N) IN

- B TEMP $=$ UNIT (RHO PLANEXI N)/RHO PLANE

B $_{1}$ to $6=\left(\mathrm{PHI}^{\text {PATCH }} 1 \text { to } 3,7 \text { to } 6\right)^{T_{B} \text { TEMP }}$
B_{10} to $15=-(\text { PHI REND PATCH } 1 \text { to } 3,1 \text { to } 6)^{T_{B}}$ TEMP
B_{16} to $17=0$.
where the unit vector $I N$ corresponds to the appropriate row of the mean of 50 to sensor transformation matrix for the measurement being processed and PHI PATCH and PHI_REND PATCH are transition matrices formulated as part of the state interpolation process.
4.2.7 Conic Solution (F and G Series)

The conic solution subfunction, utilized by the state vector interpolation, position-velocity submatrix of state transition matrix, and precision integration subfunctions shall provide the capability to trace the progress of a point along its orbit assuming pure Keplerian motion, by means of the F and G series algorithm in terms of the eccentric anomaly. The variables F and G, \dot{F} and \dot{G} shall be calculated as functions of the difference in eccentric anomaly between an initial time at which a position and a velocity vector are known and a final time at which they are required.

If the final position and velocity are known, the difference in eccentric anomaly can be easily calculated and the F, G, \dot{F} and \dot{G} expressions can be obtained with the use of certain. auxiliary variables called here $\mathrm{SO}, \mathrm{S}, \mathrm{S} 2$, and S 3 .

If the final position and velocity are not known but only the transfer time, it is necessary to solve a form of Kepler's equation to obtain the difference in eccentric anomaly.

The conic solution subfunction shall have the following calling arguments:

SMA - semi major axis of the conic,
DELTAT - transfer time,
C1 - an auxiliary constant, equal to the square root
of SMA divided by the square root of the Earth's gravitational constant,

R IN - the initial position vector (M1950),
R FIN - the final position vector (M1950) (if unknown,
a zero vector shall be input),
R_IN_INV - the reciprocal of the magnitude of R IN,
R_RIN_INV - the reciprocal of the magnitude of R_FIN (if unknown, a zero shall be input),

VIN - the initial velocity vector (M1950)
D IN - the dot product of the initial position and velocity vectors, and

D FIN - the dot product of the final position and velocity vectors (if unknown, a zero shall be input).

The conic solution subfunction shall then perform the following:

1. Check the value of R FIN INV to see if Kepler's equation is to be solved.
1.1 If R FIN INV $\neq 0$, , which indicates that the final position vector is already known, the difference in eccentric anomaly shall be obtained from the expression

THETA $=\left(C 1\left(D_{\text {_FIN }}-D_{1}\right.\right.$ IN $)+$ DELTAT $\left./ C 1\right) /$ SMA
1.2 If RFIN INV $=0$., the final position vector is to be calculated. This requires solving a modified form of Kepler's equation, which shall be accomplished by an iterative process that consists of the following steps;
1.2.1 Two auxiliary quantities shall be obtained from the input data:

$$
\begin{aligned}
& \text { ONEMRIN }=(\text { SMA }-1 . / R \text { IN_INV }) / \text { SMA } \\
& \text { D_MN_AN }=\text { DELTAT } /(C 1 \text { SMA })
\end{aligned}
$$

D_MN AN is the difference in mean anomaly, which shall be taken as a first appronimation to the difference in eccentrie anomaly, THETA. A correction to this quantity, THETA COR, shall be set at a high value to begin the iteration:

THETA $=$ D MN AN
THETA COR $=10$.
1.2.2 Then THETA and THETA COR shall be recalculated until THETA COR becomes smaller than a given tolerance:

DO UNTIL
THETA COR \leq EPS DEP, by repeatedly evaluating the equations
$S O=\operatorname{COS}$ (THETA)
SI $=-$ SIN (THETA)
$S 2=1 .-S 0$
$E R R=$ D NM AN-THETA-D_IN S2 + ONEMRIN S1
THETA COR $=\operatorname{ERR} /\left(1 .+D_{-} I N S 1-O N E M R I N S O\right)$
THETA $=$ THETA + THETA COR
2. When the difference in eccentric anomaly is determined, certain auxiliary variables shall be calculated

SO $=\operatorname{COS}$ (THETA)
SI $=$ SIN (THETA)
$\mathrm{S} 2=1,-\mathrm{S} 0$
$\mathrm{S} 3=\mathrm{THETA}-\mathrm{S} 1$
2. The values of F and G shall then be determined:

```
    F=1.- SMA S2 RININV
    G= DELTAT - CI SMA S3
```

4. If the final position vector and the reciprocal of its magnitude were not known, they shall be calculated:

IF R_FIN_INV $=0$, , then set
$\underline{R F I N}=F \underline{R} I N+G \underline{V} I N$
R FIN INV $=1 . / \mid$ R FIN \mid
5. The functions \dot{F} and \dot{G}, required for the calculation of the final velocity vector, shall be evaluated:

FDOT $=-$ EARTH MU CT S1 R_IN_INV R_FININV
GDOT $=1 .-$ SMA S2 RFIN INV

Finally, the out list of the conic solution subfunction shall contain the following quantities, (different users require different sets of these):
$\mathrm{F}, \mathrm{G}, \mathrm{DOT}, \mathrm{GDOT}, \mathrm{SO}, \mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S}, \mathrm{R}$ FIN, R_FIN INV, THETA

A suggested implementation, in the form of a detailed flow chart, may be found in Appendix B, under the name F AND G.

4.2.8 Position - Velocity Submatrix of State Transition Matrix

This subfunction computes a 6×6 submatrix (PHIIMC) of a larger state transition matrix. PHI MC is the partial derivative of the new position - velocity state with respect to the old position velocity state.

A formulation is used which assumes that a mean conic section may be used to describe the path taken between the initial position and velocity (R ONE and V ONE) at initial total acceleration ($G O M E$) and the final position and velocity (R TWO and V TWO) at final total acceleration (G TWO) over a time step DELTIM. The ergodic semi-major axis SMA, is computed by using the average of the reciprocal of the semimajor axis derived from combinitation of the respective vis-viva computations at the initial and final orbital states, and is given by:

$$
S M A=1 . /\left(1 . /|\underline{R} O N E|+1 . / \mid \underline{R} \text { TWO } \mid-\left(\mid \underline{V} \text { ONE }\left.\right|^{2}+\mid \underline{V} \text { TWO }\left.\right|^{2}\right) /\right.
$$

2. EARTH MU).
where EARTH MU is the earths gravitational constant. The Stumpff constant, C1, predicated on the mean conic semi-major axis, is computed by:

$$
C 1=\sqrt{\text { SMA/EARTH MU }}
$$

Then the Kepler subfunction. F ARD G, is called by supplying

SMA,

$$
\begin{aligned}
& \text { DELTAT }=\text { DELTIM, } \\
& \text { C1, } \\
& \underline{\text { R IN }}=\text { R ONE }, \\
& \text { R FIN }=\underline{\text { R } T W O} \\
& \text { RIN_INV }=1 .||\mathbb{R} O N E| \\
& \text { R_FIN_INV }=1 . / \mid \underline{R} \text { TWO } \mid \text {, } \\
& V I N=V \text { ONE, } \\
& \text { D_IN = R ONE.V ONE, and } \\
& \text { D_FIN }=\text { R TWO.V TWO, }
\end{aligned}
$$

in that order

- The Kepler subfunction returns the output F, G, FDOT, GDOT, SO, ST, S2, and S3. For this case R TWO and R_TWO_INV are not updated since R TWO INV is supplied as a non-zero quantity. However THETA, the eccentric anomaly angle is generated as an output in any case.

After computing certain auxillary constants such as
FM1 $=$ F-1.,
GDM1 $=$ GDOT-1.,
$\mathrm{S} 1=\mathrm{C} 1 \mathrm{~S} 1$.
$C 2=C l^{2}$,
CONST $=(C 1 C 2$ THETA $(2,+S 0)-3, C 2 S 1)$ SMA, and
$S 2=C 2 S 2$,
which represent comon functionals and Stumpfif series summa-
tions for circular or elliptical orbits; the partial derivatives may now be calculated. The following equations for the partial derivatives are written algebraciully for clarity, (Figure A.2.8-1), with R_{0}, representing R ONE, R representing R TWO, R_{0} representing V ONE, R representing V TWO, \ddot{R}_{0} representing G ONE, \ddot{R} representing G TWO, frepresenting F, g representing G, f representing FDOT, g representing GDOT and U representing CONST, as well as having lower case letters representing the scalar magnitude of the respective upper case letter vectors.

Certain recurring groups of symbols may be collected to facilitate ease of coding and minimization of error. (See the flow chart MEAN_CONIC PARTIAL_TRANSITION MATRIX 6×6 in Appendix B). Each 3×3 submatrix of the 6×6 matrix PHI MC results from the sumation of 3×3 matrices generated by the dyadic product of groups of vectors of length three.
$P H I-M C_{1}$ to 3, 1 to $3=\frac{\partial R}{\partial R_{0}}\left[\frac{\hat{r} S_{1}+(f-1) / r_{0}}{r_{0}}\right] R_{0} R_{0}^{T}-f S_{2} R R_{0}^{T}+\frac{(f-1) S_{1}}{r_{0}} R R_{0}^{T}$

$$
+(f-1) S_{2} \dot{R} \dot{R}_{0}^{\top}+U \dot{R} \ddot{R}_{0}^{\top}+f I
$$

PHI MC 1 to 3,4 to $6=\frac{\partial R}{\partial \dot{R}_{0}}=-\dot{f} S_{2} R R_{0}^{T}-(\dot{g}-1) S_{2} R \dot{R}_{0}^{T}+(f-1) S_{2} \dot{R} R_{0}^{T}$

$$
+g S_{2} \dot{R}^{R_{0}}{ }^{\top}+g I-U \dot{R} \dot{R}_{0}^{\top}
$$

$\mathrm{PHI}_{-} \mathrm{MC}_{4}$ to 6,1 to $3=\frac{\partial \dot{R}}{\partial R_{0}}=-f\left(\frac{S_{0}}{r r_{0}}+\frac{1}{r^{2}}+\frac{1}{r_{0}{ }^{2}}\right) R R_{0} T-\left[\frac{f S_{1}+(\dot{g}-1) / r}{r}\right] R \dot{R}_{0} T$

$$
+\left[\frac{f S_{1}+(f-1) / r_{0}}{r_{0}}\right] \dot{R} R_{0} T+\dot{f} S_{2} \dot{R} \dot{R}_{0} T+f I+U \dddot{R} \ddot{R}_{0} T
$$

PHI MC $_{4}$ to 6, 4 to $6=\frac{\partial \dot{R}}{\partial \dot{R_{0}}}=-\left[\frac{f S_{1}+(\dot{g}-1) / r}{r}\right] R R_{0}^{T}-\frac{(\dot{g}-1) S_{1}}{r} R \dot{R}_{0}^{T}+\dot{f} S_{2} \dot{R} R_{0}^{T}$

$$
+(\dot{g}-1) S_{2} \dot{R} \dot{R}_{0}^{T}+g I-U \ddot{R}_{0} T
$$

FIGURE 4.2.8-1 Position - Velocity Portion of State Transition Matrix.

4.2.9 Covariance Matrix Initialization

In circumstances in which the orbiter or target position and velocity elements of the onboard filter covariance matrix are to be initialized to UVW values, the following steps shall be performed (in the order indicated):

1. data shall be input to this subfunction as described by the inlist below

IN LIST: $\underline{S I G}, \underline{C O R}, \underline{R}, \underline{V}$ Where SIG is a 6-element vector of standard deviations in the UVW coordinate system

$$
\begin{aligned}
& \text { SIG }_{1}, U-\text { position } \\
& \text { SIG }_{2}, V \text { - position } \\
& \text { SIG }_{3}, W \text { - position } \\
& \text { SIG }_{4}, U-\text { velocity }(U) \\
& \text { SIG }_{5}, V-\text { velocity }(V) \\
& \text { SIG }_{6}, W-\text { velocity }(\mathrm{W})
\end{aligned}
$$

and where $C O R$ is a 7 -element vector of correlation coefficients, also in the UVW coordinate system
$C O R_{1}$, correlation between $U-V$
COR_{2}, correlation between $U-\dot{U}$
COR_{3}, correlation between $U-\dot{V}$
COR_{4}, correlation between $V-\dot{U}$
COR_{5}, correlation between $V-\dot{V}$
COR_{6}, correlation between $W-H$
COR_{7}, correlation between $\dot{U}-\dot{V}$
and where \underline{R} and \underline{V} are the current orbiter or target position and velocity vectors, respectively, in M50 coordinates.
2. the current 6×6 covariance matrix shall be zeroed

$$
E_{-} \text {TEMP }=0 .
$$

3. the diagonal elements of E_TEMP shall be computed

$$
E \operatorname{TEMP}_{I, I}=\text { SIG }_{I} \text { SIG }_{I}, \text { for } I=1,6
$$

4. next, position and velocity submatrix elements as well as the upper right position-velocity covariance ele-

- ments shall be computed

$$
\begin{aligned}
& E_{- \text {IENP }_{1,2}=\text { COR }_{1} \text { SIG }_{1} \text { SIG }_{2}, ~}^{\text {SOR }} \\
& E_{-} \text {TEMP }_{1,4}=\text { COR }_{2} \text { SIG }_{1} \text { SIG }_{4} \\
& {\mathrm{E} \mathrm{TEMP}_{1,5}}=\mathrm{COR}_{3} \mathrm{SIG}_{1} \mathrm{SIG}_{5} \\
& E \text { TEMP }_{2,4}=\text { COR }_{4} \text { SIG }_{2} \text { SIG }_{4} \\
& \mathrm{E}_{-} \mathrm{TEMP}_{2,5}=\mathrm{COR}_{5} \mathrm{SIG}_{2} \text { SIG }_{5} \\
& \mathrm{ETEMP}_{3,6}=\mathrm{COR}_{6} \mathrm{SIG}_{3} \mathrm{SIG}_{6} \\
& E \text { TEMP }_{4,5}=\mathrm{COR}_{7} \mathrm{SIG}_{4} \mathrm{SIG}_{5} \\
& \mathrm{E}_{-\mathrm{TEMP}_{2,1}}=\mathrm{E}_{-} \mathrm{TEMP}_{1,2}
\end{aligned}
$$

5. and, finally, a transformation matrix from UVW to $M 50$ coordinate systems is acquired at current time, and used to rotate the E TEMP matrix into the M50 system. The lower left position-velocity covariance is also defined

$$
\begin{aligned}
& M=U V W-T O M 50(\underline{R}, \underline{V}) \\
& \text { E_TEMr }_{1} \text { to } 3,1 \text { to } 3 \text {. } \mathrm{ME}^{\operatorname{TEMP}} 1 \text { to } 3,1 \text { to } 3 M^{\top} \\
& E_{-} \operatorname{TEMP}_{4} \text { to } 6,4 \text { to } 6=M E \text { TEPir }_{4} \text { to } 6,4 \text { to } 6 M^{\text {T }} \\
& \text { ETEMP }_{7} \text { to } 3,4 \text { to } 6=\text { E_TEMP }_{1} \text { to } 3,4 \text { to } 6 M^{\top} \\
& \text { ETEMP }_{4} \text { to } 6,1 \text { to } 3=\left(E_{-T E M P}^{1} \text { to } 3,4 \text { to } 6\right)^{\top}
\end{aligned}
$$

6. the 6×6 covariance matrix ETEMP shall be output from this subfunction.

4.3 NAVIGATION PROCESSING PRINCIPAL FUNCTIONS

The two navigation processing principal functions applicable during operational sequence 2 (and contained in the orbit operations computer load) are:

1. On-Orbit Navigation, and
2. Rendezvous Navigation.

Both of these functions will be initialized and cyclically executed under control of the on-orbit/rendezvous navigation sequencer principal function. Detailed requirements for both of the navigation processing principal functions are discussed in the following subsections.

4.3.1 Onorbit Navigation

The onorbit navigation principal function shall provide an up-to-date estinate of the orbiter's position, velocity, and other parameters for software users such as guidance and displays. This principal function shall be scheduled by the onorbit/rendezvous navigation sequencer principal function.

The onorbit navigation principal function shall use selected IMU data and a model of the Earth's gravitational acceleration to maintain a current estimate of the orbiter's state vector during powered flight. During coasting flight, models of the Earth's gravitational acceleration, aerodynamic drag acceleration, venting acceleration, and uncoupled RCS thrusting acceleration shall be used to maintain a current estimate of the orbiter state vector. A single state vector shall consist of three position components, three velocity components, and three unmodeled acceleration bias states.

No external sensor data shall be processed; however a 9×9 dimensional matrix initialized by the onorbit/rendezvous sequencer principal function shall be propagated along with the orbiter's state vector.

A ground update capability shall enable autonatic reinitialization of the orbiter's state vector and covariance matrix
during coasting flight. This capability shall also provide for storage of an uplinked target. state vector (and covariance matrix for eventual initialization purpeses by the rendezvous navigation principal function.

The onorbit navigation principal function is composed of four primary subfunctions:

1. A control subfunction, described in Section 4.3.1.1.
2. A state and covariance setup subfunction, described in section 4.3.1.2.
3. A state propagation subfunction, described in section 4.3.1.3.
4. A covariance propagation subfunction, described in section 4.3.1.4

Tables 4.3.1-1 and 4.3.1-2 are the Level B CPDS tables which show data flow between the onorbit navigation and other principal functions.

TABLE 4.3.1-1 ONORBIT NAVIGATION PRINCIPAL FUNCTION INPUT LIST (cont'd)

Level B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABIE)	
TBD			SUBFUNCTION NAME	SUBFUNCTION IINPUT TABLE
	IOT_ACC	ORB/RND NAV SEQ	욱 state propagation - covariance matrix propagation	$\begin{aligned} & 4 \cdot 3 \cdot 1 \cdot 3-1 \\ & 4 \cdot 3 \cdot 1 \cdot 4-1 \end{aligned}$
	\checkmark CURRENT FILT	IMU RM	* state propagation	4,3.1.3-1
	I CURRENT FILT	IMU RM	- state and covariance matrix setup - state propagation	$\begin{aligned} & 4 \cdot 3 \cdot 1 \cdot 2-7 \\ & 4 \cdot 3 \cdot 1 \cdot 3-1 \end{aligned}$
	R FILT $\left.{ }_{\text {VFILT }}\right\}$	ORB/RND NAV SEQ	- state propagation (2. covariance matrix propagation	$\begin{aligned} & 4 \cdot 3 \cdot 1 \cdot 3-1 \\ & 4.3 \cdot 1 \cdot 4-1 \end{aligned}$
	$\frac{\vee L A S T ~ F I L T}{T} \text { LAST FILT }$	ORB/RND NAV SEQ	(state propagation	4.3.1.3-1
	$\left.\begin{array}{l} \text { VENT THRUST BIAS } \\ \text { SQR EMU } \\ \text { CMMAN } \\ \text { SMNAN } \\ \text { CMMAN } \\ \text { SMX_AN } \end{array}\right\}$	ORB/RND NAV SEQ	2 state propagation	4.3.1.3-1
	E	ORB/RHD NAV SEQ	covariance matrix propagation	4.3.7.4-1

TABLE 4.3.7-2
PRINCIPAL FUNCTION OUTPUT EIST

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUEFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL function which utilize the variable)	
TBD			SUBFUNCTION NAME	SUBFUNCTION INPUT TAELE
	USE_IMU_DATA	ORB USER PAPAM PROC	- state propagation	4.3.1.3-2
	R RESETTPRESETTIESETIIMU RESET FILT UPDATE	ORB USER PARAM PROC	Q onorbit control	4.3.1.7-2
	R TV VTV TTV TARG_VEC_AVAIL	ORE/RND NAV SEQ	Q state and covariance setup	4.3.1.2-2
	DID_AUTO UPDATE	(ground uplink processor)	(8) state and covariance setup	4.3.1.2-2

4.3.1.1 On-Orbit Control

The on-orbit navigation principal function will provide the capability to control the propagation and ground update of the state vector and the covariance matrix.
A. Detailed Requirements

On-orbit control will perfom the following tasks in the order indicated (for definitions of variables, refer to Tables 4.3.1.1-1 and 4.3.1.1-2):

1. The on-orbit state propagation subfunction will propagate the state vector as described in Section 4.3.1.3.
2. The on-orbit covariance propagation subfunction will propagate the covariance matrix as described in Section 4.3.1.4.
3. The on-orbit state and covariance setup subfunction wil1 perform automatic in-flight updates as required, as described in Section 4.3.1.2.
4. The position and velocity, the associated time tag, and the accumulated IMU velocity counts will be stored for use by the user parameter state propagator:

$$
\begin{aligned}
& \underline{R}-\text { RESET }=\underline{R}-\text { FILT } \\
& \underline{V}-\text { RESET }=\underline{V}-\text { FILT } \\
& T-R E S E T ~
\end{aligned}-\mathbb{A S T} \text { FILT }
$$

Finally the filter update flag will be set to $O N$ to indicate to users that the current navigation cycle is complets:

FILT $I P D A T E=O N$
B. Interface Requirements

The input and output parameters are listed in Tables
4.3.1.1-1 and 4.3.1.1-2.
C. Processing Requirements

On-orbit control will be executed while the on-orbit navigation principal function is scheduled.

D. Constraints

None.
E. Supplemental Information

A suggested implementation of on-orbit control is illustrated by NAV_ONORBIT in Appendix B

TABLE 4.3.2.1-1. On-Orbit Control Input Parameters

	DESCRIPTION		SYMBOL	INPUT SOURCE	TYPE

TABLE 4.3.1.1-2. On-Orbit Control Output Parameters

4.3.1.2 State and Covariance Setup - This subfunction

 is required to set up the proper state vector and covariance matrix. as a result of an automatic inflight update during operation of the onorbit navigation principal function. This subfunction shall be capable of performing the following basic tasks:1. predict uplinked orbiter state yector (M50 coordinates) to current time from uplinked time tag,
2. initialize (6×6) orbiter position/velocity covariance matrix to pre-mission stored (or uplinked) UVW standard deviations and correlation coefficients; and initialize diagonal elements of the filter covariance matrix associated with unmodeled acceleration bias errors, to pre-mission stored values (in body coordinates),
3. store uplinked target position/velocity vector, time tag, and selected UVW standard deviations and correlation coefficients for future usage in rendezvous navigation initialization.
A. Detailed Requirements. Section 4.2 .5 contains a description of the detailed requirements for this subfunction (the REND NAV FLAG will be in the OFF setting, thus indicating those requirements necessary during operation of the onorbit navigation principal function).
B. Interface Requirements. Input and output parameters are listed in the tables 4.3.1.2-1 and 4.3.1.2-2, respectively.
C. Processing Requirements. The state and covariance setup subfunction shall be performed each navigation cycle; however, the automatic inflight update task shall only be performed when a ground uplink has been received (i.e, the DO_AUTO UPDATE flag has been set to On by the ground uplink processor).
D. Constraints. The following constraints apply to the state and covariance setup subfunction during operation of the onorbit navigation principal function.
4. Automatic inflight updates of either orbiter and/or target which data shall not be performed during powered flight arcs (i.e, only during coasting flight regions), since the onorbit precision state prediction algo-. rithm assumes coasting flight conditions.
5. The state and covariance setup subfunction shall be capa be of reacting to the uplink of orbiter and/or target vehicle data in the same navigation cycle.
6. The ground uplink processor shall reset the DO_AUTO $U P D A T E$ flag to OFF prior to the next navigation cycle, to prevent multiple navigation re-initializations with the same uplinked data.
7. The capability shall be provided to uplink the following data in a single transmission:

- vehicle position (3 double precision words)
- vehicle velocity (3 double precision words)
- time tag (1 double precision word)
- vehicle identifier (1 bit)
- position/velocity error standard deviations (6 double precision words)
- position/velocity error correlation coefficients (7 double precision words)

All the data in a single transmission shall pertain to one vehicle, only (either orbiter or target), as indicated by the "vehicle identifier" bit, above.
5. The onboard software (ground uplink processor) receiving the data in item 4., above, shall perform the following functions upon receiving uplink data:

- Test the vehicle identifier to determine if the data pertains to the orbiter or target,
- Set up one of the following two variable sets dependirg on the results of the above test.
R GND V GivD TGND for orbiter vehicle
data uplink OV UPLINK = ON SIG UPDATE COV COR UPDATE

$$
4.3 .1-13
$$

E. Supplementary Information. A suggested inplementation
in the form of detailed flow charts, can be found in
Appendix B and C under the following names:
\(\left.\begin{array}{l}ONORBIT REND AUTO INFLIGHT UPDATE

ONORBIT REND STATE AND COV SETUP (CODE)

ONORBIT COVINIT UVW

ACCEL PERT ONORBIT

ONORBIT PREDICT \sim Appendix C\end{array}\right\}\)| Apendix |
| :---: |
| B |

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
$\begin{aligned} & \stackrel{\rightharpoonup}{b} \\ & \dot{\Delta} \\ & \dot{心} \end{aligned}$	Flag indicating (ON) that an automatic inflight update of either orbiter and/or target state and covariance matrix is to be performed	DO_AUTO_UPDATE	*	D	$=$	ON/OFF	-	NAV rate
	flag indicating whether rendezvous navigation active (ON), or onorbit navigation active (OFF)	REND_NAV_FLAG	*	D	-	ON/OFF	-	As rad
	flag set by ground uplink processor indjcating (ON) that orbiter vehicle state vector has been uplinked	OV UPLINK	*	D	-	ON/OFF	-	As rqd.
	flag set by ground uplink processor indicating (ON) that target vehicle state vector has been uplinked	TV UPLINK	*	D	-	ON/OFF	-	As rad

* onorbit navigation principal furction input list

TABLE 4.3.1.2-1. (Continued) STATE AND COVARIANCE SETUP INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	$\begin{aligned} & \text { SAMPLE } \\ & \text { RATE } \end{aligned}$
	flag indicating degree of gravitational potential model	GM_DEG	**	I	S	1-8	-	As rad
	flag indicating order of gravitational potential model	GM_ORD	**	I	5	0-8	-	As rad
	flag which activates (1) or deactivates (0) the drag acceleration model	$\mathrm{DRAG}_{\text {NAV }} \text { MODE- }$	**	I	S	0,1	-	As rad
	flag which activates (1) or deactivates (0) the venting and RCS-uncoupled-thrusting model	$\begin{aligned} & \text { VENT MODE } \\ & \text { NAV } \end{aligned}$	**	I	5	0,1	-	As rad
	integration step-size for precision state prediction	PREC, STEP	**	I	S	-	sec	As rad

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	range	UNITS	$\begin{aligned} & \text { SAMPLE } \\ & \text { RATE } \end{aligned}$
	uplinked orbiter position vector (M50)	R GND	*	V	DP	-	$f t$	As rqd
	uplinked orbiter velocity vector (M50)	$\underline{\square}$ GND	*	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	As rad
	uplinked orbiter state vector time tag	T_GND	*	F	DP	-	sec	As rad
$\stackrel{\omega}{4}$	time tag of current filter state vector	$\frac{\text { T_CURRENT__ }_{\text {FILT }}}{}$	state propagation	F	DP	-	sec	As rqd
	vector (6×1) of standard deviations (UW:) for orbiter position/velocity covariance initializa. tion (ground update)	SIE_UPDATE	*, **	V	DP	-	vary	As rqd

[^2]

[^3]| | DESCRIPTION | SYMBOL | INPUT SOURCE | TYPE | PRECISION | RANGE | UNITS | SAMPLE RATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | fiag set by ground uplink processor indicating (ON) that orbiter vehicle state vector has been uplinked | TV_UPLINK | * | D | - | ON/OFF | - | As rqd |
| | fleg indicating degree of gravitational potential mode1 | GM. DEG | ** | I | S | 1-8 | $-$ | As rad |
| $\begin{gathered} \overrightarrow{3} \\ \stackrel{u}{2} \\ \underset{\sim}{2} \end{gathered}$ | flag indicating order of gravitational potential model | GM -DRD | ** | I | S | 0-8 | - | As rqd |
| | flag which activates (1) or deactivates (0) the draj acceleration model | $\begin{aligned} & \text { DRAG MODE_ } \\ & \text { NAV } \end{aligned}$ | ** | I | S | 0,1 | - | As rqd |
| | flag which activates (1) or deactivates (0) the verting and RCS-uncoupledthrusting model | $\begin{aligned} & \text { VENT MODE } \\ & \text { NAV } \end{aligned}$ | * | D | -. | ON/OFF | - | NAV rate |
| | integration step-size for precision state prediction | PREC STEP | ** | I | S | - | sec | As rqd |

[^4]| | DESCRIPTION | SYMBOL | INPUT SOURCE | TYPE | PRECISION | RANGE | UNITS | SAMPLE RATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | uplinked orbiter position vector (M50) | R GND | * | V | DP | - | ft | As rad |
| | Qlinked orbiter velocity vector (1450) | V GND | * | V | DP | - | $\mathrm{ft} / \mathrm{sec}$ | As rad |
| $\begin{aligned} & \overrightarrow{\text { uे }} \\ & \overrightarrow{0} \\ & 0 \end{aligned}$ | uplinked orbiter state vector time tag | TGND | * | F | DP | - | sec | As rad |
| | time tag of current filter state vector | $\begin{aligned} & \text { TCURRENT:- } \\ & \text { FILT } \end{aligned}$ | state propagation | F | DP | - | sec. | As rad |
| | vector (6×1) of stan dard deviations (UVW) for orbiter position/ velocity covariance initialiaation (cround uodate) | SIG_UPDATE | *,** | v | DP | - | vary | As rgd |

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
$\begin{aligned} & \vec{i} \\ & \vec{i} \\ & \vec{i} \end{aligned}$	vector (7×1) of correlation coefficients assocjated with UVW standard deviations SIG UPDATE used for orbiter position/ velocity covariance initialization (ground update)	$\begin{aligned} & \text { COV COR } \\ & \text { UPDATE } \end{aligned}$	*, **	V	DP	-1,1	-	As rad
	earth gravitational constant	EARTH_MU	**	F	DP	-	$\frac{\mathrm{ft}^{3}}{\mathrm{sec}^{2}}$	As rad
	vector (3×1) of unmodeled acceleration bias error variances (body coordinate system)	$\frac{\text { COV. } A C C E L}{B O D V}=I N I T$	**	V	DP	-	$\frac{\mathrm{ft}^{2}}{\sec } 4$	As rqd
	uplinked target vehicle position vector (M50)	R TV_SND	*	V	DP	-	ft	As rad
	uplinked target vehicle velocity vector (M50)	V-TV_GND	*	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	As rad

[^5]| | DESCRIPTION | SYMBOL | INPUT SOURCE | TYPE | PRECISION | RANGE | UNITS | SAMPLE RATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | uplinked time tag of target vehicle state vector | TIV_OVD | * | F | D. P | - | sec | As rad |
| | vector (6×1) of standard deviations (UVW) for target vehicle position/velocity covariance initialization (ground update) | SIG IV UPDATE | *,** | V | DP | - | . vary | As rad |
| ω $\stackrel{\rightharpoonup}{3}$ $\stackrel{\text { N }}{ }$ | vector (7×7) of correlation coefficiènts associated with UVW standard deviations
 SIG_TV_UPDATE
 used for Zarget vehicle position/velocity covariance initialization (ground update) | $\mathrm{COV}_{\mathrm{UPDATE}} \mathrm{CO}-$ | *,** | V | DP | -1,1 | - | As rad |
| | (see section 4.8, ILoad Requirements) | (acceleration model and predictor constan | ** | - | - | - | - | As rad |

[^6]TAELE 4.3.1.2-2 STATE AND COVARIANCE SETUP OUTPUT LIST

	OESCREPTION	SYMBOL	OUTPUT DESTINATION	TYPE	PRECISION	RANGE:	UNITS	COMPUTATION RATE
$\begin{aligned} & \vec{\omega} \\ & \stackrel{\rightharpoonup}{\dot{\omega}} \\ & \stackrel{\rightharpoonup}{心} \end{aligned}$	flag indicating (ON) that an automatic infiight update has been performed	$\begin{aligned} & \text { DID. AUTO } \\ & \text { UPDATE } \end{aligned}$	*	D	-	ON/OFF	-	NAV rate
	orbiter position vector ($\$ 50$)	RFILT	state propagation, covariance propagation, onorbit control	V	DP	-	$f t$	As rod
	orbiter velọcity vector (M50)	VFILT	state propagation, covariance propagation onorbit control	V	DP	-	ft/ sec	As rod
	vector of órbiter total acceleration (M50)	TOT ACC	state propagation, covariance propagation	V	DP	-	$\begin{aligned} & \mathrm{ft} / \mathrm{sec} \\ & \hline \mathrm{sec}^{2} \end{aligned}$	As rqa
	vector (3×1) of unmodeled acceleration bias errors (body coord. system)	VENT.JHRUST BIAS	state propagation	V	DP	-	$\begin{gathered} \mathrm{ft} / 2 \\ \mathrm{sec}^{2} \end{gathered}$	As rad

* onorbit navigation principal function output list

TAEEE 4.3.1.2-2 (Continued) STATE AND COVARIANCE SETUP OUTPUT LIST

* onorbit navigation principal function output.list

4.3.1.3 State Propagation

This subfunction will perform a number of tasks related to the propagation of the orbtter state yector.

The task of reading (snapping) the IMU shall be performed to obtain the current time and the accumulated sensed velocity. Details of the IMU snap task are to be found in Section 4.2.1.1. Avajlable acceleration models include grayitational accelerations (always used) and non-gravitational accelerations (drag, venting and uncoupled RCS thrusting). The latter shall be used in those circumstances in which sensed accelerations obtained from the IMU accumulated sensed velocfties are judged to be insignificant. These acceleration models are described in detail in Section

4.2.1.2.

The equations of mution will be integrated with either a super-g algorithm (see section 4.2.1.3.1) intended primarily for powered flight phases (i.e., those phases in which significant nongravitational accelerations are sensed) or a precision propagation algorithm designed specifically for coasting flight phases and described in detaji in section 4.2.1.3.2.

The task of propagation of biases shall be performed by multiplying the previous yalue of each bias by unity. The three biases propagated in this way represent unmodeled accelerations in body courdinates.

A. Detailed Requirements

The computations that shall be carried out for advancement of the position and velocity vectors are the following:

1. The IMU shall be snapped (see section 4.2.1.1 for details of this task).
2. Values of the position and velocity vectors calculated in the previous navigation cycle, together with the total acceleration, shall be saved for use in the current cycle:

$$
\begin{aligned}
& \text { TOT_ACC_LAST }=\text { TOT_ACC } \\
& \text { R_LAST }=\text { RFILT } \\
& \underline{V} \text { LAST }=\underline{V F I L T ~}
\end{aligned}
$$

3. The time interval for advancement shail be calculated by subtracting the time tag of the previous cycle from the time obtained from the IMU snap:

DT_FILT $=$ T_CURRENT FILT-T LAST_FILT
4. The flag that indicates the choice of integrator shall then be checked. This flag, PWRD_FLT NAV, is set by the onorbit/rendezvous sequencer principal function. It is set to OFF when in a coasting flight phase and set to ON Just before a burn.
4. 1 If the flag is found to be $O N$, the Super-g integrator shall be invoked. This requires the setting of certain flags. It also requires comparing the acceleration calculated from the IMU sensed velocities with a pre-
stored threshold value below which this acceleration shall be ignored.

So, the following steps are needed:
4.1.1 Find the difference in the accumulated sensed velocity

$$
\text { DV_FILT }=\underline{\dot{V}} \text { CURRENT FILT-V LAST_FILT }
$$

4.1.2 Calculate on acceleration magnitude from DV FILT and DT_FILT and compare it with the threshold value:

$$
\frac{\mid \text { DVFILT|}}{\text { DT_ILT }}>\text { DA THRESHOLD }
$$

Then, if the calculated acceleration is larger than the threshold value, set the following flags:

USE_IMU_DATA $=O N$
$I G D=G M D E G \quad L O W$
$I G O=G M O R D$ LOW
$I D R A G=0$
IVENT $=0$
and set

$$
D V=D V F I L T
$$

On the other hand, if the calculated absolute value of the acceleration is below the threshold level, set
USE_IMU_DATA $=0 F F$

$$
I G D=G M D E G
$$

$$
\mathrm{IGO}=\mathrm{GM} \bigcirc \mathrm{ORD}
$$

$$
\text { IDRAG }=1
$$

$$
\text { IVENT }=1
$$

and

$$
\underline{D V}=0 .
$$

4.1.3 Find a value of the sensed acceleration based on DV (it could, therefore, be 0. , thus ignoring the IMU readings)
A SENS $=$ DV/DT_FILT
4.1.4 Call the Super-g integrator with the flag values just set:
CALL: ONORBIT SUPER_G
IN LIST: IGD, IGO, IDRAG, IVENT, O, R FILT, V FILT, T_CURRENT_FILT, DT FILT, DV
OUT LIST: R FILT, V FILT, G NEW
4.2 In the situation where the PWRD FLT_NAV is found to be OFF, the precision propagation integration scheme shall be called. The sequence, in this case, is as follows:
4.2.1 Check the REND NAV FLAG, and choose the stepsize for the precision propagator according to the values of this flag. The step-size
does affect the accuracy of the integration, and it is natural that the accuracy requirements during the rendezvous phases be different from those in other phases of the orbital operations. The REND NAV FLAG, during the periods in which the Onorbit Navigation principal function is in operation, shall always be found to be OFF. This will result in setting $D T=P R E C .$. STEP.
4.2.2 The vector A SENS is required for the computation of TOT ACC in a later step. The precision propagator being a coasting flight integrator, the sensed accelerations are not needed by it. Therefore, set A SENS $=0$.
4.2.3 Invoke the precision propagator with calling arguments that will cause the modeling of drag, venting and uncoupled thrusting accelerations, with the use of current attitude information. CALL: ONOROIT PRECISE PROP

IN LIST: GM DEG, GM ORD, 1, 1, 0, DT, R FILT, V FILT, T LAST FILT, T CURRENT FILT

OUTLIST: RFILT, VFILT, GNEW

At the end of either step 4.1.4 or step 4.2.3, the values of RFILT and V FILT output by the corresponding integrator are the required propagated position and velocity vectors of the orbiter. The vector G NEW is a modeled acceleration vector obtained according to the specified flag settings and and corresponding to R FILT, VFILT and T CURRENT_FILT.
5. The REND NAV FLAG shall then be tested. This flag indicates whether or not it is necessary to also propagate the state of the target vehicle. While the onorbit navigation principal function is operative, this flag will always have the value OFF, and pro-. pagation of the target state vector will not be required.
6. Save the IMU readings for the next cycle and find the total acceleration vector for the orbiter (required for transition matrix calculations).

T LAST FILT $=T$ CURRENT FILT
VLAST FILT $=V$ CURRENT_FILT
$T O^{\circ}-A C C=G N E W+A$ SENS
B. Interface Requirements

Input and output parameters are to be found in tables
4.3.1.3-1 and 4,3.1,3-2 respectively.

C. Processing Requirements

None.
D. Constraints

The acceleratic? models task is needed not only by the navigation state praagation subfunction but also by the onorbit precision state prediction principal function and by the user parameter staie propagation subfunction. Each of these users of the accelerazinn models shall set its own flags and therefore require a differsnt calculation. To protect against interference in the acceleratio. romputations, it is important that these computations not be interrupted.
E. Supplementary Information

A suggested implementation of this subfunction, in the form of a detailed flow diagram, may be found in Appendix B

ONORBIT_SUPER G
ONORBIT PRECISE PROP
ONORBIT NAV (IMU Snap Portion)
ONORBIT REND BIAS AND COV PROP (CODE)

Täble 4.3.1.3-1. On-Orbit State Propagation Input Parameters

Table 4.3.1.3-2. On-Orbit State Propagation Output Parameters

DESCRIPTION	SYMBOL	OUTPUT DESTINATION	TYPE	PRECISION	Range	UNITS	SATPLE RATE
Current position vector of crbiter in M50 coordinates	R FILT	*;**	V	DP		Ft	Filter rate
Previous position vector of orbiter	R LAST	**	V	DP		Ft	Filter rate
Total acceleration (sensed pius modeled) of orbiter	TOT ACC	**	V	DP		- $\mathrm{Ft} / \mathrm{sec}^{2}$	Filter rate
Previous total acceleration of orbiter	IOT_ACC LAST	**	V	DP		$\mathrm{Ft} / \mathrm{sec}^{2}$	Filter rate
Orbiter velocity vector	V FILT	*, 3 \%	V	DF		Ft/sec	Filter rate
Previous velocity vector of orbiter	V LAST	**	V	DP		$\mathrm{Ft} / \mathrm{sec}$	Filter rate
Difference between two onsecutive accumulated veiocities snapped from IU	DV FILT	**	V	DP		Ft/sec	Filter rate
Cogy of the current time tag, saved for next nav. cycle	T LAST FILT	Onorbit Nav.	F	DP		Sec	Filter rate
Time of the orbiter state rector	T_CURRENT FILT	**	F	DP		Sec.	Filter rate
Difrerence between two consecutive times snapped fron MU	DT_FILT.	, \% 5	F.	$D P$		Sec	Filter rate
Frevious IMJ accumulated sensed velocity	\underline{V} LAST FILT	Onorbit Nav.	V	DP		$\mathrm{Ft} / \mathrm{sec}$	Filter rate

Table 4.3.1.3-2. On-Orbit State Propagation Output Parameters

[^7]
4.3.1.4 Covariance Matrix Propagation

The covariance matrix propagation subfunction propagates the covariance matrix forward in time. The covariance matrix is propagated by utilizing the state transition natrix. Additive process noise is incorporated to account for unmodeled state and dynamic errors.
A. Detailed Requirements. A 9 by 9 covariance matrix shall be propagated with the navigation principal function. This covariance matrix defines the uncertainty in the state vector, which consists of position and velocity of the orbiter and unmodeled accelerations. The method of propagation is described in Section 4.2.2.
B. Interface Requirements. The input and output data are shown in Tables 4.3.1.4-1 and 4.3.1.4-2.
C. Processing Requirements. This subfunction will be called after the IMU sensor data have been read and after the state propagation subfunction has been executed.
D. Constraints. Prestored data are to be used for initialization. The propagated covariance matrix must remain symmetric.
E. Supplementary Information. A possible implementation of this subfunction is shown in the flow charts ONORBIT_REND_BIAS AND COV PROP (CODE), PWRD FLT COV PROP (CODE), MEAN CONIC PARTIAL TRANSITION MATRIX 5×6 and F AND G in Appendix B.

Table 4.3.1.4-1 - Onorbit Covariance Propagation Input Parameters

* Onorbit principal function inlist

Table 4.3.1.4-1. (continued) - Onorbit Covariance Propagation Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	$\begin{aligned} & \text { SAMPLE } \\ & \text { RATE } \end{aligned}$
$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{\dot{\omega}} \end{aligned}$	Filter current shuttle position vector in M50 coordinates	R FILT	state propagation	V	DP		ft	filter rate
	Filter current shuttle velocity vector in M50 coordinates	V FILT	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	filter rate
	Gravity acceleration at end of shuttle state integration interval	IOT_ACC	state propagation	\checkmark	DP		$\mathrm{ft} / \mathrm{sec}^{2}$	filter rate
	Filter covariance matrix	E	measurement incorporation	M	DP		vary	filter rate
	Flag indicating (ON) the desire to inhibit the processing of external measurement data by the navigation filter	MANEUVER ON FLAG	*	D		ON, OFF		filter rate

[^8]Table 4.3.1.4-7. (continued) - Onorbit Covariance Propagation Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS ${ }^{\text {S }}$	SAMPLE RATE
	Gravitational constant of the earth	EARTH MU	premission load	F	DP		$\left(\mathrm{ft}^{3} / \mathrm{sec}\right)^{2}$	2.filter rate
	Square root of EARTH MU	SQR_EMU	premission lcad	F	DP		$\mathrm{ft}^{3} / \mathrm{sec}$	filter rate
	$\begin{aligned} & \text { Identity matrix } \\ & (3 \times 3) \end{aligned}$	ID MATRIX 3×3	premission load	M	DP		\because	filter rate
$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\rightharpoonup}{\omega}}$	Tolerance for succesive iterations in the solution of Kepler's equation	EPS_KEP	premission luad	F	- DP		rad	filter rate
	Position vector of shuttle at the end of the last filter cycle	R LAST	state propagation	V	DP		ft	filter rate
	Velocity vector of shuttle at the end of the last filter cycle	V LAST	state propagation	V	DP.		$\mathrm{ft} / \mathrm{sec}$	filter rate
	Gravity accéteration at start of shuttle state integration interval	TOT_ACC_LAST	state propagation	V	DP		$f t / \mathrm{sec}^{2}$	filter rate

Table 4.3.1.4-7. (continued) - Onorbit Covariance Propagation Input Parameters

Table 4.3.2.1-2. - Onorbit Covariance Propagation Output Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter covariance matrix	E	measurement incorporation	M	DP		vary	filter rate

\qquad

4.3.2 Rendezvous Navigation

The rendezvous nazigation principal function shall provide an up-to-date estimate of the orbiter and target position, velocity, and other parameters for software users such as guidance and displays. This principal function shall be scheduled by the onorbit/rendezvous navigation sequencer principal function.

The rendezvous navigation principal function shall use selected IMU data and a model of the Earth's gravitational acceleration to maintain a current estimate of the orbiter's state vector during powered flight. During coasting flight, models of the Earth's gravitational acceleration, aerodynamic drag acceleration, venting acceleration, and uncoupled RCS thrusting acceleration shall be used to maintain a current estimate of the orbiter and target state vectors. A singlestring state vector configuration shall apply in coasting, powered flight, and TPF stationkeeping navigation as follows (19 elements): orbiter position (M1950) - 3 components orbiter velocity $(M 1950)-3$ components orbiter unmodeled acceleration biases (body axes) - 3 components target position (M1950)-3 components
target velocity (M1950)-3 components sensor systematic biases (sensor axes) - A components

External sensor data shall be processed during coasting and TPF stationkeeping navigation phases. The following measurements shall be available:
rendezvous radar (range, range-rate, shaft angle, trunion angle)
star tracker (horizontal angle, vertical angle)
COAS (horizontal angle, vertical angle)

A 19×19 dimensional covariance matrix, initialized by the onorbit/rendezvous navigation sequencer principal function, shall be propagated along with the 19 element state vector, during all rendezvous navigation phases (coast, flight, TPF stationkeeping).

A ground update capability shall enable automatic re-initialization of the orbiter and/or target state vector (and other related non-position/velocity states) and covariance matrix during coasting and TPF stationkeeping navigation phases.

The rendezvous navigation principal function composed of eighi primary subfunctions:

1. A control subfunction (section 4.3.2.1),
2. An external sensor data snap subfunction (section 4.3.2.2),
3. A sensor measurement selection subfunction (section 4.3.2.3),
4. A state and covariance setup subfunction (section 4.3.2.4),
5. A state propagation subfuriction (section 4.3.2.5),
6. A covariance matrix propagation subfunction (section 4.3.2.6),
7. A state and covariance measurement incorporation subfunction (section 4.3.2.7), and
8. A measurement processing statistics subfunction (section 4.3.2.8).

Tables 4.3.2-1 and 4.3.2-2 are the level B CPDS tables which show data flow between the rendezvous navigation and other principal functions.

TABLE 4.3.2-1 RENDEZVOUS NAVIGATION
PRINCIPAL FUNCTION INPUT LIST

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)	
TBD			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE
			- covariance matrix propagation - state propagation	$\begin{aligned} & 4 \cdot 3 \cdot 2 \cdot 6-1 \\ & 4 \cdot 3 \cdot 2 \cdot 5-1 \end{aligned}$
	REND_NAV_FLAG	ORB/RND NAV SEQ	- state and covariance setup - state propagation - covariance matrix propagation	$\begin{aligned} & 4 \cdot 3 \cdot 2 \cdot 4-? \\ & 4 \cdot 3 \cdot 2 \cdot 5-1 \\ & 4 \cdot 3 \cdot 2 \cdot 6-1 \end{aligned}$
	OV_UPLINK	(ground uplink processor)	- state and covariance setup.	4.3.2.4-1
	TV. UPLINK	(ground uplink processor)	8 state and covariance setup	4.3.2.4-1
	R GND VGND TGGD RTV GND VTV GND DO_AUTO_UPDATE	(ground uplink processor)	- state and covariance setup	4.3.2.7-1
	IOT ACC	ORB/RND NAV SEQ	- state propagation - covariance matrix propagation - state and covariance meas. incorp.	$\begin{aligned} & 4 \cdot 3 \cdot 2 \cdot 5-1 \\ & 4 \cdot 3 \cdot 2 \cdot 6-1 \\ & 4 \cdot 3 \cdot 2 \cdot 7-1 \end{aligned}$

TABLE 4.3.2-1
RENDEZVOUS NAVIGATION
PRINCIPAL FUNCTION INPUT LIST (cont'd)

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARTABLE)	
TBD			SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE
	\checkmark CURRENT FILT	IMU RM	- state propagation	4.3.2.5-1
	T_CURRENT_FILT	IMU RM.	state and covariance matrix setup - state propagation - state and covariance meas. incorp.	$\begin{aligned} & 4 \cdot 3 \cdot 2 \cdot 4-1 \\ & 4 \cdot 3 \cdot 2 \cdot 5-7 \\ & 4 \cdot 3 \cdot 2 \cdot 7-1 \end{aligned}$
	$\begin{aligned} & \text { R FILT } \\ & \underline{V} F I L T \end{aligned}$	ORB/RND NAV SEQ	state propagation covariance matrix propagation state and covariance meas. incorp.	4.3.2.5-7 4.3.2.6-1 4.3.2.7-1
	$\frac{V}{\square} \text { LAST FILT }^{\text {LAST_FILT }}$	ORB/RND NAV SEQ	* state propagtion	4.3.2.5-1
	SQR EMU CMN AN SMN AN $C^{-} \mathrm{MX}^{-} \mathrm{AN}$ SMX AN	ORB/RND NAV SEQ	- state propagation	4.3.2.5-1
	E	ORB/RND NAV SEQ	- covariance matrix propagation	4.3.2.6-1
	USE MEAS DATA	ORB/RND NAV SEQ	- sensor measurement selection	4.3.2.3-1

TABLE 4.3.2-1
RENDEZVOUS NAVIGATION
PRINCIPAL FUNCTION INPUT LIST (cont'd)

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)	
TBD	N ACCEPT N REJECT SEQ ACCEPT SEQ-REJECT	ORB/RND NAV SEQ	SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE
			- measurement processing statistics	4.3.2.8-1
	$\begin{aligned} & \mathrm{RTV} \\ & \mathrm{~V} T V \\ & \text { GTV } \end{aligned}$	ORB/RND NAV SEQ	O state propagation covariance matrix propagation - state and covariance meas. incorp.	$\begin{aligned} & 4 \cdot 3 \cdot 2 \cdot 5-1 \\ & 4 \cdot 3 \cdot 2 \cdot 6-1 \\ & 4 \cdot 3 \cdot 2 \cdot 7-1 \end{aligned}$
	VENT_THRUST BIAS	ORB/RND NAV SEQ	2 state propagation - state and covariance meas. incorp.	$\begin{aligned} & 4 \cdot 3 \cdot 2 \cdot 5-1 \\ & 4 \cdot 3 \cdot 2 \cdot 7-1 \end{aligned}$
	QRRSHFT QRRTURN QRR_RNG Q RR RNG DOT RNG DATA GOOD RDOT DATA GOOD RR ANGLE $\overline{\text { GITA }}$ GOOD M M50 TO BODY RR T_REND RADAR	REND RADAR SOP	E external sensor data snap - state and covariance meas. incorp.	$\begin{aligned} & 4 \cdot 3 \cdot 2 \cdot 2-1 \\ & 4 \cdot 3 \cdot 2 \cdot 7-1 \end{aligned}$

TABLE 4.3.2-1
RENDEZVOUS NAVIGATION
PRINCIPAL FUNCTION INPUT LIST (cont'd)

	LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)	
	TBD	Q ST HORIZ		SUBFUNCTION NAME	SUBFUNCTION INFUT TAB!E
		ST DĀTA GOOD M $\bar{M} 50$, T 0 BODY ST T- STA \bar{R} TRACKE \bar{R} Q COAS HORIZ Q COAS VERT N COAS IN USE CŌAS DATTA GOOD M M5 COAS T_COAS	STAR TRACKER SOP	external sensor data snap state and covariance meas. incorp.	$\begin{aligned} & 4 \cdot 3 \cdot 2 \cdot 2-1 \\ & 4.3 \cdot 2 \cdot 7-1 . \end{aligned}$
$\stackrel{\square}{4}$		```RR_ANGLES_ENABLE ST. ENABLE CO\overline{AS ENABLE} RNG AIF RDOT AIR ANGLES AIF```	NAV MONITOR KIP	- sensor measurement selection	4.3.2.3-1
		SIG UPDATE COV COR UPDATE SIG TV UPDATE COV COR TV UPDATE	(ground uplink processor)	- state and covariance setup	4.3.2.4-1

PRINCIPAL FUNCTION OUTPUT LIST

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUMCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)	
			SUBFUNCTION NAME	SUBFUNCTION INPUT TABIE
	USE_IMU DATA	ORB USER PARAM PROC	- state propagation	4.3.2. 5-2
TBD	$\begin{aligned} & \mathrm{R} \text { RESET } \\ & \text { V RESET } \\ & \text { TRESET } \\ & \text { VTV RESET } \\ & \text { RTV RESET } \\ & \text { VTVTREET } \\ & \text { FILTUUPATE } \end{aligned}$	ORB USER PARAM PROC	- rendezvous control	4.3.2.1-2
	DID_AUTO UPDATE	(ground uplink processor)	- state and covariance setup	4.3.2.4-2
	TARG VEC_AVAIL	ORB/RND NAV SEQ	state and covariance setup	4.3.2.4-2

4.3.2.1 Rendezvous Control

The rendezvous navigation principle function shall provide the capability to control state and covariance matrix propagation and navigation filter updates.
A. Detailed requirements

Rendezvous control shall perform the following tasks in the order indicated. (For definitions of variables, see input and output tables 4.3.2.1-1 and 4.3.2.1-2.)

1. The accumulated IMU sensed velocity and the corresponding time tag shall be obtained as described in section 4.2.1.1.
2. An external sensor data snap shall be performed as described in section 4.3.2.2.
3. The state vector shall be propagated as described in section 4.3.2.5.
4. The covariance matrix as described in section 4.3.2.6.
5. The rendezvous sensor measurement selection subfunction shall determine which measurements are to be presented to the filter for processing, as described in section 4.3.2.3.
6. The state and covariance setup subfunction shall set up the proper state vector and covariance matrix for use by the state and covariance measurement incorporation task as described in section 4.3.2.4.
4.3.2-9
7. The state and covariance measurement incorporation subfunction shall update the state vector and covariance matrix for each of the measurements being processed as described in section 4.3.2.7. This subfunction is exercised for each measurement type only if data are to be processed as determined by the rendezvous sensor measurement selection subfunction. A counter (RR_ANGLE_ MARK NUM, RRDOT MARK NUM, ST MARK_NUM, or COAS MARK_NUM) shall be incremented for each measurement processed to indicate the mark number for post mission analysis purposes.
8. The position and velocity of the orbiter and the target, the associated time tag, and the accumulated velocity count shall then be stored for use by the user parameter state propagator,

$$
\begin{aligned}
& \text { R_RESET }=\text { R FILT } \\
& V \text { RESET }=V \text { FILT } \\
& \text { TRESET }=T \text { LAST FILT } \\
& \text { RTV_RESET }=\text { RTV } \\
& V T V \text { RESET }=V T V \\
& V \text { IMU_RESET }=V \text { LAST_FILT }
\end{aligned}
$$

Then the filter update flag shall be set to $O N$ to indicate to users that the current rendezvous navigation filter update is complete.

FILT UPDATE $=0 N$
9. Finally, the measurement processing statistics subfunction shall be performed as described in section 4.3.2.8. -
B. Interface Requirements.

The input and output parameters are listed in tables 4.3.2.1-1 and 4.3.2.1-2.
C. Processing Requirements

Rendezvous control shall be executed at a premission determined rate when the rendezvou's navigation principle function is scheduled.
D. Constraints

None.
E. Supplemental Information

A suggested inplementation of rendezvous control is illustrated by NAV_RENDEZVOUS in Appendix B.

TABLE 4.3.2.1-1. - Rendzyous Control Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Shuttle position vector in M50 coordinates	R FILT	Rendezvous measurement incorporation	V	D		ft	Filter rate
Shuttle velocity vector in M50 coordinates	V FILT	Rendivous measurament incorporation	v	S		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Time ofolatest filter update	T LAST FILT	Rendezvous state propagation	S	D		sec	Filter rate
Target position vector in M50 coordinates \rightarrow	RTV	Rendezvous measurement incorporation	V	D		$f t$	Filter rate
in Target velocity vector $\frac{1}{\mathrm{~N}}$ in M50 coordinates	VTV	Rendezvous measurement incorporation	V	S		ft sec	Filter rate
Last IMU velocity count	V LAST FILT	Rendezyous State propagation	V	S		$\mathrm{ft} / \mathrm{/sec}$	Filter rate
Flag indicating that the rendezvous radar angles are to be processed	$\underset{\text { NAV }}{\text { DO_RLE }}$	Rendezvous sensor measurement selection	D				Filter rate
Flag indicating that the reridezvous radar range and range rate are to be processed.	DO_RRDOT NAV	Rendezvous sensor measurement selection	D				Filter rate

TABLE 4.3.2.1-1. (continued) - Rendezvous Contro1 input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Flag indicating that star tracker angles are to be processed	DO_ST ANGLE NAV	Rendezvous sensor measurement selection	$H^{\circ} \mathrm{D}$				Filter rate
Flag indicating that COAS angles are to be processed	$\mathrm{DO}_{\mathrm{NAV}} \mathrm{COAS}^{-}$	Rendezvous sensor measurement selection	D			.	Filter rate

$\varepsilon \downharpoonright-Z^{\circ} \varepsilon \cdot \downarrow$

TABLE 4.3.2.1-2. - Rendezvous Control Output Parameters

TÁBLE 4.3.2.1-2 (Continued) Rendezvous Control Output Parameters

[^9]

4.3.2.2 External Sensor Data Snap

The purpose of this subfunction during the rendezvous navigation phase is to collect and store sensor data from the Rendezvous Radar, the Star Tracker and the Crew Optical Alignment Sight (COAS).

The data sets used in navigation processing must be properly saved for use in the state and covariance measurement incorporation subfunction, whereas the actual data may continue to be refreshed by hardware sensor reading, sensor SOP processing, and selection filter unification.
A. Detailed Reguirements.

During the rendezvous phases, data from the external sensors, together with the corresponding data good flags, associated time tags and rotation matrices from M50 to the orbiter body axes valid at those times, shall be obtained and stored. The equations are:

1. For the Rendezvous Radar.

SNAP REND RADAR (Q_RR SHFT, Q_RR_TRUN, Q_RR_RNG, Q_RR_RNG DOT, RNG DATA GOOD, RDOT DATA_GOOD, RR ANGLE DATA GOOD, M M50_TO_BODY RR, T REND RADAR) where

Q_RR_SHFT is the shaft angle,
Q RP TRUN is the trunnion angle,

RR_ANGLE_DATA_GOOD the validity flag of the above measurements,

Q_RR_RNG is the radar range measurement,
RNG_DATA_GOOD the respective data good flag,
Q_RR_RNG_DOT the radar range rate reading,
RDOT_DATA GOOD the respective validity indicator,
T_REND RADAR the time at which these measurements are considered to have been effected, and

M M50_TO_BODY_RR the transformation matrix from mean of 1950.0 coordinates to the body coordinate system at the time T_REND RADAR.

2. For the Star Tracker,

SNAP STAR_TRACKER (Q ST HORIZ, Q ST VERT, NST_IN_USE, ST_DATA GOOD: M M50_BODY ST, T_STAR_TRACKER)

where

Q_ST HORIZ is the horizontal angle,
Q_ST VERT the vertical angle,
ST DATA GOOD the data good flag relative to these angles,

N ST IN USE the identifier of the particular star tracker that made the above measurements,

T STAR TRACKER the time tag, and
M M50 BODY ST the required rotation matrix at the time of the measurements.
3. For the COAS,

SNAP COAS (Q_COAS_HORIZ, Q_COAS_VERT, N_COAS_IN_USE, COAS DATA EOOD, M M5O_TO_BODY_COAS, T_COAS) where

Q_COAS_HORIZ is the horizontal angle,
Q_COAS VERT the vertical angle,
COAS DATA GOOD the flag that indicates the validity of the above readings,

N_COAS_IN USE the identifier of the particular instrument used to obtain the angles,

T_COAS the time of the measurements, and M_M50_TO_BODY COAS the matrix that describes the rotation from the $M 50$ to the body coordinate systems at the time T_COAS.
B. Interface Requirements.

The input and output parameters are listed in Tables 4.3.2.2-1 and 4.3.2.2-2, respectively.
C. Processing Requirements.

It is required that the data from the sensors (measurements, $I D^{\prime}$, , validity flags, rotation matrices, and time tags) be made available for the collection and storage process. The collection rate (not necessarily sensor interrogations) is indicated by the onorbit/rendezvous navigation sequencer. However, this rate assumes that the available data are
fresh. This implies that SOP's processing and selection filtering must be at a rate equal to or greater than the rollection rate.
D. Constraints.

The data collections should occur after a complete current set is available and just prior to use in navigation in order to supply current data.
E. Supplementary Information. A suggested implementation of the external sensor data snap subfunction in the form of a detailed flow chart, may be found in Appendix B as a portion of the NAV_RENDEZVOUS flow chart. The snap statement above implies the assignment of current vailues to the variable names shown in parenthesis.

TABLE 4.3.2.2-1 EXTERNAL SENSOR DATA SNAP INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE -RATE
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{r} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Rendezvous radar shaft measurenent	Q_RR_SHFT	*	F	DP		Rad	Filter rate
	Rendezvous radar trunnion angle measurement	Q_RR TRUN	*	F	DP		Rad	Filter rate
	Rendezvous radar angle measurement data good flag	$\begin{aligned} & \text { RR ANGLE DATA } \\ & \text { GOOD } \end{aligned}$	*	D	-	ON, OFF	-	Filter rate
	Rendezvous radar range measurement	Q_RR_RNG	*	F	DP		Ft	Filter rate
	Rendezvous radar range measurement data good flag	RNG_DATA_GOOD	*	D	-	ON, OFF	-	Filter rate
	Rendezvous radar range rate measurement	Q_RR_RNG_DOT	*	F	DP		$\mathrm{Ft} / \mathrm{sec}$	Filter rate
	Rendezvous radar range rate measurement data good flag	RDOF- DATA GOOD	*	D	-	ON, OFF	-	Filter rate
	Time of rendezvous radar measurements	T_REND_RADAR	*.	F	DP		Sec	Filter rate
	Rotation matrix, M50 to body, at TREND_RADAR	$\mathrm{M} \mathrm{M}_{\mathrm{R}} \mathrm{FO}-T O \text { BODY }$	*	M	DP		Rad	Filter rate

* Rendezvous Navigation Principal Function Input List

TABLE 4.3.2.2-1 EXTERNAL SENSOR DATA SNAP INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
$\begin{aligned} & \vec{\omega} \\ & \hat{N} \\ & \hat{N} \\ & \text { N } \end{aligned}$	Star tracker measured horizontal ang?e	Q_ST_HORIZ	*	F	DP		Rad	Filter rate
	Star tracker measured yertical angle	QST VERT	*	F	DP		Kad	Filter rate
	Star tracker measurement data good flag	ST_DATA_GOOD	*	D	-	ON, OFF	-.	Filter rate
	Star tracker identifier	N_ST_IN USE	*	I	-	1,2	-	Filter rate
	Time of star tracker measurements	T STAR TRACKER	*	F	DP		Sec	Filter rate
	Rotation matrix, M50 to body, at TSTAR_TRACKER	$\begin{aligned} & \text { M M50 TO } \\ & \mathrm{BODY} \text { ST } \end{aligned}$	*	M	$D P$		-	Filter rate
	COAS measured horizontal angle	Q_COAS HORIZ	*	F	$D P$		Rad	Filter rate
	COAS measured vertical angle	Q_COAS_VERT	*	F	DP		Rad	Filter rate
	COAS measurement data good flag	COAS_DATA_GOOD	*	D	-	ON, OFF	-	Filter rate
	COAS identifier	N COAS IN USE	*	I	-	1,2	-	Filter rate

*: Rendezvous Navigation Principal Function Input List

TABLE 4.3.2.2-1 EXTERNAL SENSOR DATA SNAP INPUT PARAMETERS (cont'd)

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	Range	UNITS	SAMPLE RATE
Time of COAS measurements	T_COAS	*	F	DP		Sec	Filter rate
Rotation matrix, M50 to body, at TCOAS	$\begin{aligned} & \text { M MSO TO } \\ & B O D Y ~ C O A S ~ \end{aligned}$	*	M	DP		-	Filter rate

$22-2 \cdot \varepsilon \cdot 6$

* Rendezvous Navigation Principal Function Input List

TABLE 4.3.2.2-2 EXTERNAL SENSOR DATA SNAP OUTPUT PARAMETERS

* Rendezvous State and Covariance Measurement Incorporation Subfunction

TABLE 4.3.2.2-2 EXTERNAL SENSOR DATA SNAP OUTPUT PARAMETERS

	DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RATE
	Rotation matrix, M50 to body at T_REND_RADAR	$\begin{aligned} & M \text { M50 TO } \\ & \text { BODY RR } \end{aligned}$	*	M	DP		-	Filter rate
	Star tracker heasured horizontal angle	Q ST HORIZ	*	F	DP		Rad	Filter rate
	Star tracker measured vertical angle	Q ST VERT	*	F	DP		Rad	Filter rate
	Star tracken measurement data good flag	ST DATA GOOD		0	-	ON, OFF	-	Filter rate
$\stackrel{+}{-}$	Star tracker identifier	N ST IN USE	*	I	-	1,2		Filter rate
N	Time of star tracker measurement	T_STAR_TRACKER	*	F	DP		Sec	Filter rate
	Rotation matrix, M50 to body at T_STAR TRACKER	$\begin{aligned} & \text { M M50 TO } \\ & B O D Y \text { ST } \end{aligned}$	*	M	DP		-	Filter rate
	COAS measured horizonta? angle	Q. COAS HORIZ	*	F	DP		Rad	Filter rate
	COAS measured vertical angle	Q_COAS VERT	*	F	DP		Rad	Filter rate
	COAS measurement data good flag	$\begin{aligned} & \text { COAS DATA } \\ & \text { GOOD } \end{aligned}$	*	D	-	ON, OFF	-	Filter rate

[^10]TABLE 4.3.2.2-2 EXTERNAL SENSOR DATA SNAP OUTPUT PARAMETERS (continued)

DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	INITS	COMPUTATICN RATE
COAS identifier	N_COAS IN USE	*	I	-	1,2	-	Filter rate
Time of COAS measurement	T COAS	*	F	DP		Sec	Filter rate
Rotation matrix, M50 to body, at TCOAS	$\begin{aligned} & \text { M M O TO } \\ & \mathrm{BODY} \text { COAS } \end{aligned}$	*	M	DP		-	Filter rate

* Rendezvous State and Covariance Measurement Incorporation Subfunction

4.3.2.3 Sensor Measurement Selection

 A capability, designated as the rendezvcus sensor measurement selection subfunction, is required to detemine if external sensor measurement data will be presented to the state and covariance measurement incorporation subfunction (sec, 4.3.2.7) when the rendezvous navigation principal. function is active. Selection of measurement data shall also mean that knowledge of this data selection will be provided to the measurement reconfiguration subfunction (sec. 4.3.2.4.1) to cause proper configuration of the state vector and covariance matrix.A. Detailed requirements

The requirements for this subfunction are given as a set of necessary sensor measurement data selection capabilities. Only the following four sensor measurement data types will be considered for selection: rendezvous radar range and range rate, rendezvous radar angles (shaft and trunion), star tracker angles (horizontai and vertical), and COAS angles (horizontal and vertical). The following capabilities shall be provided.

1. All external sensor measurement processing shall be inhibited for a premission-determined time prior to the initiation of powered flight and during powered flight.
2. If external sensor measurement processing is not inhibited then rendezvous radar range and range rate data will be selected for processing and the crew shall be able to manually enable any one of the following sensor measurement data types: rendezvous radar angles data, star tracker angles data, or COAS angles data. The last enabled of these three angles data types shall be the only angles data type selected, i.e., the remaining two angles data types shall not be considered for selection.
3. The crew shall be able to manually force or inhibit the selection of sensor measurement data or to allow the selection process to be automatic. Manual forcing or inhibiting shall override the automatic selection criteria. For each of the three angle data types, forcing or inhibiting shall effect selection only if that angles data type is enabled.
4. If a cremman forces rendezvous radar range and range rate data or an enabled angles data type then the forced data will be presented to the state and covariance measurement subfunction and the residual edit test shall be overridden for that data type. If a crewman inhibits rendezvous radar range and range rate data or an enabled angles data type then the inhibited data will be processed for statistical display purposes only. The force or

ORIGINAL PAGE IS OF POOR QUALITY

inhibit of sensor measurement data shall remain in effect aciross major mode transitions and is removed by reverting to rutomatic selection.
5. If the automatic selection criteria is in effect for rendezvous radar range and range rate data or an enabled angles data type then these data will be selected for processing.
B. Interface requirenents

The input and output parameters for this subfunction are indicated in tables 4.3.2.3-1 and 4.3.2.3-2, respectively.
C. Processing requirements

This subfunction shall be performed after sensor measurement data has been saved and before the measurement reconfiguration subfunction (sec. 4.3.2.4.1) is executed.
D. Constraints

The proper setting of the enable control for each of the angular data choices shall be performed by software external to navigation.
E. Supplementary information

The foregoing requirements indicate the existence of a pair of three-position software switches, i.e., two AUTO/INHIBIT/ FORCE switches, one associated with rendezvous radar range and range rate data and another associated with the currently enabled angles measurement data. The existence of an individual

OFF/ON software switch ror each of the angles data types to se used for enating is also indicated.

A suggested implementation of this subfunction is shown in REND SENSOR_SELECT CODE (appendix B).

TAELE 4.3.2.3-1 MEUDEEVOLS SEMOOR WEASUREMENT SELECTION HPUT PAOMETERS

	OESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	URITS	$\begin{aligned} & \text { SAMPLE } \\ & \text { RATE }(1 / S E C) \end{aligned}$
	ON/OFF Flag used to indicate if external measurements should be processed	$\begin{aligned} & U S E \\ & M E A \bar{S} \end{aligned}$ DATA	Rendezvous Nav Control Subfunction	D	S	OFF/ON		Filter Rate
	Rendezvous radar range and range rate AUTO/INHIBIT/FORCE switch	$\begin{aligned} & \text { RRDOT_ } \\ & \text { AIF } \end{aligned}$	*	CHAR	S			Filter Rate
	Rendices AUTO/INHIBIT/ FORCE switch used fic: the currentily enabled angie set.	ANGLES AI	*	CHAR	S			Filter Rate
	Rendezvous radar angles ENABLE flag	RR ANḠGLES ENABLE	*	D	S			Filter Rate
	COAS Angles ENABLE flag	COAS ENABLE	*	D	S			Filter Rate
	Star tracker angles ENABEE flaq	ST EN $\overline{A B L E}$	- *	D	S			Filter Rate

*Rendezvous Navigation Principal Function Inlist
table 4.3.2.3-2 rendezvous sensor veasurement selection output parameters

कRendezvous control and Rendezvous measurement reconfiguration

TABLE 4.3.2.3-2 RENDEZVOUS SENSOR MEASUREMENT SELECTION OUTPUT PARAMETERS (CONFi)

DESCRIPTION	SYMEOL	OUTPUT DESTINATION	TYPE	PRECISION	RANGE	UTITS	$\begin{aligned} & \operatorname{cosp} \\ & \sin (1 / \operatorname{SEC}) \end{aligned}$
Flag indicating ($O N$) that COAS angles data are to be processed for statistical display only	COAS ANGLES STAT	COAS angles data processing	D		OFF/ON		Filter Rate
Flag indicating (ON) that rendezvous radar range and range rate data are to be processed	$\begin{aligned} & \text { DO } \\ & \text { RRDOT } \\ & \text { NAV } \end{aligned}$	*	D		OFF/ON		Filter Rate
```C) Flag.indicating (ON) ~ that rendezvous radar & angles data are to be processed```	$\begin{aligned} & D 0 \text { RR } \\ & \text { ANGLE } \\ & \text { NAV } \end{aligned}$	*	D		OFF/ON		Filter Rate
Fiag indicating (ON) that star tracker angles data are to be processed	$\begin{aligned} & \text { DO ST } \\ & \text { ANGLES } \\ & \text { NAV } \end{aligned}$	*	D		OFF/ON		Filter Rate

[^11]TABLE 4.3.2.3-2 RENDEZVOUS SENSOR MEASUREMENT SELECTION OUTPUT PARAMETERS (CONT)

DESCRIPTION	SYMBOL.	OUTPUT DESTINATION	TYPE	PRECISION	RANGE	UnITS	$\begin{gathered} \text { COMP RATE } \\ (1 / S E C) \end{gathered}$
Flag indicating ( ON ) that COAS angles data are to be processed	DO COĀS ANGLES NAV	*	D		OFF/ON		Filter Rate
Flag indicating (ON) that rendezvous radar range and range rate data are to be processed for statistical display onty	$\begin{aligned} & \text { RRDOT } \\ & \text { STAT } \end{aligned}$	RRDOT data processing	D		OFF/ON		Filter Rate
$\begin{aligned} & \vec{\omega} \text { Flag indicating (ON) } \\ & \text { that rendezvous } \\ & \text { \& } \quad \text { radar angles data } \\ & \text { are to be } \\ & \text { processed for } \\ & \text { statistical display } \\ & \text { only } \end{aligned}$	$\begin{aligned} & \text { RR } \\ & \text { ANGLES } \\ & \text { STAT } \end{aligned}$	RR angles data processing	D		OFF/ON		Filter Rate
Flag indicating (ON) that star tracker angles dasa are to be processed for statistical display only	ST   ANGILES   STAT	Star tracker angles data processing	D		OFF/ON		Filter Rate

* Rendeavous controt and Rendezvous measurement reconfiguration


### 4.3.2.4 State and Covariance Setup

This subfunction is required to perform the following two major tasks during operation of the rendezvous navigation principal function:

- set up the appropriate position, velocity, and unmodeled acceleration bias portion of the state vector and covariance matrix as a result of an automatic inflight update, and
- initialize and re-configure the sensor bias portion of the state vector and covariance matrix, as a result of sensor measurement type changes, or as a result of an automatic inflight update.

The following two subsections describe the requirements pertaining to the above tasks.

### 4.3.2.4.1 Measurement Reconfiguration

A capability shall be provided for initialization and reconfiguration of the sensor bias portion of the state vector and covariance matrix for the processing of measurements as required by the rendezvous sensor measurement selection subfurction (sec, 4.3.2.3). The measurement reconfiguration subfunction shall be performed when the measurement type configuration has changed to include new measurements or when an auto inflight update occurs while the rendezvous navigation principal function is active.

## A. Detailed Requirements

The rendezvous sensor measurement selection subfunction shall provide a capability for determining when star tracker angles, COAS angles, rendezvous radar angles, or rendezvous radar range or range rate data are to te processed. The measurenent reconfiguration subfunction determines whether a new measurement is to be made availabie; and if so, it reconfigures the bias portions of the state vector and covariance matrix to account for the change in measurement status. New exponentially correlated time constants and process noise variances are also selected from premision values for use in the computation of the state transition matrix and in the addition of process noise.

ORIGINAL PAGEIS
OF POOR QUALITY

The state vector is to be reconfigured by setting its bias slots associated with the new measurement types to premission values. Bias values of measurement types no longer needed do not have to be zeroed unless the element slots of these values are needed by new measurement types. The covariance matrix is to be reconfigured by zeroing the offdiagonal terms associated with the new measurement type. The diagonal terms are then set equal to premission variance values of the new measurement types. The rows and columns associated with the discontinued measurement types do not have to be zeroed unless they are used by a new measurement type.

The accept/reject counters ( $N$ ACCEPT, $N$ REJECT, SEQ_ACCEPT, SEQ REJECT) for each measurement group must be reset to zero for use by the rendezvous measurement processing statistics subfunction (section 4.3.2.8).

The formulations required for reconfiguration of the state vector and covariance matrix are given before according to the sensor type. The measurement biases occupy the 16 th through loth element slots in the state vector. The last four rows and columns of the covariance matrix are associated with the uncertainties in these biases. A description of symbols used in the following equations may be found in tables 4.3.2.4.1-1 and 4.3.2.4.1-2.

## Rendezvous radar angles

State vector:

$$
\begin{aligned}
& \text { SENSOR_BIAS }_{1}=0 \\
& \text { SENSOR_BIAS }_{2}=0
\end{aligned}
$$

Variance:

$$
\begin{aligned}
& V A R \quad S E N S D T_{1}=V A R \text { RR ANGLES } D T_{1} \\
& V A R _S E N S D T_{2}=\text { VAR RR ANGLES } D T_{2}
\end{aligned}
$$

Covariance matrix:

$$
\begin{aligned}
& E_{16} \text { to } 17,1 \text { to } 19=0 \\
& E_{1} \text { to } 19,16 \text { to } 17=0 \\
& E_{16,16=\text { VAR_RR ANGLES }}^{1}
\end{aligned}
$$

Exponentially correlated time constant:

$$
\begin{aligned}
& \mathrm{TAU}^{-\mathrm{SENS}_{1}}=\mathrm{TAU}^{\mathrm{RR}} \mathrm{ANGLES}_{1} \\
& {\mathrm{TAU} \mathrm{SENS}_{2}}^{2}=\mathrm{TA}_{1} \mathrm{RR} \mathrm{ANGLES}_{2} \\
& \mathrm{NACCEPT}_{1}=0 \\
& \mathrm{NAEJECT}_{1}=0 \\
& \mathrm{SEQ} A C C E P T_{1}=0 \\
& \mathrm{SEQ} \mathrm{REJECT}_{1}=0
\end{aligned}
$$

Startracker angles
State vector:

$$
\text { SENSOR }_{-1} \text { BAS }_{1}=0
$$

$$
\text { SENSOR_BIAS }_{2}=0
$$

Variance:

$$
\begin{aligned}
& V A R_{-} S E N S D T_{1}=V A R-S T-A N G L E S D T_{1} \\
& V A R _S E N S _T_{2}=V A R S T \text { ANGLES } D T_{2}
\end{aligned}
$$

Covariance matrix:

$$
\begin{aligned}
& E_{16} \text { to } 17,1 \text { to } 19=0 \\
& E_{1} \text { to } 19,16 \text { to } 17=0 \\
& E_{16}, 16=\text { VAR_ST_ANGLES } 1 \\
& E_{17,17}=\text { VAR_ST_ANGLES } 2
\end{aligned}
$$

Exponentially correlated time constants:

$$
\begin{aligned}
& {\text { TAU } S_{-} S_{1}}=\text { TAU ST } A_{1} L_{L E S}^{1}
\end{aligned}
$$

Accept/reject counters:

$$
\begin{aligned}
& \mathrm{NACCEPT}_{1}=0 \\
& \mathrm{NBREJECT}_{1}=0 \\
& \text { SEQ_ACCEPT }_{1}=0 \\
& \text { SEQ_REJECT }_{1}=0
\end{aligned}
$$

Rendezvous radar range and range rate
State vector:

$$
\text { SENSOR BIAS } 3=0
$$

$$
\text { SENSOR_BIAS }_{4}=0
$$

Variance:
VAR_SENS $\mathrm{DT}_{3}=$ VAR_RRDOT_DT 1
$V A R_{-} S_{2 N S} T_{4}=V A R \quad R_{R D O T} T_{2}$
Covariance Matrix:
$E_{18}$ to 19,1 to $19=0$
$E_{1}$ to 17,18 to $19=0$
$E_{18}, 18=$ VAR_RRDOT $_{1}$
$E_{19,19}=$ VAR_RRDOT 2
Exponentially correlated time constant:
$\mathrm{TAU}_{2} \mathrm{SENS}_{3}=\mathrm{TAU}_{2} \mathrm{PRDOT}_{1}$
$\mathrm{TAU}_{-} \mathrm{SENS}_{4}=\mathrm{TAU}^{-\mathrm{RROOT}_{2}}$
Accept/reject counters:
$\mathrm{NACCEPT}_{2}$ to $3=0$
N_REJECT 2 to $3=0$
SEQ ACCEPT 2 to $3=0$
SEQ REJECT 2 to $3=0$
COAS angles
State vector:

$$
\begin{aligned}
& \text { SENSOR BIAS }=0 \\
& \text { SENSOR BIAS }_{2}=0
\end{aligned}
$$

Variance:

$$
\begin{aligned}
& \text { VAR_SENS_DT1 }=\text { VAR_COAS_ANGLES_DT1 } \\
& \text { VAR_SENS_DT2 }=\text { VAR_COAS_ANGLES_DT } 2
\end{aligned}
$$

Covariance matrix:

$$
\begin{aligned}
& \mathrm{E}_{1.6} \text { to } 17,1 \text { to } 19=0 \\
& \mathrm{E}_{1} \text { to } 19,16 \text { to } 17=0 \\
& \mathrm{E}_{16,16}=\text { VAR_COAS_ANGLES } \\
& \mathrm{E}_{17,17}=\text { VAR_COAS_ANGLES }
\end{aligned}
$$

Exponentially correlated time constant:

$$
\begin{aligned}
& \text { TAU_SENS }_{1}=\text { TAU COAS_ANGLES } \\
& 1
\end{aligned}
$$

Accept/reject counters:

$$
\begin{aligned}
& \mathrm{NACCEPT}_{1}=0 \\
& \text { N_REJECT }_{1}=0 \\
& \text { SEQ ACCEPT }_{1}=0 \\
& \text { SEQ_REJECT }_{1}=0
\end{aligned}
$$

The measurement reconfiguration subfunction shall also reinitialize the bias portion of the state vector and covariance matrix in the event of in-flight updates. This may be accomplished by considering all measurement types as new measurements.
B. Interface requirements

The input and output variables for this subfunction are described in tables 4.3.2.4.1-1 and 4.3.2.4.1-2.

## C. Prastertig requirements

The measurement reconfiguration subfunction shall be performed prior to processing of measurements and after the execution of the rendezvous sensor measurement selection subfunction.
D. Constraints

None.
E. Supplementary Information

A suggested implementation of the measurement reconfiguration subfunction is illustrated by the flow charts in Appendix $B$, REND NAV SENSOR INIT CODE, RRDOT SETUP CODE, RR ANGLES SETUP CODE, ST ANGLES_SETUP CODE and COAS_ANGLES_SETUP CODE,

TABLE 4.3.2.4.1-1. Measurement Reconfiguration Input Parameters


Table 4.3.2.4.1-7. (continued) Measurement Reconfiguration Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Premission values for the COAS ancles measurement bias variances	VAR_COAS ANGLES_DT	premission load	$V$	DP		$\mathrm{rad}^{2} / \mathrm{sec}$	As needed
	Rendezyous raciar range and range rate measurement. bias variance used to initialize the covariarace matrix diagonal	YAR RRDOT	premission load	$V$	DP		$\begin{array}{r} f t^{2}, f t_{2}^{2} \\ / \sec ^{2} \end{array}$	As needed
	Rendezvous radar angles measurement bias variances used to initialize covariance diagonals	VAR_RR_ANGLES	premission load	$V$	DP	$\cdots$	$\mathrm{rad}^{2}$	As needed
$\stackrel{N}{\omega}$	Startracker angles measurement bias variances used to intitialize covariance diagonals	VAR ST ANGLES	premission load.	V	DP		$\mathrm{rad}^{2}$	As needed
	COAS Angles measurement bias variances used to initialize the covariance diagonal	VAR_COAS_ANGLES	premission load	$V$	DP		$r a d^{2}$	As needed
	Correlation time constants for rendezyous radar range and range rate	TAU_RRDOT	premission load	$V$	bp		sec	As needed
	Correlation time constants for rendezvous radar angles,	IAU_RR ANGLES	premission load	V	DP		seg	As needed

TABLE 4.3.2.4.1-7. (continued) Measurement Reconfiguration Input Parameters


TABLE 4.3.2,4-2 Measurement Reconfiguration Output Parameters

DESCRIPTION	SYMBOL	OUTPIJT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPJTATICN RATE
Filter covariance matifix	E	Rendezvous measurement incorporation	M	DP		VARY	Filter rate
General measurement bias filter variance used in propagation of biases and in adding process noise	VAR SENS DT	Rendezvous state and covariance propagation	$v$	DP		VARY	As needed
Sensor bias portion of the state vector	SENSOR_BIAS	Rendezvous state and covariance measurement incorporation	V	DP		VARY	Filter rate
Genera 1 sensor measurenent bias time constant	TAU SENS	Rendezyous state and covariance	$V$	DP		seç	As needed
Sensor measurement ACCEPT counter	N ACCEPT	Rendezyous measurement processing statistics	$v$				Filter rate
Sensor measurement. REJECT counter	N REJECT	Rendezvous measurement processing statistics	V		$\cdot$		Filter rate

$\square \mathrm{aran} \square \mathrm{a}$

TABLE $4.3 .2 .4-2$ (continued) Measurement Reconfiguration Output Parameters

DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATICN RATE
Sensor measurement sequential $A C C E P T$ counter	SEQ_ACCEPT	Rencezyous measurement processing statistics	V				Filter rate
Sensor measurement sequential REJECT counter	SEQ_REJECT	Rendezyous measurement processing statistics	V				Filter rate



4.3.2.4.2 Auto In-Flight Update. This task is required to set up the proper state vector and covariance matrix as a result of an automatic inflight update during operation of the rendezvous navigation principal function. This task shall be capable of performing the following basic sub-tasks:

1. Predict uplinked orbiter state vector (M50 coordinates) to current time from uplinked time tag.
2. Initialize $(6 \times 6)$ orbiter position/velocity covariance matrix to pre-mission stored (or uplinked) UVW standard deviations and correlation coefficients, and initialize diagonal elements of the filter covariance matrix associated with the unmodeled acceleration bias errors, to premission stored values (in body coordinates).
3. Predict uplinked target state vector (M50 coordinates) to current time from uplinked tine tag.
4. Initialize $(6 \times 6)$ target position/velocity covariance matrix to premission stored (or uplinked) UVW standard deviations and correlation coefficients.
5. Enable reinitialization of the sensor bias portion of the state vector and covarial matrix by setting the "DO SENSOR NAV LAST" flags to zero.
A. Detailed Requirements. Section 4.2 .5 contains a description of the detailed requirements for this task (the REND_NAV_FLAG will be in the ON setting, thus indicating those requirements necessary during operation of the rendezvous navigation principal function).
B. Interface Requirements. Input and output parameters are listed in the tables $4.3,2,4.2-1$ and $4.3 .2 .4 .2-2$ respectively.
C. Processing Requirements. The state and covariance setup subfunction shall be performed each navigation cycle; however, the automatic inflight update task shall only be performed when a ground uplink has been received (i.e., the DO AUTO UPDATE flag has been set to $O N$ by the ground uplink processor).
D. Constraints. The constraints are identical to those listed for the auot inflight update task during operation of the onorbit navigation principal function (see section 4.3.1.2).
E. Supplementary Information. A suggested implementation in the form of detailed flow charts can be found in Appendix B and $C$ under the following names:
$\left.\begin{array}{l}\text { ONORBIT-REND-AUTO-INFLIGHT-UPDATE } \\ \text { ONORBIT-REND-STATE-AND-COV-SETUP (CODF) } \\ \text { ONORBIT-COVINIT-UVW } \\ \text { ACCEL-PERT-ONORBIT }\end{array}\right\}$ Appendix B

ONORBIT-PREDICT $\infty \quad$ Appendix C

Table 4.3.2.4.2-1 AUTO IN-FLIGHT UPDATE INPUT LIST

	OESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SANPLE RATE
	flag indicating (ON) that an automatic inflight update of either orbiter and/or target state and covariance matrix is to be performed.	DO AUTO. UPDATE	*	D	-	ON/OFF	-	NAV rate
	flag indjcating whether rendezvous navigation active (ON) or onorbit navigation active (OFF)	REND NAV FLAG	*	D	-	ON/OFF	-	As rad
$\begin{aligned} & i \\ & i \\ & N \end{aligned}$	flag set by ground uplink processor indicating (ON) that orbiter vehicle state vector has been uplinked	OV UPLINK	*	D	-	ON/OFF	-	As rad
	flag set by gromd uplink processor indicating (ON) that target vehicle state vector has been uplinked	TV UPLINK	*	D	-	OnforF	-	As rad
	flag indicating degree of gravitational potential model	GM DEG	**	I	S	1-8		As rad

[^12]Tah1e 4.3.2.4.2-1 - (Continued) AUTO IN-FLIGHT UPDATE INPUT LIST

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
B$\omega$inLís	flag indicating order of gravitations potential model	GM ORD	**	1	S	0-8	-	As rad
	Tlag which activates (1) or deactivates (0) the drag acceleration model	$\frac{\text { DRAG MODE }}{\text { NAV }}$	**	I	S	0,1	-	As rad
	flag which activates (1) or deactivates (0) the venting and RCS-uncoupledthrusting model	$\underset{\text { NAV MODE }}{\text { VAV }}$	**	I	S	0,1		As rqd
	integration step-size for precision state prediction	PREC_STEP	**	1	S	-	ft	As rqd
	uplinked orbiter position vector (M50)	R. GND	*	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	c As rad
	uplinked orbiter state vector time tag	T-GND	*	F	DP.	-	sed	As rad

* rendezvous navigation principal function input list
** pre-mission load


[^13]
$4.3 .2-52$

* rendezvous navigation principal function input list ** pre-mission load

TABLE 4.3.2.4.2-2 Auto In-Flight Updelo Output List


[^14]TABLE 4.3.2.4.2-2 (continued) Auto In-Flight Upciate output List


* Rendezvous navigation principal function output list

* rendezvous navigation principal function output list


### 4.3.2.5 State Propagation

This subfunction will perform a number of tasks related to the propagation of the orbiter and target state vectors.

The task of reading (snapping) the IMU shall be performed to obtain the current time and the accumulated sensed velocity. Details of the IMU snap task are to be found in section 4.2.1.7.

Available acceleration models include gravitational accelerations (always used) and non-gravitational accelerations (drag, venting, and uncoupled RCS thrusting). The latter shall be used in those circumstances in which sensed accelerations obtained from the IMU accumulated sensed velocities are judged to be insignificant. These acceleration models are described in detail in section 4.2.1.2.

The equations of motion will be integrated with either a super-g algorith (see section 4.2.1.2.1) intended primarily for powered flight phases (i.e., those phases in which significant non-gravitational accelerations are sensed) or a precision propagation algorithm designed specifically for coasting flight phases and described in detail in section 4.2.1.3.2.

The task of propagation of biases shall be performed by multiplying the previous value of each bias by unity. Three biases propagated in this way represent unmodeled acceleration; the other 4 are the rendezvous sensor biases.

## A. Detailed Requirement

The requirements of this subfunction for the propagation of positions and velucities, follow closely those of section 4.3.1.3. They shall be described here step by step, even though most of these steps are identical to those described in section 4.3.1.3.

1. The IMU shall be snapped (see section 4.2.1.1 for details of this task)
2. Values of the orbiter's position and velocity vectors calculated in the previous ravigation cycle, together with the respective time tag and total acceleration shall be saved for use in the current cycle:

TOT ACC $\angle A S T=$ TCT ACC
R LAST $=$ R FILT
VLAST $=\underline{V}$ FILT
3. The time interval for advancement of both orbiter and target state vectors shall be calculated by subtracting the time tag of the previous cycle from the time (T CURRENT FILT) obtained from the IMU snap:

DT_FILT $=$ T CURRENT_FILT - T LAST FILT
4. The flag that indicates the choice of integrator for the orbiter state vector propagation shall then be tested. This flag, PWRD FLT NAV, is set by the onorbit/rendezvous navigation sequencer principal func.tion. It is set to OFF when in a coasting flight phase
of the operations, and set to $O N$ just before a burn occurs in the orbiter (no thrusters are anticipated in the target vehicle).
4.1 If the flag is found to be $0 N$, the super-g integrator shall be invoked for advancement of the orbiter state.. This requires the setting of certain flags. It also requires comparing the acceleration calculated from the IMU sensed velocities with a pre-stored threshold value below which this acceleration shall be ignored.

So, the following steps are needed:
4.1.1 Find the difference in the accumulated sensed velocity

$$
\text { DV_FILT }=V \text { CURRENT_FILT }-V \text { LAST FILT }
$$

4.1.2 Calculate an acceleration magnitude from

DV FILT and DT_FILT and compare it with the threshold value:
$\frac{\mid \text { DV FILT } \mid}{\text { DTFILT }}>D A$ THRESHOLD
Then, if the calculated acceleration is
larger than the threshold.value, set the following flags:
USE_IMU DATA $=O N$
$I G D=G M L O W$
$I G O=G M L O W$
$I D R A G=0$

$$
\text { IVENT }=0
$$

and set

$$
\underline{D V}=\underline{D} V \text { FILT }
$$

On the other hand, if the calculated absolute value of the acceleration is below the threshold level, set
USE IMU DATA $=0 F F$
$I G D=G M _D E G$
$I G O=G M O R D$
$I D R A G=1$
I VENT $=1$
and

$$
\underline{D} V=0 .
$$

4.1.3 Find a value of the sensed acceleration based on DV (it could, therefore, be 0., thus ignoring the MU readings)

$$
A \text { SENS }=\underline{D V} / D T _F I L T
$$

4.7.4 Call the super-g integrator (see section 4.2.1.3.1 for detailed requirements) with the flag values just set:
CALL: ONORBITSUPER G
IN LIST: IGD, IGO, IDRAG, IVENT, 0, R FILT,

$$
\cup F I L T, T \text { CURRENT FILT, DT FILT, DV }
$$

## OUT LIST: R FILT, V FILT, G NEW

4.2. In the situation where the PURD_FLT_NAV is found to be OFF, the precision propagation integration scheme shall be called to advance the orbiter state. The sequence, in this case, shall be as follows:
4.2.1 Check the REND_NAV_FLAG, and choose the step-size for the precision propagator according to the values of this flag. The step-size does affect the accuracy of the integration, and it is natural that the accuracy requirements during the rendezvous phases be different from those in other phases of the orbital operations. The REND_NAV_FLAG, during the periods in which the Rendezvous Navigation principal function is in operation, shall always be found to be $O N$. This will result in setting

$$
D T=\text { REND_STEP }
$$

4.2.2 The vector A SENS is required for the computation of $\operatorname{IOT}$ ACC in a later step. The precision propagator being a coasting flight integrator, the sensed accelerations are not needed by it . Therefore, set

$$
\text { A SENS }=0 .
$$

4.2.3 Invoke the precision propagator (see section 4.2.1.3.2 for detailed requirements) with calling arguments that will cause the modeling of drag, venting and uncoupled
thrusting accelerations, with the use of current attitude information.

CALL: ONORRIT PRECISE PROP
IN LIST: GM_DEG, GM_ORD, 1, 1, 0, DT, R FILT, V FILT, T_LAST_FILT, T_CURRENT_FILT

OUT LIST: R FILT, V FILT, G NEW
At the end of either step 4.1.4 or step 4.2.3, the values of R FILT and V FILT output by the corresponding integrator are the required propagated position and velocity vectors of the orbiter. The vector G NEW is a modeled acceleration vector obtained according to the specified flag settings and corresponding to R FILT, V FILT and T_CURRENT FILT.
5. The REND NAV FLAG shall then be tested. This flag indicates whether or not it is necssary to also propagate the state vector of the target vehicle. While the Rendezvous Navigation principal function is operative, this flag will always have the value $O N$, and propagation of the target state vector will be required.

Propagation of the target vehicle state vector shall be achieved with the use of the precision propagator subfunction. The flag settings for the necessary calls to the acceleration function shall be such as to cause drag to be modeled (drag mode flag set to 1), the mass, drag
coefficient and cross-sectional area of the target vehicle to de used in the calculations are specifjed by setting the attitude mode flag to 3 , venting and uncoupled thrusting are to be ignored (venting mode flag set to 0), and degree and order flags for gravitational accelerations are to be equal to those used by the precision propagation for the orbiter state advancement. Values of the target vehicle's position, velocity, and acceleration vectors from the previous cycle are needed. Therefore,
5.1 Save the above mentioned vectors for use in the current cycle:

$$
\begin{aligned}
& \underline{G T V L A S T}=\underline{G} T V \\
& \underline{R} T V \text { LAST }=\underline{R} T V \\
& \underline{V} T V \text { LAST }=\underline{V} T V
\end{aligned}
$$

5.2 Use the precision propagation subfunction to advance the target vehicle's position and velocity vectors and to obtain a corresponding total acceleration vector (which coincides with the modeled acceleration, there being no propulsive devices in the target).

CALL: ONORBIT PRECISE PROP
IN LIST: GM DEG, GM ORD, $1,0,3, \mathrm{DT}$,
RTV, V TV, T LAST FILT, T CURRENT FILT

OUT LIST: RTV, VTV, GTV
6. Save the IMU readings for the next cycle. The $V$ CURRENT. FILT will only be needed for the orbiter state propagation, but
the T_CURRENT_FILT will be used to determine the advancement interval for both vehicle's states. Also, find the total acceleration vector for the orbiter (required for covariance transition matrix calculations).

T_LAST_FILT $=$ T_CURRENT_FILT
VLAST_FILT $=V$ CURRENT_FILT
TOT_ACC $=G N E W+$ A SENS.
B. Interface Reguirements

Input and output parameters are to be found in Tables
4.3.2.5-1 and 4.3.2.5-2 respectiveiy.
C. Processing Requirements

None.
D. Constraints

The acceleration models task is needed not only by the navigation state propagation subfunction but also by the onorbit precision state prediction principal function and by the user parameter state propagation subfunction. Each of these users of the acceleration models shall set its own flags and therefore require a different calculation. To protect against interference in the acceleration computations, it is important that these computations not be interrupted.
E. Supplementary information.

A suggested implementation of this subfunction, in the
form of detailed flow diagrams, may be found in Appendix B:

ONCRBIT_REND_R V STATE PROP
ONORBIT SUPER G
ONORBIT PRECISE_PROP
NAV RENDEZVOUS (IMU snap portion)
ONORBIT REND_BIAS AND_COV PROP (CODE)


* Rendezvous Navigation Frincipal Function Input List
** Premission loaded
$*_{*}$ These constants are listed and their values given in Section 4.8 (I-load requirement).

TABLE 4.3.2.5-1 RENDEZVOUS STATE PROPAGATION INPUT PARAMETERS

	DESCRIPTIOK	SYMBOL	OUTPUT DESTINATION	TYPE	PRECISION	RANG:	UNITS	SAMPLE RATE
	Acceleration of target vehicle	GTV	*, Rendezvous state prop.	V	DP		$\mathrm{Ft} / \mathrm{sec}^{2}$	Filter Rate
	Fleg indicating if the current nav. phase is a rendezvous phase	$\frac{\text { REND NAV }}{\text { FLAG }^{-}}$	*	D	-	ON, OFF	-	As needed
	Orbiter velocity vector	V_FILT	* , Rendezvous state and covariance setup,	V	DP		$\mathrm{Ft} / \mathrm{sec}$	Filter Rate
	Target velocity vector	VTV	Auto in-flight update   *, Rendezvous staze and covariance setup.	V	DP		$\mathrm{Ft} / \mathrm{sec}$	Filter Rate
			Auto in-flight update					
	Angle of sideslip	BETA	*	F	DP	0-2It	Rad	Filter Rate
	Acceleration model related constants	***	**		-			

[^15]TABLE 4.3.2.5-2 RENDEZVOUS STATE PROPAGATION OUTPUT PARAMETERS

	DESCRIPTION	SYMBOL	OUTPUT DESTINATION	TYPE	PRESISION	RANGE	UNITS	COMPUTATION KATE /SEC
$\begin{aligned} & \vec{\omega} \\ & \dot{\omega} \\ & \dot{N} \\ & \stackrel{1}{6} \end{aligned}$	Filter current orbiter position vector in M50 coordinates	R FILT	*, **	V	DP		Ft	Filter rate
	Target vehicle position vector	RTV	*, **	V	DP		Ft	Filter rate
	```Total acceleration (sensed plus modeled)```	TOT_ACC	**	$V$	DP		$\mathrm{Ft} / \mathrm{sec}^{2}$	Filter rate
	Acceleration of target venicle	G TV	*, **	V	DP		$\mathrm{Ft} / \mathrm{sec}^{2}$	Filter rate
	Orbiter velocity vector	VFILT	*, **	V	DP		$\mathrm{Ft} / \mathrm{sec}$	Filter rate
	Target vehicle velocity vector	VTV	*, **	v	DP		$F t / \mathrm{sec}$	Filter rate
	Time of the filter state vector	T_LAST FILT	Rendezvcus nav.	F	- DF		Sec	Filter rate
	Flag indicating IMU acceleration threshold level	USE_IMU_DATA	*	D	-	ON-OFF	-	As needed

* Rendezvous Navigation Principal Function Output List
**, Rendezvous Covariance Propagation

TABLE 4.3.2.5-2 RENDEZVOUS STATE PROPAGATION OUTPUT PARAMETERS (cont'd)

* Rendezvous Covariance Propagation Subfunction

4.3.2.6 Covariance Matrix Propagation

The covariance matrix propagation subfunction propagates the covariance matrix forward in time. The covariance matrix is propagated by utilizing the state transition matrix. Additive process noise is incorporated to account for unmodeled state and dynamic errors.

A. Detailed Requirements

A 19 by 19 covariance matrix shal1 be propagated with the rendezvous navigation principal function. This covariance matrix defines the uncertainty in the state vector, which consists of position and velocity of the orbiter, unmodeled accelerations, position and velocity of the target, and sensor measurement biases. The method of propagation is described in Section 4.2.2
B. Interface Requirements.

The input and output data are shown in Tables 4.3.2.6-1 and 4.3.2.6-2.
C. Processing Requirements.

This subfunction will be called after the Imu sensor data have been read and after the state propagation subfunction has been executed.
D. Constraints.

None.

E. Supplementary Information

A possible implementation of this subfunction is shown
in the flow charts ONORBIT_REND_BIAS_AND_COV_PROP (CODE),
PWRD_FLT_COV_PROP (CODE), REND COV_PROP (CODE), MEAN_CONIC_
PARTIAL_TRANSITION MATRIX_ $5 X$ S, and F ANG_G in Appendix B.

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UN:TS	$\begin{aligned} & \text { SAMPLE } \\ & \text { RATE } \\ & \hline \end{aligned}$
$\begin{aligned} & \vec{i} \\ & \omega \\ & \dot{c} \\ & \dot{j} \end{aligned}$	Interval over which to propagate the covariance matrix	DT_FILT	state propagation	F	S		sec	filter rate
	Correlation time constants for body venting	TAU VENT	premission constant	V	S		sec	filter rate
	Variance of body venting variables	VAR_VENT DT	premission load	V	S		$\begin{aligned} & (\mathrm{ft} /)^{2} \\ & \left.\mathrm{sec}^{2}\right)^{2} \end{aligned}$	fifter rate
	Structural body to 150 coordinate transformation matrix	M SBODY M50	*	M	S		isec	filter rate
	Drag acceteration coefficient perfect error	$\mathrm{DCR}^{2} \mathrm{RE}_{2} \text { PCT }$	premission load	F	S			filter rate
	Drag acceleration vector	D	state propagation	V	S		$\mathrm{ft} / \mathrm{sec}$	filter rate
	Flag indicating (ON) whetner the rendezvous principal function is scheduled	$\begin{aligned} & \text { REND_NAV }:- \\ & \text { FLAG } \end{aligned}$	*	D	-	ON/OFF		filter rate

[^16]| | DESCRIPTION | SYMBOL | INPUT SOURCE | TYPE | PRECISION | RANGE | UNITS | $\begin{aligned} & \text { SAMPLE } \\ & \text { RATE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Filter current shuttle porition vector in : 50 courdinates | R FILT | state fropagation | V | DP | | ft | filter rate |
| | Filter current shuttle velocity vector in M50 coordinates | V FILT | state propagation | V | DP | | | filter rate |
| | Gravity acceleration at end of shuttle stau. integration intervai | TOT ACC | state propagation | V | DP | | $\begin{aligned} & \mathrm{ft} / 2 \\ & \mathrm{sec}^{2} \end{aligned}$ | filter rate |
| $\stackrel{ }{ }$ | Filter covariance matrix | E | measurement incorporation | M | DP | | vary | filter rate |
| | Flag indicating (ON) the desire to inhibit the processing of external measurement data by the navigation filter | PHRD_FLT NAV | * | | DP | | | filter rate |

* Rendezvous Navigation Principal Function Input List

	DESCRIPTIDN	SYMBOL	\therefore INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	Gravitational constant of the earth .	EARTH-MU	premission load	F	5		$\begin{aligned} & \left(f t^{3}\right) \\ & \sec)^{-} \end{aligned}$	filter rate
	Square root of EARTH MU	SQR_EMU	premission load	F	DP		$\mathrm{ft}^{3} \mathrm{c}$	filter rate
	Identity matrix (3×3)	$\begin{aligned} & \text { ID-MATRIX } \\ & 3 \times 3 \end{aligned}$	premission load	M	DP			filter rate
	Tolerance for succesive iterations in the solution of Kepler's equation	EPS-KEP	premission load	F	DP		rad	filter rate
$\begin{aligned} & \rightarrow \\ & \infty \\ & +0 \\ & \vdots \\ & \vdots \\ & i n \end{aligned}$	Position vector of shuttle at the end of the last filter cycle	R LAST.	state propagation	V	DP	.	ft	filter rate
	Velocity vector of shuttle at the erd of the last filter cycle	V LAST	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	filter rate
	Gravity acceleration at start of shuttie state integration interval	$\begin{aligned} & \text { TOT-ACC } \\ & \text { LAST } \end{aligned}$	state propagation	V	$D P$		$\mathrm{ft} / \mathrm{sec}^{2}$	filter rate

	OESCRIPTIOA	SYMBOL	INPUT SOURCE	TYPE	PRECISION	range	UNITS	SAMPLE RATE
$\begin{aligned} & \overrightarrow{3} \\ & \overrightarrow{3} \\ & \ddot{y} \end{aligned}$	Sensor measurement bias correlation time constants	TAU SENS	Measurement reconfiguration	V	QP		sec	filter rate
	Sensor measurement bias error variance	VAR SENS DT	Measurement reconfiguration	V	DP		vary	filter rate
	Filter estimated target position at the end of the last filter cycle.	R TV LAST	State propagation	V	DP		f	filter rate
	Filter estimated target velocity at the end of the last filter cycle.	V TV_LAST	State propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	filter rate
	Gravity vector for the target at the beginning of the last integration interval	G TV_LAST	State propagation	V	DP		$\mathrm{ft} / \mathrm{sec}^{2}$	filter rate
	Currant target position in 1450 coordinates	RTV	State propagation	V	DP		$f t$	filier rate
	Current target velocity vector in 1150 coordinates	VTV	State propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	filter rate
	Target's gravity vector at the end of the last integration interval	GTV	State propagation	V	DP		$\mathrm{tt} / \mathrm{sec}$	2filter rate

4.3.2.7 State and Covariance Measurement Incorporation

The state and covariance measurement incorporation subfunction updates the state vector and covariance matrix with navigation data using a 19 state process noise Kalman filter.

A. Detailed Requirements

The state and covariance measurement incorporation subfunction is exercised only if data are available for processing as determined by the sensor measurement selection subrunction (Section 4.3.2.3) and the respective measurement subfunctions (Sections 4.3.2.7.1 through 4.3.2.7.8). The sensor measurement selection subfunction detemines which measurement types are to be considered for processing. The measurement subfunctions procass sensor data that are labeled as valid.

The particular measurement subfunction shall first compute the estimated measurement based on the state vector and the measurement residual. The neasurement subfunction then calculates the first partial derivatives of the measurement with respect to the state, as well as the appropriate variance to model the uncorrelated instrument error. Rendezvous radar range and range rate, rendezvous radar staft and truni on angles, COAS angles, and startracker anoles will be available
for processing by the rendezvous navigation principal function.

Once a particular measurement subfunction has completed processing valid data, the filter control flags shall be set as follows:

Rendezvous radar range and range rate
MANUAL_EDIT_OVERRIDE $=$ RRDOT_EDIT_OVERRIDE
STAT_FLAG $=$ RRDOT_STAT
Rendezvous radar shaft and trunion
MANUAL_EDIT OVERRIDE $=$ RR_ANGLES EDIT_OVERRIDE
STAT FLAG $=$ RR_ANGLES_STAT
COAS angles
MANUAL_EDIT OVERRIDE = COAS ANGLES EDIT OVERRIDE
STAT_FLAG $=$ COAS $A N G L E S$ STAT
Startracker angles
MANUAL EDIT OVERRIDE = ST ANGLES EDIT OVERRIDE
STAT_FLAG $=$ ST_ANGLES STAT
The state and covariance measurement incorporation subfunction shall then update the state and covariance matrix provided that either the residual edit criterion is met or the crew edit override for the particular sensor type is active, as described in scction 4,2.4.

The following data shall then be stored after the particular
measurement type has been processed for subsequent computation of measurement processing statistics as described in sectivn 4.3.2.8.

SENSOR EDIT $=$ EDIT_FLAG
SENSOR_RESID_TEST $=$ RESID_TEST
SENSOR DELQ $I=D E L Q$
where
$I=1$ for startracker horizontal angle
$I=2$ for startracker vertical angle
$I=1$ for COAS horizontal angle
$I=2$ for COAS vertical angle
$I=1$ for rendezvous radar shaft angle
$I=2$ for rendezvous radar trunion angle
$I=3$ for rendezvous radar range
$I=4$ for rendezvous radar range rate
B. Interface Requirements

The inputs and outputs for this subfunction are given in Tables 4.3.2.7-1 and 4.3.2.7-2.
C. Processing Requirements

This subfunction is not exercised until the external data snap, sensor measurement selection, state and covariance matrix setup, and state and covariance matrix propagation subfunctions have been performed; and the measurement pro-
cessing statistics subfunction cannot be initiated until this subfunction is completed.
D. Contraints

There is no requirement in the state and covariance measurement incorporation subfunction to perform updating if the data validity flags indicate bad data. No manual override of these flags exists in this subfunction. If it is desired to process a particular measurement, the data validicy flag must be made to indicate that the data are valid.
E. Supplementary Information

A suggested implementation of the state and covariance measurement incorporation subfunction is presented in the flow charts of Appendix B_{s} NAV_RENDEZVOUS, REND NAV FILTER and REND STATE AND COV UPDATE.

TABLE 4.3.2.7.-7. - State and Covariance Measurement Incopporation Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter current shuttle position vector in M50 coordinates	R FILT	state propagation	V	DP		$f t$	Filter rate
Firter current shuttle yelocity vector in M50 coordinates	\triangle FILT	state propagation	V	$D P$		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Filter estimate of the unnodeled accelerations on the orbiter	$\frac{\text { VENT THRUST }}{\text { BIAS }}$	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}^{2}$	Filter rate
Curment target position vertor in M50 coordinates	R TV	state propagation	V	DP		$f t$	Filter rate
To Current target yelocity \therefore vector in M50 coordinates	\underline{V} TV	state propagation	V	DP		ft/sec	Filter rate
The filter estimated sensor bias	SENSOR BIAS	state propagation	V	DP		VARY	Filter rate
Filter covariance matrix	E	Rendezvous covariance propagation	M	DP		VARY	Filter rate
Measurement first partials with respect to filter state	B	Measurement subfunctions	V	DP		YARY	Filter rate
Goneral sensor veriance	VAR	Measurement subfunctions	F	DP			Filter rate

TABLE 4.3.2.7-1 (continued) - State and Covariance Measurement Incorporation Input Parameters

	DESCRIPTION	SYMBOL	INPUT SOUREE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	General measurement residual	DELQ	Measurement subfunction	F	DP		$f t$	Filter rate
	Scale factor on filter mean square residual used in residual edit test	K_RES EDIT	Premission 10ad	F	DP			Filter rate
	Siftch used (ON) to override the automatic editing of rendezvous radar range and range rate measurements	$\begin{aligned} & \text { RRDOT EDI } \\ & \text { OVERDIDE } \end{aligned}$	Sensor measurement selection	D		ON OFF		Filter rate
O	Svitch used (On) to overFide the automatic editing of rendezvous radar angles	$\begin{aligned} & \text { RR ANGLES EDIT } \\ & \text { OVERRIDE } \end{aligned}$	Sensor. measurement selection	D		ON OFF		Filter rate
\bigcirc	Switch used (ON) to override the automatic editing of startracker angles measuraments	ST ANGLES_EDIT	Sensor measurement selection	D		ON OFF		Filter rate
	Suitch used (ON) to override the automatic editing of CCAS angles measurements	COAS ANGLES EDITOVERRIDE	Sensor measurement selection	D		ON OFF		Filter rate
	Switch usec (ON) to indicate that rendezvous radar rande and rarge rate data are to be processed Gon statistics only	RROOT STAT	Sensor measurement selection	D		ON OFF		Filter rate

TABLE 4.3.2.7-1 (continued) - State and Covariance Measurement Incorporation Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Swtch used (DN) to indicate that rendezvous radar angles data are to be processed for statistics only	RR_PNGLES STATE	Sensor measurement selection	D		ON OFF		Filter rate
Switch used (ON) to indicate that startracker angles ciata are to be processed for statistics only	ST_ANGLES STAT	Sensor measurement selection	D		ON OFF:	,	Filter rate
$\begin{aligned} & \text { - Witch used (ON) to in- } \\ & \text { dicate that coAs angles } \\ & \text { i deta are to be processed } \\ & \text { co To statistics only } \end{aligned}$	$\frac{\text { COAS ANGLES }}{\text { STAT }}$	Sensor measurement selection	D:		ON OFF		Filter rate

TABLE 4.3.2.7-2. - State and Covariance Measurement Incorporation Output Parameters

* Rendezvous Navigátion Principal Function Out List

4.3.2.7.1 Rendezvous Radar Range

The rendezvous radar range measurement subfunction computes an estimated range from urbiter to target veficie, the range residual, and the range measurement partial vector, and selects the proper variance to model the uncorrelated instrument error. This subfunction is performed only when rendezvous radar range data are indicated valid.
A. Detailed Requirements

A description of the symbols used in the following equatioris may be found in tables 4.3.2.7.1-1 and 4.3.2.7.1-2.

First the orbiter state vector shall be interpolated to the time of the range measurement with the use of the state vector interpolation subfunction as des. cribed in section 4.2 .3 . The following parameters must be given the values indicated before the interpolation can be exercised.

$$
\begin{aligned}
& \text { P ONE }=\text { R LAST } \\
& V \text { ONE }=V \text { LAST } \\
& \text { RTWO }=\text { R FILT } \\
& V T W O=V \text { VILT } \\
& I T W=T \text { CURRENT FILT } \\
& V \text { IMU DIF }=\text { DV FILT } \\
& T D I F=D T \text { FILT }
\end{aligned}
$$

$$
\text { DTGO }=\text { DELTAT GO }
$$

Next the position-velocity state transition submatrix subfunction is used to construct an orbiter patch transition matrix as described in section 4.2 .8 for use in the measurement partial calculations. The following assocjations are required prior to execution.

$$
\begin{aligned}
& \text { RONE }=\underline{R F I L T} \\
& \underline{V O N E}=\underline{V F I L T} \\
& \text { GONE }=\text { TOT ACC } \\
& \text { RTWO }=\underline{R} \text { RESID } \\
& \underline{V T W O}=\underline{V} \text { RESID } \\
& \text { GTWO }=\text { A RESID } \\
& \text { DELTMM }=\text { DELTAT GO }
\end{aligned}
$$

Then after the nean conic partial subfunction has been performed:
PHI_PATCH = PHI MC

Then the target vector is interpolated to the time of the measurement as described in section 4.2.3. The following parameters must be given the values indicated before the interpolation can be exercised.

$$
\begin{aligned}
& \text { RONE }=\text { RTV LAST } \\
& \text { VONE }=V \text { TV LAST } \\
& \text { RTWO }=R T V
\end{aligned}
$$

where

```
DELTAT_GO = T CURRENT FILT_TREND RADAR
```

and

```
SENSOR_ID \(=1\)
\(\underline{V} T W O=V T V\)
\(I\) TWO \(=I\) CURRENT FILT
VIMU_DIF \(=0\)
T_DIF \(=\) OT_FILT
DTGO \(=\) DELTAT GO
```

The interpolation is performed for the target with drag modeled, but not venting. The results of the futerpolation in section 4.2 .3 are associated with target vector parameters as follows.

RTV RESID $=$ R RESID
$\underline{V T V}$ RESID $=\underline{V}$ RESID
ATV RESID $=A$ RESID
Nexi the position-velocity state transition submatrix subfunction is used to construct a target patch transition matrix as described in section 4.2 .8 for use in the measurem ment partials calculation. The following associations are required prior to execution.

$$
\begin{aligned}
& \text { R ONE }=\text { RTV } \\
& V \text { ONE }=V T V \\
& G O N E=G T V \\
& \text { R THO }=\text { RTV RESID } \\
& V \text { TWO }=V T V \text { RESID }
\end{aligned}
$$

$$
\begin{aligned}
& G T W O=A T V \text { RESID } \\
& \text { DELTMM }=\text { DELTA GO }
\end{aligned}
$$

Then after the mean conic partial subfunction has executed, the result is stored.

$$
\text { PHI_REND PATCH }=\text { PHI MC }
$$

The rendezvous radar range measurement partial vector is computed with the following equations.

$$
\begin{aligned}
& \text { R RHO }=\text { RTVRESID-R RESID } \\
& \text { R RHO MAG }=\mid \text { RRHO } \\
& I \text { RHO }=\text { R RHO/R RHO MAG } \\
& B_{1} 1 \text { to } 6=-(\text { PHI PATCH } 1 \text { to } 3,1 \text { to } 6)^{T} I \text { RHO } \\
& B_{1} 10 \text { to } 12=\text { PHI REND PATCH } T 1 \text { to } 3,1 \text { to } 3 \text { IRHO } \\
& B_{18}=1.0
\end{aligned}
$$

The residual is then calculated.

$$
\begin{aligned}
& \text { QPRIME }=\text { R_RHO MAG }+ \text { SENSOR_BIAS } 3 \\
& D E L Q=Q R R _R N G-Q R I M E
\end{aligned}
$$

Finally the filter gain variance for the measuroment is computed.
$V A R=(S I G R R R N G+S L O P E \text { SIG_RR RNG RIRHO MAG })^{2}$
If VAR is less than a premission determined number then VAR
is set equal to that number.

B. Interface Reguirements

The input and output variables for the rendezvous radar range
measurement subfunction are given in tables 4.3.2.7.1-1 and 4.3.2.7.1-2.
C. Processing Requirements

This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as rendezvous radar range measurements are being processed.
D. Constraints

None.
E. Supplementary Information

A suggested implementation of this subfunction is shown
in flow charts RR DOT NAV, REND NAV INTERF, ONORBIT SV INTERP, and MEAN CONIC PARTIAL TRANSITION MATRIX 6×6 in Appendi: B.

TABLE 4.3.2.7.1-1. - Rendezvous Radar Range Measurement Input Parameters.

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter current shuttle position vector in M50 coordinates	R FILT	State Propagation	V	DP		ft	Filter rate
Fiiter current shuttie velocity vector in M50 coordinates	V FILT	State Propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Time tag for latest navigation cycle	T CURRENT_FILT	State Propagation	V	DP		sec	Filter rate
Difference between accumulated sensed IMU readings on present cycle and previous cycle	DV FILT	State Propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
The time interval of the last state and covariance propagation	DT FILT	State Propagation	F	DP		sec	Filter rate
Position vector of the shuttle at the end of the last filter cycle	R LAST	State Propagation	V	DP		ft	Filter rate
Yelocity vector of the shuttie at the end of the last filter cycle	V LAST	State Propagation	V	DP		$f t / \mathrm{sec}$	Filter rate
Filter estimated target position at the end of the last filter cycle	R TV LAST	State Propagation	V	DP		$f t$	Filter rate

TABLE 4.3.2.7.1-1. (continued) - Rendezvous Radar Range Measurement Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter estimated target position vector at the end of the last filter cycle	VTV_LAST	State Propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Current target position vector in M50 coordinates	RTV	State Propagation	V	DP		$f t$.	Filter rate
Current target velocity vector in M50 coordinates	VTV	State Propagation	V	$D P$		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Target's gravity vector \& at the end of the last ω integration interval	G TV	State Propagation	V	DP		$\mathrm{ft} / \mathrm{sec}^{2}$	Filter rate
N 0 Time tag for the rendezyous radar range and range rate measurements	T_REND_RADAR	external sensor data snap	F	DP		sec	Filter rate
Rendezvous radar range measurement	Q_RR_RNG	external sensor data snap	F	DP		ft	Fllter rate
A discrete indicating the degree of the acceleration model used	IGD	state propagation	D				Filter rate
A discrete indicating the order of the acceleration model to be used	IGO	state propagation	D				Filter rate

TABLE 4.3.2.7 1-1. (continued) - Rendezvous Radar Range Measurement Input Parameters

TABLE 4.3.2.7.1-7. (continued) - Rendezvous Radar Range Measurement Input Parameters

DESCRIPTION	SYMBOL	InPUT SOURCE	TYPE	PRECISION	range	UNITS	SAMPLE RATE
Fiag indicating processable data from the rendezvous radar range sensor	RNG DATA_GOOD	external sensor data snap	D		ON OFF		Filter rate
One sigma statistic of rendezvous radar range measurement	SIG_RR_RNG	premission load	F	DP		$f t$	Filter rate
Rate of change of rendezyous radar range statistic H.R.T. range	$\underset{R N G}{S L O P E S I G _R R _}$	premission load	F	DP		unitl	ss Filter rate
$\begin{aligned} & \text { îinimum value for comput- } \\ & \text { ition of rendezvous radar } \\ & \text { is range variance } \end{aligned}$	$\frac{V A R R R ~ R N G}{M I N}$	premission load	F	DP		$f t^{2}$	Filter rate
io Acceloration constants		*					

[^17]TABLE 4.3.2.7.1-2. - Rendezyous Radar Range Measurement Output Parameters

4.3.2.7.2 Rendezvous radar range rate. The rendezvous radar range rate measurement subfunction computes an estimated range rate of the orbiter with respect to the target venicle, the range rate measurement residual, and the range rate measurement partial vector, and selects the proper variance to model the uncorrelated instrument error. This subfunction is performed only when rendezvous radar range rate data are indicated valid.
A. Detailed Requirements. A description of the symbols used in the following equations may be found in tables 4.3.2.7.2-1 and 4.3.2.7.2-2.

First the orbiter and target states are interpolated to measurement time and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 for the range measurement with SENSOR_ID equal to 2 instead of 1.

The rendezvous radar range rate partial vector is computed with the following equations:

```
\(\underline{U}\) RDOT \(=(\underline{V} T V\) RESID-V_RESID) RRHO MAG
\(B_{1 \text { to } 3}=1 R H O \times(\underline{R H O} \times \cup R D O T)\)
\(B \quad=-B\)
    10 to 121 to 3
\(\mathrm{B}_{\mathrm{B}}=-\mathrm{IRHO}\)
    4 to 6
    \(B_{10 \text { to } 15}=B_{4}+06\)
    \(\mathrm{B}_{10}\) to \(15^{=\text {PHI REND_PATCH }}{ }^{\top} \mathrm{B} \quad 10\) to 15
```

The residual is then calculated:

$$
\begin{aligned}
& \text { Q_PRIME }=\text { R RHO•U RDOT }+ \text { SENSOR }- \text { BIAS }_{4} \\
& \text { DELQ }=\text { Q_RR_RNG_DOT-Q_PRIME }
\end{aligned}
$$

Finally the filter gain variance for the measurement is defined:

VAR $=$ VAR_RANGE_DOT
B. Interface Requirements. The input and output variables for the rendezvous radar range rate measurement subfunction are given in tables 4.3.2.7.2.-1 and 4.3.2.7.2-2.
C. Processing Requirements. This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as rendezvous radar range rate measurements are being processed.
D. Constraints. None.
E. Supplementary Information. A suggested implementation of this subfunction is shown in flow charts RR DOT NAV, REND NAV INTERP, ONORBIT_SV_INTERP, and MEAN CONIC PARTIAL TRANSITION MATRIX_6X6 in Appendix B.

TABLE 4.3.2.7.2-1 - RENDEZVOUS RADAR RANGE RATE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
$\vec{\omega}$$\underset{\sim}{u}$$\dot{8}$$\stackrel{8}{8}$	Filter current shuttle position vector in M50 coordinates	R FILT	state propagation	V	DP	-	ft	filter rate
	Filter current shuttle velocity vector in M50 coordinates	V FILT	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
	Time tag for latest navigation cycle	T_CURRENT_FILT	state propagation	V	DP	-	sec	filter rate
	Difference between accumulated sensed IMU readings on present cycle and previous cycle	DV FILT	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
	The time interval of the last state and covariance propagation	DT_FILT	state propagation	F	DP	-	sec	filter rate
	Position vector of the shuttle at the end of the last filter cycle	R LAST	state propagation	V	DP	-	ft	filter rate
	Velocity vector of the shuttile at the end of the last filter cycle	V LAST	state propagation	V	$D P$	-	$\mathrm{ft} / \mathrm{sec}$	filter rate

TABLE 4.3.2.7.2-1 - (continued) RENDEZVOUS RADAR RANGE RATE MEASUREMENT INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter estimated target position at the end of the last filter cycle	E TV LAST	state propagation	V	DP	-	$f t$	filter rate
Filter estimated target position vector at the end of the last filter cycle ${ }^{\circ}$	\underline{V} TV LAST	state propagation	V	DP	$\stackrel{-}{-}$	ft/sec	filter rate
Current target position vector in M50 coordinates	R TV	state propagation	V	DP	-	ft	filter rate
Current target velocity vectior in M50 coordinates	$V T V$	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
Target's gravity vector at the end of the last integration interval	GTV	state propagation	V	DP		t/ sec^{2}	filter rate
A discrete indicating the degree of the acceleration model used.	IGD	state propagation	D	-	-	-	filter rate
A discrete indicating the order of the acceleration model to be used.	IGO	state propagation	D	-	-	-	filter rate

TABLE 4.3.2.7.2-1 - (continued) RENDEZVQUS RADAR RANGE RATE MEASUREMENT INPUT PARAMETERS

TABLE 4.3.2.7.2-1 (continued) RENOEZVOUS RADAR RANGE RATE MEASUREMENT INPUT PARAMETERS

* Given in I-load requirements, section 4.8

TABLE 4.3.2.7.2-2 - RENDEZVOUS RADAR RANGE RATE OUTPUT FARAMETERS

ORIGINAL PAGE IS
OE POOR QUALITY

4.3.2.7.3 Rendezvous Radar Shaft Angle

The rendezvous radar shaft ang?e measurement subfunction computes an estimated shaft angle, the angle measurement residual, and selects the proper variance to model the uncorrelated instrument error.

A. Detailed Requirements

A description of the symbols used in the following equations may be found in tables 4.3.7.3-1 and 4.3.2.7.3-2. This subfunction is exercised only when rendezvous radar angle data are selected for processing and are valid.

First, the orbiter and target states are interpolated to the time of the measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where

$$
\text { DELTAT GO }=\text { T_CURRENT FILT-T_REND_RADAR }
$$

The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution:

$$
\begin{aligned}
& \text { M M } 50 _ \text {TO_SENSOR }=M \text { MODY_TO_RR } \\
& \text { M M50_TO BODY RR } \\
& I ~ N=M \text { M50_TO_SENSOR } 3,1 \text { to } 3
\end{aligned}
$$

Calculation of the partial vector is completed by setting the appropriate value in the bias slot of that vector.

$$
B_{1}=1.0
$$

The residual is calculated as follows.

$$
\begin{aligned}
& \underline{U} M=M M 50 _ \text {TO_SENSOR UNIT }(\underline{R}-\text { RHO }) \\
& \text { SHFT }=\operatorname{ARCTAN}\left(U M_{2} / U M_{1}\right)+\text { BIAS_SENSOR }_{2}
\end{aligned}
$$

$$
D E L Q=Q_{Q} R R \text { SHFT-SHFT }
$$

Where R RHO is defined by the partial calculations. Finally the appropriate variance for the COAS horizontal angle is assigned.

$$
V A R=V A R _S H F T
$$

B. Interface Requirements

The input and output variables for the rendezvous radar shaft angle subfunction are given in tables 4.3.2.7.3-1 and 4.3.2.7.3-2.
C. Processing Requirements

This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as rendezvous radar angle measurements are being processed.
D. Constraints

None.
E. Supplementary Information

A suggested implementation of this subfunction is shown in flowcharts NAV RENDEZVOUS, RR ANGLE NAV, REND NAV INTERP, ONORBIT_SU_INTERP and MEAN CONIC PARTIAL TRANSITION MATRIX

TABLE 4.3.2.7.3-1 - Rendezyous Radar Shaft Angle Measurement Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE.	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter current shuttle position vector in M50 coordinates	R _ FILT	state propagation	V	DP		ft	Filter rate
Filter current shuttle velocity vector in M50 coordinates	\underline{V} FILT	state propagation	V	DP		$f t / s e c$	Filter rate
Time ょag for latest navigation cycle	T CURRENT FILT	state propagation	V	DP		sec	Filter rate
Difference, between accumulated sensed IMU readings on present cycle and previous cycle	DV_FILT	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
The time interval of the last, state and covariance propagation	DT_FILT	state propagation	F	DP		sec	Filter rate
Position vector of the shuttle at the end of the last filter cycle	\underline{R} LAST	state propagation	V	DP		$f t$	Filter rate
Velocity vector of the shuttle at the end of the last filter cycle	\underline{V} LAST	state propagation	V	$D P$		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Filter estimated target position at the end of the last filter cycle	R - TV_LAST	state propagation	V	DP		ft	Filter rate

TABLE 4.3.2.7.3-1 - (continued) - Rendezyous Radar Shaft Angle Measurement Input Parameters

TABLE 4.3.2.7.3-1 - (continued) - Rendezvous Radar Shaft Angle Measurement Input Parameters

* Given in I-load requirements section 4.8

ORIGINAL PAGE IS
OF POOR QUALITY

4.3.2.7.4 Rendezvous Radar Trunion Angle

The rendezvous radar trunion angle measurenent subfunction computes an estimated trunion angle, the angle measurement residual, and the trunion angle partial vector, and selects the proper variance to model the uncorrelated instrument error.

A. Detailed Requirements

A description of the symbols used in the following equations may be found in tables 4.3.2.7.4-1 and 4.3.2.7.4-2. This subfunction is exercised only when rendezvous radar angle data are selected for processing and are valid.

First, the orbiter and target states are interpolated to the time of the measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where
DELTAT_GO = T_CURRENT FILT-T REND_PADAR

The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution:

M MSO_TO SENSOR = M BODY TO_RR
M M50 TO BODY RR
and

$$
I-N=U N I T(R \quad T V \text { RESID } R \quad \text { RESID }) \times M M 50 \text { TO SENSOR } 3 \text {, } 1 \text { to } 3
$$

Where R TV RESID and \underline{R} RESID are the result of the interpolation of the target and the orbiter respectively.

Calculation of the partial vector, is completed by setting the appropriate value in the bias slot of that vector.

$$
B_{17}=1.0
$$

The residual is calculated as follows.

$$
\begin{aligned}
& \underline{U} M=M \text { M50_TO_SENSOR UNIT }(\underline{R}-R H O) \\
& \text { TRUN }=\text { ARCSIN }\left(U_{-} M_{3}\right)+\text { BIAS_SENSOR } 2
\end{aligned}
$$

$$
\text { DELQ }=\text { QRR TRUN-TRUN }
$$

where \underline{R} RHO is defined by the partial calculations.
Finally the appropriate variance for the trunion angle is assigned.

$$
V A R=V A R \text { TRUN }
$$

B. Interface Requirements

The input and output variables for the rendezvous radar trinian angle subfunction are given in tables 4.3.2.7.4-1 and 4 $3.7 .4-2$.
C. Procastug Requirements

This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as rendezvous radar angle measurements are being processed,
D. Constraints

None.

E. Supplementary Information

A suggested implementation of this subfunction is shown
in flow charts NAV RENDEZVOUS, RR ANGLE NAV, REND NAV.
INTERP, ONORBIT_SV_INTERP and MEAN_CONIC_PARTIAL_TRANSI-
TION MATRIX_ 6×6 in Appendi: B.

Table 4.3.2.7.4-1. - Rendezvous Radar Trunion Angle Measurement Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter current shuttle position vector in M50 coordinates	R FILT	state propagation	V	DP		$f t$	Filter rase
Fi7ter current shuttle velocity vector in M50 coordinates	\underline{V} FILT	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Time ఫ亠ag for latest navigation cycle	T CURRENT_FILT	state propagation	V	DP		sec	Filter rate
Difference between accunulated sensed IMU readings on present cycle and previous cycle	DV FILT	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
The time interval of the last, state and covariance propagation	DT FILT	state propagation	F	DP		sec	Filter rate
Position vector of the shuttle at the end of the lest filter cycle	R LAST	state propagation	V	DP		ft	Filter rate
Velocity vector of the shuttle at the end of the last filter cycle	V LAST	state propagation	V	DP.		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Filter estimated target position at the end of the last filter cycle	R - TV_LAST	state propagation	V	DP		ft	Filter rate

Table 4.3.2.7.4-1. (continued) - Rendezyous Radar Trunion Angle Measurement Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANG:	UNITS	$\begin{aligned} & \text { SAMPLE } \\ & \text { RATE } \end{aligned}$
Filter estimated taraet position vector at the end of the last filter cycle	\triangle TV LAST	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Current target position vector in M50 coordinates	R - TV	state propagation	V	DF		ft	Filter rate
Current target velocity yector in M50 coordinates	V TV	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Target's gravity vector at the end of the last integration interval	G IV	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}^{2}$	Filter rate
A discrete indicating the degree of the acceleration model used	IGD	state propagation	0				Filter rate
A discrete indicating the order of the acceleration model to be used	IGO	state propagation	D				Filter rate
Aflag indicating whether drag is to be modeled in the acceleration calculation	IDM	state propagation	D		0,1		Filter rate
A flag indicating whether venting is to be modeled in the acceleration equations	IVM	state propagation	D		0,7		Filter rate

Table 4.3.2.7.4-1. (continued) - Rendezvous Radar Trunion Angle Measurement Input Parameters

Table 4.3.2.7.4-7. (continued) - Rendezvous Radar Trunion Angle Measurement Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	$\begin{aligned} & \text { SAMPLE } \\ & \text { RATE } \end{aligned}$
Variance of the rendezvous radar trunion measurement	VAR_TRUN	premission load	F	DP		rad^{2}	Filter rate
Time tag for the rendezvous rädar measurements	T_REND_RADAR	externai sensor data snap	F	DP		sec	Filter rate
The rendezvous radar trunion measurement	QRR_TRUN	external sensor data snep	F	$D P$		rad	Filter rate
350 to body transformation mairix at the time the ren - vous radar data was shapped	M_M50_TO_BODY_RR	external sensor data snap	M	DP			Filter rate
Body to rendezvous radar transformation matrix	M BODY _ TO_RR	Premission load	M	DP			Filter rate
Acceleration constants		*					

* Given in I-1oad requirements section 4.8

Table 4.3.2.7.4-2, - Rendezyous Radar Trunion Angle Measurement Output Parameters

DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	$\begin{aligned} & \text { COMPUTATION } \\ & \text { PATE } \end{aligned}$
The navigation filter measurement residual	DELQ	Measurement Incorporation	F	DP	\cdots	$f t$	Filter rate
The measurement partials	B	Measurement Incorporation	V	DP		VARY	Filter rate
The general filter gain variance for the serisors	VAR	Measurenent Incorporation	F	DP		VARY	Filter rate
\cdots							

4.3.2.7.5 - Startracker horizontal angle. The startracker horizontal angle measurement subfunction computes an estimated horizontal startracker angle, the angle measurement residual, and the horizontal angle partials, and selects the proper variance to model the uncorrelated instrument error.
A. Detailed Requirements. A description of the symbols used in the following equations may be found in tables 4.3.2.7.5-1 and 4.3.2.7.5-2. This subfunction is exercised only when startracker data are selected are valid.

First, the orbiter and target states are interpolated to the time of the measurement. The partials are computed by the angle measurement and the orbiter and target trarsition matrices are calculated as described in section 4.3.2.7.1 where

DELTAT_GO =T_CURRENT_FILT-T STAR_TRACKER
The partiais are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution:

```
MM50 TO SENSOR \(=M\) BODY TO_ST _N ST_ IN USE M50 TO BODY ST
\(I N=M M 50\) TO SENSOR 1,1 to 3
```

Calculation of the partials is completed by setting the appropriate value in the bias slot of the partial vector.

$$
{ }_{17}=1.0
$$

The residual is calculated as follows:
$\underline{U} M=M$ M5O_TO_SENSOR UNIT (R RHO)

$$
\begin{aligned}
& \text { HORIZ }=\text { ARCTAN (UM /UM })+ \text { BIAS SENSOR } \\
& \text { DELQ }=\text { QST_HORIZ-HORIZ }
\end{aligned}
$$

where R RHO is defined by the partial calculation. Finally the appropriate variance for the startrack horizontal angle is assigned

$$
\text { VAR }=\text { VAR_ST_HORIZ }
$$

B. Interface Requirements. The input and output variables for the startracker horizontal angle subfunction are given in tables 4.3.2.7.5-1 and 4.3.2.7.5-2.
C. Processing Requirements. This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as startracker measurements are being processed.
D. Constraints. None.
E. Supplementary Information. A suggested implementation of this subfunction is shown in flowchart NAV RENDEZVOUS, ANGLE_NAV, REND_NAV_INTERP, ONORBIT SV_INTERP, and MEAN CONIC PARTIAL_TRANSITION MATRIX 6×6 in Appendix B.

TABLE 4.3.2.7.5.-1 - STARTRACKER HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter current shuttle position vector in M50 coordinates	R FILT	state propagation	V	DP	-	ft	filter rate
Filter current shuttle velocity vector in M50 coordinates	VFILT	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
Time tag for latest navigation cycles	T CURRENT FILT	state propagation	v	DP	-	sec	filter rate
Difference between accumulated sensed IMU readings on present cycle and previous cycle	DV FILT	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
The time interval of the last state and covariance propagation	DT EILT	state propagation	F	DP	-	sec	filter rate
Position vector of the shuttle at the end of the last filter cycle	R LAST	state propagation	v	DP	-	$f t$	filter rate
Velocity vector of the shuttle at the end of the last filter cycle	V LAST	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Filter estimated target position at the end of the last filter cycle	R TV_LAST	state propagation	V	DP	-	ft	filter rate
Filter estimated target position vector at the end of the last filter cycle	V TV_ LAST	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
Current target position vector in 150 coordinates	R TV	state propagation	V	DP	-	ft	filter rate
i Current target velocity $\stackrel{\perp}{-}$ vectior in M50 coordinates	V VV	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
Target's gravity vector at the end of the last integration interval	G TV	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}^{2}$	filter rate
A discrete indicating degree of the acceleration model used.	IGD	state propagation	D	-	-	-	filter rate
A discrete indicating the order of the acceleration model to be used.	IGO	state propagation	D	-	-	-	filter rate

TABLE 4.3.2.7.5-1 - (Continued) STARTRACKER HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	A flag indicating whether drag is to be modeled in the acceleration calculation	IDM	state propagation	D	-	0-1	-	filter rate
	A flag indicating whether venting is to be modeled in the acceleration equations	IVM	state propagation	D	\cdots	0-1	-	filter rate
	A discrete indicating the type of atmosphere modeling to be used in the acceleration calculations	IATM	state propagation.	D	-	-	-	filter rate
	Total orbiter acceleration	IOT ACC	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}{ }^{2}$	filter rate
	The filter estimated sensor bias	SENSOR_BIAS	state propagation	V	DP	-	vary	filter rate
	Square root of EARTH MU	EARTH MU	premission load	F	DD		$t / \mathrm{sec}{ }^{2}$	filter rate
	Folerance for successive iterations in the solution of Kepler's equation	EPS KEP	premission load	F	DP	-	rad	filter rate

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	- SAMPLE RATE
Moximum time skew between the measurement time and the time of the nav cycle before the state is interpolated to the measurement time.	EPS TIME	premission load	V	DP	-	sec	filter rate
Flag indicating processable data from the startracker measurement	ST_DATA GOOD	external sensor data snap	D	-	ON/OFF	-	filter rate
$\overrightarrow{\mathrm{c}} \quad$ Variance of startracker A horizontal measurenient	VAR_ST HORIZ	premission load	F	DP	-	rad^{2}	filter rate
Time tag for the startracker measurements	$\underset{\text { JFACKER }}{T} \quad-$	external data snap	F	DP	-	sec	filter rate
The startracker horizontal measurement	Q ST_HORIZ	external data snap	F	DP	-	rad	filter rate
M50 to body transformation matrix at the time the startracker data was snapped	$\frac{M M 50-T O}{B O D Y _S T}$	external data snap	M	DP	-	-	filter rate

TABLE 4.3.2.7.5-1 - (Continued) STARTRACKER HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE	
Body to startracker' transformation matrix	$\mathrm{M}_{-\mathrm{BODY}} \mathrm{TO}-$	Premission load	M	DP	-	-	filter rate	
Index indicating which startracker is being used	NST_IN USE	external data snap	D	-	-	-	filter rate	
Acceleration constants		\%						

[^18]$221-2^{\circ} \varepsilon^{\circ}+$

TABLE 4.3.2.7.1-2-RENDEZVOUS RADAR RANGE MEASUREMENT OUTPUT PARAMETERS

OESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATICN RATE
The navigation filter. measurement residual	DELQ	Measurement Incorporation	F	DP	-	ft	filter rate
The measurement partials	B	Measurement Incorporation	$V(19)$	DP	-	vary	filter rate
The general filter gain variance for the sensors	VAR	Measurement Incorporation	F	DP ,	-	vary	filter rate

4.3.2.7.6 Startracker Vertical Angle

The startracker vertical angle measurement subjunction computes an estimated vertical startracker angle, the angle measurement residual, and the vertical angle partials, and selects the proper variance to model the uncorrelated instrument error.
A. Detailed Requirements

A description of the symbols used in the following equations may be found in tables $4.3 .2 .7 .6-1$ and $4.3 .2 .7 .6-2$. This subfunction is exercised only when startracker data are selected and are valid.

First, the orbiter and target states are interpolated to the time of the measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where DELTAT GO $=$ T CURRENT FIAT T STAR TRACKER The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution.

$$
\begin{aligned}
& \text { M MS TO SENSOR }=\text { M_BODY_TO ST } N S T \text { IN USE M MS TO_ BODY ST } \\
& I ~ N ~
\end{aligned}
$$

Calculation of the partials is completed by setting the appropriate value in the bias slot of the partial vector.

$$
B_{16}=1.0
$$

The residual is calculated as follows.
$\underline{U} \quad M=M$ M50_TO_SENSOR UNIT($\underline{R} \quad$ RHO $)$
VERT $=\operatorname{ARCTAN}\left(U_{M_{1}} / U_{-} M_{3}\right)+$ BIAS_SENSOR $_{1}$
$D E L Q=$ Q_ST_VERT-VERT
where R RHO is defined by the partial calculation. Finally the appropriate variance for the startracker vertical angle. is assigned

$$
\text { VAR }=\text { VAR ST_VERT }
$$

B. Interface Requirements

The input and output variables for the startracker vertical angle subfunction are given in tables 4.3.2.7.6-1 and 4.3.2.7.6-2.

C. Processing Requirements

This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as startracker measurements are being processed.
D. Constraints

None.

E. Supplementary Information

A suggested implementation of this subfunction is shown in flowcharts NAV_RENDEZVOUS, ANGLE NAV, REND_NAV_INTERP, ONORBIT, SV_INTERP, and MEAN_CONIC PARTIAL_TRANSITION MATRIX_6XG in Appendix B.

TABLE 4.3.2.7.6-1 - Startracker Vertical Angle Measurement Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISICN	RANGE	UNITS	SAMPLE RATE
Filter current shuttle position vector in M50 coordinates	\underline{R} FILT	state propagation	V	DP		$f t$	Filter rate
```Filter current shuttle velocity vector in M50 coordinates```	$\underline{V}$ FILT	state propagation	$V$	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Fime tag for latest navigation cycle	T_CURRENT FILT	state propagation	V	DP		sec	Filter rate
Difference between accumulated sensed IMU readings on present cycle and previous cycle	DVEILT	state propagation	$V$	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
The tine interval of the last, state and covariance propagation	DT FILT	state propagation	F	DP		sec	Filter rate
Position vector of the shutite at the end of the last filter cycle	$R \quad$ LAST	state propagation	$V$	DP		ft	Filter rate
Velocity vector of the shuttie at the end of the last filter cycle	V LAST	state propagation	$V$	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Filter estimated target position at the end of the last filter cycle	$\underline{R}$ TV LAST	state propagation	$V$	EP		$f t$	Fil.ter rate

TABLE 4.3.2.7.6-1 (continued) - Startracker Vertical Argle Measurement Input Parameters

DESCRIPTION	SYMEOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
Fitter estimated target position vector at the end of the last filter cycle	$V$ _TV_LAST	state propagation	$V$	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Current target position vector in M50 coordinates	R TV	state propagation	V	DP		ft	Filter rate
Current target velocity vector in M50 coordinates	$\underline{V}$ - TV	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}$	Filter rate
Target's gravity vector at the end of the last integration interval	G IV	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}^{2}$	Filter rate
A discrete indicating the degree of the acceleration model used	IGD	state propagation	D				Filter rate
A discrete indicating the order of the acceleration model to be used	IGO	state propagation	D				Filter rate
A flag indicating whether drag is to be modeled in the acceleration calculation	IDM	state propagation	D		01		Filter rate
A flag indicating whether venting is to be modeled in the acceleration equations	IVM	state propagation	D		01	!	Filter rate

TABLE 4.3.2.7.6-1 (continued) - Startracker Vertical Angle Measurement Input Parameters

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
A discrete indicating the type of atmosphare modeling to be used in the acceteration calculations	IATM	state propagation	D				Filter rate
Total orbiter acceleration	TOT ACC	state propagation	V	DP		$\mathrm{f} / \mathrm{s} / \mathrm{sec}^{2}$	Filter rate
The filter estimated sersor"bias	SENSOR_BIAS	state propagation	V	DP		VARY	Filter rate
Eravitational constant of the earth	EARTH MU	premission load	F	DP		$\left(\mathrm{ft}^{3} / \mathrm{sec}\right.$	${ }^{2}$ Filter rate
Square root of EARTH MU	SQR EMU	premission load	F	DP		$\mathrm{ft}^{3} / \mathrm{sec}$	Filter rate
Tolerance for succesive iterations in the solution of Kepler's equation	EPS_KEP	premission load	F	DP		rad	Filter rate
Maximur time skew between the measurement time and the time of the nav cycle before the state is interpolated to the measurement time	EPS TIME	premission load	V	DP		sec	Filter rate
Fiag indicating processable data from the startracker measurement	ST DATA GOOD	External sensor data snap	D		ON OFF		Filter rate
Varjance of startracker vertical measurement	VAR_ST_VERT	premission load	F	DP		$\mathrm{rad}^{2}$	Filter rate

TAELE 4.3.2.7.6-1 (continued) - Startracker Vertical Angle Measurement Input Parameters


* Given in I-load requirements section 4.8

TABLE 4.3.2.7.6-2 - Startracker vertical Angle Measurement Output Parameters

DESCRIPTION	SYMEOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATICN PATE
The navigation filter measurement residual	DELQ	Measurement Incorporation	F	DP		ft	Filter rate
The measurement partials	B	Measurement Incorporation	V	DP		VARY	filter rate
The general filter gain variance for the sensors	VAR	Measurement Incorporation	F	DP		VARY	Filter rate

ORIGINAL PAGE IS
OF POOR QUALITY

### 4.3.2.7.7 COAS Horizontal Angle.

The COAS horizontal angle measurement subfunction computes an estimated horizontal COAS angle, the angle measurement residual, and the horizontal angle partial vector, and selects the proper variance to model the uncorrelated instrument error.

## A. Detailed Requirements.

A description of the symbols used in the following equations may be found in tables 4.3.2.7.7-1 and 4.3.2.7.7-2. This subfunction is exercised only when COAS data are selected and are valid.

First, the orbiter and target are interpolated to the time of the measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where

$$
\text { DFLTAT GO }=T \text { CURRENT FILT }-T \text { COAS }
$$

The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution.

$$
\begin{aligned}
& M M 50 \text { TO SENSOR }=M \text { BODY TO COAS } N \text { COAS IN USE } \\
& I N=M M 50 \text { TO_ SENSOR } 1,1 \text { to } 3
\end{aligned}
$$

Calculation of the partial vector is completed by setting the appropriate value in the bias slot of that vector.

$$
B_{17}=7.0
$$

The residual is calculated as follows.

$$
\begin{aligned}
& U-M=M \text { M50_TO_SENSOR UNIT }(\text { R RHO }) \\
& \text { HORIZ }=\text { ARCTAN }\left(U M_{2} / U M_{3}\right)+\text { BIAS_SENSOR }_{2} \\
& \text { DELQ }=\text { Q_COAS HORIZ-HORIZ }
\end{aligned}
$$

where $R$ PHO is defined by the partial calculations.
Finally the appropriate variance for the COAS horizontal angle is assigned.

$$
\text { VAR }=\text { VAR_COAS_HORIZ }
$$

B. Interface Requirements. The input and output variables for the COAS horizontal angle subfunction are given in tables 4.3.2.7.7-1 and 4.3.2.7.7-2.
C. Processing Requirements. This subfunction shall be performed after the state and covariance propagation, at the basic filter rate. This subfunction is performed as long as COAS measurements are being processed.
D. Constraints. None.
E. Supplementary Infomation. A suggested implementation of this subfunction is shown in flowcharts NAV REMDEZVOUS, ANGLE MAV, REND NAV INTERP, OHORBIT SV INTERP and HEANCONIC PARTIAL TRANSITION MATRIX $6 \times 6$ in Appendix $B$.

TABLE 4.3.2.7.7-1 - COAS HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE   RATE
	Filter current, shuttle position vector in M50 coordinates	R FILT	state propagation	V	DP	-	ft	filter rate
	Filter current shuttle velocity vector in M50 coordinates	VFILT	State propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
	Time tag for latest navigation cycle	$T_{\text {FILT }}^{\text {CURRENT }}$	State propagation	$V$	DP	-	sec	filter rate
$\cdots$	Difference between accumulated sensed IMU readings on present cycle and previous cycle	DV FILT	State propagation	$V$	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
	The time interval of the last state and covariance propagation	DT FILT	State propagation	F	DP	-	sec	filter rate
	Position vector of the shuttie at the end of the last filter cycle	P. LAST	State propagation	V	DP	-	$f t$	filter rate
	Velocity vector of the shuttie at the end of the last filter cycle	$V$ LAST	State propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate


DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	-SAMPLE RATE
Filter estimated target position at the end of the last filter cycle	R TV LAST	state propagation	$V$	DP	-	ft	filter rate
Filter estimated target position vector at the and of the last filter cycle	V TV_LAST	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
Current target position vector in M50 coordinates	$k$ TV	state propagation	$V$	DP	-	ft	filter rate
Current target velocity vector in M50 coordinates	VTV	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
Target's gravity vector at the end of the last integration interval	GTV	state propagation	$V$	DP	-	$\mathrm{ft} / \mathrm{sec}^{2}$	filter rate
$A$ discrete indicating the degree of the acceleration model used.	I.IGD	state propagation	D	-	-	-	filter rate
A discrete indicating the order of the acceleration model to be used	IGO	state propagation	D	-	-	-	filter rate

TABLE 4.3.2.7.7-1 - (Continued) COAS HORIZONTAL ANGLE MEASUREMENT INPUT PARAMETERS




* Given in 1-10ad requirements, section 4.8

TABLE 4.3.2.7.7-1 - COAS HORIZONTAL ANGLE MEASUREMENT CUTPUT PARAMETERS

4.3.2.7.8 COAS vertical angle. The COAS vertical angle measurement subfunction computes an estimated vertical COAS angle, the angle measurement residual, and the vertical angle partial vector, and selects the proper variance to model the uncorrelated instrument error.
A. Detailed Requirements. A description of the symbols used in the following equations may be found in tables 4.3.2.7.8-1 and 4.3.2.7.8-2. This subfunction is exercised only when COAS data are selected and are valid.

First, the orbiter and target are interpolated to the time of the measurement and the orbiter and target transition matrices are calculated as described in section 4.3.2.7.1 where

$$
\text { DELTAT_GO }=\text { TCURRENT_FILT - T_COAS }
$$

The partials are computed by the angle measurement partials subfunction as described in section 4.2.6. The parameters in that common subfunction must be given the following values prior to execution:

$$
\begin{gathered}
\text { MM50_TO SENSOR }=\text { M BODY TO_COAS } N \text { COAS_IN USE } \\
\text { M M50_TO_BODY COAS }
\end{gathered}
$$

$$
I N=M M 50-T O \text { SENSOR } 2,1 \text { to } 3
$$

Calculation of the partial vector is completed by setting the appropriate value in the bias slot of that vector.

$$
B_{16}=1.0
$$

The residual is calculated as follows:

$$
\begin{aligned}
& \underline{U} M=M M 50 \text { TO SENSOR UNIT(R RHO) } \\
& V E R T=\operatorname{ARCTAN}(U-M / U M)+B I A S \text { SENSOR }
\end{aligned}
$$

$D E L Q=$ Q_COAS_VERT-VERT
where R RHO is defined by the partial calculation.
Finally the appropriate variance for the COAS vertical angle is assigned.

$$
\text { VAR }=\text { VAR_COAS_VERT }
$$

B. Interface Requirements. The input and output variables for the COAS vertical angle subfunction are given in tables 4.3.2.7.8-1 and 4.3.2.7.8-2
C. Processing Requirements. This subfunction shall be performed after the state and covariance propagation, at the basic fiiter rate. This subfunction is performed as long as COAS measurements are being processed.
D. Constraints. None.
E. Supplementary Information. A suggested implementation of this subfunction is shown in flowcharts NAV RENDEZVOUS, ANGLE NAV, REND NAV INTERP, ONORBIT SV_INTERP and MEAN CONIC_PARTIAL_TRANSITION MATRIX $6 \times 6$ in APPENDIX B.


DESCRIPTION	SYMEOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
the last filter cycle	$V$ LAST	state propagation	$V$	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
Filter estimated target position at the end of the last filter cycle	R TV LAST.	state propagation	$V$	DP	-	ft	filter rate
Filter estimated target position vector at tho end of the last filter cycle	V TV LAST	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
ㄱ Current target position vector in M50 coordinates	R TV	state propagation	V	DP	-	ft	filter rate
Current target velocity vector in M50 coordinates	$V$ TV	state propagation	V	DP	-	$\mathrm{ft} / \mathrm{sec}$	filter rate
Target's.gravity vector at the end of the last integration interval	GTV	state propagation	V	DP		$\mathrm{ft} / \mathrm{sec}^{2}$	filter rate
A discrete indicating the degree of the acceleration model used.	IGD	state propagation	D	-	-	-	filter rate

TABLE 4.3.2.7.8-1 - (Continued) COAS VERTICAL ANGLE MEASUREMENT INPUT PARAMETERS



TABLE 4.3.2.7.8-1 - (Continued) COAS VERTICAL ANGLE MEASUREMENT INPUT PARAMETERS

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	Range	UNITS	SAMPLE RATE
M50 to body transformation matrix at the time the COAS data was snapped	$\begin{aligned} & \text { MMSO TO BODY } \\ & \text { COAS } \end{aligned}$	external data snap	M	DP	-	-	filter rate
Body to COAS transformation matrix	$\frac{M_{\text {COAS }}}{}$	premission load	M	DP	-	-	filter rate
Index indicating which COAS is being used.	N COAS IN USE	external data snap	D	DP	-	-	filter rate
Acceleration constants		*					

* Given in 1-1oad requirements, section 4.8

TABLE 4.3.2.7.8-1 - COAS VERTICAL ANGLE MEASUREMENT OUTPUT PARAMETERS

DESCRIPTION	SYMEOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	COMPUTATICN RATE
The navigation filter measurement residual	DELQ.	Measurement Incorporation	F	DP	-	ft	filter rate
The measurement partials	B	Measurement Incorporation	V	DP	-	vary	filter rate
The general filter gain variance for the sensors	VAR	Measurement Incorporation	F	DP	-	vary	filter rate

### 4.3.2.8 Measurement Processing Statistics

During rendezvous navigation phases that utilize external measurements, the measurement processing statistics subfunction will compute for display certain parameters that are indicative of the condition of the navigation filter and the external sensor measurements that it utilizes. These display parameters serve as the basis for the crew decision as to how external measurement data is to be processed by the nav filter. Three mutually exclusive controls are available to the crew which allow them to select one of the following processing options:
(1) AUTO - the nav filter edit criterion will determine whether or not valid data are to be used to update the state vector and covariance matrix.
(2) INHIBIT - valid data are to be utilized for computing display parameters but are not to be utilized to update the state vector and covariance matrix.
(3) FORCE - the nav filter edit criterion is to be overridden and valid data are to be utilized to update the state vector and covariance matrix whether or not the edit criterion is met.

The INHIBIT option will initially be in effect.

The measurement processing statistics subfunction will be performed after the corresponding state and covariance measurement incorporation subfunction has been performed. Filter edit indicators, which will have been initialized to a default value during the corresponding sensor measurement selection subfunction, will be redefined during
the performance of the state and covariance measurement incorporation subfunction. This will indicate to the measurement processing statistics subfunction, for each measurement type being utilized, which of the following five cases has occurred:
(1) edit indicator $=$ OFF - the filter was not configured for the measurement type, or the data were bad and the filter did not attempt to process data of that type,
(2) edit indicator $=0 N$ - the filter did attempt to process the measurement type but automatically edited the data,
(3) edit indicator $=$ PROCESSED - the filter processed the measurement type as a result of the data satisfying the edit criterion,
(4) edit indicator = STAT - the filter was used solely for producing the residual and ratio parameters for display, or
(5) edit indicator $=$ FORCED - the filter processed the data as a result of a crew edit override.

Moreover, the state and covariance measurement incorporation subfunction will provide the measurement processing statistics subfunction with the value of each measurement residual and the square of each residual edit criterion value. The data supplied to the measurement processing statistics subfunction are used to compute statistics for the sensor measurement type selected.

For each measurement type, the following parameters are to be computed for display to show how well the navigation filter is processing external measurements of that particular type:.

DISP_DELQ $I_{\text {- the actual measurenent residual computed by the }}$ nav filter for the I'th measurement type. If valid data were not presented to the nav filter, then DISP_DELQ shall be set to "BLANK" in accordance with display requirements.
 is the absolute magnitude of the actual measurement residual divided by the maximum magnitude that the residual may atta in before automatic data editing by the filter occurs. As above, DISP_SIG I shall be set to "BLANK" whenever valid data for this measurement type was not presented to the filter.

NACCEPT $_{\text {I }}$ - the number of data marks for the I'th measurement type, which have been used to update the nav state vector.

NREJECT $_{I}$ - the number of data marks for the I'th measurement type which have been automatically rejected as a result of failing the nav filter edit criterion.

DISP_EUIT - the status indicator which shall be displayed as a "BLANK" unless the nav filter has edited a predetermined number of sequential data marks for the I'th type. In this case, the status indicator shall be displayed as the symbol, "ף". Once set, the down arrow symbol shall continue to be displayed until a predetermined number of sequential data marks have been automatically processed by the nav filter or until the crew exercises the edit override (FORCE).

The accept/reject counters are initialized to zero whenever the rendezvous navigation major mode is entered (MM211), whenever the
onorbit coast major mode is entered (MM201), whenever the sensor type is changed, or whenever a ground state update occurs.

Sensor data will consist of two types - angular data and range data. The angular data will consist of a pair of angles from one of three mutually exclusive sources; COAS, star tracker (ST) or rendezvous radar (RR). The range data will consist of range and range rate from the rendezvous radar. Angular data, from whichever source has been chosen, can be utilized in conjunction with range data.
A. Detailed Requirements. - The correspondence between the measurement type and the subscript, I, shall be as follows:

$$
I=1-\text { COAS horizontal angle, ST horizontal angle or }
$$ RR shaft angle $I=2-$ COAS vertical angle, ST vertical angle or $R R$ trunnion angle

$I=3-R R$ range
$I=4-R R$ range rate
For each value of the integer I in the interval (1, 4), the following procedure will be performed.

The indicator SENSOR_EDIT I shall be tested; and if found to have the value "OFF", both DISP $D E L Q_{\mathrm{I}}$ and DISP $S I G_{\mathrm{I}}$ shall be given the value "BLANK" and the calculations shall cease at this point. If the value tested is not "OFF", then DISP $D^{D E L} Q_{I}$ shall be given the value SENSOR DELQ $I_{\text {I }}$ and DISP_SIG Shall be calculated according to

$$
\text { DISP SIG }_{1}=\frac{\text { ABS (SENSOR DELQ } 1 \text { ) }}{\left(\text { SENSOR_RESID TEST }_{\mathrm{I}}\right)^{1 / 2}}
$$

provided that SENSOR_RESID_TEST ${ }_{I}$ is positive.
The SENSOR_EDIT I indicator shall again be tested; and if found to have the value "STAT", DISP EDIT ${ }_{I}$ shall be given the value "BLANK" and the calcuiations shall cease at this point.

If the value is not "STAT", the SENSOR_EDIT I indicator shall: be tested again, and if found to have the value "ON"; the sequential accept counter shall be set to zero (SEQ_ACCEPT $=0$ ), the sequential reject counter shall be incremented by one (SEQ_REJECT $=$ SEQ_REJECT $T_{I}+1$ ), and the counter for the number of marks rejected by the nav filter shall be incremented by one ( $\mathrm{NREJECT}_{\mathrm{I}}=\mathrm{NREEJECT}_{\mathrm{I}}+1$ ). Then SEQ_REJECT, is to be tested and, if found to exceed a predetermined number (REJ_MAX), DISP_EDIT, shall be set to " $\downarrow$ ".

If the value for SENSOR_EDIT was not "ON", the sequential reject counter shall be set to zero ( $S E Q \operatorname{REJECT}_{I}=0$ ), the sequential accept counter shall be incremented by one (SEQ_ACCEPT $=$ SEQ $_{I}$ ACCEPT $_{I}+1$ ), and the counter for the number of marks processed by the nav filter shall be incremented by one ( $\mathrm{NACCEPT}_{I}=\mathrm{NACCEPT}_{\mathrm{I}}+1$ ). Finally DISP_EDIT, is to be given the value "BLANK" whenever SENSOR_EDIT I has a value of "FORCED". or whenever SEQ ACCEPT I exceeds a predetermined number (ACC MIN).
B. Interface Requirements. Input and output parameters are 1 isted in tables 4.3.2.8-1 and 4.3.2.8-2.
C. Processing Reguirements. None
D. Constraints None
E. Supplementary Information. A suggested implementation for this subfunction may be found in the detailed flow chart of Appendix B entitled: MEAS PROCESSING STATISTICS REND.

TABLE 4.3.2.8-1: MEASUREMENT PROCESSING STATISTICS INPUT PARAMETERS


TABLE 4.3.2.8-1: MEASUREMENT PROCESSING STATISTICS INPUT PARAMETERS (CONTINUED)


i
$\stackrel{y}{u}$

*Rendėzvous navigation principal function input list.

TABLE 4.3.2.8-2: MEASUREMENT PROCESSING STATISTICS OUTPUT PARAMETERS

DESCRIPTION	SYMBOL	OUTPUT SOURCE	TYPE	PRECISION	RANGE	UWITS	COMPUTATION RATE
```Display measurement residual for J.'th measurement type, I=1,4```	DISP_DELQ	*	$F$	DP		VAR.	
Display residual edit ratio for I'th measurement type, $I=1,4$	DISP_SIG	*	F	$\overline{9} P$		-	
Display edit status indicator for I'th measurement type, $I=7,4$	DISP EDITI	*	CHAR	S			
Counter for the number of data marks, for the I'th measurement type, which have been utilized to update the nav state vector, $I=1$, a	N ACCEPT I	*	F	S			
Counter for the number of data marks, for the I'th measurement type, that have been edited by the nav filter, $I=1,4$	N_REJECT	*	F	S			

*Rendezvous navigation principal function output list.

4.5 General Requirement Principal Functions

This section delineates software requirements in the category of service, single use or multiple use, that.are not specifically function related. The general requirement principal functions include, but are not limited to, the following:

1. Site lookup principal funciion (Section 4.5.1).
2. Onorbit precision state prediction principal function (Section 4.5.2).
3. Star Tracker SOP Ephemerides (Seciton 4.5.3).

4.5.2 Onorbit Precision State Prediction

A capability shall he provided for predicting the position and velocity of the orbiter or target at some final time in the future or past, when an initial state and time are given.

The onorbit precision state prediction principal function shall make no use of the IMU accumulated sensed velocities and therefore is a free-flight prediction process even though it may be performed during periods of flight in which navigation is using accumulated sensed veiocities.

Since this principal function shall be used for different purposes having different environmental requirements in various navigation phases, the user shall, by setting the control flags to the appropriate values and by choosing the prediction method or intergration step size, have the option to trade off the accuracy of the integration and the fidelity of the mathematical models in favor of the shorter execution time. This is accomplished with parameters specified in the input argunent list.

Tables 4.5.2-1 and 4.5.2-2 are principal function input and output fists which show data flow between the onorbit precision state prediction principal function and other principal functions.
A. Detailed requirements. This principal function, which provides for onorbit precision state prediction of the orbiter or target position/velocity states, shall use either a fourth-order Runge-Kutta numerical integration technique, modified with Gill's coefficients, together with an Adams-Moulton predictor-corrector integrator or a singlestep two-body method. The S. Pines formulation of the equations of motion shall be used with each technique. Detailed requirements for the Runge-Kutta-Gill integration technique and the Pines formulation are provided in the precision integration subfunction (sec. 4.2.1.3.2). The Runge-Kutta-Gill integrator is used as the starter (\%dams-Moulton integration is not self-starting) for the Adams-Moulton technique and shall be shared with the precision integration subfunction, together with the Pines formulation of the equations of motion. Noncentral body accelerations shall be generated by the userselected acceleration models (sec. 4.2.1.2) to account for perturbations due to drag, venting and uncoupled thrusting, and variations in the Earth's gravitational potential. The onorbit precision state prediction principal function computational scheme shall be performed as follows:

1. The desired gravity (GMD and GMO), drag (DM), venting and uncoupled thrusting (VM), and vehicle-attitude (ATM) mode flags shall be obtained from the user, together with the prediction integration step size (DELTAT), initial state and time $\left(\underline{R}_{-} N_{0}, \underline{V}_{-} N\right.$, and $\left.T I N\right)$. and final time at the end of the prediction interval (T FIN).
4.5.2-2
2. The initial state vector shall then be renamed for use in the Pines equations-of-motion formulation and the seventh variable of integration $\left(X_{7}\right)$ initialized to zero:

$$
\begin{aligned}
& X N_{1} \text { to } 3=\underline{R} I N \\
& X N_{4} \text { to } 6=V-I N \\
& X N_{7}=0 .
\end{aligned}
$$

In the above equations, the seventh variable of integration (XN_{7}, required by the Pines technique), is the integrated initial time TIN.
3. A check shall now be made on the gravity mode flag (GMD) to determine if prediction is to be accomplished through the use of a simple two-body solution or a more precise integration technique. If a two-body solution is required, (i.e., GMD $=0)$ the prediction interval is computed,

$$
T_{-} C U R=T_{-} F I N-T_{-} I N
$$

and the Pines equations-of-motion formulation is called to propagate the initial state (\underline{R} IN, V _IN) from the initial time (T_IN) to the final time (T,FIN) in a single step using the two-body solution portion of the Pines equations-of-motion formulation.
4. Otherwise, (GMD; 0), the Adams-Moulton flag is set to OFF, the current integrator tifie (T_CUR) is set to zero, and the step size is set as input:

$$
\begin{aligned}
& A M=O F F \\
& T_{\text {_CUR }}=0 . \\
& D T _S T E P=D E L T A _T
\end{aligned}
$$

Additionally, the input integration step size is checked to determine if it is greater than a pre-stored maximum (DT_MAX). If the input step size is greater than the pre-stored maximum (i.e., DT_STEP DT_MAX), the step size used will be set at the maximum.

$$
D T _S T E P=D T _M A X
$$

5. Next, the number of integration steps (N STEPS) required for the input integration interval shall be calculated:

$$
N \leq \text { STEPS }=\operatorname{CEILING}\left(\frac{\left|T-F I N-T_{I N}\right|}{D T S T E P}\right)
$$

$$
\text { DT_STEP }=\frac{\text { T_FIN }-T_{I N}}{N \text { STEPS }}
$$

6. A check shall now be made to determine if the number of steps is sufficient to require the use of the Adams-Moulton predictor-corrector. If the number of steps required for the integration interval is greater than or equal to the order of the Adams-Moulton integrator (i.e., NSTEPS \geq MORDER), then the Adams-Houlton flag, AM, shall be set to ON - a setting indicating the use of the Adams-Moulton technique. This setting shall cause the Runge-Kutta-Gil1 starter to store the derivatives of the integrated initial conditions (DERIV) in a table (AM TABLE) on the first Runge-Kutta evaluation for each integration step:

$$
A_{I, L} T_{L A B L E}=\text { DERIV }_{L}
$$

where

$$
I=1 \text { to MORDER }-1
$$

$$
L=1 \text { to } 7
$$

The last (MORDER) derivative shall be stored following the call to the Pines formulation after the last Runge-KuttaGill step. Should there not be enough integration steps to require use of the Adams-Moulton integrator, this principal function shall provide for precision state prediction with use of only the Runge-Kutta-Gill technique (i.e., $A M=O F F)$. Storage of the above derivatives shall then be by-passed.
7. The actual integration of the orbiter or target state equations (formulated according to the Pines technique) shall now be performed by proceeding as follows for each step in the integration interval. Note that, in the Pines equations-of-motion formulation, it is the initial conditions (\underline{R}_{2} IN, $\underline{V}_{-} I N$, and T IN) that are integrated and then used in the closed-form solution of a two-body, unperturbed orbital problem using an F- and G-series type of expression.

The fourth-order Runge-Kutta-Gill integration technique shall be invoked in conjunction with the Pines equation-ofmotion formulation. When the Adams-Moulton technique is also required, the Runge-kutta-Gill integrator shall construct the table of derivatives (AM TABLE) as described previously.

During onorbit precision state prediction requiring only Runge-Kutta-Gill, integration shall continue until the number of steps in the integration interval have been completed. When both integration techniques are required (Runge-KuttaGill and Adams-Moulton), the Runge-Kutta-Gill technique
shall be invoked until N_STEPS = MORDER - 1; then, the Adams-Moulton technique shall be employed for the remaining steps. The Pines equations-of-motion formulation shall be invoked after the final call to the Runge-Kutta-Gill integrator ($I=$ MORDER -1), and the integrated initial condition derivatives shall be stored:

$$
\text { AM_TABLE }_{I+7, M}=\text { DERIV }_{M}
$$

where

$$
\begin{aligned}
& I=\text { MORDER }-1 \\
& M=1 \text { to } 7
\end{aligned}
$$

When the number of integration steps required exceeds MORDER - 1 and the table of derivatives has been constructed with the aid of the Runge-Kutta-Gill starter, the AdamsMoulton integration technique shall proceed as follows for each integration step:
a. First, the predictor calculations are performed for each váriable of integration $(J=1,7)$:

$$
\begin{aligned}
& X P=X N, J \\
& S U M=0.0 \\
& \text { SUM }=\text { SUM + AM TABLE } 1 \text { to MORDER, }{ }^{\text {PRED_COEF }} 1 \text { to MORDER } \\
& X N_{J}=X_{J}+D T \text { STEP SUM }
\end{aligned}
$$

where;

$$
\begin{aligned}
& X P=\text { value of the integrated initial conditions } \\
& \text { before prediction } \\
& X N=\text { integrated initial conditions } \\
& A M T A B L E=\text { a table of MORDER derivatives of the } \\
& \text { integrated initial conditions }
\end{aligned}
$$

PRED_COEF = a table of premission-selected coefficients DT_STEP = integration step size
b. The current time within the integrator
is incremented:
T_CUR $=$ T_CUR + DT_STEP
c. The Pines equations-of-motion formulation is
exercised to calculate the derivatives of the predicted integrated initial conditions.
d. Next, the corrector calculations are
performed in a manner similar to the predictor equations (i.e., $\dot{j}=1,7$):

$$
\begin{aligned}
& \text { SUM }=0.0 \\
& \text { SUM }=\text { SUM }+ \text { AM_TABLE } 2 \text { to MORDER, } 1 \text { CORR_COEF } 1 \text { to MORDER- } 1 \\
& X_{J}=X_{J}+\text { DT_STEP (DERIV CORR_COEF } \quad \text { MORDER }+ \text { SUM) }
\end{aligned}
$$

e. Another call shall now be made to exercise the Pines formulation to calculate the derivates of the integrated initial conditions (position, velocity and initial time) and, on the final integration step, compute the position and velocity vectors $\left(X_{1}\right.$ to 3 and $\left.X_{4 \text { to }} 6\right)$ by applying the integrated initial conditions to the Pines equations defining the closed-form two-body solution.
f. If additional integration steps are required, the Adams-Moulton table of derivatives (AM TABLE) shall be updated as follows for each variable of integration $(J=1,7)$:

$$
\text { AM_TABLE }_{\text {MORDER, }}=\text { DERIV }_{\mathrm{J}}
$$

After the computed number of integration steps have been completed (whether with Runge-Kutta-Gill alone or in conjunction with the Adams-Moulton or a single step twobody solution), the position and velocity are renamed for output:

$$
\begin{aligned}
& \text { RFIN }=X_{1} \text { to } 3 \\
& \text { VFIN }=X_{4} \text { to } 6
\end{aligned}
$$

B. Interface requirements. Input and output requirements are contained in tables 4.5.2-3 and 4.5.2-4.
C. Processing requirements. This principai function requires user-supplied values of gravity (GMO and GMD), drag (DM), venting and uncoupled thrusting (VM), and vehicle-attitude (ATM) mode flags, in conjunction with the initial state and time (RIN, VIN, TIN) and the final time (T_FIN). Appropriate acceleration models may be found in section 4.2,1.2 . When using this function for target vehicle state prediction the venting and uncoupled thrusting flag (VM) shall be set to zero. Additionally, if drag modeling is desired, the drag mode flag (DM) should be set to one and the attitude mode flag (ATM) set greater than or equal to three as appropriate for the specific target.
D. Constraints. This nodule may only be invoked during onorbit or rendezvous coasting flight. The mininum step size (DELTA T) and maximum prediction interval (T_FIN - T_IN)
is restricted by the maximum number of integer steps which can be stored into the orbiter's onboard computer in single precision (i.e. 32767 steps). The user shall supply the appropriate step size and prediction interval such that. the maximum number of steps never exceeds 32767 (AP-101 maximum standard single precision integer).
E. Supplementary information. The onorbit precision state prediction principal function shall be used for both precision and rapid state prediction. When a rapid state prediction is desired, two options are available. The first uses a sophisticated integration technique and equations of motion formulation, while the second method performs the rapid prediction with a less accurate, single-step two-body F and G series solution involving no numerical integration. A suggested implementation of this principal function may be found in appendix B. The following table lists several examples of input variable list combinations for the various types of prediction performed:

VEHICLE	PREDICTION TYPE	GMD*	GMO*	DM	VM	ATM	STEP-SIZE	COMMENTS
Orbiter	Precision	8	8	1	1	1	user selects	Full 8th degree potential model, Drag and venting with predicted attitude \& venting timeline
Orbiter	Rapid precison	2	0	1	0	2	user selects	J_{2} only potential model with constant drag coeffieient, area
Orbiter	Rapid 2-body	0	0	0	0	0	0	Single-step two-body F and G series solution
- Target	Erecison	8	8	1	0	≥ 3	user selects	Full 8th degree potential model drag with constant area, drag coefficient
Target	Rapid precision	2	0	1	0	≥ 3	user selects	J_{2} only potential model with constant drag coefficient, area
Target	Rapid 2-body	0	0	0	0	0	0	Single-step two-body F and G series solution

* When prediction is being performed for both vehicles (orbiter and target) over a similar trijectory, the same degree and order potential model should be used for each prediction so that potential model errors will be avoided.
table 4.5.2-2: onorbit precision state prediction principal function input

TABLE 4.5.2-2: ONORBIT PRECISION STATE PREDICTION OUTPUT LIST

TABLE 4.5.2-3 ONORBIT PRECISION STATE PREDICTION INPUT PARAMETERS

	OESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
	FLAG INDICATING THE DEGREE OF THE GRAV POTEN-	GMD	*	I	S	0-8		AS NEEDED
	FLAG INDICATING THE ORDER OF THE GRAV POTENtiAL MODEL	GMO	*	I	S	0-8		AS NEEDED
	FLAG INDICATING CHOICE OF MODELS FOR ACCELERATION.DUE TO DRAG	DM	*	I	S	0,1		AS NEEDED

* Refer to onorbit precision state prediction principar function input list

TABLE 4.5.2-3 ONOORBIT PRECISION STATE PREDICTION INPUT PARAMETERS - Continued

DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
INTEGRATION STEP SIZE FOR PREDICTION OR PROPAGATION	DELTA T	*	F	DP		SEC	AS NEEDED
SHUTTLE POSITION VECTOR AT T_IN	R IN	.*	$V(3)$	DP		. FT	AS NEEDED
SHUTTLE VELOCITY VECTOR AT T_IN	\underline{V} IN	*	$V(3)$	DP		FT/SEC	AS NEEDED

* Refer to onorbit precision state prediction principal function input list

TABLE 4.5.2-3 ONORBIT PRECISION STATE PREDICTION INPUT PARAMETERS - Continued

	DESCRIPTION.	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
$\begin{aligned} & \overrightarrow{i n} \\ & \stackrel{N}{n} \\ & \stackrel{1}{v} \end{aligned}$	INITIAL TIME INPUT FOR ONORBIT PREDICTION OR PROPAGATION	T_IN	*	F	DP		SEC	AS NEEDED
	FINAL TIME AT END OF PREDICTION OR PROPAGATION	TFIN	-*	F	DP		SEC	AS NEEDED
	THE ORDER OF THE ADAMSMOULTON INTEGRATOR	MORDER	PREMISSION LOAD	I	S			AS NEEDED
	ARPAY OF COEFFICIENTS REQUIRED BY THE RKGILL INTEGRATOR	A	CONSTANTS	F	DP			AS NEEDED
	ARRAY OF COEFFICIENTS REQUIRED BY THE RK-GILL INTEGRATOR	B	CONSTANTS	F	DP			AS NEEDED
	ARRAY OF COEFFICIENTS REDUIRED BY THE RK-GILL INTEGRATOR	C	CONSTANTS	F	DP:		-	AS NEEDED

* Refer to onorbit precision state prediction principal function input list

TABLE 4.5.2-3 ONORBIT PRECISION STATE PREDICTION INPUT PARAMETERS - Concluded

	DESCRIPTION	SYMBOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
$\begin{aligned} & \text { in } \\ & \stackrel{y}{n} \\ & \stackrel{1}{n} \end{aligned}$	ARRAY OF COEFFICIENTS REQUIRED BY THE RK-GILL integrator	D	CONSTANTS	F	DP			AS NEEDED
	ARRAY OF MORDER COEFFICIENTS USED IN THE ADAMS-MOULTON CORRECTOR	PRED COEF	CONSTANTS	F	DP			AS NEEDED
	GRAVITATIONAL CONSTANT OF EARTH	EARTHMU	CONSTANTS	F	DP	FT**3/	$\operatorname{SEC} * * 2$	AS NEEDED
	SQUARE-ROOT OF EARTH_MU, USED IN ONORBIT PRED/ PRLP INTEGRATION (PINES) METHOD	SQR_EMU	*	F	DP	(FT**3/	$E C * * 2)^{\frac{1}{2}}$	AS NEEDED
	FLAG INDICATING WHICH VENTING MODEL IS TO BE USED BY PRECISION STATE PREDICTOR	VM	*	I	S	0,7		AS NEEDED
	ATIITUDE MODE FLAG	ATM	${ }^{*}$	I	S	$\begin{aligned} & 0,1,2<0 \\ & \geq 3 \end{aligned}$	rbiter get)	AS NEEDED
	MAXIMUM INTEGRATION STEP SIZE USED FOR PRECISION PREDICTION	DT_MAX	$\begin{aligned} & \text { PREMISSION } \\ & L O A D \end{aligned}$	F	DP	\geq	SEC	AS NeEded

* Refer to onorbit precision state prediction principal function input list \qquad

OESCRIPTION	SYMEOL	OUTPUT DESTINATION	TYPE	PRECISION	PAMGE	UNITS	COMPUTATION RATE \qquad
SHUTTLE POSITION VECTOR AT T FIN	R FIN	* *	$V(3)$	DP	\cdots	FI	AS NEEDED
SHUTTLE VELDCITY VECTOR AT T FIN	V FIN	*	$V(3)$	DP		FंT/SEC	AS NEEDED
\pm							
シ							

* Refer to onorbit precision state prediction principal function output list

4.6 User Parameter Processing Principal Function (Onorbit)

This principal function shall serve as the interface between navigation and users of navigation-related data during the onorbit operational sequence. This function shall maintain the vehicle state within the user parameter state propagation subfunction and shall:
a) provide this state to users who require vehicle state parameters in mean-of-fifty (M50) coordinates; and
b) provide the software to transform this state for users who require nav state-related parameters.

Interface parameters between this principal function and other GN\&C principal functions are presented in tables $4.6-1$ and $4.6-2$.

TABLE 4.6-1: ONORBIT USER PARAMETER PROCESSING PRINCIPAL FUNCTION INPUT LIST

	LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)	
				SUBFUNCTION NAME	SUBFUNCTION INPUT TABLE
	$\begin{aligned} & \text { G14702 - } \\ & \text { G14704 } \end{aligned}$	VIMU CURRENT	IMU_RM	USER PARAM FIOPAGATOR	4.6.1-1
	G14705	T_IMU	"	"	"
	$\begin{aligned} & \text { G28201- } \\ & \text { G28203 } \end{aligned}$	R RESET	ORB NAV RENDZ NAV ORB/RND NAV SEQ	"	"
ip	$\begin{aligned} & \text { G28204- } \\ & \text { G28206 } \end{aligned}$	\triangle VESET	$\begin{gathered} \text { RENDZ NAV } \\ \text { ORB NAV } \\ \text { ORB/RND NAV SEQ } \end{gathered}$	"	"
	G29701	T_RESET	RENDZ NAV ORB NAV ORB/RND NAV SEQ	"	1
	$\begin{aligned} & \text { G28210 - } \\ & G 28212 \end{aligned}$	V IMU_RESET	$\begin{gathered} \text { RENDZ NAV } \\ \text { ORB NAV } \\ \text { ORB/RND NAV SEQ } \end{gathered}$	"	"
	G46500	USE IMU_DATA	RENDZ NAV ORB NAV	1	"
	G25515	FILT UPDATE	REND NAV ORB NAV ORB/RND NAV SEQ	"	"

TABLE 4.6-1: ONORBIT USER. PARAMETER PROCESSING PRINCIPAL FUNCTION INPUT LIST (con't.)

TABLE 4.6.2: ONORBIT USER PARAMETER PROCESSING PRINCIPAL FUNCTION OUTPUT LIST

	LEVEL B TNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	internal subfunction destination (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION which uTilize the variable)	
				SUBFUNCTION NME	SUBFUNCTION INPUT TABLE
	$\begin{gathered} \text { GO2701- } \\ \text { GO2703 } \end{gathered}$	R AvGG	ON-ORB GUID ATT PROC ORBIT MNVR DIP GN\&C/SM-PL IF	USER_PARAM_PROPAGATOR	4.6.1-2
	$\begin{aligned} & \text { G02704- } \\ & \text { G02706 } \end{aligned}$	\checkmark V ${ }^{\text {a }}$ GG	ON-ORB GUID ATT PROC ORBIT MNVR DIP GN\&C/SM-PL IF	"	"

TABLE 4.6-2: ONORBIT USER PARAMETER PROCESSING PRINCIPAL FUNCTION OUTPUT LIST (con't.)

LEVEL B MNEMON	LEVEL C FSSR VARIABLE NAME	EXTERNAL PRINCIPAL FUNCTION SOURCE	INTERNAL SUBFUNCTION DESTINATION (SUBFUNCTIONS WITHIN THIS PRINCIPAL FUNCTION WHICH UTILIZE THE VARIABLE)	
			SUBFUNCTION NAME	SUBFUNCTION INPUT TAGEE
602707	T STATE	ON-ORB GUID ORBIT MNVR DIP GN\&C/SM-PL IF	USER PARAM PROPAGATOR	4.6.1-2
$\begin{aligned} & \mathrm{GO2712-} \\ & \mathrm{GO2714} \end{aligned}$	V IMU OLD	ON-ORB GIJID	"	" -
TBD	LATITUDE	NAV MONITOR DIP	NAV_MONITOR_COMPS	4.6.2-2
"	LONGITUDE	"	"	"
"	ALTITUDE	\cdots	"	"
"	ASC NODE	"	1	"
$\begin{aligned} & \text { G02701- } \\ & \text { G02703 } \end{aligned}$	R AVGG	ONORBIT PREDICT	i	"
$\begin{aligned} & \text { G02704- } \\ & \text { G02706 } \end{aligned}$	\checkmark AVGG	1	"	"
G02707	T STATE	"	"	"
TBD	T PREDICT	"	"	"
1	DT_PREDICT	"	"	"

4.6.1 User Parameter State Propagation

Whereas the on-orbit and rendezvous navigation state propagation subfunctions advance the navigation state vector at relatively large intervals, at the end of which external measurement data processed by the filter are incorporated when appropriate, users such as guidance and displays require a knowledge of the state vector at shorter intervals.

The on-orbit and rendezvous user parameter state propagation subfunction will satisfy the requirements of such users by integrating the equations of motion within the intervals of the navigation propagation with use of a simplified computation of the gravitational acceleration in conjunction with a small step size.

In the case of the orbiter, if an indication exists that the acceleration derived from the IMU sensed velocities is above a certain threshold level, this acceleration is to be used in the integration process. The information about the acceleration level takes the form of a flag (USE IMU DATA) which is set to ON or OFF by the navigation state propagation. The integration is to be performed by an average-g process, using a modeled acceleration that contains only the central force terim and the J_{2} zonal harmonic of the Earth's gravitational force. If the USE IMU DATA flag is found to be set to on, the sensed acceleration shall be used
in addition to the model acceleration. If the USE IMU DATA flag is found to be OFF, oniy the modeled acceieration is to be utilized in the integration.

In the rendezvous phases it is also necessary to propagate the target vehicle state. There being no IMU's in this vehicle, only the modeled acceleration is to be used in the integration.

This process will be restarted after each filter update with the filter states. The values of the filter updated position and velocity vectors, together with their time tag and the total accumulated IMU velocity, are stored (at each navigation cycle) in special locations for use by the user parameter state propagation subfunction. This prevents the errors resulting from use of a less accurate integrating scheme from becoming too large and, at the same time, provides a synchronization between the propagation tasks.
A. Detailed Requirements

A capability shall be provided for a fast computation of the position and velocity of the orbiter during all phases of OPS-2, and of the position and velocity of the target vehicle during all rendezvous phases. This computation shall provide the required state vectors in a 1450 coordinate system by the integration of the equations of motion that include gravity accelerations and, for the orbiter, the IMI sensed velocities, if
they give a significant contribution.

In the case of the oriter, the value of the state that is to be advanced (integrated forward in time) may be from one of two sources (the one used depends on the tested value of the flag (FILT UPDATE), which indicates the availability of a filter updated state):

1. If an update from the filter is not available (condition OFF), the propagated state, saved from the previous cycle, is to be advanced. The value of the IMU-accumulated sensed velocity from the previous cycle is available for state advancement purposes.
2. If an update from the filter is available (condition $O N$), the navigation filter updated state, together with its time tag and associated IMU accumulated sensed velocity, is to replace the previous propanated state, time tag, and accumulated velocity. The filter updated values are R RESET, \underline{V} RESET, I RESET and V IMU RESET; the vectors maintained by the user parameter state propagator are B AVGG and V AVGG. The time tag is TSTATE. Thus, if FILT UPDATE - ON, the following will be done:

$$
\begin{aligned}
& \text { R AVGG }=\underline{\text { RESET }} \\
& V \text { AVGG }=V \text { RESET }
\end{aligned}
$$

$$
V I M U O L D=V \text { IMU RESET }
$$

$$
\text { T STATE }=\text { T RESET }
$$

The computational sequence required is as follows:

1. Snap the IMU accumulated sensed velocity and time tag: SNAP (V IMU_CURRENT, T_IMU)
2. Test the filter update flag (EILT UPDATE) and take the appropriate aforementioned action.
3. Compute the interval over which advancement is required:

DT_IMU = T_IMU - T_STATE
4. Test the USE_IMU DATA flag. Then, if the value of the flag is found to be $O N$, set

A SENSED $=\frac{V \text { IMU_CURRENT }-V \text { IMU_OLD }}{D T \text { IMU }}$
If the value of the USE IMU DATA flag is OFF, set
A_SENSED $=0$.
5. The position and velocity vectors of the orbiter shall then be obtained by a call to the user state integrator

CALL: AVERAGE G INTEGRATOR
IN LIST: R AVGG, V AVGG, DT IMU, A SENSED, T STATE, TIMU

OUT LIST: R AVGG, VAVGG

The calculations performed up to this point refer to the orbiter's state. Propagation of the target state is required only during the rendezvous phases. A flag (REND_ NAV FLAG), which has the value ON only during these phases, shall then be consulted by the user parameters state propagator.
6. Test the REND NAV FLAG, If it is found to be ON, test
the FILT UPDATE flag to determine if a filter updated target state is available.

If FILT_UPDATE $=0 N$, set
$\underline{\text { R TARGET }=\text { R TV_RESET }}$
\underline{V} TARGET $=V T V _$RESET
where R TARGET and V TARGET represent the position and velocity vectors of the target vehicle advanced by the user parameter state propagator, and R TV

RESET and V TV RESET the target state vectors from the navigation filter.
7. Advance the target state by a call to the integrator. In this call, the vector that contains the sensed acceleration shall be set to zero.

CALL: AVERAGE G_INTEGRATOR
IN LIST: R TARGET, V TARGET, DT_IMU, 0., 0.,
0., T_STATE, T_IMU

OUT LIST: \underline{R} TARGET, V TARGET

After the state vector updates have been completed, the following steps are to be executed:
8. Save the time tag output for use in the next cycle:

T_STATE $=$ T_IMU
9. Save the latest IMU accumulated sensed velocity:

$$
\text { VIMU OLD }=V \text { IMU CURRENT }
$$

10: Set the FILT UPDATE flag to OFF.

This completes the sequence of calculations of a user parameter state propagation cycle.

The detailed integrator equations follow:
AVERAGE_G_INTEGRATOR
IN LIST: R AV, V AV, DTIME, $A C, T_{\text {STATE, }}$ T_IMU
OUT LIST: RAV, VAV

1. By means of a call to the acceleration function, find the gravitational acceleration up to degree 2 and order 0 for the input state vector and corm responding time tag;

$$
\begin{aligned}
\underline{G R}= & \text { ACCEL_PERT_ONORBIT }(2,0,0,0,0, \text { R AV, } \\
& \left.V A V, T _S T A T E\right)-E A R T H _M U R A V i|R A V|^{3}
\end{aligned}
$$

2. advance the position vector by the average-g method:

$$
\underline{R A V}=\underline{R} A V+\text { DTIME }[\underline{V} A V+.5 \text { DTTME }(\underline{A C}+
$$

3. Use this updated position vector and the current time to find a new value of the gravitational acceleration:

$$
\begin{aligned}
\underline{G R T}= & \text { ACCEL PERT ONORBIT }(2,0,0,0,0, R A V, \\
& \underline{V A V, T I M U)-E A R T H ~ M U P} \underline{R} A V /|\underline{R} A V|^{3}
\end{aligned}
$$

4. Advance the velocity vector by the average-g method:

$$
V A V=\searrow A V+D T I M E[A C+.5(G R+G R T)]
$$

B. Interface Requirements.

The input and output required are listed in Tables
4.6.1-1 and 4.6.1-2, respectively,
C. Processing Requirements

None.
D. Constraints

None.

E. Supplementary Information

A suggested implementation in the form of detailed flow charts is to be found in Appendix 0.

TABLE 4.6.1-1 On-Orbit User Farameter State Propagation Input Parameters

* User parameter processing principal function input list.

TABLE 4.5.1-1 On-Orbit User Parameter State Propagation Input Parameters (cont'd)

DESCRIPTION	SYMEOL	INPUT SOURCE	TYPE	PRECISION	RANGE	UNITS	SAMPLE RATE
COpy of y CURRENT FILT reserved for user paraneter propagator reset	VIMU_RESET	\cdots *	V	DP		Ft/ sec	Filter Rate
Target position vector after navigation updates	R TV_RESET	*	V	DP		Ft	Filter Rate
Target velocity vector after navigation updates	\checkmark TV_RESET	*	V	DP		$\begin{aligned} & \mathrm{Ft} / \\ & \mathrm{sec} \end{aligned}$	Filter Rate

$6-1.9 \cdot 6$

* User parameter processing principal function input list.

TABLE 4.6.1-2 On-Orbit User Parameter State Propagation Output Parameters

DESCRIPTION	SYMBOL	OUTPUT DESTIMATION	TYPE	PRECISION	RANGE	UNITS	COMPUTATION RiTE/SEC
State vector AVERAGE G integration time stē	DT_IM	*	F	DP		Sec	User parameter propagator rate
$\begin{aligned} & 8 \\ & \text { A } \\ & \mathbb{E} \text { Target vehicle's } \\ & \text { velociy vector } \end{aligned}$	\underline{V} TARGET	*	V	DP		$\begin{aligned} & \text { Ft/ } \\ & \text { sec } \end{aligned}$	User parameter propagator rate
雪 - position vector	R AVGG	On-orbit user parameter calculations, *	V	DP		Ft	User parameter propagator rato
- Time tag for current user parameter state yector	T_STATE	On-orbit user parameter calculations, *	F	DP		Sec	User paraneter propagator rate
$\stackrel{+}{\underset{-}{8} \quad \text { velocity vector }}$	V AVGG	On-orbit user paranieter calculations, *	V	DP		$\begin{aligned} & \mathrm{Ft} / \\ & \mathrm{sec} \end{aligned}$	User parameter propagator rate
$\stackrel{\rightharpoonup}{\Delta} \quad$ Current accumulated - BTU velocity	VIMU_OLD	*	V	DP		$\begin{aligned} & \mathrm{Ft} / \\ & \mathrm{sec} \end{aligned}$	User parameter propagator rate
Target vehicle's position vector	R TARGET	* -	V	- DP		Ft	User parameter propagator rate

[^19]
4.6.2 Onorbit User Parameter Calculations.

This subfunction contains the software necessary to compute for display certain orbital elements representing the Shuttle's earthrelative position at either the current time or at a future time as selected by the crew. The orbital elements computed include: altitude above the reference ellipsoid, longitude, geodetic latitude and the longitude of the ascending node. These parameters will be computed during major modes 201 and 211 to support the Nav Monitor CRT display page.
A. Detailed Requirements. Certain flags will be tested to determine whether the crew wishes to have current or future parameters displayed. Whenever current parameters are desired, computations shall be performed cycilicly for the current user parameter state vector. Whenever future parameters are desired, computations sha 17 be performed a single time for the predicted Shuttle state at the desired input time.

If the parameter, COMP MODE, has a value of "CURRENT", then the orbital parameters are to be determined for the current. time and the user parameter position and velocity vectors, as well as the associated tine tag, are to be renamed for subsequent computations of orbital parameters:

$$
\begin{aligned}
& R \text { COMP }=\text { R AVGG } \\
& V \operatorname{COMP}=V \text { AVGG } \\
& T \operatorname{COMP}=T_{S} \operatorname{STATE}
\end{aligned}
$$

If COMP MODE has the value "PREDICT" and the flag DC PREDICT = OFF, then either the crew has not yet entered the desired predict time or the computations were completed on a previous cycle and for either case no further computations are necessary.

If COMP_MODE has a value of "PREDICT" and the flag DO_PREDICT $=0 \mathrm{~N}$ the orbital parameters shall be computed for the input time, T_PREDICT. The Shuttle's position and velocity vectors at the future time shal? be determined by calling the onorbit precision state prediction principal function (section 4.5.2) with inputs set to correspond to the "rapid precision" prediction method as follows:

CALL: ONORBIT PREDICT
INLIST: $2,0,1,0,2$, DT_PREDICT, R AVGG, V AVGG, T STATE, T PREDICT

OUTLIST: R COMP, V COMP

The predict time is then to be renamed for subsequent computations of orbital parameters and the flag, DO_PREDICT, is to be set OFF:

$$
\begin{aligned}
& \text { TCOMP }=T \text { PREDICT } \\
& \text { DO PREDICT }=0 F F
\end{aligned}
$$

Next, for either of the two cases described above, orbital elements are to be computed. A matrix, valid at the time T. ComP, will be generated to transform M50 coordinates sinto earth-fixed coordinates:

$$
\text { M TEMP TXPOSE }=\text { EARTH FIXED TO M50 COORD }(T-C O M P)^{\top}
$$

The Shuttle's position and inertial velocity vectors will then be transformed into earth-fixed coordinates:

$$
4.6 .2 \cdots
$$

$$
\begin{aligned}
& \underline{R E F}=\text { MTEMP_TXPOSE }_{\text {R_COMP }} \\
& \underline{V E F}=\text { MTEMP_TXPOSE } \underline{V} \text { COMP }
\end{aligned}
$$

The geodetic coordinates of the earth.-fixed position vector shall then be determined by calling the EF_TO_GEODETIC subfunction:

CALL: EF_TO_GEODETIC
INLIST: REF
OUTLIST: LAT GEOD, LONG, ALT
These parameters shall be converted for output and the longitude of the ascending node shall be determined:

ALTITUDE $=$ ALT NAUTMI_PER_FT
LONGITUDE = LONG DEG_PER_RAD
LATITUDE $=$ LAT_GEOD DEG_PER_RAD
ANG MOM = REF X VEF
ASC_NODE $=$ ARCTAN2 $\left(\right.$ ANG_MOM, - ANG_MOM $\left._{2}\right)$ DEG_PER_RAD
B. Interface Requirements. The input and output parameters for this subfunction are listed in Tables 4.6.2-1 and 4.6.2-2, respectively.
c. Processing Requirements. None.
D. Constraints. None
E. Supplementary Information. A suggested implementation of this subfunction in the form of a detailed flow chart can be found in Appendix D, NAV HNNTTOR_SUPPORT.

[^20]TAELE 4.6.2-1: ONOREIT USER PARAMETER CALCULATIONS INPUT PARAMETERS

* onorbit user parameter processor principal function input list

APPENDIX A
NAVIGATION VARIABLE NAMES AND
DESCRIPTIONS

VARIABLES LIST DEFINITIONS

Code used for variable data type
s: scalar
$V(n)$: vector (dimension)
$M(n)$: square matrix (dimension)
INT: integer
BIT: bit
CHAR: character
STR: structure
ARR: array
Coordinate frame code and definition
Body: x : parallel to the longitudinal axis (positive aft)
(structural)
$y:$ completes right-hand system
z: perpendicular to the x-axis, positive upward
EF Earth-fixed coordinate system
M50: Mean of 50 reference coordinate system
RN: x : down runway centerline in direction of landing(runwaycoordinates)y: completes right-hand system
z: down, normal to ellipsoid
TD: x: north(topodeticcoordinates) Y : east
z: down, normal to ellipsoid
UVW Quasi-inertial, right-handed Cartesian coordinate system
u: along vehicle position vector (radial)
v: normal to u, in orbit plane (downtrack)
w: out of orbit plane, $\dot{u x v=w, ~(c r o s s t r a c k) ~}$

APPENDIX A VARIABLE LIST

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
A	ARR(4)	PAD		Array of coefficients required by the RK_GILL integrator
A	$\operatorname{ARR}(9,2)$			Legendre functions array in gravitational acceleration calculation (local variable)
ALPHA	S			Angle of attack
ALT	S			Altitude above ellipsoid
AM	INT	0		Flag ($O N$) to indicate the use of the Adams-Moulton integration technique
AM TABLE	$\operatorname{ARR}(8,7)$	0	M50	Table of derivatives required by the Adams-Moulton integrator
ANGLES_AIF	CHAR	AUTO		AUTO/INHIBIT/FORCE switch associated with the currently enabled angles data set
ANNUAL EFF	S	I LOAD		Variable used in K3 term of atmospheric density
AREA	S			Vehicle's cross-sectional area for DRAG acceleration calculations
A RESID	$V(3)$		M50	Acceleration interpolated to a specified measurement time
A SENS	$V(3)$		M50	Sensed acceleration at current time

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
ATFL	INT			Flag controlling use or non-use of prestored attitude profile, average area, mass, and drag coefficient of orbiter or target vehicles
ATM	INT			Attitude mode flag, controls use or non-use of prestored attitude profile, average area, mass, and drag coefficient of orbiter or target vehicle
ATT ARRAY	ARR			Time line array of attitude information (dimension 9 by TBD)
ATT FLAG	INT			Flag indicating vehicle attitude mode
ATT MODE	S	I LOAD		Acceleration function attitude mode flag
AUXILIARY	S			Intermediate variable in gravitational acceleration calculations
A1	S			Temporary variable used in transition matrix computation
A2	S			Temporary variable used in transition matrix computation
A3	S			Temporary variable used in transition matrix computation
A4	S			Temporary variable used in transition matrix computatión
A5	S			Temporary variable used in transition matrix computation

VARIABLE NAME	DATA TYPE	INITIAL value	COORD FRAME	VARIABLE DESCRIPTION
A6	S			Temporary variable used in transition matrix computation
A7	5			Temporary variable used in transition matrix computation
A8	S			Temporary variable used in transition matrix computation
A9	S			Temporary variable used in transition matrix computation
B,	ARR(4)	PAD		Array of coefficients required by the RK_GILL integrator
B	$V(19)$			Measurement first partials with respect to the filter state
BETA	S			Angle of sideslip
B - TEMP	$V(3)$		M50	Temporary value of paictial vacter (before rotation to current time)
BIAS SENSOR	$V(4)$			Filter estimated sensor biases
BTEB	S			Variable used to store the value of the dot product of B and EB
C	ARR(4)	PAD		Array of coefficients used by the RK_GILL integrator
CD	S			Vehicle's drag coefficient for drag acceleration calculatio:s

APPENDIXA VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
CDA	V (NUM CONF)	I LOAD		Constants used to model drag coefficient (additional corrective term)
CDEC1	s			Sine of solar right ascension
CDEC2	S			Variabie used in K2 term of atmospheric density
CDF	V (NUM CONF)	I LOAD		Constants used to model drag coefficient (frontal area)
CDN	V (NUM CONF)	I LOAD		Constants used to model drag coefficient (top area correction)
CDS	V(NUM CONF)	1 LOAD		Constants used to model drag coefficient (side area correction)
C_EPS	S			Cosine of obliquity of ecliptic
CGAM1	S			Variable used in K2 term of atmospheric density
CGAM2	S			Variable used in K2 term of atmospheric density
C.INC	S	I LOAD		Cosine of inclination of lunar orbit plane on ecliptic
C_MN AN	S			Variable used in K2 term of atmospheric density
C C $M X \triangle A N$	S			Variable used in K2 term of atmospheric density

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
COAS ANGLES EDIT OVERRIDE	BIT	OFF		Flag used (ON) to override the residual edit test for COAS angles data
COAS ANGLES STAT	BIT	OFF		Flag indicating (ON) that COAS angles data are to be processed for statisical display only
COAS ENABLE	BIT	OFF		COAS angles ENABLE flag
COAS MARK NUM	S	0.0		COAS measurement mark counter
C OM	S			Cosine of OMEGA
CONF_ARRAY	$\begin{aligned} & \operatorname{ARR}(2, N U M \\ & \text { CONF) } \end{aligned}$	I LOAD		Configuration timeline
COR	$v(7)$			Temporary vector used in covariance matrix re-initialization
CORR POWER_1	S	I LOAD		Variable used in K2 term of atmospheric density
CORR POWER 2	S	I LOAD		Variable used in K2 term of atmospheric density
COS_PSI_1	S			Variable used in K2 term of atmospheric density
COS PSI_2	S			Variable used in K2 term of atmospheric density
COS_SOL_RA	S			Cosine of solar right ascension

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { CODRD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
COV ACCEL BODY INIT	$V(3)$	I LOAD	BODY	Vector (3×1) of unmodeled acceleration bias error variances (body coordinate system)
COV COR_OPS_	$V(7)$	1 LOAD		Vector (7 x 1) of correlation coefficients associated with the UVW standard deviations SIG UWW OPS 2, used for orbiter position/ velocity covariance initialization
COV_COR_TV	$V(7)$	I LOAD		Vector (7×1) of correlation coefficients associated with the UVW standard deviz: ons SIG_TV UVW, used for target position/ve ocity covariance initialization
COV COR TV UPDATE	$V(7)$	I LOAD		Vector of correlation coefficients associated with UVW standard deviations (SIG_TV UPDATE) used for target vehicle position/velocity covariance initialization (ground upaate)
COV COR UPDATE	$V(7)$	I LOAD		Vector of correlation coefficients associated with UVW standard deviations (SIG_UPDATE) used for orbiter position/ve? ocity covariance initialization (ground update)
Cl	S			Scratch variable used in the mean conic partial calculation
C2	S			Scratch variable used in the mean conic partial calculation
CONST	S			Temporary variable:used in transition matrix computation
C TH	S			Cosine of THETA

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
Cl	S			Auxiliary variable used in F and G series computations and in Pines' method
Cl	S			Cosine of prestored attitude Euler angle (local variable)
C2	S			Auxiliary variable used in F and G series computations and in Pines' miethod
C 2	S			Cosine of prestored attitude Euler angle (local variable)
C3	S			Auxiliary variable used in Pines' variation of parameters method
C3	s			Cosine of prestored attitude Euler angle (local varjable)
C4	S			Auxiliary variable used in Pines' variation of parameters method
C 5	S			Auxiliary variable used in Pines' variation of parameters method
D	ARR(4)	PAD		Array of coefficients used by the RK_GILL integrator
D	$V(3)$		M50	Acceleration due to atmospheric drag
DA _ THRESHOLD	S			Threshold value for magnitude of sensed acceleration

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
D_BUX	S			Dot product of velocity vector and perturbing acceleration.
DAY OF YEAR	S			Number of current day in current year
DAY ONE	S			Variable ussed in K3 term of atmospheric density
D COE PCT ERR	S	I LOAD		Percent error in the drag coefficient
DELQ	S			Measurement residual
DELTAT_G0	S			Time interval between two positions in a conic (F and G series)
DELTAT	S			Time interval between two positions in a conic (F and G series)
DELTAT_T	S	0		Input integration step size for prediction or propagation
DERIV	ARR (7)	0	M50	Temporary storage for derivatives required for the Adams-Moulton integrator
D FIN	S			Dot product of final position and velocity vectors, used in F and G series (conic solution)
DFL	INT			Flag indicating activation (1) or de-activation (0) of drag model (local variable)
DIAG	$V(3)$			Scratch vector

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
DO_RRDOT_NAV_LAST	BIT	OFF		On-off switch indicating (ON) that rendezvous radar range and range rate data was selected for processing on the last filter cycle
OO_ST ANGLES_NAV	BIT	OFF		On-off switch indicating (ON) that startracker angles data has been selected for processing
DO_ST ANELES_NAV LAST	BIT	OFF		On-off switch indicating (ON) that startracker angles data was selected for processing on the last filter cycle
DT	S			Temporary storage for step-size used state vector propagation
D_TAU	S			Dot product of position vector and perturbing acceleration
DT_FILT	S			Interval over which to propagate the state vector
D_TWO	5			Dot product of position and velocity vectors for transition matrix computation and F and G series
DOY EFF	$V(38)$	I LOAD		Array used in K 3 . term of atmospheric density
OT FILT	S			Interval over which to propagate the covariance matrix
DTGO	S			Time interval over which state vector interpolation is to be performed
DT_ONORBIT NAV	S	I LOAD		Sequencing time interva for onorbit navigation during onorbit coast phase

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
EARTH POLE	$V(3)$	I LOAD	M 50	Unit vector in direction of earth's axis of rotation
EARTH_RADIUS_EQUATOR	S	1 LOAD		Earth equitorial radius
EARTH_RADIUS_GRAV	S	I LOAD		Earth radius used for gravitational acceleration calculations.
EARTH RATE	S	I LOAD		Earth's angular rotation rate
EB COPY	$V(19)$			Covariance matrix times partials vector
EDIT FLAG	INT			Four-valued switch (forced, processed, stat, off) used to indicate whether the filter processed sensor measurement data that was forced, auto-selected, or inhibjted, or not processed
E INIT	M (6)		M50	Filter covariance matrix (6×6) saved across a memory transition
ELLIPT	5	1 LOAD		Earth ellipticity constant
EPSILON	S			Obliquity of the ecliptic
EPS KEP	S			Tolerance for successive iterations in the solution of Kepler's equation
EPS TIME	$V(3)$			Array of sensor-related tolerances for SV INTERP

APPENDIX A VARIABLE LIST (Continued)

VARIAELE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
EPS VRB	S	1 LOAD		Tolerance for Z-component of relative velocity vector in body coordinates
EPS 1	S	I LOAD		Tolerance for Z local vertical body position acceptance
EPS2	S	I LOAD		Tolerance for X local vertical body position acceptance
EPS3	S	I LOAD		Tolerance for an ineritial hold body position acceptance
EPS4	S	I LOAD		Tolerance for inertial with rate hold body position acceptance
ERR	S			Auxillary variable used in F and G series (conic solution) computations
E TEMP	$M(6)$		M50	Temporary matrix (6×6) used for covariance reinitialization
EV	$V(3)$		BODY	Unit vector in the direstior of the eigen-axis
EXP SHAPE FACTOR	V(NUM CONF)	I LOAD		Exponential shaping factors for drag coefficient model
F	S			Closed form version of F time series
FACTOR	S			Secant of solar declination
FDOT	S			Closed form version of time derivative F and G series

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
GEDMAG DISTURB CORRECT	S			Geomagnetic disturbance correction in atmospheric density calculation
GMD	INT			Flag indicating the degree of the gravitational potential model (local variabie)
GM_DEG	S	I LOAD		Flag indicating degree of gravitational potential model
GMO	INT			- Flag indicating the order of the gravitational potential model (local variable)
GM DEG_LOW	INT	I LOAD		Lowest degree used in calls to the acceleration function (gravity model)
GMO	INT			Flag indicating the order of the gravitational potential model
GM ORD	S	I LOAD		Flag indicating order of gravitational potential model
GM_ORD_LOW	INT	I LOAD		Lowest order of potential model in calls to the acceleration function
G_NEW	$V(3)$		M50	Orbiter acceleration vector
GO	INT			Flag indicating order of gravitational potential model (local variable)
GR_INT	$V(3)$		M50	Intermediate value of acceleration used in. super-G integration
GR_NEN	$V(3)$		M50	Local value of modeled acceleration used super-G integrator

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
G_TV	$V(3)$		M50	Target vehicle total acceleration vector (M1950)
\underline{G} - V LAST	$V(3)$		M50	Target vehicle total acceleration vector, last value
HANG	S			Angular displacement about the eigen-axis
HORIZ	S			Filter estimate of the horizontal angle measurement
I	INT			Counter
IATM	INT			Attitude mode flag, controls use or non-use of prestored attitude profile, average area, mass, and drag coefficient of orbiter or target vehicle
IDM	INT			Flag indication the activation (1) or deactivation (0) of the drag model (local variable)
ID MATRIX 3×3	M(3)	I LOAD		Three by three identity matrix
IDRAG	INT			Drag mode flag used by the state propagation
IGD	INT			Temporary storage of indicator of potential degree, used in state propagator
IGO	INT			Temporary storage of indicator of potential model order used in state propagator

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
I N	$V(3)$		M50	An arbitrary coordinate unit axis expressed in mean of 1950
INTERM	$V(3)$			Vector of intermediate quantities in lunar ephemeris caiculation
I - RH0	$V(3)$	0.0	M50	Unit line of sight vector
IVENT	INT			Temporary value of venting mode flag, used in state propagator
IVM	INT			Flag indicating activation (1) or de-activation (0) of the venting and RCS uncoupled thrusting model (local variable)
3	INT			Counter 1
K	INT			Integer counter
K_RESID_EDIT	S	I LOAD		Residual edit scale factor (squared)
K1	S			Solar radiation term in atmospheric density
K2	S			Diurnal bulge term in atmospheric density
K3	5			Semi-annual effect term in atmospheric density
K4	S			Geomagnetic effect term in atmospheric density
L	INT			Integer counter

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
M	M (3)			General matrix used as temporary array
MAGN EFF	S	I LQAD		Variable used in $K 4$ term of atmospheric density
MAIUAL EDIT OVERRIDE	INT			Copy of the manual edit override flag of the sensor data type currently being processed that is sent to the filter
MAX NUM Y VENT	INT	I LOAD		Maximum number of vent sources allowable
MAX DENS ANGLE	S	I LOAD		Angle to earth's atmospheric bulge (Russian density model)
MIN DENS ANGLE	S	I LOAD		Angle to reference point in atmosphere (Russian density model)
M-M50BODY K	$m(3)$			Transformation matrix from M50 to body system (K represents the selected matrix by IMU-RM)
MOON_AUXIL	$V(3)$			Vector of auxiliary values in computation of lunar ephemeris
MOON CONST	$V(3)$	I LOAD		Vector of constants for calculation of THETA
MOON PARAM FIRST	$V(3)$	I LOAD		Coefficient of first order term in : development of MOON AUXIL
MOON PARAM ZERO	$V(3)$	$I L O A D$		Constant term in development of MOON AUXIL
MS_DELQ	5			Variance of computed sensor

APPENDIX A VARIABLE LIST (Continuined)

VARIABLE NAME	DATA TYPE	$\begin{array}{ll} \text { INITIAL } & \text { COORD } \\ \text { VALUE } & \text { FRAME } \end{array}$	VARIABLE DESCRIPTION
PHI_MC	M(9)		Patch transition matrix
PHI PATCH	M (3)		Transition matrix for converting from time of measurement to current time (for Space Shuttle)
PHI_REND	M 10)		State transition matrix for target vehicle from current state to state computed at measurement time
PHI_REND_PATCH	M (3)		Transition matrix for converting from time of measurement to current time (for target vehicle)
PREC_STEP	S	I LOAD	Integration step size for precision prediction
PWRD_FLT NAV	BIT	OFF	Flag indicating use of powered flight propagator (ON), or coasting flight propagator (OFF)
Q	$\operatorname{ARR}(7)$	0	Local array used in the RK-GILL integrator
Q HORIZ	S		Measurement from horizontal measurement sensor
Q PRIME	BIT	0.0	Computed measurement
Q_RR SHFT	S		Rendezvous radar shaft measurement angle
QRR_TRUN	S		Rendezvous radar trunnion measurement angle
Q VERT	S		Vertical measurement from sensor

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
REND _NAV_FLAG	BIT	OFF		Flag indicating whether navigationrendezvous in operation (ON), or navigation-onorbit in operation (OFF)
REND STEP	S	I LOAD		Step size used by the precision propagator during rendezvous
RESID_TEST	s			Scaled value of variance for comparison with measurement deviation squared (DELQ ${ }^{2}$)
R FILT	$V(3)$.	M50	Orbiter position vector (M50)
R - FILT_INIT	$V(3)$		M50	Orbiter position vector saved across memory reconfiguration and used for navigation initialization
\underline{R} - FIN	$V(3)$	0	M50	Orbiter or target position vector at TFIN
R_FIN_INV	S			Reciprocal of the magnitude of the final position vector (F and G series)
R^{\bullet}-GMD	$V(3)$		M50	Uplinked orbiter position vector (M1950)
RHO	S			Atmospheric density
RHO_PLANE	$V(3)$		M50	In plane component of line of sight
R_IN	S	0		Absolute value of the integrated initial position vector
R _ IN	$V(3)$		M50	Position vector at the beginning of a time interval (F and G series)

| VARIABLE NAME | DATA TYPE INITIAL COORD VARIABLE DESCRIPTION |
| :--- | :--- | :--- | :--- |

RINV
R_IN AUX

R_IN_INV

R_IN_TAU
R LAST

RING_DATA_GOOD
RO N

R ONE

RONE INV
RO ZERO

RR_ANGLE DATA_GOOD

RR_ANGLE MARK_NUM

S
s
s

S
$V(3)$

BIT
S
$V(3) \quad$ M50

S
s

BIT
$S \quad 0.0$

Reciprocal of magnitude of position vector
Auxiliary variable used in Pines' variation of parameters calculations

Reciprocal of the magnitude of the integrated initial position vector (F and G series)
Auxiliary variable used in Pines' method
Position vector of orbiter at the end of the last filter cycle
Range data good
Distance temin in gravitational acceleration calculations

Position vector at the beginning of an interpolation interval

Inverse of magnitude of a position vector
Distance term in gravitational acceleration calculations

Flag indicating processable data from the rendezvous radar angle measurements
Rendezvous-radar angle (shaft + trunnion) mark counter

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
RR ANGLES EDIT OVERRIDE	INT			ON-OFF switch used (ON) to override the automatic editing of rendezvous radar angles data
RR ANGLES ENABLE	BIT	OFF		Rendezvous radar angles ENABLE flag
RR_ANGLES_STAT	BIT	OFF		Flag indicating (ON) that rendezvous radar angles data are to be processed for statistical display only
RRDOT_EDIT OVERRIDE	BIT	OFF		Flag used (Oid) to override the residual edit test for rendezvous radar and range rate data
RRDOT_MARK NUM	5	0.0		Rendezvous radar range-range rate measurement mark counter
RRDOT_STAT	BIT	OFF		Flag indicating (ON) that rendezvous radar range and range rate data are to processsed for statistical display only
R RESET	$V(3)$		M50	Orbiter vehicle position vector after all navigation updates, reserved for reset of user parameter state propagator position vector
\underline{R} RESID	$V(3)$		M50	M1950 orbiter position vector interpolated to measurement time
R _RHO	$V(3)$		M50	Line of sight
R_RHO_MAG	BIT	0.0		Length of line of sight vector

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
R SUP	$V(3)$		M50	Position vector updated by the super-G integrator
B - TV	$V(3)$	I LOAD	M50	M990 target vehicle position vector
R - TV_GND	$V(3)$		M50	Uplinked M1950 target vehicle position vector at T_TV_GND
R - TV LAST	$V(3)$		M50	Target vehicle position vector, last value
R TV RESET	$V(3)$		M50	Target venicle position vector after all navigation updates, reserved for reset of user parameters state propagator position vector
R - TWO	$V(3)$		M50	Position vector at the end of an interpolation interval
R_TWO_INV	S			Inverse of the magnitude of \underline{R} - TW0
S	M(6)			Disturbance matrix (9X9) for Space Shuttle covariance propagation
SA	S			Square of sine of angle of attack
SB	S			Absolute value of the sine of the sideslip angle
SDEC.	S			Sign of solar declination
SENSOR BIAS	$V(4)$		M50	General systematic sensor biases part of state vector

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION

SENSOR DELQ	$V(4)$
SENSOR EDIT	ARRAY (CHAR)

SENSOR_RESIU	$V(4)$	0
SENSOR_RESID_TEST	$V(4)$	0
S_EPS	S	
SEQ_ACCEPT	$V(4)$	$\underline{0}$
SEQ_REJECT	$V(4)$	$\underline{0}$

Five valued parameter defining use of the I'th measurement data by the navigation filter, $I=1,4$.

ON- rejected by the residual edit test OFF- no processing attempted
PROCESSED - accepted by residual edit test and used to update state vector
STAT - used to generate display parameters
FGRCED - used to updâte state vector as a result of manual edit override

Identifier of the sensor measurement being processed, used in state vector interpolation

Measurement residual for the I'th measurement type, $I=1,4$

Value of the criterion used in the navigation filter for residual edit test for the I' th measurement type, $I=1,4$

Sine of obliquity of ecliptic
Number of sequential sensor marks, for the I'th measurement type, processed by the navigation filter, $I=1,4$

Number of sequential sensor marks, for the I'th measurement type, edited by the navigation filter, $I=1,4$

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD fRAME	VARIABLE DESCRIPTION
SGAM	s			Variable used in K2 term of atmospheric density
SGAM2	S			Variable used in $K 2$ term of atmospheric density
SHFT	S			Estimate of the rendezvous radar. shaft measurement
SIG	$V(6)$		UVW	Temporary vector used in covariance reinitialization
SIT PR_RNG	S	0.0		One sigma value of the rendezvous radar range
SIG_TV UPDATE	$V(6)$	I LOAD	UVW	Vector of standard deviations for target vehicle position/velocity covariance initialization (ground update)
SIG_TV UVW	$V(6)$	I LOAD	UVW	Vector (6×1) of standard deviations (UWW) for target vehicle position/velocity covariance initialization
SIG_UPDATE	$V(6)$	I LOAD	UVW	Vector of standard deviations for orbiter position/velocity covariance initialization (ground update)
SIG UVW OPS 2	$V(6)$	I LOAD	UVW	Vector (0×1) of standard deviations (UVW) for orbiter position/velocity covariance initialization

808	APPENDIX A VARIABLE LIST				
	VARIAELE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
	S_INC	S	I LOAD		Sine of inclination of lunar orbit plane on ectiptic
	SIN_SOL_RA	S			Sine of solar right ascension
	SLOPE SIG_RR_RNG	S	0.0		Slope used to compute the one sigma value of the rendezvous radar
	Sma	S			Semi-major axis of conic
$\overrightarrow{2}$	S MH AN	S			Variable used in K 2 term of atmospheric density
	SMX AM	S			Variable used in $K 2$ term of atmospheric density
	SOL_AUXIL	$V(4)$			Orbital elements of the sun
	SOL LONG	S			Longitude of the sun
	SOL PARAM FIRST	$V(4)$	I LOAD		Rate of change of the orbitel elements of the sun
	SOL PARAM ZERO	$V(4)$	I LOAD		Orbital elements of the sun at the beginning of the year
	SOL_RAD_EMIT_CORRECT	S			Solar radiation correction in atmospheric density calculation
	SOL_ TRUE ANOM	S			True anomaly of the sun
	SOM	5			Sine of OMEGA

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
SQ	S			Scalar part of quaterion used in attitude matrix determination
SQR_ETU	S			Square-root of EARTH MU, used in onorbit pred/prop integration (Pines') method
S_ REND	$M(10)$			Disturbance matrix (10x10) for rendezvous target and sensor biases covariance propagation
S_SL	S			Sine of solar longitude
ST_ANGLES_EDIT OVERRIDE	BIT	OFF		Flag used (0n) to override the residual edit test for star tracker angles data
ST_ANGLES_STAT	BIT	OFF		Flag indicating ($O N$) that star tracker angles data are to be processed for statistical display only
ST_ ENABLE	BIT	OFF		Star tracker angles ENABLE flag
S_TH	s			Sine of THETA
ST MARK NUM	S	0.0		Star tracker measurement mark counter
STAT_ FLAG	INT			Copy of the stat-flag associated with the measurement type currently being processed
So	S			Auxiliary variable used in F and G series computations
S1	5			Auxiliary variable used in F and G series computation and in Pines' method

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
TALIEN	S	I LOAD		Time of last IMU alignment
TANGLES	S			Time tag for the angle type measurements
TARG VEC AVAIL	BIT	I LOAD		Flag indicating (ON) the availability of a target vehiclestate vector and time tag for reinitialization purposes
TAU COAS ANGLES	$V(2)$	I LOAD		Time constant for the COAS angles sensor
TAU RR ANGLES	$V(2)$	I LOAD		Correlation time constent for the rendezvous radar angle measurements
TAU RRDOT	$V(2)$	1 LOAD		ECRV correlation time vector for rendezvous range and range rate
TAU_SENS	$V(4)$			General correlation time constant for sensors
TAU ST ANGLES	$V(2)$	1 LOAD		Correlation time constant for startracker measurements
TAU VENT	$V(3)$	I LOAD		Correlation time for bady venting
T_CHECK PT	S			Time tag of orbiter state vector sáved via CHECKPOINT specialist function
TCUR	S	0		Current integration time within the predictor or propagator
T_CURRENT_FILT	S			Time of current filter state vector
T DIF	S			Time difference over which \downarrow _IW DIF is computed

VAPIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
ITEMP	$V(3)$	0.		A temporary scratch variable
TFIN	S	0.		Final time at end of prediction or propagation
TGND	S			Uplinked time tag of orbiter state vector ($\underline{Z}_{\text {GND }}, \underline{V}$ GND)
THETA	s			Angle from mean ascending node of lunar orbit to the moon (local variable)
THETA	s			Difference in eccentric anomaly
THETA COR	S			Correction to THETA in the solution of Kepler's equation
TIN	S	0.		Initial time input for onorbit prediction or propagation
T_INITIAL	S	-		Attitude mode switching time
TLAST_FILT	S			Time tag of \underline{V} LAST FILT, \& of filter state at last navigałion cycle
T-LAST_FILT_INIT	S			Time tag of navigation initialization data carried across memory reconfiguration
IOT ACC	$V(3)$		M50	Vector of orbiter total acceleration (M1950)
TOT_ACC_LAST	$V(3)$		M50	Value of TOT ACC at the end of the previous cycle
T-REND_RADAR	S			Time at which the rendezvous radar is "snapped"

```
APPENDIX A VARIABLE LIST (Continued)
```

VARIABEE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
TRESET	S			Time associated with reserved reset state
TRESID	S			Time tag of interpolated state vector
TRUN	S			Estimate of the rendezvous radar trunnion measurement
TSTOR	S	0.		Initiai time of each Runge-Kutta integration step
T_TV	5			Time tag of target vehicle state vector
T-TV_GND	S			Uplinked target state time tag
T TWO	S			Time tag of state at end of interpolation interval
TV UPLINK	317	OFF		Flag set by ground uplink processor indicating (ON) that a tarcet vehicle state vector has been uplinked
T1	S			Tine since the beginning of the year, in Julian Centuries
$\underline{\square} 1$	$V(3)$		SENSOR AXES	Line of sight in sensor system
UR	$V(3)$		EF	Unit earth fixed position vector
U_ RDOT	$V(3)$	0.0	M50	
UR PYOON	$V(3)$		M50	Earth to moon unit vector

APPENDIX A VARIABLE LIST (Continued)

$$	VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
曷是	UR SUN	$V(3)$		M50	Earth to sun unit vector
	USE IMU_DATA	BIT	OFF		Flag indicating usage of IMU data (ON) by powered flight propagator
	USE MEAS - DATA	BIT	ON		Flag indicating the use (ON) or non-use (OFF) of external measurement data (used for inhibiting filter data processing during burns and burn-targetirg regions)
	V	$V(3)$		M50	Temporary M1950 velocity vector
$\stackrel{\vec{u}}{\vec{u}}$	VAR	S			Copy of the variance associated with the measurement currently being processed
	VAR ACC_QUANT	S	I LOAD		Accelerometer quantization error variance
	VAR_COAS ANGLES	$V(2)$	I LOAD		
	VAR_COAS ANGLES DT	$V(2)$	I LOAD		
	VAR_HORIZ	S			Variance of the horizontal measurement sensor
	VAR IMU ALIGN	$V(3)$	I LOAD		Variance of IMU time of alignment '
	VAR IMU DRIFT	$V(3)$	I LOAD		Variance contribution of IMU dirift
	VAR PR ANGLES	$V(2)$	I LOAD		Value used to initialize the covariance matrix diagonals associated with the rendezvous radar angles senser biases
	VAR RR ANGLES DT	$V(2)$	I LOAD		Variance of the rendezious radar angles measurements sensor biases

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTIOA
VAR_PRDOT	$V(2)$	I LOAD		Initial value for the covariance matrix diagonal associated with the rendezvous radar range and range rate sensor biases
VAR_PRDOT_DT	$v(2)$	I LOAD		Variance of the rendezvous radar range and range rate sensor biases
VAR_RR_RNG_MIN	s	0.		Minimum value of the rendezvous radar variance
VAR_SENS_DT	$v(4)$			General bias variance vector for the current sensor set
VAR_SHFT	s	I LOAD		Variance of the rendezvous radar shaft angle
VAR_ST ANGLES	$v(2)$	I LOAD.		Initial startracker angle bias variance terms for the covariance matrix
VAR_ST_ANGLES DT	$v(2)$	I LOAD		The filter gain variance for the startracker angie biases
VAR TRUN	s	I LOAD		Variance of the rendezvous radar trunnion angle
VAR_UNMOD_ACS_DT	S	I LOAD		Variance of unmodeled acceleration'times scale time
VAR_ VENT_DT	$v(3)$	I LOAD		Variance of body venting variables
VAR VERT	S	I LOAD		Vertical measurement variance

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
\underline{V} CHECK_PT	$V(3)$		M150	Orbiter velocity vector (M50) saved via CHECKPOINT specialist function
\underline{V} CURRENT_FILT	$V(3)$		M50	Total accumulated IMU sensed velocity
VEH MASS	S			Mass of vehicle for drag. acceleration calculations
VENT	$V(3)$		M 50	Acceleration due to venting and uncoupled RCS thrusting
VENT ARRAY.	ARR	I LOAD		Time line of the vent states for the major vents
VENT DEP RCS	$\begin{aligned} & \text { ARR (3, MAX } \\ & \text { NUM VENT) } \end{aligned}$	I LOAD	BODY	Uncoupled thrusting accelerations which are vent dependent
VENT MODE NAV	INT	I LOAD		Flag which activates (1) or de-activates (0) the venting \& RCS uncoupled thrusting models
VENT TABLE	$\begin{aligned} & \text { ARR (3, MAX } \\ & \text { NUM VENT) } \end{aligned}$	I LOAD	BODY	Acceleration vectors for the major vents
VENT THRUST BIAS	$V(3)$	I LOAD	BODY	Vector of unmodeled acceleration bias errors (body-fixed coordination system)
VFL	INT			Flag indicating activation (1) or de-activation (0) of venting \& FCS uncoupled thrusting models (local variéble)
\underline{Y} LAST	$V(3)$		M 50	Velocity vector of orbiter at end of the last filter cycle

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTIOH
$\underline{V}_{-} \mathrm{REL}$ _ BODY	$V(3)$		BODY	Orbiter's velocity relative to atmosphere in body cijordinates
VERT	S			Filter estimated vertical angle for angle measurement
V FILT	$V(3)$		M50	Orbiter velocity lector.(M50)
V FILT_INIT	$V(3)$		M50	Orbiter velocity vector saved across memory reconfiguration and used for navigation initialization
V FIN	$V(3)$	0	M50	Orbiter or target velocity vector at T_FIN
\underline{V} GND	$V(3)$		M50	Uplinked orbiter velocity vector (M1950)
$V-I M \cup D I F$	$V(3)$		M50	Difference in furrent and past accumulated sensed IMU velocities, used in state vector interpolation (local variable)
\underline{V} _ IMU RESET	$V(3)$		M50	Copy of T_CURMENT FILT reserved as velocity count at star", of extrapolation interval when user parimeter state propagator is reset
\underline{V} _IN	$V(3)$	0	M50	Orbiter or tanget velocity vector at [IN
V LAST_FILT	$V(3)$		M50	Total accumulated IMU sensed velocity (M50)
V LAST_ FILT_INIT	$V(3)$		M50	Tota: accumulated IMU velocity saved across memory reconfiguration for navigation initialization
VM	INT	0		Flag to indicate which venting model is to be used

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL value	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTIIN
V ONE	$V(3)$		M50	Velocity vector at the beginning of a time interval, used to generate a transition matrix
Vo	$V(3)$		BODY	Vector part of quaternion used in attitude matrix determination
\underline{V}	$V(3)$		M50	Velocity of vehicle relative to atmosphere
\underline{V} _RESET	$V(3)$		M50	Orbiter vehicle velocitit vector after all navigation updates reseaved for reset of user parameters state propagator velocity vector
V _ RESID	$V(3)$		M50	Mean of 1950 velocity vestor interpolated to a measurement time
\underline{V} SUP	$V(3)$		M50	Velocity vector updated $\mathrm{L} y$ the super-G integrator
\underline{V} TV	$V(3)$	I LOAD	M50	M1950 target vehicle velouity vector
\underline{V}-TV LAST	$V(3)$		M50	Target vehicle velocity verctor, last value
\underline{V}-TV_GND	$V(3)$		M50	Uplinked M7950 target vehin:le velocity vector at T_TV_GND
\underline{V} TV RESET	$V(3)$		M50	Target vehicle velocity ventor after all navigation updates, reservisd for reset of user parameters state propagator velocity vector

APPENDIX A VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
\underline{V} _TV RESID.	$V(3)$	0.0	M50	Velocity vector of target velicle at time of measurement
\triangle TWO	$V(3)$		M50	Velocity vector at the end of a time interval, used to generate a transition matrix
WBR	$V(3)$		BODY	IMU derived body rate in raclians/second
X	ARR(6)	0	M50	Temporary array for the Shuttie or target state vector
XN	$\operatorname{ARR}(7)$	0	M50	Array of integrated initial conditions for onorbit prediction and lropagation
ZETA IMAG	$V(9)$			Longitude term in gravitatisnal acceleration calculations
ZETA_REAL	$V(9)$			Longitude term in gravitat onal acceleration calculations
ZONAL	$V(8)$	I LOAD		Zonal harmonics coefficien:s

APPENDIX B

NAVIGATION SEQUENCER PRINCIPAL FUNCTION AND NAVIGATION PROCESSING PRINCIPAL FUNCTIONS FLOW CHARTS

CONTENTS

SUBJECT PAGE
On-Orbit/Rendezvous Navigation Sequencer Principal Function
ONORBIT REND NAV SEQUENCER B-1
CHECKPOINT INIT (CODE) B-2
DISPLAY_COUNT_INIT B-6
ONORBIT_COVINIT B-4
ONORBIT_COVINIT_UVW B-5
ONORBIT PREDICT C. 2-1
OPS_2_OR_8_INITIALIZE B-3
TARGET_NAV_INIT B-7
On-Orbit Navigation Principal Function
NAV ONORBIT B-8
ACCEL_ATTITUDE (CODE) B-24
ACCEL EARTH_GRAV (CODE) B-22
ACCEL_ONORBIT_DRAG (CODE) B-31
ACCEL_ONORBIT VENT AND THRUST (CODE) B-28
ACCEL PERT ONORBIT (FUNCTION) $B-21$
BODY TO MODE (CODE) B-25
FAND_G B-14
HELLIPSOID (FUNCTION) B-30
IWR (CODE) B-27
LUNAR EPHEM B-48
LVLH (CODE) B-26
MEAN CONIC_PARTIAL_TRANSITION MATRIX 6X6 B-18
ONORBIT_COVINIT UVW B-5
ONORBIT DENSITY (CODE) B-29
ONORBIT PRECISE PROP B-11
SUBJECT PAGE
On-Orbit Navigation Principal Function (cont'd)
ONORBIT PREDICT C.2-1
ONORBIT_REND_AUTO_INFLIGHT_UPDATE B-19
ONORBIT_REND BIAS AND_COV_PROP B-15
ONORBIT_REND_R_V_STATE_PROP B-9
ONORBIT_REND_STATE AND COV_SETUP (CODE) B-20
ONORBIT_SUPER_G B-10
PINES METHOD B-13
PWRD_FLT_COV_PROP (CODE) B-16
REND_COV_PROP (CODE) B-17
RK_GILL B-12
SOLAR_EPHEM B-23
V REL (FUNCTTON) B-32
Rendezvous Navigation Principal Function
NAV_RENDEZVOUS B-33
ACCEL ATTITUDE (CODE) B-24
ACCEL_EARTH_GRAV (CODE) B-22
ACCEL_ONORBIT_DRAG (CODE) B-31
ACCEL_ONORBIT VENT AND THRUST (CODE) B-28
ACCEL PERT_ONORBIT (FUNCTION) B-21
ANGLE NAV B-47
BODY TO MODE (CODE) B-25
COAS_ANGLES_SETUP (CODE) B-39
F ANG G B-14
H_ELLIPSOID (FUNCTION B-30
IWR (CODE) B-27
LUNAR_EPHEM B-48
LVLH (CODE) B-26
MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6 B-18
SUBJECT PAGE
Rendezvous Navigation Principal Function (cont ${ }^{\text {d }}$)
MEAS PROCESSING STATISTICS_REND (CODE) B-49
ONORBIT_COVINIT_UVW B-5
ONORBIT_DENSITY (CODE) B $\div 29$
ONORBIT PRECISE PROP B-11
ONORBIT PREDICT C. 2-1
ONORBIT_REND_AUTO_INFLIGHT_UPDATE B-19
ONORBIT_REND_BIAS_AND_COV_PROP B-15
ONORBIT_REND_R_V_STATE_PROP B-9
ONORBIT_REND_STATE AND_COV_SETUP (CODE) B-20
ONORBIT_SUPER G B-10
ONORBIT_SV_INTERP B-45
PINES METHOD B-13
PWRD_FLT_COV_PROP (CODE) B-16
REND ANGLE PARTIAL.S B-41
REND_COV_PROP (CODE) B-17
REND NAV_FILTER B-42
REND_NAV_INTERP B-44
REND_NAV_SENSOR INIT (CODE) B-35
REND_SENSOR_SELECT (CODE) B-34
REND STATE AND_COV UPDATE (CODE) B-43
RK GILL $B \div 12$
RR ANGLE NAV B-40
RR_ANGLE SETUP (CODE) B-37
RRDOT NAV B-46
RRDOT_SETUP (CODE). B-36
SOLAR EPHEM $B-23$
ST ANGLES SETUP (CODE) $B \div 38$
\underline{V} REL (FUNCTION) $B \div 32$

CONT'D
NOTES: 1. 4 SAVED PARAMETERS IN PROTECTED MEMORY LOCATIONS FOR USE BY OPS-8 OR OPS-3 NAVIGATION SEQUENCER PRINCIPAL FUNCTIONS.
2. IT IS ASSUMED THAT APPROPRIATE CHECKPOINT DATA SETS HAVE BEEN STORED (VIA THE CHECKPOINT SPECIALIST FUNCTION) PERIODICALLY, AT A TBD RATE. A DATA SET SHALL ALSO BE STORED AS SOON AS POSSIBLE AFTER EACH BURN, AND AS SOON AS POSSIBLE AFTER EACH GROUND UPDATE.

SAVED PARAMETERS IN PROTECTED MEMORY LOCATIONS FOR USE BY
OPS-2 NAVIGATION SEQUENCER INITIALIZATION FUNCTIONS


```
RFILT = R FILT_INIT, VFILT = VFILT_INIT
VLAST_FILT = VLAST_FILT_INIT
    T_LAST_FILT = T_LAST_FILT_INIT
R RESET = R FILT_INIT, V RESET = V FILT_INIT
V_IMU_RESET = V_LAST_FILT_INIT, T_RESET = T_LAST_FILT_INIT
FILT UPDATE =ON, B}=\underline{0
VENT_THRUST_BIAS = \underline{0}
SQR_EMU = SQRT (EARTH_MU)
C_MX_AN = COS (MAX DENS ANGLE)
S_MX_AN = SIN (MAX_DENS ANGLE)
C_MN_AN = COS (MIN_DENS ANGLE)
S_MN_AN = SIN (MIN_DENS ANGLE)
```


ONORBIT_COVINIT

$$
\begin{aligned}
& \text { DO FOR } I=1 \text { TO } 6, \\
& J=1 \text { TO } 6
\end{aligned}
$$

IN LIST: SIG, ㅡㅡ, 조, \underline{V}

OUT LIST: E_TEMP

N ACCEPT $=\underline{0}$
N REJECT $=\underline{0}$
SEQ_ACCEPT $=\underline{0}$
$\underline{S E Q}$ REJECT $=\underline{0}$

ONORBIT_REND_R Y_STATE PROP

ONORBIT_REND_R V STATE PROP (CONCLUDED)

OMORBIT SUPER_G

IN LIST: GD, GO, DFL, VFL, ATFL, R_SUP, V SUP, T_CUR, DT, DV OUT LIST: R SUP, V SUP, GR NEW

```
R_SUP = R_SUP + DT [V SUP + .5 (\underline{V + DT GR_NEW)]}
GR_INT = ACCEL_PERT_ONORBIT (GD,GO, DFL, VFL, ATFL, R_SUP, V SUP, T_CUR)
GRINT =GRINT-EARTHMU R SUP/ /R SUP }\mp@subsup{|}{}{3
V SUP = V SUP + \underline{OV}+.5 DT (GR__INT + GR_NEM)
R_SUP = R_SUP + (GR_INT-GR_MEN) DT %}/6
GR NEM = ACCEL_PERT ONORBIT (GD, GO, DFL, VFL, ATFL, R_SUP, V SUP, T_CUR)
GR MEW = GR NEM-EARTHMU R SUP/|R SUP|}\mp@subsup{|}{}{3
```


ONOREIT PRECISE PROP

IN LIST: GHD, GMO, DM, VM, ATM, DELTA_T, $\cdot \underline{R} \quad I M, \underline{V} \quad I N, T_{-} I N, T_{-} F I N$ OUT LIST: R_FIN, V FIN, G_NEN

$$
B-11
$$

ONORBIT PRECISE PROP (CONCLUDED)

CALL: RK GILL
IN LIST: $\overline{X N}, ~ D T$ STEP, I, T_CUR, AM, GMO, GMD, DM, VM, ATM, T IN OUT LIST: XN, T CUR

CALL: PINES HETHOD
IN LIST: XN, T CUR, GMO, GMD, DM, VM, ATM, T_IN
OUT LIST: DERIV, X

$$
\begin{aligned}
& R-F I N=X 1 \text { to } 3 \\
& V \text { FIN }=X_{4} \text { to } 6 \\
& G \text { NEN }=\text { ACCEL PERT_ONORBIT (GMD, GMO, DM, VM, ATM, R FIN, } \vee _ \text {FIN, }
\end{aligned}
$$

BK GILL

IN LIST: $X N, D_{T}$ STEP, I, T_CUR, AM, GMO, GMD, DH, WM, ATM, TIN OUT LIST: XN, T_CUR

CALL: PINES METHOD
IN LIST: XI, T CUR, GMO, GID, DM, W, ATM, TIN OUT LIST: DERIV, X

DO FOR
$L=1,7$

$$
\begin{aligned}
& P=D T \text { STEP DERIV } L \\
& X N_{L}=X N_{L}+A_{J}\left(P-B_{J} Q_{L}\right. \\
& Q_{L}=C_{J} P+D_{J} Q_{L}
\end{aligned}
$$

PINES METHOD

IN LIST: XN, T_CUR, GMO, GMO, DM, UM, ATM, TIN OUT LIST: DERIV, X

$$
\begin{aligned}
& \text { RaIN }=\mid X H_{1} \text { to } 3 \mid \\
& \text { R:IN_INV }=1 . / R_{-} I N \\
& \text { SHA }=1 . /\left[2 . R_{-} I_{-I N V}-\left(X_{4} \text { to } 6^{\cdot X_{4}} 4 \text { to } 6\right) /\right. \text { EARTH MU] } \\
& C 1=\operatorname{SQRT}(S M A) / S Q R E E M \\
& \text { DELTA }=\text { CUR }^{-X N} 7 \\
& D_{\text {_IN }}=X{ }_{1} \text { to } 3 \cdot \mathrm{XN}_{4} \text { to } 6
\end{aligned}
$$

CALL: FIND

OUT LIST: $\bar{F}, G, F D O T, G D O T, S 0, S 1, S 2, S 3, X_{1}$ to 3, RFIN_INV, THETA
X_{4} to $6=$ FDOT XN 1 to $3^{+G D O T X N} 4$ to 6

T ACCEL $=T$ IN + T CUR
$\underline{P}=$ ACCEL PERT ONORBIT ($G M D, G H O, D M, V M, A T M, X_{1}$ to $3, X_{4}$ to $6, T$ ACCEL $)$
$D_{\text {TAU }}=X_{1}$ to $3 \cdot \underline{P}$
D_AUX $=X_{4}$ to $6 \cdot \underline{P}$

PINES METHOD

(CONCLUDED)

FAND G

IN LIST: SMA, DELTAT, CI, RIN, RFIN, R_IN_INV, R_FIN_INV, VIN, DIN, D_FIN

OUT LIST: $F, G, F D O T, G D O T, S 0, S 1, S 2, S 3$, R FIN, R FIN INV, THETA

ONORBIT REND BIAS AND COV PROP

PWRD FLT_COV_PROP (CODE)

E_{1} to 6,1 to $6=\mathrm{PHI}_{1}$ to 6,1 to $6 \mathrm{E}_{1}$ to 6,1 to $6 \mathrm{PHI}_{1}^{\mathrm{T}}$ to 6,1 to 6 $+S_{1}$ to 6,1 to 6

MEAN CONIC_PARTIAL_TRANSITION MATRIX_6X6

IN LIST: R ONE, V ONE, G ONE, R ONE, R TWO, V TWO, G TWO, DELTIM OUT LIST: PHI_MC

$$
\begin{aligned}
& \text { R_ONE_INV }=1 . / \text { R ONE } \quad \text { DONE }=\text { RONE } \cdot \underline{V} O N E \\
& \text { R TWOINV }=1 . / \mid \underline{R} \text { TWO } \quad D \text { TWO }=\underline{R} \text { TWO } \cdot \underline{V} \text { TWO } \\
& \text { SMA }=1 . /[R \text { ONE_INV }+ \text { R_TWO_INV - (V ONE:V ONE + VTWO•V TWO)/2. EARTH_MU] } \\
& C 1=\text { SQRT (SMA)/SQR_EMU. }
\end{aligned}
$$

CALL: F_ANDG
IN LIST: SMA, DELTIM, C1, R ONE, R_TWO, R_ONE_INV, R+TWO_INV, V ONE, D_ONE, D_TWO
OUT LIST: F, G, FDOT, GDOT, S0, S1, S2, S3, R TWO, R_TWO INV, THETA

$$
\begin{array}{llr}
\mathrm{FMT}=\mathrm{F}-1 . & \mathrm{S} 1=\mathrm{C} 1 \mathrm{S1} & \mathrm{CONST}=\mathrm{Cl} \text { C2 SMA } \cdot \text { THETA }(2 .+\mathrm{SO}) \\
\mathrm{GDM1}=\mathrm{GDOT}-1 & \mathrm{C} 2=\mathrm{Cl}^{2} & -3, \mathrm{C} 2 \text { SMA S1 }
\end{array}
$$

$A 1=(F D O T S T+F M 1$ R_ONE INV) R_ONE_INV; A2 + FDOT S2; A3 = FM1 ST R_ONE_INV;
$A 4=F M 1 S 2 ; A 5=G D M 1 S 2 ; A 6=G S 2 ; A 7=F D O T(S O$ R_ONE_INV R_TWO_INV + R_ONE
INV ${ }^{2}+$ R_TWO INV ${ }^{2}$); A8 = (FDOT $S 1+G D M I R$ TWO_INV) R_TWO_INV;
$A 9=G D M 1$ Sl R_TWO_INC

TEAP $=A 4$ V TWO-A2 R TWO
PHI MC 1 to 3,1 to $3=$ F ID MATRIX 3×3 + CONST V TWO G ONE + (A3 V TWO-AT R TWO) R ONE + TEMP V ONE
PHI_MC 1 to 3,4 to $6=G$ ID MATRIX_ $3 \times 3-\operatorname{CONST} V$ TWO $V O N E+$ TEMP R ONE + (A6 V TWO - A5 R THO) VONE
TEPP $=A 2 Y T H O-A B$ R TWO
$\mathrm{PHI}_{\mathrm{NC}}^{4}$ to 6,1 to $3=$ FDOT ID MATRIX 3×3 + CONST G TWO G ONE + (A1 V TWO - A7 R TWO) R ONE + TEMP V ONE
$\mathrm{PHI}_{\mathrm{NC}}^{4} 4$ to 6,4 to $6=$ GDOT ID MATRTX_3X3 - CONST G TWO V ONE + TEMP R ONE + (A5 Y THO - A9 E TWO) V ONE

$$
B-20
$$

GTV = ACCEL PERT ONORBIT (GM DEG, GM ORD, DRAG MODE_NAV, 0, 3, PREC_STEP, R TV, V TV, T CURRENT FILT) - EARTH MU RTV/|RTV| ${ }^{3}$

ACCEL PERT_ONORBIT (FUNCTION)

IN LIST: GMD, GMO, DM; VM, ATM, $\underline{R}, \underline{V}, T$

$$
\begin{aligned}
& \underline{G}=0 . \underline{D}=0 . \quad \mathrm{RCS}=0 . \\
& \text { FIFTY }=\text { EARTH } F I X E D-10 M 50 _\operatorname{COORD}(T) \\
& \underline{V E N T}=0 . \\
& R E F=F I F T Y T R \\
& R I N V=1 . /|R| \\
& U R=R I N V \mathbb{R E F}
\end{aligned}
$$

EXECUTE ACCEL EARTH GRAV CODE
(cont'd)

(cont'd):

ACCEL_PERT ONORBIT (FUNCTION) (CONCLUDED)

GMD controls the use of zonal harmonics in the gravity model.
GM0 controls the use of tesseral harmonics in the gravity model.
DM controls the use or non-use of drag acceleration model.
VM controls the use or non-use of venting and uncoupled thrusting model.
ATM controls the use or non-use of prestored attitude profile, average area, mass, and drag coefficient of orbiter on target vehicle.

R, V are the position and velocity vectors of the vehicle in M50 coordinates.
T is the time.

RO_ZERO $=$ EARTH \cdot RADIUS_GRAV R_INV
RO $N=$ RO_ZERO EARTH MU R_INV ${ }^{2}$
$A_{1,2}=3 . U R_{3}$
$A_{2,2}=3$.
$L=1$
AUXILIARY $=0$.

SOLAR EPHEM

IN LIST: T
OUT LIST: UR_SUN, SDEC, CDECl, COS_SOL_RA, SIN_SOL_RA
$\mathrm{Tl}=\mathrm{T} / 3155760000$.
SOL AUXIL $=$ SOL PARAM ZERO + T1 SOL_PARAM FIRST
SOL_TRUE ANOH $=$ SOL_AUXIL $_{4}+2$. SOL_AUXIL 3 SIN $\left(S O L\right.$ AUXIL $\left._{4}\right)$
SOL_LONG $=$ SOL_AUXIL ${ }_{1}+$ SOL_TRUE_ANOM

SS_L $=\operatorname{SIN}(S O L$ LONG $)$
$S D E C=S S L S I N\left(S O L A U X I L_{2}\right)$
$\operatorname{CDECT}=\operatorname{SQRT}\left(1 .-\operatorname{SDEC} C^{2}\right)$
FACTOR $=1 . /$ CDECI
$\mathrm{UR}_{-} \operatorname{SUN}_{1}=\operatorname{COS}\left(S O L _\right.$LONG $)$
UR_SUN $2=S _$S L COS (SOL_AUXIL 2)
$U R \operatorname{SUN}_{3}=\mathrm{SDEC}$
COS_SOL_RA $=$ FACTOR UR_SUN 1
SIN_SOL_RA $=$ FACTOR UR_SUN 2

ACCEL_ATTITUDE CODE

LVLH CODE

ACCEL_ONORBIT_VENT_AND_THRUST CODE

ORIGINAL PAGE IS
OF POOR QUALTTY

ONORBIT_DENSITY CODE

```
ALT = H ELLIPSOID (R)
SDEC = SDEC R_INV R R
CDEC2 = CDEC1 R_INV R2
CDECT = CDEC1 R_INV R R
SGAM1 = SIN_SOL_RA. C_MX_AN + COS_SOL_RA S_MX AN
CGAMI = COS_SOL_RA C_MX_AN - SIN_SOL_RA S_MX_AN
SGAM2 = SIN SOL_RA C MN_AN + COS SOL_RA SMNNAN
CGAM2 = COS_SOL_RA C_MN_AN - SIN_SOL_RA S_MN_AN
COS_PSI_1 = SDEC + CGAM1 CDEC1 + SGAMI CDEC2
COS_PSI_1 = DIURN_EFF_5 (1. + COS_PSI_1) CORR_POWER_1
COS_PSI_2 = -SDEC + CGAM2 CDEC1 + SGAM2 CDEC2
COSPSI_2 = DIURNEEF_6 (1.+ COS_PSI 2) CORR_POWER _2
DAY_OF_ YEAR = T/86400.
I = 1
```

 DO UNTIL
 DAY_OF_YEAR
≤ 10. I
DAY_ONE $=10 .(\mathrm{I}-\mathrm{I})$
$K 1=1 .+(A L T+$ RAD_EFF $)$ SOL_RAD_EMIT CORRECT
K2 = 1. + (ALT + DIURN_EFF $1+$ DIURN_EFF 2 EXP\{-[(ALT + DIURN_EFF 3)/DIURN_EFF
$\left.\left.4]^{2}\right\}\right)\left(\operatorname{COS}_{1} \mathrm{PSI}_{-} 1+\operatorname{COS}\right.$ PSI 2)
$K 3=1 .+.1(A L T+A N N U A L E F F)\left[\left(D A Y _O F _Y E A R-D A Y O N E\right)\left(D O Y E F F F_{I+1}-D O Y E E F F_{\mathrm{I}}\right)+\right.$
10. DOY EFF ${ }_{I}$]
$K 4=1 .+(A L T+M A G N E E F)$ GEOMAG DISTURB CORRECT
RHO $=$ K1 K2 K3 K4 NIGHT_PROF_1 EXP[NIGHT PROF_2 (ALT + NIGHT PROF_3) ${ }^{1 / 2}$]

H_ELLIPSOID (FUNCTION)

H_EELIPSOID(R) $=|\underline{R}|-(1-E L L I P T)$ EARTH_RADIUS_EOUATOR/
$\sqrt{1+\left((1-E L L I P T)^{2}-1\right)\left(1-(U N I T(\underline{B}): E A R T H \quad P O L E)^{2}\right)}$

ACCEL_ONORBIT DRAG CODE


```
\(V\) REL (FUNCTION
```

$$
\underline{v} \operatorname{REL}(\underline{v}, \underline{R})=\underline{V}-\text { EARTH_RATE (EARTH_POLE } \times \underline{R})
$$

NAV_RENDEZVOUS

SNAP IMU (V CURRENT_FILT, T_CURRENT_FILT)

SNAP REND_RADAR (Q_RR_SHFT, Q_RR_TRUN, Q_RR_RNG, Q_RR_RNG_DOT, RNG_DATA_GOOD, RDOT_DATA_GOOD, RR_ ANGLE_DATA GOOD, M_M50_TO_BODY_RR, T_REND_RADAR)

SNAP STAR_TRACKER (Q_ST_HORIZ, Q ST_VERT, N_ST_IN_USE, ST_DATA_GOOD, M_M50_TO_BODY_ST, T_STAR_TRACKER)

SNAP COAS (Q_COAS HORIZ, Q_COAS_VERT, N_COAS_IN USE, COAS_DATA_GOOD, M_M50_TO_BODY_COAS, T_COAS)

CALL: ONORBIT_REND_R_V STATE PROP

CALL:
ONORBIT_REND_BIAS_AND_COV_PROP

EXECUTE:
REND SENSDR SELECT CODE

CALL:
ONORBIT_REND_AUTO_INFLIGHT_UPDATE

EXECUTE:
REND_NAV_SENSOR_INIT CODE

NAV_RENDEZVOUS (CONCLUDED)

CALL: ANGLE_NAV
IN LIST: T_COAS, M BODY_TO_COAS N COAS IN USE. M_M50_TO_BODY -COAS, VAR COAS HORIZ, Q COAS HORIZ,

VAR_COAS YERT, Q_COAS_VERT, COAS_DATA. GOOD, COAS ANGLE EDIT_OVERRIDE, COAS_ANGLES_STAT

```
COAS MARK NUM \(=\) COAS MARK NUM +1
```

$\underline{\text { R PESET }}=$ R_FILT, \bigvee RESET $=\underline{V}$ FILT, T_RESET $=$ T_LAST, FILT
RTV_RESET $=$ RTV, VTV_RESET $=\underline{V} T V, \underline{V}$ IMU RESET $=\underline{V}$ LAST FILT,
FILT_UPDATE $=O N$

EXECUTE MEAS PROCESSING_STATISTICS REND (CODE)

REND SENSOR_SELECT CODE

REND_SENSOR_SELECT CODE (CONCLUDED)

RRDOT_SETUP (CODE)


```
RR_ANGLES_SETUP (CODE)
```


COAS_ANGLES_SETUP (CODE)

$$
\begin{gathered}
B-39 \\
B-36
\end{gathered}
$$

REND_ANGLE PARTIALS

IN LIST: $I_{-} N$

```
R RHO = RTV RESID - R RESID
RHO_PLANE = R RHO - (RIRHO - IN)IN
B TEMP = UNIT (RHO PLANE X I N)/|RHO PLANE 
B1 to 6}=(\mathrm{ PHI PATCH }1\mathrm{ to 3, 1 to 6 )
B}10\mathrm{ to 15 =-(PHI_REND_PATCH1 to 3, 1 to 6) 'B TEMP
B}16\mathrm{ to }17=0
UM = M M50_TO_SENSOR UNIT (R RHO)
```



```
    REND_STATE AND_COV_UPDATE (CODE)
```

```
OMEGA = EB_COPY/MS_DELQ
E = E - OMEGA EB_COPY
```

 R FIIT \(=\) R FILT + OMEGA 1 to 3 DELQ
 \(\underline{V}\) ILT \(=\underline{V}\) FILT + OMEGA 4 to 6 DELQ
 VENT_THRUST_BIAS \(=\) VENT_THRUST_BIAS + OMEGA 7 to 9 DELQ
 \(\underline{R} T V=\underline{R} T V+\) OMEGA 10 to 12 DELQ
 \(V T V=T T V+\) OMEGA 13 to 15 DELQ
 SENSOR_BIAS \(=\) SENSOR_BIAS + OMEGA 16 to 19 DELQ
 ORIGINAL PAGE IS
OF POOR QUALITY

CALL: ONORBIT_SV_INTERP
IN LIST: R LAST, V LAST, R FILT, V FILT, T_CURRENT_FILT, DV FILT, DT_FILT, SENSOR_ID, DELTAT_GO, IGD, IGO, IDM, IVM, IATM OUT LIST: R RESID, VRESID, A RESID

CALL: MEAN_CONIC_PARTIAL_TRANSITION MATRIX_6X6
IN LIST: R FILT, V FILT, TOT ACC, R RESID, V RESID, A RESID, - DELTAT_GO

OUT LIST: PHI_PATCH

CALL: ONORBIT_SV_INTERP
IN LIST: R TV_LAST, V TV_LAST, R TV, VTV, T_CURRENT FILT, $\underline{0}$, DT_FILT, SENSOR_ID, DELTAT_GO, IGD, IGO, $1,0,3$
OUT LIST: RTV_RESID, VTV_RESID, A TV_RESID

CALL: MEAN CONIC_PARTIAL_TRANSITION MATRIX_6X6
IN LIST: R TV, VTV, GTV, RTV_RESID, V TV_RESID, A TV_RESID, - DELTAT GO

OUT LIST: PHI_REND PATCH

ONORBIT_SV_INTERP

IN LIST: $\frac{R}{}$ ONE, V ONE, R TWO, Y TWO, T_TWO, V IMU_DIF, TIDIF, SENSOR_ID, DTGO, $\overline{\text { IGD, IGO, IDM, IVM, IATM }}$

OUT LIST: R RESID, V RESID, A RESID

$$
\begin{aligned}
& B-45 \\
& -13
\end{aligned}
$$

RRDOT NAV

ANGLE NAV

IN LIST: T_ANGLES, M.M50_TO_SENSOR, VAR_HORIZ, Q_HORIZ, VAR VERT, Q_VERT: ANGLE_DATA_GOOD, MANUAL_EDIT_OVERRIDE, STAT FLAG

LUNAR_EPHEM

IN LIST: T
OUT LIST: UR MOON

```
T1 = T/3155760000.
OMEGA = OM_1 + \1 OM_2
EPSILON = SOL PARAM ZERO2 + T% SOL_PARAM_FIRST}
MOON AUXIL = MOON PARAM ZERO + TI MOON PARAM FIRST
```

```
\(C \_O M=\operatorname{COS}(O M E G A)\)
\(S\) OM \(=\operatorname{SIN}\) (OMEGA)
\(C\) EPS \(=\operatorname{COS}(E P S I L O N)\)
SEPS \(=\operatorname{SIN}(E P S I L O N)\)
INTERM \(_{1}=\operatorname{SIN}\left(\right.\) MOON AUXIL \(\left.L_{1}\right)\)
INTERM \(_{2}=\operatorname{SIN}\left(\right.\) MOON AUXIL \(L_{3}-\) MOON AUXIL \(\left._{1}\right)\)
INTERM \(_{3}=\operatorname{SIN}(\) MOON AUXIL 3\()\)
THETA \(=\) MOON_AUXIL \(2+\) MOON_CONST• INTERM
\(C_{-} T H=\operatorname{COS}(T H E T A)\)
S_TH \(=\operatorname{SIN}(T H E T A)\)
```

UR MOON $1=C$ OM C_TH - S_OM C_INC S_TH
UR MOON 2 = CEEPS S_OM C_TH + (C_EPS C_OM C_INC - S_EPS S_INC) S_TH
UR MOON $_{3}=$ S EPS S_OM C_TH + (S_EPS C.OM C_INC + C_EPS S_INC) S_TH

MEAS PROCESSING STATICS_REND (CODE), (concluded)

APPENDIX C

GENERAL REQUIREMENT PRINCIPAL FUNCTIONS AND COORDINATE tRANSFORMATIONS FLOW CHARTS, VARIABLE NAMES, AND DESCRIPTIONS

CONTENTS

SUBJECT PAGE
CONTENTS C-ii
Coordinate system definitions
(to be provided)
Variable List Definitions C-iii
Variable List C.1-1
Flow Charts
Coordinate system flow charts
(to be provided)
Onoroit precision state prediction flow charts
ONORBIT PREDICT C. 2-1
ADAMS MOULTON (CODE) C. 2-2
PINES METHOD B-13
RK GILL B-12
Site lookup flow charts(to be provided)

0

VARIABLES LIST DEFINITIONS

Code used for variable data type

S: scalar
$V(n)$: vector (dimension)
$M(n)$: square matrix (dimension)
INT: integer
BIT: bit
CHAR: character
STR: structune
ARR: array

Coordinate frame code and definition

Body: $\quad x$: parallel to the longitudinal axis (positive aft) (structural)
y: completes right-hand system
z : perpendicular to the x-axis, positive upward
EF Earth-fixed coordinate systein
M50: \quad Mean of 50 reference coordinate system
RW: $\quad x:$ down runway centerline in direction of landing
(runway
coordinates) y : completes right-hand system
z: down, normal to ellipsoid
TD: $\quad x$: north
(topodetic coordinates) Y : east
z: down, normal to ellipsoid
UVW Quasi-inertial, right-handed Cartesian coordinate system
u: along vehicle position vector (radial)
v : normal to u, in orbit plane (downtrack)
w: out of orbit plane, uxv=i, (crosstrack)

APPENDIX C VARIABLE LIST

68	VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
	AM	INT	0		Flag (ON) to indicate the use of the Adams-Moulton integration technique
	AM-TABLE	M $(8,7)$	0	M50	Table of derivatives required by the Adams-Moulton integrator
	ATM	INT	0		Flag indicating vehicle attitude mode
	CORR COEF	$\operatorname{ARR}(8)$	ILOAD		Array of morder coeficients used in the Adams-Moulton corrector
$\frac{3}{3}$	DELTA_T	S	0		Input integration step size for prediction or propagation
	DERIV	$\operatorname{ARR}(7)$	0	M50	Temporary storage for derivatives required for the Adams-Moulton integrator
	DM	INT	0		Flag indicating if model for acceleration due to drag is to be used
	DT_MAX	S	ILOAD		Maximum integration step size used for prediction
	DT STEP	S	0		Integration step size for prediction or propagation
	GMD	INT	0		Flag indicating the degree of the gravitational potential model
	GMO	INT	0		Flag indicating the order of the gravitational potential model

APPENDIX C VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
I	INT			Counter
MORDER	INT	8		Order of the Adams-Moulton integrator
N STEPS	INT	0		Number of integration steps in the prediction or propagation "interval
PRED COEF	ARR(8)	ILOAD		Array of morder coeficients used in the Adams-Moulton predictor
R FIN	$V(3)$	0	M50	Orbiter or target position vector at T-FIN
P_IN	$V(3)$	0	M50	Orbiter or target position vector at T-IN
SUM	S	0		Temporary storage variakle used in the Adams-Moulton integrator
T CUR	S	0		Current integration time within the predictor or propagator
T_IN	S	0		Initial time input for onorbit prediction or propagation
\underline{V}-FIN	$V(3)$	0	M50	Orbiter or target velocity vector at T_FIN
V IN	$V(3)$	0	M50	Orbiter or target velocity vector at T_IN

APPENDIX C. VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	COORD FRAME	VARIABLE DESCRIPTION
VM	INT	0		Flag indicating whether venting accelerations are to be modeled for prediction or propagatic:
x	$\operatorname{ARR}(6)$	0	M50	Temporary array for the shuttle or target state vector
XN	$\operatorname{ARR}(7)$	0	M50	Array of integrated initial conditions for onorbit prediction and propagation
XP	ARR(7)	0	M50	Temporary storage array of integrated initial conditions used in the AdamsMoulton integrator

IN LIST: GMD, GMO, DM, VH, ATM, DELTA_T, R IM, V_IM, T_IN, IFIN OUT LIST: R FIN, \underline{V} FIN

$0.2-1$

ONORBIT PREDICT (CONCLUDED)

$$
\begin{aligned}
& C .2-1 A \\
& \therefore .2-1 A
\end{aligned}
$$

ADAMS MOULTON CODE

APPENDIX D

USER PARAMETER

FL.OW CHARTS, VARIABLE NAHES,
 AND DESCRIPTIONS

CONTENTS

SUEJECT PAGE
CONTENTS D-ii
Variable List Definitions D-iii
Variable List D.1-1
Flow charts
Onorbit/Rendezvous User ParameterProcessing Sequencer Principal Function
ONORBIT_REND_UPP_SEQ D.2-1Onorbit/Rendezvous User ParameterProcessing Principal Function
ONOREIT_REND USER PARAM STATE PROP D. 2-2
AVEPAGE G_INTEGRATOR D. 2-3
NAV MONITTOR SUPPORT D. 2-4

VARIABLES LIST DEFINITIONS

Code used for variable data type

S: scalar
$V(n)$: vector (dimension)
$M(n)$: square matrix (dimension)
INT: integer
BIT: bit
CHAR: character
STR: structure
ARR: array
Coordinate frame code and definition
Body: $\quad x$: parallel to the longitudinal axis (positive aft)
(structural)
y : completes right-hand system
z: perpendicular to the x-axis, positive upward
Earth-fixed coordinate system
M50: \quad Mean of 50 reference coordinate system

UVW Quasi-inertial, right-handed Cartesian coordinate system
u : along vehicle position vector (radial)
v : normal to u, in orbit plane (downtrack)
w: out of orbit plane, $u \times v=w$, (crosstrack)

APPENDIX D VARIABLE LIST

Variable name	DATA TYPE	INITIAL VALUE.	COORD FRAME	VARIABLE DESCRIPTION
A SENSED	$V(3)$		M50	Ratio of difference of selected accelerometer readings to difference of their time tags
AC	$V(3)$		M50	Sensed acceleration (local variable used in AVERAGE_G_INTEGRATOR) .
ALT	S	0		Attitude of Shuttle äbovē reference ellipsoid
ANG_MOM	$V(3)$	0	EF	Shuttle's angular momentum vector
ASC_NODE	S	0		Longitude of the ascending node for the Shuttle orbit
COMP MODE	CHAR	"CURRENT"		Indicates whether computations are to be performed for the Shuttle state at the current time or at a future time.
DEG_PER_PAD	S	(I LOAD)		Radian to degree conversion factor on
DO_PREDICT	BIT	OFF		Flag which indicates whether or not computations have been completed when "future" parameters are requested
DT_ IMU	S			State vector average-G integration time step
DT_PREDICT	S	I LOAD		Integration step size
dTIME	s			Step size for state vector advancement (local variable used in AVERAGE_G INTEGRATOR)

APPENDIX D VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
EARTH MU	S	1 LOAD		Earth's gravitational constant
EVENT 60A	BIT	OFF		Transition from MM201 to OPS-8 event flag
EVENT 60	BIT	OFF		Transition to MM201 from MM106 event flag
EVENT 61	BIT	OFF		Transition to 19M201 from MM301 event flag
EVENT 66	BIT	OFF		Transition to MM213 from.MM201 event flag
EVENT 67	BIT	OFF		Transition to MM202 from 201 event flag
EVENT 69	BIT	OFF		Guidance initiate event flag
EVENT 73	BIT	OFF		Transition to MM201 from M202 event flag
EVENT 74	BIT	OFF		Transition to MM211 from MM106 event flag
EVENT 76	BIT	OFF		Transition to MM212 from MM211 event flag
EVENT 78	BIT	OFF		Transition to MM211 from MM21? event flag
EVENT 80	BIT	OFF		Transition to MM201 from MM213 event flag
EVENT 82	BIT	OFF		Transition to MM213 from MM211 event flag
EVENT 84	BIT	OFF		Transition to MM207 from OPS-00 event
FILT UPDATE	BIT			Flag indicating the availability of a filter updated state

APPENDIX D VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIRL VALUE	COORD FRAME	VARIABLE DESCRIPTION
GR	$V(3)$		M50	Gravitational acceleration (local variable used in AVERAGE G INTEGRATOR)
GR1	$V(3)$		M50	Gravitational acceleration (local variable used in AVERAGE_G_INTEGRATOR)
LAT_GEOD	S	0	EF	Geodetic latitude of the Shuttle sub-vehicle . point
LONG	5	0	EF	Longitude of Shuttle sub-vehicle point
M_TEMP_TXPOS	M(9)	0		Transformation matrix from M50 to earthfixed coordinates
NAUTMI_PER_TT	S	I LOAD		Feet to nautical mile conversion factor
R AV	$V(3)$		M50	Position vestor (local variable used in AVERAGE_G_INTEGRATOR)
R _ AVGG	$V(3)$		M50	Current orbiter position vector updated by user parameter propagator
R COMP	$V(3)$	0	M50	Orbiter position vector at either the current time or a future time.
R - EF	$V(3)$	0	EF	Orbiter position vector in earth-fixed corrdinates
\underline{R} _RESET	$V(3)$		M50	Copy of filter updated orbiter position vector for user parameter propagator reset

APPENDIX D VARIABLE LIST (Continued)

VARIABLE NAME	DATA TYPE	INITIAL VALUE	$\begin{aligned} & \text { COORD } \\ & \text { FRAME } \end{aligned}$	VARIABLE DESCRIPTION
B - TV_ RESET	$V(3)$		M50	Copy of filter updated target position vector for user parameter propagator reset
REND_NAV_FLAG	BIT	OFF		Flag indicating whether rendezvous navigation is active (ON), or whether onorbit navigation is active (OFF)
R TARGET	$V(3)$		M50	Position vector of the target vehicle, updated by the user parameters propagator
T COMP	S	0		Time tag corresponding to \underline{R} COMP and V_COMP
T_IMU	S			Current time tag
T PREDICT	S	0		Time for which future orbital parameters are to be computed
T_RESET	S			Copy of time tag of filter update of state vectors for user parameter propagator reset
T STATE	S	0		Time tag for current user parameter state vector
USE_IMU DATE	BIT	OFF		Flag indicating IMU data are to be used in integration (ON).
\underline{V} AV	$V(3)$		M50	Velocity vector (local variable used in AVERAGE G INTEGRATOR)
\underline{V} AVGG	$V(3)$		M50	Velocity vector of orbiter, updated by the-user parameters propagator

APPENDIX D VARIABLE LIST (Continued)

* The purpose of this cancel and reschedule is to synchronize this module with the executions of onorbit guidance which is to begin computations at this time.

AVERAGE_G_INTEGRATOR

IN LIST: R AV, VAV, DTIME, AC, T_STATE, T_IMU
OUT LIST: RAV, VAV

```
GR = ACCEL_PERT ONORBIT (2,0,0,0,0, R AV, V AV, T, STATE)
GR = GR - EARTH MU R AV/|RAV语
RAV = RAV + DTIME [VAV + .5 DIIME (AC + GR)]
GRT = ACCEL_PERT_ONORBIT (2, 0, 0, 0, 0, R AV.V AV,T_IMU)
GRT = GR1 - EARTHMURAV/|RAV }\mp@subsup{}{}{3
\underline { V A V ~ = ~ V A V ~ + ~ D T I M E ~ [ A C ~ + ~ . 5 ( G R ~ + ~ G R I ) ] }
```


NAV MONITOR_SUPPORT

ORIGINAL PaGE IS OE Poor QUALLTY

$$
3.2 \cdots 4
$$

[^0]: * ONORBIT/RENDEZVOLS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT LIST
 ** PRE-MISSION LOAD

[^1]: ** PRE-MISSION LOAD

[^2]: * onorbit navigation principal function input list
 ** pre-mission load

[^3]: * onorbit navigation principal function input list
 ** pre-mission load

[^4]: * onorbit navigation principal function input list
 ** pre-mission load

[^5]: * onorbit navigation principal function input list
 ** pre-mission load

[^6]: * onorbit navigation principal function input list
 ** pre-mission load

[^7]: * Ororbit Navigation Principal Function Output List.
 ** Onorbit Coyariance Propagation Subfunction.

[^8]: * Onorbit principal function inlist.

[^9]: * Rendezvous navigation principal function output list

[^10]: * Rendezvous State and Covariance Measurement Incorporation Subfunction

[^11]: *Rendezvous control and Rendezvous measurement reconfiguration

[^12]: * rendezvous navigation principal function input list
 ** mre-mission load

[^13]: * rendezvous navigation principal function inplt list
 ** pre-mission load

[^14]: * rendezvous navigation principal function output list

[^15]: * Rendezvous Navigation Principal Function Input List
 ** Premission Load
 *** These constants are 1 isted and their values given in section 4.8 (I-load requirements).

[^16]: * Rendezvous Navigation Principal Function Input List

[^17]: * Given in I-load requirements section 4.8

[^18]: * Given in I-load requirements, section 4.8.

[^19]: * User parameter processing principal function output list.

[^20]: * onorbit user parameter processor principal function output list

