Report No. 72-0005
Contract NAS8-26990

FLIGHT PROGRAM LANGUAGE REQUIREMENTS
VOLUME III

APPENDICES

CR-1235€7
(NASA-CR-123569) FLIGHT PROGRAM LANGUAGE N72-21201
REQUIREMENTS. VOLUME 3: APPENDICES (MES
. Computing, Inc.) 7 Mar. 1972 262 p
CSCL 09B Unclas
G3/08 15214

March 7, 1972

Prepared for:
NATIONAL AERONAUTICS AND SPACE ADMINISTRA TION

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Reproduced by

P WP 2
ﬂﬁ’ NATIONAL TECHNICAL
lNFORMATlON SERVICE

U S Department of C
Springfield VA 202"‘"5“]9'(6 0 g
Cﬂ / '

PREFACE

This report summarizes the efforts and results of a study to
establish requirements for a flight programming language for future
onboard computer applications. This study was performed by M&S
Computing under contract NAS8-26990 from the Marshall Space Flight
Center of NASA. The technical monitor was Mr. Richard Jenke,
S&E-CSE-LI.

Several government-sponsored study and development efforts
have been directed toward design and implementation of high level
programming languages suitable for future aerospace applications.

As a result, several different languages were available as potential
candidates for future NASA flight programming efforts. The study
centered around an evaluation of the four most pertinent existing aero-
space languages. Evaluation criteria were established and selected
kernels from the current Saturn V and Skylab Flight Programs were
used as benchmark problems for sample coding. An independent re-
view of the language specifications incorporated anticipated future pro-
gramming requirements into the evaluation. A set of detailed language
requirements was synthesized from these activities.

This report is the final report of the study and is provided in
three volumes. This third volume contains the report appendices, which
describe the benchmark problems coded and provide listings of the bench-~
mark coding.

Distribution of this report is provided in the interest of informa-
tion exchange and should not be construed as endorsement by NASA of
the material presented. Responsibility for the contents resides with
the organization that prepared it.

Participating personnel were:
T. T. Schansman
R. E. Thurber

L. C. Keller
W. M. Rogers

Approved by:

TABLE OF CONTENTS

Appendix Page No.
Appendix Lage No.
A Flight Program Kernel Descriptions 1

B | Flight Program Kernel Coding 81

APPENDIX A

FLIGHT PROGRAM KERNEL DESCRIPTIONS

This appendix contains flowcharts and narrative descriptions
of the flight program kernels which were coded. The descriptions
also discuss certain assumptions made during coding of the kernels
and the unique language requirements imposed by each kernel. The
actual coding of the kernels is found in Appendix B.

Each kernel description is a separate paragraph of this
appendix, and a kernel flowchart is included as a figure at the end
of the paragraph. Kernel names and associated paragraph and flow-
chart figure numbers are listed below:

Paragraph Kernel Name Flowchart Figure
A.l Initialization A-1 (a-b)
A.2 Interrupt Processor A-2 (a-d)
A.3 Non-Interrupt Sequencer A-3
A.4 Periodic Processor A-4
A.5 Events Processor A-5
A.6 Iterative Guidance Mode A-6 (a-d)
A7 Digital Command System A-7 (a-c)
A.8 Accelerometer Processing A-8 (a-d)
A.9 Minor Loop A-9 (a-d)
A.10 Switch Selector Processor A-10 (a-n)
A.ll ATM Task Keying A-11

Separate pages of multiple-page flowcharts are designated by lower
case letters appended to the figure numbers. These are indicated
above.

. As a documentation aid, paragraph A. 12 contains glossaries
of the names used in the program listings of Appendix B, The glos-
saries include brief explanations of each name.

Special flowchart symbology has been used to identify and
cross-reference program kernels and the various types of partition-
ing within kernels. The following depicts and explains this symbology.
The "Entry Point' column shows the symbol used for entry into each
type of program block, and the corresponding '"Calling Symbol' indi-
cates how that type of program block is called from some other flow-
chart, - The label "A-xx'' references the flowchart where the 'called"
program block is described. If there is no label, the program block
was not coded and no flowchart is provided,

Entry Point Calling Symbol Type of Program Block
A'XX External entry point to
a program kernel., Called
from some other kernel.

A Internal entry point to
a subprogram within a
kernel., Called only from
- within the kernel,

Indicates a program block
A-xx which is coded in-line on

NAME the coding sheets but is
NAME shown on a separate flow-
chart solely for clarity of

documentation. It is not
a separate subprogram.,

Entry to logic which is
(None) . executed on occurence of
the interrupt NAME.

Entry

NAME
Interrupt

Flowchart symbols internal to a program block have con-
ventional interpretations as follows:

Process

Decision

Input/Output

On-Page Connector

Return Return to calling
program at point of

call

The term '"Note x'' on a flowchart identifies a note at the end of the
kernel descriptions.

A.l Initialization

A,.1l.1 Description of Operation

A certain amount of initialization must be performed for any
type of computing system. For a flight program, initialization in-
volves setting up both program data storage areas and hardware
registers, For example, data variables for an integration scheme
must be assigned initial values and program switches must be setup
to properly control program execution. Certain hardware registers
such as accelerometers and the real time clock must be read to obtain
initial values while others such as program controlled timers must
be loaded with an initial value,

While it is true that program data storage areas could be
initialized at program generation time, it is usually desirable to
perform the initialization in real time under program control to
eliminate the need for reloading the program each time it is to be
restarted. In addition, a certain amount of reinitialization must be
performed dynamically as the transition is made from one mission
phase to another,

Two entry points exist for the Initialization kernel. The first
is used when the program is entered from Prepare-to-Launch and
performs overall system initialization. The second is used at the end
of each mission phase to perform the initialization for the next phase.

A.1l.2 Unique Language Characteristics Required

The manner in which initialization is performed depends
greatly upon the organization of the data base. - Data which is defined
as '"local' and is contained within an application module would require
an initialization pass to be made through the module unless special
techniques were provided by the language to enable such data to be
externally referenced by a centralized initialization program. A
separate initialization pass through each module forces an undesirable
decentralization of the function, so the best choice within the capa-
bilities of the selected languages is to put all data which must be initial-
ized into a common data pool (Compool), so it can bé accessed by the
Initialization module. However, since almost all of the Saturn flight
program data gets 'initialize_d, this design would leave very little data
local to the modules and would reduce the opportunities to describe
local and global data in the languages. Therefore, some of this data

remains local to the module and the details of the application module
data initialization were not coded, This decision was influenced by
the fact that the detailed coding is primarily restricted to a set of
assignment statements, and data item assignment capabilities in the
languages are well exercised in other kernels.

A.1l,3 Flowchart Notes

Note 1

For HAL and CLASP the phase control logic beginning
at GP002 had to be made a separate program module
since it was common to both EGP0 and MPAQO. This
was necessitated by language restrictions which limit
a program module to a single entry point,

Ext, Entry
EGPO

-
Inbibit all
interrupts

INITIALIZATION

®
1

Initialize
minor loop
and switch
selector
times

first timer’
1 function

clogck

Force timer

1 interruptto
| synchronize

real time

Set phase
selector for
phase 1

Initialize
time
related
variables

A-2a

Initialize
interrupt
rocessor

Enable
TLC
\interrup

Reset Gand
C steering
flag '

Advance
to next
phase

l

Ext., Entry
MPAOO

Set phase

change in

progress
flag

Inhibit all
interrunts

Load timer

Set inter-
rupt level2
in prog.
‘indicator

INP13
Perform
initialization
for phase lor3

Figure A-la

_6-

A-1p

INP24

Perform
kitialization

fo h.
2 B2k

- Y A-3

Exit to
NONINTSEQZ

‘ INPI13 ’

INP13
Set initial
status of

non-int,
seq. tasks

Set initial
time, status
of periodic
proc, tasks

i
Set initial
status of

timer 2
tasks

Perform
application

e
next timer 2
function

Reset all
interrupt
level in

hl;(é%r ess

Reset
phase change
in progress
flag

Release)
previously
enabled

‘ Return ,

INITIALIZATION
(continued)

‘ INP24 ’

INP24
Set initial
status of
non-int
seq, tasks

Set initial
time, status
of periodic
proc. tasks

Set initial
status of
timer 2
tasks

application

initializa-
tion

Schedule
ext timer 2
function

Reset all

interrupt

level in
rogress
ags

Reset
phase chang
in progress
flag

Return

Figure A-1b

-7-

A.2 Interrupt Processor

A.2.1 Description of Operation

In most present-day computing systems and, in all likelihood,
those of the future, hardware interrupts are used to signal both the
occurrence of external events and/or the expiration of a program-
specified time period, Direct handling of interrupts is performed
by a task called the Interrupt Processor which is usually a part of
an operating system. The Interrupt Processor determines the cause
of the interrupt and makes provision for initiating the task associated
with the interrupt. In a system where tasks are invoked according
to priority, the task to be executed in response to the interrupt may
or may not be executed before control is returned to the interrupted
task, depending on relative priority of the two tasks. In non-priority
systems, the interrupt task is executed before control is returned to
the interrupted task.

The Saturn Flight Program has provision for five effective
levels of priority., Listed in order of priority they are:

Level 4 - Computer memory failure (TLC)
Level 3 - Timer 1

Level 2 - External interrupts

Level 1 - Timer 2

Level 0 - Background (non-interrupt level)

The two timers are program loadable and are used internally for
scheduling of time dependent tasks.

Included in the Ihterrupt Processor kernel are the Timer
Scheduler subroutines to illustrate capabilities for scheduling pro-
gram controllable interrupts. Timer 1 Scheduler is dedicated to the
Minor Loop and Switch Selector Tasks and schedules whichever is
due next by loading the time-to-go into Timer 1, The Timer 2 Sched-
uler is assigned all remaining tasks which must be activated via a
time-dependent interrupt. All Timer 2 tasks can be enabled or dis-
abled under program control, and, when enabled, must have an activa-
tion time specified. The Timer 2 Scheduler selects the enabled tasks
next due for execution and loads Timer 2 with the required time-to-go.
Since Timer 2 can hold only a maximum of four seconds, the Timer 2

Scheduler schedules itself if no other task is due within the next four
seconds.

Also included in the kernel is the system time update sub-
routine which maintains mission elapsed time by accumulating read-
ings from a hardware real time clock,

A.2.2 Unique Language Characteristics Required

The Interrupt Processor requires facilities for responding
to hardware interrupts and for controlling (inhibiting/enabling) them.
Part of this control includes knowing which interrupts have been in-
hibited by other modules and, therefore, should not be enabled by
this module. Since this capability was not readily available, com-
ments were appended to the logic to indicate that only ""previously
enabled interrupts' are being enabled.

Interrupt control capabilities are often considered privileged
functions which should be relegated to the operating system. In the
Saturn Flight Program, however, application programs occasionally
require direct interface with external hardware. For protection from
other activities, they need control of interrupts, making it desirable
to be able to perform such control in a high-level language., Interrupt
control requirements are also demonstrated by several other kernels.
Accelerometer Processing (Paragraph A.8.1) is a good example.

The Interrupt Processor also requires the ability to select
the proper task (subprogram) for execution in response to a given
interrupt since the task assignment varies in real time for the timer
interrupts. Timing efficiency is highly important for selection and
transfer of control.

A.2.3 Assumptions Made During Coding

It was assumed that certain functions were performed auto-
matically by compiler-generated code or by the system under which
the object programs execute. In particular, the saving and restoring
of program status for the interrupted task as well as resetting the
hardware interrupt indication were assumed to be automatic. -

Symbolic names were assumed for each of the hardware inter-
rupts of the Saturn Launch Vehicle Digital Computer. These names
were then used in any kernel where direct reference was made to
interrupts. Paragraph A.12 contains a glossary of these names.

A.2.4 Flowchart Notes

Note 1

The program entry point EGPI is utilized to activate
the interrupt handling routines for SPL and CLASP.
The statements within it are not executed during the
activation process but are merely armed (readied)
for execution in response to the associated interrupts,
For HAL the entry is used to schedule the interrupt
handling tasks.

Note 2

The Timer 1 interrupt handler for CLASP and HAL
does not determine which of the Switch Selector
modules is to receive control. Since these languages
restrict a program module to a single entry point,
control is passed to a common entry point of the

switch Selector Processor which then internally decides
which function is to be performed.

-10-

Ext.Entry
EGPI

Activate
TLC
interrupt

Activate
timer 1
interrupt

Activate
timer 2
interrupt

o

Activate
external 2
interrupt

Activate
external 4
interrupt

Activate
‘external 5
interrupt

)

Activate
external 6
interrupt

Note 1

Activate
external 8
interrupt

INTERRUPT PROCESSOR

Entr
G
Interrupt

Inhibit all
interrupts
except
TLC

1

Read real
time
clock

Set interrupt

levels 2 & 3

in progress
flags

MTS00
TLC
application
module

Recovery
return

Figure A-2a

=11~

Inhibit all

Read real
time
clock

Set interrupt
level 3 in

progress
flag

cheduled
timer 1

application
module

next timer
1 function

Note 2

MMLOO
MMLZ20
MSS05
MSS30
MSS40
MSS50
MSS55
MSS60
MSS70

Reset inter-
rupt level 3
Jin progress
flag

Release
reviously
enabled

‘ Return ﬁ

MSS80

ntr

TIMER 2

Interrupt

Set interrupt
level 1 in
progress.

Schedule
next timer
2 function

Reset
{interrupt
level 1 in
progress flag

Release
timer 2
interru

< Return '

INTERRUPT PROCESSOR
(continued)

MUMOO
MIR10
MEPO00
MTT10
MNUO00O
MEEO00
MCMO00
MCMI10
MCM20
MEPWM

[MER 00

Figure A-2b

-12-

ntry
" EXTERNA
Interrupt N/’

Read real
time
clock

"

Set interrupt
levels 2 & 3
in progress
flags

pplicatio
meodule for
general

nt?\}- rupt

Reset
interrupt
levels 2 & 3

'Hlagzogres s

Return

MDP28
MTB50
MTB 30
MTB40
MDS00

INTERRUPT PROCESSOR

(continued)

Ext. Entry
EGPI15

\

Calculate
current
time in
mission

Select higher
priority

X =4 module for
a time of -
1/2 MS

Is
higher priority
priori%ymodub 4 odule for

Read real
time
clock

required the required

irst

Select lower
priority

Update
mission
time

module for a

time of 1 /I\iS

Select lower
priority
module for
the required
time i

Update
lelapsed time

in current
reference

Load timer
1 with the
selected
time

< Return ’

Figure A-2c

-13-

Release
interrupts

INTERRUPT PROCESSOR
(continued)

Ext. Entry
EGPI18

i

Select T2

scheduler to
use interrupt
in 4 seconds

.

Select

module 1
and its q
Egggeste

]

Selecf
module 2 and

its requested
time

Select
module N &
its requested

time

Use a time
oi 1/2 MS.

Load timer,

‘ Return ’ '
Figure A-2d

-14-

A.3 Non-Interrupt Sequencer

A.3.1 Description of Operation

The bulk of the Saturn Flight Program computations are per-
formed on a non-interrupt basis. That is, the basic mode of execu-
tion consists of cycling a series of computational tasks on the lowest
system priority level (lower than all of the interrupt levels). This
is performed by the Non-Interrupt Sequencer which is a part of the
operating system. Actually there are two Non-Interrupt Sequencers,
one for the powered phases of a mission and one for the coast phases.
Two sequencers areused because the computations performed differ
considerably between the two phase types and require different groups
of application tasks.

Tasks to be executed by the Non-Interrupt Sequencer have
associated status indicators which can be used to enable or disable
"each individual task., During system initialization for a given mis-
sion phase, the status indicators for the tasks to be cycled during
that phase are set to a predefined state. After initialization is com-
pleted, control is transferred to the appropriate sequencer.

The Non-Interrupt Sequencer for a given phase examines the
status indicators assigned to it in the order in which the associated
tasks are to be executed. If an indicator is enabled, the task is in-
voked., Otherwise the next indicator in the sequence is tested., When
control is returned from an enabled application task, the sequencer
calls the Periodic Processor (paragraph A.4) before stepping to the
next indicator. After all indicators have been tested, the Non-Inter-
rupt Sequencer returns to the first indicator in the group and repeats
the cycle continuously until the end of the phase.

The status indicators are set as required by application tasks
in response to the occurrence of external events (interrupts or dis-
cretes), on the basis of elapsed time, or as a result of internally
programmed decisions. In this manner, the basic sequence of com-
putations for a given mission phase can be modified as required.

A. 3.2 Unique Language Characteristics Required
The Non-Interrupt Sequencer existed in the Saturn Flight Pro-
gram as executable tables consisting of modifiable instructions which

were used to invoke enabled application tasks and to bypass disabled
tasks, Rather than using status indicators to enable/disable, the

-15-

instructions in the sequencer control tables were simply modified as
required,

Since programming in a higher level language makes it im-
practical, if not impossible, to '"execute'' a table or to modify in-
structions, the sample coding of the Non-Interrupt Sequencer was
implemented through testing of status indicators as described in the
preceding paragraph (A.3.1).

A.3,3 Flowchart Notes
Note 1
The Non-Interrupt Sequencer flowchart is general in
the sense that it applies to any mission phase. Actually

the kernel, as coded, contains two separate programs
for the boost and coast mission phases.

~16-

NON-INTERRUPT SEQUENCER

xt. Entry
ONINTSEQ

Note 1

ena?

Periodic

v

ask Y

processor

enab?

Periodic

processor

fApplication

\
B2
Task

éy
!»N

Periodic

Figure A-3

processor

A.4 Periodic Processor

A.4.1 Description of Operation

Certain tasks in the Saturn Flight Program must be executed
repetitively at a fixed frequency but require neither stringent timing
accuracy nor synchronization with other tasks. An example is a task
which compresses data as a function of time. The scheduling of
such tasks is performed by the Periodic Processor as a function of
the operating system.

The Periodic Processor is invoked by the Non-Interrupt
Sequencer following the execution of each enabled application task.
Consequently, the timing accuracy with which it is capable of sched-
uling tasks is no better than the execution time required by the long-
est Non-Interrupt Sequencer subtask. Since this time resolution is
relatively low, tasks with execution frequencies exceeding five times
per second or with stringent timing accuracy requirements should be
scheduled by the Interrupt Processor, through the Timer 1 and Timer
2 schedulers.

The Periodic Processor utilizes control tables containing
timing information for each periodic application task and status in-
dicators similar to those of the Non-Interrupt Sequencer (paragraph
A.3). The Periodic Processor first examines the status indicator
for an entry and then, if the task is enabled, it compares the task
execution interval with the time elapsed since its last execution., If
the task is enabled and is due to execute, it is invoked by the Periodic
Processor. When the task completes execution and returns control,
or when the task for a given entry is not invoked, the Periodic Pro-
cessor continues on to the next table entry. Upon reaching the end
of the table, control is returned to the Non-Interrupt Sequencer.

A.4.2 Unique Language Characteristics Required

The Periodic Processor requires the capability to access
data from control tables.

-18-~

PERIODIC PROCESSOR

t. Entry
ERPROC

\
Calculate

time since
last entry

ask 1
enat? odlule
Update time
-— —] for next exec
of this
module

Y

Tasb\ Y

enabled

X

Update time
for next

exec, of this
module

pplication
module N

Update time
< ¥ for next
i exec. of this
module
Return .
Figure A-4

-19-

A.5 Events Processor

A.5.1 Description of Operation

Non-repetitive tasks to be executed at a given time are sched-
uied for execution by the Events Processor in coordination with the
Interrupt Processor, The Events Processor utilizes a predefined
table of task identifiers with associated execution times. An example
of such a task is one which sets accelerometer reasonableness test
constants at a given time during the mission, '

The Events Processor selects one entry at a time from the
table and schedules the entries in the sequence in which they exist
in the table. The execution time for a given table entry is used by
the Events Processor to reschedule itself via the low priority timer
of the Interrupt Processor. Then when it is reactivated at the speci-
fied time, it executes the associated task and selects the next entry
from the table. When it reaches the end of a table, it disables itself
and remains dormant until it is re-enabled at a later time.

Two special entry points are required in addition to the normal
entry from the Interrupt Processor. The first is used at the start
of each mission time base (time reference frame) to initialize pointers
to the beginning of the corresponding Event Table. The second entry
is utilized to enable and reschedule the Events Processor as required
following periods when it has been disabled.

A.5.2 Unique Language Characteristics Required

. The Events Processor is responsible for invoking a relatively
large group of tasks (one at a time) using the identifiers obtained
from the Events Processor Table. Language capabilities permitting
a call to one of several tasks depending on the value of the identifier
would significantly improve efficiency. Lacking such capabilities the
programmer is forced to code a call for each task and then use the
identifier as an index for a '"computed GOTQ" in order to pass con-
trol to the tasks. ' '

As implied in the preceding discussions, the Events Processor
also requires means for accessing data tables.

-20-

A.5.3 Flowchart Notes
Note 1
Since CLASP and HAL do not permit multiple entry
points for a module, the MEP0O5 module must call the

MEPI10 module for these languages rather than trans-
fer control to it as shown in the flowchart,

. Entry
MEPO0

a ti me
#se cC g(f

occurre

equired
application
module

Inhibit all

EVENTS PROCESSOR

xt. kntry
MEPO5

) Note 1

Set event
table index
for new
time base

Advance to
next event
table entry

Reset time
base chang
indicator

entry time
ame as
prev

Relea.1
revious

penabled Y
inter -

Disable
events
processor

Schedule
next event
at required
time

reviously
enabled

< Return ’

Figure A5

22~

Advance
event table

index to
next entry

End
of table

EPO8

Schedule
next event

Enable
events
processor

Return

Disable
events
processor

¥

< Return >

A.6 Iterative Guidance Mode

A.6.1 Description of Operation

Iterative Guidance Mode (IGM) is a path-adaptive guidance
program which steers along a nearly optimum trajectory toward a
predefined target. It is path-adaptive in the sense that it is designed
to adjust to perturbations to nominal vehicle performance, For
example, if one of the upper stage engines fails to develop full thrust,
IGM will adapt the steering computations to still achieve terminal
position and velocity with sufficient accuracy. The steering program
is based on the calculus of variations and is derived from a simpli-
fied set of differential equations of motion. It is designed for powered
flight in a vacuum with multiple distinct thrust levels and short coast-
ing periods,

IGM is executed once each iteration of the flight program back~.
ground loop (Non-Interrupt Sequencer, paragraph A. 3) during the
periods when it is active. It performs two basic functions:

o Guidance computations
o Phasing

Guidance computations generate vehicle steering commands
(desired attitude angles) using navigation data, vehicle performance
dafa, time, and desired terminal conditions. Calculations are per-
formed in the target plane and injection coordinate systems and then
rotated into the plumbline coordinate system for attitude control.

Phasing evaluates vehicle performance data and estimates the
times to go until the expected thrust level changes occur. For the
Saturn V vehicle and missions, there are two distinct thrust level
changes for the translunar injection boost period.

Due to the large size of IGM, it is neither informative nor
practical to code all of it in each of the languages. Therefore, only
the portion .containing the guidance computations is coded. The opera-
tions performed by the phasing segment are similar to those contained
in other kernels so coding them would be redundant.

A.6,2 Unique Language Characteristics Required

The IGM kernel contains the majority of the numerical com-
putations performed by the selected kernels. In addition to the common

- -23-

mathematical expressions including built-in functions (LOG, SQRT,
SIN, ATAN, etc.), it also demonstrates vector and matrix opera-
tions. It requires capabilities for coding vector expressions and
for performing such functions as dot product and vector rotation,

A.6.3 Flowchart Notes
Note 1
The dashed connector from the entry point to the first

block indicates the omission of the phasing portion of
IGM which was not coded.

-24-

vxt. Entry
MIGO0

!
. ¥ A-6¢

1G253

Rotate pos
and vel into
target plane

¥ A-6bc

1G254

Cal range
angle meas,
in orbit plane

1G262
Calculate
terminal
conditions

4§Cal interme
parameters

Telemeter
range
angle

A-6d
1G291

Rotate pos,
vel & grav
to injection
system

1G314
Calculate
time-to-go

Figure A-6a

-25-

ITERATIVE GUIDANCE MODE

Reset
] reiteration
pass flag

- 1G324

Comp corr
velocities to
be&i\ined

1G326

Cal desired

pitch and
yaw

1G330

Perform
steering
computations

‘ Return)

Set iteration

4 flag, update

reiteration
table

A-6b

ITERATIVE GUIDANCE MODE
(contirfued)

HI bar

steering in
progress

Set bit in
MC25 to ind

[init of CHI

bar steering

1G350 1G360 1G330 ’
1G361 Set bit in Change minor]
Zero yaw, Compute MC26 to ind loop support
pitch rate & intermediate init of CHI ¢
: - parameters
attitude parameters bar steering
terms
Change
Telemeter minor loop
T31 i support
parameters
\
1G446 Set CHI bar .
Compute t i
pitch & yaw y ?lemng > @
in 4-system ag

f Cal
rin,
migaifgnn'%ent Compute
terms SMC
terms

Enable
external
interrupt

interrupt 2
be enabled

‘ Return ’
1

Figure A-6b

-26-

‘ 1G253 ’

Rotate
positions
into 4-

system

Telemeter
X positionin

Rotate
| velocities
into 4-
] system

Return

O

I1IG259 %

ITERATIVE GUIDANCE MODE
(tontinued)

1 1G254

Calculate
T1I
intermediate

parameters

Set T2I
parameters
to zero

Set T1I
parameters
to zero

1G258 ¥

Calculate T2I
intermediate
jparameters

Calculate T3I
intermediate
parameters

< Return b

Figure A-6éc

-27-

‘ 1G291 ’

Rotate
positioninto
the injection
system

ITERATIVE GUIDANCE MODE

(continued)

Cal velocities
to-be-gained
in inj. systen]

Rotate
velocities
into the
injection

elemeter
Z- compon-
ent of .
velocity

Rotate grav
accel into
inj. system

y

Cal average V.
grav. accel ——@

Return

< 1G262)

-

Range
angle
calculations

calculating
terminal
parame-

vel, flight
angle

|

1G269

Estimate
terminal

Compute
terminal
grav, pos
vector

e
terminal
gravity

vector

Figure A-6d

ranfe
angle

)

< Return >

A.7 Digital Command System (DCS)

A.7.1 Description of Operation

The Digital Command System provides communication facili-
ties for receiving commands and data transmitted from ground sta-
tions. Capabilities exist for controlling flight program timing,
navigation, guidance, targeting, and sequencing functions from the
ground and for requesting specific program data to be telemetered
to the ground.

Each DCS function, as received by the DCS software task,
consists of a mode command to identify the function, followed by a
variable number of data commands depending on the requirements of
each function. The DCS task is initiated by the Interrupt Processor
in response to the hardware indication that input data has been re-
ceived. When a mode command is received it is tested for validity
and legality and then analyzed to determine whether or not data words
are required to perform the associated function, If data is required,
the DCS task returns control to the operating system and is reinitiated
as each data command is received. Each data word is also tested for
validity and legality as it is received. When all data for a given func-
tion has been received, or if a function does not require data, the
appropriate module is activated to process the function. Upon the
detection of errors in the DCS inputs, error messages are formulated
and transmitted back to the ground and the function is not activated.

The coded kernel does not include the various application mod-
ules which are invoked to perform the requested functions. Only the
central, coordinating portion of the overall DCS is demonstrated.

The format of DCS input data is shown in Table A-1 along with
a list of functions in Table A-2 and error codes in Table A-3.

A,7.2 Unique Language Characteristics Required

The Digital Command System has requirements to perform
real time I/O. It reads the DCS Input Register to obtain the incom-
ing data and the Discrete Input Register to examine the bit which
stipulates whether the DCS input data is a mode command or a data
word for a previous mode command, It also writes to the Discrete
Output Register to issue the command reset pulse for the Command
Receiver.

-29-

DCS INPUT FORMAT

DID|D|D|D|DIS|C|C|C|C|C|C|C

S 1 23 4 5 6 7 8 9 10111213

LVDC
Bit Position Significance
S-5 DCS mode or data command
6 Sequence bit
7 -13 Complement of bits S-6
14 -25 Unused
Table A-1

-30-

DCS FUNCTIONS

Mode Status No. Data
Comm, | Code Words Function
05 05 0 Maneuver inhibit
10 10 1 Time base update
11 11 35 Navigation update
12 12 2 Generalized switch selector
13 13 2 Sector dump
14 14 3 Telemeter single memory location
17 17 0 Time base 8 enable
20 20 0 Terminate
22 | 22 1 Maneuver update
25 25 0 Execute alternate sequence 6D
31 31 35 Target update
33 33 0 Execute communication maneuver
34 34 0 Execute evasive maneuver
45 45 0 Inhibit coolant control valve
52 52 6 S-1VB/IU lunar impact
53 77 0 Switch CCS antenna system to omni
54 7 0 Switch CCS antenna system to low gain
55 77 0 Switch CCS antenna system to high gain
60 60 0 Transposition, docking, and extrac-
tion enable
Note: Thé Mode Command comes from bits S-5 of the input command.

The Status Code is the telemetered status word. Both are
represented in octal.
Table A-2

-31-

DCS ERROR CODES

Error Code
(Octal)

Description

04

10

14

20

24

34

44

54

60

64

74

Orbital Mode/Data bit is invalid; data command was
received when a mode command was expected,

True complement test failed for mode command;
information bits 7-13 are not the complement of
bitS S—6-

Mode command invalid; the mode command received
is not defined for this mission.

Orbital Mode/Data bit is invalid; mode command
was received when expecting a data command,

Mode command sequence bit incorrect; the sequence
bit received was 1 instead of 0.

Unable to issue generalized switch selector com-
mand function at this time; the last requested
generalized switch selector command function has
not been issued,

True complement test failed for data command; in-
formation bits 7-13 are not the complement of bits S-6.

The time of implementation of a navigation update or
target update command is less than 10 seconds in the
future,

Data command sequence bit incorrect; the sequence
bit must begin with 1 and alternate from 1 to 0 in
each sequential data command of a set.

A DCS program is in progress at this time; however,
no more data is required; only a terminate mode
command can be processed at this time.

The mode command received is defined for this mis-
sion but is not acceptable in the present time frame.

Table A-3

-32-

The kernel also requires capabilities for unpacking the input
data and performing validity and legality tests on the data. When an
error is detected, the data must be formatted for an error message.
Table accessing facilities are also required since information con-
cerning each mode command is stored in tables, The information
includes:

o Number of data words required
o Command activity status (enabled/disabled)
o Status code (for telemetry)

Since a variety of functions must be invoked by DCS, a
variable call facility as discussed in paragraph A.5.2 would be use-
- ful.

A.7.3 Assumptions Made During Coding

The DCS kernel was not coded as it exists in the Saturn
Flight Program, It was reorganized to simplify program logic while
retaining all of the necessary functions. Reorganization primarily
involved the centralization of certain functions within the DCS kernel
which, in the original flight program, were performed in the various
DCS application sub-task modules. In particular, each application
module previously was required to determine whether or not it was
active, to issue status telemetry, and to make provision for obtain-
ing any needed input data. In the coding of the DCS kernel these
functions were performed in the DCS task itself to eliminate dupli-
cation and greatly simplify the operation of the application modules.

~-33-

DIGITAL COMMAND SYSTEM

Read
discrete
input

R A-Ta
DS60
Process
DCS
data word
DS09
Process
DCS mode
command
Return

Figure A-7a

-34.

Telemeter
data status

word
twice

A-Tc

Store input
in input data
table

y

Update
sequence bit
for next
input

Update
data count

1 A-Tc

DS100

Check for
additional
data

Return

Set error
code = 04

Set error
code = 44

Set error
code = 60

Y A-7c
DS220
Process
error
condition

\

< Returrn >

DS20

DIGITAL COMMAND SYSTEM

{continued)

Set error
| ‘code = 10

Set error
. code = 24

Set error
code = 20

Set error

code = 64

Set DCS
in progress
flag

Figure A-Tb

-35.

DS25

Use mode
command to
obtain a
mode index

{ UTROO \

elemeter
DCS status
code twice

Reset data
count and

sequence bit
indicator

vy A-Tc

DS100
Check for
additional
data

‘ Return b

1 code = 74

. ¥ A-Tc

Set error

DS220
Process

error
condition

‘ Return ’

DS100

Mode

command have
application

MOD

Execute
DCS
application
module

O DS530

Reset DCS
error count

and in
rogress
1ndicator

Set flag to
indicate a
mode comm-

and is
expected

\

Return

DIGITAL COMMAND SYSTEM

(continued)

DS220

Set error
| code = 14

Set DCS
terminate
indicator

l

Increment
DCS error
count

Does
error count

Reset DCS
terminate
indicator

Format
DCS error
message

Telemeter
DCS error
message
twice

indicator
set

Figure A-7c

-36-

Inhibit all
interrupts

except
TLC

\
Delay 4. 13

milliseconds

Turn off
CRP

A.8 Accelerometer Processing

A.8.1 Descriptions of Operation

The accelerometers attached to the inertial platform of the
vehicle provide data which serve as the basis for performing naviga-
tion during boost phases of a mission. Accelerometer Processing,
as its name implies, reads the accelerometers and refines the data
into a form suitable for updating vehicle position and velocity.

During periods when it is enabled, Accelerometer Processing
is executed once each iteration of the flight program background loop
by the Non-Interrupt Sequencer (paragraph A.3). It first inhibits
interrupts, reads the accelerometers for all three platform axes,
reads the real time clock, and then releases the interrupts. Inter-
rupts are inhibited to insure that the input data are all obtained at a
given point in time rather than separated in time by the execution of
an interrupt-driven task.

Before the input data can be used for navigation, each acceler-
ometer reading is subjected to three tests. FKEach reading provides two
pulse counts for redundancy. These pulse counts are subtracted from
the pulse counts of the previous computation cycle to obtain two delta
readings which represent the change in vehicle velocity along that
axis during the previous computation cycle. The two delta readings
are then compared and if they disagree by more than two pulses, an
error indication is set. The delta closest to a predicted value is
selected for further processing.

A zero test is performed next to detect an unchanging acceler-
ometer. Finally, a reasonableness test is performed in which the
actual delta is required to fall within a band of plus or minus fifty
percent of the predicted value enlarged by a reasonableness constant.
If a3 reading does not pass the reasonableness test, it is replaced by
a backup value derived from an internally calculated acceleration
profile. Error indications are set to indicate failure to pass any of
the tests,

After the tests are performed, the readings are used to calcu-
late vehicle acceleration and to update vehicle velocity.

An additional function performed by the Accelerometer Proces-

sing kernel is the calculation of mission time at the time the acceler-
ometers are read,

-37-

A.8.2 Unique Lanugage Characteristics Required

Accelerometer Processing requires facilities for reading
real time data (acceleration and time) and for converting the data to
an internally usable form. The need also exists for controlling in-
terrupts via a momentary inhibit as discussed in paragraph A. 8. 1.

A.8.3 Flowchart Notes

Note 1

The computation of the average CHIs for the SMC
calculations (see A-8b) is shown in the flowcharts as
coded for SPL, and CLLASP, where PIRADS were used.
In HAL, PIRADS were not used so the special test
shown for the averaging of the pitch commanded CHI
was unnecessary.

Note 2
Likewise, for the computation of the expected velocity
changes (see A-8b), usage of the special SIN/COS

routine (USCO00) for PIRADS was replaced by the usage
of the built-in SIN/COS functions in HAL.

-38-

Ext. Entry

Compute
time in
mission at
accel read

Compute
time in time
base at
accel resd {

Compute
time since
last accel-

erometer
read

ACCELEROMETER PROCESSING

Resetaccel-
erometer
bits for
MC24

accelero-
meter

Y accelero-
meter

Compute
mass of the

vehicle at
accel read

|

'Calc. (F/M)C

as neg, of X Calculate
component of § (F/M)C
gravity acc.
]
y A-8b
AR41 i
ompute i
aver CHI's

for SM.C

Figure A-8a

-39-

AR100
Compute
A&B accel
CHG for X,
HG for

elem
reading at
accel read

A-8b

ART1
Compute
] expected vel
changes

Return

‘ AR41 ’

Calculate
average yaw
command
CHI

Reset yaw
command
CHI for
next pass

Calculate
average
pitch

&(}_ﬁlﬁTand

Add 180 DE
to the aver,
pitch com-
mand CHI

Reset past
pitch com-

mand CHI
for next

‘ Return ’

ACCELEROMETER PROCESSING
(continued)

< ART71)

Compute
SIN /COS of
Z gimbal

ompute
SIN/COS of
Y gimbal

Compute
intermediate
velocity
{change
parameter

Compute
| expected
velocity
change

‘ Return >

Figure A-8b

-40-

Note 2

< AR100 ’

Compute
channel A
accelero-
meter
change

- Compute
channel B
accelero-
meter
change

Replace old
accel. data
with new

accel, data

¢

‘ Return ’

or: ntry
MAPOO

Y
JSet previous
‘Jdelta velocity

sum to
zero

\

Est. thrust]
miealign

error in
{ comp of F/

C‘ - A-8d

AP400

Select Aor B
X accel,
change

delta

pass
oty

Set mode
code 24

A-8d

l AP500 "
ake !

test on. X
accel. chg.

accel, zero
failure

AP530

Set MC
24 X accel.
reads

Junreasonable].

Figure A-8c

_41-

ACCELEROMETER PROCESSING
(continued)

Set steering
Imisalignment
flag

AP510

Accumulate
square of
accel,

L changes . |

Use X backup
velocity
change for
velocity calc

AP520j

Calculate X
velocity

i

Calculate
measured X
velocity for
F/M calc.

X measured
veloed

ACCELEROMETER PROCESSING

Set bit in
mode code
24 using
AB

Use AB

as delta

AP440

{continued)

Set bit in
mode code
24 using
AA

—

AP450

Use B8A
as delta

ecte
chfngekghrus
misalign
error

Return
AP470

Return Y
AP530

U

Figure A-8d

-42-

A.9 Minor Loop

A.9.1 Description of Qperation

Vehicle attitude control is performed by the Minor Loop. In
general terms, attitude control consists of determining actual attitude
as indicated by vehicle sensors, calculating the attitude correction
required to achieve the desired attitude specified by a guidance task,
limiting the correction command, and issuing properly formatted
attitude control commands to the vehicle control system.

To maintain vehicle stability, the Minor Loop is executed
twenty-five times per second during boost phases and ten times per
second in orbit. These high frequencies require the Minor Loop to be
scheduled via the high-priority timer of the Interrupt Processor.

Vehicle attitude angles for yaw, pitch, and roll are sensed
by inertial platform resolvers which measure the angles between
the platform gimbals and the mounting frame. A fine and a coarse
(backup) resolver are provided for each gimbal., The fine resolvers
are selected until repeated errors cause a switch to be made to the
backup resolvers, Each resolver contains redundant counter read-
ings and a disagreement indicator which are used by the Minor Loop
for wvalidity checking.

After reading a resolver, the Minor Loop performs disagree-
ment processing to select the proper counter. Reasonableness tests
are then performed to detect invalid zero readings or an unreasonably
large change from the previous reading. In the event that both counters
of a resolver are bad, or if the selected counter fails the reasonable-
ness tests, the corresponding vehicle attitude angle is not updated
and the previous attitude control command is reissued. Error indica-
tors are set to identify the type of failure. If the occurrence of re-
solver failures exceeds predefined frequencieg, a switch is made to
the corresponding backup resolver. Backup failures result in guid-
ance reference failure indications and the last valid attitude command
is issued repeatedly for the remainder of the mission.

Resolver readings which have been determined to be valid
are converted to internal units and used to determine actual vehicle
attitude. The actual attitude is then compared with the desired atti-
tude and the difference is used to calculate attitude error commands
to be issued to the attitude control system. Before the commands

- -43-

are issued, however, they are limited to not exceed rate and magni-
tude tolerances.

A special entry point in the Minor Loop is provided for flight
simulation tests so that ladder profiles may be generated.

A.9.2 Unique Language Characteristics Required

While not specifically required, an indirect I/O capability
would be useful, In the Minor Loop it may be desirable to read
either fine or backup gimbals depending upon whether or not pre-
vious gimbal failures have occurred, or it may be desirable to not
issue a read command at all as in a repeatable flight simulation test
run. An indirect I/0O capability is not mandatory since tests could
be made to determine the type of I/O required. However, in a pro-
gram such as the Minor Loop where time is of utmost importance,
such tests would impose timing penalties.

Techniques are required for insuring that a given amount of
time has elapsed between the issuance of gimbal read commands.
Since the programmer loses sight of execution time in a high level
language, the language should provide a means for determining such
delta times and for specifying required time delays,

The relatively high execution frequencies of the Minor Loop
(25/second in boost and 10/second in orbit) make minimizing execu-
tion time particularly desirable for this kernel., The ability to direct
the compiler to minimize execution time, even at some cost in in-
creased memory requirements, would be useful if the flight computer
processing time capacity was near saturation. ‘

A.9.3 Flowchart Notes
Note 1

The Flight Simulation entry to the Minor Loop (MML00)
is coded as a separate subroutine in CLLASP, CMS-2, and
HAL since these languages restrict a program module

to a single entry point. It then calls the normal Minor
Loop (MML20) rather than transferring control to a point
within it as shown in the flowchart,

-44-

MINOR LOOP

Ext. Entry
MML20
—_—

Updata comm]
CHI's by’
delta CHI's

Ext. Entry
MML.OO

ML.160
Issue pitch

Has
converter
B been sel-
ected

command
ramp being

comman-

MIL.201
Decrement Set ICR to UsedEMR
. reading to
counter for select update EMR
CHI converte)
status word
updates
\ ML500 Reschedule
Alter gimbal minor loop
RTC's check

ML101 YA-9b
Read EMR ML004
i ster Process
registe roll (X)
axis
A-9b
| A-9 \ ML260
MLOQO04 Set ladder Start DOM
Process ’ B indication backup
yaw (Z) for EMR gimbal
axis

) ‘ ssue
imbal (fin yaw
o omman
\ A-9b
ML004 Issue
Process roll
pitch (Y) comman
axis g

Return

[

Figure A-9a

-45-

MINOR LOOP

process
disagreemert

Is
gimhal
zZero

ABS (delta
pass zero
test

A-9c

MLo31
Telemeter
zero test
failure

(continued)
MLO0Z20
Is Save A
disa- N] counter
gigtient gimbal

MLO030

T

Alter high
order gimbal

to compen-
|sate for
QYL h*.44

Compare
present
gimbal with
previous

reéasonable

ML630

Telemeter
reasonable-

ness test
failure

A-9d
ML637

Inhibit
steering
misalignment
calculation

ML040

Compute
THETA

Store present
gimbal for
next minor

loop

Comp diff,
between
actual and

computed
attitudes

Reset
multiplexer
failure
indication

Compute
attitude
command

A-9d

ML 730
Max & rate
limit attitude
command

ML 760

< Return >

Figure A-9b

-46-

< ML631 >

Use tag for
gimbal zero

test failure

MINOR LOOP
(continued)

‘ ML630 ,

Use tag for
gimbal
reasonable-

o T

]

ML632

Form error
telemetry
word

reference

failureoccu

Telemeter
error
word

Possible
multiplexer
test

A-9d

ML635

Multiplexer
failure test

Increment
gimbal

failure count

for gimbal

backup

failure rate on

Guidance
r,ife rence
failure occu

red

2ference
failure
discretes

Form error
telemetry
word

Set gimbal
1/0 flag for
backup

Alter course
gimbal 180
deg. over-
flows

Set gimbal
overflow

180

4

Reset old
gimbal to

backu
gimba

resolution to

Backup
conversion
factor

Set ICR to

Figure A-9c

-47-

Maintain
ICR status
word

Set flag
for test on
gimbal RTC

Set gimbal
to switch to

2nd pass

Set RSBLNS
limit = 1st
pass BU gim
RTC

reference
ailure occur

Telemeter
error
word

A-9d

ML 637
Inhibit
steering

misalign cal

< Return ’

Decrement B
multiplexer
failure rate

I;n Set
ultiplexer

failure flag
to NO

Increment A
multiplexer
failure rate

multiplexer
failed

Set ICR to

switch
gimbal
order

Maintain ICR
status
word

Set A

multiplexer
failure in
MCz24

Lock off
DG
processor

(Return ,

Chang?
backu

MINOR LOOP
(continued)

Reset

gimbal

backup

flag

\

ablenes
limit to
pass ba

imbal

Set reason-

s

2nd
cku
RT

< ML637 >

y

Delay as .
required
for gimbal

read

Lock off

steering
misalignment

calculation

ML520 ¥

Set backup
gimbal flag
to alter RTC

|

test

gimbal RTC

y

‘ Return >

Figure A-9d

-48-~

Repeat for
next axis

ML730 -

Set command|
to maximum
level

|Set command
to previous
command +
limit

Save
present
command

Y

Form and
save actual
command

%

(Return "

A.10 Switch Selector Processor

A.10.1 Description of Operation

Certain hardware functions of the Saturn vehicle are activated
by the flight program via the issuance of switch selector output com-
mands. The Switch Selector Processing task functions in much the
same way as the Events Processor, in that it utilizes a predefined
table containing the switch selector commands and their associated
times for issuance. The time of activation for a given entry is used
to schedule the Switch Selector Processor via the high-priority timer
of the Interrupt Processor.

However, the process of issuing a switch selector is more
involved than the function of initiating tasks performed by the Events
Processor, The issuance of a single switch selector function requires
at least five I/0O operations to be performed:

o Hung stage test

o Issue stage and address
o] Verify address

o Issue read command

o Reset read command

In addition, if the hung stage test fails, a forced reset must be issued
before the stage and address is issued. Also, if an address verifica-
tion fails, a forced reset must be issued followed by the issuance of
the stage and complemented address, Depending on the type of veri-
fication error, the system may be reconfigured to issue future switch
selectors via different circuitry.

Hardware restrictions require timing delays between com-
mand issuance, Since the switch selector delays are on the order
of ten to twenty-five milliseconds, the Switch Selector Processor re-
schedules itgelf for execution at the proper time and returns control
to the operating system. The interval is too long to be accomplished
through an in-line delay.

In addition to the nominal sequence of switch selector functions,

-49-

provision is made for alternate sequences which can be activated as
specified by other application tasks. Depending on the type of alter-
nate sequence, the alternate switch selector functions will be issued
jinstead of, or intermixed with, those of the nominal sequence.

Numerous entry points exist for the Switch Selector Proces-
sing kernel. Most of the entires are used for scheduling its various
functions via the Timer 1 Scheduler as discussed above. Three ad-
ditional entries are used to request an alternate sequence, to issue
a forced reset, or to initialize Switch Selector Table pointers for a
new time base.

A.10.2 Unique Language Characteristics Required

Requirements for an indirect I/O capability and for measur-
ing short time periods are similar to those discussed for the Minor
Loop (see paragraph A. 9, 3).

Although the decision-making statements are a commeon
feature of nearly all programming languages, special emphasis on
them here is warranted due to the unusually large number of decisions
made in the Switch Selector Processor. This kernel places a pre-
mium on language capabilities which enable the programmer to ex-
press complex decision sequences in a logical and concise manner,
The extent to which a language provides such capabilities contributes
directly to the elimination of program logic errors and to an improve-
ment in readability. Decision tables are particularly useful in this
environment.

Another relatively common characteristic of the Switch
Selector Processor is the manipulation of data at the bit level. It
utilizes features for setting, resetting, and testing bits in status/
control words and also for formatting and analyzing I/0O data words,
These functions require a language to provide bit-string handling
facilities. ‘

- Also required is the ability to access data from tables. A
subroutine is utilized to select the next switch selector command to
be issued from one of a number of tables, Since alternate sequences
can be interspersed and/or interleaved with switch selectors from
the nominal sequence, the subroutine must be able to jump from table
to table based on sequence decisions made by other programs.

- -50-

A.10.3 Flowchart Notes

Note 1

Switch Selector Processing consists of a number of
interrelated functions, some of which use common
program logic. In order to minimize program dupli-
cation, the functions were all combined into a single
program module and invoked via multiple entry points
as shown in the flowcharts, The kernel was actually
coded that way in SPL.. However, for the other three
languages, where multiple entry points are not allowed,
a common entry point (MSS00) was utilized wherein con-
trol was transferred to the appropriate function. The
decision logic for this transfer of control is not shown
on the flowcharts but in each of the three languages
(CLASP, CMS-2, and HAL) it consisted of a com-
puted GOTO.

-51-

Inhibit all
interrupts

Set alternate
sequence
entry flag

_S5S0060

I Restore -
interrupt

inhibit status |

-y

Reset all SS
requests ‘
| except water

valve

SWITCH SELECTOR PROCESSOR

{progress

Ext. Entry
MSS10

\

Zero alt,
sequence in

indicator

[

Zero alt.
sequence
start time

|
Reset class
4 sequence
flag

[

Return

‘ Figure A-10a

-52-

SS0081 .
Process Reset all §S
SIVB cutoff requests
request except water
. valve
A-10c))
§S0101 L4
Process EGP08
pump purge Reschedule
) A-10d &)
$S0270 | Set up to use
Process alt.] normal
time base - table
6C request advance
A-10d Y
550241 Initialize SS
Process a table pointed
| class 1 alt. . for new
sequence time base
request
1
A-10Db A=10c
$S0000 §S1050
‘| Schedule Initiate next
[next switch switch '
selector selector

Ext. Entry
MSS05

\
Reset switch
selector
active flag

SWITCH SELECTOR PROCFSSOR
(continued)

‘ SS0000 ’

550010

Switch
selector
time upda

Save time-~

to-go to
next SS

: '~ SSs0170

550015 Is 2
. class 3
sequence alt, sequence
equeste requested
Y
s
an alt,
sequence
equested
(MSS05)
; Y

A-10i

MSS30

Implefnent
ground bias
time

Zero time
update
waiting flag |

Set ground
bias time =
amount not
uded

Hung stage .

Is an
alternate
sequence re-
quested

Compute
time for
hung stage
test

v A-10n

Schedule
hung stage

Ea0)

)

A-10
SS0060
Restore
interrupt
inhjbit
status
J Figure A-10b

-53-

N

N

A-10e

SS0191

: seguence re-
uest

Process a

class 4 alt,

A-10f

S$50221

Process a

class 3 alt.
SEQ request

S$S1050

Y A-1l0g

Set bias for
verify -
address
scheduling

Set flag to

make hung
stage test

Y A-10b

SWITCH SELECTOR PROCESSOR

A-10i
SS0000 MSS20
Schedule Switch
next switch selector
selector forced reset

< Return >

{continued)

S50060

gntry flag

sequence

Reset
alternate
sequence
entry flag

550081

timer 1

Enable
interrupts

Set alt. seq,
in prog. ind.
forSIVB
cutoff

Set current

SS table in
progress

pointers

Return

Figure A-10c

~54-

Reset allSS
requests
except

water valve

Return

SS0101

EGP08 '
Reschedule
timer 1

Set alt, seq.
in prog. ind.
for pump
purge SS

Set current
SS table in
| progress
pointers

Reset all SS
requests
except
water valve

‘ Return ’

‘ 550270 ’

Reset time
base 6C
request bit

Set SS table
ptrs for TB
6C alt, seq.

Set bit in
mode code
26 for TB 6

Set alt. seq|
in progress
ind for TB
6C

selector
time -
ciate UP

< Return)

SWITCH SELECTOR PROCESSOR

(continued)

‘ S50241 ’

Save
current table
in prog ptrs
in class 1

Save current
alt. seq. in
prog
indicator

Set alt., seq.
in prog ind
for class 1

Save time in
TB at start
of alt, seq.

A-10n

SSTUPD
Switc
selector

tne up-

\

Set table
advance
route for
class 1 alt,
s€q.

Figure A-10d

~55

Reset time
base 6B

.request bit

|

Reset special
S4B cutoff
bit

Set SS table
ptrs for TB
6B alt. seq.

Set SS table

ptrs for S4B
cutoff

Set bit in
mode code
26 for TB 6B

J

‘ Return >

Reset time
base 6A

request bit

%

Set SS table
ptrs for TB
6A alt. seq.

Set bit in

mode code
26 for TB
6A

SWITCH SELECTOR PROCESSOR
(continued)

‘ SS0191 ’

Set class 4
in progress
flag

Acquisitio M Reset lunax
-4 N ¢ base 6D impact
gain request equest- .

ed ed request bit
Y
Reset Ig\eset TB Set table
acquisition D request ’ for lunar
gain request bit impact
bit sequence
t tab
Sfrs aiolre Set table Set class 4
1 acquisition ptrs for alt, seq.
gain TB 6D time
reference

J

selector
time update,

SS0201

Set table
advance flag

for class 4
alt. seq.

%

Set flag to
make hung
stage test

A-10g

Set up

next SS

Return
C : 3 Figure A-10e

-56-

< S$s0221 ’

A

Store SS ptr
for class 3
in progress

Save currernt
alt. seq. in
progress
indicator

SWITCH SEL

ECTOR PROCFSSOR

(continued)

open request-
ed

Set alt, seq.
in progress

indicator for
class 3

Reset T3A
switch
selector
sequence
request bit

Save time in
TB at start
of alt. seq.

Set SS table
ptrs to issue

Set table
ptrs for ECS
water valve
close ’

SS0230 A-10n

Switch

Set table
ptrs for
ECS water
valve open

T3A alt.
seq.

antenna to
low request-

antenna to
high requeg
ed

S~
band
antenna to
omni re-

Set SS table Reset

. generalized
to 1ssue' SS request
gsesnerahzed bit

Set SS table
ptrs to

Reset S-band
J antenna low

S-band
antenna low

request bit

Set SS table
ptrs to S-

Reset S-
band antenna

band antenna
high

bit

Set SS table
ptrs to S-

Reset S--bana

antenna

band antenna

high request

omni .
request bit

omnil

Figure A-10f

-57-

selector
time
u rélaf:e

Set table
advance
rout, for
class 3

alt, seq,

Set flag to
make hung
stage test

A-10g

Set up next

SS

< Return ’

SWITCH SELECTOR PROCESSOR

Advance SS
table
pointer

Advance
class 4
table
pointer

Set up next

SS

< Return ’

(continued)

GD

A-10h
SS0111 Reset class
Process 4 in pro-
return from
alt. seq. gress flag

Reset lunar
impact bit

Figure A-10g

;58_

SS next in mode
code 26
lY
Set up SS Reset TB
from class 6D bit in
4 table mode code
® s
S$S2040 .. 552090
Set up SS Set table Set table
from normal advance flag advance flag
sequence for class 4 for mormal -
SS
l
Save new e
stage
select bit
Return

SS0111

SWITCH SELECTOR PROCESSOR
(continued)

Reset all

Set alt., seq. Set table in
in prog. ind. rog ptrs Ssxl;;cg:ests
: for S4B or S4B CO
in progres cutoff alt. seq. water valve
Class E;.?bslgofrsprog. R:Stoi;e alt, Restore
alternate ptrs. from ;rg.gress time in TB
sequence in t start of
progresgs class 3 indicator zltos :eq.o
Resto-re Restore alt. Restore
alternate table in seq. in time in TB
sequence in rog. Pltrs I progress at start of
progress rom class indicator alt, seq,

Reset
alternate
time base
reference

Reset alt.

seq. in
rogress

indicator

Set up to
return to
T5 SS table
{lst opp)
Set up to
return to T5 isrfdtif:l:tge t']?'()
SS table second
(2nd opp) pass
M

‘ Return ’

Figure A-10h

-59-

Ext. Entry
MSS20

Issue
forced
reset

Set flag to
bypass hung
stage test

Set bias for
verify
address
scheduling

A-10c
550060

Restore
interrupt 4

inhibit statu

{ Return)

SWITCH SELECTOR PROCESSOR
(continued)

Ext. Entry)
MSS30 '

Set switch
selector
active

flag

Reformat
SS for read
command

Reset switch|
selector
active flag

A-10g

Advance
SS table

Y A-10b
SS0000
Schedule

next switch
selector

Return

Set flag to

not issue SS
1/0

Set flag to
issue SS
1/0

\ selector

A-10n

SSTUPQ

Schedule

i t
\andaddrésg
MSS40

A-10c

SS0060
Restore
interrupt
inhibit
status

Return

Set bias for
verify
address
scheduling

Figure A-10i

-60-

A-10j

SS4000

Issue stage

and
address

‘ Return }

xt. Entry
MSS40

Delay

SWITCH SELECTOR. PROCESSOR

‘ 554000 }

ssue switch
selector
stage and
address

Delay for
DOM
telemetry

Output SS
and DO

A-10c

SS0060
Restore
interrupt
inhibit
status

< Return ’

Use
computed
feedback

(continued)

Ext. Entry
MSS50

Store
complement
stage and
address
word

Save the

computed
feedback
word

selector
feedback

egister

feedback

feedback
Zero

A-10k

MSS55

SS read
time check

< Return)

Issue
forced
reset

Figure A-10j

-61-

complement
Sti/%e & add
(MSS80)

ore
than 1 bit

ailure

¢Y
Set bit in
MC24 SS

channel B
selected

Is
this first
feedback
failure

Set ICR to
select SS
channel
B

y

Set flag
for no
condition

!

Maintain
ICR status -
word SS
channel B

Telemeter
feedback

(Return)

Ext. Entry
MSS70

Reset
read bit

_A-10n

Schedule
hung stage
te s{MSS05

A-10g

Advance
SS table

Set bias for
verify
address

scheduling

\
Set or reset
hung stage

bypass flag

Open
water valve
SS issued

Close
water valve
SS issued

) Enable
S/C control o
saturn SS

SWITCH SELECTOR PROCESSOR

S-I1VB
cutoff SS re-
quested

Ext, Entry
MSS55

(continued)

Time
to issue

Enable DIN
9 in the DI
mask

3y

‘ Return >

Figure A-10k

-62-

Set status SSTUPD
flag to ind.
SIVB CO SS
is set up
Set SS time
to a large bias time Y -
value of read
A-10m
Schedule MSS60
read Issue switch
command selector
read
T
‘ Return '
Reset ECS 'Set'flag to
indicate
water valve open water
open request valve
bit
Reset ECS Set flag to
water valve indicate
close) closed
request bit water valve

Ext. Entry
MSS60

Issue read
command
nd stage
selecte

Read real
time
clock

Schedule
reset read
(MSS70)

Form SS
telemetry
word

sta
address with
time o
read

ompress
SS stage and]
address

and time

SWITCH SELECTOR PROCESSOR

{continued)

SIVR
cutoff SS in

rogy

N

Set SIVB
cutoff read

command
issued

/

Zero alt.
seq. in pro-
gress
indicator

CC\ '
to high gai Y

command

Set CCS
high gain bit
in mode
code 27

Set CCS
low gain bit
in mode
code 27

Set CCS
omni bit in
mode code
27

as
this first

SIVB bur

Set bit in

mode code
26 for 2nd
SIVB burn

Set bit in
mode code 25
for 1stSIVB
burn

i/

Figure A-10m

-63-

Ext. Entry
MSS80

Delay for
DOM
telemetry

Output SS

and DO

regs via
DOM

Return

SWITCH SELECTOR PR OCESSOR

(continued)

‘ SSTUPD ’

\Read real
time
clock

3

Update time
in time basé
biased

' Return ’

Figure A-10n

-64-

SSTUPQ

Read real
time
clock

Update time

in time
base biased

Schedule
requested
function

‘ Return ,

A.1ll1 Task Keying (ATMDC)

A.1ll.1 Description of Operation

Task Keying is an operating system function associated with
priority task scheduling; it is the process of entering information
concerning a task into a Priority Control Table to enable the task
to be dispatched (initiated) on a priority basis. The information in-
cludes such items as task priority level, the in-core address of the
task, and initial register contents for the task.

Since multiple tasks can usually be keyed for execution on a
given priority level, various techniques are used for stacking the
additional entries. In the ATMDC operating system, the Priority
Control Table (Table A-4) holds a single entry for each priority level.
Additional entries are stored in a Priority Overflow Table (Table A-5)
with all entries for a given priority level chained together.

Requirements for task keying vary with the design of the opera-
ting system. For the ATMDC Flight Program, tasks are keyed in
response to events (interrupts or discretes), based on time, or as
requested by another application task.

A.11.2 Unique Language Characteristics Required

The Task Keying kernel requires facilities for formatting and
accessing tables. Techniques for linking the overflow entries together
in an efficient manner are also desirable,

The kernel also implies a requirement for the capability to
identify the task to be keyed. The keying process itself does not re-
quire it since the Task ID is simply stored into a table, However,
since this is done for the express purpose of dispatching the task (pas-
sing control to it) at a later time, the Task ID must provide the means
by which the task can be located in core,

A.11.3 Assumptions Made During Coding

Several assumptions were made for the purpose of organizing
the control tables. It was assumed that there were ten priority levels
in the operating system and that twenty-five entries in the overflow
table would suffice. Also, it was assumed that three hardware registers
required saving for each task. These assumptions affect only the size
of the control tables and could be easily adjusted.

-65-

PRIORITY CONTROL TABLE

Reg 1 Reg 2 Reg 3 Overflow
Task ID | Contents | Contents | Contents {Chain Link

Level O
Level 1
Level 2

1

1

1

1

1

1
Level N-1

Notes:

1) Number of priority levels (N) depends on system requirements.

Ten levels were assumed for the kernel.
2) During the keying process, the Task ID is either the memory

3)

4)

address of the task entry point or some other indicator which
can be used to locate the task in memory. After a task has
been initiated, this word is used to store the address where
task execution is to resume following an interruption. A value
of zero for a Task ID indicates that no tasks are currently as-
signed to that priority level,

Register storage words are used to save task registers when a
task is interrupted. They are initiali