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PREFACE

This report summarizes the efforts and results of a study to
establish requirements for a flight programming language for future
onboard computer applications. This study was performed by M&S
Computing under contract NAS8-26990 from the Marshall Space Flight
Center of NASA. The technical monitor was Mr. Richard Jenke,
S&E-CSE-LI.

Several government-sponsored study and development efforts
have been directed toward design and implementation of high level
programming languages suitable for future aerospace applications.

As a result, several different languages were available as potential
candidates for future NASA flight programming efforts. The study
centered around an evaluation of the four most pertinent existing aero-
space languages. Evaluation criteria were established and selected
kernels from the current Saturn V and Skylab Flight Programs were
used as benchmark problems for sample coding. An independent re-
view of the language specifications incorporated anticipated future pro-
gramming requirements into the evaluation. A set of detailed language
requirements was synthesized from these activities.

This report is the final report of the study and is provided in
three volumes. This third volume contains the report appendices, which
describe the benchmark problems coded and provide listings of the bench-~
mark coding.

Distribution of this report is provided in the interest of informa-
tion exchange and should not be construed as endorsement by NASA of
the material presented. Responsibility for the contents resides with
the organization that prepared it.

Participating personnel were:
T. T. Schansman
R. E. Thurber

L. C. Keller
W. M. Rogers

Approved by:
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APPENDIX A

FLIGHT PROGRAM KERNEL DESCRIPTIONS

This appendix contains flowcharts and narrative descriptions
of the flight program kernels which were coded. The descriptions
also discuss certain assumptions made during coding of the kernels
and the unique language requirements imposed by each kernel. The
actual coding of the kernels is found in Appendix B.

Each kernel description is a separate paragraph of this
appendix, and a kernel flowchart is included as a figure at the end
of the paragraph. Kernel names and associated paragraph and flow-
chart figure numbers are listed below:

Paragraph Kernel Name Flowchart Figure
A.l Initialization A-1 (a-b)
A.2 Interrupt Processor A-2 (a-d)
A.3 Non-Interrupt Sequencer A-3
A.4 Periodic Processor A-4
A.5 Events Processor A-5
A.6 Iterative Guidance Mode A-6 (a-d)
A7 Digital Command System A-7 (a-c)
A.8 Accelerometer Processing A-8 (a-d)
A.9 Minor Loop A-9 (a-d)
A.10 Switch Selector Processor A-10 (a-n)
A.ll ATM Task Keying A-11

Separate pages of multiple-page flowcharts are designated by lower
case letters appended to the figure numbers. These are indicated
above.

. As a documentation aid, paragraph A. 12 contains glossaries
of the names used in the program listings of Appendix B, The glos-
saries include brief explanations of each name.



Special flowchart symbology has been used to identify and
cross-reference program kernels and the various types of partition-
ing within kernels. The following depicts and explains this symbology.
The "Entry Point' column shows the symbol used for entry into each
type of program block, and the corresponding '"Calling Symbol' indi-
cates how that type of program block is called from some other flow-
chart, - The label "A-xx'' references the flowchart where the 'called"
program block is described. If there is no label, the program block
was not coded and no flowchart is provided,

Entry Point Calling Symbol Type of Program Block
A'XX External entry point to
a program kernel., Called
from some other kernel.

A Internal entry point to
a subprogram within a
kernel., Called only from
- within the kernel,

Indicates a program block
A-xx which is coded in-line on

NAME the coding sheets but is
NAME shown on a separate flow-
chart solely for clarity of

documentation. It is not
a separate subprogram.,

Entry to logic which is
(None) . executed on occurence of
the interrupt NAME.

Entry

NAME
Interrupt




Flowchart symbols internal to a program block have con-
ventional interpretations as follows:

Process

Decision

Input/Output

On-Page Connector

Return Return to calling
program at point of

call

The term '"Note x'' on a flowchart identifies a note at the end of the
kernel descriptions.



A.l Initialization

A,.1l.1 Description of Operation

A certain amount of initialization must be performed for any
type of computing system. For a flight program, initialization in-
volves setting up both program data storage areas and hardware
registers, For example, data variables for an integration scheme
must be assigned initial values and program switches must be setup
to properly control program execution. Certain hardware registers
such as accelerometers and the real time clock must be read to obtain
initial values while others such as program controlled timers must
be loaded with an initial value,

While it is true that program data storage areas could be
initialized at program generation time, it is usually desirable to
perform the initialization in real time under program control to
eliminate the need for reloading the program each time it is to be
restarted. In addition, a certain amount of reinitialization must be
performed dynamically as the transition is made from one mission
phase to another,

Two entry points exist for the Initialization kernel. The first
is used when the program is entered from Prepare-to-Launch and
performs overall system initialization. The second is used at the end
of each mission phase to perform the initialization for the next phase.

A.1l.2 Unique Language Characteristics Required

The manner in which initialization is performed depends
greatly upon the organization of the data base. - Data which is defined
as '"local' and is contained within an application module would require
an initialization pass to be made through the module unless special
techniques were provided by the language to enable such data to be
externally referenced by a centralized initialization program. A
separate initialization pass through each module forces an undesirable
decentralization of the function, so the best choice within the capa-
bilities of the selected languages is to put all data which must be initial-
ized into a common data pool (Compool), so it can bé accessed by the
Initialization module. However, since almost all of the Saturn flight
program data gets 'initialize_d, this design would leave very little data
local to the modules and would reduce the opportunities to describe
local and global data in the languages. Therefore, some of this data



remains local to the module and the details of the application module
data initialization were not coded, This decision was influenced by
the fact that the detailed coding is primarily restricted to a set of
assignment statements, and data item assignment capabilities in the
languages are well exercised in other kernels.

A.1l,3 Flowchart Notes

Note 1

For HAL and CLASP the phase control logic beginning
at GP002 had to be made a separate program module
since it was common to both EGP0 and MPAQO. This
was necessitated by language restrictions which limit
a program module to a single entry point,
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A.2 Interrupt Processor

A.2.1 Description of Operation

In most present-day computing systems and, in all likelihood,
those of the future, hardware interrupts are used to signal both the
occurrence of external events and/or the expiration of a program-
specified time period, Direct handling of interrupts is performed
by a task called the Interrupt Processor which is usually a part of
an operating system. The Interrupt Processor determines the cause
of the interrupt and makes provision for initiating the task associated
with the interrupt. In a system where tasks are invoked according
to priority, the task to be executed in response to the interrupt may
or may not be executed before control is returned to the interrupted
task, depending on relative priority of the two tasks. In non-priority
systems, the interrupt task is executed before control is returned to
the interrupted task.

The Saturn Flight Program has provision for five effective
levels of priority., Listed in order of priority they are:

Level 4 - Computer memory failure (TLC)
Level 3 - Timer 1

Level 2 - External interrupts

Level 1 - Timer 2

Level 0 - Background (non-interrupt level)

The two timers are program loadable and are used internally for
scheduling of time dependent tasks.

Included in the Ihterrupt Processor kernel are the Timer
Scheduler subroutines to illustrate capabilities for scheduling pro-
gram controllable interrupts. Timer 1 Scheduler is dedicated to the
Minor Loop and Switch Selector Tasks and schedules whichever is
due next by loading the time-to-go into Timer 1, The Timer 2 Sched-
uler is assigned all remaining tasks which must be activated via a
time-dependent interrupt. All Timer 2 tasks can be enabled or dis-
abled under program control, and, when enabled, must have an activa-
tion time specified. The Timer 2 Scheduler selects the enabled tasks
next due for execution and loads Timer 2 with the required time-to-go.
Since Timer 2 can hold only a maximum of four seconds, the Timer 2

Scheduler schedules itself if no other task is due within the next four
seconds.



Also included in the kernel is the system time update sub-
routine which maintains mission elapsed time by accumulating read-
ings from a hardware real time clock,

A.2.2 Unique Language Characteristics Required

The Interrupt Processor requires facilities for responding
to hardware interrupts and for controlling (inhibiting/enabling) them.
Part of this control includes knowing which interrupts have been in-
hibited by other modules and, therefore, should not be enabled by
this module. Since this capability was not readily available, com-
ments were appended to the logic to indicate that only ""previously
enabled interrupts' are being enabled.

Interrupt control capabilities are often considered privileged
functions which should be relegated to the operating system. In the
Saturn Flight Program, however, application programs occasionally
require direct interface with external hardware. For protection from
other activities, they need control of interrupts, making it desirable
to be able to perform such control in a high-level language., Interrupt
control requirements are also demonstrated by several other kernels.
Accelerometer Processing (Paragraph A.8.1) is a good example.

The Interrupt Processor also requires the ability to select
the proper task (subprogram) for execution in response to a given
interrupt since the task assignment varies in real time for the timer
interrupts. Timing efficiency is highly important for selection and
transfer of control.

A.2.3 Assumptions Made During Coding

It was assumed that certain functions were performed auto-
matically by compiler-generated code or by the system under which
the object programs execute. In particular, the saving and restoring
of program status for the interrupted task as well as resetting the
hardware interrupt indication were assumed to be automatic. -

Symbolic names were assumed for each of the hardware inter-
rupts of the Saturn Launch Vehicle Digital Computer. These names
were then used in any kernel where direct reference was made to
interrupts. Paragraph A.12 contains a glossary of these names.



A.2.4 Flowchart Notes

Note 1

The program entry point EGPI is utilized to activate
the interrupt handling routines for SPL and CLASP.
The statements within it are not executed during the
activation process but are merely armed (readied)
for execution in response to the associated interrupts,
For HAL the entry is used to schedule the interrupt
handling tasks.

Note 2

The Timer 1 interrupt handler for CLASP and HAL
does not determine which of the Switch Selector
modules is to receive control. Since these languages
restrict a program module to a single entry point,
control is passed to a common entry point of the

switch Selector Processor which then internally decides
which function is to be performed.

-10-
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A.3 Non-Interrupt Sequencer

A.3.1 Description of Operation

The bulk of the Saturn Flight Program computations are per-
formed on a non-interrupt basis. That is, the basic mode of execu-
tion consists of cycling a series of computational tasks on the lowest
system priority level (lower than all of the interrupt levels). This
is performed by the Non-Interrupt Sequencer which is a part of the
operating system. Actually there are two Non-Interrupt Sequencers,
one for the powered phases of a mission and one for the coast phases.
Two sequencers areused because the computations performed differ
considerably between the two phase types and require different groups
of application tasks.

Tasks to be executed by the Non-Interrupt Sequencer have
associated status indicators which can be used to enable or disable
"each individual task., During system initialization for a given mis-
sion phase, the status indicators for the tasks to be cycled during
that phase are set to a predefined state. After initialization is com-
pleted, control is transferred to the appropriate sequencer.

The Non-Interrupt Sequencer for a given phase examines the
status indicators assigned to it in the order in which the associated
tasks are to be executed. If an indicator is enabled, the task is in-
voked., Otherwise the next indicator in the sequence is tested., When
control is returned from an enabled application task, the sequencer
calls the Periodic Processor (paragraph A.4) before stepping to the
next indicator. After all indicators have been tested, the Non-Inter-
rupt Sequencer returns to the first indicator in the group and repeats
the cycle continuously until the end of the phase.

The status indicators are set as required by application tasks
in response to the occurrence of external events (interrupts or dis-
cretes), on the basis of elapsed time, or as a result of internally
programmed decisions. In this manner, the basic sequence of com-
putations for a given mission phase can be modified as required.

A. 3.2 Unique Language Characteristics Required
The Non-Interrupt Sequencer existed in the Saturn Flight Pro-
gram as executable tables consisting of modifiable instructions which

were used to invoke enabled application tasks and to bypass disabled
tasks, Rather than using status indicators to enable/disable, the

-15-



instructions in the sequencer control tables were simply modified as
required,

Since programming in a higher level language makes it im-
practical, if not impossible, to '"execute'' a table or to modify in-
structions, the sample coding of the Non-Interrupt Sequencer was
implemented through testing of status indicators as described in the
preceding paragraph (A.3.1).

A.3,3 Flowchart Notes
Note 1
The Non-Interrupt Sequencer flowchart is general in
the sense that it applies to any mission phase. Actually

the kernel, as coded, contains two separate programs
for the boost and coast mission phases.

~16-
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A.4 Periodic Processor

A.4.1 Description of Operation

Certain tasks in the Saturn Flight Program must be executed
repetitively at a fixed frequency but require neither stringent timing
accuracy nor synchronization with other tasks. An example is a task
which compresses data as a function of time. The scheduling of
such tasks is performed by the Periodic Processor as a function of
the operating system.

The Periodic Processor is invoked by the Non-Interrupt
Sequencer following the execution of each enabled application task.
Consequently, the timing accuracy with which it is capable of sched-
uling tasks is no better than the execution time required by the long-
est Non-Interrupt Sequencer subtask. Since this time resolution is
relatively low, tasks with execution frequencies exceeding five times
per second or with stringent timing accuracy requirements should be
scheduled by the Interrupt Processor, through the Timer 1 and Timer
2 schedulers.

The Periodic Processor utilizes control tables containing
timing information for each periodic application task and status in-
dicators similar to those of the Non-Interrupt Sequencer (paragraph
A.3). The Periodic Processor first examines the status indicator
for an entry and then, if the task is enabled, it compares the task
execution interval with the time elapsed since its last execution., If
the task is enabled and is due to execute, it is invoked by the Periodic
Processor. When the task completes execution and returns control,
or when the task for a given entry is not invoked, the Periodic Pro-
cessor continues on to the next table entry. Upon reaching the end
of the table, control is returned to the Non-Interrupt Sequencer.

A.4.2 Unique Language Characteristics Required

The Periodic Processor requires the capability to access
data from control tables.

-18-~
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A.5 Events Processor

A.5.1 Description of Operation

Non-repetitive tasks to be executed at a given time are sched-
uied for execution by the Events Processor in coordination with the
Interrupt Processor, The Events Processor utilizes a predefined
table of task identifiers with associated execution times. An example
of such a task is one which sets accelerometer reasonableness test
constants at a given time during the mission, '

The Events Processor selects one entry at a time from the
table and schedules the entries in the sequence in which they exist
in the table. The execution time for a given table entry is used by
the Events Processor to reschedule itself via the low priority timer
of the Interrupt Processor. Then when it is reactivated at the speci-
fied time, it executes the associated task and selects the next entry
from the table. When it reaches the end of a table, it disables itself
and remains dormant until it is re-enabled at a later time.

Two special entry points are required in addition to the normal
entry from the Interrupt Processor. The first is used at the start
of each mission time base (time reference frame) to initialize pointers
to the beginning of the corresponding Event Table. The second entry
is utilized to enable and reschedule the Events Processor as required
following periods when it has been disabled.

A.5.2 Unique Language Characteristics Required

. The Events Processor is responsible for invoking a relatively
large group of tasks (one at a time) using the identifiers obtained
from the Events Processor Table. Language capabilities permitting
a call to one of several tasks depending on the value of the identifier
would significantly improve efficiency. Lacking such capabilities the
programmer is forced to code a call for each task and then use the
identifier as an index for a '"computed GOTQ" in order to pass con-
trol to the tasks. ' '

As implied in the preceding discussions, the Events Processor
also requires means for accessing data tables.

-20-



A.5.3 Flowchart Notes
Note 1
Since CLASP and HAL do not permit multiple entry
points for a module, the MEP0O5 module must call the

MEPI10 module for these languages rather than trans-
fer control to it as shown in the flowchart,



. Entry
MEPO0

a ti me
#se cC g(f

occurre

equired
application
module

Inhibit all

EVENTS PROCESSOR

xt. kntry
MEPO5

) Note 1

Set event
table index
for new
time base

Advance to
next event
table entry

Reset time
base chang
indicator

entry time
ame as
prev

Relea.1
revious

penabled Y
inter -

Disable
events
processor

Schedule
next event
at required
time

reviously
enabled

< Return ’

Figure A5

22~

Advance
event table

index to
next entry

End
of table

EPO8

Schedule
next event

Enable
events
processor

Return

Disable
events
processor

¥

< Return >




A.6 Iterative Guidance Mode

A.6.1 Description of Operation

Iterative Guidance Mode (IGM) is a path-adaptive guidance
program which steers along a nearly optimum trajectory toward a
predefined target. It is path-adaptive in the sense that it is designed
to adjust to perturbations to nominal vehicle performance, For
example, if one of the upper stage engines fails to develop full thrust,
IGM will adapt the steering computations to still achieve terminal
position and velocity with sufficient accuracy. The steering program
is based on the calculus of variations and is derived from a simpli-
fied set of differential equations of motion. It is designed for powered
flight in a vacuum with multiple distinct thrust levels and short coast-
ing periods,

IGM is executed once each iteration of the flight program back~.
ground loop (Non-Interrupt Sequencer, paragraph A. 3) during the
periods when it is active. It performs two basic functions:

o Guidance computations
o Phasing

Guidance computations generate vehicle steering commands
(desired attitude angles) using navigation data, vehicle performance
dafa, time, and desired terminal conditions. Calculations are per-
formed in the target plane and injection coordinate systems and then
rotated into the plumbline coordinate system for attitude control.

Phasing evaluates vehicle performance data and estimates the
times to go until the expected thrust level changes occur. For the
Saturn V vehicle and missions, there are two distinct thrust level
changes for the translunar injection boost period.

Due to the large size of IGM, it is neither informative nor
practical to code all of it in each of the languages. Therefore, only
the portion .containing the guidance computations is coded. The opera-
tions performed by the phasing segment are similar to those contained
in other kernels so coding them would be redundant.

A.6,2 Unique Language Characteristics Required

The IGM kernel contains the majority of the numerical com-
putations performed by the selected kernels. In addition to the common

- -23-



mathematical expressions including built-in functions (LOG, SQRT,
SIN, ATAN, etc.), it also demonstrates vector and matrix opera-
tions. It requires capabilities for coding vector expressions and
for performing such functions as dot product and vector rotation,

A.6.3 Flowchart Notes
Note 1
The dashed connector from the entry point to the first

block indicates the omission of the phasing portion of
IGM which was not coded.

-24-
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A.7 Digital Command System (DCS)

A.7.1 Description of Operation

The Digital Command System provides communication facili-
ties for receiving commands and data transmitted from ground sta-
tions. Capabilities exist for controlling flight program timing,
navigation, guidance, targeting, and sequencing functions from the
ground and for requesting specific program data to be telemetered
to the ground.

Each DCS function, as received by the DCS software task,
consists of a mode command to identify the function, followed by a
variable number of data commands depending on the requirements of
each function. The DCS task is initiated by the Interrupt Processor
in response to the hardware indication that input data has been re-
ceived. When a mode command is received it is tested for validity
and legality and then analyzed to determine whether or not data words
are required to perform the associated function, If data is required,
the DCS task returns control to the operating system and is reinitiated
as each data command is received. Each data word is also tested for
validity and legality as it is received. When all data for a given func-
tion has been received, or if a function does not require data, the
appropriate module is activated to process the function. Upon the
detection of errors in the DCS inputs, error messages are formulated
and transmitted back to the ground and the function is not activated.

The coded kernel does not include the various application mod-
ules which are invoked to perform the requested functions. Only the
central, coordinating portion of the overall DCS is demonstrated.

The format of DCS input data is shown in Table A-1 along with
a list of functions in Table A-2 and error codes in Table A-3.

A,7.2 Unique Language Characteristics Required

The Digital Command System has requirements to perform
real time I/O. It reads the DCS Input Register to obtain the incom-
ing data and the Discrete Input Register to examine the bit which
stipulates whether the DCS input data is a mode command or a data
word for a previous mode command, It also writes to the Discrete
Output Register to issue the command reset pulse for the Command
Receiver.
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DCS INPUT FORMAT

DID|D|D|D|DIS|C|C|C|C|C|C|C

S 1 23 4 5 6 7 8 9 10111213

LVDC
Bit Position Significance
S-5 DCS mode or data command
6 Sequence bit
7 -13 Complement of bits S-6
14 -25 Unused
Table A-1
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DCS FUNCTIONS

Mode Status No. Data
Comm, | Code Words Function
05 05 0 Maneuver inhibit
10 10 1 Time base update
11 11 35 Navigation update
12 12 2 Generalized switch selector
13 13 2 Sector dump
14 14 3 Telemeter single memory location
17 17 0 Time base 8 enable
20 20 0 Terminate
22 | 22 1 Maneuver update
25 25 0 Execute alternate sequence 6D
31 31 35 Target update
33 33 0 Execute communication maneuver
34 34 0 Execute evasive maneuver
45 45 0 Inhibit coolant control valve
52 52 6 S-1VB/IU lunar impact
53 77 0 Switch CCS antenna system to omni
54 7 0 Switch CCS antenna system to low gain
55 77 0 Switch CCS antenna system to high gain
60 60 0 Transposition, docking, and extrac-
tion enable
Note: Thé Mode Command comes from bits S-5 of the input command.

The Status Code is the telemetered status word. Both are
represented in octal.
Table A-2
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DCS ERROR CODES

Error Code
(Octal)

Description

04

10

14

20

24

34

44

54

60

64

74

Orbital Mode/Data bit is invalid; data command was
received when a mode command was expected,

True complement test failed for mode command;
information bits 7-13 are not the complement of
bitS S—6-

Mode command invalid; the mode command received
is not defined for this mission.

Orbital Mode/Data bit is invalid; mode command
was received when expecting a data command,

Mode command sequence bit incorrect; the sequence
bit received was 1 instead of 0.

Unable to issue generalized switch selector com-
mand function at this time; the last requested
generalized switch selector command function has
not been issued,

True complement test failed for data command; in-
formation bits 7-13 are not the complement of bits S-6.

The time of implementation of a navigation update or
target update command is less than 10 seconds in the
future,

Data command sequence bit incorrect; the sequence
bit must begin with 1 and alternate from 1 to 0 in
each sequential data command of a set.

A DCS program is in progress at this time; however,
no more data is required; only a terminate mode
command can be processed at this time.

The mode command received is defined for this mis-
sion but is not acceptable in the present time frame.

Table A-3
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The kernel also requires capabilities for unpacking the input
data and performing validity and legality tests on the data. When an
error is detected, the data must be formatted for an error message.
Table accessing facilities are also required since information con-
cerning each mode command is stored in tables, The information
includes:

o Number of data words required
o Command activity status (enabled/disabled)
o Status code (for telemetry)

Since a variety of functions must be invoked by DCS, a
variable call facility as discussed in paragraph A.5.2 would be use-
- ful.

A.7.3 Assumptions Made During Coding

The DCS kernel was not coded as it exists in the Saturn
Flight Program, It was reorganized to simplify program logic while
retaining all of the necessary functions. Reorganization primarily
involved the centralization of certain functions within the DCS kernel
which, in the original flight program, were performed in the various
DCS application sub-task modules. In particular, each application
module previously was required to determine whether or not it was
active, to issue status telemetry, and to make provision for obtain-
ing any needed input data. In the coding of the DCS kernel these
functions were performed in the DCS task itself to eliminate dupli-
cation and greatly simplify the operation of the application modules.
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A.8 Accelerometer Processing

A.8.1 Descriptions of Operation

The accelerometers attached to the inertial platform of the
vehicle provide data which serve as the basis for performing naviga-
tion during boost phases of a mission. Accelerometer Processing,
as its name implies, reads the accelerometers and refines the data
into a form suitable for updating vehicle position and velocity.

During periods when it is enabled, Accelerometer Processing
is executed once each iteration of the flight program background loop
by the Non-Interrupt Sequencer (paragraph A.3). It first inhibits
interrupts, reads the accelerometers for all three platform axes,
reads the real time clock, and then releases the interrupts. Inter-
rupts are inhibited to insure that the input data are all obtained at a
given point in time rather than separated in time by the execution of
an interrupt-driven task.

Before the input data can be used for navigation, each acceler-
ometer reading is subjected to three tests. FKEach reading provides two
pulse counts for redundancy. These pulse counts are subtracted from
the pulse counts of the previous computation cycle to obtain two delta
readings which represent the change in vehicle velocity along that
axis during the previous computation cycle. The two delta readings
are then compared and if they disagree by more than two pulses, an
error indication is set. The delta closest to a predicted value is
selected for further processing.

A zero test is performed next to detect an unchanging acceler-
ometer. Finally, a reasonableness test is performed in which the
actual delta is required to fall within a band of plus or minus fifty
percent of the predicted value enlarged by a reasonableness constant.
If a3 reading does not pass the reasonableness test, it is replaced by
a backup value derived from an internally calculated acceleration
profile. Error indications are set to indicate failure to pass any of
the tests,

After the tests are performed, the readings are used to calcu-
late vehicle acceleration and to update vehicle velocity.

An additional function performed by the Accelerometer Proces-

sing kernel is the calculation of mission time at the time the acceler-
ometers are read,
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A.8.2 Unique Lanugage Characteristics Required

Accelerometer Processing requires facilities for reading
real time data (acceleration and time) and for converting the data to
an internally usable form. The need also exists for controlling in-
terrupts via a momentary inhibit as discussed in paragraph A. 8. 1.

A.8.3 Flowchart Notes

Note 1

The computation of the average CHIs for the SMC
calculations (see A-8b) is shown in the flowcharts as
coded for SPL, and CLLASP, where PIRADS were used.
In HAL, PIRADS were not used so the special test
shown for the averaging of the pitch commanded CHI
was unnecessary.

Note 2
Likewise, for the computation of the expected velocity
changes (see A-8b), usage of the special SIN/COS

routine (USCO00) for PIRADS was replaced by the usage
of the built-in SIN/COS functions in HAL.
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A.9 Minor Loop

A.9.1 Description of Qperation

Vehicle attitude control is performed by the Minor Loop. In
general terms, attitude control consists of determining actual attitude
as indicated by vehicle sensors, calculating the attitude correction
required to achieve the desired attitude specified by a guidance task,
limiting the correction command, and issuing properly formatted
attitude control commands to the vehicle control system.

To maintain vehicle stability, the Minor Loop is executed
twenty-five times per second during boost phases and ten times per
second in orbit. These high frequencies require the Minor Loop to be
scheduled via the high-priority timer of the Interrupt Processor.

Vehicle attitude angles for yaw, pitch, and roll are sensed
by inertial platform resolvers which measure the angles between
the platform gimbals and the mounting frame. A fine and a coarse
(backup) resolver are provided for each gimbal., The fine resolvers
are selected until repeated errors cause a switch to be made to the
backup resolvers, Each resolver contains redundant counter read-
ings and a disagreement indicator which are used by the Minor Loop
for wvalidity checking.

After reading a resolver, the Minor Loop performs disagree-
ment processing to select the proper counter. Reasonableness tests
are then performed to detect invalid zero readings or an unreasonably
large change from the previous reading. In the event that both counters
of a resolver are bad, or if the selected counter fails the reasonable-
ness tests, the corresponding vehicle attitude angle is not updated
and the previous attitude control command is reissued. Error indica-
tors are set to identify the type of failure. If the occurrence of re-
solver failures exceeds predefined frequencieg, a switch is made to
the corresponding backup resolver. Backup failures result in guid-
ance reference failure indications and the last valid attitude command
is issued repeatedly for the remainder of the mission.

Resolver readings which have been determined to be valid
are converted to internal units and used to determine actual vehicle
attitude. The actual attitude is then compared with the desired atti-
tude and the difference is used to calculate attitude error commands
to be issued to the attitude control system. Before the commands
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are issued, however, they are limited to not exceed rate and magni-
tude tolerances.

A special entry point in the Minor Loop is provided for flight
simulation tests so that ladder profiles may be generated.

A.9.2 Unique Language Characteristics Required

While not specifically required, an indirect I/O capability
would be useful, In the Minor Loop it may be desirable to read
either fine or backup gimbals depending upon whether or not pre-
vious gimbal failures have occurred, or it may be desirable to not
issue a read command at all as in a repeatable flight simulation test
run. An indirect I/0O capability is not mandatory since tests could
be made to determine the type of I/O required. However, in a pro-
gram such as the Minor Loop where time is of utmost importance,
such tests would impose timing penalties.

Techniques are required for insuring that a given amount of
time has elapsed between the issuance of gimbal read commands.
Since the programmer loses sight of execution time in a high level
language, the language should provide a means for determining such
delta times and for specifying required time delays,

The relatively high execution frequencies of the Minor Loop
(25/second in boost and 10/second in orbit) make minimizing execu-
tion time particularly desirable for this kernel., The ability to direct
the compiler to minimize execution time, even at some cost in in-
creased memory requirements, would be useful if the flight computer
processing time capacity was near saturation. ‘

A.9.3 Flowchart Notes
Note 1

The Flight Simulation entry to the Minor Loop (MML00)
is coded as a separate subroutine in CLLASP, CMS-2, and
HAL since these languages restrict a program module

to a single entry point. It then calls the normal Minor
Loop (MML20) rather than transferring control to a point
within it as shown in the flowchart,
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A.10 Switch Selector Processor

A.10.1 Description of Operation

Certain hardware functions of the Saturn vehicle are activated
by the flight program via the issuance of switch selector output com-
mands. The Switch Selector Processing task functions in much the
same way as the Events Processor, in that it utilizes a predefined
table containing the switch selector commands and their associated
times for issuance. The time of activation for a given entry is used
to schedule the Switch Selector Processor via the high-priority timer
of the Interrupt Processor.

However, the process of issuing a switch selector is more
involved than the function of initiating tasks performed by the Events
Processor, The issuance of a single switch selector function requires
at least five I/0O operations to be performed:

o Hung stage test

o Issue stage and address
o] Verify address

o Issue read command

o Reset read command

In addition, if the hung stage test fails, a forced reset must be issued
before the stage and address is issued. Also, if an address verifica-
tion fails, a forced reset must be issued followed by the issuance of
the stage and complemented address, Depending on the type of veri-
fication error, the system may be reconfigured to issue future switch
selectors via different circuitry.

Hardware restrictions require timing delays between com-
mand issuance, Since the switch selector delays are on the order
of ten to twenty-five milliseconds, the Switch Selector Processor re-
schedules itgelf for execution at the proper time and returns control
to the operating system. The interval is too long to be accomplished
through an in-line delay.

In addition to the nominal sequence of switch selector functions,
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provision is made for alternate sequences which can be activated as
specified by other application tasks. Depending on the type of alter-
nate sequence, the alternate switch selector functions will be issued
jinstead of, or intermixed with, those of the nominal sequence.

Numerous entry points exist for the Switch Selector Proces-
sing kernel. Most of the entires are used for scheduling its various
functions via the Timer 1 Scheduler as discussed above. Three ad-
ditional entries are used to request an alternate sequence, to issue
a forced reset, or to initialize Switch Selector Table pointers for a
new time base.

A.10.2 Unique Language Characteristics Required

Requirements for an indirect I/O capability and for measur-
ing short time periods are similar to those discussed for the Minor
Loop (see paragraph A. 9, 3).

Although the decision-making statements are a commeon
feature of nearly all programming languages, special emphasis on
them here is warranted due to the unusually large number of decisions
made in the Switch Selector Processor.  This kernel places a pre-
mium on language capabilities which enable the programmer to ex-
press complex decision sequences in a logical and concise manner,
The extent to which a language provides such capabilities contributes
directly to the elimination of program logic errors and to an improve-
ment in readability. Decision tables are particularly useful in this
environment.

Another relatively common characteristic of the Switch
Selector Processor is the manipulation of data at the bit level. It
utilizes features for setting, resetting, and testing bits in status/
control words and also for formatting and analyzing I/0O data words,
These functions require a language to provide bit-string handling
facilities. ‘

- Also required is the ability to access data from tables. A
subroutine is utilized to select the next switch selector command to
be issued from one of a number of tables, Since alternate sequences
can be interspersed and/or interleaved with switch selectors from
the nominal sequence, the subroutine must be able to jump from table
to table based on sequence decisions made by other programs.
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A.10.3 Flowchart Notes

Note 1

Switch Selector Processing consists of a number of
interrelated functions, some of which use common
program logic. In order to minimize program dupli-
cation, the functions were all combined into a single
program module and invoked via multiple entry points
as shown in the flowcharts, The kernel was actually
coded that way in SPL.. However, for the other three
languages, where multiple entry points are not allowed,
a common entry point (MSS00) was utilized wherein con-
trol was transferred to the appropriate function. The
decision logic for this transfer of control is not shown
on the flowcharts but in each of the three languages
(CLASP, CMS-2, and HAL) it consisted of a com-
puted GOTO.
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A.1ll1 Task Keying (ATMDC)

A.1ll.1 Description of Operation

Task Keying is an operating system function associated with
priority task scheduling; it is the process of entering information
concerning a task into a Priority Control Table to enable the task
to be dispatched (initiated) on a priority basis. The information in-
cludes such items as task priority level, the in-core address of the
task, and initial register contents for the task.

Since multiple tasks can usually be keyed for execution on a
given priority level, various techniques are used for stacking the
additional entries. In the ATMDC operating system, the Priority
Control Table (Table A-4) holds a single entry for each priority level.
Additional entries are stored in a Priority Overflow Table (Table A-5)
with all entries for a given priority level chained together.

Requirements for task keying vary with the design of the opera-
ting system. For the ATMDC Flight Program, tasks are keyed in
response to events (interrupts or discretes), based on time, or as
requested by another application task.

A.11.2 Unique Language Characteristics Required

The Task Keying kernel requires facilities for formatting and
accessing tables. Techniques for linking the overflow entries together
in an efficient manner are also desirable,

The kernel also implies a requirement for the capability to
identify the task to be keyed. The keying process itself does not re-
quire it since the Task ID is simply stored into a table, However,
since this is done for the express purpose of dispatching the task (pas-
sing control to it) at a later time, the Task ID must provide the means
by which the task can be located in core,

A.11.3 Assumptions Made During Coding

Several assumptions were made for the purpose of organizing
the control tables. It was assumed that there were ten priority levels
in the operating system and that twenty-five entries in the overflow
table would suffice. Also, it was assumed that three hardware registers
required saving for each task. These assumptions affect only the size
of the control tables and could be easily adjusted.
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PRIORITY CONTROL TABLE

Reg 1 Reg 2 Reg 3 Overflow
Task ID | Contents | Contents | Contents {Chain Link

Level O
Level 1
Level 2

1

1

1

1

1

1
Level N-1

Notes:

1) Number of priority levels (N) depends on system requirements.

Ten levels were assumed for the kernel.
2) During the keying process, the Task ID is either the memory

3)

4)

address of the task entry point or some other indicator which
can be used to locate the task in memory. After a task has
been initiated, this word is used to store the address where
task execution is to resume following an interruption. A value
of zero for a Task ID indicates that no tasks are currently as-
signed to that priority level,

Register storage words are used to save task registers when a
task is interrupted. They are initiali